blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
2f6b30e1b2d944c0354a536d1c08f9eff2fa2e31
867846ed1df7f560ccc473413a70020155f66ad4
/fixMarkdownHeadings.py
1645916fdfb4c594d76c9f5feaf75e762005a85a
[]
no_license
abhineet123/PTF
84297bf5aa95320dbc2d34f422f2dd563ff65a58
0c63f7f8251af0d70c329b2cef53694db76c1656
refs/heads/master
2023-08-18T18:34:40.513936
2023-08-09T17:28:51
2023-08-09T17:28:51
157,794,848
5
1
null
2021-05-16T18:48:32
2018-11-16T01:24:05
MATLAB
UTF-8
Python
false
false
2,487
py
import pyperclip from Tkinter import Tk from anytree import Node, RenderTree def findChildren(_headings, root_level, _start_id, _root_node, n_headings): nodes = [] _id = _start_id while _id < n_headings: _heading, line_id = _headings[_id] words = _heading.split(' ') curr_level = words[0].count('#') if curr_level <= root_level: break heading_words = [] for word in words[1:]: if word.startswith('@'): break if word and not word.isspace(): heading_words.append(word) parent_text = '' if _root_node is not None and _root_node.parent is not None: parent_text = _root_node.name if curr_level > 2: # parent_text = str(_root_node) parent_text = '{}/{}'.format(parent_text, _root_node.parent_text) heading_text = '_'.join(heading_words) new_node = Node(heading_text, parent=_root_node, orig_text=_heading, parent_text=parent_text, marker=words[0], line_id=line_id) nodes.append(new_node) child_nodes, ___id = findChildren(_headings, curr_level, _id + 1, new_node, n_headings) nodes += child_nodes _id = ___id return nodes, _id def main(): in_txt = Tk().clipboard_get() lines = in_txt.split('\n') lines = [line for line in lines] start_t = None curr_t = None curr_root = Node("root_node") headings = [(k, i) for i, k in enumerate(lines) if k.startswith('#')] n_headings = len(headings) heading_id = 0 level = 0 nodes, _ = findChildren(headings, 0, 0, curr_root, n_headings) print(RenderTree(curr_root)) # out_txt = in_txt for node in nodes: if node.is_root or node.parent.is_root: continue orig_text = node.orig_text new_text = '{} {} @ {}'.format(node.marker, node.name, node.parent_text) lines[node.line_id] = new_text print('{}: new_text: {}'.format(node, new_text)) # out_txt = out_txt.replace(orig_text + '\n', new_text) out_txt = '\n'.join(lines) # print(out_txt) # with open(out_fname, 'w') as out_fid: # out_fid.write(out_txt) try: pyperclip.copy(out_txt) spam = pyperclip.paste() except pyperclip.PyperclipException as e: print('Copying to clipboard failed: {}'.format(e)) if __name__ == '__main__': main()
271a78833a1218dfa0f8b72a67a4f57a00c22f77
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/pa65DgwG5HMbtf6iY_17.py
75b738a5317af85ec0083358898136fca0256512
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
class player(): ​ def __init__(self, name, age, height, weight): self.name = name self.age = age self.height = height self.weight = weight def get_age(self): return self.name + " is age " + str(self.age) def get_height(self): return self.name + " is " + str(self.height) + "cm" def get_weight(self): return self.name + " weighs " + str(self.weight) + "kg"
f92344a7b55176c215b569cd01d99ec9c4fd8ee9
4c7baee40b96e6499f96d6fe81935437264c9c88
/stock_scraper/Indicators/RSI.py
d153d32174cf5e1a805325812081c1df70ba9210
[ "MIT" ]
permissive
webclinic017/Stock-Analysis
083d376484adebcad2d52113749a513aa48b09a8
eea8cb5bcb635f12eb15ac13306ef16e2892cd92
refs/heads/master
2022-04-13T00:20:54.287730
2020-03-29T21:05:22
2020-03-29T21:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,277
py
import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) import pandas as pd class kRSI(): def __init__(self): #do nothing print "In kRSI class" def CalculateRSI(self, avgGain, avgLoss): if avgLoss == 0: return 100 rs = avgGain / abs(avgLoss) rsi = 100 - ( 100 / ( 1 + rs)) return rsi def Calculate(self, dataFrame): ##### ALGORITHM ##### # 100 # RSI = 100 - -------- # 1 + RS # RS = Average Gain / Average Loss # The very first calculations for average gain and average loss are simple 14-period averages. # First Average Gain = Sum of Gains over the past 14 periods / 14. # First Average Loss = Sum of Losses over the past 14 periods / 14 # The second, and subsequent, calculations are based on the prior averages and the current gain loss: # Average Gain = [(previous Average Gain) x 13 + current Gain] / 14. # Average Loss = [(previous Average Loss) x 13 + current Loss] / 14. close = dataFrame['Close'] change = close.diff() change = change.fillna(0) firstAvgGain = 0 firstAvgLoss = 0 rsiSeries = pd.Series() for i in range(14): # Appending first 14 dummy value to RSI series rsiSeries = rsiSeries.append(pd.Series({dataFrame.index[i]: 0})) if change[i]>0: firstAvgGain = firstAvgGain + change[i] else: firstAvgLoss = firstAvgLoss + change[i] firstAvgGain = firstAvgGain/14 firstAvgLoss = firstAvgLoss/14 rsiValue = self.CalculateRSI(firstAvgGain, firstAvgLoss) rsiSeries[13] = rsiValue avgGain = firstAvgGain; avgLoss = firstAvgLoss for i in range(14, close.count()): if change[i]>0: avgGain = ((avgGain * 13) + change[i]) / 14 else: avgLoss = ((avgLoss * 13) + change[i]) / 14 rsiValue = self.CalculateRSI(avgGain, avgLoss) rsiSeries = rsiSeries.append(pd.Series({dataFrame.index[i]: rsiValue})) #print rsiSeries return rsiSeries
2d46b4f1438042afecc40c4acf20344806223487
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R1/benchmark/startQiskit_Class245.py
b531b8a8a74a4a467b8ee86bca4983619acd57d1
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
5,321
py
# qubit number=3 # total number=46 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.rx(-0.09738937226128368,input_qubit[2]) # number=2 prog.h(input_qubit[1]) # number=33 prog.cz(input_qubit[2],input_qubit[1]) # number=34 prog.h(input_qubit[1]) # number=35 prog.h(input_qubit[1]) # number=3 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_Class245.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
0c5ab6e315afa21be876ef1a62aeaa6b3aaaff97
379a473d6f572b7fb0c00ffa3387931a6bebb082
/Chapter9/plot_confusion_matrix.py
061034801b4a3a58edac77979b4adc9847936748
[]
no_license
Willianan/Data_Analysis_and_Mining
6746f75dcade79f9134574d5962ec5bc19da51de
8c526e5d12a535fde1b8b5c84b21007289b8eb20
refs/heads/master
2020-04-28T15:26:58.227850
2019-04-07T13:51:41
2019-04-07T13:51:41
175,367,669
0
0
null
null
null
null
UTF-8
Python
false
false
1,053
py
import matplotlib.pyplot as plt import numpy as np import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
4decd0022d8b9f5903a2348dd6c8ca81a7787360
d25c89a54ad980c68bc8d247eb43f88499617dda
/src/ocr_line_curation_chars.py
1dda0fa5a2a17ad15a2000d2ca7bd195293a99de
[]
no_license
nakamura196/amami
5922e396b89850d18660e465d8e6af498b28b967
19bdc712bb24ab325806c3cb2bb4666d16182768
refs/heads/master
2023-01-07T05:29:19.145424
2020-11-06T04:31:16
2020-11-06T04:31:16
286,902,467
0
0
null
null
null
null
UTF-8
Python
false
false
3,639
py
from PIL import Image import sys sys.path.append('/path/to/dir') import json import pyocr import pyocr.builders tools = pyocr.get_available_tools() if len(tools) == 0: print("No OCR tool found") sys.exit(1) tool = tools[0] print("Will use tool '%s'" % (tool.get_name())) langs = tool.get_available_languages() print("Available languages: %s" % ", ".join(langs)) builder = pyocr.builders.TextBuilder() builder = pyocr.tesseract.CharBoxBuilder() builder = pyocr.builders.LineBoxBuilder() # tesseract_layout=6 with open('../docs/iiif/amami/manifest.json') as f: df = json.load(f) canvases = df["sequences"][0]["canvases"] members = [] for i in range(len(canvases)): page = str(i+1).zfill(4) canvas = canvases[i] canvas_id = canvas["@id"] image_url = canvas["images"][0]["resource"]["@id"] filename = image_url.split("/")[-1] im_path = "../docs/files/large/"+filename char_boxes = tool.image_to_string( Image.open(im_path), lang='jpn_vert', builder=builder ) # print(char_boxes) im = Image.open(im_path) for j in range(len(char_boxes)): box = char_boxes[j] # box.position は左下を原点とした ((min-x, min-y), (max-x, max-y)) らしい。 # ここでは左上を原点とした x, y, width, height に変換してみる x = box.position[0][0] y = im.height - box.position[1][1] width = box.position[1][0] - x height = im.height - box.position[0][1] - y text = box.content.replace(" ", "") print("\t".join([ text, # 文字 str(x), str(y), str(width), str(height), # 確信度 str(box.confidence), ])) if text == "": continue member_id = canvas_id+"#xywh="+str(x)+","+str(y)+","+str(width)+","+str(height) member = { "label": "Page "+page+"_"+str(j+1), "metadata": [ { "label": "Annotation", "value": [ { "on": member_id, "resource": { "@type": "cnt:ContentAsText", "chars": text, "marker": { "text": text, }, "format": "text/html" }, "motivation": "sc:painting", "@id": "http://codh.rois.ac.jp/char-shape/book/200003803/annotation/"+"Page "+page+"_"+str(j+1), "@type": "oa:Annotation" } ] } ], "@id": member_id, "@type": "sc:Canvas" } members.append(member) break curation = { "@context": [ "http://iiif.io/api/presentation/2/context.json", "http://codh.rois.ac.jp/iiif/curation/1/context.json" ], "@type": "cr:Curation", "@id": "https://mp.ex.nii.ac.jp/api/curation/json/aaa5d585-3cd2-4651-ba98-71769b028e19", "label": "Curating list", "selections": [ { "@id": "https://mp.ex.nii.ac.jp/api/curation/json/aaa5d585-3cd2-4651-ba98-71769b028e19/range1", "@type": "sc:Range", "label": "Manual curation by IIIF Curation Viewer", "members": members, "within": { "@id": "https://raw.githubusercontent.com/nakamura196/amami/master/docs/iiif/amami/manifest.json", "@type": "sc:Manifest", "label": "奄美大島" } } ] } fw = open("../docs/curation/test_line.json", 'w') json.dump(curation, fw, ensure_ascii=False, indent=4, sort_keys=True, separators=(',', ': '))
9013611ed7ed83fb4065f9d6e3bb601c6efacc71
9f84d91a8ae3df53b07fe3267992fba00a99ac9e
/torch_geometric/graphgym/contrib/__init__.py
47365d98aadd0b304b67af8266d8e4228eb52f85
[ "MIT" ]
permissive
pyg-team/pytorch_geometric
ebea601eae228f3905465b5c2349d3fb3bb5cb26
a52af694b8ce6a80811e20966fe6d08a3e7511fe
refs/heads/master
2023-08-31T04:13:40.943308
2023-08-30T12:48:42
2023-08-30T12:48:42
106,024,057
6,775
1,563
MIT
2023-09-14T17:10:18
2017-10-06T16:03:03
Python
UTF-8
Python
false
false
389
py
from .act import * # noqa from .config import * # noqa from .encoder import * # noqa from .head import * # noqa from .layer import * # noqa from .loader import * # noqa from .loss import * # noqa from .network import * # noqa from .optimizer import * # noqa from .pooling import * # noqa from .stage import * # noqa from .train import * # noqa from .transform import * # noqa
0ce6670c9e67f8a7231b9c6d03cec2f066c58ab0
376c8f2c9051b8dffe851fab7c831f96dcf06ddb
/dp/1965_상자넣기.py
e430c04d04043fdf653ac4dee4d15404c6d63625
[]
no_license
getChan/algorithm
cad3ac74ac686ec4306ad8db551700d35e27a782
6a82c04cdbf670e3140b1a8685480a3f37c82c62
refs/heads/master
2021-06-30T01:08:42.270514
2020-09-19T07:55:45
2020-09-19T07:55:45
140,247,854
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
n = int(input()) boxes = [int(_) for _ in input().split()] dp = [1 for _ in range(n)] # 최장증가수열 문제 # dp[i] : i에서 끝나는 최장증가수열 answer = 1 for i in range(0, n): for j in range(0, i): if boxes[i] > boxes[j] and dp[i] < dp[j]+1: dp[i] = dp[j] + 1 if dp[i] > answer: answer = dp[i] print(answer)
1a0fbf08f1e836f3287ff05cb95026d3db0e9c4d
071ca9494ce811cdf52dc585ec863dc621a7865b
/test_coroutines.py
c82bc510a64e9c940b63bebf76764d13498b1922
[]
no_license
phaustin/parallel_project
37d7ea7dbc6de8406d50e47142b271e05c1552eb
821cca5ad7dcf5c3b6caa2ca3f20358b86120d06
refs/heads/master
2021-08-22T08:18:01.675473
2017-11-29T17:56:57
2017-11-29T17:56:57
112,510,223
0
0
null
null
null
null
UTF-8
Python
false
false
1,407
py
#http://blog.thumbtack.net/python-coroutines/ def coroutine(f): def wrapper(*arg, **kw): c = f(*arg, **kw) c.send(None) return c return wrapper @coroutine def logger(prefix="", next=None): while True: message = yield print("{0}: {1}".format(prefix, message)) if next: next.send(message) @coroutine def cache_checker(cache, onsuccess=None, onfail=None): while True: request = yield if request in cache and onsuccess: onsuccess.send(cache[request]) elif onfail: onfail.send(request) @coroutine def load_balancer(*workers): while True: for worker in workers: request = yield worker.send(request) @coroutine def worker(cache, response, next=None): while True: request = yield cache[request] = response if next: next.send(response) cache = {} response_logger = logger("Response") cluster = load_balancer( logger("Worker 1", worker(cache, 1, response_logger)), logger("Worker 2", worker(cache, 2, response_logger)), logger("Worker 3", worker(cache, 3, response_logger)), ) cluster = cache_checker(cache, response_logger, cluster) cluster = logger("Request", cluster) if __name__ == "__main__": from random import randint for i in range(20): cluster.send(randint(1, 5))
957b52ebdc5a273f9ccdd5b16a60f4b0053ff1bd
2a4be1e256ed19c8dd5d37cb3cfbe7f50bb4f8f6
/Landing/wsgi.py
7a21379d42a306591ffa506ec52344f303075fa1
[]
no_license
Miker69/Landing_telebot
55c3b34aac3db5753203260421ae7f2584160122
f32538d563c74108053418b177340b634f26c5f3
refs/heads/master
2023-04-04T03:48:58.941446
2021-04-13T15:37:36
2021-04-13T15:37:36
357,578,267
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
""" WSGI config for Landing project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Landing.settings') application = get_wsgi_application()
1a7fafcd552464eccc415a7cd7f6c13f568bd217
c2c03e034513a766c7de8298be428fb3eab3ab7b
/chainerrl/NeverSay20/env/bin/wheel
6aec0ddb9ff1fc7d022b5e8ab8645344758aa131
[]
no_license
hamko/sample
434adeca12e11587edce8cad799162b84c7f5071
9b0624b99e3e551d6b72b632d3a7d1a38aac7a9f
refs/heads/master
2021-01-17T02:51:25.174354
2018-10-23T02:40:04
2018-10-23T02:40:04
9,640,383
1
3
null
null
null
null
UTF-8
Python
false
false
255
#!/home/hamko/git/sample/chainerrl/TicTacToe/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f8022236e53f1c2f42d0dfc05b69d592acb001a4
0d0c13d80924b6e5cfc74a623eb250a5fd2e2cca
/Stacks/sliding window maximum.py
b848b90e9f5e374590087d07587cd492462bd090
[ "Apache-2.0" ]
permissive
Akashdeep-Patra/problemSolving
54e2fc3c3a9587b8c976921f6fc45364af1dfcac
c278e5d090af7370e56789e68b7bb73dc37165f8
refs/heads/master
2022-11-15T19:20:54.585886
2020-06-29T10:47:39
2020-06-29T10:47:39
258,956,787
0
0
null
null
null
null
UTF-8
Python
false
false
2,145
py
from collections import deque class Solution: # @param A : tuple of integers # @param B : integer # @return a list of integers def slidingMaximum(self, a, k): q=deque() for i in range(k): if(len(q)==0 or a[q[-1]]>=a[i]): q.append(i) else: while(len(q)!=0 and a[q[-1]]<a[i]): q.pop() q.append(i) ans=[] ans.append(a[q[0]]) for i in range(k,len(a)): if(len(q)==0 or a[q[-1]]>=a[i]): q.append(i) else: while(len(q)!=0 and a[q[-1]]<a[i]): q.pop() q.append(i) while(len(q)!=0 and q[0]<=i-k): q.popleft() ans.append(a[q[0]]) return ans """ Sliding Window Maximum Problem Description Given an array of integers A. There is a sliding window of size B which is moving from the very left of the array to the very right. You can only see the B numbers in the window. Each time the sliding window moves rightwards by one position. You have to find the maximum for each window. Return an array C, where C[i] is the maximum value in the array from A[i] to A[i+B-1]. Refer to the given example for clarity. NOTE: If B > length of the array, return 1 element with the max of the array. Problem Constraints 1 <= |A|, B <= 106 Input Format The first argument given is the integer array A. The second argument given is the integer B. Output Format Return an array C, where C[i] is the maximum value of from A[i] to A[i+B-1]. Example Input Input 1: A = [1, 3, -1, -3, 5, 3, 6, 7] B = 3 Input 2: A = [1, 2, 3, 4, 2, 7, 1, 3, 6] B = 6 Example Output Output 1: [3, 3, 5, 5, 6, 7] Output 2: [7, 7, 7, 7] Example Explanation Explanation 1: Window position | Max --------------------|------- [1 3 -1] -3 5 3 6 7 | 3 1 [3 -1 -3] 5 3 6 7 | 3 1 3 [-1 -3 5] 3 6 7 | 5 1 3 -1 [-3 5 3] 6 7 | 5 1 3 -1 -3 [5 3 6] 7 | 6 1 3 -1 -3 5 [3 6 7] | 7 Explanation 2: Window position | Max --------------------|------- [1 2 3 4 2 7] 1 3 6 | 7 1 [2 3 4 2 7 1] 3 6 | 7 1 2 [3 4 2 7 1 3] 6 | 7 1 2 3 [4 2 7 1 3 6] | 7 """
779a04c19db092d2dee3ac7a2cee5ec9378b58bc
da47e42519b6d5eb37bdb634fd618672706e79da
/localizacion_metromed/Txt_file_module/models/txt_activo.py
d825bda0ddc8ed2165a4344dd28d866ff52ec13b
[]
no_license
Tysamncaweb/produccion2
02bbbccefc4f4cd0d0948b1b0552d931f804fb9b
b95909d0689fc787185290565f0873040a6027cf
refs/heads/master
2022-04-26T13:51:22.316294
2020-04-29T19:58:35
2020-04-29T19:58:35
260,013,639
1
0
null
null
null
null
UTF-8
Python
false
false
5,580
py
# -*- coding: utf-8 -*- # Part of BrowseInfo. See LICENSE file for full copyright and licensing details. from datetime import datetime, timedelta from odoo import models, api, fields from logging import getLogger _logger = getLogger(__name__) class bono(models.TransientModel): _inherit = "account.wizard.generacion.txtfile" @api.multi def print_bono2(self): VAR = 0 VAR2 = 0 concepto2 = self.concepto.upper() totalpago = 0 if self.bancose == 'activo': # /////////////////////////////Creacion del archivo .txt en carpeta local odoo/////////////////////////////////// file = open("archivo.txt", "w") # /////////7////////calculos y ceacion de datos para el .txt///////////////////////////////////////////////////// self.invoices = self.env['hr.payslip'].search( [('date_to', '<=', self.date_to), ('date_from', '>=', self.date_from)]) _logger.info("\n\n\n {} \n\n\n".format(self.invoices)) date_f = str(self.date_imp) a = date_f[0:4] m = date_f[5:7] d = date_f[8:] #saco el encabezado for invoice in self.invoices: # traigo el numero de cuenta cuenta = invoice.employee_id.account_number_2 if cuenta: filtro = cuenta[0:4] else: filtro = '1234' if filtro == '0171': VAR2 += 1 for n in invoice.line_ids: #varsuma = n.total #varsuma = float("{0:.2f}".format(varsuma)).. totalpago += n.total totalpago = float("{0:.2f}".format(totalpago)) totalpago = str(totalpago) for i in range(0, len(totalpago)): if (totalpago[i] == '.'): cds = totalpago[i + 1:] if len(cds) == 2: ceroextra = '0' imprimir0 = '' else: ceroextra = '' imprimir0 = '0' #escribo en el txt totalpago = totalpago.replace(".", ",") lineas = ['H', ';', VAR2, ';', totalpago, imprimir0, ';', concepto2, ';', self.nlote, ';', d,m,a] for l in lineas: file.write(str(l)) file.write('\n') for invoice in self.invoices: # traigo el numero de cuenta cuenta = invoice.employee_id.account_number_2 if cuenta: filtro = cuenta[0:4] else: filtro = '1234' if filtro == '0171': letra = invoice.employee_id.nationality ncedu = invoice.employee_id.identification_id_2 catcedu = len(ncedu) if catcedu == 7: catce = '00' if catcedu == 8: catce = '0' # catce, es los ceros que se agregan antes de la cedula # ncedu, es el numero de cedula # calculo del monto total de nomina busqueda = self.env['hr.salary.rule.category'].search([('id', '!=', 0)]) if busqueda: for a in busqueda: if a.name == 'Net': ttotal = a.id busqueda2 = self.env['hr.payslip.line'].search([('id', '!=', 0)]) for vip in invoice.line_ids: for vip2 in busqueda2: if vip == vip2: if vip2.category_id.id == ttotal: totalpago = vip2.total totalpago = float("{0:.2f}".format(totalpago)) totalpago = str(totalpago) for i in range(0, len(totalpago)): if (totalpago[i] == '.'): cds = totalpago[i + 1:] if len(cds) == 2: ceroextra = '0' imprimir0 = '' else: ceroextra = '' imprimir0 = '0' totalpago = totalpago.replace(".", ",") VAR += 1 # imprimo en el txt lineas = ['P', ';', letra, catce, ncedu, ';', totalpago, imprimir0, ';', concepto2, ';', VAR, ';', '000' ] for l in lineas: file.write(str(l)) file.write('\n') file.close() nombretxt = 'CargaMasivadepagodeNómina.txt' nameclass = 'account.wizard.generacion.txtfile' return self.imprimir_txt(nombretxt,nameclass)
bcfe1e99173899327dcff8051e09ffc4433afce6
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.4/tests/regressiontests/views/tests/debug.py
566b96c0e404e04bcbc2da47bd1409201df46bd8
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
108
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.4/tests/regressiontests/views/tests/debug.py
d4156f6b387f2c2bbfab43d6331fe0e83479c75c
d2332604fc80b6d622a263b2af644425a7e703de
/facebook/trees_and_graphs/12_accounts_merge.py
9d2fd775ac9e45fdb77ea0793a06731010f2ed00
[]
no_license
abhijitdey/coding-practice
b3b83a237c1930266768ce38500d6812fc31c529
6ae2a565042bf1d6633cd98ed774e4a77f492cc8
refs/heads/main
2023-08-14T23:31:06.090613
2021-10-18T21:35:56
2021-10-18T21:35:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,999
py
from typing import List """ 1. First, create a graph (adjacency list) connecting all emails that are related to the same account 2. Second, keep track of the account name for each unique email 3. Find connected components in the graph: a. Each connected component refers to the same account. b. So, all unique emails in a connected component belong to the same account. Hence, sorting them gives the answer - Use DFS to traverse the graph and find the connected components """ from collections import defaultdict class Solution: def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]: if not accounts: return [] emailToName = dict() # The adj list will contain all emails connected to each email from all the accounts adj_list = defaultdict(set) visited = set() for account in accounts: name = account[0] for email in account[1:]: first_email = account[1] adj_list[first_email].add(email) adj_list[email].add(first_email) emailToName[email] = name def dfs(email): visited.add(email) stack = [email] components = [email] while len(stack) > 0: email = stack.pop() for neighbor in adj_list[email]: if neighbor in visited: continue # Add the neighbor to the stack stack.append(neighbor) components.append(neighbor) visited.add(neighbor) return components # We need to run DFS from each email and see how many connected components are present result = [] for email in adj_list: if email in visited: continue components = dfs(email) result.append([emailToName[email]] + sorted(components)) return result
381eb050befc9726fcc4b57820d8a6e03ecd00a6
d2abb93fc50ec2ef3513a4a1307c0e6955a27eaf
/generic/threaded.py
2bb1c2d319ec064bb3ef93f259d786d8568e2606
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
staccDOTsol/DialoGPT
1cddb45ab500afdb6c89690b9440d880c61f7140
b026278c2ae831f3bc63759300dba56f14bf3228
refs/heads/master
2023-01-27T18:27:14.611490
2020-12-04T07:48:25
2020-12-04T07:48:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,303
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import sys import time import os.path import math import re import argparse import traceback import json import bz2 import gzip from nltk.tokenize import TweetTokenizer from flashtext import KeywordProcessor import hashlib def makedirs(fld): if not os.path.exists(fld): os.makedirs(fld) PICKLE_MAX_LEN = 1e4 TAG_COMMENT = 't1_' TAG_SUBMISSION = 't3_' dontuse = '__dontuse__' url_str = '__url__' parser = argparse.ArgumentParser() parser.add_argument("dump_name", help="YYYY-MM, dumped files to be loaded") parser.add_argument("--bl_words", help="list of offensive words, to avoid in responses") parser.add_argument("--ignore_keys", default=False, type=bool, help="If true ignore any keys provided as arguments") parser.add_argument("--keep_keys", help="hashes of instances to keep") parser.add_argument("--discard_tgt_keys", help="hashes of targets to discard") parser.add_argument("--freq_words", help="words sorted by their corpus frequencies") parser.add_argument("--bl_subreddits", help="blocklist of offensive subreddits") parser.add_argument("--wl_subreddits", help="whitelist of relatively safe subreddits") parser.add_argument("--reddit_input", default="d:/data/reddit/bz2/", help="Location of the input reddit data (bz2 files)") parser.add_argument("--reddit_output", default="d:/data/reddit/", help="Location of the output reddit data (conversations)") parser.add_argument("--max_len", default=30, type=int) # 30 words means roughly 70 characters on average for Reddit parser.add_argument("--max_len_type", default='w') # w for words, c for chars parser.add_argument("--min_depth", default=2, type=int) parser.add_argument("--max_depth", default=10, type=int) parser.add_argument("--min_score", default=0, type=int) parser.add_argument("--use_title", default=1, type=int) parser.add_argument("--leaves_only", default=0, type=int) parser.add_argument("--split_size", default=int(5e5), type=int) parser.add_argument("--task", default='conv') parser.add_argument("--parallel", default=False, type=bool) parser.add_argument("--pre_tok", default=False, type=bool, help="whether to tokenize during the extract step") parser.add_argument("--clean", default=False, type=bool, help="apply some filters to significantly reduce number of instances") args = parser.parse_args() print("Args: %s" % args, file=sys.stderr) fields_subm = [ "id", "score", "num_comments", "domain", "permalink", "title" ] fields_comm = [ "id", "author", "parent_id", "link_id", "score", "n_char", "body"] bl_words = KeywordProcessor() bl_subreddits = {} wl_subreddits = {} keys = {} keys_rm = {} def get_submission_id(submission): return TAG_SUBMISSION + submission["id"] def get_comment_id(comment): return TAG_COMMENT + comment["id"] def norm_sentence(txt, is_extract): if is_extract: return minimal_norm_sentence(txt) else: return gpt_norm_sentence(txt) def minimal_norm_sentence(txt): txt = txt.replace(chr(92),'') # chr(92) = '\'. as twitter has 'b\/c' rather than 'b/c' txt = txt.replace('\n', ' ') txt = txt.replace('\r', ' ') txt = txt.replace('\t', ' ') #print ("Tokenized: [%s]" % txt, file=sys.stderr) return txt def gpt_norm_sentence(txt): # url and tag words = [] for word in txt.split(): if word[0] == '#': # don't allow tag continue i = word.lower().find('http') if i >= 0: word = word[:i] + ' ' + '__url__' words.append(word.strip()) txt = ' '.join(words) # remove illegal char txt = txt.replace(chr(92),'') # chr(92) = '\'. as twitter has 'b\/c' rather than 'b/c' txt = txt.replace("b/c","because").replace('j/k','just kidding').replace('w/o','without').replace('w/','with') txt = re.sub('__mention__','MENTION',txt) txt = re.sub('__url__','URL',txt) txt = re.sub(r"[^A-Za-z0-9()\[\]:,.!?'“” ]", " ", txt) txt = re.sub('MENTION','__mention__',txt) txt = re.sub('URL','__url__',txt) tokenizer = TweetTokenizer(preserve_case=True) txt = ' ' + ' '.join(tokenizer.tokenize(txt)) + ' ' # remove un-necessary space return ' '.join(txt.split()) def extract_submissions(fld_bz2, fld_split, which, size=2e5): path_in = fld_bz2 + '/RS_%s.bz2'%args.dump_name n = 0 m = 0 n2 = 0 m2 = 0 sub = 0 sid2 = [] sids = [] lines = [] try: submissions = dict() subreddit = reddit.subreddit(which) for submission2 in subreddit.top(limit=7500): try: n += 1 #if n%1e4 == 0: #print('[%s] selected %.3fM from %.2fM submissions'%( #args.dump_name, m/1e6, n/1e6)) try: submission = {} submission["id"] = submission2.id submission["score"] = submission2.score submission["domain"] = submission2.domain submission["permalink"] = submission2.permalink submission["title"] = submission2.title submission["num_comments"] = submission2.num_comments if int(submission['num_comments']) >= 2: # filter 1 submission['title'] = norm_sentence(submission['title'], True) submission = submission submissions[get_submission_id(submission)] = submission lines.append('\t'.join([str(submission[k]) for k in fields_subm])) m += 1 sid2.append(get_submission_id(submission)) if len(sid2) == size: #print('writing submissions_sub%i'%sub) sids.append(set(sid2)) with open(fld_split + '/rs_sub%i.tsv'%sub, 'w', encoding='utf-8') as f: f.write('\n'.join(lines)) sid2 = [] lines = [] except Exception as e: print(e) traceback.print_exc() continue lines2 = [] #for sub in range(n_sub): # open(fld_split + '/rc_sub%i.tsv'%sub, 'w') comments = dict() for top_level_comment in submission2.comments: try: n2 += 1 comment = {} comment["id"] = top_level_comment.id try: if top_level_comment.author is not None: comment["author"] = top_level_comment.author.name else: comment["author"] = "None" except: comment["author"] = "None" comment["parent_id"] = top_level_comment.parent_id try: comment["link_id"] = top_level_comment.link_id comment["score"] = top_level_comment.score comment["body"] = top_level_comment.body except: comment["link_id"] = comment["parent_id"] comment["score"] = 0 comment["body"] = "" #if args.keep_keys: # k = '\t'.join([comment['link_id'], get_comment_id(comment), 'dep']) # if k not in keys.keys(): # continue if comment['body'] != '[deleted]': # filter 1 #if '>' in comment['body'] or '&gt;' in comment['body']: # filter 3: '&gt;' means '>' # continue #sid = comment['link_id'] comment['n_char'] = len(comment['body']) comment['body'] = norm_sentence(comment['body'], True) #print(comment) if len(comment['body'].split()) >= 2: # filter 2 comment = comment comments[get_comment_id(comment)] = comment lines2.append('\t'.join([str(comment[k]) for k in fields_comm])) m2 += 1 #break except Exception as e: print(e) traceback.print_exc() sorted_id = sorted([( comments[cid]['link_id'], comments[cid]['parent_id'], cid ) for cid in comments]) n = len(comments) #print('total comments: %i'%n) i = 0 m = 0 lines = [] sum_resp_len = 0 skip_id = {} if args.leaves_only: for _, pid, _ in sorted_id: skip_id[pid] = 1 #print("leaves ratio : %f" % (len(skip_id) / len(sorted_id)), file=sys.stderr) for sid, pid, cid in sorted_id: i += 1 if i%1e5 == 0: #print('selected %.2fM from %.1f/%.1fM comments'%(m/1e6, i/1e6, n/1e6), file=sys.stderr) if len(lines) > 0: with open(path_out, 'a', encoding="utf-8") as f: f.write('\n'.join(lines) + '\n') lines = [] subreddit = '' domain = '' if sid in submissions.keys(): subreddit = submissions[sid]['permalink'].split('/')[2].lower() domain = submissions[sid]['domain'].lower() info = subreddit + '\t' + domain #if args.bl_subreddits: # if not subreddit: #print("skip\tmissing\t%s\tN/A\tmissing submission: %s" % (info, sid), file=sys.stderr) # continue # if subreddit in bl_subreddits: #print("skip\tbad_subreddit\t%s\tN/A\toffensive subreddit: %s" % (info, subreddit), file=sys.stderr) # continue comment = comments[cid] if comment['score'] == 'None': score = 0 else: score = int(comment['score']) if score < args.min_score: # filter 1 #print("skip\tlow_score\t%s\t%s\tscore %d < %d" % (info, comment['body'], score, args.min_score), file=sys.stderr) continue txts = [] for c in comments: txts.append(comments[c]['body']) #print(txts) #txts = get_convo(sid, cid, cid, submissions, comments) # filter 2 #print(len(txts)) if len(txts) < args.min_depth: # filter 3 #print("skip\tmin_depth\t%s\t%s\tdepth %d < %d: %s" % (info, comment['body'], len(txts), args.min_depth, "|".join(txts)), file=sys.stderr) continue for i in range(len(txts)): txts[i] = norm_sentence(txts[i], False) if args.leaves_only and args.clean: sc = '1.0' skip_target = False if args.discard_tgt_keys: tgt_h = hashlib.sha224(txts[i].encode("utf-8")).hexdigest() if tgt_h in keys_rm.keys(): skip_target = True if bl_words.extract_keywords(txts[i]) or skip_target: sc = '0.0' txts[i] = sc + ' ' + txts[i] src = ' EOS '.join(txts[:-1]) tgt = txts[-1] header = ','.join([sid, pid, cid]) lines.append(header + '\t' + src + '\t' + tgt) sum_resp_len += len(tgt.split()) m += 1 #avg_len = sum_resp_len/m with open(fld_split + '/%s.tsv'%args.dump_name, 'a', encoding="utf-8") as f: f.write('\n'.join(lines) + '\n') #print('finally selected %i/%i'%(m, n))#, avg_len)) with open(fld_split + '/rc_sub%i.tsv'%sub, 'a', encoding='utf-8') as f: #print(lines2[sub]) f.write('\n'.join(lines2)) except Exception as e: print(e) traceback.print_exc() #sids, ms, ns, mc, ns = extract_submissions(fld_root_in, fld_split, size=args.split_size) #mc, nc = extract_comments(fld_root_in, fld_split, sids) #with open(fld_split + '/stat.tsv', 'a') as f: # f.write('\t'.join(map(str, [args.dump_name, m2, n2, m, n])) + '\n') #print('extract_comments done.\n') #return m, n #print('writing submissions_sub%i'%sub) sids.append(set(sid)) with open(fld_split + '/rs_sub%i.tsv'%sub, 'a', encoding='utf-8') as f: f.write('\n'.join(lines)) lines = [] sub += 1 except Exception as e: print(e) print('extract_submissions done.\n') return sids, m, n, m2, n2 def extract_comments(fld_bz2, fld_split, sids): path_in = fld_bz2 + '/RC_%s.bz2'%args.dump_name n = 0 m = 0 n_sub = len(sids) lines = [[] for i in range(n_sub)] #for sub in range(n_sub): # open(fld_split + '/rc_sub%i.tsv'%sub, 'w') try: subreddit = reddit.subreddit(subreddits[0]) for submission2 in subreddit.top(limit=5000): try: submission = {} submission["id"] = submission2.id submission["score"] = submission2.score submission["domain"] = submission2.domain submission["permalink"] = submission2.permalink submission["title"] = submission2.title submission["num_comments"] = submission2.num_comments n += 1 if n%1e4 == 0: print('[%s] selected %.3fM from %.2fM comments'%( args.dump_name, m/1e6, n/1e6)) for sub in range(n_sub): print(' sub %i: %i'%(sub, len(lines[sub]))) if len(lines[sub]) > 0: with open(fld_split + '/rc_sub%i.tsv'%sub, 'a', encoding='utf-8') as f: f.write('\n'.join(lines[sub]) + '\n') lines[sub] = [] for top_level_comment in submission2.comments: try: comment = {} comment["id"] = top_level_comment.id if top_level_comment.author is not None: comment["author"] = top_level_comment.author.name else: comment["author"] = "None" comment["parent_id"] = top_level_comment.parent_id comment["link_id"] = top_level_comment.link_id comment["score"] = top_level_comment.score comment["body"] = top_level_comment.body if args.keep_keys: k = '\t'.join([comment['link_id'], get_comment_id(comment), 'dep']) if k not in keys.keys(): continue if comment['body'] == '[deleted]': # filter 1 continue if '>' in comment['body'] or '&gt;' in comment['body']: # filter 3: '&gt;' means '>' continue sid = comment['link_id'] for sub in range(n_sub): if sid in sids[sub]: comment['n_char'] = len(comment['body']) comment['body'] = norm_sentence(comment['body'], True) if len(comment['body'].split()) < 2: # filter 2 break lines[sub].append('\t'.join([str(comment[k]) for k in fields_comm])) m += 1 break except Exception: traceback.print_exc() except Exception as e: print(e) except Exception as e: print(e) print('the rest...') for sub in range(n_sub): print(' sub %i: %i'%(sub, len(lines[sub]))) with open(fld_split + '/rc_sub%i.tsv'%sub, 'a', encoding='utf-8') as f: f.write('\n'.join(lines[sub])) print('extract_comments done.\n') return m, n def get_convo(sid, rootid, cid, submissions, comments, depth=10, txts2=[]): #print(depth) if depth == 0: return [] comment = comments[cid] pid = comment['link_id'] txts2.append(comment['body']) #print(txts2) for c in comments: if pid == comments[c]['link_id']: txts2.append(comments[c]['body']) print(comments[c]['body']) #print(txts2) #if args.max_len_type == 'w' and len(c['body'].split()) > args.max_len: # len filter #return [] #if args.max_len_type == 'c' and int(c['n_char']) > args.max_len: #return [] return txts2 def filter_instance(src, tgt, info): # Remove offensive words: if args.bl_words and not args.leaves_only: bad_words = bl_words.extract_keywords(tgt) if bad_words: print("skip\toffensive\t%s\t%s\tbad word(s): %s" % (info, tgt, bad_words), file=sys.stderr) return True # Remove empty targets: tgttoks = tgt.split() if len(tgttoks) <= 1: # 1 means there is only a weight, and 0 means there's a bug.. print("skip\temptytarget\t%s\t%s" % (info, tgt), file=sys.stderr) return True # Skip if word too long: toolong = False for w in tgttoks: if len(w) > 30: toolong = True break if toolong: print("skip\tlongword\t%s\t%s\tword too long" % (info, tgt), file=sys.stderr) return True srctoks = src.split() # Remove empty sources: (should probably uncomment, but left for reproducibility) #if len(srctoks) <= 1: # 1 means there is only a weight, and 0 means there's a bug.. # print("skip\temptysource\t%s\t%s" % (info, src), file=sys.stderr) # return True # Remove too long turns: nsrctgt = len(srctoks) + len(tgttoks) if nsrctgt > 200: print("skip\ttoolong\t%s\t%s\tsrc+tgt too long, src=[%s]" % (info, tgt, src), file=sys.stderr) return True # Skip turns with URLs: srctgt = src + " " + tgt if "__url__" in srctgt: print("skip\turl\t%s\t%s\turl in tgt, or src =[%s]" % (info, tgt, src), file=sys.stderr) return True # Skip responses with meta data: if re.search("[\[\]\(\)]", srctgt) != None: print("skip\ttags\t%s\t%s\ttag in tgt (or src: [%s])" % (info, tgt, src), file=sys.stderr) return True # Skip yelling: if re.search("[A-Z]{5,}", srctgt) != None: print("skip\tallcaps\t%s\t%s\tall caps in tgt (or src: [%s])" % (info, tgt, src), file=sys.stderr) return True # Skip word repetitions: reps = False for i in range(2, len(tgttoks)): if tgttoks[i-2] == tgttoks[i] and tgttoks[i-1] == tgttoks[i]: reps = True break if reps: print("skip\trepetitions\t%s\t%s\ttoo many repetitions" % (info, tgt), file=sys.stderr) return True return False import praw import codecs import os subreddits = os.environ['subs'].split('","') reddit = praw.Reddit( client_id="tc1xRzCUpCBQNg", client_secret="YSzJ2wK4mFyhnquUEH_ILxtkxSc", user_agent="my user agent" ) f = codecs.open('./redditnew.txt', "a", "utf-8") import re def save_convo(path_rs, path_rc, path_out): print(path_rc) #print('reading submissions...') submissions = dict() with gzip.open(path_rs, mode='rt', encoding='utf-8') as f: for line in f: cells = line.strip('\n').strip().split('\t') try: submission = dict([(fields_subm[i], cells[i]) for i in range(len(fields_subm))]) except Exception: #traceback.print_exc() continue submissions[get_submission_id(submission)] = submission #print('reading comments...') comments = dict() with gzip.open(path_rc, mode='rt', encoding='utf-8') as f: for line in f: cells = line.strip('\n').strip().split('\t') try: comment = dict([(fields_comm[i], cells[i]) for i in range(len(fields_comm))]) except Exception: traceback.print_exc() continue comments[get_comment_id(comment)] = comment sorted_id = sorted([( comments[cid]['link_id'], comments[cid]['parent_id'], cid ) for cid in comments]) n = len(comments) print('total comments: %i'%n) i = 0 m = 0 lines = [] sum_resp_len = 0 skip_id = {} if args.leaves_only: for _, pid, _ in sorted_id: skip_id[pid] = 1 #print("leaves ratio : %f" % (len(skip_id) / len(sorted_id)), file=sys.stderr) for sid, pid, cid in sorted_id: i += 1 if i%1e5 == 0: #print('selected %.2fM from %.1f/%.1fM comments'%(m/1e6, i/1e6, n/1e6), file=sys.stderr) if len(lines) > 0: with open(path_out, 'a', encoding="utf-8") as f: f.write('\n'.join(lines) + '\n') lines = [] subreddit = '' domain = '' if sid in submissions.keys(): subreddit = submissions[sid]['permalink'].split('/')[2].lower() domain = submissions[sid]['domain'].lower() info = subreddit + '\t' + domain #if args.bl_subreddits: # if not subreddit: #print("skip\tmissing\t%s\tN/A\tmissing submission: %s" % (info, sid), file=sys.stderr) # continue # if subreddit in bl_subreddits: #print("skip\tbad_subreddit\t%s\tN/A\toffensive subreddit: %s" % (info, subreddit), file=sys.stderr) # continue comment = comments[cid] if comment['score'] == 'None': score = 0 else: score = int(comment['score']) if score < args.min_score: # filter 1 #print("skip\tlow_score\t%s\t%s\tscore %d < %d" % (info, comment['body'], score, args.min_score), file=sys.stderr) continue txts = get_convo(sid, cid, cid, submissions, comments) # filter 2 #print(len(txts)) if len(txts) < args.min_depth: # filter 3 #print("skip\tmin_depth\t%s\t%s\tdepth %d < %d: %s" % (info, comment['body'], len(txts), args.min_depth, "|".join(txts)), file=sys.stderr) continue for i in range(len(txts)): txts[i] = norm_sentence(txts[i], False) if args.leaves_only and args.clean: sc = '1.0' skip_target = False if args.discard_tgt_keys: tgt_h = hashlib.sha224(txts[i].encode("utf-8")).hexdigest() if tgt_h in keys_rm.keys(): skip_target = True if bl_words.extract_keywords(txts[i]) or skip_target: sc = '0.0' txts[i] = sc + ' ' + txts[i] src = ' EOS '.join(txts[:-1]) tgt = txts[-1] header = ','.join([sid, pid, cid]) lines.append(header + '\t' + src + '\t' + tgt) sum_resp_len += len(tgt.split()) m += 1 #avg_len = sum_resp_len/m with open(path_out, 'a', encoding="utf-8") as f: f.write('\n'.join(lines) + '\n') print('finally selected %i/%i'%(m, n))#, avg_len)) return m, n, 1 import random import threading from time import sleep def extract(): makedirs(fld_split) print(threading.active_count()) for sub in subreddits: #sleep(random.randint(0,1)) t = threading.Thread(target=extract_submissions, args=(fld_root_in, fld_split, sub,)) t.daemon = True t.start() done = False while done == False: sleep(1) print(threading.active_count()) if threading.active_count() == 1: done = True #sids, ms, ns, mc, nc = extract_submissions(fld_root_in, fld_split, size=args.split_size) #mc, nc = extract_comments(fld_root_in, fld_split, sids) #with open(fld_split + '/stat.tsv', 'a') as f: #f.write('\t'.join(map(str, [args.dump_name, mc, nc, ms, ns])) + '\n') def build_conv(fld_out): makedirs(fld_out) path_out = fld_out + '/%s.tsv'%args.dump_name print(path_out) if args.parallel: fs = open(fld_out + '/' + args.dump_name + '.stat.tsv', 'w') else: fs = open(fld_out + '/stat.tsv', 'a') sub = 0 sum_m = 0 sum_n = 0 while True: path_rs = fld_split + '/rs_sub%i.tsv.gz'%sub if not os.path.exists(path_rs): if sub == 0: print('no such file: '+path_rs) break print('-'*10 + ' sub%i '%sub + '-'*10) path_rc = path_rs.replace('/rs_', '/rc_') m, n, avg_len = save_convo(path_rs, path_rc, path_out) fs.write('\t'.join([args.dump_name, str(sub), str(m), str(n), '%.2f'%avg_len]) + '\n') sum_m += m sum_n += n sub += 1 fs.write('\t'.join([args.dump_name, 'all', str(sum_m), str(sum_n), '']) + '\n') fs.close() def load_keys(key_file): d = {} with gzip.open(key_file, 'rt', encoding="utf-8") as f: for line in f: k = line.rstrip() if args.task == 'conv' and k.endswith('\tdep'): continue d[k] = 1 return d if args.freq_words: with open(args.freq_words, 'rt', encoding="utf-8") as f: n = 0 for line in f: n += 1 w = line.rstrip().lower() args.freq_words[w] = n if args.bl_words: with open(args.bl_words, 'rt', encoding="utf-8") as f: for line in f: if line[0] == '#': continue w = line.rstrip() bl_words.add_keyword(w) if args.bl_subreddits: with open(args.bl_subreddits, 'rt', encoding="utf-8") as f: for line in f: if line[0] == '#': continue s = line.rstrip().lower() bl_subreddits[s] = 1 if args.ignore_keys: args.keep_keys = None args.discard_tgt_keys = None else: if args.keep_keys: keys = load_keys(args.keep_keys) if args.discard_tgt_keys: keys_rm = load_keys(args.discard_tgt_keys) fld_root_in = args.reddit_input fld_root_out = args.reddit_output fld_split = fld_root_out + '/extract/%s'%(args.dump_name) if args.task == 'extract': extract() elif args.task == 'conv': fld_out = fld_root_out + '/conv' build_conv(fld_out) else: print("Unknown task: %s" % args.task, file=sys.stderr)
8556153eee128df8d4a4b2c68b116c9fc5edad6e
67416177cd9e221db0b20332c02dcc7680fcdd0e
/이것이 취업을 위한 코딩 테스트다/Chapter05_DFS_BFS/Q04_S.py
0e89d038a59dde7bce9a39cb6bf567d78488ff5a
[]
no_license
svclaw2000/Algorithm
4fe5e3bf50888b974df4f3d87387a003b5249352
b6d92cf0d18997e9e973d5f731ecb44a7935d93a
refs/heads/main
2023-06-21T21:50:13.089719
2021-07-11T14:18:47
2021-07-11T14:18:47
363,825,838
0
0
null
null
null
null
UTF-8
Python
false
false
739
py
from collections import deque N, M = map(int, input().split()) maze = [list(map(int, input())) for _ in range(N)] ds = ((-1, 0), (0, 1), (1, 0), (0, -1)) def dfs(x, y): queue = deque() queue.append((x, y)) while queue: x, y = queue.popleft() for dx, dy in ds: nx, ny = x + dx, y + dy if not 0 <= nx < N or not 0 <= ny < M or maze[nx][ny] == 0: # 범위 벗어나거나 괴물이면 무시 continue if maze[nx][ny] == 1: # 최초 방문(거리 1) 시 최단거리 저장 및 다른 곳 탐색 maze[nx][ny] = maze[x][y] + 1 queue.append((nx, ny)) return maze[-1][-1] print(dfs(0, 0))
dedc1fed02afc5cafde18f60d850ddf2a3f2c7d7
a1cd1135cd7bc3255e29632fe6c025cffd231285
/cluster/server_base.py
efe3f07db8830108d0bfc6e7cd4883872a50401e
[]
no_license
liguopeng80/gcommon.py27
5f8d3ac9fe85c7134cfbb557ec06a61184b58fd1
900cd0717c7a9db90793752fd5cbf9a576286497
refs/heads/master
2023-08-11T16:01:16.566945
2021-10-10T07:08:54
2021-10-10T07:08:54
404,542,040
2
1
null
null
null
null
UTF-8
Python
false
false
9,940
py
#!/usr/bin/python # -*- coding: utf-8 -*- # created: 2015-05-04 import optparse import traceback import os import sys import logging from twisted.internet import reactor from twisted.internet.defer import inlineCallbacks, maybeDeferred from gcommon import cluster from gcommon.logger import log_util from gcommon.logger import server_logger from gcommon.cluster.cluster_manager import ClusterManager from gcommon.cluster.server_init import create_zookeeper_service from gcommon.cluster.zkmanager import SlimZookeeperManager, SlimHashLockManager from gcommon.utils.rpcparams import get_rpc_param, get_rpc_routing_key from gcommon.utils import env from gcommon.utils import proc from gcommon.utils.cfgfile import DefaultConfigParser from gcommon.proto import init_thrift_protocol_stack init_thrift_protocol_stack() logger = logging.getLogger('server') CONFIG_FILE_NAME = 'default.conf' PROJECT_LOG_DIR = '../../../log/' PROJECT_CONFIG_DIR = '../../../etc/' ENV_CONFIG_DIR = 'SLIM_CONFIG_DIR' ENV_LOG_DIR = 'SLIM_LOG_DIR' def get_log_folder(options): """返回当前服务器的 log 目录。如果目录不存在则创建之。""" if options.log_folder: log_base = options.log_folder else: log_base = env.get_env(ENV_LOG_DIR) if not log_base: log_base = env.get_relative_folder(__file__, PROJECT_LOG_DIR) log_folder = os.path.join(log_base, options.service, '%s' % options.instance) # create if the log folder is not existed if not os.path.isdir(log_folder): os.makedirs(log_folder) return log_folder def get_config_file(options): """配置文件,优先顺序(配置参数,环境变量,工程目录)""" if options.config_file: return options.config_file config_dir = env.get_env(ENV_CONFIG_DIR) if config_dir: return os.path.join(config_dir, CONFIG_FILE_NAME) project_cfg_dir = env.get_relative_folder(__file__, PROJECT_CONFIG_DIR) return os.path.join(project_cfg_dir, CONFIG_FILE_NAME) def parse_command_line(service_name, parser, all_args): """解析命令行参数。""" # set usage usage_text = """Start %(service)s server. %(app)s [-c override_config_file] [-i instance] [-l log_folder] [-sid service_id]""" usage_param = { 'app': all_args[0], 'service': service_name, } print usage_param parser.set_usage(usage_text % usage_param) # add arguments parser.add_option('-c', '--config-file', dest='config_file', action='store', default='', help='server config file') parser.add_option('-s', '--service', dest='service', action='store', default='', help='service name') parser.add_option('-i', '--instance', dest='instance', action='store', default=0, help='instance sequence') parser.add_option('-l', '--log-folder', dest='log_folder', action='store', default='', help='log folder') parser.add_option('--sid', dest='service_id', action='store', default='', help='service ID') parser.add_option('-d', '--debug', dest='debug', action='store_true', default=False, help='enable debug') # parse command all_args = all_args[1:] return parser.parse_args(all_args) class SlimServer(object): STATUS_CONTROLLER_CLASS = None controller = None SERVICE_NAME = 'undefined' INSTANCE = 0 VERSION = 'undefined' DEFAULT_CONFIG = {} def init_server(self): """初始化服务器""" pass @inlineCallbacks def start_server(self): """启动服务器""" raise NotImplementedError('for sub-class') def _get_service_specific_confg(self): """服务器特定的配置参数""" return None def __init__(self): self.options = None self.args = None self.config_file = '' self.log_dir = '' self.cfg = DefaultConfigParser(self.DEFAULT_CONFIG) # 解析命令行 parser = optparse.OptionParser() options, args = parse_command_line(self.SERVICE_NAME, parser, sys.argv) self.options, self.args = options, args self.verify_command_line(parser) # 初始化 logger self.init_logger() # 加载配置项 self.load_server_config() self.full_server_name = proc.get_process_id(self.SERVICE_NAME, int(self.options.instance)) self.unique_server_name = proc.get_process_unique_id(self.SERVICE_NAME, int(self.options.instance)) def _init_controller(self): if self._is_zookeeper_enabled_in_cfg() and self.STATUS_CONTROLLER_CLASS: # todo: load init status from config file # todo: client failover and server failover self.controller = self.STATUS_CONTROLLER_CLASS(self) self.controller.subscribe(self._on_server_status_changed) cluster.Failover_Enabled = True else: self.STATUS_CONTROLLER_CLASS = None cluster.Failover_Enabled = False def _is_zookeeper_enabled(self): """应用服务器支持 zookeeper""" return self._is_zookeeper_enabled_in_cfg() and self._is_zookeeper_enabled_on_server() def _is_zookeeper_enabled_on_server(self): """应用服务器支持 zookeeper""" return self.STATUS_CONTROLLER_CLASS is not None def _is_zookeeper_enabled_in_cfg(self): """部署环境支持 zookeeper""" return self.cfg.get_bool('zookeeper.enabled') def is_failover_enabled(self): return self._is_zookeeper_enabled() def is_my_resource(self, key): if not self._is_zookeeper_enabled(): # for local debug return True else: return self._hl_manager.is_my_resource(key) def is_running(self): """服务是否正在运行""" if self._is_zookeeper_enabled(): return self.controller.is_running() else: # 没有状态控制类的服务总是处于运行状态 return True def _on_server_status_changed(self, _controller): """服务器状态改变(停止/运行)""" # raise NotImplementedError('for sub-class') pass def verify_command_line(self, parser): # if self.args: # parser.error('No arguments needed.') if self.options.service: if self.options.service != self.SERVICE_NAME: parser.error('bad service name. expected: %s, got: %s.' % (self.SERVICE_NAME, self.options.service)) else: self.options.service = self.SERVICE_NAME if not self.options.instance: self.options.instance = self.INSTANCE pass def load_server_config(self): self.config_file = get_config_file(self.options) params = self.get_config_params() if self.config_file: self.cfg.read(self.config_file, params) def init_logger(self): log_folder = get_log_folder(self.options) # TODO: stdio_handler should be False in production environment server_logger.init_logger(log_folder, add_stdio_handler=True) def get_config_params(self): cfg_root = env.get_folder(self.config_file) service_config = self._get_service_specific_confg() params = { 'SERVICE': self.options.service, 'INSTANCE': self.options.instance, 'CFGROOT': cfg_root, } if service_config: params.update(service_config) return params def main(self): # 如果需要,启动 controller self._init_controller() ClusterManager.reg_app_server(self) # 打印服务器启动信息 log_util.log_server_started(logger, self.SERVICE_NAME, self.VERSION) reactor.callLater(0, self._service_main) if self.controller: reactor.callLater(0, self.controller.start) reactor.run() @inlineCallbacks def _service_main(self): def __error_back(failure): stack = ''.join(traceback.format_tb(failure.getTracebackObject())) logger.error('failure: \n%s', stack) return failure try: d = maybeDeferred(self._service_main_with_exception) d.addErrback(__error_back) yield d except Exception, e: logger.error('server exception: %s', e) reactor.stop() def _init_zookeeper_client(self): # init zookeeper client self.zk_service = create_zookeeper_service() zk_manager = SlimZookeeperManager(self.controller, self.zk_service) zk_manager.start() # todo: remove testing code test_hash_lock = False if test_hash_lock: from zkhashlock import HashLockObserver self.__class__ = type(self.__class__.__name__, (self.__class__, HashLockObserver), {}) self.start_hash_lock(self) def start_hash_lock(self, observer): """ :type observer: HashLockObserver """ assert self._is_zookeeper_enabled() self._hl_manager = SlimHashLockManager(self.controller, self.zk_service) self._hl_manager.set_observer(observer) self._hl_manager.start(default_service=False) @inlineCallbacks def _service_main_with_exception(self): if self._is_zookeeper_enabled(): self._init_zookeeper_client() yield maybeDeferred(self.init_server) yield maybeDeferred(self.start_server) logger.debug('--------- STARTED ---------') def get_routine_key(self): if cluster.Failover_Enabled: key = get_rpc_routing_key(self.cfg, self.unique_server_name) else: key = get_rpc_param(self.cfg, 'server_key', self.SERVICE_NAME) return key
4ce810b7a98c0b77591ee5e277abc2db6860b0c2
556db265723b0cc30ad2917442ed6dad92fd9044
/tensorflow/python/profiler/profiler_v2_test.py
42fbeba1e98be36f2c2c401a3db60bfbe1f1b5a8
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
graphcore/tensorflow
c1669b489be0e045b3ec856b311b3139858de196
085b20a4b6287eff8c0b792425d52422ab8cbab3
refs/heads/r2.6/sdk-release-3.2
2023-07-06T06:23:53.857743
2023-03-14T13:04:04
2023-03-14T13:48:43
162,717,602
84
17
Apache-2.0
2023-03-25T01:13:37
2018-12-21T13:30:38
C++
UTF-8
Python
false
false
4,412
py
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf 2.x profiler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import socket from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.profiler import profiler_v2 as profiler from tensorflow.python.profiler import trace class ProfilerTest(test_util.TensorFlowTestCase): def test_profile_exceptions(self): logdir = self.get_temp_dir() profiler.start(logdir) with self.assertRaises(errors.AlreadyExistsError): profiler.start(logdir) profiler.stop() with self.assertRaises(errors.UnavailableError): profiler.stop() # Test with a bad logdir, and it correctly raises exception and deletes # profiler. # pylint: disable=anomalous-backslash-in-string profiler.start('/\/\/:123') # pylint: enable=anomalous-backslash-in-string with self.assertRaises(Exception): profiler.stop() profiler.start(logdir) profiler.stop() def test_save_profile(self): logdir = self.get_temp_dir() profiler.start(logdir) with trace.Trace('three_times_five'): three = constant_op.constant(3) five = constant_op.constant(5) product = three * five self.assertAllEqual(15, product) profiler.stop() file_list = gfile.ListDirectory(logdir) self.assertEqual(len(file_list), 2) for file_name in gfile.ListDirectory(logdir): if gfile.IsDirectory(os.path.join(logdir, file_name)): self.assertEqual(file_name, 'plugins') else: self.assertTrue(file_name.endswith('.profile-empty')) profile_dir = os.path.join(logdir, 'plugins', 'profile') run = gfile.ListDirectory(profile_dir)[0] hostname = socket.gethostname() overview_page = os.path.join(profile_dir, run, hostname + '.overview_page.pb') self.assertTrue(gfile.Exists(overview_page)) input_pipeline = os.path.join(profile_dir, run, hostname + '.input_pipeline.pb') self.assertTrue(gfile.Exists(input_pipeline)) tensorflow_stats = os.path.join(profile_dir, run, hostname + '.tensorflow_stats.pb') self.assertTrue(gfile.Exists(tensorflow_stats)) kernel_stats = os.path.join(profile_dir, run, hostname + '.kernel_stats.pb') self.assertTrue(gfile.Exists(kernel_stats)) trace_file = os.path.join(profile_dir, run, hostname + '.trace.json.gz') self.assertTrue(gfile.Exists(trace_file)) def test_profile_with_options(self): logdir = self.get_temp_dir() options = profiler.ProfilerOptions( host_tracer_level=3, python_tracer_level=1) profiler.start(logdir, options) with trace.Trace('three_times_five'): three = constant_op.constant(3) five = constant_op.constant(5) product = three * five self.assertAllEqual(15, product) profiler.stop() file_list = gfile.ListDirectory(logdir) self.assertEqual(len(file_list), 2) def test_context_manager_with_options(self): logdir = self.get_temp_dir() options = profiler.ProfilerOptions( host_tracer_level=3, python_tracer_level=1) with profiler.Profile(logdir, options): with trace.Trace('three_times_five'): three = constant_op.constant(3) five = constant_op.constant(5) product = three * five self.assertAllEqual(15, product) file_list = gfile.ListDirectory(logdir) self.assertEqual(len(file_list), 2) if __name__ == '__main__': test.main()
2a812d45d9da8870b85821736661cd9b51ad3c61
c7cebec6209866b02ee654cffeafe0f2cf0646f1
/implementation/oceangame.py
8c2fcb4e93ffdc7cf0b2c1af8292a4326c4b7a2d
[]
no_license
dondon17/algorithm
5492cf039a96ecf5a944816bdca9b5755e5a2623
da4d6ca1c21c31c6521a62b38855e0b9cf4b0d91
refs/heads/master
2023-05-02T14:54:35.185914
2021-05-30T07:31:40
2021-05-30T07:31:40
323,802,402
0
0
null
null
null
null
UTF-8
Python
false
false
941
py
n, m = map(int, input().split()) x, y, _dir = map(int, input().split()) check = [[0]*m for _ in range(n)] # 0으로 채워진 n * m 행렬 생성 check[x][y] = 1 # 시작 위치 방문 처리 _map = [] for i in range(n): _map.append(list(map(int, input().split()))) count = 1 turn_time = 0 # 4방이 이미 방문한 곳이거나 바다인 경우를 체크하기 위함 dx = [-1, 0, 1, 0] dy = [0, 1, 0, -1] def turnleft(): global _dir _dir -= 1 if _dir == -1: _dir = 3 while True: turnleft() nx = x + dx[_dir] ny = y + dy[_dir] if check[nx][ny] == 0 and _map[nx][ny] == 0: check[nx][ny] = 1 x, y = nx, ny count += 1 turn_time = 0 continue else: turn_time+=1 if turn_time == 4: nx = x-dx[_dir] ny = y-dy[_dir] if _map[nx][ny] == 0: x, y = nx, ny else: break turn_time = 0 print(count)
f45b44a0ce075baa3867c855c1d857223d4631c4
ef4a1748a5bfb5d02f29390d6a66f4a01643401c
/algorithm/algorithm_week/week3/problem_3.py
1dfac10225edd5d46d7a5f1b0aee2c62ba86901b
[]
no_license
websvey1/TIL
aa86c1b31d3efc177df45503d705b3e58b800f8e
189e797ba44e2fd22a033d1024633f9e0128d5cf
refs/heads/master
2023-01-12T10:23:45.677578
2019-12-09T07:26:59
2019-12-09T07:26:59
162,102,142
0
1
null
2022-12-11T16:31:08
2018-12-17T08:57:58
Python
UTF-8
Python
false
false
498
py
import sys sys.stdin = open("problem_3.txt", "r") T = int(input()) for tc in range(1, T+1): comp = input() total = input() len_comp = len(comp) len_total = len(total) empty_list = [0] * len_comp result = 0 # print(empty_list) for i in range(len_comp): for j in range(len_total): if total[j] == comp[i]: empty_list[i] += 1 result = max(empty_list) print(f'#{tc} {result}') ##################### dict 사용해보기
d4263f84ee75cfae0c1c0448bd6e638c64abaaec
f68e0b205bd3eb036905c60bd03a8d9c7f3b1d88
/gluon-tutorials-zh-master/chapter_optimization/adagrad-gluon.py
9fe3fd6be483681cf7e1719444f2b19373cdcb0f
[ "Apache-2.0" ]
permissive
SleepyBag/TrivialPractice
c31458d0c28afba158cb4090cb7013267ff54bb2
8e006fbe1425f62b52b2a5fe5b6404ea1883f3ab
refs/heads/master
2020-03-22T00:34:37.415074
2018-06-30T14:02:04
2018-06-30T14:02:04
139,253,389
2
0
null
null
null
null
UTF-8
Python
false
false
1,188
py
import mxnet as mx from mxnet import gluon, nd from mxnet.gluon import nn import sys sys.path.append('..') import utils # 生成数据集。 num_inputs = 2 num_examples = 1000 true_w = [2, -3.4] true_b = 4.2 features = nd.random.normal(scale=1, shape=(num_examples, num_inputs)) labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b labels += nd.random.normal(scale=0.01, shape=labels.shape) # 线性回归模型。 net = nn.Sequential() net.add(nn.Dense(1)) learning_rate = .01 net.collect_params().initialize(mx.init.Normal(sigma=1), force_reinit=True) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': learning_rate}) utils.optimize(batch_size=10, trainer=trainer, num_epochs=5, decay_epoch=None, log_interval=10, features=features, labels=labels, net=net) net.collect_params().initialize(mx.init.Normal(sigma=1), force_reinit=True) trainer = gluon.Trainer(net.collect_params(), 'adagrad', {'learning_rate': learning_rate}) utils.optimize(batch_size=10, trainer=trainer, num_epochs=5, decay_epoch=None, log_interval=10, features=features, labels=labels, net=net)
86fee19decbe6fbd99256621b5d77459a4c80b51
a6cc157fdd1a15e9d451af653cf3eadbdac60885
/cpp_develop/catkin_ws/src/ros_arduino_bridge/ros_arduino_python/src/ros_arduino_python/calibrate_linear.py
3ab1f901ef9a959a737978f37d4c3bb5cebabeba
[]
no_license
miaoruonan/morn
9b4f0b64241c12140e8adc571579974d9e35a14b
88e353ce480265b0b0b12f22a67ce13dd2ff42f3
refs/heads/master
2021-06-26T05:18:58.321932
2021-01-28T07:21:51
2021-01-28T07:25:16
214,172,876
0
0
null
null
null
null
UTF-8
Python
false
false
3,792
py
#!/usr/bin/env python import rospy from geometry_msgs.msg import Twist, Point from math import copysign, sqrt, pow import tf class CalibrateLinear(): def __init__(self): #give the node a name rospy.init_node('calibrate_linear', anonymous=False) #set rospy to execute a shutdown function when terminating the script rospy.on_shutdown(self.shutdown) #How fast will we check the odometry values? self.rate = 10 r = rospy.Rate(self.rate) #set the distance to travel self.test_distance = 1.5 self.speed = 0.2 self.tolerance = 0.01 self.odom_linear_scale_correction = 1.0 self.start_test = True #Publisher to control the robot's speed self.cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=5) #The base frame is base_footprint for the robot self.base_frame = rospy.get_param('~base_frame', '/base_footprint') #The odom frame is usually just /odom self.odom_frame = rospy.get_param('~odom_frame', '/odom') #initialize the tf listener self.tf_listener = tf.TransformListener() #give tf some time to fill its buffer rospy.sleep(2) #make sure we see the odom and base frames self.tf_listener.waitForTransform(self.odom_frame, self.base_frame, rospy.Time(), rospy.Duration(60.0)) self.position = Point() #get the starting position from the tf transform between the odom and base frames self.position = self.get_position() x_start = self.position.x y_start = self.position.y move_cmd = Twist() while not rospy.is_shutdown(): #Stop the robot by default move_cmd = Twist() if self.start_test: #get the current position from the tf transform between the odom and base frames self.position = self.get_position() #compute the euclidean distance from the target point distance = sqrt(pow((self.position.x - x_start), 2) + pow((self.position.y - y_start), 2)) #correct the estimate distance by the correction factor distance *= self.odom_linear_scale_correction #How close are we? error = distance - self.test_distance #are we close enough? if not self.start_test or abs(error) < self.tolerance: self.start_test = False params = False rospy.loginfo(params) else: #if not, move in the appropriate direction move_cmd.linear.x = copysign(self.speed, -1*error) else: self.position = self.get_position() x_start = self.position.x y_start = self.position.y self.cmd_vel.publish(move_cmd) r.sleep() #stop the robot self.cmd_vel.publish(Twist()) def get_position(self): #get the current transform between the odom and base frames try: (trans, rot) = self.tf_listener.lookupTransform(self.odom_frame, self.base_frame, rospy.Time(0)) except (tf.Exception, tf.ConnectivityException, tf.LookupException): rospy.loginfo("TF exception") return return Point(*trans) def shutdown(self): #Always stop the robot when shutting down the node rospy.loginfo("Stopping the robot") self.cmd_vel.publish(Twist()) rospy.sleep(1) if __name__ == '__main__': try: CalibrateLinear() rospy.spin() except: rospy.loginfo("Calibration terminated.")
