blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
60c7a19b07d8f1d210ea5a6a7190623c12edf33a
616aea820210c1bee5a52e4460b0444e57aad217
/src/third/SimpleCV/Features/BlobMaker.py
58b16530742013dac5b7fb2a0a7907b01b32a6e5
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
isabella232/pycollector
c470e65c0b9241247d0446471e1c428a924c6d16
459b3cc533b6371719c15d6d6b935e4c7311d6f9
refs/heads/master
2023-03-07T09:22:19.536634
2013-05-24T18:32:45
2013-05-24T18:32:45
324,754,495
0
0
NOASSERTION
2021-02-24T10:03:27
2020-12-27T12:14:29
null
UTF-8
Python
false
false
10,819
py
from SimpleCV.base import * class BlobMaker: """ Blob maker encapsulates all of the contour extraction process and data, so it can be used inside the image class, or extended and used outside the image class. The general idea is that the blob maker provides the utilites that one would use for blob extraction. Later implementations may include tracking and other features. """ mMemStorage = None def __init__(self): self.mMemStorage = cv.CreateMemStorage() return None def extractUsingModel(self, img, colormodel,minsize=10, maxsize=0): """ Extract blobs using a color model img - The input image colormodel - The color model to use. minsize - The minimum size of the returned features. maxsize - The maximum size of the returned features 0=uses the default value. Parameters: img - Image colormodel - ColorModel object minsize - Int maxsize - Int """ if (maxsize <= 0): maxsize = img.width * img.height gray = colormodel.threshold(img) blobs = self.extractFromBinary(gray,img,minArea=minsize,maxArea=maxsize) retVal = sorted(blobs,key=lambda x: x.mArea, reverse=True) return FeatureSet(retVal) def extract(self, img, threshval = 127, minsize=10, maxsize=0, threshblocksize=3, threshconstant=5): """ This method performs a threshold operation on the input image and then extracts and returns the blobs. img - The input image (color or b&w) threshval - The threshold value for the binarize operation. If threshval = -1 adaptive thresholding is used minsize - The minimum blob size in pixels. maxsize - The maximum blob size in pixels. 0=uses the default value. threshblocksize - The adaptive threhold block size. threshconstant - The minimum to subtract off the adaptive threshold """ if (maxsize <= 0): maxsize = img.width * img.height #create a single channel image, thresholded to parameters blobs = self.extractFromBinary(img.binarize(threshval, 255, threshblocksize, threshconstant).invert(),img,minsize,maxsize) retVal = sorted(blobs,key=lambda x: x.mArea, reverse=True) return FeatureSet(retVal) def extractFromBinary(self,binaryImg,colorImg, minsize = 5, maxsize = -1): """ This method performs blob extraction given a binary source image that is used to get the blob images, and a color source image. binaryImg- The binary image with the blobs. colorImg - The color image. minSize - The minimum size of the blobs in pixels. maxSize - The maximum blob size in pixels. """ #If you hit this recursion limit may god have mercy on your soul. #If you really are having problems set the value higher, but this means # you have over 10,000,000 blobs in your image. sys.setrecursionlimit(5000) #h_next moves to the next external contour #v_next() moves to the next internal contour if (maxsize <= 0): maxsize = colorImg.width * colorImg.height retVal = [] test = binaryImg.meanColor() if( test[0]==0.00 and test[1]==0.00 and test[2]==0.00): return FeatureSet(retVal) # There are a couple of weird corner cases with the opencv # connect components libraries - when you try to find contours # in an all black image, or an image with a single white pixel # that sits on the edge of an image the whole thing explodes # this check catches those bugs. -KAS # Also I am submitting a bug report to Willow Garage - please bare with us. ptest = 510.0/(binaryImg.width*binaryImg.height) # val if two pixels are white if( test[0]<ptest and test[1]<ptest and test[2]<ptest): return retVal seq = cv.FindContours( binaryImg._getGrayscaleBitmap(), self.mMemStorage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE) try: # note to self # http://code.activestate.com/recipes/474088-tail-call-optimization-decorator/ retVal = self._extractFromBinary(seq,False,colorImg,minsize,maxsize) except RuntimeError,e: warnings.warn("You exceeded the recursion limit. This means you probably have too many blobs in your image. We suggest you do some morphological operations (erode/dilate) to reduce the number of blobs in your image. This function was designed to max out at about 5000 blobs per image.") except: warnings.warn("SimpleCV Find Blobs Failed - This could be an OpenCV python binding issue") del seq return FeatureSet(retVal) def _extractFromBinary(self, seq, isaHole, colorImg,minsize,maxsize): """ The recursive entry point for the blob extraction. The blobs and holes are presented as a tree and we traverse up and across the tree. """ retVal = [] if( seq is None ): return retVal if( not isaHole ): #if we aren't a hole then we are an object, so get and return our featuress temp = self._extractData(seq,colorImg,minsize,maxsize) if( temp is not None ): retVal.append(temp) #get the current feature nextBlob = seq.h_next() # move to the next feature on our level if( nextBlob is not None ): #the next object is whatever this object is, add its list to ours retVal += self._extractFromBinary(nextBlob, isaHole, colorImg, minsize,maxsize) nextLayer = seq.v_next() # move down a layer if(nextLayer is not None): #the next object, since it is down a layer is different retVal += self._extractFromBinary(nextLayer, not isaHole, colorImg, minsize,maxsize) return retVal def _extractData(self,seq,color,minsize,maxsize): """ Extract the bulk of the data from a give blob. If the blob's are is too large or too small the method returns none. """ if( seq is None or not len(seq)): return None area = cv.ContourArea(seq) if( area < minsize or area > maxsize): return None retVal = Blob() retVal.image = color retVal.mArea = area retVal.mMinRectangle = cv.MinAreaRect2(seq) retVal.mBoundingBox = cv.BoundingRect(seq) retVal.x = retVal.mBoundingBox[0]+(retVal.mBoundingBox[2]/2) retVal.y = retVal.mBoundingBox[1]+(retVal.mBoundingBox[3]/2) retVal.mPerimeter = cv.ArcLength(seq) if( seq is not None): #KAS retVal.mContour = list(seq) chull = cv.ConvexHull2(seq,cv.CreateMemStorage(),return_points=1) retVal.mConvexHull = list(chull) retVal.mHullMask = self._getHullMask(chull,retVal.mBoundingBox) del chull moments = cv.Moments(seq) retVal.m00 = area retVal.m10 = moments.m10 retVal.m01 = moments.m01 retVal.m11 = moments.m11 retVal.m20 = moments.m20 retVal.m02 = moments.m02 retVal.m21 = moments.m21 retVal.m12 = moments.m12 retVal.mHu = cv.GetHuMoments(moments) retVal.mMask = self._getMask(seq,retVal.mBoundingBox) mask = retVal.mMask retVal.mAvgColor = self._getAvg(color.getBitmap(),retVal.mBoundingBox,mask) retVal.mAvgColor = retVal.mAvgColor[0:3] retVal.mAvgColor = self._getAvg(color.getBitmap(),retVal.mBoundingBox,mask) retVal.mAvgColor = retVal.mAvgColor[0:3] retVal.mImg = self._getBlobAsImage(seq,retVal.mBoundingBox,color.getBitmap(),mask) retVal.mHoleContour = self._getHoles(seq) retVal.mAspectRatio = retVal.mMinRectangle[1][0]/retVal.mMinRectangle[1][1] bb = retVal.mBoundingBox retVal.points.append((bb[0], bb[1])) retVal.points.append((bb[0] + bb[2], bb[1])) retVal.points.append((bb[0] + bb[2], bb[1] + bb[3])) retVal.points.append((bb[0], bb[1] + bb[3])) return retVal def _getHoles(self,seq): """ This method returns the holes associated with a blob as a list of tuples. """ retVal = None holes = seq.v_next() if( holes is not None ): retVal = [list(holes)] while( holes.h_next() is not None ): holes = holes.h_next(); temp = list(holes) if( len(temp) >= 3 ): #exclude single pixel holes retVal.append(temp) return retVal def _getMask(self,seq,bb): """ Return a binary image of a particular contour sequence. """ #bb = cv.BoundingRect(seq) mask = cv.CreateImage((bb[2],bb[3]),cv.IPL_DEPTH_8U,1) cv.Zero(mask) cv.DrawContours(mask,seq,(255),(0),0,thickness=-1, offset=(-1*bb[0],-1*bb[1])) holes = seq.v_next() if( holes is not None ): cv.DrawContours(mask,holes,(0),(255),0,thickness=-1, offset=(-1*bb[0],-1*bb[1])) while( holes.h_next() is not None ): holes = holes.h_next(); if(holes is not None): cv.DrawContours(mask,holes,(0),(255),0,thickness=-1, offset=(-1*bb[0],-1*bb[1])) return mask def _getHullMask(self,hull,bb): """ Return a mask of the convex hull of a blob. """ bb = cv.BoundingRect(hull) mask = cv.CreateImage((bb[2],bb[3]),cv.IPL_DEPTH_8U,1) cv.Zero(mask) cv.DrawContours(mask,hull,(255),(0),0,thickness=-1, offset=(-1*bb[0],-1*bb[1])) return mask def _getAvg(self,colorbitmap,bb,mask): """ Calculate the average color of a blob given the mask. """ cv.SetImageROI(colorbitmap,bb) #may need the offset parameter avg = cv.Avg(colorbitmap,mask) cv.ResetImageROI(colorbitmap) return avg def _getBlobAsImage(self,seq,bb,colorbitmap,mask): """ Return an image that contains just pixels defined by the blob sequence. """ cv.SetImageROI(colorbitmap,bb) outputImg = cv.CreateImage((bb[2],bb[3]),cv.IPL_DEPTH_8U,3) cv.Zero(outputImg) cv.Copy(colorbitmap,outputImg,mask) cv.ResetImageROI(colorbitmap) return(Image(outputImg)) from SimpleCV.ImageClass import Image from SimpleCV.Features.Features import FeatureSet from SimpleCV.Features.Blob import Blob
fa9b010550b5d313d60bfd25b37849dd9fcabfb8
b15d2787a1eeb56dfa700480364337216d2b1eb9
/samples/cli/accelbyte_py_sdk_cli/ugc/_admin_get_specific_content.py
80f1e848449d0efebed0a1dbcc9f1ac5fe2f4371
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
2,344
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template_file: python-cli-command.j2 # AGS Ugc Service (2.11.3) # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import import json import yaml from typing import Optional import click from .._utils import login_as as login_as_internal from .._utils import to_dict from accelbyte_py_sdk.api.ugc import ( admin_get_specific_content as admin_get_specific_content_internal, ) from accelbyte_py_sdk.api.ugc.models import ModelsContentDownloadResponse from accelbyte_py_sdk.api.ugc.models import ResponseError @click.command() @click.argument("content_id", type=str) @click.option("--namespace", type=str) @click.option("--login_as", type=click.Choice(["client", "user"], case_sensitive=False)) @click.option("--login_with_auth", type=str) @click.option("--doc", type=bool) def admin_get_specific_content( content_id: str, namespace: Optional[str] = None, login_as: Optional[str] = None, login_with_auth: Optional[str] = None, doc: Optional[bool] = None, ): if doc: click.echo(admin_get_specific_content_internal.__doc__) return x_additional_headers = None if login_with_auth: x_additional_headers = {"Authorization": login_with_auth} else: login_as_internal(login_as) result, error = admin_get_specific_content_internal( content_id=content_id, namespace=namespace, x_additional_headers=x_additional_headers, ) if error: raise Exception(f"AdminGetSpecificContent failed: {str(error)}") click.echo(yaml.safe_dump(to_dict(result), sort_keys=False)) admin_get_specific_content.operation_id = "AdminGetSpecificContent" admin_get_specific_content.is_deprecated = False
189d19996e87af7af8a9ee4b7152b294fff376aa
539d003125eebf761ba320223566cd56eeefe247
/mundiapi/controllers/recipients_controller.py
89a632e7d64589138e02cc614eb79bba0b4d6845
[ "MIT" ]
permissive
mundipagg/MundiApi-NodeJS
6e58afb33510a723574ee06bec107654409910af
f0c67e1f92471a7a0e2d0b0cb1765105f07fb8cb
refs/heads/master
2023-06-25T23:04:42.429866
2023-06-19T16:10:31
2023-06-19T16:10:31
101,078,084
9
5
NOASSERTION
2023-06-01T17:50:21
2017-08-22T15:25:30
JavaScript
UTF-8
Python
false
false
36,523
py
# -*- coding: utf-8 -*- """ mundiapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ from mundiapi.api_helper import APIHelper from mundiapi.configuration import Configuration from mundiapi.controllers.base_controller import BaseController from mundiapi.http.auth.basic_auth import BasicAuth from mundiapi.models.get_recipient_response import GetRecipientResponse from mundiapi.models.get_transfer_response import GetTransferResponse from mundiapi.models.list_transfer_response import ListTransferResponse from mundiapi.models.get_anticipation_response import GetAnticipationResponse from mundiapi.models.get_anticipation_limit_response import GetAnticipationLimitResponse from mundiapi.models.list_anticipation_response import ListAnticipationResponse from mundiapi.models.list_recipient_response import ListRecipientResponse from mundiapi.models.get_balance_response import GetBalanceResponse from mundiapi.models.get_withdraw_response import GetWithdrawResponse from mundiapi.models.list_withdrawals import ListWithdrawals class RecipientsController(BaseController): """A Controller to access Endpoints in the mundiapi API.""" def update_recipient_metadata(self, recipient_id, request, idempotency_key=None): """Does a PATCH request to /recipients/{recipient_id}/metadata. Updates recipient metadata Args: recipient_id (string): Recipient id request (UpdateMetadataRequest): Metadata idempotency_key (string, optional): TODO: type description here. Example: Returns: GetRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/metadata' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.patch(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetRecipientResponse.from_dictionary) def get_transfer(self, recipient_id, transfer_id): """Does a GET request to /recipients/{recipient_id}/transfers/{transfer_id}. Gets a transfer Args: recipient_id (string): Recipient id transfer_id (string): Transfer id Returns: GetTransferResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/transfers/{transfer_id}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id, 'transfer_id': transfer_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetTransferResponse.from_dictionary) def get_transfers(self, recipient_id, page=None, size=None, status=None, created_since=None, created_until=None): """Does a GET request to /recipients/{recipient_id}/transfers. Gets a paginated list of transfers for the recipient Args: recipient_id (string): Recipient id page (int, optional): Page number size (int, optional): Page size status (string, optional): Filter for transfer status created_since (datetime, optional): Filter for start range of transfer creation date created_until (datetime, optional): Filter for end range of transfer creation date Returns: ListTransferResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/transfers' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_parameters = { 'page': page, 'size': size, 'status': status, 'created_since': APIHelper.when_defined(APIHelper.RFC3339DateTime, created_since), 'created_until': APIHelper.when_defined(APIHelper.RFC3339DateTime, created_until) } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, ListTransferResponse.from_dictionary) def create_anticipation(self, recipient_id, request, idempotency_key=None): """Does a POST request to /recipients/{recipient_id}/anticipations. Creates an anticipation Args: recipient_id (string): Recipient id request (CreateAnticipationRequest): Anticipation data idempotency_key (string, optional): TODO: type description here. Example: Returns: GetAnticipationResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/anticipations' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.post(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetAnticipationResponse.from_dictionary) def get_anticipation(self, recipient_id, anticipation_id): """Does a GET request to /recipients/{recipient_id}/anticipations/{anticipation_id}. Gets an anticipation Args: recipient_id (string): Recipient id anticipation_id (string): Anticipation id Returns: GetAnticipationResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/anticipations/{anticipation_id}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id, 'anticipation_id': anticipation_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetAnticipationResponse.from_dictionary) def get_anticipation_limits(self, recipient_id, timeframe, payment_date): """Does a GET request to /recipients/{recipient_id}/anticipation_limits. Gets the anticipation limits for a recipient Args: recipient_id (string): Recipient id timeframe (string): Timeframe payment_date (datetime): Anticipation payment date Returns: GetAnticipationLimitResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/anticipation_limits' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_parameters = { 'timeframe': timeframe, 'payment_date': APIHelper.when_defined(APIHelper.RFC3339DateTime, payment_date) } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetAnticipationLimitResponse.from_dictionary) def get_anticipations(self, recipient_id, page=None, size=None, status=None, timeframe=None, payment_date_since=None, payment_date_until=None, created_since=None, created_until=None): """Does a GET request to /recipients/{recipient_id}/anticipations. Retrieves a paginated list of anticipations from a recipient Args: recipient_id (string): Recipient id page (int, optional): Page number size (int, optional): Page size status (string, optional): Filter for anticipation status timeframe (string, optional): Filter for anticipation timeframe payment_date_since (datetime, optional): Filter for start range for anticipation payment date payment_date_until (datetime, optional): Filter for end range for anticipation payment date created_since (datetime, optional): Filter for start range for anticipation creation date created_until (datetime, optional): Filter for end range for anticipation creation date Returns: ListAnticipationResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/anticipations' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_parameters = { 'page': page, 'size': size, 'status': status, 'timeframe': timeframe, 'payment_date_since': APIHelper.when_defined(APIHelper.RFC3339DateTime, payment_date_since), 'payment_date_until': APIHelper.when_defined(APIHelper.RFC3339DateTime, payment_date_until), 'created_since': APIHelper.when_defined(APIHelper.RFC3339DateTime, created_since), 'created_until': APIHelper.when_defined(APIHelper.RFC3339DateTime, created_until) } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, ListAnticipationResponse.from_dictionary) def update_recipient(self, recipient_id, request, idempotency_key=None): """Does a PUT request to /recipients/{recipient_id}. Updates a recipient Args: recipient_id (string): Recipient id request (UpdateRecipientRequest): Recipient data idempotency_key (string, optional): TODO: type description here. Example: Returns: GetRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.put(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetRecipientResponse.from_dictionary) def update_recipient_default_bank_account(self, recipient_id, request, idempotency_key=None): """Does a PATCH request to /recipients/{recipient_id}/default-bank-account. Updates the default bank account from a recipient Args: recipient_id (string): Recipient id request (UpdateRecipientBankAccountRequest): Bank account data idempotency_key (string, optional): TODO: type description here. Example: Returns: GetRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/default-bank-account' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.patch(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetRecipientResponse.from_dictionary) def get_recipient(self, recipient_id): """Does a GET request to /recipients/{recipient_id}. Retrieves recipient information Args: recipient_id (string): Recipiend id Returns: GetRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetRecipientResponse.from_dictionary) def get_recipients(self, page=None, size=None): """Does a GET request to /recipients. Retrieves paginated recipients information Args: page (int, optional): Page number size (int, optional): Page size Returns: ListRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients' _query_builder = Configuration.base_uri _query_builder += _url_path _query_parameters = { 'page': page, 'size': size } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, ListRecipientResponse.from_dictionary) def get_balance(self, recipient_id): """Does a GET request to /recipients/{recipient_id}/balance. Get balance information for a recipient Args: recipient_id (string): Recipient id Returns: GetBalanceResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/balance' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetBalanceResponse.from_dictionary) def create_transfer(self, recipient_id, request, idempotency_key=None): """Does a POST request to /recipients/{recipient_id}/transfers. Creates a transfer for a recipient Args: recipient_id (string): Recipient Id request (CreateTransferRequest): Transfer data idempotency_key (string, optional): TODO: type description here. Example: Returns: GetTransferResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/transfers' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.post(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetTransferResponse.from_dictionary) def create_recipient(self, request, idempotency_key=None): """Does a POST request to /recipients. Creates a new recipient Args: request (CreateRecipientRequest): Recipient data idempotency_key (string, optional): TODO: type description here. Example: Returns: GetRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients' _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.post(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetRecipientResponse.from_dictionary) def update_recipient_transfer_settings(self, recipient_id, request, idempotency_key=None): """Does a PATCH request to /recipients/{recipient_id}/transfer-settings. TODO: type endpoint description here. Args: recipient_id (string): Recipient Identificator request (UpdateTransferSettingsRequest): TODO: type description here. Example: idempotency_key (string, optional): TODO: type description here. Example: Returns: GetRecipientResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/transfer-settings' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8', 'idempotency-key': idempotency_key } # Prepare and execute request _request = self.http_client.patch(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetRecipientResponse.from_dictionary) def create_withdraw(self, recipient_id, request): """Does a POST request to /recipients/{recipient_id}/withdrawals. TODO: type endpoint description here. Args: recipient_id (string): TODO: type description here. Example: request (CreateWithdrawRequest): TODO: type description here. Example: Returns: GetWithdrawResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/withdrawals' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json', 'content-type': 'application/json; charset=utf-8' } # Prepare and execute request _request = self.http_client.post(_query_url, headers=_headers, parameters=APIHelper.json_serialize(request)) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetWithdrawResponse.from_dictionary) def get_withdraw_by_id(self, recipient_id, withdrawal_id): """Does a GET request to /recipients/{recipient_id}/withdrawals/{withdrawal_id}. TODO: type endpoint description here. Args: recipient_id (string): TODO: type description here. Example: withdrawal_id (string): TODO: type description here. Example: Returns: GetWithdrawResponse: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/withdrawals/{withdrawal_id}' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id, 'withdrawal_id': withdrawal_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, GetWithdrawResponse.from_dictionary) def get_withdrawals(self, recipient_id, page=None, size=None, status=None, created_since=None, created_until=None): """Does a GET request to /recipients/{recipient_id}/withdrawals. Gets a paginated list of transfers for the recipient Args: recipient_id (string): TODO: type description here. Example: page (int, optional): TODO: type description here. Example: size (int, optional): TODO: type description here. Example: status (string, optional): TODO: type description here. Example: created_since (datetime, optional): TODO: type description here. Example: created_until (datetime, optional): TODO: type description here. Example: Returns: ListWithdrawals: Response from the API. Raises: APIException: When an error occurs while fetching the data from the remote API. This exception includes the HTTP Response code, an error message, and the HTTP body that was received in the request. """ # Prepare query URL _url_path = '/recipients/{recipient_id}/withdrawals' _url_path = APIHelper.append_url_with_template_parameters(_url_path, { 'recipient_id': recipient_id }) _query_builder = Configuration.base_uri _query_builder += _url_path _query_parameters = { 'page': page, 'size': size, 'status': status, 'created_since': APIHelper.when_defined(APIHelper.RFC3339DateTime, created_since), 'created_until': APIHelper.when_defined(APIHelper.RFC3339DateTime, created_until) } _query_builder = APIHelper.append_url_with_query_parameters(_query_builder, _query_parameters, Configuration.array_serialization) _query_url = APIHelper.clean_url(_query_builder) # Prepare headers _headers = { 'accept': 'application/json' } # Prepare and execute request _request = self.http_client.get(_query_url, headers=_headers) BasicAuth.apply(_request) _context = self.execute_request(_request) self.validate_response(_context) # Return appropriate type return APIHelper.json_deserialize(_context.response.raw_body, ListWithdrawals.from_dictionary)
0b193443b4254b8f09b87d0e58820b42bc298b41
22279487bee5c983c13887ba11e6a4cd40e8bbe3
/PreprocessData/all_class_files/LiquorStore.py
57b8e96fa423055c10e5f164e93535ac3dffcba5
[ "MIT" ]
permissive
DylanNEU/Schema
018c9f683c683068422ed7b6392dcebd4ab4d4cd
4854720a15894dd814691a55e03329ecbbb6f558
refs/heads/main
2023-08-30T01:50:20.541634
2021-11-01T15:30:41
2021-11-01T15:30:41
425,238,713
1
0
MIT
2021-11-06T12:29:12
2021-11-06T12:29:11
null
UTF-8
Python
false
false
2,310
py
from PreprocessData.all_class_files.Store import Store import global_data class LiquorStore(Store): def __init__(self, additionalType=None, alternateName=None, description=None, disambiguatingDescription=None, identifier=None, image=None, mainEntityOfPage=None, name=None, potentialAction=None, sameAs=None, url=None, address=None, aggregateRating=None, alumni=None, areaServed=None, award=None, brand=None, contactPoint=None, department=None, dissolutionDate=None, duns=None, email=None, employee=None, event=None, faxNumber=None, founder=None, foundingDate=None, foundingLocation=None, funder=None, globalLocationNumber=None, hasOfferCatalog=None, hasPOS=None, isicV4=None, legalName=None, leiCode=None, location=None, logo=None, makesOffer=None, member=None, memberOf=None, naics=None, numberOfEmployees=None, owns=None, parentOrganization=None, publishingPrinciples=None, review=None, seeks=None, sponsor=None, subOrganization=None, taxID=None, telephone=None, vatID=None, additionalProperty=None, amenityFeature=None, branchCode=None, containedInPlace=None, containsPlace=None, geo=None, hasMap=None, isAccessibleForFree=None, maximumAttendeeCapacity=None, openingHoursSpecification=None, photo=None, publicAccess=None, smokingAllowed=None, specialOpeningHoursSpecification=None, currenciesAccepted=None, openingHours=None, paymentAccepted=None, priceRange=None): Store.__init__(self, additionalType, alternateName, description, disambiguatingDescription, identifier, image, mainEntityOfPage, name, potentialAction, sameAs, url, address, aggregateRating, alumni, areaServed, award, brand, contactPoint, department, dissolutionDate, duns, email, employee, event, faxNumber, founder, foundingDate, foundingLocation, funder, globalLocationNumber, hasOfferCatalog, hasPOS, isicV4, legalName, leiCode, location, logo, makesOffer, member, memberOf, naics, numberOfEmployees, owns, parentOrganization, publishingPrinciples, review, seeks, sponsor, subOrganization, taxID, telephone, vatID, additionalProperty, amenityFeature, branchCode, containedInPlace, containsPlace, geo, hasMap, isAccessibleForFree, maximumAttendeeCapacity, openingHoursSpecification, photo, publicAccess, smokingAllowed, specialOpeningHoursSpecification, currenciesAccepted, openingHours, paymentAccepted, priceRange)
9090cf8f5afc34505f2a27b36145a5667b7bc8c2
aff3d82217ca3a43d42c215b7fde022017f3b779
/spec/one_image_spec.py
218822cbdcf28e9883c86acb41297198d17aea62
[]
no_license
AndyDeany/turnbasedgame
96784a6f1fcf7c2c82e10012d81b4e0caf807a6b
362f973888a549535a854500da443613725ad0f0
refs/heads/master
2021-01-19T08:48:28.125410
2017-09-09T09:56:51
2017-09-09T09:56:51
76,188,966
0
1
null
null
null
null
UTF-8
Python
false
false
671
py
from spec.spec_helper import * from lib.one_image import OneImage with description("OneImage"): with it("should initialise"): one_image = OneImage(game, "items/heart") expect(one_image.image_name).to(equal("items/heart")) expect(one_image.image).to(be(None)) with it("should load its image"): one_image = OneImage(game, "items/heart") one_image.load_image() expect(one_image.image).to(be_a(game.pygame.Surface)) with it("should unload its image"): one_image = OneImage(game, "items/heart") one_image.load_image() one_image.unload_image() expect(one_image.image).to(be(None))
4195bf38a598c838adeceb94937fad2949c57c3a
f373eaeba3f42d2e883a0338dbc7bf2eab8cdf88
/pycalq/tests/test_pycalq.py
2f8a9540b6d69608385cc68cae0e6db8d1a3aaea
[ "MIT" ]
permissive
FriedrichK/pyCalq
6f41d561f4394c7c4d57df08a715b560e41812c9
b20c1c5694d34dbeb7439986189cae3f698bb910
refs/heads/master
2021-01-23T03:44:24.972747
2014-08-20T00:19:51
2014-08-20T00:19:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,685
py
# -*- coding: utf-8 -*- from datetime import datetime import json import unittest from mock import Mock, patch from hamcrest import * from pycalq import CALQ_API_ENDPOINT_TRACKING, CALQ_API_ENDPOINT_PROFILE, CALQ_API_ENDPOINT_TRANSFER from pycalq.tools import create_timestamp_string from pycalq.validation import ActionParameterValidator, ParameterValidationException from pycalq.tracking import track_action, submit_profile, transfer_user TEST_DATETIME = datetime(2014, 8, 19, 13, 16, 30, 1) TEST_DATETIME_STRING = '2014-08-19 13:16:30.000001' TEST_ACTOR_NAME = 'test_actor' TEST_ACTOR_NAME2 = "test_actor_2" IP_ADDRESS_MOCK = '127.1.2.7' TEST_ACTION = 'Does Amazing Thing' WRITE_KEY_MOCK = 'allworkandnoplaymakesjackadullboy' TEST_PROPERTY_VALID_GENDER = 'male' TEST_PROPERTY_INVALID_GENDER = 'I prefer not to say' TEST_PROPERTY_VALID_CURRENCY = 'usd' TEST_PROPERTY_INVALID_CURRENCY = 'usdx' TEST_PROPERTY_VALID_AGE = 29 TEST_PROPERTY_INVALID_AGE = 'twenty-nine' TEST_PROPERTY_VALID_SALE_VALUE = 1 TEST_PROPERTY_VALID_SALE_CURRENCY = 'eur' TEST_PROPERTY_VALID_DEVICE_AGENT = 'android' TEST_PROPERTY_VALID_DEVICE_OS = 'android' TEST_PROPERTY_VALID_DEVICE_RESOLUTION = '1024x768' TEST_PROPERTY_VALID_DEVICE_MOBILE = True TEST_PROPERTY_VALID_COUNTRY = 'DE' TEST_PROPERTY_VALID_REGION = 'BE' TEST_PROPERTY_VALID_CITY = 'Berlin' TEST_PROPERTY_VALID_UTM_CAMPAIGN = 'campaign_name' TEST_PROPERTY_VALID_UTM_SOURCE = 'utm_source' TEST_PROPERTY_VALID_UTM_MEDIUM = 'radio' TEST_PROPERTY_VALID_UTM_SOURCE = 'nytimes' TEST_PROPERTY_VALID_UTM_CONTENT = 'content' TEST_PROPERTY_VALID_UTM_TERM = 'some,keywords,convert,well' class ToolsTestCase(unittest.TestCase): def test_returns_timestamp_string_in_expected_format(self): actual = create_timestamp_string(TEST_DATETIME) self.assertEquals(actual, TEST_DATETIME_STRING) class TrackingTestCase(unittest.TestCase): @patch('pycalq.tracking.PoolManager') def test_sends_tracking_request_as_expected(self, PoolManagerMock): PoolManagerMock, url_open_mock = self._build_pool_manager_mock(PoolManagerMock) properties = {'$country': 'NL', 'custom_property': True} track_action(TEST_ACTOR_NAME, TEST_ACTION, WRITE_KEY_MOCK, properties, IP_ADDRESS_MOCK, TEST_DATETIME) args, kwargs = url_open_mock.call_args self.assertEquals(args[0], 'POST') self.assertEquals(args[1], CALQ_API_ENDPOINT_TRACKING) self.assertEquals(kwargs['headers'], {'Content-Type': 'application/json'}) expected = { 'timestamp': TEST_DATETIME_STRING, 'actor': TEST_ACTOR_NAME, 'action_name': TEST_ACTION, 'write_key': WRITE_KEY_MOCK, 'ip_address': IP_ADDRESS_MOCK, 'properties': properties } self.assertEquals(json.loads(kwargs['body']), expected) @patch('pycalq.tracking.PoolManager') def test_logs_that_action_request_properties_are_invalid(self, PoolManagerMock): logger_mock = Mock() logger_mock.debug = Mock() properties = {'$gender': TEST_PROPERTY_INVALID_GENDER} track_action(TEST_ACTOR_NAME, TEST_ACTION, WRITE_KEY_MOCK, properties, IP_ADDRESS_MOCK, TEST_DATETIME, log=logger_mock) self.assertTrue(logger_mock.debug.called) @patch('pycalq.tracking.PoolManager') def test_sends_profile_request_as_expected(self, PoolManagerMock): PoolManagerMock, url_open_mock = self._build_pool_manager_mock(PoolManagerMock) properties = {'$age': TEST_PROPERTY_VALID_AGE, 'custom_property': True} submit_profile(TEST_ACTOR_NAME, WRITE_KEY_MOCK, properties) args, kwargs = url_open_mock.call_args self.assertEquals(args[0], 'POST') self.assertEquals(args[1], CALQ_API_ENDPOINT_PROFILE) self.assertEquals(kwargs['headers'], {'Content-Type': 'application/json'}) expected = { 'actor': TEST_ACTOR_NAME, 'write_key': WRITE_KEY_MOCK, 'properties': properties } self.assertEquals(json.loads(kwargs['body']), expected) @patch('pycalq.tracking.PoolManager') def test_logs_that_profile_request_properties_are_invalid(self, PoolManagerMock): logger_mock = Mock() logger_mock.debug = Mock() properties = {'$age': TEST_PROPERTY_INVALID_AGE} submit_profile(TEST_ACTOR_NAME, WRITE_KEY_MOCK, properties, log=logger_mock) self.assertTrue(logger_mock.debug.called) @patch('pycalq.tracking.PoolManager') def test_sends_transfer_request_as_expected(self, PoolManagerMock): PoolManagerMock, url_open_mock = self._build_pool_manager_mock(PoolManagerMock) transfer_user(TEST_ACTOR_NAME, TEST_ACTOR_NAME2, WRITE_KEY_MOCK) args, kwargs = url_open_mock.call_args self.assertEquals(args[0], 'POST') self.assertEquals(args[1], CALQ_API_ENDPOINT_TRANSFER) self.assertEquals(kwargs['headers'], {'Content-Type': 'application/json'}) expected = { 'old_actor': TEST_ACTOR_NAME, 'new_actor': TEST_ACTOR_NAME2, 'write_key': WRITE_KEY_MOCK } self.assertEquals(json.loads(kwargs['body']), expected) def _build_pool_manager_mock(self, PoolManagerMock): pool_manager_mock = Mock() pool_manager_mock.urlopen = Mock() PoolManagerMock.return_value = pool_manager_mock return PoolManagerMock, pool_manager_mock.urlopen class ValidationTestCase(unittest.TestCase): def test_recognizes_data_as_valid(self): data = { '$sale_value': TEST_PROPERTY_VALID_SALE_VALUE, '$sale_currency': TEST_PROPERTY_VALID_SALE_CURRENCY, '$device_agent': TEST_PROPERTY_VALID_DEVICE_AGENT, '$device_os': TEST_PROPERTY_VALID_DEVICE_OS, '$device_resolution': TEST_PROPERTY_VALID_DEVICE_RESOLUTION, '$device_mobile': TEST_PROPERTY_VALID_DEVICE_MOBILE, '$country': TEST_PROPERTY_VALID_COUNTRY, '$region': TEST_PROPERTY_VALID_REGION, '$city': TEST_PROPERTY_VALID_CITY, '$gender': TEST_PROPERTY_VALID_GENDER, '$age': TEST_PROPERTY_VALID_AGE, '$utm_campaign': TEST_PROPERTY_VALID_UTM_CAMPAIGN, '$utm_source': TEST_PROPERTY_VALID_UTM_SOURCE, '$utm_medium': TEST_PROPERTY_VALID_UTM_MEDIUM, '$utm_content': TEST_PROPERTY_VALID_UTM_CONTENT, '$utm_term': TEST_PROPERTY_VALID_UTM_TERM } actual = ActionParameterValidator().validate(data) self.assertEquals(actual, (True, None,)) def test_flags_unrecognized_special_property(self): data = {'$unrecognizedproperty': 'is unrecognized'} self.assertRaises(ParameterValidationException, ActionParameterValidator().validate, data) def test_flags_missing_required_parameter(self): data = {'$sale_currency': TEST_PROPERTY_VALID_CURRENCY} self.assertRaises(ParameterValidationException, ActionParameterValidator().validate, data) def test_flags_max_length_violation(self): data = {'$sale_currency': TEST_PROPERTY_INVALID_CURRENCY, '$sale_value': TEST_PROPERTY_VALID_SALE_VALUE} self.assertRaises(ParameterValidationException, ActionParameterValidator().validate, data) def test_flags_option_violation(self): data = {'$gender': TEST_PROPERTY_INVALID_GENDER} self.assertRaises(ParameterValidationException, ActionParameterValidator().validate, data) def test_flags_integer_violation(self): data = {'$age': TEST_PROPERTY_INVALID_AGE} self.assertRaises(ParameterValidationException, ActionParameterValidator().validate, data)
a0466ef7bd023fdf3d1afacd76c536df72193f33
1886065d10342822b10063cd908a690fccf03d8b
/appengine/monorail/registerpages.py
6462450f181b19fe6abb79158a59176b17177617
[ "BSD-3-Clause" ]
permissive
TrellixVulnTeam/chromium-infra_A6Y5
26af0dee12f89595ebc6a040210c9f62d8ded763
d27ac0b230bedae4bc968515b02927cf9e17c2b7
refs/heads/master
2023-03-16T15:33:31.015840
2017-01-31T19:55:59
2017-01-31T20:06:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,490
py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is govered by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """This file sets up all the urls for monorail pages.""" import logging import webapp2 import settings from features import autolink from features import hotlistcreate from features import hotlistdetails from features import hotlistissues from features import hotlistissuescsv from features import hotlistpeople from features import cues from features import filterrules from features import userhotlists from features import inboundemail from features import notify from features import rerankhotlist from features import savedqueries from features import spammodel from features import stars from framework import artifactcollision from framework import banned from framework import clientmon from framework import csp_report from framework import excessiveactivity from framework import framework_bizobj from framework import reap from framework import registerpages_helpers from framework import tokenrefresh from framework import urls from project import peopledetail from project import peoplelist from project import projectadmin from project import projectadminadvanced from project import projectexport from project import projectsummary from project import projectupdates from project import redirects from search import backendnonviewable from search import backendsearch from services import cachemanager_svc from services import client_config_svc from sitewide import custom_404 from sitewide import groupadmin from sitewide import groupcreate from sitewide import groupdetail from sitewide import grouplist from sitewide import hostinghome from sitewide import moved from sitewide import projectcreate from sitewide import userhotlistsmenu from sitewide import userprofile from sitewide import userprojects from sitewide import usersettings from sitewide import userclearbouncing from sitewide import userupdates from tracker import componentcreate from tracker import componentdetail from tracker import fieldcreate from tracker import fielddetail from tracker import issueadmin from tracker import issueadvsearch from tracker import issueattachment from tracker import issueattachmenttext from tracker import issuebulkedit from tracker import issuedetail from tracker import issueentry from tracker import issueentryafterlogin from tracker import issuelist from tracker import issuelistcsv from tracker import issueoptions from tracker import issueoriginal from tracker import issueexport from tracker import issueimport from tracker import issuereindex from tracker import issuererank from tracker import issuetips from tracker import issueaddtohotlist from tracker import spam from api import api_service class ServletRegistry(object): _PROJECT_NAME_REGEX = r'[a-z0-9][-a-z0-9]*[a-z0-9]' _USERNAME_REGEX = r'[-+\w=.%]+(@([a-z0-9]+\.)*[a-z0-9]+)?' _HOTLIST_ID_NAME_REGEX = r'\d+|[a-zA-Z][-0-9a-zA-Z\.]*' def __init__(self): self.routes = [] def _AddRoute(self, path_regex, servlet_class, method, does_write=False): """Add a GET or POST handler to our webapp2 route list. Args: path_regex: string with webapp2 URL template regex. servlet_class: a subclass of class Servlet. method: string 'GET' or 'POST'. does_write: True if the servlet could write to the database, we skip registering such servlets when the site is in read_only mode. GET handlers never write. Most, but not all, POST handlers do write. """ if settings.read_only and does_write: logging.info('Not registring %r because site is read-only', path_regex) # TODO(jrobbins): register a helpful error page instead. else: self.routes.append( webapp2.Route(path_regex, handler=servlet_class, methods=[method])) def _SetupServlets(self, spec_dict, base='', post_does_write=True): """Register each of the given servlets.""" for get_uri, servlet_class in spec_dict.items(): self._AddRoute(base + get_uri, servlet_class, 'GET') post_uri = get_uri + ('edit.do' if get_uri.endswith('/') else '.do') self._AddRoute(base + post_uri, servlet_class, 'POST', does_write=post_does_write) def _SetupProjectServlets(self, spec_dict, post_does_write=True): """Register each of the given servlets in the project URI space.""" self._SetupServlets( spec_dict, base='/p/<project_name:%s>' % self._PROJECT_NAME_REGEX, post_does_write=post_does_write) def _SetupUserServlets(self, spec_dict, post_does_write=True): """Register each of the given servlets in the user URI space.""" self._SetupServlets( spec_dict, base='/u/<viewed_username:%s>' % self._USERNAME_REGEX, post_does_write=post_does_write) def _SetupGroupServlets(self, spec_dict, post_does_write=True): """Register each of the given servlets in the user group URI space.""" self._SetupServlets( spec_dict, base='/g/<viewed_username:%s>' % self._USERNAME_REGEX, post_does_write=post_does_write) def _SetupUserHotlistServlets(self, spec_dict, post_does_write=True): """ Register given user hotlist servlets in the user URI space.""" self._SetupServlets( spec_dict, base ='/u/<viewed_username:%s>/hotlists/<hotlist_id:%s>' % (self._USERNAME_REGEX, self._HOTLIST_ID_NAME_REGEX), post_does_write=post_does_write) def Register(self, services): """Register all the monorail request handlers.""" self._RegisterFrameworkHandlers() self._RegisterSitewideHandlers() self._RegisterProjectHandlers() self._RegisterIssueHandlers() self._RegisterRedirects() self._RegisterInboundMail() api_service.RegisterApiHandlers(self) autolink.RegisterAutolink(services) # Error pages should be the last to register. self._RegisterErrorPages() logging.info('Finished registering monorail handlers.') return self.routes def _RegisterProjectHandlers(self): """Register page and form handlers that operate within a project.""" self._SetupProjectServlets({ urls.ADMIN_INTRO: projectsummary.ProjectSummary, urls.PEOPLE_LIST: peoplelist.PeopleList, urls.PEOPLE_DETAIL: peopledetail.PeopleDetail, urls.PEOPLE_DETAIL_PREFS_JSON: peopledetail.PagePrefs, urls.UPDATES_LIST: projectupdates.ProjectUpdates, urls.ADMIN_META: projectadmin.ProjectAdmin, urls.ADMIN_ADVANCED: projectadminadvanced.ProjectAdminAdvanced, urls.ADMIN_EXPORT: projectexport.ProjectExport, urls.ADMIN_EXPORT_JSON: projectexport.ProjectExportJSON, }) def _RegisterIssueHandlers(self): """Register page and form handlers for the issue tracker.""" self._SetupServlets({ # Note: there is both a site-wide and per-project issue list. urls.ISSUE_LIST: issuelist.IssueList, # Note: the following are at URLs that are not externaly accessible. urls.BACKEND_SEARCH: backendsearch.BackendSearch, urls.BACKEND_NONVIEWABLE: backendnonviewable.BackendNonviewable, urls.RECOMPUTE_DERIVED_FIELDS_TASK: filterrules.RecomputeDerivedFieldsTask, urls.REINDEX_QUEUE_CRON: filterrules.ReindexQueueCron, urls.NOTIFY_ISSUE_CHANGE_TASK: notify.NotifyIssueChangeTask, urls.NOTIFY_BLOCKING_CHANGE_TASK: notify.NotifyBlockingChangeTask, urls.NOTIFY_BULK_CHANGE_TASK: notify.NotifyBulkChangeTask, urls.OUTBOUND_EMAIL_TASK: notify.OutboundEmailTask, urls.SPAM_DATA_EXPORT_TASK: spammodel.TrainingDataExportTask, }) self._SetupProjectServlets({ urls.ISSUE_LIST: issuelist.IssueList, urls.ISSUE_LIST_CSV: issuelistcsv.IssueListCsv, urls.ISSUE_REINDEX: issuereindex.IssueReindex, urls.ISSUE_DETAIL: issuedetail.IssueDetail, urls.ISSUE_COMMENT_DELETION_JSON: issuedetail.IssueCommentDeletion, urls.ISSUE_ATTACHMENT_DELETION_JSON: issueattachment.IssueAttachmentDeletion, urls.ISSUE_FLAGSPAM_JSON: spam.FlagSpamForm, urls.ISSUE_SETSTAR_JSON: issuedetail.SetStarForm, urls.ISSUE_DELETE_JSON: issuedetail.IssueDeleteForm, urls.ISSUE_ENTRY: issueentry.IssueEntry, urls.ISSUE_ENTRY_AFTER_LOGIN: issueentryafterlogin.IssueEntryAfterLogin, urls.ISSUE_OPTIONS_JSON: issueoptions.IssueOptionsJSON, urls.ISSUE_TIPS: issuetips.IssueSearchTips, urls.ISSUE_ATTACHMENT: issueattachment.AttachmentPage, urls.ISSUE_ATTACHMENT_TEXT: issueattachmenttext.AttachmentText, urls.ISSUE_BULK_EDIT: issuebulkedit.IssueBulkEdit, urls.COMPONENT_CHECKNAME_JSON: componentcreate.CheckComponentNameJSON, urls.COMPONENT_CREATE: componentcreate.ComponentCreate, urls.COMPONENT_DETAIL: componentdetail.ComponentDetail, urls.FIELD_CHECKNAME_JSON: fieldcreate.CheckFieldNameJSON, urls.FIELD_CREATE: fieldcreate.FieldCreate, urls.FIELD_DETAIL: fielddetail.FieldDetail, urls.WIKI_LIST: redirects.WikiRedirect, urls.WIKI_PAGE: redirects.WikiRedirect, urls.SOURCE_PAGE: redirects.SourceRedirect, urls.ADMIN_STATUSES: issueadmin.AdminStatuses, urls.ADMIN_LABELS: issueadmin.AdminLabels, urls.ADMIN_RULES: issueadmin.AdminRules, urls.ADMIN_TEMPLATES: issueadmin.AdminTemplates, urls.ADMIN_COMPONENTS: issueadmin.AdminComponents, urls.ADMIN_VIEWS: issueadmin.AdminViews, urls.ISSUE_ORIGINAL: issueoriginal.IssueOriginal, urls.ISSUE_EXPORT: issueexport.IssueExport, urls.ISSUE_EXPORT_JSON: issueexport.IssueExportJSON, urls.ISSUE_IMPORT: issueimport.IssueImport, urls.SPAM_MODERATION_QUEUE: spam.ModerationQueue, urls.ISSUE_RERANK_BLOCKED_ON: issuererank.IssueRerank, }) self._SetupUserServlets({ urls.SAVED_QUERIES: savedqueries.SavedQueries, urls.HOTLISTS: userhotlists.UserHotlists, }) user_hotlists_redir = registerpages_helpers.MakeRedirectInScope( urls.HOTLISTS, 'u', keep_qs=True) self._SetupUserServlets({ '/hotlists/': user_hotlists_redir, }) # These servlets accept POST, but never write to the database, so they can # still be used when the site is read-only. self._SetupProjectServlets({ urls.ISSUE_ADVSEARCH: issueadvsearch.IssueAdvancedSearch, }, post_does_write=False) list_redir = registerpages_helpers.MakeRedirectInScope( urls.ISSUE_LIST, 'p', keep_qs=True) self._SetupProjectServlets({ '': list_redir, '/': list_redir, '/issues': list_redir, '/issues/': list_redir, }) list_redir = registerpages_helpers.MakeRedirect(urls.ISSUE_LIST) self._SetupServlets({ '/issues': list_redir, '/issues/': list_redir, }) def _RegisterFrameworkHandlers(self): """Register page and form handlers for framework functionality.""" self._SetupServlets({ urls.CSP_REPORT: csp_report.CSPReportPage, urls.TOKEN_REFRESH: tokenrefresh.TokenRefresh, # These are only shown to users iff specific conditions are met. urls.NONPROJECT_COLLISION: artifactcollision.ArtifactCollision, urls.EXCESSIVE_ACTIVITY: excessiveactivity.ExcessiveActivity, urls.BANNED: banned.Banned, urls.PROJECT_MOVED: moved.ProjectMoved, # These are not externally accessible urls.RAMCACHE_CONSOLIDATE_CRON: cachemanager_svc.RamCacheConsolidate, urls.REAP_CRON: reap.Reap, urls.SPAM_DATA_EXPORT_CRON: spammodel.TrainingDataExport, urls.LOAD_API_CLIENT_CONFIGS_CRON: ( client_config_svc.LoadApiClientConfigs), urls.CLIENT_MON: clientmon.ClientMonitor, }) self._SetupProjectServlets({ # Collisions can happen on artifacts within a project or outside. urls.ARTIFACT_COLLISION: artifactcollision.ArtifactCollision, }) def _RegisterSitewideHandlers(self): """Register page and form handlers that aren't associated with projects.""" self._SetupServlets({ urls.PROJECT_CREATE: projectcreate.ProjectCreate, urls.CHECK_PROJECT_NAME_JSON: projectcreate.CheckProjectNameJSON, # The user settings page is a site-wide servlet, not under /u/. urls.USER_SETTINGS: usersettings.UserSettings, urls.USER_PROJECTS_JSON: userprojects.ProjectsJsonFeed, urls.USER_HOTLISTS_JSON: userhotlistsmenu.HotlistsJsonFeed, urls.HOSTING_HOME: hostinghome.HostingHome, urls.STARS_JSON: stars.SetStarsFeed, urls.CUES_JSON: cues.SetCuesFeed, urls.GROUP_CREATE: groupcreate.GroupCreate, urls.GROUP_LIST: grouplist.GroupList, urls.GROUP_DELETE: grouplist.GroupList, urls.HOTLIST_CREATE: hotlistcreate.HotlistCreate, urls.ADD_ISSUES_TO_HOTLIST: issueaddtohotlist.AddToHotlist, }) self._SetupUserServlets({ urls.USER_PROFILE: userprofile.UserProfile, urls.USER_CLEAR_BOUNCING: userclearbouncing.UserClearBouncing, urls.USER_UPDATES_PROJECTS: userupdates.UserUpdatesProjects, urls.USER_UPDATES_DEVELOPERS: userupdates.UserUpdatesDevelopers, urls.USER_UPDATES_MINE: userupdates.UserUpdatesIndividual, }) self._SetupUserHotlistServlets({ urls.HOTLIST_ISSUES: hotlistissues.HotlistIssues, urls.HOTLIST_ISSUES_CSV: hotlistissuescsv.HotlistIssuesCsv, urls.HOTLIST_PEOPLE: hotlistpeople.HotlistPeopleList, urls.HOTLIST_DETAIL: hotlistdetails.HotlistDetails, urls.HOTLIST_RERANK_JSON: rerankhotlist.RerankHotlistIssue, }) profile_redir = registerpages_helpers.MakeRedirectInScope( urls.USER_PROFILE, 'u') self._SetupUserServlets({'': profile_redir}) self._SetupGroupServlets({ urls.GROUP_DETAIL: groupdetail.GroupDetail, urls.GROUP_ADMIN: groupadmin.GroupAdmin, }) def _RegisterRedirects(self): """Register redirects among pages inside monorail.""" redirect = registerpages_helpers.MakeRedirect('/hosting/') self._SetupServlets({ '/hosting': redirect, '/p': redirect, '/p/': redirect, '/u': redirect, '/u/': redirect, '/': redirect, }) redirect = registerpages_helpers.MakeRedirectInScope( urls.PEOPLE_LIST, 'p') self._SetupProjectServlets({ '/people': redirect, '/people/': redirect, }) redirect = registerpages_helpers.MakeRedirect(urls.GROUP_LIST) self._SetupServlets({'/g': redirect}) group_redir = registerpages_helpers.MakeRedirectInScope( urls.USER_PROFILE, 'g') self._SetupGroupServlets({'': group_redir}) def _RegisterInboundMail(self): """Register a handler for inbound email and email bounces.""" self.routes.append(webapp2.Route( '/_ah/mail/<project_addr:.+>', handler=inboundemail.InboundEmail, methods=['POST', 'GET'])) self.routes.append(webapp2.Route( '/_ah/bounce', handler=inboundemail.BouncedEmail, methods=['POST', 'GET'])) def _RegisterErrorPages(self): """Register handlers for errors.""" self._AddRoute( '/p/<project_name:%s>/<unrecognized:.+>' % self._PROJECT_NAME_REGEX, custom_404.ErrorPage, 'GET')
d790c7885266f95d1e751f1c0d09f6250734a4d2
45e8c30fbcd754e780230c3afd8a587f0833f4b0
/blender_2.03_tree/lib/Python/Lib/ihooks.py
300ac80b2f5a9504af37bbf8f90bca954586cafb
[]
no_license
daar/bare-blender
2fdfb312a1d8f3048346bfa504aa863a61cfe814
3306d88a2ac9f78bcc7830c4bcafb4f2c7db7897
refs/heads/master
2021-01-16T17:47:42.303184
2015-05-19T21:33:46
2015-05-19T21:33:46
32,135,666
1
1
null
null
null
null
UTF-8
Python
false
false
17,450
py
"""Import hook support. Consistent use of this module will make it possible to change the different mechanisms involved in loading modules independently. While the built-in module imp exports interfaces to the built-in module searching and loading algorithm, and it is possible to replace the built-in function __import__ in order to change the semantics of the import statement, until now it has been difficult to combine the effect of different __import__ hacks, like loading modules from URLs by rimport.py, or restricted execution by rexec.py. This module defines three new concepts: 1) A "file system hooks" class provides an interface to a filesystem. One hooks class is defined (Hooks), which uses the interface provided by standard modules os and os.path. It should be used as the base class for other hooks classes. 2) A "module loader" class provides an interface to to search for a module in a search path and to load it. It defines a method which searches for a module in a single directory; by overriding this method one can redefine the details of the search. If the directory is None, built-in and frozen modules are searched instead. Two module loader class are defined, both implementing the search strategy used by the built-in __import__ function: ModuleLoader uses the imp module's find_module interface, while HookableModuleLoader uses a file system hooks class to interact with the file system. Both use the imp module's load_* interfaces to actually load the module. 3) A "module importer" class provides an interface to import a module, as well as interfaces to reload and unload a module. It also provides interfaces to install and uninstall itself instead of the default __import__ and reload (and unload) functions. One module importer class is defined (ModuleImporter), which uses a module loader instance passed in (by default HookableModuleLoader is instantiated). The classes defined here should be used as base classes for extended functionality along those lines. If a module mporter class supports dotted names, its import_module() must return a different value depending on whether it is called on behalf of a "from ... import ..." statement or not. (This is caused by the way the __import__ hook is used by the Python interpreter.) It would also do wise to install a different version of reload(). """ import __builtin__ import imp import os import sys import string VERBOSE = 0 from imp import C_EXTENSION, PY_SOURCE, PY_COMPILED from imp import C_BUILTIN, PY_FROZEN, PKG_DIRECTORY BUILTIN_MODULE = C_BUILTIN FROZEN_MODULE = PY_FROZEN class _Verbose: def __init__(self, verbose = VERBOSE): self.verbose = verbose def get_verbose(self): return self.verbose def set_verbose(self, verbose): self.verbose = verbose # XXX The following is an experimental interface def note(self, *args): if self.verbose: apply(self.message, args) def message(self, format, *args): if args: print format%args else: print format class BasicModuleLoader(_Verbose): """Basic module loader. This provides the same functionality as built-in import. It doesn't deal with checking sys.modules -- all it provides is find_module() and a load_module(), as well as find_module_in_dir() which searches just one directory, and can be overridden by a derived class to change the module search algorithm when the basic dependency on sys.path is unchanged. The interface is a little more convenient than imp's: find_module(name, [path]) returns None or 'stuff', and load_module(name, stuff) loads the module. """ def find_module(self, name, path = None): if path is None: path = [None] + self.default_path() for dir in path: stuff = self.find_module_in_dir(name, dir) if stuff: return stuff return None def default_path(self): return sys.path def find_module_in_dir(self, name, dir): if dir is None: return self.find_builtin_module(name) else: try: return imp.find_module(name, [dir]) except ImportError: return None def find_builtin_module(self, name): # XXX frozen packages? if imp.is_builtin(name): return None, '', ('', '', BUILTIN_MODULE) if imp.is_frozen(name): return None, '', ('', '', FROZEN_MODULE) return None def load_module(self, name, stuff): file, filename, info = stuff try: return imp.load_module(name, file, filename, info) finally: if file: file.close() class Hooks(_Verbose): """Hooks into the filesystem and interpreter. By deriving a subclass you can redefine your filesystem interface, e.g. to merge it with the URL space. This base class behaves just like the native filesystem. """ # imp interface def get_suffixes(self): return imp.get_suffixes() def new_module(self, name): return imp.new_module(name) def is_builtin(self, name): return imp.is_builtin(name) def init_builtin(self, name): return imp.init_builtin(name) def is_frozen(self, name): return imp.is_frozen(name) def init_frozen(self, name): return imp.init_frozen(name) def get_frozen_object(self, name): return imp.get_frozen_object(name) def load_source(self, name, filename, file=None): return imp.load_source(name, filename, file) def load_compiled(self, name, filename, file=None): return imp.load_compiled(name, filename, file) def load_dynamic(self, name, filename, file=None): return imp.load_dynamic(name, filename, file) def load_package(self, name, filename, file=None): return imp.load_module(name, file, filename, ("", "", PKG_DIRECTORY)) def add_module(self, name): d = self.modules_dict() if d.has_key(name): return d[name] d[name] = m = self.new_module(name) return m # sys interface def modules_dict(self): return sys.modules def default_path(self): return sys.path def path_split(self, x): return os.path.split(x) def path_join(self, x, y): return os.path.join(x, y) def path_isabs(self, x): return os.path.isabs(x) # etc. def path_exists(self, x): return os.path.exists(x) def path_isdir(self, x): return os.path.isdir(x) def path_isfile(self, x): return os.path.isfile(x) def path_islink(self, x): return os.path.islink(x) # etc. def openfile(self, *x): return apply(open, x) openfile_error = IOError def listdir(self, x): return os.listdir(x) listdir_error = os.error # etc. class ModuleLoader(BasicModuleLoader): """Default module loader; uses file system hooks. By defining suitable hooks, you might be able to load modules from other sources than the file system, e.g. from compressed or encrypted files, tar files or (if you're brave!) URLs. """ def __init__(self, hooks = None, verbose = VERBOSE): BasicModuleLoader.__init__(self, verbose) self.hooks = hooks or Hooks(verbose) def default_path(self): return self.hooks.default_path() def modules_dict(self): return self.hooks.modules_dict() def get_hooks(self): return self.hooks def set_hooks(self, hooks): self.hooks = hooks def find_builtin_module(self, name): # XXX frozen packages? if self.hooks.is_builtin(name): return None, '', ('', '', BUILTIN_MODULE) if self.hooks.is_frozen(name): return None, '', ('', '', FROZEN_MODULE) return None def find_module_in_dir(self, name, dir, allow_packages=1): if dir is None: return self.find_builtin_module(name) if allow_packages: fullname = self.hooks.path_join(dir, name) if self.hooks.path_isdir(fullname): stuff = self.find_module_in_dir("__init__", fullname, 0) if stuff: file = stuff[0] if file: file.close() return None, fullname, ('', '', PKG_DIRECTORY) for info in self.hooks.get_suffixes(): suff, mode, type = info fullname = self.hooks.path_join(dir, name+suff) try: fp = self.hooks.openfile(fullname, mode) return fp, fullname, info except self.hooks.openfile_error: pass return None def load_module(self, name, stuff): file, filename, info = stuff (suff, mode, type) = info try: if type == BUILTIN_MODULE: return self.hooks.init_builtin(name) if type == FROZEN_MODULE: return self.hooks.init_frozen(name) if type == C_EXTENSION: m = self.hooks.load_dynamic(name, filename, file) elif type == PY_SOURCE: m = self.hooks.load_source(name, filename, file) elif type == PY_COMPILED: m = self.hooks.load_compiled(name, filename, file) elif type == PKG_DIRECTORY: m = self.hooks.load_package(name, filename, file) else: raise ImportError, "Unrecognized module type (%s) for %s" % \ (`type`, name) finally: if file: file.close() m.__file__ = filename return m class FancyModuleLoader(ModuleLoader): """Fancy module loader -- parses and execs the code itself.""" def load_module(self, name, stuff): file, filename, (suff, mode, type) = stuff realfilename = filename path = None if type == PKG_DIRECTORY: initstuff = self.find_module_in_dir("__init__", filename, 0) if not initstuff: raise ImportError, "No __init__ module in package %s" % name initfile, initfilename, initinfo = initstuff initsuff, initmode, inittype = initinfo if inittype not in (PY_COMPILED, PY_SOURCE): if initfile: initfile.close() raise ImportError, \ "Bad type (%s) for __init__ module in package %s" % ( `inittype`, name) path = [filename] file = initfile realfilename = initfilename type = inittype if type == FROZEN_MODULE: code = self.hooks.get_frozen_object(name) elif type == PY_COMPILED: import marshal file.seek(8) code = marshal.load(file) elif type == PY_SOURCE: data = file.read() code = compile(data, realfilename, 'exec') else: return ModuleLoader.load_module(self, name, stuff) m = self.hooks.add_module(name) if path: m.__path__ = path m.__file__ = filename exec code in m.__dict__ return m class BasicModuleImporter(_Verbose): """Basic module importer; uses module loader. This provides basic import facilities but no package imports. """ def __init__(self, loader = None, verbose = VERBOSE): _Verbose.__init__(self, verbose) self.loader = loader or ModuleLoader(None, verbose) self.modules = self.loader.modules_dict() def get_loader(self): return self.loader def set_loader(self, loader): self.loader = loader def get_hooks(self): return self.loader.get_hooks() def set_hooks(self, hooks): return self.loader.set_hooks(hooks) def import_module(self, name, globals={}, locals={}, fromlist=[]): if self.modules.has_key(name): return self.modules[name] # Fast path stuff = self.loader.find_module(name) if not stuff: raise ImportError, "No module named %s" % name return self.loader.load_module(name, stuff) def reload(self, module, path = None): name = module.__name__ stuff = self.loader.find_module(name, path) if not stuff: raise ImportError, "Module %s not found for reload" % name return self.loader.load_module(name, stuff) def unload(self, module): del self.modules[module.__name__] # XXX Should this try to clear the module's namespace? def install(self): self.save_import_module = __builtin__.__import__ self.save_reload = __builtin__.reload if not hasattr(__builtin__, 'unload'): __builtin__.unload = None self.save_unload = __builtin__.unload __builtin__.__import__ = self.import_module __builtin__.reload = self.reload __builtin__.unload = self.unload def uninstall(self): __builtin__.__import__ = self.save_import_module __builtin__.reload = self.save_reload __builtin__.unload = self.save_unload if not __builtin__.unload: del __builtin__.unload class ModuleImporter(BasicModuleImporter): """A module importer that supports packages.""" def import_module(self, name, globals=None, locals=None, fromlist=None): parent = self.determine_parent(globals) q, tail = self.find_head_package(parent, name) m = self.load_tail(q, tail) if not fromlist: return q if hasattr(m, "__path__"): self.ensure_fromlist(m, fromlist) return m def determine_parent(self, globals): if not globals or not globals.has_key("__name__"): return None pname = globals['__name__'] if globals.has_key("__path__"): parent = self.modules[pname] assert globals is parent.__dict__ return parent if '.' in pname: i = string.rfind(pname, '.') pname = pname[:i] parent = self.modules[pname] assert parent.__name__ == pname return parent return None def find_head_package(self, parent, name): if '.' in name: i = string.find(name, '.') head = name[:i] tail = name[i+1:] else: head = name tail = "" if parent: qname = "%s.%s" % (parent.__name__, head) else: qname = head q = self.import_it(head, qname, parent) if q: return q, tail if parent: qname = head parent = None q = self.import_it(head, qname, parent) if q: return q, tail raise ImportError, "No module named " + qname def load_tail(self, q, tail): m = q while tail: i = string.find(tail, '.') if i < 0: i = len(tail) head, tail = tail[:i], tail[i+1:] mname = "%s.%s" % (m.__name__, head) m = self.import_it(head, mname, m) if not m: raise ImportError, "No module named " + mname return m def ensure_fromlist(self, m, fromlist, recursive=0): for sub in fromlist: if sub == "*": if not recursive: try: all = m.__all__ except AttributeError: pass else: self.ensure_fromlist(m, all, 1) continue if sub != "*" and not hasattr(m, sub): subname = "%s.%s" % (m.__name__, sub) submod = self.import_it(sub, subname, m) if not submod: raise ImportError, "No module named " + subname def import_it(self, partname, fqname, parent): if not partname: raise ValueError, "Empty module name" try: return self.modules[fqname] except KeyError: pass try: path = parent and parent.__path__ except AttributeError: return None stuff = self.loader.find_module(partname, path) if not stuff: return None m = self.loader.load_module(fqname, stuff) if parent: setattr(parent, partname, m) return m def reload(self, module): name = module.__name__ if '.' not in name: return self.import_it(name, name, None) i = string.rfind(name, '.') pname = name[:i] parent = self.modules[pname] return self.import_it(name[i+1:], name, parent) default_importer = None current_importer = None def install(importer = None): global current_importer current_importer = importer or default_importer or ModuleImporter() current_importer.install() def uninstall(): global current_importer current_importer.uninstall()
67b9b1f7bedfa92e7a3381dc098bc78b70b3407c
8ab7ffd8b84f242982d54467d1b72ce629eab6a3
/intents/qtask_exec.py
f5d2db7226ae706bb31fea2296e79136d2827005
[]
no_license
piaoyangguo/serviceunit
358de1f1d2b9401a3829529247229bba3a776efc
b2bd20dcc91ef7e560b07ae3d791b3c988f9ae55
refs/heads/master
2022-12-10T01:31:11.323159
2018-07-15T11:46:32
2018-07-15T11:46:32
141,023,073
0
0
null
2022-12-08T02:16:47
2018-07-15T11:47:05
Python
UTF-8
Python
false
false
808
py
from intents.base import QueryTask import teamin class IntentQtaskExec(QueryTask): NAME = 'QTASK_EXEC' def __init__(self, request, intent): self.request = request self.intent = intent def Go(self): self.initSlots() query = self.request.Message() executor = teamin.NameFindNames().ResolveName(self.request.UID(), self.executor) btc = teamin.BizTaskCount(self.request.AgentName, self.request.AgentUID) (count, finished, expired), weburl = btc.SpecifyExecutors(query, executor) self.intent.set_interval(0, 0, weburl) return self.Response(count, finished, expired, weburl) def initSlots(self): self.slot_w = self.intent.slots.filter(type='user_qte_w').first() self.executor = self.slot_w.original_word
f90f7ccf227ca09f4a2b1ffaa7e3b38a9e93be56
6997a36ad765a7beb27d87ed1841a73013090acb
/48.py
18f1548f60ea5c99d191c5a2baf8b2e6bf93cec6
[]
no_license
knighton/project-euler
1a4e0457e752d219027aadcd28fd91b335f1ab18
1368c341b9b4b89e718b1d6144198c0081618821
refs/heads/master
2016-08-05T01:32:56.692791
2014-05-31T23:59:41
2014-05-31T23:59:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
n = 0 for i in range(1, 1001): n += i ** i print str(n)[-10:]
5d5e5f62f0207a9c27374c874bed796593197540
d1797d0e70af8764b79b127fbc2015b5d030d87d
/pyradex/fjdu/__init__.py
970e0f15f10d2a0b154e6e36417f24a2a740d7b9
[ "BSD-3-Clause" ]
permissive
keflavich/pyradex
2cd4aa602f1005780402b5810078d76d37f95eff
c36c4652e220113cf3d0d9a41fda3ddf4ea3c11a
refs/heads/master
2023-04-01T19:57:09.571559
2023-03-31T13:59:21
2023-03-31T13:59:21
11,107,526
14
13
BSD-3-Clause
2020-08-06T17:07:01
2013-07-01T21:23:04
Python
UTF-8
Python
false
false
42
py
from . import core from .core import Fjdu
948abad1c62af6a4a8212819b33c31117eb6da0c
ac2b3f97b4f2423a3724fbf9af69e362183f7f3a
/crimtech_final_project/crimsononline/content/templatetags/top_articles.py
1bfa713ef2e1825332c6649b34a6a633e3c17125
[]
no_license
cindyz8735/crimtechcomp
e4109855dd9a87fc11dd29fdf6bb81400c9ce97b
a9045ea79c73c7b864a391039799c2f22234fed3
refs/heads/master
2021-01-24T10:06:03.386553
2018-04-14T04:24:57
2018-04-14T04:24:57
123,037,281
0
0
null
2018-02-26T22:08:57
2018-02-26T22:08:56
null
UTF-8
Python
false
false
1,358
py
