blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
2b8ef6e4ddfe11306702678e9a8e5c00eac0656c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02901/s181974865.py
e2137c4696abe05b40a7101f829d7767622b0d43
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
N, M = map(int, input().split()) key = [] for _ in range(M): a, b = map(int, input().split()) s = 0 C = list(map(lambda x:int(x)-1, input().split())) for c in C: s |= 1<<c key += [(s, a)] dp = [float('inf')]*(1<<N) dp[0] = 0 for s in range(1<<N): for i in range(M): t = s | key[i][0] # 遷移先 cost = dp[s] + key[i][1] dp[t] = min(dp[t], cost) if dp[-1] == float('inf'): print(-1) else: print(dp[-1])
e9cac985d19977a538b2f9e0a5dcdfd6c2452669
971300f5983692e12805805dd49e2f77fa20250f
/src/branches/dae_dtalite_integration/core/models/abstract_regression_model.py
9648228c09e3b79b4c09baf452bbfcb9febf81a4
[]
no_license
MAlbertini95/simtravel
3a18ee302f6d9ab676455caaad15461874a698a9
4844927243a854b9a93f1b1d93f795ff116a7212
refs/heads/master
2021-04-19T03:04:26.752252
2014-07-12T00:50:11
2014-07-12T00:50:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,342
py
from numpy import all, array, zeros from scipy import exp from openamos.core.models.abstract_model import Model from openamos.core.errors import SpecificationError, ErrorSpecificationError class AbstractRegressionModel(Model): def __init__(self, specification, error_specification): """ This is the base class for all regression based mathematical formulations in OpenAMOS Inputs: specification - Specification object error_specifciation - ErrorSpecification object """ Model.__init__(self, specification) if not isinstance(self.specification, Specification): raise SpecificationError, """specification input is not a """\ """valid Specification object""" self.error_specification = error_specification if specification.number_choices > 1: raise SpecificationError, """invalid specification for regression """\ """ model only one equation needs to be specified""" if not isinstance(self.error_specification, ErrorSpecification): raise ErrorSpecificationError, """invalid error specification"""\ """ it should be of type ErrorSpecification""" def calc_expected_value(self, data): """ The method returns the expected values for the different choices using the coefficients specified in the specification input. Inputs: data - DataArray object """ return self.calculate_expected_values(data) def calc_exp_expected_value(self, data): """ The method returns the exponent of the expected values for the different choices using the coefficients specified in the specification input. Inputs: data - DataArray object """ return self.calculate_exp_expected_values(data) def calc_errorcomponent(self): """ The method returns the contribution of the error in the calculation of the predicted value for the different choices. Inputs: None """ raise Exception('method not implemented') def calc_predvalue(self): """ The method returns the predicted value for the different choices in the specification input. Inputs: None """ raise Exception('method not implemented') import unittest from openamos.core.data_array import DataArray from openamos.core.models.model_components import Specification from openamos.core.models.error_specification import ErrorSpecification class TestBadSpecificationRegressionModel(unittest.TestCase): def setUp(self): choices = ['SOV', 'HOV'] coefficients = [{'Constant':2, 'Var1':2.11}, {'Constant':1.2}] data = array([[1, 1.1], [1, -0.25], [1, 3.13], [1, -0.11]]) variance = array([[1.1]]) variance1 = array([[1.1, 1.2], [2.1, 2.2]]) self.data = DataArray(data, ['Constant', 'VAR1']) self.specification = Specification(choices, coefficients) self.errorspecification = ErrorSpecification(variance, 'normal') self.errorspecification1 = ErrorSpecification(variance1, 'normal') def testtwodependentvars(self): self.assertRaises(SpecificationError, AbstractRegressionModel, self.specification, self.errorspecification) def testtwoerrorcomponents(self): self.assertRaises(SpecificationError, AbstractRegressionModel, self.specification, self.errorspecification1) class TestAbstractRegressionModel(unittest.TestCase): def setUp(self): choice = ['SOV'] coefficients = [{'constant':2, 'Var1':2.11}] data = array([[1, 1.1], [1, -0.25], [1, 3.13], [1, -0.11]]) variance = array([[1.1]]) self.data = DataArray(data, ['Constant', 'VaR1']) self.specification = Specification(choice, coefficients) self.errorspecification = ErrorSpecification(variance, 'normal') def testvalues(self): model = AbstractRegressionModel(self.specification, self.errorspecification) model_expected_values = model.calc_expected_value(self.data) expected_act = zeros((self.data.rows, 1)) expected_act[:,0] = self.data.data[:,0] * 2 + self.data.data[:,1] * 2.11 expected_diff = all(expected_act == model_expected_values.data) self.assertEqual(True, expected_diff) exp_expected_act = exp(expected_act) model_exp_expected_values = model.calc_exp_expected_value(self.data) exp_expected_diff = all(exp_expected_act == model_exp_expected_values.data) self.assertEqual(True, exp_expected_diff) def testerrorspecification(self): #TODO:Write the tests for errorspecification if any in here #or should they just be written in the specifica implementations #e.g. stochastic-frontier, linear regression etc. pass if __name__ == '__main__': unittest.main()
[ "karthik.charan@8e946292-11aa-11df-992a-f3fa5211fe9f" ]
karthik.charan@8e946292-11aa-11df-992a-f3fa5211fe9f
86b0d00083516ac574501614cf84a7ab1f14f983
25b2daa09d3994672936231b7949ad60292fd052
/apps/cart/forms.py
7c4ace067207ccb673e8085d0db87a30f6253f02
[]
no_license
pavelm2007/shop
c1896145e3b3c43fd25c32e0e39697b6cbacadc9
979bbdfd51c53f1757e1cc5646e61bd71e8fce40
refs/heads/master
2021-01-25T10:29:50.502933
2014-05-15T07:54:07
2014-05-15T07:54:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,570
py
# -*- coding: utf-8 -*- from django import forms from django.forms.models import inlineformset_factory from django.contrib.contenttypes.models import ContentType from django.template.defaultfilters import striptags from .models import Order, OrderItem, Contact_info BASKET_OPTIONS_USE_KEEP = False class OrderItemForm(forms.ModelForm): class Meta: model = OrderItem content_type = forms.ModelChoiceField(queryset=ContentType.objects.all(), widget=forms.HiddenInput) object_id = forms.IntegerField(widget=forms.HiddenInput) if BASKET_OPTIONS_USE_KEEP: keep = forms.BooleanField(initial=True, required=False) def save(self, *args, **kwargs): if BASKET_OPTIONS_USE_KEEP: if not self.cleaned_data.get('keep', False): self.cleaned_data['quantity'] = 0 self.instance.order.set_quantity(self.instance.content_object, self.cleaned_data.get('quantity', 0)) OrderFormset = inlineformset_factory(Order, OrderItem, extra=0, can_delete=False, form=OrderItemForm) class DefaultOrderForm(forms.ModelForm): # name = forms.CharField(label=u'Имя', max_length=100, required=True) # phone = forms.CharField(label=u'Телефон', max_length=100, required=True) # email = forms.CharField(label=u'E-mail', max_length=100, required=True) # comment = forms.CharField(label=u'Комментарий к заказу', max_length=255, # widget=forms.Textarea(), required=True) def __init__(self, *args, **kwargs): super(DefaultOrderForm, self).__init__(*args, **kwargs) self.fields['comment'].widget.attrs['cols'] = '35' self.fields['comment'].widget.attrs['rows'] = '5' for field in self.fields: self.fields[field].widget.attrs['class'] = 'filed-znach-text' if self.errors: # bf_errors = self.error_class(error for error in bf.errors]) # Escape and cache in local variable. for field, key in self.fields.iteritems(): error_text = u'' for i, j in self.errors.iteritems(): if field == i: error_text += unicode(striptags(j)) self.fields[field].initial = None # self.fields[field].widget.attrs['value'] = error_text self.fields[field].widget.attrs['placeholder'] = error_text class Meta: model = Contact_info exclude = ('order',) # class DefaultOrderForm(forms.Form): # name = forms.CharField(label=u'Имя', max_length=100,required=True) # phone = forms.CharField(label=u'Телефон', max_length=100,required=True) # email = forms.CharField(label=u'E-mail', max_length=100,required=True) # # address = forms.CharField(label=_('Delivery address'), max_length=255) # # contact_time = forms.CharField(label=_('Convenient time to call'), # # max_length=50, required=False) # comment = forms.CharField(label=u'Комментарий к заказу', max_length=255, # widget=forms.Textarea(), required=True) # # def __init__(self, request, *args, **kwargs): # super(DefaultOrderForm, self).__init__(*args, **kwargs) # self.fields['comment'].widget.attrs['cols'] = '35' # self.fields['comment'].widget.attrs['rows'] = '5' # for field in self.fields: # self.fields[field].widget.attrs['class'] = 'filed-znach-text'
12d3146f4e383ba18e9a4c88f8655aca2bb439a8
94838674ffd175df6194437c1ccc3f90ab409d6c
/pillowV3/log/2018-12-30 15:01:12.856571
0d9018eeb9b74f767f0c3a4a8a50e23b98ff40c1
[]
no_license
WojciechKoz/MyFirstNeuralNetwork
4fdb3140d8f02257599d005638598f78055c1ac8
3cd032aba80ecd71edb0286724ae9ba565b75a81
refs/heads/master
2020-04-02T03:02:48.680433
2020-02-29T17:57:43
2020-02-29T17:57:43
153,943,121
0
0
null
null
null
null
UTF-8
Python
false
false
511,606
856571
#!/usr/bin/env python3 # -*- coding: utf8 -*- from __future__ import print_function # new print() on python2 from datetime import datetime import sys import numpy as np from mnist import MNIST # Display full arrays np.set_printoptions(threshold=np.inf) mndata = MNIST('./data') images_full, labels_full = mndata.load_training() images = [] labels = [] # dynamic arguments batch_size = int(sys.argv[1]) size_1 = int(sys.argv[2]) size_2 = int(sys.argv[3]) batch_training_size = int(sys.argv[4]) data_part = 5 # only one fifth of the whole dataset to speed up training for i in range(len(labels_full) // batch_size // data_part): images.append(images_full[i*batch_size : (i+1)*batch_size]) labels.append(labels_full[i*batch_size : (i+1)*batch_size]) def sigmoid_prime(x): return np.exp(-x) / ((np.exp(-x) + 1) ** 2) def sigmoid(x): return 1 / (1 + np.exp(-x)) # nowe, przyda się? def relu(x): return np.maximum(x, x * 0.01) def relu_prime(x): if x >= 0: return 1 # ej nie jest tak xd # a jak xd? type(x) == no.ndarray # no x to macierz xd # np.exp jest przeładowane ale jakakoleiwk funkcja to chyba nie # to co foreach ? :( # właśnie nie wiem, a co z gpu? # to miało być szybsze a nie xd # mamy duzo mozliwosci zmian ale nie na raz trzeba ustalic jakos # hm TODO gpu TODO wincyj procent TODO gui gotowe # xd # tamto myliło hah # to co najpierw? :p # ssh daje wglad do basha tylko tak ? # nie, to jest taki fajny programik, byobu # i ten pasek na dole też jest z byobu # on udostepnia tylko basha ? # tak, ale basha multiplayer xd # szkoda że 2 kursorow nie ma # hm return 0.01 # chyba tak xd nikt nie widzial xd # ale x to macierz :p # ale to jest przeciazone i jak jest funkcja od macierzy to bierze po kolei kazdy element # w sumie # zobacze na drugiej karcie xd #X = np.array([[0, 0], # [0, 1], # [1, 0], # [1, 1]]) #X = np.array(images) y = [] for batch in labels: y.append([]) for label in batch: y[-1].append([1.0 if i == label else 0.0 for i in range(10)]) y = np.array(y) #y = np.array([[0], # [1], # [1], # [0]]) np.random.seed(1) LEN = len(labels) SIZES = [ 784, size_1, size_2, 10 ] syn0 = 2 * np.random.random((SIZES[0], SIZES[1])) - 1 syn1 = 2 * np.random.random((SIZES[1], SIZES[2])) - 1 syn2 = 2 * np.random.random((SIZES[2], SIZES[3])) - 1 # biases for respective layers b0 = 2 * np.random.random((1, SIZES[1])) - 1 b1 = 2 * np.random.random((1, SIZES[2])) - 1 b2 = 2 * np.random.random((1, SIZES[3])) - 1 for i, batch in list(enumerate(images)): X = np.array(batch) print("x:") print(np.shape(X)) print("======================= BATCH {} =======================".format(i)) error = 1 j = 0 while j < batch_training_size: l0 = X l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) l3_error = (y[i] - l3)#** 2 error = np.mean(np.abs(l3_error)) j += 1 if j % 20 == 0: print(("[%d] error: " % j) + str(error)) l3_delta = l3_error * sigmoid_prime(l3) l2_error = l3_delta.dot(syn2.T) l2_delta = l2_error * sigmoid_prime(l2) l1_error = l2_delta.dot(syn1.T) l1_delta = l1_error * sigmoid_prime(l1) syn2 += l2.T.dot(l3_delta) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta) b0 += l1_delta.mean(axis=0) b1 += l2_delta.mean(axis=0) b2 += l3_delta.mean(axis=0) def predict(data): l0 = [data] l1 = sigmoid(np.dot(l0, syn0) + b0) l2 = sigmoid(np.dot(l1, syn1) + b1) l3 = sigmoid(np.dot(l2, syn2) + b2) return np.argmax(l3) print("Output after training: ") print(l3) for i, el in enumerate(l3): print(labels[0][i], "=", np.argmax(el), " predictions: ", el) testing_images, testing_labels = mndata.load_testing() correct = 0.0 for i, (image, label) in enumerate(zip(testing_images, testing_labels)): prediction = predict(image) if label == prediction: correct += 1.0 correct_rate = correct / (i + 1.0) print("{} = {} (correct {}%)".format(label, prediction, 100 * correct_rate)) with open('log/' + str(datetime.now()), 'a') as f: with open(__file__, 'r') as myself: print(myself.read(), file=f) print("", file=f) print("#### answers:", file=f) print("argv =", sys.argv, file=f) print("correct_rate =", correct_rate, file=f) print("SIZES =", SIZES, file=f) print("syn0 =", syn0, file=f) print("syn1 =", syn1, file=f) print("syn2 =", syn2, file=f) print("b0 =", b0, file=f) print("b1 =", b1, file=f) print("b2 =", b2, file=f) #### answers: argv = ['./main.py', '95', '37', '32', '27'] correct_rate = 0.1853 SIZES = [784, 37, 32, 10] syn0 = [[-1.65955991e-01 4.40648987e-01 -9.99771250e-01 -3.95334855e-01 -7.06488218e-01 -8.15322810e-01 -6.27479577e-01 -3.08878546e-01 -2.06465052e-01 7.76334680e-02 -1.61610971e-01 3.70439001e-01 -5.91095501e-01 7.56234873e-01 -9.45224814e-01 3.40935020e-01 -1.65390395e-01 1.17379657e-01 -7.19226123e-01 -6.03797022e-01 6.01489137e-01 9.36523151e-01 -3.73151644e-01 3.84645231e-01 7.52778305e-01 7.89213327e-01 -8.29911577e-01 -9.21890434e-01 -6.60339161e-01 7.56285007e-01 -8.03306332e-01 -1.57784750e-01 9.15779060e-01 6.63305699e-02 3.83754228e-01 -3.68968738e-01 3.73001855e-01] [ 6.69251344e-01 -9.63423445e-01 5.00288630e-01 9.77722178e-01 4.96331309e-01 -4.39112016e-01 5.78558657e-01 -7.93547987e-01 -1.04212948e-01 8.17191006e-01 -4.12771703e-01 -4.24449323e-01 -7.39942856e-01 -9.61266084e-01 3.57671066e-01 -5.76743768e-01 -4.68906681e-01 -1.68536814e-02 -8.93274910e-01 1.48235211e-01 -7.06542850e-01 1.78611074e-01 3.99516720e-01 -7.95331142e-01 -1.71888024e-01 3.88800315e-01 -1.71641461e-01 -9.00093082e-01 7.17928118e-02 3.27589290e-01 2.97782241e-02 8.89189512e-01 1.73110081e-01 8.06803831e-01 -7.25050592e-01 -7.21447305e-01 6.14782577e-01] [-2.04646326e-01 -6.69291606e-01 8.55017161e-01 -3.04468281e-01 5.01624206e-01 4.51995971e-01 7.66612182e-01 2.47344414e-01 5.01884868e-01 -3.02203316e-01 -4.60144216e-01 7.91772436e-01 -1.43817620e-01 9.29680094e-01 3.26882996e-01 2.43391440e-01 -7.70508054e-01 8.98978517e-01 -1.00175733e-01 1.56779229e-01 -1.83726394e-01 -5.25946040e-01 8.06759041e-01 1.47358973e-01 -9.94259346e-01 2.34289827e-01 -3.46710196e-01 5.41162045e-02 7.71884199e-01 -2.85460480e-01 8.17070302e-01 2.46720232e-01 -9.68357514e-01 8.58874467e-01 3.81793835e-01 9.94645701e-01 -6.55318983e-01] [-7.25728501e-01 8.65190926e-01 3.93636323e-01 -8.67999655e-01 5.10926105e-01 5.07752377e-01 8.46049071e-01 4.23049517e-01 -7.51458076e-01 -9.60239732e-01 -9.47578026e-01 -9.43387024e-01 -5.07577865e-01 7.20055897e-01 7.76621287e-02 1.05643957e-01 6.84061785e-01 -7.51653370e-01 -4.41632642e-01 1.71518543e-01 9.39191497e-01 1.22060439e-01 -9.62705421e-01 6.01265345e-01 -5.34051452e-01 6.14210391e-01 -2.24278712e-01 7.27083709e-01 4.94243285e-01 1.12480468e-01 -7.27089549e-01 -8.80164621e-01 -7.57313089e-01 -9.10896243e-01 -7.85011742e-01 -5.48581323e-01 4.25977961e-01] [ 1.19433964e-01 -9.74888040e-01 -8.56051441e-01 9.34552660e-01 1.36200924e-01 -5.93413531e-01 -4.95348511e-01 4.87651708e-01 -6.09141038e-01 1.62717855e-01 9.40039978e-01 6.93657603e-01 -5.20304482e-01 -1.24605715e-02 2.39911437e-01 6.57961799e-01 -6.86417211e-01 -9.62847596e-01 -8.59955713e-01 -2.73097781e-02 2.12658923e-01 1.37702874e-01 -3.65275181e-01 9.77232309e-01 1.59490438e-01 -2.39717655e-01 1.01896438e-01 4.90668862e-01 3.38465787e-01 -4.70160885e-01 -8.67330331e-01 -2.59831604e-01 2.59435014e-01 -5.79651980e-01 5.05511107e-01 -8.66927037e-01 -4.79369803e-01] [ 6.09509127e-01 -6.13131435e-01 2.78921762e-01 4.93406182e-02 8.49615941e-01 -4.73406459e-01 -8.68077819e-01 4.70131927e-01 5.44356059e-01 8.15631705e-01 8.63944138e-01 -9.72096854e-01 -5.31275828e-01 2.33556714e-01 8.98032641e-01 9.00352238e-01 1.13306376e-01 8.31212700e-01 2.83132418e-01 -2.19984572e-01 -2.80186658e-02 2.08620966e-01 9.90958430e-02 8.52362853e-01 8.37466871e-01 -2.10248774e-01 9.26525057e-01 -6.52088667e-01 -7.47340961e-01 -7.29841684e-01 1.13243314e-02 -9.56950389e-01 8.95940422e-01 6.54230942e-01 -9.69962039e-01 -6.47607489e-01 -3.35872851e-01] [-7.38006310e-01 6.18981384e-01 -3.10526695e-01 8.80214965e-01 1.64028360e-01 7.57663969e-01 6.89468891e-01 8.10784637e-01 -8.02394684e-02 9.26936320e-02 5.97207182e-01 -4.28562297e-01 -1.94929548e-02 1.98220615e-01 -9.68933449e-01 1.86962816e-01 -1.32647302e-01 6.14721058e-01 -3.69510394e-01 7.85777417e-01 1.55714431e-01 -6.31979597e-01 5.75858468e-01 2.24062354e-01 -8.92181456e-01 -1.59612640e-01 3.58137673e-01 8.37203556e-01 -9.99195950e-01 9.53518298e-01 -2.46839371e-01 9.47567077e-01 2.09432202e-01 6.57691616e-01 1.49423009e-01 2.56152397e-01 -4.28847437e-01] [ 1.73666681e-01 5.00043527e-01 7.16627673e-01 5.10164377e-01 3.96114497e-01 7.28958860e-01 -3.54638006e-01 3.41577582e-01 -9.82521272e-02 -2.35794496e-01 -1.78377300e-01 -1.97040833e-01 -3.65232108e-01 2.43838736e-01 -1.39505458e-01 9.47604156e-01 3.55601783e-01 -6.02860223e-01 -1.46597981e-01 -3.13307520e-01 5.95277608e-01 7.59996577e-01 8.07683912e-01 3.25439625e-01 -4.59583476e-01 -4.95266597e-01 7.09795885e-01 5.54292926e-02 6.04322168e-01 1.44977034e-01 4.66285051e-01 3.80232549e-02 5.41767821e-01 1.37715981e-01 -6.85802428e-02 -3.14622184e-01 -8.63581303e-01] [-2.44151641e-01 -8.40747845e-01 9.65634227e-01 -6.36774297e-01 6.23717395e-01 7.49923290e-01 3.76826505e-01 1.38988825e-01 -6.78057126e-01 -6.62399545e-02 -3.09655898e-01 -5.49920084e-01 1.85023738e-01 -3.75460325e-01 8.32611107e-01 8.19271050e-01 -4.85763412e-01 -7.78217399e-01 -6.14074536e-01 -8.31658642e-04 4.57171336e-01 -5.83611123e-01 -5.03932883e-01 7.03343750e-01 -1.68302563e-01 2.33370134e-01 -5.32667722e-01 -7.96065481e-01 3.17140339e-02 -4.57180259e-02 -6.94656712e-01 2.43612463e-01 8.80202376e-02 3.08274694e-01 -7.10908920e-01 5.03055634e-01 -5.55901720e-01] [ 3.87036487e-02 5.70592056e-01 -9.55339144e-01 -3.51275081e-01 7.45844753e-01 6.89419215e-01 7.68811852e-02 7.33216548e-01 8.99611983e-01 6.52813995e-01 7.08230888e-01 -8.02513196e-01 3.02608665e-01 4.07033976e-01 2.20481625e-01 5.99230523e-01 -9.30857560e-01 5.40477469e-01 4.63457201e-01 -4.80603213e-01 -4.85861402e-01 2.64606635e-01 -3.09405077e-01 5.93177356e-01 -1.07707536e-01 5.65498830e-01 9.80943567e-01 -3.99503321e-01 -7.13988343e-01 8.02616873e-01 8.31187578e-02 9.49480742e-01 2.73208800e-01 9.87826049e-01 9.21416083e-02 5.28518678e-02 -7.29144194e-01] [-2.88589658e-01 -9.47562865e-01 -6.79209641e-01 4.91274385e-01 -9.39200620e-01 -2.66913806e-01 7.24692506e-01 3.85355435e-01 3.81884284e-01 -6.22726398e-01 -1.16191439e-01 1.63154815e-01 9.79503415e-01 -5.92187550e-01 -5.04534196e-01 -4.75653832e-01 5.00344827e-01 -8.60493451e-02 -8.86141123e-01 1.70324812e-02 -5.76079671e-01 5.97208490e-01 -4.05337237e-01 -9.44787976e-01 1.86864899e-01 6.87680858e-01 -2.37967752e-01 4.99716621e-01 2.22829566e-02 8.19036099e-02 9.18868642e-01 6.07921783e-01 -9.35353867e-01 4.18774502e-01 -6.99970369e-02 8.95097883e-01 -5.57134531e-01] [-4.65855961e-01 -8.37052070e-01 -1.42762343e-01 -7.81962472e-01 2.67573521e-01 6.05926475e-01 3.93600992e-01 5.32422762e-01 -3.15091760e-01 6.91702966e-01 -1.42462450e-01 6.48019741e-01 2.52992317e-01 -7.13153903e-01 -8.43226200e-01 -9.63334714e-01 -8.66550005e-01 -8.28323726e-02 -7.73316154e-01 -9.44433302e-01 5.09722963e-01 -2.10299039e-01 4.93876991e-01 -9.51903465e-02 -9.98265060e-02 -4.38549866e-02 -5.19921469e-02 6.06326684e-01 -1.95214960e-01 8.09372321e-01 -9.25877904e-01 5.47748685e-01 -7.48717238e-01 2.37027134e-01 -9.79271477e-01 7.72545652e-02 -9.93964087e-01] [ 9.02387571e-01 8.10804067e-01 5.91933884e-01 8.30548640e-01 -7.08883538e-01 -6.84539860e-01 -6.24736654e-01 2.44991805e-01 8.11618992e-01 9.79910357e-01 4.22244918e-01 4.63600818e-01 8.18586409e-01 -1.98252535e-01 -5.00298640e-01 -6.53139658e-01 -7.61085899e-01 6.25221176e-01 -7.06415253e-01 -4.71405035e-01 6.38178357e-01 -3.78825496e-01 9.64834899e-01 -4.66722596e-01 6.73066899e-02 -3.71065978e-01 8.21545662e-01 -2.66886712e-01 -1.32815345e-01 2.45853846e-02 8.77772955e-01 -9.38101987e-01 4.33757327e-01 7.82037909e-01 -9.45425553e-01 4.41024945e-02 -3.48020376e-01] [ 7.18978642e-01 1.17033102e-01 3.80455736e-01 -9.42930001e-02 2.56618075e-01 -4.19806297e-01 -9.81302844e-01 1.53511870e-01 -3.77111572e-01 3.45351970e-02 8.32811706e-01 -1.47050423e-01 -5.05207927e-01 -2.57412477e-01 8.63722233e-01 8.73736763e-01 6.88659897e-01 8.40413029e-01 -5.44199420e-01 -8.25035581e-01 -5.45380527e-01 -3.71246768e-01 -6.50468247e-01 2.14188324e-01 -1.72827170e-01 6.32703024e-01 -6.29739203e-01 4.03753060e-01 -5.19288750e-01 1.48438178e-01 -3.02024806e-01 -8.86071201e-01 -5.42372658e-01 3.28205111e-01 -5.49981328e-03 3.80319681e-02 -6.50559700e-01] [ 1.41431703e-01 9.93506850e-01 6.33670218e-01 1.88745248e-01 9.51978137e-01 8.03125169e-01 1.91215867e-01 -9.35147349e-01 -8.12845808e-01 -8.69256570e-01 -9.65337026e-02 -2.49130334e-01 9.50700069e-01 -6.64033414e-01 9.45575184e-01 5.34949738e-01 6.48475679e-01 2.65231634e-01 3.37465540e-01 -4.62353330e-02 -9.73727286e-01 -2.93987829e-01 -1.58563970e-02 4.60182422e-01 -6.27433145e-02 -8.51901678e-02 -7.24674518e-01 -9.78222532e-01 5.16556521e-01 -3.60094324e-01 9.68766900e-01 -5.59531548e-01 -3.22583949e-01 4.77922713e-02 5.09782914e-01 -7.22844322e-02 -7.50354914e-01] [-3.74997243e-01 9.03833940e-03 3.47698016e-01 5.40299913e-01 -7.39328438e-01 -9.54169737e-01 3.81646444e-02 6.19977421e-01 -9.74792466e-01 3.44939689e-01 3.73616453e-01 -1.01506493e-01 8.29577373e-01 2.88722170e-01 -9.89520325e-01 -3.11431090e-02 7.18635612e-01 6.60799140e-01 2.98308394e-01 3.47396848e-01 1.56999160e-01 -4.51760450e-01 1.21059981e-01 3.43459570e-01 -2.95140740e-01 7.11656735e-01 -6.09925028e-01 4.94641621e-01 -4.20794508e-01 5.47598574e-01 -1.44525341e-01 6.15396818e-01 -2.92930275e-01 -5.72613525e-01 5.34569017e-01 -3.82716105e-01 4.66490135e-01] [ 4.88946306e-01 -5.57206598e-01 -5.71775726e-01 -6.02104153e-01 -7.14963324e-01 -2.45834802e-01 -9.46744231e-01 -7.78159262e-01 3.49128048e-01 5.99553074e-01 -8.38940946e-01 -5.36595379e-01 -5.84748676e-01 8.34667126e-01 4.22629036e-01 1.07769222e-01 -3.90964024e-01 6.69708095e-01 -1.29388085e-01 8.46912430e-01 4.12103609e-01 -4.39373841e-02 -7.47579793e-01 9.52087101e-01 -6.80332699e-01 -5.94795750e-01 -1.37636490e-01 -1.91596188e-01 -7.06497038e-01 4.58637839e-01 -6.22509866e-01 2.87791289e-01 5.08611901e-01 -5.78535216e-01 2.01908496e-01 4.97856750e-01 2.76437421e-01] [ 1.94254606e-01 -4.09035429e-01 4.63212942e-01 8.90616880e-01 -1.48877219e-01 5.64363634e-01 -8.87717921e-01 6.70543205e-01 -6.15499966e-01 -2.09806262e-01 -3.99837908e-01 -8.39792712e-01 8.09262006e-01 -2.59691645e-01 6.13948770e-02 -1.17674682e-02 -7.35677716e-01 -5.87091882e-01 -8.47622382e-01 1.58433999e-02 -4.76900896e-01 -2.85876782e-01 -7.83869343e-01 5.75103679e-01 -7.86832246e-01 9.71417647e-01 -6.45677671e-01 1.44810225e-01 -9.10309331e-01 5.74232579e-01 -6.20788104e-01 5.58079568e-02 4.80155086e-01 -7.00137030e-01 1.02174348e-01 -5.66765583e-01 5.18392099e-01] [ 4.45830387e-01 -6.46901931e-01 7.23933115e-01 -9.60449801e-01 7.20473995e-01 1.17807622e-01 -1.93559056e-01 5.17493862e-01 4.33858003e-01 9.74652350e-01 -4.43829903e-01 -9.92412655e-01 8.67805217e-01 7.15794209e-01 4.57701755e-01 3.33775658e-02 4.13912490e-01 5.61059114e-01 -2.50248113e-01 5.40645051e-01 5.01248638e-01 2.26422423e-01 -1.96268152e-01 3.94616039e-01 -9.93774284e-01 5.49793293e-01 7.92833205e-01 -5.21368585e-01 -7.58465631e-01 -5.59432024e-01 -3.95806537e-01 7.66057017e-01 8.63328605e-02 -4.26576701e-01 -7.23290620e-01 -4.19711074e-01 2.27742179e-01] [-3.51722940e-01 -8.52796366e-02 -1.11765786e-01 6.56270721e-01 -1.47303692e-01 -3.08602358e-01 3.49943210e-01 -5.57035889e-01 -6.55083521e-02 -3.70468625e-01 2.53711204e-01 7.54720949e-01 -1.04622000e-01 5.68914838e-01 -8.60685989e-02 3.12458663e-01 -7.36318050e-01 -1.34036986e-01 8.18623977e-01 2.10958002e-01 5.33549174e-01 9.40121619e-03 -3.88875034e-03 6.85799680e-01 -8.64386131e-01 1.46544543e-01 8.85525151e-01 3.57200963e-02 -6.11068381e-01 6.95878785e-01 -4.96721715e-01 4.01452073e-01 8.05218808e-02 8.97672577e-01 2.48673405e-01 6.75955924e-01 -9.84134248e-01] [ 9.78680112e-01 -8.44570859e-01 -3.55740973e-01 8.92304791e-01 -9.82121795e-01 6.45460011e-01 7.22423277e-01 -1.20338372e-01 -4.88509612e-01 6.05379039e-01 -4.42759911e-02 -7.31322783e-01 8.55697986e-01 7.91939934e-01 -1.69097000e-02 7.13404993e-01 -1.62843948e-01 3.66929800e-01 -2.04018721e-01 1.14840349e-02 -6.20896594e-01 9.29977848e-01 -4.11568624e-01 -7.93080888e-01 -7.11369200e-01 -9.71815412e-01 4.31891399e-01 1.28996640e-01 5.89156702e-01 1.41598466e-02 5.83642079e-01 3.91528429e-01 5.55696954e-01 -1.87034262e-01 2.95541266e-01 -6.40411405e-01 -3.56360073e-01] [-6.54790760e-01 -1.82725550e-01 -5.17162504e-01 -1.86156012e-01 9.50444685e-01 -3.59361348e-01 9.64981890e-01 2.72612252e-01 -2.49817963e-01 7.14968998e-01 2.39173479e-01 -4.95933840e-01 5.85711356e-01 -1.34122983e-01 -2.84977665e-01 -3.39446127e-01 3.94737751e-01 -4.62699752e-01 6.16556027e-01 -4.09422411e-01 8.82427672e-02 -2.41570164e-02 7.10712825e-01 7.76772869e-01 -6.31231115e-01 1.70696918e-01 7.96410092e-01 -1.07765562e-01 8.43736611e-01 -4.42018219e-01 2.17662348e-01 3.64907420e-01 -5.43588533e-01 -9.72464975e-01 -1.66552075e-01 8.76963784e-01 -3.13943780e-01] [ 5.59488591e-01 -6.50527374e-01 -3.16094327e-01 -7.10804558e-01 4.33541628e-01 3.98615247e-01 3.76994636e-01 -4.93207931e-01 3.84720243e-01 -5.45404918e-01 -1.50701768e-01 -2.56155757e-01 -2.89384177e-01 -8.84690386e-01 2.63293254e-01 4.14633205e-01 2.27177389e-01 2.96625512e-01 -6.60118572e-01 -7.01106402e-01 2.83500871e-02 7.50665453e-01 -6.32093117e-01 -7.43217626e-02 -1.42135332e-01 -5.42162816e-03 -6.76978459e-01 -3.15118718e-01 -4.76239192e-01 6.89053886e-01 6.00664492e-01 -1.46721683e-01 2.14030922e-01 -7.09068779e-01 1.92265884e-02 -4.06105828e-01 7.19301907e-01] [ 3.43196762e-01 2.66948025e-01 -7.50497400e-01 -5.88242410e-02 9.73145559e-01 8.96598348e-01 2.90171281e-01 -6.96550258e-01 2.78253697e-01 1.31324225e-01 -6.26683247e-02 -1.43925061e-01 1.98539511e-01 6.99939777e-01 5.02242081e-01 1.58721081e-01 8.49408363e-01 -8.70520033e-01 9.82693017e-01 -8.94010915e-01 -6.01008908e-01 -1.54494677e-01 -7.84982248e-01 2.47340822e-01 -9.04014872e-01 -4.30752238e-01 -8.77926638e-01 4.07038662e-01 3.36912335e-01 -2.42838813e-01 -6.23611480e-01 4.94009658e-01 -3.19241418e-01 5.90602335e-01 -2.41981216e-02 5.13388887e-02 -9.43018301e-01] [ 2.88464040e-01 -2.98686995e-01 -5.41589945e-01 -1.32233248e-01 -2.35065085e-01 -6.04219198e-02 9.58966708e-01 -2.71243859e-01 5.48820267e-01 1.05535193e-01 7.78262178e-01 -2.90094298e-01 -5.08962640e-01 8.22038479e-01 -9.12931472e-01 9.01506856e-01 1.12813831e-01 -2.47273567e-01 9.90104645e-01 -8.83274708e-01 3.34127195e-02 -9.37805849e-01 1.42351478e-01 -6.39062982e-01 2.61918401e-01 9.61847352e-01 7.49805102e-01 -9.63275012e-02 4.16921740e-01 5.54937500e-01 -1.03138316e-02 5.70669804e-02 -6.98431203e-01 -2.61200149e-01 -7.15557494e-01 4.53787507e-01 -4.59740112e-02] [-1.02242327e-01 7.71995942e-01 5.52375446e-02 -1.81818336e-01 -4.62215956e-01 -8.55975930e-01 -1.63727733e-01 -9.48493035e-01 -4.17692119e-01 7.01901970e-03 9.31866130e-01 -7.81234172e-01 3.46082108e-01 -1.35257802e-04 5.54196459e-01 -7.12786004e-01 -8.33594727e-01 -2.01562789e-01 5.93924504e-01 -6.16648522e-01 5.35554384e-01 -4.19404006e-01 -5.66217025e-01 -9.66568822e-01 -2.02681880e-01 -2.37837017e-01 3.18689872e-01 -8.58163199e-01 -6.94792026e-01 -9.66848234e-01 -7.72407287e-01 3.03578552e-01 -1.94686296e-01 -3.57947372e-01 1.15823988e-01 9.86920926e-01 6.68973028e-01] [ 3.99246365e-01 8.36517178e-01 -9.20542587e-01 -8.59333117e-01 -5.19874200e-02 -3.01665174e-01 8.74504124e-01 -2.08700777e-02 7.92982202e-02 7.90520731e-01 -1.06729908e-01 7.54068779e-01 -4.92836501e-01 -4.52380592e-01 -3.43277220e-01 9.51285410e-02 -5.59742652e-01 3.42858342e-01 -7.14413434e-01 -8.11799451e-01 7.40383492e-01 -5.26262593e-01 -2.27991978e-01 1.43084185e-01 5.16039399e-02 -8.47952241e-01 7.48251871e-01 9.02271237e-01 6.25014608e-01 -4.32396330e-01 5.56935922e-02 -3.21166552e-01 1.09334622e-01 9.48806938e-01 -3.76594165e-01 3.37593212e-01 -3.48065585e-01] [ 5.48954532e-01 -3.48380067e-01 7.79654683e-01 5.03415442e-01 5.25264191e-01 -6.10419429e-02 -5.78470995e-01 -9.17049841e-01 -3.56342400e-01 -9.25774671e-01 3.87710823e-01 3.40700064e-01 -1.39056435e-01 5.35577955e-01 7.20169895e-02 -9.20280147e-01 -7.30413764e-01 -6.13167202e-01 -3.28672398e-01 -8.95374107e-01 2.10233561e-01 2.41220550e-02 2.34922024e-01 -1.35288810e-01 6.95400936e-01 -9.18818879e-02 -9.69192960e-01 7.46136297e-01 3.12403095e-01 6.46006081e-01 9.03551386e-01 -8.98175233e-01 -5.29856272e-01 -8.73313113e-01 -1.56684228e-01 7.27658291e-01 -8.36752035e-01] [-5.37760942e-02 -7.48913780e-01 5.45771204e-01 6.82844314e-01 -9.13418124e-01 -2.71185137e-02 -5.21177912e-01 9.04947563e-01 8.87785256e-01 2.27868005e-01 9.46974795e-01 -3.10277313e-01 7.95701435e-01 -1.30810053e-01 -5.28370726e-01 8.81655926e-01 3.68436102e-01 -8.70176829e-01 7.40849714e-01 4.02760589e-01 2.09853746e-01 4.64749798e-01 -4.93121915e-01 2.00977911e-01 6.29238363e-01 -8.91772679e-01 -7.38978657e-01 6.84891620e-01 2.36691739e-01 6.25756210e-02 -5.03418542e-01 -4.09842850e-01 7.45372330e-01 -1.56668130e-01 -8.71139489e-01 7.93970139e-01 -5.93238334e-01] [ 6.52455071e-01 7.63541246e-01 -2.64985104e-02 1.96929386e-01 5.45349130e-02 2.49642588e-01 7.10083443e-01 -4.35721103e-01 7.67511016e-01 1.35380660e-01 -7.69793918e-01 -5.45997670e-01 1.91964771e-01 -5.21107526e-01 -7.37168679e-01 -6.76304572e-01 6.89745036e-01 2.04367308e-01 9.27134174e-01 -3.08641573e-01 1.91250196e-01 1.97970578e-01 2.31408574e-01 -8.81645586e-01 5.00634369e-01 8.96418996e-01 6.93581144e-02 -6.14887958e-01 5.05851830e-01 -9.85362061e-01 -3.43487793e-01 8.35212695e-01 1.76734666e-01 7.10380568e-01 2.09344105e-01 6.45156305e-01 7.58967047e-01] [-3.58027251e-01 -7.54090457e-01 4.42606688e-01 -1.19305826e-01 -7.46528582e-01 1.79647296e-01 -9.27863371e-01 -5.99635767e-01 5.76602379e-01 -9.75806480e-01 -3.93308657e-01 -9.57248078e-01 9.94969985e-01 1.64059953e-01 -4.13247443e-01 8.57898924e-01 1.42388471e-02 -9.06155449e-02 1.75743013e-01 -4.71724712e-01 -3.89423401e-01 -2.56690847e-01 -5.11104001e-01 1.69094532e-01 3.91692268e-01 -8.56105560e-01 9.42166639e-01 5.06141312e-01 6.12326326e-01 5.03280808e-01 -8.39878045e-01 -3.66074340e-02 -1.08654087e-01 3.44945301e-01 -1.02525482e-01 4.08626797e-01 3.63290675e-01] [ 3.94297058e-01 2.37201485e-01 -6.98038533e-01 5.21604913e-01 5.62091644e-01 8.08205972e-01 -5.32462615e-01 -6.46642214e-01 -2.17801754e-01 -3.58870692e-01 6.30953858e-01 2.27051799e-01 5.20003505e-01 -1.44669801e-01 -8.01118874e-01 -7.69929976e-01 -2.53185737e-01 -6.12304465e-01 6.41492997e-01 1.99272017e-01 3.77690518e-01 -1.77800774e-02 -8.23652638e-01 -5.29844727e-01 -7.67958382e-02 -6.02816994e-01 -9.49047528e-01 4.58795397e-01 4.49833494e-01 -3.39216507e-01 6.86988252e-01 -1.43115048e-01 7.29372290e-01 3.14130849e-01 1.62071315e-01 -5.98545024e-01 5.90932210e-02] [ 7.88864837e-01 -3.90012048e-01 7.41891218e-01 8.17490546e-01 -3.40310875e-01 3.66148733e-01 7.98441899e-01 -8.48606236e-01 7.57175726e-01 -6.18321273e-01 6.99537820e-01 3.34237577e-01 -3.11321609e-01 -6.97248860e-01 2.70741923e-01 6.95576087e-01 6.43698750e-01 2.56479194e-01 9.12603020e-01 1.79846254e-01 -6.04334431e-01 -1.41338555e-01 -3.26508003e-01 9.83890024e-01 -2.39527008e-01 9.85401747e-01 3.76085015e-02 -6.55440597e-01 -8.50851857e-01 -2.59388612e-01 -7.53162280e-01 2.69037433e-01 -1.72160309e-01 9.81831265e-01 8.59911247e-01 -7.01527935e-01 -2.10235475e-01] [-7.68405781e-02 1.21897510e-01 5.60727047e-01 -2.56121819e-02 -1.60012896e-01 -4.76000591e-01 8.21612278e-01 -9.55456977e-01 6.42243796e-01 -6.23063201e-01 3.71513798e-01 -2.89581221e-01 9.48425256e-01 -7.54455741e-01 -6.24860215e-01 7.78884951e-01 1.66812629e-01 -3.81507231e-01 -9.98471229e-01 -5.44804523e-01 -7.09192732e-01 -5.93132351e-01 7.92645114e-01 7.46188757e-01 4.00578875e-01 -5.90046477e-02 6.54272005e-01 -8.34720583e-03 -2.73022633e-01 -4.48793794e-01 8.49481627e-01 -2.26021531e-01 -1.42382531e-02 -4.91123795e-01 7.69933038e-01 -2.33473086e-01 -4.04850569e-01] [ 4.35189924e-01 -6.18260114e-01 -7.63614741e-01 6.73995564e-01 4.88271843e-01 1.81041095e-01 -5.14216850e-01 2.46494290e-01 2.76710641e-01 -3.44861112e-01 -8.65021314e-01 7.61077195e-01 -8.00865379e-02 5.27745436e-01 -4.92222758e-01 1.82774365e-01 -1.42409679e-01 -2.35798715e-01 -7.46573232e-01 -5.11466674e-01 -8.41316834e-01 -3.94283391e-01 4.83409600e-01 2.30031450e-01 3.44822198e-01 -9.83233841e-01 3.56753945e-01 6.36138109e-03 -5.38183099e-01 -6.50206982e-01 -6.30034069e-01 6.88520010e-01 9.65179579e-01 8.27479250e-01 -3.05261159e-01 5.60449159e-01 9.29091814e-02] [ 1.66392565e+04 1.98973721e+04 1.89954821e+04 1.72183056e+04 2.04305459e+04 1.85279481e+04 1.73103498e+04 2.52347728e+04 2.26616554e+04 1.74689049e+04 1.84422253e+04 1.79123782e+04 1.96175589e+04 1.89168822e+04 1.80119604e+04 1.81121121e+04 2.58172606e+04 1.67771103e+04 1.85702493e+04 2.91220203e+04 1.84183685e+04 2.51604438e+04 2.50293899e+04 2.64700083e+04 2.58105248e+04 1.88169857e+04 1.82512756e+04 1.86684628e+04 2.55725791e+04 1.85923220e+04 1.65464184e+04 1.84680053e+04 2.91022164e+04 1.84342728e+04 2.73944556e+04 2.86147563e+04 3.00888350e+04] [ 5.59956752e+04 6.12766379e+04 6.14885446e+04 5.68157200e+04 6.51667767e+04 5.97083499e+04 5.77063733e+04 7.88088502e+04 7.00969632e+04 5.73884009e+04 6.00906640e+04 5.80039111e+04 6.36317853e+04 6.15666004e+04 5.89659038e+04 5.85635341e+04 7.99577073e+04 5.67873037e+04 6.03344209e+04 8.36353338e+04 6.00327969e+04 7.82979308e+04 7.83152628e+04 7.99736136e+04 7.90946638e+04 6.13554496e+04 5.88121476e+04 6.07530811e+04 7.92543989e+04 5.90188676e+04 5.60790245e+04 6.01140786e+04 8.42711190e+04 5.96066134e+04 8.13966395e+04 8.25997013e+04 8.45294739e+04] [ 8.39579867e+04 8.63425581e+04 8.30769214e+04 8.35378497e+04 8.86738906e+04 8.08926092e+04 8.73266478e+04 1.01152606e+05 9.11176147e+04 8.39208518e+04 8.16609612e+04 7.84128189e+04 8.12011283e+04 8.02304859e+04 8.33862349e+04 8.51049097e+04 1.00122897e+05 8.63544782e+04 8.04991572e+04 9.33013463e+04 8.54411934e+04 9.84356484e+04 9.87602590e+04 9.51537363e+04 9.43034153e+04 8.18772190e+04 7.94137963e+04 8.20949799e+04 9.73592400e+04 8.85288722e+04 8.53099494e+04 8.13128118e+04 9.62148346e+04 7.92515747e+04 9.67898888e+04 9.33638512e+04 9.24677804e+04] [ 1.90404360e+05 1.37198220e+05 1.74704815e+05 1.77245977e+05 2.19656281e+05 1.71818854e+05 1.82830329e+05 2.00864269e+05 1.70689714e+05 1.60285992e+05 1.54214119e+05 1.60909152e+05 1.69807105e+05 1.53071202e+05 1.66424896e+05 1.86440385e+05 1.95814614e+05 1.81411522e+05 1.50280680e+05 -1.76653266e+03 1.77682855e+05 2.04303052e+05 2.01006167e+05 9.28103253e+04 2.14860616e+05 1.52662068e+05 1.73721717e+05 1.56742782e+05 1.91818061e+05 2.01097427e+05 1.77944258e+05 1.54969856e+05 3.46675706e+03 1.54409332e+05 5.04878479e+04 1.11403049e+03 -2.18769652e+04] [ 2.75396616e+05 2.38758878e+05 2.65581175e+05 2.66904742e+05 3.12648903e+05 2.64613305e+05 2.71844251e+05 3.20411438e+05 2.83046555e+05 2.55752516e+05 2.51386024e+05 2.53037533e+05 2.67463391e+05 2.46862611e+05 2.61009698e+05 2.76768434e+05 3.16186416e+05 2.70414935e+05 2.46575633e+05 1.44470129e+05 2.71653365e+05 3.20911038e+05 3.18640117e+05 2.24740919e+05 3.25105178e+05 2.50306835e+05 2.65127469e+05 2.52871166e+05 3.08945653e+05 2.92680722e+05 2.67159122e+05 2.51424451e+05 1.51656621e+05 2.49509739e+05 1.89467547e+05 1.46637451e+05 1.23604190e+05] [ 1.68022036e+05 1.56946583e+05 1.63774552e+05 1.70503284e+05 1.74595214e+05 1.68017304e+05 1.70191959e+05 1.84852183e+05 1.72433506e+05 1.71863551e+05 1.68023065e+05 1.62912204e+05 1.68132652e+05 1.59213279e+05 1.71195092e+05 1.73206056e+05 1.79957486e+05 1.72883195e+05 1.63901323e+05 1.21979542e+05 1.73530563e+05 1.80845154e+05 1.81762628e+05 1.50417176e+05 1.69818659e+05 1.66288620e+05 1.67630171e+05 1.66296314e+05 1.75735658e+05 1.78649458e+05 1.71429610e+05 1.66526374e+05 1.28956221e+05 1.63787385e+05 1.40450211e+05 1.24163888e+05 1.08040153e+05] [-1.48840641e+05 -1.17930057e+05 -1.52720995e+05 -1.73483003e+05 -2.43946331e+05 -1.88510640e+05 -1.09899645e+05 -1.98886923e+05 -1.84492449e+05 -1.37804777e+05 -1.79580912e+05 -1.62773641e+05 -1.83958245e+05 -1.52882134e+05 -1.52210260e+05 -1.44291560e+05 -3.01612915e+05 -1.21403663e+05 -1.79633340e+05 1.46531533e+05 -1.50763460e+05 -2.73534559e+05 -2.39500396e+05 -8.90841112e+04 -3.60921287e+05 -1.85987072e+05 -1.85207191e+05 -1.62518373e+05 -2.56965283e+05 -1.81760247e+05 -1.20602615e+05 -1.74087047e+05 1.55196216e+05 -1.74947297e+05 4.48562468e+04 1.49696740e+05 2.01440878e+05] [-1.57575199e+05 -1.42936204e+05 -1.92965604e+05 -2.31115280e+05 -3.32466902e+05 -2.63202953e+05 -9.60043695e+04 -2.35481658e+05 -2.23990442e+05 -1.71722867e+05 -2.61712614e+05 -2.09942915e+05 -2.50796514e+05 -1.99932690e+05 -2.00177445e+05 -1.63881264e+05 -4.39863370e+05 -1.08769145e+05 -2.59217653e+05 2.60473549e+05 -2.04522939e+05 -3.92511604e+05 -3.12358206e+05 -1.09795868e+05 -5.22070945e+05 -2.76045011e+05 -2.50264265e+05 -2.22949927e+05 -3.58136545e+05 -2.33445088e+05 -1.04183522e+05 -2.47933724e+05 2.69674925e+05 -2.44724104e+05 9.66652724e+04 2.63601694e+05 3.46243418e+05] [ 5.50621637e+05 2.94274464e+05 5.22840411e+05 5.25248701e+05 4.92834698e+05 5.52128810e+05 5.32193420e+05 4.55955823e+05 4.02756179e+05 5.29273020e+05 5.22841730e+05 5.45452561e+05 5.60760109e+05 5.25956366e+05 5.40967136e+05 5.40120072e+05 4.14951681e+05 5.45995373e+05 5.18994656e+05 -1.05887843e+05 5.27951242e+05 4.20631895e+05 4.47753918e+05 1.44064995e+05 4.62001375e+05 5.23167053e+05 5.61908973e+05 5.29938562e+05 4.18386082e+05 4.86246877e+05 5.48406092e+05 5.24026081e+05 -9.92204061e+04 5.30033495e+05 1.58548854e+04 -1.04761379e+05 -1.82998922e+05] [ 1.29690742e+06 5.86403650e+05 1.27222399e+06 1.31774027e+06 1.21135017e+06 1.39984520e+06 1.18195431e+06 9.11028192e+05 8.10706223e+05 1.28139645e+06 1.35604898e+06 1.35588078e+06 1.38458369e+06 1.29865268e+06 1.33929279e+06 1.26582160e+06 9.91422603e+05 1.23342060e+06 1.33293781e+06 -8.92170212e+05 1.29238289e+06 9.80281657e+05 9.66044762e+05 5.08925291e+04 1.22990870e+06 1.35768632e+06 1.41785326e+06 1.33172310e+06 9.27690955e+05 1.15986609e+06 1.23271019e+06 1.33856472e+06 -8.83908671e+05 1.35230952e+06 -4.67994309e+05 -8.89513349e+05 -1.18157538e+06] [ 2.58559086e+05 1.23533733e+05 3.32964018e+05 3.16191158e+05 1.88787331e+05 3.72741107e+05 2.51334554e+05 1.44694929e+05 1.18646904e+05 3.59553865e+05 3.93414108e+05 3.72497020e+05 3.71671150e+05 3.72628374e+05 3.77188282e+05 2.82342312e+05 1.71497246e+05 2.62676672e+05 3.66158434e+05 -1.46286201e+05 3.54712829e+05 1.67787814e+05 1.46079441e+05 5.93529600e+04 2.41643559e+05 3.87344849e+05 3.75981196e+05 3.78232387e+05 1.48480122e+05 1.91143024e+05 2.71489572e+05 3.66812918e+05 -1.38896573e+05 3.70569719e+05 -7.93132628e+04 -1.43087241e+05 -2.58393319e+05] [-1.69781413e+05 -5.37244379e+04 -9.33558243e+04 -1.58899298e+05 -2.47832428e+05 -1.38763824e+05 -1.16428804e+05 -1.96899362e+05 -2.01898896e+05 -8.53010010e+04 -1.04853648e+05 -1.07495495e+05 -1.32459388e+05 -8.11286055e+04 -9.29057458e+04 -1.43836429e+05 -2.78873065e+05 -1.30708053e+05 -1.17717102e+05 2.96298765e+05 -9.62621174e+04 -2.43099065e+05 -2.38625845e+05 6.37103672e+04 -2.95246082e+05 -1.16220234e+05 -1.39343263e+05 -9.34555810e+04 -2.40145800e+05 -2.08181422e+05 -1.22988818e+05 -1.14256509e+05 3.03547510e+05 -1.15365888e+05 1.59839572e+05 3.00421485e+05 3.21276942e+05] [ 1.81922732e+05 5.24133952e+04 2.16961914e+05 1.63922261e+05 2.15726448e+05 1.95446953e+05 1.93017635e+05 1.23293365e+05 6.09421931e+04 1.70304426e+05 1.76614786e+05 1.77796175e+05 1.94474896e+05 1.83881885e+05 1.80710517e+05 1.74773698e+05 7.21718937e+04 1.73529623e+05 1.74336106e+05 -2.09790432e+05 2.11855769e+05 1.17946437e+05 1.19188109e+05 -8.94128596e+04 1.49929964e+05 1.76784569e+05 1.90847153e+05 1.81469844e+05 9.64259029e+04 1.99153496e+05 1.72900399e+05 1.76976602e+05 -2.03781286e+05 1.79145029e+05 -1.54860869e+05 -2.05420406e+05 -2.39172238e+05] [-2.47639242e+05 -2.56627643e+05 -2.15946624e+05 -2.43091267e+05 -2.98921891e+05 -2.34017262e+05 -2.19576604e+05 -3.42468720e+05 -3.45379750e+05 -2.05614187e+05 -2.17570398e+05 -2.18091436e+05 -2.39706599e+05 -2.07103348e+05 -2.12688524e+05 -2.43024251e+05 -3.69460682e+05 -2.27821969e+05 -2.26709046e+05 -2.05231635e+05 -2.06879640e+05 -3.47140380e+05 -3.51024165e+05 -2.96834085e+05 -3.61349772e+05 -2.24854885e+05 -2.35915986e+05 -2.14685295e+05 -3.55544237e+05 -2.58609196e+05 -2.25290274e+05 -2.25047054e+05 -1.99358964e+05 -2.23561750e+05 -2.57869374e+05 -2.01625293e+05 -2.08490861e+05] [-1.42668967e+05 -1.27801767e+05 -1.33751573e+05 -1.39139358e+05 -1.77982404e+05 -1.41381520e+05 -1.29948036e+05 -1.85000727e+05 -1.77643460e+05 -1.20917988e+05 -1.29959845e+05 -1.29465731e+05 -1.43663024e+05 -1.25257825e+05 -1.26836952e+05 -1.39705789e+05 -1.94670444e+05 -1.30795421e+05 -1.34654032e+05 -5.62007756e+04 -1.29281870e+05 -1.88559614e+05 -1.89413644e+05 -1.26142609e+05 -2.01950320e+05 -1.34671301e+05 -1.41381340e+05 -1.28737894e+05 -1.89761522e+05 -1.52270301e+05 -1.29752493e+05 -1.33588459e+05 -5.39470694e+04 -1.32684203e+05 -9.43975463e+04 -5.52231877e+04 -5.21249099e+04] [ 7.03946211e+04 2.66231585e+04 8.34093830e+04 7.51341281e+04 1.02615473e+05 9.36355725e+04 6.92507437e+04 6.84729385e+04 5.50339357e+04 7.53628740e+04 8.63137967e+04 8.46701327e+04 9.34221673e+04 8.24144574e+04 8.27173496e+04 7.16503970e+04 8.56841645e+04 6.39400246e+04 8.69861370e+04 -1.16769746e+05 8.86060405e+04 8.52494563e+04 8.00032342e+04 -2.94791744e+04 1.04989243e+05 8.90000425e+04 9.18660521e+04 8.43482298e+04 8.09681204e+04 8.56037925e+04 6.50639744e+04 8.62629550e+04 -1.15537664e+05 8.66162647e+04 -7.55834684e+04 -1.15642410e+05 -1.40578251e+05] [ 1.33718687e+05 7.29537955e+04 1.51658770e+05 1.40362929e+05 1.81271312e+05 1.65787455e+05 1.31854668e+05 1.37187934e+05 1.15552540e+05 1.40280013e+05 1.55741341e+05 1.53444077e+05 1.67464800e+05 1.50100333e+05 1.50718687e+05 1.34710680e+05 1.61341931e+05 1.24773321e+05 1.56505158e+05 -1.22122294e+05 1.58922257e+05 1.61038416e+05 1.53536195e+05 6.98980564e+02 1.88027717e+05 1.59301880e+05 1.63716077e+05 1.52573245e+05 1.54705726e+05 1.54604608e+05 1.26474473e+05 1.55581341e+05 -1.20500344e+05 1.55858278e+05 -6.41373500e+04 -1.19978289e+05 -1.55386346e+05] [ 3.65396086e-01 -9.73163379e-01 9.64956237e-01 -6.55845336e-01 8.12520792e-01 6.14219803e-01 6.00279369e-01 -4.62127884e-01 -5.61692388e-01 -1.42398614e-01 6.98742201e-01 -9.92407151e-02 8.70840228e-01 -2.94641345e-01 2.38784331e-01 9.61398073e-01 2.86925044e-01 -9.09003568e-01 -7.28858181e-02 -3.30497313e-01 6.43630970e-02 -4.30507583e-01 -7.55477540e-01 3.36577978e-01 3.62719510e-01 7.34278600e-01 -7.35237013e-01 5.97240617e-01 6.53537477e-01 2.93099872e-01 -5.90155708e-01 -4.77158571e-01 -1.63006365e-01 8.35981456e-02 -4.51240888e-02 -6.50802159e-02 6.79681420e-01] [ 7.40204731e-01 6.33507929e-01 7.55602837e-01 1.42017524e-01 9.28072267e-01 2.13088697e-01 2.07895482e-01 -3.61404526e-01 3.62408368e-01 -8.96068623e-01 -7.30907158e-01 -7.39515665e-01 3.10402574e-01 -6.49334816e-01 -3.17706353e-01 -9.11376688e-01 -5.32531280e-01 9.28448650e-01 1.82788050e-02 -6.97850963e-01 4.60170635e-02 8.87018768e-01 7.31372028e-01 -2.15868262e-01 -4.32264968e-01 5.23459725e-01 -5.19031350e-01 -4.91535291e-01 -8.31827292e-01 7.28288190e-01 -1.04202169e-01 1.23572521e-01 4.73421915e-01 5.92977734e-01 -1.04983722e-01 -6.31744888e-01 6.57465703e-01] [-9.38004080e-01 8.93456539e-01 1.53955693e-01 7.50777477e-01 2.17130874e-01 -4.96680832e-01 -4.07740153e-01 6.58451181e-02 9.24156426e-01 -6.31008791e-01 1.97967563e-02 -3.12423793e-01 5.39450690e-01 6.05732973e-01 -1.50880179e-01 -5.91755000e-01 -8.65821079e-01 -6.02703471e-01 -4.55198300e-01 1.97577836e-01 7.46166995e-01 -7.43538122e-01 9.16377483e-01 3.66341688e-01 4.83928471e-01 9.65761572e-01 -1.67798455e-01 6.31669318e-02 3.58425900e-01 2.57502852e-02 -4.01775311e-01 -7.89230655e-01 -4.30135709e-01 5.37705697e-01 2.81565409e-01 6.02661406e-01 3.42410639e-02] [-5.35799956e-01 2.55923854e-01 -3.91989020e-01 -9.40942510e-01 8.06662354e-01 -1.59260862e-01 -1.47738439e-01 4.82503471e-01 8.96916809e-01 -8.54968944e-01 -6.54597824e-01 -3.55285022e-01 -5.03151507e-01 -9.01003728e-03 6.48919222e-01 7.07944830e-01 1.91659884e-01 -5.19652532e-01 -6.27014623e-01 4.86781025e-01 -5.25571885e-01 7.89817819e-02 4.98561574e-01 -5.43501791e-01 -6.50997625e-01 -9.20528627e-01 -7.04862325e-01 7.02877814e-01 -7.90728177e-01 -5.52709909e-01 -9.34485601e-01 3.52713271e-01 -5.36593717e-01 -1.72816564e-01 -7.21397657e-01 -2.45565425e-01 -1.51125068e-01] [-5.40700963e-02 -1.54316374e-01 -7.94486872e-01 5.45160533e-01 -7.25587993e-01 -1.51415251e-01 -4.56087775e-01 -3.97984114e-01 3.44841545e-01 3.55734476e-02 -6.19825899e-01 -6.17311203e-02 -3.20918262e-01 4.08994396e-01 -5.47809595e-01 6.89976275e-01 5.24593298e-02 1.23914585e-03 -4.92628386e-01 -6.27688661e-01 -5.63618745e-02 9.63648836e-01 -7.34187525e-01 -4.33075135e-01 6.01282349e-01 3.29553797e-01 -4.42483183e-01 -3.70704786e-01 -1.60103491e-01 2.05573524e-01 4.38677534e-01 7.14600667e-01 3.62222941e-01 -5.26035871e-01 8.51441071e-01 5.62390801e-01 -3.85237039e-01] [-3.90068717e-01 7.62336637e-01 -7.47843039e-01 2.66921668e-01 -4.44574535e-01 6.54400650e-01 -2.70953105e-01 4.66732189e-01 -6.15164219e-01 -3.71082049e-02 6.07189253e-01 -2.06023577e-01 -6.76851920e-01 2.97964445e-01 5.06651612e-01 -4.39614729e-01 -9.72762775e-02 8.00897825e-01 7.43971262e-01 4.14375220e-01 1.81801199e-01 6.34764541e-01 8.15289292e-01 -9.94984881e-01 -2.05544468e-01 1.22819367e-01 4.67846273e-01 -8.25054476e-01 -2.00490025e-01 -4.40757641e-01 -1.52979894e-01 -4.04273465e-03 3.20030447e-01 -7.52772206e-03 2.40936401e-01 1.64879724e-01 -1.43335204e-01] [-9.90047271e-01 -6.10967172e-01 -3.59586691e-01 -7.06043748e-01 1.97327763e-01 2.22998953e-01 1.86519194e-04 -3.58302197e-01 3.06516104e-01 -6.19433035e-01 -9.88238037e-01 4.69884037e-01 -1.12992316e-01 3.95683312e-01 -6.29913301e-01 -8.74760396e-01 -2.43782826e-01 3.91993021e-01 -7.94363265e-01 -6.08331533e-01 -9.20946992e-02 2.42298379e-01 5.00248496e-01 -7.80529957e-01 2.49247214e-01 -2.25278956e-01 3.40180737e-01 -5.92879245e-01 5.58375951e-02 -6.55674890e-01 -9.62637988e-01 -2.60995072e-02 -6.31644447e-01 2.76686660e-01 7.31496387e-02 5.49890760e-01 -2.14080195e-01] [ 9.78904262e-01 3.04293923e-02 -4.23531976e-02 4.98884942e-01 1.45376587e-01 -2.75069365e-01 -2.15104291e-02 -6.21723250e-01 -2.12833171e-01 -9.40076495e-01 -7.49418793e-02 -4.51051774e-01 5.34317207e-02 -9.41455757e-01 1.10173533e-01 -4.14004233e-01 1.54981362e-01 4.65539707e-01 -1.19324346e-01 3.26313646e-01 -5.22180090e-01 9.97198177e-01 -5.14242957e-01 8.81656829e-01 -5.65560499e-01 -4.87123079e-03 6.42353930e-01 4.33176094e-01 4.11160824e-01 -1.19118880e-01 5.08350051e-01 8.39907154e-01 -1.17296509e-01 5.59309683e-02 -8.67928832e-01 -2.18453853e-01 -6.55228673e-02] [ 9.46196841e+03 1.13134316e+04 1.08017126e+04 9.79056549e+03 1.16180369e+04 1.05345174e+04 9.84258598e+03 1.43486339e+04 1.28845273e+04 9.93375907e+03 1.04876178e+04 1.01852333e+04 1.11550039e+04 1.07570107e+04 1.02414846e+04 1.02988868e+04 1.46809668e+04 9.54060003e+03 1.05591450e+04 1.65595560e+04 1.04731916e+04 1.43063852e+04 1.42313810e+04 1.50506056e+04 1.46759129e+04 1.06996168e+04 1.03779569e+04 1.06157485e+04 1.45424537e+04 1.05719884e+04 9.40974166e+03 1.05004353e+04 1.65483561e+04 1.04816363e+04 1.55775335e+04 1.62708943e+04 1.71089723e+04] [ 6.75761886e+03 6.69016570e+03 6.90849547e+03 6.71354891e+03 7.28369360e+03 6.74678941e+03 6.78705128e+03 8.49433318e+03 7.60238643e+03 6.70913513e+03 6.84556091e+03 6.68362756e+03 7.26149614e+03 6.94318208e+03 6.76686799e+03 6.70529269e+03 8.50658680e+03 6.81699910e+03 6.89630269e+03 8.11927591e+03 6.86966113e+03 8.47128100e+03 8.49326490e+03 8.36496476e+03 8.40787997e+03 6.94209644e+03 6.70156443e+03 6.90173608e+03 8.47298241e+03 6.65319925e+03 6.78281930e+03 6.86223851e+03 8.19801105e+03 6.77631233e+03 8.34569067e+03 8.10644964e+03 8.03787469e+03] [ 7.58845216e+04 4.44678090e+04 7.05665115e+04 7.10153440e+04 8.42489457e+04 7.05339224e+04 7.04650116e+04 6.76287200e+04 5.56782779e+04 6.36287967e+04 6.55377598e+04 6.79590441e+04 7.26649827e+04 6.62505284e+04 6.70669909e+04 7.07962676e+04 6.49017370e+04 7.08787993e+04 6.53294718e+04 -9.91902495e+03 6.93221709e+04 7.07100894e+04 6.88928741e+04 2.51086755e+04 7.75353461e+04 6.59352297e+04 7.19829190e+04 6.62583743e+04 6.64562575e+04 7.49483538e+04 6.94952687e+04 6.61323160e+04 -9.19566283e+03 6.65312190e+04 8.25182646e+03 -9.39164594e+03 -1.54550688e+04] [ 5.65768699e+04 3.30126080e+04 4.84240672e+04 5.43088817e+04 5.15629681e+04 5.12457586e+04 5.28323495e+04 4.33519006e+04 4.03503980e+04 5.06813065e+04 5.04439268e+04 5.16968550e+04 5.30945329e+04 4.94282219e+04 5.11146958e+04 5.48325608e+04 4.37225149e+04 5.51972097e+04 4.97265955e+04 -8.85711202e+03 4.86768850e+04 4.41683923e+04 4.44839564e+04 1.26815459e+04 4.64865841e+04 4.99622968e+04 5.33819118e+04 4.99512820e+04 4.27657547e+04 5.17214388e+04 5.42092256e+04 5.05608791e+04 -8.11974758e+03 5.11236158e+04 1.67992946e+03 -8.85480668e+03 -1.59498912e+04] [-2.19712703e+05 -2.02358719e+05 -2.85065988e+05 -2.73811879e+05 -3.74407695e+05 -3.31900535e+05 -1.72824106e+05 -3.39068251e+05 -3.32548841e+05 -2.65717032e+05 -3.28959147e+05 -3.11659111e+05 -3.37668005e+05 -3.06470298e+05 -2.98608929e+05 -2.35933954e+05 -4.66299846e+05 -1.89149573e+05 -3.32521171e+05 8.67533914e+04 -2.94818296e+05 -4.17724841e+05 -3.78995249e+05 -1.85542353e+05 -5.65469759e+05 -3.35792689e+05 -3.25648883e+05 -3.16038348e+05 -4.09396396e+05 -2.77476793e+05 -1.90206861e+05 -3.25048974e+05 9.74141238e+04 -3.24782769e+05 -3.06804446e+04 9.05997855e+04 1.75206199e+05] [ 2.80848823e+05 1.77844459e+05 2.19797443e+05 1.88884055e+05 8.50813662e+04 1.28829002e+05 3.65011354e+05 1.35969641e+05 4.98030554e+04 2.06684700e+05 1.07040033e+05 1.43424637e+05 1.31302909e+05 1.35505784e+05 1.64893968e+05 2.93855060e+05 -1.08326738e+05 3.02632946e+05 9.43774701e+04 4.72971290e+05 2.06359765e+05 8.67163673e+03 6.25476256e+04 2.12163835e+05 -1.98921351e+05 9.55349438e+04 1.39207506e+05 1.33335939e+05 -1.50925970e+04 1.96138984e+05 3.00667303e+05 1.12695154e+05 4.97219838e+05 1.13009461e+05 3.57826382e+05 4.81652723e+05 5.87903404e+05] [ 1.60173698e+06 1.18302478e+06 1.65571680e+06 1.59701377e+06 1.74975306e+06 1.69348805e+06 1.63388707e+06 1.61766456e+06 1.39006708e+06 1.64612337e+06 1.63922995e+06 1.65833686e+06 1.72483272e+06 1.62029632e+06 1.67063986e+06 1.65580840e+06 1.55881035e+06 1.57647795e+06 1.59850118e+06 3.01040979e+05 1.70822230e+06 1.62252879e+06 1.60905263e+06 8.28397351e+05 1.68642767e+06 1.63862066e+06 1.70404521e+06 1.63846967e+06 1.54631669e+06 1.68601221e+06 1.58038283e+06 1.62363163e+06 3.36141277e+05 1.63298687e+06 5.49159804e+05 3.12525744e+05 1.40961269e+05] [ 2.45352042e+06 1.73904710e+06 2.46993645e+06 2.40587936e+06 2.54469561e+06 2.59160527e+06 2.47534639e+06 2.37237558e+06 1.92873689e+06 2.50270558e+06 2.50724927e+06 2.55554918e+06 2.66149824e+06 2.51333204e+06 2.56505927e+06 2.48779989e+06 2.19948201e+06 2.45806940e+06 2.46571997e+06 4.03247387e+05 2.56597819e+06 2.30510664e+06 2.34521628e+06 1.11996628e+06 2.31370993e+06 2.50846870e+06 2.62284632e+06 2.52147520e+06 2.25002519e+06 2.50599999e+06 2.46106348e+06 2.50390812e+06 4.57866274e+05 2.52379394e+06 7.61235343e+05 4.18021053e+05 1.57414745e+05] [ 2.16132781e+06 1.81790552e+06 2.27977551e+06 2.12787116e+06 2.00409116e+06 2.43112549e+06 2.35222955e+06 2.12870347e+06 1.60553121e+06 2.38318740e+06 2.32749616e+06 2.38314629e+06 2.48241168e+06 2.36968811e+06 2.41485161e+06 2.29116495e+06 1.70071627e+06 2.25022975e+06 2.26319622e+06 1.79969135e+06 2.46773003e+06 1.90164719e+06 1.97365685e+06 1.61247081e+06 1.44624169e+06 2.32184104e+06 2.46194697e+06 2.35962018e+06 1.90716757e+06 2.24475807e+06 2.25185968e+06 2.31470422e+06 1.88055713e+06 2.33879422e+06 1.73489550e+06 1.81108946e+06 1.84089790e+06] [ 2.81903826e+06 2.38175494e+06 2.98450408e+06 2.75997481e+06 2.70365945e+06 3.16432759e+06 3.00704076e+06 2.91831452e+06 2.27461604e+06 3.08347601e+06 3.01921687e+06 3.09997911e+06 3.29250889e+06 3.12196957e+06 3.14475222e+06 2.96481785e+06 2.32578980e+06 2.90708520e+06 2.95398843e+06 2.88477532e+06 3.23819780e+06 2.58903047e+06 2.71125308e+06 2.45870774e+06 2.04580539e+06 3.01946599e+06 3.21848095e+06 3.09160230e+06 2.60647347e+06 2.94720550e+06 2.90826899e+06 3.01421605e+06 2.99626131e+06 3.03693585e+06 2.73820779e+06 2.90034474e+06 3.06108270e+06] [ 4.21825704e+06 3.75642389e+06 4.25777845e+06 4.07241588e+06 4.15076798e+06 4.46785554e+06 4.48998408e+06 4.55933754e+06 3.70376552e+06 4.48628451e+06 4.32073627e+06 4.36448439e+06 4.58180463e+06 4.41447641e+06 4.48596925e+06 4.26085724e+06 3.80532332e+06 4.38214573e+06 4.26494022e+06 4.80017180e+06 4.65236608e+06 4.08593253e+06 4.29367121e+06 4.11557852e+06 3.54784135e+06 4.33532065e+06 4.48031943e+06 4.44115694e+06 4.11300271e+06 4.34457529e+06 4.40886107e+06 4.31414959e+06 4.96970376e+06 4.29743618e+06 4.57030047e+06 4.83517244e+06 5.01624331e+06] [ 4.55726894e+06 4.59042446e+06 4.92225718e+06 4.59152896e+06 4.86500749e+06 5.23856345e+06 5.03472832e+06 5.42003829e+06 4.69432843e+06 5.35373707e+06 5.14968827e+06 5.06552190e+06 5.22954857e+06 5.10888302e+06 5.25935649e+06 4.71696234e+06 4.88312417e+06 4.73278056e+06 5.04568781e+06 6.38164702e+06 5.47543691e+06 5.03583958e+06 5.04590615e+06 5.41973201e+06 4.75336571e+06 5.18294957e+06 5.14573880e+06 5.25253291e+06 4.92507372e+06 4.99048095e+06 4.81551483e+06 5.06540479e+06 6.58379369e+06 5.02031788e+06 5.91585650e+06 6.41112272e+06 6.56992895e+06] [ 3.37214804e+06 2.70009636e+06 3.90984959e+06 3.39061939e+06 3.76689868e+06 4.26100368e+06 3.69425174e+06 3.46234283e+06 2.84545160e+06 4.07713512e+06 4.08955810e+06 3.99808732e+06 4.11013474e+06 3.97950678e+06 4.12139677e+06 3.49504352e+06 3.04548814e+06 3.36548799e+06 3.94668518e+06 2.19318202e+06 4.29187568e+06 3.37285207e+06 3.19445968e+06 2.35569339e+06 3.44476630e+06 4.13897242e+06 4.15508778e+06 4.15392741e+06 2.95458849e+06 3.81274265e+06 3.40641615e+06 3.98139726e+06 2.35468479e+06 4.01817234e+06 2.07271392e+06 2.16449136e+06 2.09571045e+06] [ 4.13984996e+06 3.28326220e+06 4.70326324e+06 4.13480420e+06 4.66955349e+06 4.98426202e+06 4.40952268e+06 4.24719421e+06 3.37005972e+06 4.58123722e+06 4.78548072e+06 4.68411866e+06 4.91562856e+06 4.62406915e+06 4.78109835e+06 4.17561476e+06 3.79733579e+06 4.01148955e+06 4.62173287e+06 2.09366464e+06 4.92291706e+06 4.29199933e+06 4.03325868e+06 3.00441450e+06 4.50668346e+06 4.83180252e+06 4.88259801e+06 4.80678005e+06 3.86088009e+06 4.54077402e+06 4.02085832e+06 4.67412865e+06 2.25225680e+06 4.75920536e+06 2.30638436e+06 2.07387359e+06 1.97340987e+06] [ 5.63559942e+06 3.67463153e+06 6.07576780e+06 5.42769098e+06 6.42301103e+06 6.02712516e+06 5.67819544e+06 5.67038753e+06 4.29679688e+06 5.29225002e+06 5.77793656e+06 5.61623604e+06 6.25706199e+06 5.71334472e+06 5.68392921e+06 5.32563268e+06 5.01005750e+06 5.34694769e+06 5.66877228e+06 4.10438304e+05 6.03118423e+06 5.68715310e+06 5.63587743e+06 2.94767472e+06 6.22616291e+06 5.86439259e+06 5.94244839e+06 5.79633787e+06 5.37521312e+06 5.79467595e+06 5.30469297e+06 5.69875694e+06 5.57238087e+05 5.73959428e+06 1.54153923e+06 4.31690455e+05 7.54980813e+03] [ 3.38587393e+06 2.35893472e+06 3.94794132e+06 3.36100213e+06 4.24040794e+06 3.87641371e+06 3.55789391e+06 3.80794942e+06 2.76937170e+06 3.37210735e+06 3.79478788e+06 3.60223151e+06 4.16715588e+06 3.79477012e+06 3.64763881e+06 3.26941533e+06 3.41223090e+06 3.22963944e+06 3.72890356e+06 3.78800465e+05 3.99098743e+06 3.84625873e+06 3.71491107e+06 1.99874835e+06 4.19447414e+06 3.89644234e+06 3.80988655e+06 3.79959869e+06 3.61398321e+06 3.73100925e+06 3.23271545e+06 3.71512827e+06 4.77381325e+05 3.71284757e+06 1.14340327e+06 4.00030315e+05 9.92129371e+04] [ 1.88776726e+06 1.24255586e+06 2.24158644e+06 1.95420976e+06 2.26938728e+06 2.30190558e+06 2.04997395e+06 1.96025688e+06 1.42435853e+06 2.11209684e+06 2.34151652e+06 2.21342032e+06 2.53919193e+06 2.35390490e+06 2.25508603e+06 1.84707649e+06 1.79501186e+06 1.89406954e+06 2.28640413e+06 1.89846346e+05 2.37318473e+06 1.97491488e+06 1.87054543e+06 1.02497502e+06 2.13006700e+06 2.40046980e+06 2.29714361e+06 2.32787428e+06 1.84591561e+06 2.05523345e+06 1.89777922e+06 2.27522015e+06 2.64457075e+05 2.27118984e+06 6.19289985e+05 2.21330330e+05 -5.46833067e+04] [ 9.99813209e+05 4.20958760e+05 1.01305515e+06 9.52440268e+05 1.10928796e+06 1.05369317e+06 1.01981150e+06 9.17318721e+05 6.87449541e+05 9.78945362e+05 1.02528051e+06 1.02813441e+06 1.18579479e+06 1.06603424e+06 1.04029248e+06 9.43163079e+05 8.37637191e+05 1.03121161e+06 1.00042231e+06 -1.97628100e+05 1.07135620e+06 8.88342732e+05 8.88346327e+05 2.52668992e+05 1.02366658e+06 1.04909134e+06 1.11085209e+06 1.03633053e+06 8.21947692e+05 1.02677840e+06 1.00319970e+06 1.00957443e+06 -1.56860775e+05 1.02023252e+06 6.67198343e+04 -1.77882995e+05 -3.67271471e+05] [ 6.94644654e+05 4.99700145e+05 7.34632496e+05 7.05344978e+05 7.88922721e+05 7.63242016e+05 6.84809710e+05 7.91636080e+05 6.79034497e+05 7.14257265e+05 7.66985516e+05 7.58140465e+05 8.52634424e+05 7.69378774e+05 7.53867091e+05 6.86630445e+05 8.03187400e+05 7.06701952e+05 7.55500076e+05 2.62235716e+05 7.56330013e+05 8.09520110e+05 8.02097522e+05 5.29587359e+05 8.60090867e+05 7.75784160e+05 7.79894775e+05 7.60924256e+05 7.93101500e+05 6.96386789e+05 6.99054346e+05 7.57948813e+05 2.77849325e+05 7.61591158e+05 3.95071445e+05 2.69702169e+05 1.58781748e+05] [ 2.29793625e+05 1.43741252e+05 2.56878507e+05 2.43484123e+05 2.92199785e+05 2.79512782e+05 2.14647977e+05 2.52061598e+05 2.20979189e+05 2.39679524e+05 2.71640970e+05 2.65948895e+05 2.94806356e+05 2.62264493e+05 2.60072909e+05 2.35067629e+05 2.81445735e+05 2.18793201e+05 2.69654062e+05 -1.10417375e+05 2.62826028e+05 2.81646327e+05 2.72320083e+05 8.25734695e+04 3.19857112e+05 2.75479169e+05 2.81684823e+05 2.65074258e+05 2.72382662e+05 2.45199381e+05 2.19700887e+05 2.69038799e+05 -1.07743544e+05 2.70784893e+05 -2.33759380e+04 -1.07932660e+05 -1.71185995e+05] [-9.89922337e+03 -1.56187371e+04 -8.65357175e+03 -8.69539969e+03 -8.89244655e+03 -6.45496346e+03 -1.22092075e+04 -1.52366738e+04 -1.34558967e+04 -9.25294563e+03 -7.00791299e+03 -7.32109003e+03 -7.49349572e+03 -7.97112690e+03 -7.88467485e+03 -8.87580354e+03 -1.38411290e+04 -1.04981639e+04 -7.65471263e+03 -3.95178548e+04 -8.60698953e+03 -1.40249460e+04 -1.43808254e+04 -2.47844718e+04 -1.14031716e+04 -7.08027694e+03 -5.54470652e+03 -7.68235775e+03 -1.49794871e+04 -9.36680048e+03 -1.05007167e+04 -7.54535012e+03 -3.94951679e+04 -7.02406589e+03 -3.36094266e+04 -3.94930572e+04 -4.51889030e+04] [-1.20921796e-01 -6.63046057e-01 5.81744209e-02 5.86969348e-01 -9.28241702e-01 -6.17282245e-01 9.54911129e-01 9.21594612e-01 1.13183318e-01 2.92181443e-01 -4.55813971e-01 9.04182171e-01 3.39549613e-01 3.33615990e-01 -9.77793333e-01 7.05939700e-01 5.56652437e-01 3.69847994e-01 4.81563626e-01 -6.86855151e-01 4.37550106e-01 -8.06363179e-01 4.13898896e-01 -9.94736408e-01 5.52411575e-01 -1.68856304e-02 -5.91226267e-01 4.58493229e-01 -3.68691736e-01 7.67635180e-01 -6.39532950e-01 8.77101309e-01 9.41500296e-01 -3.91029512e-01 7.24972799e-01 6.84358238e-01 -1.50774580e-01] [-2.72631184e-01 -4.35125054e-01 9.86473569e-01 -4.88497946e-01 8.41351196e-01 -1.43329572e-01 8.70854025e-01 6.77689668e-01 -6.88445349e-01 1.48566709e-01 3.47006029e-01 -1.88359188e-01 -9.90245911e-01 -3.49337340e-01 6.77889896e-01 -8.74352040e-01 -7.89160507e-01 4.03574693e-01 2.83165355e-02 -3.66635001e-03 -2.52780562e-01 2.07027233e-01 7.02937534e-01 -4.46153887e-01 6.89522726e-01 -1.66761703e-01 1.96802479e-03 4.59246757e-01 -4.82556585e-01 8.43273837e-01 4.04138928e-01 2.37860846e-01 -4.53982325e-01 3.91696913e-01 -4.85570503e-01 6.32905341e-01 -9.77055090e-01] [-6.66924713e-01 1.15657978e-01 4.24561999e-01 -1.50386922e-02 7.55619003e-01 9.51739875e-01 -7.14458649e-02 5.35973959e-01 -1.04557323e-02 3.30197557e-01 -5.50250040e-01 -7.80916566e-01 9.58017875e-01 6.29989319e-01 -4.29232935e-01 1.71656769e-01 -2.39857589e-01 -6.47323918e-01 -1.62329714e-01 -4.05624412e-01 -9.66751787e-01 -2.25263386e-01 8.41826008e-01 6.56400517e-01 1.48149510e-01 -3.62706270e-01 -5.37471410e-01 9.12039167e-01 1.29220198e-01 -5.64789393e-01 -5.01035898e-01 9.19192405e-01 -5.22371733e-01 -7.86571823e-01 -6.32076120e-01 5.32449614e-01 4.17528512e-01] [-1.24116150e-01 5.87609014e-01 3.50253843e-02 -1.72803678e-01 -7.65116128e-01 7.67822132e-01 -4.48813571e-01 2.32521447e-01 9.69159558e-01 -6.21163956e-01 9.30375984e-01 3.05430737e-01 -7.42536791e-01 5.43854292e-01 9.03551557e-01 1.25561099e-01 3.77110400e-01 -9.47304242e-01 9.78151371e-01 -3.63085760e-01 -9.52192441e-01 6.17128301e-01 9.46505104e-01 4.75177020e-01 -9.94528388e-01 -8.73278977e-01 1.68538810e-01 -3.28569784e-01 7.63666962e-01 7.47338739e-01 9.75037817e-01 4.31663938e-01 7.53767400e-01 -3.60699776e-01 -7.77646096e-01 7.30728212e-01 -3.93054804e-01] [-1.61335404e-01 2.92060514e-01 2.10198268e-01 -1.58153831e-01 -2.27698976e-01 -7.54637916e-01 6.77237686e-02 -5.34291806e-01 5.09615702e-01 3.49741168e-01 -8.56146070e-01 9.78529369e-01 5.60913871e-01 -5.44348226e-01 -9.38514363e-01 -4.32563379e-02 -2.94515125e-01 9.30229987e-02 3.19327911e-01 5.94439615e-01 -9.72911306e-01 4.28591028e-01 -4.09372068e-01 9.72805151e-01 6.92483461e-01 1.20802362e-01 1.95531371e-01 -6.15848654e-01 -5.47496823e-01 -6.91973643e-01 -2.44372905e-01 -7.76089111e-01 2.25457873e-02 2.76955911e-01 -7.55575244e-01 -3.11607282e-01 -8.59304241e-01] [ 5.15223745e-02 3.00579538e-01 2.30944283e-01 6.27739126e-01 -5.28867527e-01 2.36363684e-01 -3.94342962e-01 -8.22464588e-01 -3.89477057e-01 -8.57287050e-01 9.17148422e-01 4.54330870e-01 -7.97078284e-01 5.72538645e-01 -2.95689280e-01 8.22870281e-01 -9.00513051e-03 7.45385446e-01 -5.58940411e-01 -2.65615348e-01 -2.66326116e-01 -8.05734637e-01 -3.37971132e-01 3.19419608e-01 -6.69130173e-02 7.58463139e-01 -4.60659467e-01 -2.90361303e-01 -3.59291420e-01 1.03475941e-01 -6.23561169e-01 -6.53511457e-01 8.78963848e-01 -2.46704573e-01 1.74196270e-01 -8.89695830e-01 -7.18284006e-01] [-8.07282896e-01 6.24231136e-01 -7.93706435e-01 3.26320914e-02 -6.88844204e-01 -4.42366489e-01 7.65204005e-01 2.63187530e-01 9.27325420e-01 1.99428731e-01 -9.80960568e-01 -1.68717989e-01 -9.55116491e-01 -3.72031344e-01 -3.67501386e-02 1.50918682e-01 -5.22699594e-01 1.16573157e-01 -2.10159732e-01 1.31643750e-02 -6.08065971e-01 -6.86496780e-01 5.09034015e-01 -3.40053542e-01 2.88391385e-01 1.30911193e-01 7.99061832e-01 7.61367236e-01 -1.13777199e-01 -5.90529827e-01 2.64384751e-01 2.73671951e-01 3.84835007e-01 8.14946405e-01 5.65161956e-01 2.50581872e-01 2.01931191e-01] [ 1.23247303e+05 4.29952345e+04 1.21448504e+05 1.25008523e+05 1.32089387e+05 1.37109724e+05 1.09386663e+05 8.45418373e+04 7.44404476e+04 1.21665780e+05 1.27529482e+05 1.32052840e+05 1.35744982e+05 1.26064068e+05 1.30249150e+05 1.18543529e+05 1.03746221e+05 1.15448194e+05 1.28968372e+05 -1.66011611e+05 1.27542341e+05 1.02064410e+05 9.55858697e+04 -5.84649496e+04 1.31800434e+05 1.30807103e+05 1.39241609e+05 1.28993592e+05 9.57158420e+04 1.19599624e+05 1.14045246e+05 1.29606530e+05 -1.64921038e+05 1.30717053e+05 -1.10451990e+05 -1.65163016e+05 -1.89631795e+05] [ 5.02757947e+05 3.44101678e+05 4.92852739e+05 5.13542038e+05 5.15521281e+05 5.34436812e+05 4.79865502e+05 4.51038428e+05 4.12467960e+05 5.14133216e+05 5.30562478e+05 5.28612847e+05 5.45605878e+05 5.17879719e+05 5.28962668e+05 4.84016908e+05 4.93177470e+05 4.98104704e+05 5.30981800e+05 -9.27221566e+04 5.14115026e+05 4.80519355e+05 4.70774500e+05 1.41459481e+05 5.20111561e+05 5.40754796e+05 5.38810874e+05 5.29501030e+05 4.69917746e+05 4.93032738e+05 4.97421152e+05 5.32917024e+05 -8.38901676e+04 5.31762346e+05 4.05239847e+04 -8.78950562e+04 -1.54827851e+05] [ 4.47398677e+05 2.63793867e+05 4.11109974e+05 4.52187573e+05 4.14475982e+05 4.56315938e+05 4.29775930e+05 3.04698648e+05 2.80512070e+05 4.52821786e+05 4.51606338e+05 4.49760754e+05 4.40613879e+05 4.27440080e+05 4.55564660e+05 4.21031825e+05 3.29339724e+05 4.49051809e+05 4.43199117e+05 -3.19278530e+05 4.37633917e+05 3.19973062e+05 3.13524571e+05 -5.50303117e+04 3.30980015e+05 4.60969152e+05 4.64632235e+05 4.47742770e+05 3.02067093e+05 4.43085727e+05 4.48875190e+05 4.50568161e+05 -3.04651594e+05 4.49968720e+05 -1.67576170e+05 -3.11297370e+05 -3.91000316e+05] [ 9.66597509e+05 5.91260995e+05 8.89171616e+05 9.49050398e+05 8.24896103e+05 9.34643036e+05 9.62244918e+05 6.64660232e+05 6.00603761e+05 9.76613181e+05 9.66534945e+05 9.61619502e+05 9.51616340e+05 9.29107843e+05 9.75455086e+05 9.31968738e+05 6.06089495e+05 9.71309545e+05 9.35915525e+05 -2.33503357e+05 9.20739194e+05 6.43471366e+05 6.59032425e+05 1.52430438e+05 5.87534994e+05 9.64893891e+05 9.56945400e+05 9.49111104e+05 6.17298991e+05 9.18671512e+05 9.67293264e+05 9.54559358e+05 -2.08307409e+05 9.54548279e+05 -2.87107496e+04 -2.20717329e+05 -3.41183045e+05] [ 1.40668228e+06 7.87796113e+05 1.13864695e+06 1.25705327e+06 9.82918164e+05 1.13156119e+06 1.47500086e+06 7.35638160e+05 6.10099328e+05 1.31606172e+06 1.13639458e+06 1.19643008e+06 1.11730959e+06 1.12811537e+06 1.24395743e+06 1.34504211e+06 4.04645672e+05 1.43318864e+06 1.08791541e+06 -1.05678967e+05 1.17676280e+06 5.55749518e+05 6.51423456e+05 3.62352261e+04 2.60675974e+05 1.12064478e+06 1.18356179e+06 1.15216372e+06 5.09742372e+05 1.31097382e+06 1.42963003e+06 1.13258601e+06 -5.18643003e+04 1.13930949e+06 2.26531132e+04 -8.61805403e+04 -9.82639452e+04] [ 4.39360647e+06 2.48429013e+06 3.78580723e+06 4.10654613e+06 3.72821608e+06 3.96308994e+06 4.37344159e+06 2.98973845e+06 2.59727792e+06 4.16461743e+06 3.86743134e+06 4.07404886e+06 3.99488188e+06 3.87320825e+06 4.12824910e+06 4.18312829e+06 2.58065225e+06 4.36435268e+06 3.76149408e+06 -5.47965999e+05 3.95999217e+06 2.78310682e+06 2.88174444e+06 5.54022137e+05 2.57327888e+06 3.84505012e+06 4.10521576e+06 3.91610024e+06 2.64751066e+06 4.12768229e+06 4.34435379e+06 3.85772897e+06 -4.37831950e+05 3.89366436e+06 1.29446025e+05 -5.07007718e+05 -8.25628440e+05] [ 8.59800152e+06 4.85366895e+06 7.70267816e+06 8.25345028e+06 7.95792634e+06 8.32061245e+06 8.48766949e+06 6.26760388e+06 5.44515642e+06 8.46650924e+06 8.11430826e+06 8.43662761e+06 8.39292863e+06 8.06914573e+06 8.50265530e+06 8.35026607e+06 5.93976214e+06 8.49193138e+06 7.92686653e+06 -2.06200233e+06 8.17533332e+06 6.15964546e+06 6.21188933e+06 6.32472725e+05 6.11448070e+06 8.11046543e+06 8.55991066e+06 8.14793370e+06 5.89650668e+06 8.43721286e+06 8.47428415e+06 8.07971780e+06 -1.86803382e+06 8.14902886e+06 -4.72825772e+05 -1.99968414e+06 -2.89955354e+06] [ 1.32152612e+07 7.29114687e+06 1.18126214e+07 1.25915132e+07 1.22444197e+07 1.28586774e+07 1.30990823e+07 9.55519528e+06 8.15209172e+06 1.30212173e+07 1.24292020e+07 1.29707950e+07 1.29445534e+07 1.24520594e+07 1.30829949e+07 1.28336240e+07 8.87775710e+06 1.31038967e+07 1.21948687e+07 -3.08795483e+06 1.26425229e+07 9.27406092e+06 9.45255842e+06 6.14708415e+05 9.00064723e+06 1.24406480e+07 1.32268629e+07 1.25349651e+07 8.91232547e+06 1.30182701e+07 1.30767785e+07 1.24240544e+07 -2.77893610e+06 1.25251807e+07 -7.65316611e+05 -2.98300985e+06 -4.18906811e+06] [ 1.83345972e+07 1.13740705e+07 1.67730821e+07 1.76506246e+07 1.67886531e+07 1.81275407e+07 1.84226600e+07 1.39802642e+07 1.21153532e+07 1.84942620e+07 1.76566660e+07 1.83080171e+07 1.83571253e+07 1.77254144e+07 1.84932280e+07 1.78920716e+07 1.29832254e+07 1.83436559e+07 1.73502435e+07 1.25914098e+05 1.79760433e+07 1.34363843e+07 1.36558158e+07 3.84932226e+06 1.25728152e+07 1.76692671e+07 1.85520049e+07 1.78305937e+07 1.30814704e+07 1.80381407e+07 1.83286519e+07 1.76245823e+07 5.57694201e+05 1.77372834e+07 2.66926985e+06 2.52121915e+05 -9.89127868e+05] [ 2.18199749e+07 1.40612571e+07 2.05861669e+07 2.14887628e+07 2.00747948e+07 2.24808372e+07 2.21464537e+07 1.70270368e+07 1.48010189e+07 2.29384419e+07 2.22912839e+07 2.26998854e+07 2.29426015e+07 2.21704013e+07 2.30035379e+07 2.13514731e+07 1.60513257e+07 2.19491081e+07 2.18768801e+07 1.06275293e+06 2.22893078e+07 1.64795034e+07 1.66198886e+07 5.72870385e+06 1.52744335e+07 2.23648001e+07 2.28880114e+07 2.23788500e+07 1.61669773e+07 2.15994835e+07 2.19877821e+07 2.21219842e+07 1.62709211e+06 2.21854293e+07 4.09063384e+06 1.23125023e+06 -3.14031982e+05] [ 2.23459544e+07 1.43427205e+07 2.12695538e+07 2.20484591e+07 2.06059815e+07 2.34886120e+07 2.29408974e+07 1.72850281e+07 1.48644120e+07 2.39208293e+07 2.31730903e+07 2.34721795e+07 2.36487146e+07 2.30312172e+07 2.39062205e+07 2.17990663e+07 1.62149318e+07 2.26103659e+07 2.27027817e+07 1.44178160e+06 2.33579094e+07 1.67030763e+07 1.67631604e+07 5.77475464e+06 1.55192502e+07 2.33135840e+07 2.37682481e+07 2.33351803e+07 1.62751392e+07 2.23025001e+07 2.27035088e+07 2.29096210e+07 2.10794360e+06 2.29356420e+07 4.26162160e+06 1.62110533e+06 2.10476094e+04] [ 2.74000170e+07 1.74760047e+07 2.59473277e+07 2.67810010e+07 2.53120161e+07 2.82054432e+07 2.79731289e+07 2.14065173e+07 1.84828377e+07 2.86618063e+07 2.79202247e+07 2.82136930e+07 2.85760896e+07 2.76753758e+07 2.87092343e+07 2.63937847e+07 1.99195578e+07 2.76482968e+07 2.73410230e+07 2.41325325e+06 2.80035369e+07 2.08395759e+07 2.08595587e+07 8.23996582e+06 1.98457758e+07 2.80325173e+07 2.85030390e+07 2.81031133e+07 1.99845401e+07 2.67935801e+07 2.77570353e+07 2.76116406e+07 3.19922589e+06 2.76792151e+07 5.87896216e+06 2.59881438e+06 5.83563016e+05] [ 2.61300076e+07 1.58206703e+07 2.48133978e+07 2.53094192e+07 2.37950730e+07 2.68670450e+07 2.65558055e+07 1.96885131e+07 1.65954664e+07 2.68619238e+07 2.65689826e+07 2.66760678e+07 2.71899576e+07 2.62654163e+07 2.71758586e+07 2.46605794e+07 1.79635444e+07 2.62108227e+07 2.59472373e+07 7.66212905e+04 2.65774819e+07 1.91712488e+07 1.91372352e+07 6.79955959e+06 1.84663238e+07 2.66715811e+07 2.70503368e+07 2.66929545e+07 1.82224557e+07 2.50341846e+07 2.62765627e+07 2.62198810e+07 8.65495298e+05 2.63380146e+07 3.86842261e+06 2.42121999e+05 -1.93137749e+06] [ 2.32014482e+07 1.41141546e+07 2.24030354e+07 2.22905700e+07 2.17966017e+07 2.37254477e+07 2.35493327e+07 1.83122479e+07 1.50008810e+07 2.31704396e+07 2.32461623e+07 2.31048723e+07 2.39538959e+07 2.29409253e+07 2.35521107e+07 2.17130018e+07 1.66708660e+07 2.30654828e+07 2.27338065e+07 2.62740120e+05 2.36842228e+07 1.79144366e+07 1.78424101e+07 7.27479199e+06 1.76988845e+07 2.33856240e+07 2.37156677e+07 2.33415407e+07 1.69437452e+07 2.22194827e+07 2.31086006e+07 2.29367612e+07 9.79799841e+05 2.29961132e+07 4.15358288e+06 4.19549103e+05 -1.62352340e+06] [ 1.83131226e+07 1.25824196e+07 1.93106254e+07 1.82120247e+07 1.91554015e+07 1.99726182e+07 1.88468309e+07 1.72493514e+07 1.40183072e+07 1.88790421e+07 1.96681234e+07 1.90998508e+07 2.05460312e+07 1.93859539e+07 1.94060269e+07 1.77081209e+07 1.64468083e+07 1.80265552e+07 1.93483201e+07 1.94395212e+06 2.02377810e+07 1.73099777e+07 1.68409252e+07 8.88388923e+06 1.77287817e+07 1.99172661e+07 1.97682902e+07 1.96409814e+07 1.65254987e+07 1.85465420e+07 1.80736462e+07 1.93800943e+07 2.48694593e+06 1.93094226e+07 5.62331108e+06 2.07802583e+06 2.12698908e+05] [ 1.30328502e+07 1.02987477e+07 1.43273681e+07 1.32291151e+07 1.44220841e+07 1.46012680e+07 1.35701071e+07 1.40686680e+07 1.16036941e+07 1.37693382e+07 1.44982953e+07 1.40110817e+07 1.53705351e+07 1.43629961e+07 1.41963224e+07 1.27732680e+07 1.36794831e+07 1.29019820e+07 1.43117397e+07 4.85958747e+06 1.49630984e+07 1.42374381e+07 1.36915672e+07 9.53752930e+06 1.45749851e+07 1.46983286e+07 1.44037202e+07 1.44623242e+07 1.37181881e+07 1.34867196e+07 1.29187971e+07 1.42917419e+07 5.20779731e+06 1.42154979e+07 7.36897533e+06 4.96283010e+06 3.70823933e+06] [ 9.84140335e+06 8.20296619e+06 1.04461722e+07 9.80682058e+06 1.09568116e+07 1.05603846e+07 1.00665552e+07 1.10961168e+07 9.50324251e+06 1.00464986e+07 1.03835066e+07 1.02623179e+07 1.12262761e+07 1.04549577e+07 1.03245180e+07 9.56164093e+06 1.07879764e+07 9.76229377e+06 1.03206377e+07 5.68425256e+06 1.07877910e+07 1.11178942e+07 1.08517811e+07 8.38088241e+06 1.13184993e+07 1.05106301e+07 1.05290888e+07 1.04517294e+07 1.08365067e+07 1.00328365e+07 9.72497680e+06 1.03202825e+07 5.84502767e+06 1.02942101e+07 7.20343333e+06 5.72858452e+06 5.09425229e+06] [ 5.10665502e+06 4.40292886e+06 5.31169170e+06 5.02875931e+06 5.57157462e+06 5.33585385e+06 5.15869175e+06 6.02888917e+06 5.25731049e+06 5.06508133e+06 5.19737857e+06 5.21962874e+06 5.74956362e+06 5.29154828e+06 5.22507437e+06 4.86345631e+06 5.85449331e+06 5.10377506e+06 5.18147111e+06 4.07216582e+06 5.42589725e+06 5.96838705e+06 5.90289812e+06 5.08330146e+06 6.12708364e+06 5.24906720e+06 5.39624649e+06 5.26403945e+06 5.88900209e+06 5.05780876e+06 5.04590764e+06 5.18622971e+06 4.13261581e+06 5.18955980e+06 4.66294931e+06 4.08482988e+06 3.85025721e+06] [ 1.93556028e+06 1.58596547e+06 1.97231479e+06 1.84562191e+06 2.07576058e+06 1.89459779e+06 1.89573668e+06 2.36470141e+06 2.02779911e+06 1.74758594e+06 1.80167602e+06 1.83308007e+06 2.10495212e+06 1.86527082e+06 1.82291185e+06 1.75150905e+06 2.24383087e+06 1.91012397e+06 1.79626754e+06 1.43308123e+06 1.94980193e+06 2.32957560e+06 2.33738579e+06 1.96976838e+06 2.43077775e+06 1.80185178e+06 1.94407435e+06 1.83190558e+06 2.29339969e+06 1.75741891e+06 1.88892853e+06 1.80618807e+06 1.45637305e+06 1.81284585e+06 1.73648135e+06 1.44461219e+06 1.28634795e+06] [ 7.11194880e+05 7.15277601e+05 7.79851792e+05 6.80795461e+05 9.58673711e+05 7.48155799e+05 7.01647518e+05 1.11993452e+06 9.56722369e+05 6.36403881e+05 6.68972699e+05 6.78116372e+05 7.93137143e+05 6.88422256e+05 6.75824701e+05 7.26831195e+05 1.11573214e+06 6.88643537e+05 6.78532836e+05 6.33792091e+05 7.68387093e+05 1.13098887e+06 1.11684580e+06 9.23198867e+05 1.20214917e+06 6.77379664e+05 7.40700460e+05 6.85066633e+05 1.10916501e+06 7.94518146e+05 6.79049400e+05 6.77840906e+05 6.35384898e+05 6.75794320e+05 7.95234611e+05 6.35634010e+05 6.07780095e+05] [ 3.33770464e+05 3.33068199e+05 3.73414296e+05 3.29949498e+05 4.55072662e+05 3.69892897e+05 3.36966588e+05 5.25054797e+05 4.46614375e+05 3.22752722e+05 3.47173017e+05 3.39919310e+05 3.97067448e+05 3.47964212e+05 3.39461232e+05 3.40835348e+05 5.25829656e+05 3.25220334e+05 3.50918529e+05 2.75000174e+05 3.78318588e+05 5.27042357e+05 5.21616190e+05 4.18749575e+05 5.53288167e+05 3.52786297e+05 3.60438067e+05 3.47806055e+05 5.20370916e+05 3.73777079e+05 3.23326990e+05 3.48788643e+05 2.76785733e+05 3.46095321e+05 3.52861099e+05 2.77526131e+05 2.60008684e+05] [ 2.73257885e+04 1.38912313e+04 2.87799473e+04 2.55012330e+04 3.45710624e+04 3.00068630e+04 2.73985975e+04 2.73095109e+04 2.21790239e+04 2.44199231e+04 2.56670489e+04 2.61140019e+04 2.94973732e+04 2.55630224e+04 2.56833997e+04 2.63033185e+04 2.59471361e+04 2.52903098e+04 2.55343427e+04 -2.72003105e+04 2.99995174e+04 2.68799595e+04 2.64048432e+04 -2.62922014e+03 3.01933370e+04 2.59854463e+04 2.92531350e+04 2.58486841e+04 2.52416509e+04 2.92876996e+04 2.50652184e+04 2.58325584e+04 -2.68972144e+04 2.61803592e+04 -1.47410533e+04 -2.67657061e+04 -3.24252165e+04] [ 2.05748540e-01 -3.45925432e-01 -2.26438929e-02 -5.49229084e-01 8.03915355e-01 -1.76932446e-01 -4.65318936e-02 4.42805506e-01 -7.55606374e-01 6.13009710e-03 6.26295327e-01 3.54683720e-01 -3.56698548e-01 4.21330793e-01 8.68879197e-01 7.89552477e-01 4.84469576e-01 -4.67797662e-01 -2.55025186e-01 1.16835842e-01 -2.37902206e-01 -8.85062759e-02 5.87051888e-01 -7.92119736e-01 9.45993156e-01 4.09238132e-01 7.29455737e-01 5.63360108e-01 -1.35632573e-01 8.85022287e-01 -4.93827566e-01 -9.07503154e-01 -8.06243539e-01 -5.98526756e-01 7.81610727e-02 -5.52794895e-01 6.70641640e-01] [-9.81322626e-01 4.91801858e-01 9.38015644e-01 -4.65633578e-01 2.47631013e-01 4.29559270e-01 -3.46085164e-01 -1.33746856e-01 4.68817692e-01 -7.37699626e-01 -7.12628054e-01 -2.49187355e-01 -5.43181896e-01 -3.86027212e-01 -6.99868630e-01 -8.06727880e-01 8.31968062e-01 -3.08213183e-01 1.31932513e-01 9.43975301e-02 -9.92849037e-02 4.95641161e-01 -3.36847085e-01 7.84954914e-01 -8.63933555e-01 1.49779185e-01 -3.21894846e-01 -2.72199310e-01 -3.89804212e-01 2.07172599e-01 -5.31184141e-01 -4.11387601e-01 -4.29010819e-01 -9.86409109e-01 -2.56762981e-01 -9.02205298e-01 7.48752425e-01] [ 4.43645263e-01 1.90614209e-01 4.87756670e-01 8.02188168e-01 3.88181127e-01 1.81512634e-01 -7.51481513e-01 -1.90834697e-01 1.57902497e-01 2.05688732e-01 9.21555674e-01 -5.88999358e-01 3.26302655e-01 -4.87141719e-01 -1.64477515e-01 9.43900924e-01 -3.37845139e-01 -2.75953669e-01 -1.20863103e-01 -9.18664420e-01 -2.02859523e-01 2.37970199e-01 1.56159974e-01 7.46825456e-01 2.82373116e-01 1.13911889e-01 2.81294314e-01 -9.04766433e-01 9.92242697e-01 -6.96589165e-01 -1.63106227e-01 -4.09497060e-01 1.54433788e-01 1.19122047e-01 -2.95771351e-01 9.47258928e-01 5.02543278e-01] [ 7.79682726e-01 -8.91796093e-02 1.98812177e-01 -1.73093448e-01 -3.91489669e-01 5.09411415e-02 -6.18065382e-01 -5.71796552e-01 2.15748366e-02 -9.72295851e-01 -1.09025783e-01 9.93401343e-01 6.45365962e-01 -8.33078907e-01 3.11780634e-01 -5.49214140e-01 -7.64088295e-01 -3.02645474e-01 3.54333636e-01 1.01529121e-01 -9.12074673e-01 7.13508539e-01 -4.48099528e-02 7.13552450e-01 -6.24691977e-01 -8.32533468e-01 3.19393241e-02 -9.09106740e-02 -9.72211202e-01 -9.21290821e-01 -8.12734329e-01 -9.18645040e-01 -6.48521865e-01 1.51072302e-01 -4.64947601e-02 9.59539466e-01 -8.58525732e-01] [ 7.34831264e-01 1.57039564e-01 7.52951091e-01 -8.88572779e-01 -8.01692957e-01 7.26189435e-01 1.40768053e-01 1.16987602e-01 -9.73974664e-01 2.84505608e-01 6.95328963e-01 9.92252382e-01 -1.34090419e-01 -3.77181908e-01 -1.90459350e-01 -5.43949807e-01 -5.47802831e-01 -1.32712783e-01 3.69079016e-01 3.21474577e-01 5.44980337e-01 -5.66370624e-01 4.57412757e-01 5.90507655e-01 1.23625728e-01 -6.86586201e-02 -6.83600256e-01 -9.07094298e-01 -7.23357045e-02 3.08604160e-01 -5.74907367e-01 -2.00100790e-01 -4.72423098e-03 9.09807913e-01 7.54890257e-01 7.48099296e-01 9.93201078e-01] [-1.53717629e+05 -1.48805396e+05 -1.64507525e+05 -1.56932443e+05 -1.99819965e+05 -1.67487534e+05 -1.47646867e+05 -2.17235571e+05 -1.95910091e+05 -1.53324195e+05 -1.64388619e+05 -1.63803433e+05 -1.82527025e+05 -1.62739488e+05 -1.61548713e+05 -1.61843325e+05 -2.27017719e+05 -1.46482756e+05 -1.64926555e+05 -1.19482342e+05 -1.63272304e+05 -2.24934533e+05 -2.20916109e+05 -1.76165640e+05 -2.43720545e+05 -1.65469365e+05 -1.68424261e+05 -1.62825209e+05 -2.22270112e+05 -1.67768016e+05 -1.46057467e+05 -1.64837886e+05 -1.19445986e+05 -1.64932597e+05 -1.47111069e+05 -1.19734953e+05 -1.03962055e+05] [-7.51864170e+05 -7.49580695e+05 -7.97745240e+05 -7.60875008e+05 -9.98220769e+05 -8.04810512e+05 -7.22780111e+05 -1.10278151e+06 -9.91466745e+05 -7.35180133e+05 -7.86922036e+05 -7.85920234e+05 -8.85240284e+05 -7.78776629e+05 -7.74804076e+05 -7.93207769e+05 -1.14209410e+06 -7.13801209e+05 -7.88247659e+05 -6.22875549e+05 -7.87854374e+05 -1.13664140e+06 -1.11853926e+06 -9.15393459e+05 -1.22562304e+06 -7.89566099e+05 -8.10023606e+05 -7.78110067e+05 -1.12344593e+06 -8.29107306e+05 -7.12156752e+05 -7.89972408e+05 -6.24001557e+05 -7.91321948e+05 -7.70084579e+05 -6.25390650e+05 -5.37740863e+05] [-4.05725361e+05 -4.60715764e+05 -4.85269154e+05 -3.81909835e+05 -9.39934446e+05 -4.26883738e+05 -3.21560223e+05 -1.13690234e+06 -9.37572744e+05 -2.72361403e+05 -3.74549954e+05 -3.72075028e+05 -5.88790627e+05 -3.96601580e+05 -3.50689679e+05 -4.60028966e+05 -1.20103532e+06 -3.12703173e+05 -4.03460602e+05 -3.33276600e+05 -4.25057072e+05 -1.21450987e+06 -1.19174318e+06 -8.87937342e+05 -1.43888322e+06 -3.78876930e+05 -4.28735029e+05 -3.71589653e+05 -1.18328583e+06 -5.54027550e+05 -3.13716926e+05 -3.95261664e+05 -3.35351846e+05 -3.86059986e+05 -6.04052252e+05 -3.50453686e+05 -1.44245062e+05] [-5.78882537e+05 -5.64473159e+05 -7.11009175e+05 -5.76147420e+05 -1.19386288e+06 -6.59166103e+05 -4.52453802e+05 -1.48261741e+06 -1.20618407e+06 -4.28280506e+05 -6.11812361e+05 -5.94084731e+05 -9.25928567e+05 -6.64264815e+05 -5.58741315e+05 -5.68291290e+05 -1.58956012e+06 -4.72970059e+05 -6.49176619e+05 -6.74247158e+05 -6.40464756e+05 -1.60715023e+06 -1.57758394e+06 -1.31487551e+06 -1.89437763e+06 -6.24431206e+05 -6.53456135e+05 -6.05374084e+05 -1.58821594e+06 -6.01344837e+05 -4.75507338e+05 -6.31924442e+05 -6.73575363e+05 -6.23983456e+05 -9.82751283e+05 -6.96766012e+05 -4.45225052e+05] [-2.36250298e+06 -3.28334353e+06 -2.97172565e+06 -2.59929249e+06 -4.12505951e+06 -2.88343926e+06 -2.15813064e+06 -5.41344179e+06 -4.77524963e+06 -2.37264156e+06 -2.87371782e+06 -2.70668462e+06 -3.51082937e+06 -2.88686739e+06 -2.62133051e+06 -2.52574666e+06 -5.93445098e+06 -2.18438964e+06 -2.96034153e+06 -4.99456609e+06 -2.84210965e+06 -5.79570529e+06 -5.63602783e+06 -5.94331366e+06 -6.45296139e+06 -2.92608292e+06 -2.82590441e+06 -2.81257359e+06 -5.80101850e+06 -2.68821589e+06 -2.20489726e+06 -2.88757535e+06 -4.95541541e+06 -2.85161443e+06 -5.38836933e+06 -5.00278209e+06 -4.62469035e+06] [-3.36604104e+06 -5.71440387e+06 -4.52655690e+06 -3.75823690e+06 -6.66357998e+06 -4.21395451e+06 -3.09178803e+06 -9.22617637e+06 -8.23144920e+06 -3.33772740e+06 -4.12667215e+06 -3.76476926e+06 -5.09967991e+06 -4.06570249e+06 -3.65332771e+06 -3.80026540e+06 -1.01363827e+07 -3.05030855e+06 -4.32758025e+06 -9.88938150e+06 -4.24077227e+06 -9.87534096e+06 -9.60964586e+06 -1.10029333e+07 -1.09990085e+07 -4.22254261e+06 -4.03927944e+06 -4.01773015e+06 -9.85242997e+06 -4.16883041e+06 -3.08658638e+06 -4.18407202e+06 -9.80246154e+06 -4.08334081e+06 -1.02556896e+07 -9.89988547e+06 -9.46787952e+06] [-2.30715057e+06 -7.86371545e+06 -4.72709744e+06 -3.08739130e+06 -7.90778711e+06 -3.80140859e+06 -2.04400700e+06 -1.29874497e+07 -1.15444639e+07 -2.36465791e+06 -3.77980332e+06 -3.07940953e+06 -5.30184425e+06 -3.73143940e+06 -2.89742156e+06 -3.22434024e+06 -1.42876120e+07 -1.86468083e+06 -4.16313969e+06 -1.77929048e+07 -3.95993719e+06 -1.39177522e+07 -1.35623350e+07 -1.83062660e+07 -1.54970823e+07 -3.94556724e+06 -3.41997092e+06 -3.61303427e+06 -1.40550712e+07 -3.79360264e+06 -1.92893991e+06 -3.87705826e+06 -1.75688287e+07 -3.68888925e+06 -1.75809904e+07 -1.77788505e+07 -1.77218774e+07] [-2.01668536e+04 -9.79019182e+06 -3.76084593e+06 -1.26909597e+06 -8.26799913e+06 -2.10691236e+06 2.40297139e+05 -1.62634164e+07 -1.48131420e+07 -2.52192211e+05 -2.14074641e+06 -1.09260720e+06 -3.93333706e+06 -1.96786596e+06 -8.81037277e+05 -1.62648034e+06 -1.83500577e+07 5.59677158e+05 -2.72379202e+06 -2.74719770e+07 -2.54303276e+06 -1.75973373e+07 -1.69606801e+07 -2.67115806e+07 -1.99211165e+07 -2.34578205e+06 -1.48286776e+06 -1.94626250e+06 -1.77759074e+07 -2.44968578e+06 4.80270463e+05 -2.29438952e+06 -2.70804549e+07 -1.98362342e+06 -2.61562607e+07 -2.74082253e+07 -2.80479955e+07] [-1.85142890e+06 -1.56709827e+07 -7.11069674e+06 -3.55515176e+06 -1.31421897e+07 -4.46556246e+06 -1.56958233e+06 -2.50175450e+07 -2.24397697e+07 -1.83256808e+06 -4.80299921e+06 -3.29712456e+06 -7.55473484e+06 -4.71729908e+06 -2.96550141e+06 -3.78451716e+06 -2.75458839e+07 -1.08018618e+06 -5.52912874e+06 -4.15803941e+07 -5.08682748e+06 -2.67139948e+07 -2.59200632e+07 -4.01287992e+07 -2.97767017e+07 -5.10966873e+06 -3.68895854e+06 -4.49339781e+06 -2.71396395e+07 -5.00535019e+06 -1.13252449e+06 -4.98553725e+06 -4.09699820e+07 -4.57796539e+06 -3.95035385e+07 -4.14192986e+07 -4.26593451e+07] [ 1.39238220e+07 -8.70919379e+06 5.88611577e+06 1.16995278e+07 -1.55743226e+06 9.87398814e+06 1.34025693e+07 -1.77086073e+07 -1.58212571e+07 1.35322249e+07 9.98767985e+06 1.15630636e+07 7.09099250e+06 9.63710781e+06 1.20905786e+07 1.00217597e+07 -2.05150488e+07 1.47447639e+07 9.09394724e+06 -4.95243638e+07 8.95616033e+06 -1.91607873e+07 -1.83049083e+07 -4.15138523e+07 -2.29182440e+07 9.54274840e+06 1.08991950e+07 1.02301787e+07 -1.99316163e+07 7.52827092e+06 1.46187638e+07 9.69387692e+06 -4.84969615e+07 1.00192683e+07 -4.33236830e+07 -4.91282234e+07 -5.26361925e+07] [ 3.44039636e+07 1.91599118e+06 2.30030400e+07 3.16387290e+07 1.49278600e+07 2.85776547e+07 3.24831960e+07 -5.47367750e+06 -4.45531562e+06 3.26872446e+07 2.90025326e+07 3.05856389e+07 2.66291512e+07 2.80983911e+07 3.11318452e+07 2.77326794e+07 -8.19339363e+06 3.50953852e+07 2.78587275e+07 -5.60482306e+07 2.67039605e+07 -6.16993533e+06 -5.29559090e+06 -3.92000300e+07 -9.84684879e+06 2.84194302e+07 2.99758372e+07 2.90025604e+07 -7.43072882e+06 2.40762369e+07 3.48263784e+07 2.85598595e+07 -5.46143173e+07 2.89557148e+07 -4.48547320e+07 -5.54150738e+07 -6.18467176e+07] [ 5.76871986e+07 1.16757760e+07 4.20432889e+07 5.32848587e+07 3.36830230e+07 4.86553760e+07 5.37517249e+07 8.20790708e+06 7.41494666e+06 5.23919258e+07 4.91462305e+07 5.11326430e+07 4.83103956e+07 4.82286049e+07 5.14348283e+07 4.70996262e+07 4.93618771e+06 5.81231810e+07 4.77980671e+07 -6.55995196e+07 4.56322490e+07 8.10881419e+06 9.44481136e+06 -3.77662903e+07 5.51505345e+06 4.84026476e+07 5.06623160e+07 4.90703999e+07 6.34040096e+06 4.18529906e+07 5.76280998e+07 4.87194350e+07 -6.36507435e+07 4.93216852e+07 -4.84048708e+07 -6.46354164e+07 -7.47834463e+07] [ 7.33335371e+07 1.43571704e+07 5.39244787e+07 6.75599190e+07 4.43349715e+07 6.09964503e+07 6.76662404e+07 1.41748813e+07 1.12967920e+07 6.40312272e+07 6.18506164e+07 6.37121360e+07 6.21640656e+07 6.08220267e+07 6.38450695e+07 5.86126222e+07 1.04859822e+07 7.33776812e+07 6.03909918e+07 -8.19204250e+07 5.72667999e+07 1.47986137e+07 1.65427118e+07 -4.21164889e+07 1.33431201e+07 6.10177736e+07 6.34163446e+07 6.15490658e+07 1.27099478e+07 5.15527191e+07 7.26480000e+07 6.14454435e+07 -7.93810281e+07 6.20547535e+07 -5.81131714e+07 -8.04989534e+07 -9.47478655e+07] [ 7.58213248e+07 1.38365887e+07 5.53278531e+07 6.86565870e+07 4.73742960e+07 6.14216528e+07 6.94120360e+07 1.66536214e+07 1.24321894e+07 6.30427669e+07 6.15594359e+07 6.35995488e+07 6.31315793e+07 6.07651186e+07 6.35455818e+07 5.98324184e+07 1.20762468e+07 7.54014426e+07 6.02506710e+07 -8.57885550e+07 5.74906434e+07 1.71455651e+07 1.94724301e+07 -4.22385156e+07 1.68579645e+07 6.07423174e+07 6.39724189e+07 6.13122050e+07 1.50250079e+07 5.32880622e+07 7.44942156e+07 6.13932916e+07 -8.32261136e+07 6.21011320e+07 -6.01333530e+07 -8.43095514e+07 -9.90058425e+07] [ 8.12633236e+07 3.12415100e+07 6.38837583e+07 7.48727938e+07 5.94401088e+07 6.83733166e+07 7.55747528e+07 3.69231909e+07 3.15497947e+07 6.91386799e+07 6.76261975e+07 6.94545564e+07 7.06097144e+07 6.69475147e+07 6.93645189e+07 6.80263125e+07 3.25012942e+07 8.06796883e+07 