7ffae845f088fb2c95c7c37d9f6e0559af611adc
6d9fbe6e6a2abfd8455e92f6dba67a5f02d87f41
/lib/phonenumbers/data/region_AC.py
243d707a8213496a114091c66baa4551350d4629
[]
no_license
JamesBrace/InfluenceUWebLaunch
549d0b48ff3259b139cb891a19cb8b5382ffe2c8
332d25940e4b1b45a7a2a8200f77c8413543b199
refs/heads/master
2021-09-04T04:08:47.594900
2018-01-15T16:49:29
2018-01-15T16:49:29
80,778,825
1
1
null
null
null
null
UTF-8
Python
false
false
1,094
py
"""Auto-generated file, do not edit by hand. AC metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_AC = PhoneMetadata(id='AC', country_code=247, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[46]\\d{4}|[01589]\\d{5}', possible_number_pattern='\\d{5,6}', possible_length=(5, 6)), fixed_line=PhoneNumberDesc(national_number_pattern='6[2-467]\\d{3}', possible_number_pattern='\\d{5}', example_number='62889', possible_length=(5,)), mobile=PhoneNumberDesc(national_number_pattern='4\\d{4}', possible_number_pattern='\\d{5}', example_number='40123', possible_length=(5,)), toll_free=PhoneNumberDesc(), premium_rate=PhoneNumberDesc(), shared_cost=PhoneNumberDesc(), personal_number=PhoneNumberDesc(), voip=PhoneNumberDesc(), pager=PhoneNumberDesc(), uan=PhoneNumberDesc(national_number_pattern='[01589]\\d{5}', possible_number_pattern='\\d{6}', example_number='542011', possible_length=(6,)), voicemail=PhoneNumberDesc(), no_international_dialling=PhoneNumberDesc())
5f751d070b7b8f37c7891268731da16b714824f3
066286643b062e681e3f35c83ac8fa9187a402db
/Section4/py_project/Lib/site-packages/django/core/management/commands/dumpdata.py
31df5ac2440c294424bf6015d86f4adb5b3e1751
[ "MIT" ]
permissive
PacktPublishing/Real-World-Projects-in-Python-3.x
fd4664ac70e67a922eab422a6c339d65ab1aee90
ac1cddb400e4e8b9bad3eea0eac3c33f06867d7a
refs/heads/master
2023-02-13T10:21:47.780189
2023-01-30T08:40:38
2023-01-30T08:40:38
183,572,451
18
9
MIT
2022-12-13T02:26:39
2019-04-26T06:40:50
Python
UTF-8
Python
false
false
8,479
py
import warnings from collections import OrderedDict from django.apps import apps from django.core import serializers from django.core.management.base import BaseCommand, CommandError from django.core.management.utils import parse_apps_and_model_labels from django.db import DEFAULT_DB_ALIAS, router class ProxyModelWarning(Warning): pass class Command(BaseCommand): help = ( "Output the contents of the database as a fixture of the given format " "(using each model's default manager unless --all is specified)." ) def add_arguments(self, parser): parser.add_argument( 'args', metavar='app_label[.ModelName]', nargs='*', help='Restricts dumped data to the specified app_label or app_label.ModelName.', ) parser.add_argument( '--format', default='json', help='Specifies the output serialization format for fixtures.', ) parser.add_argument( '--indent', type=int, help='Specifies the indent level to use when pretty-printing output.', ) parser.add_argument( '--database', default=DEFAULT_DB_ALIAS, help='Nominates a specific database to dump fixtures from. ' 'Defaults to the "default" database.', ) parser.add_argument( '-e', '--exclude', action='append', default=[], help='An app_label or app_label.ModelName to exclude ' '(use multiple --exclude to exclude multiple apps/models).', ) parser.add_argument( '--natural-foreign', action='store_true', dest='use_natural_foreign_keys', help='Use natural foreign keys if they are available.', ) parser.add_argument( '--natural-primary', action='store_true', dest='use_natural_primary_keys', help='Use natural primary keys if they are available.', ) parser.add_argument( '-a', '--all', action='store_true', dest='use_base_manager', help="Use Django's base manager to dump all models stored in the database, " "including those that would otherwise be filtered or modified by a custom manager.", ) parser.add_argument( '--pks', dest='primary_keys', help="Only dump objects with given primary keys. Accepts a comma-separated " "list of keys. This option only works when you specify one model.", ) parser.add_argument( '-o', '--output', help='Specifies file to which the output is written.' ) def handle(self, *app_labels, **options): format = options['format'] indent = options['indent'] using = options['database'] excludes = options['exclude'] output = options['output'] show_traceback = options['traceback'] use_natural_foreign_keys = options['use_natural_foreign_keys'] use_natural_primary_keys = options['use_natural_primary_keys'] use_base_manager = options['use_base_manager'] pks = options['primary_keys'] if pks: primary_keys = [pk.strip() for pk in pks.split(',')] else: primary_keys = [] excluded_models, excluded_apps = parse_apps_and_model_labels(excludes) if not app_labels: if primary_keys: raise CommandError("You can only use --pks option with one model") app_list = OrderedDict.fromkeys( app_config for app_config in apps.get_app_configs() if app_config.models_module is not None and app_config not in excluded_apps ) else: if len(app_labels) > 1 and primary_keys: raise CommandError("You can only use --pks option with one model") app_list = OrderedDict() for label in app_labels: try: app_label, model_label = label.split('.') try: app_config = apps.get_app_config(app_label) except LookupError as e: raise CommandError(str(e)) if app_config.models_module is None or app_config in excluded_apps: continue try: model = app_config.get_model(model_label) except LookupError: raise CommandError("Unknown model: %s.%s" % (app_label, model_label)) app_list_value = app_list.setdefault(app_config, []) # We may have previously seen a "all-models" request for # this app (no model qualifier was given). In this case # there is no need adding specific models to the list. if app_list_value is not None: if model not in app_list_value: app_list_value.append(model) except ValueError: if primary_keys: raise CommandError("You can only use --pks option with one model") # This is just an app - no model qualifier app_label = label try: app_config = apps.get_app_config(app_label) except LookupError as e: raise CommandError(str(e)) if app_config.models_module is None or app_config in excluded_apps: continue app_list[app_config] = None # Check that the serialization format exists; this is a shortcut to # avoid collating all the objects and _then_ failing. if format not in serializers.get_public_serializer_formats(): try: serializers.get_serializer(format) except serializers.SerializerDoesNotExist: pass raise CommandError("Unknown serialization format: %s" % format) def get_objects(count_only=False): """ Collate the objects to be serialized. If count_only is True, just count the number of objects to be serialized. """ models = serializers.sort_dependencies(app_list.items()) for model in models: if model in excluded_models: continue if model._meta.proxy and model._meta.proxy_for_model not in models: warnings.warn( "%s is a proxy model and won't be serialized." % model._meta.label, category=ProxyModelWarning, ) if not model._meta.proxy and router.allow_migrate_model(using, model): if use_base_manager: objects = model._base_manager else: objects = model._default_manager queryset = objects.using(using).order_by(model._meta.pk.name) if primary_keys: queryset = queryset.filter(pk__in=primary_keys) if count_only: yield queryset.order_by().count() else: yield from queryset.iterator() try: self.stdout.ending = None progress_output = None object_count = 0 # If dumpdata is outputting to stdout, there is no way to display progress if output and self.stdout.isatty() and options['verbosity'] > 0: progress_output = self.stdout object_count = sum(get_objects(count_only=True)) stream = open(output, 'w') if output else None try: serializers.serialize( format, get_objects(), indent=indent, use_natural_foreign_keys=use_natural_foreign_keys, use_natural_primary_keys=use_natural_primary_keys, stream=stream or self.stdout, progress_output=progress_output, object_count=object_count, ) finally: if stream: stream.close() except Exception as e: if show_traceback: raise raise CommandError("Unable to serialize database: %s" % e)
9f628a3fcb3ba15724f1abcb004ff2ed34f398a2
ad13583673551857615498b9605d9dcab63bb2c3
/output/instances/nistData/atomic/nonNegativeInteger/Schema+Instance/NISTXML-SV-IV-atomic-nonNegativeInteger-enumeration-3-2.py
b576ac7679de66f6d806e4fa821974abf9447594
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
648
py
from output.models.nist_data.atomic.non_negative_integer.schema_instance.nistschema_sv_iv_atomic_non_negative_integer_enumeration_3_xsd.nistschema_sv_iv_atomic_non_negative_integer_enumeration_3 import NistschemaSvIvAtomicNonNegativeIntegerEnumeration3 from output.models.nist_data.atomic.non_negative_integer.schema_instance.nistschema_sv_iv_atomic_non_negative_integer_enumeration_3_xsd.nistschema_sv_iv_atomic_non_negative_integer_enumeration_3 import NistschemaSvIvAtomicNonNegativeIntegerEnumeration3Type obj = NistschemaSvIvAtomicNonNegativeIntegerEnumeration3( value=NistschemaSvIvAtomicNonNegativeIntegerEnumeration3Type.VALUE_9176 )
52164c85a80608ac931cec19edf6440abf757d17
e48a43af1b285f19137cf1c839ea5836312c6793
/toutiao.py
f330e711018b71ad4b9619c8c133b9cad3456107
[]
no_license
willfengis/toutiao
5f933aadebd6a24d5f4a69c162a61efb4dcd68d0
10fc31a46368f9cc08e5889f4a644a2e0ffc7028
refs/heads/master
2021-01-21T10:47:17.788795
2017-08-31T10:09:27
2017-08-31T10:09:27
101,987,700
0
0
null
null
null
null
UTF-8
Python
false
false
2,909
py
import requests from urllib.parse import urlencode from requests.exceptions import RequestException import json from bs4 import BeautifulSoup import re import pymongo import os from multiprocessing import Pool from hashlib import md5 from com.it.ttconfig import * client = pymongo.MongoClient(MONGO_URL,connect=False) db = client[MONGO_DB] def getHtml(Url): try: Myhtml = requests.get(Url,headers=Myheader) if Myhtml.status_code == 200: return Myhtml.text return "getHtmlerror" except RequestException: return "getHtmlerror" def getStr(Myhtml): Data = json.loads(Myhtml) if Data and "data" in Data.keys(): for url1 in Data.get("data"): yield url1.get("share_url") def getDetail(Url1): try: Myhtml = requests.get(Url1,headers=Myheader) if Myhtml.status_code == 200: return Myhtml.text return "getDetailHtmlerror" except RequestException: print("Url1 error") return "getDetailHtmlerror" def getStr2(Myhtml2,Url1): Bs4html = BeautifulSoup(Myhtml2,"lxml") Mytitle = Bs4html.select("title")[0].get_text() Myrule = re.compile("BASE_DATA.galleryInfo.*?gallery:(.*?),\n\s*?siblingList",re.S) Mystr2 = re.search(Myrule,Myhtml2) if Mystr2: json_str2 = json.loads(Mystr2.group(1)) if json_str2 and "sub_images" in json_str2.keys(): sub_image = json_str2.get("sub_images") image = [x.get("url") for x in sub_image] for imageurlone in image:downLoad(imageurlone) return {"title":Mytitle,"imageurl":image,"Url":Url1} return "url2error" return "url2error" def saveMongo(imageurl): if db[MONGO_TABLE].insert(imageurl): print("url save to mongodb ok") return True return False def downLoad(imageurlone): try: Myhtml = requests.get(imageurlone,headers=Myheader) if Myhtml.status_code == 200: saveImage(Myhtml.content) return "getHtmlerror" except RequestException: print("downloadImagError") return "getHtmlerror" def saveImage(content): path = "{0}/{1}.{2}".format(os.getcwd()+"/image",md5(content).hexdigest(),"jpg") if not os.path.exists(path): with open(path,"wb") as f: f.write(content) f.close() print("downimage successful:"+ path) def main(Offset): Data = {'offset': Offset, 'format': 'json', 'keyword': Find, 'autoload': 'true', 'count': '20', 'cur_tab': '1'} Url = "http://www.toutiao.com/search_content/?" + urlencode(Data) Myhtml = getHtml(Url) for Url1 in getStr(Myhtml): Myhtml2 = getDetail(Url1) imageurl = getStr2(Myhtml2,Url1) if imageurl != "url2error": saveMongo(imageurl) if __name__ == "__main__": page = [i*20 for i in range(0,6)] pool = Pool() pool.map(main,page)
651465018b3370f246d12c0b45dead9a006898ac
5488617b1b05c436b1f8c8642ea75ca754719f8d
/phenomenological/Single_TOP/select_scripts/script/script_1065.py
07afd7a1b201fed85dd725acf70a9ea4ba7a34d7
[]
no_license
wenxingfang/TW_Top
fdb1ba136be6ace8fdacaade58cb4ca4fcdc3c9e
389e76c904d08a59d9141b9b66ec15d2583f8e9a
refs/heads/master
2021-02-05T06:54:27.908688
2020-02-28T13:24:00
2020-02-28T13:24:00
243,754,087
0
1
null
null
null
null
UTF-8
Python
false
false
231
py
import os import ROOT ROOT.gSystem.Load("/user/wenxing/ST_TW_channel/CMSSW_8_0_25/src/Phynomenological_study/Single_TOP/select_scripts/select_save_parton_C.so") ROOT.gROOT.ProcessLine('select_save_parton("1065")') print 'Done!'
781541a1f0b86a43ce728e170b53055a99749d93
12123592a54c4f292ed6a8df4bcc0df33e082206
/py2/pgms/sec6/flask/db_create.py
667c9a87acb3e16e1bbb26111a89d32eaae62ba8
[]
no_license
alvinooo/advpython
b44b7322915f832c8dce72fe63ae6ac7c99ef3d4
df95e06fd7ba11b0d2329f4b113863a9c866fbae
refs/heads/master
2021-01-23T01:17:22.487514
2017-05-30T17:51:47
2017-05-30T17:51:47
92,860,630
0
0
null
null
null
null
UTF-8
Python
false
false
525
py
#!venv/bin/python # db_create.py - create database from migrate.versioning import api from config import SQLALCHEMY_DATABASE_URI from config import SQLALCHEMY_MIGRATE_REPO from app import db import os.path db.create_all() if not os.path.exists(SQLALCHEMY_MIGRATE_REPO): api.create(SQLALCHEMY_MIGRATE_REPO, 'database repository') api.version_control(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO) else: api.version_control(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO, api.version(SQLALCHEMY_MIGRATE_REPO))
f1b609c2eddd00d477feba9484dbec32eaf69cf5
6b4ab6543a3ead51a4b26dd750b01925c6a59a81
/rawe/newton/nmpcMaps.py
0115715b43911eb057a78714303a19406993d614
[]
no_license
jaeandersson/rawesome
f5139f255d8de90467329e3d0d35b9f32e5d459b
67e8eefd6eedd9df563084c9a3238733cfe21a47
refs/heads/master
2021-01-18T10:30:55.579069
2013-04-04T11:06:38
2013-04-04T11:06:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,039
py
import numpy as np import casadi as C class VectorizedReadOnlyNmpcMap(object): """ Initialize this with a vector (like MX or numpy.array) and it will provide efficient slices with xVec/uVec/pVec. It will also provide lookup(name,timestep) functionality """ def __init__(self,dae,nk,vec): self._nk = nk self._xNames = dae.xNames() self._uNames = dae.uNames() self._pNames = dae.pNames() self._vec = vec xSize = len(self._xNames) uSize = len(self._uNames) pSize = len(self._pNames) mapSize = xSize*(self._nk+1) + uSize*self._nk + pSize if type(self._vec) in [C.MX,C.SXMatrix]: assert (mapSize == self._vec.size()), "vector size is wrong" elif type(self._vec) in [np.array,np.ndarray]: assert (mapSize == self._vec.size), "vector size is wrong" else: raise ValueError("unrecognized type: "+str(type(self._vec))) # set up xVec,uVec,pVec vecIdx = 0 self._p = self._vec[vecIdx:vecIdx+pSize] vecIdx += pSize self._X = [] self._U = [] for ts in range(self._nk): self._X.append(self._vec[vecIdx:vecIdx+xSize]) vecIdx += xSize self._U.append(self._vec[vecIdx:vecIdx+uSize]) vecIdx += uSize self._X.append(self._vec[vecIdx:vecIdx+xSize]) vecIdx += xSize assert (vecIdx == mapSize) # set up indexes self._xIdx = {} self._uIdx = {} self._pIdx = {} for k,name in enumerate(self._xNames): self._xIdx[name] = k for k,name in enumerate(self._uNames): self._uIdx[name] = k for k,name in enumerate(self._pNames): self._pIdx[name] = k def vectorize(self): return self._vec def xVec(self,timestep): assert (timestep != None), "please set timestep" assert (timestep <= self._nk), "timestep too large" return self._X[timestep] def uVec(self,timestep): assert (timestep != None), "please set timestep" assert (timestep < self._nk), "timestep too large" return self._U[timestep] def pVec(self): return self._p def lookup(self,name,timestep=None): if name in self._xIdx: return self.xVec(timestep)[self._xIdx[name]] elif name in self._uIdx: return self.uVec(timestep)[self._uIdx[name]] elif name in self._pIdx: assert (timestep == None), "don't set timestep for parameter" return self.pVec()[self._pIdx[name]] else: raise NameError('unrecognized name "'+name+'"') class WriteableNmpcMap(object): """ Initialize this with a dae and number of control intervals and it will set all elements to None. Then you can call setVal() to set them and lookup() or vectorize() to retrieve them. You can also call getMissing() to get a summary of elements which haven't been set """ def __init__(self,dae,nk): self._nk = nk self._xNames = dae.xNames() self._uNames = dae.uNames() self._pNames = dae.pNames() self._X = np.resize(np.array([None]),(self._nk+1,dae.xVec().size())) self._U = np.resize(np.array([None]),(self._nk,dae.uVec().size())) self._p = np.resize(np.array([None]),dae.pVec().size()) self._xIdx = {} self._uIdx = {} self._pIdx = {} for k,name in enumerate(self._xNames): self._xIdx[name] = k for k,name in enumerate(self._uNames): self._uIdx[name] = k for k,name in enumerate(self._pNames): self._pIdx[name] = k def vectorize(self): outs = [self.pVec()] for k in range(self._nk): outs.append(self.xVec(k)) outs.append(self.uVec(k)) outs.append(self.xVec(self._nk)) return np.concatenate(outs) def xVec(self,timestep): assert (timestep != None), "please set timestep" assert (timestep <= self._nk), "timestep too large" return self._X[timestep,:] def uVec(self,timestep): assert (timestep != None), "please set timestep" assert (timestep < self._nk), "timestep too large" return self._U[timestep,:] def pVec(self): return self._p def lookup(self,name,timestep=None): if name in self._xIdx: assert (timestep != None), "please set timestep" assert (timestep <= self._nk), "timestep too large" return self._X[timestep][self._xIdx[name]] elif name in self._uIdx: assert (timestep != None), "please set timestep" assert (timestep < self._nk), "timestep too large" return self._U[timestep][self._uIdx[name]] elif name in self._pIdx: assert (timestep == None), "don't set timestep for parameter" return self._p[self._pIdx[name]] else: raise NameError('unrecognized name "'+name+'"') def setVal(self,name,val,timestep=None): if name in self._xIdx: if timestep == None: for k in range(self._nk+1): self.setVal(name,val,timestep=k) return assert (timestep <= self._nk), "timestep too large" self._X[timestep,self._xIdx[name]] = val elif name in self._uIdx: if timestep == None: for k in range(self._nk): self.setVal(name,val,timestep=k) return assert (timestep < self._nk), "timestep too large" self._U[timestep,self._uIdx[name]] = val elif name in self._pIdx: assert (timestep == None), "don't set timestep for parameter" self._p[self._pIdx[name]] = val else: raise NameError('unrecognized name "'+name+'"') def getMissing(self): xuMissing = {} for name in self._xNames: missing = [] for k in range(self._nk+1): if self.lookup(name,timestep=k) is None: missing.append(k) if len(missing)>0: xuMissing[name] = missing for name in self._uNames: missing = [] for k in range(self._nk): if self.lookup(name,timestep=k) is None: missing.append(k) if len(missing)>0: xuMissing[name] = missing pMissing = [] for name in self._pNames: if self.lookup(name) is None: pMissing.append(name) return (xuMissing,pMissing) class NmpcOutputMapGenerator(object): """ Something which will efficiently generate a map of all outputs. The outputs are all computed all at once to ensure no (additional) CSEs are generated. On initialization, the function which creates all the outputs from a dv vector is created. Then you use it to initialize an OutputMap object """ def __init__(self,ocp): (fAll,(f0,outputNames0)) = ocp.dae.outputsFun() self._outputNames0 = outputNames0 self._outputNames = ocp.dae.outputNames() assert (len(self._outputNames0) == f0.getNumOutputs()) assert (len(self._outputNames) == fAll.getNumOutputs()) self._nk = ocp.nk outs = [] for timestepIdx in range(self._nk): if f0 is not None: outs += f0.call([ocp._dvMap.xVec(timestepIdx), ocp._dvMap.uVec(timestepIdx), ocp._dvMap.pVec()]) # make the function self.fEveryOutput = C.MXFunction([ocp._dvMap.vectorize()],outs) self.fEveryOutput.init() class NmpcOutputMap(object): """ Initialize this with an outputMapGenerator and a vector of design vars. If you pass a symbolic vector you get symbolic outputs with MXFunction.call(). If you pass a numeric vector you get numeric outputs with MXFunction.setInput(); MXFunction.evaluate(); .. """ def __init__(self,outputMapGenerator,dvs): if type(dvs) == C.MX: allOutputs = outputMapGenerator.fEveryOutput.call([dvs]) elif type(dvs) == C.SXMatrix: allOutputs = outputMapGenerator.fEveryOutput.eval([dvs]) elif type(dvs) in [np.ndarray,C.DMatrix]: outputMapGenerator.fEveryOutput.setInput(dvs,0) outputMapGenerator.fEveryOutput.evaluate() allOutputs = [np.array(outputMapGenerator.fEveryOutput.output(k)).squeeze() for k in range(outputMapGenerator.fEveryOutput.getNumOutputs())] else: raise TypeError("OutputMap got unrecognized design vector type: "+str(type(dvs))) self._outputNames0 = outputMapGenerator._outputNames0 self._outputNames = outputMapGenerator._outputNames self._numOutputs0 = len(self._outputNames0) self._numOutputs = len(self._outputNames) self._nk = outputMapGenerator._nk self._outputs0 = {} for name in self._outputNames0: self._outputs0[name] = np.resize(np.array([None]),self._nk) outs = [] k = 0 for timestepIdx in range(self._nk): # outputs defined at tau_i0 outs = allOutputs[k:k+self._numOutputs0] k += self._numOutputs0 for name,val in zip(self._outputNames0,outs): self._outputs0[name][timestepIdx] = val def lookup(self,name,timestep): if name not in self._outputNames: raise NameError("couldn't find \""+name+"\"") if name not in self._outputs0: raise ValueError("sorry, \""+name+"\" depends on algebraic variable or ddt(differential variable) \ and Multiple Shooting cannot access it") assert (timestep != None), "please set timestep" return self._outputs0[name][timestep]
c384ec15b71a910edb23a3ece597828f1918efc1
ba80ca143ba35fd481730786a27ebdb1f88ce835
/algorithm/Daily Coding Problem/전체탐색/5.py
b00f4a6021504dc364e8ea5b32dbdadd7ce6fbe1
[]
no_license
uiandwe/TIL
c541020b65adc53578aeb1c3ba4c6770b3b2e8b3
186544469374dd0279099c6c6aa7555ee23e42fe
refs/heads/master
2022-02-15T08:33:07.270573
2022-01-01T15:22:54
2022-01-01T15:22:54
63,420,931
2
4
null
null
null
null
UTF-8
Python
false
false
720
py
# -*- coding: utf-8 -*- """ Given an array of integers where every integer occurs three times except for one integer, which only occurs once, find and return the non-duplicated integer. For example, given [6, 1, 3, 3, 3, 6, 6], return 1. Given [13, 19, 13, 13], return 19. Do this in O(N) time and O(1) space. """ def getSingle(arr): ones = 0 twos = 0 n = len(arr) for i in range(n): twos = twos | (ones & arr[i]) ones = ones ^ arr[i] common_bit_mask = ~(ones & twos) ones &= common_bit_mask twos &= common_bit_mask return ones if __name__ == '__main__': print(getSingle([13, 1, 13, 13])) print(getSingle([13, 1, 13, 13, 2, 3, 2, 3, 2, 3]))
bcc9c809b5e3b2f36a892d4ae81d9509a2aba905
4cbc8b81d197bc392d1b57856254300331b9738f
/python/voz.py
9a63b10843050891efa76b73fcb08d8c72ccf6b6
[ "MIT" ]
permissive
vcatafesta/chili
87b9606f17cda645ba44cbf2bb4cc4637e18d211
5c734ac88454db76eb2f4e92c13364a5bbc7a93a
refs/heads/main
2023-09-01T01:39:09.457448
2023-08-29T21:23:28
2023-08-29T21:23:28
171,972,556
2
2
null
2019-02-22T01:38:49
2019-02-22T01:26:46
null
UTF-8
Python
false
false
260
py
# coding: cp860 import speech_recognition as sr r = sr.Recognizer() with sr.Microphone() as s: r.adjust_for_ambient_noise(s) while True: audio = r.listen(s) print("Voce respondeu:", r.recognize_google(audio, language = 'pt'))
00fc5380aacd4b854d68cc5cd1802c1879b9e2e4
260306e56beaaa5ecad8f783d094ecbabef4705b
/blog.py
3bfbbfd1ea4129429f2520d6cd12680037202c45
[]
no_license
xxnbyy/mytools
dd5f09033b2b794b3e56bf16b9d4f28fe1377503
88d99614f09dd7a96f787236d0bbf674dfc5fcf2
refs/heads/master
2021-04-29T10:13:07.230358
2016-12-29T13:16:56
2016-12-29T13:16:56
77,874,884
0
1
null
2017-01-03T01:49:32
2017-01-03T01:49:32
null
UTF-8
Python
false
false
899
py
############################################################# ### ### _|_|_| _| _| _| _| ### _| _| _| _|_|_| _|_| _| _| _|_|_|_| ### _|_| _|_| _| _| _| _| _| _| _| ### _| _| _| _| _| _| _| _| _| _| ### _|_|_| _| _| _|_|_| _| _| _| _|_| ### _| ### _| ### ### name: blog.py ### function: write blog ### date: 2016-11-02 ### author: quanyechavshuo ### blog: https://3xp10it.cc ############################################################# import time from exp10it import figlet2file figlet2file("3xp10it",0,True) time.sleep(1)
7428a6f9ed8f18d1d5b40f66c207c09dbccfea2e
58ee1dc37b57e0b4f06cf383c6a9e0654f490150
/python-zict/lilac.py
74172c63bc984bdbddbadf099461698472befd29
[]
no_license
MikeyBaldinger/arch4edu
f3af87ef3a8d4cd78fde7e0ef75658c17dbe8c06
c1775bf7fe0ffc87f3c8b4109fb1e8acde12a430
refs/heads/master
2022-12-23T16:40:55.513537
2020-09-28T21:00:59
2020-09-28T21:00:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
#!/usr/bin/env python3 from lilaclib import * maintainers = [{'github': 'petronny', 'email': 'Jingbei Li <[email protected]>'}] update_on = [{'aur': None}, {'alias': 'python'}] build_prefix = 'extra-x86_64' repo_depends = ['python-heapdict'] pre_build = aur_pre_build post_build = aur_post_build if __name__ == '__main__': single_main(build_prefix)
5cf4e3cccdec114e403ab352d32e8640f5a6250b
b99bbc50ab1d039948ccf853963ae044a97498fb
/src/api/symbols/views/__init__.py
9f0254365c9be66a905516f608870a81172d33c2
[]
no_license
fan1018wen/Alpha
26899cc0eb6761bf6bd8089e7d12716c9e7ae01e
c50def8cde58fd4663032b860eb058302cbac6da
refs/heads/master
2021-05-12T12:54:15.747220
2017-10-11T10:58:51
2017-10-11T10:58:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,736
py
from django.core.paginator import Paginator from django.db.models import Q from rest_framework.views import APIView from common.models import BackstageHTTPResponse from common.utils import log_exception from symbols.filters import SymbolFilter from symbols.models import Symbol from symbols.serializers import SymbolSerializer class SymbolListAPI(APIView): @log_exception def get(self, request, *args, **kwargs): """ 公式可用数据点列表 --- parameters: - name: index description: 页数 type: integer paramType: query required: false - name: number description: 每页条数 type: integer paramType: query required: false - name: table_name description: 表名 type: string paramType: query required: false - name: classification_1 description: 第一维度 type: string paramType: query required: false - name: classification_2 description: 第二维度 type: string paramType: query required: false """ symbols = Symbol.objects.all() symbols = SymbolFilter(request.GET, queryset=symbols).qs paginator = Paginator(symbols, request.GET.get('number', 100)) page = paginator.page(request.GET.get('index', 1)) serializer = SymbolSerializer(page, many=True) return BackstageHTTPResponse( code=BackstageHTTPResponse.API_HTTP_CODE_NORMAL, data=serializer.data, pageinfo=page ).to_response() class TableListAPI(APIView): @log_exception def get(self, request, *args, **kwargs): """ 公式可用表 --- parameters: - name: index description: 页数 type: integer paramType: query required: false - name: number description: 每页条数 type: integer paramType: query required: false """ table_names = list(Symbol.objects.exclude( Q(table_name__isnull=True)|(Q(table_name='')) ).values_list('table_name', flat=True).order_by('table_name').distinct()) return BackstageHTTPResponse( code=BackstageHTTPResponse.API_HTTP_CODE_NORMAL, data=table_names, ).to_response() class SymbolClassificationListAPI(APIView): @log_exception def get(self, request, classification, *args, **kwargs): """ 公式可用区分维度 --- parameters: - name: classification description: 第几个区分维度 type: integer paramType: path required: true """ column_name = 'classification_%s' % classification if column_name not in [i.attname for i in Symbol._meta.fields]: return BackstageHTTPResponse( code=BackstageHTTPResponse.API_HTTP_CODE_NOT_FOUND, message='未找到数据' ).to_response() query_dict_1 = {'%s__isnull' % column_name: True} query_dict_2 = {column_name: ''} column_values = list(Symbol.objects.exclude( Q(**query_dict_1)|(Q(**query_dict_2)) ).values_list(column_name, flat=True).order_by(column_name).distinct()) return BackstageHTTPResponse( code=BackstageHTTPResponse.API_HTTP_CODE_NORMAL, data=column_values, ).to_response()
9ae6c6e071cb9074c94b0058901696c52d416298
a0eb6744e6f7f509b96d21f0bc8b3f8387f6861c
/notebook/union_find_basic_usage.py
01c45b5560292afba9712dec8f754ebe83733393
[ "MIT" ]
permissive
nkmk/python-snippets
a6c66bdf999502e52f4795a3074ced63bf440817
f9dd286a9cf93f474e20371f8fffc4732cb3c4d5
refs/heads/master
2023-08-03T04:20:05.606293
2023-07-26T13:21:11
2023-07-26T13:21:11
98,900,570
253
77
MIT
2020-10-25T01:12:53
2017-07-31T14:54:47
Jupyter Notebook
UTF-8
Python
false
false
1,721
py
from union_find_basic import UnionFindBasic, UnionFindPathCompression, UnionFindByRank, UnionFindBySize, UnionFind ufb = UnionFindBasic(5) print(ufb.parents) # [0, 1, 2, 3, 4] ufb.union(3, 4) print(ufb.parents) ufb.union(2, 3) print(ufb.parents) ufb.union(1, 2) print(ufb.parents) ufb.union(0, 4) print(ufb.parents) # [0, 1, 2, 3, 3] # [0, 1, 2, 2, 3] # [0, 1, 1, 2, 3] # [0, 0, 1, 2, 3] print([ufb.find(i) for i in range(5)]) # [0, 0, 0, 0, 0] ufpc = UnionFindPathCompression(5) print(ufpc.parents) # [0, 1, 2, 3, 4] ufpc.union(3, 4) print(ufpc.parents) ufpc.union(2, 3) print(ufpc.parents) ufpc.union(1, 2) print(ufpc.parents) ufpc.union(0, 4) print(ufpc.parents) # [0, 1, 2, 3, 3] # [0, 1, 2, 2, 3] # [0, 1, 1, 2, 3] # [0, 0, 1, 1, 1] print([ufpc.find(i) for i in range(5)]) # [0, 0, 0, 0, 0] ufbr = UnionFindByRank(5) print(ufbr.parents) # [0, 1, 2, 3, 4] ufbr.union(3, 4) print(ufbr.parents) ufbr.union(2, 3) print(ufbr.parents) ufbr.union(1, 2) print(ufbr.parents) ufbr.union(0, 4) print(ufbr.parents) # [0, 1, 2, 3, 3] # [0, 1, 3, 3, 3] # [0, 3, 3, 3, 3] # [3, 3, 3, 3, 3] ufbs = UnionFindBySize(5) print(ufbs.parents) # [0, 1, 2, 3, 4] ufbs.union(3, 4) print(ufbs.parents) ufbs.union(2, 3) print(ufbs.parents) ufbs.union(1, 2) print(ufbs.parents) ufbs.union(0, 4) print(ufbs.parents) # [0, 1, 2, 3, 3] # [0, 1, 3, 3, 3] # [0, 3, 3, 3, 3] # [3, 3, 3, 3, 3] print(ufbs.size) # [1, 1, 1, 5, 1] print(ufbs.size[ufbs.find(0)]) # 5 uf = UnionFind(5) print(uf.parents) # [-1, -1, -1, -1, -1] uf.union(3, 4) print(uf.parents) uf.union(2, 3) print(uf.parents) uf.union(1, 2) print(uf.parents) uf.union(0, 4) print(uf.parents) # [-1, -1, -1, -2, 3] # [-1, -1, 3, -3, 3] # [-1, 3, 3, -4, 3] # [3, 3, 3, -5, 3]
5be778cd62c0fc4fb164b11572b2864f06dd6ffe
4a0f8c5c0e8324fa614da776f2a704b5c369ccbb
/topologyTest/GetDDIs_150_250Examples_WithDifferentDomainNames.py
cafde521581bfddd4fd57d7b907fcb2ae3e1149d
[]
no_license
magic2du/contact_matrix
9f8ae868d71e7e5c8088bf22a9407ea3eb073be6
957e2ead76fabc0299e36c1435162edd574f4fd5
refs/heads/master
2021-01-18T21:15:07.341341
2015-09-16T02:14:53
2015-09-16T02:14:53
24,237,641
0
0
null
2015-09-10T19:58:24
2014-09-19T16:48:37
null
UTF-8
Python
false
false
1,903
py
import _mysql from dealFile import * #Get of Domains which has more than 2 interfaces have 16-20 examples db=_mysql.connect(host="localhost",user="root",passwd="zxcv4321",db="DDI") #db.query("""select COUNT(*) from PPI inner join example on (ID = PPI_ID) where domain1="ACT" and domain2="ACT" and topology_1 = 6 and topology_2 = 6""") #db.query("""select * from PPI inner join example on (ID = PPI_ID) where domain1="ACT" and domain2="ACT" """) ddiList=readDDIsFile('listOfFolders15OCT.txt') ddis=[] #Number of Domains which has 2 interfaces have more than 15 examples for ddi in ddiList: [domain1,domain2]=ddi if domain1 == domain2: continue #print i #print domain1 #print domain2 #query='SELECT DISTINCT topology_1,topology_2 from DDItopology WHERE domain1="'+domain1+'" AND domain2="'+domain2+'"' #query='SELECT DISTINCT topology_1,topology_2 from DDItopology WHERE domain1="'+domain1+'" AND domain2="'+domain2+'"' query='SELECT COUNT(DISTINCT topology_1,topology_2) from DDItopology WHERE domain1="'+domain1+'" AND domain2="'+domain2+'"' #print query #query='select domain1,domain2 from DDI1' db.query(query) result=db.store_result() numTopology=result.fetch_row(0) print numTopology[0][0] if numTopology[0][0]<2: break try: query='SELECT COUNT(*) from DDItopology WHERE domain1="'+domain1+'" AND domain2="'+domain2+'"' #print query db.query(query) result=db.store_result() numExample=result.fetch_row(0) print int(numExample[0][0]) if int(numExample[0][0])>150 and int(numExample[0][0])<250: ddis.append(domain1+'_int_'+domain2) except: print 'error' break writeListFile('listOfDDIsHaveOver2InterfacesHave150-250Examples.txt',ddis) #print result.fetch_row() #print r[0][0] readDDIsFile('listOfDDIsHave2InterfacesOver15.txt')
b5ab5cda1555793b46c2e5542858767a98e8ef6e
658e2e3cb8a4d5343a125f7deed19c9ebf06fa68
/course_DE/udacity-data-engineering-projects-master/Project 5 - Data Pipelines with Airflow/exercises/dags/3_ex3_subdags/dag.py
bc6617c67ca71e8cfaa562b89339fc7fdf1fc524
[]
no_license
yennanliu/analysis
3f0018809cdc2403f4fbfe4b245df1ad73fa08a5
643ad3fed41961cddd006fadceb0e927f1db1f23
refs/heads/master
2021-01-23T21:48:58.572269
2020-10-13T22:47:12
2020-10-13T22:47:12
57,648,676
11
9
null
null
null
null
UTF-8
Python
false
false
2,352
py
# Instructions # In this exercise, we’ll place our S3 to RedShift Copy operations into a SubDag. # 1 - Consolidate HasRowsOperator into the SubDag # 2 - Reorder the tasks to take advantage of the SubDag Operators import datetime from airflow import DAG from airflow.operators.postgres_operator import PostgresOperator from airflow.operators.subdag_operator import SubDagOperator from airflow.operators.udacity_plugin import HasRowsOperator from lesson3.exercise3.subdag import get_s3_to_redshift_dag import sql_statements start_date = datetime.datetime.utcnow() dag = DAG( "lesson3.exercise3", start_date=start_date, ) trips_task_id = "trips_subdag" trips_subdag_task = SubDagOperator( subdag=get_s3_to_redshift_dag( "lesson3.exercise3", trips_task_id, "redshift", "aws_credentials", "trips", sql_statements.CREATE_TRIPS_TABLE_SQL, s3_bucket="udac-data-pipelines", s3_key="divvy/unpartitioned/divvy_trips_2018.csv", start_date=start_date, ), task_id=trips_task_id, dag=dag, ) stations_task_id = "stations_subdag" stations_subdag_task = SubDagOperator( subdag=get_s3_to_redshift_dag( "lesson3.exercise3", stations_task_id, "redshift", "aws_credentials", "stations", sql_statements.CREATE_STATIONS_TABLE_SQL, s3_bucket="udac-data-pipelines", s3_key="divvy/unpartitioned/divvy_stations_2017.csv", start_date=start_date, ), task_id=stations_task_id, dag=dag, ) # # TODO: Consolidate check_trips and check_stations into a single check in the subdag # as we did with the create and copy in the demo # check_trips = HasRowsOperator( task_id="check_trips_data", dag=dag, redshift_conn_id="redshift", table="trips" ) check_stations = HasRowsOperator( task_id="check_stations_data", dag=dag, redshift_conn_id="redshift", table="stations" ) location_traffic_task = PostgresOperator( task_id="calculate_location_traffic", dag=dag, postgres_conn_id="redshift", sql=sql_statements.LOCATION_TRAFFIC_SQL ) # # TODO: Reorder the Graph once you have moved the checks # trips_subdag_task >> check_trips stations_subdag_task >> check_stations check_stations >> location_traffic_task check_trips >> location_traffic_task
a0fcd76bb531bd1b8db92bfd0f143b1ac789e17f
f983d2fc949bc0de944755a19e57e5d15466dd98
/homeads/mails.py
a837ea5fa7f51062eae6d086a491ffecd86079ce
[]
no_license
wd5/localized_classified_ads
2c523a58372a3963d15f01e52709e1923df20ca7
49414088a8ba7f09da35f005b15652efd2bcdb18
refs/heads/master
2020-12-25T15:30:40.113192
2012-11-01T15:29:02
2012-11-01T15:29:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,646
py
#-*- coding: utf-8 -*- from django.contrib.sites.models import Site from utils.mails import AdEmailMultiAlternatives class HomeEmail(AdEmailMultiAlternatives): """ Class used to send multi alternavies email (text + html) for AcheterSansCom and LouerSansCom """ def get_default_context(self): if self.ad: if self.ad.__class__.__name__ == "HomeForSaleAd": self.default_context = {'linkColor': '#20B2AB', 'secondColor': '#FFB82E'} if self.ad.__class__.__name__ == "HomeForRentAd": self.default_context = {'linkColor': '#9D81A1', 'secondColor': 'Pink'} else: domain = Site.objects.get_current().domain if domain == 'achetersanscom.com': self.default_context = {'linkColor': '#20B2AB', 'secondColor': '#FFB82E'} if domain == 'louersanscom.com': self.default_context = {'linkColor': '#9D81A1', 'secondColor': 'Pink'} return self.default_context def get_default_images(self): if self.ad: if self.ad.__class__.__name__ == "HomeForSaleAd": self.default_files = (('img/home.png', 'logo'), ('img/shadow_bottom.jpg', 'shadow')) if self.ad.__class__.__name__ == "HomeForRentAd": self.default_files = (('img/apartment.png', 'logo'), ('img/shadow_bottom.jpg', 'shadow')) else: domain = Site.objects.get_current().domain if domain == 'achetersanscom.com': self.default_files = (('img/home.png', 'logo'), ('img/shadow_bottom.jpg', 'shadow')) if domain == 'louersanscom.com': self.default_files = (('img/apartment.png', 'logo'), ('img/shadow_bottom.jpg', 'shadow')) return self.default_files class UserSignIn(HomeEmail): """ User Sign In """ subject = u"[{{ site.name }}] Validation de votre inscription" template_name = 'emails/user_sign_in/body' class HomeAdCreatedMessageEmail(HomeEmail): """ Home Ad Created Message Email Send when user create a new ad """ subject = u"[{{ site.name }}] Annonce créée" template_name = 'emails/home_ad_created/body' class HomeAdUpdatedMessageEmail(HomeEmail): """ Home Ad Update Message Email Send when user update an ad """ subject = u"[{{ site.name }}] Annonce mise à jour" template_name = 'emails/home_ad_updated/body' class BuyerToVendorMessageEmail(HomeEmail): """ User message email from buyer to vendor for an Ad """ subject = u'[{{ site.name }}] Nouveau message à propos de votre bien' template_name = 'emails/to_vendor_message/body' class VendorToBuyerMessageEmail(HomeEmail): """ User message email from vendor to buyer for an Ad """ subject = u'[{{ site.name }}] Nouveau message à propos de votre recherche' template_name = 'emails/to_buyer_message/body' class NewPotentialBuyerToVendorMessageEmail(HomeEmail): """ Mail sent to vendor when a user has it search coincides with it ad """ subject = u'[{{ site.name }}] Une nouvelle personne pourrait être interessée par votre bien' template_name = 'emails/to_vendor_potential_buyer/body' class NewAdToBuyerMessageEmail(HomeEmail): """ Mail sent to inform a user that a new ad corresponds to it search """ subject = u'[{{ site.name }}] Un nouveau bien correspond à votre recherche' template_name = 'emails/to_buyer_potential_ad/body'
2d91f87c27aff3220f48df0e44ec5d65370af653
c831e7f6c434900d817f59a11b25e78a1a5090ad
/Calibration/CalibConfigFiles/MuonCalibration/CalibConfig_DetModel89_RecoStage38.py
4f213b2a710dcce9269a2f654daa625b68761bfc
[]
no_license
StevenGreen1/OptimisationStudies
8cca03f57d2cbf81e5fb609f13e2fa4b9c9880f6
c5741e8d2fab4752ceca8b10cc5f2bbc1a7fafa9
refs/heads/master
2021-01-18T21:30:51.418785
2017-02-21T16:27:50
2017-02-21T16:27:50
44,306,370
0
0
null
null
null
null
UTF-8
Python
false
false
2,896
py
# Digitisation Constants - ECal CalibrECal = 42.121331495 # Digitisation Constants ILDCaloDigi - HCal CalibrHCalBarrel = 47.5716455642 CalibrHCalEndcap = 53.3873293873 CalibrHCalOther = 29.2886957667 # Digitisation Constants NewLDCCaloDigi - HCal CalibrHCal = -1 # Digitisation Constants - Muon Chamber CalibrMuon = 56.7 # MIP Peak position in directed corrected SimCaloHit energy distributions # used for realistic ECal and HCal digitisation options CalibrECalMIP = 0.0001475 CalibrHCalMIP = 0.0004925 # MIP Peak position in directed corrected CaloHit energy distributions # used for MIP definition in PandoraPFA ECalToMIPCalibration = 153.846 HCalToMIPCalibration = 41.841 MuonToMIPCalibration = 10.3093 # EM and Had Scale Settings ECalToEMGeVCalibration = 1.01529193221 HCalToEMGeVCalibration = 1.12124159762 ECalToHadGeVCalibration = 1.08839104614 HCalToHadGeVCalibration = 1.12124159762 # Pandora Threshold Cuts ECalMIPThresholdPandora = 0.5 HCalMIPThresholdPandora = 0.3 # Hadronic Energy Truncation in HCal PandoraPFA MaxHCalHitHadronicEnergy = 1 # Timing ECal ECalBarrelTimeWindowMax = 1000000 ECalEndcapTimeWindowMax = 1000000 # Timing HCal HCalBarrelTimeWindowMax = 1000000 HCalEndcapTimeWindowMax = 1000000
965503ab5aa40de1f3305cdc5d07646e13c4cb78
c60c199410289c1d7ec4aea00833b461e1f08f88
/.history/older-than/day2/func1.py
13cbbeac3c8a8aec182f78f63a9acaf9f1149a4d
[]
no_license
ver007/pythonjumpstart
66fb111e6af197fad3e853b2c2d712a1b57a7d59
5b1f52479abd07456e2da494149e491d398f3b7d
refs/heads/master
2021-01-21T01:34:35.501870
2015-05-13T14:10:13
2015-05-13T14:10:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
#!/usr/bin/env python def sum(a, b): return a+b #print sum(2, 3) func = sum print func(10, 100)
836dfafcfdee968679acbc1cd37e6add131774e2
994a82e4d859e605cf67736446aadcaf3cca2ec8
/examples/query_horizon.py
f5d72107849b8b207524dd159b162cfb44653d09
[ "Apache-2.0" ]
permissive
kingdavid6336/py-stellar-base
fe7a5af576b7f03f7d36badca6a540232719e7cc
5e22370113e81eca1096ae62d58a5e663ffebca7
refs/heads/master
2021-12-18T14:20:01.146139
2020-06-21T07:55:59
2020-06-21T07:58:57
231,694,118
1
0
Apache-2.0
2020-06-21T12:04:49
2020-01-04T01:52:57
Python
UTF-8
Python
false
false
464
py
from stellar_sdk import Server server = Server(horizon_url="https://horizon-testnet.stellar.org") # get a list of transactions that occurred in ledger 1400 transactions = server.transactions().for_ledger(1400).call() print(transactions) # get a list of transactions submitted by a particular account transactions = server.transactions() \ .for_account(account_id="GASOCNHNNLYFNMDJYQ3XFMI7BYHIOCFW3GJEOWRPEGK2TDPGTG2E5EDW") \ .call() print(transactions)
b6d49962e507d1202269880c14641540b5bffc8d
b22778ed4a21cc1102512ae7da7e8225b5f5299e
/examples/vector_v3.py
b5c655b305449e8e06758c7fe3ff2eeb22089f93
[ "MIT" ]
permissive
afcarl/pythonic-api
4722358935075878ff91a640174a2e5d0ae5764d
764cb9dba9418c591d6d0cef20401b58d8ce0b1b
refs/heads/master
2020-03-18T16:41:40.297453
2016-07-30T19:45:41
2016-07-30T19:45:41
134,980,879
1
0
null
2018-05-26T17:18:08
2018-05-26T17:18:08
null
UTF-8
Python
false
false
1,369
py
""" A multi-dimensional ``Vector`` class, take 3 """ from array import array import math import reprlib import numbers class Vector: typecode = 'd' def __init__(self, components): self._components = array(self.typecode, components) def __len__(self): return len(self._components) def __iter__(self): return iter(self._components) def __abs__(self): return math.sqrt(sum(x * x for x in self)) def __eq__(self, other): return (len(self) == len(other) and all(a == b for a, b in zip(self, other))) def __str__(self): return str(tuple(self)) def __repr__(self): components = reprlib.repr(self._components) components = components[components.find('['):-1] return 'Vector({})'.format(components) def __getitem__(self, index): cls = type(self) if isinstance(index, slice): return cls(self._components[index]) elif isinstance(index, numbers.Integral): return self._components[index] else: msg = '{cls.__name__} indices must be integers' raise TypeError(msg.format(cls=cls)) # ... def __mul__(self, scalar): if isinstance(scalar, numbers.Real): return Vector(n * scalar for n in self) else: return NotImplemented
daebceb3498025be0ba64616015b483e5246c793
3c54f853a782e07675b809cada049debe3d415b1
/main/rates/management/commands/get_rate_data.py
a5e02efdf4c86d7cd7a4d9b3c79e36f983ab86be
[ "MIT" ]
permissive
Hawk94/coin_tracker
ebf82a17aff1ae84aa7de872734dbf1616022de5
082909e17308a8dd460225c1b035751d12a27106
refs/heads/master
2021-01-24T08:12:37.041745
2017-08-10T11:01:19
2017-08-10T11:01:19
93,378,699
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
from django.core.management.base import BaseCommand, CommandError from django.conf import settings from main.rates.models import Rate import requests import datetime import decimal class Command(BaseCommand): help = 'Gets todays BTC price and saves it to the database' def handle(self, *args, **options): base_url = 'https://openexchangerates.org/api/latest.json?app_id={}' request_json = requests.get(base_url.format(settings.OPEN_EXCHANGE_APP_ID)).json()['rates'] eur_rate = 1 / request_json['EUR'] gbp_rate = 1 / request_json['GBP'] date = datetime.date.today() Rate.objects.create(date=date, eur_rate=eur_rate, gbp_rate=gbp_rate) self.stdout.write(self.style.SUCCESS('Successfully created exchange rate records!'))
