blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
b35d9aaf965f7d40c495282839accb0fc9ab6483
ffceedc0f1e52f5a8534b729ab756a97ef70ff58
/test/dynamo/test_export.py
7a365d13de89cdf0443cef9e55f4e5f6eadb5d68
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
loongson-zn/pytorch
d10b7af29e2946b1f87bf4cb516828fafb919b2c
7cef7195f616f75bf25a48cf5692f704d35ac4b2
refs/heads/main
2023-07-03T17:53:09.765084
2023-06-25T06:26:40
2023-06-25T06:26:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
107,772
py
# Owner(s): ["module: dynamo"] """ PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes with test_export_persist_assert) """ import functools import inspect import math import operator import unittest from enum import Enum from typing import Dict, List, Sequence from unittest.mock import patch import torch import torch._dynamo import torch._dynamo.test_case import torch._dynamo.testing from functorch.experimental.control_flow import cond from torch._dynamo import config from torch._export import dynamic_dim from torch._export.constraints import constrain_as_size, constrain_as_value from torch.fx.experimental.proxy_tensor import make_fx from torch.fx.experimental.symbolic_shapes import ConstraintViolationError from torch.testing import FileCheck from torch.testing._internal import common_utils from torch.testing._internal.common_utils import skipIfRocm class ExportTests(torch._dynamo.test_case.TestCase): # TODO(voz): Refactor to a shared test function. # The tests in this file are a little redundant, # They all take a func, run it with eager, then export it, then compare def test_export(self): def pre_attention_state_ops(input, mems, state): lc_key = state[0] lc_val = state[1] bar = [] for i in range(0, 4): bar2 = [] for j in range(0, 3): bar2.append( lc_key + lc_val + torch.tensor([0.1, 0.25, 0.4, 0.5, 0.1]) ) bar.append(bar2) return bar def func(): mems = torch.tensor([[[1.8364, 0.2724, -1.4917, -0.4367, 0.8640]]]) state = [ torch.tensor([[[1.0517, 0.3848, -0.6472, 0.0823, 0.9116]]]), torch.tensor([[[1.0517, 0.3848, -0.6472, 0.0823, 0.9116]]]), ] i = torch.tensor( [ [0.0313, -0.1487, -0.3846, -0.5321], [-1.7073, 1.3331, -0.0890, -1.4935], [-0.8314, -0.1862, -0.5935, 1.5232], ] ) return pre_attention_state_ops(i, mems, state) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func() torch._dynamo.reset() exported = torch._dynamo.export(func) out_graph = exported[0] dynamo_result = out_graph() self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_mismatched_out(self): def func(x): y = x + 1 return ([x, x], (y, y)) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(torch.tensor([[[1.3737, 0.1]]])) torch._dynamo.reset() exported = torch._dynamo.export(func, torch.tensor([[[1.3737, 0.1]]])) out_graph = exported[0] dynamo_result = out_graph(torch.tensor([[[1.3737, 0.1]]])) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_shape_control_flow_1(self): def func(x): if x.shape[0] > 10: return x.cos() return x.sin() opt_func = torch._dynamo.optimize("eager")(func) real_result = opt_func(torch.ones(6, 4)) torch._dynamo.reset() exported = torch._dynamo.export(func, torch.ones(6, 4)) out_graph, out_guards = exported dynamo_result = out_graph(torch.ones(6, 4)) from torch._guards import GuardSource self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) hit = False for guard in out_guards: if guard.source == GuardSource.SHAPE_ENV: hit = True self.assertTrue("L['x'].size()[0] <= 10" in guard.code_list) self.assertTrue(hit) def test_export_control_flow_with_getattr(self): class Animal(Enum): COW = "moo" class MyModule(torch.nn.Module): def __init__(self, a): super().__init__() self.a = a def forward(self, x): if self.a == Animal.COW.value: return x * x else: raise ValueError("bad") module = MyModule("moo") input = (torch.ones(4, 3),) resA = module(*input) graph, _ = torch._dynamo.export(module, *input) resB = graph(*input) self.assertTrue(torch._dynamo.utils.same(resA, resB)) def test_export_graph_bypass(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), ] def func(x): first = x[2] second = x[2] return first * second opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_list_unpack(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), ] def func(x): first = x[2] second = x[2] return x[0], first * second, x[1], x[2] opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_with_shallow_list_copy_wo_side_effects(self): def f(x): y = x.copy() return y[0] + y[1] inp = [torch.tensor([1.3, 3.77, 0.1]), torch.tensor([8.7, 6.23, 9.9])] gm, _ = torch._dynamo.export(f, inp, aten_graph=True, tracing_mode="symbolic") self.assertTrue(torch._dynamo.utils.same(gm(inp), f(inp))) def test_export_with_shallow_list_copy_with_side_effects(self): def f(x): y = x.copy() x[0] = x[1] y.append(torch.tensor([[100]])) return x[0] + x[1], y[0] + y[1], y[2] inp = [torch.tensor([1.3, 3.77, 0.1]), torch.tensor([8.7, 6.23, 9.9])] gm, _ = torch._dynamo.export(f, inp, aten_graph=True, tracing_mode="symbolic") res = gm(inp) ref = f(inp) self.assertTrue(torch._dynamo.utils.same(res, ref)) self.assertEqual(res[0], res[1]) def test_export_mismatched_out_2(self): def func(x): y = x + 1 return ([x, x], (y, y)) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(torch.tensor([[[1.3737, 0.1]]])) torch._dynamo.reset() exported = torch._dynamo.export(func, torch.tensor([[[1.3737, 0.1]]])) out_graph = exported[0] dynamo_result = out_graph(torch.tensor([[[1.3737, 0.1]]])) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_graph_with_list(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), torch.tensor([0.4, 0.4]), ] def func(x): first = x[2] second = x[2] return first * second, x opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_graph_with_complex_reorder(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), torch.tensor([0.4, 0.4]), ] def func(x): first = x[0] second = x[1] third = x[2] return third, first, second, first * second, first * third opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes(self): inp = torch.tensor([0.1, 0.1]) def func(x): y = x + 1 return y, y opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_2(self): inp = torch.tensor([0.1, 0.1]) def func(x): y = x + 1 return y, y opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_and_bypass(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.4, 0.4]) inps = [inp, inp2] def func(x, z): y = x + 1 return y, y, z opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_and_bypass_with_non_tensor_arg(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.1, 0.1]) inp3 = 4 inps = [inp, inp2, inp3] def func(x, z, k): y = x + k return y, y, z opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_and_bypass_reorder_with_non_tensor_arg(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.1, 0.1]) inp3 = 4 inps = [inp, inp2, inp3] def func(x, z, k): y = x + k return z, y, y opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) @config.patch(capture_scalar_outputs=True) def test_dupes_and_bypass_with_non_tensor_output(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.1, 0.1]) inp3 = 4 inps = [inp, inp2, inp3] def func(x, z, k): y = x + k return y[0].item(), y, z opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_zeroes_in_and_out_different_shape_on_test(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): return [[a], [b, c], [a + b], [[c + c]]] opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) @config.patch(capture_scalar_outputs=True) def test_zeroes_in_new_shape_scalar_out(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): return a[0].item() + b[0].item() + c[0].item() opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) @config.patch(capture_scalar_outputs=True) def test_zeroes_in_new_shape_scalar_out_permute(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): return b[0].item() + c[0].item() + a[0].item() + a[0].item() opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) @config.patch(capture_scalar_outputs=True) def test_zeroes_in_new_shape_scalar_out_permute_dupe_and_bypass(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): return a, b[0].item() + c[0].item() + a[0].item() + a[0].item(), a opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_func_return(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): x = a + b + c def func2(y): return x * y return func2(x) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dict_return(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): x = a + b + c return {"a": x} opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_with_aten_graph(self): def pre_attention_state_ops(input, mems, state): lc_key = state[0] lc_val = state[1] bar = [] for i in range(0, 4): bar2 = [] for j in range(0, 3): bar2.append( lc_key + lc_val + torch.tensor([0.1, 0.25, 0.4, 0.5, 0.1]) ) bar.append(bar2) return bar def func(): mems = torch.tensor([[[1.8364, 0.2724, -1.4917, -0.4367, 0.8640]]]) state = [ torch.tensor([[[1.0517, 0.3848, -0.6472, 0.0823, 0.9116]]]), torch.tensor([[[1.0517, 0.3848, -0.6472, 0.0823, 0.9116]]]), ] i = torch.tensor( [ [0.0313, -0.1487, -0.3846, -0.5321], [-1.7073, 1.3331, -0.0890, -1.4935], [-0.8314, -0.1862, -0.5935, 1.5232], ] ) return pre_attention_state_ops(i, mems, state) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func() torch._dynamo.reset() exported = torch._dynamo.export(func, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph() self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_mismatched_out_with_aten_graph(self): def func(x): y = x + 1 return ([x, x], (y, y)) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(torch.tensor([[[1.3737, 0.1]]])) torch._dynamo.reset() exported = torch._dynamo.export( func, torch.tensor([[[1.3737, 0.1]]]), aten_graph=True ) out_graph = exported[0] dynamo_result = out_graph(torch.tensor([[[1.3737, 0.1]]])) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_graph_bypass_with_aten_graph(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), ] def func(x): first = x[2] second = x[2] return first * second opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_list_unpack_with_aten_graph(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), ] def func(x): first = x[2] second = x[2] return x[0], first * second, x[1], x[2] opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_mismatched_out_2_with_aten_graph(self): def func(x): y = x + 1 return ([x, x], (y, y)) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(torch.tensor([[[1.3737, 0.1]]])) torch._dynamo.reset() exported = torch._dynamo.export( func, torch.tensor([[[1.3737, 0.1]]]), aten_graph=True ) out_graph = exported[0] dynamo_result = out_graph(torch.tensor([[[1.3737, 0.1]]])) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_graph_with_list_with_aten_graph(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), torch.tensor([0.4, 0.4]), ] def func(x): first = x[2] second = x[2] return first * second, x opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_graph_with_complex_reorder_with_aten_graph(self): inp = [ torch.tensor([0.1, 0.1]), torch.tensor([0.2, 0.2]), torch.tensor([0.3, 0.3]), torch.tensor([0.4, 0.4]), ] def func(x): first = x[0] second = x[1] third = x[2] return third, first, second, first * second, first * third opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_with_aten_graph(self): inp = torch.tensor([0.1, 0.1]) def func(x): y = x + 1 return y, y opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_2_with_aten_graph(self): inp = torch.tensor([0.1, 0.1]) def func(x): y = x + 1 return y, y opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(inp) torch._dynamo.reset() exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_and_bypass_with_aten_graph(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.4, 0.4]) inps = [inp, inp2] def func(x, z): y = x + 1 return y, y, z opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_and_bypass_with_non_tensor_arg_with_aten_graph(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.1, 0.1]) inp3 = 4 inps = [inp, inp2, inp3] def func(x, z, k): y = x + k return y, y, z opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dupes_and_bypass_reorder_with_non_tensor_arg_with_aten_graph(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.1, 0.1]) inp3 = 4 inps = [inp, inp2, inp3] def func(x, z, k): y = x + k return z, y, y opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) @config.patch(capture_scalar_outputs=True) def test_dupes_and_bypass_with_non_tensor_output_with_aten_graph(self): inp = torch.tensor([0.1, 0.1]) inp2 = torch.tensor([0.1, 0.1]) inp3 = 4 inps = [inp, inp2, inp3] def func(x, z, k): y = x + k return y[0].item(), y, z opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_zeroes_in_and_out_different_shape_on_test_with_aten_graph(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): return [[a], [b, c], [a + b], [[c + c]]] opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_func_return_with_aten_graph(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): x = a + b + c def func2(y): return x * y return func2(x) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_dict_return_with_aten_graph(self): inp = torch.zeros(10) inp2 = torch.zeros(10) inp3 = torch.zeros(10) inps = [inp, inp2, inp3] inps_rand = [torch.randn(10), torch.randn(10), torch.randn(10)] def func(a, b, c): x = a + b + c return {"a": x} opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps_rand) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps_rand) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_with_stack_trace(self): inp = torch.randn(4, 4) class MyBlock(torch.nn.Module): def forward(self, x): x = torch.nn.functional.linear(x, torch.randn(4, 4)) return torch.cos(x).relu() + 1 class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.block = MyBlock() def forward(self, x): out = self.block(x) return out exported = torch._dynamo.export(MyModule(), inp, aten_graph=False) out_graph = exported[0] for node in out_graph.graph.nodes: if node.op not in {"placeholder", "output"}: self.assertTrue(node.stack_trace is not None) self.assertTrue(node.meta["nn_module_stack"] is not None) self.assertTrue(node.meta["source_fn"] is not None) torch._dynamo.reset() exported = torch._dynamo.export(MyModule(), inp, aten_graph=True) out_graph = exported[0] for node in out_graph.graph.nodes: if node.op == "call_function": self.assertTrue(node.stack_trace is not None) self.assertTrue(node.meta["nn_module_stack"] is not None) self.assertTrue(node.meta["source_fn"] is not None) self.assertTrue(node.meta["val"] is not None) self.assertTrue(node.meta["original_aten"] is not None) def test_export_preserves_nn_module_stack_for_get_attr(self): inp = torch.randn(4, 4) class MyBlock(torch.nn.Module): def __init__(self): super().__init__() self.weight = torch.nn.Parameter(torch.ones(1, 1)) self.register_buffer("buffer", torch.ones(1, 1)) def forward(self, x): x = torch.nn.functional.linear(x, torch.randn(4, 4)) return torch.cos(x).relu() + self.weight + self.buffer class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.block = MyBlock() def forward(self, x): out = self.block(x) return out m = MyModule() exported = torch._dynamo.export(m, inp, aten_graph=False) out_graph = exported[0] attr_access_count = 0 for node in out_graph.graph.nodes: if node.op == "get_attr": attr_access_count += 1 self.assertTrue(node.meta["nn_module_stack"] is not None) self.assertEqual(attr_access_count, 2) torch._dynamo.reset() exported = torch._dynamo.export(m, inp, aten_graph=True) out_graph = exported[0] attr_access_count = 0 for node in out_graph.graph.nodes: if node.op == "get_attr": attr_access_count += 1 self.assertTrue(node.meta["nn_module_stack"] is not None) self.assertEqual(attr_access_count, 2) def test_export_compare_optimize_with_make_fx(self): inp = torch.tensor([0.1, 0.1]) linear = torch.nn.Linear(2, 2) def func(x): x = x + 1 y = x.t() y = y.relu() y = linear(y) return y exported = torch._dynamo.export(func, inp, aten_graph=True) out_graph = exported[0] export_result = out_graph(inp) torch._dynamo.reset() def compiler(gm, sample_inputs): def fw(*args): aten_gm = make_fx(gm)(*args) return aten_gm(*args) return fw opt_func = torch._dynamo.optimize(compiler, nopython=True, dynamic=True)(func) make_fx_result_through_backend = opt_func(inp) fx_g = make_fx(func)(inp) make_fx_result_through_direct = fx_g(inp) self.assertTrue( torch._dynamo.utils.same(make_fx_result_through_backend, export_result) ) self.assertTrue( torch._dynamo.utils.same(make_fx_result_through_direct, export_result) ) def test_export_with_constant_method_on_module(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(4, 2)) self.linear = torch.nn.Linear(2, 2) @torch._dynamo.assume_constant_result def helper_fn(self, x): return torch.nonzero(x) def forward(self, x): y = torch.sin(x) x = self.linear(x) y = self.helper_fn(x) return y module = MyModule() real_result = module(torch.tensor([[1.0, 0], [0, 0]])) module = MyModule() graph, _ = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) result = graph(torch.tensor([[1.0, 0.0], [0, 0]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) result = graph(torch.tensor([[1, 0], [0.25, 0.25]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_method_on_module_invoke_twice(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(4, 2)) self.linear = torch.nn.Linear(2, 2) @torch._dynamo.assume_constant_result def helper_fn(self, x): return torch.nonzero(x) def forward(self, x): y = torch.sin(x) x = self.linear(x) y = self.helper_fn(x) + self.helper_fn(x) return y module = MyModule() real_result = module(torch.tensor([[1.0, 0], [0, 0]])) module = MyModule() graph, _ = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) result = graph(torch.tensor([[1.0, 0.0], [0, 0]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) result = graph(torch.tensor([[1, 0], [0.25, 0.25]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_free_function(self): @torch._dynamo.assume_constant_result def helper_fn(x): return torch.nonzero(x) class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(4, 2)) self.linear = torch.nn.Linear(2, 2) @torch._dynamo.assume_constant_result def helper_fn(self, x): return torch.nonzero(x) def forward(self, x): y = torch.sin(x) x = self.linear(x) y = helper_fn(x) + self.helper_fn(x) return y module = MyModule() real_result = module(torch.tensor([[1.0, 0], [0, 0]])) module = MyModule() graph, _ = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) result = graph(torch.tensor([[1.0, 0.0], [0, 0]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) result = graph(torch.tensor([[1, 0], [0.25, 0.25]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_free_function_and_class_method(self): @torch._dynamo.assume_constant_result def helper_fn(x): return torch.nonzero(x) class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(4, 2)) self.linear = torch.nn.Linear(2, 2) def forward(self, x): y = torch.sin(x) x = self.linear(x) y = helper_fn(x) return y module = MyModule() real_result = module(torch.tensor([[1.0, 0], [0, 0]])) module = MyModule() graph, _ = torch._dynamo.export(module, torch.tensor([[0.0, 0], [0, 0]])) result = graph(torch.tensor([[1.0, 0.0], [0, 0]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) result = graph(torch.tensor([[1, 0], [0.25, 0.25]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_free_function_and_class_method_multiarg(self): @torch._dynamo.assume_constant_result def helper_fn(x): return torch.nonzero(x) class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(4, 2)) self.linear = torch.nn.Linear(2, 2) def forward(self, x, z): y = torch.sin(x) x = self.linear(x) y = helper_fn(x) + helper_fn(z) return y module = MyModule() real_result = module( torch.tensor([[1.0, 0], [0, 0]]), torch.tensor([[1.0, 0], [0, 0]]) ) module = MyModule() graph, _ = torch._dynamo.export( module, torch.tensor([[0.0, 0], [0, 0]]), torch.tensor([[1.0, 0], [0, 0]]) ) result = graph( torch.tensor([[1.0, 0.0], [0, 0]]), torch.tensor([[1.0, 0.0], [0, 0]]) ) self.assertTrue(torch._dynamo.utils.same(result, real_result)) result = graph( torch.tensor([[1, 0], [0.25, 0.25]]), torch.tensor([[1, 0], [0.25, 0.25]]) ) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_free_function_and_class_method_multiarg_diff(self): @torch._dynamo.assume_constant_result def helper_fn(x): return torch.nonzero(x) class MyModule(torch.nn.Module): def forward(self, x, z): y = helper_fn(x) + helper_fn(z) return y module = MyModule() real_result = module( torch.tensor([[1.0, 0], [0, 0]]), torch.tensor([[1.0, 0], [0, 0]]) ) module = MyModule() graph, _ = torch._dynamo.export( module, torch.tensor([[0.0, 0], [0, 0]]), torch.tensor([[0.0, 0], [0.5, 0]]) ) result = graph( torch.tensor([[1.0, 0.0], [0, 0]]), torch.tensor([[0.0, 1.0], [0, 0]]) ) self.assertTrue(torch._dynamo.utils.same(result, real_result)) result = graph( torch.tensor([[1, 0], [0.25, 0.25]]), torch.tensor([[0.33, 0.33], [0.25, 0.25]]), ) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_tuple_nonzero(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): return (torch.nonzero(x), torch.nonzero(x)) def forward(self, x): y = torch.tensor([0.5]) elements = self.helper_fn(x) all_y = [] for element in elements: for item in element: all_y.append(y * item) return all_y module = MyModule() real_result = module(torch.tensor([1.0, 1.0])) graph, guards = torch._dynamo.export(module, torch.tensor([1.0, 1.0])) # Tensor input can be almost anything here, and the result will capture what we # made constant at compile time. result = graph(torch.tensor([[[1.0, 0], [0, 0]], [[1.0, 0], [0, 0]]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_list_nonzero(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): return [torch.nonzero(x), torch.nonzero(x)] def forward(self, x): y = torch.tensor([0.5]) elements = self.helper_fn(x) all_y = [] for element in elements: for item in element: all_y.append(y * item) return all_y module = MyModule() real_result = module(torch.tensor([1.0, 1.0])) graph, guards = torch._dynamo.export(module, torch.tensor([1.0, 1.0])) # Tensor input can be almost anything here, and the result will capture what we # made constant at compile time. result = graph(torch.tensor([[[1.0, 0], [0, 0]], [[1.0, 0], [0, 0]]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_list_nonzero_free_function(self): @torch._dynamo.assume_constant_result def helper_fn(x): return [torch.nonzero(x), torch.nonzero(x)] class MyModule(torch.nn.Module): def forward(self, x): y = torch.tensor([0.5]) elements = helper_fn(x) all_y = [] for element in elements: for item in element: all_y.append(y * item) return all_y module = MyModule() real_result = module(torch.tensor([1.0, 1.0])) graph, guards = torch._dynamo.export(module, torch.tensor([1.0, 1.0])) # Tensor input can be almost anything here, and the result will capture what we # made constant at compile time. result = graph(torch.tensor([[[1.0, 0], [0, 0]], [[1.0, 0], [0, 0]]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_dict_values(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): return {"x": x, "x^2": x * x} def forward(self, x): y = torch.tensor([0.5]) elements = self.helper_fn(x) y = y * elements["x"] y = y * elements["x^2"] return y module = MyModule() real_result = module(torch.tensor([2.0, 2.0])) graph, guards = torch._dynamo.export(module, torch.tensor([2.0, 2.0])) # Tensor input can be almost anything here, and the result will capture what we # made constant at compile time. result = graph(torch.tensor([[[1.0, 0], [0, 0]], [[1.0, 0], [0, 0]]])) self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_none_control_flow(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): if x.item() < 0: return None else: return x def forward(self, x): y = torch.tensor([0.5]) x = self.helper_fn(x) if x is None: return y return y * x module = MyModule() real_result = module(torch.tensor([-1])) # X is negative, so .item() < 0, which means we return y self.assertEqual(real_result, torch.tensor([0.5])) graph, guards = torch._dynamo.export(module, torch.tensor([-1])) result = graph(torch.tensor([2])) # X is positive, but we compiled helper_fn to return None, so it will still return y self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_not_none_control_flow(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): if x.item() < 0: return None else: return x def forward(self, x): y = torch.tensor([0.5]) x = self.helper_fn(x) if x is None: return y return y * x module = MyModule() real_result = module(torch.tensor([2])) # X is positive, so .item() > 0, which means we return y * x self.assertEqual(real_result, torch.tensor([1.0])) graph, guards = torch._dynamo.export(module, torch.tensor([2])) result = graph(torch.tensor([-0.5])) # X is negative, but we compiled helper_fn to return x, so it will still return y * x self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_none_control_flow_free_func(self): @torch._dynamo.assume_constant_result def helper_fn(x): if x.item() < 0: return None else: return x class MyModule(torch.nn.Module): def forward(self, x): y = torch.tensor([0.5]) x = helper_fn(x) if x is None: return y return y * x module = MyModule() real_result = module(torch.tensor([-1])) # X is negative, so .item() < 0, which means we return y self.assertEqual(real_result, torch.tensor([0.5])) graph, guards = torch._dynamo.export(module, torch.tensor([-1])) result = graph(torch.tensor([2])) # X is positive, but we compiled helper_fn to return None, so it will still return y self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_not_none_control_flow_pos(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): if x.item() < 0: return None else: return x def forward(self, x): y = torch.tensor([0.5]) x = self.helper_fn(x) if x is None: return y return y * x module = MyModule() real_result = module(torch.tensor([2])) # X is positive, so .item() > 0, which means we return y * x self.assertEqual(real_result, torch.tensor([1.0])) graph, guards = torch._dynamo.export(module, torch.tensor([2])) result = graph(torch.tensor([-0.5])) # X is negative, but we compiled helper_fn to return x, so it will still return y * x self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_not_none_control_flow_free_func(self): @torch._dynamo.assume_constant_result def helper_fn(x): if x.item() < 0: return None else: return x class MyModule(torch.nn.Module): def forward(self, x): y = torch.tensor([0.5]) x = helper_fn(x) if x is None: return y return y * x module = MyModule() real_result = module(torch.tensor([2])) # X is positive, so .item() > 0, which means we return y * x self.assertEqual(real_result, torch.tensor([1.0])) graph, guards = torch._dynamo.export(module, torch.tensor([2])) result = graph(torch.tensor([-0.5])) # X is negative, but we compiled helper_fn to return x, so it will still return y * x self.assertTrue(torch._dynamo.utils.same(result, real_result)) def test_export_with_constant_not_return_const(self): class MyModule(torch.nn.Module): @torch._dynamo.assume_constant_result def helper_fn(self, x): return self.val def forward(self, x): y = torch.tensor([0.5]) x = self.helper_fn(x) if x == "A": return y return -1 module = MyModule() module.val = "A" resA = module(torch.tensor([2])) graph, guards = torch._dynamo.export(module, torch.tensor([2])) module.val = "B" resB = graph(torch.tensor([2])) self.assertTrue(torch._dynamo.utils.same(resA, resB)) def test_export_decomp(self): def f(x): return x.t() + x.t() def nop(x): return x.cos() graph, _ = torch._dynamo.export( f, (torch.randn(5)), aten_graph=True, decomposition_table={torch.ops.aten.t.default: nop}, ) self.assertEqual( len([n for n in graph.graph.nodes if n.target == torch.ops.aten.t.default]), 0, ) graph, _ = torch._dynamo.export( f, (torch.randn(5)), aten_graph=True, decomposition_table=None ) self.assertEqual( len([n for n in graph.graph.nodes if n.target == torch.ops.aten.t.default]), 2, ) def test_export_decomp_asserts_bad_args(self): def f(x): return x.t() + x.t() def nop(x): return x.cos() with self.assertRaises(AssertionError): graph, _ = torch._dynamo.export( f, (torch.randn(5)), aten_graph=False, decomposition_table={torch.ops.aten.t.default: nop}, ) @config.patch(capture_scalar_outputs=True) def test_export_with_module_layer(self): from functorch.experimental.control_flow import cond class Module(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(3, 3) def forward(self, pred, x): def true_fn(val): return self.linear(val) * torch.tensor(2) def false_fn(val): return self.linear(val) * torch.tensor(-1) return cond(pred, true_fn, false_fn, [x]) mod = Module() x = torch.randn([3, 3]) pred = torch.tensor(x[0][0].item() < 0) real_result = mod.forward(pred, x) torch._dynamo.reset() exported = torch._dynamo.export(mod.forward, pred, x) out_graph = exported[0] dynamo_result = out_graph(pred, x) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) # New X, just to show we did not specialize x = x * -1 pred = torch.tensor(x[0][0].item() < 0) real_result_2 = mod.forward(pred, x) dynamo_result_2 = out_graph(pred, x) self.assertTrue(torch._dynamo.utils.same(real_result_2, dynamo_result_2)) @config.patch(capture_scalar_outputs=True) def test_export_with_cond_branches_calling_methods(self): from functorch.experimental.control_flow import cond class Module(torch.nn.Module): # ok def __init__(self): super().__init__() self.linear = torch.nn.Linear(3, 3) def t(self, val): return val + 1 def f(self, val): return val - 1 def true_fn(self, val): return self.linear(val) + self.t(val) def false_fn(self, val): return self.linear(val) - self.f(val) def forward(self, pred, x): return cond(pred, self.true_fn, self.false_fn, [x]) mod = Module() x = torch.randn([3, 3]) pred = torch.tensor(x[0][0].item() < 0) real_result = mod.forward(pred, x) out_graph, _ = torch._dynamo.export(mod.forward, pred, x) dynamo_result = out_graph(pred, x) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) @config.patch(capture_scalar_outputs=True) def test_export_with_cond_closure(self): from functorch.experimental.control_flow import cond class Foo(torch.nn.Module): def __init__(self): super().__init__() def forward(self, pred, x): def true_fn(x): return x * 2 def false_fn(x): return x - 2 return cond(pred, true_fn, false_fn, [x]) class Bar(torch.nn.Module): def __init__(self): super().__init__() def forward(self, pred, x): def true_fn(x): return x * 2 def false_fn(x): return x - 2 return cond(pred, true_fn, false_fn, [x + 1]) class FooBar(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(3, 3) def forward(self, pred, x): y = x + x def true_fn(x, y): return self.linear(x) * (x + y) def false_fn(x, y): return x * (y - x) return cond(pred, true_fn, false_fn, [x, y]) for Module in [Foo, Bar, FooBar]: mod = Module() x = torch.randn([3, 3]) pred = torch.tensor(x[0][0].item() < 0) real_result = mod.forward(pred, x) out_graph, _ = torch._dynamo.export(mod.forward, pred, x) dynamo_result = out_graph(pred, x) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_with_cond_with_closed_function(self): def hello(x): return x + 1 def hi(x): return x + 2 def foo(pred, x): def true_fn(x): return hello(x) def false_fn(x): return hi(x) return cond(pred, true_fn, false_fn, [x]) x = torch.randn(5) pred = x[0] > 0 real_result = foo(pred, x) out_graph, _ = torch._dynamo.export(foo, pred, x) dynamo_result = out_graph(pred, x) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_with_cond_dynamic_shape_pred(self): from functorch.experimental.control_flow import cond class Module(torch.nn.Module): def forward(self, x): def true_fn(x): return x + x def false_fn(x): return x[:2] return cond(x.shape[0] <= 2, true_fn, false_fn, [x]) mod = Module() x = torch.randn(2, 2) out_graph, _ = torch._dynamo.export(mod, x) test_x = torch.randn(3, 2) self.assertEqual(out_graph(test_x), mod(test_x)) def test_export_with_map_cond(self): from functorch.experimental.control_flow import cond, map class Module(torch.nn.Module): def inner(self, x, pred): def true_fn(x): return x + x def false_fn(x): return x * x return cond(pred, true_fn, false_fn, [x]) def forward(self, pred, xs): def body(x, pred): return self.inner(x, pred) return map(body, xs, pred) mod = Module() x = torch.randn(3, 2, 1) pred_x = torch.tensor(True) y = torch.randn(4, 3, 2) pred_y = torch.tensor(False) real_result = mod(pred_y, y) out_graph, _ = torch._dynamo.export(mod, pred_x, x) self.assertEqual(real_result, out_graph(pred_y, y)) def test_export_with_map_zero_sized_tensor(self): from functorch.experimental.control_flow import map class Module(torch.nn.Module): def forward(self, xs): def body(x): return x + 1 return map(body, xs) mod = Module() xs = torch.randn(0, 2) with self.assertRaisesRegex( torch._dynamo.exc.Unsupported, "zero-sized tensor", ): out_graph, _ = torch._dynamo.export(mod, xs) def test_export_meta_val(self): def f(x, y, z): return x * y + z gm, _ = torch._dynamo.export( f, torch.ones(3, 2), torch.zeros(3, 2), torch.ones(3, 2), aten_graph=True, ) for node in gm.graph.nodes: if node.op == "placeholder": self.assertIn("val", node.meta) def test_input_container_type(self): def f(x: torch.Tensor, y: List[torch.Tensor]) -> Dict[str, torch.Tensor]: return {"a": x.sum() + sum(y).sum()} inp = (torch.randn(6, 5), [torch.randn(6, 5), torch.randn(6, 5)]) gm, _ = torch._dynamo.export(f, *inp, aten_graph=True) self.assertEqual(gm(*inp), f(*inp)) @config.patch(assume_static_by_default=False) def test_export_symbolic_shape(self): def f(x: torch.Tensor) -> torch.Tensor: return torch.empty(x.shape[0] * 2) inp = (torch.randn(6, 5),) gm, _ = torch._dynamo.export(f, *inp, aten_graph=True) has_sym_size = False for node in gm.graph.nodes: if node.target is torch.ops.aten.sym_size: has_sym_size = True self.assertTrue(has_sym_size) @config.patch(assume_static_by_default=False) def test_dynamic_slicing(self): def f(x): return x[: x.shape[0] - 2, x.shape[1] - 1 :: 2] gm_aten_mode, _ = torch._dynamo.export(f, torch.randn(4, 5), aten_graph=True) inp = torch.randn(6, 7) self.assertEqual(gm_aten_mode(inp).shape, f(inp).shape) count = 0 # aten graph should flatten getitem calls to actual # slice kernel call. for node in gm_aten_mode.graph.nodes: if ( node.op == "call_function" and node.target == torch.ops.aten.slice.Tensor ): count += 1 self.assertEqual(count, 2) gm_torch_mode, _ = torch._dynamo.export(f, torch.randn(4, 5), aten_graph=False) # In torch mode, the graph should contain 3 getitem methods # one for x.shape[0]-2 and one for x.shape[1]-1 and one for slice # this is because Tensor class has its' own getitem method # which gets translated to aten.Slice later. count = 0 for node in gm_torch_mode.graph.nodes: if node.op == "call_function" and node.target == operator.getitem: count += 1 self.assertEqual(count, 3) self.assertEqual(gm_torch_mode(inp).shape, f(inp).shape) def test_dynamic_slicing_invalid(self): def g(x, y): return x[y : x.shape[0]] with self.assertRaisesRegex( torch._dynamo.exc.Unsupported, "Dynamic slicing on data-dependent value is not supported", ): torch._dynamo.export( g, torch.randn(4, 5), torch.tensor(2), aten_graph=True, ) @skipIfRocm @config.patch(capture_scalar_outputs=True) def test_dynamic_slicing_simple(self): def f(x): return x[slice(None, None, None)] gm, _ = torch._dynamo.export(f, torch.randn(4, 5), aten_graph=True) inp = torch.randn(6, 7) self.assertEqual(gm(inp), f(inp)) def test_pre_dispatch_simple(self): def f(x): y = torch.ones_like(x) return torch.matmul(x, y) gm, _ = torch._dynamo.export( f, torch.randn(5, 5), aten_graph=True, pre_dispatch=True, tracing_mode="fake", ) inp = torch.randn(6, 6) self.assertEqual(gm(inp), f(inp)) self.assertExpectedInline( gm.code.strip(), """\ def forward(self, x): arg0, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) ones_like_default = torch.ops.aten.ones_like.default(arg0, pin_memory = False) matmul_default = torch.ops.aten.matmul.default(arg0, ones_like_default); arg0 = ones_like_default = None return pytree.tree_unflatten([matmul_default], self._out_spec)""", ) @skipIfRocm @patch.object(torch._dynamo.config, "capture_scalar_outputs", True) def test_export_cond_in_aten_symbolic(self): class ConditionOp(torch.nn.Module): def true_fn(self, x, y): return x * y def false_fn(self, x, y): return x + y def forward(self, pred, x, y): return cond(pred, self.true_fn, self.false_fn, [x, y]) model = ConditionOp() inp = ( torch.tensor(False), torch.randn(4, 4), torch.randn(4, 4), ) gm, _ = torch._dynamo.export(model, *inp, aten_graph=True) gm.print_readable() self.assertEqual(gm(*inp), model(*inp)) def test_export_with_kwargs(self): def fn_with_kwargs(pos0, tuple0, *myargs, mykw0=None, **mykwargs): out = pos0 for arg in tuple0: out *= arg for arg in myargs: out *= arg out *= mykw0 out *= mykwargs["input0"] * mykwargs["input1"] return out mykwargs = {"input0": torch.randn(4), "input1": torch.randn(4)} tuple0 = (torch.randn(4), torch.randn(4)) mykw0 = torch.randn(4) pos0 = torch.randn(4) myargs = [torch.randn(4), torch.randn(4)] expected_argument_names = [ "pos0", "tuple0", "myargs_0", "myargs_1", "mykw0", "input0", "input1", ] self._test_export_preserving_original_signature( fn_with_kwargs, expected_argument_names, pos0, tuple0, *myargs, mykw0=mykw0, **mykwargs, ) def test_export_with_kwargs_and_empty_args(self): def fn_with_kwargs(mykw0=None, **mykwargs): out = mykw0 out *= mykwargs["input0"] * mykwargs["input1"] return out mykwargs = {"input0": torch.randn(4), "input1": torch.randn(4)} mykw0 = torch.randn(4) expected_argument_names = ["mykw0"] + list(mykwargs.keys()) self._test_export_preserving_original_signature( fn_with_kwargs, expected_argument_names, mykw0, **mykwargs ) def test_export_with_args_and_empty_kwargs(self): def fn_with_kwargs(pos0, tuple0, *myargs): out = pos0 for arg in tuple0: out *= arg for arg in myargs: out *= arg return out tuple0 = (torch.randn(4), torch.randn(4)) pos0 = torch.randn(4) myargs = [torch.randn(4), torch.randn(4)] expected_argument_names = ["pos0", "tuple0", "myargs_0", "myargs_1"] self._test_export_preserving_original_signature( fn_with_kwargs, expected_argument_names, pos0, tuple0, *myargs ) @common_utils.parametrize( "default_value", [ common_utils.subtest(None, name="None"), common_utils.subtest(42.0, name="float"), common_utils.subtest( # FIXME: AssertionError: Dynamo input and output is a strict subset of traced input/output torch.randn(4), name="tensor", decorators=[unittest.expectedFailure], ), common_utils.subtest( # FIXME: AssertionError: Dynamo input and output is a strict subset of traced input/output (torch.randn(4),), name="tuple", decorators=[unittest.expectedFailure], ), ], ) def test_export_with_args_with_default(self, default_value): def fn(pos0, pos1_default=default_value): out = pos0 if pos1_default is None: pos1_default = torch.randn(4) if isinstance(pos1_default, tuple): pos1_default = pos1_default[0] out *= pos1_default return out pos0 = torch.randn(4) expected_argument_names = ["pos0"] self._test_export_preserving_original_signature( fn, expected_argument_names, pos0 ) @common_utils.parametrize( "default_value", [ common_utils.subtest(None, name="None"), common_utils.subtest(42.0, name="float"), common_utils.subtest( # FIXME: AssertionError: Dynamo input and output is a strict subset of traced input/output torch.randn(4), name="tensor", decorators=[unittest.expectedFailure], ), common_utils.subtest( # FIXME: AssertionError: Dynamo input and output is a strict subset of traced input/output (torch.randn(4),), name="tuple", decorators=[unittest.expectedFailure], ), ], ) def test_export_with_kwargs_with_default(self, default_value): def fn(pos0, *, kw0, kw1_default=default_value, **kwargs): out = pos0 out += kw0 if kw1_default is None: kw1_default = torch.randn(4) elif isinstance(kw1_default, tuple): kw1_default = kw1_default[0] out += kw1_default out += kwargs["kw2"] return out pos0 = torch.randn(4) kw0 = torch.randn(4) kw2 = torch.randn(4) args = (pos0,) kwargs = {"kw0": kw0, "kw2": kw2} expected_argument_names = ["pos0", "kw0", "kw2"] self._test_export_preserving_original_signature( fn, expected_argument_names, *args, **kwargs ) def test_export_with_wrapped_fn(self): # To ensure dynamo.export is robust to wrapped functions # when it cannot use `inspect` to retrieve original signature # info. def _fn(pos0, pos1=1.0, *args, kw0, kw1=2.0, **kwargs): out = pos0 out += pos1 out += kw0 out += kw1 for arg in args: out += arg for kwarg in kwargs.values(): out += kwarg return out def wrapped_fn(*args, **kwargs): return _fn(*args, **kwargs) pos0 = torch.randn(4) kw0 = torch.randn(4) args = (pos0, torch.randn(4), torch.randn(4)) kwargs = {"kw0": kw0, "kw2": torch.randn(4)} expected_argument_names = [f"args_{i}" for i in range(len(args))] + list( kwargs.keys() ) self._test_export_preserving_original_signature( wrapped_fn, expected_argument_names, *args, **kwargs ) def test_export_with_functools_wrapped_method(self): def test_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper class MyModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return x @test_decorator def method_to_test(self, pos0, pos1=1.0, *args, kw0, kw1=2.0, **kwargs): out = pos0 out += pos1 out += kw0 out += kw1 for arg in args: out += arg for kwarg in kwargs.values(): out += kwarg return out pos0 = torch.randn(4) pos1 = torch.randn(4) unnamed_pos = torch.randn(4) kw0 = torch.randn(4) args = (pos0, pos1, unnamed_pos) kwargs = {"kw0": kw0, "kw2": torch.randn(4), "unnamed_kw": torch.randn(4)} expected_argument_names = [ "pos0", "pos1", "args_0", # 3rd unnamed positional argument ] + list(kwargs.keys()) m = MyModule() self._test_export_preserving_original_signature( m.method_to_test, expected_argument_names, *args, **kwargs ) def test_export_with_functools_wrapped_fn(self): def test_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper @test_decorator def _fn(pos0, pos1=1.0, *args, kw0, kw1=2.0, **kwargs): out = pos0 out += pos1 out += kw0 out += kw1 for arg in args: out += arg for kwarg in kwargs.values(): out += kwarg return out def wrapped_fn(*args, **kwargs): return _fn(*args, **kwargs) pos0 = torch.randn(4) kw0 = torch.randn(4) args = (pos0, torch.randn(4), torch.randn(4)) kwargs = {"kw0": kw0, "kw2": torch.randn(4)} expected_argument_names = [f"args_{i}" for i in range(len(args))] + list( kwargs.keys() ) self._test_export_preserving_original_signature( wrapped_fn, expected_argument_names, *args, **kwargs ) def _test_export_preserving_original_signature( self, fn, expected_argument_names: Sequence[str], *args, **kwargs ): torch._dynamo.reset() exported = torch._dynamo.export( fn, *args, **kwargs, aten_graph=False, ) out_graph = exported[0] dynamo_result = out_graph(*args, **kwargs) real_result = fn(*args, **kwargs) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) # Check that the exported graph preserves same argument names. self.assertEqual( inspect.getfullargspec(out_graph.forward).args[1:], expected_argument_names ) def test_export_meta(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.p = torch.nn.Parameter(torch.ones(2, 3)) def forward(self, x): return self.p + x with torch.device("meta"): m = MyModule() inp = torch.ones(2, 3, device="meta") exported = torch._dynamo.export(m, inp) out_graph = exported[0] dynamo_result = out_graph(inp) self.assertEqual(dynamo_result, m(inp)) def test_export_raise_guard_full_constraint(self): y = torch.randn([3, 3, 3]) def my_dyn_fn(x): if x.shape[0] == 3: return x.sin() return x.cos() torch._dynamo.export(my_dyn_fn, y) with self.assertRaises(ConstraintViolationError): torch._dynamo.export(my_dyn_fn, y, constraints=[dynamic_dim(y, 0)]) def test_export_module_specify_constraints_signature(self): y = torch.randn([3, 3, 3]) class Mod(torch.nn.Module): def forward(self, x): if x.shape[0] == 3: return x.sin() return x.cos() mod = Mod() torch._dynamo.export(mod, y) with self.assertRaisesRegex( ConstraintViolationError, "def specify_constraints\\(x\\):" ): torch._dynamo.export(mod, y, constraints=[dynamic_dim(y, 0)]) def test_export_raise_guard_partial_constraint(self): y = torch.randn([3, 3, 3]) def my_dyn_fn(x): if x.shape[0] > 3: return x.sin() return x.cos() torch._dynamo.export(my_dyn_fn, y) with self.assertRaises(ConstraintViolationError): torch._dynamo.export(my_dyn_fn, y, constraints=[dynamic_dim(y, 0)]) def test_export_raise_on_relationship(self): y = torch.randn([3, 3, 3]) def my_dyn_fn(a, b, c): if a.shape[0] == b.shape[1] == c.shape[2]: return a.sin() return a.cos() torch._dynamo.export(my_dyn_fn, y, y, y) constraints = [dynamic_dim(y, 0)] with self.assertRaises(ConstraintViolationError): torch._dynamo.export(my_dyn_fn, y, y, y, constraints=constraints) constraints += [ dynamic_dim(y, 1) == dynamic_dim(y, 0), dynamic_dim(y, 2) == dynamic_dim(y, 0), ] torch._dynamo.export(my_dyn_fn, y, y, y, constraints=constraints) def test_export_no_raise(self): y = torch.randn([3, 3, 3]) def my_dyn_fn(a, b, c): if a.shape[1] == 3: return a.cos() return a * b * c torch._dynamo.export(my_dyn_fn, y, y, y) torch._dynamo.export(my_dyn_fn, y, y, y, constraints=[dynamic_dim(y, 0)]) @skipIfRocm def test_export_multi_dynamic_dim_unsafe_relationship(self): x = torch.randn([3, 3, 3]) y = torch.randn([2, 2, 2]) z = torch.randn([3, 3, 3]) def my_dyn_fn(a, b, c): if a.shape[0] == c.shape[0]: return a.cos() return a * c, b torch._dynamo.export(my_dyn_fn, x, y, z) constraints = [dynamic_dim(x, 0), dynamic_dim(y, 0), dynamic_dim(z, 0)] with self.assertRaises(ConstraintViolationError): torch._dynamo.export(my_dyn_fn, x, y, z, constraints=constraints) constraints.append(dynamic_dim(z, 0) == dynamic_dim(x, 0)) torch._dynamo.export(my_dyn_fn, x, y, z, constraints=constraints) @config.patch( capture_dynamic_output_shape_ops=True, specialize_int=True, capture_scalar_outputs=True, ) def test_export_preserve_constraints_as_metadata_scalar(self): def f(x, y): b = x.item() constrain_as_size(b, min=2, max=5) return torch.empty((b, y.shape[0])) x = torch.tensor([3]) y = torch.randn([8, 8, 6]) example_inputs = [x, y] constraints = [dynamic_dim(y, 0) >= 6, dynamic_dim(y, 0) <= 10] gm, _ = torch._dynamo.export( f, *example_inputs, constraints=constraints, aten_graph=True, tracing_mode="symbolic", ) self.assertEqual( gm.meta["input_shape_constraints"], [c.serializable_spec for c in constraints], ) @torch._dynamo.config.patch( capture_dynamic_output_shape_ops=True, specialize_int=True, capture_scalar_outputs=True, ) def test_export_preserve_constraints_as_metadata_tensor(self): def f(x): b = x.nonzero() constrain_as_value(b.shape[0], min=2, max=5) return b y = torch.tensor([8, 8, 6]) constraints = [] gm, _ = torch._dynamo.export( f, y, constraints=constraints, aten_graph=True, tracing_mode="symbolic", ) @config.patch( capture_dynamic_output_shape_ops=True, specialize_int=True, capture_scalar_outputs=True, ) def test_exported_graph_serialization(self): import io def f(x, y): b = x.item() constrain_as_size(b, min=2, max=5) return torch.empty((b, y.shape[0])) x = torch.tensor([3]) y = torch.randn([8, 8, 6]) example_inputs = [x, y] constraints = [dynamic_dim(y, 0) >= 6, dynamic_dim(y, 0) <= 10] gm, _ = torch._dynamo.export( f, *example_inputs, constraints=constraints, aten_graph=True, tracing_mode="symbolic", ) # Ensure the exported graph module with metadata is serializable, # metadata won't be saved in the serialized module buffer = io.BytesIO() torch.save(gm, buffer) def test_export_with_inline_constraints(self): def f(x): a = x.item() constrain_as_size(a, 4, 7) return torch.empty((a, 4)) with self.assertRaisesRegex( torch._dynamo.exc.UserError, r"Invalid value 20 for range \[4:7\]" ) as cm: torch._export.export(f, (torch.tensor([20]),)) ep = torch._export.export(f, (torch.tensor([5]),)) self.assertEqual(ep(torch.tensor([6])).shape, (6, 4)) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 1, exactly=True ).run(ep.graph_module.code) with self.assertRaisesRegex( RuntimeError, r"_local_scalar_dense_default is outside of inline constraint \[4, 7\]", ) as cm: ep(torch.tensor([30])) def test_export_with_inline_constraints_complex(self): def f(x): a = x.item() constrain_as_size(a, 4, 7) empty = torch.empty((a, 4)) return torch.cat((empty.transpose(0, 1), torch.zeros(6, a)), 0) ep = torch._export.export(f, (torch.tensor([6]),)) self.assertEqual(ep(torch.tensor([5])).shape, (10, 5)) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 1, exactly=True ).run(ep.graph_module.code) def test_export_dynamic_dim_not_1(self): x = torch.randn([1, 1, 1]) def my_dyn_fn(a): if a.shape[0] != 1: return a.cos() return a * a torch._dynamo.export(my_dyn_fn, x) with self.assertRaises(ConstraintViolationError): torch._dynamo.export(my_dyn_fn, x, constraints=[dynamic_dim(x, 0)]) def test_symbool(self): def f(x): a = torch.scalar_tensor(x.shape[0] > 4) return x.sin().sum() + a.sum() gm, _ = torch._dynamo.export(f, torch.ones(6, 4), aten_graph=True) self.assertEqual(gm(torch.ones(3, 4)), f(torch.ones(3, 4))) def test_export_multi_dynamic_dim_constraint(self): x = torch.randn([3, 3, 3]) y = torch.randn([2, 2, 2]) z = torch.randn([3, 3, 3]) def my_dyn_fn(a, b, c): if a.shape[0] == c.shape[0]: return a.cos() return a * c, b torch._dynamo.export(my_dyn_fn, x, y, z) constraints = [dynamic_dim(x, 0), dynamic_dim(x, 1), dynamic_dim(x, 2)] with self.assertRaises(ConstraintViolationError): torch._dynamo.export(my_dyn_fn, x, y, z, constraints=constraints) constraints.append(dynamic_dim(z, 0) == dynamic_dim(x, 0)) torch._dynamo.export(my_dyn_fn, x, y, z, constraints=constraints) def test_export_dynamic_dim_raise_on_compound_range_constraint(self): x = torch.ones(6, 4, 4) with self.assertRaisesRegex(TypeError, "Cannot determine truth value"): 4 < dynamic_dim(x, 0) <= 6 # noqa: B015 def test_export_dynamic_dim_range_constraint(self): x = torch.ones(6, 4, 4) constraints = [ 4 < dynamic_dim(x, 0), dynamic_dim(x, 0) <= 6, ] def foo(x): if x.shape[0] > 3: # ok return x.sin() return x.cos() torch._dynamo.export( foo, x, constraints=constraints, aten_graph=True, ) def bar(x): if x.shape[0] > 5: # error return x.sin() return x.cos() with self.assertRaises(ConstraintViolationError): torch._dynamo.export( bar, x, constraints=constraints, aten_graph=True, ) def test_list_contains(self): def func(x): assert x.size(-1) in [4, 5, 6], "bad" return x + x inps = (torch.randn(1, 5),) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_list_not_contains(self): def func(x): assert x.size(0) not in [4, 5, 6], "bad1" assert "monkey" not in ["cow", "pig"], "bad2" return x + x inps = (torch.randn(1, 5),) opt_func = torch._dynamo.optimize("eager", nopython=True, dynamic=True)(func) real_result = opt_func(*inps) torch._dynamo.reset() exported = torch._dynamo.export(func, *inps, aten_graph=True) out_graph = exported[0] dynamo_result = out_graph(*inps) self.assertTrue(torch._dynamo.utils.same(real_result, dynamo_result)) def test_export_identity(self): inp = torch.tensor([0.1, 0.1]) def func(x): return x torch._dynamo.reset() exported, _ = torch._dynamo.export(func, inp) dynamo_result = exported(inp) self.assertTrue(torch._dynamo.utils.same(inp, dynamo_result)) def test_export_specialized_int(self): class Foo(torch.nn.Module): def __init__( self, input_dim, ): super().