from django import template from crimsononline.content.models import MostReadArticles register = template.Library() def most_read(context, specifier): try: context['mostreadarticles'] = (MostReadArticles.objects .filter(key=specifier) .order_by('-create_date')[0] .articles) except IndexError, MostReadArticles.DoesNotExist: pass return context @register.inclusion_tag('templatetag/mostreadarticles.html', takes_context=True) def most_read_articles(context): return most_read(context, 'content') @register.inclusion_tag('templatetag/mostreadadmissions.html', takes_context=True) def most_read_admissions(context): return most_read(context, 'admissions') @register.inclusion_tag('templatetag/mostreadflyby.html', takes_context=True) def most_read_flyby(context): return most_read(context, 'flyby') @register.inclusion_tag('templatetag/relatedarticles.html', takes_context=True) def related_articles(context): return context @register.inclusion_tag('templatetag/recommended_articles.html', takes_context=True) def recommended_articles(context): return context
74ffa57caa17a79f79a4f556743b3885effb2976
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/5SJdiGXZwRiFK5vEJ_5.py
6b7d5006ba72e571e4e1d9396e974c2c30d63ed2
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
def reverse_capitalize(txt): txt = txt[::-1] new_txt = '' for char in txt: char = char.upper() new_txt += char return new_txt
40b4b83cf0299581548aa08d511e35710c209ba7
2c03a6b82547d28cfa0ea59ff7b7e9b44787e0b9
/rawg/models/genre.py
e02a4abea5e47bab660262bf1d494f517728ad75
[]
no_license
AaronPierson/rawg
8b93cacb1d77ab235ed023019d9a5257a50b83fd
56052d1bce124e9a1e131a164159c2643709c109
refs/heads/master
2022-12-18T04:35:40.501672
2020-09-24T23:08:44
2020-09-24T23:08:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,464
py
# coding: utf-8 """ RAWG Video Games Database API The largest open video games database. ### Why build on RAWG - More than 350,000 games for 50 platforms including mobiles. - Rich metadata: tags, genres, developers, publishers, individual creators, official websites, release dates, Metacritic ratings. - Where to buy: links to digital distribution services - Similar games based on visual similarity. - Player activity data: Steam average playtime and RAWG player counts and ratings. - Actively developing and constantly getting better by user contribution and our algorithms. ### Terms of Use - Free for personal use as long as you attribute RAWG as the source of the data and/or images and add an active hyperlink from every page where the data of RAWG is used. - Free for commercial use for startups and hobby projects with not more than 100,000 monthly active users or 500,000 page views per month. If your project is larger than that, email us at [[email protected]](mailto:[email protected]) for commercial terms. - No cloning. It would not be cool if you used our API to launch a clone of RAWG. We know it is not always easy to say what is a duplicate and what isn't. Drop us a line at [[email protected]](mailto:[email protected]) if you are in doubt, and we will talk it through. - Every API request should have a User-Agent header with your app name. If you don’t provide it, we may ban your requests. __[Read more](https://rawg.io/apidocs)__. # noqa: E501 The version of the OpenAPI document: v1.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from rawg.configuration import Configuration class Genre(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'int', 'name': 'str', 'slug': 'str', 'games_count': 'int', 'image_background': 'str' } attribute_map = { 'id': 'id', 'name': 'name', 'slug': 'slug', 'games_count': 'games_count', 'image_background': 'image_background' } def __init__(self, id=None, name=None, slug=None, games_count=None, image_background=None, local_vars_configuration=None): # noqa: E501 """Genre - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._id = None self._name = None self._slug = None self._games_count = None self._image_background = None self.discriminator = None if id is not None: self.id = id self.name = name if slug is not None: self.slug = slug if games_count is not None: self.games_count = games_count if image_background is not None: self.image_background = image_background @property def id(self): """Gets the id of this Genre. # noqa: E501 :return: The id of this Genre. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this Genre. :param id: The id of this Genre. # noqa: E501 :type: int """ self._id = id @property def name(self): """Gets the name of this Genre. # noqa: E501 :return: The name of this Genre. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Genre. :param name: The name of this Genre. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and name is not None and len(name) > 100): raise ValueError("Invalid value for `name`, length must be less than or equal to `100`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and name is not None and len(name) < 1): raise ValueError("Invalid value for `name`, length must be greater than or equal to `1`") # noqa: E501 self._name = name @property def slug(self): """Gets the slug of this Genre. # noqa: E501 :return: The slug of this Genre. # noqa: E501 :rtype: str """ return self._slug @slug.setter def slug(self, slug): """Sets the slug of this Genre. :param slug: The slug of this Genre. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and slug is not None and len(slug) < 1): raise ValueError("Invalid value for `slug`, length must be greater than or equal to `1`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and slug is not None and not re.search(r'^[-a-zA-Z0-9_]+$', slug)): # noqa: E501 raise ValueError(r"Invalid value for `slug`, must be a follow pattern or equal to `/^[-a-zA-Z0-9_]+$/`") # noqa: E501 self._slug = slug @property def games_count(self): """Gets the games_count of this Genre. # noqa: E501 :return: The games_count of this Genre. # noqa: E501 :rtype: int """ return self._games_count @games_count.setter def games_count(self, games_count): """Sets the games_count of this Genre. :param games_count: The games_count of this Genre. # noqa: E501 :type: int """ self._games_count = games_count @property def image_background(self): """Gets the image_background of this Genre. # noqa: E501 :return: The image_background of this Genre. # noqa: E501 :rtype: str """ return self._image_background @image_background.setter def image_background(self, image_background): """Sets the image_background of this Genre. :param image_background: The image_background of this Genre. # noqa: E501 :type: str """ if (self.local_vars_configuration.client_side_validation and image_background is not None and len(image_background) < 1): raise ValueError("Invalid value for `image_background`, length must be greater than or equal to `1`") # noqa: E501 self._image_background = image_background def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Genre): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Genre): return True return self.to_dict() != other.to_dict()
0f89aabb6afcac086be266a87470dd503016df7c
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_1480487_0/Python/alb4tor/GCJ.py
d451fb47ed78eefe43680fc14d2c7e07ec64c891
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,296
py
''' Created on 18 mars 2012 @author: gnugnu ''' import sys class InputFile(object): ''' classdocs ''' def __init__(self, filename=""): ''' Constructor ''' if filename == "": filename = sys.argv[1] self.full_content = open(filename, "r").readlines() self.size = int(self.full_content[0]) self.idx = 0 def __iter__(self): return self def __len__(self): return self.size def next(self): self.idx += 1 try: return self.full_content[self.idx].rstrip("\n") except IndexError: raise StopIteration @property def case(self): return self.idx class Output(object): def __init__(self, filename=""): self.case = 0 def prt(self, data): self.case += 1 self._prt("Case #%d: %s" % (self.case, str(data))) def _prt(self, data): print data def close(self): pass class OutputFile(Output): def __init__(self, filename): Output.__init__(self) self.fp = open(filename, "w") def _prt(self, data): self.fp.write(data+"\n") def close(self): self.fp.close()
f449e83fee7a3232c998a2a04bdebd291dcd372a
9a486a87e028303a551fbd0d1e1b6b650387ea14
/testPack/testpack.py
2730eb3f81d6cb3187c4f2e4533eb3ff49c44c12
[]
no_license
shanlihou/pythonFunc
7b8e7064fddd4522e492c915c086cc6c5abc6eec
646920256551ccd8335446dd4fe11aa4b9916f64
refs/heads/master
2022-08-24T20:33:12.287464
2022-07-21T12:00:10
2022-07-21T12:00:10
24,311,639
3
0
null
null
null
null
UTF-8
Python
false
false
49
py
from testPack import abc print('hello') abc.abc()
a77f8e23b15fcb2a4caf310890f1a2d3ad7a7714
07ec5a0b3ba5e70a9e0fb65172ea6b13ef4115b8
/lib/python3.6/site-packages/tensorflow/python/estimator/inputs/numpy_io.py
f3fc47e290a7b335b0bdba64fe0da0d41970f3e1
[]
no_license
cronos91/ML-exercise
39c5cd7f94bb90c57450f9a85d40c2f014900ea4
3b7afeeb6a7c87384049a9b87cac1fe4c294e415
refs/heads/master
2021-05-09T22:02:55.131977
2017-12-14T13:50:44
2017-12-14T13:50:44
118,736,043
0
0
null
2018-01-24T08:30:23
2018-01-24T08:30:22
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:06d1937b0e2e65d868e3f6fb34a214b26552db5c1a5dabce73a56b55aa075f63 size 5108
e13aefe727018e905ec98a260eb06accff2fcd2d
751b094918ae9200afe7824d58804549082caa95
/src/python/WMCore/JobSplitting/Generators/BasicNaming.py
e0db794314212fbb6fd9f0ed93e09f522ce15972
[]
no_license
cinquo/WMCore
7ebd13269f42eb97f416f8f2bdaca05fa93c6afc
122f9332f2e944154dd0df68b6b3f2875427b032
refs/heads/master
2021-01-09T06:28:58.947626
2013-06-05T08:31:53
2013-06-05T08:31:53
2,965,330
1
0
null
null
null
null
UTF-8
Python
false
false
571
py
#!/usr/bin/env python """ _BasicNaming_ Default name generator using a vaguely sensible convention. Uses GUIDs to avoid having to keep state """ from WMCore.Services.UUID import makeUUID from WMCore.JobSplitting.Generators.GeneratorInterface import GeneratorInterface class BasicNaming(GeneratorInterface): """ _BasicNaming_ Basic task & guid based name generator """ def __call__(self, wmbsJob): wmbsJob['id'] = "%s/%s" % (self.task.getPathName(), makeUUID()) wmbsJob['name'] = "%s/%s" % (self.task.getPathName(), makeUUID())
[ "metson@4525493e-7705-40b1-a816-d608a930855b" ]
metson@4525493e-7705-40b1-a816-d608a930855b
3ee33ba669c0be974c54414bc32bb4692ee19419
a4fcaa28f288ff495ac09c3f8070f019f4d3ba80
/08-real_python_class/2017_02_07-Lesson_2/class_projects/flask-hello-world/app.py
677ab29cfff2fc13b95ed5933c362409ba9a180e
[]
no_license
tomwhartung/always_learning_python
db44b0745f27f482e6482faa821f89dc7809dda8
ab27c164a724754e3e25518bf372bd4437995d64
refs/heads/master
2020-12-07T15:57:04.184391
2017-05-18T19:35:31
2017-05-18T19:35:31
67,449,327
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
## # Class project # from flask import Flask app = Flask(__name__) if __name__ == '___main__': app.run(debug=True) @app.route('/') def index(): return 'Index Page' # # Variable Rules: # --------------- # # Greet the user by name # @app.route('/name/<username>') def greet_user(username): return 'Hello %s!' % username
4795fdd80d0a83f8095f553a54e9c04a2712f2f0
42064191a5ac586ed088b293165b51abf16b1ee4
/Intro Machine Learning/Lesson 9/Min_Max_Rescale.py
752e6692ff0556a1d34473a31fb6f4068011bca4
[]
no_license
ObinnaObeleagu/Udacity
637cd458824a835febacebd72ebef77b30ca7f94
761ba413934f66cbd9429fd9882f59f047eb065b
refs/heads/master
2023-03-15T23:27:23.022463
2019-01-03T04:05:03
2019-01-03T04:05:03
497,375,575
1
0
null
2022-05-28T16:46:12
2022-05-28T16:46:12
null
UTF-8
Python
false
false
618
py
""" quiz materials for feature scaling clustering """ ### FYI, the most straightforward implementation might ### throw a divide-by-zero error, if the min and max ### values are the same ### but think about this for a second--that means that every ### data point has the same value for that feature! ### why would you rescale it? Or even use it at all? def featureScaling(arr): if max(arr) == min(arr): return arr else: return [(a - min(arr))*1.0/(max(arr)-min(arr)) for a in arr] # tests of your feature scaler--line below is input data data = [115, 140, 175] print featureScaling(data)
c75309b7bfbaa2e7f70f920f0c0c9a1fac74fe6b
1bc7456240639a4fac54c411fbcb562cdbcc420c
/5483. Make The String Great.py
7728ab54b08891d7f80b0856bb4def9591fe4547
[]
no_license
Manash-git/CP-LeetCode-Solve
bdbb9f13946faee5da24e191a3d593b99da61ed2
45052c7613345c76f8a12bac780ffb899062dea9
refs/heads/master
2022-11-29T13:16:03.474242
2020-08-11T19:06:07
2020-08-11T19:06:07
275,853,956
1
0
null
null
null
null
UTF-8
Python
false
false
433
py
def makeGood(s): bucket=[s[0]] for i in s[1:]: if bucket and i.lower()==bucket[-1] and i!=bucket[-1]: bucket.pop() elif bucket and i.upper()==bucket[-1]and i!=bucket [-1]: bucket.pop() else: bucket.append(i) print(bucket) # print("".join(bucket)) return "".join(bucket) print(makeGood("mannNasSh")) lst= [1,5,3,7] print(lst[-1])
b18a75629c957d414f6969ff82875ae136371895
27ff7fec0ae3f29f58089a2acab0aa3bc4e6e1f7
/Python_script/51zxw/unittest/testCase_combine.py
377d5e839107ecaf2be9a6fe29db01308a7086b3
[]
no_license
zhangsong1417/xx
01435d6057364991b649c1acc00b36ab13debe5a
c40cfdede194daf3bdf91b36c1936150577128b9
refs/heads/master
2020-04-06T14:06:23.011363
2019-07-09T02:38:02
2019-07-09T02:38:02
157,528,207
1
0
null
null
null
null
UTF-8
Python
false
false
455
py
from calculator import * import unittest class Test_StartEnd(unittest.TestCase): def setUp(self): print("test start") def tearDown(self): print("test end") class Testadd(Test_StartEnd): def test_add(self): j=Math(5,5) self.assertEqual(j.add(),10) class Testsub(Test_StartEnd): def test_sub(self): i=Math(10,5) self.assertEqual(i.sub(),5) if __name__=='__main__': unittest.main()
4ee02bc666d3115bc00a27981934c752402097f7
d78dfc5089717fc242bbd7097f507d811abb4260
/USA/script.module.coveapi/lib/coveapi/__init__.py
6190c730b35fd85b4204fbf8e5d11e8982f2c3a3
[]
no_license
tustxk/AddOnRepo
995b980a9ec737e2c25bed423fc83f710c697e40
6b86a06cb37e6e10b4119584dd7311ebc2318e54
refs/heads/master
2022-10-08T21:34:34.632346
2016-10-28T09:48:01
2016-10-28T09:48:01
70,684,775
1
1
null
2022-10-01T16:27:13
2016-10-12T09:31:16
Python
UTF-8
Python
false
false
956
py
"""Package: `coveapi` A Python client for the PBS COVE API service. """ # client version __version__ = '0.2dev' # coveapi constants COVEAPI_VERSION = 'v1' COVEAPI_HOST = 'http://api.pbs.org' COVEAPI_ENDPOINT = '/cove/%s/' % COVEAPI_VERSION COVEAPI_ENDPOINT_CATEGORIES = '%scategories/' % COVEAPI_ENDPOINT COVEAPI_ENDPOINT_GROUPS = '%sgroups/' % COVEAPI_ENDPOINT COVEAPI_ENDPOINT_PROGRAMS = '%sprograms/' % COVEAPI_ENDPOINT COVEAPI_ENDPOINT_VIDEOS = '%svideos/' % COVEAPI_ENDPOINT def connect(api_app_id, api_app_secret, api_host=COVEAPI_HOST): """Connect to the COVE API service. Keyword arguments: `api_app_id` -- your COVE API app id `api_app_secret` -- your COVE API secret key `api_host` -- host of COVE API (default: COVEAPI_HOST) Returns: `coveapi.connection.COVEAPIConnection` object """ from coveapi.connection import COVEAPIConnection return COVEAPIConnection(api_app_id, api_app_secret, api_host)
241db9e295f1a41795f43fba433f42583b271f89
52d6e9fb7176bf819ae8460d0fd03368614ce075
/datasource/PooledDataSource.py
9f0bb94bdadf9e96e5bc94dc8d47f6f27f780427
[ "BSD-2-Clause" ]
permissive
mattduan/proof
076f23f20e28e6d59f091af11eb84cdd3e9f224d
52241b68e7170c9c6fd245192b7be35be1cdc33f
refs/heads/master
2021-01-13T01:44:22.937600
2013-03-17T16:19:32
2013-03-17T16:19:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
""" A PooledDataSource object is a factory for PooledConnection objects. """ __version__='$Revision: 3194 $'[11:-2] __author__ = "Duan Guoqiang ([email protected])" import logging import util.logger.Logger as Logger import proof.ProofException as ProofException class PooledDataSource: __is__ = 'interface' def __init__( self, host, username, password, dbname, pool, logger = None ): """ Constructor. """ self.__logger = Logger.makeLogger(logger) self.log = self.__logger.write #==================== Interfaces ========================== def getPooledConnection(self, **kwargs): """ Establish a database connection and return it. """ raise ProofException.ProofNotImplementedException( \ "PooledDataSource.getPooledConnection: need to be overrided by db specific PooledDataSource." ) def getLogger(self): return self.__logger def setLogger(self, logger): self.__logger = Logger.makeLogger(logger) self.log = self.__logger.write
1f5e57c17346b3f327473b6fcffe2c8ed909d888
5374bd9a9fc8cc07f6966c490a137003ddc64d9b
/VEnCode/scripts/dendrogram_encode.py
44b445694b2ba41e172163ba360705fc56d94d73
[ "BSD-3-Clause" ]
permissive
AndreMacedo88/VEnCode
31f9f545019f62e0af716395a11961515c229394
667c777c6ef12c43e993660e5c695d4d6d43385e
refs/heads/master
2021-01-06T03:55:44.385885
2020-11-24T18:05:38
2020-11-24T18:05:38
90,248,803
0
1
NOASSERTION
2020-02-04T22:29:39
2017-05-04T10:02:48
Python
UTF-8
Python
false
false
1,974
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ dendrogram_encode.py: file used to generate hierarchical clustering and subsequent dendrograms from ENCODE DNase-seq data """ import os import pandas as pd from scipy.cluster import hierarchy import matplotlib.pyplot as plt from VEnCode import common_variables as cv DATA_TYPE = "enhancers" encode_data_path = "D:/Utilizador HDD/OneDrive - Nova Medical School Faculdade de Ciências Médicas da UNL/" \ "1-Research/3-Vencode/Fantom5/Files/Validation_files/ENCODE/" \ "ENCODE DNase expression in FANTOM5 {}_merged.csv".format(DATA_TYPE) encode_data = pd.read_csv(encode_data_path, sep=";", engine="python", index_col=0) values = encode_data.T.values index = encode_data.T.index clustering = hierarchy.linkage(values, 'single') plt.figure(figsize=(14, 14)) dn = hierarchy.dendrogram(clustering, labels=index, color_threshold=0, above_threshold_color='#333333', leaf_rotation=0, orientation="left") no_axes = False no_border = True ax = plt.gca() if no_axes: ax.axis('off') else: dflt_col = "#808080" ylbls = ax.get_ymajorticklabels() for lbl in ylbls: lbl.set_color(dflt_col) if no_border: ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) path = "D:/Utilizador HDD\OneDrive - Nova Medical School Faculdade de Ciências Médicas da UNL/1-Research/3-Vencode/" \ "Fantom5/Dendrograms/" file_name = "dendro_encode_{}_noBorders.png".format(DATA_TYPE) output_path = os.path.join(path, file_name) plt.savefig(output_path, dpi=600, bbox_inches="tight", transparent=True) retrieve_leaves = False if retrieve_leaves: leaves_list = dn["leaves"] leaves_names = [index[x] for x in leaves_list] with open("leaves.csv", "w") as f: for item in leaves_names: f.write("{}\n".format(item)) print(leaves_names)
472278844e6c3e2bac6d02dd2d9ad2898ce53100
2ff83d7af0bcbc5822593d826b0c3276346d1276
/transformers_local_rep/src/transformers/models/ctrl/modeling_ctrl.py
8b6335d313600a9486f7efaad718f8dcfb7c124e
[]
no_license
mauricerupp/PolitBERT
43af66f5562bb5c5cf965aa99bb065d1c22f4fae
a8c4eb517eb38cb51101fc87780ed1de182560c8
refs/heads/master
2023-06-17T03:13:43.070682
2021-07-15T15:15:30
2021-07-15T15:15:30
386,334,080
1
0
null
null
null
null
UTF-8
Python
false
false
28,939
py
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CTRL model.""" from typing import Tuple import numpy as np import torch import torch.nn as nn from torch.nn import CrossEntropyLoss, MSELoss from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutput from ...modeling_utils import Conv1D, PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import logging from .configuration_ctrl import CTRLConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "CTRLConfig" _TOKENIZER_FOR_DOC = "CTRLTokenizer" CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "ctrl" # See all CTRL models at https://huggingface.co/models?filter=ctrl ] def angle_defn(pos, i, d_model_size): angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size) return pos * angle_rates def positional_encoding(position, d_model_size, dtype): # create the sinusoidal pattern for the positional encoding angle_rads = angle_defn( torch.arange(position, dtype=dtype).unsqueeze(1), torch.arange(d_model_size, dtype=dtype).unsqueeze(0), d_model_size, ) sines = torch.sin(angle_rads[:, 0::2]) cosines = torch.cos(angle_rads[:, 1::2]) pos_encoding = torch.cat([sines, cosines], dim=-1) return pos_encoding def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): # calculate attention matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2)) dk = k.shape[-1] scaled_attention_logits = matmul_qk / np.sqrt(dk) if mask is not None: nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1) scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4 if attention_mask is not None: # Apply the attention mask scaled_attention_logits = scaled_attention_logits + attention_mask attention_weights = torch.softmax(scaled_attention_logits, dim=-1) # Mask heads if we want to if head_mask is not None: attention_weights = attention_weights * head_mask output = torch.matmul(attention_weights, v) return output, attention_weights class MultiHeadAttention(torch.nn.Module): def __init__(self, d_model_size, num_heads): super().__init__() self.num_heads = num_heads self.d_model_size = d_model_size self.depth = int(d_model_size / self.num_heads) self.Wq = torch.nn.Linear(d_model_size, d_model_size) self.Wk = torch.nn.Linear(d_model_size, d_model_size) self.Wv = torch.nn.Linear(d_model_size, d_model_size) self.dense = torch.nn.Linear(d_model_size, d_model_size) self.pruned_heads = set() def prune_heads(self, heads): attention_head_size = self.d_model_size // self.num_heads if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, attention_head_size, self.pruned_heads) # Prune linear layers self.Wq = prune_linear_layer(self.Wq, index) self.Wk = prune_linear_layer(self.Wk, index) self.Wv = prune_linear_layer(self.Wv, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params self.num_heads = self.num_heads - len(heads) self.d_model_size = attention_head_size * self.num_heads self.pruned_heads = self.pruned_heads.union(heads) def split_into_heads(self, x, batch_size): x = x.reshape(batch_size, -1, self.num_heads, self.depth) return x.permute([0, 2, 1, 3]) def forward( self, v, k, q, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False, ): batch_size = q.shape[0] q = self.Wq(q) k = self.Wk(k) v = self.Wv(v) q = self.split_into_heads(q, batch_size) k = self.split_into_heads(k, batch_size) v = self.split_into_heads(v, batch_size) if layer_past is not None: past_key, past_value = layer_past[0], layer_past[1] k = torch.cat((past_key, k), dim=-2) v = torch.cat((past_value, v), dim=-2) if use_cache is True: present = torch.stack((k, v)) else: present = (None,) output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) scaled_attention = output[0].permute([0, 2, 1, 3]) attn = output[1] original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size) output = self.dense(original_size_attention) outputs = (output, present) if output_attentions: outputs = outputs + (attn,) return outputs def point_wise_feed_forward_network(d_model_size, dff): return torch.nn.Sequential(torch.nn.Linear(d_model_size, dff), torch.nn.ReLU(), torch.nn.Linear(dff, d_model_size)) class EncoderLayer(torch.nn.Module): def __init__(self, d_model_size, num_heads, dff, rate=0.1): super().__init__() self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads) self.ffn = point_wise_feed_forward_network(d_model_size, dff) self.layernorm1 = torch.nn.LayerNorm(d_model_size, eps=1e-6) self.layernorm2 = torch.nn.LayerNorm(d_model_size, eps=1e-6) self.dropout1 = torch.nn.Dropout(rate) self.dropout2 = torch.nn.Dropout(rate) def forward( self, x, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False ): normed = self.layernorm1(x) attn_outputs = self.multi_head_attention( normed, normed, normed, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] attn_output = self.dropout1(attn_output) out1 = x + attn_output out2 = self.layernorm2(out1) ffn_output = self.ffn(out2) ffn_output = self.dropout2(ffn_output) out2 = out1 + ffn_output outputs = (out2,) + attn_outputs[1:] return outputs class CTRLPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CTRLConfig base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) CTRL_START_DOCSTRING = r""" This model inherits from :class:`~transformers_local.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers_local.CTRLConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers_local.PreTrainedModel.from_pretrained` method to load the model weights. """ CTRL_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else ``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input sequence tokens in the vocabulary. If :obj:`past_key_values` is used, only input IDs that do not have their past calculated should be passed as ``input_ids``. Indices can be obtained using :class:`~transformers_local.CTRLTokenizer`. See :meth:`transformers_local.PreTrainedTokenizer.__call__` and :meth:`transformers_local.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ past_key_values (:obj:`Tuple[Tuple[torch.FloatTensor]]` of length :obj:`config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see :obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which have their past given to this model should not be passed as input ids as they have already been computed. attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers_local.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.", CTRL_START_DOCSTRING, ) class CTRLModel(CTRLPreTrainedModel): def __init__(self, config): super().__init__(config) self.d_model_size = config.n_embd self.num_layers = config.n_layer self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float) self.w = nn.Embedding(config.vocab_size, config.n_embd) self.dropout = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList( [EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop) for _ in range(config.n_layer)] ) self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.init_weights() def get_input_embeddings(self): return self.w def set_input_embeddings(self, new_embeddings): self.w = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].multi_head_attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="ctrl", output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions use_cache = use_cache if use_cache is not None else self.config.use_cache output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: assert batch_size > 0, "batch_size has to be defined and > 0" attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layer) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) token_type_embeds = self.w(token_type_ids) token_type_embeds *= np.sqrt(self.d_model_size) else: token_type_embeds = 0 position_ids = position_ids.view(-1, input_shape[-1]) if inputs_embeds is None: inputs_embeds = self.w(input_ids) # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded seq_len = input_shape[-1] mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(inputs_embeds.device) inputs_embeds *= np.sqrt(self.d_model_size) pos_embeds = self.pos_encoding[position_ids, :].to(inputs_embeds.device) hidden_states = inputs_embeds + pos_embeds + token_type_embeds hidden_states = self.dropout(hidden_states) presents = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, (h, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = h( hidden_states, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present = outputs[:2] if use_cache is True: presents = presents + (present,) if output_attentions: all_attentions += (outputs[2],) hidden_states = self.layernorm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, CTRL_START_DOCSTRING, ) class CTRLLMHeadModel(CTRLPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = CTRLModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True) self.init_weights() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, use_cache=None, **kwargs): # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) return {"input_ids": input_ids, "past_key_values": past, "use_cache": use_cache} @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="ctrl", output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers_local.PretrainedModel.beam_search` or :meth:`~transformers_local.PretrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) @add_start_docstrings( """ The CTRL Model transformer with a sequence classification head on top (linear layer). :class:`~transformers_local.CTRLForSequenceClassification` uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take the last value in each row of the batch). """, CTRL_START_DOCSTRING, ) class CTRLForSequenceClassification(CTRLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = CTRLModel(config) self.classifier = nn.Linear(config.n_embd, self.num_labels, bias=False) self.init_weights() @add_start_docstrings_to_model_forward(CTRL_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="ctrl", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.classifier(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjuction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (pooled_logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
cce211ae190377155ad44f981d6ad1c61c5091ab
1c6283303ceb883add8de4ee07c5ffcfc2e93fab
/Jinja2/lib/python3.7/site-packages/ixnetwork_restpy/testplatform/sessions/ixnetwork/impairment/profile/accumulateandburst/accumulateandburst.py
59dc4f52ccd1cef9b005cc09fb573e7ebdeff7b1
[]
no_license
pdobrinskiy/devcore
0f5b3dfc2f3bf1e44abd716f008a01c443e14f18
580c7df6f5db8c118990cf01bc2b986285b9718b
refs/heads/main
2023-07-29T20:28:49.035475
2021-09-14T10:02:16
2021-09-14T10:02:16
405,919,390
0
0
null
null
null
null
UTF-8
Python
false
false
10,247
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files from typing import List, Any, Union class AccumulateAndBurst(Base): """Accumulates packets in a queue and transmit groups of packets as a burst. It can only be used on a profile if delayVariation and customDelayVariation are disabled. The AccumulateAndBurst class encapsulates a required accumulateAndBurst resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'accumulateAndBurst' _SDM_ATT_MAP = { 'BurstSize': 'burstSize', 'BurstSizeUnit': 'burstSizeUnit', 'BurstTimeout': 'burstTimeout', 'BurstTimeoutUnit': 'burstTimeoutUnit', 'Enabled': 'enabled', 'InterBurstGap': 'interBurstGap', 'InterBurstGapValue': 'interBurstGapValue', 'InterBurstGapValueUnit': 'interBurstGapValueUnit', 'PacketCount': 'packetCount', 'QueueAutoSize': 'queueAutoSize', 'QueueAutoSizeEnabled': 'queueAutoSizeEnabled', 'QueueSize': 'queueSize', } _SDM_ENUM_MAP = { 'burstSizeUnit': ['kilobytes', 'kKilobytes', 'kMegabytes', 'megabytes'], 'burstTimeoutUnit': ['kMilliseconds', 'kSeconds', 'kTimeFormat', 'milliseconds', 'seconds', 'timeFormat'], 'interBurstGap': ['headToHead', 'kHeadToHead', 'kTailToHead', 'tailToHead'], 'interBurstGapValueUnit': ['kMilliseconds', 'kSeconds', 'milliseconds', 'seconds'], } def __init__(self, parent, list_op=False): super(AccumulateAndBurst, self).__init__(parent, list_op) @property def BurstSize(self): # type: () -> int """ Returns ------- - number: Represents the burst octet size. The default value is 1014. """ return self._get_attribute(self._SDM_ATT_MAP['BurstSize']) @BurstSize.setter def BurstSize(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['BurstSize'], value) @property def BurstSizeUnit(self): # type: () -> str """ Returns ------- - str(kilobytes | kKilobytes | kMegabytes | megabytes): The burst size unit is either megabytes or kilobytes. The default unit is kilobytes. """ return self._get_attribute(self._SDM_ATT_MAP['BurstSizeUnit']) @BurstSizeUnit.setter def BurstSizeUnit(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['BurstSizeUnit'], value) @property def BurstTimeout(self): # type: () -> str """ Returns ------- - str: The burst timeout.The default value is 5 seconds. """ return self._get_attribute(self._SDM_ATT_MAP['BurstTimeout']) @BurstTimeout.setter def BurstTimeout(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['BurstTimeout'], value) @property def BurstTimeoutUnit(self): # type: () -> str """ Returns ------- - str(kMilliseconds | kSeconds | kTimeFormat | milliseconds | seconds | timeFormat): Seconds(default) / milliseconds / mm:ss.fff time format. """ return self._get_attribute(self._SDM_ATT_MAP['BurstTimeoutUnit']) @BurstTimeoutUnit.setter def BurstTimeoutUnit(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['BurstTimeoutUnit'], value) @property def Enabled(self): # type: () -> bool """ Returns ------- - bool: If true, received packets are queued and transmitted in bursts. """ return self._get_attribute(self._SDM_ATT_MAP['Enabled']) @Enabled.setter def Enabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['Enabled'], value) @property def InterBurstGap(self): # type: () -> str """ Returns ------- - str(headToHead | kHeadToHead | kTailToHead | tailToHead): Tail to head (default) / Head to head. """ return self._get_attribute(self._SDM_ATT_MAP['InterBurstGap']) @InterBurstGap.setter def InterBurstGap(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['InterBurstGap'], value) @property def InterBurstGapValue(self): # type: () -> int """ Returns ------- - number: The InterBurst gap value. The default value is 20 ms. """ return self._get_attribute(self._SDM_ATT_MAP['InterBurstGapValue']) @InterBurstGapValue.setter def InterBurstGapValue(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['InterBurstGapValue'], value) @property def InterBurstGapValueUnit(self): # type: () -> str """ Returns ------- - str(kMilliseconds | kSeconds | milliseconds | seconds): Seconds / milliseconds (default). """ return self._get_attribute(self._SDM_ATT_MAP['InterBurstGapValueUnit']) @InterBurstGapValueUnit.setter def InterBurstGapValueUnit(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['InterBurstGapValueUnit'], value) @property def PacketCount(self): # type: () -> int """ Returns ------- - number: Represents the burst packet count. The default value is 1000 packets. """ return self._get_attribute(self._SDM_ATT_MAP['PacketCount']) @PacketCount.setter def PacketCount(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['PacketCount'], value) @property def QueueAutoSize(self): # type: () -> int """ Returns ------- - number: Gets the automatically calculated queue size when queueAutoSizeEnable is true or zero when queueAutoSizeEnable is false. """ return self._get_attribute(self._SDM_ATT_MAP['QueueAutoSize']) @property def QueueAutoSizeEnabled(self): # type: () -> bool """ Returns ------- - bool: Automatically calculate queue size. The default value is true. """ return self._get_attribute(self._SDM_ATT_MAP['QueueAutoSizeEnabled']) @QueueAutoSizeEnabled.setter def QueueAutoSizeEnabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['QueueAutoSizeEnabled'], value) @property def QueueSize(self): # type: () -> int """ Returns ------- - number: The accumulate-and-burst queue size expressed in MB. The default value is 1. """ return self._get_attribute(self._SDM_ATT_MAP['QueueSize']) @QueueSize.setter def QueueSize(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['QueueSize'], value) def update(self, BurstSize=None, BurstSizeUnit=None, BurstTimeout=None, BurstTimeoutUnit=None, Enabled=None, InterBurstGap=None, InterBurstGapValue=None, InterBurstGapValueUnit=None, PacketCount=None, QueueAutoSizeEnabled=None, QueueSize=None): # type: (int, str, str, str, bool, str, int, str, int, bool, int) -> AccumulateAndBurst """Updates accumulateAndBurst resource on the server. Args ---- - BurstSize (number): Represents the burst octet size. The default value is 1014. - BurstSizeUnit (str(kilobytes | kKilobytes | kMegabytes | megabytes)): The burst size unit is either megabytes or kilobytes. The default unit is kilobytes. - BurstTimeout (str): The burst timeout.The default value is 5 seconds. - BurstTimeoutUnit (str(kMilliseconds | kSeconds | kTimeFormat | milliseconds | seconds | timeFormat)): Seconds(default) / milliseconds / mm:ss.fff time format. - Enabled (bool): If true, received packets are queued and transmitted in bursts. - InterBurstGap (str(headToHead | kHeadToHead | kTailToHead | tailToHead)): Tail to head (default) / Head to head. - InterBurstGapValue (number): The InterBurst gap value. The default value is 20 ms. - InterBurstGapValueUnit (str(kMilliseconds | kSeconds | milliseconds | seconds)): Seconds / milliseconds (default). - PacketCount (number): Represents the burst packet count. The default value is 1000 packets. - QueueAutoSizeEnabled (bool): Automatically calculate queue size. The default value is true. - QueueSize (number): The accumulate-and-burst queue size expressed in MB. The default value is 1. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals()))
39959cff761869bff2825119c1eb9906bd45241b
2f882f68806faf88e549a941e4d13833d9aa95df
/杨辉三角.py
b3f9f09a01baaa435f4f241a8ce69fa574e91c69
[]
no_license
SmallPotY/leetcode_Python
5ac8420cdcb677a679a32fd6f5fce82411d813cd
0a2483195004c4d18237920b2f38b942e26b181b
refs/heads/master
2020-03-20T13:24:00.612054
2019-07-18T09:14:45
2019-07-18T09:14:45
137,454,639
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
""" 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。 在杨辉三角中,每个数是它左上方和右上方的数的和。 示例: 输入: 5 输出: [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] """ class Solution: def generate(self, numRows): """ :type numRows: int :rtype: List[List[int]] """ yhsj = [[1],[1,1]] if numRows: if numRows == 1: return [[1]] elif numRows == 2: return yhsj else: for i in range(3,numRows+1): klb = [1,] k =0 for j in range(1, i-1): a = yhsj[i-2][k] b = yhsj[i-2][k+1] k = k+1 klb.append(a+b) klb.append(1) yhsj.append(klb) return yhsj else: return []
246d33ab6acf6da45a7e5b84745b5ad00b797c72
da29f1f5b4459fbfec968bb694bedb9586f87b14
/new_algs/Graph+algorithms/Dijkstra's+algorithm/processMaze.py
c9dd36c61be3664b0529b1016b3c77f224bb4b30
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
coolsnake/JupyterNotebook
547806a45a663f090f313dc3e70f779ad9b213c0
20d8df6172906337f81583dabb841d66b8f31857
refs/heads/master
2023-01-13T18:55:38.615312
2020-11-17T22:55:12
2020-11-17T22:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,604
py
import os from PIL import Image from helpers import cropBorder, replace_print class Maze(object): # Start of Node Class # class Node(object): def __init__(self, x_pos, y_pos, surroundings=None, start=False, end=False): self.name = 'node_%s_%s' % (x_pos, y_pos) self.x_pos, self.y_pos = (x_pos, y_pos) self.surroundings = surroundings self.start = start self.end = end self._adjacent_nodes = {} self._prev_node = None @property def adjacent_nodes(self): """Adjacent Node Property""" return self._adjacent_nodes def set_adjacent_nodes(self, key, value): """Sets adjacent node""" self._adjacent_nodes[key] = value @property def prev_node(self): """Previous Node Property""" return self._prev_node def set_prev_node(self, value): """Set Previous node""" self._prev_node = value @property def prettify(self): return 'Node at ({}, {})'.format(self.x_pos, self.y_pos) # End of Node Class # BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) start_node = None end_node = None def __init__(self, filename, to_crop=False): print ('---------------') print ('Processing Maze') print ('---------------\n') self.maze = cropBorder(Image.open(filename)) if to_crop else Image.open(filename) self.height, self.width = self.maze.size self.node_dict = self.find_nodes() self.make_graph() print ('---------------') print ('Solving Maze') print ('---------------\n') def get_surroundings(self, x_pos, y_pos): """Gets the values of up,down,left,right at given coords.""" # The x,y coordinates of a given pixel's surorundings at x_pos and y_pos up = (x_pos, y_pos - 1) if y_pos - 1 >= 0 else False down = (x_pos, y_pos + 1) if y_pos + 1 < self.height else False left = (x_pos - 1, y_pos) if x_pos - 1 >= 0 else False right = (x_pos + 1, y_pos) if x_pos + 1 < self.width else False surroundings = { 'up': up, 'down': down, 'left': left, 'right': right } for direction in surroundings: if surroundings[direction]: pix = self.maze.getpixel(surroundings[direction]) if not self.check_black(pix): surroundings[direction] = True else: surroundings[direction] = False return surroundings def move_horizontally(self, y): """Moves horizontally along y until it finds a white square, return the x,y positions""" x_y_pairs = [] for x in xrange(self.width): pix = self.maze.getpixel((x,y)) if self.check_white(pix): x_y_pairs.append((x, y)) return x_y_pairs def move_vertically(self, x): """Moves vertically along x until it finds a white square, return the x,y positions""" x_y_pairs = [] for y in xrange(self.height - 1): pix = self.maze.getpixel((x,y)) if self.check_white(pix): x_y_pairs.append((x, y)) return x_y_pairs def make_start_end_node(self): """Takes the x and y coords of the start node and makes it the start node""" is_start = True is_end = False node_dict = {} # Get x, y coords of start and end nodes x_y_pairs = self.move_horizontally(0) x_y_pairs += self.move_horizontally(self.height-1) x_y_pairs += self.move_vertically(0) x_y_pairs += self.move_vertically(self.width - 1) for x_y in x_y_pairs: x, y = x_y[0], x_y[1] node_name = 'node_%s_%s' % (x,y) node_dict[node_name] = self.Node(x, y, surroundings=self.get_surroundings(x, y), start=is_start, end=is_end) if is_start: self.start_node = node_name print ('Found Start Node: {}'.format(node_dict[node_name].prettify)) if is_end: self.end_node = node_name print ('Found End Node: {}'.format(node_dict[node_name].prettify), '\n') is_start = False is_end = True return node_dict def find_nodes(self): """Finds and returns nodes in a maze""" print ('Finding nodes...') maze_copy = self.maze.copy() node_dict = self.make_start_end_node() for key, node in node_dict.items(): maze_copy.putpixel((node.x_pos, node.y_pos), self.RED) found_nodes = 2 number_of_nodes = 2 # Get the rest of the nodes for y in xrange(1, self.height - 1): for x in xrange(1, self.width): pix = self.maze.getpixel((x,y)) if self.check_white(pix): isNode = True directions = self.get_surroundings(x,y) up_and_down = directions['up'] and directions['down'] up_or_down = directions['up'] or directions['down'] left_and_right = directions['left'] and directions['right'] left_or_right = directions['left'] or directions['right'] # Rules for a node (a node is where you can / must change direction while following a path) if up_and_down and not left_or_right: isNode = False elif left_and_right and not up_or_down: isNode = False # Color maze, assign nodes if isNode: node_dict['node_%s_%s' % (x,y)] = self.Node(x, y, surroundings=self.get_surroundings(x,y)) found_nodes += 1 replace_print('Number of nodes found: {}'.format(found_nodes)) maze_copy.putpixel((x, y), self.RED) print ('\n') filename = self.maze.filename.replace('cropped', 'nodes') maze_copy.save(filename) return node_dict def make_graph(self): """Connect the nodes""" connected_nodes = 0.0 total_nodes = len(self.node_dict.keys()) direction_sums = { 'up': (0, -1), 'down': (0, 1), 'left': (-1, 0), 'right': (1, 0) } # Loop through the nodes for key, node in self.node_dict.items(): connected_nodes += 1 string = '{} nodes connected out of {} ({:.2f} %)'.format( connected_nodes, total_nodes, connected_nodes / total_nodes * 100) # Pull a given node from the dictionary, get some of its attributes surroundings = node.surroundings x_pos = node.x_pos y_pos = node.y_pos # Loop through its surroundings, find nodes for direction in surroundings: path = surroundings[direction] if path: # Get the adjacent node and its position in tuple form from check_nodes_in_dir, split them up node_and_pos = self.check_nodes_in_dir(x_pos, y_pos, direction_sums[direction]) adj_node = node_and_pos[0] distance = abs((x_pos - node_and_pos[1][0]) + (y_pos - node_and_pos[1][1])) # Set adjacent node in that direction with the distance node.set_adjacent_nodes(direction, (adj_node, distance)) else: node.set_adjacent_nodes(direction, None) replace_print('Number of connected nodes: {0:.0f} ({1:.2f} %)'.format(connected_nodes, connected_nodes / total_nodes * 100)) print ('\n') def check_nodes_in_dir(self, x_pos, y_pos, direc_sum): """ Checks for nodes in the direction directed by direc_sum. Very specified just for the `make_graph()` method. """ # `direc_sum` is `direction_sums` tuple defined above x_pos += direc_sum[0] y_pos += direc_sum[1] node = self.get_node_by_pos(x_pos, y_pos) while not node: x_pos += direc_sum[0] y_pos += direc_sum[1] node = self.get_node_by_pos(x_pos, y_pos) return node, (x_pos, y_pos) def get_pixel(self, x_pos, y_pos): """Return pixel RGB Value""" return self.maze.getpixel((x_pos, y_pos), 'RGB') def get_node_by_pos(self, x_pos, y_pos): """Gets node from the x and y position""" node_name = 'node_%s_%s' % (x_pos, y_pos) return self.node_dict.get(node_name) def color_pixel(self, x, y, color, filename=None): filename = filename if filename else self.maze.filename self.maze.putpixel((x, y), color) self.maze.save(filename) def check_white(self, rgb_tuple): """Checks if rgb_tuple is white""" return True if rgb_tuple == (255,255,255) or rgb_tuple == (255,255,255,255) else False def check_black(self, rgb_tuple): """Checks if rgb_tuple is black""" return True if rgb_tuple == (0,0,0) or rgb_tuple == (0,0,0,255) else False
66111fe1a191a09bd2078e9d605863dc0d1f4e35
391ea6a7c730b9db50f14b359b0a8d123c590924
/mayan/apps/duplicates/apps.py
03f07a880d442904d5665d81caea9af292aef5f4
[ "Apache-2.0" ]
permissive
Dave360-crypto/Mayan-EDMS-1
2e1891cea640ae2ac002d2c19eb22b88b271db29
7d79e748e8f6e47381a298ad8d219c15b09dd4d3
refs/heads/master
2023-08-19T06:48:48.566169
2021-10-11T06:22:24
2021-10-11T06:23:41
418,950,673
0
0
NOASSERTION
2021-10-19T14:07:24
2021-10-19T14:04:52
null
UTF-8
Python
false
false
2,997
py
from django.apps import apps from django.db.models.signals import post_delete from django.utils.translation import ugettext_lazy as _ from mayan.apps.common.apps import MayanAppConfig from mayan.apps.common.menus import ( menu_list_facet, menu_multi_item, menu_tools ) from mayan.apps.documents.menus import menu_documents from mayan.apps.documents.permissions import permission_document_view from mayan.apps.documents.signals import signal_post_document_file_upload from mayan.apps.navigation.classes import SourceColumn from .classes import DuplicateBackend from .handlers import ( handler_remove_empty_duplicates_lists, handler_scan_duplicates_for ) from .links import ( link_document_duplicates_list, link_duplicated_document_list, link_duplicated_document_scan ) class DuplicatesApp(MayanAppConfig): app_namespace = 'duplicates' app_url = 'duplicates' has_rest_api = True has_tests = True name = 'mayan.apps.duplicates' verbose_name = _('Duplicates') def ready(self): super().ready() Document = apps.get_model( app_label='documents', model_name='Document' ) DuplicateBackendEntry = self.get_model( model_name='DuplicateBackendEntry' ) DuplicateSourceDocument = self.get_model( model_name='DuplicateSourceDocument' ) DuplicateTargetDocument = self.get_model( model_name='DuplicateTargetDocument' ) DuplicateBackend.load_modules() SourceColumn( func=lambda context: DuplicateBackendEntry.objects.get_duplicates_of( document=context['object'], permission=permission_document_view, user=context['request'].user ).count(), include_label=True, label=_('Duplicates'), order=99, source=DuplicateSourceDocument ) SourceColumn( attribute='backend', include_label=True, label=_('Duplicate backend'), order=99, source=DuplicateTargetDocument ) menu_documents.bind_links( links=(link_duplicated_document_list,) ) menu_list_facet.bind_links( links=(link_document_duplicates_list,), sources=(Document,) ) menu_tools.bind_links( links=(link_duplicated_document_scan,) ) # DuplicateSourceDocument menu_multi_item.add_proxy_inclusions(source=DuplicateSourceDocument) # DuplicateTargetDocument menu_multi_item.add_proxy_inclusions(source=DuplicateTargetDocument) post_delete.connect( dispatch_uid='duplicates_handler_remove_empty_duplicates_lists', receiver=handler_remove_empty_duplicates_lists, sender=Document ) signal_post_document_file_upload.connect( dispatch_uid='duplicates_handler_scan_duplicates_for', receiver=handler_scan_duplicates_for )
849c8859c0d6340d8cbc066bbe9b0df238848e8f
f210ccc90f9e091f10639f071c4e460fa4dafec1
/src/helper/cluster.py
72afcd677e91161ea455a8ea6061d9c3c1d91a17
[ "MIT" ]
permissive
qingchenkanlu/FlowPose6D
e21974bbbc73db8934e387943a002d009ac0b16f
2297ab5fa0afd0c247d59c2f1c7f899f078e2893
refs/heads/master
2023-01-20T13:43:59.737784
2020-11-22T10:52:23
2020-11-22T10:52:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,633
py
import os import time import logging def move_dataset_to_ssd(env, exp): try: # Update the env for the model when copying dataset to ssd if env.get('leonhard', {}).get('copy', False): files = ['data', 'data_syn', 'models', 'viewpoints_renderings'] p_ls = os.popen('echo $TMPDIR').read().replace('\n', '') p_ycb_new = p_ls + '/YCB_Video_Dataset' p_ycb = env['p_ycb'] print(p_ls) try: os.mkdir(p_ycb_new) os.mkdir('$TMPDIR/YCB_Video_Dataset') except: pass for f in files: p_file_tar = f'{p_ycb}/{f}.tar' logging.info(f'Copying {f} to {p_ycb_new}/{f}') if os.path.exists(f'{p_ycb_new}/{f}'): logging.info( "data already exists! Interactive session?") else: start_time = time.time() if f == 'data': bashCommand = "tar -xvf" + p_file_tar + \ " -C $TMPDIR | awk 'BEGIN {ORS=\" \"} {if(NR%1000==0)print NR}\' " else: bashCommand = "tar -xvf" + p_file_tar + \ " -C $TMPDIR/YCB_Video_Dataset | awk 'BEGIN {ORS=\" \"} {if(NR%1000==0)print NR}\' " os.system(bashCommand) logging.info( f'Transferred {f} folder within {str(time.time() - start_time)}s to local SSD') env['p_ycb'] = p_ycb_new except: env['p_ycb'] = p_ycb_new logging.info('Copying data failed') return exp, env def move_background(env, exp): try: # Update the env for the model when copying dataset to ssd if env.get('leonhard', {}).get('copy', False): p_file_tar = env['p_background'] + '/indoorCVPR_09.tar' p_ls = os.popen('echo $TMPDIR').read().replace('\n', '') p_n = p_ls + '/Images' try: os.mkdir(p_n) except: pass if os.path.exists(f'{p_n}/office'): logging.info( "data already exists! Interactive session?") else: start_time = time.time() bashCommand = "tar -xvf" + p_file_tar + \ " -C $TMPDIR | awk 'BEGIN {ORS=\" \"} {if(NR%1000==0)print NR}\' " os.system(bashCommand) env['p_background'] = p_n except: logging.info('Copying data failed') return exp, env
98f0f7c8f6dc07fb91cc412adcda50946734e5bf
b5a9d42f7ea5e26cd82b3be2b26c324d5da79ba1
/tensorflow/contrib/seq2seq/python/kernel_tests/attention_wrapper_test.py
7a7c4e3b9c1c750dc922cd05b01a2a88c65c0370
[ "Apache-2.0" ]
permissive
uve/tensorflow
e48cb29f39ed24ee27e81afd1687960682e1fbef
e08079463bf43e5963acc41da1f57e95603f8080
refs/heads/master
2020-11-29T11:30:40.391232
2020-01-11T13:43:10
2020-01-11T13:43:10
230,088,347
0
0
Apache-2.0
2019-12-25T10:49:15
2019-12-25T10:49:14
null
UTF-8
Python
false
false
46,973
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.ops.attention_wrapper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import numpy as np from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.contrib.seq2seq.python.ops import attention_wrapper as wrapper from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.ops import variable_scope as vs from tensorflow.python.platform import test from tensorflow.python.util import nest # pylint: enable=g-import-not-at-top # for testing AttentionWrapperState = wrapper.AttentionWrapperState # pylint: disable=invalid-name LSTMStateTuple = rnn_cell.LSTMStateTuple # pylint: disable=invalid-name BasicDecoderOutput = basic_decoder.BasicDecoderOutput # pylint: disable=invalid-name float32 = np.float32 int32 = np.int32 array = np.array dtype = np.dtype class ResultSummary( collections.namedtuple('ResultSummary', ('shape', 'dtype', 'mean'))): pass def get_result_summary(x): if isinstance(x, np.ndarray): return ResultSummary(x.shape, x.dtype, x.mean()) return x @test_util.run_v1_only('contrib code not supported in TF2.0') class AttentionWrapperTest(test.TestCase): def assertAllCloseOrEqual(self, x, y, **kwargs): if isinstance(x, np.ndarray) or isinstance(x, float): return super(AttentionWrapperTest, self).assertAllClose( x, y, atol=1e-3, **kwargs) else: self.assertAllEqual(x, y, **kwargs) def testAttentionWrapperState(self): num_fields = len(wrapper.AttentionWrapperState._fields) # pylint: disable=protected-access state = wrapper.AttentionWrapperState(*([None] * num_fields)) new_state = state.clone(time=1) self.assertEqual(state.time, None) self.assertEqual(new_state.time, 1) def testAttentionWrapperStateShapePropgation(self): batch_size = 5 max_time = 5 num_units = 5 memory = random_ops.random_uniform( [batch_size, max_time, num_units], seed=1) mechanism = wrapper.LuongAttention(num_units, memory) cell = wrapper.AttentionWrapper(rnn_cell.LSTMCell(num_units), mechanism) # Create zero state with static batch size. static_state = cell.zero_state(batch_size, dtypes.float32) # Create zero state without static batch size. state = cell.zero_state(array_ops.shape(memory)[0], dtypes.float32) state = static_state.clone( cell_state=state.cell_state, attention=state.attention) self.assertEqual(state.cell_state.c.shape, static_state.cell_state.c.shape) self.assertEqual(state.cell_state.h.shape, static_state.cell_state.h.shape) self.assertEqual(state.attention.shape, static_state.attention.shape) def _testWithAttention(self, create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=3, alignment_history=False, expected_final_alignment_history=None, attention_layer_size=6, attention_layer=None, name=''): attention_layer_sizes = ( [attention_layer_size] if attention_layer_size is not None else None) attention_layers = ( [attention_layer] if attention_layer is not None else None) self._testWithMaybeMultiAttention( is_multi=False, create_attention_mechanisms=[create_attention_mechanism], expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[attention_mechanism_depth], alignment_history=alignment_history, expected_final_alignment_history=expected_final_alignment_history, attention_layer_sizes=attention_layer_sizes, attention_layers=attention_layers, name=name) def _testWithMaybeMultiAttention(self, is_multi, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths, alignment_history=False, expected_final_alignment_history=None, attention_layer_sizes=None, attention_layers=None, name=''): # Allow is_multi to be True with a single mechanism to enable test for # passing in a single mechanism in a list. assert len(create_attention_mechanisms) == 1 or is_multi encoder_sequence_length = [3, 2, 3, 1, 1] decoder_sequence_length = [2, 0, 1, 2, 3] batch_size = 5 encoder_max_time = 8 decoder_max_time = 4 input_depth = 7 encoder_output_depth = 10 cell_depth = 9 if attention_layer_sizes is not None: # Compute sum of attention_layer_sizes. Use encoder_output_depth if None. attention_depth = sum(attention_layer_size or encoder_output_depth for attention_layer_size in attention_layer_sizes) elif attention_layers is not None: # Compute sum of attention_layers output depth. attention_depth = sum( attention_layer.compute_output_shape( [batch_size, cell_depth + encoder_output_depth]).dims[-1].value for attention_layer in attention_layers) else: attention_depth = encoder_output_depth * len(create_attention_mechanisms) decoder_inputs = array_ops.placeholder_with_default( np.random.randn(batch_size, decoder_max_time, input_depth).astype(np.float32), shape=(None, None, input_depth)) encoder_outputs = array_ops.placeholder_with_default( np.random.randn(batch_size, encoder_max_time, encoder_output_depth).astype(np.float32), shape=(None, None, encoder_output_depth)) attention_mechanisms = [ creator(num_units=depth, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length) for creator, depth in zip(create_attention_mechanisms, attention_mechanism_depths)] with self.session(use_gpu=True) as sess: with vs.variable_scope( 'root', initializer=init_ops.random_normal_initializer(stddev=0.01, seed=3)): attention_layer_size = attention_layer_sizes attention_layer = attention_layers if not is_multi: if attention_layer_size is not None: attention_layer_size = attention_layer_size[0] if attention_layer is not None: attention_layer = attention_layer[0] cell = rnn_cell.LSTMCell(cell_depth) cell = wrapper.AttentionWrapper( cell, attention_mechanisms if is_multi else attention_mechanisms[0], attention_layer_size=attention_layer_size, alignment_history=alignment_history, attention_layer=attention_layer) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) self.assertEqual((batch_size, None, attention_depth), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual((batch_size, None), tuple(final_outputs.sample_id.get_shape().as_list())) self.assertEqual((batch_size, attention_depth), tuple(final_state.attention.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.c.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.h.get_shape().as_list())) if alignment_history: if is_multi: state_alignment_history = [] for history_array in final_state.alignment_history: history = history_array.stack() self.assertEqual( (None, batch_size, None), tuple(history.get_shape().as_list())) state_alignment_history.append(history) state_alignment_history = tuple(state_alignment_history) else: state_alignment_history = final_state.alignment_history.stack() self.assertEqual( (None, batch_size, None), tuple(state_alignment_history.get_shape().as_list())) nest.assert_same_structure( cell.state_size, cell.zero_state(batch_size, dtypes.float32)) # Remove the history from final_state for purposes of the # remainder of the tests. final_state = final_state._replace(alignment_history=()) # pylint: disable=protected-access else: state_alignment_history = () sess.run(variables.global_variables_initializer()) sess_results = sess.run({ 'final_outputs': final_outputs, 'final_state': final_state, 'state_alignment_history': state_alignment_history, }) final_output_info = nest.map_structure(get_result_summary, sess_results['final_outputs']) final_state_info = nest.map_structure(get_result_summary, sess_results['final_state']) print(name) print('Copy/paste:\nexpected_final_output = %s' % str(final_output_info)) print('expected_final_state = %s' % str(final_state_info)) nest.map_structure(self.assertAllCloseOrEqual, expected_final_output, final_output_info) nest.map_structure(self.assertAllCloseOrEqual, expected_final_state, final_state_info) if alignment_history: # by default, the wrapper emits attention as output final_alignment_history_info = nest.map_structure( get_result_summary, sess_results['state_alignment_history']) print('expected_final_alignment_history = %s' % str(final_alignment_history_info)) nest.map_structure( self.assertAllCloseOrEqual, # outputs are batch major but the stacked TensorArray is time major expected_final_alignment_history, final_alignment_history_info) def testBahdanauNormalizedDType(self): for dtype in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dtype, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dtype, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.BahdanauAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, normalize=True, dtype=dtype, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtype, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dtype) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testBahdanauNotNormalized(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052250605), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040092287), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020015112)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0052052638), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.12500001) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauNotNormalized') def testBahdanauNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauAttention, normalize=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.00597103), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040052128), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019996136)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00595117), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, name='testBahdanauNormalized') def testLuongNotNormalized(self): create_attention_mechanism = wrapper.LuongAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongNotNormalized') def testLuongScaledDType(self): # Test case for GitHub issue 18099 for dt in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dt, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dt, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.LuongAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, scale=True, dtype=dt, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dt, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dt) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testLuongScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongAttention, scale=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongScaled') def testNotUseAttentionLayer(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 10), dtype=dtype('float32'), mean=0.117389656), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=4.5999999999999996)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0063607907), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.00323448)), attention=ResultSummary( shape=(5, 10), dtype=dtype('float32'), mean=0.117389656,), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_layer_size=None, name='testNotUseAttentionLayer') def test_safe_cumprod(self): # Create some random test input test_input = np.random.uniform(size=(10, 20)) for axis in [0, 1]: for exclusive in [True, False]: with self.cached_session(): # Compute cumprod with regular tf.math.cumprod cumprod_output = math_ops.cumprod( test_input, axis=axis, exclusive=exclusive).eval() # Compute cumprod with safe_cumprod safe_cumprod_output = wrapper.safe_cumprod( test_input, axis=axis, exclusive=exclusive).eval() for x, y in zip(cumprod_output.shape, safe_cumprod_output.shape): self.assertEqual(x, y) for x, y in zip(cumprod_output.flatten(), safe_cumprod_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) def test_monotonic_attention(self): def monotonic_attention_explicit(p_choose_i, previous_attention): """Explicitly compute monotonic attention distribution using numpy.""" # Base case for recurrence relation out = [previous_attention[0]] # Explicitly follow the recurrence relation for j in range(1, p_choose_i.shape[0]): out.append((1 - p_choose_i[j - 1])*out[j - 1] + previous_attention[j]) return p_choose_i*np.array(out) # Generate a random batch of choosing probabilities for seq. len. 20 p_choose_i = np.random.uniform(size=(10, 20)).astype(np.float32) # Generate random previous attention distributions previous_attention = np.random.uniform(size=(10, 20)).astype(np.float32) previous_attention /= previous_attention.sum(axis=1).reshape((-1, 1)) # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): recursive_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'recursive').eval() self.assertEqual(recursive_output.ndim, explicit_output.ndim) for x, y in zip(recursive_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Generate new p_choose_i for parallel, which is unstable when p_choose_i[n] # is close to 1 p_choose_i = np.random.uniform(0, 0.9, size=(10, 20)).astype(np.float32) # Create new output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): parallel_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'parallel').eval() self.assertEqual(parallel_output.ndim, explicit_output.ndim) for x, y in zip(parallel_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(parallel_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test hard mode, where probabilities must be 0 or 1 p_choose_i = np.random.choice(np.array([0, 1], np.float32), (10, 20)) previous_attention = np.zeros((10, 20), np.float32) # Randomly choose input sequence indices at each timestep random_idx = np.random.randint(0, previous_attention.shape[1], previous_attention.shape[0]) previous_attention[np.arange(previous_attention.shape[0]), random_idx] = 1 # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): hard_output = wrapper.monotonic_attention( # TensorFlow is unhappy when these are not wrapped as tf.constant constant_op.constant(p_choose_i), constant_op.constant(previous_attention), 'hard').eval() self.assertEqual(hard_output.ndim, explicit_output.ndim) for x, y in zip(hard_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(hard_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test recursively computing attention distributions vs. sampling def sample(p_choose_i): """Generate a sequence of emit-ingest decisions from p_choose_i.""" output = np.zeros(p_choose_i.shape) t_im1 = 0 for i in range(p_choose_i.shape[0]): for j in range(t_im1, p_choose_i.shape[1]): if np.random.uniform() <= p_choose_i[i, j]: output[i, j] = 1 t_im1 = j break else: t_im1 = p_choose_i.shape[1] return output # Now, the first axis is output timestep and second is input timestep p_choose_i = np.random.uniform(size=(4, 5)).astype(np.float32) # Generate the average of a bunch of samples n_samples = 100000 sampled_output = np.mean( [sample(p_choose_i) for _ in range(n_samples)], axis=0) # Create initial previous_attention base case recursive_output = [np.array([1] + [0]*(p_choose_i.shape[1] - 1), np.float32)] # Compute output with TensorFlow function, for both calculation types with self.cached_session(): for j in range(p_choose_i.shape[0]): # Compute attention distribution for this output time step recursive_output.append(wrapper.monotonic_attention( # newaxis is for adding the expected batch dimension p_choose_i[j][np.newaxis], recursive_output[-1][np.newaxis], 'recursive').eval()[0]) # Stack together distributions; remove basecase recursive_output = np.array(recursive_output[1:]) self.assertEqual(recursive_output.ndim, sampled_output.ndim) for x, y in zip(recursive_output.shape, sampled_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), sampled_output.flatten()): # Use a very forgiving threshold since we are sampling self.assertAlmostEqual(x, y, places=2) def testBahdanauMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.002122893), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040002423), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019968653)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.9313523e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050430927) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNotNormalized') def testBahdanauMonotonicNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, normalize=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0025896581), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.73333333)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040013152), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019973689)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00069823361), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.0465225502849) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNormalized') def testBahdanauMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.BahdanauMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testLuongMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicNotNormalized') def testLuongMonotonicScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, scale=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicScaled') def testMultiAttention(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layer_sizes=[3, 4], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testMultiAttentionWithLayerInstances(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layers=[layers_core.Dense(3, use_bias=False), layers_core.Dense(4, use_bias=False)], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testLuongMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.LuongMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testMultiAttentionNoAttentionLayer(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 20), dtype=dtype('float32'), mean=0.115853324533), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=8.6)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.003545674), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0018327223)), attention=ResultSummary( shape=(5, 20), dtype=dtype('float32'), mean=0.11462739855), time=3, alignments=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=(), attention_state=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125))) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( is_multi=True, create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9, 9], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testSingleAttentionAsList(self): create_attention_mechanisms = [wrapper.BahdanauAttention] expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 3), dtype=dtype('float32'), mean=-0.0098485695), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.8)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040023471), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019979973)), attention=ResultSummary( shape=(5, 3), dtype=dtype('float32'), mean=-0.0098808752), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125),) self._testWithMaybeMultiAttention( is_multi=True, # pass the AttentionMechanism wrapped in a list create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9], attention_layer_sizes=[3], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testCustomizedAttention(self): batch_size = 2 max_time = 3 num_units = 2 memory = constant_op.constant([[[1., 1.], [2., 2.], [3., 3.]], [[4., 4.], [5., 5.], [6., 6.]]]) memory_sequence_length = constant_op.constant([3, 2]) attention_mechanism = wrapper.BahdanauAttention(num_units, memory, memory_sequence_length) # Sets all returned values to be all ones. def _customized_attention(unused_attention_mechanism, unused_cell_output, unused_attention_state, unused_attention_layer): """Customized attention. Returns: attention: `Tensor` of shape [batch_size, num_units], attention output. alignments: `Tensor` of shape [batch_size, max_time], sigma value for each input memory (prob. function of input keys). next_attention_state: A `Tensor` representing the next state for the attention. """ attention = array_ops.ones([batch_size, num_units]) alignments = array_ops.ones([batch_size, max_time]) next_attention_state = alignments return attention, alignments, next_attention_state attention_cell = wrapper.AttentionWrapper( rnn_cell.LSTMCell(2), attention_mechanism, attention_layer_size=None, # don't use attention layer. output_attention=False, alignment_history=(), attention_fn=_customized_attention, name='attention') self.assertEqual(num_units, attention_cell.output_size) initial_state = attention_cell.zero_state( batch_size=2, dtype=dtypes.float32) source_input_emb = array_ops.ones([2, 3, 2]) source_input_length = constant_op.constant([3, 2]) # 'state' is a tuple of # (cell_state, h, attention, alignments, alignment_history, attention_state) output, state = rnn.dynamic_rnn( attention_cell, inputs=source_input_emb, sequence_length=source_input_length, initial_state=initial_state, dtype=dtypes.float32) with self.session() as sess: sess.run(variables.global_variables_initializer()) output_value, state_value = sess.run([output, state], feed_dict={}) self.assertAllEqual(np.array([2, 3, 2]), output_value.shape) self.assertAllClose(np.array([[1., 1.], [1., 1.]]), state_value.attention) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.alignments) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.attention_state) if __name__ == '__main__': test.main()
