blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
d0bc43a4647f0dfc4d749e43af45a248efb2f22d
f6d1ed1a5369a5810429756fbdc07a8d293a4b3d
/conans/client/run_environment.py
5f570cb8a0e111565aa4f5d270ca72669944acfd
[ "MIT" ]
permissive
lasote/conan
fc4e0b561e736b447b57999026ffe5291b7cab50
8f6978290d095778eff6a9a84ea3f06f723fcfea
refs/heads/develop
2023-05-26T03:10:52.211304
2017-11-23T12:44:56
2017-11-23T12:44:56
47,204,017
3
3
MIT
2019-01-22T09:36:12
2015-12-01T16:56:42
Python
UTF-8
Python
false
false
782
py
class RunEnvironment(object): """ - PATH: pointing to the bin/ directories of the requires - LD_LIBRARY_PATH: requires lib_paths for Linux - DYLD_LIBRARY_PATH: requires lib_paths for OSx """ def __init__(self, conanfile): """ :param conanfile: ConanFile instance """ self.conanfile = conanfile @property def vars(self): lib_paths = [] bin_paths = [] for dep in self.conanfile.deps_cpp_info.deps: lib_paths.extend(self.conanfile.deps_cpp_info[dep].lib_paths) bin_paths.extend(self.conanfile.deps_cpp_info[dep].bin_paths) ret = {"DYLD_LIBRARY_PATH": lib_paths, "LD_LIBRARY_PATH": lib_paths, "PATH": bin_paths} return ret
86d2dd1ccdf978c2fd6ced71b93ebce47e3063f6
0ad7f553df6b210b5ac004fbf490ed651a21d55e
/algos/discrete_esay_control_lib_03.py
8f73937bb21a1a30f95dcd2cf3acc4546e94c645
[]
no_license
MarianoDel/spyder_python
fa00987eb9aa1ef61d7224679a84c05a217c6c35
5f5896df68f95eb860bc08c21ae2b19516432cdc
refs/heads/master
2020-05-23T06:14:57.329478
2020-04-23T14:58:16
2020-04-23T14:58:16
84,753,428
0
0
null
null
null
null
UTF-8
Python
false
false
1,993
py
# -*- coding: utf-8 -*- #usando libreria de control #http://python-control.readthedocs.org/en/latest/index.html import numpy as np import control as ct import matplotlib.pyplot as plt #from scipy import signal #los coeficientes los saco del sistema digital creado en Tfilter_sympy_02.py #numd1 #array([ 0. , 1.48941694, 0.9759379 , -0.00450648]) #dend #array([ 1.00000000e+00, 9.21237959e-01, 5.39610404e-01, 1.33103857e-18]) b = [ 0. , 1.48941694, 0.9759379 , -0.00450648] a = [ 1.00000000e+00, 9.21237959e-01, 5.39610404e-01, 1.33103857e-18] dt = 1.0/25000 plt.figure(1) dsys1 = ct.tf(b, a, dt) omega = np.arange(100, 3.1415 / dt, 1) mag, phase, omega = ct.bode_plot(dsys1, omega) plt.show() plt.draw() G1 = dsys1 G2 = 350./3.3 Gt = ct.series(G1, G2) plt.figure(2) mag, phase, omega = ct.bode_plot(Gt, omega) plt.show() plt.draw() #LAZO PID #desde el algoritmo hacia atras #uk = uk-1 + k1 ek + k2 ek-1 + k3 ek-2 #Uz/Ez = (b0 + b1 z-1 + b2 z-2) / (1 - z-1) #b0 = kp + kd + ki #b1 = -kp - 2kd #b2 = kd #a0 = 1 #a1 = -1 fs = 25000 kp = 0.0015/fs #kd = 0.80 kd = 0.0 ki = 58.0/fs #ki = 0.0 bpid = [kp + kd + ki, -kp - 2*kd, kd] #del spice apid = [1, -1] print ("bpid vale") print (bpid) print ("apid vale") print (apid) plt.figure(3) Gpid = ct.tf(bpid, apid, dt) mag, phase, omega = ct.bode_plot(Gpid, omega) plt.show() plt.draw() #open loop GH = ct.series(Gpid, Gt) plt.figure(4) mag, phase, omega = ct.bode_plot(GH, omega) plt.show() plt.draw() #feedback Gfeed = ct.feedback(GH, sys2=1, sign=-1) plt.figure(5) mag, phase, omega = ct.bode_plot(Gfeed, omega) plt.show() plt.draw() plt.figure(6) tin = np.arange(0.0, 0.005, 0.0001) Tout, yout2 = ct.step_response(Gfeed, T=tin, X0=0.0, input=None, output=None, transpose=False,) yout1 = np.transpose(yout2) yout0 = yout1[0] #yout = yout0[:50] yout = yout0[:Tout.size] plt.plot(Tout, yout) plt.show() plt.draw()
63470244c2c7805bd495020c5dd5e40fef97303e
7606f5755a83ad6670b64d2acf381a54cf635697
/exercises/1901090010/1001S02E05_array.py
8f0f333861e9e35aa5184ad7678148535e3985a2
[]
no_license
imlzg/selfteaching-python-camp
6c107e53740dbc6721008ea36f66c1b3d0c9ee72
b620553ef4fb86d8528c54947d98c2f1c2df996e
refs/heads/master
2022-01-09T04:09:14.849146
2019-05-20T15:17:07
2019-05-20T15:29:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
array=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] print(array) array.reverse() ls1=[str(i) for i in array] print(ls1) ls2=''.join(ls1) print(ls2) ls3=ls2[2:8] print(ls3) ls4=ls3[::-1] print(ls4) ls5=int(ls4) print("转换为二进制为:", bin(ls5)) print("转换为八进制为:", oct(ls5)) print("转换为十六进制为:", hex(ls5))
5b37e01087be00d24c666fb7c11df28e7282eda9
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/seem_case/work_great_world/come_early_company/great_world/know_little_place_above_public_company.py
95daadfe99dac6c7ffb401779f2a1dd58b021e23
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
#! /usr/bin/env python def give_company_at_able_number(str_arg): last_life(str_arg) print('try_day') def last_life(str_arg): print(str_arg) if __name__ == '__main__': give_company_at_able_number('old_man_or_child')
c3737714740d26def0bb562c9116aa4dde0191db
d1f87175c0aa3e8e844be1e6e0ddd75ddef93047
/k2/python/k2/fsa.py
30619f79427fa6fea4357ca326475d0e952b7d4c
[ "MIT" ]
permissive
zeta1999/k2
bb6202fd483a4635cfbfac904db6fcfab5e45f45
02c36e8e5c0129042824e5e4b9927530bbb99009
refs/heads/master
2023-01-11T07:00:28.755715
2020-11-12T04:38:54
2020-11-12T04:38:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,053
py
# Copyright (c) 2020 Mobvoi Inc. (authors: Fangjun Kuang) # Guoguo Chen # # See ../../../LICENSE for clarification regarding multiple authors from collections import OrderedDict from typing import Any from typing import Iterator from typing import Optional from typing import Tuple import torch import _k2 from _k2 import RaggedArc from _k2 import _as_float from _k2 import _as_int from _k2 import _fsa_from_str from _k2 import _fsa_from_tensor from _k2 import _fsa_to_str class Fsa(object): '''This class represents a single fsa or a vector of fsas. When it denotes a single FSA, its attribute :attr:`shape` is a tuple containing two elements ``(num_states, None)``; when it represents a vector of FSAs it is a tuple with three elements ``(num_fsas, None, None)``. (Caution: it's possible for a vector of FSAs to have zero or one elements). An instance of FSA has the following attributes: - ``arcs``: You will NOT use it directly in Python. It is an instance of ``_k2.RaggedArc`` with only one method ``values()`` which returns a 2-D `torch.Tensor`` of dtype ``torch.int32`` with 4 columns. Its number of rows indicates the number of arcs in the FSA. The first column represents the source states, second column the destination states, third column the labels and the fourth column is the score. Note that the score is actually a float number but it is **reinterpreted** as an integer. - ``scores``: A 1-D ``torch.Tensor`` of dtype ``torch.float32``. It has as many entries as the number of arcs representing the score of every arc. - ``labels``: A 1-D ``torch.Tensor`` of dtype ``torch.int32``. It has as many entries as the number of arcs representing the label of every arc. It MAY have the following attributes: - ``symbols``: An instance of ``k2.SymbolTable``. It maps an entry in ``labels`` to an integer and vice versa. It is used for visualization only. - ``aux_labels`: A 1-D ``torch.Tensor`` of dtype ``torch.int32``. It has the same shape as ``labels``. NOTE: We will change it to a ragged tensor in the future. - ``aux_symbols``: An instance of ``k2.SymbolTable. It maps an entry in ``aux_labels`` to an integer and vice versa. - ``properties``: An integer that encodes the properties of the FSA. It is returned by :func:`get_properties`. It MAY have other attributes that set by users. CAUTION: When an attribute is an instance of ``torch.Tensor``, its ``shape[0]`` has to be equal to the number arcs. Otherwise, an assertion error will be thrown. NOTE: ``symbols`` and ``aux_symbols`` are symbol tables, while ``labels`` and ``aux_labels`` are instances of ``torch.Tensor``. ''' def __init__(self, tensor: torch.Tensor, aux_labels: Optional[torch.Tensor] = None) -> None: '''Build an Fsa from a tensor with optional aux_labels. It is useful when loading an Fsa from file. Args: tensor: A torch tensor of dtype `torch.int32` with 4 columns. Each row represents an arc. Column 0 is the src_state, column 1 the dest_state, column 2 the label, and column 3 the score. Caution: Scores are floats and their binary pattern is **reinterpreted** as integers and saved in a tensor of dtype `torch.int32`. aux_labels: Optional. If not None, it associates an aux_label with every arc, so it has as many rows as `tensor`. It is a 1-D tensor of dtype `torch.int32`. Returns: An instance of Fsa. ''' self._init_internal() self.arcs: RaggedArc = _fsa_from_tensor(tensor) self._init_properties() self._tensor_attr['scores'] = _as_float(self.arcs.values()[:, -1]) if aux_labels is not None: self.aux_labels = aux_labels.to(torch.int32) def __str__(self) -> str: '''Return a string representation of this object (note: does not contain all the information in it for now)''' if hasattr(self, 'aux_labels'): aux_labels = self.aux_labels.to(torch.int32) else: aux_labels = None ans = "k2.Fsa: " + _fsa_to_str(self.arcs, False, aux_labels) ans += "\nproperties_str = " + _k2.fsa_properties_as_str( self._properties) return ans def _init_properties(self) -> None: if self.arcs.num_axes() == 2: properties = _k2.get_fsa_basic_properties(self.arcs) else: properties = _k2.get_fsa_vec_basic_properties(self.arcs) self._properties = properties if properties & 1 != 1: raise ValueError( "Fsa is not valid, properties are: {} = {}, arcs are: {}". format(properties, _k2.fsa_properties_as_str(properties), str(self.arcs))) def _init_internal(self) -> None: # There are three kinds of attribute dictionaries: # # - `_tensor_attr` # It saves attribute values of type torch.Tensor. `shape[0]` of # attribute values have to be equal to the number of arcs # in the FSA. # # - `_non_tensor_attr` # It saves non-tensor attributes, e.g., :class:`SymbolTable`. # # - `_grad_cache` # It contains tensors for autograd. Users should NOT manipulate it. # The dict is filled in automagically. self._tensor_attr = OrderedDict() self._non_tensor_attr = OrderedDict() self._grad_cache = OrderedDict() # The `_grad_cache` dict contains the following attributes: # # - `state_batches`: # returned by :func:`_k2._get_state_batches` # - `dest_states`: # returned by :func:`_k2._get_dest_states` # - `incoming_arcs`: # returned by :func:`_k2._get_incoming_arcs` # - `entering_arc_batches`: # returned by :func:`_k2._get_entering_arc_index_batches` # - `leaving_arc_batches`: # returned by :func:`_k2._get_leaving_arc_index_batches` # - `forward_scores_tropical`: # returned by :func:`_k2._get_forward_scores_float` # with `log_semiring=False` # - `forward_scores_log`: # returned by :func:`_k2._get_forward_scores_float` or # :func:`_get_forward_scores_double` with `log_semiring=True` # - `tot_scores_tropical`: # returned by :func:`_k2._get_tot_scores_float` or # :func:`_k2._get_tot_scores_double` with # `forward_scores_tropical`. # - `tot_scores_log`: # returned by :func:`_k2._get_tot_scores_float` or # :func:`_k2._get_tot_scores_double` with # `forward_scores_log`. # - `backward_scores_tropical`: # returned by :func:`_k2._get_backward_scores_float` or # :func:`_k2._get_backward_scores_double` with # `log_semiring=False` # - `backward_scores_log_semiring`: # returned by :func:`_k2._get_backward_scores_float` or # :func:`_k2._get_backward_scores_double` with # `log_semiring=True` # - `entering_arcs`: # returned by :func:`_k2._get_forward_scores_float` or # :func:`_get_forward_scores_double` with `log_semiring=False` def __setattr__(self, name: str, value: Any) -> None: ''' Caution: We save a reference to ``value``. If you need to change ``value`` afterwards, please consider passing a copy of it. ''' if name in ('_tensor_attr', '_non_tensor_attr', 'arcs', '_properties'): object.__setattr__(self, name, value) elif isinstance(value, torch.Tensor): assert value.shape[0] == self.arcs.values().shape[0] if name == 'labels': assert value.dtype == torch.int32 self.arcs.values()[:, 2] = value return self._tensor_attr[name] = value if name == 'scores': assert value.dtype == torch.float32 # NOTE: we **reinterpret** the float patterns # to integer patterns here. self.arcs.values()[:, -1] = _as_int(value.detach()) else: assert name != 'properties' self._non_tensor_attr[name] = value def __getattr__(self, name: str) -> Any: if name == 'labels': return self.arcs.values()[:, 2] elif name in self._tensor_attr: return self._tensor_attr[name] elif name in self._non_tensor_attr: return self._non_tensor_attr[name] elif name in self._grad_cache: return self._grad_cache[name] elif name == 'properties': return self._properties elif name == 'properties_str': return _k2.fsa_properties_as_str(self._properties) raise AttributeError(f'Unknown attribute {name}') def __delattr__(self, name: str) -> None: assert name not in ('arcs', 'scores', 'labels', 'properties', '_properties') if name in self._tensor_attr: del self._tensor_attr[name] elif name in self._non_tensor_attr: del self._non_tensor_attr[name] elif name in self._grad_cache: del self._grad_cache[name] else: super().__delattr__(name) def _update_cache(self, name: str, value: Any) -> None: self._grad_cache[name] = value def update_state_batches(self) -> _k2.RaggedInt: if hasattr(self, 'state_batches') is False: state_batches = _k2._get_state_batches(self.arcs, transpose=True) self._update_cache('state_batches', state_batches) return self.state_batches def update_dest_states(self) -> torch.Tensor: if hasattr(self, 'dest_states') is False: dest_states = _k2._get_dest_states(self.arcs, as_idx01=True) self._update_cache('dest_states', dest_states) return self.dest_states def update_incoming_arcs(self) -> _k2.RaggedInt: if hasattr(self, 'incoming_arcs') is False: dest_states = self.update_dest_states() incoming_arcs = _k2._get_incoming_arcs(self.arcs, dest_states) self._update_cache('incoming_arcs', incoming_arcs) return self.incoming_arcs def update_entering_arc_batches(self) -> _k2.RaggedInt: if hasattr(self, 'entering_arc_batches') is False: incoming_arcs = self.update_incoming_arcs() state_batches = self.update_state_batches() entering_arc_batches = _k2._get_entering_arc_index_batches( self.arcs, incoming_arcs=incoming_arcs, state_batches=state_batches) self._update_cache('entering_arc_batches', entering_arc_batches) return self.entering_arc_batches def update_leaving_arc_batches(self) -> _k2.RaggedInt: if hasattr(self, 'leaving_arc_batches') is False: state_batches = self.update_state_batches() leaving_arc_batches = _k2._get_leaving_arc_index_batches( self.arcs, state_batches) self._update_cache('leaving_arc_batches', leaving_arc_batches) return self.leaving_arc_batches def update_forward_scores_tropical(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'forward_scores_tropical') is False \ or (use_float_scores is True and self.forward_scores_tropical.dtype == torch.float64) \ or (use_float_scores is False and self.forward_scores_tropical.dtype == torch.float32): # noqa if use_float_scores: func = _k2._get_forward_scores_float else: func = _k2._get_forward_scores_double state_batches = self.update_state_batches() entering_arc_batches = self.update_entering_arc_batches() forward_scores_tropical, entering_arcs = func( self.arcs, state_batches=state_batches, entering_arc_batches=entering_arc_batches, log_semiring=False) self._update_cache('forward_scores_tropical', forward_scores_tropical) self._update_cache('entering_arcs', entering_arcs) return self.forward_scores_tropical def update_forward_scores_log(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'forward_scores_log') is False \ or (use_float_scores is True and self.forward_scores_log.dtype == torch.float64) \ or (use_float_scores is False and self.forward_scores_log.dtype == torch.float32): # noqa if use_float_scores: func = _k2._get_forward_scores_float else: func = _k2._get_forward_scores_double state_batches = self.update_state_batches() entering_arc_batches = self.update_entering_arc_batches() forward_scores_log, _ = func( self.arcs, state_batches=state_batches, entering_arc_batches=entering_arc_batches, log_semiring=True) self._update_cache('forward_scores_log', forward_scores_log) return self.forward_scores_log def update_tot_scores_tropical(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'tot_scores_tropical') is False \ or (use_float_scores is True and self.tot_scores_tropical.dtype == torch.float64) \ or (use_float_scores is False and self.tot_scores_tropical.dtype == torch.float32): # noqa if use_float_scores is True: func = _k2._get_tot_scores_float else: func = _k2._get_tot_scores_double forward_scores_tropical = self.update_forward_scores_tropical( use_float_scores) tot_scores_tropical = func(self.arcs, forward_scores_tropical) self._update_cache('tot_scores_tropical', tot_scores_tropical) return self.tot_scores_tropical def update_tot_scores_log(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'tot_scores_log') is False \ or (use_float_scores is True and self.tot_scores_log.dtype == torch.float64) \ or (use_float_scores is False and self.tot_scores_log.dtype == torch.float32): # noqa if use_float_scores is True: func = _k2._get_tot_scores_float else: func = _k2._get_tot_scores_double forward_scores_log = self.update_forward_scores_log( use_float_scores) tot_scores_log = func(self.arcs, forward_scores_log) self._update_cache('tot_scores_log', tot_scores_log) return self.tot_scores_log def update_backward_scores_tropical(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'backward_scores_tropical') is False \ or (use_float_scores is True and self.backward_scores_tropical.dtype == torch.float64) \ or (use_float_scores is False and self.backward_scores_tropical.dtype == torch.float32): # noqa if use_float_scores: func = _k2._get_backward_scores_float else: func = _k2._get_backward_scores_double state_batches = self.update_state_batches() leaving_arc_batches = self.update_leaving_arc_batches() tot_scores_tropical = self.update_tot_scores_tropical( use_float_scores) backward_scores_tropical = func( self.arcs, state_batches=state_batches, leaving_arc_batches=leaving_arc_batches, tot_scores=tot_scores_tropical, log_semiring=False) self._update_cache('backward_scores_tropical', backward_scores_tropical) return self.backward_scores_tropical def update_backward_scores_log(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'backward_scores_log') is False \ or (use_float_scores is True and self.backward_scores_log.dtype == torch.float64) \ or (use_float_scores is False and self.backward_scores_log.dtype == torch.float32): # noqa if use_float_scores: func = _k2._get_backward_scores_float else: func = _k2._get_backward_scores_double state_batches = self.update_state_batches() leaving_arc_batches = self.update_leaving_arc_batches() tot_scores_log = self.update_tot_scores_log(use_float_scores) backward_scores_log = func(self.arcs, state_batches=state_batches, leaving_arc_batches=leaving_arc_batches, tot_scores=tot_scores_log, log_semiring=True) self._update_cache('backward_scores_log', backward_scores_log) return self.backward_scores_log def update_entering_arcs(self, use_float_scores) -> torch.Tensor: if hasattr(self, 'entering_arcs') is False: if hasattr(self, 'forward_scores_tropical'): del self.forward_scores_tropical self.update_forward_scores_tropical(use_float_scores) return self.entering_arcs def requires_grad_(self, requires_grad: bool) -> 'Fsa': '''Change if autograd should record operations on this FSA: Sets the `scores`'s requires_grad attribute in-place. Returns this FSA. Caution: This is an **in-place** operation as you can see that the function name ends with `_`. Args: requires_grad: If autograd should record operations on this FSA or not. Returns: This FSA itself. ''' self.scores.requires_grad_(requires_grad) return self def invert_(self) -> 'Fsa': '''Swap the ``labels`` and ``aux_labels``. If there are symbol tables associated with ``labels`` and ``aux_labels``, they are also swapped. It is a no-op if the FSA contains no ``aux_labels``. CAUTION: The function name ends with an underscore which means this is an **in-place** operation. Returns: Return ``self``. ''' if hasattr(self, 'aux_labels'): aux_labels = self.aux_labels self.aux_labels = self.labels.clone() self.labels = aux_labels symbols = getattr(self, 'symbols', None) aux_symbols = getattr(self, 'aux_symbols', None) if symbols is not None: del self.symbols if aux_symbols is not None: del self.aux_symbols if symbols is not None: self.aux_symbols = symbols if aux_symbols is not None: self.symbols = aux_symbols self._init_properties() return self def is_cpu(self) -> bool: '''Return true if this FSA is on CPU. Returns: True if the FSA is on CPU; False otherwise. ''' return self.arcs.is_cpu() def is_cuda(self) -> bool: '''Return true if this FSA is on GPU. Returns: True if the FSA is on GPU; False otherwise. ''' return self.arcs.is_cuda() @property def device(self) -> torch.device: return self.scores.device def __getitem__(self, i: int) -> 'Fsa': '''Get the i-th FSA. Caution: `self` has to be an FsaVec. Args: i: The i-th FSA to select. 0 <= i < self.arcs.dim0(). Returns: The i-th FSA. Note it is a single FSA. ''' assert len(self.shape) == 3 assert 0 <= i < self.shape[0] ragged_arc, start = self.arcs.index(0, i) end = start + ragged_arc.values().shape[0] out_fsa = Fsa.from_ragged_arc(ragged_arc) for name, value in self.named_tensor_attr(): setattr(out_fsa, name, value[start:end]) for name, value in self.named_non_tensor_attr(): setattr(out_fsa, name, value) out_fsa._init_properties() return out_fsa def to_(self, device: torch.device) -> 'Fsa': '''Move the FSA onto a given device. Caution: This is an in-place operation. Args: device: An instance of `torch.device`. It supports only cpu and cuda. Returns: Return `self`. ''' assert device.type in ('cpu', 'cuda') if device.type == 'cpu' and self.is_cpu(): return self elif device.type == 'cuda' and self.is_cuda(): return self if device.type == 'cpu': self.arcs = self.arcs.to_cpu() else: self.arcs = self.arcs.to_cuda(device.index) for name, value in self.named_tensor_attr(): setattr(self, name, value.to(device)) self._grad_cache = OrderedDict() return self def named_tensor_attr(self) -> Iterator[Tuple[str, torch.Tensor]]: '''Return an iterator over tensor attributes containing both the name of the attribute as well as the tensor value. Returns: A tuple containing the name and the value. ''' for name, value in self._tensor_attr.items(): yield name, value def named_non_tensor_attr(self) -> Iterator[Tuple[str, Any]]: '''Return an iterator over non-tensor attributes containing both the name of the attribute as well as the value. Returns: A tuple containing the name and the value. ''' for name, value in self._non_tensor_attr.items(): yield name, value @property def shape(self) -> Tuple[int, ...]: ''' Returns: ``(num_states, None)`` if this is an Fsa; ``(num_fsas, None, None)`` if this is an FsaVec. ''' if self.arcs.num_axes() == 2: return (self.arcs.dim0(), None) elif self.arcs.num_axes() == 3: return (self.arcs.dim0(), None, None) else: raise ValueError(f'Unsupported num_axes: {self.arcs.num_axes()}') @classmethod def from_ragged_arc(cls, ragged_arc: RaggedArc) -> 'Fsa': '''Create an Fsa from a RaggedArc directly. Note: Fsa algorithms will always produce some RaggedArc output. You can use this function to construct a Python FSA from RaggedArc. Args: ragged_arc: The input ragged arc. It is usually generated by some FSA algorithms. You do not need to know how to construct it in Python. Returns: An Fsa. ''' ans = cls.__new__(cls) super(Fsa, ans).__init__() ans._init_internal() ans.arcs = ragged_arc ans._init_properties() ans._tensor_attr['scores'] = _as_float(ans.arcs.values()[:, -1]) return ans @classmethod def from_str(cls, s: str) -> 'Fsa': '''Create an Fsa from a string. The given string `s` consists of lines with the following format: (1) When it represents an acceptor: src_state dest_state label score (2) When it represents a transducer: src_state dest_state label aux_label score The line for the final state consists of only one field: final_state Note: Fields are separated by space(s), tab(s) or both. The `score` field is a float, while other fields are integers. Caution: The first column has to be non-decreasing. Caution: The final state has the largest state number. There is only one final state. All arcs that are connected to the final state have label -1. Args: s: The input string. Refer to the above comment for its format. ''' # Figure out acceptor/transducer for k2 fsa. acceptor = True line = s.strip().split('\n', 1)[0] fields = line.strip().split() assert len(fields) == 4 or len(fields) == 5 if len(fields) == 5: acceptor = False ans = cls.__new__(cls) super(Fsa, ans).__init__() ans._init_internal() arcs, aux_labels = _fsa_from_str(s, acceptor, False) ans.arcs = arcs ans._init_properties() ans._tensor_attr['scores'] = _as_float(ans.arcs.values()[:, -1]) if aux_labels is not None: ans.aux_labels = aux_labels.to(torch.int32) return ans @classmethod def from_openfst(cls, s: str, acceptor: bool = True) -> 'Fsa': '''Create an Fsa from a string in OpenFST format. The given string `s` consists of lines with the following format: (1) When it represents an acceptor: src_state dest_state label score (2) When it represents a transducer: src_state dest_state label aux_label score The line for the final state consists of two fields: final_state score Note: Fields are separated by space(s), tab(s) or both. The `score` field is a float, while other fields are integers. There might be multiple final states. Also, OpenFst may omit the score if it is 0.0. Args: s: The input string. Refer to the above comment for its format. acceptor: Optional. If true, interpret the input string as an acceptor; otherwise, interpret it as a transducer. ''' ans = cls.__new__(cls) super(Fsa, ans).__init__() ans._init_internal() arcs, aux_labels = _fsa_from_str(s, acceptor, True) ans.arcs = arcs ans._init_properties() ans._tensor_attr['scores'] = _as_float(ans.arcs.values()[:, -1]) if aux_labels is not None: ans.aux_labels = aux_labels.to(torch.int32) return ans
73a44163086c3f3bc57dae1906bd48ffdc92761c
f0ee987789f5a6fe8f104890e95ee56e53f5b9b2
/pythia-0.8/packages/pyre/pyre/inventory/odb/Registry.py
c72724141667dc8e6e35621c08aee1ae78d01a96
[]
no_license
echoi/Coupling_SNAC_CHILD
457c01adc439e6beb257ac8a33915d5db9a5591b
b888c668084a3172ffccdcc5c4b8e7fff7c503f2
refs/heads/master
2021-01-01T18:34:00.403660
2015-10-26T13:48:18
2015-10-26T13:48:18
19,891,618
1
2
null
null
null
null
UTF-8
Python
false
false
2,864
py
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Michael A.G. Aivazis # California Institute of Technology # (C) 1998-2005 All Rights Reserved # # <LicenseText> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # class Registry(object): def identify(self, inspector): return inspector.onRegistry(self) def getFacility(self, name, default=None): return self.facilities.get(name, default) def getProperty(self, name, default=''): try: return self.properties[name].value except KeyError: return default # UNREACHABLE import journal journal.firewall("inventory").log("UNREACHABLE") return def setProperty(self, name, value, locator): self.properties[name] = self._createDescriptor(value, locator) return def deleteProperty(self, name): """remove the named property""" try: del self.properties[name] except KeyError: pass return def update(self, registry): if not registry: return self for name, descriptor in registry.properties.iteritems(): self.setProperty(name, descriptor.value, descriptor.locator) for name, node in registry.facilities.iteritems(): self.getNode(name).update(node) return self def getNode(self, name): try: node = self.facilities[name] except KeyError: node = Registry(name) self.facilities[name] = node return node def attachNode(self, node): self.facilities[node.name] = node return def extractNode(self, facility): try: node = self.facilities[facility] except KeyError: return None del self.facilities[facility] return node def render(self): listing = [ ("%s.%s" % (self.name, name), descriptor.value, "%s" % descriptor.locator) for name, descriptor in self.properties.iteritems() ] listing += [ ("%s.%s" % (self.name, name), value, "%s" % locator) for facility in self.facilities.itervalues() for name, value, locator in facility.render() ] return listing def __init__(self, name): self.name = name self.properties = {} self.facilities = {} return def _createDescriptor(self, value, locator): from Descriptor import Descriptor return Descriptor(value, locator) # version __id__ = "$Id: Registry.py,v 1.1.1.1 2005/03/08 16:13:43 aivazis Exp $" # End of file
cfd0938addfe5e354eb030032a683f83195c8112
312a8fde11293cb142334a3860966ec1f75ac401
/timesketch/views/spa.py
c7401a6e3a270c6062b441b881b34d8e5e754333
[ "Apache-2.0" ]
permissive
google/timesketch
f0fd09062a8a24bac581d2d4286d095d667d2f10
24f471b58ca4a87cb053961b5f05c07a544ca7b8
refs/heads/master
2023-08-31T21:48:19.602686
2023-08-31T11:24:17
2023-08-31T11:24:17
21,009,909
2,263
647
Apache-2.0
2023-09-14T14:08:07
2014-06-19T17:49:45
Python
UTF-8
Python
false
false
1,540
py
# Copyright 2019 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module implements HTTP request handler.""" from __future__ import unicode_literals from flask import Blueprint from flask import redirect from flask import render_template from flask_login import login_required # Register flask blueprint spa_views = Blueprint("spa_views", __name__) @spa_views.route("/sketch/<int:sketch_id>/explore/view/<int:view_id>/", methods=["GET"]) @login_required # pylint: disable=unused-argument def redirect_view(sketch_id, view_id): """Redirect old (deprecated) view URLs to scheme. Returns: Redirect to new URL scheme. """ return redirect("/sketch/{0:d}/explore?view={1:d}".format(sketch_id, view_id)) @spa_views.route("/", defaults={"path": ""}) @spa_views.route("/<path:path>") @login_required # pylint: disable=unused-argument def overview(path): """Generates the template. Returns: Template with context. """ return render_template("index.html")
eb8afd30c6b49c35fee9b1cfbc72fd3d53933d36
bd185738ea6a74d1e76d9fc9d8cbc59f94990842
/onadata/libs/serializers/xform_serializer.py
fa30b5ec3f282006bb33a18f94727949f24141c2
[ "BSD-2-Clause" ]
permissive
aondiaye/myhelpline
c4ad9e812b3a13c6c3c8bc65028a3d3567fd6a98
d72120ee31b6713cbaec79f299f5ee8bcb7ea429
refs/heads/master
2020-12-22T05:32:59.576519
2019-10-29T08:52:55
2019-10-29T08:52:55
236,683,448
1
0
NOASSERTION
2020-01-28T07:50:18
2020-01-28T07:50:17
null
UTF-8
Python
false
false
15,564
py
import os import logging from hashlib import md5 from future.moves.urllib.parse import urlparse from future.utils import listvalues from django.core.exceptions import ValidationError from django.core.validators import URLValidator from django.conf import settings from django.contrib.auth.models import User from django.core.cache import cache from django.db.models import Count from requests.exceptions import ConnectionError from rest_framework import serializers from rest_framework.reverse import reverse from onadata.apps.logger.models import DataView, Instance, XForm from onadata.apps.main.models.meta_data import MetaData from onadata.libs.permissions import get_role, is_organization from onadata.libs.serializers.dataview_serializer import \ DataViewMinimalSerializer from onadata.libs.serializers.metadata_serializer import MetaDataSerializer from onadata.libs.serializers.tag_list_serializer import TagListSerializer from onadata.libs.utils.cache_tools import ( ENKETO_PREVIEW_URL_CACHE, ENKETO_URL_CACHE, XFORM_DATA_VERSIONS, XFORM_LINKED_DATAVIEWS, XFORM_METADATA_CACHE, XFORM_PERMISSIONS_CACHE, XFORM_COUNT) from onadata.libs.utils.decorators import check_obj from onadata.libs.utils.viewer_tools import ( enketo_url, get_enketo_preview_url, get_form_url) from onadata.libs.exceptions import EnketoError from onadata.libs.utils.common_tags import (GROUP_DELIMETER_TAG, REPEAT_INDEX_TAGS) def _create_enketo_url(request, xform): """ Generate enketo url for a form :param request: :param xform: :return: enketo url """ form_url = get_form_url(request, xform.user.username, settings.ENKETO_PROTOCOL, xform_pk=xform.pk) url = "" try: url = enketo_url(form_url, xform.id_string) MetaData.enketo_url(xform, url) except ConnectionError as e: logging.exception("Connection Error: %s" % e.message) except EnketoError as e: logging.exception("Enketo Error: %s" % e.message) return url def _set_cache(cache_key, cache_data, obj): """ Utility function that set the specified info to the provided cache key :param cache_key: :param cache_data: :param obj: :return: Data that has been cached """ cache.set('{}{}'.format(cache_key, obj.pk), cache_data) return cache_data def user_to_username(item): item['user'] = item['user'].username return item class XFormMixin(object): def _get_metadata(self, obj, key): if key: for m in obj.metadata_set.all(): if m.data_type == key: return m.data_value else: return obj.metadata_set.all() def get_users(self, obj): xform_perms = [] if obj: xform_perms = cache.get( '{}{}'.format(XFORM_PERMISSIONS_CACHE, obj.pk)) if xform_perms: return xform_perms cache.set('{}{}'.format(XFORM_PERMISSIONS_CACHE, obj.pk), xform_perms) data = {} for perm in obj.xformuserobjectpermission_set.all(): if perm.user_id not in data: user = perm.user data[perm.user_id] = { 'permissions': [], 'is_org': is_organization(user.profile), 'metadata': user.profile.metadata, 'first_name': user.first_name, 'last_name': user.last_name, 'user': user.username } if perm.user_id in data: data[perm.user_id]['permissions'].append( perm.permission.codename) for k in list(data): data[k]['permissions'].sort() data[k]['role'] = get_role(data[k]['permissions'], XForm) del (data[k]['permissions']) xform_perms = listvalues(data) cache.set('{}{}'.format(XFORM_PERMISSIONS_CACHE, obj.pk), xform_perms) return xform_perms def get_enketo_url(self, obj): if obj: _enketo_url = cache.get('{}{}'.format(ENKETO_URL_CACHE, obj.pk)) if _enketo_url: return _enketo_url url = self._get_metadata(obj, 'enketo_url') if url is None: url = _create_enketo_url(self.context.get('request'), obj) return _set_cache(ENKETO_URL_CACHE, url, obj) return None def get_enketo_preview_url(self, obj): if obj: _enketo_preview_url = cache.get( '{}{}'.format(ENKETO_PREVIEW_URL_CACHE, obj.pk)) if _enketo_preview_url: return _enketo_preview_url url = self._get_metadata(obj, 'enketo_preview_url') if url is None: try: url = get_enketo_preview_url( self.context.get('request'), obj.user.username, obj.id_string, xform_pk=obj.pk) except Exception: return url else: MetaData.enketo_preview_url(obj, url) return _set_cache(ENKETO_PREVIEW_URL_CACHE, url, obj) return None def get_data_views(self, obj): if obj: key = '{}{}'.format(XFORM_LINKED_DATAVIEWS, obj.pk) data_views = cache.get(key) if data_views: return data_views data_views = DataViewMinimalSerializer( obj.dataview_set.filter(deleted_at__isnull=True), many=True, context=self.context).data cache.set(key, list(data_views)) return data_views return [] def get_num_of_submissions(self, obj): if obj: key = '{}{}'.format(XFORM_COUNT, obj.pk) count = cache.get(key) if count: return count force_update = True if obj.is_merged_dataset else False count = obj.submission_count(force_update) cache.set(key, count) return count def get_last_submission_time(self, obj): """Return datetime of last submission If a form is a merged dataset then it is picked from the list of forms attached to that merged dataset. """ if 'last_submission_time' not in self.fields: return None if obj.is_merged_dataset: values = [ x.last_submission_time.isoformat() for x in obj.mergedxform.xforms.only('last_submission_time') if x.last_submission_time ] if values: return sorted(values, reverse=True)[0] return obj.last_submission_time.isoformat() \ if obj.last_submission_time else None class XFormBaseSerializer(XFormMixin, serializers.HyperlinkedModelSerializer): formid = serializers.ReadOnlyField(source='id') owner = serializers.HyperlinkedRelatedField( view_name='user-detail', source='user', lookup_field='username', queryset=User.objects.exclude( username__iexact=settings.ANONYMOUS_DEFAULT_USERNAME)) created_by = serializers.HyperlinkedRelatedField( view_name='user-detail', lookup_field='username', queryset=User.objects.exclude( username__iexact=settings.ANONYMOUS_DEFAULT_USERNAME)) public = serializers.BooleanField(source='shared') public_data = serializers.BooleanField(source='shared_data') require_auth = serializers.BooleanField() tags = TagListSerializer(read_only=True) title = serializers.CharField(max_length=255) url = serializers.HyperlinkedIdentityField( view_name='xform-detail', lookup_field='pk') users = serializers.SerializerMethodField() enketo_url = serializers.SerializerMethodField() enketo_preview_url = serializers.SerializerMethodField() num_of_submissions = serializers.SerializerMethodField() last_submission_time = serializers.SerializerMethodField() data_views = serializers.SerializerMethodField() class Meta: model = XForm read_only_fields = ('json', 'xml', 'date_created', 'date_modified', 'encrypted', 'bamboo_dataset', 'last_submission_time', 'is_merged_dataset') exclude = ('json', 'xml', 'xls', 'user', 'has_start_time', 'shared', 'shared_data', 'deleted_at', 'deleted_by') class XFormSerializer(XFormMixin, serializers.HyperlinkedModelSerializer): formid = serializers.ReadOnlyField(source='id') metadata = serializers.SerializerMethodField() owner = serializers.HyperlinkedRelatedField( view_name='user-detail', source='user', lookup_field='username', queryset=User.objects.exclude( username__iexact=settings.ANONYMOUS_DEFAULT_USERNAME)) created_by = serializers.HyperlinkedRelatedField( view_name='user-detail', lookup_field='username', queryset=User.objects.exclude( username__iexact=settings.ANONYMOUS_DEFAULT_USERNAME)) public = serializers.BooleanField(source='shared') public_data = serializers.BooleanField(source='shared_data') require_auth = serializers.BooleanField() submission_count_for_today = serializers.ReadOnlyField() tags = TagListSerializer(read_only=True) title = serializers.CharField(max_length=255) url = serializers.HyperlinkedIdentityField( view_name='xform-detail', lookup_field='pk') users = serializers.SerializerMethodField() enketo_url = serializers.SerializerMethodField() enketo_preview_url = serializers.SerializerMethodField() num_of_submissions = serializers.SerializerMethodField() last_submission_time = serializers.SerializerMethodField() form_versions = serializers.SerializerMethodField() data_views = serializers.SerializerMethodField() class Meta: model = XForm read_only_fields = ('json', 'xml', 'date_created', 'date_modified', 'encrypted', 'bamboo_dataset', 'last_submission_time', 'is_merged_dataset') exclude = ('json', 'xml', 'xls', 'user', 'has_start_time', 'shared', 'shared_data', 'deleted_at', 'deleted_by') def get_metadata(self, obj): xform_metadata = [] if obj: xform_metadata = cache.get( '{}{}'.format(XFORM_METADATA_CACHE, obj.pk)) if xform_metadata: return xform_metadata xform_metadata = list( MetaDataSerializer( obj.metadata_set.all(), many=True, context=self.context) .data) cache.set('{}{}'.format(XFORM_METADATA_CACHE, obj.pk), xform_metadata) return xform_metadata def get_form_versions(self, obj): versions = [] if obj: versions = cache.get('{}{}'.format(XFORM_DATA_VERSIONS, obj.pk)) if versions: return versions versions = list( Instance.objects.filter(xform=obj, deleted_at__isnull=True) .values('version').annotate(total=Count('version'))) if versions: cache.set('{}{}'.format(XFORM_DATA_VERSIONS, obj.pk), list(versions)) return versions class XFormCreateSerializer(XFormSerializer): has_id_string_changed = serializers.SerializerMethodField() def get_has_id_string_changed(self, obj): return obj.has_id_string_changed class XFormListSerializer(serializers.Serializer): formID = serializers.ReadOnlyField(source='id_string') name = serializers.ReadOnlyField(source='title') version = serializers.SerializerMethodField() hash = serializers.ReadOnlyField() descriptionText = serializers.ReadOnlyField(source='description') downloadUrl = serializers.SerializerMethodField('get_url') manifestUrl = serializers.SerializerMethodField('get_manifest_url') @check_obj def get_version(self, obj): if obj.version and obj.version.isdigit(): return obj.version @check_obj def get_url(self, obj): kwargs = {'pk': obj.pk, 'username': obj.user.username} request = self.context.get('request') return reverse('download_xform', kwargs=kwargs, request=request) @check_obj def get_manifest_url(self, obj): kwargs = {'pk': obj.pk, 'username': obj.user.username} request = self.context.get('request') object_list = MetaData.objects.filter(data_type='media', object_id=obj.pk) if object_list: return reverse('manifest-url', kwargs=kwargs, request=request) return None class XFormManifestSerializer(serializers.Serializer): filename = serializers.SerializerMethodField() hash = serializers.SerializerMethodField() downloadUrl = serializers.SerializerMethodField('get_url') @check_obj def get_url(self, obj): kwargs = { 'pk': obj.content_object.pk, 'username': obj.content_object.user.username, 'metadata': obj.pk } request = self.context.get('request') try: fmt = obj.data_value[obj.data_value.rindex('.') + 1:] except ValueError: fmt = 'csv' url = reverse( 'xform-media', kwargs=kwargs, request=request, format=fmt.lower()) group_delimiter = self.context.get(GROUP_DELIMETER_TAG) repeat_index_tags = self.context.get(REPEAT_INDEX_TAGS) if group_delimiter and repeat_index_tags and fmt == 'csv': return (url+"?%s=%s&%s=%s" % ( GROUP_DELIMETER_TAG, group_delimiter, REPEAT_INDEX_TAGS, repeat_index_tags)) return url @check_obj def get_hash(self, obj): filename = obj.data_value hsh = obj.file_hash parts = filename.split(' ') # filtered dataset is of the form "xform PK name", xform pk is the # second item if len(parts) > 2: dataset_type = parts[0] pk = parts[1] xform = None if dataset_type == 'xform': xform = XForm.objects.filter(pk=pk)\ .only('last_submission_time').first() else: data_view = DataView.objects.filter(pk=pk)\ .only('xform__last_submission_time').first() if data_view: xform = data_view.xform if xform and xform.last_submission_time: hsh = u'md5:%s' % (md5( xform.last_submission_time.isoformat().encode( 'utf-8')).hexdigest()) return u"%s" % (hsh or 'md5:') @check_obj def get_filename(self, obj): filename = obj.data_value parts = filename.split(' ') # filtered dataset is of the form "xform PK name", filename is the # third item if len(parts) > 2: filename = u'%s.csv' % parts[2] else: try: URLValidator()(filename) except ValidationError: pass else: urlparts = urlparse(obj.data_value) filename = os.path.basename(urlparts.path) or urlparts.netloc return filename
5a6822dc37ab0181188d67e82b773b3e8e59d089
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit2487.py
641b39dc24dfafe2c36913591797358aa26dea60
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,147
py
# qubit number=4 # total number=43 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=24 prog.cz(input_qubit[0],input_qubit[3]) # number=25 prog.h(input_qubit[3]) # number=26 prog.h(input_qubit[3]) # number=21 prog.cz(input_qubit[0],input_qubit[3]) # number=22 prog.h(input_qubit[3]) # number=23 prog.h(input_qubit[3]) # number=27 prog.cz(input_qubit[0],input_qubit[3]) # number=28 prog.h(input_qubit[3]) # number=29 prog.h(input_qubit[3]) # number=37 prog.cz(input_qubit[0],input_qubit[3]) # number=38 prog.h(input_qubit[3]) # number=39 prog.x(input_qubit[3]) # number=31 prog.h(input_qubit[3]) # number=33 prog.cz(input_qubit[0],input_qubit[3]) # number=34 prog.h(input_qubit[3]) # number=35 prog.cx(input_qubit[0],input_qubit[3]) # number=18 prog.rx(-0.364424747816416,input_qubit[3]) # number=36 prog.y(input_qubit[3]) # number=20 prog.h(input_qubit[3]) # number=40 prog.cz(input_qubit[0],input_qubit[3]) # number=41 prog.h(input_qubit[3]) # number=42 prog.cx(input_qubit[0],input_qubit[3]) # number=12 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=19 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit2487.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
3b636769f9391a37b518ae880c23423c3395cc7a
09a6d8dbad5b92f93791948b5bf9b75f5cb2e5ce
/pennylane/data/attributes/operator/_wires.py
f953c9b8f78d3b7681b90320cb92d2c2f394b24d
[ "Apache-2.0" ]
permissive
PennyLaneAI/pennylane
458efd5d9457e90ada31ca2ef0fb6bb96a24e9a7
0843183ff15a013c2622af5e61fea431d18076d3
refs/heads/master
2023-09-03T17:00:43.105784
2023-09-01T16:15:07
2023-09-01T16:15:07
129,936,360
1,431
410
Apache-2.0
2023-09-14T21:30:56
2018-04-17T16:45:42
Python
UTF-8
Python
false
false
1,798
py
# Copyright 2018-2023 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains utility function for converting ``Wires`` objects to JSON.""" import json import numbers from typing import Any from pennylane.wires import Wires class UnserializableWireError(TypeError): """Raised if a wire label is not JSON-serializable.""" def __init__(self, wire: Any) -> None: super().__init__( f"Cannot serialize wire label '{wire}': Type '{type(wire)}' is not json-serializable." ) _JSON_TYPES = {int, str, float, type(None), bool} def wires_to_json(wires: Wires) -> str: """Converts ``wires`` to a JSON list, with wire labels in order of their index. Returns: JSON list of wires Raises: UnserializableWireError: if any of the wires are not JSON-serializable. """ jsonable_wires = [] for w in wires: if type(w) in _JSON_TYPES: jsonable_wires.append(w) elif isinstance(w, numbers.Integral): w_converted = int(w) if hash(w_converted) != hash(w): raise UnserializableWireError(w) jsonable_wires.append(w_converted) else: raise UnserializableWireError(w) return json.dumps(jsonable_wires)
00c9393bf91ee19f9a3510de60b39d0abef22f7b
40bee13ce471aa704de68ede1ee8579106396ba3
/app_folder_name/tests/__init__.py
68719da9a01694302ea3bf05d95488fed982d647
[]
no_license
mikelopez/django-app-skel-crud
9029648982ef8881c5859faac60ada4424cac576
a01b0eeaffbe12d314eb3f9ab1cd692d6defce34
refs/heads/master
2020-12-24T16:58:47.140247
2013-03-04T21:28:03
2013-03-04T21:28:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
from app_folder_name.tests.main_app_tests import TestSchoolStudents
2ece2111f21d161cc9f0a108b71ef2c8149855fc
99dcb18a9e3ea367272f740b8cbf3c34285a0c08
/samples/snippets/endpoint_service/deploy_model_sample_test.py
b12b234b8bddc0e5080ee113729a18515957f0d0
[ "Apache-2.0" ]
permissive
googleapis/python-aiplatform
926a4873f35dbea15b2fd86c0e16b5e6556d803e
76b95b92c1d3b87c72d754d8c02b1bca652b9a27
refs/heads/main
2023-08-19T23:49:02.180075
2023-08-19T13:25:59
2023-08-19T13:27:27
298,017,988
418
240
Apache-2.0
2023-09-14T21:08:33
2020-09-23T15:43:39
Python
UTF-8
Python
false
false
1,745
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from uuid import uuid4 import deploy_model_sample import pytest import helpers PROJECT_ID = os.getenv("BUILD_SPECIFIC_GCLOUD_PROJECT") LOCATION = "us-central1" # Resource Name of "permanent_50_flowers_new_model" MODEL_NAME = "projects/580378083368/locations/us-central1/models/4190810559500779520" @pytest.fixture(scope="function", autouse=True) def setup(create_endpoint): create_endpoint(PROJECT_ID, LOCATION) yield @pytest.fixture(scope="function", autouse=True) def teardown(teardown_endpoint): yield def test_ucaip_generated_deploy_model_sample(capsys, shared_state): assert shared_state["endpoint_name"] is not None # Deploy existing image classification model to endpoint deploy_model_sample.deploy_model_sample( project=PROJECT_ID, model_name=MODEL_NAME, deployed_model_display_name=f"temp_deploy_model_test_{uuid4()}", endpoint_id=shared_state["endpoint_name"].split("/")[-1], ) # Store deployed model ID for undeploying out, _ = capsys.readouterr() assert "deploy_model_response" in out shared_state["deployed_model_id"] = helpers.get_name(out=out, key="id")
23daf8e24dd73325c2f0ec16a12b272eeab45c76
320bd873b6cf5db2fc9194cc4ad782a49373d6ee
/temp/1/11/conftest.py
576834bb0e0714ce25adf6d1af3e28750d5c2993
[]
no_license
donniezhanggit/AppiumDemo8_Android
7b0aed903969e2101330b5da4e89c39e3d591723
7a2ed3be27ed6cb27bd4e30e13d48cc8f34aa654
refs/heads/master
2020-09-13T17:35:33.749237
2019-03-10T10:04:46
2019-03-10T10:04:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
import pytest import logging logging.basicConfig(level=logging.DEBUG) @pytest.fixture(scope="class") def username11(): print("username 11 module 11") return "module username 11"
42cc165f79e9d6404b25f857a6aa9197f15590c7
2a3606551a4d850a7b4d6a4e08089c51108ef7be
/plugin.video.mrknow/mylib/pydevd_attach_to_process/winappdbg/system.py
26e355dd5ea3bf17e0832c36c973f3aa87ac0a80
[ "Apache-2.0" ]
permissive
rrosajp/filmkodi
a6bb1823f4ed45453c8b8e54ffbd6a7b49f44450
0162cde9ae25ddbf4a69330948714833ff2f78c9
refs/heads/master
2021-09-18T06:03:17.561062
2018-06-22T23:28:53
2018-06-22T23:28:53
234,768,781
1
0
Apache-2.0
2021-06-03T20:33:07
2020-01-18T17:11:57
null
UTF-8
Python
false
false
45,882
py
