blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
1bfb298507a115191ecbd58c3ed71f58ace4a479
1cbca82db8f5ab0eac5391e98c7d28ebab447be1
/workspace_tools/build.py
d57b54c819bd3986fd0617d0ec78bea458ac67bd
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
genba/mbed
59d8588f5ce59a0ebeb37e611aaa29903870195b
52e23e58c0174a595af367b0ef5cc79ef3933698
refs/heads/master
2020-12-07T05:22:24.730780
2013-10-16T13:35:35
2013-10-16T13:35:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,169
py
#! /usr/bin/env python """ mbed SDK Copyright (c) 2011-2013 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. LIBRARIES BUILD """ import sys from time import time from os.path import join, abspath, dirname # Be sure that the tools directory is in the search path ROOT = abspath(join(dirname(__file__), "..")) sys.path.append(ROOT) from workspace_tools.toolchains import TOOLCHAINS from workspace_tools.targets import TARGET_NAMES, TARGET_MAP from workspace_tools.options import get_default_options_parser from workspace_tools.build_api import build_mbed_libs, build_lib if __name__ == '__main__': start = time() # Parse Options parser = get_default_options_parser() # Extra libraries parser.add_option("-r", "--rtos", action="store_true", dest="rtos", default=False, help="Compile the rtos") parser.add_option("-e", "--eth", action="store_true", dest="eth", default=False, help="Compile the ethernet library") parser.add_option("-V", "--vodafone", action="store_true", dest="vodafone", default=False, help="Compile the Vodafone library") parser.add_option("-U", "--usb_host", action="store_true", dest="usb_host", default=False, help="Compile the USB Host library") parser.add_option("-u", "--usb", action="store_true", dest="usb", default=False, help="Compile the USB Device library") parser.add_option("-d", "--dsp", action="store_true", dest="dsp", default=False, help="Compile the DSP library") parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Verbose diagnostic output") (options, args) = parser.parse_args() # Get target list if options.mcu: targets = [options.mcu] else: targets = TARGET_NAMES # Get toolchains list if options.tool: toolchains = [options.tool] else: toolchains = TOOLCHAINS # Get libraries list libraries = [] # Additional Libraries if options.rtos: libraries.extend(["rtx", "rtos"]) if options.eth: libraries.append("eth") if options.vodafone: libraries.append("vodafone") if options.usb: libraries.append("usb") if options.usb_host: libraries.append("usb_host") if options.dsp: libraries.extend(["cmsis_dsp", "dsp"]) # Build failures = [] successes = [] for toolchain in toolchains: for target in targets: id = "%s::%s" % (toolchain, target) try: mcu = TARGET_MAP[target] build_mbed_libs(mcu, toolchain, options=options.options, verbose=options.verbose, clean=options.clean) for lib_id in libraries: build_lib(lib_id, mcu, toolchain, options=options.options, verbose=options.verbose, clean=options.clean) successes.append(id) except Exception, e: if options.verbose: import sys, traceback traceback.print_exc(file=sys.stdout) sys.exit(1) failures.append(id) print e # Write summary of the builds print "\n\nCompleted in: (%.2f)s" % (time() - start) if successes: print "\n\nBuild successes:" print "\n".join([" * %s" % s for s in successes]) if failures: print "\n\nBuild failures:" print "\n".join([" * %s" % f for f in failures])
5b118a1a0d810eb0ff631f8ad9b5fa40f659788f
6a819308924a005aa66475515bd14586b97296ae
/venv/lib/python3.6/site-packages/pip/utils/outdated.py
fae374b0aa9c5dee18ab16bf1e673e35aaf0053e
[]
no_license
AlexandrTyurikov/my_first_Django_project
a2c655dc295d3904c7688b8f36439ae8229d23d1
1a8e4d033c0ff6b1339d78c329f8beca058b019a
refs/heads/master
2020-05-04T13:20:20.100479
2019-05-04T23:41:39
2019-05-04T23:41:39
179,156,468
0
0
null
null
null
null
UTF-8
Python
false
false
5,445
py
from __future__ import absolute_import import datetime import json import logging import os.path import sys from pip._vendor import lockfile from pip._vendor.packaging import version as packaging_version from pip.compat import total_seconds, WINDOWS from pip.models import PyPI from pip.locations import USER_CACHE_DIR, running_under_virtualenv from pip.utils import ensure_dir, get_installed_version from pip.utils.filesystem import check_path_owner SELFCHECK_DATE_FMT = "%Y-%m-%dT%H:%M:%SZ" logger = logging.getLogger(__name__) class VirtualenvSelfCheckState(object): def __init__(self): self.statefile_path = os.path.join(sys.prefix, "pip-selfcheck.json") # Load the existing state try: with open(self.statefile_path) as statefile: self.state = json.load(statefile) except (IOError, ValueError): self.state = {} def save(self, pypi_version, current_time): # Attempt to write out our version check file with open(self.statefile_path, "w") as statefile: json.dump( { "last_check": current_time.strftime(SELFCHECK_DATE_FMT), "pypi_version": pypi_version, }, statefile, sort_keys=True, separators=(",", ":") ) class GlobalSelfCheckState(object): def __init__(self): self.statefile_path = os.path.join(USER_CACHE_DIR, "selfcheck.json") # Load the existing state try: with open(self.statefile_path) as statefile: self.state = json.load(statefile)[sys.prefix] except (IOError, ValueError, KeyError): self.state = {} def save(self, pypi_version, current_time): # Check to make sure that we own the book if not check_path_owner(os.path.dirname(self.statefile_path)): return # Now that we've ensured the book is owned by this user, we'll go # ahead and make sure that all our directories are created. ensure_dir(os.path.dirname(self.statefile_path)) # Attempt to write out our version check file with lockfile.LockFile(self.statefile_path): if os.path.exists(self.statefile_path): with open(self.statefile_path) as statefile: state = json.load(statefile) else: state = {} state[sys.prefix] = { "last_check": current_time.strftime(SELFCHECK_DATE_FMT), "pypi_version": pypi_version, } with open(self.statefile_path, "w") as statefile: json.dump(state, statefile, sort_keys=True, separators=(",", ":")) def load_selfcheck_statefile(): if running_under_virtualenv(): return VirtualenvSelfCheckState() else: return GlobalSelfCheckState() def pip_version_check(session): """Check for an update for pip. Limit the frequency of checks to once per week. State is stored either in the active virtualenv or in the user's USER_CACHE_DIR keyed off the prefix of the pip script path. """ installed_version = get_installed_version("pip") if installed_version is None: return pip_version = packaging_version.parse(installed_version) pypi_version = None try: state = load_selfcheck_statefile() current_time = datetime.datetime.utcnow() # Determine if we need to refresh the state if "last_check" in state.state and "pypi_version" in state.state: last_check = datetime.datetime.strptime( state.state["last_check"], SELFCHECK_DATE_FMT ) if total_seconds(current_time - last_check) < 7 * 24 * 60 * 60: pypi_version = state.state["pypi_version"] # Refresh the version if we need to or just see if we need to warn if pypi_version is None: resp = session.get( PyPI.pip_json_url, headers={"Accept": "application/json"}, ) resp.raise_for_status() pypi_version = [ v for v in sorted( list(resp.json()["releases"]), key=packaging_version.parse, ) if not packaging_version.parse(v).is_prerelease ][-1] # save that we've performed a check state.save(pypi_version, current_time) remote_version = packaging_version.parse(pypi_version) # Determine if our pypi_version is older if (pip_version < remote_version and pip_version.base_version != remote_version.base_version): # Advise "python -m pip" on Windows to avoid issues # with overwriting pip.exe. if WINDOWS: pip_cmd = "python -m pip" else: pip_cmd = "pip" logger.warning( "You are using pip version %s, however version %s is " "available.\nYou should consider upgrading via the " "'%s install --upgrade pip' command.", pip_version, pypi_version, pip_cmd ) except Exception: logger.debug( "There was an error checking the latest version of pip", exc_info=True, )
da7a1d1d1f7d32b2acca586cb8cebd6c8ed4616f
50bdbaf1b714725dff0dc204d3c8d61923a6d011
/tests/test_all_classes.py
74bf98c3aee566f5af1d4bf12622ba4692613af8
[ "MIT" ]
permissive
xflr6/graphviz
130deb85aa211114e1dfe75b1a88b6925a12f9a9
176093002aa354395e88e149748781140841993e
refs/heads/master
2023-08-27T04:28:33.197675
2023-07-22T10:06:51
2023-07-22T10:06:51
15,847,241
1,517
261
MIT
2023-07-16T11:28:02
2014-01-12T17:49:29
Python
UTF-8
Python
false
false
16,252
py
import locale import pathlib import re import subprocess import pytest import graphviz import _common ALL_CLASSES = [graphviz.Graph, graphviz.Digraph, graphviz.Source] @pytest.fixture(params=ALL_CLASSES) def cls(request): return request.param @pytest.fixture def dot(cls): if cls.__name__ == 'Source': return cls('digraph { hello -> world }\n') return cls() @pytest.fixture def invalid_dot(cls): if cls.__name__ == 'Source': return cls('graph { spam -- \\ }') else: invalid_dot = cls() with pytest.warns(graphviz.DotSyntaxWarning, match=r'syntax error'): invalid_dot.edge('spam', '\\') return invalid_dot def test_copy(cls, dot): assert type(dot) is cls assert dot.copy() is not dot assert dot.copy() is not dot.copy() assert type(dot.copy()) is type(dot) assert dot.copy().__dict__ == dot.__dict__ == dot.copy().__dict__ def test_str(dot): assert str(dot) == dot.source @pytest.mark.parametrize( 'parameter, expected_exception, match', [('engine', ValueError, r'unknown engine'), ('format', ValueError, r'unknown format'), ('renderer', ValueError, r'unknown renderer'), ('formatter', ValueError, r'unknown formatter'), ('encoding', LookupError, r'encoding')]) def test_invalid_parameter_raises_valuerror(dot, parameter, expected_exception, match): with pytest.raises(expected_exception, match=match): setattr(dot, parameter, 'invalid_parameter') def test_encoding_none(dot): dot_copy = dot.copy() dot_copy.encoding = None assert dot_copy.encoding == locale.getpreferredencoding() @pytest.mark.exe @pytest.mark.parametrize( 'kwargs', [{'engine': 'spam'}]) def test_render_raises_before_save(tmp_path, cls, kwargs, filename='dot.gv'): args = ['graph { spam }'] if cls.__name__ == 'Source' else [] dot = cls(*args, filename=filename, directory=tmp_path) expected_source = tmp_path / filename assert not expected_source.exists() with pytest.raises(ValueError, match=r''): dot.render(**kwargs) assert not expected_source.exists() pdf = dot.render(engine='dot') assert pdf == f'{expected_source}.pdf' assert expected_source.exists() assert expected_source.stat().st_size @pytest.mark.parametrize( 'kwargs', [{'engine': 'spam'}, {'format': 'spam'}, {'renderer': 'spam'}, {'formatter': 'spam'}]) def test_render_raises_before_save_mocked(tmp_path, mock_render, cls, kwargs, filename='dot.gv'): args = [''] if cls.__name__ == 'Source' else [] dot = cls(*args, filename=filename, directory=tmp_path) expected_source = tmp_path / filename assert not expected_source.exists() first_arg = next(iter(kwargs)) with pytest.raises(ValueError, match=f'unknown {first_arg}'): dot.render(**kwargs) assert not expected_source.exists() def test_render_mocked(mocker, mock_render, dot): mock_save = mocker.patch.object(dot, 'save', autospec=True) mock_view = mocker.patch.object(dot, '_view', autospec=True) mock_remove = mocker.patch('os.remove', autospec=True) assert dot.render(cleanup=True, view=True) is mock_render.return_value mock_save.assert_called_once_with(None, None, skip_existing=None) mock_render.assert_called_once_with(dot.engine, dot.format, mock_save.return_value, renderer=None, formatter=None, neato_no_op=None, outfile=None, raise_if_result_exists=False, overwrite_filepath=False, quiet=False) mock_remove.assert_called_once_with(mock_save.return_value) mock_view.assert_called_once_with(mock_render.return_value, format=dot.format, quiet=False) def test_render_outfile_mocked(mocker, mock_render, dot): mock_save = mocker.patch.object(dot, 'save', autospec=True) mock_view = mocker.patch.object(dot, '_view', autospec=True) mock_remove = mocker.patch('os.remove', autospec=True) outfile = 'spam.pdf' assert dot.render(outfile=outfile, raise_if_result_exists=True, overwrite_source=True, cleanup=True, view=True) is mock_render.return_value expected_filename = pathlib.Path('spam.gv') mock_save.assert_called_once_with(expected_filename, None, skip_existing=None) mock_render.assert_called_once_with(dot.engine, dot.format, mock_save.return_value, renderer=None, formatter=None, neato_no_op=None, outfile=pathlib.Path(outfile), raise_if_result_exists=True, overwrite_filepath=True, quiet=False) mock_remove.assert_called_once_with(mock_save.return_value) mock_view.assert_called_once_with(mock_render.return_value, format=dot.format, quiet=False) def test_format_renderer_formatter_mocked(mocker, mock_render, quiet, cls, filename='format.gv', format='jpg', renderer='cairo', formatter='core'): dot = cls(*[''] if cls.__name__ == 'Source' else [], filename=filename, format=format, renderer=renderer, formatter=formatter) assert dot.format == format assert dot.renderer == renderer assert dot.formatter == formatter mock_save = mocker.patch.object(dot, 'save', autospec=True) assert dot.render(quiet=quiet) is mock_render.return_value mock_save.assert_called_once_with(None, None, skip_existing=None) mock_render.assert_called_once_with('dot', format, mock_save.return_value, renderer=renderer, formatter=formatter, neato_no_op=None, outfile=None, raise_if_result_exists=False, overwrite_filepath=False, quiet=quiet) @pytest.mark.parametrize( 'neato_no_op', [None, False, True, 0, 1, 2]) def test_neato_no_op_mocked(mocker, mock_render, quiet, cls, neato_no_op, engine='neato', filename='neato_no_op.gv', format='svg'): dot = cls(*[''] if cls.__name__ == 'Source' else [], engine=engine, filename=filename, format=format) mock_save = mocker.patch.object(dot, 'save', autospec=True) assert dot.render(neato_no_op=neato_no_op, quiet=quiet) is mock_render.return_value mock_save.assert_called_once_with(None, None, skip_existing=None) mock_render.assert_called_once_with(engine, format, mock_save.return_value, renderer=None, formatter=None, neato_no_op=neato_no_op, outfile=None, raise_if_result_exists=False, overwrite_filepath=False, quiet=quiet) def test_save_mocked(mocker, dot, filename='nonfilename', directory='nondirectory'): mock_makedirs = mocker.patch('os.makedirs', autospec=True) mock_open = mocker.patch('builtins.open', mocker.mock_open()) with pytest.deprecated_call(): assert dot.save(filename, directory) == dot.filepath assert dot.filename == filename assert dot.directory == directory mock_makedirs.assert_called_once_with(dot.directory, 0o777, exist_ok=True) mock_open.assert_called_once_with(dot.filepath, 'w', encoding=dot.encoding) expected_calls = ([mocker.call(dot.source)] if type(dot).__name__ == 'Source' else [mocker.call(mocker.ANY), mocker.call('}\n')]) assert mock_open.return_value.write.call_args_list == expected_calls @pytest.mark.exe def test_pipe(dot, encoding='utf-8'): svg = dot.pipe(format='svg', encoding=encoding) assert svg.startswith('<?xml ') @pytest.mark.parametrize( 'encoding', [None, 'ascii', 'utf-8']) def test_pipe_mocked(mocker, mock_pipe_lines, mock_pipe_lines_string, quiet, dot, encoding): input_encoding = 'utf-8' dot.encoding = input_encoding result = dot.pipe(encoding=encoding, quiet=quiet) expected_args = ['dot', 'pdf', mocker.ANY] expected_kwargs = {'quiet': quiet, 'renderer': None, 'formatter': None, 'neato_no_op': None} if encoding == input_encoding: assert result is mock_pipe_lines_string.return_value mock_pipe_lines_string.assert_called_once_with(*expected_args, encoding=encoding, **expected_kwargs) return if encoding is None: assert result is mock_pipe_lines.return_value else: assert result is mock_pipe_lines.return_value.decode.return_value mock_pipe_lines.return_value.decode.assert_called_once_with(encoding) mock_pipe_lines.assert_called_once_with(*expected_args, input_encoding=input_encoding, **expected_kwargs) def test_pipe_lines_mocked(mocker, mock_pipe_lines, dot, format_='svg'): assert dot.format != format_ assert dot.pipe(format=format_) is mock_pipe_lines.return_value mock_pipe_lines.assert_called_once_with(dot.engine, format_, mocker.ANY, renderer=None, formatter=None, neato_no_op=None, input_encoding='utf-8', quiet=False) _, _, data = mock_pipe_lines.call_args.args expected_lines = dot.source.splitlines(keepends=True) assert list(data) == expected_lines @pytest.mark.exe def test_pipe_lines_called_process_error(invalid_dot, encoding='ascii', input_encoding='utf-8'): _test_pipe_lines_called_process_error(invalid_dot, format='svg', encoding=encoding, input_encoding=input_encoding, expected_syntax_error='syntax error') def _test_pipe_lines_called_process_error(invalid_dot, *, format, encoding, input_encoding, expected_syntax_error): assert encoding != input_encoding invalid_dot.encoding = input_encoding with pytest.raises(graphviz.CalledProcessError, match=expected_syntax_error) as info: invalid_dot.pipe(format=format, encoding=encoding) assert isinstance(info.value, subprocess.CalledProcessError) assert isinstance(info.value, graphviz.CalledProcessError) assert isinstance(info.value.stderr, str) assert expected_syntax_error in info.value.stderr def test_pipe_lines_called_process_error_mocked(invalid_dot, mocker, mock_pipe_lines, encoding='ascii', input_encoding='utf-8'): format = 'svg' expected_syntax_error = 'syntax error' expected_syntax_error = f'fake {expected_syntax_error}' fake_error = [1, _common.INVALID_CMD, b'', expected_syntax_error.encode(input_encoding)] fake_error = graphviz.CalledProcessError(*fake_error) mock_pipe_lines.side_effect = fake_error _test_pipe_lines_called_process_error(invalid_dot, format=format, encoding=encoding, input_encoding=input_encoding, expected_syntax_error=expected_syntax_error) mock_pipe_lines.assert_called_once_with(_common.EXPECTED_DEFAULT_ENGINE, format, mocker.ANY, input_encoding=input_encoding, quiet=False, renderer=None, formatter=None, neato_no_op=None) def test_repr_mimebundle_image_svg_xml_mocked(mocker, dot): mock_pipe = mocker.patch.object(dot, 'pipe', autospec=True) assert dot._repr_mimebundle_({'image/svg+xml'}) == {'image/svg+xml': mock_pipe.return_value} mock_pipe.assert_called_once_with(format='svg', encoding=dot.encoding) def test_repr_mimebundle_image_png_mocked(mocker, dot): mock_pipe = mocker.patch.object(dot, 'pipe', autospec=True) assert dot._repr_mimebundle_({'image/png'}) == {'image/png': mock_pipe.return_value} mock_pipe.assert_called_once_with(format='png') def test_repr_mimebundle_image_jpeg_mocked(mocker, dot): mock_pipe = mocker.patch.object(dot, 'pipe', autospec=True) assert dot._repr_mimebundle_({'image/jpeg'}) == {'image/jpeg': mock_pipe.return_value} mock_pipe.assert_called_once_with(format='jpeg') @pytest.mark.exe def test_unflatten(cls, dot): result = dot.unflatten() assert isinstance(result, graphviz.Source) normalized = re.sub(r'\s+', ' ', result.source.strip()) if cls.__name__ == 'Source': assert normalized == 'digraph { hello -> world; }' else: assert normalized.startswith('digraph {' if dot.directed else 'graph {') def test_unflatten_mocked(sentinel, mock_unflatten, dot): kwargs = {'stagger': sentinel.stagger, 'fanout': sentinel.fanout, 'chain': sentinel.chain} result = dot.unflatten(**kwargs) assert result is not None assert isinstance(result, graphviz.Source) assert type(result) is graphviz.Source assert result.source is mock_unflatten.return_value assert result.filename == dot.filename assert result.directory == dot.directory assert result.engine == dot.engine assert result.format == dot.format assert result.renderer == dot.renderer assert result.formatter == dot.formatter assert result.encoding == dot.encoding assert result._loaded_from_path is None mock_unflatten.assert_called_once_with(dot.source, encoding=dot.encoding, **kwargs) def test_view_mocked(mocker, dot): mock_render = mocker.patch.object(dot, 'render', autospec=True) kwargs = {'filename': 'filename', 'directory': 'directory', 'cleanup': True, 'quiet': True, 'quiet_view': True} assert dot.view(**kwargs) is mock_render.return_value mock_render.assert_called_once_with(view=True, **kwargs) def test__view_unknown_platform(unknown_platform, dot): with pytest.raises(RuntimeError, match=r'support'): dot._view('name', format='png', quiet=False) def test__view_mocked(mocker, sentinel, mock_platform, dot): _view_platform = mocker.patch.object(dot, f'_view_{mock_platform}', autospec=True) kwargs = {'quiet': False} assert dot._view(sentinel.name, format='png', **kwargs) is None _view_platform.assert_called_once_with(sentinel.name, **kwargs)
5d1dab4d0840ab21108dceab9c5e541f8aacef51
eb38517d24bb32cd8a33206d4588c3e80f51132d
/pre_procanny_proy2.py
d9c459946676f85c4f0c72c265bf462d2fc0b269
[]
no_license
Fernando23296/l_proy
2c6e209892112ceafa00c3584883880c856b6983
b7fdf99b9bd833ca1c957d106b2429cbd378abd3
refs/heads/master
2020-04-01T18:01:41.333302
2018-12-04T23:45:53
2018-12-04T23:45:53
153,466,681
2
0
null
null
null
null
UTF-8
Python
false
false
2,645
py
''' FILLING AN IMAGE OF: - FILLING AN IMAGE - GRAY - EROSION - THRESHOLDING (146,196) - GAUSSIAN BLUR - CANNY - PREWITT - SKELETONIZE ''' import scipy.ndimage.morphology as morp import numpy as np import cv2 import imutils import matplotlib.pyplot as plt def skeletonize(img): struct = np.array([[[[0, 0, 0], [0, 1, 0], [1, 1, 1]], [[1, 1, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 1, 0], [0, 1, 0]], [[0, 1, 1], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 1], [0, 1, 1], [0, 0, 1]], [[1, 0, 0], [1, 0, 0], [1, 0, 0]]], [[[0, 0, 0], [0, 1, 1], [0, 1, 0]], [[1, 1, 0], [1, 0, 0], [0, 0, 0]]], [[[1, 1, 1], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [1, 1, 1]]], [[[0, 1, 0], [0, 1, 1], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [1, 1, 0]]], [[[1, 0, 0], [1, 1, 0], [1, 0, 0]], [[0, 0, 1], [0, 0, 1], [0, 0, 1]]], [[[0, 1, 0], [1, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 1, 1]]]]) img = img.copy() last = () while np.any(img != last): last = img for s in struct: img = np.logical_and(img, np.logical_not( morp.binary_hit_or_miss(img, *s))) return img img = cv2.imread('ex4.jpg') dimensions = img.shape # height, width, number of channels in image height = img.shape[0] width = img.shape[1] qua = int(width/10) qua2=int(qua*3) qua7 = int(qua*7) img[0:height, 0:qua2] = [0] img[0:height, qua7:width] = [0] kernel = np.ones((5, 5), np.uint8) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) erosion = cv2.erode(gray, kernel, iterations=2) #prometedor pero no da para el ex5.jpg #thresh = cv2.threshold(gray, 180, 46, cv2.THRESH_BINARY)[1] #prometedor para ex5.jpg y ex1.jpg #thresh = cv2.threshold(gray, 150, 200, cv2.THRESH_BINARY)[1] thresh = cv2.threshold(gray, 180, 46, cv2.THRESH_BINARY)[1] img_gaussian = cv2.GaussianBlur(thresh, (3, 3), 0) img = cv2.Canny(img_gaussian, 50, 200) kernelx = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]]) kernely = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) img_prewittx = cv2.filter2D(img, -1, kernelx) img_prewitty = cv2.filter2D(img, -1, kernely) img = img_prewittx + img_prewitty ret, img = cv2.threshold(img, 172, 255, 0) skel = skeletonize(img) cv2.imwrite('.png', skel.astype(np.uint8)*255) #cv2.imshow("skel", skel.astype(np.uint8)*255) #cv2.waitKey(0)
7976c989ae1331d7101007ef1dcc2894f9890f43
7bb94ccf47c69cedb19ef3aa12b817b8dd8f099d
/ibms_project/sfm/apps.py
9d56f0959997626e16345a92ca50c1b01d2ed5e6
[ "Apache-2.0" ]
permissive
mohdbakhrayba/ibms
deadf9449af25898a6bd23ab0d0dfc56107be20c
029e1f3bf108586289c65bb1d547f86851f9494f
refs/heads/master
2020-04-28T20:07:36.991683
2019-03-28T04:13:55
2019-03-28T04:13:55
175,534,264
0
0
Apache-2.0
2019-03-14T02:32:33
2019-03-14T02:32:33
null
UTF-8
Python
false
false
105
py
from django.apps import AppConfig class SFMConfig(AppConfig): name = 'sfm' verbose_name = 'SFM'
e88bc1ada639aa5f6c82bbea6feb7484fde89fda
3388cf3dfde334e6eddc845879b48e9804d8d374
/src/rocks-pylib/rocks/commands/set/host/power/plugin_physical_host.py
5f530e9363ffdb90e1e2697b5c2e8d1504b23c79
[]
no_license
scottsakai/core
16c6d83a4ee33a534ab0e0a1462680a1183c7881
21bced45edd9b70258fa59929f09b102f7874060
refs/heads/master
2021-08-14T07:12:42.726105
2017-11-14T23:57:36
2017-11-14T23:57:36
109,899,541
0
0
null
null
null
null
UTF-8
Python
false
false
3,669
py
# $Id: plugin_physical_host.py,v 1.6 2012/11/27 00:48:29 phil Exp $ # # @Copyright@ # # Rocks(r) # www.rocksclusters.org # version 6.2 (SideWinder) # # Copyright (c) 2000 - 2014 The Regents of the University of California. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice unmodified and in its entirety, this list of conditions and the # following disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. All advertising and press materials, printed or electronic, mentioning # features or use of this software must display the following acknowledgement: # # "This product includes software developed by the Rocks(r) # Cluster Group at the San Diego Supercomputer Center at the # University of California, San Diego and its contributors." # # 4. Except as permitted for the purposes of acknowledgment in paragraph 3, # neither the name or logo of this software nor the names of its # authors may be used to endorse or promote products derived from this # software without specific prior written permission. The name of the # software includes the following terms, and any derivatives thereof: # "Rocks", "Rocks Clusters", and "Avalanche Installer". For licensing of # the associated name, interested parties should contact Technology # Transfer & Intellectual Property Services, University of California, # San Diego, 9500 Gilman Drive, Mail Code 0910, La Jolla, CA 92093-0910, # Ph: (858) 534-5815, FAX: (858) 534-7345, E-MAIL:[email protected] # # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN # IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # @Copyright@ # # $Log: plugin_physical_host.py,v $ # Revision 1.6 2012/11/27 00:48:29 phil # Copyright Storm for Emerald Boa # # Revision 1.5 2012/05/06 05:48:35 phil # Copyright Storm for Mamba # # Revision 1.4 2011/07/23 02:30:38 phil # Viper Copyright # # Revision 1.3 2010/09/07 23:53:01 bruno # star power for gb # # Revision 1.2 2010/07/14 19:39:39 bruno # better # # Revision 1.1 2010/06/22 21:42:36 bruno # power control and console access for VMs # # import rocks.commands class Plugin(rocks.commands.Plugin): def provides(self): return 'physical-host' def run(self, args): host = args[0] state = args[1] rsakey = args[2] # # determine if this is a physical host # physnode = 1 rows = self.db.execute("""show tables like 'vm_nodes' """) if rows == 1: rows = self.db.execute("""select vn.id from vm_nodes vn, nodes n where vn.node = n.id and n.name = "%s" """ % (host)) if rows == 1: physnode = 0 if physnode: # # write IPMI commands here # pass
b96249085246a6f8048ee663380edb20dc84e461
452b8eed791cb6dfda9505f2b918f5eaa0331319
/utils.py
5c2b2aa9296ec954f6692d6af623611b82f4b0bb
[]
no_license
AntLouiz/hello_world_algoritmo_genetico
83829b9317af04eb00437f8334a3e1ed7e7a218a
f97589976a01fa2235cec59888611476133b06ad
refs/heads/master
2020-04-02T16:08:57.162778
2018-11-01T11:55:48
2018-11-01T11:55:48
154,600,417
0
0
null
2018-11-01T01:55:46
2018-10-25T02:49:15
Python
UTF-8
Python
false
false
1,746
py
import sys from random import randint from settings import ( ALPHABET, MASTER_SOLUTION, INITIAL_POPULATION, MUTATION_PERCENTUAL, ELITISM_PERCENTUAL ) from individual import Individual from operator import attrgetter def generate_individual(max_length): gene = '' for i in range(max_length): gene += ALPHABET[randint(0, len(ALPHABET) - 1)] return Individual(gene) def tournament_selection(population): selected_candidates = [] total_candidates = int((INITIAL_POPULATION * ELITISM_PERCENTUAL) / 100) for i in range(total_candidates): selected_candidates.append(max(population, key=attrgetter('fitness'))) population = population[total_candidates:] for x in population: arena = [population[randint(0, len(population) - 1)] for i in range(2)] best = max(arena, key=attrgetter('fitness')) print(best) if(best.fitness == len(MASTER_SOLUTION)): print("ENCONTREI A MELHOR SOLUCAO: {}".format(best.gene)) sys.exit() selected_candidates.append(best) return zip(selected_candidates, selected_candidates[int(len(selected_candidates) / 2):]) def crossover(first_individual, second_individual): binary_mask = [randint(0, 1) for i in range(len(MASTER_SOLUTION))] son = '' for i in range(len(binary_mask)): if binary_mask[i]: son += first_individual.gene[i] else: son += second_individual.gene[i] return Individual(son) def mutate_population(population): total_mutations = int((INITIAL_POPULATION * MUTATION_PERCENTUAL) / 100) for i in range(total_mutations): population[randint(0, len(population) - 1)].mutate() return population
49dccb091a494ca83b829404e70ab616ba505e1e
4fca17a3dbc3e74ba7e46bd7869eb6d138e4c422
/_0186_Reverse_Words_in_a_String_II.py
49b93f015ec8c38a2f2c5e1a22d1a9a0ad88e3d1
[]
no_license
mingweihe/leetcode
a2cfee0e004627b817a3c0321bb9c74128f8c1a7
edff905f63ab95cdd40447b27a9c449c9cefec37
refs/heads/master
2021-06-19T07:46:46.897952
2021-05-02T05:13:17
2021-05-02T05:13:17
205,740,338
3
0
null
null
null
null
UTF-8
Python
false
false
982
py
class Solution(object): def reverseWords(self, s): """ :type s: List[str] :rtype: None Do not return anything, modify s in-place instead. """ # Approach 2 def reverse(left, right): while left < right: s[left], s[right] = s[right], s[left] left += 1 right -= 1 reverse(0, len(s)-1) r = 0 while r < len(s): l = r while r < len(s) and s[r] != ' ': r+=1 reverse(l, r-1) r += 1 # Approach 1 # def reverse(left, right): # while left < right: # s[left], s[right] = s[right], s[left] # left += 1 # right -= 1 # reverse(0, len(s)-1) # start = 0 # for i in xrange(len(s)): # if s[i] == ' ': # reverse(start, i-1) # start = i + 1 # reverse(start, len(s)-1)
99589cbca2c51918536b06325b561d1c22a1c1e3
898c5364cab1d8bf6366de22753509bd021b45f3
/0x01-python-if_else_loops_functions/9-print_last_digit.py
4c5c2ceda0b9270a97360e23db8e6dd80b604205
[]
no_license
jozsa/holbertonschool-higher_level_programming
98cc071321934f221ad592a066349e0be293c865
7920933ecf983c1856930d4d3b707e230b589231
refs/heads/master
2020-04-09T10:02:42.163683
2019-05-17T02:08:41
2019-05-17T02:08:41
160,255,877
0
1
null
null
null
null
UTF-8
Python
false
false
147
py
#!/usr/bin/python3 def print_last_digit(number): lastdigit = abs(number) % 10 print('{:d}'.format(lastdigit), end="") return lastdigit
48361c1f31049cb6f9ce19e96e8b7b5dc555067d
e5654e71ad4f043bb28105c3b6f3cd833e1c52dc
/openai/venv/lib64/python3.10/site-packages/langchain/evaluation/loading.py
613e261303bbfeeccb63eaa8ec5bd26bfb7b6afb
[]
no_license
henrymendez/garage
0b795f020a68fe2d349b556fb8567f6b96488ed5
b7aaa920a52613e3f1f04fa5cd7568ad37302d11
refs/heads/master
2023-07-19T20:16:02.792007
2023-07-07T16:58:15
2023-07-07T16:58:15
67,760,348
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
from typing import Dict, List def load_dataset(uri: str) -> List[Dict]: from datasets import load_dataset dataset = load_dataset(f"LangChainDatasets/{uri}") return [d for d in dataset["train"]]
230aa57ef7719c1e419ae82bc32e2a40745cc699
3fba33f91e1f50077dc2cce663b7de0f70a17a51
/wlhub/dictionaries/admin.py
0947f9f15e022cd47245059e1131a9e8bd47397b
[]
no_license
azinit/wlhub
59be2e9f555fa6655965d13580fd05963dc414b6
616761ef39f4cdb82d032f737bf50c66a9e935d1
refs/heads/master
2022-12-22T12:26:33.907642
2020-09-13T21:45:33
2020-09-13T21:45:33
295,242,617
1
0
null
null
null
null
UTF-8
Python
false
false
593
py
from django.contrib import admin from core.mixins import ListLinksMixin from dictionaries.models import * # Register your models here. @admin.register(Tag) class TagAdmin(ListLinksMixin, admin.ModelAdmin): list_display = ('name', 'user') list_filter = ("user",) @admin.register(Area) class AreaAdmin(ListLinksMixin, admin.ModelAdmin): list_display = ('name', 'description', 'user') list_filter = ("user",) @admin.register(Subject) class SubjectAdmin(ListLinksMixin, admin.ModelAdmin): list_display = ('name', 'area', 'description') list_filter = ("area__user",)
c5649af45f50bc8a3a140b862336cbedfbaf2972
c1ca20766c0f2c36fdecf6a58ecf319191e6ced9
/flask/bin/pip2
01a3d78f5db8a5ef08e289686dca61191dd1756d
[]
no_license
s0rata/microblog
efd9490c44827e4bba33143431987f0f1062eb16
35909879f3971f4d1862c0c463644f221f65f15d
refs/heads/master
2021-01-12T13:28:57.814638
2016-10-07T09:46:47
2016-10-07T09:46:47
69,955,691
0
0
null
null
null
null
UTF-8
Python
false
false
237
#!/home/s0rata/Desktop/microblog/flask/bin/python2 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "=" ]
=
ede5ce348c523a93a566268ee747898144d0fef6
4be2c72579486ad04a00db0349028de96d2dce89
/scripts/fxpt/fx_refsystem/transform_handle.py
87a840f75acf62a388796d33fb8ad59c417214c4
[]
no_license
italic-r/maya-prefs
6a617d40beee8937186b4699c5cead44e01c2d40
aa21e5e2938dc2698ce5f555ee74a594e08aed2b
refs/heads/master
2021-09-09T16:31:00.411349
2018-03-18T01:40:10
2018-03-18T01:40:10
86,961,959
16
8
null
null
null
null
UTF-8
Python
false
false
2,015
py
from maya import cmds as m from fxpt.fx_utils.utils_maya import getShape, getParent, parentAPI # noinspection PyAttributeOutsideInit class TransformHandle(object): def __init__(self, transform=None, shape=None): self.initHandle(transform, shape) def __str__(self): return 'transform={}, shape={}'.format(self.transform, self.shape) def initHandle(self, transform=None, shape=None): if (transform is not None) and (m.objExists(transform)): self.transform = transform self.shape = getShape(transform) elif (shape is not None) and (m.objExists(shape)): self.transform = getParent(shape) self.shape = shape else: self.transform = None self.shape = None def getChildren(self, allDescendants=False, typ=None): if typ: return sorted( m.listRelatives( self.transform, children=True, allDescendents=allDescendants, fullPath=True, typ=typ ) or []) else: return sorted( m.listRelatives( self.transform, children=True, allDescendents=allDescendants, fullPath=True ) or []) def getParents(self, typ=None): if typ: return sorted( m.listRelatives( self.transform, parent=True, fullPath=True, typ=typ ) or []) else: return sorted( m.listRelatives( self.transform, parent=True, fullPath=True ) or []) def parent(self, newParent, absolute=True): pass def exists(self): return (self.transform is not None) and (m.objExists(self.transform))
079e2939bfc267b2aea7bd0c3a7c988a4549c23d
7708a641f7688ba593e9d503d7aa5507d543fd79
/dvaapp/models.py
481a0b00f0ffe8f39ee52a5fa34dcfce8b9b9b89
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
gewenpulan/DeepVideoAnalytics
8d9f13a7281af9313c60c493c9f26a4cd4833acb
38a19dedce47261837d8dfc8f6c3f43e4149ec6e
refs/heads/master
2021-06-22T07:49:31.805741
2017-08-16T02:32:00
2017-08-16T02:32:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,260
py
from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User from django.contrib.postgres.fields import ArrayField, JSONField class VDNServer(models.Model): """ A VDN server """ url = models.URLField() name = models.CharField(max_length=200) last_response_datasets = models.TextField(default='[]') last_response_detectors = models.TextField(default='[]') last_token = models.CharField(max_length=300, default="") class VDNDataset(models.Model): """ A VDN dataset """ server = models.ForeignKey(VDNServer) response = models.TextField(default="") date_imported = models.DateTimeField('date created', auto_now_add=True) name = models.CharField(max_length=100,default="") created = models.DateTimeField('date created', auto_now_add=True) description = models.TextField(default="") download_url = models.TextField(default="") url = models.TextField(default="") aws_requester_pays = models.BooleanField(default=False) aws_region = models.TextField(default="") aws_bucket = models.TextField(default="") aws_key = models.TextField(default="") root = models.BooleanField(default=True) parent_local = models.ForeignKey('self',null=True) organization_url = models.TextField() class VDNDetector(models.Model): """ A VDN detector """ server = models.ForeignKey(VDNServer) response = models.TextField(default="") date_imported = models.DateTimeField('date created', auto_now_add=True) name = models.CharField(max_length=100,default="") created = models.DateTimeField('date created', auto_now_add=True) description = models.TextField(default="") download_url = models.TextField(default="") url = models.TextField(default="") aws_requester_pays = models.BooleanField(default=False) aws_region = models.TextField(default="") aws_bucket = models.TextField(default="") aws_key = models.TextField(default="") organization_url = models.TextField() class CustomIndexer(models.Model): """ A custom indexer that can be used with any TF (eventually pytorch) network """ name = models.CharField(max_length=100) algorithm = models.CharField(max_length=100,default="") model_filename = models.CharField(max_length=200,default="") # vdn_detector = models.ForeignKey(VDNDetector,null=True) input_layer_name = models.CharField(max_length=300,default="") embedding_layer_name = models.CharField(max_length=300,default="") embedding_layer_size = models.CharField(max_length=300,default="") indexer_queue = models.CharField(max_length=300,default="") retriever_queue = models.CharField(max_length=300,default="") class DVAPQL(models.Model): """ A query object with image_data, can have multiple children subspecies """ SCHEDULE = 'S' PROCESS = 'V' QUERY = 'Q' TYPE_CHOICES = ((SCHEDULE, 'Schedule'), (PROCESS, 'Process'), (QUERY, 'Query')) process_type = models.CharField(max_length=1, choices=TYPE_CHOICES, default=QUERY, ) created = models.DateTimeField('date created', auto_now_add=True) user = models.ForeignKey(User, null=True, related_name="submitter") image_data = models.BinaryField(null=True) script = JSONField(blank=True, null=True) results_metadata = models.TextField(default="") results_available = models.BooleanField(default=False) federated = models.BooleanField(default=False) class IndexerQuery(models.Model): parent_query = models.ForeignKey(DVAPQL) created = models.DateTimeField('date created', auto_now_add=True) count = models.IntegerField(default=20) algorithm = models.CharField(max_length=500,default="") indexer = models.ForeignKey(CustomIndexer,null=True) excluded_index_entries_pk = ArrayField(models.IntegerField(), default=[]) vector = models.BinaryField(null=True) results = models.BooleanField(default=False) metadata = models.TextField(default="") source_filter_json = JSONField(blank=True,null=True) approximate = models.BooleanField(default=False) user = models.ForeignKey(User, null=True) class Video(models.Model): name = models.CharField(max_length=500,default="") length_in_seconds = models.IntegerField(default=0) height = models.IntegerField(default=0) width = models.IntegerField(default=0) metadata = models.TextField(default="") frames = models.IntegerField(default=0) created = models.DateTimeField('date created', auto_now_add=True) description = models.TextField(default="") uploaded = models.BooleanField(default=False) dataset = models.BooleanField(default=False) uploader = models.ForeignKey(User,null=True) segments = models.IntegerField(default=0) url = models.TextField(default="") youtube_video = models.BooleanField(default=False) query = models.BooleanField(default=False) parent_process = models.ForeignKey(DVAPQL,null=True) vdn_dataset = models.ForeignKey(VDNDataset, null=True) def __unicode__(self): return u'{}'.format(self.name) class Clusters(models.Model): excluded_index_entries_pk = ArrayField(models.IntegerField(), default=[]) included_index_entries_pk = ArrayField(models.IntegerField(), default=[]) train_fraction = models.FloatField(default=0.8) # by default use 80% of data for training algorithm = models.CharField(max_length=50,default='LOPQ') # LOPQ indexer_algorithm = models.CharField(max_length=50) cluster_count = models.IntegerField(default=0) pca_file_name = models.CharField(max_length=200,default="") model_file_name = models.CharField(max_length=200, default="") components = models.IntegerField(default=64) # computer 64 principal components started = models.DateTimeField('date created', auto_now_add=True) completed = models.BooleanField(default=False) m = models.IntegerField(default=16) v = models.IntegerField(default=16) sub = models.IntegerField(default=256) class TEvent(models.Model): started = models.BooleanField(default=False) completed = models.BooleanField(default=False) errored = models.BooleanField(default=False) error_message = models.TextField(default="") video = models.ForeignKey(Video, null=True) operation = models.CharField(max_length=100, default="") created = models.DateTimeField('date created', auto_now_add=True) start_ts = models.DateTimeField('date started', null=True) seconds = models.FloatField(default=-1) arguments = JSONField(blank=True,null=True) task_id = models.TextField(null=True) parent = models.ForeignKey('self',null=True) parent_process = models.ForeignKey(DVAPQL,null=True) class Frame(models.Model): video = models.ForeignKey(Video) frame_index = models.IntegerField() name = models.CharField(max_length=200,null=True) subdir = models.TextField(default="") # Retains information if the source is a dataset for labeling h = models.IntegerField(default=0) w = models.IntegerField(default=0) t = models.FloatField(null=True) # time in seconds for keyframes keyframe = models.BooleanField(default=False) # is this a key frame for a video? segment_index = models.IntegerField(null=True) class Meta: unique_together = (("video", "frame_index"),) def __unicode__(self): return u'{}:{}'.format(self.video_id, self.frame_index) class Segment(models.Model): """ A video segment useful for parallel dense decoding+processing as well as streaming """ video = models.ForeignKey(Video) segment_index = models.IntegerField() start_time = models.FloatField(default=0.0) end_time = models.FloatField(default=0.0) metadata = models.TextField(default="{}") frame_count = models.IntegerField(default=0) start_index = models.IntegerField(default=0) start_frame = models.ForeignKey(Frame,null=True,related_name="segment_start") end_frame = models.ForeignKey(Frame, null=True,related_name="segment_end") class Meta: unique_together = (("video", "segment_index"),) def __unicode__(self): return u'{}:{}'.format(self.video_id, self.segment_index) class Region(models.Model): """ Any 2D region over an image. Detections & Transforms have an associated image data. """ ANNOTATION = 'A' DETECTION = 'D' SEGMENTATION = 'S' TRANSFORM = 'T' POLYGON = 'P' REGION_TYPES = ( (ANNOTATION, 'Annotation'), (DETECTION, 'Detection'), (POLYGON, 'Polygon'), (SEGMENTATION, 'Segmentation'), (TRANSFORM, 'Transform'), ) region_type = models.CharField(max_length=1,choices=REGION_TYPES) video = models.ForeignKey(Video) user = models.ForeignKey(User,null=True) frame = models.ForeignKey(Frame,null=True) event = models.ForeignKey(TEvent, null=True) # TEvent that created this region parent_frame_index = models.IntegerField(default=-1) parent_segment_index = models.IntegerField(default=-1,null=True) text = models.TextField(default="") metadata = JSONField(blank=True,null=True) full_frame = models.BooleanField(default=False) x = models.IntegerField(default=0) y = models.IntegerField(default=0) h = models.IntegerField(default=0) w = models.IntegerField(default=0) polygon_points_json = models.TextField(default="[]") created = models.DateTimeField('date created', auto_now_add=True) vdn_dataset = models.ForeignKey(VDNDataset,null=True) vdn_key = models.IntegerField(default=-1) object_name = models.CharField(max_length=100) confidence = models.FloatField(default=0.0) materialized = models.BooleanField(default=False) png = models.BooleanField(default=False) def clean(self): if self.parent_frame_index == -1 or self.parent_frame_index is None: self.parent_frame_index = self.frame.frame_index if self.parent_segment_index == -1 or self.parent_segment_index is None: self.parent_segment_index = self.frame.segment_index def save(self, *args, **kwargs): if self.parent_frame_index == -1 or self.parent_frame_index is None: self.parent_frame_index = self.frame.frame_index if self.parent_segment_index == -1 or self.parent_segment_index is None: self.parent_segment_index = self.frame.segment_index super(Region, self).save(*args, **kwargs) class QueryResults(models.Model): query = models.ForeignKey(DVAPQL) indexerquery = models.ForeignKey(IndexerQuery) video = models.ForeignKey(Video) frame = models.ForeignKey(Frame) detection = models.ForeignKey(Region,null=True) rank = models.IntegerField() algorithm = models.CharField(max_length=100) distance = models.FloatField(default=0.0) class FederatedQueryResults(models.Model): query = models.ForeignKey(DVAPQL) rank = models.IntegerField() user = models.ForeignKey(User) server_name = models.CharField(max_length=100) algorithm = models.CharField(max_length=100) distance = models.FloatField(default=0.0) results_metadata = models.TextField(default="") results_available = models.BooleanField(default=False) result_image_data = models.BinaryField(null=True) class ClusterCodes(models.Model): clusters = models.ForeignKey(Clusters) video = models.ForeignKey(Video) frame = models.ForeignKey(Frame) detection = models.ForeignKey(Region,null=True) fine = ArrayField(models.IntegerField(), default=[]) coarse = ArrayField(models.IntegerField(), default=[]) coarse_text = models.TextField(default="") # check if postgres built in text search fine_text = models.TextField(default="") # check if postgres built in text search can be used searcher_index = models.IntegerField() class Meta: unique_together = ('searcher_index', 'clusters') index_together = [["clusters", "searcher_index"],] # Very important manually verify in Postgres class IndexEntries(models.Model): video = models.ForeignKey(Video) features_file_name = models.CharField(max_length=100) entries_file_name = models.CharField(max_length=100) algorithm = models.CharField(max_length=100) indexer = models.ForeignKey(CustomIndexer, null=True) detection_name = models.CharField(max_length=100) count = models.IntegerField() approximate = models.BooleanField(default=False) contains_frames = models.BooleanField(default=False) contains_detections = models.BooleanField(default=False) created = models.DateTimeField('date created', auto_now_add=True) source = models.ForeignKey(TEvent, null=True) class Meta: unique_together = ('video', 'features_file_name',) def __unicode__(self): return "{} in {} index by {}".format(self.detection_name, self.algorithm, self.video.name) class CustomDetector(models.Model): name = models.CharField(max_length=100) algorithm = models.CharField(max_length=100,default="") model_filename = models.CharField(max_length=200,default="") vdn_detector = models.ForeignKey(VDNDetector,null=True) arguments = models.TextField(default="") phase_1_log = models.TextField(default="") phase_2_log = models.TextField(default="") class_distribution = models.TextField(default="") class_names = models.TextField(default="") frames_count = models.IntegerField(default=0) boxes_count = models.IntegerField(default=0) source = models.ForeignKey(TEvent, null=True) trained = models.BooleanField(default=False) created = models.DateTimeField('date created', auto_now_add=True) class Tube(models.Model): """ A tube is a collection of sequential frames / regions that track a certain object or describe a specific scene """ video = models.ForeignKey(Video,null=True) frame_level = models.BooleanField(default=False) start_frame_index = models.IntegerField() end_frame_index = models.IntegerField() start_frame = models.ForeignKey(Frame,null=True,related_name="start_frame") end_frame = models.ForeignKey(Frame,null=True,related_name="end_frame") start_region = models.ForeignKey(Region,null=True,related_name="start_region") end_region = models.ForeignKey(Region,null=True,related_name="end_region") text = models.TextField(default="") metadata = JSONField(blank=True,null=True) source = models.ForeignKey(TEvent,null=True) class Label(models.Model): name = models.CharField(max_length=200) set = models.CharField(max_length=200,default="") metadata = JSONField(blank=True,null=True) text = models.TextField(null=True,blank=True) created = models.DateTimeField('date created', auto_now_add=True) class Meta: unique_together = (("name", "set"),) def __unicode__(self): return u'{}:{}'.format(self.name, self.set) class FrameLabel(models.Model): video = models.ForeignKey(Video,null=True) frame_index = models.IntegerField(default=-1) segment_index = models.IntegerField(null=True) frame = models.ForeignKey(Frame) label = models.ForeignKey(Label) event = models.ForeignKey(TEvent,null=True) def clean(self): if self.frame_index == -1 or self.frame_index is None: self.frame_index = self.frame.frame_index if self.segment_index == -1 or self.segment_index is None: self.segment_index = self.frame.segment_index def save(self, *args, **kwargs): if self.frame_index == -1 or self.frame_index is None: self.frame_index = self.frame.frame_index if self.segment_index == -1 or self.segment_index is None: self.segment_index = self.frame.segment_index super(FrameLabel, self).save(*args, **kwargs) class RegionLabel(models.Model): video = models.ForeignKey(Video,null=True) frame = models.ForeignKey(Frame,null=True) frame_index = models.IntegerField(default=-1) segment_index = models.IntegerField(null=True) region = models.ForeignKey(Region) label = models.ForeignKey(Label) event = models.ForeignKey(TEvent,null=True) def clean(self): if self.frame_index == -1 or self.frame_index is None: self.frame_index = self.frame.frame_index if self.segment_index == -1 or self.segment_index is None: self.segment_index = self.frame.segment_index def save(self, *args, **kwargs): if self.frame_index == -1 or self.frame_index is None: self.frame_index = self.frame.frame_index if self.segment_index == -1 or self.segment_index is None: self.segment_index = self.frame.segment_index super(RegionLabel, self).save(*args, **kwargs) class SegmentLabel(models.Model): video = models.ForeignKey(Video,null=True) segment_index = models.IntegerField(default=-1) segment = models.ForeignKey(Segment) label = models.ForeignKey(Label) event = models.ForeignKey(TEvent, null=True) def clean(self): if self.segment_index == -1 or self.segment_index is None: self.segment_index = self.segment.segment_index def save(self, *args, **kwargs): if self.segment_index == -1 or self.segment_index is None: self.segment_index = self.segment.segment_index super(SegmentLabel, self).save(*args, **kwargs) class TubeLabel(models.Model): video = models.ForeignKey(Video,null=True) tube = models.ForeignKey(Tube) label = models.ForeignKey(Label) event = models.ForeignKey(TEvent, null=True) class VideoLabel(models.Model): video = models.ForeignKey(Video) label = models.ForeignKey(Label) event = models.ForeignKey(TEvent, null=True) class DeletedVideo(models.Model): name = models.CharField(max_length=500,default="") description = models.TextField(default="") uploader = models.ForeignKey(User,null=True,related_name="user_uploader") url = models.TextField(default="") deleter = models.ForeignKey(User,related_name="user_deleter",null=True) original_pk = models.IntegerField() def __unicode__(self): return u'Deleted {}'.format(self.name)
03bd72acbee9ebd416f127863815001d43529260
03cd08ce32a2c1b3b8f4563d01a5e55b974f2c64
/57.py
1166a9b99985e44d26ae86fb512bd0f51268d76e
[]
no_license
joemeens/Pro
46165be31673a6477fe7c9d2f90e12e75574daca
19ce75ede8c7694623c26a91cf7cc6c9a94b673b
refs/heads/master
2020-06-09T01:36:58.438553
2019-08-17T14:41:42
2019-08-17T14:41:42
193,344,489
0
3
null
null
null
null
UTF-8
Python
false
false
163
py
list1,char=map(str,input().split(" ")) count=0 for i in range(0,len(list1)): if(list1[i]==char): count=count+1 else: continue print(count)
68f1edfca6e6c27a77da50e9bed255dc4783861d
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/fyyJRDHcTe9REs4Ni_24.py
3166469c0022b926678616faf843ff7e33b85cf2
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,131
py
""" Create a function that takes three arguments (first dictionary, second dictionary, key) in order to: 1. Return the boolean `True` if both dictionaries have the same values for the same keys. 2. If the dictionaries don't match, return the string `"Not the same"`, or the string `"One's empty"` if only one of the dictionaries contains the given key. ### Examples dict_first = { "sky": "temple", "horde": "orcs", "people": 12, "story": "fine", "sun": "bright" } dict_second = { "people": 12, "sun": "star", "book": "bad" } check(dict_first, dict_second, "horde") ➞ "One's empty" check(dict_first, dict_second, "people") ➞ True check(dict_first, dict_second, "sun") ➞ "Not the same" ### Notes * Dictionaries are an unordered data type. * Double quotes may be helpful. * `KeyError` can occur when trying to access a dictionary key that doesn't exist. """ def check(d1, d2, k): if k in d1 and k in d2: if d1[k]==d2[k]: return True else: return "Not the same" elif (k in d1 and k not in d2) or (k not in d1 and k in d2): return "One's empty"
b498b8c9a09c4ad781755f8128413c37b8dd9431
124263fe47a7a990e46720ee9720dac23de53412
/tests/test_transforms.py
2feb96799180d30cfa718f5ad7b70e40b99c7bf6
[ "MIT" ]
permissive
mahaling/pytorch-3dunet
17cae1176a464ffa8a42f6eaee0d7f57b8402941
458985ebc766acdc7599f92f54f10becbc4d4b95
refs/heads/master
2023-08-03T12:26:07.103875
2020-06-24T22:30:57
2020-06-24T22:30:57
206,171,755
0
1
MIT
2020-04-19T04:31:38
2019-09-03T21:02:42
Jupyter Notebook
UTF-8
Python
false
false
8,017
py
import numpy as np from augment.transforms import RandomLabelToAffinities, LabelToAffinities, Transformer, Relabel class TestTransforms: config = {'dtype': 'long'} def test_random_label_to_boundary(self): size = 20 label = _diagonal_label_volume(size) transform = RandomLabelToAffinities(np.random.RandomState()) result = transform(label) assert result.shape == (1,) + label.shape def test_random_label_to_boundary_with_ignore(self): size = 20 label = _diagonal_label_volume(size, init=-1) transform = RandomLabelToAffinities(np.random.RandomState(), ignore_index=-1) result = transform(label) assert result.shape == (1,) + label.shape assert -1 in np.unique(result) def test_label_to_boundary(self): size = 20 label = _diagonal_label_volume(size) # this transform will produce 2 channels transform = LabelToAffinities(offsets=(2, 4), aggregate_affinities=True) result = transform(label) assert result.shape == (2,) + label.shape assert np.array_equal(np.unique(result), [0, 1]) def test_label_to_boundary_with_ignore(self): size = 20 label = _diagonal_label_volume(size, init=-1) transform = LabelToAffinities(offsets=(2, 4), ignore_index=-1, aggregate_affinities=True) result = transform(label) assert result.shape == (2,) + label.shape assert np.array_equal(np.unique(result), [-1, 0, 1]) def test_label_to_boundary_no_aggregate(self): size = 20 label = _diagonal_label_volume(size) # this transform will produce 6 channels transform = LabelToAffinities(offsets=(2, 4), aggregate_affinities=False) result = transform(label) assert result.shape == (6,) + label.shape assert np.array_equal(np.unique(result), [0, 1]) def test_relabel(self): label = np.array([[10, 10, 10], [0, 0, 0], [5, 5, 5]]) r = Relabel() result = r(label) assert np.array_equal(result, np.array([[2, 2, 2], [0, 0, 0], [1, 1, 1]])) def test_BaseTransformer(self): config = { 'raw': [{'name': 'Normalize'}, {'name': 'ToTensor', 'expand_dims': True}], 'label': [{'name': 'ToTensor', 'expand_dims': False, 'dtype': 'long'}], 'weight': [{'name': 'ToTensor', 'expand_dims': False}] } transformer = Transformer(config, 0, 1) raw_transforms = transformer.raw_transform().transforms assert raw_transforms[0].mean == 0 assert raw_transforms[0].std == 1 assert raw_transforms[1].expand_dims label_transforms = transformer.label_transform().transforms assert not label_transforms[0].expand_dims assert label_transforms[0].dtype == 'long' weight_transforms = transformer.weight_transform().transforms assert not weight_transforms[0].expand_dims def test_StandardTransformer(self): config = { 'raw': [ {'name': 'Normalize'}, {'name': 'RandomContrast', 'execution_probability': 0.5}, {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'ToTensor', 'expand_dims': True} ], 'label': [ {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'ToTensor', 'expand_dims': False, 'dtype': 'long'} ] } transformer = Transformer(config, 0, 1) raw_transforms = transformer.raw_transform().transforms assert raw_transforms[0].mean == 0 assert raw_transforms[0].std == 1 assert raw_transforms[1].execution_probability == 0.5 assert raw_transforms[4].expand_dims label_transforms = transformer.label_transform().transforms assert len(label_transforms) == 3 def test_AnisotropicRotationTransformer(self): config = { 'raw': [ {'name': 'Normalize'}, {'name': 'RandomContrast', 'execution_probability': 0.5}, {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'RandomRotate', 'angle_spectrum': 17, 'axes': [[2, 1]]}, {'name': 'ToTensor', 'expand_dims': True} ], 'label': [ {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'RandomRotate', 'angle_spectrum': 17, 'axes': [[2, 1]]}, {'name': 'ToTensor', 'expand_dims': False, 'dtype': 'long'} ] } transformer = Transformer(config, 0, 1) raw_transforms = transformer.raw_transform().transforms assert raw_transforms[0].mean == 0 assert raw_transforms[0].std == 1 assert raw_transforms[1].execution_probability == 0.5 assert raw_transforms[4].angle_spectrum == 17 assert raw_transforms[4].axes == [[2, 1]] label_transforms = transformer.label_transform().transforms assert len(label_transforms) == 4 def test_LabelToBoundaryTransformer(self): config = { 'raw': [ {'name': 'Normalize'}, {'name': 'RandomContrast', 'execution_probability': 0.5}, {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'RandomRotate', 'angle_spectrum': 17, 'axes': [[2, 1]], 'mode': 'reflect'}, {'name': 'ToTensor', 'expand_dims': True} ], 'label': [ {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'RandomRotate', 'angle_spectrum': 17, 'axes': [[2, 1]], 'mode': 'reflect'}, {'name': 'LabelToAffinities', 'offsets': [2, 4, 6, 8]}, {'name': 'ToTensor', 'expand_dims': False, 'dtype': 'long'} ] } transformer = Transformer(config, 0, 1) raw_transforms = transformer.raw_transform().transforms assert raw_transforms[0].mean == 0 assert raw_transforms[0].std == 1 assert raw_transforms[1].execution_probability == 0.5 assert raw_transforms[4].angle_spectrum == 17 assert raw_transforms[4].axes == [[2, 1]] assert raw_transforms[4].mode == 'reflect' label_transforms = transformer.label_transform().transforms assert label_transforms[2].angle_spectrum == 17 assert label_transforms[2].axes == [[2, 1]] assert label_transforms[2].mode == 'reflect' # 3 conv kernels per offset assert len(label_transforms[3].kernels) == 12 def test_RandomLabelToBoundaryTransformer(self): config = { 'raw': [ {'name': 'Normalize'}, {'name': 'RandomContrast', 'execution_probability': 0.5}, {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'RandomRotate', 'angle_spectrum': 17, 'axes': [[2, 1]], 'mode': 'reflect'}, {'name': 'ToTensor', 'expand_dims': True} ], 'label': [ {'name': 'RandomFlip'}, {'name': 'RandomRotate90'}, {'name': 'RandomRotate', 'angle_spectrum': 17, 'axes': [[2, 1]], 'mode': 'reflect'}, {'name': 'RandomLabelToAffinities', 'max_offset': 4}, {'name': 'ToTensor', 'expand_dims': False, 'dtype': 'long'} ] } transformer = Transformer(config, 0, 1) label_transforms = transformer.label_transform().transforms assert label_transforms[3].offsets == (1, 2, 3, 4) def _diagonal_label_volume(size, init=1): label = init * np.ones((size, size, size), dtype=np.int) for i in range(size): for j in range(size): for k in range(size): if i + j > 2 * k: label[i, j, k] = 3 return label
87e3268453ed0e8a2c04a49d0f998820a0e3cb29
54df8336b50e8f2d7dbe353f0bc51a2b3489095f
/Django/Django_Old/website5/website5/wsgi.py
71a8098849cbf50e1e57b301cfdf6990808ae5eb
[]
no_license
SurendraKumarAratikatla/MyLenovolapCodes1
42d5bb7a14bfdf8d773ee60719380ee28ff4947a
12c56200fcfd3e5229bfeec209fd03b5fc35b823
refs/heads/master
2023-06-17T15:44:18.312398
2021-07-19T10:28:11
2021-07-19T10:28:11
387,358,266
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for website5 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'website5.settings') application = get_wsgi_application()
147a3b48b75a173b5696e855ad8c6cbfda149d07
f8847b16bb44c54b00f40d8d749a5339490c0dd8
/coderbyte/simple_SAT.py
8278ecf41238056a0acda1cf9abfd79d45e4f399
[]
no_license
sanjitroy1992/PythonCodingTraining
60478829697e6837abf7cfeff4724b38c57328ac
0706769084d60a397366d41bb87add8d53ba8eb3
refs/heads/master
2021-01-02T02:15:10.609349
2020-07-09T18:06:41
2020-07-09T18:06:41
239,450,113
0
0
null
null
null
null
UTF-8
Python
false
false
1,799
py
# -*- coding: utf-8 -*- """ Have the function SimpleSAT(str) read str str -letters, parenthesis,logical operators and tilde's representing a Boolean formula. For example: str may be "(a&b)|c" which means (a AND b) OR c. Your program should output the string yes if there is some arrangement of replacing the letters with TRUE or FALSE in such a way that the formula equates to TRUE. If there is no possible way of assigning TRUE or FALSE to the letters, then your program should output the string no. n the example above, your program would return yes because a=TRUE, b=TRUE and c=FALSE would make the formula TRUE. Another example: if str is "((a&c)&~a)" which means ((a AND c) AND NOT a) then your program should output no because it is not possible to assign TRUE or FALSE values to the letters to produce a TRUE output. Input:"(a&b&c)|~a" Output:yes Input:"a&(b|c)&~b&~c" Output:no """ from copy import deepcopy def SimpleSAT(string): list_string = list(string) alpha_hash = frozenset(x for x in list_string if x.isalpha()) for item in range(len(list_string)): if list_string[item] == "&": list_string[item] = " and " if list_string[item] == "|": list_string[item] = " or " if list_string[item] == "~": list_string[item] = " not " pos = [list_string] for alpha in alpha_hash: pos1 = deepcopy(pos) pos2 = deepcopy(pos) for i in range(len(pos)): for j in range(len(pos[i])): if pos[i][j] == alpha: pos1[i][j] = "True" pos2[i][j] = "False" pos = pos1 + pos2 pos = tuple("".join(x) for x in pos) for cond in pos: if eval(cond) == True: return "yes" return "no"
ad914d6fcb5ac7e21fc1a70369a62bc31ce69837
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-media/azure/mgmt/media/models/track_property_condition_py3.py
a7ec9f92c376b6ac870a2c6bebc270ff05c04d02
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
1,670
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class TrackPropertyCondition(Model): """Class to specify one track property condition. All required parameters must be populated in order to send to Azure. :param property: Required. Track property type. Possible values include: 'Unknown', 'FourCC' :type property: str or ~azure.mgmt.media.models.TrackPropertyType :param operation: Required. Track property condition operation. Possible values include: 'Unknown', 'Equal' :type operation: str or ~azure.mgmt.media.models.TrackPropertyCompareOperation :param value: Track property value :type value: str """ _validation = { 'property': {'required': True}, 'operation': {'required': True}, } _attribute_map = { 'property': {'key': 'property', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'value': {'key': 'value', 'type': 'str'}, } def __init__(self, *, property, operation, value: str=None, **kwargs) -> None: super(TrackPropertyCondition, self).__init__(**kwargs) self.property = property self.operation = operation self.value = value
41f3d213d8de197a868a6befcdca1ec937d23fdb
37c38b97d0a4b8098ec3c35b7122afb1fbb9eac9
/base/给定深度求二叉树数量.py
cabac049b56bb4b6ceeb1e5de89412a342b2764c
[]
no_license
lionheartStark/sword_towards_offer
8c2f9015a427317375d53eee982d630ffd4fa9c0
cb3587242195bb3f2626231af2da13b90945a4d5
refs/heads/master
2022-12-02T20:50:18.789828
2020-08-23T02:00:48
2020-08-23T02:00:48
266,257,109
0
0
null
null
null
null
UTF-8
Python
false
false
857
py
from collections import Counter import math P = 10 ** 9 + 7 def C(m, n): p = P def power(x, y): # 求x的y次方 p = P res = 1 while y: if y % 2 != 0: res *= (x % p) y >>= 1 x *= (x % p) return res a = (math.factorial(n)) % p b = (power(math.factorial(m), (p - 2))) % p c = (power(math.factorial(n - m), (p - 2))) % p return (a * b * c % p) def get_kind_num(deep_list): num_count = Counter(deep_list) print(num_count) deep = 1 ans = 1 while True: this_layer_position = num_count[deep - 1] * 2 if deep not in num_count: break this_layer_node = num_count[deep] ans *= C(this_layer_node, this_layer_position) % P deep += 1 print(ans % P) get_kind_num([1, 0, 2, 2])
ba80376f1b882c269d2097ecb7dce7da36317c2c
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_tinnier.py
06b2a756d6b4099f9dfb2b0cf5636845c39e2b0c
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
from xai.brain.wordbase.nouns._tinny import _TINNY #calss header class _TINNIER(_TINNY, ): def __init__(self,): _TINNY.__init__(self) self.name = "TINNIER" self.specie = 'nouns' self.basic = "tinny" self.jsondata = {}
194fd36566ce74d289ab2ce8a0bb14294384e04e
03f0a82e829a5711a9165d8f7d3762ca0c1ceaea
/ahgl/apps/tournaments/migrations/0021_initialize_tournament_round_membership.py
6a1e96321957a7922d485f0855b86f2d3c017d41
[ "BSD-2-Clause" ]
permissive
day9tv/ahgl
4d273a39e06334cc15eb12031de0a806366396b9
5e06cfecb28c153c1b83ef89112fc217897131cb
refs/heads/master
2021-01-22T08:32:53.663312
2012-10-06T21:32:52
2012-10-06T21:32:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,962
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." for round_membership in orm.TeamRoundMembership.objects.all(): round_membership.tiebreaker = round_membership.team.game_wins.filter(match__published=True, match__tournament_round=round_membership.tournamentround).count() \ - round_membership.team.game_losses.filter(match__published=True, match__tournament_round=round_membership.tournamentround).count() round_membership.wins = round_membership.team.match_wins.filter(published=True, tournament_round=round_membership.tournamentround).count() round_membership.losses = round_membership.team.match_losses.filter(published=True, tournament_round=round_membership.tournamentround).count() round_membership.save() def backwards(self, orm): "Write your backwards methods here." models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'profiles.charity': { 'Meta': {'ordering': "('name',)", 'object_name': 'Charity'}, 'desc': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'logo': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'profiles.profile': { 'Meta': {'object_name': 'Profile'}, 'autosubscribe': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'avatar': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'bnet_profile': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'char_code': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'char_name': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'custom_thumb': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'default': "'en'", 'max_length': '10', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'photo': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'post_count': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'questions_answers': ('profiles.fields.HTMLField', [], {'attributes': '[]', 'blank': 'True', 'tags': "['ol', 'ul', 'li', 'strong', 'em', 'p']"}), 'race': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}), 'show_signatures': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'signature': ('django.db.models.fields.TextField', [], {'max_length': '1024', 'blank': 'True'}), 'signature_html': ('django.db.models.fields.TextField', [], {'max_length': '1054', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'time_zone': ('django.db.models.fields.FloatField', [], {'default': '3.0'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '70', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, 'profiles.team': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('name', 'tournament'), ('slug', 'tournament'))", 'object_name': 'Team'}, 'captain': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'captain_of'", 'null': 'True', 'to': "orm['profiles.Profile']"}), 'charity': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'teams'", 'null': 'True', 'to': "orm['profiles.Charity']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'losses': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'members': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'teams'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['profiles.Profile']"}), 'motto': ('django.db.models.fields.CharField', [], {'max_length': '70', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'photo': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'rank': ('django.db.models.fields.IntegerField', [], {}), 'seed': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'tiebreaker': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'tournament': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'teams'", 'to': "orm['tournaments.Tournament']"}), 'wins': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'tournaments.game': { 'Meta': {'ordering': "('order',)", 'unique_together': "(('order', 'match'),)", 'object_name': 'Game'}, 'away_player': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'away_games'", 'null': 'True', 'to': "orm['profiles.Profile']"}), 'away_race': ('django.db.models.fields.CharField', [], {'max_length': '1', 'blank': 'True'}), 'forfeit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'home_player': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'home_games'", 'null': 'True', 'to': "orm['profiles.Profile']"}), 'home_race': ('django.db.models.fields.CharField', [], {'max_length': '1', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_ace': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'loser': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'game_losses'", 'null': 'True', 'to': "orm['profiles.Profile']"}), 'loser_team': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'game_losses'", 'null': 'True', 'to': "orm['profiles.Team']"}), 'map': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tournaments.Map']"}), 'match': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'games'", 'to': "orm['tournaments.Match']"}), 'order': ('django.db.models.fields.PositiveSmallIntegerField', [], {}), 'replay': ('django.db.models.fields.files.FileField', [], {'max_length': '300', 'null': 'True', 'blank': 'True'}), 'vod': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'winner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'game_wins'", 'null': 'True', 'to': "orm['profiles.Profile']"}), 'winner_team': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'game_wins'", 'null': 'True', 'to': "orm['profiles.Team']"}) }, 'tournaments.map': { 'Meta': {'ordering': "('name',)", 'object_name': 'Map'}, 'name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'primary_key': 'True'}), 'photo': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}) }, 'tournaments.match': { 'Meta': {'object_name': 'Match'}, 'away_submitted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'away_team': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'away_matches'", 'to': "orm['profiles.Team']"}), 'creation_date': ('django.db.models.fields.DateField', [], {}), 'home_submitted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'home_team': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'home_matches'", 'to': "orm['profiles.Team']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'loser': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'match_losses'", 'null': 'True', 'to': "orm['profiles.Team']"}), 'publish_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'referee': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Profile']", 'null': 'True', 'blank': 'True'}), 'tournament': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'matches'", 'to': "orm['tournaments.Tournament']"}), 'tournament_round': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'matches'", 'to': "orm['tournaments.TournamentRound']"}), 'winner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'match_wins'", 'null': 'True', 'to': "orm['profiles.Team']"}) }, 'tournaments.teamroundmembership': { 'Meta': {'unique_together': "(('tournamentround', 'team'),)", 'object_name': 'TeamRoundMembership', 'db_table': "'tournaments_tournamentround_teams'"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'losses': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'team': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Team']"}), 'tiebreaker': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'tournamentround': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tournaments.TournamentRound']"}), 'wins': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'tournaments.tournament': { 'Meta': {'object_name': 'Tournament'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'featured_game': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['tournaments.Game']", 'null': 'True', 'blank': 'True'}), 'games_per_match': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '5'}), 'map_pool': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['tournaments.Map']", 'symmetrical': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'primary_key': 'True', 'db_index': 'True'}) }, 'tournaments.tournamentround': { 'Meta': {'ordering': "('stage', 'name')", 'object_name': 'TournamentRound'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'stage': ('django.db.models.fields.IntegerField', [], {}), 'structure': ('django.db.models.fields.CharField', [], {'default': "'G'", 'max_length': '1'}), 'teams': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'rounds'", 'symmetrical': 'False', 'through': "orm['tournaments.TeamRoundMembership']", 'to': "orm['profiles.Team']"}), 'tournament': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'rounds'", 'to': "orm['tournaments.Tournament']"}) } } complete_apps = ['tournaments']
1127eed5abea467501f705f921ff3f1cd05dc740
221cada2354556fbb969f25ddd3079542904ef5d
/AlgoExpert/caesar_cipher.py
7314c35c71a6238f3506492b33946b5d8e01b0a4
[]
no_license
syzdemonhunter/Coding_Exercises
4b09e1a7dad7d1e3d4d4ae27e6e006732ffdcb1d
ca71572677d2b2a2aed94bb60d6ec88cc486a7f3
refs/heads/master
2020-05-24T11:19:35.019543
2019-11-22T20:08:32
2019-11-22T20:08:32
187,245,394
1
0
null
null
null
null
UTF-8
Python
false
false
256
py
# T: O(n) # S: O(n) def caesarCipherEncryptor(string, key): result = '' alphabet = 'abcdefghijklmnopqrstuvwxyz' for c in string.lower(): idx = (alphabet.index(c) + key) % len(alphabet) result += alphabet[idx] return result
8e1c8bb1a77f985bf829a63e10e9fd3014230d98
a743e734ce6d9d4c83e867e4dec0734f7fd7ce4a
/langid.py
6b6113185b480f87c255fd8cef3b84f7772eacda
[]
no_license
vchahun/langid.py
2a33670efe4879a9e87572a5b03987971db0ef4c
b6114ca3dd137b1f7b3ad0df5c6678830c30924c
refs/heads/master
2021-01-17T22:41:37.317396
2012-05-22T02:21:49
2012-05-22T02:21:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,714,171
py
#!/usr/bin/env python """ langid.py - Language Identifier by Marco Lui April 2011 Based on research by Marco Lui and Tim Baldwin. Copyright 2011 Marco Lui <[email protected]>. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the copyright holder. """ # Defaults for inbuilt server HOST = None #leave as none for auto-detect PORT = 9008 FORCE_NATIVE = False FORCE_WSGIREF = False import itertools import array import base64 import bz2 import json import optparse import logging from math import log from cPickle import loads, dumps from wsgiref.simple_server import make_server from wsgiref.util import shift_path_info from urlparse import parse_qs from collections import defaultdict logger = logging.getLogger(__name__) model_loaded = False _full_model = None model=""" QlpoOTFBWSZTWUv7f+4AF6dfgCAQf///////////////Yg7fAbfbn1ge3eW8BZ44uI2Y1Hfed7aB5FBpdUxBDYWOu4z2x97B8lT7W6cUPulvn0vsiikqJIG20BpqkgA1klAB72xRVKcAGqA8VUeg0AqiUFABQooo2AAAAOqAoAAAAQA4AA5wAAAAMAVVUIAcqlKoNAAF61VSa9uA8kewZa2wBoABuu9qOl3uQGlEADWoJUAAZ9D6D7yh8lFKhAAUAdQABAGqGmUJRKgAaQC6yo2w6AkUoAAA07R3ve9vezbbqe3AKCAKttEAAGgQB0XcBsMSgIiCqAAHXZ3bYwsUgCLvL5MIesKms+d1lfXe223xxYDuMJj7c+jPZ92XCNdu47gbq+467DFbGu2F87yd28vYd56cO23Z6PdM6tx3F9d6+4feD7tX324dh3CE+XcxyOdYZvd4TCEe9z6cX17dX3eMdb23r3XceeDddby+vp4+rsbvLkyzu4rjCGyzuGOZwOwYMwkCQsuD268LeHd1ADDmc4IdqZ3HG7nGRgyHYx0w2m9HclmYZsZ5FKOtApQB3BttyO5uAndRiDbrpYAzrQ000mzQ9HQl1667M9g66GyimtKbY9NudHZ23ndyilJNPdiTtna1aY1mUkSgKds11dijLprooVq2bMklrIo3Y72e27sb2d2O26xFOcbAAAAAAAAAAAAAAAADoAAfQAAAAAZyei+64ANKCh0bVlPmC7gD6AADR6AGgAANlEzbDXFToEl6j73hPeMdT6vZeKfXAAB8xPcRCQGCtMGigAfTQNgMA0BbU6UAIjoAcgax2oAUve914A1EAO7BoQsEcABBeXKpzesbsAUABoAaQ8sBQAAGgaAAHaz0AQe9huZkz31h0oAPoEu2BwoCA+h6A4gAge9uHdVh0AAAAHpQAoyHXQM0o9e14Oh5GnedSc99YAAALzAH0xsHe+e8UD6U1X3YcqHR7r2uAAUC+9jn0KfIUA05AOrbQO7CIdAAZAANM9jT2GNvnAdUC665NfdmzvYvbecdGdt2Ns2xJNi2ZLO97iLpkU9mzMhIkSNsV0M7Mkdu6y7XLKyHbEnUzEvTe3icjszt3Hub1kiPbcmRcsSJOEbtZZZvZnNnrLWRJdWLLbdx3WHy8oz64cBDu1qAJ2YwQAAG6DqnAIqpsA1RKAKADAACAMCINDIgUAADFAppRgMBFawE0yFAAAIyYEAyYnQaEoooAAOAAAIA3Rgho0oEAAAAHADs+gPC566KFNSoFsDNJtPoOezvZSogeba0qQGgYIHTp69ANEIAAJiAAAAmBAAABDQIBJA0BABCBAJoAEaAAJgCYCYKemmTSkCRARFIQENGoDUxTA9EU/TEm1NGaZFPyajCT2JPUmCTSSIIATQENABNA0yaGiYANGqPKn5J6aJtKAiRASQiTaBKn+KGqe0o/JJ6mTyj1B6TxTTTT0mmR6nonqZtU0CJIiAAgAJoAIAAAANAAAmGqR8KHDo/wp4uWuTyHvdNxU4ntUmWAfRPSfqKUfP0J3SwuSACoSILq+qQ7gAXf1Q+z7Mm4y6squ7ZiZEPw8TvP0wMd9ChwV0FtxHKKhRQDJYhUIb6QoiY5J+PD31D0YP37O5hfRlUU8O66K2wK0Qf6Kz2PYja37nVx+1g+P1NJmQfUge1ATLEVTWZSjH6qT2ujZYd8OXJQel0U+bg227J38qh3LKoboc0TeYUZsvVuq93Hpoem6aCZyHHry5j6nwDAiDD2Hdj3R4c53SqEOtZn+BkEEQhmRDhhBrIHDhYV/Gfnptf1UQRBl8m012KdpV42jABtCFBpIoAfqYikmgfr+LWcCkDcPs138dffq4i0QxA85uf7zqPqoBiE4Tr1ICAuZACJ/gb/Z3BliA0kg33JBceHTXA9HscOTwQEdJj5e/ddpNsduOn/9LXeDOVxhVCOXM6iSSBGRhI3M57Wf9nA+nE9O3jjrz0r3Jmr9oaNaYQqQWIw7fPlDK+n2Ze0E5B0U3QWT0DBUsWgSKEiDIKJIHFsUF6uBOLcSTwQQcgf7mBXL5ZTbYyQnOxgIKIHm3dgHJQZmZYpIG67H5IAIAQKdkqPf5UaxAE/HEr7EsSkZEFIAJjMo6RETGajxr+vi9GkScgREQmR4ZO/WuE+l0MGI/RuaAPduSfYJYG9yBATMl//kFh4tECjtwV8WobeHHv/FwrbsEuy/VAQMDcY/Y1bza37ngAG1r1pW2q+6wbGlIcYEWywNQcyNBAyBfFZP/3MPc/vhP7pcdaET/vz2g1fiDAaBkBxLyCXufe/4Itk0CItUMXSzGuqGKtOtACJ4+fpPCTpOqvTicFNCB7HVV4q9MYfqoQpCyLIIwRFIosCKQBYoCwVCRGRRSQRkUWQRCQQkVJFkEZEFkRYRZFRkkVkCEQVUVFkiwFURJPTAkGH2+wKSX5qfYTqGtNiuQinCREdnw5F3xebDTp4Pprm08nj5k+MiEKDmOy6KCIKancwRcmC/31/0Qf/2Xl7gyvJpF8cFAv0QFTlcQoOTzPvWc6mhAOCMsyG70QXRIJ+miwf/n1/C88ccd+jnWKyMlqymaGg3oSE/QDAbUcoS9+Uy+zF4/BAgRERNv6R06RGJ1L4tEifQosQH6zQhrLpkJwG7h2fWW7X/Cb9jh3Nr2EVzfxf3PdCZBC0iKdbw/VuwS8B6xBdM+P2DmxgWxuwB7KT4QvIBC7J/FbW/nPrUivuQqdVNYjcxwh/g0AAEegXqw/c0hf709Y16phe5TsCoYoYTbJ/TIr+7iesH+3sEikguEBNFc+PgwQ6zBKTJFYpFIoQUBEA8DTKbg9Xnku6Ho+Lhx0epDfLD15fv3hTr8mwbMB8lN0mA/8evOzlsFLw/5dterWtpn3uCSwsoIZ61xGF0KWC/9pohY7oKKq41Giy49iokieiicqNVfRUKh/LaWxDhXmmnZADBDIio2KgZXCRUb30Er0T8sLjIuG1ClddAYfEi6DXznyzQ0HZblNp2Cs8K5gPMrjYunvkPeMzkJ2yBOfg8PDEZ5vjTX6q7tfWnYCXq9nNiBulDwu7pQdD7AFuQMD0HkTX4YcoefC3Km6CrohwasCBZT0oQrP16cxyqLAcL9X1uB0iaR+zW59u/dCYFwRXjJgfcNIXCoUr5qYVTjaVCLIoaeKkxqZyKIKMGVPe42x0mxCghalZTTZU7UQkRWRRh6Xn2sST/Tho2R+ZVOJeo25ft6Mg7ealfQCAY85zluAMWAGUnQ7DDaN2FX/L9qt8vko1G+ss08AUHOvT5r3/TNRxBRSgztGLBl/zvQkFjZmThbalnNGgdpCGq+YcZauZF691gMNNPCJxir9FmPWAeH2c7iLrtMsQQjsE8NvGP/yFNQy/eRp6w4g4OmFoEGXh9HW7VIQ8EXQfHihP8vvWJYWLdpdwlkTW/4Won6TroT+G5nMW9WrGWgD/+TnjjaKD9pT7cwx+MoQB15GAB4jQxqD9Y7clZy3qTAHrYw59GTZDMaS1suiguowV7Puwtq4c9nHQBQ4sxB8J1GFxRwj+aESiSB6GfO1KjbWYJld46Y3vLNMECiSjtQggRmQIZqBSJwLM71djYQbH/BcEoduX5O4JM21gWYXvd9YPCK8kIpm0hZdTNXhVXtmAAOeom0yKCBEAuURpcgQebmgHzlImW27eJ1zatGzPaUqwnywHcG5DMzIYFRqrKODowHSyeMN98P2yAjPn1/EKAzAr2AKGSeE93jtyEuQM4omJwEKMERtBE1u5+WVycMJX7qif0/+FTPmenP1Z07vXhPaXQ31qhMq+RAvZtQaDfko0G0tpSgVaoVf4p5wemSj3rKH9igLv/0+/i45a2FOpiIi/iADyvFdu0dflEvA3DmER/5VGtRKvRivqbnH6SC0ghEHOKAdDMQH3LmihzEozmzeECM/Wnjzpjf1k5/8/pbRmX1FE0KeNwvAGIEUNjQpJ7W5HulrxkNqIVssZetKLzm+nv4ioacuvJlgboUTZc328nJSIbsMh9O4ttOHk7LiC5opaIJIZ/je7gECjurVvu7Dp7jwhfXyqQA5zuQHFKfKq0MgRAT/mBl4qjH9qKTbUcIAl/qj0a3s2VjDdSpGP6piwyFmKXeTbVS1tt/4y05Jm1Zbc+lbh2p6HJbEQ1yNU9B6I0X93BELJqpDY4pQl48bKCIhqZERfDLI8u9X92Kcp0TUMP7j7Pr42TX26Pg5prM9+ZLdG24YbOnJef3QY9sx1c5cTtbbFjwkLcpbXcMNhQFyKtoSISVj5RUF+OAoAkgCjl+BHVXtO6tmf3fY8VvRIj3GLtYgnm76JR/+n/j15WM1/pXFJnrNprE8WWxu7T5975cuVDolwmB1W7/70ogchO5MTN53t3NnhiqtEu96inGkJE2x8MC8cBgr3J8+bduvkVDGc9UmyfLu0O2MPBNEB6Gw43Bhjyd0J1IGMDYATgfZSHFDieXP2aMYebooA4QxhCIbYmyOmJpZIHITFYg/jFy2PFiXSRLVV4/By0JuxAVKNAY03nUbqxhonFDRy1x7qOCBhEMpB7dUfvrpkeWDUbiEF4uudOX4eeTyoHa4Mh7z4dBZobBiPHuvhymNiojUTNE5dPJx83w421JRlif9Hm81C+b1tfLczQ8HDZsPHEObJTqgrzQ/O1C75zRDHiowzl0LIaeui8FMOWiTbLmz37GSDsw5+73cG6rqKN5KCPw5CgLRcCBqiae5S6BI74+XLlGydrq/f2a5PUgmWWNdV63q2LEJJHdA89N7d1XTpUsgBsUMOTEroZd8PVbF7KDdUoHLZyCy7hBQHBjdulHX4Pa791VyRR3T/E+Th7g16/hoI/HN035gz+7T6l9HmuHxbKhmo+T+aF7UDxdP/fswFRDT62/RvOfHIQbx9vqCAm6TTeJtt+bjLJNEBAFGWFAT/+yrkkLBgg/194gTDLvxcgabtoQYpSt40qaUvAhVBEu6KAPtjaNP+j5SrCfGQz6qnHraAAHPtMS05LD5joZnxuKjh+uP+/LD3p6GK1hyR+S1/SpQX3bApCaAwpIvHIF9R/8P9fC9Zu5ckBEVyJgb7bEFmMwTTZwBE6Ov+O55INrApu22m9AZrVtwpz1gK18iQmZiX4LouIIm1A4+p+XlQEQQx0SL9V7ejeFIAYRZE727TwpiYT4ECi5A/XL6T/UhfddKPdSB2+bgw5cDce7q+D/7x+55cuc6urNe96SeAtbbVMZjAqDIEkiQiSE9DvZO38vT3/XywxzpbJw1xuuvDOzNlCtG9Rr2/sqDphP5HIUlcAlCjzTWUjQcqfX9Dbh68h79n+0ZyAoAo4EdjHAiK8NIAcqRSVeJANxgRRbd7vftXdEwmrAvCrffD2fgSOMgIRCTfV9jAtD3439Msw3tym7sl+50KOelDEtDtNCJeNLikh/Ut1ecPHy1UbajMjKO6pD/4Pr/swOGuFuNva6kyOHl3b9N4p9FtTV0how48VSiMu+dh5tDQbbpnhaLs/HksZPJWmbp0RqAyKEgqbtIEWIEgBCLazpAUUjz41vIVkr2CiuEYoGWIGpn2QtnzjbPeuwU0Ci/Y8FH8fJb1HIm+O3h8+2qBqoxbFoBAg9uJ7HD0TXz8OnLiECBE4GFsaRg41NfEjdIOEENAqn6Qn42wVlt7qALT7/VqdJ+Zzj6WH1IEPlfbwX7jAa8ejr82vWI//uYK0Er88XIgYgSChqYECQD+otqwiRDZDCedZwHL/u9eyHewN3/6xbeGx50pbqEgCA5l7IXB9CtTdQTrpQRYEnCAu6Rbb+vK8K5Gw/H/EBDuDggslwOWhAo698wJeKXDmYRXunxRhxd1QUMFI4ogIyMCy7L/8GHwYMtdJ5JKBkAMsQtzWguF3b0iUbJwuj/xz3csIZ9erhwAwisgrPqoKhk5tkt1e8mJ9+FyV55jm9MoRHIIEAdCxHRBA6ar9dtPR8v2WP3fQ0ZroFQkBSQFJFUisFgoCyLBZFhIKQRjb6HgnDagMIKSCEgGqHqWpHn+n6fJovf/7NvzY/V16Of9XtjUf9512Dp6ZoUGPwbUMLQggtKMpcMw7Y7R9PwILHl7OBt8PH+7JAQN+/P3rEX/zMzw5W5qVZ6RLj4RCtmzNOrjRUhhIiDdpIqVC6vt7yao5BW/+cDjS9/WhBrRGyfp/r0UtJeYPJccnQv5WLyVEFsX+snqU+qrbpBt8x/t6sp6CBgNvIDymEnuTgNQt7cbd/wQ0FX/LAvlOCzR16+zf6W83/YeecRsiSKSAIfGTO+Oh4ZhJ2VshaYiqRPuVG1Zg1nH/R5yTy/4q4fX5DYmwOIDwQtP5qLbn+g9r8ftOsjG38QeDjJBgwpO5IsmCSZGz/nRR5Lhc7Ryj+Z7w+iAQeghR6FOOBy29Zgvah8U0EM0fc05eC7nneglG6ssDjlod/GjD9/nq21U0VaGiGfa8fPdqflh/ZYMvuVjsoftgGHJK+PhL98vho6LCLvXPSYdVBwQ4CpRiQJztJbDv66NRV7H+7QUcU+lfinn9/9OPnCAHC6Dx3QgCHPvCAAw+ve3YrEQmgxqgAyVOdfLKkxMhUlRQTW55Sa5kyU/Pn5OK+cNtddNB0xXTBDvQ1G2g2TNy1RuSql4ihjDjKpuEJqvquG79a7MJWbKGcs8kQDki8HHf8sK4sQyAQrNw2QAzwzwOTNSX3w35u9gHdgJ2E0w0Qy5KENcDRHtYVbXkMeDzV9e2kcIEOYoExtkr773O6X6yMMQFILCKALAIpAUgALCRSEkUhAWAKCwAe2gE9S/SFBZOxIchhnInbfqKA84X90UyoKhbXNMCR9gc9KZsdtkHjyVaCd/7+rLx4b/Ty2c0OCYIBw6fD/Cl688wgB8f9fwdvHaQ2Xwfa7nU70qI3jCQjPJWSJGO2LmmT4D79vaw78dENJFHl3Hk21hQpsh/yyB+Ps0mXj93OzZsKyE4gyTqEJ/nyFPlTnhwuTyJ1vNhz3ALUhoQpMjmGSyPiKa9/Nf4e2JJcHxqv2iKZg154IpL+1VJq/9hdNOGnMXOvip0Tri9vPWkSGWIueM1L8tH+iXepf8tRdf/DFAxfd5FuaqT73xhjA7UDoU1CsNUu9mHZmQ1pL9G9EcTowocjgRAYKzu4j/WNe83sZks5j5z2MhsBAR9hkBlIASRHy/5sMibvA497rRh32T19V6d+nODMSG1shqgUDyezhni/Cw4vWInHq6DjNorShsgBBJiXqW0WqjNcOnADz/Fq8GeoT+4flkDNo2d2+vDATgugdcFtL4Qa4CdEFvDVGmZ5yWKeGYEOKZ8hQGrpz2zxyMx09w8PjKwVL66eaqQsdV/+91NHNs3d0Lw6Mk27SlInDaybuFlGf1oVuXy2O8HzG0oLGi30N3uTpjxR+I6Yb7Hy8FQmWelzXsaRAAMKr9N1jN/mBawCfeVknElV+gtV8inrtFsiIV27ea3PO136Un6JwZDke1MePvC4Zh8XXjp8xF+TJdGQV+KHcnJLy0figc/H01re53LfRPoMBoLcpqDGvkeLU7y2naVdAbOFBGJU1Da/cCcDNhIFBtsp9sEG5zF6IOukgQgRuSjdAmp9fhdxu/N1Gm/2s9HUDpwoa3KmtEUyyurBMp5padv8jk1MidufbIsoEtXcLs/16zXgcJxtYSgwh2uDIkLOu/HHDbuMoYZaBAG+lDyKBcm0qCJbgXsrTsPDVOlgUyhvKDdUt8eRHhANx+oGQAhMJ+p+ZgXeNYGcfzgwgpIBGBIyLa6rfuc66CAZJg9qBKQWLI7g5sCSEaQH7YYxU/PNoP8mALsT9LHfYaUtqPGLUu/xxDD3Ih5UU5ZKQYw6X5sUSNKGmya5KJIBRExCjygLSIFuvsrMBKwOYvJ56LuEB7YgUicLgYhcAugqJjkpLjSUkPyORCLdNeMc3stOlYz+tA2ANgsCRYkYQBQNMsGEWLIsIxEkXWKRGQFS4lQAkUORCREC4qHRWKqwBxQqeKmKQkFCLAIc0AqsAWQiyoG0BgoCIRYIKgRUiRjIJJEFIiBFJFiDuksGAsRBCKRIwQYjEJAkCR4QKgyK5gJIqJIKookEkYgEUJItZpUJMYqxQRAWQ2ZCiBG2jJIFSSFZCUQKwILAUWKQRAGKyAbYq1BAkFRkCQVMEUoIqqioiKAcmHDhQIIhCUWMIFSERA4sBZIVUUETgwDdBkBiMiEiISBIkFikiiCNWUC3ERZAJFJBhBWEGQdQF+IIUZCCwRIKCIBpgViWwKCm4tEhEMRcQRzAdRSoighICkMjAqEILJEEUh0DALGSoFGpIsIsMQAqEJjAhiTGBibiSFGEIIxYCwUiwNhkhUEkEUJBZBOESyABcRIQFkewUqPYKVARiSSWUOogeQXBFBQqQMYBp0kICkYyEhFnJKICgHRGSpJiQrAUIjESGi2IpcQXEUcxQxCMRkCEIEAhEZEZEDZBCoAISKgSC3BFKiL2IkCQgiSLCIBUAHEECQA1FBk5EADEEZFQIlxzIAGIAtQQF1ALioWvhAJ0ySMq0W0i+RvyuF35RRUwukjUuAPZCAlOFkDpLEXF0SKmEnSFbLU7EiDiYhDaimkYZbdECMkhyOFgrDG8hyIcMXLAQ0UvFs4QU1OiIJAVJlNE5Ec/S06KQFCFZCVtvnjTLkCgthDRYPMKUOI5DYEGqghaEF7GwGI4yviQAzwk2mUCpNI6jrdZiEMjTid4UjYsUTmawQhLyUEiOhOUpRBoit2AUZjCEglTDBMKQDUSboHIsRdwNQDskRErlAaEIm4L2IhIQjUTaAaBCCUglST80PGABCAQAkCl3HqaRIDGMIggIIMQBlJVkMCkMafMhWHstFYlQCoEih+/YJ+Gb7n1B9obgs9eWtQCQVnrrbgIgepRrWjFjBaDFyO//yEjaICxBw3leH8N5jSGtCtx56cS69dtQH6smzGKjfKUEJO91amTbTTZIuVdGOxjJRAQoZduHEJHWhdmwKg1ukzBJyionGNZq/9dOASLjFJsdxGIpA33J0uXnKpoiCg+dN0fbQGsFQvgCDIzyLvGLQYLIJlIwIR0CREMAZOVU0K/uKEdQ0HrVq/O4VMR4RGapvtG4B5AMuyAkIsiJqNmoYILsdhdNiHCIGCcujEN7BpLYSHnP0aDyZEN+ecvHjOqjBU5ujyqFpAEIvbncUEmExBO9LbS+Y3mZXokUT6unZZ2CgvnDvmADDENQKxlcwJuhMuo7XdeRE5ulVXcJ7UlRU3EDnSl3FJDkHKkLgYixgMhxj1GBICm4JggASIQg/rm4uYHd0gFRRA9oqG5qNwXEWoBM0HCFRAdDEDVUgGYOIJqK5opHcRZABxFAkAyYpHETxILUXIm6SZlKw4wQObJLIgFEFDTxHUS5ybilxeyv9NLULg0rE7Kig58oBDaDxy0BTRxiM2CxgiRga9cPGKmF2ChXDhCbtrCoxywxpXEGsGw1HUHARZFLIOoCYgainkCQW1Ys8oB3MwYEMDFdTeaKgOgioVrgpgUwRg9mEKWLHbWjRLJaRN5oqRrCJICXg7YbHJkqA1iBzpKbbg11hSoXvBbIhBFQxQUixHjSxwwODESw1wxHWcZDbyrkVBwRDYjrSN7ZKSRU7rp9hzDl0Oipjl3XJmilKU7WbFwtvc2nETE61MZJLHWaRYZBA4wxk0ONcjwqJIcmEMkx2p7PB5mPLmjcbHE5WE01LltkQ3LZFusgiuROD2WXdStbqNmtel7e5eTFRy8bMqbIMqtyqHkZDxzHbh64KIIH3CS4tw5m5LdSyIcHYOPCy4kmIhxDHMx2oKOGTV3l0ouEzIst0yciiojk2TWSbbh24moupjLW2Q7VpxU47vYqs71eEGS4S55FfvOP1mQPR+r+tVNfJErxgxqu5JP2eyS2GbwQR8X+PsfGcgYkhpkzBBxMX5/4aGHQSKd1TtJlKJzD9lSRiaayXEzbL8kuhk0lWtl8PBa8++jUoDIDYojPGfAIJGJIERQ5+nykwruT9LF6H71E2rAgSZmSAGDABkZhLDKz80KhoLM/yrugGMTivzoi5f8lG8PzoLrAAwZbrdbjMH6oh1ASNIGoAI0Qz7yqOAZDynYb1eh3VIsOgRjzmCQMCigUrpJzh/KLX1RFRbgGPPy8r82r/j89Rjy6QIONwNdw4VgiTvP2wGEIoCidi6AljYkSAVENJYQXANbCAosXH1dCyIBjjMKw1fC5ZlnpUq0On0HyEo4YqslQCIiBaCDKwrVl2QBNYENQispl7SlKgG5RbeHD+CxsIgfhMfM8UztpApkuCN5BJB8/y98GSODJyQdZoYqyqD7Up4dHDAxgIq