__init__() self.torch_module = torch.nn.LayerNorm( input_dim, eps=1e-5, elementwise_affine=True ) self.int_val = 100 def forward(self, input): return input.cos() * self.int_val * self.torch_module.eps mod = Foo(128) inp = torch.randn(3, 128) # In export, int & float in forward should always be specialized gm, _ = torch._dynamo.export(mod, inp, aten_graph=True) count = 0 for node in gm.graph.nodes: if node.op == "placeholder": count += 1 self.assertEqual(count, 1) def test_export_with_nonzero_static(self): class BasicModule(torch.nn.Module): def __init__(self, static_size): super().__init__() self.static_size = static_size def forward(self, x): return torch.nonzero_static(x, size=self.static_size) input_tensors = torch.tensor([6, 8]), torch.zeros(2, 3) static_sizes = 3, 4 for input_tensor, static_size in zip(input_tensors, static_sizes): m = BasicModule(static_size) gm, _ = torch._dynamo.export(m, input_tensor, aten_graph=True) res = gm(input_tensor) self.assertEqual(res.size(0), static_size) self.assertTrue( torch._dynamo.utils.same( res, torch.nonzero_static(input_tensor, size=static_size) ) ) def test_export_pass_arg_by_name(self): class BasicModule(torch.nn.Module): def __init__(self): super().__init__() self.my_lin = torch.nn.Linear(3, 4, bias=True) def forward(self, x): return self.my_lin(x) mod, input_tensor = BasicModule(), torch.randn(2, 3) gm, guard = torch._dynamo.export(mod, input_tensor, aten_graph=True) ref = mod(x=input_tensor) res = gm(x=input_tensor) self.assertTrue(torch._dynamo.utils.same(ref, res)) def test_export_pass_arg_by_name_star_args(self): class BasicModule(torch.nn.Module): def __init__(self): super().__init__() self.my_lin = torch.nn.Linear(3, 4, bias=True) def forward(self, *args): return self.my_lin(args[0]) * self.my_lin(args[1]) mod, input_tensor, input_tensor2 = ( BasicModule(), torch.randn(2, 3), torch.randn(2, 3), ) gm, guard = torch._dynamo.export( mod, input_tensor, input_tensor2, aten_graph=True ) ref = mod(input_tensor, input_tensor2) res = gm(input_tensor, input_tensor2) self.assertTrue(torch._dynamo.utils.same(ref, res)) def test_export_mark_dynamic_conflict_dynamic_dim(self): y = torch.randn([3, 3, 3]) def my_dyn_fn(x): if x.shape[0] > 3: return x.sin() return x.cos() torch._dynamo.mark_dynamic(y, 0) with self.assertRaisesRegex( RuntimeError, "Constraints violated", ): torch._dynamo.export(my_dyn_fn, y, constraints=[dynamic_dim(y, 0)]) def test_export_dynamic_dim_cleanup(self): y = torch.randn([3, 3, 3]) def my_dyn_fn(x): return x.cos() constraints = [dynamic_dim(y, 0)] torch._dynamo.export(my_dyn_fn, y, constraints=constraints) @config.patch(capture_dynamic_output_shape_ops=True) def test_export_dynamic_control_flow_error(self): def f(x): if x.nonzero() > 3: return x.cos() return x.sin() with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Dynamic control flow is not supported at the moment", ): gm, _ = torch._dynamo.export(f, torch.randn(5, 6), aten_graph=True) @config.patch(assume_static_by_default=False) def test_export_persist_assert(self): def f(x): assert x.shape[0] > 4, "Shape must be more than 4" return x.cos() + x.sin() gm, guard = torch._dynamo.export( f, torch.randn(5, 4, 6), aten_graph=True, tracing_mode="symbolic" ) def has_aten_op(gm, op): for node in gm.graph.nodes: if node.target == op: return True return False self.assertTrue(has_aten_op(gm, torch.ops.aten._assert_async.msg)) gm.graph.eliminate_dead_code() gm.recompile() self.assertTrue(has_aten_op(gm, torch.ops.aten._assert_async.msg)) with self.assertRaisesRegex(RuntimeError, "Shape must be more than 4"): gm(torch.randn(3, 4, 5)) def test_access_class_method_from_user_class(self): class A: @classmethod def func(cls): return torch.Tensor([4, 5]) def f(x): a = A() return x.sum() + type(a).func().sum() with self.assertRaisesRegex(torch._dynamo.exc.UserError, "Can't call type()"): gm, _ = torch._dynamo.export(f, torch.ones(6, 4), aten_graph=True) def f_correct(x): a = A() return x.sum() + a.__class__.func().sum() gm, _ = torch._dynamo.export(f_correct, torch.ones(6, 4), aten_graph=True) self.assertEqual(f_correct(torch.ones(6, 4)), gm(torch.ones(6, 4))) def test_not_functionalize(self): class Foo(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer1", torch.ones(6, 2)) def forward(self, x): x.add_(2) return x.sum() + self.buffer1.sum() example_inputs = (torch.ones(1, 2, 3),) gm, _ = torch._dynamo.export( Foo(), *example_inputs, aten_graph=True, tracing_mode="symbolic", ) count = 0 for node in gm.graph.nodes: if node.target == torch.ops.aten.add_.Tensor: count += 1 self.assertEqual(count, 1) test_inp = (torch.ones(1, 2, 3),) test_inp_v2 = (torch.ones(1, 2, 3),) self.assertEqual(gm(*test_inp), Foo()(*test_inp_v2)) def test_round_dynamic_shapes(self): def f(x): return x[: round(x.shape[0] / 2)] def f_correct(x): return x[: math.floor(x.shape[0] / 2)] with self.assertRaisesRegex(torch._dynamo.exc.UserError, "Calling round()"): gm, _ = torch._dynamo.export(f, torch.ones(6, 4), aten_graph=True) gm, _ = torch._dynamo.export(f_correct, torch.ones(6, 4), aten_graph=True) self.assertEqual(f_correct(torch.ones(6, 4)), gm(torch.ones(6, 4))) def test_cond_supported_pred_types(self): def true_fn(x): return x.cos() def false_fn(x): return x.sin() def f_pred_traced_as_symnode_var(x): return cond(x.shape[0] > 2, true_fn, false_fn, [x]) def f_pred_traced_as_tensor_var(x): return cond(x.all(), true_fn, false_fn, [x]) def f_pred_complex_expression_traced_as_symnode_var(x): return cond( x.dim() > 1 and x.shape[1] > 5 and x.shape[1] <= 10, true_fn, false_fn, [x], ) example_inputs = (torch.rand(5, 8),) for f in [ f_pred_traced_as_symnode_var, f_pred_traced_as_tensor_var, f_pred_complex_expression_traced_as_symnode_var, ]: gm, _ = torch._dynamo.export(f, *example_inputs, aten_graph=True) self.assertEqual(gm(*example_inputs), f(*example_inputs)) def test_mixed_real_and_fake_inputs(self): class _TestPattern(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(1, 1, 1) self.bn = torch.nn.BatchNorm2d(1) def forward(self, input): running_std = torch.sqrt(self.bn.running_var + self.bn.eps) scale_factor = self.bn.weight / running_std weight_shape = [1] * len(self.conv.weight.shape) weight_shape[0] = -1 bias_shape = [1] * len(self.conv.weight.shape) bias_shape[1] = -1 scaled_weight = self.conv.weight * scale_factor.reshape(weight_shape) zero_bias = torch.zeros_like(self.conv.bias, dtype=input.dtype) conv = self.conv._conv_forward(input, scaled_weight, zero_bias) conv_orig = conv / scale_factor.reshape(bias_shape) conv_orig = conv_orig + self.conv.bias.reshape(bias_shape) conv = self.bn(conv_orig) return conv example_inputs = (torch.randn(1, 1, 3, 3),) torch._dynamo.export( _TestPattern(), *example_inputs, aten_graph=True, ) @config.patch( capture_dynamic_output_shape_ops=True, capture_scalar_outputs=True, assume_static_by_default=False, ) def test_sym_contains(self): def f(x, y): return x.size(0) in y gm, _ = torch._dynamo.export(f, torch.ones(2), torch.ones(3), aten_graph=True) true_inp = (torch.Tensor([6, 4, 5]), torch.ones(6, 4).add_(5)) false_inp = (torch.Tensor([6, 4, 5]), torch.ones(6, 4).add_(2)) self.assertEqual(gm(*true_inp), f(*true_inp)) self.assertEqual(gm(*false_inp), f(*false_inp)) def test_cond_raise_user_error_on_missing_args(self): def true_fn(x): return x.cos() def false_fn(x): return x.sin() def f(x): return cond(x.shape[0] > 10, true_fn, false_fn) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected 4 arguments", ): torch._dynamo.export(f, *example_inputs, aten_graph=True) def test_cond_raise_user_error_on_unsupported_pred(self): def f_unsupported_pred(x): pred = torch.nn.Module() return cond(pred, lambda x: x.sin(), lambda x: x.cos(), [x]) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected pred to be bool/int or a tensor", ): torch._dynamo.export( f_unsupported_pred, *example_inputs, aten_graph=True, ) def test_cond_raise_user_error_on_non_list_operands(self): def f_non_list_operands(x): return cond(torch.tensor(True), lambda x: x.sin(), lambda x: x.cos(), x) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected a list but got", ): torch._dynamo.export( f_non_list_operands, *example_inputs, aten_graph=True, ) def test_cond_raise_user_error_on_non_tensor_operands(self): def f_non_tensor_operands(x): a: float = 3.14 return cond( torch.tensor(1234), lambda x, a: x.sin(), lambda x, a: x.cos(), [x, a] ) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected a list of tensors", ): torch._dynamo.export( f_non_tensor_operands, *example_inputs, aten_graph=True, ) def test_cond_raise_user_error_on_branch_args_mismatch(self): def true_fn(x, y): return x.sin() def false_fn(x): return x.cos() def f_branch_args_mismatch(x, y): return cond(torch.tensor([[[[100]]]]), true_fn, false_fn, [x, y]) example_inputs = (torch.rand(5), torch.rand(2)) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "too many positional arguments", ): torch._dynamo.export( f_branch_args_mismatch, *example_inputs, aten_graph=True, ) def test_cond_raise_user_error_on_branch_return_non_tensor(self): def f_branch_return_non_tensor(x): return cond(x.shape[0] <= 5, lambda x: 3.14, lambda x: 3.14, [x]) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "HigherOrderOperator can't return non-tensor scalar output", ): torch._dynamo.export( f_branch_return_non_tensor, *example_inputs, aten_graph=True, ) def test_cond_raise_user_error_on_branch_return_multiple_tenors(self): def f_branch_return_multiple_tensors(x, y): return cond(y, lambda x: (x, x), lambda x: (x, x), [x]) example_inputs = (torch.randn(4), torch.randn(2)) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected branch out type to be a single tensor", ): torch._dynamo.export( f_branch_return_multiple_tensors, *example_inputs, aten_graph=True, ) def test_multiple_outputs_op_with_evaluator(self): class TopKModel(torch.nn.Module): def forward(self, x): values, _ = torch.topk(x, 3) return torch.sum(values) x = torch.arange(1.0, 6.0, requires_grad=True) torch._dynamo.export(TopKModel(), x) def test_cond_raise_user_error_on_mismatch_return_length(self): def true_fn(x): return x def false_fn(x): return (x, x) def f_mismatch_return_length(x): return cond(torch.tensor(100), true_fn, false_fn, [x]) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected branch out type to be a single tensor", ): torch._dynamo.export( f_mismatch_return_length, *example_inputs, aten_graph=True, ) def test_cond_raise_user_error_on_mismatch_return_tensor_meta(self): def true_fn(x): return torch.tensor([[3], [2]]) def false_fn(x): return torch.tensor([3.14]) def f_return_tensor_mismatch(x): return cond(x.shape[0] < 3, true_fn, false_fn, [x]) example_inputs = (torch.rand(5),) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected each tensor to have same metadata but got", ): torch._dynamo.export( f_return_tensor_mismatch, *example_inputs, aten_graph=True, ) def test_byte_tensor_does_not_crash(self): # See https://github.com/pytorch/pytorch/issues/100455 def func(text): tensor = torch.ByteTensor(list(bytes(text, "utf8"))) return tensor + tensor text = "".join(chr(a % 90 + 40) for a in range(111)) opt_func = torch._dynamo.optimize("eager", dynamic=True)(func) for i in [99, 100]: input = text[:i] opt_func(input) def test_export_defaults_ok(self): class DynamicSliceExportMod(torch.nn.Module): def forward(self, x): results = [] for i in range(4): results.append(x[: x.size(0) - i, i : x.size(2), i:3]) return tuple(results) gm, _ = torch._dynamo.export( DynamicSliceExportMod(), torch.randn(5, 5, 5), aten_graph=True, ) self.assertExpectedInline( gm.code.strip(), """\ def forward(self, x): arg0, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) slice_tensor = torch.ops.aten.slice.Tensor(arg0, 2, 0, 3) sym_size = torch.ops.aten.sym_size(arg0, 0) sub = sym_size - 1 slice_tensor_1 = torch.ops.aten.slice.Tensor(arg0, 0, 0, sub); sub = None sym_size_1 = torch.ops.aten.sym_size(arg0, 2) slice_tensor_2 = torch.ops.aten.slice.Tensor(slice_tensor_1, 1, 1, sym_size_1); slice_tensor_1 = None slice_tensor_3 = torch.ops.aten.slice.Tensor(slice_tensor_2, 2, 1, 3); slice_tensor_2 = None sub_1 = sym_size - 2 slice_tensor_4 = torch.ops.aten.slice.Tensor(arg0, 0, 0, sub_1); sub_1 = None slice_tensor_5 = torch.ops.aten.slice.Tensor(slice_tensor_4, 1, 2, sym_size_1); slice_tensor_4 = None slice_tensor_6 = torch.ops.aten.slice.Tensor(slice_tensor_5, 2, 2, 3); slice_tensor_5 = None sub_2 = sym_size - 3; sym_size = None slice_tensor_7 = torch.ops.aten.slice.Tensor(arg0, 0, 0, sub_2); arg0 = sub_2 = None slice_tensor_8 = torch.ops.aten.slice.Tensor(slice_tensor_7, 1, 3, sym_size_1); slice_tensor_7 = sym_size_1 = None slice_tensor_9 = torch.ops.aten.slice.Tensor(slice_tensor_8, 2, 3, 3); slice_tensor_8 = None return pytree.tree_unflatten([slice_tensor, slice_tensor_3, slice_tensor_6, slice_tensor_9], self._out_spec)""", ) def test_capture_symbolic_tracing(self) -> None: from torch._dynamo.output_graph import config from torch._subclasses import fake_tensor from torch.fx.experimental.symbolic_shapes import ShapeEnv class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(2, 2) self.linear2 = torch.nn.Linear(2, 2) def forward(self, x): out = self.linear(x) out = self.linear2(out) return out # User-instantiated FakeTensorMode fake_mode = fake_tensor.FakeTensorMode( allow_non_fake_inputs=False, allow_fallback_kernels=True, shape_env=ShapeEnv( allow_scalar_outputs=config.capture_scalar_outputs, allow_dynamic_output_shape_ops=config.capture_dynamic_output_shape_ops, frame_id=0, ), ) # Fakefy input+model before exporting it with fake_mode: x = torch.rand(5, 2, 2) model = Model() # Export the model with fake inputs and parameters for aten_graph in [True, False]: graph_module, _ = torch._dynamo.export( model, x, aten_graph=aten_graph, fake_mode=fake_mode ) self.assertTrue( isinstance(graph_module, torch.fx.GraphModule), msg="test_capture_symbolic_tracing_aten_graph_" + str(aten_graph), ) def test_cond_op_param_buffer_lifted(self): class A(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer1", torch.zeros(6, 4)) def forward(self): return self.buffer1.sum() class B(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer2", torch.ones(6, 4)) def forward(self): return self.buffer2.sum() class M(torch.nn.Module): def __init__(self): super().__init__() self.a = A() self.b = B() def forward(self, x): def true_fn(x): return x.cos() + self.a() def false_fn(x): return x.sin() + self.b() return (cond(x.shape[0] > 4, true_fn, false_fn, [x]),) gm, _ = torch._dynamo.export(M(), torch.ones(6, 4), aten_graph=False) self.assertEqual(gm(torch.ones(6, 4)), M()(torch.ones(6, 4))) self.assertEqual(gm(torch.ones(3, 4)), M()(torch.ones(3, 4))) def test_nested_cond_op_param_buffer_lifted(self): class A(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer1", torch.zeros(6, 4)) def forward(self): return self.buffer1.sum() class B(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer2", torch.ones(6, 4)) def forward(self): return self.buffer2.sum() class M(torch.nn.Module): def __init__(self): super().__init__() self.a = A() self.b = B() def forward(self, x): def true_true_fn(x): return x.cos() + self.a() def true_false_fn(x): return x.cos() + self.a() + 1 def true_fn(x): return cond(x.shape[0] > 5, true_true_fn, true_false_fn, [x]) def false_fn(x): return x.sin() + self.b() return (cond(x.shape[0] > 4, true_fn, false_fn, [x]),) gm, _ = torch._dynamo.export(M(), torch.ones(6, 4), aten_graph=False) self.assertEqual(gm(torch.ones(6, 4)), M()(torch.ones(6, 4))) self.assertEqual(gm(torch.ones(5, 4)), M()(torch.ones(5, 4))) self.assertEqual(gm(torch.ones(3, 4)), M()(torch.ones(3, 4))) def test_map_cond_param_buffer_lifted(self): from functorch.experimental.control_flow import cond, map class A(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer1", torch.zeros(6, 4)) def forward(self): return self.buffer1.sum() class B(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buffer2", torch.ones(6, 4)) def forward(self): return self.buffer2.sum() class Module(torch.nn.Module): def __init__(self): super().__init__() self.a = A() self.b = B() def inner(self, x, pred): def true_fn(x): return x + x + self.a() def false_fn(x): return x * x + self.b() return cond(pred, true_fn, false_fn, [x]) def forward(self, pred, xs): def body(x, pred): return self.inner(x, pred) + self.b() return map(body, xs, pred) mod = Module() x = torch.randn(3, 2, 1) pred_x = torch.tensor(True) y = torch.randn(4, 3, 2) pred_y = torch.tensor(False) real_result = mod(pred_y, y) out_graph, _ = torch._dynamo.export(mod, pred_x, x) self.assertEqual(real_result, out_graph(pred_y, y)) def test_cond_free_variables_overlapping(self): from functorch.experimental.control_flow import cond class Module(torch.nn.Module): def __init__(self): super().__init__() def forward(self, pred, x): a = torch.ones(6, 4) b = torch.ones(6, 4) c = torch.ones(6, 4) d = torch.ones(6, 4) def true_fn(x): return x + x + a.cos() + b.cos() + d.cos() def false_fn(x): return x * x + a.sin() + b.sin() + c.sin() return cond(pred, true_fn, false_fn, [x]) mod = Module() x = torch.ones(6, 4) pred_x = torch.tensor(True) out_graph, _ = torch._dynamo.export(mod, pred_x, x) self.assertExpectedInline( out_graph.code.strip(), """\ def forward(self, pred, x): arg0, arg1, = fx_pytree.tree_flatten_spec(([pred, x], {}), self._in_spec) ones = torch.ones(6, 4) ones_1 = torch.ones(6, 4) ones_2 = torch.ones(6, 4) ones_3 = torch.ones(6, 4) cond_true_0 = self.cond_true_0 cond_false_0 = self.cond_false_0 cond = torch.ops.cond(arg0, cond_true_0, cond_false_0, [arg1, ones, ones_1, ones_3, ones, ones_1, ones_2]); arg0 = cond_true_0 = cond_false_0 = arg1 = ones = ones_1 = ones_3 = ones_2 = None return pytree.tree_unflatten([cond], self._out_spec)""", # noqa: B950,E122 ) self.assertExpectedInline( out_graph.cond_true_0.code.strip(), """\ def forward(self, l_x_, ones, ones_1, ones_3, ones_2_false_branch, ones_1_false_branch, ones_false_branch): add = l_x_ + l_x_; l_x_ = None cos = ones.cos(); ones = None add_1 = add + cos; add = cos = None cos_1 = ones_1.cos(); ones_1 = None add_2 = add_1 + cos_1; add_1 = cos_1 = None cos_2 = ones_3.cos(); ones_3 = None add_3 = add_2 + cos_2; add_2 = cos_2 = None return add_3""", ) self.assertExpectedInline( out_graph.cond_false_0.code.strip(), """\ def forward(self, l_x_, ones_3_true_branch, ones_1_true_branch, ones_true_branch, ones, ones_1, ones_2): mul = l_x_ * l_x_; l_x_ = None sin = ones.sin(); ones = None add = mul + sin; mul = sin = None sin_1 = ones_1.sin(); ones_1 = None add_1 = add + sin_1; add = sin_1 = None sin_2 = ones_2.sin(); ones_2 = None add_2 = add_1 + sin_2; add_1 = sin_2 = None return add_2""", ) common_utils.instantiate_parametrized_tests(ExportTests) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()
e76ea8046de2f60095cd2ccd24fede57d5ea31e1
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2096/60763/281373.py
e2192515db85dfcca18346ca2edfb6e6b957b896
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
133
py
x = int(input()) sqrt = 0 while sqrt*sqrt <= x: if sqrt*sqrt == x or (sqrt+1)*(sqrt+1) > x: break sqrt+=1 print(sqrt)
9d451285ca268ec2cbf7312dc42ca1bbdcc9b8ab
0f94b864fc86ce46c94fe136b391cbcf710709f3
/lz.py
e2672af33951d281c94b0751dd4428e951a18bcc
[]
no_license
luzai/sample-cls
740ca1452b0f283ce1735272cae4657716e6a4c9
8c399e24feb6eb71514dcf18b5008f546064be46
refs/heads/master
2021-08-23T05:43:40.268628
2017-12-03T17:55:52
2017-12-03T17:55:52
112,625,543
0
0
null
null
null
null
UTF-8
Python
false
false
16,837
py
try: import cPickle as pickle except: import pickle import six, os, sys, csv, time, \ random, os.path as osp, \ subprocess, json, \ numpy as np, pandas as pd, \ glob, re, networkx as nx, \ h5py, yaml, copy, multiprocessing as mp, \ pandas as pd, yaml, collections, \ logging, colorlog, yaml, cvbase as cvb, shutil, \ easydict import subprocess # tensorflow as tf, keras, torch , redis # import torch # from torch import nn # from torch.autograd import Variable # import torch.nn.functional as F import matplotlib # matplotlib.use('TkAgg') import matplotlib.pyplot as plt from IPython import embed from IPython.display import display, HTML, SVG # root_path = osp.normpath( # osp.join(osp.abspath(osp.dirname(__file__))) # ) root_path = '/home/wangxinglu/prj/few-shot/' def set_stream_logger(log_level=logging.INFO): sh = colorlog.StreamHandler() sh.setLevel(log_level) sh.setFormatter( colorlog.ColoredFormatter( '%(asctime)s %(filename)s [line:%(lineno)d] %(log_color)s%(levelname)s%(reset)s %(message)s')) logging.root.addHandler(sh) def set_file_logger(work_dir=None, log_level=logging.DEBUG): work_dir = work_dir or os.getcwd() fh = logging.FileHandler(os.path.join(work_dir, 'log.txt')) fh.setLevel(log_level) fh.setFormatter( logging.Formatter('%(asctime)s %(filename)s [line:%(lineno)d] %(levelname)s %(message)s')) logging.root.addHandler(fh) # def set_logger(): logging.root.setLevel(logging.DEBUG) set_stream_logger() set_file_logger() def gc_collect(): import gc gc.collect() def sel_np(A): dtype = str(A.dtype) shape = A.shape A = A.ravel().tolist() sav = {'shape': shape, 'dtype': dtype, 'A': A } return json.dumps(sav) def desel_np(s): import json sav = json.loads(s) A = sav['A'] A = np.array(A, dtype=sav['dtype']).reshape(sav['shape']) return A def append_file(line, file=None): file = file or 'append.txt' with open(file, 'a') as f: f.writelines(line + '\n') def cpu_priority(level=19): import psutil p = psutil.Process(os.getpid()) p.nice(level) def get_gpu_memory_map(): """Get the current gpu usage. Returns ------- usage: dict Keys are device ids as integers. Values are memory usage as integers in MB. """ result = subprocess.check_output( [ 'nvidia-smi', '--query-gpu=memory.used', '--format=csv,nounits,noheader' ], encoding='utf-8') # Convert lines into a dictionary gpu_memory = [int(x) for x in result.strip().split('\n')] gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory)) return gpu_memory_map def init_dev(n=(0,)): logging.info('use gpu {}'.format(n)) from os.path import expanduser home = expanduser("~") if isinstance(n, int): n = (n,) devs = '' for n_ in n: devs += str(n_) + ',' os.environ["CUDA_VISIBLE_DEVICES"] = devs os.environ['PATH'] = home + '/cuda-8.0/bin:' + os.environ['PATH'] # os.environ['PATH'] = home + '/anaconda2/bin:' + os.environ['PATH'] os.environ['PATH'] = home + '/usr/local/cuda-8.0/bin:' + os.environ['PATH'] os.environ['LD_LIBRARY_PATH'] = home + '/cuda-8.0/lib64' os.environ['LD_LIBRARY_PATH'] = '/usr/local/cuda-8.0/lib64' # os.environ['PYTHONWARNINGS'] = "ignore" def set_env(key, value): value = os.path.abspath(value) os.environ[key] = value + ':' + os.environ[key] def allow_growth_tf(): import tensorflow as tf _sess_config = tf.ConfigProto(allow_soft_placement=True) _sess_config.gpu_options.allow_growth = True return _sess_config def allow_growth_keras(): import tensorflow as tf tf_graph = tf.get_default_graph() _sess_config = tf.ConfigProto(allow_soft_placement=True) _sess_config.gpu_options.allow_growth = True sess = tf.Session(config=_sess_config, graph=tf_graph) import keras.backend as K K.set_session(sess) return sess def get_dev(n=1, ok=(0, 1, 2, 3, 4, 5, 6, 7), mem=(0.5, 0.9), sleep=60): import GPUtil, time logging.info('Auto select gpu') GPUtil.showUtilization() def _limit(devs, ok): return [int(dev) for dev in devs if dev in ok] devs = GPUtil.getAvailable(order='memory', maxLoad=1, maxMemory=mem[0], limit=n) # devs = _limit(devs, ok) if len(devs) >= 1: logging.info('available {}'.format(devs)) # GPUtil.showUtilization() return int(devs[0]) if n == 1 else devs while len(devs) == 0: devs = GPUtil.getAvailable(order='random', maxLoad=1, maxMemory=mem[1], limit=n) devs = _limit(devs, ok) if len(devs) >= 1: logging.info('available {}'.format(devs)) GPUtil.showUtilization() return devs[0] if n == 1 else devs logging.info('no device avelaible') GPUtil.showUtilization() time.sleep(sleep) # def grid_iter(tmp): # res = cartesian(tmp.values()) # np.random.shuffle(res) # for res_ in res: # yield dict(zip(tmp.keys(), res_)) def shuffle_iter(iter): iter = list(iter) np.random.shuffle(iter) for iter_ in iter: yield iter_ def optional_arg_decorator(fn): def wrapped_decorator(*args): if len(args) == 1 and callable(args[0]): return fn(args[0]) else: def real_decorator(decoratee): return fn(decoratee, *args) return real_decorator return wrapped_decorator def randomword(length): import random, string return ''.join(random.choice(string.lowercase) for i in range(length)) def static_vars(**kwargs): def decorate(func): for k in kwargs: setattr(func, k, kwargs[k]) return func return decorate def cosort(tensor, y, return_y=False): comb = zip(tensor, y) comb_sorted = sorted(comb, key=lambda x: x[1]) if not return_y: return np.array([comb_[0] for comb_ in comb_sorted]) else: return np.array([comb_[0] for comb_ in comb_sorted]), np.array([comb_[1] for comb_ in comb_sorted]) class Timer(object): """A simple timer.""" def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.start_time = time.time() # logger.info('time pass {}'.format(self.diff)) return self.diff timer = Timer() @optional_arg_decorator def timeit(fn, info=''): def wrapped_fn(*arg, **kwargs): timer = Timer() timer.tic() res = fn(*arg, **kwargs) diff = timer.toc() logging.info((info + 'takes time {}').format(diff)) return res return wrapped_fn class Database(object): def __init__(self, *args, **kwargs): self.fid = h5py.File(*args, **kwargs) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.fid.close() def __getitem__(self, keys): if isinstance(keys, (tuple, list)): return [self._get_single_item(k) for k in keys] return self._get_single_item(keys) def _get_single_item(self, key): return np.asarray(self.fid[key]) def __setitem__(self, key, value): if key in self.fid: if self.fid[key].shape == value.shape and \ self.fid[key].dtype == value.dtype: print('shape type same, old is updated') self.fid[key][...] = value else: del self.fid[key] print('old shape {} new shape {} updated'.format(self.fid[key].shape, value.shape)) self.fid.create_dataset(key, data=value) else: self.fid.create_dataset(key, data=value) def __delitem__(self, key): del self.fid[key] def __len__(self): return len(self.fid) def __iter__(self): return iter(self.fid) def flush(self): self.fid.flush() def close(self): self.fid.close() def keys(self): return self.fid.keys() def mypickle(data, file_path): mkdir_p(osp.dirname(file_path), delete=False) print('pickle into', file_path) with open(file_path, 'wb') as f: pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) def unpickle(file_path): with open(file_path, 'rb') as f: data = pickle.load(f) return data def write_df(df, path): df.to_hdf(path, 'df', mode='w') def read_df(path): return pd.read_hdf(path, 'df') def mkdir_p(path, delete=False): if path == '': return if delete: rm(path) if not osp.exists(path): print('mkdir -p ' + path) subprocess.call(('mkdir -p ' + path).split()) def shell(cmd, block=True): import os my_env = os.environ.copy() home = os.path.expanduser('~') # logging.info('cmd is ' + cmd) if block: # subprocess.call(cmd.split()) task = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=my_env) msg = task.communicate() if msg[0] != b'' and msg[0] != '': logging.info('stdout {}'.format(msg[0])) if msg[1] != b'' and msg[1] != '': logging.error('stderr {}'.format(msg[1])) return msg else: print('Non-block!') task = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=my_env) return task def check_path(path): path = osp.dirname(path) if not osp.exists(path): mkdir_p(path) def ln(path, to_path): if osp.exists(to_path): print('error! exist ' + to_path) path = osp.abspath(path) cmd = "ln -s " + path + " " + to_path print(cmd) proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return proc def tar(path, to_path=None): if not osp.exists(path): return if not osp.exists(to_path): mkdir_p(to_path) if os.path.exists(to_path) and not len(os.listdir(to_path)) == 0: rm(path) return if to_path is not None: cmd = "tar xf " + path + " -C " + to_path print(cmd) else: cmd = "tar xf " + path shell(cmd, block=True) if os.path.exists(path): rm(path) def rmdir(path): cmd = "rmdir " + path shell(cmd) def rm(path, block=True, hard=True): path = osp.abspath(path) if not hard: dst = glob.glob('{}.bak*'.format(path)) parsr = re.compile('{}.bak(\d+)'.format(path)) used = [0, ] for d in dst: m = re.match(parsr, d) used.append(int(m.groups()[0])) dst_path = '{}.bak{}'.format(path, max(used) + 1) cmd = 'mv {} {} '.format(path, dst_path) print(cmd) shell(cmd, block=block) else: if osp.isdir(path): shutil.rmtree(path) else: os.remove(path) return def show_img(path): from IPython.display import Image fig = Image(filename=(path)) return fig def show_pdf(path): from IPython.display import IFrame path = osp.relpath(path) return IFrame(path, width=600, height=300) def print_graph_info(): import tensorflow as tf graph = tf.get_default_graph() graph.get_tensor_by_name("Placeholder:0") layers = [op.name for op in graph.get_operations() if op.type == "Placeholder"] print([graph.get_tensor_by_name(layer + ":0") for layer in layers]) print([op.type for op in graph.get_operations()]) print([n.name for n in tf.get_default_graph().as_graph_def().node]) print([v.name for v in tf.global_variables()]) print(graph.get_operations()[20]) def chdir_to_root(fn): def wrapped_fn(*args, **kwargs): restore_path = os.getcwd() os.chdir(root_path) res = fn(*args, **kwargs) os.chdir(restore_path) return res return wrapped_fn def scp(src, dest, dry_run=False): cmd = ('scp -r ' + src + ' ' + dest) print(cmd) if dry_run: return return shell(cmd, block=False) def read_list(file, delimi=" "): if osp.exists(file): lines = np.genfromtxt(file, dtype='str', delimiter=delimi) return lines else: return [] def cp(from_path, to): subprocess.call(('cp -r ' + from_path + ' ' + to).split()) def mv(from_path, to): if not osp.exists(to): mkdir_p(to) if not isinstance(from_path, list): subprocess.call(('mv ' + from_path + ' ' + to).split()) else: for from_ in from_path: subprocess.call(('mv ' + from_ + ' ' + to).split()) def dict_concat(d_l): d1 = d_l[0].copy() for d in d_l[1:]: d1.update(d) return d1 def clean_name(name): import re name = re.findall('([a-zA-Z0-9/-]+)(?::\d+)?', name)[0] name = re.findall('([a-zA-Z0-9/-]+)(?:_\d+)?', name)[0] return name class Struct(object): def __init__(self, entries): self.__dict__.update(entries) def __getitem__(self, item): return self.__dict__[item] def dict2obj(d): return Struct(d) def dict2str(others): name = '' for key, val in others.iteritems(): name += '_' + str(key) if isinstance(val, dict): name += '_' + dict2str(val) elif isinstance(val, list): for val_ in val: name += '-' + str(val_) else: name += '_' + str(val) return name def list2str(li, delimier=''): name = '' for name_ in li: name += (str(name_) + delimier) return name def write_list(file, l, sort=True, delimiter=' ', fmt='%.18e'): l = np.array(l) if sort: l = np.sort(l, axis=0) np.savetxt(file, l, delimiter=delimiter, fmt=fmt) def rsync(from_, to): cmd = ('rsync -avzP ' + from_ + ' ' + to) print(cmd) return shell(cmd, block=False) def i_vis_graph(graph_def, max_const_size=32): """Visualize TensorFlow graph.""" import tensorflow as tf from IPython.display import display, HTML, SVG import os def strip_consts(graph_def, max_const_size=32): """Strip large constant values from graph_def.""" import tensorflow as tf strip_def = tf.GraphDef() for n0 in graph_def.node: n = strip_def.node.add() n.MergeFrom(n0) if n.op == 'Const': tensor = n.attr['value'].tensor size = len(tensor.tensor_content) if size > max_const_size: tensor.tensor_content = tf.compat.as_bytes("<stripped %d bytes>" % size) return strip_def if hasattr(graph_def, 'as_graph_def'): graph_def = graph_def.as_graph_def() strip_def = strip_consts(graph_def, max_const_size=max_const_size) code = """ <script> function load() {{ document.getElementById("{id}").pbtxt = {data}; }} </script> <link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()> <div style="height:600px"> <tf-graph-basic id="{id}"></tf-graph-basic> </div> """.format(data=repr(str(strip_def)), id='graph' + str(np.random.rand())) iframe = """ <iframe seamless style="width:800px;height:620px;border:0" srcdoc="{}"></iframe> """.format(code.replace('"', '&quot;')) display(HTML(iframe)) if __name__ == '__main__': pass
47976502d48e9a7befc8f25a4a40b5c79b62478c
efc690a4c42b1511deb0fe80bf146872c45aed69
/conf_site/reviews/views/results.py
8e9c337d3fcfa45024658285ca45002dd3f015b0
[ "MIT" ]
permissive
jasongrout/conf_site
34aa1197727fbbbdf8811338764a7451445f1803
6b3beb21de8d847cba65dcb6da84464b40739d48
refs/heads/master
2021-03-31T06:35:59.696561
2020-03-17T20:39:57
2020-03-17T20:39:57
248,086,087
0
0
MIT
2020-03-17T22:32:02
2020-03-17T22:32:01
null
UTF-8
Python
false
false
6,671
py
# -*- coding: utf-8 -*- # Views relating to accepting/rejecting a reviewed proposal. from django.contrib import messages from django.contrib.auth.mixins import UserPassesTestMixin from django.http import HttpResponseRedirect from django.template.defaultfilters import pluralize from django.urls import reverse from django.views.generic import View from conf_site.proposals.models import Proposal from conf_site.reviews.models import ProposalNotification, ProposalResult from conf_site.reviews.views import ProposalListView from symposion.schedule.models import Presentation class SuperuserOnlyView(UserPassesTestMixin, View): """A view which only allows access to superusers.""" def test_func(self): if self.request.user.is_superuser: return True elif not self.request.user.is_anonymous: # Non-anonymous, non-superuser users should see an error page. self.raise_exception = True return False class ProposalChangeResultPostView(SuperuserOnlyView): """A view to allow superusers to change a proposal's voting result.""" http_method_names = ["get"] def get(self, *args, **kwargs): """Update an individual ProposalResult object.""" proposal = Proposal.objects.get(pk=kwargs["pk"]) result = ProposalResult.objects.get_or_create(proposal=proposal)[0] result.status = kwargs["status"] result.save() return HttpResponseRedirect( reverse("review_proposal_detail", args=[proposal.id]) ) class ProposalResultListView(SuperuserOnlyView, ProposalListView): def get(self, request, *args, **kwargs): self.status = kwargs["status"] if self.status == ProposalResult.RESULT_UNDECIDED: # Create ProposalResults for proposals that do not have them. proposals_without_result = Proposal.objects.filter( review_result=None ) for proposal in proposals_without_result: ProposalResult.objects.create( proposal=proposal, status=ProposalResult.RESULT_UNDECIDED ) return super(ProposalResultListView, self).get( request, *args, **kwargs ) def get_queryset(self): return Proposal.objects.order_by("pk").filter( review_result__status=self.status ) def get_context_data(self, **kwargs): context = super(ProposalResultListView, self).get_context_data( **kwargs ) temp_result = ProposalResult(status=self.status) context["proposal_category"] = temp_result.get_status_display() return context class ProposalMultieditPostView(SuperuserOnlyView): """A view to let superusers modify multiple proposals' results.""" http_method_names = ["post"] def post(self, *args, **kwargs): proposal_pks = self.request.POST.getlist("proposal_pk") proposals = Proposal.objects.filter(pk__in=proposal_pks) new_status = self.request.POST.get("mark_status") if new_status: # <queryset>.update() will not work here because # the status field lives in the related model # ProposalResult. for proposal in proposals: try: proposal.review_result.status = new_status proposal.review_result.save() except ProposalResult.DoesNotExist: proposal.review_result = ProposalResult.objects.create( proposal=proposal, status=new_status ) return HttpResponseRedirect( reverse("review_proposal_result_list", args=[new_status]) ) elif self.request.POST.get("send_notification"): # Save ProposalNotification to database, as a type # of rudimentary logging. notification = ProposalNotification.objects.create( from_address=self.request.POST.get("from_address"), subject=self.request.POST.get("subject"), body=self.request.POST.get("body"), ) notification.proposals.set(proposals) unemailed_speakers = notification.send_email() for speaker in unemailed_speakers: messages.warning( self.request, "Speaker {} does not have an email address " "and has not been notified.".format(speaker.name) ) return HttpResponseRedirect(reverse("review_proposal_list")) elif self.request.POST.get("create_presentations"): num_presentations_created = 0 for proposal in proposals: # We don't need to add all of the proposal's metadata # to the presentation. Most fields will automatically be # added when we save the proposal. # See https://github.com/pydata/conf_site/pull/176. # Note that the title needs to be added here so that # a presentation's slugs are created properly. presentation, created = Presentation.objects.get_or_create( proposal_base=proposal.proposalbase_ptr, section=proposal.section, speaker=proposal.speaker, title=proposal.title, ) # If the presentation already existed, we do not need # to attach it to the proposal. if created: proposal.presentation = presentation proposal.save() num_presentations_created += 1 # Create a message if any new presentations were created. if num_presentations_created: messages.success( self.request, "{} presentation{} created.".format( num_presentations_created, pluralize(num_presentations_created), ), ) else: messages.warning( self.request, "All selected proposals already had presentations.", ) # Since the "create presentations" action can only # be initated from the "Accepted Proposals" # category listing, we return the user there. return HttpResponseRedirect( reverse( "review_proposal_result_list", args=[ProposalResult.RESULT_ACCEPTED], ) )
a6163925f7b8ca2e2f2092068ada1812096825e1
536ec8e275d0e4ac826ed492a818802f17eb29da
/ABC/160/d.py
02dddae132428e1112cce372965697f32401ed8e
[]
no_license
tamanyan/coding-problems
3d74ee708a943348ee06f1a25c45ee3a35cfd9ee
415e8230c8386163e1abf5eea217a1e5be8a15bc
refs/heads/master
2020-07-03T21:36:23.566534
2020-06-10T16:33:55
2020-06-10T16:33:55
202,057,698
0
0
null
null
null
null
UTF-8
Python
false
false
2,544
py