6.65576760e+07 -4.93375068e+07 6.50085391e+07 3.72195076e+07 3.92795189e+07 -1.17987556e+07 3.73327973e+07 6.67224360e+07 7.04573038e+07 6.73913712e+07 3.53478230e+07 6.30431494e+07 7.98282144e+07 6.75497095e+07 -4.74441717e+07 6.82641581e+07 -2.73196976e+07 -4.83539546e+07 -6.01393943e+07] [ 6.53550676e+07 3.63077200e+07 5.53890510e+07 6.18898905e+07 5.38190323e+07 5.79674230e+07 6.18568465e+07 4.25461241e+07 3.75940149e+07 5.81330810e+07 5.72209606e+07 5.80551958e+07 6.00468443e+07 5.65801356e+07 5.80001794e+07 5.75549821e+07 4.02148168e+07 6.49427660e+07 5.66567069e+07 -1.27080784e+07 5.62097270e+07 4.32512529e+07 4.39526617e+07 1.31641454e+07 4.34572997e+07 5.65495806e+07 5.90043938e+07 5.69918723e+07 4.18351255e+07 5.47754260e+07 6.42910649e+07 5.71651122e+07 -1.15626835e+07 5.75090095e+07 2.33662563e+06 -1.21331096e+07 -1.98062830e+07] [ 4.78811457e+07 3.45288123e+07 4.39175361e+07 4.70142802e+07 4.36404308e+07 4.55937971e+07 4.59381587e+07 4.04815082e+07 3.68146245e+07 4.52974518e+07 4.53688740e+07 4.53009152e+07 4.74915587e+07 4.46844513e+07 4.52304091e+07 4.42208257e+07 4.03569535e+07 4.76788000e+07 4.51692263e+07 1.01470706e+07 4.46378327e+07 4.15991008e+07 4.13072513e+07 2.63587733e+07 4.21805951e+07 4.50392898e+07 4.59390306e+07 4.50740720e+07 4.06814070e+07 4.26267429e+07 4.73275756e+07 4.52381599e+07 1.07335961e+07 4.52609800e+07 1.91835931e+07 1.04516265e+07 5.57261562e+06] [ 3.56241993e+07 2.97578586e+07 3.37967792e+07 3.51515451e+07 3.49879316e+07 3.44782486e+07 3.43324779e+07 3.54131923e+07 3.27028916e+07 3.38807980e+07 3.39439959e+07 3.40597044e+07 3.59255661e+07 3.36329014e+07 3.39063848e+07 3.39556969e+07 3.56000417e+07 3.52884537e+07 3.40786905e+07 2.01163526e+07 3.39302878e+07 3.61098427e+07 3.58946994e+07 2.86235249e+07 3.68735073e+07 3.37669587e+07 3.46478981e+07 3.39299282e+07 3.56019967e+07 3.33671448e+07 3.49817834e+07 3.40390552e+07 2.02693810e+07 3.40118217e+07 2.47356629e+07 2.01826444e+07 1.80802769e+07] [ 1.79000411e+07 1.67976729e+07 1.74081699e+07 1.75960099e+07 1.89507333e+07 1.73248501e+07 1.71476523e+07 2.06392539e+07 1.89793242e+07 1.65973286e+07 1.67364365e+07 1.68971007e+07 1.82129165e+07 1.67822544e+07 1.67122047e+07 1.73048575e+07 2.09007021e+07 1.76684455e+07 1.69948280e+07 1.58054506e+07 1.71254736e+07 2.10177585e+07 2.09181470e+07 1.88479958e+07 2.16792032e+07 1.66913720e+07 1.73709489e+07 1.68617294e+07 2.08300817e+07 1.74664101e+07 1.74225173e+07 1.68887273e+07 1.57087073e+07 1.68652719e+07 1.73583981e+07 1.57726544e+07 1.54391889e+07] [ 8.03275992e+06 9.57941369e+06 8.23639784e+06 7.72967701e+06 9.58684616e+06 7.71669732e+06 7.60887843e+06 1.19393299e+07 1.09197946e+07 7.08189068e+06 7.23676676e+06 7.27898195e+06 8.11470807e+06 7.41418504e+06 7.12843649e+06 7.95528172e+06 1.20276835e+07 7.94632497e+06 7.56076681e+06 1.37126952e+07 7.74171208e+06 1.19797899e+07 1.20654070e+07 1.31964702e+07 1.23780078e+07 7.25148381e+06 7.63830011e+06 7.39761413e+06 1.19574226e+07 8.39562532e+06 7.78314215e+06 7.40898290e+06 1.35163730e+07 7.33395363e+06 1.35218974e+07 1.36120017e+07 1.44191586e+07] [ 1.82640755e+06 4.86682135e+06 2.69971978e+06 1.92438980e+06 3.67526769e+06 2.16415528e+06 1.85413647e+06 6.05557422e+06 5.56443464e+06 1.76482170e+06 1.98488319e+06 1.82348100e+06 2.33428963e+06 2.06753463e+06 1.75665687e+06 2.36029642e+06 6.33596355e+06 1.83929793e+06 2.21414446e+06 1.08352443e+07 2.33848249e+06 6.14512316e+06 6.09109360e+06 9.24523176e+06 6.41987134e+06 2.03240757e+06 1.99988532e+06 2.04401218e+06 6.22198554e+06 2.84930200e+06 1.78539574e+06 2.07040342e+06 1.06551801e+07 1.97917323e+06 1.00073178e+07 1.07378205e+07 1.16585617e+07] [-5.29148769e+05 1.39049813e+06 1.13923662e+05 -3.67294816e+05 5.82610713e+05 -1.92204418e+05 -4.47403868e+05 1.86308176e+06 1.69272273e+06 -3.93207989e+05 -2.19618519e+05 -3.73023578e+05 -1.15316072e+05 -2.17214259e+05 -3.99417712e+05 -1.48370561e+05 2.05586738e+06 -5.16691551e+05 -1.16511390e+05 4.72111749e+06 -6.67046418e+04 1.94159444e+06 1.87071038e+06 3.91781148e+06 2.08828115e+06 -1.84035753e+05 -3.05307197e+05 -2.26447126e+05 1.98858850e+06 1.56409111e+05 -5.23047366e+05 -1.95984777e+05 4.62877613e+06 -2.51908171e+05 4.25013892e+06 4.67815650e+06 5.13195754e+06] [-6.16281611e+05 -1.03440321e+05 -4.29940441e+05 -5.55493129e+05 -3.41744311e+05 -5.05342405e+05 -5.86804388e+05 -8.10821832e+04 -8.93314614e+04 -5.54114154e+05 -5.15225848e+05 -5.53122193e+05 -5.08840520e+05 -5.19271087e+05 -5.62477188e+05 -5.03476943e+05 -1.79383874e+04 -6.15232161e+05 -4.95045893e+05 6.61909042e+05 -4.73075054e+05 -5.04327351e+04 -8.55303955e+04 4.79993328e+05 -2.00748810e+04 -5.07827106e+05 -5.36712072e+05 -5.19552415e+05 -4.17859725e+04 -4.15464474e+05 -6.12884409e+05 -5.12619817e+05 6.37034295e+05 -5.22413432e+05 5.36705652e+05 6.50598100e+05 7.53761475e+05] [-4.16580520e+03 -3.95853109e+03 -3.93193576e+03 -4.21200733e+03 -3.87924955e+03 -3.89564677e+03 -4.42417147e+03 -3.89367168e+03 -3.58943373e+03 -3.98388948e+03 -3.96668229e+03 -3.87636723e+03 -3.89583883e+03 -3.86145961e+03 -4.04160336e+03 -3.92338510e+03 -3.76835010e+03 -4.30920061e+03 -3.89950921e+03 -2.93298300e+03 -4.10589805e+03 -3.78822727e+03 -3.79487415e+03 -3.43417604e+03 -3.44594796e+03 -3.97359166e+03 -3.85871571e+03 -3.97800100e+03 -3.82484096e+03 -4.22904778e+03 -4.28608663e+03 -3.95954620e+03 -3.04636292e+03 -3.87621840e+03 -3.51108420e+03 -2.97301655e+03 -2.76118894e+03] [-5.72849376e-01 5.32534062e-03 -8.11937781e-01 -1.82187779e-01 -9.59768404e-01 -7.61072508e-01 8.80125028e-01 1.17722178e-01 3.72922752e-01 -2.44459594e-01 5.26242821e-01 7.92778070e-01 8.20384326e-01 -7.02770374e-03 5.25220464e-01 4.17924066e-01 9.02593708e-01 -5.16891020e-01 1.22679416e-01 -9.12453465e-01 8.46355918e-01 8.90513158e-01 1.81268978e-03 1.72234896e-01 5.43883690e-01 -5.01337631e-01 -2.42019048e-01 -4.22788808e-01 7.76079304e-02 8.97913648e-01 -2.29198601e-01 -9.09980468e-01 3.65037265e-01 -9.93867964e-03 -4.06975998e-01 -1.68222787e-01 7.25020594e-01] [ 6.42035427e-01 -6.58307320e-01 3.70266556e-01 9.95326723e-01 5.68718596e-01 4.50092711e-01 -3.79960042e-01 -6.81058419e-01 7.28644308e-01 2.20692437e-01 -2.19819203e-01 5.11181470e-01 4.37255771e-01 2.94666251e-01 -5.85473277e-01 7.71055636e-01 4.38011925e-01 -3.94738873e-01 -8.72803002e-01 8.25592831e-01 5.87700117e-01 -2.83271406e-03 -1.72149612e-01 2.31124948e-01 -2.02969648e-01 -9.22163920e-01 -3.96063336e-01 -5.07442884e-01 9.44605175e-01 5.34996098e-01 -1.92606772e-01 4.73254417e-01 -3.94689970e-01 5.45916549e-02 -5.85713520e-01 -4.91479433e-01 -1.31953862e-01] [-8.35148282e-01 7.06575913e-01 8.32658433e-01 -5.73784275e-01 -5.25559765e-02 6.82919403e-01 -4.23442053e-01 2.21417644e-01 -1.15903976e-01 -2.05017043e-01 5.78748443e-01 -7.09747720e-02 -7.03949632e-02 9.84057009e-01 9.24459591e-01 -5.29838224e-01 -5.46092466e-01 3.25476035e-01 -1.76107130e-01 4.37508081e-01 4.66906713e-01 5.66589722e-01 -4.73371024e-01 9.96716431e-01 -1.25991265e-02 -8.32146971e-01 -7.75968634e-01 1.22999448e-01 2.02178849e-02 8.69671013e-01 8.01652122e-01 -6.91927043e-02 -5.87045734e-01 1.28835212e-01 -3.82533236e-01 3.01171268e-01 3.02080138e-02] [-2.99267329e+04 -3.47694586e+04 -3.68478859e+04 -2.87964813e+04 -6.99719299e+04 -3.48390010e+04 -2.69853656e+04 -7.60864720e+04 -6.33399386e+04 -2.24793716e+04 -2.84188534e+04 -3.10645458e+04 -4.01741962e+04 -2.86185613e+04 -2.85749218e+04 -3.99069007e+04 -7.97982932e+04 -2.27048652e+04 -3.01274643e+04 7.57562340e+02 -3.26325052e+04 -7.88957941e+04 -7.67422341e+04 -4.11613504e+04 -9.28657991e+04 -2.97473689e+04 -3.57698808e+04 -2.89572126e+04 -7.70527609e+04 -5.25593287e+04 -2.23159087e+04 -3.06505041e+04 1.05906105e+03 -3.10740824e+04 -1.99326330e+04 5.16588273e+02 1.01404555e+04] [-9.25632782e+05 -9.73342673e+05 -9.94623343e+05 -9.55273999e+05 -1.20924363e+06 -1.00761036e+06 -9.02348789e+05 -1.35339425e+06 -1.21468546e+06 -9.39928636e+05 -9.99271066e+05 -9.86613620e+05 -1.10302334e+06 -9.88737268e+05 -9.77280862e+05 -9.65064104e+05 -1.41724771e+06 -8.92099289e+05 -1.00516411e+06 -9.95682761e+05 -9.92017682e+05 -1.40223776e+06 -1.38046602e+06 -1.22148869e+06 -1.48080323e+06 -1.00873500e+06 -1.00779221e+06 -9.88904125e+05 -1.39554846e+06 -1.03470003e+06 -8.92229311e+05 -1.00302044e+06 -9.95206776e+05 -1.00093992e+06 -1.10690341e+06 -9.96940277e+05 -9.39430656e+05] [-3.16961735e+06 -3.19222940e+06 -3.41148362e+06 -3.24759298e+06 -4.17512582e+06 -3.41968816e+06 -3.05225612e+06 -4.66400372e+06 -4.15877294e+06 -3.15509540e+06 -3.39702461e+06 -3.34654199e+06 -3.80742676e+06 -3.36852682e+06 -3.31152209e+06 -3.28359452e+06 -4.86904621e+06 -3.02588477e+06 -3.41052062e+06 -2.86652367e+06 -3.37449439e+06 -4.85054098e+06 -4.77463711e+06 -4.00965409e+06 -5.16675275e+06 -3.41790906e+06 -3.42633705e+06 -3.35181677e+06 -4.80413127e+06 -3.45421204e+06 -3.03186108e+06 -3.40530592e+06 -2.87130738e+06 -3.39700115e+06 -3.42725428e+06 -2.88022826e+06 -2.52846657e+06] [-6.50330949e+06 -5.60740785e+06 -6.60535155e+06 -6.50466090e+06 -7.93739248e+06 -6.69246980e+06 -6.15673843e+06 -8.61738076e+06 -7.61315686e+06 -6.24876598e+06 -6.63916325e+06 -6.60059867e+06 -7.53646635e+06 -6.63390775e+06 -6.53675150e+06 -6.40972551e+06 -8.90932286e+06 -6.23565446e+06 -6.65644500e+06 -4.24243275e+06 -6.58748976e+06 -8.95317831e+06 -8.89870085e+06 -6.81925224e+06 -9.58901447e+06 -6.65627929e+06 -6.73680784e+06 -6.56184847e+06 -8.86586008e+06 -6.46015218e+06 -6.23953928e+06 -6.65321148e+06 -4.30018657e+06 -6.64204765e+06 -5.52892123e+06 -4.32123821e+06 -3.33064378e+06] [-1.15729636e+07 -1.09255434e+07 -1.20502809e+07 -1.17627104e+07 -1.43718044e+07 -1.21573962e+07 -1.10247955e+07 -1.62023465e+07 -1.43813349e+07 -1.13035924e+07 -1.21166475e+07 -1.19507192e+07 -1.37110390e+07 -1.20883227e+07 -1.18334658e+07 -1.14956723e+07 -1.68699211e+07 -1.11650276e+07 -1.21665069e+07 -1.03659181e+07 -1.19765931e+07 -1.68663592e+07 -1.66993810e+07 -1.42293233e+07 -1.79871134e+07 -1.21789690e+07 -1.21817059e+07 -1.19644833e+07 -1.67712405e+07 -1.16345711e+07 -1.11758029e+07 -1.21253419e+07 -1.04280197e+07 -1.20966234e+07 -1.22746488e+07 -1.04717395e+07 -9.05117377e+06] [-1.87414362e+07 -2.01039275e+07 -2.05041519e+07 -1.94172184e+07 -2.50237418e+07 -2.03711840e+07 -1.80817895e+07 -2.95026204e+07 -2.61860107e+07 -1.86587855e+07 -2.03368788e+07 -1.97256473e+07 -2.29534431e+07 -2.01160163e+07 -1.95403804e+07 -1.91566365e+07 -3.10431014e+07 -1.80582950e+07 -2.05167714e+07 -2.26653605e+07 -2.02524049e+07 -3.08356903e+07 -3.03239046e+07 -2.85273148e+07 -3.29023218e+07 -2.05398102e+07 -2.02294381e+07 -2.00220845e+07 -3.06575744e+07 -1.98182455e+07 -1.81201304e+07 -2.03587786e+07 -2.27146595e+07 -2.02101540e+07 -2.54713505e+07 -2.28131423e+07 -2.07937743e+07] [-2.87884404e+07 -3.33469635e+07 -3.21353927e+07 -3.00249209e+07 -3.91923719e+07 -3.15498044e+07 -2.80342062e+07 -4.79492225e+07 -4.26993688e+07 -2.89362082e+07 -3.15700698e+07 -3.04691223e+07 -3.57153362e+07 -3.12473134e+07 -3.02348777e+07 -2.98199237e+07 -5.03451396e+07 -2.78288789e+07 -3.18833151e+07 -4.24549212e+07 -3.15285813e+07 -4.98811402e+07 -4.90967628e+07 -4.97255034e+07 -5.29316981e+07 -3.18835686e+07 -3.12161837e+07 -3.10892880e+07 -4.97759148e+07 -3.08799550e+07 -2.79292974e+07 -3.15853643e+07 -4.24448850e+07 -3.12986895e+07 -4.57380104e+07 -4.26322309e+07 -4.01889340e+07] [-4.08689534e+07 -4.87055127e+07 -4.58045335e+07 -4.25828896e+07 -5.63002069e+07 -4.46798748e+07 -3.98263247e+07 -7.01294571e+07 -6.26654223e+07 -4.08858580e+07 -4.44689884e+07 -4.30960261e+07 -5.08273132e+07 -4.41131958e+07 -4.27447878e+07 -4.27819482e+07 -7.35122610e+07 -3.94183927e+07 -4.49512029e+07 -6.44002952e+07 -4.47487091e+07 -7.26886199e+07 -7.15931452e+07 -7.43947782e+07 -7.72609935e+07 -4.48629799e+07 -4.42345445e+07 -4.38982017e+07 -7.26574723e+07 -4.41493766e+07 -3.95429274e+07 -4.45685711e+07 -6.43469157e+07 -4.42158739e+07 -6.85621007e+07 -6.46345620e+07 -6.13580879e+07] [-5.31865386e+07 -6.70206191e+07 -6.06185536e+07 -5.56417483e+07 -7.50232888e+07 -5.87010166e+07 -5.22373709e+07 -9.52920639e+07 -8.57460288e+07 -5.37660676e+07 -5.83839880e+07 -5.65999946e+07 -6.65469126e+07 -5.78921976e+07 -5.61571685e+07 -5.66275309e+07 -9.97958357e+07 -5.12603316e+07 -5.90335945e+07 -9.46647940e+07 -5.90501719e+07 -9.84933119e+07 -9.69542080e+07 -1.04259681e+08 -1.04577115e+08 -5.89139911e+07 -5.81081017e+07 -5.77191945e+07 -9.84513733e+07 -5.89245888e+07 -5.14459635e+07 -5.85594246e+07 -9.43630174e+07 -5.81063023e+07 -9.77774259e+07 -9.47348884e+07 -9.21633688e+07] [-7.58740507e+07 -1.03243762e+08 -8.74245875e+07 -7.90084901e+07 -1.07440514e+08 -8.36718719e+07 -7.66113440e+07 -1.40200260e+08 -1.27316541e+08 -7.78892475e+07 -8.29549743e+07 -8.07288530e+07 -9.35466833e+07 -8.27664618e+07 -8.04105461e+07 -8.24086685e+07 -1.44432035e+08 -7.39369399e+07 -8.38525586e+07 -1.60681831e+08 -8.49378990e+07 -1.42641437e+08 -1.41099811e+08 -1.60653204e+08 -1.48730525e+08 -8.38588331e+07 -8.27169176e+07 -8.25198561e+07 -1.42856892e+08 -8.74846797e+07 -7.43577208e+07 -8.33016153e+07 -1.59974752e+08 -8.26624340e+07 -1.58367517e+08 -1.60320312e+08 -1.62036973e+08] [-7.66185684e+07 -1.25668863e+08 -9.52896640e+07 -8.13062769e+07 -1.19781754e+08 -8.91660655e+07 -8.07243313e+07 -1.66914348e+08 -1.52405905e+08 -8.26860113e+07 -8.78749559e+07 -8.53418784e+07 -9.97543254e+07 -8.84723034e+07 -8.52307375e+07 -8.91720167e+07 -1.70817307e+08 -7.52032347e+07 -8.90411297e+07 -2.24183404e+08 -9.19974480e+07 -1.67701527e+08 -1.65880584e+08 -2.06149611e+08 -1.72969444e+08 -8.92280943e+07 -8.75417308e+07 -8.78154498e+07 -1.68635636e+08 -9.80234072e+07 -7.59732189e+07 -8.83360064e+07 -2.22766032e+08 -8.75840510e+07 -2.12023552e+08 -2.23155817e+08 -2.31399615e+08] [-7.38405896e+07 -1.49146925e+08 -1.01902559e+08 -8.11431902e+07 -1.29262572e+08 -9.33888342e+07 -8.27280811e+07 -1.92362128e+08 -1.76398501e+08 -8.69362761e+07 -9.17662361e+07 -8.85805038e+07 -1.03953964e+08 -9.32966479e+07 -8.89611109e+07 -9.38322450e+07 -1.96190968e+08 -7.33970993e+07 -9.33363744e+07 -2.96353874e+08 -9.85134321e+07 -1.91166272e+08 -1.88844991e+08 -2.54876970e+08 -1.94135836e+08 -9.37527865e+07 -9.06353764e+07 -9.22871340e+07 -1.93129919e+08 -1.06874234e+08 -7.46434314e+07 -9.22512288e+07 -2.94098045e+08 -9.11165141e+07 -2.71641399e+08 -2.94540982e+08 -3.11050852e+08] [-6.38059889e+07 -1.66455236e+08 -1.00448841e+08 -7.37659397e+07 -1.29729169e+08 -9.03956251e+07 -7.74493702e+07 -2.07146970e+08 -1.92621482e+08 -8.49732746e+07 -8.83965449e+07 -8.46755935e+07 -9.90239091e+07 -9.02957157e+07 -8.56867269e+07 -9.15929287e+07 -2.11167800e+08 -6.46328997e+07 -9.02692610e+07 -3.63109359e+08 -9.77739452e+07 -2.03775072e+08 -2.00595293e+08 -2.94702526e+08 -2.03753606e+08 -9.09523719e+07 -8.63933937e+07 -8.95409869e+07 -2.06548555e+08 -1.08214210e+08 -6.63883177e+07 -8.87942317e+07 -3.60007464e+08 -8.73238698e+07 -3.23880606e+08 -3.60443206e+08 -3.85892295e+08] [-4.49537706e+07 -1.64319021e+08 -8.67871306e+07 -5.69336099e+07 -1.15621571e+08 -7.67833544e+07 -6.14843509e+07 -1.99144926e+08 -1.87561147e+08 -7.28646361e+07 -7.50236099e+07 -7.10470161e+07 -8.27604812e+07 -7.67310837e+07 -7.25112826e+07 -7.75962498e+07 -2.03600715e+08 -4.67037462e+07 -7.68337310e+07 -3.90141211e+08 -8.52247541e+07 -1.94516067e+08 -1.90654099e+08 -3.02331579e+08 -1.92262474e+08 -7.78560574e+07 -7.20136173e+07 -7.64727024e+07 -1.97651256e+08 -9.60649304e+07 -4.89590709e+07 -7.51589013e+07 -3.86513530e+08 -7.35926172e+07 -3.40021061e+08 -3.86908032e+08 -4.18661290e+08] [-2.73381946e+07 -1.50009328e+08 -6.98842261e+07 -4.07506584e+07 -9.64040471e+07 -6.13397970e+07 -4.47298640e+07 -1.78596203e+08 -1.70015068e+08 -5.90793331e+07 -6.04109820e+07 -5.62986913e+07 -6.57161581e+07 -6.14938691e+07 -5.80310706e+07 -6.13014018e+07 -1.83953826e+08 -2.95112628e+07 -6.17899513e+07 -3.77305779e+08 -6.95196607e+07 -1.74028172e+08 -1.69581872e+08 -2.84549721e+08 -1.70527242e+08 -6.31938787e+07 -5.65297753e+07 -6.16365492e+07 -1.77157634e+08 -7.98339382e+07 -3.20196941e+07 -6.01588724e+07 -3.73620307e+08 -5.87431633e+07 -3.24406411e+08 -3.73938913e+08 -4.06595374e+08] [-1.18851383e+07 -1.15452409e+08 -4.79856758e+07 -2.32942595e+07 -6.84402886e+07 -4.13070059e+07 -2.77082514e+07 -1.36627867e+08 -1.30767706e+08 -4.12561287e+07 -4.12818781e+07 -3.77153504e+07 -4.38820903e+07 -4.18780523e+07 -3.98230358e+07 -4.09446984e+07 -1.40814438e+08 -1.40772573e+07 -4.21050720e+07 -3.10773518e+08 -4.89658420e+07 -1.32098233e+08 -1.28550627e+08 -2.28149679e+08 -1.27931448e+08 -4.36390390e+07 -3.71280123e+07 -4.24150508e+07 -1.34788929e+08 -5.64193475e+07 -1.65437607e+07 -4.08435036e+07 -3.07941138e+08 -3.94887088e+07 -2.64030016e+08 -3.08084891e+08 -3.35583935e+08] [ 1.34623245e+05 -6.92763739e+07 -2.38079191e+07 -7.10649615e+06 -3.69033200e+07 -2.01590148e+07 -1.14674110e+07 -8.19959999e+07 -7.93633424e+07 -2.14648171e+07 -2.04028923e+07 -1.83844370e+07 -2.10972116e+07 -2.08517314e+07 -2.02055982e+07 -1.96944329e+07 -8.38146130e+07 -1.56800009e+06 -2.04705322e+07 -2.04031781e+08 -2.56182429e+07 -7.77974418e+07 -7.60130867e+07 -1.43435870e+08 -7.36488944e+07 -2.20595635e+07 -1.74238350e+07 -2.13005100e+07 -7.95818409e+07 -2.99587144e+07 -3.56916858e+06 -1.99067889e+07 -2.02365390e+08 -1.91021540e+07 -1.69733217e+08 -2.02280485e+08 -2.20951629e+08] [ 2.43986799e+06 -3.39150538e+07 -9.82178141e+06 -1.17175578e+06 -1.68484038e+07 -8.63007263e+06 -4.82077873e+06 -3.99099601e+07 -3.91448696e+07 -1.06926518e+07 -8.73772391e+06 -8.29772824e+06 -8.84340426e+06 -9.01205823e+06 -9.65391647e+06 -9.16233540e+06 -4.01625686e+07 1.34974957e+06 -8.03488617e+06 -1.07625419e+08 -1.17400905e+07 -3.68701501e+07 -3.61610935e+07 -7.12034188e+07 -3.39459524e+07 -9.53759661e+06 -7.50371928e+06 -9.22754607e+06 -3.77589989e+07 -1.46454434e+07 1.15064765e+03 -8.17306874e+06 -1.06980594e+08 -8.08952283e+06 -8.72892860e+07 -1.06702554e+08 -1.16607514e+08] [-2.21091011e+05 -9.92450416e+06 -3.09586964e+06 -7.80079070e+05 -5.78717932e+06 -3.51580850e+06 -3.85789667e+06 -1.20079805e+07 -1.21246952e+07 -6.18498770e+06 -3.33091010e+06 -3.98588908e+06 -3.14747649e+06 -3.62334524e+06 -5.03540852e+06 -4.80670967e+06 -1.12582042e+07 -7.62342468e+05 -2.41157207e+06 -3.54063857e+07 -5.20422606e+06 -9.98035342e+06 -1.01858684e+07 -1.89899151e+07 -8.29092175e+06 -3.55221715e+06 -3.42748169e+06 -3.70725564e+06 -1.00898746e+07 -6.54490941e+06 -1.58992851e+06 -2.96871871e+06 -3.56089701e+07 -3.15625218e+06 -2.68678780e+07 -3.52048832e+07 -3.80873101e+07] [-7.52054598e+06 -3.10434965e+06 -6.18123971e+06 -7.20603608e+06 -5.67356909e+06 -7.78204442e+06 -9.15607358e+06 -3.98501977e+06 -3.69636973e+06 -1.02407430e+07 -8.23740106e+06 -8.88892129e+06 -8.15771071e+06 -8.30345239e+06 -9.67595390e+06 -7.94263467e+06 -2.87457239e+06 -7.99032504e+06 -7.14491659e+06 -1.52041318e+06 -8.39300863e+06 -2.79640901e+06 -3.16853047e+06 1.42515904e+06 -1.23600655e+06 -8.18895319e+06 -8.17815725e+06 -8.28382167e+06 -2.75212770e+06 -7.23893905e+06 -8.50306117e+06 -7.81576557e+06 -2.32957434e+06 -8.04461459e+06 -5.20492257e+05 -1.83951928e+06 -1.26571515e+05] [-8.83769427e+06 1.72732845e+06 -5.63150030e+06 -8.22452946e+06 -3.43986410e+06 -7.77467160e+06 -9.31088597e+06 2.53912064e+06 2.40310347e+06 -9.76795011e+06 -8.32395083e+06 -9.03277928e+06 -8.08732455e+06 -8.08738746e+06 -9.51205684e+06 -7.44683289e+06 3.64425508e+06 -9.05747929e+06 -7.29478317e+06 1.78111274e+07 -7.58582670e+06 3.14495327e+06 2.77449462e+06 1.35496472e+07 4.15823958e+06 -8.04807614e+06 -8.36792444e+06 -8.17540078e+06 3.26332977e+06 -5.73608628e+06 -9.35275719e+06 -7.94970743e+06 1.68829450e+07 -8.25581144e+06 1.50387712e+07 1.73259419e+07 2.10675828e+07] [-2.63075078e+06 7.87945512e+06 7.21882320e+05 -1.86133529e+06 2.99428394e+06 -1.16282928e+06 -2.30809106e+06 9.86359371e+06 8.93107569e+06 -2.37858709e+06 -1.22881519e+06 -2.01748714e+06 -6.56908515e+05 -1.00543869e+06 -2.26208524e+06 -9.83151500e+05 1.07129850e+07 -2.57001775e+06 -5.04272756e+05 2.66803074e+07 -5.94898908e+05 1.02751039e+07 9.90457387e+06 2.12285215e+07 1.06834411e+07 -9.63845052e+05 -1.71431409e+06 -1.15536239e+06 1.05595601e+07 5.84744457e+05 -2.67274394e+06 -1.02295246e+06 2.60445802e+07 -1.33453103e+06 2.35301667e+07 2.63378421e+07 2.96317765e+07] [-4.38304368e+06 2.39311713e+06 -2.39419627e+06 -3.88106870e+06 -1.15623381e+06 -3.49804291e+06 -4.09746418e+06 3.11630692e+06 2.75199575e+06 -4.01064323e+06 -3.39597334e+06 -3.93725463e+06 -3.22751640e+06 -3.32804358e+06 -4.04292937e+06 -3.38219753e+06 3.54606448e+06 -4.25848052e+06 -3.04483906e+06 1.47679449e+07 -3.06264417e+06 3.27927192e+06 3.07609267e+06 1.08788598e+07 3.35557044e+06 -3.27583150e+06 -3.82869560e+06 -3.40816687e+06 3.48481028e+06 -2.57606316e+06 -4.26250924e+06 -3.33004333e+06 1.44265500e+07 -3.52219698e+06 1.25560362e+07 1.46043363e+07 1.65160688e+07] [-4.34090465e+06 -1.86242882e+06 -3.62215006e+06 -4.12134653e+06 -3.33313213e+06 -3.95635859e+06 -4.18374532e+06 -2.20902836e+06 -2.07283145e+06 -4.09912156e+06 -3.91363774e+06 -4.12402552e+06 -4.04095016e+06 -3.91006626e+06 -4.15249191e+06 -3.93198361e+06 -2.05096191e+06 -4.28891129e+06 -3.80680983e+06 2.07375973e+06 -3.80655953e+06 -2.18576774e+06 -2.29260625e+06 6.19604314e+05 -2.17066912e+06 -3.87117212e+06 -4.08670234e+06 -3.93783964e+06 -2.12302639e+06 -3.61603780e+06 -4.26018385e+06 -3.90610189e+06 1.96171077e+06 -3.96564398e+06 1.24766942e+06 2.02612619e+06 2.64124230e+06] [-1.08123550e+06 -1.00085736e+06 -1.00124513e+06 -1.04904789e+06 -1.03584779e+06 -1.00711368e+06 -1.07583855e+06 -1.11767643e+06 -1.05981728e+06 -1.03915098e+06 -9.97600711e+05 -1.01619653e+06 -1.04309326e+06 -9.97683675e+05 -1.02371806e+06 -1.03845879e+06 -1.07765939e+06 -1.08761213e+06 -9.90652875e+05 -1.03578500e+06 -1.00497063e+06 -1.08659745e+06 -1.11916744e+06 -1.04117459e+06 -1.04621973e+06 -9.94091886e+05 -1.01725765e+06 -1.00633738e+06 -1.09406714e+06 -1.03820900e+06 -1.08717368e+06 -9.99681088e+05 -1.04120929e+06 -1.00232653e+06 -1.05750173e+06 -1.03269510e+06 -1.03041875e+06] [-7.71946601e+03 -7.92319588e+03 -7.01199254e+03 -7.78253265e+03 -7.00502766e+03 -7.14700016e+03 -7.61901793e+03 -7.26602063e+03 -7.41957661e+03 -7.68891948e+03 -7.01517928e+03 -7.15904603e+03 -7.06716056e+03 -6.86158242e+03 -7.18470630e+03 -7.70130451e+03 -7.16042146e+03 -7.64667324e+03 -6.98733374e+03 -6.59760474e+03 -7.02978527e+03 -7.09158004e+03 -7.18584469e+03 -6.91919521e+03 -6.62718662e+03 -6.99255935e+03 -7.21140672e+03 -7.07780901e+03 -7.04518708e+03 -7.97222697e+03 -7.76774983e+03 -7.03933959e+03 -6.61446721e+03 -7.09108198e+03 -6.83105852e+03 -6.46524442e+03 -6.29849183e+03] [-5.88391715e-01 -1.81311051e-01 4.57114113e-01 1.79837982e-01 8.82391937e-01 -1.06225233e-01 2.35167564e-01 -8.35023532e-01 -5.39174002e-01 -7.56026617e-01 5.33378747e-01 -9.61463088e-01 8.81996508e-01 6.71779084e-01 3.58018850e-01 -9.42699719e-01 -4.84204504e-01 -7.27436131e-01 4.21397479e-01 -8.61068172e-01 7.79776238e-01 1.08739970e-01 -7.93221856e-01 -7.89489041e-02 -7.16029829e-01 -1.53712516e-01 4.27746318e-01 3.92587215e-01 -3.03701548e-01 -3.02481429e-01 -8.47750860e-01 -8.24974647e-01 -9.00237865e-01 -8.51047684e-01 -2.29821169e-01 6.32742764e-01 -3.17645800e-01] [ 1.22364101e-02 2.46974347e-01 1.70576833e-01 -7.32249743e-01 2.38828331e-01 4.47127971e-02 5.02956263e-01 3.51356171e-01 -4.20842746e-02 9.12268125e-01 -4.78166983e-01 4.21294531e-01 -5.96716164e-01 3.27236106e-01 -5.00968549e-01 -5.87505141e-01 -2.59656913e-01 1.77133655e-02 3.61851305e-01 -3.80809476e-01 -2.35326592e-01 5.21856870e-01 -3.39938487e-01 -8.72401191e-01 -9.07791085e-01 -7.30149267e-01 -6.09685005e-02 -2.31791798e-01 3.50396895e-01 -8.09210822e-01 -6.76390250e-01 9.38287841e-01 -1.51029935e-01 8.32106090e-01 -5.31308566e-01 9.65094889e-01 -7.47023484e-01] [-2.36801358e+05 -1.79814644e+05 -2.31119031e+05 -2.32204150e+05 -2.37467404e+05 -2.28108598e+05 -2.33228176e+05 -2.58130408e+05 -2.12447354e+05 -2.11525386e+05 -2.32984636e+05 -2.29558713e+05 -2.67049673e+05 -2.43508600e+05 -2.24569105e+05 -2.05975474e+05 -2.55209040e+05 -2.38514122e+05 -2.33220130e+05 -1.53341480e+05 -2.22644599e+05 -2.61853109e+05 -2.63459276e+05 -2.19828718e+05 -2.63896931e+05 -2.39284981e+05 -2.31378655e+05 -2.32268419e+05 -2.68296048e+05 -2.00781105e+05 -2.38314238e+05 -2.32422126e+05 -1.61493517e+05 -2.33620729e+05 -1.95265897e+05 -1.60609098e+05 -1.33796305e+05] [-2.94836011e+06 -2.74589162e+06 -2.99599861e+06 -2.98437523e+06 -3.22800082e+06 -3.01867016e+06 -2.88772400e+06 -3.55435210e+06 -3.17281877e+06 -2.90689269e+06 -3.07520808e+06 -3.01624399e+06 -3.33683406e+06 -3.08242161e+06 -2.99551544e+06 -2.84062881e+06 -3.63468792e+06 -2.92696621e+06 -3.07152518e+06 -2.72439343e+06 -2.98234605e+06 -3.64151313e+06 -3.62186487e+06 -3.29486510e+06 -3.69383447e+06 -3.10095383e+06 -3.03062825e+06 -3.04058686e+06 -3.65911352e+06 -2.85697205e+06 -2.92881404e+06 -3.06505724e+06 -2.75198515e+06 -3.06175982e+06 -3.03847178e+06 -2.74749920e+06 -2.55301747e+06] [-9.02294967e+06 -7.85760290e+06 -9.07459944e+06 -9.03292351e+06 -1.02829437e+07 -9.23754169e+06 -8.67914688e+06 -1.09026295e+07 -9.82812816e+06 -8.73807649e+06 -9.20811671e+06 -9.18026090e+06 -1.01828203e+07 -9.20299600e+06 -9.07901803e+06 -8.84380417e+06 -1.11913705e+07 -8.79109919e+06 -9.18649431e+06 -5.97616805e+06 -9.02190091e+06 -1.12171171e+07 -1.11650634e+07 -8.78542885e+06 -1.17837302e+07 -9.24268432e+06 -9.31476100e+06 -9.09932977e+06 -1.11668357e+07 -8.88695229e+06 -8.78460783e+06 -9.20176705e+06 -6.03797565e+06 -9.24102750e+06 -7.43314239e+06 -6.04418535e+06 -5.04483729e+06] [-1.46899696e+07 -1.32724501e+07 -1.49903672e+07 -1.47879073e+07 -1.75918819e+07 -1.51994148e+07 -1.40471050e+07 -1.92839997e+07 -1.72201506e+07 -1.42121989e+07 -1.51077400e+07 -1.49614665e+07 -1.69488234e+07 -1.50276368e+07 -1.48232437e+07 -1.44776330e+07 -1.99931290e+07 -1.42380075e+07 -1.51212854e+07 -1.08323639e+07 -1.49258356e+07 -1.99965216e+07 -1.98290953e+07 -1.61125386e+07 -2.12346418e+07 -1.51831858e+07 -1.52589426e+07 -1.49035446e+07 -1.98795491e+07 -1.46571491e+07 -1.42474069e+07 -1.51083890e+07 -1.09727189e+07 -1.51091356e+07 -1.35312165e+07 -1.10079382e+07 -8.99979483e+06] [-2.75591106e+07 -2.68127343e+07 -2.86233154e+07 -2.78919861e+07 -3.38734293e+07 -2.86718527e+07 -2.65262986e+07 -3.82964839e+07 -3.42125422e+07 -2.68148994e+07 -2.84715449e+07 -2.80653906e+07 -3.18347977e+07 -2.82638998e+07 -2.78492517e+07 -2.75456817e+07 -3.97343464e+07 -2.67673070e+07 -2.86110669e+07 -2.61808457e+07 -2.83935233e+07 -3.96427602e+07 -3.92299415e+07 -3.45858520e+07 -4.19894663e+07 -2.86548738e+07 -2.86652307e+07 -2.81649631e+07 -3.94124037e+07 -2.81383019e+07 -2.67844649e+07 -2.85195710e+07 -2.63448941e+07 -2.84300488e+07 -3.04201925e+07 -2.64159498e+07 -2.34775627e+07] [-5.08046480e+07 -5.08212771e+07 -5.31344017e+07 -5.16489969e+07 -6.19427176e+07 -5.27834711e+07 -4.92753009e+07 -7.13839147e+07 -6.34819074e+07 -4.96072818e+07 -5.28277386e+07 -5.17456864e+07 -5.89015918e+07 -5.25400733e+07 -5.14161003e+07 -5.06598623e+07 -7.38692411e+07 -4.95957923e+07 -5.31129401e+07 -5.35174851e+07 -5.25501594e+07 -7.37480833e+07 -7.29489164e+07 -6.76604624e+07 -7.75169506e+07 -5.32249858e+07 -5.26799243e+07 -5.22710200e+07 -7.34688051e+07 -5.16207992e+07 -4.96331693e+07 -5.28899562e+07 -5.37984679e+07 -5.25948382e+07 -6.06893416e+07 -5.39111872e+07 -4.91936634e+07] [-7.60101082e+07 -8.03696467e+07 -8.05715888e+07 -7.77572006e+07 -9.33490033e+07 -7.97324405e+07 -7.44122568e+07 -1.10375968e+08 -9.86316327e+07 -7.55491868e+07 -8.01008035e+07 -7.82189146e+07 -8.90025609e+07 -7.96142404e+07 -7.79036759e+07 -7.68319352e+07 -1.13921204e+08 -7.44239058e+07 -8.05080430e+07 -9.24543859e+07 -7.97218653e+07 -1.13492042e+08 -1.12279258e+08 -1.09929127e+08 -1.18344826e+08 -8.06449913e+07 -7.94494813e+07 -7.92830405e+07 -1.13312881e+08 -7.82085482e+07 -7.45545799e+07 -8.01026802e+07 -9.27181310e+07 -7.95470670e+07 -1.01100761e+08 -9.28959143e+07 -8.71497767e+07] [-9.18868828e+07 -1.01700156e+08 -9.75378770e+07 -9.37453747e+07 -1.14721411e+08 -9.62235407e+07 -9.03537177e+07 -1.38139605e+08 -1.24815348e+08 -9.15055113e+07 -9.57359193e+07 -9.41507794e+07 -1.06618822e+08 -9.50867560e+07 -9.38172801e+07 -9.43725778e+07 -1.42035829e+08 -8.97797088e+07 -9.62177212e+07 -1.25165734e+08 -9.63927033e+07 -1.41183803e+08 -1.39920500e+08 -1.41128331e+08 -1.46973147e+08 -9.61898313e+07 -9.59609547e+07 -9.50251700e+07 -1.40837750e+08 -9.66155047e+07 -8.99465244e+07 -9.59023868e+07 -1.25265375e+08 -9.54184217e+07 -1.32110132e+08 -1.25464084e+08 -1.20643523e+08] [-1.12029745e+08 -1.35648504e+08 -1.21809380e+08 -1.15039443e+08 -1.44090572e+08 -1.19483302e+08 -1.12207509e+08 -1.79267935e+08 -1.63591630e+08 -1.14039230e+08 -1.18457844e+08 -1.16744877e+08 -1.31478273e+08 -1.17913596e+08 -1.16393005e+08 -1.18033014e+08 -1.83292958e+08 -1.09996454e+08 -1.18950664e+08 -1.87802891e+08 -1.20085942e+08 -1.81679254e+08 -1.80029977e+08 -1.93319675e+08 -1.87401550e+08 -1.19163474e+08 -1.19005980e+08 -1.17877128e+08 -1.81561531e+08 -1.22808000e+08 -1.10340270e+08 -1.18661670e+08 -1.87406932e+08 -1.18279527e+08 -1.88182799e+08 -1.87532644e+08 -1.87375453e+08] [-1.44361877e+08 -1.86561830e+08 -1.59209709e+08 -1.47812262e+08 -1.87561628e+08 -1.54379956e+08 -1.47804296e+08 -2.38900726e+08 -2.19167542e+08 -1.48997876e+08 -1.52576228e+08 -1.50885309e+08 -1.68360158e+08 -1.52995929e+08 -1.50867426e+08 -1.55039465e+08 -2.41587870e+08 -1.43059389e+08 -1.53370345e+08 -2.82195351e+08 -1.56699522e+08 -2.39208974e+08 -2.37780250e+08 -2.69372191e+08 -2.43051815e+08 -1.53763751e+08 -1.53425041e+08 -1.52738760e+08 -2.39561046e+08 -1.63965002e+08 -1.43666070e+08 -1.53076331e+08 -2.81193121e+08 -1.52547627e+08 -2.73225298e+08 -2.81099634e+08 -2.88490973e+08] [-1.62025099e+08 -2.29523638e+08 -1.86512509e+08 -1.68146062e+08 -2.18567527e+08 -1.79600941e+08 -1.70606034e+08 -2.86977332e+08 -2.63779944e+08 -1.74379101e+08 -1.77853480e+08 -1.75162611e+08 -1.94386985e+08 -1.78985780e+08 -1.75722577e+08 -1.80228515e+08 -2.89398503e+08 -1.61891415e+08 -1.79179153e+08 -3.73368487e+08 -1.84076677e+08 -2.85363087e+08 -2.83169053e+08 -3.38842393e+08 -2.86574029e+08 -1.79927959e+08 -1.77445782e+08 -1.78666077e+08 -2.86616283e+08 -1.94243745e+08 -1.62965697e+08 -1.78417847e+08 -3.71614739e+08 -1.77330872e+08 -3.53394678e+08 -3.71352648e+08 -3.87343601e+08] [-1.74786670e+08 -2.67754138e+08 -2.09213885e+08 -1.83735198e+08 -2.42613390e+08 -2.00021108e+08 -1.88534544e+08 -3.25794821e+08 -3.00986392e+08 -1.95544048e+08 -1.98478582e+08 -1.94691147e+08 -2.14030227e+08 -2.00322101e+08 -1.96061114e+08 -2.00762828e+08 -3.28205212e+08 -1.75957654e+08 -2.00518308e+08 -4.59332984e+08 -2.07320044e+08 -3.22177661e+08 -3.19136383e+08 -4.00606964e+08 -3.20610753e+08 -2.01410835e+08 -1.96404207e+08 -2.00147856e+08 -3.24422818e+08 -2.18764640e+08 -1.77436148e+08 -1.99115183e+08 -4.56764388e+08 -1.97230789e+08 -4.26999617e+08 -4.56420286e+08 -4.81792016e+08] [-1.82266028e+08 -2.97013905e+08 -2.26864861e+08 -1.94594531e+08 -2.61031284e+08 -2.16353161e+08 -2.00337895e+08 -3.54198203e+08 -3.29229656e+08 -2.11855181e+08 -2.14874303e+08 -2.09860557e+08 -2.28217641e+08 -2.16796724e+08 -2.11808973e+08 -2.16189254e+08 -3.58153576e+08 -1.84326163e+08 -2.17600979e+08 -5.25565043e+08 -2.25698127e+08 -3.49649196e+08 -3.45141263e+08 -4.47259124e+08 -3.47612514e+08 -2.18716435e+08 -2.11340453e+08 -2.17208750e+08 -3.52396714e+08 -2.37843425e+08 -1.86319717e+08 -2.15513504e+08 -5.22337527e+08 -2.12874668e+08 -4.82680413e+08 -5.21912496e+08 -5.55033228e+08] [-1.54542669e+08 -2.84980652e+08 -2.05999179e+08 -1.69458714e+08 -2.38389445e+08 -1.95451831e+08 -1.75731602e+08 -3.36124627e+08 -3.13466472e+08 -1.91306930e+08 -1.94221932e+08 -1.88320613e+08 -2.04282975e+08 -1.96139206e+08 -1.90751323e+08 -1.93682886e+08 -3.41977231e+08 -1.57481329e+08 -1.97191855e+08 -5.38549932e+08 -2.06065194e+08 -3.31144545e+08 -3.25440143e+08 -4.44485005e+08 -3.28407516e+08 -1.98640307e+08 -1.89377024e+08 -1.96877969e+08 -3.34398593e+08 -2.17354949e+08 -1.59945555e+08 -1.94663672e+08 -5.34940029e+08 -1.91653056e+08 -4.87123788e+08 -5.34491398e+08 -5.72555623e+08] [-1.09218276e+08 -2.40947452e+08 -1.60938310e+08 -1.23917790e+08 -1.91547580e+08 -1.50808577e+08 -1.30438167e+08 -2.84208576e+08 -2.65486717e+08 -1.46360949e+08 -1.49162226e+08 -1.43415771e+08 -1.56448361e+08 -1.50818447e+08 -1.45874154e+08 -1.48630582e+08 -2.90004356e+08 -1.12104926e+08 -1.51794504e+08 -4.92245507e+08 -1.61136337e+08 -2.79149130e+08 -2.73255416e+08 -3.94239849e+08 -2.76163954e+08 -1.53558459e+08 -1.44600989e+08 -1.51727056e+08 -2.81851802e+08 -1.72770993e+08 -1.14720140e+08 -1.49419875e+08 -4.88634304e+08 -1.46707366e+08 -4.38162724e+08 -4.88228957e+08 -5.26662037e+08] [-7.61336008e+07 -1.90349177e+08 -1.18752392e+08 -8.78030263e+07 -1.43925436e+08 -1.10626621e+08 -9.50624119e+07 -2.23068837e+08 -2.09647776e+08 -1.08605450e+08 -1.09198794e+08 -1.04916798e+08 -1.14229555e+08 -1.10536698e+08 -1.07411967e+08 -1.09547884e+08 -2.25956191e+08 -7.89737246e+07 -1.10713840e+08 -4.13264937e+08 -1.19504521e+08 -2.17024969e+08 -2.12891363e+08 -3.20879698e+08 -2.12469562e+08 -1.12694946e+08 -1.05572195e+08 -1.11420511e+08 -2.19205275e+08 -1.30091948e+08 -8.15329014e+07 -1.09109497e+08 -4.10376100e+08 -1.07178477e+08 -3.62150406e+08 -4.09865191e+08 -4.43621671e+08] [-5.29622657e+07 -1.36398580e+08 -8.38174125e+07 -6.18213399e+07 -1.00652487e+08 -7.93728284e+07 -6.81992142e+07 -1.59066274e+08 -1.50242505e+08 -8.01025326e+07 -7.95155678e+07 -7.66204039e+07 -8.27041468e+07 -8.00879280e+07 -7.88963876e+07 -7.72641599e+07 -1.59682161e+08 -5.56859706e+07 -7.94605103e+07 -3.04113232e+08 -8.59806776e+07 -1.53475863e+08 -1.50872753e+08 -2.31447526e+08 -1.47667008e+08 -8.18665242e+07 -7.59915506e+07 -8.07637906e+07 -1.55186089e+08 -9.17212300e+07 -5.79891717e+07 -7.87654030e+07 -3.02419223e+08 -7.78057627e+07 -2.63389548e+08 -3.01779420e+08 -3.25972580e+08] [-3.31922946e+07 -8.39832433e+07 -5.10617402e+07 -3.83195697e+07 -6.04620976e+07 -4.97062839e+07 -4.40634090e+07 -9.69280057e+07 -9.21057728e+07 -5.25110955e+07 -4.99470779e+07 -4.88011359e+07 -5.17685509e+07 -5.03187074e+07 -5.09471978e+07 -4.86492548e+07 -9.62657201e+07 -3.55715223e+07 -4.87955277e+07 -1.92752765e+08 -5.43444565e+07 -9.23533472e+07 -9.10860083e+07 -1.41846743e+08 -8.69034404e+07 -5.11130769e+07 -4.79985815e+07 -5.07118339e+07 -9.33977209e+07 -5.65667648e+07 -3.73616342e+07 -4.89097578e+07 -1.92182684e+08 -4.86599242e+07 -1.64460630e+08 -1.91485244e+08 -2.05665253e+08] [-3.29386114e+07 -5.54725513e+07 -4.04783706e+07 -3.47086837e+07 -4.64448626e+07 -4.09951458e+07 -3.96853447e+07 -6.50420623e+07 -6.13642257e+07 -4.46628842e+07 -4.08271313e+07 -4.11250948e+07 -4.23937243e+07 -4.10523623e+07 -4.29752759e+07 -4.15481341e+07 -6.34143595e+07 -3.43658719e+07 -3.93233517e+07 -1.12775226e+08 -4.40443185e+07 -6.16016503e+07 -6.13374656e+07 -8.33865377e+07 -5.74048486e+07 -4.11794227e+07 -4.04552360e+07 -4.13904868e+07 -6.16732865e+07 -4.52850231e+07 -3.55758123e+07 -4.00231953e+07 -1.12975594e+08 -4.01091778e+07 -9.70509947e+07 -1.12211469e+08 -1.18784374e+08] [-3.69936292e+07 -3.63343150e+07 -3.54973935e+07 -3.62336970e+07 -3.72164044e+07 -3.74055754e+07 -4.02131347e+07 -4.19799767e+07 -3.93958531e+07 -4.20585293e+07 -3.74147747e+07 -3.87481593e+07 -3.87357366e+07 -3.76706884e+07 -4.03191018e+07 -3.86888970e+07 -3.94870889e+07 -3.80798970e+07 -3.57244578e+07 -5.18225257e+07 -3.91268854e+07 -3.93681772e+07 -4.00815714e+07 -4.05311556e+07 -3.57353931e+07 -3.71513739e+07 -3.79059859e+07 -3.79132485e+07 -3.91184532e+07 -3.85307746e+07 -3.88268466e+07 -3.67962090e+07 -5.28936750e+07 -3.70510008e+07 -4.68374166e+07 -5.20559988e+07 -5.18870025e+07] [-4.21437085e+07 -3.10397680e+07 -3.78968216e+07 -4.10873715e+07 -3.72109070e+07 -4.10018146e+07 -4.34833825e+07 -3.49687693e+07 -3.30491110e+07 -4.47159361e+07 -4.11763648e+07 -4.25360074e+07 -4.21059612e+07 -4.08960191e+07 -4.35683966e+07 -4.13342165e+07 -3.32142006e+07 -4.27869059e+07 -3.96125836e+07 -2.23161402e+07 -4.13228959e+07 -3.33689043e+07 -3.40798041e+07 -2.28179570e+07 -3.12094374e+07 -4.07731759e+07 -4.17848978e+07 -4.13324287e+07 -3.30980798e+07 -3.94556168e+07 -4.32230808e+07 -4.06388312e+07 -2.35715295e+07 -4.10148453e+07 -2.36987858e+07 -2.27534193e+07 -1.90104899e+07] [-3.47544828e+07 -2.06591422e+07 -3.03907263e+07 -3.35985144e+07 -2.93078784e+07 -3.32530402e+07 -3.47927512e+07 -2.35177062e+07 -2.22165872e+07 -3.54193268e+07 -3.30817341e+07 -3.44140124e+07 -3.37429264e+07 -3.27731570e+07 -3.49481642e+07 -3.33137914e+07 -2.22411230e+07 -3.47518069e+07 -3.19804791e+07 -1.85783137e+05 -3.27189846e+07 -2.26619939e+07 -2.32191787e+07 -6.79324161e+06 -2.16391001e+07 -3.27947183e+07 -3.40642520e+07 -3.31837254e+07 -2.21391843e+07 -3.15042945e+07 -3.49126691e+07 -3.28116487e+07 -1.13632758e+06 -3.32183408e+07 -4.46017312e+06 -5.22501788e+05 3.75871957e+06] [-2.29184481e+07 -1.44275555e+07 -2.09294968e+07 -2.25730172e+07 -2.02393395e+07 -2.25587127e+07 -2.29542025e+07 -1.62970371e+07 -1.52180159e+07 -2.33911140e+07 -2.25393807e+07 -2.30895701e+07 -2.29052754e+07 -2.22755223e+07 -2.33586653e+07 -2.22279206e+07 -1.58876763e+07 -2.27681090e+07 -2.20187869e+07 4.31490860e+05 -2.21323161e+07 -1.61076506e+07 -1.62794539e+07 -5.20549099e+06 -1.57986471e+07 -2.24820673e+07 -2.29145039e+07 -2.25555626e+07 -1.58338428e+07 -2.16645508e+07 -2.28225664e+07 -2.24275555e+07 -9.22376835e+04 -2.25923803e+07 -3.03724262e+06 2.80926304e+05 2.70739127e+06] [-1.12493628e+07 -8.64449481e+06 -1.07833504e+07 -1.11779188e+07 -1.07832053e+07 -1.12736582e+07 -1.13737737e+07 -9.89955330e+06 -9.18808606e+06 -1.15256810e+07 -1.12544918e+07 -1.14076361e+07 -1.15211743e+07 -1.11738589e+07 -1.15258749e+07 -1.11628023e+07 -9.78192208e+06 -1.12024367e+07 -1.11064565e+07 -4.41798452e+06 -1.11820430e+07 -9.83252153e+06 -9.88772427e+06 -6.12388489e+06 -9.70273943e+06 -1.12723386e+07 -1.13677750e+07 -1.12883781e+07 -9.75678466e+06 -1.11421248e+07 -1.12201989e+07 -1.12324199e+07 -4.59086933e+06 -1.12540130e+07 -5.58067328e+06 -4.44249471e+06 -3.80317190e+06] [-2.71674359e+06 -2.40822656e+06 -2.59559242e+06 -2.66506313e+06 -2.68988010e+06 -2.64199614e+06 -2.74675433e+06 -2.73330574e+06 -2.55435153e+06 -2.70772288e+06 -2.62228450e+06 -2.65416847e+06 -2.69714751e+06 -2.60485063e+06 -2.69059535e+06 -2.67860344e+06 -2.66869789e+06 -2.72652984e+06 -2.59584010e+06 -2.11566055e+06 -2.65201977e+06 -2.68085639e+06 -2.73622349e+06 -2.23705593e+06 -2.60691568e+06 -2.61858908e+06 -2.65637981e+06 -2.63676796e+06 -2.68283411e+06 -2.72263013e+06 -2.72728602e+06 -2.62185681e+06 -2.14641361e+06 -2.61791108e+06 -2.25185932e+06 -2.11691563e+06 -2.08079256e+06] [-8.21064255e+05 -8.22927873e+05 -8.18798691e+05 -8.23834679e+05 -8.62358041e+05 -8.24906382e+05 -8.23586008e+05 -9.51651305e+05 -8.96336427e+05 -8.29879387e+05 -8.23224493e+05 -8.24881091e+05 -8.63670401e+05 -8.20555413e+05 -8.26551291e+05 -8.23200021e+05 -9.52444828e+05 -8.22820791e+05 -8.22128594e+05 -9.23665508e+05 -8.22855937e+05 -9.50058008e+05 -9.50089736e+05 -9.31586467e+05 -9.43443513e+05 -8.24445700e+05 -8.26883402e+05 -8.23983240e+05 -9.49278428e+05 -8.27765943e+05 -8.23088610e+05 -8.23638206e+05 -9.24981042e+05 -8.24177044e+05 -9.30781858e+05 -9.22254016e+05 -9.22355445e+05] [-4.58471741e+04 -4.65923428e+04 -4.60935802e+04 -4.59193629e+04 -4.95722060e+04 -4.59975754e+04 -4.57932855e+04 -5.66781936e+04 -5.23590059e+04 -4.56495138e+04 -4.59756670e+04 -4.58123245e+04 -4.93028722e+04 -4.57911683e+04 -4.58046732e+04 -4.58762145e+04 -5.69233268e+04 -4.58756570e+04 -4.61996405e+04 -5.71021385e+04 -4.59599377e+04 -5.71225283e+04 -5.68569328e+04 -5.69290813e+04 -5.71478554e+04 -4.60202884e+04 -4.58263892e+04 -4.59089428e+04 -5.68483344e+04 -4.57467002e+04 -4.57103511e+04 -4.60748496e+04 -5.71704830e+04 -4.59059857e+04 -5.73514629e+04 -5.70863913e+04 -5.73447809e+04] [-2.88229292e+05 -2.83655517e+05 -2.80239519e+05 -2.88168376e+05 -2.98109544e+05 -2.78034210e+05 -2.84058481e+05 -3.37113820e+05 -3.10602559e+05 -2.79761154e+05 -2.78510662e+05 -2.76553871e+05 -2.98115097e+05 -2.75626609e+05 -2.77530880e+05 -2.81799096e+05 -3.39343518e+05 -2.88235067e+05 -2.80778569e+05 -3.10800937e+05 -2.79190808e+05 -3.41176578e+05 -3.39737239e+05 -3.36969616e+05 -3.45029067e+05 -2.77509278e+05 -2.77588209e+05 -2.78411545e+05 -3.40825837e+05 -2.79302143e+05 -2.87610629e+05 -2.79132648e+05 -3.11963230e+05 -2.77050549e+05 -3.29105831e+05 -3.11923553e+05 -3.05196015e+05] [-3.54544017e+05 -2.24941427e+05 -3.55133676e+05 -3.60026940e+05 -3.31456495e+05 -3.39871562e+05 -3.33037724e+05 -3.33682835e+05 -2.56231792e+05 -3.21391703e+05 -3.62386665e+05 -3.47695143e+05 -4.16338954e+05 -3.77630002e+05 -3.39800685e+05 -3.08294440e+05 -3.43326694e+05 -3.51875728e+05 -3.72711702e+05 -4.25991161e+03 -3.32490684e+05 -3.65184188e+05 -3.60702303e+05 -2.42818050e+05 -3.87237666e+05 -3.66589215e+05 -3.43311484e+05 -3.61129482e+05 -3.78602226e+05 -2.81625422e+05 -3.48128993e+05 -3.63132302e+05 -1.21324603e+04 -3.56980900e+05 -1.46633841e+05 -1.55764816e+04 5.72561770e+04] [-5.91348409e+06 -5.35778799e+06 -5.94828486e+06 -5.90690088e+06 -6.42752476e+06 -5.91721524e+06 -5.72061430e+06 -6.95958092e+06 -6.22831266e+06 -5.65602699e+06 -5.96651272e+06 -5.88351187e+06 -6.50964059e+06 -5.99955942e+06 -5.82370199e+06 -5.70388282e+06 -7.08305462e+06 -5.84351052e+06 -5.99583792e+06 -4.84640392e+06 -5.84600172e+06 -7.14501109e+06 -7.11422559e+06 -6.29103065e+06 -7.36174516e+06 -6.00592251e+06 -5.94088908e+06 -5.92425295e+06 -7.13794001e+06 -5.68193765e+06 -5.82475839e+06 -5.97090433e+06 -4.88214681e+06 -5.95758349e+06 -5.64269247e+06 -4.89050474e+06 -4.46126763e+06] [-1.45372343e+07 -1.28038247e+07 -1.44981782e+07 -1.44959395e+07 -1.61312978e+07 -1.44881294e+07 -1.39718020e+07 -1.74031615e+07 -1.55435683e+07 -1.37885706e+07 -1.45762069e+07 -1.43775621e+07 -1.60954040e+07 -1.45801275e+07 -1.42497541e+07 -1.39681850e+07 -1.77810777e+07 -1.42926476e+07 -1.46228224e+07 -1.07592520e+07 -1.42902261e+07 -1.79727145e+07 -1.79039799e+07 -1.51072633e+07 -1.87404320e+07 -1.46418654e+07 -1.45641404e+07 -1.44189309e+07 -1.79333835e+07 -1.39093514e+07 -1.42541944e+07 -1.45814569e+07 -1.08782363e+07 -1.45492556e+07 -1.30935610e+07 -1.09105965e+07 -9.44422801e+06] [-2.65426429e+07 -2.40024503e+07 -2.64118665e+07 -2.62530475e+07 -3.04408396e+07 -2.63203122e+07 -2.54144807e+07 -3.34475280e+07 -2.98458169e+07 -2.47789029e+07 -2.60581401e+07 -2.58028333e+07 -2.90806030e+07 -2.59801123e+07 -2.55745942e+07 -2.56155138e+07 -3.41549872e+07 -2.60006597e+07 -2.61966092e+07 -2.13034718e+07 -2.59910817e+07 -3.44512531e+07 -3.43722557e+07 -2.93256832e+07 -3.61192629e+07 -2.62015911e+07 -2.63906039e+07 -2.58345893e+07 -3.43109580e+07 -2.58146297e+07 -2.59434915e+07 -2.61383107e+07 -2.15268985e+07 -2.60787406e+07 -2.56142162e+07 -2.15879650e+07 -1.87821828e+07] [-5.04738997e+07 -4.59841324e+07 -5.04730337e+07 -5.01910575e+07 -5.78577722e+07 -5.01063736e+07 -4.81927849e+07 -6.41351207e+07 -5.70843455e+07 -4.72332770e+07 -4.99300468e+07 -4.92552194e+07 -5.56613686e+07 -4.98107428e+07 -4.87900105e+07 -4.86323799e+07 -6.56871748e+07 -4.94130769e+07 -5.02714972e+07 -4.20283733e+07 -4.95959132e+07 -6.62467660e+07 -6.59234177e+07 -5.74246617e+07 -6.95053725e+07 -5.02239802e+07 -5.02419433e+07 -4.95293248e+07 -6.58838784e+07 -4.88650762e+07 -4.92608307e+07 -5.01011761e+07 -4.23100288e+07 -4.98993066e+07 -5.00970364e+07 -4.24381598e+07 -3.75616376e+07] [-7.75544347e+07 -7.43427959e+07 -7.84222391e+07 -7.77377549e+07 -8.85621668e+07 -7.75138720e+07 -7.47152968e+07 -1.01092955e+08 -9.00785841e+07 -7.37152518e+07 -7.79174029e+07 -7.64817333e+07 -8.64387344e+07 -7.76753017e+07 -7.58839812e+07 -7.52455254e+07 -1.03155871e+08 -7.62647932e+07 -7.83376031e+07 -7.69786082e+07 -7.70598528e+07 -1.03981255e+08 -1.03305214e+08 -9.68379349e+07 -1.07939166e+08 -7.82785200e+07 -7.76068859e+07 -7.72131717e+07 -1.03583415e+08 -7.51599634e+07 -7.60421565e+07 -7.80441972e+07 -7.73083312e+07 -7.76505214e+07 -8.73008514e+07 -7.74776384e+07 -7.15159197e+07] [-1.05126327e+08 -1.07086398e+08 -1.07174939e+08 -1.05638653e+08 -1.22085405e+08 -1.05882269e+08 -1.02268273e+08 -1.41973072e+08 -1.28036042e+08 -1.01288960e+08 -1.05793691e+08 -1.04053929e+08 -1.16747829e+08 -1.05009020e+08 -1.03413351e+08 -1.04155828e+08 -1.44617724e+08 -1.03382445e+08 -1.06275540e+08 -1.18649463e+08 -1.05465556e+08 -1.45196711e+08 -1.44281521e+08 -1.40503490e+08 -1.49753515e+08 -1.06141897e+08 -1.05873690e+08 -1.04915106e+08 -1.44621450e+08 -1.05089979e+08 -1.03188664e+08 -1.05967375e+08 -1.18884773e+08 -1.05492587e+08 -1.29545613e+08 -1.19053128e+08 -1.13045193e+08] [-1.17778007e+08 -1.28979932e+08 -1.20757685e+08 -1.18246952e+08 -1.38348475e+08 -1.18655264e+08 -1.16236402e+08 -1.65914754e+08 -1.51330095e+08 -1.14746969e+08 -1.17712008e+08 -1.16370494e+08 -1.29486921e+08 -1.16804119e+08 -1.15952370e+08 -1.18756106e+08 -1.67742776e+08 -1.16463352e+08 -1.18056617e+08 -1.62004095e+08 -1.18859292e+08 -1.68108632e+08 -1.67329592e+08 -1.73701074e+08 -1.71416736e+08 -1.17874227e+08 -1.18648230e+08 -1.17086128e+08 -1.67557096e+08 -1.21155004e+08 -1.16366226e+08 -1.17894879e+08 -1.62018835e+08 -1.17554229e+08 -1.67003392e+08 -1.62076123e+08 -1.60051213e+08] [-1.48256989e+08 -1.71271316e+08 -1.53940675e+08 -1.49051492e+08 -1.75736088e+08 -1.50574216e+08 -1.48758763e+08 -2.14368019e+08 -1.96986255e+08 -1.46996144e+08 -1.48926235e+08 -1.47871872e+08 -1.62651551e+08 -1.48683094e+08 -1.47635016e+08 -1.52175241e+08 -2.15577033e+08 -1.47629341e+08 -1.49596937e+08 -2.33947341e+08 -1.51666127e+08 -2.15276524e+08 -2.14438910e+08 -2.32654109e+08 -2.17324199e+08 -1.49422303e+08 -1.50396801e+08 -1.48998569e+08 -2.14967532e+08 -1.57429155e+08 -1.47554457e+08 -1.49424005e+08 -2.33459057e+08 -1.49018008e+08 -2.32088257e+08 -2.33293081e+08 -2.37563474e+08] [-1.74265693e+08 -2.13085648e+08 -1.86074334e+08 -1.76130340e+08 -2.09714923e+08 -1.80241043e+08 -1.78186632e+08 -2.60575999e+08 -2.39208915e+08 -1.76792698e+08 -1.78912214e+08 -1.77199822e+08 -1.93690005e+08 -1.79838406e+08 -1.77224531e+08 -1.82116561e+08 -2.60789394e+08 -1.74760294e+08 -1.80271305e+08 -3.12072751e+08 -1.83079416e+08 -2.59863323e+08 -2.58930504e+08 -2.94287042e+08 -2.59492033e+08 -1.80249765e+08 -1.79328853e+08 -1.79918927e+08 -2.60385515e+08 -1.91275801e+08 -1.74827438e+08 -1.79718219e+08 -3.10870220e+08 -1.78795008e+08 -3.02235176e+08 -3.10452650e+08 -3.22736771e+08] [-1.71250420e+08 -2.30924057e+08 -1.90692527e+08 -1.75044789e+08 -2.12222406e+08 -1.82701384e+08 -1.79507350e+08 -2.72352520e+08 -2.51513517e+08 -1.80638032e+08 -1.81906141e+08 -1.79401905e+08 -1.93873016e+08 -1.83477293e+08 -1.79936064e+08 -1.84949859e+08 -2.71466514e+08 -1.73292973e+08 -1.83876980e+08 -3.71155256e+08 -1.87734562e+08 -2.69345231e+08 -2.67999962e+08 -3.28492230e+08 -2.65644542e+08 -1.83835594e+08 -1.80530659e+08 -1.83700489e+08 -2.70825015e+08 -1.97199065e+08 -1.73591557e+08 -1.82790291e+08 -3.68956343e+08 -1.81309279e+08 -3.48487094e+08 -3.68460960e+08 -3.90804618e+08] [-1.65849746e+08 -2.43765619e+08 -1.95022900e+08 -1.72960008e+08 -2.13711728e+08 -1.85015292e+08 -1.78021326e+08 -2.79582076e+08 -2.59450623e+08 -1.83106030e+08 -1.84961024e+08 -1.80742301e+08 -1.93279343e+08 -1.86667894e+08 -1.81906913e+08 -1.86398813e+08 -2.79982997e+08 -1.68916557e+08 -1.87738561e+08 -4.12583161e+08 -1.92295945e+08 -2.76091043e+08 -2.73250758e+08 -3.53768967e+08 -2.71914853e+08 -1.87699366e+08 -1.81336580e+08 -1.87283144e+08 -2.78298278e+08 -2.00961494e+08 -1.69558159e+08 -1.85776054e+08 -4.09698750e+08 -1.83294258e+08 -3.81602774e+08 -4.09290647e+08 -4.38507259e+08] [-1.36092497e+08 -2.32768679e+08 -1.75379406e+08 -1.46297612e+08 -1.91985508e+08 -1.63715538e+08 -1.52166670e+08 -2.61691599e+08 -2.43527841e+08 -1.60520988e+08 -1.63619233e+08 -1.57825421e+08 -1.68087870e+08 -1.65673921e+08 -1.59275954e+08 -1.63653120e+08 -2.64049519e+08 -1.39767135e+08 -1.67403503e+08 -4.27345932e+08 -1.72713850e+08 -2.57742553e+08 -2.53589405e+08 -3.52789996e+08 -2.54207536e+08 -1.67324006e+08 -1.58419483e+08 -1.66451996e+08 -2.60776873e+08 -1.81380426e+08 -1.40856625e+08 -1.64541861e+08 -4.24011940e+08 -1.61245439e+08 -3.88240176e+08 -4.23721145e+08 -4.58873087e+08] [-1.12526223e+08 -2.14644700e+08 -1.56846105e+08 -1.23603462e+08 -1.74539154e+08 -1.44553128e+08 -1.29590931e+08 -2.43129422e+08 -2.25366893e+08 -1.39011025e+08 -1.43599987e+08 -1.37352038e+08 -1.47017553e+08 -1.45894661e+08 -1.38649529e+08 -1.43463944e+08 -2.46905647e+08 -1.15514660e+08 -1.47919362e+08 -4.12726467e+08 -1.53940537e+08 -2.39839566e+08 -2.34602420e+08 -3.36126178e+08 -2.38197633e+08 -1.47865081e+08 -1.38569641e+08 -1.46668234e+08 -2.42351105e+08 -1.63024419e+08 -1.16719634e+08 -1.44747619e+08 -4.09227942e+08 -1.41254956e+08 -3.72291420e+08 -4.09024514e+08 -4.45212843e+08] [-9.53751779e+07 -1.91913268e+08 -1.37171244e+08 -1.05043306e+08 -1.57064661e+08 -1.25489655e+08 -1.10887461e+08 -2.22008603e+08 -2.04991515e+08 -1.19128011e+08 -1.23639153e+08 -1.18007474e+08 -1.27543337e+08 -1.25746756e+08 -1.19220663e+08 -1.24471923e+08 -2.24972552e+08 -9.75035902e+07 -1.27559600e+08 -3.79652537e+08 -1.34168833e+08 -2.18807243e+08 -2.13997752e+08 -3.07944727e+08 -2.18191735e+08 -1.27731629e+08 -1.19937298e+08 -1.26560775e+08 -2.20217222e+08 -1.43995257e+08 -9.87025218e+07 -1.24793642e+08 -3.76578933e+08 -1.21703603e+08 -3.41192130e+08 -3.76406240e+08 -4.09681898e+08] [-5.11656132e+07 -1.36356545e+08 -8.50923700e+07 -5.83107566e+07 -1.02342822e+08 -7.53924862e+07 -6.47328112e+07 -1.57771546e+08 -1.46153196e+08 -7.07820363e+07 -7.29755095e+07 -6.89055855e+07 -7.56045075e+07 -7.46476967e+07 -7.02087845e+07 -7.52231835e+07 -1.58256420e+08 -5.33289800e+07 -7.55099986e+07 -3.04458930e+08 -8.27896373e+07 -1.53648825e+08 -1.50408719e+08 -2.35665379e+08 -1.51566892e+08 -7.60440520e+07 -7.08798003e+07 -7.53768902e+07 -1.54547940e+08 -9.24779589e+07 -5.45197070e+07 -7.36369776e+07 -3.02016584e+08 -7.15534471e+07 -2.66705042e+08 -3.01839948e+08 -3.30739624e+08] [-3.48376236e+07 -1.03194323e+08 -5.90484752e+07 -4.02953761e+07 -7.14292579e+07 -5.30407253e+07 -4.62500577e+07 -1.17702183e+08 -1.10456108e+08 -5.19596799e+07 -5.18474870e+07 -4.92296462e+07 -5.39917610e+07 -5.26817639e+07 -5.06770081e+07 -5.26276787e+07 -1.16304712e+08 -3.74015408e+07 -5.24883046e+07 -2.45663134e+08 -5.86053582e+07 -1.13105472e+08 -1.11362976e+08 -1.83372451e+08 -1.08685173e+08 -5.36783639e+07 -5.00789132e+07 -5.32512475e+07 -1.13946701e+08 -6.52714631e+07 -3.86367502e+07 -5.16224093e+07 -2.43989619e+08 -5.06657633e+07 -2.10947479e+08 -2.43644969e+08 -2.66872997e+08] [-4.01341992e+07 -8.79085802e+07 -5.58657270e+07 -4.41571291e+07 -6.38223547e+07 -5.31377996e+07 -4.89378581e+07 -9.97463998e+07 -9.37029267e+07 -5.46056744e+07 -5.31949631e+07 -5.15128938e+07 -5.56952253e+07 -5.35616389e+07 -5.30916809e+07 -5.19138217e+07 -9.79504596e+07 -4.27954013e+07 -5.24381987e+07 -1.95642840e+08 -5.72254276e+07 -9.59417143e+07 -9.49121501e+07 -1.47896727e+08 -9.05797271e+07 -5.41730193e+07 -5.14397352e+07 -5.38440801e+07 -9.67084960e+07 -5.93888140e+07 -4.39550121e+07 -5.23022084e+07 -1.94802010e+08 -5.20045079e+07 -1.69021724e+08 -1.94263225e+08 -2.10115576e+08] [-4.59829662e+07 -7.37967191e+07 -5.46716108e+07 -4.83176997e+07 -5.99681194e+07 -5.42663997e+07 -5.27348449e+07 -8.56354483e+07 -7.96189031e+07 -5.76687131e+07 -5.50929710e+07 -5.41220610e+07 -5.77689659e+07 -5.52607366e+07 -5.60361386e+07 -5.32998785e+07 -8.36231922e+07 -4.82566971e+07 -5.37511857e+07 -1.45887112e+08 -5.77874633e+07 -8.23982403e+07 -8.18548278e+07 -1.14403269e+08 -7.66624744e+07 -5.55304836e+07 -5.34424146e+07 -5.55145397e+07 -8.29194026e+07 -5.66282071e+07 -4.92832753e+07 -5.40732050e+07 -1.45981989e+08 -5.37803462e+07 -1.28871812e+08 -1.45243282e+08 -1.53562613e+08] [-5.01459147e+07 -5.72677843e+07 -5.11550387e+07 -5.02131195e+07 -5.25988876e+07 -5.23455419e+07 -5.44537534e+07 -6.53773782e+07 -6.08925283e+07 -5.74383865e+07 -5.31172912e+07 -5.37011367e+07 -5.50895588e+07 -5.32418184e+07 -5.54884194e+07 -5.28357019e+07 -6.21970401e+07 -5.19545381e+07 -5.14409047e+07 -9.29080122e+07 -5.47573007e+07 -6.21948760e+07 -6.27748774e+07 -7.47498811e+07 -5.67762114e+07 -5.28849320e+07 -5.25694278e+07 -5.36502228e+07 -6.23958445e+07 -5.28263550e+07 -5.26833151e+07 -5.23023855e+07 -9.37759101e+07 -5.23111093e+07 -8.40563387e+07 -9.28862156e+07 -9.55537613e+07] [-5.93701501e+07 -5.49456389e+07 -5.73234674e+07 -5.89169719e+07 -5.72700058e+07 -5.98298527e+07 -6.23342092e+07 -6.19939256e+07 -5.79211254e+07 -6.45621362e+07 -6.04194658e+07 -6.14166185e+07 -6.19657608e+07 -6.01662996e+07 -6.27909522e+07 -6.02469296e+07 -5.96171845e+07 -6.06857746e+07 -5.88531367e+07 -6.51927510e+07 -6.10927621e+07 -5.97456472e+07 -6.03604516e+07 -5.81481514e+07 -5.58639840e+07 -6.01657480e+07 -6.03384314e+07 -6.08072425e+07 -5.97355447e+07 -5.90742023e+07 -6.12281331e+07 -5.97996326e+07 -6.64347834e+07 -5.99357203e+07 -6.28092258e+07 -6.54437736e+07 -6.41625874e+07] [-5.46815322e+07 -4.46458767e+07 -5.26565847e+07 -5.43290915e+07 -5.20231516e+07 -5.52161958e+07 -5.61955225e+07 -5.08642765e+07 -4.72787267e+07 -5.79823376e+07 -5.55739772e+07 -5.63932641e+07 -5.67493225e+07 -5.52107634e+07 -5.72480018e+07 -5.48519749e+07 -4.95899040e+07 -5.51588601e+07 -5.44156840e+07 -3.57542938e+07 -5.55673358e+07 -4.97121041e+07 -5.00560859e+07 -3.85025614e+07 -4.79606309e+07 -5.54881501e+07 -5.57384108e+07 -5.57932779e+07 -4.93992364e+07 -5.38031086e+07 -5.54567795e+07 -5.51912611e+07 -3.68160574e+07 -5.53252044e+07 -3.84112265e+07 -3.59767500e+07 -3.28213229e+07] [-3.68504709e+07 -2.89214821e+07 -3.58375616e+07 -3.68766868e+07 -3.57107656e+07 -3.77188766e+07 -3.74828290e+07 -3.30678228e+07 -3.06000739e+07 -3.87117858e+07 -3.77708333e+07 -3.81639859e+07 -3.84598395e+07 -3.74429607e+07 -3.86057801e+07 -3.71011146e+07 -3.28380486e+07 -3.67380081e+07 -3.72554327e+07 -1.63068877e+07 -3.75058438e+07 -3.28418170e+07 -3.28465167e+07 -2.14000550e+07 -3.23155364e+07 -3.78701775e+07 -3.79764258e+07 -3.78676270e+07 -3.25712445e+07 -3.69212487e+07 -3.68342400e+07 -3.76623946e+07 -1.68977562e+07 -3.76978787e+07 -1.98837549e+07 -1.63710821e+07 -1.43466000e+07] [-1.82586681e+07 -1.53369529e+07 -1.80303876e+07 -1.83373785e+07 -1.82878670e+07 -1.87513238e+07 -1.85736852e+07 -1.74546949e+07 -1.62230642e+07 -1.90386846e+07 -1.87037282e+07 -1.88616054e+07 -1.91219575e+07 -1.85757936e+07 -1.90373939e+07 -1.85061373e+07 -1.75051369e+07 -1.81880203e+07 -1.85295593e+07 -1.05446248e+07 -1.86542054e+07 -1.74429443e+07 -1.74072614e+07 -1.25738409e+07 -1.72491908e+07 -1.87769545e+07 -1.88209989e+07 -1.87635334e+07 -1.73348973e+07 -1.87148484e+07 -1.82104326e+07 -1.86914166e+07 -1.07560994e+07 -1.86985781e+07 -1.20409903e+07 -1.05312483e+07 -9.94745309e+06] [-3.40784195e+06 -2.95162350e+06 -3.37915018e+06 -3.42066813e+06 -3.45349971e+06 -3.50061583e+06 -3.47923844e+06 -3.30043466e+06 -3.09298447e+06 -3.54818712e+06 -3.48444891e+06 -3.51196507e+06 -3.55411174e+06 -3.45093187e+06 -3.54757947e+06 -3.46415994e+06 -3.29537828e+06 -3.39732408e+06 -3.44812589e+06 -2.06018851e+06 -3.48487986e+06 -3.29203087e+06 -3.28974359e+06 -2.42368111e+06 -3.24833126e+06 -3.49404626e+06 -3.51038637e+06 -3.49139321e+06 -3.27561834e+06 -3.53778309e+06 -3.40328273e+06 -3.47832551e+06 -2.09828720e+06 -3.48199184e+06 -2.33671376e+06 -2.05692474e+06 -1.94515910e+06] [-6.99585465e+05 -6.68543385e+05 -7.07373316e+05 -7.06754716e+05 -7.35497201e+05 -7.21039272e+05 -7.03954389e+05 -7.88487148e+05 -7.34034781e+05 -7.23101324e+05 -7.22865829e+05 -7.23057558e+05 -7.54904707e+05 -7.21304175e+05 -7.25585963e+05 -7.06923538e+05 -7.96764347e+05 -6.99421969e+05 -7.21764483e+05 -7.15628151e+05 -7.18583002e+05 -7.93308790e+05 -7.91530499e+05 -7.34319689e+05 -7.93862565e+05 -7.24857809e+05 -7.22361620e+05 -7.22975725e+05 -7.92405136e+05 -7.09583080e+05 -6.99144727e+05 -7.23081025e+05 -7.18146520e+05 -7.22519306e+05 -7.31725738e+05 -7.15088623e+05 -7.14801584e+05] [-1.86311241e+05 -1.89344861e+05 -1.87313693e+05 -1.86605702e+05 -2.01453960e+05 -1.86925371e+05 -1.86099999e+05 -2.30331312e+05 -2.12781088e+05 -1.85515720e+05 -1.86839499e+05 -1.86170706e+05 -2.00360097e+05 -1.86084290e+05 -1.86145621e+05 -1.86430759e+05 -2.31330995e+05 -1.86434148e+05 -1.87747259e+05 -2.32051514e+05 -1.86775774e+05 -2.32135345e+05 -2.31057035e+05 -2.31348074e+05 -2.32242188e+05 -1.87017462e+05 -1.86233416e+05 -1.86568173e+05 -2.31022232e+05 -1.85905474e+05 -1.85761035e+05 -1.87241716e+05 -2.32329512e+05 -1.86555357e+05 -2.33063985e+05 -2.31988235e+05 -2.33043234e+05] [-2.66897791e+05 -1.70406799e+05 -2.07075922e+05 -2.46319057e+05 -2.15786407e+05 -1.80997300e+05 -2.26931389e+05 -2.24524200e+05 -1.83471766e+05 -1.76456025e+05 -1.86325626e+05 -1.71955769e+05 -2.09921806e+05 -1.81229306e+05 -1.73974287e+05 -1.91093095e+05 -2.24135193e+05 -2.65655542e+05 -2.00722024e+05 -5.53324774e+04 -1.89186151e+05 -2.47963142e+05 -2.48912497e+05 -2.23270747e+05 -2.62444465e+05 -1.86188588e+05 -1.79877804e+05 -1.88024487e+05 -2.43261894e+05 -1.76229716e+05 -2.61057169e+05 -1.92163351e+05 -5.72614931e+04 -1.81345189e+05 -1.46303543e+05 -6.18649031e+04 -3.35563878e+04] [-3.62219183e+05 -2.85375094e+04 -2.28217116e+05 -3.03595241e+05 -1.89476659e+05 -1.57889063e+05 -2.25747785e+05 -1.24021624e+05 -3.24861492e+04 -9.22113176e+04 -1.79298204e+05 -1.36913477e+05 -2.52462952e+05 -1.90047033e+05 -1.10164599e+05 -1.36949594e+05 -1.16311765e+05 -3.47836896e+05 -2.18586080e+05 4.50105261e+05 -1.33930213e+05 -2.00638898e+05 -2.08593556e+05 -5.46744541e+04 -2.40229194e+05 -1.86284677e+05 -1.61678775e+05 -1.76659458e+05 -1.95359288e+05 -7.40749984e+04 -3.26295828e+05 -1.92944905e+05 4.54089255e+05 -1.77819697e+05 1.78912995e+05 4.37885535e+05 5.17746664e+05] [-7.08264715e+06 -5.94322344e+06 -6.90776792e+06 -6.95157632e+06 -7.54896576e+06 -6.77501528e+06 -6.62331066e+06 -8.07722490e+06 -7.11102950e+06 -6.33262470e+06 -6.83022898e+06 -6.68549158e+06 -7.60221319e+06 -6.87721091e+06 -6.56675245e+06 -6.53080207e+06 -8.19992302e+06 -6.95024480e+06 -6.92883350e+06 -4.59078456e+06 -6.64660779e+06 -8.39939763e+06 -8.38116149e+06 -7.06695527e+06 -8.74108544e+06 -6.88669100e+06 -6.80710112e+06 -6.77447931e+06 -8.35555920e+06 -6.41291273e+06 -6.89633364e+06 -6.86533489e+06 -4.61445803e+06 -6.83145227e+06 -5.93754971e+06 -4.65438064e+06 -3.99628210e+06] [-2.05312502e+07 -1.75713831e+07 -1.99070607e+07 -2.01643477e+07 -2.22217137e+07 -1.95886795e+07 -1.93422725e+07 -2.39014734e+07 -2.12043475e+07 -1.84606903e+07 -1.96281228e+07 -1.93064587e+07 -2.18643817e+07 -1.95997671e+07 -1.90470109e+07 -1.91578940e+07 -2.42337054e+07 -2.01591848e+07 -1.98067081e+07 -1.36948982e+07 -1.92670125e+07 -2.47984825e+07 -2.47669150e+07 -2.07741109e+07 -2.59031527e+07 -1.96996196e+07 -1.97031601e+07 -1.94261264e+07 -2.46624436e+07 -1.89806264e+07 -2.00291163e+07 -1.97032590e+07 -1.37968399e+07 -1.96288995e+07 -1.75374639e+07 -1.38870109e+07 -1.18434526e+07] [-3.66372824e+07 -3.16001296e+07 -3.53975164e+07 -3.58310740e+07 -3.96660923e+07 -3.48007864e+07 -3.45634322e+07 -4.29760652e+07 -3.81647597e+07 -3.28069127e+07 -3.46580906e+07 -3.41321230e+07 -3.86326099e+07 -3.46382225e+07 -3.37110001e+07 -3.40885397e+07 -4.35364361e+07 -3.60418446e+07 -3.50474518e+07 -2.65983224e+07 -3.43529183e+07 -4.45199654e+07 -4.44930025e+07 -3.81603395e+07 -4.63569229e+07 -3.48357419e+07 -3.49195019e+07 -3.44056617e+07 -4.42284660e+07 -3.37985631e+07 -3.58225294e+07 -3.48541965e+07 -2.68059644e+07 -3.46826896e+07 -3.29688111e+07 -2.69365136e+07 -2.35340640e+07] [-5.70769579e+07 -4.92811380e+07 -5.47883468e+07 -5.57061718e+07 -6.12637512e+07 -5.35540566e+07 -5.36175038e+07 -6.71503121e+07 -5.95054556e+07 -5.06489093e+07 -5.35615421e+07 -5.26811527e+07 -5.97041778e+07 -5.34855892e+07 -5.19993057e+07 -5.28230387e+07 -6.78003631e+07 -5.61320848e+07 -5.41844306e+07 -4.33740099e+07 -5.30063097e+07 -6.94647494e+07 -6.94802349e+07 -6.13313563e+07 -7.21368229e+07 -5.37339924e+07 -5.37988134e+07 -5.31666225e+07 -6.89684987e+07 -5.19710408e+07 -5.56868434e+07 -5.39001212e+07 -4.35578100e+07 -5.35917112e+07 -5.31029586e+07 -4.37855682e+07 -3.89179342e+07] [-8.24759645e+07 -7.58216452e+07 -7.95201081e+07 -8.08097102e+07 -8.83754504e+07 -7.78374013e+07 -7.84708557e+07 -9.94877178e+07 -8.91544332e+07 -7.46565437e+07 -7.78058638e+07 -7.66746849e+07 -8.60323914e+07 -7.74983733e+07 -7.59399869e+07 -7.74860898e+07 -1.00074394e+08 -8.14897535e+07 -7.84644880e+07 -7.73682467e+07 -7.73467271e+07 -1.02092748e+08 -1.01993275e+08 -9.68121597e+07 -1.04859662e+08 -7.78288339e+07 -7.81457567e+07 -7.73005488e+07 -1.01447956e+08 -7.64459500e+07 -8.08823278e+07 -7.81559155e+07 -7.75004228e+07 -7.77530185e+07 -8.78550479e+07 -7.77539902e+07 -7.30162856e+07] [-9.29562727e+07 -9.16621279e+07 -8.96738623e+07 -9.06580018e+07 -1.00882525e+08 -8.74291130e+07 -8.92938080e+07 -1.16851268e+08 -1.05781769e+08 -8.42917677e+07 -8.65190584e+07 -8.56581139e+07 -9.54772157e+07 -8.60565981e+07 -8.48657748e+07 -8.85208809e+07 -1.16683190e+08 -9.21093260e+07 -8.72047519e+07 -1.05107459e+08 -8.70496964e+07 -1.18942742e+08 -1.19018005e+08 -1.19777873e+08 -1.20672969e+08 -8.64563045e+07 -8.77550882e+07 -8.62026353e+07 -1.18110885e+08 -8.84149454e+07 -9.14606611e+07 -8.69869954e+07 -1.05065914e+08 -8.66705700e+07 -1.12688141e+08 -1.05250895e+08 -1.03018140e+08] [-1.17971118e+08 -1.21761909e+08 -1.13978166e+08 -1.15367637e+08 -1.26549882e+08 -1.11191487e+08 -1.15376414e+08 -1.48501018e+08 -1.36332577e+08 -1.09526809e+08 -1.09912709e+08 -1.09369181e+08 -1.19545911e+08 -1.09364234e+08 -1.08882575e+08 -1.14072781e+08 -1.47252320e+08 -1.18003715e+08 -1.10492333e+08 -1.50372930e+08 -1.11376897e+08 -1.49576223e+08 -1.49913984e+08 -1.57153878e+08 -1.49210519e+08 -1.09752861e+08 -1.11602693e+08 -1.09924190e+08 -1.48706759e+08 -1.15026165e+08 -1.17363024e+08 -1.10416173e+08 -1.50318190e+08 -1.10115190e+08 -1.53970982e+08 -1.50249854e+08 -1.51419971e+08] [-1.44356750e+08 -1.56212698e+08 -1.42386691e+08 -1.41821543e+08 -1.55869673e+08 -1.37789049e+08 -1.43475765e+08 -1.85768428e+08 -1.70649761e+08 -1.36559348e+08 -1.36817093e+08 -1.36057161e+08 -1.47410206e+08 -1.37102644e+08 -1.35683394e+08 -1.41669923e+08 -1.83324833e+08 -1.45452365e+08 -1.37916705e+08 -2.08923807e+08 -1.38874634e+08 -1.85626847e+08 -1.86218463e+08 -2.04448305e+08 -1.83265514e+08 -1.37157374e+08 -1.38090045e+08 -1.37584132e+08 -1.85474255e+08 -1.44991817e+08 -1.44675963e+08 -1.37657721e+08 -2.08368664e+08 -1.37029772e+08 -2.07293921e+08 -2.08036302e+08 -2.15802870e+08] [-1.44769829e+08 -1.71273390e+08 -1.48210392e+08 -1.43829647e+08 -1.57388642e+08 -1.41594851e+08 -1.47209511e+08 -1.94674972e+08 -1.79243595e+08 -1.41855543e+08 -1.42037454e+08 -1.40187296e+08 -1.50437938e+08 -1.43069500e+08 -1.40206386e+08 -1.44938542e+08 -1.91128785e+08 -1.47729046e+08 -1.43596708e+08 -2.56025586e+08 -1.44476595e+08 -1.92904932e+08 -1.93254941e+08 -2.32561524e+08 -1.87026078e+08 -1.42858061e+08 -1.41046695e+08 -1.43426673e+08 -1.93908893e+08 -1.50145130e+08 -1.47102014e+08 -1.42867799e+08 -2.54795533e+08 -1.41638032e+08 -2.44823729e+08 -2.54315180e+08 -2.70203668e+08] [-1.13597288e+08 -1.55095769e+08 -1.23565813e+08 -1.14605885e+08 -1.27844615e+08 -1.15631368e+08 -1.18967656e+08 -1.66450770e+08 -1.54699562e+08 -1.16871834e+08 -1.16450960e+08 -1.13947111e+08 -1.20175072e+08 -1.17829922e+08 -1.14329162e+08 -1.18775610e+08 -1.63101897e+08 -1.17683553e+08 -1.18536690e+08 -2.63837374e+08 -1.20093930e+08 -1.63562939e+08 -1.63263847e+08 -2.21725122e+08 -1.56053729e+08 -1.17599517e+08 -1.13913234e+08 -1.18402067e+08 -1.65130640e+08 -1.25468365e+08 -1.17262042e+08 -1.17197572e+08 -2.61720694e+08 -1.15500244e+08 -2.42775244e+08 -2.61446384e+08 -2.84515403e+08] [-6.48392144e+07 -1.24049647e+08 -8.45258412e+07 -6.92233852e+07 -8.53067431e+07 -7.53106455e+07 -7.34558723e+07 -1.24238357e+08 -1.17085544e+08 -7.56009751e+07 -7.61980495e+07 -7.23424719e+07 -7.44930750e+07 -7.75120404e+07 -7.29024817e+07 -7.70661093e+07 -1.23510045e+08 -6.93451996e+07 -7.90727667e+07 -2.53262182e+08 -8.11799159e+07 -1.21576267e+08 -1.19586280e+08 -1.96341593e+08 -1.15403506e+08 -7.81013540e+07 -7.19728332e+07 -7.84045668e+07 -1.23827113e+08 -8.57247908e+07 -6.92870459e+07 -7.68737808e+07 -2.50473820e+08 -7.45764308e+07 -2.23955366e+08 -2.50573832e+08 -2.79048141e+08] [-2.74504287e+07 -9.63669666e+07 -5.43256981e+07 -3.34380766e+07 -5.53950336e+07 -4.37746043e+07 -3.79884687e+07 -9.27898116e+07 -8.77852234e+07 -4.16504694e+07 -4.38863484e+07 -3.90676080e+07 -3.93306109e+07 -4.52596038e+07 -3.95580894e+07 -4.49111102e+07 -9.39634181e+07 -3.11533031e+07 -4.76423515e+07 -2.33544736e+08 -5.07862260e+07 -9.04997364e+07 -8.73454180e+07 -1.70999024e+08 -8.68768422e+07 -4.64319453e+07 -3.92287253e+07 -4.62545298e+07 -9.25244419e+07 -5.56878518e+07 -3.13777837e+07 -4.48834766e+07 -2.30445960e+08 -4.20590359e+07 -2.01014618e+08 -2.30772923e+08 -2.61372498e+08] [-2.62266158e+07 -9.05113880e+07 -5.61501054e+07 -3.24158365e+07 -6.15263635e+07 -4.48489295e+07 -3.59937829e+07 -9.58346509e+07 -8.76718698e+07 -3.92257346e+07 -4.43780213e+07 -3.91663219e+07 -4.20896416e+07 -4.59539655e+07 -3.92099539e+07 -4.44486481e+07 -9.75415296e+07 -2.81101623e+07 -4.85439996e+07 -2.12068960e+08 -5.15303164e+07 -9.49437446e+07 -9.11085247e+07 -1.62926046e+08 -9.49829341e+07 -4.74298149e+07 -4.02383634e+07 -4.66047272e+07 -9.61270232e+07 -5.66458375e+07 -2.83625936e+07 -4.56391138e+07 -2.09303706e+08 -4.27712269e+07 -1.86276358e+08 -2.09736308e+08 -2.36064817e+08] [-3.42482407e+07 -8.94743361e+07 -6.12056255e+07 -3.85365957e+07 -7.14600472e+07 -4.97351735e+07 -4.16724686e+07 -1.04469309e+08 -9.29422901e+07 -4.15816459e+07 -4.78965375e+07 -4.32226373e+07 -4.97456051e+07 -4.98020744e+07 -4.29504061e+07 -4.94191073e+07 -1.05133069e+08 -3.49571839e+07 -5.17660289e+07 -1.94377231e+08 -5.53942796e+07 -1.04215746e+08 -1.01064747e+08 -1.58942374e+08 -1.06347060e+08 -5.08507979e+07 -4.58256378e+07 -4.98768128e+07 -1.04675445e+08 -6.18923887e+07 -3.50094647e+07 -4.92981645e+07 -1.92252658e+08 -4.68762850e+07 -1.75676216e+08 -1.92716736e+08 -2.13576055e+08] [-2.54204860e+07 -7.16208400e+07 -4.51555397e+07 -2.79264946e+07 -5.53109490e+07 -3.60407111e+07 -3.05009011e+07 -8.52069480e+07 -7.58557760e+07 -2.89647595e+07 -3.37099801e+07 -3.07342850e+07 -3.72249231e+07 -3.54148707e+07 -3.01861389e+07 -3.59864487e+07 -8.41640092e+07 -2.61783628e+07 -3.62065158e+07 -1.63762345e+08 -3.98284991e+07 -8.44973843e+07 -8.26175033e+07 -1.32078873e+08 -8.53641339e+07 -3.56890013e+07 -3.34138787e+07 -3.51270730e+07 -8.45883667e+07 -4.61062820e+07 -2.59892229e+07 -3.46074366e+07 -1.62115533e+08 -3.33853497e+07 -1.45872161e+08 -1.62547517e+08 -1.79582624e+08] [-1.97313384e+07 -6.07054459e+07 -3.33291615e+07 -2.13653471e+07 -4.20047313e+07 -2.70963505e+07 -2.42917036e+07 -7.14836231e+07 -6.47434778e+07 -2.32139982e+07 -2.50335861e+07 -2.34049955e+07 -2.88638537e+07 -2.62355275e+07 -2.32721981e+07 -2.74393798e+07 -6.93890487e+07 -2.12658426e+07 -2.61166509e+07 -1.51618442e+08 -3.00671697e+07 -6.96221378e+07 -6.89082137e+07 -1.16508691e+08 -6.84701119e+07 -2.60788595e+07 -2.54902807e+07 -2.60315496e+07 -7.00466758e+07 -3.53940778e+07 -2.12237077e+07 -2.52789522e+07 -1.50268236e+08 -2.48768152e+07 -1.31325254e+08 -1.50489898e+08 -1.66037475e+08] [-2.96407665e+07 -7.17313268e+07 -3.94284043e+07 -3.11479052e+07 -4.65390459e+07 -3.53915894e+07 -3.47263933e+07 -7.93810261e+07 -7.48467752e+07 -3.57581730e+07 -3.43838094e+07 -3.32544634e+07 -3.74218754e+07 -3.47711520e+07 -3.38681271e+07 -3.63905339e+07 -7.66237108e+07 -3.22468312e+07 -3.40416559e+07 -1.72381718e+08 -3.84349740e+07 -7.63778864e+07 -7.60036150e+07 -1.29135367e+08 -7.13480512e+07 -3.46735965e+07 -3.41640441e+07 -3.49480776e+07 -7.66145928e+07 -4.20367434e+07 -3.25667106e+07 -3.38299649e+07 -1.71093110e+08 -3.38954162e+07 -1.47778884e+08 -1.70915353e+08 -1.87249493e+08] [-3.83290698e+07 -7.13268360e+07 -4.56152867e+07 -4.01520463e+07 -5.00510686e+07 -4.39369608e+07 -4.41130180e+07 -7.92898424e+07 -7.43511607e+07 -4.77369598e+07 -4.48134301e+07 -4.36103626e+07 -4.67891969e+07 -4.47872681e+07 -4.53499498e+07 -4.39667443e+07 -7.64576334e+07 -4.13844836e+07 -4.36696120e+07 -1.57856699e+08 -4.75542058e+07 -7.61346002e+07 -7.59599674e+07 -1.19362174e+08 -6.91127684e+07 -4.49029821e+07 -4.29954223e+07 -4.52349118e+07 -7.65598461e+07 -4.71314897e+07 -4.20354536e+07 -4.37827469e+07 -1.57323068e+08 -4.34805362e+07 -1.36578041e+08 -1.56808577e+08 -1.69016447e+08] [-4.65287471e+07 -6.28371919e+07 -4.97988023e+07 -4.71430413e+07 -5.12561865e+07 -4.95443504e+07 -5.14659315e+07 -7.06159508e+07 -6.56299784e+07 -5.43543716e+07 -5.07067325e+07 -5.05092864e+07 -5.24097667e+07 -5.09981903e+07 -5.22780500e+07 -4.99214736e+07 -6.71644914e+07 -4.89652755e+07 -4.93838502e+07 -1.20058878e+08 -5.26506837e+07 -6.73187308e+07 -6.78249805e+07 -9.31157066e+07 -6.08320572e+07 -5.06262265e+07 -4.92824289e+07 -5.13675391e+07 -6.78354535e+07 -5.05561746e+07 -4.95794175e+07 -4.98917936e+07 -1.20361842e+08 -4.95957997e+07 -1.06081047e+08 -1.19582344e+08 -1.26387683e+08] [-5.09282993e+07 -5.79407328e+07 -5.20796932e+07 -5.13960388e+07 -5.17980958e+07 -5.29640941e+07 -5.52553055e+07 -6.41909576e+07 -5.97015591e+07 -5.80914268e+07 -5.41805753e+07 -5.44734976e+07 -5.53106937e+07 -5.42362722e+07 -5.60252168e+07 -5.34041269e+07 -6.14829153e+07 -5.30276943e+07 -5.28828224e+07 -9.34304383e+07 -5.53450891e+07 -6.14703335e+07 -6.18960834e+07 -7.58740119e+07 -5.62880988e+07 -5.40810195e+07 -5.29811548e+07 -5.47859807e+07 -6.18909952e+07 -5.31194673e+07 -5.35994480e+07 -5.35137531e+07 -9.42548724e+07 -5.33406929e+07 -8.50909710e+07 -9.33610933e+07 -9.62344715e+07] [-5.12556386e+07 -5.14809448e+07 -5.19014016e+07 -5.16921126e+07 -5.14661058e+07 -5.31506857e+07 -5.41032937e+07 -5.68897019e+07 -5.30190535e+07 -5.63564208e+07 -5.40123195e+07 -5.42637187e+07 -5.48909895e+07 -5.38003536e+07 -5.53172135e+07 -5.29854443e+07 -5.53340903e+07 -5.24723266e+07 -5.29914594e+07 -6.42093677e+07 -5.44228225e+07 -5.51756958e+07 -5.53460400e+07 -5.76638283e+07 -5.22854161e+07 -5.40009690e+07 -5.32473639e+07 -5.43424190e+07 -5.53569520e+07 -5.30078894e+07 -5.28091386e+07 -5.35528516e+07 -6.49297242e+07 -5.34890265e+07 -6.18836523e+07 -6.41430455e+07 -6.46376382e+07] [-3.98381206e+07 -3.56965393e+07 -3.98124543e+07 -4.00251233e+07 -4.01809002e+07 -4.10723339e+07 -4.09084047e+07 -4.07184394e+07 -3.77227399e+07 -4.21095675e+07 -4.12856089e+07 -4.14358030e+07 -4.21972436e+07 -4.11037480e+07 -4.19654649e+07 -4.05660843e+07 -4.03126441e+07 -3.99665597e+07 -4.09175633e+07 -3.22170469e+07 -4.13016715e+07 -4.01862210e+07 -4.01905422e+07 -3.39048130e+07 -3.92089794e+07 -4.14672645e+07 -4.12017107e+07 -4.15056379e+07 -4.01030800e+07 -4.07405981e+07 -4.00534415e+07 -4.12072623e+07 -3.26779915e+07 -4.10997625e+07 -3.40431093e+07 -3.21720554e+07 -3.15739805e+07] [-1.96049352e+07 -1.70489254e+07 -1.95279774e+07 -1.97392038e+07 -1.98893636e+07 -2.02393466e+07 -1.99673752e+07 -1.94131976e+07 -1.81041887e+07 -2.04870572e+07 -2.02333896e+07 -2.03605310e+07 -2.06955404e+07 -2.01109308e+07 -2.05497214e+07 -1.99067347e+07 -1.94896862e+07 -1.95642998e+07 -2.00711525e+07 -1.31089176e+07 -2.01742943e+07 -1.94037133e+07 -1.93276924e+07 -1.49337247e+07 -1.91699037e+07 -2.03162909e+07 -2.02912466e+07 -2.03052474e+07 -1.92868048e+07 -2.01771070e+07 -1.95697608e+07 -2.02250977e+07 -1.32989025e+07 -2.02162468e+07 -1.44610396e+07 -1.30771836e+07 -1.26595799e+07] [-2.40767992e+06 -2.08747702e+06 -2.45620857e+06 -2.44035750e+06 -2.51525997e+06 -2.55009425e+06 -2.48495393e+06 -2.38095224e+06 -2.21702600e+06 -2.56475375e+06 -2.55099054e+06 -2.55979629e+06 -2.59722760e+06 -2.52816931e+06 -2.58393694e+06 -2.48850515e+06 -2.40005351e+06 -2.39282614e+06 -2.52624954e+06 -1.38221679e+06 -2.54087303e+06 -2.38970236e+06 -2.36343386e+06 -1.68633586e+06 -2.37017523e+06 -2.56733068e+06 -2.55032934e+06 -2.55328373e+06 -2.37450187e+06 -2.54755784e+06 -2.39933723e+06 -2.54559172e+06 -1.40747746e+06 -2.54674686e+06 -1.59348613e+06 -1.37682558e+06 -1.29410368e+06] [-5.84009369e+05 -6.02909035e+05 -5.85627691e+05 -5.84611037e+05 -6.21124980e+05 -5.83416451e+05 -5.88862366e+05 -7.03552865e+05 -6.56642915e+05 -5.87561015e+05 -5.83349395e+05 -5.82148544e+05 -6.13497462e+05 -5.83003158e+05 -5.84111055e+05 -5.88346080e+05 -7.02904917e+05 -5.82680424e+05 -5.81840402e+05 -6.91579147e+05 -5.84190796e+05 -7.00253253e+05 -7.00315991e+05 -6.98277353e+05 -6.89180681e+05 -5.86388274e+05 -5.85483739e+05 -5.83925792e+05 -7.00372095e+05 -5.94718180e+05 -5.84782808e+05 -5.83660316e+05 -6.92939044e+05 -5.82807029e+05 -6.97358023e+05 -6.89481498e+05 -6.88678922e+05] [-3.02399632e+04 -3.07316979e+04 -3.04023815e+04 -3.02876241e+04 -3.26968329e+04 -3.03385000e+04 -3.02053434e+04 -3.73838333e+04 -3.45351244e+04 -3.01102344e+04 -3.03250941e+04 -3.02167407e+04 -3.25188284e+04 -3.02022531e+04 -3.02120516e+04 -3.02588870e+04 -3.75456573e+04 -3.02591666e+04 -3.04723013e+04 -3.76632456e+04 -3.03142464e+04 -3.76766103e+04 -3.75012610e+04 -3.75486802e+04 -3.76933287e+04 -3.03540761e+04 -3.02268617e+04 -3.02799334e+04 -3.74959970e+04 -3.01725749e+04 -3.01488663e+04 -3.03897293e+04 -3.77072364e+04 -3.02779695e+04 -3.78271220e+04 -3.76526506e+04 -3.78231846e+04] [-4.48126466e+05 -2.80746237e+05 -3.67080721e+05 -4.07532712e+05 -3.65555842e+05 -3.42712970e+05 -3.79971702e+05 -3.38119469e+05 -2.89312895e+05 -3.03978440e+05 -3.44716682e+05 -3.27916951e+05 -3.79273635e+05 -3.45537628e+05 -3.15870162e+05 -3.22907504e+05 -3.35966531e+05 -4.48028879e+05 -3.63371301e+05 -4.64442118e+04 -3.31894898e+05 -3.72282441e+05 -3.73864769e+05 -3.04686934e+05 -3.85007299e+05 -3.50500827e+05 -3.42872193e+05 -3.46706635e+05 -3.62327287e+05 -2.98243829e+05 -4.39850274e+05 -3.52468751e+05 -4.23373796e+04 -3.45890444e+05 -1.73110668e+05 -5.02583896e+04 -8.43679002e+03] [-1.03512271e+06 -5.32991909e+05 -8.38123029e+05 -9.32826635e+05 -9.14578711e+05 -7.60778838e+05 -8.09921036e+05 -9.36155091e+05 -7.23452261e+05 -6.02238524e+05 -7.84505926e+05 -7.15880961e+05 -9.56273886e+05 -7.91345640e+05 -6.65222156e+05 -6.68887765e+05 -9.35623140e+05 -1.00212623e+06 -8.38065569e+05 1.15865679e+05 -7.12928676e+05 -1.06094721e+06 -1.06423292e+06 -7.62583555e+05 -1.13802407e+06 -8.01057794e+05 -7.65921239e+05 -7.72270994e+05 -1.03860047e+06 -5.75876556e+05 -9.72659653e+05 -8.02511981e+05 1.19495946e+05 -7.82406124e+05 -3.44301358e+05 9.52121601e+04 2.68951842e+05] [-6.07917501e+06 -4.66186585e+06 -5.69107697e+06 -5.82690798e+06 -6.37752983e+06 -5.50543914e+06 -5.41685732e+06 -6.73574620e+06 -5.80208761e+06 -4.90373657e+06 -5.51343806e+06 -5.35096859e+06 -6.31634248e+06 -5.54517792e+06 -5.17661236e+06 -5.21994132e+06 -6.83515585e+06 -5.91970933e+06 -5.65876799e+06 -2.50434555e+06 -5.30014774e+06 -7.13206154e+06 -7.11676797e+06 -5.60245007e+06 -7.55070665e+06 -5.57151623e+06 -5.53803535e+06 -5.45985086e+06 -7.06577647e+06 -5.06621786e+06 -5.83060874e+06 -5.57203248e+06 -2.49749533e+06 -5.53791325e+06 -4.17574553e+06 -2.56635402e+06 -1.84462907e+06] [-1.87722223e+07 -1.49537637e+07 -1.74766039e+07 -1.80780381e+07 -1.93522408e+07 -1.69606786e+07 -1.71627868e+07 -2.03712455e+07 -1.78567084e+07 -1.57030883e+07 -1.69397930e+07 -1.66087270e+07 -1.90877723e+07 -1.68987060e+07 -1.62216104e+07 -1.66153012e+07 -2.05232449e+07 -1.84265117e+07 -1.72217875e+07 -9.44509220e+06 -1.64948568e+07 -2.13861160e+07 -2.14411000e+07 -1.73172242e+07 -2.24475554e+07 -1.69959438e+07 -1.70989627e+07 -1.67719859e+07 -2.12183104e+07 -1.62943006e+07 -1.82230595e+07 -1.70674196e+07 -9.47478842e+06 -1.69989812e+07 -1.37404351e+07 -9.61065781e+06 -7.65536733e+06] [-3.53009461e+07 -2.75155052e+07 -3.25224311e+07 -3.39544880e+07 -3.51061133e+07 -3.15670172e+07 -3.25041477e+07 -3.69036105e+07 -3.22529741e+07 -2.97842049e+07 -3.17578400e+07 -3.10867278e+07 -3.54713094e+07 -3.17973017e+07 -3.05330438e+07 -3.10519529e+07 -3.69600551e+07 -3.48768439e+07 -3.23067183e+07 -1.88019055e+07 -3.10611160e+07 -3.85890793e+07 -3.87578023e+07 -3.21250761e+07 -3.99518920e+07 -3.18477034e+07 -3.17801621e+07 -3.15339880e+07 -3.82729717e+07 -2.99418000e+07 -3.44830841e+07 -3.20007268e+07 -1.89406699e+07 -3.17490477e+07 -2.63153058e+07 -1.91453269e+07 -1.57171470e+07] [-4.41208057e+07 -3.73562675e+07 -4.03699774e+07 -4.22068579e+07 -4.41406179e+07 -3.84513435e+07 -4.05708005e+07 -4.89355928e+07 -4.30545253e+07 -3.66033489e+07 -3.87687174e+07 -3.77859051e+07 -4.32792442e+07 -3.86459270e+07 -3.71411927e+07 -3.87381261e+07 -4.85272349e+07 -4.37450015e+07 -3.95329905e+07 -3.44476399e+07 -3.82375218e+07 -5.08287203e+07 -5.10401894e+07 -4.82892536e+07 -5.19437938e+07 -3.87042446e+07 -3.86842801e+07 -3.85139275e+07 -5.03027641e+07 -3.74386575e+07 -4.31204032e+07 -3.91302076e+07 -3.44649358e+07 -3.87025004e+07 -4.21894274e+07 -3.47657152e+07 -3.19831827e+07] [-5.27247563e+07 -4.59723546e+07 -4.74244863e+07 -4.98755537e+07 -5.22760870e+07 -4.51511583e+07 -4.87617219e+07 -5.85479628e+07 -5.21524183e+07 -4.31049790e+07 -4.47526745e+07 -4.41354852e+07 -5.00723578e+07 -4.45370989e+07 -4.33568989e+07 -4.65875488e+07 -5.74141362e+07 -5.23594586e+07 -4.55085308e+07 -4.74951676e+07 -4.47644883e+07 -6.02368165e+07 -6.06301628e+07 -5.99334232e+07 -6.11176096e+07 -4.44500441e+07 -4.55815993e+07 -4.45593207e+07 -5.95997515e+07 -4.51953160e+07 -5.15045215e+07 -4.52336320e+07 -4.73690408e+07 -4.49350896e+07 -5.43130216e+07 -4.76798656e+07 -4.61342023e+07] [-6.41174097e+07 -5.92691835e+07 -5.66142768e+07 -5.98836854e+07 -6.20093603e+07 -5.40757726e+07 -6.05970439e+07 -7.05078921e+07 -6.41662459e+07 -5.30994361e+07 -5.27013380e+07 -5.28442653e+07 -5.79686808e+07 -5.24926154e+07 -5.21625033e+07 -5.76521115e+07 -6.78821686e+07 -6.44437801e+07 -5.33088669e+07 -6.89338590e+07 -5.37729058e+07 -7.11618574e+07 -7.20575287e+07 -7.53579610e+07 -7.00298080e+07 -5.22360221e+07 -5.47171829e+07 -5.29323374e+07 -7.02241492e+07 -5.67058148e+07 -6.34847951e+07 -5.32813511e+07 -6.87768536e+07 -5.31836256e+07 -7.27836230e+07 -6.88530524e+07 -7.01521279e+07] [-8.59358597e+07 -7.87573273e+07 -7.56003453e+07 -8.07911123e+07 -8.04546360e+07 -7.33084073e+07 -8.25591049e+07 -8.91097145e+07 -8.25621803e+07 -7.41173278e+07 -7.19448003e+07 -7.28141385e+07 -7.71188763e+07 -7.18229279e+07 -7.23078228e+07 -7.83803053e+07 -8.50910091e+07 -8.70354188e+07 -7.23328859e+07 -9.21888919e+07 -7.28508538e+07 -8.87245173e+07 -9.02962363e+07 -9.33325345e+07 -8.56529342e+07 -7.13781298e+07 -7.44435976e+07 -7.25477951e+07 -8.77699006e+07 -7.77965723e+07 -8.59322368e+07 -7.26072491e+07 -9.20120272e+07 -7.26833389e+07 -9.35553549e+07 -9.17647045e+07 -9.60540387e+07] [-9.66491391e+07 -9.43586754e+07 -8.79144171e+07 -9.20815661e+07 -8.93492045e+07 -8.46177924e+07 -9.52141895e+07 -1.02424149e+08 -9.45563185e+07 -8.71703211e+07 -8.45890102e+07 -8.50340765e+07 -8.91547797e+07 -8.53720677e+07 -8.49847192e+07 -8.94421671e+07 -9.72268803e+07 -9.93142877e+07 -8.51429708e+07 -1.25814972e+08 -8.53381444e+07 -1.00766781e+08 -1.02594648e+08 -1.16004319e+08 -9.49381910e+07 -8.43546451e+07 -8.57155380e+07 -8.58000046e+07 -1.00794057e+08 -8.95085050e+07 -9.82349652e+07 -8.52328514e+07 -1.25456932e+08 -8.48606778e+07 -1.22258840e+08 -1.24997541e+08 -1.34014326e+08] [-6.68525275e+07 -8.26302688e+07 -6.38893488e+07 -6.44203055e+07 -5.94658253e+07 -5.92221948e+07 -6.90213510e+07 -7.84390439e+07 -7.39980416e+07 -6.40003032e+07 -6.04233626e+07 -5.99032283e+07 -6.09182020e+07 -6.16639304e+07 -6.03536987e+07 -6.39024657e+07 -7.27972305e+07 -7.13795121e+07 -6.11974806e+07 -1.47389278e+08 -6.18243907e+07 -7.50802100e+07 -7.65117328e+07 -1.15083986e+08 -6.55186811e+07 -6.03744098e+07 -5.93334057e+07 -6.20101296e+07 -7.60626026e+07 -6.52023682e+07 -7.06636187e+07 -6.08233793e+07 -1.46331900e+08 -5.99775017e+07 -1.32235902e+08 -1.45930182e+08 -1.62266887e+08] [-1.04849202e+07 -4.53935512e+07 -1.38266279e+07 -1.04903449e+07 -5.62453562e+06 -8.21658312e+06 -1.55579873e+07 -2.66341283e+07 -2.81769127e+07 -1.42186291e+07 -9.63405950e+06 -8.36591916e+06 -4.49610290e+06 -1.06168828e+07 -9.39971454e+06 -1.28957810e+07 -2.20933041e+07 -1.59686192e+07 -1.06388135e+07 -1.36414149e+08 -1.25185075e+07 -2.24514661e+07 -2.30493376e+07 -8.40875859e+07 -1.15108423e+07 -9.66419066e+06 -6.97123797e+06 -1.13973138e+07 -2.39145123e+07 -1.53264437e+07 -1.56854654e+07 -9.71948336e+06 -1.34663824e+08 -8.47803867e+06 -1.10029025e+08 -1.34710847e+08 -1.56811135e+08] [ 4.25349812e+07 -9.59960658e+06 2.88273364e+07 3.92969433e+07 3.62360059e+07 3.51027267e+07 3.51944533e+07 1.40234681e+07 8.22229570e+06 3.16728124e+07 3.43460628e+07 3.66912859e+07 4.33167426e+07 3.37152389e+07 3.58061659e+07 3.22187206e+07 1.50194491e+07 3.80410546e+07 3.26448197e+07 -1.16723818e+08 2.99936608e+07 1.75564359e+07 1.87183026e+07 -5.45899685e+07 2.49327309e+07 3.35987832e+07 3.78566137e+07 3.26729675e+07 1.60370793e+07 2.72433936e+07 3.77796207e+07 3.42219338e+07 -1.14225595e+08 3.57812516e+07 -8.39062224e+07 -1.14707161e+08 -1.40052153e+08] [ 4.26681831e+07 -6.12275157e+06 2.26275107e+07 3.82301446e+07 2.55953935e+07 2.99009847e+07 3.54987473e+07 7.25436803e+06 4.84322714e+06 3.12485336e+07 2.93172674e+07 3.27581400e+07 3.66144871e+07 2.86347463e+07 3.24692705e+07 2.98895626e+07 6.12662980e+06 4.03212222e+07 2.68201618e+07 -9.58074452e+07 2.48511036e+07 8.62874105e+06 1.11054358e+07 -4.90468070e+07 1.08109080e+07 2.75834728e+07 3.31994239e+07 2.79046594e+07 7.85269937e+06 2.26344877e+07 3.99185953e+07 2.88705839e+07 -9.36223247e+07 3.07616248e+07 -7.07066354e+07 -9.42617843e+07 -1.15377371e+08] [ 5.04413484e+06 -2.78147704e+07 -1.55703609e+07 1.29259683e+06 -1.95540785e+07 -7.61675678e+06 3.97377473e+05 -3.36532466e+07 -2.83426498e+07 -1.58888517e+06 -7.74303027e+06 -3.99908611e+06 -6.36209485e+06 -8.63916962e+06 -3.55363159e+06 -5.94305676e+06 -3.52886878e+07 5.26772016e+06 -1.05384671e+07 -8.28587865e+07 -1.17136797e+07 -3.47498041e+07 -3.18351769e+07 -6.47520448e+07 -3.82611731e+07 -9.91014178e+06 -4.88318973e+06 -8.72069497e+06 -3.45307921e+07 -1.37504468e+07 5.05420399e+06 -8.55039139e+06 -8.14742423e+07 -6.66953902e+06 -7.29548203e+07 -8.21314540e+07 -9.42275508e+07] [-4.06172610e+07 -5.90723972e+07 -5.53086038e+07 -4.18010381e+07 -6.52952026e+07 -4.69807008e+07 -4.13514148e+07 -7.99923855e+07 -6.81399210e+07 -3.82536065e+07 -4.62188807e+07 -4.29629678e+07 -5.17944904e+07 -4.74163001e+07 -4.18367190e+07 -4.57580001e+07 -8.03525542e+07 -3.91736639e+07 -4.87189885e+07 -9.14898656e+07 -4.94529975e+07 -8.25410720e+07 -8.05056413e+07 -9.49048085e+07 -8.77602291e+07 -4.80518317e+07 -4.54223723e+07 -4.66305592e+07 -8.19761715e+07 -5.23881029e+07 -3.88256624e+07 -4.71781692e+07 -9.06983322e+07 -4.58266868e+07 -9.27644485e+07 -9.14004432e+07 -9.62413737e+07] [-6.22138363e+07 -7.00060807e+07 -6.73912344e+07 -6.07301025e+07 -7.79142869e+07 -6.09853052e+07 -5.96983410e+07 -9.29785075e+07 -8.08942957e+07 -5.32047582e+07 -5.94069114e+07 -5.78601274e+07 -6.84745240e+07 -6.07902605e+07 -5.62703579e+07 -6.07878834e+07 -9.15227284e+07 -6.13047491e+07 -6.09559087e+07 -9.51318115e+07 -6.14522654e+07 -9.50687767e+07 -9.46706151e+07 -1.02680742e+08 -9.83367908e+07 -6.02789729e+07 -6.07944776e+07 -5.94989576e+07 -9.45607444e+07 -6.43492109e+07 -6.04472265e+07 -6.01514384e+07 -9.47336260e+07 -5.98548027e+07 -9.83585431e+07 -9.53169466e+07 -9.71225826e+07] [-4.34538007e+07 -6.14567835e+07 -4.58769179e+07 -4.17303068e+07 -5.50581372e+07 -4.04063612e+07 -4.20191910e+07 -7.67254797e+07 -6.85618821e+07 -3.60661966e+07 -3.81188773e+07 -3.74647563e+07 -4.53340015e+07 -3.90487692e+07 -3.64203768e+07 -4.22480693e+07 -7.43143735e+07 -4.41593029e+07 -3.89909802e+07 -1.13083335e+08 -4.14898311e+07 -7.68982576e+07 -7.73218529e+07 -1.02006016e+08 -7.67935456e+07 -3.82482371e+07 -4.02565762e+07 -3.84430651e+07 -7.65821961e+07 -4.56604496e+07 -4.33437021e+07 -3.85561730e+07 -1.12271132e+08 -3.86644886e+07 -1.05796860e+08 -1.12700778e+08 -1.20304484e+08] [-5.76550228e+06 -4.38663925e+07 -1.04264259e+07 -5.53667880e+06 -1.62209238e+07 -5.71580935e+06 -8.09999673e+06 -4.54369779e+07 -4.39132640e+07 -5.82021180e+06 -3.77607701e+06 -3.25635556e+06 -6.02322016e+06 -3.97469738e+06 -3.26402084e+06 -8.89545893e+06 -4.25242386e+07 -8.32424932e+06 -3.81542908e+06 -1.36769247e+08 -8.28865500e+06 -4.31280761e+07 -4.34156055e+07 -9.60885929e+07 -3.82004675e+07 -3.41744558e+06 -4.89632559e+06 -4.29606090e+06 -4.30662332e+07 -1.29755792e+07 -8.02141539e+06 -3.59421116e+06 -1.35137174e+08 -3.86356824e+06 -1.12897047e+08 -1.35326058e+08 -1.51940456e+08] [-7.08335536e+06 -4.83775782e+07 -1.34416619e+07 -8.29088951e+06 -1.71448964e+07 -1.03846675e+07 -1.19513382e+07 -4.83893058e+07 -4.77245248e+07 -1.41528632e+07 -1.03546323e+07 -9.59995020e+06 -1.05973612e+07 -1.03224168e+07 -1.07564474e+07 -1.26074995e+07 -4.53584628e+07 -1.04893117e+07 -9.54221105e+06 -1.51458580e+08 -1.39455065e+07 -4.50327575e+07 -4.51322758e+07 -1.02348311e+08 -3.73980793e+07 -9.97210811e+06 -9.43065266e+06 -1.09167312e+07 -4.53657146e+07 -1.57015346e+07 -1.07821830e+07 -9.52845409e+06 -1.50001719e+08 -9.49925784e+06 -1.23532981e+08 -1.49809629e+08 -1.66869936e+08] [-2.02273974e+07 -5.21257081e+07 -2.64353677e+07 -2.15073913e+07 -2.81294750e+07 -2.40039641e+07 -2.61720283e+07 -5.51734382e+07 -5.24344834e+07 -2.90777815e+07 -2.51389919e+07 -2.43337965e+07 -2.52834127e+07 -2.55748609e+07 -2.60553657e+07 -2.57573450e+07 -5.17306758e+07 -2.33790431e+07 -2.42983720e+07 -1.40126877e+08 -2.82409552e+07 -5.14219271e+07 -5.17782049e+07 -9.84283321e+07 -4.36968612e+07 -2.50610307e+07 -2.31332874e+07 -2.60186487e+07 -5.20822411e+07 -2.74559694e+07 -2.40244639e+07 -2.43797361e+07 -1.39531786e+08 -2.38291172e+07 -1.17714020e+08 -1.39054044e+08 -1.51766741e+08] [-8.40862658e+06 -3.16028615e+07 -1.38613279e+07 -9.69465249e+06 -1.34035617e+07 -1.24971334e+07 -1.42236054e+07 -3.12821772e+07 -2.96609969e+07 -1.71759293e+07 -1.36077833e+07 -1.32472837e+07 -1.25887842e+07 -1.40909072e+07 -1.47655335e+07 -1.36745810e+07 -2.83908947e+07 -1.11163434e+07 -1.28160257e+07 -9.55307857e+07 -1.58885698e+07 -2.78740639e+07 -2.80921191e+07 -6.26109762e+07 -2.18960655e+07 -1.36983564e+07 -1.17668970e+07 -1.44366218e+07 -2.87747164e+07 -1.51088908e+07 -1.17751048e+07 -1.29864762e+07 -9.54537442e+07 -1.26135409e+07 -7.83123226e+07 -9.49405663e+07 -1.03821844e+08] [-1.90887316e+07 -3.33115362e+07 -2.28595265e+07 -2.01155704e+07 -2.19988808e+07 -2.20501547e+07 -2.32139400e+07 -3.35604965e+07 -3.16419771e+07 -2.55352561e+07 -2.34045216e+07 -2.30026860e+07 -2.27788194e+07 -2.35556963e+07 -2.40981997e+07 -2.25659541e+07 -3.13580978e+07 -2.10572529e+07 -2.27000388e+07 -7.27366221e+07 -2.43288319e+07 -3.10957888e+07 -3.11438155e+07 -5.27302505e+07 -2.69093673e+07 -2.34552999e+07 -2.16584597e+07 -2.38425466e+07 -3.17000045e+07 -2.36833770e+07 -2.15575135e+07 -2.28914592e+07 -7.29116443e+07 -2.26390753e+07 -6.27006332e+07 -7.24164367e+07 -7.74398568e+07] [-2.45235692e+07 -2.61766031e+07 -2.54073673e+07 -2.48734377e+07 -2.56918923e+07 -2.55657318e+07 -2.58443359e+07 -2.92208953e+07 -2.71096716e+07 -2.67863397e+07 -2.60338961e+07 -2.59573522e+07 -2.66274827e+07 -2.60138707e+07 -2.64381784e+07 -2.57107694e+07 -2.84704218e+07 -2.49194821e+07 -2.58151839e+07 -3.36974652e+07 -2.62529487e+07 -2.83898241e+07 -2.84279268e+07 -3.06493718e+07 -2.69833679e+07 -2.61230028e+07 -2.55776610e+07 -2.62326039e+07 -2.85688691e+07 -2.59955792e+07 -2.50251060e+07 -2.59453722e+07 -3.39079431e+07 -2.57919910e+07 -3.27358440e+07 -3.35927250e+07 -3.44883648e+07] [-1.32576163e+07 -1.22162573e+07 -1.33348413e+07 -1.33661236e+07 -1.38279531e+07 -1.36695811e+07 -1.35114150e+07 -1.42813708e+07 -1.32034260e+07 -1.38244647e+07 -1.37151286e+07 -1.37348927e+07 -1.41514301e+07 -1.36312128e+07 -1.38701450e+07 -1.35126124e+07 -1.43282739e+07 -1.32491237e+07 -1.36358040e+07 -1.11506785e+07 -1.37090431e+07 -1.42699560e+07 -1.41980540e+07 -1.20730594e+07 -1.41097982e+07 -1.37705556e+07 -1.36874248e+07 -1.37585381e+07 -1.41929588e+07 -1.37308616e+07 -1.32539851e+07 -1.37124053e+07 -1.12534658e+07 -1.36742284e+07 -1.18765106e+07 -1.11233510e+07 -1.09946959e+07] [-1.04256252e+06 -1.01436317e+06 -1.03996812e+06 -1.05156031e+06 -1.07719653e+06 -1.06397035e+06 -1.07600586e+06 -1.10383314e+06 -1.04258257e+06 -1.09989995e+06 -1.06973132e+06 -1.06617796e+06 -1.07021777e+06 -1.04726839e+06 -1.08572858e+06 -1.07139923e+06 -1.10684852e+06 -1.04335736e+06 -1.05857834e+06 -9.01027693e+05 -1.07820078e+06 -1.09848317e+06 -1.09227230e+06 -9.46157828e+05 -1.06743937e+06 -1.07093177e+06 -1.06044771e+06 -1.07127135e+06 -1.08977532e+06 -1.11722026e+06 -1.04953546e+06 -1.06730126e+06 -9.11563542e+05 -1.06218615e+06 -9.47261622e+05 -8.95484621e+05 -9.01375854e+05] [-1.02478583e+05 -1.15305152e+05 -9.96312134e+04 -1.04195642e+05 -1.05587066e+05 -9.96303948e+04 -1.05831696e+05 -1.19938627e+05 -1.15079811e+05 -1.05221554e+05 -9.91703251e+04 -9.89176308e+04 -9.77069307e+04 -9.55303412e+04 -1.02184225e+05 -1.06460023e+05 -1.18952345e+05 -1.03351659e+05 -9.83024704e+04 -1.30374052e+05 -1.03467762e+05 -1.17273414e+05 -1.17356377e+05 -1.21959798e+05 -1.11645594e+05 -9.83889678e+04 -9.89506028e+04 -9.96722671e+04 -1.16196122e+05 -1.13336585e+05 -1.03551469e+05 -9.94782146e+04 -1.30092786e+05 -9.78962089e+04 -1.27750080e+05 -1.28852185e+05 -1.32456975e+05] [ 1.22831483e+01 4.22216713e+02 2.45049845e+02 1.11668464e+02 2.37654846e+02 3.35264723e+02 1.56487774e+02 5.00858379e+02 4.96545202e+02 3.96837058e+02 3.44369955e+02 3.65009623e+02 3.54914342e+02 3.91853901e+02 3.88909625e+02 2.32623349e+02 5.63958166e+02 5.38810760e+01 3.47512181e+02 9.18748812e+02 3.87728521e+02 4.44247631e+02 3.99792885e+02 6.49127328e+02 4.04929457e+02 3.73295514e+02 3.12073375e+02 3.83336245e+02 4.65780836e+02 2.18659874e+02 8.45896054e+01 3.37344943e+02 9.31783220e+02 3.31494213e+02 8.00370420e+02 9.21716361e+02 9.00076998e+02] [-1.13873458e+05 1.09612743e+05 -2.89613474e+04 -6.62540152e+04 1.20571806e+03 -2.93822168e+03 -4.07191542e+04 1.15780717e+05 1.36100999e+05 4.85840938e+04 -7.48386290e+03 9.66985917e+03 -2.31990852e+04 -5.27077044e+03 2.95128553e+04 1.75207506e+04 1.25222870e+05 -1.11609720e+05 -2.04924029e+04 4.53526512e+05 1.94249699e+04 7.69822590e+04 7.20366094e+04 1.96561053e+05 6.82305291e+04 -8.79081346e+03 -5.48402141e+03 -2.65463376e+03 8.71516550e+04 4.89516893e+04 -9.83038187e+04 -1.33322605e+04 4.60934002e+05 -1.21300465e+04 3.27800044e+05 4.53074078e+05 4.86224911e+05] [-1.27890214e+06 -7.99393715e+05 -1.07630799e+06 -1.17298607e+06 -1.15550287e+06 -1.00022660e+06 -1.04970152e+06 -1.16059933e+06 -9.47273407e+05 -8.11457849e+05 -1.00754761e+06 -9.44978555e+05 -1.17980344e+06 -9.95187636e+05 -8.84105395e+05 -9.10264013e+05 -1.15873736e+06 -1.25029228e+06 -1.05247666e+06 -9.27867334e+04 -9.22750591e+05 -1.29547368e+06 -1.29614589e+06 -9.94149180e+05 -1.37376488e+06 -1.01654202e+06 -1.00719158e+06 -9.84918633e+05 -1.27291879e+06 -8.34453647e+05 -1.21172363e+06 -1.02169179e+06 -8.19682979e+04 -1.01054883e+06 -5.52713310e+05 -1.07330735e+05 4.19778835e+04] [-5.20358531e+06 -3.62758816e+06 -4.63800231e+06 -4.89023026e+06 -5.23671458e+06 -4.43107785e+06 -4.49687456e+06 -5.30500703e+06 -4.51925286e+06 -3.85378129e+06 -4.38518401e+06 -4.25382037e+06 -5.07485566e+06 -4.36601611e+06 -4.07093226e+06 -4.25532644e+06 -5.37374407e+06 -5.04273730e+06 -4.52720101e+06 -1.02696953e+06 -4.21166586e+06 -5.72435695e+06 -5.73591973e+06 -4.16023464e+06 -6.14337450e+06 -4.40416899e+06 -4.46711175e+06 -4.32573011e+06 -5.63030647e+06 -4.11336567e+06 -4.92774838e+06 -4.45073273e+06 -1.00594844e+06 -4.42486918e+06 -2.69929727e+06 -1.07958271e+06 -4.33678043e+05] [-1.68201346e+07 -1.25408944e+07 -1.51004686e+07 -1.60156504e+07 -1.62241067e+07 -1.46531560e+07 -1.52723772e+07 -1.66075415e+07 -1.45290061e+07 -1.36974664e+07 -1.46546177e+07 -1.43895466e+07 -1.64066145e+07 -1.46359321e+07 -1.40307593e+07 -1.44335436e+07 -1.65915174e+07 -1.65907650e+07 -1.49299501e+07 -6.84319459e+06 -1.42290599e+07 -1.74787852e+07 -1.76250446e+07 -1.38108977e+07 -1.82204732e+07 -1.46678076e+07 -1.47853432e+07 -1.45324481e+07 -1.73198184e+07 -1.39009420e+07 -1.63531024e+07 -1.47832068e+07 -6.87462193e+06 -1.47150823e+07 -1.07713927e+07 -6.99323870e+06 -5.33019163e+06] [-2.56722014e+07 -1.87344037e+07 -2.25375523e+07 -2.43149806e+07 -2.36149524e+07 -2.15009813e+07 -2.32966801e+07 -2.44300564e+07 -2.09949162e+07 -2.05862388e+07 -2.18891261e+07 -2.12852080e+07 -2.43523341e+07 -2.18756503e+07 -2.08917687e+07 -2.14206594e+07 -2.40039721e+07 -2.55543876e+07 -2.23766460e+07 -1.16061119e+07 -2.12986803e+07 -2.56494040e+07 -2.59013188e+07 -2.18070549e+07 -2.61657268e+07 -2.18608534e+07 -2.16842478e+07 -2.17544083e+07 -2.53541878e+07 -2.03799559e+07 -2.51528725e+07 -2.20977679e+07 -1.17387965e+07 -2.18099423e+07 -1.75264505e+07 -1.19121652e+07 -9.55102035e+06] [-1.68236420e+07 -1.31271351e+07 -1.28193675e+07 -1.49409716e+07 -1.35785393e+07 -1.11847769e+07 -1.43226427e+07 -1.55816951e+07 -1.35730108e+07 -1.07133763e+07 -1.12947332e+07 -1.07985837e+07 -1.28800588e+07 -1.10182062e+07 -1.03865076e+07 -1.25065425e+07 -1.42917357e+07 -1.69445733e+07 -1.18263290e+07 -1.38730577e+07 -1.10533838e+07 -1.63049434e+07 -1.66586710e+07 -1.91364657e+07 -1.60331401e+07 -1.09996244e+07 -1.14075371e+07 -1.11950678e+07 -1.59031090e+07 -1.14153545e+07 -1.63713485e+07 -1.15692143e+07 -1.37597284e+07 -1.13122601e+07 -1.69421739e+07 -1.40088553e+07 -1.38700458e+07] [-6.46192069e+06 -2.23134215e+06 -4.18695650e+05 -3.44462235e+06 5.19882132e+04 1.09390806e+06 -4.14680731e+06 1.79009169e+05 1.65631548e+05 8.80486938e+05 1.94154676e+06 1.66302092e+06 1.43356712e+06 2.09937980e+06 2.04932285e+06 -1.64075868e+06 2.57951286e+06 -6.96449418e+06 1.68530953e+06 -4.73864010e+06 1.32538852e+06 2.11183728e+05 -6.42043160e+05 -5.09299750e+06 1.51632771e+06 2.54277081e+06 6.31717662e+05 1.83014130e+06 7.94175304e+05 -1.84295116e+05 -6.28080768e+06 1.66080905e+06 -4.55865346e+06 1.62722211e+06 -5.10565684e+06 -4.72534437e+06 -6.12596015e+06] [-1.04892518e+07 -7.10781517e+04 2.26948500e+04 -5.55367609e+06 2.26510585e+06 9.11931221e+05 -8.00651706e+06 6.27558549e+06 5.19330728e+06 -9.12408379e+05 2.50672149e+06 8.91090172e+05 2.73947362e+06 2.37648089e+06 1.19394161e+06 -3.88993714e+06 1.04759813e+07 -1.17053358e+07 2.61520594e+06 1.94756679e+06 1.52235604e+06 7.50864332e+06 5.76920762e+06 4.81367183e+06 1.07442781e+07 3.34297027e+06 -2.06901588e+05 1.89216272e+06 8.30544098e+06 -1.80910589e+06 -1.07962960e+07 2.11564819e+06 1.87309870e+06 1.73090092e+06 2.81339911e+06 2.04515692e+06 -7.61346480e+05] [-1.74191236e+07 -3.51411168e+06 -4.44745185e+06 -1.19578115e+07 1.34456784e+06 -4.20958313e+06 -1.53605114e+07 7.73398360e+06 5.75037086e+06 -8.39373390e+06 -3.53972930e+06 -5.73425523e+06 -1.79807996e+06 -3.77560550e+06 -5.79124126e+06 -9.66128134e+06 1.34190052e+07 -1.97534473e+07 -2.94576181e+06 -2.73849871e+06 -3.48724980e+06 1.00883576e+07 7.73546608e+06 6.08265114e+06 1.57775993e+07 -2.54748256e+06 -5.95247432e+06 -4.46721277e+06 1.06005446e+07 -7.15191406e+06 -1.87892230e+07 -3.75270042e+06 -2.81571544e+06 -4.25673445e+06 8.54193477e+05 -2.33712752e+06 -8.03537689e+06] [-2.35948090e+07 -1.87731976e+07 -1.16851234e+07 -1.90294460e+07 -2.33884620e+06 -1.11858297e+07 -2.38499330e+07 -1.92217706e+06 -5.23499445e+06 -1.87631063e+07 -1.17802844e+07 -1.38869152e+07 -8.35997994e+06 -1.23651572e+07 -1.46070880e+07 -1.74040769e+07 4.99994363e+06 -2.75162333e+07 -1.09991863e+07 -4.22687132e+07 -1.17516932e+07 2.49030058e+06 -9.87601696e+04 -1.67862420e+07 1.21359602e+07 -1.06940652e+07 -1.28467478e+07 -1.30895040e+07 2.25545688e+06 -1.51511501e+07 -2.67999000e+07 -1.18256627e+07 -4.20571510e+07 -1.21113008e+07 -3.03775320e+07 -4.13834985e+07 -5.25334979e+07] [-5.54063512e+06 -2.30005771e+07 -2.58991805e+05 -3.39365014e+06 1.03944326e+07 1.17495669e+06 -1.00261220e+07 2.88242267e+05 -4.84483722e+06 -8.48701844e+06 1.29714703e+05 -1.21607477e+06 6.06575361e+06 -7.18383221e+05 -2.81006715e+06 -5.12733673e+06 6.96871620e+06 -1.10918148e+07 9.05970489e+05 -8.61477590e+07 -1.72154372e+06 6.41776103e+06 4.34627008e+06 -3.75544263e+07 1.95126031e+07 1.02267851e+06 7.95073047e+05 -1.47788525e+06 5.42894877e+06 -4.95998964e+06 -1.09842063e+07 4.71023944e+05 -8.54245445e+07 6.43900601e+05 -6.23303344e+07 -8.49145864e+07 -1.02002202e+08] [ 2.49828864e+07 -1.30892759e+07 2.07869814e+07 2.35454759e+07 2.96853690e+07 2.27797370e+07 1.78532562e+07 1.08122330e+07 3.73271890e+06 1.39633389e+07 2.13121123e+07 2.14735355e+07 2.91377863e+07 2.08105633e+07 1.95487059e+07 1.85820689e+07 1.45193584e+07 1.95624468e+07 2.19020210e+07 -1.04237996e+08 1.86187312e+07 1.67625489e+07 1.60058391e+07 -4.37259428e+07 2.86966320e+07 2.16457299e+07 2.38227732e+07 2.00304837e+07 1.53631813e+07 1.72165689e+07 1.89381036e+07 2.20571457e+07 -1.02937820e+08 2.26321046e+07 -7.30278645e+07 -1.02825552e+08 -1.22215398e+08] [ 3.52122578e+07 -1.03893528e+07 2.14396643e+07 3.14099655e+07 2.45182415e+07 2.48177807e+07 2.70349957e+07 3.73986965e+06 -9.06185099e+05 2.06300466e+07 2.36241533e+07 2.52877276e+07 3.04120935e+07 2.30876260e+07 2.38466303e+07 2.33648832e+07 4.13859520e+06 3.17411161e+07 2.32190914e+07 -1.01321097e+08 2.01079364e+07 7.73284452e+06 8.69135104e+06 -4.82780037e+07 1.45816478e+07 2.28140986e+07 2.69439032e+07 2.25785063e+07 6.66308521e+06 1.87937771e+07 3.07443938e+07 2.40869646e+07 -9.98741945e+07 2.51677115e+07 -7.34091619e+07 -1.00070450e+08 -1.17658684e+08] [ 5.33184551e+06 -2.79609318e+07 -1.50019420e+07 3.14418410e+04 -1.93406365e+07 -1.11203614e+07 -1.26320383e+06 -3.44207510e+07 -3.11173360e+07 -8.18934195e+06 -1.22413687e+07 -9.36449541e+06 -1.03024162e+07 -1.27370210e+07 -9.79190460e+06 -7.78101374e+06 -3.71525251e+07 5.26462581e+06 -1.34354299e+07 -8.08829405e+07 -1.48562445e+07 -3.43938363e+07 -3.16223370e+07 -5.93241292e+07 -3.57984783e+07 -1.42299335e+07 -8.95294589e+06 -1.27191657e+07 -3.44759517e+07 -1.50548638e+07 4.27284167e+06 -1.21677038e+07 -8.00696135e+07 -1.07993808e+07 -6.89276746e+07 -8.03869013e+07 -8.92494616e+07] [-6.67602336e+07 -8.11413743e+07 -8.52020031e+07 -7.08936509e+07 -9.78746879e+07 -8.12122301e+07 -6.97626145e+07 -1.11207708e+08 -9.79334238e+07 -7.31782990e+07 -8.12170404e+07 -7.83602829e+07 -8.74996842e+07 -8.18295013e+07 -7.78346514e+07 -7.65915477e+07 -1.14939429e+08 -6.43271976e+07 -8.27771611e+07 -9.55838820e+07 -8.32990883e+07 -1.14205839e+08 -1.11118930e+08 -1.07320766e+08 -1.21619370e+08 -8.34531649e+07 -7.98339179e+07 -8.11603710e+07 -1.13543134e+08 -8.41522055e+07 -6.48557132e+07 -8.16094707e+07 -9.55996243e+07 -8.03828617e+07 -1.01518779e+08 -9.59059125e+07 -9.48987886e+07] [-1.37421369e+08 -1.28480421e+08 -1.44817934e+08 -1.37747714e+08 -1.60624788e+08 -1.40486316e+08 -1.34193004e+08 -1.74226528e+08 -1.53370119e+08 -1.30880986e+08 -1.40812902e+08 -1.38321660e+08 -1.55078083e+08 -1.41667305e+08 -1.36766892e+08 -1.36385922e+08 -1.75769993e+08 -1.34309772e+08 -1.42030002e+08 -1.15567474e+08 -1.40244567e+08 -1.78879704e+08 -1.77424850e+08 -1.53835283e+08 -1.86851092e+08 -1.42277255e+08 -1.40780162e+08 -1.39998582e+08 -1.78055857e+08 -1.39645852e+08 -1.33974589e+08 -1.41296302e+08 -1.16241740e+08 -1.40605165e+08 -1.35673960e+08 -1.16540799e+08 -1.07174881e+08] [-1.42196436e+08 -1.22866891e+08 -1.37519913e+08 -1.38814010e+08 -1.50509377e+08 -1.33797440e+08 -1.34844920e+08 -1.62644753e+08 -1.43898026e+08 -1.26244312e+08 -1.33284136e+08 -1.32335905e+08 -1.49059627e+08 -1.34317691e+08 -1.30336957e+08 -1.32821244e+08 -1.61693111e+08 -1.40372400e+08 -1.33970656e+08 -1.07713764e+08 -1.32024939e+08 -1.66838866e+08 -1.67341610e+08 -1.45221329e+08 -1.71767459e+08 -1.33426106e+08 -1.35343854e+08 -1.32385608e+08 -1.66134881e+08 -1.31831120e+08 -1.39152684e+08 -1.33778933e+08 -1.08291782e+08 -1.33885517e+08 -1.27409151e+08 -1.08658084e+08 -9.93944526e+07] [-9.68148547e+07 -9.49356616e+07 -8.98088304e+07 -9.32823900e+07 -9.84675850e+07 -8.59091430e+07 -9.11367415e+07 -1.17227925e+08 -1.06274160e+08 -8.27184280e+07 -8.46506360e+07 -8.41980020e+07 -9.54082152e+07 -8.50752261e+07 -8.28281366e+07 -8.80496937e+07 -1.15229703e+08 -9.73658332e+07 -8.51226901e+07 -1.18346936e+08 -8.55257124e+07 -1.19105448e+08 -1.20218493e+08 -1.27517648e+08 -1.19052681e+08 -8.40954103e+07 -8.69210762e+07 -8.42939483e+07 -1.18490923e+08 -8.68250724e+07 -9.61053290e+07 -8.49998722e+07 -1.18080691e+08 -8.52927283e+07 -1.22283811e+08 -1.18401928e+08 -1.19352942e+08] [-1.07166282e+07 -4.21220807e+07 -9.31792827e+06 -8.52637629e+06 -1.40231032e+07 -4.40961514e+06 -1.07239625e+07 -4.08618449e+07 -4.12446806e+07 -5.71580566e+06 -1.80992010e+06 -2.08806126e+06 -3.86525801e+06 -1.94760496e+06 -1.93018326e+06 -1.00801285e+07 -3.73311709e+07 -1.33249080e+07 -2.01554796e+06 -1.27404921e+08 -6.74516463e+06 -3.83119185e+07 -3.96289133e+07 -8.92598126e+07 -3.28465608e+07 -8.35167870e+05 -4.01663126e+06 -2.48762920e+06 -3.79461850e+07 -1.22293991e+07 -1.26727621e+07 -1.93119312e+06 -1.25607978e+08 -2.31373933e+06 -1.05046044e+08 -1.25893299e+08 -1.42458931e+08] [ 4.34782098e+07 -7.38172293e+06 3.67683267e+07 4.25827047e+07 3.51029377e+07 4.10844918e+07 3.83900866e+07 4.31104082e+06 -1.08978583e+06 3.70396967e+07 4.20639649e+07 4.23617641e+07 4.52833230e+07 4.20652465e+07 4.14660777e+07 3.67874034e+07 7.49883691e+06 3.97653003e+07 4.25049375e+07 -1.24048217e+08 3.71923966e+07 8.52650111e+06 8.11163083e+06 -6.25871325e+07 1.66890363e+07 4.27546737e+07 4.23278526e+07 4.11861605e+07 8.13910030e+06 3.29403756e+07 3.95147363e+07 4.26747877e+07 -1.21781816e+08 4.25940644e+07 -8.88340389e+07 -1.21947737e+08 -1.43593649e+08] [ 5.86918894e+07 1.17920321e+07 4.89681519e+07 5.67508525e+07 5.08304509e+07 5.32596444e+07 5.14007432e+07 2.45506805e+07 1.96938889e+07 4.81459801e+07 5.24116096e+07 5.33679687e+07 5.71193596e+07 5.16959170e+07 5.18744516e+07 5.05020775e+07 2.80988661e+07 5.49301284e+07 5.29718414e+07 -9.74460398e+07 4.83644414e+07 2.92836431e+07 2.89626778e+07 -3.85672712e+07 3.75554518e+07 5.25704671e+07 5.47461277e+07 5.13833921e+07 2.81353907e+07 4.77599194e+07 5.41502465e+07 5.32286297e+07 -9.59431537e+07 5.36623822e+07 -6.49594671e+07 -9.59210236e+07 -1.14270403e+08] [ 6.34881246e+07 2.54325672e+07 5.44767408e+07 6.16153376e+07 5.72507932e+07 5.78202884e+07 5.63942877e+07 3.82366340e+07 3.38106562e+07 5.34132888e+07 5.69395098e+07 5.78107706e+07 6.19389959e+07 5.60233953e+07 5.63510298e+07 5.57669169e+07 4.12345563e+07 6.02662871e+07 5.73456367e+07 -6.16414792e+07 5.35963654e+07 4.24801677e+07 4.23864674e+07 -1.26626314e+07 4.89647103e+07 5.67458553e+07 5.92178547e+07 5.59730088e+07 4.13058227e+07 5.32591634e+07 5.93979669e+07 5.75901548e+07 -6.07627406e+07 5.80627969e+07 -3.52245739e+07 -6.06851221e+07 -7.49693679e+07] [ 3.30980036e+07 7.91471429e+06 2.69292381e+07 3.17541429e+07 2.92990486e+07 2.92607296e+07 2.80236465e+07 1.64784092e+07 1.42217390e+07 2.59423502e+07 2.81328149e+07 2.87511052e+07 3.12952183e+07 2.75403326e+07 2.77451214e+07 2.78180966e+07 1.90988421e+07 3.07519582e+07 2.85348326e+07 -4.94538711e+07 2.64412528e+07 1.97338546e+07 1.96360270e+07 -1.68831189e+07 2.44060216e+07 2.80514578e+07 3.01145391e+07 2.75917872e+07 1.87938572e+07 2.59626360e+07 3.01362977e+07 2.86309115e+07 -4.90421411e+07 2.88875012e+07 -3.21026481e+07 -4.89127276e+07 -5.81057893e+07] [-2.63570782e+06 -8.51649052e+06 -4.17153135e+06 -3.02938006e+06 -3.50929676e+06 -3.47589461e+06 -4.25855237e+06 -8.17563225e+06 -7.56094041e+06 -4.97332097e+06 -4.19179019e+06 -3.95790887e+06 -3.93366205e+06 -4.35690199e+06 -4.39905530e+06 -4.01343915e+06 -7.01032013e+06 -3.31592899e+06 -4.05779809e+06 -2.40164725e+07 -4.59648576e+06 -6.98438145e+06 -7.13487189e+06 -1.61986810e+07 -5.09998523e+06 -4.18521066e+06 -3.36493495e+06 -4.37757054e+06 -7.32607128e+06 -4.22881786e+06 -3.47446331e+06 -4.06918613e+06 -2.40517817e+07 -3.88707850e+06 -2.02080222e+07 -2.39145548e+07 -2.61454455e+07] [-8.20728607e+06 -8.04968786e+06 -8.27747670e+06 -8.27356643e+06 -8.64535860e+06 -8.36135461e+06 -8.36426160e+06 -9.55390934e+06 -8.79486728e+06 -8.53279477e+06 -8.47630318e+06 -8.45095677e+06 -8.82499817e+06 -8.43769909e+06 -8.53126922e+06 -8.34885771e+06 -9.53583160e+06 -8.22972022e+06 -8.44490812e+06 -8.84515420e+06 -8.45173007e+06 -9.52227879e+06 -9.49228467e+06 -9.04267188e+06 -9.34947852e+06 -8.50316577e+06 -8.37660073e+06 -8.50581826e+06 -9.49542447e+06 -8.43808732e+06 -8.23076493e+06 -8.47554385e+06 -8.88635624e+06 -8.43376901e+06 -9.07152155e+06 -8.81659057e+06 -8.92452414e+06] [-6.72146555e+05 -6.71690055e+05 -6.81963657e+05 -6.80734588e+05 -6.90368648e+05 -6.90233178e+05 -6.87887453e+05 -7.49183503e+05 -7.05686955e+05 -7.10199414e+05 -7.05260248e+05 -6.99692849e+05 -7.15929078e+05 -6.95197344e+05 -7.08065627e+05 -6.88681505e+05 -7.52872127e+05 -6.72665048e+05 -7.01739622e+05 -7.02978879e+05 -6.96689162e+05 -7.46932020e+05 -7.41982639e+05 -7.14468076e+05 -7.30226926e+05 -7.05014251e+05 -6.88194383e+05 -7.06618772e+05 -7.44750751e+05 -7.01872283e+05 -6.74019645e+05 -7.04505486e+05 -7.05392234e+05 -7.01148508e+05 -7.21347716e+05 -6.97447609e+05 -7.26301480e+05] [-2.28924980e+04 -2.76250748e+04 -2.26667259e+04 -2.35278740e+04 -2.42045215e+04 -2.24791784e+04 -2.44945422e+04 -2.75979377e+04 -2.67639314e+04 -2.41071061e+04 -2.25139695e+04 -2.21396895e+04 -2.10655618e+04 -2.11001026e+04 -2.35002890e+04 -2.45715669e+04 -2.72980898e+04 -2.33856760e+04 -2.22056628e+04 -3.21056847e+04 -2.42718814e+04 -2.67529619e+04 -2.66019790e+04 -2.86974990e+04 -2.48615804e+04 -2.21159632e+04 -2.20471863e+04 -2.26271842e+04 -2.63154167e+04 -2.68916091e+04 -2.32770693e+04 -2.25554590e+04 -3.19506882e+04 -2.18564391e+04 -3.12608803e+04 -3.16360084e+04 -3.32427664e+04] [ 1.61143062e+03 5.41165141e+04 3.13390605e+04 1.42238920e+04 3.03903994e+04 4.29220485e+04 2.00878277e+04 6.42109450e+04 6.35853576e+04 5.07452020e+04 4.41954295e+04 4.67046538e+04 4.55420664e+04 5.02489499e+04 4.97792882e+04 2.96597216e+04 7.23126793e+04 6.92718252e+03 4.45744139e+04 1.17493822e+05 4.96601298e+04 5.68082180e+04 5.11640954e+04 8.31050570e+04 5.19318927e+04 4.76861172e+04 4.00309500e+04 4.90013227e+04 5.95855431e+04 2.79988819e+04 1.09425678e+04 4.32294075e+04 1.19259820e+05 4.24382781e+04 1.02415517e+05 1.18028663e+05 1.15108920e+05] [-2.32126473e+05 -1.11692822e+05 -1.70156392e+05 -2.06557957e+05 -1.79480178e+05 -1.55744321e+05 -1.91343765e+05 -1.39653474e+05 -1.16632833e+05 -1.36986297e+05 -1.55400866e+05 -1.48141890e+05 -1.68764047e+05 -1.45816125e+05 -1.40944862e+05 -1.63163103e+05 -1.30133926e+05 -2.25700552e+05 -1.58687126e+05 2.48513287e+04 -1.42288390e+05 -1.58864957e+05 -1.65395078e+05 -8.59870823e+04 -1.65140630e+05 -1.51006399e+05 -1.58625694e+05 -1.48855064e+05 -1.49427449e+05 -1.58396326e+05 -2.17799497e+05 -1.58230761e+05 2.70999705e+04 -1.57737721e+05 -2.84594550e+04 2.47740526e+04 3.37101372e+04] [-1.11905114e+06 -6.85971681e+05 -9.52169862e+05 -1.05460303e+06 -9.84598167e+05 -8.97525516e+05 -9.42575803e+05 -1.00191250e+06 -7.91798889e+05 -7.58614890e+05 -9.17812015e+05 -8.63747385e+05 -1.07872980e+06 -9.09978920e+05 -8.23311618e+05 -8.30017774e+05 -9.95203167e+05 -1.10010583e+06 -9.51829447e+05 -4.03444559e+04 -8.35601143e+05 -1.11575297e+06 -1.11939830e+06 -8.45596809e+05 -1.18248332e+06 -9.16242127e+05 -9.06443250e+05 -8.93558079e+05 -1.10491062e+06 -7.44650173e+05 -1.06282508e+06 -9.25359316e+05 -3.15820260e+04 -9.13368036e+05 -4.73484539e+05 -5.57249789e+04 9.17630209e+04] [-4.39611378e+06 -2.52285083e+06 -3.74630943e+06 -4.08365248e+06 -3.99394854e+06 -3.63683078e+06 -3.77517583e+06 -3.76894303e+06 -3.11438096e+06 -3.20734921e+06 -3.61340102e+06 -3.56278043e+06 -4.22703575e+06 -3.66769393e+06 -3.39469836e+06 -3.43596550e+06 -3.74886645e+06 -4.29266754e+06 -3.71651320e+06 2.14597886e+05 -3.38958966e+06 -4.07773284e+06 -4.16997731e+06 -2.46948715e+06 -4.41245225e+06 -3.61957594e+06 -3.70365840e+06 -3.58142634e+06 -4.05771450e+06 -3.18899519e+06 -4.18772941e+06 -3.65760599e+06 2.26482454e+05 -3.66301862e+06 -1.28527264e+06 1.65391272e+05 8.13928482e+05] [-1.30885891e+07 -9.01534580e+06 -1.14649412e+07 -1.24096667e+07 -1.20891718e+07 -1.11587753e+07 -1.18996534e+07 -1.18403928e+07 -1.01628212e+07 -1.06168089e+07 -1.12285926e+07 -1.10736973e+07 -1.25231341e+07 -1.12532873e+07 -1.08154692e+07 -1.09955138e+07 -1.16970594e+07 -1.29624475e+07 -1.14327901e+07 -3.56684801e+06 -1.08446600e+07 -1.24896591e+07 -1.26663752e+07 -9.11877833e+06 -1.29172528e+07 -1.12162966e+07 -1.12830943e+07 -1.11597591e+07 -1.23933341e+07 -1.05481049e+07 -1.27646903e+07 -1.13266436e+07 -3.63933245e+06 -1.12743032e+07 -6.79870273e+06 -3.71595029e+06 -2.32094770e+06] [-8.72172252e+06 -5.06620830e+06 -6.38617683e+06 -7.75944079e+06 -5.87965459e+06 -5.62740647e+06 -7.41278455e+06 -5.95162710e+06 -4.65353595e+06 -5.67106754e+06 -6.02661599e+06 -5.73781946e+06 -6.78564341e+06 -6.04901105e+06 -5.55915982e+06 -6.00916592e+06 -5.12836064e+06 -8.91502847e+06 -6.27236459e+06 -2.83209771e+06 -5.63720003e+06 -6.35894424e+06 -6.61339658e+06 -6.78999013e+06 -6.12344002e+06 -5.88278925e+06 -5.79422073e+06 -5.99636107e+06 -6.26294046e+06 -5.01062486e+06 -8.65154358e+06 -6.11304876e+06 -2.90349074e+06 -5.93686609e+06 -5.28037302e+06 -3.02069509e+06 -2.07946630e+06] [ 1.91904402e+07 2.06189616e+07 2.21616894e+07 2.05428267e+07 2.48785116e+07 2.30243067e+07 2.01592013e+07 2.71724816e+07 2.50822818e+07 2.24166608e+07 2.30347275e+07 2.28113266e+07 2.43569712e+07 2.30144880e+07 2.30774424e+07 2.15706837e+07 2.91413069e+07 1.87017044e+07 2.29784616e+07 1.90411227e+07 2.32162388e+07 2.76780729e+07 2.71617154e+07 2.16875806e+07 2.88532079e+07 2.34498983e+07 2.27105095e+07 2.29770761e+07 2.77502274e+07 2.27833285e+07 1.90750770e+07 2.29744846e+07 1.92125922e+07 2.28709888e+07 2.05566001e+07 1.90519573e+07 1.76585988e+07] [ 4.32666479e+07 5.04542263e+07 5.09377782e+07 4.67429607e+07 5.76015712e+07 5.09423225e+07 4.44257479e+07 6.73091152e+07 6.07587648e+07 4.85093344e+07 5.20745272e+07 5.03820984e+07 5.60140172e+07 5.17377777e+07 5.04209750e+07 4.73088841e+07 7.10449699e+07 4.20868792e+07 5.25617186e+07 5.48975786e+07 5.14792949e+07 6.93013146e+07 6.76781049e+07 6.36652284e+07 7.20957726e+07 5.29881199e+07 5.00545850e+07 5.16397971e+07 6.95596569e+07 4.99844216e+07 4.25722338e+07 5.20342077e+07 5.48993601e+07 5.14840771e+07 5.93497550e+07 5.48956680e+07 5.26458653e+07] [ 5.68181954e+07 7.20759677e+07 7.07127142e+07 6.26684310e+07 8.10041289e+07 6.96418957e+07 5.84401002e+07 9.80297543e+07 8.79865039e+07 6.46170585e+07 7.13077573e+07 6.79652639e+07 7.74122510e+07 7.07751114e+07 6.77916492e+07 6.35668240e+07 1.04239773e+08 5.47555205e+07 7.26034537e+07 8.49885558e+07 7.06989091e+07 1.01716453e+08 9.88789534e+07 9.81991937e+07 1.07298162e+08 7.26943203e+07 6.78230939e+07 7.05232108e+07 1.02321807e+08 6.75503204e+07 5.53200601e+07 7.13983253e+07 8.46254267e+07 7.02985127e+07 9.13732432e+07 8.49685420e+07 8.19827958e+07] [ 5.04743953e+07 6.78879176e+07 6.66356023e+07 5.66231400e+07 8.06881689e+07 6.46378408e+07 5.12838641e+07 9.93442567e+07 8.80592841e+07 5.63731195e+07 6.52458751e+07 6.12249546e+07 7.33251481e+07 6.47181529e+07 6.04606379e+07 5.75282951e+07 1.06875593e+08 4.72463644e+07 6.70371064e+07 7.73181061e+07 6.54044048e+07 1.04446461e+08 1.01129000e+08 9.86099367e+07 1.12872289e+08 6.69322672e+07 6.21980235e+07 6.40718382e+07 1.04778089e+08 6.19817637e+07 4.78209800e+07 6.54879020e+07 7.69456377e+07 6.43778968e+07 8.71737551e+07 7.75789168e+07 7.12709519e+07] [ 2.76211639e+07 2.98222145e+07 3.95983658e+07 3.11826230e+07 5.36368068e+07 3.68510885e+07 2.50328646e+07 6.06137241e+07 5.01151610e+07 2.53705135e+07 3.57321639e+07 3.22490477e+07 4.42756196e+07 3.54650229e+07 3.05724747e+07 3.07922556e+07 6.77246932e+07 2.29346742e+07 3.80122489e+07 8.64270536e+06 3.60512883e+07 6.71437853e+07 6.44353840e+07 4.62060697e+07 7.97778414e+07 3.73545394e+07 3.48909523e+07 3.45450291e+07 6.68851797e+07 3.34870935e+07 2.30110466e+07 3.64988557e+07 8.57883645e+06 3.56337253e+07 2.70810097e+07 9.41003783e+06 -1.62698945e+06] [-1.86028588e+07 -4.29506870e+07 -1.75968735e+07 -1.91640906e+07 -9.99944021e+06 -1.91898798e+07 -2.60513843e+07 -2.62683587e+07 -3.04656109e+07 -3.07299180e+07 -2.12376468e+07 -2.26645595e+07 -1.59227562e+07 -2.15760694e+07 -2.52840441e+07 -2.34118199e+07 -2.11495094e+07 -2.42063628e+07 -1.90788164e+07 -1.14170687e+08 -2.24721398e+07 -1.89926724e+07 -2.05659003e+07 -6.14087653e+07 -5.22751293e+06 -2.04941640e+07 -1.95770810e+07 -2.23353412e+07 -2.02786820e+07 -2.38546715e+07 -2.50684120e+07 -1.99924769e+07 -1.14035974e+08 -2.00522648e+07 -8.79126728e+07 -1.13211910e+08 -1.27448117e+08] [-7.44208101e+07 -1.15876747e+08 -8.41157595e+07 -7.79791898e+07 -8.86106998e+07 -8.38818590e+07 -8.36225500e+07 -1.23156299e+08 -1.18761907e+08 -9.14486306e+07 -8.55804266e+07 -8.51221628e+07 -8.61699720e+07 -8.61370913e+07 -8.76182483e+07 -8.58123695e+07 -1.21545402e+08 -7.87102766e+07 -8.45154360e+07 -2.15425298e+08 -8.83328285e+07 -1.17410076e+08 -1.17386278e+08 -1.64531543e+08 -1.07373898e+08 -8.61552687e+07 -8.29989082e+07 -8.65717487e+07 -1.18778308e+08 -9.01917966e+07 -8.00546453e+07 -8.46169995e+07 -2.14913700e+08 -8.39060270e+07 -1.89779865e+08 -2.14298579e+08 -2.28614232e+08] [-1.10818556e+08 -1.53525733e+08 -1.30876636e+08 -1.16809183e+08 -1.45570516e+08 -1.29254777e+08 -1.20245755e+08 -1.83032444e+08 -1.70571094e+08 -1.29612144e+08 -1.30291976e+08 -1.28050895e+08 -1.35922752e+08 -1.30808100e+08 -1.29637922e+08 -1.27023669e+08 -1.85215058e+08 -1.12047969e+08 -1.30405906e+08 -2.39022884e+08 -1.33522427e+08 -1.80601357e+08 -1.78342253e+08 -2.09582426e+08 -1.77814239e+08 -1.32380350e+08 -1.27454375e+08 -1.30827239e+08 -1.81192354e+08 -1.35859026e+08 -1.13596860e+08 -1.29777655e+08 -2.38621947e+08 -1.28584837e+08 -2.24066493e+08 -2.38172291e+08 -2.47405695e+08] [-1.52623916e+08 -1.73978158e+08 -1.75024661e+08 -1.58937228e+08 -1.95665661e+08 -1.73640112e+08 -1.59136971e+08 -2.22878081e+08 -2.02867918e+08 -1.67487474e+08 -1.74017397e+08 -1.71491715e+08 -1.84868075e+08 -1.74452754e+08 -1.71956475e+08 -1.67904519e+08 -2.27768692e+08 -1.50203410e+08 -1.74862431e+08 -2.05184624e+08 -1.76304021e+08 -2.24525876e+08 -2.20987689e+08 -2.14239315e+08 -2.30710780e+08 -1.76744388e+08 -1.72282411e+08 -1.74082814e+08 -2.24226925e+08 -1.77734930e+08 -1.51503487e+08 -1.74056717e+08 -2.05662215e+08 -1.72764274e+08 -2.10398219e+08 -2.05298083e+08 -2.03450195e+08] [-2.09519126e+08 -2.08987918e+08 -2.27336970e+08 -2.14283574e+08 -2.51792212e+08 -2.25693360e+08 -2.11582683e+08 -2.74151357e+08 -2.46603887e+08 -2.15794932e+08 -2.25962726e+08 -2.23189300e+08 -2.43079155e+08 -2.26336078e+08 -2.22699398e+08 -2.18753113e+08 -2.79404919e+08 -2.05191158e+08 -2.27158132e+08 -1.98115534e+08 -2.26598147e+08 -2.78755932e+08 -2.75245997e+08 -2.40285511e+08 -2.89516132e+08 -2.28627762e+08 -2.25221504e+08 -2.25413452e+08 -2.78057545e+08 -2.26929146e+08 -2.05961113e+08 -2.26372972e+08 -1.99336283e+08 -2.25125520e+08 -2.21047532e+08 -1.99029076e+08 -1.87402015e+08] [-2.61603164e+08 -2.33684791e+08 -2.62751844e+08 -2.61133515e+08 -2.84412118e+08 -2.61278660e+08 -2.55945296e+08 -3.02522947e+08 -2.72011669e+08 -2.52558836e+08 -2.62277757e+08 -2.60360928e+08 -2.84272961e+08 -2.62640307e+08 -2.58813061e+08 -2.56428130e+08 -3.04701577e+08 -2.57756049e+08 -2.62945490e+08 -1.96503669e+08 -2.59500230e+08 -3.08258991e+08 -3.07231631e+08 -2.58475949e+08 -3.17584702e+08 -2.63514383e+08 -2.62788243e+08 -2.61074893e+08 -3.07313665e+08 -2.57459005e+08 -2.57371272e+08 -2.62689480e+08 -1.98184539e+08 -2.62107711e+08 -2.30530733e+08 -1.97908973e+08 -1.80025332e+08] [-2.50500364e+08 -2.13770258e+08 -2.37395350e+08 -2.46514023e+08 -2.51817605e+08 -2.36299565e+08 -2.40375453e+08 -2.68343453e+08 -2.42229613e+08 -2.31632348e+08 -2.37938686e+08 -2.36582088e+08 -2.59030505e+08 -2.37949684e+08 -2.34834887e+08 -2.34295028e+08 -2.67855837e+08 -2.49113561e+08 -2.38016449e+08 -1.78679938e+08 -2.33537888e+08 -2.73758214e+08 -2.74770377e+08 -2.36195314e+08 -2.77636801e+08 -2.37589663e+08 -2.38798414e+08 -2.36360320e+08 -2.73133400e+08 -2.29792973e+08 -2.47755918e+08 -2.38079971e+08 -1.80190354e+08 -2.37988581e+08 -2.10578108e+08 -1.80036287e+08 -1.63760333e+08] [-1.41498605e+08 -1.27250620e+08 -1.27003742e+08 -1.36969695e+08 -1.32825834e+08 -1.24373428e+08 -1.33418331e+08 -1.51285140e+08 -1.38648684e+08 -1.24008426e+08 -1.24684046e+08 -1.24033588e+08 -1.36919952e+08 -1.24641971e+08 -1.22823934e+08 -1.26748413e+08 -1.49216915e+08 -1.42817562e+08 -1.24762723e+08 -1.35820566e+08 -1.23404206e+08 -1.53870790e+08 -1.55652490e+08 -1.55862292e+08 -1.52107578e+08 -1.23502748e+08 -1.26058656e+08 -1.23896964e+08 -1.53365653e+08 -1.21407190e+08 -1.41340459e+08 -1.24728973e+08 -1.36011638e+08 -1.24878768e+08 -1.46593243e+08 -1.36201607e+08 -1.32686289e+08] [ 6.27055269e+06 -1.91737251e+07 1.21349199e+07 9.76750851e+06 1.07796940e+07 1.70155655e+07 7.50666192e+06 -1.03892897e+07 -1.41742551e+07 1.42529054e+07 1.96440894e+07 1.88589402e+07 1.93517995e+07 1.94118291e+07 1.89985802e+07 9.85114163e+06 -6.26293089e+06 3.40390374e+06 1.94286573e+07 -9.28652757e+07 1.48776204e+07 -7.60544551e+06 -9.71216572e+06 -5.69202340e+07 -1.37514017e+06 2.10518038e+07 1.71929854e+07 1.89049567e+07 -7.32555383e+06 9.87801065e+06 4.20111354e+06 1.94477291e+07 -9.10926297e+07 1.90565774e+07 -7.20108941e+07 -9.15629419e+07 -1.06675914e+08] [ 1.17629266e+08 6.15574824e+07 1.09298056e+08 1.16820853e+08 1.11775844e+08 1.14472084e+08 1.11720782e+08 8.86229441e+07 7.61708709e+07 1.11234106e+08 1.16624975e+08 1.16351576e+08 1.24288032e+08 1.16020022e+08 1.15823745e+08 1.09277146e+08 9.17559856e+07 1.13860244e+08 1.16558423e+08 -5.40267248e+07 1.10708262e+08 9.35086003e+07 9.29561316e+07 1.53279761e+07 1.01113311e+08 1.17260359e+08 1.16165587e+08 1.15396097e+08 9.25713706e+07 1.04623080e+08 1.13648766e+08 1.16949385e+08 -5.12137680e+07 1.16648740e+08 -1.41302476e+07 -5.18122650e+07 -7.60945874e+07] [ 1.53124808e+08 9.65213590e+07 1.40136495e+08 1.50715183e+08 1.46037428e+08 1.45040160e+08 1.44924485e+08 1.27265139e+08 1.13389064e+08 1.41212277e+08 1.45582832e+08 1.45901166e+08 1.55898012e+08 1.44488942e+08 1.44886166e+08 1.41703425e+08 1.30196839e+08 1.49426088e+08 1.45823968e+08 -1.78019537e+07 1.40511861e+08 1.32607265e+08 1.32565331e+08 5.42367680e+07 1.39781189e+08 1.45725999e+08 1.46982719e+08 1.44333790e+08 1.31186919e+08 1.37686925e+08 1.48668902e+08 1.46248742e+08 -1.53611866e+07 1.46257396e+08 2.29927167e+07 -1.58727623e+07 -3.87640621e+07] [ 1.27159171e+08 8.05225893e+07 1.15678517e+08 1.24691158e+08 1.21697029e+08 1.19942119e+08 1.19221817e+08 1.05747996e+08 9.56235235e+07 1.15807818e+08 1.19328168e+08 1.20205933e+08 1.28136688e+08 1.18214427e+08 1.18814135e+08 1.17249709e+08 1.08787432e+08 1.23724276e+08 1.19666700e+08 -1.54942588e+07 1.15544602e+08 1.10612343e+08 1.10619674e+08 4.41825598e+07 1.16906622e+08 1.19268757e+08 1.21675273e+08 1.18362034e+08 1.09077954e+08 1.14266717e+08 1.22778679e+08 1.20068487e+08 -1.40494317e+07 1.20416599e+08 1.72206374e+07 -1.43347741e+07 -3.18103660e+07] [ 7.54888061e+07 4.46804931e+07 6.84435913e+07 7.40822378e+07 7.28314230e+07 7.14043301e+07 6.98977367e+07 6.09676239e+07 5.50984657e+07 6.80403695e+07 7.04791111e+07 7.10436002e+07 7.57796968e+07 6.95952575e+07 7.00485765e+07 6.93206690e+07 6.40075566e+07 7.28597219e+07 7.08008635e+07 -2.08378079e+07 6.84221948e+07 6.49730683e+07 6.47301348e+07 1.98103520e+07 7.02721431e+07 7.04759772e+07 7.24045283e+07 6.98796043e+07 6.37034739e+07 6.73888392e+07 7.21834664e+07 7.09971095e+07 -2.01173128e+07 7.12018430e+07 9.62930114e+05 -2.02252294e+07 -3.17505852e+07] [ 1.11174123e+07 1.90860229e+06 8.94278798e+06 1.05797734e+07 1.06025845e+07 1.01308995e+07 9.13664179e+06 4.98992338e+06 4.57671559e+06 8.55440243e+06 9.26185411e+06 9.66635183e+06 1.01651628e+07 8.91413872e+06 9.24346430e+06 9.53065798e+06 6.41283927e+06 1.01086048e+07 9.36521277e+06 -1.93781439e+07 8.81529366e+06 6.51217575e+06 6.36237367e+06 -7.85582949e+06 8.82516843e+06 9.27864212e+06 1.03670434e+07 9.08431709e+06 6.00430906e+06 9.25153536e+06 9.90375517e+06 9.44766035e+06 -1.92912334e+07 9.64515614e+06 -1.35517672e+07 -1.92509883e+07 -2.24952193e+07] [-4.75119489e+06 -5.49281966e+06 -4.97084347e+06 -4.84240784e+06 -5.10454213e+06 -4.88592417e+06 -4.99887104e+06 -6.25289999e+06 -5.70428246e+06 -5.12113864e+06 -5.08910769e+06 -4.99043494e+06 -5.26273549e+06 -5.09213877e+06 -5.06901192e+06 -4.89442619e+06 -6.10843707e+06 -4.84790574e+06 -5.08242621e+06 -7.65536704e+06 -5.04482080e+06 -6.13947284e+06 -6.13605882e+06 -7.02986189e+06 -5.79508209e+06 -5.11540628e+06 -4.84678041e+06 -5.11144740e+06 -6.18192154e+06 -5.03093952e+06 -4.86531745e+06 -5.07676055e+06 -7.66827688e+06 -5.02339880e+06 -7.42083333e+06 -7.62335958e+06 -7.97612867e+06] [-3.97792414e+05 -4.08311526e+05 -4.51554334e+05 -4.10050459e+05 -4.43071992e+05 -4.51583665e+05 -4.38802192e+05 -5.13280194e+05 -4.60201160e+05 -4.72979995e+05 -4.81848311e+05 -4.66680733e+05 -4.79618707e+05 -4.84646220e+05 -4.79985920e+05 -4.35434284e+05 -5.26174753e+05 -4.02324656e+05 -4.81775844e+05 -5.82922790e+05 -4.77068541e+05 -5.10174293e+05 -5.05894904e+05 -5.20322233e+05 -4.93804661e+05 -4.94298660e+05 -4.46842247e+05 -4.91766310e+05 -5.11455080e+05 -4.68886507e+05 -4.04813832e+05 -4.84177361e+05 -5.86107576e+05 -4.73169768e+05 -5.74292383e+05 -5.73721047e+05 -6.51818544e+05] [-8.10460322e+04 -8.27571095e+04 -8.15291730e+04 -8.09305767e+04 -8.68678227e+04 -8.10193470e+04 -8.16063477e+04 -9.86738745e+04 -9.16066323e+04 -8.13062822e+04 -8.13193250e+04 -8.08727063e+04 -8.59213245e+04 -8.14135490e+04 -8.11870696e+04 -8.12538618e+04 -9.85957248e+04 -8.07867716e+04 -8.12118943e+04 -9.63916114e+04 -8.14214934e+04 -9.84268860e+04 -9.83740027e+04 -9.77775448e+04 -9.70406156e+04 -8.17055267e+04 -8.12705356e+04 -8.13508714e+04 -9.83202984e+04 -8.16777832e+04 -8.10491869e+04 -8.13361206e+04 -9.65911362e+04 -8.11212475e+04 -9.76338365e+04 -9.62299609e+04 -9.58770854e+04] [ 3.06955924e-01 9.11907766e-01 -5.35546333e-01 5.53059257e-01 4.09711570e-01 -2.71616618e-02 -2.96442813e-01 -6.88108505e-01 2.64624527e-01 3.81572569e-01 -6.91262048e-01 -7.16075957e-01 4.09219673e-01 5.20297780e-01 2.95633625e-01 -6.36749766e-01 -7.67771140e-01 1.87100481e-02 -8.53797876e-02 9.01898730e-01 -1.54310906e-01 -2.92830552e-02 -7.75288906e-01 9.19727983e-01 -4.18224115e-01 1.80060308e-01 7.37782114e-01 -7.82014482e-01 6.54731843e-01 -3.22347744e-01 2.47589885e-01 9.65977643e-01 2.59589752e-01 8.34328645e-01 -4.82352143e-01 -7.33256727e-01 -9.71238074e-02] [-6.63926531e+04 -4.43672002e+04 -3.09034593e+04 -4.94648027e+04 -3.88175975e+04 -7.20784812e+03 -5.05401931e+04 -3.46639194e+04 -2.90256535e+04 -7.40691922e+03 -3.84370811e+03 -2.39135592e+03 -9.42326841e+03 5.68476506e+03 4.49908455e+02 -5.00608038e+04 -1.53230779e+04 -6.56082618e+04 -4.05487352e+03 -2.49675127e+04 -6.98469459e+03 -3.66813937e+04 -4.31538345e+04 -5.02268548e+04 -2.47148789e+04 3.80590733e+03 -9.68599730e+03 1.83252279e+03 -3.23682557e+04 -4.73016749e+04 -5.90817347e+04 -6.77496816e+03 -2.32194318e+04 -8.20681471e+03 -4.14746624e+04 -2.36326390e+04 -3.80934465e+04] [-4.43341208e+05 -1.85784483e+05 -3.44074256e+05 -4.17232967e+05 -3.14433575e+05 -2.96704929e+05 -3.69963400e+05 -3.03003501e+05 -1.95107870e+05 -2.81722417e+05 -3.20685864e+05 -2.96568736e+05 -3.99696596e+05 -3.25851039e+05 -2.86218167e+05 -3.28217188e+05 -2.81423563e+05 -4.37602882e+05 -3.42951459e+05 1.68119039e+05 -2.98219044e+05 -3.53836896e+05 -3.65131559e+05 -2.32670473e+05 -3.76607692e+05 -3.07908414e+05 -3.03930117e+05 -3.13164012e+05 -3.48805514e+05 -2.54778824e+05 -4.18316435e+05 -3.27973451e+05 1.67093792e+05 -3.13277896e+05 -8.56831482e+04 1.55240074e+05 2.49778593e+05] [-3.32838598e+06 -1.55799560e+06 -2.67903499e+06 -3.07343581e+06 -2.87699277e+06 -2.65628536e+06 -2.86022802e+06 -2.34342403e+06 -1.94463855e+06 -2.46064287e+06 -2.60449193e+06 -2.64356925e+06 -2.98254625e+06 -2.64205063e+06 -2.54702600e+06 -2.63224680e+06 -2.33422311e+06 -3.23840806e+06 -2.66955216e+06 1.10071152e+06 -2.50451596e+06 -2.56051443e+06 -2.64536850e+06 -8.82117425e+05 -2.81032176e+06 -2.58085364e+06 -2.73418850e+06 -2.60538108e+06 -2.52760053e+06 -2.47197499e+06 -3.16165901e+06 -2.65216681e+06 1.09138610e+06 -2.65494406e+06 -2.50629663e+04 1.06279774e+06 1.57568937e+06] [-7.75212412e+06 -3.94439789e+06 -6.19339804e+06 -7.17209992e+06 -6.27885589e+06 -6.04590131e+06 -6.92702516e+06 -5.36312750e+06 -4.31371727e+06 -5.97180453e+06 -6.16874482e+06 -6.19714591e+06 -6.94352846e+06 -6.30140880e+06 -6.06375738e+06 -6.11915843e+06 -5.12734470e+06 -7.71561391e+06 -6.25915376e+06 7.57957823e+05 -5.87502584e+06 -5.74570562e+06 -5.96397406e+06 -2.95669269e+06 -5.86286403e+06 -6.11949965e+06 -6.22659217e+06 -6.16343639e+06 -5.67856544e+06 -5.68042788e+06 -7.57532817e+06 -6.22908652e+06 6.65259199e+05 -6.20107815e+06 -1.52888918e+06 6.28048240e+05 1.81614733e+06] [ 1.48210999e+07 1.54227941e+07 1.61059435e+07 1.53285562e+07 1.85022254e+07 1.67898173e+07 1.51517879e+07 1.96796759e+07 1.86762277e+07 1.59533623e+07 1.63457661e+07 1.62834343e+07 1.72219713e+07 1.61078148e+07 1.63043937e+07 1.60425858e+07 2.09016354e+07 1.42863272e+07 1.63805191e+07 1.31987373e+07 1.65427005e+07 2.00121033e+07 1.97350324e+07 1.55164735e+07 2.09986668e+07 1.65912725e+07 1.65664800e+07 1.62846168e+07 1.99484325e+07 1.70663738e+07 1.44384098e+07 1.64064073e+07 1.32321217e+07 1.64203662e+07 1.42914537e+07 1.31050077e+07 1.27213407e+07] [ 6.08631143e+07 6.17058879e+07 6.39685840e+07 6.23947162e+07 7.06228961e+07 6.43665012e+07 6.07199753e+07 7.78928315e+07 7.16307117e+07 6.25684522e+07 6.45602578e+07 6.34246046e+07 6.86851073e+07 6.38591924e+07 6.34938369e+07 6.24705800e+07 8.09715932e+07 5.97380513e+07 6.50540620e+07 5.90085965e+07 6.44584279e+07 7.98296931e+07 7.87516969e+07 7.01078271e+07 8.21592788e+07 6.51551812e+07 6.37968716e+07 6.42499300e+07 7.94997690e+07 6.43436044e+07 5.99514260e+07 6.46993462e+07 5.91115709e+07 6.42243242e+07 6.51343292e+07 5.90009043e+07 5.65860882e+07] [ 1.02864108e+08 1.14426459e+08 1.13466170e+08 1.07282148e+08 1.26481502e+08 1.12349142e+08 1.03781672e+08 1.45769733e+08 1.32540004e+08 1.07834225e+08 1.13450925e+08 1.10284688e+08 1.21294902e+08 1.12552356e+08 1.10232452e+08 1.07664627e+08 1.51298462e+08 1.01091618e+08 1.14973331e+08 1.27136969e+08 1.13291694e+08 1.49650563e+08 1.46957532e+08 1.42707932e+08 1.53948547e+08 1.14891234e+08 1.10761559e+08 1.13003024e+08 1.49537100e+08 1.12692213e+08 1.01385156e+08 1.13840077e+08 1.26834632e+08 1.12592040e+08 1.35502492e+08 1.26874509e+08 1.25620691e+08] [ 1.31916406e+08 1.54879787e+08 1.48222936e+08 1.38169880e+08 1.66139395e+08 1.44691610e+08 1.33710174e+08 1.97837013e+08 1.79368746e+08 1.37898393e+08 1.46016711e+08 1.41177351e+08 1.57245646e+08 1.45185600e+08 1.40931244e+08 1.39208571e+08 2.04723942e+08 1.29527509e+08 1.48446952e+08 1.87621157e+08 1.46826494e+08 2.02570706e+08 1.99270001e+08 2.04054519e+08 2.08729625e+08 1.47883697e+08 1.42140708e+08 1.45370593e+08 2.03024769e+08 1.45734636e+08 1.29906191e+08 1.46665396e+08 1.87010324e+08 1.44770704e+08 1.96266219e+08 1.87296996e+08 1.86610248e+08] [ 1.09657458e+08 1.33100218e+08 1.27798022e+08 1.15661318e+08 1.46236529e+08 1.22659400e+08 1.10248291e+08 1.76326540e+08 1.58376551e+08 1.12199193e+08 1.22919981e+08 1.17628746e+08 1.35064159e+08 1.22586944e+08 1.16413079e+08 1.16381469e+08 1.83601726e+08 1.06433945e+08 1.25921669e+08 1.63265891e+08 1.24028029e+08 1.82273240e+08 1.78689681e+08 1.84609586e+08 1.91509606e+08 1.25110636e+08 1.19691876e+08 1.22078444e+08 1.82713798e+08 1.22341707e+08 1.06676151e+08 1.23758356e+08 1.62462928e+08 1.22055112e+08 1.73596408e+08 1.63061399e+08 1.60548634e+08] [ 3.98820082e+07 3.91099501e+07 4.89166106e+07 4.17481156e+07 6.14325604e+07 4.35256990e+07 3.54669515e+07 6.89007339e+07 5.74432710e+07 3.15248279e+07 4.22976569e+07 3.84696330e+07 5.14472157e+07 4.22890981e+07 3.62450746e+07 3.92869494e+07 7.45416134e+07 3.54560310e+07 4.55275484e+07 2.00968030e+07 4.28456402e+07 7.59414507e+07 7.36832076e+07 5.92741131e+07 8.84816087e+07 4.37967963e+07 4.16932899e+07 4.15264387e+07 7.56362485e+07 4.14225414e+07 3.49032617e+07 4.36822762e+07 1.96008722e+07 4.25275474e+07 3.99113245e+07 2.04770426e+07 1.26691222e+07] [-9.59180485e+07 -1.22207326e+08 -9.95415494e+07 -9.81135210e+07 -1.03045071e+08 -1.02579074e+08 -1.04514478e+08 -1.30432607e+08 -1.25146118e+08 -1.12053842e+08 -1.04427006e+08 -1.05585858e+08 -1.05904225e+08 -1.04923532e+08 -1.08465287e+08 -1.04594243e+08 -1.27622807e+08 -1.00428645e+08 -1.02088546e+08 -1.97300495e+08 -1.05680306e+08 -1.23855142e+08 -1.24677396e+08 -1.54082094e+08 -1.12353221e+08 -1.04516035e+08 -1.02972214e+08 -1.05291951e+08 -1.25097393e+08 -1.07690921e+08 -1.01743455e+08 -1.03137925e+08 -1.97704687e+08 -1.03035803e+08 -1.76191398e+08 -1.96580406e+08 -2.06505834e+08] [-2.40391519e+08 -2.81241521e+08 -2.57052483e+08 -2.46442321e+08 -2.79976288e+08 -2.57986497e+08 -2.50356975e+08 -3.35180069e+08 -3.11323949e+08 -2.61458451e+08 -2.59939895e+08 -2.58092190e+08 -2.73399930e+08 -2.60271542e+08 -2.60696262e+08 -2.55644234e+08 -3.37223830e+08 -2.42900487e+08 -2.59093230e+08 -3.82371669e+08 -2.62374760e+08 -3.31927633e+08 -3.30160430e+08 -3.55574462e+08 -3.26074042e+08 -2.61955524e+08 -2.57074190e+08 -2.60610987e+08 -3.32773228e+08 -2.64691013e+08 -2.44639131e+08 -2.59099370e+08 -3.82773502e+08 -2.57740726e+08 -3.70125169e+08 -3.81473890e+08 -3.88680663e+08] [-3.16959218e+08 -3.44638870e+08 -3.39226595e+08 -3.23854655e+08 -3.72410680e+08 -3.39303051e+08 -3.25417223e+08 -4.25556284e+08 -3.91087722e+08 -3.36122579e+08 -3.40371823e+08 -3.37750606e+08 -3.60747823e+08 -3.40443279e+08 -3.39455227e+08 -3.34180954e+08 -4.30063077e+08 -3.15644819e+08 -3.40569731e+08 -4.08637788e+08 -3.42905628e+08 -4.25854441e+08 -4.22399752e+08 -4.15699867e+08 -4.28119774e+08 -3.43462909e+08 -3.38350974e+08 -3.40708489e+08 -4.25540557e+08 -3.46193617e+08 -3.17248179e+08 -3.40206323e+08 -4.09553655e+08 -3.38513125e+08 -4.14177128e+08 -4.08232321e+08 -4.07541529e+08] [-3.43704597e+08 -3.47229813e+08 -3.65565813e+08 -3.50453647e+08 -3.99065099e+08 -3.65874703e+08 -3.48710992e+08 -4.37942900e+08 -3.99252925e+08 -3.57735540e+08 -3.67058601e+08 -3.64143605e+08 -3.90117446e+08 -3.66876956e+08 -3.64804795e+08 -3.57982772e+08 -4.44292811e+08 -3.39367862e+08 -3.67832066e+08 -3.52449043e+08 -3.67831668e+08 -4.41763863e+08 -4.37408891e+08 -3.95959476e+08 -4.51400193e+08 -3.70352739e+08 -3.65420382e+08 -3.66848355e+08 -4.40959742e+08 -3.68791383e+08 -3.40581319e+08 -3.67291922e+08 -3.54137200e+08 -3.65507097e+08 -3.77237312e+08 -3.52943850e+08 -3.42038000e+08] [-3.88916284e+08 -3.71151645e+08 -4.02450054e+08 -3.93599918e+08 -4.35203179e+08 -4.03233363e+08 -3.88913138e+08 -4.68157613e+08 -4.26116812e+08 -3.93798519e+08 -4.04954910e+08 -4.01881745e+08 -4.31612584e+08 -4.04368682e+08 -4.01593308e+08 -3.94659415e+08 -4.74311356e+08 -3.83857280e+08 -4.05828219e+08 -3.43335965e+08 -4.03022901e+08 -4.74163876e+08 -4.70445011e+08 -4.10222035e+08 -4.85917877e+08 -4.07753732e+08 -4.03742146e+08 -4.04043538e+08 -4.73066692e+08 -4.01904887e+08 -3.84478135e+08 -4.05367441e+08 -3.45520330e+08 -4.03778113e+08 -3.80816020e+08 -3.44401519e+08 -3.26350097e+08] [-3.99398455e+08 -3.54988676e+08 -3.92109311e+08 -3.98081012e+08 -4.17051074e+08 -3.93510071e+08 -3.91563696e+08 -4.41797587e+08 -4.02453049e+08 -3.87812877e+08 -3.95967554e+08 -3.94154392e+08 -4.24099132e+08 -3.95146497e+08 -3.92937100e+08 -3.88651746e+08 -4.44368510e+08 -3.96032945e+08 -3.96196507e+08 -3.03195726e+08 -3.90685156e+08 -4.48439101e+08 -4.47776249e+08 -3.81961541e+08 -4.56171782e+08 -3.96788964e+08 -3.96047688e+08 -3.94446982e+08 -4.47336198e+08 -3.87001000e+08 -3.95439760e+08 -3.96284335e+08 -3.05734761e+08 -3.95500197e+08 -3.47825773e+08 -3.04784385e+08 -2.81909864e+08] [-3.11169077e+08 -2.58681035e+08 -2.88090688e+08 -3.05465250e+08 -3.00144209e+08 -2.89511406e+08 -2.98165285e+08 -3.14978162e+08 -2.87473523e+08 -2.88357884e+08 -2.92328279e+08 -2.91701058e+08 -3.14980503e+08 -2.91574642e+08 -2.89971031e+08 -2.88074710e+08 -3.14412533e+08 -3.10633495e+08 -2.91808386e+08 -2.04443671e+08 -2.85450500e+08 -3.21010288e+08 -3.22645587e+08 -2.73055437e+08 -3.22729935e+08 -2.91270899e+08 -2.93043289e+08 -2.90485928e+08 -3.20228276e+08 -2.79099173e+08 -3.08947669e+08 -2.92257715e+08 -2.06518514e+08 -2.92389882e+08 -2.43417459e+08 -2.06035274e+08 -1.85589390e+08] [-1.24666056e+08 -1.02804381e+08 -1.04272818e+08 -1.18801482e+08 -1.06016481e+08 -1.02930953e+08 -1.15080748e+08 -1.17228560e+08 -1.09045587e+08 -1.04975958e+08 -1.03545268e+08 -1.03846113e+08 -1.13345417e+08 -1.03336477e+08 -1.02628837e+08 -1.06435489e+08 -1.15109769e+08 -1.26389607e+08 -1.03315645e+08 -9.64899647e+07 -1.01310690e+08 -1.19721330e+08 -1.21953939e+08 -1.18287658e+08 -1.16512772e+08 -1.01773067e+08 -1.05051555e+08 -1.02724442e+08 -1.19002648e+08 -9.84966165e+07 -1.24719824e+08 -1.03582514e+08 -9.67875398e+07 -1.03996350e+08 -1.08706562e+08 -9.70524320e+07 -9.16622692e+07] [ 6.42087943e+07 4.16355526e+07 7.06353458e+07 6.72681547e+07 7.43438688e+07 7.47539581e+07 6.54996082e+07 6.30059391e+07 5.32178718e+07 7.11531633e+07 7.66806481e+07 7.59346271e+07 8.04535810e+07 7.63285016e+07 7.60398390e+07 6.84457822e+07 6.61583803e+07 6.12702507e+07 7.64528653e+07 -1.50912500e+07 7.29168752e+07 6.54071796e+07 6.35155512e+07 1.84065743e+07 7.16622323e+07 7.80687313e+07 7.50509717e+07 7.61427909e+07 6.55675021e+07 6.96247074e+07 6.19345875e+07 7.65800045e+07 -1.35123459e+07 7.62250560e+07 4.20283634e+06 -1.42799050e+07 -2.66940943e+07] [ 1.92913622e+08 1.36788013e+08 1.84549965e+08 1.92505550e+08 1.91915720e+08 1.90165877e+08 1.86462788e+08 1.78974063e+08 1.59507740e+08 1.86666833e+08 1.92380111e+08 1.91644195e+08 2.04342270e+08 1.90918151e+08 1.91165384e+08 1.84210912e+08 1.82864865e+08 1.89065044e+08 1.92272472e+08 2.97335197e+07 1.86346258e+08 1.84861243e+08 1.83637944e+08 1.04081968e+08 1.92680906e+08 1.93054280e+08 1.91906180e+08 1.91062413e+08 1.83312776e+08 1.80130655e+08 1.88760980e+08 1.92629342e+08 3.26216644e+07 1.92195485e+08 7.20725534e+07 3.16603921e+07 7.32661109e+06] [ 2.03638917e+08 1.44970352e+08 1.88971160e+08 2.00931827e+08 1.97103835e+08 1.94201054e+08 1.94662711e+08 1.84717052e+08 1.66523161e+08 1.90978184e+08 1.95175090e+08 1.95074956e+08 2.08200460e+08 1.93561893e+08 1.94118438e+08 1.90399903e+08 1.87434230e+08 2.00019200e+08 1.95275330e+08 3.45339492e+07 1.89625318e+08 1.90445752e+08 1.90364243e+08 1.10731885e+08 1.96664794e+08 1.95243589e+08 1.96247781e+08 1.93783298e+08 1.88533889e+08 1.85805918e+08 1.99245610e+08 1.95701804e+08 3.71887907e+07 1.95583452e+08 7.77580326e+07 3.64148556e+07 1.26448663e+07] [ 1.63237180e+08 1.12806510e+08 1.50310968e+08 1.60136371e+08 1.57909829e+08 1.54545112e+08 1.54824521e+08 1.45055747e+08 1.31244509e+08 1.50778632e+08 1.54264813e+08 1.54833060e+08 1.65132987e+08 1.53140709e+08 1.53598405e+08 1.51831476e+08 1.47715487e+08 1.59847299e+08 1.54712981e+08 1.54814527e+07 1.50436549e+08 1.50172947e+08 1.50332790e+08 8.02650805e+07 1.55980552e+08 1.54288208e+08 1.56350936e+08 1.53392359e+08 1.48334042e+08 1.48210831e+08 1.58865165e+08 1.55088033e+08 1.72811451e+07 1.55149866e+08 5.14219643e+07 1.67886531e+07 -2.06724402e+06] [ 9.57136518e+07 6.35872115e+07 8.80355501e+07 9.40433144e+07 9.33272522e+07 9.10213324e+07 9.01166350e+07 8.31466061e+07 7.55063418e+07 8.81735916e+07 9.02913419e+07 9.07964318e+07 9.64752023e+07 8.93329529e+07 8.99307624e+07 8.91209138e+07 8.59134318e+07 9.32160124e+07 9.05701593e+07 -1.72043046e+06 8.82501362e+07 8.71818254e+07 8.70314053e+07 4.06743242e+07 9.20566948e+07 9.03021074e+07 9.20551777e+07 8.97412868e+07 8.57362551e+07 8.70038100e+07 9.25851088e+07 9.08047819e+07 -7.65566409e+05 9.09059414e+07 2.14032849e+07 -1.00522702e+06 -1.34361228e+07] [ 2.57638995e+07 1.49414788e+07 2.34476659e+07 2.53134911e+07 2.60163132e+07 2.49231196e+07 2.36663964e+07 2.07567574e+07 1.91714599e+07 2.34167877e+07 2.41574404e+07 2.45487538e+07 2.57680485e+07 2.36258394e+07 2.41437174e+07 2.40948141e+07 2.23688972e+07 2.46403615e+07 2.42435075e+07 -9.13170398e+06 2.35494575e+07 2.25186760e+07 2.23010251e+07 4.88604674e+06 2.50700091e+07 2.41988495e+07 2.52125153e+07 2.39593850e+07 2.19278822e+07 2.39433056e+07 2.44313412e+07 2.43589671e+07 -8.96743594e+06 2.45421273e+07 -1.93300618e+06 -9.01396739e+06 -1.28681522e+07] [-6.16828397e+05 -1.98679188e+06 -8.97471724e+05 -7.47998265e+05 -7.03634483e+05 -7.64014585e+05 -9.02916520e+05 -1.80510790e+06 -1.62231786e+06 -1.06534241e+06 -1.01820200e+06 -8.72807261e+05 -9.46331231e+05 -1.03096372e+06 -9.60119316e+05 -7.15789449e+05 -1.63290569e+06 -7.87155986e+05 -9.99878973e+05 -4.90853628e+06 -9.43954693e+05 -1.65611858e+06 -1.65553231e+06 -3.59431291e+06 -1.17645542e+06 -1.02877493e+06 -6.92242048e+05 -1.01975881e+06 -1.73971199e+06 -8.12768210e+05 -8.20876258e+05 -9.72449551e+05 -4.90659933e+06 -9.23666653e+05 -4.27796453e+06 -4.88990150e+06 -5.31986162e+06] [-3.58409832e+05 -5.27986394e+05 -4.37594235e+05 -3.98357902e+05 -4.23358388e+05 -4.25011891e+05 -4.07503919e+05 -5.97652835e+05 -5.39984472e+05 -4.53119896e+05 -4.70329588e+05 -4.29596248e+05 -4.62037928e+05 -4.63441404e+05 -4.47555991e+05 -3.98086751e+05 -6.36090476e+05 -3.73473069e+05 -4.74050381e+05 -1.04091637e+06 -4.65557916e+05 -6.13304170e+05 -5.92828302e+05 -8.49702288e+05 -5.79194119e+05 -4.81480355e+05 -4.10475837e+05 -4.71994086e+05 -6.21013796e+05 -4.37401401e+05 -3.75281135e+05 -4.69980851e+05 -1.04076699e+06 -4.52597743e+05 -9.62999630e+05 -1.03060288e+06 -1.14702323e+06] [-2.77869241e+05 -2.83736285e+05 -2.79531327e+05 -2.77473428e+05 -2.97834847e+05 -2.77779584e+05 -2.79793537e+05 -3.38309763e+05 -3.14082105e+05 -2.78763279e+05 -2.78810508e+05 -2.77280255e+05 -2.94586212e+05 -2.79134955e+05 -2.78357511e+05 -2.78586618e+05 -3.38039549e+05 -2.76981924e+05 -2.78440812e+05 -3.30489334e+05 -2.79155954e+05 -3.37467629e+05 -3.37281867e+05 -3.35235481e+05 -3.32710635e+05 -2.80133749e+05 -2.78640415e+05 -2.78915186e+05 -3.37097083e+05 -2.80039819e+05 -2.77886307e+05 -2.78864032e+05 -3.31169435e+05 -2.78131288e+05 -3.34744889e+05 -3.29933568e+05 -3.28723298e+05] [ 1.05689488e-01 9.59999940e-01 9.38096037e-01 4.61239384e-01 -8.40008551e-01 -6.81094824e-01 -5.79154586e-02 8.28105052e-01 -8.28063545e-01 9.12920497e-01 9.04893124e-01 4.35100094e-01 -7.60394616e-01 5.61151732e-01 7.77530999e-01 7.85290591e-01 6.02224789e-01 7.15125179e-01 2.78285875e-01 2.89031000e-01 -7.31860962e-01 1.14155053e-01 -1.31642989e-01 -4.81828086e-01 5.32015868e-01 -1.48873707e-01 5.27115746e-01 9.72404432e-01 -8.80628069e-02 -8.72514136e-02 7.24025514e-01 -7.19788338e-01 6.08872302e-01 -7.59975882e-02 6.98879560e-01 -4.20702774e-01 -3.58195320e-01] [ 2.92024530e+05 3.07547694e+05 3.22166816e+05 3.00452317e+05 3.37445788e+05 3.27334931e+05 3.00271777e+05 3.79350378e+05 3.55418361e+05 3.19963555e+05 3.29175530e+05 3.27629957e+05 3.45787622e+05 3.37159748e+05 3.28586075e+05 3.00445017e+05 3.90746721e+05 2.90951523e+05 3.33795881e+05 4.04071377e+05 3.30250196e+05 3.81624003e+05 3.77823492e+05 3.80821927e+05 3.92914344e+05 3.36538032e+05 3.24271935e+05 3.34808759e+05 3.84231295e+05 3.01607901e+05 2.94123889e+05 3.29868436e+05 4.04613130e+05 3.26090740e+05 3.86934903e+05 4.04436157e+05 4.05407583e+05] [ 2.29013408e+05 2.92703673e+05 2.78708713e+05 2.41807841e+05 2.95624405e+05 3.08955880e+05 2.54567715e+05 3.34613975e+05 3.41875422e+05 3.04324000e+05 3.07549048e+05 3.14103283e+05 3.01741144e+05 3.12111537e+05 3.15553617e+05 2.63232613e+05 3.46037890e+05 2.31076200e+05 3.00231637e+05 4.66166371e+05 3.04290154e+05 3.20406617e+05 3.12969027e+05 3.31681334e+05 3.09305816e+05 3.16868149e+05 3.05803924e+05 3.10278937e+05 3.16594440e+05 2.80020164e+05 2.37217451e+05 3.03854125e+05 4.66308856e+05 3.09092822e+05 3.73129057e+05 4.61968386e+05 4.93824804e+05] [-2.18932531e+06 -6.07829225e+05 -1.65192227e+06 -1.98792820e+06 -1.97809734e+06 -1.70304903e+06 -1.81664189e+06 -1.13841857e+06 -9.21187415e+05 -1.58786788e+06 -1.58521829e+06 -1.69732093e+06 -1.79188751e+06 -1.61250230e+06 -1.63697851e+06 -1.74485773e+06 -1.23446170e+06 -2.09362419e+06 -1.62660619e+06 2.09699622e+06 -1.59471710e+06 -1.35948426e+06 -1.38466365e+06 5.25683511e+05 -1.64037573e+06 -1.55478018e+06 -1.78020097e+06 -1.61274450e+06 -1.27741186e+06 -1.75967623e+06 -2.03241993e+06 -1.63763567e+06 2.08933760e+06 -1.65103719e+06 1.20311471e+06 2.07539932e+06 2.47362186e+06] [ 7.42075381e+05 3.49009456e+06 1.92050680e+06 1.13685624e+06 2.59432200e+06 2.03839551e+06 1.28161074e+06 4.01704588e+06 4.24135198e+06 1.84771565e+06 1.79774258e+06 1.74917453e+06 1.72731093e+06 1.65282977e+06 1.81032319e+06 1.91765200e+06 4.32982221e+06 6.22839951e+05 1.82926001e+06 6.76199404e+06 2.11515003e+06 3.79642249e+06 3.61911818e+06 5.05500788e+06 3.97612072e+06 1.88043469e+06 1.86779825e+06 1.82158451e+06 3.87035600e+06 2.41487062e+06 7.02562217e+05 1.82377239e+06 6.69357427e+06 1.81900093e+06 5.63220033e+06 6.65918113e+06 7.52551123e+06] [ 4.55652821e+07 4.25186129e+07 4.63046320e+07 4.60044983e+07 5.05446814e+07 4.69512002e+07 4.50398659e+07 5.33974576e+07 4.91627188e+07 4.54401167e+07 4.68467451e+07 4.62588284e+07 4.97650412e+07 4.63858447e+07 4.61684703e+07 4.55651660e+07 5.52296370e+07 4.47068560e+07 4.71982808e+07 3.44465254e+07 4.65758196e+07 5.46890372e+07 5.41717688e+07 4.45964468e+07 5.64628159e+07 4.72557060e+07 4.67049176e+07 4.66893596e+07 5.44704363e+07 4.65339946e+07 4.47377763e+07 4.70168481e+07 3.46607749e+07 4.67423012e+07 4.01356323e+07 3.45073213e+07 3.22200810e+07] [ 1.10130067e+08 1.12367541e+08 1.15517355e+08 1.12558769e+08 1.25973746e+08 1.14995469e+08 1.09925573e+08 1.40116521e+08 1.28095173e+08 1.11959155e+08 1.15662701e+08 1.13187066e+08 1.22642741e+08 1.14463761e+08 1.13289373e+08 1.12160291e+08 1.44514288e+08 1.08633120e+08 1.16960718e+08 1.12445112e+08 1.15692061e+08 1.43507599e+08 1.41556534e+08 1.31254450e+08 1.46892891e+08 1.16691723e+08 1.13933704e+08 1.15382840e+08 1.42829838e+08 1.15192554e+08 1.08749348e+08 1.16078572e+08 1.12581712e+08 1.14852257e+08 1.23101420e+08 1.12443111e+08 1.09425999e+08] [ 1.75266686e+08 1.89903959e+08 1.88445370e+08 1.80064660e+08 2.07150739e+08 1.85575134e+08 1.76271840e+08 2.36696319e+08 2.15799492e+08 1.79324533e+08 1.86390694e+08 1.82123888e+08 1.98464795e+08 1.85269607e+08 1.82028367e+08 1.80983385e+08 2.43171523e+08 1.73020013e+08 1.88984173e+08 2.12664998e+08 1.87230742e+08 2.41720677e+08 2.38442795e+08 2.33709738e+08 2.47192978e+08 1.88347061e+08 1.83452357e+08 1.86233031e+08 2.41507144e+08 1.87912389e+08 1.73091404e+08 1.87339570e+08 2.12148172e+08 1.85363748e+08 2.24431962e+08 2.12095017e+08 2.12582558e+08] [ 2.08544148e+08 2.35887531e+08 2.28381569e+08 2.15444236e+08 2.51544100e+08 2.22820149e+08 2.10806403e+08 2.94268230e+08 2.67584204e+08 2.13933910e+08 2.23985300e+08 2.17853612e+08 2.39598476e+08 2.23123919e+08 2.17417561e+08 2.17074073e+08 3.01816184e+08 2.05907687e+08 2.27390155e+08 2.83071321e+08 2.25484534e+08 3.00058217e+08 2.96101975e+08 3.02750146e+08 3.07649133e+08 2.26519745e+08 2.19687896e+08 2.23620243e+08 3.00512810e+08 2.25797266e+08 2.06081367e+08 2.25057051e+08 2.82177691e+08 2.22522311e+08 2.93979377e+08 2.82269451e+08 2.84436544e+08] [ 1.84592973e+08 2.06132612e+08 2.03537609e+08 1.90042621e+08 2.25361038e+08 1.96092321e+08 1.84826594e+08 2.63627980e+08 2.37468372e+08 1.83849622e+08 1.96260394e+08 1.90147867e+08 2.13027119e+08 1.96379521e+08 1.88660437e+08 1.90296959e+08 2.70230299e+08 1.81343517e+08 2.00130752e+08 2.45085923e+08 1.97922607e+08 2.70153987e+08 2.66607956e+08 2.71554901e+08 2.80492434e+08 1.98928669e+08 1.93057650e+08 1.95870437e+08 2.70769363e+08 1.97098568e+08 1.81170585e+08 1.97631134e+08 2.44200290e+08 1.95364943e+08 2.59395066e+08 2.44526727e+08 2.44174619e+08] [ 6.46376329e+07 6.43798640e+07 7.42265018e+07 6.65638315e+07 8.53781267e+07 6.78814043e+07 6.01870390e+07 9.51587429e+07 8.18003880e+07 5.55523193e+07 6.70528433e+07 6.27116606e+07 7.64511314e+07 6.68420015e+07 6.03290264e+07 6.35197734e+07 1.00352217e+08 6.05315605e+07 7.05907802e+07 5.04667269e+07 6.73927948e+07 1.02515232e+08 9.98900657e+07 8.81839453e+07 1.14546032e+08 6.86448247e+07 6.60148805e+07 6.64846273e+07 1.02209267e+08 6.59115747e+07 5.96292634e+07 6.85236958e+07 4.96128459e+07 6.71647050e+07 6.98545296e+07 5.03685337e+07 4.60034014e+07] [-1.55888315e+08 -1.75999236e+08 -1.58974658e+08 -1.58392414e+08 -1.68475008e+08 -1.63374543e+08 -1.63807895e+08 -2.00079821e+08 -1.88670374e+08 -1.72463141e+08 -1.65214759e+08 -1.66298323e+08 -1.71173261e+08 -1.65419227e+08 -1.69350757e+08 -1.64362254e+08 -1.98610724e+08 -1.59709441e+08 -1.62792044e+08 -2.41155637e+08 -1.66265243e+08 -1.94425222e+08 -1.94981036e+08 -2.11086773e+08 -1.84500592e+08 -1.65411490e+08 -1.63937241e+08 -1.65824102e+08 -1.95282815e+08 -1.67526123e+08 -1.61215714e+08 -1.63974020e+08 -2.42298002e+08 -1.63679825e+08 -2.27408375e+08 -2.40933534e+08 -2.45016356e+08] [-3.77735279e+08 -3.98110675e+08 -3.91848921e+08 -3.83442374e+08 -4.23399750e+08 -3.94436324e+08 -3.85380832e+08 -4.82520591e+08 -4.44886655e+08 -3.96500079e+08 -3.96939743e+08 -3.95108141e+08 -4.19434679e+08 -3.96680716e+08 -3.97644002e+08 -3.90417335e+08 -4.85537483e+08 -3.78557770e+08 -3.96106023e+08 -4.68122383e+08 -3.97750769e+08 -4.81599522e+08 -4.79376928e+08 -4.72147037e+08 -4.78663600e+08 -3.99203011e+08 -3.94421674e+08 -3.97382931e+08 -4.81507184e+08 -3.99353088e+08 -3.80058617e+08 -3.96411065e+08 -4.69611587e+08 -3.94799372e+08 -4.73051634e+08 -4.67678253e+08 -4.66337169e+08] [-4.79987209e+08 -4.76122376e+08 -4.96606929e+08 -4.86212218e+08 -5.35231243e+08 -4.99870863e+08 -4.85105445e+08 -5.87536498e+08 -5.38775745e+08 -4.95861532e+08 -5.01924316e+08 -4.99560713e+08 -5.31286190e+08 -5.01119145e+08 -5.01180108e+08 -4.92521529e+08 -5.93177080e+08 -4.76874079e+08 -5.01875876e+08 -4.90381952e+08 -5.01672494e+08 -5.90389303e+08 -5.86716853e+08 -5.36385953e+08 -5.96205830e+08 -5.05048256e+08 -5.00222766e+08 -5.01943671e+08 -5.89325063e+08 -5.02252675e+08 -4.78177515e+08 -5.01954345e+08 -4.92788252e+08 -5.00002547e+08 -5.17947584e+08 -4.90642583e+08 -4.78337974e+08] [-4.99000165e+08 -4.75023228e+08 -5.13093925e+08 -5.05072579e+08 -5.49363093e+08 -5.17255179e+08 -5.00742849e+08 -5.89443310e+08 -5.39585757e+08 -5.10297663e+08 -5.19886134e+08 -5.17179553e+08 -5.50355972e+08 -5.18738857e+08 -5.17855934e+08 -5.07469934e+08 -5.96495536e+08 -4.93938006e+08 -5.20084299e+08 -4.43850098e+08 -5.17200861e+08 -5.94764941e+08 -5.90760596e+08 -5.15826621e+08 -6.05195344e+08 -5.22964481e+08 -5.18113065e+08 -5.19165672e+08 -5.93439894e+08 -5.14797980e+08 -4.94927886e+08 -5.20046703e+08 -4.46750726e+08 -5.18181349e+08 -4.85366010e+08 -4.44747357e+08 -4.24699083e+08] [-5.15968323e+08 -4.72851803e+08 -5.18147092e+08 -5.18501325e+08 -5.52303227e+08 -5.22320137e+08 -5.12089758e+08 -5.85633165e+08 -5.36174799e+08 -5.15676138e+08 -5.25075853e+08 -5.22775438e+08 -5.57334504e+08 -5.23475167e+08 -5.22469913e+08 -5.14213152e+08 -5.91918316e+08 -5.10913698e+08 -5.25432308e+08 -4.16677180e+08 -5.20299398e+08 -5.92595517e+08 -5.90023522e+08 -5.04305193e+08 -6.03224411e+08 -5.27259339e+08 -5.24257780e+08 -5.23830654e+08 -5.91135989e+08 -5.17078574e+08 -5.11066607e+08 -5.25540432e+08 -4.19842494e+08 -5.23967924e+08 -4.66983243e+08 -4.18119073e+08 -3.93145658e+08] [-4.62923159e+08 -3.99230871e+08 -4.43900675e+08 -4.59444938e+08 -4.67494135e+08 -4.47980240e+08 -4.50800152e+08 -4.89859601e+08 -4.48687579e+08 -4.45212900e+08 -4.51461070e+08 -4.50480791e+08 -4.82256823e+08 -4.49684944e+08 -4.49032176e+08 -4.44209419e+08 -4.92696562e+08 -4.60127103e+08 -4.51123960e+08 -3.23023347e+08 -4.43316486e+08 -4.97594737e+08 -4.97941326e+08 -4.16914250e+08 -5.03638748e+08 -4.51336848e+08 -4.51817806e+08 -4.49431152e+08 -4.96249802e+08 -4.37749840e+08 -4.58913670e+08 -4.51693142e+08 -3.26249943e+08 -4.51167383e+08 -3.76831397e+08 -3.25081103e+08 -2.96528352e+08] [-2.87991089e+08 -2.23421197e+08 -2.57809357e+08 -2.80910404e+08 -2.66996142e+08 -2.60676315e+08 -2.71813871e+08 -2.71757596e+08 -2.48977952e+08 -2.60903048e+08 -2.63736506e+08 -2.63908451e+08 -2.84760539e+08 -2.62372626e+08 -2.61811491e+08 -2.60571227e+08 -2.72182115e+08 -2.87254251e+08 -2.62977191e+08 -1.42268723e+08 -2.55300128e+08 -2.78943117e+08 -2.81156810e+08 -2.21044328e+08 -2.80643640e+08 -2.61919060e+08 -2.64882617e+08 -2.61410711e+08 -2.77863393e+08 -2.48272164e+08 -2.85195873e+08 -2.63713869e+08 -1.44552544e+08 -2.64161992e+08 -1.86711195e+08 -1.44304199e+08 -1.19096670e+08] [-6.30799292e+07 -3.02830245e+07 -3.92193135e+07 -5.63922582e+07 -3.80009936e+07 -3.93959405e+07 -5.14230696e+07 -3.40671354e+07 -3.27467530e+07 -4.14672477e+07 -4.00370340e+07 -4.11599614e+07 -4.63160337e+07 -3.96303710e+07 -3.96763388e+07 -4.29172477e+07 -3.31172597e+07 -6.39309596e+07 -3.96115516e+07 8.53135067e+06 -3.65958421e+07 -3.73042171e+07 -4.00076731e+07 -2.31141027e+07 -3.57975977e+07 -3.79314169e+07 -4.19195680e+07 -3.88383223e+07 -3.65001280e+07 -3.30191403e+07 -6.22195174e+07 -4.01433884e+07 7.96730022e+06 -4.08145510e+07 -8.57205295e+06 7.37100486e+06 1.82255752e+07] [ 1.40394771e+08 1.25383620e+08 1.48412571e+08 1.43904265e+08 1.55397452e+08 1.51216335e+08 1.42377999e+08 1.57531455e+08 1.41183916e+08 1.47445906e+08 1.52924247e+08 1.51380288e+08 1.60429819e+08 1.52220446e+08 1.51559081e+08 1.44961790e+08 1.59959024e+08 1.38027287e+08 1.52937047e+08 9.31941355e+07 1.50101443e+08 1.59925921e+08 1.57507508e+08 1.21882612e+08 1.64779267e+08 1.54431442e+08 1.51199664e+08 1.52617645e+08 1.59724945e+08 1.47725327e+08 1.38546226e+08 1.52799617e+08 9.43657870e+07 1.52258091e+08 1.10066985e+08 9.32869045e+07 8.57373284e+07] [ 2.44413977e+08 1.91675302e+08 2.37148094e+08 2.44120248e+08 2.46115832e+08 2.41798290e+08 2.38365499e+08 2.41551933e+08 2.17516032e+08 2.37990854e+08 2.43653084e+08 2.42454309e+08 2.58382852e+08 2.42106289e+08 2.41964504e+08 2.35567947e+08 2.45045225e+08 2.40956721e+08 2.43822582e+08 1.00458191e+08 2.38627002e+08 2.47612723e+08 2.46182410e+08 1.72482498e+08 2.54672628e+08 2.44433391e+08 2.43319573e+08 2.42616781e+08 2.46010789e+08 2.32090209e+08 2.40491614e+08 2.43924297e+08 1.03125243e+08 2.43305152e+08 1.41615519e+08 1.01919975e+08 8.06144892e+07] [ 2.33300078e+08 1.77585455e+08 2.20140407e+08 2.31201221e+08 2.28686704e+08 2.25368334e+08 2.24633194e+08 2.22062930e+08 2.01251584e+08 2.22017824e+08 2.26454429e+08 2.25892823e+08 2.40888395e+08 2.24802185e+08 2.24898090e+08 2.20174053e+08 2.25260066e+08 2.30030759e+08 2.26622434e+08 7.88901218e+07 2.21072179e+08 2.28083712e+08 2.27598285e+08 1.52742086e+08 2.33609223e+08 2.26739523e+08 2.27194017e+08 2.25213952e+08 2.25948606e+08 2.15695210e+08 2.29248135e+08 2.26840952e+08 8.13837680e+07 2.26613296e+08 1.20544509e+08 8.04473942e+07 5.85514533e+07] [ 1.78504697e+08 1.30545561e+08 1.66459409e+08 1.75715986e+08 1.74060454e+08 1.70487352e+08 1.70513390e+08 1.65092453e+08 1.49731774e+08 1.67141389e+08 1.70525087e+08 1.70605655e+08 1.81807015e+08 1.69409701e+08 1.69588826e+08 1.67243583e+08 1.67853204e+08 1.75430368e+08 1.70999891e+08 4.23347576e+07 1.66760936e+08 1.70276507e+08 1.70318221e+08 1.04555108e+08 1.75460234e+08 1.70707551e+08 1.72068964e+08 1.69748119e+08 1.68333526e+08 1.63564738e+08 1.74545934e+08 1.71227640e+08 4.41279117e+07 1.71082454e+08 7.68873243e+07 4.35232619e+07 2.56173020e+07] [ 1.13332370e+08 8.17612578e+07 1.05769725e+08 1.11459264e+08 1.11684012e+08 1.08663382e+08 1.08049720e+08 1.04267131e+08 9.46934750e+07 1.06091745e+08 1.08181764e+08 1.08449585e+08 1.15222329e+08 1.07321123e+08 1.07737894e+08 1.06594008e+08 1.06433413e+08 1.11118077e+08 1.08459056e+08 2.12002773e+07 1.06117040e+08 1.08021636e+08 1.08004321e+08 6.28176395e+07 1.12005566e+08 1.08312674e+08 1.09609639e+08 1.07691948e+08 1.06539120e+08 1.04531641e+08 1.10572107e+08 1.08656188e+08 2.23202626e+07 1.08641476e+08 4.42554480e+07 2.19568819e+07 9.57903567e+06] [ 3.41848412e+07 2.30140243e+07 3.19332672e+07 3.36619910e+07 3.51352212e+07 3.34457714e+07 3.22077138e+07 3.03539639e+07 2.80196763e+07 3.19690032e+07 3.25935785e+07 3.30794500e+07 3.46422774e+07 3.20914125e+07 3.26841396e+07 3.26639588e+07 3.18112765e+07 3.30549798e+07 3.26950681e+07 -1.29942892e+06 3.20811262e+07 3.20741578e+07 3.18594636e+07 1.32441432e+07 3.46122177e+07 3.26815576e+07 3.37623918e+07 3.24706438e+07 3.14098897e+07 3.27961087e+07 3.28563159e+07 3.28294879e+07 -1.09012098e+06 3.30252600e+07 6.24241214e+06 -1.20443262e+06 -5.13128931e+06] [ 2.65280204e+06 1.15549042e+06 2.38452426e+06 2.50441903e+06 3.05170956e+06 2.53441237e+06 2.35221939e+06 2.20954695e+06 1.99551263e+06 2.18838060e+06 2.27562346e+06 2.44384721e+06 2.54257878e+06 2.25190760e+06 2.35344294e+06 2.61631423e+06 2.39096043e+06 2.42508108e+06 2.30973955e+06 -1.97052599e+06 2.34880519e+06 2.39640730e+06 2.36163184e+06 -1.93010017e+05 2.96446442e+06 2.28699029e+06 2.62100597e+06 2.29779416e+06 2.28074722e+06 2.71085722e+06 2.37696864e+06 2.34722374e+06 -1.96576207e+06 2.38744952e+06 -1.10859619e+06 -1.97413691e+06 -2.39509017e+06] [ 1.57666948e+05 3.73761036e+04 1.26888475e+05 1.36216563e+05 1.56756083e+05 1.38701856e+05 1.35394989e+05 9.81601494e+04 9.04241529e+04 1.23635626e+05 1.17618267e+05 1.39582045e+05 1.42955022e+05 1.26400316e+05 1.34192042e+05 1.43943287e+05 8.59597108e+04 1.46213638e+05 1.15594288e+05 -2.05416845e+05 1.22078558e+05 9.38572136e+04 1.01205352e+05 -8.38617207e+04 1.15462995e+05 1.16453992e+05 1.48699816e+05 1.22614354e+05 8.77615914e+04 1.32534909e+05 1.44665491e+05 1.19371952e+05 -2.03271707e+05 1.25892059e+05 -1.46466249e+05 -2.02289508e+05 -2.54270011e+05] [ 7.41852137e-01 9.97262080e-01 -8.93409031e-01 -9.20038155e-01 5.08954284e-01 9.38890544e-01 -5.80967952e-01 -2.07822669e-01 -3.03956544e-01 3.70321996e-01 -2.23650397e-01 9.51929801e-01 -4.28018037e-02 1.70758693e-01 8.47093545e-01 -7.94890198e-01 6.92943888e-01 -4.36874753e-01 8.76311454e-01 8.73394826e-01 -4.05077159e-01 8.18103353e-01 1.02322690e-01 8.98098721e-03 1.89014162e-01 5.47990674e-01 1.68748052e-01 -1.90321530e-01 -2.84621946e-01 7.59527778e-01 1.93374827e-02 6.58183841e-01 2.32811645e-01 7.95435542e-01 3.66927426e-01 -7.35564375e-01 2.67462538e-02] [-5.56368024e-01 2.46174808e-01 -1.22257981e-02 7.84399119e-02 -2.20342716e-01 2.18654539e-01 8.73876842e-01 9.31141776e-02 -3.36021020e-01 -9.87107513e-01 -7.01504626e-01 -8.79652213e-01 -8.99813294e-01 7.76717502e-01 -2.38715958e-01 -8.34657056e-01 -9.38432905e-01 1.00773837e-01 1.54338949e-01 2.37073737e-01 -1.69689071e-01 4.83755273e-01 9.00190348e-01 -7.37110288e-02 -6.70798465e-01 -9.01007059e-01 -1.79700255e-01 9.29154685e-01 2.19112067e-01 -6.96463507e-01 -6.71808983e-01 3.18152630e-01 1.45935032e-01 6.23218977e-01 -8.19527663e-01 -2.24235567e-01 7.29089927e-01] [ 1.56494106e+05 1.59214052e+05 1.65246344e+05 1.56806905e+05 1.74343164e+05 1.61560125e+05 1.57173682e+05 1.93659892e+05 1.80362184e+05 1.57193853e+05 1.61910931e+05 1.60560678e+05 1.71183692e+05 1.64453820e+05 1.60350036e+05 1.57057676e+05 1.95057857e+05 1.55514460e+05 1.64683461e+05 2.06270505e+05 1.63503200e+05 1.95351165e+05 1.95085047e+05 1.99007859e+05 1.99105612e+05 1.64386988e+05 1.60517388e+05 1.63865653e+05 1.96093723e+05 1.57028656e+05 1.55798926e+05 1.63113224e+05 2.06052478e+05 1.61220329e+05 1.99968542e+05 2.06153482e+05 2.10716121e+05] [ 2.84194334e+05 2.92115597e+05 3.03863360e+05 2.84741637e+05 3.21190026e+05 2.96786353e+05 2.85983983e+05 3.56709086e+05 3.33063251e+05 2.87023868e+05 2.97222268e+05 2.94827912e+05 3.13725855e+05 3.02747042e+05 2.93990544e+05 2.86509192e+05 3.59181488e+05 2.82047415e+05 3.02364945e+05 3.88346426e+05 3.00201767e+05 3.59297863e+05 3.58896842e+05 3.67779715e+05 3.66094609e+05 3.02623483e+05 2.94764047e+05 3.01159254e+05 3.60538018e+05 2.87331589e+05 2.82774990e+05 2.99514464e+05 3.87562960e+05 2.96210798e+05 3.70889894e+05 3.87750307e+05 3.99088380e+05] [-1.02616781e+06 7.45262904e+04 -5.37019535e+05 -8.51739538e+05 -6.36546494e+05 -6.63508626e+05 -7.95158718e+05 -3.13076460e+04 -4.72269488e+04 -6.46832770e+05 -5.68157495e+05 -6.76436516e+05 -6.30708037e+05 -5.65257051e+05 -6.40127339e+05 -7.03904356e+05 -4.24875849e+04 -9.80940151e+05 -5.59053979e+05 2.11941222e+06 -5.50082058e+05 -1.03431369e+05 -1.46320739e+05 1.19801037e+06 -1.84082655e+05 -5.37200276e+05 -7.24391304e+05 -5.72575686e+05 -4.09298665e+04 -6.14218788e+05 -9.50370156e+05 -5.90391894e+05 2.09736883e+06 -6.26379520e+05 1.57584799e+06 2.09870944e+06 2.41311103e+06] [ 1.02545566e+07 1.24362020e+07 1.15826574e+07 1.07734395e+07 1.26831242e+07 1.16072676e+07 1.06397288e+07 1.49400487e+07 1.41298278e+07 1.11997909e+07 1.15049158e+07 1.12586568e+07 1.20320431e+07 1.12969388e+07 1.12943279e+07 1.13184801e+07 1.54708767e+07 1.00488606e+07 1.16415922e+07 1.51770827e+07 1.17067379e+07 1.50101464e+07 1.47237308e+07 1.53445629e+07 1.54514916e+07 1.16289372e+07 1.14258650e+07 1.15011436e+07 1.51000805e+07 1.18167922e+07 1.00789880e+07 1.15474048e+07 1.51140561e+07 1.14245120e+07 1.51622223e+07 1.50721851e+07 1.56500697e+07] [ 8.84357671e+07 8.14052278e+07 8.89936326e+07 8.91211178e+07 9.54178516e+07 8.99244409e+07 8.68946968e+07 1.00695291e+08 9.25955175e+07 8.75979385e+07 9.01466637e+07 8.89248657e+07 9.52644143e+07 8.91649986e+07 8.87331716e+07 8.76086227e+07 1.03562706e+08 8.70865309e+07 9.08962733e+07 6.67507231e+07 8.92255833e+07 1.03100864e+08 1.02153856e+08 8.60731588e+07 1.05937567e+08 9.07675264e+07 8.95937390e+07 8.98750572e+07 1.02589018e+08 8.85314259e+07 8.69536719e+07 9.04628252e+07 6.70460420e+07 8.98447702e+07 7.76037131e+07 6.68243294e+07 6.28304532e+07] [ 1.73831458e+08 1.74044509e+08 1.80287676e+08 1.76402059e+08 1.94572416e+08 1.79339244e+08 1.73531986e+08 2.14301560e+08 1.96136411e+08 1.75226629e+08 1.79796449e+08 1.76762979e+08 1.90110922e+08 1.78477748e+08 1.76841549e+08 1.76144765e+08 2.19321745e+08 1.71927953e+08 1.81813639e+08 1.74223889e+08 1.80153122e+08 2.18476328e+08 2.16169297e+08 2.00220225e+08 2.22866271e+08 1.81265561e+08 1.78043287e+08 1.79787000e+08 2.17660227e+08 1.80094673e+08 1.71862383e+08 1.80650483e+08 1.74395121e+08 1.78936526e+08 1.89314395e+08 1.74060166e+08 1.71033548e+08] [ 2.55481413e+08 2.69376202e+08 2.70149642e+08 2.60643226e+08 2.92257309e+08 2.66367432e+08 2.56812340e+08 3.30416038e+08 3.01762492e+08 2.59377136e+08 2.67433545e+08 2.62360675e+08 2.83446050e+08 2.66206589e+08 2.62238937e+08 2.61739192e+08 3.37048754e+08 2.53211019e+08 2.70625019e+08 2.96974553e+08 2.68439042e+08 3.35871754e+08 3.32322581e+08 3.24169153e+08 3.41950573e+08 2.69811076e+08 2.64106072e+08 2.67498492e+08 3.35550949e+08 2.69238440e+08 2.53114657e+08 2.68687234e+08 2.96636290e+08 2.66126778e+08 3.12846404e+08 2.96268630e+08 2.96753372e+08] [ 3.01115539e+08 3.26366066e+08 3.22925913e+08 3.08430486e+08 3.49634529e+08 3.16517308e+08 3.03734414e+08 4.01114968e+08 3.65026755e+08 3.05974503e+08 3.17720423e+08 3.10863315e+08 3.38484323e+08 3.17187450e+08 3.10229690e+08 3.09967911e+08 4.08766171e+08 2.98600970e+08 3.21642076e+08 3.79051362e+08 3.19226910e+08 4.07501493e+08 4.02993737e+08 4.05265376e+08 4.15800100e+08 3.20899020e+08 3.13386373e+08 3.17671542e+08 4.08175033e+08 3.19586524e+08 2.98476181e+08 3.19047535e+08 3.78309463e+08 3.16082864e+08 3.94525602e+08 3.77948173e+08 3.80870747e+08] [ 2.71741905e+08 2.87386148e+08 2.92098822e+08 2.77233635e+08 3.17408306e+08 2.84364559e+08 2.71832214e+08 3.61079265e+08 3.25476012e+08 2.70659674e+08 2.84617129e+08 2.77933521e+08 3.05668394e+08 2.84840673e+08 2.76456206e+08 2.77172268e+08 3.67983427e+08 2.68301499e+08 2.88840254e+08 3.23857689e+08 2.86227248e+08 3.68626485e+08 3.64499494e+08 3.59494562e+08 3.80031296e+08 2.87930546e+08 2.81552401e+08 2.84673936e+08 3.68868666e+08 2.85427054e+08 2.67857967e+08 2.86193604e+08 3.23183400e+08 2.83440346e+08 3.44196943e+08 3.23030065e+08 3.23172443e+08] [ 1.23020257e+08 1.24119870e+08 1.37022031e+08 1.25644886e+08 1.53077563e+08 1.30142424e+08 1.19757961e+08 1.69136538e+08 1.47815996e+08 1.15517281e+08 1.29031652e+08 1.23972101e+08 1.41893720e+08 1.29090596e+08 1.21634625e+08 1.24111272e+08 1.74841522e+08 1.18558861e+08 1.32932158e+08 1.17617400e+08 1.29988565e+08 1.77282953e+08 1.73624870e+08 1.57952348e+08 1.90208971e+08 1.31588836e+08 1.28159964e+08 1.28889153e+08 1.76562366e+08 1.29849593e+08 1.17617653e+08 1.30630462e+08 1.16720369e+08 1.28826239e+08 1.38744336e+08 1.17144090e+08 1.15045064e+08] [-1.40037327e+08 -1.44188881e+08 -1.33572512e+08 -1.40355268e+08 -1.37481712e+08 -1.39467181e+08 -1.44821906e+08 -1.58558698e+08 -1.52008955e+08 -1.51101754e+08 -1.41792941e+08 -1.43875598e+08 -1.46154955e+08 -1.41533996e+08 -1.46692112e+08 -1.41951335e+08 -1.55899010e+08 -1.43963219e+08 -1.38971658e+08 -1.82256330e+08 -1.41127169e+08 -1.52936487e+08 -1.54881493e+08 -1.60606534e+08 -1.42322686e+08 -1.40843869e+08 -1.40755592e+08 -1.41956455e+08 -1.53787468e+08 -1.40249161e+08 -1.45144763e+08 -1.40561526e+08 -1.83891439e+08 -1.40760940e+08 -1.73380089e+08 -1.82557774e+08 -1.81985646e+08] [-3.90412365e+08 -3.73730532e+08 -3.87871969e+08 -3.92084529e+08 -4.09912425e+08 -3.94259264e+08 -3.92946292e+08 -4.47485231e+08 -4.14815529e+08 -4.00113483e+08 -3.97239744e+08 -3.97763023e+08 -4.18447557e+08 -3.96254273e+08 -3.99979475e+08 -3.92219752e+08 -4.48343409e+08 -3.90944174e+08 -3.95336328e+08 -3.84238766e+08 -3.94899903e+08 -4.46736077e+08 -4.46609470e+08 -4.09003579e+08 -4.43568489e+08 -3.97833761e+08 -3.96151407e+08 -3.97154637e+08 -4.46352270e+08 -3.93063776e+08 -3.91864275e+08 -3.96615622e+08 -3.86987756e+08 -3.95971069e+08 -4.01299138e+08 -3.84785034e+08 -3.73921026e+08] [-4.82096416e+08 -4.43913272e+08 -4.82190752e+08 -4.84755274e+08 -5.09292421e+08 -4.90050065e+08 -4.82673956e+08 -5.39932378e+08 -4.98122447e+08 -4.90650117e+08 -4.92805413e+08 -4.92815171e+08 -5.19355521e+08 -4.91311218e+08 -4.94259508e+08 -4.84012555e+08 -5.43843350e+08 -4.79350834e+08 -4.91462502e+08 -4.03755118e+08 -4.89174379e+08 -5.42704253e+08 -5.41072779e+08 -4.64216966e+08 -5.46816783e+08 -4.94256876e+08 -4.92242198e+08 -4.92316207e+08 -5.41513475e+08 -4.85520493e+08 -4.80194954e+08 -4.92577727e+08 -4.07343382e+08 -4.91611142e+08 -4.40059318e+08 -4.04891289e+08 -3.84302175e+08] [-4.98456915e+08 -4.45144845e+08 -4.94520103e+08 -5.00150320e+08 -5.21914495e+08 -5.02593851e+08 -4.95532567e+08 -5.44174890e+08 -5.01609151e+08 -5.01025850e+08 -5.05403910e+08 -5.05398402e+08 -5.33432735e+08 -5.03502199e+08 -5.05880167e+08 -4.96177200e+08 -5.49055827e+08 -4.94073005e+08 -5.04372172e+08 -3.71515814e+08 -5.00066264e+08 -5.48948588e+08 -5.47427691e+08 -4.52465623e+08 -5.56570429e+08 -5.06702648e+08 -5.05342217e+08 -5.04302815e+08 -5.47526683e+08 -4.96039767e+08 -4.94516058e+08 -5.05468010e+08 -3.75341749e+08 -5.04619781e+08 -4.18980271e+08 -3.73121540e+08 -3.46793196e+08] [-4.87826584e+08 -4.15372381e+08 -4.70658324e+08 -4.85589382e+08 -4.95043257e+08 -4.78390599e+08 -4.78046150e+08 -5.08894260e+08 -4.68711474e+08 -4.76676720e+08 -4.81387251e+08 -4.81830499e+08 -5.10926312e+08 -4.79148609e+08 -4.80995465e+08 -4.73969176e+08 -5.13214341e+08 -4.83519278e+08 -4.80376720e+08 -3.14715345e+08 -4.73341453e+08 -5.15972209e+08 -5.15976496e+08 -4.12665148e+08 -5.23722473e+08 -4.81571785e+08 -4.82425198e+08 -4.79439591e+08 -5.14379427e+08 -4.68240427e+08 -4.82940268e+08 -4.81610191e+08 -3.18633247e+08 -4.81308834e+08 -3.71272974e+08 -3.16972461e+08 -2.84844910e+08] [-4.16245756e+08 -3.30330084e+08 -3.84226243e+08 -4.09567817e+08 -4.01073077e+08 -3.90339029e+08 -3.98448017e+08 -4.05564000e+08 -3.71986817e+08 -3.89340994e+08 -3.93939486e+08 -3.94627583e+08 -4.22351459e+08 -3.91743586e+08 -3.92359806e+08 -3.88247465e+08 -4.08110055e+08 -4.13384176e+08 -3.92862299e+08 -2.12889378e+08 -3.83091273e+08 -4.14900612e+08 -4.16546040e+08 -3.20507552e+08 -4.20370785e+08 -3.92456891e+08 -3.95578585e+08 -3.91166188e+08 -4.13162161e+08 -3.75550447e+08 -4.11380299e+08 -3.94066721e+08 -2.16388459e+08 -3.94468239e+08 -2.73848365e+08 -2.15579367e+08 -1.80593100e+08] [-2.25471010e+08 -1.47647671e+08 -1.90021007e+08 -2.17164881e+08 -1.96287795e+08 -1.94915240e+08 -2.06003833e+08 -1.84889437e+08 -1.68957615e+08 -1.94679340e+08 -1.97474742e+08 -1.98777526e+08 -2.15554370e+08 -1.95694002e+08 -1.96075116e+08 -1.94739003e+08 -1.86418657e+08 -2.23760528e+08 -1.96270580e+08 -3.16154773e+07 -1.87574328e+08 -1.93498405e+08 -1.96049243e+08 -1.21576801e+08 -1.96743711e+08 -1.95041373e+08 -1.99801386e+08 -1.94522472e+08 -1.91870114e+08 -1.79675654e+08 -2.21407156e+08 -1.97402881e+08 -3.40476016e+07 -1.98483148e+08 -8.11706778e+07 -3.41817199e+07 -3.22482509e+06] [ 6.84229854e+06 4.63076312e+07 3.18606399e+07 1.38199931e+07 3.44172681e+07 2.95323683e+07 1.95530969e+07 5.11930800e+07 4.62073679e+07 2.81350632e+07 2.93021588e+07 2.70716148e+07 2.60110473e+07 2.98185919e+07 2.88524948e+07 2.69377254e+07 5.13547299e+07 6.96917489e+06 3.02871481e+07 1.07358940e+08 3.37439749e+07 4.76357160e+07 4.45561020e+07 7.15864420e+07 4.75414920e+07 3.16106827e+07 2.66328478e+07 3.09786544e+07 4.86061123e+07 3.77976435e+07 8.45043731e+06 2.93478198e+07 1.06530451e+08 2.80377204e+07 8.92228625e+07 1.05675304e+08 1.21089559e+08] [ 1.93919775e+08 1.77826377e+08 2.01201673e+08 1.96819107e+08 2.08839573e+08 2.02236698e+08 1.95201001e+08 2.16752105e+08 1.95693961e+08 1.98118918e+08 2.03491368e+08 2.01389534e+08 2.12945715e+08 2.02648672e+08 2.01605249e+08 1.96853144e+08 2.18699219e+08 1.91607903e+08 2.04312160e+08 1.51197613e+08 2.01936860e+08 2.19701092e+08 2.17239498e+08 1.82667411e+08 2.24665729e+08 2.05060919e+08 2.01947257e+08 2.03746348e+08 2.19066236e+08 1.99867469e+08 1.91586371e+08 2.03793334e+08 1.52108133e+08 2.02668475e+08 1.70092154e+08 1.50906753e+08 1.46291691e+08] [ 2.63081663e+08 2.12284458e+08 2.56072888e+08 2.62291184e+08 2.64729243e+08 2.59499096e+08 2.56788084e+08 2.62624303e+08 2.37436360e+08 2.54824024e+08 2.60375444e+08 2.59175614e+08 2.75458765e+08 2.58949527e+08 2.58425817e+08 2.53988545e+08 2.65638373e+08 2.59659191e+08 2.61091236e+08 1.29115921e+08 2.56562513e+08 2.68848338e+08 2.67595088e+08 1.97904876e+08 2.76081918e+08 2.61181056e+08 2.60718351e+08 2.59856896e+08 2.67171657e+08 2.51010296e+08 2.58782103e+08 2.60958988e+08 1.31240806e+08 2.60213207e+08 1.68452994e+08 1.29978951e+08 1.12516363e+08] [ 2.37495063e+08 1.86925968e+08 2.27176677e+08 2.35943200e+08 2.35170358e+08 2.31367154e+08 2.29580837e+08 2.31444071e+08 2.09948269e+08 2.27240762e+08 2.32486555e+08 2.31374925e+08 2.46644682e+08 2.31057988e+08 2.30292976e+08 2.25531167e+08 2.34835844e+08 2.34514004e+08 2.33005459e+08 9.99987385e+07 2.27662650e+08 2.37625838e+08 2.36871875e+08 1.68557757e+08 2.43195255e+08 2.33106971e+08 2.32782051e+08 2.31558209e+08 2.35700798e+08 2.21931630e+08 2.33659178e+08 2.32935674e+08 1.02066433e+08 2.32485214e+08 1.38450808e+08 1.01083550e+08 8.26358399e+07] [ 1.81714282e+08 1.40601713e+08 1.72590644e+08 1.79998320e+08 1.79740419e+08 1.76348675e+08 1.74950788e+08 1.75199272e+08 1.59446155e+08 1.73237598e+08 1.76893600e+08 1.76157605e+08 1.87519917e+08 1.75546447e+08 1.75399838e+08 1.72047342e+08 1.78344473e+08 1.79046878e+08 1.77461557e+08 6.69356980e+07 1.73379696e+08 1.80229779e+08 1.79814880e+08 1.23012374e+08 1.84909857e+08 1.77290624e+08 1.77386671e+08 1.76165562e+08 1.78458551e+08 1.69074287e+08 1.78350549e+08 1.77431103e+08 6.85209186e+07 1.76986348e+08 9.80463417e+07 6.78392034e+07 5.23303225e+07] [ 1.16418775e+08 9.03765255e+07 1.10646116e+08 1.15147432e+08 1.16544380e+08 1.13412434e+08 1.12179647e+08 1.12841047e+08 1.02997395e+08 1.11322247e+08 1.13298380e+08 1.13053791e+08 1.19977152e+08 1.12307479e+08 1.12605424e+08 1.10756550e+08 1.15042285e+08 1.14692375e+08 1.13627910e+08 4.14638994e+07 1.11456674e+08 1.16228815e+08 1.15873952e+08 7.78124009e+07 1.19319928e+08 1.13549657e+08 1.13995729e+08 1.12866917e+08 1.14828144e+08 1.09396227e+08 1.14298145e+08 1.13673582e+08 4.25427070e+07 1.13462668e+08 6.17542426e+07 4.21119572e+07 3.14424594e+07] [ 3.34658436e+07 2.43719607e+07 3.18549810e+07 3.31573444e+07 3.49228668e+07 3.32325240e+07 3.20209495e+07 3.13227692e+07 2.88275315e+07 3.20811442e+07 3.25792154e+07 3.29432516e+07 3.44109714e+07 3.20735743e+07 3.26411506e+07 3.25424761e+07 3.24548547e+07 3.26125328e+07 3.26664633e+07 3.90877024e+06 3.21152573e+07 3.27516346e+07 3.24943110e+07 1.62447752e+07 3.45931239e+07 3.26487864e+07 3.34795448e+07 3.24663220e+07 3.21203199e+07 3.29252857e+07 3.24446662e+07 3.27796925e+07 4.09616197e+06 3.29353222e+07 1.04566431e+07 3.95302128e+06 7.39694070e+05] [ 2.26258753e+06 1.05982164e+06 2.11157369e+06 2.13048846e+06 2.72709097e+06 2.23600253e+06 2.06369507e+06 1.95712698e+06 1.75100083e+06 1.94082981e+06 1.99156835e+06 2.15469128e+06 2.18389326e+06 1.97967946e+06 2.08725398e+06 2.33642838e+06 2.08774195e+06 2.07250741e+06 2.01183666e+06 -1.40687352e+06 2.10386480e+06 2.09643889e+06 2.05196347e+06 -1.08037588e+05 2.56074871e+06 2.00428807e+06 2.30723476e+06 2.02778343e+06 1.97098018e+06 2.50166065e+06 2.02893749e+06 2.05460521e+06 -1.41045046e+06 2.09395909e+06 -7.96771335e+05 -1.43105637e+06 -1.68011709e+06] [ 1.88197193e+05 1.27694291e+05 1.91610562e+05 1.98688649e+05 1.87121833e+05 2.12699924e+05 1.80476586e+05 1.76606475e+05 1.61295338e+05 2.06534930e+05 2.15004204e+05 2.13482379e+05 2.23164320e+05 2.08310320e+05 2.12359509e+05 1.95110844e+05 1.91156159e+05 1.83578798e+05 2.11093977e+05 2.65016274e+04 2.01806809e+05 1.86205649e+05 1.82572486e+05 1.03135747e+05 2.02446436e+05 2.14551214e+05 2.15582102e+05 2.09473616e+05 1.83518972e+05 1.82969239e+05 1.83921734e+05 2.12099931e+05 2.83422723e+04 2.13348080e+05 6.01543768e+04 2.73886343e+04 -2.24519310e+03] [-2.36011464e-01 3.77993031e-01 4.33677143e-01 9.66958215e-01 -3.98032169e-01 4.82279841e-01 9.70651612e-01 2.54622806e-01 -1.48857270e-02 3.49936415e-01 -6.94554832e-01 -7.22955919e-01 -5.35371269e-01 6.63847243e-01 2.60812951e-01 -7.95429052e-01 -1.20961208e-01 -1.41593613e-01 4.93612900e-01 -2.43305051e-01 -6.89919527e-01 3.34656001e-01 8.91664312e-01 8.20409908e-01 -5.93566732e-01 7.60873108e-02 2.28128773e-01 -4.84305120e-02 -9.11094891e-01 2.08865245e-02 -7.05521859e-02 7.67215389e-01 7.88614233e-01 7.98617230e-01 -7.58509907e-01 -6.31173259e-01 -5.08112337e-01] [ 6.23812273e-02 -1.24410616e-01 8.00357280e-01 4.68551640e-01 5.21797711e-01 6.08859123e-01 2.80274548e-01 6.23355742e-01 2.45622046e-01 3.61320852e-01 2.26626358e-01 -1.95274879e-01 -5.96335554e-01 -9.25339136e-01 -6.97364804e-01 1.95907613e-01 -9.25492276e-01 -7.41015741e-01 8.74134882e-01 7.31766838e-01 -2.20482101e-01 -9.92758696e-01 5.50313211e-01 -9.96966117e-02 8.42863347e-02 -1.91368700e-01 -1.35024783e-01 -4.59645280e-01 4.48801968e-02 -8.85439891e-01 -5.13909127e-01 -6.87106733e-01 -2.36825700e-01 8.31784061e-01 -8.61503869e-01 1.48394338e-02 6.83181635e-01] [ 7.76073425e+03 7.89498291e+03 8.19312881e+03 7.77486132e+03 8.64433214e+03 8.01157835e+03 7.79400460e+03 9.60215426e+03 8.94438258e+03 7.79469117e+03 8.02851288e+03 7.96197213e+03 8.48944164e+03 8.15440245e+03 7.95187701e+03 7.78746879e+03 9.67158176e+03 7.71238851e+03 8.16675579e+03 1.02273445e+04 8.10751442e+03 9.68763314e+03 9.67331963e+03 9.86895652e+03 9.87373429e+03 8.15123389e+03 7.95904867e+03 8.12632560e+03 9.72332331e+03 7.78671478e+03 7.72635495e+03 8.08726587e+03 1.02181356e+04 7.99397234e+03 9.91504361e+03 1.02227866e+04 1.04483245e+04] [ 7.07395764e+04 8.63091545e+04 6.44173466e+04 6.11423726e+04 4.43788043e+04 5.10061873e+04 8.22662017e+04 5.61399301e+04 6.16334977e+04 6.12970708e+04 5.22796238e+04 5.26833752e+04 4.60504212e+04 5.81041654e+04 5.50562426e+04 6.49361278e+04 3.92390468e+04 7.69033554e+04 5.53991240e+04 1.84800397e+05 6.14307259e+04 4.36991118e+04 4.93237563e+04 1.12915708e+05 2.36395369e+04 5.24784536e+04 4.78730486e+04 5.73205340e+04 4.76978559e+04 5.94983765e+04 7.67792743e+04 5.40420546e+04 1.85236111e+05 5.13674245e+04 1.47413714e+05 1.84518457e+05 2.06593238e+05] [ 1.25022304e+05 1.38546812e+06 6.08185308e+05 2.59173847e+05 6.81512283e+05 4.51806140e+05 3.48645438e+05 1.36863741e+06 1.32300888e+06 4.63495274e+05 4.69173090e+05 4.16792031e+05 4.43882334e+05 4.76966030e+05 4.54318970e+05 5.24737668e+05 1.35661920e+06 1.67880198e+05 4.98084097e+05 3.99014869e+06 5.81186548e+05 1.27424865e+06 1.22373794e+06 2.78358852e+06 1.23873640e+06 4.80255310e+05 3.87204606e+05 5.00176154e+05 1.33474208e+06 6.91158517e+05 1.71022412e+05 4.66431526e+05 3.93056751e+06 4.34996655e+05 3.31457575e+06 3.93268942e+06 4.47602553e+06] [ 2.23818167e+07 2.08527408e+07 2.28155639e+07 2.26760446e+07 2.45851586e+07 2.33017151e+07 2.20524632e+07 2.59635873e+07 2.40948865e+07 2.24235774e+07 2.31062153e+07 2.28295184e+07 2.43479855e+07 2.27580719e+07 2.27506638e+07 2.25964702e+07 2.69590955e+07 2.19314322e+07 2.33371332e+07 1.71437536e+07 2.30329541e+07 2.65268723e+07 2.61830075e+07 2.19477817e+07 2.75838578e+07 2.32983700e+07 2.31908565e+07 2.30601757e+07 2.64760527e+07 2.28782184e+07 2.18924416e+07 2.32082908e+07 1.71933402e+07 2.30339209e+07 1.97437727e+07 1.71162464e+07 1.62551590e+07] [ 1.19448045e+08 1.06871018e+08 1.18975835e+08 1.20073847e+08 1.26771230e+08 1.20613519e+08 1.16931449e+08 1.31625751e+08 1.21168745e+08 1.17913943e+08 1.20769406e+08 1.19477570e+08 1.27151353e+08 1.19296133e+08 1.19198626e+08 1.17946816e+08 1.35160625e+08 1.17616601e+08 1.21742747e+08 8.11759615e+07 1.19386123e+08 1.34910850e+08 1.33641918e+08 1.08807037e+08 1.38462245e+08 1.21460928e+08 1.20393505e+08 1.20457170e+08 1.33953009e+08 1.18596109e+08 1.17295844e+08 1.21253306e+08 8.15280740e+07 1.20490054e+08 9.64859219e+07 8.12352172e+07 7.55719669e+07] [ 2.22612266e+08 2.15238423e+08 2.27482596e+08 2.24707716e+08 2.43365224e+08 2.27344481e+08 2.21282548e+08 2.62745916e+08 2.41040206e+08 2.22718579e+08 2.27559219e+08 2.24885826e+08 2.40100893e+08 2.26076458e+08 2.24659343e+08 2.23995793e+08 2.67988543e+08 2.20394171e+08 2.29721249e+08 2.03263875e+08 2.27173540e+08 2.67440515e+08 2.65057478e+08 2.37814801e+08 2.72622480e+08 2.29127609e+08 2.26485230e+08 2.27641614e+08 2.66291124e+08 2.27689390e+08 2.20040449e+08 2.28607998e+08 2.03561507e+08 2.26956995e+08 2.23068155e+08 2.03016834e+08 1.98493948e+08] [ 3.19191851e+08 3.19221468e+08 3.29965321e+08 3.23072602e+08 3.53238278e+08 3.27302076e+08 3.19099425e+08 3.88907990e+08 3.55610533e+08 3.20564880e+08 3.28012968e+08 3.23834173e+08 3.47029526e+08 3.26957049e+08 3.23508471e+08 3.23079799e+08 3.94769649e+08 3.16559603e+08 3.31022115e+08 3.27597312e+08 3.28310299e+08 3.94459093e+08 3.91298205e+08 3.66294177e+08 4.00853995e+08 3.30328406e+08 3.25867126e+08 3.28288427e+08 3.93636758e+08 3.29285580e+08 3.16138243e+08 3.29354426e+08 3.27680606e+08 3.26963061e+08 3.50297302e+08 3.26933908e+08 3.24130900e+08] [ 3.76698320e+08 3.81001009e+08 3.93360183e+08 3.81911843e+08 4.21388021e+08 3.88464989e+08 3.77344810e+08 4.68089739e+08 4.25327850e+08 3.77899908e+08 3.89251528e+08 3.83626258e+08 4.14106866e+08 3.89285372e+08 3.82841921e+08 3.81691993e+08 4.74573874e+08 3.73613521e+08 3.92806489e+08 4.06907336e+08 3.90028050e+08 4.74822618e+08 4.70763880e+08 4.49395631e+08 4.83921568e+08 3.92503863e+08 3.86595308e+08 3.89604197e+08 4.74864478e+08 3.89589964e+08 3.73181500e+08 3.90662579e+08 4.06988111e+08 3.87897677e+08 4.32243757e+08 4.06039024e+08 4.04126283e+08] [ 3.43015656e+08 3.41089500e+08 3.61468770e+08 3.47775207e+08 3.89590589e+08 3.55820448e+08 3.42024981e+08 4.29937058e+08 3.86231284e+08 3.41221261e+08 3.56266961e+08 3.50016045e+08 3.81290315e+08 3.56572687e+08 3.48621270e+08 3.46627579e+08 4.36706790e+08 3.38754037e+08 3.60220613e+08 3.51510192e+08 3.56686580e+08 4.38422849e+08 4.33759621e+08 4.04550446e+08 4.50664709e+08 3.60063761e+08 3.53986147e+08 3.56594843e+08 4.37872446e+08 3.55047272e+08 3.38048305e+08 