#!~/.wine/drive_c/Python25/python.exe # -*- coding: utf-8 -*- # Copyright (c) 2009-2014, Mario Vilas # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice,this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ System settings. @group Instrumentation: System """ from __future__ import with_statement __revision__ = "$Id$" __all__ = ['System'] from winappdbg import win32 from winappdbg.registry import Registry from winappdbg.textio import HexInput, HexDump from winappdbg.util import Regenerator, PathOperations, MemoryAddresses, DebugRegister, \ classproperty from winappdbg.process import _ProcessContainer from winappdbg.window import Window import sys import os import ctypes import warnings from os import path, getenv #============================================================================== class System (_ProcessContainer): """ Interface to a batch of processes, plus some system wide settings. Contains a snapshot of processes. @group Platform settings: arch, bits, os, wow64, pageSize @group Instrumentation: find_window, get_window_at, get_foreground_window, get_desktop_window, get_shell_window @group Debugging: load_dbghelp, fix_symbol_store_path, request_debug_privileges, drop_debug_privileges @group Postmortem debugging: get_postmortem_debugger, set_postmortem_debugger, get_postmortem_exclusion_list, add_to_postmortem_exclusion_list, remove_from_postmortem_exclusion_list @group System services: get_services, get_active_services, start_service, stop_service, pause_service, resume_service, get_service_display_name, get_service_from_display_name @group Permissions and privileges: request_privileges, drop_privileges, adjust_privileges, is_admin @group Miscellaneous global settings: set_kill_on_exit_mode, read_msr, write_msr, enable_step_on_branch_mode, get_last_branch_location @type arch: str @cvar arch: Name of the processor architecture we're running on. For more details see L{win32.version._get_arch}. @type bits: int @cvar bits: Size of the machine word in bits for the current architecture. For more details see L{win32.version._get_bits}. @type os: str @cvar os: Name of the Windows version we're runing on. For more details see L{win32.version._get_os}. @type wow64: bool @cvar wow64: C{True} if the debugger is a 32 bits process running in a 64 bits version of Windows, C{False} otherwise. @type pageSize: int @cvar pageSize: Page size in bytes. Defaults to 0x1000 but it's automatically updated on runtime when importing the module. @type registry: L{Registry} @cvar registry: Windows Registry for this machine. """ arch = win32.arch bits = win32.bits os = win32.os wow64 = win32.wow64 @classproperty def pageSize(cls): pageSize = MemoryAddresses.pageSize cls.pageSize = pageSize return pageSize registry = Registry() #------------------------------------------------------------------------------ @staticmethod def find_window(className = None, windowName = None): """ Find the first top-level window in the current desktop to match the given class name and/or window name. If neither are provided any top-level window will match. @see: L{get_window_at} @type className: str @param className: (Optional) Class name of the window to find. If C{None} or not used any class name will match the search. @type windowName: str @param windowName: (Optional) Caption text of the window to find. If C{None} or not used any caption text will match the search. @rtype: L{Window} or None @return: A window that matches the request. There may be more matching windows, but this method only returns one. If no matching window is found, the return value is C{None}. @raise WindowsError: An error occured while processing this request. """ # I'd love to reverse the order of the parameters # but that might create some confusion. :( hWnd = win32.FindWindow(className, windowName) if hWnd: return Window(hWnd) @staticmethod def get_window_at(x, y): """ Get the window located at the given coordinates in the desktop. If no such window exists an exception is raised. @see: L{find_window} @type x: int @param x: Horizontal coordinate. @type y: int @param y: Vertical coordinate. @rtype: L{Window} @return: Window at the requested position. If no such window exists a C{WindowsError} exception is raised. @raise WindowsError: An error occured while processing this request. """ return Window( win32.WindowFromPoint( (x, y) ) ) @staticmethod def get_foreground_window(): """ @rtype: L{Window} @return: Returns the foreground window. @raise WindowsError: An error occured while processing this request. """ return Window( win32.GetForegroundWindow() ) @staticmethod def get_desktop_window(): """ @rtype: L{Window} @return: Returns the desktop window. @raise WindowsError: An error occured while processing this request. """ return Window( win32.GetDesktopWindow() ) @staticmethod def get_shell_window(): """ @rtype: L{Window} @return: Returns the shell window. @raise WindowsError: An error occured while processing this request. """ return Window( win32.GetShellWindow() ) #------------------------------------------------------------------------------ @classmethod def request_debug_privileges(cls, bIgnoreExceptions = False): """ Requests debug privileges. This may be needed to debug processes running as SYSTEM (such as services) since Windows XP. @type bIgnoreExceptions: bool @param bIgnoreExceptions: C{True} to ignore any exceptions that may be raised when requesting debug privileges. @rtype: bool @return: C{True} on success, C{False} on failure. @raise WindowsError: Raises an exception on error, unless C{bIgnoreExceptions} is C{True}. """ try: cls.request_privileges(win32.SE_DEBUG_NAME) return True except Exception: if not bIgnoreExceptions: raise return False @classmethod def drop_debug_privileges(cls, bIgnoreExceptions = False): """ Drops debug privileges. This may be needed to avoid being detected by certain anti-debug tricks. @type bIgnoreExceptions: bool @param bIgnoreExceptions: C{True} to ignore any exceptions that may be raised when dropping debug privileges. @rtype: bool @return: C{True} on success, C{False} on failure. @raise WindowsError: Raises an exception on error, unless C{bIgnoreExceptions} is C{True}. """ try: cls.drop_privileges(win32.SE_DEBUG_NAME) return True except Exception: if not bIgnoreExceptions: raise return False @classmethod def request_privileges(cls, *privileges): """ Requests privileges. @type privileges: int... @param privileges: Privileges to request. @raise WindowsError: Raises an exception on error. """ cls.adjust_privileges(True, privileges) @classmethod def drop_privileges(cls, *privileges): """ Drops privileges. @type privileges: int... @param privileges: Privileges to drop. @raise WindowsError: Raises an exception on error. """ cls.adjust_privileges(False, privileges) @staticmethod def adjust_privileges(state, privileges): """ Requests or drops privileges. @type state: bool @param state: C{True} to request, C{False} to drop. @type privileges: list(int) @param privileges: Privileges to request or drop. @raise WindowsError: Raises an exception on error. """ with win32.OpenProcessToken(win32.GetCurrentProcess(), win32.TOKEN_ADJUST_PRIVILEGES) as hToken: NewState = ( (priv, state) for priv in privileges ) win32.AdjustTokenPrivileges(hToken, NewState) @staticmethod def is_admin(): """ @rtype: bool @return: C{True} if the current user as Administrator privileges, C{False} otherwise. Since Windows Vista and above this means if the current process is running with UAC elevation or not. """ return win32.IsUserAnAdmin() #------------------------------------------------------------------------------ __binary_types = { win32.VFT_APP: "application", win32.VFT_DLL: "dynamic link library", win32.VFT_STATIC_LIB: "static link library", win32.VFT_FONT: "font", win32.VFT_DRV: "driver", win32.VFT_VXD: "legacy driver", } __driver_types = { win32.VFT2_DRV_COMM: "communications driver", win32.VFT2_DRV_DISPLAY: "display driver", win32.VFT2_DRV_INSTALLABLE: "installable driver", win32.VFT2_DRV_KEYBOARD: "keyboard driver", win32.VFT2_DRV_LANGUAGE: "language driver", win32.VFT2_DRV_MOUSE: "mouse driver", win32.VFT2_DRV_NETWORK: "network driver", win32.VFT2_DRV_PRINTER: "printer driver", win32.VFT2_DRV_SOUND: "sound driver", win32.VFT2_DRV_SYSTEM: "system driver", win32.VFT2_DRV_VERSIONED_PRINTER: "versioned printer driver", } __font_types = { win32.VFT2_FONT_RASTER: "raster font", win32.VFT2_FONT_TRUETYPE: "TrueType font", win32.VFT2_FONT_VECTOR: "vector font", } __months = ( "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ) __days_of_the_week = ( "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", ) @classmethod def get_file_version_info(cls, filename): """ Get the program version from an executable file, if available. @type filename: str @param filename: Pathname to the executable file to query. @rtype: tuple(str, str, bool, bool, str, str) @return: Tuple with version information extracted from the executable file metadata, containing the following: - File version number (C{"major.minor"}). - Product version number (C{"major.minor"}). - C{True} for debug builds, C{False} for production builds. - C{True} for legacy OS builds (DOS, OS/2, Win16), C{False} for modern OS builds. - Binary file type. May be one of the following values: - "application" - "dynamic link library" - "static link library" - "font" - "raster font" - "TrueType font" - "vector font" - "driver" - "communications driver" - "display driver" - "installable driver" - "keyboard driver" - "language driver" - "legacy driver" - "mouse driver" - "network driver" - "printer driver" - "sound driver" - "system driver" - "versioned printer driver" - Binary creation timestamp. Any of the fields may be C{None} if not available. @raise WindowsError: Raises an exception on error. """ # Get the file version info structure. pBlock = win32.GetFileVersionInfo(filename) pBuffer, dwLen = win32.VerQueryValue(pBlock, "\\") if dwLen != ctypes.sizeof(win32.VS_FIXEDFILEINFO): raise ctypes.WinError(win32.ERROR_BAD_LENGTH) pVersionInfo = ctypes.cast(pBuffer, ctypes.POINTER(win32.VS_FIXEDFILEINFO)) VersionInfo = pVersionInfo.contents if VersionInfo.dwSignature != 0xFEEF04BD: raise ctypes.WinError(win32.ERROR_BAD_ARGUMENTS) # File and product versions. FileVersion = "%d.%d" % (VersionInfo.dwFileVersionMS, VersionInfo.dwFileVersionLS) ProductVersion = "%d.%d" % (VersionInfo.dwProductVersionMS, VersionInfo.dwProductVersionLS) # Debug build? if VersionInfo.dwFileFlagsMask & win32.VS_FF_DEBUG: DebugBuild = (VersionInfo.dwFileFlags & win32.VS_FF_DEBUG) != 0 else: DebugBuild = None # Legacy OS build? LegacyBuild = (VersionInfo.dwFileOS != win32.VOS_NT_WINDOWS32) # File type. FileType = cls.__binary_types.get(VersionInfo.dwFileType) if VersionInfo.dwFileType == win32.VFT_DRV: FileType = cls.__driver_types.get(VersionInfo.dwFileSubtype) elif VersionInfo.dwFileType == win32.VFT_FONT: FileType = cls.__font_types.get(VersionInfo.dwFileSubtype) # Timestamp, ex: "Monday, July 7, 2013 (12:20:50.126)". # FIXME: how do we know the time zone? FileDate = (VersionInfo.dwFileDateMS << 32) + VersionInfo.dwFileDateLS if FileDate: CreationTime = win32.FileTimeToSystemTime(FileDate) CreationTimestamp = "%s, %s %d, %d (%d:%d:%d.%d)" % ( cls.__days_of_the_week[CreationTime.wDayOfWeek], cls.__months[CreationTime.wMonth], CreationTime.wDay, CreationTime.wYear, CreationTime.wHour, CreationTime.wMinute, CreationTime.wSecond, CreationTime.wMilliseconds, ) else: CreationTimestamp = None # Return the file version info. return ( FileVersion, ProductVersion, DebugBuild, LegacyBuild, FileType, CreationTimestamp, ) #------------------------------------------------------------------------------ # Locations for dbghelp.dll. # Unfortunately, Microsoft started bundling WinDbg with the # platform SDK, so the install directories may vary across # versions and platforms. __dbghelp_locations = { # Intel 64 bits. win32.ARCH_AMD64: set([ # WinDbg bundled with the SDK, version 8.0. path.join( getenv("ProgramFiles", "C:\\Program Files"), "Windows Kits", "8.0", "Debuggers", "x64", "dbghelp.dll"), path.join( getenv("ProgramW6432", getenv("ProgramFiles", "C:\\Program Files")), "Windows Kits", "8.0", "Debuggers", "x64", "dbghelp.dll"), # Old standalone versions of WinDbg. path.join( getenv("ProgramFiles", "C:\\Program Files"), "Debugging Tools for Windows (x64)", "dbghelp.dll"), ]), # Intel 32 bits. win32.ARCH_I386 : set([ # WinDbg bundled with the SDK, version 8.0. path.join( getenv("ProgramFiles", "C:\\Program Files"), "Windows Kits", "8.0", "Debuggers", "x86", "dbghelp.dll"), path.join( getenv("ProgramW6432", getenv("ProgramFiles", "C:\\Program Files")), "Windows Kits", "8.0", "Debuggers", "x86", "dbghelp.dll"), # Old standalone versions of WinDbg. path.join( getenv("ProgramFiles", "C:\\Program Files"), "Debugging Tools for Windows (x86)", "dbghelp.dll"), # Version shipped with Windows. path.join( getenv("ProgramFiles", "C:\\Program Files"), "Debugging Tools for Windows (x86)", "dbghelp.dll"), ]), } @classmethod def load_dbghelp(cls, pathname = None): """ Load the specified version of the C{dbghelp.dll} library. This library is shipped with the Debugging Tools for Windows, and it's required to load debug symbols. Normally you don't need to call this method, as WinAppDbg already tries to load the latest version automatically - but it may come in handy if the Debugging Tools are installed in a non standard folder. Example:: from winappdbg import Debug def simple_debugger( argv ): # Instance a Debug object, passing it the event handler callback debug = Debug( my_event_handler ) try: # Load a specific dbghelp.dll file debug.system.load_dbghelp("C:\Some folder\dbghelp.dll") # Start a new process for debugging debug.execv( argv ) # Wait for the debugee to finish debug.loop() # Stop the debugger finally: debug.stop() @see: U{http://msdn.microsoft.com/en-us/library/ms679294(VS.85).aspx} @type pathname: str @param pathname: (Optional) Full pathname to the C{dbghelp.dll} library. If not provided this method will try to autodetect it. @rtype: ctypes.WinDLL @return: Loaded instance of C{dbghelp.dll}. @raise NotImplementedError: This feature was not implemented for the current architecture. @raise WindowsError: An error occured while processing this request. """ # If an explicit pathname was not given, search for the library. if not pathname: # Under WOW64 we'll treat AMD64 as I386. arch = win32.arch if arch == win32.ARCH_AMD64 and win32.bits == 32: arch = win32.ARCH_I386 # Check if the architecture is supported. if not arch in cls.__dbghelp_locations: msg = "Architecture %s is not currently supported." raise NotImplementedError(msg % arch) # Grab all versions of the library we can find. found = [] for pathname in cls.__dbghelp_locations[arch]: if path.isfile(pathname): try: f_ver, p_ver = cls.get_file_version_info(pathname)[:2] except WindowsError: msg = "Failed to parse file version metadata for: %s" warnings.warn(msg % pathname) if not f_ver: f_ver = p_ver elif p_ver and p_ver > f_ver: f_ver = p_ver found.append( (f_ver, pathname) ) # If we found any, use the newest version. if found: found.sort() pathname = found.pop()[1] # If we didn't find any, trust the default DLL search algorithm. else: pathname = "dbghelp.dll" # Load the library. dbghelp = ctypes.windll.LoadLibrary(pathname) # Set it globally as the library to be used. ctypes.windll.dbghelp = dbghelp # Return the library. return dbghelp @staticmethod def fix_symbol_store_path(symbol_store_path = None, remote = True, force = False): """ Fix the symbol store path. Equivalent to the C{.symfix} command in Microsoft WinDbg. If the symbol store path environment variable hasn't been set, this method will provide a default one. @type symbol_store_path: str or None @param symbol_store_path: (Optional) Symbol store path to set. @type remote: bool @param remote: (Optional) Defines the symbol store path to set when the C{symbol_store_path} is C{None}. If C{True} the default symbol store path is set to the Microsoft symbol server. Debug symbols will be downloaded through HTTP. This gives the best results but is also quite slow. If C{False} the default symbol store path is set to the local cache only. This prevents debug symbols from being downloaded and is faster, but unless you've installed the debug symbols on this machine or downloaded them in a previous debugging session, some symbols may be missing. If the C{symbol_store_path} argument is not C{None}, this argument is ignored entirely. @type force: bool @param force: (Optional) If C{True} the new symbol store path is set always. If C{False} the new symbol store path is only set if missing. This allows you to call this method preventively to ensure the symbol server is always set up correctly when running your script, but without messing up whatever configuration the user has. Example:: from winappdbg import Debug, System def simple_debugger( argv ): # Instance a Debug object debug = Debug( MyEventHandler() ) try: # Make sure the remote symbol store is set System.fix_symbol_store_path(remote = True, force = False) # Start a new process for debugging debug.execv( argv ) # Wait for the debugee to finish debug.loop() # Stop the debugger finally: debug.stop() @rtype: str or None @return: The previously set symbol store path if any, otherwise returns C{None}. """ try: if symbol_store_path is None: local_path = "C:\\SYMBOLS" if not path.isdir(local_path): local_path = "C:\\Windows\\Symbols" if not path.isdir(local_path): local_path = path.abspath(".") if remote: symbol_store_path = ( "cache*;SRV*" + local_path + "*" "http://msdl.microsoft.com/download/symbols" ) else: symbol_store_path = "cache*;SRV*" + local_path previous = os.environ.get("_NT_SYMBOL_PATH", None) if not previous or force: os.environ["_NT_SYMBOL_PATH"] = symbol_store_path return previous except Exception: e = sys.exc_info()[1] warnings.warn("Cannot fix symbol path, reason: %s" % str(e), RuntimeWarning) #------------------------------------------------------------------------------ @staticmethod def set_kill_on_exit_mode(bKillOnExit = False): """ Defines the behavior of the debugged processes when the debugging thread dies. This method only affects the calling thread. Works on the following platforms: - Microsoft Windows XP and above. - Wine (Windows Emulator). Fails on the following platforms: - Microsoft Windows 2000 and below. - ReactOS. @type bKillOnExit: bool @param bKillOnExit: C{True} to automatically kill processes when the debugger thread dies. C{False} to automatically detach from processes when the debugger thread dies. @rtype: bool @return: C{True} on success, C{False} on error. @note: This call will fail if a debug port was not created. That is, if the debugger isn't attached to at least one process. For more info see: U{http://msdn.microsoft.com/en-us/library/ms679307.aspx} """ try: # won't work before calling CreateProcess or DebugActiveProcess win32.DebugSetProcessKillOnExit(bKillOnExit) except (AttributeError, WindowsError): return False return True @staticmethod def read_msr(address): """ Read the contents of the specified MSR (Machine Specific Register). @type address: int @param address: MSR to read. @rtype: int @return: Value of the specified MSR. @raise WindowsError: Raises an exception on error. @raise NotImplementedError: Current architecture is not C{i386} or C{amd64}. @warning: It could potentially brick your machine. It works on my machine, but your mileage may vary. """ if win32.arch not in (win32.ARCH_I386, win32.ARCH_AMD64): raise NotImplementedError( "MSR reading is only supported on i386 or amd64 processors.") msr = win32.SYSDBG_MSR() msr.Address = address msr.Data = 0 win32.NtSystemDebugControl(win32.SysDbgReadMsr, InputBuffer = msr, OutputBuffer = msr) return msr.Data @staticmethod def write_msr(address, value): """ Set the contents of the specified MSR (Machine Specific Register). @type address: int @param address: MSR to write. @type value: int @param value: Contents to write on the MSR. @raise WindowsError: Raises an exception on error. @raise NotImplementedError: Current architecture is not C{i386} or C{amd64}. @warning: It could potentially brick your machine. It works on my machine, but your mileage may vary. """ if win32.arch not in (win32.ARCH_I386, win32.ARCH_AMD64): raise NotImplementedError( "MSR writing is only supported on i386 or amd64 processors.") msr = win32.SYSDBG_MSR() msr.Address = address msr.Data = value win32.NtSystemDebugControl(win32.SysDbgWriteMsr, InputBuffer = msr) @classmethod def enable_step_on_branch_mode(cls): """ When tracing, call this on every single step event for step on branch mode. @raise WindowsError: Raises C{ERROR_DEBUGGER_INACTIVE} if the debugger is not attached to least one process. @raise NotImplementedError: Current architecture is not C{i386} or C{amd64}. @warning: This method uses the processor's machine specific registers (MSR). It could potentially brick your machine. It works on my machine, but your mileage may vary. @note: It doesn't seem to work in VMWare or VirtualBox machines. Maybe it fails in other virtualization/emulation environments, no extensive testing was made so far. """ cls.write_msr(DebugRegister.DebugCtlMSR, DebugRegister.BranchTrapFlag | DebugRegister.LastBranchRecord) @classmethod def get_last_branch_location(cls): """ Returns the source and destination addresses of the last taken branch. @rtype: tuple( int, int ) @return: Source and destination addresses of the last taken branch. @raise WindowsError: Raises an exception on error. @raise NotImplementedError: Current architecture is not C{i386} or C{amd64}. @warning: This method uses the processor's machine specific registers (MSR). It could potentially brick your machine. It works on my machine, but your mileage may vary. @note: It doesn't seem to work in VMWare or VirtualBox machines. Maybe it fails in other virtualization/emulation environments, no extensive testing was made so far. """ LastBranchFromIP = cls.read_msr(DebugRegister.LastBranchFromIP) LastBranchToIP = cls.read_msr(DebugRegister.LastBranchToIP) return ( LastBranchFromIP, LastBranchToIP ) #------------------------------------------------------------------------------ @classmethod def get_postmortem_debugger(cls, bits = None): """ Returns the postmortem debugging settings from the Registry. @see: L{set_postmortem_debugger} @type bits: int @param bits: Set to C{32} for the 32 bits debugger, or C{64} for the 64 bits debugger. Set to {None} for the default (L{System.bits}. @rtype: tuple( str, bool, int ) @return: A tuple containing the command line string to the postmortem debugger, a boolean specifying if user interaction is allowed before attaching, and an integer specifying a user defined hotkey. Any member of the tuple may be C{None}. See L{set_postmortem_debugger} for more details. @raise WindowsError: Raises an exception on error. """ if bits is None: bits = cls.bits elif bits not in (32, 64): raise NotImplementedError("Unknown architecture (%r bits)" % bits) if bits == 32 and cls.bits == 64: keyname = 'HKLM\\SOFTWARE\\Wow6432Node\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug' else: keyname = 'HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug' key = cls.registry[keyname] debugger = key.get('Debugger') auto = key.get('Auto') hotkey = key.get('UserDebuggerHotkey') if auto is not None: auto = bool(auto) return (debugger, auto, hotkey) @classmethod def get_postmortem_exclusion_list(cls, bits = None): """ Returns the exclusion list for the postmortem debugger. @see: L{get_postmortem_debugger} @type bits: int @param bits: Set to C{32} for the 32 bits debugger, or C{64} for the 64 bits debugger. Set to {None} for the default (L{System.bits}). @rtype: list( str ) @return: List of excluded application filenames. @raise WindowsError: Raises an exception on error. """ if bits is None: bits = cls.bits elif bits not in (32, 64): raise NotImplementedError("Unknown architecture (%r bits)" % bits) if bits == 32 and cls.bits == 64: keyname = 'HKLM\\SOFTWARE\\Wow6432Node\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug\\AutoExclusionList' else: keyname = 'HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug\\AutoExclusionList' try: key = cls.registry[keyname] except KeyError: return [] return [name for (name, enabled) in key.items() if enabled] @classmethod def set_postmortem_debugger(cls, cmdline, auto = None, hotkey = None, bits = None): """ Sets the postmortem debugging settings in the Registry. @warning: This method requires administrative rights. @see: L{get_postmortem_debugger} @type cmdline: str @param cmdline: Command line to the new postmortem debugger. When the debugger is invoked, the first "%ld" is replaced with the process ID and the second "%ld" is replaced with the event handle. Don't forget to enclose the program filename in double quotes if the path contains spaces. @type auto: bool @param auto: Set to C{True} if no user interaction is allowed, C{False} to prompt a confirmation dialog before attaching. Use C{None} to leave this value unchanged. @type hotkey: int @param hotkey: Virtual key scan code for the user defined hotkey. Use C{0} to disable the hotkey. Use C{None} to leave this value unchanged. @type bits: int @param bits: Set to C{32} for the 32 bits debugger, or C{64} for the 64 bits debugger. Set to {None} for the default (L{System.bits}). @rtype: tuple( str, bool, int ) @return: Previously defined command line and auto flag. @raise WindowsError: Raises an exception on error. """ if bits is None: bits = cls.bits elif bits not in (32, 64): raise NotImplementedError("Unknown architecture (%r bits)" % bits) if bits == 32 and cls.bits == 64: keyname = 'HKLM\\SOFTWARE\\Wow6432Node\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug' else: keyname = 'HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug' key = cls.registry[keyname] if cmdline is not None: key['Debugger'] = cmdline if auto is not None: key['Auto'] = int(bool(auto)) if hotkey is not None: key['UserDebuggerHotkey'] = int(hotkey) @classmethod def add_to_postmortem_exclusion_list(cls, pathname, bits = None): """ Adds the given filename to the exclusion list for postmortem debugging. @warning: This method requires administrative rights. @see: L{get_postmortem_exclusion_list} @type pathname: str @param pathname: Application pathname to exclude from postmortem debugging. @type bits: int @param bits: Set to C{32} for the 32 bits debugger, or C{64} for the 64 bits debugger. Set to {None} for the default (L{System.bits}). @raise WindowsError: Raises an exception on error. """ if bits is None: bits = cls.bits elif bits not in (32, 64): raise NotImplementedError("Unknown architecture (%r bits)" % bits) if bits == 32 and cls.bits == 64: keyname = 'HKLM\\SOFTWARE\\Wow6432Node\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug\\AutoExclusionList' else: keyname = 'HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug\\AutoExclusionList' try: key = cls.registry[keyname] except KeyError: key = cls.registry.create(keyname) key[pathname] = 1 @classmethod def remove_from_postmortem_exclusion_list(cls, pathname, bits = None): """ Removes the given filename to the exclusion list for postmortem debugging from the Registry. @warning: This method requires administrative rights. @warning: Don't ever delete entries you haven't created yourself! Some entries are set by default for your version of Windows. Deleting them might deadlock your system under some circumstances. For more details see: U{http://msdn.microsoft.com/en-us/library/bb204634(v=vs.85).aspx} @see: L{get_postmortem_exclusion_list} @type pathname: str @param pathname: Application pathname to remove from the postmortem debugging exclusion list. @type bits: int @param bits: Set to C{32} for the 32 bits debugger, or C{64} for the 64 bits debugger. Set to {None} for the default (L{System.bits}). @raise WindowsError: Raises an exception on error. """ if bits is None: bits = cls.bits elif bits not in (32, 64): raise NotImplementedError("Unknown architecture (%r bits)" % bits) if bits == 32 and cls.bits == 64: keyname = 'HKLM\\SOFTWARE\\Wow6432Node\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug\\AutoExclusionList' else: keyname = 'HKLM\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug\\AutoExclusionList' try: key = cls.registry[keyname] except KeyError: return try: del key[pathname] except KeyError: return #------------------------------------------------------------------------------ @staticmethod def get_services(): """ Retrieve a list of all system services. @see: L{get_active_services}, L{start_service}, L{stop_service}, L{pause_service}, L{resume_service} @rtype: list( L{win32.ServiceStatusProcessEntry} ) @return: List of service status descriptors. """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_ENUMERATE_SERVICE ) as hSCManager: try: return win32.EnumServicesStatusEx(hSCManager) except AttributeError: return win32.EnumServicesStatus(hSCManager) @staticmethod def get_active_services(): """ Retrieve a list of all active system services. @see: L{get_services}, L{start_service}, L{stop_service}, L{pause_service}, L{resume_service} @rtype: list( L{win32.ServiceStatusProcessEntry} ) @return: List of service status descriptors. """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_ENUMERATE_SERVICE ) as hSCManager: return [ entry for entry in win32.EnumServicesStatusEx(hSCManager, dwServiceType = win32.SERVICE_WIN32, dwServiceState = win32.SERVICE_ACTIVE) \ if entry.ProcessId ] @staticmethod def get_service(name): """ Get the service descriptor for the given service name. @see: L{start_service}, L{stop_service}, L{pause_service}, L{resume_service} @type name: str @param name: Service unique name. You can get this value from the C{ServiceName} member of the service descriptors returned by L{get_services} or L{get_active_services}. @rtype: L{win32.ServiceStatusProcess} @return: Service status descriptor. """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_ENUMERATE_SERVICE ) as hSCManager: with win32.OpenService(hSCManager, name, dwDesiredAccess = win32.SERVICE_QUERY_STATUS ) as hService: try: return win32.QueryServiceStatusEx(hService) except AttributeError: return win32.QueryServiceStatus(hService) @staticmethod def get_service_display_name(name): """ Get the service display name for the given service name. @see: L{get_service} @type name: str @param name: Service unique name. You can get this value from the C{ServiceName} member of the service descriptors returned by L{get_services} or L{get_active_services}. @rtype: str @return: Service display name. """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_ENUMERATE_SERVICE ) as hSCManager: return win32.GetServiceDisplayName(hSCManager, name) @staticmethod def get_service_from_display_name(displayName): """ Get the service unique name given its display name. @see: L{get_service} @type displayName: str @param displayName: Service display name. You can get this value from the C{DisplayName} member of the service descriptors returned by L{get_services} or L{get_active_services}. @rtype: str @return: Service unique name. """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_ENUMERATE_SERVICE ) as hSCManager: return win32.GetServiceKeyName(hSCManager, displayName) @staticmethod def start_service(name, argv = None): """ Start the service given by name. @warn: This method requires UAC elevation in Windows Vista and above. @see: L{stop_service}, L{pause_service}, L{resume_service} @type name: str @param name: Service unique name. You can get this value from the C{ServiceName} member of the service descriptors returned by L{get_services} or L{get_active_services}. """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_CONNECT ) as hSCManager: with win32.OpenService(hSCManager, name, dwDesiredAccess = win32.SERVICE_START ) as hService: win32.StartService(hService) @staticmethod def stop_service(name): """ Stop the service given by name. @warn: This method requires UAC elevation in Windows Vista and above. @see: L{get_services}, L{get_active_services}, L{start_service}, L{pause_service}, L{resume_service} """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_CONNECT ) as hSCManager: with win32.OpenService(hSCManager, name, dwDesiredAccess = win32.SERVICE_STOP ) as hService: win32.ControlService(hService, win32.SERVICE_CONTROL_STOP) @staticmethod def pause_service(name): """ Pause the service given by name. @warn: This method requires UAC elevation in Windows Vista and above. @note: Not all services support this. @see: L{get_services}, L{get_active_services}, L{start_service}, L{stop_service}, L{resume_service} """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_CONNECT ) as hSCManager: with win32.OpenService(hSCManager, name, dwDesiredAccess = win32.SERVICE_PAUSE_CONTINUE ) as hService: win32.ControlService(hService, win32.SERVICE_CONTROL_PAUSE) @staticmethod def resume_service(name): """ Resume the service given by name. @warn: This method requires UAC elevation in Windows Vista and above. @note: Not all services support this. @see: L{get_services}, L{get_active_services}, L{start_service}, L{stop_service}, L{pause_service} """ with win32.OpenSCManager( dwDesiredAccess = win32.SC_MANAGER_CONNECT ) as hSCManager: with win32.OpenService(hSCManager, name, dwDesiredAccess = win32.SERVICE_PAUSE_CONTINUE ) as hService: win32.ControlService(hService, win32.SERVICE_CONTROL_CONTINUE) # TODO: create_service, delete_service
4c235f4e1cb7df6459e5a27dc2db0e9523efbd8d
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/galex_j18372-3125/sdB_GALEX_J18372-3125_coadd.py
034c74a4d5e3f32e646d3ef889df15b3efc39fd6
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[279.319917,-31.420586], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_GALEX_J18372-3125/sdB_GALEX_J18372-3125_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_GALEX_J18372-3125/sdB_GALEX_J18372-3125_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
271de1ac2b54d0734818c659bda503b6581faecf
f7edc11e203532cf755c73c64023ed0381bdb92f
/backend/giddy_up_18698/settings.py
20f0de0620ad7ffa1bbac2990a2347f5f7384a09
[]
no_license
crowdbotics-apps/giddy-up-18698
b146616a279418eb26ffd92e3b3417ecd00a89e6
10c80047e774f2bc9195adb3a6ace97da5981510
refs/heads/master
2022-11-14T04:55:34.914713
2020-07-08T02:26:33
2020-07-08T02:26:33
277,969,471
0
0
null
null
null
null
UTF-8
Python
false
false
5,794
py
""" Django settings for giddy_up_18698 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'giddy_up_18698.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'giddy_up_18698.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static') ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications if DEBUG: # output email to console instead of sending EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
7a8a0495f011281a56470d70c04e8e2dbe1b09db
f92385943346eccca8cc4d7caca66d2d5455caa2
/2020.8/老虎-1.py
4944f91312e7c445e82228e8f02965aa40b7fbe9
[]
no_license
IamWilliamWang/Leetcode-practice
83861c5f8672a716141dc6ec9f61f21dc5041535
c13c0380a3ae9fef201ae53d7004b9f4224f1620
refs/heads/master
2023-04-01T12:15:19.335312
2020-10-15T14:49:36
2020-10-15T14:49:36
281,846,435
0
0
null
null
null
null
UTF-8
Python
false
false
968
py
# # # @param HP long长整型 HP # @param ACK long长整型 ACK # @param HP2 long长整型 HP2 # @param ACK2 long长整型 ACK2 # @return long长整型 # import math class Solution: def Pokemonfight(self, HP, ACK, HP2, ACK2): hp, ack, hpEnemy, ackEnemy = HP2, ACK2, HP, ACK if ackEnemy >= hp: # 一回合被拍死 return -1 eatMadicine = False for round in range(1, 100000): hp -= ackEnemy # 敌人攻击 if hp <= 0: return -1 if hp <= ackEnemy and hpEnemy > ack: # 该考虑吃药了 if eatMadicine: # 发现不停的要吃药,没有机会攻击 return -1 hp = HP2 eatMadicine = True else: hpEnemy -= ack eatMadicine = False if hpEnemy <= 0: return round return -1 print(Solution().Pokemonfight(8, 3, 8, 1))
35d505a038c7b205e90b3d1f3f3ee044a8950306
d66818f4b951943553826a5f64413e90120e1fae
/hackerearth/Algorithms/Types of burgers/solution.py
94cc0b583a01253b636b13ccbe80d38732c353cd
[ "MIT" ]
permissive
HBinhCT/Q-project
0f80cd15c9945c43e2e17072416ddb6e4745e7fa
19923cbaa3c83c670527899ece5c3ad31bcebe65
refs/heads/master
2023-08-30T08:59:16.006567
2023-08-29T15:30:21
2023-08-29T15:30:21
247,630,603
8
1
MIT
2020-07-22T01:20:23
2020-03-16T06:48:02
Python
UTF-8
Python
false
false
873
py
from heapq import heappop, heappush t = int(input()) moves = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) for _ in range(t): x, y, z = map(int, input().strip().split()) k = int(input()) b1 = sorted(map(int, input().strip().split()), reverse=True) b2 = sorted(map(int, input().strip().split()), reverse=True) b3 = sorted(map(int, input().strip().split()), reverse=True) heap = [(-(b1[0] + b2[0] + b3[0]), 0, 0, 0)] visited = {(0, 0, 0)} ans = 0 while k: total, bx, by, bz = heappop(heap) ans -= total for mx, my, mz in moves: nx = bx + mx ny = by + my nz = bz + mz if nx < x and ny < y and nz < z and (nx, ny, nz) not in visited: heappush(heap, (-(b1[nx] + b2[ny] + b3[nz]), nx, ny, nz)) visited.add((nx, ny, nz)) k -= 1 print(ans)
4a70fedc08979200d7ed54db5e4a6469a9d88d01
53d203e73331d2ee0f1d644946bf6650f5716edd
/quantifiedcode/backend/tasks/email.py
95859928af4da04b416a6a77b273f397ad3bc141
[ "BSD-3-Clause" ]
permissive
martynbristow/quantifiedcode
3f6a6c935aeb8d78e90086cefaee6cd3b6f4558d
a7485ceaeffc5cf5894654dde35ed9a501657a07
refs/heads/master
2022-01-25T20:42:24.124289
2021-07-07T10:44:54
2021-07-07T10:44:54
239,041,449
0
0
BSD-3-Clause
2022-01-06T22:47:22
2020-02-07T23:37:47
JavaScript
UTF-8
Python
false
false
3,998
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Contains tasks and helper functions to send notifications. """ from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import import logging import datetime import traceback import re from six import string_types from quantifiedcode.settings import settings, backend from quantifiedcode.backend.settings.jinja import jinja_env from quantifiedcode.backend.worker import celery from quantifiedcode.backend.models import User logger = logging.getLogger(__name__) def send_mail(*args, **kwargs): if settings.get('debug'): send_mail_async(*args, **kwargs) else: send_mail_async.delay(*args, **kwargs) @celery.task(time_limit=120, queue="email", ignore_result=False) def send_mail_async(email_to, template, template_context=None, email_from=None, name_from=None, email_reply_to=None, attachments=None): """ Sends an email based on the specified template. :param email_to: address or a list of email addresses :param template: name of the template to use for the email :param template_context: dict with template context, ie `template_context = {"diffs": aggregated_diffs}` :param email_from: sender of the email :param name_from: name of the sender :param email_reply_to: email address to set as the reply-to address :param attachments: list of attachments :return: """ if isinstance(email_to, string_types): email_to = [email_to] if email_to is None or not isinstance(email_to, (list, tuple)): raise ValueError("email_to is None or incompatible type!") if template_context is None: template_context = {} email_from = email_from if email_from is not None else settings.get('email.from_email') name_from = name_from if name_from is not None else settings.get('email.from_name') email_reply_to = email_reply_to if email_reply_to is not None else email_from if attachments is None: attachments = [] # render mail content template_context.update(settings.get('render_context', {})) template_path = "email/{0}.multipart".format(template) template = jinja_env.get_template(template_path) #we generate the module, which allows us the extract individual blocks from it #we capture those blocks of interest using the {% set ... %} syntax module = template.make_module(template_context) logger.info("Sending an email to: {}\ntemplate: {}\ntemplate_context: {}\nsubject: {}" .format("".join(email_to), template, template_context, module.subject)) message = { 'from_email': email_from, 'from_name': name_from, 'reply_to' : email_reply_to, 'subject': module.subject, 'html': module.html, 'text': module.text if module.text else None, 'to': email_to, 'attachments': attachments, } if not settings.providers['email.send']: logger.warning("No e-mail providers defined, aborting...") return for params in settings.providers['email.send']: params['provider'](message) break def send_mail_to_user(user, template, template_context=None, delay=False, **kwargs): """ Sends an email message if the user has a verified email and enabled email notifications :param user: user to send the email message to :param template: template for the message to send :param template_context: `template_context = {"diffs": aggregated_diffs}` :param delay: if True the send_mail function will be run asynchronously :return: None """ function = send_mail.delay if delay is True else send_mail if user.email and user.email_validated: return function(user.email, template, template_context=template_context, **kwargs)
de912f9609f0a22e4153cd9d3c53bdd16fe3d6c1
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_040/ch25_2020_03_09_19_44_46_012241.py
65c6d90914c5b631ee3669e31ddbbd97f3da12dc
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
import math v=float(input("Velocidade de lançamento: ")) angulo=float(input("Ângulo de lançamento: ")) def d(v,angulo): d = (v**2*math.sin(math.radians(2*angulo))/9.8) if (d>=102): return ("Acertou!") elif (d<=98): return ("Muito perto") else: return ("Muito longe")
d15740ee02928888baf46ea11ad875d8f4194fcc
da0a7446122a44887fa2c4f391e9630ae033daa2
/python/ray/train/tests/test_torch_trainer.py
8ccc79b096a47fcfdea805fb3ec786775f9cd30b
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
whiledoing/ray
d8d9ba09b7545e8fd00cca5cfad451278e61fffd
9272bcbbcae1630c5bb2db08a8279f0401ce6f92
refs/heads/master
2023-03-06T16:23:18.006757
2022-07-22T02:06:47
2022-07-22T02:06:47
252,420,044
0
0
Apache-2.0
2023-03-04T08:57:20
2020-04-02T10:07:23
Python
UTF-8
Python
false
false
3,493
py
import pytest from ray.air import session from ray.air.checkpoint import Checkpoint import torch import ray from ray.air.examples.pytorch.torch_linear_example import ( train_func as linear_train_func, ) from ray.train.torch import TorchPredictor, TorchTrainer from ray.tune import TuneError from ray.air.config import ScalingConfig @pytest.fixture def ray_start_4_cpus(): address_info = ray.init(num_cpus=4) yield address_info # The code after the yield will run as teardown code. ray.shutdown() @pytest.mark.parametrize("num_workers", [1, 2]) def test_torch_linear(ray_start_4_cpus, num_workers): def train_func(config): result = linear_train_func(config) assert len(result) == epochs assert result[-1]["loss"] < result[0]["loss"] num_workers = num_workers epochs = 3 scaling_config = ScalingConfig(num_workers=num_workers) config = {"lr": 1e-2, "hidden_size": 1, "batch_size": 4, "epochs": epochs} trainer = TorchTrainer( train_loop_per_worker=train_func, train_loop_config=config, scaling_config=scaling_config, ) trainer.fit() def test_torch_e2e(ray_start_4_cpus): def train_func(): model = torch.nn.Linear(1, 1) session.report({}, checkpoint=Checkpoint.from_dict(dict(model=model))) scaling_config = ScalingConfig(num_workers=2) trainer = TorchTrainer( train_loop_per_worker=train_func, scaling_config=scaling_config ) result = trainer.fit() predict_dataset = ray.data.range(3) class TorchScorer: def __init__(self): self.pred = TorchPredictor.from_checkpoint(result.checkpoint) def __call__(self, x): return self.pred.predict(x, dtype=torch.float) predictions = predict_dataset.map_batches( TorchScorer, batch_format="pandas", compute="actors" ) assert predictions.count() == 3 def test_torch_e2e_state_dict(ray_start_4_cpus): def train_func(): model = torch.nn.Linear(1, 1).state_dict() session.report({}, checkpoint=Checkpoint.from_dict(dict(model=model))) scaling_config = ScalingConfig(num_workers=2) trainer = TorchTrainer( train_loop_per_worker=train_func, scaling_config=scaling_config ) result = trainer.fit() # If loading from a state dict, a model definition must be passed in. with pytest.raises(ValueError): TorchPredictor.from_checkpoint(result.checkpoint) class TorchScorer: def __init__(self): self.pred = TorchPredictor.from_checkpoint( result.checkpoint, model=torch.nn.Linear(1, 1) ) def __call__(self, x): return self.pred.predict(x, dtype=torch.float) predict_dataset = ray.data.range(3) predictions = predict_dataset.map_batches( TorchScorer, batch_format="pandas", compute="actors" ) assert predictions.count() == 3 def test_checkpoint_freq(ray_start_4_cpus): # checkpoint_freq is not supported so raise an error trainer = TorchTrainer( train_loop_per_worker=lambda config: None, scaling_config=ray.air.ScalingConfig(num_workers=1), run_config=ray.air.RunConfig( checkpoint_config=ray.air.CheckpointConfig( checkpoint_frequency=2, ), ), ) with pytest.raises(TuneError): trainer.fit() if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", "-x", __file__]))
174dff48ac9b3bf40f36add33d6c4d489b16d1c6
267867b5bcaeeed26228a295b877a62473e1d1bb
/scripts/python/client.py
f4a4d313384dccede10d4ca0c3367a4ffb51601e
[]
no_license
gitgaoqian/cloud_v2
602a2a3ea8e4457606ce9f1a55e2166c9b227781
b35d89132799042ac34eba435b76c311c2a4b287
refs/heads/master
2021-05-06T07:08:52.055547
2021-01-24T12:25:38
2021-01-24T12:25:38
113,935,952
0
0
null
null
null
null
UTF-8
Python
false
false
546
py
#!/usr/bin/env python import sys import rospy from cloud_v2.srv import call def local_client(service,action): rospy.wait_for_service('bridge_service') try: client = rospy.ServiceProxy('bridge_service', call) resp1 = client(service,action) return resp1 except rospy.ServiceException, e: print "Service call failed: %s"%e if __name__ == "__main__": service = str(sys.argv[1]) action = str(sys.argv[2]) print "request "+service+' '+action print " %s"%(local_client(service,action))
0cce847454191ea31bb62590d59b1466784e8cc7
ef8c5c55b6ec3971adff9afe2db1f76556b87082
/code_examples.bak/wave2d_numpy_f90_cuda/wave2d_2plot.py
8ecd2c9c6ad280e4676bd5d9c627e86e1cdfa832
[]
no_license
wbkifun/my_stuff
7007efc94b678234097abf0df9babfbd79dcf0ff
0b5ad5d4d103fd05989b514bca0d5114691f8ff7
refs/heads/master
2020-12-10T22:40:28.532993
2017-11-15T11:39:41
2017-11-15T11:39:41
5,178,225
1
0
null
null
null
null
UTF-8
Python
false
false
1,863
py
#------------------------------------------------------------------------------ # Author : Ki-Hwan Kim ([email protected]) # # Written date : 2010. 6. 17 # Modify date : 2012. 9. 17 # # Copyright : GNU GPL # # Description : # Solve the 2-D wave equation with the FD(Finite-Difference) scheme # # These are educational codes to study the scientific python programming. # Step 1: Using the numpy # Step 2: Convert the hotspot to the Fortran code using F2PY # Step 3: Convert the hotspot to the CUDA code using PyCUDA #------------------------------------------------------------------------------ from __future__ import division import numpy import matplotlib.pyplot as plt from time import time #from core_numpy import advance from core_fortran import advance # Setup nx, ny = 2400, 2000 tmax, tgap = 1500, 40 c = numpy.ones((nx,ny), order='F')*0.25 f = numpy.zeros_like(c, order='F') g = numpy.zeros_like(c, order='F') # Plot using the matplotlib plt.ion() fig = plt.figure(figsize=(8,10)) ax1 = fig.add_subplot(2,1,1) ax1.plot([nx//2,nx//2], [0,ny], '--k') imag = ax1.imshow(c.T, origin='lower', vmin=-0.1, vmax=0.1) fig.colorbar(imag) ax2 = fig.add_subplot(2,1,2) line, = ax2.plot(c[nx//2,:]) ax2.set_xlim(0, ny) ax2.set_ylim(-0.1, 0.1) # Main loop for the time evolution t0 = time() f_avg = numpy.zeros(ny) for tn in xrange(1,tmax+1): #g[nx//3,ny//2] += numpy.sin(0.05*numpy.pi*tn) g[nx//3,ny//2+100] += numpy.sin(0.05*numpy.pi*tn) g[nx//3,ny//2-100] += numpy.sin(0.05*numpy.pi*tn) advance(c, f, g) advance(c, g, f) f_avg[:] += f[nx//2,:]**2 if tn%tgap == 0: print "%d (%d %%)" % (tn, tn/tmax*100) imag.set_array(f.T) line.set_ydata(f_avg) f_avg[:] = 0 plt.draw() #plt.savefig('./png/%.5d.png' % tn) print "throughput: %1.3f Mcell/s" % (nx*ny*tmax/(time()-t0)/1e6)
ea43c9fb9d97749418f21a7acb65a4abd48d203b
786027545626c24486753351d6e19093b261cd7d
/ghidra9.2.1_pyi/ghidra/file/formats/ios/decmpfs/DecmpfsHeader.pyi
14fadb23d185b60636313cbd85e5c0fceeb233fc
[ "MIT" ]
permissive
kohnakagawa/ghidra_scripts
51cede1874ef2b1fed901b802316449b4bf25661
5afed1234a7266c0624ec445133280993077c376
refs/heads/main
2023-03-25T08:25:16.842142
2021-03-18T13:31:40
2021-03-18T13:31:40
338,577,905
14
1
null
null
null
null
UTF-8
Python
false
false
1,782
pyi
from typing import List import ghidra.app.util.bin import ghidra.program.model.data import java.lang class DecmpfsHeader(object, ghidra.app.util.bin.StructConverter): ASCII: ghidra.program.model.data.DataType = char BYTE: ghidra.program.model.data.DataType = byte DWORD: ghidra.program.model.data.DataType = dword IBO32: ghidra.program.model.data.DataType = ImageBaseOffset32 POINTER: ghidra.program.model.data.DataType = pointer QWORD: ghidra.program.model.data.DataType = qword STRING: ghidra.program.model.data.DataType = string UTF16: ghidra.program.model.data.DataType = unicode UTF8: ghidra.program.model.data.DataType = string-utf8 VOID: ghidra.program.model.data.DataType = void WORD: ghidra.program.model.data.DataType = word def __init__(self, __a0: ghidra.app.util.bin.BinaryReader, __a1: int): ... def equals(self, __a0: object) -> bool: ... def getAttrBytes(self) -> List[int]: ... def getClass(self) -> java.lang.Class: ... def getCompressionMagic(self) -> unicode: ... def getCompressionType(self) -> int: ... def getUncompressedSize(self) -> long: ... def hashCode(self) -> int: ... def notify(self) -> None: ... def notifyAll(self) -> None: ... def toDataType(self) -> ghidra.program.model.data.DataType: ... def toString(self) -> unicode: ... @overload def wait(self) -> None: ... @overload def wait(self, __a0: long) -> None: ... @overload def wait(self, __a0: long, __a1: int) -> None: ... @property def attrBytes(self) -> List[int]: ... @property def compressionMagic(self) -> unicode: ... @property def compressionType(self) -> int: ... @property def uncompressedSize(self) -> long: ...