123ff2163d0dea2759b84eef2ebe3fab6a5fdbff
7cc53a80f8ca9716e2e6893b6fd98ddab326061c
/iHome/web_html.py
453a18b89d1a6db8eec578debdba818165338f0e
[]
no_license
zengsiquan/ihome
4b98c476fdf381ad18113b070a44e48432b51a58
40926f74d46bc76de4aecd98cfc52302ecf72f1b
refs/heads/master
2020-03-10T00:55:06.484107
2018-04-10T13:22:52
2018-04-10T13:22:52
129,093,116
0
0
null
null
null
null
UTF-8
Python
false
false
561
py
# -*- coding:utf-8 -*- from flask import Blueprint,current_app,make_response from flask_wtf import csrf html = Blueprint('html',__name__) @html.route('/<re(".*"):file_name>') def get_html(file_name): if not file_name: file_name = 'index.html' if file_name != "favicon.ico": file_name= 'html/'+file_name response = make_response(current_app.send_static_file(file_name)) csrf_token = csrf.generate_csrf() response.set_cookie('csrf_token',csrf_token) # return current_app.send_static_file(file_name) return response
718743c7da0e3030a59f7358c4988be1a2d87356
534570bbb873293bd2646a1567b63d162fbba13c
/Python/Data Structure/Binary Tree/Serilization:Deserialization/Verify Preorder Serialization of a Binary Tree.py
9a2274a297c9e044d6cc6fe2a8830f27f34a8bea
[]
no_license
XinheLIU/Coding-Interview
fa3df0f7167fb1bc6c8831748249ebaa6f164552
d6034c567cef252cfafca697aa316c7ad4e7d128
refs/heads/master
2022-09-17T14:30:54.371370
2022-08-19T15:53:35
2022-08-19T15:53:35
146,382,499
0
1
null
null
null
null
UTF-8
Python
false
false
836
py
class Solution: def isValidSerialization(self, preorder: str) -> bool: stack = [] top = -1 preorder = preorder.split(',') for s in preorder: stack.append(s) top += 1 while self.endsWithTwoHashes(stack,top): h = stack.pop() top -= 1 h = stack.pop() top -= 1 if top < 0: return False h = stack.pop() stack.append('#') #print stack if len(stack) == 1: if stack[0] == '#': return True return False def endsWithTwoHashes(self,stack,top): if top < 1: return False if stack[top]=='#' and stack[top-1]=='#': return True return False
1cae18ce8bce6554011b5d4dd4091266f3224738
4d9b7b5f12b343e515609b063bdf5c31fe89a4f9
/asynchttp/websocket.py
ad23d2e17d1975f029217e182f7e79048da1b7f1
[ "BSD-3-Clause" ]
permissive
oohlaf/asynchttp
6aa956695dd82a60854d98afbf09741ce5c1fee9
2fb6a3b321c130e7b87cf1de03f042b89579a702
refs/heads/master
2021-01-16T19:47:18.929253
2013-10-10T23:36:13
2013-10-10T23:36:13
13,546,086
0
0
null
null
null
null
UTF-8
Python
false
false
7,484
py
"""WebSocket protocol versions 13 and 8.""" __all__ = ['WebSocketParser', 'WebSocketWriter', 'do_handshake', 'Message', 'WebSocketError', 'MSG_TEXT', 'MSG_BINARY', 'MSG_CLOSE', 'MSG_PING', 'MSG_PONG'] import base64 import binascii import collections import hashlib import struct from asynchttp import errors # Frame opcodes defined in the spec. OPCODE_CONTINUATION = 0x0 MSG_TEXT = OPCODE_TEXT = 0x1 MSG_BINARY = OPCODE_BINARY = 0x2 MSG_CLOSE = OPCODE_CLOSE = 0x8 MSG_PING = OPCODE_PING = 0x9 MSG_PONG = OPCODE_PONG = 0xa WS_KEY = b'258EAFA5-E914-47DA-95CA-C5AB0DC85B11' WS_HDRS = ('UPGRADE', 'CONNECTION', 'SEC-WEBSOCKET-VERSION', 'SEC-WEBSOCKET-KEY') Message = collections.namedtuple('Message', ['tp', 'data', 'extra']) class WebSocketError(Exception): """WebSocket protocol parser error.""" def WebSocketParser(out, buf): while True: message = yield from parse_message(buf) out.feed_data(message) if message.tp == MSG_CLOSE: out.feed_eof() break def parse_frame(buf): """Return the next frame from the socket.""" # read header data = yield from buf.read(2) first_byte, second_byte = struct.unpack('!BB', data) fin = (first_byte >> 7) & 1 rsv1 = (first_byte >> 6) & 1 rsv2 = (first_byte >> 5) & 1 rsv3 = (first_byte >> 4) & 1 opcode = first_byte & 0xf # frame-fin = %x0 ; more frames of this message follow # / %x1 ; final frame of this message # frame-rsv1 = %x0 ; 1 bit, MUST be 0 unless negotiated otherwise # frame-rsv2 = %x0 ; 1 bit, MUST be 0 unless negotiated otherwise # frame-rsv3 = %x0 ; 1 bit, MUST be 0 unless negotiated otherwise if rsv1 or rsv2 or rsv3: raise WebSocketError('Received frame with non-zero reserved bits') if opcode > 0x7 and fin == 0: raise WebSocketError('Received fragmented control frame') if fin == 0 and opcode == OPCODE_CONTINUATION: raise WebSocketError( 'Received new fragment frame with non-zero opcode') has_mask = (second_byte >> 7) & 1 length = (second_byte) & 0x7f # Control frames MUST have a payload length of 125 bytes or less if opcode > 0x7 and length > 125: raise WebSocketError( "Control frame payload cannot be larger than 125 bytes") # read payload if length == 126: data = yield from buf.read(2) length = struct.unpack_from('!H', data)[0] elif length > 126: data = yield from buf.read(8) length = struct.unpack_from('!Q', data)[0] if has_mask: mask = yield from buf.read(4) if length: payload = yield from buf.read(length) else: payload = b'' if has_mask: payload = bytes(b ^ mask[i % 4] for i, b in enumerate(payload)) return fin, opcode, payload def parse_message(buf): fin, opcode, payload = yield from parse_frame(buf) if opcode == OPCODE_CLOSE: if len(payload) >= 2: close_code = struct.unpack('!H', payload[:2])[0] close_message = payload[2:] return Message(OPCODE_CLOSE, close_code, close_message) elif payload: raise WebSocketError( 'Invalid close frame: {} {} {!r}'.format(fin, opcode, payload)) return Message(OPCODE_CLOSE, '', '') elif opcode == OPCODE_PING: return Message(OPCODE_PING, '', '') elif opcode == OPCODE_PONG: return Message(OPCODE_PONG, '', '') elif opcode not in (OPCODE_TEXT, OPCODE_BINARY): raise WebSocketError("Unexpected opcode={!r}".format(opcode)) # load text/binary data = [payload] while not fin: fin, _opcode, payload = yield from parse_frame(buf) if _opcode != OPCODE_CONTINUATION: raise WebSocketError( 'The opcode in non-fin frame is expected ' 'to be zero, got {!r}'.format(opcode)) else: data.append(payload) if opcode == OPCODE_TEXT: return Message(OPCODE_TEXT, b''.join(data).decode('utf-8'), '') else: return Message(OPCODE_BINARY, b''.join(data), '') class WebSocketWriter: def __init__(self, transport): self.transport = transport def _send_frame(self, message, opcode): """Send a frame over the websocket with message as its payload.""" header = bytes([0x80 | opcode]) msg_length = len(message) if msg_length < 126: header += bytes([msg_length]) elif msg_length < (1 << 16): header += bytes([126]) + struct.pack('!H', msg_length) else: header += bytes([127]) + struct.pack('!Q', msg_length) self.transport.write(header + message) def pong(self): """Send pong message.""" self._send_frame(b'', OPCODE_PONG) def ping(self): """Send pong message.""" self._send_frame(b'', OPCODE_PING) def send(self, message, binary=False): """Send a frame over the websocket with message as its payload.""" if isinstance(message, str): message = message.encode('utf-8') if binary: self._send_frame(message, OPCODE_BINARY) else: self._send_frame(message, OPCODE_TEXT) def close(self, code=1000, message=b''): """Close the websocket, sending the specified code and message.""" if isinstance(message, str): message = message.encode('utf-8') self._send_frame( struct.pack('!H%ds' % len(message), code, message), opcode=OPCODE_CLOSE) def do_handshake(method, headers, transport): """Prepare WebSocket handshake. It return http response code, response headers, websocket parser, websocket writer. It does not perform any IO.""" # WebSocket accepts only GET if method.upper() != 'GET': raise errors.HttpErrorException(405, headers=(('Allow', 'GET'),)) headers = dict(((hdr, val) for hdr, val in headers if hdr in WS_HDRS)) if 'websocket' != headers.get('UPGRADE', '').lower().strip(): raise errors.BadRequestException( 'No WebSocket UPGRADE hdr: {}\n' 'Can "Upgrade" only to "WebSocket".'.format( headers.get('UPGRADE'))) if 'upgrade' not in headers.get('CONNECTION', '').lower(): raise errors.BadRequestException( 'No CONNECTION upgrade hdr: {}'.format( headers.get('CONNECTION'))) # check supported version version = headers.get('SEC-WEBSOCKET-VERSION') if version not in ('13', '8', '7'): raise errors.BadRequestException( 'Unsupported version: {}'.format(version)) # check client handshake for validity key = headers.get('SEC-WEBSOCKET-KEY') try: if not key or len(base64.b64decode(key)) != 16: raise errors.BadRequestException( 'Handshake error: {!r}'.format(key)) except binascii.Error: raise errors.BadRequestException( 'Handshake error: {!r}'.format(key)) from None # response code, headers, parser, writer return (101, (('UPGRADE', 'websocket'), ('CONNECTION', 'upgrade'), ('TRANSFER-ENCODING', 'chunked'), ('SEC-WEBSOCKET-ACCEPT', base64.b64encode( hashlib.sha1(key.encode() + WS_KEY).digest()).decode())), WebSocketParser, WebSocketWriter(transport))
67624c3041be101cc92c160d6d7e7fd3442377f3
832f86e052d90916fb0c8156825c87dc13c0443e
/imported-from-gmail/2020-05-03-invert-a-binary-tree.py
3afada0e040cf5b62868c3542fa850c26f003171
[]
no_license
johncornflake/dailyinterview
292615849cea62cb945ecc7039c594b6966a81f3
91bb0edb9e25255e6222279109c15ae9d203970c
refs/heads/master
2022-12-09T21:02:12.204755
2021-06-07T13:09:34
2021-06-07T13:09:34
225,059,833
0
0
null
2022-12-08T11:27:38
2019-11-30T19:24:58
Python
UTF-8
Python
false
false
1,226
py
Hi, here's your problem today. (You've reached the end of the problems for now - in the meanwhile, here is a random question. And visit CoderPro for more practice!) This problem was recently asked by Twitter: You are given the root of a binary tree. Invert the binary tree in place. That is, all left children should become right children, and all right children should become left children. Example: a / \ b c / \ / d e f The inverted version of this tree is as follows: a / \ c b \ / \ f e d Here is the function signature: class Node : def __init__ ( self , value ): self . left = None self . right = None self . value = value def preorder ( self ): print self . value , if self . left : self . left . preorder () if self . right : self . right . preorder () def invert ( node ): # Fill this in. root = Node ( 'a' ) root . left = Node ( 'b' ) root . right = Node ( 'c' ) root . left . left = Node ( 'd' ) root . left . right = Node ( 'e' ) root . right . left = Node ( 'f' ) root . preorder () # a b d e c f print "\n" invert ( root ) root . preorder () # a c f b e d
ca092fc09e899aefc6a21b81dd2fa026594f71d9
ff0c17789badd75559eb834fe039d4b4ab175ba8
/pythonscript/x11-64-cpython/lib/python3.6/site-packages/zmq/green/core.py
a86c455dce0748319cf9d86431b9b202ef28f26b
[ "LicenseRef-scancode-python-cwi", "LicenseRef-scancode-free-unknown", "Python-2.0", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-unicode", "BSD-3-Clause", "Apache-2.0", "LicenseRef-scancode-public-domain", "OpenSSL", "MIT" ]
permissive
studioschade/notebook_graph
3f7555ab46167b050e461164c6b4a1525dc7df0c
0fd159855fdd9c38a6dd293e5ec6164986ad6209
refs/heads/master
2022-10-23T23:54:54.467050
2018-10-14T08:10:18
2018-10-14T08:10:18
148,099,361
9
2
MIT
2022-10-10T20:16:48
2018-09-10T04:32:44
Python
UTF-8
Python
false
false
10,619
py
#----------------------------------------------------------------------------- # Copyright (C) 2011-2012 Travis Cline # # This file is part of pyzmq # It is adapted from upstream project zeromq_gevent under the New BSD License # # Distributed under the terms of the New BSD License. The full license is in # the file COPYING.BSD, distributed as part of this software. #----------------------------------------------------------------------------- """This module wraps the :class:`Socket` and :class:`Context` found in :mod:`pyzmq <zmq>` to be non blocking """ from __future__ import print_function import sys import time import warnings import zmq from zmq import Context as _original_Context from zmq import Socket as _original_Socket from .poll import _Poller import gevent from gevent.event import AsyncResult from gevent.hub import get_hub if hasattr(zmq, 'RCVTIMEO'): TIMEOS = (zmq.RCVTIMEO, zmq.SNDTIMEO) else: TIMEOS = () def _stop(evt): """simple wrapper for stopping an Event, allowing for method rename in gevent 1.0""" try: evt.stop() except AttributeError as e: # gevent<1.0 compat evt.cancel() class _Socket(_original_Socket): """Green version of :class:`zmq.Socket` The following methods are overridden: * send * recv To ensure that the ``zmq.NOBLOCK`` flag is set and that sending or receiving is deferred to the hub if a ``zmq.EAGAIN`` (retry) error is raised. The `__state_changed` method is triggered when the zmq.FD for the socket is marked as readable and triggers the necessary read and write events (which are waited for in the recv and send methods). Some double underscore prefixes are used to minimize pollution of :class:`zmq.Socket`'s namespace. """ __in_send_multipart = False __in_recv_multipart = False __writable = None __readable = None _state_event = None _gevent_bug_timeout = 11.6 # timeout for not trusting gevent _debug_gevent = False # turn on if you think gevent is missing events _poller_class = _Poller def __init__(self, *a, **kw): super(_Socket, self).__init__(*a, **kw) self.__in_send_multipart = False self.__in_recv_multipart = False self.__setup_events() def __del__(self): self.close() def close(self, linger=None): super(_Socket, self).close(linger) self.__cleanup_events() def __cleanup_events(self): # close the _state_event event, keeps the number of active file descriptors down if getattr(self, '_state_event', None): _stop(self._state_event) self._state_event = None # if the socket has entered a close state resume any waiting greenlets self.__writable.set() self.__readable.set() def __setup_events(self): self.__readable = AsyncResult() self.__writable = AsyncResult() self.__readable.set() self.__writable.set() try: self._state_event = get_hub().loop.io(self.getsockopt(zmq.FD), 1) # read state watcher self._state_event.start(self.__state_changed) except AttributeError: # for gevent<1.0 compatibility from gevent.core import read_event self._state_event = read_event(self.getsockopt(zmq.FD), self.__state_changed, persist=True) def __state_changed(self, event=None, _evtype=None): if self.closed: self.__cleanup_events() return try: # avoid triggering __state_changed from inside __state_changed events = super(_Socket, self).getsockopt(zmq.EVENTS) except zmq.ZMQError as exc: self.__writable.set_exception(exc) self.__readable.set_exception(exc) else: if events & zmq.POLLOUT: self.__writable.set() if events & zmq.POLLIN: self.__readable.set() def _wait_write(self): assert self.__writable.ready(), "Only one greenlet can be waiting on this event" self.__writable = AsyncResult() # timeout is because libzmq cannot be trusted to properly signal a new send event: # this is effectively a maximum poll interval of 1s tic = time.time() dt = self._gevent_bug_timeout if dt: timeout = gevent.Timeout(seconds=dt) else: timeout = None try: if timeout: timeout.start() self.__writable.get(block=True) except gevent.Timeout as t: if t is not timeout: raise toc = time.time() # gevent bug: get can raise timeout even on clean return # don't display zmq bug warning for gevent bug (this is getting ridiculous) if self._debug_gevent and timeout and toc-tic > dt and \ self.getsockopt(zmq.EVENTS) & zmq.POLLOUT: print("BUG: gevent may have missed a libzmq send event on %i!" % self.FD, file=sys.stderr) finally: if timeout: timeout.cancel() self.__writable.set() def _wait_read(self): assert self.__readable.ready(), "Only one greenlet can be waiting on this event" self.__readable = AsyncResult() # timeout is because libzmq cannot always be trusted to play nice with libevent. # I can only confirm that this actually happens for send, but lets be symmetrical # with our dirty hacks. # this is effectively a maximum poll interval of 1s tic = time.time() dt = self._gevent_bug_timeout if dt: timeout = gevent.Timeout(seconds=dt) else: timeout = None try: if timeout: timeout.start() self.__readable.get(block=True) except gevent.Timeout as t: if t is not timeout: raise toc = time.time() # gevent bug: get can raise timeout even on clean return # don't display zmq bug warning for gevent bug (this is getting ridiculous) if self._debug_gevent and timeout and toc-tic > dt and \ self.getsockopt(zmq.EVENTS) & zmq.POLLIN: print("BUG: gevent may have missed a libzmq recv event on %i!" % self.FD, file=sys.stderr) finally: if timeout: timeout.cancel() self.__readable.set() def send(self, data, flags=0, copy=True, track=False, **kwargs): """send, which will only block current greenlet state_changed always fires exactly once (success or fail) at the end of this method. """ # if we're given the NOBLOCK flag act as normal and let the EAGAIN get raised if flags & zmq.NOBLOCK: try: msg = super(_Socket, self).send(data, flags, copy, track, **kwargs) finally: if not self.__in_send_multipart: self.__state_changed() return msg # ensure the zmq.NOBLOCK flag is part of flags flags |= zmq.NOBLOCK while True: # Attempt to complete this operation indefinitely, blocking the current greenlet try: # attempt the actual call msg = super(_Socket, self).send(data, flags, copy, track) except zmq.ZMQError as e: # if the raised ZMQError is not EAGAIN, reraise if e.errno != zmq.EAGAIN: if not self.__in_send_multipart: self.__state_changed() raise else: if not self.__in_send_multipart: self.__state_changed() return msg # defer to the event loop until we're notified the socket is writable self._wait_write() def recv(self, flags=0, copy=True, track=False): """recv, which will only block current greenlet state_changed always fires exactly once (success or fail) at the end of this method. """ if flags & zmq.NOBLOCK: try: msg = super(_Socket, self).recv(flags, copy, track) finally: if not self.__in_recv_multipart: self.__state_changed() return msg flags |= zmq.NOBLOCK while True: try: msg = super(_Socket, self).recv(flags, copy, track) except zmq.ZMQError as e: if e.errno != zmq.EAGAIN: if not self.__in_recv_multipart: self.__state_changed() raise else: if not self.__in_recv_multipart: self.__state_changed() return msg self._wait_read() def send_multipart(self, *args, **kwargs): """wrap send_multipart to prevent state_changed on each partial send""" self.__in_send_multipart = True try: msg = super(_Socket, self).send_multipart(*args, **kwargs) finally: self.__in_send_multipart = False self.__state_changed() return msg def recv_multipart(self, *args, **kwargs): """wrap recv_multipart to prevent state_changed on each partial recv""" self.__in_recv_multipart = True try: msg = super(_Socket, self).recv_multipart(*args, **kwargs) finally: self.__in_recv_multipart = False self.__state_changed() return msg def get(self, opt): """trigger state_changed on getsockopt(EVENTS)""" if opt in TIMEOS: warnings.warn("TIMEO socket options have no effect in zmq.green", UserWarning) optval = super(_Socket, self).get(opt) if opt == zmq.EVENTS: self.__state_changed() return optval def set(self, opt, val): """set socket option""" if opt in TIMEOS: warnings.warn("TIMEO socket options have no effect in zmq.green", UserWarning) result = super(_Socket, self).set(opt, val) if opt in (zmq.SUBSCRIBE, zmq.UNSUBSCRIBE): self.__state_changed() return result class _Context(_original_Context): """Replacement for :class:`zmq.Context` Ensures that the greened Socket above is used in calls to `socket`. """ _socket_class = _Socket
892eeecf50de0754f98741f00a9c62aa1017f5c9
91214eaa804c0673c4ef476be99331ee745af352
/application/models/piece.py
558ad924ced777003c1b2c77b38ec9534659d9f9
[]
no_license
Spike774/1jingdian
52a534bae08b162800e038e28c70d2a352155e38
7648bf8adb8964220b25f483f92d3e66f0b33ba8
refs/heads/master
2021-01-18T01:41:34.546533
2015-04-21T15:31:30
2015-04-21T15:31:30
34,445,222
1
0
null
2015-04-23T08:55:20
2015-04-23T08:55:20
null
UTF-8
Python
false
false
10,707
py
# coding: utf-8 import qrcode import math from flask import g from urlparse import urlparse from datetime import datetime, date, timedelta from ._base import db from ..utils.uploadsets import qrcodes, save_image from ..utils.helpers import absolute_url_for class Piece(db.Model): """Model for text piece""" id = db.Column(db.Integer, primary_key=True) content = db.Column(db.Text) content_length = db.Column(db.Integer, default=0) original = db.Column(db.Boolean, default=False) author = db.Column(db.String(100)) source = db.Column(db.String(100)) source_link = db.Column(db.String(200)) source_link_title = db.Column(db.String(200)) clicks_count = db.Column(db.Integer, default=0) votes_count = db.Column(db.Integer, default=0) qrcode = db.Column(db.String(200)) created_at = db.Column(db.DateTime, default=datetime.now) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', backref=db.backref('pieces', lazy='dynamic', order_by='desc(Piece.created_at)')) def __setattr__(self, name, value): # Hash password when set it. if name == 'content': super(Piece, self).__setattr__('content_length', Piece.calculate_content_length(value)) super(Piece, self).__setattr__(name, value) @property def source_link_favicon(self): result = urlparse(self.source_link) host = "%s://%s" % (result.scheme or "http", result.netloc) return "http://g.soz.im/%s" % host @property def qrcode_url(self): return qrcodes.url(self.qrcode) if self.qrcode else "" @property def source_string(self): if self.original: return "" result_str = "" if self.author: result_str += self.author if self.source: result_str += "《%s》" % self.source return result_str @property def weibo_share_url(self): template = "http://service.weibo.com/share/share.php?searchPic=false&title=%s&url=%s" title = self.content if self.source_string: title += " —— %s" % self.source_string url = absolute_url_for('piece.view', uid=self.id) return template % (title, url) @property def root_comments(self): return self.comments.filter(PieceComment.root_comment_id == None) @staticmethod def calculate_content_length(content): cn_length = (len(bytes(content)) - len(content)) / 2 en_length = len(content) - cn_length return cn_length + int(math.ceil(en_length / 2.0)) def voted_by_user(self): if not g.user: return False return g.user.voted_pieces.filter(PieceVote.piece_id == self.id).count() > 0 def make_qrcode(self): qr = qrcode.QRCode(box_size=10, border=0) qr.add_data(absolute_url_for('piece.view', uid=self.id)) qr.make(fit=True) img = qr.make_image() self.qrcode = save_image(img, qrcodes, 'png') @staticmethod def get_pieces_data_by_day(day): """获取某天的pieces""" SHOW_PIECES_COUNT = 20 pieces_count = Piece.query.filter(db.func.date(Piece.created_at) == day).count() hide_pieces_count = pieces_count - SHOW_PIECES_COUNT if pieces_count > SHOW_PIECES_COUNT \ else 0 if hide_pieces_count: hide_pieces = pieces = Piece.query.filter( db.func.date(Piece.created_at) == day).order_by( Piece.votes_count.desc()).offset(SHOW_PIECES_COUNT) else: hide_pieces = None pieces = Piece.query.filter(db.func.date(Piece.created_at) == day). \ order_by(Piece.votes_count.desc()). \ order_by(Piece.created_at.desc()). \ limit(SHOW_PIECES_COUNT) if day == date.today(): date_string = '今天' elif day == date.today() - timedelta(days=1): date_string = '昨天' else: date_string = "%s年%s月%s日" % (day.year, day.month, day.day) return { 'date': day, 'date_string': date_string, 'pieces': pieces, 'hide_pieces': hide_pieces, 'hide_pieces_count': hide_pieces_count } class PieceVote(db.Model): """每日文字的投票(顶)""" id = db.Column(db.Integer, primary_key=True) created_at = db.Column(db.DateTime, default=datetime.now) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', backref=db.backref('voted_pieces', lazy='dynamic', order_by='desc(PieceVote.created_at)')) piece_id = db.Column(db.Integer, db.ForeignKey('piece.id')) piece = db.relationship('Piece', backref=db.backref('voters', lazy='dynamic', order_by='asc(PieceVote.created_at)')) class PieceComment(db.Model): """文字评论""" id = db.Column(db.Integer, primary_key=True) content = db.Column(db.Text) created_at = db.Column(db.DateTime, default=datetime.now) votes_count = db.Column(db.Integer, default=0) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', foreign_keys=[user_id], backref=db.backref('piece_comments', lazy='dynamic', order_by='desc(PieceComment.created_at)')) target_user_id = db.Column(db.Integer, db.ForeignKey('user.id')) target_user = db.relationship('User', foreign_keys=[target_user_id]) root_comment_id = db.Column(db.Integer, db.ForeignKey('piece_comment.id')) root_comment = db.relationship('PieceComment', remote_side=[id], backref=db.backref('sub_comments', lazy='dynamic', order_by='asc(PieceComment.created_at)')) piece_id = db.Column(db.Integer, db.ForeignKey('piece.id')) piece = db.relationship('Piece', backref=db.backref('comments', lazy='dynamic', order_by='asc(PieceComment.created_at)')) def voted_by_user(self): return g.user and g.user.voted_piece_comments.filter( PieceCommentVote.piece_comment_id == self.id).count() > 0 class PieceCommentVote(db.Model): """针对文字评论的赞""" id = db.Column(db.Integer, primary_key=True) created_at = db.Column(db.DateTime, default=datetime.now) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', backref=db.backref('voted_piece_comments', lazy='dynamic', order_by='desc(PieceCommentVote.created_at)')) piece_comment_id = db.Column(db.Integer, db.ForeignKey('piece_comment.id')) piece_comment = db.relationship('PieceComment', backref=db.backref('votes', lazy='dynamic', order_by='asc(PieceCommentVote.created_at)')) class PieceSource(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(200)) count = db.Column(db.Integer, default=1) created_at = db.Column(db.DateTime, default=datetime.now) class PieceAuthor(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(200)) count = db.Column(db.Integer, default=1) created_at = db.Column(db.DateTime, default=datetime.now) class PIECE_EDIT_KIND(object): # create CREATE = 15 # collection ADD_TO_COLLECTION = 1 REMOVE_FROM_COLLECTION = 2 # content UPDATE_CONTENT = 3 # original CHANGE_TO_ORIGINAL = 13 CHANGE_TO_NON_ORIGINAL = 14 # author ADD_AUTHOR = 4 UPDATE_AUTHOR = 5 REMOVE_AUTHOR = 6 # source ADD_SOURCE = 7 UPDATE_SOURCE = 8 REMOVE_SOURCE = 9 # source link ADD_SOURCE_LINK = 10 UPDATE_SOURCE_LINK = 11 REMOVE_SOURCE_LINK = 12 class PieceEditLog(db.Model): id = db.Column(db.Integer, primary_key=True) created_at = db.Column(db.DateTime, default=datetime.now) kind = db.Column(db.Integer, nullable=False) before = db.Column(db.String(200)) before_id = db.Column(db.Integer) after = db.Column(db.String(200)) after_id = db.Column(db.Integer) compare = db.Column(db.String(500)) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', backref=db.backref('edited_pieces', lazy='dynamic', order_by='desc(PieceEditLog.created_at)')) piece_id = db.Column(db.Integer, db.ForeignKey('piece.id')) piece = db.relationship('Piece', backref=db.backref('logs', lazy='dynamic', order_by='desc(PieceEditLog.created_at)')) def reported_by_user(self): return g.user and g.user.reported_piece_edit_logs.filter( PieceEditLogReport.log_id == self.id).count() > 0 class PieceEditLogReport(db.Model): id = db.Column(db.Integer, primary_key=True) processed = db.Column(db.Boolean, default=False) created_at = db.Column(db.DateTime, default=datetime.now) user_id = db.Column(db.Integer, db.ForeignKey('user.id')) user = db.relationship('User', backref=db.backref('reported_piece_edit_logs', lazy='dynamic', order_by='desc(PieceEditLogReport.created_at)')) log_id = db.Column(db.Integer, db.ForeignKey('piece_edit_log.id')) log = db.relationship('PieceEditLog', backref=db.backref('reports', lazy='dynamic', order_by='desc(' 'PieceEditLogReport.created_at)'))
5e45efaf0a3d7732008c6b31f63ea03a3f44c0fe
d75359fde22b08a4109b30bb39c9db27961fa417
/loginpass/github.py
794d62418c269dca14a72d1f15a6c4568fd4dea5
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
authlib/loginpass
58f0881b4e5975c305e633337d1b86657bea907b
635823a78a2a92cf8630f9935aebb9afcccb8656
refs/heads/master
2022-06-08T13:08:09.271879
2020-12-08T06:04:39
2020-12-08T06:04:39
128,506,236
280
95
BSD-3-Clause
2022-05-13T19:30:54
2018-04-07T07:26:46
Python
UTF-8
Python
false
false
1,775
py
""" loginpass.github ~~~~~~~~~~~~~~~~ Loginpass Backend of GitHub (https://github.com). Useful Links: - Create App: https://github.com/settings/developers - API documentation: https://developer.github.com/v3/ :copyright: (c) 2018 by Hsiaoming Yang :license: BSD, see LICENSE for more details. """ from authlib.oidc.core import UserInfo class GitHub(object): NAME = 'github' OAUTH_CONFIG = { 'api_base_url': 'https://api.github.com/', 'access_token_url': 'https://github.com/login/oauth/access_token', 'authorize_url': 'https://github.com/login/oauth/authorize', 'client_kwargs': {'scope': 'user:email'}, 'userinfo_endpoint': 'https://api.github.com/user', } def userinfo(self, **kwargs): resp = self.get(self.OAUTH_CONFIG['userinfo_endpoint'], **kwargs) data = resp.json() params = { 'sub': str(data['id']), 'name': data['name'], 'email': data.get('email'), 'preferred_username': data['login'], 'profile': data['html_url'], 'picture': data['avatar_url'], 'website': data.get('blog'), } # The email can be be None despite the scope being 'user:email'. # That is because a user can choose to make his/her email private. # If that is the case we get all the users emails regardless if private or note # and use the one he/she has marked as `primary` if params.get('email') is None: resp = self.get('user/emails', **kwargs) resp.raise_for_status() data = resp.json() params["email"] = next(email['email'] for email in data if email['primary']) return UserInfo(params)
67fd4e81addbef4bfb8d19272ec99dbf5c5362c6
1d27decdb5207616837f03a36741947a46e8852d
/py/hscTools/pipe_test/stacker.py
54af743c04e6fd06668d3410c5a7ec4f07cf2be9
[]
no_license
dr-guangtou/hs_hsc
12d7a83ee9898f6d9fb5cf5dc85fa682d50578e8
865abc0ba5337d3a085efa99b87ebfcfdd9710af
refs/heads/master
2021-01-17T03:20:03.900050
2019-06-19T05:26:34
2019-06-19T05:26:34
23,053,990
0
2
null
2015-12-02T15:52:47
2014-08-18T00:47:48
Python
UTF-8
Python
false
false
14,441
py
#!/usr/bin/env python # # LSST Data Management System # Copyright 2008, 2009, 2010 LSST Corporation. # # This product includes software developed by the # LSST Project (http://www.lsst.org/). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the LSST License Statement and # the GNU General Public License along with this program. If not, # see <http://www.lsstcorp.org/LegalNotices/>. # # -*- python -*- """ Tests for Stack Run with: ./Stacker.py or python >>> import Stacker; Stacker.run() """ ########################## # simpleStacker.py # Steve Bickerton # An example executible which calls the example 'stack' code import unittest import numpy import lsst.afw.image as afwImage import lsst.afw.math as afwMath import lsst.afw.geom as afwGeom import lsst.utils.tests as utilsTests import lsst.pex.exceptions as pexEx import lsst.afw.display.ds9 as ds9 try: type(display) except: display = False ###################################### # main body of code ###################################### class StackTestCase(utilsTests.TestCase): def setUp(self): self.nImg = 10 self.nX, self.nY = 64, 64 self.values = [1.0, 2.0, 2.0, 3.0, 8.0 ] def testMean(self): """ Test the statisticsStack() function for a MEAN""" knownMean = 0.0 imgList = afwImage.vectorImageF() for iImg in range(self.nImg): imgList.push_back(afwImage.ImageF(afwGeom.Extent2I(self.nX, self.nY), iImg)) knownMean += iImg imgStack = afwMath.statisticsStack(imgList, afwMath.MEAN) knownMean /= self.nImg self.assertEqual(imgStack.get(self.nX/2, self.nY/2), knownMean) # Test in-place stacking afwMath.statisticsStack(imgStack, imgList, afwMath.MEAN) self.assertEqual(imgStack.get(self.nX/2, self.nY/2), knownMean) def testStatistics(self): """ Test the statisticsStack() function """ imgList = afwImage.vectorImageF() for val in self.values: imgList.push_back(afwImage.ImageF(afwGeom.Extent2I(self.nX, self.nY), val)) imgStack = afwMath.statisticsStack(imgList, afwMath.MEAN) mean = reduce(lambda x, y: x+y, self.values)/float(len(self.values)) self.assertAlmostEqual(imgStack.get(self.nX/2, self.nY/2), mean) imgStack = afwMath.statisticsStack(imgList, afwMath.MEDIAN) median = sorted(self.values)[len(self.values)//2] self.assertEqual(imgStack.get(self.nX/2, self.nY/2), median) def testWeightedStack(self): """ Test statisticsStack() function when weighting by a variance plane""" sctrl = afwMath.StatisticsControl() sctrl.setWeighted(True) mimgList = afwImage.vectorMaskedImageF() for val in self.values: mimg = afwImage.MaskedImageF(afwGeom.Extent2I(self.nX, self.nY)) mimg.set(val, 0x0, val) mimgList.push_back(mimg) mimgStack = afwMath.statisticsStack(mimgList, afwMath.MEAN, sctrl) wvalues = [1.0/q for q in self.values] wmean = float(len(self.values)) / reduce(lambda x, y: x + y, wvalues) self.assertAlmostEqual(mimgStack.getImage().get(self.nX/2, self.nY/2), wmean) # Test in-place stacking afwMath.statisticsStack(mimgStack, mimgList, afwMath.MEAN, sctrl) self.assertAlmostEqual(mimgStack.getImage().get(self.nX/2, self.nY/2), wmean) def testConstantWeightedStack(self): """ Test statisticsStack() function when weighting by a vector of weights""" sctrl = afwMath.StatisticsControl() imgList = afwImage.vectorImageF() weights = afwMath.vectorF() for val in self.values: img = afwImage.ImageF(afwGeom.Extent2I(self.nX, self.nY), val) imgList.push_back(img) weights.push_back(val) imgStack = afwMath.statisticsStack(imgList, afwMath.MEAN, sctrl, weights) wsum = reduce(lambda x, y: x + y, self.values) wvalues = [x*x for x in self.values] wmean = reduce(lambda x, y: x + y, wvalues)/float(wsum) self.assertAlmostEqual(imgStack.get(self.nX/2, self.nY/2), wmean) def testRequestMoreThanOneStat(self): """ Make sure we throw an exception if someone requests more than one type of statistics. """ sctrl = afwMath.StatisticsControl() imgList = afwImage.vectorImageF() for val in self.values: img = afwImage.ImageF(afwGeom.Extent2I(self.nX, self.nY), val) imgList.push_back(img) def tst(): imgStackBad = afwMath.statisticsStack(imgList, afwMath.MEAN | afwMath.MEANCLIP, sctrl) utilsTests.assertRaisesLsstCpp(self, pexEx.InvalidParameterException, tst) def testReturnInputs(self): """ Make sure that a single file put into the stacker is returned unscathed""" imgList = afwImage.vectorMaskedImageF() img = afwImage.MaskedImageF(afwGeom.Extent2I(10, 20)) for y in range(img.getHeight()): simg = img.Factory( img, afwGeom.Box2I(afwGeom.Point2I(0, y), afwGeom.Extent2I(img.getWidth(), 1)), afwImage.LOCAL) simg.set(y) imgList.push_back(img) imgStack = afwMath.statisticsStack(imgList, afwMath.MEAN) if display: ds9.mtv(img, frame=1, title="input") ds9.mtv(imgStack, frame=2, title="stack") self.assertEqual(img.get(0, 0)[0], imgStack.get(0, 0)[0]) def testStackBadPixels(self): """Check that we properly ignore masked pixels, and set noGoodPixelsMask where there are no good pixels""" mimgVec = afwImage.vectorMaskedImageF() DETECTED = afwImage.MaskU_getPlaneBitMask("DETECTED") EDGE = afwImage.MaskU_getPlaneBitMask("EDGE") INTRP = afwImage.MaskU_getPlaneBitMask("INTRP") SAT = afwImage.MaskU_getPlaneBitMask("SAT") sctrl = afwMath.StatisticsControl() sctrl.setNanSafe(False) sctrl.setAndMask(INTRP | SAT) sctrl.setNoGoodPixelsMask(EDGE) edgeBBox = afwGeom.Box2I(afwGeom.Point2I(0, 0), afwGeom.Extent2I(20, 20)) # set these pixels to EDGE width, height = 512, 512 dim=afwGeom.Extent2I(width, height) val, maskVal = 10, DETECTED for i in range(4): mimg = afwImage.MaskedImageF(dim) mimg.set(val, maskVal, 1) # # Set part of the image to NaN (with the INTRP bit set) # llc = afwGeom.Point2I(width//2*(i//2), height//2*(i%2)) bbox = afwGeom.Box2I(llc, dim/2) smimg = mimg.Factory(mimg, bbox, afwImage.LOCAL) #smimg.set(numpy.nan, INTRP, numpy.nan) del smimg # # And the bottom corner to SAT # smask = mimg.getMask().Factory(mimg.getMask(), edgeBBox, afwImage.LOCAL) smask |= SAT del smask mimgVec.push_back(mimg) if display > 1: ds9.mtv(mimg, frame=i, title=str(i)) mimgStack = afwMath.statisticsStack(mimgVec, afwMath.MEAN, sctrl) if display: i += 1 ds9.mtv(mimgStack, frame=i, title="Stack") i += 1 ds9.mtv(mimgStack.getVariance(), frame=i, title="var(Stack)") # # Check the output, ignoring EDGE pixels # sctrl = afwMath.StatisticsControl() sctrl.setAndMask(afwImage.MaskU_getPlaneBitMask("EDGE")) stats = afwMath.makeStatistics(mimgStack, afwMath.MIN | afwMath.MAX, sctrl) self.assertEqual(stats.getValue(afwMath.MIN), val) self.assertEqual(stats.getValue(afwMath.MAX), val) # # We have to clear EDGE in the known bad corner to check the mask # smask = mimgStack.getMask().Factory(mimgStack.getMask(), edgeBBox, afwImage.LOCAL) self.assertEqual(smask.get(edgeBBox.getMinX(), edgeBBox.getMinY()), EDGE) smask &= ~EDGE del smask self.assertEqual(afwMath.makeStatistics(mimgStack.getMask(), afwMath.SUM, sctrl).getValue(), maskVal) def testTicket1412(self): """Ticket 1412: ignored mask bits are propegated to output stack.""" mimg1 = afwImage.MaskedImageF(afwGeom.Extent2I(1, 1)) mimg1.set(0, 0, (1, 0x4, 1)) # set 0100 mimg2 = afwImage.MaskedImageF(afwGeom.Extent2I(1, 1)) mimg2.set(0, 0, (2, 0x3, 1)) # set 0010 and 0001 imgList = afwImage.vectorMaskedImageF() imgList.push_back(mimg1) imgList.push_back(mimg2) sctrl = afwMath.StatisticsControl() sctrl.setAndMask(0x1) # andmask only 0001 # try first with no sctrl (no andmask set), should see 0x0111 for all output mask pixels imgStack = afwMath.statisticsStack(imgList, afwMath.MEAN) self.assertEqual(imgStack.get(0, 0)[1], 0x7) # now try with sctrl (andmask = 0x0001), should see 0x0100 for all output mask pixels imgStack = afwMath.statisticsStack(imgList, afwMath.MEAN, sctrl) self.assertEqual(imgStack.get(0, 0)[1], 0x4) def test2145(self): """The how-to-repeat from #2145""" Size = 5 statsCtrl = afwMath.StatisticsControl() statsCtrl.setCalcErrorFromInputVariance(True) maskedImageList = afwImage.vectorMaskedImageF() weightList = [] for i in range(3): mi = afwImage.MaskedImageF(Size, Size) imArr, maskArr, varArr = mi.getArrays() imArr[:] = numpy.random.normal(10, 0.1, (Size, Size)) varArr[:] = numpy.random.normal(10, 0.1, (Size, Size)) maskedImageList.append(mi) weightList.append(1.0) stack = afwMath.statisticsStack(maskedImageList, afwMath.MEAN, statsCtrl, weightList) if False: print "image=", stack.getImage().getArray() print "variance=", stack.getVariance().getArray() self.assertNotEqual(numpy.sum(stack.getVariance().getArray()), 0.0) def testRejectedMaskPropagation(self): """Test that we can propagate mask bits from rejected pixels, when the amount of rejection crosses a threshold.""" rejectedBit = 1 # use this bit to determine whether to reject a pixel propagatedBit = 2 # propagate this bit if a pixel with it set is rejected statsCtrl = afwMath.StatisticsControl() statsCtrl.setMaskPropagationThreshold(propagatedBit, 0.3) statsCtrl.setAndMask(1 << rejectedBit) statsCtrl.setWeighted(True) maskedImageList = afwImage.vectorMaskedImageF() # start with 4 images with no mask bits set partialSum = numpy.zeros((1, 4), dtype=numpy.float32) finalImage = numpy.array([12.0, 12.0, 12.0, 12.0], dtype=numpy.float32) for i in range(4): mi = afwImage.MaskedImageF(4, 1) imArr, maskArr, varArr = mi.getArrays() imArr[:,:] = numpy.ones((1, 4), dtype=numpy.float32) maskedImageList.append(mi) partialSum += imArr # add one more image with all permutations of the first two bits set in different pixels mi = afwImage.MaskedImageF(4, 1) imArr, maskArr, varArr = mi.getArrays() imArr[0,:] = finalImage maskArr[0,1] |= (1 << rejectedBit) maskArr[0,2] |= (1 << propagatedBit) maskArr[0,3] |= (1 << rejectedBit) maskArr[0,3] |= (1 << propagatedBit) maskedImageList.append(mi) # these will always be rejected finalImage[1] = 0.0 finalImage[3] = 0.0 # Uniform weights: we should only see pixel 2 set with propagatedBit, because it's not rejected; # pixel 3 is rejected, but its weight (0.2) below the propagation threshold (0.3) stack1 = afwMath.statisticsStack(maskedImageList, afwMath.MEAN, statsCtrl, [1.0, 1.0, 1.0, 1.0, 1.0]) self.assertEqual(stack1.get(0,0)[1], 0x0) self.assertEqual(stack1.get(1,0)[1], 0x0) self.assertEqual(stack1.get(2,0)[1], 1 << propagatedBit) self.assertEqual(stack1.get(3,0)[1], 0x0) self.assertClose(stack1.getImage().getArray(), (partialSum + finalImage) / numpy.array([5.0, 4.0, 5.0, 4.0]), rtol=1E-7) # Give the masked image more weight: we should see pixel 2 and pixel 3 set with propagatedBit, # pixel 2 because it's not rejected, and pixel 3 because the weight of the rejection (0.3333) # is above the threshold (0.3) # Note that rejectedBit is never propagated, because we didn't include it in statsCtrl (of course, # normally the bits we'd propagate and the bits we'd reject would be the same) stack2 = afwMath.statisticsStack(maskedImageList, afwMath.MEAN, statsCtrl, [1.0, 1.0, 1.0, 1.0, 2.0]) self.assertEqual(stack2.get(0,0)[1], 0x0) self.assertEqual(stack2.get(1,0)[1], 0x0) self.assertEqual(stack2.get(2,0)[1], 1 << propagatedBit) self.assertEqual(stack2.get(3,0)[1], 1 << propagatedBit) self.assertClose(stack2.getImage().getArray(), (partialSum + 2*finalImage) / numpy.array([6.0, 4.0, 6.0, 4.0]), rtol=1E-7) ################################################################# # Test suite boiler plate ################################################################# def suite(): """Returns a suite containing all the test cases in this module.""" utilsTests.init() suites = [] suites += unittest.makeSuite(StackTestCase) suites += unittest.makeSuite(utilsTests.MemoryTestCase) return unittest.TestSuite(suites) def run(shouldExit = False): """Run the tests""" utilsTests.run(suite(), shouldExit) if __name__ == "__main__": run(True)
dcfd46cd7f64e2d713c1cee6172c58fb7d16cbea
9bb5241e1e48ec6d4a879ab53ec3976d747a39e0
/test/test_fx.py
18f42c03af0242a570b774d6b70e3b6b4d6f200e
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
yupeifengyannis/pytorch
9dd4c2cebeb119ed57178f09e76366d17d27169b
c97dc9286dbea2cd3b3ca407e35cffdb3b181fdb
refs/heads/master
2021-12-06T13:27:47.115070
2021-12-05T03:42:55
2021-12-05T03:44:07
357,236,572
0
0
NOASSERTION
2021-04-12T15:03:16
2021-04-12T15:03:15
null
UTF-8
Python
false
false
139,137
py
# Owner(s): ["oncall: fx"] import builtins import contextlib import copy import functools import inspect import math import numbers import operator import os import pickle import sys import torch import traceback import typing import types import warnings import unittest from math import sqrt from torch.multiprocessing import Process from torch.testing import FileCheck from torch.testing._internal.common_methods_invocations import op_db from torch.testing._internal.common_device_type import ops, onlyCPU, instantiate_device_type_tests import torch.utils._pytree as pytree import torch.fx._pytree as fx_pytree from torch.fx import symbolic_trace, Proxy, Node, GraphModule, Interpreter, Tracer, Transformer, Graph, wrap, PH from torch.fx.node import Target, Argument from torch.fx.passes import shape_prop from torch.fx.immutable_collections import immutable_dict, immutable_list from torch.fx.experimental.rewriter import RewritingTracer from torch.fx.operator_schemas import get_signature_for_torch_op from copy import deepcopy from collections import namedtuple from torch.fx.proxy import TraceError from torch.fx._compatibility import _BACK_COMPAT_OBJECTS, _MARKED_WITH_COMATIBLITY from fx.test_subgraph_rewriter import TestSubgraphRewriter # noqa: F401 from fx.test_dce_pass import TestDCE # noqa: F401 from fx.test_fx_const_fold import TestConstFold # noqa: F401 from fx.test_fx_param_shape_control_flow import TestConstParamShapeInControlFlow # noqa: F401 if sys.version_info >= (3, 7): from fx.test_gradual_type import AnnotationsTest # noqa: F401 if sys.version_info >= (3, 7): from fx.test_gradual_type import TypeCheckerTest # noqa: F401 from typing import Any, Callable, Dict, NamedTuple, List, Optional, Tuple, Union from torch.testing._internal.common_utils import ( IS_FBCODE, IS_MACOS, IS_WINDOWS, TEST_WITH_ROCM, find_library_location, run_tests, ) from torch.testing._internal.jit_utils import JitTestCase from fx.named_tup import MyNamedTup try: from torchvision import models as torchvision_models HAS_TORCHVISION = True except ImportError: HAS_TORCHVISION = False skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") class SimpleTest(torch.nn.Module): def forward(self, x): return torch.relu(x + 3.0) def a_non_torch_leaf(a, b): return a + b # Used for test_autowrap_function. Autowrapped functions need to be global def fx_int(x: float) -> int: return int(x) def fx_int_x2(x: float) -> int: return int(x) * 2 # used in test_pytree. It's all the way out here because pickling a GraphModule # that uses Point errors out if Point is local to the function Point = namedtuple('Point', ['x', 'y']) # Test wrap() passing both a function name as well as a function # directly def a_lifted_leaf(a, b): return a[0] + a[1] + b wrap('a_lifted_leaf') # Test wrapping twice doesn't break anything wrap('a_lifted_leaf') def a_lifted_leaf2(a, b): return a[0] + a[1] + b wrap(a_lifted_leaf2) wrap('len') wrap('getattr') @wrap def wrapped_via_decorator(a): return a + 1 wrap('wrapped_with_submodule') def wrapped_with_submodule(x: torch.Tensor, batchnorm1d: torch.nn.BatchNorm1d): return batchnorm1d(x) real_wrapped_via_decorator = wrapped_via_decorator real_a_lifed_leaf = a_lifted_leaf real_a_lifed_leaf2 = a_lifted_leaf2 _sqrt = sqrt wrap('wrapper_fn') def wrapper_fn(x): return torch.foo(x) class Pair(NamedTuple): x : torch.Tensor y : torch.Tensor # for testing pytrees class Foo(object): # noqa: B209 def __init__(self, a, b): self.a = a self.b = b class TestFX(JitTestCase): def setUp(self): # Checking for mutable operations whil tracing is feature flagged # Enable it in testing but not by default self.orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations torch.fx.proxy.TracerBase.check_mutable_operations = True if not (TEST_WITH_ROCM or IS_FBCODE or IS_WINDOWS or IS_MACOS): lib_file_path = find_library_location('libtorchbind_test.so') torch.ops.load_library(str(lib_file_path)) def tearDown(self): torch.fx.proxy.TracerBase.check_mutable_operations = self.orig_tracer_mutable_flag def checkGraphModule(self, m: torch.nn.Module, args, kwargs=None): """Check that an nn.Module's results match the GraphModule version for a given set of args/kwargs. """ kwargs = kwargs if kwargs else {} ref_outs = m(*args, **kwargs) gm = symbolic_trace(m) gm.graph.lint() test_outs = gm(*args, **kwargs) self.assertEqual(ref_outs, test_outs) def test_graph_module(self): class MySub(torch.nn.Module): def __init__(self): super().__init__() self.w = torch.nn.Parameter(torch.rand(4, 3)) def forward(self, x): return self.w + x class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(4, 3) self.sub_mod = MySub() self.w = torch.nn.Parameter(torch.rand(3)) def forward(self, A, B, c): t = torch.sigmoid(A) + self.lin(c) return self.sub_mod(t.data + self.w + t + 1 - A + B // A + -A + A.add(B, alpha=3)) m = MyModule() gm = symbolic_trace(m) ms = torch.jit.script(gm) class M2(torch.nn.Module): def forward(self, A): m, idx = torch.max(A, 0) return m + 1, idx + 1 m2 = M2() gm2 = symbolic_trace(m2) class T(torch.nn.Module): def forward(self, A, b=4, *args, c=5, **kwargs): x = A + 1 + args[0] + kwargs['3'] return x t = T() symbolic_trace(t) # test for issue described at https://github.com/pytorch/pytorch/issues/63883 class M3(torch.nn.Module): def forward(self, x): return torch.relu(x) m3 = M3() gm3 = symbolic_trace(m3) new_instance = gm3.__new__(type(gm3)) new_instance.__init__(gm3, gm3.graph) x = torch.randn(5, 3) torch.testing.assert_allclose(new_instance(x), torch.relu(x)) def test_custom_import(self): graph = torch.fx.Graph() a = graph.placeholder('x') b = graph.placeholder('y') c = graph.call_function(a_non_torch_leaf, (a, b)) d = graph.call_function(torch.sin, (c,)) graph.output(d) gm = GraphModule(torch.nn.Module(), graph) x, y = torch.rand(1), torch.rand(1) self.assertEqual(torch.sin(x + y), gm(x, y)) def test_args_kwargs(self): class T(torch.nn.Module): def forward(self, *args, **kwargs): x = args[0] + kwargs['foo'] return x t = T() self.checkGraphModule(t, (torch.rand(1), torch.rand(1)), {'foo': torch.rand(1)}) def test_args_kwargs_no_self(self): class T(torch.nn.Module): def forward(*args, **kwargs): # noqa: B902 self = args[0] return torch.relu(args[1]) t = T() with self.assertRaisesRegex(RuntimeError, r'cannot be part of \*args expansion'): self.checkGraphModule(t, (torch.rand(1), torch.rand(1)), {'foo': torch.rand(1)}) def test_fx_shifts(self): class MyModule(torch.nn.Module): def forward(self, x): return x << 3, x >> 3 input = torch.LongTensor(10).random_(0, 1024) m = MyModule() self.checkGraphModule(m, (input,)) def test_fx_and_or(self): class MyModule(torch.nn.Module): def forward(self, x): return x & x, x | x input = torch.LongTensor(10).random_(0, 1024) m = MyModule() self.checkGraphModule(m, (input,)) def test_dict(self): class MyDictMod(torch.nn.Module): def forward(self, d): return d['3'].relu(), {'4' : d['3'].neg()} input_dict = {'3': torch.rand(3, 4)} m = MyDictMod() self.checkGraphModule(m, (input_dict,)) def test_matmul_tracing(self): const = torch.randn(3) def matmul_f(x): return x @ const mod = symbolic_trace(matmul_f) inp = torch.randn(3) self.assertEqual(mod(inp), matmul_f(inp)) def rmatmul_f(x): return const @ x mod = symbolic_trace(rmatmul_f) inp = torch.randn(3) self.assertEqual(mod(inp), rmatmul_f(inp)) def test_disallow_override(self): # Custom delegate to disallow in-place tensor operations class NoMutableCallTracer(Tracer): def create_node(self, kind : str, target : Union[str, Callable], args : Tuple[Argument, ...], kwargs : Dict[str, Any], name : Optional[str] = None, type_expr : Optional[Any] = None) -> Node: name = target if isinstance(target, str) else torch.typename(target) if name[-1] == '_': raise RuntimeError('In-place operations are not supported') return super().create_node(kind, target, args, kwargs, name) # Test method class MyInplaceMod(torch.nn.Module): def forward(self, x): x.add_(3.0) return x m = MyInplaceMod() with self.assertRaisesRegex(RuntimeError, 'In-place operations'): NoMutableCallTracer().trace(m) # Test free function class MyInplaceMod2(torch.nn.Module): def forward(self, x): torch.log_(x) return x m2 = MyInplaceMod2() with self.assertRaisesRegex(RuntimeError, 'In-place operations'): NoMutableCallTracer().trace(m2) # Test symbolic node as an arg class MyInplaceMod3(torch.nn.Module): def forward(self, x): y = torch.ones(3, 4) y.add_(x) return x m3 = MyInplaceMod3() with self.assertRaisesRegex(RuntimeError, 'In-place operations'): NoMutableCallTracer().trace(m3) def test_leaf_module(self): # Custom delegate to make it so that there are no leaf modules, everything # should get traced through class NoLeafModulesTracer(Tracer): def is_leaf_module(self, m, qualname): return False class MyReluMod(torch.nn.Module): def __init__(self): super().