3.57808606e+08 3.51639465e+08 3.54925863e+08 3.81962482e+08 3.50929166e+08 3.47050344e+08] [ 1.76686678e+08 1.68150700e+08 1.93622612e+08 1.79767393e+08 2.13469452e+08 1.88017374e+08 1.73917964e+08 2.28468808e+08 1.99203160e+08 1.71542018e+08 1.87271701e+08 1.82299625e+08 2.03375561e+08 1.87533999e+08 1.80072499e+08 1.79174921e+08 2.34194767e+08 1.71335951e+08 1.90928242e+08 1.47421181e+08 1.87363756e+08 2.37226739e+08 2.32774962e+08 1.99267401e+08 2.51355073e+08 1.90687354e+08 1.86671725e+08 1.87425440e+08 2.35919475e+08 1.86763390e+08 1.70349949e+08 1.88756085e+08 1.47021731e+08 1.86776368e+08 1.74521716e+08 1.47018415e+08 1.42880845e+08] [-8.90104830e+07 -8.37994064e+07 -7.38283452e+07 -8.75733240e+07 -6.95752643e+07 -8.00457390e+07 -9.10110176e+07 -8.03177497e+07 -8.22542488e+07 -9.40490853e+07 -8.27917292e+07 -8.53770623e+07 -8.36484219e+07 -8.18858354e+07 -8.77854013e+07 -8.48185198e+07 -7.69485694e+07 -9.33845653e+07 -7.96712788e+07 -1.00818601e+08 -8.07606434e+07 -7.49713946e+07 -7.81229546e+07 -8.37888901e+07 -6.40374365e+07 -8.05045546e+07 -8.17640054e+07 -8.22637310e+07 -7.64036886e+07 -7.82896806e+07 -9.42383060e+07 -8.15344000e+07 -1.02604665e+08 -8.22982823e+07 -9.50875087e+07 -1.01540630e+08 -9.78321898e+07] [-3.01156036e+08 -2.64136732e+08 -2.85937596e+08 -2.99663714e+08 -2.95172336e+08 -2.93779192e+08 -2.99743943e+08 -3.10110883e+08 -2.90117885e+08 -3.02280935e+08 -2.96853376e+08 -2.98760601e+08 -3.11512788e+08 -2.95118973e+08 -3.00479318e+08 -2.94367635e+08 -3.09573625e+08 -3.01761155e+08 -2.94336299e+08 -2.31238531e+08 -2.92664291e+08 -3.09487365e+08 -3.11350088e+08 -2.64307088e+08 -3.06350075e+08 -2.95734229e+08 -2.96544352e+08 -2.96051814e+08 -3.09687842e+08 -2.88770230e+08 -3.02211097e+08 -2.96214333e+08 -2.34310104e+08 -2.96395370e+08 -2.53244069e+08 -2.32487802e+08 -2.16904387e+08] [-3.58165011e+08 -3.02796573e+08 -3.43416838e+08 -3.56865791e+08 -3.55440524e+08 -3.52597956e+08 -3.54731668e+08 -3.61444507e+08 -3.36929063e+08 -3.57542405e+08 -3.55366249e+08 -3.57450228e+08 -3.73052010e+08 -3.53315496e+08 -3.58359713e+08 -3.50780035e+08 -3.62859852e+08 -3.56118590e+08 -3.53028970e+08 -2.27662350e+08 -3.49922739e+08 -3.63244365e+08 -3.64306801e+08 -2.86500340e+08 -3.65286333e+08 -3.54679679e+08 -3.55847269e+08 -3.54221541e+08 -3.62629276e+08 -3.44982450e+08 -3.56583121e+08 -3.54953221e+08 -2.31301117e+08 -3.55182339e+08 -2.63519338e+08 -2.29359181e+08 -2.06177324e+08] [-3.59855514e+08 -2.88167266e+08 -3.39866525e+08 -3.57038257e+08 -3.51616716e+08 -3.49440188e+08 -3.52511493e+08 -3.47275534e+08 -3.23353031e+08 -3.52295259e+08 -3.52001395e+08 -3.54509802e+08 -3.70921771e+08 -3.49817929e+08 -3.54325252e+08 -3.47216457e+08 -3.49469159e+08 -3.56405667e+08 -3.49795765e+08 -1.79328889e+08 -3.44805495e+08 -3.51308366e+08 -3.52534390e+08 -2.56891877e+08 -3.56078951e+08 -3.51087498e+08 -3.53429696e+08 -3.50281851e+08 -3.50163052e+08 -3.39243688e+08 -3.56397866e+08 -3.51783228e+08 -1.83172967e+08 -3.52390842e+08 -2.24975970e+08 -1.81559458e+08 -1.52469426e+08] [-3.55110719e+08 -2.66275185e+08 -3.24428782e+08 -3.49068845e+08 -3.34685300e+08 -3.32589703e+08 -3.40648416e+08 -3.23755834e+08 -2.99463284e+08 -3.33732702e+08 -3.35556646e+08 -3.37653774e+08 -3.56988660e+08 -3.33060515e+08 -3.36082543e+08 -3.31258331e+08 -3.25984058e+08 -3.51482391e+08 -3.33781189e+08 -1.30516866e+08 -3.25948060e+08 -3.31326443e+08 -3.33050953e+08 -2.30024081e+08 -3.37004697e+08 -3.33821996e+08 -3.37625747e+08 -3.33001071e+08 -3.29670196e+08 -3.18575332e+08 -3.50159542e+08 -3.35579282e+08 -1.34340267e+08 -3.36350508e+08 -1.87412735e+08 -1.33361800e+08 -9.85424981e+07] [-3.11141337e+08 -2.16031869e+08 -2.72063845e+08 -3.02035940e+08 -2.79966146e+08 -2.78397489e+08 -2.90667565e+08 -2.65849677e+08 -2.43135421e+08 -2.78434239e+08 -2.81350497e+08 -2.83164836e+08 -3.03500815e+08 -2.79273361e+08 -2.80546773e+08 -2.77957060e+08 -2.67258388e+08 -3.08487142e+08 -2.79939090e+08 -7.35317118e+07 -2.70497272e+08 -2.75591577e+08 -2.77991197e+08 -1.81448562e+08 -2.79813965e+08 -2.78861537e+08 -2.84065361e+08 -2.78457049e+08 -2.73599007e+08 -2.61665687e+08 -3.05921024e+08 -2.81427224e+08 -7.68649287e+07 -2.82424098e+08 -1.34032772e+08 -7.65366216e+07 -4.02758231e+07] [-1.54077556e+08 -7.92579859e+07 -1.19776090e+08 -1.46032827e+08 -1.23482273e+08 -1.25903694e+08 -1.34861205e+08 -1.03686854e+08 -9.45363874e+07 -1.25452844e+08 -1.27341430e+08 -1.29463395e+08 -1.40973248e+08 -1.25372907e+08 -1.26729192e+08 -1.25343081e+08 -1.05625029e+08 -1.51985862e+08 -1.25774593e+08 4.11420720e+07 -1.18099417e+08 -1.12184746e+08 -1.14385570e+08 -4.24498671e+07 -1.15611013e+08 -1.24757260e+08 -1.30564057e+08 -1.24389762e+08 -1.09872854e+08 -1.10536747e+08 -1.49744528e+08 -1.27086258e+08 3.90518038e+07 -1.28694191e+08 -3.54578758e+06 3.86944886e+07 6.87636797e+07] [ 3.38834299e+07 6.17147770e+07 5.30658897e+07 3.89578075e+07 5.22599683e+07 4.95196023e+07 4.40736234e+07 6.61232519e+07 5.97357155e+07 4.87773864e+07 5.01681117e+07 4.76111823e+07 4.77243993e+07 5.07565429e+07 4.92243461e+07 4.80664462e+07 6.50613382e+07 3.42994954e+07 5.15697993e+07 1.08124473e+08 5.37192312e+07 6.30539018e+07 6.08380546e+07 8.22973793e+07 6.21939575e+07 5.20687390e+07 4.70774834e+07 5.18938208e+07 6.42071169e+07 5.62058284e+07 3.51376619e+07 5.05011304e+07 1.07471896e+08 4.88368280e+07 9.63875940e+07 1.06617546e+08 1.20608716e+08] [ 1.83990298e+08 1.55249231e+08 1.85053636e+08 1.84404410e+08 1.88551541e+08 1.85168807e+08 1.82633572e+08 1.87923858e+08 1.68811446e+08 1.81311419e+08 1.85691853e+08 1.84105140e+08 1.94146636e+08 1.84982843e+08 1.84078385e+08 1.81733950e+08 1.88650666e+08 1.81577636e+08 1.86955877e+08 1.06902864e+08 1.84694841e+08 1.91238182e+08 1.90033334e+08 1.47341135e+08 1.96311441e+08 1.86736683e+08 1.85202613e+08 1.86224629e+08 1.90492202e+08 1.82377335e+08 1.80937717e+08 1.86412468e+08 1.07868123e+08 1.85197166e+08 1.31217343e+08 1.06809895e+08 1.00586490e+08] [ 2.40954053e+08 1.89195015e+08 2.32109628e+08 2.39347607e+08 2.38149348e+08 2.35253278e+08 2.33964354e+08 2.32532099e+08 2.10009425e+08 2.30324309e+08 2.35561201e+08 2.34593297e+08 2.48880299e+08 2.34144251e+08 2.33587338e+08 2.30296672e+08 2.35117357e+08 2.37755717e+08 2.36368821e+08 1.01727606e+08 2.31993622e+08 2.38689505e+08 2.37874240e+08 1.69357739e+08 2.45532437e+08 2.36189892e+08 2.36429375e+08 2.35186139e+08 2.37029015e+08 2.27081609e+08 2.36583436e+08 2.36213954e+08 1.03608905e+08 2.35591158e+08 1.40396131e+08 1.02466367e+08 8.62224580e+07] [ 2.09453219e+08 1.62401217e+08 2.00061692e+08 2.08046608e+08 2.05566601e+08 2.04060005e+08 2.02112941e+08 1.99533734e+08 1.81135146e+08 2.00187262e+08 2.05072577e+08 2.03993615e+08 2.16512341e+08 2.03317941e+08 2.02927156e+08 1.98535335e+08 2.02590961e+08 2.06596891e+08 2.05458874e+08 7.82955511e+07 2.00585267e+08 2.05410931e+08 2.04572823e+08 1.41764319e+08 2.10815802e+08 2.05467107e+08 2.05272316e+08 2.04199275e+08 2.03503139e+08 1.95024690e+08 2.05705427e+08 2.05394331e+08 7.99983236e+07 2.05027270e+08 1.13437993e+08 7.90576237e+07 6.27089622e+07] [ 1.61594094e+08 1.25888515e+08 1.54165684e+08 1.60401098e+08 1.59955653e+08 1.57885091e+08 1.55854528e+08 1.55323921e+08 1.41892062e+08 1.55304482e+08 1.58453927e+08 1.57622423e+08 1.66962707e+08 1.56862163e+08 1.57042844e+08 1.53600165e+08 1.58419184e+08 1.59255356e+08 1.58902426e+08 6.01699040e+07 1.55315718e+08 1.59971251e+08 1.59362073e+08 1.09282370e+08 1.64317269e+08 1.58808301e+08 1.58603578e+08 1.57799144e+08 1.58274617e+08 1.51305892e+08 1.58697744e+08 1.58835411e+08 6.14693151e+07 1.58417058e+08 8.73193760e+07 6.07671219e+07 4.73925203e+07] [ 1.05229949e+08 8.21445493e+07 9.99046622e+07 1.03805545e+08 1.05289558e+08 1.02491247e+08 1.01608051e+08 1.01987658e+08 9.33123491e+07 1.00799419e+08 1.02098257e+08 1.01971800e+08 1.07911183e+08 1.01228897e+08 1.01672368e+08 1.00146268e+08 1.03803134e+08 1.03773543e+08 1.02424974e+08 4.02887156e+07 1.00907516e+08 1.04790085e+08 1.04502883e+08 7.09300257e+07 1.07165731e+08 1.02351529e+08 1.02961042e+08 1.01846412e+08 1.03487430e+08 9.93689316e+07 1.03450499e+08 1.02476293e+08 4.12339472e+07 1.02283728e+08 5.76612356e+07 4.07785422e+07 3.19728537e+07] [ 3.07170223e+07 2.25675089e+07 2.90901463e+07 3.02989385e+07 3.14128626e+07 3.01532334e+07 2.95861747e+07 2.86724076e+07 2.61319600e+07 2.95809808e+07 2.97372371e+07 2.99703227e+07 3.12358155e+07 2.93433210e+07 2.98961200e+07 2.97459284e+07 2.93834529e+07 3.01404923e+07 2.98330959e+07 6.08630447e+06 2.95657340e+07 2.97699482e+07 2.95595058e+07 1.61304594e+07 3.08213300e+07 2.97622479e+07 3.03560712e+07 2.97132323e+07 2.90910488e+07 2.99427024e+07 2.99943430e+07 2.99106433e+07 6.33008007e+06 2.99025616e+07 1.16398442e+07 6.17680874e+06 3.38248661e+06] [ 1.30334496e+06 -2.76651106e+04 1.13530624e+06 1.17787842e+06 1.48809863e+06 1.28987015e+06 1.17820707e+06 5.23591010e+05 3.75075750e+05 1.13016355e+06 1.08196208e+06 1.25155241e+06 1.17166017e+06 1.09291948e+06 1.22630263e+06 1.38164343e+06 5.65971502e+05 1.17645656e+06 1.07252500e+06 -2.58692094e+06 1.20615815e+06 5.96408059e+05 5.75463761e+05 -1.51761323e+06 9.28352506e+05 1.07861596e+06 1.36766275e+06 1.12973634e+06 4.76131134e+05 1.49320790e+06 1.15405524e+06 1.11815802e+06 -2.56873782e+06 1.15133996e+06 -2.05951471e+06 -2.59358961e+06 -2.86231290e+06] [ 3.77892660e+05 2.08037416e+05 3.74189313e+05 4.04631951e+05 3.55116972e+05 4.37750157e+05 3.72044572e+05 2.72604806e+05 2.53137472e+05 4.42539816e+05 4.43985205e+05 4.44370787e+05 4.38812703e+05 4.22313672e+05 4.48918583e+05 4.09307926e+05 3.04032729e+05 3.68154690e+05 4.32228785e+05 -1.98687330e+05 4.13687359e+05 2.85035516e+05 2.76713225e+05 -1.06222568e+04 3.16452777e+05 4.42814732e+05 4.47154492e+05 4.30649936e+05 2.76310781e+05 3.96736716e+05 3.70203524e+05 4.35736202e+05 -1.93876193e+05 4.37287291e+05 -1.08708147e+05 -1.96802201e+05 -2.69369046e+05] [ 5.23602497e+03 5.70091817e+03 5.85882635e+03 5.31834423e+03 6.14390262e+03 5.58377253e+03 5.32666257e+03 7.08271973e+03 6.53441568e+03 5.38478646e+03 5.62544909e+03 5.50035164e+03 5.95674463e+03 5.78502428e+03 5.50544590e+03 5.37735918e+03 7.15074218e+03 5.21218319e+03 5.77106322e+03 7.71107364e+03 5.70880416e+03 7.08497350e+03 7.09762119e+03 7.24954799e+03 7.10903702e+03 5.77633816e+03 5.52203432e+03 5.73037734e+03 7.03856606e+03 5.62228074e+03 5.24152371e+03 5.68620137e+03 7.69469580e+03 5.56854419e+03 7.30057511e+03 7.68313769e+03 7.98937112e+03] [-5.76798063e-01 4.68469156e-01 -3.44371426e-01 5.69930709e-01 -2.11557096e-02 3.17011413e-01 -1.19899334e-01 -1.37631013e-01 3.95475861e-01 2.08595126e-01 -2.06224308e-01 -3.85005464e-01 -6.89296053e-01 3.47119998e-01 1.11572269e-01 -8.32950788e-01 -9.10351962e-01 -9.87183895e-01 -6.26986331e-01 -7.87151589e-01 -3.18243509e-01 9.04690000e-01 -5.53091427e-01 -2.01593444e-02 3.09076738e-01 4.42211157e-01 -7.95917397e-01 -8.47824929e-01 -3.66341155e-02 -9.82310920e-01 3.24283981e-01 7.63118387e-01 1.83983344e-01 -6.82721365e-01 9.37436219e-01 5.02488033e-01 -5.23104155e-01] [-1.09464020e+05 -1.04193762e+05 -1.22546662e+05 -1.16371118e+05 -1.39023110e+05 -1.26944735e+05 -1.03256251e+05 -1.58332730e+05 -1.41317505e+05 -1.15579324e+05 -1.26826837e+05 -1.24393002e+05 -1.39802193e+05 -1.24532013e+05 -1.22458023e+05 -1.15415286e+05 -1.69339237e+05 -1.04014312e+05 -1.26103259e+05 -9.81227286e+04 -1.22319476e+05 -1.66009019e+05 -1.62248012e+05 -1.40083988e+05 -1.82658444e+05 -1.27730762e+05 -1.27798645e+05 -1.24214333e+05 -1.64055885e+05 -1.12861976e+05 -1.04507031e+05 -1.25572304e+05 -9.75479433e+04 -1.25578955e+05 -1.14375206e+05 -9.81913352e+04 -8.25017871e+04] [-9.44090361e+05 -8.79291867e+05 -9.83330737e+05 -9.72979123e+05 -1.09459926e+06 -1.00235453e+06 -9.12284773e+05 -1.21585284e+06 -1.08790167e+06 -9.67998601e+05 -1.01452344e+06 -1.00012680e+06 -1.10165401e+06 -1.00691349e+06 -9.95585487e+05 -9.49576031e+05 -1.26312958e+06 -9.21731827e+05 -1.01465149e+06 -8.35701471e+05 -9.88864282e+05 -1.25800446e+06 -1.24313153e+06 -1.07062694e+06 -1.32243035e+06 -1.02164272e+06 -1.00845592e+06 -1.00420668e+06 -1.24536162e+06 -9.44762256e+05 -9.24167900e+05 -1.01140993e+06 -8.38924045e+05 -1.00682871e+06 -9.49404498e+05 -8.39700680e+05 -7.63134339e+05] [-1.95247918e+06 -1.00354877e+06 -1.74557870e+06 -1.95044097e+06 -2.06159337e+06 -1.86798796e+06 -1.73133945e+06 -1.93075978e+06 -1.63104285e+06 -1.73758649e+06 -1.89134518e+06 -1.87030306e+06 -2.15185998e+06 -1.87038983e+06 -1.82907804e+06 -1.63558773e+06 -2.09469923e+06 -1.86250249e+06 -1.89034991e+06 1.05604914e+06 -1.76229799e+06 -2.15631561e+06 -2.12773135e+06 -5.77991242e+05 -2.34277630e+06 -1.91857469e+06 -1.90793330e+06 -1.84771661e+06 -2.08875245e+06 -1.56250192e+06 -1.87312001e+06 -1.89483389e+06 9.87937039e+05 -1.89403755e+06 2.03804157e+05 9.85236462e+05 1.66123517e+06] [ 2.90997121e+07 2.38456667e+07 2.83092923e+07 2.90299695e+07 2.99067296e+07 2.93033357e+07 2.81547092e+07 2.98668719e+07 2.76110984e+07 2.84112814e+07 2.91301216e+07 2.88639331e+07 3.04809837e+07 2.86492254e+07 2.87295854e+07 2.84382376e+07 3.10274171e+07 2.84953415e+07 2.93583081e+07 1.37786474e+07 2.87587957e+07 3.06088671e+07 3.03336084e+07 2.19549308e+07 3.18009861e+07 2.93433584e+07 2.93025029e+07 2.90271846e+07 3.03444793e+07 2.82877213e+07 2.84160375e+07 2.92424164e+07 1.39334601e+07 2.90302359e+07 1.83318459e+07 1.38182603e+07 1.17249572e+07] [ 1.36601139e+08 1.18005004e+08 1.33892905e+08 1.36755016e+08 1.41901419e+08 1.36720972e+08 1.33199350e+08 1.44544955e+08 1.33408166e+08 1.34406483e+08 1.36863650e+08 1.35945907e+08 1.43767139e+08 1.35181641e+08 1.35581808e+08 1.33901472e+08 1.47964540e+08 1.34636983e+08 1.37685229e+08 8.12657983e+07 1.34763629e+08 1.47909046e+08 1.46739877e+08 1.13858501e+08 1.51448132e+08 1.37492461e+08 1.36888050e+08 1.36484814e+08 1.46650958e+08 1.33916993e+08 1.34280330e+08 1.37319317e+08 8.18291587e+07 1.36682253e+08 9.93975238e+07 8.14273043e+07 7.37423339e+07] [ 2.44447823e+08 2.22440626e+08 2.42874039e+08 2.44670528e+08 2.57656699e+08 2.44716496e+08 2.40908212e+08 2.69971953e+08 2.48155215e+08 2.41406326e+08 2.44708707e+08 2.43356537e+08 2.57785604e+08 2.43112096e+08 2.42973646e+08 2.42290315e+08 2.74261734e+08 2.42089133e+08 2.46340780e+08 1.84697251e+08 2.43168144e+08 2.74506542e+08 2.73003580e+08 2.29453644e+08 2.79434910e+08 2.45793954e+08 2.44926431e+08 2.44746162e+08 2.72861092e+08 2.43815817e+08 2.41512107e+08 2.45690658e+08 1.85457443e+08 2.44460284e+08 2.10431487e+08 1.84752949e+08 1.75699883e+08] [ 3.47028246e+08 3.22413658e+08 3.49024359e+08 3.48481653e+08 3.69566443e+08 3.49497082e+08 3.44056918e+08 3.92465690e+08 3.58386633e+08 3.43936792e+08 3.49975844e+08 3.47455935e+08 3.69899514e+08 3.48946248e+08 3.46884767e+08 3.45556949e+08 3.97235928e+08 3.44112880e+08 3.52174252e+08 2.88565807e+08 3.48471108e+08 3.98095655e+08 3.95948535e+08 3.45055206e+08 4.05085172e+08 3.51779701e+08 3.49531024e+08 3.50122784e+08 3.96814205e+08 3.48267404e+08 3.43393287e+08 3.51147247e+08 2.89590918e+08 3.49324146e+08 3.21593288e+08 2.88520080e+08 2.78226031e+08] [ 3.92516328e+08 3.64506524e+08 3.98964524e+08 3.94920223e+08 4.23150599e+08 3.98448204e+08 3.89443373e+08 4.49866191e+08 4.07523587e+08 3.88873164e+08 3.99066965e+08 3.95447358e+08 4.23880573e+08 3.98820891e+08 3.94417384e+08 3.90861668e+08 4.55538405e+08 3.88635631e+08 4.01606013e+08 3.29229293e+08 3.97337531e+08 4.57413196e+08 4.54060248e+08 3.96794501e+08 4.67466474e+08 4.01815253e+08 3.98347672e+08 3.99239142e+08 4.56521385e+08 3.95026935e+08 3.87812187e+08 4.00261689e+08 3.30520902e+08 3.98188443e+08 3.68697123e+08 3.29179035e+08 3.17239439e+08] [ 3.38855074e+08 3.04759367e+08 3.47688281e+08 3.40737967e+08 3.71467035e+08 3.46317271e+08 3.34811376e+08 3.89766949e+08 3.47744903e+08 3.33121776e+08 3.46841740e+08 3.42762606e+08 3.70774796e+08 3.46822017e+08 3.41418175e+08 3.36612321e+08 3.95055020e+08 3.33644315e+08 3.49558774e+08 2.53382714e+08 3.44999553e+08 3.98678728e+08 3.94777781e+08 3.29543435e+08 4.11308718e+08 3.50028051e+08 3.46344686e+08 3.46969008e+08 3.96965645e+08 3.41458118e+08 3.32596818e+08 3.48086116e+08 2.54799294e+08 3.45913685e+08 2.96534008e+08 2.53736920e+08 2.40194278e+08] [ 1.52757668e+08 1.23394945e+08 1.64876512e+08 1.54092622e+08 1.81719748e+08 1.62816322e+08 1.48616583e+08 1.79132581e+08 1.52111088e+08 1.46887943e+08 1.61763070e+08 1.58459530e+08 1.75891036e+08 1.62085030e+08 1.56435735e+08 1.52773177e+08 1.83558038e+08 1.46619214e+08 1.64421401e+08 6.02920750e+07 1.60582666e+08 1.87480993e+08 1.83668796e+08 1.24620547e+08 2.01633086e+08 1.64998785e+08 1.62555608e+08 1.61861867e+08 1.85284357e+08 1.58800969e+08 1.45554064e+08 1.62934593e+08 6.07587192e+07 1.61529418e+08 9.40422819e+07 6.05377244e+07 5.03188243e+07] [-7.41372281e+07 -7.67057256e+07 -5.96507325e+07 -7.28015017e+07 -5.39733378e+07 -6.33576893e+07 -7.56805081e+07 -6.84628355e+07 -7.29087859e+07 -7.66859240e+07 -6.59029236e+07 -6.80057102e+07 -6.60857033e+07 -6.48887959e+07 -6.98238840e+07 -6.95565472e+07 -6.55172814e+07 -7.84232858e+07 -6.33227577e+07 -1.07717102e+08 -6.43499581e+07 -6.35662280e+07 -6.68892867e+07 -8.58586456e+07 -5.37404859e+07 -6.34079788e+07 -6.45850508e+07 -6.53233859e+07 -6.55884106e+07 -6.26688070e+07 -7.92423307e+07 -6.48647168e+07 -1.08738629e+08 -6.56378988e+07 -9.88816740e+07 -1.08016074e+08 -1.07401988e+08] [-2.01456623e+08 -1.70656989e+08 -1.85181566e+08 -1.99409693e+08 -1.87802599e+08 -1.91015052e+08 -1.98992119e+08 -1.94588532e+08 -1.85452330e+08 -1.98802599e+08 -1.93455996e+08 -1.95463852e+08 -2.02259060e+08 -1.91607760e+08 -1.96344393e+08 -1.93347035e+08 -1.94256186e+08 -2.01934731e+08 -1.91217096e+08 -1.39534894e+08 -1.89501723e+08 -1.94168453e+08 -1.96569797e+08 -1.64222559e+08 -1.92022672e+08 -1.91738268e+08 -1.93258104e+08 -1.92415575e+08 -1.94998035e+08 -1.86296227e+08 -2.02344400e+08 -1.92923197e+08 -1.41660518e+08 -1.93557256e+08 -1.55880872e+08 -1.40520685e+08 -1.27890740e+08] [-2.13528997e+08 -1.63243511e+08 -1.94636644e+08 -2.10615241e+08 -1.97367271e+08 -2.01922976e+08 -2.08583438e+08 -1.89714579e+08 -1.80492896e+08 -2.07086329e+08 -2.03797505e+08 -2.06469791e+08 -2.13071144e+08 -2.01570844e+08 -2.06526114e+08 -2.02831815e+08 -1.90602989e+08 -2.11824327e+08 -2.01526856e+08 -8.73574460e+07 -1.98794938e+08 -1.91442218e+08 -1.93467017e+08 -1.33785525e+08 -1.93099621e+08 -2.02083794e+08 -2.04761834e+08 -2.02339511e+08 -1.91424769e+08 -1.94723120e+08 -2.12080538e+08 -2.03431880e+08 -9.00456491e+07 -2.04350469e+08 -1.15235372e+08 -8.89943907e+07 -6.92340464e+07] [-2.17111845e+08 -1.46887778e+08 -1.91522967e+08 -2.12356941e+08 -1.91795931e+08 -1.98871863e+08 -2.07486806e+08 -1.72851263e+08 -1.63435831e+08 -2.02364365e+08 -2.01169880e+08 -2.03801485e+08 -2.11738734e+08 -1.98828493e+08 -2.02907462e+08 -1.99056484e+08 -1.74079689e+08 -2.14419600e+08 -1.99113144e+08 -3.36287604e+07 -1.94198268e+08 -1.77343027e+08 -1.79360931e+08 -1.01846256e+08 -1.81053349e+08 -1.99024217e+08 -2.02555162e+08 -1.99129090e+08 -1.76652230e+08 -1.87250246e+08 -2.13855043e+08 -2.00951519e+08 -3.66917530e+07 -2.01954062e+08 -7.30720254e+07 -3.59917794e+07 -9.66240145e+06] [-2.46094312e+08 -1.57797502e+08 -2.10650644e+08 -2.37900823e+08 -2.11101519e+08 -2.16666194e+08 -2.29810959e+08 -1.88184908e+08 -1.74580299e+08 -2.18337626e+08 -2.19168912e+08 -2.21295952e+08 -2.33836290e+08 -2.16863211e+08 -2.19354192e+08 -2.17170046e+08 -1.89045285e+08 -2.43554623e+08 -2.17621380e+08 -2.03318281e+07 -2.10389831e+08 -1.96013201e+08 -1.98321167e+08 -1.10956425e+08 -2.00150363e+08 -2.16530385e+08 -2.21322231e+08 -2.16748107e+08 -1.94580272e+08 -2.01641860e+08 -2.41573296e+08 -2.19212801e+08 -2.35421351e+07 -2.20164663e+08 -7.17358235e+07 -2.31230680e+07 8.30736156e+06] [-2.22358351e+08 -1.39376550e+08 -1.86173443e+08 -2.13445165e+08 -1.88124020e+08 -1.90915898e+08 -2.03947525e+08 -1.69494181e+08 -1.54907500e+08 -1.91617059e+08 -1.93262872e+08 -1.94816320e+08 -2.08935101e+08 -1.91333851e+08 -1.92514426e+08 -1.91211428e+08 -1.69764311e+08 -2.20731858e+08 -1.91906763e+08 -1.38194428e+07 -1.84377151e+08 -1.78010242e+08 -1.80305122e+08 -1.03191070e+08 -1.80305427e+08 -1.90604276e+08 -1.95573850e+08 -1.90740754e+08 -1.75966635e+08 -1.75749464e+08 -2.18178365e+08 -1.93214294e+08 -1.64656577e+07 -1.94281101e+08 -6.37834135e+07 -1.63178445e+07 1.36980610e+07] [-1.00740446e+08 -5.10081303e+07 -7.53930798e+07 -9.44425998e+07 -7.89865063e+07 -7.98952160e+07 -8.69706293e+07 -6.68039149e+07 -6.12554098e+07 -7.98661432e+07 -7.99863320e+07 -8.20586200e+07 -8.97397905e+07 -7.86550003e+07 -8.01999668e+07 -8.01166936e+07 -6.78680090e+07 -9.97448412e+07 -7.84308731e+07 2.44327211e+07 -7.44244962e+07 -7.26603890e+07 -7.44002178e+07 -2.91002890e+07 -7.43504568e+07 -7.78411682e+07 -8.31850770e+07 -7.79289956e+07 -7.06947237e+07 -6.96424412e+07 -9.81021189e+07 -7.96482902e+07 2.30856591e+07 -8.11795187e+07 -3.72331158e+06 2.28292788e+07 4.30572261e+07] [ 4.81445469e+07 4.41404580e+07 5.53439767e+07 5.01144632e+07 4.96246225e+07 5.38380829e+07 5.23995157e+07 4.67175945e+07 4.10991869e+07 5.34329117e+07 5.50033442e+07 5.33762500e+07 5.32947596e+07 5.50119018e+07 5.42541482e+07 5.22845392e+07 4.54329467e+07 4.76596027e+07 5.61518819e+07 3.33920939e+07 5.56309915e+07 4.58617395e+07 4.49555190e+07 3.65897109e+07 4.64885797e+07 5.59416083e+07 5.27859320e+07 5.60716173e+07 4.66748086e+07 5.45734845e+07 4.76587109e+07 5.54310191e+07 3.34894003e+07 5.40964117e+07 3.75036626e+07 3.27797830e+07 3.70552404e+07] [ 1.57577933e+08 1.09806473e+08 1.49757188e+08 1.55993835e+08 1.47025227e+08 1.52203848e+08 1.52877647e+08 1.31916026e+08 1.17843059e+08 1.49680980e+08 1.52859408e+08 1.52093672e+08 1.59053911e+08 1.51682018e+08 1.51769284e+08 1.48648855e+08 1.32690754e+08 1.55246792e+08 1.53574665e+08 2.42290353e+07 1.50122911e+08 1.36076561e+08 1.35664374e+08 7.74168183e+07 1.40962298e+08 1.53124687e+08 1.52930612e+08 1.52891417e+08 1.35008596e+08 1.45072905e+08 1.54193937e+08 1.53352461e+08 2.57292318e+07 1.52589215e+08 5.55105916e+07 2.47708756e+07 1.28209080e+07] [ 1.89077535e+08 1.34753572e+08 1.77521123e+08 1.87047672e+08 1.78367470e+08 1.82400141e+08 1.81594727e+08 1.63674010e+08 1.48318871e+08 1.78638153e+08 1.82500937e+08 1.82069090e+08 1.91670446e+08 1.80703749e+08 1.80948263e+08 1.77011076e+08 1.66550270e+08 1.86378751e+08 1.82741961e+08 3.65619225e+07 1.78380132e+08 1.69628124e+08 1.68883979e+08 1.01009718e+08 1.75478398e+08 1.82660805e+08 1.83633173e+08 1.81797063e+08 1.67780448e+08 1.72423453e+08 1.85226007e+08 1.82796378e+08 3.84122871e+07 1.82669369e+08 7.30478026e+07 3.74034525e+07 2.04173906e+07] [ 1.62600268e+08 1.16269318e+08 1.51222714e+08 1.60514886e+08 1.53553925e+08 1.56354461e+08 1.55640513e+08 1.40952833e+08 1.29254261e+08 1.54256491e+08 1.56694046e+08 1.56638322e+08 1.64189125e+08 1.54657536e+08 1.55705627e+08 1.52126296e+08 1.43444027e+08 1.60023823e+08 1.56625431e+08 3.04072036e+07 1.52693751e+08 1.45883786e+08 1.45399666e+08 8.56062758e+07 1.50180446e+08 1.56563937e+08 1.57625438e+08 1.55844813e+08 1.43744828e+08 1.48034182e+08 1.59241625e+08 1.56892411e+08 3.19037471e+07 1.56979391e+08 6.08574256e+07 3.10396987e+07 1.59534441e+07] [ 1.32824176e+08 9.79180121e+07 1.24254415e+08 1.31098455e+08 1.27194440e+08 1.28582032e+08 1.27737522e+08 1.19791364e+08 1.09972566e+08 1.27399885e+08 1.29166068e+08 1.28919746e+08 1.35728171e+08 1.27915221e+08 1.28507194e+08 1.24558163e+08 1.21819355e+08 1.31137205e+08 1.29168712e+08 3.58157329e+07 1.26113809e+08 1.23222167e+08 1.23056562e+08 7.73347615e+07 1.25863341e+08 1.29295675e+08 1.29460057e+08 1.28565098e+08 1.21715465e+08 1.21689905e+08 1.30718670e+08 1.29338322e+08 3.72275544e+07 1.29223223e+08 5.91544481e+07 3.65132054e+07 2.39330162e+07] [ 8.68762109e+07 6.48664118e+07 8.12811690e+07 8.53014499e+07 8.47850506e+07 8.40669878e+07 8.38819726e+07 8.01919051e+07 7.35011386e+07 8.33576066e+07 8.38805197e+07 8.41625546e+07 8.86068257e+07 8.33879035e+07 8.40111413e+07 8.19242764e+07 8.11916278e+07 8.59331338e+07 8.39341631e+07 2.63542008e+07 8.27379487e+07 8.20842422e+07 8.20454816e+07 5.17697058e+07 8.32559986e+07 8.40142702e+07 8.47166813e+07 8.37360396e+07 8.10523775e+07 8.06859876e+07 8.56753739e+07 8.41225046e+07 2.73930582e+07 8.40773971e+07 4.11319606e+07 2.69304792e+07 1.87294074e+07] [ 3.15633292e+07 2.33383155e+07 2.95106531e+07 3.09480641e+07 3.13151563e+07 3.05718782e+07 3.06269554e+07 2.91506522e+07 2.65744090e+07 3.05242683e+07 3.03598312e+07 3.06314579e+07 3.18810617e+07 3.01052744e+07 3.06771751e+07 3.02162181e+07 2.94442013e+07 3.12377296e+07 3.03432241e+07 8.98113615e+06 3.02098219e+07 2.99284594e+07 2.98286704e+07 1.77421497e+07 3.03714454e+07 3.03626577e+07 3.08654788e+07 3.03529314e+07 2.92987933e+07 3.01136963e+07 3.11401780e+07 3.04651579e+07 9.35725793e+06 3.04337093e+07 1.40493902e+07 9.18374283e+06 6.36990224e+06] [ 3.56275557e+06 2.07622076e+06 3.20883710e+06 3.43776198e+06 3.34665122e+06 3.50375514e+06 3.55012274e+06 2.66971895e+06 2.44601905e+06 3.60353698e+06 3.40269873e+06 3.53381842e+06 3.45781142e+06 3.34145526e+06 3.57720150e+06 3.55301251e+06 2.66979335e+06 3.54912893e+06 3.33037882e+06 -2.92948871e+05 3.44606917e+06 2.66580129e+06 2.66723282e+06 5.93624758e+05 2.72157686e+06 3.39122901e+06 3.58765008e+06 3.40534898e+06 2.54354007e+06 3.56312366e+06 3.56151316e+06 3.39434340e+06 -2.15048668e+05 3.41302217e+06 2.19147583e+05 -2.58565398e+05 -6.69340879e+05] [ 1.36710970e+06 9.45651179e+05 1.33695886e+06 1.39241796e+06 1.32753350e+06 1.45039198e+06 1.35581099e+06 1.20025000e+06 1.10703256e+06 1.47524970e+06 1.46801330e+06 1.47720279e+06 1.49835746e+06 1.44746589e+06 1.48836672e+06 1.39377646e+06 1.24444564e+06 1.34798334e+06 1.45432516e+06 1.97549002e+05 1.41828191e+06 1.22239016e+06 1.21172871e+06 5.44618997e+05 1.26255146e+06 1.47285052e+06 1.46819781e+06 1.45612773e+06 1.20235667e+06 1.36780964e+06 1.35003916e+06 1.46162119e+06 2.13381314e+05 1.45779498e+06 3.86760015e+05 2.03228674e+05 7.73023950e+04] [ 9.60102035e+03 1.04519115e+04 1.07396862e+04 9.75106784e+03 1.12640879e+04 1.02373240e+04 9.76567149e+03 1.29854331e+04 1.19779817e+04 9.87081179e+03 1.03126941e+04 1.00842879e+04 1.09195275e+04 1.06059529e+04 1.00917657e+04 9.85653746e+03 1.31091260e+04 9.55608384e+03 1.05807884e+04 1.41354634e+04 1.04656255e+04 1.29915593e+04 1.30119901e+04 1.32899841e+04 1.30337496e+04 1.05905183e+04 1.01244595e+04 1.05055505e+04 1.29057024e+04 1.03051056e+04 9.60754558e+03 1.04258991e+04 1.41067196e+04 1.02082804e+04 1.33828441e+04 1.40850076e+04 1.46486639e+04] [-4.85209560e-01 -8.08232131e-01 5.52852049e-01 8.49726174e-01 -9.95792725e-01 -3.88200613e-01 -8.62892618e-01 5.07231926e-01 2.58206552e-01 -2.11359654e-01 3.10095722e-01 -9.11776915e-01 -3.39512218e-01 -5.89102423e-01 -5.80963726e-01 3.54146639e-01 -5.87174439e-01 4.81147863e-01 -6.13572507e-01 -4.85236372e-01 -8.64968313e-01 -9.20439047e-01 7.38312040e-01 7.17130254e-01 1.27010376e-01 4.75316208e-01 -7.12836013e-01 1.19664247e-01 2.25454426e-01 2.05910815e-01 7.55976954e-02 -8.40075577e-01 3.17085603e-01 3.61673821e-03 8.85278934e-01 -6.75221668e-01 3.54402199e-01] [-1.16592620e+05 -9.90102534e+04 -1.33932321e+05 -1.22190957e+05 -1.57986413e+05 -1.39277833e+05 -1.09948447e+05 -1.61465122e+05 -1.43691017e+05 -1.22314583e+05 -1.35214902e+05 -1.35463876e+05 -1.49554555e+05 -1.34510319e+05 -1.32736924e+05 -1.26718004e+05 -1.71111467e+05 -1.06433178e+05 -1.35449046e+05 -4.65377814e+04 -1.34024506e+05 -1.68378312e+05 -1.63322078e+05 -1.04048918e+05 -1.92679268e+05 -1.37332193e+05 -1.40196247e+05 -1.34143117e+05 -1.64435854e+05 -1.27834515e+05 -1.06775096e+05 -1.34983858e+05 -4.63270712e+04 -1.35269021e+05 -7.24118312e+04 -4.70915639e+04 -2.51081087e+04] [-1.71343693e+06 -1.58550663e+06 -1.77119858e+06 -1.76002402e+06 -1.94451274e+06 -1.79870726e+06 -1.66164167e+06 -2.16553482e+06 -1.93934717e+06 -1.74870489e+06 -1.82992673e+06 -1.80328645e+06 -1.98221377e+06 -1.81838291e+06 -1.79576842e+06 -1.71568466e+06 -2.23242333e+06 -1.67469051e+06 -1.82635185e+06 -1.52123122e+06 -1.77950774e+06 -2.22953830e+06 -2.20738850e+06 -1.93593461e+06 -2.33050727e+06 -1.83902705e+06 -1.80967357e+06 -1.80971789e+06 -2.21103872e+06 -1.68862277e+06 -1.67901238e+06 -1.82149207e+06 -1.52792982e+06 -1.81364176e+06 -1.71798884e+06 -1.52859211e+06 -1.38165098e+06] [-4.28817255e+06 -3.40659660e+06 -4.26901895e+06 -4.26090290e+06 -5.11403769e+06 -4.19618070e+06 -3.99755090e+06 -5.42156260e+06 -4.70263742e+06 -3.86314913e+06 -4.16311168e+06 -4.12748571e+06 -4.78766684e+06 -4.17481918e+06 -4.07166791e+06 -4.04580682e+06 -5.60506050e+06 -4.10098778e+06 -4.20750975e+06 -1.77376209e+06 -4.12671978e+06 -5.73654767e+06 -5.71311580e+06 -3.88465880e+06 -6.14749167e+06 -4.19852553e+06 -4.23225276e+06 -4.12965773e+06 -5.65845689e+06 -4.06233277e+06 -4.09035995e+06 -4.19660991e+06 -1.81165124e+06 -4.17699833e+06 -2.82290184e+06 -1.83423120e+06 -1.17882615e+06] [ 3.31310799e+07 2.51818294e+07 3.08591074e+07 3.27774305e+07 3.14511655e+07 3.24956163e+07 3.19707259e+07 2.98450582e+07 2.79895820e+07 3.22746602e+07 3.24887919e+07 3.23673831e+07 3.35228486e+07 3.18648889e+07 3.22799218e+07 3.16988724e+07 3.06658505e+07 3.26730771e+07 3.25872003e+07 9.91389817e+06 3.16856435e+07 3.03499522e+07 3.01807717e+07 1.94877867e+07 3.08940139e+07 3.26093977e+07 3.26482781e+07 3.23315251e+07 2.99335427e+07 3.09929489e+07 3.26170035e+07 3.25353053e+07 1.02505634e+07 3.23642619e+07 1.55635244e+07 1.00715862e+07 6.97097385e+06] [ 1.37233424e+08 1.11952195e+08 1.30877312e+08 1.36407232e+08 1.37853496e+08 1.34985959e+08 1.32838966e+08 1.36125698e+08 1.26269489e+08 1.33612716e+08 1.34975600e+08 1.34784509e+08 1.41501349e+08 1.33192178e+08 1.34350557e+08 1.32614156e+08 1.38998144e+08 1.35320492e+08 1.35416013e+08 6.22829648e+07 1.32336956e+08 1.39211779e+08 1.38473913e+08 9.84321957e+07 1.42032160e+08 1.35297621e+08 1.35695905e+08 1.34470583e+08 1.37627703e+08 1.31715431e+08 1.34970673e+08 1.35339196e+08 6.31034421e+07 1.35010234e+08 8.25997032e+07 6.26449326e+07 5.27269360e+07] [ 2.35748253e+08 1.95480670e+08 2.25855253e+08 2.33856917e+08 2.38060797e+08 2.30636802e+08 2.29405444e+08 2.37876375e+08 2.19240120e+08 2.28756809e+08 2.30034234e+08 2.30230291e+08 2.42224265e+08 2.27964676e+08 2.29739540e+08 2.29221129e+08 2.41509758e+08 2.33002751e+08 2.30847855e+08 1.21341812e+08 2.27347007e+08 2.42350212e+08 2.41729910e+08 1.78605937e+08 2.47438757e+08 2.30353361e+08 2.32062181e+08 2.29663885e+08 2.40058523e+08 2.27819629e+08 2.32291518e+08 2.30838983e+08 1.22776702e+08 2.30241808e+08 1.54059942e+08 1.22043992e+08 1.06595065e+08] [ 3.20834127e+08 2.63565020e+08 3.09600573e+08 3.18635682e+08 3.23861862e+08 3.14135039e+08 3.13000000e+08 3.24228454e+08 2.95142685e+08 3.10640785e+08 3.14463194e+08 3.14387947e+08 3.32619821e+08 3.12983400e+08 3.13538308e+08 3.10995111e+08 3.27588580e+08 3.17415511e+08 3.15323968e+08 1.67089082e+08 3.10450931e+08 3.30265287e+08 3.29695688e+08 2.46070469e+08 3.38042526e+08 3.15037468e+08 3.16235639e+08 3.14065246e+08 3.28161500e+08 3.08078090e+08 3.16338550e+08 3.15319302e+08 1.69308177e+08 3.14470652e+08 2.12449393e+08 1.68192678e+08 1.46830352e+08] [ 3.32813932e+08 2.63383084e+08 3.22443698e+08 3.30677985e+08 3.36296511e+08 3.26994463e+08 3.23975788e+08 3.30837619e+08 2.96899588e+08 3.20759087e+08 3.28028217e+08 3.27222441e+08 3.48389921e+08 3.26994004e+08 3.26061676e+08 3.20335367e+08 3.34161103e+08 3.28389771e+08 3.28776450e+08 1.45760986e+08 3.22794656e+08 3.38629529e+08 3.37427089e+08 2.40250878e+08 3.48428298e+08 3.29049233e+08 3.29344614e+08 3.27379664e+08 3.36538025e+08 3.17236554e+08 3.27080016e+08 3.28719085e+08 1.48550402e+08 3.27786266e+08 1.99663701e+08 1.47232982e+08 1.21756099e+08] [ 2.42024528e+08 1.69786571e+08 2.34421015e+08 2.39732632e+08 2.45207778e+08 2.38761617e+08 2.32509275e+08 2.27402242e+08 1.98701787e+08 2.29212477e+08 2.39412307e+08 2.38507511e+08 2.56314155e+08 2.38644526e+08 2.36893786e+08 2.29956175e+08 2.30313303e+08 2.36377898e+08 2.40016060e+08 3.84898494e+07 2.33885694e+08 2.35997589e+08 2.34226791e+08 1.34710183e+08 2.47959996e+08 2.40685374e+08 2.41158381e+08 2.38513621e+08 2.33129391e+08 2.27072101e+08 2.34898918e+08 2.39970605e+08 4.11436128e+07 2.39414044e+08 9.18705432e+07 4.01707625e+07 1.45762661e+07] [ 6.30984096e+07 -1.22960752e+05 6.03288367e+07 6.04290519e+07 6.55948258e+07 6.38697214e+07 5.43805283e+07 3.03759566e+07 1.56455906e+07 5.11946945e+07 6.24310040e+07 6.23641556e+07 7.02561667e+07 6.24193421e+07 6.02081644e+07 5.41917431e+07 3.25390782e+07 5.69308820e+07 6.31153438e+07 -1.31416715e+08 5.84756011e+07 3.81603678e+07 3.63361962e+07 -5.25057832e+07 5.12010234e+07 6.39708154e+07 6.56250645e+07 6.18207660e+07 3.49340549e+07 5.36210242e+07 5.54290356e+07 6.30041658e+07 -1.29768681e+08 6.31534089e+07 -9.01237521e+07 -1.29985952e+08 -1.50200124e+08] [-8.81937552e+07 -1.18324984e+08 -8.65933926e+07 -9.01253687e+07 -8.80263723e+07 -8.51929823e+07 -9.27852249e+07 -1.21120688e+08 -1.20341467e+08 -9.42341918e+07 -8.75830804e+07 -8.72688803e+07 -8.99354881e+07 -8.69916306e+07 -8.87468315e+07 -9.11522208e+07 -1.20810704e+08 -9.19220987e+07 -8.68335946e+07 -1.96114740e+08 -8.83169922e+07 -1.17397877e+08 -1.18732405e+08 -1.62251119e+08 -1.10160430e+08 -8.64980072e+07 -8.47406428e+07 -8.75551359e+07 -1.20116259e+08 -8.99589855e+07 -9.29279254e+07 -8.72001139e+07 -1.95824903e+08 -8.68954367e+07 -1.80112529e+08 -1.95482181e+08 -2.03592465e+08] [-1.31371464e+08 -1.32755727e+08 -1.27263441e+08 -1.32763797e+08 -1.30053291e+08 -1.28075805e+08 -1.32203929e+08 -1.48190604e+08 -1.42355591e+08 -1.32867249e+08 -1.30608415e+08 -1.30180844e+08 -1.36045994e+08 -1.29234164e+08 -1.30777894e+08 -1.30047063e+08 -1.49902424e+08 -1.32213932e+08 -1.29895174e+08 -1.50088614e+08 -1.28905699e+08 -1.48240363e+08 -1.48853957e+08 -1.52716870e+08 -1.46790947e+08 -1.29774839e+08 -1.28344163e+08 -1.29877198e+08 -1.49919671e+08 -1.27233518e+08 -1.32867496e+08 -1.30368798e+08 -1.50673787e+08 -1.30143478e+08 -1.53464932e+08 -1.50281962e+08 -1.47810527e+08] [-1.06209733e+08 -7.79076845e+07 -9.52398879e+07 -1.05480775e+08 -9.26946117e+07 -9.80046695e+07 -1.02719137e+08 -8.62220779e+07 -8.40818325e+07 -1.00475071e+08 -1.00012527e+08 -1.00607535e+08 -1.03876029e+08 -9.83968981e+07 -1.00119506e+08 -9.83929256e+07 -8.85986993e+07 -1.05084566e+08 -9.91252050e+07 -3.17029862e+07 -9.65597140e+07 -8.89981673e+07 -8.97017121e+07 -6.11587855e+07 -9.14250762e+07 -9.87373473e+07 -9.91524611e+07 -9.86587106e+07 -8.97191361e+07 -9.15761643e+07 -1.05131851e+08 -9.98612219e+07 -3.30420064e+07 -1.00154074e+08 -4.93106737e+07 -3.29183395e+07 -2.10521367e+07] [-1.31537005e+08 -7.56741529e+07 -1.09490646e+08 -1.27572937e+08 -1.02733649e+08 -1.12965554e+08 -1.21971764e+08 -8.36693381e+07 -8.02476315e+07 -1.14757418e+08 -1.15385777e+08 -1.16344330e+08 -1.21225858e+08 -1.13565503e+08 -1.14988452e+08 -1.12915080e+08 -8.54321743e+07 -1.30095083e+08 -1.14400493e+08 1.38416935e+07 -1.09694403e+08 -8.91059600e+07 -9.02823848e+07 -4.07110696e+07 -9.23520999e+07 -1.13298187e+08 -1.15384544e+08 -1.13536632e+08 -8.89622512e+07 -1.00581729e+08 -1.28991034e+08 -1.15279182e+08 1.18533352e+07 -1.15773258e+08 -1.74035146e+07 1.18676662e+07 3.12018950e+07] [-1.68463742e+08 -1.02081063e+08 -1.39786708e+08 -1.62034695e+08 -1.34038898e+08 -1.42352723e+08 -1.54945258e+08 -1.16357294e+08 -1.07821274e+08 -1.43822354e+08 -1.45279584e+08 -1.45702457e+08 -1.54827621e+08 -1.43553779e+08 -1.43963656e+08 -1.42464186e+08 -1.16774779e+08 -1.67836373e+08 -1.44432204e+08 -5.52743116e+06 -1.38295502e+08 -1.23318708e+08 -1.24947199e+08 -7.17701756e+07 -1.25060352e+08 -1.42908744e+08 -1.45476233e+08 -1.43250774e+08 -1.22587893e+08 -1.28115792e+08 -1.65742017e+08 -1.45222136e+08 -7.62040890e+06 -1.45675654e+08 -4.34936065e+07 -7.53240213e+06 1.39033528e+07] [-1.39719425e+08 -9.13862536e+07 -1.15763864e+08 -1.34283550e+08 -1.14384579e+08 -1.17771889e+08 -1.27722948e+08 -1.06177185e+08 -9.76116861e+07 -1.19528320e+08 -1.20154995e+08 -1.20336854e+08 -1.29275016e+08 -1.18615768e+08 -1.19009944e+08 -1.17964750e+08 -1.06189343e+08 -1.39870352e+08 -1.19169016e+08 -2.74739531e+07 -1.14411101e+08 -1.12055332e+08 -1.13211012e+08 -7.76867727e+07 -1.11400792e+08 -1.18063016e+08 -1.20439437e+08 -1.18338608e+08 -1.10786353e+08 -1.06755925e+08 -1.37984805e+08 -1.19897621e+08 -2.88104494e+07 -1.20454346e+08 -5.57144389e+07 -2.88013853e+07 -1.25615561e+07] [-4.07596845e+07 -3.39591952e+07 -3.06087117e+07 -3.80594461e+07 -3.53718600e+07 -3.13722900e+07 -3.51689021e+07 -4.07750780e+07 -3.88506664e+07 -3.20025986e+07 -3.07496378e+07 -3.17383575e+07 -3.60416893e+07 -3.05413214e+07 -3.08794937e+07 -3.25474901e+07 -4.15902916e+07 -4.15332411e+07 -2.99003817e+07 -3.62555766e+07 -2.97494771e+07 -4.30737493e+07 -4.37037060e+07 -4.43555598e+07 -4.17219141e+07 -2.97125168e+07 -3.25434311e+07 -2.99511272e+07 -4.22051418e+07 -2.88914147e+07 -4.08979373e+07 -3.05001101e+07 -3.62789323e+07 -3.14451317e+07 -3.97679067e+07 -3.65542866e+07 -3.19098992e+07] [ 6.34760456e+07 2.17238554e+07 5.54107272e+07 6.17506685e+07 4.68642111e+07 5.83619132e+07 6.04398519e+07 2.32409833e+07 1.97518169e+07 5.85381991e+07 5.90770111e+07 5.96148461e+07 5.86865608e+07 5.80681456e+07 5.96236333e+07 5.68975413e+07 2.22229110e+07 6.17456763e+07 5.91908808e+07 -5.96472866e+07 5.64551889e+07 2.47736306e+07 2.50970311e+07 -2.29107000e+07 2.77611199e+07 5.86735448e+07 5.92891622e+07 5.91873810e+07 2.42018504e+07 5.30306274e+07 6.09115876e+07 5.93551662e+07 -5.84978302e+07 5.91072600e+07 -3.77584225e+07 -5.91625671e+07 -6.76856425e+07] [ 1.23510645e+08 5.98397513e+07 1.07369922e+08 1.20162262e+08 1.00182282e+08 1.13495223e+08 1.15806447e+08 7.02130493e+07 6.28229667e+07 1.12208863e+08 1.13480196e+08 1.14356943e+08 1.17234435e+08 1.11695929e+08 1.13544641e+08 1.09550681e+08 7.11709060e+07 1.21212392e+08 1.13183012e+08 -6.05091978e+07 1.09033786e+08 7.48450084e+07 7.49367659e+07 1.34362962e+06 7.93231814e+07 1.12929227e+08 1.15105458e+08 1.12905673e+08 7.29938383e+07 1.02782112e+08 1.19888172e+08 1.13594610e+08 -5.85673357e+07 1.13897609e+08 -2.51491284e+07 -5.94635512e+07 -7.67656256e+07] [ 1.33984242e+08 7.67880477e+07 1.18327617e+08 1.31073718e+08 1.13736133e+08 1.25009899e+08 1.26205332e+08 8.92394734e+07 8.21594027e+07 1.24145926e+08 1.25101697e+08 1.25984612e+08 1.29558238e+08 1.22806111e+08 1.25010337e+08 1.21053686e+08 9.10435892e+07 1.31897876e+08 1.24395534e+08 -3.07996505e+07 1.20321259e+08 9.42063106e+07 9.39774082e+07 2.71494351e+07 9.78896958e+07 1.24353053e+08 1.26738586e+08 1.24144115e+08 9.18215061e+07 1.14403757e+08 1.30876074e+08 1.24980537e+08 -2.89609438e+07 1.25555480e+08 1.55613329e+06 -2.98873190e+07 -4.72534255e+07] [ 1.15344905e+08 6.77859425e+07 1.01592104e+08 1.12586458e+08 9.94329995e+07 1.07610654e+08 1.08666861e+08 8.04406010e+07 7.42490406e+07 1.07587610e+08 1.08194592e+08 1.08816602e+08 1.12189174e+08 1.06224420e+08 1.08169988e+08 1.04136146e+08 8.17358824e+07 1.13505641e+08 1.07482083e+08 -2.02844590e+07 1.03905853e+08 8.42310974e+07 8.43309402e+07 2.77273792e+07 8.68084253e+07 1.07584225e+08 1.09171024e+08 1.07236222e+08 8.22632354e+07 9.87250919e+07 1.12881417e+08 1.08068037e+08 -1.86560676e+07 1.08459944e+08 6.49726492e+06 -1.94430865e+07 -3.45084881e+07] [ 9.74510949e+07 6.25496091e+07 8.79430826e+07 9.53070934e+07 8.81543934e+07 9.25141202e+07 9.28788886e+07 7.66886283e+07 7.02106467e+07 9.26172084e+07 9.32460838e+07 9.35837923e+07 9.77386910e+07 9.24121827e+07 9.33272451e+07 8.91153536e+07 7.76586342e+07 9.63500081e+07 9.28658092e+07 1.10190126e+06 9.02837408e+07 7.91566891e+07 7.93302251e+07 3.65601249e+07 8.02690892e+07 9.31527531e+07 9.36907824e+07 9.27044702e+07 7.77662350e+07 8.56954867e+07 9.59748049e+07 9.32487399e+07 2.60257577e+06 9.33459041e+07 2.14692593e+07 1.98109015e+06 -1.00063263e+07] [ 6.68610267e+07 4.62092276e+07 6.12217246e+07 6.53449349e+07 6.32250009e+07 6.38591475e+07 6.44106922e+07 5.73594664e+07 5.22041422e+07 6.39216794e+07 6.40483929e+07 6.43856586e+07 6.76374215e+07 6.37854943e+07 6.44229249e+07 6.21567837e+07 5.77396026e+07 6.62638326e+07 6.39072443e+07 1.03274360e+07 6.27446440e+07 5.87453984e+07 5.88509610e+07 3.17782088e+07 5.89843196e+07 6.41584920e+07 6.46418149e+07 6.38832348e+07 5.79155613e+07 6.09097970e+07 6.60689425e+07 6.41397601e+07 1.13777436e+07 6.41126440e+07 2.30669427e+07 1.09740681e+07 3.67655526e+06] [ 2.88543202e+07 2.04514121e+07 2.65268176e+07 2.82346849e+07 2.79955223e+07 2.78505779e+07 2.81124836e+07 2.54205649e+07 2.32417687e+07 2.81169434e+07 2.77848281e+07 2.80452408e+07 2.90704531e+07 2.75049033e+07 2.81762198e+07 2.74578327e+07 2.55725474e+07 2.86210768e+07 2.76360998e+07 5.74245887e+06 2.74477257e+07 2.59689464e+07 2.58879825e+07 1.40121757e+07 2.59311988e+07 2.78059564e+07 2.81950126e+07 2.77012332e+07 2.53656845e+07 2.73730160e+07 2.85681171e+07 2.78019958e+07 6.18908062e+06 2.77954956e+07 1.06880076e+07 5.99916079e+06 3.22572114e+06] [ 5.71148794e+06 4.17658168e+06 5.46663394e+06 5.75018842e+06 5.50534019e+06 5.94185471e+06 5.82809740e+06 5.01797073e+06 4.60195109e+06 6.19806358e+06 6.06426778e+06 6.07296885e+06 6.09653517e+06 5.92475910e+06 6.17470569e+06 5.74172500e+06 5.05494506e+06 5.74464573e+06 5.92908632e+06 1.36785922e+06 5.88231913e+06 5.03240827e+06 4.98807261e+06 2.49490052e+06 4.87446248e+06 6.08278513e+06 6.02753303e+06 5.99025651e+06 4.91594541e+06 5.79414386e+06 5.78466522e+06 5.98882030e+06 1.48558216e+06 5.98181501e+06 2.07027615e+06 1.41875688e+06 8.59873909e+05] [ 1.93702687e+06 1.42649844e+06 1.88409849e+06 1.95591704e+06 1.92055545e+06 2.01000942e+06 1.93114194e+06 1.80223973e+06 1.65198026e+06 2.05525410e+06 2.04491390e+06 2.05679955e+06 2.10855474e+06 2.03128599e+06 2.06802975e+06 1.95254193e+06 1.83582453e+06 1.91844791e+06 2.03022615e+06 5.66230885e+05 1.97446173e+06 1.82268324e+06 1.81317865e+06 9.90583260e+05 1.83892439e+06 2.05745948e+06 2.03601712e+06 2.03361375e+06 1.80311340e+06 1.93966642e+06 1.92196991e+06 2.04017093e+06 5.88313611e+05 2.03614398e+06 8.10620673e+05 5.72526363e+05 4.25549843e+05] [ 9.51471970e+03 9.89578583e+03 7.56424168e+03 9.49110350e+03 7.16749641e+03 7.87443693e+03 9.35608010e+03 6.74933772e+03 7.42951806e+03 9.58765313e+03 7.76029532e+03 7.91456927e+03 7.23530002e+03 7.24590358e+03 7.93843187e+03 9.51793779e+03 6.11372774e+03 9.67007032e+03 7.42041276e+03 4.73900742e+03 7.51561709e+03 5.97278403e+03 6.28169716e+03 5.20374973e+03 3.87711949e+03 7.61106062e+03 8.52810127e+03 7.68983464e+03 5.42806041e+03 1.01495079e+04 9.82281718e+03 7.58222033e+03 4.62836301e+03 7.77836069e+03 4.38043748e+03 4.64033589e+03 4.72720002e+03] [-1.35807935e+04 -1.54854819e+04 -1.79177699e+04 -1.42588907e+04 -1.70640039e+04 -1.45946019e+04 -1.53341579e+04 -1.71802839e+04 -1.43288485e+04 -1.30257263e+04 -1.48562032e+04 -1.37643122e+04 -1.40443170e+04 -1.47662221e+04 -1.32182711e+04 -1.76672936e+04 -1.59054268e+04 -1.38652138e+04 -1.64996979e+04 -1.90400864e+04 -1.57853842e+04 -1.69808355e+04 -1.50357087e+04 -1.83467290e+04 -1.89736536e+04 -1.54592973e+04 -1.38302930e+04 -1.51819584e+04 -1.60814003e+04 -1.91418165e+04 -1.36206614e+04 -1.59583332e+04 -1.85857991e+04 -1.52527752e+04 -1.89292893e+04 -1.83860614e+04 -2.41249943e+04] [-2.53550247e+04 -2.29435146e+04 -2.88555802e+04 -2.67618356e+04 -3.32842444e+04 -2.98042561e+04 -2.38848212e+04 -3.55502938e+04 -3.18729465e+04 -2.66360492e+04 -2.93391096e+04 -2.90669388e+04 -3.22791621e+04 -2.89748593e+04 -2.85454811e+04 -2.72268034e+04 -3.79060293e+04 -2.36366053e+04 -2.92939386e+04 -1.55913946e+04 -2.87628914e+04 -3.72055943e+04 -3.62159674e+04 -2.68286488e+04 -4.17881615e+04 -2.96700462e+04 -2.99828091e+04 -2.89291298e+04 -3.65526031e+04 -2.70869403e+04 -2.37236383e+04 -2.91710877e+04 -1.54929494e+04 -2.91976462e+04 -2.04135801e+04 -1.56499033e+04 -1.15110150e+04] [-2.55524801e+06 -2.30074873e+06 -2.62219821e+06 -2.61665583e+06 -2.81943484e+06 -2.63886586e+06 -2.49182936e+06 -3.14929618e+06 -2.77928884e+06 -2.57757007e+06 -2.70507645e+06 -2.65537395e+06 -2.95082950e+06 -2.70836805e+06 -2.65001234e+06 -2.52182353e+06 -3.21590226e+06 -2.51325438e+06 -2.70182421e+06 -2.20639205e+06 -2.62574726e+06 -3.22604330e+06 -3.21123040e+06 -2.81789791e+06 -3.34263422e+06 -2.71990993e+06 -2.65657501e+06 -2.67758978e+06 -3.22534460e+06 -2.45945108e+06 -2.51687521e+06 -2.69294772e+06 -2.22112445e+06 -2.67485436e+06 -2.51318697e+06 -2.22201666e+06 -2.00676082e+06] [-8.95218045e+06 -7.93331827e+06 -9.07083686e+06 -8.83669418e+06 -1.08045128e+07 -8.72990391e+06 -8.54064077e+06 -1.19995090e+07 -1.04585256e+07 -8.11255953e+06 -8.57404268e+06 -8.53685829e+06 -9.82617428e+06 -8.65919896e+06 -8.45617969e+06 -8.73594540e+06 -1.23097464e+07 -8.61772749e+06 -8.69933418e+06 -6.88503130e+06 -8.77655584e+06 -1.24532871e+07 -1.24268352e+07 -9.99770751e+06 -1.32854462e+07 -8.63336733e+06 -8.76387203e+06 -8.56975081e+06 -1.23603184e+07 -8.86907457e+06 -8.56799184e+06 -8.67552723e+06 -6.91054905e+06 -8.61698478e+06 -8.43844155e+06 -6.94180305e+06 -6.19731641e+06] [ 2.56609163e+07 1.67631978e+07 2.26804338e+07 2.54804749e+07 2.16028913e+07 2.51966509e+07 2.44592771e+07 1.77429370e+07 1.76006847e+07 2.55637172e+07 2.53030385e+07 2.53034893e+07 2.51270047e+07 2.43792454e+07 2.52595791e+07 2.41139057e+07 1.86065192e+07 2.53559387e+07 2.52078150e+07 -2.62624441e+06 2.40193513e+07 1.81450253e+07 1.78822054e+07 6.50564204e+06 1.81229212e+07 2.53080254e+07 2.54364688e+07 2.50468664e+07 1.75442200e+07 2.30250277e+07 2.53588297e+07 2.52255256e+07 -2.25362478e+06 2.51708357e+07 2.69242295e+06 -2.45710439e+06 -5.75466406e+06] [ 1.12530432e+08 7.95318722e+07 1.02259367e+08 1.10296328e+08 1.06441061e+08 1.07203960e+08 1.07135591e+08 9.65830602e+07 9.01874363e+07 1.06608844e+08 1.06764477e+08 1.07604137e+08 1.11661186e+08 1.05062022e+08 1.07007016e+08 1.05748176e+08 9.85770902e+07 1.10645157e+08 1.06793688e+08 1.39566968e+07 1.03901154e+08 9.92343139e+07 9.92379558e+07 5.24816174e+07 1.01634581e+08 1.06640666e+08 1.08500886e+08 1.06210689e+08 9.74181801e+07 1.03645784e+08 1.10226008e+08 1.07102783e+08 1.49594678e+07 1.07215970e+08 3.55941807e+07 1.45394161e+07 2.90035636e+06] [ 1.98646210e+08 1.42384538e+08 1.81125933e+08 1.94520679e+08 1.88686086e+08 1.87455852e+08 1.89893596e+08 1.74720952e+08 1.61065753e+08 1.86796276e+08 1.86575333e+08 1.88101900e+08 1.96721380e+08 1.84276516e+08 1.87383609e+08 1.87241803e+08 1.77187924e+08 1.95680948e+08 1.86740903e+08 3.46833344e+07 1.83032748e+08 1.79047763e+08 1.79523473e+08 1.02044346e+08 1.84091329e+08 1.86044136e+08 1.89820452e+08 1.85807142e+08 1.76611229e+08 1.82799116e+08 1.94788024e+08 1.87301206e+08 3.66770800e+07 1.87296079e+08 7.30270251e+07 3.60589899e+07 1.54100522e+07] [ 2.58863367e+08 1.77123806e+08 2.36627373e+08 2.53884331e+08 2.43626043e+08 2.43958321e+08 2.47174839e+08 2.22165868e+08 2.00825797e+08 2.42076928e+08 2.44430618e+08 2.45992317e+08 2.59252701e+08 2.42459124e+08 2.44785597e+08 2.41659407e+08 2.24489339e+08 2.54996844e+08 2.44247331e+08 2.68170363e+07 2.38202579e+08 2.28737927e+08 2.29380321e+08 1.23010858e+08 2.36606479e+08 2.43743703e+08 2.47497178e+08 2.43184948e+08 2.26257797e+08 2.34271714e+08 2.53607237e+08 2.45017711e+08 2.98681154e+07 2.45049082e+08 8.13746222e+07 2.89550561e+07 -7.30631197e+05] [ 2.49659231e+08 1.49184942e+08 2.25448561e+08 2.43848754e+08 2.29357572e+08 2.33678817e+08 2.35885167e+08 1.95880243e+08 1.72282372e+08 2.29807961e+08 2.35192388e+08 2.36431843e+08 2.50470208e+08 2.33423598e+08 2.34895633e+08 2.28121440e+08 1.97323633e+08 2.44808949e+08 2.34475211e+08 -3.46529408e+07 2.26725624e+08 2.03957347e+08 2.04564555e+08 7.97404062e+07 2.13699096e+08 2.34570611e+08 2.37796959e+08 2.33424561e+08 2.01042754e+08 2.18474639e+08 2.43113610e+08 2.35434055e+08 -3.08566137e+07 2.35634029e+08 2.94477004e+07 -3.18723404e+07 -6.78862721e+07] [ 1.42466400e+08 3.93400641e+07 1.20955946e+08 1.36279275e+08 1.20191190e+08 1.29586399e+08 1.28009146e+08 7.14047224e+07 5.53729282e+07 1.22392681e+08 1.30160006e+08 1.31733076e+08 1.40679423e+08 1.28856837e+08 1.29585143e+08 1.21278181e+08 7.23995409e+07 1.36627382e+08 1.29247212e+08 -1.58886709e+08 1.21520855e+08 7.98828906e+07 8.00363692e+07 -4.60692238e+07 9.14741591e+07 1.29842140e+08 1.33662585e+08 1.28324731e+08 7.62235881e+07 1.11652591e+08 1.34707324e+08 1.30273724e+08 -1.55359362e+08 1.31118806e+08 -9.74266333e+07 -1.56076069e+08 -1.91329042e+08] [ 1.03620669e+07 -8.00187696e+07 -6.19637102e+06 4.09527092e+06 -1.09513762e+07 1.68741503e+06 -2.33030940e+06 -6.89260550e+07 -7.42880369e+07 -7.24871706e+06 2.78413379e+05 2.50630637e+06 4.00014288e+06 -3.22722895e+05 2.28276233e+05 -6.87110707e+06 -6.86775926e+07 4.71927764e+06 -5.86923781e+05 -2.63482925e+08 -6.13663831e+06 -6.17525746e+07 -6.17205521e+07 -1.71456957e+08 -5.03957178e+07 2.02967694e+05 4.98240271e+06 -1.07770655e+06 -6.55723531e+07 -1.41699023e+07 2.93877887e+06 3.61671702e+05 -2.60695913e+08 1.69160938e+06 -2.15177760e+08 -2.60974756e+08 -2.90428151e+08] [-6.32457537e+07 -1.19735957e+08 -7.38180301e+07 -6.82494176e+07 -7.93225811e+07 -6.80687207e+07 -7.13467750e+07 -1.24734788e+08 -1.22578985e+08 -7.43749434e+07 -7.04928317e+07 -6.83481854e+07 -7.18581409e+07 -7.05006592e+07 -6.99203404e+07 -7.35998867e+07 -1.26075046e+08 -6.67540566e+07 -7.12188364e+07 -2.40278769e+08 -7.37043122e+07 -1.21267765e+08 -1.21005240e+08 -1.88877462e+08 -1.15105245e+08 -7.05234647e+07 -6.60529102e+07 -7.11343574e+07 -1.24557210e+08 -7.75130786e+07 -6.78790800e+07 -7.05470075e+07 -2.38709424e+08 -6.92453627e+07 -2.14543931e+08 -2.38853632e+08 -2.56108629e+08] [-5.55059634e+07 -7.74761915e+07 -6.00137758e+07 -5.87552941e+07 -6.13117095e+07 -5.68800614e+07 -5.83000810e+07 -8.20942839e+07 -8.07102368e+07 -5.94501768e+07 -5.93735056e+07 -5.76489321e+07 -6.09368099e+07 -5.90238528e+07 -5.79816403e+07 -5.84542557e+07 -8.47551804e+07 -5.65049410e+07 -6.00138020e+07 -1.24685221e+08 -5.95223243e+07 -8.22705823e+07 -8.18780138e+07 -1.09634157e+08 -8.13373647e+07 -5.92751889e+07 -5.57765717e+07 -5.92350233e+07 -8.46926317e+07 -5.81857753e+07 -5.70451215e+07 -5.94863677e+07 -1.24102521e+08 -5.86073767e+07 -1.18060390e+08 -1.24428975e+08 -1.29472671e+08] [-2.94547688e+07 -1.48414648e+07 -2.27950562e+07 -2.95904009e+07 -1.61423923e+07 -2.22718538e+07 -2.64069823e+07 -8.89561099e+06 -1.20667204e+07 -2.34796624e+07 -2.44409126e+07 -2.38911418e+07 -2.42933834e+07 -2.36653930e+07 -2.30504164e+07 -2.26005579e+07 -1.14007901e+07 -2.89543151e+07 -2.46006270e+07 1.04147425e+07 -2.21419850e+07 -1.19941698e+07 -1.20152105e+07 -5.01371007e+06 -1.39823495e+07 -2.34093528e+07 -2.24805333e+07 -2.34217834e+07 -1.32305333e+07 -1.62558489e+07 -2.86284443e+07 -2.44624613e+07 1.00537523e+07 -2.42893684e+07 7.16585202e+05 9.51334751e+06 1.55874686e+07] [-5.74861413e+07 -1.85288339e+07 -4.00398197e+07 -5.43626457e+07 -2.98274292e+07 -4.03796847e+07 -4.95725037e+07 -1.25540843e+07 -1.38129046e+07 -4.23250662e+07 -4.28155646e+07 -4.28776761e+07 -4.43821252e+07 -4.18503148e+07 -4.16126581e+07 -4.13249866e+07 -1.35228870e+07 -5.72245188e+07 -4.26577392e+07 4.08014549e+07 -3.89932181e+07 -1.72023397e+07 -1.81003676e+07 6.58066826e+06 -1.86924034e+07 -4.09353940e+07 -4.18248272e+07 -4.14991108e+07 -1.75273473e+07 -3.06077866e+07 -5.59283303e+07 -4.28364061e+07 3.97982452e+07 -4.28807824e+07 2.04379036e+07 3.93691889e+07 5.07142855e+07] [-9.17401943e+07 -5.77049605e+07 -7.31774693e+07 -8.76839203e+07 -6.67743682e+07 -7.24537196e+07 -8.32404112e+07 -5.96546190e+07 -5.59728362e+07 -7.51494363e+07 -7.51515694e+07 -7.47365032e+07 -7.96026762e+07 -7.41948130e+07 -7.37106594e+07 -7.44151735e+07 -5.91328995e+07 -9.26420396e+07 -7.50294104e+07 -1.81346545e+07 -7.14225092e+07 -6.38903951e+07 -6.50064768e+07 -4.83607848e+07 -6.24506702e+07 -7.33028258e+07 -7.40391468e+07 -7.39917889e+07 -6.37196107e+07 -6.45375369e+07 -9.09907931e+07 -7.52298815e+07 -1.88439923e+07 -7.51323092e+07 -3.65559380e+07 -1.90744757e+07 -1.07545091e+07] [-5.72357017e+07 -4.98101815e+07 -4.72847047e+07 -5.50256175e+07 -4.68436736e+07 -4.62484305e+07 -5.24265669e+07 -5.32505839e+07 -5.05587809e+07 -4.84399967e+07 -4.74313587e+07 -4.72956867e+07 -5.14569825e+07 -4.70909927e+07 -4.66635513e+07 -4.79523317e+07 -5.30987376e+07 -5.87215644e+07 -4.71014528e+07 -5.82368482e+07 -4.58990897e+07 -5.53742272e+07 -5.59429135e+07 -6.32307148e+07 -5.25388532e+07 -4.63011464e+07 -4.71469645e+07 -4.67896125e+07 -5.53978276e+07 -4.28321699e+07 -5.78456225e+07 -4.73539860e+07 -5.80566172e+07 -4.76081733e+07 -6.13391826e+07 -5.82708342e+07 -5.69926100e+07] [ 1.68318798e+07 -1.45140471e+07 1.16065671e+07 1.56589959e+07 5.02927373e+06 1.42826255e+07 1.52517623e+07 -1.69818816e+07 -1.74689282e+07 1.42922071e+07 1.47898082e+07 1.52098173e+07 1.26250899e+07 1.36673159e+07 1.54454575e+07 1.34471104e+07 -1.82926177e+07 1.50636584e+07 1.47336546e+07 -8.63286481e+07 1.28567305e+07 -1.65362802e+07 -1.62031413e+07 -5.65987877e+07 -1.36714883e+07 1.44874568e+07 1.49619876e+07 1.46730570e+07 -1.73401302e+07 1.13457944e+07 1.46955210e+07 1.48859715e+07 -8.51091299e+07 1.46588701e+07 -6.88625020e+07 -8.55856702e+07 -9.37794422e+07] [ 5.60957826e+07 -7.62887729e+06 3.81493847e+07 5.19304592e+07 2.56819522e+07 4.41811293e+07 4.91481862e+07 -1.22478045e+07 -1.28418130e+07 4.54780017e+07 4.47786750e+07 4.63894345e+07 4.36203227e+07 4.30218664e+07 4.60110820e+07 4.21854757e+07 -1.40021854e+07 5.43211103e+07 4.39170795e+07 -1.32141146e+08 4.02845289e+07 -9.88406180e+06 -8.77005924e+06 -7.81184140e+07 -7.06739565e+06 4.34618212e+07 4.61492039e+07 4.41643870e+07 -1.16881248e+07 3.43769824e+07 5.31458277e+07 4.46377743e+07 -1.30080071e+08 4.51421282e+07 -1.00746376e+08 -1.30807723e+08 -1.47311919e+08] [ 8.66956300e+07 1.91079183e+07 6.62963056e+07 8.22503090e+07 5.43612798e+07 7.42623879e+07 7.85819710e+07 1.71815219e+07 1.56086327e+07 7.53036767e+07 7.42058301e+07 7.60102005e+07 7.45731843e+07 7.22180077e+07 7.52325060e+07 7.10081679e+07 1.69317207e+07 8.51876813e+07 7.30784680e+07 -1.07996435e+08 6.92127613e+07 2.07291537e+07 2.14458484e+07 -5.14333063e+07 2.31717534e+07 7.29701032e+07 7.63597906e+07 7.33745520e+07 1.84412351e+07 6.19156672e+07 8.39876971e+07 7.38997721e+07 -1.05809073e+08 7.47465884e+07 -7.54009898e+07 -1.06733462e+08 -1.25111031e+08] [ 8.87364318e+07 3.32734406e+07 7.10899980e+07 8.48728962e+07 6.28628764e+07 7.81490234e+07 8.15786348e+07 3.36965384e+07 3.23196897e+07 7.98972604e+07 7.84005717e+07 8.01434372e+07 7.92170534e+07 7.63065831e+07 7.94806357e+07 7.61929560e+07 3.36405466e+07 8.73528243e+07 7.71743954e+07 -6.90711054e+07 7.38224845e+07 3.68338045e+07 3.73257823e+07 -2.30420034e+07 3.81976316e+07 7.71493058e+07 8.02155934e+07 7.75283295e+07 3.44699084e+07 6.83060251e+07 8.65458965e+07 7.80607179e+07 -6.73140900e+07 7.88878884e+07 -4.30358429e+07 -6.81492243e+07 -8.37243676e+07] [ 7.98442733e+07 3.31685499e+07 6.50881456e+07 7.58152354e+07 6.06090278e+07 7.06748357e+07 7.38966963e+07 3.80433397e+07 3.52964415e+07 7.17055333e+07 7.08191705e+07 7.22765259e+07 7.28320549e+07 6.96676833e+07 7.17627587e+07 6.88927190e+07 3.74188056e+07 7.86319675e+07 6.99819300e+07 -5.09563864e+07 6.73790848e+07 4.00751233e+07 4.09720229e+07 -1.13099295e+07 4.10120178e+07 7.01342402e+07 7.24816292e+07 7.02859063e+07 3.83594181e+07 6.30447012e+07 7.80825744e+07 7.07223472e+07 -4.92872888e+07 7.12631930e+07 -2.82034170e+07 -5.00339411e+07 -6.38044639e+07] [ 6.40733130e+07 3.31716385e+07 5.49373670e+07 6.15131711e+07 5.39553797e+07 5.87094902e+07 6.05100041e+07 4.09678607e+07 3.69497503e+07 5.93571051e+07 5.90005110e+07 5.97916937e+07 6.16169151e+07 5.85214017e+07 5.97253868e+07 5.70282547e+07 4.05845893e+07 6.33970523e+07 5.85656726e+07 -2.27482465e+07 5.69085825e+07 4.23218881e+07 4.28410469e+07 5.42569514e+06 4.23412499e+07 5.88557369e+07 5.99454708e+07 5.87483628e+07 4.10612233e+07 5.42201367e+07 6.30887983e+07 5.89838594e+07 -2.14036221e+07 5.91267558e+07 -6.26607225e+06 -2.19057447e+07 -3.15970328e+07] [ 4.87258677e+07 3.11017384e+07 4.39130384e+07 4.74511746e+07 4.52004841e+07 4.63429898e+07 4.68146785e+07 3.90501142e+07 3.52864359e+07 4.66885060e+07 4.66891451e+07 4.70607936e+07 4.91397978e+07 4.64383899e+07 4.71791279e+07 4.49902444e+07 3.90284202e+07 4.83311449e+07 4.63714229e+07 -1.01306831e+06 4.52947986e+07 4.00205627e+07 4.00529380e+07 1.67254945e+07 3.97706437e+07 4.67728887e+07 4.71198662e+07 4.64915472e+07 3.92277234e+07 4.41688626e+07 4.81796954e+07 4.66283645e+07 -1.52158224e+05 4.66531801e+07 9.45860544e+06 -4.83374132e+05 -6.30526157e+06] [ 2.29384073e+07 1.53345665e+07 2.09700066e+07 2.24654934e+07 2.19806182e+07 2.22174473e+07 2.24174131e+07 1.93908437e+07 1.75432772e+07 2.26005246e+07 2.23253183e+07 2.25806086e+07 2.33076076e+07 2.21026143e+07 2.27496750e+07 2.18444477e+07 1.92954470e+07 2.27915833e+07 2.20837110e+07 1.50937055e+06 2.18252735e+07 1.97050350e+07 1.96448374e+07 8.75588160e+06 1.94463586e+07 2.23569779e+07 2.26032219e+07 2.22340685e+07 1.91757710e+07 2.17956869e+07 2.27440202e+07 2.22667136e+07 1.90638432e+06 2.22712913e+07 5.80207120e+06 1.73469766e+06 -6.00259570e+05] [ 5.41103159e+06 4.23131390e+06 5.16957571e+06 5.43237284e+06 5.28351263e+06 5.49855879e+06 5.50412547e+06 4.96923341e+06 4.55276478e+06 5.73706659e+06 5.59777795e+06 5.61332655e+06 5.69048613e+06 5.49214732e+06 5.70885127e+06 5.41462364e+06 4.92550329e+06 5.45933528e+06 5.47217532e+06 1.86099890e+06 5.46755558e+06 4.93779009e+06 4.90653016e+06 2.93068452e+06 4.71969315e+06 5.60717843e+06 5.58303718e+06 5.54411280e+06 4.84112509e+06 5.49096798e+06 5.48773642e+06 5.52742915e+06 1.96692444e+06 5.52094050e+06 2.54327320e+06 1.90926390e+06 1.43588466e+06] [ 7.59852603e+05 6.29178793e+05 7.27263775e+05 7.58546142e+05 7.56616076e+05 7.56235492e+05 7.69353060e+05 7.64325962e+05 6.99771103e+05 7.80213098e+05 7.70854287e+05 7.67051087e+05 7.92367437e+05 7.59319691e+05 7.81416401e+05 7.52528777e+05 7.58324396e+05 7.66385628e+05 7.60878924e+05 4.29659815e+05 7.59867416e+05 7.55898724e+05 7.55522958e+05 5.48143480e+05 7.34740809e+05 7.72844097e+05 7.63428322e+05 7.64771394e+05 7.47976458e+05 7.58800582e+05 7.68012052e+05 7.66516406e+05 4.44070845e+05 7.60629456e+05 5.10279976e+05 4.36205430e+05 3.92613840e+05] [ 1.69065331e+05 1.70233420e+05 1.68210190e+05 1.68916367e+05 1.81508833e+05 1.68957371e+05 1.68600433e+05 2.05868222e+05 1.91145878e+05 1.68981667e+05 1.68680220e+05 1.68625776e+05 1.80562070e+05 1.68418306e+05 1.69071005e+05 1.68081438e+05 2.05644582e+05 1.69694228e+05 1.68559163e+05 2.04847534e+05 1.68738563e+05 2.06519418e+05 2.06029848e+05 2.05672037e+05 2.05147899e+05 1.68651830e+05 1.69453392e+05 1.68779057e+05 2.05116870e+05 1.67999848e+05 1.69075848e+05 1.68722812e+05 2.05166856e+05 1.68702187e+05 2.05208416e+05 2.04625260e+05 2.05458244e+05] [ 2.80746004e-01 -8.23296262e-01 -8.82971756e-01 -8.85678458e-01 7.07379165e-01 7.91484076e-01 6.09129792e-01 -1.05003579e-01 -7.12339970e-02 -8.33793067e-01 4.19745306e-01 8.33851740e-01 -7.19487192e-01 7.47115350e-01 8.98243068e-01 7.35228871e-01 1.12100448e-02 -7.07439123e-01 6.12707859e-01 3.80269759e-01 -9.56585496e-01 -1.69386138e-01 5.47072498e-01 -2.74886729e-01 -1.65900907e-01 -6.71487938e-01 2.16686354e-01 -2.60502378e-01 -6.65566887e-01 -3.51873972e-01 -2.78622080e-01 -1.57850077e-01 7.70498212e-01 5.83574284e-01 -1.15525581e-01 7.46202613e-01 -6.86121807e-01] [-9.51311691e-01 3.64684922e-01 -4.82002300e-01 -1.88882701e-02 1.47111824e-01 8.11934865e-01 6.10397403e-01 3.88620817e-01 4.61068641e-01 -2.40220853e-01 -8.21676046e-02 -6.68288668e-02 7.36443727e-02 -6.26832907e-01 3.18072482e-01 1.16750552e-01 5.95894616e-01 -9.65596132e-02 1.01216860e-01 6.09484544e-01 2.68074953e-01 9.23419719e-01 2.02583467e-01 -5.90981941e-01 -4.23572113e-01 4.16483483e-01 2.06145360e-01 -8.10828086e-01 -4.34639649e-01 5.68535692e-01 -5.27279745e-01 2.63233461e-01 7.68749342e-01 9.90293203e-01 2.74052244e-01 -9.32735742e-01 -3.43136359e-01] [-3.21563246e+06 -2.92162819e+06 -3.29213095e+06 -3.27741958e+06 -3.52489000e+06 -3.29444809e+06 -3.15397472e+06 -3.93523351e+06 -3.47523499e+06 -3.19616544e+06 -3.36261434e+06 -3.30162026e+06 -3.67091043e+06 -3.36521262e+06 -3.29229958e+06 -3.16022176e+06 -4.00685947e+06 -3.17843644e+06 -3.36204879e+06 -2.77601003e+06 -3.28064918e+06 -4.01797413e+06 -4.00072232e+06 -3.54067684e+06 -4.15097644e+06 -3.38501399e+06 -3.31282550e+06 -3.33197056e+06 -4.03418223e+06 -3.11200305e+06 -3.17839348e+06 -3.35100928e+06 -2.80171593e+06 -3.32945614e+06 -3.17076734e+06 -2.79888099e+06 -2.53765608e+06] [-1.23151270e+07 -1.17107848e+07 -1.26629910e+07 -1.22521119e+07 -1.50247498e+07 -1.21730178e+07 -1.18949956e+07 -1.71959462e+07 -1.50475012e+07 -1.13317134e+07 -1.19746183e+07 -1.18727264e+07 -1.36824397e+07 -1.20972534e+07 -1.17744896e+07 -1.21309505e+07 -1.76467495e+07 -1.19210128e+07 -1.21702595e+07 -1.18761203e+07 -1.23081464e+07 -1.77253772e+07 -1.76592156e+07 -1.54821949e+07 -1.88739344e+07 -1.20681790e+07 -1.21732453e+07 -1.19789711e+07 -1.77069554e+07 -1.24300991e+07 -1.18628155e+07 -1.21157268e+07 -1.19157812e+07 -1.20117475e+07 -1.36786159e+07 -1.19536030e+07 -1.10918229e+07] [ 9.83329942e+06 1.36345844e+06 6.20244273e+06 9.48707368e+06 2.65732489e+06 8.67323770e+06 8.99220029e+06 -3.38015206e+06 -1.42645804e+06 1.01122661e+07 8.97623172e+06 9.26543379e+06 7.34206968e+06 8.22825341e+06 9.34926550e+06 8.05387156e+06 -3.30176984e+06 1.00027695e+07 8.70549308e+06 -1.75780105e+07 7.67250743e+06 -3.59020798e+06 -3.57629958e+06 -1.22270702e+07 -4.85341641e+06 8.78096830e+06 9.00558075e+06 8.82430682e+06 -4.07589918e+06 6.63191843e+06 1.00207103e+07 8.81365411e+06 -1.72545518e+07 8.87396774e+06 -1.41405752e+07 -1.74297022e+07 -1.97516840e+07] [ 6.93608627e+07 3.57095460e+07 5.76596285e+07 6.68587688e+07 5.67236784e+07 6.28544048e+07 6.41789667e+07 4.10351666e+07 3.95065697e+07 6.35942535e+07 6.26214607e+07 6.38843500e+07 6.40780856e+07 6.09148896e+07 6.34294505e+07 6.21366149e+07 4.21125798e+07 6.80432871e+07 6.23087081e+07 -3.27439153e+07 5.95437056e+07 4.29398410e+07 4.33833529e+07 3.61325263e+05 4.41455433e+07 6.20862390e+07 6.43147472e+07 6.20599440e+07 4.13075873e+07 5.87804492e+07 6.76070938e+07 6.27723064e+07 -3.18106507e+07 6.30740003e+07 -1.41604603e+07 -3.21137502e+07 -4.25285872e+07] [ 1.35030067e+08 7.11421628e+07 1.13006812e+08 1.29813565e+08 1.13021670e+08 1.20175098e+08 1.25109376e+08 8.71730504e+07 8.07427038e+07 1.21034124e+08 1.19825270e+08 1.22031813e+08 1.25559654e+08 1.17490438e+08 1.21235176e+08 1.20422476e+08 8.84478370e+07 1.32476779e+08 1.19398999e+08 -5.27128172e+07 1.15160044e+08 9.10200250e+07 9.23396995e+07 1.33971932e+07 9.51690458e+07 1.18545637e+08 1.23036980e+08 1.18733871e+08 8.88136590e+07 1.13155864e+08 1.31456546e+08 1.20261378e+08 -5.06036366e+07 1.20654566e+08 -1.52495089e+07 -5.10220683e+07 -7.26634304e+07] [ 1.75497642e+08 7.97325128e+07 1.44518501e+08 1.68117391e+08 1.41629681e+08 1.53463173e+08 1.61074090e+08 1.02090948e+08 9.12911867e+07 1.53566637e+08 1.54379052e+08 1.57243547e+08 1.63782554e+08 1.52260999e+08 1.55634589e+08 1.52137853e+08 1.02536396e+08 1.72006214e+08 1.53330086e+08 -1.01196817e+08 1.46113735e+08 1.07981170e+08 1.09997832e+08 -2.23627744e+06 1.14264940e+08 1.52525210e+08 1.57970949e+08 1.52490761e+08 1.05643432e+08 1.40072527e+08 1.70403279e+08 1.54625275e+08 -9.78394147e+07 1.55495808e+08 -4.52216030e+07 -9.84079247e+07 -1.31695115e+08] [ 1.62781019e+08 4.59689910e+07 1.27963212e+08 1.54180979e+08 1.21935397e+08 1.38195080e+08 1.45899847e+08 6.83535720e+07 5.61897261e+07 1.37021888e+08 1.40167852e+08 1.43080009e+08 1.50031567e+08 1.38231657e+08 1.41086761e+08 1.34207842e+08 6.72495190e+07 1.58365353e+08 1.38489946e+08 -1.74735684e+08 1.29259128e+08 7.54664944e+07 7.76716250e+07 -5.55287984e+07 8.29497136e+07 1.38143650e+08 1.43556869e+08 1.37707724e+08 7.26040219e+07 1.19371652e+08 1.56399646e+08 1.40044592e+08 -1.70588567e+08 1.41239107e+08 -1.08080162e+08 -1.71208998e+08 -2.11934759e+08] [ 1.00050237e+08 -2.16309183e+07 6.69233761e+07 9.09522727e+07 5.88836007e+07 7.80449081e+07 8.23449477e+07 -5.31643807e+06 -1.42690204e+07 7.40512624e+07 7.90681435e+07 8.20426490e+07 8.62866710e+07 7.72997688e+07 7.97293681e+07 7.12295579e+07 -6.33658458e+06 9.47452770e+07 7.72722823e+07 -2.55310054e+08 6.81160367e+07 2.57665767e+06 4.30914074e+06 -1.34059895e+08 1.18742628e+07 7.75331710e+07 8.32102833e+07 7.65946285e+07 -1.15757999e+06 5.65010641e+07 9.26054741e+07 7.88483266e+07 -2.51083905e+08 8.04217475e+07 -1.88999273e+08 -2.51645663e+08 -2.92862799e+08] [ 2.46300387e+07 -7.73810623e+07 -1.81949237e+06 1.61610332e+07 -8.94405949e+06 8.45472895e+06 9.48185704e+06 -7.12413940e+07 -7.44996966e+07 2.75685277e+06 7.09444143e+06 1.02498792e+07 1.03746796e+07 5.60103797e+06 8.09622136e+06 1.66063965e+06 -7.26524600e+07 1.96846771e+07 5.40603481e+06 -2.78736437e+08 -8.28403126e+05 -6.48734736e+07 -6.35462764e+07 -1.80939709e+08 -5.60372947e+07 6.04587991e+06 1.25429308e+07 5.21920976e+06 -6.91967861e+07 -8.94719388e+06 1.77938180e+07 6.84423539e+06 -2.75371745e+08 8.72616639e+06 -2.26823130e+08 -2.75845555e+08 -3.09116374e+08] [ 6.83817906e+06 -6.25912237e+07 -1.11881445e+07 4.96882661e+04 -1.45671392e+07 -2.93952709e+06 -3.26432567e+06 -5.86469150e+07 -6.05562469e+07 -7.59159827e+06 -5.50339604e+06 -2.81054184e+06 -3.70479580e+06 -6.67600134e+06 -4.15999169e+06 -7.90100479e+06 -6.08274112e+07 3.52912867e+06 -6.93278525e+06 -1.99775926e+08 -1.00766506e+07 -5.52805173e+07 -5.42031368e+07 -1.36005267e+08 -4.99746612e+07 -6.00998538e+06 -1.17223131e+05 -6.51374894e+06 -5.91854189e+07 -1.34032032e+07 2.33578835e+06 -5.75912430e+06 -1.97451470e+08 -4.09180441e+06 -1.66830241e+08 -1.98119669e+08 -2.19619873e+08] [ 3.05202632e+07 -6.24401217e+04 2.35734849e+07 2.71007122e+07 2.68416413e+07 2.90923386e+07 2.70998001e+07 1.13003547e+07 5.52926497e+06 2.64649303e+07 2.67295097e+07 2.83073021e+07 2.97984522e+07 2.61341423e+07 2.81549092e+07 2.57770720e+07 8.82962895e+06 2.91508069e+07 2.56399661e+07 -5.95897278e+07 2.51722031e+07 1.15006331e+07 1.19600689e+07 -3.08015185e+07 1.26119227e+07 2.70068984e+07 3.05094492e+07 2.66151008e+07 8.68977217e+06 2.65245825e+07 2.88151252e+07 2.64605231e+07 -5.82879037e+07 2.74725980e+07 -4.52577940e+07 -5.92759928e+07 -6.79855061e+07] [ 4.03443085e+07 4.39702163e+07 4.55425303e+07 4.00674661e+07 5.66518431e+07 4.79499565e+07 4.27278254e+07 6.50843854e+07 5.55685434e+07 4.51662265e+07 4.54077606e+07 4.57024043e+07 4.99575837e+07 4.55306252e+07 4.63910462e+07 4.53767478e+07 6.35131690e+07 3.97736759e+07 4.49811584e+07 4.80794225e+07 4.69185495e+07 6.31442932e+07 6.28756451e+07 5.05616548e+07 6.31016886e+07 4.67571978e+07 4.78881732e+07 4.60486499e+07 6.14490302e+07 5.22695349e+07 4.02827269e+07 4.53628490e+07 4.85289169e+07 4.56309646e+07 4.84473029e+07 4.75143211e+07 4.79137866e+07] [ 8.12699312e+06 2.26328201e+07 1.89386263e+07 9.93700699e+06 3.02876633e+07 2.09414355e+07 1.31052514e+07 4.03387540e+07 3.38525516e+07 1.76915855e+07 1.85636626e+07 1.85265436e+07 2.10647142e+07 1.87819305e+07 1.94683976e+07 1.78480238e+07 4.01167658e+07 7.06524279e+06 1.83858676e+07 3.75220169e+07 2.07085724e+07 3.78574779e+07 3.70930937e+07 3.16914586e+07 3.89554352e+07 2.02515484e+07 2.01893873e+07 1.92629885e+07 3.69948674e+07 2.64382089e+07 8.09702056e+06 1.85623557e+07 3.77955965e+07 1.86233746e+07 3.31535360e+07 3.69737794e+07 3.89192431e+07] [-1.07160630e+07 -1.21352046e+07 -4.71444293e+06 -9.39070295e+06 -9.20617943e+05 -1.93763956e+06 -7.55357057e+06 -4.96566334e+06 -7.20682621e+06 -3.89576498e+06 -3.28107484e+06 -2.91032326e+06 -3.57542586e+06 -3.26057074e+06 -2.03506048e+06 -4.80708157e+06 -5.09101528e+06 -1.23909538e+07 -3.60201257e+06 -3.00521825e+07 -2.34700834e+06 -6.37007201e+06 -6.83545702e+06 -2.43431099e+07 -3.78616807e+06 -2.40905482e+06 -2.24693918e+06 -2.84619289e+06 -7.08718054e+06 -6.76150811e+05 -1.15843442e+07 -3.41265707e+06 -2.92185543e+07 -3.40686322e+06 -2.76329551e+07 -2.98353603e+07 -3.30169019e+07] [ 7.67519885e+06 -2.15730012e+07 3.58038853e+06 6.44542100e+06 -3.25687225e+05 6.30317869e+06 6.30336490e+06 -2.10206410e+07 -2.24643980e+07 5.37774556e+06 6.25525618e+06 6.77810294e+06 5.20086516e+06 5.54917046e+06 7.05401008e+06 4.70200090e+06 -2.22524871e+07 5.60452325e+06 5.99802685e+06 -9.00782982e+07 5.04571792e+06 -2.04538279e+07 -2.01162977e+07 -5.99932509e+07 -1.71296534e+07 6.08066968e+06 6.98137426e+06 6.16981035e+06 -2.15089998e+07 3.43517833e+06 5.45589127e+06 6.27438803e+06 -8.85623890e+07 6.17592511e+06 -7.31103095e+07 -8.90830181e+07 -9.88273016e+07] [ 2.14379468e+07 -3.18484069e+07 7.57463103e+06 1.85851038e+07 -3.62884440e+06 1.23121066e+07 1.59959915e+07 -3.87613998e+07 -3.79939220e+07 1.34042147e+07 1.30506439e+07 1.38507456e+07 1.02142932e+07 1.10713753e+07 1.37812531e+07 1.07851144e+07 -3.97367428e+07 1.94678432e+07 1.25094312e+07 -1.43865083e+08 9.85451254e+06 -3.63197543e+07 -3.57656959e+07 -9.50498174e+07 -3.27093027e+07 1.19310399e+07 1.36562878e+07 1.23998998e+07 -3.82523975e+07 4.48088042e+06 1.85882602e+07 1.29756362e+07 -1.41872528e+08 1.30304761e+07 -1.15823414e+08 -1.42436430e+08 -1.57543799e+08] [ 2.65092492e+07 -3.88973139e+07 6.55205901e+06 2.22208768e+07 -1.03341592e+07 1.36864476e+07 1.90293477e+07 -5.24702011e+07 -4.92725617e+07 1.61015752e+07 1.45269496e+07 1.62603127e+07 1.08391908e+07 1.26688346e+07 1.57722259e+07 1.09139291e+07 -5.37253891e+07 2.54140748e+07 1.33459465e+07 -1.65454429e+08 9.74850132e+06 -4.98865880e+07 -4.88483129e+07 -1.14696809e+08 -4.80195598e+07 1.29058562e+07 1.56477315e+07 1.36931233e+07 -5.18872890e+07 7.15075144e+05 2.42491631e+07 1.41098615e+07 -1.63242397e+08 1.47797116e+07 -1.36054074e+08 -1.63899455e+08 -1.81347855e+08] [ 3.95787989e+07 -2.14557552e+07 1.89423759e+07 3.47827932e+07 4.60625816e+06 2.69561556e+07 3.21779244e+07 -3.41040470e+07 -3.01994661e+07 2.98622582e+07 2.69065557e+07 2.92100254e+07 2.36749959e+07 2.49498687e+07 2.85900232e+07 2.53148148e+07 -3.50266600e+07 3.86468185e+07 2.55863404e+07 -1.35350796e+08 2.23458861e+07 -3.17444659e+07 -3.07383736e+07 -9.27416779e+07 -3.09630442e+07 2.54098263e+07 2.91102566e+07 2.61490964e+07 -3.40623946e+07 1.54797395e+07 3.77247289e+07 2.64987082e+07 -1.33493398e+08 2.74565158e+07 -1.10605355e+08 -1.34212773e+08 -1.49509170e+08] [ 5.56428679e+07 2.94050127e+06 3.81603547e+07 5.13541367e+07 2.83592899e+07 4.52154699e+07 4.91303626e+07 -2.50460321e+06 -1.05087058e+06 4.76453734e+07 4.53703598e+07 4.75593293e+07 4.43601675e+07 4.39827231e+07 4.69702375e+07 4.37402677e+07 -3.11171354e+06 5.46864060e+07 4.41931821e+07 -9.30426812e+07 4.11538849e+07 -4.15124989e+05 5.11474367e+05 -5.48355261e+07 4.05590872e+04 4.42951031e+07 4.73630003e+07 4.47889162e+07 -2.30666863e+06 3.57796706e+07 5.40201243e+07 4.50916151e+07 -9.15012980e+07 4.59400706e+07 -7.11082461e+07 -9.22015777e+07 -1.05846840e+08] [ 5.65634888e+07 1.48287969e+07 4.31893268e+07 5.27276776e+07 3.80525035e+07 4.80972018e+07 5.17568302e+07 1.65040764e+07 1.50369428e+07 4.98029815e+07 4.84624140e+07 4.98949468e+07 4.94440512e+07 4.78459374e+07 4.96460732e+07 4.68808490e+07 1.52476117e+07 5.58276412e+07 4.76955333e+07 -5.97897074e+07 4.54438897e+07 1.75997000e+07 1.88081291e+07 -2.74454355e+07 1.73811105e+07 4.79538912e+07 4.98753893e+07 4.81088434e+07 1.62409299e+07 4.17651610e+07 5.54209316e+07 4.83409125e+07 -5.82704655e+07 4.87605377e+07 -4.08655538e+07 -5.88598401e+07 -7.05022630e+07] [ 4.18736698e+07 1.61297003e+07 3.39748714e+07 3.94741332e+07 3.26940831e+07 3.70573739e+07 3.91526417e+07 2.05391903e+07 1.80985220e+07 3.80692324e+07 3.73571372e+07 3.82506377e+07 3.89024531e+07 3.71779532e+07 3.82911719e+07 3.61529698e+07 1.96600481e+07 4.15300674e+07 3.69192585e+07 -3.09340421e+07 3.56599230e+07 2.12102287e+07 2.18146712e+07 -9.18070875e+06 2.05732755e+07 3.72473011e+07 3.82259549e+07 3.72377691e+07 2.03015504e+07 3.39478586e+07 4.13084866e+07 3.73023378e+07 -2.98321753e+07 3.74521511e+07 -1.80157526e+07 -3.02077926e+07 -3.78543712e+07] [ 3.08613949e+07 1.75266593e+07 2.69037136e+07 2.96745355e+07 2.75023968e+07 2.87207789e+07 2.96331002e+07 2.20604927e+07 1.99692226e+07 2.94441456e+07 2.88804635e+07 2.94835853e+07 3.02938258e+07 2.87630894e+07 2.96394487e+07 2.83868506e+07 2.15092471e+07 3.06179474e+07 2.85781620e+07 -6.49726499e+06 2.80284223e+07 2.22715538e+07 2.25024344e+07 5.10163174e+06 2.15775804e+07 2.88469054e+07 2.94308480e+07 2.88236053e+07 2.16338872e+07 2.77868796e+07 3.04710551e+07 2.88396846e+07 -5.91976496e+06 2.89169799e+07 4.15562029e+05 -6.13506627e+06 -9.81837488e+06] [ 1.62330360e+07 1.08249126e+07 1.47894845e+07 1.58297757e+07 1.53224884e+07 1.57803998e+07 1.59809243e+07 1.32156392e+07 1.22008523e+07 1.61650378e+07 1.57490848e+07 1.60646534e+07 1.63207850e+07 1.56029975e+07 1.62018546e+07 1.56541393e+07 1.29950247e+07 1.61479965e+07 1.55380602e+07 9.40880128e+05 1.54636406e+07 1.32796105e+07 1.32281164e+07 5.47673203e+06 1.30856143e+07 1.57585997e+07 1.61013449e+07 1.57284013e+07 1.28518969e+07 1.55858954e+07 1.61340869e+07 1.56914310e+07 1.20652260e+06 1.57300319e+07 3.65816906e+06 1.07769264e+06 -4.32355323e+05] [ 4.55445140e+06 3.29136744e+06 4.29015237e+06 4.51288938e+06 4.38268144e+06 4.55459561e+06 4.53458325e+06 3.96631000e+06 3.64766638e+06 4.69651370e+06 4.58545471e+06 4.65451998e+06 4.71639011e+06 4.53582604e+06 4.70340327e+06 4.50905622e+06 3.94284611e+06 4.54351921e+06 4.50881298e+06 9.57997737e+05 4.49688886e+06 3.95464921e+06 3.94227330e+06 2.07062155e+06 3.86740939e+06 4.58247409e+06 4.63311976e+06 4.57264353e+06 3.88361130e+06 4.50246440e+06 4.54222694e+06 4.55247271e+06 1.03077500e+06 4.55686571e+06 1.61876647e+06 9.88650027e+05 6.03905529e+05] [ 3.55790451e+05 2.39103287e+05 3.40619832e+05 3.66666391e+05 3.04778605e+05 3.70935419e+05 3.61000109e+05 2.73223964e+05 2.53233022e+05 3.93570861e+05 3.90274823e+05 3.86207693e+05 3.83923261e+05 3.76377286e+05 3.94082068e+05 3.60882091e+05 2.86204208e+05 3.58284723e+05 3.80849879e+05 5.94664782e+04 3.71000265e+05 2.77262453e+05 2.75113752e+05 1.49985942e+05 2.78033066e+05 3.86783328e+05 3.75259172e+05 3.81051916e+05 2.73740565e+05 3.46374897e+05 3.59052622e+05 3.84722438e+05 6.82632844e+04 3.81959108e+05 1.14881887e+05 6.38322115e+04 2.78131763e+04] [ 1.05240961e+05 1.05870105e+05 1.05471017e+05 1.05111418e+05 1.14356671e+05 1.05793715e+05 1.05045206e+05 1.30472857e+05 1.20582798e+05 1.05227903e+05 1.05752394e+05 1.05592749e+05 1.13655575e+05 1.05738110e+05 1.05855700e+05 1.04634652e+05 1.30496388e+05 1.05637735e+05 1.05736606e+05 1.30430713e+05 1.05823825e+05 1.31115539e+05 1.30728342e+05 1.30810081e+05 1.30879430e+05 1.05780096e+05 1.05945459e+05 1.05788593e+05 1.30383065e+05 1.04325780e+05 1.05178182e+05 1.05799211e+05 1.30659599e+05 1.05700395e+05 1.30759436e+05 1.30359371e+05 1.30942382e+05] [ 3.31058224e-01 5.73766250e-02 -2.26615739e-02 5.14494794e-01 -4.22176305e-01 -9.88714356e-01 -6.07729543e-02 1.06228013e-01 6.15703827e-01 6.06506231e-01 -9.88676028e-01 -6.37063115e-01 6.77159504e-01 4.67509353e-02 6.30476806e-03 -5.53776681e-01 4.42073478e-01 -7.32650281e-01 2.50699493e-01 9.41391801e-01 1.73408468e-01 -1.36034168e-01 5.85663552e-01 -8.74389845e-01 -4.95270922e-01 -9.27505559e-01 8.33654102e-01 5.66413362e-01 9.72283246e-01 9.36368201e-01 -8.78799937e-01 -4.60913709e-01 -2.32374920e-01 -9.67185065e-01 -4.78375771e-01 -6.44631957e-01 9.50776239e-01] [-3.65526669e+04 -3.29157658e+04 -4.16150007e+04 -4.19042464e+04 -4.43620824e+04 -4.37729047e+04 -3.36727302e+04 -4.86511089e+04 -4.62507524e+04 -4.18394915e+04 -4.79550116e+04 -4.53161714e+04 -5.05566717e+04 -4.57653182e+04 -4.48556004e+04 -3.75328906e+04 -5.65837556e+04 -3.43836690e+04 -4.74145846e+04 -2.47453496e+04 -4.23096104e+04 -5.36861199e+04 -5.10520688e+04 -4.51487209e+04 -6.13601134e+04 -4.82464320e+04 -4.36779528e+04 -4.60751237e+04 -5.32000465e+04 -3.61372460e+04 -3.44240367e+04 -4.70070083e+04 -2.46204365e+04 -4.67807384e+04 -3.32530152e+04 -2.48113136e+04 -1.76526622e+04] [-3.40203134e+06 -3.25093166e+06 -3.52552323e+06 -3.48653860e+06 -3.88568197e+06 -3.50795278e+06 -3.34030065e+06 -4.41244364e+06 -3.91463290e+06 -3.38746603e+06 -3.57666980e+06 -3.49297710e+06 -3.91515361e+06 -3.56140661e+06 -3.49256550e+06 -3.37412957e+06 -4.54108106e+06 -3.34627337e+06 -3.58872244e+06 -3.28287303e+06 -3.51737758e+06 -4.52996868e+06 -4.48843210e+06 -4.12526221e+06 -4.73116183e+06 -3.60195986e+06 -3.50988553e+06 -3.54350004e+06 -4.54807710e+06 -3.38997336e+06 -3.34997796e+06 -3.56889711e+06 -3.31400788e+06 -3.53531200e+06 -3.71520719e+06 -3.31338957e+06 -3.02012504e+06] [-1.31441806e+07 -1.31692826e+07 -1.37299226e+07 -1.32296722e+07 -1.60981483e+07 -1.31774105e+07 -1.28309516e+07 -1.88474376e+07 -1.65460252e+07 -1.24135625e+07 -1.31230008e+07 -1.28922587e+07 -1.48643036e+07 -1.32174097e+07 -1.28185320e+07 -1.30892561e+07 -1.93299207e+07 -1.27821208e+07 -1.33224039e+07 -1.47775789e+07 -1.33887927e+07 -1.93519942e+07 -1.92499100e+07 -1.80119345e+07 -2.04593076e+07 -1.32286189e+07 -1.31429481e+07 -1.30928768e+07 -1.93812808e+07 -1.33896316e+07 -1.27502298e+07 -1.32365407e+07 -1.48199220e+07 -1.30957248e+07 -1.63712559e+07 -1.48571680e+07 -1.40361169e+07] [-2.58808831e+06 -9.97504631e+06 -6.56801504e+06 -3.27479893e+06 -1.12553679e+07 -4.52117767e+06 -3.03557102e+06 -1.83446137e+07 -1.50290931e+07 -2.49544418e+06 -4.32017773e+06 -3.77753576e+06 -6.92375104e+06 -4.91565438e+06 -3.56779707e+06 -4.34485743e+06 -1.89442615e+07 -2.12289275e+06 -4.68179161e+06 -2.63604783e+07 -5.19627143e+06 -1.89782260e+07 -1.87059247e+07 -2.47670911e+07 -2.09753347e+07 -4.66992071e+06 -4.17521626e+06 -4.34419165e+06 -1.94239437e+07 -5.81655328e+06 -2.12712216e+06 -4.47415212e+06 -2.61027984e+07 -4.34221490e+06 -2.48523190e+07 -2.62678357e+07 -2.73443329e+07] [ 2.26378283e+07 -7.07494337e+06 1.09658527e+07 2.00334382e+07 5.38284475e+06 1.57771736e+07 1.85890363e+07 -1.37336382e+07 -1.04662886e+07 1.80114863e+07 1.57306570e+07 1.72623949e+07 1.34867260e+07 1.42425240e+07 1.71301516e+07 1.58550134e+07 -1.36097679e+07 2.21892218e+07 1.51790887e+07 -6.78722649e+07 1.31186988e+07 -1.29134758e+07 -1.22020977e+07 -4.56798974e+07 -1.33165449e+07 1.49434311e+07 1.71204403e+07 1.53895017e+07 -1.42336638e+07 1.19960815e+07 2.18053251e+07 1.57150762e+07 -6.70947501e+07 1.61028898e+07 -5.51369561e+07 -6.73485922e+07 -7.48098229e+07] [ 6.01797342e+07 -1.95075246e+06 3.65231498e+07 5.43530748e+07 2.91560854e+07 4.36393769e+07 5.08384179e+07 -5.25085407e+06 -3.46150708e+06 4.60886697e+07 4.33978000e+07 4.63567049e+07 4.36788011e+07 4.14100786e+07 4.55779865e+07 4.49717292e+07 -5.57619232e+06 5.84428802e+07 4.25729198e+07 -1.24016346e+08 3.86047335e+07 -2.77661206e+06 -8.26166201e+05 -7.05128948e+07 -7.17743036e+05 4.16207866e+07 4.65698375e+07 4.24331841e+07 -4.58837122e+06 3.64178518e+07 5.73942322e+07 4.36227877e+07 -1.22226827e+08 4.44273520e+07 -9.36031198e+07 -1.22467207e+08 -1.40798329e+08] [ 8.34265704e+07 -1.40119430e+07 4.86845114e+07 7.48571368e+07 3.63584448e+07 5.78977599e+07 6.84993336e+07 -1.51467537e+07 -1.53667300e+07 5.99185648e+07 5.90812023e+07 6.26547443e+07 6.20652915e+07 5.72511414e+07 6.10067488e+07 5.77061584e+07 -1.60596945e+07 8.07478686e+07 5.77789272e+07 -1.99985251e+08 5.03184853e+07 -1.04223020e+07 -7.50297849e+06 -1.11712495e+08 -5.93242584e+06 5.65798930e+07 6.25367586e+07 5.72324261e+07 -1.22816123e+07 4.28785035e+07 7.90888237e+07 5.91566314e+07 -1.96845740e+08 6.03361220e+07 -1.49949245e+08 -1.97072697e+08 -2.28755543e+08] [ 9.04020596e+07 -3.22022989e+07 4.95832358e+07 8.02638696e+07 3.50830593e+07 6.07204435e+07 7.18381102e+07 -3.05130028e+07 -3.28305307e+07 6.17323959e+07 6.29354446e+07 6.68678500e+07 6.74796644e+07 6.08984279e+07 6.45542466e+07 5.82757330e+07 -3.21524020e+07 8.67235452e+07 6.09958041e+07 -2.65816821e+08 5.09493504e+07 -2.39204239e+07 -2.07867785e+07 -1.51898227e+08 -1.79942735e+07 6.00471743e+07 6.65567729e+07 6.03109819e+07 -2.64487492e+07 4.00184188e+07 8.45363023e+07 6.27004715e+07 -2.61912918e+08 6.43483228e+07 -2.02142527e+08 -2.62152675e+08 -3.02737569e+08] [ 8.87094961e+07 -4.38220281e+07 4.66910147e+07 7.72837920e+07 3.42213801e+07 5.84863566e+07 6.81906689e+07 -3.64938158e+07 -4.09111219e+07 5.72602000e+07 5.97816838e+07 6.36789202e+07 6.55337851e+07 5.77431007e+07 6.12108169e+07 5.43844139e+07 -3.83221827e+07 8.40428530e+07 5.79286139e+07 -2.95197749e+08 4.77644055e+07 -2.89469773e+07 -2.57827062e+07 -1.69330768e+08 -2.09034039e+07 5.72802690e+07 6.44141726e+07 5.71702080e+07 -3.24862019e+07 3.58600382e+07 8.16058679e+07 5.96973642e+07 -2.90892727e+08 6.14255887e+07 -2.25614220e+08 -2.91194787e+08 -3.35271032e+08] [ 6.82273777e+07 -4.45055876e+07 3.26120908e+07 5.75756196e+07 2.49726899e+07 4.35268732e+07 5.04509127e+07 -3.65258718e+07 -4.06851025e+07 4.06426112e+07 4.26289818e+07 4.62854118e+07 4.76741732e+07 4.05202656e+07 4.40786796e+07 3.92253240e+07 -3.86013133e+07 6.38518700e+07 4.08467214e+07 -2.59125675e+08 3.36033300e+07 -3.02535670e+07 -2.77549874e+07 -1.51931237e+08 -2.29952371e+07 4.07905661e+07 4.82712852e+07 4.05240491e+07 -3.43737760e+07 2.54339906e+07 6.17465933e+07 4.25221909e+07 -2.55359726e+08 4.44612759e+07 -2.01070141e+08 -2.55918836e+08 -2.92863245e+08] [ 8.08951386e+07 -1.85165068e+06 5.62355083e+07 7.27977593e+07 5.59932697e+07 6.60400155e+07 6.81354299e+07 1.38110276e+07 7.17341380e+06 6.19621645e+07 6.35822007e+07 6.65680671e+07 6.94318650e+07 6.15502527e+07 6.48939310e+07 6.11321799e+07 1.22358469e+07 7.71572642e+07 6.20243921e+07 -1.58460566e+08 5.74034320e+07 1.82293610e+07 1.98006292e+07 -7.79189996e+07 2.41446217e+07 6.28155035e+07 6.94597522e+07 6.22106774e+07 1.40285397e+07 5.41594115e+07 7.58202032e+07 6.34600917e+07 -1.55644373e+08 6.53398150e+07 -1.15874253e+08 -1.56609847e+08 -1.83118143e+08] [ 9.30423987e+07 4.87340019e+07 8.23594877e+07 8.87421914e+07 8.93725090e+07 8.92151356e+07 8.74818114e+07 7.24406866e+07 6.18548192e+07 8.50244326e+07 8.62339070e+07 8.78360173e+07 9.31447375e+07 8.47899619e+07 8.72242274e+07 8.47399390e+07 7.13971813e+07 9.04915953e+07 8.52455917e+07 -3.75718439e+07 8.37384534e+07 7.44934656e+07 7.49915228e+07 1.20502954e+07 7.83636466e+07 8.65958891e+07 9.08685511e+07 8.57847960e+07 7.14050235e+07 8.54115694e+07 9.00846148e+07 8.62367218e+07 -3.56224257e+07 8.74101489e+07 -1.16082573e+07 -3.68832683e+07 -5.16800052e+07] [ 7.56932086e+07 5.92203368e+07 7.46656762e+07 7.41680920e+07 8.51967755e+07 7.86898833e+07 7.51887232e+07 8.37679797e+07 7.28064333e+07 7.49903584e+07 7.57073390e+07 7.63328534e+07 8.21084013e+07 7.50595088e+07 7.65205420e+07 7.53184124e+07 8.29543279e+07 7.38744904e+07 7.51795741e+07 2.22346371e+07 7.62033364e+07 8.41092401e+07 8.38601063e+07 4.79656258e+07 8.63236536e+07 7.65619260e+07 7.90522887e+07 7.58605829e+07 8.19601121e+07 8.00995810e+07 7.40116375e+07 7.58321742e+07 2.34891668e+07 7.63572893e+07 3.55649106e+07 2.23131043e+07 1.53753723e+07] [ 4.45160883e+07 2.52621232e+07 4.34878260e+07 4.36539920e+07 4.94249906e+07 4.72556873e+07 4.39672905e+07 4.25351225e+07 3.52549717e+07 4.45190751e+07 4.56399861e+07 4.62250540e+07 4.95590476e+07 4.51737243e+07 4.65709482e+07 4.39046003e+07 4.19789024e+07 4.22333621e+07 4.50849070e+07 -1.90903894e+07 4.54120342e+07 4.30989655e+07 4.28525930e+07 6.50052196e+06 4.59230244e+07 4.61245868e+07 4.77568668e+07 4.56961041e+07 4.13577565e+07 4.62963848e+07 4.23677637e+07 4.56924821e+07 -1.77890305e+07 4.59943482e+07 -5.91722958e+06 -1.87434592e+07 -2.66674149e+07] [ 1.99960074e+07 -1.67143072e+07 1.23691268e+07 1.78769007e+07 9.80728518e+06 1.66364289e+07 1.65370089e+07 -1.20786020e+07 -1.43449584e+07 1.52825706e+07 1.58654164e+07 1.69394675e+07 1.65498517e+07 1.50982531e+07 1.71389541e+07 1.38906641e+07 -1.27789625e+07 1.74510595e+07 1.52113987e+07 -9.39369267e+07 1.44707219e+07 -1.03929393e+07 -1.01429351e+07 -5.72978743e+07 -6.33291206e+06 1.54087444e+07 1.76652939e+07 1.56924835e+07 -1.21029678e+07 1.12033628e+07 1.71214267e+07 1.58491435e+07 -9.22523041e+07 1.61369163e+07 -7.41429958e+07 -9.29353605e+07 -1.05149751e+08] [ 9.76012952e+06 -3.77884898e+07 -2.52089293e+06 7.27098236e+06 -1.28476459e+07 1.62603740e+06 4.43479875e+06 -4.42881888e+07 -4.31825465e+07 1.91287340e+06 2.29069745e+06 2.70060502e+06 -9.24275227e+04 5.64482755e+05 2.61935227e+06 -8.17139408e+05 -4.48985819e+07 7.75176267e+06 1.76912665e+06 -1.37582779e+08 -4.39214171e+05 -4.15527654e+07 -4.11512379e+07 -9.26858281e+07 -3.79127706e+07 1.24221824e+06 2.63102305e+06 1.56865833e+06 -4.32685105e+07 -7.02302088e+06 7.01744996e+06 2.16732649e+06 -1.35668572e+08 2.19372217e+06 -1.12359889e+08 -1.36143743e+08 -1.50744963e+08] [-1.07668124e+07 -6.58695631e+07 -2.69929874e+07 -1.39668162e+07 -4.33233996e+07 -2.18662098e+07 -1.74505282e+07 -8.36985661e+07 -7.80332513e+07 -2.02471582e+07 -2.11313869e+07 -2.03759312e+07 -2.65972556e+07 -2.32310766e+07 -2.07212424e+07 -2.41004840e+07 -8.41415640e+07 -1.21122372e+07 -2.16808249e+07 -1.81048722e+08 -2.44459711e+07 -8.06873259e+07 -8.01818166e+07 -1.34746039e+08 -7.78217357e+07 -2.26073552e+07 -2.07632889e+07 -2.19853688e+07 -8.26586067e+07 -3.30813772e+07 -1.30793380e+07 -2.13199073e+07 -1.79194899e+08 -2.11175113e+07 -1.54441395e+08 -1.79509751e+08 -1.94929627e+08] [-1.83729592e+07 -7.19768733e+07 -3.68481446e+07 -2.27976417e+07 -5.40272675e+07 -3.06190896e+07 -2.52772866e+07 -9.51127079e+07 -8.65185738e+07 -2.81273555e+07 -3.06132086e+07 -2.86989464e+07 -3.69765222e+07 -3.23661122e+07 -2.93876738e+07 -3.19358802e+07 -9.62802447e+07 -1.90889532e+07 -3.15458474e+07 -1.78975520e+08 -3.43202680e+07 -9.31829100e+07 -9.20752443e+07 -1.42933720e+08 -9.24084683e+07 -3.22464619e+07 -2.90894382e+07 -3.13732829e+07 -9.49291350e+07 -4.14926119e+07 -2.00305321e+07 -3.09106384e+07 -1.77543116e+08 -3.00773219e+07 -1.57990664e+08 -1.77855985e+08 -1.90870169e+08] [ 2.61049882e+06 -4.75936821e+07 -1.50060670e+07 -1.59356807e+06 -2.87429793e+07 -7.90629778e+06 -3.75453629e+06 -6.54130928e+07 -5.81610997e+07 -5.43620182e+06 -8.32045241e+06 -5.88821239e+06 -1.30585403e+07 -9.89300823e+06 -6.68165037e+06 -8.86625550e+06 -6.56853585e+07 1.87703714e+06 -9.46830136e+06 -1.44778824e+08 -1.21978722e+07 -6.34338785e+07 -6.26188898e+07 -1.12893880e+08 -6.30590406e+07 -9.59775738e+06 -6.03938704e+06 -9.04364973e+06 -6.52388894e+07 -1.74777478e+07 1.09618596e+06 -8.65041864e+06 -1.43662223e+08 -7.52494714e+06 -1.26589629e+08 -1.44054680e+08 -1.55421439e+08] [ 2.99742380e+07 -1.33251405e+07 1.57609005e+07 2.64031356e+07 7.05895631e+06 2.16613520e+07 2.50613247e+07 -2.02144950e+07 -1.77736453e+07 2.39241486e+07 2.18225893e+07 2.37786917e+07 2.01389725e+07 2.08574073e+07 2.33647559e+07 2.07175064e+07 -2.06811722e+07 2.93414307e+07 2.08498537e+07 -9.39896505e+07 1.83488356e+07 -1.87480190e+07 -1.78141463e+07 -6.43078477e+07 -1.88315781e+07 2.10433090e+07 2.35275846e+07 2.13232904e+07 -2.01625258e+07 1.46252929e+07 2.88437878e+07 2.16049463e+07 -9.28159483e+07 2.23464787e+07 -7.68685438e+07 -9.32852614e+07 -1.03793287e+08] [ 3.19852868e+07 2.20312100e+06 2.22122391e+07 2.91880256e+07 1.82014927e+07 2.58835925e+07 2.89813983e+07 1.22660582e+06 1.07108472e+06 2.77602010e+07 2.61816844e+07 2.75211951e+07 2.61094365e+07 2.58034219e+07 2.74599569e+07 2.57549758e+07 1.09476377e+05 3.16499886e+07 2.55758139e+07 -5.34321618e+07 2.40739856e+07 1.69351270e+06 2.55115670e+06 -3.16282312e+07 7.75738430e+05 2.58167660e+07 2.72841514e+07 2.59949101e+07 6.85487315e+05 2.24904651e+07 3.13469369e+07 2.60894096e+07 -5.23770485e+07 2.64141956e+07 -4.04122933e+07 -5.27592991e+07 -6.05579674e+07] [ 2.26703259e+07 5.79448973e+06 1.72291086e+07 2.10606111e+07 1.60682254e+07 1.94838150e+07 2.10553486e+07 7.31042458e+06 6.41071721e+06 2.07307675e+07 1.97443859e+07 2.06295962e+07 2.02416984e+07 1.96073565e+07 2.07095251e+07 1.94242297e+07 6.47290454e+06 2.24993613e+07 1.93494954e+07 -2.53316564e+07 1.85327819e+07 7.38733657e+06 7.82379189e+06 -1.27601750e+07 6.57689450e+06 1.95974211e+07 2.04552062e+07 1.96626313e+07 6.74904318e+06 1.80483164e+07 2.23339147e+07 1.96670899e+07 -2.47119689e+07 1.98513339e+07 -1.78692874e+07 -2.49102646e+07 -2.93711302e+07] [ 1.45873237e+07 6.08097053e+06 1.21490471e+07 1.40095596e+07 1.22427786e+07 1.35413691e+07 1.38627736e+07 7.98691242e+06 7.27836648e+06 1.40489711e+07 1.36984151e+07 1.40976981e+07 1.42103187e+07 1.35586805e+07 1.41636881e+07 1.32441515e+07 7.75232550e+06 1.43995960e+07 1.34693581e+07 -1.05908354e+07 1.29100890e+07 8.11143920e+06 8.23586432e+06 -3.44030865e+06 7.77867223e+06 1.36993173e+07 1.40754113e+07 1.35971766e+07 7.70280504e+06 1.28924462e+07 1.43302641e+07 1.36285797e+07 -1.02816149e+07 1.37239095e+07 -6.48375031e+06 -1.03882240e+07 -1.26899556e+07] [ 7.44966258e+06 4.17789134e+06 6.79432003e+06 7.28836956e+06 7.14945634e+06 7.42606694e+06 7.31398154e+06 5.32349032e+06 4.93419430e+06 7.54699919e+06 7.40601043e+06 7.59496983e+06 7.63772791e+06 7.31410288e+06 7.64181393e+06 7.29585993e+06 5.31097937e+06 7.34649586e+06 7.28872336e+06 -2.41698708e+06 7.15936763e+06 5.47374187e+06 5.35575261e+06 3.81436558e+05 5.50618860e+06 7.43527852e+06 7.62878564e+06 7.38508814e+06 5.19296361e+06 7.35918772e+06 7.33474525e+06 7.36706213e+06 -2.29981416e+06 7.40986402e+06 -8.50473774e+05 -2.36918063e+06 -3.17869168e+06] [ 2.70191578e+06 1.83134573e+06 2.51536430e+06 2.64208524e+06 2.62678391e+06 2.68238945e+06 2.65919443e+06 2.24116775e+06 2.07309437e+06 2.74054564e+06 2.64599601e+06 2.73411092e+06 2.74329571e+06 2.64572947e+06 2.74341815e+06 2.69193781e+06 2.22319326e+06 2.67307125e+06 2.61713330e+06 2.26064527e+05 2.61472263e+06 2.23050386e+06 2.22745711e+06 8.85432622e+05 2.23552534e+06 2.64920324e+06 2.74338662e+06 2.66312111e+06 2.18322131e+06 2.70147239e+06 2.66310437e+06 2.64146093e+06 2.56407824e+05 2.65871171e+06 6.14618696e+05 2.30570751e+05 3.11907582e+04] [ 6.83680279e+05 6.50168150e+05 6.51342625e+05 6.88845819e+05 6.68553847e+05 6.76525141e+05 6.76911279e+05 7.10845212e+05 6.82324328e+05 6.94434602e+05 6.75177422e+05 6.80301619e+05 6.98101522e+05 6.59369258e+05 6.79942363e+05 6.84589251e+05 7.14503833e+05 6.82891809e+05 6.67550260e+05 5.89875306e+05 6.63031866e+05 7.09123825e+05 7.08950987e+05 6.44251193e+05 7.01140740e+05 6.68286461e+05 6.82681643e+05 6.67704016e+05 7.01574774e+05 6.80350369e+05 6.84117984e+05 6.71301207e+05 5.91724584e+05 6.76053300e+05 6.18425793e+05 5.88666389e+05 5.66148316e+05] [-2.24806508e+04 -2.26456211e+04 -2.09169896e+04 -2.21611972e+04 -2.13130007e+04 -2.07294234e+04 -2.31086463e+04 -2.26958187e+04 -2.10843235e+04 -2.16828752e+04 -2.11459836e+04 -2.04200226e+04 -2.03199685e+04 -2.01707083e+04 -2.16566442e+04 -2.13375616e+04 -2.20951462e+04 -2.33445365e+04 -2.06527109e+04 -2.03649129e+04 -2.19297114e+04 -2.20989649e+04 -2.20159517e+04 -2.16031513e+04 -2.04566001e+04 -2.08531311e+04 -2.04502930e+04 -2.09692267e+04 -2.21257253e+04 -2.30325340e+04 -2.33202979e+04 -2.09304437e+04 -2.12051409e+04 -2.04072682e+04 -2.26617978e+04 -2.05894759e+04 -2.05563212e+04] [ 6.62428329e-01 7.29577677e-01 -5.65656626e-01 1.80637077e-01 -7.74725448e-01 -9.32022687e-01 -7.04355201e-01 7.93256080e-01 6.47797934e-01 -3.69696761e-01 9.39638160e-01 5.76909293e-01 7.29419631e-02 -1.57806777e-01 -6.34085794e-01 -4.02014815e-02 4.84435707e-01 1.89965133e-01 -2.67865420e-01 -3.61790609e-01 4.77748300e-01 4.96508948e-01 -6.94380878e-01 -9.36577532e-02 9.81066760e-01 3.35243575e-02 -1.05692549e-01 2.84351091e-01 -3.26095668e-01 -8.55116964e-01 4.45090672e-01 -3.11597384e-01 -2.69029774e-02 -6.45395279e-01 -4.62153665e-01 6.26848321e-01 -1.60111598e-01] [ 9.33094923e+04 1.03606957e+04 5.92108877e+04 5.97945784e+04 5.84659309e+04 5.59408186e+04 9.45312443e+04 1.65186925e+04 1.08338447e+04 6.20618939e+04 3.72913017e+04 5.86407462e+04 4.50892963e+04 4.89419128e+04 5.69655630e+04 8.33408913e+04 -2.21525930e+04 9.61458658e+04 3.87829193e+04 -9.90203224e+04 5.54976388e+04 -6.04821324e+03 9.00751516e+03 -9.51445441e+04 -1.53862428e+04 3.64705005e+04 6.27415364e+04 4.72372458e+04 -1.10182882e+04 7.47517360e+04 9.65743590e+04 4.18026486e+04 -9.72463659e+04 4.49852878e+04 -8.91822890e+04 -9.86095233e+04 -9.76034368e+04] [-1.91506105e+06 -2.09800052e+06 -2.02073572e+06 -1.96672553e+06 -2.32464600e+06 -1.93012074e+06 -1.87854208e+06 -2.82538122e+06 -2.50233783e+06 -1.85751955e+06 -1.97510005e+06 -1.90351809e+06 -2.20600060e+06 -1.97154435e+06 -1.91452106e+06 -1.90272190e+06 -2.90394002e+06 -1.88210112e+06 -1.99395707e+06 -2.64614999e+06 -1.97896754e+06 -2.90508530e+06 -2.87278987e+06 -3.02111808e+06 -3.02004704e+06 -1.98858851e+06 -1.91808191e+06 -1.96029847e+06 -2.91687184e+06 -1.95532001e+06 -1.88410747e+06 -1.97615697e+06 -2.65945261e+06 -1.94648935e+06 -2.83739588e+06 -2.66423040e+06 -2.54111538e+06] [-8.77504803e+06 -9.04223745e+06 -9.33899441e+06 -8.94050333e+06 -1.07708516e+07 -8.93315481e+06 -8.61340080e+06 -1.28638316e+07 -1.12621366e+07 -8.46850512e+06 -9.02565831e+06 -8.76617150e+06 -1.01923185e+07 -9.07907136e+06 -8.73372192e+06 -8.80468488e+06 -1.32378023e+07 -8.55232755e+06 -9.17077532e+06 -1.08300445e+07 -9.10925653e+06 -1.32425088e+07 -1.31506752e+07 -1.28825987e+07 -1.39870464e+07 -9.10468093e+06 -8.88461535e+06 -8.97693925e+06 -1.33132128e+07 -8.91696466e+06 -8.54969829e+06 -9.07792296e+06 -1.08616498e+07 -8.95108578e+06 -1.18448494e+07 -1.08930028e+07 -1.03266276e+07] [-7.44273255e+06 -1.37915675e+07 -1.07924362e+07 -8.23112417e+06 -1.49005491e+07 -9.30050411e+06 -7.82627727e+06 -2.16619558e+07 -1.84230424e+07 -7.73135208e+06 -9.39017935e+06 -8.74377249e+06 -1.18275253e+07 -9.73859284e+06 -8.57230011e+06 -8.96831075e+06 -2.23364589e+07 -7.04016956e+06 -9.70633717e+06 -2.75824552e+07 -9.83275633e+06 -2.22456813e+07 -2.19030855e+07 -2.70369851e+07 -2.36975133e+07 -9.69655178e+06 -9.00521439e+06 -9.29847025e+06 -2.26403545e+07 -1.02228614e+07 -7.07059783e+06 -9.49058483e+06 -2.74096927e+07 -9.32390744e+06 -2.68269094e+07 -2.75365726e+07 -2.81127749e+07] [-3.88500888e+06 -2.64832254e+07 -1.39094992e+07 -6.42622876e+06 -2.14791952e+07 -1.03219999e+07 -6.58749967e+06 -3.88697640e+07 -3.34638357e+07 -7.43363721e+06 -1.04314474e+07 -8.92884088e+06 -1.43795649e+07 -1.14147514e+07 -8.77896644e+06 -9.49522865e+06 -3.96736126e+07 -3.67398962e+06 -1.10037505e+07 -7.06221055e+07 -1.19839050e+07 -3.90588176e+07 -3.81868656e+07 -5.97725299e+07 -4.06517522e+07 -1.12611010e+07 -9.32177602e+06 -1.04690456e+07 -4.01981922e+07 -1.32461251e+07 -3.96968091e+06 -1.04882733e+07 -7.00646970e+07 -1.01559088e+07 -6.39430091e+07 -7.02638875e+07 -7.42388814e+07] [-1.30088819e+07 -6.26843303e+07 -3.36225182e+07 -1.81261302e+07 -4.67722224e+07 -2.76967948e+07 -2.00441821e+07 -8.31246411e+07 -7.41437862e+07 -2.40090584e+07 -2.77816469e+07 -2.48999415e+07 -3.29816560e+07 -2.93305673e+07 -2.53231415e+07 -2.58060541e+07 -8.42387645e+07 -1.36666901e+07 -2.86318972e+07 -1.62696052e+08 -3.15795415e+07 -8.20030680e+07 -8.01948260e+07 -1.29505206e+08 -8.22505815e+07 -2.96111875e+07 -2.54400437e+07 -2.83341808e+07 -8.33846349e+07 -3.40426589e+07 -1.45659326e+07 -2.77072046e+07 -1.61490679e+08 -2.68975048e+07 -1.43662025e+08 -1.61593804e+08 -1.73416899e+08] [-1.24403989e+06 -8.74543667e+07 -3.55210149e+07 -1.00929861e+07 -5.45626660e+07 -2.73498191e+07 -1.42943599e+07 -1.11024418e+08 -1.01374880e+08 -2.32289226e+07 -2.66252051e+07 -2.25201030e+07 -3.06482042e+07 -2.82242864e+07 -2.38299122e+07 -2.52944911e+07 -1.13412310e+08 -2.83283855e+06 -2.79042915e+07 -2.53718899e+08 -3.40205096e+07 -1.08238202e+08 -1.04882718e+08 -1.88945054e+08 -1.06701210e+08 -2.94559159e+07 -2.32740353e+07 -2.79332344e+07 -1.09877516e+08 -4.00292850e+07 -4.39893855e+06 -2.65113410e+07 -2.51296517e+08 -2.51452449e+07 -2.16535493e+08 -2.51347851e+08 -2.75214926e+08] [ 1.20542485e+07 -1.02357782e+08 -3.04667869e+07 1.24200368e+06 -5.27305212e+07 -2.03975213e+07 -5.74217396e+06 -1.23191009e+08 -1.15659328e+08 -1.70711859e+07 -1.82805721e+07 -1.38830506e+07 -2.01598298e+07 -1.99672175e+07 -1.60124423e+07 -2.06080664e+07 -1.25784746e+08 9.70072841e+06 -1.99640363e+07 -3.19820767e+08 -2.94203625e+07 -1.18080789e+08 -1.14185956e+08 -2.26643350e+08 -1.14804212e+08 -2.16035981e+07 -1.49301477e+07 -2.04018846e+07 -1.19992465e+08 -3.97950786e+07 7.47542529e+06 -1.83302171e+07 -3.16621620e+08 -1.66332064e+07 -2.67135989e+08 -3.16574863e+08 -3.50399072e+08] [ 3.68377029e+07 -9.38404025e+07 -1.00588709e+07 2.44676648e+07 -3.02549975e+07 8.90664936e+05 1.58072309e+07 -1.05823500e+08 -1.01766678e+08 2.94937058e+06 2.74947164e+06 7.18370186e+06 3.50515588e+06 7.73419413e+05 4.76072708e+06 -2.45180528e+05 -1.07965789e+08 3.34692734e+07 1.12778192e+06 -3.38542032e+08 -9.30026080e+06 -9.90583832e+07 -9.49081722e+07 -2.25632566e+08 -9.32205500e+07 -5.30827659e+05 6.84460150e+06 3.68934573e+05 -1.01715484e+08 -2.12461013e+07 3.08939570e+07 2.89594985e+06 -3.34766116e+08 4.60591153e+06 -2.75281760e+08 -3.34745799e+08 -3.75186576e+08] [ 4.08053339e+07 -8.30255445e+07 -3.03128055e+06 2.86134136e+07 -1.84469186e+07 7.42280647e+06 2.04684578e+07 -8.92934326e+07 -8.68951279e+07 7.65428938e+06 7.81777329e+06 1.18606308e+07 9.61937537e+06 5.54484014e+06 9.51368826e+06 5.86513562e+06 -9.10755898e+07 3.70093395e+07 6.41454145e+06 -3.16158937e+08 -2.62533350e+06 -8.24604309e+07 -7.86646878e+07 -2.05666514e+08 -7.55235965e+07 5.01444753e+06 1.26529103e+07 5.60444661e+06 -8.57091355e+07 -1.22459168e+07 3.45285744e+07 8.08686799e+06 -3.12483426e+08 9.80815200e+06 -2.54979332e+08 -3.12631312e+08 -3.51311019e+08] [ 4.69327419e+07 -5.03813583e+07 1.43016438e+07 3.79158076e+07 4.71382785e+06 2.38999102e+07 3.17972551e+07 -4.96876352e+07 -5.01709789e+07 2.30695463e+07 2.36909581e+07 2.65669849e+07 2.58360097e+07 2.13700358e+07 2.48934040e+07 2.06683070e+07 -5.04240045e+07 4.36470209e+07 2.24569396e+07 -2.36035911e+08 1.54224355e+07 -4.40062860e+07 -4.15633933e+07 -1.45941033e+08 -3.79778894e+07 2.19256931e+07 2.76661285e+07 2.19825326e+07 -4.71427061e+07 8.58707127e+06 4.19426885e+07 2.37907945e+07 -2.32900590e+08 2.52632851e+07 -1.86819689e+08 -2.33427977e+08 -2.64118456e+08] [ 3.68199681e+07 -3.10186319e+07 1.73832046e+07 3.17226835e+07 1.29964729e+07 2.51002690e+07 2.69518702e+07 -2.50989148e+07 -2.79240299e+07 2.25413967e+07 2.47502139e+07 2.61924751e+07 2.71064722e+07 2.28604998e+07 2.49969935e+07 2.01809352e+07 -2.47186799e+07 3.37737323e+07 2.38654034e+07 -1.68065425e+08 1.85221859e+07 -2.02323952e+07 -1.94565758e+07 -9.90949014e+07 -1.46934361e+07 2.40682046e+07 2.73301844e+07 2.34581766e+07 -2.27928952e+07 1.41083564e+07 3.26763535e+07 2.47660232e+07 -1.65834180e+08 2.58857757e+07 -1.31358967e+08 -1.66515440e+08 -1.88173362e+08] [ 1.76200368e+07 -3.42783901e+07 4.98641401e+06 1.45122385e+07 1.71380388e+06 1.10983267e+07 1.04792690e+07 -2.93115779e+07 -3.14663179e+07 7.90811694e+06 1.08582276e+07 1.17950997e+07 1.27421056e+07 9.65189909e+06 1.08036861e+07 5.95152430e+06 -2.86381843e+07 1.47563593e+07 1.01788941e+07 -1.44700326e+08 5.88405258e+06 -2.50526606e+07 -2.50030450e+07 -8.98793697e+07 -1.99544639e+07 1.04851269e+07 1.27029591e+07 9.87895918e+06 -2.69320569e+07 1.81019205e+06 1.38398174e+07 1.08778626e+07 -1.43046227e+08 1.17865572e+07 -1.15927121e+08 -1.43643456e+08 -1.60257971e+08] [-1.16454292e+07 -6.48641646e+07 -2.55582889e+07 -1.43872305e+07 -3.39649028e+07 -1.94127672e+07 -1.91815517e+07 -6.92512862e+07 -6.72283633e+07 -2.13193777e+07 -1.89893483e+07 -1.79434709e+07 -1.97700492e+07 -2.00459555e+07 -1.87590630e+07 -2.45074906e+07 -6.83578033e+07 -1.42926568e+07 -1.97925290e+07 -1.76751642e+08 -2.41416167e+07 -6.49198544e+07 -6.46314319e+07 -1.25689866e+08 -5.98335918e+07 -1.98149494e+07 -1.77330544e+07 -1.99877334e+07 -6.63404266e+07 -3.11684943e+07 -1.52568117e+07 -1.91416785e+07 -1.75063942e+08 -1.83432596e+07 -1.49631942e+08 -1.75457152e+08 -1.92013692e+08] [-2.43408346e+07 -8.06527809e+07 -4.04175845e+07 -2.73187657e+07 -5.41859778e+07 -3.49521063e+07 -3.23315480e+07 -9.40608469e+07 -8.88868900e+07 -3.51553392e+07 -3.39824349e+07 -3.31415029e+07 -3.73033053e+07 -3.53106324e+07 -3.37748948e+07 -3.88608246e+07 -9.32393158e+07 -2.65801648e+07 -3.45223343e+07 -1.96952635e+08 -3.87212201e+07 -8.96273984e+07 -8.90632230e+07 -1.46523644e+08 -8.51840378e+07 -3.52667733e+07 -3.35594167e+07 -3.49850284e+07 -9.08418464e+07 -4.80680365e+07 -2.75957539e+07 -3.40743269e+07 -1.95156509e+08 -3.36227230e+07 -1.69136798e+08 -1.95340655e+08 -2.12334536e+08] [-5.43762402e+07 -1.03311113e+08 -6.99582153e+07 -5.69452039e+07 -8.78163770e+07 -6.56390555e+07 -6.14329919e+07 -1.28365324e+08 -1.18613322e+08 -6.43449612e+07 -6.43691492e+07 -6.38905046e+07 -7.12746942e+07 -6.60321113e+07 -6.45684905e+07 -6.77772360e+07 -1.27572828e+08 -5.55551086e+07 -6.46365055e+07 -2.08954958e+08 -6.84029752e+07 -1.24704379e+08 -1.24134400e+08 -1.68665328e+08 -1.21533598e+08 -6.58613037e+07 -6.48445467e+07 -6.54392917e+07 -1.25592849e+08 -7.76762213e+07 -5.65423053e+07 -6.44862176e+07 -2.07505318e+08 -6.42121280e+07 -1.86073626e+08 -2.07409515e+08 -2.21687782e+08] [-8.40139410e+07 -1.24991122e+08 -9.93043410e+07 -8.78381647e+07 -1.17065769e+08 -9.60886646e+07 -9.02997622e+07 -1.57592925e+08 -1.44082763e+08 -9.45745984e+07 -9.61351896e+07 -9.49045068e+07 -1.05065997e+08 -9.73629496e+07 -9.57094913e+07 -9.60702170e+07 -1.57801401e+08 -8.45671996e+07 -9.62149138e+07 -2.15709343e+08 -9.85359650e+07 -1.55335793e+08 -1.54369618e+08 -1.88654473e+08 -1.53830499e+08 -9.75900377e+07 -9.54467278e+07 -9.67256813e+07 -1.56304792e+08 -1.04504770e+08 -8.55616600e+07 -9.60598662e+07 -2.14862946e+08 -9.55396245e+07 -2.00032922e+08 -2.14604367e+08 -2.24006538e+08] [-6.78940655e+07 -1.02247932e+08 -8.11300033e+07 -7.12745314e+07 -9.64191263e+07 -7.70917274e+07 -7.30030424e+07 -1.31345236e+08 -1.18810371e+08 -7.57463926e+07 -7.76272888e+07 -7.59630893e+07 -8.54078883e+07 -7.85063997e+07 -7.69168633e+07 -7.74326030e+07 -1.31308663e+08 -6.80491473e+07 -7.79930998e+07 -1.76837521e+08 -8.01960754e+07 -1.29827548e+08 -1.29058658e+08 -1.58511305e+08 -1.29424082e+08 -7.87693536e+07 -7.63136914e+07 -7.81512375e+07 -1.30622104e+08 -8.46614326e+07 -6.88093039e+07 -7.77252666e+07 -1.76439739e+08 -7.68350475e+07 -1.66193242e+08 -1.76277574e+08 -1.82957787e+08] [-2.86047478e+07 -5.89282909e+07 -3.95128445e+07 -3.14087309e+07 -5.03758622e+07 -3.56064321e+07 -3.23613484e+07 -7.68926301e+07 -6.95769396e+07 -3.40022041e+07 -3.57511566e+07 -3.40788993e+07 -4.04684282e+07 -3.63689615e+07 -3.47209536e+07 -3.59308433e+07 -7.71309115e+07 -2.86609675e+07 -3.63063202e+07 -1.21345295e+08 -3.82369830e+07 -7.57641770e+07 -7.52313231e+07 -1.04151263e+08 -7.62361601e+07 -3.65526943e+07 -3.44932183e+07 -3.61028946e+07 -7.65486159e+07 -4.12912777e+07 -2.92607799e+07 -3.59099079e+07 -1.20919860e+08 -3.51420970e+07 -1.11341303e+08 -1.20958934e+08 -1.26956545e+08] [ 2.81139885e+06 -2.06339963e+07 -5.27623738e+06 5.72607999e+05 -1.12047737e+07 -2.37399622e+06 4.33747847e+05 -2.77653878e+07 -2.52574499e+07 -7.34516323e+05 -2.25969677e+06 -8.99349332e+05 -3.89878688e+06 -2.48417582e+06 -1.11471956e+06 -2.22596912e+06 -2.85175712e+07 2.73544860e+06 -2.79428474e+06 -6.65682088e+07 -4.00246536e+06 -2.74029158e+07 -2.67935039e+07 -5.16546665e+07 -2.83199478e+07 -2.75088689e+06 -1.24696367e+06 -2.40716460e+06 -2.79401504e+07 -5.56464563e+06 2.40413931e+06 -2.39959501e+06 -6.60055407e+07 -1.95008797e+06 -5.76376683e+07 -6.61819496e+07 -7.15523556e+07] [ 7.15954583e+06 -7.99554626e+06 2.04690470e+06 5.77228885e+06 -1.46978800e+06 3.97425657e+06 5.92089367e+06 -1.10394456e+07 -1.02722386e+07 5.49884100e+06 4.40438975e+06 5.22520033e+06 3.67143579e+06 4.30348338e+06 5.27648064e+06 4.12072451e+06 -1.20380207e+07 7.26048427e+06 4.01471831e+06 -3.72555636e+07 3.13971201e+06 -1.12215395e+07 -1.07577537e+07 -2.75323981e+07 -1.23827554e+07 4.17242533e+06 4.83744052e+06 4.33291171e+06 -1.16065183e+07 2.12146777e+06 7.11021005e+06 4.27600568e+06 -3.67402348e+07 4.45537562e+06 -3.13291809e+07 -3.68721375e+07 -4.05854206e+07] [ 9.17539385e+06 -1.95528538e+05 6.65090239e+06 8.55646154e+06 5.99263220e+06 8.13399997e+06 8.40899440e+06 5.93634619e+05 3.08838876e+05 8.73626914e+06 8.36653308e+06 8.82952957e+06 8.38186452e+06 8.19520766e+06 8.84981324e+06 7.86636118e+06 3.00820008e+05 8.99174153e+06 8.13975110e+06 -1.93203659e+07 7.43444179e+06 7.56281474e+05 8.99773877e+05 -1.18506260e+07 5.35214886e+05 8.36672882e+06 8.72196736e+06 8.25103900e+06 3.41522047e+05 7.21916103e+06 8.94306264e+06 8.28287279e+06 -1.90220383e+07 8.39245182e+06 -1.50774843e+07 -1.90919969e+07 -2.16931095e+07] [ 4.29491871e+06 -4.11834071e+04 3.15810201e+06 4.01475944e+06 3.15626431e+06 3.95417391e+06 4.01759531e+06 2.88167502e+05 3.22252523e+05 4.21409525e+06 3.97901163e+06 4.23913990e+06 3.94929023e+06 3.85943399e+06 4.27619417e+06 3.89498119e+06 2.23229794e+05 4.19067939e+06 3.83273560e+06 -9.15729359e+06 3.58049578e+06 3.39042376e+05 3.69338811e+05 -5.84655374e+06 3.15265611e+05 3.99262041e+06 4.24649446e+06 3.91335745e+06 1.17976197e+05 3.78567140e+06 4.17059680e+06 3.92495476e+06 -9.00385820e+06 3.99592403e+06 -7.29613922e+06 -9.05356483e+06 -1.02277701e+07] [ 2.72879278e+06 1.04770452e+06 2.45433609e+06 2.69540887e+06 2.52771033e+06 2.78941285e+06 2.69507061e+06 1.39442906e+06 1.29853272e+06 2.84992014e+06 2.81861255e+06 2.89704158e+06 2.85459660e+06 2.74781384e+06 2.91788034e+06 2.70909699e+06 1.39244159e+06 2.68724399e+06 2.74292008e+06 -2.65657826e+06 2.63382271e+06 1.44671150e+06 1.40703926e+06 -1.22439525e+06 1.47256442e+06 2.84044251e+06 2.90386585e+06 2.77940791e+06 1.34965609e+06 2.74309703e+06 2.68114378e+06 2.78161415e+06 -2.59577330e+06 2.80799103e+06 -1.85572959e+06 -2.62958719e+06 -3.05966303e+06] [ 1.74641524e+06 1.29300947e+06 1.58730121e+06 1.69163938e+06 1.62476710e+06 1.67217081e+06 1.71198764e+06 1.45680559e+06 1.36990927e+06 1.71051162e+06 1.62790775e+06 1.69419727e+06 1.68474757e+06 1.63748989e+06 1.69603409e+06 1.69926751e+06 1.42620180e+06 1.73841338e+06 1.61114454e+06 5.56875028e+05 1.62452270e+06 1.43328552e+06 1.44084391e+06 8.10771839e+05 1.42392625e+06 1.62841785e+06 1.71153899e+06 1.64557684e+06 1.40589262e+06 1.69529274e+06 1.72962738e+06 1.62929742e+06 5.71645885e+05 1.64599048e+06 7.16252282e+05 5.55247595e+05 4.71640913e+05] [ 1.34913234e+06 9.99461623e+05 1.18841128e+06 1.24039870e+06 1.31335151e+06 1.14638698e+06 1.27584760e+06 1.23455042e+06 1.16470643e+06 1.13255204e+06 1.08412499e+06 1.14236252e+06 1.18144366e+06 1.08614076e+06 1.13084208e+06 1.28583975e+06 1.14438419e+06 1.30870998e+06 1.08737663e+06 5.30883796e+05 1.11473984e+06 1.20967315e+06 1.26305386e+06 7.73461389e+05 1.24373080e+06 1.06934715e+06 1.17612796e+06 1.09520431e+06 1.17994770e+06 1.28166305e+06 1.29796643e+06 1.10610558e+06 5.33238731e+05 1.12228966e+06 6.65944968e+05 5.29889399e+05 4.92536432e+05] [ 5.77780381e-01 -6.96751388e-01 -5.91989862e-03 -1.64921265e-01 -1.85557723e-01 -5.37648629e-01 -2.28941704e-01 2.65338190e-02 4.50369623e-01 -5.33670808e-01 1.13502768e-01 7.51775926e-01 -8.92748393e-01 -9.47519411e-01 -3.92260843e-01 -1.71040847e-01 -8.33197473e-02 3.26239133e-01 -3.34444016e-01 -5.31875145e-01 -6.97180839e-01 6.61205611e-02 -4.34746959e-01 2.84234044e-01 4.84001985e-01 4.34832343e-01 3.68439321e-01 -5.18094642e-01 -5.49135616e-01 -2.07221024e-01 5.49586923e-02 2.28889159e-01 -5.76539250e-02 8.78743762e-01 2.29278642e-02 -4.51238178e-01 2.31618801e-01] [-7.31032526e-01 -6.29155281e-01 -5.52971897e-01 8.71425375e-01 -7.23350534e-01 6.57930277e-01 3.87190541e-01 -7.43231845e-01 -3.14273002e-01 -5.82234584e-02 6.78184897e-01 8.57041528e-01 -4.49676776e-01 -1.96721548e-01 9.06965039e-01 -1.85005197e-01 7.66403556e-01 1.24500879e-01 -6.73945777e-02 2.54969572e-01 -4.83501510e-01 -3.20244212e-01 -3.07313481e-01 -7.51751727e-01 1.28677791e-01 8.04015998e-01 2.82209629e-01 -8.12236679e-01 -3.77862817e-01 -2.87773531e-01 -2.22763360e-01 9.88507576e-03 -5.96703618e-01 3.08613047e-01 9.81286639e-01 -2.38793210e-01 5.66565132e-01] [-9.79769937e-01 -6.43256725e-01 2.57019731e-01 -3.23614121e-01 -7.01217247e-01 8.61314891e-02 -6.83758406e-01 7.03017542e-01 9.27621693e-01 -4.68541239e-01 3.15342617e-01 -2.01896433e-01 7.77338483e-01 3.98892818e-01 -4.58888992e-01 8.31977404e-01 -5.43761438e-01 3.73395712e-01 -5.83533240e-01 6.86224327e-01 -6.23590282e-01 5.52120211e-01 -9.54045988e-01 -3.82381126e-01 4.71718164e-01 -4.25475343e-01 -8.00352348e-01 2.21452573e-01 7.14947736e-01 -6.63335074e-01 -9.76968964e-01 5.72123883e-01 -2.34099541e-01 -2.10101328e-01 -6.90216650e-01 3.27495417e-01 7.09202788e-01] [-1.20162042e+06 -1.35524839e+06 -1.29339645e+06 -1.18724688e+06 -1.62784410e+06 -1.19517624e+06 -1.16852649e+06 -1.97210148e+06 -1.73222398e+06 -1.10252958e+06 -1.18482975e+06 -1.16332637e+06 -1.38418083e+06 -1.20569436e+06 -1.15986486e+06 -1.22894083e+06 -1.98808596e+06 -1.16243358e+06 -1.20593122e+06 -1.60788821e+06 -1.22444722e+06 -2.00572714e+06 -1.99172997e+06 -1.93967612e+06 -2.09557955e+06 -1.20307867e+06 -1.19429773e+06 -1.18984492e+06 -1.98816098e+06 -1.31531199e+06 -1.16503429e+06 -1.19919368e+06 -1.61141097e+06 -1.18721559e+06 -1.77789592e+06 -1.61674693e+06 -1.51916387e+06] [-4.23062592e+06 -4.64415622e+06 -4.73116547e+06 -4.33493149e+06 -5.70600078e+06 -4.45758900e+06 -4.12506729e+06 -6.94210887e+06 -6.05401487e+06 -4.10222512e+06 -4.48846754e+06 -4.35163892e+06 -5.19461935e+06 -4.53959380e+06 -4.30490107e+06 -4.41316303e+06 -7.14913946e+06 -4.05656807e+06 -4.58167423e+06 -5.64810692e+06 -4.52245890e+06 -7.17167426e+06 -7.09864263e+06 -6.91866690e+06 -7.63691719e+06 -4.55417906e+06 -4.43461477e+06 -4.46367394e+06 -7.17154348e+06 -4.52823540e+06 -4.06035753e+06 -4.52429228e+06 -5.63462861e+06 -4.46698235e+06 -6.22238431e+06 -5.66622773e+06 -5.33578380e+06] [-6.65794639e+06 -9.71907740e+06 -8.65069876e+06 -7.21865245e+06 -1.08372351e+07 -7.83133055e+06 -6.82315485e+06 -1.47604917e+07 -1.26579150e+07 -7.00287513e+06 -8.02672299e+06 -7.54800973e+06 -9.49421830e+06 -8.14266733e+06 -7.46260491e+06 -7.59744915e+06 -1.53409109e+07 -6.41077348e+06 -8.18874162e+06 -1.64424074e+07 -8.18040549e+06 -1.52392585e+07 -1.49981138e+07 -1.73107082e+07 -1.62266776e+07 -8.18330382e+06 -7.67069833e+06 -7.91546298e+06 -1.54258439e+07 -8.07382837e+06 -6.44187717e+06 -8.04432976e+06 -1.63797425e+07 -7.89904686e+06 -1.66387912e+07 -1.64478612e+07 -1.62719112e+07] [-1.67766980e+07 -2.84194523e+07 -2.27993294e+07 -1.86028278e+07 -2.84492502e+07 -2.12058371e+07 -1.79143905e+07 -3.95003571e+07 -3.47775129e+07 -1.91752186e+07 -2.15208955e+07 -2.04490554e+07 -2.47722402e+07 -2.18321803e+07 -2.02545819e+07 -2.00868259e+07 -4.07310566e+07 -1.63868597e+07 -2.18472309e+07 -5.13193082e+07 -2.18260140e+07 -4.02481514e+07 -3.94395971e+07 -4.87976430e+07 -4.17497618e+07 -2.20745764e+07 -2.07006926e+07 -2.13741085e+07 -4.08733796e+07 -2.22342014e+07 -1.65325878e+07 -2.15100432e+07 -5.10179297e+07 -2.12802132e+07 -4.92958065e+07 -5.10902433e+07 -5.24635860e+07] [-4.42663325e+07 -7.60572388e+07 -5.88022802e+07 -4.81619925e+07 -7.14258303e+07 -5.53532962e+07 -4.85472312e+07 -9.99295308e+07 -8.96008201e+07 -5.18563351e+07 -5.55583620e+07 -5.33143010e+07 -6.20711690e+07 -5.64021847e+07 -5.34500548e+07 -5.31677586e+07 -1.01593457e+08 -4.42976263e+07 -5.61999903e+07 -1.40841588e+08 -5.75453643e+07 -9.99744220e+07 -9.83501988e+07 -1.26027466e+08 -1.01400304e+08 -5.70320841e+07 -5.39998450e+07 -5.57122307e+07 -1.01007848e+08 -5.92098697e+07 -4.49119822e+07 -5.54787689e+07 -1.40223871e+08 -5.48337169e+07 -1.32134997e+08 -1.40219400e+08 -1.45774646e+08] [-6.17710696e+07 -1.22229944e+08 -8.80877402e+07 -6.89670145e+07 -1.07813824e+08 -8.28409787e+07 -7.06532350e+07 -1.56616274e+08 -1.42333751e+08 -7.84431661e+07 -8.25965753e+07 -7.88994653e+07 -9.04409671e+07 -8.33443184e+07 -7.97939219e+07 -7.96962510e+07 -1.59725703e+08 -6.23449118e+07 -8.35342375e+07 -2.41054825e+08 -8.74377356e+07 -1.55675438e+08 -1.52675893e+08 -2.06021265e+08 -1.56677066e+08 -8.49530619e+07 -8.00368740e+07 -8.31539136e+07 -1.56659071e+08 -9.09927492e+07 -6.35846360e+07 -8.23689828e+07 -2.39717740e+08 -8.11015050e+07 -2.20522538e+08 -2.39663979e+08 -2.52641507e+08] [-6.36454280e+07 -1.53267133e+08 -1.00960749e+08 -7.40822060e+07 -1.26089803e+08 -9.45538413e+07 -7.74788357e+07 -1.90742704e+08 -1.75902057e+08 -8.97102717e+07 -9.32249734e+07 -8.86810439e+07 -1.00302701e+08 -9.37250414e+07 -9.02639410e+07 -9.12266983e+07 -1.95022827e+08 -6.47225975e+07 -9.43815930e+07 -3.22007086e+08 -1.01099681e+08 -1.88317551e+08 -1.83949421e+08 -2.63085240e+08 -1.88370279e+08 -9.63879370e+07 -9.02605238e+07 -9.42628557e+07 -1.89320148e+08 -1.08070810e+08 -6.66542980e+07 -9.28536070e+07 -3.19850047e+08 -9.12879374e+07 -2.87744771e+08 -3.19679978e+08 -3.41531674e+08] [-6.26459523e+07 -1.72175184e+08 -1.06399909e+08 -7.43355033e+07 -1.33931201e+08 -9.84730385e+07 -8.04053939e+07 -2.09097014e+08 -1.94394363e+08 -9.39307822e+07 -9.63405410e+07 -9.16349502e+07 -1.02633686e+08 -9.72805202e+07 -9.38360929e+07 -9.64753365e+07 -2.12220700e+08 -6.42210510e+07 -9.76364280e+07 -3.77521574e+08 -1.06681058e+08 -2.04351613e+08 -1.99742124e+08 -2.97935602e+08 -2.02232520e+08 -9.99348170e+07 -9.33616789e+07 -9.79959923e+07 -2.05593592e+08 -1.16727977e+08 -6.66609101e+07 -9.59744934e+07 -3.74835156e+08 -9.42436005e+07 -3.32079692e+08 -3.74507138e+08 -4.03942574e+08] [-8.80827857e+07 -1.99578431e+08 -1.31638690e+08 -9.93440191e+07 -1.59647464e+08 -1.23054170e+08 -1.06648965e+08 -2.38451384e+08 -2.21641121e+08 -1.19397603e+08 -1.21095586e+08 -1.16704811e+08 -1.28153655e+08 -1.22047737e+08 -1.19124834e+08 -1.22491111e+08 -2.39960690e+08 -8.99525772e+07 -1.22242151e+08 -4.13554597e+08 -1.31805541e+08 -2.32872551e+08 -2.28437352e+08 -3.29257721e+08 -2.29000943e+08 -1.24478108e+08 -1.18252960e+08 -1.22982004e+08 -2.34202495e+08 -1.43054536e+08 -9.22968241e+07 -1.20726853e+08 -4.10758892e+08 -1.18925538e+08 -3.65932781e+08 -4.10293291e+08 -4.42609978e+08] [-1.11377978e+08 -2.06541393e+08 -1.47305676e+08 -1.20225137e+08 -1.73018865e+08 -1.39665895e+08 -1.26964060e+08 -2.45393603e+08 -2.28060856e+08 -1.37130172e+08 -1.37941729e+08 -1.34522674e+08 -1.45877013e+08 -1.38738440e+08 -1.36673437e+08 -1.40176406e+08 -2.45537675e+08 -1.13191647e+08 -1.38781863e+08 -3.98249793e+08 -1.47486618e+08 -2.40093515e+08 -2.36682591e+08 -3.23985712e+08 -2.35873593e+08 -1.40592819e+08 -1.35988515e+08 -1.39686675e+08 -2.41146569e+08 -1.57403149e+08 -1.15108764e+08 -1.37635978e+08 -3.95870305e+08 -1.36019604e+08 -3.56575779e+08 -3.95396986e+08 -4.23869168e+08] [-1.27304764e+08 -2.02422302e+08 -1.54655350e+08 -1.33032324e+08 -1.78242590e+08 -1.48212635e+08 -1.39678245e+08 -2.41066023e+08 -2.23656393e+08 -1.46453977e+08 -1.45976290e+08 -1.43915326e+08 -1.54805127e+08 -1.46809021e+08 -1.45743762e+08 -1.50004841e+08 -2.40080892e+08 -1.28847162e+08 -1.46610827e+08 -3.63992881e+08 -1.54822330e+08 -2.36013114e+08 -2.33907868e+08 -3.03318458e+08 -2.32203351e+08 -1.48057958e+08 -1.45645526e+08 -1.47757394e+08 -2.36593185e+08 -1.64126318e+08 -1.30419136e+08 -1.45867337e+08 -3.62168208e+08 -1.44561724e+08 -3.30316164e+08 -3.61660252e+08 -3.84624380e+08] [-1.24999274e+08 -1.91900164e+08 -1.48393899e+08 -1.29162569e+08 -1.70958518e+08 -1.42486017e+08 -1.36509365e+08 -2.28459303e+08 -2.11739244e+08 -1.41484007e+08 -1.39801870e+08 -1.38363792e+08 -1.48356179e+08 -1.40676372e+08 -1.40103383e+08 -1.45624736e+08 -2.26788934e+08 -1.26661248e+08 -1.40351192e+08 -3.37829522e+08 -1.48708228e+08 -2.22985325e+08 -2.21555319e+08 -2.83146265e+08 -2.18825590e+08 -1.41686377e+08 -1.40285034e+08 -1.41558604e+08 -2.23204215e+08 -1.59134689e+08 -1.28185260e+08 -1.39844148e+08 -3.36331033e+08 -1.38723963e+08 -3.07767338e+08 -3.35755043e+08 -3.56069842e+08] [-1.27303534e+08 -1.87371909e+08 -1.49668920e+08 -1.31167914e+08 -1.72489905e+08 -1.44332862e+08 -1.38036603e+08 -2.26086223e+08 -2.08391671e+08 -1.42364743e+08 -1.41765505e+08 -1.40482191e+08 -1.51312031e+08 -1.42666609e+08 -1.41802710e+08 -1.46680654e+08 -2.24468509e+08 -1.28652802e+08 -1.42286258e+08 -3.15495230e+08 -1.49516904e+08 -2.21052648e+08 -2.19650678e+08 -2.70338416e+08 -2.17559042e+08 -1.43740728e+08 -1.42515729e+08 -1.43327076e+08 -2.21203328e+08 -1.60562110e+08 -1.29979222e+08 -1.41941468e+08 -3.14184826e+08 -1.41050257e+08 -2.90228355e+08 -3.13571062e+08 -3.31635751e+08] [-1.38909577e+08 -1.82918004e+08 -1.56558073e+08 -1.41501724e+08 -1.79045292e+08 -1.52932486e+08 -1.46892290e+08 -2.25179346e+08 -2.06318255e+08 -1.50221585e+08 -1.50900471e+08 -1.50174838e+08 -1.62059624e+08 -1.51921065e+08 -1.51069138e+08 -1.53689530e+08 -2.23247200e+08 -1.39476000e+08 -1.51005352e+08 -2.83358761e+08 -1.56072545e+08 -2.21165975e+08 -2.20242828e+08 -2.52707831e+08 -2.18893002e+08 -1.52712342e+08 -1.52158087e+08 -1.52144089e+08 -2.21114416e+08 -1.65525466e+08 -1.40495584e+08 -1.51024867e+08 -2.82529484e+08 -1.50507712e+08 -2.65900980e+08 -2.81810069e+08 -2.94862989e+08] [-1.55148910e+08 -1.80282109e+08 -1.67145231e+08 -1.57187482e+08 -1.88207378e+08 -1.65872827e+08 -1.60252498e+08 -2.25365770e+08 -2.05887590e+08 -1.63568622e+08 -1.64764076e+08 -1.64357077e+08 -1.77017783e+08 -1.65363645e+08 -1.65208034e+08 -1.65322178e+08 -2.24403268e+08 -1.54858264e+08 -1.64562925e+08 -2.45728196e+08 -1.67519873e+08 -2.23202502e+08 -2.22329392e+08 -2.34104286e+08 -2.22642027e+08 -1.66194240e+08 -1.65943638e+08 -1.65583505e+08 -2.22873757e+08 -1.74049152e+08 -1.55606490e+08 -1.64852926e+08 -2.45597406e+08 -1.64438625e+08 -2.38809168e+08 -2.44750359e+08 -2.50890507e+08] [-1.31661757e+08 -1.47287455e+08 -1.39719972e+08 -1.33790621e+08 -1.55600844e+08 -1.39413095e+08 -1.35178603e+08 -1.84382583e+08 -1.68247210e+08 -1.38573082e+08 -1.39306524e+08 -1.38657515e+08 -1.49146361e+08 -1.39345288e+08 -1.39599471e+08 -1.38641845e+08 -1.84218324e+08 -1.31302257e+08 -1.38990965e+08 -1.91472568e+08 -1.40828921e+08 -1.83378565e+08 -1.82584018e+08 -1.87974568e+08 -1.83197513e+08 -1.40220990e+08 -1.39551022e+08 -1.39690341e+08 -1.83010489e+08 -1.44321461e+08 -1.31946098e+08 -1.39252265e+08 -1.91763781e+08 -1.38740028e+08 -1.89039285e+08 -1.91046338e+08 -1.93082655e+08] [-7.88603694e+07 -9.06231291e+07 -8.38647058e+07 -8.03046188e+07 -9.41036237e+07 -8.34413622e+07 -8.10846850e+07 -1.13725802e+08 -1.04004002e+08 -8.32443413e+07 -8.34854582e+07 -8.28470618e+07 -8.95194765e+07 -8.34353967e+07 -8.36190450e+07 -8.31794231e+07 -1.13631441e+08 -7.85868415e+07 -8.31965498e+07 -1.23164123e+08 -8.46871900e+07 -1.13025946e+08 -1.12777429e+08 -1.19527572e+08 -1.13171294e+08 -8.39684503e+07 -8.34071069e+07 -8.36053977e+07 -1.12767363e+08 -8.66607006e+07 -7.91577019e+07 -8.33794075e+07 -1.23450515e+08 -8.29743160e+07 -1.20732854e+08 -1.23007301e+08 -1.24050383e+08] [-3.69652357e+07 -4.36705338e+07 -3.96707376e+07 -3.77729333e+07 -4.57469160e+07 -3.92904655e+07 -3.76717821e+07 -5.63650998e+07 -5.14714084e+07 -3.88209084e+07 -3.93775093e+07 -3.88613444e+07 -4.26750894e+07 -3.93582715e+07 -3.91569666e+07 -3.88888631e+07 -5.66581496e+07 -3.65687928e+07 -3.93299552e+07 -6.15005031e+07 -3.98339678e+07 -5.62686365e+07 -5.62319998e+07 -6.02916059e+07 -5.70961339e+07 -3.96739852e+07 -3.92100876e+07 -3.93591035e+07 -5.61091154e+07 -4.07146949e+07 -3.69106715e+07 -3.93919693e+07 -6.16757635e+07 -3.91670400e+07 -6.04164502e+07 -6.14949287e+07 -6.15807039e+07] [-1.58564792e+07 -1.99027799e+07 -1.76398096e+07 -1.59762530e+07 -2.19478535e+07 -1.68638566e+07 -1.59504314e+07 -2.75092218e+07 -2.46416576e+07 -1.56120780e+07 -1.64222730e+07 -1.61533985e+07 -1.85910203e+07 -1.65884425e+07 -1.60889471e+07 -1.67308013e+07 -2.78392148e+07 -1.54445619e+07 -1.66652364e+07 -2.96090919e+07 -1.71771709e+07 -2.77252094e+07 -2.76534687e+07 -2.98805042e+07 -2.89010774e+07 -1.66734002e+07 -1.66734300e+07 -1.65019645e+07 -2.76304819e+07 -1.81641907e+07 -1.55007460e+07 -1.66441842e+07 -2.96281676e+07 -1.65284728e+07 -2.95331945e+07 -2.95806124e+07 -2.98864232e+07] [-7.17262510e+06 -1.10397748e+07 -8.57097109e+06 -7.40570357e+06 -1.05609420e+07 -7.89809262e+06 -7.32802141e+06 -1.44141028e+07 -1.31803816e+07 -6.92931023e+06 -7.56923722e+06 -7.27281090e+06 -8.68143248e+06 -7.68510138e+06 -7.16514425e+06 -7.62603808e+06 -1.47582021e+07 -7.02733565e+06 -7.75037944e+06 -1.96598574e+07 -8.07064159e+06 -1.45839416e+07 -1.44737266e+07 -1.85553490e+07 -1.53366844e+07 -7.71605912e+06 -7.59077899e+06 -7.61480328e+06 -1.46903128e+07 -8.32683888e+06 -7.04023782e+06 -7.66879098e+06 -1.95892508e+07 -7.61848613e+06 -1.89738013e+07 -1.95640941e+07 -2.03350747e+07] [-2.18490778e+06 -5.71401727e+06 -3.06828845e+06 -2.44443273e+06 -3.42757701e+06 -2.39041372e+06 -2.40128223e+06 -6.40979149e+06 -5.99830489e+06 -2.06343823e+06 -2.37148338e+06 -2.11478008e+06 -2.87875980e+06 -2.47919304e+06 -2.06977083e+06 -2.41318648e+06 -6.40698391e+06 -2.26829432e+06 -2.47999667e+06 -1.34772479e+07 -2.63702043e+06 -6.35472408e+06 -6.29413279e+06 -1.14111614e+07 -6.33851478e+06 -2.37574197e+06 -2.15043170e+06 -2.41246482e+06 -6.58220026e+06 -2.52097945e+06 -2.27141500e+06 -2.40781593e+06 -1.33693104e+07 -2.36382763e+06 -1.23359095e+07 -1.33655197e+07 -1.43237029e+07] [ 1.35721809e+06 -6.01003654e+05 9.84691706e+05 1.32363667e+06 8.31137177e+05 1.45080658e+06 1.28550052e+06 -6.63351614e+05 -4.93110047e+05 1.60928620e+06 1.51188693e+06 1.64232869e+06 1.38500835e+06 1.43571198e+06 1.67273385e+06 1.30662405e+06 -6.07918885e+05 1.31164391e+06 1.40560195e+06 -4.66343193e+06 1.26843163e+06 -6.27304112e+05 -6.32427907e+05 -3.43815323e+06 -5.60065618e+05 1.51057461e+06 1.58440840e+06 1.45562591e+06 -7.14514618e+05 1.23555696e+06 1.30450508e+06 1.46067944e+06 -4.60071998e+06 1.50055273e+06 -4.03962623e+06 -4.61614547e+06 -5.13028478e+06] [ 2.14749654e+06 1.25823454e+06 2.02990274e+06 2.16502189e+06 2.00171859e+06 2.23712375e+06 2.13590452e+06 1.47924736e+06 1.44744318e+06 2.29326217e+06 2.27578028e+06 2.31593982e+06 2.32151137e+06 2.24049190e+06 2.32904266e+06 2.15342396e+06 1.51137691e+06 2.12981381e+06 2.22824103e+06 -5.36041241e+05 2.15484595e+06 1.49784529e+06 1.48552300e+06 1.72991202e+05 1.53993609e+06 2.28441708e+06 2.29724801e+06 2.24476912e+06 1.47415090e+06 2.10783095e+06 2.12596620e+06 2.25103075e+06 -5.00245847e+05 2.26403463e+06 -1.54715069e+05 -5.13627570e+05 -7.75457697e+05] [ 9.27288487e+05 7.12269920e+05 8.51830664e+05 9.03958974e+05 8.71763558e+05 8.91365112e+05 9.13340832e+05 8.09677618e+05 7.58614035e+05 9.15502820e+05 8.77758135e+05 9.00924331e+05 9.04889478e+05 8.76658912e+05 9.03697241e+05 8.99933099e+05 7.95309175e+05 9.27457681e+05 8.68518846e+05 3.44590623e+05 8.71135035e+05 7.94801264e+05 8.03043255e+05 5.04687130e+05 7.82009653e+05 8.80316118e+05 9.09116746e+05 8.81864777e+05 7.81724745e+05 9.00389561e+05 9.26196781e+05 8.77018034e+05 3.55299994e+05 8.81098564e+05 4.37414601e+05 3.48307447e+05 2.81853204e+05] [ 5.14972774e+05 4.84817793e+05 4.85406587e+05 5.04016808e+05 5.13073772e+05 4.87484679e+05 5.07579098e+05 5.38897652e+05 5.17313557e+05 4.93247112e+05 4.78952824e+05 4.87104347e+05 5.02328385e+05 4.72508961e+05 4.86652162e+05 5.07043898e+05 5.26561068e+05 5.13879135e+05 4.76129804e+05 4.56326950e+05 4.80195629e+05 5.32137502e+05 5.37799005e+05 4.88014191e+05 5.26817476e+05 4.74239514e+05 4.91404106e+05 4.77315524e+05 5.26362662e+05 5.08558392e+05 5.12583501e+05 4.79949508e+05 4.57956093e+05 4.83493724e+05 4.76823702e+05 4.56758515e+05 4.49195848e+05] [ 5.03534571e-01 1.97471947e-01 2.52615717e-01 8.13319312e-01 -5.14847674e-01 9.37037332e-01 -4.23436232e-01 1.18170995e-01 -6.37510640e-01 5.98247128e-03 -8.55293107e-01 2.64912311e-01 8.29427708e-01 -6.71664988e-01 8.40551149e-01 -2.00554157e-01 2.10738793e-02 3.16799058e-01 6.50227880e-01 -2.71706839e-01 5.56457148e-01 7.49590692e-01 -7.93477468e-01 6.25909421e-01 3.42645918e-01 -5.82739239e-01 4.47608989e-01 9.68535340e-01 -3.19953989e-01 -8.23024224e-01 2.20932018e-01 9.24073174e-01 1.78306363e-01 -2.31192194e-01 2.24952870e-01 -9.14075557e-01 -1.41638486e-01] [-7.17732645e-01 -7.32562529e-02 4.53432614e-01 6.26597140e-01 2.19828232e-01 -9.81546974e-01 -9.67558418e-01 -7.29936025e-01 -1.03647704e-01 3.20144170e-01 1.87647393e-01 4.34983803e-01 -4.71002268e-01 2.37660551e-02 -7.46950772e-01 3.11818185e-01 -9.03351878e-01 2.42105278e-01 -7.33853561e-01 9.02832924e-01 6.04832600e-01 -3.02799743e-01 -1.87102435e-01 7.93644917e-01 -9.62065273e-01 7.74252285e-01 1.37211536e-01 4.32893326e-01 7.52882828e-01 -2.36949595e-02 4.41614289e-01 -9.78252149e-01 -3.29437789e-01 8.25402206e-01 -6.16660964e-01 3.50792579e-01 -6.04786227e-01] [ 7.20202800e-01 1.73496362e-01 -2.09764489e-01 8.69836274e-01 -4.12809875e-01 -2.57417026e-01 2.11583012e-01 4.20951594e-01 3.56384593e-01 2.94168206e-01 6.77380676e-01 -3.60189070e-01 -3.95457921e-01 -1.43704373e-01 7.85318343e-01 -4.06073051e-01 2.99527800e-01 -7.48350457e-01 9.63222038e-01 -5.14172103e-01 -5.68022773e-01 4.76085082e-01 -3.21056971e-02 5.63583989e-01 9.98745477e-01 3.37070779e-01 -4.67961589e-01 -2.63846000e-01 -6.99728388e-01 -5.47797759e-02 -3.03884182e-01 1.38825780e-01 -8.21291772e-01 2.47856368e-01 6.42862644e-01 -2.67579392e-01 1.09160104e-01] [-3.25093577e+05 -3.53813968e+05 -3.48444820e+05 -3.21781832e+05 -4.35344462e+05 -3.32257834e+05 -3.17524214e+05 -5.16091932e+05 -4.55034357e+05 -3.09217705e+05 -3.27114289e+05 -3.22968273e+05 -3.74882386e+05 -3.30930843e+05 -3.21661643e+05 -3.38354393e+05 -5.23031652e+05 -3.14129643e+05 -3.31614684e+05 -3.83230860e+05 -3.35643138e+05 -5.24328806e+05 -5.19891524e+05 -4.72050091e+05 -5.46208309e+05 -3.31998870e+05 -3.32452060e+05 -3.27309408e+05 -5.16927119e+05 -3.60732016e+05 -3.14837216e+05 -3.30602849e+05 -3.84311560e+05 -3.28108872e+05 -4.29529896e+05 -3.85239523e+05 -3.57375265e+05] [-2.88613502e+06 -2.91202303e+06 -3.05865293e+06 -2.92755914e+06 -3.52615305e+06 -3.01000263e+06 -2.84426587e+06 -4.06581172e+06 -3.59371735e+06 -2.87792981e+06 -3.03217431e+06 -2.97546323e+06 -3.35696636e+06 -3.02637717e+06 -2.97233294e+06 -2.96174234e+06 -4.15575225e+06 -2.82054017e+06 -3.05237733e+06 -3.01399624e+06 -3.02457038e+06 -4.16335080e+06 -4.12302061e+06 -3.72480582e+06 -4.31958864e+06 -3.05816083e+06 -3.01172160e+06 -3.01020396e+06 -4.13891340e+06 -3.03669680e+06 -2.82168581e+06 -3.04008596e+06 -3.02806420e+06 -3.01568411e+06 -3.37182786e+06 -3.03141169e+06 -2.83089775e+06] [-8.28108288e+06 -8.79931775e+06 -8.96809294e+06 -8.47319800e+06 -1.03183524e+07 -8.78286374e+06 -8.23967978e+06 -1.20471918e+07 -1.06987067e+07 -8.39931855e+06 -8.85732625e+06 -8.67885058e+06 -9.77732739e+06 -8.84187634e+06 -8.65367604e+06 -8.62507672e+06 -1.23191364e+07 -8.11046790e+06 -8.91143709e+06 -1.00011044e+07 -8.85293619e+06 -1.23196084e+07 -1.21844966e+07 -1.16217612e+07 -1.27654407e+07 -8.92465578e+06 -8.75954491e+06 -8.79059549e+06 -1.22811192e+07 -8.89175917e+06 -8.10991727e+06 -8.86884953e+06 -1.00238974e+07 -8.80306232e+06 -1.08070387e+07 -1.00351247e+07 -9.59209806e+06] [-1.97866980e+07 -2.34399719e+07 -2.19232848e+07 -2.03877388e+07 -2.52243708e+07 -2.13335155e+07 -2.00832337e+07 -3.07326178e+07 -2.76020118e+07 -2.05525497e+07 -2.15200520e+07 -2.10574410e+07 -2.36192745e+07 -2.15575905e+07 -2.10182344e+07 -2.09844719e+07 -3.12564646e+07 -1.95458089e+07 -2.16296045e+07 -3.17546328e+07 -2.16069854e+07 -3.11442054e+07 -3.08117258e+07 -3.25908592e+07 -3.17488171e+07 -2.17336269e+07 -2.12013916e+07 -2.14109754e+07 -3.12457136e+07 -2.19274448e+07 -1.95859780e+07 -2.15282803e+07 -3.17163857e+07 -2.13964614e+07 -3.20436016e+07 -3.17008487e+07 -3.17561586e+07] [-5.05736898e+07 -6.17880142e+07 -5.65889593e+07 -5.24818566e+07 -6.40259334e+07 -5.55322162e+07 -5.19731882e+07 -7.86988335e+07 -7.12860371e+07 -5.39394745e+07 -5.59969887e+07 -5.49028089e+07 -6.08015450e+07 -5.61338824e+07 -5.49120711e+07 -5.40953320e+07 -7.98676498e+07 -5.03426824e+07 -5.61648347e+07 -8.69807072e+07 -5.62578993e+07 -7.93070671e+07 -7.83737152e+07 -8.58738031e+07 -8.03075963e+07 -5.66248165e+07 -5.51379685e+07 -5.58700947e+07 -7.95933976e+07 -5.66296999e+07 -5.05659376e+07 -5.59078630e+07 -8.68667540e+07 -5.55959031e+07 -8.60544237e+07 -8.67524595e+07 -8.76837762e+07] [-8.40489732e+07 -1.11655898e+08 -9.61894788e+07 -8.76225582e+07 -1.09236986e+08 -9.43836723e+07 -8.81102481e+07 -1.38381554e+08 -1.26939191e+08 -9.23466922e+07 -9.45655671e+07 -9.26673832e+07 -1.01465461e+08 -9.45488800e+07 -9.30990161e+07 -9.23752881e+07 -1.40122738e+08 -8.43054746e+07 -9.48344199e+07 -1.70428975e+08 -9.63614653e+07 -1.38234127e+08 -1.36603055e+08 -1.58790383e+08 -1.38812408e+08 -9.56996330e+07 -9.32475999e+07 -9.46023879e+07 -1.38608170e+08 -9.81289091e+07 -8.49396484e+07 -9.43314567e+07 -1.70101667e+08 -9.36842343e+07 -1.63870123e+08 -1.69846393e+08 -1.74175507e+08] [-1.10832219e+08 -1.59422613e+08 -1.31817772e+08 -1.16647267e+08 -1.51610203e+08 -1.28920168e+08 -1.18579573e+08 -1.96486241e+08 -1.80886572e+08 -1.25918043e+08 -1.28289959e+08 -1.25404378e+08 -1.36729715e+08 -1.28067856e+08 -1.26444241e+08 -1.26409465e+08 -1.99168095e+08 -1.11419911e+08 -1.28837378e+08 -2.55847509e+08 -1.32616186e+08 -1.95424298e+08 -1.92750446e+08 -2.30893648e+08 -1.95631423e+08 -1.30211163e+08 -1.26676740e+08 -1.28688915e+08 -1.95744633e+08 -1.36809846e+08 -1.12546144e+08 -1.27988123e+08 -2.55071377e+08 -1.26836854e+08 -2.41725101e+08 -2.54703640e+08 -2.64276428e+08] [-1.47080344e+08 -2.11973356e+08 -1.74692357e+08 -1.54627110e+08 -2.00415903e+08 -1.71205690e+08 -1.57698235e+08 -2.58512969e+08 -2.39225665e+08 -1.67552250e+08 -1.69661905e+08 -1.66118382e+08 -1.79733388e+08 -1.69210817e+08 -1.67636911e+08 -1.68411575e+08 -2.61988950e+08 -1.47737340e+08 -1.70398951e+08 -3.38422302e+08 -1.76228150e+08 -2.56594449e+08 -2.53021155e+08 -3.02747656e+08 -2.56484294e+08 -1.72250114e+08 -1.68072399e+08 -1.70376446e+08 -2.56604950e+08 -1.82500834e+08 -1.49300554e+08 -1.69302661e+08 -3.37258804e+08 -1.67837289e+08 -3.18325621e+08 -3.36694065e+08 -3.50958907e+08] [-1.90859718e+08 -2.58108973e+08 -2.19333079e+08 -1.97717712e+08 -2.49023073e+08 -2.15066238e+08 -2.01983202e+08 -3.13048741e+08 -2.89500188e+08 -2.10787999e+08 -2.12607143e+08 -2.09284562e+08 -2.25016630e+08 -2.12111882e+08 -2.10965012e+08 -2.13315317e+08 -3.15207609e+08 -1.91249778e+08 -2.13501553e+08 -3.94749007e+08 -2.20597282e+08 -3.10475272e+08 -3.06981218e+08 -3.56548913e+08 -3.09714913e+08 -2.15341344e+08 -2.11993931e+08 -2.13717036e+08 -3.10164022e+08 -2.29003193e+08 -1.92684917e+08 -2.12471340e+08 -3.93357130e+08 -2.10893628e+08 -3.73149899e+08 -3.92571964e+08 -4.10221689e+08] [-2.18596991e+08 -2.81116693e+08 -2.44525742e+08 -2.24300920e+08 -2.74787368e+08 -2.40998632e+08 -2.29404047e+08 -3.39551367e+08 -3.13927706e+08 -2.37367529e+08 -2.37956112e+08 -2.35531985e+08 -2.51649718e+08 -2.37293587e+08 -2.37310257e+08 -2.39949830e+08 -3.40192730e+08 -2.19031509e+08 -2.38630245e+08 -4.15437092e+08 -2.46177411e+08 -3.36260717e+08 -3.33231210e+08 -3.77608470e+08 -3.34435064e+08 -2.40410363e+08 -2.38488834e+08 -2.39376694e+08 -3.35725451e+08 -2.55648908e+08 -2.20335652e+08 -2.37898481e+08 -4.14128254e+08 -2.36512427e+08 -3.93884472e+08 -4.13085091e+08 -4.31727524e+08] [-2.45604063e+08 -2.97345680e+08 -2.67690674e+08 -2.49579428e+08 -2.98476384e+08 -2.64893895e+08 -2.55134117e+08 -3.60789752e+08 -3.32090693e+08 -2.60977455e+08 -2.61271976e+08 -2.59847026e+08 -2.77350219e+08 -2.61139959e+08 -2.61391176e+08 -2.64216866e+08 -3.60309775e+08 -2.45887652e+08 -2.61782581e+08 -4.18344418e+08 -2.69148201e+08 -3.57351801e+08 -3.55068988e+08 -3.87835913e+08 -3.55604304e+08 -2.63581218e+08 -2.63201094e+08 -2.63000005e+08 -3.56701963e+08 -2.79230433e+08 -2.46979757e+08 -2.61397934e+08 -4.17321242e+08 -2.60295110e+08 -4.01156437e+08 -4.16054688e+08 -4.32897100e+08] [-2.55232470e+08 -2.95532866e+08 -2.75186671e+08 -2.58445572e+08 -3.04926993e+08 -2.72870196e+08 -2.63755843e+08 -3.61248765e+08 -3.31071647e+08 -2.68050950e+08 -2.69599088e+08 -2.68195533e+08 -2.86966531e+08 -2.69910843e+08 -2.69322591e+08 -2.71434254e+08 -3.60833278e+08 -2.55141175e+08 -2.70094946e+08 -3.94752104e+08 -2.76149632e+08 -3.58639497e+08 -3.56487533e+08 -3.76256311e+08 -3.58128995e+08 -2.72090493e+08 -2.71648924e+08 -2.71128996e+08 -3.57792162e+08 -2.85759136e+08 -2.56126042e+08 -2.69863149e+08 -3.94246112e+08 -2.68885827e+08 -3.84369531e+08 -3.92876956e+08 -4.05709156e+08] [-2.45010781e+08 -2.70499495e+08 -2.60442513e+08 -2.47364176e+08 -2.86696491e+08 -2.59043014e+08 -2.51259175e+08 -3.32362293e+08 -3.03781252e+08 -2.54456158e+08 -2.56859645e+08 -2.55633166e+08 -2.73673110e+08 -2.57060527e+08 -2.56332739e+08 -2.56975021e+08 -3.32009835e+08 -2.44569526e+08 -2.57121135e+08 -3.37606743e+08 -2.61199093e+08 -3.30925731e+08 -3.29066571e+08 -3.33721991e+08 -3.31088766e+08 -2.58975922e+08 -2.58529762e+08 -2.57894413e+08 -3.30021177e+08 -2.68667562e+08 -2.45247448e+08 -2.57124873e+08 -3.37599386e+08 -2.56340731e+08 -3.35505286e+08 -3.36293997e+08 -3.43512061e+08] [-2.14645777e+08 -2.22692682e+08 -2.22943777e+08 -2.15408594e+08 -2.44692598e+08 -2.23062391e+08 -2.17672271e+08 -2.76256797e+08 -2.51988018e+08 -2.19651814e+08 -2.21505368e+08 -2.20940674e+08 -2.36007763e+08 -2.21424966e+08 -2.21463012e+08 -2.21049604e+08 -2.76112376e+08 -2.13682664e+08 -2.21461574e+08 -2.55931583e+08 -2.23942822e+08 -2.75962364e+08 -2.74704024e+08 -2.64223713e+08 -2.76979005e+08 -2.23003059e+08 -2.23313554e+08 -2.22195703e+08 -2.74695202e+08 -2.29129389e+08 -2.14064423e+08 -2.21753052e+08 -2.56376735e+08 -2.21180737e+08 -2.60605649e+08 -2.55215534e+08 -2.56973852e+08] [-1.73720281e+08 -1.69372668e+08 -1.75019362e+08 -1.73520135e+08 -1.90020273e+08 -1.77222293e+08 -1.74378188e+08 -2.08690598e+08 -1.91549794e+08 -1.76134800e+08 -1.75996708e+08 -1.76358022e+08 -1.86784758e+08 -1.75442317e+08 -1.76921209e+08 -1.75827076e+08 -2.08772803e+08 -1.72877643e+08 -1.75474514e+08 -1.77753785e+08 -1.77028242e+08 -2.08798020e+08 -2.08217267e+08 -1.90641730e+08 -2.09825925e+08 -1.76554860e+08 -1.77955225e+08 -1.76315039e+08 -2.07523745e+08 -1.79761172e+08 -1.73047487e+08 -1.76047990e+08 -1.78482337e+08 -1.75874884e+08 -1.84712556e+08 -1.77470992e+08 -1.75234388e+08] [-1.16126673e+08 -1.08665639e+08 -1.14961609e+08 -1.15974326e+08 -1.24213569e+08 -1.17649127e+08 -1.15669312e+08 -1.33625897e+08 -1.23018917e+08 -1.17360586e+08 -1.16963399e+08 -1.17326298e+08 -1.23729671e+08 -1.16188054e+08 -1.17658382e+08 -1.16392103e+08 -1.34101047e+08 -1.15348974e+08 -1.16359985e+08 -1.03945979e+08 -1.16858833e+08 -1.34148574e+08 -1.33792866e+08 -1.17167273e+08 -1.35122949e+08 -1.17154401e+08 -1.18356902e+08 -1.16883795e+08 -1.33065825e+08 -1.18107928e+08 -1.15490710e+08 -1.16888399e+08 -1.04626970e+08 -1.16929380e+08 -1.10826705e+08 -1.03901614e+08 -1.00182127e+08] [-6.65065021e+07 -5.55090111e+07 -6.37808488e+07 -6.57603393e+07 -6.89515179e+07 -6.59417176e+07 -6.52815019e+07 -7.03423932e+07 -6.43278990e+07 -6.56639095e+07 -6.54115015e+07 -6.59305798e+07 -6.93984883e+07 -6.48890527e+07 -6.60500416e+07 -6.50799195e+07 -7.06865267e+07 -6.56900208e+07 -6.49611470e+07 -4.01975527e+07 -6.50361970e+07 -7.10406610e+07 -7.11762359e+07 -5.38584729e+07 -7.23499355e+07 -6.54886109e+07 -6.66464004e+07 -6.52793835e+07 -7.01583407e+07 -6.56084698e+07 -6.57446188e+07 -6.54089580e+07 -4.08793439e+07 -6.55358845e+07 -4.73952239e+07 -4.04431127e+07 -3.60315733e+07] [-3.83897205e+07 -2.89798846e+07 -3.59330607e+07 -3.77614431e+07 -3.84348032e+07 -3.73794894e+07 -3.73153773e+07 -3.76886581e+07 -3.38649209e+07 -3.71489038e+07 -3.73292890e+07 -3.74818197e+07 -3.98422432e+07 -3.71327689e+07 -3.75456824e+07 -3.64734877e+07 -3.78971720e+07 -3.79129933e+07 -3.70846162e+07 -1.35677561e+07 -3.67410862e+07 -3.83036667e+07 -3.85019735e+07 -2.50762410e+07 -3.91535708e+07 -3.73866941e+07 -3.78634304e+07 -3.71632051e+07 -3.78646746e+07 -3.64086957e+07 -3.79135692e+07 -3.73337616e+07 -1.41892968e+07 -3.73430190e+07 -2.01156441e+07 -1.39257632e+07 -9.89883027e+06] [-2.28919849e+07 -1.56829315e+07 -2.09962088e+07 -2.23092257e+07 -2.22175495e+07 -2.16135791e+07 -2.19637068e+07 -2.09711028e+07 -1.84792250e+07 -2.11815690e+07 -2.16983145e+07 -2.16827929e+07 -2.33618558e+07 -2.16500876e+07 -2.16424584e+07 -2.09838677e+07 -2.09604231e+07 -2.25706188e+07 -2.16096343e+07 -3.62999683e+06 -2.12003254e+07 -2.14845462e+07 -2.16412202e+07 -1.24380999e+07 -2.21227367e+07 -2.17592866e+07 -2.19053883e+07 -2.15702998e+07 -2.12361647e+07 -2.06533466e+07 -2.24857698e+07 -2.17373588e+07 -4.05793971e+06 -2.17055588e+07 -8.71245007e+06 -3.91379197e+06 -1.10769099e+06] [-1.47199460e+07 -1.21353563e+07 -1.41143569e+07 -1.45732691e+07 -1.48395206e+07 -1.42560637e+07 -1.43544324e+07 -1.50846136e+07 -1.36657639e+07 -1.38688382e+07 -1.42750029e+07 -1.41743314e+07 -1.53160342e+07 -1.42832959e+07 -1.40874324e+07 -1.38881227e+07 -1.51317766e+07 -1.46199285e+07 -1.42911956e+07 -8.12792882e+06 -1.40352183e+07 -1.53480056e+07 -1.53416888e+07 -1.20127693e+07 -1.56922298e+07 -1.43551488e+07 -1.43334584e+07 -1.42082359e+07 -1.53212891e+07 -1.38168877e+07 -1.45712836e+07 -1.43073147e+07 -8.29150346e+06 -1.43013423e+07 -1.04602086e+07 -8.20469816e+06 -7.21187827e+06] [-4.50271342e+06 -3.97010829e+06 -4.10817544e+06 -4.33801472e+06 -4.28336677e+06 -4.01070425e+06 -4.32462595e+06 -4.75082777e+06 -4.39902312e+06 -3.93057291e+06 -3.93050396e+06 -3.93934063e+06 -4.28684230e+06 -3.97672010e+06 -3.91068817e+06 -4.09349174e+06 -4.57057973e+06 -4.49942224e+06 -3.96247193e+06 -4.02002201e+06 -3.97088498e+06 -4.67642838e+06 -4.74542892e+06 -4.63920139e+06 -4.70228751e+06 -3.93006814e+06 -4.02399102e+06 -3.95976055e+06 -4.70141228e+06 -3.94235402e+06 -4.47176525e+06 -3.96639269e+06 -4.03694158e+06 -3.96574513e+06 -4.43799193e+06 -4.00624648e+06 -3.99182291e+06] [-1.40270657e+06 -1.43351765e+06 -1.19014573e+06 -1.27893328e+06 -1.17924737e+06 -1.05507605e+06 -1.34644795e+06 -1.59980694e+06 -1.46277837e+06 -1.06159547e+06 -1.02952601e+06 -1.03847171e+06 -1.17266836e+06 -1.06367301e+06 -1.03055159e+06 -1.19234015e+06 -1.44708107e+06 -1.44799622e+06 -1.03877909e+06 -2.22351390e+06 -1.08088494e+06 -1.52135807e+06 -1.60439615e+06 -2.10789220e+06 -1.44741412e+06 -1.00686936e+06 -1.06217799e+06 -1.04716523e+06 -1.56290534e+06 -1.07636301e+06 -1.43874680e+06 -1.04528005e+06 -2.23289504e+06 -1.04602588e+06 -2.20271563e+06 -2.22491823e+06 -2.29518826e+06] [ 4.09183550e+05 3.13123226e+05 4.13152851e+05 4.24804427e+05 4.40060456e+05 4.53751699e+05 4.01929858e+05 3.91735131e+05 3.80287051e+05 4.58233374e+05 4.56863809e+05 4.62296932e+05 4.66295323e+05 4.44480275e+05 4.64409903e+05 4.28758647e+05 4.14429647e+05 3.98840108e+05 4.48850507e+05 6.83677547e+04 4.41168730e+05 4.01946054e+05 3.97790268e+05 1.85783094e+05 4.26853800e+05 4.57075731e+05 4.60915758e+05 4.50443757e+05 3.92885181e+05 4.24885498e+05 3.98660965e+05 4.51114329e+05 6.99203105e+04 4.52367017e+05 1.19597318e+05 7.23901991e+04 1.94684771e+04] [ 3.30919703e+04 4.50108354e+04 3.77248531e+04 3.58113727e+04 3.67991877e+04 3.58200024e+04 3.78684272e+04 4.49237756e+04 4.06918496e+04 3.66013323e+04 3.72663206e+04 3.40819420e+04 3.64000024e+04 3.49297752e+04 3.48686204e+04 3.58572748e+04 4.33119359e+04 3.50005993e+04 3.69259865e+04 3.63667831e+04 3.75364064e+04 4.28433807e+04 4.27359785e+04 4.70812128e+04 3.78775628e+04 3.82666720e+04 3.50682262e+04 3.64121927e+04 4.35851092e+04 3.97383769e+04 3.54912245e+04 3.69206602e+04 3.76396664e+04 3.60234611e+04 4.40756893e+04 3.73569552e+04 3.25523369e+04] [-2.97855926e+04 -3.05349165e+04 -3.17881190e+04 -2.98774191e+04 -3.55158290e+04 -3.13924458e+04 -2.99150522e+04 -4.33477552e+04 -3.86018499e+04 -2.98211516e+04 -3.15204757e+04 -3.13296463e+04 -3.51342306e+04 -3.22760454e+04 -3.13222132e+04 -2.98722614e+04 -4.39665982e+04 -2.97366062e+04 -3.18482112e+04 -4.58324872e+04 -3.17777641e+04 -4.39579230e+04 -4.37095025e+04 -4.45831938e+04 -4.57143972e+04 -3.17355710e+04 -3.08582678e+04 -3.15751929e+04 -4.42619629e+04 -2.96409359e+04 -2.96053770e+04 -3.17770520e+04 -4.59991468e+04 -3.14718956e+04 -4.53961369e+04 -4.59070933e+04 -4.66181812e+04] [-9.57522109e-01 -2.61478088e-01 -1.06776572e-01 3.12483968e-01 5.17511408e-01 2.62896477e-01 6.39420211e-01 8.09771894e-01 6.07107046e-01 8.86185596e-01 1.96336535e-01 3.30000069e-01 -4.05789236e-01 -1.09487038e-01 -1.25261597e-01 -5.16717627e-01 2.22489675e-02 5.91909203e-01 1.21198505e-01 9.82925310e-01 5.65902545e-01 8.65407916e-01 4.84880741e-01 -4.51072567e-01 4.71605879e-01 -3.02421397e-01 -4.81693218e-01 6.65035595e-01 5.72796966e-01 -5.63271610e-01 6.30557041e-01 -6.57290836e-01 1.70595456e-01 1.93051903e-01 -4.43600528e-01 -5.98507746e-01 7.21640453e-01] [-2.42520016e-01 6.84222602e-01 -6.48711997e-01 -5.92858655e-01 -3.63148400e-01 9.89635684e-01 -2.57748457e-01 3.63497335e-01 -2.60686109e-01 -9.57787548e-01 8.09558816e-01 -3.18730258e-01 3.00176637e-01 9.80043836e-01 1.46749548e-02 -7.83689108e-01 4.81537740e-01 7.85793431e-01 9.17611038e-01 1.56409486e-01 -8.34382794e-01 7.24965589e-02 5.81330477e-01 4.24294782e-01 -8.80373966e-01 8.41207020e-01 8.57381768e-01 -4.16524043e-01 -8.94723634e-01 -3.26324694e-01 1.77276925e-01 -9.84584214e-01 7.29549387e-01 -7.09964377e-01 3.78422075e-01 -6.90295235e-01 5.45077281e-01] [-3.48639452e-01 -2.70285867e-01 5.85030095e-01 9.24687010e-01 9.39327702e-01 1.11505461e-01 -6.81349728e-01 2.01207937e-01 4.17957193e-01 -4.39232275e-01 -2.68739230e-01 -7.10038258e-01 -8.98934905e-01 -7.45034571e-02 -6.02449624e-01 2.40898896e-01 5.31332150e-01 -2.78127807e-01 7.55489646e-01 1.79651806e-02 2.89848892e-01 -6.43240871e-01 -8.19044877e-01 -1.19199166e-01 -2.35971744e-01 4.55479477e-01 -5.19794330e-01 -2.63909928e-01 1.31301676e-02 -1.72838048e-01 3.81513576e-01 7.44475461e-01 6.56442887e-01 -4.90811353e-01 -5.61016442e-01 -6.22004126e-01 -5.96591710e-01] [ 5.37818500e-02 7.98536255e-01 7.50948357e-01 4.78644953e-01 2.82497296e-01 -4.80126060e-01 2.10630814e-01 5.40983072e-02 4.79034565e-02 8.42304019e-02 -5.52014229e-01 -7.96802670e-02 8.33447032e-01 -6.67217356e-01 -9.25665397e-01 -1.35419264e-01 6.54873406e-01 -4.09886729e-01 -4.98952107e-01 8.52415433e-01 -2.44708137e-01 -7.40494372e-01 2.24937082e-02 7.57447655e-01 1.89142741e-01 8.11717899e-01 -2.00041694e-01 -5.91581677e-01 -4.40349664e-01 3.29647673e-01 7.90206126e-01 -9.67087145e-01 -8.75138236e-01 8.64839603e-01 -7.62782855e-02 7.35014300e-02 -5.21369928e-01] [-1.22499983e+06 -1.17283338e+06 -1.25690760e+06 -1.24182709e+06 -1.37086705e+06 -1.27056580e+06 -1.20685848e+06 -1.52587265e+06 -1.38525975e+06 -1.24045411e+06 -1.27593502e+06 -1.26140490e+06 -1.37160678e+06 -1.26700267e+06 -1.26345315e+06 -1.23943212e+06 -1.55987266e+06 -1.20884961e+06 -1.27550978e+06 -1.17504283e+06 -1.26605980e+06 -1.55179415e+06 -1.54026550e+06 -1.39329586e+06 -1.60080434e+06 -1.27815074e+06 -1.27195348e+06 -1.26663758e+06 -1.54219920e+06 -1.23459595e+06 -1.20889935e+06 -1.27331842e+06 -1.18288762e+06 -1.26779036e+06 -1.28926699e+06 -1.18094746e+06 -1.11118074e+06] [-4.63482323e+06 -4.56298800e+06 -4.86823687e+06 -4.71454278e+06 -5.39902801e+06 -4.86804845e+06 -4.55506212e+06 -5.96760450e+06 -5.39868621e+06 -4.69740029e+06 -4.88872387e+06 -4.83488722e+06 -5.27896966e+06 -4.85270330e+06 -4.81650138e+06 -4.74846413e+06 -6.10358400e+06 -4.55210225e+06 -4.89447767e+06 -4.42823423e+06 -4.83420989e+06 -6.10631671e+06 -6.03498519e+06 -5.39967660e+06 -6.32658079e+06 -4.90402374e+06 -4.87707797e+06 -4.85216452e+06 -6.05765361e+06 -4.81167246e+06 -4.54757785e+06 -4.88270792e+06 -4.44029740e+06 -4.86918595e+06 -4.91038382e+06 -4.44200261e+06 -4.16874588e+06] [-1.29704237e+07 -1.29747677e+07 -1.36097319e+07 -1.32232156e+07 -1.49169535e+07 -1.35864554e+07 -1.28525046e+07 -1.66957677e+07 -1.51237733e+07 -1.32327975e+07 -1.36907987e+07 -1.35392773e+07 -1.47559734e+07 -1.36510345e+07 -1.34941602e+07 -1.32719185e+07 -1.70094740e+07 -1.28059379e+07 -1.37074608e+07 -1.34960695e+07 -1.35380446e+07 -1.70137998e+07 -1.68473502e+07 -1.55699059e+07 -1.74425105e+07 -1.37500955e+07 -1.36102755e+07 -1.36157795e+07 -1.69334402e+07 -1.34351865e+07 -1.27959823e+07 -1.36751979e+07 -1.35144034e+07 -1.36285902e+07 -1.45407108e+07 -1.35063872e+07 -1.29875971e+07] [-3.25338445e+07 -3.27282857e+07 -3.36783178e+07 -3.30442039e+07 -3.68135476e+07 -3.36984307e+07 -3.22672173e+07 -4.13803475e+07 -3.77177083e+07 -3.29873689e+07 -3.38578119e+07 -3.35623569e+07 -3.63902556e+07 -3.37503376e+07 -3.34594077e+07 -3.30384925e+07 -4.20562368e+07 -3.22277464e+07 -3.38820802e+07 -3.49410819e+07 -3.35625110e+07 -4.20297711e+07 -4.16925644e+07 -3.92146444e+07 -4.29281947e+07 -3.40103929e+07 -3.37635039e+07 -3.37084773e+07 -4.18805700e+07 -3.34612865e+07 -3.22171767e+07 -3.38250303e+07 -3.49838097e+07 -3.37360206e+07 -3.70743572e+07 -3.49331053e+07 -3.38721691e+07] [-6.43569448e+07 -6.65565072e+07 -6.61999081e+07 -6.50168309e+07 -7.23216147e+07 -6.62406597e+07 -6.42127707e+07 -8.16257799e+07 -7.53131035e+07 -6.52283959e+07 -6.61325183e+07 -6.56879808e+07 -7.04094035e+07 -6.57994280e+07 -6.56043528e+07 -6.55248419e+07 -8.27262861e+07 -6.39939009e+07 -6.62838754e+07 -7.54570243e+07 -6.61968356e+07 -8.25447152e+07 -8.19471628e+07 -8.01507659e+07 -8.37145589e+07 -6.64201158e+07 -6.61982047e+07 -6.60070071e+07 -8.21946063e+07 -6.66931465e+07 -6.39854464e+07 -6.61657286e+07 -7.55108749e+07 -6.59657177e+07 -7.78842891e+07 -7.53653255e+07 -7.45354840e+07] [-1.07408305e+08 -1.15148035e+08 -1.11040252e+08 -1.08536592e+08 -1.20993501e+08 -1.10977739e+08 -1.08067303e+08 -1.38544251e+08 -1.28504216e+08 -1.09750792e+08 -1.10565315e+08 -1.09642333e+08 -1.16795149e+08 -1.09816798e+08 -1.09775226e+08 -1.10065677e+08 -1.40184223e+08 -1.07244100e+08 -1.10895279e+08 -1.38039330e+08 -1.11427695e+08 -1.39522733e+08 -1.38490770e+08 -1.41018800e+08 -1.40743023e+08 -1.11089023e+08 -1.10590196e+08 -1.10554483e+08 -1.38948222e+08 -1.12668385e+08 -1.07323760e+08 -1.10619120e+08 -1.38120617e+08 -1.10099755e+08 -1.39917573e+08 -1.37818037e+08 -1.38125614e+08] [-1.49968082e+08 -1.60872602e+08 -1.54204780e+08 -1.50913451e+08 -1.67085276e+08 -1.53473483e+08 -1.51153710e+08 -1.91327145e+08 -1.77186266e+08 -1.52012723e+08 -1.52936041e+08 -1.51563490e+08 -1.61209664e+08 -1.51968748e+08 -1.51815217e+08 -1.52916051e+08 -1.92382712e+08 -1.50043683e+08 -1.53447368e+08 -1.94213752e+08 -1.54372467e+08 -1.92070006e+08 -1.90990768e+08 -1.96514637e+08 -1.92453963e+08 -1.53582432e+08 -1.52902723e+08 -1.53000974e+08 -1.91521376e+08 -1.56739893e+08 -1.50044515e+08 -1.53062088e+08 -1.94274191e+08 -1.52278870e+08 -1.96234244e+08 -1.93823033e+08 -1.95831089e+08] [-1.90361326e+08 -1.96472224e+08 -1.92721337e+08 -1.90351926e+08 -2.06581264e+08 -1.91816137e+08 -1.90572230e+08 -2.33177078e+08 -2.15269718e+08 -1.89730928e+08 -1.91158603e+08 -1.89499953e+08 -2.01465714e+08 -1.89841857e+08 -1.89647234e+08 -1.91086372e+08 -2.33598375e+08 -1.90525278e+08 -1.91861022e+08 -2.25580732e+08 -1.92496278e+08 -2.34115109e+08 -2.33410839e+08 -2.34054880e+08 -2.34335890e+08 -1.91852416e+08 -1.91398440e+08 -1.91225464e+08 -2.33557044e+08 -1.94800740e+08 -1.90296307e+08 -1.91383918e+08 -2.25740232e+08 -1.90434540e+08 -2.31238334e+08 -2.25149404e+08 -2.26893387e+08] [-2.13274300e+08 -2.11254046e+08 -2.12457513e+08 -2.12013312e+08 -2.27080241e+08 -2.12567513e+08 -2.12244080e+08 -2.51965736e+08 -2.32461594e+08 -2.10636430e+08 -2.11327482e+08 -2.10485602e+08 -2.23169347e+08 -2.10143306e+08 -2.10557936e+08 -2.12345500e+08 -2.51868293e+08 -2.13133874e+08 -2.11924424e+08 -2.30754402e+08 -2.12522948e+08 -2.52905017e+08 -2.52588720e+08 -2.43903670e+08 -2.53377130e+08 -2.11913461e+08 -2.12779307e+08 -2.11624088e+08 -2.51951350e+08 -2.15293146e+08 -2.12740821e+08 -2.11695365e+08 -2.31001342e+08 -2.10951911e+08 -2.38897405e+08 -2.30207063e+08 -2.31142654e+08] [-2.21075953e+08 -2.15533948e+08 -2.20583492e+08 -2.19725576e+08 -2.35810056e+08 -2.20815915e+08 -2.19959293e+08 -2.59876683e+08 -2.38324838e+08 -2.18183247e+08 -2.19394102e+08 -2.18733428e+08 -2.32573127e+08 -2.18826080e+08 -2.18658388e+08 -2.19794911e+08 -2.60042379e+08 -2.20822985e+08 -2.20088375e+08 -2.29662166e+08 -2.20588008e+08 -2.61149025e+08 -2.60663136e+08 -2.46490828e+08 -2.62099795e+08 -2.20292824e+08 -2.21242360e+08 -2.19980720e+08 -2.60132616e+08 -2.23159180e+08 -2.20346783e+08 -2.19910155e+08 -2.29997664e+08 -2.19213714e+08 -2.39878022e+08 -2.29103981e+08 -2.29639973e+08] [-2.26042070e+08 -2.21963955e+08 -2.27916478e+08 -2.25554061e+08 -2.43703112e+08 -2.27842843e+08 -2.25198088e+08 -2.69124828e+08 -2.46161403e+08 -2.24255658e+08 -2.26965711e+08 -2.25711908e+08 -2.40798602e+08 -2.26522291e+08 -2.25362267e+08 -2.25689088e+08 -2.69829661e+08 -2.25590381e+08 -2.27751558e+08 -2.35755538e+08 -2.27427271e+08 -2.70824801e+08 -2.69761004e+08 -2.55309577e+08 -2.72500498e+08 -2.28205202e+08 -2.28095503e+08 -2.27377909e+08 -2.69738600e+08 -2.29574871e+08 -2.25208609e+08 -2.27484746e+08 -2.36087613e+08 -2.26761093e+08 -2.47189217e+08 -2.35151394e+08 -2.35117600e+08] [-2.01592897e+08 -1.90361276e+08 -2.01868733e+08 -2.00985923e+08 -2.14811198e+08 -2.02562099e+08 -1.99853722e+08 -2.32557574e+08 -2.12068451e+08 -1.99192409e+08 -2.02149521e+08 -2.01132915e+08 -2.14497200e+08 -2.01719353e+08 -2.00673042e+08 -1.99619408e+08 -2.33511830e+08 -2.00894417e+08 -2.02701096e+08 -1.87178810e+08 -2.01641960e+08 -2.34783774e+08 -2.33735762e+08 -2.12162710e+08 -2.36959264e+08 -2.03218587e+08 -2.03051950e+08 -2.02357002e+08 -2.33644486e+08 -2.02101895e+08 -2.00435320e+08 -2.02569549e+08 -1.87759181e+08 -2.01985138e+08 -2.01368279e+08 -1.86932676e+08 -1.84063203e+08] [-1.53272185e+08 -1.37273104e+08 -1.50529935e+08 -1.52202937e+08 -1.59615647e+08 -1.52092230e+08 -1.50576976e+08 -1.68179843e+08 -1.53560673e+08 -1.49861505e+08 -1.51757132e+08 -1.51392183e+08 -1.60876253e+08 -1.51035200e+08 -1.50970678e+08 -1.49731235e+08 -1.69002441e+08 -1.52364959e+08 -1.51934464e+08 -1.20791514e+08 -1.50647376e+08 -1.70397461e+08 -1.69628168e+08 -1.45792222e+08 -1.72511703e+08 -1.52257287e+08 -1.52836695e+08 -1.51688896e+08 -1.69118923e+08 -1.50483246e+08 -1.51877448e+08 -1.52034088e+08 -1.21454119e+08 -1.51785376e+08 -1.34570295e+08 -1.20806995e+08 -1.16235381e+08] [-1.09780187e+08 -9.12080446e+07 -1.04458328e+08 -1.08271811e+08 -1.09774270e+08 -1.06970205e+08 -1.06674669e+08 -1.10858126e+08 -1.01717404e+08 -1.05858867e+08 -1.06593405e+08 -1.06862765e+08 -1.12610310e+08 -1.05838339e+08 -1.06557542e+08 -1.05299396e+08 -1.11350817e+08 -1.09015616e+08 -1.06454436e+08 -6.57042263e+07 -1.05018742e+08 -1.12643351e+08 -1.12453044e+08 -8.82967361e+07 -1.14316472e+08 -1.06665156e+08 -1.07870172e+08 -1.06390257e+08 -1.11596166e+08 -1.04705799e+08 -1.08555788e+08 -1.06718621e+08 -6.63436976e+07 -1.06778558e+08 -7.81893883e+07 -6.58233615e+07 -6.04213050e+07] [-6.78764198e+07 -5.06226962e+07 -6.30762838e+07 -6.66992991e+07 -6.51092897e+07 -6.52126773e+07 -6.54637604e+07 -6.14501985e+07 -5.60569623e+07 -6.45912525e+07 -6.51336074e+07 -6.52930343e+07 -6.83594696e+07 -6.44784421e+07 -6.51119998e+07 -6.40081019e+07 -6.18273374e+07 -6.72945971e+07 -6.50099824e+07 -2.23281065e+07 -6.36686594e+07 -6.29223335e+07 -6.29154221e+07 -4.17872299e+07 -6.42643434e+07 -6.51186176e+07 -6.59269315e+07 -6.48720858e+07 -6.21437201e+07 -6.32005813e+07 -6.69658428e+07 -6.52161416e+07 -2.29915574e+07 -6.52311306e+07 -3.31527571e+07 -2.26124234e+07 -1.73113787e+07] [-4.11201094e+07 -2.68461453e+07 -3.70569340e+07 -4.00635451e+07 -3.72875006e+07 -3.84507492e+07 -3.93219361e+07 -3.28071248e+07 -2.94149957e+07 -3.84459476e+07 -3.86353527e+07 -3.88132146e+07 -4.03725694e+07 -3.82984971e+07 -3.87659190e+07 -3.79707781e+07 -3.27852938e+07 -4.07230554e+07 -3.84814344e+07 -3.09960732e+06 -3.75309697e+07 -3.37011194e+07 -3.39064631e+07 -1.77659938e+07 -3.44164113e+07 -3.85405834e+07 -3.90672180e+07 -3.84556373e+07 -3.31335181e+07 -3.69393494e+07 -4.04855612e+07 -3.86736259e+07 -3.69255211e+06 -3.86339780e+07 -1.14194624e+07 -3.43677263e+06 9.03406337e+05] [-2.29719593e+07 -1.18151770e+07 -1.97271068e+07 -2.20887086e+07 -1.92214638e+07 -2.07396601e+07 -2.15862114e+07 -1.47203088e+07 -1.28577366e+07 -2.09177571e+07 -2.10104304e+07 -2.12267086e+07 -2.19285270e+07 -2.09228026e+07 -2.12147641e+07 -2.03521382e+07 -1.44633614e+07 -2.27150854e+07 -2.09129625e+07 7.53385999e+06 -2.01101230e+07 -1.52207079e+07 -1.55346138e+07 -3.05180287e+06 -1.56254328e+07 -2.09180005e+07 -2.12280075e+07 -2.09477421e+07 -1.49269343e+07 -1.94290671e+07 -2.25360090e+07 -2.10607460e+07 7.08012279e+06 -2.10263007e+07 1.35050181e+06 7.24582295e+06 1.04809309e+07] [-1.69067723e+07 -8.84384046e+06 -1.45445925e+07 -1.61319711e+07 -1.43842120e+07 -1.51316906e+07 -1.59079887e+07 -1.13083583e+07 -9.83175696e+06 -1.51164941e+07 -1.52966115e+07 -1.54052535e+07 -1.61650408e+07 -1.53757028e+07 -1.53676237e+07 -1.48470747e+07 -1.09628986e+07 -1.67629287e+07 -1.52812763e+07 4.85219284e+06 -1.46823162e+07 -1.15817157e+07 -1.18636065e+07 -2.74056876e+06 -1.18171607e+07 -1.53128583e+07 -1.54589914e+07 -1.52726083e+07 -1.13817871e+07 -1.41892409e+07 -1.66450240e+07 -1.53637733e+07 4.50071048e+06 -1.53247353e+07 2.60880465e+05 4.62298159e+06 7.05360631e+06] [-1.08323367e+07 -6.11000563e+06 -9.47516866e+06 -1.03335966e+07 -9.53919740e+06 -9.77946743e+06 -1.02550616e+07 -7.84965682e+06 -6.91972506e+06 -9.73039845e+06 -9.77198178e+06 -9.85756882e+06 -1.03394447e+07 -9.85023366e+06 -9.82182776e+06 -9.68829418e+06 -7.64476637e+06 -1.07462106e+07 -9.80249421e+06 1.81068898e+06 -9.53467847e+06 -7.96305784e+06 -8.10876944e+06 -2.60767461e+06 -8.11152175e+06 -9.81712116e+06 -9.94743374e+06 -9.78811770e+06 -7.81008257e+06 -9.32082799e+06 -1.06687627e+07 -9.83988036e+06 1.60809298e+06 -9.81650780e+06 -9.23281447e+05 1.68738313e+06 3.09329772e+06] [-2.79706558e+06 -1.25290294e+06 -2.24240419e+06 -2.58749178e+06 -2.11732202e+06 -2.34576735e+06 -2.60547566e+06 -1.52165403e+06 -1.35064020e+06 -2.37774501e+06 -2.30948951e+06 -2.35505737e+06 -2.38654891e+06 -2.32536949e+06 -2.34914973e+06 -2.36746376e+06 -1.37856265e+06 -2.78609244e+06 -2.31176368e+06 1.13289673e+06 -2.26988484e+06 -1.47822676e+06 -1.56485842e+06 -9.44904502e+04 -1.46442132e+06 -2.30497266e+06 -2.38959117e+06 -2.32336928e+06 -1.44196234e+06 -2.17538148e+06 -2.76185315e+06 -2.33289102e+06 1.06693940e+06 -2.33046673e+06 3.40690800e+05 1.10348493e+06 1.49857614e+06] [-6.38212076e+05 -2.79479356e+05 -5.20306605e+05 -6.00606382e+05 -3.91688579e+05 -5.37870141e+05 -6.02728388e+05 -2.21833832e+05 -1.81161806e+05 -5.19854998e+05 -5.39763202e+05 -5.40685409e+05 -5.48062112e+05 -5.47864487e+05 -5.27999065e+05 -5.22200986e+05 -1.92535364e+05 -6.51695780e+05 -5.36331048e+05 2.74490677e+05 -5.07532916e+05 -2.23408115e+05 -2.41386404e+05 -1.38866968e+04 -2.23861670e+05 -5.32612233e+05 -5.47527491e+05 -5.36202270e+05 -2.39534490e+05 -4.44109604e+05 -6.44815510e+05 -5.40494753e+05 2.55439417e+05 -5.45849509e+05 8.28652247e+04 2.67792573e+05 3.50030506e+05] [ 2.25619247e+05 2.28068136e+05 2.41954375e+05 2.44696437e+05 2.59511458e+05 2.56686973e+05 2.28598487e+05 2.81130377e+05 2.63397473e+05 2.69904493e+05 2.70128006e+05 2.65968725e+05 2.70890589e+05 2.57536133e+05 2.70210543e+05 2.44775093e+05 2.92023567e+05 2.23473260e+05 2.64234418e+05 1.78298097e+05 2.59178595e+05 2.89884925e+05 2.84757813e+05 2.17264736e+05 2.87467069e+05 2.70451161e+05 2.59203224e+05 2.63602321e+05 2.80413209e+05 2.52441264e+05 2.25208734e+05 2.66038188e+05 1.78753917e+05 2.64522896e+05 1.94464587e+05 1.79200092e+05 1.59981384e+05] [-1.21985142e+04 7.01781201e+04 2.85341814e+04 1.79752970e+03 3.67671607e+04 1.89348736e+04 3.40234585e+03 8.68683666e+04 7.66120999e+04 1.09107683e+04 2.45159954e+04 1.13252398e+04 2.31201375e+04 2.01563988e+04 1.24744770e+04 1.22134309e+04 8.98286983e+04 -1.05901742e+04 2.77983128e+04 1.59230642e+05 2.56569380e+04 8.59132728e+04 8.17384794e+04 1.45510735e+05 8.57017873e+04 2.82491041e+04 1.19682042e+04 2.19315927e+04 8.86989508e+04 3.00829845e+04 -8.53021127e+03 2.48309618e+04 1.58084923e+05 2.11761315e+04 1.52317568e+05 1.58081052e+05 1.70371157e+05] [ 6.64492856e-01 4.29545370e-01 -3.64446425e-01 6.34060099e-01 7.47087019e-01 2.01622382e-02 4.15929455e-02 -7.13995837e-01 -6.02522710e-01 -6.89146440e-01 4.86664957e-01 -8.73206521e-01 -1.72007687e-01 -4.61906013e-01 7.66166025e-01 1.67887197e-01 -7.09181729e-01 -5.40461329e-02 2.21764490e-01 2.49572334e-02 -3.56132639e-01 4.19442158e-02 -7.76114401e-01 -2.99875518e-01 9.35331555e-01 -5.14406316e-01 -7.08416001e-01 9.36780390e-01 -6.06729683e-01 -7.42492752e-01 -6.85964976e-01 -3.72176587e-01 8.41122734e-01 -6.36781699e-01 -4.20422176e-01 -1.45293685e-01 9.38612190e-01] [ 8.59279978e-01 6.59615475e-01 -3.30303898e-01 5.44896158e-01 5.11998567e-01 -9.36346457e-01 -3.88195242e-01 4.96262755e-01 5.90488929e-01 -5.38107418e-01 9.11957176e-01 -4.52768437e-01 -2.56415710e-01 9.71068284e-01 4.92390430e-01 7.74017817e-01 -2.18021809e-01 -5.81401712e-01 4.89778823e-01 -3.44085692e-02 -3.33074215e-01 8.71990181e-01 -3.54739218e-01 -6.01096114e-01 -5.66195920e-01 9.25072455e-01 9.64734632e-01 5.96604823e-01 8.05685523e-01 -6.11966173e-01 -2.39249817e-01 5.47780711e-01 -3.90487381e-01 -6.74727854e-01 9.26197245e-01 8.44653418e-01 -2.37457039e-01] [ 4.57613013e-01 -6.08414378e-01 8.84619976e-01 9.91633962e-01 -5.82856610e-01 8.93186955e-02 1.90375742e-01 9.44138430e-01 -1.80580969e-01 9.69950950e-01 -2.92969038e-01 -6.67162170e-01 -9.45600921e-01 1.78684374e-01 1.31982480e-01 1.41425467e-02 -8.23400522e-01 -6.21197584e-01 -7.45830180e-01 -1.17667145e-01 7.85041969e-01 2.32454761e-02 -8.60831633e-01 9.20234138e-02 2.03658373e-01 5.72791008e-01 8.18827567e-02 2.71790000e-01 -8.62069790e-01 -6.64025276e-01 -5.06809521e-01 -7.31413262e-01 -2.43101973e-01 -3.38787678e-01 -3.45863329e-01 4.39846345e-01 -8.61669481e-01] [-6.46197356e-01 -1.46751304e-01 -4.35387460e-01 8.33424048e-01 -9.82033223e-01 3.04473623e-01 -1.87081081e-01 8.83805395e-01 -8.35119557e-01 1.88688267e-01 -5.50746414e-01 9.41502136e-01 2.35434042e-01 -1.30191965e-01 -2.87439165e-01 -2.01150933e-01 -3.98807840e-01 9.11861558e-01 -2.15717946e-01 1.13590517e-01 8.00333122e-01 8.61768272e-01 -4.78908867e-01 6.05303633e-01 -9.83503144e-01 3.77838365e-01 -9.04616246e-01 -7.19885076e-01 -5.21383193e-03 7.04697215e-01 -9.15335298e-01 1.54741635e-01 -7.72708263e-01 1.13628411e-01 3.35562622e-01 -3.55282451e-01 -2.28525690e-01] [-4.08509151e-01 -4.19004137e-01 2.42583800e-01 -5.42590122e-03 -3.02417880e-01 -1.56871339e-01 -1.26394383e-02 -3.07327684e-01 -8.09342785e-01 4.40464890e-01 2.69241978e-01 -8.68184191e-01 3.89140438e-01 8.65400576e-01 2.31386070e-02 -1.25374518e-01 3.94615143e-01 -5.36414869e-02 7.78248864e-01 1.22883834e-01 -8.02807866e-01 3.30035089e-01 8.79334393e-01 5.31088925e-01 -6.91970118e-01 -3.05512010e-01 4.70353878e-01 -6.78813403e-01 -3.03707652e-01 -8.42754336e-01 -7.29922237e-01 9.25937253e-01 3.12212683e-01 9.91750321e-01 -5.82497309e-01 -8.10144262e-01 -7.25576774e-01] [-1.53396567e+04 -1.46793593e+04 -1.90651963e+04 -1.66552061e+04 -1.85409779e+04 -1.85478312e+04 -1.31452618e+04 -1.60605701e+04 -1.49703151e+04 -1.67843989e+04 -1.94071491e+04 -1.87407829e+04 -2.05665106e+04 -1.90350990e+04 -1.74937584e+04 -1.67939628e+04 -1.74158167e+04 -1.44332726e+04 -1.96304197e+04 6.00912820e+03 -1.64200221e+04 -1.85509012e+04 -1.73669341e+04 -8.46309537e+03 -1.90236324e+04 -1.90653093e+04 -1.87657160e+04 -1.87291286e+04 -1.78440976e+04 -1.73595486e+04 -1.40302644e+04 -1.91413220e+04 6.64615756e+03 -1.94099687e+04 -5.14559392e+01 6.16556784e+03 8.98395774e+03] [-5.46570242e+05 -5.32842909e+05 -5.94691515e+05 -5.66436307e+05 -6.36652514e+05 -5.92670514e+05 -5.13138586e+05 -6.69047154e+05 -6.12528549e+05 -5.55325915e+05 -6.00241725e+05 -5.88288828e+05 -6.43794801e+05 -5.89772304e+05 -5.74177217e+05 -5.56505185e+05 -6.96031865e+05 -5.31690937e+05 -6.03782294e+05 -3.43031464e+05 -5.66691819e+05 -7.03758118e+05 -6.86226870e+05 -5.59705438e+05 -7.31833923e+05 -6.00112678e+05 -5.95227589e+05 -5.91133605e+05 -6.93310375e+05 -5.67278718e+05 -5.27539783e+05 -5.97432889e+05 -3.36449166e+05 -5.98441468e+05 -4.38081778e+05 -3.41412687e+05 -2.97923915e+05] [-3.29240245e+06 -3.13696708e+06 -3.48410590e+06 -3.37720943e+06 -3.79092795e+06 -3.50191073e+06 -3.16329459e+06 -4.10698180e+06 -3.71859615e+06 -3.32401937e+06 -3.52315813e+06 -3.46355452e+06 -3.78646877e+06 -3.49486664e+06 -3.42445115e+06 -3.30882644e+06 -4.25969661e+06 -3.22933173e+06 -3.55072397e+06 -2.76784634e+06 -3.42769568e+06 -4.26748815e+06 -4.20140439e+06 -3.65229333e+06 -4.47642745e+06 -3.54420598e+06 -3.50340385e+06 -3.49717883e+06 -4.22471579e+06 -3.32977265e+06 -3.21508589e+06 -3.51945769e+06 -2.75211690e+06 -3.50040015e+06 -3.19142279e+06 -2.76510904e+06 -2.57902703e+06] [-9.37705951e+06 -9.02751558e+06 -9.52749008e+06 -9.48777885e+06 -1.02498977e+07 -9.53035133e+06 -9.05106800e+06 -1.12339502e+07 -1.02713935e+07 -9.21267786e+06 -9.57796267e+06 -9.43843354e+06 -1.02354053e+07 -9.49967618e+06 -9.36283334e+06 -9.20812355e+06 -1.14973004e+07 -9.27637714e+06 -9.64919504e+06 -8.61449898e+06 -9.38096557e+06 -1.15674235e+07 -1.14463880e+07 -1.05142222e+07 -1.18989185e+07 -9.61330990e+06 -9.53634889e+06 -9.52745243e+06 -1.14777530e+07 -9.19496116e+06 -9.22921911e+06 -9.58105943e+06 -8.59432553e+06 -9.52761132e+06 -9.58554767e+06 -8.61020930e+06 -8.26905259e+06] [-2.12993725e+07 -2.02956864e+07 -2.11168775e+07 -2.13157415e+07 -2.24323033e+07 -2.09942192e+07 -2.06550912e+07 -2.45095047e+07 -2.25955671e+07 -2.05120654e+07 -2.10786414e+07 -2.08022125e+07 -2.24034436e+07 -2.09216317e+07 -2.06855539e+07 -2.06466778e+07 -2.48741311e+07 -2.11851936e+07 -2.12482142e+07 -2.03193996e+07 -2.08315693e+07 -2.51393737e+07 -2.49585937e+07 -2.36802974e+07 -2.56423701e+07 -2.10988802e+07 -2.09903879e+07 -2.09896049e+07 -2.49666379e+07 -2.03906018e+07 -2.10365300e+07 -2.11193439e+07 -2.03180668e+07 -2.09811004e+07 -2.22277479e+07 -2.03393715e+07 -1.98005394e+07] [-3.53474899e+07 -3.28027775e+07 -3.44540863e+07 -3.50981011e+07 -3.62369508e+07 -3.38865823e+07 -3.40157809e+07 -3.89816476e+07 -3.58759433e+07 -3.30946178e+07 -3.39771757e+07 -3.34315597e+07 -3.59560209e+07 -3.36250863e+07 -3.32139574e+07 -3.37703815e+07 -3.94815225e+07 -3.51452500e+07 -3.43860662e+07 -3.10583939e+07 -3.37326696e+07 -4.01925864e+07 -3.99215437e+07 -3.77557901e+07 -4.10879507e+07 -3.39598463e+07 -3.38810375e+07 -3.38611865e+07 -3.98321428e+07 -3.32768979e+07 -3.48308154e+07 -3.41278985e+07 -3.10579115e+07 -3.38070789e+07 -3.49134077e+07 -3.11136704e+07 -3.02471898e+07] [-4.86684186e+07 -4.14603347e+07 -4.60570804e+07 -4.77799445e+07 -4.72447040e+07 -4.49575171e+07 -4.60802325e+07 -4.84216589e+07 -4.41518619e+07 -4.38684918e+07 -4.52063329e+07 -4.44120526e+07 -4.75160950e+07 -4.45845385e+07 -4.40075680e+07 -4.51647973e+07 -4.88678262e+07 -4.83420588e+07 -4.59281437e+07 -3.24170428e+07 -4.47053179e+07 -5.04492758e+07 -5.01568650e+07 -4.47994356e+07 -5.17839842e+07 -4.50940290e+07 -4.50813091e+07 -4.50827616e+07 -4.98598174e+07 -4.40462263e+07 -4.77335515e+07 -4.55293105e+07 -3.24331731e+07 -4.50072269e+07 -3.94315039e+07 -3.25231285e+07 -3.11876732e+07] [-6.12075349e+07 -4.75413422e+07 -5.59764209e+07 -5.92723853e+07 -5.65449573e+07 -5.45618756e+07 -5.71213200e+07 -5.52525283e+07 -4.99474535e+07 -5.30278192e+07 -5.46840085e+07 -5.38793397e+07 -5.74255590e+07 -5.38679702e+07 -5.32235472e+07 -5.51781875e+07 -5.54759511e+07 -6.07345621e+07 -5.57236088e+07 -2.91374816e+07 -5.39781861e+07 -5.79122333e+07 -5.78157758e+07 -4.75451450e+07 -5.98481953e+07 -5.44885978e+07 -5.49006478e+07 -5.46117150e+07 -5.72283423e+07 -5.32725102e+07 -5.97861591e+07 -5.52414289e+07 -2.91871701e+07 -5.46123533e+07 -3.94994462e+07 -2.92812890e+07 -2.74066396e+07] [-6.43034186e+07 -4.64760827e+07 -5.81686520e+07 -6.17991082e+07 -5.82807044e+07 -5.66738374e+07 -5.95861396e+07 -5.50850375e+07 -4.89567779e+07 -5.44920896e+07 -5.65813626e+07 -5.59399514e+07 -6.00422329e+07 -5.62178317e+07 -5.50059647e+07 -5.71723771e+07 -5.51816910e+07 -6.37148581e+07 -5.78360087e+07 -2.20630706e+07 -5.57400703e+07 -5.79328147e+07 -5.80350600e+07 -4.38169204e+07 -6.02593368e+07 -5.65018112e+07 -5.71459493e+07 -5.66627098e+07 -5.73686087e+07 -5.49685617e+07 -6.26069392e+07 -5.73010111e+07 -2.20891772e+07 -5.67221253e+07 -3.43782918e+07 -2.21862937e+07 -1.98309110e+07] [-6.65796105e+07 -4.79862992e+07 -6.12068190e+07 -6.40870109e+07 -6.15419490e+07 -5.95855853e+07 -6.17646486e+07 -5.79367166e+07 -5.11059127e+07 -5.66282287e+07 -5.94281758e+07 -5.87582825e+07 -6.34935480e+07 -5.94303372e+07 -5.75721739e+07 -5.94264144e+07 -5.81758998e+07 -6.59341536e+07 -6.07527762e+07 -2.09165058e+07 -5.83683503e+07 -6.09112285e+07 -6.09094511e+07 -4.48657195e+07 -6.35619896e+07 -5.96014590e+07 -6.00490878e+07 -5.95736289e+07 -6.03556317e+07 -5.74916244e+07 -6.48329010e+07 -6.01848274e+07 -2.09324786e+07 -5.96964466e+07 -3.44372438e+07 -2.10319385e+07 -1.79864099e+07] [-6.58141253e+07 -4.79358080e+07 -6.14655197e+07 -6.36898865e+07 -6.18639017e+07 -6.00108815e+07 -6.10065321e+07 -5.85672204e+07 -5.14613599e+07 -5.64930877e+07 -6.00919036e+07 -5.92651950e+07 -6.43922257e+07 -6.02231025e+07 -5.78608674e+07 -5.89109292e+07 -5.89639052e+07 -6.51961148e+07 -6.13813035e+07 -2.00869733e+07 -5.83469837e+07 -6.15928081e+07 -6.13885913e+07 -4.48871222e+07 -6.44958386e+07 -6.04916377e+07 -6.04683690e+07 -6.01536820e+07 -6.11160091e+07 -5.72115798e+07 -6.41406490e+07 -6.07797337e+07 -2.00995872e+07 -6.04010436e+07 -3.38901186e+07 -2.01987628e+07 -1.66836217e+07] [-5.79872770e+07 -4.13429733e+07 -5.39074876e+07 -5.61467387e+07 -5.43416777e+07 -5.29387794e+07 -5.35360839e+07 -5.05791634e+07 -4.45982942e+07 -4.98499897e+07 -5.31109193e+07 -5.23149368e+07 -5.66073907e+07 -5.29813105e+07 -5.10877840e+07 -5.16724044e+07 -5.09398746e+07 -5.73554512e+07 -5.41739368e+07 -1.43350709e+07 -5.12656933e+07 -5.33189489e+07 -5.30173122e+07 -3.70510050e+07 -5.57334281e+07 -5.34289175e+07 -5.33189755e+07 -5.30403892e+07 -5.26498966e+07 -5.02094438e+07 -5.64178352e+07 -5.36812619e+07 -1.43475164e+07 -5.33839726e+07 -2.68000576e+07 -1.44206031e+07 -1.11292115e+07] [-4.30574552e+07 -2.87216015e+07 -3.90420060e+07 -4.15768553e+07 -3.92298058e+07 -3.85639321e+07 -3.94008403e+07 -3.50724154e+07 -3.08725367e+07 -3.64614152e+07 -3.88050517e+07 -3.80360600e+07 -4.10419028e+07 -3.83772536e+07 -3.72913478e+07 -3.77006401e+07 -3.53857413e+07 -4.24838270e+07 -3.95080018e+07 -4.97869939e+06 -3.73442710e+07 -3.73607713e+07 -3.71017672e+07 -2.35972745e+07 -3.90173978e+07 -3.88935312e+07 -3.88390526e+07 -3.85539037e+07 -3.66300006e+07 -3.64430158e+07 -4.17180973e+07 -3.91861410e+07 -5.04266041e+06 -3.88933917e+07 -1.52195974e+07 -5.07914329e+06 -2.21625427e+06] [-3.31220314e+07 -2.09091977e+07 -2.99014625e+07 -3.20841871e+07 -2.96058396e+07 -2.99454247e+07 -3.04708584e+07 -2.50733145e+07 -2.20975390e+07 -2.85038310e+07 -3.01803270e+07 -2.95809326e+07 -3.15427991e+07 -2.98013383e+07 -2.91405841e+07 -2.90048142e+07 -2.53951426e+07 -3.26989001e+07 -3.07128279e+07 4.69534956e+05 -2.89744838e+07 -2.68656335e+07 -2.66428266e+07 -1.46204057e+07 -2.80747233e+07 -3.02697675e+07 -3.01017524e+07 -2.99990404e+07 -2.62578841e+07 -2.81110878e+07 -3.21445099e+07 -3.04622386e+07 3.52264953e+05 -3.01983620e+07 -7.95857641e+06 3.82024232e+05 2.86564400e+06] [-2.55217423e+07 -1.53643822e+07 -2.34660671e+07 -2.47591707e+07 -2.29456629e+07 -2.34595747e+07 -2.38046873e+07 -1.84394124e+07 -1.60896122e+07 -2.23872591e+07 -2.36525135e+07 -2.31730843e+07 -2.44279288e+07 -2.34762956e+07 -2.28984189e+07 -2.27490261e+07 -1.87701708e+07 -2.51455039e+07 -2.41770604e+07 2.64261443e+06 -2.28299244e+07 -1.98269092e+07 -1.96758482e+07 -9.18886202e+06 -2.08722894e+07 -2.38536764e+07 -2.35263739e+07 -2.36341121e+07 -1.93635121e+07 -2.23375804e+07 -2.47628751e+07 -2.39368102e+07 2.50094295e+06 -2.36526414e+07 -4.01286958e+06 2.57079913e+06 4.36704090e+06] [-2.13676419e+07 -1.34373287e+07 -1.99169414e+07 -2.07679968e+07 -1.94662866e+07 -1.97795362e+07 -2.02155581e+07 -1.62036129e+07 -1.40281745e+07 -1.92417336e+07 -2.00448287e+07 -1.97165785e+07 -2.06165136e+07 -2.00452270e+07 -1.95877016e+07 -1.93942489e+07 -1.63793059e+07 -2.11103564e+07 -2.04558008e+07 -4.51729159e+05 -1.95340650e+07 -1.71185279e+07 -1.70818323e+07 -8.96018566e+06 -1.78235734e+07 -2.02312125e+07 -1.98579322e+07 -2.01342815e+07 -1.67636465e+07 -1.90989932e+07 -2.08531648e+07 -2.02773952e+07 -6.00993887e+05 -1.99925538e+07 -5.35454774e+06 -5.26874428e+05 7.54032906e+05] [-1.24108874e+07 -7.29961717e+06 -1.14639891e+07 -1.20643800e+07 -1.10189902e+07 -1.14067716e+07 -1.16518666e+07 -8.90754330e+06 -7.48746092e+06 -1.12356782e+07 -1.17424128e+07 -1.14841624e+07 -1.20433357e+07 -1.17912265e+07 -1.14227781e+07 -1.11219642e+07 -8.97203915e+06 -1.23066629e+07 -1.20010215e+07 1.29134775e+06 -1.13103729e+07 -9.45970813e+06 -9.43753228e+06 -4.16506387e+06 -9.79754489e+06 -1.18633526e+07 -1.14964260e+07 -1.18009650e+07 -9.23731664e+06 -1.08627210e+07 -1.21545834e+07 -1.18749591e+07 1.15853201e+06 -1.16569369e+07 -1.98905377e+06 1.21043634e+06 2.20902793e+06] [-8.47532490e+06 -5.46850724e+06 -7.87665706e+06 -8.27006981e+06 -7.74668685e+06 -7.86344228e+06 -8.00433499e+06 -6.61363107e+06 -5.63998178e+06 -7.80642873e+06 -8.11253351e+06 -7.91578080e+06 -8.33882135e+06 -8.16216172e+06 -7.88338825e+06 -7.65415808e+06 -6.65423517e+06 -8.44341941e+06 -8.27635497e+06 -3.79446037e+05 -7.81780400e+06 -6.95130955e+06 -6.91706484e+06 -3.69644987e+06 -7.13588553e+06 -8.20013920e+06 -7.91114618e+06 -8.14451375e+06 -6.79713539e+06 -7.58947770e+06 -8.36548911e+06 -8.19531626e+06 -4.74685695e+05 -8.04548333e+06 -2.49305544e+06 -4.26492570e+05 2.83741840e+05] [-5.68333691e+06 -4.14233385e+06 -5.35374867e+06 -5.54216247e+06 -5.28191414e+06 -5.28211098e+06 -5.46547249e+06 -4.91590660e+06 -4.29452700e+06 -5.28596178e+06 -5.40232350e+06 -5.28627586e+06 -5.56540922e+06 -5.44461861e+06 -5.29308971e+06 -5.27605126e+06 -4.89147546e+06 -5.68532324e+06 -5.51047987e+06 -1.82360809e+06 -5.33099581e+06 -5.04901715e+06 -5.03258434e+06 -3.52620850e+06 -5.11871692e+06 -5.44904886e+06 -5.29258295e+06 -5.43843110e+06 -4.95261580e+06 -5.20341964e+06 -5.63723643e+06 -5.46269617e+06 -1.88799037e+06 -5.35327124e+06 -2.95699774e+06 -1.85114152e+06 -1.50258614e+06] [-1.70926779e+06 -1.22956326e+06 -1.62513650e+06 -1.68338018e+06 -1.55520768e+06 -1.62223247e+06 -1.65015179e+06 -1.34958173e+06 -1.19883451e+06 -1.62293157e+06 -1.64819229e+06 -1.61096697e+06 -1.64230773e+06 -1.64885874e+06 -1.60715311e+06 -1.59444932e+06 -1.34680476e+06 -1.70510413e+06 -1.68162669e+06 -3.71162641e+05 -1.62297589e+06 -1.38911568e+06 -1.37434954e+06 -9.20323700e+05 -1.39724228e+06 -1.65796303e+06 -1.61304939e+06 -1.65691230e+06 -1.35301326e+06 -1.58514965e+06 -1.69265618e+06 -1.66773545e+06 -3.83756433e+05 -1.64074266e+06 -7.42330384e+05 -3.66103028e+05 -2.93584663e+05] [-3.78782142e+05 -2.58832666e+05 -3.72881424e+05 -3.87425519e+05 -3.45932126e+05 -3.86789043e+05 -3.60636120e+05 -2.58284506e+05 -2.28510284e+05 -3.80572660e+05 -3.93322040e+05 -3.81686358e+05 -3.78026352e+05 -3.88642437e+05 -3.79065201e+05 -3.51566427e+05 -2.77483609e+05 -3.76333366e+05 -3.98686641e+05 9.49502826e+04 -3.76618954e+05 -2.81294285e+05 -2.74031629e+05 -1.13843624e+05 -2.93989854e+05 -3.96077265e+05 -3.84207243e+05 -3.93535222e+05 -2.77056009e+05 -3.53216104e+05 -3.73533526e+05 -3.94586903e+05 9.19028565e+04 -3.88146690e+05 -3.53307519e+04 9.60421012e+04 1.32880882e+05] [-7.98250046e+04 -6.01338307e+04 -8.32438628e+04 -8.12718301e+04 -8.32416223e+04 -8.65413754e+04 -7.48803598e+04 -6.84850311e+04 -6.29006600e+04 -8.07390593e+04 -8.60093770e+04 -8.43486708e+04 -8.49158057e+04 -8.55100842e+04 -8.30929009e+04 -7.61991910e+04 -7.32312288e+04 -7.78273759e+04 -8.74389199e+04 -6.03540763e+03 -8.28801672e+04 -7.33114247e+04 -7.17493540e+04 -3.97278736e+04 -7.88159927e+04 -8.71534293e+04 -8.60958576e+04 -8.63416994e+04 -7.19376548e+04 -7.79760080e+04 -7.75439080e+04 -8.64277007e+04 -5.66042779e+03 -8.55709600e+04 -2.42862702e+04 -5.38697342e+03 -1.75659504e+03] [-7.87715188e-01 -2.35162384e-01 -9.41349902e-01 9.04840561e-01 8.69915608e-02 -9.51912429e-01 2.81353922e-01 -5.36571157e-01 -5.01141680e-01 -3.57362180e-01 5.37976082e-01 -5.26395073e-01 6.66035808e-01 -2.84951427e-01 4.58075928e-01 1.49702913e-01 5.52919865e-01 9.50892025e-01 -1.21008811e-01 -6.02988752e-01 -5.82818532e-02 -7.62547885e-02 7.55977131e-01 -3.25222385e-01 -5.36764682e-01 -9.34316316e-01 5.70998027e-01 6.94141480e-01 7.67495229e-01 -7.21609463e-01 -4.20776464e-02 7.93302925e-02 -3.91724440e-01 -8.64953616e-01 6.43371357e-02 -5.03712876e-01 -1.24656721e-01] [-8.21337987e-01 -3.77395475e-01 7.10103146e-01 -6.63659219e-01 -7.74098475e-01 3.45292810e-01 1.39892122e-01 2.47240695e-01 -2.88402665e-01 -5.61230615e-01 -7.44375056e-01 7.66839202e-01 -1.72611690e-01 -7.97863282e-01 2.48133580e-01 -9.04943564e-01 -5.39649689e-02 -7.07861271e-02 -3.97628325e-01 -6.52747441e-01 5.99963610e-01 8.20067202e-01 -4.71864723e-01 -1.17428010e-01 4.65949205e-01 -8.81487220e-01 1.52457490e-01 -5.21050278e-01 -6.29556198e-01 -6.77850372e-01 -3.90000512e-01 -8.58652162e-01 8.85638762e-01 -1.83543705e-01 -1.87834124e-01 9.96872375e-01 -7.54163579e-01] [-7.85471313e-01 -7.46767194e-01 -1.51147171e-01 -3.47332893e-01 -8.87265230e-01 2.60878739e-01 -7.34787177e-01 -8.23860260e-01 -2.89040471e-01 -9.87907277e-01 9.65853031e-01 -3.88463829e-02 -8.98659312e-01 9.48006052e-01 6.44287885e-01 1.08584748e-01 2.59483175e-01 2.22245032e-01 -4.99127010e-01 6.56543888e-01 -1.26113418e-01 9.52645871e-01 -1.87397985e-01 5.35337318e-01 -2.78183297e-01 -9.21081201e-01 -3.17665054e-01 1.93647064e-02 -7.63317271e-02 1.28463915e-01 -3.27113604e-01 5.21547631e-01 -9.13705870e-02 2.00539241e-01 3.73656270e-01 -8.46720172e-01 -7.42522527e-01] [-1.41605031e-01 4.66715525e-01 -7.81932465e-01 -2.75755609e-01 6.31134934e-01 -1.45792383e-01 -3.41269642e-01 3.07590584e-01 6.86267071e-01 -3.98883143e-01 3.46308728e-01 6.13928597e-02 -1.54576331e-01 -6.20343631e-02 -3.38387612e-01 6.12142024e-01 -2.23310747e-01 2.09126513e-01 1.02263847e-01 5.00306289e-01 7.73167261e-01 2.62961152e-01 -3.19586933e-01 -8.02940820e-01 9.40250670e-01 -7.89026084e-01 3.52639790e-01 -2.11395480e-02 -8.67333111e-01 8.69207856e-02 2.27310954e-01 -1.38711442e-01 -6.26896307e-01 -5.92612037e-01 -8.78927466e-01 -1.39348162e-01 -9.13839481e-01] [-4.46377916e-01 -1.57370064e-02 2.20541842e-01 8.79852314e-01 5.58091337e-01 -5.39846566e-01 2.00017945e-01 -7.04371909e-01 3.35552859e-01 9.50126085e-01 3.07687956e-01 6.73084146e-01 6.79268249e-02 8.79725020e-02 -2.89595403e-01 -9.56250057e-01 -8.15262418e-01 1.49668488e-01 7.81354775e-01 -2.99807379e-01 -5.79309004e-01 -5.91470994e-01 5.75355276e-01 2.66610334e-01 -5.36716330e-01 -3.51884770e-01 -8.95725370e-01 9.53337386e-01 -7.67282557e-01 9.69299256e-01 6.17996756e-01 -9.37381093e-01 -8.33341860e-01 -3.81476166e-02 8.72868120e-01 -7.17314691e-01 2.41979817e-01] [ 6.97920123e-01 5.89879572e-01 5.04336013e-01 -5.56094333e-02 -2.35206289e-02 -9.32650724e-02 -5.69084367e-01 -5.27623730e-01 -8.23924631e-01 4.05238250e-01 -3.21224336e-01 -9.46139470e-01 -2.50971813e-01 6.19969252e-01 9.94931512e-01 -2.69621152e-01 4.91254893e-01 5.95289384e-01 -4.91402016e-01 -4.07721929e-01 -9.11614899e-01 -9.67132230e-02 8.38182404e-01 -8.57489353e-01 8.74496515e-01 -4.19713808e-01 9.70318434e-01 9.30822652e-01 6.27533267e-01 -7.75196023e-01 8.16979934e-01 -2.12592094e-01 -7.67341415e-01 7.85537422e-01 4.59096390e-02 -2.29818477e-01 1.94281656e-01] [-2.11617535e+04 -2.14205371e+04 -2.12364655e+04 -2.11934955e+04 -2.21395543e+04 -2.12337702e+04 -2.11677936e+04 -2.42568167e+04 -2.30414524e+04 -2.11768292e+04 -2.10668425e+04 -2.11429890e+04 -2.20418893e+04 -2.11060474e+04 -2.10835719e+04 -2.11857269e+04 -2.42333665e+04 -2.11626409e+04 -2.11981612e+04 -2.42118705e+04 -2.11556691e+04 -2.42221360e+04 -2.42619131e+04 -2.43276295e+04 -2.41897417e+04 -2.11380818e+04 -2.12553983e+04 -2.11897780e+04 -2.41516080e+04 -2.12427167e+04 -2.11916275e+04 -2.11770957e+04 -2.42319142e+04 -2.11037845e+04 -2.42594181e+04 -2.41770814e+04 -2.41995755e+04] [-2.67643502e+05 -2.69371478e+05 -2.67801535e+05 -2.68149176e+05 -2.80666393e+05 -2.67662492e+05 -2.67427755e+05 -3.10468466e+05 -2.92481103e+05 -2.67179042e+05 -2.66353534e+05 -2.66731417e+05 -2.80534971e+05 -2.66341572e+05 -2.66388049e+05 -2.67443951e+05 -3.10751314e+05 -2.67723494e+05 -2.68026776e+05 -3.07987011e+05 -2.67093249e+05 -3.11164088e+05 -3.11063685e+05 -3.11077405e+05 -3.11235041e+05 -2.66831746e+05 -2.67627767e+05 -2.67363543e+05 -3.10191936e+05 -2.67235813e+05 -2.67684523e+05 -2.67537612e+05 -3.08389655e+05 -2.66446025e+05 -3.10492606e+05 -3.07786820e+05 -3.07620860e+05] [-8.77274899e+05 -8.82731045e+05 -8.96026969e+05 -8.82613369e+05 -9.73192471e+05 -8.85932976e+05 -8.62490380e+05 -1.10632812e+06 -1.01328544e+06 -8.61973984e+05 -8.84143438e+05 -8.75805793e+05 -9.56611167e+05 -8.85924856e+05 -8.73472500e+05 -8.73840195e+05 -1.12413491e+06 -8.75402397e+05 -8.96161121e+05 -1.01821617e+06 -8.83559203e+05 -1.13142412e+06 -1.12304850e+06 -1.11116987e+06 -1.16612548e+06 -8.85237807e+05 -8.82269983e+05 -8.84705699e+05 -1.12684266e+06 -8.68726377e+05 -8.70208204e+05 -8.87659307e+05 -1.01651073e+06 -8.79200142e+05 -1.07904848e+06 -1.02001199e+06 -1.00031817e+06] [-4.65905504e+06 -4.70034907e+06 -4.62145065e+06 -4.63992224e+06 -4.94369638e+06 -4.57550590e+06 -4.56302496e+06 -5.51234187e+06 -5.16113083e+06 -4.47858789e+06 -4.55223971e+06 -4.51121489e+06 -4.83073292e+06 -4.52261151e+06 -4.49301075e+06 -4.55518323e+06 -5.55797171e+06 -4.65615525e+06 -4.59533459e+06 -5.18278567e+06 -4.54716938e+06 -5.60209223e+06 -5.57507001e+06 -5.58523906e+06 -5.66632328e+06 -4.55229932e+06 -4.55919846e+06 -4.54496237e+06 -5.57434481e+06 -4.53823141e+06 -4.62508074e+06 -4.56760274e+06 -5.17622336e+06 -4.54054349e+06 -5.43811116e+06 -5.18536501e+06 -5.14640397e+06] [-1.06728117e+07 -1.04317862e+07 -1.04602513e+07 -1.05846796e+07 -1.10612477e+07 -1.03101413e+07 -1.04086622e+07 -1.22234894e+07 -1.13938952e+07 -1.00911525e+07 -1.03031183e+07 -1.01887770e+07 -1.09434621e+07 -1.02421600e+07 -1.01333155e+07 -1.03041727e+07 -1.22852014e+07 -1.06675556e+07 -1.04023013e+07 -1.12939634e+07 -1.02638902e+07 -1.24610840e+07 -1.24152624e+07 -1.23681792e+07 -1.25677401e+07 -1.02926364e+07 -1.02896336e+07 -1.02702452e+07 -1.23974699e+07 -1.01646067e+07 -1.05730426e+07 -1.03442074e+07 -1.12887060e+07 -1.02773125e+07 -1.19810181e+07 -1.13081699e+07 -1.12329389e+07] [-1.55714473e+07 -1.41178991e+07 -1.50079331e+07 -1.53615334e+07 -1.54913939e+07 -1.45696680e+07 -1.48532445e+07 -1.66514187e+07 -1.52583647e+07 -1.41506137e+07 -1.47247964e+07 -1.44193755e+07 -1.56804929e+07 -1.45973649e+07 -1.42695152e+07 -1.45671608e+07 -1.67203649e+07 -1.55152012e+07 -1.49390825e+07 -1.32955177e+07 -1.44884929e+07 -1.72612625e+07 -1.71993736e+07 -1.64521060e+07 -1.75148138e+07 -1.46772201e+07 -1.45778250e+07 -1.46308232e+07 -1.71542233e+07 -1.41197779e+07 -1.53088782e+07 -1.47970336e+07 -1.32714160e+07 -1.46395940e+07 -1.51477606e+07 -1.33413201e+07 -1.29720045e+07] [-1.73607025e+07 -1.45101024e+07 -1.61424327e+07 -1.69390545e+07 -1.63715167e+07 -1.53875748e+07 -1.60869450e+07 -1.71595722e+07 -1.53572236e+07 -1.47896073e+07 -1.56668798e+07 -1.51633125e+07 -1.66670374e+07 -1.53667599e+07 -1.49389189e+07 -1.54815330e+07 -1.72671998e+07 -1.72596336e+07 -1.60331566e+07 -1.13398049e+07 -1.53058204e+07 -1.81624649e+07 -1.80862338e+07 -1.67499147e+07 -1.86470564e+07 -1.55789993e+07 -1.54243908e+07 -1.55392666e+07 -1.80397597e+07 -1.47941767e+07 -1.69407156e+07 -1.57995445e+07 -1.13018423e+07 -1.55299714e+07 -1.44109110e+07 -1.14131785e+07 -1.08558990e+07] [-1.94872831e+07 -1.45812007e+07 -1.70624977e+07 -1.85506446e+07 -1.71500089e+07 -1.59873245e+07 -1.75557039e+07 -1.73068698e+07 -1.51511149e+07 -1.50791423e+07 -1.61319484e+07 -1.55717517e+07 -1.74450399e+07 -1.58720381e+07 -1.52289236e+07 -1.64132476e+07 -1.72802322e+07 -1.93292122e+07 -1.66692544e+07 -9.46091015e+06 -1.58264557e+07 -1.85650552e+07 -1.86034625e+07 -1.65629425e+07 -1.92650469e+07 -1.59954088e+07 -1.60646990e+07 -1.60095552e+07 -1.84614520e+07 -1.53850477e+07 -1.88580775e+07 -1.63815512e+07 -9.40308032e+06 -1.60628379e+07 -1.34963437e+07 -9.55007243e+06 -8.99363901e+06] [-1.94856647e+07 -1.34339677e+07 -1.70667059e+07 -1.83471112e+07 -1.70070046e+07 -1.57552486e+07 -1.73939774e+07 -1.65663406e+07 -1.40035017e+07 -1.45091707e+07 -1.58704715e+07 -1.53055930e+07 -1.74982333e+07 -1.58785887e+07 -1.47946934e+07 -1.61068681e+07 -1.64312294e+07 -1.92781184e+07 -1.65581476e+07 -6.75843351e+06 -1.55375982e+07 -1.78731515e+07 -1.79444652e+07 -1.49730326e+07 -1.87810485e+07 -1.58390486e+07 -1.58503736e+07 -1.58302063e+07 -1.78120447e+07 -1.50545395e+07 -1.87700842e+07 -1.62130522e+07 -6.65157708e+06 -1.59149960e+07 -1.13974027e+07 -6.81666020e+06 -6.21180674e+06] [-2.11410167e+07 -1.57140097e+07 -1.96620072e+07 -2.00652596e+07 -1.99195888e+07 -1.82069008e+07 -1.91584720e+07 -1.96026734e+07 -1.67722573e+07 -1.64787082e+07 -1.82563423e+07 -1.76789004e+07 -2.00877945e+07 -1.84069381e+07 -1.69543224e+07 -1.81985020e+07 -1.94995851e+07 -2.08977655e+07 -1.90014496e+07 -9.15258838e+06 -1.77974758e+07 -2.09098049e+07 -2.08861694e+07 -1.76302671e+07 -2.19924631e+07 -1.84132429e+07 -1.82686411e+07 -1.82676060e+07 -2.07841384e+07 -1.74686136e+07 -2.04117749e+07 -1.86338174e+07 -9.01336189e+06 -1.84083428e+07 -1.38533903e+07 -9.17633886e+06 -8.57206633e+06] [-2.28044502e+07 -1.74835157e+07 -2.16786986e+07 -2.18551795e+07 -2.20888176e+07 -2.03815649e+07 -2.07511486e+07 -2.16136713e+07 -1.88098667e+07 -1.84342747e+07 -2.04805389e+07 -1.98715120e+07 -2.23171488e+07 -2.05955715e+07 -1.90737957e+07 -1.99450523e+07 -2.16526949e+07 -2.25221022e+07 -2.11982964e+07 -1.03187906e+07 -1.97109958e+07 -2.30009878e+07 -2.29199684e+07 -1.90859840e+07 -2.41960088e+07 -2.07225067e+07 -2.04520602e+07 -2.04632700e+07 -2.28514083e+07 -1.93594514e+07 -2.20524716e+07 -2.08295929e+07 -1.01601709e+07 -2.06483007e+07 -1.50524502e+07 -1.03242028e+07 -9.58883015e+06] [-2.16779936e+07 -1.66917346e+07 -2.06659386e+07 -2.09544767e+07 -2.10172049e+07 -1.96625843e+07 -1.97531301e+07 -2.02640991e+07 -1.78642025e+07 -1.80062070e+07 -1.98439966e+07 -1.92000245e+07 -2.12043227e+07 -1.97570735e+07 -1.85800131e+07 -1.90189274e+07 -2.04385103e+07 -2.14108469e+07 -2.04724652e+07 -9.31042914e+06 -1.90373469e+07 -2.16177544e+07 -2.14550178e+07 -1.75796624e+07 -2.27172810e+07 -2.00344341e+07 -1.96697609e+07 -1.97919118e+07 -2.13924053e+07 -1.85638629e+07 -2.09719862e+07 -2.01263628e+07 -9.17111854e+06 -1.99118800e+07 -1.36746443e+07 -9.31042963e+06 -8.67896402e+06] [-1.67304674e+07 -1.28215612e+07 -1.56807389e+07 -1.61758489e+07 -1.63434477e+07 -1.51648029e+07 -1.52074677e+07 -1.57171072e+07 -1.39620127e+07 -1.39920049e+07 -1.51643513e+07 -1.46565048e+07 -1.60656568e+07 -1.49214735e+07 -1.43386198e+07 -1.47156396e+07 -1.60333627e+07 -1.64948015e+07 -1.55994253e+07 -6.73106464e+06 -1.47773940e+07 -1.68371209e+07 -1.66662589e+07 -1.32920673e+07 -1.77214028e+07 -1.52460622e+07 -1.51267667e+07 -1.50824603e+07 -1.65108427e+07 -1.44554945e+07 -1.61721520e+07 -1.53521397e+07 -6.63013489e+06 -1.51432170e+07 -1.02012408e+07 -6.72663444e+06 -6.12957156e+06] [-1.22076099e+07 -9.59542473e+06 -1.16265394e+07 -1.18567320e+07 -1.22301583e+07 -1.12392317e+07 -1.12340501e+07 -1.17414305e+07 -1.03805666e+07 -1.03744807e+07 -1.11992473e+07 -1.08070715e+07 -1.17593789e+07 -1.10090111e+07 -1.06172098e+07 -1.09451884e+07 -1.20201864e+07 -1.20616221e+07 -1.15788706e+07 -5.17462998e+06 -1.10390827e+07 -1.25969707e+07 -1.23906136e+07 -1.00193937e+07 -1.32659871e+07 -1.12826681e+07 -1.11343614e+07 -1.11835501e+07 -1.23036670e+07 -1.09458013e+07 -1.18224424e+07 -1.13711207e+07 -5.09824727e+06 -1.11749529e+07 -7.79128246e+06 -5.15553477e+06 -4.92954258e+06] [-1.06082298e+07 -7.41462642e+06 -9.86109051e+06 -1.02043612e+07 -1.02043365e+07 -9.57641796e+06 -9.90149486e+06 -9.03562074e+06 -7.91077888e+06 -9.07598852e+06 -9.57246705e+06 -9.30168997e+06 -9.94247794e+06 -9.49612049e+06 -9.22200136e+06 -9.45988939e+06 -9.22590869e+06 -1.04638488e+07 -9.86739531e+06 -2.54139878e+06 -9.49613186e+06 -9.72483821e+06 -9.66639229e+06 -6.54582007e+06 -1.01018700e+07 -9.65986154e+06 -9.52283093e+06 -9.59415871e+06 -9.46320202e+06 -9.53712765e+06 -1.02913314e+07 -9.72807527e+06 -2.54941220e+06 -9.54789396e+06 -4.79951228e+06 -2.56369091e+06 -2.32562845e+06] [-8.73408041e+06 -5.17734487e+06 -7.81617850e+06 -8.27500618e+06 -7.92366896e+06 -7.53678314e+06 -8.09589436e+06 -6.64591187e+06 -5.56596916e+06 -7.35257217e+06 -7.65853147e+06 -7.47362380e+06 -7.98086025e+06 -7.65897928e+06 -7.44346558e+06 -7.56996315e+06 -6.67803190e+06 -8.59482768e+06 -7.88166009e+06 -2.38122946e+05 -7.58026691e+06 -7.13816314e+06 -7.20642715e+06 -3.89593524e+06 -7.32096510e+06 -7.71332629e+06 -7.55817867e+06 -7.70474231e+06 -6.90392381e+06 -7.51025787e+06 -8.46924550e+06 -7.78949769e+06 -3.06621091e+05 -7.61578672e+06 -2.35530037e+06 -3.07929664e+05 1.52151529e+05] [-5.74027496e+06 -3.53156618e+06 -5.30214685e+06 -5.52428123e+06 -5.24823466e+06 -5.10495204e+06 -5.34020088e+06 -4.68557612e+06 -3.80332313e+06 -5.03389546e+06 -5.34417107e+06 -5.12887654e+06 -5.61502608e+06 -5.39386227e+06 -5.11706355e+06 -4.98420184e+06 -4.73679784e+06 -5.68948520e+06 -5.49371274e+06 -6.41028461e+05 -5.19677130e+06 -5.04861018e+06 -5.05115752e+06 -3.12922791e+06 -5.11590855e+06 -5.40679550e+06 -5.12282624e+06 -5.36497755e+06 -4.89158050e+06 -4.84380148e+06 -5.62387125e+06 -5.40582602e+06 -7.08986481e+05 -5.25263682e+06 -2.12176203e+06 -7.10249667e+05 -2.62300720e+05] [-4.11670570e+06 -2.87483122e+06 -3.86913512e+06 -3.96599369e+06 -3.80067008e+06 -3.72350790e+06 -3.90298788e+06 -3.64870191e+06 -3.02052572e+06 -3.72334732e+06 -3.89524664e+06 -3.74671807e+06 -4.09682512e+06 -3.96380243e+06 -3.76519461e+06 -3.65862231e+06 -3.61020249e+06 -4.12411979e+06 -3.98486795e+06 -1.47725063e+06 -3.82315868e+06 -3.80068783e+06 -3.82035051e+06 -2.83905345e+06 -3.79761505e+06 -3.93958493e+06 -3.73166717e+06 -3.91820426e+06 -3.72031519e+06 -3.55585548e+06 -4.09381886e+06 -3.92973154e+06 -1.53366245e+06 -3.81690359e+06 -2.37210485e+06 -1.52531790e+06 -1.20658958e+06] [-3.14386988e+06 -2.47102716e+06 -2.96475628e+06 -3.04301166e+06 -3.03587886e+06 -2.89054979e+06 -3.02795590e+06 -3.07498386e+06 -2.66243226e+06 -2.91869754e+06 -2.96009999e+06 -2.89614688e+06 -3.10907834e+06 -2.98869367e+06 -2.91412319e+06 -2.92516358e+06 -3.03095272e+06 -3.14471651e+06 -3.01174751e+06 -1.79518565e+06 -2.95982839e+06 -3.13652218e+06 -3.14098622e+06 -2.56219501e+06 -3.14689285e+06 -2.97645401e+06 -2.89389024e+06 -2.97806343e+06 -3.06403733e+06 -2.87727000e+06 -3.12338463e+06 -2.98750056e+06 -1.83562726e+06 -2.91869717e+06 -2.31314106e+06 -1.82332609e+06 -1.63525777e+06] [-1.17425595e+06 -1.10821362e+06 -1.13612672e+06 -1.17264256e+06 -1.16935219e+06 -1.13791521e+06 -1.15729967e+06 -1.23885708e+06 -1.15477033e+06 -1.15993329e+06 -1.14558660e+06 -1.13822794e+06 -1.19016033e+06 -1.14309877e+06 -1.14093571e+06 -1.14827765e+06 -1.23973779e+06 -1.18053796e+06 -1.15293792e+06 -9.89604158e+05 -1.13882191e+06 -1.25031954e+06 -1.24535096e+06 -1.15634857e+06 -1.23132559e+06 -1.14455147e+06 -1.13600420e+06 -1.14639146e+06 -1.23684092e+06 -1.14612121e+06 -1.17516093e+06 -1.14926117e+06 -9.95604652e+05 -1.14185307e+06 -1.11727058e+06 -9.88508166e+05 -9.52880997e+05] [-4.23888158e+05 -4.21574122e+05 -4.11810855e+05 -4.26581357e+05 -4.29468374e+05 -4.15980661e+05 -4.20613585e+05 -4.67963923e+05 -4.42692187e+05 -4.24319623e+05 -4.16375660e+05 -4.16633403e+05 -4.35475507e+05 -4.14341406e+05 -4.16356606e+05 -4.21655541e+05 -4.68535535e+05 -4.26428367e+05 -4.16479628e+05 -4.02593048e+05 -4.12698451e+05 -4.69882558e+05 -4.67728692e+05 -4.50069327e+05 -4.61252327e+05 -4.14458942e+05 -4.15973725e+05 -4.15145628e+05 -4.67031497e+05 -4.21043957e+05 -4.24289406e+05 -4.16583318e+05 -4.03727991e+05 -4.16722932e+05 -4.41223448e+05 -4.01041472e+05 -3.90050817e+05] [ 8.33592797e-01 -3.22150314e-01 2.17868645e-01 4.60864599e-01 -6.30802730e-01 8.88662677e-01 -1.60162131e-01 9.89197767e-01 -3.75788210e-01 -5.56099103e-01 8.69767949e-01 -5.95715145e-01 -9.83325237e-01 -5.55874699e-01 -3.60003219e-01 -3.56239294e-01 -8.42647540e-01 -5.00385510e-01 5.44264410e-01 8.99026104e-01 -8.97532147e-01 8.87148373e-01 -9.17901997e-01 -1.93165513e-01 3.13225868e-01 -2.53641474e-01 2.70301643e-01 6.17397485e-01 1.60125698e-01 -6.08210873e-02 -3.50923354e-01 3.93451976e-01 7.94589401e-01 7.64306948e-03 -8.06598182e-01 5.54941114e-01 -2.35785442e-02] [-9.10247782e-01 3.46317367e-01 -6.10032451e-01 4.60240440e-01 -7.14606028e-01 6.75463961e-01 -2.32666208e-01 7.44938265e-01 5.88799381e-01 -4.29607211e-01 -9.96829172e-01 9.50676948e-02 9.18470285e-01 7.88316222e-03 1.78404955e-01 -4.33719198e-01 -4.23888148e-02 -3.59011542e-01 9.09523760e-01 -1.11536078e-01 3.24023798e-01 -6.72462514e-01 -3.82901867e-01 -7.54756603e-01 -6.25752090e-01 9.70170665e-01 -1.85762302e-01 3.73995978e-01 -2.88915241e-01 -4.97885043e-01 9.30644513e-01 -4.10256236e-01 -7.90990853e-01 9.09950553e-01 3.54906873e-02 7.71929935e-01 8.95651330e-01] [-2.69012262e-01 7.61819090e-01 -2.19816014e-01 -8.83135745e-01 8.32200529e-01 -6.64934673e-01 9.87837005e-01 -3.28176058e-01 7.96589092e-01 -5.25448986e-02 2.34557182e-01 -6.62345306e-01 1.89592873e-01 9.51371723e-01 -1.44714271e-01 9.50616111e-01 -4.62529031e-02 5.99816058e-01 7.06332570e-01 -8.69870423e-01 6.89680394e-01 -2.93107332e-01 -8.73189082e-01 -6.99070633e-01 7.72873029e-01 9.99149263e-02 5.38490400e-01 -3.31427336e-01 -2.26291769e-01 1.32632420e-03 7.32200483e-01 8.50795135e-01 -8.37094441e-01 3.26181507e-02 -6.54631973e-01 5.81617121e-01 8.57921295e-01] [-3.88775043e-01 7.47631177e-01 -8.55866769e-01 -9.37307677e-01 -3.17359929e-01 1.34332783e-01 2.44905193e-02 -9.51529668e-01 -5.32839274e-01 -9.24183625e-01 4.70506575e-01 -6.12693528e-01 -7.41420069e-01 -6.60665773e-01 1.21721883e-01 -8.96628216e-01 -5.55551734e-01 -9.51228026e-01 -9.97123589e-01 -4.24493774e-01 -3.51313481e-01 -7.27925226e-01 1.46133068e-02 8.79689279e-01 6.32664794e-01 -3.56791334e-01 -6.29061845e-01 2.07979619e-02 -4.42874474e-01 -6.33328973e-02 6.60819313e-01 -9.03597423e-01 -9.32313219e-01 8.23510184e-01 8.41681496e-01 9.24899743e-01 -2.44563563e-01] [ 9.51197806e-01 -5.03885757e-01 -2.44136022e-01 4.25126101e-01 1.97309900e-01 4.00225094e-01 -7.61675441e-01 6.62394472e-01 -1.52636484e-02 4.48604427e-01 -2.09058589e-01 8.97235593e-01 -7.14231618e-01 3.55243438e-01 7.05900453e-01 3.15578307e-01 1.23446287e-01 8.55141552e-01 -1.75970842e-01 7.72960001e-01 8.23006446e-01 2.50178319e-01 -4.64203666e-01 -6.83454752e-01 5.39465679e-01 8.89899059e-01 3.88409737e-02 1.10237782e-01 9.72513660e-01 -9.53398703e-01 -4.98563820e-01 1.16863116e-01 2.62226081e-01 7.87589772e-01 6.16019017e-01 -9.70486790e-01 -7.27733424e-02] [ 5.81386340e-01 -3.58377005e-01 -7.51781328e-01 -6.43387707e-02 -7.44184590e-01 -5.94790132e-01 5.92604639e-01 -2.82573113e-01 -7.38035674e-02 5.29062681e-01 2.04542296e-02 8.16315759e-01 3.95376348e-01 -1.96356349e-01 -1.07498309e-01 3.25822091e-01 -8.10157469e-01 2.43610614e-01 -2.40163499e-01 8.12560791e-01 4.78141437e-01 2.45346577e-01 2.53854788e-01 -1.95903416e-01 4.23117447e-01 7.62616082e-01 4.74812914e-02 -6.80036298e-01 3.35779001e-01 5.82595120e-01 -6.95347126e-01 5.38555848e-01 -9.18215561e-01 4.66955121e-01 -4.82495841e-01 -5.58414368e-01 -9.70471191e-01] [ 1.83718256e-02 -9.75830955e-01 9.16341677e-01 3.47016824e-01 7.49157034e-01 -9.28587917e-01 -4.10535751e-01 2.76945346e-01 -8.23477432e-01 6.71673415e-01 2.68614581e-01 -5.61802882e-02 2.49551188e-01 -1.48757709e-01 5.99823224e-01 4.72070827e-01 -9.44399571e-01 -5.18577334e-01 6.13481235e-01 -8.59854209e-01 -1.69457906e-01 7.52431170e-02 3.05857604e-01 -9.30687259e-01 -5.29898830e-01 -2.86141142e-01 -8.14047217e-01 9.73806287e-01 -8.20285911e-01 -7.07639660e-01 3.59650425e-01 9.87485706e-01 -2.20039540e-01 -2.61588327e-01 5.72608071e-01 2.33530101e-01 6.00498229e-01] [ 2.28325618e-01 -4.64364985e-01 -9.65431528e-01 5.10312059e-02 -3.24854200e-01 3.15842332e-01 -8.57049137e-01 9.31756191e-01 5.61954778e-01 -4.79347035e-01 -6.40421437e-01 -1.80755414e-01 -9.03906709e-01 -4.05077118e-01 2.14711498e-01 -2.13021970e-01 -8.47191222e-01 -8.32035878e-01 7.55553096e-01 3.73622457e-01 -5.92786139e-01 -7.07424603e-01 -3.29681284e-01 -4.61888094e-01 -9.31932215e-01 -7.55956296e-01 7.32804674e-01 8.73828459e-01 -6.10612601e-01 -1.21056672e-01 9.40360396e-01 -3.34967722e-01 -2.26362504e-01 2.36464052e-01 1.74153485e-01 6.40094170e-01 5.15566594e-01] [-4.15053423e-01 4.02144479e-01 9.05477457e-01 -3.50139231e-02 3.71963517e-01 -9.48158877e-01 1.36436272e-01 8.26476934e-01 -1.92057599e-01 7.93526990e-02 8.67484453e-01 -1.14510330e-01 -8.36366740e-01 -7.04370574e-01 -8.64055902e-01 -7.67772104e-02 -1.74061544e-01 8.26038328e-01 -9.18999810e-01 -6.63860601e-02 -9.31420914e-01 -9.06765421e-01 5.32140099e-01 6.61840184e-01 8.35142235e-01 6.16100959e-01 3.95933242e-01 -7.57683256e-01 -6.53560473e-01 -8.03083364e-01 -5.29417610e-01 -4.71169838e-01 3.60935655e-01 -3.45237237e-01 -4.35722243e-01 -3.75814985e-01 -1.49277035e-01] [-7.95061763e+05 -8.00745528e+05 -7.92199483e+05 -7.94888453e+05 -8.24344730e+05 -7.93318245e+05 -7.93945044e+05 -8.89306895e+05 -8.51931853e+05 -7.93624026e+05 -7.93039479e+05 -7.93034288e+05 -8.22264784e+05 -7.90406716e+05 -7.92897380e+05 -7.94401853e+05 -8.89958776e+05 -7.95172654e+05 -7.93150374e+05 -8.88057904e+05 -7.92650097e+05 -8.90757014e+05 -8.89893492e+05 -8.88417047e+05 -8.89387503e+05 -7.92678771e+05 -7.93430895e+05 -7.91821757e+05 -8.88982959e+05 -7.93915800e+05 -7.94630986e+05 -7.93515690e+05 -8.88988447e+05 -7.92827047e+05 -8.90582390e+05 -8.88086293e+05 -8.88935654e+05] [-1.67720925e+06 -1.68982864e+06 -1.67145727e+06 -1.67696728e+06 -1.74171870e+06 -1.67374287e+06 -1.67482599e+06 -1.88387038e+06 -1.80192442e+06 -1.67402678e+06 -1.67302139e+06 -1.67289969e+06 -1.73717533e+06 -1.66735458e+06 -1.67261157e+06 -1.67586107e+06 -1.88546144e+06 -1.67751447e+06 -1.67353862e+06 -1.88161706e+06 -1.67223041e+06 -1.88731947e+06 -1.88522164e+06 -1.88227436e+06 -1.88442094e+06 -1.67228634e+06 -1.67377827e+06 -1.67048442e+06 -1.88326518e+06 -1.67478722e+06 -1.67618718e+06 -1.67412169e+06 -1.88359738e+06 -1.67256051e+06 -1.88716453e+06 -1.88162997e+06 -1.88366025e+06] [-1.78611247e+06 -1.74995092e+06 -1.78021854e+06 -1.78815023e+06 -1.84721196e+06 -1.77278656e+06 -1.76607157e+06 -2.01224577e+06 -1.89054749e+06 -1.76315602e+06 -1.78178617e+06 -1.77471340e+06 -1.88216157e+06 -1.78289331e+06 -1.76790512e+06 -1.76685840e+06 -2.01543909e+06 -1.78241100e+06 -1.78762374e+06 -1.89034238e+06 -1.76736089e+06 -2.03253409e+06 -2.02825929e+06 -1.97861656e+06 -2.02986282e+06 -1.77978802e+06 -1.77392550e+06 -1.77626758e+06 -2.02307783e+06 -1.74997697e+06 -1.77701127e+06 -1.78348655e+06 -1.89012938e+06 -1.77904198e+06 -1.94336769e+06 -1.89076829e+06 -1.87153928e+06] [-9.42035565e+05 -7.85977682e+05 -9.21642243e+05 -9.34232134e+05 -9.06126855e+05 -8.88037698e+05 -8.84755765e+05 -9.71147410e+05 -8.58818174e+05 -8.55450963e+05 -9.15440579e+05 -8.96236583e+05 -1.01656446e+06 -9.35218472e+05 -8.74159615e+05 -8.69865766e+05 -9.71645824e+05 -9.34358057e+05 -9.29488885e+05 -6.71044294e+05 -8.77333484e+05 -1.01922570e+06 -1.01846204e+06 -9.13996787e+05 -1.02180037e+06 -9.13836651e+05 -8.94614266e+05 -9.05657475e+05 -1.01100733e+06 -8.14977034e+05 -9.22671196e+05 -9.18465365e+05 -6.63047755e+05 -9.11806807e+05 -8.06872625e+05 -6.70451603e+05 -6.12759273e+05] [-7.97549343e+05 -6.64581949e+05 -7.69020403e+05 -7.75567410e+05 -7.80316047e+05 -7.41544019e+05 -7.49028030e+05 -8.34089695e+05 -7.49509181e+05 -7.07328168e+05 -7.57310769e+05 -7.42163635e+05 -8.39075206e+05 -7.75688967e+05 -7.24839231e+05 -7.17843926e+05 -8.34741127e+05 -7.97419964e+05 -7.70727751e+05 -6.67638940e+05 -7.33082681e+05 -8.73724433e+05 -8.75994913e+05 -8.27605552e+05 -8.90064082e+05 -7.61679295e+05 -7.43793630e+05 -7.52291215e+05 -8.69743072e+05 -6.67774997e+05 -7.87161178e+05 -7.61653528e+05 -6.61516402e+05 -7.57192443e+05 -7.63761094e+05 -6.65376115e+05 -6.22879917e+05] [-1.41075144e+06 -1.15206727e+06 -1.28413265e+06 -1.35446558e+06 -1.36966360e+06 -1.25275491e+06 -1.30163834e+06 -1.43106659e+06 -1.29928684e+06 -1.17916519e+06 -1.24346229e+06 -1.22694735e+06 -1.37081104e+06 -1.24064343e+06 -1.19697565e+06 -1.22573782e+06 -1.43443514e+06 -1.40513362e+06 -1.26554248e+06 -1.03361052e+06 -1.22770080e+06 -1.49837502e+06 -1.50332525e+06 -1.37599155e+06 -1.53200404e+06 -1.23892985e+06 -1.25562056e+06 -1.23273597e+06 -1.48334383e+06 -1.16656902e+06 -1.37473372e+06 -1.25524185e+06 -1.02297834e+06 -1.25357052e+06 -1.20990814e+06 -1.03165487e+06 -1.00133609e+06] [-1.77131065e+06 -1.38528493e+06 -1.60583799e+06 -1.69165365e+06 -1.69709040e+06 -1.53644775e+06 -1.57891182e+06 -1.75370394e+06 -1.54344048e+06 -1.36973483e+06 -1.51831703e+06 -1.48733878e+06 -1.71890124e+06 -1.50842076e+06 -1.41999355e+06 -1.50490296e+06 -1.75834373e+06 -1.75170446e+06 -1.55697766e+06 -9.53046572e+05 -1.46545235e+06 -1.86901855e+06 -1.87268687e+06 -1.62732515e+06 -1.91254015e+06 -1.51161644e+06 -1.54719074e+06 -1.49533087e+06 -1.85703717e+06 -1.41746337e+06 -1.69536247e+06 -1.53823262e+06 -9.22852504e+05 -1.54205989e+06 -1.30019593e+06 -9.45837853e+05 -9.05506328e+05] [-2.79989246e+06 -2.39960651e+06 -2.75856442e+06 -2.66967865e+06 -2.90559226e+06 -2.61150573e+06 -2.57901660e+06 -3.09512001e+06 -2.70008272e+06 -2.33669429e+06 -2.61064500e+06 -2.53858986e+06 -2.91914552e+06 -2.66823993e+06 -2.41318409e+06 -2.45085620e+06 -3.09575610e+06 -2.79903341e+06 -2.69633318e+06 -2.06770101e+06 -2.50656637e+06 -3.24767440e+06 -3.24974118e+06 -2.98493255e+06 -3.35129755e+06 -2.67105061e+06 -2.61123208e+06 -2.63135247e+06 -3.23450840e+06 -2.35804057e+06 -2.75248430e+06 -2.64956435e+06 -2.07858549e+06 -2.63421056e+06 -2.57831326e+06 -2.09948095e+06 -1.92710597e+06] [-2.93663407e+06 -2.55636039e+06 -2.98029557e+06 -2.82752557e+06 -3.13524204e+06 -2.82956341e+06 -2.74139761e+06 -3.34449407e+06 -2.94648726e+06 -2.57853460e+06 -2.87564923e+06 -2.77313317e+06 -3.15877566e+06 -2.97884793e+06 -2.67140850e+06 -2.60365138e+06 -3.37802355e+06 -2.93423022e+06 -2.96369740e+06 -2.40485045e+06 -2.76887559e+06 -3.50250439e+06 -3.50069679e+06 -3.23196071e+06 -3.63339378e+06 -2.96729444e+06 -2.82767460e+06 -2.90876890e+06 -3.48678215e+06 -2.51187232e+06 -2.90181295e+06 -2.91227356e+06 -2.42468700e+06 -2.87482263e+06 -2.87840095e+06 -2.44088480e+06 -2.22282916e+06] [-1.95929430e+06 -1.67633243e+06 -1.89217723e+06 -1.86377620e+06 -2.00099995e+06 -1.72070130e+06 -1.71661856e+06 -2.05940137e+06 -1.86348480e+06 -1.52201272e+06 -1.75802387e+06 -1.64405898e+06 -1.86363495e+06 -1.75911772e+06 -1.58528482e+06 -1.62614631e+06 -2.10027508e+06 -1.94364016e+06 -1.82990314e+06 -1.26407691e+06 -1.69111037e+06 -2.21994952e+06 -2.19287271e+06 -2.06004398e+06 -2.35429782e+06 -1.79983243e+06 -1.71347477e+06 -1.75510087e+06 -2.16795226e+06 -1.58803553e+06 -1.89555008e+06 -1.78610278e+06 -1.23912363e+06 -1.74550728e+06 -1.66632444e+06 -1.26214134e+06 -1.20043235e+06] [-1.41093427e+06 -1.15626727e+06 -1.31698131e+06 -1.37143227e+06 -1.48187656e+06 -1.21235179e+06 -1.14124901e+06 -1.45417394e+06 -1.28978482e+06 -1.04155968e+06 -1.23210932e+06 -1.15057850e+06 -1.30463595e+06 -1.13647278e+06 -1.09544160e+06 -1.12462703e+06 -1.51002728e+06 -1.37534988e+06 -1.28326765e+06 -1.78941521e+05 -1.15088838e+06 -1.63067171e+06 -1.57967111e+06 -1.28104959e+06 -1.82910387e+06 -1.22751020e+06 -1.19059469e+06 -1.20444964e+06 -1.57686711e+06 -1.09463458e+06 -1.33029921e+06 -1.24478296e+06 -1.48652493e+05 -1.22179860e+06 -6.83053644e+05 -1.77885994e+05 -6.29246566e+04] [-1.45202904e+06 -1.20539481e+06 -1.40272352e+06 -1.42075246e+06 -1.54155990e+06 -1.36600569e+06 -1.33039465e+06 -1.52536813e+06 -1.37576515e+06 -1.27547560e+06 -1.36788096e+06 -1.32908028e+06 -1.45330389e+06 -1.32792214e+06 -1.30706543e+06 -1.31050570e+06 -1.57380138e+06 -1.43616617e+06 -1.40163529e+06 -7.25347487e+05 -1.33481014e+06 -1.64425412e+06 -1.61898969e+06 -1.30868425e+06 -1.74229926e+06 -1.36943035e+06 -1.34887193e+06 -1.35717314e+06 -1.61088370e+06 -1.29498328e+06 -1.40783037e+06 -1.37851176e+06 -7.18270677e+05 -1.36230057e+06 -1.01644202e+06 -7.31389888e+05 -6.53040515e+05] [-2.08037422e+06 -1.53566126e+06 -1.97815741e+06 -2.03712197e+06 -2.19211159e+06 -1.98659305e+06 -1.97485891e+06 -2.16135969e+06 -1.88214517e+06 -1.90736167e+06 -2.00290239e+06 -1.95013414e+06 -2.14249361e+06 -1.99258841e+06 -1.95296027e+06 -1.88875638e+06 -2.26107625e+06 -2.05045775e+06 -2.04460899e+06 -7.91731447e+05 -1.97673286e+06 -2.30230777e+06 -2.28666691e+06 -1.57286464e+06 -2.37902252e+06 -2.03530167e+06 -1.96620843e+06 -2.00180093e+06 -2.24876020e+06 -1.90870151e+06 -2.03579020e+06 -2.01958292e+06 -8.11214351e+05 -1.98445135e+06 -1.21454103e+06 -8.18063658e+05 -6.25798514e+05] [-1.71388096e+06 -1.11055447e+06 -1.56372922e+06 -1.64929879e+06 -1.69596344e+06 -1.55831990e+06 -1.59292841e+06 -1.61765575e+06 -1.36331886e+06 -1.49536334e+06 -1.58480375e+06 -1.53615343e+06 -1.70918853e+06 -1.58097496e+06 -1.53168435e+06 -1.48307014e+06 -1.67675519e+06 -1.68216635e+06 -1.61867377e+06 -3.26501367e+05 -1.54707664e+06 -1.73623412e+06 -1.73886851e+06 -1.05304728e+06 -1.78507234e+06 -1.60972782e+06 -1.55199481e+06 -1.58063806e+06 -1.68033929e+06 -1.48597469e+06 -1.67162524e+06 -1.59847434e+06 -3.52110078e+05 -1.57037993e+06 -7.31804445e+05 -3.56705304e+05 -1.70396169e+05] [-1.08404256e+06 -7.55573749e+05 -9.95891912e+05 -1.03793449e+06 -1.01702351e+06 -9.72600770e+05 -1.02719576e+06 -1.03471256e+06 -8.69697313e+05 -9.69645114e+05 -1.00973863e+06 -9.78839944e+05 -1.09508397e+06 -1.02222308e+06 -9.83163550e+05 -9.50647509e+05 -1.02874193e+06 -1.08230522e+06 -1.02728141e+06 -4.31794049e+05 -9.91510068e+05 -1.07165864e+06 -1.08239056e+06 -8.00666087e+05 -1.06110810e+06 -1.01995075e+06 -9.75024788e+05 -1.01011089e+06 -1.04664179e+06 -9.15079230e+05 -1.08014338e+06 -1.01548741e+06 -4.52099251e+05 -9.94295400e+05 -6.63062554e+05 -4.52719570e+05 -3.28643031e+05] [-8.53469414e+05 -6.02041188e+05 -8.23581243e+05 -8.18844469e+05 -7.91899267e+05 -7.91562126e+05 -8.20012772e+05 -7.99282856e+05 -6.59455892e+05 -7.63756823e+05 -8.29086766e+05 -8.02338052e+05 -9.07706278e+05 -8.51853987e+05 -7.98656847e+05 -7.64965064e+05 -7.68862659e+05 -8.64145694e+05 -8.38737918e+05 -3.61844506e+05 -7.96468343e+05 -8.09286464e+05 -8.18137792e+05 -6.34710614e+05 -8.04162186e+05 -8.37785816e+05 -7.97420822e+05 -8.25264638e+05 -8.10516584e+05 -7.23207074e+05 -8.60691239e+05 -8.31074505e+05 -3.69458840e+05 -8.19289241e+05 -5.41897149e+05 -3.69216686e+05 -2.76562164e+05] [-5.30770851e+05 -4.75464741e+05 -5.34969906e+05 -5.23853649e+05 -5.40748659e+05 -5.18645222e+05 -5.28553833e+05 -5.66532151e+05 -5.08238006e+05 -5.05325911e+05 -5.23334216e+05 -5.16884169e+05 -5.55860405e+05 -5.27890110e+05 -5.12833338e+05 -5.25600853e+05 -5.51735832e+05 -5.34776216e+05 -5.30902674e+05 -4.40807923e+05 -5.18458481e+05 -5.66574968e+05 -5.62165342e+05 -5.13994230e+05 -5.72218737e+05 -5.26080059e+05 -5.17407582e+05 -5.23020857e+05 -5.62780404e+05 -5.23131093e+05 -5.31152199e+05 -5.27861574e+05 -4.40848490e+05 -5.24637579e+05 -4.94597160e+05 -4.38772084e+05 -4.36198861e+05] [-2.14240899e+05 -2.15087016e+05 -2.09819280e+05 -2.12908110e+05 -2.14528363e+05 -2.07147931e+05 -2.13535715e+05 -2.26923894e+05 -2.15363002e+05 -2.08703410e+05 -2.05353424e+05 -2.04287364e+05 -2.10139164e+05 -2.04521236e+05 -2.04427187e+05 -2.14002186e+05 -2.25025090e+05 -2.16995585e+05 -2.07929374e+05 -2.02966406e+05 -2.06811510e+05 -2.26819635e+05 -2.24266088e+05 -2.21243297e+05 -2.23887015e+05 -2.05005890e+05 -2.05347060e+05 -2.05896381e+05 -2.23530186e+05 -2.17745822e+05 -2.14616590e+05 -2.06751218e+05 -2.02877746e+05 -2.05716375e+05 -2.23207267e+05 -2.01429461e+05 -2.06168473e+05] [ 8.82623861e-02 -9.21594110e-01 -9.75195335e-01 5.57983233e-01 8.15609375e-01 2.47136974e-01 6.75503458e-01 4.00471707e-01 -7.37394528e-01 5.26619301e-01 -9.82051401e-01 3.85740980e-01 -6.07310185e-01 3.93879968e-01 -4.21312661e-01 -3.83943759e-01 6.04352554e-01 4.53769606e-01 5.75117548e-01 -7.22827777e-01 5.08923683e-01 7.56954408e-04 -6.58509059e-01 -6.48530226e-01 -7.81700921e-01 2.62046006e-01 -4.00752948e-01 9.79352256e-01 8.54541015e-02 4.67657251e-01 4.93130843e-01 7.65959813e-01 4.36391568e-01 -9.01156472e-01 -4.01186828e-01 8.88607974e-02 4.46786784e-02] [-7.28549943e-01 -2.33204147e-01 8.74762100e-02 7.83740163e-02 -3.07583591e-01 7.62232496e-01 -9.65819253e-01 -5.96038369e-01 4.26680666e-01 4.18633874e-02 7.22357603e-01 6.88946993e-01 -6.30493872e-01 -4.76122267e-01 1.92684742e-01 3.38722707e-01 -2.27802179e-01 3.90105884e-01 1.40469083e-01 5.10075421e-01 -1.99874952e-01 4.52436009e-01 -3.25212833e-01 3.72534577e-01 8.63997370e-01 2.19354180e-01 -9.70924025e-01 7.87666891e-01 7.53136892e-01 3.55800419e-01 8.98415584e-01 7.08382627e-01 2.21181195e-01 7.80699039e-01 8.63425176e-01 2.56170633e-01 -4.76256152e-01] [-1.17947764e-01 -1.53047903e-01 -2.31035673e-01 -7.72901782e-01 4.28044992e-01 -5.89111428e-01 3.31256310e-01 -5.10155021e-01 -3.87516376e-01 8.06706959e-01 -5.68002730e-01 -2.29367623e-01 -3.51892198e-01 -3.59941214e-01 2.11739988e-01 -6.02007137e-01 -7.95535878e-01 2.33279047e-01 -3.36255471e-01 -1.22726932e-01 -7.21827946e-01 9.54130413e-01 -6.94978242e-01 8.62718859e-01 -8.65706130e-01 -7.81777691e-01 8.53158693e-01 6.89666113e-01 -7.59215533e-01 7.21861985e-01 -6.46903226e-01 2.63590780e-02 4.36711931e-01 -3.10311404e-01 9.85968270e-01 -3.17666290e-01 9.63801536e-01] [ 8.12594605e-01 7.77653311e-01 -3.27859085e-01 -9.64742387e-01 8.90412737e-01 7.74951062e-01 -2.52488248e-01 -1.54222605e-02 -1.85148947e-01 -1.41803107e-01 -1.50914205e-01 -6.77305677e-01 -7.44146839e-01 4.89081223e-01 9.94220805e-01 -5.48069784e-01 -4.60647245e-02 -6.81184908e-01 2.53580365e-01 7.57383656e-01 -2.43414271e-01 -1.49304099e-01 -5.02773254e-01 8.18232876e-01 -1.22499083e-01 4.99200881e-01 -8.41485394e-01 -1.57456271e-01 8.16732023e-01 -3.56176379e-01 -4.85159038e-01 -1.71599828e-01 -1.47828050e-01 5.14531418e-02 7.57027664e-01 -1.90850635e-02 -3.14177538e-02] [-3.50582575e-01 4.42342688e-01 2.13226620e-01 1.49690189e-02 7.89956547e-01 -4.53341523e-01 7.60874140e-01 1.54135695e-01 -7.16677088e-01 -1.02790168e-01 -6.69434143e-01 -7.72395046e-01 -7.53973196e-01 6.80868800e-01 -3.39375016e-01 -5.95630867e-01 -5.60278103e-01 -1.64575271e-02 -8.00558243e-01 -1.10586699e-01 8.00454910e-01 8.74453215e-02 -4.01105157e-01 6.10711756e-01 9.12801094e-01 1.29942400e-01 5.39910413e-01 -3.60551731e-01 -3.16561444e-02 4.40889082e-01 5.70619841e-01 9.74612204e-01 -3.86504921e-01 9.84874152e-01 4.30944522e-01 -3.29943903e-01 5.96666254e-01]] syn1 = [[-6.79705157e+01 -3.67581732e+01 -5.10987724e+01 -7.53865020e+00 -7.69299001e+01 8.06312194e+00 -9.98479177e+01 -5.67056616e+01 -3.29199342e+01 -6.06318161e+01 -1.70419045e+02 -6.12511696e+01 -5.33430766e+00 7.19797078e+01 -1.50816987e+01 -9.24199772e+01 -3.08149453e+01 9.57728537e+01 -5.05951846e+01 -1.70036488e+02 1.17052524e+02 5.51545349e+01 1.55116878e+01 -1.87026917e+01 -3.34514282e+01 1.11685785e+02 -5.54876237e+01 -1.27095096e+01 6.52554237e+00 -2.15705709e+01 -2.03168921e+01 4.66189260e+01] [-6.57242281e+01 2.12907195e+01 5.81795693e+01 5.87726534e+01 3.09877116e+00 -7.12814531e+00 5.41644644e+01 -1.47237831e+01 3.27650462e+01 8.86732413e+01 -1.64244531e+01 2.19632952e+00 -9.66259726e+00 1.39134920e+02 9.26803488e-02 2.31747302e+00 -1.45622557e+01 1.67216400e+02 -4.44487400e+00 3.59741627e+00 1.95974534e+02 1.36669952e+02 -3.06160154e+01 4.32384991e+01 2.72463549e+01 1.94349049e+02 8.25727911e+01 5.84277391e+01 6.52766926e+01 -2.83011939e+01 3.98900690e+01 1.03898091e+02] [-1.05462774e+02 -1.48254744e+01 -1.60055562e+01 6.01168147e+00 -3.33968673e+01 -1.69447087e+01 -3.11304394e+01 -7.01813656e+01 -1.49197247e+01 -1.00181114e+01 -1.25444466e+02 -1.44306567e+01 -1.00896508e+01 9.29684568e+01 -1.14550976e+01 -3.10743679e+01 -1.82650539e+01 1.11202763e+02 -2.99814327e+01 -1.15020898e+02 1.40195597e+02 7.89913582e+01 -3.42885823e+01 -6.89260946e+00 -1.47020498e+01 1.38687320e+02 -1.39714813e+01 1.05701534e+01 1.97300979e+01 -4.09130092e-02 -1.78000126e+00 5.85727411e+01] [-8.66186789e+01 -2.64605726e+01 -4.09740436e+01 -7.99949560e+00 -5.00331573e+01 -3.39053927e+00 -6.33400870e+01 -6.45734440e+01 -2.69206373e+01 -4.80270592e+01 -1.37770587e+02 -3.16448884e+01 -5.27861919e+00 6.89343748e+01 -1.43870751e+01 -5.47631388e+01 -2.20279747e+01 9.20557416e+01 -2.54075558e+01 -1.31032701e+02 1.19420629e+02 5.64045780e+01 -5.30198587e+00 -2.01180619e+01 -2.40165146e+01 1.13602535e+02 -4.45717872e+01 -1.48346234e+01 3.07317368e+00 -1.16283571e+01 -2.08723626e+01 4.28522465e+01] [-5.24999778e+01 7.60113175e+00 -2.36599944e+00 5.50955880e+01 -5.44892516e+01 -2.95257584e+00 -3.09900976e+01 -2.15133987e+01 1.83306595e+01 4.57113769e+00 -1.51755516e+02 -2.82959243e+01 -1.53164082e+01 1.55997801e+02 -2.05658778e+00 -7.16738007e+01 -4.13640976e+01 1.66327677e+02 -4.20589813e+01 -1.41617851e+02 1.95830494e+02 1.27866456e+02 -5.39100103e+01 2.77414122e+01 5.18917521e+00 1.93863883e+02 -1.37478776e+01 4.14513945e+01 6.71201325e+01 3.25748128e+01 3.68543520e+01 1.11780025e+02] [-1.26246558e+02 -1.11470478e+01 -3.65305272e+01 1.76952555e+00 -3.32732889e+01 -1.15246700e+01 -2.25804561e+01 -1.00664138e+02 -2.75411161e+01 -3.62945549e+01 -1.14758475e+02 -6.82486974e+00 -5.15135524e+00 7.92206911e+01 -4.52651876e+00 -2.92902013e+01 -7.42711149e+00 1.01172038e+02 -1.12701787e+01 -1.07733208e+02 1.27084750e+02 6.95078993e+01 -9.24319831e+00 -1.04637524e+01 -1.20099254e+01 1.24625258e+02 -2.75907238e+01 1.15030190e+00 1.55403420e+01 5.62277377e+00 -1.23714610e+01 4.91216604e+01] [-9.90635201e+01 -2.87788189e+01 -3.43099078e+01 -1.54171652e+00 -6.16240781e+01 6.17087299e+00 -7.39246830e+01 -8.51918260e+01 -2.54709309e+01 -4.53830226e+01 -1.49510926e+02 -4.95816896e+01 -2.21954863e+00 7.68993489e+01 -1.16741427e+01 -6.90247007e+01 -2.21128695e+01 9.87419670e+01 -4.39776136e+01 -1.47176566e+02 1.22052002e+02 6.26559089e+01 1.09869490e+01 -1.86495980e+01 -2.36171051e+01 1.17370299e+02 -3.66233709e+01 -9.69263380e-01 1.40786834e+01 -3.31326564e+01 -1.76498311e+01 4.74742850e+01] [-4.11529675e+01 4.24433039e+01 5.78521002e+01 1.02939824e+02 -1.81466312e+01 1.55943764e+01 3.49469220e+01 1.09523476e+01 5.40172735e+01 9.04802347e+01 -8.64970236e+01 -1.95801846e+01 -7.49307366e+00 2.17631059e+02 1.86093484e+01 -3.79622721e+01 -2.11957861e+01 2.42371604e+02 -1.59348531e+01 -6.38003164e+01 2.74296411e+02 1.96269508e+02 -3.64063725e+01 7.43705236e+01 4.04769285e+01 2.70015351e+02 7.79718093e+01 1.03639341e+02 1.24624522e+02 -9.39386573e-02 8.44947359e+01 1.72899878e+02] [-2.89408743e+01 4.24538855e+01 6.46748026e+01 9.63498297e+01 -2.76613255e+01 2.00082336e+01 5.75171606e+01 1.54968070e+01 5.39018758e+01 8.25242711e+01 -5.86365084e+01 -2.53602896e+01 -8.40195251e+00 1.94256630e+02 2.33264611e+01 -4.81315508e+01 -2.32952218e+01 2.17163895e+02 -6.15574745e+00 -4.62221847e+01 2.45714533e+02 1.77030969e+02 -3.00123247e+01 7.22492442e+01 4.35691202e+01 2.41093498e+02 7.47198556e+01 9.43201961e+01 1.09007792e+02 8.95977020e-01 7.33489822e+01 1.55945750e+02] [-1.36220631e+02 -1.30555562e+01 -4.66542850e+01 -6.05093773e+00 -2.40386708e+01 -5.13895266e-02 -2.11795013e+01 -1.16694505e+02 -2.77984343e+01 -3.53061612e+01 -9.38308980e+01 -2.04126729e+01 3.02313611e+00 6.48384491e+01 -8.26198899e+00 -2.33016376e+01 1.08563364e+00 9.28057250e+01 1.09086021e+00 -8.79092655e+01 1.18126157e+02 6.27012026e+01 8.03210664e+00 -1.41827144e+01 -8.82078675e+00 1.13114367e+02 -2.29432500e+01 -3.54583196e+00 8.46702858e+00 -1.50628106e+01 -1.56337735e+01 4.06341914e+01] [-1.34565879e+02 -1.59375046e+01 -4.02022929e+01 -7.41392922e+00 -1.41331235e+01 -1.16220896e+01 -2.06820628e+01 -1.02235368e+02 -2.50697070e+01 -3.01079369e+01 -1.01896090e+02 -1.29636130e+00 -4.20835080e+00 6.97205672e+01 -9.39032375e+00 -5.69803621e+00 9.98419746e-01 9.19197705e+01 7.25567015e+00 -9.17438388e+01 1.22324441e+02 6.45389773e+01 -1.62237020e+01 -1.69974215e+01 -1.34634149e+01 1.19500383e+02 -2.59199480e+01 -9.29174621e+00 3.74092085e+00 -2.01661499e+00 -1.79894608e+01 4.02796864e+01] [-1.28835548e+02 -1.49061989e+01 -4.79885979e+01 -3.52946854e+00 -3.74089576e+01 -6.33533794e-01 -3.32132668e+01 -1.04778847e+02 -2.51413417e+01 -3.46772684e+01 -1.11746988e+02 -2.25850390e+01 -2.37481874e+00 6.93365536e+01 -8.39714228e+00 -3.18977998e+01 -1.36889730e+00 9.53365602e+01 1.81856868e+00 -1.04434041e+02 1.23537098e+02 6.43711040e+01 -4.67789769e-01 -1.51772190e+01 -1.31314465e+01 1.17544635e+02 -2.71838745e+01 -5.03348506e+00 8.80928695e+00 -2.68687816e+00 -1.71264711e+01 4.37825978e+01] [-1.18937438e+02 -6.07139653e+00 -3.48834022e+01 1.18252587e+01 -2.66405719e+01 3.44658286e-02 -3.69034743e+01 -9.40466377e+01 -1.51535088e+01 -2.61620667e+01 -1.21037016e+02 -8.40120498e+00 -2.45612603e+00 9.38061318e+01 -1.88433304e-01 -2.13954773e+01 5.11650755e+00 1.15696164e+02 1.63434380e+00 -1.11093201e+02 1.45576765e+02 8.19391518e+01 -9.17041776e+00 -5.31663383e+00 -6.85032654e+00 1.41982905e+02 -2.43260318e+01 6.31237972e+00 2.50109423e+01 5.91486506e+00 -1.60338076e+00 6.31838106e+01] [-1.37629431e+02 -1.27978615e+01 -3.91694027e+01 -7.85386630e-01 -2.12978187e+01 -7.82077341e+00 -2.70312346e+01 -1.09067173e+02 -2.70651024e+01 -2.61500708e+01 -1.02059324e+02 -1.17745382e+01 -1.93782672e+00 7.17542841e+01 -7.99246172e+00 -1.32467833e+01 9.47807895e+00 9.19138599e+01 5.73764032e+00 -9.35307856e+01 1.23539969e+02 6.62704319e+01 -1.34755616e+01 -1.22502471e+01 -1.03582238e+01 1.19788644e+02 -2.08604244e+01 -4.68076522e+00 8.64557637e+00 -4.61919037e+00 -1.39007779e+01 4.24767457e+01] [-1.33786827e+02 -1.42066103e+01 -5.07622259e+01 -1.18421208e+00 -2.95684880e+01 -1.11124481e+00 -2.96620462e+01 -1.13427237e+02 -2.72278844e+01 -3.41951974e+01 -1.08334481e+02 -1.77390430e+01 1.49980032e+00 6.84645645e+01 -9.01994634e+00 -2.51528599e+01 2.76306608e+00 9.33792444e+01 1.87774256e+00 -1.00714383e+02 1.21229421e+02 6.43601660e+01 1.12716581e+00 -1.27782070e+01 -1.12388643e+01 1.16028360e+02 -2.69695183e+01 -3.94227021e+00 1.01495868e+01 -6.95614450e+00 -1.50540618e+01 4.32268587e+01] [-9.09255334e+01 -1.39494179e+01 -1.25026425e+01 9.14549382e+00 -6.50953295e+01 3.12234809e+00 -4.72698634e+01 -6.80480753e+01 -1.77494548e-01 -2.44864311e+01 -1.40594732e+02 -4.31082477e+01 -7.38435606e+00 9.33884443e+01 -4.16584553e+00 -7.17190909e+01 -3.33812288e+01 1.16017124e+02 -3.13253630e+01 -1.34475740e+02 1.43229985e+02 8.10687812e+01 -2.01459985e+01 -1.01745847e+01 -9.08402811e+00 1.39767690e+02 -2.10663131e+01 9.42856843e+00 2.46680757e+01 -1.44529605e+01 -5.26039882e-01 6.46417912e+01] [-3.76398716e+01 5.82887150e+01 6.48624009e+01 1.04049127e+02 -1.32789169e-01 2.89847838e+00 7.62545446e+01 2.11490504e+01 6.45970889e+01 9.21932579e+01 -5.39192416e+01 1.43958261e+01 -8.52823174e+00 2.21051988e+02 2.65265279e+01 -1.23604289e+01 -1.67346935e+01 2.40823196e+02 2.17686170e+01 -2.92453173e+01 2.79210906e+02 1.99897541e+02 -6.77785012e+01 7.33601666e+01 4.90065098e+01 2.73748369e+02 6.89758056e+01 1.02375588e+02 1.19314200e+02 1.43703206e+01 8.91487898e+01 1.74790993e+02] [-8.03676348e+01 -3.53799661e+01 -4.77271880e+01 -8.54320592e+00 -6.88481259e+01 1.03579045e+01 -9.76099035e+01 -6.75507706e+01 -3.23388645e+01 -6.06883799e+01 -1.53103011e+02 -6.31056291e+01 -1.52731399e+00 6.59594214e+01 -1.36663177e+01 -7.97382126e+01 -1.81949502e+01 9.13154514e+01 -4.37814308e+01 -1.49245026e+02 1.17410098e+02 5.34486701e+01 2.16638157e+01 -2.39743205e+01 -3.18633416e+01 1.09722408e+02 -4.52671327e+01 -1.27441575e+01 4.76699303e+00 -3.34343301e+01 -2.61524903e+01 4.26012119e+01] [-1.32715387e+02 -1.29018541e+01 -3.38886230e+01 -6.29329522e+00 -1.81560799e+01 -1.75979737e+01 -1.70489409e+01 -9.66871553e+01 -2.35198986e+01 -2.39575923e+01 -1.05582938e+02 -4.15429953e+00 -7.42410744e+00 7.36983340e+01 -9.75319700e+00 -8.18356257e+00 -4.34863276e+00 9.35146708e+01 8.70653487e+00 -9.25049377e+01 1.25173395e+02 6.67860793e+01 -2.80719121e+01 -1.83490634e+01 -1.32905049e+01 1.24008458e+02 -2.33975538e+01 -9.48457686e+00 4.50929115e+00 -5.40033213e+00 -1.73484119e+01 4.21522157e+01] [-5.42018401e+01 8.73006379e+01 2.32765250e+02 1.38264965e+02 9.80172674e+01 -2.24160961e+00 2.20354554e+02 8.79887260e+00 8.97589666e+01 3.09575683e+02 1.93366293e+02 4.30396860e+01 1.49981599e+01 2.21514917e+02 4.56569339e+01 9.92245896e+01 4.11256037e+01 2.54541276e+02 2.21173019e+01 2.14245066e+02 2.87391248e+02 2.33348090e+02 -3.75675726e+01 1.25754828e+02 8.28832093e+01 2.88983196e+02 2.96243216e+02 1.39867510e+02 1.45842245e+02 -1.95116798e+02 1.09084793e+02 1.82475487e+02] [-1.35140887e+02 -5.48547925e+00 -2.86780389e+01 3.55071465e+00 -1.30843320e+01 -1.75696759e+01 -8.17904444e+00 -1.06054239e+02 -2.82936447e+01 -2.08019926e+01 -9.73106384e+01 -3.12881529e+00 -2.06878344e+00 8.13549159e+01 -5.67139880e+00 -9.16131171e+00 -2.16589490e+00 1.03147441e+02 -7.67905889e+00 -8.95444977e+01 1.30316660e+02 7.48997742e+01 -1.38945230e+01 -1.18359986e+01 -5.02576501e+00 1.27966613e+02 -1.18005317e+01 9.15748837e+00 1.86520246e+01 1.36796514e+00 -7.08194493e+00 4.87370270e+01] [-3.28481131e+01 4.62993373e+01 5.81039812e+01 9.85679024e+01 -5.40746381e+00 1.86692775e+00 4.39593125e+01 2.33160945e+01 5.93672449e+01 8.75052317e+01 -8.00477818e+01 4.94031874e+00 -1.08937257e+01 2.18224691e+02 1.91527730e+01 -2.07562508e+01 -2.43175713e+01 2.38967566e+02 -4.57028826e+00 -5.41374832e+01 2.74331586e+02 1.95543355e+02 -6.25815487e+01 6.59793619e+01 3.63474446e+01 2.70994343e+02 6.23794753e+01 9.49596815e+01 1.16725729e+02 1.71264951e+01 7.91203639e+01 1.72002368e+02] [-2.23113038e+01 3.85041404e+01 4.82521055e+01 1.02768326e+02 -2.53397389e+01 1.15130825e+01 2.19585090e+01 2.68306558e+01 4.97453654e+01 7.98107302e+01 -9.21313294e+01 -1.66432988e+01 -8.18858503e+00 2.19323149e+02 1.79298210e+01 -4.37591697e+01 -2.33370143e+01 2.39985699e+02 -1.70710088e+01 -7.23558385e+01 2.73000109e+02 1.95109525e+02 -4.28235882e+01 6.87312772e+01 2.90963549e+01 2.68926218e+02 5.11149619e+01 9.78528250e+01 1.21343103e+02 2.66463762e+00 7.94781388e+01 1.73937572e+02] [-2.07313635e+01 7.65006577e+01 1.65261746e+02 1.35849432e+02 7.70945198e+01 -1.27636690e+01 1.43150071e+02 5.46829766e+01 8.10751564e+01 2.36351729e+02 9.09496176e+01 4.04039693e+01 -1.56630304e+00 2.39116574e+02 3.09495296e+01 8.43425350e+01 1.69041368e+01 2.70556875e+02 1.69833970e+01 1.25755352e+02 3.06122274e+02 2.38450623e+02 -4.70544622e+01 1.13934578e+02 6.19287774e+01 3.08462275e+02 2.24954306e+02 1.35155605e+02 1.49364581e+02 -9.68930347e+01 1.09534858e+02 1.95370548e+02] [-1.56146871e+01 4.47904029e+01 4.84394653e+01 1.02574790e+02 -2.90451403e+01 -1.00007705e+00 5.93498111e+01 5.01382523e+01 6.19531506e+01 8.36435191e+01 -1.10059055e+02 7.84688699e+00 -2.14701482e+01 2.31576323e+02 1.59113896e+01 -3.93292613e+01 -4.47341851e+01 2.46214142e+02 -1.08562857e+01 -8.31575203e+01 2.84015299e+02 2.00756766e+02 -9.04177518e+01 6.58084487e+01 3.29248742e+01 2.82898701e+02 5.01224209e+01 9.31292715e+01 1.19987876e+02 3.93774438e+01 8.15620270e+01 1.79778041e+02] [-1.39628942e+02 -1.26578544e+01 -3.62573033e+01 -5.63057408e+00 -1.20635722e+01 -1.47103207e+01 -1.36255772e+01 -1.04733185e+02 -2.58579853e+01 -2.90691047e+01 -1.00775171e+02 2.91585038e+00 -4.14546530e+00 7.16535639e+01 -9.54263763e+00 -2.95519799e+00 2.40117495e+00 9.36908698e+01 1.06235221e+01 -8.94573932e+01 1.23740419e+02 6.74696082e+01 -2.45021749e+01 -1.72536226e+01 -1.35360758e+01 1.22252841e+02 -2.72625952e+01 -8.67762895e+00 4.34196451e+00 -8.02664650e-01 -1.68310616e+01 4.06526231e+01] [-1.20122097e+02 -1.31571057e+01 -4.36066030e+01 -1.33862235e+00 -4.24682717e+01 -2.02031124e+00 -3.48840133e+01 -9.67611175e+01 -2.58932823e+01 -4.02661205e+01 -1.24020339e+02 -1.88663287e+01 -4.24550118e+00 7.61264885e+01 -7.17864838e+00 -3.96208070e+01 -8.65104887e+00 1.01108349e+02 -1.32317794e+01 -1.15342462e+02 1.26688265e+02 6.72633436e+01 -2.92012938e+00 -1.17642346e+01 -1.47362943e+01 1.23336444e+02 -3.33895882e+01 -1.69822767e+00 1.37391459e+01 6.98392644e+00 -1.32629015e+01 4.94814250e+01] [-1.36957557e+02 -1.22137351e+01 -3.87074263e+01 -4.28667040e+00 -2.23926848e+01 -1.10964268e+01 -2.04036312e+01 -1.07500254e+02 -2.65345588e+01 -2.64024018e+01 -1.02857870e+02 -9.17261147e+00 -3.81220639e+00 7.18762904e+01 -1.05939569e+01 -1.37841795e+01 -1.90056239e-01 9.40986230e+01 4.55428157e+00 -9.34082909e+01 1.24468076e+02 6.74195782e+01 -1.38371883e+01 -1.42743541e+01 -1.32220865e+01 1.20555356e+02 -2.11784935e+01 -5.93891309e+00 7.63239065e+00 -5.89484198e+00 -1.64678707e+01 4.32372019e+01] [-3.32409913e+01 4.68407879e+01 5.95316562e+01 1.00689941e+02 -9.23168083e+00 2.70483964e+00 4.57076081e+01 2.30939645e+01 5.50162519e+01 9.16248517e+01 -6.89287382e+01 3.04036162e+00 -7.72242159e+00 2.19963059e+02 2.14029563e+01 -1.47229974e+01 -1.52104062e+01 2.37551624e+02 2.44890530e+00 -4.42722845e+01 2.74745730e+02 1.96793556e+02 -5.88740701e+01 6.55389712e+01 3.88296238e+01 2.71102306e+02 6.29686172e+01 9.61859710e+01 1.17986829e+02 4.42960127e+00 8.18490060e+01 1.72663766e+02] [-8.16760082e+01 -1.02320844e+01 -4.45663817e+00 2.75609843e+01 -5.59823543e+01 -1.06262794e+00 -3.06915484e+01 -4.62866869e+01 5.98998809e+00 -6.83187145e+00 -1.46549846e+02 -3.49020634e+01 -1.77978877e+01 1.21141221e+02 -1.39284177e+01 -6.81680719e+01 -5.13829688e+01 1.39394928e+02 -4.55679386e+01 -1.31250622e+02 1.66956697e+02 1.01170629e+02 -4.79807878e+01 7.48607118e+00 -9.50894396e+00 1.64661167e+02 -1.84388021e+01 2.04526595e+01 3.88484070e+01 -4.94250419e+00 1.45821557e+01 8.15499439e+01] [-8.36928890e+01 -3.53896442e+01 -4.75829251e+01 -8.78511630e+00 -6.76056879e+01 1.25295955e+01 -9.14950782e+01 -7.16773434e+01 -2.88578433e+01 -5.99560415e+01 -1.51625364e+02 -6.40250592e+01 -8.18728903e-01 6.64944612e+01 -1.41776536e+01 -7.81578232e+01 -1.75669285e+01 9.28011674e+01 -4.08734261e+01 -1.47703319e+02 1.18827012e+02 5.41887401e+01 2.38358741e+01 -2.27697282e+01 -2.94738593e+01 1.10349738e+02 -4.50474611e+01 -8.20618709e+00 5.10549751e+00 -3.37813294e+01 -2.21196560e+01 4.35052586e+01] [-1.28989109e+02 -1.26917931e+01 -3.62602361e+01 -5.81928341e+00 -2.25735373e+01 -1.19179567e+01 -2.23555028e+01 -9.64465001e+01 -2.26802914e+01 -2.58271840e+01 -1.09657392e+02 -6.49232804e+00 -5.72562566e+00 7.35065316e+01 -1.03318698e+01 -1.52576112e+01 -4.46884742e+00 9.55976461e+01 4.21114338e+00 -1.00150857e+02 1.25958881e+02 6.73802409e+01 -2.34113307e+01 -1.71522833e+01 -1.28823018e+01 1.22843842e+02 -2.48609235e+01 -9.28766765e+00 5.09238320e+00 -5.78287549e+00 -1.71538993e+01 4.35202263e+01] [-5.71748892e+01 8.86420477e+01 2.29890796e+02 1.37860028e+02 1.01284449e+02 -4.57220930e-01 2.19220094e+02 2.58653691e+00 9.01005417e+01 3.06431295e+02 1.90463914e+02 4.44918479e+01 1.74969182e+01 2.20737209e+02 4.74247543e+01 1.01045617e+02 4.27133670e+01 2.53446499e+02 2.44287879e+01 2.09779575e+02 2.86289595e+02 2.32327556e+02 -3.20723068e+01 1.26650399e+02 8.18581016e+01 2.87227084e+02 2.94655250e+02 1.40993566e+02 1.46811121e+02 -1.97187366e+02 1.07737700e+02 1.79861550e+02] [-1.26065717e+02 -1.47486556e+01 -4.02530161e+01 -5.18472044e+00 -2.80534425e+01 -8.49968229e+00 -2.72824171e+01 -9.77832075e+01 -2.26180913e+01 -2.97648892e+01 -1.12115444e+02 -8.45275987e+00 -5.70284572e+00 7.26880788e+01 -8.81315767e+00 -2.15268506e+01 -6.22502915e+00 9.49149019e+01 2.57699925e+00 -1.03579942e+02 1.24729861e+02 6.54984214e+01 -1.80929716e+01 -1.68199414e+01 -1.51679162e+01 1.20585172e+02 -2.64237516e+01 -8.44945617e+00 6.74490199e+00 -2.88164791e+00 -1.74905399e+01 4.37167587e+01] [-4.39230935e+01 8.55974544e+01 2.04964378e+02 1.39665363e+02 8.63466687e+01 -8.36781076e+00 1.83857406e+02 2.54011317e+01 8.81952047e+01 2.75180772e+02 1.36670712e+02 3.70977081e+01 6.71797924e+00 2.32988093e+02 4.24492606e+01 9.20362467e+01 3.02545267e+01 2.63843490e+02 1.27664684e+01 1.62430864e+02 2.98871778e+02 2.38704159e+02 -3.68565795e+01 1.23776081e+02 7.59474531e+01 3.00405974e+02 2.59321380e+02 1.41616812e+02 1.50390380e+02 -1.57854096e+02 1.10388074e+02 1.90745505e+02] [-5.47687931e+01 8.90490460e+01 2.29362918e+02 1.39033980e+02 1.02000236e+02 -2.97449283e+00 2.18133978e+02 6.62269594e+00 8.96857290e+01 3.07886702e+02 1.91719461e+02 4.26506291e+01 1.55090596e+01 2.21110418e+02 4.74321167e+01 1.02442590e+02 4.38749546e+01 2.53225014e+02 2.45754814e+01 2.10499415e+02 2.86191437e+02 2.32497729e+02 -3.28058722e+01 1.26858338e+02 8.25225461e+01 2.87772751e+02 2.93202001e+02 1.40739298e+02 1.47333309e+02 -1.95141177e+02 1.09130264e+02 1.80542947e+02] [-6.61203980e+01 8.41396340e+01 2.60425365e+02 1.32028973e+02 1.08782398e+02 -1.23393402e+01 2.36525636e+02 7.70729334e+00 8.44097044e+01 3.32749000e+02 2.06817276e+02 4.68526987e+01 7.87195660e+00 2.21940233e+02 4.18769420e+01 1.08026475e+02 2.65120174e+01 2.55253436e+02 5.91495682e+00 2.36377334e+02 2.90932803e+02 2.36182453e+02 -6.04967807e+01 1.22436440e+02 7.85550807e+01 2.95112205e+02 3.16783826e+02 1.37713416e+02 1.41865558e+02 -2.36851562e+02 1.06935264e+02 1.77544716e+02]] syn2 = [[-8.37806370e+00 -7.94077649e+00 -1.56928932e+01 -1.11996603e+01 -1.32564363e+01 -6.03665525e+00 -1.07036434e+01 -1.36963805e+01 -8.13198008e+00 -7.01993677e+00] [-3.40117631e+00 4.98172255e-01 6.29671319e-01 4.68176673e-01 2.03038498e+00 -3.69918533e-01 -5.66249508e-01 3.15062738e+00 1.35634514e+00 1.75398538e+00] [-3.46123703e+00 -4.05306938e-01 -1.45223934e+00 -2.63156092e-01 3.87454269e+00 -4.12584389e-01 -2.65882094e+00 -2.21434049e+00 -1.28379404e+00 -2.32424728e+00] [-1.41528182e+00 -1.43953925e+00 7.38408046e-01 -2.22050723e+00 -8.10307848e-01 -1.26880457e-01 8.28047068e-01 6.45735462e-01 -1.23595320e+00 3.50384433e-01] [-5.56532488e+00 1.59508106e+00 -9.47085084e-01 8.89243364e-01 4.63796936e+00 1.79679271e+00 1.97029355e+00 -2.73493647e-01 2.92938958e-01 8.51074585e-01] [ 2.60022801e+00 7.77585277e-01 -2.12773915e+00 3.15679074e-01 -1.82520647e+00 4.82176877e-01 -2.90812484e+00 4.25783567e-01 3.39014845e-02 1.18356612e+00] [-8.52144635e+00 -9.12409080e-01 -1.58821974e+00 3.83624390e-02 3.38967202e+00 1.49206445e-01 -1.57113406e+00 2.99327903e+00 -1.54957915e+00 2.36791284e-01] [-1.04691668e+01 -1.19825374e+01 -1.61259232e+01 -1.27885699e+01 -1.22541037e+01 -9.04898504e+00 -1.28692412e+01 -1.61530546e+01 -9.56103931e+00 -1.12217732e+01] [-2.77036891e-01 -9.72902069e-02 -1.41635140e+00 -1.76462060e-01 3.37850901e+00 -4.02783325e-01 -2.99849718e+00 5.55330199e-01 1.43741477e+00 1.03547814e+00] [-8.44916586e-01 -2.75810444e+00 -3.27482349e+00 -1.74969179e+00 1.05457934e+00 -1.14820478e+00 -2.00200077e-01 7.00434922e-01 2.40049062e-01 1.10499561e+00] [-1.07939422e+01 1.98812410e+00 -1.61918578e+00 4.22413878e+00 -1.54706145e-01 3.62140835e+00 -9.00051152e-01 1.50488625e+00 1.91148793e+00 3.82907243e+00] [-5.23695665e+00 8.52337670e-01 -5.45459438e+00 -8.36252451e-02 3.64934464e+00 1.11418737e+00 1.39856199e+00 -1.25925299e+00 1.25290665e+00 1.96961179e+00] [ 5.19635106e-03 1.60740224e+00 1.10361993e+00 1.69221730e+00 -1.28838310e-01 1.36026659e+00 1.35067433e+00 2.01469311e+00 4.48336113e-01 2.72917966e+00] [ 1.24204775e+00 -2.22473059e+00 -2.59521179e+00 -3.52907867e+00 -8.58624297e-01 -1.89656828e+00 -1.82789393e-01 -1.38869487e+00 -4.63489228e+00 -1.65169174e+00] [-1.76408325e+00 8.15668148e-01 1.07271669e+00 -6.74035020e-01 1.42776193e+00 -1.09471014e-01 -1.06281213e+00 -8.48706340e-01 1.32076913e+00 6.39913104e-01] [-7.08352952e+00 1.60639504e+00 -3.36245745e-01 5.85872419e-01 5.02974292e+00 1.77865875e+00 1.51928818e+00 -1.35714605e-01 1.31450014e+00 1.29180588e+00] [-3.22259295e+00 2.56597202e+00 2.14123700e+00 2.16763746e+00 1.83671194e-01 2.51015191e+00 1.49765564e+00 3.57435610e+00 3.32015041e+00 3.26204732e+00] [ 2.28092158e-01 -1.12217870e+00 -1.30633106e+00 -4.19122697e+00 -1.18903300e+00 -2.38705784e+00 -2.68044456e-01 -1.92388363e+00 -3.90606982e+00 -2.80822353e+00] [-5.86705871e+00 1.38429514e+00 2.70816768e+00 3.45952266e-01 3.76381371e+00 1.52433164e+00 -1.48863773e+00 6.37980232e+00 4.11766128e+00 2.43878620e+00] [-1.12310357e+01 2.73118646e+00 -1.13238833e+00 2.02270871e+00 5.76568398e-01 2.58972172e+00 -1.44783265e+00 -1.04924129e-01 -2.06793708e+00 2.22375312e+00] [ 1.25114507e-01 -4.30667504e-01 -4.16157946e-01 -4.49470015e+00 -6.80945762e-01 -2.62264723e+00 -1.47675590e+00 -2.01472607e+00 -4.48885999e+00 -2.79874753e+00] [-2.04621476e-01 -1.22017201e+00 -1.29107821e-01 -2.30602210e+00 -2.51789589e-01 -1.31708820e+00 2.11412122e-01 -8.69230825e-01 -3.86482071e+00 -8.38371116e-01] [ 1.58909806e+00 1.65791165e+00 -5.59615025e-01 3.29152856e+00 -6.02625037e+00 2.52809058e+00 -1.68898838e-01 5.69028280e-02 1.87545361e+00 4.96715642e+00] [ 9.99472359e-02 -4.49977007e-01 -1.76285480e+00 -6.16451327e-01 -6.16346329e-02 -7.11751776e-01 -4.09591181e-01 2.20583742e+00 1.62706320e+00 1.87457128e+00] [-3.23406056e+00 5.41874759e-01 1.30226748e-01 9.78307157e-01 2.45500176e+00 1.01181823e+00 -1.55636357e+00 -4.65019462e-01 2.56633138e+00 -4.72699576e-01] [ 1.15222334e-01 -2.25756139e+00 -9.16317466e-01 -4.99539401e+00 -1.80274663e-01 -1.29685268e+00 -9.58641487e-01 -2.72721899e+00 -4.45711453e+00 -2.83089555e+00] [-4.60794522e+00 4.16316578e-01 -1.33699809e-01 -2.97065485e-01 2.32342981e+00 -2.23328811e-01 -1.84665400e+00 1.23929432e+00 3.48552530e-01 -4.46798473e+00] [ 2.24706798e+00 -3.13647639e+00 -5.52530733e-01 -1.89113936e+00 1.26864847e+00 5.36182253e-01 -1.72965178e+00 5.58795188e-01 -6.99433215e-01 -6.30907994e-02] [ 5.16500617e-01 -3.46482415e-01 -2.68866806e-01 -1.89816917e+00 -1.66593328e+00 1.13934300e+00 1.35994430e+00 2.56782727e-01 -4.21791781e-01 -6.82124239e-01] [-2.39563464e+00 -7.37750154e+00 -3.30665511e+00 -1.07299337e+01 3.99672930e+00 -5.57182490e+00 1.04020077e+00 -2.26622027e+00 -3.93032453e+00 -1.33461705e+00] [-1.19415532e+00 -1.46983903e+00 -2.58816355e-01 -2.07263469e+00 2.30649221e+00 -1.51236257e+00 4.96490635e-01 2.05280990e+00 2.07613820e-02 5.10766645e-01] [ 2.98342462e-01 -2.10080741e+00 -1.40805407e+00 -2.16510407e+00 -2.28585237e+00 -6.98820946e-01 -6.95873571e-01 -1.71975671e+00 -2.54328104e+00 -1.07438888e+00]] b0 = [[-6074.11362419 -6412.33944002 -6140.80202612 -6078.10412044 -6624.30496009 -6125.08156203 -6096.21198483 -7525.28400459 -7086.29782773 -6114.03463352 -6115.19053053 -6121.41660473 -6446.88677113 -6100.30905547 -6117.9014037 -6173.03438887 -7540.59214658 -6060.46907856 -6101.02150991 -7952.98816972 -6145.76019716 -7507.43092202 -7507.09572842 -7787.14249935 -7516.58624725 -6116.03812015 -6137.58415137 -6104.47233971 -7511.86928234 -6239.95677965 -6072.60719484 -6117.74061904 -7950.3782105 -6111.83366414 -7869.19121304 -7946.71915989 -8001.00998659]] b1 = [[-2.1256769 -5.81276559 -5.02225262 -6.10671295 -4.08206286 -4.46168419 -5.00679968 -2.55016758 -5.97207403 -5.57282594 -3.14475692 -4.55191353 -3.86542015 -5.3687466 -5.23385401 -4.3839707 -4.24539054 -5.35580089 -5.2915857 -3.02893051 -5.20509454 -5.44869847 -3.03565957 -5.93212472 -5.57891823 -5.279001 -5.60538733 -6.15044377 -5.76204409 -2.13524171 -6.03439405 -5.56153484]] b2 = [[ 0.16302535 -0.19844465 0.40941499 0.41375315 0.00774145 -0.75745748 0.02919616 0.43074873 -0.15515393 -0.41906463]]
3c34105bfa17f674e7bb3b8621bc4ceb8ae112b5
bb88122fc4978b14e8a9b02d8c11f1ce67ea17d0
/01_keras/keras31_cifar100_1_imshow.py
c2765b3208fba97f52169ea5492007275762cd5d
[]
no_license
star10919/Keras_
c2c8a6f3d0e1a7ceba9e81dbc51ecfd12bd5fe78
f3156b7db6e12feea075b46e94b09157f43a141c
refs/heads/main
2023-08-17T22:44:54.324315
2021-10-24T02:47:00
2021-10-24T02:47:00
390,066,491
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
from tensorflow.keras.datasets import cifar100 import numpy as np import matplotlib.pyplot as plt from icecream import ic (x_train, y_train), (x_test, y_test) = cifar100.load_data() ic(x_train.shape, y_train.shape) # (50000, 32, 32, 3), (50000, 1) ic(x_test.shape, y_test.shape) # (10000, 32, 32, 3), (10000, 1) ic(x_train[27]) print('y[27] 값 :', y_train[27]) # [52] plt.imshow(x_train[27]) plt.show()
1183fbfc216acc8a1e4f790c2cf4417f3125aa41
f694b37f548fe67656bf737073e0221e23b53dfb
/app/models.py
b29b69f52d28438d63166cea33e9228099faca9c
[]
no_license
itsumura-h/django_api_auth_sample
d92937834e79856b7956fddf174682d1d5bd22dc
4a3244c8a3471573f1f29c3a67ddf924f8649ed1
refs/heads/master
2020-05-25T18:51:40.285232
2019-05-22T01:08:54
2019-05-22T01:08:54
187,937,393
0
0
null
null
null
null
UTF-8
Python
false
false
4,703
py
from django.db import models from django.contrib.auth.hashers import make_password from django.utils import timezone import hashlib # Create your models here. class User(models.Model): def __str__(self): return str(self.name) name = models.CharField(max_length=255) password = models.CharField(max_length=255) email = models.CharField(max_length=255, blank=True, null=True) tel = models.CharField(max_length=255, blank=True, null=True) is_studio = models.BooleanField(default=0) class Meta: db_table = 'users' verbose_name_plural = 'user' def save(self, *args, **kwargs): self.password = make_password(self.password) #パスワード暗号化 super().save(*args, **kwargs) class LoginToken(models.Model): def __str__(self): # メールアドレスとアクセス日時、トークンが見えるようにする dt = timezone.localtime(self.access_datetime).strftime("%Y/%m/%d %H:%M:%S") return self.user.email + '(' + dt + ') - ' + self.token user = models.ForeignKey(User, on_delete=models.CASCADE) token = models.CharField(max_length=40) #トークン access_datetime = models.DateTimeField() #アクセス日時 class Meta: db_table = 'tokens' verbose_name_plural = 'token' @staticmethod def create(user: User): # ユーザの既存のトークンを取得 if LoginToken.objects.filter(user=user).exists(): # トークンが既に存在している場合は削除する LoginToken.objects.get(user=user).delete() # トークン生成(メールアドレス + パスワード + システム日付のハッシュ値とする) dt = timezone.now() str = user.email + user.password + dt.strftime('%Y%m%d%H%M%S%f') hash = hashlib.sha1(str.encode('utf-8')).hexdigest() # utf-8でエンコードしないとエラーになる # トークンをデータベースに追加 token = LoginToken.objects.create( user = user, token = hash, access_datetime = dt) return token class Group(models.Model): owner_id = models.ForeignKey(User, on_delete=models.PROTECT) class Meta: db_table = 'groups' verbose_name_plural = 'group' class GroupUser(models.Model): group = models.ForeignKey(Group, on_delete=models.PROTECT) user = models.ForeignKey(User, on_delete=models.PROTECT) class Meta: db_table = 'group_users' verbose_name_plural = 'group_user' class Studio(models.Model): def __str__(self): return str(self.name) name = models.CharField(max_length=255) prefecture = models.CharField(max_length=255) city = models.CharField(max_length=255) address = models.CharField(max_length=255) gps = models.CharField(max_length=255, blank=True, null=True) user = models.ForeignKey(User, on_delete=models.PROTECT) class Meta: db_table = 'studios' verbose_name_plural = 'studio' class Room(models.Model): def __str__(self): return str(self.name) name = models.CharField(max_length=255) wide = models.IntegerField(blank=True, null=True) capacity = models.IntegerField(blank=True, null=True) studio = models.ForeignKey(Studio, on_delete=models.PROTECT) class Meta: db_table = 'rooms' verbose_name_plural = 'room' class Current(models.Model): member_no = models.IntegerField(blank=True, null=True) user = models.ForeignKey(User, on_delete=models.PROTECT) studio = models.ForeignKey(Studio, on_delete=models.PROTECT) class Meta: db_table = 'currents' verbose_name_plural = 'current' class Booking(models.Model): user = models.ForeignKey(User, on_delete=models.PROTECT) room = models.ForeignKey(Room, on_delete=models.PROTECT) group = models.ForeignKey(Group, on_delete=models.PROTECT) start = models.DateTimeField() end = models.DateTimeField() class Meta: db_table = 'bookings' verbose_name_plural = 'booking' class EquipmentKind(models.Model): def __str__(self): return str(self.name) name = models.CharField(max_length=255) class Meta: db_table = 'equipment_kinds' verbose_name_plural = 'equipment_kind' class Equipment(models.Model): def __str__(self): return str(self.name) name = models.CharField(max_length=255) kind = models.ForeignKey(EquipmentKind, on_delete=models.PROTECT) room = models.ForeignKey(Room, on_delete=models.PROTECT) class Meta: db_table = 'equipments' verbose_name_plural = 'equipment'
610035bce67bfdabe6c21fe5bf50792c3954ccad
f02eb256fdaf94bc7fc8e2d7ecb7352b98eaf494
/tests/test_save_reload_user.py
a0d68fd0753ad0addf27d58d3cb85bc80ff0f58f
[]
no_license
andres0191/AirBnB_clone
b98c4ef70c5f933154367557fc4026a2ce4e258a
818e60d89939650a2962164690987a0703792ef5
refs/heads/master
2021-01-03T23:58:42.569557
2020-03-03T00:32:49
2020-03-03T00:32:49
240,291,850
2
0
null
null
null
null
UTF-8
Python
false
false
712
py
#!/usr/bin/python3 from models.engine.file_storage import FileStorage from models.base_model import BaseModel from models.user import User storage = FileStorage() storage.reload() all_objs = storage.all() print("-- Reloaded objects --") for obj_id in all_objs.keys(): obj = all_objs[obj_id] print(obj) print("-- Create a new User --") my_user = User() my_user.first_name = "Betty" my_user.last_name = "Holberton" my_user.email = "[email protected]" my_user.password = "root" my_user.save() print(my_user) print("-- Create a new User 2 --") my_user2 = User() my_user2.first_name = "John" my_user2.email = "[email protected]" my_user2.password = "root" my_user2.save() print(my_user2)
069a1ecdd2ecdaf92638a7dc6e3f0758e7fc68c6
f352f9915c0b9d6f7ea010169f5dafd3a9fb8638
/lib/nltk/classify/decisiontree.py
a4095c909c93dae0b48fa736d684b467dc579d35
[]
no_license
nltk/nltk.github.com
fa235e76788e6e8e7349e7195e61799c1402e61d
cf0d2aa508a1de9147ccf30bd070660651d55adb
refs/heads/master
2023-07-31T13:34:20.864897
2023-01-02T15:33:19
2023-01-02T15:33:19
2,686,706
34
41
null
2022-10-06T17:06:49
2011-11-01T09:59:49
HTML
UTF-8
Python
false
false
13,083
py
# Natural Language Toolkit: Decision Tree Classifiers # # Copyright (C) 2001-2021 NLTK Project # Author: Edward Loper <[email protected]> # URL: <https://www.nltk.org/> # For license information, see LICENSE.TXT """ A classifier model that decides which label to assign to a token on the basis of a tree structure, where branches correspond to conditions on feature values, and leaves correspond to label assignments. """ from collections import defaultdict from nltk.classify.api import ClassifierI from nltk.probability import FreqDist, MLEProbDist, entropy class DecisionTreeClassifier(ClassifierI): def __init__(self, label, feature_name=None, decisions=None, default=None): """ :param label: The most likely label for tokens that reach this node in the decision tree. If this decision tree has no children, then this label will be assigned to any token that reaches this decision tree. :param feature_name: The name of the feature that this decision tree selects for. :param decisions: A dictionary mapping from feature values for the feature identified by ``feature_name`` to child decision trees. :param default: The child that will be used if the value of feature ``feature_name`` does not match any of the keys in ``decisions``. This is used when constructing binary decision trees. """ self._label = label self._fname = feature_name self._decisions = decisions self._default = default def labels(self): labels = [self._label] if self._decisions is not None: for dt in self._decisions.values(): labels.extend(dt.labels()) if self._default is not None: labels.extend(self._default.labels()) return list(set(labels)) def classify(self, featureset): # Decision leaf: if self._fname is None: return self._label # Decision tree: fval = featureset.get(self._fname) if fval in self._decisions: return self._decisions[fval].classify(featureset) elif self._default is not None: return self._default.classify(featureset) else: return self._label def error(self, labeled_featuresets): errors = 0 for featureset, label in labeled_featuresets: if self.classify(featureset) != label: errors += 1 return errors / len(labeled_featuresets) def pretty_format(self, width=70, prefix="", depth=4): """ Return a string containing a pretty-printed version of this decision tree. Each line in this string corresponds to a single decision tree node or leaf, and indentation is used to display the structure of the decision tree. """ # [xx] display default!! if self._fname is None: n = width - len(prefix) - 15 return "{}{} {}\n".format(prefix, "." * n, self._label) s = "" for i, (fval, result) in enumerate( sorted( self._decisions.items(), key=lambda item: (item[0] in [None, False, True], str(item[0]).lower()), ) ): hdr = f"{prefix}{self._fname}={fval}? " n = width - 15 - len(hdr) s += "{}{} {}\n".format(hdr, "." * (n), result._label) if result._fname is not None and depth > 1: s += result.pretty_format(width, prefix + " ", depth - 1) if self._default is not None: n = width - len(prefix) - 21 s += "{}else: {} {}\n".format(prefix, "." * n, self._default._label) if self._default._fname is not None and depth > 1: s += self._default.pretty_format(width, prefix + " ", depth - 1) return s def pseudocode(self, prefix="", depth=4): """ Return a string representation of this decision tree that expresses the decisions it makes as a nested set of pseudocode if statements. """ if self._fname is None: return f"{prefix}return {self._label!r}\n" s = "" for (fval, result) in sorted( self._decisions.items(), key=lambda item: (item[0] in [None, False, True], str(item[0]).lower()), ): s += f"{prefix}if {self._fname} == {fval!r}: " if result._fname is not None and depth > 1: s += "\n" + result.pseudocode(prefix + " ", depth - 1) else: s += f"return {result._label!r}\n" if self._default is not None: if len(self._decisions) == 1: s += "{}if {} != {!r}: ".format( prefix, self._fname, list(self._decisions.keys())[0] ) else: s += f"{prefix}else: " if self._default._fname is not None and depth > 1: s += "\n" + self._default.pseudocode(prefix + " ", depth - 1) else: s += f"return {self._default._label!r}\n" return s def __str__(self): return self.pretty_format() @staticmethod def train( labeled_featuresets, entropy_cutoff=0.05, depth_cutoff=100, support_cutoff=10, binary=False, feature_values=None, verbose=False, ): """ :param binary: If true, then treat all feature/value pairs as individual binary features, rather than using a single n-way branch for each feature. """ # Collect a list of all feature names. feature_names = set() for featureset, label in labeled_featuresets: for fname in featureset: feature_names.add(fname) # Collect a list of the values each feature can take. if feature_values is None and binary: feature_values = defaultdict(set) for featureset, label in labeled_featuresets: for fname, fval in featureset.items(): feature_values[fname].add(fval) # Start with a stump. if not binary: tree = DecisionTreeClassifier.best_stump( feature_names, labeled_featuresets, verbose ) else: tree = DecisionTreeClassifier.best_binary_stump( feature_names, labeled_featuresets, feature_values, verbose ) # Refine the stump. tree.refine( labeled_featuresets, entropy_cutoff, depth_cutoff - 1, support_cutoff, binary, feature_values, verbose, ) # Return it return tree @staticmethod def leaf(labeled_featuresets): label = FreqDist(label for (featureset, label) in labeled_featuresets).max() return DecisionTreeClassifier(label) @staticmethod def stump(feature_name, labeled_featuresets): label = FreqDist(label for (featureset, label) in labeled_featuresets).max() # Find the best label for each value. freqs = defaultdict(FreqDist) # freq(label|value) for featureset, label in labeled_featuresets: feature_value = featureset.get(feature_name) freqs[feature_value][label] += 1 decisions = {val: DecisionTreeClassifier(freqs[val].max()) for val in freqs} return DecisionTreeClassifier(label, feature_name, decisions) def refine( self, labeled_featuresets, entropy_cutoff, depth_cutoff, support_cutoff, binary=False, feature_values=None, verbose=False, ): if len(labeled_featuresets) <= support_cutoff: return if self._fname is None: return if depth_cutoff <= 0: return for fval in self._decisions: fval_featuresets = [ (featureset, label) for (featureset, label) in labeled_featuresets if featureset.get(self._fname) == fval ] label_freqs = FreqDist(label for (featureset, label) in fval_featuresets) if entropy(MLEProbDist(label_freqs)) > entropy_cutoff: self._decisions[fval] = DecisionTreeClassifier.train( fval_featuresets, entropy_cutoff, depth_cutoff, support_cutoff, binary, feature_values, verbose, ) if self._default is not None: default_featuresets = [ (featureset, label) for (featureset, label) in labeled_featuresets if featureset.get(self._fname) not in self._decisions ] label_freqs = FreqDist(label for (featureset, label) in default_featuresets) if entropy(MLEProbDist(label_freqs)) > entropy_cutoff: self._default = DecisionTreeClassifier.train( default_featuresets, entropy_cutoff, depth_cutoff, support_cutoff, binary, feature_values, verbose, ) @staticmethod def best_stump(feature_names, labeled_featuresets, verbose=False): best_stump = DecisionTreeClassifier.leaf(labeled_featuresets) best_error = best_stump.error(labeled_featuresets) for fname in feature_names: stump = DecisionTreeClassifier.stump(fname, labeled_featuresets) stump_error = stump.error(labeled_featuresets) if stump_error < best_error: best_error = stump_error best_stump = stump if verbose: print( "best stump for {:6d} toks uses {:20} err={:6.4f}".format( len(labeled_featuresets), best_stump._fname, best_error ) ) return best_stump @staticmethod def binary_stump(feature_name, feature_value, labeled_featuresets): label = FreqDist(label for (featureset, label) in labeled_featuresets).max() # Find the best label for each value. pos_fdist = FreqDist() neg_fdist = FreqDist() for featureset, label in labeled_featuresets: if featureset.get(feature_name) == feature_value: pos_fdist[label] += 1 else: neg_fdist[label] += 1 decisions = {} default = label # But hopefully we have observations! if pos_fdist.N() > 0: decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())} if neg_fdist.N() > 0: default = DecisionTreeClassifier(neg_fdist.max()) return DecisionTreeClassifier(label, feature_name, decisions, default) @staticmethod def best_binary_stump( feature_names, labeled_featuresets, feature_values, verbose=False ): best_stump = DecisionTreeClassifier.leaf(labeled_featuresets) best_error = best_stump.error(labeled_featuresets) for fname in feature_names: for fval in feature_values[fname]: stump = DecisionTreeClassifier.binary_stump( fname, fval, labeled_featuresets ) stump_error = stump.error(labeled_featuresets) if stump_error < best_error: best_error = stump_error best_stump = stump if verbose: if best_stump._decisions: descr = "{}={}".format( best_stump._fname, list(best_stump._decisions.keys())[0] ) else: descr = "(default)" print( "best stump for {:6d} toks uses {:20} err={:6.4f}".format( len(labeled_featuresets), descr, best_error ) ) return best_stump ##////////////////////////////////////////////////////// ## Demo ##////////////////////////////////////////////////////// def f(x): return DecisionTreeClassifier.train(x, binary=True, verbose=True) def demo(): from nltk.classify.util import binary_names_demo_features, names_demo classifier = names_demo( f, binary_names_demo_features # DecisionTreeClassifier.train, ) print(classifier.pretty_format(depth=7)) print(classifier.pseudocode(depth=7)) if __name__ == "__main__": demo()
fc1aed88264779358eff660f119563fd54d8a910
ae3abdd710878d79e60b1f1c56c5cd394ab511f4
/scripts/ajive_analysis.py
4eef9222b51981000f5ac81b3b4d3f1e752f4d9a
[]
no_license
idc9/breast_cancer_image_analysis
0eee6c7d796aabde8a447085996e32563acf6bd1
4a4af9d6b55b3ca38b26111d0f55af89a48b1282
refs/heads/master
2020-11-27T14:22:07.967478
2020-04-13T23:51:53
2020-04-13T23:51:53
229,484,796
2
0
null
null
null
null
UTF-8
Python
false
false
4,751
py
import os from joblib import dump import matplotlib.pyplot as plt from jive.AJIVE import AJIVE from explore.BlockBlock import BlockBlock from explore.Base import Union from cbcs_joint.load_analysis_data import load_analysis_data from cbcs_joint.viz_utils import savefig, mpl_noaxis from cbcs_joint.Paths import Paths # make directories for saved results os.makedirs(os.path.join(Paths().results_dir, 'data'), exist_ok=True) os.makedirs(os.path.join(Paths().results_dir, 'common', 'loadings'), exist_ok=True) os.makedirs(os.path.join(Paths().results_dir, 'genetic_indiv', 'loadings'), exist_ok=True) os.makedirs(os.path.join(Paths().results_dir, 'image_indiv'), exist_ok=True) # load pre-computed data e.g. patch features data = load_analysis_data(load_patch_feats=False) subj_img_feats = data['subj_img_feats'] genes = data['genes'] clinical_data = data['clinical_data'] # initial signal ranks determined from PCA scree plots init_signal_ranks = {'images': 81, 'genes': 30} # run AJIVE ajive = AJIVE(init_signal_ranks=init_signal_ranks, n_wedin_samples=1000, n_randdir_samples=1000, zero_index_names=False, n_jobs=-1, store_full=False) ajive = ajive.fit({'images': subj_img_feats, 'genes': genes}) dump(ajive, os.path.join(Paths().results_dir, 'data', 'fit_ajive')) ##################### # AJIVE diagnostics # ##################### # diagnostic plot plt.figure(figsize=[10, 10]) ajive.plot_joint_diagnostic() savefig(os.path.join(Paths().results_dir, 'ajive_diagnostic.png')) ####################### # plot PAM50 loadings # ####################### # set visualization configs mpl_noaxis(labels=True) n_genes = 50 inches = 5 height_scale = n_genes // 25 load_figsize = (inches, height_scale * inches) # common loadings load_dir = os.path.join(Paths().results_dir, 'common', 'loadings') os.makedirs(load_dir, exist_ok=True) for r in range(ajive.common.rank): plt.figure(figsize=load_figsize) ajive.blocks['genes'].plot_common_loading(r) plt.title('common component {}'.format(r + 1)) savefig(os.path.join(load_dir, 'loadings_comp_{}.png'.format(r + 1))) # genetic individual loadings load_dir = os.path.join(Paths().results_dir, 'genetic_indiv', 'loadings') os.makedirs(load_dir, exist_ok=True) n_indiv_comps = min(5, ajive.blocks['genes'].individual.rank) for r in range(n_indiv_comps): plt.figure(figsize=load_figsize) ajive.blocks['genes'].individual.plot_loading(r) plt.title('genetic individual component {}'.format(r + 1)) savefig(os.path.join(load_dir, 'loadings_comp_{}.png'.format(r + 1))) ######################################### # compare AJIVE scores to clinical data # ######################################### # see documentation of explore package # BlockBlock compares all variables from one block (AJIVE scores) to # all variables of another block (clinical variables) # and adjusts for multiple testing comparision_kws = {'alpha': 0.05, 'multi_test': 'fdr_bh', 'cat_test': 'auc', # equivalent to a Mann-Whitney test 'multi_cat': 'ovo', 'nan_how': 'drop'} common_scd = BlockBlock(**comparision_kws) common_scd.fit(ajive.common.scores(norm=True), clinical_data) gene_indiv_scd = BlockBlock(**comparision_kws) gene_indiv_scd = gene_indiv_scd.\ fit(ajive.blocks['genes'].individual.scores_.iloc[:, 0:5], clinical_data) image_indiv_scd = BlockBlock(**comparision_kws) image_indiv_scd = BlockBlock().\ fit(ajive.blocks['images'].individual.scores_.iloc[:, 0:5], clinical_data) all_tests = Union().add_tests([('common', common_scd), ('gene_indiv', gene_indiv_scd), ('image_indiv', image_indiv_scd)]) all_tests.correct_multi_tests() dump(all_tests, os.path.join(Paths().results_dir, 'data', 'clinical_data_comparisions')) inches = 6 # common n_row, n_col = common_scd.comparisons_.shape plt.figure(figsize=(inches * n_col, inches * n_row)) common_scd.plot() savefig(os.path.join(Paths().results_dir, 'common', 'cns_vs_clinical_data.png'), dpi=100) # genetic individual n_row, n_col = gene_indiv_scd.comparisons_.shape plt.figure(figsize=(inches * n_col, inches * n_row)) gene_indiv_scd.plot() savefig(os.path.join(Paths().results_dir, 'genetic_indiv', 'genetic_indiv_vs_clinical_data.png'), dpi=100) # image individual n_row, n_col = image_indiv_scd.comparisons_.shape plt.figure(figsize=(inches * n_col, inches * n_row)) image_indiv_scd.plot() savefig(os.path.join(Paths().results_dir, 'image_indiv', 'image_indiv_vs_clinical_data.png'), dpi=100)
93278531bd2f7b0295e3a883583124b4e66288e2
c0385ff098c71e6b9e9883e5e0b1a23d6ddee30a
/src/apps/accounts/urls.py
1ea7e73d3c17414ed305e39dbf374e478c3f6d9b
[ "MIT" ]
permissive
ehoversten/Travel-Buddy
c8122e941e491f467d4b085bd09e5f23b2674af6
e117cfcd14be3d04cab97b4fc28ced3f95f5786b
refs/heads/master
2022-12-11T08:35:16.098525
2020-08-10T18:11:40
2020-08-10T18:11:40
149,361,212
1
3
null
2022-12-08T02:25:23
2018-09-18T22:47:54
JavaScript
UTF-8
Python
false
false
268
py
from django.conf.urls import url from .views import ( register_view, LoginFormView ) urlpatterns = [ url(r'^$', LoginFormView.as_view(), name='login'), # url(r'^$', login_view, name='login'), url(r'^register/$', register_view, name='register'), ]
088de244f3f420206a51d57f323c763474709895
e96e03300af5aeb41b9ced0febefa4fb4a12cd28
/to_nwb/extensions/general/gen_yaml.py
a830e5845f935a2e7e20e31eaa0fd72ff8a9ce39
[ "BSD-3-Clause" ]
permissive
deeptimittal12/to_nwb
4db72499e1696a8d73739aede365b6a4ea878dd7
9876a1baf4faf56ba54fe8ff7359129450e2aca0
refs/heads/master
2021-05-19T13:12:45.463079
2019-06-19T22:09:02
2019-06-19T22:09:02
251,717,287
1
0
BSD-3-Clause
2020-03-31T20:00:22
2020-03-31T20:00:22
null
UTF-8
Python
false
false
1,898
py
from pynwb.spec import NWBDatasetSpec, NWBNamespaceBuilder, NWBGroupSpec, \ NWBAttributeSpec namespace = 'general' ns_path = namespace + '.namespace.yaml' ext_source = namespace + '.extensions.yaml' values = NWBAttributeSpec(name='values', dtype='text', doc='values that the indices are indexing', shape=(None,)) cat_cell_info = NWBGroupSpec( neurodata_type_def='CatCellInfo', doc='Categorical Cell Info', attributes=[NWBAttributeSpec( name='help', doc='help', dtype='text', value='Categorical information about cells. For most cases the units tables is more appropriate. This ' 'structure can be used if you need multiple entries per cell')], datasets=[ NWBDatasetSpec(doc='global id for neuron', shape=(None,), name='cell_index', dtype='int', quantity='?'), NWBDatasetSpec(name='indices', doc='list of indices for values', shape=(None,), dtype='int', attributes=[values])], neurodata_type_inc='NWBDataInterface') cat_timeseries = NWBGroupSpec( neurodata_type_def='CatTimeSeries', neurodata_type_inc='TimeSeries', doc='Categorical data through time', datasets=[NWBDatasetSpec(name='data', shape=(None,), dtype='int', doc='timeseries of indicies for values', attributes=[values])]) ns_builder = NWBNamespaceBuilder(doc=namespace + ' extensions', name=namespace, version='1.0', author='Ben Dichter', contact='[email protected]') for spec in (cat_cell_info, cat_timeseries): ns_builder.add_spec(ext_source, spec) ns_builder.export(ns_path)
bde00068d71ed1c31ca61ddb9cd7e7d3d39ec8d1
aff774e066b5db7fdefa4ca9c760b55fc80a678e
/modelrunner/redis_utils.py
61b5c3a286a0922517bdafa6dcb1d856eb497514
[]
no_license
piensa/modelrunner
3e965d75f2401ace5e7ac931da64b4794e0d1d96
385e1e01a8007e156855495393d57a1403ec72b2
refs/heads/master
2020-03-18T14:56:37.852622
2019-02-04T22:16:05
2019-02-04T22:16:05
134,876,652
0
0
null
null
null
null
UTF-8
Python
false
false
2,272
py
# -*- coding: utf-8 -*- """ functions associated with implementing modelrunner 'protocol' via Redis command dicts are serialized as json """ import logging from .utils import json_dumps_datetime, json_loads_datetime # setup log logger = logging.getLogger('modelrunner') def pop_command(redis_conn, queue_name, timeout=0): """ *Blocking* Waits for command on redis queue timeout: if 0, wait forever for item on queue, else seconds to timeout Returns command dict or None if timeout """ result = redis_conn.blpop(queue_name, timeout=timeout) if result is None: # timedout return None command_dict = json_loads_datetime(result[1]) return command_dict def enqueue_command(redis_conn, queue_name, command_dict): """ enqueue command on redis queue """ logger.info( "adding command {} to queue {}". format(command_dict, queue_name)) redis_conn.rpush(queue_name, json_dumps_datetime(command_dict)) def remove_command(redis_conn, queue_name, command_dict): """ find and remove all matching commands from queue """ result = redis_conn.lrange(queue_name, 0, -1) matches = filter(lambda d: d == command_dict, [json_loads_datetime(item) for item in result]) for match in matches: redis_conn.lrem(queue_name, 1, json_dumps_datetime(match)) def publish_command(redis_conn, channel_name, command_dict): """ publish a message to a channel """ redis_conn.publish(channel_name, json_dumps_datetime(command_dict)) def get_all_commands(redis_conn, queue_name): """ get all command_dicts on queue """ result = redis_conn.lrange(queue_name, 0, -1) return [json_loads_datetime(item) for item in result] def pubsub_listen(pubsub): """ generator that returns command_dict on subscribed pubsub object """ assert pubsub.subscribed for raw_message in pubsub.listen(): logger.info("message received {}".format(raw_message)) # assume we subscribed and throw away anything other than messages if raw_message is not None and raw_message['type'] == 'message': message_dict = json_loads_datetime(raw_message['data']) yield message_dict
8c347fbf4734a6975b4f15136fa2ac019f6ac964
e5d4d867e8369194e3519d795d57a6df81357c99
/exps/utils/quaternion.py
68befca69501d9cfb2f8eefe9b03363921c866ef
[ "MIT" ]
permissive
hyperplane-lab/Generative-3D-Part-Assembly
76eb2d414af41b4aa8a188257fb12368d8fccf94
1e0e671d282d24d9c95a0f0a7ae67fa923575f45
refs/heads/main
2023-05-06T20:15:26.504273
2021-05-27T13:18:18
2021-05-27T13:18:18
301,576,236
86
15
null
null
null
null
UTF-8
Python
false
false
6,606
py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import numpy as np # PyTorch-backed implementations def qmul(q, r): """ Multiply quaternion(s) q with quaternion(s) r. Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions. Returns q*r as a tensor of shape (*, 4). """ assert q.shape[-1] == 4 assert r.shape[-1] == 4 original_shape = q.shape # Compute outer product terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4)) w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3] x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2] y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1] z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0] return torch.stack((w, x, y, z), dim=1).view(original_shape) def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] original_shape = list(v.shape) q = q.view(-1, 4) v = v.view(-1, 3) qvec = q[:, 1:] uv = torch.cross(qvec, v, dim=1) uuv = torch.cross(qvec, uv, dim=1) return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) def qeuler(q, order, epsilon=0): """ Convert quaternion(s) q to Euler angles. Expects a tensor of shape (*, 4), where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 original_shape = list(q.shape) original_shape[-1] = 3 q = q.view(-1, 4) q0 = q[:, 0] q1 = q[:, 1] q2 = q[:, 2] q3 = q[:, 3] if order == 'xyz': x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2*(q1 * q1 + q2 * q2)) y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1+epsilon, 1-epsilon)) z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2*(q2 * q2 + q3 * q3)) elif order == 'yzx': x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2*(q1 * q1 + q3 * q3)) y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2*(q2 * q2 + q3 * q3)) z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1+epsilon, 1-epsilon)) elif order == 'zxy': x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1+epsilon, 1-epsilon)) y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2*(q1 * q1 + q2 * q2)) z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2*(q1 * q1 + q3 * q3)) elif order == 'xzy': x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2*(q1 * q1 + q3 * q3)) y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2*(q2 * q2 + q3 * q3)) z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1+epsilon, 1-epsilon)) elif order == 'yxz': x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1+epsilon, 1-epsilon)) y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2*(q1 * q1 + q2 * q2)) z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2*(q1 * q1 + q3 * q3)) elif order == 'zyx': x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2*(q1 * q1 + q2 * q2)) y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1+epsilon, 1-epsilon)) z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2*(q2 * q2 + q3 * q3)) else: raise return torch.stack((x, y, z), dim=1).view(original_shape) # Numpy-backed implementations def qmul_np(q, r): q = torch.from_numpy(q).contiguous() r = torch.from_numpy(r).contiguous() return qmul(q, r).numpy() def qrot_np(q, v): q = torch.from_numpy(q).contiguous() v = torch.from_numpy(v).contiguous() return qrot(q, v).numpy() def qeuler_np(q, order, epsilon=0, use_gpu=False): if use_gpu: q = torch.from_numpy(q).cuda() return qeuler(q, order, epsilon).cpu().numpy() else: q = torch.from_numpy(q).contiguous() return qeuler(q, order, epsilon).numpy() def qfix(q): """ Enforce quaternion continuity across the time dimension by selecting the representation (q or -q) with minimal distance (or, equivalently, maximal dot product) between two consecutive frames. Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints. Returns a tensor of the same shape. """ assert len(q.shape) == 3 assert q.shape[-1] == 4 result = q.copy() dot_products = np.sum(q[1:]*q[:-1], axis=2) mask = dot_products < 0 mask = (np.cumsum(mask, axis=0)%2).astype(bool) result[1:][mask] *= -1 return result def expmap_to_quaternion(e): """ Convert axis-angle rotations (aka exponential maps) to quaternions. Stable formula from "Practical Parameterization of Rotations Using the Exponential Map". Expects a tensor of shape (*, 3), where * denotes any number of dimensions. Returns a tensor of shape (*, 4). """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.reshape(-1, 3) theta = np.linalg.norm(e, axis=1).reshape(-1, 1) w = np.cos(0.5*theta).reshape(-1, 1) xyz = 0.5*np.sinc(0.5*theta/np.pi)*e return np.concatenate((w, xyz), axis=1).reshape(original_shape) def euler_to_quaternion(e, order): """ Convert Euler angles to quaternions. """ assert e.shape[-1] == 3 original_shape = list(e.shape) original_shape[-1] = 4 e = e.reshape(-1, 3) x = e[:, 0] y = e[:, 1] z = e[:, 2] rx = np.stack((np.cos(x/2), np.sin(x/2), np.zeros_like(x), np.zeros_like(x)), axis=1) ry = np.stack((np.cos(y/2), np.zeros_like(y), np.sin(y/2), np.zeros_like(y)), axis=1) rz = np.stack((np.cos(z/2), np.zeros_like(z), np.zeros_like(z), np.sin(z/2)), axis=1) result = None for coord in order: if coord == 'x': r = rx elif coord == 'y': r = ry elif coord == 'z': r = rz else: raise if result is None: result = r else: result = qmul_np(result, r) # Reverse antipodal representation to have a non-negative "w" if order in ['xyz', 'yzx', 'zxy']: result *= -1 return result.reshape(original_shape)
c849667e0bdec93b1f1f55ec5c9906baaa0cb01b
dc7cdeecb1ed52a7bdd18cd20c69aa43897f0830
/wechatpy/events.py
aaf98a0629cf895fad0e1d7d1358ed7b8fc492ca
[ "MIT" ]
permissive
hurricane1260/wechatpy
421b0a27b78bbb3bcc33bc6e6685b6beacd55dde
0d7916e1a894f208dcea18b33803751166378c3d
refs/heads/master
2021-01-17T18:37:14.535895
2014-11-02T16:27:31
2014-11-02T16:27:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,429
py