c1c5d53023c9e08c075a4a87131b688e7c2d1e90
3f309b1dd9774ca1eef2c7bb7626447e6c3dbe70
/peripheral/wdt_01385/config/wdt.py
236b654f56f213aaee60a0d9144932b7da7f0238
[ "LicenseRef-scancode-unknown-license-reference", "ISC", "LicenseRef-scancode-public-domain" ]
permissive
Unitek-KL/csp
30892ddf1375f5191173cafdfba5f098245a0ff7
2ac7ba59465f23959e51d2f16a5712b57b79ef5f
refs/heads/master
2020-12-10T13:42:26.878408
2019-10-14T17:55:22
2019-10-14T17:56:20
233,609,402
0
0
NOASSERTION
2020-01-13T14:04:51
2020-01-13T14:04:51
null
UTF-8
Python
false
false
9,962
py
# coding: utf-8 """***************************************************************************** * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries. * * Subject to your compliance with these terms, you may use Microchip software * and any derivatives exclusively with Microchip products. It is your * responsibility to comply with third party license terms applicable to your * use of third party software (including open source software) that may * accompany Microchip software. * * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A * PARTICULAR PURPOSE. * * IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, * INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND * WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS * BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE * FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN * ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE. *****************************************************************************""" ################################################################################################### ##################################### Global Variables ############################################ ################################################################################################### global wdtSym_Use global wdtHeaderFile global wdtSourceFile global wdtSystemDefFile global getWDTTimeOutPeriod global getWDTAllowedWindowPeriod global wdtTimeOutDictionary global wdtAllowedWindowDictionary wdtTimeOutDictionary = { #Entry : [#Period, #TimeUnit(mili-second/second)] "PS1" : ["1", "ms"], "PS2" : ["2", "ms"], "PS4" : ["4", "ms"], "PS8" : ["8", "ms"], "PS16" : ["16", "ms"], "PS32" : ["32", "ms"], "PS64" : ["64", "ms"], "PS128" : ["128", "ms"], "PS256" : ["256", "ms"], "PS512" : ["512", "ms"], "PS1024" : ["1.024", "s"], "PS2048" : ["2.048", "s"], "PS4096" : ["4.096", "s"], "PS8192" : ["8.192", "s"], "PS16384" : ["16.384", "s"], "PS32768" : ["32.768", "s"], "PS65536" : ["65.536", "s"], "PS131072" : ["131.072", "s"], "PS262144" : ["262.144", "s"], "PS524288" : ["524.288", "s"], "PS1048576" : ["1048.576", "s"] } wdtAllowedWindowDictionary = { "WINSZ_25" : "0.25", "WINSZ_37" : "37.5", "WINSZ_50" : "0.50", "WINSZ_75" : "0.75" } ################################################################################################### ########################################## Callbacks ############################################## ################################################################################################### def getWDTAllowedWindowPeriod(period, windowSize): allowedPeriod = str((float(wdtTimeOutDictionary[period][0]) * float(wdtAllowedWindowDictionary[windowSize]))) return (allowedPeriod + " " + wdtTimeOutDictionary[period][1]) def getWDTTimeOutPeriod(period): return (wdtTimeOutDictionary[period][0] + " " + wdtTimeOutDictionary[period][1]) def updateWDTUseProperties(symbol, event): symbol.setReadOnly((event["value"] == "ON")) symbol.setValue((event["value"] == "ON"), 1) def updateWDTTimeOutPeriodVisibleProperty(symbol, event): if event["id"] == "WDT_USE": symbol.setVisible(event["value"]) else: symbol.setValue(getWDTTimeOutPeriod(event["value"]), 1) def updateWDTWindowModeEnableVisibleProperty(symbol, event): if event["id"] == "WDT_USE": symbol.setVisible(event["value"]) else: if event["value"] == "ON": symbol.setValue("WINDOW", 1) else: symbol.setValue("NORMAL", 1) def updateWDTConfigCommentVisibleProperty(symbol, event): wdtHeaderFile.setEnabled(event["value"]) wdtSourceFile.setEnabled(event["value"]) wdtSystemDefFile.setEnabled(event["value"]) symbol.setVisible(event["value"]) def updateWDTAllowedWindowPeriodVisibleProperty(symbol, event): if event["id"] == "CONFIG_FWDTWINSZ" or event["id"] == "CONFIG_WDTPS": period = Database.getSymbolValue("core", "CONFIG_WDTPS") windowSize = Database.getSymbolValue("core", "CONFIG_FWDTWINSZ") symbol.setValue(getWDTAllowedWindowPeriod(period, windowSize), 1) else: if wdtSym_Use.getValue() == True and Database.getSymbolValue("core", "CONFIG_WINDIS") == "ON": symbol.setVisible(True) else: symbol.setVisible(False) ################################################################################################### ############################################# WDT ############################################### ################################################################################################### isWDTEnabled = (Database.getSymbolValue("core", "CONFIG_FWDTEN") == "ON") isWDTWindowModeEnabled = (Database.getSymbolValue("core", "CONFIG_WINDIS") == "ON") wdtTimeOut = Database.getSymbolValue("core", "CONFIG_WDTPS") wdtAllowedWindowSize = Database.getSymbolValue("core", "CONFIG_FWDTWINSZ") wdtInstances = ATDF.getNode("/avr-tools-device-file/devices/device/peripherals/module@[name=\"WDT\"]") wdtInstanceName = coreComponent.createStringSymbol("WDT_INSTANCE_NAME", None) wdtInstanceName.setVisible(False) wdtInstanceName.setDefaultValue(wdtInstances.getAttribute("name")) #WDT menu wdtMenu = coreComponent.createMenuSymbol("WDT_MENU", None) wdtMenu.setLabel("WDT") #WDT Use wdtSym_Use = coreComponent.createBooleanSymbol("WDT_USE", wdtMenu) wdtSym_Use.setLabel("Use WDT ?") wdtSym_Use.setDefaultValue(isWDTEnabled) wdtSym_Use.setReadOnly(isWDTEnabled) wdtSym_Use.setDependencies(updateWDTUseProperties, ["CONFIG_FWDTEN"]) #WDT Configuration comment wdtSym_ConfigComment = coreComponent.createCommentSymbol("WDT_CONFIG_COMMENT", wdtSym_Use) wdtSym_ConfigComment.setLabel("************** Configure WDT From Device Configuration Fuses ***************") wdtSym_ConfigComment.setVisible(isWDTEnabled) wdtSym_ConfigComment.setDependencies(updateWDTConfigCommentVisibleProperty, ["WDT_USE"]) #WDT Operation mode wdtSym_WindowMode = coreComponent.createComboSymbol("WDT_MODE", wdtSym_Use, ["NORMAL", "WINDOW"]) wdtSym_WindowMode.setLabel("Configured WDT Operation Mode") if isWDTEnabled and isWDTWindowModeEnabled: wdtSym_WindowMode.setDefaultValue("WINDOW") else: wdtSym_WindowMode.setDefaultValue("NORMAL") wdtSym_WindowMode.setVisible(isWDTEnabled) wdtSym_WindowMode.setReadOnly(True) wdtSym_WindowMode.setDependencies(updateWDTWindowModeEnableVisibleProperty, ["WDT_USE", "CONFIG_WINDIS"]) #WDT Time-out Period wdtSym_TimeOutPeriod = coreComponent.createStringSymbol("WDT_TIMEOUT_PERIOD", wdtSym_Use) wdtSym_TimeOutPeriod.setLabel("Configured WDT Time-out Period") wdtSym_TimeOutPeriod.setDefaultValue(getWDTTimeOutPeriod(wdtTimeOut)) wdtSym_TimeOutPeriod.setReadOnly(True) wdtSym_TimeOutPeriod.setVisible(isWDTEnabled) wdtSym_TimeOutPeriod.setDependencies(updateWDTTimeOutPeriodVisibleProperty, ["WDT_USE", "CONFIG_WDTPS"]) #WDT Allowed Window Period wdtSym_AllowedWindowPeriod = coreComponent.createStringSymbol("WDT_ALLOWED_WINDOW_PERIOD", wdtSym_Use) wdtSym_AllowedWindowPeriod.setLabel("Configured WDT Allowed Window Period") wdtSym_AllowedWindowPeriod.setDefaultValue(getWDTAllowedWindowPeriod(wdtTimeOut, wdtAllowedWindowSize)) wdtSym_AllowedWindowPeriod.setReadOnly(True) wdtSym_AllowedWindowPeriod.setVisible(isWDTEnabled and isWDTWindowModeEnabled) wdtSym_AllowedWindowPeriod.setDependencies(updateWDTAllowedWindowPeriodVisibleProperty, ["WDT_USE", "CONFIG_FWDTWINSZ", "CONFIG_WINDIS", "CONFIG_WDTPS"]) ################################################################################################### ####################################### Code Generation ########################################## ################################################################################################### configName = Variables.get("__CONFIGURATION_NAME") wdtHeaderFile = coreComponent.createFileSymbol("WDT_HEADER", None) wdtHeaderFile.setSourcePath("../peripheral/wdt_01385/templates/plib_wdt.h.ftl") wdtHeaderFile.setOutputName("plib_" + wdtInstanceName.getValue().lower() + ".h") wdtHeaderFile.setDestPath("peripheral/wdt/") wdtHeaderFile.setProjectPath("config/" + configName + "/peripheral/wdt/") wdtHeaderFile.setType("HEADER") wdtHeaderFile.setMarkup(True) wdtHeaderFile.setEnabled(wdtSym_Use.getValue()) wdtSourceFile = coreComponent.createFileSymbol("WDT_SOURCE", None) wdtSourceFile.setSourcePath("../peripheral/wdt_01385/templates/plib_wdt.c.ftl") wdtSourceFile.setOutputName("plib_" + wdtInstanceName.getValue().lower() + ".c") wdtSourceFile.setDestPath("peripheral/wdt/") wdtSourceFile.setProjectPath("config/" + configName + "/peripheral/wdt/") wdtSourceFile.setType("SOURCE") wdtSourceFile.setMarkup(True) wdtSourceFile.setEnabled(wdtSym_Use.getValue()) wdtSystemDefFile = coreComponent.createFileSymbol("WDT_SYS_DEF", None) wdtSystemDefFile.setType("STRING") wdtSystemDefFile.setOutputName("core.LIST_SYSTEM_DEFINITIONS_H_INCLUDES") wdtSystemDefFile.setSourcePath("../peripheral/wdt_01385/templates/system/definitions.h.ftl") wdtSystemDefFile.setMarkup(True) wdtSystemDefFile.setEnabled(wdtSym_Use.getValue())
[ "http://support.microchip.com" ]
http://support.microchip.com
fdfbe937a2a646632ade4d132625cc393a0fe83c
90cd41da01e181bf689feb6d305a2610c88e3902
/senlin/tests/tempest/api/clusters/test_cluster_delete_negative.py
5e9aab7633647c77ac10cac70360dffb82e45287
[ "Apache-2.0" ]
permissive
paperandsoap/senlin
368980e1fb01d91659f8b0d7dd532c3260386fa7
5d98dae3911aa4d5b71e491f3a4e0c21371cc75a
refs/heads/master
2020-12-25T17:45:02.490958
2016-05-29T14:42:39
2016-05-29T14:42:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,100
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib import decorators from tempest.lib import exceptions from tempest import test from senlin.tests.tempest.api import base from senlin.tests.tempest.api import utils class TestClusterDeleteNegative(base.BaseSenlinTest): def setUp(self): super(TestClusterDeleteNegative, self).setUp() profile_id = utils.create_a_profile(self) self.addCleanup(utils.delete_a_profile, self, profile_id) self.cluster_id = utils.create_a_cluster(self, profile_id) self.addCleanup(utils.delete_a_cluster, self, self.cluster_id) policy_id = utils.create_a_policy(self) self.addCleanup(utils.delete_a_policy, self, policy_id) utils.attach_policy(self, self.cluster_id, policy_id) self.addCleanup(utils.detach_policy, self, self.cluster_id, policy_id) @test.attr(type=['negative']) @decorators.idempotent_id('0de81427-2b2f-4821-9462-c893d35fb212') def test_cluster_delete_conflict(self): # Verify conflict exception(409) is raised. self.assertRaises(exceptions.Conflict, self.client.delete_obj, 'clusters', self.cluster_id) @test.attr(type=['negative']) @decorators.idempotent_id('8a583b8e-eeaa-4920-a6f5-2880b070624f') def test_cluster_delete_not_found(self): # Verify notfound exception(404) is raised. self.assertRaises(exceptions.NotFound, self.client.delete_obj, 'clusters', '8a583b8e-eeaa-4920-a6f5-2880b070624f')
84c5278933ccbfe033e99a67fd923dea7a9c80d2
2af6a5c2d33e2046a1d25ae9dd66d349d3833940
/res_bw/scripts/common/lib/encodings/utf_32.py
6a7ba7022f222c97d748b69be9c9ec7f90231268
[]
no_license
webiumsk/WOT-0.9.12-CT
e6c8b5bb106fad71b5c3056ada59fb1aebc5f2b2
2506e34bd6634ad500b6501f4ed4f04af3f43fa0
refs/heads/master
2021-01-10T01:38:38.080814
2015-11-11T00:08:04
2015-11-11T00:08:04
45,803,240
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
4,805
py
# 2015.11.10 21:35:58 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/encodings/utf_32.py """ Python 'utf-32' Codec """ import codecs, sys encode = codecs.utf_32_encode def decode(input, errors = 'strict'): return codecs.utf_32_decode(input, errors, True) class IncrementalEncoder(codecs.IncrementalEncoder): def __init__(self, errors = 'strict'): codecs.IncrementalEncoder.__init__(self, errors) self.encoder = None return def encode(self, input, final = False): if self.encoder is None: result = codecs.utf_32_encode(input, self.errors)[0] if sys.byteorder == 'little': self.encoder = codecs.utf_32_le_encode else: self.encoder = codecs.utf_32_be_encode return result else: return self.encoder(input, self.errors)[0] def reset(self): codecs.IncrementalEncoder.reset(self) self.encoder = None return def getstate(self): if self.encoder is None: return 2 else: return 0 def setstate(self, state): if state: self.encoder = None elif sys.byteorder == 'little': self.encoder = codecs.utf_32_le_encode else: self.encoder = codecs.utf_32_be_encode return class IncrementalDecoder(codecs.BufferedIncrementalDecoder): def __init__(self, errors = 'strict'): codecs.BufferedIncrementalDecoder.__init__(self, errors) self.decoder = None return def _buffer_decode(self, input, errors, final): if self.decoder is None: output, consumed, byteorder = codecs.utf_32_ex_decode(input, errors, 0, final) if byteorder == -1: self.decoder = codecs.utf_32_le_decode elif byteorder == 1: self.decoder = codecs.utf_32_be_decode elif consumed >= 4: raise UnicodeError('UTF-32 stream does not start with BOM') return (output, consumed) else: return self.decoder(input, self.errors, final) def reset(self): codecs.BufferedIncrementalDecoder.reset(self) self.decoder = None return def getstate(self): state = codecs.BufferedIncrementalDecoder.getstate(self)[0] if self.decoder is None: return (state, 2) else: addstate = int((sys.byteorder == 'big') != (self.decoder is codecs.utf_32_be_decode)) return (state, addstate) def setstate(self, state): codecs.BufferedIncrementalDecoder.setstate(self, state) state = state[1] if state == 0: self.decoder = codecs.utf_32_be_decode if sys.byteorder == 'big' else codecs.utf_32_le_decode elif state == 1: self.decoder = codecs.utf_32_le_decode if sys.byteorder == 'big' else codecs.utf_32_be_decode else: self.decoder = None return class StreamWriter(codecs.StreamWriter): def __init__(self, stream, errors = 'strict'): self.encoder = None codecs.StreamWriter.__init__(self, stream, errors) return def reset(self): codecs.StreamWriter.reset(self) self.encoder = None return def encode(self, input, errors = 'strict'): if self.encoder is None: result = codecs.utf_32_encode(input, errors) if sys.byteorder == 'little': self.encoder = codecs.utf_32_le_encode else: self.encoder = codecs.utf_32_be_encode return result else: return self.encoder(input, errors) return class StreamReader(codecs.StreamReader): def reset(self): codecs.StreamReader.reset(self) try: del self.decode except AttributeError: pass def decode(self, input, errors = 'strict'): object, consumed, byteorder = codecs.utf_32_ex_decode(input, errors, 0, False) if byteorder == -1: self.decode = codecs.utf_32_le_decode elif byteorder == 1: self.decode = codecs.utf_32_be_decode elif consumed >= 4: raise UnicodeError, 'UTF-32 stream does not start with BOM' return (object, consumed) def getregentry(): return codecs.CodecInfo(name='utf-32', encode=encode, decode=decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter) # okay decompyling c:\Users\PC\wotsources\files\originals\res_bw\scripts\common\lib\encodings\utf_32.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.10 21:35:58 Střední Evropa (běžný čas)
856f194b3643fa63d846f488a7b5eaa655451e14
e00186e71a1f52b394315a0cbc27162254cfffb9
/durga/full_durga/withrestc1/withrestc1/asgi.py
9033cff3915786e32a148f3a2d204f1ea519d37c
[]
no_license
anilkumar0470/git_practice
cf132eb7970c40d0d032520d43e6d4a1aca90742
588e7f654f158e974f9893e5018d3367a0d88eeb
refs/heads/master
2023-04-27T04:50:14.688534
2023-04-22T05:54:21
2023-04-22T05:54:21
100,364,712
0
1
null
2021-12-08T19:44:58
2017-08-15T10:02:33
Python
UTF-8
Python
false
false
397
py
""" ASGI config for withrestc1 project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'withrestc1.settings') application = get_asgi_application()
0763a1481b2be60155335147da398bc603dc0912
426aed70aa6925105f10c7fcb7b611b277bf8b84
/python/dgl/nn/pytorch/utils.py
930f0268f0b5732e5d61030dc5d1357d7c38d35a
[ "Apache-2.0" ]
permissive
hengruizhang98/dgl
0ce7201ca7380482440f031cb8ced6ca0e8c8dc1
195f99362d883f8b6d131b70a7868a537e55b786
refs/heads/master
2023-06-10T22:21:45.835646
2021-04-13T12:29:43
2021-04-13T12:29:43
336,804,001
3
0
Apache-2.0
2021-02-07T14:16:20
2021-02-07T14:16:20
null
UTF-8
Python
false
false
9,275
py
"""Utilities for pytorch NN package""" #pylint: disable=no-member, invalid-name import torch as th from torch import nn from ... import DGLGraph from ...base import dgl_warning def matmul_maybe_select(A, B): """Perform Matrix multiplication C = A * B but A could be an integer id vector. If A is an integer vector, we treat it as multiplying a one-hot encoded tensor. In this case, the expensive dense matrix multiply can be replaced by a much cheaper index lookup. For example, :: A = [2, 0, 1], B = [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]] then matmul_maybe_select(A, B) is equivalent to :: [[0, 0, 1], [[0.1, 0.2], [1, 0, 0], * [0.3, 0.4], [0, 1, 0]] [0.5, 0.6]] In all other cases, perform a normal matmul. Parameters ---------- A : torch.Tensor lhs tensor B : torch.Tensor rhs tensor Returns ------- C : torch.Tensor result tensor """ if A.dtype == th.int64 and len(A.shape) == 1: return B.index_select(0, A) else: return th.matmul(A, B) def bmm_maybe_select(A, B, index): """Slice submatrices of A by the given index and perform bmm. B is a 3D tensor of shape (N, D1, D2), which can be viewed as a stack of N matrices of shape (D1, D2). The input index is an integer vector of length M. A could be either: (1) a dense tensor of shape (M, D1), (2) an integer vector of length M. The result C is a 2D matrix of shape (M, D2) For case (1), C is computed by bmm: :: C[i, :] = matmul(A[i, :], B[index[i], :, :]) For case (2), C is computed by index select: :: C[i, :] = B[index[i], A[i], :] Parameters ---------- A : torch.Tensor lhs tensor B : torch.Tensor rhs tensor index : torch.Tensor index tensor Returns ------- C : torch.Tensor return tensor """ if A.dtype == th.int64 and len(A.shape) == 1: # following is a faster version of B[index, A, :] B = B.view(-1, B.shape[2]) flatidx = index * B.shape[1] + A return B.index_select(0, flatidx) else: BB = B.index_select(0, index) return th.bmm(A.unsqueeze(1), BB).squeeze() # pylint: disable=W0235 class Identity(nn.Module): """A placeholder identity operator that is argument-insensitive. (Identity has already been supported by PyTorch 1.2, we will directly import torch.nn.Identity in the future) """ def __init__(self): super(Identity, self).__init__() def forward(self, x): """Return input""" return x class Sequential(nn.Sequential): r""" Description ----------- A squential container for stacking graph neural network modules. DGL supports two modes: sequentially apply GNN modules on 1) the same graph or 2) a list of given graphs. In the second case, the number of graphs equals the number of modules inside this container. Parameters ---------- *args : Sub-modules of torch.nn.Module that will be added to the container in the order by which they are passed in the constructor. Examples -------- The following example uses PyTorch backend. Mode 1: sequentially apply GNN modules on the same graph >>> import torch >>> import dgl >>> import torch.nn as nn >>> import dgl.function as fn >>> from dgl.nn.pytorch import Sequential >>> class ExampleLayer(nn.Module): >>> def __init__(self): >>> super().__init__() >>> def forward(self, graph, n_feat, e_feat): >>> with graph.local_scope(): >>> graph.ndata['h'] = n_feat >>> graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h')) >>> n_feat += graph.ndata['h'] >>> graph.apply_edges(fn.u_add_v('h', 'h', 'e')) >>> e_feat += graph.edata['e'] >>> return n_feat, e_feat >>> >>> g = dgl.DGLGraph() >>> g.add_nodes(3) >>> g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> net = Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer()) >>> n_feat = torch.rand(3, 4) >>> e_feat = torch.rand(9, 4) >>> net(g, n_feat, e_feat) (tensor([[39.8597, 45.4542, 25.1877, 30.8086], [40.7095, 45.3985, 25.4590, 30.0134], [40.7894, 45.2556, 25.5221, 30.4220]]), tensor([[80.3772, 89.7752, 50.7762, 60.5520], [80.5671, 89.3736, 50.6558, 60.6418], [80.4620, 89.5142, 50.3643, 60.3126], [80.4817, 89.8549, 50.9430, 59.9108], [80.2284, 89.6954, 50.0448, 60.1139], [79.7846, 89.6882, 50.5097, 60.6213], [80.2654, 90.2330, 50.2787, 60.6937], [80.3468, 90.0341, 50.2062, 60.2659], [80.0556, 90.2789, 50.2882, 60.5845]])) Mode 2: sequentially apply GNN modules on different graphs >>> import torch >>> import dgl >>> import torch.nn as nn >>> import dgl.function as fn >>> import networkx as nx >>> from dgl.nn.pytorch import Sequential >>> class ExampleLayer(nn.Module): >>> def __init__(self): >>> super().__init__() >>> def forward(self, graph, n_feat): >>> with graph.local_scope(): >>> graph.ndata['h'] = n_feat >>> graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h')) >>> n_feat += graph.ndata['h'] >>> return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1) >>> >>> g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)) >>> g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)) >>> g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)) >>> net = Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer()) >>> n_feat = torch.rand(32, 4) >>> net([g1, g2, g3], n_feat) tensor([[209.6221, 225.5312, 193.8920, 220.1002], [250.0169, 271.9156, 240.2467, 267.7766], [220.4007, 239.7365, 213.8648, 234.9637], [196.4630, 207.6319, 184.2927, 208.7465]]) """ def __init__(self, *args): super(Sequential, self).__init__(*args) def forward(self, graph, *feats): r""" Sequentially apply modules to the input. Parameters ---------- graph : DGLGraph or list of DGLGraphs The graph(s) to apply modules on. *feats : Input features. The output of the :math:`i`-th module should match the input of the :math:`(i+1)`-th module in the sequential. """ if isinstance(graph, list): for graph_i, module in zip(graph, self): if not isinstance(feats, tuple): feats = (feats,) feats = module(graph_i, *feats) elif isinstance(graph, DGLGraph): for module in self: if not isinstance(feats, tuple): feats = (feats,) feats = module(graph, *feats) else: raise TypeError('The first argument of forward must be a DGLGraph' ' or a list of DGLGraph s') return feats class WeightBasis(nn.Module): r"""Basis decomposition module. Basis decomposition is introduced in "`Modeling Relational Data with Graph Convolutional Networks <https://arxiv.org/abs/1703.06103>`__" and can be described as below: .. math:: W_o = \sum_{b=1}^B a_{ob} V_b Each weight output :math:`W_o` is essentially a linear combination of basis transformations :math:`V_b` with coefficients :math:`a_{ob}`. If is useful as a form of regularization on a large parameter matrix. Thus, the number of weight outputs is usually larger than the number of bases. Parameters ---------- shape : tuple[int] Shape of the basis parameter. num_bases : int Number of bases. num_outputs : int Number of outputs. """ def __init__(self, shape, num_bases, num_outputs): super(WeightBasis, self).__init__() self.shape = shape self.num_bases = num_bases self.num_outputs = num_outputs if num_outputs <= num_bases: dgl_warning('The number of weight outputs should be larger than the number' ' of bases.') self.weight = nn.Parameter(th.Tensor(self.num_bases, *shape)) nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu')) # linear combination coefficients self.w_comp = nn.Parameter(th.Tensor(self.num_outputs, self.num_bases)) nn.init.xavier_uniform_(self.w_comp, gain=nn.init.calculate_gain('relu')) def forward(self): r"""Forward computation Returns ------- weight : torch.Tensor Composed weight tensor of shape ``(num_outputs,) + shape`` """ # generate all weights from bases weight = th.matmul(self.w_comp, self.weight.view(self.num_bases, -1)) return weight.view(self.num_outputs, *self.shape)
29d9dae4b3ca012575e80a559d1fcd7ebd0b9277
90047daeb462598a924d76ddf4288e832e86417c
/third_party/WebKit/Tools/gdb/webkit.py
3f75a6d089880483ddb5a036273761ec9a52185d
[ "BSD-3-Clause", "LGPL-2.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-1.0-or-later", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft", "MIT", "Apache-2.0" ]
permissive
massbrowser/android
99b8c21fa4552a13c06bbedd0f9c88dd4a4ad080
a9c4371682c9443d6e1d66005d4db61a24a9617c
refs/heads/master
2022-11-04T21:15:50.656802
2017-06-08T12:31:39
2017-06-08T12:31:39
93,747,579
2
2
BSD-3-Clause
2022-10-31T10:34:25
2017-06-08T12:36:07
null
UTF-8
Python
false
false
15,072
py
# Copyright (C) 2010, Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """GDB support for WebKit types. Add this to your gdb by amending your ~/.gdbinit as follows: python import sys sys.path.insert(0, "/path/to/tools/gdb/") import webkit """ from __future__ import print_function import gdb import re import struct def guess_string_length(ptr): """Guess length of string pointed by ptr. Returns a tuple of (length, an error message). """ # Try to guess at the length. for i in range(0, 2048): try: if int((ptr + i).dereference()) == 0: return i, '' except RuntimeError: # We indexed into inaccessible memory; give up. return i, ' (gdb hit inaccessible memory)' return 256, ' (gdb found no trailing NUL)' def ustring_to_string(ptr, length=None): """Convert a pointer to UTF-16 data into a Python string encoded with utf-8. ptr and length are both gdb.Value objects. If length is unspecified, will guess at the length.""" error_message = '' if length is None: length, error_message = guess_string_length(ptr) else: length = int(length) char_vals = [int((ptr + i).dereference()) for i in range(length)] string = struct.pack('H' * length, *char_vals).decode('utf-16', 'replace').encode('utf-8') return string + error_message def lstring_to_string(ptr, length=None): """Convert a pointer to LChar* data into a Python (non-Unicode) string. ptr and length are both gdb.Value objects. If length is unspecified, will guess at the length.""" error_message = '' if length is None: length, error_message = guess_string_length(ptr) else: length = int(length) string = ''.join([chr((ptr + i).dereference()) for i in range(length)]) return string + error_message class StringPrinter(object): "Shared code between different string-printing classes" def __init__(self, val): self.val = val def display_hint(self): return 'string' class UCharStringPrinter(StringPrinter): "Print a UChar*; we must guess at the length" def to_string(self): return ustring_to_string(self.val) class LCharStringPrinter(StringPrinter): "Print a LChar*; we must guess at the length" def to_string(self): return lstring_to_string(self.val) class WTFAtomicStringPrinter(StringPrinter): "Print a WTF::AtomicString" def to_string(self): return self.val['string_'] class WTFCStringPrinter(StringPrinter): "Print a WTF::CString" def to_string(self): # The CString holds a buffer, which is a refptr to a WTF::CStringBuffer. buf_ptr = self.val['buffer_']['ptr_'] if not buf_ptr: return 0 data = (buf_ptr + 1).cast(gdb.lookup_type('char').pointer()) length = self.val['buffer_']['ptr_']['length_'] return ''.join([chr((data + i).dereference()) for i in range(length)]) class WTFStringImplPrinter(StringPrinter): "Print a WTF::StringImpl" def get_length(self): return self.val['length_'] def to_string(self): chars_start = self.val.address + 1 if self.is_8bit(): return lstring_to_string(chars_start.cast(gdb.lookup_type('char').pointer()), self.get_length()) return ustring_to_string(chars_start.cast(gdb.lookup_type('UChar').pointer()), self.get_length()) def is_8bit(self): return self.val['is8_bit_'] class WTFStringPrinter(StringPrinter): "Print a WTF::String" def stringimpl_ptr(self): return self.val['impl_']['ptr_'] def get_length(self): if not self.stringimpl_ptr(): return 0 return WTFStringImplPrinter(self.stringimpl_ptr().dereference()).get_length() def to_string(self): if not self.stringimpl_ptr(): return '(null)' return self.stringimpl_ptr().dereference() class blinkKURLPrinter(StringPrinter): "Print a blink::KURL" def to_string(self): return WTFStringPrinter(self.val['string_']).to_string() class blinkLayoutUnitPrinter: "Print a blink::LayoutUnit" def __init__(self, val): self.val = val def to_string(self): return "%.14gpx" % (self.val['value_'] / 64.0) class blinkLayoutSizePrinter: "Print a blink::LayoutSize" def __init__(self, val): self.val = val def to_string(self): return 'LayoutSize(%s, %s)' % ( blinkLayoutUnitPrinter(self.val['width_']).to_string(), blinkLayoutUnitPrinter(self.val['height_']).to_string()) class blinkLayoutPointPrinter: "Print a blink::LayoutPoint" def __init__(self, val): self.val = val def to_string(self): return 'LayoutPoint(%s, %s)' % ( blinkLayoutUnitPrinter(self.val['x_']).to_string(), blinkLayoutUnitPrinter(self.val['y_']).to_string()) class blinkQualifiedNamePrinter(StringPrinter): "Print a blink::QualifiedName" def __init__(self, val): super(blinkQualifiedNamePrinter, self).__init__(val) self.prefix_length = 0 self.length = 0 if self.val['impl_']: self.prefix_printer = WTFStringPrinter( self.val['impl_']['ptr_']['prefix_']['string_']) self.local_name_printer = WTFStringPrinter( self.val['impl_']['ptr_']['local_name_']['string_']) self.prefix_length = self.prefix_printer.get_length() if self.prefix_length > 0: self.length = (self.prefix_length + 1 + self.local_name_printer.get_length()) else: self.length = self.local_name_printer.get_length() def get_length(self): return self.length def to_string(self): if self.get_length() == 0: return "(null)" else: if self.prefix_length > 0: return (self.prefix_printer.to_string() + ":" + self.local_name_printer.to_string()) else: return self.local_name_printer.to_string() class BlinkPixelsAndPercentPrinter: "Print a blink::PixelsAndPercent value" def __init__(self, val): self.val = val def to_string(self): return "(%gpx, %g%%)" % (self.val['pixels'], self.val['percent']) class BlinkLengthPrinter: """Print a blink::Length.""" def __init__(self, val): self.val = val def to_string(self): ltype = self.val['type_'] if self.val['is_float_']: val = self.val['float_value_'] else: val = int(self.val['int_value_']) quirk = '' if self.val['quirk_']: quirk = ', quirk=true' if ltype == 0: return 'Length(Auto)' if ltype == 1: return 'Length(%g%%, Percent%s)' % (val, quirk) if ltype == 2: return 'Length(%g, Fixed%s)' % (val, quirk) if ltype == 3: return 'Length(Intrinsic)' if ltype == 4: return 'Length(MinIntrinsic)' if ltype == 5: return 'Length(MinContent)' if ltype == 6: return 'Length(MaxContent)' if ltype == 7: return 'Length(FillAvailable)' if ltype == 8: return 'Length(FitContent)' if ltype == 9: # Would like to print pixelsAndPercent() but can't call member # functions - https://sourceware.org/bugzilla/show_bug.cgi?id=13326 return 'Length(Calculated)' if ltype == 10: return 'Length(ExtendToZoom)' if ltype == 11: return 'Length(DeviceWidth)' if ltype == 12: return 'Length(DeviceHeight)' if ltype == 13: return 'Length(MaxSizeNone)' return 'Length(unknown type %i)' % ltype class WTFVectorPrinter: """Pretty Printer for a WTF::Vector. The output of this pretty printer is similar to the output of std::vector's pretty printer, which is bundled in gcc. Example gdb session should look like: (gdb) p v $3 = WTF::Vector of length 7, capacity 16 = {7, 17, 27, 37, 47, 57, 67} (gdb) set print elements 3 (gdb) p v $6 = WTF::Vector of length 7, capacity 16 = {7, 17, 27...} (gdb) set print array (gdb) p v $7 = WTF::Vector of length 7, capacity 16 = { 7, 17, 27 ... } (gdb) set print elements 200 (gdb) p v $8 = WTF::Vector of length 7, capacity 16 = { 7, 17, 27, 37, 47, 57, 67 } """ class Iterator: def __init__(self, start, finish): self.item = start self.finish = finish self.count = 0 def __iter__(self): return self def __next__(self): if self.item == self.finish: raise StopIteration count = self.count self.count += 1 element = self.item.dereference() self.item += 1 return ('[%d]' % count, element) # Python version < 3 compatibility: def next(self): return self.__next__() def __init__(self, val): self.val = val def children(self): start = self.val['buffer_'] return self.Iterator(start, start + self.val['size_']) def to_string(self): return ('%s of length %d, capacity %d' % ('WTF::Vector', self.val['size_'], self.val['capacity_'])) def display_hint(self): return 'array' # Copied from //tools/gdb/gdb_chrome.py def typed_ptr(ptr): """Prints a pointer along with its exact type. By default, gdb would print just the address, which takes more steps to interpret. """ # Returning this as a cast expression surrounded by parentheses # makes it easier to cut+paste inside of gdb. return '((%s)%s)' % (ptr.dynamic_type, ptr) class WTFRefOrOwnPtrPrinter: def __init__(self, val): self.val = val def to_string(self): type_without_param = re.sub(r'<.*>', '', self.val.type.name) return '%s%s' % (type_without_param, typed_ptr(self.val['ptr_'])) class BlinkDataRefPrinter: def __init__(self, val): self.val = val def to_string(self): return 'DataRef(%s)' % ( WTFRefOrOwnPtrPrinter(self.val['data_']).to_string()) def add_pretty_printers(): pretty_printers = ( (re.compile("^WTF::Vector<.*>$"), WTFVectorPrinter), (re.compile("^WTF::AtomicString$"), WTFAtomicStringPrinter), (re.compile("^WTF::CString$"), WTFCStringPrinter), (re.compile("^WTF::String$"), WTFStringPrinter), (re.compile("^WTF::StringImpl$"), WTFStringImplPrinter), (re.compile("^blink::KURL$"), blinkKURLPrinter), (re.compile("^blink::LayoutUnit$"), blinkLayoutUnitPrinter), (re.compile("^blink::LayoutPoint$"), blinkLayoutPointPrinter), (re.compile("^blink::LayoutSize$"), blinkLayoutSizePrinter), (re.compile("^blink::QualifiedName$"), blinkQualifiedNamePrinter), (re.compile("^blink::PixelsAndPercent$"), BlinkPixelsAndPercentPrinter), (re.compile("^blink::Length$"), BlinkLengthPrinter), (re.compile("^WTF::(Ref|Own)Ptr<.*>$"), WTFRefOrOwnPtrPrinter), (re.compile("^blink::DataRef<.*>$"), BlinkDataRefPrinter), ) def lookup_function(val): """Function used to load pretty printers; will be passed to GDB.""" type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() type = type.unqualified().strip_typedefs() tag = type.tag if tag: for function, pretty_printer in pretty_printers: if function.search(tag): return pretty_printer(val) if type.code == gdb.TYPE_CODE_PTR: name = str(type.target().unqualified()) if name == 'UChar': return UCharStringPrinter(val) if name == 'LChar': return LCharStringPrinter(val) return None gdb.pretty_printers.append(lookup_function) add_pretty_printers() class PrintPathToRootCommand(gdb.Command): """Command for printing WebKit Node trees. Usage: printpathtoroot variable_name""" def __init__(self): super(PrintPathToRootCommand, self).__init__("printpathtoroot", gdb.COMMAND_SUPPORT, gdb.COMPLETE_NONE) def invoke(self, arg, from_tty): element_type = gdb.lookup_type('blink::Element') node_type = gdb.lookup_type('blink::Node') frame = gdb.selected_frame() try: val = gdb.Frame.read_var(frame, arg) except: print("No such variable, or invalid type") return target_type = str(val.type.target().strip_typedefs()) if target_type == str(node_type): stack = [] while val: stack.append([val, val.cast(element_type.pointer()).dereference()[ 'tag_name_']]) val = val.dereference()['parent_'] padding = '' while len(stack) > 0: pair = stack.pop() print(padding, pair[1], pair[0]) padding = padding + ' ' else: print('Sorry: I don\'t know how to deal with %s yet.' % target_type) PrintPathToRootCommand()
d76a7713552cf333afc6141ab7be1d25632b568f
a777170c979214015df511999f5f08fc2e0533d8
/claf/data/reader/bert/glue/qnli.py
4b5a99b0e21fb352e87ffcf6d20182905ddebe0e
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
srlee-ai/claf
210b2d51918cf210683e7489ccb8347cb8b1f146
89b3e5c5ec0486886876ea3bac381508c6a6bf58
refs/heads/master
2021-02-13T04:38:36.198288
2020-03-03T15:01:01
2020-03-03T15:01:01
244,661,892
0
0
MIT
2020-03-03T14:45:52
2020-03-03T14:45:52
null
UTF-8
Python
false
false
1,660
py
import logging from overrides import overrides from claf.data.reader import SeqClsBertReader from claf.decorator import register logger = logging.getLogger(__name__) @register("reader:qnli_bert") class QNLIBertReader(SeqClsBertReader): """ QNLI DataReader for BERT * Args: file_paths: .tsv file paths (train and dev) tokenizers: defined tokenizers config """ CLASS_DATA = ["entailment", "not_entailment"] METRIC_KEY = "accuracy" def __init__( self, file_paths, tokenizers, sequence_max_length=None, cls_token="[CLS]", sep_token="[SEP]", input_type="bert", is_test=False, ): super(QNLIBertReader, self).__init__( file_paths, tokenizers, sequence_max_length, class_key=None, cls_token=cls_token, sep_token=sep_token, input_type=input_type, is_test=is_test, ) @overrides def _get_data(self, file_path, **kwargs): data_type = kwargs["data_type"] _file = self.data_handler.read(file_path) lines = _file.split("\n") data = [] for i, line in enumerate(lines): if i == 0: continue line_tokens = line.split("\t") if len(line_tokens) <= 1: continue data.append({ "uid": f"qnli-{file_path}-{data_type}-{i}", "sequence_a": line_tokens[1], "sequence_b": line_tokens[2], self.class_key: str(line_tokens[-1]), }) return data
33ccbd6363bc7859a7fc752f05cad29813f8f354
bd72c02af0bbd8e3fc0d0b131e3fb9a2aaa93e75
/Tree/binary_tree_paths.py
3eaa605aa96b08ee364375160ae8865b257bf882
[]
no_license
harvi7/Leetcode-Problems-Python
d3a5e8898aceb11abc4cae12e1da50061c1d352c
73adc00f6853e821592c68f5dddf0a823cce5d87
refs/heads/master
2023-05-11T09:03:03.181590
2023-04-29T22:03:41
2023-04-29T22:03:41
222,657,838
1
0
null
null
null
null
UTF-8
Python
false
false
482
py
class Solution: def binaryTreePaths(self, root: TreeNode) -> List[str]: paths = [] if not root: return paths self.dfs(root, "", paths) return paths def dfs(self, root, path, paths): path = path + str(root.val) if not root.left and not root.right: paths.append(path) return if root.left: self.dfs(root.left, path + "->", paths) if root.right: self.dfs(root.right, path+ "->", paths)
5e7794458fd0973c267d8c6df2b78d63abcb4d98
be9960512ddf562516c4f2d909577fc6b9750f19
/packages/jet_bridge_base/jet_bridge_base/filters/filter_class.py
80997d750eb1d9a781847a4872c1e3298f7df9e4
[ "MIT" ]
permissive
timgates42/jet-bridge
9abdc8bdf420c720a30d6db163649a2a74c6b829
80c1f3a96dc467fd8c98cbdfbda2e42aa6a1d3b4
refs/heads/master
2023-03-16T03:19:08.358590
2022-06-14T16:26:14
2022-06-14T16:26:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,993
py
from jet_bridge_base.utils.queryset import get_session_engine from sqlalchemy import inspect from jet_bridge_base.filters import lookups from jet_bridge_base.filters.filter import Filter from jet_bridge_base.filters.filter_for_dbfield import filter_for_data_type class FilterClass(object): filters = [] def __init__(self, *args, **kwargs): self.meta = getattr(self, 'Meta', None) if 'context' in kwargs: self.handler = kwargs['context'].get('handler', None) self.update_filters() def update_filters(self): filters = [] if self.meta: if hasattr(self.meta, 'model'): Model = self.meta.model mapper = inspect(Model) columns = mapper.columns if hasattr(self.meta, 'fields'): columns = filter(lambda x: x.name in self.meta.fields, columns) for column in columns: item = filter_for_data_type(column.type) for lookup in item['lookups']: for exclude in [False, True]: instance = item['filter_class']( name=column.key, column=column, lookup=lookup, exclude=exclude ) filters.append(instance) declared_filters = filter(lambda x: isinstance(x[1], Filter), map(lambda x: (x, getattr(self, x)), dir(self))) for filter_name, filter_item in declared_filters: filter_item.name = filter_name filter_item.model = Model filter_item.handler = self.handler filters.append(filter_item) self.filters = filters def filter_queryset(self, request, queryset): session = request.session def get_filter_value(name, filters_instance=None): value = request.get_argument_safe(name, None) if filters_instance and value is not None and get_session_engine(session) == 'bigquery': python_type = filters_instance.column.type.python_type value = python_type(value) return value for item in self.filters: if item.name: argument_name = '{}__{}'.format(item.name, item.lookup) if item.exclude: argument_name = 'exclude__{}'.format(argument_name) value = get_filter_value(argument_name, item) if value is None and item.lookup == lookups.DEFAULT_LOOKUP: argument_name = item.name if item.exclude: argument_name = 'exclude__{}'.format(argument_name) value = get_filter_value(argument_name, item) else: value = None queryset = item.filter(queryset, value) return queryset
0b33acfc0a8e92200b6bb9ff425ee92732e063f5
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/24/usersdata/146/11428/submittedfiles/av1_m3.py
5a721a4808aefc5e4ee7ce452cf07957f8fd7305
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
# -*- coding: utf-8 -*- from __future__ import division import math m = input('Digite o numero de termos: ') soma = 0 i = 1 den = 2 while i<=m : if i%2==0: soma = soma - 4/((den)*(den+1)*(den+2)) else: soma = soma + 4/((den+2)*(den+1)*(den+2)) den = den+1 i = i+1 pi = 3+soma print ('%.6f'%pi)
1b330ed34ebbd7922f0d6f1b9d56a7a7c71f35db
f819fe72c5b18b42a25a71dc2900c7fa80e17811
/pandas/_libs/tslibs/timestamps.pyi
4de51d4dc7dd8f5b04a87cd41a4ae72ca0ed76a2
[ "BSD-3-Clause" ]
permissive
JMBurley/pandas
34d101425acb0ac35a53bcf29fbd47c2d4c88fda
b74dc5c077971301c5b9ff577fa362943f3c3a17
refs/heads/master
2022-11-06T00:48:41.465865
2022-06-13T19:30:11
2022-06-13T19:30:11
229,853,377
1
0
BSD-3-Clause
2019-12-24T02:11:54
2019-12-24T02:11:53
null
UTF-8
Python
false
false
7,504
pyi
from datetime import ( date as _date, datetime, time as _time, timedelta, tzinfo as _tzinfo, ) from time import struct_time from typing import ( ClassVar, TypeVar, overload, ) import numpy as np from pandas._libs.tslibs import ( BaseOffset, Period, Tick, Timedelta, ) _DatetimeT = TypeVar("_DatetimeT", bound=datetime) def integer_op_not_supported(obj: object) -> TypeError: ... class Timestamp(datetime): min: ClassVar[Timestamp] max: ClassVar[Timestamp] resolution: ClassVar[Timedelta] value: int # np.int64 def __new__( cls: type[_DatetimeT], ts_input: int | np.integer | float | str | _date | datetime | np.datetime64 = ..., freq: int | None | str | BaseOffset = ..., tz: str | _tzinfo | None | int = ..., unit: str | int | None = ..., year: int | None = ..., month: int | None = ..., day: int | None = ..., hour: int | None = ..., minute: int | None = ..., second: int | None = ..., microsecond: int | None = ..., nanosecond: int | None = ..., tzinfo: _tzinfo | None = ..., *, fold: int | None = ..., ) -> _DatetimeT: ... # GH 46171 # While Timestamp can return pd.NaT, having the constructor return # a Union with NaTType makes things awkward for users of pandas def _set_freq(self, freq: BaseOffset | None) -> None: ... @classmethod def _from_value_and_reso( cls, value: int, reso: int, tz: _tzinfo | None ) -> Timestamp: ... @property def year(self) -> int: ... @property def month(self) -> int: ... @property def day(self) -> int: ... @property def hour(self) -> int: ... @property def minute(self) -> int: ... @property def second(self) -> int: ... @property def microsecond(self) -> int: ... @property def tzinfo(self) -> _tzinfo | None: ... @property def tz(self) -> _tzinfo | None: ... @property def fold(self) -> int: ... @classmethod def fromtimestamp( cls: type[_DatetimeT], t: float, tz: _tzinfo | None = ... ) -> _DatetimeT: ... @classmethod def utcfromtimestamp(cls: type[_DatetimeT], t: float) -> _DatetimeT: ... @classmethod def today(cls: type[_DatetimeT], tz: _tzinfo | str | None = ...) -> _DatetimeT: ... @classmethod def fromordinal( cls: type[_DatetimeT], ordinal: int, freq: str | BaseOffset | None = ..., tz: _tzinfo | str | None = ..., ) -> _DatetimeT: ... @classmethod def now(cls: type[_DatetimeT], tz: _tzinfo | str | None = ...) -> _DatetimeT: ... @classmethod def utcnow(cls: type[_DatetimeT]) -> _DatetimeT: ... # error: Signature of "combine" incompatible with supertype "datetime" @classmethod def combine(cls, date: _date, time: _time) -> datetime: ... # type: ignore[override] @classmethod def fromisoformat(cls: type[_DatetimeT], date_string: str) -> _DatetimeT: ... def strftime(self, format: str) -> str: ... def __format__(self, fmt: str) -> str: ... def toordinal(self) -> int: ... def timetuple(self) -> struct_time: ... def timestamp(self) -> float: ... def utctimetuple(self) -> struct_time: ... def date(self) -> _date: ... def time(self) -> _time: ... def timetz(self) -> _time: ... def replace( self: _DatetimeT, year: int = ..., month: int = ..., day: int = ..., hour: int = ..., minute: int = ..., second: int = ..., microsecond: int = ..., tzinfo: _tzinfo | None = ..., fold: int = ..., ) -> _DatetimeT: ... def astimezone(self: _DatetimeT, tz: _tzinfo | None = ...) -> _DatetimeT: ... def ctime(self) -> str: ... def isoformat(self, sep: str = ..., timespec: str = ...) -> str: ... @classmethod def strptime(cls, date_string: str, format: str) -> datetime: ... def utcoffset(self) -> timedelta | None: ... def tzname(self) -> str | None: ... def dst(self) -> timedelta | None: ... def __le__(self, other: datetime) -> bool: ... # type: ignore[override] def __lt__(self, other: datetime) -> bool: ... # type: ignore[override] def __ge__(self, other: datetime) -> bool: ... # type: ignore[override] def __gt__(self, other: datetime) -> bool: ... # type: ignore[override] # error: Signature of "__add__" incompatible with supertype "date"/"datetime" @overload # type: ignore[override] def __add__(self, other: np.ndarray) -> np.ndarray: ... @overload def __add__( self: _DatetimeT, other: timedelta | np.timedelta64 | Tick ) -> _DatetimeT: ... def __radd__(self: _DatetimeT, other: timedelta) -> _DatetimeT: ... @overload # type: ignore[override] def __sub__(self, other: datetime) -> Timedelta: ... @overload def __sub__( self: _DatetimeT, other: timedelta | np.timedelta64 | Tick ) -> _DatetimeT: ... def __hash__(self) -> int: ... def weekday(self) -> int: ... def isoweekday(self) -> int: ... def isocalendar(self) -> tuple[int, int, int]: ... @property def is_leap_year(self) -> bool: ... @property def is_month_start(self) -> bool: ... @property def is_quarter_start(self) -> bool: ... @property def is_year_start(self) -> bool: ... @property def is_month_end(self) -> bool: ... @property def is_quarter_end(self) -> bool: ... @property def is_year_end(self) -> bool: ... def to_pydatetime(self, warn: bool = ...) -> datetime: ... def to_datetime64(self) -> np.datetime64: ... def to_period(self, freq: BaseOffset | str | None = ...) -> Period: ... def to_julian_date(self) -> np.float64: ... @property def asm8(self) -> np.datetime64: ... def tz_convert(self: _DatetimeT, tz: _tzinfo | str | None) -> _DatetimeT: ... # TODO: could return NaT? def tz_localize( self: _DatetimeT, tz: _tzinfo | str | None, ambiguous: str = ..., nonexistent: str = ..., ) -> _DatetimeT: ... def normalize(self: _DatetimeT) -> _DatetimeT: ... # TODO: round/floor/ceil could return NaT? def round( self: _DatetimeT, freq: str, ambiguous: bool | str = ..., nonexistent: str = ... ) -> _DatetimeT: ... def floor( self: _DatetimeT, freq: str, ambiguous: bool | str = ..., nonexistent: str = ... ) -> _DatetimeT: ... def ceil( self: _DatetimeT, freq: str, ambiguous: bool | str = ..., nonexistent: str = ... ) -> _DatetimeT: ... def day_name(self, locale: str | None = ...) -> str: ... def month_name(self, locale: str | None = ...) -> str: ... @property def day_of_week(self) -> int: ... @property def dayofweek(self) -> int: ... @property def day_of_month(self) -> int: ... @property def day_of_year(self) -> int: ... @property def dayofyear(self) -> int: ... @property def quarter(self) -> int: ... @property def week(self) -> int: ... def to_numpy( self, dtype: np.dtype | None = ..., copy: bool = ... ) -> np.datetime64: ... @property def _date_repr(self) -> str: ... @property def days_in_month(self) -> int: ... @property def daysinmonth(self) -> int: ... def _as_unit(self, unit: str, round_ok: bool = ...) -> Timestamp: ...