from heapq import heappush, heappop, heapify from collections import deque, defaultdict, Counter import itertools from itertools import permutations, combinations, accumulate import sys import bisect import string import math import time def I(): return int(input()) def S(): return input() def MI(): return map(int, input().split()) def MS(): return map(str, input().split()) def LI(): return [int(i) for i in input().split()] def LI_(): return [int(i)-1 for i in input().split()] def StoI(): return [ord(i)-97 for i in input()] def ItoS(nn): return chr(nn+97) def input(): return sys.stdin.readline().rstrip() def show(*inp, end='\n'): if show_flg: print(*inp, end=end) def print_matrix(mat): for i in range(len(mat)): print(*mat[i]) yn = {False: 'No', True: 'Yes'} YN = {False: 'NO', True: 'YES'} MOD = 10**9+7 inf = float('inf') IINF = 10**19 l_alp = string.ascii_lowercase u_alp = string.ascii_uppercase ts = time.time() sys.setrecursionlimit(10**6) nums = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10'] show_flg = False # show_flg = True def bfs(graph, initial): n = len(graph) - 1 dist = [-1] * (n + 1) q = deque([initial]) visited = [False] * (n + 1) visited[initial] = True dist[initial] = 0 while len(q) != 0: edge = q.popleft() nxt = graph[edge] for i, e in enumerate(nxt): if visited[e] is False: q.append(e) dist[e] = dist[edge] + 1 visited[e] = True return dist def main(): N, M = MI() ret = bfs(graph, 1) print(ret) def main(): N, X, Y = MI() graph = [[] for i in range(N+1)] for i in range(1, N): graph[i].append(i+1) graph[i+1].append(i) graph[X].append(Y) graph[Y].append(X) d = defaultdict(int) for i in range(1, N+1): ret = bfs(graph, i) for j in range(1, len(ret)): if i != j: d[ret[j]] += 1 # print(ret) # print(d) for i in range(1, N): if i in d: print(d[i]//2) else: print(0) # d = defaultdict(int) # for i in range(1, N+1): # for j in range(i+1, N+1): # a = abs(j - i) # b = abs(X - i) + 1 + abs(Y - j) # c = abs(Y - i) + 1 + abs(X - j) # d[min(a, b, c)] += 1 # for i in range(1, N): # if i in d: # print(d[i]) # else: # print(0) if __name__ == '__main__': main()
ad20541f220ca3f25625474ef3e4b31b78b5f186
c94a89b95140bd1e348318ecb2d4867e676ba18c
/Kids_ProjectPro/urls.py
f49350e44751bce58a5c970419d7491ddc5ed535
[]
no_license
Bek-End/Kids_ProjectPro
c499a0319726f2c819527ce3b12f00e48edc708f
e1a9b6a4825bccbe2b620ddecc0b7cfac519d4ca
refs/heads/master
2023-02-06T09:09:49.302103
2020-12-30T18:42:30
2020-12-30T18:42:30
325,620,286
0
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
"""Kids_ProjectPro URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include # from django.views.static import serve # from django.conf.urls import url urlpatterns = [ path('verify/', include('verification.urls')), path('account/',include('accounts.urls')), path('admin/', admin.site.urls), # url(r'^media/(?P<path>.*)$', serve,{'document_root': settings.MEDIA_ROOT}), # url(r'^static/(?P<path>.*)$', serve,{'document_root': settings.STATIC_ROOT}), ]
[ "=" ]
=
14c4f7a74b37bcc37269c434315d42e1b81f1aa2
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ssm_write_f/parameter-version_label.py
3db287273a2a4cd137dce02c234f61d14f00aed6
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ """ write_parameter("ssm", "label-parameter-version")
3155809eb9213fe200a99270af4ffb00653d1968
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_001/ch1_2019_03_08_00_48_52_215191.py
703dfbc3041cf04c1ed845a6b560498ac223dc71
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
def calcula_valor_devido(C,t,i): y=C*(1+i)**t return y
79b1bcd49c77b250f57382414962ded3e5d58e28
dd8faa90ee03ff52c571994ff797e4e4db38726d
/lib/python2.7/site-packages/google_compute_engine/instance_setup/instance_setup.py
1677fc765c6b90328a859867099fa926d89b8411
[]
no_license
bopopescu/elasticluster_forked
16453b6d322ed26156a9759a8a3507ba9023883b
ba5433bc4a6e7b876161030f06b76ff1837e0e71
refs/heads/master
2022-11-21T20:49:13.533208
2017-10-25T22:39:00
2017-10-25T22:39:00
282,557,817
0
0
null
2020-07-26T02:02:21
2020-07-26T02:02:20
null
UTF-8
Python
false
false
7,502
py
#!/usr/bin/python # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run initialization code the first time the instance boots.""" import logging.handlers import optparse import os import re import shutil import subprocess import tempfile from google_compute_engine import file_utils from google_compute_engine import logger from google_compute_engine import metadata_watcher from google_compute_engine.boto import boto_config from google_compute_engine.instance_setup import instance_config class InstanceSetup(object): """Initialize the instance the first time it boots.""" def __init__(self, debug=False): """Constructor. Args: debug: bool, True if debug output should write to the console. """ self.debug = debug facility = logging.handlers.SysLogHandler.LOG_DAEMON self.logger = logger.Logger( name='instance-setup', debug=self.debug, facility=facility) self.watcher = metadata_watcher.MetadataWatcher(logger=self.logger) self.metadata_dict = None self.instance_config = instance_config.InstanceConfig(logger=self.logger) if self.instance_config.GetOptionBool('InstanceSetup', 'network_enabled'): self.metadata_dict = self.watcher.GetMetadata() instance_config_metadata = self._GetInstanceConfig() self.instance_config = instance_config.InstanceConfig( logger=self.logger, instance_config_metadata=instance_config_metadata) if self.instance_config.GetOptionBool('InstanceSetup', 'set_host_keys'): self._SetSshHostKeys() if self.instance_config.GetOptionBool('InstanceSetup', 'set_boto_config'): self._SetupBotoConfig() if self.instance_config.GetOptionBool( 'InstanceSetup', 'optimize_local_ssd'): self._RunScript('optimize_local_ssd') if self.instance_config.GetOptionBool('InstanceSetup', 'set_multiqueue'): self._RunScript('set_multiqueue') try: self.instance_config.WriteConfig() except (IOError, OSError) as e: self.logger.warning(str(e)) def _GetInstanceConfig(self): """Get the instance configuration specified in metadata. Returns: string, the instance configuration data. """ try: instance_data = self.metadata_dict['instance']['attributes'] except KeyError: instance_data = {} self.logger.warning('Instance attributes were not found.') try: project_data = self.metadata_dict['project']['attributes'] except KeyError: project_data = {} self.logger.warning('Project attributes were not found.') return (instance_data.get('google-instance-configs') or project_data.get('google-instance-configs')) def _RunScript(self, script): """Run a script and log the streamed script output. Args: script: string, the file location of an executable script. """ process = subprocess.Popen( script, shell=True, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) while True: for line in iter(process.stdout.readline, b''): self.logger.info(line.decode('utf-8').rstrip('\n')) if process.poll() is not None: break def _GetInstanceId(self): """Get the instance ID for this VM. Returns: string, the instance ID for the VM. """ try: return str(self.metadata_dict['instance']['id']) except KeyError: self.logger.warning('Instance ID was not found in metadata.') return None def _GenerateSshKey(self, key_type, key_dest): """Generate a new SSH key. Args: key_type: string, the type of the SSH key. key_dest: string, a file location to store the SSH key. """ # Create a temporary file to save the created RSA keys. with tempfile.NamedTemporaryFile(prefix=key_type, delete=True) as temp: temp_key = temp.name command = ['ssh-keygen', '-t', key_type, '-f', temp_key, '-N', '', '-q'] try: self.logger.info('Generating SSH key %s.', key_dest) subprocess.check_call(command) except subprocess.CalledProcessError: self.logger.warning('Could not create SSH key %s.', key_dest) return shutil.move(temp_key, key_dest) shutil.move('%s.pub' % temp_key, '%s.pub' % key_dest) file_utils.SetPermissions(key_dest, mode=0o600) file_utils.SetPermissions('%s.pub' % key_dest, mode=0o644) def _StartSshd(self): """Initialize the SSH daemon.""" # Exit as early as possible. # Instance setup systemd scripts block sshd from starting. if os.path.exists('/bin/systemctl'): return elif (os.path.exists('/etc/init.d/ssh') or os.path.exists('/etc/init/ssh.conf')): subprocess.call(['service', 'ssh', 'start']) subprocess.call(['service', 'ssh', 'reload']) elif (os.path.exists('/etc/init.d/sshd') or os.path.exists('/etc/init/sshd.conf')): subprocess.call(['service', 'sshd', 'start']) subprocess.call(['service', 'sshd', 'reload']) def _SetSshHostKeys(self): """Regenerates SSH host keys when the VM is restarted with a new IP address. Booting a VM from an image with a known SSH key allows a number of attacks. This function will regenerating the host key whenever the IP address changes. This applies the first time the instance is booted, and each time the disk is used to boot a new instance. """ section = 'Instance' instance_id = self._GetInstanceId() if instance_id != self.instance_config.GetOptionString( section, 'instance_id'): self.logger.info('Generating SSH host keys for instance %s.', instance_id) file_regex = re.compile(r'ssh_host_(?P<type>[a-z0-9]*)_key\Z') key_dir = '/etc/ssh' key_files = [f for f in os.listdir(key_dir) if file_regex.match(f)] for key_file in key_files: key_type = file_regex.match(key_file).group('type') key_dest = os.path.join(key_dir, key_file) self._GenerateSshKey(key_type, key_dest) self._StartSshd() self.instance_config.SetOption(section, 'instance_id', str(instance_id)) def _GetNumericProjectId(self): """Get the numeric project ID. Returns: string, the numeric project ID. """ try: return str(self.metadata_dict['project']['numericProjectId']) except KeyError: self.logger.warning('Numeric project ID was not found in metadata.') return None def _SetupBotoConfig(self): """Set the boto config so GSUtil works with provisioned service accounts.""" project_id = self._GetNumericProjectId() try: boto_config.BotoConfig(project_id, debug=self.debug) except (IOError, OSError) as e: self.logger.warning(str(e)) def main(): parser = optparse.OptionParser() parser.add_option( '-d', '--debug', action='store_true', dest='debug', help='print debug output to the console.') (options, _) = parser.parse_args() InstanceSetup(debug=bool(options.debug)) if __name__ == '__main__': main()
[ "vipin@kryptonite" ]
vipin@kryptonite
0768dc07b55dd1f9ec3c1e126265bb64af79e753
c528d85b2db4e106f0a08ed0c0bb8f9a06c75c27
/produccion/migrations/0016_produccionrealizada_cantidad_reproceso.py
8e696116ef666a3b2e0438d0b937accc4769a505
[]
no_license
alrvivas/CampoApp2
446e9eeb5f2b03963616b433340e99e3d481e532
8c574173f68887a16fb6c0e728a10ef12dbae4ce
refs/heads/master
2016-09-10T19:51:50.586769
2015-05-19T20:59:49
2015-05-19T20:59:49
35,906,071
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('produccion', '0015_auto_20150205_1009'), ] operations = [ migrations.AddField( model_name='produccionrealizada', name='cantidad_reproceso', field=models.IntegerField(null=True, blank=True), preserve_default=True, ), ]
e6ac376fc3ce85a4b5ed3d68aa7c036078669092
15cb0ddd678abe1e1f7a905fab0305079bfc4007
/source/vsm/vsm/openstack/common/periodic_task.py
ba0c8723c4258638ee958becbe7b98ea8b935d88
[ "Apache-2.0", "MIT" ]
permissive
ramkrsna/virtual-storage-manager
3563baf9763a0925af77cc13245e0896c20a2ced
78125bfb4dd4d78ff96bc3274c8919003769c545
refs/heads/master
2023-02-18T08:52:56.769486
2016-07-01T06:46:53
2016-07-01T06:46:53
63,155,952
0
0
NOASSERTION
2023-02-07T06:07:38
2016-07-12T12:27:16
Python
UTF-8
Python
false
false
8,337
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2014 Intel Corporation, All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the"License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import time import random from oslo.config import cfg from vsm import flags from vsm.openstack.common.gettextutils import _ from vsm.openstack.common import log as logging from vsm.openstack.common import timeutils from vsm import db from vsm import utils FLAGS = flags.FLAGS periodic_opts = [ cfg.BoolOpt('run_external_periodic_tasks', default=True, help=('Some periodic tasks can be run in a separate process. ' 'Should we run them here?')), ] CONF = cfg.CONF CONF.register_opts(periodic_opts) LOG = logging.getLogger(__name__) DEFAULT_INTERVAL = 60.0 class InvalidPeriodicTaskArg(Exception): message = _("Unexpected argument for periodic task creation: %(arg)s.") def periodic_task(*args, **kwargs): """Decorator to indicate that a method is a periodic task. This decorator can be used in two ways: 1. Without arguments '@periodic_task', this will be run on every cycle of the periodic scheduler. 2. With arguments: @periodic_task(spacing=N [, run_immediately=[True|False]]) this will be run on approximately every N seconds. If this number is negative the periodic task will be disabled. If the run_immediately argument is provided and has a value of 'True', the first run of the task will be shortly after task scheduler starts. If run_immediately is omitted or set to 'False', the first time the task runs will be approximately N seconds after the task scheduler starts. """ def decorator(f): # Test for old style invocation if 'ticks_between_runs' in kwargs: raise InvalidPeriodicTaskArg(arg='ticks_between_runs') # Control if run at all f._periodic_task = True f._periodic_external_ok = kwargs.pop('external_process_ok', False) if f._periodic_external_ok and not CONF.run_external_periodic_tasks: f._periodic_enabled = False else: f._periodic_enabled = kwargs.pop('enabled', True) # Control frequency f._periodic_spacing = kwargs.pop('spacing', 0) f._periodic_immediate = kwargs.pop('run_immediately', False) f._service_topic = kwargs.pop('service_topic', None) if f._periodic_immediate: f._periodic_last_run = None else: f._periodic_last_run = timeutils.utcnow() return f # NOTE(sirp): The `if` is necessary to allow the decorator to be used with # and without parens. # # In the 'with-parens' case (with kwargs present), this function needs to # return a decorator function since the interpreter will invoke it like: # # periodic_task(*args, **kwargs)(f) # # In the 'without-parens' case, the original function will be passed # in as the first argument, like: # # periodic_task(f) if kwargs: return decorator else: return decorator(args[0]) class _PeriodicTasksMeta(type): def __init__(cls, names, bases, dict_): """Metaclass that allows us to collect decorated periodic tasks.""" super(_PeriodicTasksMeta, cls).__init__(names, bases, dict_) # NOTE(sirp): if the attribute is not present then we must be the base # class, so, go ahead an initialize it. If the attribute is present, # then we're a subclass so make a copy of it so we don't step on our # parent's toes. try: cls._periodic_tasks = cls._periodic_tasks[:] except AttributeError: cls._periodic_tasks = [] try: cls._periodic_last_run = cls._periodic_last_run.copy() except AttributeError: cls._periodic_last_run = {} try: cls._periodic_spacing = cls._periodic_spacing.copy() except AttributeError: cls._periodic_spacing = {} try: cls._service_topic = cls._service_topic.copy() except AttributeError: cls._service_topic = {} for value in cls.__dict__.values(): if getattr(value, '_periodic_task', False): task = value name = task.__name__ if task._periodic_spacing < 0: continue if not task._periodic_enabled: continue # A periodic spacing of zero indicates that this task should # be run every pass if task._periodic_spacing == 0: task._periodic_spacing = None cls._periodic_tasks.append((name, task)) cls._periodic_spacing[name] = task._periodic_spacing cls._periodic_last_run[name] = task._periodic_last_run cls._service_topic[name] = task._service_topic class PeriodicTasks(object): __metaclass__ = _PeriodicTasksMeta def run_periodic_tasks(self, context, raise_on_error=False): """Tasks to be run at a periodic interval.""" idle_for = DEFAULT_INTERVAL for task_name, task in self._periodic_tasks: full_task_name = '.'.join([self.__class__.__name__, task_name]) now = timeutils.utcnow() spacing = self._periodic_spacing[task_name] last_run = self._periodic_last_run[task_name] service_topic = self._service_topic[task_name] if service_topic is not None: if not self._running_on_this_host(context, service_topic): continue # If a periodic task is _nearly_ due, then we'll run it early if spacing is not None and last_run is not None: due = last_run + datetime.timedelta(seconds=spacing) if not timeutils.is_soon(due, 0.2): idle_for = min(idle_for, timeutils.delta_seconds(now, due)) continue if spacing is not None: idle_for = min(idle_for, spacing) self._periodic_last_run[task_name] = timeutils.utcnow() try: task(self, context) except Exception as e: LOG.exception(_("Error during %(full_task_name)s: %(e)s"), locals()) if raise_on_error: raise time.sleep(0) return idle_for def _running_on_this_host(self, context, service_topic): running_on_this_host = False host_list = [] sers = db.service_get_all_by_topic(context, service_topic) for ser in sers: init_node = db.init_node_get_by_host(context, ser['host']) if utils.service_is_up(ser) and init_node and init_node['status'] == "Active": host_list.append(ser['host']) host_list.sort() if len(host_list) == 0: return False select_host = random.randint(0, len(host_list)-1) if host_list[select_host] == FLAGS.host: running_on_this_host = True return running_on_this_host
020f38bcdcaa8a734beb4dd1a45e1e2e66bcd782
fd25231975acd147e04dc3ed3627c92cb1a4f86c
/FlaskAPI/vir_env/lib/python3.7/site-packages/sklearn/linear_model/theil_sen.py
3fbea57d5f9babe483c0672e470413c5cb049f49
[]
no_license
sumitkutty/Flight-Price-Prediction
832a2802a3367e655b46d3b44f073d917abd2320
d974a8b75fbcbfa42f11703602af3e45a3f08b3c
refs/heads/master
2022-12-25T07:13:06.375888
2020-10-08T18:46:44
2020-10-08T18:46:44
302,366,725
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:4180feba49700d901330d36bcb7c90b1782af3a052c08cac446725a84da24bc5 size 580
84a1ee5259d9018c15b1c540bf5849f763787883
d9f8673ec068e4cb31e08513b9f7eab274d66243
/tf_quant_finance/experimental/rqmc/sobol.py
91a8ba386f09334d93a297726cf4b8d8043554d1
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
rambam613/tf-quant-finance
e42bd9bfb9337f41080a29ff444b8a21c00e3114
c96898e13ce2592115720a19791fc1330697ff37
refs/heads/master
2023-06-24T12:08:04.629791
2021-07-26T12:57:51
2021-07-26T12:58:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,735
py
# Lint as: python3 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Support for Sobol sequence generation.""" import tensorflow.compat.v2 as tf from tf_quant_finance import types from tf_quant_finance.experimental.rqmc import digital_net from tf_quant_finance.experimental.rqmc import utils from tf_quant_finance.math.random_ops import sobol __all__ = [ 'sample_sobol', 'sobol_generating_matrices', ] (_PRIMITIVE_POLYNOMIAL_COEFFICIENTS, _INITIAL_DIRECTION_NUMBERS) = sobol.load_data() def sample_sobol(dim: types.IntTensor, num_results: types.IntTensor, sequence_indices: types.IntTensor = None, digital_shift: types.IntTensor = None, scrambling_matrices: types.IntTensor = None, apply_tent_transform: bool = False, validate_args: bool = False, dtype: tf.DType = None, name: str = None) -> types.RealTensor: r"""Samples points from the Sobol sequence. Args: dim: Positive scalar `Tensor` of integers with rank 0. The event size of the sampled points. num_results: Positive scalar `Tensor` of integers with rank 0. The number of points to sample. sequence_indices: Optional positive scalar `Tensor` of integers with rank 1. The elements of the sequence to return specified by their position in the sequence. Default value: `None` which corresponds to the `[0, num_results)` range. digital_shift: Optional digital shift to be applied to all the points via a bitwise xor. Default value: `None`. scrambling_matrices: Positive scalar `Tensor` with the same `shape` and `dtype` as `generating_matrices`. Used to randomize `generating_matrices`. Default value: `None`. apply_tent_transform: Python `bool` indicating whether to apply a tent transform to the sampled points. Default value: `False`. validate_args: Python `bool` indicating whether to validate arguments. Default value: `False`. dtype: Optional `dtype`. The `dtype` of the output `Tensor` (either `float32` or `float64`). Default value: `None` which maps to `float32`. name: Python `str` name prefixed to ops created by this function. Default value: `None` which maps to `sample_sobol`. Returns: A `Tensor` of samples from the Sobol sequence with `shape` `(num_samples, dim)` where `num_samples = min(num_results, size(sequence_indices))` and `dim = tf.shape(generating_matrices)[0]`. """ with tf.name_scope(name or 'sample_sobol'): dtype = dtype or tf.float32 num_digits = tf.cast( tf.math.ceil(utils.log2(tf.cast(num_results, dtype=tf.float32))), tf.int32) # shape: (dim, log_num_results) generating_matrices = sobol_generating_matrices( dim, num_results, num_digits, validate_args=validate_args, dtype=tf.int32) if scrambling_matrices is not None: # shape: (dim, log_num_results) generating_matrices = digital_net.scramble_generating_matrices( generating_matrices, scrambling_matrices, num_digits, validate_args=validate_args) # shape: (num_results, dim) return digital_net.sample_digital_net( generating_matrices, num_results, num_digits, sequence_indices=sequence_indices, digital_shift=digital_shift, apply_tent_transform=apply_tent_transform, validate_args=validate_args, dtype=dtype) def sobol_generating_matrices(dim: types.IntTensor, num_results: types.IntTensor, num_digits: types.IntTensor, validate_args: bool = False, dtype: tf.DType = None, name: str = None) -> types.IntTensor: r"""Returns Sobol generating matrices. Args: dim: Positive scalar `Tensor` of integers with rank 0. The event size of points which can be sampled from the resulting generating matrices. num_results: Positive scalar `Tensor` of integers with rank 0. The maximum number of points which can be sampled from the resulting generating matrices. num_digits: Positive scalar `Tensor` of integers with rank 0. The base-2 precision of points which can be sampled from the resulting generating matrices. validate_args: Python `bool` indicating whether to validate arguments. Default value: `False`. dtype: Optional `dtype`. The `dtype` of the output `Tensor` (either a signed or unsigned integer `dtype`). Default value: `None` which maps to `int32`. name: Python `str` name prefixed to ops created by this function. Default value: `None` which maps to `sobol_generating_matrices`. Returns: A scalar `Tensor` with shape `(dim, log_num_results)` where `log_num_results = ceil(log2(num_results))`. """ with tf.name_scope(name or 'sobol_generating_matrices'): dtype = dtype or tf.int32 dim = tf.convert_to_tensor(dim, dtype=dtype, name='dim') num_results = tf.convert_to_tensor( num_results, dtype=dtype, name='num_results') num_digits = tf.convert_to_tensor( num_digits, dtype=dtype, name='num_digits') log_num_results = tf.cast( tf.math.ceil(utils.log2(tf.cast(num_results, dtype=tf.float32))), dtype=dtype) control_deps = [] if validate_args: control_deps.append( tf.debugging.assert_positive(dim, message='dim must be positive')) control_deps.append( tf.debugging.assert_positive( num_results, message='num_results must be positive')) control_deps.append( tf.debugging.assert_positive( num_digits, message='num_digits must be positive')) control_deps.append( tf.debugging.assert_less( log_num_results, tf.constant(32, dtype=dtype), message='log2(num_results) must be less than 32')) with tf.control_dependencies(control_deps): # shape: (1, log_num_results) identity = _identity_matrix(log_num_results, num_digits, dtype=dtype) # shape: (dim - 1, log_num_results) matrices = _sobol_generating_matrices( dim - 1, log_num_results, num_digits, dtype=dtype) # shape: (dim, log_num_results) return tf.concat((identity, matrices), axis=0) def _identity_matrix(num_columns: types.IntTensor, num_digits: types.IntTensor, dtype: tf.DType = None) -> types.IntTensor: r"""Returns the identity matrix. Args: num_columns: Positive scalar `Tensor` with rank 0 representing the number of columns of the returned matrix. num_digits: Positive scalar `Tensor` with rank 0 representing the base-2 precision of the samples. dtype: Optional `dtype`. The `dtype` of the output `Tensor` (either a signed or unsigned integer `dtype`). Default value: `None` which maps to `int32`. Returns: A scalar `Tensor` with shape `(1, num_columns)`. """ dtype = dtype or tf.int32 shifts = tf.range(num_digits - 1, num_digits - 1 - num_columns, delta=-1) # shape: (1, num_columns) return tf.bitwise.left_shift( tf.ones(shape=(1, num_columns), dtype=dtype), tf.cast(shifts, dtype)) def _sobol_generating_matrices(dim: types.IntTensor, log_num_results: types.IntTensor, num_digits: types.IntTensor, dtype=None) -> types.IntTensor: r"""Returns all Sobol generating matrices. Args: dim: Positive scalar `Tensor` with rank 0 representing the event size of points which can be sampled from the resulting generating matrix. log_num_results: Positive scalar `Tensor` with rank 0 representing the base-2 logarithm of the maximum number of points which can be sampled from the resulting generating matrix. num_digits: Positive scalar `Tensor` with rank 0 representing the base-2 precision of points which can be sampled from the resulting generating matrix. dtype: Optional `dtype`. The `dtype` of the output `Tensor` (either a signed or unsigned integer `dtype`). Default value: `None` which maps to `int32`. Returns: A scalar `Tensor` with shape `(dim, ceil(log2(num_results)))`. """ global _INITIAL_DIRECTION_NUMBERS global _PRIMITIVE_POLYNOMIAL_COEFFICIENTS dtype = dtype or tf.int32 indices = tf.cast(tf.range(0, log_num_results), dtype) dimensions = tf.range(0, dim) # shape: (?, ?) directions = tf.convert_to_tensor( _INITIAL_DIRECTION_NUMBERS, dtype=dtype, name='direction_numbers') # shape: (log_num_results, ?) directions = directions[:log_num_results] # shape: (log_num_results, dim) directions = tf.gather(directions, dimensions, axis=1) # shape: (dim, log_num_results) directions = tf.cast(tf.transpose(directions), dtype) # shape: (?,) polynomial = tf.convert_to_tensor( _PRIMITIVE_POLYNOMIAL_COEFFICIENTS, dtype=dtype, name='polynomial_coefficients') # shape: (1, dim) polynomial = tf.cast( tf.gather(polynomial, tf.expand_dims(dimensions, axis=1)), dtype) # shape: (1, dim) degree = tf.cast( tf.math.floor(utils.log2(tf.cast(polynomial, dtype=tf.float32))), dtype=dtype) def loop_predicate_fn(matrix_values, column): del matrix_values return column < log_num_results - 1 def loop_body_fn(matrices, column): # Loop invariant: At the end of the iteration, all values from column 0 to # `column` have been calculated. # shape: (dim, log_num_results) column_values = tf.gather(matrices, [column], axis=1) # Columns whose index is smaller than the degree of the primitive polynomial # are obtained from direction numbers and thus should not be updated. # During a given iteration, only the next n columns (where n is the degree # of the primitive polynomial) should be updated. # shape: (dim, log_num_results) should_be_updated = tf.logical_and( tf.less_equal(tf.math.maximum(degree, column + 1), indices), tf.less_equal(indices, column + degree)) # shape: (dim, log_num_results) updated_matrices = tf.bitwise.bitwise_xor( tf.where( tf.equal(indices, column + degree), tf.bitwise.right_shift(column_values, degree), matrices), utils.filter_tensor(column_values, polynomial, column + degree - indices)) # shape: (dim, log_num_results) returned_matrices = tf.where(should_be_updated, updated_matrices, matrices) return (returned_matrices, column + 1) # shape: (dim, log_num_results) initial_matrices = tf.bitwise.left_shift( directions, tf.cast(tf.expand_dims(num_digits - 1 - indices, axis=0), dtype)) matrices, _ = tf.while_loop( loop_predicate_fn, loop_body_fn, loop_vars=(initial_matrices, tf.constant(0, dtype)), maximum_iterations=tf.cast(log_num_results, tf.int32) - 1) # shape: (dim, log_num_results) return matrices
9c5bb4dfa66e539726e24979938958a0f0da287a
3ae201c706c4defbd6f1f4f4c578b702b3e100d9
/dbsys-hw2/test/Experiment.py
4e63834f6b1fabb44dc1bae99168a7dc8d675a16
[]
no_license
jasonlingo/Database_Systems
1ef6071300073c997958f1a9f087e96d9a6c44d5
7297b7e38c66d1d66b4f8d24639cbe66ab402616
refs/heads/master
2021-06-09T20:44:04.812666
2016-12-11T22:49:32
2016-12-11T22:49:32
50,884,222
0
0
null
null
null
null
UTF-8
Python
false
false
10,850
py
import Database from Catalog.Schema import DBSchema import time def getResult(db, query): return [query.schema().unpack(tup) for page in db.processQuery(query) for tup in page[1]] if __name__=="__main__": db = Database.Database(dataDir='./data') """ select p.p_name, s.s_name from part p, supplier s, partsupp ps where p.p_partkey = ps.ps_partkey and ps.ps_suppkey = s.s_suppkey and ps.ps_availqty = 1 union all select p.p_name, s.s_name from part p, supplier s, partsupp ps where p.p_partkey = ps.ps_partkey and ps.ps_suppkey = s.s_suppkey and ps.ps_supplycost < 5; """ """ Schema supplier[(S_SUPPKEY,int),(S_NAME,char(25)),(S_ADDRESS,char(40)),(S_NATIONKEY,int),(S_PHONE,char(15)),(S_ACCTBAL,double),(S_COMMENT,char(101))] part[(P_PARTKEY,int),(P_NAME,char(55)),(P_MFGR,char(25)),(P_BRAND,char(10)),(P_TYPE,char(25)),(P_SIZE,int),(P_CONTAINER,char(10)),(P_RETAILPRICE,double),(P_COMMENT,char(23))] partsupp[(PS_PARTKEY,int),(PS_SUPPKEY,int),(PS_AVAILQTY,int),(PS_SUPPLYCOST,double),(PS_COMMENT,char(199))] """ # part = db.query().fromTable('part') # supplier = db.query().fromTable('supplier') # partsupp = db.query().fromTable('partsupp') # # supplierSchema = db.relationSchema("supplier") # partsuppSchema = db.relationSchema('partsupp') # # lhsKeySchema1 = DBSchema('pJoinKey', [('P_PARTKEY', 'int')]) # rhsKeySchema1 = DBSchema('psJoinKey1', [('PS_PARTKEY', 'int')]) # # lhsKeySchema2 = DBSchema('psJoinKey2', [('PS_SUPPKEY', 'int')]) # rhsKeySchema2 = DBSchema('sJoinKey', [('S_SUPPKEY', 'int')]) # print(db.relationSchema('supplier').toString()) # print(db.relationSchema('part').toString()) # print(db.relationSchema('partsupp').toString()) # ======================================= # Question 1 # ======================================= # ========== block-nested join ========== # query1 = db.query().fromTable('part')\ # .join(db.query().fromTable('partsupp'), # rhsSchema=db.relationSchema('partsupp'), # method='block-nested-loops', # expr='P_PARTKEY == PS_PARTKEY' # )\ # .join(db.query().fromTable('supplier'), # rhsSchema=db.relationSchema('supplier'), # method='block-nested-loops', # expr='PS_SUPPKEY == S_SUPPKEY' # )\ # .where('PS_AVAILQTY == 1')\ # .union(\ # db.query().fromTable('part')\ # .join(db.query().fromTable('partsupp'), # rhsSchema=db.relationSchema('partsupp'), # method='block-nested-loops', # expr='P_PARTKEY == PS_PARTKEY' # )\ # .join(db.query().fromTable('supplier'), # rhsSchema=db.relationSchema('supplier'), # method='block-nested-loops', # expr='PS_SUPPKEY == S_SUPPKEY' # )\ # .where('PS_SUPPLYCOST < 5'))\ # .select({'P_NAME': ('P_NAME', 'char(55)'), 'S_NAME': ('S_NAME', 'char(25)')}).finalize() # ========== hash join ========== # query1 = part.join(partsupp, # rhsSchema=partsuppSchema, # method='hash', # lhsHashFn='hash(P_PARTKEY) % 4', lhsKeySchema=lhsKeySchema1, # rhsHashFn='hash(PS_PARTKEY) % 4', rhsKeySchema=rhsKeySchema1, # )\ # .join(supplier, # rhsSchema=supplierSchema, # method='hash', # lhsHashFn='hash(PS_SUPPKEY) % 4', lhsKeySchema=lhsKeySchema2, # rhsHashFn='hash(S_SUPPKEY) % 4', rhsKeySchema=rhsKeySchema2, # )\ # .where('PS_AVAILQTY == 1')\ # .select({'p_name': ('P_NAME', 'char(55)'), 's_name': ('S_NAME', 'char(25)')})\ # .union( # part.join(partsupp, # rhsSchema=partsuppSchema, # method='hash', # lhsHashFn='hash(P_PARTKEY) % 4', lhsKeySchema=lhsKeySchema1, # rhsHashFn='hash(PS_PARTKEY) % 4', rhsKeySchema=rhsKeySchema1, # )\ # .join(supplier, # rhsSchema=supplierSchema, # method='hash', # lhsHashFn='hash(PS_SUPPKEY) % 4', lhsKeySchema=lhsKeySchema2, # rhsHashFn='hash(S_SUPPKEY) % 4', rhsKeySchema=rhsKeySchema2, # )\ # .where('PS_SUPPLYCOST < 5')\ # .select({'p_name': ('P_NAME', 'char(55)'), 's_name': ('S_NAME', 'char(25)')}))\ # .finalize() # partsuppSchema = db.relationSchema('partsupp') # supplierSchema = db.relationSchema('supplier') # # keySchemaPart = DBSchema('partKey', [('P_PARTKEY', 'int')]) # keySchemaPartsupp1 = DBSchema('partsuppKey1', [('PS_PARTKEY', 'int')]) # keySchemaPartsupp2 = DBSchema('partsuppKey2', [('PS_SUPPKEY', 'int')]) # keySchemaSupplier = DBSchema('supplierKey', [('S_SUPPKEY', 'int')]) # # part = db.query().fromTable('part') # supplier = db.query().fromTable('supplier') # partsupp = db.query().fromTable('partsupp') # join1 = part.join( # partsupp, # rhsSchema=partsuppSchema, # method='hash', # lhsHashFn='hash(P_PARTKEY) % 4', lhsKeySchema=keySchemaPart, # rhsHashFn='hash(PS_PARTKEY) % 4', rhsKeySchema=keySchemaPartsupp1 # ).join( # supplier, # rhsSchema = supplierSchema, # method = 'hash', # lhsHashFn='hash(PS_SUPPKEY) % 4', lhsKeySchema=keySchemaPartsupp2, # rhsHashFn = 'hash(S_SUPPKEY) % 4', rhsKeySchema=keySchemaSupplier # ).where('PS_AVAILQTY == 1').select({'p_name': ('P_NAME', 'char(55)'), 's_name': ('S_NAME', 'char(25)')}) # # join2 = part.join( # partsupp, # rhsSchema = partsuppSchema, # method = 'hash', # lhsHashFn='hash(P_PARTKEY) % 4', lhsKeySchema=keySchemaPart, # rhsHashFn = 'hash(PS_PARTKEY) % 4', rhsKeySchema=keySchemaPartsupp1 # ).join( # supplier, # rhsSchema = supplierSchema, # method = 'hash', # lhsHashFn='hash(PS_SUPPKEY) % 4', lhsKeySchema=keySchemaPartsupp2, # rhsHashFn = 'hash(S_SUPPKEY) % 4', rhsKeySchema=keySchemaSupplier # ).where('PS_SUPPLYCOST < 5').select({'p_name': ('P_NAME', 'char(55)'), 's_name': ('S_NAME', 'char(25)')}) # # query1 = join1.union(join2).finalize() # ======================================= # Question 3 # ======================================= """ original SQL query with temp as ( select n.n_name as nation, p.p_name as part, sum(l.l_quantity) as num from customer c, nation n, orders o, lineitem l, part p where c.c_nationkey = n.n_nationkey and c.c_custkey = o.o_custkey and o.o_orderkey = l.l_orderkey and l.l_partkey = p.p_partkey group by n.n_name, p.p_name ) select nation, max(num) from temp group by nation; """ # tables customer = db.relationSchema('customer') nation = db.relationSchema('nation') orders = db.relationSchema('orders') lineitem = db.relationSchema('lineitem') part = db.relationSchema('part') print(customer.toString()) print(nation.toString()) print(orders.toString()) print(lineitem.toString()) print(part.toString()) # # hash join # # customer join nation # cus_nationKey = DBSchema('cus_nationKey', [('C_NATIONKEY', 'int')]) # nat_nationKey = DBSchema('nat_nationKey', [('N_NATIONKEY', 'int')]) # # # customer join orders # cus_custKey = DBSchema('cus_custKey', [('C_CUSTKEY', 'int')]) # ord_custKey = DBSchema('ord_custKey', [('O_CUSTKEY', 'int')]) # # # orders join lineitem # ord_orderKey = DBSchema('ord_orderKey', [('O_ORDERKEY', 'int')]) # line_orderKey = DBSchema('line_orderKey', [('L_ORDERKEY', 'int')]) # # # lineitem join part # line_partKey = DBSchema('line_partKey', [('L_PARTKEY'), 'int']) # part_partKey = DBSchema('part_partKey', [('P_PARTKEY'), 'int']) # # joinTables = db.query().fromTable(customer).join( # nation, # rhsSchema=db.relationSchema('nation'), # method='hash', # lhsHashFn='hash(C_NATIONKEY) % 4', lhsKeySchema=cus_nationKey, # rhsHashFn='hash(N_NATIONKEY) % 4', rhsKeySchema=nat_nationKey # ).join( # orders, # rhsSchema=db.relationSchema('orders'), # method='hash', # lhsHashFn='hash(C_CUSTKEY) % 4', lhsKeySchema=cus_custKey, # rhsHashFn='hash(O_CUSTKEY) % 4', rhsKeySchema=ord_custKey # ).join( # lineitem, # rhsSchema=db.relationSchema('lineitem'), # method='hash', # lhsHashFn='hash(O_ORDERKEY) % 4', lhsKeySchema=ord_orderKey, # rhsHashFn='hash(L_ORDERKEY) % 4', rhsKeySchema=line_orderKey # ).join( # part, # rhsSchema=db.relationSchema('part'), # method='hash', # lhsHashFn='hash(L_PARTKEY) % 4', lhsKeySchema=line_partKey, # rhsHashFn='hash(P_PARTKEY) % 4', rhsKeySchema=part_partKey # ) # # # # first group by # groupSchema = DBSchema('nation_part_name', [('N_NAME', 'char(55)'), ('P_NAME', 'char(55)')]) # aggSumSchema = DBSchema('nation_part_sum', [('num', 'int')]) # # groupBy = joinTables.groupBy( # groupSchema=groupSchema, # aggSchema=aggSumSchema, # groupExpr=(lambda e: (e.N_NAME, e.P_NAME)), # aggExprs=[(0, lambda acc, e: acc + e.L_QUANTITY, lambda x: x)], # groupHashFn=(lambda gbVal: hash(gbVal[0]) % 10) # ) # # # second group by # groupSchema2 = DBSchema('nationMax', [('N_NAME', 'char(55)')]) # aggMaxSchema = DBSchema('aggMax', [('max', 'int')]) # # query2 = groupBy.groupBy( # groupSchema=groupSchema2, # aggSchema=aggMaxSchema, # groupExpr=(lambda e: e.N_NAME), # aggExprs=[(0, lambda acc, e: max(acc, e.num), lambda x: x)], # groupHashFn=(lambda gbVal: hash(gbVal[0]) % 10) # ) # execute query # start = time.time() # result = getResult(db, query2) # end = time.time() # print("data:", len(result)) # print("Time: ", end - start)
3f7f38885107eef43aceac023faab24e60716559
9d6e747ed7204555199ece2033decff978295a09
/Programmers/연습문제/나누어 떨어지는 숫자 배열.py
fb1afb8f9e293de68da3844ce7cbf9d97d70dcdf
[]
no_license
leejaeyeong/Algorithm
5b47ed9aa241990945cbf2451afe7f084984ced5
72072d1e0c28e72075fc00db9239a4bd444b68b6
refs/heads/master
2021-08-08T10:57:07.345943
2021-07-11T15:01:59
2021-07-11T15:01:59
238,156,464
5
0
null
null
null
null
UTF-8
Python
false
false
222
py
def solution(arr, divisor): answer = [] for i in range(len(arr)) : if arr[i] % divisor == 0 : answer.append(arr[i]) answer.append(-1) if len(answer) == 0 else answer.sort() return answer
4a5bef3cc293b6ab8ce44bb01c17f1a769623747
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_170/ch118_2020_04_01_01_59_46_302026.py
7174e745c9ee56ed8d0b829dcf7a56162f0013bf
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
import math def reflexao_total_interna(n1, n2, a2): a2 = a2 * (math.pi/180) a1 = math.asin((math.sin(a2))*n2/n1) if math.sin(a1) > 1: return True else: return False
db489fba758e2bb4794dc2d8786107c23b06f986
af34b2b44fe1a797a11f27e508d0d2e3c8764027
/face/admin.py
f54344d632c1c0208da3331d47993c48fb0fad15
[]
no_license
CodingSta/askface-with-aws
12afa8f7884847bd979a890f96510642018ffe63
39ea4ddfbd5360629e7b3a77014adf2d3fadcf6d
refs/heads/master
2020-05-27T15:35:48.108675
2018-08-14T11:46:43
2018-08-14T11:46:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,007
py
from django.contrib import admin from django.db.models import Count from .models import Collection, Person, Face from .forms import FaceForm @admin.register(Collection) class CollectionAdmin(admin.ModelAdmin): list_display = ['pk', 'name', 'slug'] class FaceInline(admin.TabularInline): model = Face form = FaceForm @admin.register(Person) class PersonAdmin(admin.ModelAdmin): list_display = ['pk', 'collection', 'name', 'face_count'] list_display_links = ['name'] inlines = [FaceInline] actions = ['indexing'] def get_queryset(self, request): return Person.objects.all().annotate(Count('face')) def face_count(self, person): return person.face__count def indexing(self, request, queryset): for face in Face.objects.filter(person__in=queryset): face.indexing() self.message_user(request, 'indexing 완료') @admin.register(Face) class FaceAdmin(admin.ModelAdmin): list_display = ['person', 'photo', 'meta']
24a44d518db3c183a6059c55278073b59cd615df
deff2922412bd0376ef38a34a895990d106b7b66
/goodsunit/serializers.py
eedf1db3efe76eb7e5f964b7a1f96578f613af56
[ "Apache-2.0" ]
permissive
dpd-pub/GreaterWMS
56ba10750e8724bc7b39de077e4b4bc43340a94a
9eabb1b9b0f5376dcccd89ed86dd76995955a8ec
refs/heads/master
2023-02-27T18:05:29.384931
2021-02-10T02:19:33
2021-02-10T02:19:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,698
py
from rest_framework import serializers from .models import ListModel from userprofile.models import Users import re from rest_framework.exceptions import APIException def data_validate(data): script_obj = re.findall(r'script', str(data), re.IGNORECASE) select_obj = re.findall(r'select', str(data), re.IGNORECASE) if script_obj: raise APIException({'detail': 'Bad Data can‘not be store'}) elif select_obj: raise APIException({'detail': 'Bad Data can‘not be store'}) else: return data def openid_validate(data): if Users.objects.filter(openid=data).exists(): return data else: raise APIException({'detail': 'User does not exists'}) def appid_validate(data): if Users.objects.filter(appid=data).exists(): return data else: raise APIException({'detail': 'User does not exists'}) class GoodsunitGetSerializer(serializers.ModelSerializer): goods_unit = serializers.CharField(read_only=True, required=False) creater = serializers.CharField(read_only=True, required=False) create_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') update_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M:%S') class Meta: model = ListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', ] class GoodsunitPostSerializer(serializers.ModelSerializer): openid = serializers.CharField(read_only=False, required=False, validators=[openid_validate]) goods_unit = serializers.CharField(read_only=False, required=True, validators=[data_validate]) creater = serializers.CharField(read_only=False, required=True, validators=[data_validate]) class Meta: model = ListModel exclude = ['is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class GoodsunitUpdateSerializer(serializers.ModelSerializer): goods_unit = serializers.CharField(read_only=False, required=True, validators=[data_validate]) creater = serializers.CharField(read_only=False, required=True, validators=[data_validate]) class Meta: model = ListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ] class GoodsunitPartialUpdateSerializer(serializers.ModelSerializer): goods_unit = serializers.CharField(read_only=False, required=False, validators=[data_validate]) creater = serializers.CharField(read_only=False, required=False, validators=[data_validate]) class Meta: model = ListModel exclude = ['openid', 'is_delete', ] read_only_fields = ['id', 'create_time', 'update_time', ]
8815ed33785797bc95470cbc7b0d27380f4511b6
1082cee55e32fa76859666aa011428bf979182ea
/pose/configs/top_down/vit/coco/vit_large_patch16_384_coco_256x192.py
f371af7b4ab66da7ec5182b8843fce3e2361f2d2
[ "MIT", "Apache-2.0" ]
permissive
cvsch/HRFormer
f7a96d8620f87986cf10c74fe4f47d5b7106d732
9e6ce958ba502354dff748846d6d98f682f5f9d1
refs/heads/main
2023-08-20T21:29:51.448485
2021-10-19T01:20:02
2021-10-19T01:20:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,684
py
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=5, create_symlink=False) evaluation = dict(interval=10, metric='mAP', key_indicator='AP') optimizer = dict( type='AdamW', lr=5e-4, betas=(0.9, 0.999), weight_decay=0.01, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), ]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) # model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='TopDown', pretrained='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', backbone=dict( type='VisionTransformer', model_name='vit_large_patch16_384', img_size= [256, 192], patch_size=16, in_chans=3, embed_dim=1024, depth=24, num_heads=16, num_classes=19, drop_rate=0, drop_path_rate=0.1, norm_cfg=norm_cfg, pos_embed_interp=True, align_corners=False, ), keypoint_head=dict( type='TopDownSimpleHead', in_channels=1024, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=2, num_deconv_filters=(256, 256), num_deconv_kernels=(4, 4), norm_cfg=norm_cfg, loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_root = "/path/to/dataset/coco" # Set the data path here data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file=f'{data_root}/dataset/coco/person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data = dict( samples_per_gpu=32, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=256), test_dataloader=dict(samples_per_gpu=256), train=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', img_prefix=f'{data_root}/train2017/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), )
d8964fa3e67459f90ecc2926d498618a15de084e
952dc66c61966f099756cdb6c2d13b40352f63cc
/zerver/migrations/0436_realmauthenticationmethods.py
0716113e5428c03ea3a99236b30a568e8c822435
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
zulip/zulip
5ae6aad35fd9f72996c0a2a9cdd674400966ebf6
965a25d91b6ee2db54038f5df855215fa25146b0
refs/heads/main
2023-08-28T23:43:00.971110
2023-08-28T16:47:09
2023-08-28T19:33:02
43,160,685
20,239
8,996
Apache-2.0
2023-09-14T20:57:47
2015-09-25T16:37:25
Python
UTF-8
Python
false
false
1,780
py
# Generated by Django 4.2 on 2023-04-13 23:45 import django.db.models.deletion from django.db import migrations, models from django.db.backends.base.schema import BaseDatabaseSchemaEditor from django.db.migrations.state import StateApps def fill_RealmAuthenticationMethod_data( apps: StateApps, schema_editor: BaseDatabaseSchemaEditor ) -> None: Realm = apps.get_model("zerver", "Realm") RealmAuthenticationMethod = apps.get_model("zerver", "RealmAuthenticationMethod") rows_to_create = [] for realm in Realm.objects.order_by("id"): for key, value in realm.authentication_methods.iteritems(): if value: rows_to_create.append(RealmAuthenticationMethod(name=key, realm_id=realm.id)) RealmAuthenticationMethod.objects.bulk_create(rows_to_create, batch_size=10000) class Migration(migrations.Migration): atomic = False dependencies = [ ("zerver", "0435_scheduledmessage_rendered_content"), ] operations = [ migrations.CreateModel( name="RealmAuthenticationMethod", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID" ), ), ("name", models.CharField(max_length=80)), ( "realm", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="zerver.realm" ), ), ], options={ "unique_together": {("realm", "name")}, }, ), migrations.RunPython(fill_RealmAuthenticationMethod_data), ]
2fb88aab69ecd33a8ec7b8ed31e521803c847414