__init__() self.relu = torch.nn.ReLU() def forward(self, x): return self.relu(x) mrm = MyReluMod() sym = NoLeafModulesTracer().trace(mrm) for node in sym.nodes: self.assertNotEqual(node.op, 'call_module') sym.lint() def test_wrap(self): self.assertEqual(3 + 4 + 5, a_lifted_leaf((3, 4), 5)) def to_trace(y): return a_lifted_leaf((4, y), 3) + a_lifted_leaf((3, 4), 5) + a_lifted_leaf((y, y), y) m = symbolic_trace(to_trace) self.assertIn('a_lifted_leaf', m.code) self.assertEqual(27, m(2)) self.assertIs(a_lifted_leaf, real_a_lifed_leaf) def test_wrap_fn_directly(self): self.assertEqual(3 + 4 + 5, a_lifted_leaf2((3, 4), 5)) def to_trace(y): return a_lifted_leaf2((4, y), 3) + a_lifted_leaf2((3, 4), 5) + a_lifted_leaf2((y, y), y) m = symbolic_trace(to_trace) self.assertIn('a_lifted_leaf2', m.code) self.assertEqual(27, m(2)) self.assertIs(a_lifted_leaf2, real_a_lifed_leaf2) def test_wrapped_via_decorator(self): self.assertEqual(wrapped_via_decorator(0), 1) def to_trace(y): return wrapped_via_decorator(y) m = symbolic_trace(to_trace) self.assertIn('wrapped_via_decorator', m.code) self.assertEqual(m(0), 1) self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator) self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched")) def test_wrapped_via_decorator_and_transformed(self): self.assertEqual(wrapped_via_decorator(0), 1) def to_trace(y): return wrapped_via_decorator(y) m = symbolic_trace(to_trace) self.assertIn('wrapped_via_decorator', m.code) self.assertEqual(m(0), 1) self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator) self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched")) transformed = torch.fx.Transformer(m).transform() self.assertIn('wrapped_via_decorator', transformed.code) self.assertEqual(transformed(0), 1) self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator) self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched")) def test_wrap_with_submodule(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.batchnorm1d = torch.nn.BatchNorm1d(2, affine=False) def forward(self, x: torch.Tensor): return wrapped_with_submodule(x, self.batchnorm1d) m = symbolic_trace(M()) self.assertIn("wrapped_with_submodule", m.code) input = torch.rand(3, 2) ref_batchnorm1d = torch.nn.BatchNorm1d(2, affine=False) self.assertEqual(ref_batchnorm1d(input), m(input)) def test_wrapped_retrace(self): def to_trace(y): return wrapped_via_decorator(y) m = symbolic_trace(to_trace) self.assertIn('wrapped_via_decorator', m.code) self.assertEqual(m(0), 1) retraced = symbolic_trace(m) self.assertIn('wrapped_via_decorator', retraced.code) self.assertEqual(retraced(0), 1) def test_graph_edit_with_proxy(self): class M(torch.nn.Module): def forward(self, a, b): return a + b m = M() g = symbolic_trace(m).graph new_g = torch.fx.Graph() val_map : Dict[Node, Node] = {} output_val = new_g.graph_copy(g, val_map) t = Proxy(output_val) # test that we can use proxy objects to generate more graph code later for things that do not need to work with modules. new_g.output((t + t).node) gm = GraphModule(m, new_g) gm.graph.lint() self.assertEqual(gm(3, 4), 14) def test_graph_unique_names(self): class M(torch.nn.Module): def forward(self, a, b): return a + b m = M() g = symbolic_trace(m).graph new_g = torch.fx.Graph() val_map : Dict[Node, Node] = {} output_val = new_g.graph_copy(g, val_map) t = Proxy(output_val) # test that we can use proxy objects to generate more graph code later for things that do not need to work with modules. new_g.output((t + t).node) gm = GraphModule(m, new_g) seen_names : Set[str] = set() for node in gm.graph.nodes: assert node.name not in seen_names seen_names.add(node.name) def test_stack_traces(self): class M(torch.nn.Module): def forward(self, a, b): return a + b tracer = torch.fx.Tracer() tracer.record_stack_traces = True graph = tracer.trace(M()) for node in graph.nodes: if node.op == 'output': continue self.assertTrue(node.stack_trace is not None) assert 'test_fx.py' in node.stack_trace def test_graph_unique_names_manual(self): graph : torch.fx.Graph = torch.fx.Graph() a : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_module', 'linear_mod', args=(a,), name='foo_1_1') c : torch.fx.Node = graph.create_node('get_attr', 'y_attr', name='foo_1') d : torch.fx.Node = graph.create_node('call_function', operator.add, args=(b, c)) graph.output(d) graph2 = torch.fx.Graph() val_map : Dict[Node, Node] = {} graph2.graph_copy(graph, val_map) seen_names : Set[str] = set() for node in graph2.nodes: assert node.name not in seen_names seen_names.add(node.name) def test_unpack(self): class M(torch.nn.Module): def forward(self, a, b): c, d = a return c + d + b a = (torch.rand(1), torch.rand(1)) b = torch.rand(1) m = M() self.checkGraphModule(m, (a, b)) def test_native_callable(self): if TEST_WITH_ROCM or IS_FBCODE or IS_WINDOWS or IS_MACOS: raise unittest.SkipTest("non-portable load_library call used in test") # This test exercises the case where we use FX to translate from Python # code to some native callable object # # For the purposes of testing, we use ElementwiseInterpreter defined # in test_custom_class.cpp. # # We test that we can # 1) Construct a native callable from FX IR # 2) Construct a drop-in replacement module that delegates to the # native callable rather than the original code # 3) Run both the original code and native callable wrapper with # equivalent results # 4) TorchScript compile the native callable wrapper and confirm # equivalent results with the reference # 5) TorchScript serialize and deserialize the native callable # and confirm equivalent results with the reference # We use this simple Module as a reference computation class MySimpleMod(torch.nn.Module): def forward(self, x): return 3.0 * x + x msm = MySimpleMod() # This is what a lowering pass might look like: a function that takes # a valid nn.Module, symbolically traces it, lowers the Module to some # representation, and wraps that representation up into another # nn.Module instance that handles dispatch to the compiled/lowered code. def lower_to_elementwise_interpreter(orig_mod : torch.nn.Module) -> torch.nn.Module: # ===== Stage 1: Symbolic trace the module ===== mod = symbolic_trace(orig_mod) # ===== Stage 2: Lower GraphModule representation to the C++ # interpreter's instruction format ====== instructions = [] constant_idx = 0 constants = {} fn_input_names = [] target_to_name = { operator.add : "add", operator.mul : "mul" } output_node : Optional[Node] = None # For each instruction, create a triple # (instruction_name : str, inputs : List[str], output : str) # to feed into the C++ interpreter for n in mod.graph.nodes: target, args, out_name = n.target, n.args, n.name assert len(n.kwargs) == 0, "kwargs currently not supported" if n.op == 'placeholder': # Placeholders specify function argument names. Save these # for later when we generate the wrapper GraphModule fn_input_names.append(target) elif n.op == 'call_function': assert target in target_to_name, "Unsupported call target " + target arg_names = [] for arg in args: if not isinstance(arg, Node): # Pull out constants. These constants will later be # fed to the interpreter C++ object via add_constant() arg_name = f'constant_{constant_idx}' constants[arg_name] = torch.tensor( [arg] if isinstance(arg, numbers.Number) else arg) arg_names.append(arg_name) constant_idx += 1 else: arg_names.append(arg.name) instructions.append((target_to_name[target], arg_names, out_name)) elif n.op == 'output': if output_node is not None: raise RuntimeError('Multiple output nodes!') output_node = n else: raise RuntimeError('Unsupported opcode ' + n.op) interpreter = torch.classes._TorchScriptTesting._ElementwiseInterpreter() # Load constants for k, v in constants.items(): interpreter.add_constant(k, v) # Specify names for positional input arguments interpreter.set_input_names(fn_input_names) # Load instructions interpreter.set_instructions(instructions) # Specify name for single output assert isinstance(output_node.args[0], torch.fx.Node) interpreter.set_output_name(output_node.args[0].name) # ===== Stage 3: Create a wrapper GraphModule around the interpreter ===== class WrapperModule(torch.nn.Module): def __init__(self, interpreter): super().__init__() self.interpreter = interpreter wrapper = WrapperModule(interpreter) # Create a graph that: 1) Takes function arguments 2) Invokes the interpreter # 3) Returns the speficied return value # FIXME: The following code could be greatly simplified by symbolic_trace'ing # the wrapper with a Tracer that considers the Wrapper instance a root # module, however, I can't get `__call__` exposed on TorchBind classes # without it messing up Python `hasattr` for some reason. More digging # into CPython's implementation of hasattr is probably in order... graph = torch.fx.Graph() # Add placeholders for fn inputs placeholder_nodes = [] for name in fn_input_names: placeholder_nodes.append(graph.create_node('placeholder', name)) # Get the interpreter object interpreter_node = graph.create_node('get_attr', 'interpreter') # Add a node to call the interpreter instance output_node = graph.create_node( op='call_method', target='__call__', args=(interpreter_node, placeholder_nodes)) # Register output graph.output(output_node) graph.lint() # Return final GraphModule!!! return GraphModule(wrapper, graph) # Lower GraphModule to C++ interpreter lowered = lower_to_elementwise_interpreter(msm) # Compare correctness with original module x = torch.rand(3, 4) ref_out = msm(x) test_out = lowered(x) torch.testing.assert_close(test_out, ref_out) # Test TorchScript compilation scripted_lowered = torch.jit.script(lowered) script_out = scripted_lowered(x) torch.testing.assert_close(script_out, ref_out) # Test TorchScript ser/de import_copy = self.getExportImportCopy(scripted_lowered) imported_out = import_copy(x) torch.testing.assert_close(imported_out, ref_out) def test_reserved_getattr(self): """Ensure that we do not name any nodes with a reserved builtin like `getattr`""" class M(torch.nn.Module): def forward(self, a): return a.foo.bar.baz m = M() m_g = symbolic_trace(m) m_g.graph.lint() for node in m_g.graph.nodes: self.assertTrue(node.name != "getattr") def test_node_tagging(self): class TaggingTracer(Tracer): def create_node(self, kind : str, target : Union[str, Callable], args : Tuple[Argument, ...], kwargs : Dict[str, Any], name : Optional[str] = None, type_expr : Optional[Any] = None) -> Node: n = super().create_node(kind, target, args, kwargs, name) n.tag = 'foo' return n class M(torch.nn.Module): def forward(self, a, b): return a + b m = M() g = TaggingTracer().trace(m) g.lint() for n in g.nodes: self.assertTrue(hasattr(n, 'tag')) self.assertEqual(n.tag, 'foo') def test_tensor_attribute(self): class TensorAttribute(torch.nn.Module): def __init__(self): super().__init__() self.tensor = torch.rand(3, 4) def forward(self, x): return torch.nn.functional.linear(x, self.tensor) ta = TensorAttribute() traced = symbolic_trace(ta) traced(torch.rand(4, 4)) class WrapperForQualname(torch.nn.Module): def __init__(self): super().__init__() self.ta = TensorAttribute() def forward(self, x): return torch.nn.functional.linear(x, self.ta.tensor) wfq = WrapperForQualname() traced2 = symbolic_trace(wfq) traced2.graph.lint() traced2(torch.rand(4, 4)) def test_tensor_attribute_coalseced(self): def count_attrs(fx_module): targets = set() for node in traced.graph.nodes: if node.op == 'get_attr': targets.add(node.target) return len(targets) val = torch.tensor(5) def f(x): return x + val + val traced = symbolic_trace(f) traced.graph.lint() self.assertEqual(count_attrs(traced), 1) val2 = torch.tensor(5) def f(x): val = torch.tensor(5) return x + val + val2 traced = symbolic_trace(f) traced.graph.lint() self.assertEqual(count_attrs(traced), 2) def test_symbolic_trace_sequential(self): class Simple(torch.nn.Module): def forward(self, x): return torch.neg(x) seq = torch.nn.Sequential( Simple(), Simple(), Simple() ) traced = symbolic_trace(seq) traced.graph.lint() x = torch.rand(3, 4) self.assertEqual(traced(x), seq(x)) def test_tensor_constant(self): class ConstTensor(torch.nn.Module): def forward(self, x): return torch.nn.functional.linear(x, torch.zeros(3, 4)) ct = ConstTensor() traced = symbolic_trace(ct) traced.graph.lint() traced(torch.rand(4, 4)) def test_pickle_graphmodule(self): class Nested(torch.nn.Module): def __init__(self): super().__init__() self.st = torch.nn.Linear(4, 4) def forward(self, x): return self.st(x) n = Nested() traced = symbolic_trace(n) traced.graph.lint() pickled = pickle.dumps(traced) loaded = pickle.loads(pickled) loaded.graph.lint() x = torch.rand(3, 4) self.assertEqual(loaded(x), traced(x)) def test_pickle_custom_import(self): graph = torch.fx.Graph() a = graph.placeholder('x') b = graph.placeholder('y') c = graph.call_function(a_non_torch_leaf, (a, b)) d = graph.call_function(torch.sin, (c,)) graph.output(d) gm = GraphModule(torch.nn.Module(), graph) pickled = pickle.dumps(gm) loaded = pickle.loads(pickled) loaded.graph.lint() x, y = torch.rand(1), torch.rand(1) self.assertEqual(loaded(x, y), gm(x, y)) def test_all_input_nodes(self): graph : torch.fx.Graph = torch.fx.Graph() a : torch.fx.Node = graph.placeholder('x') b : torch.fx.Node = graph.call_module('linear_mod', args=(a,)) c : torch.fx.Node = graph.get_attr('y_attr') d : torch.fx.Node = graph.call_function(operator.add, args=(b, c)) e : torch.fx.Node = graph.call_function(torch.unsqueeze, args=(d, 0)) graph.output(e) graph.lint() self.assertEqual(b.all_input_nodes, [a]) self.assertEqual(c.all_input_nodes, []) self.assertEqual(d.all_input_nodes, [b, c]) self.assertEqual(e.all_input_nodes, [d]) def test_deepcopy_graphmodule_with_transform(self): st = SimpleTest() traced = symbolic_trace(st) traced.graph.lint() def transform(traced): new_graph = torch.fx.Graph() val_map : Dict[Node, Node] = {} output_value = new_graph.graph_copy(traced.graph, val_map) relu_out = new_graph.create_node( op='call_method', target='neg', args=(output_value,), kwargs={}) new_graph.output(relu_out) return GraphModule(traced, new_graph) transformed = transform(traced) transformed.graph.lint() copied = copy.deepcopy(transformed) self.assertNotEqual(id(type(transformed)), id(type(copied))) x = torch.randn(3, 4) self.assertEqual(copied(x), transformed(x)) def test_deepcopy_with_submods_params(self): class Bar(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) def forward(self, x): return torch.relu(x) + self.param class Baz(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.bar = Bar() def forward(self, x): return self.bar(x) - self.param baz = Baz() traced = symbolic_trace(baz) traced.graph.lint() copied = copy.deepcopy(traced) copied.graph.lint() def test_deepcopy_graph_with_tracer_cls(self): class TestTracer(Tracer): def is_leaf_module(self, module, name): return True g = Graph(tracer_cls=TestTracer) x = g.placeholder("x") g.output(x) h = copy.deepcopy(g) self.assertIsNotNone(h._tracer_cls) self.assertTrue(g._tracer_cls == h._tracer_cls) def test_unpack_list_better_error(self): class SomeArgs(torch.nn.Module): def forward(self, a, b): return torch.rand(3, 4) class UnpacksList(torch.nn.Module): def __init__(self): super().__init__() self.sa = SomeArgs() def forward(self, x : list): return self.sa(*x) ul = UnpacksList() with self.assertRaisesRegex(TraceError, 'Proxy object cannot be iterated.'): symbolic_trace(ul) def test_unpack_dict_better_error(self): class SomeKwargs(torch.nn.Module): def forward(self, x=3, y=4): return torch.rand(3, 4) class UnpacksDict(torch.nn.Module): def __init__(self): super().__init__() self.sk = SomeKwargs() def forward(self, x : dict): return self.sk(**x) ud = UnpacksDict() with self.assertRaisesRegex(TraceError, 'Proxy object cannot be iterated.'): symbolic_trace(ud) def test_pretty_print_targets(self): # Test that Graph pretty-print prints friendly name for targets # in `operator` and `builtins` class SomeMod(torch.nn.Module): def forward(self, x): return torch.add(x.foo + x.bar, 3.0) traced = symbolic_trace(SomeMod()) graph_str = str(traced.graph) self.assertIn('builtins.getattr', graph_str) self.assertIn('operator.add', graph_str) self.assertIn('torch.add', graph_str) def test_pretty_print_node(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.param: torch.nn.Parameter = torch.nn.Parameter( torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x: torch.Tensor, y: int = 2): return self.linear(x[y] + self.param).clamp(min=0.0, max=1.0) traced = symbolic_trace(M()) all_formatted = "\n".join([n.format_node() for n in traced.graph.nodes]) FileCheck().check("x").check("placeholder") \ .check("y").check("placeholder") \ .check("getitem").check("call_function") \ .check("param").check("get_attr") \ .check("add").check("call_function") \ .check("linear").check("call_module") \ .check("clamp").check("call_method") \ .run(all_formatted) def test_script_tensor_constant(self): # TorchScript seems to ignore attributes that start with `__`. # We used to call anonymous Tensor values `__tensor_constant*`, but # they were getting ignored by script. Now they're called # `_tensor_constant*` class IHaveATensorConstant(torch.nn.Module): def forward(self, x): return x + torch.rand(3, 4) traced = torch.fx.symbolic_trace(IHaveATensorConstant()) torch.jit.script(traced) def test_autowrap_functions(self): class AutowrapFnTest(torch.nn.Module): def forward(self, x): return fx_int(x.shape[0] / 2) class AutowrapFnTest2(torch.nn.Module): def forward(self, x): return fx_int(x.shape[0] / 2) + fx_int_x2(x.shape[0] / 2) # Check function(s) are wrapped # `int` would normally throw a TypeError as argument can't be `Proxy` tracer = Tracer(autowrap_functions=(fx_int,)) graph = tracer.trace(AutowrapFnTest()) traced = GraphModule(tracer.root, graph, 'test') tracer_2 = Tracer(autowrap_functions=(fx_int, fx_int_x2)) tracer_2.trace(AutowrapFnTest2()) # Test scriptability traced_scripted = torch.jit.script(traced) self.assertEqual(traced_scripted(torch.rand(4)), 2) def test_torch_fx_len(self): class FXLenTest(torch.nn.Module): def forward(self, x): return len(x) traced = symbolic_trace(FXLenTest()) self.assertEqual(traced(torch.rand(3, 4)), 3) # Test scriptability scripted = torch.jit.script(FXLenTest()) self.assertEqual(scripted(torch.rand(3)), 3) traced_scripted = torch.jit.script(traced) self.assertEqual(traced_scripted(torch.rand(3)), 3) # Test non-proxy len class FXLenTest2(torch.nn.Module): def __init__(self): super().__init__() self.l = [3, 4, 5] def forward(self, x): return x + len(self.l) traced2 = symbolic_trace(FXLenTest2()) inp = torch.rand(3, 4) self.assertEqual(traced2(inp), inp + 3.0) self.assertIs(len, builtins.len) def test_torch_fx_getattr(self): class FXGetattrTest(torch.nn.Module): def forward(self, x): return getattr(x, 'nonexistent_attr', torch.Tensor([2, 3])) traced = symbolic_trace(FXGetattrTest()) self.assertEqual(traced(torch.rand(3, 4)), torch.Tensor([2, 3])) def test_sqrt(self): class Sqrt1(torch.nn.Module): def forward(self, x): return sqrt(x.size(0)) class Sqrt2(torch.nn.Module): def forward(self, x): return math.sqrt(x.size(0)) class Sqrt3(torch.nn.Module): def forward(self, x): return x + math.sqrt(2) + sqrt(2) self.checkGraphModule(Sqrt1(), [torch.zeros(8)]) self.checkGraphModule(Sqrt2(), [torch.zeros(8)]) self.checkGraphModule(Sqrt3(), [torch.zeros(8)]) self.assertIs(sqrt, _sqrt) self.assertIs(math.sqrt, _sqrt) def test_torch_custom_ops(self): class M(torch.nn.Module): def forward(self, a): b = torch.ops.aten.sigmoid(a) c = torch.ops.aten.cat([a, b]) return torch.ops.aten.cat((c, c)) m = M() input = torch.randn(3) ref_out = m(input) gm = symbolic_trace(m) gm.graph.lint() out = gm(input) self.assertEqual(out, ref_out) def test_pickle_torch_custom_ops(self): class M(torch.nn.Module): def forward(self, a): b = torch.ops.aten.sigmoid(a) c = torch.ops.aten.cat([a, b]) return torch.ops.aten.cat((c, c)) m = M() input = torch.randn(3) ref_out = m(input) gm = symbolic_trace(m) gm.graph.lint() pickled = pickle.dumps(gm) loaded = pickle.loads(pickled) self.assertEqual(loaded(input), gm(input)) def test_pretty_print(self): st = SimpleTest() traced = symbolic_trace(st) traced.graph.lint() printed = str(traced) assert 'SimpleTest()' in printed assert 'torch.relu' in printed def test_pretty_print_graph(self): class KwargPrintTest(torch.nn.Module): def forward(self, x): return torch.squeeze(x + 3.0, dim=2) st = KwargPrintTest() traced = symbolic_trace(st) traced.graph.lint() stringed = str(traced.graph) for s in ['args', 'kwargs', '#users']: assert s in stringed def test_custom_proxy_type(self): class TensorPair: def __init__(self, left, right): self.left, self.right = left, right def add(self, other): l = self.left + other.left r = self.right + other.right return TensorPair(l, r) def mul(self, other): l = self.left * other.left r = self.right * other.right return TensorPair(l, r) def use_tensor_pair(x : TensorPair, y : TensorPair): s = x.add(y) return s.mul(x) x = TensorPair(torch.randn(5, 3), torch.randn(5, 3)) y = TensorPair(torch.randn(5, 3), torch.randn(5, 3)) ref_out = use_tensor_pair(x, y) traced = symbolic_trace(use_tensor_pair) traced_out = traced(x, y) self.assertEqual(traced_out.left, ref_out.left) self.assertEqual(traced_out.right, ref_out.right) def test_custom_proxy_type_literal(self): class TensorPair(metaclass=torch.fx.ProxyableClassMeta): def __init__(self, left, right): self.left, self.right = left, right def add(self, other): l = self.left + other.left r = self.right + other.right return TensorPair(l, r) def mul(self, other): l = self.left * other.left r = self.right * other.right return TensorPair(l, r) def use_tensor_pair_literal(x : TensorPair): s = x.add(TensorPair(torch.zeros(5, 3), torch.zeros(5, 3))) return s.mul(x) x = TensorPair(torch.randn(5, 3), torch.randn(5, 3)) ref_out = use_tensor_pair_literal(x) traced = symbolic_trace(use_tensor_pair_literal) traced_out = traced(x) self.assertEqual(traced_out.left, ref_out.left) self.assertEqual(traced_out.right, ref_out.right) def test_custom_proxy_dynamic_value(self): class TensorPair(metaclass=torch.fx.ProxyableClassMeta): def __init__(self, left, right): self.left, self.right = left, right def add(self, other): l = self.left + other.left r = self.right + other.right return TensorPair(l, r) def mul(self, other): l = self.left * other.left r = self.right * other.right return TensorPair(l, r) def use_tensor_pair_ctor(x : TensorPair, y : torch.Tensor): s = x.add(TensorPair(y, y)) return s.mul(x) x = TensorPair(torch.randn(5, 3), torch.randn(5, 3)) y = torch.randn(5, 3) ref_out = use_tensor_pair_ctor(x, y) traced = symbolic_trace(use_tensor_pair_ctor) traced_out = traced(x, y) self.assertEqual(traced_out.left, ref_out.left) self.assertEqual(traced_out.right, ref_out.right) def test_custom_proxy_input_dependent_control_flow(self): class ZeroTensor(metaclass=torch.fx.ProxyableClassMeta): def __init__(self, inp): if inp.sum() == 0: self.is_zero = True self.tensor = torch.tensor([]) else: self.is_zero = False self.tensor = inp def add(self, other): if self.is_zero: return ZeroTensor(other.tensor) elif other.is_zero: return self def use_zero_tensor(x : torch.Tensor, y : torch.Tensor): return ZeroTensor(x + y) x, y = torch.randn(5, 3), torch.randn(5, 3) ref_out = use_zero_tensor(x, y) traced = symbolic_trace(use_zero_tensor) traced_out = traced(x, y) self.assertEqual(traced_out.is_zero, ref_out.is_zero) self.assertEqual(traced_out.tensor, ref_out.tensor) def test_graph_fns(self): g = Graph() a = g.placeholder('a') b = g.call_module('linear', (a,)) c = g.get_attr('bias') d = g.call_method('add', (b, c)) e = g.call_function(torch.sin, (d,)) g.output(e) mod = torch.nn.Module() mod.linear = torch.nn.Linear(3, 4) mod.bias = torch.rand(4) gm = GraphModule(mod, g) gm.graph.lint() input = torch.rand(3) r = gm(input) ref = torch.sin(mod.linear(input) + mod.bias) self.assertEqual(r, ref) def test_remove_uses(self): g : torch.fx.Graph = Graph() x : torch.fx.Node = g.placeholder('x') relu : torch.fx.Node = g.call_function(torch.relu, (x,)) neg : torch.fx.Node = g.call_function(torch.neg, (relu,)) g.output(neg) neg.replace_all_uses_with(relu) g.erase_node(neg) self.assertTrue(neg not in relu.users) def test_nonetype_annotation(self): eb = torch.nn.EmbeddingBag(3, 4) symbolic_trace(eb) def test_pickle_nonetype_annotation(self): eb = torch.nn.EmbeddingBag(10, 3, mode='sum') traced = symbolic_trace(eb) pickled = pickle.dumps(traced) loaded = pickle.loads(pickled) loaded.graph.lint() input = torch.LongTensor([1, 2, 4, 5, 4, 3, 2, 9]) offsets = torch.LongTensor([0, 4]) self.assertEqual(loaded(input, offsets), traced(input, offsets)) def test_return_tuple(self): class M(torch.nn.Module): def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: return (x, x + x) original = M() traced = symbolic_trace(original) self.assertEqual(traced(torch.ones(1)), original.forward(torch.ones(1))) def test_construct_root_dict(self): graph : torch.fx.Graph = torch.fx.Graph() a : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_module', 'foo.bar.baz', args=(a,)) c : torch.fx.Node = graph.create_node('get_attr', 'zip.zap.zam') d : torch.fx.Node = graph.create_node('call_function', operator.add, args=(b, c)) graph.output(d) linear_mod : torch.nn.Module = torch.nn.Linear(3, 4) add_param : torch.Tensor = torch.rand(3, 4) gm : torch.fx.GraphModule = torch.fx.GraphModule( {'foo.bar.baz': linear_mod, 'zip.zap.zam' : add_param}, graph) gm.graph.lint() assert 'self.foo.bar.baz' in gm.code x : torch.Tensor = torch.rand(3, 3) out : torch.Tensor = gm(x) ref_out : torch.Tensor = linear_mod(x) + add_param self.assertEqual(out, ref_out) def test_symbolic_trace_assert(self): class AssertsTensorShape(torch.nn.Module): def forward(self, x): torch._assert(x.shape[1] > 4, "assert_foobar") return x m = AssertsTensorShape() # verify traceability traced = symbolic_trace(m) # verify assertion on traced model works correctly at runtime traced(torch.rand(4, 5)) with self.assertRaisesRegex(AssertionError, "assert_foobar"): traced(torch.rand(4, 3)) # verify the symbolically traced module is scriptable ms = torch.jit.script(m) with self.assertRaisesRegex(torch.jit.Error, "assert_foobar"): ms(torch.rand(4, 3)) def test_fx_create_arg(self): class CustomArgObject: def __init__(self, x, y): self.x = x self.y = y def __fx_create_arg__(self, tracer: torch.fx.Tracer): return tracer.create_node( "call_function", CustomArgObject, args=( tracer.create_arg(self.x), tracer.create_arg(self.y), ), kwargs={}, ) class HasCustomArgObjectWhenLeaf(torch.nn.Module): def forward(self, o: CustomArgObject): # Not normally traceable; good reason to make # this module a leaf. for x in o.x: o.y += x return o.y class Root(torch.nn.Module): def __init__(self): super().__init__() self.inner = HasCustomArgObjectWhenLeaf() def forward(self, x, y): o = CustomArgObject(x, y) return self.inner(o) class CreateArgTracer(torch.fx.Tracer): def is_leaf_module(self, m, module_qualified_name): return type(m) is HasCustomArgObjectWhenLeaf m = Root() graph = CreateArgTracer().trace(m) gm = torch.fx.GraphModule(m, graph) assert "CustomArgObject(" in gm.code def test_trace_fn_constant(self): some_constant = torch.rand(3, 4) def add_const(x): return some_constant + x traced = symbolic_trace(add_const) input = torch.rand(3, 4) self.assertEqual(traced(input), add_const(input)) def test_copy_no_remap(self): traced = symbolic_trace(SimpleTest()) g = traced.graph copied = torch.fx.Graph() for node in g.nodes: copied.node_copy(node) with self.assertRaisesRegex(RuntimeError, 'does not belong to this Graph'): copied.lint() def test_wrong_topo(self): graph : torch.fx.Graph = torch.fx.Graph() a : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_module', 'foo.bar.baz', args=(a,)) c : torch.fx.Node = graph.create_node('get_attr', 'zip.zap.zam') d : torch.fx.Node = graph.create_node('call_function', operator.add, args=(b, c)) graph.output(d) nodes = list(graph.nodes) nodes[3].append(nodes[2]) with self.assertRaisesRegex(RuntimeError, 'was used before it has been defined'): graph.lint() def test_wrong_target_type(self): graph : torch.fx.Graph = torch.fx.Graph() with self.assertRaises(ValueError): n = torch.fx.Node(graph=graph, name='foo', op='call_function', target='foo', args=(), kwargs={}) def test_example_shape_prop(self): class TestCase(torch.nn.Module): def __init__(self): super().__init__() self.attr = torch.randn(3, 4) self.submod = torch.nn.Linear(4, 4) def forward(self, x): return torch.neg(self.submod(x.relu() + self.attr)) tc = TestCase() tc_traced = symbolic_trace(tc) ref_out = tc_traced(torch.rand(3, 4)) shape_prop.ShapeProp(tc_traced).propagate(torch.rand(3, 4)) # Make sure we're testing all opcodes opcodes = set() output_shape : Optional[torch.Shape] = None output_stride : Optional[Tuple[int]] = None for node in tc_traced.graph.nodes: opcodes.add(node.op) if node.op == 'output': output_shape = node.args[0].meta['tensor_meta'].shape output_stride = node.args[0].meta['tensor_meta'].stride self.assertEqual(opcodes, set(['placeholder', 'get_attr', 'call_function', 'call_method', 'call_module', 'output'])) # Test shape propogation and make sure results match actual self.assertEqual(output_shape, ref_out.shape) self.assertEqual(output_stride, ref_out.stride()) def test_shape_prop_layout(self): class ConvTest(torch.nn.Module): def __init__(self): super().__init__() self.conv_mod = torch.nn.Conv2d(5, 5, 3) def forward(self, x): return self.conv_mod(x) # contiguous layout test_mod = ConvTest() traced = symbolic_trace(test_mod) x = torch.randn(5, 5, 224, 224) shape_prop.ShapeProp(traced).propagate(x) assert(all(node.meta['tensor_meta'].memory_format is torch.contiguous_format for node in traced.graph.nodes)) x_channels_last = x.contiguous(memory_format=torch.channels_last) traced.to(memory_format=torch.channels_last) shape_prop.ShapeProp(traced).propagate(x_channels_last) for node in traced.graph.nodes: # NB: the implementation of conv may not preserve the memory format, # unfortunately. The best we can do is just check that the placeholder # node is channels-last if node.op in {'placeholder'}: self.assertEqual(node.meta['tensor_meta'].memory_format, torch.channels_last) def test_shape_prop_aggregate(self): class ReturnTwo(torch.nn.Module): def forward(self, x): return (3, torch.sum(x)) class UnderTest(torch.nn.Module): def __init__(self): super().__init__() self.rt = ReturnTwo() def forward(self, x): return self.rt(x) ut = UnderTest() class RTTracer(torch.fx.Tracer): def is_leaf_module(self, m, module_qualified_name): return type(m) is ReturnTwo graph = RTTracer().trace(ut) mod = torch.fx.GraphModule(ut, graph) shape_prop.ShapeProp(mod).propagate(torch.rand(3, 4)) for node in mod.graph.nodes: if node.op == 'call_module': assert 'tensor_meta' in node.meta tensor_meta = node.meta['tensor_meta'] assert tensor_meta[0] == 3 assert tensor_meta[1].shape == torch.Size([]) def test_shape_prop_layout_3d(self): class ConvTest3d(torch.nn.Module): def __init__(self): super().__init__() self.conv_mod = torch.nn.Conv3d(5, 5, 3) def forward(self, x): return self.conv_mod(x) test_mod_3d = ConvTest3d() traced_3d = symbolic_trace(test_mod_3d) x_3d = torch.randn(5, 5, 224, 224, 15) shape_prop.ShapeProp(traced_3d).propagate(x_3d) assert(all(node.meta['tensor_meta'].memory_format is torch.contiguous_format for node in traced_3d.graph.nodes)) x_channels_last_3d = x_3d.contiguous(memory_format=torch.channels_last_3d) traced_3d.to(memory_format=torch.channels_last_3d) shape_prop.ShapeProp(traced_3d).propagate(x_channels_last_3d) for node in traced_3d.graph.nodes: # NB: the implementation of conv may not preserve the memory format, # unfortunately. The best we can do is just check that the placeholder # node is channels-last if node.op in {'placeholder'}: self.assertEqual(node.meta['tensor_meta'].memory_format, torch.channels_last_3d) def test_interpreter(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return self.linear(x + self.param).clamp(min=0.0, max=1.0) m = MyModule() gm = torch.fx.symbolic_trace(m) interpreter = Interpreter(gm) input = torch.randn(3, 4) self.assertEqual(interpreter.run(input), gm(input)) self.assertEqual(interpreter.run(input), m(input)) def test_interpreter_run_node_override(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return self.linear(x + self.param).clamp(min=0.0, max=1.0) m = MyModule() gm = torch.fx.symbolic_trace(m) class RunNodeInterpreter(Interpreter): def __init__(self, module): super().__init__(module) def run_node(self, n : Node) -> Any: result = super().run_node(n) n.cached_value = result return result input = torch.randn(3, 4) RunNodeInterpreter(gm).run(input) for node in gm.graph.nodes: assert hasattr(node, 'cached_value') def test_interpreter_onthefly_swap(self): def fn(x): return torch.sigmoid(x).neg() gm = torch.fx.symbolic_trace(fn) class NegSigmSwapInterpreter(Interpreter): def call_function(self, target : Target, args : Tuple, kwargs : Dict) -> Any: if target == torch.sigmoid: return torch.neg(*args, **kwargs) return super().call_function(n) def call_method(self, target : Target, args : Tuple, kwargs : Dict) -> Any: if target == 'neg': call_self, *args_tail = args return call_self.sigmoid(*args_tail, **kwargs) return super().call_method(n) input = torch.randn(3, 4) result = NegSigmSwapInterpreter(gm).run(input) self.assertEqual(result, torch.neg(input).sigmoid()) def test_interpreter_partial_eval(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return self.linear(x + self.param).clamp(min=0.0, max=1.0) gm = torch.fx.symbolic_trace(MyModule()) interp = Interpreter(gm) env = {} for node in gm.graph.nodes: if node.op == 'call_module' and node.target == 'linear': env[node] = torch.arange(0, 12, 1).reshape(3, 4) - 6.0 break assert len(env) == 1 x = torch.randn(3, 4) result = interp.run(x, initial_env=env) self.assertEqual(result, (torch.arange(0, 12, 1).reshape(3, 4) - 6.0).clamp(0.0, 1.0)) def test_interpreter_star_args(self): def with_star_args(x, *args): return x + args[0] gm = torch.fx.symbolic_trace(with_star_args) interp = Interpreter(gm) result = interp.run(torch.ones(3, 4), torch.ones(3, 4), torch.rand(3, 4)) self.assertEqual(result, torch.ones(3, 4) * 2.0) @skipIfNoTorchVision def test_interpreter_noop_resnet18(self): rn18 = torchvision_models.resnet18() transformed = torch.fx.Transformer(symbolic_trace(rn18)).transform() inp = torch.randn(5, 3, 224, 224) self.assertEqual(transformed(inp), rn18(inp)) @skipIfNoTorchVision def test_interpreter_gc_values(self): rn18 = torchvision_models.resnet18() interp = Interpreter(symbolic_trace(rn18)) inp = torch.rand(5, 3, 224, 224) out = interp.run(inp) env_key_names = set(n.name for n in interp.env.keys()) self.assertEqual(env_key_names, set(['output'])) def test_transformer_noop(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return self.linear(x + self.param).clamp(min=0.0, max=1.0) m = MyModule() gm = torch.fx.symbolic_trace(m) new_gm = Transformer(gm).transform() input = torch.randn(3, 4) self.assertEqual(new_gm(input), gm(input)) def test_transformer_op_swap(self): def fn(x): return torch.sigmoid(x).neg() gm = torch.fx.symbolic_trace(fn) class NegSigmSwapXformer(Transformer): def call_function(self, target : Target, args : Tuple, kwargs : Dict) -> Any: if target == torch.sigmoid: return torch.neg(*args, **kwargs) return super().call_function(n) def call_method(self, target : Target, args : Tuple, kwargs : Dict) -> Any: if target == 'neg': call_self, *args_tail = args return call_self.sigmoid(*args_tail, **kwargs) return super().call_method(n) transformed = NegSigmSwapXformer(gm).transform() input = torch.randn(3, 4) self.assertEqual(transformed(input), torch.neg(input).sigmoid()) def test_transformer_multi_outputs(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): x = x + self.param out = self.linear(x) return x, out m = MyModule() gm = torch.fx.symbolic_trace(m) new_gm = Transformer(gm).transform() input = torch.randn(3, 4) self.assertEqual(new_gm(input), gm(input)) def test_fn_type_annotations(self): class Foo(torch.nn.Module): def forward(self, p : Pair, z : torch.Tensor, i : int) -> Dict[str, torch.Tensor]: return {'a': p.x + p.y + z + i} foo_scripted = torch.jit.script(Foo()) foo_scripted(Pair(torch.rand(5), torch.rand(5)), torch.rand(5), 3) fxed = symbolic_trace(Foo()) fxed_scripted = torch.jit.script(fxed) fxed_scripted(Pair(torch.rand(5), torch.rand(5)), torch.rand(5), 3) def test_fn_type_annotation_empty(self): def forward(a : List[torch.Tensor]): return a[0] torch.jit.script(symbolic_trace(forward)) def test_wrapped_method(self): def wrap_with_relu(fn): @functools.wraps(fn) def wrapper(*args, **kwargs): return torch.relu(fn(*args, **kwargs)) return wrapper class Foo(torch.nn.Module): @wrap_with_relu def forward(self, x, w): return torch.matmul(x, w) f = Foo() traced = symbolic_trace(f) x, w = torch.rand(3, 4), torch.rand(4, 4) self.assertTrue(any(n.target == torch.relu for n in traced.graph.nodes)) def test_empty_graph_codegen(self): graph = torch.fx.Graph() gm = torch.fx.GraphModule(torch.nn.Module(), graph) self.assertEqual(gm(), None) def test_sequential(self): m = torch.nn.Sequential(torch.nn.Conv2d(1, 1, 1)) gm = torch.fx.symbolic_trace(m) gm_copy = copy.deepcopy(gm) def test_ctx_mgr(self): @contextlib.contextmanager def do_nothing(): yield class M(torch.nn.Module): def __init__(self): super().__init__() @do_nothing() def forward(self, x): return torch.relu(x) m = M() self.checkGraphModule(m, (torch.rand(3, 4),)) def test_typename_print(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, args=(x,), type_expr=List[float]) output : torch.fx.Node = graph.output(b) self.assertTrue('typing.List[float]' in str(graph)) def test_layout(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return torch.empty_like(x, layout=torch.strided, pin_memory=False).fill_(0) traced = symbolic_trace(M()) x = torch.rand(5, 9, 3, 4) self.assertEqual(traced(x), torch.zeros_like(x)) def test_ellipsis(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return x + y[:, 1:10, ...] traced = symbolic_trace(M()) x, y = torch.rand(5, 9, 3, 4), torch.rand(5, 15, 3, 4) self.assertEqual(traced(x, y), x + y[:, 1:10, ...]) def test_inf_nan(self): class FooMod(torch.nn.Module): def forward(self, x): return x + float('inf'), x + float('-inf'), x + float('nan') fm = FooMod() self.checkGraphModule(fm, (torch.rand(3, 4),)) def test_inf_nan_kwds(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_function', operator.add, (x, float('inf')), {}, name='inf') c : torch.fx.Node = graph.create_node('call_function', operator.add, (x, float('nan')), {}, name='nan') graph.output((b, c)) gm = torch.fx.GraphModule(torch.nn.Module(), graph) x = torch.rand(3, 4) self.assertEqual(gm(x), (x + float('inf'), x + float('nan'))) def test_deepcopy_recursion_depth(self): depth = sys.getrecursionlimit() + 20 g = torch.fx.Graph() x = g.placeholder('x') for i in range(depth): x = g.call_function(torch.relu, (x,)) g.output(x) copied_graph = copy.deepcopy(g) val_map = {} for orig_node, new_node in zip(g.nodes, copied_graph.nodes): val_map[orig_node] = new_node for orig_node, new_node in zip(g.nodes, copied_graph.nodes): orig_users = set(orig_node.users.keys()) orig_users_equiv = set(val_map[u] for u in orig_users) new_users = set(new_node.users.keys()) self.assertEqual(orig_users_equiv, new_users) @skipIfNoTorchVision def test_replace_uses(self): rn18 = torchvision_models.resnet18() class LowerReluTracer(torch.fx.Tracer): def is_leaf_module(self, m : torch.nn.Module, qualname : str): if isinstance(m, torch.nn.ReLU): return False return super().is_leaf_module(m, qualname) rn18_traced = GraphModule(rn18, LowerReluTracer().trace(rn18)) to_erase = [] for node in rn18_traced.graph.nodes: if node.op == 'call_function' and node.target in [torch.relu, torch.nn.functional.relu]: kwargs = node.kwargs.copy() # Neg doesn't have in-place kwargs.pop('inplace') with rn18_traced.graph.inserting_before(node): new_node = rn18_traced.graph.call_function( the_function=torch.neg, args=node.args, kwargs=node.kwargs) node.replace_all_uses_with(replace_with=new_node) to_erase.append(node) for node in to_erase: rn18_traced.graph.erase_node(node) def test_replace_input(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') y : torch.fx.Node = graph.create_node('placeholder', 'y') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, args=(x,)) output : torch.fx.Node = graph.output(b) b.replace_input_with(x, y) gm = torch.fx.GraphModule(torch.nn.Module(), graph) input_x = torch.randn(33, 44) input_y = torch.randn(11, 22) self.assertEqual(gm(input_x, input_y), torch.relu(input_y)) def test_insertion_point(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, args=(x,)) output : torch.fx.Node = graph.output(b) with graph.inserting_before(b): neg : torch.fx.Node = graph.call_function(the_function=torch.neg, args=(x,)) _, *relu_args = b.args b.args = (neg, *relu_args) gm = torch.fx.GraphModule(torch.nn.Module(), graph) input = torch.randn(33, 44) self.assertEqual(gm(input), torch.relu(torch.neg(input))) def test_update_args_api(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') y : torch.fx.Node = graph.create_node('placeholder', 'y') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, args=(x,)) output : torch.fx.Node = graph.output(b) orig_gm = torch.fx.GraphModule(torch.nn.Module(), graph) inp_x, inp_y = torch.randn(5, 3), torch.randn(3, 5) self.assertEqual(orig_gm(inp_x, inp_y), torch.relu(inp_x)) b.update_arg(0, y) new_gm = torch.fx.GraphModule(torch.nn.Module(), graph) self.assertEqual(new_gm(inp_x, inp_y), torch.relu(inp_y)) def test_update_kwargs_api(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') y : torch.fx.Node = graph.create_node('placeholder', 'y') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, kwargs={'input': x}) output : torch.fx.Node = graph.output(b) orig_gm = torch.fx.GraphModule(torch.nn.Module(), graph) inp_x, inp_y = torch.randn(5, 3), torch.randn(3, 5) self.assertEqual(orig_gm(inp_x, inp_y), torch.relu(inp_x)) b.update_kwarg('input', y) new_gm = torch.fx.GraphModule(torch.nn.Module(), graph) self.assertEqual(new_gm(inp_x, inp_y), torch.relu(inp_y)) def test_move_before(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, args=(x,)) output : torch.fx.Node = graph.output(b) neg : torch.fx.Node = graph.call_function(the_function=torch.neg, args=(x,)) _, *relu_args = b.args b.args = (neg, *relu_args) b.prepend(neg) gm = torch.fx.GraphModule(torch.nn.Module(), graph) input = torch.randn(33, 44) self.assertEqual(gm(input), torch.relu(torch.neg(input))) def test_prepend_self(self): graph : torch.fx.Graph = torch.fx.Graph() x : torch.fx.Node = graph.create_node('placeholder', 'x') b : torch.fx.Node = graph.create_node('call_function', target=torch.relu, args=(x,)) output : torch.fx.Node = graph.output(b) b.prepend(b) x.append(b) self.assertEqual(len(graph.nodes), 3) def test_erase_node_error(self): st = SimpleTest() traced = symbolic_trace(st) for node in traced.graph.nodes: # Test deleting with uses both in another Node and at the output if node.target in [operator.add, torch.relu]: with self.assertRaisesRegex(RuntimeError, 'but it still had .* users in the graph'): traced.graph.erase_node(node) def test_copy_it(self): d = immutable_dict([(3, 4), (5, 6)]) l = immutable_list([(3, 4), (5, 6)]) self.assertEqual(d, deepcopy(d)) self.assertEqual(l, deepcopy(l)) def test_get_torch_func_signature(self): for key in dir(torch): obj = getattr(torch, key) if callable(obj): schemas = get_signature_for_torch_op(obj) def test_find_uses(self): graph = torch.fx.Graph() x = torch.fx.Proxy(graph.placeholder('x')) y = torch.relu(x) z = x + x u = torch.neg(x) graph.output((y + z + u).node) graph.lint() users_of_x = x.node.users self.assertEqual(len(users_of_x), 3) expected_ops = set(['relu', 'add', 'neg']) for use in users_of_x: assert any(use.name.startswith(prefix) for prefix in expected_ops) def test_inline_graph(self): class InlineInto(torch.nn.Module): def forward(self, x): return torch.relu(x) class ToInline(torch.nn.Module): def forward(self, x): return torch.neg(x) inline_into = symbolic_trace(InlineInto()) to_inline = symbolic_trace(ToInline()) combined_graph = torch.fx.Graph() output_node = combined_graph.graph_copy(inline_into.graph, {}) input_node = list(to_inline.graph.nodes)[0] assert input_node and input_node.op == 'placeholder' val_map = {input_node : output_node} output = combined_graph.graph_copy(to_inline.graph, val_map) combined_graph.output(output) combined_module = torch.fx.GraphModule(torch.nn.Module(), combined_graph) input = torch.rand(3, 4) self.assertEqual(combined_module(input), input.relu().neg()) def test_multi_insert_point(self): graph = torch.fx.Graph() x = torch.fx.Proxy(graph.placeholder('x')) relu = torch.relu(x) with graph.inserting_before(relu.node): y = torch.neg(x) z = torch.tanh(y) graph.output((relu.node, z.node)) graph.lint() expected_ops = ['x', 'neg', 'tanh', 'relu'] for node, expected in zip(graph.nodes, expected_ops): assert expected in node.name def test_reassign_args_kwargs_uses(self): graph = torch.fx.Graph() x, y = Proxy(graph.placeholder('x')), Proxy(graph.placeholder('y')) z = x + y zed = z + z + z graph.output(zed.node) graph.lint() # zed = z + z + z -> zed = z + z + x zed.node.args = (zed.node.args[0], x.node) self.assertEqual(x.node.users.keys(), [z.node, zed.node]) # z = x + y -> z = y + y z.node.args = (y.node, y.node) self.assertEqual(x.node.users.keys(), [zed.node]) def test_trace_function(self): def foo(x, y): return torch.relu(x) + y x, y = torch.randn(3, 4), torch.randn(3, 4) self.checkGraphModule(foo, (x, y)) def test_trace_dict_int_keys(self): class ModWithDictArg(torch.nn.Module): def forward(self, d : Dict[int, torch.Tensor]): return d[42] class CallsModWithDict(torch.nn.Module): def __init__(self): super().__init__() self.m = ModWithDictArg() def forward(self, x): return self.m({42: x}) class MyTracer(torch.fx.Tracer): def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: return isinstance(m, ModWithDictArg) traced_graph = MyTracer().trace(CallsModWithDict()) def test_trace_dict_proxy_keys(self): class ModWithDictArg(torch.nn.Module): def forward(self, d : Dict[torch.Tensor, torch.Tensor]): return d[42] class CallsModWithDict(torch.nn.Module): def __init__(self): super().__init__() self.m = ModWithDictArg() def forward(self, x): return self.m({x: x}) class MyTracer(torch.fx.Tracer): def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: return isinstance(m, ModWithDictArg) with self.assertRaisesRegex(RuntimeError, 'cannot contain a Node'): traced_graph = MyTracer().trace(CallsModWithDict()) def test_module_deepcopy_edit_nodes(self): class Foo(torch.nn.Module): def forward(self, x): return torch.relu(x) traced1 = symbolic_trace(Foo()) copied = copy.deepcopy(traced1) for node in copied.graph.nodes: if node.target == torch.relu: node.target = torch.neg copied.recompile() traced1.recompile() x = torch.randn(15, 15) torch.testing.assert_allclose(traced1(x), torch.relu(x)) torch.testing.assert_allclose(copied(x), torch.neg(x)) def test_direct_param_use(self): class TransposeTest(torch.nn.Module): def __init__(self): super().__init__() self.b = torch.nn.Parameter(torch.rand(4, 3)) def forward(self, x): return self.b class Foo(torch.nn.Module): def __init__(self): super().__init__() self.a = TransposeTest() def forward(self, x): return self.a.b, self.a.b.t(), self.a.b.view(12) traced = torch.fx.symbolic_trace(Foo()) assert(all('constant' not in node.target for node in traced.graph.nodes)) def test_single_default_arg(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, y=1): return y m = M() self.checkGraphModule(m, ()) self.checkGraphModule(m, (3,)) def test_multiple_default_args(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, y=1, z=2): return y + z m = M() self.checkGraphModule(m, ()) self.checkGraphModule(m, (3,)) self.checkGraphModule(m, (3, 4)) def test_regular_and_default_args(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y=1): return x + y m = M() self.checkGraphModule(m, (2,)) self.checkGraphModule(m, (2, 3)) def test_string_literal_return(self): class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self): return "foo" m = M() self.checkGraphModule(m, ()) def test_namedtuple_return_qualname(self): class NamedTupReturn(torch.nn.Module): def forward(self, x): return MyNamedTup(x, x) traced = symbolic_trace(NamedTupReturn()) input = torch.rand(3, 4) self.assertEqual(traced(input), MyNamedTup(input, input)) def test_update_args_kwargs_yells_at_you(self): symtraced = symbolic_trace(SimpleTest()) node = next(iter(symtraced.graph.nodes)) with self.assertRaisesRegex(AttributeError, '__update_args_kwargs'): node.__update_args_kwargs((), {}) def test_torchbind_class_attribute_in_fx(self): if TEST_WITH_ROCM or IS_FBCODE or IS_WINDOWS or IS_MACOS: self.skipTest("torch.classes._TorchScriptTesting._StackString is registered, skipping") class FooBar1234(torch.nn.Module): def __init__(self): super(FooBar1234, self).__init__() self.f = torch.classes._TorchScriptTesting._StackString(["3", "4"]) def forward(self): return self.f.top() m = FooBar1234() self.checkGraphModule(m, ()) def test_torchbind_class_attribute_in_fx_tensor_arg(self): if TEST_WITH_ROCM or IS_FBCODE or IS_WINDOWS or IS_MACOS: self.skipTest("torch.classes._TorchScriptTesting._ReLUClass is registered, skipping") class FooBar2341(torch.nn.Module): def __init__(self): super(FooBar2341, self).__init__() self.f = torch.classes._TorchScriptTesting._ReLUClass() def forward(self, x): return self.f.run(x) m = FooBar2341() traced = symbolic_trace(m) input = torch.randn(3, 4) self.assertEqual(traced(input), m(input)) self.assertTrue(any(n.op == 'call_method' for n in traced.graph.nodes)) def test_script_method_trace(self): class Scripted(torch.nn.Module): def forward(self, x): return torch.relu(x) class Holder(torch.nn.Module): def __init__(self): super().