from __future__ import absolute_import, unicode_literals from .fields import StringField, FloatField, IntegerField, BaseField from .messages import BaseMessage EVENT_TYPES = {} def register_event(event_type): def register(cls): EVENT_TYPES[event_type] = cls return cls return register class BaseEvent(BaseMessage): type = 'event' event = '' @register_event('subscribe') class SubscribeEvent(BaseEvent): event = 'subscribe' @register_event('unsubscribe') class UnsubscribeEvent(BaseEvent): event = 'unsubscribe' @register_event('subscribe_scan') class SubscribeScanEvent(BaseEvent): event = 'subscribe_scan' scene_id = StringField('EventKey') ticket = StringField('Ticket') @register_event('scan') class ScanEvent(BaseEvent): event = 'scan' scene_id = StringField('EventKey') ticket = StringField('Ticket') @register_event('location') class LocationEvent(BaseEvent): event = 'location' latitude = FloatField('Latitude', 0.0) longitude = FloatField('Longitude', 0.0) precision = FloatField('Precision', 0.0) @register_event('click') class ClickEvent(BaseEvent): event = 'click' key = StringField('EventKey') @register_event('view') class ViewEvent(BaseEvent): event = 'view' url = StringField('EventKey') @register_event('masssendjobfinish') class MassSendJobFinishEvent(BaseEvent): event = 'masssendjobfinish' status = StringField('Status') total_count = IntegerField('TotalCount', 0) filter_count = IntegerField('FilterCount', 0) sent_count = IntegerField('SentCount', 0) error_count = IntegerField('ErrorCount', 0) @register_event('templatesendjobfinish') class TemplateSendJobFinishEvent(BaseEvent): event = 'templatesendjobfinish' status = StringField('Status') class BaseScanCodeEvent(BaseEvent): key = StringField('EventKey') scan_code_info = BaseField('ScanCodeInfo', {}) @property def scan_type(self): return self.scan_code_info['ScanType'] @property def scan_result(self): return self.scan_code_info['ScanResult'] @register_event('scancode_push') class ScanCodePushEvent(BaseScanCodeEvent): event = 'scancode_push' @register_event('scancode_waitmsg') class ScanCodeWaitMsgEvent(BaseScanCodeEvent): event = 'scancode_waitmsg' class BasePictureEvent(BaseEvent): key = StringField('EventKey') pictures_info = BaseField('SendPicsInfo', {}) @property def count(self): return int(self.pictures_info['Count']) @property def pictures(self): items = self.pictures_info['PicList']['item'] if self.count > 1: return items return [items] @register_event('pic_sysphoto') class PicSysPhotoEvent(BasePictureEvent): event = 'pic_sysphoto' @register_event('pic_photo_or_album') class PicPhotoOrAlbumEvent(BasePictureEvent): event = 'pic_photo_or_album' @register_event('pic_weixin') class PicWeChatEvent(BasePictureEvent): event = 'pic_weixin' @register_event('location_select') class LocationSelectEvent(BaseEvent): event = 'location_select' key = StringField('EventKey') location_info = BaseField('SendLocationInfo', {}) @property def location_x(self): return self.location_info['Location_X'] @property def location_y(self): return self.location_info['Location_Y'] @property def location(self): return self.location_x, self.location_y @property def scale(self): return self.location_info['Scale'] @property def label(self): return self.location_info['Label'] @property def poiname(self): return self.location_info['Poiname'] @register_event('card_pass_check') class CardPassCheckEvent(BaseEvent): event = 'card_pass_check' card_id = StringField('CardId') @register_event('card_not_pass_check') class CardNotPassCheckEvent(BaseEvent): event = 'card_not_pass_check' card_id = StringField('CardId') @register_event('user_get_card') class UserGetCardEvent(BaseEvent): event = 'user_get_card' card_id = StringField('CardId') is_given_by_friend = IntegerField('IsGiveByFriend') code = StringField('UserCardCode') @register_event('user_del_card') class UserDeleteCardEvent(BaseEvent): event = 'user_del_card' card_id = StringField('CardId') code = StringField('UserCardCode')
3b6ebd315450fc2c97862754c665237294407a45
03e3138f99f275d15d41a5c5bfb212f85d64d02e
/source/res/scripts/client/gui/scaleform/daapi/view/lobby/profile/ProfileSection.py
b4db4c8e5d4ea33bab42ac314a91489bad338c34
[]
no_license
TrenSeP/WorldOfTanks-Decompiled
e428728e7901146d0b599d02c930d70532232a97
1faa748acec1b7e435b657fd054ecba23dd72778
refs/heads/1.4.1
2020-04-27T08:07:49.813023
2019-03-05T17:37:06
2019-03-05T17:37:06
174,159,837
1
0
null
2019-03-06T14:33:33
2019-03-06T14:24:36
Python
UTF-8
Python
false
false
4,621
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/profile/ProfileSection.py from helpers import dependency from helpers import i18n from gui.Scaleform.daapi.view.meta.ProfileSectionMeta import ProfileSectionMeta from gui.Scaleform.locale.PROFILE import PROFILE from gui.Scaleform.genConsts.PROFILE_DROPDOWN_KEYS import PROFILE_DROPDOWN_KEYS from skeletons.gui.lobby_context import ILobbyContext from skeletons.gui.shared import IItemsCache from soft_exception import SoftException class ProfileSection(ProfileSectionMeta): itemsCache = dependency.descriptor(IItemsCache) lobbyContext = dependency.descriptor(ILobbyContext) def __init__(self, *args): super(ProfileSection, self).__init__() self.__isActive = False self._battlesType = PROFILE_DROPDOWN_KEYS.ALL self._userName = args[0] self._userID = args[1] self._databaseID = args[2] self._selectedData = args[3] self._data = None self._dossier = None self.__needUpdate = False return def _populate(self): super(ProfileSection, self)._populate() self.requestDossier(self._battlesType) def _dispose(self): self._data = None self._dossier = None super(ProfileSection, self)._dispose() return def requestDossier(self, bType): self._battlesType = bType self.invokeUpdate() def onSectionActivated(self): pass def _dataProviderEntryAutoTranslate(self, key): return self._dataProviderEntry(key, i18n.makeString(PROFILE.profile_dropdown_labels(key))) @classmethod def _dataProviderEntry(cls, key, label): return {'key': key, 'label': label} @classmethod def _getTotalStatsBlock(cls, dossier): return dossier.getRandomStats() def __receiveDossier(self): if self.__isActive and self.__needUpdate: self.__needUpdate = False accountDossier = self.itemsCache.items.getAccountDossier(self._userID) self._sendAccountData(self._getNecessaryStats(accountDossier), accountDossier) def _getNecessaryStats(self, accountDossier=None): if accountDossier is None: accountDossier = self.itemsCache.items.getAccountDossier(self._userID) if self._battlesType == PROFILE_DROPDOWN_KEYS.ALL: data = self._getTotalStatsBlock(accountDossier) elif self._battlesType == PROFILE_DROPDOWN_KEYS.TEAM: data = accountDossier.getTeam7x7Stats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.STATICTEAM: data = accountDossier.getRated7x7Stats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.HISTORICAL: data = accountDossier.getHistoricalStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.FORTIFICATIONS: data = self._receiveFortDossier(accountDossier) elif self._battlesType == PROFILE_DROPDOWN_KEYS.FORTIFICATIONS_SORTIES: data = accountDossier.getFortSortiesStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.FORTIFICATIONS_BATTLES: data = accountDossier.getFortBattlesStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.COMPANY: data = accountDossier.getCompanyStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.CLAN: data = accountDossier.getGlobalMapStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.FALLOUT: data = accountDossier.getFalloutStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.RANKED: data = accountDossier.getRankedStats() elif self._battlesType == PROFILE_DROPDOWN_KEYS.EPIC_RANDOM: data = accountDossier.getEpicRandomStats() else: raise SoftException('ProfileSection: Unknown battle type: ' + self._battlesType) return data def _receiveFortDossier(self, accountDossier): return None def _sendAccountData(self, targetData, accountDossier): self._data = targetData self._dossier = accountDossier def setActive(self, value): self.__isActive = value self.__receiveDossier() def invokeUpdate(self): self._data = None self._dossier = None self.__needUpdate = True self.__receiveDossier() return @property def isActive(self): return self.__isActive def _formIconLabelInitObject(self, i18key, icon): return {'description': i18n.makeString(i18key), 'icon': icon}
33e1acb8213c3949b68066fc4c21db1c9a41b63e
18239524612cf572bfeaa3e001a3f5d1b872690c
/clients/keto/python/test/test_ory_access_control_policy_roles.py
58ab31294ec8ab133335aea33cb9535ffefe7585
[ "Apache-2.0" ]
permissive
simoneromano96/sdk
2d7af9425dabc30df830a09b26841fb2e8781bf8
a6113d0daefbbb803790297e4b242d4c7cbbcb22
refs/heads/master
2023-05-09T13:50:45.485951
2021-05-28T12:18:27
2021-05-28T12:18:27
371,689,133
0
0
Apache-2.0
2021-05-28T12:11:41
2021-05-28T12:11:40
null
UTF-8
Python
false
false
1,108
py
# coding: utf-8 """ ORY Keto A cloud native access control server providing best-practice patterns (RBAC, ABAC, ACL, AWS IAM Policies, Kubernetes Roles, ...) via REST APIs. # noqa: E501 The version of the OpenAPI document: v0.0.0-alpha.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import ory_keto_client from ory_keto_client.models.ory_access_control_policy_roles import OryAccessControlPolicyRoles # noqa: E501 from ory_keto_client.rest import ApiException class TestOryAccessControlPolicyRoles(unittest.TestCase): """OryAccessControlPolicyRoles unit test stubs""" def setUp(self): pass def tearDown(self): pass def testOryAccessControlPolicyRoles(self): """Test OryAccessControlPolicyRoles""" # FIXME: construct object with mandatory attributes with example values # model = ory_keto_client.models.ory_access_control_policy_roles.OryAccessControlPolicyRoles() # noqa: E501 pass if __name__ == '__main__': unittest.main()
17c409f96f6fbfc2ece1feb2169d436079206edf
c61a28aba19f7cdf9a5127e8a782bf115c265e70
/apps/recruitpro/recruitpro/projects/doctype/project/test_project.py
c4ea5f0a15de18c53a3d959798b6561206bae9f6
[ "MIT" ]
permissive
sharmilaviji/RecruitPRO-NEW
fa72c8fc00f469a41798b1047c11dcc470fbc495
dcfaedebe56b45acd6ddcab7e24c939b853a2c8c
refs/heads/master
2021-05-26T12:14:12.611154
2020-04-27T04:40:50
2020-04-27T04:40:50
254,125,640
1
0
null
null
null
null
UTF-8
Python
false
false
207
py
# -*- coding: utf-8 -*- # Copyright (c) 2020, teampro and Contributors # See license.txt from __future__ import unicode_literals # import frappe import unittest class TestProject(unittest.TestCase): pass
1dfd792b4d6b9073b528ef9278bbf99e213f1556
aa53489a8a63ce7911814ad65fefc72e966e12a4
/shopstats/manage.py
e9da8239b56bfbc892534a0f34833d40ca16e3a5
[]
no_license
rajesh67/shopstats
6e67a238dee0230cb4a0b7d178539e18a60c3dce
708a225b66420f7103d52d23bcfb97add9a419a7
refs/heads/master
2021-01-10T04:53:59.464927
2016-01-15T16:37:21
2016-01-15T16:37:21
49,218,834
2
0
null
null
null
null
UTF-8
Python
false
false
253
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "shopstats.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
0380022b8c6b8eef636f670ba5bfbc4a414b5801
da11f3d8ab43b2def03e7e99ed08aec2d578611f
/python编程从入门到实践/第十七章/17-1/java_repos.py
8ee138382a88ec6e3bdf71d1f9af66c1c60a3d68
[]
no_license
huanglun1994/learn
ff3bbb1b0afe7e9c0812bd71af62707acbb5b0b5
9dc8ddd440e56a9961b118813162323fdfd4f16e
refs/heads/master
2021-01-01T06:30:34.652264
2018-07-09T15:00:21
2018-07-09T15:00:21
97,444,580
0
0
null
null
null
null
UTF-8
Python
false
false
1,512
py
# -*- coding: utf-8 -*- """xxxxx""" __author__ = 'Huang Lun' import requests import pygal from pygal.style import LightColorizedStyle as LCS, LightenStyle as LS # 执行API调用并存储响应 url = 'https://api.github.com/search/repositories?q=language:java&sort=stars' r = requests.get(url) print('Status code: ', r.status_code) # 将API响应存储在一个变量中 response_dict = r.json() print('Total repositories: ', response_dict['total_count']) print('Total items: ', len(response_dict['items'])) # 研究有关仓库的信息 repo_dicts = response_dict['items'] names, plot_dicts = [], [] for repo_dict in repo_dicts: names.append(repo_dict['name']) plot_dict = {} plot_dict['value'] = repo_dict['stargazers_count'] if repo_dict['description']: plot_dict['label'] = repo_dict['description'] elif not repo_dict['description']: plot_dict['label'] = 'No description' plot_dict['xlink'] = repo_dict['html_url'] plot_dicts.append(plot_dict) # 可视化 my_style = LS('#333366', base_style=LCS) my_config = pygal.Config() my_config.x_label_rotation = 45 my_config.show_legend = False my_config.title_font_size = 24 my_config.label_font_size = 14 my_config.major_label_font_size = 16 my_config.truncate_label = 15 my_config.show_y_guides = False my_config.width = 1000 chart = pygal.Bar(my_config, style=my_style) chart.title = 'Most-Starred Java Projects on GitHub' chart.x_labels = names chart.add('', plot_dicts) chart.render_to_file('java_repos.svg')
f28ba1c32f9bd37f6f17a95addc3e0021621f4e1
8de2869bf284e98de6a9b424e90da5ab361d8aac
/book/_build/jupyter_execute/matplotlib/04_LinesAndMarkers.py
389934d917a8f82f9913f961208dd4315888974e
[]
no_license
hossainlab/dataviz
d37081da066bd88165aba41e2a8050ee17a1b131
e02b38827ab363f907b8c06c8f7ffc98a6a27a8f
refs/heads/master
2023-07-20T01:42:47.144900
2021-08-29T10:43:15
2021-08-29T10:43:15
291,055,389
1
0
null
null
null
null
UTF-8
Python
false
false
3,193
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import matplotlib import matplotlib.pyplot as plt import numpy as np matplotlib.interactive(True) plt.ion() matplotlib.is_interactive() # #### We start off with the previously seen sine curve # In[2]: x = np.linspace(start=0, stop=10, num=50) # In[3]: plt.plot(x, np.sin(x)) plt.show() # #### Having multiple plots in a pyplot # The colors of each plot is chosen by iterating over a color palette. The default palette is {'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'} # In[4]: plt.plot(x, np.sin(x), label='sine curve') plt.plot(x, np.cos(x), label='cosine curve') plt.legend() plt.title('Playing with Plots') plt.show() # #### Specifying colors # We pick the colors of green and magenta for the curves # * We have specified the full name of the green color # * Magenta has been specified in shorthand ('g' is short for green) <br /> # # The colors and codes for Matplotlib are here: # https://matplotlib.org/2.0.2/api/colors_api.html # # The full list of named colors is here: # https://matplotlib.org/examples/color/named_colors.html # In[5]: plt.plot(x, np.sin(x), label='sine curve', color='green') plt.plot(x, np.cos(x), label='cosine curve', color='m') plt.legend() plt.title('Playing with Plots') plt.show() # ### Formats for lines and markers # Line formats: https://matplotlib.org/gallery/lines_bars_and_markers/line_styles_reference.html <br /> # Marker formats: https://matplotlib.org/1.4.1/api/markers_api.html <br /> # #### Plots need not be lines # Start off by plotting a random array of 20 numbers # In[6]: random_array = np.random.randn(20) # In[7]: plt.plot(random_array, color='green') plt.show() # #### Line styles # We can have solid, dashed, dotted or dash-dot lines # In[8]: plt.plot(random_array, color='green', linestyle=':') plt.show() # In[9]: plt.plot(random_array, color='green', linestyle='--') plt.show() # #### Adjust the line width # The default is 1 # In[10]: plt.plot(random_array, color='green', linestyle='--', linewidth=3) plt.show() # #### We use markers to denote the points # The 'd' denotes small diamonds. For all the marker styles check out this page: <br /> # https://matplotlib.org/1.4.1/api/markers_api.html # In[11]: plt.plot(random_array, color='green', marker = 'd') plt.show() # #### Adjust the marker size # Default is 6 # In[12]: plt.plot(random_array, color='green', marker = 'd', markersize=10) plt.show() # #### Get rid of the line and use only markers # In[13]: plt.plot(random_array, color='green', marker = 'd', linestyle = 'None') plt.show() # #### Scatter plots # These are similar to regular plots but you need to specify the x coordinates. Below we create the same plot as above, but explicitly give the x coordinates as a list of 0-19 # In[14]: plt.scatter(range(0,20), random_array, color='green', marker = 'd') plt.show() # In[ ]:
dd7d6a3be9acc10f5538b1fd07a6ee1bfc699701
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_299/ch46_2020_04_06_14_54_53_768265.py
19931a4dad29c6cad1dbaef1231cbe4501b937b9
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
def numero_no_indice(lista): for i,e in enumerate(lista): if i!=e: del lista[i] return lista
a99854b984911426cefd12d106e8d4e639de58b4
7f203d6d2d48bdc0b768215798f0694803268818
/test/vnx/resource/test_migration.py
0a48bd056d09f0df5cd51a5bbe89b270cee31643
[ "Apache-2.0" ]
permissive
thotypous/storops
1108a314658def0dac69e0b0d14578283aab50b4
8ea8c5a71f2bf93b710c854ee6c3b01f334673a0
refs/heads/master
2021-01-21T17:03:31.935679
2016-08-22T15:30:54
2016-08-22T15:30:54
66,502,757
0
0
null
2016-08-24T21:57:36
2016-08-24T21:57:35
null
UTF-8
Python
false
false
3,363
py
# coding=utf-8 # Copyright (c) 2015 EMC Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from unittest import TestCase from hamcrest import assert_that, equal_to, instance_of, raises from storops.exception import VNXLunNotMigratingError from storops.vnx.resource.lun import VNXLun from test.vnx.cli_mock import t_cli, patch_cli from storops.vnx.enums import VNXMigrationRate from storops.vnx.resource.migration import VNXMigrationSession __author__ = 'Cedric Zhuang' class VNXMigrationSessionTest(TestCase): @patch_cli def test_properties(self): ms = VNXMigrationSession(0, t_cli()) assert_that(ms.source_lu_id, equal_to(0)) assert_that(ms.source_lu_name, equal_to('LUN 0')) assert_that(ms.dest_lu_id, equal_to(1)) assert_that(ms.dest_lu_name, equal_to('LUN 1')) assert_that(ms.migration_rate, equal_to(VNXMigrationRate.HIGH)) assert_that(ms.percent_complete, equal_to(50.0)) assert_that(ms.time_remaining, equal_to('0 second(s)')) assert_that(ms.current_state, equal_to('MIGRATING')) assert_that(ms.is_migrating, equal_to(True)) assert_that(ms.is_success, equal_to(False)) assert_that(ms.existed, equal_to(True)) @patch_cli def test_source_lun(self): ms = VNXMigrationSession(0, t_cli()) lun = ms.source_lun assert_that(lun, instance_of(VNXLun)) assert_that(lun.get_id(lun), equal_to(ms.source_lu_id)) @patch_cli def test_destination_lun(self): ms = VNXMigrationSession(0, t_cli()) lun = ms.destination_lun assert_that(lun, instance_of(VNXLun)) assert_that(lun.get_id(lun), equal_to(ms.dest_lu_id)) @patch_cli def test_get_all(self): ms_list = VNXMigrationSession.get(t_cli()) assert_that(len(ms_list), equal_to(2)) @patch_cli(output='migrate_-list_none.txt') def test_get_all_none(self): ms_list = VNXMigrationSession.get(t_cli()) assert_that(len(ms_list), equal_to(0)) @patch_cli def test_get_no_session(self): ms = VNXMigrationSession(10, t_cli()) assert_that(ms.existed, equal_to(False)) assert_that(ms.is_migrating, equal_to(False)) assert_that(ms.is_success, equal_to(True)) @patch_cli def test_get_lun_not_exists(self): ms = VNXMigrationSession(1234, t_cli()) assert_that(ms.existed, equal_to(False)) @patch_cli def test_cancel_migrate(self): def f(): ms = VNXMigrationSession(0, t_cli()) ms.cancel() assert_that(f, raises(VNXLunNotMigratingError, 'not currently migrating'))
b2ffd186bd314161749bdd589717f9c0c6dc87d0
3c62aaf3b1b3c598dbe43a47f4d76ae90b27b098
/PA2/part1/linear_regression.py
c519c202b7d8fc652487ef864f6557a37e38fa20
[]
no_license
trademark152/Machine_Learning_CSCI567_USC
e8a222e7d9093bc78cf1a17545faf3e2710bdf39
61b614676510fd1fbb49da255a667c8da4a911f7
refs/heads/master
2022-12-16T11:50:57.912882
2020-09-26T00:20:48
2020-09-26T00:20:48
298,696,629
1
0
null
null
null
null
UTF-8
Python
false
false
7,501
py
""" Do not change the input and output format. If our script cannot run your code or the format is improper, your code will not be graded. The only functions you need to implement in this template is linear_regression_noreg, linear_regression_invertible,regularized_linear_regression, tune_lambda, test_error and mapping_data. """ import numpy as np import pandas as pd ###### Q1.1 ###### def mean_square_error(w, X, y): """ Compute the mean squre error on test set given X, y, and model parameter w. Inputs: - X: A numpy array of shape (num_samples, D) containing test feature. - y: A numpy array of shape (num_samples, ) containing test label - w: a numpy array of shape (D, ) Returns: - err: the mean square error """ ##################################################### # TODO 1: Fill in your code here # ##################################################### # Calculate mean square error # MSE = 1/n * sum [(y_true-y_pred)^2] # Dimension: X: num_samples*D; y: num_samples err = np.mean(np.power(np.subtract(y, np.matmul(X,w)),2)) return err ###### Q1.2 ###### def linear_regression_noreg(X, y): """ Compute the weight parameter given X and y. Inputs: - X: A numpy array of shape (num_samples, D) containing feature. - y: A numpy array of shape (num_samples, ) containing label Returns: - w: a numpy array of shape (D, ) """ ##################################################### # TODO 2: Fill in your code here # ##################################################### # Closed form solution: w=(Xt*X)^-1*Xt*y # Covariance matrix covMat = np.matmul(np.transpose(X), X) # weight vector w = np.matmul(np.matmul(np.linalg.inv(covMat), np.transpose(X)),y) return w ###### Q1.3 ###### def linear_regression_invertible(X, y): """ Compute the weight parameter given X and y. Inputs: - X: A numpy array of shape (num_samples, D) containing feature. - y: A numpy array of shape (num_samples, ) containing label Returns: - w: a numpy array of shape (D, ) """ ##################################################### # TODO 3: Fill in your code here # ##################################################### # Number of dimensions dim = len(X[0]) # print(dim) # Covariance matrix covMat = np.matmul(np.transpose(X), X) # Find eigenvalues: eigVals = np.linalg.eigvals(covMat) # print(eigVals) # print(np.amin(np.absolute(eigVals))) if np.amin(np.absolute(eigVals)) >= 10**(-5): # weight vector return np.matmul(np.matmul(np.linalg.inv(covMat), np.transpose(X)), y) # If the smallest absolute value of any eigenvalue is smaller than 10^-5 # Consider matrix non-invertibale and start improving: k = 0 while np.amin(np.absolute(eigVals)) < 10**(-5): # solve issue of non-invertible (slides 29-31 csci567 lecture 3) k += 1 eigVals = np.linalg.eigvals(covMat+k*10**(-1)*np.identity(dim)) # print(k) return np.matmul(np.matmul(np.linalg.inv(covMat+k*(10**(-1))*np.identity(dim)), np.transpose(X)), y) ###### Q1.4 ###### def regularized_linear_regression(X, y, lambd): """ Compute the weight parameter given X, y and lambda. Inputs: - X: A numpy array of shape (num_samples, D) containing feature. - y: A numpy array of shape (num_samples, ) containing label - lambd: a float number containing regularization strength Returns: - w: a numpy array of shape (D, ) """ ##################################################### # TODO 4: Fill in your code here # ##################################################### # handle exception # if lambd == None: # lambd = 0. # Number of dimensions dim = len(X[0]) # print(dim) # Covariance matrix covMat = np.matmul(np.transpose(X), X) # # Find eigenvalues: # eigVals = np.linalg.eigvals(covMat) # # print(eigVals) # # print(np.amin(np.absolute(eigVals))) # # if matrix is invertible # if np.amin(np.absolute(eigVals)) >= 10**(-5): # # weight vector # return np.matmul(np.matmul(np.linalg.inv(covMat), np.transpose(X)), y) # # # If the smallest absolute value of any eigenvalue is smaller than 10^-5 # # Consider matrix non-invertibale and start improving: # else: # # solve issue of non-invertible (slides 50 csci567 lecture 3) # eigVals = np.linalg.eigvals(covMat+lambd*np.identity(dim)) return np.matmul(np.matmul(np.linalg.inv(covMat+lambd*np.identity(dim)), np.transpose(X)), y) ###### Q1.5 ###### def tune_lambda(Xtrain, ytrain, Xval, yval): """ Find the best lambda value. Inputs: - Xtrain: A numpy array of shape (num_training_samples, D) containing training feature. - ytrain: A numpy array of shape (num_training_samples, ) containing training label - Xval: A numpy array of shape (num_val_samples, D) containing validation feature. - yval: A numpy array of shape (num_val_samples, ) containing validation label Returns: - bestlambda: the best lambda you find in lambds """ ##################################################### # TODO 5: Fill in your code here # ##################################################### bestlambda = -1 lowestMSE = np.inf lambd = 10**(-20) while lambd < 10**20: # update lambd lambd *= 10 # print(float("{0:.2e}".format(lambd))) # use given training data to train model w = regularized_linear_regression(Xtrain, ytrain, lambd) # compute the mse mse = mean_square_error(w, Xval, yval) # print(mse) # update the mse if mse < lowestMSE: lowestMSE = mse bestlambda = lambd if bestlambda == None: return 0 else: # print(bestlambda) # avoid representation error in floating number return float("{0:.2e}".format(bestlambda)) ###### Q1.6 ###### def mapping_data(X, power): """ Mapping the data. Inputs: - X: A numpy array of shape (num_training_samples, D) containing training feature. - power: A integer that indicate the power in polynomial regression Returns: - X: mapped_X, shape(num_samples, D*power) You can manually calculate the size of X based on the power and original size of X """ ##################################################### # TODO 6: Fill in your code here # ##################################################### """ GOAL: input [[1,2,3],[0,5,5]] --> output [[1,2,3,1,4,9],[0,5,5,0,25,25]]""" # loop through each training sample # mapped_X = np.zeros((len(X), len(X[0])*(power-1))) mapped_X = [[] for i in range(len(X))] # mapped_X=[] # print(mapped_X) for index, sample in enumerate(X): # print(sample) # loop through all power in range for i in range(2, power+1): # create an element-wise power of the original sample sample_power_i = np.power(sample[:len(X[0])], i) # print(sample_power_i) # obtain the index of the last element end_idx = len(sample) # print(end_idx) # add that to the end of the original row sample = np.insert(sample, end_idx, sample_power_i) # print(sample.tolist()) # modify X mapped_X[index] = sample return np.asarray(mapped_X)
39ae03eb391316d2130cb398f9458429c9dd0e77
339f207fd7dd99b7b6484ffa78bfbf8102c25ede
/wrappedapp/tests/models/test_auth.py
3826af0a7bbf48a9eb4772fe9bad3857f92bb9b1
[]
no_license
ralphbean/wrappedapp
0b3b43d4435b6e16b1a21a0f766bfa3d51450bf2
73bbbc0366d06492d0a7822c8b543f5410e15a6f
refs/heads/master
2016-09-06T10:36:02.820439
2011-09-28T18:46:11
2011-09-28T18:46:27
2,477,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,500
py
# -*- coding: utf-8 -*- """Test suite for the TG app's models""" from nose.tools import eq_ from wrappedapp import model from wrappedapp.tests.models import ModelTest class TestGroup(ModelTest): """Unit test case for the ``Group`` model.""" klass = model.Group attrs = dict( group_name = u"test_group", display_name = u"Test Group" ) class TestUser(ModelTest): """Unit test case for the ``User`` model.""" klass = model.User attrs = dict( user_name = u"ignucius", email_address = u"[email protected]" ) def test_obj_creation_username(self): """The obj constructor must set the user name right""" eq_(self.obj.user_name, u"ignucius") def test_obj_creation_email(self): """The obj constructor must set the email right""" eq_(self.obj.email_address, u"[email protected]") def test_no_permissions_by_default(self): """User objects should have no permission by default.""" eq_(len(self.obj.permissions), 0) def test_getting_by_email(self): """Users should be fetcheable by their email addresses""" him = model.User.by_email_address(u"[email protected]") eq_(him, self.obj) class TestPermission(ModelTest): """Unit test case for the ``Permission`` model.""" klass = model.Permission attrs = dict( permission_name = u"test_permission", description = u"This is a test Description" )
9481c3b012fa6b02185d777dafa526c7ef1e00d7
8d014c5513a0eeca086010b018b67336f8d042e0
/cam_esp32cam.py
253eb82dfa3400a82cc5d443548f35bf88108c6e
[]
no_license
rkuo2000/cv2
26ce0a06b4040eabb82319ec44cab5c3639b9495
16e64e7092d6654ea470e469d6b15f308ecd1788
refs/heads/master
2022-10-12T00:11:35.964818
2022-09-30T06:50:35
2022-09-30T06:50:35
108,848,948
5
29
null
2022-09-29T11:01:48
2017-10-30T12:38:58
Python
UTF-8
Python
false
false
681
py
# open browser at ipaddr of ESP32-CAM to set stream size # 320x240 doesn't work, other resolution are OK import numpy as np import cv2 from urllib.request import urlopen # port 81 has stream, see ESP32-CAM webserver.ino url = 'http://192.168.1.5:81/stream' CAMERA_BUFFER_SIZE = 4096 stream = urlopen(url) bbb=b'' while True: bbb += stream.read(CAMERA_BUFFER_SIZE) a = bbb.find(b'\xff\xd8') b = bbb.find(b'\xff\xd9') if a>-1 and b>-1: jpg = bbb[a:b+2] bbb = bbb[b+2:] img = cv2.imdecode(np.frombuffer(jpg, dtype=np.uint8),cv2.IMREAD_COLOR) cv2.imshow('CAM', img) cv2.waitKey(1) cv2.destroyAllWindows()
34aff31d919f88404099c15990efd64e8c9f7d6a
b9801a2ad269a678acd6113992f063fba2813f65
/test/test_policy.py
97c8c6b5d630335fbff44038ef558dd399776b92
[ "MIT" ]
permissive
ax-ncolyer/automox-console-sdk-python
6dd01826cc9629b2ee6086ae179b443f9ba8e0db
27ba2279e2d59e3f0cbfc00e34eddb51838e402e
refs/heads/main
2023-08-12T20:57:24.264682
2021-09-16T02:18:01
2021-09-16T02:18:01
406,992,680
0
0
MIT
2021-09-16T02:35:32
2021-09-16T02:35:31
null
UTF-8
Python
false
false
862
py
# coding: utf-8 """ Automox Console API API for use with the Automox Console # noqa: E501 OpenAPI spec version: 2021-08-10 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import automox_console_sdk from automox_console_sdk.models.policy import Policy # noqa: E501 from automox_console_sdk.rest import ApiException class TestPolicy(unittest.TestCase): """Policy unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPolicy(self): """Test Policy""" # FIXME: construct object with mandatory attributes with example values # model = automox_console_sdk.models.policy.Policy() # noqa: E501 pass if __name__ == '__main__': unittest.main()
fb31c45f4f37bb9228e0728eb24e7fa6149627df
6fbca0b22dbf7e79d3e7796bdcc18cc564a77eb1
/aol/documents/tests.py
10679b394aeca4ae2fe688e74bfb4832a53e6371
[]
no_license
mdj2/aol
b998a41552eca6c3d09b7f97891283563d7d3b01
f848f5328aec30826d726033cd44216be4e9dabd
refs/heads/master
2021-01-09T20:48:48.372586
2014-03-18T18:23:14
2014-03-18T18:23:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,112
py
import os from django.test import TestCase from django.core.urlresolvers import reverse from django.conf import settings as SETTINGS from .models import Document from aol.users.tests.test_views import LoginMixin from aol.lakes.models import NHDLake as Lake class ViewTest(LoginMixin): fixtures = ['lakes.json'] def test_add_document(self): lake = Lake.objects.get(title="Matt Lake") response = self.client.get(reverse('admin-add-document', args=(lake.pk,))) self.assertEqual(response.status_code, 200) # test posting to the form data = { 'name': 'foo', 'rank': '1', 'file': open(os.path.join(SETTINGS.MEDIA_ROOT, "photos", "test.jpg")), 'type': Document.OTHER, } pre_count = Document.objects.filter(lake=lake).count() response = self.client.post(reverse('admin-add-document', args=(lake.pk,)), data) # the response should be valid, so a redirect should happen self.assertEqual(response.status_code, 302) # make sure the document got added to the lake self.assertEqual(Document.objects.filter(lake=lake).count(), pre_count + 1) # delete a required field to make the form invalid del data['name'] response = self.client.post(reverse('admin-add-document', args=(lake.pk,)), data) self.assertFalse(response.context['form'].is_valid()) def test_edit_document(self): document = Document.objects.get(pk=1) response = self.client.get(reverse('admin-edit-document', args=(document.pk,))) self.assertEqual(response.status_code, 200) # edit the document data = response.context['form'].initial data['name'] = "whatever" response = self.client.post(reverse('admin-edit-document', args=(document.pk,)), data) # the response should be valid, so a redirect should happen self.assertEqual(response.status_code, 302) # make sure the caption got updated document = Document.objects.get(pk=1) self.assertEqual(document.name, data['name'])
9973762cd04b563d1fa57643f4ea17013ea0507f
cd627d56e00fafeaa547582145eead9147329b6a
/django-rest/sxfunc/snippets/views.py
5cafeac4c29da9f55fa20e01723ac2571dcc23f7
[]
no_license
2XL/hwDjango
57c2b7f6ee91e89ebc566891c7e2ceb01e2192c1
0816f0e9f842025b14779ed731e8c15a30894a95
refs/heads/master
2021-01-13T09:15:33.791503
2016-11-08T15:44:32
2016-11-08T15:44:32
72,609,539
0
0
null
null
null
null
UTF-8
Python
false
false
1,783
py
from django.shortcuts import render # Create your views here. ############ Wrapping Views with function based decorator from rest_framework import status from rest_framework.decorators import api_view from rest_framework.response import Response from .models import Snippet from .serializers import SnippetSerializer @api_view(['GET', 'POST']) def snippet_list(request, format=None): """ <List:GET> all snippets, or <Create:POST> a new snippet. """ if request.method == 'GET': snippets = Snippet.objects.all() serializer = SnippetSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = SnippetSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def snippet_detail(request, pk, format=None): """ Retrieve, update or delete a snippet instance. """ try: snippet = Snippet.objects.get(pk=pk) except Snippet.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = SnippetSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = SnippetSerializer(snippet, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': snippet.delete() return Response(status=status.HTTP_204_NO_CONTENT)
b197c6d251ae7bc5c527c1b8248d9b2690e1135b
30fced93674fce23af3e0eda735221fab785ca2e
/beta/download.py
7acc0177eba335648b27a596fc552b4438b80d66
[]
no_license
li3637/JD_Diy
8047017fc8caf7cbb8ca6988b1a7146c122ed8b4
9222a5e6a92d094b56cf94aa37677ec5a5796993
refs/heads/master
2023-06-11T06:30:37.100477
2021-06-21T04:34:21
2021-06-21T04:34:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,668
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Author : Chiupam # @Data : 2021-06-15 # @Version : v 1.0 # @Updata : # @Future : from JD_Diy import chat_id, jdbot, _ConfigDir, _ScriptsDir, _OwnDir, logger, _JdbotDir from ..bot.utils import cmd, press_event, backfile, jdcmd, V4, QL, _ConfigFile, mycron, split_list, row, qlcron, _Auth, upcron, mybot from ..diy.utils import mycronup from telethon import events, Button from asyncio import exceptions import requests, re, os, asyncio import json @jdbot.on(events.NewMessage(from_users=chat_id, pattern=r'^https?://.*(js|py|sh)$')) async def mydownload(event): try: SENDER = event.sender_id furl = event.raw_text if '下载代理' in mybot.keys() and str(mybot['下载代理']).lower() != 'false' and 'github' in furl: furl = f'{str(mybot["下载代理"])}/{furl}' try: resp = requests.get(furl).text if "</html>" in resp: await jdbot.send_message(chat_id, f"接收到的[链接]({furl})是一个页面并非raw数据,会话结束") return except Exception as e: await jdbot.send_message(chat_id, f"下载失败\n{e}") return async with jdbot.conversation(SENDER, timeout=60) as conv: fname = furl.split('/')[-1] fname_cn = '' if furl.endswith(".js"): fname_cn = re.findall(r"(?<=new\sEnv\(').*(?=')", resp, re.M) if fname_cn != []: fname_cn = fname_cn[0] else: fname_cn = '' if V4: btns = [Button.inline('放入config目录', data=_ConfigDir), Button.inline('放入jbot/diy目录', data=f'{_JdbotDir}/diy'), Button.inline('放入scripts目录', data=_ScriptsDir), Button.inline('放入own目录', data=_OwnDir ), Button.inline('取消对话', data='cancel')] else: btns = [Button.inline('放入config目录', data=_ConfigDir), Button.inline('放入scripts目录', data=_ScriptsDir), Button.inline('取消对话', data='cancel')] write, cmdtext = True, False msg = await conv.send_message(f'成功下载{fname_cn}脚本\n现在,请做出你的选择:', buttons=split_list(btns, row)) convdata = await conv.wait_event(press_event(SENDER)) res1 = bytes.decode(convdata.data) if res1 == 'cancel': await jdbot.edit_message(msg, '对话已取消,感谢你的使用') conv.cancel() return elif res1 == _ScriptsDir: fpath = f"{_ScriptsDir}/{fname}" btns = [Button.inline("是", data="confirm"), Button.inline("否", data="cancel")] msg = await jdbot.edit_message(msg, f"请问需要运行{fname_cn}脚本吗?", buttons=btns) convdata = await conv.wait_event(press_event(SENDER)) res2 = bytes.decode(convdata.data) if res2 == "confirm": cmdtext = f'{jdcmd} {_ScriptsDir}/{fname} now' msg = await jdbot.edit_message(msg, f"请问需要添加定时吗?", buttons=btns) convdata = await conv.wait_event(press_event(SENDER)) res2 = bytes.decode(convdata.data) if res2 == 'cancel': await jdbot.edit_message(msg, f"{fname_cn}脚本将保存到{_ScriptsDir}目录") else: await mycronup(jdbot, conv, resp, fname, msg, SENDER, btns, _ScriptsDir) elif res1 == _OwnDir: fpath = f"{_OwnDir}/raw/{fname}" btns = [Button.inline("是", data="confirm"), Button.inline("否", data="cancel")] msg = await jdbot.edit_message(msg, f"请问需要运行{fname_cn}脚本吗?", buttons=btns) convdata = await conv.wait_event(press_event(SENDER)) res2 = bytes.decode(convdata.data) if res2 == "confirm": cmdtext = f'{jdcmd} {fpath} now' await jdbot.edit_message(msg, f"文件将保存到{res1}目录,且已写入配置中,准备执行脚本") else: await jdbot.edit_message(msg, f'文件将保存到{res1}目录,且已写入配置中,准备拉取单个脚本,请耐心等待') with open(_ConfigFile, 'r', encoding="utf-8") as f1: configs = f1.readlines() for config in configs: if config.find("OwnRawFile") != -1 and config.find("## ") == -1: line = configs.index(config) + 1 configs.insert(line, f"\t{event.raw_text}\n") with open(_ConfigFile, 'w', encoding="utf-8") as f2: f2.write(''.join(configs)) elif config.find("第五区域") != -1: break await cmd("jup own") else: fpath = f"{res1}/{fname}" await jdbot.edit_message(msg, f"文件将保存到{res1}目录") backfile(fpath) with open(fpath, 'w+', encoding='utf-8') as f: f.write(resp) conv.cancel() if cmdtext: await cmd(cmdtext) except exceptions.TimeoutError: msg = await jdbot.edit_message(msg, '选择已超时,对话已停止,感谢你的使用') except Exception as e: await jdbot.send_message(chat_id, 'something wrong,I\'m sorry\n' + str(e)) logger.error('something wrong,I\'m sorry\n' + str(e))
1a9fb7d130bad860e146e811538a5e4d009b51c4
09d767a12ad01b189f5793fa66fef2cca06c821a
/python/yiqing/app.py
b020af8640080ec52c4a8699163b8bded92ed195
[]
no_license
sunyinggang/dailyCode
403048f85a5506459ec3f5551230c8592f346aed
ec72332d0ac2be79cdd436631f886e25265dfd6c
refs/heads/master
2023-03-09T02:35:56.518021
2021-03-01T15:38:23
2021-03-01T15:38:23
296,016,150
1
0
null
null
null
null
UTF-8
Python
false
false
98
py
from app import app if __name__ == '__main__': app.run(debug=True, port=5050, host='0.0.0.0')
18736855e45eda60471a343f863989a8ab6556b4
20c9f3a089286a442cc15f8a31bb34e110e68d8b
/tests/python/len.py
643569734e0202f30062585e3840e5e5ee19fe9b
[ "MIT" ]
permissive
denim2x/py2nim
00ca515daef897d380dbf4915583a470ffe4c94e
56fc2699d31241c60bed726f59efea4bf46be238
refs/heads/master
2021-09-28T06:37:42.786868
2018-11-15T08:12:30
2018-11-15T08:12:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
class A: def __init__(self, elements): self.elements = elements def __len__(self): return len(self.elements) a = A([2]) print(len(a))
8ed433dd2530fe9753af90133ba61335dd78dd9e
92795fd129672b52ace12f7bf4eb08f72da916c5
/adminphotoload/templatetags/widget_photo_iframe.py
bb95fad92665987f0ed394f6c9240f07f850a4cd
[]
no_license
ljarufe/quimerahg
b601f0b1bb77e48893f128615d54dfe062a4fd74
872e7deca73ccd8417d0d963a043cb2e79d64ffb
refs/heads/master
2021-01-25T07:07:35.430695
2013-10-21T19:03:57
2013-10-21T19:03:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
# -*- coding: utf-8 -*- from django import template from django.conf import settings register = template.Library() @register.inclusion_tag('templatetags/iframe.html') def widget_photo_iframe(app, model, id, change): """ Inserta el código para la herramienta para subir fotos en un iframe """ return {'app': app, 'model': model, 'id': id, 'change': change, 'STATIC_URL': settings.STATIC_URL}
03aef183e7f933a66be4b8cb22079d3baab2ba23
d153e65c8f3f60abb6d2ad11f9463f0c79179f36
/.ipynb_checkpoints/vis_util-checkpoint.py
b92ded8c4560d066e3f733b952ef832e4d7894a6
[]
no_license
chuazh/cs231n_project
a1ed7aeefd38185578bf6c02dd640b099812dcc6
1e0f30c76966c40b96172a268201e57c584aecd6
refs/heads/master
2020-05-20T18:51:23.254213
2019-05-14T23:57:18
2019-05-14T23:57:18
185,714,865
0
0
null
null
null
null
UTF-8
Python
false
false
1,688
py
import torchvision import torchvision.datasets as dset import torchvision.transforms as T import torchvision.models as models import torch import torch.nn as nn import matplotlib.pyplot as plt import time import os import copy import numpy as np def check_accuracy_vis(prefix,loader, model, device, plot=True): print('Checking accuracy on sequential validation set') model.eval() # set model to evaluation mode count = 0 score_array = np.empty((0,14)) gt_array = np.empty((0,14)) plt.figure() with torch.no_grad(): for x, y in loader: x = x.to(device=device, dtype=torch.float) # move to device, e.g. CPU y = y.to(device=device, dtype=torch.float) scores = model(x) loss_fn = torch.nn.MSELoss(reduction='mean') loss = loss_fn(scores,y) scores = scores.to(device="cpu",dtype=torch.float) y = y.to(device = "cpu", dtype = torch.float) if plot: plt.plot(range(count, len(scores) + count), scores.numpy()[:,0:3], 'b') plt.plot(range(count, len(scores) + count), y.numpy()[:,0:3], 'r') # append our results score_array = np.vstack((score_array,scores.numpy())) gt_array = np.vstack((gt_array,y.numpy())) count = count + len(scores) #save our results print('saving our results...') np.savetxt(prefix+'_vis_scores.dat', score_array, delimiter=',') # X is an array np.savetxt(prefix+'_vis_gt.dat', gt_array, delimiter=',') # X is an array print('MSE loss is: %f ' % loss) plt.show()
d32216fde31ae9640754800c85f46534ce87f113
00f20cf0bd5fa65c9f54aa5a29fe3565fd8b2d96
/swagger_client/models/match_query.py
d5fb5908d6802428b6a87f53062fada57dbc5695
[]
no_license
gingerwizard/python-ece-client
8b81094ddf64617c12aea9db65b9d5f7a6f1c73c
6187fdde855a147d114fb7ee39fc5314a1b0893f
refs/heads/master
2021-08-29T08:16:31.942559
2017-12-13T14:32:23
2017-12-13T14:32:23
114,131,083
0
0
null
null
null
null
UTF-8
Python
false
false
5,774
py
# coding: utf-8 """ No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class MatchQuery(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'query': 'str', 'operator': 'str', 'minimum_should_match': 'int', 'analyzer': 'str' } attribute_map = { 'query': 'query', 'operator': 'operator', 'minimum_should_match': 'minimum_should_match', 'analyzer': 'analyzer' } def __init__(self, query=None, operator=None, minimum_should_match=None, analyzer=None): """ MatchQuery - a model defined in Swagger """ self._query = None self._operator = None self._minimum_should_match = None self._analyzer = None self.query = query if operator is not None: self.operator = operator if minimum_should_match is not None: self.minimum_should_match = minimum_should_match if analyzer is not None: self.analyzer = analyzer @property def query(self): """ Gets the query of this MatchQuery. The text/numeric/date to query for. :return: The query of this MatchQuery. :rtype: str """ return self._query @query.setter def query(self, query): """ Sets the query of this MatchQuery. The text/numeric/date to query for. :param query: The query of this MatchQuery. :type: str """ if query is None: raise ValueError("Invalid value for `query`, must not be `None`") self._query = query @property def operator(self): """ Gets the operator of this MatchQuery. The operator flag can be set to or or and to control the boolean clauses (defaults to or). :return: The operator of this MatchQuery. :rtype: str """ return self._operator @operator.setter def operator(self, operator): """ Sets the operator of this MatchQuery. The operator flag can be set to or or and to control the boolean clauses (defaults to or). :param operator: The operator of this MatchQuery. :type: str """ self._operator = operator @property def minimum_should_match(self): """ Gets the minimum_should_match of this MatchQuery. The minimum number of optional should clauses to match. :return: The minimum_should_match of this MatchQuery. :rtype: int """ return self._minimum_should_match @minimum_should_match.setter def minimum_should_match(self, minimum_should_match): """ Sets the minimum_should_match of this MatchQuery. The minimum number of optional should clauses to match. :param minimum_should_match: The minimum_should_match of this MatchQuery. :type: int """ self._minimum_should_match = minimum_should_match @property def analyzer(self): """ Gets the analyzer of this MatchQuery. The analyzer that will be used to perform the analysis process on the text. Defaults to the analyzer that was used to index the field. :return: The analyzer of this MatchQuery. :rtype: str """ return self._analyzer @analyzer.setter def analyzer(self, analyzer): """ Sets the analyzer of this MatchQuery. The analyzer that will be used to perform the analysis process on the text. Defaults to the analyzer that was used to index the field. :param analyzer: The analyzer of this MatchQuery. :type: str """ self._analyzer = analyzer def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, MatchQuery): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
000110f69e38d8e360fc1503ca5f26370e05cd25
cb57a9ea4622b94207d12ea90eab9dd5b13e9e29
/lintcode/python/1909_order_allocation.py
4ff108d890858840ee3ef9ae25488bb9c13d9df3
[]
no_license
boknowswiki/mytraning
b59585e1e255a7a47c2b28bf2e591aef4af2f09a
5e2f6ceacf5dec8260ce87e9a5f4e28e86ceba7a
refs/heads/master
2023-08-16T03:28:51.881848
2023-08-10T04:28:54
2023-08-10T04:28:54
124,834,433
1
0
null
null
null
null
UTF-8
Python
false
false
4,870
py
#!/usr/bin/python -t # dfs from typing import ( List, ) class Solution: def __init__(self): self.cur_max = 0 self.ret = None """ @param score: When the j-th driver gets the i-th order, we can get score[i][j] points. @return: return an array that means the array[i]-th driver gets the i-th order. """ def orderAllocation(self, score: List[List[int]]) -> List[int]: # write your code here m = len(score) ret = [None] * m self.dfs(score, 0, ret) return self.ret def dfs(self, score, index, ret): print(score, index, ret) if index == len(ret): val = 0 for i in range(len(ret)): val += score[i][ret[i]] if val > self.cur_max: self.cur_max = val self.ret = list(ret) return for i in range(len(ret)): if i not in ret: ret[index] = i self.dfs(score, index+1, ret) ret[index] = None return if __name__ == '__main__': s = Solution() a = [[1,2,4],[7,11,16],[37,29,22]] print(s.orderAllocation(a)) # dp # 状态压缩DP版 # 我硬生生把一个medium题目做成了Hard。 不过你们也可以看一眼, 能练习状态压缩的题目真的不多了。 # # 首先这里dpij的意思是说当第i个司机被分配完了订单以后, 订单的状态应该是j。 j里面bit里面的1表示的是这个订单被分配出去了。 # # 然后我们开始循环, 从把第0个司机分配每种订单开始作为初始状态。 然后从第一个司机开始, 所以这个时候, 应该就是有2个司机被分配完了, 我们用一个helper function去state里面, 把所有有2个1的给找出来, 其他的就丢掉。 然后开始转移, 转移的方法就是, 找到一个k, k表示要把第k个订单分给第i个司机, 那么转移方程就是, 当i-1个司机分配完, 状态里面是有i - 1个1, 并且这个状态prevstate跟j的唯一差别就是第k位上面的订单是要分给第i个司机的。 所有用个xor把第k位给搞成0, 就得到了prevstate, 然后我们当然要从这个所有的k里面找到最大的, 这个由两部分组成, 一个是对于前面i-1个司机, 还有个是第k个订单给第i个司机, 这2个要加起来最大才行。 # # 上面步骤做好以后, 那么最多多少分肯定能算出来。 然后我们就倒回去算到底怎么匹配的。 首先, 我们要知道最后一个司机当state是11111的时候, allocation里面存的就是这个司机分的单号。 然后知道这个以后, 我们就把这个单号从state里面去掉就得到了上一个单号, 以此类推就做完了。 # # 当然我做的时候, 是在给driver分配订单, 其实是做反了的, 更好的办法应该是给订单分配driver, 这样return的时候, 不需要向我这样再倒腾一次。 class Solution: """ @param score: When the j-th driver gets the i-th order, we can get score[i][j] points. @return: return an array that means the array[i]-th driver gets the i-th order. """ def orderAllocation(self, score): num_states = 1 << len(score) # dp[i][j] = Driver i is assigned to state j dp = [[0] * num_states for _ in range(len(score))] max_score = 0 last_order = -1 allocation = [[-1] * num_states for _ in range(len(score))] for i in range(len(score)): bit_index = 1 << i dp[0][bit_index] = score[i][0] allocation[0][bit_index] = i for i in range(2, len(score) + 1): for j in range(num_states + 1): if self.num_of_ones(j) != i: continue for k in range(len(score)): if j & (1 << k) == 0: continue prev_state = j ^ (1 << k) if dp[i - 2][prev_state] + score[k][i - 1] > dp[i - 1][j]: dp[i - 1][j] = dp[i - 2][prev_state] + score[k][i - 1] allocation[i - 1][j] = k driver_to_order = [-1] * len(score) last_state = num_states - 1 for i in range(len(score) - 1, -1, -1): driver_to_order[i] = allocation[i][last_state] last_state = (1 << driver_to_order[i]) ^ last_state order_to_driver = [-1] * len(score) for driver, order in enumerate(driver_to_order): order_to_driver[order] = driver return order_to_driver def num_of_ones(self, state): num_of_ones = 0 while state > 0: state -= self.lowbit(state) num_of_ones += 1 return num_of_ones def lowbit(self, state): return state & (-state)
9fb989048567eb5db15c515f5ce3ba6801b857bf
f09dc121f213f2881df3572288b7ee5b39246d73
/aliyun-python-sdk-ccc/aliyunsdkccc/request/v20170705/CreateCabInstanceRequest.py
47923c7bc2c403b3b77dcab96630ccdb24c8801c
[ "Apache-2.0" ]
permissive
hetw/aliyun-openapi-python-sdk
2f31378ad6be0896fb8090423f607e9c7d3ae774
7443eacee9fbbaa93c7975c6dbec92d3c364c577
refs/heads/master
2023-01-19T22:42:36.214770
2020-12-04T10:55:14
2020-12-04T10:55:14
318,689,093
1
0
NOASSERTION
2020-12-05T03:03:03
2020-12-05T03:03:03
null
UTF-8
Python
false
false
2,170
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkccc.endpoint import endpoint_data class CreateCabInstanceRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'CCC', '2017-07-05', 'CreateCabInstance') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_MaxConcurrentConversation(self): return self.get_query_params().get('MaxConcurrentConversation') def set_MaxConcurrentConversation(self,MaxConcurrentConversation): self.add_query_param('MaxConcurrentConversation',MaxConcurrentConversation) def get_InstanceName(self): return self.get_query_params().get('InstanceName') def set_InstanceName(self,InstanceName): self.add_query_param('InstanceName',InstanceName) def get_CallCenterInstanceId(self): return self.get_query_params().get('CallCenterInstanceId') def set_CallCenterInstanceId(self,CallCenterInstanceId): self.add_query_param('CallCenterInstanceId',CallCenterInstanceId) def get_InstanceDescription(self): return self.get_query_params().get('InstanceDescription') def set_InstanceDescription(self,InstanceDescription): self.add_query_param('InstanceDescription',InstanceDescription)
b13046ceab6991b6f1d95e04fbe41b7ce103755b
888899f0cb3e6e7b28a9de39001a1fd1c177cd35
/COMPLETE PYTHON-3 COURSE/Chapter-05-LIST/summary.py
857ad7b8e6e4441e7a901e9c5b8d6851a307ef48
[]
no_license
VivakaNand/COMPLETE_PYTHON_3
ef162d71d3a44bf661fcc1a8aacce31e7953cd7c
b3b835afe7671fdc3d29d912650fd4ccd3bc83f6
refs/heads/master
2023-02-04T10:13:41.881939
2020-12-23T08:30:51
2020-12-23T08:30:51
323,839,528
0
1
null
null
null
null
UTF-8
Python
false
false
1,027
py
# list chapter summary # list is a data structure that can hold any type of data # create list words = ["word1", "word2"] # you can store anything inside list mixed = [1,2,3, [4,5,6], 'seven', 8.0,None] # list is ordered collection of items # print(mixed[0]) # output = 1 # print(mixed[3]) # output = [4,5,6] # add data to our list # append method # mixed.append("10") # mixed.append([10,20,30]) # it adds as it list at the end as one element # print(mixed) # extend method # mixed.extend([10,20,30]) # it adds all elements of list at the end # print(mixed) # join method # join two list # l = l1 + l2 # insert method # mixed.insert(1, 'inserted') # it adds elements in the specefic position # print(mixed) # remove data from list # # pop method # poped = mixed.pop() # removes last item # popped = mixed.pop(1) # remove item at 1 position # print(poped) # print(popped) #remove method # mixed.remove('seven') # print(mixed) # del statement # del mixed[3] # print(mixed) # loop in list for i in mixed: print(i)
6f331f833f6106821b1fbc0630bb3491154a5ed3
28a9cc19537f7264421afeb9883962aa480c2616
/login/models.py
dfc8567340a7277a6b236ffa42c5bf8ad2a3ca0c
[]
no_license
ujjwalagrawal17/BrokerAppBackend
b33df886b389aabfcfe7278c3e41c99d13d4fbb3
1b8ffd18e4c5257d222c17b8aece3351b549b204
refs/heads/master
2021-01-22T21:23:18.807792
2017-03-18T19:06:44
2017-03-18T19:06:44
85,425,430
0
0
null
null
null
null
UTF-8
Python
false
false
459
py
from __future__ import unicode_literals from django.db import models # Create your models here. class login_user(models.Model): name= models.CharField(max_length=120,null=False,blank=False) firm_name= models.CharField(max_length=240,null=False,blank=False) city= models.CharField(max_length=240,null=False,blank=False) mobile=models.PositiveSmallIntegerField(default=0) catigory=models.CharField(max_length=120,null=False,blank=False,default="buyer")
e35356aad8d52ce034b950fa1b84a9f27923a533
c5759366f8b2cb2e129df0637b62774225a0c41a
/code/tensor2tensor/tensor2tensor/data_generators/text_encoder_build_subword.py
89c6b9516e982d110e466e5b73735fd4f1e123fe
[ "Apache-2.0" ]
permissive
cake-lab/transient-deep-learning
f8646a4386528aa147d8d3dcdff8089985870041
87c6717e4026801623cf0327e78ad57f51cb1461
refs/heads/master
2022-11-02T20:02:29.642997
2022-02-08T16:51:09
2022-02-08T16:51:09
227,036,173
11
1
Apache-2.0
2022-10-05T13:01:38
2019-12-10T05:27:50
Python
UTF-8
Python
false
false
2,973
py
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Program to build a SubwordTextEncoder. The flags --min_count and --corpus_max_lines will affect the size of the vocabulary. Try changing these flags until you get a vocabulary of the size you want. Example usage: python data_generators/text_encoder_build_subword.py \ --corpus_filepattern=$DATA_DIR/my_problem-train-* \ --corpus_max_lines=12345 \ --output_filename=$DATA_DIR/my_problem.subword_text_encoder \ --logtostderr """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import tokenizer import tensorflow as tf tf.flags.DEFINE_string('output_filename', '/tmp/my.subword_text_encoder', 'where to store the SubwordTextEncoder') tf.flags.DEFINE_string('corpus_filepattern', '', 'Corpus of one or more text files') tf.flags.DEFINE_string('vocab_filepattern', '', 'One or more vocabulary files ' '(one word per line as "word,count")') tf.flags.DEFINE_integer('min_count', 5, 'Minimum subtoken count in corpus') tf.flags.DEFINE_integer('corpus_max_lines', 10000, 'How many lines of corpus to read') tf.flags.DEFINE_integer('num_iterations', 4, 'Number of iterations') tf.flags.DEFINE_bool('split_on_newlines', True, 'Break corpus into lines.') FLAGS = tf.flags.FLAGS def main(unused_argv): if FLAGS.corpus_filepattern and FLAGS.vocab_filepattern: raise ValueError( 'Must only provide one of --corpus_filepattern or --vocab_filepattern') elif FLAGS.corpus_filepattern: token_counts = tokenizer.corpus_token_counts( FLAGS.corpus_filepattern, FLAGS.corpus_max_lines, split_on_newlines=FLAGS.split_on_newlines) elif FLAGS.vocab_filepattern: token_counts = tokenizer.vocab_token_counts(FLAGS.vocab_filepattern, FLAGS.corpus_max_lines) else: raise ValueError( 'Must provide one of --corpus_filepattern or --vocab_filepattern') encoder = text_encoder.SubwordTextEncoder() encoder.build_from_token_counts(token_counts, FLAGS.min_count, FLAGS.num_iterations) encoder.store_to_file(FLAGS.output_filename) if __name__ == '__main__': tf.app.run()
ff77547cc6d5321804ab90dbd2386f9f3b515921
fff54b01b46cef0bbc70a6469c88c01c82af5a57
/network/library/glib-networking/actions.py
660dea0d9d3cf5ffb5633a05765dd140c9dcdf02
[]
no_license
LimeLinux/Packages
e51deae6c0d1406e31f06caa5aaa7749466bef0b
d492e075d8b051df68b98c315ad0628e33a8fac4
refs/heads/master
2021-01-11T12:37:22.150638
2018-08-30T18:24:32
2018-08-30T18:24:32
77,054,292
5
19
null
2018-02-02T17:24:06
2016-12-21T13:33:45
Python
UTF-8
Python
false
false
725
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/copyleft/gpl.txt from pisi.actionsapi import get from pisi.actionsapi import autotools from pisi.actionsapi import pisitools def setup(): autotools.configure("--disable-static \ --disable-installed-tests \ --with-ca-certificates=/etc/ssl/certs/ca-certificates.crt \ --with-gnutls \ --with-pkcs11") def build(): autotools.make() def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.dodoc("AUTHORS", "ChangeLog", "COPYING", "NEWS", "README")
744dd80c6dd301c986dfd766d02f90b8df0c7590
2af6a5c2d33e2046a1d25ae9dd66d349d3833940
/res/scripts/client/gui/scaleform/daapi/view/lobby/historicalbattles/__init__.py
319e96efe3c7f12b469f2b5042230f76267adc3d
[]
no_license
webiumsk/WOT-0.9.12-CT
e6c8b5bb106fad71b5c3056ada59fb1aebc5f2b2
2506e34bd6634ad500b6501f4ed4f04af3f43fa0
refs/heads/master
2021-01-10T01:38:38.080814
2015-11-11T00:08:04
2015-11-11T00:08:04
45,803,240
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,685
py
# 2015.11.10 21:27:13 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/lobby/historicalBattles/__init__.py from gui.Scaleform.framework import GroupedViewSettings, ViewTypes, ScopeTemplates from gui.Scaleform.framework.package_layout import PackageBusinessHandler from gui.Scaleform.genConsts.PREBATTLE_ALIASES import PREBATTLE_ALIASES from gui.app_loader.settings import APP_NAME_SPACE from gui.shared import EVENT_BUS_SCOPE def getViewSettings(): from gui.Scaleform.daapi.view.lobby.historicalBattles.HistoricalBattlesListWindow import HistoricalBattlesListWindow return (GroupedViewSettings(PREBATTLE_ALIASES.HISTORICAL_BATTLES_LIST_WINDOW_PY, HistoricalBattlesListWindow, 'historicalBattlesListWindow.swf', ViewTypes.WINDOW, '', PREBATTLE_ALIASES.HISTORICAL_BATTLES_LIST_WINDOW_PY, ScopeTemplates.DEFAULT_SCOPE, True),) def getBusinessHandlers(): return (_HistoricalBattlesBusinessHandler(),) class _HistoricalBattlesBusinessHandler(PackageBusinessHandler): def __init__(self): listeners = ((PREBATTLE_ALIASES.HISTORICAL_BATTLES_LIST_WINDOW_PY, self.__showHBListWindow),) super(_HistoricalBattlesBusinessHandler, self).__init__(listeners, APP_NAME_SPACE.SF_LOBBY, EVENT_BUS_SCOPE.LOBBY) def __showHBListWindow(self, _): alias = name = PREBATTLE_ALIASES.HISTORICAL_BATTLES_LIST_WINDOW_PY self.loadViewWithDefName(alias, name) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\scaleform\daapi\view\lobby\historicalbattles\__init__.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.10 21:27:13 Střední Evropa (běžný čas)
aec9135ff3f8ea294de2287b9c3fb015c1842ecb
9c9abdf101ce10d170de060155d7e96b244112eb
/logicmind/tokens/nop.py
d17faec06205634f0c31c421b359bde0fbb21eb9
[ "MIT" ]
permissive
gridl/Py-Utils
b914aef6b527d5e24972c2b2559937ffe14f8f54
96e554ef4da7f9f94d405f523bd234db7dca96a7
refs/heads/master
2020-11-29T08:30:59.015303
2019-04-27T13:45:31
2019-04-27T13:45:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
from tokens.token import Token class Not(Token): representations = ['¬', '!'] single_char_representation = '¬' def __init__(self): super().__init__(operands=1, precedence=1) def apply(self, right): return not right def __repr__(self): return '¬'
e43b0767d3b8addee5a35fe4962d4ec12254d4cf
a6e4a6f0a73d24a6ba957277899adbd9b84bd594
/sdk/python/pulumi_azure_native/documentdb/v20210115/get_database_account.py
8f4d59344f5e4492cb41eab079c01a343bb0963e
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
MisinformedDNA/pulumi-azure-native
9cbd75306e9c8f92abc25be3f73c113cb93865e9
de974fd984f7e98649951dbe80b4fc0603d03356
refs/heads/master
2023-03-24T22:02:03.842935
2021-03-08T21:16:19
2021-03-08T21:16:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,607
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetDatabaseAccountResult', 'AwaitableGetDatabaseAccountResult', 'get_database_account', ] @pulumi.output_type class GetDatabaseAccountResult: """ An Azure Cosmos DB database account. """ def __init__(__self__, api_properties=None, backup_policy=None, capabilities=None, connector_offer=None, consistency_policy=None, cors=None, database_account_offer_type=None, disable_key_based_metadata_write_access=None, document_endpoint=None, enable_analytical_storage=None, enable_automatic_failover=None, enable_cassandra_connector=None, enable_free_tier=None, enable_multiple_write_locations=None, failover_policies=None, id=None, identity=None, ip_rules=None, is_virtual_network_filter_enabled=None, key_vault_key_uri=None, kind=None, location=None, locations=None, name=None, network_acl_bypass=None, network_acl_bypass_resource_ids=None, private_endpoint_connections=None, provisioning_state=None, public_network_access=None, read_locations=None, tags=None, type=None, virtual_network_rules=None, write_locations=None): if api_properties and not isinstance(api_properties, dict): raise TypeError("Expected argument 'api_properties' to be a dict") pulumi.set(__self__, "api_properties", api_properties) if backup_policy and not isinstance(backup_policy, dict): raise TypeError("Expected argument 'backup_policy' to be a dict") pulumi.set(__self__, "backup_policy", backup_policy) if capabilities and not isinstance(capabilities, list): raise TypeError("Expected argument 'capabilities' to be a list") pulumi.set(__self__, "capabilities", capabilities) if connector_offer and not isinstance(connector_offer, str): raise TypeError("Expected argument 'connector_offer' to be a str") pulumi.set(__self__, "connector_offer", connector_offer) if consistency_policy and not isinstance(consistency_policy, dict): raise TypeError("Expected argument 'consistency_policy' to be a dict") pulumi.set(__self__, "consistency_policy", consistency_policy) if cors and not isinstance(cors, list): raise TypeError("Expected argument 'cors' to be a list") pulumi.set(__self__, "cors", cors) if database_account_offer_type and not isinstance(database_account_offer_type, str): raise TypeError("Expected argument 'database_account_offer_type' to be a str") pulumi.set(__self__, "database_account_offer_type", database_account_offer_type) if disable_key_based_metadata_write_access and not isinstance(disable_key_based_metadata_write_access, bool): raise TypeError("Expected argument 'disable_key_based_metadata_write_access' to be a bool") pulumi.set(__self__, "disable_key_based_metadata_write_access", disable_key_based_metadata_write_access) if document_endpoint and not isinstance(document_endpoint, str): raise TypeError("Expected argument 'document_endpoint' to be a str") pulumi.set(__self__, "document_endpoint", document_endpoint) if enable_analytical_storage and not isinstance(enable_analytical_storage, bool): raise TypeError("Expected argument 'enable_analytical_storage' to be a bool") pulumi.set(__self__, "enable_analytical_storage", enable_analytical_storage) if enable_automatic_failover and not isinstance(enable_automatic_failover, bool): raise TypeError("Expected argument 'enable_automatic_failover' to be a bool") pulumi.set(__self__, "enable_automatic_failover", enable_automatic_failover) if enable_cassandra_connector and not isinstance(enable_cassandra_connector, bool): raise TypeError("Expected argument 'enable_cassandra_connector' to be a bool") pulumi.set(__self__, "enable_cassandra_connector", enable_cassandra_connector) if enable_free_tier and not isinstance(enable_free_tier, bool): raise TypeError("Expected argument 'enable_free_tier' to be a bool") pulumi.set(__self__, "enable_free_tier", enable_free_tier) if enable_multiple_write_locations and not isinstance(enable_multiple_write_locations, bool): raise TypeError("Expected argument 'enable_multiple_write_locations' to be a bool") pulumi.set(__self__, "enable_multiple_write_locations", enable_multiple_write_locations) if failover_policies and not isinstance(failover_policies, list): raise TypeError("Expected argument 'failover_policies' to be a list") pulumi.set(__self__, "failover_policies", failover_policies) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if ip_rules and not isinstance(ip_rules, list): raise TypeError("Expected argument 'ip_rules' to be a list") pulumi.set(__self__, "ip_rules", ip_rules) if is_virtual_network_filter_enabled and not isinstance(is_virtual_network_filter_enabled, bool): raise TypeError("Expected argument 'is_virtual_network_filter_enabled' to be a bool") pulumi.set(__self__, "is_virtual_network_filter_enabled", is_virtual_network_filter_enabled) if key_vault_key_uri and not isinstance(key_vault_key_uri, str): raise TypeError("Expected argument 'key_vault_key_uri' to be a str") pulumi.set(__self__, "key_vault_key_uri", key_vault_key_uri) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if locations and not isinstance(locations, list): raise TypeError("Expected argument 'locations' to be a list") pulumi.set(__self__, "locations", locations) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if network_acl_bypass and not isinstance(network_acl_bypass, str): raise TypeError("Expected argument 'network_acl_bypass' to be a str") pulumi.set(__self__, "network_acl_bypass", network_acl_bypass) if network_acl_bypass_resource_ids and not isinstance(network_acl_bypass_resource_ids, list): raise TypeError("Expected argument 'network_acl_bypass_resource_ids' to be a list") pulumi.set(__self__, "network_acl_bypass_resource_ids", network_acl_bypass_resource_ids) if private_endpoint_connections and not isinstance(private_endpoint_connections, list): raise TypeError("Expected argument 'private_endpoint_connections' to be a list") pulumi.set(__self__, "private_endpoint_connections", private_endpoint_connections) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if public_network_access and not isinstance(public_network_access, str): raise TypeError("Expected argument 'public_network_access' to be a str") pulumi.set(__self__, "public_network_access", public_network_access) if read_locations and not isinstance(read_locations, list): raise TypeError("Expected argument 'read_locations' to be a list") pulumi.set(__self__, "read_locations", read_locations) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if virtual_network_rules and not isinstance(virtual_network_rules, list): raise TypeError("Expected argument 'virtual_network_rules' to be a list") pulumi.set(__self__, "virtual_network_rules", virtual_network_rules) if write_locations and not isinstance(write_locations, list): raise TypeError("Expected argument 'write_locations' to be a list") pulumi.set(__self__, "write_locations", write_locations) @property @pulumi.getter(name="apiProperties") def api_properties(self) -> Optional['outputs.ApiPropertiesResponse']: """ API specific properties. """ return pulumi.get(self, "api_properties") @property @pulumi.getter(name="backupPolicy") def backup_policy(self) -> Optional[Any]: """ The object representing the policy for taking backups on an account. """ return pulumi.get(self, "backup_policy") @property @pulumi.getter def capabilities(self) -> Optional[Sequence['outputs.CapabilityResponse']]: """ List of Cosmos DB capabilities for the account """ return pulumi.get(self, "capabilities") @property @pulumi.getter(name="connectorOffer") def connector_offer(self) -> Optional[str]: """ The cassandra connector offer type for the Cosmos DB database C* account. """ return pulumi.get(self, "connector_offer") @property @pulumi.getter(name="consistencyPolicy") def consistency_policy(self) -> Optional['outputs.ConsistencyPolicyResponse']: """ The consistency policy for the Cosmos DB database account. """ return pulumi.get(self, "consistency_policy") @property @pulumi.getter def cors(self) -> Optional[Sequence['outputs.CorsPolicyResponse']]: """ The CORS policy for the Cosmos DB database account. """ return pulumi.get(self, "cors") @property @pulumi.getter(name="databaseAccountOfferType") def database_account_offer_type(self) -> str: """ The offer type for the Cosmos DB database account. Default value: Standard. """ return pulumi.get(self, "database_account_offer_type") @property @pulumi.getter(name="disableKeyBasedMetadataWriteAccess") def disable_key_based_metadata_write_access(self) -> Optional[bool]: """ Disable write operations on metadata resources (databases, containers, throughput) via account keys """ return pulumi.get(self, "disable_key_based_metadata_write_access") @property @pulumi.getter(name="documentEndpoint") def document_endpoint(self) -> str: """ The connection endpoint for the Cosmos DB database account. """ return pulumi.get(self, "document_endpoint") @property @pulumi.getter(name="enableAnalyticalStorage") def enable_analytical_storage(self) -> Optional[bool]: """ Flag to indicate whether to enable storage analytics. """ return pulumi.get(self, "enable_analytical_storage") @property @pulumi.getter(name="enableAutomaticFailover") def enable_automatic_failover(self) -> Optional[bool]: """ Enables automatic failover of the write region in the rare event that the region is unavailable due to an outage. Automatic failover will result in a new write region for the account and is chosen based on the failover priorities configured for the account. """ return pulumi.get(self, "enable_automatic_failover") @property @pulumi.getter(name="enableCassandraConnector") def enable_cassandra_connector(self) -> Optional[bool]: """ Enables the cassandra connector on the Cosmos DB C* account """ return pulumi.get(self, "enable_cassandra_connector") @property @pulumi.getter(name="enableFreeTier") def enable_free_tier(self) -> Optional[bool]: """ Flag to indicate whether Free Tier is enabled. """ return pulumi.get(self, "enable_free_tier") @property @pulumi.getter(name="enableMultipleWriteLocations") def enable_multiple_write_locations(self) -> Optional[bool]: """ Enables the account to write in multiple locations """ return pulumi.get(self, "enable_multiple_write_locations") @property @pulumi.getter(name="failoverPolicies") def failover_policies(self) -> Sequence['outputs.FailoverPolicyResponse']: """ An array that contains the regions ordered by their failover priorities. """ return pulumi.get(self, "failover_policies") @property @pulumi.getter def id(self) -> str: """ The unique resource identifier of the ARM resource. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.ManagedServiceIdentityResponse']: """ Identity for the resource. """ return pulumi.get(self, "identity") @property @pulumi.getter(name="ipRules") def ip_rules(self) -> Optional[Sequence['outputs.IpAddressOrRangeResponse']]: """ List of IpRules. """ return pulumi.get(self, "ip_rules") @property @pulumi.getter(name="isVirtualNetworkFilterEnabled") def is_virtual_network_filter_enabled(self) -> Optional[bool]: """ Flag to indicate whether to enable/disable Virtual Network ACL rules. """ return pulumi.get(self, "is_virtual_network_filter_enabled") @property @pulumi.getter(name="keyVaultKeyUri") def key_vault_key_uri(self) -> Optional[str]: """ The URI of the key vault """ return pulumi.get(self, "key_vault_key_uri") @property @pulumi.getter def kind(self) -> Optional[str]: """ Indicates the type of database account. This can only be set at database account creation. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> Optional[str]: """ The location of the resource group to which the resource belongs. """ return pulumi.get(self, "location") @property @pulumi.getter def locations(self) -> Sequence['outputs.LocationResponse']: """ An array that contains all of the locations enabled for the Cosmos DB account. """ return pulumi.get(self, "locations") @property @pulumi.getter def name(self) -> str: """ The name of the ARM resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkAclBypass") def network_acl_bypass(self) -> Optional[str]: """ Indicates what services are allowed to bypass firewall checks. """ return pulumi.get(self, "network_acl_bypass") @property @pulumi.getter(name="networkAclBypassResourceIds") def network_acl_bypass_resource_ids(self) -> Optional[Sequence[str]]: """ An array that contains the Resource Ids for Network Acl Bypass for the Cosmos DB account. """ return pulumi.get(self, "network_acl_bypass_resource_ids") @property @pulumi.getter(name="privateEndpointConnections") def private_endpoint_connections(self) -> Sequence['outputs.PrivateEndpointConnectionResponse']: """ List of Private Endpoint Connections configured for the Cosmos DB account. """ return pulumi.get(self, "private_endpoint_connections") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The status of the Cosmos DB account at the time the operation was called. The status can be one of following. 'Creating' – the Cosmos DB account is being created. When an account is in Creating state, only properties that are specified as input for the Create Cosmos DB account operation are returned. 'Succeeded' – the Cosmos DB account is active for use. 'Updating' – the Cosmos DB account is being updated. 'Deleting' – the Cosmos DB account is being deleted. 'Failed' – the Cosmos DB account failed creation. 'DeletionFailed' – the Cosmos DB account deletion failed. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicNetworkAccess") def public_network_access(self) -> Optional[str]: """ Whether requests from Public Network are allowed """ return pulumi.get(self, "public_network_access") @property @pulumi.getter(name="readLocations") def read_locations(self) -> Sequence['outputs.LocationResponse']: """ An array that contains of the read locations enabled for the Cosmos DB account. """ return pulumi.get(self, "read_locations") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Tags are a list of key-value pairs that describe the resource. These tags can be used in viewing and grouping this resource (across resource groups). A maximum of 15 tags can be provided for a resource. Each tag must have a key no greater than 128 characters and value no greater than 256 characters. For example, the default experience for a template type is set with "defaultExperience": "Cassandra". Current "defaultExperience" values also include "Table", "Graph", "DocumentDB", and "MongoDB". """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The type of Azure resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualNetworkRules") def virtual_network_rules(self) -> Optional[Sequence['outputs.VirtualNetworkRuleResponse']]: """ List of Virtual Network ACL rules configured for the Cosmos DB account. """ return pulumi.get(self, "virtual_network_rules") @property @pulumi.getter(name="writeLocations") def write_locations(self) -> Sequence['outputs.LocationResponse']: """ An array that contains the write location for the Cosmos DB account. """ return pulumi.get(self, "write_locations") class AwaitableGetDatabaseAccountResult(GetDatabaseAccountResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDatabaseAccountResult( api_properties=self.api_properties, backup_policy=self.backup_policy, capabilities=self.capabilities, connector_offer=self.connector_offer, consistency_policy=self.consistency_policy, cors=self.cors, database_account_offer_type=self.database_account_offer_type, disable_key_based_metadata_write_access=self.disable_key_based_metadata_write_access, document_endpoint=self.document_endpoint, enable_analytical_storage=self.enable_analytical_storage, enable_automatic_failover=self.enable_automatic_failover, enable_cassandra_connector=self.enable_cassandra_connector, enable_free_tier=self.enable_free_tier, enable_multiple_write_locations=self.enable_multiple_write_locations, failover_policies=self.failover_policies, id=self.id, identity=self.identity, ip_rules=self.ip_rules, is_virtual_network_filter_enabled=self.is_virtual_network_filter_enabled, key_vault_key_uri=self.key_vault_key_uri, kind=self.kind, location=self.location, locations=self.locations, name=self.name, network_acl_bypass=self.network_acl_bypass, network_acl_bypass_resource_ids=self.network_acl_bypass_resource_ids, private_endpoint_connections=self.private_endpoint_connections, provisioning_state=self.provisioning_state, public_network_access=self.public_network_access, read_locations=self.read_locations, tags=self.tags, type=self.type, virtual_network_rules=self.virtual_network_rules, write_locations=self.write_locations) def get_database_account(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDatabaseAccountResult: """ An Azure Cosmos DB database account. :param str account_name: Cosmos DB database account name. :param str resource_group_name: The name of the resource group. The name is case insensitive. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:documentdb/v20210115:getDatabaseAccount', __args__, opts=opts, typ=GetDatabaseAccountResult).value return AwaitableGetDatabaseAccountResult( api_properties=__ret__.api_properties, backup_policy=__ret__.backup_policy, capabilities=__ret__.capabilities, connector_offer=__ret__.connector_offer, consistency_policy=__ret__.consistency_policy, cors=__ret__.cors, database_account_offer_type=__ret__.database_account_offer_type, disable_key_based_metadata_write_access=__ret__.disable_key_based_metadata_write_access, document_endpoint=__ret__.document_endpoint, enable_analytical_storage=__ret__.enable_analytical_storage, enable_automatic_failover=__ret__.enable_automatic_failover, enable_cassandra_connector=__ret__.enable_cassandra_connector, enable_free_tier=__ret__.enable_free_tier, enable_multiple_write_locations=__ret__.enable_multiple_write_locations, failover_policies=__ret__.failover_policies, id=__ret__.id, identity=__ret__.identity, ip_rules=__ret__.ip_rules, is_virtual_network_filter_enabled=__ret__.is_virtual_network_filter_enabled, key_vault_key_uri=__ret__.key_vault_key_uri, kind=__ret__.kind, location=__ret__.location, locations=__ret__.locations, name=__ret__.name, network_acl_bypass=__ret__.network_acl_bypass, network_acl_bypass_resource_ids=__ret__.network_acl_bypass_resource_ids, private_endpoint_connections=__ret__.private_endpoint_connections, provisioning_state=__ret__.provisioning_state, public_network_access=__ret__.public_network_access, read_locations=__ret__.read_locations, tags=__ret__.tags, type=__ret__.type, virtual_network_rules=__ret__.virtual_network_rules, write_locations=__ret__.write_locations)
bdc08ee0779b38395377347f0abedd95471a6d05
65a70271f97f6760996fb87df95b18186b8dde8c
/__main__.py
5d8df591955a25d858ae1d8f3ce6df3931de37de
[]
no_license
sebbekarlsson/bethins
f3d843ee092e8b3245de4c03dc53a6e57f5bcac7
efc394a785231a60e6cd9068a0f0ea76deb3a902
refs/heads/master
2016-09-14T09:48:10.193590
2016-04-29T19:31:13
2016-04-29T19:31:13
57,068,864
0
0
null
null
null
null
UTF-8
Python
false
false
81
py
from bethins.app import app if __name__ == '__main__': app.run(debug=True)
5cd3e967959c0a4211a1c671d6336fbd4c832a7a
3288a3e1ac9fe24260e6eb3e54234cf1a9c6e33a
/model/rage.py
3941517a4a82de7a3cddb1758bb223a744cab090
[]
no_license
phamdinhkhanh/alltherage
691ea098cb485df84db230af1f0bb376e1a8201f
94f253dbc5b830dc9d1b76680c9b41a05a6c3f16
refs/heads/master
2021-01-23T14:49:57.214474
2017-07-30T09:23:38
2017-07-30T09:23:38
93,261,643
0
0
null
null
null
null
UTF-8
Python
false
false
1,282
py
from mongoengine import * from flask_restful import Resource, reqparse import mlab class Rage(Document): name = StringField(); url = StringField(); description = StringField(); old_price = FloatField(); new_price = FloatField(); discount_rate = FloatField(); is_favorite = BooleanField(); number_seen = IntField(); code = StringField(); def get_json(self): return mlab.item2json(self) def get_oid(self): str = mlab.item2json(self) oid = str["_id"]["$oid"] return { "$oid":oid } def get_json_oid(self): str = mlab.item2json(self) oid = str["_id"]["$oid"] return { "oid": oid, "name": self.name, "url": self.url, "description": self.description, "old_price": self.old_price, "new_price": self.new_price, "discount_rate": self.discount_rate, "is_favorite": self.is_favorite, "number_seen":self.number_seen, "code":self.code } class RageInfo(Document): rage = ReferenceField("Rage"); info = StringField(); def get_json(self): return { "rage":self.rage.get_json(), "info":self.info }
a05f388b7fed9deac9f7b8e1e5e439e90ec715a9
84d2efd222fa190c8b3efcad083dcf2c7ab30047
/test.py
fc24c2054c5968948fcc906e963e832aa2a418a6
[]
no_license
webclinic017/Capstone-2
aedfc8692647f2e84114da5b2e32856d0de80586
d476723f7893c7c5da14e24f28736a8f0ba7ff55
refs/heads/master
2023-01-23T06:44:36.868373
2020-12-03T19:44:51
2020-12-03T19:44:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,642
py
import pandas as pd import matplotlib.pyplot as plt import numpy as np import sklearn.linear_model import scipy.stats as stats import pandas_market_calendars as mcal from alpha_vantage.timeseries import TimeSeries api_key = '8FIYTT49ZEZT2GV5' ts = TimeSeries(key=api_key, output_format='pandas') data, meta_data = ts.get_daily(symbol='SPY', outputsize = 'full') data = data.reset_index() data['date'] = data['date'].dt.strftime('%Y%m%d') data['date'] = data['date'].values.astype(int) X = np.c_[data['date']] Y = np.c_[data['4. close']] X = [i[0] for i in X] Y = [i[0] for i in Y] X = X[::-1] #REVERSING ORDER Y = Y[::-1] #REVERSING ORDER last_day = len(X) - 1 th_day = list(range(0,last_day+1)) def YYYY_MM_DD_to_th_day(YMD): early = nyse.schedule(start_date='1999-11-01', end_date=YMD) return len(early)-1 model = np.polyfit(X, Y, 4) std = np.std(Y) testdate = [[20210101]] testprediction = np.polyval(model, testdate) testprice = testprediction[0] + (1 * std) zscore = float((testprice - testprediction[0]) / std) probability = 0 cdf = stats.norm.cdf(zscore) if(cdf <= .5): probability = cdf elif(cdf >= .5): probability = 1-cdf print(testprediction) #NEW CODE STARTING BELOW #OK, .01 std tests #get the best trade per day #choose...idk ''' shortPrices = 0 longPrices = 0 currentPrice = Y[0] reward = longPrices - currentPrice risk = currentPrice - shortPrices print(reward) print(risk) ''' #OPTIMIZATION TESTS #ULTRA SHORT TERM (original: 20211218), TODAY : 360 #1st Degree : 255 in a week, 255 in a month, 263 in 6 months #2nd Degree : 320 in a week, 320 in a month, 347 in 6 months #3rd Degree : 325 in a week, 325 in a month, 356 in 6 months #4th Degree : 323 in a week, 323 in a month, 351 in 6 months #5th Degree : 323 in a week, 323 in a month, 351 in 6 months #SHORT TERM #1st Degree : 264 in 2021, 273 in 2022 #2nd Degree : 349 in 2021, 381 in 2022 #3rd Degree : 359 in 2021, 396 in 2022 #4th Degree : 353 in 2021, 385 in 2022 #5th Degree : 353 in 2021, 385 in 2022 #ULTRA LONG TERM (assuming downturns every 10 years) #1st Degree : 344 in 2030, 434 in 2040 #2nd Degree : 704 in 2030, 1282 in 2040 #3rd Degree : 804 in 2030, 1652 in 2040 #4th Degree : 649 in 2030, 759 in 2040 #5th Degree : 648 in 2030, 745 in 2040 #COMPARISON TO EXTERNAL PREDICTIONS (11/26/25, $486) #1st Degree: 300 #2nd Degree: 487 #3rd Degree: 523 #4th Degree: 484 #5th Degree: 484 #BEST RESULT : 4th Degree #ACCURACY TEST #Today: 0.5Z #March Low : -1.5Z #February High : 0.27Z #2009 Low : -0.71Z #2007 High : 0.66Z
fe41e57f2ed88a9306816bc86c1326ed3f15f4a5
853d7901c4bdc7db8e655092c9939741b4f86161
/886.py
be36ff32f774dcec2059ca91e5828d87b1299df8
[ "MIT" ]
permissive
wilbertgeng/LeetCode_exercise
904d6a3f91d94f451b40f3760131aefaa8584b3b
f00c08e0d28ffa88d61d4262c6d1f49f1fa91ebc
refs/heads/main
2023-03-16T01:25:00.514922
2021-03-15T06:12:59
2021-03-15T06:12:59
347,856,240
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
"""886. Possible Bipartition""" class Solution(object): def possibleBipartition(self, N, dislikes): """ :type N: int :type dislikes: List[List[int]] :rtype: bool """ seen = {} self.graph = collections.defaultdict(list) for (u, v) in dislikes: # Create graph self.graph[u].append(v) self.graph[v].append(u) for i in range(1, N+1): if i not in seen: if self.check(seen, i, self.graph) == False: return False return True def check(self, seen, i, graph): q = [(i, 1)] while q: pos, color = q.pop(0) if pos in seen: if seen[pos] != color: return False continue seen[pos] = color vertices = graph[pos] for v in vertices: q.append((v, -color)) return True
748c4782c7cd76f5ae63a10cc29668cecc5cb385
70fa4bc22afd3d0527888d382827c7c2e1269b8a
/examples/columbia_river_crossing.py
263f0b7f942ff977e4ec41aba47835a0ecbf4025
[ "BSD-2-Clause" ]
permissive
moorepants/EfficientRoutes
20029f19ed5ec79d484660d8f963f4e78d2d899d
2705b643b95cb7921dc3216d534aa5bdbff302a1
refs/heads/master
2020-04-06T06:47:52.698417
2012-06-28T09:12:30
2012-06-28T09:12:30
4,477,900
0
0
null
null
null
null
UTF-8
Python
false
false
3,056
py
#!/usr/bin/env python # This example compares two routes connecting Portland, Oregon to Vancouver, # Washington over a bridge across the Columbia River. The planned bicycle route # sends the bicyclist through various elevation changes and several yield # signs, stop signs, and traffic signals where as the automobiles get to travel # across level ground with no stops. These simulations compare the bicyclist's # energy expenditure, trip distance, and trip time through the two routes. import numpy as np from efficientroutes.model import Bicyclist, Route, Trip # Load a bicyclist. bicyclist = Bicyclist() # Load in the the planned bicycle route data and process the traffic controls # column. bicycleRouteData = np.recfromcsv('../data/columbia_river_crossing_bicycle.csv') stopLocations = [] for i, device in enumerate(bicycleRouteData['traffic_control']): if device != '': stopLocations.append(bicycleRouteData['distance'][i]) bicycleRoute = Route(bicycleRouteData['distance'], bicycleRouteData['elevation'], bicycleRouteData['speed_limit'], stopLocations=np.array(stopLocations)) # Setup and compute the results for the trip across the planned bicycle route. bicycleTrip = Trip(bicyclist, bicycleRoute) bicycleTrip.solve() print "====================" print "Bicycle route stats:" print "====================" bicycleTrip.stats() bicycleFig = bicycleTrip.plot() bicycleFig.suptitle('Bicycle Route') bicycleFig.set_figheight(8.0) bicycleFig.savefig('../data/columbia_river_crossing_bicycle.png', dpi=200) bicycleFig.show() # Load in the data for the automobile path. autoRouteData = np.recfromcsv('../data/columbia_river_crossing_auto.csv') autoRoute = Route(autoRouteData['distance'], autoRouteData['elevation'], autoRouteData['speed_limit'] - 17.88) # Setup and compute the results for the trip across the automobile route. autoTrip = Trip(bicyclist, autoRoute) autoTrip.solve() print "=======================" print "Automobile route stats:" print "=======================" autoTrip.stats() autoFig = autoTrip.plot() autoFig.suptitle('Automobile Route') autoFig.set_figheight(8.0) autoFig.savefig('../data/columbia_river_crossing_auto.png', dpi=200) autoFig.show() # Load in the data for the automobile path. bestRouteData = np.recfromcsv('../data/columbia_river_crossing_best.csv') stopLocations = [] for i, device in enumerate(bestRouteData['traffic_control']): if device != '': stopLocations.append(bestRouteData['distance'][i]) bestRoute = Route(bestRouteData['distance'], bestRouteData['elevation'], bestRouteData['speed_limit'] - 17.88, stopLocations=np.array(stopLocations)) # Setup and compute the results for the trip across the automobile route. bestTrip = Trip(bicyclist, bestRoute) bestTrip.solve() print "=================" print "Best route stats:" print "=================" bestTrip.stats() bestFig = bestTrip.plot() bestFig.suptitle('Best Route') bestFig.set_figheight(8.0) bestFig.savefig('../data/columbia_river_crossing_best.png', dpi=200) bestFig.show()
399677d94f7dba5213292ea7db1d4bba220d5d29
f394598dad4276f9667e702b7360ab14dcd10cfc
/unsolved/power_of_four.py
81e77db6b544515bf8744ccd45c335929374d9f2
[]
no_license
siowyisheng/python-problem-solving
fe9ded3761e637883467cb81abc01bcb0a54b589
7e32767a3ac710ecfc37f205ee35eda194400122
refs/heads/master
2020-03-21T19:57:56.118616
2019-06-28T08:12:09
2019-06-28T08:12:09
138,980,214
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
Given a 32-bit positive integer N, determine whether it is a power of four in faster than O(log N) time.