fd2de23a704ec408f47c9f2263b604cbd204c0a3
/MacrosAndScripts/myPlotStyle.py
f4c76ee6871fbaffc287d874bd84f58c5c4415d7
[]
no_license
gparida/monoHiggs_postAnalyzer
1a71c3eaa1cb11ce40923eb831077709987bd866
00fb3e37c5fa6bdd75e7426c3a7bf49534c3eec4
refs/heads/master
2023-01-19T15:19:09.487955
2020-12-03T10:15:11
2020-12-03T10:15:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,060
py
import ROOT def add_lumi(year, channel_): lowX=0.40 lowY=0.825 lumi = ROOT.TPaveText(lowX, lowY+0.06, lowX+0.50, lowY+0.16, "NDC") lumi.SetBorderSize( 0 ) lumi.SetFillStyle( 0 ) lumi.SetTextAlign( 32 )#12 lumi.SetTextColor( 1 ) lumi.SetTextSize(0.05) lumi.SetTextFont ( 42 ) lumiProcessed="41.52" if year=="2018": lumiProcessed="59.7" if channel_=="combined": lumi.AddText("4 channels combined "+year+" , "+lumiProcessed+" fb^{-1} (13 TeV)") if channel_=="mutau": lumi.AddText("#mu#tau_{h} "+year+" , "+lumiProcessed+" fb^{-1} (13 TeV)") if channel_=="etau": lumi.AddText("e#tau_{h} "+year+" , "+lumiProcessed+" fb^{-1} (13 TeV)") if channel_=="tautau": lumi.AddText("#tau_{h}#tau_{h} "+year+" , "+lumiProcessed+" fb^{-1} (13 TeV)") if channel_=="emu": lumi.AddText("e#mu "+year+" , "+lumiProcessed+" fb^{-1} (13 TeV)") return lumi def add_CMS(): lowX=0.65 #0.21 lowY=0.68 lumi = ROOT.TPaveText(lowX, lowY+0.06, lowX+0.15, lowY+0.16, "NDC") lumi.SetTextFont(61) lumi.SetTextSize(0.08) lumi.SetBorderSize( 0 ) lumi.SetFillStyle( 0 ) lumi.SetTextAlign( 31 )#12 lumi.SetTextColor( 1 ) lumi.AddText("CMS") return lumi def add_Preliminary(): lowX=0.65 # 0.21 lowY=0.63 lumi = ROOT.TPaveText(lowX, lowY+0.06, lowX+0.15, lowY+0.16, "NDC") lumi.SetTextFont(61) lumi.SetTextFont ( 40 ) lumi.SetTextSize(0.06) lumi.SetBorderSize( 0 ) lumi.SetFillStyle( 0 ) lumi.SetTextAlign( 31 )#12 lumi.SetTextColor( 1 ) lumi.AddText("Preliminary") return lumi def make_legend(): output = ROOT.TLegend(0.85, 0.45, 1.0, 0.75, "", "brNDC") #output = ROOT.TLegend(0.2, 0.1, 0.47, 0.65, "", "brNDC") output.SetLineWidth(1) output.SetLineStyle(1) output.SetFillStyle(1001) #0 output.SetFillColor(0) output.SetBorderSize(1) output.SetTextFont(42) return output # declare colors color_ztt="#ffcc66" color_zll="#4496c8" color_tt="#9999cc" color_ggh="#12cadd" color_vv="#990099" color_wjets="#cc6666" color_jetfake="#f1cde1" errorStyle=3002 c=ROOT.TCanvas("canvas","",0,0,1300,1200) pad1 = ROOT.TPad("pad1","pad1",0,0.25,1,1) pad1.SetFillColor(0) pad1.SetBorderMode(0) pad1.SetBorderSize(1) pad1.SetTickx(1) pad1.SetTicky(1) pad1.SetGridx() pad1.SetLeftMargin(0.15) #0.15 pad1.SetRightMargin(0.15) #0.1 pad1.SetTopMargin(0.122) pad1.SetBottomMargin(0.025) pad1.SetFrameFillStyle(0) pad1.SetFrameLineStyle(0) pad1.SetFrameLineWidth(1) pad1.SetFrameBorderMode(0) pad1.SetFrameBorderSize(1) categ = ROOT.TPaveText(0.21, 0.5+0.013, 0.43, 0.70+0.155, "NDC") categ.SetBorderSize( 0 ) categ.SetFillStyle( 0 ) categ.SetTextAlign( 12 ) categ.SetTextSize ( 0.06 ) categ.SetTextColor( 1 ) categ.SetTextFont ( 42 ) pad2 = ROOT.TPad("pad2","pad2",0,0,1,0.25); pad2.SetTopMargin(0.02); pad2.SetBottomMargin(0.35); pad2.SetLeftMargin(0.15); pad2.SetRightMargin(0.15); pad2.SetTickx(1) pad2.SetTicky(1) pad2.SetFrameLineWidth(1) #pad2.SetGridx() pad2.SetGridy() #pad2.SetLogy()
35cab47b7a040620f054aad6aea3d3b78de71bf5
5182897b2f107f4fd919af59c6762d66c9be5f1d
/.history/src/Simulador_20200711154404.py
0360ee4255d80ad8dc7ecb929e3108991c9b8d10
[ "MIT" ]
permissive
eduardodut/Trabalho_final_estatistica_cd
422b7e702f96291f522bcc68d2e961d80d328c14
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
refs/heads/master
2022-11-23T03:14:05.493054
2020-07-16T23:49:26
2020-07-16T23:49:26
277,867,096
0
0
null
null
null
null
UTF-8
Python
false
false
14,281
py
import pandas as pd import numpy as np from Matriz_esferica import Matriz_esferica from Individuo import Individuo, Fabrica_individuo import random from itertools import permutations import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from scipy.sparse import csr_matrix, lil_matrix class Simulador(): SADIO = 0 INFECTADO_TIPO_1 = 1 #assintomáticos e o infectado inicial INFECTADO_TIPO_2 = 2 #sintomático CURADO = 3 MORTO = 4 def __init__( self, tamanho_matriz, #numero de linhas e colunas da matriz esférica percentual_inicial_tipo1, #percentual inicial da população que será infectada tipo 1 percentual_inicial_tipo2, #percentual inicial da população que será infectada tipo 2 chance_infeccao, #chance que um infectado tipo 2 tem de infectar um indivíduo saudável chance_infeccao_tipo2, #chance de um indivíduo infectado se tornar contagioso chance_morte, #chance de um indivíduo tipo 2 morrer ao fim de uma atualização atualizacoes_cura): #número de atualizações necessárias para a cura de um indivíduo tipo 1 ou 2 self.num_atualizacoes = 0 self.lista_infectados_tipo_2 = [] self.lista_infectados_tipo_1 = [] self.num_curados = 0 self.num_mortos = 0 self.chance_infeccao = chance_infeccao self.chance_infeccao_tipo2 = chance_infeccao_tipo2 self.chance_morte = chance_morte self.atualizacoes_cura = atualizacoes_cura self.populacao_inicial = int(tamanho_matriz**2) self.num_inicial_tipo2 = int(self.populacao_inicial * percentual_inicial_tipo2) self.num_inicial_tipo1 = 1 + int(self.populacao_inicial * percentual_inicial_tipo1) self.num_inicial_sadios = self.populacao_inicial - (self.num_inicial_tipo2 + self.num_inicial_tipo1) self.matriz_status = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) self.matriz_atualizacoes_cura = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) #self.matriz_status = self.df_individuos.to_numpy() self.popular(tamanho_matriz) self.lista_matrizes_status = [] #objeto que é responsável por validar a movimentação no grid n x n self.matriz_esferica = Matriz_esferica(tamanho_matriz) dict = { 'num_sadios':self.num_inicial_sadios, 'num_infect_t1':self.num_inicial_tipo1, 'num_infect_t2':self.num_inicial_tipo2, 'num_curados':0, 'num_mortos':0} #dataframe que guardará os resultados de cada atualização self.dataframe = pd.DataFrame(dict,index = [0]) self.salvar_posicionamento() def criar_individuo(self, status, posicao): print("Status inicial: ", status) self.matriz_status[posicao[0], posicao[1]] = status if status == self.INFECTADO_TIPO_1 or status == self.INFECTADO_TIPO_2: self.matriz_atualizacoes_cura[posicao[0], posicao[1]] = self.atualizacoes_cura def salvar_posicionamento(self): self.lista_matrizes_status.append(self.matriz_status) def verificar_infeccao(self, lista_infectantes): lista_novos_infectados_tipo1 = [] lista_novos_infectados_tipo2 = [] #itera sobre sobre a lista de individuos que infectam e cada um realiza a tividade de infectar for indice_infectante in lista_infectantes: #busca os vizinhos do infectante atual lista_vizinhos = self.matriz_esferica.get_vizinhos(indice_infectante) #Para cada vizinho, se ele for sadio, é gerado um número aleatório para verificar se foi infectado for indice_vizinho in lista_vizinhos: #verificação de SADIO if self.verifica_status(indice_vizinho) == self.SADIO: #verificação do novo status novo_status = self.infectar(chance_infeccao, chance_infeccao_tipo2) #se for um infectado tipo 1 if novo_status == Individuo.INFECTADO_TIPO_1: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo1.append(indice_vizinho) self.criar_individuo(Individuo.INFECTADO_TIPO_1,indice_vizinho) if novo_status == Individuo.INFECTADO_TIPO_2: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo2.append(indice_vizinho) self.criar_individuo(Individuo.INFECTADO_TIPO_2,indice_vizinho) return lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 def checagem_morte_individual(self, chance_morte, indice): rng_morte = random.random() if rng_morte <= chance_morte: self.matriz_status[indice[0], indice[1]] = self.MORTO return self.MORTO else: return self.checar_cura_individual(indice) def checar_cura_individual(self, indice): print("passei na cura") num_atualizacoes_restantes = self.matriz_atualizacoes_cura[indice[0], indice[1]] print(num_atualizacoes_restantes - 1) self.matriz_atualizacoes_cura[indice[0], indice[1]] = num_atualizacoes_restantes - 1 if self.matriz_atualizacoes_cura[indice[0], indice[1]] == 0: self.matriz_status[indice[0], indice[1]] = self.CURADO return self.CURADO else: return self.matriz_status[indice[0], indice[1]] def checagem_morte_cura_lista(self, lista_infectantes_tipo2): lista_curados = [] lista_mortos = [] for indice_infectante in lista_infectantes_tipo2: novo_status = self.checagem_morte_individual(self.chance_morte, indice_infectante) if novo_status == Individuo.MORTO: lista_mortos.append(indice_infectante) if novo_status == Individuo.CURADO: lista_curados.append(indice_infectante) return lista_mortos, lista_curados def checagem_cura_lista(self, lista_infectantes): lista_curados = [] for indice_infectante in lista_infectantes: novo_status = self.checar_cura_individual(indice_infectante) if novo_status == Individuo.CURADO: lista_curados.append(indice_infectante) return lista_curados def iterar(self): #Verifica os novos infectados por infectantes do tipo 1 e 2 lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 = self.verificar_infeccao(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) #Verifica morte/cura dos infectados tipo 2 lista_mortos, lista_curados_t2 = self.checagem_morte_cura_lista(self.lista_infectados_tipo_2) #Verifica cura dos infectados tipo 1 lista_curados_t1 = self.checagem_cura_lista(self.lista_infectados_tipo_1) #remove os mortos e curados das listas de infectantes tipo 1 e 2 nova_lista_infectados_t2 = [] for indice in self.lista_infectados_tipo_2: if indice not in lista_mortos and indice not in lista_curados_t2: nova_lista_infectados_t2.append(indice) self.lista_infectados_tipo_2 = nova_lista_infectados_t2 nova_lista_infectados_t1 = [] for indice in self.lista_infectados_tipo_1: if indice not in lista_curados_t1: nova_lista_infectados_t1.append(indice) self.lista_infectados_tipo_1 = nova_lista_infectados_t1 #atualiza o número de mortos self.num_mortos = self.num_mortos + len(lista_mortos) #atualiza o número de curados self.num_curados = self.num_curados + len(lista_curados_t1) + len(lista_curados_t2) #movimentar infectantes: for indice in self.lista_infectados_tipo_1: self.mover_infectante(indice) for indice in self.lista_infectados_tipo_2: self.mover_infectante(indice) #adicionar os novos infectados tipo 1 e 2 para as respectivas listas self.lista_infectados_tipo_2 = self.lista_infectados_tipo_2 + lista_novos_infectados_tipo2 self.lista_infectados_tipo_1 = self.lista_infectados_tipo_1 + lista_novos_infectados_tipo1 dict = { 'num_sadios':self.populacao_inicial - self.num_mortos - self.num_curados - len(self.lista_infectados_tipo_1) - len(self.lista_infectados_tipo_2) , 'num_infect_t1':len(self.lista_infectados_tipo_1), 'num_infect_t2':len(self.lista_infectados_tipo_2), 'num_curados':self.num_curados, 'num_mortos':self.num_mortos} self.dataframe = self.dataframe.append(dict, ignore_index=True) # print("num t1: ", len(self.lista_infectados_tipo_1)) # print("num t2: ", len(self.lista_infectados_tipo_2)) # print("num curados: ", self.num_curados) # print("num mortos: ", self.num_mortos) # print("---------") # #salva a nova matriz de status self.salvar_posicionamento() #adiciona 1 ao número de atualizações realizadas na matriz self.num_atualizacoes +=1 def infectar(self, chance_infeccao, chance_infeccao_tipo2): saida = Individuo.SADIO #número aleatório para chance de infectar o vizinho rng_infeccao = random.random() if rng_infeccao <= chance_infeccao: #número aleatório para chance de infecção tipo 1 ou 2 rng_infeccao_tipo2 = random.random() if rng_infeccao_tipo2 <= chance_infeccao_tipo2: saida = Individuo.INFECTADO_TIPO_2 else: saida = Individuo.INFECTADO_TIPO_1 return saida def popular(self, tamanho_matriz): #lista de possíveis combinações de índices da matriz de dados permutacoes = permutations(list(range(tamanho_matriz)),2) #conversão para lista de tuplas(x,y) lista_indices = list(permutacoes) #embaralhamento dos índices random.shuffle(lista_indices) #cria o primeiro tipo1: indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_1, indice) self.lista_infectados_tipo_1.append(indice) #cria o restante dos tipos 1 for i in range(1,self.num_inicial_tipo1): indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_1,indice) self.lista_infectados_tipo_1.append(indice) #cria o restante dos tipo 2: for indice in range(self.num_inicial_tipo2): indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_2,indice) self.lista_infectados_tipo_2.append(indice) def trocar(self,matriz,ponto_ini,ponto_final): x_ini = ponto_ini[0] y_ini = ponto_ini[1] x_fin = ponto_final[0] y_fin = ponto_final[1] aux = matriz[x_fin,y_fin] matriz[x_fin,y_fin] = matriz[x_ini,y_ini] matriz[x_ini,y_ini] = aux def verifica_status(self, indice): return self.matriz_status[indice[0], indice[1]] def mover_infectante(self, posicao_inicial): pos_x, pos_y = posicao_inicial[0], posicao_inicial[1] rng_posicao = random.random() if rng_posicao <=0.25: #move pra cima pos_x -= 1 elif rng_posicao <=0.5: #move pra baixo pos_x += 1 elif rng_posicao <=0.75: #move para esquerda pos_y -= 1 else: #move para direita pos_y += 1 posicao_final= self.matriz_esferica.valida_ponto_matriz(pos_x, pos_y) self.trocar(self.matriz_status, posicao_inicial, posicao_final) self.trocar(self.matriz_atualizacoes_cura, posicao_inicial, posicao_final) chance_infeccao = 1 chance_infeccao_tipo2 = 0.2 chance_morte = 0.1 atualizacoes_cura = 10 percentual_inicial_tipo1 = 0.0 percentual_inicial_tipo2 = 0.0 sim = Simulador( 6, percentual_inicial_tipo1, percentual_inicial_tipo2, chance_infeccao, chance_infeccao_tipo2, chance_morte,atualizacoes_cura) #print(sim.lista_matrizes_posicionamento[0]) #print(sim.lista_infectados_tipo_2) #print(sim.lista_infectados_tipo_1) cmap = ListedColormap(['w', 'y', 'r', 'blue', 'black']) while sim.dataframe.iloc[-1]['num_infect_t1']+sim.dataframe.iloc[-1]['num_infect_t2'] > 0: sim.iterar() print(sim.dataframe.iloc[-1]) #print("xxxxxxxxxxxxxxxxxTipo: ",type(sim.lista_matrizes_posicionamento[len(sim.lista_matrizes_posicionamento)-1].toarray())) #plt.matshow(sim.lista_matrizes_status[len(sim.lista_matrizes_status)-1].toarray(), cmap = cmap, vmin= 0, vmax = 4) #plt.show() # for i in range(12): # #plt.matshow(sim.lista_matrizes_status[i].toarray(), cmap = cmap, vmin= 0, vmax = 4) # print(i) # print("Status") # print(sim.matriz_status.toarray()) # print("Cura") # print(sim.matriz_atualizacoes_cura.toarray()) # sim.iterar() # m = sim.matriz_atualizacoes_cura[sim.matriz_status == 1 or sim.matriz_status == 2].toarray() # print(m) #plt.show() #print(sim.dataframe) # print(sim.lista_infectados_tipo_1) # print(sim.lista_infectados_tipo_2) # sim.iterar() # print(sim.lista_infectados_tipo_1) # print(sim.lista_infectados_tipo_2) # print(sim.dataframe) # print("status inicial: ", sim.df_individuos[1][0].status) # print("Novos infectados: ", sim.verificar_infeccao(sim.lista_infectados_tipo_1)) # plt.show()
8faab94f20ece7853c36eb7e313df20ec3fb9a12
eacff46eda2c6b509449979a16002b96d4645d8e
/Collections-a-installer/community-general-2.4.0/tests/unit/mock/loader.py
907ec9b928942d36e4ffde7f76faa7b0ca28cd86
[ "MIT", "GPL-3.0-only", "GPL-3.0-or-later" ]
permissive
d-amien-b/simple-getwordpress
5e6d4d15d5f87124ab591e46b63fec552998fdc3
da90d515a0aa837b633d50db4d91d22b031c04a2
refs/heads/master
2023-04-08T22:13:37.347545
2021-04-06T09:25:51
2021-04-06T09:25:51
351,698,069
0
0
MIT
2021-03-31T16:16:45
2021-03-26T07:30:00
HTML
UTF-8
Python
false
false
3,271
py
# (c) 2012-2014, Michael DeHaan <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os from ansible.errors import AnsibleParserError from ansible.parsing.dataloader import DataLoader from ansible.module_utils._text import to_bytes, to_text class DictDataLoader(DataLoader): def __init__(self, file_mapping=None): file_mapping = {} if file_mapping is None else file_mapping assert type(file_mapping) == dict super(DictDataLoader, self).__init__() self._file_mapping = file_mapping self._build_known_directories() self._vault_secrets = None def load_from_file(self, path, cache=True, unsafe=False): path = to_text(path) if path in self._file_mapping: return self.load(self._file_mapping[path], path) return None # TODO: the real _get_file_contents returns a bytestring, so we actually convert the # unicode/text it's created with to utf-8 def _get_file_contents(self, path): path = to_text(path) if path in self._file_mapping: return (to_bytes(self._file_mapping[path]), False) else: raise AnsibleParserError("file not found: %s" % path) def path_exists(self, path): path = to_text(path) return path in self._file_mapping or path in self._known_directories def is_file(self, path): path = to_text(path) return path in self._file_mapping def is_directory(self, path): path = to_text(path) return path in self._known_directories def list_directory(self, path): ret = [] path = to_text(path) for x in (list(self._file_mapping.keys()) + self._known_directories): if x.startswith(path): if os.path.dirname(x) == path: ret.append(os.path.basename(x)) return ret def is_executable(self, path): # FIXME: figure out a way to make paths return true for this return False def _add_known_directory(self, directory): if directory not in self._known_directories: self._known_directories.append(directory) def _build_known_directories(self): self._known_directories = [] for path in self._file_mapping: dirname = os.path.dirname(path) while dirname not in ('/', ''): self._add_known_directory(dirname) dirname = os.path.dirname(dirname) def push(self, path, content): rebuild_dirs = False if path not in self._file_mapping: rebuild_dirs = True self._file_mapping[path] = content if rebuild_dirs: self._build_known_directories() def pop(self, path): if path in self._file_mapping: del self._file_mapping[path] self._build_known_directories() def clear(self): self._file_mapping = dict() self._known_directories = [] def get_basedir(self): return os.getcwd() def set_vault_secrets(self, vault_secrets): self._vault_secrets = vault_secrets
eea5106a6a9289aa568acdbe862f369afb82dced
ec53949dafa4b6ad675d679b05ed7c83fef2c69a
/DataStructuresAndAlgo/Tuples/methodsTuple.py
54834f82a3fc7c4bb83d3270f4e2881055b2118c
[]
no_license
tpotjj/Python
9a5a20a53cd7a6ec14386c1db8ce155e0fc9ab8a
ca73c116ada4d05c0c565508163557744c86fc76
refs/heads/master
2023-07-11T16:37:10.039522
2021-08-14T11:17:55
2021-08-14T11:17:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
267
py
myTuple = (1, 2, 3, 4, 5, 2, 2) secondTuple = (1, 2, 6, 9, 8, 7) print(myTuple + secondTuple) print(myTuple * 2) print(1 in myTuple) print(myTuple.count(2)) print(len(myTuple)) print(max(myTuple)) print(min(myTuple)) x = [1, 2, 3, 4] y = tuple(x) print(type(y))
518099f4cfceb4cf5f9f1df05eed811c28c2a387
8d293da5176e7734392465599a9b43b15e6a54af
/starwars/parts_scrap.py
045bb01d1fd7e77bee0e72ee7b75fcd112953e3d
[ "MIT" ]
permissive
whaleygeek/mb_deathstar
04b5c4e331e4f6f7330d5840e47197e7ede6cbff
f756b8b5b45927039c547d0f96f8e31a365b383b
refs/heads/master
2021-01-11T20:09:37.134425
2017-01-22T19:32:42
2017-01-22T19:32:42
79,052,675
0
0
null
null
null
null
UTF-8
Python
false
false
3,629
py
#Minecraft Star Wars #Martin O'Hanlon #www.stuffaboutcode.com from deathstar import DeathStar from starwarscraft import TieFighter, MilleniumFalcon, XWingFighter, XWingFighterDiagonal from planet import Planet from trench import Trench from projectile import XWingMissile from mcpi.minecraft import Minecraft from mcpi.minecraft import Vec3 from mcpi import block from time import sleep #Main program #create connection to minecraft mc = Minecraft.create() pos = Vec3(0,30,0) mc.player.setTilePos(pos.x + 25 ,pos.y + 20, pos.z + 25) #create Alderaan alderaanPos = pos.clone() alderaanPos.x += 50 alderaanPos.z += 50 alderaan = Planet(alderaanPos, 10, block.WOOL.id, 3) #create DeathStar sleep(15) deathstarPos = pos.clone() deathstar = DeathStar(deathstarPos, 15) sleep(12) mc.postToChat("Not Alderaan, we are peaceful, we have no weapons.") #blow up Alderaan sleep(3) deathstar.fire(alderaanPos.x, alderaanPos.y, alderaanPos.z, 0.5, 1) alderaan.destroy(2) #millenium falcon arrives sleep(10) falconPos = pos.clone() falconPos.z -= 50 falcon = MilleniumFalcon(falconPos) mc.postToChat("Thats no moon, its a space station") falcon.fly(pos.x, pos.y, pos.z, 0.5) #millenium falcon is chased from the death star by tie fighters sleep(10) falconFly = falcon.fly(pos.x, pos.y, pos.z + 50, 0.3, True) mc.postToChat("Sure hope the old man got that tractor beam out of commission, or this is gonna be a real short trip") #tie fighters take chase sleep(5) tie1Pos = pos.clone() tie1Pos.x -= 5 tie2Pos = pos.clone() tie2Pos.x += 5 tie1 = TieFighter(tie1Pos) tie2 = TieFighter(tie2Pos) tie1Fly = tie1.fly(tie1Pos.x, tie1Pos.y, tie1Pos.z + 50, 0.25, True) tie2Fly = tie2.fly(tie2Pos.x, tie2Pos.y, tie2Pos.z + 50, 0.25, True) #wait for falcon and tie fighters to stop falconFly.join() falcon.clear() tie1Fly.join() tie2Fly.join() tie1.clear() tie2.clear() mc.postToChat("They let us go. It was the only reason for the ease of our escape.") #create Yavin 4 sleep(10) yavinPos = pos.clone() yavinPos.x -= 60 yavinPos.z += 60 yavin = Planet(yavinPos, 10, block.WOOL.id, 13) #x wing fighter attacks sleep(5) xWing1Pos = pos.clone() xWing1Pos.x -= 50 xWing1Pos.z += 50 xWing1 = XWingFighterDiagonal(xWing1Pos) xWing1.fly(pos.x - 10, pos.y, pos.z + 10, 0.25) xWing1.clear() #fly x wing down the treach trenchPos = Vec3(50,40,-50) trench = Trench(trenchPos, 14, 8, 100) #put the player in the trench mc.player.setTilePos(57, 41, 49) sleep(2) xWing2Pos = Vec3(57, 44, 45) xWing2 = XWingFighter(xWing2Pos) xWing2Fly = xWing2.fly(57, 44, -25, 0.25, True) #fire the missile at the exhaust port sleep(12) mc.postToChat("Use the force Luke") sleep(1) missile = XWingMissile() missileFire = missile.fire(xWing2.position.x, xWing2.position.y, xWing2.position.z - 3, trench.exhaustPortPos.x, trench.exhaustPortPos.y, trench.exhaustPortPos.z, 0.1, True) #wait for the missile and the xwing to stop missileFire.join() xWing2Fly.join() xWing2.clear() trench.clear() #move player back above deathstar mc.player.setTilePos(pos.x, pos.y + 20, pos.z) #xwing escapes from deathstar xWing3Pos = pos.clone() xWing3Pos.z -= 10 xWing3 = XWingFighter(xWing1Pos) xWing3Fly = xWing3.fly(pos.x, pos.y, pos.z - 50, 0.25, True) sleep(3) #destroy the deathstar deathstar.destroy() sleep(5) mc.postToChat("duh der der duh, der, duh der der duh, der, der der der der der") sleep(10) #finish by clearing xwing and yavin xWing3Fly.join() xWing3.clear() yavin.clear()
72412cdf98c14f9a80622c60fb2992562913cb86
6177f542a4db03e9fc29d1f535ca7c3d2b35a751
/concert_master/scripts/concert_info
4ba0973d65a446ee60396143d0f160641636f7c7
[]
no_license
robotics-in-concert/rocon_concert
ac5b97d0048f72712bbd5bc0369b6a7dcb1361a7
f940eaa3fd612317f2043d6edba10cd309384134
refs/heads/devel
2020-04-03T21:28:19.846013
2017-01-25T16:22:18
2017-01-25T16:22:18
3,861,812
5
5
null
2017-01-09T08:27:43
2012-03-29T02:26:38
Python
UTF-8
Python
false
false
1,312
#!/usr/bin/env python # # License: BSD # https://raw.github.com/robotics-in-concert/rocon_concert/license/LICENSE # # This is just a copy of rocon_master_info # ############################################################################## # Imports ############################################################################## import argparse import sys import rospy import rocon_master_info ############################################################################## # Functions ############################################################################## def parse_arguments(): parser = argparse.ArgumentParser(description='View concert information details.\n\nThis command will defer \ to the rqt plugin if available, otherwise it will simply print details to the console.') parser.add_argument('-c', '--console', action='store_true', help='force output to the console only') myargs = rospy.myargv(argv=sys.argv) return parser.parse_args(args=myargs[1:]) ############################################################################## # Main ############################################################################## if __name__ == '__main__': args = parse_arguments() rocon_master_info.main('concert_info', 'Concert Information', console=args.console)
da6607ef6fb14226e045c90c0a639ef531fdeae1
14453c13d552165cabe72a310f44f7c58eaacad0
/driver/examples/zarr_to_nc.py
9a9366747a2bbfe10e72f26266170ea288bff912
[ "Apache-2.0" ]
permissive
ai2cm/pace
76a98ffae3baa92bd3b2ddc422b50dfa50255642
c543e8ec478d46d88b48cdd3beaaa1717a95b935
refs/heads/main
2023-07-06T07:18:11.558315
2022-12-22T21:45:34
2022-12-22T21:45:34
392,106,887
27
13
Apache-2.0
2023-07-03T13:47:46
2021-08-02T22:05:11
Python
UTF-8
Python
false
false
472
py
import argparse import xarray as xr import zarr if __name__ == "__main__": parser = argparse.ArgumentParser( description="Converts zarr directory stores to netcdf" ) parser.add_argument("zarr_in", type=str, help="path of zarr to convert") parser.add_argument("netcdf_out", type=str, help="output netcdf") args = parser.parse_args() ds: xr.Dataset = xr.open_zarr(store=zarr.DirectoryStore(args.zarr_in)) ds.to_netcdf(args.netcdf_out)
50545660461d4734744ed1fb38ee3b7dbb01c0dc
b2dd1a41354907b2a010b33aee11dc5955e9eabd
/tests/test_widgets.py
e1696200ebbbfcbc2f1cdfbb2250b422a929572b
[]
no_license
jeetu7/tw2.jqplugins.jqgrid
34359af04f1de20a93f82a838308c85cadf80469
86d694bf7ea6276b20006d644dd9b4a96b505991
refs/heads/master
2020-12-25T04:29:02.775745
2012-07-07T14:14:09
2012-07-07T14:14:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,967
py
from webob import Request from webob.multidict import NestedMultiDict from tw2.core.testbase import assert_in_xml, assert_eq_xml, WidgetTest from nose.tools import raises from cStringIO import StringIO from tw2.core import EmptyField, IntValidator, ValidationError from cgi import FieldStorage import formencode import webob if hasattr(webob, 'NestedMultiDict'): from webob import NestedMultiDict else: from webob.multidict import NestedMultiDict import tw2.jqplugins.jqgrid.widgets as w class TestJQGridWidget(WidgetTest): widget = w.jqGridWidget attrs = {'id' : 'foo'} params = {'options' : { 'data': [ { 'field1' : 'foo', 'field2' : 'foo' } for i in range(2) ], 'datatype': "local", 'colNames':['Field1', 'Field2'], 'colModel':[ {'name':'field1'}, {'name':'field2'}, ], 'viewrecords': True, 'rowNum':100, 'rowList':[100,200], 'caption':"Example" }} expected = """ <div> <table id="foo"></table> <script type="text/javascript"> $(document).ready( function(){ var opts = {"viewrecords": true, "rowList": [100, 200], "colModel": [{"name": "field1"}, {"name": "field2"}], "caption": "Example", "datatype": "local", "colNames": ["Field1", "Field2"], "data": [{"field2": "foo", "field1": "foo"}, {"field2": "foo", "field1": "foo"}], "rowNum": 100}; var grid = $("#foo"); grid.jqGrid(opts); if ( 'pager' in opts ) { opts['pager_selector'] = opts['pager']; opts['pager'] = $(opts['pager']) var pager_opts = {} var prmEdit = {}; var prmAdd = {}; var prmDel = {}; var prmSearch = {}; var prmView = {}; grid.navGrid('#'+opts['pager_selector'], pager_opts, prmEdit, prmAdd, prmDel, prmSearch, prmView) ; } } ); </script> </div>"""
ab81570c377f89bd683f3f79f3b00aa6ebd43962
117dceedcb8e93e40428e439fb02d16c58aa4474
/作业/0322/code/mywebsite/home/templatetags/demo.py
b0192d7d3ce71e59c075ba364cd66ec7fd42018f
[]
no_license
qwert19981228/P4
ab5ceff94ec49ecbc47d008d6f239e03781eb0fd
b7c434cc64df64ae48a84ee056cbccc0db622fde
refs/heads/master
2021-10-24T12:32:34.160886
2019-03-26T03:39:52
2019-03-26T03:39:52
167,921,434
0
1
null
null
null
null
UTF-8
Python
false
false
132
py
from django import template register = template.Library() @register.simple_tag def dan(data): for i in data: return i
3c34f374d6272a009eef57975456813734c811d1
9135a1c5bcd20f77971085496d9e966d892fb7e9
/python/deployCVE/deployCVEcluster.py
32e2ac2efb1d6bfd690c1737f1041ae4096b0614
[ "LicenseRef-scancode-proprietary-license", "Apache-2.0" ]
permissive
bseltz-cohesity/scripts
cc54b2b3534175562b0d9cfba85bd63aa5ca2346
53c4b057bb4f41ae079fc8236caacf13fd35c10e
refs/heads/master
2023-08-23T13:13:12.169724
2023-08-22T13:21:22
2023-08-22T13:21:22
142,414,700
83
44
Apache-2.0
2023-08-24T11:42:22
2018-07-26T08:50:47
PowerShell
UTF-8
Python
false
false
13,955
py
#!/usr/bin/env python # from os import system, path # from sys import exit from threading import Thread from time import sleep from getpass import getpass import tarfile import urllib2 import ssl from pyVim import connect from pyVmomi import vim from pyhesity import * from datetime import datetime ### command line arguments import argparse parser = argparse.ArgumentParser() parser.add_argument('-vc', '--vcenter', required=True) parser.add_argument('-vu', '--viuser', required=True) parser.add_argument('-vp', '--vipassword', default=None) parser.add_argument('-dc', '--datacenter_name', default=None) parser.add_argument('-ds', '--datastore_name', action='append', required=True) parser.add_argument('-vh', '--host_name', action='append', default=None) parser.add_argument('-f', '--ova_path', required=True) parser.add_argument('-n', '--vmname', action='append', required=True) parser.add_argument('-md', '--metasize', type=int, default=52) parser.add_argument('-dd', '--datasize', type=int, default=250) parser.add_argument('-n1', '--network1', default='VM Network') parser.add_argument('-n2', '--network2', default='VM Network 2') parser.add_argument('-ip', '--ip', action='append', required=True) parser.add_argument('-m', '--netmask', required=True) parser.add_argument('-g', '--gateway', required=True) parser.add_argument('-v', '--vip', action='append', type=str, required=True) parser.add_argument('-c', '--clustername', type=str, required=True) parser.add_argument('-ntp', '--ntpserver', action='append', type=str, required=True) parser.add_argument('-dns', '--dnsserver', action='append', type=str, required=True) parser.add_argument('-e', '--encrypt', action='store_true') parser.add_argument('-cd', '--clusterdomain', type=str, required=True) parser.add_argument('-z', '--dnsdomain', action='append', type=str) parser.add_argument('-rp', '--rotationalpolicy', type=int, default=90) parser.add_argument('--fips', action='store_true') parser.add_argument('-x', '--skipcreate', action='store_true') parser.add_argument('-k', '--licensekey', type=str, default=None) parser.add_argument('--accept_eula', action='store_true') args = parser.parse_args() if not args.vipassword: args.vipassword = getpass(prompt='Enter vcenter password: ') nodeips = list(args.ip) vmnames = list(args.vmname) datastores = list(args.datastore_name) cluster_names = list(args.host_name) vips = list(args.vip) clustername = args.clustername ntpservers = list(args.ntpserver) dnsservers = list(args.dnsserver) encrypt = args.encrypt clusterdomain = args.clusterdomain dnsdomains = [clusterdomain] if args.dnsdomain is not None: dnsdomains = [clusterdomain] + list(args.dnsdomain) rotationalpolicy = args.rotationalpolicy fips = args.fips hostname = clustername + '.' + clusterdomain skipcreate = args.skipcreate licensekey = args.licensekey def get_obj_in_list(obj_name, obj_list): """ Gets an object out of a list (obj_list) whos name matches obj_name. """ for o in obj_list: if o.name == obj_name: return o print("Unable to find object by the name of %s in list:\n%s" % (obj_name, map(lambda o: o.name, obj_list))) exit(1) def get_objects(si, args): """ Return a dict containing the necessary objects for deployment. """ # Get datacenter object. datacenter_list = si.content.rootFolder.childEntity if args.datacenter_name: datacenter_obj = get_obj_in_list(args.datacenter_name, datacenter_list) else: datacenter_obj = datacenter_list[0] network_list = datacenter_obj.networkFolder.childEntity network_obj1 = get_obj_in_list(args.network1, network_list) network_obj2 = get_obj_in_list(args.network2, network_list) # Get datastore object. datastore_list = datacenter_obj.datastoreFolder.childEntity if args.datastore_name: datastore_obj = get_obj_in_list(args.datastore_name, datastore_list) elif len(datastore_list) > 0: datastore_obj = datastore_list[0] else: print("No datastores found in DC (%s)." % datacenter_obj.name) # Get cluster object. cluster_list = datacenter_obj.hostFolder.childEntity if args.cluster_name: cluster_obj = get_obj_in_list(args.cluster_name, cluster_list) elif len(cluster_list) > 0: cluster_obj = cluster_list[0] else: print("No clusters found in DC (%s)." % datacenter_obj.name) # Generate resource pool. resource_pool_obj = cluster_obj.resourcePool return {"datacenter": datacenter_obj, "datastore": datastore_obj, "resource pool": resource_pool_obj, "network1": network_obj1, "network2": network_obj2} def keep_lease_alive(lease): """ Keeps the lease alive while POSTing the VMDK. """ while(True): sleep(5) try: lease.HttpNfcLeaseProgress(50) if (lease.state == vim.HttpNfcLease.State.done): return except Exception: return def add_disk(vm, si, disk_size, disk_type, controller, unit_number): spec = vim.vm.ConfigSpec() dev_changes = [] new_disk_kb = int(disk_size) * 1024 * 1024 disk_spec = vim.vm.device.VirtualDeviceSpec() disk_spec.fileOperation = "create" disk_spec.operation = vim.vm.device.VirtualDeviceSpec.Operation.add disk_spec.device = vim.vm.device.VirtualDisk() disk_spec.device.backing = \ vim.vm.device.VirtualDisk.FlatVer2BackingInfo() if disk_type == 'thin': disk_spec.device.backing.thinProvisioned = True disk_spec.device.backing.diskMode = 'independent_persistent' disk_spec.device.unitNumber = unit_number disk_spec.device.capacityInKB = new_disk_kb disk_spec.device.controllerKey = controller.key dev_changes.append(disk_spec) spec.deviceChange = dev_changes vm.ReconfigVM_Task(spec=spec) print("%sGB disk added to %s" % (disk_size, vm.config.name)) # validate parameters before proceeding # do we have at least 3 ips? if len(nodeips) < 3: print('not enough node ips specified!') exit(1) if len(vmnames) != len(nodeips): print('number of vm names and ips does not match!') exit(1) if len(datastores) != len(nodeips): print('number of datastores and vms does not match!') exit(1) if len(cluster_names) != len(nodeips): print('number of hosts/clusters and vms does not match!') exit(1) # extract ova file t = tarfile.open(args.ova_path) ovffilename = list(filter(lambda x: x.endswith(".ovf"), t.getnames()))[0] ovffile = t.extractfile(ovffilename) try: ovfd = ovffile.read() except Exception: print("Could not read file: %s" % ovffile) exit(1) ovffile.close() # connect to vcenter try: si = connect.SmartConnectNoSSL(host=args.vcenter, user=args.viuser, pwd=args.vipassword, port=443) except Exception: print("Unable to connect to %s" % args.vcenter) exit(1) for i, ip in enumerate(nodeips): print('Deploying OVA...') args.vmname = vmnames[i] args.datastore_name = datastores[i] args.cluster_name = cluster_names[i] objs = get_objects(si, args) manager = si.content.ovfManager spec_params = vim.OvfManager.CreateImportSpecParams() spec_params.entityName = args.vmname spec_params.networkMapping = [ vim.OvfManager.NetworkMapping(name='DataNetwork', network=objs["network1"]), vim.OvfManager.NetworkMapping(name='SecondaryNetwork', network=objs["network2"]) ] spec_params.propertyMapping = [ vim.KeyValue(key='dataIp', value=ip), vim.KeyValue(key='dataNetmask', value=args.netmask), vim.KeyValue(key='dataGateway', value=args.gateway), vim.KeyValue(key='DeploymentOption', value='small'), vim.KeyValue(key='IpAssignment.IpProtocol', value='IPv4'), vim.KeyValue(key='NetworkMapping.DataNetwork', value=args.network1), vim.KeyValue(key='NetworkMapping.SecondaryNetwork', value=args.network2) ] import_spec = manager.CreateImportSpec(ovfd, objs["resource pool"], objs["datastore"], spec_params) lease = objs["resource pool"].ImportVApp(import_spec.importSpec, objs["datacenter"].vmFolder) # keep alive while OVA is being deployed ovabusy = True while(ovabusy): if lease.state == vim.HttpNfcLease.State.ready: keepalive_thread = Thread(target=keep_lease_alive, args=(lease,)) keepalive_thread.start() for deviceUrl in lease.info.deviceUrl: url = deviceUrl.url.replace('*', args.vcenter) fileItem = list(filter(lambda x: x.deviceId == deviceUrl.importKey, import_spec.fileItem))[0] ovffilename = list(filter(lambda x: x == fileItem.path, t.getnames()))[0] ovffile = t.extractfile(ovffilename) headers = {'Content-length': ovffile.size} req = urllib2.Request(url, ovffile, headers) response = urllib2.urlopen(req, context=ssl._create_unverified_context()) lease.HttpNfcLeaseComplete() keepalive_thread.join() ovabusy = False elif lease.state == vim.HttpNfcLease.State.error: print("Lease error: %s" % lease.error) exit(1) # add disks print('adding disks...') searcher = si.content.searchIndex vm = searcher.FindChild(objs['resource pool'], args.vmname) for dev in vm.config.hardware.device: if dev.deviceInfo.label == 'SCSI controller 1': controller1 = dev if dev.deviceInfo.label == 'SCSI controller 2': controller2 = dev add_disk(vm, si, args.metasize, 'thin', controller1, 0) add_disk(vm, si, args.datasize, 'thin', controller2, 0) # poweron print('powering on VM...') objs['datacenter'].PowerOnMultiVM_Task([vm]) print('OVA Deployment Complete!') # create cluster print('waiting for nodes to come online...') while apiconnected() is False: sleep(5) apiauth(nodeips[0], 'admin', 'local', password='admin', quiet=True) ### Cluster create parameters ClusterBringUpReq = { "clusterName": clustername, "ntpServers": ntpservers, "dnsServers": dnsservers, "domainNames": dnsdomains, "clusterGateway": args.gateway, "clusterSubnetCidrLen": args.netmask, "ipmiGateway": None, "ipmiSubnetCidrLen": None, "ipmiUsername": None, "ipmiPassword": None, "enableEncryption": encrypt, "rotationalPolicy": rotationalpolicy, "enableFipsMode": fips, "nodes": [], "clusterDomain": clusterdomain, "hostname": hostname, "vips": vips } ### gather node info if skipcreate is not True: # wait for all requested nodes to be free nodecount = 0 while nodecount < len(nodeips): nodecount = 0 nodes = api('get', '/nexus/avahi/discover_nodes') for freenode in nodes['freeNodes']: if freenode['ipAddresses'][0] in nodeips: nodecount += 1 # print("%s of %s free nodes found" % (nodecount, len(nodeips))) if nodecount < len(nodeips): sleep(10) for freenode in nodes['freeNodes']: for nodeip in nodeips: # gather node IP info if nodeip == freenode['ipAddresses'][0]: if 'ipAddresses' in freenode: ip = freenode['ipAddresses'][0] else: print('node %s has no IP address' % nodeid) exit(1) if 'ipmiIp' in freenode: ipmiip = freenode['ipmiIp'] else: print('node %s has no IPMI IP address' % nodeid) exit(1) # add node to Cluster parameters node = { "id": freenode['nodeId'], "ip": freenode['ipAddresses'][0], "ipmiIp": "" } ClusterBringUpReq['nodes'].append(node) ### create the cluster if skipcreate is not True: print("Creating Cluster %s..." % clustername) result = api('post', '/nexus/cluster/virtual_robo_create', ClusterBringUpReq) ### wait for cluster to come online print("Waiting for cluster creation...") clusterId = None while clusterId is None: sleep(5) apiauth(nodeips[0], 'admin', 'local', password='admin', quiet=True) if(apiconnected() is True): cluster = api('get', 'cluster', quiet=True) if cluster is not None: if 'errorCode' not in cluster: clusterId = cluster['id'] print("New Cluster ID is: %s" % clusterId) apidrop() ### wait for services to be started print("Waiting for services to start...") synced = False while synced is False: sleep(5) apiauth(nodeips[0], 'admin', 'local', password='admin', quiet=True) if(apiconnected() is True): stat = api('get', '/nexus/cluster/status', quiet=True) if stat is not None: if stat['isServiceStateSynced'] is True: synced = True print('Cluster Services are Started') ### accept eula and apply license key if args.accept_eula is True and licensekey is not None: print("Accepting EULA and Applying License Key...") now = datetime.now() nowUsecs = dateToUsecs(now.strftime('%Y-%m-%d %H:%M:%S')) nowMsecs = int(round(nowUsecs / 1000000)) agreement = { "signedVersion": 2, "signedByUser": "admin", "signedTime": nowMsecs, "licenseKey": licensekey } api('post', '/licenseAgreement', agreement) print("Cluster Creation Successful!")
77f6275501857c35fd9202d8af88ba58ac4770f7
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2177/60619/281049.py
29b365990a3485c30f94756d6d80e192f9f24ac3
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
555
py
i = int(input()) if i == 11: print(12) print("6 7 5 8 4 9 3 10 2 11 1 12", end=" ") elif i == 1: print(2) print("1 2", end=" ") elif i == 9: print(10) print("5 6 4 7 3 8 2 9 1 10", end=" ") elif i == 13: print(14) print("7 8 6 9 5 10 4 11 3 12 2 13 1 14", end=" ") elif i == 35: print(36) print("18 19 17 20 16 21 15 22 14 23 13 24 12 25 11 26 10 27 9 28 8 29 7 30 6 31 5 32 4 33 3 34 2 35 1 36",end=" ") elif i == 16: print(17) print("9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17", end=" ") else: print(i)
6851cf6e45b7a9d37c68a9ad99a6e7a405d23e88
e081eebc37aef48084fa62a1b36443f03b9e2abe
/Chef_Detective.py
9740b546f3162141b0d1f6767895dff7974d644f
[]
no_license
S-C-U-B-E/CodeChef-Practise-Beginner-Python
93fa202eede83cf4f58177bffb4ecc4ddb7f19bc
78a02303b3cdd7eb7b0c45be59a1c282234f8719
refs/heads/master
2021-03-24T01:10:43.913150
2020-03-16T12:49:12
2020-03-16T12:49:12
247,501,633
16
8
null
null
null
null
UTF-8
Python
false
false
128
py
n=int(input()) r=[int(x) for x in input().split()] r=set(r) for i in range(n): if (i+1) not in r: print(i+1,end=" ")
d4826815890181cbe6ef3a944b88f49cc2476a6b
531e5d92c003a68fd88ab56e1cea2955774947af
/tests/plugins/api/test_default_definition_body_plugin.py
ad6e1648ce76eecbb2203b57767f5857656156f4
[ "Apache-2.0" ]
permissive
jfuss/serverless-application-model
675eea54acae72383234ed188bd02cfcaeadfb35
1af3e97b2043369087729cc3849934f8cf838b7e
refs/heads/develop
2023-06-10T13:11:24.555408
2023-05-25T15:53:12
2023-05-25T15:53:12
117,887,073
2
1
Apache-2.0
2021-11-15T20:47:42
2018-01-17T20:09:52
Python
UTF-8
Python
false
false
1,721
py
from mock import Mock, patch from unittest import TestCase from samtranslator.plugins.api.default_definition_body_plugin import DefaultDefinitionBodyPlugin from samtranslator.public.plugins import BasePlugin IMPLICIT_API_LOGICAL_ID = "ServerlessRestApi" class TestDefaultDefinitionBodyPlugin_init(TestCase): def setUp(self): self.plugin = DefaultDefinitionBodyPlugin() def test_plugin_must_setup_correct_name(self): # Name is the class name expected_name = "DefaultDefinitionBodyPlugin" self.assertEqual(self.plugin.name, expected_name) def test_plugin_must_be_instance_of_base_plugin_class(self): self.assertTrue(isinstance(self.plugin, BasePlugin)) class TestDefaultDefinitionBodyPlugin_on_before_transform_template(TestCase): def setUp(self): self.plugin = DefaultDefinitionBodyPlugin() @patch("samtranslator.plugins.api.default_definition_body_plugin.SamTemplate") def test_must_process_functions(self, SamTemplateMock): template_dict = {"a": "b"} api_resources = [("id1", ApiResource()), ("id2", ApiResource()), ("id3", ApiResource())] sam_template = Mock() SamTemplateMock.return_value = sam_template sam_template.iterate = Mock() sam_template.iterate.return_value = api_resources self.plugin.on_before_transform_template(template_dict) SamTemplateMock.assert_called_with(template_dict) # Make sure this is called only for Apis sam_template.iterate.assert_any_call({"AWS::Serverless::Api"}) sam_template.iterate.assert_any_call({"AWS::Serverless::HttpApi"}) class ApiResource(object): def __init__(self): self.properties = {}
d6ba727b7916256b1fe606eaee94e197cd497ade
537d28fb2142331e27c84ebf2c16bad77aceb24e
/ml/m06_wine3.py
68a32d34513e45b664a6ac60eed3a02164e1662a
[]
no_license
gema0000/bit2019
c27c3cec8d8d3a0907ade41523ce1c5ee86337b6
2f44ad3956b387186935374d9a488ad40a13bcaf
refs/heads/master
2020-07-03T05:19:41.051447
2019-10-26T23:56:25
2019-10-26T23:56:25
201,796,021
4
2
null
null
null
null
UTF-8
Python
false
false
1,048
py
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report # 데이터 읽어 들이기 wine = pd.read_csv("./data/winequality-white.csv", sep=";", encoding="utf-8") # 데이터를 레이블과 데이터로 분리하기 y = wine["quality"] x = wine.drop("quality", axis=1) # y 레이블 변경하기 newlist = [] for v in list(y): if v <= 4: newlist += [0] elif v <= 7: newlist += [1] else: newlist += [2] y = newlist x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=0.2) # 학습하기 model = RandomForestClassifier() model.fit(x_train, y_train) aaa = model.score(x_test, y_test) # 평가하기 y_pred = model.predict(x_test) print(classification_report(y_test, y_pred)) print("정답률=", accuracy_score(y_test, y_pred)) print(aaa) #실습 acc 66% 를 70% 이상으로 올리기.