__init__() self.s = torch.jit.script(Scripted()) def forward(self, x): return self.s(x) h = Holder() traced = symbolic_trace(h) input = torch.randn(3, 4) self.assertEqual(traced(input), h(input)) self.assertTrue(any(n.op == 'call_method' for n in traced.graph.nodes)) def test_namedtuple_return_trace(self): class NamedTupReturn(torch.nn.Module): def forward(self, x): return Pair(x, x) traced = symbolic_trace(NamedTupReturn()) input = torch.rand(3, 4) self.assertEqual(traced(input), Pair(input, input)) def test_return_type_exists(self): class ReturnTypeModule(torch.nn.Module): def other(self, x: List[str]) -> List[str]: return x def forward(self, x: List[str]) -> List[str]: return self.other(x) traced = symbolic_trace(ReturnTypeModule()) self.assertIn("-> typing_List[str]", traced._code) scripted = torch.jit.script(traced) self.assertIn("-> List[str]", scripted.code) def getitem_inner(self): class GetItemBase(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer('pe', torch.randn(8, 8)) class GetItem1(GetItemBase): def forward(self, x): return self.pe[:, :x.size(0)] class GetItem2(GetItemBase): def forward(self, x): return self.pe[x.size(0)] class GetItem3(GetItemBase): def forward(self, x): return self.pe[4] # fx creates `self._tensor_constant0` here self.checkGraphModule(GetItem1(), [torch.zeros(4)]) self.checkGraphModule(GetItem2(), [torch.zeros(4)]) self.checkGraphModule(GetItem3(), [torch.zeros(4)]) @unittest.skipUnless(os.environ.get("FX_PATCH_GETITEM") == "1", "Will be checked in test_getitem_subproc") def test_getitem(self): self.getitem_inner() def test_getitem_subproc(self): # need to run this test in a subproc to work around: # https://github.com/pytorch/pytorch/issues/50710 proc = Process(target=run_getitem_target) proc.start() proc.join() self.assertEqual(proc.exitcode, 0) def test_user_friendly_call_provenance_with_function(self): def fn(x): return wrapper_fn(x) traced = torch.fx.symbolic_trace(fn) with self.assertRaisesRegex(RuntimeError, "'wrapper_fn' is " "being compiled since it was called" " from 'fn.forward'"): scripted = torch.jit.script(traced) def test_user_friendly_call_provenance_with_module(self): class M(torch.nn.Module): def forward(self, x): return wrapper_fn(x) traced = torch.fx.symbolic_trace(M()) with self.assertRaisesRegex(RuntimeError, "'wrapper_fn' is " "being compiled since it was called" " from 'M.forward'"): scripted = torch.jit.script(traced) def test_snake_case(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.activations = torch.nn.ModuleDict([ ["snake_case", torch.nn.ReLU()], ["PascalCase", torch.nn.LeakyReLU()], ["ALL_CAPS", torch.nn.PReLU()] ]) def forward(self, x): a = self.activations["snake_case"](x) b = self.activations["PascalCase"](x) c = self.activations["ALL_CAPS"](x) return a, b, c traced = symbolic_trace(M()) check = [ ("activations_snake_case", "activations.snake_case"), ("activations_pascal_case", "activations.PascalCase"), ("activations_all_caps", "activations.ALL_CAPS") ] i = 0 for node in traced.graph.nodes: if node.op == "placeholder" or node.op == "output": continue name = check[i][0] target = check[i][1] self.assertEqual(name, node.name) self.assertEqual(target, node.target) i += 1 self.assertEqual(i, 3) def test_no_mutation(self): from torch.fx.immutable_collections import immutable_list x = immutable_list([3, 4]) with self.assertRaisesRegex(NotImplementedError, "new_args"): x[0] = 4 def test_partial_trace(self): class Foo(torch.nn.Module): def forward(self, x, y): if y: return 2 * x else: return x mod = Foo() mod_true = symbolic_trace(mod, concrete_args={'y': True}) mod_false = symbolic_trace(mod, concrete_args={'y': False}) self.assertEqual(mod_true(3, True), 6) print(mod_true.code) assert(any([i.target == torch._assert for i in mod_true.graph.nodes])) with self.assertRaises(AssertionError): mod_true(3, False) self.assertEqual(mod_false(3, False), 3) with self.assertRaises(AssertionError): mod_false(3, True) def f_higher(a, f): return f(a) nf = symbolic_trace(f_higher, concrete_args={'f': lambda x: x * 2}) self.assertEqual(nf(3, lambda x: x * 2), 6) def test_custom_traceback_raised_when_exception_source_is_graphmodule(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.W = torch.nn.Parameter(torch.randn(5)) def forward(self, x): return torch.dot(self.W, x) traced = torch.fx.symbolic_trace(M()) out = [n for n in traced.graph.nodes if n.op == "output"][-1] with traced.graph.inserting_before(out): relu_out = traced.graph.call_method(method_name='relu', args=(out.args[0],)) out.args = (relu_out,) traced.recompile() with self.capture_stderr() as captured: with self.assertRaises(TypeError): traced(5) self.assertRegex(captured[0], r"Call using an FX-traced Module, line .* of the " r"traced Module's generated forward function:") def test_custom_traceback_not_raised_when_exception_source_is_submodule(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(3, 4) def forward(self, x): return self.linear(x) traced = torch.fx.symbolic_trace(M()) # Do not change this to `capture_stderr` or another context # manager without ensuring that the output is as expected try: traced(torch.rand(5, 5)) except RuntimeError: captured = traceback.format_exc() self.assertNotRegex(captured, r"Call using an FX-traced Module, line .* of the " r"traced Module's generated forward function:") def test_graph_module_replicate_for_dp(self): class Foo(torch.nn.Module): def forward(self, x): return torch.relu(x) gm = torch.fx.symbolic_trace(Foo()) x = torch.randn(5, 3) out = gm(x) replica = gm._replicate_for_data_parallel() out_replica = replica(x) torch.testing.assert_allclose(out_replica, out) def test_ast_rewriter_rewrites_assert(self): class M(torch.nn.Module): def forward(self, x: torch.Tensor, y: int, z: int): assert y == z return torch.add(x, x) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(M()) traced = GraphModule(ast_rewriter.root, graph, "gm") traced.graph.lint() def test_ast_rewriter_rewrites_assert_with_message(self): class M(torch.nn.Module): def forward(self, x: torch.Tensor, y: int, z: int): assert y == z, "msg" return torch.add(x, x) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(M()) traced = GraphModule(ast_rewriter.root, graph, "gm") traced.graph.lint() def test_throw_out_variant(self): def foo(x): y = torch.rand_like(x) torch.sigmoid(x, out=y) return y class MyTracer(torch.fx.Tracer): check_mutable_operations = True tracer = MyTracer() with self.assertRaisesRegex(RuntimeError, 'mutable operation aten::sigmoid.out'): traced_graph = tracer.trace(foo) def test_ast_rewriter_reassigns_submodules(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.bn = torch.nn.BatchNorm2d(100) def forward(self, x: torch.Tensor): return torch.add(x, x) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(M()) traced = GraphModule(ast_rewriter.root, graph, "gm") traced.graph.lint() def test_ast_rewriter_wrap(self): self.assertEqual(3 + 4 + 5, a_lifted_leaf((3, 4), 5)) def to_trace(y): return ( a_lifted_leaf((4, y), 3) + a_lifted_leaf((3, 4), 5) + a_lifted_leaf((y, y), y) ) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(to_trace) traced = GraphModule(ast_rewriter.root, graph, "gm") self.assertIn("a_lifted_leaf", traced.code) self.assertEqual(27, traced(2)) self.assertIs(a_lifted_leaf, real_a_lifed_leaf) def test_ast_rewriter_wrap_fn_directly(self): self.assertEqual(3 + 4 + 5, a_lifted_leaf2((3, 4), 5)) def to_trace(y): return ( a_lifted_leaf2((4, y), 3) + a_lifted_leaf2((3, 4), 5) + a_lifted_leaf2((y, y), y) ) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(to_trace) traced = GraphModule(ast_rewriter.root, graph, "gm") self.assertIn("a_lifted_leaf2", traced.code) self.assertEqual(27, traced(2)) self.assertIs(a_lifted_leaf2, real_a_lifed_leaf2) def test_profiler_ranges_side_effect(self): g = torch.fx.Graph() handle = g.call_function(torch.ops.profiler._record_function_enter, ('test_range',)) g.call_function(torch.ops.profiler._record_function_exit, (handle,)) g.output(None) found_targets = {} for node in g.nodes: if node.op == 'call_function': found_targets.setdefault(node.target) self.assertEqual( found_targets.keys(), [torch.ops.profiler._record_function_enter, torch.ops.profiler._record_function_exit]) g.eliminate_dead_code() found_targets = {} for node in g.nodes: if node.op == 'call_function': found_targets.setdefault(node.target) self.assertEqual( found_targets.keys(), [torch.ops.profiler._record_function_enter, torch.ops.profiler._record_function_exit]) def test_ast_rewriter_wrapped_via_decorator(self): class F(torch.nn.Module): def forward(self, x): return wrapped_via_decorator(x) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(F()) traced = GraphModule(ast_rewriter.root, graph, "gm") self.assertIn("wrapped_via_decorator", traced.code) self.assertEqual(traced(0), 1) self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator) self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched")) def test_ast_rewriter_wrapped_via_decorator_and_transformed(self): self.assertEqual(wrapped_via_decorator(0), 1) def to_trace(y): return wrapped_via_decorator(y) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(to_trace) traced = GraphModule(ast_rewriter.root, graph, "gm") self.assertIn("wrapped_via_decorator", traced.code) self.assertEqual(traced(0), 1) self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator) self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched")) transformed = torch.fx.Transformer(traced).transform() self.assertIn("wrapped_via_decorator", transformed.code) self.assertEqual(transformed(0), 1) self.assertIs(wrapped_via_decorator, real_wrapped_via_decorator) self.assertFalse(hasattr(wrapped_via_decorator, "__fx_already_patched")) def test_ast_rewriter_wrap_with_submodule(self): class M(torch.nn.Module): def __init__(self): super(M, self).__init__() self.batchnorm1d = torch.nn.BatchNorm1d(2, affine=False) def forward(self, x: torch.Tensor): return wrapped_with_submodule(x, self.batchnorm1d) ast_rewriter = RewritingTracer() graph = ast_rewriter.trace(M()) traced = GraphModule(ast_rewriter.root, graph, "gm") self.assertIn("wrapped_with_submodule", traced.code) input = torch.rand(3, 2) ref_batchnorm1d = torch.nn.BatchNorm1d(2, affine=False) self.assertEqual(ref_batchnorm1d(input), traced(input)) def test_submodule_manipulation_API(self): class C(torch.nn.Module): def __init__(self): super(C, self).__init__() self.conv = torch.nn.Conv2d(16, 33, 3, stride=2) self.param = torch.nn.Parameter(torch.rand(2, 3)) def forward(self, x): return self.conv(torch.cat([self.param, x])) class B(torch.nn.Module): def __init__(self): super(B, self).__init__() self.linear = torch.nn.Linear(100, 200) self.register_buffer("buf", torch.randn(2, 3)) self.net_c = C() def forward(self, x): return self.linear(torch.cat([self.buf, self.net_c(x)])) class A(torch.nn.Module): def __init__(self): super(A, self).__init__() self.net_b = B() self.param = torch.nn.Parameter(torch.rand(2, 3)) def forward(self, x): return self.net_b(x) + self.param a = symbolic_trace(A()) a.add_submodule("net_b.net_c.dropout", torch.nn.Dropout(p=0.2)) conv = [n for n in a.graph.nodes if n.target == "net_b.net_c.conv"][-1] with a.graph.inserting_before(conv): with warnings.catch_warnings(record=True) as w: dropout = a.graph.call_module(module_name="net_b.net_c.dropout", args=conv.args) self.assertEqual(len(w), 0) conv.replace_all_uses_with(dropout) a.graph.erase_node(conv) a.recompile() def module_exists(gm: GraphModule, path: str) -> bool: return any(path == name for name, _ in gm.named_modules()) def parameter_exists(gm: GraphModule, path: str) -> bool: return (any(path == name for name, _ in gm.named_parameters()) and any(path == name for name in gm.state_dict().keys())) def buffer_exists(gm: GraphModule, path: str) -> bool: return (any(path == name for name, _ in gm.named_buffers()) and any(path == name for name in gm.state_dict().keys())) # Test that we added the "dropout" submodule self.assertTrue(module_exists(a, "net_b.net_c.dropout")) # Test `get_submodule` with an added submodule self.assertIsNotNone(a.get_submodule("net_b.net_c.dropout")) # Test that the "conv" submodule is still there self.assertTrue(module_exists(a, "net_b.net_c.conv")) # Test `get_submodule` with an original module self.assertIsNotNone(a.get_submodule("net_b.net_c.conv")) # Test that the "conv" node is NOT still there conv = [n for n in a.graph.nodes if n.target == "net_b.net_c.conv"] self.assertEqual(conv, []) a.delete_submodule("net_b.net_c.conv") # Test that the "conv" submodule is now gone self.assertFalse(module_exists(a, "net_b.net_c.conv")) # Test `get_submodule` with a deleted submodule with self.assertRaisesRegex(AttributeError, "has no attribute " "`conv`"): self.assertIsNone(a.get_submodule("net_b.net_c.conv")) # Test `get_attr` warnings cat = [n for n in a.graph.nodes if n.target == torch.cat][-1] with a.graph.inserting_before(cat): with warnings.catch_warnings(record=True) as w: param = a.graph.get_attr(qualified_name="net_b.net_c.param") self.assertEqual(len(w), 0) with self.assertWarnsRegex(UserWarning, "Attempted to " "insert a get_attr Node with no " "underlying reference in the " "owning GraphModule"): bad_param = a.graph.get_attr(qualified_name="net_b.param") a.graph.erase_node(bad_param) cat.args = (*cat.args, param) a.recompile() a.graph.lint() # Test `get_parameter` a.get_parameter("net_b.net_c.param") with self.assertRaisesRegex(AttributeError, "is not an " "nn.Parameter"): a.get_parameter("net_b.buf") with self.assertRaisesRegex(AttributeError, "has no attribute " "`param`"): a.get_parameter("net_b.param") # Test `get_buffer` a.get_buffer("net_b.buf") with self.assertRaisesRegex(AttributeError, "is not a " "buffer"): a.get_buffer("net_b.net_c.param") with self.assertRaisesRegex(AttributeError, "has no attribute " "`buf`"): a.get_buffer("net_b.net_c.buf") # Test non-nested attributes a.get_submodule("") a.get_parameter("param") # Insert some unused submodules a.add_submodule("net_b.embedding", torch.nn.Embedding(10, 3)) a.add_submodule("net_b.net_c.embedding", torch.nn.Embedding(10, 3)) a.add_submodule("net_b.net_c.rnn", torch.nn.RNN(10, 20, 2)) a.add_submodule("batch_norm_2d", torch.nn.BatchNorm2d(100)) # Garbage collection a.delete_all_unused_submodules() # Test that all the unused submodules are gone self.assertFalse(module_exists(a, "net_b.embedding")) self.assertFalse(module_exists(a, "net_b.net_c.embedding")) self.assertFalse(module_exists(a, "net_b.net_c.rnn")) self.assertFalse(module_exists(a, "batch_norm_2d")) # Test that we didn't delete any unused Parameters or buffers self.assertTrue(parameter_exists(a, "net_b.net_c.param")) self.assertTrue(buffer_exists(a, "net_b.buf")) a.graph.lint() def test_delete_unused_submodules_leaf(self): class SubModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(10, 10) self.relu = torch.nn.ReLU() def forward(self, x): x = self.linear(x) x = self.relu(x) return x class Model(torch.nn.Module): def __init__(self): super().__init__() self.submod = SubModule() def forward(self, x): x = self.submod(x) return x model = Model() class MyCustomTracer(torch.fx.Tracer): def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: return module_qualified_name == "submod" inputs = torch.randn(1, 10) traced_graph = MyCustomTracer().trace(model) gm2 = torch.fx.GraphModule(model, traced_graph) gm2.delete_all_unused_submodules() torch.testing.assert_allclose(gm2(inputs), model(inputs)) def test_tracing_graphmodules_as_leaf_submodules(self): class A(torch.nn.Module): def forward(self, t): return t + t class B(torch.nn.Module): def __init__(self): super(type(self), self).__init__() self.calling = False self.called = False def forward(self, t): if self.calling: return t - t else: return t + t def __call__(self, *args): self.called = True self.calling = True return super(type(self), self).__call__(*args) self.calling = False class M(torch.nn.Module): def __init__(self, a, b): super().__init__() self.a = a self.b = b def forward(self, t): x = self.a(t) y = self.b(t) return x + y class LeafTracer(Tracer): def is_leaf_module(self, module, name): return True class LeafTracerNotB(Tracer): def is_leaf_module(self, module, name): return False if "b" in name else True # Recompile calls added "for fun", since they # chain __call__ wrappers. # # Test: B as a regular, non-leaf module # a = symbolic_trace(A()) a.recompile() m = M(a, B()) graph = LeafTracerNotB().trace(m) gm = GraphModule(m, graph) gm.recompile() # Test graphmodule/submodule a is not inlined. self.assertTrue(isinstance(gm.get_submodule("a"), GraphModule)) match = [n for n in gm.graph.nodes if n.op == "call_module" and n.target == "a"] self.assertTrue(len(match) == 1) # Test submodule b is not treated as leaf. self.assertFalse(hasattr(gm, "b")) # Test assert custom __call__ on submodule b was honored. match = [ n for n in gm.graph.nodes if n.op == "call_function" and n.target == operator.sub ] self.assertTrue(len(match) == 1) # # Test: B as a regular, leaf module # symbolic_trace should only patch torch.nn.Module.__call__, # which means B.__call__ should still execute # a = symbolic_trace(A()) a.recompile() b = B() m = M(a, b) graph = LeafTracer().trace(m) gm = GraphModule(m, graph) gm.recompile() # Test graphmodule/submodule a is not inlined. self.assertTrue(isinstance(gm.get_submodule("a"), GraphModule)) match = [n for n in gm.graph.nodes if n.op == "call_module" and n.target == "a"] self.assertTrue(len(match) == 1) # Test submodule b is leaf: self.assertTrue(isinstance(gm.get_submodule("b"), torch.nn.Module)) match = [n for n in gm.graph.nodes if n.op == "call_module" and n.target == "b"] self.assertTrue(len(match) == 1) # Test b.__call__ was run self.assertTrue(b.called) self.assertTrue(gm.get_submodule("b").called) # # Test: B as GraphModule leaf # __call__ not honored since symbolic_trace directly invokes forward() # a = symbolic_trace(A()) a.recompile() b = symbolic_trace(B()) b.recompile() m = M(a, b) graph = LeafTracer().trace(m) gm = GraphModule(m, graph) gm.recompile() self.assertTrue(isinstance(gm.get_submodule("a"), GraphModule)) match = [n for n in gm.graph.nodes if n.op == "call_module" and n.target == "a"] self.assertTrue(len(match) == 1) self.assertTrue(isinstance(gm.get_submodule("b"), torch.nn.Module)) match = [n for n in gm.graph.nodes if n.op == "call_module" and n.target == "b"] self.assertTrue(len(match) == 1) def _test_graph_module_init_buffer_param_copied(self, use_dict_init: bool): class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("my_buff", torch.rand(3, 4)) self.register_parameter( "my_param", torch.nn.Parameter(torch.rand(3, 4)) ) def forward(self, x): return x + self.my_buff + self.my_param mod = MyModule() mod_traced = symbolic_trace(mod) # Create new GraphModule based on original, either w/ dict or root module. orig_buff = mod_traced.get_buffer("my_buff") orig_param = mod_traced.get_parameter("my_param") mod_traced_new = GraphModule( {"my_buff": orig_buff, "my_param": orig_param} if use_dict_init else mod, mod_traced.graph, ) # Check that both my_buff and my_param are found and the same. try: new_buff = mod_traced_new.get_buffer("my_buff") except Exception: self.fail("Did not find my_buff") self.assertEqual(orig_buff, new_buff) try: new_param = mod_traced_new.get_parameter("my_param") except Exception: self.fail("Did not find my_param") self.assertEqual(orig_param, new_param) x = torch.rand(3, 4) orig_out = mod_traced(x) submodules_out = mod_traced_new(x) self.assertEqual(orig_out, submodules_out) def test_graph_module_init_buffer_param_copied_dict_init(self): self._test_graph_module_init_buffer_param_copied(use_dict_init=True) def test_graph_module_init_buffer_param_copied_mod_init(self): self._test_graph_module_init_buffer_param_copied(use_dict_init=False) def test_annotations_with_no_forward_references(self): class A: def __call__(self, x: torch.Tensor): return torch.add(x, x) class M(torch.nn.Module): def forward(self, x: torch.Tensor, a: A) -> torch.Tensor: return a(x) self.checkGraphModule(M(), (torch.rand(2, 3), A()), kwargs=None) def test_annotations_with_forward_references(self): class A: def __call__(self, x: torch.Tensor): return torch.add(x, x) class M(torch.nn.Module): def forward(self, x: 'torch.Tensor', a: 'A') -> 'torch.Tensor': return a(x) self.checkGraphModule(M(), (torch.rand(2, 3), A()), kwargs=None) def test_annotations_with_non_torch_reference_and_no_internal_forward_references(self): class A: def __call__(self, x: torch.Tensor): return torch.add(x, x) class M(torch.nn.Module): def forward(self, x: List[torch.Tensor], a: A) -> torch.Tensor: return a(x[0]) self.checkGraphModule(M(), (torch.rand(2, 3), A()), kwargs=None) def test_annotations_with_non_torch_reference_and_internal_forward_references(self): class A: def __call__(self, x: torch.Tensor): return torch.add(x, x) class M(torch.nn.Module): def forward(self, x: List['torch.Tensor'], a: A) -> 'torch.Tensor': return a(x)[0] self.checkGraphModule(M(), (torch.rand(2, 3), A()), kwargs=None) @unittest.skipIf(sys.version_info < (3, 7), "`__future__` feature " "`annotations` is not defined in Python <3.7") def test_annotation_with_future(self): try: import fx.test_future # noqa: F401 finally: del sys.modules["__future__"] def test_annotations_empty_tuple(self): class Foo(torch.nn.Module): def forward(self, x: Tuple[()], y: Tuple[str, Tuple[()]]): return "foo" traced = torch.fx.symbolic_trace(Foo()) x = () y = ("bar", ()) traced(x, y) FileCheck().check("_Tuple[()]") \ .check("typing_Tuple[str,typing_Tuple[()]]") \ .run(traced.code) scripted = torch.jit.script(traced) scripted(x, y) FileCheck().check("Tuple[()]") \ .check("Tuple[str, Tuple[()]]") \ .run(scripted.code) def test_pytree(self): def f_sum(x): return sum(x) def f_sum_dict(x): out = 0 for k, v in x.items(): out += v return out def f_dict_list_map(x): new_dict = {} for k, v in x.items(): new_dict[k] = [i + 1 for i in v] return new_dict def f_dict_add(x): return x['a'] + sum(x['z']) def f_namedtuple_add(x): return x.x + x.y pytree._register_pytree_node( Foo, lambda x: ([x.a, x.b], None), lambda x, _: Foo(x[0], x[1]), ) fx_pytree.register_pytree_flatten_spec(Foo, lambda x, _: [x.a, x.b]) def f_custom(x): return x.a + x.b def f_custom_dict(x): return f_sum_dict(x.a) + x.b def f_return_custom(x): return Foo(x.b, x.a) tests = [ (f_sum, [PH, PH, PH]), (f_sum, []), (f_sum_dict, {'a': PH, 'b': PH, 'c': PH}), (f_dict_list_map, {'a': (PH, PH), 'b': [PH], 'c': []}), (f_dict_list_map, {5: (PH, PH, PH)}), (f_dict_add, {'a': PH, 'z': (PH, PH, PH)}), (f_dict_add, {'a': PH, 'z': []}), (f_custom, Foo(PH, PH)), (f_custom, Foo(PH, 3)), (f_custom_dict, Foo({'a': PH, 'b': PH}, PH)), # (f_return_custom, Foo(PH, PH)), # Don't currently support output pytrees (f_namedtuple_add, Point(PH, PH)), ] def verify_pytree(f, inp): val = pytree.tree_map(lambda x: torch.randn(3) if x == PH else x, inp) num_flat_args = len([i == PH for i in pytree.tree_flatten(inp)[0]]) orig_out = f(val) nf = symbolic_trace(f, concrete_args={'x': inp}) self.assertEqual(nf(val), orig_out) assert num_flat_args == 0 or "tree_flatten_spec" in nf.code assert(sum([i.op == 'placeholder' for i in nf.graph.nodes]) == num_flat_args) nf = symbolic_trace(nf) self.assertEqual(nf(val), orig_out) assert "tree_flatten_spec" not in nf.code assert(sum([i.op == 'placeholder' for i in nf.graph.nodes]) == 1) nf = symbolic_trace(nf, concrete_args={'x': inp}) self.assertEqual(nf(val), orig_out) assert num_flat_args == 0 or "tree_flatten_spec" in nf.code assert(sum([i.op == 'placeholder' for i in nf.graph.nodes]) == num_flat_args) pickled = pickle.dumps(nf) nf = pickle.loads(pickled) self.assertEqual(nf(val), orig_out) for f, inp in tests: verify_pytree(f, inp) def test_pytree_concrete(self): def f(b, a): if b: return a['a'] else: return a['z'] inp = {'a': {'a': PH, 'z': PH}, 'b': True} nf = symbolic_trace(f, concrete_args=inp) val = pytree.tree_map(lambda x: torch.randn(3) if x == PH else x, inp) self.assertEqual(nf(**val), f(**val)) nf = symbolic_trace(nf) self.assertEqual(nf(**val), f(**val)) def run_getitem_target(): from torch.fx._symbolic_trace import _wrapped_methods_to_patch _wrapped_methods_to_patch.append((torch.Tensor, "__getitem__")) try: TestFX().getitem_inner() finally: _wrapped_methods_to_patch.pop() class TestOperatorSignatures(JitTestCase): def setUp(self): # Checking for mutable operations whil tracing is feature flagged # Enable it in testing but not by default self.orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations torch.fx.proxy.TracerBase.check_mutable_operations = True def tearDown(self): torch.fx.proxy.TracerBase.check_mutable_operations = self.orig_tracer_mutable_flag @onlyCPU @ops(op_db, allowed_dtypes=(torch.float,)) def test_get_torch_func_signature_exhaustive(self, device, dtype, op): if not isinstance(op.op, types.BuiltinFunctionType): raise unittest.SkipTest("This path doesn't work on Python functions") sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False) schemas = get_signature_for_torch_op(op.op) if not schemas: raise RuntimeError('No Schemas Returned') for sample_input in sample_inputs_itr: # Iterate through overloads until we hit a match. If we exit this # loop via `else`, we haven't found a match for schema in schemas: try: bound_args = schema.bind(sample_input.input, *sample_input.args, **sample_input.kwargs) bound_args.apply_defaults() op(*bound_args.args, **bound_args.kwargs) break except TypeError as e: pass else: raise RuntimeError(f'Did not match any schemas for op {op.name}!') class TestFXAPIBackwardCompatibility(JitTestCase): def setUp(self): self.maxDiff = None # Checking for mutable operations whil tracing is feature flagged # Enable it in testing but not by default self.orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations torch.fx.proxy.TracerBase.check_mutable_operations = True def tearDown(self): torch.fx.proxy.TracerBase.check_mutable_operations = self.orig_tracer_mutable_flag def _fn_to_stable_annotation_str(self, obj): """ Unfortunately we have to serialize function signatures manually since serialization for `inspect.Signature` objects is not stable across python versions """ fn_name = torch.typename(obj) signature = inspect.signature(obj) sig_str = f'{fn_name}{signature}' arg_strs = [] for k, v in signature.parameters.items(): maybe_type_annotation = f': {self._annotation_type_to_stable_str(v.annotation, sig_str)}'\ if v.annotation is not inspect.Signature.empty else '' def default_val_str(val): if isinstance(val, (tuple, list)): str_pieces = ['(' if isinstance(val, tuple) else '['] str_pieces.append(', '.join(default_val_str(v) for v in val)) if isinstance(val, tuple) and len(str_pieces) == 2: str_pieces.append(',') str_pieces.append(')' if isinstance(val, tuple) else ']') return ''.join(str_pieces) # Need to fix up some default value strings. # First case: modules. Default module `repr` contains the FS path of the module. # Don't leak that if isinstance(val, types.ModuleType): return f'<module {val.__name__}>' # Second case: callables. Callables (such as lambdas) encode their address in # their string repr. Don't do that if callable(val): return f'<function {val.__name__}>' return str(val) if v.default is not inspect.Signature.empty: default_val_str = default_val_str(v.default) if not isinstance(v.default, str) else f"'{v.default}'" maybe_default = f' = {default_val_str}' else: maybe_default = '' maybe_stars = '' if v.kind == inspect.Parameter.VAR_POSITIONAL: maybe_stars = '*' elif v.kind == inspect.Parameter.VAR_KEYWORD: maybe_stars = '**' arg_strs.append(f'{maybe_stars}{k}{maybe_type_annotation}{maybe_default}') return_annot = f' -> {self._annotation_type_to_stable_str(signature.return_annotation, sig_str)}'\ if signature.return_annotation is not inspect.Signature.empty else '' return f'{fn_name}({", ".join(arg_strs)}){return_annot}' def _annotation_type_to_stable_str(self, t, sig_str): if t is inspect.Signature.empty: return '' # Forward ref if isinstance(t, str): return f"'{t}'" if hasattr(typing, 'ForwardRef') and isinstance(t, typing.ForwardRef): return t.__forward_arg__ if hasattr(typing, '_ForwardRef') and isinstance(t, typing._ForwardRef): return t.__forward_arg__ trivial_mappings = { str : 'str', int : 'int', float: 'float', bool: 'bool', torch.dtype: 'torch.dtype', torch.Tensor: 'torch.Tensor', torch.device: 'torch.device', torch.memory_format: 'torch.memory_format', slice: 'slice', torch.nn.Module: 'torch.nn.modules.module.Module', torch.fx.Graph : 'torch.fx.graph.Graph', torch.fx.Node : 'torch.fx.node.Node', torch.fx.Proxy : 'torch.fx.proxy.Proxy', torch.fx.node.Target : 'torch.fx.node.Target', torch.fx.node.Argument : 'torch.fx.node.Argument', torch.fx.graph.PythonCode : 'torch.fx.graph.PythonCode', torch.fx.graph_module.GraphModule: 'torch.fx.graph_module.GraphModule', torch.fx.subgraph_rewriter.Match: 'torch.fx.subgraph_rewriter.Match', Ellipsis : '...', typing.Any: 'Any', type(None): 'NoneType', None: 'None', typing.Iterator: 'Iterator', } mapping = trivial_mappings.get(t, None) if mapping: return mapping # Handle types with contained types contained = getattr(t, '__args__', None) or [] # Callables contain a bare List for arguments contained = t if isinstance(t, list) else contained # Python 3.8 puts type vars into __args__ for unbound types such as Dict if all(isinstance(ct, typing.TypeVar) for ct in contained): contained = [] contained_type_annots = [self._annotation_type_to_stable_str(ct, sig_str) for ct in contained] contained_type_str = f'[{", ".join(contained_type_annots)}]' if len(contained_type_annots) > 0 else '' origin = getattr(t, '__origin__', None) if origin is None: # Unbound types don't have `__origin__` in some Python versions, so fix that up here. origin = t if t in {typing.Tuple, typing.Union, typing.Dict, typing.List, typing.Type, typing.Callable} else origin if origin in {tuple, typing.Tuple}: return f'Tuple{contained_type_str}' if origin in {typing.Union}: # Annoying hack to detect Optional if len(contained) == 2 and (contained[0] is type(None)) ^ (contained[1] is type(None)): not_none_param = contained[0] if contained[0] is not type(None) else contained[1] return f'Optional[{self._annotation_type_to_stable_str(not_none_param, sig_str)}]' return f'Union{contained_type_str}' if origin in {dict, typing.Dict}: return f'Dict{contained_type_str}' if origin in {list, typing.List}: return f'List{contained_type_str}' if origin in {type, typing.Type}: return f'Type{contained_type_str}' if isinstance(t, typing.Callable): if len(contained) > 0 and contained[0] is not Ellipsis: return f'Callable[[{", ".join(contained_type_annots[:-1])}], {contained_type_annots[-1]}]' else: return f'Callable{contained_type_str}' raise RuntimeError(f'Unrecognized type {t} used in BC-compatible type signature {sig_str}.' f'Please add support for this type and confirm with the ' f'FX team that your signature change is valid.') def test_function_back_compat(self): """ Test backward compatibility for function signatures with @compatibility(is_backward_compatible=True). Currently this checks for exact signature matches, which may lead to false positives. If this becomes too annoying, we can refine this check to actually parse out the saved schema strings and check if the change is truly backward- incompatible. """ signature_strs = [] for obj in _BACK_COMPAT_OBJECTS: if not isinstance(obj, type): signature_strs.append(self._fn_to_stable_annotation_str(obj)) signature_strs.sort() try: self.assertExpected('\n'.join(signature_strs), 'fx_backcompat_function_signatures') except AssertionError as e: msg = f"{e}\n****** ERROR ******\nAn FX function that has been marked " \ f"as backwards-compatible has experienced a signature change. See the " \ f"above exception context for more information. If this change was " \ f"unintended, please revert it. If it was intended, check with the FX " \ f"team to ensure that the proper deprecation protocols have been followed " \ f"and subsequently --accept the change." raise AssertionError(msg) def test_class_member_back_compat(self): """ Test backward compatibility for members of classes with @compatibility(is_backward_compatible=True). Currently this checks for exact matches on the publicly visible members of the class. """ class_method_strs = [] for obj in _BACK_COMPAT_OBJECTS: if isinstance(obj, type): public_members = [name for name in obj.__dict__ if not name.startswith('_')] class_method_strs.append(f'{torch.typename(obj)} {sorted(public_members)}') class_method_strs.sort() try: self.assertExpected('\n'.join(class_method_strs), 'fx_backcompat_class_members') except AssertionError as e: msg = f"{e}\n****** ERROR ******\nAn FX class that has been marked " \ f"as backwards-compatible has experienced change in its public members. See the " \ f"above exception context for more information. If this change was " \ f"unintended, please revert it. If it was intended, check with the FX " \ f"team to ensure that the proper deprecation protocols have been followed " \ f"and subsequently --accept the change." raise AssertionError(msg) def test_public_api_surface(self): non_back_compat_objects = {} def check_symbols_have_bc_designation(m, prefix): if not m.__name__.startswith('torch.fx'): return if m.__name__.startswith('torch.fx.experimental'): return for k, v in m.__dict__.items(): if v is m: continue if k.startswith('_'): continue if isinstance(v, types.ModuleType): check_symbols_have_bc_designation(v, prefix + [k]) elif isinstance(v, type) or isinstance(v, types.FunctionType): if v not in _MARKED_WITH_COMATIBLITY: non_back_compat_objects.setdefault(v) check_symbols_have_bc_designation(torch.fx, ['torch', 'fx']) check_symbols_have_bc_designation(torch.fx.passes, ['torch', 'fx', 'passes']) non_back_compat_strs = [torch.typename(obj) for obj in non_back_compat_objects.keys()] # Only want objects in torch.fx non_back_compat_strs = [ s for s in non_back_compat_strs if s.startswith('torch.fx') and not s.startswith('torch.fx.experimental')] # Only want objects in public namespaces non_back_compat_strs = [ s for s in non_back_compat_strs if all(not atom.startswith('_') for atom in s.split('.'))] non_back_compat_strs.sort() if len(non_back_compat_strs) != 0: raise AssertionError(f"Public FX API(s) {non_back_compat_strs} introduced but not given a " f"backwards-compatibility classification! Please decorate these " f"API(s) with `@torch.fx._compatibility.compatibility` to specify " f"BC guarantees.") class TestFunctionalTracing(JitTestCase): def setUp(self): # Checking for mutable operations whil tracing is feature flagged # Enable it in testing but not by default self.orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations torch.fx.proxy.TracerBase.check_mutable_operations = True def tearDown(self): torch.fx.proxy.TracerBase.check_mutable_operations = self.orig_tracer_mutable_flag IGNORE_FUNCS = ("has_torch_function", "has_torch_function_unary", "has_torch_function_variadic", "handle_torch_function", "boolean_dispatch") TO_PATCH = {"has_torch_function": None, "has_torch_function_unary": None, "has_torch_function_variadic": None} BUILT_IN_FUNC = (AssertionError, "") PROXY_ITERABLE = (TypeError, r"argument of type 'Proxy' is not iterable") PROXY_ITERATED = (TraceError, r"Proxy object cannot be iterated") LEN_ERROR = (RuntimeError, r"'len' is not supported in symbolic tracing by default") ARG_TYPE_MISMATCH = (TypeError, r", not Proxy$") CONTROL_FLOW = (TraceError, r"symbolically traced variables cannot be used as inputs to control flow") INTERPOLATE_ARGS_CONFLICT = (ValueError, r"only one of size or scale_factor should be defined") MUTABLE = (RuntimeError, r"Tried to trace mutable operation") UNTRACEABLE_FUNCTIONALS = { "adaptive_avg_pool1d": BUILT_IN_FUNC, "avg_pool1d": BUILT_IN_FUNC, "avg_pool2d": BUILT_IN_FUNC, "avg_pool3d": BUILT_IN_FUNC, "celu_": BUILT_IN_FUNC, "channel_shuffle": BUILT_IN_FUNC, "conv1d": BUILT_IN_FUNC, "conv2d": BUILT_IN_FUNC, "conv3d": BUILT_IN_FUNC, "conv_tbc": BUILT_IN_FUNC, "conv_transpose1d": BUILT_IN_FUNC, "conv_transpose2d": BUILT_IN_FUNC, "conv_transpose3d": BUILT_IN_FUNC, "cosine_similarity": BUILT_IN_FUNC, "elu_": BUILT_IN_FUNC, "hardtanh_": BUILT_IN_FUNC, "leaky_relu_": BUILT_IN_FUNC, "logsigmoid": BUILT_IN_FUNC, "one_hot": BUILT_IN_FUNC, "pdist": BUILT_IN_FUNC, "pixel_shuffle": BUILT_IN_FUNC, "pixel_unshuffle": BUILT_IN_FUNC, "relu_": BUILT_IN_FUNC, "rrelu_": BUILT_IN_FUNC, "selu_": BUILT_IN_FUNC, "softplus": BUILT_IN_FUNC, "softshrink": BUILT_IN_FUNC, "threshold_": BUILT_IN_FUNC, "adaptive_avg_pool2d": LEN_ERROR, "adaptive_avg_pool3d": LEN_ERROR, "adaptive_max_pool2d_with_indices": LEN_ERROR, "adaptive_max_pool3d_with_indices": LEN_ERROR, "instance_norm": CONTROL_FLOW, "pad": LEN_ERROR, "adaptive_max_pool1d": PROXY_ITERABLE, "adaptive_max_pool2d": PROXY_ITERABLE, "adaptive_max_pool3d": PROXY_ITERABLE, "fractional_max_pool2d": PROXY_ITERABLE, "fractional_max_pool3d": PROXY_ITERABLE, "max_pool1d": PROXY_ITERABLE, "max_pool2d": PROXY_ITERABLE, "max_pool3d": PROXY_ITERABLE, "group_norm": PROXY_ITERATED, "lp_pool2d": PROXY_ITERATED, "max_unpool1d": PROXY_ITERATED, "max_unpool2d": PROXY_ITERATED, "max_unpool3d": PROXY_ITERATED, "adaptive_max_pool1d_with_indices": ARG_TYPE_MISMATCH, "fractional_max_pool2d_with_indices": ARG_TYPE_MISMATCH, "fractional_max_pool3d_with_indices": ARG_TYPE_MISMATCH, "hardshrink": ARG_TYPE_MISMATCH, "layer_norm": ARG_TYPE_MISMATCH, "lp_pool1d": ARG_TYPE_MISMATCH, "pairwise_distance": ARG_TYPE_MISMATCH, "affine_grid": CONTROL_FLOW, "alpha_dropout": CONTROL_FLOW, "batch_norm": CONTROL_FLOW, "binary_cross_entropy": CONTROL_FLOW, "binary_cross_entropy_with_logits": CONTROL_FLOW, "celu": CONTROL_FLOW, "cosine_embedding_loss": CONTROL_FLOW, "cross_entropy": CONTROL_FLOW, "ctc_loss": CONTROL_FLOW, "dropout": CONTROL_FLOW, "dropout2d": CONTROL_FLOW, "dropout3d": CONTROL_FLOW, "elu": CONTROL_FLOW, "embedding": CONTROL_FLOW, "embedding_bag": CONTROL_FLOW, "feature_alpha_dropout": CONTROL_FLOW, "fold": CONTROL_FLOW, "gaussian_nll_loss": CONTROL_FLOW, "glu": CONTROL_FLOW, "grid_sample": CONTROL_FLOW, "gumbel_softmax": CONTROL_FLOW, "hardsigmoid": CONTROL_FLOW, "hardswish": CONTROL_FLOW, "hardtanh": CONTROL_FLOW, "hinge_embedding_loss": CONTROL_FLOW, "huber_loss": CONTROL_FLOW, "interpolate": CONTROL_FLOW, "kl_div": CONTROL_FLOW, "l1_loss": CONTROL_FLOW, "leaky_relu": CONTROL_FLOW, "local_response_norm": CONTROL_FLOW, "margin_ranking_loss": CONTROL_FLOW, "max_pool1d_with_indices": CONTROL_FLOW, "max_pool2d_with_indices": CONTROL_FLOW, "max_pool3d_with_indices": CONTROL_FLOW, "mse_loss": CONTROL_FLOW, "multi_head_attention_forward": CONTROL_FLOW, "multi_margin_loss": CONTROL_FLOW, "multilabel_margin_loss": CONTROL_FLOW, "multilabel_soft_margin_loss": CONTROL_FLOW, "nll_loss": CONTROL_FLOW, "poisson_nll_loss": CONTROL_FLOW, "relu": CONTROL_FLOW, "relu6": CONTROL_FLOW, "rrelu": CONTROL_FLOW, "selu": CONTROL_FLOW, "silu": CONTROL_FLOW, "mish": CONTROL_FLOW, "smooth_l1_loss": CONTROL_FLOW, "soft_margin_loss": CONTROL_FLOW, "threshold": CONTROL_FLOW, "triplet_margin_loss": CONTROL_FLOW, "triplet_margin_with_distance_loss": CONTROL_FLOW, "unfold": CONTROL_FLOW, "upsample": CONTROL_FLOW, "upsample_bilinear": INTERPOLATE_ARGS_CONFLICT, "upsample_nearest": INTERPOLATE_ARGS_CONFLICT, "normalize" : MUTABLE, } # List of nn.functionals with Tensor inputs but not with type annotation FUNCTIONALS_WITHOUT_ANNOTATION = ( "adaptive_max_pool1d", "adaptive_max_pool2d", "adaptive_max_pool3d", "fractional_max_pool2d", "fractional_max_pool3d", "max_pool1d", "max_pool2d", "max_pool3d", "gaussian_nll_loss", "upsample", "upsample_bilinear", "upsample_nearest", ) # Inconsistent behavior between Python 3.8 and other Python versions: # - Python 3.8+: Re-raise internal exception like `PROXY_ITERATED` # - Other Python: Raise `argument of type 'Proxy' is not iterable` due to the same # internal exception above # Use the following map to override the expected exception for Python 3.8 UNTRACEABLE_FUNCTIONALS_PY38 = { "adaptive_max_pool1d": PROXY_ITERATED, "adaptive_max_pool2d": PROXY_ITERATED, "adaptive_max_pool3d": PROXY_ITERATED, "fractional_max_pool2d": PROXY_ITERATED, "fractional_max_pool3d": PROXY_ITERATED, "max_pool1d": PROXY_ITERATED, "max_pool2d": PROXY_ITERATED, "max_pool3d": PROXY_ITERATED, "group_norm": LEN_ERROR } @classmethod def _get_functional(cls): functional_list = [] for f in dir(torch.nn.functional): if not f.islower(): continue # Ignore internal functions if f.startswith('_'): continue # Ignore supporting functions if f in cls.IGNORE_FUNCS: continue fn = getattr(torch.nn.functional, f) # Ignore non-callable object like modules if not isinstance(fn, Callable): continue if f not in cls.FUNCTIONALS_WITHOUT_ANNOTATION: try: sig = inspect.signature(fn) has_tensor_arg = False for arg, param in sig.parameters.items(): if isinstance(param.annotation, type) and issubclass(param.annotation, torch.Tensor): has_tensor_arg = True if not has_tensor_arg: continue # No signature or Object is not supported except ValueError: pass functional_list.append((f, fn)) return functional_list @classmethod def generate_test_func(cls, func_name, fn): def functional_test(self): if func_name in self.UNTRACEABLE_FUNCTIONALS_PY38 and \ sys.version_info >= (3, 8) and sys.version_info < (3, 10): exc, err = self.UNTRACEABLE_FUNCTIONALS_PY38[func_name] with self.assertRaisesRegex(exc, err): symbolic_trace(fn) elif func_name in self.UNTRACEABLE_FUNCTIONALS: exc, err = self.UNTRACEABLE_FUNCTIONALS[func_name] with self.assertRaisesRegex(exc, err): symbolic_trace(fn) else: symbolic_trace(fn) return functional_test @classmethod def generate_tests(cls): functional_list = cls._get_functional() for func_name, fn in functional_list: test_name = "test_nn_functional_" + func_name functional_test = cls.generate_test_func(func_name, fn) setattr(cls, test_name, functional_test) @classmethod def setUpClass(cls): def no(*args, **kwargs): return False for name in cls.TO_PATCH.keys(): cls.TO_PATCH[name] = getattr(torch.nn.functional, name) setattr(torch.nn.functional, name, no) @classmethod def tearDownClass(cls): for name in cls.TO_PATCH.keys(): setattr(torch.nn.functional, name, cls.TO_PATCH[name]) TestFunctionalTracing.generate_tests() instantiate_device_type_tests(TestOperatorSignatures, globals()) @skipIfNoTorchVision class TestVisionTracing(JitTestCase): def setUp(self): # Checking for mutable operations whil tracing is feature flagged # Enable it in testing but not by default self.orig_tracer_mutable_flag = torch.fx.proxy.TracerBase.check_mutable_operations torch.fx.proxy.TracerBase.check_mutable_operations = True def tearDown(self): torch.fx.proxy.TracerBase.check_mutable_operations = self.orig_tracer_mutable_flag PROXY_ITERATED = (TraceError, r"Proxy object cannot be iterated") INCONSISTENT_TYPE = ( RuntimeError, r"Return value was annotated as having type __torch__.torchvision.models[.\w]+ but is actually of type Tensor" ) UNTRACEABLE_MODELS = { "fasterrcnn_resnet50_fpn": PROXY_ITERATED, "fasterrcnn_mobilenet_v3_large_320_fpn": PROXY_ITERATED, "fasterrcnn_mobilenet_v3_large_fpn": PROXY_ITERATED, "maskrcnn_resnet50_fpn": PROXY_ITERATED, "keypointrcnn_resnet50_fpn": PROXY_ITERATED, "retinanet_resnet50_fpn": PROXY_ITERATED, } UNSCRIPTABLE_MODELS = { "googlenet": INCONSISTENT_TYPE, "inception_v3": INCONSISTENT_TYPE, } output_transform = { "fcn_resnet50": lambda x: x["out"], "fcn_resnet101": lambda x: x["out"], "deeplabv3_resnet50": lambda x: x["out"], "deeplabv3_resnet101": lambda x: x["out"], "deeplabv3_mobilenet_v3_large": lambda x: x["out"], "lraspp_mobilenet_v3_large": lambda x: x["out"], "fasterrcnn_resnet50_fpn": lambda x: x[1], "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1], "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1], "maskrcnn_resnet50_fpn": lambda x: x[1], "keypointrcnn_resnet50_fpn": lambda x: x[1], "retinanet_resnet50_fpn": lambda x: x[1], } @classmethod def generate_test_fn(cls, name, model_fn, x, kwargs): def run_test(self): model = model_fn(**kwargs) model = model.eval() if name in self.UNTRACEABLE_MODELS: err, exc = self.UNTRACEABLE_MODELS[name] with self.assertRaisesRegex(err, exc): graph = symbolic_trace(model) else: out_transform = self.output_transform.get(name, lambda x: x) graph : torch.fx.GraphModule = symbolic_trace(model) a = out_transform(model(x)) b = out_transform(graph(x)) self.assertEqual(a, b) if name in self.UNSCRIPTABLE_MODELS: err, exc = self.UNSCRIPTABLE_MODELS[name] with self.assertRaisesRegex(err, exc): script = torch.jit.script(graph) else: script = torch.jit.script(graph) c = out_transform(script(x)) self.assertEqual(a, c) return run_test @classmethod def generate_classification_tests(cls): for k, v in torchvision_models.__dict__.items(): if callable(v) and k[0].lower() == k[0] and k[0] != "_": test_name = 'test_torchvision_models_' + k x = torch.rand(1, 3, 299, 299) if k in ['inception_v3'] else torch.rand(1, 3, 224, 224) kwargs = dict(num_classes=50) model_test = cls.generate_test_fn(k, v, x, kwargs) setattr(cls, test_name, model_test) @classmethod def generate_segmentation_tests(cls): for k, v in torchvision_models.segmentation.__dict__.items(): if callable(v) and k[0].lower() == k[0] and k[0] != "_": test_name = 'test_torchvision_models_segmentation_' + k x = torch.rand(1, 3, 32, 32) kwargs = dict(num_classes=10, pretrained_backbone=False) model_test = cls.generate_test_fn(k, v, x, kwargs) setattr(cls, test_name, model_test) @classmethod def generate_detection_tests(cls): for k, v in torchvision_models.detection.__dict__.items(): if callable(v) and k[0].lower() == k[0] and k[0] != "_": test_name = 'test_torchvision_models_detection_' + k x = [torch.rand(3, 300, 300)] kwargs = dict(num_classes=10, pretrained_backbone=False) model_test = cls.generate_test_fn(k, v, x, kwargs) setattr(cls, test_name, model_test) @classmethod def generate_video_tests(cls): for k, v in torchvision_models.video.__dict__.items(): if callable(v) and k[0].lower() == k[0] and k[0] != "_": test_name = 'test_torchvision_models_video_' + k x = torch.rand(1, 3, 4, 112, 112) kwargs = dict(num_classes=50) model_test = cls.generate_test_fn(k, v, x, kwargs) setattr(cls, test_name, model_test) @classmethod def generate_tests(cls): cls.generate_classification_tests() cls.generate_detection_tests() cls.generate_segmentation_tests() cls.generate_video_tests() if HAS_TORCHVISION: TestVisionTracing.generate_tests() if __name__ == '__main__': run_tests()
ee32eb4c5bf0fa3b9827e0a11a8b943fbb9b709d
5c5b53b686cd11b76772768096d096b1f2e0636b
/codingtest/findCityBJ18352.py
d3ad4ff983e5fb5e1aeb7f0e0ff5922c2ea6daa9
[]
no_license
jewerlykim/python_Algorithm
3e72fe9b145ff172ca76c9d59fd1be6246513ae5
e83b7e8fc58807ebf05f423d962ad9ce37100ada
refs/heads/main
2023-08-22T10:23:29.764080
2021-10-14T16:13:14
2021-10-14T16:13:14
322,784,608
2
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
import sys from collections import deque # sys.stdin = open("/Users/jewerlykim/Desktop/python_Algorithm/codingtest/18352.txt", 'r') cityNumber, roadNumber, distance, startCityNumber = map(int, sys.stdin.readline().split()) graph = [[] for _ in range(cityNumber+1)] visited = [False for _ in range(cityNumber+1)] distanceGraph = [0 for _ in range(cityNumber+1)] for _ in range(roadNumber): departure, arrive = map(int, sys.stdin.readline().split()) graph[departure].append(arrive) def bfs(startCityNumber): queue = deque() queue.append(startCityNumber) visited[startCityNumber] = True while queue: city = queue.popleft() for i in graph[city]: if visited[i] == False: queue.append(i) visited[i] = True distanceGraph[i] = distanceGraph[city] + 1 bfs(startCityNumber) exist = False for i, value in enumerate(distanceGraph): if value == distance: print(i) exist = True if not exist: print(-1)
0064386a9682b065d6f45192f430c384290a799a
c929632612012a436fdec27771a6a8716cdb24bf
/setup.py
047ed9b775f9449564700e84813c16890e9b8e7d
[]
no_license
imclab/python-ucto
bae2f082068261b70bf71ea681b92bf6e2e6263b
a07e87f568cdb342b84f7b76e9f466d507567211
refs/heads/master
2021-01-14T10:30:27.892695
2016-03-10T14:49:58
2016-03-10T14:49:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,652
py
#!/usr/bin/env python from distutils.core import setup, Extension from Cython.Distutils import build_ext import glob import os import sys from os.path import expanduser HOMEDIR = expanduser("~") VERSION = '0.3.0' includedirs = [HOMEDIR + '/local/include/','/usr/include/', '/usr/include/libxml2','/usr/local/include/' ] libdirs = [HOMEDIR + '/local/lib/','/usr/lib','/usr/local/lib'] if 'VIRTUAL_ENV' in os.environ: includedirs.insert(0,os.environ['VIRTUAL_ENV'] + '/include') libdirs.insert(0,os.environ['VIRTUAL_ENV'] + '/lib') if sys.version < '3': extensions = [ Extension("ucto", [ "libfolia_classes.pxd", "ucto_classes.pxd", "ucto_wrapper2.pyx"], language='c++', include_dirs=includedirs, library_dirs=libdirs, libraries=['ucto','folia'], extra_compile_args=['--std=c++0x'], ) ] else: extensions = [ Extension("ucto", [ "libfolia_classes.pxd", "ucto_classes.pxd", "ucto_wrapper.pyx"], language='c++', include_dirs=includedirs, library_dirs=libdirs, libraries=['ucto','folia'], extra_compile_args=['--std=c++0x'], ) ] setup( name = 'python-ucto', version = VERSION, author = 'Maarten van Gompel', author_email = "[email protected]", description = ("This is a Python binding to the tokenizer Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is a regular-expression based, extensible, and advanced tokeniser written in C++ (https://languagemachines.github.io/ucto)."), license = "GPL", keywords = "tokenizer tokenization tokeniser tokenisation nlp computational_linguistics ucto", url = "https://github.com/proycon/python-ucto", ext_modules = extensions, cmdclass = {'build_ext': build_ext}, requires=['ucto (>=0.8.4)'], install_requires=['Cython'], classifiers=[ "Development Status :: 4 - Beta", "Topic :: Text Processing :: Linguistic", "Programming Language :: Cython", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Operating System :: POSIX", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", ], )
59c3785a4ac2ee9b31690323dc85dd3b30e8673e
52b5773617a1b972a905de4d692540d26ff74926
/.history/get_20200805213236.py
40816acd83fa8a37b6e300d4e36406c9b1c906c9
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
def produce(num1,num2): totalValue = 0 for i in range(num1): print(i) totalValue +=num2 print(totalValue) produce(2,3) # 4513 = 4 *
6a7d2bc23a45d9781a2a50fbd1c51140a331df8f
8efe56ee34c455a6b1336897f6d457acbc9c10f9
/examples/tf/trpo_gym_tf_cartpole.py
d68045cd1292b920783ca7aa1a65100b8b7b1e9b
[ "MIT" ]
permissive
neurips2020submission11699/metarl
ab18d11e708bf569d76cb2fab2bcce089badd111
ae4825d21478fa1fd0aa6b116941ea40caa152a5
refs/heads/master
2022-10-15T22:03:09.948673
2020-06-11T19:22:55
2020-06-11T19:30:58
268,410,657
4
0
null
null
null
null
UTF-8
Python
false
false
1,441
py
#!/usr/bin/env python3 """An example to train a task with TRPO algorithm.""" import gym from metarl import wrap_experiment from metarl.envs import MetaRLEnv from metarl.experiment import LocalTFRunner from metarl.experiment.deterministic import set_seed from metarl.np.baselines import LinearFeatureBaseline from metarl.tf.algos import TRPO from metarl.tf.policies import CategoricalMLPPolicy @wrap_experiment def trpo_gym_tf_cartpole(ctxt=None, seed=1): """Train TRPO with CartPole-v0 environment. Args: ctxt (metarl.experiment.ExperimentContext): The experiment configuration used by LocalRunner to create the snapshotter. seed (int): Used to seed the random number generator to produce determinism. """ set_seed(seed) with LocalTFRunner(snapshot_config=ctxt) as runner: env = MetaRLEnv(gym.make('CartPole-v0')) policy = CategoricalMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32)) baseline = LinearFeatureBaseline(env_spec=env.spec) algo = TRPO( env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=200, discount=0.99, max_kl_step=0.01, ) runner.setup(algo, env) runner.train(n_epochs=120, batch_size=4000) trpo_gym_tf_cartpole()
91ae813803ef41b2393de367a4d0b898cf8d03a7
caaa1c57129a3e2369e4d6eeda46a94247c686d6
/flight/migrations/0002_auto_20180921_1020.py
9af863ff7971c398ad3a5436ebedac81b720fbb6
[]
no_license
Sundarmax/Ariline--Django-REST
3884c14ab8440f809c1dbac7d91b7349a9e4d3a0
131f875f58c94f0c297a2b82c31c4880d7f5de08
refs/heads/master
2020-03-31T02:31:57.754379
2018-10-06T10:16:03
2018-10-06T10:16:03
151,828,051
0
0
null
null
null
null
UTF-8
Python
false
false
366
py