4c011ed2da70f655d3aa386df74a1e326d494d21
1ada3010856e39c93e2483c960aa8fc25e2b3332
/Binary Tree/FullBT.py
034233595a63dbed3ebcff43dae5e8c12860eb95
[]
no_license
Taoge123/LeetCode
4f9e26be05f39b37bdbb9c1e75db70afdfa1b456
4877e35a712f59bc7b8fffa3d8af2ffa56adb08c
refs/heads/master
2022-02-24T20:09:21.149818
2020-07-31T03:18:05
2020-07-31T03:18:05
142,700,689
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def isFullTree(root): if root is None: return True #If leaf node if root.left is None and root.right is None: return True if root.left is not None and root.right is not None: return (isFullTree(root.left) and isFullTree(root.right)) return False root = Node(10); root.left = Node(20); root.right = Node(30); root.left.right = Node(40); root.left.left = Node(50); root.right.left = Node(60); root.right.right = Node(70); root.left.left.left = Node(80); root.left.left.right = Node(90); root.left.right.left = Node(80); root.left.right.right = Node(90); root.right.left.left = Node(80); root.right.left.right = Node(90); root.right.right.left = Node(80); # root.right.right.right = Node(90); if isFullTree(root): print("The Binary tree is full") else: print("Binary tree is not full")
ccce9383b7b87da27d4a190b8045a110fb1240bc
5a42ce780721294d113335712d45c62a88725109
/project/pyalg_api/commands/orient_command.py
67982f7aa800805ca33b77737fa43bda3887f4af
[]
no_license
P79N6A/project_code
d2a933d53deb0b4e0bcba97834de009e7bb78ad0
1b0e863ff3977471f5a94ef7d990796a9e9669c4
refs/heads/master
2020-04-16T02:06:57.317540
2019-01-11T07:02:05
2019-01-11T07:02:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
746
py
# -*- coding: utf-8 -*- import json import os import pandas as pd import pyorient import pdb import random import re from datetime import datetime, timedelta from lib.logger import logger from .base_command import BaseCommand from model.open import OpenJxlStat from model.antifraud import AfWsm from module.yiyiyuan import YiUserRemitList from module.yiyiyuan import YiFavoriteContact from module.detail import Detail from lib.ssdb_config import SsdbConfig class OrientCommand(BaseCommand): def __init__(self): super(OrientCommand, self).__init__() self.client = None # ORIENT DB def runorient(self,start_time = None , end_time = None): # 连接数据库 self.contactOrient() return True
b94122e661a89d99930688d0073fd4d58d5439c7
f000fa4e6ef1de9591eeabff43ba57b7bf32561d
/cephlcm/api/views/v1/permission.py
98322faa2514b82357002f20746813ca09c7ca49
[]
no_license
VictorDenisov/ceph-lcm
1aca07f2d17bfda8760d192ffd6d17645705b6e4
3cfd9ced6879fca1c39039e195d22d897ddcde80
refs/heads/master
2021-01-15T09:19:23.723613
2016-09-17T01:18:45
2016-09-17T01:18:45
68,424,913
0
0
null
2016-09-17T01:17:36
2016-09-17T01:17:36
null
UTF-8
Python
false
false
502
py
# -*- coding: utf-8 -*- """Small API to list permissions available in application.""" from cephlcm.api import auth from cephlcm.api.views import generic from cephlcm.common.models import role class PermissionView(generic.ModelView): decorators = [ auth.require_authorization("api", "view_role"), auth.require_authentication ] NAME = "permission" ENDPOINT = "/permission/" def get(self): return role.PermissionSet(role.PermissionSet.KNOWN_PERMISSIONS)
5a5e361c2eba01070a0d3e17a30153188ba0779f
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-waf/huaweicloudsdkwaf/v1/model/list_value_list_response.py
19cf334e308e193d4391dbf7c5b6693f27dd4bcc
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,469
py
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ListValueListResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'total': 'int', 'items': 'list[ValueList]' } attribute_map = { 'total': 'total', 'items': 'items' } def __init__(self, total=None, items=None): """ListValueListResponse - a model defined in huaweicloud sdk""" super(ListValueListResponse, self).__init__() self._total = None self._items = None self.discriminator = None if total is not None: self.total = total if items is not None: self.items = items @property def total(self): """Gets the total of this ListValueListResponse. 引用表条数 :return: The total of this ListValueListResponse. :rtype: int """ return self._total @total.setter def total(self, total): """Sets the total of this ListValueListResponse. 引用表条数 :param total: The total of this ListValueListResponse. :type: int """ self._total = total @property def items(self): """Gets the items of this ListValueListResponse. 引用表列表 :return: The items of this ListValueListResponse. :rtype: list[ValueList] """ return self._items @items.setter def items(self, items): """Sets the items of this ListValueListResponse. 引用表列表 :param items: The items of this ListValueListResponse. :type: list[ValueList] """ self._items = items def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListValueListResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
8f39586d925238cc0f8aaf1533ed11e6bba15271
88b4b883c1a262b5f9ca2c97bf1835d6d73d9f0b
/src/api/python/hce/app/UrlNormalize.py
d2cfe91a54afb21b110f70ed0b308b85d4c67660
[]
no_license
hce-project/hce-bundle
2f93dc219d717b9983c4bb534884e4a4b95e9b7b
856a6df2acccd67d7af640ed09f05b2c99895f2e
refs/heads/master
2021-09-07T22:55:20.964266
2018-03-02T12:00:42
2018-03-02T12:00:42
104,993,955
1
0
null
null
null
null
UTF-8
Python
false
false
3,593
py
# coding: utf-8 """ HCE project, Python bindings, Distributed Tasks Manager application. UrlNormalize Class content main functional of support the URL_NORMALIZE properties. @package: app @file UrlNormalize.py @author Alexander Vybornyh <[email protected]> @link: http://hierarchical-cluster-engine.com/ @copyright: Copyright &copy; 2013-2017 IOIX Ukraine @license: http://hierarchical-cluster-engine.com/license/ @since: 0.1 """ import re import app.Consts as APP_CONSTS import app.Utils as Utils class UrlNormalize(object): # Constants used in class PROPERTY_OPTIONS_MASK = 'mask' PROPERTY_OPTIONS_REPLACE = 'replace' # Constants of error messages ERROR_MSG_FAILED_REPLACE = "Operation replace failed. Error: %s" # Initialization def __init__(self): pass ## get normalize mask # # @param siteProperties - site properties # @param defaultValue - default value # @return normalize mask @staticmethod def getNormalizeMask(siteProperties, defaultValue=Utils.UrlNormalizator.NORM_DEFAULT): # variable for result ret = defaultValue if siteProperties is not None and isinstance(siteProperties, dict) and APP_CONSTS.URL_NORMALIZE in siteProperties and \ isinstance(siteProperties[APP_CONSTS.URL_NORMALIZE], dict) and UrlNormalize.PROPERTY_OPTIONS_MASK in siteProperties[APP_CONSTS.URL_NORMALIZE]: ret = int(siteProperties[APP_CONSTS.URL_NORMALIZE][UrlNormalize.PROPERTY_OPTIONS_MASK]) return ret # # execute normalization url string use base url # # @param siteProperties - site properties # @param base - base url string # @param url - url string # @param supportProtocols - support protocol list # @param log - logger instance # @return already normalized url string or None - in case of bad result normalization @staticmethod def execute(siteProperties, base, url, supportProtocols=None, log=None): # check site property for exist replace rule if siteProperties is not None and isinstance(siteProperties, dict) and APP_CONSTS.URL_NORMALIZE in siteProperties: if log is not None: log.info("!!! siteProperties['%s']: '%s', type: %s", str(APP_CONSTS.URL_NORMALIZE), str(siteProperties[APP_CONSTS.URL_NORMALIZE]), str(type(siteProperties[APP_CONSTS.URL_NORMALIZE]))) replaceList = [] propertyDict = {} if isinstance(siteProperties[APP_CONSTS.URL_NORMALIZE], basestring): propertyDict = Utils.jsonLoadsSafe(jsonString=siteProperties[APP_CONSTS.URL_NORMALIZE], default=propertyDict, log=log) if isinstance(propertyDict, dict) and UrlNormalize.PROPERTY_OPTIONS_REPLACE in propertyDict: replaceList = propertyDict[UrlNormalize.PROPERTY_OPTIONS_REPLACE] if log is not None: log.debug("!!! replaceList: %s", str(replaceList)) if isinstance(replaceList, list): for replaceElem in replaceList: if isinstance(replaceElem, dict): for pattern, repl in replaceElem.items(): try: if log is not None: log.debug("!!! pattern: %s, url: %s", str(pattern), str(url)) url = re.sub(pattern=pattern, repl=repl, string=url, flags=re.U + re.I) if log is not None: log.debug("!!! res url: %s", str(url)) except Exception, err: if log is not None: log.error(UrlNormalize.ERROR_MSG_FAILED_REPLACE, str(err)) return Utils.urlNormalization(base=base, url=url, supportProtocols=supportProtocols, log=log)
[ "bgv@bgv-d9" ]
bgv@bgv-d9
3745a3536c649d6903183d1fd0fc4de53df98f5c
c9a222631e4a0b827ee4efbd4e362d00b7cc6d48
/demo/画方格/rose.py
837c42354e6f408ee364e1570706b3fe5d0bab0e
[]
no_license
enticejin/python
d86b1727048bae24bce0fedc911953a20d11947c
09dea6c62e6be8389fb23f472a1f02896a74c696
refs/heads/master
2023-03-12T18:00:06.322335
2021-11-09T01:38:13
2021-11-09T01:38:13
234,876,815
3
1
null
2023-03-04T01:24:08
2020-01-19T09:54:07
Python
UTF-8
Python
false
false
1,437
py
from turtle import * import time setup(1000,800,0,0) speed(0) penup() seth(90) fd(340) seth(0) pendown() speed(5) begin_fill() fillcolor('red') circle(50,30) for i in range(10): fd(1) left(10) circle(40,40) for i in range(6): fd(1) left(3) circle(80,40) for i in range(20): fd(0.5) left(5) circle(80,45) for i in range(10): fd(2) left(1) circle(80,25) for i in range(20): fd(1) left(4) circle(50,50) time.sleep(0.1) circle(120,55) speed(0) seth(-90) fd(70) right(150) fd(20) left(140) circle(140,90) left(30) circle(160,100) left(130) fd(25) penup() right(150) circle(40,80) pendown() left(115) fd(60) penup() left(180) fd(60) pendown() end_fill() right(120) circle(-50,50) circle(-20,90) speed(1) fd(75) speed(0) circle(90,110) penup() left(162) fd(185) left(170) pendown() circle(200,10) circle(100,40) circle(-52,115) left(20) circle(100,20) circle(300,20) speed(1) fd(250) penup() speed(0) left(180) fd(250) circle(-300,7) right(80) circle(200,5) pendown() left(60) begin_fill() fillcolor('green') circle(-80,100) right(90) fd(10) left(20) circle(-63,127) end_fill() penup() left(50) fd(20) left(180) pendown() circle(200,25) penup() right(150) fd(180) right(40) pendown() begin_fill() fillcolor('green') circle(-100,80) right(150) fd(10) left(60) circle(-80,98) end_fill() penup() left(60) fd(13) left(180) pendown() speed(1) circle(-200,23) exitonclick()
9c77a2d055cd61fac338aee65656356b09aa4f57
323f618462f939621a4287a781986d995f83b5f2
/controllers/application/sublime.py
c6e1faa80c7b8969174f2ab793d36fcf4e948a93
[]
no_license
almamuncsit/virtual-assistant
3f08e433bd4d9c985a00bfdc2b31bf27b3d8ce9e
4ea31dc8667e397724229d8383bbfbb0e50ab626
refs/heads/master
2023-04-03T18:07:26.775071
2021-04-08T17:29:47
2021-04-08T17:29:47
325,242,463
7
0
null
null
null
null
UTF-8
Python
false
false
57
py
import os def sublime() -> None: os.system('subl')
353284559c12cf179d807a4ba9ac588bd8f495d5
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2533/59137/270093.py
f1c8a2c861bf977ab43894cd1ef420e8d96bcd4a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
221
py
def s1(): array = list(eval(input())) ans = [] for n in array: if n % 2 == 0: ans.append(n) for n in array: if n % 2 == 1: ans.append(n) print(ans) s1()
f142571b2aee06f9277b92ef1709a27a21e74f6a
f6290b7b8ffb263b7f0d252a67e2c6320a4c1143
/Recursion/rat_in_a_maze.py
f7cc926fed7bed41572c85590758f250caa32735
[]
no_license
datAnir/GeekForGeeks-Problems
b45b0ae80053da8a1b47a2af06e688081574ef80
c71f11d0349ed3850dfaa9c7a078ee70f67e46a1
refs/heads/master
2023-05-29T15:21:59.680793
2020-12-15T04:55:01
2020-12-15T04:55:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,655
py
''' https://practice.geeksforgeeks.org/problems/rat-in-a-maze-problem/1 Consider a rat placed at (0, 0) in a square matrix of order N*N. It has to reach the destination at (n-1, n-1). Find all possible paths that the rat can take to reach from source to destination. The directions in which the rat can move are 'U'(up), 'D'(down), 'L' (left), 'R' (right). Value 0 at a cell in the matrix represents that it is blocked and cannot be crossed while value 1 at a cell in the matrix represents that it can be travelled through. Expected Time Complexity: O((N2)4). Expected Auxiliary Space: O(L*X), L = length of the path, X = number of paths. Input: 3 4 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 4 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 2 1 0 1 0 Output: DRDDRR DDRDRR DRDDRR -1 ''' # if row or col goes out of bound or arr[r][c] = -1(visited) or arr[r][c] = 0(blocked), then base cond hit so return # if we reach at bottom right corner, then print path and return # else change arr[i][j] = -1(visited) and call in all 4 directions # after processing all 4 directions, make arr[i][j] = 1 again so that same cell can be used by other path def ratMaze(arr, i, j, path, ans): if i < 0 or j < 0 or i >= len(arr) or j >= len(arr) or arr[i][j] <= 0: return if i == len(arr)-1 and j == len(arr)-1: ans.append(path) return arr[i][j] = -1 ratMaze(arr, i-1, j, path + 'U', ans) ratMaze(arr, i+1, j, path + 'D', ans) ratMaze(arr, i, j-1, path + 'L', ans) ratMaze(arr, i, j+1, path + 'R', ans) arr[i][j] = 1 def findPath(arr, n): ans = [] ratMaze(arr, 0, 0, '', ans) return ' '.join(sorted(ans))
2109ddff14d449f6eecc234e4308e94c0f0b2bd5
de8b832a3c804837300b9974dc0151d9294fa573
/handCraft/covarep-master/distribution/py_package/covarep_py/for_redistribution_files_only/covarep_py/__init__.py
98fa699b65065c6e6d1c946ea4c35f8f7f57c47f
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
YuanGongND/Deep_Speech_Visualization
fcff2ac93e5adffd707b98eb7591f50fe77c1274
73a79e3596d9a5ee338eafb9a87b227696de25d1
refs/heads/master
2021-07-19T23:00:36.294817
2017-10-28T01:04:59
2017-10-28T01:04:59
105,332,686
0
0
null
null
null
null
UTF-8
Python
false
false
14,524
py
#Copyright 2015 MathWorks, Inc. # This template is used to generate an __init__.py file for a particular deployable package. """ Package for executing deployed MATLAB functions """ from __future__ import print_function import atexit import glob import importlib import os import os.path import pdb import platform import sys import weakref class _PathInitializer(object): PLATFORM_DICT = {'Windows': ['PATH','dll',''], 'Linux': ['LD_LIBRARY_PATH','so','libmw'], 'Darwin': ['DYLD_LIBRARY_PATH','dylib','libmw']} SUPPORTED_PYTHON_VERSIONS = ['2_7', '3_3', '3_4'] RUNTIME_MAJOR_VERSION = '9' RUNTIME_MINOR_VERSION = '0' PACKAGE_NAME = 'covarep_py' def set_interpreter_version(self): """Make sure the interpreter version is supported.""" ver = sys.version_info version = '{0}_{1}'.format(ver[0], ver[1]) if version in _PathInitializer.SUPPORTED_PYTHON_VERSIONS: self.interpreter_version = version else: raise EnvironmentError("Python %s is not supported.".format(version)) def __init__(self): """Initialize the variables.""" self.arch = '' self.is_linux = False self.is_mac = False self.is_windows = False self.mr_handle = None self.ml_handle = None self.system = '' self.cppext_handle = None # path to the folder that stores Python extensions and shared libraries self.bin_dir = '' # path to the folder that stores pure Python matlab_pysdk.runtime code (_runtime_dir) self.runtime_dir = '' # path to the folder that stores the pure Python matlab mlarray code used for type conversion self.ml_dir = '' self.set_interpreter_version() self.get_platform_info() this_folder = os.path.dirname(os.path.realpath(__file__)) self.path_file_name = os.path.join(this_folder, 'paths.{0}.txt'.format(self.arch)) self.instances_of_this_package = set([]) def read_path_file(self): """Look for a file that lists items to add to path. If present, read it and add the paths.""" filtered_lines = [] if os.path.isfile(self.path_file_name): pth_file = open(self.path_file_name, 'r') lines = pth_file.readlines() for line in lines: stripped_line = line.strip() if stripped_line and stripped_line[0] != '#': filtered_lines.append(stripped_line) length = len(filtered_lines) if length == 3: (bin_dir, runtime_dir, ml_dir) = filtered_lines if (not os.path.isdir(bin_dir)) or (not os.path.isdir(runtime_dir)) or (not os.path.isdir(ml_dir)): return False else: (self.bin_dir, self.runtime_dir, self.ml_dir) = (bin_dir, runtime_dir, ml_dir) return True else: return False def write_path_file(self): """Write a file that lists items to add to path. If present, it will be overwritten.""" existing_contents = '' if os.path.isfile(self.path_file_name): path_file = open(self.path_file_name, 'r') existing_contents = path_file.readlines() path_file.close() path_file = open(self.path_file_name, 'w') if self.system == 'Windows': print('# bin dir: added to both OS path and system path', file=path_file) else: print('# bin dir: added to system path', file=path_file) print(self.bin_dir, file=path_file) print('', file=path_file) print('# runtime dir: added to system path', file=path_file) print(self.runtime_dir, file=path_file) print('', file=path_file) print('# matlab (mlarray) dir: added to system path', file=path_file) print(self.ml_dir, file=path_file) print('', file=path_file) if existing_contents: print(existing_contents, file=path_file) path_file.close() def get_platform_info(self): """Ask Python for the platform and architecture.""" # This will return 'Windows', 'Linux', or 'Darwin' (for Mac). self.system = platform.system() if not self.system in _PathInitializer.PLATFORM_DICT: raise RuntimeError('{0} is not a supported platform.'.format(self.system)) else: # path_var is the OS-dependent name of the path variable ('PATH', 'LD_LIBRARY_PATH', "DYLD_LIBRARY_PATH') (self.path_var, self.ext, self.lib_prefix) = _PathInitializer.PLATFORM_DICT[self.system] if self.system == 'Windows': self.is_windows = True bit_str = platform.architecture()[0] if bit_str == '64bit': self.arch = 'win64' elif bit_str == '32bit': self.arch = 'win32' else: raise RuntimeError('{0} is not supported.'.format(bit_str)) elif self.system == 'Linux': self.is_linux = True self.arch = 'glnxa64' elif self.system == 'Darwin': self.is_mac = True self.arch = 'maci64' else: raise RuntimeError('Operating system {0} is not supported.'.format(self.system)) def get_paths_from_os(self): """ Look through the system path for a file whose name contains a runtime version corresponding to the one with which this package was produced. """ # Concatenates the pieces into a string. The double parentheses are necessary. if self.system == 'Windows': file_to_find = ''.join((self.lib_prefix, 'mclmcrrt', _PathInitializer.RUNTIME_MAJOR_VERSION, '_', _PathInitializer.RUNTIME_MINOR_VERSION, '.', self.ext)) elif self.system == 'Linux': file_to_find = ''.join((self.lib_prefix, 'mclmcrrt', '.', self.ext, '.', _PathInitializer.RUNTIME_MAJOR_VERSION, '.', _PathInitializer.RUNTIME_MINOR_VERSION)) elif self.system == 'Darwin': file_to_find = ''.join((self.lib_prefix, 'mclmcrrt', '.', _PathInitializer.RUNTIME_MAJOR_VERSION, '.', _PathInitializer.RUNTIME_MINOR_VERSION, '.', self.ext)) else: raise RuntimeError('Operating system {0} is not supported.'.format(self.system)) path_elements = [] if self.path_var in os.environ: path_elements = os.environ[self.path_var].split(os.pathsep) if not path_elements: friendly_os_name = self.system if friendly_os_name == 'Darwin': friendly_os_name = 'Mac' raise RuntimeError('On {0}, you must set the environment variable "{1}" to a non-empty string. {2}'.format( friendly_os_name, self.path_var, 'For more details, see the package documentation.')) path_found = '' for elem in path_elements: filename = os.path.join(elem, file_to_find) if (os.path.isfile(filename)): path_found = elem break if not path_found: raise RuntimeError('Could not find an appropriate directory for MATLAB or the MATLAB runtime in {0}. Details: {1}'.format( self.path_var, file_to_find)) # The last nonblank part of the path should be the arch (e.g., "win64"). path_components = path_found.split(os.sep) if path_components[-1]: last_path_component = path_components[-1] else: # The directory name ended with a slash, so the last item in the list was an empty string. Go back one more. last_path_component = path_components[-2] if last_path_component != self.arch: raise RuntimeError('To call deployed MATLAB code on a {0} machine, you must run a {0} version of Python. Details: {1}'.format( last_path_component, path_found)) matlabroot = os.path.dirname(os.path.dirname(os.path.normpath(path_found))) bin_dir = os.path.join(matlabroot, 'bin', self.arch) runtime_dir = os.path.join(matlabroot, 'toolbox', 'compiler_sdk', 'pysdk_py') ml_dir = os.path.join(runtime_dir, 'mlarray_dist') if not os.path.isdir(bin_dir): raise RuntimeError('Could not find the directory {0}'.format(bin_dir)) if not os.path.isdir(runtime_dir): raise RuntimeError('Could not find the directory {0}'.format(runtime_dir)) if not os.path.isdir(ml_dir): raise RuntimeError('Could not find the directory {0}'.format(ml_dir)) (self.bin_dir, self.runtime_dir, self.ml_dir) = (bin_dir, runtime_dir, ml_dir) def update_paths(self): """Update the OS and Python paths.""" #For Windows, add the bin_dir to the OS path. This is unnecessary #for Linux and Mac, where the OS can find this information via rpath. if self.is_windows: os.environ[self.path_var] = self.bin_dir + os.pathsep + os.environ[self.path_var] #Add all paths to the Python path. sys.path.insert(0, self.bin_dir) sys.path.insert(0, self.runtime_dir) sys.path.insert(0, self.ml_dir) def import_matlab_pysdk_runtime(self): """Import matlab_pysdk.runtime. Must be done after update_paths() and import_cppext() are called.""" try: self.mr_handle = importlib.import_module('matlab_pysdk.runtime') except Exception as e: raise e if self.mr_handle._runtime_major_version: if (self.mr_handle._runtime_major_version != _PathInitializer.RUNTIME_MAJOR_VERSION) or ( self.mr_handle._runtime_minor_version != _PathInitializer.RUNTIME_MINOR_VERSION): raise RuntimeError('Runtime version of package ({0}.{1}) does not match runtime version of previously loaded package ({2}.{3})'.format( _PathInitializer.RUNTIME_MAJOR_VERSION, _PathInitializer.RUNTIME_MINOR_VERSION, self.mr_handle._runtime_major_version, self.mr_handle._runtime_minor_version)) else: self.mr_handle._runtime_major_version = _PathInitializer.RUNTIME_MAJOR_VERSION self.mr_handle._runtime_minor_version = _PathInitializer.RUNTIME_MINOR_VERSION self.mr_handle._cppext_handle = self.cppext_handle def import_matlab(self): """Import the matlab package. Must be done after Python system path contains what it needs to.""" try: self.ml_handle = importlib.import_module('matlab') except Exception as e: raise e def initialize_package(self): package_handle = self.mr_handle.DeployablePackage(self, self.PACKAGE_NAME, __file__) self.instances_of_this_package.add(weakref.ref(package_handle)) package_handle.initialize() return package_handle def initialize_runtime(self, option_list): if not self.cppext_handle: raise RuntimeError('Cannot call initialize_application before import_cppext.') if self.is_mac: ignored_option_found = False for option in option_list: if option in ('-nodisplay', '-nojvm'): ignored_option_found = True break if ignored_option_found: print('WARNING: Options "-nodisplay" and "-nojvm" are ignored on Mac.') print('They must be passed to mwpython in order to take effect.') self.cppext_handle.initializeApplication(option_list) def terminate_runtime(self): if not self.cppext_handle: raise RuntimeError('Cannot call terminate_application before import_cppext.') self.cppext_handle.terminateApplication() def import_cppext(self): self.cppext_handle = importlib.import_module("matlabruntimeforpython" + self.interpreter_version) try: _pir = _PathInitializer() _pir.get_paths_from_os() _pir.update_paths() _pir.import_cppext() _pir.import_matlab_pysdk_runtime() _pir.import_matlab() except Exception as e: print("Exception caught during initialization of Python interface. Details: {0}".format(e)) raise # We let the program exit normally. def initialize(): """ Initialize package and return a handle. Initialize a package consisting of one or more deployed MATLAB functions. The return value is used as a handle on which any of the functions can be executed. To wait for all graphical figures to close before continuing, call wait_for_figures_to_close() on the handle. To close the package, call terminate(), quit() or exit() (which are synonymous) on the handle. The terminate() function is executed automatically when the script or session ends. Returns handle - used to execute deployed MATLAB functions and to call terminate() """ return _pir.initialize_package() def initialize_runtime(option_list): """ Initialize runtime with a list of startup options. Initialize the MATLAB Runtime with a list of startup options that will affect all packages opened within the script or session. If it is not called explicitly, it will be executed automatically, with an empty list of options, by the first call to initialize(). Do not call initialize_runtime() after calling initialize(). There is no corresponding terminate_runtime() call. The runtime is terminated automatically when the script or session ends. Parameters option_list - Python list of options; valid options are: -nodisplay (suppresses display functionality; Linux only) -nojvm (disables the Java Virtual Machine) """ if option_list: if not isinstance(option_list, list) and not isinstance(option_list, tuple): raise SyntaxError('initialize_runtime takes a list or tuple of strings.') _pir.initialize_runtime(option_list) # terminate_runtime() is intentionally omitted. Instead, when running interactively, # the user should call exit(). When running a script, the runtime will automatically be # terminated when the script ends. @atexit.register def __exit_packages(): for package in _pir.instances_of_this_package: if package() is not None: package().terminate()
5bbcbb82c02d8c1cfa203245472a07dafc8af5ca
81f7f4a65a068ed2483b537f6675a5f46235af88
/inplace_activity_stream/urls.py
b6cd2b3e850c994e4c20377bdb3795bf119cb6be
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
ebrelsford/django-inplace-activity-stream
f561c7cf0c7180426d3ea9cd11abba1cb6744e60
a495e42ffdc37d5e800f71ab97ed6975a1849224
refs/heads/master
2020-12-24T13:16:17.119724
2017-05-09T14:09:09
2017-05-09T14:09:09
11,783,325
0
0
null
null
null
null
UTF-8
Python
false
false
320
py
from django.conf.urls import url from .views import PlaceActivityFeed, PlaceActivityListView urlpatterns = [ url(r'^feeds/all/$', PlaceActivityFeed(), name='activitystream_feed', ), url(r'^', PlaceActivityListView.as_view(), name='activitystream_activity_list' ), ]
70e69736bdd3c3f577144a9714bd7664633f07ff
0d0afd1dce972b4748ce8faccd992c019794ad9e
/integra/aspseg_personalizacao/wizards/asp_relatorio.py
9cbd795322404460d5cca2bd91f68067742147dd
[]
no_license
danimaribeiro/odoo-erp
e2ca2cfe3629fbedf413e85f7c3c0453fd16941e
d12577bf7f5266b571cbedeb930720d653320e96
refs/heads/master
2020-01-23T21:32:16.149716
2016-11-05T15:35:40
2016-11-05T15:35:40
67,892,809
0
1
null
null
null
null
UTF-8
Python
false
false
11,105
py
# -*- encoding: utf-8 -*- import os from osv import orm, fields, osv from pybrasil.data import parse_datetime, formata_data import base64 from integra_rh.models.hr_payslip_input import primeiro_ultimo_dia_mes, mes_passado from relatorio import * from finan.wizard.relatorio import * import csv from pybrasil.base import DicionarioBrasil DIR_ATUAL = os.path.abspath(os.path.dirname(__file__)) JASPER_BASE_DIR = os.path.join(DIR_ATUAL, '../../reports/base/') class asp_relatorio(osv.osv_memory): _name = 'asp.relatorio' _description = 'asp.relatorio' _rec_name = 'nome' _columns = { 'data_inicial': fields.date(u'Data inicial'), 'data_final': fields.date(u'Data final'), 'nome': fields.char(u'Nome do arquivo', 120, readonly=True), 'arquivo': fields.binary(u'Arquivo', readonly=True), 'nome_csv': fields.char(u'Nome do arquivo CSV', 120, readonly=True), 'arquivo_csv': fields.binary(u'Arquivo CSV', readonly=True), 'location_id': fields.many2one('stock.location', u'Local do Estoque'), 'partner_id': fields.many2one('res.partner', u'Cliente'), 'company_id': fields.many2one('res.company', u'Empresa'), 'municipio_id': fields.many2one('sped.municipio', u'Cidade'), 'estado_id': fields.many2one('sped.estado', u'Estado'), 'user_id': fields.many2one('res.users', u'Representate'), } _defaults = { 'data_inicial': fields.date.today, 'data_final': fields.date.today, } def gera_estoque_minimo(self, cr, uid, ids, context={}): if not ids: return {} for rel_obj in self.browse(cr, uid, ids): location_id = rel_obj.location_id.id sql = """select * from ( select pc.nome_completo, pp.default_code, pt.name, pp.variants, coalesce((select sw.product_min_qty from stock_warehouse_orderpoint sw where sw.product_id = pp.id), 0) as minimo_stock, coalesce((select sum( case when es.tipo = 'S' THEN es.quantidade * -1 else es.quantidade end ) as quantidade from estoque_entrada_saida es where es.product_id = pp.id and es.location_id = sm.location_id ), 0) as quantidade, coalesce((select distinct sum(sol.quantidade) as quantidade_venda from sale_order_line sol where sol.product_id = pp.id and state = 'Confirmed'), 0) as quantidade_venda, coalesce((select distinct sum(pol.product_qty) as pedido from purchase_order_line pol where pol.product_id = pp.id and state = 'confirmed'), 0) as pedido from estoque_entrada_saida sm join product_product pp on pp.id = sm.product_id join product_template pt on pt.id = pp.product_tmpl_id join product_category pc on pc.id = pt.categ_id where sm.location_id = """ + str(location_id) + """ order by pc.id , pt.name) as a where minimo_stock > 0 ;""" print(sql) cr.execute(sql) dados = cr.fetchall() if len(dados) == 0: raise osv.except_osv(u'Atenção', u'Não há dados para gerar o relatório, com base nos parâmetros informados!') linhas = [] for categoria, codigo, produto, variants, minimo_stock, quantidade, quantidade_venda, pedido in dados: linha = DicionarioBrasil() linha['categoria'] = categoria linha['codigo'] = codigo linha['produto'] = produto linha['variants'] = variants linha['minimo_stock'] = minimo_stock linha['quantidade'] = quantidade linha['quantidade_venda'] = quantidade_venda linha['pedido'] = pedido linhas.append(linha) rel = FinanRelatorioAutomaticoRetrato() rel.title = u'Produtos para Comprar' rel.colunas = [ ['codigo' , 'C', 10, u'Código', False], ['produto' , 'C', 50, u'Descrição', False], ['variants', 'C', 15, u'Fornecedor', False], ['quantidade' , 'F', 10, u'Estoque.', True], ['minimo_stock' , 'F', 10, u'Minimo.', True], ['quantidade_venda' , 'I', 10, u'Venda', True], ['pedido' , 'I', 10, u'Compra', True], ] rel.monta_detalhe_automatico(rel.colunas) rel.grupos = [ ['categoria', u'Categoria', False], ] rel.monta_grupos(rel.grupos) location_obj = self.pool.get('stock.location').browse(cr, uid, location_id) rel.band_page_header.elements[-1].text = u'Local: ' + location_obj.name pdf = gera_relatorio(rel, linhas) dados = { 'nome': 'produto_para_compra.pdf', 'arquivo': base64.encodestring(pdf), } rel_obj.write(dados) return True def gera_relatorio_clientes(self, cr, uid, ids, context={}): if not ids: return {} for rel_obj in self.browse(cr, uid, ids): sql = """select rp.name, cli.name as cliente, coalesce(cli.email_nfe,'') as email, coalesce(cli.bairro,'') as bairro, coalesce(cli.fone,'') as fone, coalesce(cli.endereco,'') ||', nº' || coalesce(cli.numero,'') as endereco, case when cli.active = true then 'Ativo' else 'Inativo' end as ativo, coalesce(u.name, 'Sem representante') as representante, coalesce(spu.nome, 'Sem municipio') as municipio, coalesce(se.nome, 'Sem estado') as estado from res_partner cli left join res_users u on u.id = cli.user_id left join sped_municipio spu on spu.id = cli.municipio_id left join sped_estado se on se.id = spu.estado_id left join res_company c on c.id = cli.company_id left join res_partner rp on rp.id = c.partner_id where cli.customer = true """ if rel_obj.company_id: sql += """ and c.id = """ + str(rel_obj.company_id.id) if rel_obj.partner_id: sql += """ and cli.id = """ + str(rel_obj.partner_id.id) if rel_obj.municipio_id: sql += """ and spu.id = """ + str(rel_obj.municipio_id.id) if rel_obj.estado_id: sql += """ and se.id = """ + str(rel_obj.estado_id.id) if rel_obj.user_id: sql += """ and u.id = """ + str(rel_obj.user_id.id) sql += """ order by rp.name, se.nome, u.name, spu.nome, cli.name ;""" print(sql) cr.execute(sql) dados = cr.fetchall() if len(dados) == 0: raise osv.except_osv(u'Atenção', u'Não há dados para gerar o relatório, com base nos parâmetros informados!') linhas = [] for empresa, cliente, email, bairro, fone, endereco, ativo, representante, municipio, estado in dados: linha = DicionarioBrasil() linha['empresa'] = empresa linha['cliente'] = cliente linha['email'] = email linha['bairro'] = bairro linha['fone'] = fone linha['endereco'] = endereco linha['ativo'] = ativo linha['representante'] = representante linha['municipio'] = municipio linha['estado'] = estado linhas.append(linha) rel = FinanRelatorioAutomaticoRetrato() rel.title = u'Clientes por Estado' rel.colunas = [ ['cliente' , 'C', 40, u'Código', False], ['municipio','C', 20, u'Cidade', False], ['bairro' , 'C', 15, u'Bairro', False], ['email', 'C', 25, u'Email', False], ['fone' , 'C', 15, u'Fone', False], ['endereco' , 'C', 30, u'Endereco', False], ['ativo' , 'C', 8, u'Situacão', False], ] rel.monta_detalhe_automatico(rel.colunas) rel.grupos = [ ['empresa', u'Empresa', False], ['estado', u'Estado', False], ['representante', u'Representate', False], ] rel.monta_grupos(rel.grupos) if rel_obj.company_id: company_id = rel_obj.company_id.id else: company_id = 1 company_obj = self.pool.get('res.company').browse(cr, uid, company_id) rel.band_page_header.elements[-1].text = u'Empresa: ' + company_obj.partner_id.name pdf = gera_relatorio(rel, linhas) dados = { 'nome': u'clientes_por_estado.pdf', 'arquivo': base64.encodestring(pdf), } rel_obj.write(dados) return True asp_relatorio()
8cb1198739853e29689237999b1e3c3375af0e06
31e00afe8f782bd214f8e32949be928a51e5de39
/CreditCalculator/Credit Calculator/task/creditcalc/creditcalc.py
a56e2de2966fd6bf16c2ab712fd91ba2d6ad1650
[]
no_license
akocur/education
65e2a0640bab5e9939c5692333fa2f500c9feb0b
d0a890861cd83dcc61ff2af6cfbb75c157fbaf02
refs/heads/master
2023-05-24T02:38:04.695665
2020-10-26T14:09:07
2020-10-26T14:09:07
269,410,671
0
0
null
2023-05-22T22:47:45
2020-06-04T16:32:11
HTML
UTF-8
Python
false
false
3,761
py
from math import log, ceil, floor import argparse class CreditCalculator: def __init__(self, type_calc='annuity', payment=0, periods=0, interest=0, principal=0): self.type = type_calc self.payment = payment self.periods = periods self.interest = interest self.principal = principal self.interest_rate = self.interest / 1200 self.total_payments = 0 def __repr__(self): return f''' type: {self.type} payment: {self.payment} periods: {self.periods} interest: {self.interest} principal: {self.principal} interest_rate: {self.interest_rate} total_payments: {self.total_payments} ''' def overpayment(self): print(f'\nOverpayment = {self.total_payments - self.principal}') def are_errors(self): if self.type not in ['annuity', 'diff']: return True if self.interest <= 0 or self.payment < 0 or self.periods < 0 or self.principal < 0: return True if self.type == 'annuity': if self.payment == self.periods == self.principal == 0: return True else: if self.payment: return True def calculate(self): if self.are_errors(): print('Incorrect parameters') return if self.type == 'annuity': if self.principal == 0: self.principal = floor(self.payment * (pow(1 + self.interest_rate, self.periods) - 1) / (self.interest_rate * pow(1 + self.interest_rate, self.periods))) print(f'Your credit principal = {self.principal}!') elif self.payment == 0: self.payment = ceil(self.principal * self.interest_rate * pow(1 + self.interest_rate, self.periods) / (pow(1 + self.interest_rate, self.periods) - 1)) print(f'Your annuity payment = {self.payment}!') elif self.periods == 0: self.periods = ceil(log(self.payment / (self.payment - self.interest_rate * self.principal), 1 + self.interest_rate)) n_years = self.periods // 12 n_month = self.periods % 12 n_years_str = '' if n_years < 1 else f'{n_years} year{"s" if n_years > 1 else ""}' and_str = ' and ' if n_years > 0 and n_month > 0 else '' n_month_str = '' if n_month < 1 else f'{n_month} month{"s" if n_month > 1 else ""}' print(f'You need {n_years_str}{and_str}{n_month_str} to repay this credit!') self.total_payments = self.payment * self.periods elif self.type == 'diff': sum_payment = 0 for month in range(1, self.periods + 1): payment = ceil(self.principal / self.periods + self.interest_rate * (self.principal - self.principal * (month - 1) / self.periods)) print(f'Month {month}: paid out {payment}') sum_payment += payment self.total_payments = sum_payment self.overpayment() parser_args = argparse.ArgumentParser() parser_args.add_argument('--type') parser_args.add_argument('--payment', type=int, default=0) parser_args.add_argument('--principal', type=int, default=0) parser_args.add_argument('--periods', type=int, default=0) parser_args.add_argument('--interest', type=float, default=0) args = parser_args.parse_args() credit_calc = CreditCalculator(args.type, args.payment, args.periods, args.interest, args.principal) credit_calc.calculate()
63702ccdfa0d0fe8c64cf9c7db3880461a484a25
f3498e863e6500508f486added078aa462239de2
/devel/lib/python2.7/dist-packages/mavros_msgs/__init__.py
7e8803c1ed66e694312bfbf8a0b6d0cd5d62e556
[]
no_license
luiscaiza/catkin_ws
82bf39d25c3e732a4a3e5408b81de7992373cb87
ac038d7623b27217309adbbd38ace6e0bb528d61
refs/heads/master
2020-04-16T04:41:09.004587
2019-01-15T19:17:28
2019-01-15T19:17:28
165,276,961
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
/home/luis/catkin_ws/devel/.private/mavros_msgs/lib/python2.7/dist-packages/mavros_msgs/__init__.py
5b68f9839dd7d14e82c6f535fb0febdf0d995910
3bae1ed6460064f997264091aca0f37ac31c1a77
/extensions/logserver/ScribedCommand.py
3d234d75264afabac9b90bffa6679d4182ed3010
[]
no_license
racktivity/ext-pylabs-core
04d96b80ac1942754257d59e91460c3a141f0a32
53d349fa6bee0ccead29afd6676979b44c109a61
refs/heads/master
2021-01-22T10:33:18.523799
2017-06-08T09:09:28
2017-06-08T09:09:28
54,314,984
0
0
null
2017-06-08T09:09:29
2016-03-20T11:55:01
Python
UTF-8
Python
false
false
4,544
py
from pylabs import q from pylabs.inifile import IniFile from pylabs.baseclasses.CommandWrapper import CommandWrapper from pylabs.enumerators import AppStatusType import time class ScribedCommand(CommandWrapper): """ A basic ScribedCommandWrapper to start/stop/restart the Scribe server """ # def _getPidFile(self): # return q.system.fs.joinPaths(q.dirs.pidDir, "scribed.pid") def _getScribedBinary(self): return q.system.fs.joinPaths(q.dirs.binDir,"scribed") def _getScribeCTRLBinary(self): return q.system.fs.joinPaths(q.dirs.binDir, "scribe_ctrl") def _getDefaultConfigFile(self): return q.system.fs.joinPaths(q.dirs.cfgDir, 'scribe_logserver.conf') def _getPort(self): serverIniFile = IniFile(q.system.fs.joinPaths(q.dirs.cfgDir, 'qconfig', 'logservermain.cfg')) return serverIniFile.getValue('main', 'port') def _getStatus(self, port): #@todo: use the status coammand instead of the version command to get the server status once the status problem resolved command = "%(SCRIBECTRLCommand)s version %(port)s" % {"SCRIBECTRLCommand":self._getScribeCTRLBinary(), "port":port} exitCode, output = q.system.process.execute(command, dieOnNonZeroExitCode = False, outputToStdout = False) #status command returns 2 if scribe is alive else returns 3 ????? if exitCode : return AppStatusType.HALTED return AppStatusType.RUNNING def start(self, configFile = None, timeout = 5): """ Start Scribe Server @param configFile: configuration file for describing the different stores @type configFile: string """ port = self._getPort() if self._getStatus(port) == AppStatusType.RUNNING: q.console.echo('Scribe Server on port %s already running'%port) return if not configFile: configFile = self._getDefaultConfigFile() q.logger.log('Starting scribe server with port %s using config file %s'%(port, configFile), 5) command = "%(SCRIBEDCommand)s -p %(port)s -c %(configFile)s 2> %(scribeout)s&" % {"SCRIBEDCommand":self._getScribedBinary(), "port": port, "configFile":configFile, 'scribeout': q.system.fs.joinPaths(q.dirs.logDir, 'logserver.out')} exitCode, output = q.system.process.execute(command, dieOnNonZeroExitCode = False, outputToStdout = True) t = timeout started = False while t>0: if q.system.process.checkProcess('bin/scribed') == 0: started = True break t = t - 1 time.sleep(1) if not started: q.logger.log("Scribe could not be started in %d seconds" % timeout, 8) raise RuntimeError("Scribe could not be started in %d seconds" % timeout) q.logger.log('Scribe server on port %s and config file %s started Successfully'%(port, configFile), 3) q.console.echo("Scribe started successfully.") def stop(self): """ Stop Scribe Server """ port = self._getPort() if self._getStatus(port) == AppStatusType.HALTED: q.console.echo('Scribe Server on port %s is not running'%port) return command = "%(SCRIBECTRLCommand)s stop %(port)s" % {"SCRIBECTRLCommand":self._getScribeCTRLBinary(), "port":port} exitCode, output = q.system.process.execute(command, dieOnNonZeroExitCode = False, outputToStdout = True) if exitCode and output: raise RuntimeError("Scribe could not be stopped. Reason: %s"%output) q.console.echo("Scribe stopped successfully") def restart(self): """ Restart Scribe Server """ self.stop() self.start() def getStatus(self): """ Check the live status of the scribe server """ return self._getStatus(self._getPort()) def getDetailedStatus(self): """ Used the status command to get detailed status of the scribe server """ command = "%(SCRIBECTRLCommand)s status %(port)s" % {"SCRIBECTRLCommand":self._getScribeCTRLBinary(), "port":self._getPort()} exitCode, output = q.system.process.execute(command, dieOnNonZeroExitCode = False, outputToStdout = False) #status command returns 2 if scribe is alive else returns 3 ????? if exitCode == 3: return AppStatusType.HALTED return AppStatusType.RUNNING
[ "devnull@localhost" ]
devnull@localhost
370c92a901face3a9787726692e591f2249350aa
b5921afe6ea5cd8b3dcfc83147ab5893134a93d0
/tl/plugs/timeline/klacht.py
1834e62f30873b8c7ab9090c22771b0cad15963c
[ "LicenseRef-scancode-other-permissive" ]
permissive
techdragon/tl
aaeb46e18849c04ad436e0e786401621a4be82ee
6aba8aeafbc92cabdfd7bec11964f7c3f9cb835d
refs/heads/master
2021-01-17T16:13:18.636457
2012-11-02T10:08:10
2012-11-02T10:08:10
9,296,808
1
0
null
null
null
null
UTF-8
Python
false
false
2,237
py
# tl/plugs/timeline/klacht.py # # """ het timeline klachten command. """ ## tl imports from tl.utils.name import stripname from tl.lib.datadir import getdatadir from tl.lib.persist import TimedPersist, PersistCollection from tl.lib.commands import cmnds from tl.lib.examples import examples from tl.id import get_uid, get_id ## basic imports import logging import time import os ## getklachtdir function def getklachtdir(username): return os.path.join(getdatadir(), "timeline", stripname(username), "klacht") ## Klacht class class Klacht(TimedPersist): def __init__(self, username, klacht, default={}, ddir=None, origin=None, *args, **kwargs): TimedPersist.__init__(self, username, default=default, ddir=getklachtdir(username), *args, **kwargs) self.data.klacht = self.data.klacht or klacht or "geen text gegeven" self.data.username = self.data.username or username or "anon" self.data.uid = self.data.uid or get_uid(username) self.data.origin = self.data.origin or origin or get_id() class Klachten(PersistCollection): pass ## complaint command def handle_klacht(bot, event): if not event.rest: event.reply("waar wil je over klagen?") ; return k = Klacht(event.user.data.name, event.rest) k.save() event.reply("klacht is genoteerd op %s" % time.ctime(k.data.created)) cmnds.add("klacht", handle_klacht, ["OPER", "USER", "GUEST"]) examples.add( "klacht", "met het klacht commando kan je laten registeren wat je intiept, een overzicht kan je krijgen door het klachten commando te geven", "klacht die GGZ NHN is maar een rukkerig zooitje proviteurs die betaalt krijgen om nee te zeggen" ) def handle_klachten(bot, event): klachten = Klachten(getklachtdir(event.user.data.name)) result = [] for k in klachten.dosort(): result.append("%s - %s" % (k.data.klacht, time.ctime(k.data.created))) if result: event.reply("klachten van %s: " % event.user.data.name, result, dot="indent", nosort=True) else: event.reply("ik kan nog geen klachten vinden voor %s" % event.uid) cmnds.add("klachten", handle_klachten, ["OPER", "USER", "GUEST"]) examples.add("klachten", "laat alle klachten zien", "klachten")
4a1a45cb117ab58f4f8273b78fa8fba8fabe3cd5
2ffdd45472fc20497123bffc3c9b94d9fe8c9bc8
/venv/Lib/site-packages/pip/_internal/network/auth.py
db016f2af2fd5d56a211d566cafa9d00e4118b0b
[]
no_license
mbea-int/expense-tracker-app
fca02a45623e24ed20d201f69c9a892161141e0c
47db2c98ed93efcac5330ced2b98d2ca365e6017
refs/heads/master
2023-05-10T14:29:04.935218
2021-06-04T15:10:00
2021-06-04T15:10:00
373,816,157
0
0
null
null
null
null
UTF-8
Python
false
false
11,512
py