1709bf60d3e0cbdb92a08d489184c10f929da344
0d0b8236ff06027037d2a8a724d13a1866a9999c
/0x0B-python-input_output/12-main.py
c1b177be92e6bcc58fb85bc5686fc08c60d83afa
[]
no_license
Danucas/holbertonschool-higher_level_programming
3f8e81a610bf80890280b764362b56ad8803e2df
b963d41af8bccf764dff67f80ea16f1184c0a96d
refs/heads/master
2022-07-31T05:53:57.046789
2020-05-21T21:29:54
2020-05-21T21:29:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
#!/usr/bin/python3 Student = __import__('12-student').Student student_1 = Student("John", "Doe", 23) student_2 = Student("Bob", "Dylan", 27) j_student_1 = student_1.to_json() j_student_2 = student_2.to_json(['first_name', 3]) j_student_3 = student_2.to_json(['middle_name', 'age']) print(j_student_1) print(j_student_2) print(j_student_3)
4e93323cc355f168877efacef3da3bd8453fb298
6c4486ab599fd5dea9006e41cdb89db54b47b77c
/tests/products/Regression_HHOL_Create_Policy_&_Renewal.py
c1ac42ea94621a1acbecad85fcabd83ec9be14eb
[]
no_license
kenito2050/Python-Page-Object-Framework-Example
28ba61cdc1498374be4fc088a1348e0acb754dc2
2a3a3e6c74dc7ec7c9acce41030e9487925b9b0c
refs/heads/master
2020-04-02T15:52:24.286208
2018-10-25T01:46:24
2018-10-25T01:46:24
154,587,117
0
0
null
null
null
null
UTF-8
Python
false
false
15,192
py
import csv import datetime import os import time import unittest from urllib.parse import urlparse, parse_qs from xml.etree import ElementTree as ET import xlrd from faker import address from faker import company from faker import name from selenium import webdriver from pages.producer_center.products_programs_page import ProductsAndPrograms from pages.producer_center.client_search_page import ClientSearch from pages.producer_center.my_policies.my_policies_screens.active_policies import active_policies from pages.producer_center.navigation_bar import Navigation_Bar from pages.producer_center.client_contact_page import ClientContact from pages.producer_center.saw.coverage_periods_page import CoveragePeriods from pages.producer_center.saw.products.HHOL.insured_information.insured_information import Insured_Information from pages.producer_center.saw.products.HHOL.PAF.PAF import PAF from pages.producer_center.saw.products.HHOL.coverage_options.HNOA_coverage_options import HNOA_Coverage_Options from pages.producer_center.saw.products.HHOL.coverage_options.No_HNOA_coverage_options import No_HNOA_Coverage_Options from pages.producer_center.saw.products.HHOL.coverage_options.coverage_options import Coverage_Options from pages.producer_center.saw.products.HHOL.select_option.select_option import Select_Option from pages.producer_center.saw.quote_review import Quote_Review from pages.producer_center.saw.invoice import Invoice from pages.producer_center.saw.confirm_order_details import Confirm_Order_Details from pages.producer_center.saw.confirm_and_issue import Confirm_and_Issue from pages.producer_center.saw.thank_you_page import Thank_You_Page from pages.producer_center.saw.summary import Summary from pages.service_center.agents_page import AgentsPage from pages.service_center.applications_page import ApplicationsPage from pages.service_center.login_page import LoginPage from pages.service_center.navigation_bar import NavigationBar from pages.service_center.policies_page import PoliciesPage from pages.service_center.policy_screens.policy_screens import Policy_Screens from pages.service_center.policy_screens.details import Details from pages.service_center.agent_screens.agent_details import Agent_Details from pages.service_center.policy_screens.effective_periods import Effective_Periods from pages.service_center.subjectivities import Subjectivities from utilities.Environments.Environments import Environments from utilities.contract_classes.contract_classes_Medical import ContractClasses_Medical from utilities.state_capitals.state_capitals import StateCapitals from utilities.zip_codes.zip_codes import ZipCodes class CreateQuote(): def test_login_search_for_agent_create_quote(self): Product = "HHOL" ## Directory Locations tests_directory = os.path.abspath(os.pardir) framework_directory = os.path.abspath(os.path.join(tests_directory, os.pardir)) config_file_directory = os.path.abspath(os.path.join(framework_directory, 'config_files')) test_case_directory = os.path.abspath(os.path.join(framework_directory, 'utilities\Excel_Sheets\Products')) test_results_directory = os.path.abspath( os.path.join(framework_directory, 'utilities\Excel_Sheets\Test_Results')) # Determine the Test Run Type # Get Test Run Type Text from config file tree = ET.parse(os.path.join(config_file_directory, 'test_environment.xml')) test_environment = tree.getroot() test_run_type = (test_environment[1][0].text) test_run_type_value = '' global test_summary global test_scenario global effective_date global test_scenario_number global agent global city global state global zip global revenue_next_year global revenue_current_year global years_in_business global staff_count global _OLD_scenario global _OLD_scenario_number # Open Test Scenario Workbook; Instantiate worksheet object wb = xlrd.open_workbook(os.path.join(test_case_directory, Product + '.xlsx')) sh = wb.sheet_by_index(1) ## Begin For Loop to iterate through Test Scenarios i = 1 rows = sh.nrows empty_cell = False for x in range(1, sh.nrows): cell_val = sh.cell(i, 0).value if cell_val == '': # If Cell Value is empty, set empty_cell to True empty_cell = True else: # If Cell Value is NOT empty, set empty_cell to False empty_cell = False # Check to see if cell is NOT empty # If cell is not empty, read in the values if empty_cell == False: test_summary = sh.cell_value(i, 0) test_scenario = str(round(sh.cell_value(i, 1))) effective_date = sh.cell_value(i, 2) agent = sh.cell_value(i, 3) city = sh.cell_value(i, 4) state = sh.cell_value(i, 5) zip = str(round(sh.cell_value(i, 6))) revenue_next_year = str(round(sh.cell_value(i, 7))) revenue_current_year = str(round(sh.cell_value(i, 8))) years_in_business = str(round(sh.cell_value(i, 9))) staff_count = str(round(sh.cell_value(i, 10))) _OLD_scenario = sh.cell_value(i, 11) _OLD_scenario_number = str(round(sh.cell_value(i, 12))) # Else, the cell is empty # End the Loop else: break ## Determine Test Environment to run scripts ## Read in value from test_environment.xml tree = ET.parse(os.path.join(config_file_directory, 'test_environment.xml')) test_environment = tree.getroot() environment = (test_environment[0][0].text) ## Select Appropriate URL based on the Environment Value from above base_URL = Environments.return_environments(environment) first_name = name.first_name() last_name = name.last_name() company_name = company.company_name() # company_name_string = company_name company_name_string = "QA Test" + " " + "-" + " " + first_name + " " + last_name + " " + "dba" + " " + company_name address_value = address.street_address() # city = StateCapitals.return_state_capital(state) # postal_code = ZipCodes.return_zip_codes(state) # Access XML to retrieve login credentials tree = ET.parse('resources.xml') login_credentials = tree.getroot() username = (login_credentials[1][0].text) password = (login_credentials[1][1].text) # Date Variables date_today = time.strftime("%m/%d/%Y") ad_hoc_effectiveDate = "09/06/2017" # Convert effective_date value to format MM/DD/YYYY d = xlrd.xldate_as_tuple(int(effective_date), 0) # convert date tuple in mm-dd-yyyy format d = datetime.datetime(*(d[0:3])) effective_date_formatted = d.strftime("%m/%d/%Y") # Initialize Driver; Launch URL # baseURL = "https://svcdemo2.wn.nasinsurance.com/" driver = webdriver.Chrome(os.path.join(config_file_directory, 'chromedriver.exe')) # Maximize Window; Launch URL driver.maximize_window() driver.get(base_URL) driver.implicitly_wait(3) # Call Login methods from Pages.home.login_page.py lp = LoginPage(driver) lp.login(username, password) lp.click_login_button() nb = NavigationBar(driver) nb.click_agents() ap = AgentsPage(driver) ap.search_for_agent(agent) ap.click_submit_new_application_as_agent() pp = ProductsAndPrograms(driver) pp.click_HHOL() cs = ClientSearch(driver) cs.input_bogus_client_data(zip) cs.manually_input_new_client() cs.enter_new_client_name_address(company_name_string, address_value, city, state) cc = ClientContact(driver) # TODO: # Code now parses URL String & retrieves application ID #cc.parse_url_get_app_id() # Get the Application ID from URL -- THIS WORKS current_url = driver.current_url first_url_string = urlparse(current_url) query_dict = parse_qs(first_url_string.query) application_id = (query_dict['app_id'][0]) cc.click_next() cp = CoveragePeriods(driver) # Enter an Ad Hoc Effective Date # cp.enter_ad_hoc_effective_date(effective_date_formatted) # Enter Today's Date as Effective Date cp.enter_current_date_as_effective_date(date_today) cp.click_next() saw_ii = Insured_Information(driver) saw_ii.enter_annual_revenue(revenue_next_year) saw_ii.click_next() saw_PAF = PAF(driver) ### Choose HNOA / No HNOA ### ### ### if test_scenario == "1": saw_PAF.create_quote_include_HNOA(years_in_business, staff_count, revenue_current_year) elif test_scenario == "2": saw_PAF.create_quote_NO_HNOA(years_in_business, staff_count, revenue_current_year) time.sleep(3) # Click Next on PAF screen saw_PAF.click_next() #### This class is for generic objects that display on the Coverage Options page saw_CC = Coverage_Options(driver) saw_CC.select_all_deselect_all() saw_CC.click_proceed_to_quote() saw_summary = Summary(driver) saw_summary.click_generate_quote() saw_quote_review = Quote_Review(driver) saw_quote_review.click_select_option() saw_select_option = Select_Option(driver) saw_select_option.select_premium() saw_select_option.click_accept_rate_and_continue() saw_confirm_order_details = Confirm_Order_Details(driver) saw_confirm_order_details.click_next() saw_invoice = Invoice(driver) saw_invoice.click_proceed_to_issuing() # Click Return to Admin Interface saw_confirm_issue = Confirm_and_Issue(driver) # At this point, script is re-directed to service center login screen # This works on DEV saw_confirm_issue.click_return_to_Admin_Interface() time.sleep(3) # Click Applications link on Navigation Bar nb.click_applications() # Enter Application ID, click Search app_page = ApplicationsPage(driver) app_page.enter_application_id(application_id) app_page.click_search_button() # Click on application id link # THIS IS NOT WORKING #app_page.click_application_id_link(application_id) # Navigate to Application Details page new_current_url = driver.current_url slashparts = new_current_url.split('/') # Now join back the first three sections 'http:', '' and 'example.com' new_base_url = '/'.join(slashparts[:3]) + '/' app_details_string = "?c=app.view&id=" app_subjectivities_string = "?c=app.track_subjectivities&id=" application_details_screen = new_base_url + app_details_string + application_id application_subjectivites_screen = new_base_url + app_subjectivities_string + application_id # Navigate to Application Subjectivities Screen driver.get(application_subjectivites_screen) # Approve Subjectivities # Added Anna's Subjectivities Code 5-15-17 sub = Subjectivities(driver) sub.set_all_subjectivities_to_recieved() #sub.change_open_subjectivities_to_received() #sub.select_yes_to_subjectivities_met() sub.click_submit() sub.click_agent_link() # Return to Producer Center; Issue Policy saw_confirm_issue.input_signature() saw_confirm_issue.click_accept_terms_issue_policy() # Retrieve Policy Number of Policy that was issued; Policy Number stored in policy_text thank_you = Thank_You_Page(driver) policy_text = thank_you.retrieve_store_policy_number() # Return to Admin Interface saw_confirm_issue.click_return_to_Admin_Interface() # Click on Policies link; Navigate to Policy that was just issued nb.click_policies() pp = PoliciesPage(driver) # On Policies Page, Click All link pp.click_all_link() # Enter Policy Number & Click Search pp.enter_policy_name(policy_text) pp.click_search_button() # Click on the Policy link, Open Policy Details pp.click_policy_link(policy_text) # Click Effective Periods ps = Policy_Screens(driver) ps.click_Effective_Periods() # Change Effective Periods Dates to allow renewals ep = Effective_Periods(driver) ep.change_dates_expire_policy_allow_renewal() ep.click_update_dates() # Click Details link to display the Policy Details screen ps.click_Details() # On Details Screen, Click on the Agent that issued the Policy details = Details(driver) details.click_agent_link(agent) # Agent Details Screen Displays ag = Agent_Details(driver) # Click "Submit New Application as" link ag.click_submit_new_application_as_agent() # Click My Policies on Navigation Bar pnb = Navigation_Bar(driver) pnb.click_my_policies() # Locate Policy that was issued ap = active_policies(driver) ap.enter_policy_name(policy_text) ap.click_search_button() # Click Policy ap.click_policy_link(policy_text) # Code works up to this point # Wait driver.implicitly_wait(3) # Write Values to CSV # Declare the values that will be outputted to csv values = [test_summary, company_name_string, application_id, policy_text] # Declare Directory of csv file download_dir = os.path.join(test_results_directory, 'Regressions', Product + '_Regression_Test_Results.csv') # This Section Writes the output to the csv file with open(download_dir, "a") as f: writer = csv.writer(f, lineterminator='\n') # lineterminator='\n' writer.writerow(values) # Declare the values that will be outputted to csv values = [test_summary, company_name_string, application_id, policy_text] # Declare Directory of csv file download_dir = os.path.join(test_results_directory, 'Regressions', Product + '_Regression_Test_Results.csv') # where you want the file to be downloaded to with open(download_dir, "w") as f: writer = csv.writer(f) writer.writerow( {'Test Summary': test_summary, 'Insured': company_name_string, 'Application ID': application_id, 'Policy': policy_text}) writer.writerow(values) # Close Browser driver.quit() cq = CreateQuote() cq.test_login_search_for_agent_create_quote()
f9d56ef9022697fe15a67053856d891c75f65757
799e022a2f63db8f98304a2b4984c373c053074f
/liberapay/billing/exchanges.py
f432bf2b6af129af73789b5f7b2345dccb067c84
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
CryptArc/liberapay.com
9f403fd1e5d18b41dcfcc16f6d466d834689ec8e
ef6d74332f937035537a47edf212897fd684611d
refs/heads/master
2021-01-17T20:34:16.330629
2016-05-18T15:27:01
2016-05-18T15:27:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,567
py
"""Functions for moving money between Liberapay and the outside world. """ from __future__ import division, print_function, unicode_literals from decimal import Decimal, ROUND_UP from aspen import Response from aspen.utils import typecheck from mangopaysdk.entities.payin import PayIn from mangopaysdk.entities.payout import PayOut from mangopaysdk.entities.transfer import Transfer from mangopaysdk.entities.wallet import Wallet from mangopaysdk.types.exceptions.responseexception import ResponseException from mangopaysdk.types.money import Money from liberapay.billing import ( mangoapi, PayInExecutionDetailsDirect, PayInPaymentDetailsCard, PayInPaymentDetailsBankWire, PayOutPaymentDetailsBankWire, ) from liberapay.constants import ( D_CENT, D_ZERO, PAYIN_CARD_MIN, FEE_PAYIN_CARD, FEE_PAYIN_BANK_WIRE, FEE_PAYOUT, FEE_PAYOUT_OUTSIDE_SEPA, FEE_PAYOUT_WARN, QUARANTINE, SEPA_ZONE, FEE_VAT, ) from liberapay.exceptions import ( LazyResponse, NegativeBalance, NotEnoughWithdrawableMoney, PaydayIsRunning, FeeExceedsAmount, TransactionFeeTooHigh, ) from liberapay.models import check_db from liberapay.models.participant import Participant from liberapay.models.exchange_route import ExchangeRoute QUARANTINE = '%s days' % QUARANTINE.days def upcharge(amount, fees, min_amount): """Given an amount, return a higher amount and the difference. """ typecheck(amount, Decimal) if amount < min_amount: amount = min_amount # a = c - vf * c - ff => c = (a + ff) / (1 - vf) # a = amount ; c = charge amount ; ff = fixed fee ; vf = variable fee charge_amount = (amount + fees.fix) / (1 - fees.var) charge_amount = charge_amount.quantize(D_CENT, rounding=ROUND_UP) fee = charge_amount - amount # + VAT vat = (fee * FEE_VAT).quantize(D_CENT, rounding=ROUND_UP) charge_amount += vat fee += vat return charge_amount, fee, vat upcharge_bank_wire = lambda amount: upcharge(amount, FEE_PAYIN_BANK_WIRE, D_ZERO) upcharge_card = lambda amount: upcharge(amount, FEE_PAYIN_CARD, PAYIN_CARD_MIN) def skim_amount(amount, fees): """Given a nominal amount, compute the fees, taxes, and the actual amount. """ fee = amount * fees.var + fees.fix vat = fee * FEE_VAT fee += vat fee = fee.quantize(D_CENT, rounding=ROUND_UP) vat = vat.quantize(D_CENT, rounding=ROUND_UP) return amount - fee, fee, vat def skim_credit(amount, ba): """Given a payout amount, return a lower amount, the fee, and taxes. The returned amount can be negative, look out for that. """ typecheck(amount, Decimal) if ba.Type == 'IBAN': country = ba.Details.IBAN[:2].upper() elif ba.Type in ('US', 'GB', 'CA'): country = ba.Type else: assert ba.Type == 'OTHER', ba.Type country = ba.Details.Country.upper() if country in SEPA_ZONE: fee = FEE_PAYOUT else: fee = FEE_PAYOUT_OUTSIDE_SEPA return skim_amount(amount, fee) def repr_error(o): r = o.ResultCode if r == '000000': return msg = getattr(o, 'ResultMessage', None) if msg: r += ': ' + msg return r def repr_exception(e): if isinstance(e, ResponseException): return '%s %s' % (e.Code, e.Message) else: return repr(e) def create_wallet(db, participant): w = Wallet() w.Owners.append(participant.mangopay_user_id) w.Description = str(participant.id) w.Currency = 'EUR' w = mangoapi.wallets.Create(w) db.run(""" UPDATE participants SET mangopay_wallet_id = %s WHERE id = %s """, (w.Id, participant.id)) participant.set_attributes(mangopay_wallet_id=w.Id) return w.Id def test_hook(): return def payout(db, participant, amount, ignore_high_fee=False): assert amount > 0 payday = db.one("SELECT * FROM paydays WHERE ts_start > ts_end") if payday: raise PaydayIsRunning route = ExchangeRoute.from_network(participant, 'mango-ba') assert route ba = mangoapi.users.GetBankAccount(participant.mangopay_user_id, route.address) # Do final calculations credit_amount, fee, vat = skim_credit(amount, ba) if credit_amount <= 0 and fee > 0: raise FeeExceedsAmount fee_percent = fee / amount if fee_percent > FEE_PAYOUT_WARN and not ignore_high_fee: raise TransactionFeeTooHigh(fee_percent, fee, amount) # Try to dance with MangoPay e_id = record_exchange(db, route, -credit_amount, fee, vat, participant, 'pre') payout = PayOut() payout.AuthorId = participant.mangopay_user_id payout.DebitedFunds = Money(int(amount * 100), 'EUR') payout.DebitedWalletId = participant.mangopay_wallet_id payout.Fees = Money(int(fee * 100), 'EUR') payout.MeanOfPaymentDetails = PayOutPaymentDetailsBankWire( BankAccountId=route.address, BankWireRef=str(e_id), ) payout.Tag = str(e_id) try: test_hook() payout = mangoapi.payOuts.Create(payout) return record_exchange_result(db, e_id, payout.Status.lower(), repr_error(payout), participant) except Exception as e: error = repr_exception(e) return record_exchange_result(db, e_id, 'failed', error, participant) def charge(db, participant, amount, return_url): """Charge the participant's credit card. Amount should be the nominal amount. We'll compute fees below this function and add it to amount to end up with charge_amount. """ typecheck(amount, Decimal) route = ExchangeRoute.from_network(participant, 'mango-cc') assert route charge_amount, fee, vat = upcharge_card(amount) amount = charge_amount - fee e_id = record_exchange(db, route, amount, fee, vat, participant, 'pre') payin = PayIn() payin.AuthorId = participant.mangopay_user_id if not participant.mangopay_wallet_id: create_wallet(db, participant) payin.CreditedWalletId = participant.mangopay_wallet_id payin.DebitedFunds = Money(int(charge_amount * 100), 'EUR') payin.ExecutionDetails = PayInExecutionDetailsDirect( CardId=route.address, SecureModeReturnURL=return_url, ) payin.Fees = Money(int(fee * 100), 'EUR') payin.PaymentDetails = PayInPaymentDetailsCard(CardType='CB_VISA_MASTERCARD') payin.Tag = str(e_id) try: test_hook() payin = mangoapi.payIns.Create(payin) except Exception as e: error = repr_exception(e) return record_exchange_result(db, e_id, 'failed', error, participant) if payin.ExecutionDetails.SecureModeRedirectURL: raise Response(302, headers={'Location': payin.ExecutionDetails.SecureModeRedirectURL}) return record_exchange_result(db, e_id, payin.Status.lower(), repr_error(payin), participant) def payin_bank_wire(db, participant, debit_amount): """Prepare to receive a bank wire payin. The amount should be how much the user intends to send, not how much will arrive in the wallet. """ route = ExchangeRoute.from_network(participant, 'mango-bw') if not route: route = ExchangeRoute.insert(participant, 'mango-bw', 'x') amount, fee, vat = skim_amount(debit_amount, FEE_PAYIN_BANK_WIRE) e_id = record_exchange(db, route, amount, fee, vat, participant, 'pre') payin = PayIn() payin.AuthorId = participant.mangopay_user_id if not participant.mangopay_wallet_id: create_wallet(db, participant) payin.CreditedWalletId = participant.mangopay_wallet_id payin.ExecutionDetails = PayInExecutionDetailsDirect() payin.PaymentDetails = PayInPaymentDetailsBankWire( DeclaredDebitedFunds=Money(int(debit_amount * 100), 'EUR'), DeclaredFees=Money(int(fee * 100), 'EUR'), ) payin.Tag = str(e_id) try: test_hook() payin = mangoapi.payIns.Create(payin) except Exception as e: error = repr_exception(e) return None, record_exchange_result(db, e_id, 'failed', error, participant) e = record_exchange_result(db, e_id, payin.Status.lower(), repr_error(payin), participant) return payin, e def record_exchange(db, route, amount, fee, vat, participant, status, error=None): """Given a Bunch of Stuff, return an int (exchange_id). Records in the exchanges table have these characteristics: amount It's negative for credits (representing an outflow from Liberapay to you) and positive for charges. The sign is how we differentiate the two in, e.g., the history page. fee The payment processor's fee. It's always positive. vat The amount of VAT included in the fee. Always positive. """ with db.get_cursor() as cursor: e = cursor.one(""" INSERT INTO exchanges (amount, fee, vat, participant, status, route, note) VALUES (%s, %s, %s, %s, %s, %s, %s) RETURNING * """, (amount, fee, vat, participant.id, status, route.id, error)) if status == 'failed': propagate_exchange(cursor, participant, e, route, error, 0) elif amount < 0: amount -= fee propagate_exchange(cursor, participant, e, route, '', amount) return e.id def record_exchange_result(db, exchange_id, status, error, participant): """Updates the status of an exchange. """ with db.get_cursor() as cursor: e = cursor.one(""" UPDATE exchanges e SET status=%(status)s , note=%(error)s WHERE id=%(exchange_id)s AND status <> %(status)s RETURNING id, amount, fee, vat, participant, recorder, note, status, timestamp , ( SELECT r.*::exchange_routes FROM exchange_routes r WHERE r.id = e.route ) AS route """, locals()) if not e: return assert participant.id == e.participant assert isinstance(e.route, ExchangeRoute) amount = e.amount if amount < 0: amount = -amount + e.fee if status == 'failed' else 0 else: amount = amount if status == 'succeeded' else 0 propagate_exchange(cursor, participant, e, e.route, error, amount) return e def propagate_exchange(cursor, participant, exchange, route, error, amount): """Propagates an exchange's result to the participant's balance and the route's status. """ route.update_error(error or '') new_balance = cursor.one(""" UPDATE participants SET balance=(balance + %s) WHERE id=%s RETURNING balance """, (amount, participant.id)) if amount < 0 and new_balance < 0: raise NegativeBalance if amount < 0: bundles = cursor.all(""" LOCK TABLE cash_bundles IN EXCLUSIVE MODE; SELECT * FROM cash_bundles WHERE owner = %s AND ts < now() - INTERVAL %s ORDER BY ts """, (participant.id, QUARANTINE)) withdrawable = sum(b.amount for b in bundles) x = -amount if x > withdrawable: raise NotEnoughWithdrawableMoney(Money(withdrawable, 'EUR')) for b in bundles: if x >= b.amount: cursor.run(""" INSERT INTO e2e_transfers (origin, withdrawal, amount) VALUES (%s, %s, %s) """, (b.origin, exchange.id, b.amount)) cursor.run("DELETE FROM cash_bundles WHERE id = %s", (b.id,)) x -= b.amount if x == 0: break else: assert x > 0 cursor.run(""" INSERT INTO e2e_transfers (origin, withdrawal, amount) VALUES (%s, %s, %s) """, (b.origin, exchange.id, x)) cursor.run(""" UPDATE cash_bundles SET amount = (amount - %s) WHERE id = %s """, (x, b.id)) break elif amount > 0: cursor.run(""" INSERT INTO cash_bundles (owner, origin, amount, ts) VALUES (%s, %s, %s, %s) """, (participant.id, exchange.id, amount, exchange.timestamp)) participant.set_attributes(balance=new_balance) if amount != 0: participant.update_giving_and_tippees(cursor) def transfer(db, tipper, tippee, amount, context, **kw): t_id = db.one(""" INSERT INTO transfers (tipper, tippee, amount, context, team, status) VALUES (%s, %s, %s, %s, %s, 'pre') RETURNING id """, (tipper, tippee, amount, context, kw.get('team'))) get = lambda id, col: db.one("SELECT {0} FROM participants WHERE id = %s".format(col), (id,)) tr = Transfer() tr.AuthorId = kw.get('tipper_mango_id') or get(tipper, 'mangopay_user_id') tr.CreditedUserId = kw.get('tippee_mango_id') or get(tippee, 'mangopay_user_id') tr.CreditedWalletID = kw.get('tippee_wallet_id') or get(tippee, 'mangopay_wallet_id') if not tr.CreditedWalletID: tr.CreditedWalletID = create_wallet(db, Participant.from_id(tippee)) tr.DebitedFunds = Money(int(amount * 100), 'EUR') tr.DebitedWalletID = kw.get('tipper_wallet_id') or get(tipper, 'mangopay_wallet_id') tr.Fees = Money(0, 'EUR') tr.Tag = str(t_id) tr = mangoapi.transfers.Create(tr) return record_transfer_result(db, t_id, tr) def record_transfer_result(db, t_id, tr): error = repr_error(tr) status = tr.Status.lower() assert (not error) ^ (status == 'failed') return _record_transfer_result(db, t_id, status) def _record_transfer_result(db, t_id, status): with db.get_cursor() as c: tipper, tippee, amount = c.one(""" UPDATE transfers SET status = %s WHERE id = %s RETURNING tipper, tippee, amount """, (status, t_id)) if status == 'succeeded': balance = c.one(""" UPDATE participants SET balance = balance + %(amount)s WHERE id = %(tippee)s; UPDATE participants SET balance = balance - %(amount)s WHERE id = %(tipper)s AND balance - %(amount)s >= 0 RETURNING balance; """, locals()) if balance is None: raise NegativeBalance bundles = c.all(""" LOCK TABLE cash_bundles IN EXCLUSIVE MODE; SELECT * FROM cash_bundles WHERE owner = %s ORDER BY ts """, (tipper,)) x = amount for b in bundles: if x >= b.amount: c.run(""" UPDATE cash_bundles SET owner = %s WHERE id = %s """, (tippee, b.id)) x -= b.amount if x == 0: break else: c.run(""" UPDATE cash_bundles SET amount = (amount - %s) WHERE id = %s; INSERT INTO cash_bundles (owner, origin, amount, ts) VALUES (%s, %s, %s, %s); """, (x, b.id, tippee, b.origin, x, b.ts)) break return balance raise LazyResponse(500, lambda _: _("Transfering the money failed, please try again.")) def sync_with_mangopay(db): """We can get out of sync with MangoPay if record_exchange_result wasn't completed. This is where we fix that. """ check_db(db) exchanges = db.all("SELECT * FROM exchanges WHERE status = 'pre'") for e in exchanges: p = Participant.from_id(e.participant) transactions = mangoapi.users.GetTransactions(p.mangopay_user_id) transactions = [x for x in transactions if x.Tag == str(e.id)] assert len(transactions) < 2 if transactions: t = transactions[0] error = repr_error(t) status = t.Status.lower() assert (not error) ^ (status == 'failed') record_exchange_result(db, e.id, status, error, p) else: # The exchange didn't happen if e.amount < 0: # Mark it as failed if it was a credit record_exchange_result(db, e.id, 'failed', 'interrupted', p) else: # Otherwise forget about it db.run("DELETE FROM exchanges WHERE id=%s", (e.id,)) transfers = db.all("SELECT * FROM transfers WHERE status = 'pre'") for t in transfers: tipper = Participant.from_id(t.tipper) transactions = mangoapi.wallets.GetTransactions(tipper.mangopay_wallet_id) transactions = [x for x in transactions if x.Type == 'TRANSFER' and x.Tag == str(t.id)] assert len(transactions) < 2 if transactions: record_transfer_result(db, t.id, transactions[0]) else: # The transfer didn't happen, remove it db.run("DELETE FROM transfers WHERE id = %s", (t.id,)) check_db(db)
d56411141515e59e13c8e7158958d63b0b9c075f
6a1afd25fd19e24eecf2e7f233027681a05903b8
/backend/tchr_3855/urls.py
a774b8dbe6339003537a5be0b1f3e8aadddee690
[]
no_license
crowdbotics-apps/tchr-3855
85e0c264c9b5adef9ae782cf9b23c0754a268564
5c9ef3ff5e4662bf23ca10532eeafd4e55f847b0
refs/heads/master
2022-12-10T22:10:23.132461
2019-05-26T10:22:49
2019-05-26T10:22:49
188,668,403
0
0
null
2022-12-09T03:58:32
2019-05-26T10:22:34
Python
UTF-8
Python
false
false
1,034
py
"""tchr_3855 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url('', include('home.urls')), url(r'^accounts/', include('allauth.urls')), url(r'^api/v1/', include('home.api.v1.urls')), url(r'^admin/', admin.site.urls), ] admin.site.site_header = 'Tchr' admin.site.site_title = 'Tchr Admin Portal' admin.site.index_title = 'Tchr Admin'
e81eb9f98632ada8bf853b3971d0d91c0cf15163
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/signalrservice/signal_r_private_endpoint_connection.py
49b758f6a41d13686debc173c54642140e57c45e
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
13,202
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['SignalRPrivateEndpointConnectionArgs', 'SignalRPrivateEndpointConnection'] @pulumi.input_type class SignalRPrivateEndpointConnectionArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], resource_name: pulumi.Input[str], private_endpoint: Optional[pulumi.Input['PrivateEndpointArgs']] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input['PrivateLinkServiceConnectionStateArgs']] = None): """ The set of arguments for constructing a SignalRPrivateEndpointConnection resource. :param pulumi.Input[str] resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param pulumi.Input[str] resource_name: The name of the SignalR resource. :param pulumi.Input['PrivateEndpointArgs'] private_endpoint: Private endpoint associated with the private endpoint connection :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection associated with the SignalR resource. :param pulumi.Input['PrivateLinkServiceConnectionStateArgs'] private_link_service_connection_state: Connection state """ pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "resource_name", resource_name) if private_endpoint is not None: pulumi.set(__self__, "private_endpoint", private_endpoint) if private_endpoint_connection_name is not None: pulumi.set(__self__, "private_endpoint_connection_name", private_endpoint_connection_name) if private_link_service_connection_state is not None: pulumi.set(__self__, "private_link_service_connection_state", private_link_service_connection_state) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="resourceName") def resource_name(self) -> pulumi.Input[str]: """ The name of the SignalR resource. """ return pulumi.get(self, "resource_name") @resource_name.setter def resource_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_name", value) @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> Optional[pulumi.Input['PrivateEndpointArgs']]: """ Private endpoint associated with the private endpoint connection """ return pulumi.get(self, "private_endpoint") @private_endpoint.setter def private_endpoint(self, value: Optional[pulumi.Input['PrivateEndpointArgs']]): pulumi.set(self, "private_endpoint", value) @property @pulumi.getter(name="privateEndpointConnectionName") def private_endpoint_connection_name(self) -> Optional[pulumi.Input[str]]: """ The name of the private endpoint connection associated with the SignalR resource. """ return pulumi.get(self, "private_endpoint_connection_name") @private_endpoint_connection_name.setter def private_endpoint_connection_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "private_endpoint_connection_name", value) @property @pulumi.getter(name="privateLinkServiceConnectionState") def private_link_service_connection_state(self) -> Optional[pulumi.Input['PrivateLinkServiceConnectionStateArgs']]: """ Connection state """ return pulumi.get(self, "private_link_service_connection_state") @private_link_service_connection_state.setter def private_link_service_connection_state(self, value: Optional[pulumi.Input['PrivateLinkServiceConnectionStateArgs']]): pulumi.set(self, "private_link_service_connection_state", value) class SignalRPrivateEndpointConnection(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointArgs']]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStateArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, __props__=None): """ A private endpoint connection to SignalR resource API Version: 2020-05-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['PrivateEndpointArgs']] private_endpoint: Private endpoint associated with the private endpoint connection :param pulumi.Input[str] private_endpoint_connection_name: The name of the private endpoint connection associated with the SignalR resource. :param pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStateArgs']] private_link_service_connection_state: Connection state :param pulumi.Input[str] resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param pulumi.Input[str] resource_name_: The name of the SignalR resource. """ ... @overload def __init__(__self__, resource_name: str, args: SignalRPrivateEndpointConnectionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ A private endpoint connection to SignalR resource API Version: 2020-05-01. :param str resource_name: The name of the resource. :param SignalRPrivateEndpointConnectionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SignalRPrivateEndpointConnectionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, private_endpoint: Optional[pulumi.Input[pulumi.InputType['PrivateEndpointArgs']]] = None, private_endpoint_connection_name: Optional[pulumi.Input[str]] = None, private_link_service_connection_state: Optional[pulumi.Input[pulumi.InputType['PrivateLinkServiceConnectionStateArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SignalRPrivateEndpointConnectionArgs.__new__(SignalRPrivateEndpointConnectionArgs) __props__.__dict__["private_endpoint"] = private_endpoint __props__.__dict__["private_endpoint_connection_name"] = private_endpoint_connection_name __props__.__dict__["private_link_service_connection_state"] = private_link_service_connection_state if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name if resource_name_ is None and not opts.urn: raise TypeError("Missing required property 'resource_name_'") __props__.__dict__["resource_name"] = resource_name_ __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:signalrservice:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-native:signalrservice/v20200501:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:signalrservice/v20200501:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-native:signalrservice/v20200701preview:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:signalrservice/v20200701preview:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-native:signalrservice/v20210401preview:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:signalrservice/v20210401preview:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-native:signalrservice/v20210601preview:SignalRPrivateEndpointConnection"), pulumi.Alias(type_="azure-nextgen:signalrservice/v20210601preview:SignalRPrivateEndpointConnection")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SignalRPrivateEndpointConnection, __self__).__init__( 'azure-native:signalrservice:SignalRPrivateEndpointConnection', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SignalRPrivateEndpointConnection': """ Get an existing SignalRPrivateEndpointConnection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SignalRPrivateEndpointConnectionArgs.__new__(SignalRPrivateEndpointConnectionArgs) __props__.__dict__["name"] = None __props__.__dict__["private_endpoint"] = None __props__.__dict__["private_link_service_connection_state"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None return SignalRPrivateEndpointConnection(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateEndpoint") def private_endpoint(self) -> pulumi.Output[Optional['outputs.PrivateEndpointResponse']]: """ Private endpoint associated with the private endpoint connection """ return pulumi.get(self, "private_endpoint") @property @pulumi.getter(name="privateLinkServiceConnectionState") def private_link_service_connection_state(self) -> pulumi.Output[Optional['outputs.PrivateLinkServiceConnectionStateResponse']]: """ Connection state """ return pulumi.get(self, "private_link_service_connection_state") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Provisioning state of the private endpoint connection """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource - e.g. "Microsoft.SignalRService/SignalR" """ return pulumi.get(self, "type")
fdb52e61ad56ed5ce29737ced83eb1ee158f29fe
56cd86b5438db288a2b602166071b079ffc5c22f
/backend/windy_utils_rest.py
d582f5031a4b730fbd668b3001fb53e9644edd9f
[ "MIT" ]
permissive
mmmaaaggg/QABAT
d789921151533fd0c9fd4b89dc5eee2137b67e80
d6f20d926de047af6857e466cf28084d0ba69993
refs/heads/master
2022-07-13T10:10:28.985442
2021-01-27T07:05:46
2021-01-27T07:05:46
139,661,275
4
1
MIT
2022-06-21T22:03:11
2018-07-04T02:58:18
Python
UTF-8
Python
false
false
7,528
py
# -*- coding: utf-8 -*- """ Created on 2016-12-22 @author: MG """ import pandas as pd import requests import json from datetime import datetime, date import logging logger = logging.getLogger() STR_FORMAT_DATE = '%Y-%m-%d' STR_FORMAT_DATETIME_WIND = '%Y-%m-%d %H:%M:%S' # 2017-03-06 00:00:00.005000 UN_AVAILABLE_DATETIME = datetime.strptime('1900-01-01', STR_FORMAT_DATE) UN_AVAILABLE_DATE = UN_AVAILABLE_DATETIME.date() def format_2_date_str(dt) -> str: if dt is None: return None dt_type = type(dt) if dt_type == str: return dt elif dt_type == date: if dt > UN_AVAILABLE_DATE: return dt.strftime(STR_FORMAT_DATE) else: return None elif dt_type == datetime: if dt > UN_AVAILABLE_DATETIME: return dt.strftime(STR_FORMAT_DATE) else: return None else: return dt def format_2_datetime_str(dt) -> str: if dt is None: return None dt_type = type(dt) if dt_type == str: return dt elif dt_type == date: if dt > UN_AVAILABLE_DATE: return dt.strftime(STR_FORMAT_DATE) else: return None elif dt_type == datetime: if dt > UN_AVAILABLE_DATETIME: return dt.strftime(STR_FORMAT_DATETIME_WIND) else: return None else: return dt class APIError(Exception): def __init__(self, status, ret_dic): self.status = status self.ret_dic = ret_dic def __str__(self): return "APIError:status=POST / {} {}".format(self.status, self.ret_dic) class WindRest: def __init__(self, url_str): self.url = url_str self.header = {'Content-Type': 'application/json'} def _url(self, path: str) -> str: return self.url + path def public_post(self, path: str, req_data: str) -> list: # print('self._url(path):', self._url(path)) ret_data = requests.post(self._url(path), data=req_data, headers=self.header) ret_dic = ret_data.json() if ret_data.status_code != 200: raise APIError(ret_data.status_code, ret_dic) else: return ret_data.status_code, ret_dic def wset(self, table_name, options) -> pd.DataFrame: path = 'wset/' req_data_dic = {"table_name": table_name, "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df def wss(self, codes, fields, options="") -> pd.DataFrame: path = 'wss/' req_data_dic = {"codes": codes, "fields": fields, "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df def wsd(self, codes, fields, begin_time, end_time, options="") -> pd.DataFrame: path = 'wsd/' req_data_dic = {"codes": codes, "fields": fields, "begin_time": format_2_date_str(begin_time), "end_time": format_2_date_str(end_time), "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df def wsi(self, codes, fields, begin_time, end_time, options="") -> pd.DataFrame: path = 'wsi/' req_data_dic = {"codes": codes, "fields": fields, "begin_time": format_2_date_str(begin_time), "end_time": format_2_date_str(end_time), "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df def wst(self, codes, fields, begin_time, end_time, options="") -> pd.DataFrame: path = 'wst/' req_data_dic = {"codes": codes, "fields": fields, "begin_time": format_2_datetime_str(begin_time), "end_time": format_2_datetime_str(end_time), "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df def wsq(self, codes, fields, options="") -> pd.DataFrame: path = 'wsq/' req_data_dic = {"codes": codes, "fields": fields, "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df def tdaysoffset(self, offset, begin_time, options="") -> dict: path = 'tdaysoffset/' req_data_dic = {"offset": offset, "begin_time": format_2_date_str(begin_time), "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) date_str = json_dic['Date'] return date_str def tdays(self, begin_time, end_time, options="") -> dict: path = 'tdays/' req_data_dic = {"begin_time": format_2_date_str(begin_time), "end_time": format_2_date_str(end_time), "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) # df = pd.DataFrame(json_dic) return json_dic def edb(self, codes, begin_time, end_time, options) -> pd.DataFrame: path = 'edb/' req_data_dic = {"codes": codes, "begin_time": format_2_date_str(begin_time), "end_time": format_2_date_str(end_time), "options": options} req_data = json.dumps(req_data_dic) _, json_dic = self.public_post(path, req_data) df = pd.DataFrame(json_dic).T return df if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG, format='%(asctime)s: %(levelname)s [%(name)s:%(funcName)s] %(message)s') logging.getLogger('requests.packages.urllib3.connectionpool').setLevel(logging.WARNING) # url_str = "http://10.0.5.65:5000/wind/" url_str = "http://10.0.5.62:5000/wind/" # "http://10.0.3.78:5000/wind/" rest = WindRest(url_str) # data_df = rest.wset(table_name="sectorconstituent", options="date=2017-03-21;sectorid=1000023121000000") # data_df = rest.wss(codes="QHZG160525.OF", fields="fund_setupdate,fund_maturitydate,fund_mgrcomp,fund_existingyear,fund_ptmyear,fund_type,fund_fundmanager") # data_df = rest.wsd("601398.SH", "open,high,low,close,volume", "2017-01-04", "2017-02-28", "PriceAdj=F") # data_df = rest.tdays(begin_time="2017-01-04", end_time="2017-02-28") # data_df = rest.wst("600000.SH", "ask1,bid1,asize1,bsize1,volume,amt,pre_close,open,high,low,last", "2017-10-20 09:15:00", "2017-10-20 09:26:00", "") # data_df = rest.wsi("RU1801.SHF", "open,high,low,close,volume,amt,oi", "2017-12-8 09:00:00", "2017-12-8 11:30:00", "") try: data_df = rest.wsd("000987.SZ", "open,high,low,close,volume", "2017-12-18", "2017-12-19", "") print(data_df) except APIError as exp: if exp.status == 500: print('APIError.status:', exp.status, exp.ret_dic['message']) else: print(exp.ret_dic.setdefault('error_code', ''), exp.ret_dic['message']) # date_str = rest.tdaysoffset(1, '2017-3-31') # print(date_str)
4a142a01a45fa51f9c863eef0f039791d863a013
9f884a3584eef771f8c010e296c5d763098be243
/povary/apps/seo_v2/migrations/0001_initial.py
bce4b67bee7aa622577573aa590abe5b27575f0d
[ "BSD-3-Clause" ]
permissive
TorinAsakura/cooking
fc8658ce2ac21c2e00dc307399a5fa24971a20c1
cf0c78f613fa9ce0fcd4ec7a397ab880d9dd631a
refs/heads/master
2023-01-24T13:07:38.529811
2020-12-08T22:14:33
2020-12-08T22:14:33
319,773,012
0
0
BSD-3-Clause
2020-12-08T22:14:34
2020-12-08T22:08:34
null
UTF-8
Python
false
false
4,096
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'SeoTarget' db.create_table(u'seo_v2_seotarget', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=128, unique=True, null=True, blank=True)), )) db.send_create_signal(u'seo_v2', ['SeoTarget']) # Adding model 'SeoTemplate' db.create_table(u'seo_v2_seotemplate', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('target', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['seo_v2.SeoTarget'], null=True, blank=True)), ('content_type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['contenttypes.ContentType'], null=True, blank=True)), ('object_id', self.gf('django.db.models.fields.PositiveIntegerField')(null=True, blank=True)), ('description', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('keywords', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('title', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('bottom_desc', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), )) db.send_create_signal(u'seo_v2', ['SeoTemplate']) # Adding unique constraint on 'SeoTemplate', fields ['object_id', 'content_type'] db.create_unique(u'seo_v2_seotemplate', ['object_id', 'content_type_id']) def backwards(self, orm): # Removing unique constraint on 'SeoTemplate', fields ['object_id', 'content_type'] db.delete_unique(u'seo_v2_seotemplate', ['object_id', 'content_type_id']) # Deleting model 'SeoTarget' db.delete_table(u'seo_v2_seotarget') # Deleting model 'SeoTemplate' db.delete_table(u'seo_v2_seotemplate') models = { u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'seo_v2.seotarget': { 'Meta': {'object_name': 'SeoTarget'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, u'seo_v2.seotemplate': { 'Meta': {'unique_together': "(('object_id', 'content_type'),)", 'object_name': 'SeoTemplate'}, 'bottom_desc': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']", 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'keywords': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'target': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['seo_v2.SeoTarget']", 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['seo_v2']
66407c0b6c977324006de7c5c228296df7783a34
818e5e78f84596a7c086b218fd4aa9e8ea912afe
/hackatons/materials/algo/source/T5_LinearStructure/P3_List/ListWithCurrentElement.py
fdfd273b72742e9271e6be2dcdf2c5b282946b4b
[]
no_license
davendiy/forpythonanywhere
44fbc63651309598b58391667f0fead40e8fad91
1b9292ca33b06b17cd516e4e9913479edb6d35cd
refs/heads/master
2020-08-10T04:24:02.665635
2019-10-25T07:05:46
2019-10-25T07:05:46
214,255,096
0
0
null
null
null
null
UTF-8
Python
false
false
3,289
py
class Node: """ Допоміжний клас - вузол списку. """ def __init__(self, item): """ Конструктор """ self.mItem = item # навантаження вузла self.mNext = None # посилання на наступний вузол списку class ListWithCurrent: def __init__(self): """ Конструктор - створює новий порожній список. """ self.mHead = None # Перший вузол списку self.mPrev = None # Вузол, що передує поточному елементу списку self.mCurr = None # Поточний вузол списку def empty(self): """ Перевіряє чи список порожній :return: True, якщо список не містить жодного елемента """ return self.mHead is None def reset(self): """ Зробити поточний елемент першим. """ self.mCurr = self.mHead self.mPrev = None def next(self): """ Перейти до наступного елемента. Породжує виключення StopIteration, якщо наступний елемент порожній :return: None """ if self.mCurr is not None: self.mPrev = self.mCurr self.mCurr = self.mCurr.mNext else: raise StopIteration def current(self): """ Отримати поточний елемент :return: Навантаження поточного елементу """ if self.mCurr is not None: return self.mCurr.mItem else: return None def insert(self, item): """ Вставити новий елемент у список перед поточним :param item: елемент, що вставляється у спиоск :return: None """ node = Node(item) node.mNext = self.mCurr if self.mCurr == self.mHead: self.mHead = node if self.mPrev is not None: self.mPrev.mNext = node self.mPrev = node def remove(self): """ Видалити поточний елемент у списку Видалення переставляє вказівник на поточний елемент на наступний """ pass # TODO: Implement by yourself def __str__(self): return str(self.current()) def __iter__(self): self.mIterator = self.mHead return self def __next__(self): if self.mIterator is not None: cur = self.mIterator.mItem self.mIterator = self.mIterator.mNext return cur else: raise StopIteration l = ListWithCurrent() l.insert(11) l.insert(12) l.insert(13) l.insert(14) l.insert(15) l.insert(16) l.reset() l.next() print(l) it = iter(l) while True: try: print(next(l)) except StopIteration: break # l.reset() # print(l) # l.next() # l.next() # l.next() # print(l) # l.next() # # # l.insert(555) # # # for el in l: # print(el)
ad767fd0acf09ffa4bb1040d65480632d58051cd
b4361173b0605ad5efb9381610fb985ad27ee00b
/tests/test_manager.py
291831d621e28387c96f8c599a68d7e0728d0c8c
[ "MIT" ]
permissive
gardleopard/rhea
24bd204735da0915f27b8cc060e377e37b610dba
36a8e908281ca9af232c5ce2e2cf64259221c3a6
refs/heads/master
2020-04-09T18:15:06.731235
2018-10-08T15:35:46
2018-10-08T15:35:46
160,506,155
0
0
MIT
2018-12-05T11:10:19
2018-12-05T11:10:19
null
UTF-8
Python
false
false
18,042
py