# Generated by Django 2.1.1 on 2018-09-21 04:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('flight', '0001_initial'), ] operations = [ migrations.AlterField( model_name='flight', name='no_seats', field=models.IntegerField(), ), ]
aa7516b3f811b25c098019f35297cf83e86f947f
ac54aa0127a47fb59211fba9e6cb8431d9d864cd
/apps/post/api.py
35052cf6869626cc68264ddbd273a9f3f4d61940
[]
no_license
xiringlama/manutd.org.np
8919e3c1ad0494f88b819089686a756d67d38598
f394f16edb96c05e2e864dcec1ec52532cd35ac2
refs/heads/master
2021-07-12T00:33:17.197706
2017-10-16T14:45:10
2017-10-16T14:45:10
107,222,122
1
0
null
null
null
null
UTF-8
Python
false
false
438
py
from rest_framework import viewsets, mixins from apps.key.permissions import DistributedKeyAuthentication from apps.post.models import Post from apps.post.serializers import PostSerializer class PostViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, viewsets.GenericViewSet): serializer_class = PostSerializer queryset = Post.objects.filter(status='Published') # permission_classes = (DistributedKeyAuthentication,)
ac82a99b56e519a3667ee7e102affd07d4921e27
38ecf426f34b025b70208faf5d7de03d7ce1e7f3
/Loan.py
04b28028a80419f800080a9e8ca9e2d6c3e6abb6
[]
no_license
ic1396/LearnPython
3ed6805e0cfcc622a8376084715f8c5fe3db8058
faabfecace5dd2ebf28ad75f35c61a29dee801ee
refs/heads/master
2021-11-22T23:26:10.085015
2021-11-06T06:48:19
2021-11-06T06:48:19
89,790,705
0
1
null
null
null
null
UTF-8
Python
false
false
1,500
py
#!/usr/bin/python3 # 《Python语言程序设计》程序清单7-8 # Programed List 7-8 # 示例:类的抽象与封装 利息类 class Loan: def __init__(self, annualInterestRate = 2.5, numberOfYears = 1, loanAmount = 1000, borrower = " "): self.__annualInterestRate = annualInterestRate self.__numberOfYears = numberOfYears self.__loanAmount = loanAmount self.__borrower = borrower def getAnnualInterestRate(self): return self.__annualInterestRate def getNumberOfYears(self): return self.__numberOfYears def getLoanAmount(self): return self.__loanAmount def getBorrower(self): return self.__borrower def setAnnualInterestRate(self, annualInterestRate): self.__annualInterestRate = annualInterestRate def setNumberOfYears(self, numberOfYears): self.__numberOfYears = numberOfYears def setLoanAmount(self, loanAmount): self.__loanAmount = loanAmount def setBorrower(self, borrower): self.__borrower = borrower def getMonthlyPayment(self): monthlyInterestRate = self.__annualInterestRate / 1200 monthlyPayment = self.__loanAmount * monthlyInterestRate / \ (1 - (1 / (1 + monthlyInterestRate) ** (self.__numberOfYears * 12))) return monthlyPayment def getTotalPayment(self): totalPayment = self.getMonthlyPayment() * self.__numberOfYears * 12 return totalPayment
b405952335b6929afbb22de633864b74f1b0ad52
b2135e3fc77666f043f0fbafd0d88ed9865d5b4f
/Python files/01 Chapter 1.1 - About Printing/01 Printing numbers/77110_02_code.step.py
f7e395198a69c7e49f8b6c88c7007d98253a1ca1
[]
no_license
Felienne/spea
164d05e9fbba82c7b7df8d00295f7157054f9248
ecb06c66aaf6a2dced3f141ca415be9efb7dbff5
refs/heads/master
2020-03-17T17:35:27.302219
2018-05-17T10:14:49
2018-05-17T10:14:49
133,794,299
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
# This code prints the number 17. Change it so that it prints 19. print(17)
6a7583878c83c37b2fc3a1416f0088ec77d2d1b2
0c70dcec22a090e70b1f20613ea6e0a64fd9a037
/GPS卫星位置的计算/venv/Lib/site-packages/pandas/tests/frame/methods/test_pop.py
8029640b10a0a2d2d7b0862092fba802273d2e96
[ "MIT" ]
permissive
payiz-asj/Gis
82c1096d830878f62c7a0d5dfb6630d4e4744764
3d315fed93e2ab850b836ddfd7a67f5618969d10
refs/heads/main
2023-06-27T15:25:17.301154
2021-08-03T10:02:58
2021-08-03T10:02:58
392,269,853
1
1
null
null
null
null
UTF-8
Python
false
false
1,266
py
from pandas import DataFrame, Series import pandas._testing as tm class TestDataFramePop: def test_pop(self, float_frame): float_frame.columns.name = "baz" float_frame.pop("A") assert "A" not in float_frame float_frame["foo"] = "bar" float_frame.pop("foo") assert "foo" not in float_frame assert float_frame.columns.name == "baz" # gh-10912: inplace ops cause caching issue a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"]) b = a.pop("B") b += 1 # original frame expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"]) tm.assert_frame_equal(a, expected) # result expected = Series([2, 5], index=["X", "Y"], name="B") + 1 tm.assert_series_equal(b, expected) def test_pop_non_unique_cols(self): df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]}) df.columns = ["a", "b", "a"] res = df.pop("a") assert type(res) == DataFrame assert len(res) == 2 assert len(df.columns) == 1 assert "b" in df.columns assert "a" not in df.columns assert len(df.index) == 2
e99c443f7caab7c5da31ef4e7041c47f6dc04027
1b5802806cdf2c3b6f57a7b826c3e064aac51d98
/tensorrt-integrate-1.5-unet/unet-pytorch-main/unet.py
a00010a9854ff61c486873529329e54e252185eb
[ "MIT" ]
permissive
jinmin527/learning-cuda-trt
def70b3b1b23b421ab7844237ce39ca1f176b297
81438d602344c977ef3cab71bd04995c1834e51c
refs/heads/main
2023-05-23T08:56:09.205628
2022-07-24T02:48:24
2022-07-24T02:48:24
517,213,903
36
18
null
2022-07-24T03:05:05
2022-07-24T03:05:05
null
UTF-8
Python
false
false
15,472
py
import colorsys import copy import time import cv2 import numpy as np import torch import torch.nn.functional as F from PIL import Image from torch import nn from nets.unet import Unet as unet from utils.utils import cvtColor, preprocess_input, resize_image #--------------------------------------------# # 使用自己训练好的模型预测需要修改2个参数 # model_path和num_classes都需要修改! # 如果出现shape不匹配 # 一定要注意训练时的model_path和num_classes数的修改 #--------------------------------------------# class Unet(object): _defaults = { #-------------------------------------------------------------------# # model_path指向logs文件夹下的权值文件 # 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。 # 验证集损失较低不代表miou较高,仅代表该权值在验证集上泛化性能较好。 #-------------------------------------------------------------------# "model_path" : 'model_data/unet_vgg_voc.pth', #--------------------------------# # 所需要区分的类的个数+1 #--------------------------------# "num_classes" : 21, #--------------------------------# # 所使用的的主干网络:vgg、resnet50 #--------------------------------# "backbone" : "vgg", #--------------------------------# # 输入图片的大小 #--------------------------------# "input_shape" : [512, 512], #-------------------------------------------------# # mix_type参数用于控制检测结果的可视化方式 # # mix_type = 0的时候代表原图与生成的图进行混合 # mix_type = 1的时候代表仅保留生成的图 # mix_type = 2的时候代表仅扣去背景,仅保留原图中的目标 #-------------------------------------------------# "mix_type" : 0, #--------------------------------# # 是否使用Cuda # 没有GPU可以设置成False #--------------------------------# "cuda" : True, } #---------------------------------------------------# # 初始化UNET #---------------------------------------------------# def __init__(self, **kwargs): self.__dict__.update(self._defaults) for name, value in kwargs.items(): setattr(self, name, value) #---------------------------------------------------# # 画框设置不同的颜色 #---------------------------------------------------# if self.num_classes <= 21: self.colors = [ (0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128), (128, 64, 12)] else: hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) #---------------------------------------------------# # 获得模型 #---------------------------------------------------# self.generate() #---------------------------------------------------# # 获得所有的分类 #---------------------------------------------------# def generate(self): self.net = unet(num_classes = self.num_classes, backbone=self.backbone) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.net.load_state_dict(torch.load(self.model_path, map_location=device)) self.net = self.net.eval() print('{} model, and classes loaded.'.format(self.model_path)) if self.cuda: self.net = nn.DataParallel(self.net) self.net = self.net.cuda() #---------------------------------------------------# # 检测图片 #---------------------------------------------------# def detect_image(self, image): #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------# # 对输入图像进行一个备份,后面用于绘图 #---------------------------------------------------# old_img = copy.deepcopy(image) orininal_h = np.array(image).shape[0] orininal_w = np.array(image).shape[1] #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data, nw, nh = resize_image(image, (self.input_shape[1],self.input_shape[0])) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, np.float32)), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------# # 图片传入网络进行预测 #---------------------------------------------------# pr = self.net(images)[0] #---------------------------------------------------# # 取出每一个像素点的种类 #---------------------------------------------------# pr = F.softmax(pr.permute(1,2,0),dim = -1).cpu().numpy() #--------------------------------------# # 将灰条部分截取掉 #--------------------------------------# pr = pr[int((self.input_shape[0] - nh) // 2) : int((self.input_shape[0] - nh) // 2 + nh), \ int((self.input_shape[1] - nw) // 2) : int((self.input_shape[1] - nw) // 2 + nw)] #---------------------------------------------------# # 进行图片的resize #---------------------------------------------------# pr = cv2.resize(pr, (orininal_w, orininal_h), interpolation = cv2.INTER_LINEAR) #---------------------------------------------------# # 取出每一个像素点的种类 #---------------------------------------------------# pr = pr.argmax(axis=-1) if self.mix_type == 0: # seg_img = np.zeros((np.shape(pr)[0], np.shape(pr)[1], 3)) # for c in range(self.num_classes): # seg_img[:, :, 0] += ((pr[:, :] == c ) * self.colors[c][0]).astype('uint8') # seg_img[:, :, 1] += ((pr[:, :] == c ) * self.colors[c][1]).astype('uint8') # seg_img[:, :, 2] += ((pr[:, :] == c ) * self.colors[c][2]).astype('uint8') seg_img = np.reshape(np.array(self.colors, np.uint8)[np.reshape(pr, [-1])], [orininal_h, orininal_w, -1]) #------------------------------------------------# # 将新图片转换成Image的形式 #------------------------------------------------# image = Image.fromarray(np.uint8(seg_img)) #------------------------------------------------# # 将新图与原图及进行混合 #------------------------------------------------# image = Image.blend(old_img, image, 0.7) elif self.mix_type == 1: # seg_img = np.zeros((np.shape(pr)[0], np.shape(pr)[1], 3)) # for c in range(self.num_classes): # seg_img[:, :, 0] += ((pr[:, :] == c ) * self.colors[c][0]).astype('uint8') # seg_img[:, :, 1] += ((pr[:, :] == c ) * self.colors[c][1]).astype('uint8') # seg_img[:, :, 2] += ((pr[:, :] == c ) * self.colors[c][2]).astype('uint8') seg_img = np.reshape(np.array(self.colors, np.uint8)[np.reshape(pr, [-1])], [orininal_h, orininal_w, -1]) #------------------------------------------------# # 将新图片转换成Image的形式 #------------------------------------------------# image = Image.fromarray(np.uint8(seg_img)) elif self.mix_type == 2: seg_img = (np.expand_dims(pr != 0, -1) * np.array(old_img, np.float32)).astype('uint8') #------------------------------------------------# # 将新图片转换成Image的形式 #------------------------------------------------# image = Image.fromarray(np.uint8(seg_img)) return image def get_FPS(self, image, test_interval): #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data, nw, nh = resize_image(image, (self.input_shape[1],self.input_shape[0])) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, np.float32)), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------# # 图片传入网络进行预测 #---------------------------------------------------# pr = self.net(images)[0] #---------------------------------------------------# # 取出每一个像素点的种类 #---------------------------------------------------# pr = F.softmax(pr.permute(1,2,0),dim = -1).cpu().numpy().argmax(axis=-1) #--------------------------------------# # 将灰条部分截取掉 #--------------------------------------# pr = pr[int((self.input_shape[0] - nh) // 2) : int((self.input_shape[0] - nh) // 2 + nh), \ int((self.input_shape[1] - nw) // 2) : int((self.input_shape[1] - nw) // 2 + nw)] t1 = time.time() for _ in range(test_interval): with torch.no_grad(): #---------------------------------------------------# # 图片传入网络进行预测 #---------------------------------------------------# pr = self.net(images)[0] #---------------------------------------------------# # 取出每一个像素点的种类 #---------------------------------------------------# pr = F.softmax(pr.permute(1,2,0),dim = -1).cpu().numpy().argmax(axis=-1) #--------------------------------------# # 将灰条部分截取掉 #--------------------------------------# pr = pr[int((self.input_shape[0] - nh) // 2) : int((self.input_shape[0] - nh) // 2 + nh), \ int((self.input_shape[1] - nw) // 2) : int((self.input_shape[1] - nw) // 2 + nw)] t2 = time.time() tact_time = (t2 - t1) / test_interval return tact_time def get_miou_png(self, image): #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) orininal_h = np.array(image).shape[0] orininal_w = np.array(image).shape[1] #---------------------------------------------------------# # 给图像增加灰条,实现不失真的resize # 也可以直接resize进行识别 #---------------------------------------------------------# image_data, nw, nh = resize_image(image, (self.input_shape[1],self.input_shape[0])) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, np.float32)), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() #---------------------------------------------------# # 图片传入网络进行预测 #---------------------------------------------------# pr = self.net(images)[0] #---------------------------------------------------# # 取出每一个像素点的种类 #---------------------------------------------------# pr = F.softmax(pr.permute(1,2,0),dim = -1).cpu().numpy() #--------------------------------------# # 将灰条部分截取掉 #--------------------------------------# pr = pr[int((self.input_shape[0] - nh) // 2) : int((self.input_shape[0] - nh) // 2 + nh), \ int((self.input_shape[1] - nw) // 2) : int((self.input_shape[1] - nw) // 2 + nw)] #---------------------------------------------------# # 进行图片的resize #---------------------------------------------------# pr = cv2.resize(pr, (orininal_w, orininal_h), interpolation = cv2.INTER_LINEAR) #---------------------------------------------------# # 取出每一个像素点的种类 #---------------------------------------------------# pr = pr.argmax(axis=-1) image = Image.fromarray(np.uint8(pr)) return image
aa9a0e1ec0fb65029c338c1783ad70bdc8b72522
39c99883c3e55c0a0a7684fc5fd89c767ea93cc8
/model.py
1ba435317b63996e67640f13e3a5cb9aac440e01
[]
no_license
shawntan/billion-word-imputation
872f478926966aa17e44a1738c58fdb90681a552
ea581253537ad76e89ec5eaa0cf80d57d61121e4
refs/heads/master
2020-04-09T11:14:02.828445
2014-11-21T09:32:43
2014-11-21T09:32:43
22,462,900
1
0
null
null
null
null
UTF-8
Python
false
false
4,425
py
# coding=utf-8 import theano import sys import theano.tensor as T import numpy as np from theano_toolkit import utils as U from theano_toolkit import updates import cPickle as pickle from numpy_hinton import print_arr from theano.printing import Print from vocab import read_file def create_vocab_vectors(vocab2id,size): V = U.create_shared(U.initial_weights(len(vocab2id) + 1,size)) V_b = U.create_shared(U.initial_weights(len(vocab2id) + 1)) return V,V_b def recurrent_combine(X,V,V_b,W_input,b_input,W_state_p,b_state_p,b_state,W_input_hidden,W_state_p_hidden): def step(curr_input,state_p): # Build next layer state = T.dot(curr_input,W_input) + T.dot(state_p,W_state_p) + b_state state = T.tanh(state) # RAE stuff rep_word_vec = T.dot(state,W_input.T) + b_input rep_curr_input = T.dot(rep_word_vec,V.T) + V_b rep_state_p = T.dot(state,W_state_p.T) + b_state_p # Contributions to predictive hidden layer hidden_partial = T.dot(state_p,W_state_p_hidden) + T.dot(curr_input,W_input_hidden) return state,rep_curr_input,rep_state_p,hidden_partial [states,rep_inputs,rep_states,hidden_partials],_ = theano.scan( step, sequences = [X[1:]], outputs_info = [X[0],None,None,None] ) return states,T.nnet.softmax(rep_inputs),rep_states,hidden_partials def missing_cost(scores,Y): probs = T.nnet.softmax(scores)[0] total_scores_diff = -T.log(probs[Y]) """ label_score = scores[Y] scores_diff = -(label_score - (scores + 1)) scores_diff = scores_diff * (scores_diff > 0) total_scores_diff = (T.sum(scores_diff) - scores_diff[Y])/(scores.shape[0]-1) """ return total_scores_diff def rae_cost(ids,X,states,rep_inputs,rep_states): # Actual input - reconstructed input error #input_rec_cost = T.mean(T.sum((X[1:]-rep_inputs)**2,axis=1)) input_rec_cost = -T.mean(T.log(rep_inputs[T.arange(rep_inputs.shape[0]),ids[1:]])) # Actual prev state - reconstructed prev state error state_rec_cost = ( # All states except last, all rec states except first T.sum((states[:-1] - rep_states[1:])**2) +\ # First state (first input) and first rec state T.sum((X[0] - rep_states[0])**2) )/states.shape[0] return input_rec_cost + state_rec_cost def create_model(ids,Y,vocab2id,size): word_vector_size = size rae_state_size = size predictive_hidden_size = size * 2 V,V_b = create_vocab_vectors(vocab2id,word_vector_size) X = V[ids] # RAE parameters W_input = U.create_shared(U.initial_weights(word_vector_size,rae_state_size)) b_input = U.create_shared(U.initial_weights(rae_state_size)) W_state_p = U.create_shared(U.initial_weights(rae_state_size,rae_state_size)) b_state_p = U.create_shared(U.initial_weights(rae_state_size)) b_state = U.create_shared(U.initial_weights(rae_state_size)) W_input_hidden = U.create_shared(U.initial_weights(word_vector_size,predictive_hidden_size)) W_state_p_hidden = U.create_shared(U.initial_weights(rae_state_size,predictive_hidden_size)) W_full_context_hidden = U.create_shared(U.initial_weights(rae_state_size,predictive_hidden_size)) b_hidden = U.create_shared(U.initial_weights(predictive_hidden_size)) W_output = U.create_shared(U.initial_weights(predictive_hidden_size)) states,rep_inputs,rep_states,hidden_partials = recurrent_combine( X, V,V_b, W_input,b_input, W_state_p,b_state_p,b_state, W_input_hidden,W_state_p_hidden, ) context = states[-1] hidden = T.dot(context,W_full_context_hidden) + hidden_partials + b_hidden # hidden = T.tanh(hidden) hidden = hidden * (hidden > 0) scores = T.dot(hidden,W_output) parameters = [ V, V_b, W_input, b_input, W_state_p, b_state_p, b_state, W_input_hidden, W_state_p_hidden, W_full_context_hidden, b_hidden, W_output ] cost = rae_cost(ids,X,states,rep_inputs,rep_states) + missing_cost(scores,Y) + 1e-5*sum(T.sum(w**2) for w in parameters) return scores, cost, parameters def training_model(vocab2id,size): ids = T.ivector('ids') Y = T.iscalar('Y') scores, cost, parameters = create_model(ids,Y,vocab2id,size) gradients = T.grad(cost,wrt=parameters) print "Computed gradients" train = theano.function( inputs = [ids,Y], updates = updates.adadelta(parameters,gradients,0.95,1e-6), outputs = cost ) test = theano.function( inputs = [ids], outputs = T.argmax(scores) ) return test,train, parameters
d9b69a220873901f4475849a5acbf53bdab5a693
21b201ebf2ffbbc19fa8d74e5657e12ef597b02d
/research/neural_programmer/data_utils.py
d5bae2d30db51a295f9719d42498a4e5bfc775fa
[]
no_license
alhsnouf/model
fa619691ad9d0afc7ad849a9471e6bb0643a8d47
5fe429b115634e642a7469b3f1d4bc0c5cf98782
refs/heads/master
2021-04-12T11:16:02.150045
2018-03-27T15:19:18
2018-03-27T15:19:18
126,702,717
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:a53d41aacbe166afd6c9e4a1822c313dd0e1cef93707ab41e75a8afd1ffeb53b size 27733
b400fba31f2fdf357fddd49b9f1a2872913b8b9d
d4cdc6c9e2580b2011d63f6d62f70ab9e13cd317
/sld-api-backend/api_v1/endpoints/auth.py
5c25ca1f22d744b558c204861daeb55ec28aeaec
[ "MIT" ]
permissive
timezombi/Stack-Lifecycle-Deployment
75cc92bc0267953039f0d66c7c219a8d444817c8
d84241099fb44762476b4201a2fc195e76975e26
refs/heads/master
2023-07-13T11:11:35.001371
2021-08-20T13:35:14
2021-08-20T13:35:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
from typing import Any from sqlalchemy.orm import Session from fastapi import APIRouter, Depends from fastapi.security import OAuth2PasswordRequestForm from schemas import schemas from schemas.schemas import Token from security import deps from security.tokens import validate_user router = APIRouter() @router.post("/access-token", response_model=Token) def login_access_token( user: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(deps.get_db)) -> Any: """ OAuth2 compatible token login, get an access token for future requests """ return validate_user(db, user.username, user.password) @router.post("/access-token-json", response_model=Token) def login_access_token_json( user: schemas.UserAuthenticate, db: Session = Depends(deps.get_db)) -> dict: """ OAuth2 compatible token login, get an access token for future requests """ return validate_user(db, user.username, user.password)
[ "{ID}+{username}@users.noreply.github.com" ]
{ID}+{username}@users.noreply.github.com
0a08e11ff1d01c391f047776fe01e6807cafe721
be0e978e39dd4ab192590e97b2e907b4072c461f
/conf.py
4ea22b874cef6819e261d30a7a5e5c553f8d29bc
[]
no_license
kbarbary/dessn-analysis
825007f1bcddf2e7fb92a99ee280cc644fd1ab70
2090b417b757447a28b766a6a5a38a7e7ea68c8e
refs/heads/master
2016-09-05T13:16:07.219179
2014-03-04T23:56:41
2014-03-04T23:56:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
import os pikdir = 'pik' plotdir = 'plots' # Make directories for d in [pikdir, plotdir]: if not os.path.exists(d): os.mkdir(d)
7dd3b559cde230f1cd49d4201ecfa533315f92fe
d83118503614bb83ad8edb72dda7f449a1226f8b
/src/dprj/platinumegg/app/cabaret/views/application/evolution/do.py
403717b769ec36230b647c36b6fe96b538c75f9a
[]
no_license
hitandaway100/caba
686fe4390e182e158cd9714c90024a082deb8c69
492bf477ac00c380f2b2758c86b46aa7e58bbad9
refs/heads/master
2021-08-23T05:59:28.910129
2017-12-03T19:03:15
2017-12-03T19:03:15
112,512,044
0
0
null
null
null
null
UTF-8
Python
false
false
2,683
py
# -*- coding: utf-8 -*- from platinumegg.app.cabaret.util.url_maker import UrlMaker from platinumegg.app.cabaret.views.application.evolution.base import EvolutionHandler from platinumegg.app.cabaret.models.Player import PlayerGold, PlayerDeck from platinumegg.app.cabaret.util.api import BackendApi from platinumegg.app.cabaret.util.cabareterror import CabaretError from platinumegg.app.cabaret.util.db_util import ModelRequestMgr from platinumegg.app.cabaret.util import db_util import settings_sub import urllib from platinumegg.lib.opensocial.util import OSAUtil from platinumegg.app.cabaret.models.Card import Card class Handler(EvolutionHandler): """進化合成実行. """ @classmethod def getViewerPlayerClassList(cls): return [PlayerGold, PlayerDeck] def procBench(self): v_player = self.getViewerPlayer() uid = v_player.id self.__baseid = Card.makeID(uid, 11) self.__materialid = Card.makeID(uid, 12) def process(self): args = self.getUrlArgs('/evolutiondo/') try: if settings_sub.IS_BENCH: requestkey = OSAUtil.makeSessionID() else: self.__baseid = int(args.get(0)) self.__materialid = self.getMaterialId() requestkey = urllib.unquote(args.get(1)) except: raise CabaretError(u'引数が想定外です', CabaretError.Code.ILLEGAL_ARGS) v_player = self.getViewerPlayer() try: model_mgr = db_util.run_in_transaction(Handler.tr_write, v_player, self.__baseid, self.__materialid, requestkey) model_mgr.write_end() except CabaretError,e: if e.code == CabaretError.Code.ALREADY_RECEIVED: pass else: if settings_sub.IS_LOCAL: raise CabaretError(u'合成できませんでした.%s' % CabaretError.getCodeString(e.code)) url = UrlMaker.evolution() self.appRedirect(self.makeAppLinkUrlRedirect(url)) return url = UrlMaker.evolutionanim() if settings_sub.IS_BENCH: self.response.set_status(200) self.response.send() else: self.appRedirect(self.makeAppLinkUrlRedirect(url)) @staticmethod def tr_write(v_player, basecardid, materialcardid, key): """書き込み. """ model_mgr = ModelRequestMgr() BackendApi.tr_evolution_do(model_mgr, v_player, basecardid, materialcardid, key) model_mgr.write_all() return model_mgr def main(request): return Handler.run(request)
f0a2557bcbcb8ad398c5927172e5d6cba1dc2da0
da199a7ff8bcc7a37efe2ac9036b785bf45c71c0
/service_mds/lun_inactive.py
0114f0829c74333e4b42bcfcf171b7d1b4f7836d
[]
no_license
saxisuer/smartmgr-v2
f8ed495ce7ce940477f27c12980bfd159bc159c3
6e3895062d37b6815a0d6de031652048b8f22ad3
refs/heads/master
2021-01-15T21:24:56.622142
2017-07-24T14:35:17
2017-07-24T14:35:17
99,865,861
0
2
null
2017-08-10T01:03:19
2017-08-10T01:03:19
null
UTF-8
Python
false
false
3,502
py
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 from pdsframe import * from service_mds import g from service_mds import common import message.pds_pb2 as msg_pds import message.mds_pb2 as msg_mds class LunInactiveMachine(BaseMachine): __metaclass__ = MataMachine MID = msg_mds.LUN_INACTIVE_REQUEST def INIT(self, request): self.response = MakeResponse(msg_mds.LUN_INACTIVE_RESPONSE, request) self.request = request self.request_body = request.body.Extensions[msg_mds.lun_inactive_request] if g.is_ready == False: self.response.rc.retcode = msg_mds.RC_MDS_SERVICE_IS_NOT_READY self.response.rc.message = "MDS service is not ready" self.SendResponse(self.response) return MS_FINISH items = self.request_body.lun_name.split("_") if len(items) != 2 or items[0] != g.node_info.node_name: self.response.rc.retcode = msg_mds.RC_MDS_LUN_NOT_EXIST self.response.rc.message = "Lun '%s' is not exist" % self.request_body.lun_name self.SendResponse(self.response) return MS_FINISH lun_name = items[1] lun_info = common.GetLunInfoByName(lun_name) if lun_info == None: self.response.rc.retcode = msg_mds.RC_MDS_LUN_NOT_EXIST self.response.rc.message = "Lun %s not exist" % (self.request_body.lun_name) self.SendResponse(self.response) return MS_FINISH if lun_info.asm_status == "INACTIVE": self.response.rc.retcode = msg_mds.RC_MDS_LUN_INACTIVE_NOT_ALLOWED self.response.rc.message = "Lun %s already inactive state" % self.request_body.lun_name self.SendResponse(self.response) return MS_FINISH if lun_info.asm_status != "ACTIVE": self.response.rc.retcode = msg_mds.RC_MDS_LUN_INACTIVE_NOT_ALLOWED self.response.rc.message = "Lun %s not active state, please active first!" % self.request_body.lun_name self.SendResponse(self.response) return MS_FINISH self.database_node_list = [node_info for node_info in g.nsnode_list.nsnode_infos if node_info.sys_mode != "storage"] self.mds_database_request = MakeRequest(msg_mds.ASMDISK_OFFLINE_REQUEST) asmdisk_info = common.GetASMDiskInfoByLunName(self.request_body.lun_name) self.mds_database_request.body.Extensions[msg_mds.asmdisk_offline_request].asmdisk_name = asmdisk_info.asmdisk_name # 先向第一个计算节点发送请求 self.request_num = 1 return self.send_asm_request() def send_asm_request(self): node_info = self.database_node_list[self.request_num-1] self.SendRequest(node_info.listen_ip, node_info.listen_port, self.mds_database_request, self.Entry_LunInactive) return MS_CONTINUE def Entry_LunInactive(self, response): if response.rc.retcode != msg_pds.RC_SUCCESS: # 向另外的计算节点发送请求,全部失败才返回 if self.request_num < len(self.database_node_list): self.request_num += 1 return self.send_asm_request() else: self.response.rc.CopyFrom(response.rc) self.SendResponse(self.response) return MS_FINISH self.response.rc.retcode = msg_pds.RC_SUCCESS self.SendResponse(self.response) return MS_FINISH
8ffd0e1b3034be62335188db3ccdd16b0c58540c
38ac429d63369922e12e19cdda042b08b8123027
/swagger_client/models/json_sort_field_find_attribute_types_request.py
d563a4b2286f13ff3b7dce9832b2c61c8a9565ad
[]
no_license
aviv-julienjehannet/collibra_apiclient
0dfebe5df2eb929645b87eba42fab4c06ff0a6be
10a89e7acaf56ab8c7417698cd12616107706b6b
refs/heads/master
2021-09-12T16:52:19.803624
2018-04-19T01:35:20
2018-04-19T01:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,616
py
# coding: utf-8 """ \"Data Governance Center: REST API v2\" No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 2.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class JsonSortFieldFindAttributeTypesRequest(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ allowed enum values """ NAME = "NAME" KIND = "KIND" STATISTICS_ENABLED = "STATISTICS_ENABLED" IS_INTEGER = "IS_INTEGER" ALLOWED_VALUES = "ALLOWED_VALUES" """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self): # noqa: E501 """JsonSortFieldFindAttributeTypesRequest - a model defined in Swagger""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, JsonSortFieldFindAttributeTypesRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
678cc4f6459ab6e34107a402ad11f6583bb5612e
fe1d717382b175baeea1e0186fcdefad93e086f3
/arg_greet.py
db7606cbb722b48a2b8c71cf76fca72b6184e4cc
[]
no_license
jiwon73/lecture_2
19669014c7398a0f692e9a20302cb798fc67b438
4ee4f8badb74da6b852a09b8ccfad6eefcc73d3c
refs/heads/master
2022-11-19T16:56:53.074924
2020-07-15T08:52:08
2020-07-15T08:52:08
279,532,343
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
def greet(*names): for name in names: print('안녕하세요',name,'씨') greet('홍길동','양민춘','이순신') greet('James','Thomas')
27307bfe340d36b6bb9ee49fcbd2dc75bc39a97f
bd9d75816e6bb174c2b9e443492096339e3f90e3
/sympy/mpmath/tests/test_rootfinding.py
f6221ada8ef6e46460c9edab405b2b624bc71af7
[ "BSD-3-Clause" ]
permissive
Rezaian-ma/sympy
ae800f0f1420f2cdbef1e4535e44f5cd47c9d8b0
7d8d096215c8f65ba1d4a9c09af78ec0c3844518
refs/heads/master
2021-12-03T01:17:38.048732
2010-02-14T05:53:55
2010-02-14T05:53:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,497
py
from sympy.mpmath import * from sympy.mpmath.optimization import * def test_findroot(): # old tests, assuming secant mp.dps = 15 assert findroot(lambda x: 4*x-3, mpf(5)).ae(0.75) assert findroot(sin, mpf(3)).ae(pi) assert findroot(sin, (mpf(3), mpf(3.14))).ae(pi) assert findroot(lambda x: x*x+1, mpc(2+2j)).ae(1j) # test all solvers with 1 starting point f = lambda x: cos(x) for solver in [Newton, Secant, MNewton, Muller, ANewton]: x = findroot(f, 2., solver=solver) assert abs(f(x)) < eps # test all solvers with interval of 2 points for solver in [Secant, Muller, Bisection, Illinois, Pegasus, Anderson, Ridder]: x = findroot(f, (1., 2.), solver=solver) assert abs(f(x)) < eps # test types f = lambda x: (x - 2)**2 assert isinstance(findroot(f, 1, force_type=mpf, tol=1e-10), mpf) assert isinstance(findroot(f, 1., force_type=None, tol=1e-10), float) assert isinstance(findroot(f, 1, force_type=complex, tol=1e-10), complex) def test_mnewton(): f = lambda x: polyval([1,3,3,1],x) x = findroot(f, -0.9, solver='mnewton') assert abs(f(x)) < eps def test_anewton(): f = lambda x: (x - 2)**100 x = findroot(f, 1., solver=ANewton) assert abs(f(x)) < eps def test_muller(): f = lambda x: (2 + x)**3 + 2 x = findroot(f, 1., solver=Muller) assert abs(f(x)) < eps def test_multiplicity(): for i in xrange(1, 5): assert multiplicity(lambda x: (x - 1)**i, 1) == i assert multiplicity(lambda x: x**2, 1) == 0 def test_multidimensional(): def f(*x): return [3*x[0]**2-2*x[1]**2-1, x[0]**2-2*x[0]+x[1]**2+2*x[1]-8] assert mnorm(jacobian(f, (1,-2)) - matrix([[6,8],[0,-2]]),1) < 1.e-7 for x, error in MDNewton(f, (1,-2), verbose=0, norm=lambda x: norm(x, inf)): pass assert norm(f(*x), 2) < 1e-14 # The Chinese mathematician Zhu Shijie was the very first to solve this # nonlinear system 700 years ago f1 = lambda x, y: -x + 2*y f2 = lambda x, y: (x**2 + x*(y**2 - 2) - 4*y) / (x + 4) f3 = lambda x, y: sqrt(x**2 + y**2) def f(x, y): f1x = f1(x, y) return (f2(x, y) - f1x, f3(x, y) - f1x) x = findroot(f, (10, 10)) assert [int(round(i)) for i in x] == [3, 4] def test_trivial(): assert findroot(lambda x: 0, 1) == 1 assert findroot(lambda x: x, 0) == 0 #assert findroot(lambda x, y: x + y, (1, -1)) == (1, -1)
c306066a382072689bc5aec0380668d5f0faeed0
3b802edba5b97a4e97290be657395cd7635f5d35
/neoman/worker.py
8b960c99356d6fd8f2bc7ce851f4f9e769264c14
[ "BSD-2-Clause" ]
permissive
moreati/yubikey-neo-manager
a7678fafbf8f88b29482caa843092f7598b6725c
b0fa3cdf5331bf1504e2744790caddff52b551f6
refs/heads/master
2021-01-19T06:55:58.099823
2015-06-04T11:30:53
2015-06-04T11:30:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,363
py
# Copyright (c) 2013 Yubico AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from PySide import QtGui, QtCore, QtNetwork from functools import partial from neoman import messages as m class _Event(QtCore.QEvent): EVENT_TYPE = QtCore.QEvent.Type(QtCore.QEvent.registerEventType()) def __init__(self, callback): super(_Event, self).__init__(_Event.EVENT_TYPE) self.callback = callback class QtWorker(QtCore.QObject): _work_signal = QtCore.Signal(tuple) _work_done = QtCore.Signal(object) _work_done_0 = QtCore.Signal() def __init__(self, window): super(QtWorker, self).__init__() self.window = window self.busy = QtGui.QProgressDialog('', None, 0, 0, window) self.busy.setWindowTitle(m.wait) self.busy.setWindowModality(QtCore.Qt.WindowModal) self.busy.setMinimumDuration(0) self.busy.setWindowFlags(self.busy.windowFlags() ^ QtCore.Qt.WindowContextHelpButtonHint) self.busy.setAutoClose(True) self.work_thread = QtCore.QThread() self.moveToThread(self.work_thread) self.work_thread.start() self._work_signal.connect(self.work) self._work_done_0.connect(self.busy.reset) self._manager = QtNetwork.QNetworkAccessManager() self._manager.finished.connect(self._work_done_0) self._manager.finished.connect(self._dl_done) def post(self, title, fn, callback=None): self.busy.setLabelText(title) self.busy.show() self.post_bg(fn, callback) def post_bg(self, fn, callback=None): self._work_signal.emit((fn, callback)) def download(self, url, callback=None): self.busy.setLabelText(m.downloading_file) self.busy.show() self.download_bg(url, callback) def download_bg(self, url, callback=None): url = QtCore.QUrl(url) request = QtNetwork.QNetworkRequest(url) response = self._manager.get(request) self._dl = (request, response, callback) def _dl_error(self): (req, resp, callback) = self._dl del self._dl if callback: event = _Event(partial(callback, resp.error())) QtGui.QApplication.postEvent(self.window, event) def _dl_done(self): (req, resp, callback) = self._dl del self._dl if callback: result = resp.error() if result is QtNetwork.QNetworkReply.NoError: result = resp.readAll() resp.close() event = _Event(partial(callback, result)) QtGui.QApplication.postEvent(self.window, event) @QtCore.Slot(tuple) def work(self, job): QtCore.QThread.msleep(10) # Needed to yield (fn, callback) = job try: result = fn() except Exception as e: result = e if callback: event = _Event(partial(callback, result)) QtGui.QApplication.postEvent(self.window, event) self._work_done_0.emit() Worker = QtWorker
771df2d2ac822d8885a18f74c6dc9f8bae1bf489
ee721fac058d6c0472be24f95e3cc8df37f4198d
/Stack/reverse.py
4028f27a5effe0e1e23e87a5d35cf04f3f7f0712
[]
no_license
Horlawhumy-dev/Python_DataStructures
51af03dcbed86a51009c13657b17584f09d0a40d
c5aad1fe6c6566414c76711a0871abf9529fe04f
refs/heads/master
2023-06-04T09:32:34.776313
2021-07-02T21:43:09
2021-07-02T21:43:09
377,631,264
0
0
null
null
null
null
UTF-8
Python
false
false
823
py
# this program reverses what string inputs given by user class Stack(): def __init__(self): self.items = [] def is_empty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): if not self.is_empty(): return self.items[-1] return 'Stack is empty!' def get_items(self): return self.items # input from user word = input('Enter your word: ') # Initializing stack object stack = Stack() # function reversing a given word def reverse_str(word): for i in range(len(word)): stack.push(word[i]) rev = " " arr = stack.get_items() while len(arr) > 0: rev += arr.pop() return rev print(reverse_str(word))
ec213dd72742d92bdd997b79ef064fedbc9c7506
e5b4ed93d6666e195e96a265d3e7cfe4243a7300
/pbase/day13/code/mypack/games/supermario.py
b0979a018d00553c62cb30752ba30cf8fc1721cc
[]
no_license
Spider251/python
934f5b8b923c2b61186a6df8445957290e5c4c74
8b1931f862e1d5c29fed9af624bcac94c1d25755
refs/heads/master
2020-04-05T11:58:04.558098
2018-11-09T12:06:06
2018-11-09T12:06:06
156,852,553
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
# file: mypack/games/supermario.py def play(): print("正在玩 超级玛丽") print("超级玛丽模块被加载")
ed3c30613036feb38c28bf2cee2a563c2faa8cc0
8f26514c451e2398d5e3688c184ea74d1dad21b2
/month_01/day_05/exercise_02.py
8d6e663126992c62ca4ef5f413334a35d88be2ec
[]
no_license
CircularWorld/Python_exercise
25e7aebe45b4d2ee4e3e3afded082c56483117de
96d4d9c5c626f418803f44584c5350b7ce514368
refs/heads/master
2022-11-21T07:29:39.054971
2020-07-20T10:12:24
2020-07-20T10:12:24
281,081,559
0
1
null
null
null
null
UTF-8
Python
false
false
1,094
py
''' 字符串: content = "我是京师监狱狱长金海。" 打印第一个字符、打印最后一个字符、打印中间字符 打印字前三个符、打印后三个字符 命题:金海在字符串content中 命题:京师监狱不在字符串content中 通过切片打印“京师监狱狱长” 通过切片打印“长狱狱监师京” 通过切片打印“我师狱海” 倒序打印字符 ''' content = "我是京师监狱狱长金海。" # 打印第一个字符、打印最后一个字符、打印中间字符 # 打印字前三个符、打印后三个字符 print(content[0],content[-1],content[len(content)//2]) print(content[:3],content[-3:]) # 命题:金海在字符串content中 # 命题:京师监狱不在字符串content中 print('金海'in content) print('京师监狱' not in content) # 通过切片打印“京师监狱狱长” # 通过切片打印“长狱狱监师京” # 通过切片打印“我师狱海” # 字符串: content = "我是京师监狱狱长金海。" print(content[2:-3]) print(content[-4:2:-1]) print(content[::3]) print(content[-1::-1])
cc34be56b4526ad16bfdbf503a373b9a3f5a56a3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03637/s505835119.py
2e2c10f3045b463cc3d59b8aad36d02afaeae057
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
N=int(input()) a=list(map(int,input().split())) n4,n2=0,0 for i in range(N): if a[i] % 4 == 0:n4 += 1 elif a[i] % 2 == 0:n2 += 1 if n4 >= N//2:print('Yes') elif n4*2 + n2 >= N:print('Yes') else:print('No')
191126e94cbf396eb4cb7f58ebd051eaa21c55b3
082782cfbd0d8ac77c0ec3901a9de1c1e748405a
/sutorbank/settings.py
7813c4759f3668de0041e98d18074ace7b3d9d84
[]
no_license
daniel-kanchev/sutorbank
1c1eb020f86ff58f5a3edc2d1c6971e8d66a390d
0738ec698f5711a9ceeb59e0a683a853a3bf8979
refs/heads/main
2023-03-17T17:55:50.537998
2021-03-17T14:47:37
2021-03-17T14:47:37
348,746,138
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
BOT_NAME = 'sutorbank' SPIDER_MODULES = ['sutorbank.spiders'] NEWSPIDER_MODULE = 'sutorbank.spiders' USER_AGENT = 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/66.0', ITEM_PIPELINES = { 'sutorbank.pipelines.DatabasePipeline': 300, } FEED_EXPORT_ENCODING = 'utf-8' ROBOTSTXT_OBEY = True LOG_LEVEL = 'WARNING' # LOG_LEVEL = 'DEBUG'
b734da395f91fb51745ae74515623e919ce896ee
2f2667682bb78578445b9e3aac7cc62cfba83d5a
/googlenet/SavedModel_to_trt.py
41b4f1216a144aa9b441b032c1fc82fe4ca0799b
[]
no_license
Yorwxue/trt_experence
9c770c2a1cb7c48c9d7f21c46be0107de91f1c41
778a6cef019dd8afdae6b608b3cbacb56480c7b1
refs/heads/master
2022-12-21T12:38:13.108402
2019-08-01T08:11:10
2019-08-01T08:11:10
195,760,238
0
0
null
2022-12-08T05:57:26
2019-07-08T07:36:12
Python
UTF-8
Python
false
false
4,722
py
# from SavedModel to trt graph import os import time import numpy as np import tensorflow as tf import tensorflow.contrib.tensorrt as trt from tensorflow.examples.tutorials.mnist import input_data from googlenet.checkpoint_to_SavedModel import image_web_saved_encode def directory_create(directory): if not os.path.exists(directory): os.makedirs(directory) SavedModel_dir = "./SavedModel/cnn_model/" SavedModel_path = os.path.join(SavedModel_dir, str(len(os.listdir(SavedModel_dir))-2)) model_tag = "serve" # can be queried by saved_model_cli summaries_dir = "./trt_model/cnn_model/tensorboard/" directory_create(summaries_dir) trt_export_model_dir = "./trt_model/cnn_model/" trt_export_model_dir = os.path.join(trt_export_model_dir, str(len(os.listdir(trt_export_model_dir))-1)) batch_size = 1 max_GPU_mem_size_for_TRT = 2 << 20 # preparing dataset # """ mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x_train = mnist.train.images y_train = mnist.train.labels x_test = mnist.test.images y_test = mnist.test.labels # reshape from 784 to 28*28 # x_train = np.reshape(x_train, [x_train.shape[0], 28, 28, 1]) x_test = np.reshape(x_test, [x_test.shape[0], 28, 28, 1]) # base64 encode # x_train = [image_web_saved_encode(np.concatenate([image, image, image], axis=2)*255) for image in list(x_train)] x_test = [image_web_saved_encode(np.concatenate([image, image, image], axis=2) * 255) for image in list(x_test)] # """ # Inference with TF-TRT `SavedModel` workflow: # """ graph = tf.Graph() with graph.as_default(): tfconfig = tf.ConfigProto() tfconfig.gpu_options.allow_growth = True # maybe necessary tfconfig.allow_soft_placement = True # maybe necessary with tf.Session(config=tfconfig) as sess: # Create a TensorRT inference graph from a SavedModel: trt_graph = trt.create_inference_graph( input_graph_def=None, outputs=None, # is_dynamic_op=True, input_saved_model_dir=SavedModel_path, input_saved_model_tags=[model_tag], max_batch_size=batch_size, max_workspace_size_bytes=max_GPU_mem_size_for_TRT, precision_mode="FP32", # use_calibration=False, # set False when using INT8 # The following command will create a directory automatically, # and you must notice that "output_saved_model_dir" need to specific a path without point to any directory output_saved_model_dir=trt_export_model_dir ) # Import the TensorRT graph into a new graph and run: output_node = tf.import_graph_def( trt_graph, return_elements=["logits:0"] ) trt_engine_ops = [n.name for n in trt_graph.node if str(n.op) == 'TRTEngineOp'] print("Number of trt op: %d" % len(trt_engine_ops)) print(trt_engine_ops) # warm up print("warm up") for i in range(5): prob = sess.run(output_node, { "import/image_strings:0": [x_test[0]] * batch_size, "import/image_shapes:0": [(28, 28, 3)] * batch_size }) print("counter start") START_TIME = time.time() prob = sess.run(output_node, feed_dict={ "import/image_strings:0": [x_test[0]] * batch_size, "import/image_shapes:0": [(28, 28, 3)] * batch_size }) print("spent %f seconds" % (time.time() - START_TIME)) test_idx = 0 print("label: %d, prediction: %d" % (np.argmax(y_test[test_idx]), np.argmax(prob[0]))) # write graph merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(summaries_dir, trt_graph) # """ # Inference with TF-TRT frozen graph workflow: """ graph = tf.Graph() with graph.as_default(): with tf.Session() as sess: # First deserialize your frozen graph: frozen_model_path = os.path.join(frozen_model_dir, 'frozen_model.pb') with tf.gfile.GFile(frozen_model_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # Now you can create a TensorRT inference graph from your # frozen graph: trt_graph = trt.create_inference_graph( input_graph_def=graph_def, outputs=["probs:0"], max_batch_size=batch_size, max_workspace_size_bytes=max_GPU_mem_size_for_TRT, precision_mode="FP32") # Import the TensorRT graph into a new graph and run: output_node = tf.import_graph_def( trt_graph, return_elements=["probs:0"]) sess.run(output_node, feed_dict={ "image_batch:0": img1 }) # """
05d5bbe7b2195d31cb3a4e49a9314e81afe7450c
f8d9f893a7afa667a9b615742019cd5c52ee2c59
/core/platform/taskqueue/dev_mode_taskqueue_services_test.py
77e45c75f94fed4aa4120ec85940c3c7e56c064a
[ "Apache-2.0" ]
permissive
FareesHussain/oppia
2ac6c48aaea6a70452b79d665995f6ba6560f70d
2862b7da750ce332c975b64237791f96189d7aa8
refs/heads/develop
2023-08-17T19:25:05.551048
2021-10-01T10:36:36
2021-10-01T10:36:36
323,160,532
2
0
Apache-2.0
2020-12-20T20:38:45
2020-12-20T20:38:44
null
UTF-8
Python
false
false
4,935
py
# coding: utf-8 # # Copyright 2020 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for methods in the dev_mode_taskqueue_services.""" from __future__ import absolute_import from __future__ import unicode_literals import datetime from core import feconf from core.domain import taskqueue_services from core.platform.taskqueue import dev_mode_taskqueue_services from core.tests import test_utils import requests from typing import Any, Dict, Optional class DevModeTaskqueueServicesUnitTests(test_utils.TestBase): """Tests for dev_mode_taskqueue_services.""" def test_creating_dev_mode_task_will_create_the_correct_post_request( self ) -> None: correct_queue_name = 'dummy_queue' dummy_url = '/dummy_handler' correct_payload = { 'fn_identifier': ( taskqueue_services.FUNCTION_ID_DELETE_EXPS_FROM_USER_MODELS), 'args': [['1', '2', '3']], 'kwargs': {} } correct_task_name = 'task1' # In the type annotation below, payload is of type Dict[str, Any] # because it mocks the behaviour of # dev_mode_taskqueue_services.CLIENT.create_task. def mock_create_task( queue_name: str, url: str, payload: Dict[str, Any], scheduled_for: Optional[datetime.datetime] = None, # pylint: disable=unused-argument task_name: Optional[str] = None, ) -> None: self.assertEqual(queue_name, correct_queue_name) self.assertEqual(url, dummy_url) self.assertEqual(payload, correct_payload) self.assertEqual(task_name, correct_task_name) swap_create_task = self.swap( dev_mode_taskqueue_services.CLIENT, 'create_task', mock_create_task) with swap_create_task: dev_mode_taskqueue_services.create_http_task( correct_queue_name, dummy_url, correct_payload, task_name=correct_task_name) def test_task_handler_will_create_the_correct_post_request(self) -> None: queue_name = 'dummy_queue' dummy_url = '/dummy_handler' correct_port = dev_mode_taskqueue_services.GOOGLE_APP_ENGINE_PORT correct_payload = { 'fn_identifier': ( taskqueue_services.FUNCTION_ID_DELETE_EXPS_FROM_USER_MODELS), 'args': [['1', '2', '3']], 'kwargs': {} } task_name = 'task1' correct_headers = { 'X-Appengine-QueueName': queue_name, 'X-Appengine-TaskName': task_name, 'X-Appengine-TaskRetryCount': '0', 'X-Appengine-TaskExecutionCount': '0', 'X-Appengine-TaskETA': '0', 'X-AppEngine-Fake-Is-Admin': '1', 'method': 'POST' } # In the type annotation below, we have used Dict[str, Any] for JSON. # This is because this function mocks requests.post function where the # type of JSON has been defined Any, hence using Dict[str, Any] here. # https://github.com/python/typeshed/blob/5e0fc4607323a4657b587bf70e3c26becf1c88d0/stubs/requests/requests/api.pyi#L78 def mock_post( url: str, json: Dict[str, Any], headers: Dict[str, str], timeout: int ) -> None: self.assertEqual( url, 'http://localhost:%s%s' % ( correct_port, dummy_url)) self.assertEqual(json, correct_payload) self.assertEqual(headers, correct_headers) self.assertEqual(timeout, feconf.DEFAULT_TASKQUEUE_TIMEOUT_SECONDS) swap_post = self.swap(requests, 'post', mock_post) with swap_post: # I have to test _task_handler by calling it because I cannot # surround this task handler in a context manager reliably. The # task_handler is called by a queue thread that is instantiated by # the Cloud Tasks Emulator which has a non-determistic execution # time. Creating a task will execute correctly but the program will # exit the context before actually calling _task_handler(). dev_mode_taskqueue_services._task_handler( # pylint: disable=protected-access dummy_url, correct_payload, queue_name, task_name=task_name)
d851c1b76ebb72393f7423de98c40690a78c7c5b
e1e3ee617a50c44c7027ebabc3c918797f8daef8
/sorter.py
9566fdab8378d1cc2d5fe387c44cc5a9bdb5fec2
[]
no_license
Kain-Huang/pithy
179490f6af0d1a77dde015c5570d9d8f75bd3e41
6ed323782cad80954f9ab4a6d81726370d7ff53c
refs/heads/master
2022-01-05T12:12:27.395657
2019-05-19T18:25:08
2019-05-19T18:25:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
import sys arg = sys.argv[1] print arg from commands import getoutput as go a = arg.split("BREAKKKKK") dird = "" fil = a[-1]+".py" for i in a[:-1]: dird+=i+"/" go("mkdir -p code/"+dird) print dird+fil print go("cp code/%s.py code/%s/%s" % (arg,dird,fil))
c9c89d48c222f86dee205223c3208cf1a0857b72
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-mrsp.0/mrsp_ut=3.5_rd=0.5_rw=0.04_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=42/params.py
2298340fefd6fd7ac91681022ad274284fb678f8
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
{'cpus': 4, 'duration': 30, 'final_util': '3.512524', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '0.5', 'res_nmb': '4', 'res_weight': '0.04', 'scheduler': 'RUN', 'trial': 42, 'utils': 'uni-medium-3'}
6665b847961f9fbe18e23a6309b0424a0ede5776
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/securityinsights/v20190101preview/get_dynamics365_data_connector.py
2076d0d3c76949d8502ecd1dc8596fbb938831a6
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
5,317
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetDynamics365DataConnectorResult', 'AwaitableGetDynamics365DataConnectorResult', 'get_dynamics365_data_connector', ] @pulumi.output_type class GetDynamics365DataConnectorResult: """ Represents Dynamics365 data connector. """ def __init__(__self__, data_types=None, etag=None, id=None, kind=None, name=None, tenant_id=None, type=None): if data_types and not isinstance(data_types, dict): raise TypeError("Expected argument 'data_types' to be a dict") pulumi.set(__self__, "data_types", data_types) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if tenant_id and not isinstance(tenant_id, str): raise TypeError("Expected argument 'tenant_id' to be a str") pulumi.set(__self__, "tenant_id", tenant_id) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="dataTypes") def data_types(self) -> 'outputs.Dynamics365DataConnectorDataTypesResponse': """ The available data types for the connector. """ return pulumi.get(self, "data_types") @property @pulumi.getter def etag(self) -> Optional[str]: """ Etag of the azure resource """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> str: """ Azure resource Id """ return pulumi.get(self, "id") @property @pulumi.getter def kind(self) -> str: """ Expected value is 'Dynamics365'. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> str: """ Azure resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> str: """ The tenant id to connect to, and get the data from. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter def type(self) -> str: """ Azure resource type """ return pulumi.get(self, "type") class AwaitableGetDynamics365DataConnectorResult(GetDynamics365DataConnectorResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDynamics365DataConnectorResult( data_types=self.data_types, etag=self.etag, id=self.id, kind=self.kind, name=self.name, tenant_id=self.tenant_id, type=self.type) def get_dynamics365_data_connector(data_connector_id: Optional[str] = None, operational_insights_resource_provider: Optional[str] = None, resource_group_name: Optional[str] = None, workspace_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDynamics365DataConnectorResult: """ Represents Dynamics365 data connector. :param str data_connector_id: Connector ID :param str operational_insights_resource_provider: The namespace of workspaces resource provider- Microsoft.OperationalInsights. :param str resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :param str workspace_name: The name of the workspace. """ __args__ = dict() __args__['dataConnectorId'] = data_connector_id __args__['operationalInsightsResourceProvider'] = operational_insights_resource_provider __args__['resourceGroupName'] = resource_group_name __args__['workspaceName'] = workspace_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:securityinsights/v20190101preview:getDynamics365DataConnector', __args__, opts=opts, typ=GetDynamics365DataConnectorResult).value return AwaitableGetDynamics365DataConnectorResult( data_types=__ret__.data_types, etag=__ret__.etag, id=__ret__.id, kind=__ret__.kind, name=__ret__.name, tenant_id=__ret__.tenant_id, type=__ret__.type)
2c81ad50a51119c1b403adffc535dc8e0b3e962b