"""Network Authentication Helpers Contains interface (MultiDomainBasicAuth) and associated glue code for providing credentials in the context of network requests. """ import logging from pip._vendor.requests.auth import AuthBase, HTTPBasicAuth from pip._vendor.requests.utils import get_netrc_auth from pip._vendor.six.moves.urllib import parse as urllib_parse from pip._internal.utils.misc import ( ask, ask_input, ask_password, remove_auth_from_url, split_auth_netloc_from_url, ) from pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import Dict, Optional, Tuple, List, Any from pip._internal.vcs.versioncontrol import AuthInfo from pip._vendor.requests.models import Response, Request Credentials = Tuple[str, str, str] logger = logging.getLogger(__name__) try: import keyring # noqa except ImportError: keyring = None except Exception as exc: logger.warning("Keyring is skipped due to an exception: %s", str(exc)) keyring = None def get_keyring_auth(url, username): # type: (str, str) -> Optional[AuthInfo] """Return the tuple auth for a given url from keyring.""" if not url or not keyring: return None try: try: get_credential = keyring.get_credential except AttributeError: pass else: logger.debug("Getting credentials from keyring for %s", url) cred = get_credential(url, username) if cred is not None: return cred.username, cred.password return None if username: logger.debug("Getting password from keyring for %s", url) password = keyring.get_password(url, username) if password: return username, password except Exception as exc: logger.warning("Keyring is skipped due to an exception: %s", str(exc)) return None class MultiDomainBasicAuth(AuthBase): def __init__(self, prompting=True, index_urls=None): # type: (bool, Optional[List[str]]) -> None self.prompting = prompting self.index_urls = index_urls self.passwords = {} # type: Dict[str, AuthInfo] # When the user is prompted to enter credentials and keyring is # available, we will offer to save them. If the user accepts, # this value is set to the credentials they entered. After the # request authenticates, the caller should call # ``save_credentials`` to save these. self._credentials_to_save = None # type: Optional[Credentials] def _get_index_url(self, url): # type: (str) -> Optional[str] """Return the original index URL matching the requested URL. Cached or dynamically generated credentials may work against the original index URL rather than just the netloc. The provided url should have had its username and password removed already. If the original index url had credentials then they will be included in the return value. Returns None if no matching index was found, or if --no-index was specified by the user. """ if not url or not self.index_urls: return None for u in self.index_urls: prefix = remove_auth_from_url(u).rstrip("/") + "/" if url.startswith(prefix): return u return None def _get_new_credentials(self, original_url, allow_netrc=True, allow_keyring=True): # type: (str, bool, bool) -> AuthInfo """Find and return credentials for the specified URL.""" # Split the credentials and netloc from the url. url, netloc, url_user_password = split_auth_netloc_from_url(original_url) # Start with the credentials embedded in the url username, password = url_user_password if username is not None and password is not None: logger.debug("Found credentials in url for %s", netloc) return url_user_password # Find a matching index url for this request index_url = self._get_index_url(url) if index_url: # Split the credentials from the url. index_info = split_auth_netloc_from_url(index_url) if index_info: index_url, _, index_url_user_password = index_info logger.debug("Found index url %s", index_url) # If an index URL was found, try its embedded credentials if index_url and index_url_user_password[0] is not None: username, password = index_url_user_password if username is not None and password is not None: logger.debug("Found credentials in index url for %s", netloc) return index_url_user_password # Get creds from netrc if we still don't have them if allow_netrc: netrc_auth = get_netrc_auth(original_url) if netrc_auth: logger.debug("Found credentials in netrc for %s", netloc) return netrc_auth # If we don't have a password and keyring is available, use it. if allow_keyring: # The index url is more specific than the netloc, so try it first kr_auth = get_keyring_auth(index_url, username) or get_keyring_auth( netloc, username ) if kr_auth: logger.debug("Found credentials in keyring for %s", netloc) return kr_auth return username, password def _get_url_and_credentials(self, original_url): # type: (str) -> Tuple[str, Optional[str], Optional[str]] """Return the credentials to use for the provided URL. If allowed, netrc and keyring may be used to obtain the correct credentials. Returns (url_without_credentials, username, password). Note that even if the original URL contains credentials, this function may return a different username and password. """ url, netloc, _ = split_auth_netloc_from_url(original_url) # Use any stored credentials that we have for this netloc username, password = self.passwords.get(netloc, (None, None)) if username is None and password is None: # No stored credentials. Acquire new credentials without prompting # the user. (e.g. from netrc, keyring, or the URL itself) username, password = self._get_new_credentials(original_url) if username is not None or password is not None: # Convert the username and password if they're None, so that # this netloc will show up as "cached" in the conditional above. # Further, HTTPBasicAuth doesn't accept None, so it makes sense to # cache the value that is going to be used. username = username or "" password = password or "" # Store any acquired credentials. self.passwords[netloc] = (username, password) assert ( # Credentials were found (username is not None and password is not None) or # Credentials were not found (username is None and password is None) ), "Could not load credentials from url: {}".format(original_url) return url, username, password def __call__(self, req): # type: (Request) -> Request # Get credentials for this request url, username, password = self._get_url_and_credentials(req.url) # Set the url of the request to the url without any credentials req.url = url if username is not None and password is not None: # Send the basic auth with this request req = HTTPBasicAuth(username, password)(req) # Attach a hook to handle 401 responses req.register_hook("response", self.handle_401) return req # Factored out to allow for easy patching in tests def _prompt_for_password(self, netloc): # type: (str) -> Tuple[Optional[str], Optional[str], bool] username = ask_input("User for {}: ".format(netloc)) if not username: return None, None, False auth = get_keyring_auth(netloc, username) if auth and auth[0] is not None and auth[1] is not None: return auth[0], auth[1], False password = ask_password("Password: ") return username, password, True # Factored out to allow for easy patching in tests def _should_save_password_to_keyring(self): # type: () -> bool if not keyring: return False return ask("Save credentials to keyring [y/N]: ", ["y", "n"]) == "y" def handle_401(self, resp, **kwargs): # type: (Response, **Any) -> Response # We only care about 401 responses, anything else we want to just # pass through the actual response if resp.status_code != 401: return resp # We are not able to prompt the user so simply return the response if not self.prompting: return resp parsed = urllib_parse.urlparse(resp.url) # Prompt the user for a new username and password username, password, save = self._prompt_for_password(parsed.netloc) # Store the new username and password to use for future requests self._credentials_to_save = None if username is not None and password is not None: self.passwords[parsed.netloc] = (username, password) # Prompt to save the password to keyring if save and self._should_save_password_to_keyring(): self._credentials_to_save = (parsed.netloc, username, password) # Consume content and release the original connection to allow our new # request to reuse the same one. resp.content resp.raw.release_conn() # Add our new username and password to the request req = HTTPBasicAuth(username or "", password or "")(resp.request) req.register_hook("response", self.warn_on_401) # On successful request, save the credentials that were used to # keyring. (Note that if the user responded "no" above, this member # is not set and nothing will be saved.) if self._credentials_to_save: req.register_hook("response", self.save_credentials) # Send our new request new_resp = resp.connection.send(req, **kwargs) new_resp.history.append(resp) return new_resp def warn_on_401(self, resp, **kwargs): # type: (Response, **Any) -> None """Response callback to warn about incorrect credentials.""" if resp.status_code == 401: logger.warning( "401 Error, Credentials not correct for %s", resp.request.url ) def save_credentials(self, resp, **kwargs): # type: (Response, **Any) -> None """Response callback to save credentials on success.""" assert keyring is not None, "should never reach here without keyring" if not keyring: return creds = self._credentials_to_save self._credentials_to_save = None if creds and resp.status_code < 400: try: logger.info("Saving credentials to keyring") keyring.set_password(*creds) except Exception: logger.exception("Failed to save credentials")
c830aa73b9ef83c3a14fb5861a563fa13de4758f
f2a5311fdca8d71535565e1ec3fc2b79e55ab7aa
/main2d.py
c35349151b55013dad39d01b3ed3cb0a83619153
[]
no_license
xzxzmmnn/pytorch-convcnp
59bd9036cea88479862a622749408fd73f9d132b
31340d5cf4b537a240075f93c8d4aff6f10d8931
refs/heads/master
2020-12-28T11:53:13.337832
2020-01-01T07:58:27
2020-01-01T07:58:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,307
py
import argparse import torch import torch.optim as optim from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torchvision.transforms as tf from torchvision.datasets import MNIST, CIFAR10 from fastprogress import master_bar, progress_bar from convcnp import ConvCNP2d, channel_last from visualize import plot_all_2d, convert_tfboard def train(model, dataloader, optimizer): model.train() avg_loss = 0 for index, (I, _) in enumerate(progress_bar(dataloader, parent=args.mb)): I = I.to(args.device) optimizer.zero_grad() pred_dist = model(I) loss = - pred_dist.log_prob(channel_last((I))).sum(-1).mean() loss.backward() optimizer.step() avg_loss -= loss.item() * I.size(0) if index % 10 == 0: args.mb.child.comment = 'loss={:.3f}'.format(loss.item()) return avg_loss / len(dataloader.dataset) def validate(model, dataloader): model.eval() I, _ = iter(dataloader).next() I = I.to(args.device) with torch.no_grad(): Mc, f, dist = model.complete(I) likelihood = dist.log_prob(channel_last(I)).sum(-1).mean() rmse = (I - f).pow(2).mean() image = plot_all_2d(I, Mc, f) image = convert_tfboard(image) return likelihood, rmse, image def main(): if args.dataset == 'mnist': trainset = MNIST('~/data/mnist', train=True, transform=tf.ToTensor()) testset = MNIST('~/data/mnist', train=False, transform=tf.ToTensor()) cnp = ConvCNP2d(channel=1) elif args.dataset == 'cifar10': trainset = CIFAR10('~/data/cifar10', train=True, transform=tf.ToTensor()) testset = CIFAR10('~/data/cifar10', train=False, transform=tf.ToTensor()) cnp = ConvCNP2d(channel=3) trainloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=8) testloader = DataLoader(testset, batch_size=16, shuffle=True) cnp = cnp.to(args.device) optimizer = optim.Adam(cnp.parameters(), lr=args.learning_rate) args.mb = master_bar(range(1, args.epochs + 1)) for epoch in args.mb: avg_train_loss = train(cnp, trainloader, optimizer) valid_ll, rmse, image = validate(cnp, testloader) args.writer.add_scalar('train/likelihood', avg_train_loss, epoch) args.writer.add_scalar('validate/likelihood', valid_ll, epoch) args.writer.add_scalar('validate/rmse', rmse, epoch) args.writer.add_image('validate/image', image, epoch) torch.save(cnp.state_dict(), filename) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--batch-size', '-B', type=int, default=16) parser.add_argument('--learning-rate', '-LR', type=float, default=5e-4) parser.add_argument('--epochs', '-E', type=int, default=100) parser.add_argument('--dataset', '-D', type=str, default='mnist', choices=['mnist', 'cifar10']) parser.add_argument('--logging', default=False, action='store_true') args = parser.parse_args() filename = 'convcnp2d_{}.pth.gz'.format(args.dataset) if torch.cuda.is_available(): args.device = torch.device('cuda') else: args.device = torch.device('cpu') args.writer = SummaryWriter() main() args.writer.close()
74ecd4a6a16f90612dffbb77095aa1099cf71add
033b29b6b1538d10e060e5734a1d7488a3fa03b4
/attic/objects/cards.py
f7891263e43957b288de677edd09d2b095312859
[ "MIT" ]
permissive
yuechuanx/fluent-python-code-and-notes
f99967416abc9c46be50d95f822b2ef3609f2d2d
2ae19fff8e1d292c6e8d163c99ca63e07259499c
refs/heads/master
2023-08-09T22:14:22.985987
2022-08-28T09:06:32
2022-08-28T09:06:32
229,009,764
2
0
MIT
2023-07-20T15:11:59
2019-12-19T08:30:28
Jupyter Notebook
UTF-8
Python
false
false
1,422
py
""" Spadille is the nickname for the Ace of Spades in some games (see `Webster 1913`_) >>> beer_card = Card('7', Suite.diamonds) >>> beer_card Card('7', Suite.diamonds) >>> spadille = Card('A', Suite.spades, long_rank='Ace') >>> spadille Card('A', Suite.spades) >>> print(spadille) Ace of spades >>> bytes(spadille) b'A\\x01' >>> charles = Card('K', Suite.hearts) >>> bytes(charles) b'K\\x04' >>> big_cassino = Card('10', Suite.diamonds) >>> bytes(big_cassino) b'T\\x02' __ http://machaut.uchicago.edu/cgi-bin/WEBSTER.sh?WORD=spadille """ from enum import Enum Suite = Enum('Suite', 'spades diamonds clubs hearts') class Card: def __init__(self, rank, suite, *, long_rank=None): self.rank = rank if long_rank is None: self.long_rank = self.rank else: self.long_rank = long_rank self.suite = suite def __str__(self): return '{long_rank} of {suite.name}'.format(**self.__dict__) def __repr__(self): constructor = '{cls.__name__}({args})' args = '{0.rank!r}, Suite.{0.suite.name}'.format(self) return constructor.format(cls=self.__class__, args=args) def __bytes__(self): if self.rank == '10': rank_byte = b'T' else: rank_byte = bytes([ord(self.rank)]) return rank_byte + bytes([self.suite.value])
690d6bd978706e9964ef58092234dfc22adba345
866dee1b3d01b863c31332ec81330d1b5ef5c6fa
/openquake.hazardlib/openquake/hazardlib/gsim/somerville_2009.py
3b4ea58c733f11df1149419112d9a6f14b6fa79c
[ "MIT", "AGPL-3.0-only" ]
permissive
rainzhop/ConvNetQuake
3e2e1a040952bd5d6346905b83f39889c6a2e51a
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
refs/heads/master
2020-08-07T16:41:03.778293
2019-11-01T01:49:00
2019-11-01T01:49:00
213,527,701
0
0
MIT
2019-10-08T02:08:00
2019-10-08T02:08:00
null
UTF-8
Python
false
false
9,716
py
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2013-2016 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. """ Module exports :class:`SomervilleEtAl2009NonCratonic`, :class:`SomervilleEtAl2009YilgarnCraton` """ from __future__ import division import numpy as np from openquake.hazardlib.gsim.base import GMPE, CoeffsTable from openquake.hazardlib import const from openquake.hazardlib.imt import PGA, PGV, SA class SomervilleEtAl2009NonCratonic(GMPE): """ Implements GMPE developed by P. Somerville, R. Graves, N. Collins, S. G. Song, S. Ni, and P. Cummins for Non-Cratonic Australia published in "Source and Ground Motion Models for Australian Earthquakes", Report to Geoscience Australia (2009). Document available at: http://www.ga.gov.au/cedda/publications/193?yp=2009 """ #: The supported tectonic region type is stable continental region DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.STABLE_CONTINENTAL #: The supported intensity measure types are PGA, PGV, and SA, see table #: 3 DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([ PGA, PGV, SA ]) #: The supported intensity measure component is set to 'average #: horizontal', however the original paper does not report this information DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.AVERAGE_HORIZONTAL #: The supported standard deviations is total, see tables 3 DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([ const.StdDev.TOTAL ]) #: no site parameters are defined, the GMPE is calibrated for Vs30 = 865 #: m/s REQUIRES_SITES_PARAMETERS = set() #: The required rupture parameter is magnitude, see table 2 REQUIRES_RUPTURE_PARAMETERS = set(('mag', )) #: The required distance parameter is 'Joyner-Boore' distance, see table 2 REQUIRES_DISTANCES = set(('rjb', )) def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. Implement equations as defined in table 2. """ assert all(stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES for stddev_type in stddev_types) C = self.COEFFS[imt] mean = self._compute_mean(C, rup.mag, dists.rjb) stddevs = self._get_stddevs(C, stddev_types, dists.rjb.shape[0]) return mean, stddevs def _compute_mean(self, C, mag, rjb): """ Compute mean value, see table 2. """ m1 = 6.4 r1 = 50. h = 6. R = np.sqrt(rjb ** 2 + h ** 2) R1 = np.sqrt(r1 ** 2 + h ** 2) less_r1 = rjb < r1 ge_r1 = rjb >= r1 mean = (C['c1'] + C['c4'] * (mag - m1) * np.log(R) + C['c5'] * rjb + C['c8'] * (8.5 - mag) ** 2) mean[less_r1] += C['c3'] * np.log(R[less_r1]) mean[ge_r1] += (C['c3'] * np.log(R1) + C['c6'] * (np.log(R[ge_r1]) - np.log(R1))) if mag < m1: mean += C['c2'] * (mag - m1) else: mean += C['c7'] * (mag - m1) return mean def _get_stddevs(self, C, stddev_types, num_sites): """ Return total standard deviation. """ stddevs = [] for _ in stddev_types: stddevs.append(np.zeros(num_sites) + C['sigma']) return stddevs #: Coefficients taken from table 3 COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 c7 c8 sigma pgv 5.07090 0.52780 -0.85740 0.17700 -0.00501 -0.61190 0.80660 -0.03800 0.6417 pga 1.03780 -0.03970 -0.79430 0.14450 -0.00618 -0.72540 -0.03590 -0.09730 0.5685 0.010 1.05360 -0.04190 -0.79390 0.14450 -0.00619 -0.72660 -0.03940 -0.09740 0.5684 0.020 1.05680 -0.03920 -0.79680 0.14550 -0.00617 -0.73230 -0.03930 -0.09600 0.5684 0.030 1.13530 -0.04790 -0.80920 0.15000 -0.00610 -0.76410 -0.05710 -0.09210 0.5681 0.040 1.30000 -0.07020 -0.83150 0.15920 -0.00599 -0.82850 -0.09810 -0.08530 0.5676 0.050 1.47680 -0.09310 -0.83330 0.15600 -0.00606 -0.86740 -0.12740 -0.09130 0.5670 0.075 1.70220 -0.05160 -0.80720 0.14560 -0.00655 -0.87690 -0.10970 -0.08690 0.5663 0.100 1.65720 0.15080 -0.77590 0.13100 -0.00708 -0.77830 0.01690 -0.05980 0.5659 0.150 1.94440 -0.09620 -0.75000 0.11670 -0.00698 -0.69490 -0.13320 -0.12530 0.5659 0.200 1.82720 -0.06230 -0.73430 0.11940 -0.00677 -0.64380 -0.09570 -0.11920 0.5669 0.250 1.74380 -0.02530 -0.72480 0.11950 -0.00646 -0.63740 -0.06250 -0.11650 0.5678 0.3003 1.80560 -0.27020 -0.73190 0.13490 -0.00606 -0.66440 -0.17470 -0.14340 0.5708 0.400 1.88750 -0.37820 -0.70580 0.09960 -0.00589 -0.58770 -0.24420 -0.21890 0.5697 0.500 2.03760 -0.79590 -0.69730 0.11470 -0.00565 -0.59990 -0.48670 -0.29690 0.5739 0.750 1.93060 -0.80280 -0.74510 0.11220 -0.00503 -0.59460 -0.50120 -0.34990 0.5876 1.000 1.60380 -0.47800 -0.86950 0.07320 -0.00569 -0.41590 0.06360 -0.33730 0.6269 1.4993 0.47740 0.90960 -1.02440 0.11060 -0.00652 -0.19000 1.09610 -0.10660 0.7517 2.000 -0.25810 1.37770 -1.01000 0.10310 -0.00539 -0.27340 1.50330 -0.04530 0.8036 3.0003 -0.96360 1.14690 -0.88530 0.10380 -0.00478 -0.40420 1.54130 -0.11020 0.8219 4.000 -1.46140 1.07950 -0.80490 0.10960 -0.00395 -0.46040 1.41960 -0.14700 0.8212 5.000 -1.61160 0.74860 -0.78100 0.09650 -0.00307 -0.46490 1.24090 -0.22170 0.8240 7.5019 -2.35310 0.35190 -0.64340 0.09590 -0.00138 -0.68260 0.92880 -0.31230 0.7957 10.000 -3.26140 0.69730 -0.62760 0.12920 -0.00155 -0.61980 1.01050 -0.24550 0.7602 """) class SomervilleEtAl2009YilgarnCraton(SomervilleEtAl2009NonCratonic): """ Implements GMPE developed by P. Somerville, R. Graves, N. Collins, S. G. Song, S. Ni, and P. Cummins for Yilgarn Craton published in "Source and Ground Motion Models for Australian Earthquakes", Report to Geoscience Australia (2009). Document available at: http://www.ga.gov.au/cedda/publications/193?yp=2009 Extends :class:`openquake.hazardlib.gsim.somerville_2009.SomervilleEtAl2009NonCratonic` because the same functional form is used, only the coefficents differ. """ #: Coefficients taken from table 4 COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 c7 c8 sigma pgv 5.23440 1.58530 -1.01540 0.21400 -0.00341 -0.91610 1.12980 0.14810 0.6606 pga 1.54560 1.45650 -1.11510 0.16640 -0.00567 -1.04900 1.05530 0.20000 0.5513 0.010 1.55510 1.46380 -1.11460 0.16620 -0.00568 -1.04840 1.05850 0.20140 0.5512 0.020 2.33800 1.38060 -1.22970 0.18010 -0.00467 -1.39850 0.95990 0.20130 0.5510 0.030 2.48090 1.37540 -1.17620 0.17120 -0.00542 -1.38720 0.96930 0.19280 0.5508 0.040 2.31450 1.60250 -1.12600 0.17150 -0.00629 -1.27910 1.07040 0.23560 0.5509 0.050 2.26860 1.55840 -1.07340 0.14710 -0.00709 -1.08910 1.10750 0.20670 0.5510 0.075 1.97070 1.68030 -1.01540 0.14560 -0.00737 -0.91930 1.18290 0.22170 0.5514 0.100 1.71030 1.75070 -0.99330 0.13820 -0.00746 -0.78140 1.29390 0.23790 0.5529 0.150 1.52310 1.69160 -0.96310 0.13330 -0.00713 -0.67330 1.22430 0.21020 0.5544 0.200 1.36830 1.57940 -0.94720 0.13640 -0.00677 -0.62690 1.17760 0.18950 0.5558 0.250 1.40180 1.28940 -0.94410 0.14360 -0.00617 -0.67070 1.05610 0.14590 0.5583 0.3003 1.45000 1.04630 -0.94880 0.14760 -0.00581 -0.68700 0.94040 0.11040 0.5602 0.400 1.44150 0.92820 -0.91830 0.11320 -0.00576 -0.59520 0.86280 0.04060 0.5614 0.500 1.40380 0.69160 -0.91010 0.13480 -0.00557 -0.62390 0.71230 0.00620 0.5636 0.750 1.50840 0.75800 -0.99010 0.11260 -0.00458 -0.69040 0.68590 -0.05630 0.5878 1.000 2.10630 0.38180 -1.08680 0.07950 -0.00406 -0.90340 0.61850 -0.18250 0.6817 1.4993 2.55790 -0.84270 -0.81810 0.07650 -0.00220 -1.35320 -0.25440 -0.46660 0.8514 2.000 2.39600 -1.39950 -0.70440 0.06770 -0.00366 -0.90860 -0.64320 -0.59600 0.8646 3.0003 0.96040 -0.46120 -0.70450 0.06450 -0.00429 -0.51190 -0.16430 -0.46310 0.8424 4.000 0.12190 -0.06980 -0.75910 0.08490 -0.00374 -0.41450 0.12350 -0.39250 0.8225 5.000 -0.84240 0.53160 -0.79600 0.10330 -0.00180 -0.62130 0.53680 -0.27570 0.8088 7.5019 -1.92260 0.63760 -0.81900 0.14550 -0.00066 -0.75740 0.69020 -0.23290 0.7808 10.000 -2.60330 0.59060 -0.80940 0.16090 -0.00106 -0.68550 0.70350 -0.22910 0.7624 """)
8e227b0301c820f7de88c13b8aa9fea0299ee35c
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/lex-models_read_1/intent-version_get.py
3042cea737aa3ed08aa65f3330a3dc1253199319
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,430
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import execute_one_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lex-models/get-intent-versions.html if __name__ == '__main__': """ create-intent-version : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lex-models/create-intent-version.html delete-intent-version : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lex-models/delete-intent-version.html """ parameter_display_string = """ # name : The name of the intent for which versions should be returned. """ add_option_dict = {} ####################################################################### # setting option use # ex: add_option_dict["setting_matching_parameter"] = "--owners" # ex: add_option_dict["setting_key"] = "owner_id" ####################################################################### # single parameter # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" ####################################################################### # parameter display string add_option_dict["parameter_display_string"] = parameter_display_string execute_one_parameter("lex-models", "get-intent-versions", "name", add_option_dict)
f6e55ac4950c328a97974e006332ebc0b2d7779d
9a4de72aab094c87cfee62380e7f2613545eecfb
/monitor/permissions.py
4a5ca730834d35cef0d5a306a239cd832e172907
[]
no_license
jamesduan/asset
ed75765c30a5288aaf4f6c56bbf2c9a059105f29
f71cb623b5ba376309cb728ad5c291ced2ee8bfc
refs/heads/master
2021-01-10T00:06:41.120678
2017-05-27T11:40:48
2017-05-27T11:40:48
92,730,581
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
from rest_framework import permissions from assetv2.settingsapi import GROUP_ID SAFE_METHOD = ['GET'] class EventPermission(permissions.BasePermission): def has_permission(self, request, view): return True class AlarmPermission(permissions.BasePermission): def has_permission(self, request, view): if request.user is None: return False if request.user.is_superuser or request.method in SAFE_METHOD: return True
93017e77935b215f3fe77019853de5c8710fb5da
5ab0a217ac64a4e73d7ccff834a73eecdae323c5
/chps3-5/5.09.2.py
07db151d59c6c3f2ae3361eb9a29d95d73b0929d
[]
no_license
bolducp/My-Think-Python-Solutions
d90ea5c485e418f4a6b547fdd9c1d4c8adfe72b9
6c411af5a46ee167b8e4a3449aa4b18705bf1df5
refs/heads/master
2021-01-22T05:19:53.987082
2015-09-15T15:53:31
2015-09-15T15:53:31
41,259,726
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
def print_it(): print "hello" def do_n(a_function, n): if n <= 0: return a_function() do_n(a_function, n-1) do_n(print_it, 10)
5870f222472143b75927e57686601703315c9e5f
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/3/ht8.py
395581a5a9a0c57ec6f9e5fe99c8d47a05db9215
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'hT8': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
d8bbd86b7eb2a6e33c42f85a09768c3508e5f1d1
b8ca7b39498b371405b1036dc58d18ab260a3bdc
/app/core/aries_rfcs/features/feature_0036_issue_credential/feature.py
e6a5f5619f49ecac5e242412fb189cbd29696296
[]
no_license
Sirius-social/Indy-Agent
73cbb9126648a8e7d97e60fd7add3f7f72c25b1f
8e26d824c74d7e41739ac16acacf4b12181cfea1
refs/heads/master
2022-12-10T18:33:15.324450
2021-09-19T22:39:21
2021-09-19T22:39:21
197,164,640
0
1
null
2022-12-08T05:53:33
2019-07-16T09:36:58
Rust
UTF-8
Python
false
false
43,576
py
import json import uuid import logging import base64 from collections import UserDict from typing import List from django.conf import settings from django.utils.timezone import timedelta, now import core.indy_sdk_utils as indy_sdk_utils import core.codec import core.const from core.models import update_cred_def_meta, update_issuer_schema from core.base import WireMessageFeature, FeatureMeta, EndpointTransport, WriteOnlyChannel from core.messages.message import Message from core.messages.errors import ValidationException as MessageValidationException from core.serializer.json_serializer import JSONSerializer as Serializer from core.wallet import WalletAgent, InvokableStateMachineMeta, WalletConnection from state_machines.base import BaseStateMachine, MachineIsDone from core.wallet import WalletOperationError from core.aries_rfcs.features.feature_0015_acks.feature import AckMessage from transport.const import WIRED_CONTENT_TYPES from .statuses import * from .errors import * class ProposedAttrib(UserDict): def __init__(self, name: str, value: str, mime_type: str=None, **kwargs): super().__init__() self.data['name'] = name if mime_type: self.data['mime-type'] = mime_type self.data['value'] = value def to_json(self): return self.data class AttribTranslation(UserDict): def __init__(self, attrib_name: str, translation: str, **kwargs): super().__init__() self.data['attrib_name'] = attrib_name self.data['translation'] = translation def to_json(self): return self.data class Context: def __init__(self): self.my_did = None self.their_did = None self.my_ver_key = None self.their_verkey = None self.their_endpoint = None self.routing_keys = None class IssueCredentialProtocol(WireMessageFeature, metaclass=FeatureMeta): """https://github.com/hyperledger/aries-rfcs/tree/master/features/0036-issue-credential""" DEF_LOCALE = 'en' FAMILY_NAME = "issue-credential" VERSION = "1.1" FAMILY = "did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/" + FAMILY_NAME + "/" + VERSION """Messages""" # potential Holder to Issuer (optional). Tells what the Holder hopes to receive. PROPOSE_CREDENTIAL = FAMILY + "/propose-credential" # Issuer to potential Holder (optional for some credential implementations; required for Hyperledger Indy). # Tells what the Issuer intends to issue, and possibly, the price the Issuer expects to be paid. OFFER_CREDENTIAL = FAMILY + "/offer-credential" # Potential Holder to Issuer. If neither of the previous message types is used, # this is the message that begins the protocol. REQUEST_CREDENTIAL = FAMILY + "/request-credential" # Issuer to new Holder. Attachment payload contains the actual credential. ISSUE_CREDENTIAL = FAMILY + "/issue-credential" # Problem reports PROBLEM_REPORT = FAMILY + "/problem_report" # Ack CREDENTIAL_ACK = FAMILY + "/ack" CREDENTIAL_PREVIEW_TYPE = "did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/issue-credential/1.0/credential-preview" CREDENTIAL_TRANSLATION_TYPE = "https://github.com/Sirius-social/agent/tree/master/messages/credential-translation" ISSUER_SCHEMA_TYPE = "https://github.com/Sirius-social/agent/tree/master/messages/issuer-schema" CREDENTIAL_TRANSLATION_ID = "credential-translation" ISSUER_SCHEMA_ID = "issuer-schema" # Problem reports PROPOSE_NOT_ACCEPTED = "propose_not_accepted" OFFER_PROCESSING_ERROR = 'offer_processing_error' REQUEST_NOT_ACCEPTED = "request_not_accepted" ISSUE_PROCESSING_ERROR = 'issue_processing_error' RESPONSE_FOR_UNKNOWN_REQUEST = "response_for_unknown_request" # internal usage definitions MESSAGE_CONTENT_TYPE = 'application/json' WIRED_CONTENT_TYPE = WIRED_CONTENT_TYPES[0] CMD_START = 'start' CMD_STOP = 'stop' STATE_MACHINE_TTL = 60 # 60 sec @classmethod async def handle(cls, agent_name: str, wire_message: bytes, my_label: str = None, my_endpoint: str = None) -> bool: unpacked = await WalletAgent.unpack_message(agent_name, wire_message) kwargs = json.loads(unpacked['message']) message = Message(**kwargs) if message.get('@type', None) is None: return False if not cls.endorsement(message): return False for protocol_version in ["1.1", "1.0"]: type_issue_credential = cls.set_protocol_version(cls.ISSUE_CREDENTIAL, protocol_version) type_offer_credential = cls.set_protocol_version(cls.OFFER_CREDENTIAL, protocol_version) type_request_credential = cls.set_protocol_version(cls.REQUEST_CREDENTIAL, protocol_version) type_credential_ack = cls.set_protocol_version(cls.CREDENTIAL_ACK, protocol_version) state_machine_id = cls.get_state_machine_id(unpacked['sender_verkey']) if message.type in [type_issue_credential, type_offer_credential]: machine_class = IssueCredentialProtocol.HolderSateMachine if message.type == type_offer_credential: await WalletAgent.start_state_machine( status=IssueCredentialStatus.Null, ttl=IssueCredentialProtocol.STATE_MACHINE_TTL, agent_name=agent_name, machine_class=machine_class, machine_id=state_machine_id, protocol_version=protocol_version ) await WalletAgent.invoke_state_machine( agent_name=agent_name, id_=state_machine_id, content_type=cls.WIRED_CONTENT_TYPE, data=wire_message ) return True elif message.type in [type_request_credential, AckMessage.ACK, type_credential_ack]: await WalletAgent.invoke_state_machine( agent_name=agent_name, id_=state_machine_id, content_type=cls.WIRED_CONTENT_TYPE, data=wire_message ) return True return False @staticmethod def get_state_machine_id(key: str): return 'issue=cred:' + key @staticmethod def set_protocol_version(msg_type: str, version: str): parts = msg_type.split('/') if len(parts) < 4: raise RuntimeError('Unexpected message type structure "%s"' % msg_type) parts[2] = version return '/'.join(parts) @classmethod def endorsement(cls, msg: Message) -> bool: if msg.type == AckMessage.ACK: return True family_prefix = "did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/" + cls.FAMILY_NAME for version in ["1.1", "1.0"]: family = family_prefix + "/" + version if family in msg.type: return True return False @classmethod def build_problem_report_for_connections(cls, problem_code, problem_str, thread_id: str = None) -> Message: initialized = { "@type": "{}/problem_report".format(cls.FAMILY), "problem-code": problem_code, "explain": problem_str } if thread_id: initialized['~thread'] = {Message.THREAD_ID: thread_id, Message.SENDER_ORDER: 0} return Message(initialized) @staticmethod async def send_problem_report( wallet: WalletConnection, problem_code: str, problem_str: str, context: Context, thread_id: str=None ): err_msg = IssueCredentialProtocol.build_problem_report_for_connections( problem_code, problem_str, thread_id ) try: wire_message = await wallet.pack_message( Serializer.serialize(err_msg).decode('utf-8'), context.their_verkey, context.my_ver_key ) except Exception as e: logging.exception(str(e)) raise else: transport = EndpointTransport(address=context.their_endpoint) await transport.send_wire_message(wire_message) return err_msg @classmethod async def validate_common_message_blocks(cls, msg: Message, problem_code: str, context: Context): try: msg.validate_common_blocks() return True, None except MessageValidationException as e: logging.exception('Validation error while parsing message: %s' % msg.as_json()) if context.their_did: err_msg = cls.build_problem_report_for_connections( problem_code, str(e.exception), thread_id=msg.id ) return False, err_msg else: return False, None except Exception as e: logging.exception('Validation error while parsing message: %s' % str(e)) return False, None @classmethod async def send_message_to_agent(cls, to_did: str, msg: Message, wallet: WalletConnection): their_did = to_did pairwise_info = await wallet.get_pairwise(their_did) pairwise_meta = pairwise_info['metadata'] my_did = pairwise_info['my_did'] their_endpoint = pairwise_meta['their_endpoint'] their_vk = pairwise_meta['their_vk'] my_vk = await wallet.key_for_local_did(my_did) await cls.send_message_to_endpoint_and_key(their_vk, their_endpoint, msg, wallet, my_vk) @staticmethod async def send_message_to_endpoint_and_key(their_ver_key: str, their_endpoint: str, msg: Message, wallet: WalletConnection, my_ver_key: str = None): # If my_ver_key is omitted, anon-crypt is used inside pack. try: wire_message = await wallet.pack_message( Serializer.serialize(msg).decode('utf-8'), their_ver_key, my_ver_key ) except Exception as e: logging.exception(str(e)) raise else: transport = EndpointTransport(address=their_endpoint) await transport.send_wire_message(wire_message) @staticmethod async def unpack_agent_message(wire_msg_bytes, wallet: WalletConnection): print('===== 0036 unpack_agent_message ======') if isinstance(wire_msg_bytes, str): wire_msg_bytes = bytes(wire_msg_bytes, 'utf-8') unpacked = await wallet.unpack_message(wire_msg_bytes) print('unpacked: \n' + json.dumps(unpacked, indent=2, sort_keys=True)) from_key = None from_did = None their_endpoint = None context = Context() if 'sender_verkey' in unpacked: from_key = unpacked['sender_verkey'] from_did = await indy_sdk_utils.did_for_key(wallet, unpacked['sender_verkey']) pairwise_info = await wallet.get_pairwise(from_did) pairwise_meta = pairwise_info['metadata'] their_endpoint = pairwise_meta['their_endpoint'] to_key = unpacked['recipient_verkey'] to_did = await indy_sdk_utils.did_for_key(wallet, unpacked['recipient_verkey']) msg = Serializer.deserialize(unpacked['message']) print('from_did: ' + str(from_did)) print('to_did: ' + str(to_did)) print('to_key: ' + str(to_key)) print('from_key: ' + str(from_key)) print('their_endpoint: ' + str(their_endpoint)) context.their_did = from_did context.my_did = to_did context.my_ver_key = to_key context.their_verkey = from_key context.their_endpoint = their_endpoint print('===========') return msg, context @classmethod def propose_credential( cls, comment: str=None, locale: str=DEF_LOCALE, proposal_attrib: List[ProposedAttrib]=None, schema_id: str=None, schema_name: str=None, schema_version: str=None, schema_issuer_did: str=None, cred_def_id: str=None, issuer_did: str=None, proposal_attrib_translation: List[AttribTranslation]=None ): data = { '@type': cls.PROPOSE_CREDENTIAL, '~l10n': {"locale": locale}, } if comment: data['comment'] = comment if schema_id: data['schema_id'] = schema_id if schema_name: data['schema_name'] = schema_name if schema_version: data['schema_version'] = schema_version if schema_issuer_did: data['schema_issuer_did'] = schema_issuer_did if cred_def_id: data['cred_def_id'] = cred_def_id if issuer_did: data['issuer_did'] = issuer_did if proposal_attrib: data['credential_proposal'] = { "@type": cls.CREDENTIAL_PREVIEW_TYPE, "attributes": [attrib.to_json() for attrib in proposal_attrib] } if proposal_attrib_translation: data['~attach'] = [ { "@type": cls.CREDENTIAL_TRANSLATION_TYPE, "id": cls.CREDENTIAL_TRANSLATION_ID, '~l10n': {"locale": locale}, "mime-type": "application/json", "data": { "json": [trans.to_json() for trans in proposal_attrib_translation] } } ] return Message(data) class IssuerStateMachine(BaseStateMachine, metaclass=InvokableStateMachineMeta): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.status = IssueCredentialStatus.Null self.ack_message_id = None self.cred_def_id = None self.rev_reg_id = None self.values_buffer = None self.cred_offer_buffer = None self.to = None self.comment = None self.locale = None self.blob_storage_reader_handle = None self.log_channel_name = None self.cred_id = None self.__log_channel = None self.protocol_version = None self.expires_time = None @classmethod async def start_issuing( cls, agent_name: str, pass_phrase: str, to: str, cred_def_id: str, cred_def: dict, values: dict, issuer_schema: dict=None, rev_reg_id: str=None, preview: List[ProposedAttrib]=None, translation: List[AttribTranslation]=None, comment: str=None, locale: str=None, cred_id: str=None, ttl: int=None ): machine_class = IssueCredentialProtocol.IssuerStateMachine log_channel_name = 'cred-issuing-log/' + uuid.uuid4().hex to_verkey = await WalletAgent.key_for_local_did( agent_name, pass_phrase, to ) if not to_verkey: raise RuntimeError('Unknown pairwise for DID: %s' % str(to)) state_machine_id = IssueCredentialProtocol.get_state_machine_id(to_verkey) ttl = ttl or IssueCredentialProtocol.STATE_MACHINE_TTL expires_time = now() + timedelta(seconds=ttl) await WalletAgent.start_state_machine( agent_name=agent_name, machine_class=machine_class, machine_id=state_machine_id, status=IssueCredentialStatus.Null, ttl=ttl, expires_time=expires_time.strftime('%Y-%m-%dT%H:%M:%S') + '+0000', to=to, cred_def_id=cred_def_id, rev_reg_id=rev_reg_id, log_channel_name=log_channel_name, cred_id=cred_id ) data = dict( command=IssueCredentialProtocol.CMD_START, comment=comment, locale=locale, values=values, issuer_schema=issuer_schema, cred_def=cred_def, preview=[p.to_json() for p in preview] if preview else None, translation=[t.to_json() for t in translation] if translation else None ) await WalletAgent.invoke_state_machine( agent_name=agent_name, id_=state_machine_id, content_type=IssueCredentialProtocol.MESSAGE_CONTENT_TYPE, data=data ) return log_channel_name @classmethod async def stop_issuing(cls, agent_name: str, pass_phrase: str, to: str): to_verkey = await WalletAgent.key_for_local_did( agent_name, pass_phrase, to ) if not to_verkey: raise RuntimeError('Unknown pairwise for DID: %s' % str(to)) state_machine_id = IssueCredentialProtocol.get_state_machine_id(to_verkey) data = dict( command=IssueCredentialProtocol.CMD_STOP, ) await WalletAgent.invoke_state_machine( agent_name=agent_name, id_=state_machine_id, content_type=IssueCredentialProtocol.MESSAGE_CONTENT_TYPE, data=data ) await WalletAgent.kill_state_machine( agent_name=agent_name, pass_phrase=pass_phrase, id_=state_machine_id ) async def handle(self, content_type, data): try: if content_type == IssueCredentialProtocol.MESSAGE_CONTENT_TYPE: command = str(data.get('command', None)) if command == IssueCredentialProtocol.CMD_START: if self.status == IssueCredentialStatus.Null: # Store Context comment = data.get('comment', None) locale = data.get('locale', None) or IssueCredentialProtocol.DEF_LOCALE values = data.get('values') cred_def = data.get('cred_def') await update_cred_def_meta(cred_def['id'], cred_def) preview = data.get('preview', None) issuer_schema = data.get('issuer_schema', None) if issuer_schema: await update_issuer_schema(issuer_schema['id'], issuer_schema) preview = [ProposedAttrib(**item) for item in preview] if preview else None translation = data.get('translation', None) translation = [AttribTranslation(**item) for item in translation] if translation else None self.values_buffer = json.dumps(values) # Call Indy offer = await self.get_wallet().issuer_create_credential_offer(self.cred_def_id) self.cred_offer_buffer = json.dumps(offer) await self.__log(event='Build offer with Indy lib', details=offer) payload = dict(**offer, **cred_def) await self.__log(event='Payload', details=payload) # Build Aries message id_suffix = uuid.uuid4().hex data = { "@type": IssueCredentialProtocol.OFFER_CREDENTIAL, '~l10n': {"locale": locale}, "offers~attach": [ { "@id": 'libindy-cred-offer-' + id_suffix, "mime-type": "application/json", "data": { "base64": base64.b64encode(json.dumps(payload).encode()).decode() } } ] } if comment: data['comment'] = comment data['~l10n'] = {"locale": locale} self.comment = comment self.locale = locale if preview: data["credential_preview"] = { "@type": IssueCredentialProtocol.CREDENTIAL_PREVIEW_TYPE, "attributes": [attrib.to_json() for attrib in preview] } if translation or issuer_schema: data['~attach'] = [] if translation: data['~attach'].append( { "@type": IssueCredentialProtocol.CREDENTIAL_TRANSLATION_TYPE, "id": IssueCredentialProtocol.CREDENTIAL_TRANSLATION_ID, '~l10n': {"locale": locale}, "mime-type": "application/json", "data": { "json": [trans.to_json() for trans in translation] } } ) if issuer_schema: data['~attach'].append( { "@type": IssueCredentialProtocol.ISSUER_SCHEMA_TYPE, "id": IssueCredentialProtocol.ISSUER_SCHEMA_ID, "mime-type": "application/json", "data": { "json": issuer_schema } } ) if self.expires_time: data['~timing'] = { "expires_time": self.expires_time } message_offer = Message(data) await IssueCredentialProtocol.send_message_to_agent(self.to, message_offer, self.get_wallet()) self.status = IssueCredentialStatus.OfferCredential await self.__log(event='Send Offer message', details=data) else: raise RuntimeError('Unexpected command %s' % command) elif command == IssueCredentialProtocol.CMD_STOP: if self.to and self.status != IssueCredentialStatus.Null: err_msg = IssueCredentialProtocol.build_problem_report_for_connections( problem_code=IssueCredentialProtocol.ISSUE_PROCESSING_ERROR, problem_str='Actor unexpected stopped issuing', ) await IssueCredentialProtocol.send_message_to_agent(self.to, err_msg, self.get_wallet()) await self.__log('Actor unexpected stopped issuing') await self.done() else: raise RuntimeError('Unknown command: %s' % command) elif content_type in WIRED_CONTENT_TYPES: msg, context = await IssueCredentialProtocol.unpack_agent_message(data, self.get_wallet()) success, err_msg = await IssueCredentialProtocol.validate_common_message_blocks( msg, IssueCredentialProtocol.REQUEST_NOT_ACCEPTED, context ) if not success: if err_msg: await IssueCredentialProtocol.send_message_to_agent(context.their_did, err_msg, self.get_wallet()) if msg.type == IssueCredentialProtocol.REQUEST_CREDENTIAL: if self.status == IssueCredentialStatus.OfferCredential: await self.__log('Received credential request', msg.to_dict()) # Issue credential cred_offer = json.loads(self.cred_offer_buffer) cred_request = msg.to_dict().get('requests~attach', None) cred_values = json.loads(self.values_buffer) encoded_cred_values = dict() for key, value in cred_values.items(): encoded_cred_values[key] = dict(raw=str(value), encoded=core.codec.encode(value)) if cred_request: if isinstance(cred_request, list): cred_request = cred_request[0] cred_request_body = cred_request.get('data').get('base64') cred_request_body = base64.b64decode(cred_request_body) cred_request_body = json.loads(cred_request_body.decode()) ret = await self.get_wallet().issuer_create_credential( cred_offer=cred_offer, cred_req=cred_request_body, cred_values=encoded_cred_values, rev_reg_id=self.rev_reg_id, blob_storage_reader_handle=self.blob_storage_reader_handle ) cred, cred_revoc_id, revoc_reg_delta = ret await self.__log( 'Issue Credentials atrifacts', dict(cred=cred, cred_revoc_id=cred_revoc_id, revoc_reg_delta=revoc_reg_delta) ) if self.cred_id: message_id = self.cred_id else: message_id = 'libindy-cred-' + uuid.uuid4().hex data = { "@type": IssueCredentialProtocol.ISSUE_CREDENTIAL, "~please_ack": {"message_id": message_id}, "credentials~attach": [ { "@id": message_id, "mime-type": "application/json", "~thread": {Message.THREAD_ID: msg.id, Message.SENDER_ORDER: 0}, "data": { "base64": base64.b64encode(json.dumps(cred).encode()).decode() } } ] } self.ack_message_id = message_id if self.comment: data['comment'] = self.commentcomment data['~l10n'] = {"locale": self.locale} issue_message = Message(data) await IssueCredentialProtocol.send_message_to_agent( self.to, issue_message, self.get_wallet() ) self.status = IssueCredentialStatus.IssueCredential await self.__log(event='Issue credential', details=data) else: await self.__send_problem_report( problem_code=IssueCredentialProtocol.REQUEST_NOT_ACCEPTED, problem_str='Impossible state machine state', context=context, thread_id=msg.id ) raise ImpossibleStatus elif msg.type == AckMessage.ACK or msg.type == IssueCredentialProtocol.CREDENTIAL_ACK: if self.status == IssueCredentialStatus.IssueCredential: await self.__log('Received ACK', msg.to_dict()) await self.done() else: """Nothing to do await self.__send_problem_report( problem_code=IssueCredentialProtocol.REQUEST_NOT_ACCEPTED, problem_str='Impossible state machine state', context=context, thread_id=msg.id ) raise ImpossibleStatus """ logging.warning('Impossible state machine state') elif msg.type == IssueCredentialProtocol.PROBLEM_REPORT: await self.__log('Received problem report', msg.to_dict()) await self.done() else: raise RuntimeError('Unsupported content_type "%s"' % content_type) except Exception as e: if not isinstance(e, MachineIsDone): logging.exception('Base machine terminated with exception') await self.done() async def done(self): if self.__log_channel is not None: await self.__log('Done') await self.__log_channel.close() await self.__log('Done') await super().done() async def __send_problem_report(self, problem_code: str, problem_str: str, context: Context, thread_id: str = None): err_msg = await IssueCredentialProtocol.send_problem_report( self.get_wallet(), problem_code, problem_str, context, thread_id ) await self.__log('Send report problem', err_msg.to_dict()) async def __log(self, event: str, details: dict=None): event_message = '%s (%s)' % (event, self.get_id()) await self.get_wallet().log(message=event_message, details=details) if self.__log_channel is None: self.__log_channel = await WriteOnlyChannel.create(self.log_channel_name) if not self.__log_channel.is_closed: await self.__log_channel.write([event_message, details]) class HolderSateMachine(BaseStateMachine, metaclass=InvokableStateMachineMeta): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.status = IssueCredentialStatus.Null self.to = None self.cred_metadata = None self.comment = None self.cred_def_buffer = None self.rev_reg_def = None self.cred_def_id = None self.protocol_version = None async def handle(self, content_type, data): try: msg_type_offer_credential = IssueCredentialProtocol.set_protocol_version( IssueCredentialProtocol.OFFER_CREDENTIAL, self.protocol_version or IssueCredentialProtocol.VERSION ) msg_type_issue_credential = IssueCredentialProtocol.set_protocol_version( IssueCredentialProtocol.ISSUE_CREDENTIAL, self.protocol_version or IssueCredentialProtocol.VERSION ) if content_type in WIRED_CONTENT_TYPES: msg, context = await IssueCredentialProtocol.unpack_agent_message(data, self.get_wallet()) self.to = context.their_did success, err_msg = await IssueCredentialProtocol.validate_common_message_blocks( msg, IssueCredentialProtocol.REQUEST_NOT_ACCEPTED, context ) if not success: if err_msg: await IssueCredentialProtocol.send_message_to_agent(context.their_did, err_msg, self.get_wallet()) else: raise RuntimeError('Unsupported content_type "%s"' % content_type) if msg.type == msg_type_offer_credential: if self.status == IssueCredentialStatus.Null: await self.__log('Received credential offer', msg.to_dict()) offer, offer_body, cred_def_body = await self.__validate_cred_offer(msg, context) self.cred_def_id = offer_body['cred_def_id'] link_secret_name = settings.INDY['WALLET_SETTINGS']['PROVER_MASTER_SECRET_NAME'] try: await self.get_wallet().prover_create_master_secret(link_secret_name) except WalletOperationError as e: if 'duplicate' in e.error_message.lower(): # nothing to do pass else: raise e # Create Credential request self.cred_def_buffer = json.dumps(cred_def_body) cred_request, metadata = await self.get_wallet().prover_create_credential_req( prover_did=context.my_did, cred_offer=offer_body, cred_def=cred_def_body, master_secret_id=link_secret_name ) await self.__log( 'Cred request artifacts', dict(cred_request=cred_request, metadata=metadata) ) self.cred_metadata = json.dumps(metadata) # Build request data = { "@type": IssueCredentialProtocol.REQUEST_CREDENTIAL, "~thread": {Message.THREAD_ID: msg.id, Message.SENDER_ORDER: 0}, "requests~attach": [ { "@id": uuid.uuid4().hex, "mime-type": "application/json", "data": { "base64": base64.b64encode(json.dumps(cred_request).encode()).decode() } }, ] } if self.comment: data['comment'] = self.comment message_request = Message(data) await IssueCredentialProtocol.send_message_to_agent(self.to, message_request, self.get_wallet()) await self.__log('Send credential request', message_request.to_dict()) self.status = IssueCredentialStatus.RequestCredential else: await self.__send_problem_report( problem_code=IssueCredentialProtocol.OFFER_PROCESSING_ERROR, problem_str='Impossible state machine state', context=context, thread_id=msg.id ) raise ImpossibleStatus elif msg.type == msg_type_issue_credential: if self.status == IssueCredentialStatus.RequestCredential: await self.__log('Received Issue credential', msg.to_dict()) cred_attaches = msg.to_dict().get('credentials~attach', None) if isinstance(cred_attaches, dict): cred_attaches = [cred_attaches] for cred_attach in cred_attaches: cred_body = cred_attach.get('data').get('base64') cred_body = base64.b64decode(cred_body) cred_body = json.loads(cred_body.decode()) cred_def = json.loads(self.cred_def_buffer) cred_id = cred_attach.get('@id', None) # Store credential cred_older = await self.get_wallet().prover_get_credential(cred_id) if cred_older: # Delete older credential await self.get_wallet().prover_delete_credential(cred_id) cred_id = await self.get_wallet().prover_store_credential( cred_req_metadata=json.loads(self.cred_metadata), cred=cred_body, cred_def=cred_def, rev_reg_def=self.rev_reg_def, cred_id=cred_id ) await self.__log('Store credential with id: %s' % str(cred_id), cred_body) ack_message_id = msg.to_dict().get('~please_ack', {}).get('message_id', None) if not ack_message_id: ack_message_id = msg.id ack = AckMessage.build(ack_message_id) # Cardea back-compatibility ack['@type'] = IssueCredentialProtocol.CREDENTIAL_ACK await IssueCredentialProtocol.send_message_to_agent(self.to, ack, self.get_wallet()) await self.__log('Send ACK', ack.to_dict()) await self.done() else: await self.__send_problem_report( problem_code=IssueCredentialProtocol.ISSUE_PROCESSING_ERROR, problem_str='Impossible state machine state', context=context, thread_id=msg.id ) raise ImpossibleStatus elif msg.type == IssueCredentialProtocol.PROBLEM_REPORT: await self.__log('Received problem report', msg.to_dict()) await self.done() else: await self.__send_problem_report( problem_code=IssueCredentialProtocol.RESPONSE_FOR_UNKNOWN_REQUEST, problem_str='Unknown message type', context=context, thread_id=msg.id ) except Exception as e: if not isinstance(e, MachineIsDone): logging.exception('Base machine terminated with exception') await self.done() async def done(self): await self.__log('Done') await super().done() async def __validate_cred_offer(self, msg: Message, context: Context): offer_attaches = msg.to_dict().get('offers~attach', None) if isinstance(offer_attaches, dict): offer_attaches = [offer_attaches] if (not type(offer_attaches) is list) or (type(offer_attaches) is list and len(offer_attaches) == 0): await self.__send_problem_report( problem_code=IssueCredentialProtocol.OFFER_PROCESSING_ERROR, problem_str='Expected offer~attach must contains credOffer and credDef', context=context, thread_id=msg.id ) await self.done() offer = offer_attaches[0] offer_body = None cred_def_body = None for attach in offer_attaches: raw_base64 = attach.get('data', {}).get('base64', None) if raw_base64: payload = json.loads(base64.b64decode(raw_base64).decode()) offer_fields = ['key_correctness_proof', 'nonce', 'schema_id', 'cred_def_id'] cred_def_fields = ['value', 'type', 'ver', 'schemaId', 'id', 'tag'] if all([field in payload.keys() for field in offer_fields]): # check if cred offer content offer_body = {attr: val for attr, val in payload.items() if attr in offer_fields} if all([field in payload.keys() for field in cred_def_fields]): # check if cred def content cred_def_body = {attr: val for attr, val in payload.items() if attr in cred_def_fields} if not offer_body: await self.__send_problem_report( problem_code=IssueCredentialProtocol.OFFER_PROCESSING_ERROR, problem_str='Expected offer~attach must contains Payload with offer', context=context, thread_id=msg.id ) await self.done() if cred_def_body: cred_def_id = cred_def_body['id'] await indy_sdk_utils.store_cred_def(self.get_wallet(), cred_def_id, cred_def_body) else: await self.__send_problem_report( problem_code=IssueCredentialProtocol.OFFER_PROCESSING_ERROR, problem_str='Expected offer~attach must contains Payload with cred_def data', context=context, thread_id=msg.id ) await self.done() attaches = msg.to_dict().get('~attach', None) if attaches: if isinstance(attaches, dict): attaches = [attaches] for attach in attaches: if attach.get('@type', None) == IssueCredentialProtocol.ISSUER_SCHEMA_TYPE: issuer_schema_body = attach['data']['json'] issuer_schema_id = issuer_schema_body['id'] await indy_sdk_utils.store_issuer_schema(self.get_wallet(), issuer_schema_id, issuer_schema_body) return offer, offer_body, cred_def_body async def __send_problem_report(self, problem_code: str, problem_str: str, context: Context, thread_id: str=None): err_msg = await IssueCredentialProtocol.send_problem_report( self.get_wallet(), problem_code, problem_str, context, thread_id ) await self.__log('Send report problem', err_msg.to_dict()) async def __log(self, event: str, details: dict = None): event_message = '%s (%s)' % (event, self.get_id()) await self.get_wallet().log(message=event_message, details=details)