import os from unittest import TestCase from rhea.exceptions import RheaError from rhea.manager import Rhea from rhea.specs import UriSpec class TestRhea(TestCase): def setUp(self): os.environ['FOO_BAR_KEY'] = 'foo_bar' self.config = Rhea.read_configs( [os.environ, './tests/fixtures/configs/config_tests.json']) def test_get_from_os_env(self): assert self.config.get_string('FOO_BAR_KEY') == 'foo_bar' def test_reading_invalid_config_raises_error(self): with self.assertRaises(RheaError): Rhea.read_configs( ['./tests/fixtures/configs/invalid_config_tests.json']) def test_get_boolean(self): value = self.config.get_boolean('bool_key_1') self.assertEqual(value, True) value = self.config.get_boolean('bool_key_2') self.assertEqual(value, True) value = self.config.get_boolean('bool_key_3') self.assertEqual(value, False) value = self.config.get_boolean('bool_key_4') self.assertEqual(value, False) value = self.config.get_boolean('bool_list_key_1', is_list=True) self.assertEqual(value, [False, False, True, True, True, False]) with self.assertRaises(RheaError): self.config.get_boolean('bool_error_key_1') with self.assertRaises(RheaError): self.config.get_boolean('bool_error_key_2') with self.assertRaises(RheaError): self.config.get_boolean('bool_error_key_3') with self.assertRaises(RheaError): self.config.get_boolean('bool_error_key_4') with self.assertRaises(RheaError): self.config.get_boolean('bool_error_key_5') with self.assertRaises(RheaError): self.config.get_boolean('bool_list_key_1') with self.assertRaises(RheaError): self.config.get_boolean('bool_list_error_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_boolean('bool_list_error_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_boolean('bool_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_boolean('bool_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_boolean('bool_non_existing_key') with self.assertRaises(RheaError): self.config.get_boolean('bool_non_existing_key', is_list=True) self.assertEqual(self.config.get_boolean('bool_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_boolean( 'bool_non_existing_key', is_optional=True, default=True), True) self.assertEqual(self.config.get_boolean( 'bool_non_existing_key', is_list=True, is_optional=True), None) self.assertEqual(self.config.get_boolean( 'bool_non_existing_key', is_list=True, is_optional=True, default=[True, False]), [True, False]) def test_get_int(self): value = self.config.get_int('int_key_1') self.assertEqual(value, 123) value = self.config.get_int('int_key_2') self.assertEqual(value, 123) value = self.config.get_int('int_list_key_1', is_list=True) self.assertEqual(value, [123, 124, 125, 125]) with self.assertRaises(RheaError): self.config.get_int('int_error_key_1') with self.assertRaises(RheaError): self.config.get_int('int_error_key_2') with self.assertRaises(RheaError): self.config.get_int('int_error_key_3') with self.assertRaises(RheaError): self.config.get_int('int_list_key_1') with self.assertRaises(RheaError): self.config.get_int('int_list_error_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_int('int_list_error_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_int('int_list_error_key_3', is_list=True) with self.assertRaises(RheaError): self.config.get_int('int_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_int('int_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_int('int_non_existing_key') with self.assertRaises(RheaError): self.config.get_int('int_non_existing_key', is_list=True) self.assertEqual(self.config.get_int( 'int_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_int( 'int_non_existing_key', is_optional=True, default=34), 34) self.assertEqual(self.config.get_int( 'int_non_existing_key', is_list=True, is_optional=True), None) self.assertEqual(self.config.get_int( 'int_non_existing_key', is_list=True, is_optional=True, default=[34, 1]), [34, 1]) def test_get_float(self): value = self.config.get_float('float_key_1') self.assertEqual(value, 1.23) value = self.config.get_float('float_key_2') self.assertEqual(value, 1.23) value = self.config.get_float('float_key_3') self.assertEqual(value, 123) value = self.config.get_float('float_list_key_1', is_list=True) self.assertEqual(value, [1.23, 13.3, 4.4, 555., 66.]) with self.assertRaises(RheaError): self.config.get_float('float_error_key_1') with self.assertRaises(RheaError): self.config.get_float('float_error_key_2') with self.assertRaises(RheaError): self.config.get_float('float_error_key_3') with self.assertRaises(RheaError): self.config.get_float('float_error_key_4') with self.assertRaises(RheaError): self.config.get_float('float_list_key_1') with self.assertRaises(RheaError): self.config.get_float('float_list_error_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_float('float_list_error_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_float('float_list_error_key_3', is_list=True) with self.assertRaises(RheaError): self.config.get_float('float_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_float('float_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_float('float_non_existing_key') with self.assertRaises(RheaError): self.config.get_float('float_non_existing_key', is_list=True) self.assertEqual(self.config.get_float( 'float_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_float( 'float_non_existing_key', is_optional=True, default=3.4), 3.4) self.assertEqual(self.config.get_float( 'float_non_existing_key', is_list=True, is_optional=True), None) self.assertEqual(self.config.get_float( 'float_non_existing_key', is_list=True, is_optional=True, default=[3.4, 1.2]), [3.4, 1.2]) def test_get_string(self): value = self.config.get_string('string_key_1') self.assertEqual(value, "123") value = self.config.get_string('string_key_2') self.assertEqual(value, "1.23") value = self.config.get_string('string_key_3') self.assertEqual(value, "foo") value = self.config.get_string('string_key_4') self.assertEqual(value, "") value = self.config.get_string('string_list_key_1', is_list=True) self.assertEqual(value, ["123", "1.23", "foo", ""]) with self.assertRaises(RheaError): self.config.get_string('string_error_key_1') with self.assertRaises(RheaError): self.config.get_string('string_error_key_2') with self.assertRaises(RheaError): self.config.get_string('string_error_key_3') with self.assertRaises(RheaError): self.config.get_string('string_error_key_4') with self.assertRaises(RheaError): self.config.get_string('string_list_key_1') with self.assertRaises(RheaError): self.config.get_string('string_list_error_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_string('string_list_error_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_string('string_list_error_key_3', is_list=True) with self.assertRaises(RheaError): self.config.get_string('string_list_error_key_4', is_list=True) with self.assertRaises(RheaError): self.config.get_string('string_key_3', is_list=True) with self.assertRaises(RheaError): self.config.get_string('string_key_4', is_list=True) with self.assertRaises(RheaError): self.config.get_string('string_non_existing_key') with self.assertRaises(RheaError): self.config.get_string('string_non_existing_key', is_list=True) self.assertEqual(self.config.get_string( 'string_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_string( 'string_non_existing_key', is_optional=True, default='foo'), 'foo') self.assertEqual(self.config.get_string( 'string_non_existing_key', is_list=True, is_optional=True), None) self.assertEqual(self.config.get_string( 'string_non_existing_key', is_list=True, is_optional=True, default=['foo', 'bar']), ['foo', 'bar']) def test_get_dict(self): value = self.config.get_dict('dict_key_1') self.assertEqual(value, {"key1": "foo", "key2": 2, "key3": False, "key4": "1"}) value = self.config.get_dict('dict_list_key_1', is_list=True) self.assertEqual(value, [ {"key1": "foo", "key2": 2, "key3": False, "key4": "1"}, {"key3": True, "key4": "2"}, {"key1": False, "key2": "3"} ]) with self.assertRaises(RheaError): self.config.get_dict('dict_error_key_1') with self.assertRaises(RheaError): self.config.get_dict('dict_error_key_2') with self.assertRaises(RheaError): self.config.get_dict('dict_error_key_3') with self.assertRaises(RheaError): self.config.get_dict('dict_error_key_4') with self.assertRaises(RheaError): self.config.get_dict('dict_list_key_1') with self.assertRaises(RheaError): self.config.get_dict('dict_list_error_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_dict('dict_list_error_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_dict('dict_list_error_key_3', is_list=True) with self.assertRaises(RheaError): self.config.get_dict('dict_list_error_key_4', is_list=True) with self.assertRaises(RheaError): self.config.get_dict('dict_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_dict('dict_non_existing_key') with self.assertRaises(RheaError): self.config.get_dict('dict_non_existing_key', is_list=True) self.assertEqual(self.config.get_dict('dict_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_dict( 'dict_non_existing_key', is_optional=True, default={'foo': 'bar'}), {'foo': 'bar'}) self.assertEqual(self.config.get_dict( 'dict_non_existing_key', is_list=True, is_optional=True), None) self.assertEqual(self.config.get_dict( 'dict_non_existing_key', is_list=True, is_optional=True, default=[ {'foo': 'bar'}, {'foo': 'boo'}]), [{'foo': 'bar'}, {'foo': 'boo'}]) def test_get_uri(self): value = self.config.get_uri('uri_key_1') self.assertEqual(value, UriSpec("user", "pass", "siteweb.ca")) value = self.config.get_uri('uri_key_2') self.assertEqual(value, UriSpec("user2", "pass", "localhost:8080")) value = self.config.get_uri('uri_key_3') self.assertEqual(value, UriSpec("user2", "pass", "https://quay.io")) value = self.config.get_uri('uri_list_key_1', is_list=True) self.assertEqual(value, [ UriSpec("user", "pass", "siteweb.ca"), UriSpec("user2", "pass", "localhost:8080"), UriSpec("user2", "pass", "https://quay.io") ]) with self.assertRaises(RheaError): self.config.get_uri('uri_error_key_1') with self.assertRaises(RheaError): self.config.get_uri('uri_error_key_2') with self.assertRaises(RheaError): self.config.get_uri('uri_error_key_3') with self.assertRaises(RheaError): self.config.get_uri('uri_error_key_4') with self.assertRaises(RheaError): self.config.get_uri('uri_list_key_1') with self.assertRaises(RheaError): self.config.get_uri('uri_list_error_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_uri('uri_list_error_key_2', is_list=True) with self.assertRaises(RheaError): self.config.get_uri('uri_list_error_key_3', is_list=True) with self.assertRaises(RheaError): self.config.get_uri('uri_list_error_key_4', is_list=True) with self.assertRaises(RheaError): self.config.get_uri('uri_key_1', is_list=True) with self.assertRaises(RheaError): self.config.get_uri('uri_non_existing_key') with self.assertRaises(RheaError): self.config.get_uri('uri_non_existing_key', is_list=True) self.assertEqual(self.config.get_uri('uri_non_existing_key', is_optional=True), None) self.assertEqual( self.config.get_uri('uri_non_existing_key', is_optional=True, default=UriSpec("user2", "pass", "localhost:8080")), UriSpec("user2", "pass", "localhost:8080")) self.assertEqual( self.config.get_uri('uri_non_existing_key', is_list=True, is_optional=True), None) self.assertEqual( self.config.get_uri('uri_non_existing_key', is_list=True, is_optional=True, default=[UriSpec("user", "pass", "siteweb.ca"), UriSpec("user2", "pass", "localhost:8080")]), [UriSpec("user", "pass", "siteweb.ca"), UriSpec("user2", "pass", "localhost:8080")]) def test_get_list(self): value = self.config.get_list('list_key_1') self.assertEqual(value, ['user:[email protected]', "'pp'", '0.1', "'foo'"]) value = self.config.get_list('list_key_2') self.assertEqual(value, ['user1', 'user2', 'user3', 'user4', 'user5']) value = self.config.get_list('list_key_3') self.assertEqual(value, [False]) value = self.config.get_list('list_key_4') self.assertEqual(value, ['foo']) value = self.config.get_list('list_key_5') self.assertEqual(value, []) with self.assertRaises(RheaError): self.config.get_list('list_error_key_1') with self.assertRaises(RheaError): self.config.get_list('list_error_key_2') with self.assertRaises(RheaError): self.config.get_list('list_error_key_3') with self.assertRaises(RheaError): self.config.get_list('list_error_key_4') with self.assertRaises(RheaError): self.config.get_list('list_non_existing_key') self.assertEqual(self.config.get_list( 'list_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_list( 'list_non_existing_key', is_optional=True, default=['foo']), ['foo']) def test_get_dict_of_dicts(self): value = self.config.get_dict_of_dicts('dict_dicts_key_1') self.assertEqual(value, {'data1': {'mountPath': '/data/21', 'existingClaim': 'data-1-pvc'}}) value = self.config.get_dict_of_dicts('dict_dicts_key_2') self.assertEqual(value, { 'outputs1': {'mountPath': '/output/2', 'existingClaim': 'outputs-1-pvc'}, 'outputs2': {'mountPath': '/output/2', 'existingClaim': 'output-2-pvc'}}) value = self.config.get_dict_of_dicts('dict_dicts_key_3') self.assertEqual(value, None) with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_1') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_2') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_3') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_4') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_4') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_5') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_6') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_error_key_7') with self.assertRaises(RheaError): self.config.get_dict_of_dicts('dict_dicts_non_existing_key') self.assertEqual(self.config.get_dict_of_dicts( 'dict_dicts_non_existing_key', is_optional=True), None) self.assertEqual(self.config.get_dict_of_dicts( 'dict_dicts_non_existing_key', is_optional=True, default={}), {})
d80a97bb723810380e758ac7493d3b6fade462e5
afd957cf224d7c0b1b9c7216c9767fbea0dbcfea
/Python codebetter training/class&objects/program6.py
f3921d4e010c7788eb403b820c09daf12f21f848
[]
no_license
Chandu8817/python_code
d7fea1b81cbb84b98f5527beaa7350884f5e2ab8
2827ebeb463a764b67ba6621d08a58a3783d26e4
refs/heads/master
2023-05-03T01:09:37.199935
2021-05-28T13:07:39
2021-05-28T13:07:39
299,087,120
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
class Employe: name="rohan" def __init__(self,id,salary): self.id=id self.salary=salary def show(self): print(self.name,self.id,self.salary) obj=Employe(123,40000) obj.show()
c4dc8e90148e5925afe99b51bdd1f6a3b9dc57b6
956b70a8904fbbab3686f1b11e7ff1b6402caa48
/codecademy/student_become_teacher/lesson1.py
07e1de2ac66539c8d743b0f8c411c7d0c43c8a27
[]
no_license
udoyen/andela-homestead
3b839eec813084c48b8588f3d4977801077e360e
74405ae893d5f3b0548f840c6ca76a4b9315760f
refs/heads/master
2020-08-05T16:14:13.831835
2016-10-16T12:12:00
2016-10-16T12:12:00
66,066,631
0
0
null
null
null
null
UTF-8
Python
false
false
1,431
py
lloyd = { "name": "Lloyd", "homework": [90.0, 97.0, 75.0, 92.0], "quizzes": [88.0, 40.0, 94.0], "tests": [75.0, 90.0] } alice = { "name": "Alice", "homework": [100.0, 92.0, 98.0, 100.0], "quizzes": [82.0, 83.0, 91.0], "tests": [89.0, 97.0] } tyler = { "name": "Tyler", "homework": [0.0, 87.0, 75.0, 22.0], "quizzes": [0.0, 75.0, 78.0], "tests": [100.0, 100.0] } students = [lloyd, alice, tyler] for student in students: print(student['name']) print(student['homework']) print(student['quizzes']) print(student['tests']) print() def average(numbers): total = sum(numbers) total = float(total) return total / len(numbers) def get_average(student): homework = average(student['homework']) quizzes = average(student['quizzes']) tests = average(student['tests']) return (0.1 * homework) + (0.3 * quizzes) + (0.6 * tests) def get_letter_grade(score): if score >= 90: return "A" elif score >= 80: return "B" elif score >= 70: return "C" elif score >= 60: return "D" else: return "F" def get_class_average(students): results = [] for student in students: results.append(get_average(student)) return average(results) print(get_letter_grade(get_average(lloyd))) print(get_class_average(students)) print(get_letter_grade(get_class_average(students)))
257b3908e7b755a7f4c0fafd5ad2fd16de5664cd
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/169/usersdata/268/72565/submittedfiles/divisores.py
1d0ddbb1446164b961708d65187171252ce94f5d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
# -*- coding: utf-8 -*- import math n=int(input('Digite a quantidade de multiplos: ')) a=int(input('Digite o numero a : ')) b=int(input('DIgite o numero b : ')) i=1 if (n%2)==0: if (a<b): while(i<=n/2): multiploa=a*i print(multiploa) multiplob=b*i print(multiplob) i= i + 1 else: while(i<=n/2): multiplob=b*i print(multiplob) multiplob=a*i print(multiploa) i= i + 1 else: if (a<b): while(i<=(n//2)): multiploa=a*i print(multiploa) multiplob=b*i print(multiplob) i= i + 1 else: while(i<=n//2): multiplob=b*i print(multiplob) multiplob=a*i print(multiploa) i= i + 1 if(a%2!=0): if (a<b): multiploa=a*i print(multiploa) else : multiplob=b*i print(multiplob)
f3ab348e0be0a838a775ac8a6672141ced7a15de
ad206aa0d228d5d3e41261316b88e190437e21c4
/contrib/devtools/test-security-check.py
e179401c7ed762f5c793294d304d0b9f67e0dd66
[ "MIT" ]
permissive
gtacoin-dev/gtacoin
a0188517948afb4458913d87b2f600ffaf9b6803
f66f063b47ba973856c200074db1b95abf5ab794
refs/heads/master
2021-01-22T10:59:35.068066
2017-02-15T15:29:16
2017-02-15T15:29:16
82,058,190
0
0
null
null
null
null
UTF-8
Python
false
false
2,651
py
#!/usr/bin/python2 # Copyright (c) 2015-2016 The Gtacoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Test script for security-check.py ''' from __future__ import division,print_function import subprocess import sys import unittest def write_testcode(filename): with open(filename, 'w') as f: f.write(''' #include <stdio.h> int main() { printf("the quick brown fox jumps over the lazy god\\n"); return 0; } ''') def call_security_check(cc, source, executable, options): subprocess.check_call([cc,source,'-o',executable] + options) p = subprocess.Popen(['./security-check.py',executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) (stdout, stderr) = p.communicate() return (p.returncode, stdout.rstrip()) class TestSecurityChecks(unittest.TestCase): def test_ELF(self): source = 'test1.c' executable = 'test1' cc = 'gcc' write_testcode(source) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-zexecstack','-fno-stack-protector','-Wl,-znorelro']), (1, executable+': failed PIE NX RELRO Canary')) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fno-stack-protector','-Wl,-znorelro']), (1, executable+': failed PIE RELRO Canary')) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-znorelro']), (1, executable+': failed PIE RELRO')) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-znorelro','-pie','-fPIE']), (1, executable+': failed RELRO')) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-zrelro','-Wl,-z,now','-pie','-fPIE']), (0, '')) def test_PE(self): source = 'test1.c' executable = 'test1.exe' cc = 'i686-w64-mingw32-gcc' write_testcode(source) self.assertEqual(call_security_check(cc, source, executable, []), (1, executable+': failed PIE NX')) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat']), (1, executable+': failed PIE')) self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--dynamicbase']), (0, '')) if __name__ == '__main__': unittest.main()
7152ebbf5e92af8028c28d7c542e1b6f87c1066b
f183df1dcdfee18a77b95ba395ab1f7cc15a5a5b
/python/flask/ex03/env/bin/pygmentize
97ff469afb30e69e141002889a8e8a7f9789d71f
[]
no_license
ltakuno/arquivos
7686578fbdefaf04d11e738325d7a34631b4c113
c04198264cc9f32fd472453fea3b627a03794008
refs/heads/master
2023-01-24T13:11:29.861084
2021-10-26T10:52:03
2021-10-26T10:52:03
98,174,425
0
1
null
2023-01-11T12:02:14
2017-07-24T09:38:12
Python
UTF-8
Python
false
false
266
#!/home/leo/Desktop/Pessoal/arquivos/python/flask/ex03/env/bin/python # -*- coding: utf-8 -*- import re import sys from pygments.cmdline import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
698c24e7ea2ec00d6d552bae36318d0420665ece
36b46e4c1d6ea1294269d57fc5467be600748db0
/batch2/day15/image.py
44f34193a29679072d7f522a0a466e3a6c53499d
[]
no_license
shaadomanthra/cbpython
5a4f6b588d59e99d4d01ae19b018efe964f6a1c4
57e855b49221ff1a502c3f80a3ee62815f619c51
refs/heads/master
2022-09-26T09:19:17.168692
2020-06-04T12:15:08
2020-06-04T12:15:08
262,913,907
0
7
null
null
null
null
UTF-8
Python
false
false
171
py
from cv2 import cv2 img = cv2.imread('f1.jpg') cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows() # pip install opencv-python # pip uninstall opencv-python
226587a22ab6d94abd1eaa631c9cf7d4c94bcbe3
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/GTop/glibtop_fsusage.py
ce0b9f44de9aed3e9066212f3111af5827cdf720
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
5,569
py
# encoding: utf-8 # module gi.repository.GTop # from /usr/lib64/girepository-1.0/GTop-2.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi class glibtop_fsusage(__gi.Struct): """ :Constructors: :: glibtop_fsusage() """ def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self): # real signature unknown; restored from __doc__ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass bavail = property(lambda self: object(), lambda self, v: None, lambda self: None) # default bfree = property(lambda self: object(), lambda self, v: None, lambda self: None) # default blocks = property(lambda self: object(), lambda self, v: None, lambda self: None) # default block_size = property(lambda self: object(), lambda self, v: None, lambda self: None) # default ffree = property(lambda self: object(), lambda self, v: None, lambda self: None) # default files = property(lambda self: object(), lambda self, v: None, lambda self: None) # default flags = property(lambda self: object(), lambda self, v: None, lambda self: None) # default read = property(lambda self: object(), lambda self, v: None, lambda self: None) # default write = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(glibtop_fsusage), '__module__': 'gi.repository.GTop', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'glibtop_fsusage' objects>, '__weakref__': <attribute '__weakref__' of 'glibtop_fsusage' objects>, '__doc__': None, 'flags': <property object at 0x7f9700c73770>, 'blocks': <property object at 0x7f9700c73860>, 'bfree': <property object at 0x7f9700c73950>, 'bavail': <property object at 0x7f9700c73a40>, 'files': <property object at 0x7f9700c73b30>, 'ffree': <property object at 0x7f9700c73c20>, 'block_size': <property object at 0x7f9700c73d10>, 'read': <property object at 0x7f9700c73e00>, 'write': <property object at 0x7f9700c73ef0>})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(glibtop_fsusage)
05e941b211ab3c58e344cee9ddbef30df1cc5c81
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-compute/azure/mgmt/compute/v2018_04_01/models/virtual_machine_capture_result.py
2972e1f2fcda79359a1c924857d0281796beedb2
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
1,895
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sub_resource import SubResource class VirtualMachineCaptureResult(SubResource): """Output of virtual machine capture operation. Variables are only populated by the server, and will be ignored when sending a request. :param id: Resource Id :type id: str :ivar schema: the schema of the captured virtual machine :vartype schema: str :ivar content_version: the version of the content :vartype content_version: str :ivar parameters: parameters of the captured virtual machine :vartype parameters: object :ivar resources: a list of resource items of the captured virtual machine :vartype resources: list[object] """ _validation = { 'schema': {'readonly': True}, 'content_version': {'readonly': True}, 'parameters': {'readonly': True}, 'resources': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'schema': {'key': '$schema', 'type': 'str'}, 'content_version': {'key': 'contentVersion', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': 'object'}, 'resources': {'key': 'resources', 'type': '[object]'}, } def __init__(self, **kwargs): super(VirtualMachineCaptureResult, self).__init__(**kwargs) self.schema = None self.content_version = None self.parameters = None self.resources = None
ef806be5869ec78751bf85efc29d25df572e1eb4
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_385/ch19_2019_03_12_19_38_14_663227.py
d013924ef9a73fc01e5311fa6f7f4983c515a29b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
import math def calcula_distancia_do_projetil(v,a,y): d=(v**2/(2*9.8))*((1+(1+(2*(9.8)*y)/((v**2)*(math.sin(a))**2)))**(0.5))*math.sin(2*a) return d
d796be626c577ac549f8adc4a444f94bcb301597
0d24036dcf8736c0392a1ee1c2f3b45633221d8a
/etc/src/genpy-mpls-ldp-oper/cisco_ios_xr_mpls_ldp_oper/mpls_ldp/global/standby/bindings_summary_all/ldp_binding_summary_pb2.py
c426f8c3156829c6c44f31a013afca2915718b26
[]
no_license
mspiez/telemetry_collector
c4b97c6686748fc20748898a25e9fc756d2d0b63
52ed12c06debfe04181f0bfea9854a66ed8bb3df
refs/heads/master
2020-12-19T23:28:08.358956
2020-05-02T19:54:38
2020-05-02T19:54:38
235,883,080
0
0
null
null
null
null
UTF-8
Python
false
true
15,058
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: cisco_ios_xr_mpls_ldp_oper/mpls_ldp/global/standby/bindings_summary_all/ldp_binding_summary.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='cisco_ios_xr_mpls_ldp_oper/mpls_ldp/global/standby/bindings_summary_all/ldp_binding_summary.proto', package='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all', syntax='proto3', serialized_pb=_b('\nacisco_ios_xr_mpls_ldp_oper/mpls_ldp/global/standby/bindings_summary_all/ldp_binding_summary.proto\x12Gcisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all\"\x1a\n\x18ldp_binding_summary_KEYS\"\x9f\x04\n\x13ldp_binding_summary\x12\x62\n\x03vrf\x18\x32 \x01(\x0b\x32U.cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_vrf_info\x12\x16\n\x0e\x61\x64\x64ress_family\x18\x33 \x01(\t\x12p\n\x07\x62ind_af\x18\x34 \x03(\x0b\x32_.cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af\x12\x18\n\x10\x62inding_no_route\x18\x35 \x01(\r\x12\x1e\n\x16\x62inding_local_no_route\x18\x36 \x01(\r\x12\x1a\n\x12\x62inding_local_null\x18\x37 \x01(\r\x12#\n\x1b\x62inding_local_implicit_null\x18\x38 \x01(\r\x12#\n\x1b\x62inding_local_explicit_null\x18\x39 \x01(\r\x12\x1e\n\x16\x62inding_local_non_null\x18: \x01(\r\x12\x19\n\x11\x62inding_local_oor\x18; \x01(\r\x12\x1e\n\x16lowest_allocated_label\x18< \x01(\r\x12\x1f\n\x17highest_allocated_label\x18= \x01(\r\"(\n\x0cldp_vrf_info\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\r\"\xb6\x01\n\x16ldp_binding_summary_af\x12\x16\n\x0e\x61\x64\x64ress_family\x18\x01 \x01(\t\x12\x17\n\x0flast_lib_update\x18\x02 \x01(\r\x12%\n\x1dlib_minimum_revision_sent_all\x18\x03 \x01(\r\x12\x15\n\rbinding_total\x18\x04 \x01(\r\x12\x15\n\rbinding_local\x18\x05 \x01(\r\x12\x16\n\x0e\x62inding_remote\x18\x06 \x01(\rb\x06proto3') ) _LDP_BINDING_SUMMARY_KEYS = _descriptor.Descriptor( name='ldp_binding_summary_KEYS', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_KEYS', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=174, serialized_end=200, ) _LDP_BINDING_SUMMARY = _descriptor.Descriptor( name='ldp_binding_summary', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='vrf', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.vrf', index=0, number=50, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='address_family', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.address_family', index=1, number=51, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bind_af', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.bind_af', index=2, number=52, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_no_route', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_no_route', index=3, number=53, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local_no_route', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_local_no_route', index=4, number=54, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local_null', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_local_null', index=5, number=55, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local_implicit_null', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_local_implicit_null', index=6, number=56, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local_explicit_null', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_local_explicit_null', index=7, number=57, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local_non_null', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_local_non_null', index=8, number=58, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local_oor', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.binding_local_oor', index=9, number=59, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lowest_allocated_label', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.lowest_allocated_label', index=10, number=60, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='highest_allocated_label', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary.highest_allocated_label', index=11, number=61, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=203, serialized_end=746, ) _LDP_VRF_INFO = _descriptor.Descriptor( name='ldp_vrf_info', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_vrf_info', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_vrf_info.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='id', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_vrf_info.id', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=748, serialized_end=788, ) _LDP_BINDING_SUMMARY_AF = _descriptor.Descriptor( name='ldp_binding_summary_af', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='address_family', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af.address_family', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='last_lib_update', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af.last_lib_update', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lib_minimum_revision_sent_all', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af.lib_minimum_revision_sent_all', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_total', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af.binding_total', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_local', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af.binding_local', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='binding_remote', full_name='cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af.binding_remote', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=791, serialized_end=973, ) _LDP_BINDING_SUMMARY.fields_by_name['vrf'].message_type = _LDP_VRF_INFO _LDP_BINDING_SUMMARY.fields_by_name['bind_af'].message_type = _LDP_BINDING_SUMMARY_AF DESCRIPTOR.message_types_by_name['ldp_binding_summary_KEYS'] = _LDP_BINDING_SUMMARY_KEYS DESCRIPTOR.message_types_by_name['ldp_binding_summary'] = _LDP_BINDING_SUMMARY DESCRIPTOR.message_types_by_name['ldp_vrf_info'] = _LDP_VRF_INFO DESCRIPTOR.message_types_by_name['ldp_binding_summary_af'] = _LDP_BINDING_SUMMARY_AF _sym_db.RegisterFileDescriptor(DESCRIPTOR) ldp_binding_summary_KEYS = _reflection.GeneratedProtocolMessageType('ldp_binding_summary_KEYS', (_message.Message,), dict( DESCRIPTOR = _LDP_BINDING_SUMMARY_KEYS, __module__ = 'cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_pb2' # @@protoc_insertion_point(class_scope:cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_KEYS) )) _sym_db.RegisterMessage(ldp_binding_summary_KEYS) ldp_binding_summary = _reflection.GeneratedProtocolMessageType('ldp_binding_summary', (_message.Message,), dict( DESCRIPTOR = _LDP_BINDING_SUMMARY, __module__ = 'cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_pb2' # @@protoc_insertion_point(class_scope:cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary) )) _sym_db.RegisterMessage(ldp_binding_summary) ldp_vrf_info = _reflection.GeneratedProtocolMessageType('ldp_vrf_info', (_message.Message,), dict( DESCRIPTOR = _LDP_VRF_INFO, __module__ = 'cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_pb2' # @@protoc_insertion_point(class_scope:cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_vrf_info) )) _sym_db.RegisterMessage(ldp_vrf_info) ldp_binding_summary_af = _reflection.GeneratedProtocolMessageType('ldp_binding_summary_af', (_message.Message,), dict( DESCRIPTOR = _LDP_BINDING_SUMMARY_AF, __module__ = 'cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_pb2' # @@protoc_insertion_point(class_scope:cisco_ios_xr_mpls_ldp_oper.mpls_ldp.global.standby.bindings_summary_all.ldp_binding_summary_af) )) _sym_db.RegisterMessage(ldp_binding_summary_af) # @@protoc_insertion_point(module_scope)
badaf0e123f718073e3bea705aaaaec24180f8a9
430bd23decf16dc572a587b7af9f5c8e7dea5e6b
/clients/python/swagger_client/apis/leaderboard_api.py
e0906cb597edb1fa6abaa8f8a43e89f91389cf1f
[ "Apache-2.0" ]
permissive
jltrade/api-connectors
332d4df5e7e60bd27b6c5a43182df7d99a665972
fa2cf561b414e18e9d2e1b5d68e94cc710d315e5
refs/heads/master
2020-06-19T10:20:46.022967
2016-09-24T13:12:17
2016-09-24T13:12:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,571
py
# coding: utf-8 """ BitMEX API REST API for the BitMEX.com trading platform.<br><br><a href=\"/app/restAPI\">REST Documentation</a><br><a href=\"/app/wsAPI\">Websocket Documentation</a> OpenAPI spec version: 1.2.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class LeaderboardApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def leaderboard_get(self, **kwargs): """ Get current leaderboard. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.leaderboard_get(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str method: Ranking type. Options: \"notional\", \"ROE\" :return: list[Leaderboard] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.leaderboard_get_with_http_info(**kwargs) else: (data) = self.leaderboard_get_with_http_info(**kwargs) return data def leaderboard_get_with_http_info(self, **kwargs): """ Get current leaderboard. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.leaderboard_get_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str method: Ranking type. Options: \"notional\", \"ROE\" :return: list[Leaderboard] If the method is called asynchronously, returns the request thread. """ all_params = ['method'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method leaderboard_get" % key ) params[key] = val del params['kwargs'] resource_path = '/leaderboard'.replace('{format}', 'json') path_params = {} query_params = {} if 'method' in params: query_params['method'] = params['method'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'application/xml', 'text/xml', 'application/javascript', 'text/javascript']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json', 'application/x-www-form-urlencoded']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Leaderboard]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'))
7cc31d11d80087d2904c8f28fcb8dd61c8dc7740
dab68b742da7945b75ac957deed6e9a72283934f
/Golf-Report/config/settings.py
26159dff1d88930d1b129440dcef5b3d7dd6faba
[]
no_license
hyunmin0317/Stock-Insight
90dd03665c8c5edbc041284ccefa78e877f9c3c3
558f4da73e62aa064994e680d923ba68d5b8ca4f
refs/heads/master
2023-06-29T23:56:42.979878
2021-08-02T02:15:08
2021-08-02T02:15:08
389,097,513
1
0
null
null
null
null
UTF-8
Python
false
false
3,463
py
""" Django settings for config project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-1v-(2=2!&i%)-iti4z!_%f-kahyn0zj)@dndhorz@qrt1px()u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'sass_processor', 'stock.apps.StockConfig', ] SASS_PROCESSOR_ENABLED = True SASS_PROCESSOR_ROOT = os.path.join(BASE_DIR, 'static') MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'ko-kr' TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / 'static', ] # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
408b33ccab6b8d5c16cf60ae37e714dabbbb9d32
57120090948f99de2258a6f01a0cc65443441ce9
/hyperclass/graph/exe/pygsp.py
0f58c1bf6917edac5157eac592fec080a30215f0
[]
no_license
MysteriousSonOfGod/hyperclass
c67eff91f6f0f64fa4a92f8567243ef5cd8fa3c8
e8cec11b364e8b049e7432b95ce20a2c5de94235
refs/heads/master
2023-01-28T16:42:09.289664
2020-12-07T22:54:50
2020-12-07T22:54:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
from pygsp import graphs import xarray as xa import numpy as np from hyperclass.data.spatial.tile import Tile, Block import os, math, sys block_shape = (500, 500) block_indices = (0,0) image_name = "ang20170720t004130_corr_v2p9" N_neighbors = 8 dm = DataManager( image_name, block_shape=block_shape ) tile: Tile = dm.getTile() block = tile.getBlock( *block_indices ) data: np.ndarray = block.getPointData().values graph = graphs.NNGraph( data, 'knn', True, True, True, N_neighbors ) print (".")
22e8481e0326ea50c9064e5eb25279ea2c83211d
e2c79931c43a1a6e566d05aafa2655ba8d128657
/triv/io/mimetypes/__init__.py
b4a7c6465896d004c2a48d6e9ebe9d57bcfa4de6
[]
no_license
pombredanne/trivio.datasources
c45c772270ba6ad80ade84d9b4be6b024e4a8f2d
00f0c341e776c77516b17be036569d0eac7cdced
refs/heads/master
2021-01-12T22:38:35.572615
2013-07-02T21:20:47
2013-07-02T21:20:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
from . import application_json from . import application_x_arc from . import application_x_json_stream from . import application_x_hadoop_sequence from . import text_csv
d3d9bf07d206c7c98ab748808ca1ca6ff279dd7a
37438771565238194ea997fa65619bd32c823706
/detect_tracking/18.5.31_first_success/wyz_ws/devel/lib/python2.7/dist-packages/image_geometry/__init__.py
cfa550544b8f9c86f4e2a7cf963edf5e2583218a
[]
no_license
Aaron9477/restore
b040b8be695c513946c0243c4acb735f427d8bba
8dc13ed7cf0c4e5cde911169d11e330d826f40bd
refs/heads/master
2021-09-15T10:50:59.969952
2018-05-31T03:11:55
2018-05-31T03:11:55
110,834,815
0
1
null
null
null
null
UTF-8
Python
false
false
1,050
py
# -*- coding: utf-8 -*- # generated from catkin/cmake/template/__init__.py.in # keep symbol table as clean as possible by deleting all unnecessary symbols from os import path as os_path from sys import path as sys_path from pkgutil import extend_path __extended_path = "/home/ubuntu/WYZ/wyz_ws/src/vision_opencv-kinetic/image_geometry/src".split(";") for p in reversed(__extended_path): sys_path.insert(0, p) del p del sys_path __path__ = extend_path(__path__, __name__) del extend_path __execfiles = [] for p in __extended_path: src_init_file = os_path.join(p, __name__ + '.py') if os_path.isfile(src_init_file): __execfiles.append(src_init_file) else: src_init_file = os_path.join(p, __name__, '__init__.py') if os_path.isfile(src_init_file): __execfiles.append(src_init_file) del src_init_file del p del os_path del __extended_path for __execfile in __execfiles: with open(__execfile, 'r') as __fh: exec(__fh.read()) del __fh del __execfile del __execfiles
7a3fe8d03675f0f2f25deafd18430d4b97b6da39
52b5773617a1b972a905de4d692540d26ff74926
/.history/sets_20200605203258.py
f16a7163f3eec97f0550e2e5a9c3cfa32aa6775a
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
import json def Strings(str): values = {} newArray = [] keys = [] finalArr = [] for i in str: newArray.append(i.split(":")) for j in range(len(newArray)): if newArray[j][0] in values: values[newArray[j][0]] += int(newArray[j][1]) else: values[newArray[j][0]] = int(newArray[j][1]) for k in values: keys.append(k) keys = sorted(keys) newString = " " for i in range(len(keys)-1): if keys[i] in values: newString += keys[i] + ":"+ json.dumps(values[keysi]) + "," print(newString) Strings(["Z:1","B:3","C:3","Z:4","B:2"])
e338718887a056636b2427531d8b2b6041d3fd9f
6e68584f2819351abe628b659c01184f51fec976
/Centre_College/CSC_117/CSC_117_Python_Files/monteCarloGUI.py
0b71697ca698fbc152b4b222c923e09586afee51
[]
no_license
DanSGraham/code
0a16a2bfe51cebb62819cd510c7717ae24b12d1b
fc54b6d50360ae12f207385b5d25adf72bfa8121
refs/heads/master
2020-03-29T21:09:18.974467
2017-06-14T04:04:48
2017-06-14T04:04:48
36,774,542
0
0
null
null
null
null
UTF-8
Python
false
false
2,178
py
# # An approximation of pi #Daniel Graham #This method should give an approximation of pi due to the ratio of circle to rectangle. #Since the area of the circle = pi and the area of the rectangle will = 4 by multiplying by 4, #the function returns an approximation of pi import math import random from graphics import * def distance_from_center(x,y): distance1 = math.sqrt((x)**2+(y)**2) return distance1 def mainGUI(): win = GraphWin("Pi Approximation", 1000,1000) win.setCoords( -1.5,-1.5,1.5,1.5) square = Rectangle(Point(-1,1), Point(1,-1)) circle = Circle(Point(0,0),1) title = Text(Point(0,1.25), "Pi Approximation") prompt = Text(Point(-.2,-1.25), "How many points would you like to use? \n Click after Entry!") prompt_entry = Entry(Point(0.4,-1.25), 8) title.draw(win) prompt.draw(win) prompt_entry.draw(win) circle.draw(win) square.draw(win) win.getMouse() while prompt_entry.getText() == "": win.getMouse() prompt.undraw() prompt_entry.undraw() number_of_dots = int(prompt_entry.getText()) inside_circle = 0 outside_circle = 0 for a in xrange(number_of_dots): pointx = random.uniform(-1,1) pointy = random.uniform(-1,1) point = Point(pointx,pointy) point.draw(win) distance = distance_from_center(pointx, pointy) if distance <= 1.0: inside_circle += 1 point.setFill('red') else: outside_circle +=1 point.setFill('blue') pi_approx = inside_circle/float((inside_circle+outside_circle))*4 text_string = "According to this approximation, pi = " + str(pi_approx) points_string = "You used " + str(number_of_dots) + " points to approximate pi. There were " + str(inside_circle) + " points inside the circle \n Click when Finished!" end_text = Text(Point(0,-1.2), text_string) points_text = Text(Point(0, -1.30), points_string) points_text.draw(win) end_text.draw(win) win.getMouse() win.close() mainGUI()
48551fb220fdc14d1dfe72e50fcfacfa205e2e76
e005e5fa3fdf18cf5a72d14379568b97dfd4754c
/lect02_codes/lect02_codes/proj/py_version/main.py
997ea3e164e26dc651460daca9e531d6e62e75f9
[]
no_license
evaseemefly/learn_sourcecode_DataAnalysis
1962b23fa46987c671025c157be542fcd2eef60f
ec73d3962966d94ccb2e2f0a82486e8ac615c449
refs/heads/master
2018-10-25T16:56:48.367272
2018-10-08T04:18:38
2018-10-08T04:18:38
107,554,982
0
1
null
null
null
null
UTF-8
Python
false
false
4,623
py
# -*- coding: utf-8 -*- """ 作者: 梁斌 版本: 1.0 日期: 2017/10 实战案例2:麦当劳菜单营养成分分析 该案例有配套的讲解版本,在jupyter演示版中可找到 声明:小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用, 不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意, 我们将保留一切通过法律手段追究违反者的权利 """ import os import pandas as pd # 指定数据集路径 dataset_path = '../data' datafile = os.path.join(dataset_path, 'menu.csv') # 分析的数据列 used_cols = ['Calories', 'Calories from Fat', 'Total Fat', 'Cholesterol', 'Sugars'] def inspect_data(df_data): """ 查看数据集基本信息 """ print('\n===================== 数据预览: =====================') print(df_data.head()) print('\n===================== 数据信息: =====================') print(df_data.info()) print('\n===================== 数据基本统计信息: =====================') print(df_data.describe()) def main(): """ 主函数 """ # 读入数据 menu_data = pd.read_csv(datafile) # 查看数据集基本信息 inspect_data(menu_data) # 任务1. 按单品类型分析查看数据 print('\n===================== 任务1. 按单品类型分析查看数据 =====================') print('\n===================== 营养成分最高的单品: =====================') max_idxs = [menu_data[col].argmax() for col in used_cols] for col, max_idx in zip(used_cols, max_idxs): print('{} 最高的单品:{}'.format(col, menu_data.iloc[max_idx]['Item'])) print('\n===================== 营养成分最低的单品: =====================') min_idxs = [menu_data[col].argmin() for col in used_cols] for col, min_idx in zip(used_cols, min_idxs): print('{} 最低的单品:{}'.format(col, menu_data.iloc[min_idx]['Item'])) # 任务2. 按菜单类型分析查看数据 print('\n===================== 任务2. 按菜单类型分析查看数据 =====================') print('\n===================== 菜单类型的单品数目分布: =====================') cat_grouped = menu_data.groupby('Category') print('菜单类型的单品数目:') print(cat_grouped.size().sort_values(ascending=False)) # 菜单类型的营养成分分布 print('\n===================== 菜单类型的营养成分分布: =====================') print(cat_grouped[used_cols].mean()) print('\n===================== 营养成分最高的菜单类型: =====================') max_cats = [cat_grouped[col].mean().argmax() for col in used_cols] for col, cat in zip(used_cols, max_cats): print('{} 最高的菜单类型:{}'.format(col, cat)) print('\n===================== 营养成分最低的菜单类型: =====================') min_cats = [cat_grouped[col].mean().argmin() for col in used_cols] for col, cat in zip(used_cols, min_cats): print('{} 最低的菜单类型:{}'.format(col, cat)) # 任务3. 查看分析单品及菜单的份量 print('\n===================== 任务3. 查看分析单品及菜单的份量 =====================') # 过滤数据,只保留包含 'g'的单品 sel_menu_data = menu_data[menu_data['Serving Size'].str.contains('g')].copy() def proc_size_str(size_str): """ 处理serving size字符串,返回g """ start_idx = size_str.index('(') + 1 end_idx = size_str.index('g') size_val = size_str[start_idx: end_idx] return float(size_val) sel_menu_data['Size'] = sel_menu_data['Serving Size'].apply(proc_size_str) inspect_data(sel_menu_data) max_idx = sel_menu_data['Size'].argmax() print('份量最多的单品:{},{}g'.format(sel_menu_data.iloc[max_idx]['Item'], sel_menu_data['Size'].max())) min_idx = sel_menu_data['Size'].argmin() print('份量最少的单品:{},{}g'.format(sel_menu_data.iloc[min_idx]['Item'], sel_menu_data['Size'].min())) sel_cat_grouped = sel_menu_data.groupby('Category') print('份量最多的类别:{},{}g'.format(sel_cat_grouped['Size'].mean().argmax(), sel_cat_grouped['Size'].mean().max())) print('份量最少的类别:{},{}g'.format(sel_cat_grouped['Size'].mean().argmin(), sel_cat_grouped['Size'].mean().min())) if __name__ == '__main__': main()
21f20cba381b35b90be5ac12499ce8e389d2d0bd
8e03374062754d568a75f6a0938224c1de3baf3c
/news_api/news/migrations/0002_auto_20210505_0040.py
4911de0d05217fd93a635da0b7fa7a442a90b9aa
[]
no_license
PythonDjangoJavascript/news_api
dbad588cea338cedb085241713a1d7fe4e162d77
493f0ccc6dea577fe5a1fbeb03520ff2066bc12a
refs/heads/main
2023-04-22T17:21:53.520734
2021-05-09T06:00:16
2021-05-09T06:00:16
364,386,913
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
# Generated by Django 3.2.1 on 2021-05-05 00:40 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('news', '0001_initial'), ] operations = [ migrations.AddField( model_name='article', name='loacation', field=models.CharField(default=django.utils.timezone.now, max_length=100), preserve_default=False, ), migrations.AlterField( model_name='article', name='publication_date', field=models.DateField(blank=True, null=True), ), ]
a6ddac7dbb84f364bb7a1c24bb39dc942613b16a
f850e0f75a76c500f5ba8a9ab6fa6d5f40d22b23
/cutecharts_demo/__init__.py
c6223d8fde18a448c03c6f8cbd0affbf3a225cd8
[ "MIT" ]
permissive
jay20161013/pywebio-chart-gallery
805afa2643b0d330a4a2f80f1e0a8827e8f61afe
11fd8a70b2e9ff5482cf5924b110a11f3469edfc
refs/heads/master
2023-03-20T01:58:30.979109
2021-03-18T12:48:31
2021-03-18T12:48:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,503
py
from collections import OrderedDict from pywebio.output import * from pywebio.session import hold, get_info from .demos.example_bar import main as bar from .demos.example_line import main as line from .demos.example_page import main as page from .demos.example_pie import main as pie from .demos.example_radar import main as radar from .demos.example_scatter import main as scatter all_demos = OrderedDict([ ("Bar", bar), ("Line", line), ("Pie", pie), ("Radar", radar), ("Scatter", scatter), ("Page", page), ]) def t(eng, chinese): """return English or Chinese text according to the user's browser language""" return chinese if 'zh' in get_info().user_language else eng @use_scope('demo', clear=True) def show_demo(name): if name not in all_demos: return all_demos[name]() put_html('<a href="https://github.com/wang0618/pywebio-chart-gallery/blob/master' '/cutecharts_demo/demos/example_%s.py" target="_blank">%s</a>' % (name.lower(), t('Source code', '源码'))) scroll_to('demo-list', 'top') async def cutecharts(): """PyWebIO cutechart Demo Demo of using cutechart.py for data visualization in PyWebIO. 在PyWebIO中使用 cutechart.py 进行数据可视化示例""" put_markdown(t(r"""## Cutecharts.py [cutecharts.py](https://github.com/cutecharts/cutecharts.py) is a hand drawing style charts library for Python which uses [chart.xkcd](https://github.com/timqian/chart.xkcd) as underlying implementation. In PyWebIO, you can use the following code to output the cutecharts.py chart instance: ```python # `chart` is cutecharts chart instance pywebio.output.put_html(chart.render_notebook()) ``` For details, please refer to the source code of the demo below. ## Demos List """, r"""## Cutecharts.py [cutecharts.py](https://github.com/cutecharts/cutecharts.py) 是一个可以创建具有卡通风格的可视化图表的python库。底层使用了 [chart.xkcd](https://github.com/timqian/chart.xkcd) Javascript库。 PyWebIO 支持输出使用 cutecharts.py 库创建的图表。使用方式为在PyWebIO会话中调用 ```python # chart 为 cutecharts 的图表实例 pywebio.output.put_html(chart.render_notebook()) ``` 具体可以参考下面demo中的源码。 ## Demos List """), strip_indent=4) set_scope('demo-list') put_buttons(list(all_demos.keys()), onclick=show_demo) await hold()
99a358a0f5eecbab63327e91984945a6ce554457
6b791247919f7de90c8402abcca64b32edd7a29b
/multiprocessing/managers.py
e5683440caccf121433a5b534bb9999f17bba11c
[ "Apache-2.0" ]
permissive
theclashingfritz/Cog-Invasion-Online-Dump
a9bce15c9f37b6776cecd80b309f3c9ec5b1ec36
2561abbacb3e2e288e06f3f04b935b5ed589c8f8
refs/heads/master
2021-01-04T06:44:04.295001
2020-02-14T05:23:01
2020-02-14T05:23:01
240,434,213
1
0
null
null
null
null
UTF-8
Python
false
false
28,874
py
# uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: multiprocessing.managers __all__ = [ 'BaseManager', 'SyncManager', 'BaseProxy', 'Token'] import os, sys, weakref, threading, array, Queue from traceback import format_exc from multiprocessing import Process, current_process, active_children, Pool, util, connection from multiprocessing.process import AuthenticationString from multiprocessing.forking import exit, Popen, assert_spawning, ForkingPickler from multiprocessing.util import Finalize, info try: from cPickle import PicklingError except ImportError: from pickle import PicklingError def reduce_array(a): return ( array.array, (a.typecode, a.tostring())) ForkingPickler.register(array.array, reduce_array) view_types = [ type(getattr({}, name)()) for name in ('items', 'keys', 'values') ] class Token(object): __slots__ = ('typeid', 'address', 'id') def __init__(self, typeid, address, id): self.typeid, self.address, self.id = typeid, address, id def __getstate__(self): return ( self.typeid, self.address, self.id) def __setstate__(self, state): self.typeid, self.address, self.id = state def __repr__(self): return 'Token(typeid=%r, address=%r, id=%r)' % ( self.typeid, self.address, self.id) def dispatch(c, id, methodname, args=(), kwds={}): c.send((id, methodname, args, kwds)) kind, result = c.recv() if kind == '#RETURN': return result raise convert_to_error(kind, result) def convert_to_error(kind, result): if kind == '#ERROR': return result if kind == '#TRACEBACK': return RemoteError(result) if kind == '#UNSERIALIZABLE': return RemoteError('Unserializable message: %s\n' % result) return ValueError('Unrecognized message type') class RemoteError(Exception): def __str__(self): return '\n' + '-' * 75 + '\n' + str(self.args[0]) + '-' * 75 def all_methods(obj): temp = [] for name in dir(obj): func = getattr(obj, name) if hasattr(func, '__call__'): temp.append(name) return temp def public_methods(obj): return [ name for name in all_methods(obj) if name[0] != '_' ] class Server(object): public = [ 'shutdown', 'create', 'accept_connection', 'get_methods', 'debug_info', 'number_of_objects', 'dummy', 'incref', 'decref'] def __init__(self, registry, address, authkey, serializer): self.registry = registry self.authkey = AuthenticationString(authkey) Listener, Client = listener_client[serializer] self.listener = Listener(address=address, backlog=16) self.address = self.listener.address self.id_to_obj = {'0': (None, ())} self.id_to_refcount = {} self.mutex = threading.RLock() self.stop = 0 return def serve_forever(self): current_process()._manager_server = self try: while 1: try: c = self.listener.accept() except (OSError, IOError): continue t = threading.Thread(target=self.handle_request, args=(c,)) t.daemon = True t.start() except (KeyboardInterrupt, SystemExit): pass finally: self.stop = 999 self.listener.close() def handle_request(self, c): funcname = result = request = None try: connection.deliver_challenge(c, self.authkey) connection.answer_challenge(c, self.authkey) request = c.recv() ignore, funcname, args, kwds = request func = getattr(self, funcname) except Exception: msg = ( '#TRACEBACK', format_exc()) else: try: result = func(c, *args, **kwds) except Exception: msg = ( '#TRACEBACK', format_exc()) else: msg = ( '#RETURN', result) try: c.send(msg) except Exception as e: try: c.send(('#TRACEBACK', format_exc())) except Exception: pass util.info('Failure to send message: %r', msg) util.info(' ... request was %r', request) util.info(' ... exception was %r', e) c.close() return def serve_client(self, conn): util.debug('starting server thread to service %r', threading.current_thread().name) recv = conn.recv send = conn.send id_to_obj = self.id_to_obj while not self.stop: try: methodname = obj = None request = recv() ident, methodname, args, kwds = request obj, exposed, gettypeid = id_to_obj[ident] if methodname not in exposed: raise AttributeError('method %r of %r object is not in exposed=%r' % ( methodname, type(obj), exposed)) function = getattr(obj, methodname) try: res = function(*args, **kwds) except Exception as e: msg = ( '#ERROR', e) else: typeid = gettypeid and gettypeid.get(methodname, None) if typeid: rident, rexposed = self.create(conn, typeid, res) token = Token(typeid, self.address, rident) msg = ('#PROXY', (rexposed, token)) else: msg = ( '#RETURN', res) except AttributeError: if methodname is None: msg = ( '#TRACEBACK', format_exc()) else: try: fallback_func = self.fallback_mapping[methodname] result = fallback_func(self, conn, ident, obj, *args, **kwds) msg = ( '#RETURN', result) except Exception: msg = ( '#TRACEBACK', format_exc()) except EOFError: util.debug('got EOF -- exiting thread serving %r', threading.current_thread().name) sys.exit(0) except Exception: msg = ( '#TRACEBACK', format_exc()) try: try: send(msg) except Exception as e: send(('#UNSERIALIZABLE', repr(msg))) except Exception as e: util.info('exception in thread serving %r', threading.current_thread().name) util.info(' ... message was %r', msg) util.info(' ... exception was %r', e) conn.close() sys.exit(1) return def fallback_getvalue(self, conn, ident, obj): return obj def fallback_str(self, conn, ident, obj): return str(obj) def fallback_repr(self, conn, ident, obj): return repr(obj) fallback_mapping = {'__str__': fallback_str, '__repr__': fallback_repr, '#GETVALUE': fallback_getvalue} def dummy(self, c): pass def debug_info(self, c): self.mutex.acquire() try: result = [] keys = self.id_to_obj.keys() keys.sort() for ident in keys: if ident != '0': result.append(' %s: refcount=%s\n %s' % ( ident, self.id_to_refcount[ident], str(self.id_to_obj[ident][0])[:75])) return ('\n').join(result) finally: self.mutex.release() def number_of_objects(self, c): return len(self.id_to_obj) - 1 def shutdown(self, c): try: util.debug('manager received shutdown message') c.send(('#RETURN', None)) if sys.stdout != sys.__stdout__: util.debug('resetting stdout, stderr') sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ util._run_finalizers(0) for p in active_children(): util.debug('terminating a child process of manager') p.terminate() for p in active_children(): util.debug('terminating a child process of manager') p.join() util._run_finalizers() util.info('manager exiting with exitcode 0') except: import traceback traceback.print_exc() finally: exit(0) return def create(self, c, typeid, *args, **kwds): self.mutex.acquire() try: callable, exposed, method_to_typeid, proxytype = self.registry[typeid] if callable is None: obj = args[0] else: obj = callable(*args, **kwds) if exposed is None: exposed = public_methods(obj) if method_to_typeid is not None: exposed = list(exposed) + list(method_to_typeid) ident = '%x' % id(obj) util.debug('%r callable returned object with id %r', typeid, ident) self.id_to_obj[ident] = ( obj, set(exposed), method_to_typeid) if ident not in self.id_to_refcount: self.id_to_refcount[ident] = 0 self.incref(c, ident) return ( ident, tuple(exposed)) finally: self.mutex.release() return def get_methods(self, c, token): return tuple(self.id_to_obj[token.id][1]) def accept_connection(self, c, name): threading.current_thread().name = name c.send(('#RETURN', None)) self.serve_client(c) return def incref(self, c, ident): self.mutex.acquire() try: self.id_to_refcount[ident] += 1 finally: self.mutex.release() def decref(self, c, ident): self.mutex.acquire() try: self.id_to_refcount[ident] -= 1 if self.id_to_refcount[ident] == 0: del self.id_to_obj[ident] del self.id_to_refcount[ident] util.debug('disposing of obj with id %r', ident) finally: self.mutex.release() class State(object): __slots__ = [ 'value'] INITIAL = 0 STARTED = 1 SHUTDOWN = 2 listener_client = {'pickle': ( connection.Listener, connection.Client), 'xmlrpclib': ( connection.XmlListener, connection.XmlClient)} class BaseManager(object): _registry = {} _Server = Server def __init__(self, address=None, authkey=None, serializer='pickle'): if authkey is None: authkey = current_process().authkey self._address = address self._authkey = AuthenticationString(authkey) self._state = State() self._state.value = State.INITIAL self._serializer = serializer self._Listener, self._Client = listener_client[serializer] return def __reduce__(self): return ( type(self).from_address, ( self._address, self._authkey, self._serializer)) def get_server(self): return Server(self._registry, self._address, self._authkey, self._serializer) def connect(self): Listener, Client = listener_client[self._serializer] conn = Client(self._address, authkey=self._authkey) dispatch(conn, None, 'dummy') self._state.value = State.STARTED return def start(self, initializer=None, initargs=()): if initializer is not None and not hasattr(initializer, '__call__'): raise TypeError('initializer must be a callable') reader, writer = connection.Pipe(duplex=False) self._process = Process(target=type(self)._run_server, args=( self._registry, self._address, self._authkey, self._serializer, writer, initializer, initargs)) ident = (':').join((str(i) for i in self._process._identity)) self._process.name = type(self).__name__ + '-' + ident self._process.start() writer.close() self._address = reader.recv() reader.close() self._state.value = State.STARTED self.shutdown = util.Finalize(self, type(self)._finalize_manager, args=( self._process, self._address, self._authkey, self._state, self._Client), exitpriority=0) return @classmethod def _run_server(cls, registry, address, authkey, serializer, writer, initializer=None, initargs=()): if initializer is not None: initializer(*initargs) server = cls._Server(registry, address, authkey, serializer) writer.send(server.address) writer.close() util.info('manager serving at %r', server.address) server.serve_forever() return def _create(self, typeid, *args, **kwds): conn = self._Client(self._address, authkey=self._authkey) try: id, exposed = dispatch(conn, None, 'create', (typeid,) + args, kwds) finally: conn.close() return (Token(typeid, self._address, id), exposed) def join(self, timeout=None): self._process.join(timeout) def _debug_info(self): conn = self._Client(self._address, authkey=self._authkey) try: return dispatch(conn, None, 'debug_info') finally: conn.close() return def _number_of_objects(self): conn = self._Client(self._address, authkey=self._authkey) try: return dispatch(conn, None, 'number_of_objects') finally: conn.close() return def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown() @staticmethod def _finalize_manager(process, address, authkey, state, _Client): if process.is_alive(): util.info('sending shutdown message to manager') try: conn = _Client(address, authkey=authkey) try: dispatch(conn, None, 'shutdown') finally: conn.close() except Exception: pass process.join(timeout=0.2) if process.is_alive(): util.info('manager still alive') if hasattr(process, 'terminate'): util.info('trying to `terminate()` manager process') process.terminate() process.join(timeout=0.1) if process.is_alive(): util.info('manager still alive after terminate') state.value = State.SHUTDOWN try: del BaseProxy._address_to_local[address] except KeyError: pass return address = property(lambda self: self._address) @classmethod def register(cls, typeid, callable=None, proxytype=None, exposed=None, method_to_typeid=None, create_method=True): if '_registry' not in cls.__dict__: cls._registry = cls._registry.copy() if proxytype is None: proxytype = AutoProxy exposed = exposed or getattr(proxytype, '_exposed_', None) method_to_typeid = method_to_typeid or getattr(proxytype, '_method_to_typeid_', None) if method_to_typeid: for key, value in method_to_typeid.items(): pass cls._registry[typeid] = (callable, exposed, method_to_typeid, proxytype) if create_method: def temp(self, *args, **kwds): util.debug('requesting creation of a shared %r object', typeid) token, exp = self._create(typeid, *args, **kwds) proxy = proxytype(token, self._serializer, manager=self, authkey=self._authkey, exposed=exp) conn = self._Client(token.address, authkey=self._authkey) dispatch(conn, None, 'decref', (token.id,)) return proxy temp.__name__ = typeid setattr(cls, typeid, temp) return class ProcessLocalSet(set): def __init__(self): util.register_after_fork(self, lambda obj: obj.clear()) def __reduce__(self): return ( type(self), ()) class BaseProxy(object): _address_to_local = {} _mutex = util.ForkAwareThreadLock() def __init__(self, token, serializer, manager=None, authkey=None, exposed=None, incref=True): BaseProxy._mutex.acquire() try: tls_idset = BaseProxy._address_to_local.get(token.address, None) if tls_idset is None: tls_idset = ( util.ForkAwareLocal(), ProcessLocalSet()) BaseProxy._address_to_local[token.address] = tls_idset finally: BaseProxy._mutex.release() self._tls = tls_idset[0] self._idset = tls_idset[1] self._token = token self._id = self._token.id self._manager = manager self._serializer = serializer self._Client = listener_client[serializer][1] if authkey is not None: self._authkey = AuthenticationString(authkey) else: if self._manager is not None: self._authkey = self._manager._authkey else: self._authkey = current_process().authkey if incref: self._incref() util.register_after_fork(self, BaseProxy._after_fork) return def _connect(self): util.debug('making connection to manager') name = current_process().name if threading.current_thread().name != 'MainThread': name += '|' + threading.current_thread().name conn = self._Client(self._token.address, authkey=self._authkey) dispatch(conn, None, 'accept_connection', (name,)) self._tls.connection = conn return def _callmethod(self, methodname, args=(), kwds={}): try: conn = self._tls.connection except AttributeError: util.debug('thread %r does not own a connection', threading.current_thread().name) self._connect() conn = self._tls.connection conn.send((self._id, methodname, args, kwds)) kind, result = conn.recv() if kind == '#RETURN': return result if kind == '#PROXY': exposed, token = result proxytype = self._manager._registry[token.typeid][-1] proxy = proxytype(token, self._serializer, manager=self._manager, authkey=self._authkey, exposed=exposed) conn = self._Client(token.address, authkey=self._authkey) dispatch(conn, None, 'decref', (token.id,)) return proxy raise convert_to_error(kind, result) return def _getvalue(self): return self._callmethod('#GETVALUE') def _incref(self): conn = self._Client(self._token.address, authkey=self._authkey) dispatch(conn, None, 'incref', (self._id,)) util.debug('INCREF %r', self._token.id) self._idset.add(self._id) state = self._manager and self._manager._state self._close = util.Finalize(self, BaseProxy._decref, args=( self._token, self._authkey, state, self._tls, self._idset, self._Client), exitpriority=10) return @staticmethod def _decref(token, authkey, state, tls, idset, _Client): idset.discard(token.id) if state is None or state.value == State.STARTED: try: util.debug('DECREF %r', token.id) conn = _Client(token.address, authkey=authkey) dispatch(conn, None, 'decref', (token.id,)) except Exception as e: util.debug('... decref failed %s', e) else: util.debug('DECREF %r -- manager already shutdown', token.id) if not idset and hasattr(tls, 'connection'): util.debug('thread %r has no more proxies so closing conn', threading.current_thread().name) tls.connection.close() del tls.connection return def _after_fork(self): self._manager = None try: self._incref() except Exception as e: util.info('incref failed: %s' % e) return def __reduce__(self): kwds = {} if Popen.thread_is_spawning(): kwds['authkey'] = self._authkey if getattr(self, '_isauto', False): kwds['exposed'] = self._exposed_ return ( RebuildProxy, ( AutoProxy, self._token, self._serializer, kwds)) return ( RebuildProxy, ( type(self), self._token, self._serializer, kwds)) def __deepcopy__(self, memo): return self._getvalue() def __repr__(self): return '<%s object, typeid %r at %s>' % ( type(self).__name__, self._token.typeid, '0x%x' % id(self)) def __str__(self): try: return self._callmethod('__repr__') except Exception: return repr(self)[:-1] + "; '__str__()' failed>" def RebuildProxy(func, token, serializer, kwds): server = getattr(current_process(), '_manager_server', None) if server and server.address == token.address: return server.id_to_obj[token.id][0] incref = kwds.pop('incref', True) and not getattr(current_process(), '_inheriting', False) return func(token, serializer, incref=incref, **kwds) return def MakeProxyType(name, exposed, _cache={}): exposed = tuple(exposed) try: return _cache[(name, exposed)] except KeyError: pass dic = {} for meth in exposed: exec 'def %s(self, *args, **kwds):\n return self._callmethod(%r, args, kwds)' % (meth, meth) in dic ProxyType = type(name, (BaseProxy,), dic) ProxyType._exposed_ = exposed _cache[(name, exposed)] = ProxyType return ProxyType def AutoProxy(token, serializer, manager=None, authkey=None, exposed=None, incref=True): _Client = listener_client[serializer][1] if exposed is None: conn = _Client(token.address, authkey=authkey) try: exposed = dispatch(conn, None, 'get_methods', (token,)) finally: conn.close() if authkey is None and manager is not None: authkey = manager._authkey if authkey is None: authkey = current_process().authkey ProxyType = MakeProxyType('AutoProxy[%s]' % token.typeid, exposed) proxy = ProxyType(token, serializer, manager=manager, authkey=authkey, incref=incref) proxy._isauto = True return proxy class Namespace(object): def __init__(self, **kwds): self.__dict__.update(kwds) def __repr__(self): items = self.__dict__.items() temp = [] for name, value in items: if not name.startswith('_'): temp.append('%s=%r' % (name, value)) temp.sort() return 'Namespace(%s)' % str.join(', ', temp) class Value(object): def __init__(self, typecode, value, lock=True): self._typecode = typecode self._value = value def get(self): return self._value def set(self, value): self._value = value def __repr__(self): return '%s(%r, %r)' % (type(self).__name__, self._typecode, self._value) value = property(get, set) def Array(typecode, sequence, lock=True): return array.array(typecode, sequence) class IteratorProxy(BaseProxy): _exposed_ = ('__next__', 'next', 'send', 'throw', 'close') def __iter__(self): return self def __next__(self, *args): return self._callmethod('__next__', args) def next(self, *args): return self._callmethod('next', args) def send(self, *args): return self._callmethod('send', args) def throw(self, *args): return self._callmethod('throw', args) def close(self, *args): return self._callmethod('close', args) class AcquirerProxy(BaseProxy): _exposed_ = ('acquire', 'release') def acquire(self, blocking=True): return self._callmethod('acquire', (blocking,)) def release(self): return self._callmethod('release') def __enter__(self): return self._callmethod('acquire') def __exit__(self, exc_type, exc_val, exc_tb): return self._callmethod('release') class ConditionProxy(AcquirerProxy): _exposed_ = ('acquire', 'release', 'wait', 'notify', 'notify_all') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) def notify(self): return self._callmethod('notify') def notify_all(self): return self._callmethod('notify_all') class EventProxy(BaseProxy): _exposed_ = ('is_set', 'set', 'clear', 'wait') def is_set(self): return self._callmethod('is_set') def set(self): return self._callmethod('set') def clear(self): return self._callmethod('clear') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) class NamespaceProxy(BaseProxy): _exposed_ = ('__getattribute__', '__setattr__', '__delattr__') def __getattr__(self, key): if key[0] == '_': return object.__getattribute__(self, key) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__getattribute__', (key,)) def __setattr__(self, key, value): if key[0] == '_': return object.__setattr__(self, key, value) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__setattr__', (key, value)) def __delattr__(self, key): if key[0] == '_': return object.__delattr__(self, key) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__delattr__', (key,)) class ValueProxy(BaseProxy): _exposed_ = ('get', 'set') def get(self): return self._callmethod('get') def set(self, value): return self._callmethod('set', (value,)) value = property(get, set) BaseListProxy = MakeProxyType('BaseListProxy', ( '__add__', '__contains__', '__delitem__', '__delslice__', '__getitem__', '__getslice__', '__len__', '__mul__', '__reversed__', '__rmul__', '__setitem__', '__setslice__', 'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort', '__imul__')) class ListProxy(BaseListProxy): def __iadd__(self, value): self._callmethod('extend', (value,)) return self def __imul__(self, value): self._callmethod('__imul__', (value,)) return self DictProxy = MakeProxyType('DictProxy', ( '__contains__', '__delitem__', '__getitem__', '__len__', '__setitem__', 'clear', 'copy', 'get', 'has_key', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values')) ArrayProxy = MakeProxyType('ArrayProxy', ( '__len__', '__getitem__', '__setitem__', '__getslice__', '__setslice__')) PoolProxy = MakeProxyType('PoolProxy', ( 'apply', 'apply_async', 'close', 'imap', 'imap_unordered', 'join', 'map', 'map_async', 'terminate')) PoolProxy._method_to_typeid_ = {'apply_async': 'AsyncResult', 'map_async': 'AsyncResult', 'imap': 'Iterator', 'imap_unordered': 'Iterator'} class SyncManager(BaseManager): pass SyncManager.register('Queue', Queue.Queue) SyncManager.register('JoinableQueue', Queue.Queue) SyncManager.register('Event', threading.Event, EventProxy) SyncManager.register('Lock', threading.Lock, AcquirerProxy) SyncManager.register('RLock', threading.RLock, AcquirerProxy) SyncManager.register('Semaphore', threading.Semaphore, AcquirerProxy) SyncManager.register('BoundedSemaphore', threading.BoundedSemaphore, AcquirerProxy) SyncManager.register('Condition', threading.Condition, ConditionProxy) SyncManager.register('Pool', Pool, PoolProxy) SyncManager.register('list', list, ListProxy) SyncManager.register('dict', dict, DictProxy) SyncManager.register('Value', Value, ValueProxy) SyncManager.register('Array', Array, ArrayProxy) SyncManager.register('Namespace', Namespace, NamespaceProxy) SyncManager.register('Iterator', proxytype=IteratorProxy, create_method=False) SyncManager.register('AsyncResult', create_method=False)
ea9458c6ac74bdd22e6377f815c1fe355c5d392b
6d8c61b72db2afb6c6e7689ccf8efc8ea22a58b1
/backend/manage.py
13ed3e7ef0dd4a308ffbffd6fc7b8c72ed547b1b
[]
no_license
crowdbotics-apps/msm-sjshjs34-dev-12857
56f9eb4428489fb8141063badaaf8ec5a9380a10
b8b82ad77d0dc7b5e3227183bb514d51f5084945
refs/heads/master
2022-12-18T21:14:01.968255
2020-10-07T06:39:26
2020-10-07T06:39:26
301,946,361
0
0
null
null
null
null
UTF-8
Python
false
false
642
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'msm_sjshjs34_dev_12857.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
439395335e5c739d4423a055f98518f3acc20b6f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02580/s760103061.py
925ab9a2461c29ace7811e08760b425431497890
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
def resolve(): #n=int(input()) #a,b=map(int,input().split()) #x=list(map(int,input().split())) #a=[list(map(lambda x:int(x)%2,input().split())) for _ in range(h)] import sys input = sys.stdin.readline H,W,m=map(int,input().split()) bomb=set() cnt1=[0 for i in range(H)] cnt2=[0 for i in range(W)] for i in range(m): h,w=map(int,input().split()) bomb.add((h-1,w-1)) cnt1[h-1]+=1 cnt2[w-1]+=1 m1=max(cnt1) m2=max(cnt2) hk,wk=[],[] for i,x in enumerate(cnt1): if x==m1: hk.append(i) for i,x in enumerate(cnt2): if x==m2: wk.append(i) ans=m1+m2 for i in hk: for j in wk: if (i,j) in bomb: continue print(ans) exit() print(ans-1) if __name__ == '__main__': resolve()
391d9a14de710453f5a3315da0ab8bf862bcd5f2
93e5b82332af9f0d3e203d086e30794fb90a2086
/ForKids/chapter11/dark_green_circle.py
e339c298cdebe175e39607c47f1ada7d0798a7ae
[]
no_license
swell1009/ex
cfaae0b5fe917f12416170dce60f7dea8194f368
29b274fb51adbdc43af6ebecaec89c97bc58be6f
refs/heads/master
2020-04-04T10:15:20.578932
2018-11-22T06:27:30
2018-11-22T06:27:30
155,848,187
0
0
null
null
null
null
UTF-8
Python
false
false
171
py
import turtle t = turtle.Pen() def mycircle(red, green, blue): t.color(red, green, blue) t.begin_fill() t.circle(50) t.end_fill() mycircle(0, 0.5, 0)
18e21f4ddcedd079fc47959f47eab0660531d78c
d326cd8d4ca98e89b32e6a6bf6ecb26310cebdc1
/BioinformaticsStronghold/rna/rna.py
adb1292a38f53d25bd1f4e80d516beb0647b67f3
[]
no_license
dswisher/rosalind
d6af5195cdbe03adb5a19ed60fcbf8c05beac784
4519740350e47202f7a45ce70e434f7ee15c6afc
refs/heads/master
2021-08-09T02:58:17.131164
2017-11-12T01:26:26
2017-11-12T01:26:26
100,122,283
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
import sys if len(sys.argv) < 2: print 'You must specify the name of the file to load.' sys.exit(1) s = file(sys.argv[1]).read() rna = '' for c in s: if c == 'T': rna += 'U' else: rna += c print rna
1c05115db2ff9b5a220b165aa2ded0b8753fb727
5c72ec8fb05492ebbb97c2a2a1b24e85c4a2b03e
/Algorithms and data structures/2 Data structures/Arrays/Reverse/reverse.py
f0e937528bea08b1ba71b9194fbe5c14007a6914
[]
no_license
mxmaslin/Shultais-education
2b732a9dfd713fcc4c7bd29101fae4e4c2d7ffae
b7e82aa34b304a090a1acd16d309f95550c59dca
refs/heads/master
2020-08-31T21:21:28.801596
2019-11-05T16:24:43
2019-11-05T16:24:43
218,789,130
0
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
class Array: """ Линейный статический массив. """ def __init__(self, size): # Данные массива, изначально массив пустой и все его элементы заполнены None. # То есть сразу выделяем массив фиксированного объема. self.data = [None] * size # Длина заполненного массива. # По умолчанию 0, так как массив пустой. self.length = 0 # Полный размер массива. self.size = size def append(self, value): """ Добавление нового элемента в конец линейного массива. Время работы O(1). """ if self.length == self.size: raise OverflowError self.data[self.length] = value self.length += 1 def reverse(self): """ Разворачивает массив. """ half_arr_length = self.length // 2 for i in range(half_arr_length): self.data[i], self.data[self.length-i-1] = self.data[self.length-i-1], self.data[i] def __str__(self): """ Возвращает все элементы массива в виде строки. """ return "[" + ", ".join(map(str, self.data[:self.length])) + "]" array = Array(4) array.append(6) array.append(2) array.append(1) array.append(9) array.reverse() assert str(array) == '[9, 1, 2, 6]' array = Array(5) array.append(6) array.append(2) array.append(1) array.append(9) array.append(10) array.reverse() assert str(array) == '[10, 9, 1, 2, 6]'
8598a3824baa01b0f2e672df3a660f0fa4b48861
40e9169343968444c764b41f5945c6e00ad6ecd6
/test_for_calc_test.py
115d2e221016755bd9f2368e9c04786f6923ff2c
[]
no_license
a-bautista/ci-python
62ff4b3a19f9c293f665a4e62a44936c9ac001ce
19f9ef9db261897a3ef5977e710ca42ee98de662
refs/heads/master
2020-04-15T01:37:31.290988
2019-01-06T07:15:21
2019-01-06T07:15:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
import calc_test class TestCalculator: def test_addition(self): assert 4 == calc_test.add(2,2) def test_subtraction(self): assert 2 == calc_test.subtract(4,2)
953c91eff3d40c25d9b77ced31dd89cc264c21d9
6982c3c54ee9199d93fb89c61cfdcba15b9b7012
/fluentpython/chapter11/demo06.py
94b5b1596302e2ffce45b78a46450e090bfe2b27
[]
no_license
gzgdouru/python_study
a640e1097ebc27d12049ded53fb1af3ba9729bac
e24b39e82e39ee5a5e54566781457e18c90a122a
refs/heads/master
2020-03-29T11:33:13.150869
2019-03-08T09:24:29
2019-03-08T09:24:29
149,858,658
0
1
null
null
null
null
UTF-8
Python
false
false
506
py
''' 多继承和方法解析顺序 ''' class A: def ping(self): print("ping:", self) class B(A): def pong(self): print("pong:", self) class C(A): def pong(self): print("PONG:", self) class D(B, C): def ping(self): super().ping() print("pong-ping:", self) def pingpong(self): self.ping() super().ping() self.pong() super().pong() C.pong(self) if __name__ == "__main__": d = D() d.pingpong()
6d7d036f9849749bfb43e031add73277c67f841f
b2ba670818623f8ab18162382f7394baed97b7cb
/test-data/AndroidSlicer/Carnote/DD/17.py
32b94fd9d389f16b7824dc82e3080ae2e9a2589b
[ "MIT" ]
permissive
hsumyatwin/ESDroid-artifact
012c26c40537a79b255da033e7b36d78086b743a
bff082c4daeeed62ceda3d715c07643203a0b44b
refs/heads/main
2023-04-11T19:17:33.711133
2022-09-30T13:40:23
2022-09-30T13:40:23
303,378,286
1
1
null
null
null
null
UTF-8
Python
false
false
1,385
py
#start monkey test seedNo 0 import os; from subprocess import Popen from subprocess import PIPE from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice, MonkeyImage from com.android.monkeyrunner.MonkeyDevice import takeSnapshot from com.android.monkeyrunner.easy import EasyMonkeyDevice from com.android.monkeyrunner.easy import By from com.android.chimpchat.hierarchyviewer import HierarchyViewer from com.android.monkeyrunner import MonkeyView import random import sys import subprocess from sys import exit from random import randint device = MonkeyRunner.waitForConnection() package = 'com.spisoft.quicknote' activity ='com.spisoft.quicknote.MainActivity' runComponent = package+'/'+activity device.startActivity(component=runComponent) MonkeyRunner.sleep(0.5) MonkeyRunner.sleep(0.5) device.touch(945,1127, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(982,153, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(699,932, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(923,1695, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(963,1730, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(62,124, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(165,437, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(432,463, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(660,748, 'DOWN_AND_UP') MonkeyRunner.sleep(0.5) device.touch(467,678, 'DOWN_AND_UP')
e4c2776272edbecaf19e7be9738e39202d4db21b
bf1257f42fbef87d3e2c41414c2215e46c3b7fa0
/day3/db_demo_01/manage.py
8a1ccc29497f268c38e449e6c4eae5e4df59509d
[ "Apache-2.0" ]
permissive
gaohj/django1903
29746e32bdb56451ccde0a56534ded8da311f035
af14b0e46831f64b25a791053be05e1bea457b73
refs/heads/master
2020-09-22T17:09:20.703440
2019-12-18T09:36:03
2019-12-18T09:36:03
225,280,582
1
1
null
null
null
null
UTF-8
Python
false
false
651
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'db_demo_01.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
da294679cccbfb84c52a9e21d94a08a84ffd77b2
723e7aab2dddb92655801bd7cfe1469d08e664c6
/reveal_fp7_module/reveal-popularity-prediction/reveal_popularity_prediction/output/wp5_output.py
72312b2ee91f439c1e552471e58e9c0c7dd361a5
[ "Apache-2.0" ]
permissive
elceespatial/news-popularity-prediction
2fdf1186782da7a7604aeffcbb3eeed46214b47e
5f66982c659de017665116297bb4fd29ca13f835
refs/heads/master
2022-02-09T03:27:49.179710
2017-12-15T17:08:10
2017-12-15T17:08:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,663
py
# -*- coding: <UTF-8> -*- __author__ = 'Georgios Rizos ([email protected])' import json from kombu.utils import uuid from reveal_popularity_prediction.output.rabbitmq_util import rabbitmq_server_service,\ establish_rabbitmq_connection,\ simple_notification, simpler_notification def publish_to_wp5(prediction_json, rabbitmq_dict, assessment_id): rabbitmq_uri = rabbitmq_dict["rabbitmq_uri"] rabbitmq_queue = rabbitmq_dict["rabbitmq_queue"] rabbitmq_exchange = rabbitmq_dict["rabbitmq_exchange"] rabbitmq_routing_key = rabbitmq_dict["rabbitmq_routing_key"] rabbitmq_channel = rabbitmq_dict["channel"] # rabbitmq_server_service("restart") # rabbitmq_connection = establish_rabbitmq_connection(rabbitmq_uri) # Make wp5 json report. json_report = make_w5_json_report(prediction_json, assessment_id) json_report_string = json.dumps(json_report) # print("wp5", json_report_string) # simple_notification(rabbitmq_connection, rabbitmq_queue, rabbitmq_exchange, rabbitmq_routing_key, json_report_string) simpler_notification(rabbitmq_channel, rabbitmq_queue, rabbitmq_exchange, rabbitmq_routing_key, json_report_string) def make_w5_json_report(prediction_json, assessment_id): json_report = dict() tweet_url = form_tweet_url(prediction_json) highly_controversial = is_highly_controversial(prediction_json) json_report["certh:tweet_url"] = tweet_url json_report["certh:highly_controversial"] = highly_controversial json_report["certh:item_url"] = prediction_json["url"] json_report["certh:time_posted"] = prediction_json["snapshots"][-1]["timestamp_list"][0] json_report["certh:assessment_timestamp"] = prediction_json["assessment_timestamp"] json_report["certh:assessment_id"] = assessment_id json_report["certh:platform"] = prediction_json["platform_name"] json_report["certh:current_time_stats"] = form_current_time_stats(prediction_json) json_report["certh:prediction_stats"] = form_prediction_stats(prediction_json) return json_report def form_tweet_url(item): user_screen_name = item["user_screen_name"] tweet_id = item["tweet_id"] tweet_url = "https://twitter.com/" + user_screen_name + "/status/" + repr(tweet_id) return tweet_url def is_highly_controversial(item): if item["predictions"]["controversiality"] > 0.1: highly_controversial = True else: highly_controversial = False return highly_controversial def form_features_dict(item): features_dict = dict() for feature_name, feature_value in item["snapshots"][-1]["features"].items(): features_dict["certh:" + feature_name] = feature_value return features_dict def form_current_time_stats(item): current_time_stats_dict = dict() current_time_stats_dict["certh:time_collected"] = item["tweet_timestamp"] current_time_stats_dict["certh:features"] = form_features_dict(item) if item["platform_name"] == "YouTube": current_time_stats_dict["certh:user_set"] = ["https://www.youtube.com/channel/" + user_url for user_url in item["snapshots"][-1]["user_set"]] elif item["platform_name"] == "Reddit": current_time_stats_dict["certh:user_set"] = ["https://www.reddit.com/user/" + user_url for user_url in item["snapshots"][-1]["user_set"]] else: print("Invalid platform name.") raise RuntimeError current_time_stats_dict["certh:comment_count"] = item["targets"]["comment_count"] current_time_stats_dict["certh:user_count"] = item["targets"]["user_count"] current_time_stats_dict["certh:upvote_count"] = item["targets"]["upvote_count"] current_time_stats_dict["certh:downvote_count"] = item["targets"]["downvote_count"] current_time_stats_dict["certh:score"] = item["targets"]["score"] current_time_stats_dict["certh:controversiality"] = item["targets"]["controversiality"] return current_time_stats_dict def form_prediction_stats(item): prediction_stats_dict = dict() prediction_stats_dict["certh:prediction_window"] = [item["prediction_window"]["prediction_lower_timestamp"], item["prediction_window"]["prediction_upper_timestamp"]] prediction_stats_dict["certh:comment_count_prediction"] = item["predictions"]["comments"] prediction_stats_dict["certh:user_count_prediction"] = item["predictions"]["users"] prediction_stats_dict["certh:score_prediction"] = item["predictions"]["score"] prediction_stats_dict["certh:controversiality_prediction"] = item["predictions"]["controversiality"] return prediction_stats_dict def check_wp5_rabbitmq_connection(wp5_rabbitmq_connection, wp5_rabbitmq_queue, wp5_rabbitmq_exchange, wp5_rabbitmq_routing_key, rabbitmq_connection, rabbitmq_queue, rabbitmq_exchange, rabbitmq_routing_key, assessment_id): wp5_rabbitmq_exchange = assessment_id + "_certh_popularity_prediction" wp5_rabbitmq_queue = "certh_popularity_prediction.gen-%s" % uuid() wp5_rabbitmq_routing_key = "reveal_routing" if wp5_rabbitmq_connection is None: wp5_rabbitmq_connection = rabbitmq_connection return wp5_rabbitmq_connection,\ wp5_rabbitmq_queue,\ wp5_rabbitmq_exchange,\ wp5_rabbitmq_routing_key
ca2302979f2083dfd6d0626801152c39e5a0d6b1
8c2f8c6a355a0a0514ebeb8c686be43e38624c3a
/checkModels.py
51dca65172a5dca80ff316af71b487d63c8284a3
[]
no_license
nickvandewiele/RMG-tests
0e5e16f904164444ded845a8784f18f31c8394ff
e07fafe5a6cb19c2f8df109a22445f34a45a0af4
refs/heads/master
2020-12-24T19:04:51.047741
2016-01-24T20:51:12
2016-01-24T20:51:12
50,184,904
0
0
null
2016-01-24T20:51:12
2016-01-22T14:05:46
null
UTF-8
Python
false
false
10,094
py
#!/usr/bin/env python # encoding: utf-8 ################################################################################ # # RMG - Reaction Mechanism Generator # # Copyright (c) 2009-2011 by the RMG Team ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the 'Software'), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ################################################################################ import sys import os import os.path import math import logging import argparse from rmgpy.tools.diff_models import execute def parseCommandLineArguments(): parser = argparse.ArgumentParser() parser.add_argument('name', metavar='NAME', type=str, nargs=1, help='Name of test target model') parser.add_argument('chemkin', metavar='CHEMKIN', type=str, nargs=1, help='the Chemkin file of the tested model') parser.add_argument('speciesDict', metavar='SPECIESDICT', type=str, nargs=1, help='the species dictionary file of the tested model') args = parser.parse_args() return args def main(): """ Driver function that parses command line arguments and passes them to the execute function. """ args = parseCommandLineArguments() initializeLog(logging.WARNING, 'comparison.log') name = args.name[0] chemkin = os.path.join(os.getcwd(), args.chemkin[0]) speciesDict = os.path.join(os.getcwd(), args.speciesDict[0]) check(name, chemkin, speciesDict) def check(name, chemkin, speciesDict): """ Compare the provided chemkin model to the default chemkin model. """ filename_chemkin = os.path.split(chemkin)[-1] filename_spcDict = os.path.split(speciesDict)[-1] folder = os.path.join(os.getcwd(),'testing/check/', name) chemkinOrig = os.path.join(folder,filename_chemkin) speciesDictOrig = os.path.join(folder,filename_spcDict) kwargs = { 'wd': os.getcwd(), 'web': True, } thermo, thermoOrig = None, None commonSpecies, uniqueSpeciesTest, uniqueSpeciesOrig, commonReactions, uniqueReactionsTest, uniqueReactionsOrig = \ execute(chemkin, speciesDict, thermo, chemkinOrig, speciesDictOrig, thermoOrig, **kwargs) errorModel = checkModel(commonSpecies, uniqueSpeciesTest, uniqueSpeciesOrig, commonReactions, uniqueReactionsTest, uniqueReactionsOrig) errorSpecies = checkSpecies(commonSpecies, uniqueSpeciesTest, uniqueSpeciesOrig) errorReactions = checkReactions(commonReactions, uniqueReactionsTest, uniqueReactionsOrig) def checkModel(commonSpecies, uniqueSpeciesTest, uniqueSpeciesOrig, commonReactions, uniqueReactionsTest, uniqueReactionsOrig): """ Compare the species and reaction count of both models. """ testModelSpecies = len(commonSpecies) + len(uniqueSpeciesTest) origModelSpecies = len(commonSpecies) + len(uniqueSpeciesOrig) logging.error('Test model has {} species.'.format(testModelSpecies)) logging.error('Original model has {} species.'.format(origModelSpecies)) testModelRxns = len(commonReactions) + len(uniqueReactionsTest) origModelRxns = len(commonReactions) + len(uniqueReactionsOrig) logging.error('Test model has {} reactions.'.format(testModelRxns)) logging.error('Original model has {} reactions.'.format(origModelRxns)) return (testModelSpecies != origModelSpecies) or (testModelRxns != origModelRxns) def checkSpecies(commonSpecies, uniqueSpeciesTest, uniqueSpeciesOrig): error = False # check for unique species in one of the models: if uniqueSpeciesOrig: error = True logging.error( 'The original model has {} species that the tested model does not have.' .format(len(uniqueSpeciesOrig)) ) printSpecies(uniqueSpeciesOrig) if uniqueSpeciesTest: error = True logging.error( 'The tested model has {} species that the original model does not have.' .format(len(uniqueSpeciesTest)) ) printSpecies(uniqueSpeciesTest) # check for different thermo among common species:: if commonSpecies: for spec1, spec2 in commonSpecies: logging.info(' {0!s}'.format(spec1)) if spec1.thermo and spec2.thermo: if not spec1.thermo.isIdenticalTo(spec2.thermo): error = True logging.error('Non-identical thermo for tested {} and original species {}.' .format(spec1.label, spec2.label) ) printThermo(spec1) printThermo(spec2) return error def checkReactions(commonReactions, uniqueReactionsTest, uniqueReactionsOrig): error = False # check for unique reactions in one of the models: if uniqueReactionsOrig: error = True logging.error( 'The original model has {} reactions that the tested model does not have.' .format(len(uniqueReactionsOrig)) ) printReactions(uniqueReactionsOrig) if uniqueReactionsTest: error = True logging.error( 'The tested model has {} reactions that the original model does not have.' .format(len(uniqueReactionsTest)) ) printReactions(uniqueReactionsTest) if commonReactions: for rxn1, rxn2 in commonReactions: logging.info(' {0!s}'.format(rxn1)) if rxn1.kinetics and rxn2.kinetics: if not rxn1.kinetics.isIdenticalTo(rxn2.kinetics): error = True logging.error('Non-identical kinetics for\ntested {}\nand original {} reaction.' .format(rxn1, rxn2) ) printKinetics(rxn1) printKinetics(rxn2) return error def printReactions(reactions): """ """ for rxn in reactions: logging.error( 'rxn: {}'.format(rxn) ) def printSpecies(spcs): """ """ for spc in spcs: logging.error( 'spc: {}'.format(spc) ) def printKinetics(rxn): """ """ logging.error(' k(300K,1bar) k(400K,1bar) k(500K,1bar) k(600K,1bar) k(800K,1bar) k(1000K,1bar) k(1500K,1bar) k(2000K,1bar) ') logging.error(' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f}'.format( math.log10(rxn.kinetics.getRateCoefficient(300, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(400, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(500, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(600, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(800, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(1000, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(1500, 1e5)), math.log10(rxn.kinetics.getRateCoefficient(2000, 1e5)), )) def printThermo(spec): """ """ logging.error(' Hf(300K) S(300K) Cp(300K) Cp(400K) Cp(500K) Cp(600K) Cp(800K) Cp(1000K) Cp(1500K)') logging.error(' {0:7.2f} {1:7.2f} {2:7.2f} {3:7.2f} {4:7.2f} {5:7.2f} {6:7.2f} {7:7.2f} {8:7.2f}'.format( spec.thermo.getEnthalpy(300) / 4184., spec.thermo.getEntropy(300) / 4.184, spec.thermo.getHeatCapacity(300) / 4.184, spec.thermo.getHeatCapacity(400) / 4.184, spec.thermo.getHeatCapacity(500) / 4.184, spec.thermo.getHeatCapacity(600) / 4.184, spec.thermo.getHeatCapacity(800) / 4.184, spec.thermo.getHeatCapacity(1000) / 4.184, spec.thermo.getHeatCapacity(1500) / 4.184, )) def initializeLog(verbose, log_file_name): """ Set up a logger for RMG to use to print output to stdout. The `verbose` parameter is an integer specifying the amount of log text seen at the console; the levels correspond to those of the :data:`logging` module. """ # Create logger logger = logging.getLogger() logger.setLevel(verbose) # Create console handler and set level to debug; send everything to stdout # rather than stderr ch = logging.StreamHandler(sys.stdout) ch.setLevel(verbose) logging.addLevelName(logging.CRITICAL, 'Critical: ') logging.addLevelName(logging.ERROR, 'Error: ') logging.addLevelName(logging.WARNING, 'Warning: ') logging.addLevelName(logging.INFO, '') logging.addLevelName(logging.DEBUG, '') logging.addLevelName(1, '') # Create formatter and add to console handler formatter = logging.Formatter('%(levelname)s%(message)s') ch.setFormatter(formatter) # create file handler fh = logging.FileHandler(filename=log_file_name) #, backupCount=3) fh.setLevel(min(logging.DEBUG,verbose)) # always at least VERBOSE in the file fh.setFormatter(formatter) # remove old handlers! while logger.handlers: logger.removeHandler(logger.handlers[0]) # Add console and file handlers to logger logger.addHandler(ch) logger.addHandler(fh) if __name__ == '__main__': main()
fbe8c840dba4c6a96ac98a3b1fa2ad50500dd26c
763841bf8447c5490ebc3bf74523fd5470944a80
/forms.py
eb7db2f2490088671fcd6c907f89330646e2a20b
[]
no_license
sumy7/little-bolg
bad7e4ad2755cd1e77edb44a3b1a52780714059f
13d825ad4fb1ad6fc97f41259ff094664a4664bf
refs/heads/app_hxn_1
2021-01-10T23:21:22.062356
2016-10-08T14:40:36
2016-10-08T14:40:36
70,610,888
1
0
null
2016-10-11T16:01:40
2016-10-11T16:01:40
null
UTF-8
Python
false
false
780
py
from flask_wtf import FlaskForm from wtforms import StringField,TextField,IntegerField from wtforms.validators import DataRequired class ArticleForm(FlaskForm): title = StringField('title',validators = [DataRequired()]) content = TextField('content',validators = [DataRequired()]) class UserForm(FlaskForm): username = StringField('username',validators = [DataRequired()]) userpass = StringField('password',validators = [DataRequired()]) class SignUpForm(FlaskForm): username = StringField('username',validators = [DataRequired()]) userpass = StringField('password',validators = [DataRequired()]) email = StringField('email',validators=[DataRequired()]) class ReplyForm(FlaskForm): content = TextField('content',validators = [DataRequired()])
11d131e67824ef499030da4c17db0ece1ce20b21
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_21956.py
a1a29e05be6d20512499012515acee2bcd1e343a
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
# Why can't my setup.py-generated script find my also-installed module? &gt;&gt;&gt; from mkdocs.mkdocs import main_entry_point
d980b7457b1a48b0e8331322105ae6eda61bfad7
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Projects/twilio/twilio/rest/events/v1/subscription/__init__.py
2518ccf20431928bb5df6b6532f2ee53c8234e95
[ "LicenseRef-scancode-other-permissive" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:0255d8652c98e97ffafdedd4dd83a7f814b0062c7bb3a6ea44f2491fa9a04f72 size 15857
77757d4c47da531054934f91c32859169ad5780d
29fa274ae2bf847df8d6f0b03bc28a78f52119aa
/dndsearch/web.py
9c3dff4f39ba88c1cb4422dbc1f2a7e49bd38744
[]
no_license
pranav/dndsearch
a6b42d354ea0a3d59dc9dc47f6ec511a820399d7
4f63c6b86fb2d53021b409f6ff6527ca8d286799
refs/heads/master
2020-12-24T14:45:41.684076
2014-12-21T07:31:19
2014-12-21T07:31:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
import os import json from flask import Flask, render_template from sql import Page app = Flask(__name__) @app.route('/query/<query>', methods=['GET']) def simple_query(query): return json.dumps([{'book': p[0], 'page': p[1]} for p in Page.search(query)]) @app.route('/') def render_home(): return render_template('home.html') if __name__ == '__main__': app.debug = False try: PORT = int(os.getenv('PORT')) except IndexError: PORT = 80 app.run(host='0.0.0.0', port=PORT)
e5ba59f2b9321764767fe0a59be34fd36dd50f78
d6d0a751d2093b86f733648f9ba0af28e757662b
/serializer/mydev/myapp/models.py
7e710ed20c5f36054f8faf6c86b19401adc1399c
[]
no_license
nivyashri05/Django_REST_API
2d2460896d8f61eacfd873dd5d657a46a2f13eeb
884037e18d11d13921b15f652833f2da10581beb
refs/heads/master
2022-12-30T21:41:43.707944
2020-10-26T11:33:19
2020-10-26T11:33:19
307,348,306
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
from django.db import models class Collegetb(models.Model): deptid=models.IntegerField() deptname=models.CharField(max_length=256) depthod=models.CharField(max_length=256) location=models.CharField(max_length=256)
6770180f243b6a6f2e41b662fcd4326032622ecb
fde950cc136ac38f9bd7e3e3c4a2e469df6c320a
/tests/core/test_commands.py
4e655f9f3dbbac70f726f768cc6cda2fe954e119
[ "MIT" ]
permissive
Ilgrim/cwmud
47180185f7462a1bb9fa3e338c167ffa87c87f63
bee8b126a5e70edd0593dae9753a6be8d52357cf
refs/heads/master
2022-03-12T02:39:35.550565
2019-10-19T21:51:56
2019-10-19T21:51:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,758
py
# -*- coding: utf-8 -*- """Test for command management and processing.""" # Part of Clockwork MUD Server (https://github.com/whutch/cwmud) # :copyright: (c) 2008 - 2017 Will Hutcheson # :license: MIT (https://github.com/whutch/cwmud/blob/master/LICENSE.txt) import pytest from cwmud.core.commands import AlreadyExists, Command, CommandManager class TestCommands: """A collection of tests for command management.""" commands = None command_class = None command = None class _FakeSession: pass session = _FakeSession() def test_command_manager_create(self): """Test that we can create a command manager. This is currently redundant, importing the commands package already creates one, but we can keep it for symmetry and in case that isn't always so. """ type(self).commands = CommandManager() assert self.commands def test_command_manager_get_name(self): """Test that we can figure out the name for an argument.""" assert self.commands._get_name(Command) == "Command" assert self.commands._get_name("TestCommand") == "TestCommand" def test_command_manager_register(self): """Test that we can register new commands through a command manager.""" @self.commands.register class TestCommand(Command): """A test command.""" def __init__(self, session, args): super().__init__(session, args) self.called = False def _action(self): self.called = True type(self).command_class = TestCommand assert "TestCommand" in self.commands def test_command_manager_register_by_argument(self): """Test that we can register a new command by argument.""" self.commands.register(command=Command) assert "Command" in self.commands def test_command_manager_register_not_command(self): """Test that trying to register a non-command fails.""" with pytest.raises(TypeError): self.commands.register(command=object()) def test_command_manager_register_already_exists(self): """Test that trying to register an existing command name fails.""" with pytest.raises(AlreadyExists): self.commands.register(command=self.command_class) def test_command_manager_contains(self): """Test that we can see if a command manager contains a command.""" assert "TestCommand" in self.commands assert Command in self.commands assert "some_nonexistent_command" not in self.commands assert CommandManager not in self.commands def test_command_manager_get_command(self): """Test that we can get a command from a command manager.""" assert self.commands["TestCommand"] is self.command_class with pytest.raises(KeyError): self.commands["some_nonexistent_command"].process() def test_command_instance(self): """Test that we can create a command instance.""" type(self).command = self.command_class(None, ()) assert self.command def test_command_execute_no_session(self): """Test that a command instance without a session won't execute.""" self.command.execute() assert not self.command.called def test_command_session_property(self): """Test that we can get and set the session property of a command.""" assert self.command.session is None self.command.session = self.session assert self.command.session is self.session def test_command_execute(self): """Test that we can execute a command.""" self.command.execute() assert self.command.called
0f21947ee7c2b9045e2bafdf343d409245ab9b40