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/insights/data_collection_rule.py
62121e6c6a62bf9f01862f7d7c4774bc76a24ffb
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
17,724
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['DataCollectionRuleArgs', 'DataCollectionRule'] @pulumi.input_type class DataCollectionRuleArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], data_collection_rule_name: Optional[pulumi.Input[str]] = None, data_flows: Optional[pulumi.Input[Sequence[pulumi.Input['DataFlowArgs']]]] = None, data_sources: Optional[pulumi.Input['DataCollectionRuleDataSourcesArgs']] = None, description: Optional[pulumi.Input[str]] = None, destinations: Optional[pulumi.Input['DataCollectionRuleDestinationsArgs']] = None, kind: Optional[pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']]] = None, location: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a DataCollectionRule resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] data_collection_rule_name: The name of the data collection rule. The name is case insensitive. :param pulumi.Input[Sequence[pulumi.Input['DataFlowArgs']]] data_flows: The specification of data flows. :param pulumi.Input['DataCollectionRuleDataSourcesArgs'] data_sources: The specification of data sources. This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint. :param pulumi.Input[str] description: Description of the data collection rule. :param pulumi.Input['DataCollectionRuleDestinationsArgs'] destinations: The specification of destinations. :param pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']] kind: The kind of the resource. :param pulumi.Input[str] location: The geo-location where the resource lives. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if data_collection_rule_name is not None: pulumi.set(__self__, "data_collection_rule_name", data_collection_rule_name) if data_flows is not None: pulumi.set(__self__, "data_flows", data_flows) if data_sources is not None: pulumi.set(__self__, "data_sources", data_sources) if description is not None: pulumi.set(__self__, "description", description) if destinations is not None: pulumi.set(__self__, "destinations", destinations) if kind is not None: pulumi.set(__self__, "kind", kind) if location is not None: pulumi.set(__self__, "location", location) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="dataCollectionRuleName") def data_collection_rule_name(self) -> Optional[pulumi.Input[str]]: """ The name of the data collection rule. The name is case insensitive. """ return pulumi.get(self, "data_collection_rule_name") @data_collection_rule_name.setter def data_collection_rule_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "data_collection_rule_name", value) @property @pulumi.getter(name="dataFlows") def data_flows(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['DataFlowArgs']]]]: """ The specification of data flows. """ return pulumi.get(self, "data_flows") @data_flows.setter def data_flows(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['DataFlowArgs']]]]): pulumi.set(self, "data_flows", value) @property @pulumi.getter(name="dataSources") def data_sources(self) -> Optional[pulumi.Input['DataCollectionRuleDataSourcesArgs']]: """ The specification of data sources. This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint. """ return pulumi.get(self, "data_sources") @data_sources.setter def data_sources(self, value: Optional[pulumi.Input['DataCollectionRuleDataSourcesArgs']]): pulumi.set(self, "data_sources", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description of the data collection rule. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def destinations(self) -> Optional[pulumi.Input['DataCollectionRuleDestinationsArgs']]: """ The specification of destinations. """ return pulumi.get(self, "destinations") @destinations.setter def destinations(self, value: Optional[pulumi.Input['DataCollectionRuleDestinationsArgs']]): pulumi.set(self, "destinations", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']]]: """ The kind of the resource. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']]]): pulumi.set(self, "kind", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ The geo-location where the resource lives. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class DataCollectionRule(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, data_collection_rule_name: Optional[pulumi.Input[str]] = None, data_flows: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]]] = None, data_sources: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']]] = None, description: Optional[pulumi.Input[str]] = None, destinations: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']]] = None, kind: Optional[pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Definition of ARM tracked top level resource. API Version: 2019-11-01-preview. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] data_collection_rule_name: The name of the data collection rule. The name is case insensitive. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]] data_flows: The specification of data flows. :param pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']] data_sources: The specification of data sources. This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint. :param pulumi.Input[str] description: Description of the data collection rule. :param pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']] destinations: The specification of destinations. :param pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']] kind: The kind of the resource. :param pulumi.Input[str] location: The geo-location where the resource lives. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ ... @overload def __init__(__self__, resource_name: str, args: DataCollectionRuleArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Definition of ARM tracked top level resource. API Version: 2019-11-01-preview. :param str resource_name: The name of the resource. :param DataCollectionRuleArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DataCollectionRuleArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, data_collection_rule_name: Optional[pulumi.Input[str]] = None, data_flows: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DataFlowArgs']]]]] = None, data_sources: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDataSourcesArgs']]] = None, description: Optional[pulumi.Input[str]] = None, destinations: Optional[pulumi.Input[pulumi.InputType['DataCollectionRuleDestinationsArgs']]] = None, kind: Optional[pulumi.Input[Union[str, 'KnownDataCollectionRuleResourceKind']]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DataCollectionRuleArgs.__new__(DataCollectionRuleArgs) __props__.__dict__["data_collection_rule_name"] = data_collection_rule_name __props__.__dict__["data_flows"] = data_flows __props__.__dict__["data_sources"] = data_sources __props__.__dict__["description"] = description __props__.__dict__["destinations"] = destinations __props__.__dict__["kind"] = kind __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["etag"] = None __props__.__dict__["immutable_id"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:insights:DataCollectionRule"), pulumi.Alias(type_="azure-native:insights/v20191101preview:DataCollectionRule"), pulumi.Alias(type_="azure-nextgen:insights/v20191101preview:DataCollectionRule"), pulumi.Alias(type_="azure-native:insights/v20210401:DataCollectionRule"), pulumi.Alias(type_="azure-nextgen:insights/v20210401:DataCollectionRule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(DataCollectionRule, __self__).__init__( 'azure-native:insights:DataCollectionRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'DataCollectionRule': """ Get an existing DataCollectionRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = DataCollectionRuleArgs.__new__(DataCollectionRuleArgs) __props__.__dict__["data_flows"] = None __props__.__dict__["data_sources"] = None __props__.__dict__["description"] = None __props__.__dict__["destinations"] = None __props__.__dict__["etag"] = None __props__.__dict__["immutable_id"] = None __props__.__dict__["kind"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return DataCollectionRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="dataFlows") def data_flows(self) -> pulumi.Output[Optional[Sequence['outputs.DataFlowResponse']]]: """ The specification of data flows. """ return pulumi.get(self, "data_flows") @property @pulumi.getter(name="dataSources") def data_sources(self) -> pulumi.Output[Optional['outputs.DataCollectionRuleResponseDataSources']]: """ The specification of data sources. This property is optional and can be omitted if the rule is meant to be used via direct calls to the provisioned endpoint. """ return pulumi.get(self, "data_sources") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ Description of the data collection rule. """ return pulumi.get(self, "description") @property @pulumi.getter def destinations(self) -> pulumi.Output[Optional['outputs.DataCollectionRuleResponseDestinations']]: """ The specification of destinations. """ return pulumi.get(self, "destinations") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ Resource entity tag (ETag). """ return pulumi.get(self, "etag") @property @pulumi.getter(name="immutableId") def immutable_id(self) -> pulumi.Output[str]: """ The immutable ID of this data collection rule. This property is READ-ONLY. """ return pulumi.get(self, "immutable_id") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ The kind of the resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ The geo-location where the resource lives. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The resource provisioning state. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type")
a6f320488fbfcac32b54d57d57061287558b662e
89e40bf548403e440c230e06fa6301021ec8b0c7
/sw_expert_academy/D2/p1946.py
12221cf2e3b7cf1e668cdf6f634c66ecca732743
[]
no_license
TaeJuneJoung/Algorithm
b9cf5724501918c7302099b8194d26bd19512bd0
ecc2934a376c91ecec8bfd15af377d8a2973d71d
refs/heads/master
2020-06-19T13:50:14.720987
2019-08-04T14:35:43
2019-08-04T14:35:43
196,732,653
0
0
null
2019-08-04T14:35:44
2019-07-13T14:46:42
Python
UTF-8
Python
false
false
717
py
""" [1946.간단한 압축 풀기] 10개가 찍히면 다음줄로 내려가는 처리가 중요한 문제 또한, 테스트케이스가 하나 끝나면 한줄을 내려줘야한다 T : 테스트케이스 N : 받는 갯수 sum_num : 10개씩 띄어주기 위해서 사용 value : string타입의 값 num : value가 나오는 횟수 """ T = int(input()) for t in range(1, T+1): print("#{}".format(t)) N = int(input()) sum_num = 0 for i in range(N): value, num = map(str, input().split()) num = int(num) for j in range(num): print(value, end="") sum_num += 1 if sum_num == 10: sum_num = 0 print() print()
79ea21858064c500d5f2adf83982fe2f10cbeafd
04dc3d8883c7b5510610ec3e86e4238606fc1e45
/tasks/tasks_fetch_currency_exchange.py
5103de89945a2192d07ba82a923e1b3ed841eb2b
[ "MIT" ]
permissive
xyla-io/almacen
72294c6d7758d39ca12c22af174145d716769b82
7b7f235dc7939777f971f1b5eadd5621e980c15e
refs/heads/main
2022-12-28T22:10:46.905278
2020-10-14T19:42:57
2020-10-16T19:50:55
304,113,749
2
0
null
null
null
null
UTF-8
Python
false
false
2,398
py
import models from . import base from config import CompanyConfiguration from typing import List, Dict, Optional from jones import FixerAPI from datetime import datetime class FetchBaseCurrencyExchangeReportTask(base.FetchReportTask): api: Optional[FixerAPI] min_currency_dates_to_fetch: Dict[str, datetime] max_currency_dates_to_fetch: Dict[str, datetime] base_currency: str def __init__(self, base_currency: str, task_set: CompanyConfiguration.TaskSet, identifier_prefix: str): super().__init__(task_set=task_set, identifier_prefix=identifier_prefix) self.base_currency = base_currency self.min_currency_dates_to_fetch = {} self.max_currency_dates_to_fetch = {} @property def task_type(self) -> models.ReportTaskType: return models.ReportTaskType.fetch_base_currency_exchage_rates @property def debug_description(self) -> str: return '{}: ({} -> {}) — {}'.format( self.company_display_name, self.base_currency, ', '.join(self.currencies), self.task_type.value ) @property def task_identifier_columns(self) -> Dict[str, any]: return { 'base': self.base_currency, 'target': self.currencies, } @property def currencies(self) -> List[str]: return self.task_set.config['currency_exchange']['currencies'] @property def report_table_model(self) -> models.ReportTableModel: return models.CurrencyExchangeRatesTableModel(schema_name=self.report_table_schema) @property def api_credentials_key(self) -> str: return self.task_set.config['currency_exchange']['credentials_key'] class FetchCurrencyExchangeReportTask(base.CombinedReportTask): @property def task_type(self) -> models.ReportTaskType: return models.ReportTaskType.fetch_currency_exchange_rates @property def debug_description(self) -> str: return '{}: ({}) — {}'.format( self.company_display_name, ', '.join(self.currencies), self.task_type.value ) @property def currencies(self) -> List[str]: return self.task_set.config['currency_exchange']['currencies'] def generate_subtasks(self) -> List[base.ReportTask]: return [ FetchBaseCurrencyExchangeReportTask( base_currency=c, task_set=self.task_set, identifier_prefix='{}.{}-{}'.format(self.identifier, c, '_'.join(self.currencies)) ) for c in self.currencies ]
72afca3f30972d5d9f1f07b20ac5b50b0d4d7a58
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4165/codes/1575_994.py
1ea93adeac7832332d12b5ce2126e1464ed3bbe4
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
44
py
print("Universidade Federal do Amazonas")
cdad717e47a15a103068cedb950db7175e3f5c00
34d88082307281333ef4aeeec012a3ff5f8ec06e
/100 python/Q090.py
57e5bf3e138599fd5fe71f041643aeb9d105c6eb
[]
no_license
JKChang2015/Python
a6f8b56fa3f9943682470ae57e5ad3266feb47a7
adf3173263418aee5d32f96b9ea3bf416c43cc7b
refs/heads/master
2022-12-12T12:24:48.682712
2021-07-30T22:27:41
2021-07-30T22:27:41
80,747,432
1
8
null
2022-12-08T04:32:06
2017-02-02T17:05:19
HTML
UTF-8
Python
false
false
364
py
# Q090 # Created by JKChang # 09/05/2017, 15:37 # Tag: remove particular element # Description: By using list comprehension, please write a program to print the list after removing the value 24 in # [12,24,35,24,88,120,155]. li = [12, 24, 35, 24, 88, 120, 155] l = [x for x in li if x != 24] # l = [x for (i, x) in enumerate(li) if x != 24] print(l)
1c754907b1ef0c71898c4d9a19507c4825d2d577
c2ce7155a393e1056b5fdc4d3f9b9a89046e9285
/aw_nas/btcs/layer2/controller.py
27a221b2b58c7ce980ff31517931a6ac4fda1e97
[ "MIT" ]
permissive
blyucs/aw_nas
9c068dab1bd84a35e58a4c426f7c852a67b93882
8a32196ce342b8ad9e3885895735d1286e25beba
refs/heads/master
2023-08-19T11:00:00.526229
2021-08-21T05:16:13
2021-08-21T05:16:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
47,320
py
""" 2-layer controller. """ from aw_nas import utils, assert_rollout_type from aw_nas.utils import DistributedDataParallel from aw_nas.controller.base import BaseController from aw_nas.btcs.layer2.search_space import ( Layer2Rollout, Layer2DiffRollout, DenseMicroRollout, DenseMicroDiffRollout, StagewiseMacroRollout, StagewiseMacroDiffRollout, SinkConnectMacroDiffRollout, ) from collections import OrderedDict import numpy as np import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim try: # from torch.nn.SyncBatchNorm import convert_sync_batch_norm as convert_sync_bn from torch.nn import SyncBatchNorm convert_sync_bn = SyncBatchNorm.convert_sync_batchnorm except ImportError: convert_sync_bn = lambda m: m class Layer2Optimizer(optim.Optimizer): def __init__(self, params, **opt_cfg): super(Layer2Optimizer, self).__init__([torch.tensor([])], defaults={}) macro_opt_type = opt_cfg["macro"].pop("type") micro_opt_type = opt_cfg["micro"].pop("type") # currently width alphas & macro-alpha share the same optimizer self.macro_optimizer = getattr(optim, macro_opt_type)( nn.ParameterList(params[0:2]), **opt_cfg["macro"] ) # after adding width-alphas, as 2nd self.micro_optimizer = getattr(optim, micro_opt_type)( nn.ParameterList(params[2:]), **opt_cfg["micro"] ) def step(self): self.macro_optimizer.step() self.micro_optimizer.step() torch.optim.layer2 = Layer2Optimizer # add patch the torch optim class Layer2DiffController(BaseController, nn.Module): NAME = "layer2-differentiable" def __init__( self, search_space, rollout_type, mode="eval", device="cuda", macro_controller_type="random_sample", macro_controller_cfg={}, micro_controller_type="random_sample", micro_controller_cfg={}, inspect_hessian_every=-1, save_alphas_every=-1, multiprocess=False, schedule_cfg=None, ): super(Layer2DiffController, self).__init__( search_space, rollout_type, schedule_cfg=schedule_cfg ) nn.Module.__init__(self) self.search_space = search_space self.rollout_type = rollout_type self.device = device self.to(self.device) self.inspect_hessian_every = inspect_hessian_every self.inspect_hessian = False self.save_alphas_every = save_alphas_every self.save_alphas = False self.saved_dict = { "macro": [], "micro": [], "width": [], } self.multiprocess = multiprocess # the macro/micro controllers if macro_controller_type == "macro-stagewise-diff": self.macro_controller = MacroStagewiseDiffController( self.search_space.macro_search_space, macro_controller_type, device=self.device, multiprocess=self.multiprocess, **macro_controller_cfg, ) elif macro_controller_type == "macro-sink-connect-diff": self.macro_controller = MacroSinkConnectDiffController( self.search_space.macro_search_space, macro_controller_type, device=self.device, multiprocess=self.multiprocess, **macro_controller_cfg, ) else: raise NotImplementedError() if micro_controller_type == "micro-dense-diff": self.micro_controller = MicroDenseDiffController( self.search_space.micro_search_space, micro_controller_type, device=self.device, multiprocess=self.multiprocess, **micro_controller_cfg, ) else: raise NotImplementedError() object.__setattr__(self, "parallel_model", self) self._parallelize() def _parallelize(self): if self.multiprocess: net = convert_sync_bn(self).to(self.device) object.__setattr__( self, "parallel_model", DistributedDataParallel( self, (self.device,), find_unused_parameters=True ), ) def on_epoch_start(self, epoch): super(Layer2DiffController, self).on_epoch_start(epoch) if self.inspect_hessian_every >= 0 and epoch % self.inspect_hessian_every == 0: self.inspect_hessian = True if self.save_alphas_every >= 0 and epoch % self.save_alphas_every == 0: self.save_alphas = True # save alphas every epoch if self.save_alphas: self.saved_dict["macro"].append( [alpha.data.cpu() for alpha in self.macro_controller.cg_alphas] ) self.saved_dict["micro"].append( [alpha.data.cpu() for alpha in self.micro_controller.cg_alphas] ) self.saved_dict["width"].append( [ width_alpha.cpu() for width_alpha in self.macro_controller.width_alphas ] ) self.macro_controller.on_epoch_start(epoch) self.micro_controller.on_epoch_start(epoch) def set_device(self, device): self.device = device self.to(device) def set_mode(self, mode): super(Layer2DiffController, self).set_mode(mode) if mode == "train": nn.Module.train(self) elif mode == "eval": nn.Module.eval(self) else: raise Exception("Unrecognized mode: {}".format(mode)) def parameters(self, recurse=False): # FIXME: normal nn.module.parameters() use recurse=True to acquire all params param_list = nn.ParameterList([]) param_list.extend(self.macro_controller.parameters()) param_list.extend(self.micro_controller.parameters()) return param_list def _entropy_loss(self): return ( self.macro_controller._entropy_loss() + self.micro_controller._entropy_loss() ) def sample(self, n=1, batch_size=1): if self.multiprocess: return self.parallel_model.forward(n=n, batch_size=batch_size) else: return self.forward(n=n, batch_size=batch_size) def forward(self, n=1, batch_size=1): rollouts = [] macro_rollouts = self.macro_controller.forward(n=n, batch_size=batch_size) micro_rollouts = self.micro_controller.forward(n=n, batch_size=batch_size) for i in range(n): rollouts.append( Layer2DiffRollout( macro_rollouts[i], micro_rollouts[i], self.search_space ) ) return rollouts def gradient(self, loss, return_grads=True, zero_grads=True): if zero_grads: self.zero_grad() if self.inspect_hessian: for name, param in self.named_parameters(): max_eig = utils.torch_utils.max_eig_of_hessian(loss, param) self.logger.info("Max eigenvalue of Hessian of %s: %f", name, max_eig) _loss = loss + self._entropy_loss() _loss.backward() if return_grads: return utils.get_numpy(_loss), [ (k, v.grad.clone()) for k, v in self.named_parameters() ] return utils.get_numpy(_loss) def step_current_gradient(self, optimizer): self.macro_controller.step_current_gradient(optimizer.macro_optimizer) self.micro_controller.step_current_gradient(optimizer.micro_optimizer) def step_gradient(self, gradients, optimizer): self.macro_controller.step_gradient(gradients[0], optimizer.macro_optimizer) self.micro_controller.step_gradient(gradients[1], optimizer.micro_optimizer) def step(self, rollouts, optimizer, perf_name): macro_rollouts = [r.macro for r in rollouts] micro_rollouts = [r.micro for r in rollouts] macro_loss = self.macro_controller.step( macro_rollouts, optimizer.macro_optimizer, perf_name ) micro_loss = self.micro_controller.step( micro_rollouts, optimizer.micro_optimizer, perf_name ) return macro_loss, micro_loss def summary(self, rollouts, log=False, log_prefix="", step=None): macro_rollouts = [r.macro for r in rollouts] micro_rollouts = [r.micro for r in rollouts] self.macro_controller.summary( macro_rollouts, log=log, log_prefix=log_prefix, step=None ) self.micro_controller.summary( micro_rollouts, log=log, log_prefix=log_prefix, step=None ) def save(self, path): """Save the parameters to disk.""" torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) """save alphas""" if self.save_alphas_every is not None: # os.path.dirname means the parent path of the `PATH` torch.save( self.saved_dict, os.path.join(os.path.dirname(os.path.dirname(path)), "alphas.pth"), ) def load(self, path): """Load the parameters from disk.""" checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) # since the layer2controller.parameters() is a list of [macro_parameters(), micro_parameters()], we need to override the zero_grad() since it used model.parameters() def zero_grad(self): for param in self.parameters(): for p in param: if p.grad is not None: p.grad.detach_() p.grad.zero_() @classmethod def supported_rollout_types(cls): return ["layer2", "layer2-differentiable"] class GetArchMacro(torch.autograd.Function): @staticmethod def forward( ctx, search_space, op_weights, device, i_stage, ): stage_conn = torch.zeros( ( search_space.stage_node_nums[i_stage], search_space.stage_node_nums[i_stage], ) ).to(device) stage_conn[search_space.idxes[i_stage]] = op_weights ctx.save_for_backward( torch.as_tensor(op_weights), torch.as_tensor(search_space.idxes[i_stage]) ) return stage_conn @staticmethod def backward(ctx, grad_output): op_weights, idxes = ctx.saved_tensors op_weights_grad = grad_output[idxes[0], idxes[1]] return None, op_weights_grad, None, None, None class MacroStagewiseDiffController(BaseController, nn.Module): NAME = "macro-stagewise-diff" SCHEDULABLE_ATTRS = [ "gumbel_temperature", "entropy_coeff", "force_uniform", "width_gumbel_temperature", "width_entropy_coeff", ] def __init__( self, search_space, rollout_type, mode="eval", device="cuda", use_prob=False, gumbel_hard=False, gumbel_temperature=1.0, use_sigmoid=False, use_edge_normalization=False, entropy_coeff=0.01, max_grad_norm=None, force_uniform=False, full_init=False, # use all-one initialization and big flops reg progressive_pruning_th=None, multiprocess=False, per_stage_width=True, # default use per stage width width_entropy_coeff=0.01, width_gumbel_temperature=1.0, schedule_cfg=None, ): super(MacroStagewiseDiffController, self).__init__( search_space, rollout_type, schedule_cfg=schedule_cfg ) nn.Module.__init__(self) self.device = device # sampling self.use_prob = use_prob self.gumbel_hard = gumbel_hard self.gumbel_temperature = gumbel_temperature self.use_sigmoid = use_sigmoid # use_prob / use_sigmoid should not the True at the same time # if both false use plain gumbel softmax assert not (use_prob and use_sigmoid) # edge normalization self.use_edge_normalization = use_edge_normalization # training self.entropy_coeff = entropy_coeff self.max_grad_norm = max_grad_norm self.force_uniform = force_uniform self.progressive_pruning_th = progressive_pruning_th self.width_choice = self.search_space.width_choice self.multiprocess = multiprocess self.per_stage_width = per_stage_width self.width_gumbel_temperature = width_gumbel_temperature self.width_entropy_coeff = width_entropy_coeff # generate parameters self.full_init = full_init if not self.full_init: init_value = 1.0e-3 else: init_value = 1.0 self.cg_alphas = nn.ParameterList( [ nn.Parameter( init_value * torch.randn(sum(self.search_space.num_possible_edges)) ) ] ) # width choices [#cells , #width_choice] if self.width_choice is not None: if not self.per_stage_width: self.width_alphas = nn.ParameterList( [ nn.Parameter( init_value * torch.randn( len(self.search_space.cell_layout), len(self.width_choice), ) ) ] ) else: self.width_alphas = nn.ParameterList( [ nn.Parameter( init_value * torch.randn( len(self.search_space.stage_node_nums), len(self.width_choice), ) ) ] ) self.stage_num_alphas = ( self.search_space.num_possible_edges ) # used for competible with sink-connecting ss if self.use_edge_normalization: raise NotImplementedError("MacroDiffController does not support edge-norm") else: self.cg_betas = None self.get_arch = GetArchMacro() self.to(self.device) def set_mode(self, mode): super(MacroStagewiseDiffController, self).set_mode(mode) if mode == "train": nn.Module.train(self) elif mode == "eval": nn.Module.eval(self) else: raise Exception("Unrecognized mode: {}".format(mode)) def set_device(self, device): self.device = device self.to(device) def progressive_pruning(self): for alpha in self.cg_alphas: # inpalce replace alphas that smaller than the pruning threshold, no grad alpha.data = alpha * (alpha.gt(self.progressive_pruning_th).float()) def forward(self, n=1, batch_size=1): return self.sample(n=n, batch_size=batch_size) def sample(self, n=1, batch_size=1): if self.progressive_pruning_th is not None: self.progressive_pruning() width_arch, width_logits = self.sample_width(n=n, batch_size=batch_size) rollouts = [] for i_sample in range(n): # op_weights.shape: [num_edges, [batch_size,] num_ops] # edge_norms.shape: [num_edges] do not have batch_size. op_weights_list = [] edge_norms_list = [] sampled_list = [] logits_list = [] for alphas in self.cg_alphas: if ( self.progressive_pruning_th is not None and self.progressive_pruning_th > 0 ): alphas = alphas.clamp(self.progressive_pruning_th, 1.0e4) else: pass if self.force_uniform: # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` alphas = torch.zeros_like(alphas) if batch_size > 1: expanded_alpha = ( alphas.reshape([alphas.shape[0], 1, alphas.shape[1]]) .repeat([1, batch_size, 1]) .reshape([-1, alphas.shape[-1]]) ) else: expanded_alpha = alphas if self.use_prob: sampled = F.softmax( expanded_alpha / self.gumbel_temperature, dim=-1 ) elif self.use_sigmoid: sampled = utils.relaxed_bernoulli_sample( expanded_alpha, self.gumbel_temperature ) else: # gumbel sampling sampled, _ = utils.gumbel_softmax( expanded_alpha, self.gumbel_temperature, hard=False ) if self.gumbel_hard: op_weights = utils.straight_through(sampled) else: op_weights = sampled if batch_size > 1: sampled = sampled.reshape([-1, batch_size, op_weights.shape[-1]]) op_weights = op_weights.reshape( [-1, batch_size, op_weights.shape[-1]] ) op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampled)) # logits_list.append(utils.get_numpy(alphas)) logits_list.append(alphas) stage_conns = [] split_op_weights = torch.split(op_weights, self.stage_num_alphas) for i_stage in range(self.search_space.stage_num): stage_conn = self.get_arch.apply( self.search_space, split_op_weights[i_stage], self.device, i_stage, ) stage_conns.append(stage_conn) rollouts.append( StagewiseMacroDiffRollout( arch=stage_conns, sampled=sampled_list, logits=logits_list, width_arch=width_arch[i_sample], width_logits=width_logits[i_sample], search_space=self.search_space, ) ) return rollouts def sample_width(self, n=1, batch_size=1): assert batch_size == 1, "sample_width should not have batch size > 1" width_sampled_list = [] width_logits_list = [] width_op_weights_list = [] for _ in range(n): # sample the width alphas for width_alphas in self.width_alphas: if self.force_uniform: # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` width_alphas = torch.zeros_like(width_alphas) if batch_size > 1: expanded_width_alpha = ( width_alphas.reshape( [width_alphas.shape[0], 1, width_alphas.shape[1]] ) .repeat([1, batch_size, 1]) .reshape([-1, width_alphas.shape[-1]]) ) else: expanded_width_alpha = width_alphas if self.use_prob: width_sampled = F.softmax( expanded_width_alpha / self.width_gumbel_temperature, dim=-1 ) elif self.use_sigmoid: width_sampled = utils.relaxed_bernoulli_sample( expanded_width_alpha, self.width_gumbel_temperature ) else: # gumbel sampling width_sampled, _ = utils.gumbel_softmax( expanded_width_alpha, self.width_gumbel_temperature, hard=False ) if self.gumbel_hard: width_op_weights = utils.straight_through(width_sampled) else: width_op_weights = width_sampled if batch_size > 1: width_sampled = width_sampled.reshape( [-1, batch_size, width_op_weights.shape[-1]] ) width_op_weights = width_op_weights.reshape( [-1, batch_size, width_op_weights.shape[-1]] ) if not self.per_stage_width: width_op_weights_full = width_op_weights width_sampled_full = width_sampled width_alphas_full = width_alphas else: # the last stage has one more node node_list = self.search_space.stage_node_nums.copy() # let the 1st stage num_node -1 # to let all reduction cell uses the width-alphas of next stage node_list[0] = node_list[0] - 1 width_op_weights_full = torch.cat( [ width_op_weights[idx_stage].repeat(num_nodes - 1, 1) for idx_stage, num_nodes in enumerate(node_list) ] ) width_sampled_full = torch.cat( [ width_sampled[idx_stage].repeat(num_nodes - 1, 1) for idx_stage, num_nodes in enumerate(node_list) ] ) width_alphas_full = torch.cat( [ width_alphas[idx_stage].repeat(num_nodes - 1, 1) for idx_stage, num_nodes in enumerate(node_list) ] ) width_op_weights_list.append(width_op_weights_full) width_sampled_list.append(utils.get_numpy(width_sampled_full)) # logits_list.append(utils.get_numpy(alphas)) width_logits_list.append(width_alphas_full) return width_op_weights_list, width_logits_list def save(self, path): """Save the parameters to disk.""" torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) def load(self, path): """Load the parameters from disk.""" checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) def _entropy_loss(self): ent_loss = 0.0 if self.entropy_coeff > 0: alphas = self.cg_alphas[0].split( [i - 1 for i in self.search_space.stage_node_nums] ) probs = [F.softmax(alpha, dim=-1) for alpha in self.cg_alphas] ent_loss = ( self.entropy_coeff * sum(-(torch.log(prob) * prob).sum() for prob in probs) + ent_loss ) if self.width_entropy_coeff > 0: width_alphas = self.width_alphas probs = [F.softmax(alpha, dim=-1) for alpha in self.width_alphas] ent_loss = ( self.width_entropy_coeff * sum(-(torch.log(prob) * prob).sum() for prob in probs) + ent_loss ) return ent_loss def gradient(self, loss, return_grads=True, zero_grads=True): raise NotImplementedError( "the grad function is implemented in the layer2diffcontroller.gradient()" ) def step_current_gradient(self, optimizer): if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) optimizer.step() def step_gradient(self, gradients, optimizer): self.zero_grad() named_params = dict(self.named_parameters()) for k, grad in gradients: named_params[k].grad = grad # clip the gradients if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) # apply the gradients optimizer.step() def step(self, rollouts, optimizer, perf_name): # very memory inefficient self.zero_grad() losses = [r.get_perf(perf_name) for r in rollouts] optimizer.step() [l.backward() for l in losses] return np.mean([l.detach().cpu().numpy() for l in losses]) def __getstate__(self): state = super(MacroStagewiseDiffController, self).__getstate__().copy() del state["get_arch"] return state def __setstate__(self, state): super(MacroStagewiseDiffController, self).__setstate__(state) self.get_arch = GetArchMacro() def summary(self, rollouts, log=False, log_prefix="", step=None): num = len(rollouts) logits_list = [ [utils.get_numpy(logits) for logits in r.logits] for r in rollouts ] _ss = self.search_space if self.gumbel_hard: cg_logprobs = [0.0 for _ in range(_ss.num_cell_groups)] cg_entros = [0.0 for _ in range(_ss.num_cell_groups)] for rollout, logits in zip(rollouts, logits_list): for cg_idx, (vec, cg_logits) in enumerate(zip(rollout.arch, logits)): prob = utils.softmax(cg_logits) logprob = np.log(prob) if self.gumbel_hard: inds = np.argmax(utils.get_numpy(vec.op_weights), axis=-1) cg_logprobs[cg_idx] += np.sum(logprob[range(len(inds)), inds]) cg_entros[cg_idx] += -(prob * logprob).sum() # mean across rollouts if self.gumbel_hard: cg_logprobs = [s / num for s in cg_logprobs] total_logprob = sum(cg_logprobs) cg_logprobs_str = ",".join(["{:.2f}".format(n) for n in cg_logprobs]) cg_entros = [s / num for s in cg_entros] total_entro = sum(cg_entros) cg_entro_str = ",".join(["{:.2f}".format(n) for n in cg_entros]) if log: # maybe log the summary self.logger.info( "%s%d rollouts: %s ENTROPY: %2f (%s)", log_prefix, num, "-LOG_PROB: %.2f (%s) ;" % (-total_logprob, cg_logprobs_str) if self.gumbel_hard else "", total_entro, cg_entro_str, ) if step is not None and not self.writer.is_none(): if self.gumbel_hard: self.writer.add_scalar("log_prob", total_logprob, step) self.writer.add_scalar("entropy", total_entro, step) stats = [ (n + " ENTRO", entro) for n, entro in zip(_ss.cell_group_names, cg_entros) ] if self.gumbel_hard: stats += [ (n + " LOGPROB", logprob) for n, logprob in zip(_ss.cell_group_names, cg_logprobs) ] return OrderedDict(stats) @classmethod def supported_rollout_types(cls): return ["macro-stagewise", "macro-stagewise-diff", "macro-sink-connect-diff"] class GetArchMacroSinkConnect(torch.autograd.Function): @staticmethod def forward( ctx, search_space, op_weights, device, i_stage, ): stage_conn = torch.zeros( ( search_space.stage_node_nums[i_stage], search_space.stage_node_nums[i_stage], ) ).to(device) stage_conn[np.arange(len(op_weights)) + 1, np.arange(len(op_weights))] = 1 stage_conn[-1, : len(op_weights)] = op_weights ctx.save_for_backward( torch.as_tensor(op_weights), torch.as_tensor(search_space.idxes[i_stage]) ) return stage_conn @staticmethod def backward(ctx, grad_output): op_weights, idxes = ctx.saved_tensors op_weights_grad = grad_output[-1, : len(op_weights)] return None, op_weights_grad, None, None, None class MacroSinkConnectDiffController(MacroStagewiseDiffController): NAME = "macro-sink-connect-diff" # The TF_NAS-like macro search space(sink-based connecting) # during each stage, before the reduction node, a `sinking point` aggregate the output of each node's output with softmax # noted that cg-alpha here should denote whether connected or not def __init__(self, *args, **kwargs): super(MacroSinkConnectDiffController, self).__init__(*args, **kwargs) if not self.full_init: self.cg_alphas = nn.ParameterList( [ nn.Parameter( 1e-3 * torch.randn( sum([n - 1 for n in self.search_space.stage_node_nums]) ) ) ] ) else: self.cg_alphas = nn.ParameterList( [ nn.Parameter( torch.ones( sum([n - 1 for n in self.search_space.stage_node_nums]) ) ) ] ) assert ( self.use_sigmoid == False ) # sink-connecting should introduce competition in edges self.get_arch = GetArchMacroSinkConnect() self.stage_num_alphas = [n - 1 for n in self.search_space.stage_node_nums] self.to(self.device) # move the newly generated cg_alphas to cuda # The only difference with MacroStageWiseDiffController's sample is that the arch is packed into `sink-connect-diff-rollout` def sample(self, n=1, batch_size=1): # if use progressive pruning if self.progressive_pruning_th is not None: self.progressive_pruning() width_arch, width_logits = self.sample_width(n=n, batch_size=batch_size) rollouts = [] for i_sample in range(n): # op_weights.shape: [num_edges, [batch_size,] num_ops] # edge_norms.shape: [num_edges] do not have batch_size. op_weights_list = [] edge_norms_list = [] sampled_list = [] logits_list = [] for alphas in self.cg_alphas: splits = [i - 1 for i in self.search_space.stage_node_nums] op_weights = [] sampleds = [] for alpha in alphas.split(splits): if ( self.force_uniform ): # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` alpha = torch.zeros_like(alpha) if batch_size > 1: expanded_alpha = ( alpha.reshape([alpha.shape[0], 1, alpha.shape[1]]) .repeat([1, batch_size, 1]) .reshape([-1, alpha.shape[-1]]) ) else: expanded_alpha = alpha if self.use_prob: sampled = F.softmax( expanded_alpha / self.gumbel_temperature, dim=-1 ) elif self.use_sigmoid: sampled = utils.relaxed_bernoulli_sample( expanded_alpha, self.gumbel_temperature ) else: # gumbel sampling sampled, _ = utils.gumbel_softmax( expanded_alpha, self.gumbel_temperature, hard=False ) if self.gumbel_hard: op_weight = utils.straight_through(sampled) else: op_weight = sampled if batch_size > 1: sampled = sampled.reshape([-1, batch_size, op_weight.shape[-1]]) op_weight = op_weight.reshape( [-1, batch_size, op_weight.shape[-1]] ) op_weights.append(op_weight) sampleds.append(sampled) op_weights = torch.cat(op_weights) sampleds = torch.cat(sampleds) op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampleds)) logits_list.append(alphas) stage_conns = [] split_op_weights = torch.split(op_weights, self.stage_num_alphas) for i_stage in range(self.search_space.stage_num): stage_conn = self.get_arch.apply( self.search_space, split_op_weights[i_stage], self.device, i_stage, ) stage_conns.append(stage_conn) rollouts.append( SinkConnectMacroDiffRollout( arch=stage_conns, sampled=sampled_list, logits=logits_list, width_arch=width_arch[i_sample], width_logits=width_logits[i_sample], search_space=self.search_space, ) ) return rollouts def __setstate__(self, state): super(MacroSinkConnectDiffController, self).__setstate__(state) self.get_arch = GetArchMacroSinkConnect() class GetArchMicro(torch.autograd.Function): @staticmethod def forward(ctx, search_space, op_weights, device): empty_arch = torch.zeros( ( search_space._num_nodes, search_space._num_nodes, search_space.num_op_choices, ) ).to(device) empty_arch[search_space.idx] = op_weights ctx.save_for_backward( torch.as_tensor(op_weights), torch.as_tensor(search_space.idx) ) return empty_arch @staticmethod def backward(ctx, grad_output): op_weights, idxes = ctx.saved_tensors op_weights_grad = grad_output[idxes[0], idxes[1]] return None, op_weights_grad, None class MicroDenseDiffController(BaseController, nn.Module): NAME = "micro-dense-diff" SCHEDULABLE_ATTRS = ["gumbel_temperature", "entropy_coeff", "force_uniform"] def __init__( self, search_space, rollout_type, mode="eval", device="cuda", use_prob=False, gumbel_hard=False, gumbel_temperature=1.0, use_sigmoid=True, use_edge_normalization=False, entropy_coeff=0.01, max_grad_norm=None, force_uniform=False, full_init=False, progressive_pruning_th=None, multiprocess=False, schedule_cfg=None, ): super(MicroDenseDiffController, self).__init__( search_space, rollout_type, schedule_cfg=schedule_cfg ) nn.Module.__init__(self) self.device = device # sampling self.use_prob = use_prob self.use_sigmoid = use_sigmoid self.gumbel_hard = gumbel_hard self.gumbel_temperature = gumbel_temperature assert not (use_prob and use_sigmoid) # edge normalization self.use_edge_normalization = use_edge_normalization # training self.entropy_coeff = entropy_coeff self.max_grad_norm = max_grad_norm self.force_uniform = force_uniform self.full_init = full_init self.progressive_pruning_th = progressive_pruning_th self.multiprocess = multiprocess _num_init_nodes = self.search_space.num_init_nodes _num_edges_list = [ sum( _num_init_nodes + i for i in range(self.search_space.get_num_steps(i_cg)) ) for i_cg in range(self.search_space.num_cell_groups) ] if not self.full_init: self.cg_alphas = nn.ParameterList( [ nn.Parameter( 1e-3 * torch.randn( _num_edges, len(self.search_space.cell_shared_primitives[i_cg]), ) ) # shape: [num_edges, num_ops] for i_cg, _num_edges in enumerate(_num_edges_list) ] ) else: self.cg_alphas = nn.ParameterList( [ nn.Parameter( 1 * torch.ones( _num_edges, len(self.search_space.cell_shared_primitives[i_cg]), ) ) # shape: [num_edges, num_ops] for i_cg, _num_edges in enumerate(_num_edges_list) ] ) if self.use_edge_normalization: raise NotImplementedError("MicroDenseController does not support edge-norm") else: self.cg_betas = None self.get_arch = GetArchMicro() self.to(self.device) def set_mode(self, mode): super(MicroDenseDiffController, self).set_mode(mode) if mode == "train": nn.Module.train(self) elif mode == "eval": nn.Module.eval(self) else: raise Exception("Unrecognized mode: {}".format(mode)) def set_device(self, device): self.device = device self.to(device) def progressive_pruning(self): for alpha in self.cg_alphas: # inpalce replace alphas that smaller than the pruning threshold, no grad alpha.data = alpha * (alpha.gt(self.progressive_pruning_th).float()) def forward(self, n=1, batch_size=1): # pylint: disable=arguments-differ return self.sample(n=n, batch_size=batch_size) def sample(self, n=1, batch_size=1): if self.progressive_pruning_th is not None: self.progressive_pruning() rollouts = [] for _ in range(n): # op_weights.shape: [num_edges, [batch_size,] num_ops] # edge_norms.shape: [num_edges] do not have batch_size. op_weights_list = [] edge_norms_list = [] sampled_list = [] logits_list = [] for alphas in self.cg_alphas: if self.force_uniform: # cg_alpha parameters will not be in the graph # NOTE: `force_uniform` config does not affects edge_norms (betas), # if one wants a force_uniform search, keep `use_edge_normalization=False` alphas = torch.zeros_like(alphas) if batch_size > 1: expanded_alpha = ( alphas.reshape([alphas.shape[0], 1, alphas.shape[1]]) .repeat([1, batch_size, 1]) .reshape([-1, alphas.shape[-1]]) ) else: expanded_alpha = alphas if self.use_prob: # probability as sample sampled = F.softmax( expanded_alpha / self.gumbel_temperature, dim=-1 ) elif self.use_sigmoid: sampled = utils.relaxed_bernoulli_sample( expanded_alpha, self.gumbel_temperature ) else: # gumbel sampling sampled, _ = utils.gumbel_softmax( expanded_alpha, self.gumbel_temperature, hard=False ) if self.gumbel_hard: op_weights = utils.straight_through(sampled) else: op_weights = sampled if batch_size > 1: sampled = sampled.reshape([-1, batch_size, op_weights.shape[-1]]) op_weights = op_weights.reshape( [-1, batch_size, op_weights.shape[-1]] ) op_weights_list.append(op_weights) sampled_list.append(utils.get_numpy(sampled)) # logits_list.append(utils.get_numpy(alphas)) logits_list.append((alphas)) if self.use_edge_normalization: raise NotImplementedError else: arch_list = [] logits_arch_list = [] for op_weights in op_weights_list: arch = self.get_arch.apply( self.search_space, op_weights, self.device ) arch_list.append(arch) for logits in logits_list: logits_arch = self.get_arch.apply( self.search_space, logits, self.device ) logits_arch_list.append(logits_arch) rollouts.append( DenseMicroDiffRollout( arch_list, sampled_list, logits_list, logits_arch_list, search_space=self.search_space, ) ) return rollouts def save(self, path): """Save the parameters to disk.""" torch.save({"epoch": self.epoch, "state_dict": self.state_dict()}, path) self.logger.info("Saved controller network to %s", path) def load(self, path): """Load the parameters from disk.""" checkpoint = torch.load(path, map_location=torch.device("cpu")) self.load_state_dict(checkpoint["state_dict"]) self.on_epoch_start(checkpoint["epoch"]) self.logger.info("Loaded controller network from %s", path) def _entropy_loss(self): if self.entropy_coeff > 0: probs = [F.softmax(alpha, dim=-1) for alpha in self.cg_alphas] return self.entropy_coeff * sum( -(torch.log(prob) * prob).sum() for prob in probs ) return 0.0 def gradient(self, loss, return_grads=True, zero_grads=True): raise NotImplementedError( "the grad function is implemented in the layer2diffcontroller.gradient()" ) def step_current_gradient(self, optimizer): if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) optimizer.step() def step_gradient(self, gradients, optimizer): self.zero_grad() named_params = dict(self.named_parameters()) for k, grad in gradients: named_params[k].grad = grad # clip the gradients if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.parameters(), self.max_grad_norm) # apply the gradients optimizer.step() def step(self, rollouts, optimizer, perf_name): # very memory inefficient self.zero_grad() losses = [r.get_perf(perf_name) for r in rollouts] optimizer.step() [l.backward() for l in losses] return np.mean([l.detach().cpu().numpy() for l in losses]) def __getstate__(self): state = super(MicroDenseDiffController, self).__getstate__().copy() del state["get_arch"] return state def __setstate__(self, state): super(MicroDenseDiffController, self).__setstate__(state) self.get_arch = GetArchMicro() def summary(self, rollouts, log=False, log_prefix="", step=None): num = len(rollouts) logits_list = [ [utils.get_numpy(logits) for logits in r.logits] for r in rollouts ] _ss = self.search_space if self.gumbel_hard: cg_logprobs = [0.0 for _ in range(_ss.num_cell_groups)] cg_entros = [0.0 for _ in range(_ss.num_cell_groups)] for rollout, logits in zip(rollouts, logits_list): for cg_idx, (vec, cg_logits) in enumerate(zip(rollout.arch, logits)): prob = utils.softmax(cg_logits) logprob = np.log(prob) if self.gumbel_hard: inds = np.argmax(utils.get_numpy(vec), axis=-1) cg_logprobs[cg_idx] += np.sum(logprob[range(len(inds)), inds]) cg_entros[cg_idx] += -(prob * logprob).sum() # mean across rollouts if self.gumbel_hard: cg_logprobs = [s / num for s in cg_logprobs] total_logprob = sum(cg_logprobs) cg_logprobs_str = ",".join(["{:.2f}".format(n) for n in cg_logprobs]) cg_entros = [s / num for s in cg_entros] total_entro = sum(cg_entros) cg_entro_str = ",".join(["{:.2f}".format(n) for n in cg_entros]) if log: # maybe log the summary self.logger.info( "%s%d rollouts: %s ENTROPY: %2f (%s)", log_prefix, num, "-LOG_PROB: %.2f (%s) ;" % (-total_logprob, cg_logprobs_str) if self.gumbel_hard else "", total_entro, cg_entro_str, ) if step is not None and not self.writer.is_none(): if self.gumbel_hard: self.writer.add_scalar("log_prob", total_logprob, step) self.writer.add_scalar("entropy", total_entro, step) stats = [ (n + " ENTRO", entro) for n, entro in zip(_ss.cell_group_names, cg_entros) ] if self.gumbel_hard: stats += [ (n + " LOGPROB", logprob) for n, logprob in zip(_ss.cell_group_names, cg_logprobs) ] return OrderedDict(stats) @classmethod def supported_rollout_types(cls): return ["micro-dense", "micro-dense-diff"]
f26247827774f537f5498e3343140e8ee540b7e4
375e834e7a2ff7b085b88cc162fb8215e14cd132
/Python/largest-triangle-area.py
69ea932c4fb00f00dab5018641b8bbcd1559e8ed
[ "MIT" ]
permissive
tickpeach/LeetCode-Solutions
0842086aa1781191fe68639c884986f843194262
16c96776781d04672d653cef48f4f7989685cbe9
refs/heads/master
2020-04-01T02:46:38.356672
2018-10-12T18:15:41
2018-10-12T18:15:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
930
py
# Time: O(n^3) # Space: O(1) try: xrange # Python 2 except NameError: xrange = range # Python 3 class Solution(object): def largestTriangleArea(self, points): """ :type points: List[List[int]] :rtype: float """ result = 0 for i in xrange(len(points)-2): for j in xrange(i+1, len(points)-1): for k in xrange(j+1, len(points)): result = max(result, 0.5 * abs(points[i][0] * points[j][1] + points[j][0] * points[k][1] + points[k][0] * points[i][1] - points[j][0] * points[i][1] - points[k][0] * points[j][1] - points[i][0] * points[k][1])) return result
23cfc92ea7ec20a590b33c1593e2e718bd0af201
f2658c4bd7f833ace25ac2b63e88317b05f4602d
/2017 July/2017-July-13/tf_rdf/st_rdf_test/model/WaysName.py
a9f3bd56d882d733a2a1cfe3b833a1a3e59fdefb
[]
no_license
xiaochao00/telanav_diary
e4c34ac0a14b65e4930e32012cc2202ff4ed91e2
3c583695e2880322483f526c98217c04286af9b2
refs/heads/master
2022-01-06T19:42:55.504845
2019-05-17T03:11:46
2019-05-17T03:11:46
108,958,763
0
0
null
null
null
null
UTF-8
Python
false
false
18,704
py