6f0edfece6342887493bb3cea706740038aa981b
9b8e2992a38f591032997b5ced290fe1acc3ad94
/assignment.py
9f83cc955c406a0296f5a3b75f6f088b6468147c
[]
no_license
girishdhegde/aps-2020
c694443c10d0d572c8022dad5a6ce735462aaa51
fb43d8817ba16ff78f93a8257409d77dbc82ced8
refs/heads/master
2021-08-08T04:49:18.876187
2021-01-02T04:46:20
2021-01-02T04:46:20
236,218,152
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
cost = [[3, 2, 7], [5, 1, 3], [2, 7, 2]] n = 3 dp = [float('inf') for i in range(2**n)] dp[0] = 0 def count_set_bits(mask): cnt = 0 while(mask != 0): cnt += 1 mask &= (mask - 1) return cnt print(count_set_bits(7)) # for mask in range(2**n): # x = count_set_bits(mask)
d0ffc2ce73a4358770fcbd0d3aea0a21813f5eeb
005f02cb534bbf91fe634fcf401441e1179365c8
/10-Django Level 2/10.2-projektDy/projektDy/wsgi.py
18fe901d2208426855c0e488e7e4b4babad70dda
[]
no_license
Ruxhino-B/django-deployment-example
220a39a456871a1bf42a64fd5b945731056fc7b9
e19713ac1e11af202152ad20d7c3c94891a77e83
refs/heads/master
2020-04-18T02:21:10.505691
2020-01-06T14:18:18
2020-01-06T14:25:25
167,159,223
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" WSGI config for projektDy project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'projektDy.settings') application = get_wsgi_application()
03829e363688475ccad8963022ab6bfa1f2ae6ee
b47f5ca0a51cf59427b7bd12e9c85064a1e13e03
/easyci/commands/watch.py
4969cb582bbd2f55f16519477a4ad48cafb03c24
[ "MIT" ]
permissive
naphatkrit/easyci
a490b57e601bcad6d2022834809dd60cb0902e0c
7aee8d7694fe4e2da42ce35b0f700bc840c8b95f
refs/heads/master
2016-09-02T01:14:28.505230
2015-09-09T00:26:25
2015-09-09T00:26:25
41,396,486
2
0
null
null
null
null
UTF-8
Python
false
false
653
py
import click from watchdog.observers import Observer from easyci.file_system_events.tests_event_handler import TestsEventHandler from easyci.utils import decorators @click.command() @click.pass_context @decorators.print_markers def watch(ctx): """Watch the directory for changes. Automatically run tests. """ vcs = ctx.obj['vcs'] event_handler = TestsEventHandler(vcs) observer = Observer() observer.schedule(event_handler, vcs.path, recursive=True) observer.start() click.echo('Watching directory `{path}`. Use ctrl-c to stop.'.format(path=vcs.path)) while observer.isAlive(): observer.join(timeout=1)
2fe01f1669e635156e429787ec8e0f24864e4090
bd2fb6aa0e25dcc3f6c1511007f15f63d0d9fb55
/tests/functions/folding/test_addmod_mulmod.py
50aa1d78ec53446c84cb634c1d65af92aea219fc
[ "Apache-2.0" ]
permissive
andrelfpinto/vyper
4b26a88686518eca3a829c172dd01dcd34b242e4
d9b73846aa14a6019faa4126ec7608acd05e480d
refs/heads/master
2022-11-08T06:38:59.104585
2020-06-23T01:13:50
2020-06-23T01:13:50
274,272,650
0
0
Apache-2.0
2020-06-23T00:39:05
2020-06-23T00:39:04
null
UTF-8
Python
false
false
868
py
import pytest from hypothesis import assume, given, settings from hypothesis import strategies as st from vyper import ast as vy_ast from vyper import functions as vy_fn st_uint256 = st.integers(min_value=0, max_value=2 ** 256 - 1) @pytest.mark.fuzzing @settings(max_examples=50, deadline=1000) @given(a=st_uint256, b=st_uint256, c=st_uint256) @pytest.mark.parametrize('fn_name', ['uint256_addmod', 'uint256_mulmod']) def test_modmath(get_contract, a, b, c, fn_name): assume(c > 0) source = f""" @public def foo(a: uint256, b: uint256, c: uint256) -> uint256: return {fn_name}(a, b, c) """ contract = get_contract(source) vyper_ast = vy_ast.parse_to_ast(f"{fn_name}({a}, {b}, {c})") old_node = vyper_ast.body[0].value new_node = vy_fn.DISPATCH_TABLE[fn_name].evaluate(old_node) assert contract.foo(a, b, c) == new_node.value
08b5a295b6ce6b6b955d67a08448ad20ee18b133
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/formrecognizer/azure-ai-formrecognizer/tests/test_frc_identity_documents_async.py
d90abd8f45f9a581b5f6a733d8ccab64198aad68
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
8,085
py
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import pytest import functools from io import BytesIO from devtools_testutils.aio import recorded_by_proxy_async from azure.core.exceptions import ServiceRequestError from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer._generated.v2_1.models import AnalyzeOperationResult from azure.ai.formrecognizer._response_handlers import prepare_prebuilt_models from azure.ai.formrecognizer.aio import FormRecognizerClient from azure.ai.formrecognizer import FormRecognizerApiVersion from asynctestcase import AsyncFormRecognizerTest from preparers import FormRecognizerPreparer from preparers import GlobalClientPreparer as _GlobalClientPreparer FormRecognizerClientPreparer = functools.partial(_GlobalClientPreparer, FormRecognizerClient) class TestIdDocumentsAsync(AsyncFormRecognizerTest): @FormRecognizerPreparer() async def test_identity_document_bad_endpoint(self, **kwargs): formrecognizer_test_api_key = kwargs.get("formrecognizer_test_api_key", None) with open(self.identity_document_license_jpg, "rb") as fd: my_file = fd.read() with pytest.raises(ServiceRequestError): client = FormRecognizerClient("http://notreal.azure.com", AzureKeyCredential(formrecognizer_test_api_key)) async with client: poller = await client.begin_recognize_identity_documents(my_file) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_damaged_file_bytes_fails_autodetect_content_type(self, **kwargs): client = kwargs.pop("client") damaged_pdf = b"\x50\x44\x46\x55\x55\x55" # doesn't match any magic file numbers with pytest.raises(ValueError): async with client: poller = await client.begin_recognize_identity_documents( damaged_pdf ) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_damaged_file_bytes_io_fails_autodetect(self, **kwargs): client = kwargs.pop("client") damaged_pdf = BytesIO(b"\x50\x44\x46\x55\x55\x55") # doesn't match any magic file numbers with pytest.raises(ValueError): async with client: poller = await client.begin_recognize_identity_documents( damaged_pdf ) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_passing_bad_content_type_param_passed(self, **kwargs): client = kwargs.pop("client") with open(self.identity_document_license_jpg, "rb") as fd: my_file = fd.read() with pytest.raises(ValueError): async with client: poller = await client.begin_recognize_identity_documents( my_file, content_type="application/jpeg" ) @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_auto_detect_unsupported_stream_content(self, **kwargs): client = kwargs.pop("client") with open(self.unsupported_content_py, "rb") as fd: my_file = fd.read() with pytest.raises(ValueError): async with client: poller = await client.begin_recognize_identity_documents( my_file ) @FormRecognizerPreparer() @FormRecognizerClientPreparer() @recorded_by_proxy_async async def test_identity_document_stream_transform_jpg(self, client): responses = [] def callback(raw_response, _, headers): analyze_result = client._deserialize(AnalyzeOperationResult, raw_response) extracted_id_document = prepare_prebuilt_models(analyze_result) responses.append(analyze_result) responses.append(extracted_id_document) with open(self.identity_document_license_jpg, "rb") as fd: my_file = fd.read() async with client: poller = await client.begin_recognize_identity_documents( identity_document=my_file, include_field_elements=True, cls=callback ) result = await poller.result() raw_response = responses[0] returned_model = responses[1] id_document = returned_model[0] actual = raw_response.analyze_result.document_results[0].fields read_results = raw_response.analyze_result.read_results document_results = raw_response.analyze_result.document_results page_results = raw_response.analyze_result.page_results self.assertFormFieldsTransformCorrect(id_document.fields, actual, read_results) # check page range assert id_document.page_range.first_page_number == document_results[0].page_range[0] assert id_document.page_range.last_page_number == document_results[0].page_range[1] # Check page metadata self.assertFormPagesTransformCorrect(id_document.pages, read_results, page_results) @FormRecognizerPreparer() @FormRecognizerClientPreparer() @recorded_by_proxy_async async def test_identity_document_jpg_include_field_elements(self, client): with open(self.identity_document_license_jpg, "rb") as fd: id_document = fd.read() async with client: poller = await client.begin_recognize_identity_documents(id_document, include_field_elements=True) result = await poller.result() assert len(result) == 1 id_document = result[0] self.assertFormPagesHasValues(id_document.pages) for field in id_document.fields.values(): if field.name == "CountryRegion": assert field.value == "USA" continue elif field.name == "Region": assert field.value == "Washington" else: self.assertFieldElementsHasValues(field.value_data.field_elements, id_document.page_range.first_page_number) @pytest.mark.live_test_only @FormRecognizerPreparer() @FormRecognizerClientPreparer() async def test_identity_document_continuation_token(self, **kwargs): client = kwargs.pop("client") with open(self.identity_document_license_jpg, "rb") as fd: id_document = fd.read() async with client: initial_poller = await client.begin_recognize_identity_documents(id_document) cont_token = initial_poller.continuation_token() poller = await client.begin_recognize_identity_documents(None, continuation_token=cont_token) result = await poller.result() assert result is not None await initial_poller.wait() # necessary so azure-devtools doesn't throw assertion error @FormRecognizerPreparer() @FormRecognizerClientPreparer(client_kwargs={"api_version": FormRecognizerApiVersion.V2_0}) async def test_identity_document_v2(self, **kwargs): client = kwargs.pop("client") with open(self.identity_document_license_jpg, "rb") as fd: id_document = fd.read() with pytest.raises(ValueError) as e: async with client: await client.begin_recognize_identity_documents(id_document) assert "Method 'begin_recognize_identity_documents' is only available for API version V2_1 and up" in str(e.value) @FormRecognizerPreparer() @FormRecognizerClientPreparer() @recorded_by_proxy_async async def test_pages_kwarg_specified(self, client): with open(self.identity_document_license_jpg, "rb") as fd: id_document = fd.read() async with client: poller = await client.begin_recognize_identity_documents(id_document, pages=["1"]) assert '1' == poller._polling_method._initial_response.http_response.request.query['pages'] result = await poller.result() assert result
e1d99bfb0a5b950802d604a203ed618117937fb1
55e13562203f2f24338a5e1f8bb543becf8df171
/lighttpd/upload.py
eabb90c5e76f9a50fe642e503391fc9342dd1fe7
[]
no_license
jvanz/container-images
79cd1dd4ade141d733ec6923f1157c15159369ab
ff228722dcccb318def64d9bf485dc43ccafa0d8
refs/heads/master
2020-08-31T05:24:44.258927
2019-11-25T17:42:09
2019-11-25T17:42:09
218,603,819
0
0
null
null
null
null
UTF-8
Python
false
false
547
py
#!/usr/bin/python3 import cgi import cgitb cgitb.enable(display=0, logdir="/var/log/lighttpd") form = cgi.FieldStorage() filefield = form["file"] msg = "Failed to upload file!" if filefield.filename: with open(f"/tmp/{filefield.filename}", "w+b") as f: f.write(filefield.file.read()) msg = "File uploaded!" else: msg = f"Cannot find file field. {filefield.name} = {filefield.filename}" print("Content-Type: text/html") print() print("<html>") print("<body>") print(f"<H1>{msg}</H1>") print("</body>") print("</html>")
3a5d04a7a9e08a83b8fe983908ca0ffb84378af0
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_006/ch73_2020_06_08_22_39_00_045794.py
1fffb73594f4be691ffc6cda3e85a35745493c0c
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
def remove_vogais(palavra): vogais=["a", "e", "i", "o", "u"] for i in palavra: if i in vogais: nova=palavra.replace(i, " ") return nova
19e87d181cb3cd97cab210a0b8d5c7b162ce09f7
35f9def6e6d327d3a4a4f2959024eab96f199f09
/developer/lab/ipython/PyTorch/PyTorch/test/test_optim.py
54ae721f4c794e0b5146601035d2f47b86481cd5
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause", "CAL-1.0-Combined-Work-Exception", "CAL-1.0", "MIT", "CC-BY-SA-4.0", "LicenseRef-scancode-free-unknown" ]
permissive
arXiv-research/DevLab-III-1
ec10aef27e1ca75f206fea11014da8784752e454
c50cd2b9154c83c3db5e4a11b9e8874f7fb8afa2
refs/heads/main
2023-04-16T19:24:58.758519
2021-04-28T20:21:23
2021-04-28T20:21:23
362,599,929
2
0
MIT
2021-04-28T20:36:11
2021-04-28T20:36:11
null
UTF-8
Python
false
false
94,444
py
import warnings import math import unittest import functools from copy import deepcopy import torch from torch._six import inf import torch.optim as optim import torch.optim._multi_tensor as optim_mt import torch.nn.functional as F from torch.optim import SGD from torch.autograd import Variable from torch import sparse from torch.optim.lr_scheduler import LambdaLR, MultiplicativeLR, StepLR, \ MultiStepLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, \ _LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_UBSAN, load_tests, \ skipIfRocm # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests def rosenbrock(tensor): x, y = tensor return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 def drosenbrock(tensor): x, y = tensor return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2))) class TestOptim(TestCase): exact_dtype = True def _test_rosenbrock_sparse(self, constructor, scheduler_constructors=None, sparse_only=False): if scheduler_constructors is None: scheduler_constructors = [] params_t = torch.tensor([1.5, 1.5]) params = Variable(params_t, requires_grad=True) optimizer = constructor([params]) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) if not sparse_only: params_c = Variable(params_t.clone(), requires_grad=True) optimizer_c = constructor([params_c]) solution = torch.tensor([1, 1]) initial_dist = params.data.dist(solution) def eval(params, sparse_grad, w): # Depending on w, provide only the x or y gradient optimizer.zero_grad() loss = rosenbrock(params) loss.backward() grad = drosenbrock(params.data) # NB: We torture test the optimizer by returning an # uncoalesced sparse tensor if w: i = torch.LongTensor([[0, 0]]) x = grad[0] v = torch.tensor([x / 4., x - x / 4.]) else: i = torch.LongTensor([[1, 1]]) y = grad[1] v = torch.tensor([y - y / 4., y / 4.]) x = sparse.DoubleTensor(i, v, torch.Size([2])).to(dtype=v.dtype) with torch.no_grad(): if sparse_grad: params.grad = x else: params.grad = x.to_dense() return loss for i in range(2000): # Do cyclic coordinate descent w = i % 2 optimizer.step(functools.partial(eval, params, True, w)) for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(rosenbrock(params)) else: scheduler.step() if not sparse_only: optimizer_c.step(functools.partial(eval, params_c, False, w)) self.assertEqual(params.data, params_c.data) self.assertLessEqual(params.data.dist(solution), initial_dist) def _test_basic_cases_template(self, weight, bias, input, constructor, scheduler_constructors): weight = Variable(weight, requires_grad=True) bias = Variable(bias, requires_grad=True) input = Variable(input) optimizer = constructor(weight, bias) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) # to check if the optimizer can be printed as a string optimizer.__repr__() def fn(): optimizer.zero_grad() y = weight.mv(input) if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device(): y = y.cuda(bias.get_device()) loss = (y + bias).pow(2).sum() loss.backward() return loss initial_value = fn().item() for _i in range(200): for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): val_loss = fn() scheduler.step(val_loss) else: scheduler.step() optimizer.step(fn) self.assertLess(fn().item(), initial_value) def _test_state_dict(self, weight, bias, input, constructor): weight = Variable(weight, requires_grad=True) bias = Variable(bias, requires_grad=True) input = Variable(input) def fn_base(optimizer, weight, bias): optimizer.zero_grad() i = input_cuda if weight.is_cuda else input loss = (weight.mv(i) + bias).pow(2).sum() loss.backward() return loss optimizer = constructor(weight, bias) fn = functools.partial(fn_base, optimizer, weight, bias) # Prime the optimizer for _i in range(20): optimizer.step(fn) # Clone the weights and construct new optimizer for them weight_c = Variable(weight.data.clone(), requires_grad=True) bias_c = Variable(bias.data.clone(), requires_grad=True) optimizer_c = constructor(weight_c, bias_c) fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c) # Load state dict state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_c.load_state_dict(state_dict_c) # Run both optimizations in parallel for _i in range(20): optimizer.step(fn) optimizer_c.step(fn_c) self.assertEqual(weight, weight_c) self.assertEqual(bias, bias_c) # Make sure state dict wasn't modified self.assertEqual(state_dict, state_dict_c) # Make sure state dict is deterministic with equal but not identical parameters self.assertEqual(optimizer.state_dict(), optimizer_c.state_dict()) # Make sure repeated parameters have identical representation in state dict optimizer_c.param_groups.extend(optimizer_c.param_groups) self.assertEqual(optimizer.state_dict()['param_groups'][-1], optimizer_c.state_dict()['param_groups'][-1]) # Check that state dict can be loaded even when we cast parameters # to a different type and move to a different device. if not torch.cuda.is_available(): return input_cuda = Variable(input.data.float().cuda()) weight_cuda = Variable(weight.data.float().cuda(), requires_grad=True) bias_cuda = Variable(bias.data.float().cuda(), requires_grad=True) optimizer_cuda = constructor(weight_cuda, bias_cuda) fn_cuda = functools.partial(fn_base, optimizer_cuda, weight_cuda, bias_cuda) state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_cuda.load_state_dict(state_dict_c) # Make sure state dict wasn't modified self.assertEqual(state_dict, state_dict_c) for _i in range(20): optimizer.step(fn) optimizer_cuda.step(fn_cuda) self.assertEqual(weight, weight_cuda) self.assertEqual(bias, bias_cuda) # validate deepcopy() copies all public attributes def getPublicAttr(obj): return set(k for k in obj.__dict__ if not k.startswith('_')) self.assertEqual(getPublicAttr(optimizer), getPublicAttr(deepcopy(optimizer))) def _test_basic_cases(self, constructor, scheduler_constructors=None, ignore_multidevice=False): if scheduler_constructors is None: scheduler_constructors = [] self._test_state_dict( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor ) self._test_basic_cases_template( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor, scheduler_constructors ) # non-contiguous parameters self._test_basic_cases_template( torch.randn(10, 5, 2)[..., 0], torch.randn(10, 2)[..., 0], torch.randn(5), constructor, scheduler_constructors ) # CUDA if not torch.cuda.is_available(): return self._test_basic_cases_template( torch.randn(10, 5).cuda(), torch.randn(10).cuda(), torch.randn(5).cuda(), constructor, scheduler_constructors ) # Multi-GPU if not torch.cuda.device_count() > 1 or ignore_multidevice: return self._test_basic_cases_template( torch.randn(10, 5).cuda(0), torch.randn(10).cuda(1), torch.randn(5).cuda(0), constructor, scheduler_constructors ) def _build_params_dict(self, weight, bias, **kwargs): return [{'params': [weight]}, dict(params=[bias], **kwargs)] def _build_params_dict_single(self, weight, bias, **kwargs): return [dict(params=bias, **kwargs)] def test_sgd(self): for optimizer in [optim.SGD, optim_mt.SGD]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict_single(weight, bias, lr=1e-2), lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict_single(weight, bias, lr=1e-2)) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3), [lambda opt: StepLR(opt, gamma=0.9, step_size=10)] ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3), [lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: ReduceLROnPlateau(opt)] ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3), [lambda opt: StepLR(opt, gamma=0.99, step_size=10), lambda opt: ExponentialLR(opt, gamma=0.99), lambda opt: ReduceLROnPlateau(opt)] ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, momentum=1) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, momentum=1, weight_decay=1) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], nesterov=True, lr=1e-3, momentum=1, weight_decay=1) ) with self.assertRaisesRegex(ValueError, "Invalid momentum value: -0.5"): optimizer(None, lr=1e-2, momentum=-0.5) def test_sgd_sparse(self): for optimizer in [optim.SGD, optim_mt.SGD]: self._test_rosenbrock_sparse( lambda params: optimizer(params, lr=5e-3) ) self._test_rosenbrock_sparse( lambda params: optimizer(params, lr=0.005), [lambda opt: StepLR(opt, gamma=0.99999, step_size=300)] ) def test_multi_tensor_optimizers(self): if not torch.cuda.is_available(): return optimizer_pairs_with_flags = [ ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=1., amsgrad=True)), ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=1., amsgrad=False)), ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=0., amsgrad=True)), ((optim.Adam, optim._multi_tensor.Adam), dict(weight_decay=0., amsgrad=False)), ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=1., amsgrad=True)), ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=1., amsgrad=False)), ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=0., amsgrad=True)), ((optim.AdamW, optim._multi_tensor.AdamW), dict(weight_decay=0., amsgrad=False)), ((optim.SGD, optim._multi_tensor.SGD), dict(lr=0.2, momentum=1, dampening=0, weight_decay=1, nesterov=True)), ((optim.SGD, optim._multi_tensor.SGD), dict(lr=0.2, momentum=1, dampening=0.5, weight_decay=1, nesterov=False)), ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=1, momentum=1, centered=True)), ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=1, momentum=0, centered=True)), ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=1, momentum=1, centered=False)), ((optim.RMSprop, optim._multi_tensor.RMSprop), dict(weight_decay=0, momentum=1, centered=False)), ((optim.Rprop, optim._multi_tensor.Rprop), dict(lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50))), ((optim.ASGD, optim._multi_tensor.ASGD), dict(weight_decay=0)), ((optim.ASGD, optim._multi_tensor.ASGD), dict(weight_decay=1)), ((optim.Adamax, optim._multi_tensor.Adamax), dict(weight_decay=0)), ((optim.Adamax, optim._multi_tensor.Adamax), dict(weight_decay=1)), ((optim.Adadelta, optim._multi_tensor.Adadelta), dict(weight_decay=0)), ((optim.Adadelta, optim._multi_tensor.Adadelta), dict(weight_decay=1)), ] kIterations = 11 device = 'cuda' for optimizers, params in optimizer_pairs_with_flags: res = [] for opt in optimizers: weight = torch.tensor([[-0.2109, -0.4976], [-0.1413, -0.3420], [-0.2524, 0.6976]], dtype=torch.float64, device=device, requires_grad=True) bias = torch.tensor([-0.1085, -0.2979, 0.6892], dtype=torch.float64, device=device, requires_grad=True) weight2 = torch.tensor([[-0.0508, -0.3941, -0.2843]], dtype=torch.float64, device=device, requires_grad=True) bias2 = torch.tensor([-0.0711], dtype=torch.float64, device=device, requires_grad=True) input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=torch.float64, device=device).reshape(3, 2) model = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Sigmoid(), torch.nn.Linear(3, 1), torch.nn.Sigmoid()) model.to(torch.float64).to(device) pretrained_dict = model.state_dict() pretrained_dict['0.weight'] = weight pretrained_dict['0.bias'] = bias pretrained_dict['2.weight'] = weight2 pretrained_dict['2.bias'] = bias2 model.load_state_dict(pretrained_dict) optimizer = opt(model.parameters(), **params) for _ in range(kIterations): optimizer.zero_grad() output = model(input) loss = output.sum() loss.backward() if iter == 0: model.parameters().__next__().grad = None optimizer.step() res.append(model.parameters()) for p1, p2 in zip(res[0], res[1]): self.assertEqual(p1, p2) def test_adam(self): for optimizer in [optim.Adam, optim_mt.Adam]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, amsgrad=True) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, weight_decay=0.1) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, amsgrad=True) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3), [lambda opt: ExponentialLR(opt, gamma=0.9)] ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, amsgrad=True), [lambda opt: ExponentialLR(opt, gamma=0.9), lambda opt: ReduceLROnPlateau(opt)] ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, amsgrad=True), [lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: ReduceLROnPlateau(opt)] ) with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"): optimizer(None, lr=1e-2, betas=(1.0, 0.0)) with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"): optimizer(None, lr=1e-2, weight_decay=-1) def test_adamw(self): for optimizer in [optim.AdamW, optim_mt.AdamW]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, weight_decay=1) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, weight_decay=1, amsgrad=True) ) with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"): optimizer(None, lr=1e-2, weight_decay=-1) def test_sparse_adam(self): self._test_rosenbrock_sparse( lambda params: optim.SparseAdam(params, lr=4e-2), [], True ) with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"): optim.SparseAdam(None, lr=1e-2, betas=(1.0, 0.0)) with self.assertRaisesRegex(ValueError, "SparseAdam requires dense parameter tensors"): optim.SparseAdam([torch.zeros(3, layout=torch.sparse_coo)]) with self.assertRaisesRegex(ValueError, "SparseAdam requires dense parameter tensors"): optim.SparseAdam([{"params": [torch.zeros(3, layout=torch.sparse_coo)]}]) # ROCm precision is too low to pass this test @skipIfRocm def test_adadelta(self): for optimizer in [optim.Adadelta, optim_mt.Adadelta]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias]) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, rho=0.95)) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, rho=0.95)), [lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: ReduceLROnPlateau(opt)] ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], weight_decay=1) ) with self.assertRaisesRegex(ValueError, "Invalid rho value: 1.1"): optimizer(None, lr=1e-2, rho=1.1) def test_adagrad(self): self._test_basic_cases( lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1) ) self._test_basic_cases( lambda weight, bias: optim.Adagrad([weight, bias], lr=1e-1, initial_accumulator_value=0.1) ) self._test_basic_cases( lambda weight, bias: optim.Adagrad( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1) ) self._test_basic_cases( lambda weight, bias: optim.Adagrad( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1), [lambda opt: ReduceLROnPlateau(opt)] ) self._test_basic_cases( lambda weight, bias: optim.Adagrad( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1), [lambda opt: ReduceLROnPlateau(opt), lambda opt: ExponentialLR(opt, gamma=0.99)] ) with self.assertRaisesRegex(ValueError, "Invalid lr_decay value: -0.5"): optim.Adagrad(None, lr=1e-2, lr_decay=-0.5) def test_adagrad_sparse(self): self._test_rosenbrock_sparse( lambda params: optim.Adagrad(params, lr=1e-1) ) self._test_rosenbrock_sparse( lambda params: optim.Adagrad(params, lr=0.1), [lambda opt: StepLR(opt, gamma=1 - 1e-5, step_size=500), lambda opt: ReduceLROnPlateau(opt, threshold=1e-4)] ) def test_adamax(self): for optimizer in [optim.Adamax, optim_mt.Adamax]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-1) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-1) ) self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-1, weight_decay=1) ) with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 1: 1.0"): optimizer(None, lr=1e-2, betas=(0.0, 1.0)) def test_rmsprop(self): for optimizer in [optim.RMSprop, optim_mt.RMSprop]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-2) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, centered=True) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, centered=True, momentum=0.1) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, momentum=0.1) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, momentum=0.1, weight_decay=1) ) with self.assertRaisesRegex(ValueError, "Invalid momentum value: -1.0"): optimizer(None, lr=1e-2, momentum=-1.0) def test_asgd(self): for optimizer in [optim.ASGD, optim_mt.ASGD]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3, t0=100) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, t0=100) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-3), lr=1e-2, weight_decay=1) ) with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -0.5"): optimizer(None, lr=1e-2, weight_decay=-0.5) def test_rprop(self): for optimizer in [optim.Rprop, optim_mt.Rprop]: self._test_basic_cases( lambda weight, bias: optimizer([weight, bias], lr=1e-3) ) self._test_basic_cases( lambda weight, bias: optimizer( self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3) ) with self.assertRaisesRegex(ValueError, "Invalid eta values: 1.0, 0.5"): optimizer(None, lr=1e-2, etas=(1.0, 0.5)) def test_lbfgs(self): self._test_basic_cases( lambda weight, bias: optim.LBFGS([weight, bias]), ignore_multidevice=True ) self._test_basic_cases( lambda weight, bias: optim.LBFGS([weight, bias], line_search_fn="strong_wolfe"), ignore_multidevice=True ) @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") def test_lbfgs_return_type(self): params = [torch.randn(10, 5), torch.randn(10)] opt1 = optim.LBFGS(params, 0.01, tolerance_grad=inf) opt2 = optim.LBFGS(params, 0.01, tolerance_grad=-inf) def closure(): return torch.tensor([10]) res1 = opt1.step(closure) res2 = opt2.step(closure) self.assertEqual(type(res1), type(res2)) def test_invalid_param_type(self): with self.assertRaises(TypeError): optim.SGD(Variable(torch.randn(5, 5)), lr=3) def test_duplicate_params_in_param_group(self): param = Variable(torch.randn(5, 5)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") optim.SGD([param, param], lr=0.1) self.assertEqual(len(w), 1) self.assertIn('a parameter group with duplicate parameters', str(w[0].message)) def test_no_grad_for_all_params(self): param = torch.randn(5, 5, requires_grad=False) optimizer_list = [ optim.Adadelta, optim.AdamW, optim.Adam, optim.Adagrad, optim.Adamax, optim.RMSprop, optim.SGD, optim.SparseAdam, optim.ASGD, ] for optim_ctr in optimizer_list: opt = optim_ctr([param, param], lr=0.1) # make sure step can still run even if # all params have no grad opt.step() class SchedulerTestNet(torch.nn.Module): def __init__(self): super(SchedulerTestNet, self).__init__() self.conv1 = torch.nn.Conv2d(1, 1, 1) self.conv2 = torch.nn.Conv2d(1, 1, 1) def forward(self, x): return self.conv2(F.relu(self.conv1(x))) class LambdaLRTestObject: def __init__(self, value): self.value = value def __call__(self, epoch): return self.value * epoch def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False class TestLRScheduler(TestCase): exact_dtype = True def setUp(self): super(TestLRScheduler, self).setUp() self.net = SchedulerTestNet() self.opt = SGD( [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}], lr=0.05) def test_error_when_getlr_has_epoch(self): class MultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, gamma, milestones, last_epoch=-1): self.init_lr = [group['lr'] for group in optimizer.param_groups] self.gamma = gamma self.milestones = milestones super().__init__(optimizer, last_epoch) def get_lr(self, step): global_step = self.last_epoch gamma_power = ([0] + [i + 1 for i, m in enumerate(self.milestones) if global_step >= m])[-1] return [init_lr * (self.gamma ** gamma_power) for init_lr in self.init_lr] optimizer = torch.optim.SGD([torch.rand(1)], lr=1) with self.assertRaises(TypeError): scheduler = MultiStepLR(optimizer, gamma=1, milestones=[10, 20]) def test_no_cyclic_references(self): import gc param = Variable(torch.empty(10), requires_grad=True) optim = SGD([param], lr=0.5) scheduler = LambdaLR(optim, lambda epoch: 1.0) del scheduler # Prior to Python 3.7, local variables in a function will be referred by the current frame. import sys if sys.version_info < (3, 7): import inspect referrers = gc.get_referrers(optim) self.assertTrue( len(referrers) == 1 and referrers[0] is inspect.currentframe(), "Optimizer should contain no cyclic references (except current frame)") del referrers else: self.assertTrue( len(gc.get_referrers(optim)) == 0, "Optimizer should contain no cyclic references") gc.collect() del optim self.assertEqual( gc.collect(), 0, msg="Optimizer should be garbage-collected on __del__") def test_old_pattern_warning(self): epochs = 35 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self.assertTrue(len(ws) == 0, "No warning should be raised") def old_pattern(): for _ in range(epochs): scheduler.step() self.opt.step() self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern) def test_old_pattern_warning_with_arg(self): epochs = 35 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self.assertTrue(len(ws) == 0, "No warning should be raised") def old_pattern2(): for _ in range(epochs): scheduler.step() self.opt.step() self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2) def test_old_pattern_warning_resuming(self): epochs = 35 for i, group in enumerate(self.opt.param_groups): group['initial_lr'] = 0.01 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) self.assertTrue(len(ws) == 0, "No warning should be raised") def old_pattern(): for _ in range(epochs): scheduler.step() self.opt.step() self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern) def test_old_pattern_warning_resuming_with_arg(self): epochs = 35 for i, group in enumerate(self.opt.param_groups): group['initial_lr'] = 0.01 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) self.assertTrue(len(ws) == 0, "No warning should be raised") def old_pattern2(): for _ in range(epochs): scheduler.step() self.opt.step() self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2) def test_old_pattern_warning_with_overridden_optim_step(self): epochs = 35 for i, group in enumerate(self.opt.param_groups): group['initial_lr'] = 0.01 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) self.assertTrue(len(ws) == 0, "No warning should be raised") # emulate use-case with optimizer.step overridden import types old_step = self.opt.step def new_step(o, *args, **kwargs): retval = old_step(*args, **kwargs) return retval self.opt.step = types.MethodType(new_step, self.opt) def old_pattern2(): for _ in range(epochs): scheduler.step() self.opt.step() self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2) def test_new_pattern_no_warning(self): epochs = 35 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self.assertTrue(len(ws) == 0, "No warning should be raised") with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised for _ in range(epochs): self.opt.step() scheduler.step() self.assertTrue(len(ws) == 0, "No warning should be raised") def test_new_pattern_no_warning_with_arg(self): epochs = 35 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self.assertTrue(len(ws) == 0, "No warning should be raised") with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised for _ in range(epochs): self.opt.step() scheduler.step() self.assertTrue(len(ws) == 0, "No warning should be raised") def test_new_pattern_no_warning_with_overridden_optim_step(self): epochs = 35 with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self.assertTrue(len(ws) == 0, "No warning should be raised") # emulate use-case with optimizer.step overridden import types old_step = self.opt.step def new_step(o, *args, **kwargs): retval = old_step(*args, **kwargs) return retval self.opt.step = types.MethodType(new_step, self.opt) def new_pattern(): for e in range(epochs): self.opt.step() scheduler.step() self.assertWarnsRegex(UserWarning, r'`optimizer.step\(\)` has been overridden', new_pattern) def _test_lr_is_constant_for_constant_epoch(self, scheduler): l = [] for _ in range(10): scheduler.step(2) l.append(self.opt.param_groups[0]['lr']) self.assertEqual(min(l), max(l)) def test_step_lr_is_constant_for_constant_epoch(self): scheduler = StepLR(self.opt, 2) self._test_lr_is_constant_for_constant_epoch(scheduler) def test_exponential_lr_is_constant_for_constant_epoch(self): scheduler = ExponentialLR(self.opt, gamma=0.9) self._test_lr_is_constant_for_constant_epoch(scheduler) def test_step_lr(self): # lr = 0.05 if epoch < 3 # lr = 0.005 if 30 <= epoch < 6 # lr = 0.0005 if epoch >= 9 epochs = 10 single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3 targets = [single_targets, [x * epochs for x in single_targets]] scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self._test(scheduler, targets, epochs) def test_get_last_lr_step_lr(self): from torch.nn import Parameter epochs = 10 optimizer = torch.optim.SGD([Parameter(torch.randn(2, 2, requires_grad=True))], 0.1) targets = [[0.1] * 3 + [0.01] * 3 + [0.001] * 3 + [0.0001]] scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 3, gamma=0.1) self._test_get_last_lr(scheduler, targets, epochs) def test_get_last_lr_multi_step_lr(self): # lr = 0.05 if epoch < 2 # lr = 0.005 if 2 <= epoch < 5 # lr = 0.0005 if 5 <= epoch < 9 # lr = 0.00005 if 9 <= epoch epochs = 10 single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 1 targets = [single_targets, [x * epochs for x in single_targets]] scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) self._test_get_last_lr(scheduler, targets, epochs) def test_multi_step_lr(self): # lr = 0.05 if epoch < 2 # lr = 0.005 if 2 <= epoch < 5 # lr = 0.0005 if epoch < 9 # lr = 0.00005 if epoch >= 9 epochs = 10 single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3 targets = [single_targets, [x * epochs for x in single_targets]] scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) self._test(scheduler, targets, epochs) def test_multi_step_lr_with_epoch(self): # lr = 0.05 if epoch < 2 # lr = 0.005 if 2 <= epoch < 5 # lr = 0.0005 if epoch < 9 # lr = 0.00005 if epoch >= 9 epochs = 10 single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3 targets = [single_targets, [x * epochs for x in single_targets]] scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) self._test_with_epoch(scheduler, targets, epochs) def test_exp_lr(self): epochs = 10 single_targets = [0.05 * (0.9 ** x) for x in range(epochs)] targets = [single_targets, [x * epochs for x in single_targets]] scheduler = ExponentialLR(self.opt, gamma=0.9) self._test(scheduler, targets, epochs) def test_cos_anneal_lr(self): epochs = 10 eta_min = 1e-10 single_targets = [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 for x in range(epochs)] targets = [single_targets, [x * epochs for x in single_targets]] scheduler = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) self._test(scheduler, targets, epochs) def test_closed_form_step_lr(self): scheduler = StepLR(self.opt, gamma=0.1, step_size=3) closed_form_scheduler = StepLR(self.opt, gamma=0.1, step_size=3) self._test_against_closed_form(scheduler, closed_form_scheduler, 20) def test_closed_form_multi_step_lr(self): scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) closed_form_scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) self._test_against_closed_form(scheduler, closed_form_scheduler, 20) def test_closed_form_exp_lr(self): scheduler = ExponentialLR(self.opt, gamma=0.9) closed_form_scheduler = ExponentialLR(self.opt, gamma=0.9) self._test_against_closed_form(scheduler, closed_form_scheduler, 20) def test_closed_form_cos_anneal_lr(self): eta_min = 1e-10 epochs = 20 T_max = 5 scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) closed_form_scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) self._test_against_closed_form(scheduler, closed_form_scheduler, epochs) def test_reduce_lr_on_plateau1(self): epochs = 10 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 20] metrics = [10 - i * 0.0167 for i in range(20)] scheduler = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min', threshold=0.01, patience=5, cooldown=5) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau2(self): epochs = 22 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2] metrics = [10 - i * 0.0165 for i in range(22)] scheduler = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs', mode='min', threshold=0.1) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau3(self): epochs = 22 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4] metrics = [-0.8] * 2 + [-0.234] * 20 scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5, threshold_mode='abs') self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau4(self): epochs = 20 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 20] metrics = [1.5 * (1.025 ** i) for i in range(20)] # 1.025 > 1.1**0.25 scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=3, threshold_mode='rel', threshold=0.1) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau5(self): epochs = 20 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4] metrics = [1.5 * (1.005 ** i) for i in range(20)] scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', threshold=0.1, patience=5, cooldown=5) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau6(self): epochs = 20 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 20] metrics = [1.5 * (0.85 ** i) for i in range(20)] scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel', threshold=0.1) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau7(self): epochs = 20 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4] metrics = [1] * 7 + [0.6] + [0.5] * 12 scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel', threshold=0.1, patience=5, cooldown=5) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_reduce_lr_on_plateau8(self): epochs = 20 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 targets = [[0.5] * 6 + [0.4] * 14, [0.5] * 6 + [0.3] * 14] metrics = [1.5 * (1.005 ** i) for i in range(20)] scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', min_lr=[0.4, 0.3], threshold=0.1, patience=5, cooldown=5) self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) def test_compound_step_and_multistep_lr(self): epochs = 10 schedulers = [None] * 2 schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) targets = [[0.05] * 2 + [0.005] * 1 + [5e-4] * 2 + [5e-5] + [5e-6] * 3 + [5e-8]] self._test(schedulers, targets, epochs) def test_compound_step_and_exp_lr(self): epochs = 10 schedulers = [None] * 2 single_targets = [0.05 * (0.9 ** x) for x in range(3)] single_targets += [0.005 * (0.9 ** x) for x in range(3, 6)] single_targets += [0.0005 * (0.9 ** x) for x in range(6, 9)] single_targets += [0.00005 * (0.9 ** x) for x in range(9, 12)] targets = [single_targets, [x * epochs for x in single_targets]] schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) schedulers[1] = ExponentialLR(self.opt, gamma=0.9) self._test(schedulers, targets, epochs) def test_compound_exp_and_multistep_lr(self): epochs = 10 schedulers = [None] * 2 single_targets = [0.05 * (0.9 ** x) for x in range(2)] single_targets += [0.005 * (0.9 ** x) for x in range(2, 5)] single_targets += [0.0005 * (0.9 ** x) for x in range(5, 9)] single_targets += [0.00005 * (0.9 ** x) for x in range(9, 11)] targets = [single_targets, [x * epochs for x in single_targets]] schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) schedulers[1] = ExponentialLR(self.opt, gamma=0.9) self._test(schedulers, targets, epochs) def test_compound_cosanneal_and_step_lr(self): epochs = 10 eta_min = 1e-10 single_targets = [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 for x in range(epochs)] single_targets = [x * 0.1 ** (i // 3) for i, x in enumerate(single_targets)] targets = [single_targets, [x * epochs for x in single_targets]] schedulers = [None] * 2 schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3) self._test(schedulers, targets, epochs) def test_compound_cosanneal_and_multistep_lr(self): epochs = 10 eta_min = 1e-10 single_targets = [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 for x in range(epochs)] multipliers = [1] * 2 + [0.1] * 3 + [0.01] * 4 + [0.001] single_targets = [x * y for x, y in zip(single_targets, multipliers)] targets = [single_targets, [x * epochs for x in single_targets]] schedulers = [None] * 2 schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) self._test(schedulers, targets, epochs) def test_compound_cosanneal_and_exp_lr(self): epochs = 10 eta_min = 1e-10 single_targets = [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 for x in range(epochs)] multipliers = [0.1 ** i for i in range(epochs)] single_targets = [x * y for x, y in zip(single_targets, multipliers)] targets = [single_targets, [x * epochs for x in single_targets]] schedulers = [None] * 2 schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) schedulers[1] = ExponentialLR(self.opt, gamma=0.1) self._test(schedulers, targets, epochs) def test_compound_reduce_lr_on_plateau1(self): epochs = 10 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 single_targets = [0.5] * 20 multipliers = [0.1 ** (i // 3) for i in range(20)] single_targets = [x * y for x, y in zip(multipliers, single_targets)] targets = [single_targets] targets = targets[1:] # test runs step before checking lr metrics = [10 - i * 0.0167 for i in range(20)] schedulers = [None, None] schedulers[0] = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min', threshold=0.01, patience=5, cooldown=5) schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3) self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) def test_compound_reduce_lr_on_plateau2(self): epochs = 22 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2 multipliers = [1] * 3 + [0.1] * 5 + [0.01] * 4 + [0.001] * 10 single_targets = [x * y for x, y in zip(single_targets, multipliers)] targets = [single_targets] targets = targets[1:] # test runs step before checking lr metrics = [10 - i * 0.0165 for i in range(22)] schedulers = [None] * 2 schedulers[0] = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs', mode='min', threshold=0.1) schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[3, 8, 12]) self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) def test_compound_reduce_lr_on_plateau3(self): epochs = 22 for param_group in self.opt.param_groups: param_group['lr'] = 0.5 single_targets = [0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4 multipliers = [0.1 ** i for i in range(epochs)] single_targets = [x * y for x, y in zip(multipliers, single_targets)] targets = [single_targets] targets = targets[1:] # test runs step before checking lr metrics = [-0.8] * 2 + [-0.234] * 20 schedulers = [None, None] schedulers[0] = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5, threshold_mode='abs') schedulers[1] = ExponentialLR(self.opt, gamma=0.1) self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) def test_compound_reduce_lr_on_plateau4(self): epochs = 20 for param_group in self.opt.param_groups: param_group['lr'] = 0.05 epochs = 10 eta_min = 1e-10 single_targets = [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 for x in range(epochs)] targets = [single_targets] targets = targets[1:] # test runs step before checking lr metrics = [1.5 * (1.025 ** i) for i in range(20)] # 1.025 > 1.1**0.25 schedulers = [None, None] schedulers[0] = ReduceLROnPlateau(self.opt, mode='max', patience=3, threshold_mode='rel', threshold=0.1) schedulers[1] = CosineAnnealingLR(self.opt, epochs, eta_min) self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) def test_cycle_lr_invalid_mode(self): with self.assertRaises(ValueError): scheduler = CyclicLR(self.opt, base_lr=0, max_lr=0, mode="CATS") def test_cycle_lr_triangular_mode_one_lr(self): lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] momentum_target = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, cycle_momentum=True, base_momentum=1, max_momentum=5, mode='triangular') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) def test_cycle_lr_triangular_mode_one_lr_no_momentum(self): lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] lr_targets = [lr_target, lr_target] momentum_target = [self.opt.defaults['momentum']] * len(lr_target) momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, cycle_momentum=False, mode='triangular') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) def test_cycle_lr_triangular2_mode_one_lr(self): lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1.5, 2.0, 2.5, 3.0, 2.5, 2.0, 1.5, 1, 1.25, 1.50, 1.75, 2.00, 1.75] momentum_target = [5.0, 4.0, 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.5, 3.0, 3.5, 4.0, 4.5, 5.0, 4.75, 4.5, 4.25, 4.0, 4.25] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, cycle_momentum=True, base_momentum=1, max_momentum=5, mode='triangular2') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) def test_cycle_lr_exp_range_mode_one_lr(self): base_lr, max_lr = 1, 5 diff_lr = max_lr - base_lr gamma = 0.9 xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1] lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)] momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=base_lr, max_lr=max_lr, step_size_up=4, cycle_momentum=True, base_momentum=base_lr, max_momentum=max_lr, mode='exp_range', gamma=gamma) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) def test_cycle_lr_triangular_mode(self): lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] lr_target_2 = [x + 1 for x in lr_target_1] lr_targets = [lr_target_1, lr_target_2] momentum_target_1 = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3] momentum_target_2 = [x + 1 for x in momentum_target_1] momentum_targets = [momentum_target_1, momentum_target_2] scheduler = CyclicLR(self.opt, base_lr=[1, 2], max_lr=[5, 6], step_size_up=4, cycle_momentum=True, base_momentum=[1, 2], max_momentum=[5, 6], mode='triangular') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) def test_cycle_lr_triangular2_mode(self): lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1.5, 2.0, 2.5, 3.0, 2.5, 2.0, 1.5, 1, 1.25, 1.50, 1.75, 2.00, 1.75] lr_target_2 = [x + 2 for x in lr_target_1] lr_targets = [lr_target_1, lr_target_2] momentum_target_1 = [5.0, 4.0, 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.5, 3.0, 3.5, 4.0, 4.5, 5.0, 4.75, 4.5, 4.25, 4.0, 4.25] momentum_target_2 = [x + 2 for x in momentum_target_1] momentum_targets = [momentum_target_1, momentum_target_2] scheduler = CyclicLR(self.opt, base_lr=[1, 3], max_lr=[5, 7], step_size_up=4, cycle_momentum=True, base_momentum=[1, 3], max_momentum=[5, 7], mode='triangular2') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) def test_cycle_lr_exp_range_mode(self): base_lr_1, max_lr_1 = 1, 5 base_lr_2, max_lr_2 = 5, 12 diff_lr_1 = max_lr_1 - base_lr_1 diff_lr_2 = max_lr_2 - base_lr_2 gamma = 0.9 xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1] lr_target_1 = [base_lr_1 + x * diff_lr_1 * gamma**i for i, x in enumerate(xs)] lr_target_2 = [base_lr_2 + x * diff_lr_2 * gamma**i for i, x in enumerate(xs)] lr_targets = [lr_target_1, lr_target_2] momentum_target_1 = [max_lr_1 - x * diff_lr_1 * gamma**i for i, x in enumerate(xs)] momentum_target_2 = [max_lr_2 - x * diff_lr_2 * gamma**i for i, x in enumerate(xs)] momentum_targets = [momentum_target_1, momentum_target_2] scheduler = CyclicLR(self.opt, base_lr=[base_lr_1, base_lr_2], max_lr=[max_lr_1, max_lr_2], step_size_up=4, cycle_momentum=True, base_momentum=[base_lr_1, base_lr_2], max_momentum=[max_lr_1, max_lr_2], mode='exp_range', gamma=gamma) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) def test_cycle_lr_triangular_mode_step_size_up_down(self): lr_target = [1.0, 2.0, 3.0, 4.0, 5.0, 13.0 / 3, 11.0 / 3, 9.0 / 3, 7.0 / 3, 5.0 / 3, 1.0] lr_targets = [lr_target, lr_target] momentum_target = [5.0, 4.0, 3.0, 2.0, 1.0, 5.0 / 3, 7.0 / 3, 3.0, 11.0 / 3, 13.0 / 3, 5.0] momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, step_size_down=6, cycle_momentum=True, base_momentum=1, max_momentum=5, mode='triangular') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) def test_cycle_lr_triangular2_mode_step_size_up_down(self): lr_base_target = ([ 1.0, 3.0, 5.0, 13.0 / 3, 11.0 / 3, 9.0 / 3, 7.0 / 3, 5.0 / 3, 1.0, 2.0, 3.0, 8.0 / 3, 7.0 / 3, 6.0 / 3, 5.0 / 3, 4.0 / 3, 1.0, 3.0 / 2, 2.0, 11.0 / 6, 10.0 / 6, 9.0 / 6, 8.0 / 6, 7.0 / 6 ]) momentum_base_target = ([ 5.0, 3.0, 1.0, 5.0 / 3, 7.0 / 3, 3.0, 11.0 / 3, 13.0 / 3, 5.0, 4.0, 3.0, 10.0 / 3, 11.0 / 3, 4.0, 13.0 / 3, 14.0 / 3, 5.0, 4.5, 4.0, 25.0 / 6, 13.0 / 3, 4.5, 14.0 / 3, 29.0 / 6 ]) deltas = [2 * i for i in range(0, 2)] base_lrs = [1 + delta for delta in deltas] max_lrs = [5 + delta for delta in deltas] lr_targets = [[x + delta for x in lr_base_target] for delta in deltas] momentum_targets = [[x + delta for x in momentum_base_target] for delta in deltas] scheduler = CyclicLR( self.opt, base_lr=base_lrs, max_lr=max_lrs, step_size_up=2, step_size_down=6, cycle_momentum=True, base_momentum=base_lrs, max_momentum=max_lrs, mode='triangular2') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_base_target)) def test_cycle_lr_exp_range_mode_step_size_up_down(self): base_lr, max_lr = 1, 5 diff_lr = max_lr - base_lr gamma = 0.9 xs = ([ 0.0, 0.5, 1.0, 5.0 / 6, 4.0 / 6, 3.0 / 6, 2.0 / 6, 1.0 / 6, 0.0, 0.5, 1.0, 5.0 / 6, 4.0 / 6 ]) lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)] lr_targets = [lr_target, lr_target] momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)] momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=base_lr, max_lr=max_lr, step_size_up=2, step_size_down=6, cycle_momentum=True, base_momentum=base_lr, max_momentum=max_lr, mode='exp_range', gamma=gamma) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) def test_cycle_lr_with_momentumless_optimizer(self): # Note [Temporarily set optimizer to Adam] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # The TestLRScheduler object carries around an SGD optimizer to avoid having to # instantiate one for every test. This gets in the way for our very specific case # in which we need to use Adam (or really any optimizer that doesn't use momentum) # in order to test that the momentum bug in CyclicLR is fixed (the bug is described # in more detail in https://github.com/pytorch/pytorch/issues/19003 ). old_opt = self.opt self.opt = optim.Adam( [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}], lr=0.05) lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] lr_targets = [lr_target, lr_target] momentum_target = [None] * len(lr_target) momentum_targets = [momentum_target, momentum_target] scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4, cycle_momentum=False, mode='triangular') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) self.opt = old_opt # set optimizer back to SGD def test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer(self): with self.assertRaises(ValueError): adam_opt = optim.Adam(self.net.parameters()) scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=True) def test_onecycle_lr_invalid_anneal_strategy(self): with self.assertRaises(ValueError): scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, anneal_strategy="CATS") def test_onecycle_lr_invalid_pct_start(self): with self.assertRaises(ValueError): scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, pct_start=1.1) def test_onecycle_lr_cannot_calculate_total_steps(self): with self.assertRaises(ValueError): scheduler = OneCycleLR(self.opt, max_lr=1e-3) def test_onecycle_lr_linear_annealing(self): lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, total_steps=10, anneal_strategy='linear') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) def test_onecycle_lr_linear_annealing_three_phases(self): lr_target = [1, 9, 17, 25, 17, 9, 1, 0.75, 0.5, 0.25] momentum_target = [22, 15, 8, 1, 8, 15, 22, 22, 22, 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR(self.opt, max_lr=25, div_factor=25, base_momentum=1, max_momentum=22, total_steps=10, anneal_strategy='linear', pct_start=0.4, final_div_factor=4, three_phase=True) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) def test_onecycle_lr_cosine_annealing(self): def annealing_cos(start, end, pct): cos_out = math.cos(math.pi * pct) + 1 return end + (start - end) / 2.0 * cos_out lr_target = [1, 13, 25, annealing_cos(25, 0.5, 1 / 7.0), annealing_cos(25, 0.5, 2 / 7.0), annealing_cos(25, 0.5, 3 / 7.0), annealing_cos(25, 0.5, 4 / 7.0), annealing_cos(25, 0.5, 5 / 7.0), annealing_cos(25, 0.5, 6 / 7.0), 0.5] momentum_target = [22, 11.5, 1, annealing_cos(1, 22, 1 / 7.0), annealing_cos(1, 22, 2 / 7.0), annealing_cos(1, 22, 3 / 7.0), annealing_cos(1, 22, 4 / 7.0), annealing_cos(1, 22, 5 / 7.0), annealing_cos(1, 22, 6 / 7.0), 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, total_steps=10) self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) def test_cycle_lr_with_adam(self): old_opt = self.opt self.opt = optim.Adam( [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}], lr=0.05) lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] lr_targets = [lr_target, lr_target] momentum_targets = [momentum_target, momentum_target] scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22, total_steps=10, anneal_strategy='linear') self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10, use_beta1=True) self.opt = old_opt # set optimizer back to SGD def test_lambda_lr(self): epochs = 10 self.opt.param_groups[0]['lr'] = 0.05 self.opt.param_groups[1]['lr'] = 0.4 targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]] scheduler = LambdaLR(self.opt, lr_lambda=[lambda x1: 0.9 ** x1, lambda x2: 0.8 ** x2]) self._test(scheduler, targets, epochs) def test_multiplicative_lr(self): epochs = 10 self.opt.param_groups[0]['lr'] = 0.05 self.opt.param_groups[1]['lr'] = 0.4 targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]] scheduler = MultiplicativeLR(self.opt, lr_lambda=[lambda x1: 0.9, lambda x2: 0.8]) self._test(scheduler, targets, epochs) def test_CosineAnnealingWarmRestarts_lr1(self): iters = 100 eta_min = 1e-10 T_mults = [1, 2, 4] for T_mult in T_mults: T_i = 10 T_cur = 0 targets = [[0.05], [0.5]] scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min) for _ in range(1, iters, 1): T_cur += 1 if T_cur >= T_i: T_cur = T_cur - T_i T_i = int(T_mult) * T_i targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] self._test(scheduler, targets, iters) def test_CosineAnnealingWarmRestarts_lr2(self): iters = 30 eta_min = 1e-10 T_mults = [1, 2, 4] for T_mult in T_mults: T_i = 10 T_cur = 0 targets = [[0.05], [0.5]] scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min) for _ in torch.arange(0.1, iters, 0.1): T_cur = round(T_cur + 0.1, 1) if T_cur >= T_i: T_cur = T_cur - T_i T_i = int(T_mult) * T_i targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] self._test_CosineAnnealingWarmRestarts(scheduler, targets, iters) def test_CosineAnnealingWarmRestarts_lr3(self): epochs_for_T_mults = [[0, 1, 2, 3, 4, 5, 12, 27, 3, 4, 5, 6, 13], [0, 1, 2, 3, 4, 5, 25, 32, 33, 34, 80, 81, 3], [0, 0.1, 0.2, 0.3, 1.3, 2.3, 17.5, 18.5, 19.5, 29.5, 30.5, 31.5, 50]] T_curs_for_T_mults = [[1, 2, 3, 4, 5, 2, 7, 3, 4, 5, 6, 3], [1, 2, 3, 4, 5, 15, 2, 3, 4, 10, 11, 3], [0.1, 0.2, 0.3, 1.3, 2.3, 7.5, 8.5, 9.5, 19.5, 20.5, 21.5, 10]] T_is_for_T_mults = [[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 20, 40, 40, 40, 80, 80, 10], [10, 10, 10, 10, 10, 30, 30, 30, 30, 30, 30, 90]] eta_min = 1e-10 T_mults = [1, 2, 3] for epochs, T_mult, T_curs, T_is in zip(epochs_for_T_mults, T_mults, T_curs_for_T_mults, T_is_for_T_mults): targets = [[0.05], [0.5]] scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=T_mult, eta_min=eta_min) for T_cur, T_i in zip(T_curs, T_is): targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2] self._test_interleaved_CosineAnnealingWarmRestarts(scheduler, targets, epochs) def test_swalr_no_anneal(self): epochs, swa_start, swa_lr = 10, 5, 0.01 initial_lrs = [group['lr'] for group in self.opt.param_groups] targets = [[lr] * (swa_start + 1) + [swa_lr] * (epochs - swa_start - 1) for lr in initial_lrs] swa_scheduler = SWALR(self.opt, anneal_epochs=1, swa_lr=swa_lr) self._test_swalr(swa_scheduler, None, targets, swa_start, epochs) def test_swalr_cosine_anneal_after_multiplicative(self): # same swa_lr for different param_groups epochs, swa_start, swa_lr, anneal_epochs = 15, 5, 0.01, 5 mult_factor = 0.9 scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, swa_lr=swa_lr) def anneal_coef(t): if t + 1 >= anneal_epochs: return 0. return (1 + math.cos(math.pi * (t + 1) / anneal_epochs)) / 2 initial_lrs = [group['lr'] for group in self.opt.param_groups] targets_before_swa = [[lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs] swa_epochs = epochs - swa_start - 1 targets = [lrs + [lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs)] for lrs in targets_before_swa] self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs) def test_swalr_linear_anneal_after_multiplicative(self): # separate swa_lr for different param_groups epochs, swa_start, swa_lrs, anneal_epochs = 15, 5, [0.01, 0.02], 4 mult_factor = 0.9 scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, anneal_strategy="linear", swa_lr=swa_lrs) def anneal_coef(t): if t + 1 >= anneal_epochs: return 0. return 1 - (t + 1) / anneal_epochs initial_lrs = [group['lr'] for group in self.opt.param_groups] targets_before_swa = [[lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs] swa_epochs = epochs - swa_start - 1 targets = [lrs + [lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs)] for lrs, swa_lr in zip(targets_before_swa, swa_lrs)] self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs) def _test_swalr(self, swa_scheduler, scheduler, targets, swa_start, epochs): for epoch in range(epochs): for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual(target[epoch], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) if epoch >= swa_start: swa_scheduler.step() elif scheduler is not None: scheduler.step() def test_swalr_hypers(self): # Test that SWALR raises errors for incorrect hyper-parameters with self.assertRaisesRegex(ValueError, "anneal_strategy must"): swa_scheduler = SWALR(self.opt, anneal_strategy="exponential", swa_lr=1.) with self.assertRaisesRegex(ValueError, "anneal_epochs must"): swa_scheduler = SWALR(self.opt, anneal_epochs=-1, swa_lr=1.) with self.assertRaisesRegex(ValueError, "anneal_epochs must"): swa_scheduler = SWALR(self.opt, anneal_epochs=1.7, swa_lr=1.) with self.assertRaisesRegex(ValueError, "swa_lr must"): swa_scheduler = SWALR(self.opt, swa_lr=[1., 0.1, 0.01]) def test_step_lr_state_dict(self): self._check_scheduler_state_dict( lambda: StepLR(self.opt, gamma=0.1, step_size=3), lambda: StepLR(self.opt, gamma=0.01 / 2, step_size=1)) def test_multi_step_lr_state_dict(self): self._check_scheduler_state_dict( lambda: MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]), lambda: MultiStepLR(self.opt, gamma=0.01, milestones=[1, 4, 6])) def test_exp_step_lr_state_dict(self): self._check_scheduler_state_dict( lambda: ExponentialLR(self.opt, gamma=0.1), lambda: ExponentialLR(self.opt, gamma=0.01)) def test_cosine_lr_state_dict(self): epochs = 10 eta_min = 1e-10 self._check_scheduler_state_dict( lambda: CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min), lambda: CosineAnnealingLR(self.opt, T_max=epochs // 2, eta_min=eta_min / 2), epochs=epochs) def test_reduce_lr_on_plateau_state_dict(self): scheduler = ReduceLROnPlateau(self.opt, mode='min', factor=0.1, patience=2) for score in [1.0, 2.0, 3.0, 4.0, 3.0, 4.0, 5.0, 3.0, 2.0, 1.0]: scheduler.step(score) scheduler_copy = ReduceLROnPlateau(self.opt, mode='max', factor=0.5, patience=10) scheduler_copy.load_state_dict(scheduler.state_dict()) for key in scheduler.__dict__.keys(): if key not in {'optimizer', 'is_better'}: self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) def test_lambda_lr_state_dict_fn(self): scheduler = LambdaLR(self.opt, lr_lambda=lambda x: x) state = scheduler.state_dict() self.assertIsNone(state['lr_lambdas'][0]) scheduler_copy = LambdaLR(self.opt, lr_lambda=lambda x: x) scheduler_copy.load_state_dict(state) for key in scheduler.__dict__.keys(): if key not in {'optimizer', 'lr_lambdas'}: self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) def test_lambda_lr_state_dict_obj(self): scheduler = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(10)) state = scheduler.state_dict() self.assertIsNotNone(state['lr_lambdas'][0]) scheduler_copy = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(-1)) scheduler_copy.load_state_dict(state) for key in scheduler.__dict__.keys(): if key not in {'optimizer'}: self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) def test_CosineAnnealingWarmRestarts_lr_state_dict(self): self._check_scheduler_state_dict( lambda: CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=2), lambda: CosineAnnealingWarmRestarts(self.opt, T_0=100)) def test_swa_lr_state_dict(self): self._check_scheduler_state_dict( lambda: SWALR(self.opt, anneal_epochs=3, swa_lr=0.5), lambda: SWALR(self.opt, anneal_epochs=10, anneal_strategy="linear", swa_lr=5.)) def _check_scheduler_state_dict(self, constr, constr2, epochs=10): scheduler = constr() for _ in range(epochs): scheduler.step() scheduler_copy = constr2() scheduler_copy.load_state_dict(scheduler.state_dict()) for key in scheduler.__dict__.keys(): if key != 'optimizer': self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) self.assertEqual(scheduler.get_last_lr(), scheduler_copy.get_last_lr()) def _test_get_last_lr(self, schedulers, targets, epochs=10): if isinstance(schedulers, _LRScheduler): schedulers = [schedulers] for epoch in range(epochs): result = [scheduler.get_last_lr() for scheduler in schedulers] [scheduler.step() for scheduler in schedulers] target = [[t[epoch] for t in targets]] * len(schedulers) for t, r in zip(target, result): self.assertEqual(target, result, msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, t, r), atol=1e-5, rtol=0) def _test_with_epoch(self, schedulers, targets, epochs=10): if isinstance(schedulers, _LRScheduler): schedulers = [schedulers] for epoch in range(epochs): [scheduler.step(epoch) for scheduler in schedulers] # step before assert: skip initial lr for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual(target[epoch], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) def _test(self, schedulers, targets, epochs=10): if isinstance(schedulers, _LRScheduler): schedulers = [schedulers] for epoch in range(epochs): for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual(target[epoch], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) [scheduler.step() for scheduler in schedulers] def _test_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs=10): for index, epoch in enumerate(torch.arange(0, epochs, 0.1)): epoch = round(epoch.item(), 1) scheduler.step(epoch) for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual(target[index], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, target[index], param_group['lr']), atol=1e-5, rtol=0) def _test_interleaved_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs): for index, epoch in enumerate(epochs): scheduler.step(epoch) for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual(target[index], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, target[index], param_group['lr']), atol=1e-5, rtol=0) def _test_against_closed_form(self, scheduler, closed_form_scheduler, epochs=10): self.setUp() targets = [] for epoch in range(epochs): closed_form_scheduler.step(epoch) targets.append([group['lr'] for group in self.opt.param_groups]) self.setUp() for epoch in range(epochs): scheduler.step() for i, param_group in enumerate(self.opt.param_groups): self.assertEqual(targets[epoch][i], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, targets[epoch][i], param_group['lr']), atol=1e-5, rtol=0) def _test_reduce_lr_on_plateau(self, schedulers, targets, metrics, epochs=10, verbose=False): if isinstance(schedulers, _LRScheduler) or isinstance(schedulers, ReduceLROnPlateau): schedulers = [schedulers] for epoch in range(epochs): for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): scheduler.step(metrics[epoch]) else: scheduler.step() if verbose: print('epoch{}:\tlr={}'.format(epoch, self.opt.param_groups[0]['lr'])) for param_group, target in zip(self.opt.param_groups, targets): self.assertEqual(target[epoch], param_group['lr'], msg='LR is wrong in epoch {}: expected {}, got {}'.format( epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0) def _test_cycle_lr(self, scheduler, lr_targets, momentum_targets, batch_iterations, verbose=False, use_beta1=False): for batch_num in range(batch_iterations): if verbose: if 'momentum' in self.opt.param_groups[0].keys(): print('batch{}:\tlr={},momentum={}'.format(batch_num, self.opt.param_groups[0]['lr'], self.opt.param_groups[0]['momentum'])) elif use_beta1 and 'betas' in self.opt.param_groups[0].keys(): print('batch{}:\tlr={},beta1={}'.format(batch_num, self.opt.param_groups[0]['lr'], self.opt.param_groups[0]['betas'][0])) else: print('batch{}:\tlr={}'.format(batch_num, self.opt.param_groups[0]['lr'])) for param_group, lr_target, momentum_target in zip(self.opt.param_groups, lr_targets, momentum_targets): self.assertEqual( lr_target[batch_num], param_group['lr'], msg='LR is wrong in batch_num {}: expected {}, got {}'.format( batch_num, lr_target[batch_num], param_group['lr']), atol=1e-5, rtol=0) if use_beta1 and 'betas' in param_group.keys(): self.assertEqual( momentum_target[batch_num], param_group['betas'][0], msg='Beta1 is wrong in batch_num {}: expected {}, got {}'.format( batch_num, momentum_target[batch_num], param_group['betas'][0]), atol=1e-5, rtol=0) elif 'momentum' in param_group.keys(): self.assertEqual( momentum_target[batch_num], param_group['momentum'], msg='Momentum is wrong in batch_num {}: expected {}, got {}'.format( batch_num, momentum_target[batch_num], param_group['momentum']), atol=1e-5, rtol=0) scheduler.step() def test_cosine_then_cyclic(self): # https://github.com/pytorch/pytorch/issues/21965 max_lr = 0.3 base_lr = 0.1 optim_lr = 0.5 model = torch.nn.Linear(2, 1) optimizer = torch.optim.SGD(model.parameters(), lr=optim_lr) lr_scheduler_1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20, eta_min=0.1) lr_scheduler_2 = torch.optim.lr_scheduler.CyclicLR( optimizer, base_lr=base_lr, max_lr=max_lr, step_size_up=1, step_size_down=3 ) for i in range(40): if i <= lr_scheduler_1.T_max: lr_scheduler_1.step() else: lr_scheduler_2.step() last_lr = optimizer.param_groups[0]["lr"] self.assertLessEqual(last_lr, max_lr) class SWATestDNN(torch.nn.Module): def __init__(self, input_features): super(SWATestDNN, self).__init__() self.n_features = 100 self.fc1 = torch.nn.Linear(input_features, self.n_features) self.bn = torch.nn.BatchNorm1d(self.n_features) def compute_preactivation(self, x): return self.fc1(x) def forward(self, x): x = self.fc1(x) x = self.bn(x) return x class SWATestCNN(torch.nn.Module): def __init__(self, input_channels): super(SWATestCNN, self).__init__() self.n_features = 10 self.conv1 = torch.nn.Conv2d(input_channels, self.n_features, kernel_size=3, padding=1) self.bn = torch.nn.BatchNorm2d(self.n_features, momentum=0.3) def compute_preactivation(self, x): return self.conv1(x) def forward(self, x): x = self.conv1(x) x = self.bn(x) return x class TestSWAUtils(TestCase): def _test_averaged_model(self, net_device, swa_device): dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=2), torch.nn.BatchNorm2d(5, momentum=0.3), torch.nn.Conv2d(5, 2, kernel_size=3), torch.nn.ReLU(), torch.nn.Linear(5, 5), torch.nn.ReLU(), torch.nn.Linear(5, 10) ).to(net_device) averaged_dnn = AveragedModel(dnn, device=swa_device) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) p_avg += p.detach() / n_updates averaged_dnn.update_parameters(dnn) for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) # Check that AveragedModel is on the correct device self.assertTrue(p_swa.device == swa_device) self.assertTrue(p.device == net_device) self.assertTrue(averaged_dnn.n_averaged.device == swa_device) def test_averaged_model_all_devices(self): cpu = torch.device("cpu") self._test_averaged_model(cpu, cpu) if torch.cuda.is_available(): cuda = torch.device(0) self._test_averaged_model(cuda, cpu) self._test_averaged_model(cpu, cuda) self._test_averaged_model(cuda, cuda) def test_averaged_model_mixed_device(self): if not torch.cuda.is_available(): return dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10) ) dnn[0].cuda() dnn[1].cpu() averaged_dnn = AveragedModel(dnn) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) p_avg += p.detach() / n_updates averaged_dnn.update_parameters(dnn) for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) # Check that AveragedModel is on the correct device self.assertTrue(p_avg.device == p_swa.device) def test_averaged_model_state_dict(self): dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10) ) averaged_dnn = AveragedModel(dnn) averaged_dnn2 = AveragedModel(dnn) n_updates = 10 for i in range(n_updates): for p in dnn.parameters(): p.detach().add_(torch.randn_like(p)) averaged_dnn.update_parameters(dnn) averaged_dnn2.load_state_dict(averaged_dnn.state_dict()) for p_swa, p_swa2 in zip(averaged_dnn.parameters(), averaged_dnn2.parameters()): self.assertEqual(p_swa, p_swa2) self.assertTrue(averaged_dnn.n_averaged == averaged_dnn2.n_averaged) def test_averaged_model_exponential(self): # Test AveragedModel with EMA as avg_fn dnn = torch.nn.Sequential( torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10) ) alpha = 0.9 def avg_fn(p_avg, p, n_avg): return alpha * p_avg + (1 - alpha) * p averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn) averaged_params = [torch.zeros_like(param) for param in dnn.parameters()] n_updates = 10 for i in range(n_updates): updated_averaged_params = [] for p, p_avg in zip(dnn.parameters(), averaged_params): p.detach().add_(torch.randn_like(p)) if i == 0: updated_averaged_params.append(p.clone()) else: updated_averaged_params.append((p_avg * alpha + p * (1 - alpha)).clone()) averaged_dnn.update_parameters(dnn) averaged_params = updated_averaged_params for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()): self.assertEqual(p_avg, p_swa) def _test_update_bn(self, dnn, dl_x, dl_xy, cuda): preactivation_sum = torch.zeros(dnn.n_features) preactivation_squared_sum = torch.zeros(dnn.n_features) if cuda: preactivation_sum = preactivation_sum.cuda() preactivation_squared_sum = preactivation_squared_sum.cuda() total_num = 0 for x in dl_x: x = x[0] if cuda: x = x.cuda() dnn.forward(x) preactivations = dnn.compute_preactivation(x) if len(preactivations.shape) == 4: preactivations = preactivations.transpose(1, 3) preactivations = preactivations.contiguous().view(-1, dnn.n_features) total_num += preactivations.shape[0] preactivation_sum += torch.sum(preactivations, dim=0) preactivation_squared_sum += torch.sum(preactivations**2, dim=0) preactivation_mean = preactivation_sum / total_num preactivation_var = preactivation_squared_sum / total_num preactivation_var = preactivation_var - preactivation_mean**2 update_bn(dl_xy, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) def _reset_bn(module): if issubclass(module.__class__, torch.nn.modules.batchnorm._BatchNorm): module.running_mean = torch.zeros_like(module.running_mean) module.running_var = torch.ones_like(module.running_var) # reset batch norm and run update_bn again dnn.apply(_reset_bn) update_bn(dl_xy, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) # using the dl_x loader instead of dl_xy dnn.apply(_reset_bn) update_bn(dl_x, dnn, device=x.device) self.assertEqual(preactivation_mean, dnn.bn.running_mean) self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0) def test_update_bn_dnn(self): # Test update_bn for a fully-connected network with BatchNorm1d objects, input_features = 100, 5 x = torch.rand(objects, input_features) y = torch.rand(objects) ds_x = torch.utils.data.TensorDataset(x) ds_xy = torch.utils.data.TensorDataset(x, y) dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True) dnn = SWATestDNN(input_features=input_features) dnn.train() self._test_update_bn(dnn, dl_x, dl_xy, False) if torch.cuda.is_available(): dnn = SWATestDNN(input_features=input_features) dnn.train() self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True) self.assertTrue(dnn.training) def test_update_bn_cnn(self): # Test update_bn for convolutional network and BatchNorm2d objects = 100 input_channels = 3 height, width = 5, 5 x = torch.rand(objects, input_channels, height, width) y = torch.rand(objects) ds_x = torch.utils.data.TensorDataset(x) ds_xy = torch.utils.data.TensorDataset(x, y) dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True) dnn = SWATestCNN(input_channels=input_channels) dnn.train() self._test_update_bn(dnn, dl_x, dl_xy, False) if torch.cuda.is_available(): dnn = SWATestCNN(input_channels=input_channels) dnn.train() self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True) self.assertTrue(dnn.training) def test_bn_update_eval_momentum(self): # check that update_bn preserves eval mode objects = 100 input_channels = 3 height, width = 5, 5 x = torch.rand(objects, input_channels, height, width) ds_x = torch.utils.data.TensorDataset(x) dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True) dnn = SWATestCNN(input_channels=input_channels) dnn.eval() update_bn(dl_x, dnn) self.assertFalse(dnn.training) # check that momentum is preserved self.assertEqual(dnn.bn.momentum, 0.3) if __name__ == '__main__': run_tests()
eee85f7fa13c8c9a2568ff0b2c328fcd74c447dd
a3eb732ead7e1d10a85a88e42dc639eb16a40265
/instagram_api/request/base.py
e326afae24f36536b07fc4d0d96d658ed435c783
[ "MIT" ]
permissive
carsam2021/instagram_api
7654c0f485c22935cf478016e46e65acbeda9344
b53f72db36c505a2eb24ebac1ba8267a0cc295bb
refs/heads/master
2023-03-16T14:06:27.515432
2020-10-17T04:39:19
2020-10-17T04:39:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,849
py
from typing import Dict, List import json from instagram_api.interfaces.api_request import ApiRequestInterface from instagram_api.signatures import Signatures __all__ = ['CollectionBase'] class CollectionBase: def __init__(self, ig): from instagram_api.instagram import Instagram self._ig: Instagram = ig @staticmethod def _paginate_with_exclusion(request: ApiRequestInterface, exclude_list: List[int], rank_token: str, limit: int = 30) -> ApiRequestInterface: assert Signatures.is_valid_uuid(rank_token), f'`{rank_token}` is not a valid rank token.' # Что-то тут не так в логике if not exclude_list: request.add_params( count=str(limit), ) return request.add_params( count=str(limit), exclude_list=json.dumps(exclude_list, separators=(',', ':')), rank_token=rank_token, ) @staticmethod def _paginate_with_multi_exclusion(request: ApiRequestInterface, exclude_groups: Dict[str, List[int]], rank_token: str, limit: int = 30) -> ApiRequestInterface: assert Signatures.is_valid_uuid(rank_token), f'`{rank_token}` is not a valid rank token.' if not exclude_groups: request.add_params( count=str(limit), ) total_count = 0 for ids in exclude_groups.values(): total_count += len(ids) return request.add_params( count=str(limit), exclude_list=json.dumps(exclude_groups, separators=(',', ':')), rank_token=rank_token, )
c378c2866324df13f145039f1ca8f38f447aeb85
be3920640bbbdb055876f2c1f49c6cc2e81cbab2
/pyexample/tests/test_viz.py
a4cf5e98a83b2a45624536877e68475621765059
[ "BSD-3-Clause" ]
permissive
phobson/pyexample
4993fe8f9b70e5224d09e878f137e94c8c1b4f60
133598954b514a80dc0f65c02c8740b626e569d2
refs/heads/new-branch
2021-12-02T12:29:32.156032
2021-11-24T19:33:21
2021-11-24T19:33:21
68,402,565
0
0
BSD-3-Clause
2018-01-19T19:44:27
2016-09-16T17:55:31
null
UTF-8
Python
false
false
905
py
import numpy from matplotlib import pyplot import pytest from pyexample import viz from . import helpers BASELINE_DIR = 'baseline_images/test_viz' TOLERANCE = 15 @pytest.fixture def plot_data(): data = numpy.array([ 3.113, 3.606, 4.046, 4.046, 4.710, 6.140, 6.978, 2.000, 4.200, 4.620, 5.570, 5.660, 5.860, 6.650, 6.780, 6.790, 7.500, 7.500, 7.500, 8.630, 8.710, 8.990, 9.850, 10.820, 11.250, 11.250, 12.200, 14.920, 16.770, 17.810, 19.160, 19.190, 19.640, 20.180, 22.970, ]) return data @pytest.mark.mpl_image_compare(baseline_dir=BASELINE_DIR, tolerance=TOLERANCE) @helpers.seed def test_demo_plotting_function(plot_data): x = numpy.random.uniform(size=len(plot_data)) fig = viz.demo_plotting_function(x, plot_data, ax=None) assert isinstance(fig, pyplot.Figure) return fig
2fb5eec5f1b153b97c548b1814a2487ab20fc821
e2b9f2354c36bd1edfa141d29f60c13ea176c0fe
/2018/blaze/sl0thcoin/smarter/solve.py
a2ba36e35e7368629a46ee89ae5a80409bf445d9
[]
no_license
Jinmo/ctfs
236d2c9c5a49d500e80ece4631a22c7fb32c3c3f
d225baef7942250a5ff15a3f2a9b7ad8501c7566
refs/heads/master
2021-07-24T15:17:05.489163
2021-07-05T16:05:15
2021-07-05T16:05:15
68,125,231
162
26
null
null
null
null
UTF-8
Python
false
false
699
py
#!/usr/bin/python3 from hashlib import sha256 from itertools import permutations import string # Just looked EVM assembly for many hours to solve it. if False: keys = string.ascii_lowercase for combs in permutations(keys, 4): z = sha256(bytearray(combs)).hexdigest() # x = x[::-1] if z == hash or z == hash[::-1] or z == bytes.fromhex(hash)[::-1].hex() or z[::-1] == bytes.fromhex(hash)[::-1].hex(): print(combs) exit() keys = bytearray(bytes.fromhex("4419194e")) for i in range(len(keys)): keys[i] ^= 42 hash = 'a8c8af687609bf404c202ac1378e10cd19421e72c0a161edc56b53752326592a' prefix = b"flag{mayb3_w3_" suffix = b"_bett3r_t00ls}" x = bytearray(prefix + keys + suffix) print(x)
139a12db6cc98827a46acc6950671f20e7643c71
480e33f95eec2e471c563d4c0661784c92396368
/CondTools/Hcal/test/dbwriteCastorElectronicsMap_cfg.py
b60f9e71df8fabf598fe481066fc52793c1f219b
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
2,177
py
import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.MessageLogger=cms.Service("MessageLogger", destinations=cms.untracked.vstring("cout"), cout=cms.untracked.PSet( threshold=cms.untracked.string("INFO") ) ) process.load("CondCore.DBCommon.CondDBCommon_cfi") #process.CondDBCommon.connect = cms.string('sqlite_file:CastorEmap.db') process.CondDBCommon.DBParameters.authenticationPath = cms.untracked.string('/afs/cern.ch/cms/DB/conddb') #process.CondDBCommon.connect = cms.string('oracle://cms_orcoff_prep/CMS_COND_31X_HCAL') process.CondDBCommon.connect = cms.string('oracle://cms_orcon_prod/CMS_COND_31X_HCAL') process.CondDBCommon.DBParameters.authenticationPath = cms.untracked.string('/nfshome0/popcondev/conddb') process.source = cms.Source("EmptyIOVSource", timetype = cms.string('runnumber'), firstValue = cms.uint64(1), lastValue = cms.uint64(1), interval = cms.uint64(1) ) process.es_ascii = cms.ESSource("CastorTextCalibrations", input = cms.VPSet(cms.PSet( object = cms.string('ElectronicsMap'), file = cms.FileInPath('CondFormats/CastorObjects/data/emap_dcc_nominal_Run121872.txt') )) ) process.PoolDBOutputService = cms.Service("PoolDBOutputService", process.CondDBCommon, timetype = cms.untracked.string('runnumber'), # logconnect= cms.untracked.string('sqlite_file:log.db'), #logconnect= cms.untracked.string('oracle://cms_orcoff_prep/CMS_COND_31X_POPCONLOG'), logconnect= cms.untracked.string('oracle://cms_orcon_prod/CMS_COND_31X_POPCONLOG'), toPut = cms.VPSet(cms.PSet( record = cms.string('CastorElectronicsMapRcd'), tag = cms.string('CastorElectronicsMap_v2.01_mc') )) ) process.mytest = cms.EDAnalyzer("CastorElectronicsMapPopConAnalyzer", record = cms.string('CastorElectronicsMapRcd'), loggingOn= cms.untracked.bool(True), SinceAppendMode=cms.bool(True), Source=cms.PSet( # firstSince=cms.untracked.double(300) IOVRun=cms.untracked.uint32(1) ) ) process.p = cms.Path(process.mytest)
f6cbef75142bef6fca11beffb23c99d4b87e2dcb
6a95b330e1beec08b917ff45eccfd6be3fd4629f
/kubernetes/client/models/extensions_v1beta1_scale_status.py
2abdb17853310a267b8ff6d08d3f314a58e3068e
[ "Apache-2.0" ]
permissive
TokkoLabs/client-python
f4a83d6540e64861b59e322c951380a670578d7f
f1ad9c6889105d8510472606c98f8d3807f82020
refs/heads/master
2023-07-14T01:36:46.152341
2017-12-21T21:32:11
2017-12-21T21:32:11
115,042,671
0
0
Apache-2.0
2021-08-06T03:29:17
2017-12-21T20:05:15
Python
UTF-8
Python
false
false
6,162
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class ExtensionsV1beta1ScaleStatus(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'replicas': 'int', 'selector': 'dict(str, str)', 'target_selector': 'str' } attribute_map = { 'replicas': 'replicas', 'selector': 'selector', 'target_selector': 'targetSelector' } def __init__(self, replicas=None, selector=None, target_selector=None): """ ExtensionsV1beta1ScaleStatus - a model defined in Swagger """ self._replicas = None self._selector = None self._target_selector = None self.discriminator = None self.replicas = replicas if selector is not None: self.selector = selector if target_selector is not None: self.target_selector = target_selector @property def replicas(self): """ Gets the replicas of this ExtensionsV1beta1ScaleStatus. actual number of observed instances of the scaled object. :return: The replicas of this ExtensionsV1beta1ScaleStatus. :rtype: int """ return self._replicas @replicas.setter def replicas(self, replicas): """ Sets the replicas of this ExtensionsV1beta1ScaleStatus. actual number of observed instances of the scaled object. :param replicas: The replicas of this ExtensionsV1beta1ScaleStatus. :type: int """ if replicas is None: raise ValueError("Invalid value for `replicas`, must not be `None`") self._replicas = replicas @property def selector(self): """ Gets the selector of this ExtensionsV1beta1ScaleStatus. label query over pods that should match the replicas count. More info: http://kubernetes.io/docs/user-guide/labels#label-selectors :return: The selector of this ExtensionsV1beta1ScaleStatus. :rtype: dict(str, str) """ return self._selector @selector.setter def selector(self, selector): """ Sets the selector of this ExtensionsV1beta1ScaleStatus. label query over pods that should match the replicas count. More info: http://kubernetes.io/docs/user-guide/labels#label-selectors :param selector: The selector of this ExtensionsV1beta1ScaleStatus. :type: dict(str, str) """ self._selector = selector @property def target_selector(self): """ Gets the target_selector of this ExtensionsV1beta1ScaleStatus. label selector for pods that should match the replicas count. This is a serializated version of both map-based and more expressive set-based selectors. This is done to avoid introspection in the clients. The string will be in the same format as the query-param syntax. If the target type only supports map-based selectors, both this field and map-based selector field are populated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors :return: The target_selector of this ExtensionsV1beta1ScaleStatus. :rtype: str """ return self._target_selector @target_selector.setter def target_selector(self, target_selector): """ Sets the target_selector of this ExtensionsV1beta1ScaleStatus. label selector for pods that should match the replicas count. This is a serializated version of both map-based and more expressive set-based selectors. This is done to avoid introspection in the clients. The string will be in the same format as the query-param syntax. If the target type only supports map-based selectors, both this field and map-based selector field are populated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors :param target_selector: The target_selector of this ExtensionsV1beta1ScaleStatus. :type: str """ self._target_selector = target_selector def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, ExtensionsV1beta1ScaleStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
25d837ad1c315cf0467adfe2ff6b3178b0ee48a4
c50e7eb190802d7849c0d0cea02fb4d2f0021777
/src/k8s-extension/azext_k8s_extension/tests/latest/MockClasses.py
8a6313c9ce63728ba80823afc1570193e5138272
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/azure-cli-extensions
c1615b19930bba7166c282918f166cd40ff6609c
b8c2cf97e991adf0c0a207d810316b8f4686dc29
refs/heads/main
2023-08-24T12:40:15.528432
2023-08-24T09:17:25
2023-08-24T09:17:25
106,580,024
336
1,226
MIT
2023-09-14T10:48:57
2017-10-11T16:27:31
Python
UTF-8
Python
false
false
711
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core import AzCommandsLoader class MockCommand: def __init__(self): self.cli_ctx = MockCLIContext() class MockCLIContext: def __init__(self): self.cloud = MockCloud() class MockCloud: def __init__(self): self.endpoints = Endpoints() class Endpoints: def __init__(self): self.resource_manager = ""
d4904ca21f745e69b4cc262d2ecc00fba7d06012
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/A/anoukmpg/basic_twitter_scraperchavez_1.py
d364c9eb557ece039635cdb7b4d9fdd75b2b9d7f
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,420
py
################################################################################### # Twitter scraper - designed to be forked and used for more interesting things ################################################################################### import scraperwiki import simplejson import urllib2 # Change QUERY to your search term of choice. # Examples: 'newsnight', 'from:bbcnewsnight', 'to:bbcnewsnight' QUERY = 'project x haren' RESULTS_PER_PAGE = '100' NUM_PAGES = 1000000 for page in range(1, NUM_PAGES+1): base_url = 'http://search.twitter.com/search.json?q=%s&rpp=%s&page=%s' \ % (urllib2.quote(QUERY), RESULTS_PER_PAGE, page) try: results_json = simplejson.loads(scraperwiki.scrape(base_url)) for result in results_json['results']: #print result data = {} data['id'] = result['id'] data['text'] = result['text'] data['from_user'] = result['from_user'] data['created_at'] = result['created_at'] print data['from_user'], data['text'] scraperwiki.sqlite.save(["id"], data) except: print 'Oh dear, failed to scrape %s' % base_url break ################################################################################### # Twitter scraper - designed to be forked and used for more interesting things ################################################################################### import scraperwiki import simplejson import urllib2 # Change QUERY to your search term of choice. # Examples: 'newsnight', 'from:bbcnewsnight', 'to:bbcnewsnight' QUERY = 'project x haren' RESULTS_PER_PAGE = '100' NUM_PAGES = 1000000 for page in range(1, NUM_PAGES+1): base_url = 'http://search.twitter.com/search.json?q=%s&rpp=%s&page=%s' \ % (urllib2.quote(QUERY), RESULTS_PER_PAGE, page) try: results_json = simplejson.loads(scraperwiki.scrape(base_url)) for result in results_json['results']: #print result data = {} data['id'] = result['id'] data['text'] = result['text'] data['from_user'] = result['from_user'] data['created_at'] = result['created_at'] print data['from_user'], data['text'] scraperwiki.sqlite.save(["id"], data) except: print 'Oh dear, failed to scrape %s' % base_url break
901f3c3dd2303e61d8c714f457a19c57173a0f9b
0931696940fc79c4562c63db72c6cabfcb20884d
/Functions/Loading_Bar.py
6924207e641d4053b76d424b3c26fb97beb5c9b1
[]
no_license
ivklisurova/SoftUni_Fundamentals_module
f847b9de9955c8c5bcc057bb38d57162addd6ad8
69242f94977c72005f04da78243a5113e79d6c33
refs/heads/master
2021-12-01T01:56:22.067928
2021-11-08T17:07:31
2021-11-08T17:07:31
253,281,893
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
number = int(input()) def loading(num): loading_bar = [] x = num // 10 y = ((100 - num) // 10) z = '[' + x * '%' + y * '.' + ']' loading_bar.append(z) if (number // 10) == 10: loading_bar.insert(0, '100% Complete!') print(loading_bar[0]) print(loading_bar[1]) else: loading_bar.insert(0, f'{num}%') loading_bar.append('Still loading...') print(' ' .join(loading_bar[0:2])) print(loading_bar[2]) return loading_bar loading(number)
3555ae78bbf5408ef0a69abe52dedbabad3a0cdf
57ae5bfbb24ba5fec90c9b3ecf1e15f06f1546ee
/7-5-1.py
c11af7c98b341df6cf8ce912c9b84b4464523aac
[]
no_license
cjjhust/python_datastucture
f9104f1d5cae2df6436f56d4d3eaa212e6045943
a222bbe4bfc145ee11f73676c8f033f451d45f78
refs/heads/master
2022-07-03T19:53:07.066387
2020-05-15T08:06:21
2020-05-15T08:06:21
260,272,705
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
# -*- coding: utf-8 -*- """ Created on Sat Nov 10 17:36:36 2018 @author: CJJ """ import random def getRandomM(a,n,m): if a==None or n<=0 or n<m: print "参数不合理" return i=0 while i<m: j=random.randint(i,n-1) # // 获取i到n-1间的随机数 # 随机选出的元素放到数组的前面 tmp=a[i] a[i]=a[j] a[j]=tmp i +=1 if __name__=="__main__": a= [1, 2, 3, 4, 5, 6, 7, 8, 9,10 ] n = 10 m = 6 getRandomM(a, n, m) i=0 while i<m: print a[i], i +=1
d8c1bee039b5b2874724ca9a9ee2b2dd01e43952
7da433fc52a167a1e9b593eda1d1ee9eee03ccf1
/2019-prog-labooefeningen-forrestjan/week8/week08_test_bestanden_klassen/test_spelers.py
d18fe5544310a4f2dedbacc858045acbeab0d460
[]
no_license
forrestjan/Labos-MCT-19-20
69cb26d2f1584a54db32750037dcb900a65a0ae6
c9392cf0cbd9ad6e5974140060b9d0beaf0a202f
refs/heads/main
2022-12-30T14:49:35.461246
2020-10-14T11:59:16
2020-10-14T11:59:16
304,000,514
0
0
null
null
null
null
UTF-8
Python
false
false
1,207
py
from model.Speler import Speler from model.Geboortedatum import Geboortedatum def test_oef1(): # aanspreken van een public static variabele (attribute) Speler.naam_ploeg = "Rode duivels" sp1 = Speler("Thibault", "Cortous", "keeper", 8, 0) sp2 = Speler("Vincent", "Kompany", "aanvaller", 8, 3) # par 4 en 5 worden niet opgegeven, zie default par in classe __init__() sp3 = Speler("Axel", "Witsel", "aanvaller") print(sp1) print(sp2) print(sp3) print("\nVincent scoort!") sp2.maak_doelpunt() print(sp2) print("\nAxel scoort!") sp3.maak_doelpunt() print(sp3) print( f"Het doelpunten saldo van { Speler.naam_ploeg } is { Speler.get_doelpunten_saldo_ploeg()}") # test_oef1() def test_spelers_oef3(): sp1 = Speler("Thibault", "Cortous", "keeper", 8, 0, Geboortedatum(11, 5, 1992)) sp2 = Speler("Vincent", "Kompany", "aanvaller", 8, 3, Geboortedatum(10, 4, 1986)) sp3 = Speler("Axel", "Witsel", "aanvaller") print("\nDe geboortedata van de spelers zijn:") for speler in [sp1, sp2, sp3]: print(f"{speler} -> gebootedatum: {speler.geboortedatum}") test_spelers_oef3()
69ef8c6d7beb126718ee82bda6f72258a06cd3ad
32226e72c8cbaa734b2bdee081c2a2d4d0322702
/railrl/data_management/env_replay_buffer.py
781568e5f90fa8db7cff99c76ab6480aa1591e56
[ "MIT" ]
permissive
Asap7772/rail-rl-franka-eval
2b1cbad7adae958b3b53930a837df8a31ab885dc
4bf99072376828193d05b53cf83c7e8f4efbd3ba
refs/heads/master
2022-11-15T07:08:33.416025
2020-07-12T22:05:32
2020-07-12T22:05:32
279,155,722
0
0
null
null
null
null
UTF-8
Python
false
false
3,705
py
from gym.spaces import Discrete from railrl.data_management.simple_replay_buffer import SimpleReplayBuffer from railrl.envs.env_utils import get_dim import numpy as np class EnvReplayBuffer(SimpleReplayBuffer): def __init__( self, max_replay_buffer_size, env, env_info_sizes=None ): """ :param max_replay_buffer_size: :param env: """ self.env = env self._ob_space = env.observation_space self._action_space = env.action_space if env_info_sizes is None: if hasattr(env, 'info_sizes'): env_info_sizes = env.info_sizes else: env_info_sizes = dict() super().__init__( max_replay_buffer_size=max_replay_buffer_size, observation_dim=get_dim(self._ob_space), action_dim=get_dim(self._action_space), env_info_sizes=env_info_sizes ) def add_sample(self, observation, action, reward, terminal, next_observation, **kwargs): if isinstance(self._action_space, Discrete): new_action = np.zeros(self._action_dim) new_action[action] = 1 else: new_action = action return super().add_sample( observation=observation, action=new_action, reward=reward, next_observation=next_observation, terminal=terminal, **kwargs ) class VPGEnvReplayBuffer(EnvReplayBuffer): def __init__( self, max_replay_buffer_size, env, discount_factor, ): super().__init__(max_replay_buffer_size, env) self._returns = np.zeros((max_replay_buffer_size, 1)) self.current_trajectory_rewards = np.zeros((max_replay_buffer_size, 1)) self._max_replay_buffer_size = max_replay_buffer_size self.discount_factor = discount_factor self._bottom = 0 def terminate_episode(self): returns = [] return_so_far = 0 for t in range(len(self._rewards[self._bottom:self._top]) - 1, -1, -1): return_so_far = self._rewards[t][0] + self.discount_factor * return_so_far returns.append(return_so_far) returns = returns[::-1] returns = np.reshape(np.array(returns),(len(returns), 1)) self._returns[self._bottom:self._top] = returns self._bottom = self._top def add_sample(self, observation, action, reward, terminal, next_observation, **kwargs): if self._top == self._max_replay_buffer_size: raise EnvironmentError('Replay Buffer Overflow, please reduce the number of samples added!') super().add_sample(observation, action, reward, terminal, next_observation, **kwargs) def get_training_data(self): batch= dict( observations=self._observations[0:self._top], actions=self._actions[0:self._top], rewards=self._rewards[0:self._top], terminals=self._terminals[0:self._top], next_observations=self._next_obs[0:self._top], returns = self._returns[0:self._top], ) return batch def empty_buffer(self): self._observations = np.zeros(self._observations.shape) self._next_obs = np.zeros(self._next_obs.shape) self._actions = np.zeros(self._actions.shape) self._rewards = np.zeros(self._rewards.shape) self._terminals = np.zeros(self._terminals.shape, dtype='uint8') self._returns = np.zeros(self._returns.shape) self._size = 0 self._top = 0 self._bottom = 0