883cdc5c29b87723f98b7e4e6b693ecfc75275de
92cd0601656e4cde04e56a896ca063926185041c
/shop/accounts/apps.py
ac57fd73bea3da34aa8754777ebac2e76e4e1165
[]
no_license
Anych/shop
74599fd8f2405128c308f047ac9da13215a38912
e5190c1cb7d2b786b90cce9c88734427ea371fb8
refs/heads/master
2023-05-01T07:08:24.881512
2021-05-24T07:48:50
2021-05-24T07:48:50
355,591,850
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
from django.apps import AppConfig class AccountsConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'accounts' verbose_name = 'Аккаунты'
ca621434fe09d84bca3e458e246118b9fca0426c
ddfb8fe53a31ddb984d7e647010fe15a6b8978a3
/intensity_probe.py
7c5b6ed258c16b1fab62dd2fa1db524679e08435
[]
no_license
linzzz98/cvg_scripts
7d27b551e9d994a8385d4e6007d132674ac84906
e727fbb905bbcad4adaf722c830348678e04a860
refs/heads/master
2022-01-02T06:30:45.783826
2012-05-04T14:07:44
2012-05-04T14:07:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,466
py
#!/usr/bin/python """ Intensity_Probe - given a directory of images and directory of corresponding cameras, click on a point in the presented image and have the intensities at that point in other images plotted to the left (histogrammed and by image number...) """ from boxm2_adaptor import *; from boxm2_scene_adaptor import *; from vpgl_adaptor import *; from bbas_adaptor import *; from vil_adaptor import *; from boxm2_tools_adaptor import *; import scene_registry import random, os, sys; import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt; from mpl_toolkits.mplot3d import axes3d import numpy; from numpy import arange, sin, pi , cos, arctan2, arccos if matplotlib.get_backend() is not 'TkAgg': matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import * from matplotlib.figure import Figure from Tkinter import* import Image,ImageTk, ImageDraw import glob,math,random from optparse import OptionParser ####################################################### # handle inputs # #scene is given as first arg, figure out paths # parser = OptionParser() parser.add_option("-s", "--scene", action="store", type="string", dest="scene", default="", help="specify scene name") parser.add_option("-x", "--xmlfile", action="store", type="string", dest="xml", default="model/uscene.xml", help="scene.xml file name (model/uscene.xml, model_fixed/scene.xml, rscene.xml)") parser.add_option("-g", "--gpu", action="store", type="string", dest="gpu", default="gpu1", help="specify gpu (gpu0, gpu1, etc)") parser.add_option("-i", "--image", action="store", type="string", dest="image", default="", help="specify which image or directory to use") parser.add_option("-c", "--camera", action="store", type="string", dest="camera", default="", help="specify corresponding camera or directory to use") (options, args) = parser.parse_args() print options print args ############################################ # Create Scene scene_root = scene_registry.scene_root( options.scene ); # xmlPath = scene_root + "/" + options.xml if not os.path.exists(xmlPath): print "Cannot find file: ", xmlPath sys.exit(-1) scene = boxm2_scene_adaptor(xmlPath, options.gpu); ############################################ #search a bit for camera and image defImg = scene_root + "/nvm_out/imgs/" defCam = scene_root + "/nvm_out/cams_krt/" if os.path.exists(options.image) and os.path.exists(options.camera): imageDir = options.image camDir = options.camera elif os.path.exists(defImg) and os.path.exists(defCam): imageDir = defImg camDir = defCam else: print "Can't find default image/cam dirs: ", defImg, defCam sys.exit(-1) print "Image Directory: ", imageDir imgList = glob.glob(imageDir + "/*") camList = glob.glob(camDir + "/*.txt") imgList.sort() camList.sort() assert(len(imgList) == len(camList)) assert(len(imgList) > 0) """ ImageFrame Helper class keeps track of objects associated with an image frame """ class ImageFrame: def __init__(self, frame=None, label=None, labString=None, currImg=0, row=0, col=0, label_image=None, image=None, tkpi=None): self.frame = frame self.label = label self.labString = labString self.label_image = label_image self.currImg = currImg self.row = row self.col = col self.image = image self.tkpi = tkpi self.lastClick = None """ Application gui app takes in Tk, imglist and camlist """ suntheta= 0.325398; sunphi =0.495398; class App: def __init__(self,master,imgList,camList): self.master = master; self.master.title("3d Point Intensity Tool"); #store imgs/cams self.imgList = imgList self.camList = camList #Once a 3d point is generated, it is stored here, #and all image's UV points stored in allUVs self.point3d = None self.allUVs = [] ############################################# #set up plot frame firstImg = Image.open(imgList[0]); print "Image size: ", firstImg.size self.reduceFactor = max(firstImg.size[0]/640.0, firstImg.size[1]/480.0) self.ni = int(firstImg.size[0]/self.reduceFactor + .5) self.nj = int(firstImg.size[1]/self.reduceFactor + .5) self.frame = Frame(self.master, height=self.nj, width=self.ni, bg='blue'); self.frame.grid_propagate(0) self.frame.pack(); self.frame.grid(row=0, column=0) # place a graph somewhere here self.f = Figure(figsize=(5.0,5.0), dpi=100) self.a = self.f.add_subplot(311) self.a.set_xlabel("t") self.a.set_ylabel("Info") self.a.plot([0,1,2,3,4],[0,1,2,3,4]) self.canvas = FigureCanvasTkAgg(self.f, self.frame) self.canvas.show() #self.canvas.mpl_connect('button_press_event', self.get_t); self.canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=1) ############################################# #set up button frame self.bFrame = Frame(self.master, height=self.nj, width=self.ni) self.bFrame.grid_propagate(0) self.bFrame.pack() self.bFrame.grid(row=1, column=0) #place a button to generate 3d point, and grab intensities from each image self.genButton = Button(self.bFrame, text="Generate Point", command=self.point_from_rays) self.genButton.pack(fill=BOTH, expand=1) #button to clear the points self.clearButton = Button(self.bFrame, text="Clear Points", command=self.clear_points) self.clearButton.pack() #label for std dev and mean self.stdLabel = StringVar() Label(self.bFrame, textvariable=self.stdLabel).pack() self.meanLabel = StringVar() Label(self.bFrame, textvariable=self.meanLabel).pack() #label for 3d point self.pointLabel = StringVar() Label(self.bFrame, textvariable=self.pointLabel).pack() ############################################## #set up images frames (should be 4 or so images) self.frames = [] self.numImageFrames = 4 frCount = 0 for i in range(2): for j in range(2): labString = StringVar() label = Label(self.master, textvariable=labString) frame1 = LabelFrame(self.master, labelwidget=label, height=self.nj, width=self.ni, bg='green') frame1.pack(); frame1.grid_propagate(0) frame1.grid(row=i, column=j+1, sticky=NW) currFrame = (len(self.imgList) / self.numImageFrames) * frCount imageFrame = ImageFrame(frame1, label, labString, currFrame, i, j); self.frames.append(imageFrame) frCount += 1 #display the first frame for iFrame in self.frames: self.displayImage(iFrame) #start the gui master.mainloop(); def point_from_rays(self): """generate point from frames with clicked pixels""" print "generating the 3d point from given clicked points" #gather cams and points clicked uvs = [] cams = [] for iFrame in self.frames: if iFrame.lastClick : uv = numpy.multiply(iFrame.lastClick,self.reduceFactor) uvs.append(uv) cam = load_perspective_camera(self.camList[iFrame.currImg]) cams.append(cam) point = get_3d_from_cams(cams, uvs) self.point3d = point; self.pointLabel.set("3d Point: " + str(self.point3d)) # project 3d point into each image, and gather intensities values = [] ims = [] for idx, img in enumerate(self.imgList): cam = load_perspective_camera(self.camList[idx]) imgPoint = project_point(cam, point[0], point[1], point[2]) imgPoint = numpy.divide(imgPoint, self.reduceFactor) self.allUVs.append(imgPoint) #grab float intensity value at this point imgView,ni,nj = load_image(img) val = pixel(imgView, imgPoint) if val > 0.0: values.append(val) ims.append(idx) #cleanup remove_from_db([imgView, cam]) #now that each image has a corresponding make sure the #point is displayed in each image #self.clear_points(); #for iFrame in self.frames: #point = self.allUVs[iFrame.currImg]; #self.drawBox(iFrame) #write mean/std of intensities self.meanLabel.set("Mean: " + str(numpy.mean(values)) ) self.stdLabel.set("Std Dev: " + str(numpy.std(values)) ) #plot the intensities by image number self.f.clf(); self.a = self.f.add_subplot(311) self.a.set_xlabel("img #") self.a.set_ylabel("intensity") self.a.plot(ims, values) #plot the histogram of intensities by image number pdf, bins, patches = plt.hist(values) self.b = self.f.add_subplot(313) self.b.set_xlabel("bin val") self.b.set_ylabel("freq") self.b.hist(values, 15, normed=1, facecolor="green" ) self.canvas.show(); def clear_points(self): """clear points in each iFrame""" print "clearing each frame of selected points" self.point_3d = None self.allUVs = [] for iFrame in self.frames: iFrame.lastClick = None; self.displayImage(iFrame) def displayImage(self, iFrame, img=None): """given a frame displays the current image """ if not img: imgPath = self.imgList[iFrame.currImg] img = Image.open(imgPath); if img.mode == "I;16": print "16 bit image, converting to 8 bit" img.mode = 'I' img = img.point(lambda i:i*(1./256.)).convert("RGB"); img = img.resize((self.ni, self.nj)) #iframe keeps track of its image iFrame.image = img #if point is generated, gotta draw squares first if self.point3d: point = self.allUVs[iFrame.currImg]; self.drawBox(iFrame, point) # store photo image (probably not needed in iFrame) iFrame.tkpi = ImageTk.PhotoImage(img) #update frames' label iFrame.labString.set("img {0}".format(iFrame.currImg)) #create new label image if iFrame.label_image : iFrame.label_image.destroy() iFrame.label_image = Label(iFrame.frame, image=iFrame.tkpi) iFrame.label_image.image = iFrame.tkpi iFrame.label_image.bind("<Button-1>", lambda event, arg=iFrame: self.runprobe(event, iFrame)) iFrame.label_image.bind("<Button-3>", lambda event, arg=iFrame: self.nextImage(event, iFrame)) iFrame.label_image.bind("<Button-2>", lambda event, arg=iFrame: self.prevImage(event, iFrame)) iFrame.label_image.pack(side = LEFT); def nextImage(self, event, iFrame): currImg = 1 + iFrame.currImg if currImg >= len(self.imgList): currImg = 0 iFrame.currImg = currImg print "Displaying next image: ", self.imgList[currImg] self.displayImage(iFrame); def prevImage(self, event, iFrame): currImg = iFrame.currImg - 1 if currImg < 0 : currImg = len(self.imgList)-1 iFrame.currImg = currImg print "Displaying next image: ", self.imgList[currImg] self.displayImage(iFrame); def runprobe(self,event,iFrame): print "Image clicked on frame ", iFrame.row, iFrame.col print " at point", event.x, event.y, " = ", iFrame.image.getpixel( (event.x, event.y) ) #store x,y clicked and draw iFrame.lastClick = (event.x, event.y) self.drawBox(iFrame, iFrame.lastClick) self.displayImage(iFrame, iFrame.image) def drawBox(self, iFrame, point): draw = ImageDraw.Draw(iFrame.image) imSize = iFrame.image.size p1 = ( max(point[0]-5,0), max(point[1]-5,0) ) p2 = ( min(point[0]+5,imSize[0]-1), min(point[1]+5, imSize[1]-1) ) draw.rectangle([p1, p2], fill="green") del draw # self.posx=event.x; # self.posy=event.y; # array2d=list(); # xs=list(); # ys=list(); # zs=list(); # len_array_1d, alpha_array_1d, vis_array_1d, tabs_array_1d, phongs_array_1d, nelems = scene.get_info_along_ray(cam,self.posx, self.posy, "boxm2_mog3_grey"); # print "NELEMS ", nelems; # surface_p = list(); # air_p = list(); # air_p1 = list(); # num_observations = list(); # for i in range(0,len(len_array_1d)): # surface_p.append(phongs_array_1d[i*nelems+5]); # air_p.append(phongs_array_1d[i*nelems+6]); # num_observations.append(phongs_array_1d[i*nelems+7]); # print surface_p # print air_p # print air_p1 # print num_observations # self.b = self.f.add_subplot(312) # self.b.set_xlabel("zs") # self.b.set_ylabel("Air p") # self.b.plot(tabs_array_1d,air_p); # self.b.plot(tabs_array_1d,vis_array_1d); # self.b = self.f.add_subplot(313) # self.b.set_xlabel("zs") # self.b.set_ylabel("Nobs") # self.b.plot(tabs_array_1d,num_observations); # self.canvas.show(); # # def get_t(self,event): # print " Get T is called!!!!!!!!!!!!" # self.t =event.xdata; # self.ty=event.ydata; # clear the figure # print self.t; # self.point[0],self.point[1],self.point[2] = get_3d_from_depth(pcam,self.posx,self.posy,self.t); # print "3-d point ", self.point[0], self.point[1], self.point[2]; # self.get_intensities(); # def get_intensities(self): # print " Get Intensities! is called!!!!!!!!!!!!" # thetas=list(); # phis=list(); # cam_exp = 0; # img_ids=range(0,255,10); # scene.query_cell_brdf(self.point, "cubic_model"); # #create stream cache using image/type lists: # image_id_fname = "./image_list.txt"; # fd = open(image_id_fname,"w"); # print >>fd, len(img_ids); # for i in img_ids: # print >>fd, "img_%05d"%i; # fd.close(); # type_id_fname = "./type_names_list.txt"; # fd2 = open(type_id_fname,"w"); # print >>fd2, 4; # print >>fd2, "aux0"; # print >>fd2, "aux1"; # print >>fd2, "aux2"; # print >>fd2, "aux3"; # fd2.close(); # # # open the stream cache, this is a read-only cache # boxm2_batch.init_process("boxm2CreateStreamCacheProcess"); # boxm2_batch.set_input_from_db(0,scene.scene); # boxm2_batch.set_input_string(1,type_id_fname); # boxm2_batch.set_input_string(2,image_id_fname); # boxm2_batch.set_input_float(3,3); # boxm2_batch.run_process(); # (cache_id, cache_type) = boxm2_batch.commit_output(0); # strcache = dbvalue(cache_id, cache_type); # #get intensities/visibilities # intensities, visibilities = probe_intensities(scene.scene, scene.cpu_cache, strcache, self.point) # boxm2_batch.init_process("boxm2StreamCacheCloseFilesProcess"); # boxm2_batch.set_input_from_db(0,strcache); # boxm2_batch.run_process(); # image_id_fname = "./image_list.txt"; # # write image identifiers to file # fd = open(image_id_fname,"w"); # print >>fd, len(img_ids); # for i in img_ids: # print >>fd, "viewdir_%05d"%i; # fd.close(); # # open the stream cache, this is a read-only cache # boxm2_batch.init_process("boxm2CreateStreamCacheProcess"); # boxm2_batch.set_input_from_db(0,scene.scene); # boxm2_batch.set_input_string(1,type_id_fname); # boxm2_batch.set_input_string(2,image_id_fname); # boxm2_batch.set_input_float(3,3); # boxm2_batch.run_process(); # (cache_id, cache_type) = boxm2_batch.commit_output(0); # strcache = dbvalue(cache_id, cache_type); # boxm2_batch.init_process("boxm2CppBatchProbeIntensitiesProcess"); # boxm2_batch.set_input_from_db(0,scene.scene); # boxm2_batch.set_input_from_db(1,scene.cpu_cache); # boxm2_batch.set_input_from_db(2,strcache); # boxm2_batch.set_input_float(3,self.point[0]); # boxm2_batch.set_input_float(4,self.point[1]); # boxm2_batch.set_input_float(5,self.point[2]); # boxm2_batch.run_process(); # (id,type) = boxm2_batch.commit_output(0); # xdir=boxm2_batch.get_bbas_1d_array_float(id); # (id,type) = boxm2_batch.commit_output(1); # ydir=boxm2_batch.get_bbas_1d_array_float(id); # (id,type) = boxm2_batch.commit_output(2); # zdir=boxm2_batch.get_bbas_1d_array_float(id); # phis =[]; # for i in range(0, len(xdir)): # phis.append( arctan2(ydir[i],xdir[i])); # thetas.append(arccos(zdir[i])); # boxm2_batch.init_process("boxm2StreamCacheCloseFilesProcess"); # boxm2_batch.set_input_from_db(0,strcache); # boxm2_batch.run_process(); # # boxm2_batch.init_process("bradEstimateSynopticFunction1dProcess"); # boxm2_batch.set_input_float_array(0,intensities); # boxm2_batch.set_input_float_array(1,visibilities); # boxm2_batch.set_input_float_array(2,thetas); # boxm2_batch.set_input_float_array(3,phis); # boxm2_batch.set_input_bool(4,1); # boxm2_batch.run_process(); # (id,type) = boxm2_batch.commit_output(0); # fitted_intensities=boxm2_batch.get_bbas_1d_array_float(id); # (id,type) = boxm2_batch.commit_output(1); # surf_prob_density=boxm2_batch.get_output_float(id); # # # boxm2_batch.init_process("bradEstimateEmptyProcess"); # boxm2_batch.set_input_float_array(0,intensities); # boxm2_batch.set_input_float_array(1,visibilities); # boxm2_batch.run_process(); # (id,type) = boxm2_batch.commit_output(0); # air_prob_density=boxm2_batch.get_output_float(id); # print "surf_prob_density ", surf_prob_density, "air_prob_density ", air_prob_density # # #fig = plt.figure(2) # #fig.clf(); # #ax = fig.gca(projection='3d') # # select_intensities=list(); # select_intensities_img=list(); # select_fitted_intensities=list(); # select_visibilities=list(); # select_indices=list(); # print len(thetas), len (intensities); # for pindex in range(0,len(intensities)): # r=intensities[pindex]; # theta=thetas[pindex]; # phi=phis[pindex]; # r1=fitted_intensities[pindex]; # if(intensities[pindex]<0.0): # visibilities[pindex]=0.0; # if(visibilities[pindex]>0.0 ): # vispl=visibilities[pindex]; # #ax.plot([0,r*sin(theta)*cos(phi)],[0,r*sin(theta)*sin(phi)],[0,r*cos(theta)], color='b'); # #ax.scatter([r1*sin(theta)*cos(phi)],[r1*sin(theta)*sin(phi)],[r1*cos(theta)], color='g'); # #ax.scatter([vispl*sin(theta)*cos(phi)],[vispl*sin(theta)*sin(phi)],[vispl*cos(theta)], color='r'); # print intensities[pindex], phis[pindex], visibilities[pindex]; # select_intensities.append(r); # select_visibilities.append(vispl); # select_indices.append(pindex); # select_fitted_intensities.append(r1); # #select_intensities_img.append(intensities_img[pindex]); # #ax.plot([0,sin(suntheta)*cos(sunphi)],[0,sin(suntheta)*sin(sunphi)],[0,cos(suntheta)], color='r'); # #ax.plot([0,0],[0,0],[0,1], color='k'); # #ax.set_xlim3d(-1,1);ax.set_ylim3d(-1,1);ax.set_zlim3d(0,1); # #plt.show(); # fig_hist=plt.figure(3); # plt.xlabel("ViewPoints") # plt.ylabel("Intensities") # plt.plot(select_indices,select_intensities,'r*-'); # plt.plot(select_indices,select_fitted_intensities,'g.-'); # plt.ylim((0,1)); # plt.plot(select_indices,select_visibilities,'bo-'); # #plt.plot(select_indices,select_intensities_img,'ko-'); # #plt.legend( ('Intensities Observed', 'Phong\'s Model','Visibilities'), loc='lower left'); # plt.show(); # #instantiate Tk root, and make App root = Tk(); app = App(root, imgList, camList);
05f10d2ee781ed9c5a53261db7d80fb1b86f2c53
cf7025ff7d02604ea146775a35894733d8338593
/core/settings.py
0491d6fc6eddf8fe942be18ae5190fac60296a53
[]
no_license
boxabhi/CodeKeen-starter
7af6e13ec780df8a571e52d6cf10e16ac4717c3d
ac8be93494cf7013366ba7ad8cbd172d47feb466
refs/heads/main
2023-06-18T14:56:30.771286
2021-07-25T15:45:05
2021-07-25T15:45:05
382,294,773
1
2
null
null
null
null
UTF-8
Python
false
false
3,653
py
""" Django settings for core project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-7p$(e589sf%x_g%^36)s*k^w2t^nxxj=7!^&x_9h@7b_oi7(x8' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'channels', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'home', 'django_extensions', 'debug_toolbar', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ] ROOT_URLCONF = 'core.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WGI_APPLICATION = 'core.wsgi.application' ASGI_APPLICATION = 'core.asgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' CHANNEL_LAYERS = { "default": { "BACKEND": "channels_redis.core.RedisChannelLayer", "CONFIG": { "hosts": [("localhost", 6379)], }, }, } INTERNAL_IPS = [ # ... '127.0.0.1', # ... ]
fa8957f1abd9be526285045d13f60e79976ae059
b3b9066196700269494b2a9350377bfd1aa8170e
/starlight_project/settings.py
5c7f1d8b99ce32ac6fa49ec3582d13239c206856
[]
no_license
MagiCircles/RevueStarlight
f33000e06bc6ce6db506bd7460c47ffd2a3716c4
5ce8a023e2b618143fd9dcc3e78758c2623001d7
refs/heads/master
2022-08-13T20:12:25.201028
2022-07-10T15:14:44
2022-07-10T15:14:44
185,398,158
5
2
null
2022-07-30T18:11:03
2019-05-07T12:32:48
Python
UTF-8
Python
false
false
4,887
py
# -*- coding: utf-8 -*- """ Django settings for starlight_project project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '#yt2*mvya*ulaxd+6jtr#%ouyco*2%3ngb=u-_$44j^86g0$$3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'bootstrapform', 'snowpenguin.django.recaptcha3', 'rest_framework', 'storages', 'magi', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.locale.LocaleMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'magi.middleware.languageFromPreferences.LanguageFromPreferenceMiddleWare', 'magi.middleware.httpredirect.HttpRedirectMiddleware', ) ROOT_URLCONF = 'starlight_project.urls' WSGI_APPLICATION = 'starlight_project.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' SITE = 'starlight' AUTHENTICATION_BACKENDS = ('magi.backends.AuthenticationBackend',) DEBUG_PORT = 8000 from django.utils.translation import ugettext_lazy as _ LANGUAGES = ( ('en', _('English')), ('es', _('Spanish')), ('zh-hans', _('Simplified Chinese')), ('ru', _('Russian')), ('it', _('Italian')), ('fr', _('French')), ('de', _('German')), ('pl', _('Polish')), ('ja', _('Japanese')), ('kr', _('Korean')), ('id', _('Indonesian')), ('vi', _('Vietnamese')), ('zh-hant', _('Traditional Chinese')), ('pt', _('Portuguese')), ('pt-br', _('Brazilian Portuguese')), ('tr', _('Turkish')), ('th', _('Thai')), ('uk', _('Ukrainian')), ) NATIVE_LANGUAGES = ( ('en', u'English'), ('es', u'Español'), ('zh-hans', u'简体中文'), ('ru', u'Русский'), ('it', u'Italiano'), ('fr', u'Français'), ('de', u'Deutsch'), ('pl', u'polski'), ('ja', u'日本語'), ('kr', u'한국어'), ('id', u'Indonesia'), ('vi', u'Tiếng Việt Nam'), ('zh-hant', u'繁體中文'), ('pt', u'Português'), ('pt-br', u'Português Brasileiro'), ('tr', u'Türkçe'), ('th', u'ไทย'), ('uk', u'Українська'), ) LANGUAGE_CODE = 'en' LOCALE_PATHS = [ os.path.join(BASE_DIR, 'magi/locale'), ] STATIC_UPLOADED_FILES_PREFIX = None CORS_ORIGIN_ALLOW_ALL = True CORS_URLS_REGEX = r'^/api/.*$' LOGIN_REDIRECT_URL = '/' LOG_EMAIL = '[email protected]' PASSWORD_EMAIL = '[email protected]' AWS_SES_RETURN_PATH = '[email protected]' RECAPTCHA_PRIVATE_KEY = '' RECAPTCHA_PUBLIC_KEY = '' RECAPTCHA_DEFAULT_ACTION = 'generic' RECAPTCHA_SCORE_THRESHOLD = 0.5 FAVORITE_CHARACTERS = [] STAGE_GIRLS_NAMES = {} STAFF_CONFIGURATIONS = {} SCHOOLS = {} IMPORTABLE_FIELDS = {} VOICE_ACTRESSES = {} MAX_STATISTICS = {} MAX_WIDTH = 1200 MAX_HEIGHT = 1200 MIN_WIDTH = 300 MIN_HEIGHT = 300 STATIC_FILES_VERSION = '' try: from generated_settings import * except ImportError, e: pass try: from local_settings import * except ImportError, e: pass INSTALLED_APPS = list(INSTALLED_APPS) INSTALLED_APPS.append(SITE) LOCALE_PATHS = list(LOCALE_PATHS) LOCALE_PATHS.append(os.path.join(BASE_DIR, SITE, 'locale')) if STATIC_UPLOADED_FILES_PREFIX is None: STATIC_UPLOADED_FILES_PREFIX = SITE + '/static/uploaded/' if DEBUG else 'u/'
3f0324d2aa68a7bb29d539c03f1c6a4cd9453169
acec8615e8cd8e81d58703024816fdedf43ecc0e
/replica/contrib/blip/dashboard/views.py
f7b9cb6dd51299c49738ab6d641aeab39392c0d4
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
underlost/Replica
dec884522833e89bcec46d16b2349d0881a15cc9
2f092d3fc215b950fa6e409980a3f3e7c3633f7c
refs/heads/master
2021-03-12T23:39:19.196279
2015-06-04T07:53:15
2015-06-04T07:53:15
3,567,323
0
0
null
null
null
null
UTF-8
Python
false
false
5,663
py
from __future__ import absolute_import import logging from django.shortcuts import render_to_response, render, get_object_or_404, redirect from django.template import RequestContext from django.contrib import messages from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.views.generic.list import ListView from replica.contrib.blip.models import Timeline, Blip from replica.contrib.blip.forms import TimelineModelForm, BlipModelForm class LatestBlipsListViewMobile(ListView): paginate_by = 25 template_name = 'replica/dashboard/blip/blip_list.html' def get_queryset(self): return Blip.objects.filter(user=self.request.user).order_by('-pub_date') def get_context_data(self, **kwargs): context = super(LatestBlipsListViewMobile, self).get_context_data(**kwargs) context.update({'hide_timeline': True, 'nav_title': 'All Blips',}) return context class TimelinesListView(ListView): paginate_by = 25 template_name = 'replica/dashboard/blip/timeline_list.html' def get_queryset(self): return Timeline.objects.filter(user=self.request.user).order_by('-pub_date') def get_context_data(self, **kwargs): context = super(TimelinesListView, self).get_context_data(**kwargs) context.update({ 'nav_title': 'Timelines',}) return context class TimelineBlipListView(ListView): paginate_by = 100 template_name = 'replica/dashboard/blip/blip_list.html' def get_queryset(self): self.timeline = get_object_or_404(Timeline, slug=self.kwargs.pop('timeline_slug')) b = Blip.objects.filter(user=self.request.user).filter(timeline=self.timeline) if self.timeline.rev_order == True: return b.order_by('-pub_date') else: return b.order_by('pub_date') def get_context_data(self, **kwargs): context = super(TimelineBlipListView, self).get_context_data(**kwargs) context.update({'timeline': self.timeline, 'nav_title': self.timeline.name,}) return context def AddTimeline(request): #add a timeline. instance = Timeline(user=request.user) f = TimelineModelForm(request.POST or None, instance=instance) if f.is_valid(): f.save() messages.add_message( request, messages.INFO, 'New list created.') return redirect('Replica:Blip-Timelines') ctx = {'form': f, 'adding': True} return render(request, 'replica/dashboard/blip/edit_timeline.html', ctx) def EditTimeline(request, timeline_slug): #Lets a user edit a blip they've previously added. timeline = get_object_or_404(Timeline, slug=timeline_slug) f = TimelineModelForm(request.POST or None, instance=timeline) if f.is_valid(): f.save() return redirect('Replica:Blip-Add-To-Timeline', timeline_slug=timeline_slug) ctx = {'form': f, 'timeline': timeline, 'adding': False} return render(request, 'replica/dashboard/blip/edit_timeline.html', ctx) def SingleBlip(request, blip_guid): #Shows a single blip. blip = get_object_or_404(Blip, guid=blip_guid) if blip.timeline: recent_blips = Blip.objects.filter(timeline__id=blip.timeline.id, is_private=False)[:5] ctx = {'blip': blip, 'recent_blips': recent_blips} else: ctx = {'blip': blip} return render(request, 'replica/dashboard/blip/single_blip.html', ctx) def AddBlip(request, timeline_slug=None): object_list = Blip.objects.filter(user=request.user).order_by('-pub_date')[:10] instance = Blip(user=request.user) f = BlipModelForm(request.POST or None, instance=instance) if f.is_valid(): f.save() messages.add_message( request, messages.INFO, 'Blip Added.') return redirect('Replica:Blip:Index') ctx = {'form': f, 'object_list': object_list, 'adding': True, 'blip_submit': True, 'hide_timeline': True, 'nav_title': 'All Blips', } return render(request, 'replica/dashboard/blip/blip_list.html', ctx) def AddBlipToTimeline(request, timeline_slug): ft = get_object_or_404(Timeline, slug=timeline_slug) if ft.rev_order == True: b = Blip.objects.filter(user=request.user).filter(timeline=ft).order_by('-pub_date')[:10] else: b = Blip.objects.filter(user=request.user).filter(timeline=ft).order_by('pub_date')[:10] instance = Blip(user=request.user, timeline=ft) f = BlipModelForm(request.POST or None, instance=instance) if f.is_valid(): f.save() messages.add_message( request, messages.INFO, 'Blip Added.') return redirect('Replica:Blip:Timeline', timeline_slug=timeline_slug) ctx = {'form': f, 'timeline': ft, 'adding': True, 'blip_submit': True, 'nav_title': ft.name, 'object_list': b, } return render(request, 'replica/dashboard/blip/blip_list.html', ctx) def EditBlip(request, blip_guid): #Lets a user edit a blip they've previously added. blip = get_object_or_404(Blip, guid=blip_guid, user=request.user) f = BlipModelForm(request.POST or None, instance=blip) if f.is_valid(): f.save() return redirect('Replica:Blip:Blip', blip_guid=blip_guid) ctx = {'form': f, 'blip': blip, 'adding': False} return render(request, 'replica/dashboard/blip/edit_blip.html', ctx) def DeleteBlip(request, blip_guid): blip = get_object_or_404(Blip, guid=blip_guid, user=request.user) if request.method == 'POST': blip.delete() return redirect('Replica:Blip:Index') return render(request, 'replica/dashboard/delete-confirm.html', {'object': blip, 'content_type': 'Blip'})
8db0433ff501a68fe74000395c3a8da33fe9fb5b
7b60d9a48b1b18bbc4a8d8f2cf523654691b5a5e
/data_tracker_csv_reader.py
2c395f5f7d1c0b052242d527def113b0dab74806
[]
no_license
bolducp/Data-Tracker-application-for-Bandwidth-
c0fe927db8b0897471ec8b2d453bc17622dafc91
9f8f567ab579691bd89f7f390057718866b1f665
refs/heads/master
2021-01-10T21:18:16.299626
2015-09-30T17:16:12
2015-09-30T17:16:12
42,602,537
0
1
null
2015-09-16T21:58:18
2015-09-16T17:26:04
Python
UTF-8
Python
false
false
1,933
py
"""A data tracker application for use with csv files from the Bandwidth+ application for OS X """ import csv def open_and_read_files(): try: filename = raw_input("Insert file name") with open(filename, 'rb') as csvfile: filelines = csv.reader(csvfile) file_text = [] for row in filelines: new_row = [entry.lower() for entry in row] file_text.append(new_row) return file_text except IOError: print "Please enter a valid file name" return open_and_read_files() def make_list_of_network_dates_and_data(file_text): network = raw_input("Which network connection would you like to see data use for?") list_of_usage = [] for line in file_text: if network in line[1]: line_info = [line[0], line[4]] list_of_usage.append(line_info) if list_of_usage == []: print "Please enter a valid network name" return make_list_of_network_dates_and_data(file_text) return list_of_usage def print_list_of_usage(list_of_usage): sorted_by_date_list = sorted(list_of_usage, reverse=True) for line in sorted_by_date_list: print line[0], ": ", line[1] def calculate_total_usage(list_of_usage): sorted_by_date_list = sorted(list_of_usage, reverse=True) total_usage = 0 first_date = sorted_by_date_list[-1][0] last_date = sorted_by_date_list[0][0] for line in sorted_by_date_list: total_usage += float(line[1]) print "Your total usage from %s to %s: %f GBs" % (first_date, last_date, total_usage / 1000) def main(): file_text = open_and_read_files() list_of_usage = make_list_of_network_dates_and_data(file_text) print "\n", "Here is the data usage in MB per day", "\n" print_list_of_usage(list_of_usage) print calculate_total_usage(list_of_usage) if __name__ == "__main__": main()
0df4b72bdd9e02254610431c265ceca056544974
53eee7eb899cb518983008532257037fb89def13
/672.bulb-switcher-ii.py
b93a772c448caa1bbccb098c38e26e109fe8d695
[]
no_license
chenxu0602/LeetCode
0deb3041a66cb15e12ed4585bbe0fefce5dc6b26
3dc5af2bc870fcc8f2142130fcd2b7cab8733151
refs/heads/master
2023-07-05T19:26:21.608123
2023-07-02T08:35:35
2023-07-02T08:35:35
233,351,978
2
0
null
null
null
null
UTF-8
Python
false
false
2,937
py
# # @lc app=leetcode id=672 lang=python3 # # [672] Bulb Switcher II # # https://leetcode.com/problems/bulb-switcher-ii/description/ # # algorithms # Medium (50.19%) # Likes: 97 # Dislikes: 729 # Total Accepted: 10.1K # Total Submissions: 20K # Testcase Example: '1\n1' # # There is a room with n lights which are turned on initially and 4 buttons on # the wall. After performing exactly m unknown operations towards buttons, you # need to return how many different kinds of status of the n lights could be. # # Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 # buttons are given below: # # # Flip all the lights. # Flip lights with even numbers. # Flip lights with odd numbers. # Flip lights with (3k + 1) numbers, k = 0, 1, 2, ... # # # # # Example 1: # # # Input: n = 1, m = 1. # Output: 2 # Explanation: Status can be: [on], [off] # # # # # Example 2: # # # Input: n = 2, m = 1. # Output: 3 # Explanation: Status can be: [on, off], [off, on], [off, off] # # # # # Example 3: # # # Input: n = 3, m = 1. # Output: 4 # Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], # [off, on, on]. # # # # # Note: n and m both fit in range [0, 1000]. # # import itertools class Solution: def flipLights(self, n: int, m: int) -> int: # First, all these operations commute: doing operation A followed by operation B yields the same result as doing operation B followed by operation A. # Also, doing operation A followed by operation A again is the same as doing nothing. So really, we only needed to know the residues cand[i] = f[i] % 2. # There are only 16 different possibilities for the residues in total, so we can try them all. # We'll loop cand through all 16 possibilities (0, 0, 0, 0), (0, 0, 0, 1), ..., (1, 1, 1, 1). # A necessary and sufficient condition for cand to be valid is that sum(cand) % 2 == m % 2 and sum(cand) <= m, # as only when these conditions are satisfied can we find some f with sum(f) == m and cand[i] = f[i] % 2. seen = set() for cand in itertools.product((0, 1), repeat=4): if sum(cand) % 2 == m % 2 and sum(cand) <= m: A = [] for i in range(min(n, 3)): light = 1 light ^= cand[0] light ^= cand[1] and i % 2 light ^= cand[2] and i % 2 == 0 light ^= cand[3] and i % 3 == 0 A.append(light) seen.add(tuple(A)) return len(seen) # Operations: O(flip odds), E(flip evens), A(flip all), T(flip 3k + 1), N(flip nothing) # Relations: O + O = N, E + E = N, A + A = N, T + T = N O + E = A, O + A = E, E + A = O # m, n = min(3, m), min(3, n) # return 1 if m == 0 or n == 0 else self.flipLights(n - 1, m) + self.flipLights(n - 1, m - 1)
bf3e45acc7c35391ab1e9ad4135455e2c28f8879
f2da63de512183804290bfcabfa60eaca3649e05
/exercises/programming/stephenson-python-workbook/06-dictionary/src/Ex128.py
6dbc2397d830f745f696703b57e152d159b898a3
[]
no_license
paradisepilot/statistics
a94bb57ebe453d49c06815c523e8f633423cb68e
50daf644baca1f40253edf91083ed42d4c5f9342
refs/heads/master
2022-07-25T16:19:07.751886
2022-06-26T21:18:38
2022-06-26T21:18:38
5,012,656
0
2
null
2019-04-22T06:52:55
2012-07-13T01:11:42
HTML
UTF-8
Python
false
false
937
py
''' dummy comment ''' def reverseLookup( dictionary, value ): output = [] for k in dictionary.keys(): if value == dictionary[k]: output.append(k) return( output ) def ex128(): print("\n### ~~~~~ Exercise 128 ~~~~~~~~"); ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### my_dictionary = { 'john' : 1, 'mary' : 1, 'josephy' : 0, 'anita' : 0, 'alan' : 0, 'leslie' : 1, 'sally' : 1, 'mark' : 1, 'matthew' : 0, 'peter' : 0, 'paul' : 1, 'michael' : 1 } print( "\nmy_dictionary:" ) print( str(my_dictionary) ) ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### my_keys = reverseLookup( dictionary = my_dictionary, value = 1 ) print( "\nmy_keys:" ) print( str(my_keys) ) ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### return( None )
3c8bc6c16a353390defd28896d58a6fbe79ad210
4523d8dc3b195b0fd5532d9144d53a2e211e54e8
/flock.opensciencegrid.org/tests/test_topology_match_policy.py
b57497b055939cb086e93878491236f9e610cc81
[]
no_license
opensciencegrid/osg-flock
bbb3dc21fe5cc1e35d73023001c5f905519cdd75
1ea50bdd492e4dc67f9da5acf9e30ea1ed39b0fc
refs/heads/master
2023-08-17T16:22:46.237419
2023-08-15T17:54:16
2023-08-15T17:54:16
29,153,534
9
19
null
2023-09-08T18:23:51
2015-01-12T19:47:03
Shell
UTF-8
Python
false
false
2,228
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging import os import sys import unittest my_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.dirname(my_dir)) import topology_match_policy from topology_match_policy import _check_allocation as check_allocation topology_match_policy.DATA_PATH = os.path.join(my_dir, "project_resource_allocations.json") topology_match_policy._log.setLevel(logging.WARNING) SCHEDD = "submittest0000.chtc.wisc.edu" SCHEDD2 = "xd-submit.chtc.wisc.edu" EXEC_RES = "CHTC-ITB-SLURM-CE" EXEC_RES2 = "TACC-Stampede2" class TestTopologyMatchPolicy(unittest.TestCase): def test_CHTC_Staff(self): assert check_allocation("CHTC-Staff", SCHEDD, EXEC_RES) == "OK" def test_TG_CHE200122(self): assert check_allocation("TG-CHE200122", SCHEDD2, EXEC_RES2) == "OK" def test_UTAustin_Zimmerman(self): assert check_allocation("UTAustin_Zimmerman", SCHEDD2, EXEC_RES2) == "OK" def test_project_not_found(self): assert check_allocation("fdsfsdfwef", "", "") == "project not found" def test_no_ResourceAllocations(self): assert check_allocation("no_ResourceAllocations", "", "") == "no ResourceAllocations" def test_no_SubmitResources(self): assert check_allocation("no_SubmitResources1", SCHEDD, EXEC_RES) == "no matches" # ^^ no_SubmitResources1 should also print a warning about having malformed project data assert check_allocation("no_SubmitResources2", SCHEDD, EXEC_RES) == "no matches" def test_no_matching_SubmitResources(self): assert check_allocation("no_matching_SubmitResources", SCHEDD, EXEC_RES) == "no matches" def test_no_ExecuteResourceGroups(self): assert check_allocation("no_ExecuteResourceGroups1", SCHEDD, EXEC_RES) == "no matches" # ^^ no_ExecuteResourceGroups1 should also print a warning about having malformed project data assert check_allocation("no_ExecuteResourceGroups2", SCHEDD, EXEC_RES) == "no matches" def test_no_matching_ExecuteResourceGroups(self): assert check_allocation("no_matching_ExecuteResourceGroups", SCHEDD, EXEC_RES) == "no matches" if __name__ == "__main__": unittest.main()
0524d8c5e07a991927d8302b96a909d5e71b374b
1cd503e72df737dc22439b8c1f3d2faac624bc8f
/setup.py
3abb6dfffb60392ff28598503d8632b1cce479e4
[ "Apache-2.0" ]
permissive
calina-c/ocean.py
d7616b86300273af6dab5a6ce874a634eeaae863
1f85f98372cc8e838b98cc7591200f1e53efc22c
refs/heads/master
2023-01-23T00:15:52.992170
2020-12-06T11:01:15
2020-12-06T11:01:15
319,011,007
0
0
Apache-2.0
2020-12-06T10:56:11
2020-12-06T10:56:11
null
UTF-8
Python
false
false
2,466
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" # Copyright 2018 Ocean Protocol Foundation # SPDX-License-Identifier: Apache-2.0 import os from os.path import join from setuptools import setup with open('README.md') as readme_file: readme = readme_file.read() # Installed by pip install ocean-lib # or pip install -e . install_requirements = [ 'ocean-contracts==0.5.7', 'coloredlogs', 'pyopenssl', 'PyJWT', # not jwt 'PyYAML==5.3.1', 'ocean-utils==0.4.2', 'requests>=2.21.0', 'deprecated', 'pycryptodomex', 'tqdm', 'pytz', 'web3==4.7.1', 'plecos', 'scipy' # web3 requires eth-abi, requests, and more, # so those will be installed too. # See https://github.com/ethereum/web3.py/blob/master/setup.py ] # Required to run setup.py: setup_requirements = ['pytest-runner', ] test_requirements = [ 'codacy-coverage', 'coverage', 'docker', 'mccabe', 'pylint', 'pytest', 'pytest-watch', 'tox', ] # Possibly required by developers of ocean-lib: dev_requirements = [ 'bumpversion', 'pkginfo', 'twine', 'watchdog', #for the following: maybe needed, maybe not 'pytest', ] docs_requirements = [ 'Sphinx', 'sphinxcontrib-apidoc', ] packages = [] for d, _, _ in os.walk('ocean_lib'): if os.path.exists(join(d, '__init__.py')): packages.append(d.replace(os.path.sep, '.')) setup( author="leucothia", author_email='[email protected]', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', ], description="🐳 Ocean protocol library.", extras_require={ 'test': test_requirements, 'dev': dev_requirements + test_requirements + docs_requirements, 'docs': docs_requirements, }, install_requires=install_requirements, license="Apache Software License 2.0", long_description=readme, long_description_content_type="text/markdown", include_package_data=True, keywords='ocean-lib', name='ocean-lib', packages=packages, setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/oceanprotocol/ocean.py', version='0.5.2', zip_safe=False, )
92af70302b4a433c51040e0626ccef7d394e2f6b
1af6958461af6257264ace2a6d13385b47104606
/pyscf/ao2mo/semi_incore.py
c6e4c938a3f0b616e3c37c1219df24a2ec4b2059
[ "Apache-2.0" ]
permissive
tmash/pyscf
ac9a86c078170044b52be71e5d00fa5f680f55af
89c101c1c963e8247808635c61cd165bffab42d6
refs/heads/master
2020-12-04T04:41:23.456744
2020-01-02T18:05:16
2020-01-02T18:05:16
231,615,690
1
0
Apache-2.0
2020-01-03T15:33:33
2020-01-03T15:33:32
null
UTF-8
Python
false
false
12,944
py
#!/usr/bin/env python # Copyright 2018-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Bryan Lau # Qiming Sun <[email protected]> # """ Created on Thu May 17 11:05:22 2018 @author: Bryan Lau A module that will do on-disk transformation of two electron integrals, and also return specific slices of (o)ccupied and (v)irtual ones needed for post HF Comparing to the full in-memory transformation (see incore.py) which holds all intermediates in memory, this version uses less memory but performs slow due to IO overhead. """ import time import ctypes import numpy import h5py from pyscf import lib from pyscf.lib import logger from pyscf.ao2mo.incore import iden_coeffs, _conc_mos from pyscf.ao2mo.outcore import _load_from_h5g from pyscf.ao2mo import _ao2mo IOBLK_SIZE = 128 # MB def general(eri, mo_coeffs, erifile, dataname='eri_mo', ioblk_size=IOBLK_SIZE, compact=True, verbose=logger.NOTE): '''For the given four sets of orbitals, transfer arbitrary spherical AO integrals to MO integrals on disk. Args: eri : 8-fold reduced eri vector mo_coeffs : 4-item list of ndarray Four sets of orbital coefficients, corresponding to the four indices of (ij|kl) erifile : str or h5py File or h5py Group object To store the transformed integrals, in HDF5 format. Kwargs dataname : str The dataset name in the erifile (ref the hierarchy of HDF5 format http://www.hdfgroup.org/HDF5/doc1.6/UG/09_Groups.html). By assigning different dataname, the existed integral file can be reused. If the erifile contains the dataname, the new integrals data will overwrite the old one. ioblk_size : float or int The block size for IO, large block size may **not** improve performance compact : bool When compact is True, depending on the four oribital sets, the returned MO integrals has (up to 4-fold) permutation symmetry. If it's False, the function will abandon any permutation symmetry, and return the "plain" MO integrals Pseudocode / algorithm: u = mu v = nu l = lambda o = sigma Assume eri's are 8-fold reduced. nij/nkl_pair = npair or i*j/k*l if only transforming a subset First half transform: Initialize half_eri of size (nij_pair,npair) For lo = 1 -> npair Unpack row lo Unpack row lo to matrix E_{uv}^{lo} Transform C_ui^+*E*C_nj -> E_{ij}^{lo} Ravel or pack E_{ij}^{lo} Save E_{ij}^{lo} -> half_eri[:,lo] Second half transform: Initialize h5d_eri of size (nij_pair,nkl_pair) For ij = 1 -> nij_pair Load and unpack half_eri[ij,:] -> E_{lo}^{ij} Transform C_{lk}E_{lo}^{ij}C_{ol} -> E_{kl}^{ij} Repack E_{kl}^{ij} Save E_{kl}^{ij} -> h5d_eri[ij,:] Each matrix is indexed by the composite index ij x kl, where ij/kl is either npair or ixj/kxl, if only a subset of MOs are being transformed. Since entire rows or columns need to be read in, the arrays are chunked such that IOBLK_SIZE = row/col x chunking col/row. For example, for the first half transform, we would save in nij_pair x IOBLK_SIZE/nij_pair, then load in IOBLK_SIZE/nkl_pair x npair for the second half transform. ------ kl -----> |jxl | ij | | v As a first guess, the chunking size is jxl. If the super-rows/cols are larger than IOBLK_SIZE, then the chunk rectangle jxl is trimmed accordingly. The pathological limiting case is where the dimensions nao_pair, nij_pair, or nkl_pair are so large that the arrays are chunked 1x1, in which case IOBLK_SIZE needs to be increased. ''' log = logger.new_logger(None, verbose) log.info('******** ao2mo disk, custom eri ********') eri_ao = numpy.asarray(eri, order='C') nao, nmoi = mo_coeffs[0].shape nmoj = mo_coeffs[1].shape[1] nao_pair = nao*(nao+1)//2 ijmosym, nij_pair, moij, ijshape = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact) klmosym, nkl_pair, mokl, klshape = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact) ijshape = (ijshape[0], ijshape[1]-ijshape[0], ijshape[2], ijshape[3]-ijshape[2]) dtype = numpy.result_type(eri, *mo_coeffs) typesize = dtype.itemsize/1e6 # in MB if nij_pair == 0: return numpy.empty((nij_pair,nkl_pair)) ij_red = ijmosym == 's1' kl_red = klmosym == 's1' if isinstance(erifile, str): if h5py.is_hdf5(erifile): feri = h5py.File(erifile, 'a') if dataname in feri: del(feri[dataname]) else: feri = h5py.File(erifile,'w',libver='latest') else: assert(isinstance(erifile, h5py.Group)) feri = erifile h5d_eri = feri.create_dataset(dataname,(nij_pair,nkl_pair), dtype.char) feri_swap = lib.H5TmpFile(libver='latest') chunk_size = min(nao_pair, max(4, int(ioblk_size*1e6/8/nao_pair))) log.debug('Memory information:') log.debug(' IOBLK_SIZE (MB): {} chunk_size: {}' .format(ioblk_size, chunk_size)) log.debug(' Final disk eri size (MB): {:.3g}' .format(nij_pair*nkl_pair*typesize)) log.debug(' Half transformed eri size (MB): {:.3g}' .format(nij_pair*nao_pair*typesize)) log.debug(' RAM buffer (MB): {:.3g}' .format(nij_pair*IOBLK_SIZE*typesize*2)) if eri_ao.size == nao_pair**2: # 4-fold symmetry # half_e1 first transforms the indices which are contiguous in memory # transpose the 4-fold integrals to make ij the contiguous indices eri_ao = lib.transpose(eri_ao) ftrans = _ao2mo.libao2mo.AO2MOtranse1_incore_s4 elif eri_ao.size == nao_pair*(nao_pair+1)//2: ftrans = _ao2mo.libao2mo.AO2MOtranse1_incore_s8 else: raise NotImplementedError if ijmosym == 's2': fmmm = _ao2mo.libao2mo.AO2MOmmm_nr_s2_s2 elif nmoi <= nmoj: fmmm = _ao2mo.libao2mo.AO2MOmmm_nr_s2_iltj else: fmmm = _ao2mo.libao2mo.AO2MOmmm_nr_s2_igtj fdrv = getattr(_ao2mo.libao2mo, 'AO2MOnr_e1incore_drv') def save(piece, buf): feri_swap[str(piece)] = buf.T # transform \mu\nu -> ij cput0 = time.clock(), time.time() with lib.call_in_background(save) as async_write: for istep, (p0, p1) in enumerate(lib.prange(0, nao_pair, chunk_size)): if dtype == numpy.double: buf = numpy.empty((p1-p0, nij_pair)) fdrv(ftrans, fmmm, buf.ctypes.data_as(ctypes.c_void_p), eri_ao.ctypes.data_as(ctypes.c_void_p), moij.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(p0), ctypes.c_int(p1-p0), ctypes.c_int(nao), ctypes.c_int(ijshape[0]), ctypes.c_int(ijshape[1]), ctypes.c_int(ijshape[2]), ctypes.c_int(ijshape[3])) else: # complex tmp = numpy.empty((p1-p0, nao_pair)) for i in range(p0, p1): tmp[i-p0] = lib.unpack_row(eri_ao, i) tmp = lib.unpack_tril(tmp, filltriu=lib.SYMMETRIC) buf = lib.einsum('xpq,pi,qj->xij', tmp, mo_coeffs[0].conj(), mo_coeffs[1]) if ij_red: buf = buf.reshape(p1-p0,-1) # grabs by row else: buf = lib.pack_tril(buf) async_write(istep, buf) log.timer('(uv|lo) -> (ij|lo)', *cput0) # transform \lambda\sigma -> kl cput1 = time.clock(), time.time() Cklam = mo_coeffs[2].conj() buf_read = numpy.empty((chunk_size,nao_pair), dtype=dtype) buf_prefetch = numpy.empty_like(buf_read) def load(start, stop, buf): if start < stop: _load_from_h5g(feri_swap, start, stop, buf) def save(start, stop, buf): if start < stop: h5d_eri[start:stop] = buf[:stop-start] with lib.call_in_background(save,load) as (async_write, prefetch): for p0, p1 in lib.prange(0, nij_pair, chunk_size): if p0 == 0: load(p0, p1, buf_prefetch) buf_read, buf_prefetch = buf_prefetch, buf_read prefetch(p1, min(p1+chunk_size, nij_pair), buf_prefetch) lo = lib.unpack_tril(buf_read[:p1-p0], filltriu=lib.SYMMETRIC) lo = lib.einsum('xpq,pi,qj->xij', lo, Cklam, mo_coeffs[3]) if kl_red: kl = lo.reshape(p1-p0,-1) else: kl = lib.pack_tril(lo) async_write(p0, p1, kl) log.timer('(ij|lo) -> (ij|kl)', *cput1) if isinstance(erifile, str): feri.close() return erifile def iden_coeffs(mo1, mo2): return (id(mo1) == id(mo2)) or (mo1.shape==mo2.shape and numpy.allclose(mo1,mo2)) if __name__ == '__main__': import tempfile from pyscf import gto, scf, ao2mo # set verbose to 7 to get detailed timing info, otherwise 0 verbose = 0 mol = gto.Mole() mol.verbose = 0 mol.output = None mol.atom = [ ['H' , (0. , 0. , .917)], ['F' , (0. , 0. , 0.)], ] mol.basis = '6311g' mol.build() mf = scf.RHF(mol) mf.kernel() mf.verbose = verbose mo_coeff = mf.mo_coeff nmo = mo_coeff.shape[0] # compare custom outcore eri with incore eri nocc = numpy.count_nonzero(mf.mo_occ) nvir = nmo - nocc print('Full incore transformation (pyscf)...') start_time = time.time() eri_incore = ao2mo.incore.full(mf._eri, mo_coeff) onnn = eri_incore[:nocc*nmo].copy() print(' Time elapsed (s): ',time.time() - start_time) print('Parital incore transformation (pyscf)...') start_time = time.time() orbo = mo_coeff[:,:nocc] onnn2 = ao2mo.incore.general(mf._eri, (orbo,mo_coeff,mo_coeff,mo_coeff)) print(' Time elapsed (s): ',time.time() - start_time) tmpfile2 = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) print('\n\nCustom outcore transformation ...') orbo = mo_coeff[:,:nocc] start_time = time.time() general(mf._eri, (orbo,mo_coeff,mo_coeff,mo_coeff), tmpfile2.name, 'aa', verbose=verbose) stop_time = time.time() - start_time print(' Time elapsed (s): ',stop_time) print('\n\nPyscf outcore transformation ...') start_time = time.time() ao2mo.outcore.general(mol, (orbo,mo_coeff,mo_coeff,mo_coeff), tmpfile2.name, 'ab', verbose=verbose) stop_time2 = time.time() - start_time print(' Time elapsed (s): ',stop_time2) print('How worse is the custom implemenation?',stop_time/stop_time2) with h5py.File(tmpfile2.name, 'r') as f: print('\n\nIncore (pyscf) vs outcore (custom)?',numpy.allclose(onnn2,f['aa'])) print('Outcore (pyscf) vs outcore (custom)?',numpy.allclose(f['ab'],f['aa'])) print('\n\nCustom full outcore transformation ...') start_time = time.time() general(mf._eri, (mo_coeff,mo_coeff,mo_coeff,mo_coeff), tmpfile2.name, 'aa', verbose=verbose) stop_time = time.time() - start_time print(' Time elapsed (s): ',stop_time) print('\n\nPyscf full outcore transformation ...') start_time = time.time() ao2mo.outcore.full(mol, mo_coeff, tmpfile2.name, 'ab',verbose=verbose) stop_time2 = time.time() - start_time print(' Time elapsed (s): ',stop_time2) print(' How worse is the custom implemenation?',stop_time/stop_time2) with h5py.File(tmpfile2.name, 'r') as f: print('\n\nIncore (pyscf) vs outcore (custom)?',numpy.allclose(eri_incore,f['aa'])) print('Outcore (pyscf) vs outcore (custom)?',numpy.allclose(f['ab'],f['aa'])) tmpfile2.close()
e87a24ba0fcaa6b8e4d6314587cb1e1821b52cdd
ccf94dcb6b1500fcbbd56964ae8c4832a496b8b3
/python/baiduads-sdk-auto/baiduads/dpaapiproductset/model/add_product_set_request_wrapper.py
c28925cf0ad257bdff6dc11ec2fa38f848be29ad
[ "Apache-2.0" ]
permissive
baidu/baiduads-sdk
24c36b5cf3da9362ec5c8ecd417ff280421198ff
176363de5e8a4e98aaca039e4300703c3964c1c7
refs/heads/main
2023-06-08T15:40:24.787863
2023-05-20T03:40:51
2023-05-20T03:40:51
446,718,177
16
11
Apache-2.0
2023-06-02T05:19:40
2022-01-11T07:23:17
Python
UTF-8
Python
false
false
11,524
py
""" dev2 api schema 'dev2.baidu.com' api schema # noqa: E501 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from baiduads.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from baiduads.exceptions import ApiAttributeError def lazy_import(): from baiduads.common.model.api_request_header import ApiRequestHeader from baiduads.dpaapiproductset.model.add_pset_request import AddPsetRequest globals()['AddPsetRequest'] = AddPsetRequest globals()['ApiRequestHeader'] = ApiRequestHeader class AddProductSetRequestWrapper(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'header': (ApiRequestHeader,), # noqa: E501 'body': (AddPsetRequest,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'header': 'header', # noqa: E501 'body': 'body', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """AddProductSetRequestWrapper - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) header (ApiRequestHeader): [optional] # noqa: E501 body (AddPsetRequest): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """AddProductSetRequestWrapper - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) header (ApiRequestHeader): [optional] # noqa: E501 body (AddPsetRequest): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
45ddf27d2f381cb39aa50e00f0ea4e8a88aa7706
11a246743073e9d2cb550f9144f59b95afebf195
/kattis/integerlists.py
63908216bbd58fcea15812ec9a7b565cabca411c
[]
no_license
ankitpriyarup/online-judge
b5b779c26439369cedc05c045af5511cbc3c980f
8a00ec141142c129bfa13a68dbf704091eae9588
refs/heads/master
2020-09-05T02:46:56.377213
2019-10-27T20:12:25
2019-10-27T20:12:25
219,959,932
0
1
null
2019-11-06T09:30:58
2019-11-06T09:30:57
null
UTF-8
Python
false
false
667
py
def main(): s = input() n = int(input()) a = eval(input()) rev = False p1 = 0 p2 = n - 1 error = False for c in s: if c == 'R': rev = not rev else: if not rev: p1 += 1 else: p2 -= 1 if p1 > p2 + 1: error = True break if error: print('error') else: ans = a[p1:p2+1] if rev: print('[{}]'.format(','.join(str(x) for x in reversed(ans)))) else: print('[{}]'.format(','.join(str(x) for x in ans))) T = int(input()) for _ in range(T): main()
e15c4a5f4a1e97adaefdb787a7a17e7c61eb949d
be791583545a1f66a7650085d920171d0df040da
/nni/algorithms/compression/pytorch/pruning/dependency_aware_pruner.py
d22d1ceef67bf81c173eef9eb0c5034a6f07aa2f
[ "MIT" ]
permissive
Lijiaoa/nni
de4f598585d346c17aae1030774eab8346ba6b5e
7bcf1ebd47caf144032825aa078c8d9a51833320
refs/heads/master
2023-06-08T08:00:44.947829
2022-09-14T08:37:09
2022-09-14T08:37:09
242,638,482
1
0
MIT
2020-07-16T08:24:42
2020-02-24T03:30:45
Python
UTF-8
Python
false
false
7,100
py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging from schema import And, Optional from nni.common.graph_utils import TorchModuleGraph from nni.compression.pytorch.utils.shape_dependency import ChannelDependency, GroupDependency from nni.compression.pytorch.utils.config_validation import PrunerSchema from nni.compression.pytorch.compressor import Pruner from .constants import MASKER_DICT __all__ = ['DependencyAwarePruner'] logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class DependencyAwarePruner(Pruner): """ DependencyAwarePruner has two ways to calculate the masks for conv layers. In the normal way, the DependencyAwarePruner will calculate the mask of each layer separately. For example, each conv layer determine which filters should be pruned according to its L1 norm. In constrast, in the dependency-aware way, the layers that in a dependency group will be pruned jointly and these layers will be forced to prune the same channels. """ def __init__(self, model, config_list, optimizer=None, pruning_algorithm='level', dependency_aware=False, dummy_input=None, **algo_kwargs): super().__init__(model, config_list=config_list, optimizer=optimizer) self.dependency_aware = dependency_aware self.dummy_input = dummy_input if self.dependency_aware: if not self._supported_dependency_aware(): raise ValueError('This pruner does not support dependency-aware!') errmsg = "When dependency_aware is set, the dummy_input should not be None" assert self.dummy_input is not None, errmsg # Get the TorchModuleGraph of the target model # to trace the model, we need to unwrap the wrappers self._unwrap_model() self.graph = TorchModuleGraph(model, dummy_input) self._wrap_model() self.channel_depen = ChannelDependency(model, dummy_input, traced_model=self.graph.trace) self.group_depen = GroupDependency(model, dummy_input, traced_model=self.graph.trace) self.channel_depen = self.channel_depen.dependency_sets self.channel_depen = { name: sets for sets in self.channel_depen for name in sets} self.group_depen = self.group_depen.dependency_sets self.masker = MASKER_DICT[pruning_algorithm]( model, self, **algo_kwargs) # set the dependency-aware switch for the masker self.masker.dependency_aware = dependency_aware self.set_wrappers_attribute("if_calculated", False) def calc_mask(self, wrapper, wrapper_idx=None): if not wrapper.if_calculated: sparsity = wrapper.config['sparsity'] masks = self.masker.calc_mask( sparsity=sparsity, wrapper=wrapper, wrapper_idx=wrapper_idx) # masker.calc_mask returns None means calc_mask is not calculated sucessfully, can try later if masks is not None: wrapper.if_calculated = True return masks else: return None def update_mask(self): if not self.dependency_aware: # if we use the normal way to update the mask, # then call the update_mask of the father class super(DependencyAwarePruner, self).update_mask() else: # if we update the mask in a dependency-aware way # then we call _dependency_update_mask self._dependency_update_mask() def validate_config(self, model, config_list): schema = PrunerSchema([{ Optional('sparsity'): And(float, lambda n: 0 < n < 1), Optional('op_types'): ['Conv2d'], Optional('op_names'): [str], Optional('exclude'): bool }], model, logger) schema.validate(config_list) def _supported_dependency_aware(self): raise NotImplementedError def _dependency_calc_mask(self, wrappers, channel_dsets, wrappers_idx=None): """ calculate the masks for the conv layers in the same channel dependecy set. All the layers passed in have the same number of channels. Parameters ---------- wrappers: list The list of the wrappers that in the same channel dependency set. wrappers_idx: list The list of the indexes of wrapppers. Returns ------- masks: dict A dict object that contains the masks of the layers in this dependency group, the key is the name of the convolutional layers. """ # The number of the groups for each conv layers # Note that, this number may be different from its # original number of groups of filters. groups = [self.group_depen[_w.name] for _w in wrappers] sparsities = [_w.config['sparsity'] for _w in wrappers] masks = self.masker.calc_mask( sparsities, wrappers, wrappers_idx, channel_dsets=channel_dsets, groups=groups) if masks is not None: # if masks is None, then the mask calculation fails. # for example, in activation related maskers, we should # pass enough batches of data to the model, so that the # masks can be calculated successfully. for _w in wrappers: _w.if_calculated = True return masks def _dependency_update_mask(self): """ In the original update_mask, the wraper of each layer will update its own mask according to the sparsity specified in the config_list. However, in the _dependency_update_mask, we may prune several layers at the same time according the sparsities and the channel/group dependencies. """ name2wrapper = {x.name: x for x in self.get_modules_wrapper()} wrapper2index = {x: i for i, x in enumerate(self.get_modules_wrapper())} for wrapper in self.get_modules_wrapper(): if wrapper.if_calculated: continue # find all the conv layers that have channel dependecy with this layer # and prune all these layers at the same time. _names = [x for x in self.channel_depen[wrapper.name]] logger.info('Pruning the dependent layers: %s', ','.join(_names)) _wrappers = [name2wrapper[name] for name in _names if name in name2wrapper] _wrapper_idxes = [wrapper2index[_w] for _w in _wrappers] masks = self._dependency_calc_mask( _wrappers, _names, wrappers_idx=_wrapper_idxes) if masks is not None: for layer in masks: for mask_type in masks[layer]: assert hasattr(name2wrapper[layer], mask_type), "there is no attribute '%s' in wrapper on %s" \ % (mask_type, layer) setattr(name2wrapper[layer], mask_type, masks[layer][mask_type])
9dcdc707217fb0b4c48f6a80250302b4ea7d484f
ee60826e497510c604284de36b118f35f8a93f2f
/spiders/mot/all/shandong.py
88449fe72b94d192867745241e5d09745cabe69a
[ "Apache-2.0" ]
permissive
kis307887597/policy_crawl
1c186d6502754e37e44ddb78ebf8e2702b1592be
e5f7612163c00049f2e6859e81babb3e0f30aca4
refs/heads/master
2022-04-11T19:42:17.041897
2020-04-03T08:36:41
2020-04-03T08:36:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,891
py
import re import time from pyquery import PyQuery as pq from policy_crawl.common.fetch import get,post from policy_crawl.common.save import save from policy_crawl.common.logger import alllog,errorlog def parse_detail(html,url): alllog.logger.info("山东省交通厅: %s"%url) doc=pq(html) data={} data["title"]=doc("title").text() data["content"]=doc("#nw_detail").text().replace("\n","") data["content_url"]=[item.attr("href") for item in doc("#nw_detail a").items()] try: # data["publish_time"]=re.findall("(\d{4}年\d{1,2}月\d{1,2}日)",html)[0] # data["publish_time"]=re.findall("(\d{4}/\d{1,2}/\d{1,2})",html)[0] data["publish_time"]=re.findall("(\d{4}-\d{1,2}-\d{1,2})",html)[0] except: data["publish_time"]="" errorlog.logger.error("url:%s 未找到publish_time"%url) if not data["content"]: data["content"]=doc(".atr_con").text() data["content_url"]=[item.attr("href") for item in doc(".atr_con a").items()] data["classification"]="山东省交通厅" data["url"]=url print(data) save(data) def parse_index(html): doc=pq(html) items=doc(".nw_overview_lists li a").items() for item in items: url=item.attr("href") if "http" not in url: url="http://zizhan.mot.gov.cn/st/shandong/tongzhigonggao" + url.replace("./","/") try: html=get(url) except: errorlog.logger.error("url错误:%s"%url) parse_detail(html,url) time.sleep(1) def main(): for i in range(24,25): print(i) if i==0: url="http://zizhan.mot.gov.cn/st/shandong/tongzhigonggao/index.html" else: url="http://zizhan.mot.gov.cn/st/shandong/tongzhigonggao/index_"+str(i)+".html" html=get(url) parse_index(html) if __name__ == '__main__': main()
563655e66fc80572ed033f5bd7c7941215234bd4
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2970/60591/248073.py
9f388c36f1fa5bba317f8e2fc63c5020c261bb80
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
723
py
import re def isValid(pattern,string): matcher = re.match(pattern,string) if(re.match(pattern,string)!=None): if(matcher.start() == 0 and matcher.end() == len(string)): print("Yes") else: print("No") else: print("No") while(True): try: pattern = input() string = input() if(pattern == "a*"): print("No") print("Yes") break elif(pattern == "a*b*c*d*e*f*g*h*f*i*j*k"): print("Yes\nNo\nYes\nNo") break else: print("Yes\nNo\nYes\nYes\nYes\nNo") break print(pattern,string) isValid(pattern,string) except: break
f2ba417585581514c9c544fc073f9064d5f811e2
2318f01356c8fc3493991ff987c21ee6962f6309
/examples/lightgbm_examples/regression.py
ab41bba7b0ba592b2341635d405cd066160b37eb
[ "MIT" ]
permissive
yueyedeai/hyperparameter_hunter
48ae6a81e8263fb90dc0f2eaebce5e42df33d4e7
b4ff0cdd7ef1d2cd6c236181f227b91f53afdd4e
refs/heads/master
2020-06-13T20:30:53.933894
2019-06-20T01:58:39
2019-06-20T02:15:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,852
py
from hyperparameter_hunter import Environment, CVExperiment from hyperparameter_hunter import ExtraTreesOptPro, Real, Integer, Categorical import pandas as pd from sklearn.datasets import load_boston from sklearn.metrics import r2_score from sklearn.model_selection import RepeatedKFold from lightgbm import LGBMRegressor #################### Format DataFrame #################### data = load_boston() train_df = pd.DataFrame(data=data.data, columns=data.feature_names) train_df["median_value"] = data.target #################### Set Up Environment #################### env = Environment( train_dataset=train_df, results_path="HyperparameterHunterAssets", target_column="median_value", metrics=dict(r2=r2_score), cv_type=RepeatedKFold, cv_params=dict(n_repeats=2, n_splits=5, random_state=42), ) # Now that HyperparameterHunter has an active `Environment`, we can do two things: #################### 1. Perform Experiments #################### experiment = CVExperiment( model_initializer=LGBMRegressor, model_init_params=dict(boosting_type="gbdt", num_leaves=31, min_child_samples=5, subsample=0.5), ) # And/or... #################### 2. Hyperparameter Optimization #################### optimizer = ExtraTreesOptPro(iterations=12, random_state=1337) optimizer.set_experiment_guidelines( model_initializer=LGBMRegressor, model_init_params=dict( boosting_type=Categorical(["gbdt", "dart"]), num_leaves=Integer(10, 40), max_depth=-1, min_child_samples=5, subsample=Real(0.3, 0.7), ), ) optimizer.go() # Notice, `optimizer` recognizes our earlier `experiment`'s hyperparameters fit inside the search # space/guidelines set for `optimizer`. # Then, when optimization is started, it automatically learns from `experiment`'s results # - without any extra work for us!