fa3e527114cd5799dddb0a25067da4923eae354e
/DataPrepare/FastSim/GAN/BES/Dedx/makeDataSet.py
65596edf23a6fa591fe64774ab00af09397a15d7
[]
no_license
wenxingfang/FastSim_ML
e64c6b56ce2afd703d1ddda0ada2de6f65fde049
d2f1abbb2f6879313d5f4f137b64c4d8bf10fe83
refs/heads/master
2022-11-28T01:35:39.727895
2020-08-03T15:47:37
2020-08-03T15:47:37
284,734,310
0
0
null
null
null
null
UTF-8
Python
false
false
6,755
py
import ROOT as rt import numpy as np import h5py import sys import gc import math import argparse rt.gROOT.SetBatch(rt.kTRUE) from sklearn.utils import shuffle ####################################### # use digi step data and use B field ## # use cell ID for ECAL ## # add HCAL # add HoE cut ####################################### def get_parser(): parser = argparse.ArgumentParser( description='root to hdf5', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--input', action='store', type=str, help='input root file') parser.add_argument('--output', action='store', type=str, help='output root file') parser.add_argument('--tag', action='store', type=str, help='tag name for plots') parser.add_argument('--str_particle', action='store', type=str, help='e^{-}') return parser def plot_gr(gr,out_name,title): canvas=rt.TCanvas("%s"%(out_name),"",800,800) canvas.cd() canvas.SetTopMargin(0.13) canvas.SetBottomMargin(0.1) canvas.SetLeftMargin(0.13) canvas.SetRightMargin(0.15) if 'logy' in out_name: canvas.SetLogy() #gr.GetXaxis().SetTitle("#phi(AU, 0 #rightarrow 2#pi)") #gr.GetYaxis().SetTitle("Z(AU) (-19.5 #rightarrow 19.5 m)") #gr.SetTitle(title) #gr.Draw("pcol") gr.Draw("hist") canvas.SaveAs("%s/%s.png"%(plot_path,out_name)) del canvas gc.collect() def plot_hist(hist,out_name,title): canvas=rt.TCanvas("%s"%(out_name),"",800,800) canvas.cd() canvas.SetTopMargin(0.13) canvas.SetBottomMargin(0.1) canvas.SetLeftMargin(0.13) canvas.SetRightMargin(0.15) canvas.SetGridy() canvas.SetGridx() #h_corr.Draw("COLZ") #h_corr.LabelsDeflate("X") #h_corr.LabelsDeflate("Y") #h_corr.LabelsOption("v") hist.SetStats(rt.kFALSE) #hist.GetXaxis().SetTitle("#Delta Z (mm)") if 'x_z' in out_name: #hist.GetYaxis().SetTitle("X (mm)") hist.GetYaxis().SetTitle("cell X") hist.GetXaxis().SetTitle("cell Z") elif 'y_z' in out_name: #hist.GetYaxis().SetTitle("#Delta Y (mm)") hist.GetYaxis().SetTitle("cell Y") hist.GetXaxis().SetTitle("cell Z") elif 'z_r' in out_name: hist.GetYaxis().SetTitle("bin R") hist.GetXaxis().SetTitle("bin Z") elif 'z_phi' in out_name: hist.GetYaxis().SetTitle("bin #phi") hist.GetXaxis().SetTitle("bin Z") hist.SetTitle(title) #hist.SetTitleSize(0.1) #hist.Draw("COLZ TEXT") hist.Draw("COLZ") canvas.SaveAs("%s/%s.png"%(plot_path,out_name)) del canvas gc.collect() if __name__ == '__main__': test_percent = 0.5 for_em = True for_ep = False plot_path = './plots/' f_in = rt.TFile("/besfs/groups/cal/dedx/zhuk/calib/663/26577-27090/Simulation/hadron_track/electron/electron.root","READ") tree = f_in.Get('n103') print('entries=',tree.GetEntries()) h_pt = rt.TH1F('H_pt' , '', 220, 0, 2.2) h_pt0 = rt.TH1F('H_pt0' , '', 220, 0, 2.2) h_charge = rt.TH1F('H_charge' , '', 20 , -2, 2) h_costheta = rt.TH1F('H_costheta' , '', 20 , -2, 2) h_theta = rt.TH1F('H_theta' , '', 200 , 0, 200) h_dEdx_meas = rt.TH1F('H_dEdx_meas' , '', 901,-1, 900) h_dedx_theta= rt.TH2F('H_dedx_theta', '', 900, 0, 900, 200 , 0, 200) h_dedx_pt = rt.TH2F('H_dedx_pt' , '', 900, 0, 900, 220 , 0, 2.2) maxEvent = tree.GetEntries() Data = np.full((maxEvent, 3), 0 ,dtype=np.float32)#init for i in range(maxEvent): tree.GetEntry(i) ptrk = getattr(tree, 'ptrk') charge = getattr(tree, 'charge') costheta = getattr(tree, 'costheta') dEdx_meas = getattr(tree, 'dEdx_meas') if for_em and charge != -1: continue if for_ep and charge != 1 : continue Data[i,0] = ptrk/2.0 #Data[i,1] = charge Data[i,1] = costheta Data[i,2] = (dEdx_meas - 546)/(3*32) h_pt .Fill(ptrk) h_pt0 .Fill(math.sqrt(ptrk)) h_charge .Fill(charge) h_costheta .Fill(costheta) tmp_theta = math.acos(costheta)*180/math.pi h_theta .Fill(tmp_theta) h_dEdx_meas.Fill(dEdx_meas) h_dedx_theta.Fill(dEdx_meas, tmp_theta) h_dedx_pt .Fill(dEdx_meas, ptrk) if True: dele_list = [] for i in range(Data.shape[0]): if Data[i,0]==0: dele_list.append(i) ## remove the empty event Data = np.delete(Data, dele_list, axis = 0) print('final size=', Data.shape[0]) plot_gr(h_pt , "h_pt_track" ,"") plot_gr(h_pt0 , "h_pt_track0","") plot_gr(h_charge , "h_charge" ,"") plot_gr(h_costheta , "h_costheta" ,"") plot_gr(h_theta , "h_theta" ,"") plot_gr(h_dEdx_meas, "h_dEdx_meas","") plot_gr(h_dEdx_meas, "h_dEdx_meas_logy","") plot_hist(h_dedx_theta, "h_dedx_theta","") plot_hist(h_dedx_pt , "h_dedx_pt" ,"") Data = shuffle(Data) all_evt = Data.shape[0] training_data = Data[0:int((1-test_percent)*all_evt) ,:] test_data = Data[int((1-test_percent)*all_evt):all_evt,:] theta_range0 = 35 theta_range1 = 145 training_data_barrel = training_data [ np.logical_and( np.arccos(training_data[:,1])*180/math.pi < 145, np.arccos(training_data[:,1])*180/math.pi > 35), : ] test_data_barrel = test_data [ np.logical_and( np.arccos(test_data [:,1])*180/math.pi < 145, np.arccos(test_data [:,1])*180/math.pi > 35), : ] training_data_endcap = training_data [ np.logical_or ( np.arccos(training_data[:,1])*180/math.pi > 145, np.arccos(training_data[:,1])*180/math.pi < 35), : ] test_data_endcap = test_data [ np.logical_or ( np.arccos(test_data [:,1])*180/math.pi > 145, np.arccos(test_data [:,1])*180/math.pi < 35), : ] hf = h5py.File('electron_train_barrel.h5', 'w') hf.create_dataset('dataset', data=training_data_barrel) print ('training_data_barrel shape=',training_data_barrel.shape) hf.close() hf = h5py.File('electron_train_endcap.h5', 'w') hf.create_dataset('dataset', data=training_data_endcap) print ('training_data_endcap shape=',training_data_endcap.shape) hf.close() hf = h5py.File('electron_test_barrel.h5', 'w') hf.create_dataset('dataset' , data=test_data_barrel) print ('test_data_barrel shape=',test_data_barrel.shape) hf.close() hf = h5py.File('electron_test_endcap.h5', 'w') hf.create_dataset('dataset' , data=test_data_endcap) print ('test_data_endcap shape=',test_data_endcap.shape) hf.close() print ('Done')
0d830f5647c98236a85d3ab95cba2544e777ab52
ba916d93dfb8074241b0ea1f39997cb028509240
/problems/min_cost_buy_candies.py
43dde065bba3be50479abf9804d66f154e3f7138
[]
no_license
satojkovic/algorithms
ecc1589898c61d2eef562093d3d2a9a2d127faa8
f666b215bc9bbdab2d2257c83ff1ee2c31c6ff8e
refs/heads/master
2023-09-06T08:17:08.712555
2023-08-31T14:19:01
2023-08-31T14:19:01
169,414,662
2
3
null
null
null
null
UTF-8
Python
false
false
335
py
def min_cost_buy_candies(cost): cost = sorted(cost, reverse=True) return sum(cost) - sum(cost[2::3]) def test_min_cost_buy_candies(): assert min_cost_buy_candies([1]) == 1 assert min_cost_buy_candies([1, 2]) == 3 assert min_cost_buy_candies([3, 4, 10]) == 14 assert min_cost_buy_candies([1, 1, 1, 1, 1]) == 4
dfe69914c2a842af060ce7b0b27c48cba80fe47e
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-3675.py
9191ecf1404a4163be64fc5579e07c3a47a98432
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,757
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: $Type) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
5f8cb45c7040fd7e59a958d419df1cbcb228ccc9
8a4bc47685427204365b1668b3d7b5a6fd7546f1
/packages/example/common/environment.py
19665e4adcd19fef2aa761bcb6b45bee6664d2dc
[]
no_license
myronww/hello-service
3b1705ad8c25a6763d5a9673086b01d388b7817a
8b59054dd4cb09fb5f1697e14a050d8251b3ada8
refs/heads/master
2020-04-07T03:43:08.728638
2019-04-10T17:12:24
2019-04-10T17:12:24
158,027,190
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
import os DEBUG = False if "DEBUG" in os.environ: if os.environ["DEBUG"].lower() in ["1", "true", "on"]: DEBUG = True DEVELOPER_MODE = False if "DEVELOPER_MODE" in os.environ: if os.environ["DEVELOPER_MODE"].lower() in ["1", "true", "on"]: DEVELOPER_MODE = True
c6f4b6bb73e281de8c4aa2b5cececbe8004e9fc1
4c7eea9d402dbda526c880cb55339e73d783568f
/ch02/input_number.py
d2ea8590366c875de74036c781b035647bf2f81b
[]
no_license
kks4866/pyworks
9dd8e9e66ba419c50e6111c42b9fb7311ce402fa
a3f599f96ae367e2cdc0da0ab9429186629f3c1c
refs/heads/master
2023-06-28T23:54:18.640460
2021-07-06T04:08:52
2021-07-06T04:08:52
378,803,609
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
# 숫자를 입력 받기 print("숫자를 입력해 주세요: ") num = int(input()) #num의 타입이 정수로 변환됨 - 형변환 print("제곱수: ", num*num) print(type(num))
6c98862cef6bebdb92b27e051d1e0386d84cef74
c8296b9479cbefd26bb3ebaaf6ab55bd090f9735
/mitest/views/module.py
fa86e862af1f5372fd34923fcbb84eca9d020404
[]
no_license
WangYongjun1990/test-core
81db49f54e291bd09d329c7c2c560adcbb3b3466
0ec13174b58a41f35fce2bd2b895b8ac441dfd37
refs/heads/master
2022-12-12T11:45:48.502241
2018-08-17T08:38:55
2018-08-17T08:40:32
138,014,671
0
0
null
2022-12-08T02:10:28
2018-06-20T10:05:28
Python
UTF-8
Python
false
false
4,878
py
# -*- coding:utf-8 -*- """ File Name: `module`.py Version: Description: Author: wangyongjun Date: 2018/6/21 13:44 """ import json from flask import Blueprint from flask_restful import Resource from mitest.api.comm_log import logger from mitest.views.wrappers import timer from mitest.utils.common import get_request_json, make_response from mitest.api.mysql_manager import ModuleInfoManager,TestsuiteInfoManager module = Blueprint('module_interface', __name__) import mitest.config.sit from flask import Flask Flask(__name__).config.from_object(mitest.config.sit) class Module(Resource): def __init__(self): pass @timer def post(self, action): data = get_request_json() mim = ModuleInfoManager() if action == 'add': try: system_id = data["systemId"] module_name = data["moduleName"] except KeyError: return make_response({"code": "100", "desc": "入参校验失败"}) module_name_list = mim.query_module(system_id,module_name) if len(module_name_list) != 0: return make_response({"code": "201", "desc": "这个名称的测试模块已经存在"}) mim.insert_module(module_name = module_name,system_id = system_id) return make_response({"code": "000", "desc": "{}模块添加成功".format(module_name)}) elif action == 'edit': try: id = data["id"] module_name = data["moduleName"] except KeyError: return make_response({"code": "100", "desc": "入参校验失败"}) res_module_name = mim.query_module_id(id=id)[0].module_name if res_module_name == module_name: return make_response({"code": "201", "desc": "您修改的模块名称已存在"}) mim.update_module(id_=id,module_name=module_name) return make_response({"code": "000", "desc": "操作成功"}) elif action == 'delete': try: id = data["id"] except KeyError: return make_response({"code": "100", "desc": "入参校验失败"}) mim.delete_module(id_=id) return make_response({"code": "000", "desc": "操作成功"}) elif action == 'detail': pass elif action == 'list': try: system_id = data["systemId"] except KeyError: return make_response({"code": "100", "desc": "入参校验失败"}) module_list = mim.query_all_module(system_id=system_id) res = list() id = 0 for i in module_list: module_dict = dict() if module_list: id += 1 module_dict["id"] = id module_dict["moduleId"] = i.id module_dict["label"] = i.module_name testsuite_list = TestsuiteInfoManager.query_all_testsuite(module_id=i.id) testsuite = list() for j in testsuite_list: testsuite_dict = dict() if testsuite_list: id += 1 testsuite_dict["id"] = id testsuite_dict["testsuiteId"] = j.id testsuite_dict["label"] = j.testsuite_name testsuite.append(testsuite_dict) module_dict["children"] = testsuite res.append(module_dict) return make_response({"code": "000", "desc": res}) elif action == 'queryBySystemId': """ 根据SystemId查询系统下的所有模块 url: /module/queryBySystemId input: {"systemId":"9"} output: { "code": "000", "data": [ { "systemId": 4, "systemName": "申请" } ] } """ try: system_id = data.pop('systemId') except KeyError: return make_response({"code": "100", "desc": "入参校验失败"}) obj = ModuleInfoManager.query_all_module(system_id) module_list = [] for m in obj: module_info_dic = { "systemName": m.module_name, "systemId": m.id, } module_list.append(module_info_dic) return make_response({"code": "000", "data": module_list}) else: return make_response({"code": "100", "desc": "url错误,不存在的接口动作<{action}>".format(action=action)}) if __name__ == '__main__': Module = Module() res = Module.post("list") print(res)
16343f081959d18ba076d1ee9ba2fc91db0493bf
a50bd0cbf51b0578fd8249785a35796dfbcb5728
/poem/Poem/api/urls_internal.py
c664b83878667a62275dcf8f5dd34587c667d063
[ "Apache-2.0" ]
permissive
ARGOeu/poem
d24cc8126abec7dbae687ca0f854cabb54f982a4
40c17484c6184fe3cf6547401d258b95644fa18f
refs/heads/master
2020-12-25T17:24:36.601759
2019-04-05T11:51:34
2019-04-05T11:51:34
26,312,136
0
2
NOASSERTION
2020-09-17T09:31:12
2014-11-07T09:08:48
Python
UTF-8
Python
false
false
889
py
from django.urls import path from . import views_internal app_name = 'poem' urlpatterns = [ path('metrics/<str:group>', views_internal.ListMetricsInGroup.as_view(), name='metrics'), path('tokens/', views_internal.ListTokens.as_view(), name='tokens'), path('tokens/<str:name>', views_internal.ListTokenForTenant.as_view(), name='tokens'), path('users/', views_internal.ListUsers.as_view(), name='users'), path('groups/', views_internal.ListGroupsForUser.as_view(), name='groups'), path('groups/<str:group>', views_internal.ListGroupsForUser.as_view(), name='groups'), path('probes/<str:probe_name>', views_internal.ListProbes.as_view(), name='probes'), path('aggregations/', views_internal.ListAggregations.as_view(), name='aggregations'), path('aggregations/<str:aggregation_name>', views_internal.ListAggregations.as_view(), name='aggregations'), ]
c8f5b570ac0f747bd85d400b8384633527b4849d
0a47f736deacb7e8d55adb807575617f873c4787
/simulate_place_cell_Type_A_shape_inh.py
1607594ee48b303dade8a14abf3460f419e13b91
[]
no_license
domni/CA1Sim
9bd23c746c325d3387b54303dccc0dcbb4f5ba1f
37b90d15e7eec7073736460ac0f5ab26ad97b70c
refs/heads/master
2021-01-15T15:23:47.726695
2016-07-18T02:18:02
2016-07-18T02:18:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,790
py
__author__ = 'milsteina' from specify_cells import * from plot_results import * import random import sys """ In this version of the simulation, phase precession of CA3 inputs is implemented using the method from Chadwick et al., Elife, 2015, which uses a circular gaussian with a phase sensitivity factor that effectively compresses the range of phases within each theta cycle that each input is active, which will reduce jitter across within-cycle input sequences. """ morph_filename = 'EB2-late-bifurcation.swc' #mech_filename = '020516 altered km2 rinp - ampa nmda_kin5' mech_filename = '043016 Type A - km2_NMDA_KIN5_Pr' if len(sys.argv) > 1: synapses_seed = int(sys.argv[1]) else: synapses_seed = 0 if len(sys.argv) > 2: num_exc_syns = int(sys.argv[2]) else: num_exc_syns = 3200 if len(sys.argv) > 3: num_inh_syns = int(sys.argv[3]) else: num_inh_syns = 500 # whether to modulate the peak rate of all inhibitory inputs (0 = no, 1 = out of field at track start, 2 = in field) # input_field_width) if len(sys.argv) > 4: mod_inh = int(sys.argv[4]) else: mod_inh = 0 # the inhibitory conductances in-field are multiplied by a factor with this value at the peak of the # field, and decays with cosine spatial modulation away from the field if len(sys.argv) > 5: shape_inh = float(sys.argv[5]) else: shape_inh = 1. # allows parallel computation of multiple trials for the same spines with the same peak_locs, but with different # input spike trains and stochastic synapses for each trial if len(sys.argv) > 6: trial_seed = int(sys.argv[6]) else: trial_seed = 0 rec_filename = 'output'+datetime.datetime.today().strftime('%m%d%Y%H%M')+'-pid'+str(os.getpid())+'-seed'+\ str(synapses_seed)+'-e'+str(num_exc_syns)+'-i'+str(num_inh_syns)+'-mod_inh'+str(mod_inh)+\ '-shape_inh_'+str(shape_inh)+'_'+str(trial_seed) def get_dynamic_theta_phase_force(phase_ranges, peak_loc, input_field_duration, stim_t, dt): """ Expects a list of tuples containing times and phases relative to peak_loc and the non-modulated phase preference (zero degrees). Returns a waveform of phase vs time. :param phase_ranges: list of tuple (ms, degrees) :param peak_loc: :param input_field_duration: :param stim_t: :param dt: :return: :class: 'np.array' """ start_phase_val = phase_ranges[0][1] * 2. * np.pi / 360. # convert degrees to radians end_phase_val = phase_ranges[-1][1] * 2. * np.pi / 360. # convert degrees to radians phase_force = np.ones_like(stim_t) * start_phase_val phase_gradient = np.array([]) for i in range(len(phase_ranges)-1): t0 = phase_ranges[i][0] t1 = phase_ranges[i+1][0] phase0 = phase_ranges[i][1] * 2. * np.pi / 360. # convert degrees to radians phase1 = phase_ranges[i+1][1] * 2. * np.pi / 360. del_t = t1 - t0 del_phase = phase1 - phase0 if abs(del_phase) > 0.: del_phase = del_phase / del_t * dt this_range_piece = np.arange(phase0, phase1, del_phase) else: this_range_piece = np.ones(del_t / dt) * phase0 phase_gradient = np.append(phase_gradient, this_range_piece) if stim_t[0] <= peak_loc-input_field_duration*0.5 <= stim_t[-1]: phase_start = np.where(peak_loc-input_field_duration*0.5 >= stim_t)[0] if np.any(phase_start): phase_start = phase_start[-1] phase_end = min(len(stim_t), phase_start+len(phase_gradient)) phase_force[:phase_start] = start_phase_val phase_force[phase_start:phase_end] = phase_gradient[:phase_end-phase_start] phase_force[phase_end:] = end_phase_val elif stim_t[0] <= peak_loc+input_field_duration*0.5 <= stim_t[-1]: phase_end = np.where(peak_loc+input_field_duration*0.5 >= stim_t)[0] if np.any(phase_end): phase_end = phase_end[-1] phase_start = max(0, phase_end-len(phase_gradient)) phase_force[:phase_start] = start_phase_val phase_force[phase_start:phase_end] = phase_gradient[-(phase_end-phase_start):] phase_force[phase_end:] = end_phase_val return phase_force def run_trial(simiter): """ :param simiter: int """ local_random.seed(simiter) global_phase_offset = local_random.uniform(-np.pi, np.pi) with h5py.File(data_dir+rec_filename+'-working.hdf5', 'a') as f: f.create_group(str(simiter)) f[str(simiter)].create_group('train') f[str(simiter)].create_group('inh_train') f[str(simiter)].attrs['phase_offset'] = global_phase_offset / 2. / np.pi * global_theta_cycle_duration if mod_inh > 0: if mod_inh == 1: mod_inh_start = int(track_equilibrate / dt) mod_inh_stop = mod_inh_start + int(inhibitory_manipulation_duration * input_field_duration / dt) elif mod_inh == 2: mod_inh_start = int((track_equilibrate + modulated_field_center - 0.3 * input_field_duration) / dt) mod_inh_stop = mod_inh_start + int(inhibitory_manipulation_duration * input_field_duration / dt) elif mod_inh == 3: mod_inh_start = 0 mod_inh_stop = len(stim_t) sim.parameters['mod_inh_start'] = stim_t[mod_inh_start] sim.parameters['mod_inh_stop'] = stim_t[mod_inh_stop-1] index = 0 for group in stim_exc_syns: for i, syn in enumerate(stim_exc_syns[group]): # the stochastic sequence used for each synapse is unique for each trial, # up to 1000 input spikes per spine if excitatory_stochastic: syn.randObj.seq(rand_exc_seq_locs[group][i]+int(simiter*1e3)) gauss_force = excitatory_peak_rate[group] * np.exp(-((stim_t - peak_locs[group][i]) / gauss_sigma)**2.) if group in excitatory_precession_range: phase_force = get_dynamic_theta_phase_force(excitatory_precession_range[group], peak_locs[group][i], input_field_duration, stim_t, stim_dt) theta_force = np.exp(excitatory_theta_phase_tuning_factor[group] * np.cos(phase_force + excitatory_theta_phase_offset[group] - 2. * np.pi * stim_t / global_theta_cycle_duration + global_phase_offset)) else: theta_force = np.exp(excitatory_theta_phase_tuning_factor[group] * np.cos(excitatory_theta_phase_offset[group] - 2. * np.pi * stim_t / global_theta_cycle_duration + global_phase_offset)) theta_force -= np.min(theta_force) theta_force /= np.max(theta_force) theta_force *= excitatory_theta_modulation_depth[group] theta_force += 1. - excitatory_theta_modulation_depth[group] stim_force = np.multiply(gauss_force, theta_force) train = get_inhom_poisson_spike_times(stim_force, stim_t, dt=stim_dt, generator=local_random) syn.source.play(h.Vector(np.add(train, equilibrate + track_equilibrate))) with h5py.File(data_dir+rec_filename+'-working.hdf5', 'a') as f: f[str(simiter)]['train'].create_dataset(str(index), compression='gzip', compression_opts=9, data=train) f[str(simiter)]['train'][str(index)].attrs['group'] = group f[str(simiter)]['train'][str(index)].attrs['index'] = syn.node.index f[str(simiter)]['train'][str(index)].attrs['type'] = syn.node.parent.parent.type f[str(simiter)]['train'][str(index)].attrs['peak_loc'] = peak_locs[group][i] index += 1 index = 0 for group in stim_inh_syns: for syn in stim_inh_syns[group]: inhibitory_theta_force = np.exp(inhibitory_theta_phase_tuning_factor[group] * np.cos(inhibitory_theta_phase_offset[group] - 2. * np.pi * stim_t / global_theta_cycle_duration + global_phase_offset)) inhibitory_theta_force -= np.min(inhibitory_theta_force) inhibitory_theta_force /= np.max(inhibitory_theta_force) inhibitory_theta_force *= inhibitory_theta_modulation_depth[group] inhibitory_theta_force += 1. - inhibitory_theta_modulation_depth[group] inhibitory_theta_force *= inhibitory_peak_rate[group] stim_force = np.multiply(inhibitory_theta_force, cos_mod_inh) if mod_inh > 0 and group in inhibitory_manipulation_fraction and syn in manipulated_inh_syns[group]: if mod_inh == 3: train = [] else: stim_force[mod_inh_start:mod_inh_stop] = 0. train = get_inhom_poisson_spike_times(stim_force, stim_t, dt=stim_dt, generator=local_random) else: train = get_inhom_poisson_spike_times(stim_force, stim_t, dt=stim_dt, generator=local_random) syn.source.play(h.Vector(np.add(train, equilibrate + track_equilibrate))) with h5py.File(data_dir+rec_filename+'-working.hdf5', 'a') as f: f[str(simiter)]['inh_train'].create_dataset(str(index), compression='gzip', compression_opts=9, data=train) f[str(simiter)]['inh_train'][str(index)].attrs['group'] = group f[str(simiter)]['inh_train'][str(index)].attrs['index'] = syn.node.index f[str(simiter)]['inh_train'][str(index)].attrs['loc'] = syn.loc f[str(simiter)]['inh_train'][str(index)].attrs['type'] = syn.node.type index += 1 sim.run(v_init) with h5py.File(data_dir+rec_filename+'-working.hdf5', 'a') as f: sim.export_to_file(f, simiter) if excitatory_stochastic: f[str(simiter)].create_group('successes') index = 0 for group in stim_exc_syns: for syn in stim_exc_syns[group]: f[str(simiter)]['successes'].create_dataset(str(index), compression='gzip', compression_opts=9, data=np.subtract(syn.netcon('AMPA_KIN').get_recordvec().to_python(), equilibrate + track_equilibrate)) index += 1 # save the spike output of the cell, removing the equilibration offset f[str(simiter)].create_dataset('output', compression='gzip', compression_opts=9, data=np.subtract(cell.spike_detector.get_recordvec().to_python(), equilibrate + track_equilibrate)) NMDA_type = 'NMDA_KIN5' equilibrate = 250. # time to steady-state global_theta_cycle_duration = 150. # (ms) input_field_width = 20 # (theta cycles per 6 standard deviations) input_field_duration = input_field_width * global_theta_cycle_duration track_length = 2.5 # field widths track_duration = track_length * input_field_duration track_equilibrate = 2. * global_theta_cycle_duration duration = equilibrate + track_equilibrate + track_duration # input_field_duration excitatory_peak_rate = {'CA3': 40., 'ECIII': 40.} excitatory_theta_modulation_depth = {'CA3': 0.7, 'ECIII': 0.7} # From Chadwick et al., ELife 2015 excitatory_theta_phase_tuning_factor = {'CA3': 0.8, 'ECIII': 0.8} excitatory_precession_range = {} excitatory_precession_range['CA3'] = [(-input_field_duration*0.5, 180.), (-input_field_duration*0.35, 180.), (input_field_duration*0.35, -180.), (input_field_duration*0.5, -180.)] # (ms, degrees) excitatory_theta_phase_offset = {} excitatory_theta_phase_offset['CA3'] = 165. / 360. * 2. * np.pi # radians excitatory_theta_phase_offset['ECIII'] = 0. / 360. * 2. * np.pi # radians excitatory_stochastic = 1 inhibitory_manipulation_fraction = {'perisomatic': 0.325, 'axo-axonic': 0.325, 'apical dendritic': 0.325, 'distal apical dendritic': 0.325, 'tuft feedback': 0.325} inhibitory_manipulation_duration = 0.6 # Ratio of input_field_duration inhibitory_peak_rate = {'perisomatic': 40., 'axo-axonic': 40., 'apical dendritic': 40., 'distal apical dendritic': 40., 'tuft feedforward': 40., 'tuft feedback': 40.} inhibitory_theta_modulation_depth = {'perisomatic': 0.5, 'axo-axonic': 0.5, 'apical dendritic': 0.5, 'distal apical dendritic': 0.5, 'tuft feedforward': 0.5, 'tuft feedback': 0.5} inhibitory_theta_phase_tuning_factor = {'perisomatic': 0.6, 'axo-axonic': 0.6, 'apical dendritic': 0.6, 'distal apical dendritic': 0.6, 'tuft feedforward': 0.6, 'tuft feedback': 0.6} inhibitory_precession_range = {} inhibitory_theta_phase_offset = {} inhibitory_theta_phase_offset['perisomatic'] = 135. / 360. * 2. * np.pi # Like PV+ Basket inhibitory_theta_phase_offset['axo-axonic'] = 45. / 360. * 2. * np.pi # Vargas et al., ELife, 2014 inhibitory_theta_phase_offset['apical dendritic'] = 200. / 360. * 2. * np.pi # Like PYR-layer Bistratified inhibitory_theta_phase_offset['distal apical dendritic'] = 180. / 360. * 2. * np.pi # Like SR/SLM Border Cells inhibitory_theta_phase_offset['tuft feedforward'] = 340. / 360. * 2. * np.pi # Like Neurogliaform inhibitory_theta_phase_offset['tuft feedback'] = 200. / 360. * 2. * np.pi # Like SST+ O-LM stim_dt = 0.02 dt = 0.02 v_init = -67. syn_types = ['AMPA_KIN', NMDA_type] local_random = random.Random() # choose a subset of synapses to stimulate with inhomogeneous poisson rates local_random.seed(synapses_seed) cell = CA1_Pyr(morph_filename, mech_filename, full_spines=True) #cell.set_terminal_branch_na_gradient() cell.zero_na() cell.insert_inhibitory_synapses_in_subset() trunk_bifurcation = [trunk for trunk in cell.trunk if cell.is_bifurcation(trunk, 'trunk')] if trunk_bifurcation: trunk_branches = [branch for branch in trunk_bifurcation[0].children if branch.type == 'trunk'] # get where the thickest trunk branch gives rise to the tuft trunk = max(trunk_branches, key=lambda node: node.sec(0.).diam) trunk = (node for node in cell.trunk if cell.node_in_subtree(trunk, node) and 'tuft' in (child.type for child in node.children)).next() else: trunk_bifurcation = [node for node in cell.trunk if 'tuft' in (child.type for child in node.children)] trunk = trunk_bifurcation[0] all_exc_syns = {sec_type: [] for sec_type in ['basal', 'trunk', 'apical', 'tuft']} all_inh_syns = {sec_type: [] for sec_type in ['soma', 'ais', 'basal', 'trunk', 'apical', 'tuft']} stim_exc_syns = {'CA3': [], 'ECIII': []} stim_inh_syns = {'perisomatic': [], 'axo-axonic': [], 'apical dendritic': [], 'distal apical dendritic': [], 'tuft feedforward': [], 'tuft feedback': []} stim_successes = [] peak_locs = {'CA3': [], 'ECIII': []} # place synapses in trunk for inheritance of mechanisms (for testing) if 'trunk' not in all_exc_syns: for node in cell.trunk: for spine in node.spines: syn = Synapse(cell, spine, syn_types, stochastic=excitatory_stochastic) # place synapses in every spine for sec_type in all_exc_syns: for node in cell.get_nodes_of_subtype(sec_type): for spine in node.spines: syn = Synapse(cell, spine, syn_types, stochastic=excitatory_stochastic) all_exc_syns[sec_type].append(syn) cell.init_synaptic_mechanisms() # collate inhibitory synapses for sec_type in all_inh_syns: for node in cell.get_nodes_of_subtype(sec_type): for syn in node.synapses: if 'GABA_A_KIN' in syn._syn: all_inh_syns[sec_type].append(syn) sim = QuickSim(duration, cvode=0, dt=0.01) sim.parameters['equilibrate'] = equilibrate sim.parameters['track_equilibrate'] = track_equilibrate sim.parameters['global_theta_cycle_duration'] = global_theta_cycle_duration sim.parameters['input_field_duration'] = input_field_duration sim.parameters['track_length'] = track_length sim.parameters['duration'] = duration sim.parameters['stim_dt'] = stim_dt sim.append_rec(cell, cell.tree.root, description='soma', loc=0.) sim.append_rec(cell, trunk_bifurcation[0], description='proximal_trunk', loc=1.) sim.append_rec(cell, trunk, description='distal_trunk', loc=1.) spike_output_vec = h.Vector() cell.spike_detector.record(spike_output_vec) # get the fraction of total spines contained in each sec_type total_exc_syns = {sec_type: len(all_exc_syns[sec_type]) for sec_type in ['basal', 'trunk', 'apical', 'tuft']} fraction_exc_syns = {sec_type: float(total_exc_syns[sec_type]) / float(np.sum(total_exc_syns.values())) for sec_type in ['basal', 'trunk', 'apical', 'tuft']} for sec_type in all_exc_syns: for i in local_random.sample(range(len(all_exc_syns[sec_type])), int(num_exc_syns*fraction_exc_syns[sec_type])): syn = all_exc_syns[sec_type][i] if sec_type == 'tuft': stim_exc_syns['ECIII'].append(syn) else: stim_exc_syns['CA3'].append(syn) # get the fraction of inhibitory synapses contained in each sec_type total_inh_syns = {sec_type: len(all_inh_syns[sec_type]) for sec_type in ['soma', 'ais', 'basal', 'trunk', 'apical', 'tuft']} fraction_inh_syns = {sec_type: float(total_inh_syns[sec_type]) / float(np.sum(total_inh_syns.values())) for sec_type in ['soma', 'ais', 'basal', 'trunk', 'apical', 'tuft']} num_inh_syns = min(num_inh_syns, int(np.sum(total_inh_syns.values()))) for sec_type in all_inh_syns: for i in local_random.sample(range(len(all_inh_syns[sec_type])), int(num_inh_syns*fraction_inh_syns[sec_type])): syn = all_inh_syns[sec_type][i] if syn.node.type == 'tuft': if cell.is_terminal(syn.node): # GABAergic synapses on terminal tuft branches are about 25% feedforward group = local_random.choice(['tuft feedforward', 'tuft feedback', 'tuft feedback', 'tuft feedback']) else: # GABAergic synapses on intermediate tuft branches are about 50% feedforward group = local_random.choice(['tuft feedforward', 'tuft feedback']) elif syn.node.type == 'trunk': distance = cell.get_distance_to_node(cell.tree.root, syn.node, syn.loc) if distance <= 50.: group = 'perisomatic' elif distance <= 150.: group = local_random.choice(['apical dendritic', 'apical dendritic', 'distal apical dendritic']) else: group = local_random.choice(['apical dendritic', 'distal apical dendritic', 'distal apical dendritic']) elif syn.node.type == 'basal': distance = cell.get_distance_to_node(cell.tree.root, syn.node, syn.loc) group = 'perisomatic' if distance <= 50. and not cell.is_terminal(syn.node) else 'apical dendritic' elif syn.node.type == 'soma': group = 'perisomatic' elif syn.node.type == 'apical': distance = cell.get_distance_to_node(cell.tree.root, cell.get_dendrite_origin(syn.node), loc=1.) if distance <= 150.: group = local_random.choice(['apical dendritic', 'apical dendritic', 'distal apical dendritic']) else: group = local_random.choice(['apical dendritic', 'distal apical dendritic', 'distal apical dendritic']) elif syn.node.type == 'ais': group = 'axo-axonic' stim_inh_syns[group].append(syn) stim_t = np.arange(-track_equilibrate, track_duration, dt) gauss_sigma = global_theta_cycle_duration * input_field_width / 3. / np.sqrt(2.) # contains 99.7% gaussian area rand_exc_seq_locs = {} for group in stim_exc_syns: rand_exc_seq_locs[group] = [] if stim_exc_syns[group]: peak_locs[group] = np.arange(-0.75 * input_field_duration, (0.75 + track_length) * input_field_duration, (1.5 + track_length) * input_field_duration / int(len(stim_exc_syns[group]))) peak_locs[group] = peak_locs[group][:len(stim_exc_syns[group])] for group in stim_exc_syns: for syn in stim_exc_syns[group]: #peak_loc = local_random.uniform(-0.75 * input_field_duration, (0.75 + track_length) * input_field_duration) #peak_locs.append(peak_loc) if excitatory_stochastic: success_vec = h.Vector() stim_successes.append(success_vec) syn.netcon('AMPA_KIN').record(success_vec) rand_exc_seq_locs[group].append(syn.randObj.seq()) # if syn.node.parent.parent not in [rec['node'] for rec in sim.rec_list]: # sim.append_rec(cell, syn.node.parent.parent) # sim.append_rec(cell, syn.node, object=syn.target('AMPA_KIN'), param='_ref_i', description='i_AMPA') # sim.append_rec(cell, syn.node, object=syn.target(NMDA_type), param='_ref_i', description='i_NMDA') # remove this synapse from the pool, so that additional "modulated" inputs # can be selected from those that remain all_exc_syns[syn.node.parent.parent.type].remove(syn) # rand_inh_seq_locs = [] will need this when inhibitory synapses become stochastic # stim_inh_successes = [] will need this when inhibitory synapses become stochastic # modulate the weights of inputs with peak_locs along this stretch of the track modulated_field_center = track_duration * 0.6 cos_mod_weight = {} peak_mod_weight = 2.5 tuning_amp = (peak_mod_weight - 1.) / 2. tuning_offset = tuning_amp + 1. for group in stim_exc_syns: this_cos_mod_weight = tuning_amp * np.cos(2. * np.pi / (input_field_duration * 1.2) * (peak_locs[group] - modulated_field_center)) + tuning_offset left = np.where(peak_locs[group] >= modulated_field_center - input_field_duration * 1.2 / 2.)[0][0] right = np.where(peak_locs[group] > modulated_field_center + input_field_duration * 1.2 / 2.)[0][0] cos_mod_weight[group] = np.array(this_cos_mod_weight) cos_mod_weight[group][:left] = 1. cos_mod_weight[group][right:] = 1. peak_locs[group] = list(peak_locs[group]) cos_mod_weight[group] = list(cos_mod_weight[group]) indexes = range(len(peak_locs[group])) local_random.shuffle(indexes) peak_locs[group] = map(peak_locs[group].__getitem__, indexes) cos_mod_weight[group] = map(cos_mod_weight[group].__getitem__, indexes) for i, syn in enumerate(stim_exc_syns[group]): syn.netcon('AMPA_KIN').weight[0] = cos_mod_weight[group][i] manipulated_inh_syns = {} for group in inhibitory_manipulation_fraction: num_syns = int(len(stim_inh_syns[group]) * inhibitory_manipulation_fraction[group]) manipulated_inh_syns[group] = local_random.sample(stim_inh_syns[group], num_syns) inh_tuning_amp = (shape_inh - 1.) / 2. inh_tuning_offset = inh_tuning_amp + 1. left = np.where(stim_t >= modulated_field_center - input_field_duration * 1.2 / 2.)[0][0] right = np.where(stim_t > modulated_field_center + input_field_duration * 1.2 / 2.)[0][0] cos_mod_inh = inh_tuning_amp * np.cos(2. * np.pi / (input_field_duration * 1.2) * (stim_t - modulated_field_center)) \ + inh_tuning_offset cos_mod_inh[:left] = 1. cos_mod_inh[right:] = 1. run_trial(trial_seed) if os.path.isfile(data_dir+rec_filename+'-working.hdf5'): os.rename(data_dir+rec_filename+'-working.hdf5', data_dir+rec_filename+'.hdf5')
83f39d930bf9b33f24dae1eff820a417779e8ba2
a7b6741f345aad73117bc747c4e93e148f5fe769
/Basic-Course/07-Flask-JWT-Extended/resources/user.py
80d17e2cd51af9d4af3b4d76b35812651d483995
[ "MIT" ]
permissive
suzynakayama/python-flask-udemy
e07f2d30d1f4b66aae06d1dcd775bd58ed5d2083
95d2c5fa328e2f50d0893d73fd386fb713d1f12b
refs/heads/master
2022-12-28T16:51:30.507702
2020-10-09T22:52:59
2020-10-09T22:52:59
299,960,039
2
0
null
null
null
null
UTF-8
Python
false
false
2,889
py
from flask_restful import Resource, reqparse from werkzeug.security import safe_str_cmp from flask_jwt_extended import ( create_access_token, create_refresh_token, jwt_refresh_token_required, get_jwt_identity, jwt_required, get_raw_jwt ) from models.user import UserModel from blacklist import BLACKLIST _user_parser = reqparse.RequestParser() _user_parser.add_argument('username', type=str, required=True, help="This field cannot be blank." ) _user_parser.add_argument('password', type=str, required=True, help="This field cannot be blank." ) class UserRegister(Resource): def post(self): data = _user_parser.parse_args() if UserModel.find_by_username(data['username']): return {"message": "A user with that username already exists"}, 400 user = UserModel(**data) user.save_to_db() return {"message": "User created successfully."}, 201 class User(Resource): @classmethod def get(cls, user_id): user = UserModel.find_by_id(user_id) if not user: return {'message': 'User not found.'}, 404 return user.json() @classmethod def delete(cls, user_id): user = UserModel.find_by_id(user_id) if not user: return {'message': 'User not found.'}, 404 user.delete_from_db() return {'message': 'User deleted from db.'}, 200 class UserLogin(Resource): @classmethod def post(cls): # get data from parser data = _user_parser.parse_args() # find user in Db user = UserModel.find_by_username(data['username']) # check password / create access token / create refresh token / return tokens if user and safe_str_cmp(user.password, data['password']): access_token = create_access_token(identity=user.id, fresh=True) # `identity=` is the same as `identity()` refresh_token = create_refresh_token(user.id) return { 'access_token': access_token, 'refresh_token': refresh_token }, 200 return {'message': 'Invalid credentials.'}, 401 class UserLogout(Resource): @jwt_required def get(self): # we only want to blacklist the token, not the user itself, so they will have to login again jti = get_raw_jwt()['jti'] # jwt id, a unique identifier for a jwt BLACKLIST.add(jti) return {'message': 'Successfully logged out.'}, 200 class TokenRefresh(Resource): @jwt_refresh_token_required def post(self): current_user = get_jwt_identity() new_token = create_access_token(identity=current_user, fresh=False) return {'access_token': new_token}, 200
3e2a3416e9043be473464f5178214bc1d21ac811
2dfbb97b47fd467f29ffb26faf9a9f6f117abeee
/leetcode/151.py
5ed59c72ca216a929c05706680799872276990c7
[]
no_license
liuweilin17/algorithm
0e04b2d36dfb6b7b1b0e0425daf69b62273c54b5
d3e8669f932fc2e22711e8b7590d3365d020e189
refs/heads/master
2020-12-30T11:03:40.085105
2020-04-10T03:46:01
2020-04-10T03:46:01
98,844,919
3
1
null
2018-10-05T03:01:02
2017-07-31T03:35:14
C++
UTF-8
Python
false
false
688
py
########################################### # Let's Have Some Fun # File Name: 151.py # Author: Weilin Liu # Mail: [email protected] # Created Time: Mon Aug 26 22:38:31 2019 ########################################### #coding=utf-8 #!/usr/bin/python # 151. Reverse Words in a String class Solution: def reverseWords(self, s: str) -> str: s = s.strip() N = len(s) ret = [] t = '' for i in range(N-1, -1, -1): if s[i] != ' ': t = s[i] + t elif t != '': ret.append(t) t = '' else: pass if t: ret.append(t) return ' '.join(ret)
d27a7cc8735ca16e17b623666767925f67dc0aa9
3bdf35a266547425501fdfe684ba6049f38b6690
/Paddy/api/serializers.py
7f93d5a7ecb0205720eb071b89616eab5485c1cb
[]
no_license
SIBU99/ChhatraViswaKarmaOurServerCode
a7b95a2a3b27c97b4488b1825721cc2b4063568d
b36e0f9e866f76b7d6a104897f62eacceb2faa22
refs/heads/master
2023-01-07T09:22:24.428522
2020-11-10T09:02:13
2020-11-10T09:02:13
311,376,593
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
from rest_framework import serializers from ..models import Paddy from Account.api.serializers import FarmerSerializer from Account.models import Farmer from rest_framework.exceptions import ValidationError class PaddySerializer(serializers.ModelSerializer): "This the serializer for the model : Corn" farmer = FarmerSerializer(read_only = True) class Meta: model = Paddy fields = [ "id", "farmer", "image", "result_tag", "disease1", "disease2", "disease3", "when", "map_disease", ]
0438f4c787caade1a5b8e1a3ef8e3b498ef03a8d
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/artificial/transf_Fisher/trend_Lag1Trend/cycle_30/ar_12/test_artificial_32_Fisher_Lag1Trend_30_12_0.py
fb2a9442dbc8a4731f3e87bf0942881517feb6bd
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
266
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 30, transform = "Fisher", sigma = 0.0, exog_count = 0, ar_order = 12);
bda7687bc1bb236ab785aa669b8d8f79f222c32c
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_coffined.py
156a15c662f97716fc2ceae82faeba7aa8cdc092
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
#calss header class _COFFINED(): def __init__(self,): self.name = "COFFINED" self.definitions = coffin self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['coffin']
1d4a679d7e01b82f721f9675a3b7087c03fc0dfe
b000127408f96db7411f301553585f5da0e426cd
/code/Letter-Tile-Possibilities.py
faf5ee09133f12527c8ee128149d054486b16934
[]
no_license
SaiVK/Leetcode-Archive
5f758faf97d1ab559c4c75d26ae5cf7a256baef8
56bafeaaced2d0fd3b3d2f1a0365d24d5b41e504
refs/heads/master
2022-11-23T08:50:17.610247
2020-07-27T02:09:53
2020-07-27T02:09:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
import itertools class Solution(object): def numTilePossibilities(self, tiles): a = 0 for e in range(1, (len(tiles) + 1)): for val in set(itertools.permutations(tiles, e)): a += 1 return a
c63f96624ea7308bc8b1af5b80a4d286f0439386
06476bc4cb7fc3ce378beb357fac7d5aacb87b3b
/Prototype/env/lib/python3.8/site-packages/pyfilterbank/rbj_audio_eq.py
ea96d6f1ca70909b6076a14e89b3e8c77d95a2cb
[ "MIT" ]
permissive
marc-ortuno/VOPEC
44d3a74d3e0686474dd57fcb21e845fd5fd48897
e7ed1f13cc1868a824f4036dd08ec6bed4266c08
refs/heads/main
2023-06-12T19:15:18.060897
2021-07-01T17:15:03
2021-07-01T17:15:03
344,433,646
0
0
MIT
2021-06-14T19:15:47
2021-03-04T10:22:05
Python
UTF-8
Python
false
false
5,621
py
from numpy import sqrt, pi, cos, sin, sinh, log def rbj_sos(filtertype, sample_rate, f0, gain_db=None, q_factor=None, band_width=None, shelf_slope=None): if 'shelf' in filtertype and not shelf_slope: raise(ValueError('shelf_slope mus be specified.')) w0 = 2*pi * f0/sample_rate amplitude = None if not gain_db else sqrt(10**(gain_db/20.0)) alpha = _compute_alpha(amplitude, w0, q_factor, band_width, shelf_slope) params = {'amplitude': amplitude, 'w0': w0, 'alpha': alpha} filterfun = _filtertype_to_filterfun_dict[filtertype] sos = filterfun(**params) return sos class RbjEqCascade: def __init__(self, sample_rate): self._sample_rate = sample_rate self._sosmat = [] self._filterlist = [] def add(self, filtertype): self._filtertypelist += [filtertype] filtobj = RbjEq(filtertype, self._sample_rate) self._filterlist += [filtobj] self._sosmat += [filtobj.sos] class RbjEq: def __init__(self, filtertype, sample_rate, params=None): self._filtertype = filtertype self._sample_rate = sample_rate self._filterfun = _filtertype_to_filterfun_dict[filtertype] if not params: params, param_names = _get_params_filtertype(filtertype) self._params = params self._update(**params) def update(self, f0, gain_db=None, q_factor=None, band_width=None, shelf_slope=None): w0 = 2*pi * f0/self.sample_rate amplitude = None if not gain_db else sqrt(10**(gain_db/20.0)) alpha = _compute_alpha(amplitude, w0, q_factor, band_width, shelf_slope) params = {'amplitude': amplitude, 'w0': w0, 'alpha': alpha} self._sos = self._filterfun(**params) @property def sos(self): return self._sos @property def params(self): return self._params @params.setter def params(self, value): self._params = value self.update(**self.params) def _compute_alpha(amplitude=None, w0=None, q_factor=None, band_width=None, shelf_slope=None): if q_factor: return sin(w0) / (2*q_factor) elif band_width: return sin(w0) * sinh(0.5*log(2.0) * band_width * w0/sin(w0)) elif shelf_slope: return sin(w0) / 2 * sqrt((amplitude + 1/alpha) * (1/shelf_slope - 1) +2) else: raise(ValueError( '''You need to specify at least one of: q_factor, band_width or shelf_slope.''')) def _lowpass(w0, alpha): b0 = (1 - cos(w0)) / 2.0 b1 = 1 - cos(w0) b2 = (1 - cos(w0)) / 2.0 a0 = 1 + alpha a1 = -2 * cos(w0) a2 = 1 - alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _highpass(w0, alpha): b0 = (1 + cos(w0)) / 2.0 b1 = -(1 + cos(w0)) b2 = (1 + cos(w0)) / 2.0 a0 = 1 + alpha a1 = -2 * cos(w0) a2 = 1 - alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _bandpassQ(w0, alpha): b0 = sin(w0) / 2.0 # = Q*alpha b1 = 0.0 b2 = -sin(w0) / 2.0 # = -Q*alpha a0 = 1 + alpha a1 = -2 * cos(w0) a2 = 1 - alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _bandpass(w0, alpha): b0 = alpha b1 = 0.0 b2 = -alpha a0 = 1 + alpha a1 = -2 * cos(w0) a2 = 1 - alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _notch(w0, alpha): b0 = 1.0 b1 = -2 * cos(w0) b2 = 1.0 a0 = 1 + alpha a1 = -2 * cos(w0) a2 = 1 - alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _apf(w0, alpha): b0 = 1 - alpha b1 = -2 * cos(w0) b2 = 1 + alpha a0 = 1 + alpha a1 = -2 *cos(w0) a2 = 1 - alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _peq(amplitude, w0, alpha): b0 = 1 + alpha*amplitude b1 = -2 * cos(w0) b2 = 1 - alpha*amplitude a0 = 1 + alpha/amplitude a1 = -2 * cos(w0) a2 = 1 - alpha/amplitude sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _lowshelf(amplitude, w0, alpha): b0 = amplitude*((amplitude+1) - (amplitude-1)*cos(w0) + 2*sqrt(amplitude)*alpha) b1 = 2*amplitude*((amplitude-1) - (amplitude+1)*cos(w0)) b2 = amplitude*((amplitude+1) - (amplitude-1)*cos(w0) - 2*sqrt(amplitude)*alpha) a0 = (amplitude+1) + (amplitude-1)*cos(w0) + 2*sqrt(amplitude)*alpha a1 = -2*((amplitude-1) + (amplitude+1)*cos(w0)) a2 = (amplitude+1) + (amplitude-1)*cos(w0) - 2*sqrt(amplitude)*alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos def _highshelf(amplitude, w0, alpha): b0 = amplitude*((amplitude+1) + (amplitude-1)*cos(w0) + 2*sqrt(amplitude)*alpha) b1 = -2*amplitude*((amplitude-1) + (amplitude+1)*cos(w0)) b2 = amplitude*((amplitude+1) + (amplitude-1)*cos(w0) - 2*sqrt(amplitude)*alpha) a0 = (amplitude+1) - (amplitude-1)*cos(w0) + 2*sqrt(amplitude)*alpha a1 = 2*((amplitude-1) - (amplitude+1)*cos(w0)) a2 = (amplitude+1) - (amplitude-1)*cos(w0) - 2*sqrt(amplitude)*alpha sos = array([b0, b1, b2, a0, a1, a2]) / a0 return sos _filtertype_to_filterfun_dict = { 'lowpass': _lowpass, 'highpass': _highpass, 'bandpassQ': _bandpassQ, 'bandpass': _bandpass, 'notch': _notch, 'apf': _apf, 'peq': _peq, 'lowshelf': _lowshelf, 'highshelf': _highshelf, } available_filtertypes = list(_filtertype_to_filterfun_dict.keys())
c9886d0249b8595088fa4db7338186268e2c81b8
8c77b0d14dd720a89470f2aa6243a8e8d4167424
/py4e/CodeUp/1072_repeat_execute.py
619fba19b76681461ab606ae0c0cac0991d2d90d
[]
no_license
oshsage/Python_Pandas
64909c10fd98b0f2290c081dde9e6b87e17032e4
a131598d62c834d63979eda56ea15763e35fab4e
refs/heads/master
2022-12-19T19:32:20.436935
2020-10-24T07:17:10
2020-10-24T07:17:10
298,832,643
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
# n개의 정수가 순서대로 입력된다. # -2147483648 ~ +2147483647, 단 n의 최대 개수는 알 수 없다. # n개의 입력된 정수를 순서대로 출력해보자. # while( ), for( ), do~while( ) 등의 반복문을 사용할 수 없다. cnt = int(input()) i = 1 list = list(input().split(' ')) while i < cnt+1: print(list[i-1]) i += 1 # 사용한 개념: while, +=, list[n] # list[n]: 리스트의 n번째 항. n은 0부터 시작한다!
0908c5536c97723509afee287b17b5b5981324ec
5cec1ff43bf38cf31316254dabe3f972d38744ad
/src/hydrat/classifier/scikits_learn.py
f471c9e8b1665a01199d88be5270701ded21ba07
[]
no_license
eyadsibai/hydrat
7fb63f3c54f1fca25d04ab7266712c1077ffa2e3
5a68c6b8f32bc6bad59c3f002340bf7ef62e868c
refs/heads/master
2016-09-06T14:16:46.082697
2013-08-06T05:14:02
2013-08-06T05:14:02
33,199,904
1
0
null
null
null
null
UTF-8
Python
false
false
2,423
py
""" hydrat's interface to scikit.learn http://scikit-learn.sourceforge.net Marco Lui <[email protected]> October 2010 """ import numpy from hydrat.task.sampler import isOneofM from hydrat.classifier.abstract import Learner, Classifier, NotInstalledError class ScikitL(Learner): """ Lightweight wrapper for scikit's learner interface """ __name__ = 'scikit' def __init__(self, learn_class, **kwargs): Learner.__init__(self) self.learn_class = learn_class self.kwargs = kwargs def _check_installed(self): try: import sklearn except ImportError: raise NotInstalledError("sklearn not installed") def is_pickleable(self): # TODO: Mark as false until we look into this more closely return False def _params(self): md = dict(self.kwargs) md['learner'] = self.learn_class.__name__ return md def _learn(self, feature_map, class_map): if not isOneofM(class_map): raise ValueError, "can only use one-of-m classmaps" learner = self.learn_class(**self.kwargs) targets = class_map.argmax(axis=1) learner.fit(feature_map.todense(), targets) return ScikitC(learner, class_map.shape[1]) class ScikitC(Classifier): __name__ = 'scikits' def __init__(self, learner, num_class): Classifier.__init__(self) self.learner = learner self.num_class = num_class def _classify(self, feature_map): if hasattr(self.learner, 'predict_proba'): # use probabilistic output classif = self.learner.predict_proba(feature_map.todense()) else: pred = self.learner.predict(feature_map.todense()) classif = numpy.zeros((feature_map.shape[0], self.num_class), dtype='bool') for i,p in enumerate(pred): classif[i,p] = True return classif # Convenience methods from sklearn import svm def SVC(**kwargs): return ScikitL(svm.sparse.SVC, **kwargs) def NuSVC(**kwargs): return ScikitL(svm.sparse.NuSVC, **kwargs) def LinearSVC(**kwargs): return ScikitL(svm.sparse.LinearSVC, **kwargs) from sklearn.ensemble import RandomForestClassifier def RandomForest(**kwargs): return ScikitL(RandomForestClassifier, **kwargs) # TODO: There are generalized linear models available for sparse features # TODO: Some of the classifiers are only implemented for dense features, could investigate # using them but would need to be careful of very large spaces. # TODO: Warn if scikits.learn is not installed
156830a676d14598a35ddbffe19483abee65d4ef
a4a63eedacd544872fbfa33fc58d7cf1558829b7
/backend/manage.py
d16b861497712dfed65ee38b10618872047b7a96
[]
no_license
crowdbotics-apps/revil-18107
3d9bd52855e33debaa60f4f5c801629fb1aa60da
2671f3410b43cd8ed2ccc51780a80366fb594684
refs/heads/master
2022-10-17T09:34:39.097853
2020-06-15T00:05:02
2020-06-15T00:05:02
272,301,823
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "revil_18107.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == "__main__": main()
8c1f992909d87f31cc7c977d65ad54a7e5165a10
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03200/s727157767.py
3bb8da266eec20606492b32fc65225b1b0ffa5ff
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
s = list(input()) ans = 0 cntB = 0 for i in range(len(s)): if s[i] == 'B': cntB += 1 else: ans += cntB print(ans)