#------------------------------------------------------------------------------- # Name: RelationsGeneralCarto model # Purpose: this model is used to mapping the # columns: [ ] # # Author: Kuang # # Created: 10/12/2015 # Copyright: (c) rex 2015 # Licence: <your licence> #------------------------------------------------------------------------------- from model.record import Record from model.record import CSV_SEP from model.constants import * from operator import itemgetter from xml.dom import minidom from collections import defaultdict import os import sys import datetime import json import csv ROOT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)),"..") PREERRED_ROUTE_CONFIG_FILE = os.path.join(os.path.dirname(ROOT_DIR), "..", "config", "Route.xml") GLOBAL_KEY_PREFIX = "ways_navlink_" LF = '\n' PREV_LINKID = -1 STATISTIC_GENERAL_NAME_FEATURE_KEYS = ( 'route_type', 'attached_to_base', 'precedes_base', 'name_direction_prefix', 'street_type', 'name_direction_suffix', 'name_base', 'is_exonym', 'name_type', 'direction_on_sign', 'street_name' ) STATISTIC_TRANS_NAME_FEATURE_KEYS = ( 'attached_to_base', 'precedes_base', 'name_direction_prefix', 'street_type', 'name_direction_suffix', 'name_base', 'direction_on_sign', 'street_name' ) class WaysName(Record): def __init__(self, region): Record.__init__(self) self.name_dump_file = os.path.join(ROOT_DIR, 'temporary', self.__class__.__name__) self.admin_hierarchy_dump_file = os.path.join(ROOT_DIR, 'temporary', 'admin_hierarchy') self.stat = {} self.region = region self.link_name_dict = {} self.admin_hierarchy_dict = {} self.preferred_route_type = defaultdict() self.names_dump = {} def dump2file(self): cmd = "select \ rnl.link_id, \ rrl.road_name_id, \ rrl.is_exit_name, \ rrl.is_name_on_roadsign, \ rrn.route_type, \ rrn.name_type, \ rrn.is_exonym, \ rrn.language_code, \ rrn.attached_to_base, \ rrn.precedes_base, \ rrn.prefix, \ rrn.street_type, \ rrn.suffix, \ rrn.base_name, \ rrn.direction_on_sign, \ rrn.street_name, \ rrnt.*, \ vrn.*, \ vpt.*, \ vgo.*, \ rl.left_admin_place_id, \ rl.right_admin_place_id, \ rrl.road_link_id, \ rnl.iso_country_code \ from \ rdf_nav_link rnl \ inner join rdf_road_link rrl on rnl.link_id = rrl.link_id \ inner join rdf_road_name rrn on rrl.road_name_id = rrn.road_name_id \ left join rdf_road_name_trans rrnt on rrn.road_name_id = rrnt.road_name_id \ left join vce_road_name vrn on rrn.road_name_id = vrn.road_name_id \ left join vce_phonetic_text vpt on vrn.phonetic_id = vpt.phonetic_id \ left join vce_geo_override vgo on vrn.phonetic_id = vgo.phonetic_id \ inner join rdf_link rl on rnl.link_id = rl.link_id \ where rnl.iso_country_code in (%s) \ order by rnl.link_id " % (REGION_COUNTRY_CODES(self.region, GLOBAL_KEY_PREFIX)) print cmd self.cursor.copy_expert("COPY (%s) TO STDOUT DELIMITER '%s' CSV " % (cmd, CSV_SEP), open(self.name_dump_file, "w")) def dumpadminhierarchyfile(self): cmd = "select * from rdf_admin_hierarchy" print cmd self.cursor.copy_expert("COPY (%s) TO STDOUT DELIMITER '%s' CSV " % (cmd, CSV_SEP), open(self.admin_hierarchy_dump_file, "w")) #load admin hierarchy file into memory with open(self.admin_hierarchy_dump_file, "r") as admin_hierarchy_f: admin_line_ps = csv.reader(admin_hierarchy_f, delimiter=CSV_SEP) for admin_line in admin_line_ps: admin_line_p = [x.strip() for x in admin_line] # for admin_line in admin_hierarchy_f: # admin_line = admin_line.strip() # #admin_line_p = admin_line.split(CSV_SEP) # admin_line_p = Record.split(admin_line) if len(admin_line_p) < 1: continue self.admin_hierarchy_dict[admin_line_p[0]] = [admin_line_p[3], admin_line_p[4], admin_line_p[5], admin_line_p[6], admin_line_p[7]] def get_statistic(self): self._load_preferred_route_type() self.dumpadminhierarchyfile() try: self.dump2file() except: print 'Some table or schema don\'t exist! Please check the upper sql' return {} processcount = 0 with open(self.name_dump_file, "r",1024*1024*1024) as csv_f: lines = csv.reader(csv_f, delimiter=CSV_SEP) for line in lines: line_p = [x.strip() for x in line] # for line in csv_f: # line = line.rstrip() # # line_p = line.split(CSV_SEP) # line_p = Record.split(line) if len(line_p) < 1: sys.stderr.write('Error: invalid line %s\n' % line) continue self._build(line_p) processcount += 1 if processcount%5000 == 0: print "\rProcess index [ "+str(processcount)+" ]", print "\rProcess index [ "+str(processcount)+" ]", self.__statistic() self.__dump_name(None, None, None) # write to file with open(os.path.join(ROOT_DIR, "output", "stat", self.__class__.__name__), 'w') as stf: stf.write(json.dumps(self.stat)) return self.stat def _load_preferred_route_type(self): doc = None try: doc = minidom.parse(PREERRED_ROUTE_CONFIG_FILE) except: print "failed to parse route type configure file" return if not doc: return root = doc.documentElement if root: routeelmts = root.getElementsByTagName('Route') if routeelmts: for recelmt in routeelmts: iso_country_code = self._get_node_value(recelmt, "ISO_COUNTRY_CODE") route_type = self._get_node_value(recelmt, "ROUTE_TYPE") is_preferred_display = self._get_node_value(recelmt, "IS_PREFERRED_DISPLAY") key = "%s_%s"%(iso_country_code, route_type) if is_preferred_display and is_preferred_display == "Y": self.preferred_route_type[key.lower()] = 0 elif is_preferred_display and is_preferred_display == "N": self.preferred_route_type[key.lower()] = 2 def _get_node_value(self, xmlnode, key): elmt = xmlnode.getElementsByTagName(key) if not elmt: return None return elmt[0].childNodes[0].data def _get_name_type(self, line_p): road_type = 0 if line_p[3] == "" else int(line_p[3]) if line_p[1] == "Y": return "exit_ref" elif road_type >= 1 and road_type <=6: return "ref" elif line_p[2] == "N": return "alt_name" elif not (road_type >= 1 and road_type <=6) and (line_p[4] == "B" and line_p[5] == "N"): return "name" elif not (road_type >= 1 and road_type <=6) and not (line_p[4] == "B" and line_p[5] == "N"): return "alt_name" def _routetypecmp(self, list_a, list_b): key_a = "%s_%s" % (list_a[18], list_a[3]) #is_prefer_a = self.preferred_route_type.has_key(key_a.lower()) prefer_a_priority = self.preferred_route_type.get(key_a.lower(), 1) key_b = "%s_%s" % (list_b[18], list_b[3]) #is_prefer_b = self.preferred_route_type.has_key(key_b.lower()) prefer_b_priority = self.preferred_route_type.get(key_b.lower(), 1) #v = 0 if (is_prefer_a and is_prefer_b) or (not is_prefer_a and not is_prefer_b) else -1 if is_prefer_a else 1; v = prefer_a_priority - prefer_b_priority if v != 0: return v route_type_a = int(list_a[3]) route_type_b = int(list_b[3]) v = route_type_a - route_type_b if v != 0: return v if list_a[14] < list_b[14]: return -1 else: return 1 def __dump_name(self, lang, name_type, names): """It's used for debug only, comment the "return" for debug. """ return if names: key = (lang, name_type) val = '%d;%s' % (self.link_id*1000+100, names[14]) self.names_dump.setdefault(key, []).append(val) if len(self.names_dump) >= 30000 or not names: self.__dump_name_imp() self.names_dump.clear() def __dump_name_imp(self): for key, val in self.names_dump.iteritems(): lang, name_type = key outfile = '%s_%s' % (name_type, lang) with open(outfile, 'a') as ofs: ofs.write('\n'.join(val)) ofs.write('\n') def __statistic(self): name_dict = {} for name_id in self.link_name_dict.keys(): names = self.link_name_dict.get(name_id) name_type = self._get_name_type(names) language = names[6] if not name_dict.has_key(language): name_dict[language] = {} name_type_dict = name_dict[language] if name_type_dict.has_key(name_type): name_type_list = name_type_dict[name_type] name_type_list.append(names) else: name_type_dict[name_type] = [names] for lang in name_dict.keys(): for nametype in name_dict[lang].keys(): if nametype != "ref": nameslist = sorted(name_dict[lang][nametype], key=itemgetter(14, 17)) else: nameslist = sorted(name_dict[lang][nametype], cmp=self._routetypecmp) for key in STATISTIC_GENERAL_NAME_FEATURE_KEYS: getattr(self,'_WaysName__get_'+key)(nametype, lang.lower(), key, nameslist[0]) if key == 'street_name': self.__dump_name(lang, nametype, nameslist[0]) for transkey in STATISTIC_TRANS_NAME_FEATURE_KEYS: trans_literation_type = nameslist[0][15][0][1] if trans_literation_type == "": continue if transkey == STATISTIC_TRANS_NAME_FEATURE_KEYS[7]: trans_full_key = "{0}{1}:{2}:trans:{3}".format(GLOBAL_KEY_PREFIX, nametype, lang.lower(), trans_literation_type) else: trans_full_key = "{0}{1}:{2}:trans:{3}:{4}".format(GLOBAL_KEY_PREFIX, nametype, lang.lower(), trans_literation_type, transkey) getattr(self,'_WaysName__get_trans_'+transkey)(trans_full_key, nameslist[0][15][0]) for p_keys in self._get_phonetic_key(nameslist[0][16]): self.__count("{0}{1}:{2}:{3}".format(GLOBAL_KEY_PREFIX, nametype, lang.lower(), p_keys)) #26(0):road_name_id, 27(1):phonetic_id, 28(2):preferred, 29(3):type #30(4):phonetic_id, 31(5):phonetic_string, 32(6):phonetic_language_code, 33(7):transcription_method #34(8):geo_override_id, 35(9):phonetic_id, 36(10):admin_place_id, 37(11):preferred #38(12):left_admin_place_id, 39(13):right_admin_place_id def _get_phonetic_key(self, listphonetics): preferred_phonetics_dict = {} for phonetics in listphonetics: if phonetics[10] != "": if self._is_geo_override(phonetics[12], phonetics[10]) or self._is_geo_override(phonetics[13], phonetics[10]): preferred_phonetics_dict[phonetics[1]] = phonetics if len(preferred_phonetics_dict) == 0: for phonetics in listphonetics: if phonetics[2] == "Y": preferred_phonetics_dict[phonetics[1]] = phonetics preferred_phonetic = {} length = 0 for key, vals in preferred_phonetics_dict.items(): phonetic_key = "phonetics:{0}:{1}:{2}".format(vals[6], vals[7], vals[3]) if not preferred_phonetic.has_key(phonetic_key): preferred_phonetic[phonetic_key] = None if len(preferred_phonetic) == 0: return [] return preferred_phonetic.keys() def _is_geo_override(self, admin_place_id, geo_admin_place_id): if self.admin_hierarchy_dict.has_key(admin_place_id): admin_hierarchy = self.admin_hierarchy_dict.get(admin_place_id) if admin_hierarchy[4] == geo_admin_place_id: return True if admin_hierarchy[3] == geo_admin_place_id: return True if admin_hierarchy[2] == geo_admin_place_id: return True if admin_hierarchy[1] == geo_admin_place_id: return True if admin_hierarchy[0] == geo_admin_place_id: return True def __get_trans_attached_to_base(self, fullkey, p): if p[8] == "Y": self.__count(fullkey) def __get_trans_precedes_base(self, fullkey, p): if p[9] == "Y": self.__count(fullkey) def __get_trans_name_direction_prefix(self, fullkey, p): if p[5] != "": self.__count(fullkey) def __get_trans_street_type(self, fullkey, p): if p[4] != "": self.__count(fullkey) def __get_trans_name_direction_suffix(self, fullkey, p): if p[6] != "": self.__count(fullkey) def __get_trans_name_base(self, fullkey, p): if p[2] != "": self.__count(fullkey) def __get_trans_direction_on_sign(self, fullkey, p): if p[7] != "": self.__count(fullkey) def __get_trans_street_name(self, fullkey, p): if p[3] != "": self.__count(fullkey) def __get_route_type(self, nametype, language, key, p): if p[3] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_attached_to_base(self, nametype, language, key, p): if p[7] == "Y": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_precedes_base(self, nametype, language, key, p): if p[8] == "Y": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_name_direction_prefix(self, nametype, language, key, p): if p[9] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_street_type(self, nametype, language, key, p): if p[10] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_name_direction_suffix(self, nametype, language, key, p): if p[11] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_name_base(self, nametype, language, key, p): if p[12] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_is_exonym(self, nametype, language, key, p): if p[5] == "Y": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_name_type(self, nametype, language, key, p): if p[4] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_direction_on_sign(self, nametype, language, key, p): if p[13] != "": self.__count("%s%s:%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language, key)) def __get_street_name(self, nametype, language, key, p): if p[14] != "": self.__count("%s%s:%s"%(GLOBAL_KEY_PREFIX, nametype, language)) #0:link_id, 1:road_name_id, 2:is_exit_name, 3:is_name_on_roadsign, 4:route_type, 5:name_type, 6:is_exonym, 7:language_code #8:attached_to_base, 9:precedes_base, 10:prefix, 11:street_type, 12:suffix, 13:base_name, 14:direction_on_sign, 15:street_name #16:road_name_id, 17:transliteration_type, 18:base_name, 19:street_name, 20:street_type, 21:prefix, 22:suffix, 23:direction_on_sign, 24:attached_to_base, 25:precedes_base #26(0):road_name_id, 27(1):phonetic_id, 28(2):preferred, 29(3):type #30(4):phonetic_id, 31(5):phonetic_string, 32(6):phonetic_language_code, 33(7):transcription_method #34(8):geo_override_id, 35(9):phonetic_id, 36(10):admin_place_id, 37(11):preferred #38(12):left_admin_place_id, 39(13):right_admin_place_id, 40:road link id, 41: iso country code def _build(self, line_p): global PREV_LINKID if int(line_p[0]) != PREV_LINKID: if len(self.link_name_dict) != 0: self.__statistic() self.link_name_dict.clear() PREV_LINKID = int(line_p[0]) self.link_id = PREV_LINKID road_name_id = (line_p[1], long(line_p[40])) #road_name_id = line_p[1] if not self.link_name_dict.has_key(road_name_id): # 1:road_name_id, 2:is_exit_name, 3:is_name_on_roadsign, 4:route_type, 5:name_type, 6:is_exonym, 7:language_code # 8:attached_to_base, 9:precedes_base, 10:prefix, 11:street_type, 12:suffix, 13:base_name, 14:direction_on_sign, 15:street_name road_name_list = [line_p[1], line_p[2], line_p[3], line_p[4], line_p[5], line_p[6], line_p[7], line_p[8], line_p[9], line_p[10], line_p[11], line_p[12], line_p[13], line_p[14], line_p[15], [], [], long(line_p[40]), line_p[41]] else: road_name_list = self.link_name_dict[road_name_id] trans = [line_p[16], line_p[17], line_p[18], line_p[19], line_p[20], line_p[21], line_p[22], line_p[23], line_p[24], line_p[25]] road_name_list[15].append(trans) phonetics = [line_p[26], line_p[27], line_p[28], line_p[29], line_p[30], line_p[31], line_p[32], line_p[33], line_p[34], line_p[35], line_p[36], line_p[37], line_p[38], line_p[39]] road_name_list[16].append(phonetics) self.link_name_dict[road_name_id] = road_name_list def __add(self, line, dict): subdict = {} if not dict.has_key(line[0]): dict[line[0]] = subdict else: subdict = dict.get(line[0]) subdict[line[2]] = (float(line[3])/100000, float(line[4])/100000) def __count(self,key): key = key.lower() if self.stat.has_key(key): self.stat[key] += 1 else: self.stat[key] = 1 if __name__ == "__main__": # use to test this model bg = datetime.datetime.now() stat = WaysName('na').get_statistic() keys = stat.keys() print "==>" print "{%s}"%(",".join(map(lambda px: "\"%s\":%s"%(px,stat[px]) ,keys))) print "<==" ed = datetime.datetime.now() print "Cost time:"+str(ed - bg)
2ed90e62775bcf2abcceb6808eb7d46bfad27f24
5a9d8c64c6478f3816b63f59f1cdaca73c0848eb
/pythonNet/ex07_Thread/array.py
fbebd4f0134d54c89387bb558a5577494bae457e
[]
no_license
wangredfei/nt_py
f68134977e6d1e05cf17cec727644509f084c462
fedf03c0d52565f588e9b342d1c51df0b6dc2681
refs/heads/master
2020-04-08T07:55:08.302589
2018-11-23T09:53:48
2018-11-23T09:53:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
from multiprocessing import Process,Array import time # # 开辟一个共享内存,存入整数列表 # shm = Array('i', [1,2,3,4,5]) # def fun(): # for s in shm: # print(s) # shm[0]=1000 # p = Process(target = fun) # p.start() # p.join() # for i in shm: # print(i) shm = Array('c',b'hello') def fun(): for i in shm: print(i) shm[0] = b'H' p = Process(target = fun) p.start() p.join() for i in shm: print(i,end="") print() print(shm.value)# 打印字符串
3e05f88b40601505afeed262deb49042d529da7a
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_277/ch118_2020_03_30_20_02_35_602471.py
1f099ee2f4af19fc094bf59344f12a9a10646426
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
import math def reflexao_total_interna(n1,n2,o2): o1=math.sin(o2*math.pi/180)*n2/n1 a=math.sin(o1) if a > 1: return True else: return False
ab320487cab51af6170a88923ce8087b084a8206
9c529778ea60e590e448589e35eb4dae941e832a
/evennia-engine/evenv/share/doc/networkx-2.4/examples/drawing/plot_spectral_grid.py
3f2bc92202d5f7a92efbf193f918e48aa2443540
[ "MIT", "BSD-3-Clause" ]
permissive
rajammanabrolu/WorldGeneration
3d0976ffba8588fcebda8b8593be694e1bc1501d
5e97df013399e1a401d0a7ec184c4b9eb3100edd
refs/heads/master
2022-11-25T20:10:52.682064
2021-09-08T11:50:23
2021-09-08T11:50:23
235,484,371
69
5
MIT
2022-11-22T08:50:22
2020-01-22T02:32:53
Python
UTF-8
Python
false
false
1,603
py
""" ================== Spectral Embedding ================== The spectral layout positions the nodes of the graph based on the eigenvectors of the graph Laplacian $L = D - A$, where $A$ is the adjacency matrix and $D$ is the degree matrix of the graph. By default, the spectral layout will embed the graph in two dimensions (you can embed your graph in other dimensions using the ``dim`` argument to either :func:`~drawing.nx_pylab.draw_spectral` or :func:`~drawing.layout.spectral_layout`). When the edges of the graph represent similarity between the incident nodes, the spectral embedding will place highly similar nodes closer to one another than nodes which are less similar. This is particularly striking when you spectrally embed a grid graph. In the full grid graph, the nodes in the center of the graph are pulled apart more than nodes on the periphery. As you remove internal nodes, this effect increases. """ import matplotlib.pyplot as plt import networkx as nx options = { 'node_color': 'C0', 'node_size': 100, } G = nx.grid_2d_graph(6, 6) plt.subplot(332) nx.draw_spectral(G, **options) G.remove_edge((2, 2), (2, 3)) plt.subplot(334) nx.draw_spectral(G, **options) G.remove_edge((3, 2), (3, 3)) plt.subplot(335) nx.draw_spectral(G, **options) G.remove_edge((2, 2), (3, 2)) plt.subplot(336) nx.draw_spectral(G, **options) G.remove_edge((2, 3), (3, 3)) plt.subplot(337) nx.draw_spectral(G, **options) G.remove_edge((1, 2), (1, 3)) plt.subplot(338) nx.draw_spectral(G, **options) G.remove_edge((4, 2), (4, 3)) plt.subplot(339) nx.draw_spectral(G, **options) plt.show()
efbc42ba62610026e9e989063cfe821d499f6971
7c17d6047a8a31a54a42dc213a0a3c26ccb320fd
/djlistener/djlistener/asgi.py
c9bd80b307fc14acff4568b13981b3e2eb69841c
[]
no_license
morlandi/sinewave
7d8cd55d4b0fb72b30c99144b09ce55da1722c2d
39e2fe778ca84d045a877f0ef7938ba7a5ef05ce
refs/heads/master
2023-04-16T11:29:11.748802
2021-06-28T14:46:43
2021-06-28T14:46:43
152,848,099
9
5
null
2023-03-31T14:55:40
2018-10-13T07:44:20
Python
UTF-8
Python
false
false
792
py
""" ASGI entrypoint. Configures Django and then runs the application defined in the ASGI_APPLICATION setting. """ # import os # import django # from channels.routing import get_default_application # os.environ.setdefault("DJANGO_SETTINGS_MODULE", "djlistener.settings") # django.setup() # application = get_default_application() import os from channels.routing import ProtocolTypeRouter from channels.routing import URLRouter from django.core.asgi import get_asgi_application from django.urls import path from . import consumers os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djlistener.settings') application = ProtocolTypeRouter({ "http": get_asgi_application(), "websocket": URLRouter([ path("ws/sinewave/", consumers.SinewaveSyncConsumer.as_asgi()), ]), })
8782e35c54ec3809fa7022d9699b4f8f0f1a0bb6
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r8/Gen/DecFiles/options/42300000.py
25e564709eaf15a934a790a92af651aa2170f74d
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r8/Gen/DecFiles/options/42300000.py generated: Fri, 27 Mar 2015 15:48:05 # # Event Type: 42300000 # # ASCII decay Descriptor: pp -> [W+ -> tau+ nu_tau]cc ... # from Gaudi.Configuration import * importOptions( "$DECFILESROOT/options/Wtaunu.py" ) from Configurables import Generation Generation().EventType = 42300000 Generation().SampleGenerationTool = "Special" from Configurables import Special Generation().addTool( Special ) Generation().Special.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/W_taunutau.dec" Generation().Special.CutTool = "PythiaHiggsType" from Configurables import PythiaHiggsType Generation().Special.addTool( PythiaHiggsType ) Generation().Special.PythiaHiggsType.NumberOfLepton = 1 from GaudiKernel import SystemOfUnits Generation().Special.PythiaHiggsType.LeptonPtMin = 4*SystemOfUnits.GeV Generation().Special.PythiaHiggsType.LeptonIsFromMother = True Generation().Special.PythiaHiggsType.NumberOfbquarks = -1
f445c13cd68294138922d2b7dfada304cc3fb281
43a96eafd9108dd48f91d0b7c70cf4cd99e7eae2
/audio_zen/utils.py
0415dcc5518ed493db8332c1c592d75d1b272e7c
[ "MIT" ]
permissive
yaoao2017/FullSubNet
ec5096f9ed958aa6aceacb5cefcd96a1c77be1c9
213df1b46d5bc3d61d774a75aebae5b731046bd2
refs/heads/main
2023-08-28T01:22:24.022365
2021-11-01T11:43:47
2021-11-01T11:43:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,430
py
import importlib import os import time from copy import deepcopy from functools import reduce import torch def load_checkpoint(checkpoint_path, device): _, ext = os.path.splitext(os.path.basename(checkpoint_path)) assert ext in (".pth", ".tar"), "Only support ext and tar extensions of l1 checkpoint." model_checkpoint = torch.load(os.path.abspath(os.path.expanduser(checkpoint_path)), map_location=device) if ext == ".pth": print(f"Loading {checkpoint_path}.") return model_checkpoint else: # load tar print(f"Loading {checkpoint_path}, epoch = {model_checkpoint['epoch']}.") return model_checkpoint["l1"] def prepare_empty_dir(dirs, resume=False): """ if resume the experiment, assert the dirs exist. If not the resume experiment, set up new dirs. Args: dirs (list): directors list resume (bool): whether to resume experiment, default is False """ for dir_path in dirs: if resume: assert dir_path.exists(), "In resume mode, you must be have an old experiment dir." else: dir_path.mkdir(parents=True, exist_ok=True) def check_nan(tensor, key=""): if torch.sum(torch.isnan(tensor)) > 0: print(f"Found NaN in {key}") class ExecutionTime: """ Count execution time. Examples: timer = ExecutionTime() ... print(f"Finished in {timer.duration()} seconds.") """ def __init__(self): self.start_time = time.time() def duration(self): return int(time.time() - self.start_time) def initialize_module(path: str, args: dict = None, initialize: bool = True): """ Load module or function dynamically with "args". Args: path: module path in this project. args: parameters that will be passed to the Class or the Function in the module. initialize: whether to initialize the Class or the Function with args. Examples: Config items are as follows: [model] path = "model.FullSubNetModel" [model.args] n_frames = 32 ... This function will: 1. Load the "model.full_sub_net" module. 2. Call "FullSubNetModel" Class (or Function) in "model.full_sub_net" module. 3. If initialize is True: instantiate (or call) the Class (or the Function) and pass the parameters (in "[model.args]") to it. """ module_path = ".".join(path.split(".")[:-1]) class_or_function_name = path.split(".")[-1] module = importlib.import_module(module_path) class_or_function = getattr(module, class_or_function_name) if initialize: if args: return class_or_function(**args) else: return class_or_function() else: return class_or_function def print_tensor_info(tensor, flag="Tensor"): def floor_tensor(float_tensor): return int(float(float_tensor) * 1000) / 1000 print( f"{flag}\n" f"\t" f"max: {floor_tensor(torch.max(tensor))}, min: {float(torch.min(tensor))}, " f"mean: {floor_tensor(torch.mean(tensor))}, std: {floor_tensor(torch.std(tensor))}") def set_requires_grad(nets, requires_grad=False): """ Args: nets: list of networks requires_grad """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad def merge_config(*config_dicts): """ Deep merge configuration dicts. Args: *config_dicts: any number of configuration dicts. Notes: 1. The values of item in the later configuration dict(s) will update the ones in the former dict(s). 2. The key in the later dict must be exist in the former dict. It means that the first dict must consists of all keys. Examples: a = [ "a": 1, "b": 2, "c": { "d": 1 } ] b = [ "a": 2, "b": 2, "c": { "e": 1 } ] c = merge_config(a, b) c = [ "a": 2, "b": 2, "c": { "d": 1, "e": 1 } ] Returns: New deep-copied configuration dict. """ def merge(older_dict, newer_dict): for new_key in newer_dict: if new_key not in older_dict: # Checks items in custom config must be within common config raise KeyError(f"Key {new_key} is not exist in the common config.") if isinstance(older_dict[new_key], dict): older_dict[new_key] = merge(older_dict[new_key], newer_dict[new_key]) else: older_dict[new_key] = deepcopy(newer_dict[new_key]) return older_dict return reduce(merge, config_dicts[1:], deepcopy(config_dicts[0])) def prepare_device(n_gpu: int, keep_reproducibility=False): """ Choose to use CPU or GPU depend on the value of "n_gpu". Args: n_gpu(int): the number of GPUs used in the experiment. if n_gpu == 0, use CPU; if n_gpu >= 1, use GPU. keep_reproducibility (bool): if we need to consider the repeatability of experiment, set keep_reproducibility to True. See Also Reproducibility: https://pytorch.org/docs/stable/notes/randomness.html """ if n_gpu == 0: print("Using CPU in the experiment.") device = torch.device("cpu") else: # possibly at the cost of reduced performance if keep_reproducibility: print("Using CuDNN deterministic mode in the experiment.") torch.backends.cudnn.benchmark = False # ensures that CUDA selects the same convolution algorithm each time torch.set_deterministic(True) # configures PyTorch only to use deterministic implementation else: # causes cuDNN to benchmark multiple convolution algorithms and select the fastest torch.backends.cudnn.benchmark = True device = torch.device("cuda:0") return device def expand_path(path): return os.path.abspath(os.path.expanduser(path)) def basename(path): filename, ext = os.path.splitext(os.path.basename(path)) return filename, ext
7de97cc4e386019c8c8287f8821f5d0eba631a12
594fd699d9f8070c867b83b11881ca1f624b417b
/EstruturaDeDecisao/mais_barato.py
e1caf21790f912b0b381f4166b4196d14a2831b6
[]
no_license
felipmarqs/exerciciospythonbrasil
f140df2c59b933cc0460d5986afc8c6ddd493556
6d02e85ae5986d3b20cfd8781174998d871eeb90
refs/heads/master
2020-04-04T05:25:23.751175
2018-12-12T18:44:38
2018-12-12T18:44:38
155,745,781
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
#Faça um programa que pergunte o preço de três produtos e informe qual produto você deve comprar, sabendo que a decisão é sempre pelo mais barato. p1 = float(input("Qual o preço do primeiro produto ? R$")) p2 = float(input("Qual o preço do segundo produto ? R$")) p3 = float(input("Qual o preço do terceiro produto ? R$")) if p1 < p2 and p1 < p3: print("Compre o primeiro!") elif p2 < p1 and p2 < p3: print(("Compre o segundo!")) elif p3 < p1 and p3 < p2: print("Compre o terceiro!")
98cbaad2a1b572d0d4e77f410261e0ed4a72c31a
c41d00f9c9f716709ea3cbded76fbebfb9058fa7
/polygon/problem2/views/base.py
fb74e4c275f13782212f9c76efdf95507f4b7003
[ "MIT" ]
permissive
revectores/eoj3
56e5d8f5e0f513752a159086125902ce3086e868
3435280768b366cc82f74f1f08697f059e0f2141
refs/heads/master
2020-04-01T17:56:34.122990
2018-10-15T10:59:14
2018-10-15T10:59:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,798
py
import re import traceback from itertools import chain from django.contrib import messages from django.core.exceptions import PermissionDenied from django.db import transaction from django.db.models import Count from django.db.models import Q from django.http import Http404 from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect from django.urls import reverse from django.views import View from django.views.generic import ListView from django.views.generic.base import ContextMixin, TemplateView from account.models import User from account.permissions import is_admin_or_root from contest.models import Contest from polygon.base_views import PolygonBaseMixin from polygon.models import Revision, FavoriteProblem from polygon.rejudge import rejudge_all_submission_on_problem from problem.models import Problem from problem.views import StatusList from submission.models import Submission from utils.permission import is_problem_manager class ProblemList(PolygonBaseMixin, ListView): template_name = 'polygon/problem2/list.jinja2' context_object_name = 'problem_list' paginate_by = 100 def get_queryset(self): if 'exact' in self.request.GET: self.search_text = q = self.request.GET['exact'] query = Q(pk__exact=q) elif 'q' in self.request.GET: self.search_text = q = self.request.GET['q'] query = Q(title__icontains=q) | Q(alias__icontains=q) | Q(source__icontains=q) if q.isdigit(): query |= Q(pk__exact=q) self.id_searching_recommendation = q else: self.search_text = '' query = None if is_admin_or_root(self.request.user): qs = Problem.objects.all() else: qs = self.request.user.managing_problems.all() if query: qs = qs.filter(query) qs = qs.only("update_time", "title", "id", "create_time", "source", "alias")\ .order_by("-update_time").prefetch_related("revisions").annotate(Count('revisions')) favorite_problems = set(FavoriteProblem.objects.filter(user=self.request.user).values_list("problem_id", flat=True)) if favorite_problems: for p in qs: p.liked = p.id in favorite_problems qs = sorted(list(qs), key=lambda p: not p.liked) return qs @staticmethod def get_problem_latest_revision(problem): problem.latest_revision, problem.my_latest_revision = None, None for revision in sorted(problem.revisions.all(), key=lambda x: x.create_time, reverse=True): return revision def get_context_data(self, **kwargs): data = super().get_context_data(**kwargs) for problem in data['problem_list']: problem.latest_revision = self.get_problem_latest_revision(problem) data['search_text'] = self.search_text if hasattr(self, "id_searching_recommendation"): pid = self.id_searching_recommendation if Problem.objects.filter(id=pid).exists() and \ is_admin_or_root(self.request.user) or self.request.user.managing_problems.filter(id=pid).exists(): data["suggest_problem"] = Problem.objects.get(id=pid) data["suggest_problem"].latest_revision = self.get_problem_latest_revision(data["suggest_problem"]) return data class ProblemCreate(PolygonBaseMixin, View): @staticmethod def get_unused_problem(): revised_probs = set(Revision.objects.values_list("problem_id", flat=True)) for problem in Problem.objects.all().order_by("id"): if not problem.description and not problem.input and not problem.output and not problem.cases and \ problem.id not in revised_probs: return problem return None def post(self, request, *args, **kwargs): fallback_url = reverse('polygon:problem_list_2') alias = request.POST.get('answer', '') if not re.match(r'^[a-z0-9]{2,30}$', alias): messages.error(request, "Alias must only contain lower-case letters and digits.") return redirect(fallback_url) if 'force' in request.GET: problem = None else: problem = self.get_unused_problem() if not problem: problem = Problem.objects.create() problem.title = 'Problem #%d' % problem.id problem.alias = 'p%d' % problem.id problem.save(update_fields=['title', 'alias']) problem.memory_limit = 512 # UPD: default memory limit has been raised to 512 MB problem.alias = alias problem.save(update_fields=['memory_limit', 'alias']) problem.managers.add(request.user) revision = Revision.objects.create(problem=problem, user=self.request.user, revision=1, time_limit=problem.time_limit, memory_limit=problem.memory_limit) return redirect(reverse('polygon:revision_update', kwargs={"pk": problem.pk, "rpk": revision.pk})) class ProblemClone(PolygonBaseMixin, View): def post(self, request, *args, **kwargs): try: n = request.POST['answer'] if '-' in n: contest_id, identifier = n.split('-') contest = Contest.objects.get(pk=contest_id) if (contest.access_level >= 20 and contest.status > 0) or \ (contest.access_level >= 30 and contest.always_running): problem = contest.contestproblem_set.get(identifier=identifier).problem else: raise PermissionError else: problem = Problem.objects.get(pk=n) if not problem.visible and not is_problem_manager(request.user, problem): raise PermissionError if 'force' in request.GET: new_prob = None else: new_prob = ProblemCreate.get_unused_problem() if not new_prob: new_prob = Problem.objects.create() new_prob.managers.add(request.user) saved_id = new_prob.id problem.clone_parent = problem.id problem.id = saved_id problem.alias = 'p%d' % problem.id problem.visible = False problem.save() except: messages.error(request, "Problem does not exist or not available.") return redirect(reverse('polygon:problem_list_2')) return redirect(reverse('polygon:problem_list_2') + "?exact=%d" % saved_id) class PolygonProblemMixin(ContextMixin, PolygonBaseMixin): raise_exception = True post_allowed_for_low_permission = False def init_revision(self, *args, **kwargs): pass def dispatch(self, request, *args, **kwargs): self.request = request self.problem = get_object_or_404(Problem, pk=kwargs.get('pk')) self.latest_revisions = self.problem.revisions.all().order_by("-revision")[:5] if is_problem_manager(self.request.user, self.problem): self.permission = 2 else: self.permission = 0 self.init_revision(*args, **kwargs) return super().dispatch(request, *args, **kwargs) def test_func(self): """ Permission 2: read & write Permission 1: read (will not accept post request) """ if not super().test_func(): return False if self.request.method == "POST" and self.permission < 2 and not self.post_allowed_for_low_permission: return False elif self.permission < 1: return False return True def get_context_data(self, **kwargs): data = super().get_context_data(**kwargs) data['problem'] = self.problem data['latest_revisions'] = self.latest_revisions data['admin_list'] = self.problem.managers.all() data['level_select'] = self.problem._meta.get_field('level').choices return data class ProblemRevisionMixin(PolygonProblemMixin): model_class = None def verify_belong_to_revision(self, id): def expand_queryset(qs): return set(chain(*qs.values_list("id", "parent_id"))) - {0} if self.model_class is None: raise NotImplementedError("\"model_class\" should not be None when checking revision") if isinstance(id, str) and id.isdigit(): id = int(id) qs = self.model_class.objects.filter(revision=self.revision.id) ret = set() while True: ret_nxt = expand_queryset(qs) if ret_nxt == ret: break ret = ret_nxt if id in ret: return True qs = self.model_class.objects.filter(id__in=ret) return False def group_well_ordered(self): if not self.revision.enable_group: return True expect_group_number = 1 for case in self.revision.cases.all().order_by("case_number"): if case.group != expect_group_number: if case.group == expect_group_number + 1: expect_group_number += 1 else: return False if expect_group_number != self.revision.group_count: return False return True def case_number_well_ordered(self): for idx, case in enumerate(self.revision.cases.all().order_by("case_number"), start=1): if case.case_number != idx: return False return True def revision_health_check(self): self.errors = [] self.warnings = [] if not self.group_well_ordered(): self.errors.append("Group numbers are NOT well ordered.") if not self.case_number_well_ordered(): self.warnings.append("Case numbers are not perfectly ordered.") if not self.revision.active_statement: self.errors.append("Must have an active statement.") if not (256 <= self.revision.memory_limit <= 4096): self.errors.append("Memory limit should be between 256MB and 4GB.") if not (500 <= self.revision.time_limit <= 30000): self.errors.append("Time limit should be between 500ms and 30 seconds.") if not self.revision.time_limit * self.revision.cases.count() <= 900000: self.warnings.append("Time limit of all cases exceeds 900 seconds. This brings potential problems that " "judge requests will timeout.") if not self.revision.well_form_policy: self.warnings.append("Well form policy is not enabled. This brings potential problems in end-of-line and " "unexpected spaces. Make sure you want to do this.") if not self.revision.cases.filter(activated=True).exists(): self.errors.append("There is no activated tests for this problem.") # check samples always first case_sample_test = list(self.revision.cases.filter(activated=True).order_by("case_number"). values_list("in_samples", flat=True)) try: first_not_sample = case_sample_test.index(False) if any(case_sample_test[first_not_sample:]): self.warnings.append("Samples are not first in the tests.") except ValueError: pass if not all(map(lambda case: case.activated, self.revision.cases.filter(in_samples=True))): self.warnings.append("Not all the samples are in final tests.") def init_revision(self, *args, **kwargs): self.revision = self.problem.revisions.select_related("active_statement", "active_checker", "active_validator", "active_interactor", "user").filter(pk=kwargs['rpk']) if len(self.revision) == 0: raise Http404("Revision matches not found.") else: self.revision = self.revision[0] if self.revision.user != self.request.user or self.revision.status != 0: self.permission = 1 self.revision_health_check() def get_context_data(self, **kwargs): data = super().get_context_data(**kwargs) data['revision'] = self.revision data['revision_errors'] = self.errors data['revision_warnings'] = self.warnings data['revision_readonly'] = self.revision.status != 0 return data class ProblemStatus(PolygonProblemMixin, StatusList): template_name = 'polygon/problem2/status.jinja2' privileged = True def get_selected_from(self): return Submission.objects.filter(problem_id=self.problem.id) class ProblemRejudge(PolygonProblemMixin, View): def post(self, request, *args, **kwargs): rejudge_all_submission_on_problem(self.problem) return redirect(reverse('polygon:problem_status', kwargs={'pk': self.problem.id})) class ProblemBasicInfoManage(PolygonProblemMixin, TemplateView): """ This includes admin and alias """ template_name = 'polygon/problem2/basic_info.jinja2' def get_context_data(self, **kwargs): data = super().get_context_data(**kwargs) data['admin_list'] = self.problem.managers.all() data['level_select'] = self.problem._meta.get_field('level').choices return data @transaction.atomic() def post(self, request, pk): self.problem.alias = request.POST['alias'] if not re.match(r'^[a-z0-9]{2,30}$', self.problem.alias): messages.error(request, "Alias must contain only lower-case letters and digits.") return redirect(reverse('polygon:problem_basic_info', kwargs=self.kwargs)) self.problem.source = request.POST['source'] self.problem.level = request.POST['level'] my_set = set(map(int, filter(lambda x: x, request.POST['admin'].split(',')))) self.problem.managers.clear() for key in my_set: self.problem.managers.add(User.objects.get(pk=key)) self.problem.save() return redirect(request.POST.get('next', self.request.path)) class ProblemFavoriteToggle(PolygonProblemMixin, View): def post(self, request, *args, **kwargs): with transaction.atomic(): if FavoriteProblem.objects.filter(user=request.user, problem=self.problem).exists(): FavoriteProblem.objects.filter(user=request.user, problem=self.problem).delete() else: FavoriteProblem.objects.get_or_create(user=request.user, problem=self.problem) return HttpResponse()
ed599d93d1e0fe2eb4569c2b7658cd44121bcf99
ee7cf88c40c848d75b20136b55f7d273ce21d2f2
/util/ec3po/interpreter.py
23e896c640f86f5a3e69d92966555287bb296fe5
[ "BSD-3-Clause" ]
permissive
akappy7/ChromeOS_EC_LED_Diagnostics
4e0dfbaf3103bbf8c34ab2c9a4c9c87a39cde3b8
73b8a148756a1aa723c8277e8475f0e43d703fbf
refs/heads/master
2020-12-07T15:16:10.831477
2016-05-05T06:29:52
2016-05-05T06:29:52
57,103,470
1
0
null
null
null
null
UTF-8
Python
false
false
15,519
py
# Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """EC-3PO EC Interpreter interpreter provides the interpretation layer between the EC UART and the user. It receives commands through its command pipe, formats the commands for the EC, and sends the command to the EC. It also presents data from the EC to either be displayed via the interactive console interface, or some other consumer. It additionally supports automatic command retrying if the EC drops a character in a command. """ from __future__ import print_function import binascii # pylint: disable=cros-logging-import import logging import os import Queue import select import sys COMMAND_RETRIES = 3 # Number of attempts to retry a command. EC_MAX_READ = 1024 # Max bytes to read at a time from the EC. EC_SYN = '\xec' # Byte indicating EC interrogation. EC_ACK = '\xc0' # Byte representing correct EC response to interrogation. class LoggerAdapter(logging.LoggerAdapter): """Class which provides a small adapter for the logger.""" def process(self, msg, kwargs): """Prepends the served PTY to the beginning of the log message.""" return '%s - %s' % (self.extra['pty'], msg), kwargs class Interpreter(object): """Class which provides the interpretation layer between the EC and user. This class essentially performs all of the intepretation for the EC and the user. It handles all of the automatic command retrying as well as the formation of commands for EC images which support that. Attributes: logger: A logger for this module. ec_uart_pty: An opened file object to the raw EC UART PTY. ec_uart_pty_name: A string containing the name of the raw EC UART PTY. cmd_pipe: A multiprocessing.Connection object which represents the Interpreter side of the command pipe. This must be a bidirectional pipe. Commands and responses will utilize this pipe. dbg_pipe: A multiprocessing.Connection object which represents the Interpreter side of the debug pipe. This must be a unidirectional pipe with write capabilities. EC debug output will utilize this pipe. cmd_retries: An integer representing the number of attempts the console should retry commands if it receives an error. log_level: An integer representing the numeric value of the log level. inputs: A list of objects that the intpreter selects for reading. Initially, these are the EC UART and the command pipe. outputs: A list of objects that the interpreter selects for writing. ec_cmd_queue: A FIFO queue used for sending commands down to the EC UART. last_cmd: A string that represents the last command sent to the EC. If an error is encountered, the interpreter will attempt to retry this command up to COMMAND_RETRIES. enhanced_ec: A boolean indicating if the EC image that we are currently communicating with is enhanced or not. Enhanced EC images will support packed commands and host commands over the UART. This defaults to False and is changed depending on the result of an interrogation. interrogating: A boolean indicating if we are in the middle of interrogating the EC. connected: A boolean indicating if the interpreter is actually connected to the UART and listening. """ def __init__(self, ec_uart_pty, cmd_pipe, dbg_pipe, log_level=logging.INFO): """Intializes an Interpreter object with the provided args. Args: ec_uart_pty: A string representing the EC UART to connect to. cmd_pipe: A multiprocessing.Connection object which represents the Interpreter side of the command pipe. This must be a bidirectional pipe. Commands and responses will utilize this pipe. dbg_pipe: A multiprocessing.Connection object which represents the Interpreter side of the debug pipe. This must be a unidirectional pipe with write capabilities. EC debug output will utilize this pipe. cmd_retries: An integer representing the number of attempts the console should retry commands if it receives an error. log_level: An optional integer representing the numeric value of the log level. By default, the log level will be logging.INFO (20). """ logger = logging.getLogger('EC3PO.Interpreter') self.logger = LoggerAdapter(logger, {'pty': ec_uart_pty}) self.ec_uart_pty = open(ec_uart_pty, 'a+') self.ec_uart_pty_name = ec_uart_pty self.cmd_pipe = cmd_pipe self.dbg_pipe = dbg_pipe self.cmd_retries = COMMAND_RETRIES self.log_level = log_level self.inputs = [self.ec_uart_pty, self.cmd_pipe] self.outputs = [] self.ec_cmd_queue = Queue.Queue() self.last_cmd = '' self.enhanced_ec = False self.interrogating = False self.connected = True def __str__(self): """Show internal state of the Interpreter object. Returns: A string that shows the values of the attributes. """ string = [] string.append('%r' % self) string.append('ec_uart_pty: %s' % self.ec_uart_pty) string.append('cmd_pipe: %r' % self.cmd_pipe) string.append('dbg_pipe: %r' % self.dbg_pipe) string.append('cmd_retries: %d' % self.cmd_retries) string.append('log_level: %d' % self.log_level) string.append('inputs: %r' % self.inputs) string.append('outputs: %r' % self.outputs) string.append('ec_cmd_queue: %r' % self.ec_cmd_queue) string.append('last_cmd: \'%s\'' % self.last_cmd) string.append('enhanced_ec: %r' % self.enhanced_ec) string.append('interrogating: %r' % self.interrogating) return '\n'.join(string) def EnqueueCmd(self, command): """Enqueue a command to be sent to the EC UART. Args: command: A string which contains the command to be sent. """ self.ec_cmd_queue.put(command) self.logger.debug('Commands now in queue: %d', self.ec_cmd_queue.qsize()) # Add the EC UART as an output to be serviced. if self.connected and self.ec_uart_pty not in self.outputs: self.outputs.append(self.ec_uart_pty) def PackCommand(self, raw_cmd): r"""Packs a command for use with error checking. For error checking, we pack console commands in a particular format. The format is as follows: &&[x][x][x][x]&{cmd}\n\n ^ ^ ^^ ^^ ^ ^-- 2 newlines. | | || || |-- the raw console command. | | || ||-- 1 ampersand. | | ||____|--- 2 hex digits representing the CRC8 of cmd. | |____|-- 2 hex digits reprsenting the length of cmd. |-- 2 ampersands Args: raw_cmd: A pre-packed string which contains the raw command. Returns: A string which contains the packed command. """ # Don't pack a single carriage return. if raw_cmd != '\r': # The command format is as follows. # &&[x][x][x][x]&{cmd}\n\n packed_cmd = [] packed_cmd.append('&&') # The first pair of hex digits are the length of the command. packed_cmd.append('%02x' % len(raw_cmd)) # Then the CRC8 of cmd. packed_cmd.append('%02x' % Crc8(raw_cmd)) packed_cmd.append('&') # Now, the raw command followed by 2 newlines. packed_cmd.append(raw_cmd) packed_cmd.append('\n\n') return ''.join(packed_cmd) else: return raw_cmd def ProcessCommand(self, command): """Captures the input determines what actions to take. Args: command: A string representing the command sent by the user. """ if command == "disconnect": if self.connected: self.logger.debug('UART disconnect request.') # Drop all pending commands if any. while not self.ec_cmd_queue.empty(): c = self.ec_cmd_queue.get() self.logger.debug('dropped: \'%s\'', c) if self.enhanced_ec: # Reset retry state. self.cmd_retries = COMMAND_RETRIES self.last_cmd = '' # Get the UART that the interpreter is attached to. fd = self.ec_uart_pty self.logger.debug('fd: %r', fd) # Remove the descriptor from the inputs and outputs. self.inputs.remove(fd) if fd in self.outputs: self.outputs.remove(fd) self.logger.debug('Removed fd. Remaining inputs: %r', self.inputs) # Close the file. fd.close() # Mark the interpreter as disconnected now. self.connected = False self.logger.debug('Disconnected from %s.', self.ec_uart_pty_name) return elif command == "reconnect": if not self.connected: self.logger.debug('UART reconnect request.') # Reopen the PTY. fd = open(self.ec_uart_pty_name, 'a+') self.logger.debug('fd: %r', fd) self.ec_uart_pty = fd # Add the descriptor to the inputs. self.inputs.append(fd) self.logger.debug('fd added. curr inputs: %r', self.inputs) # Mark the interpreter as connected now. self.connected = True self.logger.debug('Connected to %s.', self.ec_uart_pty_name) return # Ignore any other commands while in the disconnected state. self.logger.debug('command: \'%s\'', command) if not self.connected: self.logger.debug('Ignoring command because currently disconnected.') return # Remove leading and trailing spaces only if this is an enhanced EC image. # For non-enhanced EC images, commands will be single characters at a time # and can be spaces. if self.enhanced_ec: command = command.strip(' ') # There's nothing to do if the command is empty. if len(command) == 0: return # Check for interrogation command. if command == EC_SYN: # User is requesting interrogation. Send SYN as is. self.logger.debug('User requesting interrogation.') self.interrogating = True # Assume the EC isn't enhanced until we get a response. self.enhanced_ec = False elif self.enhanced_ec: # Enhanced EC images require the plaintext commands to be packed. command = self.PackCommand(command) # TODO(aaboagye): Make a dict of commands and keys and eventually, # handle partial matching based on unique prefixes. self.EnqueueCmd(command) def HandleCmdRetries(self): """Attempts to retry commands if possible.""" if self.cmd_retries > 0: # The EC encountered an error. We'll have to retry again. self.logger.warning('Retrying command...') self.cmd_retries -= 1 self.logger.warning('Retries remaining: %d', self.cmd_retries) # Retry the command and add the EC UART to the writers again. self.EnqueueCmd(self.last_cmd) self.outputs.append(self.ec_uart_pty) else: # We're out of retries, so just give up. self.logger.error('Command failed. No retries left.') # Clear the command in progress. self.last_cmd = '' # Reset the retry count. self.cmd_retries = COMMAND_RETRIES def SendCmdToEC(self): """Sends a command to the EC.""" # If we're retrying a command, just try to send it again. if self.cmd_retries < COMMAND_RETRIES: cmd = self.last_cmd else: # If we're not retrying, we should not be writing to the EC if we have no # items in our command queue. assert not self.ec_cmd_queue.empty() # Get the command to send. cmd = self.ec_cmd_queue.get() # Send the command. self.ec_uart_pty.write(cmd) self.ec_uart_pty.flush() self.logger.debug('Sent command to EC.') if self.enhanced_ec and cmd != EC_SYN: # Now, that we've sent the command, store the current command as the last # command sent. If we encounter an error string, we will attempt to retry # this command. if cmd != self.last_cmd: self.last_cmd = cmd # Reset the retry count. self.cmd_retries = COMMAND_RETRIES # If no command is pending to be sent, then we can remove the EC UART from # writers. Might need better checking for command retry logic in here. if self.ec_cmd_queue.empty(): # Remove the EC UART from the writers while we wait for a response. self.logger.debug('Removing EC UART from writers.') self.outputs.remove(self.ec_uart_pty) def HandleECData(self): """Handle any debug prints from the EC.""" self.logger.debug('EC has data') # Read what the EC sent us. data = os.read(self.ec_uart_pty.fileno(), EC_MAX_READ) self.logger.debug('got: \'%s\'', binascii.hexlify(data)) if '&E' in data and self.enhanced_ec: # We received an error, so we should retry it if possible. self.logger.warning('Error string found in data.') self.HandleCmdRetries() return # If we were interrogating, check the response and update our knowledge # of the current EC image. if self.interrogating: self.enhanced_ec = data == EC_ACK if self.enhanced_ec: self.logger.debug('The current EC image seems enhanced.') else: self.logger.debug('The current EC image does NOT seem enhanced.') # Done interrogating. self.interrogating = False # For now, just forward everything the EC sends us. self.logger.debug('Forwarding to user...') self.dbg_pipe.send(data) def HandleUserData(self): """Handle any incoming commands from the user.""" self.logger.debug('Command data available. Begin processing.') data = self.cmd_pipe.recv() # Process the command. self.ProcessCommand(data) def Crc8(data): """Calculates the CRC8 of data. The generator polynomial used is: x^8 + x^2 + x + 1. This is the same implementation that is used in the EC. Args: data: A string of data that we wish to calculate the CRC8 on. Returns: crc >> 8: An integer representing the CRC8 value. """ crc = 0 for byte in data: crc ^= (ord(byte) << 8) for _ in range(8): if crc & 0x8000: crc ^= (0x1070 << 3) crc <<= 1 return crc >> 8 def StartLoop(interp): """Starts an infinite loop of servicing the user and the EC. StartLoop checks to see if there are any commands to process, processing them if any, and forwards EC output to the user. When sending a command to the EC, we send the command once and check the response to see if the EC encountered an error when receiving the command. An error condition is reported to the interpreter by a string with at least one '&' and 'E'. The full string is actually '&&EE', however it's possible that the leading ampersand or trailing 'E' could be dropped. If an error is encountered, the interpreter will retry up to the amount configured. Args: interp: An Interpreter object that has been properly initialised. """ try: while True: readable, writeable, _ = select.select(interp.inputs, interp.outputs, []) for obj in readable: # Handle any debug prints from the EC. if obj is interp.ec_uart_pty: interp.HandleECData() # Handle any commands from the user. elif obj is interp.cmd_pipe: interp.HandleUserData() for obj in writeable: # Send a command to the EC. if obj is interp.ec_uart_pty: interp.SendCmdToEC() finally: # Close pipes. interp.cmd_pipe.close() interp.dbg_pipe.close() # Close file descriptor. interp.ec_uart_pty.close() # Exit. sys.exit(0)