8aa1667e96ff01d3a43197b476b881ceb027dc8e
d3be0d693440c618d211bc3801a29b885041786a
/scripts/migrations/label_test.py
45e6a66c1d0b77179e304048114bec7d94c2c009
[ "Apache-2.0" ]
permissive
jimpallomeni/buck
9479b048e59ee1d0a78b3c0c30cb98af61920fe3
0d752267ca1ea6f93ac1966bac75e6168df0254c
refs/heads/master
2021-07-05T08:27:30.295952
2017-09-27T22:34:01
2017-09-28T00:18:46
105,082,899
0
0
null
2017-09-28T00:22:08
2017-09-28T00:22:08
null
UTF-8
Python
false
false
1,358
py
import label import unittest class LabelTest(unittest.TestCase): def test_can_parse_full_label_from_string(self): l = label.from_string('cell//package:name') self.assertEqual(l.name, 'name') self.assertEqual(l.package, 'package') self.assertEqual(l.cell, 'cell') def test_can_parse_label_without_cell(self): l = label.from_string('//package:name') self.assertEqual(l.name, 'name') self.assertEqual(l.package, 'package') self.assertIsNone(l.cell) def test_can_parse_label_with_multilevel_package(self): l = label.from_string('cell//pkg/subpkg:name') self.assertEqual(l.name, 'name') self.assertEqual(l.package, 'pkg/subpkg') self.assertEqual(l.cell, 'cell') def test_cannot_parse_invalid_label(self): with self.assertRaisesRegex(AssertionError, "Invalid label 'cell/pkg:name'"): label.from_string('cell/pkg:name') def test_can_resolve_path_to_build_file(self): l = label.from_string('cell//pkg:name') cell_roots = { 'cell': '/repo/cell', } self.assertEqual('/repo/cell/pkg/BUCK', l.get_build_file_path(cell_roots, 'BUCK')) def test_can_convert_to_import_string(self): self.assertEqual('cell//pkg:name', label.from_string('cell//pkg:name').to_import_string())
6c7283f79ab27c859cffb7b7d39c93d67372cd59
164e0f43ef3ad4cb7f6b28dfdd2bfbaa66d38ce2
/Word_Pattern/Word_Pattern.py
c8e8770d0ef80e9476f394041e584d25a6bd9e7b
[]
no_license
maoxx241/code
b217f2d10065d90f52cfa38788c99e238565b892
16e97ec5ee7ae9ffa69da2e001d15a86d73d2040
refs/heads/master
2021-07-11T14:25:35.098241
2020-11-25T14:01:56
2020-11-25T14:01:56
222,544,519
0
0
null
null
null
null
UTF-8
Python
false
false
603
py
class Solution: def wordPattern(self, pattern: str, str: str) -> bool: lst=str.split() if len(lst)!=len(pattern): return False dic={} for i,c in enumerate(pattern): if c not in dic: if lst[i] in dic.values(): return False dic[c]=lst[i] else: if lst[i]!=dic[c]: return False return True
e4e52e5407ba0039db5808125b456d675cb0959c
c387360f00fc0f7c36bb3f9b8bcff24ff2bc87d6
/baekjoon_14918.py
290dcc0aecad7532749df48895a36ad3936d3924
[]
no_license
younkyounghwan/python
e8e8f2adce5e3005df7ba35298bafe04f02c6d33
e76783d59bab871b3fd98c088296521d979b1303
refs/heads/master
2020-04-01T14:57:54.113092
2019-08-27T13:45:56
2019-08-27T13:45:56
153,315,237
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
x, y = map(int,input().split()) print(x+y)
9ee85000310e262b188ffd12e9948483f3d681e7
7cb626363bbce2f66c09e509e562ff3d371c10c6
/multimodel_inference/py3_v1/sc3elsm.py
2d50cceedee31d0481ec347f123d4e6d48609f87
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
z0on/AFS-analysis-with-moments
76bfd6b0361ab7e9173144dbd21b6fa2c7bf1795
eea4735b3b6fbe31c4e396da3d798387884a1500
refs/heads/master
2023-07-31T20:49:20.865161
2023-07-19T06:57:32
2023-07-19T06:57:32
96,915,117
4
5
null
2020-09-02T17:39:08
2017-07-11T16:38:03
Python
UTF-8
Python
false
false
3,247
py
#!/usr/bin/env python3 # split, three epochs in each pop, asymmetric migration at same rates in all epochs # n(para): 11 import matplotlib matplotlib.use('PDF') import moments import pylab import random import matplotlib.pyplot as plt import numpy as np from numpy import array from moments import Misc,Spectrum,Numerics,Manips,Integration,Demographics1D,Demographics2D import sys infile=sys.argv[1] pop_ids=[sys.argv[2],sys.argv[3]] projections=[int(sys.argv[4]),int(sys.argv[5])] if len(sys.argv)==9: params = np.loadtxt(sys.argv[8], delimiter=" ", unpack=False) else: params=[1,1,1,1,1,1,1,1,1,1,0.01] # mutation rate per sequenced portion of genome per generation: for A.millepora, 0.02 mu=float(sys.argv[6]) # generation time, in thousand years: 0.005 (5 years) gtime=float(sys.argv[7]) # set Polarized=False below for folded AFS analysis fs = moments.Spectrum.from_file(infile) data=fs.project(projections) ns=data.sample_sizes np.set_printoptions(precision=3) #------------------- # split into unequal pop sizes with asymmetrical migration def sc3ei(params , ns): # p_misid: proportion of misidentified ancestral states nu1_1, nu2_1, nu1_2,nu2_2,nu1_3,nu2_3,T1, T2, T3,m, p_misid = params sts = moments.LinearSystem_1D.steady_state_1D(ns[0] + ns[1]) fs = moments.Spectrum(sts) fs = moments.Manips.split_1D_to_2D(fs, ns[0], ns[1]) fs.integrate([nu1_1, nu2_1], T1, m = np.array([[0, m], [m, 0]])) fs.integrate([nu1_2, nu2_2], T2, m = np.array([[0, 0], [0, 0]])) fs.integrate([nu1_3, nu2_3], T3, m = np.array([[0, m], [m, 0]])) return (1-p_misid)*fs + p_misid*moments.Numerics.reverse_array(fs) func=sc3ei upper_bound = [100, 100, 100,100,100, 100, 100, 100,100, 200,0.25] lower_bound = [1e-3,1e-3, 1e-3,1e-3,1e-3,1e-3,1e-3,1e-3,1e-3,1e-5,1e-5] params = moments.Misc.perturb_params(params, fold=2, upper_bound=upper_bound, lower_bound=lower_bound) poptg = moments.Inference.optimize_log(params, data, func, lower_bound=lower_bound, upper_bound=upper_bound, verbose=False, maxiter=30) # extracting model predictions, likelihood and theta model = func(poptg, ns) ll_model = moments.Inference.ll_multinom(model, data) theta = moments.Inference.optimal_sfs_scaling(model, data) # random index for this replicate ind=str(random.randint(0,999999)) # plotting demographic model plot_mod = moments.ModelPlot.generate_model(func, poptg, ns) moments.ModelPlot.plot_model(plot_mod, save_file="sc3elsm_"+ind+".png", pop_labels=pop_ids, nref=theta/(4*mu), draw_scale=False, gen_time=gtime, gen_time_units="KY", reverse_timeline=True) # bootstrapping for SDs of params and theta # printing parameters and their SDs print( "RESULT","sc3elsm",ind,len(params),ll_model,sys.argv[1],sys.argv[2],sys.argv[3],poptg,theta) # plotting quad-panel figure witt AFS, model, residuals: moments.Plotting.plot_2d_comp_multinom(model, data, vmin=0.1, resid_range=3, pop_ids =pop_ids) plt.savefig("sc3elsm_"+ind+"_"+sys.argv[1]+"_"+sys.argv[2]+"_"+sys.argv[3]+"_"+sys.argv[4]+"_"+sys.argv[5]+'.pdf')
661866a587111cbadec04ee46f867134a8b01025
ac192c0d64c31c33d76708b3f5a0062a842d59cf
/LearningCode/3_8_aroundTheWorld.py
ba68059b790cdb5bd2695a4bd3887c758b429be7
[ "Apache-2.0" ]
permissive
jercas/PythonCrashCourse
7a73c6af327b653581e9d260431b022a08923fb3
464cf1dfa4c33adc73e15e15a37da94da0912e19
refs/heads/master
2020-12-02T22:11:24.650904
2017-07-03T09:37:27
2017-07-03T09:37:27
96,094,771
1
0
null
null
null
null
UTF-8
Python
false
false
634
py
#coding=utf-8 #放眼世界P41 2017.4.11 myDreamPlace = ['losAngle','houston','newYork'] print('1.this is the oringle list') print(myDreamPlace) print('2.this is the sorted list') print(sorted(myDreamPlace)) print('now what?') print(myDreamPlace) print('3.this is the sorted and reverse list') print(sorted(myDreamPlace)) print('now what?') print(myDreamPlace) print('4.this is the reverse list') myDreamPlace.reverse() print(myDreamPlace) print("Let's take it reverse again") myDreamPlace.reverse() print(myDreamPlace) print('5.this is the sort list') myDreamPlace.sort() print(myDreamPlace) print('now what?') print(myDreamPlace)
a5dae9eaf99e07f4a4f3bcdd368bb8a6b274af16
0857ee93b0a041bb38c635b71e456247982e18f0
/app/migrations/0001_initial.py
20b17abffc8af2b5cdf3a8f0e2ae4fc224399542
[]
no_license
ConnorFieldUser/single_page_secrets
932ae5f253c3c4742d3584ecb6a34e0776f5672e
e4acdc26e64999e9d351beda98fd4f6af91566b5
refs/heads/master
2020-07-26T21:48:56.960107
2016-11-10T17:15:48
2016-11-10T17:15:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
789
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-11-10 16:26 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Secret', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.TextField()), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
74764b1315255cbdaa416559f8d622f03ccc9269
31c310ef2cedb0d7b7327668bdbff4b50b165e74
/app/__init__.py
2030ab9a162509c54f126c68431fcc06854e893f
[ "MIT" ]
permissive
wou-cs/wolfit
8ffacc5a4eb235d570f7f2042c4c731b4f145be5
cebf6a0676ae86ea9d37ad9e8b2fe1aa1535c498
refs/heads/main
2023-03-09T22:41:17.418489
2023-02-04T13:36:02
2023-02-04T13:36:02
136,679,479
2
14
MIT
2023-02-16T07:12:04
2018-06-09T01:05:52
Python
UTF-8
Python
false
false
580
py
import os import config from flask import Flask from flask_bootstrap import Bootstrap from flask_login import LoginManager from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from app.commands import sample_data app = Flask(__name__) app.config.from_object(config.Config) app.config.from_envvar('WOLFIT_SETTINGS') app.config['SQLALCHEMY_DATABASE_URI'] = config.Config.DATABASE_URI(app) app.register_blueprint(sample_data) db = SQLAlchemy(app) login = LoginManager(app) migrate = Migrate(app, db) bootstrap = Bootstrap(app) from app import models, routes
fb33ad47c4b0d1dbaab994ac4d7707c1c15ad619
4ac6808e6153dceebd6271c017f9613818866da5
/app/__init__.py
7b12aec453ef6cc0483e2eb1f4a1bdf6ff520c4f
[ "MIT" ]
permissive
quanpower/xielaoban-server
59d9331737c79163f0d4bd352bdcfc900c2e0c0c
584eaa6c049a9d664efaf60cd23273147d0a5c6e
refs/heads/master
2022-12-09T20:59:20.466225
2018-02-10T15:30:17
2018-02-10T15:30:17
120,546,895
1
0
MIT
2022-12-08T00:44:41
2018-02-07T01:36:25
Python
UTF-8
Python
false
false
4,018
py
from flask import Flask from flask_bootstrap import Bootstrap from flask_mail import Mail from flask_moment import Moment from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_pagedown import PageDown from config import config from flask_admin import Admin, BaseView, expose from flask_admin.contrib.fileadmin import FileAdmin from flask_babelex import Babel import os.path as op bootstrap = Bootstrap() mail = Mail() moment = Moment() db = SQLAlchemy() pagedown = PageDown() flas_admin = Admin(name='smart-iiot') babel = Babel() # flask-login login_manager = LoginManager() login_manager.login_view = 'auth.login' # flask-admin add views from app.admin import UserAdminView, TestAdminView, UserModelView, LoraGatewayModelView, LoraNodeModelView, NodeMqttTransFuncModelView, PowerIoModelView, RelayCurrentRs485FuncModelView, \ GrainStorehouseModelView, GrainBarnModelView, GrainTempModelView, AlarmLevelSettingModelView, AlarmStatusModelView, AlarmTypesModelView, AlarmRecordsModelView # # flas_admin.add_view(UserAdminView(name='UserAdmin', category='UserAdmin')) # flas_admin.add_view(TestAdminView(name='test', endpoint='test', category='UserAdmin')) flas_admin.add_view(GrainStorehouseModelView(db.session, name='GrainStorehouse', endpoint='grain_storehouse', category='GrainAdmin')) flas_admin.add_view(GrainBarnModelView(db.session, name='GrainBarn', endpoint='grain_barn', category='GrainAdmin')) flas_admin.add_view(GrainTempModelView(db.session, name='GrainTemp', endpoint='grain_temps', category='GrainAdmin')) flas_admin.add_view(LoraGatewayModelView(db.session, name='LoraGateway', endpoint='lora_gateway', category='LoraAdmin')) flas_admin.add_view(LoraNodeModelView(db.session, name='LoraNode', endpoint='lora_node', category='LoraAdmin')) flas_admin.add_view(NodeMqttTransFuncModelView(db.session, name='NodeMqttTransFunc', endpoint='node_mqtt_trans_func', category='LoraAdmin')) flas_admin.add_view(PowerIoModelView(db.session, name='PowerIo', endpoint='power_io', category='LoraAdmin')) flas_admin.add_view(RelayCurrentRs485FuncModelView(db.session, name='RelayCurrentRs485Func', endpoint='relay_current_rs485_func', category='LoraAdmin')) flas_admin.add_view(AlarmStatusModelView(db.session, name='AlarmStatus', endpoint='alarm_status', category='AlarmAdmin')) flas_admin.add_view(AlarmTypesModelView(db.session, name='AlarmTypes', endpoint='alarm_types', category='AlarmAdmin')) flas_admin.add_view(AlarmRecordsModelView(db.session, name='AlarmRecords', endpoint='alarm_records', category='AlarmAdmin')) flas_admin.add_view(AlarmLevelSettingModelView(db.session, name='AlarmLevelSetting', endpoint='alarm_level_setting', category='AlarmAdmin')) flas_admin.add_view(UserModelView(db.session, name='User', endpoint='user', category='UserAdmin')) path = op.join(op.dirname(__file__), 'static') print(path) flas_admin.add_view(FileAdmin(path, '/static/', name='Static Files')) def create_app(config_name): app = Flask(__name__) app.config.from_object(config[config_name]) config[config_name].init_app(app) # bable config for i18n app.config['BABEL_DEFAULT_LOCALE'] = 'zh_CN' if app.config['SSL_REDIRECT']: from flask_sslify import SSLify sslify = SSLify(app) configure_extensions(app) register_blueprints(app) return app def configure_extensions(app): """configure flask extensions """ bootstrap.init_app(app) mail.init_app(app) moment.init_app(app) db.init_app(app) login_manager.init_app(app) pagedown.init_app(app) babel.init_app(app) flas_admin.init_app(app) def register_blueprints(app): """register all blueprints for application """ from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix='/auth') from .api import api as api_blueprint app.register_blueprint(api_blueprint, url_prefix='/api/v1')
b322b4c51ee51cca8bce61a8bb26932135730db1
8f9ea3f14bdf2187de759939b2bbc87fe68ccfc0
/tensorflow/python/keras/layers/wrappers.py
7759561ef94c4a81552ef7b40ea71e49bbb743ae
[ "Apache-2.0" ]
permissive
davidstanke/bazel-mvn-demo
4ea43f0ba293a28b916a27eab5f0812e9b753c2c
cff14dddce15ea7152988da576673bd15bab6c6e
refs/heads/master
2022-10-20T07:52:29.651851
2018-11-22T13:17:51
2018-11-22T13:17:51
157,782,756
2
0
Apache-2.0
2022-10-04T23:47:05
2018-11-15T22:54:09
C++
UTF-8
Python
false
false
18,856
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Wrapper layers: layers that augment the functionality of another layer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine import InputSpec from tensorflow.python.keras.engine import Layer from tensorflow.python.keras.layers.recurrent import _standardize_args from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.util.tf_export import tf_export @tf_export('keras.layers.Wrapper') class Wrapper(Layer): """Abstract wrapper base class. Wrappers take another layer and augment it in various ways. Do not use this class as a layer, it is only an abstract base class. Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers. Arguments: layer: The layer to be wrapped. """ def __init__(self, layer, **kwargs): self.layer = layer # Tracks mapping of Wrapper inputs to inner layer inputs. Useful when # the inner layer has update ops that depend on its inputs (as opposed # to the inputs to the Wrapper layer). self._input_map = {} super(Wrapper, self).__init__(**kwargs) def build(self, input_shape=None): self.built = True @property def activity_regularizer(self): if hasattr(self.layer, 'activity_regularizer'): return self.layer.activity_regularizer else: return None @property def trainable(self): return self.layer.trainable @trainable.setter def trainable(self, value): self.layer.trainable = value @property def trainable_weights(self): return self.layer.trainable_weights @property def non_trainable_weights(self): return self.layer.non_trainable_weights @property def updates(self): return self.layer.updates + self._updates @property def losses(self): return self.layer.losses + self._losses def get_weights(self): return self.layer.get_weights() def set_weights(self, weights): self.layer.set_weights(weights) def get_config(self): config = { 'layer': { 'class_name': self.layer.__class__.__name__, 'config': self.layer.get_config() } } base_config = super(Wrapper, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top layer = deserialize_layer( config.pop('layer'), custom_objects=custom_objects) return cls(layer, **config) @tf_export('keras.layers.TimeDistributed') class TimeDistributed(Wrapper): """This wrapper allows to apply a layer to every temporal slice of an input. The input should be at least 3D, and the dimension of index one will be considered to be the temporal dimension. Consider a batch of 32 samples, where each sample is a sequence of 10 vectors of 16 dimensions. The batch input shape of the layer is then `(32, 10, 16)`, and the `input_shape`, not including the samples dimension, is `(10, 16)`. You can then use `TimeDistributed` to apply a `Dense` layer to each of the 10 timesteps, independently: ```python # as the first layer in a model model = Sequential() model.add(TimeDistributed(Dense(8), input_shape=(10, 16))) # now model.output_shape == (None, 10, 8) ``` The output will then have shape `(32, 10, 8)`. In subsequent layers, there is no need for the `input_shape`: ```python model.add(TimeDistributed(Dense(32))) # now model.output_shape == (None, 10, 32) ``` The output will then have shape `(32, 10, 32)`. `TimeDistributed` can be used with arbitrary layers, not just `Dense`, for instance with a `Conv2D` layer: ```python model = Sequential() model.add(TimeDistributed(Conv2D(64, (3, 3)), input_shape=(10, 299, 299, 3))) ``` Arguments: layer: a layer instance. """ def __init__(self, layer, **kwargs): super(TimeDistributed, self).__init__(layer, **kwargs) self.supports_masking = True def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() assert len(input_shape) >= 3 self.input_spec = InputSpec(shape=input_shape) child_input_shape = [input_shape[0]] + input_shape[2:] if not self.layer.built: self.layer.build(child_input_shape) self.layer.built = True super(TimeDistributed, self).build() self.built = True def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() child_input_shape = tensor_shape.TensorShape([input_shape[0]] + input_shape[2:]) child_output_shape = self.layer.compute_output_shape( child_input_shape).as_list() timesteps = input_shape[1] return tensor_shape.TensorShape([child_output_shape[0], timesteps] + child_output_shape[1:]) def call(self, inputs, training=None, mask=None): kwargs = {} if generic_utils.has_arg(self.layer.call, 'training'): kwargs['training'] = training uses_learning_phase = False # pylint: disable=redefined-outer-name input_shape = K.int_shape(inputs) if input_shape[0]: # batch size matters, use rnn-based implementation def step(x, _): global uses_learning_phase # pylint: disable=global-variable-undefined output = self.layer.call(x, **kwargs) if hasattr(output, '_uses_learning_phase'): uses_learning_phase = (output._uses_learning_phase or uses_learning_phase) return output, [] _, outputs, _ = K.rnn( step, inputs, initial_states=[], input_length=input_shape[1], unroll=False) y = outputs else: # No batch size specified, therefore the layer will be able # to process batches of any size. # We can go with reshape-based implementation for performance. input_length = input_shape[1] if not input_length: input_length = array_ops.shape(inputs)[1] # Shape: (num_samples * timesteps, ...). And track the # transformation in self._input_map. input_uid = generic_utils.object_list_uid(inputs) inputs = array_ops.reshape(inputs, (-1,) + input_shape[2:]) self._input_map[input_uid] = inputs # (num_samples * timesteps, ...) y = self.layer.call(inputs, **kwargs) if hasattr(y, '_uses_learning_phase'): uses_learning_phase = y._uses_learning_phase # Shape: (num_samples, timesteps, ...) output_shape = self.compute_output_shape(input_shape).as_list() y = array_ops.reshape(y, (-1, input_length) + tuple(output_shape[2:])) # Apply activity regularizer if any: if (hasattr(self.layer, 'activity_regularizer') and self.layer.activity_regularizer is not None): regularization_loss = self.layer.activity_regularizer(y) self.add_loss(regularization_loss, inputs) if uses_learning_phase: y._uses_learning_phase = True return y @tf_export('keras.layers.Bidirectional') class Bidirectional(Wrapper): """Bidirectional wrapper for RNNs. Arguments: layer: `Recurrent` instance. merge_mode: Mode by which outputs of the forward and backward RNNs will be combined. One of {'sum', 'mul', 'concat', 'ave', None}. If None, the outputs will not be combined, they will be returned as a list. Raises: ValueError: In case of invalid `merge_mode` argument. Examples: ```python model = Sequential() model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10))) model.add(Bidirectional(LSTM(10))) model.add(Dense(5)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') ``` """ def __init__(self, layer, merge_mode='concat', weights=None, **kwargs): if merge_mode not in ['sum', 'mul', 'ave', 'concat', None]: raise ValueError('Invalid merge mode. ' 'Merge mode should be one of ' '{"sum", "mul", "ave", "concat", None}') self.forward_layer = copy.copy(layer) config = layer.get_config() config['go_backwards'] = not config['go_backwards'] self.backward_layer = layer.__class__.from_config(config) self.forward_layer._name = 'forward_' + self.forward_layer.name self.backward_layer._name = 'backward_' + self.backward_layer.name self.merge_mode = merge_mode if weights: nw = len(weights) self.forward_layer.initial_weights = weights[:nw // 2] self.backward_layer.initial_weights = weights[nw // 2:] self.stateful = layer.stateful self.return_sequences = layer.return_sequences self.return_state = layer.return_state self.supports_masking = True self._trainable = True self._num_constants = None super(Bidirectional, self).__init__(layer, **kwargs) self.input_spec = layer.input_spec @property def trainable(self): return self._trainable @trainable.setter def trainable(self, value): self._trainable = value self.forward_layer.trainable = value self.backward_layer.trainable = value def get_weights(self): return self.forward_layer.get_weights() + self.backward_layer.get_weights() def set_weights(self, weights): nw = len(weights) self.forward_layer.set_weights(weights[:nw // 2]) self.backward_layer.set_weights(weights[nw // 2:]) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): output_shape = tuple(self.forward_layer.compute_output_shape( input_shape).as_list()) if self.return_state: state_shape = output_shape[1:] output_shape = output_shape[0] if self.merge_mode == 'concat': output_shape = list(output_shape) output_shape[-1] *= 2 output_shape = tuple(output_shape) elif self.merge_mode is None: output_shape = [output_shape, copy.copy(output_shape)] if self.return_state: if self.merge_mode is None: return output_shape + state_shape + copy.copy(state_shape) return [output_shape] + state_shape + copy.copy(state_shape) return output_shape def __call__(self, inputs, initial_state=None, constants=None, **kwargs): """`Bidirectional.__call__` implements the same API as the wrapped `RNN`.""" inputs, initial_state, constants = _standardize_args( inputs, initial_state, constants, self._num_constants) if isinstance(inputs, list): if len(inputs) > 1: initial_state = inputs[1:] inputs = inputs[0] if initial_state is None and constants is None: return super(Bidirectional, self).__call__(inputs, **kwargs) # Applies the same workaround as in `RNN.__call__` additional_inputs = [] additional_specs = [] if initial_state is not None: # Check if `initial_state` can be splitted into half num_states = len(initial_state) if num_states % 2 > 0: raise ValueError( 'When passing `initial_state` to a Bidirectional RNN, ' 'the state should be a list containing the states of ' 'the underlying RNNs. ' 'Found: ' + str(initial_state)) kwargs['initial_state'] = initial_state additional_inputs += initial_state state_specs = [InputSpec(shape=K.int_shape(state)) for state in initial_state] self.forward_layer.state_spec = state_specs[:num_states // 2] self.backward_layer.state_spec = state_specs[num_states // 2:] additional_specs += state_specs if constants is not None: kwargs['constants'] = constants additional_inputs += constants constants_spec = [InputSpec(shape=K.int_shape(constant)) for constant in constants] self.forward_layer.constants_spec = constants_spec self.backward_layer.constants_spec = constants_spec additional_specs += constants_spec self._num_constants = len(constants) self.forward_layer._num_constants = self._num_constants self.backward_layer._num_constants = self._num_constants is_keras_tensor = K.is_keras_tensor(additional_inputs[0]) for tensor in additional_inputs: if K.is_keras_tensor(tensor) != is_keras_tensor: raise ValueError('The initial state of a Bidirectional' ' layer cannot be specified with a mix of' ' Keras tensors and non-Keras tensors' ' (a "Keras tensor" is a tensor that was' ' returned by a Keras layer, or by `Input`)') if is_keras_tensor: # Compute the full input spec, including state full_input = [inputs] + additional_inputs full_input_spec = self.input_spec + additional_specs # Perform the call with temporarily replaced input_spec original_input_spec = self.input_spec self.input_spec = full_input_spec output = super(Bidirectional, self).__call__(full_input, **kwargs) self.input_spec = original_input_spec return output else: return super(Bidirectional, self).__call__(inputs, **kwargs) def call(self, inputs, training=None, mask=None, initial_state=None, constants=None): """`Bidirectional.call` implements the same API as the wrapped `RNN`.""" kwargs = {} if generic_utils.has_arg(self.layer.call, 'training'): kwargs['training'] = training if generic_utils.has_arg(self.layer.call, 'mask'): kwargs['mask'] = mask if generic_utils.has_arg(self.layer.call, 'constants'): kwargs['constants'] = constants if initial_state is not None and generic_utils.has_arg( self.layer.call, 'initial_state'): forward_state = initial_state[:len(initial_state) // 2] backward_state = initial_state[len(initial_state) // 2:] y = self.forward_layer.call(inputs, initial_state=forward_state, **kwargs) y_rev = self.backward_layer.call( inputs, initial_state=backward_state, **kwargs) else: y = self.forward_layer.call(inputs, **kwargs) y_rev = self.backward_layer.call(inputs, **kwargs) if self.return_state: states = y[1:] + y_rev[1:] y = y[0] y_rev = y_rev[0] if self.return_sequences: y_rev = K.reverse(y_rev, 1) if self.merge_mode == 'concat': output = K.concatenate([y, y_rev]) elif self.merge_mode == 'sum': output = y + y_rev elif self.merge_mode == 'ave': output = (y + y_rev) / 2 elif self.merge_mode == 'mul': output = y * y_rev elif self.merge_mode is None: output = [y, y_rev] # Properly set learning phase if (getattr(y, '_uses_learning_phase', False) or getattr(y_rev, '_uses_learning_phase', False)): if self.merge_mode is None: for out in output: out._uses_learning_phase = True else: output._uses_learning_phase = True if self.return_state: if self.merge_mode is None: return output + states return [output] + states return output def reset_states(self): self.forward_layer.reset_states() self.backward_layer.reset_states() def build(self, input_shape): with K.name_scope(self.forward_layer.name): self.forward_layer.build(input_shape) with K.name_scope(self.backward_layer.name): self.backward_layer.build(input_shape) self.built = True def compute_mask(self, inputs, mask): if isinstance(mask, list): mask = mask[0] if self.return_sequences: if not self.merge_mode: output_mask = [mask, mask] else: output_mask = mask else: output_mask = [None, None] if not self.merge_mode else None if self.return_state: states = self.forward_layer.states state_mask = [None for _ in states] if isinstance(output_mask, list): return output_mask + state_mask * 2 return [output_mask] + state_mask * 2 return output_mask @property def trainable_weights(self): if hasattr(self.forward_layer, 'trainable_weights'): return (self.forward_layer.trainable_weights + self.backward_layer.trainable_weights) return [] @property def non_trainable_weights(self): if hasattr(self.forward_layer, 'non_trainable_weights'): return (self.forward_layer.non_trainable_weights + self.backward_layer.non_trainable_weights) return [] @property def updates(self): if hasattr(self.forward_layer, 'updates'): return self.forward_layer.updates + self.backward_layer.updates return [] @property def losses(self): if hasattr(self.forward_layer, 'losses'): return self.forward_layer.losses + self.backward_layer.losses return [] @property def constraints(self): constraints = {} if hasattr(self.forward_layer, 'constraints'): constraints.update(self.forward_layer.constraints) constraints.update(self.backward_layer.constraints) return constraints def get_config(self): config = {'merge_mode': self.merge_mode} if self._num_constants is not None: config['num_constants'] = self._num_constants base_config = super(Bidirectional, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): num_constants = config.pop('num_constants', None) layer = super(Bidirectional, cls).from_config(config, custom_objects=custom_objects) layer._num_constants = num_constants return layer
7926b45512fe41390359b55d5dc715655d19920f
72b74f66f83239a928bf049c0dd6e47576e57bae
/NLP/word2vec/data_processing/__init__.py
26e9b2e5b6b5f6c6a8227cbaffee616283614ce3
[]
no_license
InsaneLife/DeepLearning
7934056682e4fec7f3241dd2d4fbe1b4c5f192d2
4b60fe40587b96ba2a351c1b3cb832d03c2071ab
refs/heads/master
2022-10-08T08:18:19.633449
2017-08-30T10:47:05
2017-08-30T10:47:05
65,697,666
2
4
null
2022-09-30T21:55:05
2016-08-15T02:16:34
C++
UTF-8
Python
false
false
736
py
# coding=utf8 # author = 'Aaron Chou' import sys import zipfile reload(sys) sys.setdefaultencoding('utf-8') # filename = '../../../..//data/NLP/sougou/news_oneline.txt' # with open(filename) as f: # data = f.readline().decode('utf-8') # # # filename = '../../../../data/word2vec/text8.zip' # with zipfile.ZipFile(filename) as f: # data = f.read(f.namelist()[0]) # # print 'yes' # # # Read the data into a list of strings. # def read_data(filename): # """Extract the first file enclosed in a zip file as a list of words""" # with zipfile.ZipFile(filename) as f: # data = f.read(f.namelist()[0]) # return data s = "公安机关销毁10余万非法枪支 跨国武" s = s.replace(' ','') print s
ddd71101293b395a9c27fbd25cd8df5f75c8dcfa
42fdf741bf64ea2e63d1546bb08356286f994505
/test_20160921_macroblk_generation/rasp30_vmm_gen2.py
c42901a6f5a231f2613db9a070596ac4babdbe9d
[]
no_license
skim819/RASP_Workspace_sihwan
7e3cd403dc3965b8306ec203007490e3ea911e3b
0799e146586595577c8efa05c647b8cb92b962f4
refs/heads/master
2020-12-24T05:22:25.775823
2017-04-01T22:15:18
2017-04-01T22:15:18
41,511,563
1
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
li_sm_0b = ['fgota[0:1].out[0]','ota_buf[0].out[0]','ota[0].out[0]','ota_vmm[0].out[0]','cap[0:3].out[0]','nfet[0:1].out[0]','pfet[0:1].out[0]','tgate[0:3].out[0]','nmirror_vmm[0:1].out[0]','ladder_blk[0].out[0:1]','c4_blk[0].out[0]','speech[0].out[0:1]','INFneuron[0].out[0]','lpf[0].out[0]','nfet_i2v[0].out[0]','pfet_i2v[0].out[0]','nmirror_w_bias[0].out[0]','fgswc_nmirror_w_bias[0].out[0]','i2v_pfet_gatefgota[0].out[0]','mismatch_meas[0].out[0]','peak_detector[0].out[0]','ramp_fe[0].out[0]','sigma_delta_fe[0].out[0]','vmm_senseamp1[0].out[0]','vmm_senseamp2[0].out[0:1]','wta[0].out[0]','wta_primary[0].out[0:1]','common_source[0].out[0]','gnd_out[0].out[0]','vdd_out[0].out[0]','in2in_x1[0].out[0]','in2in_x6[0].out[0]','volt_div[0].out[0]','volt_div_fgota[0].out[0]','integrator[0].out[0]','integrator_nmirror[0].out[0]','fgswitch[0].out[0]','tgate_so[0].out[0]','vmm4x4_SR[0].out[0]','vmm8x4_SR[0].out[0]','SR4[0].out[0:7]','vmm4x4_SR2[0].out[0]','vmm4x4[0].out[0:3]','sftreg[0].out[0]','DAC_sftreg[0].out[0]','sftreg2[0].out[0]','sftreg3[0].out[0]','sftreg4[0].out[0]','mmap_local_swc[0].out[0]','th_logic[0].out[0]','vmm8x4[0].out[0]','vmm8inx8in[0].out[0]','vmm8x4_in[0].out[0]','vmm12x1[0].out[0]','fg_io[0].out[0]','ladder_filter[0].out[0:2]','vmm12x1_wowta[0].out[0]','TIA_blk[0].out[0]','Adaptive_receptor[0].out[0]','testtemp[0].out[0:2]']
[ "ubuntu@ubuntu-VirtualBox.(none)" ]
ubuntu@ubuntu-VirtualBox.(none)
736f4698de804a541c0980b218de7e032a7725b7
6618febe7d31b263acf2006dae748ce25fb03cfc
/fileparsers.py
3ff51617fc82d199d0a93c62a7b2c5cbccf578a2
[]
no_license
breecummins/PatternMatch
d8312d95d119ea8e373ed3f1ff5be9350fb543ed
061b87fea1ef52825d4dba3af675d1a44af0f20c
refs/heads/master
2021-01-17T09:42:04.173524
2016-06-02T17:04:57
2016-06-02T17:04:57
31,024,366
0
0
null
null
null
null
UTF-8
Python
false
false
2,607
py
# The MIT License (MIT) # Copyright (c) 2015 Breschine Cummins # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import json def parseMorseGraphs(fname="morsegraphs.txt"): f=open(fname,'r') morse_graphs_and_sets=[] for l in f.readlines(): L=l.replace('|',' ').split() morse_graphs_and_sets.append((L[0],L[1:])) f.close() return morse_graphs_and_sets def parseParameters(fname="concatenatedparams.txt"): f=open(fname,'r') morsegraph_morseset_param=[] for l in f.readlines(): morsegraph_morseset_param.append(tuple(l.split('|'))) f.close() return morsegraph_morseset_param def parsePatterns(fname="patterns.txt"): f=open(fname,'r') maxmin=[] varnames=[] originalpatterns=[] for l in f: if l[-1]=='\n': l=l[:-1] originalpatterns.append(l) L=l.replace(',',' ').split() varnames.append(L[::2]) maxmin.append(L[1::2]) f.close() return varnames, maxmin, originalpatterns def parseMorseSet(fname='dsgrn_output.json'): parsed = json.load(open(fname),strict=False) varnames = [ x[0] for x in parsed["network"] ] threshnames = [ [parsed["network"][i][2][j] for j in parsed["parameter"][i][2]] for i in range(len(parsed["network"])) ] return varnames,threshnames,parsed["graph"],parsed["cells"],parsed["vertices"] def parseDomainCells(fname='dsgrn_domaincells.json'): parsed = json.load(open(fname),strict=False) return parsed["cells"] def parseDomainGraph(fname="dsgrn_domaingraph.json"): return json.load(open(fname),strict=False)
884b606858c44db1fa41bb8f88a377326eb04a69
27722ac879b3416a0919dce80d4ec4f2a5c93c97
/adafruit_pixie.py
739cd33384b7309d19e4b59d60c04d7e4daf4f47
[ "MIT" ]
permissive
makermelissa/Adafruit_CircuitPython_Pixie
ee3d5b5861dcf5283b67053c18ce23eb06b88ee9
2bdfcf52d8861befc47f433b660f372c20a23d2d
refs/heads/master
2020-04-25T06:57:24.144082
2019-02-25T22:57:25
2019-02-25T22:57:25
172,598,614
0
0
MIT
2019-02-25T22:54:35
2019-02-25T22:54:35
null
UTF-8
Python
false
false
4,674
py
# The MIT License (MIT) # # Copyright (c) 2016 Damien P. George (original Neopixel object) # Copyright (c) 2018 Ladyada # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `adafruit_pixie` - Pixie LED driver ==================================================== * Author(s): Damien P. George, Limor Fried, Kattni Rembor """ import time import math __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Pixie.git" class Pixie: """ PIxie LEDs. :param uart: The UART object. :param int n: The number of Pixies in the chain. :param float brightness: Brightness of the pixels between 0.0 and 1.0. :param bool auto_write: True if the Pixies should immediately change when set. If False, `show` must be called explicitly. Example for two Pixie LEDs chained: .. code_block::python import time import board import busio import adafruit_pixie uart = busio.UART(board.TX, rx=None, baudrate=115200) pixies = adafruit_pixie.Pixie(uart, 2, brightness=0.5) while True: pixies.fill((255, 0, 0)) time.sleep(1) pixies[0] = (0, 255, 0) pixies[1] = (0, 0, 255) time.sleep(1) """ def __init__(self, uart, n, *, brightness=1.0, auto_write=True): self._uart = uart self._n = n self._buf = bytearray(self._n * 3) # Set auto_write to False temporarily so brightness setter does _not_ # call show() while in __init__. self.auto_write = False self._brightness = brightness self.auto_write = auto_write def _set_item(self, index, value): if index < 0: index += len(self) if index >= self._n or index < 0: raise IndexError offset = index * 3 r = 0 g = 0 b = 0 if isinstance(value, int): r = value >> 16 g = (value >> 8) & 0xff b = value & 0xff elif len(value) == 3: r, g, b = value self._buf[offset + 0] = r self._buf[offset + 1] = g self._buf[offset + 2] = b def __setitem__(self, index, val): if isinstance(index, slice): start, stop, step = index.indices(len(self._buf) // 3) length = stop - start if step != 0: length = math.ceil(length / step) if len(val) != length: raise ValueError("Slice and input sequence size do not match.") for val_i, in_i in enumerate(range(start, stop, step)): self._set_item(in_i, val[val_i]) else: self._set_item(index, val) if self.auto_write: self.show() def __len__(self): return len(self._buf) // 3 @property def brightness(self): """Overall brightness of the pixel""" return self._brightness @brightness.setter def brightness(self, brightness): self._brightness = min(max(brightness, 0.0), 1.0) if self.auto_write: self.show() def fill(self, color): """Colors all pixels the given ***color***.""" auto_write = self.auto_write self.auto_write = False for i in range(self._n): self[i] = color if auto_write: self.show() self.auto_write = auto_write def show(self): """ Shows the new colors on the pixels themselves if they haven't already been autowritten. """ self._uart.write(bytes([int(i * self.brightness) for i in self._buf])) time.sleep(0.005)
ed629e71203af591f84402090e41ad720808065a
10e8b0b82c429593449f5b3f0ee6efca6d403870
/Old_Pando/HRRR_downloads/old_dwnld_scripts/download_hrrr.py
4df7e0c8549423f3e27555f7099459c2528e0af5
[]
no_license
janmandel/HorelS3-Archive
7bf50ba2e65812857ea857bc2d033c2a661273e4
73f765de5358352ea9d87d76275c5cfb67a5cf43
refs/heads/master
2020-03-28T11:24:45.375321
2018-09-06T21:17:15
2018-09-06T21:17:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,249
py
# Brian Blaylock # February 27, 2017 """ Downloads the operational HRRR from NCEOP NOMADS server A re-write of the "get_hrrr.csh" script in python. """ import urllib from datetime import datetime, timedelta import os import stat # ---------------------------------------------------------------------------- # Introductory Stuff # ---------------------------------------------------------------------------- # download HRRR files from yesterday yesterday = datetime.today() #-timedelta(days=1) # Put the downloaded files in the horel-group/archive. Mkdir if it doesn't exist OUTDIR = '/uufs/chpc.utah.edu/common/home/horel-group/archive/%04d%02d%02d/BB_test/models/hrrr/' \ % (yesterday.year, yesterday.month, yesterday.day) if not os.path.exists(OUTDIR): os.makedirs(OUTDIR) # Change directory permissions os.chmod(OUTDIR, stat.S_IRWXU | \ stat.S_IRGRP | stat.S_IXGRP | \ stat.S_IROTH | stat.S_IXOTH) # User can read, write, execute # Group can read and execute # Others can read and execute # ---------------------------------------------------------------------------- def reporthook(a,b,c): # ',' at the end of the line is important! print "% 3.1f%% of %d bytes\r" % (min(100, float(a * b) / c * 100), c), #you can also use sys.stdout.write #sys.stdout.write("\r% 3.1f%% of %d bytes" # % (min(100, float(a * b) / c * 100), c) def download_hrrr(DATE, field, hour=range(0, 24), forecast=range(0, 19), OUTDIR='./'): """ Downloads HRRR grib2 files from the nomads server http://nomads.ncep.noaa.gov/ Input: DATE - a datetime object for which you wish to download fields - the field you want to download Options are fields ['prs', 'sfc','subh', 'nat'] pressure fields (~350 MB), surface fields (~6 MB), native fields (~510 MB)! hour - a list of hours you want to download Default all hours in the day forecast - a list of forecast hour you wish to download Default all forecast hours (0-18) outpath - the outpath directory you wish to save the files. """ # We'll store the URLs we download from and return them for troubleshooting URL_list = [] # Build the URL string we want to download. One for each field, hour, and forecast # New URL for downloading HRRRv2+ URL = 'http://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod/hrrr.%04d%02d%02d/' \ % (DATE.year, DATE.month, DATE.day) # Create a new array for each field to keep things organized. for h in hour: for f in forecast: FileName = 'hrrr.t%02dz.wrf%sf%02d.grib2' % (h, field, f) # Download and save the file print 'Downloading:', URL, FileName urllib.urlretrieve(URL+FileName, OUTDIR+FileName, reporthook) print 'Saved:', OUTDIR+FileName URL_list.append(URL+FileName) # Return the list of URLs we downloaded from for troubleshooting return URL_list def download_hrrr_bufr(DATE, stations=['725720'], rename=['kslc'], hour=range(0,24), OUTDIR='./'): """ Special case for downloading HRRR bufr soundings. """ URL_list = [] URL = 'http://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod/hrrr.%04d%02d%02d/bufrsnd.t%02dz/' \ % (DATE.year, DATE.month, DATE.day, DATE.hour) for h in hour: for i in range(len(stations)): FILE = 'bufr.%s.%04d%02d%02d%02d' \ % (stations[i], DATE.year, DATE.month, DATE.day, h) NEWNAME = '%s_%04d%02d%02d%02d.buf' \ % (rename[i], DATE.year, DATE.month, DATE.day, h) urllib.urlretrieve(URL+FILE, OUTDIR+NEWNAME, reporthook) URL_list.append(URL+FILE) return URL_list if __name__ == '__main__': # Download Surface fields: all hours and all forecast hours sfc_hxx = range(0, 24) sfc_fxx = range(0, 19) sfc_URLs = download_hrrr(yesterday, field='sfc', hour=sfc_hxx, forecast=sfc_fxx, OUTDIR=OUTDIR) # Download Pressure fields: all hours, only analysis hours prs_hxx = range(0, 24) prs_fxx = range(0, 1) prs_URLs = download_hrrr(yesterday, field='prs', forecast=prs_fxx, hour=prs_hxx, OUTDIR=OUTDIR) # Download bufr soundings: KSLC, KODG, KPVU stations = ['725720', '725724', '725750'] rename = ['kslc', 'kpvu', 'kodg'] bufr_URLs = download_hrrr_bufr(yesterday, stations=stations, rename=rename, OUTDIR=OUTDIR) ## Download subhourly #subh_hxx = range(0, 24) #subh_fxx = range(0, 19) #subh_URLs = download_hrrr(yesterday, field='subh', hour=sub_hxx, forecast=subh_fxx)
5b932c5056e7bd1fe88edd01c629c4c593215858
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03026/s629929775.py
95360d8a62b73cf93e76bfc9c8e613d053dfdfeb
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
N = int(input()) L = [list(map(int,input().split())) for k in range(N-1)] c = sorted(list(map(int,input().split()))) a = sum(c) - c[-1] T = [[] for k in range(N)] for e in L: T[e[0]-1].append(e[1]-1) T[e[1]-1].append(e[0]-1) kyori = [-1 for k in range(N)] que = [L[0][0]] kyori[L[0][0]] = c.pop() while len(que) > 0: now = que.pop() for tsugi in T[now]: if kyori[tsugi] == -1: kyori[tsugi] = c.pop() que.append(tsugi) print(a) print(*kyori, sep=" ")
ed09351b57eec7ced5b4c69fadb372f03896c127
37fef592f365194c28579f95abd222cc4e1243ae
/streamlit/venv/lib/python3.7/site-packages/streamlit/proto/PageInfo_pb2.py
c550c50579acc89520cbfcfbccf60c1c2162d8de
[]
no_license
edimaudo/Python-projects
be61e0d3fff63fb7bd00513dbf1401e2c1822cfb
85d54badf82a0b653587a02e99daf389df62e012
refs/heads/master
2023-04-07T03:26:23.259959
2023-03-24T12:03:03
2023-03-24T12:03:03
72,611,253
4
3
null
2022-10-31T18:10:41
2016-11-02T06:37:17
null
UTF-8
Python
false
true
1,978
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: streamlit/proto/PageInfo.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='streamlit/proto/PageInfo.proto', package='', syntax='proto3', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1estreamlit/proto/PageInfo.proto\" \n\x08PageInfo\x12\x14\n\x0cquery_string\x18\x01 \x01(\tb\x06proto3' ) _PAGEINFO = _descriptor.Descriptor( name='PageInfo', full_name='PageInfo', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='query_string', full_name='PageInfo.query_string', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=34, serialized_end=66, ) DESCRIPTOR.message_types_by_name['PageInfo'] = _PAGEINFO _sym_db.RegisterFileDescriptor(DESCRIPTOR) PageInfo = _reflection.GeneratedProtocolMessageType('PageInfo', (_message.Message,), { 'DESCRIPTOR' : _PAGEINFO, '__module__' : 'streamlit.proto.PageInfo_pb2' # @@protoc_insertion_point(class_scope:PageInfo) }) _sym_db.RegisterMessage(PageInfo) # @@protoc_insertion_point(module_scope)
c056ca62fb58ccf1f0ad981bf2c2828285c23243
94a6a83c8bd3f9a951ee7d48973f35d0b5b6f99c
/runcases/pygal/config.py
489618db7c428e189a6aedcb81af7fef0a0dafcd
[]
no_license
JerryLiu0821/apython
19766bebd5365e53aa7ea46adc01132045e91f9c
d9804b1099c879da1f8dc130fb205ab191f65fb1
refs/heads/master
2020-05-17T05:09:15.319167
2015-08-17T10:50:09
2015-08-17T10:50:09
40,886,032
2
2
null
null
null
null
UTF-8
Python
false
false
13,588
py
# -*- coding: utf-8 -*- # This file is part of pygal # # A python svg graph plotting library # Copyright © 2012-2014 Kozea # # This library is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with pygal. If not, see <http://www.gnu.org/licenses/>. """ Config module with all options """ from copy import deepcopy from pygal.style import Style, DefaultStyle from pygal.interpolate import INTERPOLATIONS class FontSizes(object): """Container for font sizes""" CONFIG_ITEMS = [] class Key(object): _categories = [] def __init__( self, default_value, type_, category, doc, subdoc="", subtype=None): self.value = default_value self.type = type_ self.doc = doc self.category = category self.subdoc = subdoc self.subtype = subtype self.name = "Unbound" if category not in self._categories: self._categories.append(category) CONFIG_ITEMS.append(self) @property def is_boolean(self): return self.type == bool @property def is_numeric(self): return self.type in (int, float) @property def is_string(self): return self.type == str @property def is_dict(self): return self.type == dict @property def is_list(self): return self.type == list def coerce(self, value): if self.type == Style: return value elif self.type == list: return self.type( map( self.subtype, map( lambda x: x.strip(), value.split(',')))) elif self.type == dict: rv = {} for pair in value.split(','): key, val = pair.split(':') key = key.strip() val = val.strip() try: rv[key] = self.subtype(val) except: rv[key] = val return rv return self.type(value) class MetaConfig(type): def __new__(mcs, classname, bases, classdict): for k, v in classdict.items(): if isinstance(v, Key): v.name = k return type.__new__(mcs, classname, bases, classdict) class BaseConfig(MetaConfig('ConfigBase', (object,), {})): def __init__(self, **kwargs): """Can be instanciated with config kwargs""" for k in dir(self): v = getattr(self, k) if (k not in self.__dict__ and not k.startswith('_') and not hasattr(v, '__call__')): if isinstance(v, Key): if v.is_list and v.value is not None: v = list(v.value) else: v = v.value setattr(self, k, v) self._update(kwargs) def __call__(self, **kwargs): """Can be updated with kwargs""" self._update(kwargs) def _update(self, kwargs): self.__dict__.update( dict([(k, v) for (k, v) in kwargs.items() if not k.startswith('_') and k in dir(self)])) def font_sizes(self, with_unit=True): """Getter for all font size configs""" fs = FontSizes() for name in dir(self): if name.endswith('_font_size'): setattr( fs, name.replace('_font_size', ''), ('%dpx' % getattr(self, name)) if with_unit else getattr(self, name)) return fs def to_dict(self): config = {} for attr in dir(self): if not attr.startswith('__'): value = getattr(self, attr) if hasattr(value, 'to_dict'): config[attr] = value.to_dict() elif not hasattr(value, '__call__'): config[attr] = value return config def copy(self): return deepcopy(self) class CommonConfig(BaseConfig): stroke = Key( True, bool, "Look", "Line dots (set it to false to get a scatter plot)") show_dots = Key(True, bool, "Look", "Set to false to remove dots") show_only_major_dots = Key( False, bool, "Look", "Set to true to show only major dots according to their majored label") dots_size = Key(2.5, float, "Look", "Radius of the dots") fill = Key( False, bool, "Look", "Fill areas under lines") rounded_bars = Key( None, int, "Look", "Set this to the desired radius in px (for Bar-like charts)") inner_radius = Key( 0, float, "Look", "Piechart inner radius (donut), must be <.9") class Config(CommonConfig): """Class holding config values""" style = Key( DefaultStyle, Style, "Style", "Style holding values injected in css") css = Key( ('style.css', 'graph.css'), list, "Style", "List of css file", "It can be an absolute file path or an external link", str) # Look # title = Key( None, str, "Look", "Graph title.", "Leave it to None to disable title.") x_title = Key( None, str, "Look", "Graph X-Axis title.", "Leave it to None to disable X-Axis title.") y_title = Key( None, str, "Look", "Graph Y-Axis title.", "Leave it to None to disable Y-Axis title.") width = Key( 800, int, "Look", "Graph width") height = Key( 600, int, "Look", "Graph height") show_x_guides = Key(False, bool, "Look", "Set to true to always show x guide lines") show_y_guides = Key(True, bool, "Look", "Set to false to hide y guide lines") show_legend = Key( True, bool, "Look", "Set to false to remove legend") legend_at_bottom = Key( False, bool, "Look", "Set to true to position legend at bottom") legend_at_bottom_columns = Key( None, int, "Look", "Set to true to position legend at bottom") legend_box_size = Key( 12, int, "Look", "Size of legend boxes") rounded_bars = Key( None, int, "Look", "Set this to the desired radius in px") stack_from_top = Key( False, bool, "Look", "Stack from top to zero, this makes the stacked " "data match the legend order") spacing = Key( 10, int, "Look", "Space between titles/legend/axes") margin = Key( 20, int, "Look", "Margin around chart") margin_top = Key( None, int, "Look", "Margin around top of chart") margin_right = Key( None, int, "Look", "Margin around right of chart") margin_bottom = Key( None, int, "Look", "Margin around bottom of chart") margin_left = Key( None, int, "Look", "Margin around left of chart") tooltip_border_radius = Key(0, int, "Look", "Tooltip border radius") inner_radius = Key( 0, float, "Look", "Piechart inner radius (donut), must be <.9") half_pie = Key( False, bool, "Look", "Create a half-pie chart") x_labels = Key( None, list, "Label", "X labels, must have same len than data.", "Leave it to None to disable x labels display.", str) x_labels_major = Key( None, list, "Label", "X labels that will be marked major.", subtype=str) x_labels_major_every = Key( None, int, "Label", "Mark every n-th x label as major.") x_labels_major_count = Key( None, int, "Label", "Mark n evenly distributed labels as major.") show_x_labels = Key( True, bool, "Label", "Set to false to hide x-labels") show_minor_x_labels = Key( True, bool, "Label", "Set to false to hide x-labels not marked major") y_labels = Key( None, list, "Label", "You can specify explicit y labels", "Must be a list of numbers", float) y_labels_major = Key( None, list, "Label", "Y labels that will be marked major. Default: auto", subtype=str) y_labels_major_every = Key( None, int, "Label", "Mark every n-th y label as major.") y_labels_major_count = Key( None, int, "Label", "Mark n evenly distributed y labels as major.") show_minor_y_labels = Key( True, bool, "Label", "Set to false to hide y-labels not marked major") show_y_labels = Key( True, bool, "Label", "Set to false to hide y-labels") x_label_rotation = Key( 0, int, "Label", "Specify x labels rotation angles", "in degrees") y_label_rotation = Key( 0, int, "Label", "Specify y labels rotation angles", "in degrees") x_label_format = Key( "%Y-%m-%d %H:%M:%S.%f", str, "Label", "Date format for strftime to display the DateY X labels") missing_value_fill_truncation = Key( "x", str, "Look", "Filled series with missing x and/or y values at the end of a series " "are closed at the first value with a missing " "'x' (default), 'y' or 'either'") # Value # human_readable = Key( False, bool, "Value", "Display values in human readable format", "(ie: 12.4M)") x_value_formatter = Key( None, type(lambda: 1), "Value", "A function to convert abscissa numeric value to strings " "(used in XY and Date charts)") value_formatter = Key( None, type(lambda: 1), "Value", "A function to convert numeric value to strings") logarithmic = Key( False, bool, "Value", "Display values in logarithmic scale") interpolate = Key( None, str, "Value", "Interpolation", "May be %s" % ' or '.join(INTERPOLATIONS)) interpolation_precision = Key( 250, int, "Value", "Number of interpolated points between two values") interpolation_parameters = Key( {}, dict, "Value", "Various parameters for parametric interpolations", "ie: For hermite interpolation, you can set the cardinal tension with" "{'type': 'cardinal', 'c': .5}", int) mode = Key( None, str, "Value", "Sets the mode to be used. " "(Currently only supported on box plot)", "May be %s" % ' or '.join(["1.5IQR", "extremes"])) order_min = Key( None, int, "Value", "Minimum order of scale, defaults to None") range = Key( None, list, "Value", "Explicitly specify min and max of values", "(ie: (0, 100))", int) xrange = Key( None, list, "Value", "Explicitly specify min and max of x values " "(used in XY and Date charts)", "(ie: (0, 100))", int) include_x_axis = Key( False, bool, "Value", "Always include x axis") zero = Key( 0, int, "Value", "Set the ordinate zero value", "Useful for filling to another base than abscissa") # Text # no_data_text = Key( "No data", str, "Text", "Text to display when no data is given") label_font_size = Key(10, int, "Text", "Label font size") major_label_font_size = Key(10, int, "Text", "Major label font size") value_font_size = Key(8, int, "Text", "Value font size") tooltip_font_size = Key(16, int, "Text", "Tooltip font size") title_font_size = Key(16, int, "Text", "Title font size") legend_font_size = Key(14, int, "Text", "Legend font size") no_data_font_size = Key(64, int, "Text", "No data text font size") print_values = Key( False, bool, "Text", "Print values when graph is in non interactive mode") print_zeroes = Key( False, bool, "Text", "Print zeroes when graph is in non interactive mode") truncate_legend = Key( None, int, "Text", "Legend string length truncation threshold", "None = auto") truncate_label = Key( None, int, "Text", "Label string length truncation threshold", "None = auto") # Misc # js = Key( ('http://kozea.github.io/pygal.js/javascripts/svg.jquery.js', 'http://kozea.github.io/pygal.js/javascripts/pygal-tooltips.js'), list, "Misc", "List of js file", "It can be a filepath or an external link", str) disable_xml_declaration = Key( False, bool, "Misc", "Don't write xml declaration and return str instead of string", "usefull for writing output directly in html") explicit_size = Key( False, bool, "Misc", "Write width and height attributes") pretty_print = Key( False, bool, "Misc", "Pretty print the svg") strict = Key( False, bool, "Misc", "If True don't try to adapt / filter wrong values") no_prefix = Key( False, bool, "Misc", "Don't prefix css") inverse_y_axis = Key(False, bool, "Misc", "Inverse Y axis direction") class SerieConfig(CommonConfig): """Class holding serie config values""" secondary = Key( False, bool, "Misc", "Set it to put the serie in a second axis")
77fe07d5e52bfe2f60ffef3a17d87c9c4778edbb
fa32f7fe4068323b719725558423927ad307cc4b
/build_isolated/roslaunch/catkin_generated/pkg.develspace.context.pc.py
2b96196666b66142663c46a34c0c8bcc818b81b6
[]
no_license
CJohnson5136/ros_catkin_ws
d07ee8c20bc1ebe6c05abdea24ef1f5dab14954b
05193a7e587ab82e696c66176b151c43d2bcef82
refs/heads/master
2021-05-09T03:05:12.373334
2018-01-28T03:13:33
2018-01-28T03:13:33
119,227,181
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "roslaunch" PROJECT_SPACE_DIR = "/home/pi/ros_catkin_ws/devel_isolated/roslaunch" PROJECT_VERSION = "1.13.5"
e2b23a1391b17cde86fbd36afbff414773d9903b
a66c079f250c5469e01b5ec5b00a795dbc9fa9a0
/blog/admin.py
8c315f065ee59a47926fb5507af9892b991febc6
[ "MIT" ]
permissive
Cpeters1982/MillGeekV2
b925f013ae9b95827bfc304a57b0e0dceabd7544
e08a1366bbe732b0d7fc7a7802cd54ff1d1091bf
refs/heads/master
2021-08-06T14:45:57.616281
2017-11-06T06:38:11
2017-11-06T06:38:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from .models import Post class PostAdmin(admin.ModelAdmin): list_display = ('title', 'slug', 'author', 'publish', 'status') list_filter = ('status', 'created', 'publish', 'author') search_fields = ('title', 'body') prepopulated_fields = {'slug': ('title',)} raw_id_fields = ('author',) date_hierarchy = 'publish' ordering = ['status', 'publish'] admin.site.register(Post, PostAdmin)
8a6970567b9013782b84557a586c6ce62b9f05a7
2d23c271ec1a226bb345c23d7b2671ec021e9502
/Triangle.py
74991744eea783b53c8a6721026897aac3e70a7c
[]
no_license
chenlanlan/leetcode
2e6aec0846ed951466bcd2c2e4596c998faca8e4
d02478853c32c29477f53852286c429c20f1424e
refs/heads/master
2016-09-08T05:07:46.904441
2015-07-12T05:41:15
2015-07-12T05:41:15
32,845,795
5
1
null
null
null
null
UTF-8
Python
false
false
790
py
#!/usr/bin/python class Solution: # @param triangle, a list of lists of integers # @return an integer def minimumTotal(self, triangle): sum = triangle ans = triangle[0][0] for i in range(1, len(triangle)): for j in range(0, i + 1): if j == 0: sum[i][j] = sum[i - 1][j] + triangle[i][j] ans = sum[i][j] elif j == i: sum[i][j] = sum[i - 1][j - 1] + triangle[i][j] else: sum[i][j] = min(sum[i - 1][j - 1], sum[i - 1][j]) + triangle[i][j] if sum[i][j] < ans: ans = sum[i][j] return ans x = Solution() print(x.minimumTotal([ [2], [3,4], [6,5,7], [4,1,8,3] ]))
44e995678e486ed927b284dd2cac84cdbca80e09
a722faf9fb50c794555861bb4858c3ed8a7a25f3
/sandbox/peachpy_avx_practice/logic.py
c3fc2c739060b29e44d01407d874555685f434b3
[]
no_license
ar90n/lab
31e5d2c320de5618bc37572011596fee8923255d
6d035e12f743e9ba984e79bfe660967b9ca8716b
refs/heads/main
2023-07-25T17:29:57.960915
2023-07-22T12:08:18
2023-07-22T12:08:18
77,883,405
4
0
null
2023-07-17T08:45:14
2017-01-03T04:15:49
Jupyter Notebook
UTF-8
Python
false
false
1,678
py
from peachpy import * from peachpy.x86_64 import * import numpy as np import ctypes def gen_andnot_ps(): x = Argument(ptr(const_float_)) y = Argument(ptr(const_float_)) z = Argument(ptr(float_)) with Function("AndNot", (x, y, z), target=uarch.default + isa.avx2) as asm_function: reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, x) reg_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_y, y) reg_z = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_z, z) ymm = YMMRegister() VMOVUPD(ymm, [reg_x]) VANDNPS(ymm, ymm, [reg_y]) VMOVUPD([reg_z], ymm) RETURN() return asm_function.finalize(abi.detect()).encode().load() andnot_ps = gen_andnot_ps() x = np.array( [ 0x59595959, 0x59595959, 0x59595959, 0x59595959, 0x59595959, 0x59595959, 0x59595959, 0x59595959, ], dtype=np.uint32, ) y = np.array( [ 0x95959595, 0x95959595, 0x95959595, 0x95959595, 0x95959595, 0x95959595, 0x95959595, 0x95959595, ], dtype=np.uint32, ) z = np.empty(8, dtype=np.uint32) andnot_ps( x.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), y.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), z.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), ) assert np.allclose( z, np.array( [ 0x84848484, 0x84848484, 0x84848484, 0x84848484, 0x84848484, 0x84848484, 0x84848484, 0x84848484, ], dtype=np.uint32, ), )
f714a0095b6e307d7d0c605551e5062b707f474e
644d9ef18713e4cb5d4c3b53301bd7276dcdf477
/api/programs/views/shared_files.py
16753e871ff23a7486b45fe52c1b5af4a82dca6c
[]
no_license
alexhernandez-git/django-classline
6cb5bcd268248999e18037f58c4ed30012d51915
49fcf0c6d735a56eaebc17d04be52dab91ca4c3a
refs/heads/master
2023-03-18T07:10:08.770066
2021-03-04T22:24:09
2021-03-04T22:24:09
287,985,028
0
0
null
null
null
null
UTF-8
Python
false
false
2,552
py
"""Program views.""" # Django REST Framework from rest_framework import mixins, viewsets, status, filters from rest_framework.response import Response from rest_framework.decorators import action from rest_framework.filters import SearchFilter, OrderingFilter from django_filters.rest_framework import DjangoFilterBackend # Permissions from rest_framework.permissions import IsAuthenticated # Filters from rest_framework.filters import SearchFilter, OrderingFilter from django_filters.rest_framework import DjangoFilterBackend # Models from api.programs.models import File # Serializers from api.programs.serializers import ( FileModelSerializer, ShareUsersFilesSerializer ) from api.programs.serializers.subscriptions import( SubscriptionSignUpSerializer ) from api.users.serializers import ( ProfileModelSerializer, UserWithoutTeacherModelSerializer ) import stripe # Utils from api.utils.permissions import AddProgramMixin class SharedFileViewSet(mixins.CreateModelMixin, mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin, AddProgramMixin): """Circle view set.""" pagination_class = None serializer_class = FileModelSerializer lookup_field = 'pk' queryset = File.objects.all() filter_backends = [filters.SearchFilter] search_fields = ['name'] def get_queryset(self): """Restrict list to public-only.""" queryset = File.objects.filter(program=self.program) return queryset def get_permissions(self): """Assign permissions based on action.""" permissions = [] return [permission() for permission in permissions] def list(self, request, *args, **kwargs): if 'top_folder' in request.GET and request.GET['top_folder']: queryset = self.get_queryset().filter( top_folder=request.GET['top_folder']) else: queryset = self.get_queryset().filter(shared_users=request.user) queryset = self.filter_queryset(queryset) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data)
6e1f6880a6caf5cffabb380e12829f1606c3e98f
942ee5e8d54e8ebe9c5c841fbfdd1da652946944
/1501-2000/1751.Maximum Number of Events That Can Be Attended II.py
9344ddbdab3c4b8f5e076a9e4c18942fe3232650
[]
no_license
kaiwensun/leetcode
0129c174457f32887fbca078fb448adce46dd89d
6b607f4aae3a4603e61f2e2b7480fdfba1d9b947
refs/heads/master
2023-08-31T07:30:50.459062
2023-08-27T07:59:16
2023-08-27T07:59:16
57,526,914
69
9
null
2023-08-20T06:34:41
2016-05-01T05:37:29
Python
UTF-8
Python
false
false
756
py
import functools, collections, bisect class Solution: def maxValue(self, events: List[List[int]], k: int) -> int: end2eid = collections.defaultdict(list) for i in range(len(events)): end2eid[events[i][1]].append(i) end_days = list(sorted(end2eid.keys())) @functools.lru_cache(None) def dp(end_day_index, count): if count == 0 or end_day_index == -1: return 0 res = dp(end_day_index - 1, count) for eid in end2eid[end_days[end_day_index]]: start, end, value = events[eid] res = max(res, dp(bisect.bisect_left(end_days, start) - 1, count - 1) + value) return res return dp(len(end_days) - 1, k)
a9ef067613f57b825d3533520dc3ed43f8292ccf
c0bf1f7ca6d9d7562f72b4a668e97a2d5ffe7c88
/examples/thread_matmul_ipxact/thread_matmul_ipxact.py
0ce4d4f6801adc0539c36f4b0974578f5403318c
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
00mjk/veriloggen
cee0da16182c3c9bd95340a966d6a3febc0e7ad1
9d0af9638470b3b85cbf9cb53f16b853932571c8
refs/heads/master
2023-06-23T07:10:20.645734
2021-07-18T14:53:13
2021-07-18T14:53:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,682
py
from __future__ import absolute_import from __future__ import print_function import sys import os import numpy as np # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname( os.path.dirname(os.path.abspath(__file__))))) from veriloggen import * import veriloggen.thread as vthread import veriloggen.types.axi as axi import veriloggen.types.ipxact as ipxact axi_datawidth = 32 datawidth = 32 matrix_size = 16 a_offset = 0 b_offset = 4096 c_offset = 4096 * 2 def mkLed(): m = Module('blinkled') clk = m.Input('CLK') rst = m.Input('RST') addrwidth = 10 ram_a = vthread.RAM(m, 'ram_a', clk, rst, datawidth, addrwidth) ram_b = vthread.RAM(m, 'ram_b', clk, rst, datawidth, addrwidth) ram_c = vthread.RAM(m, 'ram_c', clk, rst, datawidth, addrwidth) maxi = vthread.AXIM(m, 'maxi', clk, rst, datawidth) saxi = vthread.AXISLiteRegister(m, 'saxi', clk, rst, datawidth, length=8) def matmul(): while True: saxi.wait_flag(0, value=1, resetvalue=0) matrix_size = saxi.read(1) a_offset = saxi.read(2) b_offset = saxi.read(3) c_offset = saxi.read(4) comp(matrix_size, a_offset, b_offset, c_offset) saxi.write_flag(5, 1, resetvalue=0) def comp(matrix_size, a_offset, b_offset, c_offset): a_addr, c_addr = a_offset, c_offset for i in range(matrix_size): maxi.dma_read(ram_a, 0, a_addr, matrix_size) b_addr = b_offset for j in range(matrix_size): maxi.dma_read(ram_b, 0, b_addr, matrix_size) sum = 0 for k in range(matrix_size): x = ram_a.read(k) y = ram_b.read(k) sum += x * y ram_c.write(j, sum) b_addr += matrix_size * (datawidth // 8) maxi.dma_write(ram_c, 0, c_addr, matrix_size) a_addr += matrix_size * (datawidth // 8) c_addr += matrix_size * (datawidth // 8) th = vthread.Thread(m, 'th_matmul', clk, rst, matmul) fsm = th.start() return m def mkTest(memimg_name=None): a_shape = (matrix_size, matrix_size) b_shape = (matrix_size, matrix_size) c_shape = (a_shape[0], b_shape[0]) n_raw_a = axi.shape_to_length(a_shape) n_raw_b = axi.shape_to_length(b_shape) n_a = axi.shape_to_memory_size(a_shape, datawidth) n_b = axi.shape_to_memory_size(b_shape, datawidth) a = np.zeros(a_shape, dtype=np.int64) b = np.zeros(b_shape, dtype=np.int64) value = 1 for y in range(a_shape[0]): for x in range(a_shape[1]): if x == y: a[y][x] = value value += 1 else: a[y][x] = 0 for y in range(b_shape[0]): for x in range(b_shape[1]): if x == y: b[y][x] = 2 else: b[y][x] = 0 a_addr = a_offset size_a = n_a * datawidth // 8 b_addr = b_offset size_b = n_b * datawidth // 8 mem = np.zeros([1024 * 1024 * 8 // axi_datawidth], dtype=np.int64) axi.set_memory(mem, a, axi_datawidth, datawidth, a_addr) axi.set_memory(mem, b, axi_datawidth, datawidth, b_addr) led = mkLed() m = Module('test') params = m.copy_params(led) ports = m.copy_sim_ports(led) clk = ports['CLK'] rst = ports['RST'] memory = axi.AxiMemoryModel(m, 'memory', clk, rst, mem_datawidth=axi_datawidth, memimg=mem, memimg_name=memimg_name) memory.connect(ports, 'maxi') # AXI-Slave controller _saxi = vthread.AXIMLite(m, '_saxi', clk, rst, noio=True) _saxi.connect(ports, 'saxi') # Timer counter = m.Reg('counter', 32, initval=0) seq = Seq(m, 'seq', clk, rst) seq( counter.inc() ) def ctrl(): for i in range(100): pass awaddr = 4 print('# matrix_size = %d' % matrix_size) _saxi.write(awaddr, matrix_size) awaddr = 8 print('# a_offset = %d' % a_offset) _saxi.write(awaddr, a_offset) awaddr = 12 print('# b_offset = %d' % b_offset) _saxi.write(awaddr, b_offset) awaddr = 16 print('# c_offset = %d' % c_offset) _saxi.write(awaddr, c_offset) awaddr = 0 start_time = counter print('# start time = %d' % start_time) _saxi.write(awaddr, 1) araddr = 20 v = _saxi.read(araddr) while v == 0: v = _saxi.read(araddr) end_time = counter print('# end time = %d' % end_time) time = end_time - start_time print('# exec time = %d' % time) all_ok = True for y in range(matrix_size): for x in range(matrix_size): v = memory.read( c_offset + (y * matrix_size + x) * datawidth // 8) if y == x and vthread.verilog.NotEql(v, (y + 1) * 2): all_ok = False print("NG [%d,%d] = %d" % (y, x, v)) if y != x and vthread.verilog.NotEql(v, 0): all_ok = False print("NG [%d,%d] = %d" % (y, x, v)) if all_ok: print('# verify: PASSED') else: print('# verify: FAILED') vthread.finish() th = vthread.Thread(m, 'th_ctrl', clk, rst, ctrl) fsm = th.start() uut = m.Instance(led, 'uut', params=m.connect_params(led), ports=m.connect_ports(led)) simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, rst, m.make_reset(), period=100) init.add( Delay(1000000), Systask('finish'), ) return m def run(filename='tmp.v', simtype='iverilog', outputfile=None): if outputfile is None: outputfile = os.path.splitext(os.path.basename(__file__))[0] + '.out' memimg_name = 'memimg_' + outputfile test = mkTest(memimg_name=memimg_name) if filename is not None: test.to_verilog(filename) sim = simulation.Simulator(test, sim=simtype) rslt = sim.run(outputfile=outputfile) lines = rslt.splitlines() if simtype == 'verilator' and lines[-1].startswith('-'): rslt = '\n'.join(lines[:-1]) return rslt if __name__ == '__main__': rslt = run(filename='tmp.v') print(rslt) m = mkLed() ipxact.to_ipxact(m, clk_ports=[('CLK', ('RST',))], rst_ports=[('RST', 'ACTIVE_HIGH')])
694cbb1a9d0f58df9ff2f2a939cac87b4136ff2c
2ff7e53d5e512cd762217ca54317982e07a2bb0c
/zactionConst.py
e0a0d9c1bc4143546dda68c8a1f4581f9655fb66
[]
no_license
nanxijw/Clara-Pretty-One-Dick
66d3d69426642b79e8fd4cc8e0bec23adeeca6d6
50de3488a2140343c364efc2615cf6e67f152be0
refs/heads/master
2021-01-19T09:25:07.555284
2015-02-17T21:49:33
2015-02-17T21:49:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,359
py
#Embedded file name: zactionConst.py """ Constants for the Action System """ ACTION_SCHEMA = 'zaction' _ACTION_PREFIX = ACTION_SCHEMA + '.' _ACTION_TREE_TABLE_NAME = 'trees' _ACTION_TREE_TABLE_FULL_PATH = _ACTION_PREFIX + _ACTION_TREE_TABLE_NAME _ACTION_TREE_LINK_TABLE_NAME = 'treeLinks' _ACTION_TREE_LINK_TABLE_FULL_PATH = _ACTION_PREFIX + _ACTION_TREE_LINK_TABLE_NAME ACTION_STEP_TABLE_NAME = 'steps' ACTION_STEP_TABLE_FULL_PATH = _ACTION_PREFIX + ACTION_STEP_TABLE_NAME ACTION_PROC_TABLE_NAME = 'procs' ACTION_PROC_TABLE_FULL_PATH = _ACTION_PREFIX + ACTION_PROC_TABLE_NAME _ACTION_PROPERTY_TABLE_NAME = 'properties' _ACTION_PROPERTY_TABLE_FULL_PATH = _ACTION_PREFIX + _ACTION_PROPERTY_TABLE_NAME ACTION_PROC_TYPE_TABLE_NAME = 'procTypes' ACTION_PROC_TYPE_TABLE_FULL_PATH = _ACTION_PREFIX + ACTION_PROC_TYPE_TABLE_NAME ACTION_PROC_TYPE_PROPERTY_TABLE_NAME = 'procTypeProperties' ACTION_PROC_TYPE_PROPERTY_TABLE_FULL_PATH = _ACTION_PREFIX + ACTION_PROC_TYPE_PROPERTY_TABLE_NAME MAX_PROP_NAME_LEN = 64 SELECT_ACTION_TREE = 'SelectActionTree' SELECT_ACTION_STEP = 'SelectActionStep' SELECT_ACTION_PROC = 'SelectActionProc' ACTIONSTEP_TYPE_NORMAL = 'Normal' ACTIONSTEP_TYPE_CONDITIONAL = 'Conditional' ACTIONSTEP_TYPE_TRY = 'Try Until' ACTIONSTEP_TYPE_CATCH = 'Catch' ACTIONSTEP_TYPE_TRYSYNC = 'Try Sync' ACTIONSTEP_TYPE_WHILE = 'While' ACTIONSTEP_TYPE_PREREQ = 'Prerequisite' ACTIONSTEP_TYPEID_NORMAL = 0 ACTIONSTEP_TYPEID_CONDITIONAL = 1 ACTIONSTEP_TYPEID_TRY = 2 ACTIONSTEP_TYPEID_CATCH = 3 ACTIONSTEP_TYPEID_TRYSYNC = 4 ACTIONSTEP_TYPEID_WHILE = 5 ACTIONSTEP_TYPEID_PREREQ = -1 ACTION_STEP_TYPEID_TO_STRING = (ACTIONSTEP_TYPE_NORMAL, ACTIONSTEP_TYPE_CONDITIONAL, ACTIONSTEP_TYPE_TRY, ACTIONSTEP_TYPE_CATCH, ACTIONSTEP_TYPE_TRYSYNC, ACTIONSTEP_TYPE_WHILE, ACTIONSTEP_TYPE_PREREQ) ACTION_STEP_TYPE_CONDITIONALS = [ACTIONSTEP_TYPE_CONDITIONAL, ACTIONSTEP_TYPE_TRY, ACTIONSTEP_TYPE_WHILE, ACTIONSTEP_TYPE_PREREQ] ACTION_STEP_TYPE_NORMALS = [ACTIONSTEP_TYPE_NORMAL, ACTIONSTEP_TYPE_CATCH, ACTIONSTEP_TYPE_TRYSYNC] ACTIONSTEP_LOC_CLIENTSERVER = 'Client and Server' ACTIONSTEP_LOC_CLIENTONLY = 'Client Only' ACTIONSTEP_LOC_SERVERONLY = 'Server Only' ACTIONSTEP_LOCID_CLIENTSERVER = 0 ACTIONSTEP_LOCID_CLIENTONLY = 1 ACTIONSTEP_LOCID_SERVERONLY = 2 ACTION_STEP_LOCID_TO_STRING = (ACTIONSTEP_LOC_CLIENTSERVER, ACTIONSTEP_LOC_CLIENTONLY, ACTIONSTEP_LOC_SERVERONLY) ACTIONSTEP_FLAG_ELSE = 1 ACTIONSTEP_FLAG_CATCH = 2 ACTIONSTEP_FLAGS = {ACTIONSTEP_FLAG_ELSE: 'Else', ACTIONSTEP_FLAG_CATCH: 'Catch'} _ACTION_INTERNAL = 0 _ACTION_EXPOSED = 1 ACTION_TREE_LINK_REFERENCE = 1 ACTION_TREE_LINK_BRANCH = 2 ACTION_TREE_LINK_TYPES = [ACTION_TREE_LINK_REFERENCE, ACTION_TREE_LINK_BRANCH] ACTION_TREE_LINK_NAMES = {'In-Place': ACTION_TREE_LINK_REFERENCE, 'Branch-To': ACTION_TREE_LINK_BRANCH} _ACTION_LINK_BIT_ORDER_SPLIT = 16 _ACTION_LINK_TYPE_BIT_FILTER = 65535 _ACTION_LINK_TYPE_MAX_VALUE = 65535 _ACTION_LINK_EXPOSURE_BIT_FILTER = 4294901760L _ACTION_LINK_EXPOSURE_MAX_VALUE = 65535 ACTION_EXPOSURE_EXTERNAL = 0 ACTION_EXPOSURE_INTERNAL = 1 ACTION_EXPOSURE_NEVER = 2 ACTION_EXPOSURE_TYPES = [ACTION_EXPOSURE_EXTERNAL, ACTION_EXPOSURE_INTERNAL, ACTION_EXPOSURE_NEVER] ACTION_EXPOSURE_TYPE_NAMES = {'External': ACTION_EXPOSURE_EXTERNAL, 'Internal': ACTION_EXPOSURE_INTERNAL, 'Never': ACTION_EXPOSURE_NEVER} ACTIONTREE_RECIPE_DEFAULT_ACTION_NAME = 'defaultAction'
2d8ff7c75391eb1e4653770f6cae51129252f4a2
8ff5bd7d22b578678fe7225a84f82cea5eafa25a
/Backend/todoapps/todo/apps/forms.py
f4b8eed46fe38dbebdb1842a7b754f591f1a3bf1
[]
no_license
Jayson7/Mumswhocode-bootcamp-frontend-basics
33639eb40b48cba6aca99ca4d60e7119ab9739bf
de05098e44c13077a9402074811525d53b580b9c
refs/heads/master
2023-08-15T03:45:07.848603
2021-09-09T22:58:27
2021-09-09T22:58:27
399,247,043
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
from django.forms import ModelForm from .models import Todo class Todoforms(ModelForm): class Meta: model = Todo fields = "__all__"
f45e0da10b926bc1517347097b9438b886b636fe
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba2738.pngMap.py
c2eaef6280a4d4f3f5199ee2ca4ceeb4ff981c88
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba2738.pngMap = [ '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000010000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000001111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000001111111111010000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000001111111111110000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000001111111111110000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000111111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000111111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000001111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000111111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000000011001000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000011111110000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000000011111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000', '00000000000000000000000000000000111111111111100000000000000000000000000000000000000000000000001111100000000000000000000000000000', '00000000000000000000000000000000111111111111000000000000000000000000000000000000000000000000001111110000000000000000000000000000', '00000000000000000000000000000011111111111111100000000000000000000000000000000000000000010111111111111100000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000000000111111111111111100000000000000000000000000', '00000000000000000000000000000001111111111111110000000000000000000000000000000000000000100111111111110000000000000000000000000000', '00000000000000000000000000000000111111111111110000000000000000000000000000000000000000001111111111110000000000000000000000000000', '00000000000000000000000000000000001111111111110000000000000000000000000000000000000000001111111111100000000000000000000000000000', '00000000000000000000000000000000001111111111111000000000000000000000000000000000000000001111111111110000000000000000000000000000', '00000000000000000000000000000000111111111111111000000000000000000000000000000000000000001111111111111000000000000000000000000000', '00000000000000000000000000000000111111111111111000000000000000000000000000000000000000000111111011011100000000000000000000000000', '00000000000000000000000000000010111111111111110000000000000000000000000000000000000000000111111100001000000000000000000000000000', '00000000000000000000000000000000111111111111110000000000000000000000000000000000000000001111111100000000000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000000000111111111000000000000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000000000111111111000000000000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000000000111111111100000000000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000000000111111111110000000000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000000100111111110010000000000000000000000000000000', '00000000000000000000000000000011111111111111000000000000000000000000000000000000001100111111100011000000000000000000000000000000', '00000000000000000000000000001111111111111111000000000000000000000000000000000000001100111111110011000000000000000000000000000000', '00000000000000000000000000001111111111111111000000000000000000000000000000000000001111111111110011000000000000000000000000000000', '00000000000000000000000000001111111111111111000000000000000000000000000000000000001111111111111111000000000000000000000000000000', '00000000000000000000000000001111111111111111000000000000000000000000000000000000001111111111111111000000000000000000000000000000', '00000000000000000000000000001111111111111111100000000000000000000000000000000000000011111111110000000000000000000000000000000000', '00000000000000000000000000001111111111111111110000000000000000000000000000000000000001111111110000000000000000000000000000000000', '00000000000000000000000000011111111111111111110000000000000000000000000000000000000010111111111000000000000000000000000000000000', '00000000000000000000000000111111111111111111111000000000000000000000000000000000000000111111111000000000000000000000000000000000', '00000000000000000000000001111111111111111111111000000000000000000000000000000000000011111111111000000000000000000000000000000000', '00000000000000000000000000111111111111111111111000000000000000000000000000000000000011111111111000000000000000000000000000000000', '00000000000000000000000000111111111111111111111000000000000000000000000000000000000011111111111100000000000000000000000000000000', '00000000000000000000000000111111111111111111111000000000000000000000000000000000000011111111111000000000000000000000000000000000', '00000000000000000000000000111111111111111111111000000000000000000000000000000000000011111111111100000000000000000000000000000000', '00000000000000000000000010111111111111111111111000000000000000000000000000000000000011111111111100000000000000000000000000000000', '00000000000000000000000000111111111111111111111000000000000000000000000000000000000011111111111110000000000000000000000000000000', '00000000000000000000000000111111111111111111111100000000000000000000000000000000000011111111111111000000000000000000000000000000', '00000000000000000000000001111111111111111111111000000000000000000000000000000000000000111100111100000000000000000000000000000000', '00000000000000000000000011111111111111111111111000000000000000000000000000000000000000100000100000000000000000000000000000000000', '00000000000000000000000001111111111111111111111100000000000000000000000000000000000000100000110000000000000000000000000000000000', '00000000000000000000000111111111111111111111111100000000000000000000000000000000000001110001110000000000000000000000000000000000', ]
0c8715456aea5a32d0a4f5330b7b558b9fd2d9ca
5acc2eb70ed8b755d7f6b62b65a09cc29b661271
/Aula 10/atv01.py
c376629dd2744f4bba8899ed5d2c8d19113ba60a
[]
no_license
Yuri-Santiago/sor-python-ifce-p7
07d1a30f2c304a0a11a2a39b40784cc543f4a18c
ccd3460ecab580e23fb41921ee7cc284d7212aef
refs/heads/master
2023-05-28T08:32:13.188126
2021-06-06T22:20:14
2021-06-06T22:20:14
350,816,877
0
0
null
null
null
null
UTF-8
Python
false
false
1,329
py
""" 1 - Criar uma classe que modele retângulos. 1. Atributos: LadoA, LadoB (ou Comprimento e Largura, ou Base e Altura, a escolher) 2. Métodos: Mudar valor dos lados, Retornar valor dos lados, calcular Área e calcular Perímetro; 3. Crie um programa que utilize esta classe. Ele deve pedir ao usuário que informe as medidas de um cômodo. Depois, deve criar um objeto com as medidas e calcular a quantidade de pisos e de rodapés necessárias para o local. """ class Retangulo: def __init__(self, lado_a, lado_b): self.lado_a = lado_a self.lado_b = lado_b def mudar_valor_lados(self, a, b): self.lado_a = a self.lado_b = b def retornar_valor_lados(self): return self.lado_a, self.lado_b def calcular_area(self): return self.lado_a * self.lado_b def calcular_perimetro(self): return self.lado_a * 2 + self.lado_b * 2 print("Nesse programa você deverá informar as medidas de um cômodo em metros.") comprimento = float(input("Digite o valor do comprimento do Cômodo: ")) largura = float(input("Digite o valor do largura do Cômodo: ")) comodo = Retangulo(comprimento, largura) print(f'Você usará {comodo.calcular_area()} m quadrados de piso.') print(f'Você usará {comodo.calcular_perimetro()} m quadrados de rodapé.')
ffcab0aa4429d00f96f023703c2dbcbc06e49257
526986209fbf00e85c98648600f5f58575d54096
/messages/pep8/E101.py
e88e05d0d2cf11f1a10caebbeb070b49f491d889
[ "Unlicense" ]
permissive
landscape-test/all-messages
126b67d2fc395018121a40787ca92762a03f4873
f349ac581f3a149b30591d7a9149629b9bf539cb
refs/heads/master
2020-06-02T08:36:53.946720
2014-01-10T06:36:05
2014-01-10T06:36:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
""" E101 Indentation contains mixed spaces and tabs """
0afcf429e50ba86c7d155d63ceed8647dcab0bf3
3327a87cefa2275bd0ba90a500444f3494b14fdf
/bwu/stack/225-implement-stack-using-queues.py
4bc2aee9364af8063e2c1b101d5f1e0e53ac5d4d
[]
no_license
captainhcg/leetcode-in-py-and-go
e1b56f4228e0d60feff8f36eb3d457052a0c8d61
88a822c48ef50187507d0f75ce65ecc39e849839
refs/heads/master
2021-06-09T07:27:20.358074
2017-01-07T00:23:10
2017-01-07T00:23:10
61,697,502
1
0
null
null
null
null
UTF-8
Python
false
false
761
py
class Stack(object): def __init__(self): """ initialize your data structure here. """ self.queue1, self.queue2 = [], [] def push(self, x): """ :type x: int :rtype: nothing """ self.queue1.append(x) def pop(self): """ :rtype: nothing """ while len(self.queue1) > 1: self.queue2.append(self.queue1.pop(0)) self.queue1.pop(0) while len(self.queue2): self.queue1.append(self.queue2.pop(0)) def top(self): """ :rtype: int """ return self.queue1[-1] def empty(self): """ :rtype: bool """ return len(self.queue1) == 0
ab2a4a29a09b53ddb57516f07e70cf10806af844
89621b6ca971efb67b764efc5fe76d7cd2f187d7
/elife_bus_sdk/exceptions.py
c6bfc832551238623bbbb31b29a4f4d369825641
[ "MIT" ]
permissive
elifesciences/bus-sdk-python
f3e91e0bf429610c26222ff3be80ac9f624ac80e
419d5a88c5393729d4f884edf41390f3bc5c86b8
refs/heads/master
2022-08-08T17:45:15.873473
2022-07-26T02:35:03
2022-07-26T02:35:03
108,875,988
0
0
MIT
2022-07-26T02:35:04
2017-10-30T16:12:23
Python
UTF-8
Python
false
false
105
py
class PublisherTypeNotFound(Exception): pass class MessageQueueTypeNotFound(Exception): pass
05269f28d5f43d0869e568da2498e7a8ccdff3b6
1e6e3bb707920fdb01ebca23eaf81097c558d918
/tests/system/migrations/test_0013_archived_meeting_ids.py
f69d1c6db3a7b9cb3f778da5aa8b75117e4fb12b
[ "MIT" ]
permissive
OpenSlides/openslides-backend
cbd24589f82a6f29bde02611610511870bb6abbf
d8511f5138db4cc5fe4fa35e2a0200f766bd49c5
refs/heads/main
2023-08-23T11:54:25.064070
2023-08-22T11:15:45
2023-08-22T11:15:45
231,757,840
6
22
MIT
2023-09-14T16:23:41
2020-01-04T12:17:38
Python
UTF-8
Python
false
false
13,194
py
ONE_ORGANIZATION_FQID = "organization/1" def test_migration(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, ) write( {"type": "delete", "fqid": "meeting/1", "fields": {}}, ) write( {"type": "restore", "fqid": "meeting/1", "fields": {}}, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, {"meta_deleted": False, "meta_position": 1, "active_meeting_ids": [1]}, position=1, ) assert_model( "meeting/1", {"is_active_in_organization_id": 1, "meta_deleted": False, "meta_position": 1}, position=1, ) assert_model( "meeting/1", {"is_active_in_organization_id": 1, "meta_deleted": True, "meta_position": 2}, position=2, ) assert_model( "meeting/1", {"is_active_in_organization_id": 1, "meta_deleted": False, "meta_position": 3}, position=3, ) def test_one_created_archived_meeting(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {}, }, ) write( { "type": "delete", "fqid": "meeting/1", "fields": {}, }, { "type": "restore", "fqid": "meeting/1", "fields": {}, }, { "type": "delete", "fqid": "meeting/1", "fields": {}, }, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, {"archived_meeting_ids": [1], "meta_deleted": False, "meta_position": 1}, position=1, ) assert_model( "meeting/1", { "is_archived_in_organization_id": 1, "is_active_in_organization_id": 0, "meta_deleted": False, "meta_position": 1, }, position=1, ) assert_model( ONE_ORGANIZATION_FQID, {"archived_meeting_ids": [], "meta_deleted": False, "meta_position": 2}, position=2, ) assert_model( "meeting/1", { "is_archived_in_organization_id": 1, "is_active_in_organization_id": 0, "meta_deleted": True, "meta_position": 2, }, position=2, ) def test_update_meeting(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, ) write( { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": None}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": None}, }, ) write( { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, ) finalize("0013_archived_meeting_ids") assert_model( "meeting/1", {"is_active_in_organization_id": 1, "meta_deleted": False, "meta_position": 1}, position=1, ) assert_model( ONE_ORGANIZATION_FQID, {"active_meeting_ids": [1], "meta_deleted": False, "meta_position": 1}, position=1, ) assert_model( "meeting/1", { "is_archived_in_organization_id": 1, "meta_deleted": False, "meta_position": 2, }, position=2, ) assert_model( ONE_ORGANIZATION_FQID, {"archived_meeting_ids": [1], "meta_deleted": False, "meta_position": 2}, position=2, ) assert_model( "meeting/1", { "is_active_in_organization_id": 1, "meta_deleted": False, "meta_position": 3, }, position=3, ) assert_model( ONE_ORGANIZATION_FQID, { "active_meeting_ids": [1], "archived_meeting_ids": [], "meta_deleted": False, "meta_position": 3, }, position=3, ) def test_create_delete_in_one_position(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {}, }, { "type": "delete", "fqid": "meeting/1", "fields": {}, }, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, {"meta_deleted": False, "meta_position": 1}, position=1 ) def test_single_restore(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {}, }, { "type": "delete", "fqid": "meeting/1", "fields": {}, }, ) write( { "type": "restore", "fqid": "meeting/1", "fields": {}, } ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, {"archived_meeting_ids": [1], "meta_deleted": False, "meta_position": 2}, position=2, ) assert_model( "meeting/1", { "is_archived_in_organization_id": 1, "is_active_in_organization_id": 0, "meta_deleted": False, "meta_position": 2, }, position=2, ) def test_create_and_update_in_one_position(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": None}, }, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, {"archived_meeting_ids": [1], "meta_deleted": False, "meta_position": 1}, position=1, ) assert_model( "meeting/1", { "is_active_in_organization_id": 0, "is_archived_in_organization_id": 1, "meta_deleted": False, "meta_position": 1, }, position=1, ) def test_two_updates_in_a_position(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, ) write( { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, { "archived_meeting_ids": [1], "active_meeting_ids": [], "meta_deleted": False, "meta_position": 2, }, position=2, ) assert_model( "meeting/1", { "is_active_in_organization_id": 0, "is_archived_in_organization_id": 1, "meta_deleted": False, "meta_position": 2, }, position=2, ) def test_create_and_two_updates(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, { "archived_meeting_ids": [1], "active_meeting_ids": [], "meta_deleted": False, "meta_position": 1, }, position=1, ) assert_model( "meeting/1", { "is_active_in_organization_id": 0, "is_archived_in_organization_id": 1, "meta_deleted": False, "meta_position": 1, }, position=1, ) def test_delete_fields_1(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": None}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, ) finalize("0013_archived_meeting_ids") assert_model( ONE_ORGANIZATION_FQID, { "archived_meeting_ids": [1], "active_meeting_ids": [], "meta_deleted": False, "meta_position": 1, }, position=1, ) assert_model( "meeting/1", { "is_archived_in_organization_id": 1, "meta_deleted": False, "meta_position": 1, }, position=1, ) def test_delete_fields_2(write, finalize, assert_model): write( { "type": "create", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 0}, }, { "type": "create", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, ) write( { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": 1}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": [1]}, }, { "type": "update", "fqid": "meeting/1", "fields": {"is_active_in_organization_id": None}, }, { "type": "update", "fqid": ONE_ORGANIZATION_FQID, "fields": {"active_meeting_ids": []}, }, ) finalize("0013_archived_meeting_ids") assert_model( "meeting/1", { "is_archived_in_organization_id": 1, "meta_deleted": False, "meta_position": 2, }, position=2, ) assert_model( ONE_ORGANIZATION_FQID, { "active_meeting_ids": [], "archived_meeting_ids": [1], "meta_deleted": False, "meta_position": 2, }, position=2, )
df2e7687f497b9de3efad226520196e5f835d697
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/artificial/transf_Logit/trend_ConstantTrend/cycle_5/ar_12/test_artificial_1024_Logit_ConstantTrend_5_12_0.py
5b95e6cd8a0927e6f837267cb4099daf8fe96f20
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
265
py
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "ConstantTrend", cycle_length = 5, transform = "Logit", sigma = 0.0, exog_count = 0, ar_order = 12);
1aeccb7035a0df9c0d0256b8677e5d53d01bac56
7c69c27a1c6ff2a1552900f4c1001281f4447233
/codechef/tsort.py
dba0f813d790848a76c4ee81b6119ce78800c5a0
[]
no_license
Hamiltonxx/pyalgorithms
894a0228928819601a816c472689ce96a11e1d25
92284f6105c5deb7f843ff299ee3ceb6382cf879
refs/heads/master
2023-09-04T13:01:46.465661
2023-09-02T05:50:23
2023-09-02T05:50:23
231,999,229
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
t = int(input()) lst = [] for i in range(t): lst.append(int(input())) lst.sort() for x in lst: print(x)
c8b1abe8e4f8b79cafede323f43675dd5b43f597
039a274d8a8bfbfb90b3c884024edf8c18507150
/nmt/origin/nmt.py
0a54108b8469d501872666c268d1e58e54a947a5
[ "MIT" ]
permissive
JayceeLee/TheanoProject
1e33ae2a58a188cfce6c5bcbd8a2f6f9fbd36a0d
be1f5f09aa84d64ad3df7b798cf6ff74a08bf3b7
refs/heads/master
2021-05-11T09:12:50.278105
2017-04-09T08:55:03
2017-04-09T08:55:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
36,820
py
''' Build a neural machine translation model with soft attention ''' import theano import theano.tensor as tensor from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams import cPickle as pkl import numpy as np import copy import os import sys import time from collections import OrderedDict import regex as re from utils import _p, concatenate, load_params, init_tparams, ortho_weight, norm_weight, zipp, unzip, itemlist, \ get_minibatches_idx, prepare_data from numpy import linalg as LA from optimizers import adadelta, adam, rmsprop, sgd from data_iterator import TextIterator profile = False # dropout def dropout_layer(state_before, use_noise, trng): proj = tensor.switch( use_noise, state_before * trng.binomial(state_before.shape, p=0.5, n=1, dtype=state_before.dtype), state_before * 0.5) return proj # layers: 'name': ('parameter initializer', 'feedforward') layers = {'ff': ('param_init_fflayer', 'fflayer'), 'gru': ('param_init_gru', 'gru_layer'), 'gru_cond': ('param_init_gru_cond', 'gru_cond_layer'), } def get_layer(name): fns = layers[name] return eval(fns[0]), eval(fns[1]) def tanh(x): return tensor.tanh(x) def linear(x): return x # feedforward layer: affine transformation + point-wise nonlinearity def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None, ortho=True): if nin is None: nin = options['dim_proj'] if nout is None: nout = options['dim_proj'] params[_p(prefix, 'W')] = norm_weight(nin, nout, scale=0.01, ortho=ortho) params[_p(prefix, 'b')] = np.zeros((nout,)).astype('float32') return params def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs): return eval(activ)( tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')]) # GRU layer def param_init_gru(options, params, prefix='gru', nin=None, dim=None): if nin is None: nin = options['dim_proj'] if dim is None: dim = options['dim_proj'] # embedding to gates transformation weights, biases W = np.concatenate([norm_weight(nin, dim), norm_weight(nin, dim)], axis=1) params[_p(prefix, 'W')] = W params[_p(prefix, 'b')] = np.zeros((2 * dim,)).astype('float32') # recurrent transformation weights for gates U = np.concatenate([ortho_weight(dim), ortho_weight(dim)], axis=1) params[_p(prefix, 'U')] = U # embedding to hidden state proposal weights, biases Wx = norm_weight(nin, dim) params[_p(prefix, 'Wx')] = Wx params[_p(prefix, 'bx')] = np.zeros((dim,)).astype('float32') # recurrent transformation weights for hidden state proposal Ux = ortho_weight(dim) params[_p(prefix, 'Ux')] = Ux return params def gru_layer(tparams, state_below, options, prefix='gru', mask=None, **kwargs): nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 dim = tparams[_p(prefix, 'Ux')].shape[1] if mask is None: mask = tensor.alloc(1., state_below.shape[0], 1) # utility function to slice a tensor def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n * dim:(n + 1) * dim] return _x[:, n * dim:(n + 1) * dim] # state_below is the input word embeddings # input to the gates, concatenated state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + \ tparams[_p(prefix, 'b')] # input to compute the hidden state proposal state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + \ tparams[_p(prefix, 'bx')] # step function to be used by scan # arguments | sequences |outputs-info| non-seqs def _step_slice(m_, x_, xx_, h_, U, Ux): preact = tensor.dot(h_, U) preact += x_ # reset and update gates r = tensor.nnet.sigmoid(_slice(preact, 0, dim)) u = tensor.nnet.sigmoid(_slice(preact, 1, dim)) # compute the hidden state proposal preactx = tensor.dot(h_, Ux) preactx = preactx * r preactx = preactx + xx_ # hidden state proposal h = tensor.tanh(preactx) # leaky integrate and obtain next hidden state h = u * h_ + (1. - u) * h h = m_[:, None] * h + (1. - m_)[:, None] * h_ return h # prepare scan arguments seqs = [mask, state_below_, state_belowx] init_states = [tensor.alloc(0., n_samples, dim)] _step = _step_slice shared_vars = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Ux')]] rval, updates = theano.scan(_step, sequences=seqs, outputs_info=init_states, non_sequences=shared_vars, name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) rval = [rval] return rval # Conditional GRU layer with Attention def param_init_gru_cond(options, params, prefix='gru_cond', nin=None, dim=None, dimctx=None, nin_nonlin=None, dim_nonlin=None): if nin is None: nin = options['dim'] if dim is None: dim = options['dim'] if dimctx is None: dimctx = options['dim'] if nin_nonlin is None: nin_nonlin = nin if dim_nonlin is None: dim_nonlin = dim W = np.concatenate([norm_weight(nin, dim), norm_weight(nin, dim)], axis=1) params[_p(prefix, 'W')] = W params[_p(prefix, 'b')] = np.zeros((2 * dim,)).astype('float32') U = np.concatenate([ortho_weight(dim_nonlin), ortho_weight(dim_nonlin)], axis=1) params[_p(prefix, 'U')] = U Wx = norm_weight(nin_nonlin, dim_nonlin) params[_p(prefix, 'Wx')] = Wx Ux = ortho_weight(dim_nonlin) params[_p(prefix, 'Ux')] = Ux params[_p(prefix, 'bx')] = np.zeros((dim_nonlin,)).astype('float32') U_nl = np.concatenate([ortho_weight(dim_nonlin), ortho_weight(dim_nonlin)], axis=1) params[_p(prefix, 'U_nl')] = U_nl params[_p(prefix, 'b_nl')] = np.zeros((2 * dim_nonlin,)).astype('float32') Ux_nl = ortho_weight(dim_nonlin) params[_p(prefix, 'Ux_nl')] = Ux_nl params[_p(prefix, 'bx_nl')] = np.zeros((dim_nonlin,)).astype('float32') # context to LSTM Wc = norm_weight(dimctx, dim * 2) params[_p(prefix, 'Wc')] = Wc Wcx = norm_weight(dimctx, dim) params[_p(prefix, 'Wcx')] = Wcx # attention: combined -> hidden W_comb_att = norm_weight(dim, dimctx) params[_p(prefix, 'W_comb_att')] = W_comb_att # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix, 'Wc_att')] = Wc_att # attention: hidden bias b_att = np.zeros((dimctx,)).astype('float32') params[_p(prefix, 'b_att')] = b_att # attention: U_att = norm_weight(dimctx, 1) params[_p(prefix, 'U_att')] = U_att c_att = np.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att return params def gru_cond_layer(tparams, state_below, options, prefix='gru', mask=None, context=None, one_step=False, init_memory=None, init_state=None, context_mask=None, **kwargs): assert context, 'Context must be provided' if one_step: assert init_state, 'previous state must be provided' nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 # mask if mask is None: mask = tensor.alloc(1., state_below.shape[0], 1) dim = tparams[_p(prefix, 'Wcx')].shape[1] # initial/previous state if init_state is None: init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, \ 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix, 'Wc_att')]) + \ tparams[_p(prefix, 'b_att')] def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n * dim:(n + 1) * dim] return _x[:, n * dim:(n + 1) * dim] # projected x state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + \ tparams[_p(prefix, 'bx')] state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + \ tparams[_p(prefix, 'b')] def _step_slice(m_, x_, xx_, h_, ctx_, alpha_, pctx_, cc_, U, Wc, W_comb_att, U_att, c_tt, Ux, Wcx, U_nl, Ux_nl, b_nl, bx_nl): preact1 = tensor.dot(h_, U) preact1 += x_ preact1 = tensor.nnet.sigmoid(preact1) r1 = _slice(preact1, 0, dim) u1 = _slice(preact1, 1, dim) preactx1 = tensor.dot(h_, Ux) preactx1 *= r1 preactx1 += xx_ h1 = tensor.tanh(preactx1) h1 = u1 * h_ + (1. - u1) * h1 h1 = m_[:, None] * h1 + (1. - m_)[:, None] * h_ # attention pstate_ = tensor.dot(h1, W_comb_att) pctx__ = pctx_ + pstate_[None, :, :] # pctx__ += xc_ pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, U_att) + c_tt alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx_ = (cc_ * alpha[:, :, None]).sum(0) # current context preact2 = tensor.dot(h1, U_nl) + b_nl preact2 += tensor.dot(ctx_, Wc) preact2 = tensor.nnet.sigmoid(preact2) r2 = _slice(preact2, 0, dim) u2 = _slice(preact2, 1, dim) preactx2 = tensor.dot(h1, Ux_nl) + bx_nl preactx2 *= r2 preactx2 += tensor.dot(ctx_, Wcx) h2 = tensor.tanh(preactx2) h2 = u2 * h1 + (1. - u2) * h2 h2 = m_[:, None] * h2 + (1. - m_)[:, None] * h1 return h2, ctx_, alpha.T # pstate_, preact, preactx, r, u seqs = [mask, state_below_, state_belowx] # seqs = [mask, state_below_, state_belowx, state_belowc] _step = _step_slice shared_vars = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Wc')], tparams[_p(prefix, 'W_comb_att')], tparams[_p(prefix, 'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wcx')], tparams[_p(prefix, 'U_nl')], tparams[_p(prefix, 'Ux_nl')], tparams[_p(prefix, 'b_nl')], tparams[_p(prefix, 'bx_nl')]] if one_step: rval = _step(*(seqs + [init_state, None, None, pctx_, context] + shared_vars)) else: rval, updates = theano.scan(_step, sequences=seqs, outputs_info=[init_state, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0])], non_sequences=[pctx_, context] + shared_vars, name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) return rval # initialize all parameters def init_params(options): params = OrderedDict() # embedding params['Wemb'] = norm_weight(options['n_words_src'], options['dim_word']) params['Wemb_dec'] = norm_weight(options['n_words'], options['dim_word']) # encoder: bidirectional RNN params = get_layer(options['encoder'])[0](options, params, prefix='encoder', nin=options['dim_word'], dim=options['dim']) params = get_layer(options['encoder'])[0](options, params, prefix='encoder_r', nin=options['dim_word'], dim=options['dim']) ctxdim = 2 * options['dim'] # init_state, init_cell params = get_layer('ff')[0](options, params, prefix='ff_state', nin=ctxdim, nout=options['dim']) # decoder params = get_layer(options['decoder'])[0](options, params, prefix='decoder', nin=options['dim_word'], dim=options['dim'], dimctx=ctxdim) # readout params = get_layer('ff')[0](options, params, prefix='ff_logit_lstm', nin=options['dim'], nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit_prev', nin=options['dim_word'], nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit_ctx', nin=ctxdim, nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim_word'], nout=options['n_words']) return params # build a training model def build_model(tparams, options): opt_ret = dict() trng = RandomStreams(1234) use_noise = theano.shared(np.float32(0.)) # description string: #words x #samples x = tensor.matrix('x', dtype='int64') x_mask = tensor.matrix('x_mask', dtype='float32') y = tensor.matrix('y', dtype='int64') y_mask = tensor.matrix('y_mask', dtype='float32') # for the backward rnn, we just need to invert x and x_mask xr = x[::-1] xr_mask = x_mask[::-1] n_timesteps = x.shape[0] n_timesteps_trg = y.shape[0] n_samples = x.shape[1] # word embedding for forward rnn (source) emb = tparams['Wemb'][x.flatten()] emb = emb.reshape([n_timesteps, n_samples, options['dim_word']]) proj = get_layer(options['encoder'])[1](tparams, emb, options, prefix='encoder', mask=x_mask) # word embedding for backward rnn (source) embr = tparams['Wemb'][xr.flatten()] embr = embr.reshape([n_timesteps, n_samples, options['dim_word']]) projr = get_layer(options['encoder'])[1](tparams, embr, options, prefix='encoder_r', mask=xr_mask) # context will be the concatenation of forward and backward rnns ctx = concatenate([proj[0], projr[0][::-1]], axis=proj[0].ndim - 1) # mean of the context (across time) will be used to initialize decoder rnn ctx_mean = (ctx * x_mask[:, :, None]).sum(0) / x_mask.sum(0)[:, None] # or you can use the last state of forward + backward encoder rnns # ctx_mean = concatenate([proj[0][-1], projr[0][-1]], axis=proj[0].ndim-2) # initial decoder state init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') # word embedding (target), we will shift the target sequence one time step # to the right. This is done because of the bi-gram connections in the # readout and decoder rnn. The first target will be all zeros and we will # not condition on the last output. emb = tparams['Wemb_dec'][y.flatten()] emb = emb.reshape([n_timesteps_trg, n_samples, options['dim_word']]) emb_shifted = tensor.zeros_like(emb) emb_shifted = tensor.set_subtensor(emb_shifted[1:], emb[:-1]) emb = emb_shifted # decoder - pass through the decoder conditional gru with attention proj = get_layer(options['decoder'])[1](tparams, emb, options, prefix='decoder', mask=y_mask, context=ctx, context_mask=x_mask, one_step=False, init_state=init_state) # hidden states of the decoder gru proj_h = proj[0] # n_timestep * n_sample * dim # weighted averages of context, generated by attention module ctxs = proj[1] # weights (alignment matrix) opt_ret['dec_alphas'] = proj[2] # compute word probabilities logit_lstm = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_logit_lstm', activ='linear') logit_prev = get_layer('ff')[1](tparams, emb, options, prefix='ff_logit_prev', activ='linear') logit_ctx = get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') logit = tensor.tanh(logit_lstm + logit_prev + logit_ctx) # n_timestep * n_sample * dim_word if options['use_dropout']: logit = dropout_layer(logit, use_noise, trng) logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') # n_timestep * n_sample * n_words logit_shp = logit.shape probs = tensor.nnet.softmax(logit.reshape([logit_shp[0] * logit_shp[1], logit_shp[2]])) # cost y_flat = y.flatten() y_flat_idx = tensor.arange(y_flat.shape[0]) * options['n_words'] + y_flat cost = -tensor.log(probs.flatten()[y_flat_idx]) cost = cost.reshape([y.shape[0], y.shape[1]]) cost = (cost * y_mask).sum(0) return trng, use_noise, x, x_mask, y, y_mask, opt_ret, cost, ctx_mean # build a sampler def build_sampler(tparams, options, trng, use_noise): x = tensor.matrix('x', dtype='int64') xr = x[::-1] n_timesteps = x.shape[0] n_samples = x.shape[1] # word embedding (source), forward and backward emb = tparams['Wemb'][x.flatten()] emb = emb.reshape([n_timesteps, n_samples, options['dim_word']]) embr = tparams['Wemb'][xr.flatten()] embr = embr.reshape([n_timesteps, n_samples, options['dim_word']]) # encoder proj = get_layer(options['encoder'])[1](tparams, emb, options, prefix='encoder') projr = get_layer(options['encoder'])[1](tparams, embr, options, prefix='encoder_r') # concatenate forward and backward rnn hidden states ctx = concatenate([proj[0], projr[0][::-1]], axis=proj[0].ndim - 1) # get the input for decoder rnn initializer mlp ctx_mean = ctx.mean(0) # ctx_mean = concatenate([proj[0][-1],projr[0][-1]], axis=proj[0].ndim-2) init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') print 'Building f_init...', outs = [init_state, ctx] f_init = theano.function([x], outs, name='f_init', profile=profile) print 'Done' # x: 1 x 1 y = tensor.vector('y_sampler', dtype='int64') init_state = tensor.matrix('init_state', dtype='float32') # if it's the first word, emb should be all zero and it is indicated by -1 emb = tensor.switch(y[:, None] < 0, tensor.alloc(0., 1, tparams['Wemb_dec'].shape[1]), tparams['Wemb_dec'][y]) # apply one step of conditional gru with attention proj = get_layer(options['decoder'])[1](tparams, emb, options, prefix='decoder', mask=None, context=ctx, one_step=True, init_state=init_state) # get the next hidden state next_state = proj[0] # get the weighted averages of context for this target word y ctxs = proj[1] logit_lstm = get_layer('ff')[1](tparams, next_state, options, prefix='ff_logit_lstm', activ='linear') logit_prev = get_layer('ff')[1](tparams, emb, options, prefix='ff_logit_prev', activ='linear') logit_ctx = get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') logit = tensor.tanh(logit_lstm + logit_prev + logit_ctx) if options['use_dropout']: logit = dropout_layer(logit, use_noise, trng) logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') # compute the softmax probability next_probs = tensor.nnet.softmax(logit) # sample from softmax distribution to get the sample next_sample = trng.multinomial(pvals=next_probs).argmax(1) # compile a function to do the whole thing above, next word probability, # sampled word for the next target, next hidden state to be used print 'Building f_next..', inps = [y, ctx, init_state] outs = [next_probs, next_sample, next_state] f_next = theano.function(inps, outs, name='f_next', profile=profile) print 'Done' return f_init, f_next # generate sample, either with stochastic sampling or beam search. Note that, # this function iteratively calls f_init and f_next functions. def gen_sample(tparams, f_init, f_next, x, options, trng=None, k=1, maxlen=30, stochastic=True, argmax=False): # k is the beam size we have if k > 1: assert not stochastic, \ 'Beam search does not support stochastic sampling' sample = [] sample_score = [] if stochastic: sample_score = 0 live_k = 1 dead_k = 0 hyp_samples = [[]] * live_k hyp_scores = np.zeros(live_k).astype('float32') hyp_states = [] # get initial state of decoder rnn and encoder context ret = f_init(x) next_state, ctx0 = ret[0], ret[1] next_w = -1 * np.ones((1,)).astype('int64') # bos indicator for ii in xrange(maxlen): ctx = np.tile(ctx0, [live_k, 1]) inps = [next_w, ctx, next_state] ret = f_next(*inps) next_p, next_w, next_state = ret[0], ret[1], ret[2] if stochastic: if argmax: nw = next_p[0].argmax() else: nw = next_w[0] sample.append(nw) sample_score -= np.log(next_p[0, nw]) if nw == 0: break else: cand_scores = hyp_scores[:, None] - np.log(next_p) cand_flat = cand_scores.flatten() ranks_flat = cand_flat.argsort()[:(k - dead_k)] voc_size = next_p.shape[1] trans_indices = ranks_flat / voc_size word_indices = ranks_flat % voc_size costs = cand_flat[ranks_flat] new_hyp_samples = [] new_hyp_scores = np.zeros(k - dead_k).astype('float32') new_hyp_states = [] for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)): new_hyp_samples.append(hyp_samples[ti] + [wi]) new_hyp_scores[idx] = copy.copy(costs[idx]) new_hyp_states.append(copy.copy(next_state[ti])) # check the finished samples new_live_k = 0 hyp_samples = [] hyp_scores = [] hyp_states = [] for idx in xrange(len(new_hyp_samples)): if new_hyp_samples[idx][-1] == 0: sample.append(new_hyp_samples[idx]) sample_score.append(new_hyp_scores[idx]) dead_k += 1 else: new_live_k += 1 hyp_samples.append(new_hyp_samples[idx]) hyp_scores.append(new_hyp_scores[idx]) hyp_states.append(new_hyp_states[idx]) hyp_scores = np.array(hyp_scores) live_k = new_live_k if new_live_k < 1: break if dead_k >= k: break next_w = np.array([w[-1] for w in hyp_samples]) next_state = np.array(hyp_states) if not stochastic: # dump every remaining one if live_k > 0: for idx in xrange(live_k): sample.append(hyp_samples[idx]) sample_score.append(hyp_scores[idx]) return sample, sample_score # calculate the log probablities on a given corpus using translation model def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True, normalize=False): probs = [] n_done = 0 for x, y in iterator: n_done += len(x) lengths = np.array([len(s) for s in x]) x, x_mask, y, y_mask = prepare_data(x, y) pprobs = f_log_probs(x, x_mask, y, y_mask) if normalize: pprobs = pprobs / lengths for pp in pprobs: probs.append(pp) sys.stdout.write('\rDid ' + str(n_done) + ' samples') print return np.array(probs) def train(dim_word=100, # word vector dimensionality dim=1000, # the number of LSTM units encoder='gru', decoder='gru_cond', n_words_src=30000, n_words=30000, patience=10, # early stopping patience max_epochs=5000, finish_after=10000000, # finish after this many updates dispFreq=100, decay_c=0., # L2 regularization penalty alpha_c=0., # alignment regularization clip_c=-1., # gradient clipping threshold lrate=1., # learning rate maxlen=100, # maximum length of the description optimizer='rmsprop', batch_size=16, saveto='model.npz', saveFreq=1000, # save the parameters after every saveFreq updates datasets=[ '/data/lisatmp3/chokyun/europarl/europarl-v7.fr-en.en.tok', '/data/lisatmp3/chokyun/europarl/europarl-v7.fr-en.fr.tok'], picked_train_idxes_file=r'', use_dropout=False, reload_=False, overwrite=False, preload='', sort_by_len=False, convert_embedding=True, dump_before_train=False, ): # Model options model_options = locals().copy() if reload_: lrate *= 0.5 # load dictionaries and invert them # reload options if reload_ and os.path.exists(preload): print 'Reloading model options' with open(r'.\model\en2fr.iter160000.npz.pkl', 'rb') as f: model_options = pkl.load(f) print 'Configuration from fy' vocab_en_filename = './data/dic/en2fr_en_vocabs_top1M.pkl' vocab_fr_filename = './data/dic/en2fr_fr_vocabs_top1M.pkl' map_filename = './data/dic/mapFullVocab2Top1MVocab.pkl' lr_discount_freq = 80000 print 'Done' print 'Loading data' text_iterator = TextIterator( datasets[0], datasets[1], vocab_en_filename, vocab_fr_filename, batch_size, maxlen, n_words_src, n_words, ) # sys.stdout.flush() # train_data_x = pkl.load(open(datasets[0], 'rb')) # train_data_y = pkl.load(open(datasets[1], 'rb')) # # if len(picked_train_idxes_file) != 0: # picked_idxes = pkl.load(open(picked_train_idxes_file, 'rb')) # train_data_x = [train_data_x[id] for id in picked_idxes] # train_data_y = [train_data_y[id] for id in picked_idxes] # # print 'Total train:', len(train_data_x) # print 'Max len:', max([len(x) for x in train_data_x]) # sys.stdout.flush() # # if sort_by_len: # slen = np.array([len(s) for s in train_data_x]) # sidx = slen.argsort() # # _sbuf = [train_data_x[i] for i in sidx] # _tbuf = [train_data_y[i] for i in sidx] # # train_data_x = _sbuf # train_data_y = _tbuf # print len(train_data_x[0]), len(train_data_x[-1]) # sys.stdout.flush() # train_batch_idx = get_minibatches_idx(len(train_data_x), batch_size, shuffle=False) # else: # train_batch_idx = get_minibatches_idx(len(train_data_x), batch_size, shuffle=True) print 'Building model' params = init_params(model_options) # reload parameters if reload_ and os.path.exists(preload): print 'Reloading model parameters' params = load_params(preload, params) # for k, v in params.iteritems(): # print '>', k, v.shape, v.dtype # Only convert parameters when reloading if convert_embedding: # ================= # Convert input and output embedding parameters with a exist word embedding # ================= print 'Convert input and output embedding' temp_Wemb = params['Wemb'] orig_emb_mean = np.mean(temp_Wemb, axis=0) params['Wemb'] = np.tile(orig_emb_mean, [params['Wemb'].shape[0], 1]) # Load vocabulary map dicts and do mapping with open(map_filename, 'rb') as map_file: map_en = pkl.load(map_file) map_fr = pkl.load(map_file) for full, top in map_en.iteritems(): emb_size = temp_Wemb.shape[0] if full < emb_size and top < emb_size: params['Wemb'][top] = temp_Wemb[full] print 'Convert input embedding done' temp_ff_logit_W = params['ff_logit_W'] temp_Wemb_dec = params['Wemb_dec'] temp_b = params['ff_logit_b'] orig_ff_logit_W_mean = np.mean(temp_ff_logit_W, axis=1) orig_Wemb_dec_mean = np.mean(temp_Wemb_dec, axis=0) orig_b_mean = np.mean(temp_b) params['ff_logit_W'] = np.tile(orig_ff_logit_W_mean, [params['ff_logit_W'].shape[1], 1]).T params['ff_logit_b'].fill(orig_b_mean) params['Wemb_dec'] = np.tile(orig_Wemb_dec_mean, [params['Wemb_dec'].shape[0], 1]) for full, top in map_en.iteritems(): emb_size = temp_Wemb.shape[0] if full < emb_size and top < emb_size: params['ff_logit_W'][:, top] = temp_ff_logit_W[:, full] params['ff_logit_b'][top] = temp_b[full] params['Wemb_dec'][top] = temp_Wemb[full] print 'Convert output embedding done' # for k, v in params.iteritems(): # print '>', k, v.shape, v.dtype # ================ # End Convert # ================ tparams = init_tparams(params) trng, use_noise, \ x, x_mask, y, y_mask, \ opt_ret, \ cost, x_emb = \ build_model(tparams, model_options) inps = [x, x_mask, y, y_mask] print 'Building sampler' f_init, f_next = build_sampler(tparams, model_options, trng, use_noise) # before any regularizer print 'Building f_log_probs...', f_log_probs = theano.function(inps, cost, profile=profile) f_x_emb = theano.function([x, x_mask], x_emb, profile=profile) print 'Done' sys.stdout.flush() cost = cost.mean() # apply L2 regularization on weights if decay_c > 0.: decay_c = theano.shared(np.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): weight_decay += (vv ** 2).sum() weight_decay *= decay_c cost += weight_decay # regularize the alpha weights if alpha_c > 0. and not model_options['decoder'].endswith('simple'): alpha_c = theano.shared(np.float32(alpha_c), name='alpha_c') alpha_reg = alpha_c * ( (tensor.cast(y_mask.sum(0) // x_mask.sum(0), 'float32')[:, None] - opt_ret['dec_alphas'].sum(0)) ** 2).sum(1).mean() cost += alpha_reg # after all regularizers - compile the computational graph for cost print 'Building f_cost...', f_cost = theano.function(inps, cost, profile=profile) print 'Done' print 'Computing gradient...', grads = tensor.grad(cost, wrt=itemlist(tparams)) print 'Done' sys.stdout.flush() # apply gradient clipping here if clip_c > 0.: g2 = 0. for g in grads: g2 += (g ** 2).sum() new_grads = [] for g in grads: new_grads.append(tensor.switch(g2 > (clip_c ** 2), g / tensor.sqrt(g2) * clip_c, g)) grads = new_grads # compile the optimizer, the actual computational graph is compiled here lr = tensor.scalar(name='lr') print 'Building optimizers...', f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost) print 'Done' print 'Optimization' best_p = None bad_counter = 0 uidx = 0 if reload_: m = re.search('.+iter(\d+?)\.npz', preload) if m: uidx = int(m.group(1)) print 'uidx', uidx, 'l_rate', lrate estop = False history_errs = [] # reload history if dump_before_train: print 'Dumping before train...', saveto_uidx = '{}.iter{}.npz'.format( os.path.splitext(saveto)[0], uidx) np.savez(saveto_uidx, history_errs=history_errs, uidx=uidx, **unzip(tparams)) print 'Done' if saveFreq == -1: saveFreq = len(train[0]) / batch_size for eidx in xrange(max_epochs): n_samples = 0 # for i, batch_idx in train_batch_idx: # # x = [train_data_x[id] for id in batch_idx] # y = [train_data_y[id] for id in batch_idx] for i, (x, y) in enumerate(text_iterator): n_samples += len(x) uidx += 1 use_noise.set_value(1.) x, x_mask, y, y_mask = prepare_data(x, y) if x is None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() # compute cost, grads and copy grads to shared variables cost = f_grad_shared(x, x_mask, y, y_mask) # do the update on parameters f_update(lrate) ud = time.time() - ud_start # check for bad numbers, usually we remove non-finite elements # and continue training - but not done here if np.isnan(cost) or np.isinf(cost): print 'NaN detected' return 1., 1., 1. # discount reward if lr_discount_freq > 0 and np.mod(uidx, lr_discount_freq) == 0: lrate *= 0.5 print 'Discount learning rate to {} at iteration {}'.format(lrate, uidx) # verbose if np.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'UD ', ud sys.stdout.flush() if np.mod(uidx, saveFreq) == 0: # save with uidx if not overwrite: # print 'Saving the model at iteration {}...'.format(uidx), saveto_uidx = '{}.iter{}.npz'.format( os.path.splitext(saveto)[0], uidx) np.savez(saveto_uidx, history_errs=history_errs, uidx=uidx, **unzip(tparams)) # print 'Done' # sys.stdout.flush() # generate some samples with the model and display them # finish after this many updates if uidx >= finish_after: print 'Finishing after %d iterations!' % uidx estop = True break print 'Seen %d samples' % n_samples if estop: break if best_p is not None: zipp(best_p, tparams) use_noise.set_value(0.) return 0. if __name__ == '__main__': pass
4d2e063d60ff9fe1c6e29ab07f13137c1edbbd48
5ec06dab1409d790496ce082dacb321392b32fe9
/clients/python/generated/swaggeraemosgi/model/org_apache_sling_event_impl_eventing_thread_pool_properties.py
8ded9a93c3374c856f6e681fbdcda9df8a966b64
[ "Apache-2.0" ]
permissive
shinesolutions/swagger-aem-osgi
e9d2385f44bee70e5bbdc0d577e99a9f2525266f
c2f6e076971d2592c1cbd3f70695c679e807396b
refs/heads/master
2022-10-29T13:07:40.422092
2021-04-09T07:46:03
2021-04-09T07:46:03
190,217,155
3
3
Apache-2.0
2022-10-05T03:26:20
2019-06-04T14:23:28
null
UTF-8
Python
false
false
6,961
py
""" Adobe Experience Manager OSGI config (AEM) API Swagger AEM OSGI is an OpenAPI specification for Adobe Experience Manager (AEM) OSGI Configurations API # noqa: E501 The version of the OpenAPI document: 1.0.0-pre.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from swaggeraemosgi.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from swaggeraemosgi.model.config_node_property_integer import ConfigNodePropertyInteger globals()['ConfigNodePropertyInteger'] = ConfigNodePropertyInteger class OrgApacheSlingEventImplEventingThreadPoolProperties(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'min_pool_size': (ConfigNodePropertyInteger,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'min_pool_size': 'minPoolSize', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """OrgApacheSlingEventImplEventingThreadPoolProperties - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) min_pool_size (ConfigNodePropertyInteger): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
326b4bbd99f9eed9bff3b4bb454476f0beb387c0
7d8900637a800d0efa2e1d6a9d4fe877943fdabf
/dudu/add.py
cfcb0a5d3c3f51cc3bb33468b54af380d8a287cd
[ "MIT" ]
permissive
vollov/python-test
d66e0b101f3a664d2d0d33591af8af7134afabd6
864896f8ccedb28e15c4962d8983862e9a0e6d77
refs/heads/master
2021-07-19T03:15:45.026613
2021-02-12T18:24:22
2021-02-12T18:24:22
46,740,187
1
0
null
null
null
null
UTF-8
Python
false
false
634
py
# add two numbers a and b, and return a+b # para: # a - integer number # b - integer number # return: a number which is sum of a and b # def add(a, b): print("OK") return a+b print("NOT OK") # here im going to make a subtracting function # input: # a - integer # b - integer # return: a-b def subtract(a, b): return a-b # here im going to make a multiplying function # input: # a - integer # b - integer # return: a*b def multiply(a, b): return a*b # testing add print(add(5,23)) # testing subtract should return -18 print(subtract(5,23)) # testing multiply print(multiply(5,23))
bbe8ca1d65b3a671fbd2432b250d18df17ed5c27
8004b7468ad46a6330192985f1f9e3a45cc1d2c2
/databasenote/第一周/第三天/复习.py
9ba787c38c5ac08b4d75305be9ffb55897966a62
[]
no_license
yuemeiss/database
d9704f90127cfd27b92f62a251c213a8d6bc93eb
5f2304cf72330d6102124755cbc1ff5d14c77a77
refs/heads/master
2020-03-27T23:14:47.532297
2018-12-11T02:28:04
2018-12-11T02:28:04
147,304,562
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
1.数据库的技术的发展 2.相关概念:    数据库:    数据库系统:    数据库管理系统:    为什么使用mysql: SQL 数据库语言 3.什么是mysql数据库?   mysql的优势?   是一款开源的自由的软件   是一款多用户、多线程的SQL数据库服务器   能够快捷、高效、安全的处理大量数据,使用简单,易操作   跨平台,可移植型强   支持多种操作系统   为多种编程语言提供了API 4. 安装mysql、启动、连接 5. 创建数据库、修改数据库、删除数据库 6.数据库的存储引擎(三大引擎)和数据库的字段类型(数字、字符串、日期) 7.数据库表的创建、删除、修改 创建表(字段、参数类型、为空、不为空、默认值、主键、自增) 查看数据库创建语句 添加列 修改列 删除列 重命名表 复制表 CREATE TABLE IF NOT EXISTS 表名 LIKE 要复制的表
5ffc3d3bf7c7b8c6b4ccf0ee7f773bdbb5fed2f3
a10377a6d0c7576b9e47209f49dea398181f73fe
/extras/qpsclient.py
f399f7aa38285299a94de567adbf9fa214f42306
[ "BSD-3-Clause" ]
permissive
zymITsky/ants
14077dab214aff543bbc75a059240dd55f656916
52918d18c94a9a69c3b2495286e3384ba57ad6f8
refs/heads/master
2020-06-01T11:04:53.520288
2015-02-03T08:09:59
2015-02-03T08:09:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,526
py
""" A spider that generate light requests to meassure QPS troughput usage: scrapy runspider qpsclient.py --loglevel=INFO --set RANDOMIZE_DOWNLOAD_DELAY=0 --set CONCURRENT_REQUESTS=50 -a qps=10 -a latency=0.3 """ from ants.spider import Spider from ants.http import Request class QPSSpider(Spider): name = 'qps' benchurl = 'http://localhost:8880/' # Max concurrency is limited by global CONCURRENT_REQUESTS setting max_concurrent_requests = 8 # Requests per second goal qps = None # same as: 1 / download_delay download_delay = None # time in seconds to delay server responses latency = None # number of slots to create slots = 1 def __init__(self, *a, **kw): super(QPSSpider, self).__init__(*a, **kw) if self.qps is not None: self.qps = float(self.qps) self.download_delay = 1 / self.qps elif self.download_delay is not None: self.download_delay = float(self.download_delay) def start_requests(self): url = self.benchurl if self.latency is not None: url += '?latency={0}'.format(self.latency) slots = int(self.slots) if slots > 1: urls = [url.replace('localhost', '127.0.0.%d' % (x + 1)) for x in xrange(slots)] else: urls = [url] idx = 0 while True: url = urls[idx % len(urls)] yield Request(url, dont_filter=True) idx += 1 def parse(self, response): pass
b5329073e1fc97c5ba35195a87c08968c20a55b4
6fe2d3c27c4cb498b7ad6d9411cc8fa69f4a38f8
/algorithms/algorithms-python/leetcode_easy/Question_821_Shortest_Distance_to_a_Character.py
33695fa6230f0a4b098de6ed4589ea8ce26b3954
[]
no_license
Lanceolata/code
aae54af632a212c878ce45b11dab919bba55bcb3
f7d5a7de27c3cc8a7a4abf63eab9ff9b21d512fb
refs/heads/master
2022-09-01T04:26:56.190829
2021-07-29T05:14:40
2021-07-29T05:14:40
87,202,214
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
#!/usr/bin/python # coding: utf-8 class Solution(object): def shortestToChar(self, S, C): """ :type S: str :type C: str :rtype: List[int] """ n, pos = len(S), -len(S) res = [n] * n for i in range(n): if S[i] == C: pos = i res[i] = min(res[i], abs(i - pos)) for i in range(n-1, -1, -1): if S[i] == C: pos = i res[i] = min(res[i], abs(i - pos)); return res
6dc15d918ffa46a255df6032022b7e89718fe9b3
1cb2b8bf6f244f67e3b867a74a6297556b5e0167
/rmatics/view/protocol.py
f076bf3da0140903d3b344160a7d59b880c09656
[]
no_license
ElinRin/informatics-alive
82f1be65e88860bc4b170b72da39811d30a681e6
59a0d1537b90481c2750a05172557bd88fcdcc98
refs/heads/master
2020-03-28T22:39:41.979770
2018-09-24T10:56:26
2018-09-24T10:56:26
149,248,491
0
0
null
2018-09-24T10:56:27
2018-09-18T07:44:24
Python
UTF-8
Python
false
false
8,016
py
import time import traceback from collections import OrderedDict from flask import ( g, jsonify, Blueprint ) from sqlalchemy import and_ from rmatics.model import db from rmatics.model.ejudge_run import EjudgeRun from rmatics.model.statement import Statement from rmatics.utils.exceptions import ( InternalServerError, RunAuthorOnly, RunNotFound, ) from rmatics.view import ( require_auth, require_roles, ) protocol = Blueprint('protocol', __name__, url_prefix='/protocol') # log = logging.getLogger(__name__) # # signal_description = { # # 1 : "Hangup detected on controlling terminal or death of controlling process", # # 2 : "Interrupt from keyboard", # # 3 : "Quit from keyboard", # # 4 : "Illegal Instruction", # # 6 : "Abort signal", # # 7 : "Bus error (bad memory access)", # # 8 : "Floating point exception", # # 9 : "Kill signal", # # 11 : "Invalid memory reference", # # 13 : "Broken pipe: write to pipe with no readers", # # 14 : "Timer signal", # # 15 : "Termination signal" # # } # TODO: Переместить в view/run (/run/id/protocol), убрать вложеные try/except @protocol.route('/get/<int:contest_id>/<int:run_id>') def get_protocol(contest_id, run_id): try: run = EjudgeRun.get_by(run_id=run_id, contest_id=contest_id) try: run.fetch_tested_protocol_data() if run.user.statement \ .filter(Statement.olympiad == 1) \ .filter(Statement.time_stop > time.time()) \ .filter(Statement.time_start < time.time()) \ .count() == 0: res = OrderedDict() if run.tests: sample_tests = run.problem.sample_tests.split(',') for num in range(1, len(run.tests.keys()) + 1): str_num = str(num) if str_num in sample_tests: res[str_num] = run.get_test_full_protocol(str_num) else: res[str_num] = run.tests[str_num] return jsonify({ 'tests': res, 'host': run.host, 'compiler_output': run.compiler_output, }) else: try: return jsonify({ 'tests': run.tests['1'], 'host': run.host, 'compiler_output': run.compiler_output, }) except KeyError as e: return jsonify({'result' : 'error', 'message' : e.__str__(), "stack" : traceback.format_exc()}) except Exception as e: return jsonify({'result' : 'error', 'message' : run.compilation_protocol, 'error' : e.__str__(), 'stack' : traceback.format_exc(), 'protocol': run.protocol}) except Exception as e: return jsonify({'result': 'error', 'message' : e.__str__(), 'stack': traceback.format_exc(), 'protocol': run.protocol}) @protocol.route('/get_v2/<int:contest_id>/<int:run_id>') @require_auth def protocol_get_v2(contest_id, run_id): # TODO: переделать формат протокола (статус выдавать по id), избавиться от fetch_tested_protocol_data run = db.session.query(EjudgeRun) \ .filter( and_( EjudgeRun.run_id == run_id, EjudgeRun.contest_id == contest_id ) ) \ .first() if not run: raise RunNotFound if g.user.ejudge_id != run.user_id: raise RunAuthorOnly try: run.fetch_tested_protocol_data() except Exception: raise InternalServerError tests_dict = OrderedDict() if run.tests: sample_tests = run.problem.sample_tests.split(',') for num in range(1, len(run.tests.keys()) + 1): str_num = str(num) if str_num in sample_tests: tests_dict[str_num] = run.get_test_full_protocol(str_num) else: tests_dict[str_num] = run.tests[str_num] return jsonify({ 'tests': tests_dict, 'host': run.host, 'compiler_output': run.compiler_output, }) @protocol.route('/get-full/<int:contest_id>/<int:run_id>') @require_roles('admin', 'teacher', 'ejudge_teacher') def protocol_get_full(contest_id, run_id): run = EjudgeRun.get_by(run_id=run_id, contest_id=contest_id) protocol = get_protocol(contest_id, run_id).json if protocol.get('result') == 'error': return protocol prot = protocol.get('tests', {}) out_arch = None for test_num in prot: prot[test_num] = run.get_test_full_protocol(test_num) if out_arch: out_arch.close() full_protocol = { 'tests': prot, 'audit': run.get_audit(), } if protocol.get('compiler_output'): full_protocol['compiler_output'] = protocol['compiler_output'] return jsonify(full_protocol) # @view_config(route_name="protocol.get_test", renderer="string") # @check_global_role(("teacher", "ejudge_teacher", "admin")) # def protocol_get_test(request): # contest_id = int(request.matchdict['contest_id']) # run_id = int(request.matchdict['run_id']) # run = EjudgeRun.get_by(run_id = run_id, contest_id = contest_id) # prob = run.problem # return prob.get_test(int(request.matchdict['test_num']), prob.get_test_size(int(request.matchdict['test_num']))) # @view_config(route_name="protocol.get_corr", renderer="string") # @check_global_role(("teacher", "ejudge_teacher", "admin")) # def protocol_get_corr(request): # contest_id = int(request.matchdict['contest_id']) # run_id = int(request.matchdict['run_id']) # run = EjudgeRun.get_by(run_id = run_id, contest_id = contest_id) # prob = run.problem # return prob.get_corr(int(request.matchdict['test_num']), prob.get_corr_size(int(request.matchdict['test_num']))) # @view_config(route_name="protocol.get_outp", renderer="string") # @check_global_role(("teacher", "ejudge_teacher", "admin")) # def protocol_get_outp(request): # contest_id = int(request.matchdict['contest_id']) # run_id = int(request.matchdict['run_id']) # run = EjudgeRun.get_by(run_id = run_id, contest_id = contest_id) # return run.get_output_file(int(request.matchdict['test_num']), tp='o') # @view_config(route_name="protocol.get_submit_archive", renderer="string") # @check_global_role(("teacher", "ejudge_teacher", "admin")) # def get_submit_archive(request): # contest_id = int(request.matchdict['contest_id']) # run_id = int(request.matchdict['run_id']) # sources = "sources" in request.params # all_tests = "all_tests" in request.params # tests = request.params.get("tests", "") # tests_set = set() # for i in tests.split(" "): # try: # tests_set.add(int(i)) # except ValueError: # pass # run = EjudgeRun.get_by(run_id = run_id, contest_id = contest_id) # run.parsetests # prob = run.problem # archive = BytesIO() # zf = zipfile.ZipFile(archive, "w", zipfile.ZIP_DEFLATED) # run.fetch_tested_protocol_data() # for i in range(1, run.tests_count + 1): # if all_tests or i in tests_set: # zf.writestr("tests/{0:02}".format(i), prob.get_test(i, prob.get_test_size(i))) # zf.writestr("tests/{0:02}.a".format(i), prob.get_corr(i, prob.get_corr_size(i))) # if sources: # zf.writestr("{0}{1}".format(run_id, get_lang_ext_by_id(run.lang_id)), run.get_sources()) # checker_src, checker_ext = prob.get_checker() # zf.writestr("checker{}".format(checker_ext), checker_src) # zf.close() # archive.seek(0) # response = Response(content_type="application/zip", content_disposition='attachment; filename="archive_{0}_{1}.zip"'.format(contest_id, run_id), body=archive.read()) # return response
b77f5b032f953ed006c22bb0b7765506412aad56
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/LeetcodePythonProject_with_solution/leetcode_0801_0850/LeetCode818_RaceCar.py
8973cff01e19bfcaf0a4885b70d166e80525fb5d
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
941
py
''' Created on May 1, 2018 @author: tongq ''' c_ Solution(o.. ___ - hashmap {0:0} ___ racecar target """ :type target: int :rtype: int """ __ target __ hashmap: r.. hashmap[target] # Number of bits necessary to represent self in binary. n target.bit_length() __ 2**n-1 __ target: hashmap[target] n ____ hashmap[target] racecar(2**n-1-target)+n+1 ___ m __ r..(n-1 hashmap[target] m..(hashmap[target],\ racecar(target-2**(n-1)+2**m)+n+m+1) r.. hashmap[target] ___ test testCases [ 3, 6, ] ___ target __ testCases: print('target: %s' % target) result racecar(target) print('result: %s' % result) print('-='*30+'-') __ _____ __ _____ Solution().test()
1243495e4d86517d0efab71f93b5ef8c5692f8c5
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv2/lib/python3.8/site-packages/ansible/modules/database/influxdb/influxdb_user.py
6b78276dbad5b9feb48f678066ed402dec5dee69
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
5,248
py
#!/usr/bin/python # (c) 2017, Vitaliy Zhhuta <zhhuta () gmail.com> # insipred by Kamil Szczygiel <kamil.szczygiel () intel.com> influxdb_database module # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: influxdb_user short_description: Manage InfluxDB users description: - Manage InfluxDB users version_added: 2.5 author: "Vitaliy Zhhuta (@zhhuta)" requirements: - "python >= 2.6" - "influxdb >= 0.9" options: user_name: description: - Name of the user. required: True user_password: description: - Password to be set for the user. required: false admin: description: - Whether the user should be in the admin role or not. default: no choices: [ yes, no] state: description: - State of the user. choices: [ present, absent ] default: present extends_documentation_fragment: influxdb ''' EXAMPLES = ''' - name: Create a user on localhost using default login credentials influxdb_user: user_name: john user_password: s3cr3t - name: Create a user on localhost using custom login credentials influxdb_user: user_name: john user_password: s3cr3t login_username: "{{ influxdb_username }}" login_password: "{{ influxdb_password }}" - name: Create an admin user on a remote host using custom login credentials influxdb_user: user_name: john user_password: s3cr3t admin: yes hostname: "{{ influxdb_hostname }}" login_username: "{{ influxdb_username }}" login_password: "{{ influxdb_password }}" - name: Destroy a user using custom login credentials influxdb_user: user_name: john login_username: "{{ influxdb_username }}" login_password: "{{ influxdb_password }}" state: absent ''' RETURN = ''' #only defaults ''' import ansible.module_utils.urls from ansible.module_utils.basic import AnsibleModule import ansible.module_utils.influxdb as influx def find_user(module, client, user_name): name = None try: names = client.get_list_users() for u_name in names: if u_name['user'] == user_name: name = u_name break except ansible.module_utils.urls.ConnectionError as e: module.fail_json(msg=str(e)) return name def check_user_password(module, client, user_name, user_password): try: client.switch_user(user_name, user_password) client.get_list_users() except influx.exceptions.InfluxDBClientError as e: if e.code == 401: return False except ansible.module_utils.urls.ConnectionError as e: module.fail_json(msg=str(e)) finally: # restore previous user client.switch_user(module.params['username'], module.params['password']) return True def set_user_password(module, client, user_name, user_password): if not module.check_mode: try: client.set_user_password(user_name, user_password) except ansible.module_utils.urls.ConnectionError as e: module.fail_json(msg=str(e)) module.exit_json(changed=True) def create_user(module, client, user_name, user_password, admin): if not module.check_mode: try: client.create_user(user_name, user_password, admin) except ansible.module_utils.urls.ConnectionError as e: module.fail_json(msg=str(e)) module.exit_json(changed=True) def drop_user(module, client, user_name): if not module.check_mode: try: client.drop_user(user_name) except influx.exceptions.InfluxDBClientError as e: module.fail_json(msg=e.content) module.exit_json(changed=True) def main(): argument_spec = influx.InfluxDb.influxdb_argument_spec() argument_spec.update( state=dict(default='present', type='str', choices=['present', 'absent']), user_name=dict(required=True, type='str'), user_password=dict(required=False, type='str', no_log=True), admin=dict(default='False', type='bool') ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True ) state = module.params['state'] user_name = module.params['user_name'] user_password = module.params['user_password'] admin = module.params['admin'] influxdb = influx.InfluxDb(module) client = influxdb.connect_to_influxdb() user = find_user(module, client, user_name) if state == 'present': if user: if check_user_password(module, client, user_name, user_password): module.exit_json(changed=False) else: set_user_password(module, client, user_name, user_password) else: create_user(module, client, user_name, user_password, admin) if state == 'absent': if user: drop_user(module, client, user_name) else: module.exit_json(changed=False) if __name__ == '__main__': main()
e808ecad2aaae033f06016a6b865f7a2ebc7b95c
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/389/usersdata/329/73216/submittedfiles/poligono.py
83c9b44a1a65243971d936af7331531404998ba4
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
# -*- coding: utf-8 -*- n = float(input('digite o valor de lados=')) nd = (n**((n-3)))/2 print ('%.1f' % nd)
adfe58513a6fe2e4b6bbf9df0757e94a5dc4e27a
d735b8354e06eb26aa5ed0ac25ebf96bdd8d67b6
/python16/day1-21/day006 小数据池和编码/02 作业讲解.py
8d5be45087e50789765e5e05c7d549a69cf11dba
[]
no_license
cn5036518/xq_py
e004766e6b2582ba37d7335320ed6b42f563c46c
ac932dc7fcb89a7a7faf8bda80791743755fd557
refs/heads/master
2021-07-15T18:44:19.244025
2020-09-12T09:38:25
2020-09-12T09:38:25
208,355,433
0
0
null
null
null
null
UTF-8
Python
false
false
4,879
py
#重点题目回顾和重写 # 5、元素分类 # 有如下值li= [11,22,33,44,55,66,77,88,99,90], # 将所有大于 66 的值保存至字典的第一个key中, # 将小于 66 的值保存至第二个key的值中。 # 即: {'k1': 大于66的所有值列表, 'k2': 小于66的所有值列表} #方法1 空字典{} 空列表 好理解 li= [11,22,33,44,55,66,77,88,99,90] dic1 = {} li1 = [] li2 = [] for i in li: if i > 66: li1.append(i) #空列表追加 else: li2.append(i) dic1["k1"] = li1 #字典新增键值对 dic1["k2"] = li2 print(dic1) #{'k1': [77, 88, 99, 90], 'k2': [11, 22, 33, 44, 55, 66]} #方法2 非空字典{} #比较简洁,代码行数较少 li= [11,22,33,44,55,66,77,88,99,90] dic1 = {"k1":[],"k2":[]} for i in li: if i > 66: dic1["k1"].append(i) else: dic1["k2"].append(i) print(dic1) #{'k2': [11, 22, 33, 44, 55, 66], 'k1': [77, 88, 99, 90]} #方法3 字典的get方法 li= [11,22,33,44,55,66,77,88,99,90] dic1 = {} for i in li: if i > 66: if dic1.get("k1") == None: #1 如果key="k1"不存在,就新增 dic1["k1"] = [i] #注意点:这里必须是[i],而不能是i else: #2 如果key=k1存在,就往value-列表中追加新元素 dic1["k1"].append(i) else: if dic1.get("k2") == None: #1 如果key="k2"不存在,就新增 dic1["k2"] = [i] #注意点:这里必须是[i],而不能是i else: #2 如果key=k2存在,就往value-列表中追加新元素 dic1["k2"].append(i) print(dic1) #{'k1': [77, 88, 99, 90], 'k2': [11, 22, 33, 44, 55, 66]} #方法4 字典的setdefault方法 li= [11,22,33,44,55,66,77,88,99,90] dic1 = {} for i in li: if i > 66: ret1 = dic1.setdefault("k1",[]) #新增功能:"k1"之前不存在,就新增键值对;“k1”存在,就不操作(不覆盖) # 返回value--查询功能 #注意:这里value必须是[],而不是[i] ret1.append(i) #往列表中追加新元素 #ret1 第一次取值是[77] #ret1 第二次取值是[77,88] #ret1 第三次取值是[77,88,99],依次类推--过程重要 不跳步骤,足够耐心 else: ret2 = dic1.setdefault("k2", []) # 新增:"k1"之前不存在,就新增键值对;“k1”存在,就不操作(不覆盖) 返回value ret2.append(i) #往列表中追加新元素 print(dic1) #{'k2': [11, 22, 33, 44, 55, 66], 'k1': [77, 88, 99, 90]} print("---------------1") # 6、输出商品列表,用户输入序号,显示用户选中的商品(升级题) # # 商品列表: goods = [{"name": "电脑", "price": 1999}, {"name": "鼠标", "price": 10}, {"name": "游艇", "price": 20}, {"name": "美女", "price": 998}, ] # # 要求: # 1:页面显示 序号 + 商品名称 + 商品价格,如: # 1 电脑 1999 # 2 鼠标 10 # … # 2:用户输入选择的商品序号,然后打印商品名称及商品价格 # 3:如果用户输入的商品序号有误,则提示输入有误,并重新输入。 # 4:用户输入Q或者q,退出程序。 #6-1 不打印序号 # for i in goods: # print(i["name"],i["price"]) #6-1 打印序号 for i in range(len(goods)): #i 是0-3 print(i+1,goods[i]["name"],goods[i]["price"]) print("---------------6-1") #6-2 方法1 --不推荐 # 用户输入选择的商品序号,然后打印商品名称及商品价格 goods = [{"name": "电脑", "price": 1999}, {"name": "鼠标", "price": 10}, {"name": "游艇", "price": 20}, {"name": "美女", "price": 998}, ] # for i in range(10): #0-9 限定输入10次 # # while 1: #不限定输入次数 # content = int(input("请输入商品编号:")) #输入的是字符串,需要转换成int #这里如果输入的不是字符串数字,就会报错 # #ValueError: invalid literal for int() with base 10: 'ss' # #商品编号-1 = 索引编号 # if content>0 and content<=len(goods): # print(goods[content-1]["name"],goods[content-1]["price"]) # else: # print("没有找到对应的商品,请重新输入") #6-2 方法2 推荐 # 2:用户输入选择的商品序号,然后打印商品名称及商品价格 # 3:如果用户输入的商品序号有误,则提示输入有误,并重新输入。 # 4:用户输入Q或者q,退出程序 while 1: content = input("请输入商品编号:") #输入的是字符串 if content.upper() == "Q": print("退出程序") break elif content.isdigit(): content = int(content) if content>0 and content <=len(goods): print(goods[content-1]["name"],goods[content-1]["price"]) else: print("您输入的商品编号不存在,请重新输入") else: print("输入有误,请重新输入数字")
8e6ee2d167ba76946304901f9b857a62506894e4
0cb08e9532758cbec1afe20eb41028d5f276e82d
/gs37(nested serializer )/api/admin.py
e3c0a4b8c2a8cde9f8fa47e15ccefb3248d11be7
[]
no_license
P-iyushRaj/Django-Rest-Framework
1eca586ee6ded4720e8f1845c9c9cac06d637492
9d7e754156739118f725ab431d25bdde63ebd91d
refs/heads/master
2023-03-15T05:27:37.352592
2021-03-08T09:27:46
2021-03-08T09:27:46
345,599,375
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
from django.contrib import admin # Register your models here. from .models import Singer, Song @admin.register(Singer) class SingerAdmin(admin.ModelAdmin): list_display=['id', 'name', 'gender'] @admin.register(Song) class SongAdmin(admin.ModelAdmin): list_display = ['id', 'title', 'singer', 'duration']
f24665f25700be68e4a637774b61b744257416cb
37fef592f365194c28579f95abd222cc4e1243ae
/streamlit/venv/lib/python3.7/site-packages/plotly/graph_objs/scattermapbox/_line.py
24de4166109b0586711d43349e01d8f14fa88d1b
[]
no_license
edimaudo/Python-projects
be61e0d3fff63fb7bd00513dbf1401e2c1822cfb
85d54badf82a0b653587a02e99daf389df62e012
refs/heads/master
2023-04-07T03:26:23.259959
2023-03-24T12:03:03
2023-03-24T12:03:03
72,611,253
4
3
null
2022-10-31T18:10:41
2016-11-02T06:37:17
null
UTF-8
Python
false
false
5,567
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Line(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "scattermapbox" _path_str = "scattermapbox.line" _valid_props = {"color", "width"} # color # ----- @property def color(self): """ Sets the line color. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # width # ----- @property def width(self): """ Sets the line width (in px). The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["width"] @width.setter def width(self, val): self["width"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the line color. width Sets the line width (in px). """ def __init__(self, arg=None, color=None, width=None, **kwargs): """ Construct a new Line object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattermapbox.Line` color Sets the line color. width Sets the line width (in px). Returns ------- Line """ super(Line, self).__init__("line") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattermapbox.Line constructor must be a dict or an instance of :class:`plotly.graph_objs.scattermapbox.Line`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("width", None) _v = width if width is not None else _v if _v is not None: self["width"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
b4c5e3e144d510a232590523f174411f1d2e2336
b1c7a768f38e2e987a112da6170f49503b9db05f
/userprofile/migrations/0004_profile_date.py
d3cd49baf2783abbc91a484f53e46ccd13a7639a
[]
no_license
Niladrykar/bracketerp
8b7491aa319f60ec3dcb5077258d75b0394db374
ca4ee60c2254c6c132a38ce52410059cc6b19cae
refs/heads/master
2022-12-11T04:23:07.504966
2019-03-18T06:58:13
2019-03-18T06:58:13
176,218,029
1
0
null
2022-12-08T03:01:46
2019-03-18T06:27:37
JavaScript
UTF-8
Python
false
false
495
py
# Generated by Django 2.0.6 on 2018-09-19 07:05 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('userprofile', '0003_auto_20180915_1222'), ] operations = [ migrations.AddField( model_name='profile', name='Date', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), ]
4867cc358df2a9e5db6d64974690faef2801d82b
2e1c1558f6fcb12a57449f9f6f0db6f1cbf38dd6
/src/masonite/authorization/models/__init__.py
0b6a76d853be38776efb36472df3256fcdf79305
[ "MIT" ]
permissive
MasoniteFramework/masonite
ca51bf3d0e4777e624b3a9e94d1360936fb8006d
e8e55e5fdced9f28cc8acb1577457a490e5b4b74
refs/heads/4.0
2023-09-01T18:59:01.331411
2022-11-05T01:29:29
2022-11-05T01:29:29
113,248,605
2,173
185
MIT
2023-04-02T02:29:18
2017-12-06T00:30:22
Python
UTF-8
Python
false
false
35
py
from .authorizes import Authorizes
4a81108d031b334c2ee7e35ff0f338776b47c049
9a0e2312236b628007a67c07164ea7b97207e47c
/col/apps/logpoint_agent_collector/logpoint_agent_collector.py
e1650f10b279daff06f16f5235310f5f6c184d17
[]
no_license
laxmi518/network_project
d88b9fe73522deaa90c1dbfd22c6861020a6c7be
2e998338f3d1142a8098d3dfd35f4c8ad0e4ba00
refs/heads/master
2020-05-21T15:48:07.830107
2018-05-09T18:58:37
2018-05-09T18:58:37
84,631,818
0
0
null
null
null
null
UTF-8
Python
false
false
841
py
#!/usr/bin/env python import logging from pylib.wiring import gevent_zmq as zmq from lib import fi_collector from fi_applications import make_zip from pylib import conf, wiring, textual log = logging.getLogger(__name__) def _parse_args(): options, config = conf.parse_config() return config def _prepare_application_directory(config): make_zip.create_zipped_application_packages(config['basedir']) def main(): zmq_context = zmq.Context() config = _parse_args() #config = textual.utf8(config) #_prepare_application_directory(config) fi_out = wiring.Wire('collector_out', zmq_context=zmq_context, conf_path=config.get('wiring_conf_path') or None) log.info('LogPoint_agent_collector starting...') fi_collector.main(config, fi_out) main()
86124ffe93f07eff65064bf4b695bf53599a00e4
e70bc88ccc01a7616016d085a96f8f8c81ade50c
/tests/test_changelog.py
b3c324c81487c1c47a64f856f938f5422e291cae
[ "BSD-3-Clause" ]
permissive
justcalamari/rever
1dc9b51c8338c3fb53c7c7adbb0eac59de2a8305
8bea796991a6ed354d45b053064324659b1f2b38
refs/heads/master
2021-04-29T19:34:57.352326
2018-02-28T04:59:59
2018-02-28T04:59:59
121,580,667
0
0
null
2018-02-15T01:26:15
2018-02-15T01:26:14
null
UTF-8
Python
false
false
2,976
py
"""Tests the changelog activity.""" import os from rever import vcsutils from rever.logger import current_logger from rever.main import env_main REVER_XSH = """ $ACTIVITIES = ['changelog'] $DAG['changelog'].kwargs = { 'filename': 'CHANGELOG.rst', 'ignore': ['TEMPLATE.rst'], 'news': 'nuws', } """ CHANGELOG_RST = """.. current developments v42.1.0 ============ * And some other stuff happeneded. """ TEMPLATE_RST = """**Added:** None **Changed:** None **Deprecated:** None **Removed:** None **Fixed:** None **Security:** None """ N0_RST = """**Added:** * from n0 **Changed:** None **Deprecated:** None **Removed:** * here * and here **Fixed:** None **Security:** None """ N1_RST = """**Added:** * from n1 **Changed:** * But what martial arts are they mixing? **Deprecated:** None **Removed:** * There **Fixed:** None **Security:** None """ CHANGELOG_42_1_1 = """.. current developments v42.1.1 ==================== **Added:** * from n0 * from n1 **Changed:** * But what martial arts are they mixing? **Removed:** * here * and here * There v42.1.0 ============ * And some other stuff happeneded. """ def test_changelog(gitrepo): os.makedirs('nuws', exist_ok=True) files = [('rever.xsh', REVER_XSH), ('CHANGELOG.rst', CHANGELOG_RST), ('nuws/TEMPLATE.rst', TEMPLATE_RST), ('nuws/n0.rst', N0_RST), ('nuws/n1.rst', N1_RST), ] for filename, body in files: with open(filename, 'w') as f: f.write(body) vcsutils.track('.') vcsutils.commit('initial changelog and news') env_main(['42.1.1']) # now see if this worked newsfiles = os.listdir('nuws') assert 'TEMPLATE.rst' in newsfiles assert 'n0.rst' not in newsfiles assert 'n1.rst' not in newsfiles with open('CHANGELOG.rst') as f: cl = f.read() assert CHANGELOG_42_1_1 == cl # ensure that the updates were commited logger = current_logger() entries = logger.load() assert entries[-2]['rev'] != entries[-1]['rev'] SETUP_XSH = """ $PROJECT = 'castlehouse' $ACTIVITIES = ['changelog'] $REVER_DIR = 'rvr' $CHANGELOG_FILENAME = 'CHANGELOG.rst' $CHANGELOG_NEWS = 'nuws' $CHANGELOG_TEMPLATE = 'TEMPLATE.rst' """ def test_changelog_setup(gitrepo): os.makedirs('nuws', exist_ok=True) files = [('rever.xsh', SETUP_XSH), ] for filename, body in files: with open(filename, 'w') as f: f.write(body) vcsutils.track('.') vcsutils.commit('initial changelog') env_main(['setup']) # now see if this worked newsfiles = os.listdir('nuws') assert 'TEMPLATE.rst' in newsfiles basefiles = os.listdir('.') assert 'CHANGELOG.rst' in basefiles with open('CHANGELOG.rst') as f: cl = f.read() assert 'castlehouse' in cl assert '.gitignore' in basefiles with open('.gitignore') as f: gi = f.read() assert '\n# Rever\nrvr/\n' in gi