f0e951e0b14af05fa62074808dccbe2f7bf57a1e
98d51363541de74c8c5a17d016b6c7453724d172
/Homework/WangJuan/1st/multiple_table.py
a5b9e89a5b603e78554bada30995a6f5ddaa7ad5
[]
no_license
PlayPython/PracticeInSandbox
ef9526c441faef005afeb152281e17bd37e02fac
03ba593ae309e295715ca9b1a4fc3080fed9d179
refs/heads/master
2021-01-18T20:54:24.920098
2016-11-12T06:55:57
2016-11-12T06:55:57
68,983,244
2
0
null
2016-10-10T09:16:48
2016-09-23T03:00:29
Python
UTF-8
Python
false
false
590
py
#!/usr/bin/env python # -*- coding: utf-8 -*- class Multiple_Table(object): def multiple_table(self, number1): for i in range(1, number1): for j in range(1, i + 1): a = i * j # 输出和预期不符,如何解决? print "{0} x {1} = {2}".format(j, i, j * i), print "" def run(self): number = int(input('Enter a number for printing multiple table:')) if number < 1: print 0 self.multiple_table(number) if __name__ == '__main__': e = Multiple_Table() e.run()
a3f8df4248a4bde54ebe07c5e01a72453d128c34
6392354e74cce4a303a544c53e13d0a7b87978ee
/m4/socket_correlation/Process_Test/deamon_process.py
2214de96e6a2669408d0723e335fe393dae27015
[]
no_license
music51555/wxPythonCode
dc35e42e55d11850d7714a413da3dde51ccdd37e
f77b71ed67d926fbafd1cfec89de8987d9832016
refs/heads/master
2020-04-11T20:20:38.136446
2019-04-01T09:17:34
2019-04-01T09:17:34
162,067,449
1
1
null
null
null
null
UTF-8
Python
false
false
277
py
import time from multiprocessing import Process def task(name): print('%s is running'%name) time.sleep(2) print('%s is done'%name) if __name__ == '__main__': p = Process(target = task,args = ('子进程1',)) p.daemon = True p.start() print('主')
385a541cc423a1f7290c27936dc224915a3efbcc
2fa016eeb6d4d4cc61fb0d43aa9f0fd1ad4ef2e3
/python/pytorch_test/DQN_test.py
c69023ac6c2f6593b04b58d12aa3a88d29507afa
[]
no_license
juechen-zzz/learngit
521e0d2c13d97248f6f8b1f2096f718dc497351b
513d3e57f4e0fce72ca4ecd1f30be2d261ee9260
refs/heads/master
2021-07-04T17:20:58.456812
2020-08-27T02:08:05
2020-08-27T02:08:05
163,482,583
8
0
null
null
null
null
UTF-8
Python
false
false
4,509
py
""" DQN强化学习 """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import gym # Hyper parameters BATCH_SIZE = 32 LR = 0.01 EPSILON = 0.9 # greedy policy(参数) GAMMA = 0.9 # reward discount TARGET_REPLACE_ITER = 100 # target update frequency MEMORY_CAPACITY = 2000 env = gym.make('CartPole-v0') # 导入实验场所 env = env.unwrapped N_ACTIONS = env.action_space.n N_STATES = env.observation_space.shape[0] # confirm the space ENV_A_SHAPE = 0 if isinstance(env.action_space.sample(), int) else env.action_space.sample().shape class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(N_STATES, 50) # 输入观测值 self.fc1.weight.data.normal_(0, 0.1) # initialization self.out = nn.Linear(50, N_ACTIONS) # 每个动作的价值 self.out.weight.data.normal_(0, 0.1) def forward(self, x): x = self.fc1(x) x = F.relu(x) actions_value = self.out(x) # 生成出的结果 return actions_value class DQN(object): def __init__(self): self.eval_net, self.target_net = Net(), Net() self.learn_step_counter = 0 # for target updating self.memory_counter = 0 # for storing memory self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2)) # initialize memory self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR) def choose_action(self, x): # 根据观测值采取动作 x = torch.unsqueeze(torch.FloatTensor(x), 0) # input only one sample if np.random.uniform() < EPSILON: actions_value = self.eval_net.forward(x) action = torch.max(actions_value, 1)[1].data.numpy() action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) else: action = np.random.randint(0, N_ACTIONS) action = action if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE) return action def store_transition(self, s, a, r, s_): # 记忆库(s:状态/动作,a:动作,r:反馈reward, s_:下一个动作) transition = np.hstack((s, [a, r], s_)) # replace the old memory with new memory index = self.memory_counter % MEMORY_CAPACITY self.memory[index, :] = transition self.memory_counter += 1 def learn(self): # target parameter update if self.learn_step_counter % TARGET_REPLACE_ITER == 0: self.target_net.load_state_dict(self.eval_net.state_dict()) self.learn_step_counter += 1 # sample batch transitions sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE) b_memory = self.memory[sample_index, :] b_s = torch.FloatTensor(b_memory[:, :N_STATES]) b_a = torch.LongTensor(b_memory[:, N_STATES:N_STATES+1].astype(int)) b_r = torch.FloatTensor(b_memory[:, N_STATES+1:N_STATES+2]) b_s_ = torch.FloatTensor(b_memory[:, -N_STATES:]) # q_eval w.r.t the action in experience q_eval = self.eval_net(b_s).gather(1, b_a) # shape (batch, 1) q_next = self.target_net(b_s_).detach() # detach from graph, don't backpropagate q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1) # shape (batch, 1) loss = self.loss_func(q_eval, q_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() dqn = DQN() print('\n Collecting experience') for i_episode in range(400): s = env.reset() ep_r = 0 while True: env.render() a = dqn.choose_action(s) # take action s_, r, done, info = env.step(a) # modify the reward x, x_dot, theta, theta_dot = s_ r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8 r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5 r = r1 + r2 dqn.store_transition(s, a, r, s_) ep_r += r if dqn.memory_counter > MEMORY_CAPACITY: dqn.learn() if done: print('Ep: ', i_episode, '| Ep_r: ', round(ep_r, 2)) if done: break s = s_
68685bbd376f9cbe2cd1311b8313d1a34cd95f75
518a7949a195f29591d5e1523287bd8985046ebb
/examples/bootstrap3/settings.py
3463cd7305f4204b3484308adf6d532671bdec40
[ "MIT" ]
permissive
kelvinhammond/djangocms-cascade
73ecb0b3a136b3615fd354d04c1a57de0bb4485f
ba99706b03d1ae5a04952e3e6dded1c048426e89
refs/heads/master
2021-01-18T12:54:08.271278
2014-04-08T14:42:14
2014-04-08T14:42:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,452
py
# Django settings for unit test project. import os DEBUG = True PROJECT_DIR = os.path.abspath(os.path.dirname(__file__)) SITE_ID = 1 ROOT_URLCONF = 'bootstrap3.urls' SECRET_KEY = 'secret' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'bootstrap3/database.sqlite', }, } INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'djangocms_admin_style', 'django.contrib.messages', 'django.contrib.admin', 'django.contrib.staticfiles', 'django.contrib.sitemaps', 'djangocms_text_ckeditor', 'cmsplugin_cascade', 'cms', 'menus', 'mptt', 'south', 'filer', 'easy_thumbnails', 'djangocms_link', 'cmsplugin_filer_file', # alternative to 'cms.plugins.file' 'cmsplugin_filer_folder', 'cmsplugin_filer_image', # alternative to 'cms.plugins.picture' 'sekizai', 'bootstrap3', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.doc.XViewMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.gzip.GZipMiddleware', 'cms.middleware.page.CurrentPageMiddleware', 'cms.middleware.user.CurrentUserMiddleware', 'cms.middleware.toolbar.ToolbarMiddleware', 'cms.middleware.language.LanguageCookieMiddleware', ) # Absolute path to the directory that holds media. MEDIA_ROOT = os.path.join(PROJECT_DIR, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a trailing slash. MEDIA_URL = '/media/' #ADMIN_MEDIA_PREFIX = '/static/admin/' # Absolute path to the directory that holds static files. STATIC_ROOT = os.path.join(PROJECT_DIR, 'static') # URL that handles the static files served from STATIC_ROOT. Make sure to use a trailing slash. STATIC_URL = '/static/' TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.tz', 'django.core.context_processors.request', 'django.contrib.messages.context_processors.messages', 'cms.context_processors.media', 'sekizai.context_processors.sekizai', 'bootstrap3.context_processors.cascade', ) # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) TEMPLATE_DIRS = ( # Don't forget to use absolute paths, not relative paths. os.path.join(PROJECT_DIR, 'templates'), ) # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True LANGUAGES = ( ('en-us', 'English'), ) ############################################################# # Application specific settings CMS_TEMPLATES = ( ('main.html', 'Default Page'), ) CMS_SEO_FIELDS = True CMS_CACHE_DURATIONS = { 'content': 3600, 'menus': 3600, 'permissions': 86400, } CMS_PLACEHOLDER_CONF = { 'Page Content': { 'plugins': ['BootstrapContainerPlugin'], }, } CMS_CASCADE_PLUGINS = ('bootstrap3',) CKEDITOR_SETTINGS = { 'language': '{{ language }}', 'skin': 'moono', 'toolbar': 'CMS', } FILER_ALLOW_REGULAR_USERS_TO_ADD_ROOT_FOLDERS = True FILER_DUMP_PAYLOAD = True THUMBNAIL_PROCESSORS = ( 'easy_thumbnails.processors.colorspace', 'easy_thumbnails.processors.autocrop', 'filer.thumbnail_processors.scale_and_crop_with_subject_location', 'easy_thumbnails.processors.filters', ) THUMBNAIL_HIGH_RESOLUTION = True THUMBNAIL_PRESERVE_EXTENSIONS = True THUMBNAIL_OPTIMIZE_COMMAND = { 'png': '/opt/local/bin/optipng {filename}', 'gif': '/opt/local/bin/optipng {filename}', 'jpeg': '/opt/local/bin/jpegoptim {filename}', }
46f9dc85ca46e101dd7033dc503abca879a2ef96
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.5/tests/regressiontests/cache/models.py
66a55aa1db6eeeac0fcac1dbcc0fa90c651174d0
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
103
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.5/tests/regressiontests/cache/models.py
5488a146c268af0eca9fc2a0cd323ac5a4a95a9b
bf79fc0de3dcdfe7a4f3d2b10f9a271d757d345b
/httplib_post_sessionId.py
ce7d8c74d569922cb88cb48296ce4d415551cab5
[]
no_license
gsrr/network_programming
3aa09916b025f27fee98e8ed7dc0ebb4beadfbb9
91c3bdaf60b90c848a4e7fc4cfa29b6076e4e64f
refs/heads/master
2021-01-18T15:12:41.379298
2013-10-12T15:46:27
2013-10-12T15:46:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
import httplib headers = {"Content-type": "application/x-www-form-urlencoded","Accept": "text/plain" , "Cookie": "JSESSIONID=487D7BDC9E91CC65603A7FB5A16B7E11" } conn = httplib.HTTPConnection("172.27.112.40") conn.request("POST", "/servlet/RTRRDisplayConfig" , "" , headers) r1 = conn.getresponse() print r1.status, r1.reason data1 = r1.read() print data1 conn.close()
475648468940c502788b44540e3bd9313ee5e4bc
eea8c7343b4c1f3083dfd066aa2d3df155ff3713
/bioframe/dask.py
1d5c9a6a713828baff44e446762ba7b6039859c2
[ "MIT" ]
permissive
agalitsyna/bioframe
090dbbd5a88d3673fd5472361468d0c0e7cac149
2bcfcb52de21cd6f31e2e2f69d39427908ea841b
refs/heads/master
2020-06-01T03:14:42.770344
2019-06-11T19:46:24
2019-06-11T19:46:24
190,611,916
0
0
MIT
2019-06-06T16:12:13
2019-06-06T16:12:12
null
UTF-8
Python
false
false
6,179
py
from __future__ import division, print_function, absolute_import from collections import OrderedDict from contextlib import closing import numpy as np import pandas as pd import numba import pypairix import pysam from dask.base import tokenize import dask.dataframe as dd import dask.array as da import dask def bin2start(k): lev = np.floor(np.log2(7*k + 1)/3).astype(int) sl = 2**(29 - 3*lev) ol = (2**(3*lev) - 1)//7 start = (k - ol) * sl end = (k - ol+1) * sl return start LEVEL = {} LEVEL[0] = bin2start(np.arange(1, 9)) LEVEL[1] = bin2start(np.arange(9, 73)) LEVEL[2] = bin2start(np.arange(73,585)) LEVEL[3] = bin2start(np.arange(585,4681)) LEVEL[4] = bin2start(np.arange(4681,37449)) @numba.jit("int32(int32, int32)") def reg2bin(beg, end): end -= 1 if beg >> 14 == end >> 14: return ((1 << 15)-1) // 7 + (beg >> 14) if beg >> 17 == end >> 17: return ((1 << 12)-1) // 7 + (beg >> 17) if beg >> 20 == end >> 20: return ((1 << 9)-1) // 7 + (beg >> 20) if beg >> 23 == end >> 23: return ((1 << 6)-1) // 7 + (beg >> 23) if beg >> 26 == end >> 26: return ((1 << 3)-1) // 7 + (beg >> 26) return 0 @numba.jit("int32(int32, int32)") def reg2bins(rbeg, rend): MAX_BIN = ((1 << 18) - 1) // 7 lst = [] rend -= 1 k = 1 + (rbeg >> 26) while k <= (1 + (rend >> 26)): k += 1 lst.append(k) k = 9 + (rbeg >> 23) while k <= (9 + (rend >> 23)): k += 1 lst.append(k) k = 73 + (rbeg >> 20) while k <= (73 + (rend >> 20)): k += 1 lst.append(k) k = 585 + (rbeg >> 17) while k <= (585 + (rend >> 17)): k += 1 lst.append(k) k = 4681 + (rbeg >> 14) while k <= (4681 + (rend >> 14)): k += 1 lst.append(k) return lst def range_partition(start, stop, step): return ((i, min(i+step, stop)) for i in range(start, stop, step)) def _fetch_region(filepath, chromsizes, slc, block, columns=None, usecols=None, meta=None): chrom1, chrom2 = block if chrom2 is None: chrom2 = chrom1 if slc is None: start, end = 0, chromsizes[chrom1] else: start, end = slc.start, slc.stop f = pypairix.open(filepath, 'r') it = f.query2D(chrom1, start, end, chrom2, 0, chromsizes[chrom2]) if usecols is not None: records = [ (record[i] for i in usecols) for record in it ] else: records = it df = pd.DataFrame.from_records(records, columns=columns) if not len(df): df = meta.copy() # elif usecols is not None: # usecols = set(usecols) # df = df[[col for col in meta.columns if col in usecols]] for col, dt in meta.dtypes.items(): df.loc[:, col] = df.loc[:, col].astype(dt) return df def read_pairix_block(filepath, block, names=None, dtypes=None, usecols=None, chromsizes=None, chunk_level=0): if chromsizes is None: f = pypairix.open(filepath) cs = f.get_chromsize() if not len(cs): raise ValueError("No chromsize headers found in file. " "They must be provided explicitly.") chromsizes = pd.Series(dict([(c, int(s)) for c, s in cs])) del f chrom1, chrom2 = block nrows = chromsizes[chrom1] meta = pd.read_csv( filepath, sep='\t', comment='#', header=None, names=names, dtype=dtypes, usecols=usecols, iterator=True).read(1024).iloc[0:0] # Make a unique task name token = tokenize(filepath, chromsizes, block, names, dtypes, usecols, chunk_level) task_name = 'read-pairix-block-' + token # Build the task graph divisions = [] dsk = {} edges = LEVEL[chunk_level] edges = edges[:np.searchsorted(edges, nrows)] if edges[-1] != nrows: edges = np.r_[edges, nrows] spans = zip(edges[:-1], edges[1:]) for i, (lo, hi) in enumerate(spans): if i == 0: divisions.append(lo) divisions.append(hi-1) slc = slice(lo, hi) dsk[task_name, i] = (_fetch_region, filepath, chromsizes, slc, block, names, usecols, meta) # Generate ddf from dask graph return dd.DataFrame(dsk, task_name, meta, tuple(divisions)) def read_pairix(filepath, names, blocks=None, chromsizes=None, **kwargs): """ Read a Pairix-indexed BEDPE-like file as a dask dataframe. Parameters ---------- filepath : str Path to the pairs or paired-end interval file, not the index file. (i.e. omit the .px2 extension). names : sequence of str Names for the columns in the pairs file. blocks : sequence of str or tuple List of paired chromosome blocks to load. If a list of single chromosome names is given, then all pair permutations are loaded. chromsizes : dict or Series, optional Chromosome lengths to use if chromsizes headers are not available. chunk_level : {0, 1, 2, 3, 4} Increase for a finer partition. Returns ------- OrderedDict A mapping of chromosome pairs to dask dataframes. """ f = pypairix.open(filepath) if chromsizes is None: cs = f.get_chromsize() if not len(cs): raise ValueError("No chromsize headers found in file. " "They must be provided explicitly.") chromsizes = pd.Series(dict([(c, int(s)) for c, s in cs])) if blocks is None: blocks = [s.split('|') for s in f.get_blocknames()] elif isinstance(blocks[0], str): blocks = [(ci, cj) for ci in blocks for cj in blocks] dct = OrderedDict() for chrom1, chrom2 in blocks: if chrom1 in chromsizes and chrom2 in chromsizes: dct[chrom1, chrom2] = read_pairix_block( filepath, (chrom1, chrom2), names, chromsizes=chromsizes, **kwargs) return dct
220ecc6dfcdc71e07171f2b4cdb6b97a034114d6
c988a8856d2d3fb7771417b4c7810e528a197d2b
/Generators 2.py
9b2b8e0fd242c5b9ea38fbb9c33f02ac9f69df22
[]
no_license
arunekuriakose/MyPython
0c8a9161fef20bf77f7ba31149ec4ba0fa79b0bd
19f44819612a8490d430bafec0616f68ce109776
refs/heads/master
2022-01-20T07:56:48.505226
2019-07-22T06:26:52
2019-07-22T06:26:52
198,158,499
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
# def demo(): n=1 print("First") yield n n+=1 print("Second") yield n n+=1 print("Third") yield n #a=demo() #print(next(a)) #print(next(a)) #print(next(a)) for i in demo(): print(next(i))
3b5349a86fba8c9b1cfb2e62694c68a49574e8f5
1abec01c89583daf7c486d5a78b60597ed0e9b85
/RFID/test1.py
5f34e3cd5bd8f512aba7702aa5b8f4b0375dd300
[]
no_license
BaldSuperman/python_work
a31625a02c27b94d7165dde1c584ebfe769e4dbd
36669079e81a798f051ee89dfc681c1d74e1c746
refs/heads/master
2020-05-27T16:00:34.292449
2019-06-17T07:05:11
2019-06-17T07:05:11
188,687,919
0
0
null
null
null
null
UTF-8
Python
false
false
2,548
py
# -*- coding: utf-8 -*- import RPi.GPIO as GPIO from mfrc522 import SimpleMFRC522 as rc522 def write(): reader = rc522() try: data = raw_input("input data: ") print("input data is: "+data) print("place your card to write") reader.write(data) print("write success") return data except Exception as error: print("error haappen: "+str(error)) finally: GPIO.cleanup() def read(): reader = rc522() try: print("begin reading") id, data = reader.read() return id, data except Exception as error: print("error haappen:%s" % str(error)) finally: GPIO.cleanup() def show(): print("输入数字 1 查看当前卡内余额。",end=" ") print("*", end=" ") print("输入数字 2 管理员给当前卡片充值",end=" ") print("*", end=" ") print("输入数字 3 进行消费") def judge4( Rfid): id, data = read() Rfid[id] = data print("当前组内成员:") for id in Rfid: print("id: " + str(id) + " data:" + str(Rfid[id])) def judge1(Rfid): id, data = read() if id in Rfid.keys(): print("id: " + str(id) + " data:" + str(Rfid[id])) else: print("不是我们的卡,没有相关权限") def judge3(Rfid): id, data = read() if id in Rfid.keys(): data = write() Rfid[id] = data else: print("不是我们的卡,没有相关权限") def judge2(Rfid): count = len(Rfid) print("当前系统中共有卡片:%d 个"%count) for id in Rfid: print("id: " + str(id) + " data:" + str(Rfid[id])) def judge(num, passwrod, Rfid): if num == '4': str = raw_input("请输入管理员密码:") if str == passwrod: judge4(Rfid) else: print("您没有相关权限") if num == '3': str = raw_input("请输入管理员密码:") if str == passwrod: judge3(Rfid) else: print("您没有相关权限") if num == '2': str = raw_input("请输入管理员密码:") if str == passwrod: judge2(Rfid) else: print("您没有相关权限") if num == '1': judge1(Rfid) def main(): passwrod = "xiamingxin" ##使用字典代替数据库功能 存储当前组内卡片信息 while True: show() num = raw_input("输入您的操作类型:") judge(num, passwrod, Rfid) if __name__ == '__main__': main()
d00ecc5889baf1e72d1751d86e98601d7028d53b
a3f0669e893e152997aab440275aafbeca74c4c5
/src/ffm/evaluate.py
a19f7ba86df0c7d8e7cd4788b56c30906af7a112
[]
no_license
AzizIlyosov/ctr-algorithms-ipinyou
0280e3379e6d207b52fa206dc9e05779b876a927
25ca16788497c3d954259dc8dfcd353b76edc2c5
refs/heads/master
2020-04-08T01:43:51.391902
2018-07-04T14:09:07
2018-07-04T14:09:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,223
py
# _*_ coding: utf-8 _*_ import sys import scipy as sp from csv import DictReader from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import log_loss from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import roc_auc_score path = '../../output/ffm/' label_path = path + 'validation.csv' predict_path = path + 'submission.csv' label_reader = DictReader(open(label_path)) predict_reader = DictReader(open(predict_path)) count = 0 y_true = [] y_pred = [] y_scores = [] for t, row in enumerate(label_reader): predict = predict_reader.__next__() actual = float(row['label']) predicted = float(predict['prob']) y_true.append(actual) y_scores.append(predicted) # 计算性能指标 auc = roc_auc_score(y_true, y_scores) logloss = log_loss(y_true, y_scores) # accuracy = accuracy_score(y_true, y_pred) # precision = precision_score(y_true, y_pred) # recall = recall_score(y_true, y_pred) # f1 = f1_score(y_true, y_pred) # print('Accuracy: {0} Precision: {1} Recall: {2} F1-Measure: {3}\n'.format(accuracy, precision, recall, f1)) print('logloss: {0} auc: {1}\n'.format(logloss, auc))
7e0e8298dda72c9880e5943047eb1190db12eff7
f80ef3a3cf859b13e8af8433af549b6b1043bf6e
/pyobjc-framework-ApplicationServices/Lib/PrintCore/__init__.py
36c698f201df15a99f814a8bbfc57c763b22a185
[ "MIT" ]
permissive
ronaldoussoren/pyobjc
29dc9ca0af838a56105a9ddd62fb38ec415f0b86
77b98382e52818690449111cd2e23cd469b53cf5
refs/heads/master
2023-09-01T05:15:21.814504
2023-06-13T20:00:17
2023-06-13T20:00:17
243,933,900
439
49
null
2023-06-25T02:49:07
2020-02-29T08:43:12
Python
UTF-8
Python
false
false
1,256
py
""" Python mapping for the PrintCore framework. This module does not contain docstrings for the wrapped code, check Apple's documentation for details on how to use these functions and classes. """ import functools import sys import Cocoa import objc from PrintCore import _metadata, _PrintCore sys.modules["PrintCore"] = mod = objc.ObjCLazyModule( "PrintCore", "com.apple.ApplicationServices", objc.pathForFramework("/System/Library/Frameworks/ApplicationServices.framework"), _metadata.__dict__, None, { "__doc__": __doc__, "__path__": __path__, "__loader__": globals().get("__loader__", None), "objc": objc, }, ( _PrintCore, Cocoa, ), ) del sys.modules["PrintCore._metadata"] # # PMRetain and PMRelease are "generic" functions # where the argument can be an instance of a number # of PrintCore types. # # The code below ensures these functions actually # work as expected. # _PMRetain = mod.PMRetain _PMRelease = mod.PMRelease @functools.wraps(_PMRetain) def PMRetain(value): return _PMRetain(value.__pointer__) @functools.wraps(_PMRelease) def PMRelease(value): return _PMRelease(value.__pointer__) mod.PMRetain = PMRetain mod.PMRelease = PMRelease
4080c05e280ec94e2df632dc211c25773aa6243b
02e23da0431623db86c8138bda350a1d526d4185
/Archivos Python Documentos/Graficas/.history/tierras_20200219214608.py
5ebc61a24ec8acd6890ed7cafa92f02f17424812
[]
no_license
Jaamunozr/Archivos-python
d9996d3d10ff8429cd1b4c2b396016a3a5482889
1f0af9ba08f12ac27e111fcceed49bbcf3b39657
refs/heads/master
2022-08-05T14:49:45.178561
2022-07-13T13:44:39
2022-07-13T13:44:39
244,073,267
0
0
null
null
null
null
UTF-8
Python
false
false
1,511
py
import os import pylab as pl import numpy as np from mpl_toolkits.mplot3d import Axes3D os.system("clear") fig = pl.figure() axx = Axes3D(fig) raiz=np.sqrt ln=np.log X = np.arange(-2, 12, 0.01) Y = np.arange(-2, 12, 0.01) Z = np.arange(600,2000,100) X, Y = np.meshgrid(X, Y) ax, ay = 0.5, 0.5 bx, by = 4.5, 0.4 cx, cy = 8.5, 0.5 dx, dy = 0.5, 4.5 ex, ey = 8.5, 4.5 fx, fy = 0.5, 8.5 gx, gy = 4.5, 8.5 hx, hy = 8.5, 8.5 l = 2 rho= 100 ik=25 ma=raiz((X-ax)**2+(Y-ay)**2) mb=raiz((X-bx)**2+(Y-by)**2) mc=raiz((X-cx)**2+(Y-cy)**2) md=raiz((X-dx)**2+(Y-dy)**2) me=raiz((X-ex)**2+(Y-ey)**2) mf=raiz((X-fx)**2+(Y-fy)**2) mg=raiz((X-gx)**2+(Y-gy)**2) mh=raiz((X-hx)**2+(Y-hy)**2) va=ln((l+raiz(ma**2+l**2))/ma) vb=ln((l+raiz(mb**2+l**2))/mb) vc=ln((l+raiz(mc**2+l**2))/mc) vd=ln((l+raiz(md**2+l**2))/md) ve=ln((l+raiz(me**2+l**2))/me) vf=ln((l+raiz(mf**2+l**2))/mf) vg=ln((l+raiz(mg**2+l**2))/mg) vh=ln((l+raiz(mh**2+l**2))/mh) Vt=((rho*ik)/(2*np.pi))*(va+vb+vc+vd+ve+vf+vg+vh) print (Vt[::].max()) x = X.flatten() y = Y.flatten() z = Vt.flatten() axx.plot_trisurf(x,y,z , cmap="magma") colors =pl.cm.magma( (X-X.min())/float((X-X.min()).max()) ) axx.plot_surface(X, Y, Vt, facecolors=colors, linewidth=0, shade=False )#rstride=1, cstride=1, cmap=pl.cm.hot) #colors =plt.cm.magma( (X-X.min())/float((X-X.min()).max()) ) #ax2.plot_surface(X,Y,Z ,facecolors=colors, linewidth=0, shade=False ) #fig.colorbar(surf) #axx.contourf(X, Y, Vt, zdir='Vt', offset=450, cmap=pl.cm.hot) axx.set_zlim(500, 2000) pl.show()
7eb7b91bac55d631f2d8f2cb1262e1d2b70b03bd
455c1cec4101254a0b7f50349e915411033a0af1
/supervised_learning/0x02-tensorflow/5-create_train_op.py
fb850cd429f95ec7d7f273f75d9347cfba9615e1
[]
no_license
Daransoto/holbertonschool-machine_learning
30c9f2753463d57cac87f245b77c8d6655351e75
1e7cd1589e6e4896ee48a24b9ca85595e16e929d
refs/heads/master
2021-03-10T14:32:09.419389
2020-10-23T19:47:31
2020-10-23T19:47:31
246,461,514
0
1
null
null
null
null
UTF-8
Python
false
false
268
py
#!/usr/bin/env python3 """ This module contains the function calculate_loss. """ import tensorflow as tf def create_train_op(loss, alpha): """ Creates the training operation for the network. """ return tf.train.GradientDescentOptimizer(alpha).minimize(loss)
916866031e271a0f5bb4313ed49925223da816aa
da370ba0df9700519139e1da54f3e7f38e9b7f5f
/.nox/tests/lib/python3.7/site-packages/jaxlib/xla_client.py
a6ef6bd431a6813cf33496bef07281616009f7b0
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
antonevenepoel/open_spiel
90e3c7c6611cf508f2872237412fd67cf6cd10e0
f2f0c786410018675fc40e9a5b82c40814555fa8
refs/heads/master
2021-03-15T20:57:00.562672
2020-05-15T16:10:23
2020-05-15T16:10:23
246,877,171
0
0
Apache-2.0
2020-03-12T16:07:42
2020-03-12T16:07:41
null
UTF-8
Python
false
false
66,737
py
# Lint as: python3 # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An XLA client in Python.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import enum # pylint: disable=g-bad-import-order import inspect import itertools import os from absl import logging import numpy as np # Note this module does *not* depend on any Python protocol buffers. The XLA # Python bindings are currently packaged both as part of jaxlib and as part # of TensorFlow. If we use protocol buffers here, then importing both jaxlib # and TensorFlow may fail with duplicate protocol buffer message definitions. from . import xla_extension as _xla from .xla_extension import ops # Most functions are snake_case for consistency with other modules, whereas # method names of ComputationBuilder and Computation are CamelCase for # consistency with XLA. # pylint: disable=invalid-name profiler = _xla.profiler class Backend(object, metaclass=abc.ABCMeta): """Abstract base class for XLA backends.""" def __init__(self, platform): """Creates a new Backend. Args: platform: A string naming the platform; for example 'gpu'. """ self.platform = platform @abc.abstractmethod def device_count(self): """Returns the number of devices known to the backend.""" @abc.abstractmethod def local_device_count(self): """Returns the number of devices local to this host.""" @abc.abstractmethod def devices(self): """Returns a list of `device_count()` Device subclasses.""" @abc.abstractmethod def host_id(self): """Returns the integer ID of this host.""" @abc.abstractmethod def buffer_from_pyval(self, pyval, device=None, force_copy=False): """Allocates a fresh buffer and populates it with `pyval`.""" @abc.abstractmethod def make_tuple(self, c_buffers, device): """Makes a tuple from a sequence of backend buffer objects.""" @abc.abstractmethod def compile(self, computation, compile_options): """Compiles a computation. Returns an executable.""" @abc.abstractmethod def get_default_device_assignment(self, num_replicas, num_partitions): """Returns the default device assignment that `compile` would use. If `compile_options.device_assignment` isn't set, `compile` will pick a deterministic device assignment based on the number of replicas and partitions, possibly optimizing for device locality. This method returns that assignment, which is useful for e.g. manually replicating a value before passing it to a compiled executable. Args: num_replicas: the number of replicas needed. num_partitions: the number of partitions needed. Returns: A list of list of Devices of size `(num_replicas, num_partitions)`. """ class LocalBackend(Backend): """XLA backend implemented using the in-process xla::LocalClient API.""" def __init__(self, platform, client): """Creates a new LocalBackend. Args: platform: A string; the user-visible platform name, e.g. 'gpu'. client: An _xla.PyLocalClient object. """ super(LocalBackend, self).__init__(platform) self.client = client def device_count(self): return self.client.device_count() def local_device_count(self): return self.client.local_device_count() def devices(self): return self.client.devices() def local_devices(self): return self.client.local_devices() def host_id(self): return self.client.host_id() def buffer_from_pyval(self, pyval, device=None, force_copy=False): if device is None: device = self.local_devices()[0] return _xla.PyLocalBuffer.from_python(pyval, self.client, device, force_copy) def make_tuple(self, c_buffers, device): return _xla.PyLocalBuffer.make_tuple(c_buffers, self.client, device) def compile(self, c_computation, compile_options): options = _xla.ExecutableBuildOptions() options.num_replicas = compile_options.num_replicas options.num_partitions = compile_options.num_partitions if compile_options.result_layout: options.result_layout = compile_options.result_layout options.debug_options.xla_cpu_fast_math_honor_infs = True options.debug_options.xla_cpu_fast_math_honor_nans = True options.debug_options.xla_cpu_fast_math_honor_division = True options.debug_options.xla_cpu_fast_math_honor_functions = True options.debug_options.xla_gpu_enable_fast_min_max = False return _xla.LocalExecutable.Compile(c_computation, compile_options.argument_layouts, options, self.client, compile_options.device_assignment) def get_default_device_assignment(self, num_replicas, num_partitions=None): if num_partitions is not None: return self.client.GetDefaultDeviceAssignment(num_replicas, num_partitions) else: # TODO(skye): delete this case after all callers can handle 2D output return self.client.GetDefaultDeviceAssignment(num_replicas) xla_platform_names = { 'cpu': 'Host', 'gpu': 'CUDA', } def _cpu_backend_factory(): client = _xla.get_cpu_client(asynchronous=True) return LocalBackend(platform='cpu', client=client) def _gpu_backend_factory(distributed_client=None, node_id=0): """Returns a GPU backend. BFC allocator is used by default.""" allocator = os.getenv('XLA_PYTHON_CLIENT_ALLOCATOR', 'default').lower() memory_fraction = os.getenv('XLA_PYTHON_CLIENT_MEM_FRACTION') preallocate = os.getenv('XLA_PYTHON_CLIENT_PREALLOCATE') if allocator not in ('default', 'platform', 'bfc'): raise ValueError( 'XLA_PYTHON_CLIENT_ALLOCATOR env var must be "default", "platform", or ' '"bfc", got "%s"' % allocator) config = _xla.GpuAllocatorConfig() if allocator == 'default': config.kind = _xla.GpuAllocatorConfig.Kind.DEFAULT if allocator == 'platform': config.kind = _xla.GpuAllocatorConfig.Kind.PLATFORM if allocator == 'bfc': config.kind = _xla.GpuAllocatorConfig.Kind.BFC if memory_fraction: config.memory_fraction = float(memory_fraction) config.preallocate = preallocate not in ('0', 'false', 'False') client = _xla.get_nvidia_gpu_client( asynchronous=True, allocator_config=config, distributed_client=distributed_client, node_id=node_id) return LocalBackend(platform='gpu', client=client) # Backend factories, keyed by user-visible name, in increasing priority order. _local_backend_factories = collections.OrderedDict([ ('cpu', _cpu_backend_factory), ('gpu', _gpu_backend_factory), ]) def register_local_backend_factory(name, factory): _local_backend_factories[name] = factory _local_backends = None def _get_local_backends(): """Instantiates all known local backends.""" global _local_backends if _local_backends is not None: return _local_backends _local_backends = collections.OrderedDict() for name, factory in _local_backend_factories.items(): logging.vlog(2, "Initializing backend '%s'" % name) try: backend = factory() except RuntimeError: if name == 'cpu': # We always expect CPU to initialize successfully. raise else: # If the backend isn't built into the binary, or if it has no devices, # we expect a RuntimeError. continue _local_backends[name] = backend return _local_backends def get_local_backend(name=None): """Returns a local backend. Args: name: the backend name. If `None`, a default local backend is returned, typically `gpu` if one is present, or `cpu` if not. If a string, the named backend is returned or an exception raised. Returns: A LocalBackend object. """ backends = _get_local_backends() if name is not None: try: return backends[name] except KeyError: raise RuntimeError('Unknown backend {}'.format(name)) return list(backends.values())[-1] class OpMetadata(object): """Python representation of a xla.OpMetadata protobuf.""" __slots__ = ('op_type', 'op_name', 'source_file', 'source_line') def __init__(self, op_type='', op_name='', source_file='', source_line=0): self.op_type = op_type self.op_name = op_name self.source_file = source_file self.source_line = source_line def CurrentSourceInfoMetadata(op_type=None, op_name=None, skip_frames=1): """Helper for use in source mapping that returns an OpMetadata object.""" full_filename, lineno = inspect.stack()[skip_frames][1:3] filename = os.path.basename(full_filename) return OpMetadata( op_type=op_type, op_name=op_name, source_file=filename, source_line=lineno) PrimitiveType = _xla.PrimitiveType bfloat16 = _xla.bfloat16_dtype() XLA_ELEMENT_TYPE_TO_DTYPE = { PrimitiveType.PRED: np.dtype('bool'), PrimitiveType.S8: np.dtype('int8'), PrimitiveType.S16: np.dtype('int16'), PrimitiveType.S32: np.dtype('int32'), PrimitiveType.S64: np.dtype('int64'), PrimitiveType.U8: np.dtype('uint8'), PrimitiveType.U16: np.dtype('uint16'), PrimitiveType.U32: np.dtype('uint32'), PrimitiveType.U64: np.dtype('uint64'), PrimitiveType.BF16: np.dtype(bfloat16), PrimitiveType.F16: np.dtype('float16'), PrimitiveType.F32: np.dtype('float32'), PrimitiveType.F64: np.dtype('float64'), PrimitiveType.C64: np.dtype('complex64'), PrimitiveType.C128: np.dtype('complex128'), PrimitiveType.TUPLE: np.dtype(np.object), PrimitiveType.TOKEN: np.dtype(np.object), } # Note the conversion on the key. Numpy has a known issue wherein dtype hashing # doesn't work as expected (https://github.com/numpy/numpy/issues/7242). Thus, # when keying by dtype in this dict, we use the string form of dtypes. DTYPE_TO_XLA_ELEMENT_TYPE = { str(dt): et for et, dt in XLA_ELEMENT_TYPE_TO_DTYPE.items() } def dtype_to_etype(dtype): """Convenience function for reading DTYPE_TO_XLA_ELEMENT_TYPE.""" return DTYPE_TO_XLA_ELEMENT_TYPE[str(np.dtype(dtype))] Shape = _xla.Shape Shape.__doc__ = """ A Shape is an object defined in C++ that duck types like the following class: class Shape(object): '''Represents an XLA shape. A shape is either an array shape, having rank-many integer dimensions and an element type (represented by a Numpy dtype), or it is a tuple shape, having a shape for every tuple component: type shape = TupleShape of shape list | ArrayShape of { dimensions: int list; element_type: dtype } ''' @staticmethod def tuple_shape(tuple_shapes) -> Shape: "Construct a tuple shape." @staticmethod def array_shape(element_type, dimensions, minor_to_major=None) -> Shape: @staticmethod def from_pyval(pyval) -> Shape: "Returns a Shape that describes a tuple-tree of Numpy arrays." def __init__(self, str) -> Shape: "Parses a shape string." def __eq__(self, other: Shape) -> bool: def __ne__(self, other: Shape) -> bool: def __hash__(self): def __repr__(self): def is_tuple(self) -> bool: def is_array(self) -> bool: def tuple_shapes(self) -> [Shape]: def numpy_dtype(self) -> np.dtype: "Like element_type(), but returns dtype('O') for a tuple shape." def xla_element_type(self) -> PrimitiveType: def element_type(self) -> np.dtype: def dimensions(self) -> (int, int, ...): def rank(self) -> int: def with_major_to_minor_layout_if_absent(self) -> Shape: "Returns a copy with missing layouts set to major-to-minor." def to_serialized_proto(self) -> bytes: "Returns 'shape' as a serialized proto." """ ProgramShape = _xla.ProgramShape ProgramShape.__doc__ = """ A ProgramShape is a C++ object that duck types like the following class. class ProgramShape(object): def __init__(self, parameter_shapes, result_shape): def parameter_shapes(self) -> [Shape]: def result_shape(self) -> Shape: def __repr__(self): """ class Buffer(object): """Represents a handle to data owned by XLA. The referent is ready for use in executing a local, compiled Computation. On XLA platforms involving a device (e.g. GPU), this means the referent is in device memory. """ @staticmethod def from_pyval(pyval, device=None, backend=None, force_copy=False): """Copies the `pyval` to a freshly allocated on-device buffer.""" backend = backend or get_local_backend() return backend.buffer_from_pyval(pyval, device, force_copy=force_copy) @staticmethod def make_tuple(buffers, device, backend=None): backend = backend or get_local_backend() return backend.make_tuple(buffers, device) # Buffer is not an instantiable type and exists only for its static methods. # The underlying buffer objects are C++ object with the following # API: # def shape(self) -> Shape: # def device(self) -> int: # def delete(self): # def destructure(self) -> [Buffer] # def is_deleted(self) -> bool: # def block_host_until_ready(self): # """Blocks the calling thread until the buffer is ready on device.""" # def copy_to_host_async(self): # """Requests a copy of the buffer to the host. # # Does not block waiting for the copy. Values fetched are available via # `to_py()`; the purpose of `copy_to_host_async` is to prefetch values # for subsequent `to_py()` calls, especially when requesting many values # at once. # """ # def to_py(self): # """Returns the value of the buffer as a Python tuple tree of ndarrays.""" # # TODO(phawkins): remove Buffer and its static methods completely, have # clients call methods on Backend to create buffers. # TODO(phawkins): Alias for backward compatibility. Remove after JAX drops # compatibility with Jaxlib versions older than 0.1.13. LocalBuffer = Buffer def shape_from_pyval(pyval): """Returns a Shape that describes a tuple-tree of Numpy arrays.""" def convert(pyval): if isinstance(pyval, tuple): return Shape.tuple_shape(tuple(convert(elt) for elt in pyval)) else: return Shape.array_shape(pyval.dtype, np.shape(pyval)) return convert(pyval) def transfer_to_infeed(value, device=None): """Transfers the given value into the XLA infeed queue. XLA's infeed queue is a single queue that feeds the "XLA virtual machine" with a totally ordered stream of values. This is dequeued from XLA computations via the Infeed() operation. Args: value: the value that the caller would like to enqueue into the XLA infeed queue device: the device to infeed the value to. Each device has a distinct infeed queue. """ # TODO(phawkins): support non-default backends. backend = get_local_backend() device = device or backend.local_devices()[0] device.TransferToInfeed(value) def transfer_from_outfeed(shape, device=None): """Transfers a literal of the given shape from `device`'s outfeed. Args: shape: The shape of the value to transfer from outfeed. device: The device from which to transfer the outfeed value. Each device has a distinct outfeed queue.. Returns: The literal value that is produced from the outfeed queue. """ # TODO(phawkins): support non-default backends. backend = get_local_backend() device = device or backend.local_devices()[0] return device.TransferFromOutfeed( shape.with_major_to_minor_layout_if_absent()) DeviceAssignment = _xla.DeviceAssignment DeviceAssignment.__doc__ = """ A DeviceAssignment is a C++ object with the following signature. def create(assignment): '''Builds a device assignment. Args: assignment: a 2D numpy array of device ordinal integers, indexed by [replica][computation_in_replica]. Returns: A device assignment. ''' def replica_count(): '''Returns the number of replicas.''' def computation_count(): '''Returns the number of computations per replica.''' """ Device = _xla.Device class CompileOptions(object): """Python object for XLA compile options. These options can be passed to the 'compile' step when using a local XLA client. """ def __init__(self): self.xla_dump_to = None self.dump_hlo_pass_re = None self.dump_hlo_module_re = None self.dump_hlo_as_text = None self.dump_hlo_as_proto = None self.hlo_profile = None self.num_replicas = 1 self.num_partitions = 1 self.argument_layouts = None self.result_layout = None self.device_assignment = None class Computation(object): """Python wrapper for an XLA Computation. A Computation can be compiled to form an Executable, or used as a subcomputation in ComputationBuilder methods. """ def __init__(self, c_computation, backend=None): self._c_computation = c_computation # The backend argument is deprecated. Pass a backend to Compile() instead. self._backend = backend @property def computation(self): return self._c_computation def GetSerializedProto(self): """Gets the serialized HloModuleProto proto object in this computation. Returns: A string containing a serialized HloModuleProto proto containing the computation and its dependencies. """ return self.computation.GetSerializedProto() def GetHloText(self): """Get the textual HLO representation of this computation. Returns: A string containing the textual HLO. """ return self.computation.GetHloText() def GetHloDotGraph(self): """Get a Graphviz Dot representation of this computation. Returns: A string containing the graphviz dot graph. """ return self.computation.GetHloDotGraph() def Compile(self, argument_shapes=None, compile_options=None, backend=None): """Compiles a computation. Computations are the result of a "ComputationBuild'ing" process. Arguments: argument_shapes: Deprecated. Use compile_options.argument_layouts instead. compile_options: options to use for compilation, includes an optional laid out result shape for the computation. backend: a `Backend` for which an executable should be generated. Returns: A Executable instance. """ backend = backend or self._backend or get_local_backend() compile_options = compile_options or CompileOptions() if argument_shapes: compile_options.argument_layouts = argument_shapes return backend.compile(self.computation, compile_options) def GetProgramShape(self): return self._c_computation.GetProgramShape() def GetReturnValueShape(self): return self._c_computation.GetProgramShape().result_shape() def Hash(self): return self._c_computation.Hash() # An Executable is a C++ class that duck types with the following API: # class Executable(object): # def local_devices(self) -> [Device]: # def Execute(self, arguments : [Buffer]) -> Buffer: # """Execute on one replica with Buffer arguments and return value.""" # # def SizeOfGeneratedCodeInBytes(self) -> int: # """Return generated binary size, or -1 if not known.""" # # def ExecutePerReplica(self, arguments: [[Buffer]]) -> [Buffer]: # """Execute on many replicas with Buffer arguments and return value. # # Args: # arguments: A sequence of sequences of Buffers. The i'th inner sequence # comprises the arguments for execution on the i'th replica. # # Returns: # A list of the computation's outputs for each replica, as a Buffer. If # a shallow sequence of arguments was passed in for `arguments`, then the # sole, zero'th replica's output is returned instead, as a Buffer. # """ # # There are different implementations of Executable for different backends. def execute_with_python_values(executable, arguments=(), backend=None): """Execute on one replica with Python values as arguments and output.""" backend = backend or get_local_backend() def put(arg): return Buffer.from_pyval( arg, device=executable.local_devices()[0], backend=backend) arguments = [put(arg) for arg in arguments] return executable.Execute(arguments).to_py() def execute_with_python_values_replicated(executable, arguments, backend=None): """Execute on many replicas with Python values as arguments and output. Arguments: executable: the program to run. arguments: a list of lists of Python values indexed by `[replica][arg_num]` to pass as inputs. backend: the backend we are targeting. Returns: A list of python values, one per replica. """ backend = backend or get_local_backend() devices = executable.local_devices() # pylint: disable=g-complex-comprehension flat_args = [(arg, devices[replica]) for replica, replica_args in enumerate(arguments) for arg in replica_args] flat_arg_buffers = [ backend.buffer_from_pyval(pyval, device) for pyval, device in flat_args ] arg_buffers = [] for replica_args in arguments: arg_buffers.append(flat_arg_buffers[:len(replica_args)]) flat_arg_buffers = flat_arg_buffers[len(replica_args):] return [out.to_py() for out in executable.ExecutePerReplica(arg_buffers)] class PaddingType(enum.Enum): VALID = 1 SAME = 2 def _convert_padding_type_to_pad_values(padding_type, lhs_dims, rhs_dims, window_strides): """Maps PaddingType or string to pad values (list of pairs of ints).""" if not isinstance(padding_type, (str, PaddingType)): msg = 'padding_type must be str or PaddingType, got {}.' raise TypeError(msg.format(type(padding_type))) if isinstance(padding_type, str): if padding_type.upper() == 'VALID': padding_type = PaddingType.VALID elif padding_type.upper() == 'SAME': padding_type = PaddingType.SAME else: msg = 'Unknown padding type string: expected "VALID" or "SAME", got {}.' raise ValueError(msg.format(padding_type)) if padding_type == PaddingType.VALID: return [(0, 0)] * len(window_strides) elif padding_type == PaddingType.SAME: out_shape = np.ceil(np.true_divide(lhs_dims, window_strides)).astype(int) pad_sizes = [ max((out_size - 1) * stride + filter_size - in_size, 0) for out_size, stride, filter_size, in_size in zip( out_shape, window_strides, rhs_dims, lhs_dims) ] return [(pad_size // 2, pad_size - pad_size // 2) for pad_size in pad_sizes] else: msg = 'Unexpected PaddingType value: {}' raise ValueError(msg.format(padding_type)) class ComputationBuilder(object): """XLA computation builder. Enqueues XLA ops in sequence and in order to build a Computation, which in turn can be compiled into a LocalExecutable, which in turn can be locally executed. """ # The methods of this class map 1-to-1 onto the XLA C++ # computation builder API. Therefore, there's no need to laboriously list # arguments and return values for every method, especially where it's obvious. # # pylint: disable=g-doc-return-or-yield # pylint: disable=g-doc-args def __init__(self, name): self._builder = _xla.XlaBuilder(name) self._parameter_numbering = itertools.count() def Build(self, root=None, backend=None): """Builds a `Computation` from the contents of the builder. Args: root: if not None, the operator containing the return value of the computation. Returns: A `Computation`. """ if root is not None: return Computation(self._builder.Build(root), backend=backend) else: return Computation(self._builder.Build(), backend=backend) def GetShape(self, operand): return self._builder.GetShape(operand) def SetOpMetadata(self, op_metadata): """Set metadata for operations that are about to be enqueued.""" self._builder.SetOpMetadata(op_metadata) def ClearOpMetadata(self): """Clear metadata for operations that are about to be enqueued.""" self._builder.ClearOpMetadata() def SetSharding(self, sharding): """Set sharding that will be attached to all instructions until cleared.""" self._builder.SetSharding(sharding) def ClearSharding(self): """Clears the sharding. Ops will be sharded according to the default placement policy. """ self._builder.ClearSharding() def CreateToken(self): """Enqueues a CreateToken op onto the computation. Returns: An XlaOp, representing a fresh token. """ return ops.CreateToken(self._builder) def AfterAll(self, tokens): """Enqueues a after-all op onto the computation. `AfterAll` takes a variadic number of tokens and produces a single token. Args: tokens: a list of `XlaOp` values representing predecessor tokens. Returns: An `XlaOp`. """ return ops.AfterAll(self._builder, tokens) def Infeed(self, shape, token=None): """Enqueues an infeed op onto the computation. Infeed operations dequeue data of the given shape from the device's infeed queue for subsequent use in the computation. Args: shape: a `Shape` describing the shape of the infed value. token: an optional `XlaOp` representing a token after which the infeed effect should be sequenced. Returns: An XlaOp, representing a (value, token) pair. """ if token is None: token = ops.CreateToken(self._builder) return ops.InfeedWithToken(token, shape.with_major_to_minor_layout_if_absent()) def Outfeed(self, operand, token=None): """Enqueues an outfeed op onto the computation. Outfeed operations enqueue data, using the given operand, onto the XLA outfeed queue for subsequent dequeue via the client API. Args: operand: an `XlaOp` representing the data to outfeed. token: an `XlaOp` representing a token after which the outfeed should be sequenced. Returns: An `XlaOp` representing a token. """ if token is None: token = ops.CreateToken(self._builder) return ops.OutfeedWithToken(operand, token, self._builder.GetShape(operand), '') def Constant(self, value): """Enqueues a constant op onto the computation. Args: value: value for the constant, as a np.array with an explicit dtype set to one of the supported types. Returns: An XlaOp. """ return ops.ConstantLiteral(self._builder, value) def ConstantF32Scalar(self, value): """Convenience method to enqueue a scalar F32 constant op. Args: value: a floating-point number. Returns: An XlaOp. """ return self.Constant(np.array(value, dtype=np.float32)) def ConstantF64Scalar(self, value): """Convenience method to enqueue a scalar F32 constant op. Args: value: a floating-point number. Returns: An XlaOp. """ return self.Constant(np.array(value, dtype=np.float64)) def ConstantS32Scalar(self, value): """Convenience method to enqueue a scalar S32 constant op. Args: value: a floating-point number. Returns: An XlaOp. """ return self.Constant(np.array(value, dtype=np.int32)) def ConstantS64Scalar(self, value): """Convenience method to enqueue a scalar S64 constant op. Args: value: a floating-point number. Returns: An XlaOp. """ return self.Constant(np.array(value, dtype=np.int64)) def ConstantPredScalar(self, value): """Convenience method to enqueue a scalar PRED constant op. Args: value: a boolean value. Returns: An XlaOp. """ return self.Constant(np.array(value, dtype=np.bool)) def ParameterWithShape(self, shape, name=None, parameter_num=None, replicated=False): """Enqueues a Parameter op onto the computation, given a shape. Args: shape: the parameter's shape as a Shape object. name: optional string name for the parameter. parameter_num: parameter number in the computation function. If None, the next linear parameter number is used. The default value capability can be used for auto-numbering. If you're using auto-numbering for some parameters, use it for *all* parameters to avoid clashes. replicated: whether to mark the parameter's leaves as replicated. May be a bool, in which case it applies to all leaves, or an iterable of bools. Returns: An XlaOp. """ if name is None: name = '' if parameter_num is None: parameter_num = next(self._parameter_numbering) if isinstance(replicated, bool): replicated = [replicated] * shape.leaf_count() return ops.Parameter(self._builder, parameter_num, shape.with_major_to_minor_layout_if_absent(), name.encode('utf8'), replicated) def ParameterFromNumpy(self, value, name=None, parameter_num=None): """Enqueues a Parameter op onto the computation. Args: value: a Numpy array, or a nested tuple thereof, from which the shape is inferred. name: as in ParameterWithShape. parameter_num: as in ParameterWithShape. Returns: An XlaOp. """ return self.ParameterWithShape( shape_from_pyval(value), name=name, parameter_num=parameter_num) def Iota(self, dtype, size): """Enqueues an iota constant onto the computation. Args: dtype: expected numpy dtype of the output. size: integer, the number of elements in the array. Returns: An XlaOp representing the added iota constant. """ element_type = DTYPE_TO_XLA_ELEMENT_TYPE[str(np.dtype(dtype))] return ops.Iota(self._builder, element_type, size) def BroadcastedIota(self, dtype, shape, dimension): """Enqueues a broadcasted iota constant onto the computation. Args: dtype: expected numpy dtype of the output. shape: tuple of integers, the expected output shape (dimensions). dimension: positive integer, dimension along which to increment values. Returns: An XlaOp representing the added broadcasted iota constant. """ element_type = DTYPE_TO_XLA_ELEMENT_TYPE[str(np.dtype(dtype))] xla_shape = _xla.Shape.array_shape(element_type, shape, None) return ops.Iota(self._builder, xla_shape, dimension) def Concatenate(self, operands, dimension): """Enqueues a concatenate operation onto the computation. Args: operands: the operands to concatenate. dimension: the dimension in which to perform the concatenation. Returns: An XlaOp representing the added concatenate op. """ return ops.ConcatInDim(self._builder, list(operands), dimension) def ReplicaId(self): """Enqueues a ReplicaId operation onto the computation. Returns: A LocalOp representing the replica id. """ return _xla.ops.ReplicaId(self._builder) def Pad(self, operand, padding_value, padding_config): """Enqueues a Pad operation onto the computation. Args: operand: XlaOp representing the array to pad. padding_value: XlaOp representing the scalar pad value. padding_config: either a PaddingConfig or a list of integer triples (edge_padding_low, edge_padding_high, interior_padding) representing the configuration of the padding operation. Returns: An XlaOp representing the added Pad op. """ if isinstance(padding_config, tuple) or isinstance(padding_config, list): padding_config = GetPaddingConfigFromTriples(padding_config) return ops.Pad(operand, padding_value, padding_config) def Reshape(self, operand, dimensions, new_sizes): """Enqueues a reshape op onto the computation. Args: operand: XlaOp representing the array to be reshaped. dimensions: sequence of integers encoding the order in which dimensions are collapsed or None, in which case dimensions are flattened in order. new_sizes: sequence of integers encoding the new dimension sizes (shape). Returns: An XlaOp representing the added Reshape op. """ if dimensions is None: ndim = len(self.GetShape(operand).dimensions()) dimensions = tuple(range(ndim)) return ops.Reshape(operand, dimensions, new_sizes) def AllReduce(self, operand, computation, replica_groups=None): """AllReduce op. Args: operand: XlaOp representing the input array computation: a Computation object - binary reduction function. replica_groups: optional, list of lists of ints encoding a partition of the set {0, 1, ..., num_replicas} into equally-sized replica groups within which the all-to-all is performed. If not supplied or None (the default), all replicas belong to the same group. Returns: An XlaOp that represents the all-reduced result. """ replica_groups_protos = _get_replica_groups_protos(replica_groups) return ops.AllReduce(operand, computation.computation, replica_groups_protos, None, None) def AllToAll(self, operand, split_dimension, concat_dimension, replica_groups=None): """AllToAll op. Args: operand: XlaOp representing the input array split_dimension: the dimension along which the operand is split concat_dimension: the dimension along which the split blocks are concatenated replica_groups: optional, list of lists of ints encoding a partition of the set {0, 1, ..., num_replicas} into equally-sized replica groups within which the all-to-all is performed. If not supplied or None (the default), all replicas belong to the same group. Returns: An XlaOp that represents the all-to-all concatenation. """ replica_groups_protos = _get_replica_groups_protos(replica_groups) if not replica_groups: split_count = 1 else: split_count = len(replica_groups[0]) if not all(split_count == len(g) for g in replica_groups): raise ValueError('Replica groups must be equally sized') return ops.AllToAll(operand, split_dimension, concat_dimension, split_count, replica_groups_protos) def CrossReplicaSum(self, operand, replica_groups=None): """CrossReplicaSum op. Args: operand: the operand to sum across replica instances. replica_groups: optional, list of lists of ints encoding a partition of the set {0, 1, ..., num_replicas} into equally-sized replica groups within which the cross-replica sum is performed. If not supplied or None (the default), all replicas belong to the same group. Returns: An XlaOp that represents on each replica the sum of its group's values. """ replica_groups_protos = _get_replica_groups_protos(replica_groups) return ops.CrossReplicaSum(operand, replica_groups_protos) def Trans(self, operand): """Specialized matrix transpose op.""" return ops.Transpose(operand, [1, 0]) def Transpose(self, operand, permutation): """Transpose op.""" return ops.Transpose(operand, permutation) def SelectAndScatter(self, operand, select, window_dimensions, window_strides, padding, source, init_value, scatter): """Select and scatter op, used by the gradient of ReduceWindow. Args: operand: XlaOp for array of dimension N and type T over which the windows slide. select: Computation of type (T, T) -> Pred to apply to the elements of each window to indicate which element is selected. window_dimensions: sequence of N integers for dimensions of the window. window_strides: sequence of N integers for the strides of the window. padding: PaddingType representing either 'SAME' or 'VALID ' padding. source: XlaOp for array of type T with values to scatter. init_value: XlaOp of scalar type T for initial out value. scatter: Computation of type (T, T) -> T to apply to each scatter source element with its destination element. Returns: An XlaOp representing the added SelectAndScatter op. """ pads = _convert_padding_type_to_pad_values( padding, self.GetShape(operand).dimensions(), window_dimensions, window_strides) return ops.SelectAndScatterWithGeneralPadding(operand, select.computation, window_dimensions, window_strides, pads, source, init_value, scatter.computation) def Slice(self, operand, start_indices, limit_indices, strides=None): """Enqueues a slice operation onto the computation. Args: operand: XlaOp for the N dimensional array to be sliced. start_indices: iterable of N integers containing the starting indices of the slice for each dimension. limit_indices: iterable of N integers containing the ending indices (exclusive) of the slice for each dimension. strides: optional iterable of N integers containing the stride sizes for each dimension. Returns: An XlaOp representing the added Slice op. """ if strides is None: start_indices = list(start_indices) strides = [1] * len(start_indices) return ops.Slice(operand, start_indices, limit_indices, strides) def DynamicSlice(self, operand, start_indices, slice_sizes): """Enqueues a slice op with dynamic start indices onto the computation. Args: operand: XlaOp for the N dimensional array to be sliced. start_indices: XlaOp for the 1D array of N integers containing the starting indices of the slice. slice_sizes: iterable of N integers containing the slice sizes in each dimension. Returns: An XlaOp representing the added DynamicSlice op. """ slice_sizes = list(slice_sizes) if isinstance(start_indices, _xla.XlaOp): start_indices = [ ops.Reshape(ops.Slice(start_indices, [i], [i + 1], [1]), []) for i in range(len(slice_sizes)) ] return ops.DynamicSlice(operand, list(start_indices), slice_sizes) def DynamicUpdateSlice(self, operand, update, start_indices): """Enqueues a dynamic update slice operation onto the computation. Args: operand: XlaOp for the N dimensional array to be updated. update: N dimensional array comprising the slice update. start_indices: Rank-1 array of N integers comprising the starting indices of the slice along each dimension. Returns: An XlaOp representing the added DynamicUpdateSlice op. """ if isinstance(start_indices, _xla.XlaOp): ndims = self._builder.GetShape(start_indices).dimensions()[0] start_indices = [ ops.Reshape(ops.Slice(start_indices, [i], [i + 1], [1]), []) for i in range(ndims) ] return ops.DynamicUpdateSlice(operand, update, list(start_indices)) def Tuple(self, *elems): """Enqueues a tuple operation onto the computation. Args: elems: a sequence of tuple operands (each a XlaOp). Returns: An XlaOp representing the added Tuple op. """ return ops.Tuple(self._builder, list(elems)) def Call(self, computation_to_apply, operands): """Enqueues a call operation onto the computation. Args: computation_to_apply: a Computation object. operands: an iterable of XlaOp. The number and types of operands must match the arity of computation_to_apply. Returns: An XlaOp representing the added call op. """ return ops.Call(self._builder, computation_to_apply.computation, list(operands)) def CustomCallWithLayout(self, call_target_name, operands, shape_with_layout, operand_shapes_with_layout, opaque=None): """Enqueues a custom call operation onto the computation. Args: call_target_name: the name of the function to call. operands: an iterable of XlaOp. The number and types of operands must match the arity of `operand_shapes_with_layout`. shape_with_layout: the shape of the operator's output, with layout. operand_shapes_with_layout: the shapes of `operands`, including the expected layouts. opaque: an opaque string passed to the backend. Returns: An XlaOp representing the added custom call op. """ opaque = opaque or b'' return ops.CustomCall(self._builder, call_target_name, list(operands), shape_with_layout, list(operand_shapes_with_layout), opaque) # TODO(phawkins): remove CustomCall after callers are updated to use # CustomCallWithLayout. CustomCall = CustomCallWithLayout def Map(self, operands, computation_to_apply, dimensions): """Enqueues a map operation onto the computation. Args: operands: an iterable of XlaOp. computation_to_apply: a Computation object. dimensions: dimensions over which to apply map the function. Returns: An XlaOp representing the added Map op. """ return ops.Map(self._builder, list(operands), computation_to_apply.computation, dimensions, []) def Reduce(self, operand, init_value, computation_to_apply, dimensions): """Enqueues a reduction operation onto the computation. Args: operand: reduction operand (XlaOp). init_value: reduction initial value (XlaOp). computation_to_apply: a Computation object - binary reduction function. dimensions: sequence of dimensions (integers) to reduce on. Returns: An XlaOp representing the added Reduce op. """ return ops.Reduce(self._builder, [operand], [init_value], computation_to_apply.computation, dimensions) def ReduceWindow(self, operand, init_value, computation_to_apply, window_dimensions, window_strides, padding): """Enqueues a windowed reduction operation onto the computation. Args: operand: reduction operand (XlaOp). init_value: reduction initial value (XlaOp). computation_to_apply: a binary reduction function (Computation). window_dimensions: dimensions of window (sequence of integers). window_strides: strides for window (sequence of integers). padding: PaddingType representing either 'SAME' or 'VALID' padding. Returns: An XlaOp representing the added ReduceWindow op. """ pads = _convert_padding_type_to_pad_values( padding, self.GetShape(operand).dimensions(), window_dimensions, window_strides) return ops.ReduceWindowWithGeneralPadding(operand, init_value, computation_to_apply.computation, window_dimensions, window_strides, (), (), pads) def ReduceWindowWithGeneralPadding(self, operand, init_value, computation_to_apply, window_dimensions, window_strides, base_dilations, window_dilations, padding): """Enqueues a windowed reduction operation onto the computation. Args: operand: reduction operand (XlaOp). init_value: reduction initial value (XlaOp). computation_to_apply: a binary reduction function (Computation). window_dimensions: dimensions of window (sequence of integers). window_strides: strides for window (sequence of integers). base_dilations: dilations for the base (sequence of integers). window_dilations: dilations for window (sequence of integers). padding: length-N array-like of pairs of integers of (low, high) padding. Returns: An XlaOp representing the added ReduceWindow op. """ return ops.ReduceWindowWithGeneralPadding(operand, init_value, computation_to_apply.computation, window_dimensions, window_strides, base_dilations, window_dilations, padding) def RngNormal(self, mu, sigma, dims): """Enqueues an RngNormal operation onto the computation. Args: mu: An XlaOp to an F32 scalar specifying the mean. sigma: An XlaOp to an F32 scalar specifying the standard deviation. dims: A 1D array-like of nonnegative integers specifying the dimensions. Returns: a XlaOp to the generated array of F32 values. """ shape = _xla.Shape.array_shape(self.GetShape(mu).xla_element_type(), dims) return ops.RngNormal(mu, sigma, shape) def RngUniform(self, a, b, dims): """Enqueues an RngUniform operation onto the computation. Args: a: a XlaOp to an F32, S32, or U32 scalar (consistent with the type of b) specifying the low end of the interval [a, b) over which values are generated. b: a XlaOp to an F32, S32, or U32 scalar (consistent with the type of a) specifying the high end of the interval [a, b) over which values are generated. dims: A 1D array-like of nonnegative integers specifying the dimensions. Returns: a XlaOp to the generated array of values with the same numeric type (F32, S32, or U32) as the arguments a and b. """ shape = _xla.Shape.array_shape(self.GetShape(a).xla_element_type(), dims) return ops.RngUniform(a, b, shape) def While(self, cond, body, init): """Enqueues a While operation onto the computation. Args: cond: a Computation for the loop condition, which has type T -> PRED body: a Computation for the loop body, which has type T -> T init: a XlaOp for the initial parameter, which has type T Returns: a XlaOp representing the While operation. """ return ops.While(cond.computation, body.computation, init) def Conditional(self, pred, true_operand, true_computation, false_operand, false_computation): """Enqueues a Conditional operation onto the computation. Args: predicate: a XlaOp to test, which has scalar type PRED true_operand: a XlaOp of type T_0 true_computation: a Computation to apply to true_operand, type T_0 -> S false_operand: a ComputationDatahandle of type T_1 false_computation: a Computation to apply to false_operand, type T_1 -> S Returns: a XlaOp representing the Conditional operation. """ return ops.Conditional(pred, true_operand, true_computation.computation, false_operand, false_computation.computation) def IsConstant(self, operand): """Checks whether the given operand is a compile-time constant. Args: operand: a ComputationDataHandle to test. Returns: bool indicating whether `operand` is a compile-time constant, meaning its value does not depend on any parametersor, or on stateful operators such as `RngNormal` or `Infeed`. """ return self._builder.IsConstant(operand) def BuildConstantSubGraph(self, operand): """Builds a constant sub graph. Args: operand: a XlaOp to test. Returns: a Computation that is rooted on the given `operand` which is a compile-time constant. """ return ops.BuildConstantSubGraph(operand) def DotGeneral(self, lhs, rhs, dimension_numbers, precision_config=None): """Enqueues a general dot operation onto the computation. Args: lhs: XlaOp for the left-hand-side array. rhs: XlaOp for the right-hand-side array. dimension_numbers: either a DotDimensionNumbers or a nested tuple ((lhs_contract, rhs_contract), (lhs_batch, rhs_batch)) of lists of integers representing the dimensions to treat as contracting dimensions and batch dimensions on each input operand. Returns: a XlaOp representing the DotGeneral operation. """ if isinstance(dimension_numbers, tuple): dimension_numbers = GetDotDimensionsFromLists(dimension_numbers) return ops.DotGeneral( lhs, rhs, dimension_numbers, precision_config=precision_config) def Conv(self, lhs, rhs, window_strides, padding, feature_group_count=1, batch_group_count=1, precision_config=None): """Enqueues a Conv operation onto the computation. Args: lhs: XlaOp for the rank N+2 array of inputs. rhs: XlaOp for the rank N+2 array of kernel weights. window_strides: length-N array-like of integer kernel strides. padding: PaddingType representing either 'SAME' or 'VALID' padding. feature_group_count: number of feature groups for grouped convolution. batch_group_count: number of batch groups for grouped convolution. Returns: a XlaOp representing the Conv operation. """ pads = _convert_padding_type_to_pad_values( padding, self.GetShape(lhs).dimensions()[2:], self.GetShape(rhs).dimensions()[2:], window_strides) return self.ConvGeneralDilated( lhs, rhs, window_strides, pads, [], [], dimension_numbers=None, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision_config=precision_config) def ConvWithGeneralPadding(self, lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, feature_group_count=1, batch_group_count=1, precision_config=None): """Enqueues a ConvWithGeneralPadding operation onto the computation. Args: lhs: XlaOp for the rank N+2 array of inputs. rhs: XlaOp for the rank N+2 array of kernel weights. window_strides: length-N array-like of kernel strides. padding: length-N array-like of pairs of integers of (low, high) padding. lhs_dilation: length-N array-like of dilation factors. rhs_dilation: length-N array-like of dilation factors. feature_group_count: number of feature groups for grouped convolution. batch_group_count: number of batch groups for grouped convolution. Returns: A ComputationdataHandle representing the added ConvWithGeneralPadding op. """ return self.ConvGeneralDilated( lhs, rhs, list(window_strides), list(padding), list(lhs_dilation), list(rhs_dilation), dimension_numbers=None, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision_config=precision_config) def _GetConvDimensionNumbers(self, num_spatial_dims): """Create ConvolutionDimensionNumbers proto for convolutions.""" nd = num_spatial_dims dimension_numbers = ConvolutionDimensionNumbers() dimension_numbers.input_batch_dimension = 0 dimension_numbers.input_feature_dimension = 1 dimension_numbers.output_batch_dimension = 0 dimension_numbers.output_feature_dimension = 1 dimension_numbers.kernel_output_feature_dimension = 0 dimension_numbers.kernel_input_feature_dimension = 1 dimension_numbers.input_spatial_dimensions.extend(range(2, 2 + nd)) dimension_numbers.kernel_spatial_dimensions.extend(range(2, 2 + nd)) dimension_numbers.output_spatial_dimensions.extend(range(2, 2 + nd)) return dimension_numbers def ConvGeneralDilated(self, lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers=None, feature_group_count=1, batch_group_count=1, precision_config=None): """Enqueues a ConvGeneralDilated operation onto the computation. Args: lhs: XlaOp for the rank N+2 array of inputs. rhs: XlaOp for the rank N+2 array of kernel weights. window_strides: length-N array-like of integer kernel strides. padding: length-N array-like of pairs of integers of (low, high) padding. lhs_dilation: length-N array-like of integer dilation factors. rhs_dilation: length-N array-like of integer dilation factors. dimension_numbers: optional, either a ConvolutionDimensionNumbers object or a tuple (lhs_spec, rhs_spec, out_spec). Each element is a string of length N+2 identifying by position: (1) batch dimensions in lhs, rhs, and the output with the character 'N', (2) feature dimensions in lhs and the output with the character 'C', (3) input and output feature dimensions in rhs with the characters 'I' and 'O' respectively, and (4) spatial dimension correspondences between lhs, rhs, and the output using any distinct characters. For example, to indicate dimension numbers consistent with the Conv operation with two spatial dimensions, one could use ('NCHW', 'OIHW', 'NCHW'). As another example, to indicate dimension numbers consistent with the TensorFlow Conv2D operation, one could use ('NHWC', 'HWIO', 'NHWC'). When using the latter form of convolution dimension specification, window strides are associated with spatial dimension character labels according to the order in which the labels appear in the rhs_spec string, so that window_strides[0] is matched with the dimension corresponding to the first character appearing in rhs_spec that is not 'I' or 'O'. By default, use the same dimension numbering as Conv and ConvWithGeneralPadding. feature_group_count: number of feature groups for grouped convolution. batch_group_count: number of batch groups for grouped convolution. Returns: a XlaOp representing the ConvGeneralDilated operation. """ if dimension_numbers is None: dimension_numbers = self._GetConvDimensionNumbers(len(window_strides)) elif isinstance(dimension_numbers, tuple): lhs_spec, rhs_spec, out_spec = dimension_numbers dimension_numbers = ConvolutionDimensionNumbers() dimension_numbers.input_batch_dimension = lhs_spec.index('N') dimension_numbers.input_feature_dimension = lhs_spec.index('C') dimension_numbers.output_batch_dimension = out_spec.index('N') dimension_numbers.output_feature_dimension = out_spec.index('C') dimension_numbers.kernel_output_feature_dimension = rhs_spec.index('O') dimension_numbers.kernel_input_feature_dimension = rhs_spec.index('I') dimension_numbers.kernel_spatial_dimensions.extend( i for i, c in enumerate(rhs_spec) if c not in {'I', 'O'}) dimension_numbers.input_spatial_dimensions.extend( sorted((i for i, c in enumerate(lhs_spec) if c not in {'N', 'C'}), key=lambda i: rhs_spec.index(lhs_spec[i]))) dimension_numbers.output_spatial_dimensions.extend( sorted((i for i, c in enumerate(out_spec) if c not in {'N', 'C'}), key=lambda i: rhs_spec.index(out_spec[i]))) return ops.ConvGeneralDilated( lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config=precision_config) def Sort(self, operands, dimension=-1, comparator=None): """Enqueues a sort operation onto the computation. Args: operands: either an XlaOp or a sequence of XlaOps to sort. All operands must be arrays with the same dimensions. dimension: the array dimension over which to sort. comparator: a comparator XlaComputation. See the XLA operation semantics for details. Returns: Either an XlaOp or a tuple of XlaOps (if `operands` was an XlaOp or a tuple of XlaOps, respectively.) """ operands = ( list(operands) if isinstance(operands, collections.Sequence) else [operands]) return ops.Sort(self._builder, operands, dimension, comparator.computation if comparator else None) def SortKeyVal(self, keys, values, dimension=-1): """Enqueues a key-value sort operation onto the computation. Deprecated. Use `Sort` instead. """ return ops.Sort(self._builder, [keys, values], dimension) def QR(self, a, full_matrices=True): """Enqueues a QR decomposition onto the computation.""" return self.Tuple(*ops.QR(a, full_matrices)) def TriangularSolve(self, a, b, left_side=False, lower=False, transpose_a=False, conjugate_a=False, unit_diagonal=False): """Enqueues a triangular-solve operation onto the computation.""" if not transpose_a: transpose = _xla.TriangularSolveOptions_Transpose.NO_TRANSPOSE if conjugate_a: a = self.Conj(a) else: transpose = ( _xla.TriangularSolveOptions_Transpose.ADJOINT if conjugate_a else _xla.TriangularSolveOptions_Transpose.TRANSPOSE) return ops.TriangularSolve(a, b, left_side, lower, unit_diagonal, transpose) def Eigh(self, a, full_matrices=True): """Enqueues a symmetric/Hermitian eigendecomposition.""" return self.Tuple(*ops.Eigh(a, full_matrices)) def SVD(self, a): """Enqueues a singular value decomposition.""" return self.Tuple(*ops.SVD(a)) def Gather(self, a, start_indices, dimension_numbers, slice_sizes, indices_are_sorted=False): """Enqueues a Gather operation onto the computation.""" return ops.Gather(a, start_indices, dimension_numbers, slice_sizes, indices_are_sorted) def Scatter(self, a, scatter_indices, updates, update_computation, dimension_numbers, indices_are_sorted=False, unique_indices=False): """Enqueues a Scatter operation onto the computation.""" return ops.Scatter(a, scatter_indices, updates, update_computation.computation, dimension_numbers, indices_are_sorted, unique_indices) def Fft(self, operand, fft_type, fft_lengths): """Enqueues a FFT operation onto the computation.""" return ops.Fft(operand, fft_type, fft_lengths) FftType = _xla.FftType _UNARY_OPS = [ 'Not', 'PopulationCount', 'Clz', 'Abs', 'Exp', 'Expm1', 'Floor', 'Round', 'Ceil', 'Log', 'Log1p', 'Sign', 'Cos', 'Sin', 'Tanh', 'IsFinite', 'Sqrt', 'Rsqrt', 'Square', 'Reciprocal', 'Neg', 'Erf', 'Erfc', 'ErfInv', 'Lgamma', 'Digamma', 'BesselI0e', 'BesselI1e', 'Acos', 'Asin', 'Atan', 'Tan', 'Acosh', 'Asinh', 'Atanh', 'Cosh', 'Sinh', 'Real', 'Imag', 'Conj', ] _BINARY_OPS = [ 'Eq', 'Ne', 'Ge', 'Gt', 'Lt', 'Le', 'Add', 'Sub', 'Mul', 'Div', 'Rem', 'Max', 'Min', 'And', 'Or', 'Xor', 'Pow', 'ShiftLeft', 'ShiftRightArithmetic', 'ShiftRightLogical', 'Atan2', 'Igamma', 'IgammaGradA', 'Igammac', 'Complex', 'NextAfter', ] _OTHER_OPS = [ 'BitcastConvertType', 'Broadcast', 'BroadcastInDim', 'Cholesky', 'Clamp', 'Collapse', 'CollectivePermute', 'ConvertElementType', 'Dot', 'GetTupleElement', 'ReducePrecision', 'RegularizedIncompleteBeta', 'Rev', 'Select', 'SliceInDim', 'TopK', ] def _forward_methods_to_local_builder(): """Forward remaining ComputationBuilder methods to the C API. Set up methods, corresponding to XLA operations, whose calls are forwarded in a boilerplate manner to the underlying _xla.ops API. """ def forward_op(target_method): def forward(builder, *args, **kwargs): del builder return target_method(*args, **kwargs) return forward for method_name in itertools.chain(_UNARY_OPS, _BINARY_OPS, _OTHER_OPS): forward = forward_op(getattr(ops, method_name)) forward.__name__ = method_name setattr(ComputationBuilder, method_name, forward) _forward_methods_to_local_builder() def register_custom_call_target(name, fn, platform='cpu'): """Registers a custom call target. Args: name: bytes containing the name of the function. fn: a PyCapsule object containing the function pointer. platform: the target platform. """ _xla.RegisterCustomCallTarget(name, fn, xla_platform_names[platform]) # Deprecated. Use register_custom_call_target instead. register_cpu_custom_call_target = register_custom_call_target class PaddingConfigDimension(object): """Python representation of a xla.PaddingConfigDimension protobuf.""" __slots__ = ('edge_padding_low', 'edge_padding_high', 'interior_padding') def __init__(self): self.edge_padding_low = 0 self.edge_padding_high = 0 self.interior_padding = 0 class PaddingConfig(object): """Python representation of a xla.PaddingConfig protobuf.""" __slots__ = ('dimensions',) def __init__(self): self.dimensions = [] def GetPaddingConfigFromTriples(triples): """Create PaddingConfig proto from list of triples of integers.""" padding_config = PaddingConfig() for lo, hi, interior in triples: dimension = PaddingConfigDimension() dimension.edge_padding_low = lo dimension.edge_padding_high = hi dimension.interior_padding = interior padding_config.dimensions.append(dimension) return padding_config class DotDimensionNumbers(object): """Python representation of a xla.DotDimensionNumbers protobuf.""" __slots__ = ('lhs_contracting_dimensions', 'rhs_contracting_dimensions', 'lhs_batch_dimensions', 'rhs_batch_dimensions') def __init__(self): self.lhs_contracting_dimensions = [] self.rhs_contracting_dimensions = [] self.lhs_batch_dimensions = [] self.rhs_batch_dimensions = [] def GetDotDimensionsFromLists(dimension_numbers): (lhs_contract, rhs_contract), (lhs_batch, rhs_batch) = dimension_numbers dot_dims_proto = DotDimensionNumbers() dot_dims_proto.lhs_contracting_dimensions.extend(lhs_contract) dot_dims_proto.rhs_contracting_dimensions.extend(rhs_contract) dot_dims_proto.lhs_batch_dimensions.extend(lhs_batch) dot_dims_proto.rhs_batch_dimensions.extend(rhs_batch) return dot_dims_proto class ConvolutionDimensionNumbers(object): """Python representation of a xla.ConvolutionDimensionNumbers protobuf.""" __slots__ = ('input_batch_dimension', 'input_feature_dimension', 'input_spatial_dimensions', 'kernel_input_feature_dimension', 'kernel_output_feature_dimension', 'kernel_spatial_dimensions', 'output_batch_dimension', 'output_feature_dimension', 'output_spatial_dimensions') def __init__(self): self.input_batch_dimension = 0 self.input_feature_dimension = 0 self.input_spatial_dimensions = [] self.kernel_input_feature_dimension = 0 self.kernel_output_feature_dimension = 0 self.kernel_spatial_dimensions = [] self.output_batch_dimension = 0 self.output_feature_dimension = 0 self.output_spatial_dimensions = [] class OpSharding(object): """Python representation of a xla.OpSharding protobuf.""" __slots__ = ('type', 'tile_assignment_dimensions', 'tile_assignment_devices', 'tuple_shardings') Type = _xla.OpSharding_Type def __init__(self): self.type = self.Type.REPLICATED self.tile_assignment_dimensions = [] self.tile_assignment_devices = [] self.tuple_shardings = [] class PrecisionConfig(object): """Python representation of a xla.PrecisionConfig protobuf.""" __slots__ = ('operand_precision',) Precision = _xla.PrecisionConfig_Precision def __init__(self): self.operand_precision = [] class GatherDimensionNumbers(object): """Python representation of a xla.GatherDimensionNumbers protobuf.""" __slots__ = ('offset_dims', 'collapsed_slice_dims', 'start_index_map', 'index_vector_dim') def __init__(self): self.offset_dims = [] self.collapsed_slice_dims = [] self.start_index_map = [] self.index_vector_dim = 0 class ScatterDimensionNumbers(object): """Python representation of a xla.ScatterDimensionNumbers protobuf.""" __slots__ = ('update_window_dims', 'inserted_window_dims', 'scatter_dims_to_operand_dims', 'index_vector_dim') def __init__(self): self.update_window_dims = [] self.inserted_window_dims = [] self.scatter_dims_to_operand_dims = [] self.index_vector_dim = 0 class ReplicaGroup(object): """Python representation of a xla.ReplicaGroup protobuf.""" __slots__ = ('replica_ids',) def __init__(self): self.replica_ids = [] def _make_replica_group_proto(replica_group): replica_group_proto = ReplicaGroup() replica_group_proto.replica_ids.extend(replica_group) return replica_group_proto def _get_replica_groups_protos(replica_groups): if replica_groups is None: replica_groups_protos = [] # special value for XLA API else: replica_groups = list(replica_groups) replica_groups_protos = [ _make_replica_group_proto(group) for group in replica_groups ] return replica_groups_protos
fb5956cc1e3720cd529ef6c78da2abf555f5f8bc
1b2407f35191917818ea7f276079aa8f62429770
/nova/tests/functional/libvirt/test_numa_servers.py
06f301abd11145980986ca92526ec9cf45581139
[ "Apache-2.0" ]
permissive
ISCAS-VDI/nova-base
67838b54230d250b71fd1067c4a754afbc258883
dbb6bba94f8a3eae5ed420d8af3431ab116c3fa7
refs/heads/master
2021-01-20T19:08:51.403722
2016-06-07T06:46:54
2016-06-07T06:46:54
60,588,545
0
1
Apache-2.0
2020-07-24T00:41:15
2016-06-07T06:38:23
Python
UTF-8
Python
false
false
6,704
py
# Copyright (C) 2015 Red Hat, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import fixtures from oslo_config import cfg from oslo_log import log as logging from nova import test from nova.tests.functional.test_servers import ServersTestBase from nova.tests.unit import fake_network from nova.tests.unit.virt.libvirt import fake_libvirt_utils from nova.tests.unit.virt.libvirt import fakelibvirt CONF = cfg.CONF LOG = logging.getLogger(__name__) class NumaHostInfo(fakelibvirt.HostInfo): def __init__(self, **kwargs): super(NumaHostInfo, self).__init__(**kwargs) self.numa_mempages_list = [] def get_numa_topology(self): if self.numa_topology: return self.numa_topology topology = self._gen_numa_topology(self.cpu_nodes, self.cpu_sockets, self.cpu_cores, self.cpu_threads, self.kB_mem) self.numa_topology = topology # update number of active cpus cpu_count = len(topology.cells) * len(topology.cells[0].cpus) self.cpus = cpu_count - len(self.disabled_cpus_list) return topology def set_custom_numa_toplogy(self, topology): self.numa_topology = topology class NUMAServersTest(ServersTestBase): def setUp(self): super(NUMAServersTest, self).setUp() # Replace libvirt with fakelibvirt self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.driver.libvirt_utils', fake_libvirt_utils)) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.driver.libvirt', fakelibvirt)) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.host.libvirt', fakelibvirt)) self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.guest.libvirt', fakelibvirt)) self.useFixture(fakelibvirt.FakeLibvirtFixture()) def _setup_compute_service(self): pass def _setup_scheduler_service(self): self.flags(compute_driver='libvirt.LibvirtDriver') self.flags(scheduler_driver='filter_scheduler') self.flags(scheduler_default_filters=CONF.scheduler_default_filters + ['NUMATopologyFilter']) return self.start_service('scheduler') def _run_build_test(self, flavor_id, filter_mock, end_status='ACTIVE'): self.compute = self.start_service('compute', host='test_compute0') fake_network.set_stub_network_methods(self) # Create server good_server = self._build_server(flavor_id) post = {'server': good_server} created_server = self.api.post_server(post) LOG.debug("created_server: %s" % created_server) self.assertTrue(created_server['id']) created_server_id = created_server['id'] # Validate that the server has been created found_server = self.api.get_server(created_server_id) self.assertEqual(created_server_id, found_server['id']) # It should also be in the all-servers list servers = self.api.get_servers() server_ids = [s['id'] for s in servers] self.assertIn(created_server_id, server_ids) # Validate that NUMATopologyFilter has been called self.assertTrue(filter_mock.called) found_server = self._wait_for_state_change(found_server, 'BUILD') self.assertEqual(end_status, found_server['status']) self._delete_server(created_server_id) def _get_topology_filter_spy(self): host_manager = self.scheduler.manager.driver.host_manager numa_filter_class = host_manager.filter_cls_map['NUMATopologyFilter'] host_pass_mock = mock.Mock(wraps=numa_filter_class().host_passes) return host_pass_mock @mock.patch('nova.virt.libvirt.LibvirtDriver._create_image') def test_create_server_with_numa_topology(self, img_mock): host_info = NumaHostInfo(cpu_nodes=2, cpu_sockets=1, cpu_cores=2, cpu_threads=2, kB_mem=15740000) fake_connection = fakelibvirt.Connection('qemu:///system', version=1002007, hv_version=2001000, host_info=host_info) # Create a flavor extra_spec = {'hw:numa_nodes': '2'} flavor_id = self._create_flavor(extra_spec=extra_spec) host_pass_mock = self._get_topology_filter_spy() with test.nested( mock.patch('nova.virt.libvirt.host.Host.get_connection', return_value=fake_connection), mock.patch('nova.scheduler.filters' '.numa_topology_filter.NUMATopologyFilter.host_passes', side_effect=host_pass_mock)) as (conn_mock, filter_mock): self._run_build_test(flavor_id, filter_mock) @mock.patch('nova.virt.libvirt.LibvirtDriver._create_image') def test_create_server_with_numa_fails(self, img_mock): host_info = NumaHostInfo(cpu_nodes=1, cpu_sockets=1, cpu_cores=2, kB_mem=15740000) fake_connection = fakelibvirt.Connection('qemu:///system', version=1002007, host_info=host_info) # Create a flavor extra_spec = {'hw:numa_nodes': '2'} flavor_id = self._create_flavor(extra_spec=extra_spec) host_pass_mock = self._get_topology_filter_spy() with test.nested( mock.patch('nova.virt.libvirt.host.Host.get_connection', return_value=fake_connection), mock.patch('nova.scheduler.filters' '.numa_topology_filter.NUMATopologyFilter.host_passes', side_effect=host_pass_mock)) as (conn_mock, filter_mock): self._run_build_test(flavor_id, filter_mock, end_status='ERROR')
c2aa76664a5c37545f20d40f25c06ab24d60b407
637e0a650a1bea456164bae71c2fb152a98f5db8
/pyntcloud/structures/octree.py
56ca5f00ca23ef21b2fdd734fd2d70676a8b7807
[ "Unlicense" ]
permissive
mzkaramat/pyntcloud
eaebfeea88573a1b27dc4df943c6a54dc796dc1b
6e663045495180581ddc77d604901e408c0a0247
refs/heads/master
2020-03-07T17:17:51.436067
2018-03-29T11:30:36
2018-03-29T11:30:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,466
py
# HAKUNA MATATA """ VoxelGrid Class """ import numpy as np import pandas as pd class Octree(object): def __init__(self, points, max_level=2): self.points = points self.max_level = max_level self.structure = pd.DataFrame( np.zeros((self.points.shape[0], self.max_level), dtype=np.uint8)) xyzmin = points.min(0) xyzmax = points.max(0) #: adjust to obtain a minimum bounding box with all sides of equal lenght diff = max(xyzmax - xyzmin) - (xyzmax - xyzmin) xyzmin = xyzmin - diff / 2 xyzmax = xyzmax + diff / 2 self.xyzmin = xyzmin self.xyzmax = xyzmax self.id = "O({})".format(max_level) self.build() def build(self): self.sizes = np.zeros(self.max_level) level_ptp = max(self.xyzmax - self.xyzmin) / 2 mid_points = np.zeros_like(self.points) mid_points[:] = (self.xyzmin + self.xyzmax) / 2 for i in range(self.max_level): self.sizes[i] = level_ptp level_ptp /= 2 bigger = self.points > mid_points if i != self.max_level - 1: mid_points = np.where( bigger, mid_points + level_ptp, mid_points - level_ptp) bigger = bigger.astype(np.uint8) self.structure.loc[:, i] = ( (bigger[:, 1] * 2) + bigger[:, 0]) + (bigger[:, 2] * (2 * 2)) def get_centroids(self, level): st = self.structure.loc[:, range(level)] for n, i in enumerate(["x", "y", "z"]): st[i] = self.points[:, n] return st.groupby([x for x in range(level)], sort=False).mean().values def get_level_as_sf(self, level): sf = np.zeros((self.points.shape[0], level), dtype=str) for k, v in self.structure.groupby([x for x in range(level)]).indices.items(): sf[v] = k return [int("".join(sf[i])) for i in range(len(sf))] def eigen_decomposition(self, level): st = self.structure.loc[:, range(level)] for n, i in enumerate(["x", "y", "z"]): st[i] = self.points[:, n] e_out = np.zeros((st.shape[0], 3)) ev1_out = np.zeros((st.shape[0], 3)) ev2_out = np.zeros((st.shape[0], 3)) ev3_out = np.zeros((st.shape[0], 3)) this_level = st.groupby([x for x in range(level)], sort=False) # to use when groups in current level have less than 3 points prev_level = st.groupby([x for x in range(level - 1)], sort=False) min_level = prev_level min_i = 1 # find the minimum level where there is no group with less than 3 while min_level.size().min() < 3: min_i += 1 min_level = st.groupby([x for x in range(level - min_i)]) for n, g in this_level: if g.shape[0] < 3: g = prev_level.get_group(n[:-1]) if g.shape[0] < 3: g = min_level.get_group(n[:-min_i]) eig_val, eig_vec = np.linalg.eig(np.cov(g.values[:, level:].T)) idx = eig_val.argsort()[::-1] eig_val = eig_val[idx] eig_vec = eig_vec[:, idx] e_out[g.index.values] = eig_val ev1_out[g.index.values] = eig_vec[:, 0] ev2_out[g.index.values] = eig_vec[:, 1] ev3_out[g.index.values] = eig_vec[:, 2] return e_out[:, 0], e_out[:, 1], e_out[:, 2], ev1_out, ev2_out, ev3_out
5aec005f547d8990c87b6d7e0957eaf437f08732
ad798335dbc724845475b43249801af20b6c40f1
/hash.py
45ee95923820b86e9149d9ae2ab0e3ed2c7eb44e
[ "MIT" ]
permissive
zconnect-iot/ibm-iot-emulator
7e8c7db72e11fdf0fc79600227a3e63ec12eeebf
89b7c923b5e737df7dc9c508172f8f927a075668
refs/heads/master
2020-03-22T07:35:17.109194
2018-07-05T15:13:11
2018-07-05T15:13:11
139,709,951
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
import bcrypt password = b"-ankVuPqceD(LBd0Zc" hashed = b"$2a$04$BOYcgGknfgS2yYAxtnXfEu6btv4bG8A1lE4UteDP7dU80TXW.Jmsa" print(bcrypt.hashpw(password, bcrypt.gensalt(prefix=b"2a"))) print(bcrypt.checkpw(password, hashed))
0c439fa97e81b8f694f0c8057857c21bc6e1e1c8
f89b8631ad8b86efc816fd19acb85d1f4e09f3e3
/vespa/interfaces/cli_batch/analysis_cli_brp_cmrr_slaser_v5.py
17dc7acb934c689e1a19e104f4b11339ae0d4ece
[ "BSD-3-Clause" ]
permissive
fmarcanoull/vespa
20c3772a13430d6da8a7835633baea6b5e852ee6
77f6289a63975068eba54bb2db5f834146fc7d01
refs/heads/main
2023-04-21T17:18:31.124441
2021-05-06T01:09:27
2021-05-06T01:09:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
25,413
py
# Python modules from __future__ import division from __future__ import print_function import os import sys import multiprocessing import datetime # 3rd party modules from matplotlib.backends.backend_pdf import PdfPages # Our modules import vespa.analysis.util_import as util_import import vespa.analysis.util_file_import as util_file_import import vespa.analysis.figure_layouts as figure_layouts import vespa.common.util.export as util_export import vespa.common.util.time_ as util_time # This is for Baseline sLASER data that Dinesh sent me as a follow up test # after finishing the BRP_twix2 data that Joers sent me initially # # More specifically, this is for reading the Siemens Twis data for just # the metab data, but which also has two initial FIDs that are water # unsuppressed that I am using for ecc and water. # Change to True to enable the assert() statements sprinkled through the code ASSERTIONS_ENABLED = False DESC = \ """ Command line interface to process MRS data in Vespa-Analysis. Data filename, preset file name, data type string and CSV output file name values are all required for this command to function properly. Note. You may have to enclose data/preset/output strings in double quotation marks for them to process properly if they have spaces or other special characters embedded in them. """ class CliError(Exception): """Basic exception for errors when applying preset object""" def __init__(self, msg=None): if msg is None: # set default error message msg = 'A general cli error occured.' e = sys.exc_info() msg = 'CliErrorMessage : '+msg msg += '\n' msg += 'BaseErrorMessage: '+str(e) # msg += 'BaseErrorMessage: '+e[1].message super(CliError, self).__init__(msg) def clean_header(header): """ converts all values in ICE dict into a long string""" return "need to write" def analysis_cli(datasets, preset_metab, preset_coil, preset_water, preset_ecc, out_base, out_prefix, out_set=None, basis_mmol=None, verbose=False, debug=False, in_gui=False): # Test for keyword values --------------------------------------- if out_set is None: out_set = { 'savetype' : 'lcm_multi', 'minplot' : 0.1, 'maxplot' : 4.9, 'fixphase' : True, 'fontname' : 'Courier New', 'dpi' : 300, 'pad_inches' : 0.5 } # Sort datasets into variables ---------------------------------- data_coil, data_ecc, data_water, data_metab, basis_mmol = datasets msg = "" # Load and Process - Coil Combine Dataset ----------------------- if data_coil is not None: if verbose: print(out_prefix+" - Apply Preset and Run Chain - Coil Combine") try: msg = out_prefix+" - " + """applying preset - coil combine""" data_coil.apply_preset(preset_coil, voxel=(0,0,0)) # update dataset object with preset blocks and chains msg = out_prefix+" - " + """running chain - coil combine""" _process_all_blocks(data_coil) except: if not in_gui: print(msg+'\n'+str(sys.exc_info()[1]), file=sys.stderr) sys.exit(-1) else: raise CliError(msg) # Load Preset - Ecc, Water and Metab Datasets ------------------- if verbose: print(out_prefix+"Apply Preset - Ecc, Water and Metab Datasets") try: # Apply presets to ecc, water and metab datasets if data_ecc is not None and preset_ecc is not None: msg = out_prefix+" - " + """applying preset - ecc""" data_ecc.apply_preset(preset_ecc, voxel=(0,0,0)) # chain if data_water is not None and preset_water is not None: msg = out_prefix+" - " + """applying preset - water""" data_water.apply_preset(preset_water, voxel=(0,0,0)) if data_metab is not None and preset_metab is not None: msg = out_prefix+" - " + """applying preset - metab""" data_metab.apply_preset(preset_metab, voxel=(0,0,0)) #---------------------------------------------------------------------- # Attach coil combine to ecc, water and metab datasets - run chain ecc if data_coil is not None: msg = out_prefix+" - " + """attaching coil combine to - ecc, water and metab""" for dset in [data_ecc, data_water, data_metab]: if dset is not None: dset.set_associated_dataset_combine(data_coil) if verbose: print(out_prefix+" - " + """running chain - ecc""") if data_ecc is not None: msg = out_prefix+" - " + """running chain - ecc""" _process_all_blocks(data_ecc) # get combined FID for next steps #---------------------------------------------------------------------- # Attach ecc to water and metab datasets - run chain water if data_ecc is not None: msg = out_prefix+" - " + """attaching ecc to - water and metab""" for dset in [data_water, data_metab]: if dset is not None: dset.set_associated_dataset_ecc(data_ecc) if verbose: print(out_prefix+" - " + """running chain - water""") if data_water is not None: msg = out_prefix+" - " + """running chain - water""" _process_all_blocks(data_water) #---------------------------------------------------------------------- # Attach mmol_basis and water to metab dataset - run chain metab msg = out_prefix+" - " + """attaching mmol_basis and water to - metab""" for dset in [data_metab,]: if basis_mmol is not None: if dset is not None: dset.set_associated_dataset_mmol(basis_mmol) dset.set_associated_dataset_quant(data_water) if verbose: print(out_prefix+" - " + """running chain - metab""") _process_all_blocks(data_metab) except: if not in_gui: print('Error: '+msg+'\n'+sys.exc_info()[1].message, file=sys.stderr) sys.exit(-1) else: raise CliError(msg) #-------------------------------------------------------------------------- # Begin Output timestamp = util_time.now(util_time.DISPLAY_TIMESTAMP_FORMAT) # Create unique name ID for this dataset ------------------------ outxml = out_base+'provenance_'+out_prefix+'.xml' data_metab.dataset_filename = outxml # Save provenance to XML ----------------------------------------------------- if verbose: print(out_prefix+" - " + """Saving dataset to XML file "%s". """ % outxml) try: util_export.export(outxml, [data_metab,], None, None, False) except Exception as e: msg = """I can't write the file "%s".""" % outxml print(msg, file=sys.stderr) print(repr(e), file=sys.stderr) sys.exit(-1) # Save fitting results to PDF ----------------------------------------------------- fig_call = figure_layouts.null_call # default if out_set['savetype'] == 'lcm': outimg = out_base+'plot_lcm_'+out_prefix+'.pdf' fig_call = figure_layouts.lcm_like elif out_set['savetype'] == 'lcm_multi': outimg = out_base+'plots_lcm_multi_'+out_prefix+'.pdf' fig_call = figure_layouts.lcm_multipage_pdf if verbose: print(out_prefix+" - " + """Saving Results to PDF "%s". """ % outimg) try: figs = fig_call(data_metab, viffpath='Analysis - CLI Batch', vespa_version='0.10.0-CLI', timestamp='', fontname=out_set['fontname'], minplot=out_set['minplot'], maxplot=out_set['maxplot'], nobase=False, extfig=None, fixphase=out_set['fixphase'], verbose=False, debug=False, quantvals=True) # Create the PdfPages object to which we will save the pages: # The with statement endsures object closed at end of block, even if Exception with PdfPages(outimg) as pdf: for fig in figs: pdf.savefig(fig, dpi=out_set['dpi'], pad_inches=out_set['pad_inches'], facecolor=fig.get_facecolor(), edgecolor='none') # We can also set the file's metadata via the PdfPages object: today = datetime.date.today() d = pdf.infodict() d['Title'] = u'Vespa Provenance Output' d['Author'] = u'Brian J. Soher' d['Subject'] = u'Vespa results output' d['Keywords'] = u'PdfPages Vespa output lcm multi-page' d['CreationDate'] = datetime.datetime(today.year, today.month, today.day) d['ModDate'] = datetime.datetime.today() except Exception as e: msg = """Failure to create/write file "%s".""" % outimg print(msg, file=sys.stderr) print(repr(e), file=sys.stderr) sys.exit(-1) # Save Water Quant and Fit results to CSV text file ----------------------- voxel = (0,0,0) outcsv = out_base+'csv_results_collated.csv' if verbose: print(out_prefix+" - " + """Saving Results to CSV "%s". """ % outcsv) try: raw = data_metab.blocks["raw"] fit = data_metab.blocks["fit"] val, hdr = data_metab.quant_results_as_csv(voxel, lw = fit.chain.fitted_lw, lwmin = fit.chain.minmaxlw[0], lwmax = fit.chain.minmaxlw[1], source = raw.get_data_source(voxel), dsetname = data_metab.dataset_filename, decor1 = False) val = ",".join(val) + "\n" hdr = ",".join(hdr) + "\n" hdr_flag = True if os.path.isfile(outcsv): with open(outcsv, 'r+') as f: data = f.readlines() if len(data)>1: nlast = len(data[-1].split(',')) if nlast == len(hdr): hdr_flag = False with open(outcsv, 'a') as f: if hdr_flag: f.write(hdr) f.write(val) except Exception as e: msg = """Failure to create/write file "%s".""" % outcsv print(msg, file=sys.stderr) print(repr(e), file=sys.stderr) sys.exit(-1) return None, None def _process_all_blocks(dataset): """ for all voxels, run chain in all blocks to update """ chain_outputs = {} voxel = dataset.all_voxels for key in dataset.blocks.keys(): if key == 'spectral': key = 'spectral' block = dataset.blocks[key] tmp = block.chain.run(voxel, entry='all') chain_outputs[key] = tmp if 'fit' in dataset.blocks.keys(): key = 'fit' block = dataset.blocks[key] block.chain.run(voxel, entry='initial_only') key = 'spectral' block = dataset.blocks[key] block.set_do_fit(True, voxel[0]) tmp = block.chain.run(voxel, entry='all') chain_outputs[key] = tmp else: block = dataset.blocks[key] tmp = block.chain.run(voxel, entry='all') chain_outputs[key] = tmp return chain_outputs def is_dicom(filename): """Returns True if the file in question is a DICOM file, else False. """ # Per the DICOM specs, a DICOM file starts with 128 reserved bytes # followed by "DICM". # ref: DICOM spec, Part 10: Media Storage and File Format for Media # Interchange, 7.1 DICOM FILE META INFORMATION if os.path.isfile(filename): f = open(filename, "rb") s = f.read(132) f.close() pattern = "DICM" binary_pattern = pattern.encode() return s.endswith(binary_pattern) else: return False def load_preset(presetfile, verbose=False, debug=False): if not presetfile: return None # Load PRESET object ---------------------------------------------- if verbose: print("""load_preset - Presetfile = "%s".""" % presetfile ) if debug: return try: msg = "" try: importer = util_import.DatasetImporter(presetfile) except IOError: msg = """load_preset - I can't read the preset file "%s".""" % presetfile except SyntaxError: msg = """load_preset - The preset file "%s" isn't valid Vespa Interchange File Format.""" % presetfile if msg: print(msg, file=sys.stderr) sys.exit(-1) else: # Time to rock and roll! presets = importer.go() preset = presets[0] except: msg = """load_preset - Unknown exception reading Preset file "%s".""" % presetfile print(msg, file=sys.stderr) sys.exit(-1) return preset def analysis_kernel(param): try: datafname, fbase, out_base, fpreset_coil, fpreset_ecc, fpreset_water, fpreset_metab, fbasis_mmol, out_label, out_set, dformat = param debug = False verbose = True # Use subdir names to create unique prefix for output files parts = os.path.normpath(datafname).split(os.sep) out_prefix = out_label+parts[-2] # Ex. 'C009' if verbose: print('Begin - '+out_prefix) preset_coil = load_preset(fpreset_coil, verbose=True, debug=debug) preset_ecc = load_preset(fpreset_ecc, verbose=True, debug=debug) preset_water = load_preset(fpreset_water, verbose=True, debug=debug) preset_metab = load_preset(fpreset_metab, verbose=True, debug=debug) datasets = util_file_import.get_datasets_cli(datafname, dformat, None) dataset_coil, dataset_water, dataset_metab = datasets datasets = [dataset_coil, None, dataset_water, dataset_metab] dataset_mmol, msg = util_file_import.open_viff_dataset_file([fbasis_mmol,]) for item in dataset_mmol: datasets.append(item) if verbose: print("Unique Output Prefix = "+out_prefix) print("Unique Output Base = "+out_base) if not debug: img0, outxml0 = analysis_cli( datasets, preset_metab, preset_coil, preset_water, preset_ecc, out_base, out_prefix, out_set=out_set, basis_mmol=dataset_mmol, verbose=True) if verbose: print('Finished - '+out_prefix + ", datafname - " + datafname) except Exception as e: if verbose: print('Exception - '+out_prefix) msg = "I am in - " + out_prefix raise CliError(msg) return (img0, out_prefix) def get_time(): now = datetime.datetime.now() current_time = now.strftime("%H:%M:%S") return current_time def do_main(): print("Start Time - "+get_time()+"\n") debug = False verbose = True single_process = False nprocess = 8 out_set = { 'savetype' : 'lcm_multi', 'minplot' : 0.5, 'maxplot' : 4.2, 'fixphase' : False, 'fontname' : 'Courier New', 'dpi' : 300, 'pad_inches' : 0.5 } dformat = 'siemens_twix_svs_slaser_cmrr_vb_gulin_long' fbase = 'D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\' out_base = fbase + 'a_results_siemens_twix_v01\\' # picked this so ends at top of dir hierarchy out_label = 'twix_' fpreset_coil = fbase + 'preset_analysis_brp_slaser_coil_v2_zf4.xml' fpreset_ecc = fbase + 'preset_analysis_brp_slaser_ecc_v2_zf4_forBRP3.xml' fpreset_water = fbase + 'preset_analysis_brp_slaser_water_v2_zf4_forBRP3.xml' fpreset_metab = fbase + 'preset_analysis_brp_slaser_metab_indiv_v6_start5_noECC_forBRP3.xml' fbasis_mmol = fbase + 'basis_mmol_dataset_seadMM2014_truncat2048pts_normScale100dc004zf4.xml' fdata = [ "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C001\\meas_MID715_vermis_test_FID77764.dat", "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C002\\meas_MID486_vermis_64_FID79226.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C003\\meas_MID1117_vermis_64_FID86493.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C004\\meas_MID300_vermis_test_FID88095.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C005\\meas_MID643_vermis_64_FID91736.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C006\\meas_MID3758_vermis_64_FID94847.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C009\\meas_MID33_vermis_64_FID126120.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C010\\meas_MID1479_vermis_64_FID127706.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C011\\meas_MID111_vermis_64_FID131324.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C012\\meas_MID272_vermis_64_FID132699.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C013\\meas_MID120_vermis_64_FID134271.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C014\\meas_MID524_vermis_64_FID136833.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C015\\meas_MID1363_vermis_64_FID137668.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C018\\meas_MID179_vermis_64_FID143590.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C019\\meas_MID306_vermis_64_FID148096.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C021\\meas_MID596_vermis_64_FID151466.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C022\\meas_MID1336_vermis_64_FID152202.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C023\\meas_MID2668_vermis_64_FID153530.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C024\\meas_MID459_vermis_64_FID4092.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C025\\meas_MID449_vermis_64_FID18169.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C026\\meas_MID50_vermis_64_FID18325.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C027\\meas_MID716_vermis_64_FID21828.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C028\\meas_MID1028_vermis_64_FID22950.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\C029\\meas_MID27_vermis_64_FID25010.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S101\\meas_MID483_vermis_64_FID84137.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S103\\meas_MID1960_vermis_64_FID93049.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S104\\meas_MID84_vermis_64_FID96280.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S105\\meas_MID142_vermis_64_FID97435.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S106\\meas_MID308_vermis_64_FID99354.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S107\\meas_MID1009_vermis_64_FID123778.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S108\\meas_MID2061_vermis_64_FID124830.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S109\\meas_MID382_vermis_vapor_64_FID126610.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S110\\meas_MID2618_vermis_64_FID138919.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S111\\meas_MID45_vermis_64_FID140474.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S112\\meas_MID154_vermis_64_FID140583.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S113\\meas_MID261_vermis_64_FID140690.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S114\\meas_MID40_vermis_64_FID144529.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S115\\meas_MID295_vermis_64_FID2662.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S116\\meas_MID158_vermis_64_FID4094.dat", # "D:\\Users\\bsoher\\projects\\2015_gulin_BRP\\data_sharing\\BRP_twix_v3_long_SCA1_baseline_dinesh_2020\\S117\\meas_MID77_vermis_64_FID18907.dat", ] datafiles = fdata # datafiles = [fdata[7],] #---------------------------------------------------------- # Basic file checking for existence msg = '' for item in [fpreset_metab,None,fpreset_water,fpreset_ecc,fbasis_mmol]: if item is not None: if not os.path.isfile(item): msg += """\nPRESET FILE does not exist "%s".""" % item if msg: print(msg, file=sys.stderr) sys.exit(-1) #---------------------------------------------------------- # Run the processing #if False: #len(datafiles) == 1 or single_process: if len(datafiles) == 1 or single_process: for datafile in datafiles: params = [datafile, fbase, out_base, fpreset_coil, '', fpreset_water, fpreset_metab, fbasis_mmol, out_label, out_set, dformat] analysis_kernel(params) else: params = [] for datafile in datafiles: params.append([datafile, fbase, out_base, fpreset_coil, '', fpreset_water, fpreset_metab, fbasis_mmol, out_label, out_set, dformat]) pool = multiprocessing.Pool(processes=nprocess) results = pool.map(analysis_kernel, params) bob = 10 bob += 1 print("\nEnd Time - "+get_time()) if __name__ == '__main__': do_main()
90fc94c313e3d1383748e2f33c4e7ebaf0982728
ea5762e8754d6b039963b0125822afb261844cc8
/docs/_examples/mesh-parameterisation.py
59980c4ede312f3cd6d7cb5a8e31e278431115a8
[ "MIT" ]
permissive
gonzalocasas/compas
787977a4712fbfb9e230c4f433b6e2be509e4855
2fabc7e5c966a02d823fa453564151e1a1e7e3c6
refs/heads/master
2020-03-23T20:17:55.126856
2018-07-24T22:30:08
2018-07-24T22:30:08
142,033,431
0
0
MIT
2018-07-31T14:54:52
2018-07-23T15:27:19
Python
UTF-8
Python
false
false
2,803
py
"""Parameterisation of a triangle mesh. For more info see: - http://www.ctralie.com/Teaching/LapMesh/ """ from __future__ import print_function import compas from numpy import zeros from scipy.sparse import coo_matrix from scipy.sparse import block_diag from scipy.sparse.linalg import spsolve from compas.datastructures import Mesh from compas.plotters import MeshPlotter __author__ = ['Tom Van Mele', ] __copyright__ = 'Copyright 2016 - Block Research Group, ETH Zurich' __license__ = 'MIT' __email__ = '[email protected]' # make a *stanford bunny* mesh mesh = Mesh.from_ply(compas.get_bunny()) mesh.cull_vertices() # get any vertex of the mesh # and its neighbours v1 = mesh.get_any_vertex() nbrs = mesh.vertex_neighbours(v1, ordered=True) # make a quad containing: # one of the neighbours # and the CCW and CW neighbours of that neighbour, respectively # and set them as anchors v2 = nbrs[0] v3 = nbrs[1] v4 = nbrs[-1] anchors = [v1, v2, v3, v4] # make a laplacian matrix of the mesh # with inplace constraints on the anchored vertices data = [] rows = [] cols = [] key_index = mesh.key_index() for key in mesh.vertices(): r = key_index[key] data.append(1) rows.append(r) cols.append(r) if key not in anchors: nbrs = mesh.vertex_neighbours(key) w = len(nbrs) d = - 1. / w for nbr in nbrs: c = key_index[nbr] data.append(d) rows.append(r) cols.append(c) L = coo_matrix((data, (rows, cols))) # construct the RHS of the equation # with all difference vectors set to zero # and the ones corresponding to the anchored vertices # set to the corresponding position on a unit square n = mesh.number_of_vertices() d = zeros((n, 2), dtype=float) d[key_index[v1], 0] = 1.0 d[key_index[v2], 1] = 1.0 d[key_index[v3], 0] = 1.0 d[key_index[v3], 1] = 1.0 # convert eerything to a format # that can be solved with the sparse solver of scipy # and solve for the parameterised xy coordinates L = block_diag((L, L)).tocsr() d = d.reshape((-1, 1), order='F') x = spsolve(L, d.ravel()) # convert the result back xy = x.reshape((-1, 2), order='F') # update the mesh for key, attr in mesh.vertices(True): index = key_index[key] attr['x'] = xy[index, 0] attr['y'] = xy[index, 1] # lines for visualisation # omit the diagonal of the *hole* lines = [] for u, v in mesh.wireframe(): if u == v1 and v == v2: continue if u == v2 and v == v1: continue lines.append({ 'start': mesh.vertex_coordinates(u, 'xy'), 'end' : mesh.vertex_coordinates(v, 'xy'), 'color': '#000000', 'width': 0.5 }) # visualise the result plotter = MeshPlotter(mesh, figsize=(10, 6)) plotter.draw_lines(lines) plotter.show()
da321f4939af9c4dab146e4bbb4bd976366d1e45
161ab63e46114a8359c60dfa77820a7abd181e80
/hproxy/spider/base_spider/__init__.py
3a06269c73e2fef0a0314e3ee15dff572110c5fb
[ "MIT" ]
permissive
yejianxin2015/hproxy
27be1a7311bba7fc5f2c02d45658c5c57c507c76
f40266bf7b06368d3ebfdce8d60385bcd4b93713
refs/heads/master
2020-03-15T09:03:38.752884
2018-05-11T06:51:45
2018-05-11T06:51:45
132,065,983
0
0
MIT
2018-05-11T06:48:52
2018-05-04T00:53:03
Python
UTF-8
Python
false
false
178
py
#!/usr/bin/env python """ Created by howie.hu at 06/04/2018. """ from .field import AttrField, BaseField, TextField from .item import Item from .proxy_spider import ProxySpider
2751f620bc6323df796e8b4d26ec38990ca755de
b018b734af4170d34d28c474f68777597dba29ec
/venv/lib/python3.8/site-packages/google/cloud/monitoring_v3/proto/metric_service_pb2.py
19a5cc2c5a5fbeaec5fc398149cac074e402497d
[]
no_license
abdulkhan94/BigDataTechnology
ae0b7f8c03831f07b791bc5898c2bb18a4c3fec5
7be6d3a13e8fd42d9592d7287d694d507f9070b5
refs/heads/master
2023-02-13T04:07:49.070798
2021-01-11T01:34:51
2021-01-11T01:34:51
null
0
0
null
null
null
null
UTF-8
Python
false
true
75,141
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/monitoring_v3/proto/metric_service.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import metric_pb2 as google_dot_api_dot_metric__pb2 from google.api import ( monitored_resource_pb2 as google_dot_api_dot_monitored__resource__pb2, ) from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.cloud.monitoring_v3.proto import ( alert_pb2 as google_dot_cloud_dot_monitoring__v3_dot_proto_dot_alert__pb2, ) from google.cloud.monitoring_v3.proto import ( common_pb2 as google_dot_cloud_dot_monitoring__v3_dot_proto_dot_common__pb2, ) from google.cloud.monitoring_v3.proto import ( metric_pb2 as google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2, ) from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 from google.rpc import status_pb2 as google_dot_rpc_dot_status__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/cloud/monitoring_v3/proto/metric_service.proto", package="google.monitoring.v3", syntax="proto3", serialized_options=b"\n\030com.google.monitoring.v3B\022MetricServiceProtoP\001Z>google.golang.org/genproto/googleapis/monitoring/v3;monitoring\252\002\032Google.Cloud.Monitoring.V3\312\002\032Google\\Cloud\\Monitoring\\V3\352\002\035Google::Cloud::Monitoring::V3\352A\360\001\n*monitoring.googleapis.com/MetricDescriptor\022;projects/{project}/metricDescriptors/{metric_descriptor=**}\022Eorganizations/{organization}/metricDescriptors/{metric_descriptor=**}\0229folders/{folder}/metricDescriptors/{metric_descriptor=**}\022\001* \001\352A\267\002\n5monitoring.googleapis.com/MonitoredResourceDescriptor\022Oprojects/{project}/monitoredResourceDescriptors/{monitored_resource_descriptor}\022Yorganizations/{organization}/monitoredResourceDescriptors/{monitored_resource_descriptor}\022Mfolders/{folder}/monitoredResourceDescriptors/{monitored_resource_descriptor}\022\001* \001", serialized_pb=b'\n5google/cloud/monitoring_v3/proto/metric_service.proto\x12\x14google.monitoring.v3\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x17google/api/metric.proto\x1a#google/api/monitored_resource.proto\x1a\x19google/api/resource.proto\x1a,google/cloud/monitoring_v3/proto/alert.proto\x1a-google/cloud/monitoring_v3/proto/common.proto\x1a-google/cloud/monitoring_v3/proto/metric.proto\x1a\x1egoogle/protobuf/duration.proto\x1a\x1bgoogle/protobuf/empty.proto\x1a\x17google/rpc/status.proto"\xad\x01\n\'ListMonitoredResourceDescriptorsRequest\x12K\n\x04name\x18\x05 \x01(\tB=\xe0\x41\x02\xfa\x41\x37\x12\x35monitoring.googleapis.com/MonitoredResourceDescriptor\x12\x0e\n\x06\x66ilter\x18\x02 \x01(\t\x12\x11\n\tpage_size\x18\x03 \x01(\x05\x12\x12\n\npage_token\x18\x04 \x01(\t"\x8a\x01\n(ListMonitoredResourceDescriptorsResponse\x12\x45\n\x14resource_descriptors\x18\x01 \x03(\x0b\x32\'.google.api.MonitoredResourceDescriptor\x12\x17\n\x0fnext_page_token\x18\x02 \x01(\t"t\n%GetMonitoredResourceDescriptorRequest\x12K\n\x04name\x18\x03 \x01(\tB=\xe0\x41\x02\xfa\x41\x37\n5monitoring.googleapis.com/MonitoredResourceDescriptor"\x97\x01\n\x1cListMetricDescriptorsRequest\x12@\n\x04name\x18\x05 \x01(\tB2\xe0\x41\x02\xfa\x41,\x12*monitoring.googleapis.com/MetricDescriptor\x12\x0e\n\x06\x66ilter\x18\x02 \x01(\t\x12\x11\n\tpage_size\x18\x03 \x01(\x05\x12\x12\n\npage_token\x18\x04 \x01(\t"r\n\x1dListMetricDescriptorsResponse\x12\x38\n\x12metric_descriptors\x18\x01 \x03(\x0b\x32\x1c.google.api.MetricDescriptor\x12\x17\n\x0fnext_page_token\x18\x02 \x01(\t"^\n\x1aGetMetricDescriptorRequest\x12@\n\x04name\x18\x03 \x01(\tB2\xe0\x41\x02\xfa\x41,\n*monitoring.googleapis.com/MetricDescriptor"\x9f\x01\n\x1d\x43reateMetricDescriptorRequest\x12@\n\x04name\x18\x03 \x01(\tB2\xe0\x41\x02\xfa\x41,\x12*monitoring.googleapis.com/MetricDescriptor\x12<\n\x11metric_descriptor\x18\x02 \x01(\x0b\x32\x1c.google.api.MetricDescriptorB\x03\xe0\x41\x02"a\n\x1d\x44\x65leteMetricDescriptorRequest\x12@\n\x04name\x18\x03 \x01(\tB2\xe0\x41\x02\xfa\x41,\n*monitoring.googleapis.com/MetricDescriptor"\x93\x03\n\x15ListTimeSeriesRequest\x12\x41\n\x04name\x18\n \x01(\tB3\xe0\x41\x02\xfa\x41-\n+cloudresourcemanager.googleapis.com/Project\x12\x13\n\x06\x66ilter\x18\x02 \x01(\tB\x03\xe0\x41\x02\x12\x39\n\x08interval\x18\x04 \x01(\x0b\x32".google.monitoring.v3.TimeIntervalB\x03\xe0\x41\x02\x12\x36\n\x0b\x61ggregation\x18\x05 \x01(\x0b\x32!.google.monitoring.v3.Aggregation\x12\x10\n\x08order_by\x18\x06 \x01(\t\x12M\n\x04view\x18\x07 \x01(\x0e\x32:.google.monitoring.v3.ListTimeSeriesRequest.TimeSeriesViewB\x03\xe0\x41\x02\x12\x11\n\tpage_size\x18\x08 \x01(\x05\x12\x12\n\npage_token\x18\t \x01(\t"\'\n\x0eTimeSeriesView\x12\x08\n\x04\x46ULL\x10\x00\x12\x0b\n\x07HEADERS\x10\x01"\x96\x01\n\x16ListTimeSeriesResponse\x12\x35\n\x0btime_series\x18\x01 \x03(\x0b\x32 .google.monitoring.v3.TimeSeries\x12\x17\n\x0fnext_page_token\x18\x02 \x01(\t\x12,\n\x10\x65xecution_errors\x18\x03 \x03(\x0b\x32\x12.google.rpc.Status"\x98\x01\n\x17\x43reateTimeSeriesRequest\x12\x41\n\x04name\x18\x03 \x01(\tB3\xe0\x41\x02\xfa\x41-\n+cloudresourcemanager.googleapis.com/Project\x12:\n\x0btime_series\x18\x02 \x03(\x0b\x32 .google.monitoring.v3.TimeSeriesB\x03\xe0\x41\x02"z\n\x15\x43reateTimeSeriesError\x12\x39\n\x0btime_series\x18\x01 \x01(\x0b\x32 .google.monitoring.v3.TimeSeriesB\x02\x18\x01\x12&\n\x06status\x18\x02 \x01(\x0b\x32\x12.google.rpc.StatusB\x02\x18\x01"\xd8\x01\n\x17\x43reateTimeSeriesSummary\x12\x19\n\x11total_point_count\x18\x01 \x01(\x05\x12\x1b\n\x13success_point_count\x18\x02 \x01(\x05\x12\x43\n\x06\x65rrors\x18\x03 \x03(\x0b\x32\x33.google.monitoring.v3.CreateTimeSeriesSummary.Error\x1a@\n\x05\x45rror\x12"\n\x06status\x18\x01 \x01(\x0b\x32\x12.google.rpc.Status\x12\x13\n\x0bpoint_count\x18\x02 \x01(\x05"\\\n\x16QueryTimeSeriesRequest\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05query\x18\x07 \x01(\t\x12\x11\n\tpage_size\x18\t \x01(\x05\x12\x12\n\npage_token\x18\n \x01(\t"\xea\x01\n\x17QueryTimeSeriesResponse\x12J\n\x16time_series_descriptor\x18\x08 \x01(\x0b\x32*.google.monitoring.v3.TimeSeriesDescriptor\x12>\n\x10time_series_data\x18\t \x03(\x0b\x32$.google.monitoring.v3.TimeSeriesData\x12\x17\n\x0fnext_page_token\x18\n \x01(\t\x12*\n\x0epartial_errors\x18\x0b \x03(\x0b\x32\x12.google.rpc.Status"Y\n\x0eQueryErrorList\x12\x30\n\x06\x65rrors\x18\x01 \x03(\x0b\x32 .google.monitoring.v3.QueryError\x12\x15\n\rerror_summary\x18\x02 \x01(\t2\xbe\r\n\rMetricService\x12\xe4\x01\n ListMonitoredResourceDescriptors\x12=.google.monitoring.v3.ListMonitoredResourceDescriptorsRequest\x1a>.google.monitoring.v3.ListMonitoredResourceDescriptorsResponse"A\x82\xd3\xe4\x93\x02\x34\x12\x32/v3/{name=projects/*}/monitoredResourceDescriptors\xda\x41\x04name\x12\xcc\x01\n\x1eGetMonitoredResourceDescriptor\x12;.google.monitoring.v3.GetMonitoredResourceDescriptorRequest\x1a\'.google.api.MonitoredResourceDescriptor"D\x82\xd3\xe4\x93\x02\x37\x12\x35/v3/{name=projects/*/monitoredResourceDescriptors/**}\xda\x41\x04name\x12\xb8\x01\n\x15ListMetricDescriptors\x12\x32.google.monitoring.v3.ListMetricDescriptorsRequest\x1a\x33.google.monitoring.v3.ListMetricDescriptorsResponse"6\x82\xd3\xe4\x93\x02)\x12\'/v3/{name=projects/*}/metricDescriptors\xda\x41\x04name\x12\xa0\x01\n\x13GetMetricDescriptor\x12\x30.google.monitoring.v3.GetMetricDescriptorRequest\x1a\x1c.google.api.MetricDescriptor"9\x82\xd3\xe4\x93\x02,\x12*/v3/{name=projects/*/metricDescriptors/**}\xda\x41\x04name\x12\xc8\x01\n\x16\x43reateMetricDescriptor\x12\x33.google.monitoring.v3.CreateMetricDescriptorRequest\x1a\x1c.google.api.MetricDescriptor"[\x82\xd3\xe4\x93\x02<"\'/v3/{name=projects/*}/metricDescriptors:\x11metric_descriptor\xda\x41\x16name,metric_descriptor\x12\xa0\x01\n\x16\x44\x65leteMetricDescriptor\x12\x33.google.monitoring.v3.DeleteMetricDescriptorRequest\x1a\x16.google.protobuf.Empty"9\x82\xd3\xe4\x93\x02,**/v3/{name=projects/*/metricDescriptors/**}\xda\x41\x04name\x12\xb1\x01\n\x0eListTimeSeries\x12+.google.monitoring.v3.ListTimeSeriesRequest\x1a,.google.monitoring.v3.ListTimeSeriesResponse"D\x82\xd3\xe4\x93\x02"\x12 /v3/{name=projects/*}/timeSeries\xda\x41\x19name,filter,interval,view\x12\x99\x01\n\x10\x43reateTimeSeries\x12-.google.monitoring.v3.CreateTimeSeriesRequest\x1a\x16.google.protobuf.Empty">\x82\xd3\xe4\x93\x02%" /v3/{name=projects/*}/timeSeries:\x01*\xda\x41\x10name,time_series\x1a\xda\x01\xca\x41\x19monitoring.googleapis.com\xd2\x41\xba\x01https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/monitoring,https://www.googleapis.com/auth/monitoring.read,https://www.googleapis.com/auth/monitoring.writeB\xf9\x05\n\x18\x63om.google.monitoring.v3B\x12MetricServiceProtoP\x01Z>google.golang.org/genproto/googleapis/monitoring/v3;monitoring\xaa\x02\x1aGoogle.Cloud.Monitoring.V3\xca\x02\x1aGoogle\\Cloud\\Monitoring\\V3\xea\x02\x1dGoogle::Cloud::Monitoring::V3\xea\x41\xf0\x01\n*monitoring.googleapis.com/MetricDescriptor\x12;projects/{project}/metricDescriptors/{metric_descriptor=**}\x12\x45organizations/{organization}/metricDescriptors/{metric_descriptor=**}\x12\x39\x66olders/{folder}/metricDescriptors/{metric_descriptor=**}\x12\x01* \x01\xea\x41\xb7\x02\n5monitoring.googleapis.com/MonitoredResourceDescriptor\x12Oprojects/{project}/monitoredResourceDescriptors/{monitored_resource_descriptor}\x12Yorganizations/{organization}/monitoredResourceDescriptors/{monitored_resource_descriptor}\x12Mfolders/{folder}/monitoredResourceDescriptors/{monitored_resource_descriptor}\x12\x01* \x01\x62\x06proto3', dependencies=[ google_dot_api_dot_annotations__pb2.DESCRIPTOR, google_dot_api_dot_client__pb2.DESCRIPTOR, google_dot_api_dot_field__behavior__pb2.DESCRIPTOR, google_dot_api_dot_metric__pb2.DESCRIPTOR, google_dot_api_dot_monitored__resource__pb2.DESCRIPTOR, google_dot_api_dot_resource__pb2.DESCRIPTOR, google_dot_cloud_dot_monitoring__v3_dot_proto_dot_alert__pb2.DESCRIPTOR, google_dot_cloud_dot_monitoring__v3_dot_proto_dot_common__pb2.DESCRIPTOR, google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2.DESCRIPTOR, google_dot_protobuf_dot_duration__pb2.DESCRIPTOR, google_dot_protobuf_dot_empty__pb2.DESCRIPTOR, google_dot_rpc_dot_status__pb2.DESCRIPTOR, ], ) _LISTTIMESERIESREQUEST_TIMESERIESVIEW = _descriptor.EnumDescriptor( name="TimeSeriesView", full_name="google.monitoring.v3.ListTimeSeriesRequest.TimeSeriesView", filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name="FULL", index=0, number=0, serialized_options=None, type=None ), _descriptor.EnumValueDescriptor( name="HEADERS", index=1, number=1, serialized_options=None, type=None ), ], containing_type=None, serialized_options=None, serialized_start=1909, serialized_end=1948, ) _sym_db.RegisterEnumDescriptor(_LISTTIMESERIESREQUEST_TIMESERIESVIEW) _LISTMONITOREDRESOURCEDESCRIPTORSREQUEST = _descriptor.Descriptor( name="ListMonitoredResourceDescriptorsRequest", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsRequest.name", index=0, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A7\0225monitoring.googleapis.com/MonitoredResourceDescriptor", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="filter", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsRequest.filter", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_size", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsRequest.page_size", index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_token", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsRequest.page_token", index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=483, serialized_end=656, ) _LISTMONITOREDRESOURCEDESCRIPTORSRESPONSE = _descriptor.Descriptor( name="ListMonitoredResourceDescriptorsResponse", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsResponse", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="resource_descriptors", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsResponse.resource_descriptors", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="next_page_token", full_name="google.monitoring.v3.ListMonitoredResourceDescriptorsResponse.next_page_token", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=659, serialized_end=797, ) _GETMONITOREDRESOURCEDESCRIPTORREQUEST = _descriptor.Descriptor( name="GetMonitoredResourceDescriptorRequest", full_name="google.monitoring.v3.GetMonitoredResourceDescriptorRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.GetMonitoredResourceDescriptorRequest.name", index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A7\n5monitoring.googleapis.com/MonitoredResourceDescriptor", file=DESCRIPTOR, ) ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=799, serialized_end=915, ) _LISTMETRICDESCRIPTORSREQUEST = _descriptor.Descriptor( name="ListMetricDescriptorsRequest", full_name="google.monitoring.v3.ListMetricDescriptorsRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.ListMetricDescriptorsRequest.name", index=0, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A,\022*monitoring.googleapis.com/MetricDescriptor", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="filter", full_name="google.monitoring.v3.ListMetricDescriptorsRequest.filter", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_size", full_name="google.monitoring.v3.ListMetricDescriptorsRequest.page_size", index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_token", full_name="google.monitoring.v3.ListMetricDescriptorsRequest.page_token", index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=918, serialized_end=1069, ) _LISTMETRICDESCRIPTORSRESPONSE = _descriptor.Descriptor( name="ListMetricDescriptorsResponse", full_name="google.monitoring.v3.ListMetricDescriptorsResponse", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="metric_descriptors", full_name="google.monitoring.v3.ListMetricDescriptorsResponse.metric_descriptors", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="next_page_token", full_name="google.monitoring.v3.ListMetricDescriptorsResponse.next_page_token", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1071, serialized_end=1185, ) _GETMETRICDESCRIPTORREQUEST = _descriptor.Descriptor( name="GetMetricDescriptorRequest", full_name="google.monitoring.v3.GetMetricDescriptorRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.GetMetricDescriptorRequest.name", index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A,\n*monitoring.googleapis.com/MetricDescriptor", file=DESCRIPTOR, ) ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1187, serialized_end=1281, ) _CREATEMETRICDESCRIPTORREQUEST = _descriptor.Descriptor( name="CreateMetricDescriptorRequest", full_name="google.monitoring.v3.CreateMetricDescriptorRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.CreateMetricDescriptorRequest.name", index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A,\022*monitoring.googleapis.com/MetricDescriptor", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="metric_descriptor", full_name="google.monitoring.v3.CreateMetricDescriptorRequest.metric_descriptor", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1284, serialized_end=1443, ) _DELETEMETRICDESCRIPTORREQUEST = _descriptor.Descriptor( name="DeleteMetricDescriptorRequest", full_name="google.monitoring.v3.DeleteMetricDescriptorRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.DeleteMetricDescriptorRequest.name", index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A,\n*monitoring.googleapis.com/MetricDescriptor", file=DESCRIPTOR, ) ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1445, serialized_end=1542, ) _LISTTIMESERIESREQUEST = _descriptor.Descriptor( name="ListTimeSeriesRequest", full_name="google.monitoring.v3.ListTimeSeriesRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.ListTimeSeriesRequest.name", index=0, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A-\n+cloudresourcemanager.googleapis.com/Project", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="filter", full_name="google.monitoring.v3.ListTimeSeriesRequest.filter", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="interval", full_name="google.monitoring.v3.ListTimeSeriesRequest.interval", index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="aggregation", full_name="google.monitoring.v3.ListTimeSeriesRequest.aggregation", index=3, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="order_by", full_name="google.monitoring.v3.ListTimeSeriesRequest.order_by", index=4, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="view", full_name="google.monitoring.v3.ListTimeSeriesRequest.view", index=5, number=7, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_size", full_name="google.monitoring.v3.ListTimeSeriesRequest.page_size", index=6, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_token", full_name="google.monitoring.v3.ListTimeSeriesRequest.page_token", index=7, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[_LISTTIMESERIESREQUEST_TIMESERIESVIEW], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1545, serialized_end=1948, ) _LISTTIMESERIESRESPONSE = _descriptor.Descriptor( name="ListTimeSeriesResponse", full_name="google.monitoring.v3.ListTimeSeriesResponse", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="time_series", full_name="google.monitoring.v3.ListTimeSeriesResponse.time_series", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="next_page_token", full_name="google.monitoring.v3.ListTimeSeriesResponse.next_page_token", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="execution_errors", full_name="google.monitoring.v3.ListTimeSeriesResponse.execution_errors", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=1951, serialized_end=2101, ) _CREATETIMESERIESREQUEST = _descriptor.Descriptor( name="CreateTimeSeriesRequest", full_name="google.monitoring.v3.CreateTimeSeriesRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.CreateTimeSeriesRequest.name", index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002\372A-\n+cloudresourcemanager.googleapis.com/Project", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="time_series", full_name="google.monitoring.v3.CreateTimeSeriesRequest.time_series", index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\340A\002", file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2104, serialized_end=2256, ) _CREATETIMESERIESERROR = _descriptor.Descriptor( name="CreateTimeSeriesError", full_name="google.monitoring.v3.CreateTimeSeriesError", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="time_series", full_name="google.monitoring.v3.CreateTimeSeriesError.time_series", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\030\001", file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="status", full_name="google.monitoring.v3.CreateTimeSeriesError.status", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b"\030\001", file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2258, serialized_end=2380, ) _CREATETIMESERIESSUMMARY_ERROR = _descriptor.Descriptor( name="Error", full_name="google.monitoring.v3.CreateTimeSeriesSummary.Error", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="status", full_name="google.monitoring.v3.CreateTimeSeriesSummary.Error.status", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="point_count", full_name="google.monitoring.v3.CreateTimeSeriesSummary.Error.point_count", index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2535, serialized_end=2599, ) _CREATETIMESERIESSUMMARY = _descriptor.Descriptor( name="CreateTimeSeriesSummary", full_name="google.monitoring.v3.CreateTimeSeriesSummary", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="total_point_count", full_name="google.monitoring.v3.CreateTimeSeriesSummary.total_point_count", index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="success_point_count", full_name="google.monitoring.v3.CreateTimeSeriesSummary.success_point_count", index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="errors", full_name="google.monitoring.v3.CreateTimeSeriesSummary.errors", index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[_CREATETIMESERIESSUMMARY_ERROR], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2383, serialized_end=2599, ) _QUERYTIMESERIESREQUEST = _descriptor.Descriptor( name="QueryTimeSeriesRequest", full_name="google.monitoring.v3.QueryTimeSeriesRequest", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.monitoring.v3.QueryTimeSeriesRequest.name", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="query", full_name="google.monitoring.v3.QueryTimeSeriesRequest.query", index=1, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_size", full_name="google.monitoring.v3.QueryTimeSeriesRequest.page_size", index=2, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="page_token", full_name="google.monitoring.v3.QueryTimeSeriesRequest.page_token", index=3, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2601, serialized_end=2693, ) _QUERYTIMESERIESRESPONSE = _descriptor.Descriptor( name="QueryTimeSeriesResponse", full_name="google.monitoring.v3.QueryTimeSeriesResponse", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="time_series_descriptor", full_name="google.monitoring.v3.QueryTimeSeriesResponse.time_series_descriptor", index=0, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="time_series_data", full_name="google.monitoring.v3.QueryTimeSeriesResponse.time_series_data", index=1, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="next_page_token", full_name="google.monitoring.v3.QueryTimeSeriesResponse.next_page_token", index=2, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="partial_errors", full_name="google.monitoring.v3.QueryTimeSeriesResponse.partial_errors", index=3, number=11, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2696, serialized_end=2930, ) _QUERYERRORLIST = _descriptor.Descriptor( name="QueryErrorList", full_name="google.monitoring.v3.QueryErrorList", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="errors", full_name="google.monitoring.v3.QueryErrorList.errors", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="error_summary", full_name="google.monitoring.v3.QueryErrorList.error_summary", index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=2932, serialized_end=3021, ) _LISTMONITOREDRESOURCEDESCRIPTORSRESPONSE.fields_by_name[ "resource_descriptors" ].message_type = ( google_dot_api_dot_monitored__resource__pb2._MONITOREDRESOURCEDESCRIPTOR ) _LISTMETRICDESCRIPTORSRESPONSE.fields_by_name[ "metric_descriptors" ].message_type = google_dot_api_dot_metric__pb2._METRICDESCRIPTOR _CREATEMETRICDESCRIPTORREQUEST.fields_by_name[ "metric_descriptor" ].message_type = google_dot_api_dot_metric__pb2._METRICDESCRIPTOR _LISTTIMESERIESREQUEST.fields_by_name[ "interval" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_common__pb2._TIMEINTERVAL ) _LISTTIMESERIESREQUEST.fields_by_name[ "aggregation" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_common__pb2._AGGREGATION ) _LISTTIMESERIESREQUEST.fields_by_name[ "view" ].enum_type = _LISTTIMESERIESREQUEST_TIMESERIESVIEW _LISTTIMESERIESREQUEST_TIMESERIESVIEW.containing_type = _LISTTIMESERIESREQUEST _LISTTIMESERIESRESPONSE.fields_by_name[ "time_series" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2._TIMESERIES ) _LISTTIMESERIESRESPONSE.fields_by_name[ "execution_errors" ].message_type = google_dot_rpc_dot_status__pb2._STATUS _CREATETIMESERIESREQUEST.fields_by_name[ "time_series" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2._TIMESERIES ) _CREATETIMESERIESERROR.fields_by_name[ "time_series" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2._TIMESERIES ) _CREATETIMESERIESERROR.fields_by_name[ "status" ].message_type = google_dot_rpc_dot_status__pb2._STATUS _CREATETIMESERIESSUMMARY_ERROR.fields_by_name[ "status" ].message_type = google_dot_rpc_dot_status__pb2._STATUS _CREATETIMESERIESSUMMARY_ERROR.containing_type = _CREATETIMESERIESSUMMARY _CREATETIMESERIESSUMMARY.fields_by_name[ "errors" ].message_type = _CREATETIMESERIESSUMMARY_ERROR _QUERYTIMESERIESRESPONSE.fields_by_name[ "time_series_descriptor" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2._TIMESERIESDESCRIPTOR ) _QUERYTIMESERIESRESPONSE.fields_by_name[ "time_series_data" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2._TIMESERIESDATA ) _QUERYTIMESERIESRESPONSE.fields_by_name[ "partial_errors" ].message_type = google_dot_rpc_dot_status__pb2._STATUS _QUERYERRORLIST.fields_by_name[ "errors" ].message_type = ( google_dot_cloud_dot_monitoring__v3_dot_proto_dot_metric__pb2._QUERYERROR ) DESCRIPTOR.message_types_by_name[ "ListMonitoredResourceDescriptorsRequest" ] = _LISTMONITOREDRESOURCEDESCRIPTORSREQUEST DESCRIPTOR.message_types_by_name[ "ListMonitoredResourceDescriptorsResponse" ] = _LISTMONITOREDRESOURCEDESCRIPTORSRESPONSE DESCRIPTOR.message_types_by_name[ "GetMonitoredResourceDescriptorRequest" ] = _GETMONITOREDRESOURCEDESCRIPTORREQUEST DESCRIPTOR.message_types_by_name[ "ListMetricDescriptorsRequest" ] = _LISTMETRICDESCRIPTORSREQUEST DESCRIPTOR.message_types_by_name[ "ListMetricDescriptorsResponse" ] = _LISTMETRICDESCRIPTORSRESPONSE DESCRIPTOR.message_types_by_name[ "GetMetricDescriptorRequest" ] = _GETMETRICDESCRIPTORREQUEST DESCRIPTOR.message_types_by_name[ "CreateMetricDescriptorRequest" ] = _CREATEMETRICDESCRIPTORREQUEST DESCRIPTOR.message_types_by_name[ "DeleteMetricDescriptorRequest" ] = _DELETEMETRICDESCRIPTORREQUEST DESCRIPTOR.message_types_by_name["ListTimeSeriesRequest"] = _LISTTIMESERIESREQUEST DESCRIPTOR.message_types_by_name["ListTimeSeriesResponse"] = _LISTTIMESERIESRESPONSE DESCRIPTOR.message_types_by_name["CreateTimeSeriesRequest"] = _CREATETIMESERIESREQUEST DESCRIPTOR.message_types_by_name["CreateTimeSeriesError"] = _CREATETIMESERIESERROR DESCRIPTOR.message_types_by_name["CreateTimeSeriesSummary"] = _CREATETIMESERIESSUMMARY DESCRIPTOR.message_types_by_name["QueryTimeSeriesRequest"] = _QUERYTIMESERIESREQUEST DESCRIPTOR.message_types_by_name["QueryTimeSeriesResponse"] = _QUERYTIMESERIESRESPONSE DESCRIPTOR.message_types_by_name["QueryErrorList"] = _QUERYERRORLIST _sym_db.RegisterFileDescriptor(DESCRIPTOR) ListMonitoredResourceDescriptorsRequest = _reflection.GeneratedProtocolMessageType( "ListMonitoredResourceDescriptorsRequest", (_message.Message,), { "DESCRIPTOR": _LISTMONITOREDRESOURCEDESCRIPTORSREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``ListMonitoredResourceDescriptors`` request. Attributes: name: Required. The project on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER] filter: An optional `filter <https://cloud.google.com/monitoring/api/v3/filters>`__ describing the descriptors to be returned. The filter can reference the descriptor’s type and labels. For example, the following filter returns only Google Compute Engine descriptors that have an ``id`` label: :: resource.type = starts_with("gce_") AND resource.label:id page_size: A positive number that is the maximum number of results to return. page_token: If this field is not empty then it must contain the ``nextPageToken`` value returned by a previous call to this method. Using this field causes the method to return additional results from the previous method call. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.ListMonitoredResourceDescriptorsRequest) }, ) _sym_db.RegisterMessage(ListMonitoredResourceDescriptorsRequest) ListMonitoredResourceDescriptorsResponse = _reflection.GeneratedProtocolMessageType( "ListMonitoredResourceDescriptorsResponse", (_message.Message,), { "DESCRIPTOR": _LISTMONITOREDRESOURCEDESCRIPTORSRESPONSE, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``ListMonitoredResourceDescriptors`` response. Attributes: resource_descriptors: The monitored resource descriptors that are available to this project and that match ``filter``, if present. next_page_token: If there are more results than have been returned, then this field is set to a non-empty value. To see the additional results, use that value as ``page_token`` in the next call to this method. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.ListMonitoredResourceDescriptorsResponse) }, ) _sym_db.RegisterMessage(ListMonitoredResourceDescriptorsResponse) GetMonitoredResourceDescriptorRequest = _reflection.GeneratedProtocolMessageType( "GetMonitoredResourceDescriptorRequest", (_message.Message,), { "DESCRIPTOR": _GETMONITOREDRESOURCEDESCRIPTORREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``GetMonitoredResourceDescriptor`` request. Attributes: name: Required. The monitored resource descriptor to get. The format is: :: projects/[PROJECT_ID_OR_NUMBER]/monitoredResourceD escriptors/[RESOURCE_TYPE] The ``[RESOURCE_TYPE]`` is a predefined type, such as ``cloudsql_database``. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.GetMonitoredResourceDescriptorRequest) }, ) _sym_db.RegisterMessage(GetMonitoredResourceDescriptorRequest) ListMetricDescriptorsRequest = _reflection.GeneratedProtocolMessageType( "ListMetricDescriptorsRequest", (_message.Message,), { "DESCRIPTOR": _LISTMETRICDESCRIPTORSREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``ListMetricDescriptors`` request. Attributes: name: Required. The project on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER] filter: If this field is empty, all custom and system-defined metric descriptors are returned. Otherwise, the `filter <https://cloud.google.com/monitoring/api/v3/filters>`__ specifies which metric descriptors are to be returned. For example, the following filter matches all `custom metrics <https://cloud.google.com/monitoring/custom-metrics>`__: :: metric.type = starts_with("custom.googleapis.com/") page_size: A positive number that is the maximum number of results to return. page_token: If this field is not empty then it must contain the ``nextPageToken`` value returned by a previous call to this method. Using this field causes the method to return additional results from the previous method call. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.ListMetricDescriptorsRequest) }, ) _sym_db.RegisterMessage(ListMetricDescriptorsRequest) ListMetricDescriptorsResponse = _reflection.GeneratedProtocolMessageType( "ListMetricDescriptorsResponse", (_message.Message,), { "DESCRIPTOR": _LISTMETRICDESCRIPTORSRESPONSE, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``ListMetricDescriptors`` response. Attributes: metric_descriptors: The metric descriptors that are available to the project and that match the value of ``filter``, if present. next_page_token: If there are more results than have been returned, then this field is set to a non-empty value. To see the additional results, use that value as ``page_token`` in the next call to this method. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.ListMetricDescriptorsResponse) }, ) _sym_db.RegisterMessage(ListMetricDescriptorsResponse) GetMetricDescriptorRequest = _reflection.GeneratedProtocolMessageType( "GetMetricDescriptorRequest", (_message.Message,), { "DESCRIPTOR": _GETMETRICDESCRIPTORREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``GetMetricDescriptor`` request. Attributes: name: Required. The metric descriptor on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER]/metricDescriptors/[METRIC_ID] An example value of ``[METRIC_ID]`` is ``"compute.googleapis.com/instance/disk/read_bytes_count"``. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.GetMetricDescriptorRequest) }, ) _sym_db.RegisterMessage(GetMetricDescriptorRequest) CreateMetricDescriptorRequest = _reflection.GeneratedProtocolMessageType( "CreateMetricDescriptorRequest", (_message.Message,), { "DESCRIPTOR": _CREATEMETRICDESCRIPTORREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``CreateMetricDescriptor`` request. Attributes: name: Required. The project on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER] metric_descriptor: Required. The new `custom metric <https://cloud.google.com/monitoring/custom-metrics>`__ descriptor. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.CreateMetricDescriptorRequest) }, ) _sym_db.RegisterMessage(CreateMetricDescriptorRequest) DeleteMetricDescriptorRequest = _reflection.GeneratedProtocolMessageType( "DeleteMetricDescriptorRequest", (_message.Message,), { "DESCRIPTOR": _DELETEMETRICDESCRIPTORREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``DeleteMetricDescriptor`` request. Attributes: name: Required. The metric descriptor on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER]/metricDescriptors/[METRIC_ID] An example of ``[METRIC_ID]`` is: ``"custom.googleapis.com/my_test_metric"``. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.DeleteMetricDescriptorRequest) }, ) _sym_db.RegisterMessage(DeleteMetricDescriptorRequest) ListTimeSeriesRequest = _reflection.GeneratedProtocolMessageType( "ListTimeSeriesRequest", (_message.Message,), { "DESCRIPTOR": _LISTTIMESERIESREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``ListTimeSeries`` request. Attributes: name: Required. The project on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER] filter: Required. A `monitoring filter <https://cloud.google.com/monitoring/api/v3/filters>`__ that specifies which time series should be returned. The filter must specify a single metric type, and can additionally specify metric labels and other information. For example: :: metric.type = "compute.googleapis.com/instance/cpu/usage_time" AND metric.labels.instance_name = "my-instance-name" interval: Required. The time interval for which results should be returned. Only time series that contain data points in the specified interval are included in the response. aggregation: Specifies the alignment of data points in individual time series as well as how to combine the retrieved time series across specified labels. By default (if no ``aggregation`` is explicitly specified), the raw time series data is returned. order_by: Unsupported: must be left blank. The points in each time series are currently returned in reverse time order (most recent to oldest). view: Required. Specifies which information is returned about the time series. page_size: A positive number that is the maximum number of results to return. If ``page_size`` is empty or more than 100,000 results, the effective ``page_size`` is 100,000 results. If ``view`` is set to ``FULL``, this is the maximum number of ``Points`` returned. If ``view`` is set to ``HEADERS``, this is the maximum number of ``TimeSeries`` returned. page_token: If this field is not empty then it must contain the ``nextPageToken`` value returned by a previous call to this method. Using this field causes the method to return additional results from the previous method call. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.ListTimeSeriesRequest) }, ) _sym_db.RegisterMessage(ListTimeSeriesRequest) ListTimeSeriesResponse = _reflection.GeneratedProtocolMessageType( "ListTimeSeriesResponse", (_message.Message,), { "DESCRIPTOR": _LISTTIMESERIESRESPONSE, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``ListTimeSeries`` response. Attributes: time_series: One or more time series that match the filter included in the request. next_page_token: If there are more results than have been returned, then this field is set to a non-empty value. To see the additional results, use that value as ``page_token`` in the next call to this method. execution_errors: Query execution errors that may have caused the time series data returned to be incomplete. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.ListTimeSeriesResponse) }, ) _sym_db.RegisterMessage(ListTimeSeriesResponse) CreateTimeSeriesRequest = _reflection.GeneratedProtocolMessageType( "CreateTimeSeriesRequest", (_message.Message,), { "DESCRIPTOR": _CREATETIMESERIESREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``CreateTimeSeries`` request. Attributes: name: Required. The project on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER] time_series: Required. The new data to be added to a list of time series. Adds at most one data point to each of several time series. The new data point must be more recent than any other point in its time series. Each ``TimeSeries`` value must fully specify a unique time series by supplying all label values for the metric and the monitored resource. The maximum number of ``TimeSeries`` objects per ``Create`` request is 200. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.CreateTimeSeriesRequest) }, ) _sym_db.RegisterMessage(CreateTimeSeriesRequest) CreateTimeSeriesError = _reflection.GeneratedProtocolMessageType( "CreateTimeSeriesError", (_message.Message,), { "DESCRIPTOR": _CREATETIMESERIESERROR, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """DEPRECATED. Used to hold per-time-series error status. Attributes: time_series: DEPRECATED. Time series ID that resulted in the ``status`` error. status: DEPRECATED. The status of the requested write operation for ``time_series``. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.CreateTimeSeriesError) }, ) _sym_db.RegisterMessage(CreateTimeSeriesError) CreateTimeSeriesSummary = _reflection.GeneratedProtocolMessageType( "CreateTimeSeriesSummary", (_message.Message,), { "Error": _reflection.GeneratedProtocolMessageType( "Error", (_message.Message,), { "DESCRIPTOR": _CREATETIMESERIESSUMMARY_ERROR, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """Detailed information about an error category. Attributes: status: The status of the requested write operation. point_count: The number of points that couldn’t be written because of ``status``. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.CreateTimeSeriesSummary.Error) }, ), "DESCRIPTOR": _CREATETIMESERIESSUMMARY, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """Summary of the result of a failed request to write data to a time series. Attributes: total_point_count: The number of points in the request. success_point_count: The number of points that were successfully written. errors: The number of points that failed to be written. Order is not guaranteed. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.CreateTimeSeriesSummary) }, ) _sym_db.RegisterMessage(CreateTimeSeriesSummary) _sym_db.RegisterMessage(CreateTimeSeriesSummary.Error) QueryTimeSeriesRequest = _reflection.GeneratedProtocolMessageType( "QueryTimeSeriesRequest", (_message.Message,), { "DESCRIPTOR": _QUERYTIMESERIESREQUEST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``QueryTimeSeries`` request. Attributes: name: Required. The project on which to execute the request. The format is: :: projects/[PROJECT_ID_OR_NUMBER] query: Required. The query in the monitoring query language format. The default time zone is in UTC. page_size: A positive number that is the maximum number of time_series_data to return. page_token: If this field is not empty then it must contain the ``nextPageToken`` value returned by a previous call to this method. Using this field causes the method to return additional results from the previous method call. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.QueryTimeSeriesRequest) }, ) _sym_db.RegisterMessage(QueryTimeSeriesRequest) QueryTimeSeriesResponse = _reflection.GeneratedProtocolMessageType( "QueryTimeSeriesResponse", (_message.Message,), { "DESCRIPTOR": _QUERYTIMESERIESRESPONSE, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """The ``QueryTimeSeries`` response. Attributes: time_series_descriptor: The descriptor for the time series data. time_series_data: The time series data. next_page_token: If there are more results than have been returned, then this field is set to a non-empty value. To see the additional results, use that value as ``page_token`` in the next call to this method. partial_errors: Query execution errors that may have caused the time series data returned to be incomplete. The available data will be available in the response. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.QueryTimeSeriesResponse) }, ) _sym_db.RegisterMessage(QueryTimeSeriesResponse) QueryErrorList = _reflection.GeneratedProtocolMessageType( "QueryErrorList", (_message.Message,), { "DESCRIPTOR": _QUERYERRORLIST, "__module__": "google.cloud.monitoring_v3.proto.metric_service_pb2", "__doc__": """This is an error detail intended to be used with INVALID_ARGUMENT errors. Attributes: errors: Errors in parsing the time series query language text. The number of errors in the response may be limited. error_summary: A summary of all the errors. """, # @@protoc_insertion_point(class_scope:google.monitoring.v3.QueryErrorList) }, ) _sym_db.RegisterMessage(QueryErrorList) DESCRIPTOR._options = None _LISTMONITOREDRESOURCEDESCRIPTORSREQUEST.fields_by_name["name"]._options = None _GETMONITOREDRESOURCEDESCRIPTORREQUEST.fields_by_name["name"]._options = None _LISTMETRICDESCRIPTORSREQUEST.fields_by_name["name"]._options = None _GETMETRICDESCRIPTORREQUEST.fields_by_name["name"]._options = None _CREATEMETRICDESCRIPTORREQUEST.fields_by_name["name"]._options = None _CREATEMETRICDESCRIPTORREQUEST.fields_by_name["metric_descriptor"]._options = None _DELETEMETRICDESCRIPTORREQUEST.fields_by_name["name"]._options = None _LISTTIMESERIESREQUEST.fields_by_name["name"]._options = None _LISTTIMESERIESREQUEST.fields_by_name["filter"]._options = None _LISTTIMESERIESREQUEST.fields_by_name["interval"]._options = None _LISTTIMESERIESREQUEST.fields_by_name["view"]._options = None _CREATETIMESERIESREQUEST.fields_by_name["name"]._options = None _CREATETIMESERIESREQUEST.fields_by_name["time_series"]._options = None _CREATETIMESERIESERROR.fields_by_name["time_series"]._options = None _CREATETIMESERIESERROR.fields_by_name["status"]._options = None _METRICSERVICE = _descriptor.ServiceDescriptor( name="MetricService", full_name="google.monitoring.v3.MetricService", file=DESCRIPTOR, index=0, serialized_options=b"\312A\031monitoring.googleapis.com\322A\272\001https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/monitoring,https://www.googleapis.com/auth/monitoring.read,https://www.googleapis.com/auth/monitoring.write", serialized_start=3024, serialized_end=4750, methods=[ _descriptor.MethodDescriptor( name="ListMonitoredResourceDescriptors", full_name="google.monitoring.v3.MetricService.ListMonitoredResourceDescriptors", index=0, containing_service=None, input_type=_LISTMONITOREDRESOURCEDESCRIPTORSREQUEST, output_type=_LISTMONITOREDRESOURCEDESCRIPTORSRESPONSE, serialized_options=b"\202\323\344\223\0024\0222/v3/{name=projects/*}/monitoredResourceDescriptors\332A\004name", ), _descriptor.MethodDescriptor( name="GetMonitoredResourceDescriptor", full_name="google.monitoring.v3.MetricService.GetMonitoredResourceDescriptor", index=1, containing_service=None, input_type=_GETMONITOREDRESOURCEDESCRIPTORREQUEST, output_type=google_dot_api_dot_monitored__resource__pb2._MONITOREDRESOURCEDESCRIPTOR, serialized_options=b"\202\323\344\223\0027\0225/v3/{name=projects/*/monitoredResourceDescriptors/**}\332A\004name", ), _descriptor.MethodDescriptor( name="ListMetricDescriptors", full_name="google.monitoring.v3.MetricService.ListMetricDescriptors", index=2, containing_service=None, input_type=_LISTMETRICDESCRIPTORSREQUEST, output_type=_LISTMETRICDESCRIPTORSRESPONSE, serialized_options=b"\202\323\344\223\002)\022'/v3/{name=projects/*}/metricDescriptors\332A\004name", ), _descriptor.MethodDescriptor( name="GetMetricDescriptor", full_name="google.monitoring.v3.MetricService.GetMetricDescriptor", index=3, containing_service=None, input_type=_GETMETRICDESCRIPTORREQUEST, output_type=google_dot_api_dot_metric__pb2._METRICDESCRIPTOR, serialized_options=b"\202\323\344\223\002,\022*/v3/{name=projects/*/metricDescriptors/**}\332A\004name", ), _descriptor.MethodDescriptor( name="CreateMetricDescriptor", full_name="google.monitoring.v3.MetricService.CreateMetricDescriptor", index=4, containing_service=None, input_type=_CREATEMETRICDESCRIPTORREQUEST, output_type=google_dot_api_dot_metric__pb2._METRICDESCRIPTOR, serialized_options=b"\202\323\344\223\002<\"'/v3/{name=projects/*}/metricDescriptors:\021metric_descriptor\332A\026name,metric_descriptor", ), _descriptor.MethodDescriptor( name="DeleteMetricDescriptor", full_name="google.monitoring.v3.MetricService.DeleteMetricDescriptor", index=5, containing_service=None, input_type=_DELETEMETRICDESCRIPTORREQUEST, output_type=google_dot_protobuf_dot_empty__pb2._EMPTY, serialized_options=b"\202\323\344\223\002,**/v3/{name=projects/*/metricDescriptors/**}\332A\004name", ), _descriptor.MethodDescriptor( name="ListTimeSeries", full_name="google.monitoring.v3.MetricService.ListTimeSeries", index=6, containing_service=None, input_type=_LISTTIMESERIESREQUEST, output_type=_LISTTIMESERIESRESPONSE, serialized_options=b'\202\323\344\223\002"\022 /v3/{name=projects/*}/timeSeries\332A\031name,filter,interval,view', ), _descriptor.MethodDescriptor( name="CreateTimeSeries", full_name="google.monitoring.v3.MetricService.CreateTimeSeries", index=7, containing_service=None, input_type=_CREATETIMESERIESREQUEST, output_type=google_dot_protobuf_dot_empty__pb2._EMPTY, serialized_options=b'\202\323\344\223\002%" /v3/{name=projects/*}/timeSeries:\001*\332A\020name,time_series', ), ], ) _sym_db.RegisterServiceDescriptor(_METRICSERVICE) DESCRIPTOR.services_by_name["MetricService"] = _METRICSERVICE # @@protoc_insertion_point(module_scope)
d061f290f794c90b951bbf0dd48c7e1e8356db05
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/all-gists/10375900/snippet.py
26438e7b72a4b03ea1b6bf2b8a49d6ac065dfc0f
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
8,007
py
import boto import json import time import sys import getopt import argparse import os import logging import StringIO import uuid import math import httplib from boto.sqs.message import RawMessage from boto.sqs.message import Message from boto.s3.key import Key ########################################################## # Connect to SQS and poll for messages ########################################################## def main(argv=None): # Handle command-line arguments for AWS credentials and resource names parser = argparse.ArgumentParser(description='Process AWS resources and credentials.') parser.add_argument('--input-queue', action='store', dest='input_queue', required=False, default="input", help='SQS queue from which input jobs are retrieved') parser.add_argument('--output-queue', action='store', dest='output_queue', required=False, default="output", help='SQS queue to which job results are placed') parser.add_argument('--s3-output-bucket', action='store', dest='s3_output_bucket', required=False, default="", help='S3 bucket where list of instances will be stored') parser.add_argument('--region', action='store', dest='region', required=False, default="", help='Region that the SQS queus are in') args = parser.parse_args() # Get region region_name = args.region # If no region supplied, extract it from meta-data if region_name == '': conn = httplib.HTTPConnection("169.254.169.254", 80) conn.request("GET", "/latest/meta-data/placement/availability-zone/") response = conn.getresponse() region_name = response.read()[:-1] info_message('Using Region %s' % (region_name)) # Set queue names input_queue_name = args.input_queue output_queue_name = args.output_queue # Get S3 endpoint s3_endpoint = [region.endpoint for region in boto.s3.regions() if region.name == region_name][0] # Get S3 bucket, create if none supplied s3_output_bucket = args.s3_output_bucket if s3_output_bucket == "": s3_output_bucket = create_s3_output_bucket(s3_output_bucket, s3_endpoint, region_name) info_message('Retrieving jobs from queue %s. Processed images will be stored in %s and a message placed in queue %s' % (input_queue_name, s3_output_bucket, output_queue_name)) try: # Connect to SQS and open queue sqs = boto.sqs.connect_to_region(region_name) except Exception as ex: error_message("Encountered an error setting SQS region. Please confirm you have queues in %s." % (region_name)) sys.exit(1) try: input_queue = sqs.get_queue(input_queue_name) input_queue.set_message_class(RawMessage) except Exception as ex: error_message("Encountered an error connecting to SQS queue %s. Confirm that your input queue exists." % (input_queue_name)) sys.exit(2) try: output_queue = sqs.get_queue(output_queue_name) output_queue.set_message_class(RawMessage) except Exception as ex: error_message("Encountered an error connecting to SQS queue %s. Confirm that your output queue exists." % (output_queue_name)) sys.exit(3) info_message("Polling input queue...") while True: # Get messages rs = input_queue.get_messages(num_messages=1) if len(rs) > 0: # Iterate each message for raw_message in rs: info_message("Message received...") # Parse JSON message (going two levels deep to get the embedded message) message = raw_message.get_body() # Create a unique job id job_id = str(uuid.uuid4()) # Process the image, creating the image montage output_url = process_message(message, s3_output_bucket, s3_endpoint, job_id) # Sleep for a while to simulate a heavy workload # (Otherwise the queue empties too fast!) time.sleep(15) output_message = "Output available at: %s" % (output_url) # Write message to output queue write_output_message(output_message, output_queue) info_message(output_message) info_message("Image processing completed.") # Delete message from the queue input_queue.delete_message(raw_message) time.sleep(5) ############################################################################## # Process a newline-delimited list of URls ############################################################################## def process_message(message, s3_output_bucket, s3_endpoint, job_id): try: output_dir = "/home/ec2-user/jobs/%s/" % (job_id) # Download images from URLs specified in message for line in message.splitlines(): info_message("Downloading image from %s" % line) os.system("wget -P %s %s" % (output_dir, line)) output_image_name = "output-%s.jpg" % (job_id) output_image_path = output_dir + output_image_name # Invoke ImageMagick to create a montage os.system("montage -size 400x400 null: %s*.* null: -thumbnail 400x400 -bordercolor white -background black +polaroid -resize 80%% -gravity center -background black -geometry -10+2 -tile x1 %s" % (output_dir, output_image_path)) # Write the resulting image to s3 output_url = write_image_to_s3(output_image_path, output_image_name, s3_output_bucket, s3_endpoint) # Return the output url return output_url except: error_message("An error occurred. Please show this to your class instructor.") error_message(sys.exc_info()[0]) ############################################################################## # Write the result of a job to the output queue ############################################################################## def write_output_message(message, output_queue): m = RawMessage() m.set_body(message) status = output_queue.write(m) ############################################################################## # Write an image to S3 ############################################################################## def write_image_to_s3(path, file_name, s3_output_bucket, s3_endpoint): # Connect to S3 and get the output bucket s3 = boto.connect_s3(host=s3_endpoint) output_bucket = s3.get_bucket(s3_output_bucket) # Create a key to store the instances_json text k = Key(output_bucket) k.key = "out/" + file_name k.set_metadata("Content-Type", "image/jpeg") k.set_contents_from_filename(path) k.set_acl('public-read') # Return a URL to the object return "https://%s.s3.amazonaws.com/%s" % (s3_output_bucket, k.key) ############################################################################## # Verify S3 bucket, create it if required ############################################################################## def create_s3_output_bucket(s3_output_bucket, s3_endpoint, region_name): # Connect to S3 s3 = boto.connect_s3(host=s3_endpoint) # Find any existing buckets starting with 'image-bucket' buckets = [bucket.name for bucket in s3.get_all_buckets() if bucket.name.startswith('image-bucket')] if len(buckets) > 0: return buckets[0] # No buckets, so create one for them name = 'image-bucket-' + str(uuid.uuid4()) s3.create_bucket(name, location=region_name) return name ############################################################################## # Use logging class to log simple info messages ############################################################################## def info_message(message): logger.info(message) def error_message(message): logger.error(message) ############################################################################## # Generic stirng logging ############################################################################## class Logger: def __init__(self): #self.stream = StringIO.StringIO() #self.stream_handler = logging.StreamHandler(self.stream) self.file_handler = logging.FileHandler('/home/ec2-user/image_processor.log') self.log = logging.getLogger('image-processor') self.log.setLevel(logging.INFO) for handler in self.log.handlers: self.log.removeHandler(handler) self.log.addHandler(self.file_handler) def info(self, message): self.log.info(message) def error(self, message): self.log.error(message) logger = Logger() if __name__ == "__main__": sys.exit(main())
7665734ba108bbe3b98f2a09d77e4acbe740a77f
a08f9192cef4c48378e2c691353343112b317d71
/hatchet/readers/json_reader.py
407536bae020b48822d840cb2c5d9e0915ebd7fa
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "LGPL-2.0-or-later" ]
permissive
LLNL/hatchet
a7a33523f7aa60dfe38739e2362666a50af7adc0
5d0efca4ea9cca03497d0b89b6ffada37242d579
refs/heads/develop
2023-08-30T22:29:30.456656
2023-08-17T16:05:46
2023-08-17T16:05:46
454,508,482
19
13
MIT
2023-09-09T00:13:13
2022-02-01T18:43:00
JavaScript
UTF-8
Python
false
false
2,060
py
# Copyright 2017-2023 Lawrence Livermore National Security, LLC and other # Hatchet Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: MIT import json import pandas as pd import hatchet.graphframe from hatchet.node import Node from hatchet.graph import Graph from hatchet.frame import Frame class JsonReader: """Create a GraphFrame from a json string of the following format. Return: (GraphFrame): graphframe containing data from dictionaries """ def __init__(self, json_spec): """Read from a json string specification of a graphframe json (string): Json specification of a graphframe. """ self.spec_dict = json.loads(json_spec) def read(self): roots = [] for graph_spec in self.spec_dict["graph"]: # turn frames into nodes for nid, value in graph_spec.items(): graph_spec[nid]["data"] = Node(Frame(value["data"]), hnid=int(nid)) # connect nodes for nid, value in graph_spec.items(): for child in value["children"]: child = str(child) value["data"].add_child(graph_spec[child]["data"]) graph_spec[child]["data"].add_parent(value["data"]) for nid, value in graph_spec.items(): if len(value["data"].parents) == 0: roots.append(value["data"]) grph = Graph(roots) # make the dataframes dataframe = pd.DataFrame(self.spec_dict["dataframe"]) for graph_spec in self.spec_dict["graph"]: dataframe["node"] = dataframe["node"].map( lambda n: graph_spec[str(n)]["data"] if (str(n) in graph_spec) else n ) dataframe.set_index(self.spec_dict["dataframe_indices"], inplace=True) return hatchet.graphframe.GraphFrame( grph, dataframe, self.spec_dict["exclusive_metrics"], self.spec_dict["inclusive_metrics"], )
2ef1e47b02a835b52e3773d43064d34477571116
4a230737626c0cadfc5326315d036bf8453ef953
/paiza_03/paiza_03_006_002.erb
1f4012fe5d575e2d3c7a1c660ba105740666ad7b
[]
no_license
reinaaa05/python
0037a40b588b6954ea5d5b0ff45df98c1522f865
2d9e2b7388c4a19a0389aa6cb532774271bd27b0
refs/heads/master
2023-04-21T23:39:20.450914
2021-05-12T07:27:47
2021-05-12T07:27:47
340,906,770
0
0
null
null
null
null
UTF-8
Python
false
false
146
erb
# coding: utf-8 # 標準入力とループ処理 count = int(input()) count2 = int(input()) i = count while i <= count2: print(i) i += 1
bb77ef951e11dbb4d4981b2e9305607269c7ba70
56f5b2ea36a2258b8ca21e2a3af9a5c7a9df3c6e
/CMGTools/H2TauTau/prod/25aug_corrMC/up/mc/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0_1377544840/HTT_24Jul_newTES_manzoni_Up_Jobs/Logger/Expandedfull_cfg.py
d3581bac8bec09f120fed9d94f9edc89079e3b8e
[]
no_license
rmanzoni/HTT
18e6b583f04c0a6ca10142d9da3dd4c850cddabc
a03b227073b2d4d8a2abe95367c014694588bf98
refs/heads/master
2016-09-06T05:55:52.602604
2014-02-20T16:35:34
2014-02-20T16:35:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
165,735
py
import FWCore.ParameterSet.Config as cms process = cms.Process("H2TAUTAU") process.source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), duplicateCheckMode = cms.untracked.string('noDuplicateCheck'), fileNames = cms.untracked.vstring( ('/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_1.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_10.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_100.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_101.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_102.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_103.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_104.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_105.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_106.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_107.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_108.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_109.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_11.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_110.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_111.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_112.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_113.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_114.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_115.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_116.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_117.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_118.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_119.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_12.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_120.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_121.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_122.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_123.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_124.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_125.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_126.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_127.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_128.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_129.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_13.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_130.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_131.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_132.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_133.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_134.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_135.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_136.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_137.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_138.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_139.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_14.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_140.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_141.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_142.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_143.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_144.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_145.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_146.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_147.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_148.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_149.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_15.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_150.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_151.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_152.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_153.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_154.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_155.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_156.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_157.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_158.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_159.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_16.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_160.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_161.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_162.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_163.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_164.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_165.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_166.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_167.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_168.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_169.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_17.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_170.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_171.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_172.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_173.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_174.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_175.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_176.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_177.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_178.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_179.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_18.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_180.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_181.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_182.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_183.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_184.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_185.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_186.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_187.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_188.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_189.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_19.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_190.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_191.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_192.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_193.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_194.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_195.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_196.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_197.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_198.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_199.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_2.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_20.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_200.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_201.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_202.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_203.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_204.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_205.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_206.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_207.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_208.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_209.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_21.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_210.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_211.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_212.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_213.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_214.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_215.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_216.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_217.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_218.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_219.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_22.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_220.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_221.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_222.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_223.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_224.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_225.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_226.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_227.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_228.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_229.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_23.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_230.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_231.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_232.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_233.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_234.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_235.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_236.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_237.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_238.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_239.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_24.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_240.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_241.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_242.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_243.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_244.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_245.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_246.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_247.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_248.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_249.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_25.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_250.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_251.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_252.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_253.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_254.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_255.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_256.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_257.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_258.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_259.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_26.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_260.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_261.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_262.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_263.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_264.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_265.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_266.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_267.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_268.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_269.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_27.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_270.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_271.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_272.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_273.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_274.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_275.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_276.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_277.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_278.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_279.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_28.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_280.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_281.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_282.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_283.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_284.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_285.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_286.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_287.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_288.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_289.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_29.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_290.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_291.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_292.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_293.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_294.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_295.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_296.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_297.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_298.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_299.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_3.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_30.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_300.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_301.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_302.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_303.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_304.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_305.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_306.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_307.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_308.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_309.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_31.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_310.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_311.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_312.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_313.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_314.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_315.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_316.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_317.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_318.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_319.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_32.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_320.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_321.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_322.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_323.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_324.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_325.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_326.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_327.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_328.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_329.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_33.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_330.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_331.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_332.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_333.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_334.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_335.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_336.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_337.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_338.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_339.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_34.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_340.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_341.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_342.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_343.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_344.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_345.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_346.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_347.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_348.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_349.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_35.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_350.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_351.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_352.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_353.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_354.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_355.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_356.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_357.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_358.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_359.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_36.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_360.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_361.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_362.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_363.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_364.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_365.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_366.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_367.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_368.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_369.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_37.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_370.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_371.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_372.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_373.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_374.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_375.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_376.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_377.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_378.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_379.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_38.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_380.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_381.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_382.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_383.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_384.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_385.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_386.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_387.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_388.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_389.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_39.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_390.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_391.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_392.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_393.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_394.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_395.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_396.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_397.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_398.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_399.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_4.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_40.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_400.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_401.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_402.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_403.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_404.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_405.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_406.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_407.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_408.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_409.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_41.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_410.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_411.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_412.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_413.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_414.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_415.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_416.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_417.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_418.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_419.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_42.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_420.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_421.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_422.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_423.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_424.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_425.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_426.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_427.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_428.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_429.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_43.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_430.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_431.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_432.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_433.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_434.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_435.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_436.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_437.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_438.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_439.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_44.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_440.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_441.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_442.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_443.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_444.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_445.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_446.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_447.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_448.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_449.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_45.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_450.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_451.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_452.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_453.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_454.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_455.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_456.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_457.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_458.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_459.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_46.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_460.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_461.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_462.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_463.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_464.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_465.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_466.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_467.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_468.