ee47403e642fefd6b1e6f6c62477a24a6e0ce22c
dfdb672bbe3b45175806928d7688a5924fc45fee
/Learn Python the Hard Way Exercises/ex41.py
3abb331053e8c7304b85e45517c62a437d126264
[]
no_license
mathans1695/Python-Practice
bd567b5210a4d9bcd830607627293d64b4baa909
3a8fabf14bc65b8fe973488503f12fac224a44ed
refs/heads/master
2023-01-01T13:49:05.789809
2020-10-26T02:37:05
2020-10-26T02:37:05
306,300,672
2
1
null
null
null
null
UTF-8
Python
false
false
1,972
py
import random from urllib import urlopen import sys WORD_URL = "http://learncodethehardway.org/words.txt" WORDS = [] PHRASES = { "class %%%(%%%):": "Make a class named %%% that is-a %%%.", "class %%%(object):\n\tdef __init__(self, ***)": "class %%% has-a __init__ that takes self and *** parameters.", "class %%%(object):\n\tdef ***(self, @@@)": "class %%% has-a function named *** that takes self and @@@ parameters.", "*** = %%%()": "Set *** to an instance of class %%%.", "***.***(@@@)": "From *** get the *** function, and call it with parameters self, @@@.", "***.*** = '***'": "From *** get the *** attribute and set it to '***'." } # do they want to drill phrases first PHRASE_FIRST = False if len(sys.argv) == 2 and sys.argv[1] == "english": PHRASE_FIRST = True # load up the words from the website for word in urlopen(WORD_URL).readlines(): WORDS.append(word.strip()) def convert(snippet, phrase): class_names = [w.capitalize() for w in random.sample(WORDS, snippet.count("%%%"))] results = [] param_names = [] for i in range(0, snippet.count("@@@")): param_count = random.randint(1,3) param_names.append(', '.join(random.sample(WORDS, param_count))) for sentence in snippet, phrase: result = sentence[:] # fake class names for word in class_names: result = result.replace("%%%", word, 1) # fake other names for word in other_names: result = result.replace("***", word, 1) # fake parameter lists for word in param_names: result = result.replace("@@@", word, 1) results.append(result) return results # keep going until they hit CTRL- D try: while True: snippets = PHRASES.keys() random.shuffle(snippets) for snippet in snippets: phrase = PHRASES[snippet] question, answer = convert(snippet, phrase) if PHRASE_FIRST: question, answer = answer, question print question raw_input("> ") print "ANSWER: %s\n\n" % answer except EOFError: print "\nBye"
a9af131a9d4b68580fd5afc8d61703d0b57ce1d8
e42a61b7be7ec3412e5cea0ffe9f6e9f34d4bf8d
/a10sdk/core/A10_import/import_periodic_ssl_cert.py
1a4f81061a75db8ac18bba2be452cb33eb364dc8
[ "Apache-2.0" ]
permissive
amwelch/a10sdk-python
4179565afdc76cdec3601c2715a79479b3225aef
3e6d88c65bd1a2bf63917d14be58d782e06814e6
refs/heads/master
2021-01-20T23:17:07.270210
2015-08-13T17:53:23
2015-08-13T17:53:23
40,673,499
0
0
null
2015-08-13T17:51:35
2015-08-13T17:51:34
null
UTF-8
Python
false
false
2,409
py
from a10sdk.common.A10BaseClass import A10BaseClass class SslCert(A10BaseClass): """Class Description:: SSL Cert File(enter bulk when import an archive file). Class ssl-cert supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` :param pfx_password: {"description": "The password for certificate file (pfx type only)", "format": "string", "minLength": 1, "optional": true, "maxLength": 128, "type": "string"} :param csr_generate: {"default": 0, "optional": true, "type": "number", "description": "Generate CSR file", "format": "flag"} :param remote_file: {"optional": true, "type": "string", "description": "profile name for remote url", "format": "url"} :param use_mgmt_port: {"default": 0, "optional": true, "type": "number", "description": "Use management port as source port", "format": "flag"} :param period: {"description": "Specify the period in second", "format": "number", "type": "number", "maximum": 31536000, "minimum": 60, "optional": true} :param certificate_type: {"optional": true, "enum": ["pem", "der", "pfx", "p7b"], "type": "string", "description": "'pem': pem; 'der': der; 'pfx': pfx; 'p7b': p7b; ", "format": "enum"} :param ssl_cert: {"description": "SSL Cert File(enter bulk when import an archive file)", "format": "string", "minLength": 1, "optional": false, "maxLength": 255, "type": "string"} :param uuid: {"description": "uuid of the object", "format": "string", "minLength": 1, "modify-not-allowed": 1, "optional": true, "maxLength": 64, "type": "string"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/import-periodic/ssl-cert/{ssl_cert}`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required = [ "ssl_cert"] self.b_key = "ssl-cert" self.a10_url="/axapi/v3/import-periodic/ssl-cert/{ssl_cert}" self.DeviceProxy = "" self.pfx_password = "" self.csr_generate = "" self.remote_file = "" self.use_mgmt_port = "" self.period = "" self.certificate_type = "" self.ssl_cert = "" self.uuid = "" for keys, value in kwargs.items(): setattr(self,keys, value)
3505d9a921cb2f8e0d01d19c363eb3e875fa5f8c
1a83ce28cf596558bd0d8280086e27bc48d0a500
/src/command_modules/azure-cli-iotcentral/setup.py
c771f17dc15992b5221cf74250e4dc4c4ef6371c
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
willerLiu/azure-cli
70d8c5fa4e00c0dd3fb3bc90434d613346a03bd2
628ba933b954d41ad42f5c938b0f2cac55f94be2
refs/heads/master
2020-04-10T15:08:55.939172
2018-11-29T21:32:10
2018-12-04T22:09:38
161,098,793
0
0
NOASSERTION
2018-12-10T01:18:57
2018-12-10T01:18:56
null
UTF-8
Python
false
false
1,988
py
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup try: from azure_bdist_wheel import cmdclass except ImportError: from distutils import log as logger logger.warn("Wheel is not available, disabling bdist_wheel hook") cmdclass = {} VERSION = "0.1.4" # The full list of classifiers is available at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ] DEPENDENCIES = [ 'azure-cli-core', 'azure-mgmt-iotcentral==1.0.0' ] with open('README.rst', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='azure-cli-iotcentral', version=VERSION, description='Microsoft Azure Command-Line Tools IoT Central Command Module', long_description=README + '\n\n' + HISTORY, license='MIT', author='Microsoft Corporation', author_email='[email protected]', url='https://github.com/Azure/azure-cli', classifiers=CLASSIFIERS, packages=[ 'azure', 'azure.cli', 'azure.cli.command_modules', 'azure.cli.command_modules.iotcentral' ], install_requires=DEPENDENCIES, cmdclass=cmdclass )
30baca899c2b35d673ab60b7bd8c885b3d9cb6e7
94dde46196ec93704367d4b3dae3a8ec700e2fd7
/examples/button.py
c475fae2f499f877cdb74c51fe1181576328600e
[ "LicenseRef-scancode-other-permissive", "BSD-3-Clause" ]
permissive
saghul/python-asiri
5200697ddb99471ff7daba415351c23430de9791
1060fa6805fe52f348fe1b33ebcfa5814b0fec26
refs/heads/master
2021-01-01T18:47:44.947924
2013-10-28T22:39:55
2013-10-28T22:39:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
from __future__ import print_function from asiri import GPIO from time import sleep BTN = 9 gpio = GPIO(num_gpios=16) gpio.setup(BTN, GPIO.IN) try: prev_input = 0 while True: input = gpio.input(BTN) if not prev_input and input: print("Button pressed!") prev_input = input sleep(0.05) except KeyboardInterrupt: pass finally: gpio.cleanup()
9d43360e38253f6483d86bd55776635339f42e08
8707f9244fcb0f34901a9ff79683c4f0fe883d20
/neo/test/iotest/test_spikeglxio.py
b77ec7accc6cfe3393c66907495c3963ad470306
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
teogale/python-neo
cd9b93d1fdbf99848684fbdedd46ced0dabd5feb
cd4226ddcfbace080c4734f562f706423979f2dc
refs/heads/master
2021-06-21T20:38:06.781570
2021-05-21T16:28:46
2021-05-21T16:28:46
195,394,638
0
0
BSD-3-Clause
2020-07-20T11:45:16
2019-07-05T10:59:36
Python
UTF-8
Python
false
false
388
py
""" Tests of neo.io.spikeglxio """ import unittest from neo.io import SpikeGLXIO from neo.test.iotest.common_io_test import BaseTestIO class TestSpikeGLXIO(BaseTestIO, unittest.TestCase): ioclass = SpikeGLXIO entities_to_download = [ 'spikeglx' ] entities_to_test = [ 'spikeglx/Noise4Sam_g0' ] if __name__ == "__main__": unittest.main()
155f07aadc216c4e1e5c876307b9a82734fe9ed3
0add7953d3e3ce2df9e8265102be39b758579753
/built-in/TensorFlow/Research/reinforcement-learning/DQN_for_TensorFlow/rl/xt/model/dqn/rainbow_network_cnn.py
9406c8f1e66f4627c29bc2808b78f94f19b43391
[ "Apache-2.0" ]
permissive
Huawei-Ascend/modelzoo
ae161c0b4e581f8b62c77251e9204d958c4cf6c4
df51ed9c1d6dbde1deef63f2a037a369f8554406
refs/heads/master
2023-04-08T08:17:40.058206
2020-12-07T08:04:57
2020-12-07T08:04:57
319,219,518
1
1
Apache-2.0
2023-03-24T22:22:00
2020-12-07T06:01:32
Python
UTF-8
Python
false
false
3,107
py
""" @Author: Jack Qian @license : Copyright(C), Huawei """ from __future__ import absolute_import, division, print_function import tensorflow as tf from xt.model.tf_compat import Dense, Input, Conv2D, \ Model, Adam, Lambda, Flatten, K from xt.model.dqn.default_config import LR from xt.model import XTModel from xt.util.common import import_config from xt.framework.register import Registers @Registers.model.register class RainbowNetworkCnn(XTModel): """docstring for .""" def __init__(self, model_info): model_config = model_info.get('model_config', None) import_config(globals(), model_config) self.state_dim = model_info['state_dim'] self.action_dim = model_info['action_dim'] self.learning_rate = LR self.atoms = 51 super(RainbowNetworkCnn, self).__init__(model_info) def create_model(self, model_info): """create keras model""" state = Input(shape=self.state_dim, name='state_input') action = Input(shape=(2, ), name='action', dtype='int32') target_p = Input(shape=(self.atoms, ), name="target_p") convlayer = Conv2D(32, (8, 8), strides=(4, 4), activation='relu', padding='same')(state) convlayer = Conv2D(64, (4, 4), strides=(2, 2), activation='relu', padding='same')(convlayer) convlayer = Conv2D(64, (3, 3), strides=(1, 1), activation='relu', padding='same')(convlayer) flattenlayer = Flatten()(convlayer) denselayer = Dense(512, activation='relu')(flattenlayer) value = Dense(1, activation=None)(denselayer) denselayer = Dense(512, activation='relu')(flattenlayer) atom = Dense(self.action_dim * self.atoms, activation=None)(denselayer) mean = Lambda(lambda x: tf.subtract( tf.reshape(x, [-1, self.action_dim, self.atoms]), tf.reduce_mean(tf.reshape(x, [-1, self.action_dim, self.atoms]), axis=1, keep_dims=True)))(atom) value = Lambda(lambda x: tf.add(tf.expand_dims(x[0], 1), x[1]))([value, mean]) #prob = Lambda(lambda x: tf.nn.softmax(x), name="output")(value) #pylint error Lambda may not be necessary prob = tf.nn.softmax(value, name="output") model = Model(inputs=[state, action, target_p], outputs=prob) adam = Adam(lr=self.learning_rate, clipnorm=10.) model.compile(loss=[dist_dqn_loss(action=action, target_p=target_p)], optimizer=adam) return model def train(self, state, label): with self.graph.as_default(): K.set_session(self.sess) # print(type(state[2][0][0])) loss = self.model.fit(x={ 'state_input': state[0], 'action': state[1], 'target_p': state[2] }, y={"output": label}, verbose=0) return loss def dist_dqn_loss(action, target_p): """loss for rainbow""" def loss(y_true, y_pred): y_pred = tf.gather_nd(y_pred, action) return -K.mean(target_p * K.log((y_pred + 1e-10))) return loss
7f1bf9f84ba0a732878a0df6d12969923da3f860
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03417/s820557335.py
781e7a91ed400cdd9fa97625e372b4993251ae0e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
N, M = map(int, input().split()) N, M = min(N,M), max(N,M) ans = [[1], [2, 0], [3, 0, 9], [2, 0, 6, 4]] if M <= 4: print(ans[M-1][N-1]) exit() if N == 1: print(M-2) exit() if N == 2: print(0) exit() if N == 3: print(N*M - 6) exit() print(4 + (N-4 + M-4)*2 + (N-4)*(M-4))
d9c2578c85a6972b534c9c7bb4f968d53c437283
c3c31ce9a8822ac0352475934f5b3fbdacac62a1
/ssseg/cfgs/setr/cfgs_ade20k_vitlargepup.py
f48eba513dac55967b0f6bcdfe89c5ae16221369
[ "MIT" ]
permissive
guofenggitlearning/sssegmentation
1e51b5b14bff3b5ad0d469ac98d711adb79cef11
7a405b1a4949606deae067223ebd68cceec6b225
refs/heads/main
2023-08-28T03:26:39.204259
2021-11-03T00:51:30
2021-11-03T00:51:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,896
py
'''define the config file for ade20k and ViT-Large''' import os from .base_cfg import * # modify dataset config DATASET_CFG = DATASET_CFG.copy() DATASET_CFG.update({ 'type': 'ade20k', 'rootdir': os.path.join(os.getcwd(), 'ADE20k'), }) # modify dataloader config DATALOADER_CFG = DATALOADER_CFG.copy() # modify optimizer config OPTIMIZER_CFG = OPTIMIZER_CFG.copy() OPTIMIZER_CFG.update( { 'max_epochs': 130 } ) # modify losses config LOSSES_CFG = LOSSES_CFG.copy() # modify model config MODEL_CFG = MODEL_CFG.copy() MODEL_CFG.update( { 'num_classes': 150, 'backbone': { 'type': 'jx_vit_large_p16_384', 'series': 'vit', 'img_size': (512, 512), 'drop_rate': 0., 'out_indices': (9, 14, 19, 23), 'norm_cfg': {'type': 'layernorm', 'opts': {'eps': 1e-6}}, 'pretrained': True, 'selected_indices': (0, 1, 2, 3), }, 'auxiliary': [ {'in_channels': 1024, 'out_channels': 256, 'dropout': 0, 'num_convs': 2, 'scale_factor': 4, 'kernel_size': 3}, {'in_channels': 1024, 'out_channels': 256, 'dropout': 0, 'num_convs': 2, 'scale_factor': 4, 'kernel_size': 3}, {'in_channels': 1024, 'out_channels': 256, 'dropout': 0, 'num_convs': 2, 'scale_factor': 4, 'kernel_size': 3}, ], } ) # modify inference config INFERENCE_CFG = INFERENCE_CFG.copy() # modify common config COMMON_CFG = COMMON_CFG.copy() COMMON_CFG['train'].update( { 'backupdir': 'setrpup_vitlarge_ade20k_train', 'logfilepath': 'setrpup_vitlarge_ade20k_train/train.log', } ) COMMON_CFG['test'].update( { 'backupdir': 'setrpup_vitlarge_ade20k_test', 'logfilepath': 'setrpup_vitlarge_ade20k_test/test.log', 'resultsavepath': 'setrpup_vitlarge_ade20k_test/setrpup_vitlarge_ade20k_results.pkl' } )
2bfbc58965d9d248a69f51634025236919cf1d9e
debffca14a39dbeaf6af2f1b73ea530913e2cdad
/astromodels/sources/point_source.py
49a84aa715727218eee22eced99200b679a5a506
[ "BSD-3-Clause" ]
permissive
BjoernBiltzinger/astromodels
6986695abfc4510a62254854fd0977b1e96e192f
d94a3d3bc607def2b5e3cd145c3922e0a00a7b15
refs/heads/master
2022-11-03T19:28:16.949036
2019-03-12T17:05:59
2019-03-12T17:05:59
175,420,543
0
0
BSD-3-Clause
2019-03-13T12:53:03
2019-03-13T12:53:03
null
UTF-8
Python
false
false
8,896
py
import collections import astropy.units as u import numpy import scipy.integrate from astromodels.core.sky_direction import SkyDirection from astromodels.core.spectral_component import SpectralComponent from astromodels.core.tree import Node from astromodels.core.units import get_units from astromodels.sources.source import Source, POINT_SOURCE from astromodels.utils.pretty_list import dict_to_list from astromodels.core.memoization import use_astromodels_memoization __author__ = 'giacomov' __all__ = ["PointSource"] class PointSource(Source, Node): """ A point source. You can instance this class in many ways. - with Equatorial position and a function as spectrum (the component will be automatically called 'main'):: >>> from astromodels import * >>> point_source = PointSource('my_source', 125.6, -75.3, Powerlaw()) - with Galactic position and a function as spectrum (the component will be automatically called 'main'):: >>> point_source = PointSource('my_source', l=15.67, b=80.75, spectral_shape=Powerlaw()) - with Equatorial position or Galactic position and a list of spectral components:: >>> c1 = SpectralComponent("component1", Powerlaw()) >>> c2 = SpectralComponent("component2", Powerlaw()) >>> point_source = PointSource("test_source",125.6, -75.3,components=[c1,c2]) Or with Galactic position: >>> point_source = PointSource("test_source",l=15.67, b=80.75,components=[c1,c2]) NOTE: by default the position of the source is fixed (i.e., its positional parameters are fixed) :param source_name: name for the source :param ra: Equatorial J2000 Right Ascension (ICRS) :param dec: Equatorial J2000 Declination (ICRS) :param spectral_shape: a 1d function representing the spectral shape of the source :param l: Galactic latitude :param b: Galactic longitude :param components: list of spectral components (instances of SpectralComponent) :param sky_position: an instance of SkyDirection :return: """ def __init__(self, source_name, ra=None, dec=None, spectral_shape=None, l=None, b=None, components=None, sky_position=None): # Check that we have all the required information # (the '^' operator acts as XOR on booleans) # Check that we have one and only one specification of the position assert ((ra is not None and dec is not None) ^ (l is not None and b is not None) ^ (sky_position is not None)), "You have to provide one and only one specification for the position" # Gather the position if not isinstance(sky_position, SkyDirection): if (ra is not None) and (dec is not None): # Check that ra and dec are actually numbers try: ra = float(ra) dec = float(dec) except (TypeError, ValueError): raise AssertionError("RA and Dec must be numbers. If you are confused by this message, you " "are likely using the constructor in the wrong way. Check the documentation.") sky_position = SkyDirection(ra=ra, dec=dec) else: sky_position = SkyDirection(l=l, b=b) self._sky_position = sky_position # Now gather the component(s) # We need either a single component, or a list of components, but not both # (that's the ^ symbol) assert (spectral_shape is not None) ^ (components is not None), "You have to provide either a single " \ "component, or a list of components " \ "(but not both)." # If the user specified only one component, make a list of one element with a default name ("main") if spectral_shape is not None: components = [SpectralComponent("main", spectral_shape)] Source.__init__(self, components, POINT_SOURCE) # A source is also a Node in the tree Node.__init__(self, source_name) # Add the position as a child node, with an explicit name self._add_child(self._sky_position) # Add a node called 'spectrum' spectrum_node = Node('spectrum') spectrum_node._add_children(self._components.values()) self._add_child(spectrum_node) # Now set the units # Now sets the units of the parameters for the energy domain current_units = get_units() # Components in this case have energy as x and differential flux as y x_unit = current_units.energy y_unit = (current_units.energy * current_units.area * current_units.time) ** (-1) # Now set the units of the components for component in self._components.values(): component.shape.set_units(x_unit, y_unit) def __call__(self, x, tag=None): if tag is None: # No integration nor time-varying or whatever-varying if isinstance(x, u.Quantity): # Slow version with units results = [component.shape(x) for component in self.components.values()] # We need to sum like this (slower) because using np.sum will not preserve the units # (thanks astropy.units) return sum(results) else: # Fast version without units, where x is supposed to be in the same units as currently defined in # units.get_units() results = [component.shape(x) for component in self.components.values()] return numpy.sum(results, 0) else: # Time-varying or energy-varying or whatever-varying integration_variable, a, b = tag if b is None: # Evaluate in a, do not integrate # Suspend memoization because the memoization gets confused when integrating with use_astromodels_memoization(False): integration_variable.value = a res = self.__call__(x, tag=None) return res else: # Integrate between a and b integrals = numpy.zeros(len(x)) # TODO: implement an integration scheme avoiding the for loop # Suspend memoization because the memoization gets confused when integrating with use_astromodels_memoization(False): reentrant_call = self.__call__ for i, e in enumerate(x): def integral(y): integration_variable.value = y return reentrant_call(e, tag=None) # Now integrate integrals[i] = scipy.integrate.quad(integral, a, b, epsrel=1e-5)[0] return integrals / (b - a) def has_free_parameters(self): """ Returns True or False whether there is any parameter in this source :return: """ for component in self._components.values(): for par in component.shape.parameters.values(): if par.free: return True for par in self.position.parameters.values(): if par.free: return True return False @property def free_parameters(self): """ Returns a dictionary of free parameters for this source :return: """ free_parameters = collections.OrderedDict() for component in self._components.values(): for par in component.shape.parameters.values(): if par.free: free_parameters[par.name] = par for par in self.position.parameters.values(): if par.free: free_parameters[par.name] = par return free_parameters def _repr__base(self, rich_output=False): """ Representation of the object :param rich_output: if True, generates HTML, otherwise text :return: the representation """ # Make a dictionary which will then be transformed in a list repr_dict = collections.OrderedDict() key = '%s (point source)' % self.name repr_dict[key] = collections.OrderedDict() repr_dict[key]['position'] = self._sky_position.to_dict(minimal=True) repr_dict[key]['spectrum'] = collections.OrderedDict() for component_name, component in self.components.iteritems(): repr_dict[key]['spectrum'][component_name] = component.to_dict(minimal=True) return dict_to_list(repr_dict, rich_output)
5e8f48e09af192100501d1ea79b2d6ebdfeb1891
8c39fa8241e1ecefab6c693862bee127fd3e1461
/proyectoferreteria/apps/gestionadmin/admin.py
cc0cf6bf0161c0beb7007b523f67678f91a2881b
[]
no_license
ujcv4273/Ferreteriav-0.0.5
b5433e727b68e318204386f84416208f99470446
9dd16363ce9f4a012a177aa3d5414051b79cd3a2
refs/heads/master
2022-11-29T16:50:19.066725
2020-08-01T18:16:35
2020-08-01T18:16:35
284,314,116
0
0
null
null
null
null
UTF-8
Python
false
false
31,642
py
from django.contrib import admin from django.db import models from proyectoferreteria.apps.gestionadmin.models import FormaPago, MetodoPago, Garantia, Marca, Categoria, Proveedor,Cliente, Planilla, Empleado, Producto, Factura, TurnoEmpleado, ComprasDet,ComprasEnc from django.core.paginator import Paginator # Register your models here. ##@admin.register(Factura) from django.contrib import admin from django.http import HttpResponse import csv from django.http import FileResponse from reportlab.pdfgen import canvas import io from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import inch import time from import_export import resources from import_export.admin import ImportExportModelAdmin import os from django.conf import settings from django.http import HttpResponse from django.template.loader import get_template from xhtml2pdf import pisa from django.contrib.staticfiles import finders from django.utils import timezone from django_xhtml2pdf.utils import generate_pdf from django.contrib.contenttypes.models import ContentType from django.http import HttpResponseRedirect from reportlab.platypus import Paragraph, Table from django.conf import settings from io import BytesIO from reportlab.pdfgen import canvas from django.views.generic import View def link_callback(self, request, queryset,uri, rel): """ Convert HTML URIs to absolute system paths so xhtml2pdf can access those resources """ # use short variable names sUrl = settings.STATIC_URL # Typically /static/ sRoot = settings.STATIC_ROOT # Typically /home/userX/project_static/ mUrl = settings.MEDIA_URL # Typically /static/media/ mRoot = settings.MEDIA_ROOT # Typically /home/userX/project_static/media/ # convert URIs to absolute system paths if uri.startswith(mUrl): path = os.path.join(mRoot, uri.replace(mUrl, "")) elif uri.startswith(sUrl): path = os.path.join(sRoot, uri.replace(sUrl, "")) else: return uri # handle absolute uri (ie: http://some.tld/foo.png) # make sure that file exists if not os.path.isfile(path): raise Exception( 'media URI must start with %s or %s' % (sUrl, mUrl) ) return path class MarcaResource (resources.ModelResource): class Meta: model= Marca class MarcaAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('idMarca','nombreMarca') resource_class = MarcaResource actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfmarca.html' today = timezone.now() marcas = Marca.objects.all() context = { 'obj': marcas, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Marca, MarcaAdmin) class ClienteAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Cliente','Identidad','Nombre_Cliente','Correo_Cliente','Direccion_Cliente','Telefono_Cliente') ##list_filter = ('Nombre_Cliente','Id_Cliente') ##list_display_links = ('Id_Cliente', 'Correo_Cliente') search_fields = ('Nombre_Cliente','Id_Cliente') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfcliente.html' today = timezone.now() clientes = Cliente.objects.all() context = { 'obj': clientes, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Cliente, ClienteAdmin) class CategoriaAdmin(admin.ModelAdmin): list_per_page = 10 list_display =('Id_Categoria','Descripcion_Categoria') search_fields =('Id_Categoria','Descripcion_Categoria') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfcategoria.html' today = timezone.now() categorias = Categoria.objects.all() context = { 'obj': categorias, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Categoria,CategoriaAdmin) class ProveedorAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Proveedor','Nombre_Proveedor','Correo_Proveedor','Direccion_Proveedor','Telefono_Proveedor') search_fields = ('Id_Proveedor','Nombre_Proveedor','Correo_Proveedor','Direccion_Proveedor','Telefono_Proveedor') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfproveedor.html' today = timezone.now() proveedores = Proveedor.objects.all() context = { 'obj': proveedores, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Proveedor,ProveedorAdmin) class GarantiaAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Garantia','Descripcion_Garantia','Tiempo_Garantia_Mes') search_fields = ('Id_Garantia','Descripcion_Garantia','Tiempo_Garantia_Mes') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfgarantia.html' today = timezone.now() garantias = Garantia.objects.all() context = { 'obj': garantias, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Garantia,GarantiaAdmin) class FormaPagoAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Forma_Pago','Descripcion_Forma_Pago') search_fields= ('Id_Forma_Pago','Descripcion_Forma_Pago') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfformapago.html' today = timezone.now() formapagos = FormaPago.objects.all() context = { 'obj': formapagos, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(FormaPago,FormaPagoAdmin) class MetodoPagoAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('idMetodoPago','descripcionMetodoPago') search_fields= ('idMetodoPago','descripcionMetodoPago') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfmetodopago.html' today = timezone.now() metodopagos = MetodoPago.objects.all() context = { 'obj': metodopagos, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(MetodoPago, MetodoPagoAdmin) class PlanillaAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Planilla','Sueldo_Base','IHSS','RAP') search_fields = ('Id_Planilla','Sueldo_Base','IHSS','RAP') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfplanilla.html' today = timezone.now() planillas = Planilla.objects.all() context = { 'obj': planillas, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Planilla,PlanillaAdmin) class EmpleadoAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Empleado','Nombre_Empleado','Id_Turno','Id_Planilla','Direccion_Empleado','Telefono_Empleado') search_fields = ('Id_Empleado','Id_Turno','Id_Planilla','Nombre_Empleado','Direccion_Empleado','Telefono_Empleado') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfempleado.html' today = timezone.now() empleados = Empleado.objects.all() context = { 'obj': empleados, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Empleado,EmpleadoAdmin) class ProductoAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Producto','Nombre_Producto','Precio_Venta','Precio_Compra','Id_Marca','Id_Categoria','Id_Garantia','Existencia','Existencia_Minima') search_fields = ('Id_Producto','Nombre_Producto') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfproducto.html' today = timezone.now() productos = Producto.objects.all() context = { 'obj': productos, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(Producto,ProductoAdmin) class TurnoEmpleadoAdmin(admin.ModelAdmin): list_per_page = 10 list_display = ('Id_Turno','Turno','Hora_de_Entrada','Hora_de_Salida') search_fields = ('Id_Turno','Turno','Hora_de_Entrada','Hora_de_Salida') actions = ( 'export_as_csv','imprimir_pdf', ) def export_as_csv(self, request, queryset): """ Export CSV action """ # En meta almacenamos el nombre del archivo meta = self.model._meta # Guardamos una lista con los nombres de los campos field_names = [field.name for field in meta.fields] # Creamos una HttpResponse para enviar el archivo CSV response = HttpResponse(content_type='text/csv') # Indicamos el nombre del archivo (meta) response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta) # Creamos un objeto csv que va a escribir en nuestro HttpResponse writer = csv.writer(response) # El metodo writerow escribe secuencialmente los elementos de la lista que recibe # por parametro en las columas del csv y realiza un salto de linea writer.writerow(field_names) # En queryset tenemos almacenados los objetos que seleccionamos, recorremos la lista # para escribir sus elementos en el csv. for obj in queryset: row = writer.writerow([getattr(obj, field) for field in field_names]) # Devolvemos el objeto HttpResponse return response # Le ponemos un nombre bonito. export_as_csv.short_description = 'Exportar a Excel' def imprimir_pdf(self, request, queryset): template_path = 'gestionadmin/pdfturnoempleado.html' today = timezone.now() turnoempleados = TurnoEmpleado.objects.all() context = { 'obj': turnoempleados, 'today': today, 'request': request } # Create a Django response object, and specify content_type as pdf response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = 'inline; filename="reporte de marcas.pdf"' # find the template and render it. template = get_template(template_path) html = template.render(context) # create a pdf pisaStatus = pisa.CreatePDF( html, dest=response, link_callback=link_callback) # if error then show some funy view if pisaStatus.err: return HttpResponse('We had some errors <pre>' + html + '</pre>') return response imprimir_pdf.short_description = 'Exportar a pdf' admin.site.register(TurnoEmpleado,TurnoEmpleadoAdmin) #class FacturaAdmin(admin.ModelAdmin): # list_per_page = 10 # list_display = ('Id_Factura','Id_Empleado','Id_Cliente','Id_MetodoPago','Id_FormaPago','Numero_Sar','Codigo_CAI','ISV18','ISV15','Total_Factura') # search_fields = ('Id_Factura','Total_Factura') #admin.site.register(Factura, FacturaAdmin)
2591de4f548ec359e4c3fca9f0f9399fabf88dfb
2e157761ea124b5cdbadbad61daded246deaafb2
/wagtail/contrib/wagtailsearchpromotions/migrations/0001_initial.py
62809da8def86144e08439d9c142bfec5ecd05d5
[ "BSD-3-Clause" ]
permissive
wgiddens/wagtail
043e6b110229cd29d64a22860085355d38f66e03
4371368854a99ef754c3332ab10675ba62e614a6
refs/heads/master
2021-05-23T03:20:13.455601
2015-08-31T19:45:06
2015-08-31T19:45:06
41,701,494
0
0
NOASSERTION
2020-11-16T13:48:19
2015-08-31T21:27:06
Python
UTF-8
Python
false
false
1,750
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0015_add_more_verbose_names'), ('wagtailsearch', '0003_remove_editors_pick'), ] operations = [ migrations.SeparateDatabaseAndState( state_operations=[ migrations.CreateModel( name='EditorsPick', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('sort_order', models.IntegerField(editable=False, null=True, blank=True)), ('description', models.TextField(verbose_name='Description', blank=True)), ('page', models.ForeignKey(verbose_name='Page', to='wagtailcore.Page')), ('query', models.ForeignKey(to='wagtailsearch.Query', related_name='editors_picks')), ], options={ 'db_table': 'wagtailsearch_editorspick', 'verbose_name': "Editor's Pick", 'ordering': ('sort_order',), }, ), ], database_operations=[] ), migrations.AlterModelTable( name='editorspick', table=None, ), migrations.RenameModel( old_name='EditorsPick', new_name='SearchPromotion' ), migrations.AlterModelOptions( name='searchpromotion', options={'ordering': ('sort_order',), 'verbose_name': 'Search promotion'}, ), ]
a6e7ad120c45a540a1287acfb626fbd4a3de82fb
ab9ab9e30b8c50273d2e01e3a497b8fd1a8e8841
/Democode/evolution-strategies-starter-master/es_distributed/main.py
483d22a5b846be797fd5c18a22e9c0406fed474f
[ "MIT" ]
permissive
Asurada2015/Multi-objective-evolution-strategy
32a88abe584beae24cc96a020ff79659176f1916
62f85e9fd23c9f6a3344855614a74e988bf3edd3
refs/heads/master
2023-02-03T04:19:28.394586
2020-04-14T12:25:06
2020-04-14T12:25:06
154,918,864
3
1
MIT
2023-02-02T03:23:23
2018-10-27T03:03:39
Jupyter Notebook
UTF-8
Python
false
false
2,169
py
import errno import json import logging import os import sys import click from .dist import RelayClient from .es import run_master, run_worker, SharedNoiseTable def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise @click.group() def cli(): logging.basicConfig( format='[%(asctime)s pid=%(process)d] %(message)s', level=logging.INFO, stream=sys.stderr) @cli.command() @click.option('--exp_str') @click.option('--exp_file') @click.option('--master_socket_path', required=True) @click.option('--log_dir') def master(exp_str, exp_file, master_socket_path, log_dir): # Start the master assert (exp_str is None) != (exp_file is None), 'Must provide exp_str xor exp_file to the master' if exp_str: exp = json.loads(exp_str) elif exp_file: with open(exp_file, 'r') as f: exp = json.loads(f.read()) else: assert False log_dir = os.path.expanduser(log_dir) if log_dir else '/tmp/es_master_{}'.format(os.getpid()) mkdir_p(log_dir) run_master({'unix_socket_path': master_socket_path}, log_dir, exp) @cli.command() @click.option('--master_host', required=True) @click.option('--master_port', default=6379, type=int) @click.option('--relay_socket_path', required=True) @click.option('--num_workers', type=int, default=0) def workers(master_host, master_port, relay_socket_path, num_workers): # Start the relay master_redis_cfg = {'host': master_host, 'port': master_port} relay_redis_cfg = {'unix_socket_path': relay_socket_path} if os.fork() == 0: RelayClient(master_redis_cfg, relay_redis_cfg).run() return # Start the workers noise = SharedNoiseTable() # Workers share the same noise num_workers = num_workers if num_workers else os.cpu_count() logging.info('Spawning {} workers'.format(num_workers)) for _ in range(num_workers): if os.fork() == 0: run_worker(relay_redis_cfg, noise=noise) return os.wait() if __name__ == '__main__': cli()
ee19405107fff01363a5004a6f245590587e3446
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4424/codes/1674_1101.py
ca6bd59c9146923fe8a25836f1b91360fddcbc3d
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
939
py
# Teste seu código aos poucos. # Não teste tudo no final, pois fica mais difícil de identificar erros. # Use as mensagens de erro para corrigir seu código. c = float(input("consumo em kWh: ")) t = input("residencias(r)/industrias(i)/comercios(c): ") print("Entradas:", c, "kWh e tipo", t) y = "Dados invalidos" if ((t.lower()!= "r") and (t.lower()!= "i") and (t.lower()!= "c")) or (c<0): print(y) elif (c <= 500) and (t.lower()=="r"): a = c*0.44 print('Valor total: R$ ', round(a, 2)) elif (c > 500) and (t.lower()== "r"): a = c*0.65 print('Valor total: R$ ', round(a, 2)) elif (c<=1000) and (t.lower()== "c"): a = c*0.55 print('Valor total: R$ ', round(a, 2)) elif (c>1000) and (t.lower()== "c"): a = c*0.60 print('Valor total: R$ ', round(a, 2)) elif (c<=5000) and (t.lower()== "i"): a = c*0.55 print('Valor total: R$ ', round(a, 2)) elif (c>5000) and (t.lower()== "i"): a = c*0.60 print('Valor total: R$ ', round(a, 2))
10fbdc05794edb4e95044f0031de8333a7f73a81
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_peeped.py
a186557aa21742047c7e1738b7c7afc26028a481
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
#calss header class _PEEPED(): def __init__(self,): self.name = "PEEPED" self.definitions = peep self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['peep']
a68501fe0fffd3341fe23f8561c763687c4ae485
efc9b70544c0bc108aaec0ed6a2aefdf208fd266
/393. UTF-8 Validation.py
cbd33de9cd3519f3032cff678b73861abd68bab3
[]
no_license
fxy1018/Leetcode
75fad14701703d6a6a36dd52c338ca56c5fa9eff
604efd2c53c369fb262f42f7f7f31997ea4d029b
refs/heads/master
2022-12-22T23:42:17.412776
2022-12-15T21:27:37
2022-12-15T21:27:37
78,082,899
1
0
null
null
null
null
UTF-8
Python
false
false
671
py
''' ''' class Solution(object): def validUtf8(self, data): """ :type data: List[int] :rtype: bool """ count = 0 for d in data: if count == 0: #first byte if bin(d>>5) == "0b110": count = 1 elif bin(d>>4) == "0b1110": count = 2 elif bin(d>>3) == "0b11110": count = 3 elif bin(d>>7) != "0b0": return(False) else: if bin(d>>6) != "0b10": return(False) count -=1 return(count == 0)
e95b9c3d1cd819f037b70f66076236dc02ccf425
73346545e69194dc1cfd887314afe600076ff263
/polling_stations/apps/data_collection/management/commands/import_greenwich.py
385a8fd726114f0e6f8492cc5e4ce64a3ce77aec
[]
permissive
chris48s/UK-Polling-Stations
c7a91f80c1ea423156ac75d88dfca31ca57473ff
4742b527dae94f0276d35c80460837be743b7d17
refs/heads/master
2021-08-27T18:26:07.155592
2017-11-29T15:57:23
2017-11-29T15:57:23
50,743,117
1
0
BSD-3-Clause
2017-11-29T16:03:45
2016-01-30T20:20:50
Python
UTF-8
Python
false
false
406
py
from data_collection.management.commands import BaseHalaroseCsvImporter class Command(BaseHalaroseCsvImporter): council_id = 'E09000011' addresses_name = 'parl.2017-06-08/Version 1/polling_station_export-2017-05-09 2.csv' stations_name = 'parl.2017-06-08/Version 1/polling_station_export-2017-05-09 2.csv' elections = ['parl.2017-06-08'] csv_encoding = 'windows-1252'
8afa870d5cbd78906a2398e74afc2fcfdc6b3ccb
df264c442075e04bb09d82f9be1d915c070d7e09
/SAMSUNG/SWEA/PROBLEM/2105_디저트카페_20210419.py
04f8efd218eb8d69a5537a62f880f1ea920a3d47
[]
no_license
Koozzi/Algorithms
ff7a73726f18e87cab9406e7b71cd5d1856df183
38048ac0774fcab3537bdd64f48cae7d9eb71e6f
refs/heads/master
2021-07-06T04:59:38.564772
2021-05-03T08:49:56
2021-05-03T08:49:56
231,848,463
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
def change_direction(X, Y, x, y, d1, d2): if (X == x + d1 and Y == y - d1) \ or (X == x + d1 + d2 and Y == y - d1 + d2) \ or (X == x + d2 and Y == y + d2): return True return False def solve(x, y, d1, d2): desert = set([board[x][y]]) move = [[1, -1], [1, 1], [-1, 1], [-1, -1]] X, Y, D = x, y, 0 while True: if change_direction(X, Y, x, y, d1, d2): D += 1 X += move[D][0] Y += move[D][1] if X == x and Y == y: break if board[X][Y] not in desert: desert.add(board[X][Y]) elif board[X][Y] in desert: return -2 return len(desert) T = int(input()) for t in range(1, T + 1): N = int(input()) board = [list(map(int, input().split())) for _ in range(N)] answer = -1 for x in range(N - 2): for y in range(N - 1): for d1 in range(1, N): for d2 in range(1, N): if 0 <= y - d1 and x + d1 + d2 <= N - 1 and y + d2 <= N - 1: answer = max(answer, solve(x, y, d1, d2)) print("#{} {}".format(t, answer)) """ 2 4 9 8 9 8 4 6 9 4 8 7 7 8 4 5 3 5 5 8 2 9 6 6 1 9 3 3 4 8 2 3 3 6 4 3 4 4 9 7 4 6 3 5 """
58eae06b2d666c5bc0e9960cc336e03c78e232e9
cad91ae76d2746a6c28ddda0f33a58f9d461378f
/TensorFlow2/Recommendation/DLRM_and_DCNv2/nn/evaluator.py
eeb9354ef38f8574935923ebfc03a08286e22b2e
[ "Apache-2.0" ]
permissive
NVIDIA/DeepLearningExamples
fe677521e7e2a16e3cb0b77e358f9aab72f8c11a
a5388a45f71a949639b35cc5b990bd130d2d8164
refs/heads/master
2023-08-31T20:57:08.798455
2023-08-23T10:09:12
2023-08-23T10:09:12
131,881,622
11,838
3,124
null
2023-08-28T16:57:33
2018-05-02T17:04:05
Jupyter Notebook
UTF-8
Python
false
false
3,299
py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author: Tomasz Grel ([email protected]) import tensorflow as tf import time from .nn_utils import create_inputs_dict class Evaluator: def __init__(self, model, timer, auc_thresholds, max_steps=None, cast_dtype=None, distributed=False): self.model = model self.timer = timer self.max_steps = max_steps self.cast_dtype = cast_dtype self.distributed = distributed if self.distributed: import horovod.tensorflow as hvd self.hvd = hvd else: self.hvd = None self.auc_metric = tf.keras.metrics.AUC(num_thresholds=auc_thresholds, curve='ROC', summation_method='interpolation', from_logits=True) self.bce_op = tf.keras.losses.BinaryCrossentropy(reduction=tf.keras.losses.Reduction.NONE, from_logits=True) def _reset(self): self.latencies, self.all_test_losses = [], [] self.auc_metric.reset_state() @tf.function def update_auc_metric(self, labels, y_pred): self.auc_metric.update_state(labels, y_pred) @tf.function def compute_bce_loss(self, labels, y_pred): return self.bce_op(labels, y_pred) def _step(self, pipe): begin = time.time() batch = pipe.get_next() (numerical_features, categorical_features), labels = batch if self.cast_dtype is not None: numerical_features = tf.cast(numerical_features, self.cast_dtype) inputs = create_inputs_dict(numerical_features, categorical_features) y_pred = self.model(inputs, sigmoid=False, training=False) end = time.time() self.latencies.append(end - begin) if self.distributed: y_pred = self.hvd.allgather(y_pred) labels = self.hvd.allgather(labels) self.timer.step_test() if not self.distributed or self.hvd.rank() == 0: self.update_auc_metric(labels, y_pred) test_loss = self.compute_bce_loss(labels, y_pred) self.all_test_losses.append(test_loss) def __call__(self, validation_pipeline): self._reset() auc, test_loss = 0, 0 pipe = iter(validation_pipeline.op()) num_steps = len(validation_pipeline) if self.max_steps is not None and self.max_steps >= 0: num_steps = min(num_steps, self.max_steps) for _ in range(num_steps): self._step(pipe) if not self.distributed or self.hvd.rank() == 0: auc = self.auc_metric.result().numpy().item() test_loss = tf.reduce_mean(self.all_test_losses).numpy().item() return auc, test_loss, self.latencies
082ae1287bba556369350aaf57ecbedc6fbd0a87
f7c72e8adde14499f119708642e7ca1e3e7424f3
/network_health_service/tests/create_query_tests.py
523fa50216d13ffb1ad98df0c5b0b9098a793f0e
[ "MIT" ]
permissive
pmaisel/tgnms
0b5d7ad90821a4e52d11490199ab1253bb31ac59
8ab714d29f2f817f08cad928cf54b7bf1faf0aa7
refs/heads/main
2023-08-01T10:14:28.527892
2021-09-24T21:28:16
2021-09-24T21:56:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,106
py
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import json import unittest from network_health_service.stats.fetch_stats import get_link_queries, get_node_queries from network_health_service.stats.metrics import Metrics class CreateQueryTests(unittest.TestCase): def setUp(self) -> None: self.maxDiff = None with open("tests/metrics.json") as f: metrics = json.load(f) Metrics.update_metrics( metrics, prometheus_hold_time=30, use_real_throughput=True ) def test_get_link_queries(self) -> None: expected_link_queries = { "analytics_alignment_status": ( "sum_over_time(min by (linkName) " '(analytics_alignment_status{network="network_A"} == bool 1) ' "[3599s:30s])" ), "topology_link_is_online": ( "sum_over_time(min by (linkName) " '(topology_link_is_online{network="network_A"}) [3599s:30s])' ), "tx_byte": ( "quantile_over_time(0.75, sum by (linkName) " '(tx_byte{network="network_A"}) [3599s:30s])' ), "analytics_foliage_factor": ( "quantile_over_time(0.75, " 'abs(analytics_foliage_factor{network="network_A"}) [3599s:30s])' ), "drs_cn_egress_routes_count": ( "quantile_over_time(0.75, max by (linkName) " '(drs_cn_egress_routes_count{network="network_A"}) [3599s:30s])' ), "tx_ok": ( "quantile_over_time(0.75, sum by (linkName) " '(tx_ok{network="network_A",intervalSec="1"}) [3599s:1s])' ), "link_avail": ( "max by (linkName) " '(resets(link_avail{network="network_A",intervalSec="1"} [3600s]))' ), "mcs": ( "quantile_over_time(0.25, min by (linkName) " '(mcs{network="network_A",intervalSec="1"}) [3599s:1s])' ), "mcs_diff": ( "quantile_over_time(0.75, " 'abs(mcs{network="network_A",intervalSec="1",linkDirection="A"} ' "- on (linkName) " 'mcs{network="network_A",intervalSec="1",linkDirection="Z"}) ' "[3599s:1s])" ), "tx_power_diff": ( "quantile_over_time(0.75, " 'abs(tx_power{network="network_A",intervalSec="1",linkDirection="A"} ' "- on (linkName) " 'tx_power{network="network_A",intervalSec="1",linkDirection="Z"}) ' "[3599s:1s])" ), } link_queries = get_link_queries("network_A", 3600) self.assertDictEqual(link_queries, expected_link_queries) expected_node_queries = { "analytics_cn_power_status": ( "sum_over_time(" '(analytics_cn_power_status{network="network_A"} == bool 3) ' "[3599s:30s])" ), "topology_node_is_online": ( 'sum_over_time(topology_node_is_online{network="network_A"} [3600s])' ), "drs_default_routes_changed": ( "sum_over_time(drs_default_routes_changed" '{network="network_A"} [3600s])' ), "udp_pinger_loss_ratio": ( "sum_over_time(" '(udp_pinger_loss_ratio{network="network_A",intervalSec="30"} ' "< bool 0.9) [3599s:30s])" ), "udp_pinger_rtt_avg": ( "quantile_over_time(0.75, " 'udp_pinger_rtt_avg{network="network_A",intervalSec="30"} [3600s])' ), "min_route_mcs": ( "quantile_over_time(0.25, " 'drs_min_route_mcs{network="network_A"} [3599s:60s])' ), } node_queries = get_node_queries("network_A", 3600) self.assertDictEqual(node_queries, expected_node_queries)
ab7269496f8882045c1c28e24afc8d9c5912824f
75bee875a2d26ed71513f46a2acbb564dd9a1c44
/app/modules/users/schemas.py
c58686ed7b25645868c0382549201f648b8ca6d9
[ "MIT" ]
permissive
frol/flask-restplus-server-example
d096aa1f4e3b6024ecb16af3d0769ccc20e7cff8
53a3a156cc9df414537860ed677bd0cc98dd2271
refs/heads/master
2023-08-28T14:27:34.047855
2023-06-21T14:30:54
2023-06-21T14:30:54
46,421,329
1,487
412
MIT
2023-06-21T14:30:55
2015-11-18T13:43:34
Python
UTF-8
Python
false
false
1,179
py
# encoding: utf-8 # pylint: disable=too-few-public-methods """ User schemas ------------ """ from flask_marshmallow import base_fields from flask_restplus_patched import Schema, ModelSchema from .models import User class BaseUserSchema(ModelSchema): """ Base user schema exposes only the most general fields. """ class Meta: # pylint: disable=missing-docstring model = User fields = ( User.id.key, User.username.key, User.first_name.key, User.middle_name.key, User.last_name.key, ) dump_only = ( User.id.key, ) class DetailedUserSchema(BaseUserSchema): """ Detailed user schema exposes all useful fields. """ class Meta(BaseUserSchema.Meta): fields = BaseUserSchema.Meta.fields + ( User.email.key, User.created.key, User.updated.key, User.is_active.fget.__name__, User.is_regular_user.fget.__name__, User.is_admin.fget.__name__, ) class UserSignupFormSchema(Schema): recaptcha_server_key = base_fields.String(required=True)
163380fce342e9d5ef8fe2951cc513046cff926b
146db0a1ba53d15ab1a5c3dce5349907a49217c3
/omega_miya/plugins/nbnhhsh/utils.py
651e9331bf5ab0fa191f726697c602576fcbbf5c
[ "Python-2.0", "MIT" ]
permissive
hailong-z/nonebot2_miya
84d233122b2d785bfc230c4bfb29326844700deb
7d52ef52a0a13c5ac6519199e9146a6e3c80bdce
refs/heads/main
2023-03-26T14:59:31.107103
2021-03-09T17:01:08
2021-03-09T17:01:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,018
py
import aiohttp from omega_miya.utils.Omega_Base import Result API_URL = 'https://lab.magiconch.com/api/nbnhhsh/guess/' async def get_guess(guess: str) -> Result: timeout_count = 0 error_info = '' while timeout_count < 3: try: timeout = aiohttp.ClientTimeout(total=10) async with aiohttp.ClientSession(timeout=timeout) as session: data = {'text': guess} async with session.post(url=API_URL, data=data, timeout=timeout) as resp: _json = await resp.json() result = Result(error=False, info='Success', result=_json) return result except Exception as e: error_info += f'{repr(e)} Occurred in get_guess trying {timeout_count + 1} using paras: {data}\n' finally: timeout_count += 1 else: error_info += f'Failed too many times in get_guess using paras: {data}' result = Result(error=True, info=error_info, result=[]) return result