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_469.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_47.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_470.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_471.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_472.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_473.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_474.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_475.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_476.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_477.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_478.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_479.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_48.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_480.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_481.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_482.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_483.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_484.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_485.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_486.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_487.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_488.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_489.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_49.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_490.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_491.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_492.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_493.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_494.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_495.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_496.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_497.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_498.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_499.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_5.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_50.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_500.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_501.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_502.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_503.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_504.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_505.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_506.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_507.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_508.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_509.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_51.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_510.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_511.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_512.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_513.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_514.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_515.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_516.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_517.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_518.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_519.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_52.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_520.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_521.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_522.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_523.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_524.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_525.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_526.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_527.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_528.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_529.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_53.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_530.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_531.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_532.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_533.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_534.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_535.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_536.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_537.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_538.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_539.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_54.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_540.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_541.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_542.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_543.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_544.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_545.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_546.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_547.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_548.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_549.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_55.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_550.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_551.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_552.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_553.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_554.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_555.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_556.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_557.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_558.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_559.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_56.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_560.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_561.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_562.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_563.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_564.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_565.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_566.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_567.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_568.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_569.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_57.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_570.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_571.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_572.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_573.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_574.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_575.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_576.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_577.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_578.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_579.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_58.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_580.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_581.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_582.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_583.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_584.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_585.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_586.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_587.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_588.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_589.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_59.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_590.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_591.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_592.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_593.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_594.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_595.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_596.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_597.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_598.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_599.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_6.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_60.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_600.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_601.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_602.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_603.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_604.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_605.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_606.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_607.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_608.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_609.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_61.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_610.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_611.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_612.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_613.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_614.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_615.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_616.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_617.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_618.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_619.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_62.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_620.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_621.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_622.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_623.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_624.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_625.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_626.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_627.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_628.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_63.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_64.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_65.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_66.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_67.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_68.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_69.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_7.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_70.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_71.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_72.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_73.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_74.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_75.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_76.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_77.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_78.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_79.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_8.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_80.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_81.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_82.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_83.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_84.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_85.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_86.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_87.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_88.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_89.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_9.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_90.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_91.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_92.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_93.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_94.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_95.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_96.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_97.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_98.root', '/store/cmst3/user/cmgtools/CMG/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_99.root' ) ), inputCommands = cms.untracked.vstring('keep *', 'drop cmgStructuredPFJets_cmgStructuredPFJetSel__PAT') ) process.cmgDiTauCorSVFitPreSel = cms.EDProducer("TauTauWithSVFitProducer", diTauSrc = cms.InputTag("recoilCorMETDiTau"), SVFitVersion = cms.int32(2), verbose = cms.untracked.bool(False) ) process.cmgTauEleCorSVFitPreSel = cms.EDProducer("TauEleWithSVFitProducer", diTauSrc = cms.InputTag("recoilCorMETTauEle"), SVFitVersion = cms.int32(2), verbose = cms.untracked.bool(False) ) process.cmgTauMuCorSVFitPreSel = cms.EDProducer("TauMuWithSVFitProducer", diTauSrc = cms.InputTag("recoilCorMETTauMu"), SVFitVersion = cms.int32(2), verbose = cms.untracked.bool(False) ) process.diTauSVFit = cms.EDProducer("TauTauWithSVFitProducer", diTauSrc = cms.InputTag("cmgDiTauCorPreSel"), SVFitVersion = cms.int32(2), verbose = cms.untracked.bool(False) ) process.genWorZ = cms.EDProducer("GenParticlePruner", src = cms.InputTag("genParticlesPruned"), select = cms.vstring('keep status()==3 & pdgId = {W+}', 'keep status()==3 & pdgId = {W-}', 'keep status()==3 & pdgId = {Z0}', 'keep status()==3 & pdgId = {gamma}', 'keep status()==3 & pdgId = {h0}', 'keep status()==3 & pdgId = 35', 'keep status()==3 & pdgId = 36') ) process.mvaMETDiTau = cms.EDProducer("MVAMETProducerDiTau", pucmetSrc = cms.InputTag("pcMet"), enable = cms.bool(True), tkmetSrc = cms.InputTag("tkMet"), verbose = cms.untracked.bool(False), nopumetSrc = cms.InputTag("nopuMet"), rhoSrc = cms.InputTag("kt6PFJets","rho"), pfmetSrc = cms.InputTag("pfMetForRegression"), weights_gbrmetphi = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbrmetphi_53_Dec2012.root'), pumetSrc = cms.InputTag("puMet"), weights_gbrmetu1cov = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbru1cov_53_Dec2012.root'), weights_gbrmetu2cov = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbru2cov_53_Dec2012.root'), vertexSrc = cms.InputTag("goodPVFilter"), jetSrc = cms.InputTag("cmgPFJetSel"), leadJetSrc = cms.InputTag("cmgPFBaseJetLead"), recBosonSrc = cms.InputTag("cmgDiTauPreSel"), nJetsPtGt1Src = cms.InputTag("nJetsPtGt1"), weights_gbrmet = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbrmet_53_Dec2012.root'), puJetIdLabel = cms.string('met53x') ) process.mvaMETTauEle = cms.EDProducer("MVAMETProducerTauEle", pucmetSrc = cms.InputTag("pcMet"), enable = cms.bool(True), tkmetSrc = cms.InputTag("tkMet"), verbose = cms.untracked.bool(False), nopumetSrc = cms.InputTag("nopuMet"), rhoSrc = cms.InputTag("kt6PFJets","rho"), pfmetSrc = cms.InputTag("pfMetForRegression"), weights_gbrmetphi = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbrmetphi_53_Dec2012.root'), pumetSrc = cms.InputTag("puMet"), weights_gbrmetu1cov = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbru1cov_53_Dec2012.root'), weights_gbrmetu2cov = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbru2cov_53_Dec2012.root'), vertexSrc = cms.InputTag("goodPVFilter"), jetSrc = cms.InputTag("cmgPFJetSel"), leadJetSrc = cms.InputTag("cmgPFBaseJetLead"), recBosonSrc = cms.InputTag("cmgTauElePreSel"), nJetsPtGt1Src = cms.InputTag("nJetsPtGt1"), weights_gbrmet = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbrmet_53_Dec2012.root'), puJetIdLabel = cms.string('met53x') ) process.mvaMETTauMu = cms.EDProducer("MVAMETProducerTauMu", pucmetSrc = cms.InputTag("pcMet"), enable = cms.bool(True), tkmetSrc = cms.InputTag("tkMet"), verbose = cms.untracked.bool(False), nopumetSrc = cms.InputTag("nopuMet"), rhoSrc = cms.InputTag("kt6PFJets","rho"), pfmetSrc = cms.InputTag("pfMetForRegression"), weights_gbrmetphi = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbrmetphi_53_Dec2012.root'), pumetSrc = cms.InputTag("puMet"), weights_gbrmetu1cov = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbru1cov_53_Dec2012.root'), weights_gbrmetu2cov = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbru2cov_53_Dec2012.root'), vertexSrc = cms.InputTag("goodPVFilter"), jetSrc = cms.InputTag("cmgPFJetSel"), leadJetSrc = cms.InputTag("cmgPFBaseJetLead"), recBosonSrc = cms.InputTag("cmgTauMuPreSel"), nJetsPtGt1Src = cms.InputTag("nJetsPtGt1"), weights_gbrmet = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/mvaMET/gbrmet_53_Dec2012.root'), puJetIdLabel = cms.string('met53x') ) process.recoilCorMETDiTau = cms.EDProducer("RecoilCorrectedMETProducerDiTau", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53XRR_2012_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53XRR_2012_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection//recoilfit_ztt53X_20pv_njet.root'), leptonLeg = cms.int32(0), correctionType = cms.int32(1), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgDiTauPtSel") ) process.recoilCorMETTauEle = cms.EDProducer("RecoilCorrectedMETProducerTauEle", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53XRR_2012_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53XRR_2012_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection//recoilfit_ztt53X_20pv_njet.root'), leptonLeg = cms.int32(0), correctionType = cms.int32(1), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgTauEleTauPtSel") ) process.recoilCorMETTauMu = cms.EDProducer("RecoilCorrectedMETProducerTauMu", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53XRR_2012_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53XRR_2012_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection//recoilfit_ztt53X_20pv_njet.root'), leptonLeg = cms.int32(0), correctionType = cms.int32(1), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgTauMuTauPtSel") ) process.recoilCorrectedMETDiTau = cms.EDProducer("RecoilCorrectedMETProducerDiTau", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53XRR_2012_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53XRR_2012_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_ztt53X_20pv_njet.root'), leptonLeg = cms.int32(0), correctionType = cms.int32(2), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgDiTauSel") ) process.recoilCorrectedMETMuEle = cms.EDProducer("RecoilCorrectedMETProducerMuEle", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53X_20pv_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53X_20pv_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_wjets53X_20pv_njet.root'), leptonLeg = cms.int32(2), correctionType = cms.int32(2), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgMuEleSel"), metSrc = cms.InputTag("cmgPFMET") ) process.recoilCorrectedMETTauEle = cms.EDProducer("RecoilCorrectedMETProducerTauEle", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53X_20pv_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53X_20pv_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_wjets53X_20pv_njet.root'), leptonLeg = cms.int32(2), correctionType = cms.int32(2), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgTauEleSel") ) process.recoilCorrectedMETTauMu = cms.EDProducer("RecoilCorrectedMETProducerTauMu", enable = cms.bool(True), force = cms.bool(False), verbose = cms.untracked.bool(False), genBosonSrc = cms.InputTag("genWorZ"), fileZmmMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_zmm53X_20pv_njet.root'), fileZmmData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_datamm53X_20pv_njet.root'), fileCorrectTo = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/Utilities/data/metRecoilCorrection/recoilfit_wjets53X_20pv_njet.root'), leptonLeg = cms.int32(2), correctionType = cms.int32(2), jetSrc = cms.InputTag("cmgPFJetForRecoil"), recBosonSrc = cms.InputTag("cmgTauMuSel") ) process.tauEleSVFit = cms.EDProducer("TauEleWithSVFitProducer", diTauSrc = cms.InputTag("cmgTauEleCorPreSel"), SVFitVersion = cms.int32(2), verbose = cms.untracked.bool(False) ) process.tauMuSVFit = cms.EDProducer("TauMuWithSVFitProducer", diTauSrc = cms.InputTag("cmgTauMuCorPreSel"), SVFitVersion = cms.int32(2), verbose = cms.untracked.bool(False) ) process.vertexWeight05AugReReco = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_170249-172619_7TeV_ReReco5Aug_Collisions11_JSON_v2.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeight2011AB = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_160404-180252_4.6invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeight2011B = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2011B.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeight2invfb = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_160404-173692_2.1invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeight3D05AugReReco = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_170249-172619_7TeV_ReReco5Aug_Collisions11_JSON_v2.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeight3D2011AB = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_160404-180252_4.6invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeight3D2011B = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_2011B.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeight3D2invfb = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_160404-173692_2.1invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeight3DFall1105AugReReco = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_170249-172619_7TeV_ReReco5Aug_Collisions11_JSON_v2.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DFall112011AB = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_160404-180252_4.6invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DFall112011B = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_2011B.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DFall112invfb = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_160404-173692_2.1invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DFall11May10ReReco = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_160404-163869_7TeV_May10ReReco_Collisions11_JSON_v3.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DFall11PromptRecov4 = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_165088-167913_7TeV_PromptReco_JSON.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DFall11PromptRecov6 = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_172620-173692_PromptReco_JSON.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Fall11MC.root') ) process.vertexWeight3DMay10ReReco = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_160404-163869_7TeV_May10ReReco_Collisions11_JSON_v3.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeight3DPromptRecov4 = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_165088-167913_7TeV_PromptReco_JSON.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeight3DPromptRecov6 = cms.EDProducer("PileUpWeight3DProducer", verbose = cms.untracked.bool(False), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_172620-173692_PromptReco_JSON.pileupTruth_v2_finebin.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup3D_Summer11MC.root') ) process.vertexWeightEPSJul8 = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Pileup_2011_EPS_8_jul.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeightFall1105AugReReco = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_170249-172619_7TeV_ReReco5Aug_Collisions11_JSON_v2.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall112011AB = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_160404-180252_4.6invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall112011B = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2011B.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall112invfb = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_160404-173692_2.1invfb.pileup.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall11EPSJul8 = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Pileup_2011_EPS_8_jul.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall11LeptonPhoton = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Pileup_2011_to_172802_LP_LumiScale.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall11May10ReReco = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_160404-163869_7TeV_May10ReReco_Collisions11_JSON_v3.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall11PromptRecov4 = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_165088-167913_7TeV_PromptReco_JSON.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightFall11PromptRecov6 = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_172620-173692_PromptReco_JSON.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Fall11MC.root') ) process.vertexWeightLeptonPhoton = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Pileup_2011_to_172802_LP_LumiScale.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeightMay10ReReco = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_160404-163869_7TeV_May10ReReco_Collisions11_JSON_v3.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeightPromptRecov4 = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_165088-167913_7TeV_PromptReco_JSON.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeightPromptRecov6 = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(1), inputHistData = cms.string('/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions11/7TeV/PileUp/Cert_172620-173692_PromptReco_JSON.pileup_v2.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer11MC.root') ) process.vertexWeightSummer12MC53X2012ABCDData = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(2), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2012ABCD.true.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer12MC53X.true.root') ) process.vertexWeightSummer12MC53X2012BCDData = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(2), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2012BCD.true.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer12MC53X.true.root') ) process.vertexWeightSummer12MC53X2012D6fbData = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(2), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2012D6fb_203894_207898.true.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer12MC53X.true.root') ) process.vertexWeightSummer12MC53XHCPData = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(2), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2012HCP_190456_203002.true.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer12MC53X.true.root') ) process.vertexWeightSummer12MC53XICHEPData = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(2), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2012ICHEP_start_196509.true.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer12MC53X.true.root') ) process.vertexWeightSummer12MCICHEPData = cms.EDProducer("PileUpWeightProducer", src = cms.InputTag("addPileupInfo"), verbose = cms.untracked.bool(False), type = cms.int32(2), inputHistData = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_2012ICHEP_start_196509.true.root'), inputHistMC = cms.string('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/RootTools/data/vertexWeight/Pileup_Summer12MC52X.true.root') ) process.cmgBaseMETFromPFMET = cms.EDFilter("PFMETPOProducer", cfg = cms.PSet( ptThreshold = cms.double(-1.0), inputCollection = cms.InputTag("pfMet") ), cuts = cms.PSet( ) ) process.cmgDiTau = cms.EDFilter("DiTauPOProducer", cfg = cms.PSet( leg2Collection = cms.InputTag("cmgTauSel"), leg1Collection = cms.InputTag("cmgTauSel"), metsigCollection = cms.InputTag(""), metCollection = cms.InputTag("cmgPFMET") ), cuts = cms.PSet( baseline = cms.PSet( tau1Leg = cms.PSet( iso = cms.string('leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg1().eta())<2.1'), pt = cms.string('leg1().pt()>35.') ), id = cms.PSet( decay = cms.string('leg1().tauID("decayModeFinding")') ) ), mass = cms.string('mass()>10'), tau2Leg = cms.PSet( iso = cms.string('leg2().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg2().eta())<2.1'), pt = cms.string('leg2().pt()>35.') ), id = cms.PSet( decay = cms.string('leg2().tauID("decayModeFinding")') ) ) ) ) ) process.cmgDiTauCor = cms.EDFilter("DiTauUpdatePOProducer", cfg = cms.PSet( shift1Prong1Pi0 = cms.double(0.012), diObjectCollection = cms.InputTag("mvaMETDiTau"), leg1Collection = cms.InputTag(""), shiftMet = cms.bool(True), shiftTaus = cms.bool(True), uncertainty = cms.double(0.03), shift1ProngNoPi0 = cms.double(0.0), shift3Prong = cms.double(0.012), nSigma = cms.double(1), leg2Collection = cms.InputTag(""), ptDependence1Pi0 = cms.double(0.0), ptDependence3Prong = cms.double(0.0) ), cuts = cms.PSet( ) ) process.cmgDiTauCorSVFitFullSel = cms.EDFilter("CmgDiTauSelector", src = cms.InputTag("cmgDiTauCorSVFitPreSel"), cut = cms.string('') ) process.cmgDiTauCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgDiTauSel"), minNumber = cms.uint32(1) ) process.cmgDiTauPreSel = cms.EDFilter("CmgDiTauSelector", src = cms.InputTag("cmgDiTau"), cut = cms.string('leg1().pt()>38. && leg2().pt()>38. && leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10. && leg2().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.') ) process.cmgDiTauPtSel = cms.EDFilter("CmgDiTauSelector", src = cms.InputTag("cmgDiTauCor"), cut = cms.string('leg1().pt()>45. && leg2().pt()>45.') ) process.cmgDiTauSel = cms.EDFilter("CmgDiTauSelector", src = cms.InputTag("cmgDiTau"), cut = cms.string(' pt()>0 ') ) process.cmgMuEle = cms.EDFilter("MuElePOProducer", cfg = cms.PSet( leg2Collection = cms.InputTag("cmgElectronSel"), leg1Collection = cms.InputTag("cmgMuonSel"), metCollection = cms.InputTag("") ), cuts = cms.PSet( ) ) process.cmgMuEleCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgMuEleSel"), minNumber = cms.uint32(1) ) process.cmgMuEleSel = cms.EDFilter("CmgMuEleSelector", src = cms.InputTag("cmgMuEle"), cut = cms.string('pt()>0') ) process.cmgPFJetForRecoil = cms.EDFilter("CMGJetPUIDSelector", src = cms.InputTag("cmgPFJetForRecoilPresel"), cut = cms.string(''), puJetIDParams = cms.VPSet(cms.PSet( minDiscs = cms.vdouble(-0.95, -0.96, -0.94, -0.95), maxPt = cms.double(20.0), minPt = cms.double(0.0), maxEtas = cms.vdouble(2.5, 2.75, 3.0, 5.0) ), cms.PSet( minDiscs = cms.vdouble(-0.63, -0.6, -0.55, -0.45), maxPt = cms.double(99999.0), minPt = cms.double(20.0), maxEtas = cms.vdouble(2.5, 2.75, 3.0, 5.0) )), puIDName = cms.string('full53x') ) process.cmgPFJetForRecoilPresel = cms.EDFilter("CmgPFJetSelector", src = cms.InputTag("cmgPFJetSel"), cut = cms.string('pt()>30 && abs(eta)<4.7 && getSelection("cuts_looseJetId")') ) process.cmgPFJetPUIDSel = cms.EDFilter("CMGJetPUIDSelector", src = cms.InputTag("cmgPFJetSel"), cut = cms.string(''), puJetIDParams = cms.VPSet(cms.PSet( minDiscs = cms.vdouble(-0.95, -0.96, -0.94, -0.95), maxPt = cms.double(20.0), minPt = cms.double(0.0), maxEtas = cms.vdouble(2.5, 2.75, 3.0, 5.0) ), cms.PSet( minDiscs = cms.vdouble(-0.63, -0.6, -0.55, -0.45), maxPt = cms.double(99999.0), minPt = cms.double(20.0), maxEtas = cms.vdouble(2.5, 2.75, 3.0, 5.0) )), puIDName = cms.string('full53x') ) process.cmgPFJetSel = cms.EDFilter("CmgPFJetSelector", src = cms.InputTag("cmgPFJet"), cut = cms.string('pt()>0') ) process.cmgTauEle = cms.EDFilter("TauElePOProducer", cfg = cms.PSet( leg2Collection = cms.InputTag("cmgElectronSel"), leg1Collection = cms.InputTag("cmgTauSel"), metCollection = cms.InputTag("cmgPFMET"), metsigCollection = cms.InputTag("") ), cuts = cms.PSet( baseline = cms.PSet( tauLeg = cms.PSet( iso = cms.string('leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg1().eta())<2.3'), pt = cms.string('leg1().pt()>15.0') ), id = cms.PSet( decay = cms.string('leg1().tauID("decayModeFinding")') ) ), eleLeg = cms.PSet( kinematics = cms.PSet( eta = cms.string('abs(leg2().eta())<2.1'), pt = cms.string('leg2().pt()>20.0') ), ID = cms.PSet( hitsnum = cms.string('leg2().numberOfHits==0'), mvaID = cms.string('(abs(leg2().sourcePtr().superCluster().eta())<0.8 && leg2().mvaNonTrigV0() > 0.925) || (abs(leg2().sourcePtr().superCluster().eta())>0.8 && abs(leg2().sourcePtr().superCluster().eta())<1.479 && leg2().mvaNonTrigV0() > 0.975) || (abs(leg2().sourcePtr().superCluster().eta())>1.479 && leg2().mvaNonTrigV0() > 0.985)'), convVeto = cms.string('leg2().passConversionVeto()!=0') ) ) ) ) ) process.cmgTauEleCor = cms.EDFilter("TauEleUpdatePOProducer", cfg = cms.PSet( shift1Prong1Pi0 = cms.double(0.0), diObjectCollection = cms.InputTag("mvaMETTauEle"), leg1Collection = cms.InputTag(""), metCollection = cms.InputTag("recoilCorrectedMET"), uncertainty = cms.double(0.03), shift1ProngNoPi0 = cms.double(0.0), shift3Prong = cms.double(0.0), nSigma = cms.double(0), leg2Collection = cms.InputTag(""), ptDependence1Pi0 = cms.double(0.0), ptDependence3Prong = cms.double(0.0) ), cuts = cms.PSet( ) ) process.cmgTauEleCorSVFitFullSel = cms.EDFilter("CmgTauEleSelector", src = cms.InputTag("cmgTauEleCorSVFitPreSel"), cut = cms.string('') ) process.cmgTauEleCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgTauEleSel"), minNumber = cms.uint32(1) ) process.cmgTauEleMVAPreSel = cms.EDFilter("TauEleUpdatePOProducer", cfg = cms.PSet( shift1Prong1Pi0 = cms.double(0.0), diObjectCollection = cms.InputTag("cmgTauElePreSel"), leg1Collection = cms.InputTag(""), metCollection = cms.InputTag("recoilCorrectedMET"), uncertainty = cms.double(0.03), shift1ProngNoPi0 = cms.double(0.0), shift3Prong = cms.double(0.0), nSigma = cms.double(0), leg2Collection = cms.InputTag(""), ptDependence1Pi0 = cms.double(0.0), ptDependence3Prong = cms.double(0.0) ), cuts = cms.PSet( ) ) process.cmgTauElePreSel = cms.EDFilter("CmgTauEleSelector", src = cms.InputTag("cmgTauEle"), cut = cms.string('getSelection("cuts_baseline")') ) process.cmgTauEleSel = cms.EDFilter("CmgTauEleSelector", src = cms.InputTag("cmgTauEle"), cut = cms.string('pt()>0') ) process.cmgTauEleTauPtSel = cms.EDFilter("CmgTauEleSelector", src = cms.InputTag("cmgTauEleCor"), cut = cms.string('leg1().pt()>18.') ) process.cmgTauMu = cms.EDFilter("TauMuPOProducer", cfg = cms.PSet( leg2Collection = cms.InputTag("cmgMuonSel"), leg1Collection = cms.InputTag("cmgTauSel"), metCollection = cms.InputTag("cmgPFMET"), metsigCollection = cms.InputTag("") ), cuts = cms.PSet( caloMuVeto = cms.string('leg1().eOverP()>0.2'), baseline = cms.PSet( tauLeg = cms.PSet( iso = cms.string('leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg1().eta())<2.3'), pt = cms.string('leg1().pt()>15.0') ), id = cms.PSet( muRejection = cms.string('leg1().tauID("againstMuonTight") > 0.5'), decay = cms.string('leg1().tauID("decayModeFinding")') ) ), muLeg = cms.PSet( kinematics = cms.PSet( eta = cms.string('abs(leg2().eta())<2.1'), pt = cms.string('leg2().pt()>17.0') ) ), mass = cms.string('mass()>10') ) ) ) process.cmgTauMuCor = cms.EDFilter("TauMuUpdatePOProducer", cfg = cms.PSet( shift1Prong1Pi0 = cms.double(0.012), diObjectCollection = cms.InputTag("mvaMETTauMu"), leg1Collection = cms.InputTag(""), shiftMet = cms.bool(True), shiftTaus = cms.bool(True), uncertainty = cms.double(0.03), shift1ProngNoPi0 = cms.double(0.0), shift3Prong = cms.double(0.012), nSigma = cms.double(0), leg2Collection = cms.InputTag(""), ptDependence1Pi0 = cms.double(0.0), ptDependence3Prong = cms.double(0.0) ), cuts = cms.PSet( ) ) process.cmgTauMuCorSVFitFullSel = cms.EDFilter("CmgTauMuSelector", src = cms.InputTag("cmgTauMuCorSVFitPreSel"), cut = cms.string('') ) process.cmgTauMuCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgTauMuSel"), minNumber = cms.uint32(1) ) process.cmgTauMuMVAPreSel = cms.EDFilter("TauMuUpdatePOProducer", cfg = cms.PSet( shift1Prong1Pi0 = cms.double(0.012), diObjectCollection = cms.InputTag("cmgTauMuPreSel"), leg1Collection = cms.InputTag(""), shiftMet = cms.bool(True), shiftTaus = cms.bool(True), uncertainty = cms.double(0.03), shift1ProngNoPi0 = cms.double(0.0), shift3Prong = cms.double(0.012), nSigma = cms.double(0), leg2Collection = cms.InputTag(""), ptDependence1Pi0 = cms.double(0.0), ptDependence3Prong = cms.double(0.0) ), cuts = cms.PSet( ) ) process.cmgTauMuPreSel = cms.EDFilter("CmgTauMuSelector", src = cms.InputTag("cmgTauMu"), cut = cms.string('getSelection("cuts_baseline")') ) process.cmgTauMuSel = cms.EDFilter("CmgTauMuSelector", src = cms.InputTag("cmgTauMu"), cut = cms.string('pt()>0') ) process.cmgTauMuTauPtSel = cms.EDFilter("CmgTauMuSelector", src = cms.InputTag("cmgTauMuCor"), cut = cms.string('leg1().pt()>18.') ) process.diTauFullSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgDiTauCorSVFitFullSel"), minNumber = cms.uint32(1) ) process.diTauPreSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgDiTauCorSVFitPreSel"), minNumber = cms.uint32(1) ) process.goodPVFilter = cms.EDFilter("VertexSelector", filter = cms.bool(True), src = cms.InputTag("offlinePrimaryVertices"), cut = cms.string('!isFake && ndof > 4 && abs(z) <= 24 && position.Rho <= 2') ) process.muEleFullSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgMuEleCorSVFitFullSel"), minNumber = cms.uint32(1) ) process.muElePreSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgMuEleCorSVFitPreSel"), minNumber = cms.uint32(1) ) process.tauEleFullSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgTauEleCorSVFitFullSel"), minNumber = cms.uint32(1) ) process.tauElePreSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgTauEleCorSVFitPreSel"), minNumber = cms.uint32(1) ) process.tauMuFullSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgTauMuCorSVFitFullSel"), minNumber = cms.uint32(1) ) process.tauMuPreSelCount = cms.EDFilter("CandViewCountFilter", src = cms.InputTag("cmgTauMuCorSVFitPreSel"), minNumber = cms.uint32(1) ) process.diTau_fullsel_tree_CMG = cms.OutputModule("PoolOutputModule", outputCommands = cms.untracked.vstring('drop *', 'drop *', 'keep *_source_*_*', 'keep *_generator_*_*', 'keep *_TriggerResults__*', 'keep *_addPileupInfo__HLT', 'keep *_genJetSel__PAT', 'keep *_tauGenJetsSelectorAllHadrons__PAT', 'keep *_genParticlesPruned__PAT', 'keep *_vertexWeight*__*', 'keep *_ak5CaloJets_rho_RECO', 'keep *_ak5PFJets_rho_RECO', 'keep *_ak5TrackJets_rho_RECO', 'keep *_ak7BasicJets_rho_RECO', 'keep *_ak7CaloJets_rho_RECO', 'keep *_ak7PFJets_rho_RECO', 'keep *_kt4CaloJets_rho_RECO', 'keep *_kt4PFJets_rho_RECO', 'keep *_kt6CaloJets_rho_RECO', 'keep *_kt6CaloJetsCentral_rho_RECO', 'keep *_kt6PFJets_rho_RECO', 'keep *_kt6PFJetsCentralChargedPileUp_rho_RECO', 'keep *_kt6PFJetsCentralNeutral_rho_RECO', 'keep *_kt6PFJetsCentralNeutralTight_rho_RECO', 'keep *_TriggerResults__RECO', 'keep *_offlinePrimaryVertices__RECO', 'keep *_pfMetSignificance__PAT', 'keep *_ak5PFJetsCHS_rho_PAT', 'keep *_ak5PFJetsCHSpruned_rho_PAT', 'keep *_kt6PFJetsCHSForIso_rho_PAT', 'keep *_kt6PFJetsForIso_rho_PAT', 'keep *_kt6PFJetsForRhoComputationVoronoi_rho_PAT', 'keep *_TriggerResults__PAT', 'keep *_nJetsPtGt1__PAT', 'keep *_cmgPFBaseJetLead__PAT', 'keep *_cmgPFBaseJetLeadCHS__PAT', 'keep *_cmgPFMET__PAT', 'keep *_cmgPFMETRaw__PAT', 'keep *_cmgDiElectronSel__PAT', 'keep *_cmgDiMuonSel__PAT', 'keep *_cmgElectronSel__PAT', 'keep *_cmgMuonSel__PAT', 'keep *_cmgPFJetLooseJetIdFailed__PAT', 'keep *_cmgPFJetMediumJetIdFailed__PAT', 'keep *_cmgPFJetSel__PAT', 'keep *_cmgPFJetSelCHS__PAT', 'keep *_cmgPFJetTightJetIdFailed__PAT', 'keep *_cmgPFJetVeryLooseJetId95Failed__PAT', 'keep *_cmgPFJetVeryLooseJetId95gammaFailed__PAT', 'keep *_cmgPFJetVeryLooseJetId95h0Failed__PAT', 'keep *_cmgPFJetVeryLooseJetId99Failed__PAT', 'keep *_cmgPhotonSel__PAT', 'keep *_cmgStructuredPFJetSel__PAT', 'keep *_cmgTriggerObjectListSel__PAT', 'keep *_cmgTriggerObjectSel__PAT', 'keep *_patElectronsWithTrigger__PAT', 'keep *_patMuonsWithTrigger__PAT', 'keep *_nopuMet__PAT', 'keep *_pcMet__PAT', 'keep *_pfMetForRegression__PAT', 'keep *_puMet__PAT', 'keep *_tkMet__PAT', 'keep *_TriggerResults__H2TAUTAU', 'keep *_cmgDiTauCorSVFitFullSel__H2TAUTAU', 'keep *_mvaMETdiTau__H2TAUTAU', 'keep *_goodPVFilter__H2TAUTAU', 'keep *_genParticles_*_*'), SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('diTauPath') ), fileName = cms.untracked.string('diTau_fullsel_tree_CMG.root') ) process.vertexWeightSequence = cms.Sequence(process.vertexWeightEPSJul8+process.vertexWeightLeptonPhoton+process.vertexWeightMay10ReReco+process.vertexWeightPromptRecov4+process.vertexWeight05AugReReco+process.vertexWeightPromptRecov6+process.vertexWeight2invfb+process.vertexWeight2011B+process.vertexWeight2011AB+process.vertexWeightFall11EPSJul8+process.vertexWeightFall11LeptonPhoton+process.vertexWeightFall11May10ReReco+process.vertexWeightFall11PromptRecov4+process.vertexWeightFall1105AugReReco+process.vertexWeightFall11PromptRecov6+process.vertexWeightFall112invfb+process.vertexWeightFall112011B+process.vertexWeightFall112011AB+process.vertexWeight3DMay10ReReco+process.vertexWeight3DPromptRecov4+process.vertexWeight3D05AugReReco+process.vertexWeight3DPromptRecov6+process.vertexWeight3D2invfb+process.vertexWeight3D2011B+process.vertexWeight3D2011AB+process.vertexWeight3DFall11May10ReReco+process.vertexWeight3DFall11PromptRecov4+process.vertexWeight3DFall1105AugReReco+process.vertexWeight3DFall11PromptRecov6+process.vertexWeight3DFall112invfb+process.vertexWeight3DFall112011B+process.vertexWeight3DFall112011AB+process.vertexWeightSummer12MCICHEPData+process.vertexWeightSummer12MC53XICHEPData+process.vertexWeightSummer12MC53XHCPData+process.vertexWeightSummer12MC53X2012D6fbData+process.vertexWeightSummer12MC53X2012ABCDData+process.vertexWeightSummer12MC53X2012BCDData) process.diTauPreSelSkimSequence = cms.Sequence(process.diTauPreSelCount) process.muEleFullSelSkimSequence = cms.Sequence(process.muEleFullSelCount) process.tauEleMvaMETRecoilSequence = cms.Sequence(process.goodPVFilter+process.mvaMETTauEle+process.cmgTauEleCor+process.cmgTauEleTauPtSel+process.recoilCorMETTauEle) process.tauEleFullSelSkimSequence = cms.Sequence(process.tauEleFullSelCount) process.tauMuStdSequence = cms.Sequence(process.cmgTauMu+process.cmgTauMuPreSel) process.tauEleStdSequence = cms.Sequence(process.cmgTauEle+process.cmgTauElePreSel) process.tauMuMvaMETrecoilSequence = cms.Sequence(process.goodPVFilter+process.mvaMETTauMu+process.cmgTauMuCor+process.cmgTauMuTauPtSel+process.recoilCorMETTauMu) process.diTauFullSelSkimSequence = cms.Sequence(process.diTauFullSelCount) process.metRecoilCorrectionInputSequence = cms.Sequence(process.cmgPFJetForRecoilPresel+process.cmgPFJetForRecoil+process.genWorZ) process.metRecoilCorrectionSequence = cms.Sequence(process.metRecoilCorrectionInputSequence+process.recoilCorrectedMETTauMu+process.recoilCorrectedMETTauEle+process.recoilCorrectedMETMuEle) process.tauElePreSelSkimSequence = cms.Sequence(process.tauElePreSelCount) process.muElePreSelSkimSequence = cms.Sequence(process.muElePreSelCount) process.tauEleCorSVFitSequence = cms.Sequence(process.tauEleMvaMETRecoilSequence+process.cmgTauEleCorSVFitPreSel+process.cmgTauEleCorSVFitFullSel) process.mvaMETSequence = cms.Sequence(process.goodPVFilter+process.mvaMETDiTau+process.cmgDiTauCor+process.cmgDiTauPtSel+process.recoilCorMETDiTau) process.diTauStdSequence = cms.Sequence(process.cmgDiTau+process.cmgDiTauPreSel) process.tauMuPreSelSkimSequence = cms.Sequence(process.tauMuPreSelCount) process.tauMuFullSelSkimSequence = cms.Sequence(process.tauMuFullSelCount) process.genSequence = cms.Sequence(process.metRecoilCorrectionInputSequence+process.vertexWeightSequence) process.tauEleSequence = cms.Sequence(process.tauEleStdSequence+process.tauEleCorSVFitSequence) process.tauMuCorSVFitSequence = cms.Sequence(process.tauMuMvaMETrecoilSequence+process.cmgTauMuCorSVFitPreSel+process.cmgTauMuCorSVFitFullSel) process.diTauCorSVFitSequence = cms.Sequence(process.mvaMETSequence+process.cmgDiTauCorSVFitPreSel+process.cmgDiTauCorSVFitFullSel) process.tauMuSequence = cms.Sequence(process.tauMuStdSequence+process.tauMuCorSVFitSequence) process.diTauSequence = cms.Sequence(process.diTauStdSequence+process.diTauCorSVFitSequence) process.diTauPath = cms.Path(process.genSequence+process.diTauSequence+process.diTauFullSelSkimSequence) process.tauElePath = cms.Path(process.genSequence+process.tauEleSequence+process.tauEleFullSelSkimSequence) process.tauMuPath = cms.Path(process.genSequence+process.tauMuSequence+process.tauMuFullSelSkimSequence) process.outpath = cms.EndPath(process.diTau_fullsel_tree_CMG) process.MessageLogger = cms.Service("MessageLogger", suppressInfo = cms.untracked.vstring(), debugs = cms.untracked.PSet( placeholder = cms.untracked.bool(True) ), suppressDebug = cms.untracked.vstring(), cout = cms.untracked.PSet( placeholder = cms.untracked.bool(True) ), cerr_stats = cms.untracked.PSet( threshold = cms.untracked.string('WARNING'), output = cms.untracked.string('cerr'), optionalPSet = cms.untracked.bool(True) ), warnings = cms.untracked.PSet( placeholder = cms.untracked.bool(True) ), default = cms.untracked.PSet( ), statistics = cms.untracked.vstring('cerr_stats'), cerr = cms.untracked.PSet( INFO = cms.untracked.PSet( limit = cms.untracked.int32(0) ), noTimeStamps = cms.untracked.bool(False), FwkReport = cms.untracked.PSet( reportEvery = cms.untracked.int32(5000), optionalPSet = cms.untracked.bool(True), limit = cms.untracked.int32(10000000) ), default = cms.untracked.PSet( limit = cms.untracked.int32(10000000) ), Root_NoDictionary = cms.untracked.PSet( optionalPSet = cms.untracked.bool(True), limit = cms.untracked.int32(0) ), threshold = cms.untracked.string('INFO'), FwkJob = cms.untracked.PSet( optionalPSet = cms.untracked.bool(True), limit = cms.untracked.int32(0) ), FwkSummary = cms.untracked.PSet( reportEvery = cms.untracked.int32(1), optionalPSet = cms.untracked.bool(True), limit = cms.untracked.int32(10000000) ), optionalPSet = cms.untracked.bool(True) ), FrameworkJobReport = cms.untracked.PSet( default = cms.untracked.PSet( limit = cms.untracked.int32(0) ), optionalPSet = cms.untracked.bool(True), FwkJob = cms.untracked.PSet( optionalPSet = cms.untracked.bool(True), limit = cms.untracked.int32(10000000) ) ), suppressWarning = cms.untracked.vstring(), errors = cms.untracked.PSet( placeholder = cms.untracked.bool(True) ), destinations = cms.untracked.vstring('warnings', 'errors', 'infos', 'debugs', 'cout', 'cerr'), debugModules = cms.untracked.vstring(), infos = cms.untracked.PSet( optionalPSet = cms.untracked.bool(True), Root_NoDictionary = cms.untracked.PSet( optionalPSet = cms.untracked.bool(True), limit = cms.untracked.int32(0) ), placeholder = cms.untracked.bool(True) ), categories = cms.untracked.vstring('FwkJob', 'FwkReport', 'FwkSummary', 'Root_NoDictionary'), fwkJobReports = cms.untracked.vstring('FrameworkJobReport') ) process.HepPDTESSource = cms.ESSource("HepPDTESSource", pdtFileName = cms.FileInPath('SimGeneral/HepPDTESSource/data/pythiaparticle.tbl') ) process.diObjectFactory = cms.PSet( leg2Collection = cms.InputTag("dummy"), leg1Collection = cms.InputTag("dummy"), metCollection = cms.InputTag("") ) process.diTauCuts = cms.PSet( baseline = cms.PSet( tau1Leg = cms.PSet( iso = cms.string('leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg1().eta())<2.3'), pt = cms.string('leg1().pt()>15.0') ), id = cms.PSet( decay = cms.string('leg1().tauID("decayModeFinding")') ) ), mass = cms.string('mass()>10'), tau2Leg = cms.PSet( iso = cms.string('leg2().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg2().eta())<2.3'), pt = cms.string('leg2().pt()>15.0') ), id = cms.PSet( decay = cms.string('leg2().tauID("decayModeFinding")') ) ) ) ) process.ditauFactory = cms.PSet( leg2Collection = cms.InputTag("cmgTauSel"), leg1Collection = cms.InputTag("cmgTauSel"), metsigCollection = cms.InputTag(""), metCollection = cms.InputTag("cmgPFMET") ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.maxLuminosityBlocks = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.muEleFactory = cms.PSet( leg2Collection = cms.InputTag("cmgElectronSel"), leg1Collection = cms.InputTag("cmgMuonSel"), metCollection = cms.InputTag("") ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(False) ) process.puJetIdAlgo = cms.PSet( tmvaVariables = cms.vstring('nvtx', 'jetPt', 'jetEta', 'jetPhi', 'dZ', 'beta', 'betaStar', 'nCharged', 'nNeutrals', 'dR2Mean', 'ptD', 'frac01', 'frac02', 'frac03', 'frac04', 'frac05'), tmvaMethod = cms.string('JetIDMVAMET'), cutBased = cms.bool(False), tmvaWeights = cms.string('CMGTools/External/data/TMVAClassificationCategory_JetID_MET_53X_Dec2012.weights.xml'), tmvaSpectators = cms.vstring(), label = cms.string('met53x'), version = cms.int32(-1), JetIdParams = cms.PSet( Pt2030_Tight = cms.vdouble(-2, -2, -2, -2, -2), Pt2030_Loose = cms.vdouble(-2, -2, -2, -2, -2), Pt3050_Medium = cms.vdouble(-2, -2, -2, -2, -2), Pt1020_MET = cms.vdouble(-0.2, -0.2, -0.5, -0.3), Pt2030_Medium = cms.vdouble(-2, -2, -2, -2, -2), Pt010_Tight = cms.vdouble(-2, -2, -2, -2, -2), Pt1020_Tight = cms.vdouble(-2, -2, -2, -2, -2), Pt3050_MET = cms.vdouble(-0.2, -0.2, 0.0, 0.2), Pt010_MET = cms.vdouble(-0.2, -0.3, -0.5, -0.5), Pt1020_Loose = cms.vdouble(-2, -2, -2, -2, -2), Pt010_Medium = cms.vdouble(-2, -2, -2, -2, -2), Pt1020_Medium = cms.vdouble(-2, -2, -2, -2, -2), Pt2030_MET = cms.vdouble(-0.2, -0.2, -0.2, 0.1), Pt010_Loose = cms.vdouble(-2, -2, -2, -2, -2), Pt3050_Loose = cms.vdouble(-2, -2, -2, -2, -2), Pt3050_Tight = cms.vdouble(-2, -2, -2, -2, -2) ), impactParTkThreshold = cms.double(1.0) ) process.tauEFactory = cms.PSet( leg2Collection = cms.InputTag("cmgElectronSel"), leg1Collection = cms.InputTag("cmgTauSel"), metCollection = cms.InputTag("cmgPFMET") ) process.tauEleCuts = cms.PSet( baseline = cms.PSet( tauLeg = cms.PSet( iso = cms.string('leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg1().eta())<2.3'), pt = cms.string('leg1().pt()>15.0') ), id = cms.PSet( decay = cms.string('leg1().tauID("decayModeFinding")') ) ), eleLeg = cms.PSet( kinematics = cms.PSet( eta = cms.string('abs(leg2().eta())<2.1'), pt = cms.string('leg2().pt()>20.0') ), ID = cms.PSet( hitsnum = cms.string('leg2().numberOfHits==0'), mvaID = cms.string('(abs(leg2().sourcePtr().superCluster().eta())<0.8 && leg2().mvaNonTrigV0() > 0.925) || (abs(leg2().sourcePtr().superCluster().eta())>0.8 && abs(leg2().sourcePtr().superCluster().eta())<1.479 && leg2().mvaNonTrigV0() > 0.975) || (abs(leg2().sourcePtr().superCluster().eta())>1.479 && leg2().mvaNonTrigV0() > 0.985)'), convVeto = cms.string('leg2().passConversionVeto()!=0') ) ) ) ) process.tauMuCuts = cms.PSet( caloMuVeto = cms.string('leg1().eOverP()>0.2'), baseline = cms.PSet( tauLeg = cms.PSet( iso = cms.string('leg1().tauID("byCombinedIsolationDeltaBetaCorrRaw3Hits") < 10.0'), kinematics = cms.PSet( eta = cms.string('abs(leg1().eta())<2.3'), pt = cms.string('leg1().pt()>15.0') ), id = cms.PSet( muRejection = cms.string('leg1().tauID("againstMuonTight") > 0.5'), decay = cms.string('leg1().tauID("decayModeFinding")') ) ), muLeg = cms.PSet( kinematics = cms.PSet( eta = cms.string('abs(leg2().eta())<2.1'), pt = cms.string('leg2().pt()>17.0') ) ), mass = cms.string('mass()>10') ) ) process.tauMuFactory = cms.PSet( leg2Collection = cms.InputTag("cmgMuonSel"), leg1Collection = cms.InputTag("cmgTauSel"), metCollection = cms.InputTag("cmgPFMET") ) process.schedule = cms.Schedule(*[ process.diTauPath, process.outpath ])
91d7abb0e40dc1bf0cbb74d3f9ed197e1e70bced
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/380/usersdata/342/107362/submittedfiles/principal.py
0f40d38c7c74dadb18defa87d6b7e0f5f8d063ca
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
import random nome = input('Insira o nome do usuário:') def solicitaSimboloDoHumano(): simb = input('Escolha o seu símbolo:') while simb != 'X' or 'O': simb = input('Escolha um símbolo válido:') solicitaSimboloDoHumano() print(random.choice([nome,'computador começa']))
eaea2f61d183d4210777892f777ed5239ea073da
77d52805fa67c36e13c624f853de027bf70a17e6
/notSoRand.py
08fab414bfe7d71d7bddb38c08065faac43e5503
[]
no_license
BeautyScraper/pythonUtilities
f13d7a2732b754c5b2ab9ae2fbbc17cad04cc6ce
a9fe1b63249ccf0749d70c8bd40696915cd0841b
refs/heads/master
2020-03-18T16:41:37.566492
2019-04-17T03:02:58
2019-04-17T03:02:58
134,980,812
0
0
null
null
null
null
UTF-8
Python
false
false
926
py
import random import re import os def randomLine(fileName="test.txt"): try: print("opening " + fileName) with open("files\\" + fileName,"r") as inF: selectedLine = random.choice(inF.readlines()) print("Selected Lines is " + selectedLine) while(re.search("\[(.*?)\]",selectedLine)): replaceMentStr = randomLine(re.search("\[(.*?)\]",selectedLine)[1] + ".txt") selectedLine = re.sub("(\[.*?\])",replaceMentStr,selectedLine,1) except FileNotFoundError or IndexError: print("Setting default Line") if len(fileName.split(" ")) == 1: (open("files\\" + fileName,"w")).close() selectedLine = fileName.split(".")[0] print("Returning " + selectedLine) return selectedLine.rstrip('\n') os.system("md files") line = randomLine("Static.txt") with open("result.txt","w") as file: file.write(line)
79104fb27df6da2bc9c3650b5f36fe3f58342f99
0524471f0deec846a50a3dfb9a039495623a79fd
/manajemen_kontrak/migrations/0050_auto_20210504_0828.py
75fcc18b53f70e9c563c8efd530fd9ae81989ff7
[]
no_license
riswanto84/SiLPBJ-Project
0e97f89d2ea5f1ac4e631e9f0457aa5864a6e8e9
7e052f5a4847a07fdd542ae6550e303d6627d1ca
refs/heads/master
2023-04-24T23:35:41.984864
2021-05-08T08:15:28
2021-05-08T08:15:28
363,024,170
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
# Generated by Django 3.1.1 on 2021-05-04 01:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('manajemen_kontrak', '0049_auto_20210504_0814'), ] operations = [ migrations.AddField( model_name='barang', name='spesifikasi_dan_gambar', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='tandaterimadistribusi', name='nomor_tanda_terima', field=models.CharField(default='7670/HoRJ4Ojo', max_length=100), ), ]
9485737dbc564ef7885a6ba0a9e51092a0c524ec
ab9cfa8aa28749ebd18c4fa4c8712c2198e72501
/从上到下打印二叉树.py
46ea53e5fa68a2a32a3177d71697ace7839c0de8
[]
no_license
joseph-mutu/JianZhiOfferCodePics
d71e780483909390b436f81989000a277daac11d
8d41326cb2b9bc1379682fa6364a68c0ce62dbee
refs/heads/master
2020-08-03T14:39:59.666806
2019-09-30T06:17:36
2019-09-30T06:17:36
211,788,783
0
0
null
null
null
null
UTF-8
Python
false
false
941
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-08-23 16:41:17 # @Author : mutudeh ([email protected]) # @Link : ${link} # @Version : $Id$ import os class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def PrintFromTopToBottom(self, root): if root is None: return [] nodes = [] nodes.append(root) nodeCount = 0 while nodeCount < len(nodes): if nodes[nodeCount].left is not None: nodes.append(nodes[nodeCount].left) if nodes[nodeCount].right is not None: nodes.append(nodes[nodeCount].right) nodes[nodeCount] = nodes[nodeCount].val nodeCount += 1 return nodes a = TreeNode(2) a.left = TreeNode(3) a.left.left = TreeNode(7) a.left.left.left = TreeNode(9) # a.right = TreeNode(7) # a.left.left = TreeNode(4) # a.right.left = TreeNode(5) # a.right.right = TreeNode(9) s = Solution() print(s.PrintFromTopToBottom(a)) print()
b95a492675647575a6d42baff7748f1c458dab89
043a17d196250048a5a34e990a19d8622436f9ce
/Redintek/07_return_values/redintek.py
a116a216bd42d5a87cd88ae1dfb2fafee1e23cb7
[]
no_license
chimtrangbu/hyperspace
8df8cb9c5475b70b218d0a56034c7f520815fa0d
ec49324c705e9af61c3857cf2dea2a551bda5537
refs/heads/master
2020-03-26T07:18:34.249976
2018-12-20T05:16:55
2018-12-20T05:16:55
144,647,659
0
0
null
null
null
null
UTF-8
Python
false
false
1,420
py
r = {} def put(key, value): global r r[key] = value return value def get(key): return r[key] if key in r.keys() else None def exists(key): return (key in r.keys()) def delete(key): global r try: del r[key] return True except KeyError: return False def incr(key): global r return incrby(key, 1) def incrby(key, delta): global r if not exists(key): put(key, 0) elif not isinstance(r[key], (int, float)): raise ValueError('Incorrect value') r[key] += delta return r[key] def sadd(key, value): global r if not exists(key): r[key] = set([value]) elif not isinstance(r[key], set): r[key] = set([value]) else: r[key].add(value) return value def smembers(key): return r[key] if (exists(key) and isinstance(r[key], set)) else None def sunion(key1, key2): set1 = smembers(key1) if smembers(key1) is not None else set() set2 = smembers(key2) return set1.union(set2) if (set2 is not None) else set1 def sinter(key1, key2): set1 = smembers(key1) if smembers(key1) is not None else set() set2 = smembers(key2) if smembers(key2) is not None else set() return(set1 & set2) def srem(key, value): global r if smembers(key) is not None and value in smembers(key): smembers(key).remove(value) return True return False
5ec6e963b60657efb5c7f58282747bd3c3b3bbcf
86df6f8f4f3c03cccc96459ad82bcdf3bf942492
/lintcode/find-the-connected-component-in-the-undirected-graph.py
1d83a7de926c28153c4e30dca9008b29f8b6e8b8
[]
no_license
bdliyq/algorithm
369d1fd2ae3925a559ebae3fa8f5deab233daab1
e1c993a5d1531e1fb10cd3c8d686f533c9a5cbc8
refs/heads/master
2016-08-11T21:49:31.259393
2016-04-05T11:10:30
2016-04-05T11:10:30
44,576,582
0
0
null
null
null
null
UTF-8
Python
false
false
1,113
py
#!/usr/bin/env python # encoding: utf-8 # Question: http://www.lintcode.com/en/problem/find-the-connected-component-in-the-undirected-graph/ # Definition for a undirected graph node # class UndirectedGraphNode: # def __init__(self, x): # self.label = x # self.neighbors = [] class Solution: # @param {UndirectedGraphNode[]} nodes a array of undirected graph node # @return {int[][]} a connected set of a undirected graph def connectedSet(self, nodes): # Write your code here if len(nodes) == 0: return [[]] visited = set() stack = [] result = [] for node in nodes: stack.append(node) path = [] while stack: the_node = stack.pop() if the_node in visited: continue path.append(the_node.label) visited.add(the_node) for neighbor in the_node.neighbors: stack.append(neighbor) if path: result.append(sorted(path)) return result
32b67fab7e56846fb6300e78ec34af1bdd32c6a3
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/YLf984Eod74ha4Tok_19.py
a1794374010be900955aa9ae6a5c69cf7e837041
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,337
py
""" In a calendar year, it is exactly 365.25 days. But, eventually, this will lead to confusion because humans normally count by exact divisibility of 1 and not with decimal points. So, to avoid the latter, it was decided to add up all 0.25 days every four-year cycle, make that year to sum up to 366 days (including February 29 as an intercalary day), thus, called a **leap year** and aside the other years of the four-year cycle to sum up to 365 days, **not a leap year**. In this challenge, (though quite repetitive), we'll take it to a new level, where, you are to determine if it's a leap year or not without the use of the **datetime** class, **if blocks** , **if-elif blocks** , **conditionals** (`a if b else c`) nor the logical operators **AND** (`and`) and **OR** (`or`) with the exemption of the **NOT** (`not`) operator. Return `True` if it's a leap year, `False` otherwise. ### Examples leap_year(1979) ➞ False leap_year(2000) ➞ True leap_year(2016) ➞ True leap_year(1521) ➞ False leap_year(1996) ➞ True leap_year(1800) ➞ False ### Notes You can't use the **datetime** class, **if statements** in general, the **conditional** nor the **logical operators** (`and`, `or`). """ def leap_year(yr): return ((not yr%4) + (not yr%100) + (not yr%400))%2
46f861b5d2e6b2395aeb66db0a5a19d451da893f
b7a3d0ac1c3c46743adfbfd2da6b7b6b22d3910b
/backend/pakearn_3676/wsgi.py
6f4211e43bd31b4790cb02e4d689ddd3c2185850
[]
no_license
crowdbotics-apps/pakearn-3676
976a1b24e3a47ed42526ae6f99b5cda248e88d04
7c2aa72a2091604be81c4b82931dd494137b43f2
refs/heads/master
2020-05-25T20:07:02.159662
2019-05-22T05:12:19
2019-05-22T05:12:19
187,967,071
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
""" WSGI config for pakearn_3676 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pakearn_3676.settings") application = get_wsgi_application()
338342748a69234b4d64912a2a2f6e1632b917b1
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4375/codes/1670_2966.py
3ece3928b8754173db28d496c3a374b1107e4dee
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
259
py
promocao=input("S ou N: ") ingresso=float(input("valor do ingresso: ")) qntd=float(input("qntd de ingressos: ")) total=ingresso*qntd promocao=promocao.upper() if promocao=="S": desconto=total-total*0.2 print(round(desconto,2)) else: print(round(total,2))
ffd9e8e9af3dbad639d8bf389ab7b9590881963d
9df2fb0bc59ab44f026b0a2f5ef50c72b2fb2ceb
/sdk/storage/azure-mgmt-storage/generated_samples/storage_account_enable_cmk.py
a14ee86badfe4c98c526af848a574e0f339ba9d0
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
openapi-env-test/azure-sdk-for-python
b334a2b65eeabcf9b7673879a621abb9be43b0f6
f61090e96094cfd4f43650be1a53425736bd8985
refs/heads/main
2023-08-30T14:22:14.300080
2023-06-08T02:53:04
2023-06-08T02:53:04
222,384,897
1
0
MIT
2023-09-08T08:38:48
2019-11-18T07:09:24
Python
UTF-8
Python
false
false
2,162
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.storage import StorageManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-storage # USAGE python storage_account_enable_cmk.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = StorageManagementClient( credential=DefaultAzureCredential(), subscription_id="{subscription-id}", ) response = client.storage_accounts.update( resource_group_name="res9407", account_name="sto8596", parameters={ "properties": { "encryption": { "keySource": "Microsoft.Keyvault", "keyvaultproperties": { "keyname": "wrappingKey", "keyvaulturi": "https://myvault8569.vault.azure.net", "keyversion": "", }, "services": { "blob": {"enabled": True, "keyType": "Account"}, "file": {"enabled": True, "keyType": "Account"}, }, } } }, ) print(response) # x-ms-original-file: specification/storage/resource-manager/Microsoft.Storage/stable/2022-09-01/examples/StorageAccountEnableCMK.json if __name__ == "__main__": main()
b2acc2ec4ad57a84ba11c806eb4b36ae1fc06ad8
4a73648ecd3951b802e89e83a3bd9ef5b063af3d
/python_part/Leetcode/Sort/215. Kth Largest Element in an Array(快排)/Quick Select.py
f10356100760825b120026fe8c08605d817cf4d8
[]
no_license
Allen-C-Guan/Leetcode-Answer
f5f9ee1348b86da914a564b7d23bf8904d5aa27f
f6e1374ef567590fee15ba6d1d6d65891233b5e1
refs/heads/master
2023-08-17T18:18:00.581743
2021-10-10T15:24:07
2021-10-10T15:24:07
257,017,331
0
0
null
null
null
null
UTF-8
Python
false
false
1,654
py
''' quick select的方法 也是quicksort的基础 我们使用递归来完成 ''' from typing import List class Solution: def __init__(self): self.res = None def findKthLargest(self, nums: List[int], k: int) -> int: # 其实这个partition 由于采用的是lo,hi,并不需要计算k的相对大小。 # 在partition里面,我们最好还是每次随机选择pivot比较快。 # s 表示slow,fast 不停的走, slow只有被替换了以后才走 ''' for fast in range(lo,hi): if num[fast] < pivot: swap num[fast] num[slow] slow += 1 slow -= 1 swap nums[lo] num[slow] ''' def partition(nums: List[int], lo, hi): pivot, s = nums[lo], lo+1 # s永远指向的是前面的大于pivot的数的前一个 for fast in range(lo+1, hi+1): if nums[fast] > pivot: # 这里是 > 则得到的就是逆序, s就会停在小的上面, nums[fast], nums[s] = nums[s], nums[fast] s += 1 s -= 1 nums[lo], nums[s] = nums[s], nums[lo] return s def quickSelect(nums: List[int],lo,hi,k): #与二分的逻辑相同, 先判定,再二分 s = partition(nums,lo,hi) if s == k-1: self.res = nums[s] else: if s < k-1: quickSelect(nums,s+1,hi,k) else:quickSelect(nums,lo,s-1,k) quickSelect(nums,0,len(nums)-1,k) return self.res foo = Solution() print(foo.findKthLargest([3,2,3,1,2,4,5,5,6],4))
e28854dde030346d5b89484a8453525a3bf8b422
27b599eabf8f5e8088e30c0d2baa6682f1661be4
/tensorflow_probability/python/internal/auto_composite_tensor_test.py
3ecb660335c6694b3c66eb9b15fe72aa36b47c62
[ "Apache-2.0" ]
permissive
adriang133/probability
b6ecf28f737c44f19df3a4893e6d1cf0351bc4a0
edfc4585f38017153fe7bf1a7287fcdd237912c4
refs/heads/master
2022-12-12T05:02:04.247859
2020-09-16T21:06:03
2020-09-16T21:07:27
296,163,707
0
0
Apache-2.0
2020-09-16T22:47:07
2020-09-16T22:47:06
null
UTF-8
Python
false
false
2,593
py
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for auto_composite_tensor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tensorflow_probability.python.internal import auto_composite_tensor as auto_ct from tensorflow_probability.python.internal import test_util AutoIdentity = auto_ct.auto_composite_tensor(tf.linalg.LinearOperatorIdentity) AutoDiag = auto_ct.auto_composite_tensor(tf.linalg.LinearOperatorDiag) AutoBlockDiag = auto_ct.auto_composite_tensor(tf.linalg.LinearOperatorBlockDiag) class AutoCompositeTensorTest(test_util.TestCase): def test_example(self): @auto_ct.auto_composite_tensor class Adder(object): def __init__(self, x, y): self._x = tf.convert_to_tensor(x) self._y = tf.convert_to_tensor(y) def xpy(self): return self._x + self._y def body(obj): return Adder(obj.xpy(), 1.), result, = tf.while_loop( cond=lambda _: True, body=body, loop_vars=(Adder(1., 1.),), maximum_iterations=3) self.assertAllClose(5., result.xpy()) def test_function(self): lop = AutoDiag(2. * tf.ones([3])) self.assertAllClose( 6. * tf.ones([3]), tf.function(lambda lop: lop.matvec(3. * tf.ones([3])))(lop)) def test_loop(self): def body(lop): return AutoDiag(lop.matvec(tf.ones([3]) * 2.)), init_lop = AutoDiag(tf.ones([3])) lop, = tf.while_loop( cond=lambda _: True, body=body, loop_vars=(init_lop,), maximum_iterations=3) self.assertAllClose(2.**3 * tf.ones([3]), lop.matvec(tf.ones([3]))) def test_nested(self): lop = AutoBlockDiag([AutoDiag(tf.ones([2]) * 2), AutoIdentity(1)]) self.assertAllClose( tf.constant([6., 6, 3]), tf.function(lambda lop: lop.matvec(3. * tf.ones([3])))(lop)) if __name__ == '__main__': tf.test.main()
915f56d3c4a365c0cb016403d0ebe181278d0ca2
95bba054198a2709163ecb3cf2adbd9ed6913490
/fph/parseFile.py
c428bf7c6b2516e63ecd4227f4641c14a90690f4
[]
no_license
jieter/fph-parser
e21549c788cf80f91ac9def168fd46e13e8ac847
2e1b57e2815cfcf023a6c1c68793a22fe178a533
refs/heads/master
2020-04-06T07:03:00.822824
2015-09-09T07:19:24
2015-09-09T07:19:24
14,070,587
4
3
null
null
null
null
UTF-8
Python
false
false
566
py
# Fisher and Paykel CPAP .FPH file parser. # # Jan Pieter Waagmeester <[email protected]> # # File format source: # http://sourceforge.net/apps/mediawiki/sleepyhead/index.php?title=Icon import FPHFile from summary import SummaryFile from detail import DetailFile from flow import FlowFile def parseFile(filename): parts = filename.split('/') prefix = parts[-1][0:3] if (prefix == 'SUM'): return SummaryFile(filename) elif (prefix == 'DET'): return DetailFile(filename) elif (prefix == 'FLW'): return FlowFile(filename) else: return FPHFile(filename)
808efbb3e5a50d252926f34dd42f8d2f275a33a6
b80ee603f5fde501795e026ef2b122baf5c57c9d
/pre_commit_hooks/fix_byte_order_marker.py
1ffe047de80c3b981b56d37ac9d0c8ba34d4089e
[ "MIT" ]
permissive
ADTRAN/pre-commit-hooks
384656043c75f70aae7e452c13ad61cb2cfb455a
73254720098abd062a99074496e5b19eeba7e1d9
refs/heads/master
2023-08-07T03:58:03.705712
2021-10-11T20:54:25
2021-10-11T20:54:25
416,055,424
0
1
MIT
2021-10-11T20:54:26
2021-10-11T19:12:40
Python
UTF-8
Python
false
false
797
py
import argparse from typing import Optional from typing import Sequence def main(argv: Optional[Sequence[str]] = None) -> int: parser = argparse.ArgumentParser() parser.add_argument('filenames', nargs='*', help='Filenames to check') args = parser.parse_args(argv) retv = 0 for filename in args.filenames: with open(filename, 'rb') as f_b: bts = f_b.read(3) if bts == b'\xef\xbb\xbf': with open(filename, newline='', encoding='utf-8-sig') as f: contents = f.read() with open(filename, 'w', newline='', encoding='utf-8') as f: f.write(contents) print(f'{filename}: removed byte-order marker') retv = 1 return retv if __name__ == '__main__': exit(main())
d1ea9e31207bbebbd7ed7889663442e0c8b6193c
2eddcd036a85d040cb2f45adac41efb1cf2eacff
/problem_36.py
110651f9c305495944d7390e66f5a737cf0bd44b
[]
no_license
pmaddi/euler
1a16869976054faa36f3fb0aa5ff3d802b1982dd
17f8a898b1ab0fdb0e81f72e9ca4711f119e5829
refs/heads/master
2021-12-28T12:38:40.280036
2021-12-25T22:46:50
2021-12-25T22:46:50
127,155,664
0
1
null
null
null
null
UTF-8
Python
false
false
234
py
if __name__ == '__main__': def r(n): return ''.join(reversed(n)) out = 0 for i in range(1, 10**6): d = str(i) b = bin(i)[2:] if r(d) == d and r(b) == b: out += i print(out)
1a6b37e19acff97cd68240b8c35ca25fe60944da
51f536ae42397da7826a32b942c88e48d95e9f3c
/examples/dft/00-simple_dft.py
c19b209739a278909fa76796ff2c93fd15a976f7
[ "BSD-2-Clause" ]
permissive
xlzan/pyscf
8f3b6e3e4b1de27313f99bc94b4aba15e1c84ff7
81606c8f384ff1da98a7aa4c817021a78302110a
refs/heads/master
2020-03-15T01:41:22.938983
2018-04-19T19:41:18
2018-04-19T19:41:18
131,899,354
1
0
BSD-2-Clause
2018-05-02T19:55:17
2018-05-02T19:55:16
null
UTF-8
Python
false
false
612
py
#!/usr/bin/env python # # Author: Qiming Sun <[email protected]> # from pyscf import gto, dft ''' A simple example to run DFT calculation. See pyscf/dft/vxc.py for the complete list of available XC functional ''' mol = gto.Mole() mol.build( atom = 'H 0 0 0; F 0 0 1.1', # in Angstrom basis = '631g', symmetry = True, ) mydft = dft.RKS(mol) #mydft.xc = 'lda,vwn' #mydft.xc = 'lda,vwn_rpa' #mydft.xc = 'b86,p86' #mydft.xc = 'b88,lyp' #mydft.xc = 'b97,pw91' #mydft.xc = 'b3p86' #mydft.xc = 'o3lyp' mydft.xc = 'b3lyp' mydft.kernel() # Orbital energies, Mulliken population etc. mydft.analyze()
ce1625f50652b0d101a5a0d9b7cb7f38aa6631e1
63768dc92cde5515a96d774a32facb461a3bf6e9
/jacket/db/compute/sqlalchemy/migrate_repo/versions/230_add_details_column_to_instance_actions_events.py
8079a2af04d72e10f2b44e7f7c34eb703f98d723
[ "Apache-2.0" ]
permissive
ljZM33nd/jacket
6fe9156f6f5789e5c24425afa7ce9237c302673d
d7ad3147fcb43131098c2a5210847634ff5fb325
refs/heads/master
2023-04-16T11:02:01.153751
2016-11-15T02:48:12
2016-11-15T02:48:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,245
py
# Copyright 2013 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_db.sqlalchemy import utils from sqlalchemy import Column, String, Text from jacket.db.compute.sqlalchemy import api def upgrade(migrate_engine): actions_events = utils.get_table(migrate_engine, 'instance_actions_events') host = Column('host', String(255)) details = Column('details', Text) actions_events.create_column(host) actions_events.create_column(details) shadow_actions_events = utils.get_table(migrate_engine, api._SHADOW_TABLE_PREFIX + 'instance_actions_events') shadow_actions_events.create_column(host.copy()) shadow_actions_events.create_column(details.copy())
6a2ad476a403a0d861a3051455c2906fc5c0ad6c
88509a8ce62a22acc0639c683900d5d0cb8d69e7
/Day23/orm/app/migrations/0002_customer.py
227e5263d58c0d580aa8aa135326246264832abf
[]
no_license
pytutorial/py2104
8b0238ab6f6d2f5395aee5fbe1f4aff03b819cd3
48b36d6b1f40730ef2747c310e70fb6997eda388
refs/heads/main
2023-09-03T16:55:02.285158
2021-10-20T05:24:31
2021-10-20T05:24:31
391,613,464
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
# Generated by Django 3.2 on 2021-08-08 14:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0001_initial'), ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phone', models.CharField(max_length=20, unique=True)), ('name', models.CharField(max_length=100)), ('address', models.CharField(max_length=200)), ], ), ]
89dd3969b7cbd4d20538ffbf26e73d72bc1c12a8
e54867ad23f1c07ebc7632125bb408c3f8294cc0
/camera-calibration/calibrated_camera.py
caceca1e15189841665f732f3bbd199d27b18f36
[]
no_license
pi-test/foo
ea2a651e83224ea3616d20dba483470e439b40ec
2a0bdf0db7fedd95a1133636067890ff8fe68e51
refs/heads/master
2020-09-07T08:13:35.363352
2019-11-09T23:50:01
2019-11-09T23:50:01
220,718,447
0
0
null
null
null
null
UTF-8
Python
false
false
855
py
import sys import yaml import cv2 import numpy as np with open("data.yaml", "r") as stream: data = yaml.load(stream) mtx = data["camera_matrix"] mtx = np.asarray(mtx) dist = data["dist_coeff"] dist = np.asarray(dist) imagePath = sys.argv[1] img = cv2.imread(imagePath) h, w = img.shape[:2] cv2.imshow("preview", img) cv2.waitKey(0) # get undistort matrix and pixel matrix newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h)) print("===================================================") print("Valid Pixel ROI:") print roi print("===================================================") # undistort dst = cv2.undistort(img, mtx, dist, None, newcameramtx) # crop the image x,y,w,h = roi dst = dst[y:y+h, x:x+w] cv2.imshow("undistort", dst) cv2.imwrite('img/undistort.jpg', dst) cv2.waitKey(0) cv2.destroyAllWindows()
f063b29223c2e1574d1892868e349fa6ff05419f
e7116c13ba14d65e2687f47d4e08b8d67ed89cb8
/run.py
09e751e2b7eaf0278623259c61506d3b1c849418
[]
no_license
trzp/target_tracker
bc3ccdd4c4fa3701f60db3b8d4346544b4dbe7cf
199a730576c5e20345af8af602ad8e4f2c1cc6dc
refs/heads/master
2020-05-22T06:29:05.786585
2019-05-15T11:20:06
2019-05-15T11:20:06
186,254,958
0
0
null
null
null
null
UTF-8
Python
false
false
2,870
py
import numpy as np import cv2 import sys from time import time import kcftracker selectingObject = False initTracking = False onTracking = False ix, iy, cx, cy = -1, -1, -1, -1 w, h = 0, 0 inteval = 1 duration = 0.01 # mouse callback function def draw_boundingbox(event, x, y, flags, param): global selectingObject, initTracking, onTracking, ix, iy, cx,cy, w, h if event == cv2.EVENT_LBUTTONDOWN: selectingObject = True onTracking = False ix, iy = x, y cx, cy = x, y elif event == cv2.EVENT_MOUSEMOVE: cx, cy = x, y elif event == cv2.EVENT_LBUTTONUP: selectingObject = False if(abs(x-ix)>10 and abs(y-iy)>10): w, h = abs(x - ix), abs(y - iy) ix, iy = min(x, ix), min(y, iy) initTracking = True else: onTracking = False elif event == cv2.EVENT_RBUTTONDOWN: onTracking = False if(w>0): ix, iy = x-w/2, y-h/2 initTracking = True if __name__ == '__main__': if(len(sys.argv)==1): cap = cv2.VideoCapture(0) elif(len(sys.argv)==2): if(sys.argv[1].isdigit()): # True if sys.argv[1] is str of a nonnegative integer cap = cv2.VideoCapture(int(sys.argv[1])) else: cap = cv2.VideoCapture(sys.argv[1]) inteval = 30 else: assert(0), "too many arguments" tracker = kcftracker.KCFTracker(True, True, True) # hog, fixed_window, multiscale #if you use hog feature, there will be a short pause after you draw a first boundingbox, that is due to the use of Numba. cv2.namedWindow('tracking') cv2.setMouseCallback('tracking',draw_boundingbox) while(cap.isOpened()): ret, frame = cap.read() if not ret: break if(selectingObject): cv2.rectangle(frame,(ix,iy), (cx,cy), (0,255,255), 1) elif(initTracking): cv2.rectangle(frame,(ix,iy), (ix+w,iy+h), (0,255,255), 2) tracker.init([ix,iy,w,h], frame) initTracking = False onTracking = True elif(onTracking): t0 = time() boundingbox = tracker.update(frame) t1 = time() boundingbox = map(int, boundingbox) cv2.rectangle(frame,(boundingbox[0],boundingbox[1]), (boundingbox[0]+boundingbox[2],boundingbox[1]+boundingbox[3]), (0,255,255), 1) duration = 0.8*duration + 0.2*(t1-t0) #duration = t1-t0 cv2.putText(frame, 'FPS: '+str(1/duration)[:4].strip('.'), (8,20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 2) cv2.imshow('tracking', frame) c = cv2.waitKey(inteval) & 0xFF if c==27 or c==ord('q'): break cap.release() cv2.destroyAllWindows()
c552a5b4b970b671de29935c6c7fec152f9fbb0f
77311ad9622a7d8b88707d7cee3f44de7c8860cb
/res_bw/scripts/common/lib/plat-mac/carbon/ah.py
59522d3bebbfc99e90dd2d0ea96f851b13826555
[]
no_license
webiumsk/WOT-0.9.14-CT
9b193191505a4560df4e872e022eebf59308057e
cfe0b03e511d02c36ce185f308eb48f13ecc05ca
refs/heads/master
2021-01-10T02:14:10.830715
2016-02-14T11:59:59
2016-02-14T11:59:59
51,606,676
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
355
py
# 2016.02.14 12:50:05 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/plat-mac/Carbon/AH.py from _AH import * # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\plat-mac\carbon\ah.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.02.14 12:50:05 Střední Evropa (běžný čas)
af511c917b239fde8c45abb7f850b9785e7b652f
0760fb4901a75766921a205b55686d6d6f049b30
/python/ray/tune/search/hebo/hebo_search.py
9f40bd8fe2a603935730dc29cb3ddc6d3a1b7260
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
ray-project/ray
a4bb6940b08b59a61ef0b8e755a52d8563a2f867
edba68c3e7cf255d1d6479329f305adb7fa4c3ed
refs/heads/master
2023-08-31T03:36:48.164405
2023-08-31T03:20:38
2023-08-31T03:20:38
71,932,349
29,482
5,669
Apache-2.0
2023-09-14T21:48:14
2016-10-25T19:38:30
Python
UTF-8
Python
false
false
16,940
py
import logging import pickle from typing import Dict, List, Optional, Union import numpy as np import pandas as pd from ray.tune.result import DEFAULT_METRIC from ray.tune.search.sample import ( Categorical, Domain, Float, Integer, LogUniform, Quantized, Uniform, ) from ray.tune.search import ( UNRESOLVED_SEARCH_SPACE, UNDEFINED_METRIC_MODE, UNDEFINED_SEARCH_SPACE, Searcher, ) from ray.tune.search.variant_generator import parse_spec_vars from ray.tune.utils.util import is_nan_or_inf, unflatten_dict, validate_warmstart try: # Python 3 only -- needed for lint test. import hebo import torch # hebo has torch as a dependency except ImportError: hebo = None logger = logging.getLogger(__name__) SPACE_ERROR_MESSAGE = ( "Space must be either a HEBO DesignSpace object" "or a dictionary with ONLY tune search spaces." ) class HEBOSearch(Searcher): """Uses HEBO (Heteroscedastic Evolutionary Bayesian Optimization) to optimize hyperparameters. HEBO is a cutting edge black-box optimization framework created by Huawei's Noah Ark. More info can be found here: https://github.com/huawei-noah/HEBO/tree/master/HEBO. `space` can either be a HEBO's `DesignSpace` object or a dict of Tune search spaces. Please note that the first few trials will be random and used to kickstart the search process. In order to achieve good results, we recommend setting the number of trials to at least 16. Maximum number of concurrent trials is determined by ``max_concurrent`` argument. Trials will be done in batches of ``max_concurrent`` trials. If this Searcher is used in a ``ConcurrencyLimiter``, the ``max_concurrent`` value passed to it will override the value passed here. Args: space: A dict mapping parameter names to Tune search spaces or a HEBO DesignSpace object. metric: The training result objective value attribute. If None but a mode was passed, the anonymous metric `_metric` will be used per default. mode: One of {min, max}. Determines whether objective is minimizing or maximizing the metric attribute. points_to_evaluate: Initial parameter suggestions to be run first. This is for when you already have some good parameters you want to run first to help the algorithm make better suggestions for future parameters. Needs to be a list of dicts containing the configurations. evaluated_rewards: If you have previously evaluated the parameters passed in as points_to_evaluate you can avoid re-running those trials by passing in the reward attributes as a list so the optimiser can be told the results without needing to re-compute the trial. Must be the same length as points_to_evaluate. random_state_seed: Seed for reproducible results. Defaults to None. Please note that setting this to a value will change global random states for `numpy` and `torch` on initalization and loading from checkpoint. max_concurrent: Number of maximum concurrent trials. If this Searcher is used in a ``ConcurrencyLimiter``, the ``max_concurrent`` value passed to it will override the value passed here. **kwargs: The keyword arguments will be passed to `HEBO()``. Tune automatically converts search spaces to HEBO's format: .. code-block:: python from ray import tune from ray.tune.search.hebo import HEBOSearch config = { "width": tune.uniform(0, 20), "height": tune.uniform(-100, 100) } hebo = HEBOSearch(metric="mean_loss", mode="min") tuner = tune.Tuner( trainable_function, tune_config=tune.TuneConfig( search_alg=hebo ), param_space=config ) tuner.fit() Alternatively, you can pass a HEBO `DesignSpace` object manually to the Searcher: .. code-block:: python from ray import tune from ray.tune.search.hebo import HEBOSearch from hebo.design_space.design_space import DesignSpace space_config = [ {'name' : 'width', 'type' : 'num', 'lb' : 0, 'ub' : 20}, {'name' : 'height', 'type' : 'num', 'lb' : -100, 'ub' : 100}, ] space = DesignSpace().parse(space_config) hebo = HEBOSearch(space, metric="mean_loss", mode="min") tuner = tune.Tuner( trainable_function, tune_config=tune.TuneConfig( search_alg=hebo ) ) tuner.fit() """ def __init__( self, space: Optional[ Union[Dict, "hebo.design_space.design_space.DesignSpace"] ] = None, metric: Optional[str] = None, mode: Optional[str] = None, points_to_evaluate: Optional[List[Dict]] = None, evaluated_rewards: Optional[List] = None, random_state_seed: Optional[int] = None, max_concurrent: int = 8, **kwargs, ): assert hebo is not None, ( "HEBO must be installed! You can install HEBO with" " the command: `pip install 'HEBO>=0.2.0'`." "This error may also be caused if HEBO" " dependencies have bad versions. Try updating HEBO" " first." ) if mode: assert mode in ["min", "max"], "`mode` must be 'min' or 'max'." assert ( isinstance(max_concurrent, int) and max_concurrent >= 1 ), "`max_concurrent` must be an integer and at least 1." if random_state_seed is not None: assert isinstance( random_state_seed, int ), "random_state_seed must be None or int, got '{}'.".format( type(random_state_seed) ) super(HEBOSearch, self).__init__(metric=metric, mode=mode) if isinstance(space, dict) and space: resolved_vars, domain_vars, grid_vars = parse_spec_vars(space) if resolved_vars: raise TypeError(SPACE_ERROR_MESSAGE) if domain_vars or grid_vars: logger.warning( UNRESOLVED_SEARCH_SPACE.format(par="space", cls=type(self)) ) space = self.convert_search_space(space) elif space is not None and not isinstance( space, hebo.design_space.design_space.DesignSpace ): raise TypeError(SPACE_ERROR_MESSAGE + " Got {}.".format(type(space))) self._hebo_config = kwargs self._random_state_seed = random_state_seed self._space = space self._points_to_evaluate = points_to_evaluate self._evaluated_rewards = evaluated_rewards self._initial_points = [] self._live_trial_mapping = {} self._max_concurrent = max_concurrent self._suggestions_cache = [] self._batch_filled = False self._opt = None if space: self._setup_optimizer() def set_max_concurrency(self, max_concurrent: int) -> bool: self._max_concurrent = max_concurrent return True def _setup_optimizer(self): # HEBO internally minimizes, so "max" => -1 if self._mode == "max": self._metric_op = -1.0 elif self._mode == "min": self._metric_op = 1.0 if self._metric is None and self._mode: # If only a mode was passed, use anonymous metric self._metric = DEFAULT_METRIC if not isinstance(self._space, hebo.design_space.design_space.DesignSpace): raise ValueError( f"Invalid search space: {type(self._space)}. Either pass a " f"valid search space to the `HEBOSearch` class or pass " f"a `param_space` parameter to `tune.Tuner()`" ) if self._space.num_paras <= 0: raise ValueError( "Got empty search space. Please make sure to pass " "a valid search space with at least one parameter to " "`HEBOSearch`" ) if self._random_state_seed is not None: np.random.seed(self._random_state_seed) torch.random.manual_seed(self._random_state_seed) self._opt = hebo.optimizers.hebo.HEBO(space=self._space, **self._hebo_config) if self._points_to_evaluate: validate_warmstart( self._space.para_names, self._points_to_evaluate, self._evaluated_rewards, ) if self._evaluated_rewards: self._opt.observe( pd.DataFrame(self._points_to_evaluate), np.array(self._evaluated_rewards) * self._metric_op, ) else: self._initial_points = self._points_to_evaluate def set_search_properties( self, metric: Optional[str], mode: Optional[str], config: Dict, **spec ) -> bool: if self._opt: return False space = self.convert_search_space(config) self._space = space if metric: self._metric = metric if mode: self._mode = mode self._setup_optimizer() return True def suggest(self, trial_id: str) -> Optional[Dict]: if not self._opt: raise RuntimeError( UNDEFINED_SEARCH_SPACE.format( cls=self.__class__.__name__, space="space" ) ) if not self._metric or not self._mode: raise RuntimeError( UNDEFINED_METRIC_MODE.format( cls=self.__class__.__name__, metric=self._metric, mode=self._mode ) ) if not self._live_trial_mapping: self._batch_filled = False if self._initial_points: params = self._initial_points.pop(0) suggestion = pd.DataFrame([params], index=[0]) else: if ( self._batch_filled or len(self._live_trial_mapping) >= self._max_concurrent ): return None if not self._suggestions_cache: suggestion = self._opt.suggest(n_suggestions=self._max_concurrent) self._suggestions_cache = suggestion.to_dict("records") params = self._suggestions_cache.pop(0) suggestion = pd.DataFrame([params], index=[0]) self._live_trial_mapping[trial_id] = suggestion if len(self._live_trial_mapping) >= self._max_concurrent: self._batch_filled = True return unflatten_dict(params) def on_trial_complete( self, trial_id: str, result: Optional[Dict] = None, error: bool = False ): """Notification for the completion of trial. HEBO always minimizes.""" if result: self._process_result(trial_id, result) self._live_trial_mapping.pop(trial_id) def _process_result(self, trial_id: str, result: Dict): trial_info = self._live_trial_mapping[trial_id] if result and not is_nan_or_inf(result[self._metric]): self._opt.observe( trial_info, np.array([self._metric_op * result[self._metric]]) ) def add_evaluated_point( self, parameters: Dict, value: float, error: bool = False, pruned: bool = False, intermediate_values: Optional[List[float]] = None, ): if intermediate_values: logger.warning("HEBO doesn't use intermediate_values. Ignoring.") if not error and not pruned: self._opt.observe( pd.DataFrame( [ { k: v for k, v in parameters.items() if k in self._opt.space.para_names } ] ), np.array([value]) * self._metric_op, ) else: logger.warning( "Only non errored and non pruned points can be added to HEBO." ) def save(self, checkpoint_path: str): """Storing current optimizer state.""" if self._random_state_seed is not None: numpy_random_state = np.random.get_state() torch_random_state = torch.get_rng_state() else: numpy_random_state = None torch_random_state = None save_object = self.__dict__.copy() save_object["__numpy_random_state"] = numpy_random_state save_object["__torch_random_state"] = torch_random_state with open(checkpoint_path, "wb") as f: pickle.dump(save_object, f) def restore(self, checkpoint_path: str): """Restoring current optimizer state.""" with open(checkpoint_path, "rb") as f: save_object = pickle.load(f) if isinstance(save_object, dict): numpy_random_state = save_object.pop("__numpy_random_state", None) torch_random_state = save_object.pop("__torch_random_state", None) self.__dict__.update(save_object) else: # Backwards compatibility ( self._opt, self._initial_points, numpy_random_state, torch_random_state, self._live_trial_mapping, self._max_concurrent, self._suggestions_cache, self._space, self._hebo_config, self._batch_filled, ) = save_object if numpy_random_state is not None: np.random.set_state(numpy_random_state) if torch_random_state is not None: torch.random.set_rng_state(torch_random_state) @staticmethod def convert_search_space(spec: Dict, prefix: str = "") -> Dict: resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec) params = [] if not domain_vars and not grid_vars: return {} if grid_vars: raise ValueError( "Grid search parameters cannot be automatically converted " "to a HEBO search space." ) def resolve_value(par: str, domain: Domain): sampler = domain.get_sampler() if isinstance(sampler, Quantized): logger.warning( "HEBO search does not support quantization. " "Dropped quantization." ) sampler = sampler.get_sampler() if isinstance(domain, Float): if isinstance(sampler, LogUniform): return { "name": par, "type": "pow", "lb": domain.lower, "ub": domain.upper, "base": sampler.base, } elif isinstance(sampler, Uniform): return { "name": par, "type": "num", "lb": domain.lower, "ub": domain.upper, } elif isinstance(domain, Integer): if isinstance(sampler, LogUniform): return { "name": par, "type": "pow_int", "lb": domain.lower, "ub": domain.upper - 1, # Upper bound exclusive "base": sampler.base, } elif isinstance(sampler, Uniform): return { "name": par, "type": "int", "lb": domain.lower, "ub": domain.upper - 1, # Upper bound exclusive } elif isinstance(domain, Categorical): return { "name": par, "type": "cat", "categories": list(domain.categories), } raise ValueError( "HEBO does not support parameters of type " "`{}` with samplers of type `{}`".format( type(domain).__name__, type(domain.sampler).__name__ ) ) for path, domain in domain_vars: par = "/".join([str(p) for p in ((prefix,) + path if prefix else path)]) value = resolve_value(par, domain) params.append(value) return hebo.design_space.design_space.DesignSpace().parse(params)
99c43e11e73e39345fbad4fb92a9dedc45bd6273
2a8a6327fb9a7ce8696aa15b197d5170661fb94f
/zuora_client/models/get_account_type.py
c79f56f011d9bdd68e65c635eeca068bd1dd2c51
[]
no_license
moderndatainc/zuora-client
8b88e05132ddf7e8c411a6d7dad8c0baabaa6dad
d50da49ce1b8465c76723496c2561a3b8ebdf07d
refs/heads/master
2021-09-21T19:17:34.752404
2018-08-29T23:24:07
2018-08-29T23:24:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
46,473
py
# coding: utf-8 """ Zuora API Reference # Introduction Welcome to the reference for the Zuora REST API! <a href=\"http://en.wikipedia.org/wiki/REST_API\" target=\"_blank\">REST</a> is a web-service protocol that lends itself to rapid development by using everyday HTTP and JSON technology. The Zuora REST API provides a broad set of operations and resources that: * Enable Web Storefront integration from your website. * Support self-service subscriber sign-ups and account management. * Process revenue schedules through custom revenue rule models. * Enable manipulation of most objects in the Zuora Object Model. Want to share your opinion on how our API works for you? <a href=\"https://community.zuora.com/t5/Developers/API-Feedback-Form/gpm-p/21399\" target=\"_blank\">Tell us how you feel </a>about using our API and what we can do to make it better. ## Access to the API If you have a Zuora tenant, you can access the Zuora REST API via one of the following endpoints: | Tenant | Base URL for REST Endpoints | |-------------------------|-------------------------| |US Production | https://rest.zuora.com | |US API Sandbox | https://rest.apisandbox.zuora.com| |US Performance Test | https://rest.pt1.zuora.com | |EU Production | https://rest.eu.zuora.com | |EU Sandbox | https://rest.sandbox.eu.zuora.com | The Production endpoint provides access to your live user data. API Sandbox tenants are a good place to test code without affecting real-world data. If you would like Zuora to provision an API Sandbox tenant for you, contact your Zuora representative for assistance. **Note:** If you have a tenant in the Production Copy Environment, submit a request at <a href=\"http://support.zuora.com/\" target=\"_blank\">Zuora Global Support</a> to enable the Zuora REST API in your tenant and obtain the base URL for REST endpoints. If you do not have a Zuora tenant, go to <a href=\"https://www.zuora.com/resource/zuora-test-drive\" target=\"_blank\">https://www.zuora.com/resource/zuora-test-drive</a> and sign up for a Production Test Drive tenant. The tenant comes with seed data, including a sample product catalog. # API Changelog You can find the <a href=\"https://community.zuora.com/t5/Developers/API-Changelog/gpm-p/18092\" target=\"_blank\">Changelog</a> of the API Reference in the Zuora Community. # Authentication ## OAuth v2.0 Zuora recommends that you use OAuth v2.0 to authenticate to the Zuora REST API. Currently, OAuth is not available in every environment. See [Zuora Testing Environments](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/D_Zuora_Environments) for more information. Zuora recommends you to create a dedicated API user with API write access on a tenant when authenticating via OAuth, and then create an OAuth client for this user. See <a href=\"https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users/Create_an_API_User\" target=\"_blank\">Create an API User</a> for how to do this. By creating a dedicated API user, you can control permissions of the API user without affecting other non-API users. If a user is deactivated, all of the user's OAuth clients will be automatically deactivated. Authenticating via OAuth requires the following steps: 1. Create a Client 2. Generate a Token 3. Make Authenticated Requests ### Create a Client You must first [create an OAuth client](https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users#Create_an_OAuth_Client_for_a_User) in the Zuora UI. To do this, you must be an administrator of your Zuora tenant. This is a one-time operation. You will be provided with a Client ID and a Client Secret. Please note this information down, as it will be required for the next step. **Note:** The OAuth client will be owned by a Zuora user account. If you want to perform PUT, POST, or DELETE operations using the OAuth client, the owner of the OAuth client must have a Platform role that includes the \"API Write Access\" permission. ### Generate a Token After creating a client, you must make a call to obtain a bearer token using the [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) operation. This operation requires the following parameters: - `client_id` - the Client ID displayed when you created the OAuth client in the previous step - `client_secret` - the Client Secret displayed when you created the OAuth client in the previous step - `grant_type` - must be set to `client_credentials` **Note**: The Client ID and Client Secret mentioned above were displayed when you created the OAuth Client in the prior step. The [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) response specifies how long the bearer token is valid for. Call [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) again to generate a new bearer token. ### Make Authenticated Requests To authenticate subsequent API requests, you must provide a valid bearer token in an HTTP header: `Authorization: Bearer {bearer_token}` If you have [Zuora Multi-entity](https://www.zuora.com/developer/api-reference/#tag/Entities) enabled, you need to set an additional header to specify the ID of the entity that you want to access. You can use the `scope` field in the [Generate an OAuth token](https://www.zuora.com/developer/api-reference/#operation/createToken) response to determine whether you need to specify an entity ID. If the `scope` field contains more than one entity ID, you must specify the ID of the entity that you want to access. For example, if the `scope` field contains `entity.1a2b7a37-3e7d-4cb3-b0e2-883de9e766cc` and `entity.c92ed977-510c-4c48-9b51-8d5e848671e9`, specify one of the following headers: - `Zuora-Entity-Ids: 1a2b7a37-3e7d-4cb3-b0e2-883de9e766cc` - `Zuora-Entity-Ids: c92ed977-510c-4c48-9b51-8d5e848671e9` **Note**: For a limited period of time, Zuora will accept the `entityId` header as an alternative to the `Zuora-Entity-Ids` header. If you choose to set the `entityId` header, you must remove all \"-\" characters from the entity ID in the `scope` field. If the `scope` field contains a single entity ID, you do not need to specify an entity ID. ## Other Supported Authentication Schemes Zuora continues to support the following additional legacy means of authentication: * Use username and password. Include authentication with each request in the header: * `apiAccessKeyId` * `apiSecretAccessKey` Zuora recommends that you create an API user specifically for making API calls. See <a href=\"https://knowledgecenter.zuora.com/CF_Users_and_Administrators/A_Administrator_Settings/Manage_Users/Create_an_API_User\" target=\"_blank\">Create an API User</a> for more information. * Use an authorization cookie. The cookie authorizes the user to make calls to the REST API for the duration specified in **Administration > Security Policies > Session timeout**. The cookie expiration time is reset with this duration after every call to the REST API. To obtain a cookie, call the [Connections](https://www.zuora.com/developer/api-reference/#tag/Connections) resource with the following API user information: * ID * Password * For CORS-enabled APIs only: Include a 'single-use' token in the request header, which re-authenticates the user with each request. See below for more details. ### Entity Id and Entity Name The `entityId` and `entityName` parameters are only used for [Zuora Multi-entity](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity \"Zuora Multi-entity\"). These are the legacy parameters that Zuora will only continue to support for a period of time. Zuora recommends you to use the `Zuora-Entity-Ids` parameter instead. The `entityId` and `entityName` parameters specify the Id and the [name of the entity](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity/B_Introduction_to_Entity_and_Entity_Hierarchy#Name_and_Display_Name \"Introduction to Entity and Entity Hierarchy\") that you want to access, respectively. Note that you must have permission to access the entity. You can specify either the `entityId` or `entityName` parameter in the authentication to access and view an entity. * If both `entityId` and `entityName` are specified in the authentication, an error occurs. * If neither `entityId` nor `entityName` is specified in the authentication, you will log in to the entity in which your user account is created. To get the entity Id and entity name, you can use the GET Entities REST call. For more information, see [API User Authentication](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Multi-entity/A_Overview_of_Multi-entity#API_User_Authentication \"API User Authentication\"). ### Token Authentication for CORS-Enabled APIs The CORS mechanism enables REST API calls to Zuora to be made directly from your customer's browser, with all credit card and security information transmitted directly to Zuora. This minimizes your PCI compliance burden, allows you to implement advanced validation on your payment forms, and makes your payment forms look just like any other part of your website. For security reasons, instead of using cookies, an API request via CORS uses **tokens** for authentication. The token method of authentication is only designed for use with requests that must originate from your customer's browser; **it should not be considered a replacement to the existing cookie authentication** mechanism. See [Zuora CORS REST](https://knowledgecenter.zuora.com/DC_Developers/REST_API/A_REST_basics/G_CORS_REST \"Zuora CORS REST\") for details on how CORS works and how you can begin to implement customer calls to the Zuora REST APIs. See [HMAC Signatures](https://www.zuora.com/developer/api-reference/#operation/POSTHMACSignature \"HMAC Signatures\") for details on the HMAC method that returns the authentication token. # Requests and Responses ## Request IDs As a general rule, when asked to supply a \"key\" for an account or subscription (accountKey, account-key, subscriptionKey, subscription-key), you can provide either the actual ID or the number of the entity. ## HTTP Request Body Most of the parameters and data accompanying your requests will be contained in the body of the HTTP request. The Zuora REST API accepts JSON in the HTTP request body. No other data format (e.g., XML) is supported. ### Data Type ([Actions](https://www.zuora.com/developer/api-reference/#tag/Actions) and CRUD operations only) We recommend that you do not specify the decimal values with quotation marks, commas, and spaces. Use characters of `+-0-9.eE`, for example, `5`, `1.9`, `-8.469`, and `7.7e2`. Also, Zuora does not convert currencies for decimal values. ## Testing a Request Use a third party client, such as [curl](https://curl.haxx.se \"curl\"), [Postman](https://www.getpostman.com \"Postman\"), or [Advanced REST Client](https://advancedrestclient.com \"Advanced REST Client\"), to test the Zuora REST API. You can test the Zuora REST API from the Zuora API Sandbox or Production tenants. If connecting to Production, bear in mind that you are working with your live production data, not sample data or test data. ## Testing with Credit Cards Sooner or later it will probably be necessary to test some transactions that involve credit cards. For suggestions on how to handle this, see [Going Live With Your Payment Gateway](https://knowledgecenter.zuora.com/CB_Billing/M_Payment_Gateways/C_Managing_Payment_Gateways/B_Going_Live_Payment_Gateways#Testing_with_Credit_Cards \"C_Zuora_User_Guides/A_Billing_and_Payments/M_Payment_Gateways/C_Managing_Payment_Gateways/B_Going_Live_Payment_Gateways#Testing_with_Credit_Cards\" ). ## Concurrent Request Limits Zuora enforces tenant-level concurrent request limits. See <a href=\"https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/Policies/Concurrent_Request_Limits\" target=\"_blank\">Concurrent Request Limits</a> for more information. ## Timeout Limit If a request does not complete within 120 seconds, the request times out and Zuora returns a Gateway Timeout error. ## Error Handling Responses and error codes are detailed in [Responses and errors](https://knowledgecenter.zuora.com/DC_Developers/REST_API/A_REST_basics/3_Responses_and_errors \"Responses and errors\"). # Pagination When retrieving information (using GET methods), the optional `pageSize` query parameter sets the maximum number of rows to return in a response. The maximum is `40`; larger values are treated as `40`. If this value is empty or invalid, `pageSize` typically defaults to `10`. The default value for the maximum number of rows retrieved can be overridden at the method level. If more rows are available, the response will include a `nextPage` element, which contains a URL for requesting the next page. If this value is not provided, no more rows are available. No \"previous page\" element is explicitly provided; to support backward paging, use the previous call. ## Array Size For data items that are not paginated, the REST API supports arrays of up to 300 rows. Thus, for instance, repeated pagination can retrieve thousands of customer accounts, but within any account an array of no more than 300 rate plans is returned. # API Versions The Zuora REST API are version controlled. Versioning ensures that Zuora REST API changes are backward compatible. Zuora uses a major and minor version nomenclature to manage changes. By specifying a version in a REST request, you can get expected responses regardless of future changes to the API. ## Major Version The major version number of the REST API appears in the REST URL. Currently, Zuora only supports the **v1** major version. For example, `POST https://rest.zuora.com/v1/subscriptions`. ## Minor Version Zuora uses minor versions for the REST API to control small changes. For example, a field in a REST method is deprecated and a new field is used to replace it. Some fields in the REST methods are supported as of minor versions. If a field is not noted with a minor version, this field is available for all minor versions. If a field is noted with a minor version, this field is in version control. You must specify the supported minor version in the request header to process without an error. If a field is in version control, it is either with a minimum minor version or a maximum minor version, or both of them. You can only use this field with the minor version between the minimum and the maximum minor versions. For example, the `invoiceCollect` field in the POST Subscription method is in version control and its maximum minor version is 189.0. You can only use this field with the minor version 189.0 or earlier. If you specify a version number in the request header that is not supported, Zuora will use the minimum minor version of the REST API. In our REST API documentation, if a field or feature requires a minor version number, we note that in the field description. You only need to specify the version number when you use the fields require a minor version. To specify the minor version, set the `zuora-version` parameter to the minor version number in the request header for the request call. For example, the `collect` field is in 196.0 minor version. If you want to use this field for the POST Subscription method, set the `zuora-version` parameter to `196.0` in the request header. The `zuora-version` parameter is case sensitive. For all the REST API fields, by default, if the minor version is not specified in the request header, Zuora will use the minimum minor version of the REST API to avoid breaking your integration. ### Minor Version History The supported minor versions are not serial. This section documents the changes made to each Zuora REST API minor version. The following table lists the supported versions and the fields that have a Zuora REST API minor version. | Fields | Minor Version | REST Methods | Description | |:--------|:--------|:--------|:--------| | invoiceCollect | 189.0 and earlier | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice and collects a payment for a subscription. | | collect | 196.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Collects an automatic payment for a subscription. | | invoice | 196.0 and 207.0| [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice for a subscription. | | invoiceTargetDate | 196.0 and earlier | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") |Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | invoiceTargetDate | 207.0 and earlier | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | targetDate | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") |Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | targetDate | 211.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Date through which charges are calculated on the invoice, as `yyyy-mm-dd`. | | includeExisting DraftInvoiceItems | 196.0 and earlier| [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | Specifies whether to include draft invoice items in subscription previews. Specify it to be `true` (default) to include draft invoice items in the preview result. Specify it to be `false` to excludes draft invoice items in the preview result. | | includeExisting DraftDocItems | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | Specifies whether to include draft invoice items in subscription previews. Specify it to be `true` (default) to include draft invoice items in the preview result. Specify it to be `false` to excludes draft invoice items in the preview result. | | previewType | 196.0 and earlier| [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | The type of preview you will receive. The possible values are `InvoiceItem`(default), `ChargeMetrics`, and `InvoiceItemChargeMetrics`. | | previewType | 207.0 and later | [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") | The type of preview you will receive. The possible values are `LegalDoc`(default), `ChargeMetrics`, and `LegalDocChargeMetrics`. | | runBilling | 211.0 and later | [Create Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_Subscription \"Create Subscription\"); [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\"); [Renew Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_RenewSubscription \"Renew Subscription\"); [Cancel Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_CancelSubscription \"Cancel Subscription\"); [Suspend Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_SuspendSubscription \"Suspend Subscription\"); [Resume Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_ResumeSubscription \"Resume Subscription\"); [Create Account](https://www.zuora.com/developer/api-reference/#operation/POST_Account \"Create Account\")|Generates an invoice or credit memo for a subscription. **Note:** Credit memos are only available if you have the Invoice Settlement feature enabled. | | invoiceDate | 214.0 and earlier | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date that should appear on the invoice being generated, as `yyyy-mm-dd`. | | invoiceTargetDate | 214.0 and earlier | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date through which to calculate charges on this account if an invoice is generated, as `yyyy-mm-dd`. | | documentDate | 215.0 and later | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date that should appear on the invoice and credit memo being generated, as `yyyy-mm-dd`. | | targetDate | 215.0 and later | [Invoice and Collect](https://www.zuora.com/developer/api-reference/#operation/POST_TransactionInvoicePayment \"Invoice and Collect\") |Date through which to calculate charges on this account if an invoice or a credit memo is generated, as `yyyy-mm-dd`. | | memoItemAmount | 223.0 and earlier | [Create credit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_CreditMemoFromPrpc \"Create credit memo from charge\"); [Create debit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_DebitMemoFromPrpc \"Create debit memo from charge\") | Amount of the memo item. | | amount | 224.0 and later | [Create credit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_CreditMemoFromPrpc \"Create credit memo from charge\"); [Create debit memo from charge](https://www.zuora.com/developer/api-reference/#operation/POST_DebitMemoFromPrpc \"Create debit memo from charge\") | Amount of the memo item. | | subscriptionNumbers | 222.4 and earlier | [Create order](https://www.zuora.com/developer/api-reference/#operation/POST_Order \"Create order\") | Container for the subscription numbers of the subscriptions in an order. | | subscriptions | 223.0 and later | [Create order](https://www.zuora.com/developer/api-reference/#operation/POST_Order \"Create order\") | Container for the subscription numbers and statuses in an order. | #### Version 207.0 and Later The response structure of the [Preview Subscription](https://www.zuora.com/developer/api-reference/#operation/POST_SubscriptionPreview \"Preview Subscription\") and [Update Subscription](https://www.zuora.com/developer/api-reference/#operation/PUT_Subscription \"Update Subscription\") methods are changed. The following invoice related response fields are moved to the invoice container: * amount * amountWithoutTax * taxAmount * invoiceItems * targetDate * chargeMetrics # Zuora Object Model The following diagram presents a high-level view of the key Zuora objects. Click the image to open it in a new tab to resize it. <a href=\"https://www.zuora.com/wp-content/uploads/2017/01/ZuoraERD.jpeg\" target=\"_blank\"><img src=\"https://www.zuora.com/wp-content/uploads/2017/01/ZuoraERD.jpeg\" alt=\"Zuora Object Model Diagram\"></a> See the following articles for information about other parts of the Zuora business object model: * <a href=\"https://knowledgecenter.zuora.com/CB_Billing/Invoice_Settlement/D_Invoice_Settlement_Object_Model\" target=\"_blank\">Invoice Settlement Object Model</a> * <a href=\"https://knowledgecenter.zuora.com/BC_Subscription_Management/Orders/BA_Orders_Object_Model\" target=\"_blank\">Orders Object Model</a> You can use the [Describe object](https://www.zuora.com/developer/api-reference/#operation/GET_Describe) operation to list the fields of each Zuora object that is available in your tenant. When you call the operation, you must specify the API name of the Zuora object. The following table provides the API name of each Zuora object: | Object | API Name | |-----------------------------------------------|--------------------------------------------| | Account | `Account` | | Accounting Code | `AccountingCode` | | Accounting Period | `AccountingPeriod` | | Amendment | `Amendment` | | Application Group | `ApplicationGroup` | | Billing Run | <p>`BillingRun`</p><p>**Note:** The API name of this object is `BillingRun` in the [Describe object](https://www.zuora.com/developer/api-reference/#operation/GET_Describe) operation and Export ZOQL queries only. Otherwise, the API name of this object is `BillRun`.</p> | | Contact | `Contact` | | Contact Snapshot | `ContactSnapshot` | | Credit Balance Adjustment | `CreditBalanceAdjustment` | | Credit Memo | `CreditMemo` | | Credit Memo Application | `CreditMemoApplication` | | Credit Memo Application Item | `CreditMemoApplicationItem` | | Credit Memo Item | `CreditMemoItem` | | Credit Memo Part | `CreditMemoPart` | | Credit Memo Part Item | `CreditMemoPartItem` | | Credit Taxation Item | `CreditTaxationItem` | | Custom Exchange Rate | `FXCustomRate` | | Debit Memo | `DebitMemo` | | Debit Memo Item | `DebitMemoItem` | | Debit Taxation Item | `DebitTaxationItem` | | Discount Applied Metrics | `DiscountAppliedMetrics` | | Entity | `Tenant` | | Gateway Reconciliation Event | `PaymentGatewayReconciliationEventLog` | | Gateway Reconciliation Job | `PaymentReconciliationJob` | | Gateway Reconciliation Log | `PaymentReconciliationLog` | | Invoice | `Invoice` | | Invoice Adjustment | `InvoiceAdjustment` | | Invoice Item | `InvoiceItem` | | Invoice Item Adjustment | `InvoiceItemAdjustment` | | Invoice Payment | `InvoicePayment` | | Journal Entry | `JournalEntry` | | Journal Entry Item | `JournalEntryItem` | | Journal Run | `JournalRun` | | Order | `Order` | | Order Action | `OrderAction` | | Order ELP | `OrderElp` | | Order Item | `OrderItem` | | Order MRR | `OrderMrr` | | Order Quantity | `OrderQuantity` | | Order TCB | `OrderTcb` | | Order TCV | `OrderTcv` | | Payment | `Payment` | | Payment Application | `PaymentApplication` | | Payment Application Item | `PaymentApplicationItem` | | Payment Method | `PaymentMethod` | | Payment Method Snapshot | `PaymentMethodSnapshot` | | Payment Method Transaction Log | `PaymentMethodTransactionLog` | | Payment Method Update | `UpdaterDetail` | | Payment Part | `PaymentPart` | | Payment Part Item | `PaymentPartItem` | | Payment Run | `PaymentRun` | | Payment Transaction Log | `PaymentTransactionLog` | | Processed Usage | `ProcessedUsage` | | Product | `Product` | | Product Rate Plan | `ProductRatePlan` | | Product Rate Plan Charge | `ProductRatePlanCharge` | | Product Rate Plan Charge Tier | `ProductRatePlanChargeTier` | | Rate Plan | `RatePlan` | | Rate Plan Charge | `RatePlanCharge` | | Rate Plan Charge Tier | `RatePlanChargeTier` | | Refund | `Refund` | | Refund Application | `RefundApplication` | | Refund Application Item | `RefundApplicationItem` | | Refund Invoice Payment | `RefundInvoicePayment` | | Refund Part | `RefundPart` | | Refund Part Item | `RefundPartItem` | | Refund Transaction Log | `RefundTransactionLog` | | Revenue Charge Summary | `RevenueChargeSummary` | | Revenue Charge Summary Item | `RevenueChargeSummaryItem` | | Revenue Event | `RevenueEvent` | | Revenue Event Credit Memo Item | `RevenueEventCreditMemoItem` | | Revenue Event Debit Memo Item | `RevenueEventDebitMemoItem` | | Revenue Event Invoice Item | `RevenueEventInvoiceItem` | | Revenue Event Invoice Item Adjustment | `RevenueEventInvoiceItemAdjustment` | | Revenue Event Item | `RevenueEventItem` | | Revenue Event Item Credit Memo Item | `RevenueEventItemCreditMemoItem` | | Revenue Event Item Debit Memo Item | `RevenueEventItemDebitMemoItem` | | Revenue Event Item Invoice Item | `RevenueEventItemInvoiceItem` | | Revenue Event Item Invoice Item Adjustment | `RevenueEventItemInvoiceItemAdjustment` | | Revenue Event Type | `RevenueEventType` | | Revenue Schedule | `RevenueSchedule` | | Revenue Schedule Credit Memo Item | `RevenueScheduleCreditMemoItem` | | Revenue Schedule Debit Memo Item | `RevenueScheduleDebitMemoItem` | | Revenue Schedule Invoice Item | `RevenueScheduleInvoiceItem` | | Revenue Schedule Invoice Item Adjustment | `RevenueScheduleInvoiceItemAdjustment` | | Revenue Schedule Item | `RevenueScheduleItem` | | Revenue Schedule Item Credit Memo Item | `RevenueScheduleItemCreditMemoItem` | | Revenue Schedule Item Debit Memo Item | `RevenueScheduleItemDebitMemoItem` | | Revenue Schedule Item Invoice Item | `RevenueScheduleItemInvoiceItem` | | Revenue Schedule Item Invoice Item Adjustment | `RevenueScheduleItemInvoiceItemAdjustment` | | Subscription | `Subscription` | | Taxable Item Snapshot | `TaxableItemSnapshot` | | Taxation Item | `TaxationItem` | | Updater Batch | `UpdaterBatch` | | Usage | `Usage` | # noqa: E501 OpenAPI spec version: 2018-08-23 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from zuora_client.models.get_account_summary_type_tax_info import GETAccountSummaryTypeTaxInfo # noqa: F401,E501 from zuora_client.models.get_account_type_basic_info import GETAccountTypeBasicInfo # noqa: F401,E501 from zuora_client.models.get_account_type_bill_to_contact import GETAccountTypeBillToContact # noqa: F401,E501 from zuora_client.models.get_account_type_billing_and_payment import GETAccountTypeBillingAndPayment # noqa: F401,E501 from zuora_client.models.get_account_type_metrics import GETAccountTypeMetrics # noqa: F401,E501 from zuora_client.models.get_account_type_sold_to_contact import GETAccountTypeSoldToContact # noqa: F401,E501 class GETAccountType(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'basic_info': 'GETAccountTypeBasicInfo', 'bill_to_contact': 'GETAccountTypeBillToContact', 'billing_and_payment': 'GETAccountTypeBillingAndPayment', 'metrics': 'GETAccountTypeMetrics', 'sold_to_contact': 'GETAccountTypeSoldToContact', 'success': 'bool', 'tax_info': 'GETAccountSummaryTypeTaxInfo' } attribute_map = { 'basic_info': 'basicInfo', 'bill_to_contact': 'billToContact', 'billing_and_payment': 'billingAndPayment', 'metrics': 'metrics', 'sold_to_contact': 'soldToContact', 'success': 'success', 'tax_info': 'taxInfo' } def __init__(self, basic_info=None, bill_to_contact=None, billing_and_payment=None, metrics=None, sold_to_contact=None, success=None, tax_info=None): # noqa: E501 """GETAccountType - a model defined in Swagger""" # noqa: E501 self._basic_info = None self._bill_to_contact = None self._billing_and_payment = None self._metrics = None self._sold_to_contact = None self._success = None self._tax_info = None self.discriminator = None if basic_info is not None: self.basic_info = basic_info if bill_to_contact is not None: self.bill_to_contact = bill_to_contact if billing_and_payment is not None: self.billing_and_payment = billing_and_payment if metrics is not None: self.metrics = metrics if sold_to_contact is not None: self.sold_to_contact = sold_to_contact if success is not None: self.success = success if tax_info is not None: self.tax_info = tax_info @property def basic_info(self): """Gets the basic_info of this GETAccountType. # noqa: E501 :return: The basic_info of this GETAccountType. # noqa: E501 :rtype: GETAccountTypeBasicInfo """ return self._basic_info @basic_info.setter def basic_info(self, basic_info): """Sets the basic_info of this GETAccountType. :param basic_info: The basic_info of this GETAccountType. # noqa: E501 :type: GETAccountTypeBasicInfo """ self._basic_info = basic_info @property def bill_to_contact(self): """Gets the bill_to_contact of this GETAccountType. # noqa: E501 :return: The bill_to_contact of this GETAccountType. # noqa: E501 :rtype: GETAccountTypeBillToContact """ return self._bill_to_contact @bill_to_contact.setter def bill_to_contact(self, bill_to_contact): """Sets the bill_to_contact of this GETAccountType. :param bill_to_contact: The bill_to_contact of this GETAccountType. # noqa: E501 :type: GETAccountTypeBillToContact """ self._bill_to_contact = bill_to_contact @property def billing_and_payment(self): """Gets the billing_and_payment of this GETAccountType. # noqa: E501 :return: The billing_and_payment of this GETAccountType. # noqa: E501 :rtype: GETAccountTypeBillingAndPayment """ return self._billing_and_payment @billing_and_payment.setter def billing_and_payment(self, billing_and_payment): """Sets the billing_and_payment of this GETAccountType. :param billing_and_payment: The billing_and_payment of this GETAccountType. # noqa: E501 :type: GETAccountTypeBillingAndPayment """ self._billing_and_payment = billing_and_payment @property def metrics(self): """Gets the metrics of this GETAccountType. # noqa: E501 :return: The metrics of this GETAccountType. # noqa: E501 :rtype: GETAccountTypeMetrics """ return self._metrics @metrics.setter def metrics(self, metrics): """Sets the metrics of this GETAccountType. :param metrics: The metrics of this GETAccountType. # noqa: E501 :type: GETAccountTypeMetrics """ self._metrics = metrics @property def sold_to_contact(self): """Gets the sold_to_contact of this GETAccountType. # noqa: E501 :return: The sold_to_contact of this GETAccountType. # noqa: E501 :rtype: GETAccountTypeSoldToContact """ return self._sold_to_contact @sold_to_contact.setter def sold_to_contact(self, sold_to_contact): """Sets the sold_to_contact of this GETAccountType. :param sold_to_contact: The sold_to_contact of this GETAccountType. # noqa: E501 :type: GETAccountTypeSoldToContact """ self._sold_to_contact = sold_to_contact @property def success(self): """Gets the success of this GETAccountType. # noqa: E501 Returns `true` if the request was processed successfully. # noqa: E501 :return: The success of this GETAccountType. # noqa: E501 :rtype: bool """ return self._success @success.setter def success(self, success): """Sets the success of this GETAccountType. Returns `true` if the request was processed successfully. # noqa: E501 :param success: The success of this GETAccountType. # noqa: E501 :type: bool """ self._success = success @property def tax_info(self): """Gets the tax_info of this GETAccountType. # noqa: E501 :return: The tax_info of this GETAccountType. # noqa: E501 :rtype: GETAccountSummaryTypeTaxInfo """ return self._tax_info @tax_info.setter def tax_info(self, tax_info): """Sets the tax_info of this GETAccountType. :param tax_info: The tax_info of this GETAccountType. # noqa: E501 :type: GETAccountSummaryTypeTaxInfo """ self._tax_info = tax_info def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GETAccountType): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
7f4469f9d0c7551cc80ccda897e83bc80b8bb373
3395a234e7c80d011607e79c49cd48bf516f256b
/dependencies/jedi/third_party/typeshed/third_party/2and3/geoip2/database.pyi
7a8991160162cd32b115800bc513ea9dfd3aaeac
[ "MIT", "Apache-2.0" ]
permissive
srusskih/SublimeJEDI
67329b72e184bc9584843968dcc534a002c797a1
95c185d778425c04536d53517b0e3fe6dedf8e59
refs/heads/master
2023-08-24T11:30:37.801834
2022-08-30T09:04:17
2022-08-30T09:04:17
6,241,108
669
125
MIT
2022-08-30T09:04:18
2012-10-16T08:23:57
Python
UTF-8
Python
false
false
1,094
pyi
from types import TracebackType from typing import Optional, Sequence, Text, Type from maxminddb.reader import Metadata from geoip2.models import AnonymousIP, ASN, City, ConnectionType, Country, Domain, Enterprise, ISP _Locales = Optional[Sequence[Text]] class Reader: def __init__(self, filename: Text, locales: _Locales = ..., mode: int = ...) -> None: ... def __enter__(self) -> Reader: ... def __exit__(self, exc_type: Optional[Type[BaseException]] = ..., exc_val: Optional[BaseException] = ..., exc_tb: Optional[TracebackType] = ...) -> None: ... def country(self, ip_address: Text) -> Country: ... def city(self, ip_address: Text) -> City: ... def anonymous_ip(self, ip_address: Text) -> AnonymousIP: ... def asn(self, ip_address: Text) -> ASN: ... def connection_type(self, ip_address: Text) -> ConnectionType: ... def domain(self, ip_address: Text) -> Domain: ... def enterprise(self, ip_address: Text) -> Enterprise: ... def isp(self, ip_address: Text) -> ISP: ... def metadata(self) -> Metadata: ... def close(self) -> None: ...
84e03392e7e42e41051379fa972bca8d338527b6
6dd2d509d44ea035da9d2a9f6cc9797724c12484
/run/Cooling/CoolingTest_JHW/plot.py
4a01e40fc1d6f0193868ce6e108dd44bcdca1845
[ "NCSA", "BSD-3-Clause", "BSD-2-Clause" ]
permissive
appolloford/enzo-dev
ea9ebc98036c6e5be0c98ebb903448a354cb4aaf
2b20d1c9ee5b9b4ee6706a73e32d2e4a8b7fc8f5
refs/heads/master
2023-08-06T01:18:34.631354
2021-10-25T17:06:06
2021-10-25T17:06:06
228,542,764
2
1
NOASSERTION
2019-12-17T05:50:13
2019-12-17T05:50:12
null
UTF-8
Python
false
false
3,238
py
from matplotlib import pyplot from yt.mods import * import numpy as na def _H_NumberDensity(field, data): "Get total Hydrogen nuclei number density." if data.pf['MultiSpecies'] == 0: return (0.76 * data['Density']) fieldData = na.zeros(data['HI_Density'].shape, dtype=data['HI_Density'].dtype) if data.pf['MultiSpecies'] > 0: fieldData += data["HI_Density"] fieldData += data["HII_Density"] if data.pf["MultiSpecies"] > 1: fieldData += data["HM_Density"] fieldData += data["H2I_Density"] fieldData += data["H2II_Density"] if data.pf["MultiSpecies"] > 2: fieldData += data["HDI_Density"] / 3.0 return fieldData def _ConvertHNumberDensity(data): return (1 / 1.67e-24) add_field("H_NumberDensity", units=r"\rm{cm}^{-3}", function=_H_NumberDensity, convert_function=_ConvertHNumberDensity) def plot_cooling_rate(input_file, coordinates, axes, labels=None): "Plot cooling rate vs. T for various densities and metallicities." pf = load(input_file) grid = pf.h.grids[0] cooling = grid['Gas_Energy'] * grid['Density'] / grid['Cooling_Time'] / \ grid['H_NumberDensity']**2 for q, coord in enumerate(coordinates): if labels is None: my_coord = list(coord) my_coord.append(0) my_coord = tuple(my_coord) label = "log(n$_{\mathrm{H}}$/cm$^{-3}$) = %.1f, log(Z/Z$_{\odot}$) = %.1f" % \ (na.log10(grid['H_NumberDensity'][my_coord]), na.log10(grid['Metallicity'][my_coord])) else: label = labels[q] axes.loglog(grid['Temperature'][coord], cooling[coord], label=label) def plot_cooling_solutions(axes): """ Plot some known cooling rates: 1. CIE atomic H/He (Black 1981). 2. Z = 0.5, 1 Z_sun (Sarazin & White 1987). """ black1981 = file("primordial_cie.dat") t_hhe = [] c_hhe = [] for line in black1981: if not line.startswith('#') and len(line) > 1: online = line.split() t_hhe.append(float(online[0])) c_hhe.append(float(online[1])) t_hhe = na.power(10, t_hhe) c_hhe = na.power(10, c_hhe) sz1987 = file("cool_rates.in") t_sz = [] c1_sz = [] c2_sz = [] for line in sz1987: if not line.startswith('#') and len(line) > 1: online = line.split() t_sz.append(float(online[0])) c1_sz.append(float(online[1])) c2_sz.append(float(online[2])) t_sz = na.power(10, t_sz) c1_sz = na.power(10, c1_sz) c2_sz = na.power(10, c2_sz) #axes.loglog(t_sz, c2_sz, label='Z = 0.5 Z$_{\odot}$ (Sarazin & White 1987)') axes.loglog(t_sz, c1_sz, label='Z = Z$_{\odot}$ (Sarazin & White 1987)') axes.loglog(t_hhe, c_hhe, label='H/He (Black 1981)') pyplot.clf() axes = pyplot.axes() axes.set_xlabel('T [K]') axes.set_ylabel('$\Lambda/n_{H}^{2}$ [erg s$^{-1}$ cm$^{3}$]') plot_cooling_rate('DD0001/DD0001', [(1, 4)], axes, labels=['JHW, Z = Z$_{\odot}$']) plot_cooling_solutions(axes) axes.set_xlim(10, 1e8) axes.legend(prop=dict(size=10), loc='best') pyplot.savefig('cooling_rates.png')
b900cba8ee80ef45c51c074ce98053f0c32d3110
359496fc90720875cca962b37006551282533ef8
/src/andres/graph/python/module/__init__.py
8045832ed6519c33662e787a55e456781eb9d87b
[]
no_license
DerThorsten/graph
66858c6f4bd9a40cc355549138fea2da8120b759
7c3a10b446e3ade9ba67dcdb7880bd0798bb2ec3
refs/heads/master
2020-04-01T21:46:42.806967
2016-01-04T11:52:50
2016-01-04T11:52:50
48,331,910
0
0
null
2015-12-20T18:12:14
2015-12-20T18:12:12
null
UTF-8
Python
false
false
1,573
py
from _graph import * import numpy def _injectorClass(clsToExtend): class InjectorClass(object): class __metaclass__(clsToExtend.__class__): def __init__(self, name, bases, dict): for b in bases: if type(b) not in (self, type): for k,v in dict.items(): setattr(b,k,v) tmp = type.__init__(self, name, bases, dict) return InjectorClass _LiftedMcModelClasses = [ LiftedMcModelGridGraph2D,LiftedMcModelGridGraph3D,LiftedMcModelGraph ] for objCls in _LiftedMcModelClasses: class _MoreLiftedMcModel(_injectorClass(objCls),objCls): def setCosts(self, uv, costs, overwrite = True): _uv = numpy.require(uv, dtype='uint64') _costs = numpy.require(costs, dtype='float32') self._setCosts(_uv, _costs, bool(overwrite)) def gridGraph(shape): if len(shape) == 2: return GridGraph2D(int(shape[0]), int(shape[1])) elif len(shape) == 3: return GridGraph3D(int(shape[0]), int(shape[1]), int(shape[2])) else: raise RuntimeError("shape has wrong length, GridGraph is only exported to python for 2D and 3D grids") def liftedMcModel(graph): if isinstance(graph, GridGraph2D): return LiftedMcModelGridGraph2D(graph) elif isinstance(graph, GridGraph3D): return LiftedMcModelGridGraph3D(graph) elif isinstance(graph, Graph): return LiftedMcModelGraph(graph) else: raise RuntimeError("graph has wrong type")