/Zz6FlnOuiiP1j50eKxv3vZOVofftg4HR86/VBlG81oDAjONQGaBGQRwhKSSNWH3IgFwYxvoJWIc0K43q9JVq7qQQGQTQsAaO5oZEhKAcgqXsiGkgucobmzi/q5H31P4wt2u/K7PUAgC7Zjv6p/8VgkUOBzdJoMldI5nAAij8pxDKxEMVg4GtMsO1eS2XGsxweEAdM6nPrUoQQHOhggyRRAxaAGo27VJZDOeY2vzk9/YyYAWM/H76aijnVJnwMFHuYExE9yAplY3ZdqnhEzJFyQTGqUzo3QWJpI3AqDpgbicOFBTBLmCHkQ5ORL00JwE1RztdxXIiYxKkR50pjAbudqzvKAqnluZO5sRDcA4coAuK5I4SAYju9U0WnFBVzSGzc/ZahqIdhWyl8EgnIJgYp5SDQHggzc8WCYitQExGqrkCQTEvBo1gVmNIWpoilR2xA+3u25EXHaqHMUP1c9vWAKnpCAH55N/hhH2hiUkUE8gFHKQOzcLg0wTu6S79hsUdkMII44eDQ3SfEDxjefHGSFIB2AwLIf/Hd6wIESXB5vn+7AWQYQU1CEX1gHGgpmNActXKBstmDA8aMyFqSNQAqsWoFWtQiBcEkQ33mrrOdEMxQ1jljuBqLIUYpojcTMAUPUQ1ORDUNB/rqo9jxFujsMR3VL4XQmo/sPWdzOU2Km6BainkzBKug6QuCXBbIcgIWqDErhdhiPpjvFBvm73ANoUULogjhIyLoEYmc0A9itRQOAkORewXUUzBUbCL/KokUhFigEYkUBYBIKEUAAUnOhYQ4MAFJJFgLIAFQEBhIiqqiAsJIKEkFJIpFVSQZBdwFWBEFkAgyKwWRCChIpJKkBFQRICyACyKAW0toq5oEMHkWiC+EBSoIBCLAFgxIQkBQihFIIirISKwgEiwiXEqDpCIIGi6EAjBhASEJEUDkAYREgxVCoAyIskICuaLghuDtDdDtBj4JET04uciIGFLSy6UyK4T9UY3h7RMAhF9QceFBmAGyASKh6gYhcPUTkUdkRM5VoKgYCAlQC5ZAAqFarHKf9MVE5BDAjFxEcqMWQ+2AqdRgiIlkVE6exCgCooYgAr5uv4oFapQVT2iokioZ5ZW5VE1auzKxQ00Yuak5jCE4SMAHsB9RU1HAam43GShY0IKbIg8iqpDBDEtV1AQXZJJui6mruI7IWQUcgyQChQgAJTzmsKlwBXUADwOY8s/fyALiD2KSCiGUiL65RVU8ioiF9xagPqAjo9Ji/oYoFFDcVzER5BSd7aeRMQB8IDuKjwM+BY5iAfUosiIwBgABCMYgQYjFYiDFIEAAiyQYBIsYMBiRiskUUhEgoxYKbgoDRIEYwQiDCEFikiwESIyIhFkIxCRIAMOADCirIyLIDIyKkYFwUaYyIRIqsGSMGAsiSJEiCSSKAXFVCmIoyKQiMSIMgJC1AZUhFRZJASEQVFYIMRIIAjAWAojIxgLEYkUFYCwGADoiJggFbpVS4pcJEIQVIhFIpIsOTIY4wMtlTiJiCDIapZFAbZQSbjAFgiQVgRYgRTgyEkqMYArBYiMAYIAjBBIshEgKDIIqILIMYqkQWEhUCASLIFEiBIJBTUUaRkijIMgRYwIsFiSJAZBQUVU3bILIRghJA2ZJJKgoMSEJIxYgkBVYoSRIRhEZBQiIMYLDJGIkYQZu2QEThccYIGWvItRFgiRtosFkStgRkykLBYIxICRJBIIKCGqUEWCDEYAJllBjlklViUQoBEjIIwFWAgxVgCIMRVFhCAIxYMUWESZSFg0pKMGDAdmIiSIKqc2wWRhGCwREFBgMRSBBVBkBkiRAIkBFrCsgpGAkIoIMYREYiSBESSC6iAFRVFHxhWSAKECoSQqAsIjJBiQEiLIAsUWCIDBiMILAIChzZUOFsOKSsAVSC7sLFisGKEZBkQFWQJOQqBsirCBWDIDYEjFLiBcFW4JIEGSKJJBGLFFWRRkGDBYqKpBQUZEWAsiJERZBJGQhAYwCCgMdkJRihFILFgEWRRJIA3ESQEWQQWQVxFAqCDEkDIQWQYsiwZJFSKopzZKhBVEECMREBYQUIGiSRkJKrIMjIoHBJRUYCiMRZCMhAgxVdwVNQBPwgg0RRxAhAiyMSRCJFFgookQQWRCKLIIrIRIDABGSRFYQUiCEFRFFRIKEFQjAUhIoBIrnIKn0RRoiDeSIDcEYhAgwisgBIiQggEGMZHkBTkFDHsgebpcHtEExB9RdgRJAVcEBQrKkiOyAsgJIDIsiwsETYRHUX2iJiAdIAHYlQUqIYiAbwbIcwCAdIKSJmKrpCK13S3CAIOogBpSpS0xIRUUHphKUbIAJWAoVVHsAEeQFQxVIDzofqJvBRLopEDwgOoiOzTklBspqFEhVJhRBDQwEMxDQMAdQUXigxAJBFA7yEISDCBSCiG4I+bg0IsiDmK6IKoJ0iiLcVAaiGYCFkVFE6kV7BB2AHYkGSJGA0KgdmognTOmKUSBYAmWAJmLpsgMhkiZFIXLIpgAsAIqORggnIZ6I0odigJ0ILxMwktCqCwDMUUCyaEIq7gJwjggo3FUVuCJiCYCAuRQkgICaiqlZpQdkLUijggiBgCoBHYNLWsCjIiDiCDogh3kGpVLZBVcwAASwgYio8WD2ACQBi2EVeIxFE7LgpzK8lQTkTssaKF1Al0GkFA5HTFA1FB5AU5HPC6qqtENQGLEQL0BiYncih2cIRWCg5OtKKtwVOZzLBdRAExC4KZicvN1ASoo4YoGLM1Z2ADcB7AewBMwFJAkAQB5AOwANyUYtEMxFQMdFM0usmt5aQIOcXapCESxBXMkSdsQHYQRfnzGpPNeY2oIvXUO6wKhDEAjN8q6e1LuMQgDQaNYCQLP9XlnO4tVEN8hTzdAieRKzu0VGwRYqtwAzFTUhdKrCKQgKuMHL8u5qXgJEkcxUcxBHkQQ8RCKAvDByWCpyCpbmBMFQiiS6aoHcDERe5u+gEXcQJCz1KQFUzAeRFUOwADyBfbvmfJamEgFEXcMwqIvMUKIb1rVbqsqWRR5ARMQUZb/a7RrEAmxIPqH8enKChIAzDxkgo+RR3jHqHIZV2EUQQ6RG6Lg4lGARzAVuIjAOQmb1vLanIC7gGBarEQdQZBA4CQcBFAkMwU1BT1AAVIRAMzR2n8YgJ/9b0WKh0iKB2AJUecpFT0EVHEVdxcBTSnpiCo+oKor2OYiBlIKqpkiL1iopwYiO5mAgKdAgKqyKKmwiCokiyKp2JqCpnFPYCtIjBV3BATURQtIuTdDuCIh2CnYKuoCh84+QFBzEOwE8opBDbBWyImYuYjmZHFCgbiABBgKyCgASCCcIoVFcy4gbCICG+1UETUkkUxEQOQF1FEPCAGIKJyKaioSIgaiaioLmAie8zEAuKBuCgfZukNwFNEFHyCjsgDZAS4qZiI7IgGBGIAvkEBqeJBCogCtFUqPqAryALqJ2KgVNRAKghrtI5ghuCGYIpWaBQB3AEkB3EAXEUUNQEDaQFMEQWhiFwRb/Z2xTMUVU58qQRGoiguogHkEbhIo6iKmPKR8ioiUSEVQMsQE8yb1hUDEAU6QFC45i+oDuYEIAagSAA2xBCxYhyCAu4gG+UqK3EBBaiIFCGdXFQj2CwgJc0QW4AopvR3BDCgDzNWXKQqLmIA1ze8AIOt5ja9YK3BFcEUNMQR1ijMEGoAVDcEEhEZ2NekXy4p13YVcujhuSTWZZLZyomxtRscHfMTZkzCpw26yAuoJiiQ2DGOc2sNsJuSpE01E1K2CFVWSoTp1LKBkEBFUPGU6iFNRTijclikd2k5ooqIGqKRFlKLnTZ0yMg2ImiWbcjqHNO2XU4zMVMZLQ29ipdzEQEU8d0Q7goiJlhDxw2y4qqRdRrt5FOXu1WVc5MSWohwEQZZFQDKl0TCxxbt3D2ddFwKZrNcREou8kb2k4LJJhU3MQ3F1ZNNmK+WRm7RD17Jlg+TYf39+fodYen/OyZ2DMjcdOQHlLWsqnbbFY/d3udmXGs7MPtsx60+L1aOg6rtadmV91Pgens2phbwr2ax0WwUBBPgoUXu6bn9dyGGDOrL4sdb8Szpd3/a0V4e08tQOVlYKoZYxIJRosgqieKUkmk/9uu/bFE3LZ09/PJNIjK0k7uOBp0+Xaww1Svh68064lYFrHy1I2M0ni5wE+zb/XtcuE0er6uOalYKIgIgqowFDuZXd0Ylv+u9pjplfC9z4Ol0WbPLVKgUT7QKRGKQnnu21ux5mHy673bXilF+DX7zVstj8VKi7enMnRA+RJx1rJ3f2zhteLL20wO3bbX22V9fkzoOJtUw/C2a1gTyOAk9zw+rp1x3S/B6daIqm1gQkC8E08+Bb7npwk0e4k5+U/5zk/w/6w6OWrsY9RQ6kxBxr9scNcDCTZJzTbOjMyvU2YDbAiH2/c6DA2ON9zKj/VKHzpQ4eS8y6wfTa6GiWhUUVBIEOfX8djA1bSkAq2RsqZoLUV7I0QwjIjvMaEWRUFPC1QiDeKvCRDGCq/iWUKOoqAZIyKGYK8xjGAFOZoBGMQFwcxnCIMiKmq0VusCIlEVJXefXeUBdR15SlXQImAiJIIjIYJhnYoD3t1nzIAWkFQJnZRvB5uluCBiItwTURIpAJEuCt6oUOBCCjKBgbiLZugkUAuKgnN0oAVBAQ7uhBDMqIHSA61SD1FigHJuAgO4JohiAjMatxFA0hBU7FtY0boC4qCZmN6xhRU2QTIkAXUAnKRQ5vNqic18dwgFwaiobzQAKlxUBTwAIogB3nbVHahAdpFHz7Mc5kA1ARORKxu0VTMzEVO56bwib8oADL/q5P9F4RB3FVTyAoB5ZS7gvZ5FFAKYglmaz6nNmFEuCKobFZcFW4IuIgoaIg6gJuCpURQB2EAVOT1e7EVDsQTMExZy9d2WPSIq9goOzWrQNEETsVRcSiXEDsLSJ0IAilhFeQB1uczhkBeRAoiKuM0L2KDmAL8RyZpQAfIoPkENnk8m4XhagKbYI1DepSJ48oFcMRfDfbqK8gqvYIAVBSzGiwORBRA1mkFDsQTfOUcwCNxFQ1AFsIqoPd/s7gDyCoecaGoGonQgJIIL0oNWgOoILVUHYHhAUdxRcQE1XMYEB6cpGyCrqBIKi9i6znmBAOQuCPICGN4tTcVSROLAFRaYgiYiJiAjqAgciImkgFQAPrGEJEF2ghEPIWsGRRWEGSCioQjFJJAYMVYQIqCQFkhCBEYLAUYxSKSKRQWEgIgkkBRhBQUjFUQhEYChBGEYhIIMAIDIikEQFIQgRY8rVggoiCgkYIQjEVgkIhCSSIyCkGQSAJIgoCxVBYAgiRFkBBCLCSKQixZBjEZJJKQtkkRgsUUFixGEixZCAQGEGCsRiQRkGMBiwUJCMEjCSKiKQYqMYQ6IUVISIyQBhIDAFUYIRGKCjGMYsAhBgiCMkjOU0EA5AaYADIoskGCSIiySADEYAKqokQVEgyKlQQoSBIKMWQSIxFJFIoowYkIxUSKEHNCiJUYqBEGQCQYiRAjBUFkWRYxUBRJB2gybOJFJGEggkYQFIEWEWDAQRFIAopARQVIIxREUYxEhEEISLAJBhBFGCpGIsgIsWEkhCCHAEoFOwAU2MERpUir2IChV0Ahiao8tAfIqmIopIgsIANJCoKFoRBA8ZtIKGRBEJEVYIA1BHyKI1ETRBFU6EYkTsBVIoDAQTDERMQUTUUWoDqCqHICGICAZVIALxYICzuLEU7AF1FHkFE7BBFIowUUTcUTUFG4KVFQNEQNwEMxqIq8goJxRgbjiILqIqG4oMiOeJUzSGYCUw7Wk3yarhVIIbYJsSbSbQDaBtsbQ2Z9efLt8I8i3Gig8r/l78bZBLZ3sneQlQjENy2esVkWeBfsFm4KLZl7krp4MhPxCNGA22CM62MRx8nk12dzjalYybD6hx3wCv2keGx4ZPIlXCQ6NZIpJY2yTjmrPC1h7Gg94WmFdmlQPjvOvyRnXyXUdJTG8hmrw7AQsDEBFEWXmRVNhqAOHyseAdkhCUVup1DgUkdLI5fe3iJfB5aFqOsgQNgs7LJ/rXfItQIJ+SUoH7r6e+c8eXzikRINz7wAngDkWJw5ekLlEpBLEqK5skcUK4AhwRQIComxJVc7qHQWW9oEqfky8cwDHKk3RQr522XTRL5YvDh3PcdlcKuOVP3c5fJvjrqk72JvgJuXNFSoMwvmTW+f+J6V3J67fYcPwrp5dScELJuL+uXm9PGSKEdHNTBE5dT3EZzLqe34cGB2FPSq5nZIggauNl8rQW9p86IQku22/kBvci4UzHTfIJjHRD5sAyLYjr3ahJLznYniEmfzAAUTKEqsBN7JXOe2t5A58URQdEeG1MLTXHmUgo7AKP6Dt84TL5rIPImlzRJabXlyXXiXYospd7W0cIDrXVL5juQ3C9yb4O7IkeZ3DFJt12v5tzcsEuOwfMOLwDiCmzAIu/CeVL7Mkxd2+jCIvvO9myDmkbY7ne1HKR2g2rutfM5b1ZKsa6X3WVAZ2ekE1mEVpq71jac50tHKKw12GlYSE3UXRV4BHck70u+q2Mp95GubNBkOoisgiwdRVQ2XUTNxUNuky5mrm6T2XFTReLcq07nMgzIsxwNxcZUKhjkmQuwkltRNtVMQmOnKoiyC5qHCl3MbO3l1ETtEsbdOLdXLbq4uaZt4bU7mrMrTMjGZUkxGyY4nKvbi2526vIitsly52CyICpuZmXRZEvazaiYdsY5mYiZnKojdeThF4phwZMbaiTXD3nKoZkku9rcHkPKyHKJLmHEqqmW6Lseh3v29NH5di+3+vOAf4u2Cb/E4CdWtgkedq6lSjvXEHgLpjmT4XnGwqYhiAKBj+DucYFFUBkeEQyIz16KebRuGG3PRNGF8NqzpjNA4Cm+2aP03xfryCz6QRwgffnz3peDe3ygkoEIg/q1EaqWHdvvMEeoBComS2GbWPRDTk2yrGm0hqJqvqj5yg9Ak1QBsFecinVTHx/E+TJN0f2xS1oVk3OAwyTR20oiV8ifHuRbObEuV7J9K+lGX+WzXdQ2f92obaWQxn1KCkz0ejWe8nIeXVtTKqck7Jxrl4BtTfR1xP9VWfAP/OlLTg2Ea5lOWc+kX93sfg9/hjmx6iGgTaQr+dfM+/+2DnLH832iFRU/yZ87wsioCcoJU+dMdcDpk6rhzA8OR2cZvhCu/QW4c0K2XDEe1L5KClV0cLJzRNS6E4Z5tV6mgdvddSbQzMJoARgwhgFVRUMVF7acGEDeAjHUxhJetxyUv/Hm+89Trbf3cDDjecMqw2+PUpvhRbC/83uqXgl9pcuHaudU297BtlaqVvtyXro0CoGBEHFlCDoCtGED5CC4ScikoEoBUaUYbUqcwRCgQjOdO85KAWKMK8aLmdouYO0p23/h3nloytW11CiD+p+Xy8X8efHpnPIewX2/avjN/51PveHSeVTVKQqDs6ZNW475iYWdUjlIOcIWlT8+edfW97CriC/B4IDexkCFxF88B0JC7ZcAArvpsZVXhTzcRZryXpCZi7vnJMMhuAztzMD4Xfm3Y2k2hbjzzDxLZi8o3sXyI7E01oqh8uml+VS9duXzfmlB04IqLrPnPFmjTaCX5W+gjG86t260d5EW+0KPaJo7kq8hrNK9Pzad4CId7QCWm5EpTkpCI7mKyXV+RlzhN+cqpt8QkHEIlXXNjgEF8sAMSf5Xze8e3vrOKmZz26RMRvQ9Fk9Skbg5ikwuMRxJ6NzhajrIhie0S+oh9DA4iFRgRZzmjolcj5McovlV3zskqsWIPXBUQTMAKz5rNRROFNZz4Y8ZA54WIMSGIIaTpPt7Xl9rl93VfWJaxk3HMjm0NL+jyTcyayEPw5SSVld5r84o6q/9Tt55q7CNz9Dg6QH7DUMYHaIkHBzvWYQwcKk59PMpzCkaaY/itOYcyDjol9NB8HknVXBAS9ROTboMKOGTpBEdQgXWICREzEaIKkYCiSOcZN+nzRlzYEPBQJGRYaxKTAdARmm86oz/tICA0jyzEBVhJKEw4wb3knqOBrPxu7Q29ooYxZr4ibYBlOfOCcw2QFOTYjEO0pj2gAv5v4nWLiJO72mxvRHe8keQBxBIRCOCztKN4IRkUMGeRwcgkSAXW+zsrWFGMGwtpEGAkMjArOEoGjtDqLBIESRA9zDChhhEH0ld2Ig2+l/dnfSMveZ6VhFXmQxsdeRNYXMHsz11lcsUPoDNyklby1lxCpEF7xTsUEXw9NvYAljFKIA6+pABah3d1eyZl91IOPsQK8gmv+l1JfiRGzJN7fZO14ZuEOh045DjJ4GbcQRI233SYGu9k+mG/ukrYrggC6fse/cxfDUw0rBja9zUhJTnxC6g3cq3TnU6n4iiajXdoO2XyO2XObyuJMtqWv+m2WdzhyoxmHkyJtIGkhVkYAM8oEqJvVuIP+KXMiSO7ybvojnrvjIQHPLScWCDt1Y9EimziwSj9vmEhvMetNgWVE8gpZaLLryqcxd8RFJTpqT8BAuVnJ+uvDecmucwp508Oc8iWHTnDrs5O9r+XAWPlLeyjjXAKuqWHnBXpceTEH63fF34N88CpTj3ZuiZA99guanIzH2RYS3aCWX7zKnDI5HOf+z27Mh0c4IfSfDDkpLm8bzzlVeV0cMzWOmMyCCZKJlunJGwVxQyqLMnCMqVu5DuMvLgcQ5fJgob5yturKV0QcFREkhs8zJyIiIY3BkGmKLh2yYuYIklxGRU1MZHHbKgbtS8rZGyjNqC9qpKsebsl7uE6ZLIg03cq2oyoN297dt1HM3SuDjCdnaUTV1MTcyOiiJgc7dRMXU26iJMc7BWVI8uIwuozHkxamsTl1t64mHhcSJuMJ26Jhl7cblTyHkRpoyp/jC/w6uWBuep4ZR/inGK4bNO2qqQQwR/2PEk3gdPoQOPAdVB/LpzOP8kcD28Msb0EAE3MQxLvcR+EslQRgJt33FnQHrzjrXjiAd1p/1Tf3yoTwng/b343M/ZyiMJ8Eu7jpi5Zg1LEbEjGHDYP813xxwnJdLehRg78cLm+xjnVSjJ0/V9WtRWD08/+s1+/jhzdT9T0ucpFHYtp0t4stIROoqoOaaQlubYttlywPNdWxIyKHXavSiML1ee4jveDMK7oeZ04s6sye3fGefU4wIJp/FxMxZ8Yrbbb4skwN0+npzRoisXr1c4mxhgjnX790nDb1po4DbeMO5Tc0Q8P/lHNzcXIEQIEGB74ouhiK8CNwwQ5oK/EnT7es9/WjA0vCSWiqirC8r6n9G0nHJ2ZfAtiiKlSxRVc7by+KnbXeHddZB6qIntKzYmhg1Iz5gY5vWyHN0xCXMkAFnyYi8BgSBkBaiKpIAqlfOXr9TRy06ZsVCvy0r/HLcX7J9mmI+Z2CnnX1p8TwkopdgqVWcdjW6FeG229kEGKIojEEUUWCgxRRRiCiiMRkUEQgie866oiORC4kAUtSsuOcHzdux9OlE9jXe8JOm9veXlzBFvpbdlRVTvItsRr7L2zYXe8sJ+2Lswe+Mhx/jfviBbwrnliUelaPu0zhdXGGSKsEAco55x9xCKjIndHWmbN2CQ4qubxA+3vJu2XUcwOZEG85tZcPtIOJqzu8ol8taVXUAd5WZyC8ZSDrA609+Xb3PCpj+iY5fX/I1b4khc8mX6x+tY17W52DhUAhI4QG+imDnp3tEyir3nN6IBChAxAi8DqI5k3BbC7iXEZd1wKKARnOy6KCRJf7MAOUl3zEhIomGzZQHDd3RWYqgOtyESEJGAMqYSO3yi8NLEkEcZ4kl2ItoO2bsEnOcRSO9orJxTcV2Owws7DMg52spnN2OgTmkDZbuFejwcXxqogvDvJiJIrN0BRTnCthqqdFSVVTRixVJeRAcwCRACQBaIKKHIIqTncZ08HRd+tOAkWog+CeE3uDzHeWUeeBxd7nJ3ZyzOdR3bmVSgagGYghuIgdMKlKCJUQxAA3FTsBU7fcF3MrWehoxIVWuOe3wUpyRrquVHcTBNNQI8LqjUMkdcvowwFR63tBjXaJIZqnFWXUphvKkDuDXFRUu+I5nS4CnDaIaICNLEA6bDCZ1DsZ0lQkI/t5CjoXZV+n6sLlJTQZi5qluFYC/MK46WGiFcM98r+eQgk9+nuAYDdMi+SEVhSolVAkIwKYnhnh1OSgiSE54bzkMYgxTLYKREFjENcRExAIUV3cidiQhFkQzZLLDb3YIAjmAFdZI02kJ8NAR0QBmUgK7m76iJiKCuYACaosKDmhrXLzcf6Ik2VtyXUazGjnbI4YhJJ1Nn9XpvozzQcD4cuepkACH7jfJNqpWF23kJqyNu/DplvY3l513nIb2ye9/698vzCqmgA3hUkDZyszx/07Rw24rT/gyPI+OFbrTZTt+MLLLBSlUz9cce/Gwgh8a9KKVFiOsQqaOxpATk/LLvtXp/br2PDlea7EkLnih5ERLhUVFzFNxDUBQdRRODkv1AxpEcCn3l1zl7unW5ijMioNgji6wcCgLvt4jVTcnAhX1V4vfM12kE+mhT1O81+vCiyBqw9+PC6fouyvWzmcJs2+Ps9c4CEFdvmAzg9DAoEKk6sOgKRCmjIGgmCTsO8ydN7ixZB/Pudhl9l+Lgn1CFs9jMWSofD+K4ecPTwmrJ6p8nvlFdopYUtP+E8xnhZOCSQjfKrG2gjIuPCzjq/AOvaKSJBHIVop8O6XG7XO8I0yR71cRfDGq6xYrXOQS56ukluTTXfcG2W4sgu6iYmXLdNUyB73FOXM1XaNdxkOJ5OZMk3j0naSc3FlQOZthOdlFjwswJikOImJkkYQRDMiWGlwskgcmDWVOQQWS3x0YRY5iQjNuYDL2S4MopxNZtzUmFkFWRd0NjByVUS7d2N3MEFzcVtKVrdtkbFJ6Q5KRMQrupad7VONsmm426ogiYKTmXji7fKNosluHmXuZBDUBBVy+Vu0GSbGkayOFdP+jcwp/AlCkapR9X2waElskogLPxDIHn+mm21K1FU7PsyZ9X5u/OG1+/e3IHW4IvxJRO3pocXjl7u/+uHEGPDYl2wguK0hpnElq9/DtRYwYKsygvL3cSFGZkBMJY1KEqAxKQls2TOz/WQxk6W/f4XWpzcK569Hf7e0DH0ejDNrQQYsWMn9PC429/2UJw24YSx9Xz3qZr2bUkNwGFEP0TyZ9eiWCHfv5dGaovK3uvTw2c9CbO6nTSHtuIoKLACkWCSCl21gyR2ETC7QBltT1oR5CH2arWJwo866r08f8a39KX2NUkhidwwsSD2WQ4JiQ9SFGPde0cFERkiiwT9Xi5NcNuRmsR8ClWcr2IEgGIHCnah0efbd0a40OrQXgUUzoL6GTZFYz27PkTJvfbH+Pu7HmdI8r3odiB18Pb4BucezhI6KREF9FsTspOpcnovduGgxuDTBFwIF67OtYRBGbIjqq94UIBoRTjfPObtzFycjY6OTmu9ym5hCizhGO5upjLcNcORql9JO95VouIVR3Gxxv70Z59/vLDkfpVqdq2GopaEUFaMqVAVpvAxOiQkAryN4WTeWTPIjTyPOyXPnYuNJ3pib7ynzm9OdIFX+us887Gd5Xj4/DdJ4bBiL/ilCw86eaqvxrCVV1y73zh5sHL7zKshE946MFjmTnXLRGdFhlTVlz2UOMrKcPDClHFpK7T4Rqg2Kpo39Y4x1APM4O7Y+VDys8daibwaVAvVZkUAwLqhCs4ztFrIiV5sQWmCI5pnTeCsV2Ovs85VJJQlZsyoEAShc8tCDGIDt3Tl3sSx+Yd4fO+RpjZp/HKCQuSBI60c9SyzzxM0VbSKKeoIEUxCzWLKIBDNwjWhvjQrTm+rY72pLiwfEjNMk41yOALKe4dRxAkgjf9vPxIhFnlWe+iAAO9M9Pa/ZZ4MHUKmnAogVUoxGolSvXHkWoH55563Jn1ZxgVywLUiL8l2TkENveHC3A8SPW+n1cAozPIR19gmV5psp1CGNwYxvEkMKWIdU6h2s6zpkJOKQEJEA5d4jqeEFzFR2tYqJGknOZzYwSC9HnJONNju7MNhHpKydnSRhgClvDavU7zSLhDcwoKu7BNagEVmKOiOZSEhd6Hu9FLneSroi86ibQiatRS+d1DH94gdQNdR/zRHejxdWY1V9VdQEJEZAEOAEgR4mIPCbz0Lm+pIKZhvLAXEoMK5RwqERW8kp8Ngyia3UN2+RJope9tn+7US9NO5T0EEed852tmshHNntbijQR0QZDvusO7FVt5xyxVXKvMIx1007wArIOzCfXTw44zYmJAuSCmRMlS6lf+en3/SpS5D2YHvvwpGJL1h8fBAc++Cu2ziGTsRG8SvvHzy1zdO9hYR7zF2n9sVBpTOSHudpx5J7Hykb9S987yffAmpguHb85FCXHkQQxxAoa1oq7iiGeMOtc4prTjEkUxWyys1azrOYKIkWXBpzTtRwQpRYkLtxbho4B2kBCs5zZ6YdyLgyAOdOPeyl255NfsVgg8UXzrrcxyVTC8yoC86jvLmAK5qSmjwXAvvBB2+mSzneTx5u8zsXkqtQppQORkEkTNFYIIbnvyjNHPP1eRkHjBj7vqrvpk3ICACOZUI1nMSLioAMUskhIOUQRsbh/hoRKxXMX7pmHF3EjyARfJWGZdkPtddXt2VlVUnIyJKLu7gost7NxLc7EEmRE1NLci8uWGXRVEQ6mFdEUyisZNDQ4ITqVMlxrJq5t1LZJV/Pb3Z2WNzBvGUTRVEsvLKhNpp47irqZCK5OZmYVFqHDqaZOQqltxRabipIHkkZhs5b25WbFzFzV3ZRsUNMlZMucayjZMJuCCMV1dzVO727TvWStyJtHOFpu7ZNmylctLgZbc06zapw1vslewaURU6sKuLmyzHOF5kZ36vYGmmvk4LW1EUkUhFkFJ0PlwqodXhc4ls4fPcgxR7KXnEqWhR9zpun/jblMAoju1jIeDPpDaeGfrSbghyECicEsjzeAhj/id9x4Wh8VsBQcIUhWHRmGcSgkOu52sp3jXemvGhpCEJDC9TtFdBaUBdyjIiVZRHOjMRHq0Zi/azWTWXxM+UiqqzFYMoiqIPTPJmdGZgjj0sxPc5Ucl6THDMfPl3v5kxenY30dm0qRmFKr0p8ftF/IgbD0M6sVglOTyTN70d2jHwezArJwlsRp9rMxP5pmW+WhU3pXotTrLtm5Mh4W9zoEfo42GJ8Z/7zhJol6rMDPGcjQeT17Ynrf3+RmqnP37ibM8nV5NaHwaCKvptfXrtzXR2KUxT32BFKIq975MuQpZRncJ/fXDza3YpjpWecaiwYa97PaTXVfBzc1M5aqvmGrPctQ3ZU7uHseOqdZnfvt+l1tvwKzdSfoo79pUmzSyLMzGn4O9hF9wnB2+EYjbEiEI68mzlhyZ3l3hGkujGsrswTyinlRQt5wjd78phU0u9GJNZ50YuumRJ+1dtlo1AvfOnSK+8uPSC/eRdkcMiXOQl2z7bl3R5yPeZNRDmFMLyvOY+A+BKbzvNKyuEytneCtLr9og8dYUPC7/+WYN8syBUjtavdXVhU5tezzFWlcIqKJpVlcVyXCO5XDJIl6VhCkNxAgspQXiQpJvsaKwZkAY2GximJy6SFoJAcEjLvBBLR1FNzdScjycpU7nMlwdo9o33vdoIyJF/PMdPGzyYonlELYMGSUEJIyPF0JuULVuYDmBqCABUQpPKeapT+yKAzvbWObqNSXiBGMbEkG662YnTzQvn5HPLd8nl31/tQgy4h+MEADahuFvwScq7QHIHK88ruECAAXCUSF9IWXKd515wzubMZhBkQ6rXZXcIqTtSydXUr1G1TQJJutdZbSB62dOck2qb2hyktYqsUQiWml1/2NS5+B5vwYy+9KF8TIzhdWQBCpbe8RBosUo4BcDmLWzucBuluTMj+95FnMpvdPEbsx53wx5QLsOme8oWZKNgyVQNn+fCR6HOvKGgDhvBEqiidSCVPaVmVXgQMtMDm8piMG2IBpFiRSEYEQXBaIAmUsyJIHDDQLFa0i3mFzWYCgWQGONXnanhif7cIGEh3P/uBRW+AELz3deLUAPyqgLpyRJGAhyjXtf7dHcSUVXPcdEUrlzHpUDzpKSsfiDvO8jLm2dy4vt1y5C2BbBM5CK0k+kT9vl2+n4/5fJb9Xjw+R78pKe6KqQr8J8JZ3evmS710lO7znwjdkDOeF7hXLkibPOVfK5XzHr62mn1mOOUUQJTpUWVr0yknPMme8+bqnvm15Drq7U5z+zlkl5GXB74ympIZDCHFOM8LauYR4/Z8wBJUKh7RAXEAExEOeqBS4oLcQ6wBHcABKfHUc1Ddj5I7m80G+L+yB1y0DZTJIDjUuRiy+3Eupq4nMcIzjWM5pLq81lBAz7KAeZ6Ql451VxxYhJbpbWnYCVAciPz7xYJCLwclSd2fHd9V+aAHXNQaiXx5LzqQMyjcSIcuvvfOBoRuSpfgLLfmxp2YiZIi/J5RiKg2UuXcD4q53qQLDeUdOWdRIiTMM3hSuYBkBMcwl86iRB1Bbrpu/b5V70yq6pL4JFF2XV9hnM5h4XmcjIcsdEcl2452JKqqg5uRgopw08HM5Y3eDmauosdKYcVdQXA7HNuscza642su5eW26ipiDHKZFzMuB27p5ZQZNSy4q28gxq7ILGRBGXUTRJNsopJkQqlu4JKHVXdRcXShumQ5blxMUO4mqAm6G3GzNmF1WxO1Bhg4rJyYdyZOciWXcXDJiM2ySGVdYyXg4MzYdYccxRTNsXbcuxkTUbcMqacyqsyKGY6C3ll/R5ZEDyCHcTu3KIiObl1s3VRF1g3UF9F4n/f8SwYpCBCcfNoHHoyXUtkGW3amfeevbQJk6b1OnX2YmrpgmhowrYsHrvSWn+n87swI7wgVgAy8Eqpm+AS92js1Z0FESvF/Tl+Pj/4mtEfuHac873pZuoiM66JSiicbq08H/1mBtpVTCAlVEsGh7CeDiapxJZIGOBycMoljLbFItSoHRceJCoNEYKCd1tES3xzJu+RpIQB/m8+FCJqjU8KcDNZL2//HRo8+24whNRmrRaKWzUKfk47+H37Vu0PpUFKEDhg2B33ZtA7DuInWk3YdRDkEDkZhkfRlvGALc0fvXjIbHDQIEksSfd1B5NJmjNQ0zaluIHc9xRaG3n2f5TP7m2lyjq3OdwstK0UTmUpMadnPfWwTZkkbyb44F9nRjjxteV1DZJrOsvL6RuyMsg1n4n4RTtjgi3dFMBImjsfF5MDYTdoI6tTHv7uvc1uQ8nrzfo1rbRwTyxot5S2d00yCKOcqdm5L/GN06divC+eTK8pVMoqM4E55UiQdy+kBtNxyaMCZkZUWZyluJfZyx2d7iEdia8ipqqrLsOfdUr2M0/0zyqJbWX95OIGREUAHIjMQV73mrff8l/AYsCHenVjBjw57vTdsF61RS7nXTL13nxes5b8LmRL0YwCdEISR4+lwRe75h/NFmrk9nFB6eWYsV+MycNwz/4LOg91LTfbsun2aqI7S/3nexlHb9jhXKLd+Z2qwORzj3ydnukXJ1I2RwiqOln8E5zw0SkZkLcizzP4t/32771DaS0WAAOK0pZ0VGtesnmjO0QzfLscDEGxNpGkQ0C+LncDmgNSPIuY4M0nh+te4RXSt6NXfBgOxlCU94mJIN2jDySYDsIR1n0IIDexOVErZ852XNnh3iiLx94Q1j0+yAq4hi3/3lue7A3w2FPhUg1GW6qPILz0YbUbyB+J1i2o3qiTpWdoA/xVE84ZOlRyO88Zx3fayM5DK/X545GxRBFikWSxLGaxKWnCn9nrhTL5tHiu/Ux3EO2pmZq/I+G5p5lFFuI8SACm4rIqYiojIoOpQi+QHoKIlDkzpJKaKIq7sJkhCJTQMponbTY5roqGSwQdGAXUIBsESzNxIwHyphQNIY4ixqA7I6ZVOFDwOw4rgaGH7HI4Kd4ITuXYGvNNo9iQosuR8gEEGRpsHucxIfAuVwshC3Q4LmKesDY5TSFY2TERVIO9rcepFwCtGsbrsAUkIhlzTibUtQcUWCJoN93yYRl87cfqwe+OUOW3LhwlIcO7A2rmCX2GKqUVFT5q8p6cveeZyJV8XdMmc7G7ZZJtOY5Yial4+Fu3zmpTOBMfmMjvlkRP1z5Lgm4vnsetbav2nP6a5h49GBCI/18vOHcnhF8sPKP3qUMnTo8+XnWcLWjb03ZOYeGt/1PN4cWCQomAP7a66wl6PPeb/bV56W4faGf4qiflMQHoxAvX3JprcI4BaQww1b0d7XQb4Q45mq0in6khS+XoaWs07hr2AlBqpzudjiMh4bOZFt7wBCRTqS+Gd0YttELLQY4ULCizhscbAFvN2t5f59OdEIpGebCm/Culca5F7weoEhK2PRX+VnM3YS5vMPfORJ1G5VXRfI5PFQuO0hbl4gO9IAqojk0XU375qamNR4ZJzyTInyL2jK83l2o3LIi+Fdu+xODuYnIJvb2trdMzHRksioVrRrcHk2yaiqmiMHmRjV0SiW4hVibZUy2iJGS05ghlRLdXcW7t44yocux3RGE1Sd3cTJUVQ2MqCCKluIbMcQ4kgHBUxagMksY4jKJLq425Y6cbEwTsPNytgk75u9Mg73l2U1EPLUDKyet5UTU3eOFTIZQbMTkGS5uo82Z5yZIjhNlEmlXbsl8h3RZ2q1ZGySONuFFRs8k1uhrDMOA5czfVnP+vwkh04AfI0Vcj5Ch+T6XZQy1MzEv92j6AT+9eMsoaBCv9sRFn0LxSog9tH4O/rizppKuKkImEiP2j8jXwFAZQwSJruRSsgn/WtmaQCUCmg+cy3Az677EGgRFI9rzxy8hAumCFy475O81sI7eQ7YH+dDGhh36hsKs8bioobgIjoFVSUiRTIhv+xbtCQgqFOqoTgDvgI7CSOABfdPjYzPOCpkHACgRkFQPyHnX3zgQBvEKPXl16Q3DsUiiM7hVomkUIoFFnQPjzWjDX0rWcWVLn11hEH70M2Fn+X4/PhnwnVvytwTBwsTM1VIdFNt99pjhry2k67tkC1U4bYxt0T2Z1UkievExoyyGlYBat6Yc8uoHVzlmgk3RRRRf/toboKejIAizq3SZuh9R5RlJioSRA+jiKQEIImQHVavAMiAFQifzCmeqg/IMnY2x/t/Pl6ez+1pA2Wjgyr+jRXlcAQz31v/yNfp2IP3Xz9HwU5iFPQWskhq9PIG907Cx6E5CEJFMkaihURrBdonOrl/Yi8mVJbpt/EE4IgxAXDTY6QJjCFFytuLPzn0it79hovvm5M/dX4w4abi2Z4U/BYKGMVvN3VgnSqBLlYq/t+RR8sLm2Z0zH5z8M19E7ugxl6miVordXJYxRDAl6hSqJPVRTK2OyfG1SIKeISA7XyzExmfWOP3HO/VsAfxh4F0qGeT7+4hacKqwoyfn+jJMAQ0EeZiTv/7p4jAY5fao0OrdnFomTIicj6bgSIEH79P1t/ZwxxDb93mJHYys1b/yaaf06z59OWzlFexyjQ5XrEgQkCJzGxqvhNjYTdVTqMcWSpOgBoRUUZ1fyHwAdMAiCBJqBXxI7gi6jQywiak5ogVEZLxRcK0DkW9tL7h3954p5dnAISk7Ffp/AfhfyMlDGB4Z5v72kXvL3wCUZhR6DOFORJc2u9TjuPj182V1cGB0Svdp3cVdHeZdwiC+EdTuzMNuZ6274sRpfZIIOf390ojM4aOukG2hA+8KhSguK1jEk8rmzE+XbszJvA+4niLO8muV53TzmMFgJRtcUWRwiIqyNZqms3VWfKe1bb0RC351xEiOii2vNb+KKM2c2cXimTyztTThZu8OzqKhpIKUzhHIIOkPCt2N3uP+s6t5PZmN87M0Pzl7I5mh7PdmEAcsuYqqTnBOiQ3s3vG/MigKb/kU5AAeQAZAFB0jyo1Hhye4B0nEZyCjeZBnJvycxvvXzlgJc5xoNigFfMswnrQQ0RCqQlVw60pahpw1FUqP4XinPKVanNWXMx42yKu8RJEwxHI1fR0cII5PNYP3uQCMa9PryOh/9/HvvjPCm2PPZrxyMXRDU2kEDapqQo9cb/Od+QgdgCPkAUqADvvqQqkkLelF2gijcAXRBDLNFSkaIQlQQhTXhRdWigmIKOYghURMQkR+kNwTcEqKhiCBqIIOIlRQ+IAPgRRRAiwQFCsUEkqioiiFwOQRMQcxECsUD/wzWooSCCAeeiSUDuK+0VQOxVQMEAXyeQSojrtAGIDcUCiKsiiohqCIBqKAI3eSopLRTI5IQg7frLoR2O2xh2QuQ01CWjhRAVEA2BI7SKFERyd5odpaGlK8exxBoihhqspSgCyLJ4LscEhYZTfWI5tIFhFgshHa6ZjAMZPIhJiAKGuexjNKrYUlQ70GMiQkIpIqkiy/AdmtS1wA8JSoI070p2CcJUQoJGgImzICIFFZOoyg2owFqul4RbyamBVwUKTukDWywHTEIMjAJEHAUCEEb10t5n9XRlJGBzXb8k1oY21MwBMq0c+zTyeZWWPnnpmeMRDRbRFwVoawbI4TWazS2gruSa1/X2DAi+c5GNKhEHk5Fvp47ZusmI6gXWynpPDladsjnLd2yNT3n6qk04iJaAOT2QZShd4UUThg38EJ3J7kUHrQEySSVX4HizxkestuY5J2nXnvlhTIaNatNCltgIEiGhzt53nKzORGDdcIhG53+npvDzc0rwmDdIm9rKdqNm5brsRWaZxMrYIgqfw39/nx7w3uxXnmKSMfMj2AHVz0MhUML4T03m0dyC9Myg4dfROJlW92w5mVztqJSSXEI2c7XNqbNSF2kga7hT0plXHMsQA9OxXaAHljmKaUYOdObBN8VcTZFjMOmvK5iS053gyCzA5ZechGGc3dyRCBECCiSzapQdnIu9KmTcrOK0Ld3VU2BOguG7BvaNkSySM0nTrAfaDrOd225zZq6mVMRTjj7SIHO5lmJrNjb1443Kx3dy5x49yJVRFxF7tOpi2k3DMq9rZtm+tXADgM0ZE0XGlRyOLQoynBy1V3FjlzJtU72au9hvMmKM2leXFoijcMUlypHo4I0mKhkAwc1ZcxK3LtxlxLG5cZEubgvbgqLeOMc03NxskFflOVXNg5ySwuphjgJgurfFFSa9GY8d0smjd3TNs2K2aY7ixzCdkzN0RVb5tvNU7OkKqkodXMSxxyyqIu3SwlluRXL8OWOHCvHOJndNWaPUWoqrD0W9hCilh4j1yHPjtr8PSZkVBkSv7DtukYsRO1rEYpxOj3s57I0+RlGILHwf5f/e78+/+d4FOKXzcM6ZCIgGqwmqUNWzyPbmVzEXqtBO2heu+VM42q8mTgkxOaRKbZfCljD+1sBHoClH0PLMgoONgNPQNsKwKwtEY+YT2AzzGBzwv/wtUMfUJn6rYeCeZxj5+NyInQUqKedD0910Pfankvd4F1+1oIKnMBlE8ezDhoonotfft74UELvE/Z3QI5jhEfIoYaiQToHWjgwYPO7DMPowqmD7NrMpsGepK7tFOgs6RMBkh3HHOAzym181PZcdNV/h3jiYLKcU85hQN7v5eZsayl7DupiieA2cwbGIqcRpe6wxidZfdw7JnVIZXAViE6PqHdzYV+NFLnCAIOIoFKLIfdvAKYP8fx+l/F5wa4mQGPznx7CaEABvleGfDmyeTtuhIWeXhF9FLrslNtdHHOKx9VkTtFJCJ2BxkVBaUOJ5QUakjRHWUSXeVQQp0HPR1W9Of+ueHfB3OU6OM8jwucPs6721oxtG+970SDdDZtVAx+K4uitEmlKtjdTpM1oxwlUXGDGch2+P6jebgLECCeCEn2Po/ZiGeXru0thQ/Z3YVdC4jmnMhNrhvC9SCubyi4JP7KISF75PP98x6vhgoFCNqkrAIFk6Em5Ce0JZ5WLNkBASlbYAiBBNXnqrX8Yop6B5AIREglSlSDSoOViAnIqhIoILUAX4iKK8FNAMGhdwFBA3AEdwVcRFEqCDoRiqqZgILIgAPKmscBJZZV78nUJeuZuzi8ZRX96BckDp52DCovxAjzd8kSMwpQk0DbYNijPAwKnFW4qvVfSaggnTMdRIVdKGvoNXuXWy/DVXdedXgY3ZthlP6tAQQIySCQhISDIwIhCEYLnO+644J8bheqkubTJZufXM1Yt8erE0j1pIKYK/Ep2BvSomM8hyqKqiR4mLP5tAL80FF6RFkFBT8h4R8giqVBZA+vmUdEFUkRFPWuU2ggciALPaVCpJQoJuAgCezEHEBDlkJ2UVaJiKIMiuY+0RfIoQgqgvYgoEiieEERW4IMTRKFU5FBDyIOIoNlImJYriCoplXkHZFFsMRXBARoR4tAUQRvDqtvtrO/X3jGhnKzYcnImQK5I6AaxNswhRltYvfqgf/iPjz3YfxB3PH6BHGFjLZ8RChlNS+HS0lyWAiR+dP7Iwvt5OdYZMFViBl7DEyhsYwIkgw0lGDKlwRYEWQyb7lBhmxs9QXqhDezYOilcA5iJx1SATE0e1C3tmDhcOGDBMbQDg12S2m073kCINwyIVxCN+oeaALMfIUllIT5eJX2FqrHOso/5xPgkVF7PE5M64CG27LPq8J7asjEiOZCwu3N9/7GElc5PP8HPYahYl5yKmXxLerE9dF5k5ea6Tm8zpd0GZYwcOCOoVq0hmSDjl3lcQb3CiqwUnKbjUUfPdX33dVLPHULrbHNtg2Hhi61r+9q2kxFuOlBFM60cFNnN/f+jPvhHgaV2S64hjUskYWZPdSDJzAFbuUiq8Co+Wb2N3mxRuFziwxQdKL7gCLCtIJmAmmDuum7W60FxaCajZEVJqNqeKY5WMXWh/20hISRj882Cq7ZPSKcu4O7MeZl0h0WOPKI1CRlRvKNQlwDj5OneTcHLkV1yqOTg9Pzc21SDCKgBLh0Qp8g68M4uWaVdF+fTxF0Pt8OkzyTC0yKyccuc2drc25vQZVk0RLkcqi5K1jdVhJpeW7qbpqqqHmvMsbuAyKUpkXJDhQrLojIKYYOnhdFhYQqJgfZIxmTm1TrXCslkqiIKqCpkx2QQQ4cD5KoeYWx1WRjm6mbuXipDxUTDI1w2N28Ma2SYZFlc2L4ZlczJHzIKebc5I8siiyRvcqIoLtqDaqsNiamScIcw1NRJsW7b3ZUaRQ0xm1VlZeTI6y8rZIbGt123ZRpaZc5VQriIuFyM5GTsubPdk6VP6/2kzh78gJKZ0xhT5bfhgssYS7dmdTsHAQ6ncZ7/RTflFs/yEAoT+TFDu7oqYMYB8xqr+7Uig+xgpGcEAFdWGDCGxB5LIg11GyjF8iYIoORGgKHtaLidb9zvlnPpsNwGFiByEwiwGTMszrwzRoowZnfMx7dd2aB7hvCBASdnw1O1kjlkj7dLCWdWF/0yvygZOn3++B8xLlGkhBH9EH5bp8xTI2xAWfrNQOfr7iu0VCptGdQeXDAT9Os36tt3icd5jODJfSzxZhqqATqE3S/0WY+g+V+im7vblIAXsbP76yS0/gGpyKLg8ZCZ9bssg/EYSgTSnnkjYc6X0RWwghv6MET9D+vDhF3P6YJS4m2fiOPuOfOjH68uEvp4QgA/R8sopY1wEyAToDOl1oUqbmft97U2TVIbXI1G98mmXQZamjHMi51TFYTyYQNBpeguIzcIUdAyBrA0m/aNgBvqgxo1Oow39nRxZzndTGbjLegzM5QAyW+CXCUGeRl1+z0KwYrA+blgYKfn8sEWnn2bIeuGht++e2aDarNknAoogyblfZS0Dn6l+e84IZie3PU/VVFTDqbv5IW+sKuItue+W5lwzKFPjFv85Rv51MPvdGsqlPogcc4GyWGSqyyZ+fhIVUIg+yEROT+zKub8hKKh/u6euTIZogexkKVC8NXafoPvbbJMufwwVzBTljXn3Ft6ofD5U7khhEhFYVmNDQD+l1E0DJHAzh9Vlj16lX3zuMAzfm9Raa550mkgXcp5aw06RMJ4ZxynVt4ajDEnrG9P0Pb7HDm/x6rKH5z7a77BHd5Xy9MZZl6rel38mnNWWecNWLBJCMXJle3xlQY8lCOFFQJIslfms3qiuih4QStMy0F8X+ccMMozy+03JEk7J2Uaud5FRCormKEY10XEAZWsasqv8N45QWjHwm5npSLhSDhUwr40MO+YcfXlpMMSSyicziBvV1Q8dD5THTI0QPbkWQc8SbEhAUEkFV2RQQuD2IAFgEJEVzBREoEggyKOEiilSRFDcABCRBUqIBpUYCAruACmoogupVwiEhp2jg7iRALnDV0sePhlcQOFaEAARShFzCOIHCkV+3Uch+vvU+n78Ac1qqCAH+idquU21iQkMgb0o08IUe5OXLTfGcXBcuQM/T997u3DAUsUf3TTEyRd84YBN+a3Kb/lNfs28GCSdhI43S3fX1SiB2FtCfK0f3NLzKr0WDKEFncgIXoQ/j+L/u4IapI5exrXKAC/PLekBGNgBieakGx9G3555LbTfE+nuZr+KwAS6iZ4UQmDArXZAIrMOdfC6YQ3IZKKaFc9YdAhEb+Hb142Irlz5v3uBdGbH3TAoW3gfvCQhAgRUR+nph2P91R+4dL6Dt537b8Pxw8unko1lSY3ogHteZCIhvDIB3azW7Xp0J+MMCaeCmzJkE76a8TDTbjyf0TDMI+7A3QI2byMyHo0DaGjjzq6srg8D1zqgDZsfF4g/maQ+7pNjt484Y8+jg9Leo90DJkIojaq+XfSltWbZcULwBkZBzw18B5Xg8OHD2r2Q7cvjz2tsWO8y/l+yMDIKXMn7qP/lKnMxSHBH6cKCIiIdYzwh87OVachPMh0lukAKMEohESEXzblG/B2bXvwBSIHy0QKAfzOn9Br7+YgCD/atgDB19acLA6Zuo43CawQhy0su6EFIxiQloCINC/Be8NQQoP6JiEfrrt1cJFEjklZeq+yeYT65abAgfFxfT9dL3/u/d39JzrA5BoAH3hYu2jPLrRf+CICKDEj7ihC11HNqz7uj4WqD+Y90n1UiUQ8Md/z00dqlymNKGoAJp7yJb8L+d88PCQ9KX+aHb11zYUZ0Ar+Sx9RgdIb3z38oe8A8kMqnFE1QPEYcVzbY2Ljk2++IeSJfybawy68x8v/UOKaJIPRKI7p6cwM3x+9DuHeq+a6Ic31fpgVffBqch/clIh9MEsBvFwsozCj7twyoHSfYqdYnQatuOny4WELelQfjeeOyqGoz7mzqjUOOXte2O/8O2+0QxLvxAllOauAdZDcmvKs6nhkALbkWnu82KRx7ifiARAWIlyW3pQALQwMnOnH9BMfIwG4A8YFCFD/Lh8XJJQCv3EQD5z6V7H1PPWeUJtuJ8DnhdTFbN4UAO+8KJA1pVQWng+Dr5ThL7AZnREpHeIwPTnz4vFkgR+mQo6N/1WUTKegafz7d8D+jgtbj+RBGz47lJqN/LNThd9oNugLnEHTTo/rMSEYpv+tdfbMnq4tGoHZJy6OBnX/zfkentvJH6HiYfxmd56boBTwSrARVFBUSAj1UOr0vSn9e+8Pvw9jOWWey9maZDcWo+108x5CzYEh8HSz/HPwrSfxH5/I1LqHOFpqmmGG753K/UAYTQlFdttgIJRBIKgIgmRR9aH+FHx86NiT22/VYYA7i1N+Ep8+VB3le/2s7suodDDtpTA4YYJnqszR3ElGDMO2b/0AhqQ07yFCj527JxEpDtE9ObczhrXl1TM+314qFTsD2gnsTaofu5zB7MZG4Q9q303iz8n86dLyOdh6eEpxAnlpghv5bpD7r4J1gZqEgPoV95N1g+Yv5Tny+srPkRRw/C4K1r9HIDpICG7b28tYorPmKVy8TPcBETBcCbSJGB82o3hhFwdosSmTKiAx4A29d4MeGIgF7ZoerOttTt7OA14au1x26+AKNHAFNEhDKEL2NJMQ0UIAUnK8nQO4h4TZkNhFj7nby16DF/8VClLokpbv0dS/TvhAZgCWar3e7Cs/vh5PzwNkO/EQeGPuIuyr8VJph5lCB+YRz6Sjghun7Xr3+ANv8umbCLFWCKKIJ8CT19BwwMZIbfbpb8EIFwXfATP0Bh92JeLcJMcHk3snzGPx1/i7ATFv/Zu38D9BjpgBrrO2HO0bpEivzDMztIgBOJwTET6ImHmFOt6DMHM3IwRBWT/eKGxSropj6ocIl3IAFCm+dev1JnYIASnxgOgGdg7KkVCOo+oIllmqOl4OJ3mbYmmetN2HazgsFHdasi6fE7eCnu40Ekg82etvBg2OEEgdpEUja1VhSZuwrNc5gTHiC4nE4KZcDZfKocyvGoNFgIOHOiMruHBDykqGe/lTVFrmL7rH0wTOb5TCwIL1SXhjZ2SPrgQyBcYjUXbpCEgwPlpFBxt2RyQAjA5ve2BaRnumRKEfmClAh8lRGKV4j4eZh3eo7zICw0CizgS2PTRNACIpi1dOccSwJ65kKq5o8fSoRCIIqNDn4YAG1n1mP7mgL8JMFCOXUDhzByA6K+hRCA4lytMR4ZHdGZnw5+Jflw4CmORRk3N9W8ABN+8AihdAKcBP5J9I3gr1hndEgLFYJ1cGvMRKAAoFGCgOVRX0XIwk4ABAEAH5hesaBipI88cfsZ97eJACSclxAJExs4OSfBx30BaC4wDfs21MNEcJB/WORgzyYBDw67s+I3377qIwUVEWLFBa+6mMFhCQEskaikIonz/xxno6/V5b5cr9Gz9rF4QjJCEZDSa1PE3H3GK4QDuV7VrfUF/bLtd38qxnHkxO9ekJw0qFRkNfN/lk0S8OHLwGDle4fkW7X5yj9vKlHcgAtCD+QCH8TsIFYVCRaag6jFl/70X9u0oEBk0NcbuxcCfjnumXhIiKg2KxdAL7JWAkfKJJ5OCQHBwRfGvvN98g7lE6DyEDqAOAH68eMeRgX5SEdHIuMr1BAIQ7gccwPbd7V53OceYtrjCwK+3PoJwIaXtPaVz10RNvBkt/ndzNgvA7Mee2nXRIZYHPlEGpA4Enw6DTwcBty5KuVV3ZbQKEOQsWclyR98yFrKLCRYsiyEFIIkAUUAWQiwFkWQUIoKAoQFUCCwUFIKKBBYQUkFJFWCkFJBiDIsiMgoSKyCkjIMiMgqO5NDRaxQBsQloIkya9mXixyTL/FBx5ytjU1FTAJUTT2/ti/t15xzB8iei/OOoiEPDRIY9sHGXVYFSRHtjpAGHxVVCkVIi5fzryPxiG6Iqa4JBUnRSAIQb/Z79fzMkHh3okFlnsjqz2cswjp9Xv/TLnGv5uKAQFH6yAAyGhIAkQOqC7C0yA32BZ4Joo1qoMAyMrQnzh+bFM0qLkQIrYgCImQRF7DUbybsDiAmynLfN4VOCiy7gXoMvGeDKoBgi/I5dwkL+LeUsj25CeqfJu7txw5vpPUMcDwvOP9gfGh2kf60LkQGR3iwITdA4easkx5dVvoZ2u+UYky7OzR+eOMAihBZOl3Zj629PLAAxkAUNmjAcPoBkEYi+Nh+45Q/9dxv0mFmfmcfJMCFc2/IxOBeKJRKLsCgZH/i0g6CxLXyghOgMD76HiJXFY0QcB6T72GHENBl5ld5cMWrAJ4BQAxmOzEEFtp0gRY6IglYjuiHU/lwkNOXjh1bM7vRBzKm3m53nrPkVEEzmO3c23cL/VU5uABZGjWK/pGtQHHVzZ7NaDnYFUNdDoOlCIVkLCMgm/UdA4nCOqjH6dwvBbnETFOQaQA6Av33CGDl4kzw4nLm26Kyl169neZHgm3ucxY0cGkspliSEhFkWKEikRAikWCyAsUWCyQUkAUAVZFhIsVQARJFCRQWSKAqqQUigrBkAUiJCLFBZFFhAUgREUIshIEhCOwldOYq1b6737qBdUVLBhBJAkS+ZC1g9POV2gnpTzZ6uHxdqwn8ptrj2V2vS0NkeTN9fBvwdHAc9i8S8qS9P25aDy4FCnBL668HD7+zP74wwXCfezD1B2+rIh1yDHggd5CogAIh6dcPnCn+5TPb3zhrIbc+evDy44h0CL9BQc2jf/bscGNvJ1brQCfAO4HKj7hlZ1sQ8U9egBoQhcMrztLgEHoQYMAwJCHPHxiF9h0GLdc5WqG4jy/MWQDBltSsZdBvDeDLd9tNaEIiCwnakAP5P2PBCQNn1MqCyKSEgyQgn1IgE4/xvZ690a8OXt9V1q3v5f4/w5NgZaPcU0GwQ+VMmIC5pJPlpahI/OZPsz7PunLry9mv87PFDVH5sO5rVJAwwFDwVSbDt6rxPLggvbp1EwGCiR8k6FDyCB1rBQMJRaXe8lnsYc8lXQsA+AI9AFrvsWOAvAoAi2iMQQBwXBEEKIKuXq3BrwOMivILKilVhjq1EB7/ZIMLR8QDAUuD37yAoWQCcsFw5N7wFK2qKi/PyMBH6twsEoANTIoCZERagtRMc8DQbBzwAQAkNPQKiZOQEQK2tzCo/3OYBc+mYO6B64IqE4yDF/cbfTcAKCixHNoKECIiJp2E7l1BjkIilQgxfiP/ptvAGFCxuMc4zYbnMGUiiL0fjM2SymMX6zLW6Y9PrW9bvmbN6H8mIl9nGWMM+UVOpgd2x/0zlO+1AVGCn6Phv/JInDmBuGHMCMKKTkhrYcPD7/fu5e1+lnafOefhfJ2U+fk2QAsJRFICMIsUtp1j191n79vs3/LD44CfcF59vveQWN0TEb2T2LIUGRH7HjtTlmPYQkO9BZkRM4kBZ5BRRXg5EQUfQP9G4sm7W18ccT58DYINVi7ZDo9TGhFtL6Zus4M0xd8HfW0mMfTqdx+VwPBUZn8Q9g8ZAK+t+zUluEjTjPnH57CwYhLK6MEDN5BCDc0qmrDNpy6tOEJhmukwrKTm4n2ySG5Be58uJmCMUDa0AKEsKZDmg98KcAL/kIiQAMHznmp4s1yoSSsgLAgLBYCgBEVAPk4bH5gvEgOFpCbqKYIztnHsv7c7rwGQxRQvQeZiFQQ+8EYLUOSAIVAEnJ2rbXEK/vj72jtJhR8MN6Iqm++4fXYtJsjIPDAHdG3NksWifHH97dFj17VkuUIceoNH/GFSiU3He7sRCHSFMzP5zIcSIN7EK+b6VqCAlHVjvtsOUSK8PZ8FB/oQ3LUATHQ3LFoAgC1AF5DKlbEBUjQay2mEDkrkK5H4DRDB+IDORIcsg5gScP/fAuohjl0bVNJs5M5tRTT6hsJAkCQjIQj28NsOn7MRuvtTYDbofCidS5hfiffLumnckhZ2yVhjU9bn97D9cdYdjpVkhiRT3vycDr0eRhuwBRfL47mH+j0Hd7XqOHhIHeNFSfklKYqbm7z/Hgdv3cDDwNGvLutSf5WZnRwbePlwHFiSBJCT0Ke8QVLSRyk9WZJ6x39X4J7T1KfnHRmMMdpgJwffw11vlhZUOfManVGdAIgl+ViF+RkkymeBH43YM+lHAAf2R1U/wYUPCEmOaktDWGkqfgaFtcfZUym2Xf1mjtmOcxw1aPxc1PSYyrfx0/x4+W0Xd/E3A93JRmH8Ln2QFIcYBB5zxWmd9IE8oBIBiIonEgIpnVNZiwjQSDjoikLcz7JKrOYad3ODx3cwGmtP/cW1OYwc+uVHgHQa/05e2heByQ2wtVOPNVtBksQimEcYE9tAedRLXRf6QCvd86j1ZninTAEzwpi6PsKb50MXC+siBrEhqFJjgh2W4Zx/nRzzNUff6IvgwQBACyJS63H3TgGqIEDHSRl0yQfC9iUjE/h8H+z2DSzE5P6LNn9Vx8PB8Z/U7QANcIy6EFA6cogj0GfUDXqBnoEGEn7rXOCUkWFQ/2FXYe0ZG5qB7CwPjSqF86HWfalOOGwA4cR7ASvUnuW9o1OBtaJriI2dRobO1D72oEvGLGsgydNAwbm+UG5iBFh+mZcorXqG1EGIGv99B2FqhPjgVeiuXS4CFVST9OPuwGhYBmKqUSPAyignDKNTIZMvf8YwSypBEFkIiYWDChKP3kki4VhU5H7X0D6TSRd6us+XyIFrK0hfU79jgPjAexH25XvCoHh9WFt+qoUb3d3ujoN+I2V1Z7FJZ0kLxbuekLUu/byOGXLq2XTOEYy1U9Gilya9mOqxh74kUXRHKXV5bJlhYgR259efX60RU9vnXPDmi3CnWxD6XWYDYQAu21zRPIM47+QyBiflad99H/yzWeObhAzvWQA32B1Q3sOPuNIGj5596WSiMJCAQIySBL00huV92wt3KoffZBBd8eqYE4stHbJwzqj5D/zTcF10ScPyUWgkSQgyB3ofVG0PQlQkR36ij4dnv37nTOh66myx+HWUffv7fIfvY00f8/54Pka014dbOdA/uN8v5uxKgsPeiwqt86vRYqoQ6x6ookSlASFFayzAL6kjrI/1a78Auk6kCm3tn8RyJgkAsGUKxUBGSicFsIp8Vd36PRk0UH4Rq1K1U5bjz0U9r9GeOfKVDv3n0QUCwLA9HKxUEHtQC2iL4h+45Am1DynTdkoqg5KONC/rfHi3AyMHKyWFEuZTEUZk/YwJg6Gx/9EUBE/dYJIj7HjjkML/eJ2Fezd8g/alC35gEnd9R1R+8GqccNg0VPz6i1uAJzGzk6tOn/3zdJmNYePt8uoR1v9xyPfm6SLt9G1gwvh71zL3MjYObv218mhfgT5DBe2PU7ODIhcTJw1u/jMmABiFAYA5jQZ7CAuaGhoUY6+8gK8wsKKUiQRELf+0R8hHCCSCpSTWHjF0wI7/pGjgD2MVYRIHA5ixD9iRJgnJlDeWmeraeBIst87hqA37tO0vkUHNodBpIUQ3CAq+/8cpDd/M82sXZkADIiN+uuzxYgbNfVabuT3+PTwPhPDiIM6VXzP2hb8nPV3GRXNA1YaiuKGTLmDJTBMnEj7c7syaKN2elDixO7pz9vfkTkgLIiLCCKpIkgJJAkLbEVgpgyBjM3fqmB1DMOfUf5Ogxkwx+th3X11PmbejjR6M3cHacPzw7LfxKsNQEwEICtRED1tJb5duAbrlQnBqLH/s/+erc58sJm7Vd24dr/u0ZI/p2D/j2WPrccuZAz/lk9s0i6TKmujDfkbYIsAAWKEx8ZIswhXBiO2UJioKijShztMx8BI9p8DfPqU6jefo7f/DTnob/8X318zU2iHnx4mBKGwCptWExUajJyyP3oXUcc0ABLDYgLUrAigCEwWKULTcN3cHWDBkYhAKCGqbDjjQs8sCJba2iQEaOc4dlB4J8MC0M0w9+tGBx4XTjgfpHWsG++cRY7ZakC8/YscmhzyR7MQ2TGIcJVAInnqhCHVx9/U7Ufi9vs8Oe6/kHn9FPd9nfA/I7vi6RVGSTfS9UtAkA/6Hd4Nan4fTkOHoOCi2GL7OHNvKz2WKw2DOPcXsNGh+77XVD6OF3vCHD4V7XrMDbhTF6GwKulAu8IJDyECvrtsPViUbYqwbgdG23iCgnN6v5GPuJZz1v9Z798HfKsioE8ug9IPKnt9pfTZR3r0hDh8PsfWOtC+zWu96YnfDBr2E62fZRsLzz3v3XC+6Xn5cAF4pLH8ifDwTBtXFilr4TucluPa/psoQLxQhBQkAhAigREgoLFWAsCEWEiiMABSSKLCRRQFkjFZISKsFkAUkVFRQUigpDvaqYdGa/1n9bIofN6BwW0vKUfxv9rZvwDZBydB2HEX3rPmEIjBgvYZyA2tqWQioOEiyhxnqTXBJE1IDFesBYBTGNJPqKUPJHtf9QB6HK0J7KaQt+vAUP9bytP/Gv9b4ZhpT0lK/9PiB9eg17HKTik8EMn6i/1Hmn1aMX1MPs1npeIkGALMm5w9YBGQAEQZScOHqYY9fUWwjKq3YiJfz2/F69G3xMfLmALD4CZmBJ8qMmj/QBBKTNgOhw9D6+JX158hr2x+CSEsPShQYukMk0Ebm/DRbKloPbJ/Zz+vabfoLJ2mC6qChSQA8J0T3p49dYQ/8pkLAm6sltses/HxNvXmTQciWsRnQ04pCAqcAtCF4MgBzeeaXJmMuJ3wy9BtucPFfJy+vzrkjHg6+7A/uM6hJ5OqwMZFii/Gzv9fIK/H93DwNx3CKI69v/OulgQhxiHTyCwEwYAKdakk59ESEQo5UBebTL6Zl4qETa7kE7iJTLWwv81SYOrFsFEaEQg7PUIMlaJGPU12eRJEzYk96gwS0gL8g4IyMzBhxi4JOFaWLUKIsMSFQLc8BBwCIspIgAwkJWDE5CfAZEhICgHIMNS72wMrJQhMijMrw445rbixImZZD4FBu2EDqP9JE3rhWLvLmXFNURZECZ9AAFQGSDpLw/BcyQUxnBlpHIE0GM5GwYpzpR2CTzmB4MvfUDjX/Jrj1u3sDCzoO7EK5sZgAp91CGh/QYjBlJDPPXm4JmKyWMH4iG+wBkAP14zHMYGaHt5gcARIqOGUz8ppKr+iIsG+PYb/alio7QQIhAAIRAtRU039TrS4i69rtUIGvDw7idVh+4nEA+vqP3fr9zw9zxIRzYk+747Qr1lB1FfWfW/SigFIZBCgZUnXViYEHySDG72lHrQ+D2bvKPjFQxFTvmRQfmoD9qBQgecZiob/IHXy4G71goQfiQBNIB945y4+lCoSEP5CtwigGqDCRCLQN45NR61nuzjtjZDDweiF/b+vE6M1PmByUWTu05f9lAhCfNXWW8VqJK8C848BxWMm6p1NAIkbTsPx15jEAO7QZVlwvwy8HHbNIHppJ/XKKmo9HRzVoCBAOKueSX1MIYOIrc1NRoEVbgoZ0J5A4q941AQ2EJ0IkgUREyAXfIBFp9XyjcA8wcwRXSQZBuOsBTdUQPJuTxMXBirA2zcBHtclcQqQAkRBzBCYR8apUAXpYRsUbBRrlENBuTD+Rcrh6afJnBWc4apmD7fPySj8vx/VJ2oYxkna1fDflmE2ng1HNjgGyOSIzNRyKx6UL0csA26WkXPDCCP2fPx2y4NGq5R35xYVxzmiWgJCHqbP4sXgehEQokhwfL4rXjPOKXk83wa98P7Ipo5N9G+N742LFcKst4qyi4Ah4hXUd82FnTIXgkcX6FS0+n0RZQzvpnzPkfFlJIbgMg3pq/XVH2ejOS/jgvmkj34PihbnwzJK+Ecl/RehElB7POAf/Q/x28MifosgPSjBOHUfT3Ayi8LWpYkr+vz6Fb1DXpv0dn/c6JblpUyGrB3ZbuTXkvEfh6D6MD3IH9PqFO37c3EXArRSdcReWTx7XMmXAferMIChuigVnbbrGMzQonGz97CEh84MANCB5hPwGcDIcs/EZ8z37JEZAEQm2IonC9cMIT4YokmKSEhJj7VHsGj2LaclIHFBr/PUsd/k9N+3/hPsN/34Tj8SwLBxl2SkOyZdYKhAiAAEyL0Dqq3jxrGroDMqQk/HgjLpnBR4fOv/Rr6eo/DiPq76eZXrOZTNTPyoH0SW+ec9nO/zkE8M+A+3/Np6gDnIPTd8RiJMWjVN+tMEeAXVoLOJbO8US+eYbM/i8/VZPNBPeh3OOjVuv79/z8dCP7GSv6mXFFK2IEDv+Q5P/vl9gMYpzbTNcfBDXm7hilzXGSRQZBkAREkFgRZFIoCwWSAqyEVQiwIpAiyAsWIqsFkDb3qWKgNwT7nvkXju7p4AzfpZWoEjIgSTix6NIIimfHTNeut0XO8XtY5fDTlE7xxNyFEvbPZ82KP2DbBR6aq5hghkuc41e6F9r/MJCYJJqucYyGxWjkTMmAIlvyMUH/6MihaRAoytXmiDwIQBmwcuIQSFS8REQAewIC5APpN8UFBKwu8Bd2liXJQhVB9ByUnniEsjaCRmygowg9wDgUgHcBg5xli2wmIkIiS8S/rkhD/ZlrZEMyVumnq07MgGeSEhr/fP7afHMP6gGsOOlQx4MnHciuwBAPpVggdgbcNxPx3cHwCHFb6gcmTonz7dTvKNWDr0dwOG8gDqizL/9YzwPpueG2bTjmU6CfrE9NgB7xa9ujtV0GRKzns5eGX/EWLfqo0Zynej+Js7kh76kl/Vcntk7yfk0B+dYZ4rv4XM9pb5+vtFZF9q/zZJ0erxokfzv9fznskV3TgbDMhgjRRYMATXsCKFqhHAEzGaBMYQgLBiq9UQcq899rWQ9PwUF/EOB72dC8U5/s/khEM29DAdOkpybjRbPsCjjPmnTO1GokhDf37KBkGKQRUEWKKqRYLIRYCICyKoCixRERigijEUQVGRBIqiJEQFgxAViRYKCwWSKLEYoREDv+5ZinfTsYlqM7uyYYGzCt98vpHWSGGTpKxOpF3IDQfhkZQ58KQP/f/Vmh6daMb/GQDSQPoO5Stv7rgtSGnZ+k85l9f8KTkhIb3NWlfVP+2K/JSCT+d3jeTNmrimDN5Iv65yCI8JRNlJn+4DAuYmMlKgpf7qyarR+YtopaKaPDh+vx9vSbxFPec9jgm3aPvoyX4Jao7z79X8/8lA2gWIh4SQfcrNE7Ux5XltY458Peudn3VhHH5waO5uo58a8ZMkNZ580n/s0AF7OhyKZ9zwJY0BLwxo+5tmBbc9hdMhuz4F9yjDtQPETtw9/Ggnr4VYEX7679gDPvArZvBNsHjtcPKn1kceLJCaJOC7PvkQTADXJwU/ixogfIifTp7F1k5z7eZ3Dw0Pubj32EqkOw/S7OfBwD+JFL8+CuzvquwpHnyM/E9ADjzJPjgbfMA/p4O+mm4ScXwiF7lxB9GfTAr9KSX0hb3gYC508oQiRUnkAKBxBELh4WKeSoVguQ60IiFaJMZRUy0d3KAdm0ynJeZKv57rtj15LDeqPRnm/c4LOBF1Ro/qg978eH8ccOj7uk7Ub/a9a5rZfXOAU/pFsXDMzBmQ2N/p7OMl//Gg0d4MTiyt9zt41mYlgcqUgSmAiSUdXzUi2j6c1aL8Xdr2Kx8vkVQE5f4rgxz4FWqXAr88Jf1OlArCG59qWcxzkrDcVbtOmQ1CWu4uXJ+WTtigprMX6Is5MykSbF90XeogxNfTupfPvXAg3ZQeGfIikvfY0XvvQPQ8UHpOqyhJ+ARlx4sA6hGliLRUoiFuimMiy1Pb4eDirotsNJXFlw59dfjiuaA3IV8qAhRUJFkUiKwU8a3yeyfCyTHbv7g8ezc5bp1nf3bYQblZyx3iDYgEgS7VTP65wJs4zTs05vc4zTpoyjwMQA6JIJbq/F9ruYIzqZJzKsAYYwOEcNwBe2Vz3cmKx0PA2klMJ+G7CbtE0GAEfZSisD9KZV1a+SrXIkiWFnRUtDSxx95Jm8gQB2WGGnBmILqyWpU2OVuzfMybTCDW53n1pWc9gM4V4xQ6osm7QgshDLgwxas7npCWdyfvi2YjaOT3RvBMGMoRDsxA8uAlvIzbeT+sRf9dvKtQYiAaH+ZkCBUPCddrJzEznANaa/6zjMx3K74/DXabyv5eTjV5y/qKEejmy7be/WF9Ff5Fw4Pz33PZi5o246Ac2jROi8w9npPCCGQ6PNYMzxlWDAvY80LecNSmlUcEliFVzFy1woRqDP5rVK/M8CjQOgHrHcTaeE1YipCqK0YBC+eFBjpQiG+cL4qTZDw1mzAU0IS5khYOgRQ/Jwas/f6ulGWcSc+B2lbAq2p0RhaGMUZmqE8+9HCgu3bsOGC9nSAWg2I4sHb2tpSm6cEA904T/uk3efj3YCjlgEYEWQFIEUAUUFWSLIRZAZEjGRQCQVGRFhEZFJAUkZFA14U6CPYAEOoECDjLmjYZzA9MAh1AAJoQHLyihARAFxAVB3PhPMuWfjClIhLFSZkAOYvvsueBXp/XWCGvgzebDDhxwtuBJzwAMoAH1xxOmFn2n+z2g89g89CBnmTynGgAFxuvENetay0+rT1wko2GeKny/wR8FT/jeJg873xHi+OnONo4JJFGbuWiTlgFgKBxBWKOpFO4AJ3MOhMq1EAN3XzfyGA3OhFigz0faWuKSABIMg+lP34DmwuXMu/YX1Og/zUdITAR7A9EUN76qDyDgNjST4+W9vP/a+fJwbcocPpUGPMYnZdHu2o5ITmpDTsqZPi6ODPb30A0+WtSQDpiSbIiQrDbZsA2ExkDaJjbZDSatkIpjggdUMIF2Em8REN3eQSk/FKRCoSagtQNEr/5N2gOSCQhjQlZSAGo5SDaZpRZDzCFaIaIeyBCZ1YjoHJGkuBE7QjIhIAXCBK7VEP+hV8oBLimWFZrRdCjCFQH5IweExGZCtxjFErYbilhAnj15nfDsy6iygOXhqpYiNTgqmxt0ll6iABzBn4yBD248neXcVRgc9tCm6E3TEiDFoM1UTIkO5EQCEABK99AiNk5zL3o3c4sNCdWQ5UFNun8Z6OB5xm+/dcMVEEBQ8rcr048W/R6mSwXNhmYWVQ9jLWFcVq4wyM4TgsHbxwjEhT0nGmu+wgHAADXszAVURNRKnBQQBFOUvcke80x/pjQwoHeGTP0+uTG0BQP6uHKOt/4MEIwpfUQfydPPD7d+zsBnr+xlU0G8AJlHnyS4HEfggkwnFM/OvuVHgMzKRSEkBVGHY+BliPX0TOKhBGlKnGhpYBD/36fHc0TDYUY7Adtbq0ggHitMhmD5Wo/w9w6bYBDcST7xgwcFDt2n8I2nU6y1sAQuLQsQjzL/D0fzzq96DfQMqGYP2uDRgJhG4J/nr7/y+syiGhrKhboKochw10hqfhlnXUYCABAbCdQ0puAoYAAsj+f6goYfH+0S6D3OK7m+SY0HZHIg6gDQ4AiiB3C1YOU5dXs7sA7I5OKi0nT6dkt8tZopev7se+Y3P9FBYitxjAhAUD2xFcma9we/EvHzhAvxIpiNUjkQwG0NZq5+TPxB7kGnj5DkQ5p/S0DZ+8cC5Pst8nvYHgziKiw70qfL+36e93eH+EE9AnHGWEaRTZdqQvElmk9ZZcdMzqCQbhbNZmOAhYVIy9NojY1ElEIo0Jhm4oIUYoE1Wn3kijtPu3W+0x6rHx+D0bA6NBnw1+bFwg+ioV3BEJARQLEUYGE+wmk9qm/eDebQOkfXcuQ7vqCEfbOhObB0B6VG79KrvePXdLwGEkSQWRFkRj5qQqRQk67f0JUTw+d37ftfrNyHYQGV/DOF4rmnLtenC0PD203X/njGlZx+rQDxS+nu+9S+64HHCc4x+Xfg+JabYY/lvwtixTjgTWiFa3lUydH5SLRbmadlDiyznXCt9JFRRPtImc/+3wVPST+IpE0EO3tsCnUxV78FB0iedrFzedYda7JlTQ3cHfOluryfL3ZerYcoCW161xxDofQMxovgUIAPxyEH0u+6fNMDz0EFhUDx5eO31HRmLGSKeh4PMwD/b0YFQ38nx3R8Rx0vWQQ5+qij6d+jRMAGQEkiZkZkYPdAr9ku9/7h2XF1UdzkK73+M6CI11/newj7k6NaRF+X6YcZlJBFh5l4Rv/Xy/X0VFpyFffh7nmf4MCWZ+X3PF1Ui92HILVtQqv/54/ba0xKO0QBOs6VoXUt7f1cC85wMe/0RPZP91WmRFmwPXPhsK4jpyQB5z8faf4y6ZGu6CBU6yLyHwSb16pKhcY7asXHze3aQ4H4IlZuf2KkoPrMuYHuBj1iacWU/xmjm4ABUIXG0gkikO/XdhYk/mUZfOCulR5QQU4hLAGpXthoCzAIIH7btFiEPT0smaxwyw57Of8mpSHC992MCsiI9dkoIMSQQAGDBgzFN7mY7+doejUqKa60eWN0H+Hg9rsSJbF42Y1jHEad3X1aWPM/DK1HqDzCXNj1D9cxw/8IYb5fRaLe/vlw2KEEB0QfKgmpH1f93o9e2mFmOA826PKAMzBiC5wEUaz9cyBCAYfo85f4pj/n3+HhJoQ93A4jj3JXElH/TWPrP1dEGPyHxhpw/ynMuvRq9Ysdh9i6t4xOrYyN/+Irou0OIkQGt6y1MrAQKzzR9gSBdnP3t2n8V746v245w/C42QiLZkIAD6f6RzBEQhSC+zt36dH9+MvwqDzwzpnvh617qEiSAyAp7p93D0azACxiUQI/FVAsijpfnUwVLGkWewIQxI5vi+778/JH/chlns59P43+eKGMdVUhPDSUYCB4eP5IsLa2D1b1P/NQgsv/CNpttGss15BxsfvA6RB1pON2oJVrAw1vNlpz9BFq1IP6Fs+YJpZPAejYksR6q81rtdn/2d0rFFf6uFqstXLuEXhcZgqSzQNRf1eblW+1dudQusplvU1UVZR5VrKRK7I0mS2cGOJZqJISmZL+R6tS+WU/irE+w4uK+JTXr38wTFGMT4f58cNfPzeWdWHZ3s3/Zrw9k4DQdREqInJCHf/9ZA/GXJOD+u5Y7uGya0VY8YIYUvHXNfCx1Y4RQG2JS1HQeC39XX6nVFIpzo4Bzf+MXAiXhs26O5f0pv/HHh08zjxaSnlnuf5Rtuffl6cuKEi88a56Pvntw4syHilzdbFC2cjz8qOafTwtSvhtViMHNcn8rhIB+yQAS0+nHI+P5cfH3xM1LL0PU4vNGxSDLJUo7Akr9OEePn/Isvj+P6k/EssONnocnnIgvrlou3ummw3btudav+wrMRYEzg0BtIbO6FItzyN3p/jGNnGRTHf5vx1uI8ydzZetD3fZ+v7aCctwmTcaWVt4/LbH879/CUY1TzQckLyE51UFIUcJ9Bnlw5Ie8Y4EPqB/lN7iHyITCB86cJxCvLuty48EB3V2nHR6/ApOlBSKR69jDGL/6fbc/vQoncjUoC/e4hSIsMF3+GoNSfVTizUguGQtrtgLxwIahdodV7VxQ8sHn8yH32pJuyos47/DYfIzCBuqf1LRS8Vh5Yl4zdZ6MMEtMHtEgqBRkrfZ6F8EctNV80yLnxutM6JHNuFZ1zsRQP7Zdb++N8EKJqo8nb1SYRhmiTNFiKBgGln7Ui2VxWhblnRDPMRAg+YD+FflVOj3aCx8Vceii+q2kC4Venh+mhOcQv7YW5col916+Erd6BubDhAGQ1CCStAhRsbUYM+9NBLsVLGEg9+rj0UGggk9+kLw6oFD7sGfVx9Zgtu8hOY38lxZDztu/9t+/8QoMB0A7OV4AX92WJeF/5fP17R+tY4NiLxH/3NP6yvvMB6igJ2Dadv25+4P+HYLyYHfIK2n92UERQFaO3JEtI4ufJ7rXI6VxTIGDpWCgJnq7bXi2TAjlXYlElO1AllsZBhR/mKIX5IYa1mqypuXEfHMoqbQWeSaOvm7Q6NTxOXri+9tdzVBHBp+H2cco8pIU/sQSYwD2EIViqSEUixVRhIpBYIIrEkkgxQSKsAgioKIqCxYqIIwVFFZFRYkVBBQWQUVERgDEFUhFhEZEUViwJERYLCLJ0e0FJI2ggZPDGnXyBX0qZFoyfyIprGx+QBNe3kCcgG+95D7Xf4brNCtZTQo/ugEQk5kIMgqQOJA+tqUx+E1YgsSLf/UIdhRhtfQL3zuyNd0gCG0OQMKJN5e81S/6dhqrzG4lj9PP0cEMxsoRYHWsJIubLE1z15bs7/ZpuvD5/ppLcUUM+WLXrZDH/onWEU7WL45Bb7nai5y3a8yIseBliJflWaEYshMAu882/loX2LM7/zrr05vGFLHS6CVOgLHnMBJ1aXMklRoCJ0fZcoa66wGr+0A+KJpk9ogAnV+mBLJpBEQRFiIIiLARFVjEiwERUQQUURARkgiCwYwFQRUYgooqDBBRgrAUVUUGKLGKoMQQQVFBiLEVkRYR5ntz09H54CmMe6QuDBX6VFId4MKHkI1+FGbQdqw8hiVcBPutonoe+hok15WRcIKcGb/05tX25eng2prXQ00z5Afz+GJloePu5FOLSvB9uvG1JdjjIuOqM7TtQKghnibJH9VNecSEKd4+X0tZKrenOG1QySaFAL4qVpgQrsrUiSpGNCra4tLxiscNej/n2mjftoeunkt2rd01jDH+YFJo9Tng/Dortxhc+Jn8Uf6uOpirRi+I7o26H1MOJtqpQIVpD937xLtYnl/aBXewBfTYsh9/Nc9y5V6c9sWyiFfjKflneMN9jpxPpZ/jzdw7nDMripGTQHojk2cQ4dIRxAUI8v0yrfVlMlwxaG4g61/HzMphlkXiAK20tkdYIMmaj/D/dWXFU+Q+BkAPQjFWziI/4jkeYuSkVWxA1TgEtKCXM3F3Mc8kAX4Sc+eZLFZ6/IFlnIG6anVk/ri5V/q3QyLtIMhiOrJeWbOQWfwvSrftH/N+TzT4TgqOV6SzGiN12b6QNwIAJDR8t23baqS1rzVdU3r8hKsTVlhqpuPrYpsHNtxfh9dgCte+saobU/HKjMsbwRSo+ZqVPanzl332L35lZYnspXIh5YNFPj3PYauZwND7mCID9gyKwYJlhO6v/X/heEvO2WdFUiHj8kzHSXr1aDWSd6KUPLAoh83EVY/ijwzVw0+8TMGugkS8K/6sb67frzmTT/Hl8/NnPPKN33o/SS8M2T9srNEH4Mw+qzwFmZP5aFCt89YwAGLg2TqrK1tbZGq34QKR/4ZXwn+Xm6F/+pB0kiI+IGUSaKphtYXz+/l62w9gz/5zPfvLte/0cf8+9fQv8/tVmiX8sdr0tSZArY3Geye/TfuMrO3ljyNvHAr1p2VnaTlZEj12EEPt5+jCv91UhUU2Yf0vJIJgCMn8VEJV98lnJGR1R0Gyj/ofT0yuggE8QX7Ty+e4/Yx49f+9RAA+aE2hJpfyEvjl8sBcsrHLn56dJq8frvDu9o56PLxqiiKLEBYrERRiijCEJIkISEj3/FkwxTE7W7N5349XLfAK8mcw07z1tGCECl7jd9dHmOkUmSfNzaEBHEACQhR5aH6nhtLnGietbheEef9hIZHXHSYkakJR9pa3+jaA4wL86W+VhGGuNFH3YpoiX7sOVmWYUSP1DH5f5i9d7QE4J3ZfisjA7kctu7P1iLyssTGHfqZ/BVRE7S7zwgw8OOEwCCXHGLD+uXOZWzKUerXpkeBkXbdSYBiyQNA3/uiDh8IWtABgwpkOfX/6X/u1XZuSE5/dYi/X7ezf9W+4wXkQoDoKzvwOtiIO5TGVUPCEDLwlCmsRw9//rtp3RKkgLAUBSAoCrCKEFCMgaUTLkMt+WD1fQZRUtjKgoFTV2VeDz0jJ/7wTw3N135dCpBfriqzWm7lPUNLgNwPvLESQ/+mW7xWvWdX9PRSvAH5wy/JBZDdIONLSSF7sebn6pQLevTxSMaI1dPFktdS3O9/3+KhswZXVPtJ+Y0X1MH/thLODC/YZqhmzZYwHG62U0mZn/neaRmUWJfubkPfHYZDuzXpTKhTemQAEX+NOBpQ+xmpBEv3AwittCDmiWhOTJ2rcRjj3COqdrGmH77vAa/VyOQQdeXTapNz78uP2ASwqLILFWApFEQkPYgA6YAf3fMCtCqu97MC8oshF/8ZIZ06694vp25n6tmQACc6XiKetJpF8Onr+3jPWYvvvwgJa20APchAi/VaGC/TuTGzyG6ev6RL+gZg+zTaZ7foPnzKGeHw66AuZOqf6nHL1BACDSJOLLwiI+xDlu7HlCO2/1N9+bz6A6TGcRuzfQvkb/ngn8rK2k7T2yx/yzLWRussiMXOeOqFrH8RNMm+y5gxWKpQ72kJUcbprW7v0cfZ3ex6NGdefycGMQ2Q807sNPPVRTJDIRr4cCziQUhFCHcWm0ty1FEDs+azjGdvr/pNZw4Uec0B+4R4BHZ2x9Dc37moyDPavZPogX4aO302dTPFkFiLFVRFgIwUWMGJEVIqjEUVBFFGKwFRkYIjBGKooxQVRkVYsWKKxEFJBBQYikYxYIiJBQFYqCKRSMiqIiKMGCIiiikRRIKKMSKiKKLCIqAsFkQikEZFgoiRkBWSIoAoDFFFVYoiAiwGCoxiwYoiMQUGQFBEGCIxBiLFYKyRYxCCqSCqewd9FzAAV/56spR/h9gewYIamKRL9E1Cw2CeoInmD/aAghc4kF64oi/01XYwBmbzLEgGWtgVEsUQxrmhph9n2W254vsusYKh0XokW18ZCzIs0AYZ0mmr0oBSHdOnaaBALEtAuB8LJCWDp2+1IBLsw6/lIWDpxOSvTmH1wXfEieCGbOsQDtkYcWfjKW7TfSPYE2FnhSfP4JD5zt2oLewlH/2HVvTMVPv5Tkt+aumK9XbQvN8jS/86GC5GksEXLpDlzGPU4INJD5FAvMDgDCB5kIIyLCRSEWQFgQRgKAChFUAUfkvybWaR5NPnZ6ff9H699lF+yf53PWNJpwHJE8Mo4/EyW0nq4BYhE6TpeOWe3MBiNbKPqzVkhq/PSC2EHuSdlY6D7oPxtxDwgAAYKAyUbRkjOhIMzqmXENqPTsrXx60PTV/p7xkQ/tqJQtt0U4nrEfI9GDgZQT2Pcv/EjdVUy3SJ7lqJ4KxSNxKfNPW/H/13/3jYaaKBBE7h1Iv1X7TQoa/1LkUr7So7k/wvdak1QvB7+L5hf36uxb52rtdDYpXh8Q1TYdXzMLRHTMI/NamPBwWHKi0b3Vm2K+P4vxKy/3XvBZE7F2Ggq0q8vK6pnVTRQ9gFJ9UmmxFItGgVCIiyTIli43Pr6rm70cmiGzByx6yKl4iuBEFyA4bug4c2L+ZFBDH+0zSoeAvyE05PCWzHaaCilwDQl6PQUThQG20L1/dUGdg+dEtAJAZBZCQ+qaAMt9tv336MiuJHogbr0gZa29Vezm8vYY7YyKH6VgNO78VSWM5/DKqOPj39kd/4bWn35LiW7hDbISOgZMDpcWUQJr+I1vK0sxUEC7jzk15E1dC7I+tz8pc03qiWtsHCRuyXQlev8Yx88eSXxwHKHT3rx5A7SwXz90ddo7e3xqJm62Vfh/607WdXy0TTBAoWQ6AEKgZItiqD61wiM46VOiq1Iux5tsa6w8F5H5AYfOR/FKzAtXiLuQSB3cYQ2YL2WCABKj90lazAvpCiidEciE1RRydNfpHc2D0si5u9iTGwcsR2j9/eMgHSD7ljuCZO55dXeyTUZ3JP/T39Yo394vyCTBkkiMUILHn3fqzQopAYKMSBmD+rn5RAqML31eij8b0+W3KH+Jb/sfsxRJfLL2Mp3CjAa9O9QRdDvzxF2G0ZQoq7LMWD04t8rhfZfPft8XBAZGM6afb1WrD/wj/zUt0OHPwWfgWGhRD2f/siIAUVkFq7qhztMm0f+OCq4ggz6nOAqF+RN1e6H4mjm0IkF9TwjdNZHJue95aBSsOE22P/Qf9ZYlsP0nlwCl8X6kVJsHeMnrx0WoZQLgBsNSjzCWK76aXE0jO1SdqgpecxE6Ail+kxgyHLUCIjDFgiQnNeaan+vzcPDhsbt9IdWYIgICkUAUfT7O3OU8frqZzKGXPlKLT+aPyyi8Fjcst/mk2l8Dz6zwHZOijKyKpIYI9pd9ilogBdgiPpzOFcAEXs/v3riP5/L14+B+G/quOOv9GQpJQ9RIZzL8TIcFLeoBAhIDmmrhkPJL58UFFY9V5PstijZIAH3f12Ar36sYWWT1XKT9DFEderI4Q4q3xbZWr23vA1Fa6Ls6wDjMLNVPXYWSGKXPMKVUW+Dwrflpv0lkcUIGh5oFdfBemdalZDdhSzqiFZV3QqtdtlhVabYAi+iBKZ6E27uvLcNHbT6eHP62XI+bwglYToRQnvaINJeSSRJIwhIp98rOYngOnzr4nKHzWy+sYD8p1B9dgtknSXMP9KpazirW9FdxL8obrWvSwASvoY/ENiU/iPzqo9WmDInzA70jrN9WYGQx3ATd7NBSCAcUK/AO+za8VnN3VnHQxAiE2tcF82QwRAXo2R8SXEj5pRhlukF2YY0xfNfCxvpLsUpI0hyGDTfr9EXFeIgIxBjq+ykefPyxIhYcM1vzHBeag7FZRN6st9dtmfmVXP4G2jGJkC6AdwOJp+Z5MXn/KkCIECHVTcoiI/o/gML1cYoOA/tSHPxtk+VMRPf7DRhHwUoa+iNepMBdYoVetO0eaQThYIWxhh7wQgRd4xBy4bkHU4Y5AF8D+FryQv4WiyIjBC5qDGveAQ+lqj13AXenAjYmoY8yeqJSodpA/dAK4hAMlKqz9fesehv6xEVsOMDteSlQtCESRbfXR7sLm4vBiIgt1UKDsD15cvZTUcS54wcNyUPY/n3emuBCYmfzzr72Qs5t+e3e+bnteYjRdsgeRm+aPUJiOojHq+3iwI+qfP4JW76fBdz1dKUeYPHPDnli418Ven1vg/vdYfnPaqCz8F6eCD8jbdHhwvzcrx7/mPQAL3eWw10fL9FRu6QNeqyH1XSrb/cvybUF7U4BveKBsgvYnZnX8V0KegAP/fzem7wjoBp6NjK7pn/524ODrQwpz1UhJ7EM8EC0qcvnZP7x3cWQsT9CPVyhT826lcZh4qe1Hu9NDiSRGTHgq3/GzmtLlV1ftx2E/nZ9+XnETX5f9094xon7wW6Ub6+wL2IxmBYCHe154gkEgyRBZMb3kssgwwUbn5f1O/l+baY1OFSKeQ2URu6nHELkU4aH9m2H8NbXIECBEPH7iBRhwJcQj8oJ/9EZXSJdN64+J+H05/sVz7p8peqYQPtF77/9uxB0ic1hmZ20sAo3hNacbpL1WPR/Mw2sGAA4oIkLviA6l7cSdjmUh3jAooIITQX+HqRQ7NSgcpeXIRSICTjuW7K/x9ukXzgGIi4sBEL9alCvdl/KLyh+x8eiuqaPNXFqu2mwnJFqWgQngevdwl/3yUve0ZNX36OQ8uNjDLr/9V5JCF/Ko1rg9Gw0btrx45/64bfKXqbEetOMQtior0NYmaGns6rZOBNFgywAxKzWNn2NNbc04Lnly0mWegQLTlibSqLZLJ6Gu1HJp9PWaxPrXDRJHnopvxTw6XGi/8oCT7h67/wAL4Zrs9T+tYgQ3zirZe/301yxSw0RxHSHLvRTm1Ahw/hMj+27VEf15ua2RzziO9pnzzrpXb7bt2koNm+s3YeDCnDUsvJBU0qhuNbe7ndbpT3X7Mrn2lmqGLGNmVkKt15zprr04KkUsn6YmHnNAJXq7bn0t5bizADcExARK/ot+cfH6PNbqy9ZY6PboC8VAkRAJFUJEkEBJGRUZFGQGRSRAGREJAkGQE8UHEjqnD1eOxkdMoZDDDsJu7WPDL6/XzXIGruHVe6cUwlr04IRRFtAAOBASGUhb+a8p1dYVq/P48csPl0zTYL5C1m0IYUfxBAL5DJjHH/q02vgiJPnfm9rm4oM/+7sI35/Nyg0L4NkU9eEm3gVzhDZbDBg8DAmC6vN2H9w/e9ENkCII5KsWRhgX1NNEIoFX5BZ/SgAAxYZwiVEUFXr92ZXx/tnC+US8KQAAUa0KgIXEsoVaPzKX8YtW4O3GdR0H7xr2ft2y02hEnwtrjEZde4f7qLBe2e9fw6ofOK5zNXnGaHxwrh9AMDUxvMtxwIFG9Dd5oW2ZjIFJIAhZDbXk+y8CZl6Tr+QQhw8SSoYQLRj+Bfdkvtqh5Kq+l0fJfAGEn0+o0xT1C5+lyvSlcWv+P184XImKfeL7pAkIRdPdR4QQ4BPb6T7u28eu0/T8dmj3DfgTKaGYfh3dyOQ6oIaBBFUIgDMDYdlv9QPTnO8Ay7uE+0Cflf3jj8sPglcxCqiZY/eo9qEo5mYYYG7bDsXJRGw7/btNavTnaXBwxeqyWf6TI2P1+N1UVYYbf8xJXjSJz7NvMsJGJlH+0M8q6W6qLDxkP4XdW+1N8VZ0UxOo76GiWwx2vutPgCzzQtsphp3p5Vp42KKf+ONCqQ+iZhquTSnAtBCa2XJUZ5ZKCVfSmBP5d01JnkQCD5eSYK+biERm9VR/wyBhlRF5GL+oHQOZnM2tjRsjg/Lej1pvYH8INA7kTuqt8pbhw7v5+dzrky+kGrclgTTHHTQYSRhIQYRBmphAY2H9JuMAEXd2O2tX4xMuc0Ss36M/69WLiEzCIok/+xRf81TeaSHOQv9kHbZ8WGGnXKFu1cMzymyFwpCZxhqBAcm52UeSqTZOejfwpClryA6sr1lWSoljD2BdTuPxa/ibEKfzgajqQ/0i63h7WLDzS4HVyJz5GakJlREJxECGzDCAkqAZAVlt2nImGzCjLE35chj0AGET+EyALZ1bCg0zunye/a4g+lSZY8JmSxY0gK66D9O1TqjyZKJPlnsD6Og+fz/3TSpy3nZqkJzWKpFFRZESIiKCgrGRk9ktIHLsvqhO4X9DVnFVe5KyOrz72sotKmmIYcLD0m3BAK+fnwC/XxP/WL5Pxs55dEx82S6N1TRTqSNghLV/UELeEZXHq3AJlwMATMRWjko2f3cbQHEh+PDf1d1N9/dbDPY2MP4aqTZLQnhexrpXeyGIWgdW7v3bp4ZTOLsQto/uhMEY8YTv2AQ0ll7mmlLsk5q+96LhYMOfovfZVZzvBXqYyl9nArzuBUUIAnmp5cLPJZALEf5ejMBB+dqTjDZmy4YPDHx2yxR3XpY+ps81z1HBSv69Gv28mfbcMkEF4de7suB0YtSV/lFuEoJQlDugd/u5cM2TELdEy8HK7urJtmRmfL/v33PBqClB72XJwUuEtGv/cREfL5IC4MeHn3DaQcwiBAAYMEDqsQ3uenwUZOUpc3m8eOXI13z76yw25xxLVspAt3eRsWBmenoms2FYYvtd2Q+DYo+rjkzKdThBEFkQ4Emvi/vz7tzIgkJx7qsBnpqOw5KNM7Pzo1Q0zLURDwxUc9+W27kK82G6CGbt4WYEdEKJ6XEZNNIY1VpnieLOX3GgwLzRhn9ZL55e4DQI/fLEROeqCXKMk4+gEdlsi6tsRiZoXdSz+hTAQrCRAENpkMrA04YcLuxubVD3Ux232iGaCKqa/j1uTEkDpnHFtOSVrlBmj98yaT/j+apy/nrsBykTi18Egdr0mjfITxfMzSeV2T8KakPCqICZqo58aU0aK5Yjt0UeHbWWCmeCm2ZW2qwueHzxEvw0O6LZZtlTqopnRQPLDPA3R2ggxCCnVy8vz77GnSBKMNnt8b5DsoGnLZ3Z+TG2qhAhFcmyn4Yao5fJQKZLm6yHzRuEdRx05eO+FwjHjiu3HzrB2TF0UBeKJkghmvTuhxk0Qypeu/gXsoHThQ9rZxXuYrCJD0vhy8PBghlghwHHWeWI4hAc/Ly24d5/FsWKF5U5aqcAUa+fjsnbg/7Ax2YcZbLbABdUHTrrT6NBnzFb63qNTZXd2XtAOOfOQtJBA4tffPh33/P4ODLfN/vrV1OHwoHJQl4Q9bdYMf6egDG5kHzRQbW1Jyn3BCWTPh8nOSFZ1JgaFVazFtPzmIaPUPmz5TMQNcCTtmis3FOXo/TMbJl/0jsiFvTorPRE4aTIzO+gG5lh/6BSPNDY/KiASz3/MlpMxlkccDiw2Ll/vlAc7JqNCI/0wepMTQgY+vUAhpyiQkN0Qt56CRewgUnHJCiPrZYoQLUft0RoGH5QBBua9yljWBTsl93XugwXcNsiBGWJgMZAT8NHgN+bS/l/qsZnwHv49/r1LjbT8HxAsoWqRydRPiI+Hzv8mJJAAtb8lKo/OPehhQaID4xY4mOivyWaBT3fCld0KmOrXxhWAMERUYwUlLxHMxGJWHJwZbcRQf7iVAtegLZK7Cghq0F0VEL4EEGC/M1JRLYrgjhqNsMCVBdXlfbEzAELBEA0gSSCVZYArGEGmjdDSEw/lQMxyOBKFKrKgeP+9hkGf/xgt7MYVu7X2F/JpyOm7jDKRryHPgoIppyYiPlOWpO8PMetL7uhAQ6iCEPZ6L/F7XYVREGICMVVWCoiIiRnX0B9Pd2BseV4EOqdMEkfNAvHuQ1zKS+QcM3EP2fh1ZL5PFxbrmbg+rr73jwMQPNE1c5D6ofDOH8MXqtW/Ro/qz7W7/cuUUVfNe0tporhMs7f53cYfNhgB03dfVPFZRMvVJMk0ell7NrMBkCHBNU1NXZ7LiWBeIwZtvDvbH/KAqlGuP9ZDtRTFHnT2TKx7oR1pDd4ZVYZEyHhchzc4538nV7U4V0PSsz/pIhRA8fpX0ufxelYH9NumoIaHyhhk5hzgpCJRtIv+/uhxZdBMq0Q6e4UaYLeDImoSBLeiIgFlG4wRiigxBGRjESKKRYKCIEWSAoxERGKQYoxiggyKkRFQYwQYkgsYosYKoQYMVILERURixioxUEQRFUZEBWDIIgkGRYMYIKKMEYiMSKDBBiggxgJFERAYKDIsiyREAGIiiCiSJCECKMkkgvwXnNybjBE3cgbzG464BENQJQBoInTjayFTpxzW9uedDU5fV00Dsp9ItshY1GGaiAo60oC/ZtBAMMlx4zX5KYwqcdJuvQn++fXgmfg0dp4KygFvkCIhsuHpH7xoIdUk65/n0TnWY3eXdZEnNw/688xC/IIn4v3IybHKBKIAcijMG9P9A6JgqogRYGAa7VzLAAyX6tMRGAUpc2PnfjXcdy3Ruc/0/NYAhPm7zbtJca33TXp6kkY7fjrx8S8w1kBtvICLlwC5t047/AZePNK+u4rfbrheq3fkyiFn6rbC6HzMPmMgOYwQ5pBCAyZDh+Dosr4IHNm57GmB60+T5aDpWZTJxH7l2816ixYTyGJShqRvUhI6kclluoXGg/YSmgh4Omjz+LYo/ZC/tnsncMc5gJJJCC5p/ncrtG3Gx1QEEMiGiA4GfE4OoeMF+scV2/H/tf3Eu3GLlgGVJInsp41TxwIIU8Aauwtru6pWHlLjvlf3jFY0nAiX9Wvu2Xcyb/QVqdo5zsdK17kccxSBS88b1f5tmIpP/noFpYWXMH3aa4h+PP5t9g+ktFtqOO4eNuzknYo42ZuD/zDlE4khp0TcvxX9N0ZQFBP6lYdM7j/a7t+oBA5SrXjedun4I8i3o1fXOW6Aq3U6GTiYR7Qistq6l/aJtPWIEEHT6iNw5niQuDxGHzBSC8vu4nIfjhr9GvczFfJN8LSTYcrsSxghNiBNKcGWWsSCUv0+HY4dSHr/DePu8L8k1Cfc822Hch7E4suq1Qwn2kf233tn2+xxqekgvoRcTuGnby35YX+CLW0ECJPQZY/nu9HXHeYhsgxxRDv1BPAAyAFD3KK3FPRdFCm0w+7WnSmF4/ikDeNqTcBVAMgSbgfki0bo/BvVHrMhckd8F1EtfC1tko6IIYBMZCJz6nWB4pyl55d/dfpsF5FYQDICgYBhOSgCxgqiRURRWEVBVBIiKLBREFkYoCAwWLIKCCsVBREjIowUEWIjBBUFQYIyCrEgsRGAirGDFFRisEZBSDBFQWIKqCDGQUiKiKorGKCiqkRBGKKIgoiLBFVRiMVEk+YbvAfavr1mu6dtzXnywBQBYKB3/4/dhpkAUkFAUFFAESeVJykYYCwPSfx7YJowE/6h0DkN2CDqtQhJ9hVOFUEiZv66s1/cPv5wy3OZrsmi5UOrNsx6uHu5MmUpJGHFhbNAegmBgjMEDPu/EvtzsRiFqO+iw13naAIBS74EeYW6F1hJKgbuusIsiyImnmpLQDzcPc79xwiwhIEgKEUFfsvL2Kf+2H+iQ4MCdvHkDsc7R6QGbfsR5hWsA2oJhQ9GButtZoNFfaGNKhc008Mzx+OFQSEVOfGsb8/m2793o1v3Zs+jzhWvTpHbFSkWA7L6esrRv7djTooMCb5pKoGZnJ8d2+V2ui5bcGDZkbVU2qZU4E43ATb1eX0OPKWy/rG22+RAdmEJmnQBGBRQnpMCXrQQJt1ExmAFoxImpSX3QbxmyuH9uziyZDGvtv08WaYmJ/HgTUsBgiTLRhnpuFlFtCQZEPd9MptDfBUqAm/jx0bbN6vS/x29s5b5wfcgkJRgvC2gQBk7Ulwv8Rq5uroOVQRTNkh0T2somk8q+EODrlZExbQEFd+ny7P235f69jPbNEf0rstwQyzZAtBTVHsvV/ZQCQa3F59n0q2G2jBPG02oGVnx/BwKAaNeFBSPIJRjedwkAiCWhIASQiOHNltmAP8o1zL9Xhf5G455DvLANgalLoT+BsHGI36D9DKWUyQKBNsEBTHgrIGnml6zYmMAKMgZggJbVdJKzspXxeSfy9+9Vb/pm/3S3VdElL6/0QL8zyF7I11v4CxXVI510ECMGGiO2AkxfroU+zwh2mGp32w5/WFxj5XbJ9MEx8p6qnopbgLKdo63m0AGOw00qqX/Kn1+/pXt5Jgvdlpwm71f78BgF4B50BaigSIvDnrg9OjwGEqJImDALRxRhM4eZxVP8/qfWdZiDmZdC0UmFQGpwCXiUWUJr8KrkJUQnx/ZptePn0eeKDvSeCwb/l6PFyelj8UfD75XxEMqPjiC1lhtmQY9J/7nFG2EPhUcFKCwsyIaKznF+zl4PHjmJ3MvJtxoMcVPLF8XUfTYNJA2xR2Zf3tzStv92y8mfX8+/TxiidWylBz/dNsAhihNxALgn9pKNte26wRJ8sv2xTuXJITkfJ5Mtu8AZmGbry7/VrxMdMJHKcQAFK2iqjIKDIpIqhIohIKEgTP3iT/O1z7PKmVw/kr+z2qeHdWqA8cUQqDIiBGQFIgwgiAoKLAgoAsFEJGEkFkvFfe3dvZx4+H6s/o6c379zNr1g8PcrudBRgcZs9i74uCtLFpVhkhIgH22oDPqJVBOOPxmjsLcQhP1BQgvqZdPu+DxHEELmSRIexXNPc3rqVxLgSAegSod6fdEUtFGQVCRiLAIqwgKQUJBYSRVgQUgLCQRgoopAikUAUhFCBIpIsipILIyCjIdXHR22c5E2Vhj6j6dlGau1ctTDTDACfudKUkecyDx85ykeCkEEx4IQZBkwr/b2PS4OkLXmwI29x4jDgwCmEh1oZaS0Wd0w91gggGBKCEDgYIERmBHXTTX3eCSr44e/SPJMvx7n9erjybz+e5Sbf6xslHGfmYXZCR1Rfy5r2OKCh2t5UDSCqelh9tN9eGX5fHwjNfi4ILCmonWMyQGRTLzdlvS6tBnP66sT/PIFI7s+qyshKquyuzQgD9cktHrM5QtIr++93Cp6FkIFO5Zb/kLMM4YBYMFaXIAq9VX39YmzOQyEFkAiwIsikBSKpIRZILAFFJJBYRQBYQUIosgyKMgCSKpICkkgyIsj8Gukt91AeN+A+I4/CafHrLJn6MU5bZEKDoNInIhFtmfkWF/Ag/f9Wr+74ObM/yEpWdpahIkRZ+H92cOra+nwybIyKiIRFEgIMYkVEEFEREWIMFiqirBQhEQRVFIyKIkBURFYigwBWKMiKgLBRZEWJFhEYCqAjEQRgiRBjBIxhICqi7sslYIu9WRTC1au6JX9KHgFD3CyADBgzBAEIX0EbjpnsHD4sk/TtRYBBQIO1S8cTifRhIG2XMKPMDMjf2bJhilLpIloKDJICRCQiMAUhFIopJIoSLAiMIChCLCRVCKEWCyEUihBSRQBQWQIpE5AW597Pi+SbYPn4e1r0+Xq4a6x2zfCVgqhBF8PxZAM9HwPL/vo/vnhx9g249PDJ+oLH+0vPveLWDlmCByesCYl5EjXKjyMEFudAcrkAED342j8Oswb3wDW0Zp3RHGtJA9SbNXTY5IZuujL37+lPTBNxJk/E8HVvFE0Bk7Px0fNoxHTKnDVrH57Su5/mrgZ4WmJVxzsPRHNlnZyLNkw5lpqLTSQDMgPg4wkIIjWSkh7X+6MdTgjUOTXXPe/aNBgWvS+Ccne/m2EkVH/OEEQq34AlDXLl7/tYCOGk8854XEvF5+H0O1hyen7OXJBPWxKnsUckUFtUqEncoXZPx6f+zT4erwaOTLl/TJrgfkp1ksx43kv+ZifA1WamIwZAzAMwAPTxSEhwwgf5/NtkAez7cbQCRIRThMQSyFok8QiAafhvfxSp51cBDrheAn5kPWA/ormAAP7gCMpx4ebCdqYqecIFvuz7zmTy9/LCfPD0XbeznwpyIRKipeBICAHn6PKebDCRGRZnoz50SvtWbkZyJ7UGhpq65/bOYS/udoRrOODm90FXBlw0MJIiLgbmiQhIvErDrCc3v79m2ehl5g4c31R0iRyBBArR31SyliLIS8qHvfj9H56+zJOzQWd0c8CGRmZpNGcQhOSuYCB/TWK4h5fsxQe/aw0Ol4vF8tMfqkERVF7vLq7W/DUQ4jWW5PWwfVMaDS88oBk64OvAMLI+Mxo8MB/mWisP6rpQYCBbxBXwenXy8YYmDBRQRUF4HinWH8r16m+6B9q+9nmynhRt7FJOqwlKWo8Ofih5NtX0wOkTx7jkSggZkNoPgfyZdgER79jvQUfDA6wRztBPeo/E+2u3DnVXtY8AFz1tFdHWWFAGFgTzI6ipLCaANCJATqAcNjipx9Kf7r4PR0dWczPe8G7zXthUhGLCZYv6V2UPVCQwOkaqW3rhn+uo4Vvt48a/93xlNagFlU/df4y2+dcH6MdllBokk3abHZp2Qw0k3h+21/DN1eSnx6yqHj4G5Lvo2oM0CABXFyR/e+G4v9Nh4dEv2+gYZGTH/tHN4ME3AYsGCQRlynS9EASGsZXL9ZqSlbaqp/veyxDKxAuFsdf9Rg5gOfP3fd+D00dhBVIgQCGVpIH/hA/IvL7wE0TQ4foZQPqHyTan/iAUEVBBEYMFYpkLOBCfrk+kkPEZERYaNvDk93Hd7R1rpzLJCHxyohf27W9SqCRkWEUVGEBYAAosIIyCkFgQWSIyRUYKIyAiIkBEgMYCiMkFARgLFYiKrIfgQhh2efu9r3SKwxP2RSm7VMSHDdQEmlCE10Fv3MhMa6EG21sNciBKBFmm2XhFjCMCf+WKn7T/jClDcv9ajLq6jHdA5SHxtsG359sWl6wDjMee5k5+Qs6pPb3VbX/Hl1na/zLCbCQP42BDtyOJc0YqZBJp1/N9b/g6GZgf/RUd0w5XUT9CGdJ4aqDMdgPGDlN46x1gZTPkBniVAXrHtEqxD3r/DqEuv0Jr2LQVJCBBtw6qAE+nHJymfA6oz8PW/xHP8JnKgNnCPrwD9Ihf5qEMRlNV+f9Hx8d4bE+MX60Pk/KFHp2KtcLikk9qA5ICUyL4PQEEbC3t1dv+dnXy1gqZ9a0YCK+sv5GRAtTz8nSkazIMhKCXC972VCxMEjkZoSSD5+ukyt91wgHT+4EGkwHyuHbObvVRWAl0zFlGmvvNHa/QUwqCYQhAkWT2cmU8vqYH6hl+B8V88Dl7PUsFoiduOGJTQMzBJy33yyeH8aLPLJmwKwDcxSkWsM/7JVvoDX9rJEuWjASggwdFJWE1pauCi4Lao8/2olBaPiQ/bXYbkJD8yDUUIQZETuXM4AltxEeYvT6RE+BWByQ9/5CtekrwHOZL/zgtY+fYLQPLB7c4wyMwrkVatOaRV/78YItmBxiWST6Zb0oWMclSVLl4IKUxPlQP6tUhXLaw8m7zHMd3E9b2Pi4BOJTwCahAOYNaZs4CUi1ODhwsbHwFs2MmC9WH12TLhyD83gw0GFIh36oBfhZz3uoSk4Qi5Hz2u2SBoVx6JuCeJJgPlVSkiliQHbDlh7M879axiGThnyeI/rLiY3OzWXT2doFZ9yF4EgElca4pglvUnJxX8hrrNh3U0oZMHLVckPVgBRkRmRmRLGgwYlQCnD7C86uDvkuh/R/CoFvbJqtR/zSdCa9el9kocnQQILjchPu//DoWxSB5LepFFZ3yqpWiBggyZHEBJEs56Ph+jN/OTA549hK5VbAWb+mjXpgWSg08tbODZ431hFIW/vly7K17tCv+TWxJJnpBDMzhiAbWXzU44f/lN3z+d42E0sXlB5MzmYRqFFgeZNi8C5HUz4cuKSx7K1W7WIBXnwvL8Q7f6MNTjXoVkifwkTwRf0gGnz2n3ZmgQhnR+PP23swNw5DAp9/zX3eG+TcYj4pr03nsebKxSCrB+jIiCDIgZkDFNHRRvSskXZ7BxpjgSlT0DjUDjv3mn/1bAkPZh7EscBT9v7aLCmFcHlu98Ad6JjYoAJziIGIS9pD1+VPT5W7hH3U/NOb/ZL7Mae2ITuiMAO5kwcc4dgv2OTDt/9kL+qzCIEgSImZEQmjQkyOkgJQghPhQH4Lly9LKwnBKrDfZi/pYRt82z/up2Wp3zhqQycB8cpWDUpcjLvTUZo7yKwMiqzQZFCAA6AYWIAySOmUQnVR0JOQmbD2HvHZygoqYphlWtQBD2ifKkNcfR15qzeb0NvtJmzI4mpErqs3SwzZB4TLoiG5NzmBhzsvL/CD6jIQO4Pw0QTfr/Co/S9+mWrETCWxCp9aqvS/AWottsN2jvN+qUDzRD+OVskgAzIGYJJIG4httXLr7Ldc2/yWsH7419PVQftozc+0wvwcf2nQYGBBZCYCJQfbjRvw6Jb5k4vXx0G8DENXiKcmdQJKE2Z58A/IOPbbJOvqoZ7NoJ8n+Lbde5lApo4of9r+7mfBV0TMQQ0jD8tG1dnBYNpDQqf4jooLHchFLRO1+Dq2yGkRYoKif+WH/iG37qTZAU3g8qtHTEuwkYMYRISSMHgz2scj8wS4nPzyS4kgLIR9VqiKvGTbPPr1FPDJdFwgIkId6GQsUeAOc17Pm9TTkF4M1rJ8EFGBf12LQnhQiMd6oXp33eoeq7jJhBoxPYBF+28LwQ+bCA7YANH4+77IaMmLISYn3du1ocTFBMIfNn02TyexXZz+fIeVAvqInpGX4gDnSjZMFDo+nX/Nu1h9UEJ5GAMQBRZFFgshFFgQiMkBVRIKACkRkBZIoqwgKEirFihBVJ9z+clxg+iwlfK/fHo7+j7UFmIRsMjwDFGwGo/8w6vbe2dmmzxt8ZyGIZ0AiBTqCACLEnqB8YJvosPdpVi++kL9Hb9/U0weZLflTOG/Mcpz5PxZlgxSESPIpVOrLozXHBJbFRot5v3K3YfwmUAXmy5om8y0M2exWrbzYhz4UQGDMGYOpfTSYbvUM/yIpFheNZ7+W5q7NLkbEzbA0mwJhJPAtu7Vpl0CmD+QbrZiGNFJb0SgAFWROS5wy1MnyFmiAiMeTiKo+0oB6RUnKJ8rjlIJfZAzIEqGvEiEcjLFahthszMERf4WDIkBkyyapfsSv4N+2h0yM6jYR/pkn/pk0gv53RcXGPBfjF3md/79uJc/nRedabScMjCntfW7ODMykjCcxRw81fHhoO9Xq/kVqyUfzuva5zEALdNG5BRY+l+h7sbHwD0sJnIWTpC1Qkg9AIs5wdaeGFh1fbT/mShIWDH5ILTOTQoiQyOsAAlgYKPcoiIE4ZmB3mKNKAFzAGRd8wki/BjtMfEI9qTGarLXobBrnm21m+4SM2TaNrgkJJhY6qQp1CBezJLvNkyJwyBRg440aeYM5/HHgdro9mydo/p3nBcKhIjw423dhfV1ZH/dZT7Y6LZwfa4cbdfXYbQQPThhOWCjvmf3ayQUzU03TWBXW/jhTsNMt39U7YlFyHe5Jrrzssc9cTF1NMJsuLpZVzpCcFqqZMKcnjwPdLqUfGBXWgy0U2Fe4qy3Mn4dIT+9eF/xECOzaZtnQn35X1mdTryFq5FKJl58dE05fKGoMD5tugRxipy9zMfbhhgpXnyz1Qx8+/76b4Cq3iCEgIgbdtGBvvrPwh6O09f4u7xcmo369tbOXsM1ehwGrM1Bd+mhP00mGm/LNfFQnDMYFV4gLG/ZWL7+u2WcG3PCyVq9bWjd1r7JRgEDGPYDDljYn08GW3+zy7MnyfAWwLkqCboui5uslE/GFc5sSH0HSnbcoNHzwQv/kvL2s+1kLOu/OjBSIgUpgAiWtjakncmO64GW2dsepMn4dmN5yUbf3AA5wH4LmMOWFQmQ6TMwthzzv25DKbiA2wqj41pro9dw0YHLuKLelQBSMFbH/GYRO6oPJVC51Qh7DbufAtNuZ9Fr7f4BO4NBXSVfDyPurM0+3jbbkeZYW9JuBvUmAaZBbDqVSDgaQ4GkAfxsaMnuUV2g1ZZdbzEBZozVh8b99jsyhQ7cvW9v6Qs7jHWBDLdA2WAtA50U6L28GX3S2Y3lOpIDBnuYit7CAUVgowal9iFj9dy9A6Leb7M+KXFKn+0h9QzfV9/qFCL8MMDwVni2On5rCWI64fN3a7qmWIKMihd2KfSQLUSJ7QfdJ+6Apo0HOLlfgcC+EL/bxGzoMcJmP3OPuQnv6MQAOfu93Tfif/Dwye/wwch4+rUxVkiiKzpjLxpPhZP+tBSMRIGJhAVcZX+/dTebH+yfribpPLQJ48quiNgflCM33EKhmKZe2j2yjmiDM1bdn7enmydyfCWymZQflQKtEkVOwQhUD2xBY6ba7fLaj8fUQ9ELGT/MbCej/ZpsHZpQQN+S8iLhCoSPah9Po8/6d/IHtV2smWfn7PnCqoyMWP+EK8EYgsf7qpXl2vCrqHY86G49g82ANJrxCBAaK+gUZq4v/EEiRAjAkQhFbu+Dshg5kWk6/APXFDKhfGOsEqgT2Cxx5gL+DNRByAFrVCeCip/ier18F+A4aFOPLyj8xVz4k6sh/V/f/24GRT6kq+rWSYkgKRRSQWEIoLIqhAWAoSAoCyEFhIAiKjIyADIiyKDGPk7XJbr3eqdF9hoPunOPpbrx+nZEkx+MGsx+1cFNtPAGH7yyOcbpsIAWMiIEpookisiABIqe6iwqISHWKR7ARf2iFfVDZA4p8mnMlkJEr6CUdAfgG7EfJNjCSQhm8MiQZVVUzfow/0P43bej5zJ8MvhF4/U/u/oYZoqAMgBCJaDUEhBQZMdsr2e/qWw3hBZqqJ5ZQaWc59mdLrO8Qz5OhxeFOj1sVlpTY/vmX661mJrOPHv8iFngzuGrp/zuY5pfHKROhCCW0pNtWOsT+ij9b5y0hkn+E4A9tEb2OfXltqvROILW9NJ84vIeSzo0UPk6KQzT0/d1WfgJXjrG0o28u734laogRYGIdzdT7x/9Rbzt1ZGxBGI/SLmVUHEuKXNl42hTZNoY7MO0dBHokntzdkv6OgwfDqpcWYxwYB6JOWEQQvS+xCp578275NoHJ7HSm2CZumfnpp5fxSjE0iIJVRR9TSBcQs/EJY6AC32IfWnwWDMd4O1Vv08B8ujh34/tM5FtB5jD97ICJeLt9vn8n6+HE5/BuaSq9lUqaysHawXZWqTzzf2+udS+9/wc/VHUmAySQMEDMAyCSKmb46t5O9s4d2OX3q6yBeaQRiOf5T0JYLIHWf6zPo0f2w8jNlZFgChFIKfQB/gibQLXkhbyU218+7rPD5teRcqkhJGQTj7diz7RzzBWQFn3hxwTgnvJJMQ/X5/6b/r6zj08er62NS4/5OuSioHBtDpXBTCkwNogHhI6w6aKTAM/FETyid/p5/XlxT3i1A2jog1Af3+CtcP13VNF7BzZaWQba66/LWTDpPME0mgIGK9oYcOg7wwmmriuS0eOYS/1vA6k+rxOWwdzCtBUgkRgyHFP+8FV9RJnjSQwJCA9s7v2/HnYErL4Q/dp/YRatl7jgbaohx2RfXn8hJ4pxROXeJNwHTM/5NswNEaCAJYwDMmsDyQwtvSgGhCEgpCUgdSlavuo9L/ij0on9ncUcoJY/Lzq5v44whMfW87EN3RXb003kIyFkQAKj96SAGcEAZEFGQXN1xBKM8aGl8XjgFiE13P4C0+Zf8ubbCIPc46TshyYYBj/nbXXumNYbZT2fQYU2jnXQARDJSQ4whsLIH8ollA3RDrNnEdPU6tGRQyJXwha4w41CApl/9sNmmqwmbRNpv6Mf8j0TPmP3LZgEvKvN3m3YMyK6AA8uAB4s00j1SMoT9Vh/RpLHox9DT3+zQ0rtWOqoUWQuJmjGIWhJ/fBb8tB8R9nZmsL252a3MMmL+VxBHmoiWUTpz+R8vPzMDpyGb0w122e8Vh3TJmvq3UYkO3/1BuGKGmQWAqqoQATz+Bk5fl26EmtfNmKK85qK8ZelzARCsv9hrHufT7uR4k20mXNuq1Wq8QpAHgYBBJgjMSxjkqfwvYPINejypfEwqYPL/1P+hUKOSmvWcW/7OPmtxLtitapr7xw2V57uf4cwzYZoRFrYERgEZmZEDHMJSDhb0bVjK4Dv+J5bvjxoN6BlpMUdlK5uDJ4z88PvI+5A0IdoOC2pIHfgcQt0WjRNShKnaCbP+x9bboinIAgp6MymeCMiKOSdEeUx8GPl5wx63/WrPXaQ/dn3pgqeOvetvB4Kbaq+yKor/ghoLPiiurDgx4eqao2nE+Or5Csp9NDmL0nbVzUE7lK6DAq/br8i3Drq6LIAgEiiMgoSCKkgCw0gHvcPjcAwiUhg6bPZq5M5tzYubvWsIKEBVWCvz75wOJZs8+PnNfr7/D/r/fs5n6z0fHz5m+cnsO34Idkxqtddc7RQdwGB95gBYutAqEAQ4KhAwhhoy3upz4FtJfTPi30GEuAsBqKe/zBacwen94pRj8LDGIScusaFHUobQKE2RT6IYQBMkePtrkwuZo4wzYeQvckD1dG209fPy6u9ylRqhr8uXms8QP2/qUMClL6f63DLzbX2SkbthhYLBTpEEGHhkKx99H/2RPALA/ZYehG6ToSQ35X4H5BwvGZYVq5SvCWPsPRjIMMf+NYPpFnLHpQJp06/3ou7jJzWKyFeT5bbfH3aM8MmzPxksck19dAGuCJJIKEgLICyChIMQAUgoSKKEIhIEiCkgCSCiQijIrIEgAMgzzqKgePd1Xv3yq4Tptjfd9P3+xwfjMnpGQMiiX3g+IlEuU7jI70t7wzmkXsPNOCbmCeRt8NmLLXo2G1j1l7vEzivRT3EOhhDntVH/a/2Px0Ne+9hlSKKfXGpCGesLdzZtsBgIqHNzf9t97Ed+jLzXKuUpUJJAij6geKW5GaRP1jT5shlTFL7ol/Ih/xB/vWdLp5bcRl87PW6r/STXZU2TmgZJ2tFJYzPklRjMgAKqUFqN2uaBYZEoZEj9dllyIeyfD8BnhI6+/8Pe5xKqyQajigLkZL+CbyqYJCeySN+hLU/iLT4f5gD6ijACdqsOWvcmH6eWxlwnSS3pnhL/5mwODhK5EfWAk6TuF/SQA3tB73a4bI7u0U64mfl+ff9u2JmyaopQh/zeeSL7X/Nkwc6LDEhtaflQzr8OfD5+49773p5pVUaDIjk+o0D4F+BehNgOPoRiUvldeaazZ/S9yBlchWMTGNv+39G4fNuO/bCd88XZfqwBrTQaeWrwcoJFVqMgqSSYQ/7l8OTE6HxuTwRu6M+g4R/l0mVE9cmwcwZ5IRX9oX3hndFzWbP2sePP2bpfwcgVbL6fLxIQeZkPUMXNTA/nuIFqifSg5jz1vpvriGjcdlhMqmFSwEhfIz85XrfHF/rX4THkrIjecXjD0aQ7YYXem+TWOdn10jSlQOXg2n0asfA9zZLB6/re/kuHrj+Nb46QVFg0QYKqCz9cg/0THx94A6zD97J6gEwE8yB1cYZjNfESd+HEx7u+lyQ+zydy9zOQUqMiAG/5INpw1vPBQawq1EYn0EBO+gGYAjgDQSXWFh8+F5PJjH+4L+jrFNlsPBIcEA+n7sXBBL/01W9BQPqed/AbjF6jT/v48RPJ/fL/dSW3FWgEyHDElhMrHwCXEDQ2uuLMVunDQ2su2yhYTBDB36KA2P0ZRLCmefAgJkoNDSfoI27F1AXEs7XLDh69HgviK3rZDL7GfkNGVovX5e7iAYQ+wP9DqyL2aKZ+FAGuWkiszVxbTDz8OzdU+3oO1h/WrMcoPHJBKy9ZhvfRdf5dhC0Ma8TlZ5oOBtLAs7H4pIxSXoCTMDk0mwtp4qzAa69acFincT/pph8EKIS/0nLq87yhj1qfJw57e3WxeCtsOrhpeneLpLBM4JDj/9wpoIhDrr8G8mM/vhXR3AK3h9BsYDMfaZAIbQaMnzH7HCBh3wY5aR8crLPjXtsu8oQH3VgL/6g3P+AxBzqPfHnoJa9E+3lcpJugCiKwUhFJBGQgsUBYChBVAILIRQAWSKQkESSIxZAjEWDGKQFJFIsUWKMiAyAyDwc2uwapy977LeGa+Q6DvUZebFdZGRmCBdEkFulB3po2ebqq9ay+/N2m+KXoeIfCkeNJR4rrprnXGRc6PaiaaXXAjmeBhJYjV80kkp2dTWsaQg2aSytaL5X0v4I1HfpE5tG17Ke2mx7JOmwgdEjPQxO22JVH0Vr/crZauWcHso1gikmt8WhqDJIJKsphIawNz7iBtqHgWbEq1zkT2xNkZlNZxqqn/SYa2P2zTAQ8SuDpDbNrUnNM1pe0UzZ2O7Q2u0tY4zWEoo+a2zfEFY1+uQV8maRawyJwudJLOsZNPEFzi/wuKV0jPVBWbYPRpNikw4qdQjZOiwxa+UpZDikr0hacbVgWiSirSgqYyGBYh4ueutaRsysstKxZIulozEJRmMQgNRrMWGovZBSgUwtDqKCdGEhKYqoegmHvK6T0QNEOosJ4Zp+tRYxkIZS65xl5gtuGNNLvWTO16f3tL8CBQhqnHbcydEJ3TbeMpc9U5/0jGeTthE23vB8R09DrwDh6UlmsdIrd6ibTRgutX1Q+X3pbx5Exgxaqx+5Kjyb5wjtyvDahi++ONqBU3nDdE96KdsLaurCD1MJpNkvMxFcjEaCglU1ERWojCCy5Kw0jlUxOCwW6rNrxg9kjnMdFEXENMNGyUOFGoMK0zbTD6mvekLelL6dX9Ft+k32ttOWj7DXV5DfOJsjLugkKYpHAvVGuzKa1S1lqoq76wpZbyFqLvgZ4U4H04heaW1YaVvY8QpmWVQzWh+OD665ErSvLXKWrp37PK9Ia2wxoLs0Hn/vPn2i9ZplixWN1ZBu2GBDZzFdBK6a1Wb4ZjdGixPpE8Xt67oJf6llbXqZImo1ygrWA0Zsd43FkAsFW8RqiSn8bw3TTE0xmE1OqiPxPeDSpK9IrSO7ZRXeesIt1tOLxrDS9YX33WR6RxoicWlCMqRuIaRfdI2OUkZI1nMxaT6vXXOLSjG7np1vzwua1/XSb+YxkYlu1fSSja1VvBdyLGAR52kFlrJtjO0PFZ5yF6m4iPyPFklw4op7a1kKaUa40xPnW0aymemTfdbMxulU9OZnpGkNBgJFaW1GDGIwFhMqzsrUMQCoJpgGNZ0MKKwa8A5h51YUk0FjYYKUr6MFzGKJYNJ7UmMQxlopALcSoa3F6XSMarG0YYldk8NXEXE7Pg7NjGf7ReWuYz0EdYYqeZjo1SrVhmFNBU5rFFstz1q1tzNaU9GWkYUurIsBr+18x0zWMoMZoULDbS+uG/12XnLEmO+uH0B4kyZgixpRdNJ5j32ge9BauBEVOv8tMq2ihQNYnRa5Ja23MoiFYINZwEZJG2i2uJNrEhCLRFKpg5LlBmRzlXAx8RtRq4TS7UDLF7x/x/NWkfr7tNc2ZGXINtcRNsvV8nMyeZ0EJUR5mIaJPB2tPa8poLtaRzN53itoI5iG5ZzvERqDEkqcjYUk05M7HB4waeIT0OtRMZEw9cZFhQHkmgDSZQEESSFAXwtTyMQyICIagaUiOT4eqwacBVgritRG0xSQeGSfEbyujqL5BhWODYorYiHWWBK75GCpYKfsernR75EWb0WhHL+hUX2EyZ70GT9kHTdvfdc9eGu2ghc7U0V73lJA8SkFkubJKGIpJJtEOk5QpMVP9K4el4jHF6tBawZsk7Ta0UZXemHYRXR5cqwZvJxsF3HHXS+HD50vkREQzCglVph66KkRQbhdJVjB61USF3c4o50ghu0qV2lgXi1biZWcCSQwgvdo2GocPkM1wGmlBHMcjBKmRLAsLUU4DCK5UFhBxJTcHHKxMGLDKQGAqsVxatgwiySF1EbiynEo3rcXqI5Wzq0czFXXIdoSAotDgysFEgl5VB2gJSEheIUWGJqFFLmJDAFAocVw81PAvKoqIyy7h6jDCgRmEgkBd8jJhY1MZFxaNEE80ngHeTCNnNxAZSAelDnmdSaVrPmUsWzgPip4yMRErLgPm4zFel2nalmzpltIaIlnMkfSExg9ByeURUWuzBBU6UjjEjMDNdcHvojC1999sY0xes1VmElsh5sHpRW0jaEFaapLSdxE3jDJjCQosfBKtLpO26eUjA6Wz8y+rJ810lYkwh5hd2Q1L13E4nDSFU3Ul9sK03yPk+ThusNG2RERLVu0Z6KH0vV9HoYkJCoYKDcxvBiVKwSGgOdFsElbnLJoINAcrhFn6sLO1Aa5fUz8mms4WhHR4T1Tbv4oxxlXCLtqKWGZMeBODHUbxALKzuJBNBGwmq2MN9EhJSlqK2hKd8JLK5N3wgiLScUOwXQpJQzCFG7XEbtYsRUGlg2mTD2QRikCfAq1jKIeFXEFGDqJOMwgqWmJCAkJi4lO6oFiJmDawkLCoe1xYzosYO4vASla6US65vdREZGBJDkwnWqiTCwnKlVesgpz++uA80FpRvCqSrZpaEUcCIjJBSoGh6KjWvSb3pO9IzpErm/+0jmxHik3oqWhSGZXF1zGORrATF7zrWGKKoRZZWcYtF8MchEMeXjnDiVztaURY4qYWQpkXGMi9YJSWbg8jEFU1UXsHqyCTisYmt7IcUK9A2RMoSCTeOFydStgXVmtkOrTxk4VdA2aTtFROE6iAhmqYdptB5Sxhlqs5ynUwuMiUsAKI5/zbTTRVhpJw0qPE0XIrbQKDD4itpwQ519TGrSF9WvOg0DCQyExoFtj1UhDSmLrSd7XnmcUyHCx1tdWoDrechW1ZWoaaIt8XEbrZMxnQWY7Sq0cJ3K2akEgNLKL0nFlbAVLVnfSryPNLLOEbNeda6B8XCPGZxQ7vGyR+bQTyc/cvqcO1b0telcpHA102oF4Y1jJbQa+LVicoBnW95PIYnR03KGEz1sLBUuTvGJRo4pQSur4FcFYw1ViMCstIwtMIHyDowMWsEuFR5CgmLvQQvMRRKZEYCN3Fqg5imbJaIkzvW96CUpPL6bLn3lxSl6BsV1zpdnONYvKlTlqz60nAT1R/DVMRhnM3T4aYgltpxhbSGkJQPBpOCnFrXFZA0CRDDXIoEmKhLXrYPqeZUqbd++l7ZWFJ1ymcDSRwcx7Sf80SovLNIVtVha4MUExDaQmJ+mkt0qa2zsM4jkm/iuLBopWyTyccYtrr6LY8OXhTdaWQ2gpGa5M9hNBugMzXVls0LR2G2lVYxUTqSLREI4IR3yrHZRU1osFm6DFLOAogoYYRYYPEUjKEya8/+fNIRetsVrrbGXnmia3tq2tb2c40mMZUpiMnvCpzSVFuslhZhSo9I9GjPz0DtQ50bVNcmkGoGEBpogpdEnral50lWM61pGS/RYWOl1SNhKh7d1sUpmQnN8BY7WfQNPFdAeotGa1iNICVciVwf/ziC39/UILDIPMK6v/G2RsDxQ6vUWrYOcrPqVRm1Unii3XY7xbDDG2cUacHrZb2QRT1mmJC9BYZoTmwI/33bM2t2tR9XWKIK1UZEXENujpWw9++49x4vlbWa9eCHwbYHCU3pw2aukYMD3YuePKayFu8k5JKFVxrZJfdiNuSaVNvUbA2FwsY71hJANz7nRyMaT23xaIgIg31vbckYC6YbdE8UfGETBxkDovke0bw3DxVhXRcxe2aZDVgmlZUFNNXF7OgVzlO/+Fu4fEFjqqCerpk3eL5hFq6VtI0FFpRmOyhVQ6YFNBMIhi7JikpTZ5znHS0FEsjAiLA6uPArxhU2wJ50O5qp4+FLjVEGTliaiE5+ycHqutKad+TVnlNMa7o/zqrzpyjmNYNrz0036RmdpujuEfam6GszhNJQrEzloKVWCuvsy1jpqcE0ruc2TKX0TEIv8cJ66qLtqYtai1QQ21dZad2ajMFilDtqdAL1iL5m65qDGohe0Z3TTAxi4Q8vHIuuRg4RrZkPEf/BKaZB50ywkubxy8IijWpMRlNA9VbRhGcezLx/T4cLNxPP5T5Sjt+euu64nXQX39hiX5s29PQkR72KGOdoTQqx3p11uZKzSFf6umvPXSmTHKxKIWKamUqkgsXinQy26IJ1aBd049yG6uryUPxBngTQOHmOgW2BigO0WpaugsmyhNGzi1FjlTeSwtIeq+VjULXStsyYQYStIIsMnfOcKltJSU8WeWaPQVpGMgomIlMLQKGrEWeEareGRUSOt8WqJu+ROQzSFpg2mKiOfhsmiZpZHxoF0tm2EoyZZRM4flOkDrWMp0lV4XpfVcOYtAW1PTJss3dzVanKOZSNlliIQ4vKrpR4SFFhVbSMRlj88ZsTIemk7dGITOElGqNEIMCb6nWGkafcshLbaD0u2MO+NpPOaCr3nmWXkx4swWIMw0BqGXATOMZxO4sU6XEhQOuM1yGphA7XwhoJhJSpTNkMXjMXjU4eaKQqI5nidEgsDthj0/gZo+mIYMYzI5STAtaqLHLWemv26zk6HG5nqcnbKoWlZtFb0FaVxbNrVsl4T9OelsjM511FdBaQniIk7DAa/uaPSCJOB2q5VyEGNZBIjStKzs/3WGoFA2gMwww6VzhZSMLeOJ210zQzTSiScVtDGPwZXfNo0c8Yu+iaY0pNpTGhq0OMo2vcMM0tHLypd9whr/mSCel7tQ7LPCMD+HLbnjufTEwmuL3tm6Hd5NGB1Own9O/WQne65mLiQyfPoY9o8Nw35d+iuz6h4VlDOjk8+PPTp0+ooTTAsEUKwoJiUyqFqMYa52BuKCdazH4ZVp6VMT0ho2LHpjOg5zeJoEmtZO+bWg+tqdC+7o8402pbDaxzLWcMnhUnQ51vMUe2jYDlCAiJSkMXTb/RfVKkp2OjTslhqoO9xV4wERLSdrJWNpa6ql5xWceit9qW2vJg6wjpLQ6nG+rzPqtsdj0GooFnCFUzd6zsoamKGkqz2oIaO0K1veAnBo/DFWzjLUfN84Bvczql0ZvaXSEvgWe5DooqmJbQfAa6R0vpA/f2vfAOU6DRrMIYkwzSkqC2JnSMElGqxrbCLfLC8HdqbQM6jIjcRSEcxnB7t/qdDO9NJx+Sw1nabZo3xNprKe0dNaYvGgqasDvpGwrpHaIm+Z1tUxaN4lRJSFAtxJJyMRDlS5IsItOBzvcw943vARoJXDbCMxJw4YVBhNMilCpi2EcTzQTBhEnWwdriEXaVsSFxSZwLAybRIxcYMKHFxNL1lOsZzlPLrRcnYHA8xX12rpjoksw63rTKicVTLtNFNcnFT+yuRrsctvyQLMCwvMpwgrzTIzGGlg2ctcz0lfadYLNY2rC6y6aSu/GQivp12Wayvt7Gi1vOKGFmxmVoh4jOyBd0dwaknpH3Uno1dBnOd/fgG2D5hrC7u764tL6kjWA1Gy61FKJBNZniM8PjO6gZgYdKHa63nets3SB356XobhPSb11p3rPu2dRfdrPbFMa/nvFp/bOw3nSIYXGE4anUOM4i7u4MMAkcgPEGotKMdHg1QqyjRpMyw1uo0tSZ2lfOYWNJj3+5DQVfOrT1PNdMSbMTN5QpFEQ5WgJrnRjm1qvgTobJOeMROiIMUR60PWllZ6PdaZOUbyhmk8XklRiVSZTtScnDxGD7qvmosKaSxKDVx9qSvjKW0thBDN0O2KYvSN4lVc3nONA4jN2YO4pi+I1pfErjXr0rIYqMhL11s0LSmYmGnbpR3kjynOstRDNJbTORpTbaUc0rqtY1nZX1rGLGlDpdax3ya+koWcVitLwAmDCCQrR5yYTMHRpCWsBARHwTENhQSGQKWhYQFp7bBIiBpPPqaQe4roowGY1krf7FEBmYcpxR220nLXyaNq9Jh5QbWK3FNGs+1mzO7GE0s3xp2VxSbm060hHGI5CjSnkSE3SGk96Xg1vgokb19dN+ab8rquTyjjNYUE6CdMA6jS1WdJ3tRhhLyiFCKs8UmuJWjEXS1VFrtU/mSK0qbDNL7vSR3xq2wzemsGtrV6jZ5u9p6D3ITWsLXoNBiqwxCb3e0sagQek0vby2oaTc7QkgYRzlaBExKNXgkoOtPag75OudhpPGZ2CYE2d/9IzRrAHkIdhi62jEaI49qSuh5joeJ1cYdO2+Kn83f9n5vw/0rhfzH3MDNQMPeCOCkpIGwEBAETKgoKAjZ9Jvtu5v9RiV2fqxt7DG2upW8aMNzMYi7QoNj/Y/7qUP9JAAfowGzMwQGgy4tiCAbxYQUPHADGIZY3iMio2gC/fAOOftBTCAoN4LUUqKAYRVP0z9P86uVAAh1E0/PG2i6QL/jIBjW0SCK2vhztFz7s2wdnyZp/6iwsxklrxZcIIKMzF4Q5KjnzL4DYDG1c0JTAEBOQICj7Zlk1fydux28f4es+Lq+Ht/K/7JiBjMMLfNTSGY2SGICBKNBkAHDInBVcGCniz4bDH8/4aznu/1SOrCHBR9OMgQyH+Z//Cpqs/zT36Q4P+tdqMyUZVBIGUyUFhtOLWO4WcotCqHkZYh2hQUSTQKDXj14DqlUgq2MWtq7iiiJRgPxoJ0yM8JgKfI4qR6qsIKA2gFZuMhmWS1RN0YiLcUTURDMG4qOKpP5ogtQUvjSDqgd2OEUH2IC1EAvAwgFoam/Ke1ShmOYDqI07ohGTG6H15QoaMBFjTxwr839s4wRbKQqMbFR2j7xAsqvy7xbGI2MYxDGjKoYhkSEGpDNphKQplSE5m1MrtBKTPQXRUovUVxc+4IDgqTcCyGWkWEyua3ENeOG8FLf2NXGwFCT/0fFkyBL+kuowW5pP89KSMGDJKC7aYcq8wtV6guYw3vr/yPYKRn6AgKBvMf4FMBY2w++vvS/bZHclHGYzjB/EgsLeA1ZrAnlCVpxx4lWaBTjU1mEEsPRzvM81iCsO3u2Fcz8tOpxPCluqo7cv+QsTB7ZmmG6cbt7fT1ajXnpMAc2MVGxwxT/pXqse4aVk/83mRZwrtGe1kI/0Y+sa2GEIfDLQ9uEIqQPBN4tHSqUe1mVQN+CRDtEPg47I3VC3UGpg8J4n1FWHe6OAkWELVYJP3/9VFmHJh7r7tgU9ALMCLuuAJcmTewMeaoOTs4ZJkLw3hhx4cXqK3TF6xq8q1kGE9DHHdr+fHe1PGJuoXwpY+zcHWGGsXLaXK3Zxhk0ciaqEKCESVHqt4iDQqMdIKX7zx9mHskGcGjTVryCYH31hkwPQuXlpRD4+53D4fub93BF/nK4t8UtPpCPb7FP74R/uggSiFsHaM/GmEwrhAZx5FM0GMAkC5pTwIiaWvuYCJKkyH04F/KPJ66oK+W0/JqGV7EQO30aOCvL4qOuK0QJCoq1FkA2+nQF5US8ABmgXRatsY7R21L1JOhtunLs0QNjmDSUHqHEdIGgbEAzLTIp9QWTvqCoMwO/bB5qdYWAvu0K0dlefl8c+HoicGBd0GOgzFmVKZTWShKAgGdhPrtvVmRt2cqamfN1SrP4q13ru2d7bicT5r7Kq6XdAHTMztAIAsJgEBO7TlqZ2SAVO8IixIuVHciB4fvPTic9MDocpuB6Fy4roAwx1vpkIBwwQBmQ3oQCMyBmMi54JUEhH1Nmzw9xq/wHc+Ph/PnP8m8jJJ6Hufr4HOr+6+/crJ1W33Vlrvjicts1IpOHnz7c6Bzib8p7/erUlB5ONhen7DdgsIaphGObXmh0sbpx08QRXbwQ4y+Q/ckhFu5Hyd63mFQriRkI5IlaF1khCEPBoN7NdRZSCHizv7O5mh++FEIjMGED3QCkBoCiQcZoIEsZIMDbk5h48VOuI9Q5c7A+1HpYsZcUrQ6rGk5+c/H+eUT10oIp/RlE9+/hTAVZsWvsfH8MNTqhfI+55AhpVuwUC9fEbPh1pr09diJye7v5kP8YzcZADRrHYYXMVU7pNHZ0iuFgj/v6QkJCbkXwLW1bK3kaUDHituxLB9dEUEOPvWX42qdfJfadTVIAgV33skKhgGbgWPzP79g0joZAxQbbhDZqXziD29B6Xp/FtPYH35slQPu+6vHjWMEkIoQ7Pu4Z4PDLAWKeyJn6tZA+Xppz3aSo1BtAMPSJ0ThmHLihovltWempjNPV2YasBzR+DNf3bfRkPZ6jlh9TVRGHnQ8yYyL2u7Dq1Pqw4d2PwpzVadbjlGMfc+rcECAGEGEIJADpkHUDEwOwV9vQ1tCw5qfJVir9gtCsYGCfpqLYLv+ffqFjLL3Ps84q4+Ud3Yo0AA4/st+4wrMYUWNXMyI/o9/jhp2Sa+fp/H+T9Pfa8Bxvp/pnlu8XAfrbDdVrRTMrARYHJw0UPU/E4ujMJ2GLXh51AsfZ2ddKffQmOcdnJ9yivfnlr3v9g9+ch8mXchBDrid3T5sdZ31XzjvH6f8nuf7/HyaJsmR1uktjmI5BUYMiTjWfjHD0wyDnOynqhqWtG34eEVgdDwqiYVN6WVgZSzELJjrCsB3KawsFijEDZwVxmJWsWBZmUMy4jk2cRthnCmow06zYyK4lMRGCI5ZiVrDFzfYvmORvre8BUWFYltEDdJi5TGzC5YlMy6ZWcUrsXYwDGGbmtjCjHUQmblmXGqBxsSaORthzZt2YS6q0tiaL2uEJeEmjJZvk1c3DloTwe1FU+F6u+8Orj7Y0j50xK0FPiTTWBC44fr996D/gd5o/tAZFb9YN48cXXTvcQnZ9OXNQrQkk+m3InpLAYJZbBfLlfG2j0zFlFZ59c66w7bqqcPLvigHjLpFIkIQRxADgZct8CLGOfD/A2+zTTHiE3hwqB6L+OaqOhFrDcnHv+77Pq9dyOLcqqXqRAdj69qpzS8y7uyitdsENH8JSZmPFN8uxZZKZtvu+8wBGc3rOaMpkBb1ZAt6X6kw98hAiLe5ZsN+Yv9F7VGQa5B+h10VfusF54XJhqmaQ9xhgCkWMgC8G1EQxkUObDtfTeWu3rfoLH1/nmSDMIfQgLJSO5dYlBIQXQlBLICAwYQkIBhdIjYXWLA2Kf3qDHCtHx1RS2rIev5g39lvIcozQ4sDtAs8nTe7c6lvLgVZGQRwPJee6+RboGlu0JfHkHZblSvo5JUq/J5jYcYC/ShP+Y5u8ugbWMe8iw/ACkBubxRjAG0ncPqtKmFNpxeBIFidgSd0dTjy/wEjsFL6dvesO/Fpb/JP1wkOSjqSOz57X52L86p2VD7uMU8Y4wpASgLmu+hV5endJl29SDHoKcDGPgu4zqDwf85MkUlGu2HDMwMJkjGoJpWcFpQbtuaclciGzLFaznyq97UrlWxcbvVJptQJkyEJtg2wlBGhJoShwGpIUEhBCUGCCTBEZGBMKfIwZFrMosObtoFo1ofro2ddL1qGObWwuNInGDJ7xCmE+K9fj6mEBW3o0UfAduuW9ziQQDi1OLv3GDM9xgfCbCJ+POwoMsjfBNKJC4ziY0eo+kXruEoT0DFrod27Y7nMKxCNKDHOlzCBDO3iuOhz7yJIgE1osxoxQW+NFMwfYd3CrAaZlS70rC8BuOBIFvzRL/H4o8di95ASSwNbHXWaT1UFrqrsvU3X2diOQ7mvsYGlvmd799XiGSp1I6zMRbNnbyMkVsZcRc16AXRx5e8duSbOLp2uRCvOmju1aE/Vzt5nIqPkerVytyFNqdGKp3l0m729aJ5T3XWqhEOqBirB1MoTCNtm1lRWIhx2QvZJbCvI9ZSF9QZ1W+eALzM8OnCMQ6wZj1jfvBug7QeGCdaqpSpFWEgGYInFkKBWc6rTbNTP6YbvZ3YkfQMoir5vJhfTD4ciOHIqq3Y0d72eSrUqiS/yi7V7eGT0d+fzrxwuIPw3UxxiUSFv6qTQd1ZvMN8q80PLo42OG2HqbALLyeSeMHV5tbahX/ZfzyoGPmlcHROxNpdFJn3GkMiGkLwY9nF+X7JCc9iC3Q85tYkvrb5DxdnmzxvZfN4HRQEkDMgVD84NoQhIpOzZj2qnJ+Xp85z12/X9K33+PX33ahviOhRhAEh95gLGVvAvfLxwo38nTjfrwriydn1s8vXYDNwUkTFKa1y5YRZ/NUZXd2SJPhPVERoMGgrxjvQEENcnY/EtQKtcbRB0faONrDCqetK/DVQS/w7qnZEUsg0dcGLx1+4IgCgcmHSTPn+rn1+3D4hBfM1gPwWEwYYz9tKKRGX3iljnYThHim9tpNCXiCH7zWpkMi3sz5m33Whw8BR3sdg4NeCQgyAV7W+0R7W67oFSu+kiR7+n34WW9V5/ItYauUu3HAsGcSrxxhAKrkUg9qkmm3spLaw8K2ch4HQYLpMAyMGG9w5fJM8VXLxQb4ZwvY01UjaHU2XPLr5xVhfZ7H4m7Xcp3ywQf3y9uINLcdhFP68fTmEQ4gZ8kYc44Klrt37Tx6a5yi2fvTWHX+LHczfuZMfKIFDeS3bpmFjJ7cVGdZDirTinqndKOVfVUHDJMpg+nnW58qrH60P0WYHfi1Nyh1pit7i505xK95buMubrqBn6eeHa/i2cQ6amvx350LRdri2ogCy5rkNpsPPmv1C1cybDDEZ/EQW2KC/E57cpEB0regwdYg5ZOO/z6+FYaINAYrLcp4vDlydAWFYdg6DCAYEhsaAhvw/lbXnv8lD0NvN5r4V5+seKoiOSGekdypjQRsfWzWWBsMBdUcgQLxgKUtiy4OEvwcm34PW2/B+XT6JsPJbfPwucLJAfvgkookTHkZLlySDOJB0ozXKhvGYA6fqgFrr3+YwLN78Hk3tdH39vUlp9wMHxCqlBpNAMiQYM5QhAK7kV1qHXWeHmJ1j0PXXvTy2b/rladZ43drIRUFJyfN3pXOore3aQJPt1OI5vjxSr/FZe6BKvlFTxQ1twJSbiOfzjkp/f5k+OnNv+In3Y7vGrk8Z6Y6ltDaKr9MlPspjQwnGn09rtgeTT7qtrrL93ltMWYUw7vF155o0HTz0ktVrMe1WRZ11qaGk7j0JcssQ9+6LFGzv1oggsUVenVe5qG2NOa9YXzP07a8qzdewhZq9lmzZclf3RkacwROXgw0uwF+12dWTdSZlOiqKuJqRSwPoNpMuGOVrvN+KhFfD70/LnieXZpwxYKGaqkbJafKpzkaSvywbVMSN9XY/jeoaipwMKv2Edc1gcFBEsw6Ln3zpkjoM2un8R6KLF1iFp681GozxsXty+uJkTdLay602ZL1d6BWI28JvJgYbaVt4XIMK2qcKcUNUbK2A4L0VtqZUTVTIbdVtqpnhj44sFdmqcsMLSyoAo3mKbiIDByORv2V3b+Wmoo3OhLlGamc1LBSStBOOPvQm+YxwqtbEVKW+00UmuuypyK04tdhtprL1V87TO9rFDG6xXnhiDa2qDFVUw3dftszm6wzsbosu0M17jdV1hfSvZUtyxZUxP4dWhlhik3ZkiuohRoZ51S1W5teVlzoWFxSDawvKYVmTqurFW3zIh4r+R21GEKd0sbpFS1Yb70iIX1mVm9WRZ1hDcUYpcUi9s+Jd/IpPv7UhLSuRMVN8shytdCoGArCh99Uqk5I3T4QDOwFkxvpYebfhrMdr6msy3Hrnbeeevw38HNm2h0yIcJczqN530DKrIGQMYwoBIMIMiUYQYVSx9KuTzFa4QWx5BgUz9HYRDMtfdUW5bWAPCGn6SM0pRzHOCrY+qGrcAkXVZHyfkPkrufg/DtttxbpeO2YmjRmVCjiUHuP5/Bne2bu11ff47dM6trk+jlDol4yRMvjaL/dgVe5LHTVduFRwwKlsSipa967lr2I+Q7T9fx68iq834+9h4zxdr9u55x7Z9Z8X5+rz9J++ftEF+v67XBCEa0+lz73xZNM0gezFK7uT4L2mMVvH345e/Qb9ncsgaJIZb57dUefCjDfSB7PrU4EkBX6tvZl04AYw6OLfjhWy1sQYQTdyai3BgUASKSKz167sVOKG+JgRDsTa0OjVvvZ49O06tdGckqckgH8WpIbJDrb6boYdDWBND5uqhnk6cMZCC/btOvezOCCJDyGjIqd1ujshOs/KZUiY8RVut92t/3rOUIZtU4I8GsE95L0/JiE9opAzBpsQX9nSuvzDk+HMQ37wigEQezdeOuvSy2AwI+OE6jCjRVclWJhtJhpw1do+uAfHBByng97HTbx937ij+r8BE+ywdWH3v1hoM1ShoXkYYzLw30bqCwMkt79vFWBCvrouiLOO0VE5wnMYvg2B7nIG32r6a1qrycJK89ly7iFjoxxns3KpGeybtehULG28Vw4fpW1ZBlGYyABTiRQclDuODFbTYHBfebjK/iMHGvdlbAIPm2MriAtVAzAJImgArFco1z0TFfjQBvz4rkz8EKwfu/XnpBmH8DlHOPaUSDM/12cxnyZdLZ5vf18PWM+gr3LEKJKkKqQ7jO1dpug560dvfX+cNl3ekag/KHoPMXA39RUFP23JB4xu6c9VKzScRI+ZQ02iqGbGXuIHDIzG6ubkbq7eh4sVhWEh3/j9MWEM29v1KV1O+RoHVVVEBhQDWbN2+aIgNIDHw/HELg9wvWtrJxcWdyNP8qnFjxRxH5tpMOv3/f+aQ8nwdmN+kKwWnDAuvDhoCIuwLV6c4bdgAdEglsAVHGn0Mxyg6AamA9Oa0O5ngRUmEhw98eU7MFzEUL0uvcJC87Dg/vj2aesengxQ9fflfROGk02wnmdgZcxSBIS4vXwWksPnYehupbCROOLrm4vPVBY1oFTlukQLQAVzJi7/krGQIFgHbSM6wSDCjcWCUj79+wzTuGg+XWZNMRixVmJVVQxL8AMIAMjDaCDawXDK7vE5NffEchwJvs7+RscwAJnYLsjVQdgpwDxvBoFVMAzAih5+bw6qM25jEwgIMJE4CZDSK1NKzolfUqFr8Z6gvxeT0VC6OeJ/Pz52YuzQN1IN+XIvqcjnC0tVZ6y5UHOzbxdK/WP5Lz4x8jVrH0C3RKEgyTTUgNhSlmxfqbf2wN+PlvvUi+p99A1GCeUtyYhJaq/XL1efjlf+gMYUoMcvAdSXXAjFz15g2SxrDtUNm9LBENBlxb9KN4dNumwLewzHiYQZEWH4qH0mqfdQqCIG6AHkYBiQMYBWSKfKyiTrQ3zZwJwGU+iwJUgaYSmEH1Ui+K4rJF23UxLV8J7R1BI0t7ZF3LYmbfUNC9j1qhQbF/Yr2gu8RAC7oITxIMG2RgMI6bMtiw45EKX1GFxA9tSHJahz8Pt+sdGMQUERPIhZ56FEiy3VPLvF22xjuSJOjiGbSgf8uStRpg5Q1hNHWPHc4DtNzgbzRURWIwBRYKDapLwsJJHFPrJH39RhwoO8DXIMYxjRFntwSDipHY2NMY2U4BxFk8L0zw1RnGSmpJgJGLY1WUpGQQEuW2w3HXnrww88KeSMZfSsYSpGFxGmEg8UTQIO4YYONViZSaiCFnHybweWKbdA3j1HDfZ19zvBsGgzIoRNHPTbfvrS/amzEyhzI7pPlFfUgNMyoB6yiblWGZK+wOhaxL4UjtRVkwHrp2ZkQOVbo60coV1jdFrk9GpLblvKpVgWMla/z37NXGF36+9vXoJ18spmZmDMNL6roIBYrcePRgtnm5PcINcLQI9RD184bztVU6V+b4XYxIHG6N6mQNfINi6TUHGkJKO0hH1QjrAwI67B5t9ghSIYSH1iKMESBo9Ohn2Ea5B+7Nma0W8FvB5pjhslKIm2UG46DdtnTfpuEdh93l+NpdDOnr6Xrl7cHC60J+Jr5zXIzvHE4G+ZROP1bSL+Fn7n0N86RphBNEdKoqiSlTcHtSSxzH3E1TpzeTRRA7yMyzIJrLKpyxkqXdM3FNfiRP1HDXwpNr6nz8YI4/zk4/SD7x+VOSmZeSJAITK4VamzzdWRBui695xzLiSMDPtospp2pu7snIwPVRKn4lQgcRqqg9rJ4jTu214yl4JEnMg7TD3Qk9Z1HdPlskAZxzxqccwixxDmnfzaFHjHpUTUwwwhCV53GWIguECYw+y0l2sIqQhahZDN+CBIvbKZU8si9yna9dxpqNTkg1GwW0W0EukeicubmVLIc0DUD+XMXtoJ9GpdpezgZDlTiQiXR0oHVxx82RHNdqZOUYoGOqoxf7Td783VSwixA3ytjfmmSP4/katn7xdeLD4hC9oHxtNgNeTzgAsGARmCIUwZUAqSINRSolRNUUqBow+jd4/k/T4M/V9GayqopXNYHLg8yEIeHR3hiGrphWktjUYJRwN4OjI134qAxxwjHB6x2zp4Q9yPLA8BF7/XYsV55WJFLzUQLHNRQgiBwpYkZxGAvUkxR/2ZDTPFDSADMGbxggh0KphY8Ghbh09uLv8vi2JfCnHoVHx2mIKfx9TsHLld/hvx2fc/Zbb8Dkhv5qYIuIGBkD4QEGQOdAE5kEgxMwzbR5z0enJwVLs/yTDY/Hxx59GTHkVsXVIxV2bathTBtA3HNkhi0ZRMIdwiYhIYMT/MSq95eDGPpzrrlEcZmxmQi2MYE3U2yRxBA2NhLINn28lYlLCs3a77FRQOVKoYmkimwqSuhko9N5JU+Epd0q26xjcvC48y5mdJDrlgMYrPY1OXQyRkLve1XCBWxEtQNY5Yi9lXE72gS4uCSJpjTRRZ05YYJiN8v4MnMTZMQiGZMDGLxm3BBfJP3NVT+/4ykNGGUrpS2hkN036g4scT8X8+KKOphNP6Se+z0ZuDsHjJd4bKnVUqSCmXJc64LS61amPxhg2d48+sbrDYw7j7CycgEYWVlJIbnhkWS4YCTAzIapjuIS/WtYEjvXO38Uh28n1vj74JYIDAIDDXMiATVlFK/412jnnYayVgwQAWMEV8w/uWVB3IVYW/IpdY280DvI9a+k2kfNLaYtjdvGjo6ev7N6avEWlbCrj3jrVUHvdHlvR2mZgGf9/u3awx5ffgLxkBEZENS4HYgIBatDZUPPLPZQ8vzcevrnggdAIGM5iqIGWO9CoslrhyuzCBpcW/h4VoLMnGK/H22uT2zfUTD+w8YNgwhwLc4ddWcXBNahMzqYgFV0NV78l+thROQCjKWIQk7iUfLMEYTgPZH59WuHPHf9w8RF9OrMbNTPRvQS4jQTnPhz499fkOnqqpk1RXdstb01tnt2tW/UaB9bvjh9JqX0/mG0FmOsem6dNQaano1kxLeX5tI2s2No0CTzaMfTEPSxdmro11iIB0de3I5XeyDo5XJBwHNyAXDKMxIDMwDOOzx3Rd3YOJ5zybu6grDt7Av1IHULQ70JPqwuOz1e2V4WeQU0MYjBnUvt+urW3xHQ7sqtPhrlh9LWTBl9iIDAZbDH579cHlCzFSGfSFiBAiFW5zUvNKDMH1GPA8xkf6NAYrrI+iim+m8h2Oz3A0n88jWS5wHr3sKIlgZdUGIggwDSLGgd2HZy2+jN29ovaxNx7d+uoJ5BKgPpRpyVqNWoUjuK6ayH0AFSMgXH90dGFwc3YYEm45vm1wQ6+FUDtWCqwNNvMIl4lYnOG9MK0hJzX3fEqjtcKKJf0mkJOSogQ5ISmprNInAS6vMIxaXMlOAMQ1qsdggabCDhDQ6T8ieeSUsXYv0yKrYlj1lfOjB/Q95ipcIOTDceWTLbLma+q4O1LLP+U4VS7UnISIIIR87IpPrIJP4JyiHZflu5X3FfE/L7TL7CtzVFNAYBgzMi1eNxO+pik6CQ47WDHO4gLnkb6hDgVUeQ0frqNHjmesBHXW0J19Q0PtHZ53H7+I/9/cgRTKhRtlrD5hLBggmDrldDH+lC6/RgASPQ2Ul0n6Gox8GTPQ706qkgtGMMlpKuwNIT3hs0JNhpBrIBGYyrZmLrpU/d9by4mvOgQ822PKJsWDEIlIP6jxuWuwUtWfTNVg60b+Y1t0P26yBVLYYI91UJBiBEDze7wbk6JE5OaA8AR7lH6pCe58Nh1q6t0DKyNs725TTiXLUMQmdWYYhXZHC74Wa1VK7JtbtrbCjKazRdE06GRQJuMDZ0wqUdMAQaApQSRBcwuDA4XWfSS/+40PISbYxuefTBaqmjUGdP6WXC8doJIwYE+bvmDjA5eYurBJOF2D8EMhARqBlFSQQEIz7Zm/my9sF2dAY8Q+S6wTjp361vSOUaAvkzLaO6m0sZU8m4P281Jp5tluYxDSgakZGkqyQgko7+jmFA1xit9x3TOgu4+hCDMkVGjEaNL+HCVTCkr/t9f4C613cOGEtNGT+vxZx1xXGpaekUs+e+3rO3x7vCCn0/nD80gu1zueVcBL2e3z4rojrXV3mmBU1VV1ZDWaqI7TeSGKj6WcdMuj17bTQlyYebnYSBCEBA+6AzFEsLXY5S20TwOUueG3nGs91e2fGJy40E9LntJoig6TFc0GhCL6TIjMb3FphvavMCsE7gHqBoIMZuTm4uFvMQAiwputNnQ4nWMG2DjndcVGJ3bvVZZsZuIGJt6N4x9ftXWAXDK4YNQR0owqXUxThdvtgeKYlxOGb92ndwxtM781chmFTr3w5zVBbR9c7pjFkBAYM/aH88rbN3YTQHO5X0otc7T4wDOnxti0OJgH5hkQ9eTwhbCQ2GiDLCA0EpCLaxLIPnQPuCAelPp82sdlPnSXtHsIDIX1m7k2M9gcgevHajxWMeDByk0ff3s8uGwiUx4KecRn0wGB6IifQHkDYFCV7UHSK8pZHJJj2yMWuyCYRKzHMwgbxFVGjODhBufhUdWPdFRjVBS6jotuHpaDsDRwyKJUcch9JpHgfuwGDJTOgWHOFeb15HDz/QIhu6ibaAxUO+3lTIbkE9YdKBtuFIlaFgJiHMhRXKccbNhgBjwXbUqvM/UmWKJho+HOthPRYaynp8UpS8fVp2eC8bumij2jx4WDmKGOKpqkVDT8LsYXdN8xhhWTHBKlZXZ+Vhp29jH0cMNtvWvk78PR6msJv5kozKhlhILhXMjMhBGTustz1Mnp1eoxSeRiwSBifccBYk3f9Eu/20n8myeiItPTn2+LG6KK49ftf18lpNPUbaXaEBUbawVjTKiVemNTDsTwfHgGEQFXEoXttEYijYM3We61jCg38L7I3x072bf68GC8ezLc6sXPhubUhiLn4VuJzjb5cuE7D4MVai1gNcS0EIrfaDfywYpGa/tfqBuY13pbo5sF3Iqp5K4Dx5WaWIeqRxY7tA1DdEJubaWFYXHmpOiYRo6BQK3H0ZftZzYpb2V643wiu8xeVTovyae2lRtTO7gsOcYpACLBWKIb/FMKjK4YJBhUlSpCViw/BcyoKB4WwrUOfLhyicGENjzKC82NGYmTJmnyX1uM+r6O/PQxCe8OeE/JybdrZhb0h9mHdWyw3ZzuAPuU8NxlPXuu+LqMF7ia7lkYBxQWdggHfKKqwyx3vBLvWRYzv2+0WRN7q9BTsXfZriCNyAgwYPEZBIMIMlJCpcKkBT9WiyExIqwFKxSH38Ld8Bg3rgpZ8pCiccySRZ1rahYFIIHkwKJxatIRlEo0rBnP055aLkWOZC8OyOZOnis4sZG3bErTw5xrUiVf4k2+bAQFAJc62HJDaEUlYUDWzcFhtF7yrZx0vCy01xResNGIaeLLdXG2tYFjoiX0LhI7cvImBjfeudaVN013mieGXkEY9Nthi3dxbw934CpxCydwm6g7fDBhABO69lnkqNyZObOMXSiouOtZcI7PgQ8zvQMagA2tyPCawO0L7LIjIrxkBSZCYSBDCPfTdbHML1yd0PGWExkY2Ldj7dsZppUKpVcA9XLtIChkUVpaumuyDHeY4mstzocr3KFi5LqDAMZjQZAwZgGk0H1jZx0f81W5hwYCeh3ferVOurvvh7dh4m2MK54xnE9fu3/jMaAYDrCT3+6UrIO5Bgv4ZeGAgXFa0UjMuVpAFUAwYMKCB9UgSMDVp8Rm9Jt0m7oWEotdd/8CgT9MbbQqfy6PsKt7ZFCmJqAK4ZE6AzciXF58Xh4j62cfn1UBR8eMfXZ3cXhU/nm5/SphqpqdvAdNLupbfxcsrixWRVZ5b1ueQcltFX5qXBk5tHEdVuX1E6PV9vfk9HHD/u5p+fa8EM8fOvTRAvFLwWnaiPnbK4frk1ehF9en7WjOsdYINwTxith9fYC/VFfq/AzW++zwmHqFhvH0FwM4gkJVo9rwvz5LAFkwLA9TIe/H1YuiimYCR83n989oSe6wrJwP5mj4TRsMhFUEViiZGYEZgkLHXOZ8qc4YuD7oGEcT/okBT+qomkincx5i+ftxXea7dDGxy5aamhucn1ldZrWoNiw2gaLD7FqSuyHeS+JOpZIWAxPBLwQRa18ftmc8/jn7RZrscVJzo8/78KcymcvxV8omPzx8VWS5Ty+ge4/x3sw/HJqzDzxoGz7O4PYPCGmOQQj4nzUK0csairaN0oqr07iQsze2ut+E3wiMJ8grP1uX8DLl5wXor79ms6xYC0VkVerUkNc3J5eOX2Z4qdqqPosK3he6iAuEXKIasZW1sfh2VzvDLrYG9KpXHkhIxw/PLnL874fT6Mp5U4jx8+2/L6Byc3UcMSRSHs01BBYSKqM/Ew78LIaGBREVqQtskKwBYEiIBFgjARBQnRqrjEU1ctAMSChUqS6pRCDHVsNCVlRYrsm22opgIoNutU0mzNOxlU0iyOrJs7JpDVKAmUmZQu1DQ10II1koJEZIrGClVuFzC7MqQS0ov+872cUhRi1CItKKQQYIGYBBgwGTKcd8TtO2IO+xo881ZsoZeW1f9b+NrINxWk1G02E1vW/hVy4gkFxRM9bxLWzu+uJ6EVA2IA3d48z7avT101BbcEX5RP9/2r/mB/MH+ezX+/4yPtSdRoWKFnO5uUFKQ+Pz/cJxxw+SWIPgPxZP6dZYd+yez3TCtFomJzUG0+jHOXFAFtzUVOzTTXp1W8knxyyTWZOrxryX3JnGqQvqEJ8hhu32wSceGLn73WWRN8JSJJ6eKLvdCoWGbqBdBhZ1u2FdZxaGARDPq8qICMjUEDYAZmDBkkIN5zhn5OgGD4CH9K5u5Bn+/D7Sd3oz1mbiNzAYXp/Pb4rcV3KkZnBm8pceG/JVHrScKgGJYIP0NzzvYjvNBgwYWNIMBJJFP5IFECxH6IPDe9rywSqz9OnJ/Onf6l+L4q5/1y/jL/OZiGu0pl7Tb+nt1uL+vt4NDdv1oS5AslSAlIsDHVuC3TWQV4xcWCDQgwhAJBldQlZCjxcNzuP6wZvX5L8dBVsmb8K0iGm1i5MeE5AS9iUO3M08i13knRrepf5/rKD4r1SiyT1T8fPF+8rc9iT+VPPDtluixa0aXHTbDPS9Bgc7TblWt3h3f2Vs9xjGDIZjA0msRmDnr8svD2qMjgu4ydQammK867uJcNsdinV0VbML2PsH9ssKBsDV+W3BYYT0c7egUiZPSMTmxi7o36LFxhrbutoMyMGQMyICwEBBEZkJjQZ2qY7X5ZaXXytQ1LLEWH+hTIEAV5bmrDB5PDrT6puiP6Th18/o57bPm7/YlE+yFeG9hjAM9qlqju/lfj+rRsfM7J8AgayqcXnS9tMmtKbNQjMnacCWzC4vIJkGTJmRkb2dxQUDW1MpFmlkrHrG1mf7R0T/pEfdGlKNG0imzKZQrDtZpJxGk0hX+8jWSn3ZuPSqvk4VTBoQAYFZBdqUAeoMggjApoAQoICAD6B4XqVg1w03Mv/Fh6sK+vEnYaVdOzH/e/3AAJr0ez5OXwD5E9JIhwgMKSiLwHdjEwb7QgzqGZQxA0CyCSOZBLhQWCWQuSQzvXUS7NIV5qV1DPGMnB/b1bvw1Ku5t37yD+oU4+P6uRPVbLN9CKxsp5I/8Hoi4OOAVw8KeDPe4864mTzbkHy/XIRE8r4OWge85xzOomH8k7A7cdDonebwW6u7/lB8PjuV8IbHd1bM2MhmXTjlx9KBaaFTw5tg3ez3rgjs/5f+kq/V5buS1Ow/ZrTbNQ7XB1WepuzU5/mtpv22fKZuXl/vL35a9C/6vN/a95p54oCYnY4lBHN1JHe0zC3c71IFmSaBpdolJYHX/SPvS1fammBypobnZEgSz+HBztVqkNMjjeTSGFKJlD3q9G45fmlrpsdVOCzwrXzewWJXsnxh+9Ogd1ZGV9IxV2d7TIXSbC8kCMeDfWZq5lq3RgEj8dizh28n4oxc7X1bgXfvQX2McUmc7Y7vpnf1ZHYrlR2N+01l4rVuiJTNhOhZ6znZi5+S3pYnpZIb/PlzRaAsejRZQKrbR2d6HFW3cjlRxm1jQww6li7yap+SlLabE1LjcfyUsx7ftsGm7pZDONj69XWhWUxqPcvaWf5L3vgh7I91mZuHO6KMNO+1YFqvi8L+Py9RdecXFFsukNpLwW7RxCqc/+cNiP3xEg242CqGWbsqSTDRheCS40NMKD4c+TdO1VaXEX74mXYVwwwSBI8FHR3/RAMY2RCMyjwy23+cefzNrpHt4XX438TJfzRuHfsnVt6Gri59m/f8to8JCXhcRrwN4+FMaBN4RbU0S4NjDJGCb4QH1m1ZzYfIwcGMsYrgKAvqV7skI+uEiP8qS70sdqZxpZZ8KqLXzJtt5cGo1b5E5+i7g4uLppyiRM39nkgZEghZHiD6OyAcQw9Qrh+iX5aoUo8KNOtVDJAAtjvm/4DjGsVM7AtMqGZ3IfHMtJtQKuti9tWpVQbJAiX04l9mkLcMr1m+SB4s+ewJ2/x9kRez3fW+Z9E/w9S1PzW6pYv8F6L3q1Ms3RoClBCCQYYVeNS5rVI9VYERSfpqKrbToR+e/xP9fh0NfOKXqkr5LW+bOLiGGR2EloRyDjmyRB59kDQTzsAoHDgPDQjm2o0Axr59dgtB8REUSJ7QRMObk+3uYQkJAtooOrOLj+LCILnGRAnNBiy6p/QE5Ll5zkv8/N3W12vwrjHAcvABCQjl6uCQlCw4l+V5dhgw4hBYzQwOpKFwbjowyEPrjRBb2PXhxhAQZHWCAhISEkiri88RFeMCuDdDCC3mFu7SLtUMg+LnyaQ5BCr9d/QdQajGPoLON7VugcteJUQTYeXEqzN/0hHVv/nabvW3isTrWr11imxF+U+3fAOirUfFYKfF6TpqyquZUSoA+p9NfgecE8dNlAFQGQHxNlOoY/aO9zt8V6PN+1fnpXr0vOOT611UxHb2hQ5qWx/WPQNS0tRDMZADxWwQiZu/lHBi9ezMS6eT82KUct2OuDg6IxTpCXyno8fQogz+b9U3ZmSGnLawqvwMNH4NYoCKorBZIxjll+GyWKPv+79h+P5fX778v1vN3yDch+46LXiieb8DoX6PXr35mWU3ndG+Y/2wMm5F/e79JFiTGxAmmpuRWLm247FoF5GOjV7gwOqe8ONtzxxdr+36L+We/f3yTF081YN55vhFH0i5+F2j03ce3h+KJcCKnhxWddvBFNaFrJpnN3fny1R/AVs4uLVzh5p/wvhMWtbEOWvkG6mqZQ2FsKJKBCaD8mlpQuN2vqZJRkQ9IIuaR0P598HL++8fdCNKzgYbItXCfS9Rtxb+CNfb6HVhn8A7rZvsyYOe8+Lcb9To5anwyJvQcT6hJ9uJfzuVs+W1YJxwViBAiDJEkAENkBFqCqyLUQO+9ox7PPm3X0v+dzRb03pOvs1077ePgYjB3emNan1s9eeXmGyWFPsZ+c+sQV6Jc9/fw6eh4vi/Zq4rPu9TXfWxorFE1mQUwRHTItR69U20H2kxV27sxN6pd6Vy/s5WYwmmEUDpZCojxtBEmzA5puwDGTupbLzwTFR0z7vkp90uvPPx6k5uHbrXfkDgxjjuVkggQylhSyEhJJYS4/2Xxd2ju/A0yFByXJ+bOgFIZIBmRkRmRgyDgdiBTA8OKDzn8EPHgpB/Ony5Rbv9Xde/mlIf4R9H/VQy0wwBGedCDCUEg0Kt4HBrts5gg4INFHLCRe/pM9mdX11JuqmFsOtnauLnT145/5rWgKxlaiCCCDAYbpYefzWy/P8u0jMSuk9y6M0LP3g8LYBDqlQX4MECnYQJbNWrJ68T9WnH4ZVolEkN8wv2Fy4qiOXiVvc4q7VQF2Rrz5PTVzwOba/c8ezsyeF1UxhiJBAzAMGAP56k/2P6q1ZP7n+/+df1Cvz8p/uGn9qzvtE9rz5cwpVB9eK8Ng4A0Y0pC81geYfa+uB8euS4Q+rcMu3yIgC28ejr96RRlTnWQKHlvIcBaLJ1ZXnnsvW557P4eTYatg/agvP+VD7noi6Q/zDL2GdGv+UBAQYMjMQkaTSkGaNOb75SvXK2NzHDjBACpkSzd6ZO3MuhYXHGrduEpUvySVhr8m+P9ba7NwOg5U3lI2sbfyK2gBxBbH56CHfxeVZkUqK8gyvIdmIvMwZgDczx4vAOm8Ealvu4/JAmooSGAYMfZtb1+S209oNAe67v633v4DU0G6VOQ9OztkgHoKg+BqwVhRy4bGXXgsZdL9cgEVHoABaMfswA1m2ieQHrmvWZiIRGAHnatmJYMAwUAXQQO4ulA0BZP4/C9hyIdspZwKDb8GDljZAS7IJnIyM1MGYAzvoNnZwRfHsCfnueFkRAr/GBKy400+CUuxHzfw144ZmjumG+ju7N3fvpgPBw1wx4NlBaeEiaoZoaC1OuHf2nhkEp5sOkYdLIeLWePLiZOKYMDycdFnDaDNZcGTDhMWgi0DtAFxMhkyBZRCiaGDMzKBkeCcN6HWdp5O41xEzrKcmaHZ7UDqYsgMln0AkYoWmwCErxN11+iz3W81WzGuKpgJZNxSh0GJlfmbfzZyFZfku3HaL3SiVTxvt8vuwEQhAiDlgC0lFJbavmyMIkawM604/nkFKMc/YF+jpEVA7o77CC6a5d/Lx6R7xkBlaAn58to82/rSQ6AtYPBRs6R2uJt3dFevfpHWr+F/41SeA8IaXuIdeSrzfc4+PRc53tfDe/0PWoY0i8bHa0kBgc2un2jHxui5CxoROjLpxnVBgGZAzSHOFNmhqeJvPAwGPD1HpE5HW/oxWdH3GEaYJt1Ad1xioWvdjfptFi5a6IHL3nt36LXl+OHwOgPxTjx1R0ha6VvVgL5bF7pMEQTk9t/xtjD++wD8sS7kCAYO4tNd12YcrvAlvIa7CZ1WK+RPfDy+rPfzcBSRHsk1iym/vlZ/jpS3H/n43qTDGmosuznhQ00yh1TH+fUPAzDH2HOvxxbWf2P56jX6PaUYz51sbEhj0kc9TsINCg1y9MrV56NxVE6VKoQnpVIcCjpoZX6KEPRCD461nWO5l54/eFi0w0NjHA5evFznwvNg23ttSXhRT0SOKS8Ux0j/FJdA4c7eDsn2a7nMN214i0q0qeJ9dXqm8zMRNjEP81qY6PYhYxE8Ig6LJ5+3+V3HDvoPZ2VcJsfsJvD+WOu/xWQQfKFw5Z3V75ofYIalfDdHDlEA2yxqA3oCAYOkt4FFTCygpEtAQTIaB4vXlvD7mP7tj7mLQ8PmlS2Cdpb6jYIHPIKg9Xdo/7VFuqpuopW7gzyhdQRSDZdcgpQ1e63j0MfjJqSPC7DatUU7l0WKJl/Z2PEOGGHmo4QD75q3JDNDvGBZrq7wKQMef32LjYfshBIBztVhXgQL2L4wcmpQ6tMEXEawRSBW9WbqQ8tofpcWdEBa+scog9h5oQIbVgAB/8qFtihA8LMN/6QdH99Ujz1X0slp+MvgJfz3h19oev07rInQ8EAckZKQ5hlg5xZEo7k1EKClBSFiH2DCQwFCDkCMl+sPgZlwlHXFka+LcMPEs/7VOaTYCAjMFgMg1ujBmO6KVbQ70V36LnOIFwz5Uvs1jxUDraHa9Vzs3T3jzbo2KyteHYLffW9bMeawb9wDSvqSlYXPGy+zz7derKPs9SEsH91t9Z+S5PI+4NM0PFYhjCKj3xanMDE3PB7XoGuJIwiyAMiP4QX0/z12T0zq9AyYgiPzFz/0cjRoNsL75uayQfVzzgx4d/tfH/KAijQEmK6SRGwuqeLm/wZ8oY6Kg+JugP9v0s3b0dK3XTRhH19835MAu56K/dsVMJXuNHODJBkZhAMtJX9k9ZVYWcW9fB2LM59+Zjtl7dGDdLh2hQsLcsDMq6TIiA2mPHpUAXgpHE+9cHTeMiO5tHwwEgwWgxadZeqU5y6a7QAHF6uOBL4l4WiazBxxJUTb9R8nW/rhk9sQplwzIKRi+hkT1eFPs9XDIgCIeJiEwF3fTnA297QcXdrw/bR7h6+Y0efoAe7BO3PWgtQT3fkotAA4ZajSueXSPRZi22MRFxgrh6LLgMdGbzFtjrO2OdRFTbooh5r1sq7Mue8NnPYqZK1erX8nEyvPmRBms3EVlYLRwvRK5N2wcB+dQ7DW/b27/BxJH8+Oq5xlgsak0huWHEGJ6CA58t0ECv/S8Px26x2xd/N3lrh5YMcPTtQVRTtLCLZ1J1x3e2CWmhsyJRkQBd/b+P37now5b0AYz6eWhDwH40Y4+3YAkNOelD6fe7Db1YChhFC2el0edRmncKpPo8+gOvRSL6cE8e3pnt+DAANcfnj8M3fT4NufDo8dKPNEQ87Tez7/qUr7ezrLBaJkg+hFSoJOevBVPZA0W67dGj382zDNKp38Mei4yvXWkzV3m0Tnag6F9eAuGbTd8G8cbDguoiJYOBAMy3E7usNZY7OzpqbG1M1QqYxMLkQ0plmql010rWfTbBYptGVgNLQV01xqbM0nyuzNtrUxNtUxXrENhXRs2bOsuPFrsi1xi7OMBYTWWbNdMKkrbxwmzp0mMBccVq3hgV/Z8nj6j93AxevKGjt86Y+ow6E8jAkscUeXhYBW4b9ZMfcYIDyO7csdgY0bsGG0zJUq4cPEKcqsYjmrxeXNpq5BVzY6xoOKpP5UAi4YsqfPnPbjRuNvrQJeEbODR605G2zWC2IaW9TM4aHkuGTTf61KWZpGgGO74O75IQ42Q9OHkZq+Q4LDIZFKelO701HpdbcOVtOFynUuk13RfQxyDgwe8RG53Bu8Y6dO2+LQmFTjYcZ23F3ZdLJMHTyMLj3KfZ3Zktu4K158Y+TEIGYPU+AYINBHjLuZTuhJS5W597jA6ueceekRvZ9YQVO47Rfcw3v6lkYUVZcuXEKLiVjiNG8Pf2fqnM9TYdPMNH1vwlkTlYctNu3K+adeWOOmO53ufdkbsZxta9qS155uTHx48wmMw4x6/BQOWGQacJy4uJGbL3346pU5GDMdBzW6sa9CIZg6GggnK2KBw41orQgNIKUx5+fZm2kFFihqICgo+BESEOWFTwtEmMaHjvnpqxxEDUdzl0S6uzqERpE4CegdIwXvDkY6B36CtbDu9PuzwN0xfcNZqObtYYn0UCxnl+HPE7SCiYvPzpeyQ6fP5XnAGEtXKeS4uog47ihQEG4eLd2zHDErnM6bdxfHtkdDy3R1CQmLDMHCnhMN0Tp1S8ArHbYJhLdOI2FBvjKM5xTwdKCwOkBRFUdiKKzRD6kDEgMdm5MH5cOa/eYQXAdUoMWY25Z+t6zg0FgsxVMTareAY0sRqW5sTThAV9AWq8boxBHOgJpvQEATV7KfEbIOmajFvCsWpWRAkXUGapwXkQBvJsiAtbh1jwfAnrPs5R2jfy3xUjBEA4K1ynHnEabOfXJUU8lxbOvj3/lmdnO8inbEFjz9Nm4TgomnM4xVgDMhkoZIi6ObBaYMz7K59Pl5mNmaw5eHv+eMBkIh5UT7ZeWPlp8THyLoxj6Z+vz9zympeuDHYvQa61CW8qDZwgd7RteEAY1+Ng4YH1GVBpZd3CffbVEn0cY0Q262g59XcDBwMY9kg/ze1LaLuCPCSPoMu2z92f5MqT4959ahr6zzMBhdjQKVxJDI6DyX191x71PKtWCD5jjp864Thq/k7sOfs777M2TtTivZwz0+S97zZwSck8GYjlEzn0fC62OCSxIsCKcGfhfKz1CTZDbZAomgQjLOquD+dwOcV4Dmq4wWFE+f3OmkigAcuk5Hbro30bF4ZR2iMF8hbLaaMpf092HD9fGbhqYmRwQVCBTDg25p9op27vj4d7FNRZBvQaFGoWMRvM3467X3NgxPI3au08OGjSi6Lm1JWa002ZLNcsK4qAeW0ETLT27ekpw82va6L0CaDSUhomYcrCsyHrVS5WlQUEF81SU5GcjKWvr7+zOHDDXpLSdG7IDBIO6+gWalyNDjD2QVrm1lmtGzUkr9IgdCCIJRXSAkyIVaA8waajxr6Q4dHktxt5VGofdr1+emwxHrQiBCgMFZh1FqglQ4o5IhoMS1nREwiluHUfMehn24ZM96y7WGbDuDGvKApy5uO+WN46hXfvcZsiA2smRwXanLfF+IgE1RmkJGTOwEoOdid8QuPCimsFpKskYRJThEwqIIOmAREsPC2ft1uUu1dC+V67kGhqbR7RLqSNHm9vHiM3jVeEfXE7XbIcd9GKSENhTKIVNjK/SXr1MDbgocBg3AgYadCypFq1uRCb/H4fJ9uG+duvwDVFPJDmipzxXPATJBzQkyQp86Y+d4JsiyHR/Lq8O+HkTxOjz4bGxaV89uZUBcwkZJBBqA5HphX18kF3OOjuiEOGrBg+OUzAMYZxTPtMuCyB2GO4VmmApdNrBZgv4h1Q5Xg6+IvN9ZaEURMqXEfNyzNSC1UqDhM6t5MMxnCRpEFiJmmyFgvbDUjszHaGCZO2/QyDZWHkpZpC7ONDrQs7q1vrDpJEGcx1UrgifoMBEcqAkFHcNwM2rofpiHJ172BcwuYOjLycw68FiqzdUsMUz3NmzCNLQs0DCnktOZgpie+Ndpql633ng5fNRpFzAl4bGUhiFmHooaz6KXRrNWi1cmvzB84EIM4jCTANJzJCkhBIvnbqONC/ZpZE0hGKlDgkf5Gk9K3BkSGDfFWSUCY65JqvVheFS8F9AWbzrwL7dOu3lfttVHamNm1mtz2w5V3XJRxE+GQy/bXFqnQ4WuTHBg15aaXA0HbwzYZYv3GxX3jwuN3s8mi32N+O4+8fD8/d5fT6fu+f7qb7tGvLzIiFYRkMkh7qiKGEJXQFBR06iRdULt6zZlxWs97DqFLhyYRShkBmI8NKbFUp5ahL2NMFahW6UVgzliC67LOJpctIkFXq4Uhcrs20wUKzvWsVVnOHfCRrLkFuyK1xKDEBpeWTdSF0msMEG9S4NYwwGDUoKI1G0lMAxv2OI8wqoX22k7HOZGKWzERVuFe1H1Z+GvVt5nfvo7t8H3uv1WwzpOjuoHHs6Bu7eHq0NF5nz9NrvFH9Px5CajLAMF1YqYuvYKtIZNIjHGKywds2ah3Usd8l4RwhCCS2YLNZblAj3NQjtwbPLqG53lz9TwfPy3xibtnpY/KnyPvTtv8r49DCxYDiBnOgkGDBkDqoibBj+UcSbl4WfMXxR9PrcmsRuM2KO8w5t/y85PtMK2edlI+vihn572/j5+w7WW8B3nP6Cw/ZJRYOzH0fRtdgMNSRueaywUcv7dU20wuaceXPtnrMqgSK3CDY7Ic9KLOqxVMSwzsMjnRFThX4mvvlzWhVM2kICEBF/Lwm+BkTGxzK6uixz8zQo+34ugR0TcSYfb81wgUhqwh0e9C6mQhlYwzt/cvZx/iv/tUbRD+fsrZP98L8Iok/S0+Q+TIPLmChzim2HYxu77n0/dLn6+3pSwmHk9Y5D7PP+I+j1wDywEfuJPypWogueIJaAiIhcMerw+SH6SPMZWoesBqCPDllX+f4F+jOQIuur8jnnsOYI8OSDumDEfbYgyR3bRLAACIMsuP3vwJgGQdczZsbrS/HQGKFpuaAOxYsEje2HkFIaOpBGZmGzQDOugroNSgOjFTH8JGKm5pK6BcBATo7PoFsSi5hguc40h8TAownDOKKEEZ8207Bo0ropKluj8j5yYgCAFOhj+8d7NWe6YMbT8YFyxr7+6Iox17qr83U9I0WnbBkitisCevIIxwOc0gjQggowEmgwAgwhAuCUXbyA8McDsO6WtU8bgYgEKRAAbB41cGwBb3qsw5ure+KZbeunovOfh6b8XFqSi22/tgVDaqmBllN8fb09rAfH3tfjzYYXxsIJhJoCPqYbJYTLNHUXfSP3HiD0LNmVNJ6qWbB2aLorKbLZzhUvhk6bW/9/sw21ecDu2ReTFoonMgIL9JMywGSihNRu2iif59P8r47Wa/KfVkM1P3YUQ/GIbOP07mGfP9PvGKMg6EIGXXBReSJx70wBDd5YgBAYLylxud/4MSWODXF3d/8sY6XRxVNKsk5bD1ZUVmkWuy318V2/fYkZbSgQFrBwGkGsEEZkoqpDa2v3M1HEdsEphlttKiWzazZhrWDkVtpEcsCqiKmzYjtSiVFkxJisKkqbJDMpFAokwTdw0U2YbjAxEYKErrMzSupqkqHJMkkDaMKKJzMopEtXcY6axhjIdy5JyYp0y5U0XeOycHLeDKTCZJCDIY4uGYZFtk3EKM3bvs5mQww3x0o0rBCCHsZB4Ah86+9dqMRBgIZSJxO34RD3SKm3EqejoF60O9r0KJyhISZg0mSDBmKKQIfJgrgqcx9ntf3UrlZCn0OPaoQuxYvWrAMb2QiTlorravo8lZmPm+v9aMYuze3zSHZm4gREAzEsq+aJxEOrtcxUdi8XuLo5Oq6PoO3Q/t7gBklfH0vVHzEW2/fLxn8nEfZxO0wCBmBUy2nxT0sXXLLFzmXztvIWd1SP/aKZRYWqYh5A/xoudFpfT1xU6csaztycQBe0g95h0bxtv5h5jCAjpqh6PJ58eTQsZU8XFaRaMYcGOHhw9b4xi1nxYdVxFp6W5X9bF7DpeJxPN9KcxEZ2PHa6jq2YlYGMqKTPl9CRTZQVIRDu5NYaStcmZXdvqXsLMW7UZBow+EUjS/sNnl0VB+KmzWitrDInD67S5z4VguLHL9gx09XuF7A3vIDLTNfsZ3YyaSx/UHiMFkC5ZII04K3HL+ebBD9mePbFRV7Vx7Ld3TszYMlMUaHNVgM419NhTOTkyuCxbS05+1leYx3rm2y12STQycWzNe28827Vv5Xf0OYbhtxhItfz+PcUoFfQex4tjbHGWOOj7Xejo6AglHy34U5qcLzBWnuyS/dIYDA2cMq5pmuAeZkZggAE4RGwLlZCxOqvnRjaHGIYR8jjujApdApmLvyZlozABiLk+m5Sq8/ZUG0dgviLT1wNUYbLeKAcyaRy0o11rVspR4wNlCAIAmcCePsya80WZzVE0Min+5+lMfnVxZMq3PYoMKeezs1L30AzXQwHR6dQ1S/RqndtT9tflrYsvh73Mbblhe9RR22dMjkuwMssGZGQMxxg6Q13NlK3ea35DbgHFtZ8I4VsuZoOgzI75gsnit9ZhYGKI0GgjBlWQXukIUYExpBmulCTM0VEKXSkJXXXS7BvxsJ0Y7LGeBfhBMPLgoea/ZKOAEztR39AdfEgCEGEGg+U0kYSO2ly6m5rAhTX9bAZ0r2GAx9jp+NpbIit0YMbmAdI6PQORDQdPxThHXj3a8ubJ2c2apyVb0Oypi1pgFf2+UuSJD+LuzDMvrY3DyS6/Lf2Nr1avZaiz1BdGFsNciAQrjZ0JuGGbnpoCsog5HRrHxqtfVIsOX/cUDMYHyXJa39osBerSu5iUMUApbOrvwb8fnkMKy8977Pen2h7wqjOFxownTA6gY8vr7qdriRwN3KEuAwC6e/VnFNhzXb+M6fDrrnCoVVsAOkwsDZHp0hcQmJsjLorOv/NPV46bHPZC+YGCZeHd7KcBtmw2Fgj6pp1CpqXA4Gf66iahEyvp7dfn0rcP1clHTrQkw0DkCQ+NKyylyQiywh1pmhm5iq2GUilu+ecen80U3poJ4cdOe/k+RUb0u5cA7WgwYQZMGoXQoJRAoJJQzDlaHo5li+TIAAcZkWt+HZD6hl3isjZSbgaqpYZpbxwYRVZGDQyXC5z+otepHN/eCJUnpVmmXEOjH5UovWLvg7sw03Ar9Z1vBLa3uOuyoOr5vVx0OkkezT73lha++2nf+lxim+IbKe3z89n5MT3e6zh77XR3V5osnby370b/km4AtCwF6qRkw4Mq+Kw+jwWqjE0Mb9eKnQ7JmPiCU8BmV9D3vo1SpwHi8d90eCXc4P3dXXiZyHO657j48uOxmDpM0eFlFnopYDz4en4wC7S59O56ksJzmrXgtRPYXUMaIRcKZLrSmU6m0leiu49uyipdtUvXatNQ8LtSksoX0Ue9TTBLz5D0CQc636o5N9/pXd04uSeWppYuK6On1oW5wuHEB3kid6bzVQVeF/XY6jrS9Ct+ENWwdYJ5xcuzZOHILiMOzjlFFfbDwJtZSeABt8Sy19ZcmAwHQhcunFT5Ja2frXpVM+CjljnCbN/bRsriitZyaoFtQ4qaKWvxpwx8mXtq83ZJLE/5MW1Qx00lGuQAJndyXhjhWRuOrqQRCm89SGEaW+loxfZrzCtCOWVxy9ARX816BdYga/ZqvnFVQgGJ2Vm2iECXaTeYa6c1sdvdKNXPK1Prfwc0M3f7+LfYt0z5Z+qr1jGLI5FWY8yPBN3FFD0xfkTtUdo7py0mJ+MiD4oQWJKJEFU3Vu6z95oMjFhmgbR1I5R1yj2Usxt0q9fXjbDfvz7PnhMHQqTDbLNcgvx+Npjf6XvtURyZum/yNZaXOMr/QKhoFXvmCKu6TmyRhtlXdCw7TseJq55MDSwIh9jIEXWZP9deG+trTmDsrCDiCRUIIDVLqXkVTbHdCHaoaobWDTbfNrYnRvrO1VyFOR9+cRB1LAzODGdFdfkyit5cFlVvO/CKdflybSCViAF/lQQLwe6a1ljXXBRmQAxGAwNgUkkGQMGVQdmXGFAEMTHZbLhmYa1RkGDAcuVsLPAiEEHxRZEmFHII6Pz9qoTkYkD4FUVUAxr0pUDUDMGLBgvwlBwbw5CPB6Tync4hAOWKDq71CrUR4YqAsiyExhW3WSsgYMIdrid7IVCBeKNSSQGQ8VUSOBzfV3vbO96eD3WHXLV6vcCnsmvRjNot8axvi0jcLy1Ze/kfd2yUhC34R3rV3ngIUwroETX2bpVqWEQ8nld6KMnSxRf1JuzY05EXrF9sHVABVmcO3s9IC/iYIYT4p2OPmYdEvi+W1RISScv4VNPthcKLRaMBHdT1POXp/L7bgJ5PDsO+Nd7dyPPe7313KLRsBRDmvF7WsL3BbZxzvSH3DDEoIiY/3vTVa98fJtv6ggM6ti5ps5yXH5R6HtwMDDj9EiTpjAgb9KQBdLK+jq8Vw1wYGnCUkcNCurPnWIRN7aWmrcpjnMtHSNllRaewLJXMwDUVzV6gwcIOkDAv4vJaLgNahtfsbxfFTyLbTfwiTtWmpV3ua/gGkx642uSqAABp9B4xSMm4gjJBl1mDTojisMs9QMz2c160BKtH3Ip3NS1rPSjYEtjiZ2Wa9d2AcHzIbqo94b3U5ZV9tPC2hDAkXCQogk4EBtCwfRA1H2NffowgfYeA4qdSKlnCQQwfTr3rgF83Qx0/aJ5/ChOHd9KbjMlbW/ew+9sU2SS0rmuIWEd1BmDRqSRcbSF6sq+C962CBCZkbutzA+cLSajzj9b6prIQHtA7/V7rintR9aaDgDCSDj2v0t4q4xUlxVwv5zd/XxGT6TTm0CaxtKbnUXLxjZ7BhHaldaiRBquoQ4m6hOZQkNQocVOIe26EjOvihxlvPvbWtSSlfeRoYbIPl18wtcw6WEnnrca5E3pDdZWDmOSCoXVVkzEoVXBjR4QPFVzGBlgxEzMAwZGd4Nbk7tcc3BJCElSlPgrFwd81SaNjDkH0+RV8xTMSfFfD58sJ2q+fLWY6dTPEZkTiJONLS724DobrhSoGAgCGxka3CnFlYIbqDJOY3imx2tPkkoBzgnfSOmNebGmgkDMKJGYCsFQzybvNFNq8xwEYQVAAfubtHcdHPrPUV7lbFv4WwD1PGwohPK/LhXo8k52eYsYXq3xgN3LmbkteLea/UyOcdprSGXpwMphrcFy+qiiBVMHE95KiDmn5yruiCeOSrNIwocwzw+DTGYRhZsJSbAQoJWCxoJQpBAdShmwvYsPO1q22bls2bSs/QVy/opNDJx9g5+1IYCEozjWqNlcjZ6cta1cfG1lL+BMDcQxtKN856QUUOAgkQwqHDB0Qt/jE3sex1ESRhIWCpUCTmIOqAwqWbvMHcbWQKDG8OPHxenHMiFjI8bCfoz1M7kY2frx/jfw6PDTVy/SQ/cqjKknm/rQV34w243wuyTr4zHyc0vn7eyc2eV2I8PDeYnHpoXELOaJZK09EuQflLzvEKjiUz8QrkH1IJ9kPRCdAfN6U+zDx5eSFeR8+0kWZ8/UMD23joiRruNQpZEArgwgHoNCbbihVqQ0a3Q7Mhy6p6AKDotbRqshFEGDQOFKuzDG7ZTznZ0kkaTxmC2sSMQC6vzbZAu67BHpPvf4Ps8TUWm5M/8AD7YiHVHwR8EW8U8UQfFFfDFc0FH1tNIf1RENxfIh2P5RXsCQJFSybiZjiJIgXILkhha1lTk8D3CJJCaircWjvdPb9zl3Gv28nbZ77fexbt949ttKTnt0WTU5efMr1FTHr8d46x5tPOCCzcr7Hz4dm2WjAu4I643VqnO2Ml6vy07L6mKvFkGkXU1dK1rDgvVLbwtOlTJKIg2XkJEDq1ss7han9QuvY5dnzCNUbnZ8CnlzDy1dkCxJ52RVF4PPhWi5zjMyPg+bE3uIbOpA7VvL2VeshN/2/fSIULf5n/Br+w+D734sIXEZw+ML8bQEI9UEkiJ6/7CFRKaQZ3VSHefFJgX16UMtddHTLEGM1O2ik2DcRWY+yeydgmFHXQgTKPUj29lLVd3Q/WlbE120susD7dtVjV6UUT+uzTB2eE0UpqnkNKCM0IQDQaHVAoJ0CMiGRg/D19jtygNYMUp+oTNzc/z+zLvnAbg6+6FzpiNaILj0TY6IL+SZqldRcxOSH5/XsrMW6ndYLOLTFRT1aGtURc2GgMTWLSbI2wUP4vfsSODWKEYPeUe0mMoRxhQQXKiuFkGRqWSN1efbysdn5H762dT2Lf1/XVok1DBk/Ixv8FbscPdutBDermr3xxef2jxCHxg9uviMYPW79PbtufAYI/6rLKuDMisNJT+LnRZryPLaun68/JkzwoRlGOnqgAziVcXV2cnekdK2ITrD1GF7P96z1YRew7dPJPSQhCES9n2C+BGL8j1GdbZxvR164TUHQEflNccda9B35uLbABeMgUOv6DFXRm6bLyeDseqzhtylD6s7tLDBgBB+02mqCA5curxgyM6FfUUvcLdeiB2rwcwK7cbqaSLvKQImVfbEDOp9858oCT6LO/iHGaEF0UN133u6kYV4aF8S7+VVIU/PPiHEwinEzsu9/d04dfHOPLpwhiwkXcdOn2DeGLXyt8wiBpi17NVBQZMC4EVwYNCEGAgyCdO5wXR78OPkkz/cW/DQvKxc12KWEsBy3qalKLlfrPzqd6/M/w7+32tHxBW0iz1FsmKfJcVwPDP57/3+/+MPlMEC8OjeAhGx8UZS8OwsQTuC3UefXlMUEM4nQAKZgzIIBgIBgJB9eKroCMfrjZ5b1ZjUMaLzEOZrw0Q+odC4VntHpNjs7udRWhMIYxT6FU5WVIeC3t+NkDiEBa5QKZEQIdYMAFKAQ/JT619fbSFzjItcl53vpHBW7hav2TpRY335wfFyzAjMC4ZBalDaCDRtSMl/Y0bFUunGKF70VlhdW1pbBZABRCO0TQWSL6cYvERJyM/a00GrfBrbs5lz0arF76cFuC/6rDggEmZ/nVPoVk4WlpwzP57YYqJsVGiv4GVXExBzldGtatusdYZoTGYzExxmHAsqCljQM093AHhdG2nbynvFLGL1t6NwXfbj78uO2LrnQPrfBjuQnwHcPS1bO8ih7EVHz5yQQJAVZAV3xUPzJpAmz95IboAKSQBQFCEUdcY78lLyhd6cmPflz0DT1bORdPacon+nOMSd4mG1YSfxR20x3Dp71euioO/XcE1MVZ++aje3MNwpbngm4OhOnk5FcitTAugBvoIEAeLwHIZQGQOSwUYbxCrKrlPniamdpGfRveHGFBZiHuJZfsaX3iggOamCIhzADp5Jn6xQL+Og/Lk30qgcwO5jCQ5GghsgsVDFTZX5vq3lanhe6uK94iMs0radM3m8FS3t0fb4Hkrt02KrGSDtHEGVl7Zh3PxImgxyrVG0UgstQ1valYW6l6b7rZwTSyWJZWA1UbW35u4fvokuXGAfDiCp0d7oZuPnSnetRoovptb6XhjGsPfgIFxOahETnMlwTCnYsx3/gjHknaJ8Z7owCjd9SheHd6re8Pk4aC+O/rceLGvEYCbuAqSA4GINKA2k0ncQHazv4D8R9Ue4L0NRok8SHaw6wcQuZhpOImYiMQ6xuTkmSmu61SwOiSmt5qmEjji5h+xxjBplooEwbMCkIA6FB+cRsO3nhsK99UihMoQVG7sjkeKsSzVzsGmYr02yIkmshHV6mSqYPmgo6HcQMS8jQLCQHVpmAklFid5hQpjVwuJdWoYD3ZY7lh3g0tpdp10HCsw47OO/r4XzEKfNZNAfcx0K2YGDcd3VQfHfumLDt7ePmZ9TxkIBsgqvjzuNxARgu9/L1vuERaGjDywDA1pzb5sx07s36udBAeK1JaXFhrNZjrQPPrsGaAgg76xEYJIwjDcJzZS8EEXnDiSgc44jtWRlMxKYxUNQK77PcWRzUJ2KIzdA4bAWyQhcJAXdXSwo0QU4rOvdULhzcO6q5Yw6qdl+xy6FgQMyuGQbzromDn04qQ7wdmNHaDMGBhNYGMzQFwO42xr0JMY2C51sxUqWWeAVno84sREg9eFT/xot8B1Urzvfi1cK5Ah1JfwtZhTYKtZf5Nb3kMQMbTF4xn8+5RLhC1xZF8LoutC1F/fDlc5Rdwv2UbrjmO37S1y/ofsLc89vGO7BSf4GB4cvS40i0XdbK0Xn8YN3DozkYQgszHlHkHYRO2H25LhuwcNgAuHgMng5OY9HO9nnpnPZG454J5AThlDWkF6NUwhpij6fdExkYQDQMOQa1bkoCbUEyQtP93DFRRFjn+D0j+k0+74rnLH/ug58ZhXagIDCg2hRtBSAQWQGQsBUW/IvLe63p06lwRckfzgsDK1kZLEf09/itigzoiQq6tduO5lhjNZDeLHXKUYgYNBIIzHdldWqrd5kIxfYGqY0nx259Vru0h/cRSP8FVCZMOEROmAQHsyPiqvV03AlluxggFRvxq5myts71rywYP7sxVdPYOwcvZ9uYbvx8+x2i3uGB83f9H7/c4O33Dxem4d2GupGosIkI+HRzW6UnTpid5/EiH4OIM874IocUdXo4g69SfWeDe799KXWfjFU27B67ugds42bAJ6i47+kJVzedSpHZxsBVLC7ynY9KJbMTPyjvhy9UtLyGrKPjbX9vsPIY58gqVqM1oUghzZs43PvfC45Sr3RIKDEuewpoZhna/qL+E8mH717Y5AY9PHaGw580+t4YMg1Vt3zc4siXPrapx2ea/3c/z6CHJT45xRKJR9gnHY+Ib/kKQiqC87kDwz5x9Rnv6QtUEww9tC4wCUMaI3Nd6UbPuE0+AnCAEhQaeuus7bYw0/RbHStJYpqFSMa0QRHFWCJGVQxsCW/xLtQ5qrJtMJKRMdaaVS5BkwllXb1D7OHCF703m1FPhBb8weBxmZb1ETAVDDJ0qNFiJjhBeAeKT1Gdwp1c6NOXj2UUrsEwOKjcMxeowIH0jEQ4gfuW7YCdeSjUQT/InjhbbYc0kDgwJquvKnhkPbkgaZSb4cdEAccigvtCN3Rs4ma8E9dI8+tysFpJId9Su/xjHrcow2mbPSLNY2dB5BPSBi/IzZrKF3N83N+4SeGa8KmF6viD+QbILWc5+HAQdPXmYc82fr5+69TNxz3F62Px5kL0+z1qZBW32O7nG0cH9G4m+xu+4yjDstubkhfHrSrqWKHzz1BHyRJcHmN0oPnCaBdhxV55TjMrRrixJ9uv261ulYcjYF/1Lx8ta/Hz8hDXVCw8jUSCCDIFsLY7cPXWP7G4z7dDVZvypMwdPN0q9dn/Mwmawpn31biV/rfwVO9wg+f4iu0n8p0mmWOO2Noxv9kYDfbibUHTdRG6GfBaoIqQlUbT1C4OwvTvDh+i76jwuxP30tE6xyQBQiqd/Kl1vjDIpSmBQl9lxmfYitej2cvqr8hXBX98QvtL/Lgs0AL8yJbFbt5/6PsNHn2/NuFjj5ELL59zWx121YP18siPOOAaHZAx0vIFV/vNNcOVHoHbcR3fZ78LZHmL1eGNtBTekUbhuMRVY3nHKdiZ7L3rsRN07aG/SaSS4u0lCbZpXuQnPRcRS7d/Rtemw2T6+zr41WO3tePO/d3dJYRBvZAnX08Vi6AMe6T4SDw57tW7QVoqgMzZJWaoO9tO9lyj1ba2t6qIsirimIwXvdWvZOnlaJymp2QIEmaRgcFbO+/DO1OOx0iZujYuUWUKaGQcwjJZXvxSGUczEW5mVrmrqk0DOKQXzyRzeSnJAyqvTzcfS6X06ZzPnk+sON93GHIdxy7oPrxiBsXTCXCLwMa86WMnNjMyYyPnCqhpELxuzp9KbXHa7+i929fF44U6cwdc+XS7pvpMior6fh8b7UGL1g22RUEvv4b7SGzWpcZGHQ1dJGiupR7DTwePfWM5bgzdh7txx+FbXl41zjYcfM/YLEjZ36sa9VuNZw6c2V8oc0VDNh5gTad1X3yyv6txxbhGWUAwAY3mgODl4qvLkmBEWgwvwEfRLVyRzD9+aJ59sFEMpv72qKi+fGEIUKjVvOlIJ/kgTWXX2P21uTeDaDd0C9V71uy4+5T6luz8fx902ev46+E1j+3f+5s6+WxzZNgFETyQE2Lv5jzscgxcb1u/ekvP9r2qF/EHH5KVKa83t5NKBsMeF7+G2OxeynXx1nyDZ+6uUX9pFs+TD2Pjm75sh34glOIAgakiBGJUESCDG0RimHl58jl15nT0vXuaOcjyIh+okn0JorgTCHVkQvjSi8gJyFCdGIimpaLB4MpMeCYxXM3wy/HsaSIGplc3QtT73s/VsmMcUmtANcJ0eVu9xdP1med+67z2m70XLVIWA1z3EvtXekiHkZAGYADZkZmgIIX9Y9ilDFxUF2fJl7nkaLcLa4fCFYslPFJhZkkZsWHczafT14f0/XwefwvAQIh7LoIhEYBCs18cIsl8ECZe0Oy1JxixAavtb/foh7k5fCT6s83TP8IVcLn+JQw+D/aj7f49cQL0DQLS1pQHYolRADFBG1BBpxjAIWOqFbrK7e5hmGzZYiFp8uQz6cHyLtTBBNvzu8/Zeu+GhcaAXPRjhrC2FgccHvx9IiEYibP4FNx+vEiZbB3pVbdXdVluOiZYMBmo1lcf11du76MO7J/Efyxs1XbPgd0zMo0F5ZPilN51Hf4KB+rS8JUd93odD7zAj7S/rxv8i39l8o/B+bNFM11vd3wZaO7Y3jxVD69jv6/sfxDUBiGX7D8dtHS0uHRU4qg7xLb5arPNiraK+Nr0tLhBt4JgtALB5pPGPn8SZXv+cv9pcGyWjmMt/Ju4SXbHVYdpdHs8PgOB3hFDqm5mvPn7QyHxVs8y/c83fC+SeBr/R5PLzdUfd44Om3WstoiYmsv0k/2vJ9QY1DWNtjOH/eLz89dNo4y/PiEAgGTdMAgEmHzBIMrxgIMjMGWhSSpmQivUS3Uax6YfH6CUYLL+O/9wBp9GavNg1/OEVQoxkCJ6QQoB/MIt1MszVwZBFG3k3ExcpbDfCCQDBjtJbUlMzvwvztB6cyC216D+ggECFFBe6Ada0AXb16o65kQGWXjPPXuMEvpC4UVH7+2UO8JtdJmdN2gWyQMBi6mDBzD506bUeK/VQOSopJ38+JX0ox33bEC3kTA7/yf7CPusSxhGJFM0GsoY7W0um4KOK0O2zNOqnXGLbagrgEPIyAJn84AYZICyNxANXKoxgEyYxneAIXdiHrY9NbI2NvMx/rujkyoc4vW5bjtc5p2tcurIx0PzOXteRyhAr0hatKcD9KzM4zzJ6xEJY8Et8Bgldwp8HTlRcg+td+uQqFHmwaKz3YMYxiqLm8fyURl+f39HB8R3XRzi3M8zd0oTb4l6iMTShGJmN7PqGxQGq+Q7nlinv4wXzIw0G/fII9omsYUYUH7WPrz52Ft7+xgs5kYQEEbLAUFBSTCUhAYNCgYQtXT4mCa2rpa4xY1DFykLWuj6vsaYK4u3vFIt/Awc4ItHX3TWx+R5CG0IeTzx9M3VehPy/eHgKM8A7eynh4XrjHN1zxc4SnasVcUDWwW4b8O/D4Zctq8B3aQQ54p50GTmV0XIHO8Acc30xkIDIMHLz70x7xriYloZTS8I+hzvrh5FIhGAUHZ2XcfwKdGl0zrFc9E9Cxe0/z8r9ardOsjvtZm+Wwv51PvzhHNZkGEvSW+Q6vLsx87PMATgMAjB1jAQDAzIDgu7K+inxru6W65B3oxD0nXWDIAEbIAIagE53ddVfF1fbJf4d3lxP+L9kiz0kmgx6LWsK/tdyaEZH5NZE5ZTjZqWqk4Syxc1z1GvjsW/FhDT7T1HpWYB+uavUs4Lft9s6QbNQUraL0lpzk2dH72hDUwrKnuahk5mbC7Oy3z8o4nBr8fAWrMg1dT9TU1eq51u4OFrNyna03dGDndBjADeRp6c1OQ6vXfw3h8oOD1Kr9ScsN9+vs+h8L7Zf28nww1vl9cnlQqENUKJLmFJupQYLmNehSSMyXHErXnY8nzG9ZhD40i30xV/EHFf+M3078XPhL25HZ+srjrn8A0fKQEBIQaD6UlweQssEGB7r+Sgr9fPxue5O17G2jm1eE07rh4zxVgofCQLkb3Sl6vP16vJu+Qy3N4wc0/V6bZC4xoGu59/rTv8TCKvUXP19wvUxp+rltT3qxR1j9diS/vWKPzoYC16786+X1+d3qfnsitd//ODq0jX5cgntyDJqxBt7XoyWuGSrzt93/obNG65/AbeHXfw3sASLGjn5uukInOR2398WJbC3yyU7A/Vm2N7tWQc/mOZg/kXDB4tkYSo0/nE0v974XDJtBrvlWDxsBb7vawa2IPBPQ9OMvt+tyz9pqASW6wQ0EimHYgwB/IMcsVj24dtkU+T6+FUUox6vFs9cicfir6hZgd5loIiHEZe9ij7ZKzG/8/D4cy/EOf6fmlodOsLjvzZuMdjHYNevwB1mAxw0IX4hTC9VXKL6bftnTNG05GFpdq9mSmIBOLA8vhhff50HShbDgdDwm4qzzgNryt75EXej7Dp5vQLvbejyb+QQ9eUcvtaXZcs8aVvwLHeoUrSA9o/Ordo7V6izJmMFsGr4lWFg7FWFzog8kEZmZJQgBAQgimNED4II1BkeyGEZsM3Ht+T7ewPO9TMc2//1zhODLkPmgkqdMqywIwYZBiMNrwIz1OXIzg6IHbA68YUkk6KJE9IW6oNdCGjjkwnjTz/MZEy3LVNkMzVSAqndx8S7Vdl5oIXDyCJxTOqamwnhk+3psHSfYZKEwMBSX34It3pF7hHmqixOOMLYVLq+Rb/BrF5SGkW9Qev+J48V+/Lx9yFJY2Vq113x3FFAY0j6chWa3qwk8K1q8Am7eKiMKGs5Tj/r6+Xob0unHL2uP05bpxDuafPY5lZNVVnYyuPQ99UMKQzfkerQN1vV6CvUjIiJ23QeMsfNcXuXeflrcuSutpu1qkmFfCnYMZmbZAOYGRND5r6nlr1iBnV6I7yIWWqraHeMGx+pK3Si4ER1SA/Vz9ftU2yfCH1CvHNHCdMWbAjQCIDIDubzFX9/MdpEhcr9rltSwimtCtZHGJQwuOTcFwp2qhgHkZS03T2efqTW43aifwQ45yOHZ738A7j9n2tftdNEIMLD8o1A71rZg0EPejQ5wk8LOywXBWILbFW1uTC9tPMZZw3F5/j7i+xBX0+kFOiKOa5s7+X2KCoyAao5uPX3c+IX7gjYEDK4rPWxpg3uYHqYPtiH1xlyBZjIEDAHZ3Y+7ZTPxfGHW8NITdm6runNNc4r0Ja0nfwzwIF2QyvhxnYPDdW21ixuDf4c5KmQAiC7PDgrcrEvHW9936sYh33blqiIa7d4QvTgXpA7Zsc9XYxnFJZWTe6CH1EGCRwZTShvLuj3ZmE8cf1rk/2iqIk2ROUrFMAuSxWt2n2WhM3qGZ9V62ZODNY5GBds5tf36V+um33ZGropL0xK2Gr2KDV5rHWadC99JFe88REU4f1+6KeGXOzA/iDYABAIYCwAO1hJUiwBZKhJI2gKLIjCqJCpJKwqsqQIVkJKg1JEqqVJFkQJBy4/hkOvw8VderL4fe93X2eXjOE5er8dwRQVS9+Xy6+2kOU7mEgskgpAkFIQFAUAUAgsFACHfzYQ4NGIJ6FnGDObuajJ5Jt4vy6foMp63zV+F6sMYRnIQsNNQU0lSYm1uDDwyyOUKh+feWaD9nDNxTVgw82ZmtzDGVlH+DKMcu2C0KmnGYyoiRYCgoCigsqWCFANUTD5V/k8rDRm7CiSP0d/ySc+hCN0+cYw5XUblltCl41pd5w331XpHI8Ojx1t3tmxiIqD6fAlRayKDBxUJEBAY9c13s6KGwhZBuK/hjTrPKp5Y74XDJqETpMhTG2yIYewzE4NDUnQjMzKidiO1IqpRB1CmEEO/FfDp4Zen3oZQ0JVlZiIXcXt6IrjOztuQ4j9TItCEAXjF5HWcclqqOqhoXpyFe20tXD+MZhTl8F2t2ISrx7OkxRwrveFONNvhwu88dDlu9zVubo5Ky4Frww33eqRFWgdlavozGJHdFg7ukEORNL3gRXBAKr4oUAzIj+vE6cDA7zpOAiF0dGnMstgHcDN1CHRCZfS1G/PUMFdB+pd3+l+glVYxy9gcxLLMhAwKtVV+I5btOnt6RyNLAtNbx7NHMEdHpLAw2oJhSYKM6hl5H6ePzfT3ebTTHJK54ItXlaeGpaqd+YqUdTUA7wPoqX3B1J2VM7lzOOphQ5IHDLmn8atPisDrHOMIUkxybSUOnRA3pkuiZhAuCmOQS5eMM3xi1jc3T9xQGSLnf5XLdKPcOa1II3jywDAhENaNv4n8mW2cMjYx/BGNGYhMJ6dXtBO7NMKRGS9PVpDbdg6aUAzC/bzZdL1/kqDplT18KOo8HLY8fnmxXDul64vd5zkLHjOi5GdPuhCVjY9q3u+57243vdhzbru3N9bjHkmsq8sqWi2hRCyQgAxdSOvH/TWp9Lw/Nhr2/z8sXj6ej7+jh+SZ3Qt14Zv7gkxKXa89MWPLiY0XLiuO9H4Hj6eZkYm8Ul9urrdHpHFxOGuhiIJLIShScg0/Wr1fRjoBKCdEQ6aewMcywEYN8SGRiqEFVMIMiQYSyNvf6g9KBA+BAMRVhII/TPgOXHhrzZSMKQDP+/qOphFsUbfBXXzWseS3t8MbyILo+fP9OkVvIgjM+tBkZEjHWLpPUbt3swV4NGo23k3YdFnBlrSefcDixLdYtLF7BBhP3cyH934Q26RAfYfieE/asUPMggYVCgIMFUYvBQbA62IKsuT8No5dxZMuTJLb9iEOfCCDKMMhlg5q6+kxOJzJUwev8pa95y1HIu44pMqskvLhd3hVlBpdYDLdrCyOqczAcwwRqk7Ht1JbOVyWnhpudhen+Lfhrh8fEg2fjbrqHlmhtComqU4FoLtdjKbDrIWImokqChq45p6EmJtabM6b/XLtTnvTlzI2J7/G+mKjIH9CjTrdKPnUOSzShzUgyd+GRT+syaKU5Cqpr9av4c92MLUQOPo/X8TvXzC5ocqtXvr7O72OKpyM9cF2z9/wMDg7zlj7r9GTf+OYVD4GIgowgqXMzsS7oIZsFdJSL7a8Z6gvXd0AQy1LHJZ/GDPr5Y7/3coLlB0RQSQVOWCiyA1AZBTwRTRBZEuIXFBuKNRC4sircKiyIMiMiISCBaKyPpZu0ZJ7nX9/DPJ9GvL7h06+llTrUUQsyIc0dn0c62cqZE9WLT+Ycwx83QxaSEz4LIo4H06R3vZKbILwfEr5kDMiQTSkRTLceHTrA38VZ3J+HdS07Sfw7vysDGKO1AxHlUFB+pHoAnFMGDOqYQZgwsnfdltmMJ2JW9FRWqTVjn4NOUDxFsflaxx9Ysw/jLzirTH5cXFhsIGLApgTjlFfCOd+3+ebpq4gf59Owevj5Tbf8fc+rAfrPczDsQtZWhHcu0Dow80O3B34s3B1wX7C1jxDihE52eitsEzn0vmKOgJ4eyW8439VgU7hgxAkBI+idxArS3hkHAeCHQZdrvZsyD+fb6GgXhMNQxys4cQXkdab93fkYY8UUjb8Avo8bg6LeXstuanKo+seRDAOc1LJ6jYWXnSkHuk7N1fDZ97/Z5w5Pticx0S9aVRPVmO7Ku1liFXGYUaZ6YXFidFeudhsLH5pxs2NGAPrtJe+BnPINAfYzVLfONfLjnyEQoFUGEG6JAjnqycWMLjSMFMc2fUNmWCmLjryRoPx1bre3iuKHBpnJmsB0VfZ4bWsdY/VXPvyycgwVYokJB4UNXtGJTFQIYLTNcS0KHQyubC6TSGnGUEw5Okk1gyhdfLLf47Wufw0XuSfI2MipbA69Sm7nJBt3J7xumHLzIuC4J9wsKK5DdGzgyGOS+02rbqElI7B818Q74jGWOHpactnci1ByPDQNa822eKLjEF3mhhdf48arbUpuoSK+jHntTC0dPFy1EuLi/QYVBgCRBndEgt188MQxCgc87tbnu0hZGQRbaJjHLS5eVynxiwS9i/nTq3UHEEU8HOm57XYq2qlbVJS1YK9c1lzRzvo5gyvZUbFtx9qwMmKrTDvFBALmrJUx1eMMDnoblwicU1lDj0hiqiugNsyA7NTPTxaIcLaWEhwKGiw2i1x1rkGDdnaxZIOLEGT5M+TUEK2y1q9kaLFjOL93DgwMrEty1ajN1izbmv0dNmRzSLl/HxDTZHUzrdy9Nbk4xTu3ejXfHFgYUysM7VMXhWZAzrLliF5aBfPjvU9WEqrS5TDG0zY6m1WcjoERjZwXaRow7LAji6XxYqd6/62+XYqEgAUItr8ztjlfsD42GG2Ly/R8NhIBAVx0hbFEIb2biyH5mQjVV8fktY8/Esd6FMb5MZViQqGffp+w8m3l/N7kqoCzs/HSExnYMnckkwZD8SFQUU/A/eYSpgn30hWKTxYfh+7z+kj0fwaZ975lBIUcU6lEqDj6pRsuWqaT6OwIwmfSYQg1IBz9y0ZrjhRcKPgA84hi6PsfdZbTZhFMebyCMVeVIQm4hMxqMq+BDilGAaRJ0CPx7lWKMr4MJzISYtgzMzMwAjwCCB18vTPxfcVOXLtHHZkxjvJ6nlDdv0e3ilc7T4Ij11B6gGDjBkTZoSEBBgwECH2vI0vAAPmAMREQC56pK1Wjniv+q+EXbIICpbAIaLvNkmhrM1h4DxlBzT2G8G7RzuN8uaLV1+fobjneY2iOGsMBMWoAOepYjDfGwU6VuzNwCh7cjwveDUFsmH1qapQsuEmlAuuByERnLXDPEF8xABrvFbywKqdLui9kBDhteH80xk7+GfbPit3vHUVbZ00zvj3jsH6+f2b1G+CJ0i5IK+fVqnnnGzP0ClDyeOjkEB+Uv2QfwJXDKx/4ivpMhPOqhvvEoE9B8kBwNR9cPSq8h9FvbtC8KV39Kwl1tRuVQ1oVM11tL11pRUYCB3xvyzdoRyVFm9Wjg/FO9kG0fnx6hBMLmy1i4tTELWAiub9G6Lsb7eymbGeU+XvhSn2vy+HTOO++/LCTjhVXSKVIpCVgay1lYFpca12QMQUKklVUX96HHKpj9aG+qLARzyU4M22s0zdhkZIKECZESSIZCB+iPu+y1JdcqaLCdnhCIUzgZkx2MCzJFAYYmTO2PDs5OWzSYtCxj9A+QApbFrK9I63SYYZcBAJR9RUZs3NI0Djh78fiK4cEaOvCQemZw5XKqwScXm10LBGUiBKMuEviZ5LAu++BayP5CAOkKTP6eGX0FcciDwnuSMRAradmS6N2aovd1C9Z5F7UcTFKL2kf2dB3l2BUCr6DA/s1AUuZH5rAiohrdPMK4mhkCaqmOd+zo4PtcdwJp9B/V+w2FhVmtjA0WUisxBAQZ0+ptunhrf62xz6+Y+GZYhxa6bxGQvAkqFTbD2v68/Znd0/ZDXSq++nsDUMEDMWoCvIoQxKmsaIYBx0wR5yCXblmO5ufytCxq6hNmOn5+hwWx+fHxVblVEe3LUUNkNxB8VSLIQjVBEGRAzIzIzCd1p0f9xq3KnWN33+D3F4XsPSklCClemrbK9URMse0HjxjgHNOte7y1FVamsXehcXa/UMlllC9663kbxL1rhgSUX6xU9FNcaDnewaT0wDBE97PU3Kd0eFsKh+2ZmGCNHPtQ2OGiabBkVDmpvOgOPtXRTa8SdGr+HrAyBAZDRX4hGHDY6PE/eF/VqJgXmhEEIyB3/aQA28MqTiMqQzy/zr5VIrkG86fDg/JVHgDWbQKKerOSZ6UeF3tIC/HUdGsND7thIOzzGDT4KT6D7P/PXy0CUXiCxhIi/CCwqrwCMc/8POTIvfZTfuwAhQXM1lMcgKSpHBk4eHQw3w9p9vIPS790CX6dtXEyO366s+zhhsTC7vrPQLVfx7cf97FLV7sMy7o4ghu3oHHjmtoTkBv+8f1dZdaR3BvT9LTNz5my0sYbhb+whRV/Ff0C8Nle28KOK7y4X7zN4b9OHopeUOxwW75W3RSyhf31evZk/tkPiym3c3dgc91/Xq3S8d31h1bv4MVqmUB8P1HmDozs2+QP0xPtDJQVDwpZ/V9vB1jlIJQnasFJBw39wvX0jGglbOrfzhVV2lp6ZLeoLHPVmjsHqFXPVT/nJBp2ZxtSOvzCGSOmG/HuRgYHWOdVwR/mCx8flqIqTzPXJIZrJ/ul1Q7BmRUWInmvPDcRHNi9rNlXQsllSTDQ/COr81Ue3z990OKsvDcxWXwIQ1IEgw0D3mFKC0sJ2rlAwq9/WnDNUrPPlCDQYfSkofW7YgNhlJsmEhSeJYu1qDucbxjZt2nf4ft7vtDQbDoROB67KoVhlejijfQ8w05QoJDbISNljibbLHddQ9/FhQtVA8LNym69KJGECVZU6gpSBAahQ5o0DX2vZFO/wpLomDb1ns/eGcDDUHEIgXhQef9AzZimkvVRWelzfl8M+ML82+28JWpxSuo/FFb8XskvCasJnwkbKY9b1ek848U+JfziXlQGRz+pXw2pOOYXoJ4o0DPSt+jt79Q5MDYYpFntoFRYgnJKJ6HuMYqPGIPidZqbu2zxxCUIDEFDsAuBYeG5+SsK0cIUy+8tLYfg6G6YkDopmFgyvVS8y9LH11J9H3e2h0FLTUdpLDgLFwuQNYR64zmzD5aHbyiTvcDHYKrO55xhpAXSh5buUFfCh3IeDYZ+PmxOMtKlG6hd8RAyWQ5rDzwjXh6g/7NCWUMnRKz3TMLg38gQP67bt0jHKnA6VEhsJ2B6JTqcdWRwDjjzSFmFc2HMyW5hVZM5+ibnDr88Zb70QfP93K1rxuwQCZiqqohQcQRgFq2LLLbIhqqdMnVOYVwkPyhiyyEcmFLlqyGKfbOwGG9lXt7yjXs8UNxjhOIouDQ1cyCmNFYLExUHE1MnJgJSg0nZQgqii3uKR52Fq5N1q4YIarM9rl+zmyt39qYWdR82xrNdWtCvgaGZBAl5SIiwll3fOepUzrMIMgNB7ePtw8OwL6dU3r5H1axfPiCFrFhaTuCCXKtkEVodt4P1mOlDt2Dj6uamvICrAwMBkCtWQJYltel9ksxXTAIzAm+jcvbfazqrvsV+UUlPVnMHL3sZr5PtMng73gkXljug9cyxwIGEFqLhEC8IgEmQWIwQQZKQjAdfBOFmPTqOmsL8ceICtyjFJS1hjj0Z8bnvvqyv+X2huhdKA/S0DiS8NNiga94Xz7e4Yw5VbWiqDMt3Y+GmQo/jy5eixgGFg8QjMGNOrMRgzTZy3TWWW4GEMGFb/w3QcMUZg78O/m4afvmrn218On41k1X138sg5kv9ttLJTgYPT3vJiFkJBuFkRhPcEE8SKUgImbogMA2ERBVO4n5OpyfsmVRm5+i5wh9kn7q/WrRW0qy+GxrVjQRbpKYJGZzoY3hzpub/p/FoVmOPmmoY51CoKKbT1dRzBEOQ1mTFBPRQo9omtU44viXl0U47WnBpEaOdjmLzV0aPX5STZhAsARe/NRaCzUxWLbn5x+sqwqm10pZvxYupW21LyWH1vkwCFJupp+ta7HGkrveaZeQ6UlleAe2lr6ZtW/B3CuPuPOCr3W6FoM0LfisMGFrCvQKjFHFRmZfYrm4HhhjCAYMXTuSfZOSy9UU3w9CLA8Dh74WQHzu1/noFEvZo/Mo/2rbqj6QdJUxxO/3sO1gQPQGZiRISNWNglwo/jRPWEo/skB65cq6SAP6IAa4ctibe2YvVsmQ2d327wz1/GMemzppv04YEsCHU5uH7/d+AN6AAAHLMX0s4ijwEZaHEg0oCBj++X16+Gwd3dow4/2aMInHekW58nThowgiQYBANLaV0Zl3rVr7ds9OyRkKwMCqEhASm2lR4H2RXvmOSkPQJ5aaO/x8tcnu39XhkMZwo1H3+COSVkYRzjMeD2x+jC61Ng+Hyz2tv7NEGzUCAO8NDcK+gTGKMcLW/4HTWoHXglGK0Nf9fCO1RrIy6OUNgWOwNT9tmqPx+QyEmZmPChzvGrmBDje+ftftuMhqsnpgjxHaDAt1MWWaDd9ndAZsvSD+u0/4BkOzQPBnnBXzIiBnNa8cNjP7r0VLCCITmCJKr/Innn0RwkGG/ROmsFcLr/N0Wr0C2NQX6+6YbAaDhgH1MNRh3dxWJnIVyZBkTiEUqzloSBh55rDSjRsCfmoexhUXrvDh774b7Z3/t4dfxocBAWE+H9JT3Ugo1jCDBEWY37Va+ypqN2rVr63Ks2+w7VhwNukudxt4rlQRBnYLHEATG+OKxu5h55eQVcYwp19o/fWOAo2jJXxnetWUgprOEaeWOfoF/CMo6efI/wpFLjHBBLhSH8GpqYYwuNnHgwZMeMLZRxC4x+gx5IFYeT0JTTwtoW2ICTCWWEqO/SPkXK8YKyAK2pdynL/W5osfmEJqAX8kc2XuJbe5DACBACOZRbfYM4KvXLXXGSyvFP1ddajB1RAVfqmhAJBoQo0jfE+M4qhnUYBFQZBBgel70mfgoVD12hthTmmhB+umzOhOSMkRcxxDcQLh/1zeKTMJHMuKdg34Vxhbp01jbR1oLmAi4QQ8flbsfpvWus45QBGQFDZIW0gVKkUltAwZ3M0iyc+m7suWQApaaSFZNJA4MqON4PyZZJuwIVFJBZBQl4e59n3OPX8LBTu2m/XPascTvSJ7TWmleqYJAztHfKsH2hXdSBgrCf8n4+/6s4W6ps3l9SmV1/wss65hR2ri8uxS093BT1EkscLgasWbs3Urw7auREly9vi+fh/I/Hh8VEj+HyX6ff7J80+ekon1RCQMIWipDBgyJYwhCDNurl6+PpGKmgEtxdh9YWuWa7Viymwi2zDyAahHFx76wNrknWbXFkKUE0/Ti5YHPjjdZ43akpSYLqHOuSx0aBqDdkcedYVxd1WeNJ+XOLefuGkdFj2vpCrWeoFgjXns1RRQK/opjpnwet1wVrz1Ys1HUhXmJLxGrbBx7p8/unsf9dFPEKN3/m7g4fTi6DSh6G/leSbeP1Pn9bufXnB4yQjI+1CoQkIoeCNAwmr2pD/lvx2+nTH7Zr1BMy8rLP6/DHIfHursV5Z+m8NGsbQv4ZWWOupbnqri6ZPONd03HMMfUPab0f0U/PRw0D7CpU3YfRH9iyLF+L9/PlH+fD8kRHveD8UvP1A0nkDh/yatwOmGHfnFQyIs2GAYRky6QdLd1YgyowTIpm9g4t70xtSM7jB4SC/EeWQyQgw46uHCQkLEgIXSyhvmx83J5/GiBp2nLiEbMEeQUCxVosTPuImH397Vv6WOcZNebY83ubzC4tqxSZKQsjEEiei5i1WBADg6/p90dqPttqPh7ivClS3/aK0NQhYLQk6ex9IrT2M6Rx0KcDbGZtQsi0D7vrhDHNx6m+/ib3/ioHalPrrvwevzz+i713lFXTcGEXDFcWn6PIPgaVRiYjwnijsgWavhTMC6Bpd27iWlZVmKUBhZgLPrtC+Ge7d157cV7IOprYwOziycl+316qwpZ+bZpDOS2nTo5ucc24TdFptmpU4tCfJp7FcyihoIzclQUs7IpR5BbtY6XKmxaFymLXFpfFi7H2NabdX10b5b7LUWL1y8tPx8GrLR2sOCYI3hIvUFmY4IRj6m7TgZyhXJyG1nED0YzWxGpnqDoZegjlSjAFxGwNDMjLRrw89fUzTFrVzcdArPbJhY1DizjcO0YJIeMQPrZUPDPhwBeLH1utbOdo5WcbVbx7nO97kc+ouwl0GRGY6qWJLr2BIAgYQBt+EMGPQyI1kAG6gBBkTvmhIMQcgS9VyV9lSfsalyhlfvyC3ZYQdBiaiSGrhyQ3hojF6oDryi0HqaDBmYBoQAg7xgAQgs+Hn31u/K7i8UPk20ee8NEhW32O3431alFQ4ODUJ6i+ExrDFqzacF+uMC3iKzBZHvfrgsXZsuh5ljVDkmyT9q1mcYmm1YAS0vx9gwDBmXU2OqDCHRpJLrT9kyfov0NFxjugzGyO/R9rj3HtTr9iflNdHud/5v0VfiYoiLgtomUqT6i3U1Zcy3A+7bthdIiLs/T9XX55yPZ7fj+H8/n/J+P1+NCQ1oW21RdNLN63uq5OOSu+BholbwMW+3OzZSNwMEZggCBmACPdS/p0hOObkp0ZJDCACL4+VnvtDXs6qq+Cxz3k1Hc3LbxqsWqGOduoiD8L6hPuVlb5Xei4iKCdzMEastU7P0pB/3FXu8LYmxvdtoWugbsYX7gvNbiqf+yQRoFOsFoA8wMyni6TuBa+yjcxzKoWUbLGeYMdQvM1gdYPDJHak4qwheHcLGnV8qZ58rox5MFIXzxatcvNStX6pVrIzqrVitpCMXRZSHF0YlML7Wkh1g0CVho7uNDowhkBMQQCUTG76DAM77QeEGcO2ErB6o+gJGRhFbKsVk5sIghQNj6670t3FYemWevxiVjM66HIJam9DjyNvnFPcEdJew8kb34eM057wAPu70H1tA2MvYRV5GpkECooMl4+v5u7SEZBrJvz05pmNnPFHSD0IYghGG7qFZYOciUsoBqbsqJFGVgLjj9GHFBlvk4oxZ67+oFyMDDbaR5e8kdUCWmo77x7w9K7B+RiXg8aexnx7dPwU3Q6leeWJrfbt2ldhET39yUmyEBDoQhcIUhDwGb7qYDC6TIQ8bJpipv8EcVjTXj2c3m97dy38hu/PPGsE6uAl4Ecw3CgWBurqJhh8UE7j9vvoTiTbw2QZRxt41O7MVXbyc1ArY7F4UTAGLgorZRJyYd1y7Wnlpis3xhHqOcWgDs1Nz3D66eGE7e1EsscHNkz+0/p1YABa5PQb/6aaYvjMKwzs7KfwjNTsegthREQA6+++oAh1kQmrpv+we4+Tow9bbwz6CP2MqSAm6WGpLbF7KF0rGOtMa6uwxdMg99ulICJt9vqTx2qclS1Y+R3/W5cuON38HZzDy294z4uJ25SmUUF3GlNA6e6lQoZ3S7adh/1BDrMDRmCrfFk5I7lwqkQsyDR1VT4+KQa46dcrglYjd7XDvUNPX6eJg8fAaO9yfFW/2F6CPZCmqd1WKtUkKzideGttXELf4WYxLTfKJ5P5YeX1eeSQ23Pi+cs2V5A3cAlSwQnejk9LAq4hPixphnmXcmuqtnkUxvpgxcF/FjR8UviDms0p4lTYeXNtq+SRBXvz0xZirj7fJA+MwZjf7BRhKAaEIx9iO4fZZIaJFJItLdOjsWZBuB1wOtOtsA7pZdg+mIEQ5PDhw1fW9BS+083olbrOZ3DQZ94/Q7khNCFCUyXB9QMgouCX178cDSKqC7lw3rrMn3nBHWs/oeSmzDT9x5fNYcxN2KDvQgYzFLsZcKE5UpdjDAqQKjdFmBfub4G3rN8Hh7/k+Xt+D0++m4CAjk6OfTV1U/JK/tDE+alxj8+zle67HzfzsO2s9sSeI5vrfxWRCG1qhhUd0d0svwvP0BDq9CQ87G2E0hKHU2Q5JIvNsd584rDAzcIjgF6HzGC9m8+JwX1Z7FJ3kDIAt6zIzux8inpK96s3aIFfN0wAMLUAXE+JGynZwOd08whpQPpwzDEFshpQgUYhAOBUkG5xEFqDKIh3x4VYgK2koD6X5vlDrlAWPjn2dEQE1KjMjU3Lu7/H2T0IpSaguHjDMccoak+snhHCzZ4/QeI4jnDz9pYYWp1h61t1ZoMUt5pDNu7VoTXsBbWvaGlio0tgo81rDilmBSkWAZN0qnqlAuP1H8mI+J7G/TqdG42LHsw9SGWC9HhG5jispmvHTdg/BXTIdZgNmEmRdA9kFraQEdS6ZZVxSKOsTAqg8m2VNik6+wv4fbiMYfIIUZcvcqQI+lMZGL3gOJhEPy5rYC+mCHtR6ozRu8kIelD0DsLuXrwWK+f2uLjOejzpX8XhoR3cTiW7kHRmyx6G4cvEOjvG/x4xq3AAsZjiMVoftCVfg7jHm7HGF3BzlYrKoq5euFIZb5eaXC6B631GfM4V82elFqAwt3/y7xjmR47h4a9zvVU9fy3/7tecb/laPczGOe/34mJTHs9LncqIb35V7XClyFv+gaw+0WTkvQ48yOPxGHqMQoykyYM+NBohPqRVSGYJkDMJxYgFnwzUb92t9x+feuCIi3mAGDBASZUNy8PG/MO4cJkyiRhNofIeHuyY6R319Y9+P60rv/hvsBrKIqQU3W5MPIPS9qZ5Sy/ZEGG7V9FsMfjYaHNzdjXl35OcfJ5/p+rDd+mLhkQnMFwPMZEFGCpmAoyOhAG4xtos0ysDE+RIfAMmyTaIKB0DCsjGAvBJmXSChCqk+r+d/gmkU5oQvyIBBowQSYIbLnUkmFkFzBO4bAPLR1KHLzlUMgQ08vwv3ovsdo9guPofj9r7jvH2pU5qGdL4+qM7g8vrBmwbB4chEXb01uFhsfX5tTBkef+QrTjLPZphAyXKHhYvCs7WbWCeMzMgsDBmCCTCl0HUBAThcRcbFSnZQCBK8U/wNXqGEevihuV35Fvoo5eYaw8L/C5W40cXtt0PczvQ3devc97iuZTlvR8XxkHmI1Lbf11nm1cX2oX+1cViSd+d9siAHCbx3foOfRdKAFzB/lDLHushgBNxrwDLEw5GfgfGc3Gf0v92T4+LRxjZ5hal25FE259NGzx1C2ANXvcbCqnOHm4WjDIyu1Nq6ezgCIaQ67lCRUk4NwbIuKs2wCL8mQIC2srTJ6TOvBQPdFwy88YpdoWlvNugECXAV1h2ml/idC1UIr3Py5IcEAsdtnmeGcJVTH25FtP6EubszI/xB9I1a0/o5Qwj1+rqQgwyDaMSRujOH1gznx2b+6f73omK35rA/wEj3F+othysWKYuoqM6E98qsY5RspNtS+nHf4hqZA0zWalMAatInE5mZGughHUcqgcTSBycncGfdHEY8gZIQmJwb3wvoC331Y++eVro5alK2p+PRctGBEEy4ByY9Vv3fYuJQdtcLDzCxGsQJRgzXMlIrmGUGYZjUjKDkodghIzeYAtYS0Geb0vB5dezm3fk0FDgfAGYgmRvQLFwKJLy4rMhIWI7yHNyBwKfs6HVhADhDoCCoFfBgFwSEQPNkJjUvalaW1w1dT9hwO4Zw5ysc4YtHgsUN7QV+C1tWz9LCqx8NrhPeSu3yFMZ9CEo/eSs60r5mdd49Otv28cxk0PNDNQQezJNwevjD8KgdwREGNEtE/GXVVCRBrGc6EmDmQ0GFJCDzToDJrLI34M5CXjrejmnn+Pt7Sb6mQyHlV2YY/GACXE7Ex91JqUUZEi1uGF5fIL/QOzoE62ofDBi6yPoao3bohjjFyl6a0abYy6LoFO4B0v31xr2dzH2m8vwGGQokGCVSD2H2+/60ntofOIs4eGxvv6H5z5PjfVqbPnzfDLQgBdSEmAidSlWnlYVZh6enHeHIOMgKZmDF4yGKmGZ+gMFHDzeSU3qLF97cmSJrwSvYKoZUGAZpMDKZg6RAXzvxPkNf3HScnT3s/Bfg4tnP9HsmUYQPtglERCQSIIkUWREhFCLABSKCyCyHmZDExBYQRhaD9FwkU2ZPyZYBpNmbMhWGhogYzBkIpEQ0Jn+94CQ2E2QX77sIcWbJxQqAooCxMkGQASuSBVqv0TsVgwfF8Q+fhdnfapWBShhwQYhn6JpkiHpm2wt4zG3Xyghbv0DHkqmGRo89nK1X+4e3dAt64QBneh0BSfGld2VuCMfG1Yc7NtkjMDZy8psDmczXsHHf9l7fR2bWkyOp0+4VlgtcW02qcPNSOHr0gen51LMKANeSnLE4IVBDBkge9yppnLhVJwSfBtZszuQxJ9DAqG6HvFTkSQTEET1FAOQzEM7pEqYiP+KCiZmNV8REbgOoFRJEdREqn0rGCBNGRLIQCAtXr0bvK8pUJnlbB1x0xWx9auOLQBrqTW+SDcMjJAmJPhqzVL6kAUYguBYTgxRrK1Uzyy98KLZFIO73n2wSEwzhjWpBoHYtN09lH01NBlesXVUhwvd4xDD6CoFnzBmuYWB1+9BGK6CUFgywFSVXr3VSwp7pbTNFqKRnc/CuIJymoGEPBKTNUO3jHEH6W4XiMwHyM6tJObAjyyfXNG8/JQQADjeQ7w3BmJsLJMJGtAbc4i49OUWQZhsINdIxKHGskwlEdKr7ONqYtMJG/LYTa09UUWC22yt3nV5ucWuDQIUzImzaMIgBIgkgraCOjp6jiw5tWTtcHpdHhN31bOvHbifvr7Xd4TdDZAC695DUjt3VBMfd0R0P1iEZsYweJG691jwcfBETc/xHtHw9h94VPqMLY3H4C07KbPx4NoWJWJa0tRWgQsbC4W7tVGGB7aGFZlcwxucueLppc6c1bkzXbuuqm9ZRB7ePn/A4x2Efvzalu5F7fbiGW/prikuropWOqnpx9GsX4Pdq79vL3Clu2Omtd1cSBvGJmBO3bPa0WPZ1M+MVeGMFkb9OFIgALlq3upYUkYk+qjCgQcML4QwM5VgsM5sRM4lF2Pe6dBrwnTONSsIqJIhKYYOQyZ5c35SoAAzHmZaH4w4PnvZNKtaqfooMrjmsO2J18aB8U8o/gaZ9b+a6quhP98U4TBBF2yBzXWkgWr7XYouaEOsq/TKq6zmg5PRKNU43g7503PDriY5suHt/DXi1V8vPlsSRZEjGRiIiCCqvKEncSEsxIIx4USo+audMVTX3+fm3m7LbPTMpkyAI99EC+ELFIIlQCRkQVkRYQEJFWQVIRf++TxFuXzyuYUmuGP3fNb4tHMJZWoBJIXiYfdRQHEH/eNkcqi/rpsfIXcDmkPCX6M/xVVWZRf+korD4ZwPOphh/qk0r7uf4GFSRzcmYGsyZi8VIWQ9EzaYZMDBTCUgiZEHhr/v+UFWrqsgSJIRIMjCSRcqH1QGEUYxSLFC2MQE8nnViTn2hWTNYJrX0VBEv5QBuGwn+aJkIfcuYjTeBsBvBMxVjJNtF7RSLvhaIKc+ARiLu6SE3AgYEmQpqigxK4QCJgl9J75HXoPWcc77YbQEDvWD4gD58SEhQ5I/iuoWV2qX4Nc917lcZjXkv0Pq1ZLc+rOYY2mPvZOPqqmstGXsoahzROrJ5ua5aJiiwLIsNCoF8th/rg+cLaoYzHemu+3wVi5gCCZEDBRABcA/4MxLXXu7kpt1vNT9HpoGmdAp91CH0AwXQcpharjSWYGr9IIgt2q1f0oa2whYw3z0JK3aWV71NwXnq0UxW173Ig9A1cu3131pfepaNJMIJNvZE0tM+EJI2gAZgIQCSQGJ7HUEoATHzEz6AQDDcIABP5GsN+nfD9jChgDKgHQRPbf4iOGjoGdQDtYT70kBFQQ7jIGDXZgDQDRgIMvqYKKLZMquf8gyH4rP1n6zWHn/11Tn5DfVKgGKB04mLlJz6bQlarmpDEre3YGLtCRTEEGUSC0IRR1pU7xOCCfWOMGulREg7pi9dCOZtRGMFWRRERS+91/9fBufsjwWenfs/qa5UmMCRkc/8d3k631Mm75kN6zTRqTT4LCKKZLt8iWUCMRgxlBwEQBNIkGPpKlVwvJ0MWw0MAiu/zorrj5XdFD9vs5gdfyUxFIf0tk8rXltt3Z6+Hf5uZ4cvkr2uEuFqwSK6D4g4bA4g4Y67imEiJdA8GolEOO+ftCYmL9+V+yX9Q4ADgYBAFYxi2FDutzNiFjDmJHnktU/iqiEh8GLboNYmB5F9d5TY/cmG0zRDC20IpeIf8KxqX0V8Jqc+N3gJadyqPX+vd3bmVh2vztYhEylUiSpX94W3zbtMRfa7XRz/5ibO7wzR/6FUO2/pathQDQ/gcTqnmIXzF+xBSCoGRta3+Ai71Vat9bvfAjNNHL8OXEMQXCAFvopLQNpwatNwDDg1hYU5ebj87IYSLeY/+a3mGawVGJPEQOhNC0BfdMdV0dcK+GnHdqMu5DDVM/fvQ4X5BWZrUkg5YoYFTJPWlFp9fsqARTyiZ3roeNP823er+2aX5gZRpwFthzo0+91HKeoz+g8wvzxEehKpcc40h6bAgpiHKCkAfOhATTphx/vYHh1dRh6khyyowILA8E8Cv0bXTpwcjDJUkCQkb9lKXhvw2HnT+kwMv1ZLGQ6IhA9EyZKY1MSBkvVH1LelKH5acaPgc1f10CjT3RLjrLUEocWFO7kwt5YrmNWMJQ8Kc3CBbjwBDJgfH82u+ys6DBVXvmt1a+b67/KBm6xRsf8iQLEDLDKgInFBV2EtyzH4ISdqW29plreskr+yjMr2xa5tdHmK4e59gT5fQyD4o/OzXx18/JQXgpCCEkgJjNFqMGNJPCPMO/zjmryraHR3oh7T7S4i2L5HaH6kqOqi77+5QNcdJHx3+I5eOX6sVDp+tOFYWe3z2LSGRGeQyJFUIBEQDR/sw549MTirlo+YvmITtUGaW/ozMsPunfE47D4P4KFywP6O73bIOPBpLA5IoSEgTXn0XyfH1zHee/7tBbudfP5LkXA+5JAQM8JlUJEFTJOn/W2MdE9+IcEqVCl/Huz9aa7H9Ojvd/kSdrK/+jnDH8VPUTfhOVQUz5hYRHKbNV6jR/hfKHB7P/FnLDpKr2mAfZq87VfHsoE4++c9kMNk86WLvOBm+ywe7h9aW5fAAnHgZ+lIUGgXJQ79y4I+mRb+KqU0Vvyp5+GW/1/+zezpMmFctt00QPP46zRStpdgrrMpWNqNb7WFC2vBNOhGaYMg7DvmjH1Oe3TE8bUdKEZLI6jGb4hzKEjN5LKO8LVp5VonPu8lfjQxEFwn6gwr/wNo0g59Z/1s/FgWnLkKtD/o6b0u7DwDuFL2OeioGwXyUWiY00OJDle5exnD72rRFIT19ya0sHebHIP9ICksHbCHgBmOV064HwhWQSsn5oqJlCQQimQZkzAgiIEsYoMBs1Gz6zVDkgC3RpZ76b/nP+zFGXIGsI/6Wwu+/n9YKKxQ+CMMpLpwp0CtzCf99Ep+u4URB0T5lAgKEr25bN011X/CboLliSQwo9zKdwiqYRvie4VfShXvI7BQvZmWn59fQb8eHZr9vblAAPAHng1B0ieWJnjIvzypqifoc2/fPHtt4Mm47DZl481HRo5+T8uiOazARJch5RAPTEf5nm/mnB+P+2F2eMvFAM/UJH+f+AxUk+NUBVDMirRI27+Je8sB3PKJJRtIBFSMiE1WRfDifAGQymT2yZkucwaSoSutT6l1ERkMl9528mQz1XV025MopqbJq+kPLbh/0tYwnGfZmRL9GAVCQ65iqEZ7k8CXDfr5AgBbukW3Sh112H+960kk5+xRuIh9sgv8+6mG9vIlwHd8xwG8GbfiNmm9I70H1jX9/RoJFfo0UFEymlJ7E+Lk4TH48MhL7y1voCI1kKNVvPnTuEcPA6fusG56DXr0jox+IgC9oU1SRSgbk7qcaNfRp9WPkPU1NvWOY8frelqI6jveUSHtm5m325UiAwYDgwZJjTycQuzcsnuIPm5ZeRkrVF3fViSrZplEEDgECkIxVF0LtvCENs0PWXUG7Vic7lqQ+0EvTYDvRTaYcC0ynoRxxc2j/piEF5CDASfMPlMpD+TffsrOr216bnrTh3lPJ+/lgLDwRKe8emMASIwAhEJFCDIpJCMCLIwgSBr6OLD4yfTsy++nI0HbgA9o+nWWfMHrRMwdJZWtIAqRKxqwfi20uQnNGxMCgFHuCggBJGDBkrOKjzXTx/WWtluJ9awuYzg1C83mipMQLd6cdPVt/iRnrrVJhl+HkCRexlh8r6WAu2/AYbXOl/NQPFVaQQ9wDInDBmQjMa+WhN8ALQEIQAkAZo73JdzZ6UxiikikiHiqmaVEhRImb+KHr84VyY3UfIiB+JkTIQDqvsbhk2O5hpb+PQjh7ap0KXaAAFKBNRgGn+JEpCzkoP1Xr6AxEHTKvrlBRuIYG+L9x+rfv3AUAUiyQFJFIqxSf9sPR7qwRd+0rTy8yGeDotSGHS7zcYoYHh9/5C0TDP+HJUC0K9YLr+ehaSFDVILs79rvQHcMTASEnqMEOwyWHuigGbXoAQSkgfe7rTy3pPWAhWE1WqDqIJRP8g9nCfovcblzIQmkNsOMXDsho9aqjohngAmeZz1+f4PzwIG4eYSRXXUEDMEP1yhPBQCM6CDnf8IWG7A4lVEagi0FheUHNC8KHKFw6OiAJtHeZTCKoum/CUOLU3UELNLqfgkJ5PMKBl3Yg8w62EI/9JWgGvGGFjnMEAmwgiImpqbBVyLevQZC6gqxkUOgRESjwzVhuLGO+Z3/OA9W27DIaTACD78PkkAKP/KSCKSwggFj66lSRkJj6poQvzej1cKJkUIr3QzhydYlEqI34FlnJbgeyUp4mG44WVF1Vwpd9eES0h622xj9KH9ukAKn/jRABEwB8iILa/Muhh9udRwPumQIhhFJEFkR8AhjQffD4pZ9Qp7ncDwIHZrRMjpyGmG1Og4eq4YQUk5HoKsRmJS6O5Rfv/SmX/pNjC3EDIABBkZkDgCALJgknD0zhb8z+fdLE2xNT0BVq0eHjMQHa32uGMQGvft+lCqOEfx4R7X7uYO3dyJ93s3a0EOzon0VHCFpIS8Z79Punr1mBxPzdCAgPxdCEkT/u7AXREIYRNcqXWJEjEzUcnCak+lMU2QTHdFLQhPVSGK5M5jpnnaeuZQxmpOOuW9crvtYfteQCH742EgGdY2DL/TCAdMNxbFqZzqYBZJCpy2qPswLmT+XetsQB0N0tPas6KuuxG5PQoIZC1Q/y9BTE4YfGe7yuVvJVpin3Ne7UbKtl/7bm1HFkL44JrloeWcJ3Kff6qBxgL4pUSROojkh3fY/9r3fByHWdRmPnedHlP9OQ+bf86hzIBmPW1d6UlRGookkLGIk+bDQau16oY9o/fg75watWTrqu5DCJaJCDICyKSCvq1Tyd5oKs46FlAzn8Ers+tH2UAxQIW3qS+D5jWZ92c4o+5tvGtyi45jjZYU8dX2lzxPvis4r50VLIqNPCsFQtdK71KtL8dwUlZsRIBEWwhhWvC4ofJesK8dkEPFup874bfEF1MkF21TIu4SVNUPmy0eryXy7uJAD5RLBm+nMaNtFD99HEXTYoWwjIIHHOf8i9jHahw6uj9EN+XKAQ/cwgzvYMSiArmCHG/NC8hLvdKtIctLvWDMo3hkcHPyY4V3nilBuumqr+xtWka4NKsfuxB7SBcQfwbUB19CrLIspRSUK0x8WYyvcjNspM4H6jX7a3D6ZdfZgNCP6gISu53bG77uJQOk9swykkj4BpAajznh5UtcZ72ppbBJcFE5inRei5Obsna4vNhUOc6NGjRYvhYMzIlIQYMsju5SiFxFoXGXIXvu++r+kiZ4MarAUK4nY20IeqIxm6/TS8yP4wKZoqf5BTWmR5XlEIHp/+anhC0zJQ3aQiPiM/75e3p7WAlmEUjw22G/DZLT7chRDL8pQ+YJeEJ+CTKE9zedSv4e9Sfwcmbfm0b7Sz4pbkaPQBJiEgS5Kh6cccicfsatu/JmILV+SzYdXisvdjk/SI6BDMFI5jiBzink/R7f9prod7/iYUV3KOb2Ilv4Dx78O53LCm9a8PRUA1Qvdb1LTLW/6MO1L07aZ8zVKadijnE0McpCAw2Zb3L5rd237kN5M8whO5WtVlpnRJ85pscJ9ZssZ8gaM2lngvoToFpvyFJWsKKjsmTE/3lD5sMh0FBs0Vj3SvliGQkgu+NR0EbH+1efhw58+Hucm7g0u1nVDratpJlNcw38h5dLqK6l/AQ5U4QkdK998WFLbp769JhP97zjvn3ndNL+OcOff8NkRCoMgBIIBIgEFIEWQBYCkJFCSLCQUWKEIASP9Q/fZTjCdPYbeTDfqENkndFS4aoebtfFY/3CvKidn/KWnRhnLqFQUAT56/82RSp1wAOOIf0iXtDcIH+H7gGPZOb+Lbfmze6/4dbm/TrryQDitQiK+1M3BCnk46PQl4k9zxW5MH7eap+fdYlHIqfktojg68Ewht4nmf9XkDjhu07dmpNsG+mHW3AOjGEFoeRUDsk74qflsL6roXFVoWW7M9WSoDZi/xZCRAP6QRBJt8scB6f/Woz8Pe6BYBwYGlFXgHKbNZEAIY/ZFMvnQpNRot+wXyskSRGS2tP1oLE9ME/pAsvqt8ktwYla4l91qs1uo+69PXOm1fxHdG3vUBsnt31JDsDOJyvMqoTEkUij+ZSDi4cfSj+7eCLMcI/grjUWDP+s0Tx2w/PXkUmaKVrehiQQ5J3mK0l1sndsA3MqaMCuYGzQgD6HCE+viC26OX39/CTqP9x/oAGeFkikIQkiHNX3WOaxUndSqOQSCeorzit9N3qnL8ppf2ue05FBEBUkbEyiAF/mU4FBYwHsMX1UikyXort9ZGxFmt/dLbfugbx/32vvkt04A6+7GNJmrqlkpTodg4669sdG++Im6QvsftTQ+Hs1yFudVyaeZTKCIh5mGlupP6XrLlItKaQZyoIiQZAzD/UsgF59B2YaKDf7g3p9NMGwSi/j4+bQb/jrdon3lhw/f5vfycmBjq5pSo/DovylwwhISDPckuwMFMiOae6fP0c8ODT4chrn8MaEcCiMg/V+V3AP516dQ76xfy5n5pucb2o2KZ1XtGr/PpcmnGNFdmzXlRqigbah4pKwxWgtcHQP776+DtfcZdJnIVCrJNIz/uf4X0kAWxgAyIuaxBSwcBm03JicIVA8BcAM6t4K6M5a/w7vk+feYAGM1wiFZUbDR1WLcPTXUY8hY4SeP8/68t/h5MurPnuX9MfV1P0w5y/oeyJhuURDzXwvNB/H5LT1oOst93d62hR3Ft84/N15xCL7PDw6tbJ3FpOVo/PTF/lfykgwNnkVOLdvw+HzysmCm6bau9sgZY98yHuBP8zAtcuNYnsvjys2SeVoxRZ/0/2gZ1wMKxj+bP9a0E2gIBYxxoJeXQle03hUGOZhNr+I4wqRbtfTmHRCoNC6mmFN6/UxOGWP0xIWSRuzdaqmZiWkOHYn3riF9/tuzRvka0ZBwN8++MRgqKjOxrrmF2/ztn9teXhNbex/aGAfTAS9IzGldf4fnZPtGYGP6f1dV+Pd6iOwO3gZU4yhK1lecjDzp/QeD7bZ+czFkkFWIRiEYKDGREQYMIxUVBERgqhIMIEIh177/mYGHJ4C1u1S1j99reDksGcjvFmLCknymg9q97wYQEm5dDhVal1ZhXrTDQUbf3RVNLTOphmaq6h+H7jyiYnxuX7yMKEMVH8q0l7+mHIPxfpy/6YL6ONUtkVwMC+3ZvvIewcdf9zme3RMsK0X1zx5nnyBeCdfbnvzqvcUN0+S7cw7xs5NCD16eoRX61HMIbCGoMNc/UM5qycGUOL5r/xw4JlmM/qSKaIJIhIh5xroEQtBSRCQJAkUnxUB+MRLGrT0GzS8t9uX+3b/Z+nHPPsC+2GfVosPqOIvpzhckdBr4K+b8ZQ1lX+V4057RHQcLmwNO/48AEHxXEoZUzd84hASxmAGaKyfUEoYlVPoQAxwDdKmFOvJKvEPkSKIVFRRsvyQclgNpH0VMf77bCQhLnSE2CTCAbfQt13+5NvL0gVG/Fxnt24M9fnwCBrsD7cMD6KPLiaLCGQgugTHhBj5YzYd38MUN1yj+mNIVRX6UFCDziGrnrE8r9su4F9KmFg9T3/dH68XdkKwtsisVFqGLvlhbFuVPRTxQ+ehpLVgOU+xdRqNNHEb+b7U5Y4Lwz2SHUYUhohNcr84n7qoJMJ3O7jbZAO+mNNxkj2Oqm0RZBkEJEFAiwgpIEFgCxSCkgAskkBGRUSQkVJEPTEKpT2ooV4M3X4+5Ov5AJ3obzjyfV1ZyT17benUxjEBYIiCwRBGKCqyKfyQxkMQ0J9W/9s9zk+HxlsPyUpe+sxDZaQ7Xx0oAusE6PQf+10wA14iUNiFwL96kxdSf0rnWRPSv7rapnhFWR023Vj0PXqQaDa9y0bphslJCSO4JXERUqBy+jxay/5dJk5L9mcofu9l5rZJ7nHw1Z5CftHEi54f3MQyYPJcEoSJ6sQK7E8vQhLvSjOoCUspCGX/K1fcH0cBmOTn28TtzW4poEvD/IiDB5x2LQ/2uF//Niu530r/KNfRVqutBr8J/hs/sJImYF7Mq49RUa9mG2trMUX11OF3xz0/57vw3d/xGBn93LD7wYE2C4jr3ytCBFpyq8PCUK/BGtnPbt/L1eW9EUD5BAHvBAAAKOR7+ah72/qz9n8taz/sLQMoCfGLjAN9A+i3ziARdphnPz4sBM/qvRvHRpMTM/DyubpQRU9fP+Zlznwbu1fhhmnFLEAhF29viteAGXvlWJkIgqRkRXOaYvGHQ6yP+bYBVlkP1P6CwaP6OVGf+o8GpwtI3+pqesJOEOGHG4b+MaB+E/T3Px577RoI0mePf5v9L5aZt6U+HL4Xjw9vk4QBM0AWRSQVZFJIRFSEEAWALCCyCgLIshFUhBQILCAsJIoQFILFkFgB6n6DV/EnoGdw8/rsDl6AhSqqJ+6yenul47WekOnMPEsD5iWj/l0sNk4YItbP2sWhth6OqnNmocxPqeHiyG3HENEUTdO3HhiA3yRr3YaTQcGXq9Lh0/qB5fiob/7/bsK3WMDEbMbkrXKlahwQNtxi6nlOwvNxMctJcRNmzTYRiWcZYc0y2/kfX7xOR2KVqn9ZeF6Ao/9vf4D7FLAAjMiIA4qj/Cd/da5JEJESE06VpLSQ7vh+65f1dnc847MeXvp+P258GCEIm0yAVYjWVG6c8+1cKjjFLgMQojICSEiyEz+Xq6XZrP+Pj4fgr2TP09GIiIfwe77KbmBbGZmKIEGUJvh09Bdcz94fK7uGUAk9Lqhp+Hm4WVhAa2VreGhpj0sO2elxKdMK7OK0wjmEGHoNuFuk/cY/U8GNuBVX9V25aoMPGQ/0OoUDAaKE0EEmYMj+jl9LscE7EGCOMEkVAkkJN+amx+b82L2hf31bdRDL2kDOtdPV7HvYCGbNSJw1n3XNcdHTXxe9SHjxp2eq/S+XnVH7d+hJiDBh6P40O5NeFgXH9zMFK8sv2oW4qjPW6vXp4rDd+oVr6QtsLmDB8VN70bWnCGRKDoGT5jFJ+RYLJEPp9no4CAevU0x/H9hx+2ELdcBCEzLlqh5TQetfVgLRCRZFPDs5TcXA2xQzcFJl6qXYHBL7oWow+Hup62UTTgClAayHIz61Y6IOkSZ0j0kyJl7VkLxkF5deUdtZNya605Vmv4quJikOwFLipILIpJIMikMAMGAgwYMi3ov+y9UjL/q7yRtg9LjyeztHpapc2th6m3zUkBle5Kj9Liw0ZoW9cvQyFWIjSEuSciqep2KI0SBdKTXGpIt/47mW3bhk+GhPpMOPqub3/q08Twth3EPrVDt/odKTXHpln4BYiDfg6jm6CAQ3YAPR6jDOHhgabNOeN3IbrDk/7V/n64OEEPnnmgc8/3QV/6rcGjDk/m3Vna5riCh/9EF53fcVbQhqBEX0aQWxr0r2NNDFt8Xn33opX9Dzjv2eDOl9cSc37k3DlUwXjTEQjAvmgshzTdhsKXMiAO2A0RBDT81h/nI1jBNWSjiEDM8ru0OBwsyCLxDUQCGeISMgKf1FHtaOMX2Lg8o5MSQRQTAF4kkgIjJczI5QjySI+E33lyes2Z6wtE1c/WkYGWUU8W1AYrK5eqN9+uYgooWSL4p5CSLOlGDW9/itB07b20V1s1qg4n2YVrtWSy5W7TQKgi/e5yUL1bO5AUDH4jQ/8IdamCEjsp1ch/MwE+yN7fBjVwgkgjJ44jXHyehdx8bGdXMHIYGEDaz2dFJZRCqOAFWVDoQYcUN+OOby6Mfqz7/lXn7mO8hs0+hbNEkGQZAhE7lUDMb4TnYqN98NWcAcM+8cKddI7wOI+X3/E2sCrLxcuQjSqX6So80jlb/ymqq3p7PZnqa8optrfWYPKCxyx1xI65wDKAeEOc4H5zZBQhBZBQkkUJBBZEWDBYRZIKqkWKoiLBZBQFWIxZJNjkdPcaPF3FZ6zYsNEtmkUDZDdDt+WsCKGQhlIa8vxgNuMJvO6O/dc6zjK1SARLgJ6evJw48E8WU1KjOx2zIurNhld9UwMH/hkkzAMyMzIPoDbtWheBFHV6Lf6/0jVRZreWCCNz/wfrUoqVHtHTJ5wMHYhq3vURr9XV9siy1o43YVukfe2vfZhmpSuP1XzjzPK/FW6HgnvHNWXZ37AadvHbGJIbY/QIxtH7d/pafQDaZMVUULwBMQHkBU4yBrzn+DDlYGVCOaHvHStfrmw1XrxzfblgVsoOHvVbnoyQImLJ1jCTIvwDQyFIRxhWlQ/tJV52Y066rne3CcdMHmeuCYTkiQBIFuPk2o+dOw6VD1niviTAaEooYatRT0+umdK6BTtw/ekBDHzU7i+cWtbfX/5f+/l8bjjXyGNOtp6cmGWcDIQgMwMmYxq4JsnpgWnME3Miw6zZVGazTKQLH5sdvkFicM+Sq/VCqgLtz2sgZJ6zG0km5dohzmzD89z52XoTiPrmT5PWEdpZ4MvfOUb6XrrymiU/K4ZTN82Wx6jkTE72hbJx699sskQ4oc8S3axPEWvet7l5tns2L5DzuNmoy85y9QalVIuryc82BVYtZlTQ7JY6JKc0UdCunl7WcG+DFFfOZ4VIKrcK4vU+6QVGP8bSYAhMCb7J3Cu+uNBggSxgAEcZJAOStNdFm6Miuj70Gvqv7TbwktHtqfX7roNpGYecEMZws4YbfvrQdGH03zreSSlHCAEiLIAMi+v2lLc99Og3Wv1lQkx/CyF4h+WAQFjQPWC33f2hhiFK9py+oL22FXgyzWVRayg2f+utWYaT8PI2xxRzpce/y/Tg1veKYKR2HXH1laU29BtM259kfCwuXiuX4dIIH68knkPyrDM/5Xtl1AqAj5J18tL0FFPyIQcYAISACsisYHQfVafF5zc+j7lTe5crCSIoIoiqoskWIsAWEikIqiKqEAVYMFURRBQRRRFgsFYiCoqikRBERGIoiIiiwVBRERYkYCqKCQ75PUQNSfMCAJV8M53CXru3PGHzfBoud/i9Sz3+ShxiyqSkghIILIgyCpIIkgEhIEiInbicWvIWyfz/2TXl38Oo8Wbtf5MdfFWuMkXgwyoH6JYcdc26eC67ePl+7kC7E1RncywKcIlUBtdEpmUg0TkPS6tblTr5UuP1MfQfVhNue+Rhx5ed9ibvn2qlQdjgYRnJDJH0p/tysIa+41rfcpHIJEAMMakSGQIXBguJgWz83sD2XloUR6NEecIBabb1Iu3cIq4I/5MECmXUkgHDC5l82/L4psxNIs+t5BDOuvZGFKWpjCJpxFjTITJ0lh/UX8fzxcIo/H5bEl5xEMcHagV1D31/wOkOwutIOSdyT8/g0+DskOnzrDyjgNARQMEG0SwPTPsqBGc1i0y/RG/yCgQa9mFGys/va3b7y98MxBzQhlnUoUi0HAqHlTjjj6WOLvMvu9z18ccvgKQV5+CtcDxQAImQ3GRdZgXv2BhnpL/vO1o8Fjjq+jonkn0gAo3D7Y/HheTQwmWmSIAxLFoRLKqNUINITOz3yNMY2axJebXzN34FsQ/Y/6SWzNHKCrAyX/0f6EkOwDSTNkKDx/bnRxfTpSGautKIUEPh7R9Pn35/GcxT2+YM+Ptku91oPMxwhOnhq0g7dlH6p7Y+713K8YKJIjIiAHkxABv5yuQISruayJW0IYvoehcvNtYR5PX639POJ/9+LBmKE0oVTVRA7z2wuk56blQM1evYFoF/wutsgY4mHpKT9SGatwTTtTZnmztsBsPoExTlJoNJxW19lSZY9HoZtPo5MQPpldipWAZzhHkC5izYypNYhuLFoqcH7mgT5vNm26XizSWNfV8l36daAEP2NIp8ZrcIKKm4yrnnXwYv62vEGD63slr3i5r3QgICHP+sfn56B5fztZ+3WF9x/wIpThD9O9WG9Peeb9PDka+f12nbWtNHS77yIFq0Y96Ty99UQ+KZKhDDCthgO3kYADJJ1THWEXhgXgG8UINECKyKsR9jufBjhp8TWQ6itgpxoNFz7Zyht12wZ0gNUHtAw7V4n+f+Nw5Hse3xk+4ztXIWQ3FQURYionhW2xpiHxc1CGBBOWKVD3Pn5X2NeGrN81uzIfh36NOlNX9+niMTjzv7pOCapul/vREKoYdHFQqa6//iymWowf/JnSSo1/5P7tTashwlE2tzoQv2CrHzOQuKcTCt2slWeAAtgy5cWNShpOiBbfWfZ8lnGSH79VrLg7TJfkhgH/JiUZCfAGi+qQj7lDlNG5OAF360JZzQPeLkADdr4oeRRPl4tXEwnmDX+nnHyunQAyTd4zxVcLs/6qz0IsKvGEnBfHoJ2aaVlsbMdhaBWhIttwZ2QQks0lmQoo8HP/d1fC4g+2kkr/5WSkHEn5Bp8h/oTjkCxNgzkWFxRS0xSMeMeiGaHB3kxtDNKPJVOrGgAtFSZxoay+xp8w8OGLmzV7YH6/VgCNz7CKPKpzJsfLfRtSusARIdYKEPOwo/B589vRM3es5Ij8kATJLSQNdABBAPNrFv63GQdJpmnUbjP8MM0KY5l87l6rHdrQdESCYbjD0UOA+pLPGz9RE7SrPBQ6bz9AcN1cxYZPkRP4eDD01lrnEUZZY+vh+xYf31UeCaOubfeLmZCDk+wRDVbZFuyQ7OS71HJgGMTy9sNlg9sff+Msn6Q/M2I/4LZNEO0SHjBfZSBgpnRXiWKSWo1IsCHHKi26ywoTa0RmSjUZIMjF/MFWP/PBldfqnUuZD3yjI9Iajzfo+Y5Vej0OLh+mq+yE0uoXzZCoiDtRsKcU77PLDeu/Kr0pQRwLvWbwnpvCX9vymx9FPYuOi/CbLaIqY5rIJgyLymCY6eFpM/Z88G1mASECSBGBJI6g69ZmwEMIpI50k67cd3PMPz7MdP8G/aZcPW0sq3wThm4+qGFmdGlRzqWui3kRXJ7PmwRDIwQDH8JxQ4ScOFDmhoglphyUYmGMv8GAW7ITmf/3doPjphffKmJmoYcUIEmn8vFO5P8m/l27SX6s7D5MWSTSfZ9BQlgrAyCZBeTfZ/Q/cbTm1+inyrwyU4qrLbjfM19356v+OL7pvzZqBoKSvFj/ULkyzOEkGB/JpCaySdw8dVd260XggIh8SnuJOQbpETeHsvExyBkRF4lgtt6RPfArNkUKifPhqvc9Ipt6FXD+uEDO54HxzAxhOCiCD5lUJQVQpuNDh+V+JmeRr2+Y+D9Wuz7B6V/mr/AkhsYDh3Qv373hVf2quUNBzVzr0HHTq7Wo/e+qIH62dmy3e+rSPg9tLtzSAYyflu0/T/rYNM9q3iRhPsLn+CQ1VZhC04d1CnO2Qqyox2n004nGEX6LD3Fm0AZchgigNUhISPTnOM/Ev5sa7muuWI8qbwb/0a3sTNkIxD1tlHg8RRWO8tkkIQ0St0ov8/o9tloTN9+HDTlTSaJ5tPoZ+6s1WSGZmEZZh7WpsAbs4ncUkzABQInAa6c0XEJxd+bh3/lhSEKYFPZduVx1svzA9/VP5ZOfIUymdyVq9zNszWv/SxEkWGrzKyDIrpr/4HElCuVNG5WoGAsYEIkIyBGKyEJFjCHnng4/Ee/Fc4jjxgHLGQCQhHeiDvghfXD2zUlZUlRfumT7KToZrxKc9Sv6TM4yydHmyffzZ9t8jAn0RagAhnhi4FDv2c3zvuuuPwnTSZNeLRYMABw/nJ/ukYQhV4Lqk05VAEr/wJh0iS/oILI8sXDsI55NBSAd/QA59QIVC7vy+VBF/Qybcb3JHuEDde+g5OPHGKmMxkw3+pcv/1Gv0QpDSQFAFJFiJIpILIAKAskihFWEIoBBYRRSAKEUkkgqJIAyGRaz6r6fvyWTEh6B6e1tmYn1hDdgj137ML3r3eT6ofXv7HC+d+Lw1iqKMTxtkPG93LWMQVIggqAqAiMFEiICKIfDscS+gPXgbp1zAqZ7flP4bbcCEL+UBBs8plqJyF1yD36iOWhHCeDoGvNoCelvwmjAIJQwiUQtB8djwGvjzVqoBgh4CUbCYeL51HDvLUJ2qyQyexqTvIxvECg8vz/QJHwSi/jgM9g7IfCsMcDR91VuJUUIRf0nf9nlwv8sKPPoFDm4KDWgOFI+ci69vIddvbu/oZdgZu9FtJFftSsSwhWev3t2E+zbyPkTJ5p7050ctIaIvcgd6cIJ6cBTpUNJEKkkqBQoMhtVaQLW7aWKmVtiBK4wmGMBqWdzMAd0sdCElP4gwxMttsIQumFWAxiMIMQ3gkl1RoUKIszCVUpGg0oMAbIYtrBlwQshkAyS1d7YAmhtdZc+5CTIEMkJjCjDaN3bCCwjpqHHDJCAYFoVBlvBxEcGQJgjaYD1HNQBREO8O+UDGQOfpvLXjsD9SqWokywwgbgyFGB6BkLCcrf8ix9Jt1FvhEMazwGmDt1foYXD770py9r1lLB7cwmbko6YHvijOOa4qu6qDJ47aiXMuNuZuZdvB4srr5aOix7OW2y5zuJK4DTWaGoIvnGGVtnSXJlaAc/jkfOGMfzAmwRPWFNnTnF8b7znEETQTekoS0BX8bhOkfISH46Tr5eT9M0r9f+GJ+xqQk4a9vZXR+Wgt8B2+y/oYaHo2lrIEOqgamvhOs2fa5kuvbZCjsInP1pJjFVREl7LzDDIeZEaQDOL+y8D2S6VMxEVkVDHSp/YRV8uFjfD/G3NMKXPTsfElZfDNRkU6HERXWSP9YhpimiCoRgXFEi+8UOQ4EqIxumQcD0ihqAKLmAAdgIpyIqrxgq5nWCq8iICZgPKSBSKicxxAfzusYqlfURAF33wLu6FE2ixQOxAExEQ5nzqFwZVCVAkBSdygGYKI62lIiIb9docwSRWoYEW4qajIAocyO7CiIoBYQUHRknmyipvzBZoVkDkDkBQ5z/QyJk1yGWIXaw4XzpmROZF/5QVoWS74Z8NQZR10h0hQZCPhpMYNt2IYOIHA1C8lDZiygtIZr3umsbpMxslHjGYhxtm9ho4jFVI020YGiYJEYiDFgReBCoCQIppxh13R3ZpREhInbA2ZtPxVAiEPNIh4jDy5FCOcFgWuQzaA082khcAXBWFTVUyd+0EKzEBRiCH6NKqQkUhNoSKiq7/skj2FGNAQ2w1t9rz6sfbqA80wnNpIdIgoEARRFgoskGMYiwRgsEYQRiILFgEYixiMURIwFWCwWSQGLGCyAooKALBVVZEYRFYKEFkRirFiMkAWKwYqhIs83DWx7HPDN+lK7JO395wiWc9EAfLtdrsRuloanwupyi5qYrnwFFdjGbD20j+tq2COMbSguHL81GuYefvyHZPe9af7s9ZTY31FyNjfOPlqydlovzI1nHsLIzKjNBBBKf9nIRy+0hHedrpDgOGk6xCi9xMZd1brn4Xl630aof7cwEmkd8IFzm1PgZsRVVyMml3T6Xe0ZBWkuPGPCETU9KidD9qEC4HIQlsGt17RwtIUdy6SAMMw8mtDQjGV9lbig4yNH2FQe5hFHOmLyDvDE87RfDkF4TfclnB7IRE3/K+0gM4S4mhJVPXJGkpZE8qzpt2c/bzrbKO6cZLJ9w8x+cmJcNwOgrYllyQWcozm7k1tsu8t0XpDi4LpDdXD1zLi3Ksip+6KRNOeRMTXCB2MY3dDN5FMu5bkgib2LHpCcwbI4KGMdU4wKIZEZMEbpmQ8KiMCIijYvGQTcuPay4iIL5Tw4MmpbyHjZVUOXUFy1RLiuQVDzKiZBsrIZJuVRmQ5NOTJwpmyTM7s3xy5GXCalEbcty1QxlxMbV2WnchJEQEqdsiCtm5eMxuSKjdilwEcGhaAw0ShCCgYIDCAYEgO0N0UMXEIoXiDiQAfzopGwEQfKRwccBBbETJBThEDmLsMIRDKixRwxITx7W4JkIg/IZqO1hEgBmOetKASAgZUCMgp1gAeEyr+0WorIhIpAOEAEyRFNJFKiFQJoaA1EyzEBcsAcoiQXCRVXMA2ZCGWnFJNhA06SCkhFABQkEaUimYnIBrJQSCh/hDREZAekZDSGDKSIChIdYAosQkLIQPeEACAeouVi+iehgemGIEDaALSIagVFRkGREyoCMRqOI/PPjCvXhcaXuuKB7twT/P0kU50gzvapwQfVKOU9gzWyvOEXuKw7bs4qIrg9JJVXdvTRAONqNaEpTGRLA3Ek0Ot5Qacmtku3NlmQUzC1zLQ75VFKh3hsmL9DSoqt3gduJ7yZTw4Pl0lKIg2hYf8evmrDOZvdnu1mbZkmdoSs5a5g73pmanuEaUddaVwHP+3d3CIj/3Z8+155vFc1ZNnnsCQX/EybWyCFEMNy48OXVmsCTqK/ED8z4ZuQPLpUegjm5OLUYxWfrEQfSREGRVCQUTERVKgioXEVG4ilQ9QBRAtYKqhiAiI9iKWwQHGkCQtyXYubSEawimArPsu97FA0oNEqa4eFWTGv+OAwY87ZgRPICGv+M1SmgTvBSkg94ewFkcHNMt+zXnKYxTkDuCHVCqAQDl0CNwFJAEcC6f5Txc/OAHWSxPSfSOnCqNaV908QgXu2sreQItreC4f9exySelcYl5/aOX6T7vLmbHHi8OkeY/Fdm2st3zVZwXLcmN74AIyEggEghuIqDjp8eUdhJlADkULgqDuCCkjD2MVLBDMADsVV1FVbA7DJCu4U8giCO5UaiIAeRQBuKCJmIo3uLQrcQUOhAROxVQXxA3DFG5bgxEFQaIIrVNStO+5QAexRKCCK8gIGoaYiu0YEIr5FJFAVb2AcgIWKjMvywCOeGeSqRMdaAJBNrOrfdnJoG+a3xSW1xoBpuD05JscRQdMVdA4gFTVV3M6LZ/Apjfj1FsnYBRy5bDwEW0iF5RJ5L/9BcufWPezST7BXki1idAxEgRHNim/wDRIkIJvO8oG1gA0AImYZV2CY7MCGm6RGESFF40mBNC2UPrllcLtUEMZ2FaaX5DhXyTdqli4Yri6YjtzxsOQQ2qtYFdOF5ifSuxjsqrlbdEcsuKKpdLCwFDuu9oNE5WdE++jsVoJNS42zZO9UK3jK50O9OQc2fl/5D70ADUhtGz5LfakJ+jvzwrm+gsND9lQifmsOAjI7PtUn26I9zvKFoBrEJCR3neUlHGEGMEUxPahk517uSXyVaRubechcQsrv2bOlShnkgkT2N/cgpZHi8aw9H0hEEOGdzyv9kaZkvZg49SlCVSeNJjkUoN8IvfMV96ZW27+d96AUeLwEBVUpPDhEZtR540Vt44TlPnQioiDWWT3bSuixJKbrB9DtgInjidL7u9nSu5s5GRbBWkLbjpSRm1udNMqHVPekluaw8xzGwOBd1qYqMgDIjIpCB9rR40jrVlWR2Jztk47nkqJne9sIJ4ijuncu9oY9qDOOewY2JG4Rm9JMFuiC7kkqzpw5ZEGYbaiLdOMu30uJbuWUJxFTEETXLgvvG+7y4zZblxDUxRc1bIi7mri7cbhs23GlGBajJutibZEusNLkiJlxMGBcrJJqnUKayMqJhzhEhJYVcFq7IbMuJDKuCHWvL2x64NxQFRQyVETZA8CC6LkmVGjPlMZpikyeTbhZkPuePWVh4+xNOn2nRU04xkuLlRBN1MTDkmGdmSaGTm1VxTi6yWOW3JF1U2Q3EERDiWhzmbONWQTu5WDnc5/I/BNhCD7slkCsxgQS0qCIC0olhK8IlQJ/YWBKMhUBhYw0IVkjsWHqyFkgsCKsWMiJolCKVhBaltlZmHZM1MoXayFYdVKD1QuiQyg9SbpkWDYUrIpD1ML0UpEILCrK1rSjHUkrIMA4oTGRQHLBlUoqrFOVqhAylBbzc2dLFAxLbKtpXhccWKUkBCFsJKFY8rCYbF0iwxjapiVWR6aUQVVUhoiAINa7xZJjQ2NtsB1dlZwGF0SEKEhUgocIVLyTGOqQqsIpItJBhCoClkZxHEnClgKooGgCAzgwhkZwgyjFFUHULyGBkGbMqAjAFNEAEOMcQV4tWKLDRWkpaRQoqqiwhFNmVjgBaUoGCUy8zbn1XYCSvE0SG7UW0JR8UUomvnsyrrKrB1cYUfSa3R7vYT/UcpdjzzJ2UeUmbNbRuB2Izgyf487JWAenborMzM5YdLzfNRxLhUs5OczTDejUskzNNbcPTKelVo1QxtjTGNiA4d4d7D+fDrKsfPJaNJQmVz9RcHN0hnsG9nt7snsbokFZDuTvMNw2ud7pZ3qjmxcZIG5F4+FYY9OsbONctdSEDzhmq3tsBQ9cvlahz0dpFRxAdw2M4+xfFGw60ba0zeMH52YDpc8nj8hNIiG0bXMym4uHJKo308HuS65NG+y+H96xF5sN94ruz8gAUOoEVuAgNEAEMDCMRRdkBAzAFDMA8ICIpcVBkQBDJFEOQEbiLyKciiOliihuCcBIiKpvnred1N8JoNYc+c4ILZSKIlaEQxqsx5TzCqGvJjRwffvMa5J05RiEdnC9UaWQRmIL7KiuPx28XVcuI2CI1Ed6s3B4+BzriXn/U5FY+5w6eVceW4NxswKZTMXZzqw4XYAu48XYFyZ6Z5qTPaqFX3vHlYxf00nE3XuAqIbSRIIAiu+0nlem6lwMwTcTBivUBARFeCQVBARagIgoVA3BSQMETMW2ISACCQgiAoXBFFSoiCiIl69F+QAFzEWEFFEQ4AweQwApBGBuyY3KKAVlLrCB2ACg1AJAEBaiIdgAPeSlAQxAQejuBVBBRATUFEK8qk7SiqvYIH1wFKPIc4oN3hRAwQEE4wVXmRoRRxEQOMVRVjy5HqAgVoEIfu+onjUrTqoI9bje6ces0mZCA2eDgmdpCJamlglw80eBTCsZRsIpvLCGVYRppJCNG3auzmLXIRc9wrBTUHm8q3NHTZhM1UJypRUkWxIxtNgqbyaIdDjjHM5GCu+qIFbEOo6GEBID632DC13YlJANsY2AjnAoBAahsFFcMjRKgyKye1QTb4qvuzsysgwbsPyTI22ZqBebzDM8KoqbMDyFB41Fx/J4WeG1mLqV+MNV9cTHSR6d0woBDveUeTdvu6u7vP8k9LtkPvaEr8vhXlMiTKi4Nml/Ff8HmFx+PngPzh4c3PfDBapcRMgidqiAmotQjHUCm/grJiHnT/BL7yEp0RdePyr0wx5PY1WzOxJvnYu9NmGXCjdsxkyg/4eQu79v7JSq0tiWY/if+3xVfGNFEfKdMaDkEWhUy3Iw78kLsvLy6ypQRU8WJb2uz0jCOWwDdnUcL1lpFoEBGhuqHs4bc8O6QO9rO8fLp5FdUCN6I5s1FRkMF06jVPdpw+0AcYupahHZucWK4cZW5vx1FGGnmL8899jzMKJNrh0khzKbQklwbitqocXtaMvjXC/QO7XRWRubcI3OUVgy7P80k9ijxZU9sYJISnPj3xHfVx53MrvabZFR43EEQ4iSi/aLyt8eu8yCiKyiyYrIqnUW5dciXsEY4dyzaolzcbNxU1rLaxY9p7chMsmVURBKsiZ2ysjZ3WVN6Mi4iiFTCCXly5tWFEkOGwwm9o3IHVsgHcY2qcTWtyGORlyS8dSMmHs4Of23cu8icuCR3yDnnvHO8VLBlU6jkzPbWUMKqcdDcjiyFBM3EOpyCldxHckx5MwSYOKIk2yLoq8s0wwkiKnay24Iabgii5uzKayjJvf4P4Jz/jInSCpQysRFzMCYKpMKyB/rMgmWjHVlQ8HTFHKUrQNVhKVwEMyxKW2TC5haGCQqQTKVkWxlRF2rJpOqkkYwpgNKVLkbsEEQ05oMuVhGE9YdBttsXa0FgR3mqGMg6kClkyS1grGKIrb2ZqRNBCAk01LWURYIVmBXLlIpEiZgOQHLYjxlwWRBYKIg4FLoMzmLNFNBbJYsLqYWADg5ErSlwy1rZcKJhZIKiIBYMcpi4CixwDAkdRANsZ0lYg7bLKQGKENUpSxwLVUtK1HCmIiYwwvHRoENWAG4Dm00Y5bktmRrLONDMwl0Q2VyXmBMkaIxZZG49i3EsTLmpYFtDQ4hYlcspcpCEgY776hM4zZArCMwm5RNFRBLlwbTBM0lGkGWmE3dKzUcMCyVKYoa9sFmxYm0uVLBW2hHwkRCDrIMpdLiYYVCsRKHKGTMOZaMyM2AYZMamQLmEZLNqdhyNdnY36rnAemvdw48e3nopdXwxUwkwQkJEi29tqlOtBPJN2dUnNVT3BuMyqLDufOt4eHUiDfJ8bT+2znDg5t0jnvp3ilYecdcUvjeSq0vpuG8g2I5RCLPDzSR3Hda5N+EYSpiALllFX2J5ZtTvnHsdrXzDWeT4gEbBs9iP7+e6Bb/Y+LJ2GoJ+IPglw2tiZgLPs2J+OE6Ah/FhmHQR7oclmeWdmqNiVsrAT72UdXTimMKdiEuSqmsJvklzvKlHOWYw3Au4isSFNY7eL32u80w6VuekqAcECKNZodRAzASoqBYIjIAgEEV9oIoPIK8WADUEBOJBXUAENEEAKiICeQRWIgQFUsRigcgrchFdRkQFqKPfIRFKEbI1BRMsEEkQEDSEIQVMY36s5WzHJS53nnSqhFtCWEw41pRy6mTmzJkSZRWyIAi+uySesEko00ibA3ivjiutYyejwiovqlgNrUimJQ3ha5kFDWf94CNp2Godx2HSs1pRU3EBLgKGoCiDWkS0IDJDdyhtQ19zQqkG+VM1BCbyoOSHRMCpvyoq0Te6zWfl0hOfTQDterEZ17EWzIbbbARxCDvyQgD1giGFD+CCPkBFA8g7gmRE2CRBuIvWCOVgAIZoDz1gMwQCQECKEUVgRC4CpZFUaeVuyUoKhuKoOWKqhsiAHMSwo4YR3FFASEHyCgFXotQDKpFAR2xFU3HkFQP+qBRFFA5EMRcxAHUBBu0pVUKGA8WAgugYILYFDEgDxAW0gmIBlX8a35ktUqM1uiIcKIxDyFmgiZmu7dIoib+6MPm14grIBZQqQWcSoaORz41LYTdUGMYxMbZEEJ+AtJqfDeWgo5Q2kMsGOHYToGADGmxlO9EVhGEtCxcqqIEAYroaxzZEDXMaxkERSlxyG6qtAheXkSGdi1rRiC7CiBFixNLjm6xAa5WLUJcYJMYZLrRgWbyymJAkcmQhl5E43sYkaTXIynAcqNb39y90ISqCea1UzdzMjua36ZHx6cO2179tVRfvASVoR4fc0jcjZJzIPjIszh4kGs1oXBxAqADUWoDyr3zMCtZ3wFYSwgHuQW3wSQQQRhjh44Jl4jkHKochMtohww5L3L3777Ww+RzhFcth2oJE3nBlbkQ7vGNcuNlz+i52wJOTPeHYIutKHuxO9h3T5KLJNzREJIElNc5fEOghxtm2g5pyORxJRN08nJ3YgObK5V0WZMkuqvJ5HjI2MF0FNb3Cb/mfb8n7s0v+n8h5Sw+OfHJtdZHoieZN7heWOzHk3MxpGRC9QE1ExDBFkPaNssw0sDiXMJY9x3LpIIMTuKJZhnAECRXIGynzFGXaXaqbJgrBIiv9r9laHgjsLVPk1t35t2z17G8cSVNVcSyiSpCxuSJirdJ8gjJjLoslOeWXmRtPVIxEuKrLe44yXSyMIp3E1ElWSUxy3BcxRuZVXAyNrSlMBcVTHlRBEEkklPGWzceaqKsdK5wdEzg6dyYqjIl1TgzLm4ljqatlgN5mPdNw0u6paVA04rK2JrZTwmfpZt80mWPZHscqDcq8zPkyE57MEuDSU+lEtxUM2IohnMVXcVXbq6uZU3N1m5b2MtU8Mmruy4tzV5BDJIq7ZZSqRjIcP/7ezrfKiYRzlPOa1Jk7jKtqXklXLwnDJKqcmaDdnfRfNJMRdWNGsWkMQcE9CFUF1TSLFbFBYmLwWzCVTC0jYgMW0gWwqAKr3Aq174K4MkqahtLhSVEk0RGpCjgWBYBMQ1aXVMUcSQqSDBG0Ao1PuxQixWFZjCjKKbSUqFkQsZZQSlzKIblZcXZEMa1axRYuA0KEKBhDTTTgMFly6UtVqX37fPa4fFQEV8WN3Jz7HNwHSzDapmZnzS8KiVZk7zy3mmOPtzDRkH/L2agfz097xEexnObkK/TMG4uCryVwe2tkMnZjhzjzOXnG9V3A2mcN+bO5zvKGUPaSI/K4NHZqCJ7pjgx5aZ3aQGQbJ5iOZj8ImgSSy4FruW8vqqKAyMNnkmDmfo6NwQbhcX3gpL3mJ2spKlLIs+N6c4qwtFAckhi60KZAHvMKgVFAkVCJEJEQYEUx+CAiaggZiImkSCagCuIyAgO1JGIVFAcREB/uWRIAij6gKolwEESQRHxFgQg+QVVdRA2DFQAsiAe9FzuwArWau/OFqoFBg9GcjtBDm7LjcVMZ8NVsNavuFGTmq1OxFUTBJVCOYxIApIpCKpAIoQUBGEkREYLJFgAIkFARBYKQIpIEhIIsgSAjIikkgic1rfLoOdKF6c7sEXs96pPqgd5075X4Y9g7JvN+pw7l3ZkfED2opXPhlEU4ewdsFJHAGMYxtHMmO8Qh27lt7kouUncWQYUW4us4d6zJp8NOhSsENdNhxGy2znEUdLuDG5Wz3QQ4MAB7AADwcxhAmqHREPCDWMigSIqv2ma9Hl6wgNQBEkULsQAOLLJplgFS8UADTAEDlEIDLLED1FAPTBEGAwLVYr5AVU1Riiyy2gAQfIoLnHYdenQlauCpmKAD1QigouIIKnsURlKogvIqiWY+MW1gAQHkQEGw2Uqq1n1WU38vw1irSz17kIRE5ytOIAlgljBHwTc+/c+roSuyxF5ZjhwSg32WOjtMLDEMWosMSkxITb8G8PYih2w2hkooEyokVNgBJyw5F8jUQpkhXN2FDeQAKCGoCyAryIgPG9YU0RIQTXdmAeB5IboKxHeUGXbZMjhEJDgfO5ZxDLQDDVKGkZzUaU8sBsQTOwjmxRSNBDo5CeeAHcpwRrJm+Zu1eAB3A13r1/tdQkEY19ilRxh7EEjErn2oPOeYvDTp7JTK1IX/1VXzlTWXw8WO5PHDbQxJc4VD5cG1Gx4tWcUP4dLgR4ZngjrIiCu7efZwjIOrvqXJDMMRvvG23U6zV3HSTysXnv9xZoGBPkM5v5PDfWc3+WYblqGV7zw82Fs93dEHxMVGyhnfsHNz2tyrN7XK84EyUU8svz9jAgAp69H6hcf1GHlU0QfH9HnkwHxscafoJADrIHYKH4ZoBMCLk1tDypTD2LCQldhufDb7o7THfC73KzJvY5HViMl4+Xzg2imWjqVumpwjfzT4YZ2c6Nzh3Mry9Ji4sSAF53a3vKyyWI3gHLmu2c7mCRHaLSTnL/zuncR5N9s4p55kTOVIp55WV05hPJ48sFCSvvTItdP5oW/w855wAyqGoMPTs1s7dZlsjbjECPPdOASWJO2VV39heleZH5I87WwDK8B3y+Zpeuy2NudPPdqOqpczY5V2E1Tvs1Nw77rMnZ13E5pTMRuu073MllvbnHsZD3Ta2MHRV7kt5dNRFzMQTNZVuKKUjLYypsmCx2u5EspkzkvbpbzMckFRGzVGY8LHcQoGMbekxr2q2KyGXK/B5RbRZRzk1YzC8mLdQmyHVOZiMmasqDlXuztQTlUy3W1eVI5ZdzO3iqNkybG5zIZkyRteXBWzZFNlLZ27HZHIjajHVSbcszYkNuKfl8q+GwyaJ4ThypvHBLiceS70h5ZsZcyRZZA7rHjp3dzNBd1lWZVZZcZcxg4lXkz+T9d+eoetASg9QF1DFKz/zMRQcbSskhQvQTJLMoqUstCtLUv7E21LDXiTGYxaxRYoKEsyTF1cQghwkDTJFl4OtCKqErsBIZmRiIkgipA+2mTnAtdWQK4mbhTUObw2p0WUQ2LUsLyLmS3jmY/uoxbAM6b17azE4Iat1FXB4tyNKFsaForeiWiwBkSjiKJgliJWQJ0HHNiJqChtYLJRNERBHCoLlJdszChFDbDJlRohCssiIxURBWro6S6YHRNiwFIKZQnGYx1o1nCGVIJhUVQqWoJJEjLhmoZdSC2VGykrdyXMKPQW4qEFAjEW1RvQheMJGBTgUptex7sNGdGY5Eg8cLHOYOYF6CgZhYUwoXBL0BccVQArJAroBKZdrmdECQjcdhuKU45hgg2y43Aooqb5TKsgVkQZalg2AsqDZuQuYijwIBRMqrjYELLwDJkMtXoysemJqC9Z0wNmRYIqGpNBM6SY1kBGQLMZOIWuqJeY1yWj0QxuTnJouUd4lHCrKhQbj08s49XO9xxDbuMfOjLyYaSAjkgIAp0gkutpIczqMje8qjlnM2hjMZV4uGxtdk5WG8FcOZMYaECZMz2OcLhV/dyh8OqM8H4jK92M3K0nw81sv15dbYI4URl0rVTycQbzEl5LpXarXEneMTGpI4kXsU7ZkMs19AskRLOK4y82d3oji26uLU5BXM5vO4te2Ubp2yOxq7nd0tpcul0mCaOycrOYNjvKcTzpobJlZ3HFZyH1XTq+/fNH89au+/k8jzsfE6hcGPyM+LdT5ncuq59+GPwwNkRgLz8MO+XkUvTwy2AD+oEqIKJ8KIAQUQL5aBRNUVNEQNMFBAkUUEhFQD0BAU1AETsFQqKhcVBouBCUgeRuAq4CEioEIRYoAZCKBi6QJEFOQQEC/WMhm3R68VhmQVYXIku+K0tDi7Ui6IxcwR3tHRHEEzRP9zm6uTzmAWLuELELwrxZlOq7HdU3B1lM6lvOn1jXhSEWq5z/VMj8H7Pn7FHi+GN0v1R8Kvlk1Tfwu0gucrk6x5o0FtJNidxLF8mY7aS5c/AVqj4s5MeXXOJEkUeQ1DpCMzdhe6oxnxDnT5IrhYoAYiBuAGIIJ5sKMQVFHUQQGMFHpAXJFED0DUDz97tWoGUqKgAd7K/ydxYL4RUTkUEFcRAH2zhtBdRERC8UNMEBK1UACmcgKAdLKRPaKbgiEQgp7RBADnL6YW4ApiCgXAzEETOS43LLe3hBFtA7GRBoVQNIHCKqISAqoQkSDQ0b6W+Yoi2x3qjsRriJDzy+I1NlPqtSjqm6R4WX5WI9jlg5IJzx0PnnNLgg7oJVWY7ofsIt94FcPCPh6tuH5nogV87hTgUQAQoIqz3wWwoEyFCFogUQDwvgnmuoFQAAzFcgEC4g2MAIQWiKBlWKoF8eMCUjCiPcHnDqEIecWoKwmG1hGEWAISBECEQFiZ0HMlOs4QKA1Asx2KQM654JgiLIyBAjBYwk804TzyRQ/cEL54Crzne4Dznqw3f73PPM+yHvQR1An4cPF6iuTyw0rNSDGjkgf2bDXmYc8o9yX5ZdLxihw1rXc9mNw8rp4ocPsZ2jvMvfDH/uyc73SJ9H1577G8klF8j2QzzVv0cePOKiutxEgu+q8utKAaBMQxvyEHohQyxzwFLEQgF7t9nuUF+PsSAXvRYdijzDm82ojwyorDk3lZzxuQXLqOclu5pCmqZ0hQRAR2fDjOH4dRK9YAKxh7CNmBhLSUv3AxnWutQe9+kkFMA1EbXwJT6SJeiDwfuW4p6+aQuJg01r6MOMoZlUnAWbyqPk/v83ne++eAAOvfl2xjdRzLNIWViWmRJPL9Yjzt076IOJLpp55vlcAiw2+3awqyKtxo6qbO7zeGmBWZe6jywPIEqVX2I5b7XO0NdveT2a755Yya7TzUTsHh5zlccGX0nq6wBKZ8qQveU73OecO5Fd5rvKyTn82UXR7Ic9yoIIKlZZ5S2o1Vv0c+m7z47vefEv0vlnS+xpupBvl5MgOmRpUrIxCtec1SZxdDXLvbxVhk44zna7ag8xwzJiHtQ93m3c1x1avKmomo4Xu0YRmf6Yw2MzZv3shJV5XeDh+RO5sSoaHUbEyVdRPB2QcuMzbkmssqntuL5UjHwobJGcmAkiqJpys3lgzYzNibrbbqirLU4SWOdqy6JVXTvXcZsr+l23tS3rkODoo2ySqHkEOlKaLaKzm08IjSDXs5m1N79XObe8j1mFd3G24q3V2+zGHt0yK7Q6zYuTrzKvptHYJq9JJoiWSVXyvMy8OFVLblkxPIsq3OPKgogZUw3TyKcp3GOLdEmya4mSSpmYIgoc7sZjqdzdjS4hzL0lt5XORzdNou2QUU6ZHKny6q83Srf12TRb957yHtzHv8jTHrZDgb+wYKHOKVXLZbZYxlLSKDBh6OAZgwUVQ9FsR26cNxNCwGthqhVio6kszCiiD2I1gpUtcGUVXndsNCGRElS7EqSsKkkUC5MCxErUFRCtY3ck0U0a4vNyRGSiwBbE6cNpparwtFYrEiDEQYK2SDsORRdNWdRIqKhxznzLtvSxpSsFbxCZgmUo2g2gojUttpTHNNQRSLBURNFsiMiRMpRRUUgIm8lKcdmy5UVFYIiNoVd6VApKWnRVBldEsi6FTMaq0qgiaQ1DjB94IQ74dXEZhhjJDfpHMmebuX5XWkkAnaS80nKjevj8wSOGjyOmR3d55ztDSk3wqwoYdVpNR/sHCQpEScSQqGj9d5OKlIofxAd95yNVbXkVt+/5ebJ9N4wq5Dx4wkDueT8c7vOuK7sGUxX24zkLOdzJDKdvYHxU3fbOnfSf6pzz3q6TO+d5vvtTR4bZY5m54+EF8ryvNDM4fuxgC7yer310HJpeNWezia2ysgrmLn+Cpl9fZrlHfL2YGd+PZvIJSHbw8Lvu/q96dwiV/dsq+/DZl0ilv+ny7w58WPaKXQNnsTj+HufLNKt8zUhdV5xhwR4c/S9SFSOhvKYAh0Unc+BqugHCAgrcFEB9Q4rAQbivkUQPIAIaiiCGYpoWKAJQiARBzFQTQkQUQ1ERDyACcNugSYSjPimBEyTua9ElDZeZIhK9PZPeShRknRGciKnMi0hhfG4J0QBM/q0UQNUfYX2DR2jXMKyV3RRAwr+0R3H2CGpeRcN5MIod+cE0zshq4e7hd1su3w5jz+mh4pIGmRWMWKQWIk/j6KaM9BhFBncoAqJ7e+jvbNGXmy0L7qcIQhREYCxKDQo/oG7cVaB2mgl4hUBiFksY4JO/OPwl+1Doa5jA5MPIoEym2tkLTtdw+3gucGgEt27HkTNjJPCUDlshhZ6dR/IF+58u05v0wzHzzR9tKVBkZ+tNRnWfpz2uiBw7a7x7KhUQdfuTBaAYQLpxcLIQQMW7Qcold71N9jVbotl+bxG8zOAp58St/L+h6R3+Pv5UOCAKuajWVPO47iThMdp2GGV2f9zhkwiaUooEhAkSMYwT3vu6bSfYYfRkDDLqV1cGZOjzex031EDVEyQ9IiqWYyQhwxhevc5r8fTjkz5XwcGT6vKM6GgYhQGB/pHClXiQP4ylo/JB7rWUDTanJZbWERmSCTu+YygfbLw86bI+iat9rmFVPXnB8XNYwxpg5wptJBD4+3h72gwN+Q8RfcKbIyEkD7cOE5IcPmCyiCKCCJBFEIyMYR6eno4NH4Yp5smuObT8M68mc4slss4v8r7NdGmMOxL5mehPP7lNlIxSIsYggjJEEIsgiiIgxYrFAUP/Gvo457LrH3hFhYsoSJPyUaKN3F7tseLTSLn/Oh/fGt+F68/7yehJ/ZhvPnpuCcUFGMU7iT+/MM5bnNbh7mCWDABNvqBoS6JxKziUh1E4vco0WLyjrLp2p5rlHZ2tnJcX2KUpeSBx7qWEMY6u5W3Pr7R4zAO6MOExZbALK4XLCgFJQ4NNKuKp6P1//dGT9J3+usCOo3/jZCuQrzxIABZ6mgV6njKHlA6XGzAkkgyBM9O8nEKXPSfsUXUqBhSBODRq2Y/X+uQ+y+ju3z37Vt/66dtzNDHLO9MtD4f5beO02CQhgycBEQJ8ghMijREUsggyIyCkgNsQUoiUsEWoihYACCiWIjaAnHA4fTL/o5sEA4oBtybG2QgTfTtPJQ3jInsoHdt43gwOxU4vnTQaA5tQf/CCthXKH5LC/10Hj5eM4f/Vuv11kxQFiWiZhXgpBYRk3Rf+tmtxQd3Seb6ODS+xnaNhEUsC2Aogh5DSg/RjdMHBxoGi9m5zmko9PXTwVw7thhrwqJuSBhGSwkE46ZCoeSmxhg8i3U85+4L8HghsQ8A8jEYiMBEpNidDBoUtGqFFJ4CiJdfT2pRTf3bNboAo/GtTyH6JeeTBhFEkJjDtprAWQow8vVmtK0KJtYE5uMRxD819n5/MuyMFDsQBEgRUAjwgUQsg+LEqSKSKQiJcWoISOAYtRaIrBFiF3SyDPgSooRKiWhUGQc83Q1aqur3afBE2zDCjInHWYfoDbMb4fXrg9f5eEIHBBNFtGUjRKgCgQoVBZGGTg4zAC56PIoHDcOCCPBw5DwvLEelfFkT5SWCZmDkP30iD8ch7hYTSBFtoIlQITQn/KPKAlEA0ZFB4IRXQUIRh0KpmGWvc3bsA8Gyjx6UM4QIkixII6ohUWBFGJB14elVHFDvmBReAFyfrDww5PpyWM9ar78HGB7sdDPFEOLL1+//mHm8X36e27TH1DeImy3LDejkY9YHgLgJ8UBM2cmoRmi+n9az89bJYx7duw+Xr6smDwxRkTTzlrBp2/Xo6cldObl8D8aFqTQBWjnAQyiGP41ADDptW860w/wCPzQmgJBJv+MBUa6thhW5SFFiBnVJlTJlEAUVCA7UXqAiS6lfWz6qPs+KVtDaD8GeOB/OusvRqLZYG6FEjmN9klum3QILH6yfjD6vwkjWEQyRk1fRX/2orCaIp2xEiodKxQCaAIH2zIA9qvg/+g4GZSZKo/enaIlksMp3kAOiRJAe/zKTOR3GAaYL7P3t9vi8v0gfXlgUjGNgiSJ3SFlWJQpFpVCVDQokCyDAIS8RoQPP59Luh/mS+y+iWOfj/LnwOuH6dOG7zbPPwnWnk0QksMSQWG7fPeo/XiYzvQaaMC4kEscpT7qragIZKCo9exVC9j2WHFiiNAHImFWWJph0MUPv9SueDz5CQy29CYj/Xwpz1UCJHi1eD+/JNP++2359QLCEyin+1+XPcHPBkFhFJBeaKVEU6FFiEZKqRBiuNFkFDEuFlYSwtgoRZIcZwvnQxH8p7GTh23y8KIhw4/5wzOeT2n2ttjK4z2UxnzoBKwk6xKMN2iYkT/LP5zDT360/lhn4Or7NuD9W7jLDx8hSOqIjd+fC2fLXl6zy5roPOVUhD48o/Vhx4/p9ProdlwN2iuWFEJEN09H5Pi6ftw6eDdpto2ZeB8ACESIzaAEjnqySM+e7AAsD/By4iGaMgyZIcZaknV2Hf7IfriYRxWInigeEHz91GiXcWRJCEaM/DX8H01jD14bofTON5hTbEBbMBUqADUBV3X9YQBAf65CAGvgyWrAgVEqHdgtAWeihAoDo05LqV/be4pI+0aZNkqSUYeNKRYwkxYyKpFWJFCQCMJz29SBcWKreio7pXq9787X1f+9jHf9PPV86DIKwYA2QIEiSMkRCogwYCkCCMgCxgBEQIOyihSOL5+/RJDQ//j9eAbsM98+XOj2dlMWKn9EpgKwIoJImTto2/QmrirCMPTlB1gIKR1QO3fqFQ+Lnw4E7JuDffkgRQzBGgSjICwGJIAjCLAUAWCyQkhUqfZyFX74tYz2f9odcv10h9eikLkzW3m/Tx/hbj8pxIfnAFQQIwYM/mACVEBDhz/z0l+bpMMQ6hPt9BePTvz2t2Kj6GwdqejKEmf5aO+OClBxeeW5S4dLmqXld6JjatXVW/xZeS4ZJf983FsH6sU9rCsYgmU92lTQTdX2Z/s6yBBRxDOZuTLXscOIGiI3kihw0UMhwxBrkryow7dyowP/alUKc4clGFg3Fm2lH+kLJeGOFe3lw147+19CmV6wxFd9lHQcNIFjZeyyDJJIZy+bZl6r6uw4MkQFzAirnNlUTCfvqq80bqC0CSQCQ/fR3vml9+M9dAVVUP/xAGEBhESRFhEFD0xUQVQwwVREQMIIqqlUBIzHEVC30un/BLHdEgdCCByecW2QT8uWtmqxDDV6WLs8VL8Et5aahN3v9W009GR9Ls2/D2tPjH2VigQn/wAVSMSKZurCierRUAvGofN9lG6LqhlEUBAEZFABBVkQFAWHBFO8TLbZ9J/03oI9WTTl0AdZcc6Komo4rcgmt4gLZiSOkUQ85affTuSAcndffshUikFkWALIKKCiMUgoKKEAUILIKCgRYALICyKARYEixQUBYAsIKEFkWQBSLIKSQUBYQiirFCAsgL5H1ue3aoij+K+qHYR+rL4N/T3lR0IsDIcLanTOKa+M/cs/LM8X3VgfL7n1W0R78AM80mpcO0N9iDAtEHd8Hr+x1YHrzi6e+c88uw0/TgYZTlg+rE2xAkDfCoTmrt/dT6U4/fOLf4b6/h+foB8UDAoWimhVpzvVx7tvDlxP5yU+zVAfkvDtscZ/vjn/7t4OO9EraRkETdOWHcvzltJsVSQBETvlg+4noAYI8Sod5V9SCuUBQuk99b9fO+A0wrqZ1SMEErBBEgGCKyb++ByJVLvBHyiEegCDFEqQgUJ8Wc9mBr+2j5/dKA3RdxxVYhwfJRbCsKod/zc1gxiASPCe7v4h9eOtJ93Syw9Aq+1lhInn7+AIP1KfPuk3Phyhbva+EvN1ZPYIDkgO37eC+7AruVsrzoCYQMHA9KUwfq01aD8hjXxT4IePIVkkCHGfl/7NfVyiAZBCk+9fm+89/UcL/D8N3i7f/abdsEgLkQeOQmJI24+r5zg2zH0cvC56MHUYhvRzlCvrKEf315cOfBDOw5XZ2p9xNnyM2ZJ0IVkNJ7LI+S6jmIBo81vBtw1AIQVyZdOov0xAD1tldkt6/w2OM0VwR2wru7fdFL4wHdW0C3GZzefJf+yPKHohs2JkNFsTMIRsSKPCLSBiHe7nRwYGfHP158BkPz9Gvx4aN2OzPV1d8Cohnwrpm/L/s4/8y2FzZHYQ54d6BeH/0KgcfhKStFL7n/hEoxyz/+YoKyTKaz2zecjACdHD8A///////////////+xCU+fKlB9U9L03B7d6pZhpPc3SyViXnvHoenop1II5MMxPcd16Ha8uPVvFxsC9it9i2aeTr51X3r5sAAAAAWwGxrQsoaEB4or6Da3nXr2ZWFYABoBQAAAAAAAAAAkCoVU0aUAAUGB7w6VNgz0AUAXpgAAAAAsGhaYBoAPelU7d17vcKB68RTrZMAUAHvdjvM3vXbXA9tkNtkqpttg0KACl7O3u93cA8VL2KmTAAAB5uV1vN7wAejoFhYCigDrdknR7agHoA8NtlgA0BXryo9Hlo1x7nAPQIGjW2BAoGgHlOq9aPeAuJm2YCFADSgBXovZ0N6w6AcXHqQ7N7aR0BiE5jQ+1M6YK3uOC7pwHXR3acO3C6MKtfe8L3scb6ddRtPtqN21Llwqzru7u+Y1TTF7hs7bZpj2HU6e7Pe3UuWku7Xbxnc1PcXjvUSr1e56O9ujg5ndXZc7punAW8eg67rp6zeH3vO6b23Dcd3LCNkzBm3Au43L3BbzpvYdzu6G9e7zGpu5Bd0t3svHrO4c7nvPL3tyYtRuXdHdyituDwx46xtFncO716N9tKl60pUlFrUwCefcD3F53kt03RborwEm093OqqSqm0WsQbDItg84dKpVV0DWKg0pIKUrTdYXGEPbm2vbAPWhesdKGWK23s9erys1s7h1uzvbW3d6OLqiqe2etaeHgAAA+gAAAAAAAAAAA97wsZZnpwB0tjIlSDzMrz1TgB6HoKKAKACVAABU+ujlVQyG2DfGSHB89ualw8mdACjeiu9e6blvW9gHBSB0e7AOSlAXHqvu8AACr6N9AAA5UB0D6GmRt6ebvFKUF99ZwAfAbAC9gWwA6+PHuDwFIEOjuPudztigAANBpQX30HOgAAKAfNhQAAU8bAAd6e1YdGme8+3APQNASBbbxgOABAfQAaoAIAh7vebzXrQBoAAAC2APQyAAPutnn2+wvD0AoeTnni5vMAGgAWvrlUA71S7gs5DgAcqA42A+g7tzfZuAAqQpeGFAPoAHe2iqAKFDkG+vcGgAo+0w0oPohrM9ng7GHu4HTT7btPs15dXve8KLsejdmlNu5RoXY7bXlz3uaNdZt0bbLbVtm7NeebduhWitaKzvO6evdu9vFdvLYbcGbtWh72V1rPM3ubePDr1vdzvatZ0173e6sds7sc7XYchdnITOdrdvQSvPly4AjfedSvFDSm1YIAAQAC0GGtTW0BqJAoDQGAABAbFhWBmLa2AAAYUFAV2B3DNaQNbamoAABaNECDQYNimFNAaAAgAFVRAEEBZKakZhQFADAqqNgLLXrm1d3XbVbYdm7LWrawNYrU61zKhs21gVtmptmNZrYb23VRRdBqaIAAAmTQAAAACAAARoE00IGgQAIQAgINNARoANAAU8AAT0FBKZAiSIRoCEyaGhoATVPyYSelP09TTVP1NkMptR5NU9BCkQREQ0CYJiCaYTJTYT1PU0YGhNNTbSnpptI01BEkI0RACaGRBk1TYqeegJpM0MpptNGTTInkNMVBIkIJoAAQAmQ0AE0wBNMCZMpsQaNEybM3q6L77PXqrEI6iI8cjrDOBgF58KYgqaSQhsEkC3/WM4ECl6z3Vd+urEwKwpWrlDlVOC8V9yPlxezoikGoDb3aP+oCckeWPF/85Pi8yX40PCFRz/9T7RJ8FaoKT54H24pBNfWrEN+MpGHLALBwEYKugYQJnW23SEuRoMzRke6wSA6UiWz05vvA+bv5Tjd2gPrTpYn+5/SK69fRZ1z1mASmVZcssbQlRgLts1MKNEPJ3oDz6ccr7i+utgOpIpSeORNkMJxKuf5zG4MKYGnszyyd6qoP0z/5bLrQ49WgvmnxRfDDWczjhxuc/rUZ6/DbjNIrQdaDZhg6Y0sA0sXngxq3iq1+GLK0Hba5XnybZGZ4EDtYVScFpN6NOigBpqvylOPqwrLv0kWO+OD5QiRYeZ2ZooAaGXmGvFCpsg52Izbvw/vFL1n2ssNuxI0S4GClnhCh5r2V5M+2pGLihHY+/WkK1lTRv63wSDCP2YMWOaSDCNLcaJZ4Un/vrjE1c6AYIEGRoflP95+YkaRopCJaqj4p/jldX1/q9cgJsAbTYqcsaJL7iz/x9znvrYrTN5CUyaVz3vWg+QDbv5SPfFSD+oLgFNYNINIiTYgGwQNgI4108JLWy+XX/TMvO9DdCXal5qTkhpWy578xEmsGbZk4jNrv/nGUZ+lZ0cF8QkWxsWfz/l88XCmZEBGobU7qrUQ18xd3jsoUVX19JaoAiCWzEX5pRZCEkBGMwfniMFh3Isy+bJJYn9bt1dimWreW/4e99aCSDJoOMvf9RKaNWvRNEz/IwuXIejSXBn79U9Bg3CEBHhzr5H2C6wedm9XlVZmAEigvhC3eCeqNxdr/tR+prY0m5JuvN1XwF25nkrKQxKM4FDIYk/okJp0RHEDMsp1mcvZTTlw1dlmL2uHVvJi2zvRvz8sqsREXfHIS52HMqbbLcbmi8iLllSKNLVdurhlO488x2bMihNwIsTwM1i5/3a09fjLQoAkLfzxOmjsdun9PJksWzLlquApGbFyYbIG0cDBLv5IBeY6MzP7lbDUgUtFAMQrVNUFCxBVFNFIUlCrSoFIFAtMVI0lKNINMQlBQtLQLQLQRClNCU0UjRSpQFNNAFNAUoUhE+X93G/MeUUHQOWA09+x6C/yik5krsWyvYgxFzEZRXMBsjl3YmaJ6KqX3wdg1x50HC0UwBkCLuUT+WQiG0wJKhDp+PRf7yTrb55+t/zDlFZAO0Sc7etN7/dyi1aWq9VMvGhX7pCsq8qlyaEiTyZgGIgDgHN2dz8iJkw/Ffs9fN8Eh+6fmtwqeI+54/xzi68eHT/B39N47iPjPfzMTURoor9R4c4ZVTVIV0UnTXjC3MN4p3cb9o8R7rv8WO+y4YAAwHJdXMEY9WUcLMXvpyc3mtUAR8aEEdboqo2a8f2QpEpgWBcOfavWr6f0gscnDdGzYl5fJLIWymGrxHe9jk/Mvz3xh/SnrEos4s4bIp/2ZRdRYRz/62qX/SrQpOXuiykpgBaUQhaumKIKpcrlWTiAS4ZxPPELi4oXYW/zyjVsJHdfgBUgbAWtqKbMcxGAYkKjSVqHDOPiXEBemFWh1kgQ/z90IKeveJ49zYQ9y3KXxQ0JSAFOCQ+Oe3FH9mj9Z+PV/eC1u3fQYpUFo4NL/tU3/HEfOYh5J2ZG3PXKi82HB0EOq4mSgkdKfkhL/Zp6yTCzmXwQ9EIhz4bi4/VLo3wjsxqAXI0qViNUujTm6HL/KwEvzR9K3sP7j8AGkRjd8dOX1c0d9h9XxIMiK2i5eOmbsKVlVw6R0gKT+yT4QMbDBUxVDNxs4NheYhp9fdrGUKdKoOaCbBUfmfeAm7MPX2WBz1E7kYIXHTTZIbxrpS9jZQ4GDoD1Shzntp7P8c7ioj0rDWzZJ0GO7Mxr1FnZhugxgCdENKqh7ZIfgWe/HHOcLhQ8rUAQNEfv/zsGZJTa4rv7XHqjhwSuZ9yKYy9Nf28Ps0mYZyPSWWmF3AplTHTchRWtUIA7+9xrUhQ0kwgFfTHW8f0R/Yo33ha4tcPgyEdd71kIDugxLrLeS98rz41xppY39zWihI5BQbP7yVOfCFuWQX7YLxm0IkBwoCrgPw1mFiietiGrqpqqkYEQIiL/xB4jB0vK96pSw/81U7utppIW2GEuopbFqw/ncsLc6e74+xd2eY7scteqJc+c05AbVpySPK5/iJGRhMVasnTDBVaghjfggaXc9n3mHqtqt/wZSdJYf+Xm3OMyK0h/ssX7s0jRSx1azuhVR3gq3SsXelyJJkRqr8K8vjhcCtrSEfYgVPQm5Za7Pyy4S5RA6NJjuJ3d9btclc77ZCqHT5Oyd7fLTsjXSJkXfMcDX55oJ7kIk+bMfqqWFtQY2SEA4Y2CzEngpPj135G8fMs3EKYXFQgtCc0gJMJ5CD4pNSMiuZUy+xVx+4H39gdbPB6Blt827z6v69MeEUIiMwRF4jFtBC76X8ncBQdHX9HOHd8AJrjIfg3lbLk/AmAYcWSjLmdcevIHHZXmvQv2qcUEgOOJ3ozAZIKqbZWu7TBVXT0Kn2eE0XCH++uRKYu45hmJyLwENb3x+nQMRg9U3Gv7twobBIYmQKiawnEafTnPD5GIiBKhreKfQoIFuokIWMO+8mnGIVUB9+FJhauQOjR1K0PnwPraZhbJAleBgAdF12t3QORnI8MedYMfolysLLcQwYiK8G3VmTzdX/lZ01Z/tFG61KLxIXk53aet7AHlwhHljtWK1V6BknzJQXd6diY96icUEVU69HDK2CFPINPtZjhqX6D/IbdwWhltPVIERJjig16EOXrviUaiCbBreM6QySyusLx54n4iCpTE8sI0Kpr1d0dyAjB0jG96KW+yuaLjTb1iZ00Tn6ChyqBB3iWJz+WjYg4nyesXtzr/KHYl1/q50eLcOVsB4HsCk0gKRCLQFDQCf4bA+w0fGe5F8SH9/fMZ6/KNHTy9wJb16FrDMJIIzMNOyFoYDaQD4rChtpmkAgJNGCkU3MskptNM1Rpvzp3oSBSfR81cpoiDxu6UZehoxE6ngupk8ntqSVnmvoUm8jIMkbFGJ3XTYwIgW3PirH6Y6cKBw6BeZ/Dzf88ATBiUD08MwDLU4CH3/VNSrKberhx4W6+PDCWW0hPjjRPktngYH+1c8gwMxsxovGr3fvRG87NcAqm7Jw2SWTHnlT08EpmSELiaKjTzdrNmqNTwM5sna+Ob/qqMJZ46LCUvxkIDgaA53dSs24T7/hTdsWrVhocOioMW76+XGb5ervf2c+A4wEhs8aUSABe17oXG1AOVp5c6VWmc1sm1zvgFSPWnUphZVzwHM9Tsad/HJVl4y35YLICtrGyptneZlfeaS+dkJIKmfEEkhAZiv2gT6wePELqp16c3+UMnUe0tK/ERTmiKeMQPeCvyh+xDhyWTP/2fve66qIawKzqyMWUAhE+tFdUCQjhl1L86wEJW8MDQz2xAUahq1xkRBH+cktnugQJ8OG/iom716V+nXwV38Hs+A5ejH568CFhg5nIQz4RAB+zNjx3QWDDqg8DsWj3yIY1vbhPW/1Xy8ubAKb9tbwuT08k9eClpyT8XFeqW7WoALHlcnRilmhLeZgdKlwace/UEslarEABML0owak78urfqJJNmJZ4dtflv32zqQdFJGRKcXkRBF5Rg88vol8AWQdtnIG1MvGoAFTeZX/takD4YAvO8g1WSlqYMgyOW9Al67+2/kNmQrLwfUE4y7d4m4rdYgijx6+/FjfsVUQdaZqQIibbUKL900LlrSqO6tqfBBTryH4THNlfIBiEDQxDs3KC2UPwaTcS/nDq/3TTmdY9zGQPP+t7bVWTrDrOXJ64b/77l+QklsivbKDrcN7CuCgVst3r1lM9tY2VutJDhDOfVF7rKnoNUkt9oOdgWNVd0ip4EMhqma7KsdUD46zE5Uy5jAPNbX7nY9909PR+LmrV3gNKWcyoMP2Ky7oQeFmLLH5n78sgEGh1c/aGGqd9lWut/m/NRJTGJsRmaX7c0f68QIEAAJMN/U1l4OCNBzpMRJWQ0UK8vpdUUEgTk+Mw5wLc7o5sWyhkffm2ebsGkJQ8rsOSS0v/KXeMu2AXZlGTRZHnE093rdX8dIE0Uwa5+p12t/PjIhGxAabRQzlGMjHacvFaCvdbgsRvZ3OKd1WOKk+74LNCAgYV01frGj/yQDbKxMHmmORAEYgPSQP0q9hVzhQwZ8ppXCCGhTUYkUObENHd3Ft3VAjb62m5DJxEMGQ690XPwaeWDgo2LEAEUsj3a8Atfxz37NMrh0MYIgH7Xc5wPwISboRm09vaqGJcYLrw5ndW79Rpa/sezguWi/BxMRNpIN8atxwptC/ft0yIy1hpxm/jGm1e5q4D8WXvijGw3yeMHlHDSwHrxqc+WWLhJ+rlg6a98K1hx29SQTYm2fZwk0xDYJtAfTgluFZz4vAxUeYqzy4kzPzckvBz2Sw4eb01edQws4bjDEgPahBwwK3XTziPuYWRP1PjO/TpmMaBOjERzq8wstxQwxRpd7jRrKbiNEHQvVlasNWWDSbF36SadCLkoBkwSogw2VdX29x9Ynf2UP6AZmToyRR2in4pPqxZeqQkzZ/g4I3B9f0j602EQ+UlcYgD1GRFqeXV3o+48nSm7z+Hbaux89ZBzqfd4+njpApHDt3+NglrCkZbprg/VMAa7/Vp5Z/r4Ly/Ou/R+rIQ0Q3EkadaQH/v+iQTvPBI24AKHsCHDUhqdRHDYSTqKSbGJMyYYa/o6i9VT/nQeNtU5Y4geIM2VkhKXZ1DVKkHLBLZ5UUG9iAbg7+TOSf1f88QOJWgB3ysAErEYEmZAQCQzocdTzHd36hjTMZlbCXXLCEBkaSCatBwtp6DCSwlQfJCkX0kJOXo9RXP69k/uQHCzOzJmgJFmwkkoYmy5w20/yce7Fe470ZzRBCcbnAiIiJuITtuQeevHTRKfLKYXe/iiLQYA1xIgE1amZh96oQ+NGWANB01UjdX8iYeIwB5oFw1yptyQMM5HRys6J8Nb0v/8u5QQA2AS2+LlL/LwsXtyqvOEjZBwdfUSM49XbgHVj3tqHw7Abnd6uTkTMNJn15+eJc2Rnf9cyfyb9cSM9xjoxjaM3FspJ2zI+fClGYkZgGoYut2g2o07OEWGzkcBMEC57px4ddLc8qi6HtPr+CIk551t1IA21L02r+fM0PzpELZMkUKo85gFqMFgjHifYfucujIYjm2UsdH/uWCAtbqnnrx17Lvscy2bF8puf2HC4SqTYzYeC/P5pyrBLRwYZSC89D2sWRibQZ45luT89sFHVBHH44e2LeSKjX0bFfcemm346eGf5/TXpIIj1x4gkRYwK2lJmfJCJNGT7Ml1+90akD5/yW83NcIxHZLSAkQiRFDQqVRVAUkSC0FKNNBSlKUtF/bgqIaXC0ghi3Ix7/g9uj6uusW/u3ZvtSmunyxfWVVIx7Plbj+kc8hr9OPWqFGpKehLyQj9GTSwHaIjv3dEc3cfsx8vib/Hp3duEf+buzo03ajPh7PTHRfUeIjXsjN/ibqPjYWnQiuZBaF4oHzobMfTzcFIVPeiFZPKs/U1eE7Qfl391+q/EAk0AjEQZI6oDlQv7AWDRSEKe2uj/M5KlgYfdMniext3Ggp9D2IjiuzN/V8PPr9zyx5xfXFl1LNZrw1V/NnkQ2T4Zn9Kp0scN4OOTdJJUhBogwJkSiOPosulGiVK4vBkctvpOPEy72JlGKx2kiGIxzX5XdKyKskbvGYDu26aqz3tIm1a0IFwtBranH+QSOSPYqhH71BvUn5GDb84dw2Dfbpo7Ief7+PFkYZQ3A3/njfzdHo44/vy9kCzxOzpLDfuokef6JQyJxh7duY7HphUX7IvdYoA4kT4eaj3XqoQ1MnZGZpK1yaMj/3Hb17WOX/vTWsVv1D+5/0ZoAtWKMZIxgZxlr1BxCL0L7k+tmLgYStP6bLWlCBGIBhXT2XIZE6SBx502qBm3yrI4cYqTjKbtyiz/+JR7a7FBEBHGYWZgh75j14oMu48lEpJz0QaOTpyTW5ygn+/LaxC/bQp63110LDmyG/Rfbnqv0681rp0/L7NgAuxeJP4slk4dWmWmnQtWVq4ZWxb7zNUZf348tmaXcaOTNAX9fFcyeMYCUsJdLIWHHLoMsaXS1a5Ge/EDSta6DQWdCBYM/Nov0NF+DrzjAbuhYJrpMSFR/q4fSnAa9kVvLWYSWPPHm6NOS3n2/5a25Sbi2N+B5jPWTADoaeKL9+s7FdoDVvPCQB9t3JVMt1ZZC0kQsmDekZs0sk0rcHqPwmIwPrODlrkYh9Z2sxzr35mHpwBQaMbzsODjWxPRZeHbSHhiuJ6Dm8FtZtD6ViZgECCFNAhSKUrQKNKCUpQqNoQNgkv+tgEqMMhSMWzUp4FwVHAILTApAXvzhdgA+IgitJIEP05fxNw4Sh+2zof+pQNvHCs/9AaWkSj+f6x0ETaSbAutO30t/ubN/BABR1Ux8m135yqQ9f+2dRuTuETUmuUwDUfnnI13oo1WY8PnJTCl+0k6oW/m4JIRWGFQoYf67+aOOCl9+x125JMFASNT4Zwgq20qsLQvRvKuv6W46oxJe7KU+wiU14gkG2KI+6nKDFjRc2zBKAxzIlfghoQSai6AtbveKzv0MDv9OMKZJohl9kESkvjgpJKMNkZKUNcQFpBQko0yuwuKK+kwCvbB02UpFAZK+tGAdKX23vOC374b1hbbt6gVVL9Jn+9OD0XOKP8kBMJFs/2591m/lt4qu+jSkvmumawM91OulBiDgZdQ9NbzDq06/PbRG8zIS8TlYxZmGJyciZAjNSHIIoUgFe373w1VqoK77bjLeajK884C/GKq2k5OG8rPmw1RE04j73EMI1E/Hn7FfYvgqRqSbEmt5/fVY/NvwJbzKG5ZLDHPIN1ya07YFkty4k8nIWwVw1UbJSHew1aceMSrQrWgsYx6GYpRlY9cGT9cMSMxpgjOtZqmFXwGQHUYAkYawhGLg4GZkOLO1Yt6sA8wT/25kFWTggAJK2UGqxZQZVgjOGurCBaISuDtX+URD47IEVRBdESY0DB+SFNq5zpCSwfx+ODOPzacv/vLUaGfS6MT3+nBl/6CexCEJQLobehum9yXhCty9Qn3A1Zj4D/AB8BZNRQhj7igo7+Ps3+kC9VLXHnAVednwjty0fNhbg9PSsmkjE0BxdGZ6bK+90bFAZs7IT2UtCjq1dYCdpvfzH2Ak1oAOQ7GEqlw+A/M/XTCoYOFlQoJd113E3UTjZXJiRIkhLYCnbO4yr6KO3KpjCMBIjaW8ajP9N/qKQJIexGvpFoEnTblrSY3fBwEx3n/KfA4PVAL8NVX/E2a4UboZ2UP4QZ6tZm+sNB3k04XecTn2KsVX7l9ItqlCFxKBq2jby1aQMVHfNOgSmJFxoK6+bnHov2PpQAfqzVre2plbT84Unf/IkWNO1DIL7uNpOlG5HaJuNbubTWC2BQBdywgQECt4L8uv6zRkHwX7vwYfQ/tIoaGJCCAkg0dS61IHES/itYWCpBvamxw9g9lv2Z0tmzEV91wZn4uSM44x3JfHv0ti+YMszsrJdR1Ec+yEgpQ1BziYfZ1529iko5BFUd778xqJUPlHkmXEluI44VzHAUEOl/K8QkcN7BYkUtW9mi+JqGTNLtHWJQJDaKPIGQ0F3xoTiTfjBevOD3MZAeJQ8RXJeIOWTnbvxd88nc+4VAoQaWkaVMkDIQwlSlKUEoGlBzMVAyTyIQihAkqGeFyWgMxBWlEPMqmVAblAqSJgiAomioaSqoaEJoIYWoomClKKUpZvEmSkhVELTRLeJDEmhokCGloMJcJTLCooTclIFFIKiSxQKNAtCrSAuiUfEOp5gQMkEpAKyUyFKQ7SVHIUoFQoAujEO7UtApSQQFCB2QmQI60YpR31xoEyANyCUBSDqSQgpoFKSlGgAQchUDcp43gBEq0hTQp78XWOecEOZcYPSFcZChIhKNwd2iE5hclYhYgaWkucDIUOifSyAaEQpUVKKKQQIhaAEpUmVpTuAChoWhSg8wL3IUI6JSkKAyVNwTCLS0cSqZKKxPRAvcAuoAChWuoclCJAlnzCmWpaQDNY+mYc2SBqE3DSUGrGeJXUgOqJWJVVggRyATcLxCnEPEiHmQTiReYRTZUq0tAhyEgHiREdSjSKULQAtPcI0ARTRC0qh3CUoBkg5LhAp5g3IlKDQgnLzp4VRDwQK4nZ1hBspaMB440GgwJTXBcZjrDWOHJt3ms28gw90Mmp26cl3tdOyDLTMmHXMa28QJskubGLNus0eVQd5hKdQ7ekx7AuiB3vegU3Bo8lbW2BsXIfCiCwOm5J68Q4IYQbIUJtmDSUlRNMjcC6wq9BiIIyBIcUIKAUBg3FgR2HoyMYQ1l0bJjpMQNaORet4ak8SnADIJxHUp4bJ6Xm8JjrmeZ8Q7OAwOQg4SA6JrJ6g3B1NdkhoZF6bUhxABqPFxwmKnMKclBGoNIAciEiYUuuM1sMyELjMug/dGWUIIJFMVteVIZlKZIdJCd5I9ZxZunxmbwthp4hQx8XEjxIfvp5UtmRC0Ds3sOkKzmztEIQc8+hrYu6JAXXhiUYz3UQaesoI3+i4lIDIKUHeK9qLUDBMhkMK/kV+1pWkABii6fqOzm1ZADFU5s7YSEIHLiCTIUQyMC0upzGqAPRq7lzkxyaaKNYLjNzZcIHSodXVSrVAFjv+rnS8iDqAIjiaAjqOINBhvioRd4WIH+5eBkcoVvBLIffNbaIICblCkgz5eWqgc+vYVQYS7gj2QHER1BBQvEMHqS3yiAFCApHObi3AwHAge1FqSoiUEL+fzsxdm2QAwgtCS6DZ0iIAJJOwaoC14iDFFiROQML7m1pAdkghfMc1WZdEbkQk0NdMmAwgcEOCdw5Ny3QdhiniQRyByQ7IXm7jxCFHK24Nw8sOXEmM+N707RHWADrExAXOKxMwdI4gq3iK5LRCLzJzAdwHUI5G4MPG3QcwpvWPMmVIYSd63ztFDJ7hN7xdwEEupHcu1gJOzAOp54cfEjoEg7hMlTWGKr4JNk+DWajfOK7h3GozgMCLTRwROGREgcUB80RcFkPxeFuU8M+JHUmQvnymIhhjgmrLiKc5syUfMPDw4GeOdbmjcrzHDdR3LhcI6xOrqPBPPhzx3jSRAcQuoEe0FBpVkO4DdxBzAYRrfOlN0bAojqGoiIJUaJNS4428uqQV28pRjeJ/92ElJPFImxo2pnCmTMKKhVTlDS8dqFVu1RSkSFCUplKJKomU1MMuWDlylA3Sc5VJSjJtyqp/fRVYjKKUmyUUISF3GZbppWOSSVy9mLRaLsSZO261TaUqdqRT4X6HagwJ+WPitelA/4r66xSfgXQg1EVcukPZ89rKIVuP/Xyqkv9SZ/N7DLB1sqlmk1qpX+JydGUGBEAYkC9VM64L8nwP/IOMWI4Ek7uDsmcaQU2Bqh5h/uTKAyoAoAUyMtoxqRnUsccJ3J1IiAMSZNDmqfemQu1iIEAQYSOjBWqwE++VOfYFIBpIiEJoFstIQgQuxPCoUnNwQpRmpnIzB0vl6A0S46XFxctcLmpAjzi1oJmUh9y3XNRMgYYxAMIpcg9zWQPYbhBVb/UCEQ16xcQBijspRSaZHgQSMM18hTFDjDqMgTw4SJQROT9DJF0ycP56CbEJCPde1T1Lb5Pz5y/a3z74TKZCBAgQkINaiszwNrAm2VRTBm5KnHVueAya2uobZDIcqoiGR+l7HXbRZK1fljRgvSrRJQeXav6wdEtepaGTZIWqAIOVa8I4cJmspBR+SBKHSiEPGehxgmDQgARAoMmtFkTlMKOHtua2rLaNVpHApnuIIW9gs4EQVCfiCCNbAKYc4zWPqbNbUOBEQgm32NIdj3ixpf6UWSnsJTAfzaMCgDDAxQ5BoOYls2f08HTgg2aIvQdeDVoHLI0MfS5Eld1pCACiCnclQPpLBRxUCb8AUiPsdLhEFOPr/TL4fLBbv0owIZfZg3YOPKRS+WyLrRwmXypMnSdCkaXkTnZ9p8V7t0pwJ+CeA8jT2UtSrX0ljSD4/EergdK7DQYInKh5AX8DhZyHU5nOIcPGwoYaoD4IRa3xUbmErn1o58Vp5atNlffgouIosggoSCti/21bVXHxE7pjxTlnZzfo53c05+NKuaNxvulZPgdSEyrHBlNiig1hZDOlcXpGylUihevTpXlooq+El9GunCefQvCYohL6dL4oJuQQ6jm+rrAD6b2xxO5HYSGawX2Nxag8aZLCd30aWG4R0jvrKG0sMEtekzwokTmUBQQoPb2vwogSitYA1NM6tS8cY0wNrcw8SDSIa464DYajXHWh5BUA7x8yHcj1mBtSQsxJCKeoMESZEDQcolrzQg+mxSaQTMNtL3buIg1E2qktHabRLgRvuUD8O21hb6UpvaXrVXbslyXlIIrnASyxPMu4SnUVCGy0An9McLBsNlxYNIOY2VuhawBHFFQi/HiiC0X53CpUA+bxhTREcbiIm5mEoiVcsBrdhkaIxslDtkAYikMBEWWHGExEqoypDqpcUQNQBOsOIADOsgFChS4sIEaguWFKIrdkC5UPf3o1VDfawWglWodom4Qxih3g7xmMZHmEBBiAkitcFoN52QoFiCyeyDXAWjnA6FLggeucENKyxCcwJuQWUnmH6xFKREghUCJRAmFOCEaBqkUoVAySIKQiGlChQHidQakKJgHcKDJIIQUBAq5KUKp5smlKRg0qIc4onQW1E7QlQyEQB8zksQEwIilA0A0hkKGbMHtYHUBEAtFCPUiAZI0qgdwAUKRABJRCAZKlAraOMNkCdEGwTzgeYcQIHAlDwHnEDFmNbTQj/8Fh1AcgBB4LRD0QpQncJhB3Fcwa8YvMpwSJ4AZOujEHkg56xU9I65DOXhxAMuoeJeiNWEHAq0TMdRQmgLVCgZVgAiFmCJmKOmM4vrAFyF6kA1KAJfmx4JVFTqAHtdTzZL1mcG8y7sI5A1KPOrPKQKGyEOIQ0FLmrJbxHEGpdcKqHcBkgcUFxz53sEHwygxxEGKjohRTbZALxWs8Y67zjhFDFZgg5BSA3Ag/h3gjySDSiHMKF6d3prMODOAF4kQdHeotKdSAJ0JKB48npZzmo2CoJOowu87gVaUNSjqm+mpb/V0oxV6ARQwb1k3oULwBPHk5tdOXg72I5Ke0RaFIElRaSkICQhKAgKVEqIFhJJBJpagYEYZGmamKIlkmpoHmApE5hE9koeIFPSRA8Si8Qr0TSBKJBEIUpKVFCwyLMxCBQpALVUeUzIAiVpGioIIkiaEZqWkCmZAKAmClGZoCaIAYkVeGEA3IO4BdSI7qC2ZjFUjFBA0UhcoI2EwJXnEAcGoIJlSkmpCGiRpQlqRmApCGYkU3BLLQseTEpBHCaASlPMCEQD4gxIKF1BshDEJRklOJKoWCCaQCKglGJRSIUaVJIVhliWgpSgApCUiZqAJgYhogDqAEVyOIBwiaAFgKpKyVMUCKAKWFlSBiaJWAkCkom5JyYkCIECkCCEGgVClIgUUIlgkopAJVqUomRaCXvANEeIxhoAi7kMH4cQyCZYTUYHMZRIw6wMIYSVoy8yamZJSGahiQakWpKcnBiJMgxVEZmUaCIZhlLczVTATMExDJCQ0STQNRFTFBEiNABBAU0RQ1UzvAAxUgaiQlhKSiAoFJRlQgRopFrcIZNPmQD1jcKKpzUA8XFkiJxZKUFJQiNFRMUSlNBQBVDUQCUlAkDUEkq0KLAQxM8uAZKEkBQ0FMLFLBHjDEaDITUnEZKBQrkjkFC6hdQJrWKaSU2FVEyMQCah3LbxIgNypMhMSJAqqRLMk0SULSQ1IM1IxBVLCyiIESgNMkUDqRyBZZBiKGWEHUrTQhSKrEC1wxZgESKUeIR2qNDESRIz3mArFJUEFR5zAhpamSqWhCkKKUYkSkSgG6AXFEwmIIg6kwJNWQRmPo2mIlgqlgiiAYISUlXqKAHqA7gGkHUJ6QDq1AAZvBTqBOYqakptZqdKkFIUsxASFKkQkUytAMCSiUgESVQxKlBEKkpNIKekr6SgTCFBSKf3wi9FQjuDuR4J5mghUkZikoaAiOoxhoVKpgiA86wQepA6wgeYdAj1KciQESqJpUyTIMJT1jlzBzMDCRrU6ZDUubEepAHOXEHiQE1Agc9HxbLNoCUjQgeyoJqVvBOOECPbD6yPmIMsRQcJAXw8g3WZpGYHiQUBpVvJJgAYSKbJQXgkBUIlglF4OTDJEBMNGfZwaDCtUU2GIIek+IBPDzFQcXkijTtQVapRHgCAOYRAhAgwhBU8bolilxAAdeVxBTneCCoeYEB7kBHRIAIUHglA0wocgHcQwOAIckiJkKaNhIXhzQgHDAZCuJwhAQO1d5olHapgrKhqMEEyqQFQu4I6hVFhBWnYSgVzzEutlVRNoKrmAusShCEshxIijkAm0hEMEhDuA4nmVV41PiAwcDDUGiwEfEgHBIoa1iCPJCneiWiErAFwlRBMSEXsCGlRPIBKbSUexlROJBDk4J4weoNQ8a1pm8EvEhz4zk6MOmB4HUIg9yncgdQqcyLIKje2e2XDeCDkCCgTNqrWrihmL5CUCh4kUNQ5xzoBXRKAMSLjatL72xTKRNIIaRABrX3tOrHA0KFGZWjaAjsY2vaY+DQQTYiKF4oIDUA4QEN6mb3zAFB0iIb4u1YEA1q9gVasb23gLkghxIglogLpnSaezYOuUURvLio0uoRQ8+Z6rjNoC8SqIm581a41M3BFS7FN4psRUcbaGhVD0FRlQONc8b3zWKibCUjrvSg3iKFt7U2QTLBBqjT+mC+a0VQzKdf1efGzmBA0AsAAHN6YZvLjSoh2O5eILMDmDKTYPiFTxAbY7EEEGCUuAACMEAQQDQBHp67+nuAPgIXyMovXWaLWYC6SA8sqoeLnI4wPOxQmEAMu3rWFHOxAMJEezpzrPlAN7VFpQOOtWtdWK4SKmYJtgvKmCWP73ra+ihxgiCmJCrUZgaZHvhUDcghsgUOuANw1qL0MMUDyTvDANhCIcikLoZETuAVFzAdSAABkgOYuSBtBBdIqp0njNkL2MhkKCnULxKs5h4gRyRAAOZVDggRAewkBHuQAE8CQckiIhkqg9kCCJkajJBTRCowAQBzIgncg0impQ7lxZDcqimQCZIIh2EqdLIpjAKcSAblEeHMVE5JeoVQDmRR7CQQ6h7CBGkFfEi8SgHEo9kosEIL3ABwQvcCG4fECniETqAaBF0QgblQ8QoBrWCCHcqBqQXxCqeC0w0qDwkqGKkiGoBHJTuAUwjlJFwlQBOYEOpADiQB5lOoFiRApAHuVAoQU4gNQIIHEgHEi9T2SoGSAvEoagMlV1CiYkAgeBkAeZWlIiBt8NAjrBNc0gCg5hIom0bCU8wCnMKAvesEF2QI9XEoDnOKonmBQ2QySPchoQZAA5ZXmBHShBqA7IHuFRUNFx5xQHokVxWdqpbhXuRBVoFe4BeoAU13zpAYlQeJO4oQtAkQDQQALmTABEAqaczJXMmMLaptI66due1NZhOIYMTpwUIGsuCe1Ehg3jlOVCJkjlVC7VoOVKtVKmW0cqhUm0NsbGOrppAirY1ZUrqGIUlJzN1LxwUXyclU5ETOKqKG5dSxy6HzcwxNlhSYjKKdKKKG3fCZBKrjE3uQ3GwSX2CaBxoJ4RRfdp3uULiMfoQVUIRGYG5BfBt5fhSTJu6UHw+Msw81IYxt68EsDnvGNwvyfldGtmbHJzgY9lD6TlhlKlREVkMgpjm5Rzjj5ZRXTh0p65Tlb8H2ZcfDWZpwIaYNmrgvS4O5G/VREhtVtj7sQM0kW3p7uWChriqRelelBljKbmugLYgoxcJ85gUBr1+zNhvDA+uMir0jLesDNCVmDp0JcjijZorgkmNNN/hbpnuaIKm3XEVScnLeZsaNKbBp5r2OZIbZZFn1kTZfJlUtLKSOhhareZ7/OP03PybdauMPf1ilNUJTSUJ5nQUom24kjkiQYaEYKqKSHqcR49BKadHmYelvr9/Wpmj4SLKgyGmk8r2G73+NBSZ9PwbN+3OdOEX/mos2TovX1zvhEOJVEUGf3NsPvTeTzuSIVmJ6vVy0PM1B86CCvXQ1HhMibjhsiQpjgyxK7ck7apMb2RocjPYQ5JoAQiOa/HFSdJ33kxoqpTLvcQZLUIlbYEhsLSH0x5o0SKNX6pZpyCbzURekExtDtmQgN++aNueilf/2LxaqQ+fZMlqii3pykzO4ESYBEZmssiBse7/6NkoDfyxUmzuxtqc1cp5uOCfBtiB1cEaWVPecZPnzqdhBTUVa1rVRFZkIk2ZfPaBA9MxRTaSgA/VAgJ92MIBExakAWxBFuc+SyIvyxEW0ARtAUT1hUDuBNvWAPUjuAMhQOIHkgB5YV3GEiBogES34tKBkqNAjz8GvOwFyQDiR4gHcp9wJUoQLrO4R0kI9FykwrbAnzCNnk62CK0ii7gVf+PnBQPEip1ApzA7RlF89YFInm0QqJzIavMqHMiHc7gNEK8SholpAChAfPG9AInKsqJkAAUA2scgR7zFTmQclpQKUFFPAhCggbcKQ0igmAYKXIAmb4zdVLygdwiF4878cIoGoMkAPEqGiQTyQIHUK0qC+/mCAcQIgdSic3cKqvoMIeYHiQNypmYoqBtBlUepVTJrzxrSI8ECm4QDMwVFTXGAmCQo8wgHcqonEAJzIjxXmxQ4hEOGQXxIpojmEUDx2ZzNI9QaCXgIFBDmNsq+MjBO4B8QqFIL1o1/ZmxV0QqeZBFSNWrQK8wdsCPcAjwbSlUbxXeIoN80ogCWMw3sKqVQuF0AACRvOGdsiAxEcpgRARgtdaUKIihmqBGRATK60giZiCLiZ1oQ2iDmKraIZIoaxRHMtAjdggUq+JDRcwKJ1KpSIPPHOlBMCUVNQqAOMQyqpzIqcyihwhIeMMFfnEpWgEuQUxQ5SDQLLEAiUAQoqEhvMUwgTAKigreOCqQZgYwgijFHeBhVE0pEEBFArFKCEMSTExQ0isQjREqRIskKgEt5tzoISYoC4zJUKRFUpSqJgiYgmiBkBkiSJhSoUBAiVCKJCqYkJJRgCAoIlGGKSJYolEIlaQKUkgiEUPBETTTkrQBREESlFQTVVMxUTKNAKIEkRUVTUSrQyxIQFIKiTLSySNA0o0ASS8LYSUItHU4IpIRJFBLBSEJFUUkKgrTQ01QkNKo0EC0iCkRRApCgCSoIkgcMLgwbkQMSSggiYCJAoICCVlKGaRhRBikQgElihWpAgliIKZqYhiWClmik8kRYQJ5CiXAWEmVGJKBIqYZYSISQSloA4LGGSUpKAopiACIQRJSCCaJIWqaamKge8MaIoHyiYol5wFR7geQlfN3LqADUgPCAyiKcSCD5JARKRTlCFQODhxFdqoiSCDgQgKHgZB4gPMIjqR7AApBJBNVKq8SonUCJzKD4lTwSonMqAdQoPQpIg9JCCDDHiVE2SgHVyECgalTqBOpVBDUqPcocyOoYQkQBIlWhB7lBPEKHEgokkiIdQgGpBoKWzVoMitR7b2trt3GN74rFgDhFZFUSSCVDUQhAvy8nP8pncv11xDnHbHhdi90szyT3Qot8R1c6bGhiDIGZ2TjS5zoZEQRGQVsXISsmRRJ1FRTKJ5PENZxQcXUSIgGhqnw5BFx9BMcXEJa2X4dupEB9CyR4aC3zr9bINQ7ZXkRBf36LoeyPM68RB36GzKJJJ4F5cEfEkwkdOJYSZEpjh7LIQoB7vQz0hLjbSg0TUJCGO87yOyTXHSpRMulCMJURzS1mqEsiCKgN8uYiK6SROZBPDSEKISWvlOru4IGkXkFrqqsQcSbVmKHfJJRD6q2Dx4AwhgGKJk07eMzR/iviLoiLA0u3XmQpDhnXbZQvwLZcpNXQwcF3NdiiUOYlLkjngeedV5d9BmKNnaZllOjU9RywsZpKNojwoRxnQFxHXDjb5EApKWnnYtFKI/BLLXVnWK+SRELP+x6quH4VSpgRi56dLb9tt+EP1ek72VZJBk7SQwlvjeRzOF0ci1BSrZ5taxF3ByCO/j3smc2d8Xk2XHCbvi4qtMsBoC/dUv9EFQugcURKOE1QKa74rRam/O8W+2HYiIobmCIggEXhvxrDNzXSDmPMOMfkM4s8OaRcybj8XfIgOZ1c8ryMjf+nFBECEEprEBc+nJEwikXkkAeeJRScekwr0T31vrfVoxIYpXJ0w2tl2/6302mhMQrWiQZtvhbCs4FERciYNIRFRFiOly92cMPY4DrnCgrA7PeGTAE9SIx0EW5jJqrI5lkcl8hg4Fb4ZANf+9Cd7xdlFzfOMc70o5zmMSfH4vzfq+c7HTzfRUGUpm5eSOvUMWzHqGj0bzTo9pR2Z3eMtYp63yZcSXNzasku3M08uym6tTSoWa428UrIkYlj13UW1dTMOqqpm6lUqUibmClUXVWMzGYJ4lWzRqMyqnZbpqrsVobTfHUvM5e1TeYKlLpVFlUS1WLlbaSWTjl46pRN3tXlk2plpUt/ccx54flQ/X9OfZV03H0+TVSpgBISjXUEocIS6e0yY7Z/x6fH8JcaJ7sJfCoifrc/C/ZqqXcQgD3smhhGRQYHvHBKirYh950bKCcTC0f5XjBdwfH5VzKkK85BplDeTMUJ3nQoXpHQYTzsw2EDEACEBJV3sVNrtSi8DMBrhDJJ8WUz3mIvHBwjEg8LQbUWrO1hnSqhyZQNxkhmYJSuimP5PLMBnjiGVjMtWGWBSRDQDYn4gbaYb+MUww0DIQFAMBnDzICcVXLHyowEDD1ddy/E7pBqw16MGwblTctDgYx1wYy5IicAQoBt+Z48JE67oCuAgNzzRajhBzAwDuENFmj988HEONPu5lFjZA65gwfCYzE9RSMPI8IFw9QommRq/xIVYgIIgzDIgSKyGkSozptTy9NdmKDTr1ztixVqtjSuImYpXOWMeO0nf0RqNFMZx21K3GlDbRbp1zqywwZ8CWhfFwDS2Z+lUI8YHvCk1Ofg8KlCn+VAgNAiGtjQAGe9CQllZmjRZtRWb4icwslQY0Xfl7OfeEkgSjnymzrqF/qmj3vJ9yyp/xVEBUZI0eZ1eZt5Ic3vXi+ijr8WsCucHOP9JcU4KEZ9+/SNNteworMKHD1Qobe2KbbpGUqi0EFRF4GbJeefHtWLyejr5v8YDW4ePp6a7nn8KjnFL32PSr+VySxhz6u1Z2iYuOz08ve9Iq2VcERvbIAlTvXyAfWlEzGTZ3vfhcrvTinK53C4iEb5azN5rybivHsTWLiyYdnRy11ZknGp4jQNy2o/R5w4bn1eoIJCx2Wz0T5Prpb4MaeSGg55KxaT7eFJtuI6E75hA5HfXbfCAzPvkgRA52fhI6yfN9EkUy1lQeF/LPIUoa292eHbquXBEoINDLJ31sRm23ZzkFQdzNVFxS/KFark60RAdjZ5MERB3oDBEQB4lEER5GGebT45ZOFz0IA7vd6XEGqCLtyKtIIovgdRERtDL7EQTwuybMo7dWuUUUDqAiCyIshYDo5AMzNyAhqAOH31VuoNaMVF1ZamwOFzeZn84RMIcHAAYxNST3XsgCUBy4iJ5TOIfM5MQBRKA6jZebcHGuAE38rrkO4XSUJ1GVQXkDYBrflObybS7568oUNNJd46QiSdWRk0vBOR5Lc6tdt0iZPEtDcRCBNxAlASiV2Nzu9c9KgmqlwaCJZZE79chhqK808p2xNgg/ycFEtelfBV56DIjQ/wPXMwShLeRFMpOoTXPXfM7H6CEWPdx8bo8+j5rWBhqMW1mZTVlcdMRxx6UCEFeBMOUSqHDjsFqlan51ewIfc7D9nlUUjxF72ELyIDA3oyZOHCLOqDE43otVZEXaKDiAiBjbhYjo674WCZRBASkNg2dYFIkcdIxAERfA3Y/2TwYQAQnXAnpcB3iSailzE6I7DYhXkM+1GiecIBtvNkbQ2SNBVJsJYFrd5W5cDk1NUzqiEkMlVFCi/HGw6EQdPfPQ0BVBqNcd4EzTjteFXroORiTdBAZAzUA2Frg6WefAa7kKAvvYAgI4Op6rXWatiSIfG8WyVEZlSSTzJvaCu79+OEvFHiSm1w/q88JzG/VdfGZMEXLRJ6cRDXLV0ioPF19FKgRIG1hqVp73FSxpCOSMHNgART6HZOk4ruAlFojqg0vWQrfSGz+ROu/tJx69LjT815jef5Wdxca2pmTLr9B1fTET5Mw/fN+EARWoPXi9ep7bREWoKRxf+lSlQC7aAIiv3apdxwdnx1WkqLrEXQkLMA49e565zTD0VfOS9gFBmv+D5v1LzM9HniXiorO2guApOIiBXfGjQmsVAyRk9MMUCm4hTIO9nO7wA03CU9XYiWEICCHVf1+TERPkebEXXaqOYQ1M/j4P1dlD566geEkZ5AiOUQBD2Tnka7rVcZ3g6WtLsbVKveuSV5G7271eVUEPVF+c1FQUWTeHILiL2vv8w8u+VJ3KoF2AtrIg8U7NmzkQo2uQRXnd7KmkIUoyCFr7UBs4dnM5qE6SmrcoU8HNl2nUlEpqpmhkpJVlylIu5U5Y2mN8Q5injZSezKU2pJlC2TosFeqxQSDVLUIrRJTuOkirMu1adpKZUw5Y5VzNVMksoqnRUdvauzKrUTQ22DtKYnG7KuSmy1KiucP+J44BUrUiU/qOT/h/2klfJMUYoYiIfLKUjaDV0GSU6SiU45XJ5Wr0sjkuehGSbMpmDRl1ZaAoGDMCw+fMMvpRJIDIHbJl/jvaCrDuiIj37+KP/y0W/r05meQ1bkKQop73ObaxRjkqIRphZsTZldpMvOu1T7k6PY5jCpzVQlDXBG85lKaCSsy4K1O/nlftJSI3qiGMkD0kGWSI8gnhJDZgeaagY2bIgaPLEDbTZwRkkefEU+9eJksEaDbSSgQh5MfWpQ4Q9pUmm9tIc/XpLWksbo4Avz3LCmlXVh5qaVhP2dVnyXaJzzM/jOQxx76KuFFaWtJm1i05qCHXBs3ycnUJKGi52kpvzaIlSL+2ZOl+oyDo24bTcb96JgCdtcvw/CEcmGOIGV2QNvKZJSZiGb8agn7VyslkY8XyG4Ld/dQP4v5L3+nSRCGk0qowYsYIgACDj1nzq3U0e5/q6so9jAZ7ERWNDp9/G+MPd7DNFXu8gOQ6+LTkFBRFQhztBsXwWD+RQSAPYaBNy2Yl74Qh2mKvSIT1z4eVwXwsu7NbWStjc2f1EcFVGDz5IMQObYZunLTPt4CwN6J/2XcaQL0PGEHwfZmtXtvKKgbhFXKyFRChcUF1BERBvA571JVYzd0guUVaUBIg0XRhJ3B41OtYb5CzZzxwiRRFAUUoBSULfyN7y4milszrfM0O8veQQRkHPO1cq+FRPwdzvld4eV2eHMoryWRS5t4pHqso2hhPK4KK/HJc1K3bCChVNBMRBqgO08jGt7e74bj0o5EQBxSoib2PP8Pfw9vXelJ+3K9iyIIXspaUzO5dCtr2C/bTuHirtTl9pHZk5EdTipuY3VBEbqOWv1M52trZhIhIje2LB1nCuTbLriqyTZVeN8W1sVwS+dCERENgUNC6AIPSA48cly8dIAD5FKhSBIzYi+GqFEHZF2+Z2AZ0AjrjplABrlNQDCphMCI3caaWBIaF9XAgC2TWJsY0C+0UNlRKNAipis2CmXCS4kx3ERQOLMjvYN3HlPeMSNTl7Ea53UNWqwh5TXeZXZgi+dtA23aiyxb1XyudznKKNnU1RyadJPOW7WW9CAIgwRfDo1qZK6F1O114ZERAVREAWoIItArkAblckHqFRMhFppKAVkESRvnONcy0dSbM1MMuVSttN8gNeDeB50zyPSOeKKSgjTiPSWN51WGQIHw3rXRcR2q93iUHqVTCwRgRA6hE3A4mYpqXSZg9QG5BHo758Ab8VymjJ+BvfEV4FQBCJjg0nHawg8iIDQVmCRAlG32uePlRSIpEVPaA1tyUEEV3HOs0GjVGsaNO3sC7FFTfXcJLLRGCAEW+9iABVAMCO4RQRcEaEeCZIoN8mdP4w9gbfXRicSBOjDRLtADwhIEiZgP61EDDnoCQEXGVLUYVViCQYIhORjmVlgTmOEYuZez1EvVMPZxvtyiaZmIFpGO76GYSES6tFUWMuMpFgxSgiZxqpAAZoRL4KEISAwggmICFfWHAzAw2CiPiWhByUd96DZ4OrpOrZnLs2W/y1iOktakqDJYlr7bVtvMbKiGL76UDjh3vWdYk4CINu6uq1Vn1ru+SIyud68rzUPYCTeVRHJ4SvKn+7PK3zydBgdU6EDub8hp89MvX1dk2fXkjEOLVmp7cb4hY0LxF9RDiIJT+G8ZV3zrzyHxmvw2I2Cl5BqiA6upriIoQHNIiIN+jZvs7yn2e7rrfL4nUSAD3AA7lAdwdSBT3ANEQQHEEBSl1DNDE1MccDqqR5XLrkxY8JoZSjiPZBarmGKk+vxtGoMUweMBoKy/B7xBRRwiIYziItZVBVUhguxlz3QyekcK2dikWZKruREREFuX1F7PSloV5pd+C6Q8K8CvbydPMATng4Vx9znCRqr5p2Y6REbvYLUkHe9iJbmsRPNHncUHWp3OCfZ6QYKcb0niVBEEQKjTriBXsQXM9uALCFS0DWb1vG9yqg6cA52pyhsbnvIrux0W8mO7RRahJO5QuZclRsclE2iZHLUl6MVjiRjSi2XMOky6kktDEmx2iS0VreK8TKTVNmZkxLbywaKckjqMWPJ6jdaRqGIyljmlCLRJMqVCQwRN67oLSQyZpE41KcipiMkxWpu5dpEqapxRk0XkkzKyWUJC63rrOaL/z4MUCj3Xfd9mZsPpSnapwz/vdW269LaHH9HqHlOBC1v/b9Vhz8AnHiyffvZGp8YeczWv7c1Rq3p/LBpagKYus2UmI/hDZn8SkUpIEC/Chfv+cqj019sMW8ckHugr3fEiYxEr+3+Fm1/+Swn1IfrQL0WMaK4140mVBTR9y+i/bbGCAvjsL48Swl04geehDGzPECL0NREJwy4ggeF1bpBwYvQ5GhbMy+yUCXB/gXqo7J8/HXt3FQUv11z5usH66+WwSSX2omS59u+lZA0oISQlTIhwKw/bRu4mlM+bv9W+h/igo4wpkCGySNQg2OMDkPfsgl63H+RFjcDiE22zAYTIT/iSiXuTFuk5sGB8aajUiIq5ovSZM5ptI12cUCgzOOpCXJPPl8JD8tMi7aYnkzJ7KPen56P6kMc1Lf0CMIKvWD7JEdSAAUAtKFADxy55kxgzZHy24pGpoxSr1zIGXcUGfHCoiUQ6+jiUQ+ZDN5UNC4GPr+BusxZyHmhhGgy8RfDnUN71VTDfkjt4g9lxRGiz8aYJJBC+F/RP219yKM4EeRB+7WC3kaa5jIrlnYMpLUUUM2ypaKM7lyRcRXduhy/bbSDl2uUeeJQV+1zphZx8J9erFJMjDzm+r5zdIrjq54zT10L4Yd3purh1diM7uaqgTW8nr1Sd7zW8OKMSRkb3hw1S3ZKyCzK2iDNpZGI24wYjDTJV0VM3c9A7cnH1h3gyJXLbyJueqDGReUbeziDE3mFrB8Fy3yg7AXdxyIANjmF0wo2d4JtHOssYC1Bva2NdVFKNVBvoNAF8ABiwjhUXfOly1rZMS4XNCho11HQ32NsIhYc5zWjdoQDKy+iIIyia3rrOPkdWo15kd4+Sc2RCOlVUK8WxrnTWpptqbVlaaEQZEogotRDSKQYgiILUBFIiN5vQVshcQ5J46soTL1tAlKtCHsf0c8ESlF9Y/IgDeGdVGSXzoZF3mjti5mtBDVVBK0nqzQyfbC2joXNiIi+TuWL6/NrjZrT1rOLPNnE9PAUG9da7UFWwhIj8WPh7i98HPE7gLgeZDU9jvrrjGON0RysndhEc/TGrHHYGw7olBnGVDZjGLwwIsigoWIShKOkYZ5zeZaMItGPduEE3xcGS+CqsSDEpFWIS1jScdJgk6oiOTRWn0ZEEHNFtOLxs54iIJxnjXfIG1Izca3xicTb3vwcLB55R0hyCoB08PkkISm0UbIEIlYTXZdrFEg6WBMjBMzYBDXF7GNNj+SoboF93uiSDwysZfFqeC3rABxISlIhE8a4AUA8jKJgeU6aCqRqgOM9EDvnke3nIuM6tTp1g4VdfTU7WdQtMyuk93hNrCV0lyAF92z8c8X4u7MQ9aGXPhMQdiIKrFXdc+Apy+Cqh0+cgn1QrTRcd6iIN44m6jl8rJmRTudj+/clLzvL8tQkUoB+Pe/PYr1FrO//NUiPSWznnlLn4nxIRXttFAR6U8SYHITzq8zZYo6hoMU9IxmFqohk3jjl/dVxpoPrOrz3Lklkq3Fb0vxpnPBFTz1B5PcruU82oeSTS7UHriymc4bhQCQRKA/zUE3hiBIXjOwMaIiGiEcnrKaARZyvH015PZcXtqLuNO7w5nQ28RENDuaAI6owLI6ZJYileRHK5wgoqNbqOwrMM4QTCkzk5JGbPQDl1scfNs61x6Xd5ERzt82+sgzkQL8fmdyQZuDCwTOcHF4X3y+UCeoIhIhKAUsiDXMj+G6UZJb3RpH7OTNkEEAO/ULlRjgMglEkQFeKR7vSp9Rk/06G5URmdghcrx67llquNupkWT4uTjm1TfJm0KmznMV2sRkIbhS5SSSEMEmhksabTNl0mk2NEy4WVamr2SlTS1DtzhW4xYqcyl3WKXFJzLmYVibdVSaknUJuXacq1ExVSSNUN1OiotXLsRVIqqtY3zBi1ZjxVZs5U1je86L2/+n+Om3H9X/L8Nq7luGhwgfwck/ikgalENBDb/zdz7fYOKSSUJR8NIJmPf4f+2Op9mWnbUiG4Beb+eqWxx1IhhNqj47DJqnmc7EQvrjglhhKBtt3mQDjRkk2Gl96GyrqzIHYyMEKHZuykDdI+V23N3JKt5goaCK9tURDQmEGPi1uxqnWdVkEFO14pWJIk79bD7cv3A1FKKTtqsTvsUX55VobxrjW/17W6O+TV5e8xBtKqmolGA+tlh8OtGWFF7ZxvHWj7mw3fASGyDlmLFdE4TM8ccQKKKroqR3YF3tKzBsE3pyi1ETrQnrD5osoZHzftMSveEUwaTiJITNOmd+7esVHfGaOQhe0jJs+ob2v/G/Ze7IFeJPZaurDdp+LNxqx/9XuvcGzBiKYxyqZa9VSlvdeqaST0GYNAaGlRZQp2CIfKyKQCGABzGu3UtU4uZdHqxGCAMSRJJc9KpcEHqiKDddtZknZRSTk8FFv0zfkpvmiofpzme9LFzoYGmvJBrZkoRhhjlK2RglBqiMGkhSuIIYNsbscQjvU+k0vnkdU6fL8uXDZ2y+N3E3lTWcng4Jwo5BGxAKAEc6ymJGXW++72EUHK73u/3L1vXF9o6mHol3F9X+KBo4cPRnkwQpL55XnXEFgcNd5d84cFopmLmTXl9A25rnFyzZhN7vTXc8i7ecOG7D4YbQqXIqeG8yoxeyfTzwHREfqd5JfVA8H6Kd+ukYp5i5uV4GtrXfTm6guyXVd5xO1wOxMCas6agpU6nmIJJgi8iAhGRBCKqCSJWawcnYEQR3mAQQMIhGYEHQAzSnKIyASiJoxGRBGGpssfezyCIiEEHNXcUGdjDgbNZcSoiopnW0CpBYCgiCh8TwckYSUhz444hDiRRDE8BrVmABKoqLieOhhmuSTO4oCC24AgRNDhZkHVE7YxVMTymzi1MbH1AAB0QQYhogDmJcmKQchEBxVtGYjswul0aGqEM3orLir6Y0YiJIqIN4qgGmrqLSEpyHbG+TTo6r/sTM71dryqGxJqTMJxCKbV3ZckdiJgbMHEMiMbI8k3a+bYRjlLi/FwoPb0ad8bY0CPUMlEtvSpSFaH/GOdj2wBKurSE303tQjkB7JTe87ET3tsiqiEiIseMYtT2IrealkXHQ+9RgwXZgvnIg6og6ET0WwioMndgjaRwM2iBo4CUlhIyCVW/+iZMsE1gReTPGOa1o6V8ccvlwlYh4YoHZxhKZULBIzBSUVVLMiOd8IgIY66oCrWKyUcAmdXccHTqBYhaRIJVIhOnvfZ1gcE7ei853xm4AxIO1Z9k3vFdcJj65vvCmRW8XbMqgJiBEBTlJ+uX09+8kYBpwrln61FJW/c8GvLFCIVC6jGwpUTfSqO7KLr1zsEqINR3bqK728R66pVKaVc7+HRylLC16WnkmINhckAIjLlp+s5zOX/aTopVjiRXz2x+Wai9KM8vJcj8LyzLrpiuMMu5cFI64i+K0Ad7C3goFsG1e2bAtzlrM5Pcri5Fm9F/HszFW+iOXI5tTkiUdUxH5ZJkg8dObGMWhfZyzbThekQTEoF3gAAawFANUBB9ygDq4iCCLfOzfnUE1SleUV4pyIOoDFEdQZtRKMUEoXXVi5RFzxYFXOXARAciAhmLdFBBfQJy4tIqqWl9hrOM4VUzNdU200NU2F2rNsmbVom11blwhWdnHIVsAXQzsE9tr4uelWtsj7EGcWHlTRPoESX6xRBELO11RBfkUBo+4nk5sC5hd5edrQ72IC2QJ621t3sRsZy/o2CDOAdMxczynMT54tdU2tWNitpJdjXSpJ3tJS5mZaxJiJhzpUlWK5TykypcFKU3Tc3NqYu1E5MpKCR0oECusqqJoVUppGW4aMupMKVOZllMpMZTEZKUq7bHN3Vq1FISlS1Kk2mSxMxFVc7k7S10hsxOWolw7qi6VwqHJdsYJS35Cw3XIcFkJSbJQ1EfdnlnM89+QKVHBEDxW5JEfJXiSg/zlpKWkmzF7U8R/2WH/tO2IWE+ip9NWLQmKwRrkq1t9y9/r5bPWc9GrpRGC9OwBqpTUCVlmJURKFmER5tVeqCusryoaFCm5ZC+l0lI0ajteep9z9f4bGrqLGh+6PZEqvzWiSRfFDxuMfNIpVQvXbtkhJHVpzRjmcb3hihWe23Wv6IzWBS5OS0ke75OdeUjmzIrIxcOTx97e9akqhocAAHv+B0er4pUIArkw5TURLaSmZiVL/ner/p0v9Mo5V3SXPo+T+CIgLIbtL9xW5P11ENsfFCMzoW+slU/3m6Smb1+M1dJXyDVIhuAFyAX3yDpfV+BzTVRkKWk00hSxPyeCoodMaUSvvb9L426FH/lko/idT7IfgJsjbmhY5ift2ppLXE/a2FL+2fYU/q/BkefR6yuj0T1mDZDoHuWrkVxqaoqjCMSuMOmyFqIEx/t3HTP8xlRneq0nO6GKjAJqEwi6dfztpMqdb0ux59+kTxj/zO/Gp/P/fWPH7QaKGj+hn1IVIVEoYz55USUg4HFWSXLMJysBCJGVt9JX6SUOBvVVKQ6mZG4S+mRyKF+dw0v0m9t/lnn1MqIjt/bbJYgPaUO+s/b2zKxlDuhOuMbLiucYA1DAjPkt8jybw74V55BZh3NqDTvQ4c/Jfi2COPj5a5SbXRKUeFSRspLAA8iIq9mf8vHcRivPc5aCkJERsJKbOvy16LrJ/id+jp6eeQET54jeBBERBlrdxVr00ObC3WHip9cXV8OHbepBczLrlnXC6LP9/cgrJ5Pf2c8PXnT1xUvFUuYKuqqoLjNelaiduilU+Ff8wqWyrnAa7WSkL4oAF1oaTasKKaAR3LIuFECQCURhnPVwRh0ORmvtaRTji44N4uEyihQurDNo2O1FpMUFTugVwmGD0MgiDp2FttzlJxw6XEaoyOMDgjEaqSVIMvq6dWPI71Xx121hduDrgY/sb2ifiw6pLR0Hnqjz16ujmwzFJbOfTut3ujewHV2jC4HLi2pfiynJZqJt+efrlBuYEctZKg5fiqEluRiZX2lNHcZLa87arh15lSAdXAkq5s0g2CKQkBqILRbmPQaufhYPJRV33tBISiDkt1COzCjs+dHB3sBE5SBTiQUKRDIOiFeoBSlXZUKuSiZAOd+MRXqU60qCh0GwaujXOZVvNBjyYZjw0laGU41hGlDUynjwcOBqu1N7xGYIWqsxWiAJm63zPylGUvYtGxVVpYHBHg23UxMptAqblt+Hl25RJ+0FaIw5UO+eAh444620jZXpnWW/ELIJQ8M64YLbbFgyG1K32F1c5CXwaa5NYjJDR2xgTUzgYVpbUbo5F2rCVmrwiXURA6joHgVLWZoVTOjrXFpt+ODIKuHNGfxTA0KZmOQFLY4muEcXJu4kheSN4T5dmXq6U7untsXFu1z8RLebBa5J3N88g2tUfuToFck3enKqurCLjJ4ftc6KM3swLh7eT+09jm+drh/M9XfGNJGb7LOb5HMvkQvMEgkE5EuRAutIDThVmLe052no6mJxdN/dZc1U7mx3bcsvyjlJGdfNM2uI4X4+HFXJibggtEA7cFKOoKZN7JlyzlqtucMuyHnHm8xm3ab3WRAXy4rOuIJiCWbp/qq4dvn+PPNgq3FPL2bzyKI7EEZ6giJsJxrk3sxB2vtIjDfKPI0EutedA2IIIg2R1BHIVKnT8BIq+w4EdvqIIqm1oEHI5yrxm2MQ1mxQ6bAqrjSkqh7tze+dty8VliyZ3yIM8svy0+7ZsBC4bEQSTtwc2szOWY+7kx3uPePNvbWaGzxmRM8lpc7JVNNOcfVFQsTrVaxzV3aUtDWJ3V3Lm5G7MqrtN1W3irMoxubklJQYpsVIdMqJdSIZmbMO2KLRKrMlZcS25TlZVXNyjU90dqpThxa1Tjcq9xkxutTKxlbe2CxILzKxvLMeTFKqlysQwqrmhu8qWpudn39FRA/wcKiLxprvq1tZZTF/ESNi9qMMvKkiSfj1n7KACLDd5FRfILPZ5ZFft5Ur9L6c0A2cmPtQXeg14ixhiBwQkoRJ+EZs5x7EizI4OwsaGh+7r1v/m3To9vpsiIqvmfRPhYH2SGIr4u1MzyOgSmVJztQT/GcySh0YnskOozSzUQXThV2IgGqmm28AE5yw5UVJaqqkVTUohBSUtHhiVfy0kr6F/4JzzIHIvf+VxaiNMfo+Dg5biLMlCJKRE8sTyPLVVKhMcIQGQHOhETo1Psyjt0SYvZLd/+3FhH0V8JHQu8f1SF5ZhA/tJ+k4YsbRUkyBLEI4DoUok5BcRBKV5kx/zTD4s2FoQ9kFKExfOSULeRzAu/D8LqzEApoqg4tWeM915NYfF73fwb1GTrMI77or2s+TgqbSj3Gw3+vCgggqGZoEg/8b2cgi4Ppfwl2/N/lXMS/rR9FQDRTP1SSe9Agm19P1/xtU7IiN/W2Yk9zKUqIpEtgL6mEyJVL2A6T+3XbGldJIawGohUFbJmfN4782hjLK5ybTqlXOeVMcqpxuZGawoHQqi1EJzXQKimamilFr7WFY2tsOKkl9n5o+sS1uKPvfP7H4DrxUERe97ERM7YzZhaANZinvbmj0oaO4e4SOkQhp+CCSQ/L+F13I+UtfiS+Lxe61I8AGkhQoEkv/q1VES0z4u5nl+3hZpse4ZFUIsHP5WV8a2CAgU1+FGk/WsR5oexpWef679hUvJZJLZS021Fczo8ZWeJayusCpCXnZJyyPviqEL6FQWOKxExVDr8UwOlOGfLpoDqqpkUkUcodpKKJAGaCl/XVJtzgqBhApEMklJa4KFgQuOlRieO3nZcIz1yHbnseIoX7j7SG24nZoC0gC3tRWJSbY3jiG7uQk1SD3mnUvCfI/JcOixEQOZhBmuRMHEQcSMpKaty10t4BMMstELWsWqVpawypkLVek8nqvg8fOKLqAbQEkUPUrk1JfpgXxnnwa2ADOnHyQg7fJwexuvNiCjH0zehwDCINvsI5J2N0zYjenIqYyu5bqOQTitm9VdqxEFdqRAQoQ4meBLlEERUiMvi1NZkHrCfIwXScUi5yNEp8R5BFRAN5QoWO+5waV5h+mbvemvt6ZSDHVMyBHfFrMRXrlnqIcYRPJXPOaDuu8Jq4w8q73hzoUFzJykc2glByoCO9iKmewaXXBBd87RPHHaK/2JRC0PN15Ma+HS85ef6KIgosqJ9IwlT2DycWsUVQ+VTioIkAe48jCCB6HRy47yCLkDFnNhGO1GomBzflGyQEC8iMmtHEQdYKSlcdA22HElxAbSCSxFcqL5jqatPlNHIWwxspV10i5yO1uitzyyVMTPKMJ2I0J3dIezMj6n8yrghQKBdo7Ukzkjd7ARklfrSzV/harznt1BqT9j1BtOUWkeD83CVvYZqTiJuocQCUKDJDrvrWfYb9qnMA9yCDmivCa9KN63abY0OQqiPiTxKj55Dum0KFZazNQRKjSeTdpPTaCPcIgHclMS0HUKeY85gif/JVA3BSoHaQ+CTmyoV1Kh3BeNaFFKREdSIgm1ZAEDmA5hUOeTDMxohVIqu0QRp0lIO39blhVDjBAR9fTyeYw1sW1iIqeJQTqRiF35xXUbgiQ9LICkyHUAh6QogmyBQA/n8JxY5oFQA62a7wLTqaNbYgOKAvvIGQjrZ6BEOCKyRHQfC52KugxA6lMZOC1PQEBnOKGXBmCcmw8Ng2GTUumNRK0G8akhWaQj/alTIUagvB9CexBBMHkSGbEx5RqiIBCBaBpUfksskMgQpC4OoDojEFroMHI7A81LESTMQgQzDXVxx5DnqCkpZg7S0h58d6eTE1VjRBROYS2F0Kou7fgTSddRKEgVEeLdIHg68NsBcFPHInaHHjoUOgJAKHhwgkGA45Trxvj8R5QgTgYKM88Q4EoSIzbDwDtyTTqNq6BLKwhKDtZ5/i57Aki4AzH5dlkB2vKqZ80aLSJ6ASElktruTqnmF4rpEiN4pns0SdIiHHaXVdsu4sr+HlVmnGlqDH5EdQQHEHkQOCp0kabl95lAPaidHp3T7IDxHk8Kj4nrurndn8SanqEunhIbPq/F7d7Fxsko72YaldSg9wKAlIkc4jSxFdLQY10/AuTF951SeZL2OzlJmi1ZnPO49lu4RM0UosOOb6rOvmRaw7Es5pWtfBi4d504LhtcaMvrk85JcG97IKBEcWmxZsmYuqxYjCsMznVhGMRFxERGQRuZUBHHIAzMO6WcTC0EhhEBDRzOxF1I4BNVuTI45WyT19jt9rYgnu86RtHVsOZZRBdhSXsmlrTOSxnYNkSxttWlywLvkCcY4MJwiFAV2ojtEdUEvzy742PUjvbmhEvu1SCRqqUyO3JbZgrSlpjybmopZeZOXVXVFUSRLbjxVI2osUxuzpeJysEOiSRKr2SaSyRjtTONzS1xQpuZWJY7TZipTcpysFilkvM+6rM5L1UJLJJUqG5lzUjpKuKakcyJig5MucmamyybSGPMmLpmIkbrMn19KiPyIDD17HO3KgXECQJg0vgQJoXRuvcIc17P4f2d467qrmSbDcYR+bvMk1GWCJOIk77k0DeDDMnN3+27MXysqeOyTe84anDgh9HZEjUQqOXNGZjk0ANA0AlDGoR9y+WpJ1J8PlP12z69mV1DBsaV95ZfGRhGiTevFJ24KTC8mZ5WSwOTZWaLZk06ZME5v+4P9kfbDNFueKY/0gv/WFR4hwN5MZJjwo1mJVRR8Gh+66jCHP/ulw+f7c+jMzHJptmRw7IjQ4entwYXPJLQWTtqhjYsmghjNs4+q4jXiypn38c/qfj73s/72fRmMQVT9g0rYQR43salkiE3fjdl0NyUs2c3qaaWNNibzIgq0Nsc5SMMZIY++K211c8Y6IKeZmYgsFTiY7s0Ldu5Lp3Ivu9MjK5Pka3mkrpwQM5JcciE9lmsmO9VKHr3883+FxRnnWrK1honRX2/Phr7n7mjmNtDQNh7scElXtirfdMs4pNGncJlGzVENfOIN55VJFkobG91w9sROG+G2U1PglIcjJqhxOJEpQN7HGmLMkE+FlY1KYt0lJtN2vFLLby0m99wxbkRdEOUCgkkNq49GJi9kCPXryvcoqpjTTpKs31Z26TdVBAK5WbmV9t2ZUx69Pk4+ZUvsQwXPe/R4WoiDegOSfJ8Ug/LiIqINc4w8zRdna5tcJi4TqjOcl0lzl7a6Pfd8icMQkCDf/FeQaQDPNg25OTl36iIuCXhbPSi4F53vO9O7rdZ0qLbfJfeRAJBcRBF9OlxARd1GPv50ed7nkVKNInygHEqDzlFpE7Ai1JlwBWl15rq8zbnjIA+Q6UAeX/px/Pj/nQC/HLNqLFX0JSyA2rh1Kgocgaokfvq0KEEpuE8QiHhB6SpbEBDwDIgG5ARHIFfegVF0jwUgziJkoogcJAC8wq7kAKiIByCkRVVzlAIWFrhttBJnGIB9qpwtluQd4VXA2QU3mN8q7gaoyIQoElCI2oXehMZIgoH0Ovju+GVEnPvvzYZVs+gOMS6mvdP2z17ULxLmHnp5XIiOJ49td896O9XJ/bDJRFRLMVUVFGRhAkYWi6WoctCX203N8Z23iR1pvkmYrdg2O9caPF9FeClbk8ThCghKPKcQR1AqZKgVdK440klKfaWJcQt53naoUkGj9PEbAT2iIjEguyEET8CodQqCeso2ZkZDQvUCcw8CiBvYVHppUyWg1Ch1L6Migwd1WIIGyoBTiBFA8yiS9Z0+nOaBOJVXiAQOZQEOY8wDSiqGyBRSlHuQEWhC8cpYEaFE7JFXUCBhillmtCijyCckALkRBGUc6GxER2UMsiYo7ZHZnqsOLSZTiGSzJtCSb0OMoI3nEKGhsMIGZmOBoP9gQGl5GQjiBo7yJCewaVi3KJhCFSSBmq0oDN5FoiBQX989qiiqF03rh6LqbRoojfKh0QvDoD2+VR0w0gOO4I8BBXkONQBhB3dgwJAErIg24fnWQDsh7Gm84ZLjj3QDJlWkuMmsiOLCbUQSjk29zk7ABmby7TszLreBFjk/u5lwti1A0NNSHbmV8JvuEReWtRM9LqdInGsosrWvJzNkVjKOQRfzraOR9nLQjY8xy63wUQoEifAfankDhcWkXbFEfqthTfc7OnUZU6GmFZFaOS7ciNokkQoUk0zFMLa7KRd1ekNQSimwJXMwUYAK2XO3eFmLL4c9DPq7/6utrf5X7S8nJS9kelbw573u+5kR3l8EK1LdY/rFFoyAiIIMJqTeXp2BNtnQ1+L9edCC7G6S2mq4m0XD0gL1TUKIjzNqIi9kkOW74oRmEXiNhc5c5cQG1QXml1E3/fzq+vT6OcQQLp2GyCRDhwuG25MKbCKKaaGcaZ0wU1oNzXVyOu5REGBuVxBBdpMc1KNiB3LyzCpCoHEBA9IgQm7Dkys4dpx+fOwdK3qu7q78tktttFEky3aTcUTRKlEqXU1l0hUxwyVMtomXbqUxUpmnVVJV05YlxDnDMLomrCixVLpEoaibmaq1N1aHbuRO3U5M5mUpZjqiVWW7NzAeu6lpZKllIoahK3k0xw3bltsYll03uNFNRa/X9eAuBv6mXP3rtbZ8JPsGQ4gkYUcTkj/unaKmBRIz66n4w/llQjPVwVTTZAyo/O6k+g9pgg9pqRAUx2bJS9beZZIgQn8Z8+X8rkeVnDVyW2gVJQc9zh7waa8/MaIbCxgmDzHlSyp+snk1Iw9TB8ttpzF/quar7XPLi4iFKg9qKoQBDQz2GEM3jjk03fhFCJoYZmouvNsPCMcYAIU/MZ8+96GSI2sESSDs8myhP5PvqAqJ+1fXL8hs5Pz9plC8RzWkU17HCSm4CGQNDgbPebUjpt8RJP+6ZkQWvsqD/w2eeW+7JEVW/J0CM3mNa68mAqm8IgM0RdEFxAMCBEYS9DVGDi6XIs3LUQ29DtLIMcSSlgtkX6FHfQqs95+Xbi4W2pAj7ROjlyhBMAxQXkwAex4M+KNPrUFHhUR2hJAkxc+yHXpP63K2amWCC6S15BIm6VbpH79LFyNcNbFj5jB8/1C5BXDYZCHMe0Eij3dq7TiPvmimV4dn6TElAXgRBNH6KJKqUALypUwo7dBBLrpwSTIiCS/u+SiqVSvqnk+QKclVNHu39MIqbII9TVYrgSX61vgO1dRDyGfY6EETQla0E5m7TA5FIWGWkntKEZstRYwSpvMuVZlw4TZtSUw6D4Tq4w+vNkmn6SvrsnC7N8JlM+aKA8+SV8AFZDz1YHMHeKMC9mnRonZGl1t3KQQolbAychsgoLU2rnzs1rvFJPzkqdk+mWbsv8D9X5bFH+nWfYojvFnqWertz+1VoTsmmKmhxEQSiIiVIevTn3X6W19PPcmphjEe0flrlI+cjz7Kou1BA/orlRAWfU3nCSRibAc0W1iXsnjnTjSKVMrz9uC9s0nSt6QPM9j7IJQoVU7iiIgedcxpiTMNx3JrUGhn8ebPit1Mc2lFR7Ptbzhy/MGzpgCnbxbHpFl9lDZOnTokJCSKhQAATHXCZUARkOIP0C5MEQbvlXySJqEJ4OsVVkVOZdHeopNBaLuayqWZeq6nZ4hC1RN7yy0S0LnBczhozlAiCI+ddzivbbXf3PDycBTmbdUlTdqhK57k1mFqYcmdc/wbZpw5+U4RBKld/R56sgZ+He1HGRcHmhgT6clQM0YJwcXsBPSBEDbIqeCQHcCi4hKgvEqA4JKrwRSgKHAgXiQoRAXqVRcDA3m+kLx1njwMqIKx3S+WhEAPNx7PONQ+7BpsG7ERBNKsnKC1lsra5mY4ev5/WGUqC+X4SQdYUG+KQZsJOTyXl9ffIoai5GWWi6DRLh0s97w26i8W+Z0qQChGB87SL19mzpXe2ZiX/VeHlrqEWvCb/lsvZfl17peTe0v9RjXAJy6WFojb986u1LbLkjm9TK+zJ2fNUgI+4ryHRAcyzk/82ZBc/6Rh1v9M0ri5j18Aa27WklorCl/k77bdvx3zrvOA4Y2xs/Mq9YJzXToyBLOWyca8kAT4kDi7si5/2qgjQiUudajhnyjbQcQgITC9TvBawc0k15kYPE2p346VU5TSGPKnVaIDaV2W/09tU6Z92Fd9nY4bji6OHPprRbbiiVWow3fTSul84Qu9/BAlY0Nif31yK/djqmNpYULeIxC2HShaMlD+cegFzGKEt9QioDDfIvJgErwiNQ7HxmPzIFwOZZ6e41TP0jRju7q8B7MxgSXDGjV8YocH2sp7oUKWkE/nj5bxCblEqJ8H8oWv08fL/rgQZycPvZ+5C4vHAfWTM2r2EKMGR5b/GneuP8BwQ2KUiB+Rpu+y+agiIEO9qwHaO/9xS1JqFF5KLDecCC7BXkti9uwi88zVqRJiHGPdjVLHGwmqslKM5DBW0WrkpJpzlm82Ox1kdbs/yKdeprDMzIzb/04XMI2emThqla5z9nEN2wWP/mUaqoVNM3lqz0c17LKovJoeIj7ywVfuAfrMqbwjjTDy9HJoSqMtZuaksNgJ4UakFrZjU9ubjjPznP1jBR0MgSDQBC4g3tnJArAjzIIA13JUcjRENYcFzaK6LoYsdpD4/V2J7ZeM9g278O2CMd0sjU0hl8iGPAYeCyPE3SpaLMe+UwWxe7VspUkCcnU6pTcbZeuaF0G2KjLz9GeKYyMhyQE2TE0KxIRmBLyn1P08JUd/qB8sN8JVQcgeioX+nB+JPcX2r1+IX3F2jqVqgoE3sN3rldH3YqsnhAkZxJNS0ffJ3+Cr5Wr3P/RgvFQwsVrSb5NHn6/Urs43Em/Hr96AWvLuyXSdOzh2c1v+1pEV/q7znoMyA+WaVKHIQfe9NcD0Y4WhkX+K3jpbgKZJl7HUQOzNjv1pWMhmC8XT7JslIxVgAGTXFyGs2nPK3+4J4M1U1+IzgyR37CFgVkbDAjn7zbeyn/mah2YNt2ShLBK2YblUY9yRJIyhbGwd9hr1Ulg11aASXBwhqRmphatBHJOCcbZY3giuVHVfhVYL3+RVlbGhlX8xjEb9B1QLTmQbjHA+MBooIiYdD2yPN/bZohsLoKETCj9+jfMMEZkaCRkxkREEgKjbXGHxjFULrPBh39cszEmMVTqMrH03noOvdLi7LSY7jD693CX4wGNkd2z8TIAtMtEhBDAP3fnYdY1mlZHMr0wHaQITRIR8GXzGfhdvD/Slj8CyBIS/apNiY18w6aU+Q/BFMNqdEdkJRq8+CSC5Xo7726Yy5CUgWBmxgENJsEnZHdzZdOH61nAdsw0j3QpGpwgN4l9iuiKMHz5qwC4hgvVCmpXUydmItUB9QEGyGxxAi0wHHZpHbJTMzhMAOpVSI3MRLiViYCiINkchISm5PcQINdpksbjaZlzm6OcvqMeVJVBycinrbaaPObssnega0rsbAGtNuHGi4tV9hg8JLVJx+bXpOs01GbGX0f3hEl86h0l8L4SVwoxywt0ptnbIKYJl9XjGhF6J1xrOOYQg0R8qqkIBX71GOHOIhmakG16XU+W7qltUqWITsyCiI35Y2bKTlaF877TbGZruCclE1FqsFfPbf7d55lqiMDnQVqiAdcycxEB8lfgCUPLivS/6FsE5DqSY2Z4gSEKTzQIi6rdqnuwBFd7HxTo8qrbaF6WBtYpDV/NC2DFNidn67L1KM04dvJ66qiz14Zb/StHV01i2FZlZ+SSJCz9SaQcqSZoD1T5uA0xVcllgE7oP09sH6NZ2C1NQy3IcDQRgIATR/tf+XETfe2nFUWC4pijkzB/zcAQTqy8JnQxbe+Q0SwNLoHuiOi33dkJ2yUraige/9zkiHpTeg+oCC/DWaRJTprwMqniAASVfM0YjEtIqJIM5/WeMPjoCoK1QPs2pMyrkQGS496WlHQvrxVB6bO6LIRRfIEiDrr3jDHobvsNCjKRAQvW7y7wMGZg+5PdRD7gkZvuOegse/EOAptfwiCwyD0eDfbbeQy104K9JDN630V8d9Zy7oar+79YR88kfxVDHfajkcLQy7fgm8gkPjBIByHkm4DJlx6/Fp0NDpFY7hMD3uEOQDvxcgB0KzsUA5JdCTEBk1G56o7N60+QO7g7+nRQWHLb60UBZcxXUxGloYy/brlsf87QwCvma+YC872j66ryAleB/AALlK+0uzEyvsQkyDVuZwrbH15qCAAxXtnFF26FCkk9cneiVRjKexEFA5hqsAEIFEYDXDXAPNAEtYaYsI3x90KzIRv7ZWs7O4GwDxmYLZ/eWyIBbtJ5trtwzkerSdP+1nqGmN64qZ7OWHEV451nv2/gg1HcADP38CDyBZPwvDWRbNC0wI30Sk0A2oGFf86vq+bXIAZat3IYsKihZVlw5DtNpsbYzKBlvYQv/xh4SmLj3SvOjReSMQdxkTb9Th1T01rOIKPIjOA1jTlfcQ3iO8+n/s6YS5CNXjXbjfh14OQxv/jL8Hgq8RkAkzLW7tbtpJIwIaBKWg/k/ZipqBKFKEKEpyAwRDBs9/b1vJ+Loipo3/z+E8YqED6bL72MU2BRzU0tolSeNMSXN5ox0t82z5Oo5Xq2M8narCqoALzQNoCpla6k+1xeI6GE08d7VLd+kjRVg5y3wXtVjiYMRzIgMo0yyg0isoig+0A5Z4jpAJfwxs8JausTjP4YBcoPaZAHq46maLrepr36UXfMwMEREkL5k/OmvdnZ4zFZpvPVgwDNhDXQYIB86C2WW5wUsgCWIwQzpKJ5W5rT9FKClBQsUpVhAEN6lAG2NCiv0dvGw+s38JBLb9rxpKl+N4CeAVeJzM1YbecwnPTYOanKVc89/NlEhc0RnheFgoa8z3mbGq0kCaOwB45b54lVUbXfD8johRm/lOUKNQueRRLd9UOsRAvAUSkUKWhWkoFWmhAKQCRBZEQOtV7igoIg9qvz4si9Psebq/VMY8VHJz1sTnGHXapFkcxD1ufqtaYmkNVzmrdKMjCN1dIiBM9W4eN1WpAU9sG2utSVBLtJSraOSRFH3BKoObClLdAYoeEiPkVGHC4dWN4LYEgNLG1vL+DEARAi+N+VxkY1VqQICgyjjNhuSUQcUiMjG6OHe9FRQMMucOgZ7swLLLgCIGJtMOwf7ZmqnQAtz83Hv1M20b85ZgihjIgBhpvcYMyqAZGEYJrq+IfL6BYn8aFqqQBEjTnuMiIg+Ox2+MfFdFuMzIGAlNdStDLfDNtdUw452+fepAwwwvSYX/gjG40MEQgDH2bynMW8aesK834zxf9BWbUfdLzBwIXlygXwEYkDBguZB6fZzDNTi0WHvEM8cHgG8MKwmDE7fv+QaxkQ8S0BQxDVI1USA5mPvx+D/T/2b+Tf9mP4Lr7m3r7Ia/uc6bjFvJcoitbNtOmRDXUYs8lQWqKgLer6/hZ8w6Mlk4AYeG8ILgIFEoYxRwcBEJnQnA3uOjJMxuc6B2FZBXKc8JzHv6rrDhLKoFHBBwIVLweqbkIzbqtjcvpvncF44y7a/9+GGP/2+xuKjxEgvYoppIiyEkCA0Zu4baOzd/zNm4kK7HixmGv7xgMcSAHQy93MahRYsQs+XEyOLAljhs3de8QE8nU2f3YLZN4MeGMODh9XHFLWF6obbbDLk30GvXxhpn8N3NdfAh8MrhGBk72WDDcuHSuA2tVMPe79pAaGAA0wKSgaAaUoaFKBqgKEoRCqUoYhKaGmkaRppoaRKSIoaooGlChBoAKUApGml1C5fjvp7znPn1+gBPgRFSgDPk9B3ol9T7yv0EPXPt4DbnudzZH8U5K+lw6t4wSvDKNtFmU/eCrLQM/MTkBc14WCVT8Hy2Nb77+nyb6qR+H1Xk8VIn6AMOqY4UBRgUIu3OYKIj+p7XUEY/Nn7VNKvHh1juEQBTBNLdK26M8oiLjdYnj29VZfr49q3v9pJy/+dKp57OYvkQ0dvAoNtTEhHIHwp07cwZaSEhDle5ADbUC5mYgBr1ZNv7SPLIzHQsa5j3AK6/kqZhtDM1lt/g0YL9MkD63Bopc7KmlcwwNJsAMbhpE/t/Tj+9e3xgAHMhQtJUQJQP9aIEMoGTFLc6HqJWNfycXvMp9xPMAw8SLjiSDQlYsSLr7bSbADrVxLFcc/LdXWszDNX1iiAmX8N+SY5NBDETcM4mFeSAU3u/zd/uLdrWFnipzHTGI5bvaz/3q0cZieuRXX4RlG/EDU6TUmqZG9QBNcn1BU/qY1be7D9rl/Ay2Pla8fMASYzy9/X8bhIgedtmcgNuAC2kI3LlvGouq6ziYmlhehAaGP0gAUCAFmOlzEotU0qQAGLlWBnOpvBD7bEw2cd4ty6cFQiAxYK8xJaEi9kxpad11V4IXzmhWGCaQgFqqi0wATv4ILm8NJBdRJ/R3jiYRCieQKFN0cVdvq3Qo/nrrCnOjw0x36hUYE2fuxUwwI6mOF0kIMgbgA5KvSoEGQSVTek/nL71/Ij+NPg6fQeGDP93R6bz8VrqHTHxU5csHJvROxtgQXkwReabF1KoR+7JvGUL5e31/hv18guzgi4IB8f+f/n/Cu12XI0YBLfG3B0E2dav5CaxhlM66fIVnk2xcMg7Hy25q+uiJSG09URKgzcE+/xBgzsgPU0kxAOfXlrpLVkPrzm5CdrvwIGz8W30s2qeIJnunCDAIp6vAOYzfcgW+lchSaaZGvHufrq1XvSnznuN+v4AQsTAoERbtDzDqNWdwNxBedn0alprqhyctRsMzBg4ekDIHjjOIAhSN6YxENz5QnyXpNOM3I+tzYt++PZz0f56Gk3kiJIAEiI00g0UA1QLS0JVAlKibAE2hHzBGkSDRIPs8FSBQa4QcLwnVSdltH11V76BPpECAcSDiACSD2W7fUvo9dVOfPVw7BfR3WEPiA6IogptbpLj2aUwhgN4pIgySCyL1ZR5e38uue243396yf5P679z6yBgGvlQFmKahT4BWPhbuACG34f784rsyvZlAZIEdA4YoQJYO37O0caBX8PDvoQICxEvPwd6/K3zUrN311LBKH+0/6dbaXzzPUoa9M0vUa1YDp6d3TqhTeQtPhpWBsSTOueZgsO9Slw0gjgY0x2xXZJZg6KearBp3rgtCSiFZiMVhVeH6SAELxgkY6LEL6jwVW74bb2p5HWf2nSMYyCBPF/dJqx8HJAgP9GbMsGwnMgZX1yli5SMHcBpGEDZMRVm21bjF4cdarn1e7yU6FWSV2BHVkF42LQYo9VwuIpISIPCFRnDd/A5D+cVLTkz9fXymP0QkEEVfAgDC1591jZFVwkV1jtLsCK6TipDqtZFSxBIAzZAy93CSk8hEyBSBlI/eYGYj6WdTJV5VigpmzTnMHgoq5LcxxmZkRiMSVJp/A1yoZ4iq6xb6TWghEgQGeWpSe8iAZX6oDYwDAymqapInQliIDVUnsFGQvRnCrwmTAsq7FIzIIYAPOBFVI1p5ow2SQGYgOEnxMtIIRBjIblM5qGvzEMZbHh+dRawcdrLfhVBDudooSIfhwo+TmKx11WfnsakUeFiO8JC2ggrsQvsCgoD4DxS8Xa1yvswnZUCh3sN6KU2loBGcUOw9YCwHjRjziJL8Av4bt4uPH+z/fwY4zWIoBURSQkA4f2n2rw/PyvcPgeWRyDa+Zx7QnGYyeqpi1JFok/cMmgAcuAunMrWj+JAChU9FHIsosOYsvTpGVDjBOFEAxAJsUFOhvSlpxBlt6LiBM8TLQLygLMNSQYfJ/NKsdxXOZN5HeGMuQcNQ1IYOTyGvPI0coY0GLpDp0q+Yq7oeO1G5i0FwERuNNiwctrodeCxL4K35DgF/TuqNOYG4ACZoDXFfqxrbUAbOhY6+6gr4jPl82fA9n7gjYCJcavKPg/aIDeYOXAeGFcMlHYDyBtklpEprNNZkCW4uAFUsiIEEspTCWKNdupjm/MiePsxu6JOc5uBOHGxgLG9FhFX9Z0vuNO2ShI49iD2pL4/XcF3ztT8+NfH7bcdFwBZhxasWV2juF+V1epwZyuTUqXA+Ciyr7UQgcHuUwr/M9VMEEFB2E3LxsqCCDfhUzJUe1kQMLTLFjYE/euIIiveTCohL/ZNh6efNnuh78qPglfrSngx6PTpvf7pOuKuIvGG2iR6WHwEMCg0MaA3qQSS3HGTa0l3TzCmgKwaxgwQJay9B2L2ysNz6VcN7U7LNcae2fg/Db6tka0khIrJIj8nXXCA8O7+eucA6TvzkfMDyCr3x4+SBnDzwGDH783wiZHyGDhSZASr03/GI+z33yimYmCBtP/5aCzowcEsY6tl+ANpmJAAjQHGdJj9geyTiLGugoB8mVYyGe3VlghZ+GdhA7WbOVhuM/iRDyqIxakrVYGEHIwdtJwgVYxFBW+6Iz3zFFw7Khy21EDqNxaON646VrjiHFMBio9EDM3/c+zKCLxIqIYkMxySWq42xoIoNHxWg+IwWBsQrmQcY3QLd9eCB8MDMfUhSVBkR/MDni47/oV+JNXpopyi7cCW6kk+bANe8UESWMSt9kjpb5HD0W4yq9KOFs46XD200y3HLhG0lFl9HekgTIS8uR7iXpf4/WAT6FBOXG3YT/sN0R0QRMBZRMzLiEgKUim46SRbeKpDvY8UmVCQUyRxO9BVQP8xRStxUzDSIhATquHRIrYVksU4HVAQehTZwCKTFu9JMPDfbThm+FCxz24Rera2yC5DaHrxA5LHqB8yjp3sTUEAZvrLpTiwg7XJKkPfnel+Yxt/SqwQIM9ZGOcsuH45WYMJhEVxYJQs7YiNElfTLMLrcCwRFb1YKUgZCJjoEL07E4eCBEQETUBpSgCkBClUKQEppAoR9YTI3LkhQeb+CT32+YkOPHLovSF8rGvUFF+QdUUI4ruLOv6w5K4Ym0ImlKAAUmCAr6Poyc3jZULttBo2Xeqa5LYR1NPnz8NpGChLy+czIPfi4OqO13i+h267kiKyZWIrvn4YP/VYUsKElJiKssDKbQAB4ADlER5oPqZobXBU84KJAsP0jsVBwULCO7Z9seHDgBA9JoZFlyixrOO4ttWD62UdT7IzPPNHAhsOqutnYtCAosQO5EBiXjANMMEAOvpE3gIggiFqK8Gayx6aJXtsUAyYC1oxD/Rihuy8SrshSyQVMqQNIxyq0eMyLZWVMGxH8s9Czvx+lMTv6wk9veLe/74GhB1DSpSi2N9VJAIOYIPhXV/c778JTh98zxNIvjSLvH6pJL47RI2nPD9ZBaMHJalocqjNjsnPxb8FV4pL1SU4M6lHMHPd4HObwKQJ695fQCVz0n3IibKHfYcFqHv1JmCJzdZeQijIx8xRGBCzzoyjUY78IxS0FD9jw84Gaeu7L+GKQDb0QGREBO+evcWBkCBPm2mS02ygDVtLALTPM5Vg3FUs81lnIQ7RVRSp3iCeQuechFabhoAIcvC5upwN08NF1Jr06FwucbHX/rfE0KlIUFUClKESFANNC1QjSBQNEQFAjQBElCIU00tAtLRVC0qUhQlFDS0rQhQX4s7+PPw/rM5kf3C/o/f9zUqPU7RYTckfOrVyOa3U0eR7ANCDxiJAE2B/QH6hreHmmYPuP6OfoLninoOvf1ExiYb2hFZE6SFQDhBk9G+lzwwK92r+C9vebW5M1HBWyZuCC+25AcwQfW8nxg+gIlVTqpJ7LPUjVqohBDSpOjnEIEerjlcst6o58VUgSCoH8L1VCM7oSfJelablVGhti1znlboqunDhxcBsdZk3jL76XRjTCpSBLFEI8aww8pE4kdjVQBYsVSFKAOIrzCDyP1MaqgsNYipEGCCmq0rmypXRelU0HHsiGJZ8PTkqDQg8j0UjjZ8hDVX+QIIXhybi4L4ZH+uTmj8BvovUNwOYYmUZEVOkEpV6/DrOicLxo2fe96Pxj/DdMGTejo+3HZ+4A1QRW0vi9DAJcLgWeHkDjoGDDNudN/z20Wv0X34MAqXmjBVWle3ZAn3NCiIi14yIN9XSKrTFYBqlJB2h9jQwhIDk4w8PErzcUwH+eOYtoDoAKAOhcgImfyerppOcrYyc4B1shi7s3Ow0QMBZikhKFDGViECONgCdQBtVhGJ7VWr9zehEHrvst9EHsdPRwyiuaf0/JdBwKShYYLM+BKrNj0jbbGmDkiQlcYbJGWmO1kGN4qZGjXEBk/jJQHdTW62m79VVuSgqtCUAXWVLyTAKmhYmPmLhVKdGnlRcjAT6YwpXz787PNw3a6aT8tGeeBg8qibk0lpYjlaClw8UhdjPHo+gV08jVLych8p/rBsYyjqb446XtbxV7F5ISGF5b0cSOw5WNrBU2RdXFbq/nfEAVJWoRKqn6a7JBeuwYg3xxejkPsunVYQKOJyMH9/KBjfgunE69JxQd7c+hwveNqTWNjKrOTN+idXE5sp1mNlinJfGm2GK4AzJSDpHKSjVrRwALSm6xvcC0Mi/Te6bvc2aR8Mf4eA8v5bOHvnGe4ICTiqwV4HhoK7Tn8Zduz3CCvkUE+WKPICf3eQxA4Uv7fQU3Pja8qAC/RIUNMhKYh705/Nicwfk+X+/PbO81QKnsAeddGOVJoqYJHKlS1Qa76h/iiBADEqHVaxy4tm/RyhdUs3y/Be5iBmcLki9WfWxszTOoq55C2Mw0ONW3pxyROmzwDlrU2aORAt9rWf6+9dWGT32U9PUCcwtlHgHwk6lcQ5PgECS5PeX4YeGYjM8hCLmCgytO7I5wMGgUsVW18JuqaRS3VwK6Jw5itDibDe93ejfn0JbUKnRUqsZjvWVgnlrtHKswsvMSvPVwY+vSiM8yT03DMGQ5hSqZD8iolaT0/iTe34EPE+GlTlL0AWs0ygxx89Zjpn1wYNMXFudyODxuUgG2zuafuEhfBgI3H0NMdDljqNBwnQX9Ce6hcstst3cgNfQpaBnK6CeGNkThw5pdmfEoUWErSreNTkhvel4L+7068ABMu5fwh1b9sqSI+BycFRIuDmfREl3fDTT41kwb/qoQnCUcp4OeVBqX4/eueF4HNvum43DSGnM8/3phTk11RTXOLb7a2EXdG/52b/Wqz4TuSqKmp3vjEkIG8dko2mEKJH6b96X/2vIflygiAbweX0UonJtmOkeWiPK2D8oKge8EUOtO8Kx0fTPe8vPyTXr7dbB9SqYg/yikju4Yzr+IFLf/e/NI6JHEba+oVDYPGRUNCbAbQmMQf9GPTwAvuj8dstb6sMx1EXUl4Rw26qK0bqiDcXorsj/SX09a18mLHB0N7Jdk0l6shrbl33h73oIPEAT3BwCX5wLeEOJ1R8alGt++qPEx+Y+Xl9+g94CZpKe+WgReq9PUx9hMADzl+xzHKzWc3GjOtjZW23TOhcXnZTRlCpjask48lwSSSw4RG5x18qZ36veJ29cwTB2D8mP6EB/1/kfka0X4MDBJY2a3jlB/IJrSgGeN11dgAgaF7OfyOdV8kzMv1HkNW7yRSEUQJJJEFoEKQKESIKUKUoaSgKBWkpKeV9sutCAltFwz/qh76Q0Jp+a4uDrPv/qwV3KpQE95sjhRRIYgzumSEuk0YDiKymPbmVHm1y607UBNIiaEUZplDpQFhp4yYcuBlSoSP6TMCMJSypMi6yfePhERQf9d8QWfC8IWXvw9j5liKCrYcfDn6iCnC4DxOiYN+G+7tM2TTinEouiO9W4gmmg66hSlkMC2eVZqWCtI67nPl6NjbjmufLoaPozA+3X/Eqr2jXPOoyyhgxge/fiQ0LEwoGtAmPjG50twORfCoIvyBAFN//HpWtPUgRwn0DMxfmgoiWSrBdvhUZa4SRUytonLGXYyPcOTf0hIKpwUak9LwUp2iarfsQMRTRel0FFso91QzQCTECVtlVezjKwIhBlmYnxSX6IMzjQwhF09hRyyr9oHM/LIqqFIiQlHxkcIplNnxmlMJueV7l3Cp39wgwkKAthRkF7RFotTXU4+W6Imsj0LiF0WEREE2INLReAc7GNZnQUlIyoUhJTDmPl9JmbObIiCqVsKMmSg8+m9G09wP+UIHyTEC0JShEFCxNNCsQBUSUBRSNRKhQgUoFI0JR159nWz2Sag5+XnQppkGaKzFaYShCpK+rCk7w/EbGwe0kLAgH7QUmj6SjaOd+awPNOPJW2fS207ExZcRU39yrQByDU62BjBMN1hRTKusRjdkCqJc7LZLpDC0QB9u19cfrsXE0F4Z1siiEzvtcv3CbIJZRvDSq9X+RlsGkTY5KDHLZNrmZhciaGeQxOZL2QOEB2IVLIfVBOaAyAW8NLS0HCe9kLkara5aVbHOqw3yRY0d8B7wVvt8zJrP0VcuCoM3xY0hIrwbEQkcprIRhEyifwB5WOIdDCQ0nDhX6Or2fRfMOseWCeocLhbJUWcaZ3t1xEXuyTLmkkhsQ80Aj9K8qNXk0VyRw4xJAOyue2q/sQuamcBsicdxS+hqaIGO2l4Z5cNYQHQrY+ftp314VQJIXkRp5OdqevhExvxsJr3AWDYfOIb+jfJqZ48E/3wFTbXbQEj29vh3zeGguX7YGGmfAr5Wyiuk+46v6yAUood/1rWEqgEdZSFWQKUDFyCiYBQGRKHVKIxmAiRRCDC6p2VIQsttgXPrz0jzTXpaRjwQ2bzSrwZ8RvUBUel8rCmCrZyd4y+Y8sf5+auV574M7iwJDD+kj7op7v8VF0ZAUBSkQHvfCmKk/lGX/GFnhr3rK2dRya5+WKMGw/WIraEps1cAkABi+nFHcZxBQAg2ewYexA7SdJWWUlrnFSqfFInXO8LkPHUrC0YPAFZWTgeGKp4UM3SRNHwe/DPgp/HkZorcRHqZxAkRqN2IL9wlnCDTHNtnaA4DXULjrWx075dc1oKcmaLc7FTCsV65IVQJ2BVFosLphuqKnQJCorVxM9LR4sNnvbf94OJX5Y7OjP51QA3hSMSVUQ2JttMaY0PEb4j1T8FwY9eWn2Px2GKhnqFhmjAgg6O5lCoCb9qgIGNLM1Yh6Xezxgrt/v7/eq8eWqVbQfZ87L8eaSWvPCrqlKWh0kkQTE3zMsRzkgUVJXzwfzyPcg3qCJFcFS8cVwiATpv9Vs8jzm0VUQ4qqAINLq5xuCuRFcu54pg4KoIiCFlFWuuiwqxowQCHMpihFRDnel4lCg/CDfHp67F6i7JnOydTs7s1oMSEeqJ2oiDVJLMiCgcFqRD7/v/Vi2mQbqFkNOF6ZrWjZ1s0l+SeWJxiTn5r3OS2e+aYXkloyE+b77CWiyAT0eN0G1w4kkM80oL7/b8zF3g9NJbEetaFlaodsB7UP+kZNevhyE/rm/qVoVdKAJNC9TQkr+SOjTtIFuDxGVT75NTaOPXJJAC2yjnPDZq2EPiC0iYpztRtgFn7v+wbAfydOGRAchM4h34FVdjQCDoSeS1wg5kHHPOtkIuE8AZmrGyD+GBsiMD8mevbM9CYrBVIwFJ6GOYwkC8dM6OivicAg7l6lw4W1gpeBac3H3vZo+iHJ9I1/Tv/H4PTXItKrQoFIglIJQIUCNJEJSI0o00CawM571CzuiMHQwcDNz4hE7lO8DhnArOTAiVhPw5tZZ4ZeqVmVTq73pxfrhsNCjKBKPsoS7bDA0PS4zsBsWKua0P8WBD0mWFN0J4gWqYIkggv9v79uVSOLh97P6fT84+iSEJR1wdRlRrLe8VEIi3qzhoLy8Hq68HWNz3ox9HSUhHM5WQAv/ZExEEZ0XOGc8H55Fe2xwzXwKrYgINfFNjEIyYIX+vUHCJILMXSTWBYgLaYgC/fdpaqoticyqzCxY3YM9TVzAkP4kdYqWgIaT6/nzblh/j5uQsdP94kLU2fKG62QAdnS+skjEgwU76SMooSyl8ZVK+5DvSybf3plaKafDjJ3mNtsY2BeZb3YFOUFj/oEaWPy8GZgYLqQyWgMkoA5u41CRCnFNTl8E4QfCByprRzL1NJkD1SfO4+LmUaANyL/V2Ot7UoNMPXQGA8wm3jEP1rKDpbreUnQQ704iW8XQTqTUA5DElDEfoVJANpesnpKh46xTrjDIJ0+TSHokG5Yo6TD0ImAfAbIwM4/FP5oQ4kR344RyObCkQkuSIXMC8NR3prhOPRLvYc7IRcCy8OjLn+10BB+QUs6zHc+G6dcJBweYSCfo5tw7H6qZPqPAEJ9rL2Ceq49QG4EAZgEx1MaqxVK67qRERMQXchOg77IANk3rNmohufKIPj34fx/ONoYEX8qTGP8YinCaDallDlMAEQF8pOCNh+tQHGva8gw0dD4s9Nm2P66/110vunffgQYC9fTnLQvr+7QIJ7ye1v6aBnyB50zV3jqgHIGOQkgGrkL/8gYiY4/T1yqXqgqJmIg3Mgj/J88FPmjvUeaSD6UdtYKWVXBTRADz3NhxHCMBADn+h2XoOEyYx0z3q6qPn1lsg+c4KD696rSnzIFJSLIA7aAxAlL5IJ0sEEUhqRZECvpGIuZTjVRTfn1cZvv766UE/bsItBcMh+zq2wcK1AUawAoiCIqgj71xytE68L2M5HRBRpHh48crKEPCorppcSQZ16avR0I8IIoJImbj75k44mfN4FIAh4e/+n+ouVL7mr02P7Pq2vmZk469RVg5yuE6+oznUmHMPVpXG90R54msbR64wpHzzU15th+xTII2nH+5+1n+kQKDYRMISDIigfqVE8XJyfy5NHWPVz0/mM0pAZhJXhSgV4ILHdizivdyiCrsxRh1UdX2X07X6+nK3iSfdVPd9IJskEpAgg1KgHgA7ihkIMZ1glrFoBaGG609WCxZOnWDawxsIwxXBOJNQAJzOXMg6AP+zPX7905805nGM+gpK6a5YW9dQ8iWCDG2hCkxAADYkR7i+X7CePDgHEuM3PASOQrSjgEtfhBqW52JS92qmcp4HMDcpWIqaYz5NGQBE1StK/8oyApPf+nEX8P4fdz/hz56QGIadCEAm/I98JrDfunqdL/6vRydfTCjGn4O0f0IHIP3/uzbgtI/DL2N8rkC2x5t2CkNuv6oUq+Mkc9PotrvcWtyvrX/dcpbOB1gPn9RX6Xhm9f/Kd9C3TU6659bYUuN057Of0rU9tfoTjNw3SQ//nhszuCXG6HwmOBO5u2IjseQSCf9ge2otEY3Wq/9uypzJinZZnjToiUKtPYWw/pN9YA81eSaJcNnWJk6ARnGSvkg18gILT2BDtM9VgyfrvObiYX6pwj4j8Bx5cUv7U4GVDWDgjC0u+0uB7nmhCiVZi10zO9cdGQX9MBwNAHj+0IK2i2vcv3vDE83FL9yfJv3d269fLeDN3H+tDO2VaQG11TU5yXrc4PhLDeheVq1fXT+F/m/POXb/Ttmii5kloInPSKn3ZBZ2NYL6yKT8Aoapw5iu+qizAt0zmSQQpQONqw1d7jn0vnY4ieSLaGqP0ny5oivkDV1YvyGr/Rr1f9d+h4j7+obP5cNa9PY/Xv4/FJ3dnf/znapDbChAqm6oW+/6A+5zOCBDYAFqEoRbwkCUclnJ26YccSr+eBR+YqBlQDPCCCH0qYv9q+rnVg8GamgKaQPhBZFihCZjX7P2fiPoqKw++ieoZToRD9MB4Pd5+XvQ0OZEUWNgNqxq80IJDeaEHd4NX+XnmwdbqfLo3+H/qy9bdLs/zTXYjvSrDoYnv5kGNIHLSx/pBUagUhdUUSbZOoPmBamqn5RXOtR1SkFh/yErTigtYkP0iVCnim7jusRGHhT1pTRMOfh77JHeVnXeJDQAN/q1X+YRBflnCWi2h2qol1OJt+jPqi7+pc7bEtahacO3a8Nv5WfUsN9Vab5WTLXrTiDlyur7xKKpIdBqkq9RgKK2GmAyH6DWm3MP+9LDraw6Om7rCyQYcm4ETtXgoo3LbaAQETAIpXrfsgeYUKfbeZ/8XJfL8fWe0BfkqaDScUfDmFDSBVNDVDEBQV+q+rr4zybH9yOjUe40o4ypS0K0oei/sXQgM4CnT/kQIhto/S33dDhMd8rk8OLneScOdUAZogaUgBqIyP/WfQD/X/1dveX1bUBQt5W0/21/z1T9V1SunPfnmE8jzGaxBMJJx3j89dBCRLAf1/7yDtLBuoY6ROQ16DtX5tUXzUh+XZDSHcMRb0/vnzavsz4f7NKZfpb9uUJZ0bnd0p2rnPNez0uZ0nmlm67cG0RWMiTyr81lU6yqSrZH08h6Kiag1pRaXphm/L/Hb9/y233gGkGBn12R/5oCmn3yXmZypIQNTABpaSJXvnx9z4/XQXvK0CFwtJbb7On7UTWNfsI6CXKCnkwKIJpRA/zvR6b+zf9y/rr17biA6WzsyFzQdNh2JgY2rG/+iGhsKmIhmBkts1KVnDj/LAQVWPf6WWTijRT6j9qYYZcNSXTYYhYS3vsgGYB5U71SFxH7X7nJR1PN/zo3x8dFzFBAh48+465jPTORwi/S8Wai5M1KX3bgYdMw4hykDwJzqWV+XSqnOXjdZ/7/lZFSuKCk5Xtx2G+5ZgJ00fX8QKX35nmDIhcrJCGF9fu8+cdcgBfFuekWICpfJFQf5oC6Mi7eLEQexERAhEGeojH98sj9GYca0FF6SxF/qJeYDAkryO+gpzm6jUkFNUqe6f41bsgWlKIEdnUo8g0FrQLCtGCYDE4GQ6D3GQXpQZHI/VdzruFOPHSupw5OJnt34O0nf6FHdcBiUcrKK8+R1j+v0z96soHp/lP9C2l9OvftH1ctDlY0+5t3zZmQK/+nP2MuBWj6ylgXeJYVpfkK0mIqVeWBvncaDZ56fshxxOc/xC0on8GAcTK44mNZRObIVXFjvOZk9VDVAdQZ5FcJFVU8NL9Rfp1v82ay4wLSMPwa0NDYIbV3ygl9sESPM8j+FdhgmgrdsRkXvhEmtr8+KADOkd0NopZrwBZq6wU8B2YeDgJRsQ1XpmkFwhIawpIpcSKg/hGAoKEoabFPPUJVVHisgOxmw5XqunzcFk2zK61lhIyFISG4s8O/NC0tHy013dvFPR7M2SlXqr7f+3YtLv5RTn7fkZ7yCJzH4Z71BF4I+3Lod1RztZziB/oYcIrF5PPpCYnIt0IPd6ur5DiCL5pxJmTCbdc3BEboa629PM3qSvDKPw8ckmbUiW7FxalenuNf3tSap+i83LGIRAym0K1c74vI+8FSaq8zO9u3QE9ujJ9usUHkd9lvJAVyjDnslAk5s9oDSMkChPzXXPrpeKmmkGhGimmmgShKVViRCJoCJpKVKVaYqClpoClShCgoVopooSkCkKEGgYlKaGqFaSgpoKKIgKAdsJkCEQ0IUHuz8Jo9zR7wcAa+pRT2AdAFIIar8mCWzuWqSyPDj4UjZLJRAF9pQyThzr3EDiNSbt/Xjv7su3jGctueADZ3+56DJ5yyXP4Ke293qZpDOrQLBG23ugKYHVSgm0hL7MTZjySM3URvJNKQ9clISCdmCf4TS/c/Byqt0VG6dFjhq95X1FsUh6lpR1D1KnYqf8rBrVQw2u0zsQLdx+CAWb4WAZb1DO2om2sJIyXgpt2MX4fWhg2IaXb3LS13br6Ep//OgKmSabNGmBYnXLznVnsYu3+sI/MQy/fgTxoAP8jx/y4fm6P6T51KN+IaRpGmokVoEaSiJSJRpAKqkGqFmmwGNjBDaYw4FtNuPOGh9Y57EK3aKDUBgSlfKAhEOAEfYdqOETjA6vd/K3bmdAYAO/+TWc/sGHlWYUMYAdRLrfB5IFQzYOqW9IprtOdSXRSo27Gg40wYq/efE3/QFRLITELOk4pL068bM01TevVcftJ9WhaE/KsLyrBrSKzdS2WGPnd7/8BMNVrJ0ZKSmw/Esz9TFcsdJP1i+bin7KJkEyhO99o1EhWW1N392PAG278tdmPFzdtyylC03xbyBIMSfhbDmnlUYY9Itk6ee+dmdOYSuyoFogamQhhoCBQQDXscAGVIGDIbw+j1/q+Dpf6zPymf581FwecOsenqTB1mFFaSwd6qpyRY7bcZX3OPs1n2Prx2l7u9GKw2+HGJLbx6aksxnogtZCIBbIHGChLvEX/L70Ir6vFCHa3bqWnXGbeHH4ZuvKpmOhvjJnoHZ6+pYX/qEZ9b/D9215h96e8gv9Ffl25cDxM/AHcrOVpX0J0J2HkpEE+AAxkDUN5ZtWooKa3qeKD5y2mRbU0Hf/jdDmGg0jO+Wb6bfGuHoEluzHDDyqOtE/LP3L6h/cEnPojq3DPqfScd09ri+gcv724jkJTHf/DipKl8YBAuMR1KRmIbm0vXJ+gly54EawASdTBsfcuwbKFMPVnlnxTTrDB94+Yj3ywpiq1sSQLtcyAb+UH9iuHtv8gTOxoO+/84q2dyJFMifhMzWaF1Q9HS6lprL+dnrvWPP+NF/I87JRfcBL/yS5Ocef1M4Ah8OP1n5fU4Y2/7n7HKwho+yD6stOUxpSO4n+3fbCTVvwRfHDsh3rimp4uzfl78du3ovFyZk+v99x1zjpFdq65EkNDp6kd7tXzet9vrjFn80ul3W8BcV5QSVBuOn5rRFLanAMZwcG0CeJlAhICoRor5HMYPNGLzfTbcqJLeW5WN2ly9a5q+FrcyeoNgACwfYROoA/0Q+IlgBSeBEI24pSVVcIwp4OhEvp76Tz+G/IfaVDRQFFIUMQBSDNVBmCHMdz7rDkMTwRMEb09qKBk5b+i91YOAT/2FHtZUupDxYX9uTTv6UqTqdhK0YitOBsT9f9pJRni8Lnc2P8bVH5njQ1Et17fWh0w1x7XpupHwpPq2XDG9DEQYRT6emK/o7SWVouhkevSHkeE/XwZNbOI61vKohm4SRg4as0x5LTcHDlpN1v2kL1ZwOxESAxHvwPN9r2O/6WeLVLKWXwTmyc/sN6lZnvSKfsP+rreMt/DeNV9/twbhJ1OrYOMNQEEQDeYo6DEwLl0OL+Da+JRPcx6/w54l9wMBzFcoBAfcgEPRoAU4j/4M6OMk1T1ku87AXCMDnPiDf8aeeO/uemgXcrVIFUC0TBQhZMWF9fTOpKpJAwSCx1tHsYFj3Wlxm3c/XFp6DwerrqUKbqNjl7ErfFviRfLyvQDTcvRDZv19wfKvLW8S/XkTVf/64eJz7cpt8MUlFEnT97qWd30tMknHXlj0fPtYViP/6jSHlm/7dsMpKOBPTQmSOZoekR4mVpLkVl5T91bxnqY3L3SLyaYzPOveFWLF5HZoWx9E+eeeGmC/htDpz3rbhAv3sh1wQMbqa/Nhp44N9oVTbGT7coPq7pIF+PFXJ8EbR482tbk/uJMVjQDabEMYAmwN5Cda+7PXpnjtwyUvlexOfVvwOwwwqkzAb8eLfjqsH7SLHRCJ2juiAPmz164lu/l2PwkUMNbf3kZGvL1LZ49Nuq5+69KyiAOKJI8unT06tAQc2HXnvkBO3H1MJHot+eeonv41560BkRF7epDq28U/7D7xr+3+68cohK5rT6+X9ex6fP6Kxr9RlQWLZt/raJXn/b/pnN/sRjB2ywaOezllf7Ye72cVaPAd54zBSXUVU061Vi1EnO0Ff77WFXTpgTSoWHz8Ifok/18fBp+r+T8Xwb/l+HEPMCFBQUpVVQkxoxpDQo8HXkalhIeUbI6o9u0bPFvtd6kwGf2MwMD+iIMSNqRFyfTfLgx4TeoKpncLYSLoKAaBKACqagihoWhpSJiiKoppaUopiaqZYgWgpSSSJVKEIqCqKZpiimkiKICmaVChGhoWWUaEWgimKlkKCZBA2hCbd445EmBfZcdyNQ+/0I0r4GSrNO+XbpVfmP3YVfsX3DEdEDGDx2r4+GC7lHGRHkqAMPDaeX2eJb0x3NS+ib9Srj2w6fhXkRoyjFdHeRhM72YAs5OmwsBipoACOIukvUP+7hvx/roUdPTEd7RHETrgLm3lPxlNzfw67tUvxqrn+KvvWkIvFQd5fzRw+V4kfrHmL15vwdAxOtFlJCv4EHPGyvE4ydgF3HQgK91II0Jp6EJUwYjcg5hbTvYo3+Y9RlV496uJ8veoIxbluNIjezdytVPYNEUvAS6eHCtTBtJtAU0A0jQoUKNKUjQo0ASCyLIIsYSHecnfas93bcNWKepO37CvVGUaTaPdouDZTFvxXeZnyT1fsUQTyIINWkcak7Bg2BERnpjljP5WJIJf4wRY0pdWJAvRpdw26bkH1cywottSHrclLeP+vg8i/hx6uXxbK619GjzURmnH3l5B+935ym78kSwSNPOfNQbsmLv59FB4OlV49EQzoJpu0+qZC/744U5u30YzkD5s7kW/cW1oWTsnddQ/m1fgqn09y+K01zOzbx96ccnOf5JwHHVzRmXy9Kd794yEE4rqf+LZzgIHFWPOlzR6VVSW6FQgrry39FNSjePVbfMGVUrPmqmGH1UD7svCz6LTjHkYiN2v6GD/nxBp/DoRAalTJ2UO84/mNyhxr+SEE5Skx/5QC3jpBU8j1leI4YPfC4hrBUe89chMfN7Lg6EOC5ty+qlPoFE++rqPOng8PbhYYi1pAN1HPnwUabX/aLp3spiuXQvQipm19S3l8ut+RjyA5HzqJBJTGmq/FeCbpLLsXkeqI/vR7Trvi/RE0EOCAAKxOIm7aa7arc7BgcWavM0Fx/Dqotja8lJ2QvWl3q8OiH+DzX/uMWWvpH9KqweVahxJ4LCI51sdx6VppZudWGn944H1lmW2IxhTMk7RworMiXu6zqsGDRlL9EcKZKQMcqYR1SNBiE6/Qkf8UcVQqSjPZpB8iGfKOySrqYcagb1m/wdS8KXXXdBXGumLPw/qMS3RfUUf6sosjnObh5oLafUBSJUtlmOfVuUDgYZEBD8RqptEJOnjT/Xh0WNZ357r8uO1SKuZ1+bB+EPaw90m9AjjNSHMyHwWAKjGzutj1Net77okpguvnJhN50SOacbaeIyKG1aCbQv11/yuBnsqy274vJuUSA96RoCgKKCl5zKoApANH/TYpWgsuU/D4CEr1Z5Y/hJFR/kLzKWF07n9q4lliTBjOR7mYzMpiN2ifi3I2atSQzN9KKbcTtlrtYcnlEICpvBum0orI2w710gJBMeg6JDRMrNEiIDvPHQW/G7bujAyHpDFvw7vSd1BmXhxWt9u5lG/+9aBJcFo7Q5UqJ/jfPmpy1bQCFmr/H3f7pxPoBa26lKKamo87SSEqC3spqlwaSQjsWRGYwkYpp+8zsTb1JiHiQDXT3Zv1HdXaBOOVKEJJBkTTG9m+/ebkvI/YgzOQfwTL7kwstg/tn7WgoVavIglxxgPlVULhfOpGuDwXjgZy4EAZ8jGxlWIBabIeTuhMYDrvcrTDBLLvj8RNRfuoXOkd2e2/B32yd4EIiIDNfUuBqdpgf+fzcnkI7sD794bkdYAgSwB3d5jdLD1Al4DYbr/PtT3pL5/vFvWp1b3Rb/KvkhONk6ogBmUStfyZqil9WfwTETrn4I1yyf6rBKvJWqV2x/VisvGDNk7NNaeiTCpFeLInI6+t1WfvKoHL52AbzL9OSRCYkaHkl1c/Kr3FfwebRfdjC+PcY2l1Vux7dcZAE0aUCRxW0PKaKkrmk2CGM9qdy/G87vZiRwrn1gWbwXkL4rgCD2ByIjlfWJWS4GHhjnNPz1fUNqFNiCwFSC/6V6FDCUggiJfb5SmAw3bgv2jr698P+ZFGTFNeSYbTDXpdM5v1AsM5I3UH6VLm2P28PI9KyP5Vhue6TJol8fx4p62JgYFeDCiAVr7d6X9OgMQ+jn/oKRzFPVheUBdh2R9iHFY6yZzEWTV/q2zPEfJ1buhnun9+G6HuNfS6pcyBwABbhpA2RlQj/rzNwc7xQzeC+cfqtob7eTMMLOmRAAAh1VTdRIJkcP3Gy0OZJ98EIBwBD58JXLm2bX+Yr1kIG71fU0zw8BPJrxpTS+vmsla8wLGw7TtefNCQZpWUnezbC8GVlDAZVBZUjxivnxTf7u8OIX4eyyvP1U8utPMM708bSC+RT5FaOxAZ0wRQ/R+W1gOPBt3deL+bf+9/UECEqNIQFnhmCwPeYAQxCM1fPKkR1bTrtG+Vvf7s057LUkbzF9i0wfosPRGfXZeeJJJgqiYSQPl78InC69z/s9f++bdXU7IQmOUXv1HLzzleHljukJHoNNLivm/nzdz1w92Q/2ZiNwx4UmDuyLndAV2WYUulW61Wtu+TQVea6fiB1D9DJoV0qcOZB024TLM/ZKFbQskp8WxWSV75jpSVHqQfXWYrCCSTPcWsZoxGy5Cwf9lUqvViVMk3iARqDS5NfJ3LUSAHiBkldkCQcoODc1ukfrPGUif3Un2x7Dl/Qu43efcJJGv5qT2g474pIPje5dEwAlJRDPas13eXr7lVd5wAPJAkQZe+eerzoWDYsrxHLdQAfmOmRADr73GVWnSbCyPlv1lFmBbxKBkxpFaaZ+t/iRI5e4MWmJf1ev6dL/Ubzy/rA8li8/HDcsKRi0Zr196UNiAEivjvqqrZUVKlXokVXT/LbZLGu0kPLpUNq59/UAmzmGqueHnOBpfRUiDKDm2RTpxCIgEdqjR7amxCkKpMEzR8k8mgXL10lG8RAHZmneuO/s9lJ5iQ0hj1rTyFTV9pvjThBTVM5gTjCDH3ISzmVIa9lafbAbr238OO4IhJdaevvO+gNVhefFJlcktI6inFdKIDVQ49LXkjs1ihClt6z6RdSIe4eygQfhVCIt5l/ZhaB84DpSBg3G0/4X+mPiCOehT9PenVAkC8AJcCqrP+X7YdUuz+lWoYdFpBw4Ix8GGXW0o2y/yuIiMYVCiIKwHEaYCUyTI5Oeu1tYwtHDAOzzNwK5VWU/pR6eLcAfjH9fMZgZR1iEOLpAGGWhlxKFiIvH2jMMxKpiTye/SgVq/xOHSzX2Hu/MwDqJTRwZytuW2oXLdhlkoYYG51XkgbwDRFuVqsvTQLRHRaZBHiaCT2u3gmJJdEH+nlOuzcirByIhE3BdYeZsnvFQqoH2f6heeXLhdje8W2a/5ix1IBdpRNvJr2/d6hSlIZu0wpcMvwR/l+T7NP9Hr+v/b5OFBN1IlKUUqLQjQNJQoUlDQoFI0IUDTQ0CVQlKlFRAJEjSBSK0oNCFCFJ/t8POjb7/nNKUeubNuvCdO6zWzOeKBK81x1RvzgBs/yIUw9UAkICWwSSIV//otZi8hLdAr5vk6/teZ1g8M9RupVrRM8LMjQIY1fnv4UhSjsf1l6XCvjstNMtFeOmL1XsfSDFoiBz/RkBwKjgvX3U+y/8+KGuWIiGyS8NvVoUZ8oDELDfHuf6b3bY+mmnbbZfU/2sAiA7vNqQO9l3O/pkIqmEl1O16tQBAg+UkoAPu8nND7a7KdHMjwBSv6NbfiL9sgZ407nLqHRou2ILs64Zfsmo26HSeFilXc7SDpSaXxB/c7H0alqMCRKZs9Bm2JWk5TjKJau3jtkIq7nXwXAAR/Th6kQuWMc2c+2KRf1DrPKfQoFieRmBq7dhdKCEbf2TRAi7IRUa4hL4ijI0tHHUsQsiX8noRWGDrAiLQCUN+wQfRtkXkGtIWQUtQ/UGiK6ikt3X9e7Oma3CG9TXKr+JolfcK+/mwA1QkiIgBk2X6ieGodACxF0CZ96b9OLRfm4r0KRcnpoVVG+75W1m7XTuZjTSjy5v85sOlw/eXx8wpkwX68Rf0KvGdb7J/DWgtbj3lDjVIojkqmrYeR+3op1F1FiaTCTgCBh+Cb/55YqS0kkCD2JXVnvNlZ5ZqulWKyRgGDxt+8FL8MVmkmYXFKTb8Vte5DtcYLY7NTqia/IYGXZVhWqJlAx0M57zmZaSsIpKbGKZFVtcU4tsnCy6XY1JLpIF0fE/ubE59c+XVJNDIRd/TmL0+2lziYIupedSGw2sQ9BuzXFI8UHtY734BmCsnoSgwjFUMPzAJrQkEr4gdNvDGGRz5Nv0s2uyA9v0Eq8JVwyw2ag2HKJoqpP6bCChaCikor3pERKc8zKatRXySFL9Ot7oj3V/TAxDF/5CxxUh9n7cJDPXZKVNp7/pl2wnVTfmtPsOKQv+jQQ7U76HmEqy1KDmhxWGBLSYO0GI8j8FL+xtKWENVlZFbCEPNxcKLzOjsdpKJ3mmYe1ycVRGESsT60RrJ4DrLm7/ZJbjXhLGTg/w9RVDj8bhNLg+fpTvNKuU4U07iMz3y2yKaSixybhA+lYd3Q3IP78VM51mYpJ5Ft9dASGIBDQv9MvDjBSvl0Y2VvIhsD6q4QEl7mvm90GsDPmbMfpOSnSOg7UQ/FuoWDgPx2e9EE1CjnIEnr/lS8b1HjhL429H3hw4UOeT6cC58e7fRDBsbAGNNoClCiZKWqap3H3O/jPtEzifZowtZWwkz4RKUGEssmTUISIDqsAkvgn8/d4KTRbEDGffHzXTVE+FkY9/t9PftqyWI9Xd1UDAygBv6uS7z56wRWIG2jYy0G6oUTIG0U9sjC5jVI1hAK0181jCnMQXr5q5I4krxlrX+ahsBFIPbJkD5r2UoXt+x7+TUX1CYOl98nXMoS/aRsKorSpDI/bKYaCSqGFTb7MChB0+ToTNTTpqz0NuTQSlM9ljMvIKp2+sWAtekKgf3qeCwST2QQcxronKb3sEg53eoVtCFKVHIvsMen6Eq/ixAZ88ySBi/JhvYpqTDHgiWmmPodR04I4rETK5beIW591qQJB5YrQQiyHvM5vkr9PoofY1LP7mTz9irLSE09DSQLbKTlu7kKQeIZv9GZJOpwpF7IVPHXdVVYonqFeJiF7+XF9pcJuygUhyWeS5yYp1pfDahm0at71XhzQ5NK41SYlIvdcMGksFM09WKCFUulKbwvO06JSnBkoSkJXNh76WvAArGwCHA4zQFm9DAPAkinuQIvagkxJsv8EppMGk2DR5ncpNmf+rePbR68skkFoZu1V5pr4c91h2nbE9vv4luJHot55fw0uDt/HW95OqTa1lUmM3HHVREMYgaaGhiJ7kSfzjRvE7+/nhGbPl88zu1TlVlyn91TX2qW8kMAX/mv8qq4ia/bqQsA4PVRXTVKIHKJ1R0oIJ5BPEjVxZ4xUA1orRLT595yMBjsNN6+7RAeYL3HeDJlSSEkR3tZe/s5YHf0Vhia6LkzhaQTrWGXY3FrYZnc9PfvSWdIteiZtXtw5IHqsvGRk6vvrxzeHdWLKdMPtsA6ctP0hIJ35kiTMB09m3w0M1sLC4aN/2Qg7eWDthzQQ5iI92KJC16azUCCAd/Zjz244HWL1aUu9xKceGuud8U133z3cpockqLywPt4U6ulULgmLC34YXDZB5nkdeUiHwThGdoL+BwiTzGZwX6ibzTB4oMP5yklqaysSWC1wLAzVfhaa6SQFRb1K6ccf4bduijmDaD3dNfB4DoshrHjScti45Sith7WTGsDMJuYIiSLmATbq8NfFVUGOd+VabpEv5pLAwmxJYXWz55YCj3HJqjEPJB9WcbK336pbZoA370pFEm0tUBS7RpmIo0JvE68kvnMOsA5q0gcutVE/vxpOO8o1nXJCjWjEV/rYQMPyQdzh9L/y9hvCDgKmBPuoltSKU3pA929VISGzZJuMQTww+Gjjwu88PDikzEkXmVDWIWnj7fEWVGxiF4KEAfjf7IhSKmGbDBXVbLP+y3BElhPHJFBp6H/SeKWT1A3JxOBf/xOClc8DkEBJRc4/Jx+X724qxmIOv6CPUY6+eIxcmbNiPwpqGHPOGk22n0YQGP3QBy/fpeow/Mpg/SiGsuTLZ/dLO9VVZ3/4r2aU9zsa8x+SPXt/HlYPxCS6bPj5OdZxmeuYbmOY09VwA55fPq3xaH6gOiwsvQfD+F34rIEN0RM1FUWzAvL5HMCHE3V2SUd67wooYElHagSG/YpEtU9uKEDGnYvP9pgz4c18Y5CVJ7zr+57FIRDxkaLn160c3Q9HeaL+bRtOVuXlrUiAlsQEDD86+DbeA5nmErCmSMC02qIjvcVy3bPc/egAg/WosADAICQpvyemGrNzavan4tDYSrYyLZySJAvr2pU06TzZuuOSkQIAAXnZQgDo4+TZ0/H7rY2yEtgp08LXkDymo2vRxmCBRKaU7EYgFp073CL0Tyc3GfNAduvxQnXFikKxm/K+glNbd/dJ/Tf0rawq1QuywktkfJkekrlJptMaWQ369yfF1JmNAkhHiJcoY1X9TPAlgZVF8Z9z7sGJ6v55bnmDQvsXQ6EPpLxHyzsqEqiKab37jo+l17T6TrT8+YtDUpzgbGTGH++rEs2rPTFCWZjBsP2Uq865OQTI/NyUBV44NQRlurR7zDZsWe2Oh8JezD6HkPNAiIgRF8Gy9sg7rTKPH1X2BmdbxkwIK7erkGT7fvishfhLu60lSHxXAIAQgTPfUZSiMe6bb2iL7l32t4v2nk6BAjv73C+4Jui2Q/H3O4QqBxS41y92qa4+rAHsxIdNIH3O2VM3joMgUv4zQXvjpP+sbP6+7LWUuV+F35DtMAg8nOxHxpzcu5+tYvLVLK2+CD/e3LjhO05iAfj5H9Uck6H83enXNARByzdKzR48/9TdxALWpC+yhAf+WjEA2/xR4Yjy9ANfcCCkDojILIIkomZCIkokoVaEKGlKGmIAKoRpIkpQaFoCkCqQKQKSiKKKIFpEChJEIQFT9/NY36D3tE7Dc1/iXOUiaMICS1tiQ2gYwxKsiTFPJrVdLat5OJQFo/pb+Zp/SlbvNCxsXQEjdwH8eLXwTL3x/D+sG0wJGvClolp/i6V/Wo2i8Xjp/5c8EfifQERbuXNAb85L6Bwl4GpHYs3jr3fJL5nlmYD1aarldMOKClY7/6Uljbo+HUKNEl+3+CVJknvfGrEK9k4iWplttrAP+xjmsJKCybB650TOXY0OHfsskqcUdbwAWTYPCZUY/eV+D/DD6lwD974NWCJu0celVdGf5ctnJ/PMSFd9moNumyff8odHm7B1z8p7B0Z6iIoRn4k1gQebw6NiGg31A6j9MTdqHVMKxD9UJ4KTSCnVYkWBoZWrsFpES8LSaFGjABIFGQMBoYoGmxtJsCjFka2e4vyCSGC4c3xy3ilxOTrfc7uGFO8847lkTpF4VIEjI9h1CcW6UAoiD9CAND8rWqvAJBuPiu1U6lT/Sm0w3IGytgiG2LV/cpAgds92MbMVVOL8eMmrarZ/fhjf0a5X6wxAf5WcJtUVH6GoP7EE3axaKo1CpCar8JSXQqrZWjZDyE+/7yw6v8P07Y+LmGnc5sNggedEC8OpFIdPv5zi4+moWnsSsNpg7nOtdf7bYD6080tDzyqn+ISREddW7bnsUnaJgu+y5ciZE1wKBSTE47EoFlB0pz+h1oHmv2KjYQGoe5FQJ3kzklBJFBBLHVsAmYWqswjdNYLq7W1wzYlSYbTapymq5f1SSqss4N9EjUoPNcMYUm5n12jY/km3vM6VHwyiN+gwNcaZmZzrsgtstVi2GB9kkGphYy3PGyV2dXyhTt1SQGmpHpkWHxuG5fchFkvf1WEnhr0JdMJ6w10jD23yL0rYPITjwWVISoZnP5lOPZZlnwaOnraake28B2Gdk7VhUPqxQJsC89LqaL9W/nq1CFxAkJsRWla1kGjsyu55geus+P3w0Po/trgOr1D5EhGFvnjkcYDT/BVye2sSP7NqRWFkNIfZEN2eOCewxRxAPQIcuEWrCOcbRo+5VdZhtqDa0L+mL/NGDZPsYovAcUBfnCFjkcgSCShSmgUpaGqpIqFoKKUoGKYpKaQKBKGJmAYogIkiUKUCikoSkpFoAqihmEpKpIkgmmpmZCgpKKQn5TD37UFUlCU0FAUpSVEAU0NUiFRFFB9q5iBT9pP3Q/a8vQ8/18p/Rr5aj8yuqaYlhZJoPIJMVaaC+Tg3pFWK9Sp1nrgkvHdi8dD8VngVbQxpNgqmiBgb8da7hEA/sh5T5rm+q+i/ity1EBVNB6EBkcMH89o9726NTQtB8ZGFtF/Ln4C3PwPsWhd1fs7T7kwK4E8YrBzAeQmnX+j5s/805NqLrjbOaEZ3PFhkAUYNoG0denQkVSq9WKo6zbUIhCIEgEESJ05OM7J7+25aodZ0Uck5rUevBDe/TavtlGK8f60u6lk4+UuvBXXwXLqW9bt3gZPGwYdewPJmhXPdSoqpCAGhpIFLwQgAAYyMY1SNypzyfYkFUBClQIUXWOIGIqc2VlbUmIGxAbP32ks7OtXC8P8QW5VtxTElakhA0jb5MMU0frsBACKy5jYVBWB6A/dB8VQdMCKe3JAEWQQZFQDqv5O7y+fON+NfVIaDR+/gPB5KqloBnfYhcrLGF9umHMiY0DFiieMj4On1J/IudW/DYrkw7qDBcQUkJJEgwOjnOhiRMo8o8KsnL8x+4PkKcjlyoGkRah3kWIf8Szzi/f9hbJop1Z90R6y+ng6Xp/DNjQ9qxeCRRghsWtmtyb4IjpU6qBTS/VhoZhdY13CIVJJc0W32IxNI/LA/MdA9e1/NKYW56tF5ffKDeaBE/GHpCaBkaH1LKdWfiYB+3Q5WIQYGCSRrOX9b4ExcLXW/XOP9Nt28OsbEhtCQdGIOkzC8I0GhiNdX7S056hL+5owNO9exzk5RKm/1EpPUFQ+Ekkg1aEgSPd4zu/08//Dq9tdIt7hLZK8r7EAZU1I3gtcEIYcKWgAUfmAWGjLNEJxDop38J9qZ346WN6qW7Kq0++94YvEkj7ZyFNgfixCyHgg3afa3pYN+j6ONIEWnqa6UE7IfGxEzCQe/551WHjDbta1kjzL3FCec/p/Y2m55PgVvAN8zvCqh/BIfGQH+QKwS8CUANNAKUCDSg0ChSIbBA2CP31suzbmqvx080exErxU1/YnbdlqU0ecPunrpKBUqgaESlKWgaapQomAqkCkWgAoCJWkoEoAoAKAoQIZD/3D9n+ezSL53zSS+DlvQRw0kgIUo5kIYIga9zI3/hkPpQMSRlh89uar2Nx/F+SFj0Cck/9RWwusDv77FrmDbbah+/r9/L2ae7AixrAhE+m7r8cL8+uEqNISloQqhKQCmkAKUShCgSkSgShSloKoQQpAaRCgGmhSlWlGlSkCLZHrvTA0NF5ooX/hyZD11SqjGbOTxUoI+zWyrP052i4A8gY825UChMFfYXl7cWX2UDjPP/l6rRuK42W5r8IBZ2ZGXtvmlf61+ueZ86YGSXiUhHWXJATG7CECR2C2Eg8UqMeM3VrD7mZjYFlAaOO0rJgtaOpUhHadxrvOufuvm5yzUv4/HIYaAHC0e9/67GYuT2ar/Dw7rexO6HZB/zwr2meUilovgNMWkbkZBWEFFI0lFK0UCU0kSRBSLVFUgUNFNIUNCUtI0rQBQoUJMIFEShQC0iRI0NNIlKtAlFK0FDG2NtsaA/T3X+3OzuvCVM4b1taxF7OS6Sd4UoWYTSMLQdS6N0GvhI5s1piaKqZ4vzjGAK/EPT2Z+U/d+7o6haED+r0wPwSg7gmkgqolUpaIlQYqmaIiIiEopClJmCiGYqYpKAAMvd68af1qyZK6T1tL63QDYJBgcPZEIsvwhKTSAkBUjOPTJPfLAJc1Kv2ZsW/4DXECzQ8rB7zL3LQUlCUgFJQRLQgUtNIUoBRRS0gUFI00pTQFTAJEo0q0KRCRJMJSKUNDRSUJQJSBSBStLQBQVQJQo0lEZTIuxAhqqcuaL5OHz7UFza9V+6yERnZtFAYGDMAAHyQghmZdIMi40vjjjy2Rcsmn4zAkejaK+6FU9g8WfDKvPZJLKw17bDLf6uRBWtwH2T9LFQpsq/d4GjxIFUo0sPdx3tVTvY65b2/lJ7lmGhx9RBx10MF+WBJJE78jif5MFXfql69+C3GzfjRH60sdTMzUlVCIGkisu1S6DpSARwsJOcpcM1+rSuCgf+bGZFzfk6gQ+xfQKqVwnqKHqH3rZq9f2+KkLT909v1O+yBjvlfeCd2RcUtTqbGkgDlYjy7fQ+vorqYwBsW/8YX8PD6oowCprzmmKPttBkswJfRCZMtaTYeZUUPx8Rfmx2TWFyEgEIEn4cMW9tHuURIhGjdPUjepQRchouZpEGEIy9NtxvTkVXxx8H56vHENP3eJsiJiAIyIiT3v4fvYXbwE2LR6N7m0X+H72djVnctIyzkgDSwRiZvayUhtA2A90BQbWU/Ui5lQyrjlK40bCXXGjGeUgV5WKvFPwUK3kCPluWsEn7tq8J+yHJZNDNebhg1sKMA0X8uKWed3Dji3uXkL3SjBaQsZh7f446b7SNoTS7zdRpQd5qpy1WYI/aEX3WdCEFG/WH9dPwabMIrAVhmi8gxpH8SCOrOWP0LiFP63VJXD7UD/Pd7WfTn+f4eT4vd4C8kP3QK/6e61vepVaIdorChhiN+cukM0oSXWZhCRxoMz6crOhf83kaimNWKpAAOGgNyf7rBofmEPYDAl+kP94IYFC+k9xpXeD9fMixrw/Suu34SFBsz45Ty14ZJdJnZ+8CCqry/SaJtjCuPRl2eGoVMMYyU5I11bJKTECKM/g7QWYDKvxzDGN1n8lu3whNEmGZC1JScvWwlYJQHc1vCuXzZNDqpbUdrz/vv86Kup9bcQp4IP6YZHT79OW4aeKReZnyRJo+1cS90erJB/xhx2EwErGAxpCb4r3Qlm/92trMuZJVBePruikSZ7Mp8nJedJiDDEWRCzHIrD6WHxAeiIQiGn3+9j4Px/78umnSu7V35bng04SwT/y28kui736HB/Rm1FRU1rYQwbOOTL/vC5ADVK0CgU0DEhTVKJSUqRRNNUUqlAskgESUoUpTEwUQVQVQDGA201JoTp0+PqfL7Rewei65WsUXRn6cE01bzGD/X+rPqQZ5kKWhIpn9ohIp+9B/sz+P8LxIFq4ES7A8JTWb8INpqX/VaKfwM2iQMzMGzpJJwz2m3+JE8PTJEtUBV/UGNckC3Gipn+UsYtLEZaVRp6s1kdj+u7BnmQWtZeOXLryRKo7R/EAb2uEoZoPdl60za0sjVb3A4SgiENkAw+swBZnoZeP83D/HPWzdQ/qIvsMSklIQCdTWZLYAeIAttgsWt4a/ZAOrPHa+gJDCg/zoczhvABJiC5hZeg5rT8NkcV544ve3xY7r7EBYwws3PBEniuj/mc+CqRlce6Mdn/hb/myOIDCf7tQ+hku96GRmDQSxZUhw4DwIdH4YUPJFekhIJ4N/ls3bYefdP+0a9hrrJDKnYwY0kZdFVVPjsiuzdzWavTx5LDzMLz65h9RJTYZHhy1S13Qbjs7SAg5kkYyM4jpP3WNY8scwC0AJEDMPACATmIKd/JuWf4s9IBAOaeTjx3/rPx6eOTrg93fd2v623w2UvAkfHtY+MosDVbSGwbEX88pdDETkif+cvfV2irnrhdoaR12GBr+6Qg+AdkgkHAQtO8iPSz6P3h0RBZ+ZrBXkdFABXmEwKr6EEKGmwGzPxewkKqlkhKX5R3Wje5w5ZHq/Pr949dDMzCxB0HDLmGV83tgzjRrrgsu60gvNVMKmW4PnVMLR4mjW7H0159wlufGHuhKt5zo6tyTJp4waMAT+4dLksmMQfF1vCFI1rBGT3kY71+R3+C8pJXxptIbEYW2BVn34lOrN9b98ne34sAUmei2DHmpJANobG0IDPxcry+HJkNaIfxI7xN5xscAL2G4foWWn0ohBe/H4Zdk6+y/opbokI0tVHbqNzMQiqMEgBsFE8bksvHppNCvtB2ccbthAH3EDS2CQLBTXPk8tP5L9vR9EmdXR2/U6dA34yxDHzDKEyFU6TnhufJLi45mzRiEd+2htN7yfGeJDy3cG8EKZawqGBELlEkS00UAuv4/5fye98fPd3+fxo5vZB/wOjAGGmzev0EXMPHfgNCBahKklAAzkASWMBoaTUCuPJm0kzzYzxmJX6LiPyXkkZAqCqQu4T2VWgM3a/8nCe2p9r952cHB5fSSPKe1dUcAy1gyAsYMyK75SPdTOHmhmzTMclmoX2KP9x0DAHUgRUeOeFn9Z4OXmPtdw90cGp4RFFIcsNQzJSke4TvM91f1/fY9E6lkYrzQcvXWFAEpuj6Wql1XR+UVq5kNNoPR+0HT6EUYbuPFLqbkXezjn/PSvViRcwRfzkLOOerCSIc2SYe7H9JAgvAI/9xUvU4Ehzloksvp42SsWIRCtTX0MkGBO6tpBGr65jbe9FQO32fosb9EpK9qrROmFQkc8Oj4uf0cmch90/7iWItJfFi4xSPt54/btdS8Snx3SX+Am8QKFpJqH/Q4+A2nsE/SjnP4D4AcBTUFCcgWfs+7r4iL961oeJpAaAoWIENjfJFpuFRSYzgVZuSSu6sW126Z147tGPzVRQuwKYX/ptkYWgG77iuCk17MxdQKkDSRWwQ2DGm1i92WW15cMG6s3tWWYfPP6mNt9Jwu8gwVI9kmwf6pSwAWkALBqzyMTP5Zky/HTMQ2m0NhEMSUIUo0UlKRAVE00UgUtKFA1QAFINAUhQjSlIFI0rQFAlUUNItBQJEpS1RSCUFCtA827ZhLsTAUBGqEAamRliNXcObbl/S6xFieW29/Z4rZpnAZexAFGIbAbS+Hvhce9Akbo+zbZ/X+4c6rQUa9L6ES5wpXfwslPcQDHcBseKxq+INAcEnurJ2aBthC6JNOnW1/itb9jyqqe3BWzIJeHA61g6QBEGcqD/+o5XnVMVDAzECQkcIMEIhk/6ltTV0gvkut+xgIo9IXNYb04lvSqGGEWhL7o6e2ggWcf2QMKFP5ZI7cCwjhfWCISdJ6tInd/c/ZY7GXmc7t/EiNOSSqZKIbQvdrgdXTlg4I125tH64sLnTwbl/T5he7XAA0ZIEDHA7eIHkpY9r2FKfA9FQwC2wM7L2AqrOHUe+eDrw9iZP/xKsFP5x5LEi/KqjhUfh7m9/bjp6JwvBe+6PI0pTW5h5G8QcV//yBHG0WF8YCTYNpeBhnL1OfkveW2vwU8t7h3orY2lW0Q+KUbIgCr0QipiO0P+FhzUrRqCKi45VB+LPZjShWjDjxQAVDxllWXz06wzGentdHoCwVGU9rP0kkKBiQNtghvDqvyQjDTBLsdy/tOTrauPe9Ouumfelmwi2sRc8mXoSJMC4q+UgPAjcQoVTTaL+TvoSkGh/zyT9Bu/h+CQFA3zIG5e3F2mnAvcIHtTy2apKBPcQnF0FXCyA8bX7JYUjdPOH6/pOrcYsTSSv5sCjoBA3Cg0qDSpSLQlKJNghtsG2xA2GJy+kZ8Vntty5Z4NF3sw9DHby6ozz8k882kgr2wqaz2Ylo9/uxOaz8qMRx4Z2c3PS5rUcB9BeqlLzYz9sCCEtqPQQZzFAjjT0oaCWPF8SSn0oSifij1eG6Wj+oRlZaxDaWFoWavZrjHi5Mvb0cGHKSz+p4b/k5sgkbehAkGgrhV5YBU1YZCq/w7KAPGkKZebGilpKStJ/XAitjVXRrwDymGKSs2bQCTa3/SljeF+J+g05MZqjhPbnWRMEGBAfsgMZAIIAlCKInauHnH3WT4W5Huj5hqSeJ6NwiuFOd6PklH+c9pbMeo1+OztCQDEXlVSqt9u3Alz0pzVtiK23Nf2vV0GreJUxodbFNCtgXfEjPyH67na+d/U6rTrZ8JmpSaRgCRY2sn871YWvawtZ7GTz4vlVT/L+D64+rKqjNDFfwuEk2I9PWlJCo6MJMXC1DSecz+A+o19j7BhSZYhuANfrQzPw4HzycLU21oI5Fxahn4DIbbnUMb3RF9eeqUymI9MpM9r0j75iRACS0WsR+gjTF93+5WIvtNjYOKiKSmm+1x/cWDV6S0/PKe36/aX59b3qtvbng9+/7/Pf+mLBVBzHz/CRJmHnemR6BZoQ0182UZuMAgZpt561T96ikzcYd9+kKUSEv8AIQKzfEiEjwAgTFjc3vM6HH9s00HTD1Jja3XpmXu2kCICGIbQmxNq6zwZM3Sx5btN698uaun4V1/Xo8+Dx06Zac/N/S2J/bm+C2MHwcbvn0Q4xFgQZFsnRE1jJsCR4fP3+Uip4tnn1E/h2gpXOQA/Bbclnh0PVgUMo0vNFSGN7sujd++17Gq5fxl0kz058Gdfekvyz4/TD52P9YT7Y6j1hDIAKBaVSmgWIoVoESqGkApaRFKVSlpiKASkAKRpKoKTTgn3cUsV/7+nDq2beV3ZYx4wJFUE5xDQBDEkDYI0CA0K0/5CML/moeQED8P8m/nt4nD2fYtwPpKROs+SLCElPnT5g6Imrvi4KJEoqThkAMIfJXKS+jKmjY2julUkb7oPVAgB3JQClCNKUtAh53+bfr/V/x3rTro2zs+Kur88S1QB4zIClkEjp/CD5i8TLAH3c8r6fg8X6RAQ1UkNAYsuMFfPBW6rjLU5G4q/jL61axSO+wNaBDRmMcW4fvI5eDMKQe9ZkZTZonQ5stTkdJodnA7pd1c9VKtJ9WZa30j6C/cnX6y13wAwQIqXI4gIw+pGAi3mRl/9rkmhCarZ7T8F6OA3V0PHX6S/lQhSVzG/V+5eS3ih9wFmnvUQWIPINClaAdYV759QQrWjk7ePDuYKumyyxxU5umTlxdtUKxrFlgvsX99qAFNICJICgHbrpbmvM783J8Ou/IXtaeaBUKAqIoaGv8p+z5sDcV19Ipiv/mfaf7POkKA/xvT4D4QPzevB6eCb/1rkjyVVVMxWQ95/wrzFvcUiYl4fEW6+1Kv7/++u5cFJBi/FjjNEDSlFfPe2FA+r7Pt975eLXH+Hgux3j97VT8o7G3TJGNgVDO2yH0WX2JVvGwbJBXBOcIV0TpgylSLk/kfi2joqsbTbBjHhDH1Q5oh3Hf26UpfixF5Zj9tFz2qHhHCbnudNzcZwNICjEv1YfD66bnPJ5e7hvXXFfHb8qYt/R3rC80ZIw36Y+/IPu8/4n7T6eFfEFFCXOLn5gya0gX+wunwEH/UTyD6iDqDYeZ5p227ez6y5PUxpnxW64HTA6JcRED7Ofzf+4ASoERGKmsrEMrvxFa94t15XYX+S4dGrTDT6F6EtT2vXUpGu0zgzp2SMgy5AyhpIOh49N6a3k/qkmkg/3J6c52ws2cBh5j4zC6bXfaRcBpyCl2UhlTLkgYAv93iYa8/81BIBZdjA+v5TRu4+Yy4oX01JHo9uFJGN5McL8GTe2cZP/RH5yz/llps/nL2s93/YtfRy4akZnwK1QSZ/wPw+iCbMFUJS7WtfQDO5WkpSqBQPbe0jUR+Uz2Wm0LxpweHN8lID1JMRaAxeZftUTLzpXwvq679Ip2DY0gFw6dUiIxjD4r/zcxV/2e63PheoCtKwiGVthKGHOWEgtor2V57fUtqA/sQrxdknIHt8minUoQuiQK22GFG/Baa66tx07SZ7l4YCoRufvyJFhRBxI8m4IrQE14R40kt+CbysIv3pFURebyLPpAEcQID6yAJkoUgAGuRRNSqCBkC59dWp2Z+1F/5zpPwZfdyz8EbS16rkjkOCAJxhq8TOA/6P0cjM18gTQSYlmjAsuHFTJsrW5aqk0CQEmKlACNJQCH2az4OUPk+g5DhCfj4Sq/nqqGi+fhS5LDQ7LVcQAYWhNghsfhg9bH4QE74eCsevZu+DY6WP2jrTZKG2Sfr/7ao0MomBOyAgZhGhKC8H4P/e073/y1+S5kOr5xBLICkeqcxY+jv7P4wSEe3leP+tFTcv4NSxvAbHiWlAkxPIhBmSCSEXfaPCVQgFuOONd95uS+sUqwJCMZIgsREYyhfVDaKdC8f7a/EkKIudhH2eD3e5BpriAGiI6fuIkxsLWHqepO+A28WsSIEq2CbJ753O1MKxcnBHXuGXqlx5g9a/YKUJ+8OFo7oZEaKj2AGv3emqiXS3kc+ii5Kj/2mFkAnzMc9/62nPYktLBsKGlYgCgClSiqWhIkoShUpQoaFKGhClKChUoEoShRoVpaGhAKBCY2AkrByYrGHn8VN7paDRbdx4/JXZZ/XDLNq/njypUvwdcVXww5N/ltifjxr+s9kxTICSJInLH4evx81wqASBayM4pGGR2R6cqPSEkXJiCtIXZWRyDwfiAmPBolanQB0Nhv3g/zOQmXGNaOjbe1MN7CRnthItaXl/2FsdGFNUWtJF3Szx13l2cWnmy6N2rOYCWg+Ml+U4SMvg+8jQx3MjS03ldzSJtKk49co7AZoqfkKFtqm3a6p4A0CWJLeVKhY0z80ArUo4Tt1rliuYZ81Dmr206HbT8PY/HVeiH2e3T/JOWuRoG0khttLRh/W9V9zJqzT7VLulz/xXh472vjx/3FRuNVEH/0+/2yxzE8vXTaIQicESClRVD9meR7/jV9snEc/UumZgPZ0UFQkfVtMqy3JQDaRg5Yl0rM02lhdPTPWzycfcA2ZUgboJehq1hjf25J1ve1VdKeesVR23lOWsOwZCZn6sl+ZgmoevGf0p2PHXFC2AV5fq37GPIqgsB1ifGpEqD/ydHH/r1QTtDB6/62lYZMXt7Smi9wXKVqTS3Bo4qiCTq1eiSDI8zC96HdIoNA2gUbmlEjk5OvLokoMZfj/boL7VTsaB8gI3/ViWl/16VVgMaElm3XeLDFKUfZG4mxSIbnjm8hEcRkYyYvNIMptgWZh1/+grsK23L6vj6tSE5JBbsO5Ev4ER996DOuDqf6oD6wNg8km6UdU2nR/wpQ/2v7jdXUgtzqdnv/zAhLmzQVML4NhjeBb2BIwMSoRjBZELmOPEt8J4iV/a3eWAf5BRSpuUPN7bX8KQGbIeJMmISFfYXzH/GadbK2fzsuWhBpA3uIjOJebS3eBXeYUIqBPxl8D6cFaw9e/YK3iOo0feZrYWW7sgWmeW9n4ar2Z8X5uft+n4/HWe972mmlCplChCIGgKKEioEiQCkUoaBGlRoVaiQoGgAiWkKiAoqJGlUKQqJKT/hnIeu/3I61h8n3/26+gwA8a3qBI5mDMgCkeG68PWGG2Cl0o0e6+MqbLiVIBz4CMjVrtWU6ypsctLWNFNn4dB8HHgIJvi6LjWKiSiNEvidX0qmA7Bwn0HhYzytKDNcxSWMNaUVynDDqWq98IPtEXnBKnRDO47Hh0Z2WtXUWcLwk1g5nG0s8kejg5GPKM6riVJm+sHVdk47SKtsXSNQdLUbEhKSVoIOhWrrs+gYPDkxVZreJNd0xM7I+UEpZBhyYZDcLUw6Ae0muz6NVqnJ00k1b4a9TwH3vB63tV1KMHML0ZwWoldZXqlXRjGSP75yat0+IADQyrAOtARzpnlG9nx0lm5XJSc6We9JNnFoNpOMbxvecHi52QJKl/aAg0mhk0mEa4MPot7CE0ye+MX0yqSSN88mdVz4IsVEUiiOiUwv5Hi5iVcpDKEqQvO0IXpJ2MVakMo1NqnJznSeZoz1TAvhEW5IblfJ53SNHwk0LSmtp2hi93KkxOCLR06XtHExPE7vhF95wrR0KK46zvOV2qhvracsTtNoCMDwIVrA0vhwaFlodcYxRnwDr4EoYxS90hBqYSN1fP/6QnVy0fOSyOK1O85StFrnNb0SpwmMqXhZaLB90Sk4ik0k+NHBHQyhNyQc0zlWE42rdkaiTxFqo6DnIEN9oxWLp2wJYucXUN5vF8Re1qvsL1R0aA/PLKQpa7nCFDyylkdaCDidSJrgI4JkMFKLznlS82o9jtMHZ9muL4i+k2C4hURw164Or3WkyRErmyCWFtNHyN61qtjggOh0xVLwlc3pASacLi8HHaNcPrCzXBrgPs+d0hijzZaIz1fAxNqQo1xZbRm+x2M1fTBWtPByONaSEMYfCx4udzAfib5MdqTG9LUsboQuYdV76wvew2yfhrQRhl/jSFUzPpr4/En4+3vmOxY6r2rXzXSFvp7aorK0nSqaivgqKMGwypGDOqDXOsoZUpgSkFc41hWUUYPmIOkeHo6TrVaz7Yk5LYmiql4PmFfBLKgc5VEYM6N0jCaUwbSQYlF4MGIWdGr4SF5ta1MRu0o2aNp2YRkFDqPO4gHA4G5XUejmkVleeBcUqrKJteL6jAPEpnYYGI0pKbBmxQMEIQmYc4JYLaZIaB2It88Z1QQnZ2WKg6GeUbmRvdiT5QjIUWIq69mp4/XxjD60Sl6vwbQucBLQ7wxC1EmKxTSi0DIhstPfEb4fWZGL00VjhFSVDVwBsh0RwkdcUeZnGjJfJq5Qehvqk3Kdg6JXVpFep5UV4hW1xZaCWKof70hW8IVnM3HHK9g6TxcPFcRrN4lKIotZyhOp0DMKTdkKiuV3RlS0r4hKwtWjrwebVpCzYWjIeBJMWrGphxxlN6JizKtCGHPfbD4ocTnZK2xhLiFxUSjPEayF3SnZqCkhcG0BCAWQWURd6GJHGj54vILKUYSwaTrZa1gsHKiuBs995xOcoLSFBiNFti9loEN1TlSWEZK0aFZYld9IPxiM0dTAg8JMpum6k3QfhX1Emq+xs04SOVTu874OEQZyW2IztaD1dRGlSAs59UC4GArTD3i9Z2usEuEg5hWFEfiP93SNUmqJi7gwyZUcdoG04PaUso2a8B/9BXyD6rB6SyeblWpZqsrRLEWZoI03LK9mjOMZzhWAjFHRq+JrE2dJLJPF0gIHCADoBLpVHSfeEanEToYikITF7CdWCREY0q+V55uk5KWZrueHwib4uvh9ZWkyPjNzldGdjRTxaonCD50acrM6MYPK1Z0viEZ2OUbupZMXfCUr1hMOxWl41DCoZL4vWEZLec3Ve6CtSlouXE6ieHxaKTxGVzvKF4zKKiyuxBp0auEuZ2g1HJJGpBwkrqmLGknuWBwVz5whhiolaPhey4B1Dr1kk5GcIJR2KzN87pWyXKd7tVUB3hSGJ4ZpYgbjjiMA6OFhNGXckpYfeFA7J9TrZlyX6EhleMh8theMNMNoiSndFEUykbw9gHwybIUc0UriNnPtBav0o06ysI3emTA4M48B9XPrh53PGlg6V6M08NWbnItxed5QGCnWdJjEYqsKwp7Vlqj619jNfFlQ2lUPmHrJrvuHtKsNBnRlzySmkbnJ14VeMRf8ksUrFJ2eP2rmsVdBDCWqGbKmH4ekIB4sd6tnE3pM7BQaWsiHneMa1o52DrfCRxi7qwOy2w7CYnOM5SY5PlSF6i2NfsPubWvCbHa1c0teWcoKHOnKQbPOd5lW764FDvB16RdTC3niE2OIswVYUWZ3uwtScBO9BeU60o+5qKSFUaaziyVcdya8oszjitVuGhd1aygzq/izlyhebYtk0pSo7D8ssmrONw90no+SRtRrhaGAs3SmtEm6lHQWSNJzjrWF1hKUjRzCC2u+ULvynSbSeL0hibpuaYSV2DkxeEX1mHcr1u5ckTCQflHKthL3oZxr72uC6A3poGqwqb1RZB7ZaP1ROL2XUb01ZmdXxc6Tpagdq2kFgzCtjOz1rSzZotBidQxzpgPnikDnauKWmzynIPhecJ0mIwg8LabHUYmo+XJFte1rtSLZUSrp5QqblncTieVYodXZXCo6jTpbEaVD7MZq9KPlAUhWFSxVbSiGlb95K+F6mccjsmHiUXpBro155IMLDJfjzxKt5OcFWdcBoWRXSjaKVPAZnOucoLjKTYsJL1Ufh2TVjWzmvY0RhIHiL8DIOPD73hedXPSlZZSaSuq2HozBEdZZ0u6Iw44XxdXyriqxwZTUSqj6wjNIwwdIzxWEzkiAwzNd4QVg+lxKNMMyOf+rRyydCTSelX3VrAya073wIxdGajJZywc8DFKUiyuraD0QVwDoJGlweK1tZHsaoskhMWWDnXfBYLJq2VIrOVZyq6GEfaEzVqhxuk6CylSDjVzUnW9LwCAxLFLGFjgGe/JWtVK3yfl5LPzmavyiM6OtVZ5rm+c4OdU5BzJicJibWimaOgyJCFkqyzydByx9VmglMlna+VFfWEL2c++JI6sqOe61q5VlOOH+HJh89X1jm/MTzq+ziSRwzTApQ4zMIMlpF8IWtKsBhyunODTtmjptVa3fBDZLQnCsLYDqHhIQZVkZtUztRGlETo6JxrKLrp7jDLI4zXAreGEosKzOIjCM8g8HMIYkKLJ7ohBkDMVyDBjjladxlDCPUYtSi4hB7sE44UnKqWN8aLDD1wznPtSWJoolN4pd0am9YySR+UBpRxDI4WtgWN7K2Lm+UnTdHEJB9qYWs3upC0nJlWoWr52MTodhKWEgrhR1nSo4Rk4TxTFINALJQ0qChufacrGLosps9Wi55q00pFomc4schDFIOtEQml1SZiL3h1o1FRJQxvleiWtR0zvXGKnHGEFwqwrZyzkDfWFiXElvAUOb1/A61jEPnkwswyqLWM1XJ0IUiZ2NaZKIXpNTskBOL5+9bPJLztS17uS8HXnL6r5OfFgqTc6DZ8YXZLLY6aPY2EcZyym6Mn4W8IMIzaL7zg41g9FrOOLslxA60jmMJgYhVBNHt+U4NZTfaiYgU33hX/DflfMXpF62bOD6rWkqTjFXxus5QoJvNDhEVeYQ72WcKJCFDzksKit4UnOF5uvSk3i7OhVxyyNLHN74Tjh4ZKvveDG5yCuGlc0eszad5WniNI0OOFCnAIHXRqLSVFhe9rpa4qiwdG8TvKcytKC1jilRdyi1KLJhCq4imEnGM7s/E0fYoyYNa4paM6zo0qPe9llkkLNsUdIvsKhGpo5vgEBUGBx9/X/mD+7KjjMB8xSJUabPWvU3OX3b/s8vg/bk/P1/G/P7fj87tHVgrOg/AIN9pI9z7DSbAHUUpSuoQyDIKCikMlIj+qFPufjwfWBfuQJzAbnJP54O5PvTqEPdCn1wcQvmMjmA6k1IZCNHXnADUHiTLqBOecF9ZHUnEB9kJxrFMYQw3GOkSaWlrKwJNJe2uA6/jw5+x7ku40tCwpQE6CMY0NpZpj6EwDPl8kYsUC+f6DR/c6TNROpuXt/OgfP/LDPDLYVBjo28U/z3qqkw+CaryVVJTpyJYF9n3wCMBUgwRyBEpTbwnnUtwxZ/8Ql+0v9CLKG1TlZIJpnyPYRjQQzFVduQOR/0D/++f+mD54Psg1BSfFbg3vBfmg+i1DQBuAMmgXW8V1O4A9CNSg6hDJR0Y+ZiqqJztNIcCqLyaWD/KaD4iOgXLngsQMY4qRj/LPCLBpL1wnq3JjTnP2nToSXanveDDu9TfqCCCIObVF0+rVk3pO/2dz6aMAuVr5ckJZGjvO5giTFXXE2hTarZgdTDccwOo0RMcX5p4jJ9kAahaEQ7kHVq5+3xvaG4QyKchzqxDVXcKEqIxQQZj8UWInWHUNZrlNENQapUJ4nfeAUD5kNEoUBXM/ljU+bcHMJxdT6x4nuor0rxj4vEGQnmT1kNko0dMjJLnWBIJMWlIdX/VLdwGFGm3UlqK5PCx/MdEKa3C72BDRBMgrfURdw2Oi0s7Xfzk7DSewOYO4xjcepp+7i8oTKmMljA3e4zJcJKQsca+Tq53dGOP8tLW+HGpAALFjKQtp/eW5eU6NGhuyf9KOdTsM8/fxj9f6CQ4bd0Nh5wUlh+uvzjSjXPtarYVeZrBzWkwszG1gyKpFerNL4ahPXB/20GIgkpa6VbNooXd39kD7c5KEZR3620S+0Q8yw9es7blazC/9g8c5D/WAk/4ab8TUGpdnw9uz/HFMu4+1n4V3eXb8Mrs1py+pMCtrkUuh6TZQivWwKJCc7fxSj/9kpUrK/Re74r+P3413Ue1OB732NXNEfOAAquBAVwgaBUZo/5Wf1mTZ7MnT8NpIvLv8+3yv5bFepcehZTtOctzh+HiYWEdVmLUFK9ifgw+E8FZHinWxjayEt3Iw89hzBvUf8Ixs3zk5ZQyZEDbpzESIn4ODsZ/fiv6eHLwxMM6Pp3uHsdf8tNUbffahxSSl11kAyhiI0BTEEEa59i6aeSmN7KW3EMIcvmFdQGFh6YG7mdCeODirSleJWVZVTOdINk85GFCNy8HRMYZcxGvcc2gbbF0evCkxDbYIbQNrUN8OJ8+8KShpaCtEjuDJA/P/HKwwqqsiGQClarQ3XxSJLhUFYbzYsmYZ+n8am01Mmp9Q6ap6FUkZSut1IBUE1D3CzP2lTCwVwe1eupSwQOy1pM1JbT4UoRdJsHOcA5GAOQBAjLQq6LF/bUq90X9UBFLYhWi26pyNupX4MTME1Sd0eG8aO4BraSA7LOS5719E5xQN1nP2cfn2XLg11z6HDvb08PnMm/h9MZu30tu78uTBsQhtLidrEuKISbTfE1BAzSKx/jKOik0fpsy4B29MVueaviq/9aHsRY/yji1x/Ptks7KeDu3a9qdvub60nfCrbm2i5p4tR00LC/4yo4z8/k9ygwrb1MU1dRyo8f9JIS/fhObcpc5omBqwdjtvduv7dkPOux1SYIFN67ReG14LltTDaqdxi/zLo07GezyM3mp34JSj1SijUhg2OuJsqc2F3j/X8Vgkanyb2urHKfWxYcfdF3RoONqQ2yTEQ5vXwQKiIfNa1meH/cg8Oy8vPavLqwP0yfRqe9uiz61u4pnP+Ph0HHr2dqFi4cnv4JLdiGdWAi6IGUfBKURJSGRYuzLz4J3zp9I/PwYhggITkMJBAX6e6vz72vJ7tXHD12J1N70PntSTAEWI4LORwdPv0o6Ws9S7R83hp+7nLunv8KIrvKlzHQe6io2hNQKaBt5m7eO/pbuO9fxQnV4e5zc3Ju05PFLJq7vU7eqxArzbBNpPchJQxHTfKwRJonWVdPo3FuGwJ+rt7QLg6C8LPJ8ubu3Ydcvje4avCv0ZrZhvwYKoDsDSQ2IbbENnUcNFjVko81KXTKZoMznOKMIG2WNFdse128NfO/1z+7dsVV+K2X3OLpGykA18MWzjy1CtYk665Co69EVPC62SuULIwGohe27OLFusgcZGY2GLbN+NuaLnAs9yDkdTGl9uuT+J1iROMBdT1IKdDcayQbOhFN3Q+bDqb6VjUVeOsmZJxI7yVQt9LNh6jKX3adrR+6fh0RXMpoPM+gkHIpUdxICXug6DoUOgaI5b3/RKZXGsXT1HZi66Or8HMkRkZcySRfIi208nScw9zs/e7kPWvC16mKGQ0NgHjYQwfXghNHfj3EhxAddkDbfacJjTGWdzs/HyXv0/j1nL9NPl6e7v+zwZXreF/o7+qoFUcNpuimGCm3B7Nheb8eajdg6Q5vTbVZS/r+Sc35TAk+3OnpyGcRbe9PLy8pvnCzf8ELcdTKNsG0NmWcWjdL8pnKZK+Ffr54ttmS8f6E06qTky0pGJK5mUaKkfiPGHBvEpccUpRuzLGMVKNjuOI4qa5J53hEho4ziEKGkt4A0AJAZUqWopJNNYmiqkkGKUNRo1ZqLRJlEJWo6tazAjDNaTJJUA4YoHDhtpoaSGLfWUUjTOTdlTV1Kagxsvm5V3U6TcpRxSpttISlwOmgqRwkQSuvCcxjDAGjpMyiC6tOTGisBB+BLYgurQ2J8ChubI85+htrNrxvUXr7iFeYFcGWjjvm0aRvIelCyEyMixAqbBbU6L1lYfDf4w9NF79YGBw1Xbfd7DmtbF32cvf6ZZQrgDBC/O8/5/bv9S0j73j/vo+rPRT7zEHE8f10Y19VBUp/mceu7FMKnqYLEb6cV+/ZJLZx9nbJoobowp/hgeYfAIhgOPv9QcPYPFYG+C7Zt9kx1av0QB5laKxy7nD8StM7KSVedIwBh2pcnr1cv5zuf3k9/PEDVsosOVffA6QQQFSqEvZTt2ZZjGNnIDORgYU191kAUJdeLa+kNd0VqfZ2C7j61D20fH0QDoR6Q30wyg/dYOHPVlHA5yapIaYwzqKqUlPvqsJpKEVZtvXRFSv77IvW1Zofimx7iRQ1H0/x0S5dnYtPDguMp/pW8O6mKvwlH3fJ0dzxqje7oZ3fSb0zRrpHpVIUWHVEvN3OpsWZaUypbUjqxPVFHNBhOo4eywoIxXIQDC9AmeIiMut/u6oCz8HSluLTJyWWYwppqpE5YCtbv8ISZbUETdp4vwmguZPy9LsOHlowVmtJiArXH3XfFTAVIKx26whxlqwIORwLDB0JHOn4oXSCZGTKC1NCo5dtBrDfF33du5qVI0u6UpkXwKpTEPqdiJfuxi22AbBr7sk+l55ASxqM+1ip5uVBgphyVEdtujUDAXAQnBXwQMRGMBM0SYTJEINDQEmItNX9frxaeBLA8jEGJy+XNL2nxwRHYIx8R/S06Cd3A9T0oTTe++tZjzn6HL5it5asFNb1DNDndsl+tvxYVq3yLWXVZm8k/wR/U6EDAfQkcEXwdYlEHJNBHmz3KBQjwZ0w8ZaVfQVjDO+oSf7uqy5e3m6s1AN3RGpgxI+gy8B1/rahEgqofwVY6pqHDPAPQ93Q2O+6t4X6TuBRIn5+1dNPoJGM97HQuxONuQ2JmE6qMkfRsG2s/0asA5jg/M1If7hAr89SxLgxLTL4GU9FevZjpmts8GjBucOu834eOOy/czG6PgqgpU6RnnHohO2Ki4BlIzdTQlUr86TLvJbME8N6522M7O9zu58L1zjFb1yCaTOYibXVDAnajpkZPnq7o/BLpAhJBC7DwZP3YEBgA2a5Do49NReisVCCQgxH3oQRG5r6hqgWmQw3LudGHptaNwo15RGT2HDfY4xoewHFbPyvkXzfm6GSWDJg3/Lx8f58vFk3cOKfXSMLQZ3hYBJpDYaImmXV9c715jY1m6PZO9C9Da+3bL4T+7+vIWndcdvl3qRqX7C0EGVywLC81DDSWm4yncpCH2r15dyPLPbEPTm0CuLBXfLcGKae6arp5peyvGjJFqas/jDfFXo9tCwwd2540VPnmqVB0MDm2OIUJfqx6evzOpeV4cnGt97+7tJkwuEZ8jA2FODbB0j4Jb7NIKPO/qrga4fKyraxK6XxPvVPJmvz4SFCUns1JXUUS8h2tXsWntVWg69IrCQ5jEQCRBUkEAkQBwVMgYY1615Okr6z1Bt/T6XpZkj8exzG1ZEZhSKUoCBjkciIxEcjAEQfjDbPTHmri+9g2hued8siUmHT2NRNqelJwq5GTBTkJmtHQMb1tEu7enYnGUgplztpky8Xll1WDc612tdFnGYdkBgtLlrXLarbFZk6ih4NqVNUVPlFTLdw7pr1S3JlBgc7EI8TEF99x/pl/S38dxo52F8a6DQoY34HRiCMCIiGyXVrqP+kyWrw91G+rPFoWVaVU5pN4wbnZMoLJG5k96sJHA0tPNLd21Lw+GUMvGBrFbAg0xGMFCMBzXhW6Uhc235L+V9/1rj1Q9siavx1bOeLtR4i1gBzEC2HTIEQQJ3U8FRyyRh13TmCLZyzoupIVI+bCPDvUavRC5brI6YrhBzH9fbEMZAK2rKGqn9VPtdfvQ7L13m763VKvpUhp3tLdfB7A9em07a+djlx79b3/x35/tpS3VvHUymQ78W5K1B597Sn9BNVPOKVfPYSu2a+DPvsivg2EWX/v96uB/+UydizL/p73nbAtf1bjp4/lpH2UOuCIuGuLbsVr8PqMVKcg2pm9HcPS3sTpXqjZL+VcVhUucLPBqJ1eGQd0LtinjUH49NP9couel+fBnC63PJUhJO3Cf8WWHklAFARjGuVLlH7VkudnrspNjPuXapM5A1FLD6mXgXAApEJ/GYzjp/QNQO6QyJfwwrqUbIdKiJGOheRXpAbqBRRNMIIW+vR1NO3jU3Ctwqf+/vvRqsS27sh+SstVLm0rkZekgC/GY+fMv56a8fR5ZDs87iRuP931o6UkWMIlGyVbnZSTfA6+WZWy5qvBFTF1qoK2WNEteCU3VBGPL2enUfPHjG0uBmFPTWflCxzlct0NO1ufm+Qcr1MhvCBMw+KRgYiBqcGT2cHvO3wV9rVmy5N7vfPxPcsy5XxGBlrBuN6DfnChw18mH8QcEQqa/8W/qxieFpHFtX1D1SBbP29UGHTSW653B6t9biWfhySGSx95/yC3WGjVV+r4wXz8YIFrqeSwrD7X3Jf0j/UknGfRPiWB1NzrZ+nxPNm06W+EfbzYm3uC3CBLFhqLeFQJ14LtazAm2E6+6d5rd2NVbMkFNe21Xptrdyyy2JPEXNdhRJ3a1EqnLXWWrlhxVkpGKZLPKRS9W86/1XnuHyMuo+vWWXHBZdtRpsMWydKBSwWrEnnzLzszr7KuzpOkK1lyomHaCd56eFv3zMsKYJMjDjh57qp3pIuFfwwbE29lfZOmzXnvOzHvQLCyeug+hl7Qzn0LWLDS5010cFeEaS2BOhdNussi7wYRM7XWuty4Vh4sHT3pONTTqKPquvLuPpBjyZs+beiw5fHqnue9s6rW/0q0B3qh5UaWd0+KLwVw3rVyu2+3XkPbqSUqlmBabJG3VT8HO8gkyOEU+2WfBzvb2rJWKLcL29NR1jYJku59WVm3egW6MElVbZgbgussySpVdDHcxf6sbLszU+J+w0sKF61bSi+pmexU4VcN7qnZe187lKtDuK2nK6tayJtrHVvuPYribXOnaY6LTyuizJE0m/np4OPN3K0n8SlVLan1aaHZ5NSMOHJHFfkrVOFKrKmdvjGzPz12qXcrovZ8mLtkecSsJJvJcysndiTsXbjaabGvVVSv9EpXLNeQ/dcS7nLnCx0RUnZ9m24onm7ok5Y1F6U/NsrqCXjptpQPqqzSR1uD/Qzy5+F7ZUyaaO7pgW2SpL9q6zsS9d1vISeE51eJNZsyOyG7W4hq84tp0O4LU/bpThngyVp04aSgBhzS371sOEdIKGAFBVSO1J4YlV7z38Sg1dVJq+MnMLhPEt3cnazgYEebjhLwffXC4C63q1Hvdhg8x3TcIeWWeZpYSbGuVqBsZUeCq7DizWa7bHXanju81IX/B1vaY0hJqHCnXrfQkbaRwRrpJsY5ChaWoZYF3950ZMy6/g+F4DQ0l+LG0eNv+rcOV822fBnvbngXJfjosWbn/KSJM6/BACm0pccS2QellJx6noeBq7H25Al4B8HkoNySDzkv06b6YTjfuzcT3v1UY1oqVMy4sklR8rMD6bGxCtYIL0r2ClBzjU+ay/Irb80KJi7XNRkYM4shXMYig2QQSu5Du7dGBUMiD2VZ4FpYSYpsL7Fb0rOWqhfYNzG3lfBlhU370km62o9ERVt16MeisEYSUAFGrOmapLuTxy1vWxs2tBoqv020SU2kE2amblUpZtzHJbX+bv2a5Wxua5mMmRgRBckyAQSHoFD14O3X41oaI4G1j3bTc+XaGkg4CtQgYlaXprN3kuFnNszTfJkgchfs238Y28M0uG5UOKJho2na5wA/xny25OscvD0zEzp7lNTz7kSnBJ9xtzGTchhniTLOhIISGFFz3MB7kAY3pqgruTDQ29HoHYQzA/SRzkgkDFKTcpycBEhsj30iRgKEDKoWErjp7m+0ns62ntS7AvIjDYWo0jQdqXJjWw7b5W46v+hMmSxeZHW5nMUkRANx9fjx8b3evYTLz9YOtxwmMSfLCLt7nrUuDNipwvE7r3xqdXZ3QOIIAM4MTM4UWECdhIw9sXHAYywMT3V5KGtt1U7aZG1mNpCNHRSpOiyxW6efppJOPeB98fa3NZx0r9VwM6CjedzYK0QYtNdyolt5TR3jmIiO8hE6SEHJB0AW/PknJGE0sOdwlr42t33cxqknRSsp/VaFL3iw5foiyvo/HEyimhiYEbeSTB2PNIIIjEQC5HIyzBwqA2CoZn/9BHM77Glu1T9Hh9l8KH6l1+QVxDEfgkmEyxo+vqyd7bKZzo7yyZ5mbwZmLZZZePxw7mE+yI0mJ7vL8M3PKKaMm2NoqXCIKxJkoA0gJpZm6hP03lW9Yv0MrkadXWh5oVV3gxHFXnlbZDUoOaa2E0zJgmigSB+BwkVpSBDzIkDhS8Kt5y3UVcSRGd50d9XE/I5VXe1SaV0wjJhmemUd2IkuiypfVkQKTgjecwqYW7DNSOYNQLzVGcHWcp3g5ehZZSJa8fusdvnudtHp8DJAI6gs/T7Px/E44N86rhkiOs0PggImOEmwoMiEDjU+PmQKZRMBDQxCiTigD8K82Sd+9fA+nz2dj2mOu346e8rZjDGRkxgq28i2su307NxUmQYiMSoKLoSrcH31BbJ4YrKDBLpOdJNB3/U7N7pVmnPZFdXTSxxS2azSAvTkEC3WPKE4TOYzMlJLqWcxNnD7Dz8WLpaPLPItdlBRWcEnNflzOKU8W9HhTS4oqKSK/yypZyN982jFWrJH8PbTnMDboMfdv86509GYPK58KgzwOGU6lF4suoLGTcZPvzB0tE/ZAlrNADBiTXS9t6QU0RHTMyJyvnhrw4eDdwrVkw6c5qxd89b6TBta2KG4iTTYm0KTS/v5ifJ9mO946zEaSk3AZx/FpNQGoclCg+5OofhgPNxBluQvGB4uCQNSZIUFOSG9YUjkanWf1ZpKK/6Z+r+7g5ujoIKuyKyqTM3d4pwVlHWB6Yuzc1ns4PpBiAOQurX87qr9hIGMKdJy7ZfhXXUZyuUDaprerWWfauQUdvCo+atU8zHQcEDkKCJYjWHJoD5pdQEMIn38zdzOu4wqYi6nCCiIiAaQiUYgZzLUlEC2XGYxqhCdM+UnKyk3qwG81/T5aLmk6D81Lc1e9HRn2tQJdlmwGn7aqK+n0Vs3tFWVfvL06AsjdDHhM3Nkqx+ce7Jp7+1V9Cdr1qFnbaxGhO8zNlpJn89bUwyefl0OsVO/Ek5d7KZxz1ebb+iMM5Gj+vHklzIAHC1iTpH+OvOl5ePr6I6sqqZGysmxooIdJJEuDmz5RIK5wjTbZnAwbz7QPR77kzR4fSwTUO/Gwj5aCC2oG3JXzs+AORq8I1msvlMXW3n+CTx0mHupqP54eZtVY37KTMfAcpIIO5aMJDyb3rxfgNtihjJkgyKoToOTJE3qh83u3vDlBgfwyQpVSh26WV5807yDOBh5lF7d9gh5Zot0JYyCuU0VyBO+3YqGDYJMZ8WKe1AIGYclKJ1+PPEmTPxzZufzvMf36yNSR4nn/L6HRn6rnWFJL6kOuT+BtEjSfwb+x/k3enz/S8T7KzjEs8f0zUyjZA23D46vQdOak7HDsdjG/xc6O90Sd/et4CYH9nu/VZy5rBh8nlv4eG27b+dHc01r5bdybpPQoFg17qdnyt1S9tTE6760bd+4DYyA0Opu3WMIoy8oMudd127a8YH8VeR9lysrVLUpJEV3hL6rKx0oemlfdkHal/oOUaMXjewTKpSNWRlap7StAAAe4YhtsR52IIaY0CxxAIftx/rq37O9Bf05Kqfn8Z9NgCqsPUJtZXOHTeSd5UdGD3wt+/TA9125y5WrPDwpTSXzmMPP3cvo56ruLxz+GU5Py8uq5pdRvUoOwyBpDY2LufE3CQEpw22ijCBm4xRW4SG2xtdTh7+vqcna/PZ2ekriVgx4M71pa41fZ5MvqXhDM90/nt3/UJl382PLyxj2msIByAGcvqV/MVXUWgpEn3Tf9DsRxOD7vtmcQxQvd9ryf45Kk9sqeXMkcEMbgahCWTVdQ1E7MtEjT7TFCgiTZlolISREqGW2IA4honkzglTGLi4gmzZJTX3+7pWKISA8nDIQofXe9ReZDxO70wMerXp3+jahueroiju1c8YvFQHrBkEeOtIHmPZA62ph2wwUCdbVLjyQaDITS9Ni8py+ydqntOvJBitRiSiU7Zes43HsjNd8n8ny/Z/FDnefT/XKG9TysU7VKXDTdx5r27Lqpe3VUz6Ieu5DLdzF30oU1O5LiiO4j0GPFXxaZ6tpFt3FM6trVrQYW3eepX9aAR6iVhN7KKcHIjlSVi6exuwjPdn19ufI9XhzePH6OfL5eI4HlaWiqALzWJilKCH5Hb03DKiQxjM1OK04qCDOZwkwLr0phOoEERAwIjGr4LT3K85f2RExrGB20rVV5SQI6e+8kgUsm2SGv4d0raYUlzZ+g2/OfjS01wqir0aB0N9nj8fpua3dWADxERrT2lzqMORArxS5Jpajti2zWqJ6YYUUxVMDaDZeWhJpV6BtO3b74U/qxP5WIhYoZdNuHm81PuNijGbn/8Pu+D7PUfu48kL/YFfqWdXh7VuHxhW742qjlei0ALGCMWaMeaqkuQaNYZOkNeLGemyDTggBThVwcOhtAdIERk3TUnXghrswM/ZZSX3IVz9MwM25i6oRT7PGn1iWm/7Wnq9FPjSg5QzVala1F8xc1iz5j7bzNJOaO8Y/i52PmFM2SK5eFTXzdpgyQEljmcz2FdORiCgjT3HeAt5j29v1m+wfwq8gwIqzPMSnOn1hou3VPZs0yMEc2rdcq1V2R1M9W9j2BlyBjFYue9uSOiOSqpqP5YU/FW1RBOEHnhbyKkbgkGVsYhLrtJBm/bm9Tt9/S4asO/yR3+HKdCv46fwfZhX8FowciqhYw7Z7oPiIIzHCZBLxOcJnSQLSX0OnRjt3g+1LJV9rQ6u6vfypn4elTPdqF70m8kp9hEVSq2yyv3TmAZIGAZIAAU1lp/bFad+2ADbwPdit0+H4fd4oByNxJBzzEkkBQVNZK8iszXzU2mfnwur9GF+02X3ClQlu+L/lP4rzvkjmf1q81kpxigw9fJmonJ0Jq6mYqozNwW54aV3hyrtjJpi9EoVQ8su1L+Ne1ba1QzXgypspx8hjpGe4yVqirmVLw9nQvwWcnYEJCEQuR87hJ7c2491Pz9v5qMhL32Z1xHzUEaqEJp6qPD8PZRDWirF06ufIaJ1yQ5P1MKmMzArU0MGuRyY+vrv7L1XeNxNZP1fPDtCMf62mT59Hys51ZEO556EGJlL9dU+xGP8DpHd0dv8ul/h9el/PcnFdTk7BwhvMv2emzRbIiMxznX+enZMXssQ4smghmBw1VPDtmUnBDCjO44xxPDEyrHJeCRAVNcbByWSOEBQ59baWzSvTq0qdnp68Vo+lL1QWM+2kSRAkkjJp7VEobxTiHjeu28VC/fv978l9WbyZiduYr+PyqOr3JhYsbPGYeGJI0hGk9VZ+26e1ztKzdi/QHuxPxf9cOcXbFnf1TTcSI1I/Kovq11LKqf33BxNq8e9arK7Ou5c4DmixZj2YLpsJWC4Ot5zjftmTmQ3Tl8ZTir5Olf35ZXlsXBLV0BAQ8jXacMXcZkhkhhDfU5reat8YgbnUEQnERNRCYSbsIXchhAhSu4QzMQU2QME2hHy2+K9i3exb0PIcBfH1G20f+cEnty82nrP8f+o8shVGWI2pf/U1bpslc4F4EfJgtexzHJPf75Lpl6JFWc3Mm0vOl13mJp5vH/1/16+7fzfGk98L8kQV08CwNbNrc4PDutSuJmHl1dWT3WCV2ZX3C5vzI90lYp6j6eyxryjE5i8SeBcdf0pcMKYytVcW9g8wdC05+HvU+Hr9ODR+UZmiGBN+tqSa8n1ySJtQKWe8uGmk09bFMpkz/wY0EqG2C45/pnQAIPGcxt5M26Q31dgtV6eh60LBvoe+oQTLrIsK93VYGi/KvepxeeZldTDWXHHVDQv+70VzqtIlLfNhUC9Tj0JIkTRmybXLLF2YwuR6+u2EJr6xRspVFENCl752MCtFu8NY60X0hjBZkr1M3r5xdF7J+ZrsLNGdYoKot6+3rWa02HrAQqYabbLdumoCgfbAytBk6CsHInSMbtIZiTMREPkl5CNS2zUUiTz6WvoDdejRyDpBzLFolyzK2Vu8jG73bdqyrvofq/azI8HjNU6eLm3Ks4/4ZFxVfiXTRbs1MHzuwty5nPXtdvj4a683cD86XZ6ELqsTFKCtALiylAWx6IWKlor9417pqAMVv1AxXbBotEPRnBcTqawYwNl7sWKHeBvR3eH1Pp255PW75eXDyeJFT6l5D9kHyshaz+Ofu4Ynn9liSdC9hSioj+aE+XdhN0Q/yuo9HY/DTxSDfUlCB+/90+OoaQgPY8LheKPzgksKOQYQp7V+PsSpWPtmJ1ioVbc+12ueUKettR0D0RV26Nc/h5lWkKMm7re82cnvrl7jeU+67Pu78qfHtur5r3dSL0o97Hfvwd0I9YeogXI036KT+9GkGcLbulXIyq40FDNAntGU/qZbslhLISBpXoQHOTbNyXnJV8jMEK9Q5l3KK1JanHXXMuMjACaqZxQm5HLx08jxD2BCVXGDOjLoew3G2Eh6yKbOMzT7mPV6s3yHjvNpgx3kp8xp1hwSSoIaj8yvM5HDQ+eCCt+qT3QqJsBHAThI2fAd1KwhBAnIUOlkiYps0Ocmq1aXHolPKl8Wmaqh4rpOynp6Hn4k6jF1xt1bg5WtPTQ1WzLjTqXWJuxZVY1WhcVkssy6krKLrrbYZEASWUjcrVwxmsWQNVMWpBJN4UD31sjNz4bcdMNYb9/2K/PbVxeeyx1V8vgP6TsD2/dhsN4fD8J9adUn79fvZ0jpIxksEdGOmTpXnW9PznSme/o98d0h1nv1yV06VBVlkUUc4J38it5kUaKieu63M6pncaj5rSlSwFPWELJY+T4V7Y6c8FrP8tEx2b0r6BE1wr+Ms3YtXY6Z7Ht9d/T4tcvZ8Mmg7W3fF7d+AbbEDY2JECMC1V138TdcbLp4HjGFncdDN6FWxoVp6iu+dOecrAnXIJXLIiUSMaXM68fchJGhtWW9aPRtUe7k7SlrlV6fXyR6Qitl8wZ+A5SHIEDBt+2FnKo2an8WeCnSWoIxskxcxzln7+hBiIJEYnCMyddZs3vQxF+Df5bZSe9IZESlJxQNZGgAsYcqChiTIJojoIStFQ7uYn259oQLDb+HMdXamEyRg9Fa267mu+aWzywYndPXHGp6sGaS68Rc/3IIK8gIBGCSXri3Vu6rWtXAezQtEr9+5B5tOz2tit8nq5+jm6e11XMk8jkg6RJp8qf1DVxLF9x4C4Jn1szL18Fqrqqr9GX9BWtTsaJ1zIoOP4OC9G+IcYaWCSxKnH5xah0Kdi/Yp2dnkHyNSIRkDWSADyoVIiGYvQ/ZzTODwuLRZEd2xEPre0x9l51k21LTpFAr7bawSjGS5CrOVP+2W8/pLc3EY32INPd9xvtWrrXbpjGGvnZD/bD0V9doBDWOLYS3E61QHC8gvejOp+7l9tHclQ2031a30huBdBD1TOWlLNBrNLHfvqQViIB0gd84McgQIEQIFft/374eFT1tI2aXXtgP28rt3I3bZaMrA4dnZ7p5N6P218EpfZWOHKITscpHY705BPdwVcW3tdKmPk9bQl8mLz7mZjQ2t9wxsbRr9/l3Mdvirv/x6NFyH6zNRL+Bq4dxbsUkLnP4N9fbJdU6Ee3H5wiKNxTW9pT6Vts01kn45f53UKMFfG0X2j6Oea3ZcqtdjHLT9d39tD42C7dpctTPhk21Q399QtLAb2ULfN2/rvQ5djy4vzXGwK2k2k2JNw02k2AxyAN4kYGwuNIr9g2FjINdyFNV4J/HqsQsetP80xfKnHt6HPicVfwYTG+q8CfbggbYfjrdCVzb1Il7o+HRtphQgGAaOA9ouHLzpwV0ZjCNII8rAQ2B2Gg3oIEpNQ1m6u3pzVUlAUCUlfkTjTSmepNc5U0rhhJMJ7PNGiYk1MPO44lpk342rLdEEXvosaLTcResgrQYZDSwBvI0vkt0wKSVJ4wOceGbIl1Ov3RLsx76uTMqMd06RHbz0r3hR7urc4GHJn9tD/OtLo6fE59k1fbxnxZ8Snp1T8jXXr2rMKxYNrd2KN/WWq7f9Qpc/RaW93fzpZMvNe02Vxa3fbNf7N7nBulDd4VNGBv2LNBhZt2zsUu9Jrx88cL/68H3qSSS3skNaiSh6nPy+OrCevMV/yxVrs1XozDTzwi1XpYcBtMIfKEgLul5QNahAMWbE3e9KTSmzwbMnpO+NwSVQ336skkn/ijtRVtwrkBxP0aK3etedIiN0cHbjv5XTTl6Hg1LJ7vEMbFYyxqIhLUwbQTYhkH9kBqHcFGoao1vDJVKRKQSgXCdWreYFJSlBxmUxNAU0UBqyTjMcJyDiNTog3OQhA1MptNBKJViaE3SiWyKbtNRSVmtabMcLjLMIorIcmt2QURZDbSqYc2wClai0JDVyxNpjgtNQic1mUZrEs1rWsLVhohSIDU5G8xaEiFpbFBiOKo83nHtgHJagtP+4F7lLUW1E4kxygHEMblCXSz2ZfDu69fdobnLu0RhcuLF9J03NO8ePUSEqTHJMi04UKj9ihYe1mR7Jk+rxman2qINkNtdxX5I9PlQ2k01UOdIEKdQTHx9Ljshr01n+8Y1/9bUSsgvP3VCiWInPP91v/blP9/n97tkXfq4K52F+47dLbAJJrjOaaRk4P1X0hheh/uWNR3icQ+jyBMTP7SkTC6iRKNrAIkU/IRKPVOqVyENfbBWql5M/xy5PXjaPXOyULtaqnSm61V7guU26mKyFgm93/pRsF9YlkBWi2gQsqUwst/bihfTCsk5fUz/ZNDdoNdfsoKlJOWql/J8+v1sQH3Z5YF8lXIS3D2ur88GTV9pb128GpGd127+7FJDSI0mmqltFpukG2MKQtHW3ISzxJIMFSmp8UaWFIyh6fv6fxoKK8kXMe1ynXMbnIVye7rPYx0GYumrhAOPJPDV7P3gt6u5/VLV8DNloNh4cVk/fwLqUCQ+wwY9EIqUUU29ZwoJRZGhmXkxt+1y4pBY6fcrL3wR/XwbaS/RA7pzkCMRDhtP4E8c4CZAEX3IKIQjtmOEftbSCy2f1XisVSbk9P1F3Tmm0/1mSG4MW6+BNO/SYpKVyWeOAgmQQORtdvNwgdded9Y7We9dt3AmShXCQRKEeVNB4gOJGcIgR9re4rl2h+rC0Y1hIa9uXBufGLQjF1p3j0hnueO68saoCNiIDPP99X41ZGFc9Xr/q4EPU2Ku+n/UedcJWGbCLltiZfLu0w9wfT/Vbo5U8EbOOwMkPYnlCubqm+9s9Oo0IcTTIHVeWmyZ+mJEBU8yW4pnsLkTQ6dgyERzoQcIupjHgt5HB2CsX5y9XO9l9YhpqdFGu1zRQYE+zoUv6k9ziaImMiEv7ZVqxqPvHgJlxu3i1qBa/lyJSrnq/fmRIRFzup0ky1liWWUZzxJBeCYI0WKvjan7W7e/fPsMFnyv+Cm3+7O39uL0oMLTYtjhgEDgfjZDyBaHy4r+CD8v5NeKOjf0eWqjsf8er0w4ItZgKpGBqRdpzgGMMN30dU8H3qpt40kfqw7VNnr7u54ztj32kHalfnb8CpJkscpGH+hA81HMqiG1BA47/jtJ3oPynGpoQ5OQBS4WUSu6SmyyG65D7y6/Vtld+ny+15dbpONLgJMY+GUpEDUOBpYIhEmEnfan6CkiTpKrHp4L+f2y/Tw7eh0De6hHk4J4Phm/9PF1D0J8cQHofC5c8ed9ti3WFXeJy37zgtam/8p1PHJaZ1261bvt/S6RIKyYcFk6YzQ+wANVyxdA+seoduW00kcTW4/b+liJl/mqDEWNKplRkuhRjq6umWKkZByCaqqREmcWzhQqE8PxW1374XuV0Ckn8U4v5/lqv2dp7L3jHUReFXacsXZR2wGe+tpM4PXLjkvjBCplVkvqmklV6XVLLoWJ1bsdb6VTJBdNDZ8PodI6yxPHWFwPsOR4NJkPbLvMbtr3RdgpCjZY5nklHnVboEi4YSzMSVmrCNubfg9+afz6o6/N2VE9H3jlXpnKLtXUp9TX3xcadte43CyNMey9hvYuE/Lohf7fhTR9Vp58eMq/nLf52PL4PR85URJbMuSW3R03mrnTNe/mkkhTT7MSuj/BDKpjts9tusskmQaudj1jA2pN6Z2d88DGX17Tua9las7x+qWLsoYFZD3bN9K/wmH0jr555QknVeVS8GjitWI2u9guEkTQ0P9JdVxtu5oaU9ebn2yhcOe7gyK9zvFaaKj7p0mbEXG6ndVuQtKdlfxpwPKblNtQ5IvoZYjwqW++LjkzVH6Lytt5Db8DN67ejz9CrM2WllGsocdNbrTHNvu/X1f0pHquFt582S/rU2vTejlxF3g141deF8YX8SLd49bFKzkVswYZkuhRLGQ04sk5RP0r/17p41BUVY1IqxSVlJMJJooWSV6FIXNCc7tV9aDssyJVB0Qv1MTEsj7i3FaoLSWl1WI7l0/M0lWiccl3+Dq0V6lvc1V4pJJNRRNpwLWE6TttqmU9m43K/fb7FaTeNZ7NT0BPuu17V58QRA9GOOfGwqJru2xL5qvOux16t2d6xnyQc77s7XNhn0uYIIhba6G4udVWpvvO0009LzzNvGgK6XpqsFbT1rX7FdzO4OMO5PbHrpuZcqdK2T2rwp9PRm6r6lZWnSy5c/MOmmqveRfZutYs2nFWlrJpaJ/cKixLWHRk8K/LU99uzElTl+SH1/suR5yGOTOgBTn5/VDORQFGsgV5OZ/7dihh6tHsEOrd09sFe7w2LhCpU/L3Xe9zZPaB+oc3BPaB8VCCB1aLI6r0VJ7epw3/Q+QcJiP1yOTQQj6zIU8iEncd7vjk9u2aD6dzhbor+ObhytxoK5nvYDkUaB1VuCOpStsavwXHTvXHgeJ+msqgkEHTIp5abaYdVCRAqGTe/jy/d3X9/kucsuhB2RtFuiLO7j38u1XP/GwSGzmppl8R6CZEzbIRTj586UwKJhk7AjsVols9072cqpYVFlCJInU5kxWTfVqM2pvre+vvDcWH9/xj3p+M3XbG9nk3o7YIIPmev0h7T39VzHiwTJkWoLydWYq4Ngco8kwYG0/ELw0w5ulgSrtfdyOtCOtGrJ9lmSMAGeunIni23NrNedkzRAGWWAx4DgGMRA1c8TX9JOf5z5w1Xufdu1aaYGxY/okaqCQPsPsc5wcI6E/RQr61amDAXr91Fr+h1Zpx7Ym1h3VqUHDc7qvfrivnjVhv+lvWsgkhPrZM/P+g04HsMjqTamEXrOkwnazfRvjtSkkXm3NggOmwhIVwf4QGkBDE4rMl1XG0T50FGEMbEVRs8GgO+0VPj7n4y1ZLc+eU/Lxe+XHX2ubgGDft1noKbbRN1J4N4WYP5s+bFylsuTNjl9a6RhJksM+OP8W6ZjAe4sUZHxTqAwukICAAzEYxtMQvfXLWaUv9IjUzuWNK7C2ylhGelWLHJsuJbmKiW0faDpF6oZS55zwdchvxZWd6Byyb+YCyVK/jtV63hRY+UlttCl/0CKte/f7Xnw+QHW7JdxdiFLArgwARzy2f73MRly7WhImyraew2RotV5sTDOatS/XdFAlCAuu5S5g3i59JEbtIA11xTC3bGjN3c3WW9Fv89JctS19Lzh5Ts1WN/GK0evSsuDiCNcOcxqaKKb5MwnqA/gk3bh1ZH8OYqm4MAmWQjAyuAZRxLtIyKlDTtKQPqpDhRpYTqch51Hf1KnUfy/3FDt4RUZ2+4dsDtVX9DnP7rMze/ImlP6vfPI3wXt/mVqzyzDFyO+QByHZEnWX+wkucHmqnZq5sZbT56V1KTrFZPf07tJtyotqaag6Cp9ZK7Ntq477M5EKDP5abqnrb+4VwqyX1Wc77EnttHfSs+0gPl7g+T9hLq0q+Hl3fjXSc+5Ld090vxt6eeHGKUoN9Qit2NbtUROEVMVk7PW8kGQMhGk9LxgbIp/NRY/35RZhYHRt6myT/M9cwRT5t+mxWcV1zirXZmSPf0B1NzPcGHt/mlUXOTn4fTFdPyS23cbqnrEkF6C9Pb8YB+9Kj9NSBkrQitKrSItAlIUKOQBkoGSIGS5IAcgACIwABEAOYyaFRVWZ239DdU2I+tqjAlb8vRJ9uKfi009dbmvQO6MSfue95Lx9XVK/a9eyf028Zl9UcyapFWvK5ZN0R0lHXQoo8vjVSsHVMvtuVKva441mt5a2OHG7HSzrQxEGrBN3q9JgMuIYnq57r9rT0YyRIbiLZwTGQ9UoV57HiasnENDdOscne8yMnWGUVZhuo1Blb3prJ2htglhrLpkWhz90lKkOpjio+FavjVr6nlRHHeLRq5tVrMg1LqKoaA1BkG5A3B6bymKIyHJqICijiIzIzBClWe2pzUZef2XQ2vrlV0+iLOhTrcLbK5DSA9xtTvNWu/x/OvHto8d7jm/fyfwxQOC7tiLwfu3bZDcbUm9u4bh7Dfr2PVeTJI7D0h/fbRNkvgphJIUcYGCXx7k8Wv9eb+Ojoe+Lo8M0L5DRw2EN36qxsr5CrtnBBYYBetlYYWsM0+GtU0TS4QRHwveVuoSZUYl0NcJcsphg7rRSLCIxAZyMYHheC5GqXeyrVyAqWOfKKxfKg8nIXbOy2gbKA1WhDDGwczD9xNNwGcvjZBU3FtSrIOQMcjBO/vUd6Q2veCYIFEKL8Leum1DDPmjr2YvhuaRbzNxhvtC+GyOq1J/BgGQgDHIAEXGSHPmT7VWuTqfUuxdXTq237l+vvJNPlRZ+3ZSSdtDX5OICR5d+5b24q7EoDeRGEpGE8KvGlSD3fX5oWVUK8/K4Y3CXnPFFTnZA2N6RjvQT7H69jf/no/zL+/dP7cX0+vm+1tv4vxzvtpsNHPZRu+G2v59vfhfm8nTvE54fEnwt1K827La+gv+FQ27r16cXZf9UHgBjDvzHAMFydR8O/ATxf41XXaLltPJ4qPl0DEK26wot3vQuH+7/NjJtDZ+ezvaf5yYvF46/xW1p/lAvSxeecXvlJyUOqWu/U9Utn94qQyC18+M/0wmMYOEKjtj+5lJ/DXHV/uI7pNndPhPRanpEGVtmiTHq97/6sOdjVQMTLfNvoq9EoepZdSt04FBbO9OL5rVHQwvhivenPFaYs5/UtP77B9K5crlRlpJr7i5hugC19cNybiZypXXPzOUfWwQK3MdBz4vfCxoc/HZjcr0h4Uk/h2scyghOMyFmE7fYOGc2MhTAc/NuSnmXlr82jddoHTKeEvMh51MCkQA7wWOLDBcqWmYzGM2HtYiGLqMUH5wYWpaPVfv0KPSxUL9+Cqe6MC2utmQ9mc0ULQL8tIcsduWkMH57FjeIG5OnvWlo8SlL7/GG4A/yg5juO4yQ/MR0izBQp2RHMDWKEgccnRZFxpQWwZM9151KGCVzJDqaMjSQdBpBfv/yzR1MhKpBU0llZVhhRqhKjrYZHixQgNF0BeeFqqogyfjXS/i4G2QUCzZGaRWLa/WgwhVCaAUB1CFNJCAF0lTIqEE1F2cnPAaniYPOX7WCBdrDv81o0mK9T+9mGGfZiCreH6qHTSqKIWxgsAtgaxGt31aEUoWQlHZcmmVYjQ+kJl7SyA0ivQtMxp61Rm2DOwEoQzO+QdIOxhXHS9zfSoxgOFVfL0sgwbHeSCA1O5c1Umyxki3Kfr9UhB/gvOcft34mZG0qXbk2V7mPyya3cX1uIY8Ts56pzS/3siU789Z/Ira1aPTZpxZejo57Y45mxZQlvSwEZQFoIilOehVNFTRsKHtz7sWs6mXvfqqiAh0Xurp2b9ibnIGwAgG3PdSnFpfSrMs+dU3Kc5FP+dGhqGvMXO989+eXXEB2YqnWNmwjm7l2U2thhiafdLs83EVn43/8vknbxtjNSPe043fhutya5pKVX+p86ddjsY8c3NkBtxAwG8l4Nzl2trZqcGQoCAbuZmp6mS3HWG68xRKQv6BcdjHQrW1/TEFS5qSpApds9I9kkQs8ef+tCn77bHYl+Way/uuoD8FU+8k1B8q+001QxATNevNFeaBwMPT7k8DMa9xVuyRX677D/N8Ie3v9/DnfZvosPPMJAJE6q+nJ2YgsEbv+cSVy9z4/N92p8fZllkgsafsqrnC7S+jnR0Iy5eg/W8L+P1c3LTKz7xWnj+keHhpTolXwnTnFV53uXZ+HUvo5PvkbsHV2o1BuNE7VVkRDcgkyN7jkx2aeH8cXDo9yFBrotnG9xp+UFUZiL/rV7bPW2ubl50Hu+CS10iNfYzG2Q80FBx86Grjf+KJEwHnq7vji7uRbfEdHqX1uOT7LR7icqEEMpmLA1P8f0ToOME+b2PJ7nq877692Npj7FS6LKulj7M7GnkcDH1s1uP8iqp21yk3+V7H5MdKh7kbEjhVnNOks+c5MkPItazCHvSjY7TW9euur36XlUkEGE1DoJCnznCqYTVVRdSlBz4/j9Sf7WzWkkecuna9qXnrbL+StSsQp+Lt5ed/7/Jcv/P2GO1qZObNY9FnsVzP9vJPA70x2fMfa7EJaqoR7DDch6815nEQ3Je2bd86+P9dXumc6O0vNTt1QuWZm2tqc31LDc/FvY3fIbRe9OWzQGe2Hr8tZgo/i5yBt+I830h0CFjz8+oWoHa1rkzBV28H8Pe/S8pS+d6SF7EwBvGQSssbRL845YeGl6hy71XD/TxHaNgK3fOofx7+vOMW9CtPreI6fmnVOlC5Q2qc6qtwg6SaCascfLY58rZcxmvPQXdRfL4T3PaPyEed1JPFJQaDdqurtxldUNhY7ctyQGAbN09PrW3RTil9l9G0/gNH3F6JJGDm9EV4qvNbpCNroLnen++y3vu27lbmKxV74l8eKxYMMZpuQdqN7qn2Zjfs36/uREBDvr3HmaddOd1SyrDQTdnwSGgbBsqd8Rg8WzoKFwtPD7MXa40tbQNiQNgglb5pk9yA/h/XhREajCczHIMj+ecLuPe8Xq/Gfe3dwIIunCAQOCBEd5jvJjM7bRG56vIz2G1lRXzvPwfThEk/RYytKKAySVm33+f6pOs/rpqPBnEDl2AgCIj2IoO7F5HxdIxcN27erjtyrISVl73/rV6bKWBlCJok7aaE30HOQAXICwQDBAviqGihODKPRIjYZVjyjmorj87EvSWlZK0TJCUvVqbmg7lUtFK3rFoEB5lgICV0Cimrn9ObpsKOS/UrfpDlfDyDZaeEVD2trSOTnG7p7cNHtTexVnIIjqYLlPsis+E9oBavNdFZeNevSsbFjd5AKkY8fPJZj8MmQAFIJ+CRXI/tn0uf0Z7Pk+ZGBaOpT07mO6tIMbQLvOcQAaWASaIagu4rJd+pUAYU+04K6gEuNUMKV2tssyCrT79C/x921XZtKJ8UoxIV542xmBZddmXoxTkzwdBnCMraO+uq7zML6lzpn/y/9Gk7d+39QkOB+RL+QXF7npM0r47Z0zPGFJhB5jABLscWp82W8TVn+utSr8YlSenzKQBxrKk94007evnZqLuggOd4Cng5uve7OE0scde3HVeY1NZOhww6CUyrIiIxjfJDpKEjdJBXun7DsdViHunqzboXAI552JU2iMHiMCCdEmPf9odXYsxT7fJW1UFhUGEVDF5ViqrEJZbierkgrixjGE85zRkDNkDGOXEjBXek3T1aVfWnZ+aU3irW3lC6z83KClTzMAHzHAcKoWrd3W1s+VUxrjrSAFzq2BDlJ3XhZSZWeaC6sd+i7HML7zAaIyxGAoIIBGAhI2m7Yuns3YFY6zl1KtkJ5OeBrKsDAQkYiBEQIRPpw46/e+NleqGRPn3piHULu6N7P1YbVus9uOHoQZntMBDHAyDlCc3jd4WjWageDqmoJvtjz9lWLeiRWyn96N+XVwznb1q0vN0dmYGXKMgRBUgcEWM5gZpIgUyfVTqvjUqI/PbIqmlayamkIln8+MpFTKqXt6orE2jF8ERSSCm5WyxCpDQTxwNKR2M2YMkTGrlZJqpRdzK1uKt2QZG5zWNFG6zNQRBm8uccjZHUGqkOCTdTS5GGYGZmE5lrXOzGjdk5ZDENEQ2T11s1Piy6kbTdbpKFayjJMscmoZxPL3+SD192z5Y/L1Y8n5V58u/lq9mCWLd2UAxu+qepT8uU4B1jkQHMzF9YcPc1v9/i7Yk1S7r3RhBDBlK6XdaT04622xerVYb+cQAiJPE3Cu18GEMfvyY58O5PwBXV+xGxOu7heSU3g5r+FvAvvWnXB7M3hB4zKMxui4kzteOhJhAR5kY6YX25DrEelnuOW146lKc7kyj0zj9RxgKAysGNBo15UBpem9LKkpcqnQuIUCCVlsTMiEo6G6RTLZMdd5cTvhS8m9VZVVsPg4Q1sGjz6I218fovhqcjxNo18F4cIYOLBJHJoqiyf3QoZdOIFVzd6GbadLpU3HDpacuaQq6UmGrgpSw9VN5hbOW26ApAZOjrz313bJdEVrG7b3p8PRt6Ncc7BBUc+NjJqTkcT4GOOELI7H3J6pb3eOrt4RnGdutubO1NJT5QyfsN5HUGaBT6WRTTJdutxDwHU4GVDCGIGTGpzpCNnzMX6ZCjSEU3GIPLsxk5jlJenses805wmJjqTY1c8tvU6hif1GucEpRXcsuOjKfPDFMpZVlDuJHnpHNMqHPJW6u3PvSr2iDQrneq2kXab6T4pRK25zlOVifJUWVmE4vi4ynWJRR0HXpPR+3u7tNm+I2bRW4YsaIL9XePnWMdTkdBFNO9t53QGS7YRfFmXOK0NjTLJtO85WEKX7H4zPpfv1OdTJ7tXLPjkk307a6kQaJyFAQR30OMV2iTTdKGE6vQiEhar1vKK6MTejZ41s6fO7rtpcNmngMbwyTHyUscdfxuRJZGldYFhnfWpJmvhWxFn6beiqugwGpx+WNJBwJk9qQykKFAtudXSaUOAoThKbMs+tkk3zT+DRBowgfWr31qDqZrQBgakRgYDA4fM7aRSL8IDfN2JpcpnWnuXpej7du3qyiMbczhhJmwN3JDKC8wALQosdqlIfebJuT6DqTsMVe9gvPsu8b9vmt2rfUVf7j+nIS0DJGx07hKO6av5cObSCHGwiVIadimac3w+R49nyWWQMHPuLN3sKXssdbP9w3jcYFjezle5zoOGWUHA2A+M1VIxDAbnDI2ehr7zeLTDwx7IoKG1KQVRF2campDByPXGANSByRn6V1e/FaRXwfFFUNszvGbm2wSd0CO00YBTBQRBh0/hYBUTUwQCTkEI+C9LU0+h+j6dDuKDiAzM338ek4q1DkIILBaAyXpSR+hkAd7d285uXnXaII4xuermnVUo65sYEDEH+1vZgcDHAwvKXHXNQry5Q6D55cueYiNfBERTResxe+Hc/o5Rc/FDWs2oOc9xghAMg2PCCfJnsNlc5GN0bU9uC3fqqcrYAxu86NFrgvtQi6I5iqreSCpNWjgLKhU5LpGRIFkwRNoQj6R0vLsp+FacVe/ukmYXU573QDlWqWEO+dPNaw3nua1fT9KE6+fPLRqXmGWdY5o1u4XsembYEiOijTeDpTwBdfKU9KdbvKI61ELaba7FcSnPnIwBhbI3gE057+98Jr5rp6pFTxxU4kBxAQkRPcI1A0MAt+0JDMMu45DOXnZFLiNrWqk4BAh8rIzIUTA1HaSug5rMirzYy7wr2jRlnKYXfdgFMHiYUENDBM0CC+0BGbV0PZgOjFt7F5tZm9t853q8L8NMLihU9ctzmqquWLaGW1RjOl7nc5JRWJO3HcYijDTStLAeAjyKojYDUSaeWl1p11W9+u34BS/iq422C4LcTXS7iAvEYwa6dCAbWQrkHrZzDPOG9C1EPhmstPgjxxyW/XJ0+sYueeVsUuImkH8HkvcF0zeiDfvQoug7pt46dMxy6HUjlcOGEShHLSDppGTIlCS4EnFQ3Hg6K2El1nnKJ/PRzwpysOJwx03JPTnWXXsHBYPvbxUn+MDLuDVsyHeUz3GpNDQbESkACSD1fpb2vFlXsDmdfqkzYal3iTheWnrr3I/2TTk3CcHBToZnSCUwTtU0oVA+lne1V4lI0de7scvPdbTAs+qExpscnAfm/dwRMaGNNqjRDEmEr/Nd3eaewo+OqhEqx73RsLTRT1vMaOcVZLGze8JQrZxDSjbFXrqFbsbjnmSnuXFhVOFYrvWyMuDCs9jsKZoNsWnTLHS0CMTajmdBGQS6pRIByBFqynUHhnxcLVUhHpzKJzx6whlmsnv23Q5mpYrDh1VXc8b9o9eOkkVOkokga0wEPnw1GBA0Y6o19+KsyujKWKpoXr9KZQKpYaCnTpx3SCl+ccb7QZtsrbt1ZrDBvyrMa60NpnSR4qtZACte0hVI6pz5pLWjBTxcoJ8a1x9OrLqv2NOSnfrRk/bz5bNmvXdfymFgVFbFhIkFNaZETSQwXsHCaepYtBzg/VfxM04woIyC6BC7jRT4WdyUUjNzO4di1XSzY8Z3ohrwVZq4XxXtjyz2e3nRTPdpT0V8eBteSxejwpXFG2RiFO2ZdJMEK4IciDsGN5dO+ZQ6yDpBFS6xLlvXsu3Ipa4w4qeRzXHBApc73u3Dq6+YDiRsj9FYjcZSm+X5c/Pp1/LO3GzE++r5WnXl049NXd38aeb6Z6wfyV9XZn2bb9274+eflU5ZJGtkXd1e7ymzF203a847sr7utg5ISyQd3NkUkl3S1DW7FE3eWJTg2IKK7KRobxZCMqQNTO53oSCx2nYNtOPr1DS/KqJ/PFz3b2wbKtaQqQZ3S7quW3Q5WxURusp2M+akmL8GFYGZL81bw9/+vGIWbu2rHNJW6PzDJK9RFYbZ69uD7vd9t9/F/oqXD60/N31b/GtSA4z68yHFv4OyQJ9ueJSGohJ0Mwn6iDP6TauHyIaiaTHvL5T8M8Um6BBUYGqcyLNPz4rzDHrdm+j3sz9k8WX7bt9gOZuzJl+N+vBWq+lxpXn+0KR0rCs2Tv1wcNrf9tRN4sEF+l1/Zzy8AI5JVuzvT+92E90EKYmOfwmypxeqnHp/fR8949O3b0duztwfXFi3Vk/ropMeTH4/Ge2Nueo9O13LQY9aYmtP7TXuNfj+b0hrPW/mX5t/LBCEVfTEUkS0E4RAAlpOAYAHIAyCHwm/4+z3uY32a3taJRNhwGx/mDkEx+fyAsQMHCAYTh7kU1n7snNFNrwa18OwJ2MKom+GVrmqX+6Era1NuyYgYxr8qQ+VsLstynN2aV7/3wQYY9ylS34bb2Td+vHzf0436LPheIUyOQIkqkmnDnJPAY36ZuuzrGJcae9g1D9v7vwisaI4Ocx1jobSIl3cXiKdz6bk7xgYGs0fvt7rjH9/HTRpqTNc2zm5WxAQFbIvh68Rr3Av19nQv7sdOxXHg6fw7faSMDDoDS8zHDhsbGxtGIiQcyEHn67Gbeqwv8cz8umKKGC3prNogIaPDBa9d4rRga2terjzP7HeH9T5Mte4LpAjnOJavRwP49aVgr1LXKvzevXf7x2P5sXlU7/1+PpvxJg2k2/bD/gcn7oPV/EHk7EpFVjcOz5ymeOJyTrfZLSk2okjpbXQmp7gk7nT7XZfUWxtNUVdiss7VljqN9GpSRyfN7r9OWaE+hqNoNSGG/f2atMnDV9tDaPpKl2jp6ToHdNlEiragRaONXXG+kZcc+hBnxV0u9CinfDhhaEAUiJQiK2QPgOEyhBwkRkA8shd9Fm1zkMrWJj2I3IjAUv19X5iZl6U9S6aPyd8lklZ2EfbyWZJf8Nqsi7btiQFnsMWGv1WU8RbrF5tHcSqMpKE9Tu/0fc837r/bu/b2nN1vFTT6LcHzkwNDKMpEQ5Mk202rWpygGIaiHVkhSFUyEpmNtkRQqGwLUA6kpLMTITiDISnUUYzTyTSCYpl2nUzMjd45UY7ckDUKmxCl1LgEqomk0N0EmZMotUhupJRSSdY7RWZMysWIq2JQkK2NsctqEhY3bq6TmbcVLE3FEjYkiGoSErEQ0KW27kU3VLJZVS3ISoY27SltZV1Ky7i5m6MoEgoSFFARGd+xjAlfkudRnLSbWavbArwpcnh3etD91Na5Vs+gos3LiGebj+VYdPII50kTpdg4OEYiEQIREDggORGH3TOTYxtw0+aQcdckGdS4s/BuPs1Ro14rHu/tx15jCc8ZTQLPSNR+ypu+zDgJWjG55LtrOVVoVei+vXn7cPy15cLJ5LvXP/Kd16PuxnqV06wKUwMYeKJ/P541wbTNSqZeT7VWNTd7irH6ZH15VCF+lrMYfZKxlqSND7MAF7H87pHy2rjNkqvdmp1AO8huIAHIiCRGIjkY4hr/hhLaD4rtuVdNqnLNFPr8N1vIyYHIyCDH1yLxZYVKJul3N5Qk+q4yz141mna9cT3Vk0Sg90J3cKltJOW9nIhGTsRa/r696oArKOW/5RwvV7y/yvPtk6Ju5SvVSVOL5W0JAA5EQIgmQMCIA5ERl9f03xSn7eYLRYOH0nUGLRomr0qGztKGGNXrnV5C992c+KbRY163rltGxX2spG+Bbc46RgMA9a+uZ/9kVOniFjatvHN2VVnNjNMdZAgRtO52ztpMh/znLYqR8PJLv8nNAZAD30pHtw9d9cdCKSaZKT1vguPj7EYXwbcmYQ3qaDoT7bnQ9t1p9Z1ef9fdoohz8Mzf2Yw5GFkZ+lbLNT+VbZktzySgzQZ1ne7F9uz62psFmRLx8qv3qGji0S6aKuJL6WdmcVHu/ypD8O0Y12a+a0b6MdFZJTCrDK1yE2jp2Lw3MIyF+uQPaTSGtPkdJQlWOFaG3rzk4DDd+bvPy69K7cuwwMNBAxjERgVcEd0Xyq9GCRLAkfDnAgkyRXL+o+Z0aCs+am7mzYM9WwzVcdqH692VYBSAtydah5q/R2XVprbXKu8Ocy9i1Nx7G6M9Tzwxia5Kp7x/mieiTFpB9K1ixjMFLjEq9MvOtmp0nNHWuyOftV477skgHDdClgmx5Fk8SIILyyymWL0fuip632ixLezEK8LzHzSX97FoVaQaSd7BXUItOkpvtpu7NlbrGX56u1Xlm9mOK1ZZGbtsbGPTDchPq+Wds+6qWMq6YtEQA7bq2Ystya/0prhAtwNItP+Dfp15PC/S6WtrxgexVV59Oe3sGgeiHJkmhtZHOU+Egm4hOcpQx+e9EkiUBWPLoUcakAbmtuwd66kW42B0/2bFm0Gph7rtZ9A2AjGmLGucGHadCEa9U6EklDlr8EDGSoTFUqOf0VftUbxU89fneWDGq33XD6Zhj4J5HFa8P0wjzSX758QSjkPxLxptRwXvRrwbPx6tSt/24bfam/217dfqVsp9bsm0flNP3ZVgY7+HA/UGY+pHjBh56f96K+ndc8cDDpjAVyNsIxhp6U7PUO7Dmy/mtO1MkEBGRvJb/gqZj/E/uwKXDySlS+WK45ZczfxjWyee/68lSFhAu3FNu4HCOdz+I4Iwlk8fxUb8+ZzVVzhod/dNv7tYTbXtfSjVdGEffxeaIECIwVIGyEZYg6Rk2VGEjJpqKbixetet3cY3+di8zAIrxkiEeW7PSv/an0KyVc8uepUNZcRrb1jD2Mx6/Qa1bvvZ3fUOJjQmMPWd42q0JRRDM5+3PhKapBYUDkNjRHhVqYqpOVDAmaTdHvfB29r+2vUfh+XmMmjTf9elth0eaUsDDBmW3448OQIaDpMEc7SwdHx9DUiaXGT1UzacwgwlPl7vpaY86S0axtV0+r1WoStsRw+9jo29L/q2//i7Kw0RU4cLlLjEnsct8thXbmTXlXa7e6l9aR/ddSjSfnW637h5Gqiglsg9bbuY1I4Vsm+xfyqHveeSSFZ6NvKlk+q1daw74fZParym0FkS+8+nqtCDP6KMY3G6gUxJy8fdNXJpfrwKxar4u17Nk+88+FyZ270vcTp3dfPj8XYOOnQ5ZtHjas5b0qJ8MR0JRJj6kNonKkoadDw2jhM+pRZMSkcjBCSx7b2sIUTOoxSSenVVWP78L+Dt2b+K/16n9XazLPEJoYZxY2/KfOxqCFiUOwmkohHYqkexsHj07+xbp5WuqRzbS8ehvh0qFaRzKNVUV3MVnZCMvilTFp/sVYepM9GStTlxruZu1XJW85Mq925zo5i6tuyLbm679FvDlkYjUrq4+7j3dlir2o8HMmF5ouxPLoO3URCffzWEo0ZOnSJcz3f1tVHJu+5wUEi8+HPY4UpW+yDrwTsP2klorvTEQ2FRjN0kHKcxJpA6SwQQ7FQsieJSBpN/nFFJFN3XXtxpxZOVHM9gBYuvhzh6NppHZx7pVJsEMr0ynZRu437u8Z3nEY9SbuPN0Xl0+dWo9pjbajUf3awKaN5gDaiMOrJg/mwH6TuZ81TqTAcIREaaraG1Pp4X5OLoXrWewtlOsZBAw5qKmdIG3vC/Zvm3ZVi9bwEhGLXXRvzN0jauA9WDZrXz4ZNv4mrtwyW8dn37rfhOfCGp0E3khR7S76mr+Z43+7Ootc0Ixo6Ak3U3Lax2lRUbawldW5xXPWQ6QMbMRjGjWObg+kEBTVtWNCxL5zq5sEabfx17cXqFl/z/Q9ZsP85/h/K1He8oqxrmocrl7HdBhqruScZ9Z2FDfQWAfoC2Czkxw88Tsupf67HZ8YWZAojPTZim+evKblKx98zCDx9S2/fcp2R3UhAAKKpxdKUjGCpANEoQMkRkwc903NDsq7CrpgezRyJU1a7awuZebfBe45MRo5rmy1BxqFMeX8au+2mteYwMy1+g+NzBXEN1SXsTV6ZnHa/Cv7zLcVaTTp0c9ed+AaPPu999FZOssDayDJAU+P54NqVzDq7TgqRxG5fOk3Oj9zKmvGwk5ynlmq9yFZZVJHI0Ir+VS93Y9rzkRjQEs/bv95FYTexAyYfZ8MnObvIdo6no8OBgVp+zet5tDh2wLuXFovDPeWtgjd91NAOkY5EAcjHI3eVgNnj8OySHWpLyIygFfJfRan9Bv+HW7jMWhAqkoz8+tA2sTCzk1pdSg5hZzKZUFVqaQMqKVypwgKLWLkbg0a3rcKmhwxQ0m0NyaFKXo6pZo6nl+unp4PJ5fZ3Wm4iGNBIOmBKOZ8S0rvAr4artv5LvtIYc40+FpLj4fSLJliBm7gwdqYAVqWZhNGcy+Apb6l/FHm0nn+nk9FAZfHjzJhOm5Yysq7O+OlMQ1TGAEUNEl9u0T3s3vP9QXneTP9MZK5r8DDB0xR6sptjyxSZyw6Kl4XCHq0YQjVsLfX3rE9w/B8tazN9JYxtuQ+pCbLIJBX1HYEm0YdvP72aEeEvzn5pEmfs8uPommajHzZJTWJLtWYuvygyaMfP7ZmIYu2Nm5xreznelKFVOsmwZsPObDiqv1Ur0t/1ytW8eQG20hlgsYDktt8LCChPe1+VYaM9fpFUEDEUgs4zMBxvV80QeOzfDmvX89vRVSLM8b5I/xLj9KXk+Y/LJRiXX1fnWzh4tWwADNkAYD6kYGBEYDp+jnRvDxwDg+sggiQog5kMvJCFhrdFEKaorPp4NPRngkz6Azr0YZvn94buy/Ptt9f2qgKVc2GHdU+lk1YjAFok+IVLLerV1B2aGpZJm0va0qpSHMIjR1KrAupjnlrPmKkL9NxR9rAJGggdWk6u6/ADD6qSajSOvKwaY3BzrVdr9qVXtEhjQPYE2mLfNPRcHGrCacjECXOciBYoS8Y7dOO47526CRuyTVl6ylahLC5VSdqEJUnd2/8mo5/X77vHaPf6053wgmtz3dnghCj0h/86K8js0Am0MytMcQvqZX5E17e2/Vf16+8TGq8pT9TYeoGm/g2rqvv9HdexwRJCoqGcSSB3gEe58IZs3WYyZN0BKGqknQNZvCMebmNQw1qz+S+Y1hsjddRhTHzYyUVcaEeGBNQtllZ5L4dHpxhvirPN9zWUUfL8Gp3X6pwU39ft9vxswXHse6Yu/K/skdBaiBKNUTzGFrhgwL3sGJQyaK3GQ0ctMxT+mmfgX3rq5cqT0nX2fpe9haPfHMPkkSrSRRKoEMwdjQjCCC7ufdOB8oS3nasAKPbRH2cjkEIAHGj4O6IKrRONTe55oZmacy7TVqnzUR2DwvE4RB0QWZWass1vSB8Nrt5vFEN94cMQgUEnwkwUYTnYggPMylJAxgwZEZkwQIRmUIK5GrMXdtWd+NqVUDXJ3p1r+PCUB+nzXNv3C5bDgt5x9gskhMgZSVJVNVN6sdY0D9nVCUn3V8PNNHjSMAbMe4Vd6nDu1jEPdkzL4PHyYVjKjDsMrmxIgdRTWjkHYyDsZ7wyUQJogrolMkfsMQUtVLOySzINsKGPF5JLvPynARJygGYM0kp72YwGRQhpN/epllD+H0/sXmXLETh8PzfThh+fH+Pg7TZ32tvQY0SJxmEAVE0PLyBiZiKJgQMMYSXNVGTgh6uRjfx4zpqTaei+DyM+xvfRgZrz7FeYEPMvOxBg5DkROFKSLDKDGmnDF1iRq+zWT0OqiYpHMWtfJqeuhZ/1Fezfq39Fa+rB5YjNUiIxtRGNgXYxuqX7fHgl13ayy8BJ+BQao3+1/VLDv8PUYHfYLGwp0dmmaXbZgaVjIspI6jE4pIkNB+SQ18n3dah7gfeg5jcP70PmNQPsheo1CUvt9DN9/waA6nqTmQMyw4jUnPt+vTUdJrE5teFsWorhta0BLeCk1ifD20PwwXlmboRDQW3QAyHA2htGr8cxwsM2HQdrh9funh7Xh7XrAnaYKPhTbaJRtx/RvnHc8Y2luT5Rbt4D3m79XCrPn9lfYuACYws3s/T3Q3uUN6oZrfzjI+5ifwVZc9Pp5xMkovpfHszquJ2vl2SlmqyZnbPXBPJRfbcISRGrh8c1GfZ7d7GFqW9TP0h5mlpjluDIsK/sL82anT5Whn1d/6T4uUZRy8KXSl3ddJgvQqugNUyFA7tV10JhRq6ne0yR1PDn6olf3g8hv/XR9tV31YUsrfdPcmLjNb4vq5vRT864u8sjt98JBd79WPUHd8skaT7Flx5Ne3iTD0v1sMr2o5e7s54otizWxnF9I9nN1XvSvjyanfOpbbOKb5/NGXmjUrdWBdRNNa6xbs37u+7VbVcWcY8rfrWSd2CixhyXuuq6jXWv2Ws7seutXDWa/S2SzIkf5o1Neet1u3nn7LkR8yh/deqiKBBkaKR9TIFZA44qyKa95W9b3PWhJ+r1uqof7nMsgcHEBevaeO2nNlf8ZLftsuuL6WFkumil3r5l7nf7WK3rkqzCBRCtGlSNB6MTF/6yzM2W4h16rNFoN80cGr61cvFqa+tVatyPPvYVjE4+u7CsOllRdWseVi5b29Ms6yDtsHaJzFq0l0XuJ7gUoyY4Z21OZkOCoINtI46+1JASIBYghByIDB/PPEfnzZxwn3fRPug6Plxf28fVLEOi27J4yNO7dnbd4SKAFW5T0vfVzZGY44+n8w+VRTaLtPAc4rHwIP9T90EV3F4c83kdbP3yJaYOi5M6GP6+1ZgUxHo5TX8A8RwLTkww2Yw5mavwrlAw9WicSTiPl5qic6iHfyFKcjt9mLPn3OLy8wVw+mz7u36gd/rP50ZVfLivclntmAMLpADmHn3s7xwcHP5buKalTX2fal8z+anWHJTYCV9YMMSaeN89AVrGA1CJL8jXY7mU9wHefqcUAx9qMEItQQpTMpSHekN4+4ANxIDTGtfzc81UYsYS04nXM3Ecmj1jn5uOAuUqixK7ihPzq0dLCPtXNXy/mxeKpdtzgU9vkZL3weVZJnFm3Pp6O9zRT3zK2tja2b5TxY8k7fM5PYTUJurxSrKOvt8+8TmLKRgvIY5Akc0ClHrV4Jr+0TTcUv5HfszTzSN54OZ2p2YWHq/RFWHOLYPa7MbnNUr2HfeXGgzls2G88KnObOClIH8LjLqDhOY51HRkmKTSbKmB0LaXsBHh5Me5vHEg42kex7ebiNPUI6h1Tt1+CDBqrq5OPdXze7u7zSI2QyIlpIJNEojfgBHwY8gXzqU6c/S/s1O154YaSqCqpb6ilFSxl2cExb/L/jp01vhLRq6pfbUp46dsq54crMTyCPrvWncCqzobTHB2RTRCufupSL1XzGMAZkw9iAIrBGSQFPz2Z/KnvXv6JkiIzGWYo6QIjV2VYT7ubgzowNt7yzkBoIxEYiNIitmksvt6ReI0qAa+MBC1guOZUr7TVax2EAH71lLckYT4VUlaQ8eFtou+euJXQmAqrGqhjBOl4/CPStJNH/ViRmnsRzcvHzNcrnVK+XbMSSEkjp86VCQChF7LIFVI4JlTCGurKkjK/c0TqhMi9Lv2e6WJheHY1W1X2oQaQe+6ODjItNaKYn1+eDc1kFIoQ4I8MGC+57fxc/kz9WEC89js4q5anazSlVs12hnxZYlk7+ibyu1oV9zsArmlgFbWIR5z7247Kuzb59w4695XnzMUMhhO7ozmkIbSQNtrJAmMlcxzanIT65Q1G/4cEdSAcW4E1/F82ivEvyZgPMfNHc9xuFyNQmQRLXWsK3Ih9vWCLuH/8gXiBAoxjBkliMEEcgCI1PlvTPY5ufYzLXfPhstcEXyTp3e3cpqPvb1rZs+payjni8/SKtCLO32na4GGciIFU7EradsYy+HKW/PdyrKdefx79P+vaaUsbJgwTQ7NhjBBANkDR1AX49IiBGiJsh3X/Vzys46S9Y8ZJc1/jJtVzRyIK8mmo3EAngSUVU9EjA04pkYxjFddFgi2ZgVR5KRhpzrS6wHFFJRzHBvbpe5vJN9B5ID5XeEN2axALGMO8bdaLfTJ2G31KA9EaEK86tCWA6/Hv5Op5Z/NqxAQfnS3IFhiFGMu6fAxipoluKZyoeVQGIWVnEoS2FXzfSskZR1dlJVdpzKmhw2LfuT15Z+fKur4L5xtKyDtMPbfwn889dOvNzpRns8Gl+HB3b8KbJbMjSXtX6m8s4bT6OPNs3X2x3arUrmpkTMoUskx1MU14CFD9n6na+cQ2tSszXB6sCON4NezocHY2xz8HN7eBWcLZZbOdzhExpJApmb+ZXMEIdiVOHLjy6Yv6ff6723jpj8Hnrr2d24G8/C3XmzeDr7zau4E755lpbVxRwSIrjbWExHoMIZpucoa5lSEj95PE6NfConiqatjlie3sbuZb+mAobx05b474Q3Rt3LRHh7sS3N0Hza7P2OfYmvu6MovHg65+DozrSNzU+zrtO23rscZCOjK0e9t7GpXhj1nDx58NLJyf2HkZFz+HUOeT7m0E1MhKhhDPm7Va/TJiy4P22Rq6LDqcEvNO6ieHNReFUi0HzCdu+4fsz4ynzmTu9Rm6og2GL27GFT2c9PFWvRl2nxSfUew8xq0i3hdbX4XI1+jxyhBNnUObtflXVsnMGOYGoCqFBcOMVgfe39xYnPooqlmhMoc4NxTgHMEDvj4ZbBvp0Yeev+haervEPtHYl10we8TLiKaUBgLZGAzkDHOcA5AAW6cFLJ35JJuAOXuVvWlVF05qwTkq8zrcQs1b66XizPGQLxqLUtN6gFUw7NgtJtnK1Xe1xhBS26C3W2CWq25emU0qDDYQBEBTIWeWX3SG4WIAEw4L5AsXcEgkBst/5vDmep4BTfzWSicj6dmIYLdcX7HNF9KxrHj+Kqgxlcc/zJsuQFFpvbTmTyzwVK40pfBbcSYU9djQMQ6VVOio6bOTXNyT6mqVSwboJRvz6FoDOMGBjBgjK1eAsUdypWkXA9SuAZ9ZwOHAda0h4+0uXYCOofzxpBMkiIuYj7EiZrjrjuF/E6ku3/P+t293+T//fgny/Ny69sfqtBy0NLIVZOqoCBEcVCdQFbW+RZGQ3VbBgkVPobSzY1LJz+FMeTo33VnkklUWFxgxKl05unRfbbMrcxDviraE1DC/McG1tEVdpI2VWVBjTYERHsM7rAiBHyUlalTRtZEZAFFxUjmc3PKBUEO8hZAMgjGlIwawdQc2LclWLbQu1hAZbLVCb2OaRifmaGjP4UfHCC7XwZOMB9Ta0PVP0taUesw4X1FE8D/oHtnVSa4a8Fp23ekSMawQpEY2qPAyMBhmU6PRdClNj78CA3H0Qrgwyy7d0s61J7LzpX38i+6ZRLJxu2fC21Qj70mxBzUjiOvyXqSr1NNb64YlL8lwe1fLJw22+Es2in41VdiKOGi07Fqdmba6OLivZSHTe8+thdzp1wt35JSfs+/+/oZs3qppsbl2xurc/f8ysd3wF92fcM7Y858EXY3jt+vNHmESMAe45K9DfVVXbexhEXt4ej+2ONTBfwaZUsx/jTvRbX9EMQEdaOMLiBM5DKv7c6F3VD9pbnuZsQQ+S4CCSPCiEjNLvC4kIPcSXnuzA66ywhzT3TrUj7n2X7qj3Y0FuJkgMA7mgLnZVoiPCLl1vTvH+YW4NdZmBOdINQ3KbrXciru/D1U1BO4IX2T1CW5Qt3j5SlrgnClSXSbV7+p/f1FCPQeW8x5EDxz8d5qfhhXwM6DOCZrfjZ6QfuaZC6KDjPhJKDfZ7jg5+nAl31aLKBpa31JVrTGnovm58Up63Biq9bsxKUtOtqiBaTOdwZ79awnh6O5tno8PV4um96eK4s+HTfSfZtRpPNP1+da8wzWPzddtzqZXv9e1TjuHT34xttv0+TPRV6dTamnZYJPKuVtI9WLlxVYHVybC97ysN+Mt6YVJmyB+SyXfrfdB806+jlm1xnPqhAuy+nhU99i4AXfYR0aL+sMAaiORjkAaVfr8uhUbm63suHGox1OOjLTtH5rXffeYqkYS1eq39X6tLoWVqgdvVituUub0SCYJOHdnL1b68d2Be8UItWpp/pipXufsqlepc+JeYaYMNZN7OnprsleMHnvoBp0s2JMC9OL1rAddnyX7gw5d/ReHSjMrzWHcmsYai/jXY3YHoFWJkkqLsrCtTwfc95nGCEG/vvcFNhTvV2DpEO1lbE3seqsc/hDji919Mltp3ReZUW6Y0BCUVk9WKyhacnLkVdqkDwWbryVp5UyWCnJG82SaqTDtS6krhqNNrXYViqNmpRyuzpKOr4KnGrhhhVlJdx2h8JkiNKuk8fu8epYxQcuiK0BuW2TInQg17vK9guqDCfPN3Lpy8Mehz/tz2v328XKLr6cNT/A+Ouag+3urnNBNydkk8HVAavO5/rINeEhw7y6ppJEDbk2x27NRr4XtJKRQnnrj06l4Oc/tNbbIL6h8TxJIke1E4z2seUO8+EDguj1g4TMTOOqPRCHCHd9R1p77E0s96NMdzikDEzsdDHRE11DuI43UWOhozkc7xt3pPBwEIPc6P2q6Fxp0LwlOOfFO9AILYPV1pIcn81rvnwjeIRkQ88kCnmavqaGqGQdmkeyiwMnnCGR91ikcDTadeeYb4KQ+Dn30Yhgz8yW4uXxmyoD3ILqykp6cUJjvmhPMMYJycURRq2m0odN0pvltPqg00xm/VifezdjHr9tL0RTK4vaYUsRsPEqdxLPkz1NuW5tfohFC22+qAMhWRfBGIjGvL32RemMAYdUAMmx1rVsxt4/Q/aZsKqmYVYNs+sZcsvHdZQYtMXC5Ipx31DNELW86CRV4y8+dZISUl2TO3HWi/zb+5uqnzav5J5KLJRufbvc7u9b6L9/x+6Xn05aK2oZiBHr8KwCEAFIXB2ol53wdGVQdXu+OVcut2JW9TI12hryjS67m5HklJSc5Q+nEO5+EsM8285hvHk/Mnl5n6S/gf+6vN3npk9Evb2cwCSQFLemDkXEY0eIDIVsyn55Q1Jswr6h85PQ4mHoJPHwUppFRARyVRm7Xi54e4uQfFSkZOW6XpfDYOTB8Htd8zm9xhgwM0sbMwUkuY+N1dfFFTvrnnx9cjcY1AlAhRB4oPFKEl4joJh5oJIGe9B1ud3fU38IP0/o/a1hldl0MHXfTFk+NveESJbKPBelYrU+ZOtktiBnB5swHNVx2/ChZBX6ywyEOsgM2Q4DZAvA9ndZyRdg2VHmHwQGfR0H9O7/7nb7T6OoarxPc/5k7Xdtazo7TUczGwmJ71mGs4+22l9r/hT0e5/wl+snX+vyG/DvP4qwXvnpY/GA/XSMZC7TQl+R5zvZ9ngdEB3GI/FpPdrPhp0dPS4Yb/LPtP/hL8849mVv1BTEe/jmR4dD2tLaeA6em3pT+FkpZdfQgTMs1+tlMi9xPXsgT1j28z3VEU0MpJzJDVzvr8DosHHZ/y0YxJu6fxt9KZzNvHWpdj8D0LtWqZjo7qhB+o01/WXDiuzfKadPajpN+9It0lsmIf151uuzWWrasj9wV81YVwqSwIc6VxiIKwD2Q49Zz6D90nFQM+NaVLU3ZpdIqz4vGoIX/x5rD9R1oKvBtb79PK5+d3dBZyS11EYzo8q8IuqoxmvwHbxBIu+qi6O5ATfKqg8MvfmTvY2qP8eRaS03Zc+P+2f88ONxz+sanh9K239eVel2bv3ipHRD8v/JQ+9eQdFT2iB+OqOblPENdS4rz+13AOj0/XgiDW5lb5ojI/ha4ZZ+zqGb6a4/tY7v1uzPS/bymky2rH9cZiZaaMBzYDgYXft4ZdmPFrs72bfbrYR3pm7m+3aWMhKYgRECHcLyip8n67evOa713lovRGnwuanFLCUR1wsxcYmnen6NX44avva/6XKXm6fSL/5eeR5Y7Z/grKkujMF8qx78fMEabzloRfvPJFkMPAgOwoCAhr9Wh1Mh+SOJno7cIlehK1lbPiy6XxkBY0PkjWyACZAECBhRgxO1HdOU8/4yTD6QfnmDOazX3P8RMQDHp96WYm7Lb7VuXH5rbHEjJkiDXuqaAfnsoMil949sbBNXZcXKTYLBAECItd7blt0JCvOlPpofvwGMYSU6ye+9fLVCezcVwGMEiET6qg/SqNNaKQGaIGDBrvQh+E1mxfpIDqkkaNMV+yJp7QtJbyaRXWdiutatJzyYk+hBJ3rg5+VCEsl+mUECnSZgvLvId2dNNMkiz7BrPqsDC0dyOWfBW11OKipgbQQAAc88sIK2Be2azEWI5xp0L58lUspzgSAwpvW3ogCu+qUejNuy7mlKc8ivJ+BbMTF1N9vJGVzm1J4FXb+iMa1o6Q73sGZOB6sogGVStyqFGHLMesIuXTDpdkmetVWsrFED868fVwiv1PF4Ge10CnIrp8nr+L1DDKw4p/gE5Vpfjnc730u5+t0VUyU9dr7mCtTVas7u6rD62q2rYpqikr34R85R5aj5/By9al3o6WKUHOEJ8MGvTyItZ7B0EMCXg+lOo44kGcBHD2StaxTH0Au8XeAy2qwfhRj8nOzeO4lMFV/uY4mAtNKeU1vr7ZJPpEKnP4L3c4nzz32Lbv9fnf47Zd8Clfq8XPlodOTFLxTvW2cdmn5Z+vrvZOd/J0JA1Gl3p3boElz9sXkKXbLyQYDXPjx+/MYNkYdBAVilOE1UryqqFEFhQD+cE3rf216dk3CvZwDOnZpmFeMubV5UABy2JiR07u5Kv00qc6dYP0sA7zJlOQOQIjAFMQSnFNKTmw3W8dtUrssaSKR3MHhdkzv3ab0zZkqXl10hBIKhPrmP8NGFgERidIGPiOYxyMwRo4orCMLNK54VbMBnfAtmjJqmAkWMJiMDD2uU5YDzTxrpBubwjU8GJOCjaUbUM9DwA74AZbKKDadMsynv6t8M9PDSNqIKEf4qSWrxPPU31UnGSWJK0SJ4ElXaVO+cyGmPQyd7ao1DLdlbZJ87cKESo2Yl2zNVqjUUiymftWfbXZK2jEuf7f5MQWSLVoqmDAfTjt7bRWbBNHUt+6sR/pZyLVh0wNGobyNZkfV1jJ2sG9la9cXLPGpU66x4eoYprhLYzmVOeDp6bGaCFbo7Dz/XE7hWfq1KX75dQlHa0QOBqNFhq5LIiFrmGB8HHcSRXyORiI0RAHBMLNPeXfejvcVEDh7fP1i7vfdu9E54QorDvmc1reih6jev8BElfxm4vqnSOEEIkHE2k2pRB8Oac6eOomwm3HvrPNKZSZKBhwYJUg0OZj3puet+5nico58YCo7B2Az5GO1ADNDCr0sQ4PrvaeVTZpTteyjO3a7U3uKyOwQ8+Sr+yVTfpTf2jX768V5XEEptl6HAR3VMz4skVbPg6PU+I465+7U1unsweCzuQU0cENQ9cXf3dHxjiYe5Q03xM1D7oH0n/ikG7LaydPIv7rVqVK9676drhzbrNt30xyOK4v7Wj0O9KengajVU52B26eIp0eXd89VLCxYK8uuEfJ9tX7YZPwSgkeYjd1RT2aerLV2MtSk/BRFLDoXgsc8m76wXmHhXtkISYs8+gguQIsBGMggFyP4HBrYg3MKctT3n5bDZ0ufU6ky79+jXTZr7dPleW/8L9F2poF/jbU5rTiXblyrXZNaorYI1Rh92W+sb2ZffJd9uig9ZSh7AOfbL87L9iv1qfRU+HJEihue+VM52Xr8fVURXvcBXa5t9nT0Z4xrXbQ5s6Z7MNk/I2fHawjmBHe0PVZPqNekSFga/NeCi94+H7mza3K1jjO55yl6faZB7v+F/L93k+EvNEBRSfPB94v4JTchxGSHIxjZyBIOdAweydu8zystTR3LaTfeT8f9/PlqgrZH3K3q64bMQFGU9ySltbZFhUHKMXR8wXLAn7dWIlCOdBwRki7fF/0edF3Rr6WnU2c96hgJ90B6RkEVVGY92cRRaK2xxzgQYrHMBQg4t1j5W/CT50k53pGSIhkOAlH5+3bfUKb4rEs7ZJAqhLdTPD4qKCdIzi/0dT4T8/FKS7/sLevvHeGM73J1a+BZODzQykfrg4NF5oTCBi/Y57r+xsYS7uuQjvPXaOVtjalQyq/afk88R2c3/xkaTXso8fowzkbYuqwu5r3dLYU+LPGzWIA15M5jb9GHDAwvzKytQs5x0hGKCh+y5sqgHBFAcNE2yDKkNUfUVZMHSQoKYiYYDLRz6W2NGFWuY1zaN2KNQWo2i0pYO/xVqfj+sE0LijPZ731enq4Gk9LVKwLpGHQCAFwgbtAnhX8Llu/c0fr5p5PCvg606srjXd91EeWDHj6qNAdqDDY3ccpzdDqaeiqi0dWFBjm3LqKr6lc6YOfqXSaBzpn5gc6Hjqp6NhvyWs28ffCmOIIdgJoEK3DR2xc24jHKblyisNwTCn4B66pQ5yTk8aj0x5O7LzlFeMGy6yBhIYBkgDGGJ3RIMdVc9+6QKmBpIIBIOc2IEYPEgpK1+3jrU9+vRpoaMHGHsbF5Z2s5zM93nnizOqnwgvlO/mGVw5UBKn5sbKPekjSvp8mD3N/Q6CUWbph5kVPTE43l1wGYIAkhmFrQ2uxor9CVzFba18WdOyRtT9V4lfWAh6FTe21auihc7h6hwrcjP772MAOY2i/ucq05HO+la/HrXYvJ/fvnqAXyA9pfR7Kz7OXy8WVsBNGGcgYQgglCPn2aPNnyxeLzIsUBqulhGxMd1nvla18e2JhL30f7o+bNvABOeOzPmqImCfhaRdqVLqQrwdvo5f1WtHhvm2ZyAIiKYjlggSTQplwnhqreAT8CNlwMeOXVfDBGduZM5LQdEC0MnVdqXaFQOnAwgGCWCnR30GCUepgeH6vY+Y+HNba+H4+APrQAjBkFR9SLUUSoIlBWQFAiZGTSJkoZItALIoFQASoKVEAkExnv9vs836u3zZ9THN26sG/DnsdO67Gr0yJSwE4MRFAdj5poIuc59hIlpKJGU0GMY2cgAUBQUtKlKhQiUK0iUBSrSCtNFBVKLQgFCJsBA2kJtJbPxAMtQkZQqi9HLl2b8+5d0dGumqZk1XuSRu+iy3ho/Ne87bFpfe78HdYeiCBNoqa11RKKi7/mqKUYm0fsMkyh/ddyl6XxVKsSYCXGOU6n5fh3pP+8/2WvZi5HthpDIopaAIGVEkDkYEzV71C+/41DjnM4YYiQ+RjGrVGSNl76l0+EyatTRaOORKYcNDQJNjQhWmkxpQLJa1/mmP/7OR5zx+5Uaub8ObmcTx/CfajZ9k8ila92TPpYiUxQ1BWOkSolHjJqiWyyVs1XJpWtQTOfCv2l7IKx4kIEgmEQBJKFSq55OD3oUnowMGiAwYPRQnd88+2W75q7+e8eki5egwpQZgmH6i7BMC1zZuemXaGbXU6DRfuqzP374hZ661f6imRtZAIIwMEMAWPOBW50UCMgIyiIiNXAiqZLmoz/Pttayi1Ft2Z1HkQe5hfsS9QY7hDv7o/BSTpzp997Ro8cmxySwskHtGCLKE7d4hWhYFD+r6Iw7txBGETZe2ZuEY7DT54p9Bga7n7k97TAU5zt7Lp7guZgWb2aN67uoXZaR02m0UzeqrsrA63d1Et5BSqC3BNm2wmhQ1eF6zaMtWRJB3NbLww+v4HmPL1ohy93WkL0xhb+2+Q3hYtrfxAvGIqRA5ACwQFwjAKlhjLfWo6obPnpzpWPfqR0Lqdkb+Xv+Di6wMyt1qLjejOQGmTw2iy1VYGvpHdKvBiPxmRpwNgnqOvcah/peuHzv93PXaPX1X+9B1AeRXSwMEmNHpz01+lWasqola9cmc7GsheNSoXSm+uIfShzYGbW7JyqPB3jYofenZF59M9TD92H5JZKj+xU1qnIgzVkEfi21dp7PObYuRqCABzkcGQQdAD5Gcp9re+Oecg8S5jMEYGbq2zt4oPWDo/MFWDFEGLbc+vVe1phSVq1PQB4EBdok8AfpP7bIDfYiqjdB+QT/LKgKdR+oW/Soi0ZlY2oaLGb8olOAHKyUNN4ut/u/e7HYn5n+p/tJvf1dba7+bl/rvj5qXcfkl/q/xsk9/4f5VlTSmmJHw4j79Ky9NOCg9KolY5fKBxSCLtLR67/1Y3y/xul+evo6p1WqTTKLCO4VGOqtz9/cmZbZOKEvp18lk5FGEHS7j/jz+h5uaF+BruNi+U2/Gk/LL9Zblz4/XD+0fQcxP3VEAM6ft9RRU8dvilz1LSLI7r05wAgjHI4IEcjg7VtyoYwtS/3y/FcwJqE1lh+aXiB7j4oQP/B1icSmTzBkjTQlVo/4/fL933Zl8MaOfZ0fpp/wa1/RnEpNuxgxmiDhGFyOvHK0DXz/UZ+DGHglySHnWOOYh81d1/rl8wnnd90/5aMmsrypJWOMXGowj8fIYv3Q30I72j/rn/ff0j8jxGgNRj4DXXn2sxP8SSHic4GxT8rbTU2JDcqBj5d96KPVsHuiVFR4YGhoYUx683RYPPP0INM3+j2xOopFTPz/X+b2+F/XtLlpK5XujxQSL+PN2njwagc/zMJV1ZSprKFcjRVfRl2X8qkmFGe0/0Z3Prt/FPx8N6chjnCgbhRysL8yNEQ9kRdBDv7kE2ppoZG2ReZNXMhNthjndM/Ggp0iwdMEBuO9bHWfpdZq2SDUTwSvubMToqJwijhqkGmUYYzTKs1RT/FM62L9GuULz5Puqx4qmhOPP4piCqfvknvVQHiKRRVB2SOgLkFmz18cIaAfa6rHGi10JOVGamdCpe1gSLwK1vxxX/qpeG7TPftRc4iWT6v9+h4XKdCmDIiexl2DZDibgYADaXj7lb9z3d7F5qapceXja4WDYENAENCbAGwbaRaASk8Spk+2yENygmQDaxXIEoDJ1IalKWijcOQpojAEQMADRB99evP1VWfbGXkn6dNv+1IbpyKRRTs07kKK2cjbLdNV5JRFO6+WRW45Pc12hevpc3KXP+bR6fmijbdlp07/5w8UIB2M2fz983fU9x3VR7FQDOkbKde16qRJmily0R0BlvqjqLbamZbTcUqL682Kl3tUyHgj2fMlXwitRKCMRkyMwQIt3rEuxta1Pz1Ut1mHxsVWGGlDhWlZQ0eoFZeeZXoelp/zcu4H8k+sO5MnfDcn3Z42ufdejWeXp7VeHumt1+c7O/A6+/Iz/JB0sZteCThwH8GOCmrEiuX07qePj9gxfs1xSx/6CnFGWVK8PN87qAxW+fuomWetR4c5Dhor5k/aTKyDZiHURkECQem4IRKc58Jwgh7WxzzToPrN9Ca5h0O+icI3p7fXbEpdXficcur7WBikq/p6k+yI+AUckH1nIJoTTpEgILSogygOugIWzvzP3q2njh34N1Zik3dun76uN11Wmx4qWCpilXmnq4UIh7iSRXJdDFVq79rV6x96q7EV1f3G+km1gdju4lVGrK61fjHSoLEDkhESZ3WXp1OTYS3IJbuiJDHazBw2PgmczteC2NfJu9GH5+qO6pn19I0aLCjmyv1KKT/FeoxmKO/q2vUethJtkXTu3KmcYtsq8i9kiFtwrz9ipIkqQuIU3BYQMJX0lVtSQSYppbFbOShnI/eqV0iYta86a17HMtVuq1OOnXcDz1kXc5XorNTTasH21FL0a7GK3BT00461LXYtzh7QGx9Im9zov0/C1v287TT4lq+FtGDfSVqr38+ZijFYdZodoPhpiNN7kiDNesupW75CmlEmrsq8nZLkAKfmr3MDusRipavVuLNWSivxEMtrCplucnJtV6SQi18OBB6wHY7LF7dkZlw55JaavDRwgzzLVFdeJvRZEVMb79m/sTzcF4igxoSoFmrDsY1ObsbirBcXkNx3zN3lVNYTSgPwRWcry3vv6Xtlim2xzKcOVynwvYkuN6O7Lb5Wwlpz3dtjVvjS1x6Gl5lXVU8tDehnEeJJJI+XKgJN569F6NvG9vgfsbN12xqcpYWcy0bFMKc8Ny307tmvI1aklrpJlZ22sSAmnu0iyH+D9/OPr0HvrkNpXtOIwUFhm2H0ikIGBEqkQc517xUZTvJTvvFsUBtPA4AM3EoDaOIR9xH9PC0uYgDQEBlpaPTnGGTi9RgI2veDnepolKBmrp+urt/XQdC5t/p09xBflCNjPAztsueSqCgooOYck1d3M5bu4ebUn79m8/R/Ni24ezI6rIsjoMOuwrYvwZgaxsOy8tsHqZ5XUzM10T2oHXMx4xDmlowjkh4oc0uT3YHoJyzEcMWRq4cmjDEJsIYjh5tXstvee4l24iUHA1LcjUEnqgQowdBQqiGZLpIALydKzLShztnd3d7PypZY6pB5Yst8jhTsoNmnIXwhQ6Ejm7HkjMJKoIgEkJX7o5iGQXG+oOt0W0U92beB7z8XQp1rKVOp0kyE6t62ffq7Z2zu+pruveZJr6usggjIMTXPJD22JdM6fjDCLnOfhnwZepjrpW8GRi9p50jqXHUbNHs5dx5cRFEsLId+WuceLiXGxZ4gFq50ltaPXw/Dh9fpunhf8c9tvEHIgDVadowMuQMOSNd5WI24+uh/NHxsPdm1nEQy8S4oQT2BJ5UJoh6obkpGhlz29V3LigsA6jw4WefiLjW+1KlPQx1HPSR1aW51Xn6imrQBELCSqOGWSxs22o/xTec0POrgw80WLpTVnV7p1bIxsA4p7vULN/7tK3/u7hL5R1bhzGCUXNxMFypKW/GxL42Or3zU7piLd4xL0/67Ci8To9IUUsEPvVvMJl/tVod9Z0Xtqu9yh9vBNjZFzz5Tt42NHBvN2/7Ipip1VjHDmxqAcU1WcS779OhRb07rS1D7NqfxIPVXn4PjPcqRRHRWVn4OOV2eaG1anK8lFus+XBhN69h8OapjfMO8u6C3nMnaZZVv3dg063NRM3zkYEc4HkSThzJpnD5dSQSxpA5Jov7TXpxsfHyYHUlVRv3YhqAo9kZII1g0EfcvZeKOWxCEmmj8LdLku6cpIyCnJpzMoXMyqM+5hrWOFxBkU+9TVTNT7fhdIUe7DVKg1s6holQ1EQkNL+S1bkzeAZC1QVS0hF1K5NJVMTSNGrJMhaAyQzMNxQlA1KaISn6JPxr+jvy0qPfrPfy5EU2TrJUE7iCQyTC81JtjcnuuSaH3qeX+N/RZ9s8vJ2OS/suV83xCYGQPHQA/ZTJff/Xc5YivBUgYT3z8+BeOuS8OnqvJVOuFR/V3Xcr3Y729Ge0xJ4nbykYel1Yjc+dJOwmHDoQWmBA81Z0cyfoLxjAiNFLIPm4f8/w7T+OHb9LhVSOMoMIVdf2HL15ueGtWJCXci+9ZzUcaWq5YddxUYhZk37al0qo4Z+SVL2Fiqvwu1OpwXDEQKcwIgE4asVHMr9dHW3SbpWYoPzyvmOViIKw/C/BXIgwCeV4ZlNgrXJdZ+F7B17MXDuHI0jrsA0xEmlfZJgmzDPllMkmYnLglSv1mOsf5Pk/5VGCtFTxVTKZKGu48zkncoSkVMA+CDEB9atEJEHpQQYgyACnUoZL1bvNxdQGoHI3A+uYULRxLydYn2yG5e/ZiHUebfXOiuISaSCVEe6j0qbqrLlV6Ueb69V4jZcHVCuYqnTPTpSZqiZPSJli/eHPWqdLePube2NA5mUrr23thN2KYNTXs9yhePU2dkxErK8XauWAJQsZcsQgaahJKOofb+ozCIL8hl6ERNP0513WUt355GyW9Sb/N0pqMSopL/ibdrGeywyrF0WVeWLJfzF2b8T3Xgs4oL829u3qS3mUtgBgEkCNgP2UTykwzl4rz5EFPY6+mw8kotwy6KYwbI1r5dh7+kaKus2kQGpVFno2BYcNWWRgtKVYpBaqqDxqC+RupWKrtw+02mikr5O8msq90XilGSrnwXY+bXDa7rZl8YwaqLfD5Lu0HycPbN4Y7JDX1w2yYSvAVSiv3QEyMARGIgozocbnZplq3GtTmywqXS497uzqdNjwcJPmEAUtdQzLnxoIiDaHo2O5ODpuw8tuTw1kmkKqfCppu5+rb1QKjcHyrMpHQyhI8CEvsodPUgIAbUDS50gkC6rgzmDjjtyoldr9W082We8Lnc3agoNr8ix2mbPTGxJPr5pt3Dhkr/b8Vv4XZ+1vUF5qdKpkn6AQPoY+yElfz+U6d/nsd1zy0Wq0EY6Kkb3XUzCFJLRTk9t13uqfbC0npp1MVPDsO8MBU4ivkgkEZBH9ifmw3UK018H1ZGFRZ3vzxK1etcbYBcJ1hlKCNXLyePKxBbXv3eIqbV70SrMtU7dB0SrLCXyXr0V/IW3qYf07Oq64nZ9O9H8vR1vx6HnJ7GtMBf/C09pznk8L7WdtNjfycNHhGoGyUQxvEMk5NDGhNMOPJ9PB+vU3vHvT/X4X/0/WyT1uT9gIvXvwL5XIqXwlUn6RJ1SOF8fdf8/RZO3wZTHX1433R3Ne3uOp0b3z8ft3Mvv/PzfPsisiB80VtSaP7IgZgcJDlEN2wBuI21Ic5IxnPJzUISbMc6GfJIjhJBLnBwQeq83blpwU2/vSw4LlW1hmkPHJGiQEeUVFEzJKn3ZZdtXndizlssM9bgPDXgfqqWFLUVJDBKC2cHp2Zfpey2tNpRqpT36fuJsTNW/4Um907HrLwgmBFgIiGwYUJJF2whIILUmh9YXBXOlUzy7X5WcFvDJgYUDx5YJHh9r0kTXkr82YuS9ZoMFTgbIb6DkKiiahzJhBHNHuwDXhuPfimL07Irbb0PF+iEE6pdzMyTX8WOxFVHC/yb3Z+eL3ogqcbEF2fHDWUYqXilrXWiUoqVsD12hDz3C1iUAJb42DEX1QKR+Yd1rOoH1HNuz+uOC4ij4vtx4tZlAfi41poiyKE1mjTQcyZFUvGtmndQ6nLdxak/itT69YNwc6XIKqqHjMCqMkDIoKtxRw5ShuTbcMiHDb8koR1uj0S9i0GKL1xo6NV2txK1I6juEYpr8uvtRKsiNJ1mBC0obWB24YFlgnBw4wONPEtW7fOIVdjx9FEyXZSpKV4rJh1cxnyNIysFvGl0/Wrss8IF+/89FMY4uU+f1uhv8dfjrXxaEmdPLKxoko5NNd2cbaSp35W/RjytfZjA5o7vwEufUJH07tbN0kvUVdDSKVqz5nhHpK/P8VmEyU8I7KCFlSnz6qz93iLFPbnejxZKUG2JfyWrW9GZHVzea+ekvXaqMVg6+K5khBriWWrntVGU0lxZcSCDEXa2sdBnSMWglUvRMUNpCDFWvbc0T0cZOsdVFM+6PzUYWZe0ddFPRMICVXk0UuHB1YPE1ULAq6iYEykssF9KqEHeWbPHd0dZ4oYWaA2Tyd1CAcZE8yS+POz8kffzdnC7hpA1JBwQJIgciIQEdCT52c/DRj4bWUt/YEiALqhT+jkv3tyq/VzAcQtFTCwWyxSahRwyI9NegEHBKVLUd4gYbmVmPpuUMYBP25x1n6QWM4xkwWYnymvX1UusF0sqaFE0F9duLG8NQ4nOZrkmdBvL4zdvcelfz4D2TiHszx0QeaBhiw5PhYxhiBOeF0FzuKPag5iYMx3umAFzp10hb+FvyzI8G9tGpkde9RyPKQo86r9rD8daJcp/ZJQNC+0k/cnCPyQOoTc0qUKGwBsG0TiEm+Lybejq7PY7NMAZe57u/1uPe8OntyG02Jc2bhasZ6jU9eI7PFsZ7jXYnNc8oZvFcZc2XMRaqqHrv11zVi5WfeM26zyxt6PrJ/B7fF0v+QxW6dD0lyFG+1yGsKfi3CbjV0AgCeJXR9RkcKbI2ST3sodAGhyei47Pic96Sf70Xc333df6dUpXSxO0d0QTlmdWChU25sIZDAeHh5Zom6tOGcdnRjmzXLOXpvm9Cy9NREkMQuWOELOKaUyBmQMy8Kq72uZL7+Mo0QnqN6Iyeeg4iCG+8mtGtEk5edZSqlYjLgwW8VcjabXh4NkQjBzRDFkTahCknAQNGGmzs3Jb7DG15mC3Hc1ub0pHV3Otknr1YTrU+anUUePOpqRZQF+mVNYPJvzq9vTgCO+2lU41e44ABEFWvrdv4HT6qp28mF+bhZrYmK2PNXzWHOmSzCrtYWS7RnMoi9d6hSp+FyrOlqp12UmkXt7DoFYAVjZpYSc1KBAFYhXvhZM10rCZHRFj/FvF3dqn2xny3eHf1V48OGzb67PAG/GUjPDgfSRq5dPl6j0+vh06oR+PYRq7FWX61Y1otJHIAF01Qz8EM/TFkq+bezL2iHj2GS0/hXs9mtoxT81PXLMYxjGs82fjoYvYh2EM5WEekLa25SBwjCUjdVyrh+n1Uar3en7/mnRFTcWfpqgA5AxhfIAAVNjmOx9L/KHWCkSAHt9WB7biOY+o4IjP92aTy37W62RV7r04b1Qwb+ismeCLGFXncmOG6pSdSf8uHedSQX+IZU5tmjQ7yQnh+Fs6fuSnS6Gkom1Ym5Uc2lvYnF9M3AgALpAbSBj1PC0tVIsPsu55QBR48JIu5pMbix41ruMc+YqaSBd1Yeet6K63avZ3JBnIqgCBEH2VuRicRzmuVqdwfN9p+m5n+11KT+36TphCRgzhC0JqYNgn0s6iiLt98Z+4Iuodu/KyD0RuWVLzHv0HRYjdm8r9VV/6z9OBGBPIOQ05KJ1klrMBjDGRAiNkOcgmNLqtJeOUIes5Nvz1aLqrOfcQ2JtsPXQ7/J5+g/1jr2VLdEqVZj9Py5VWVSEMNNJ34p21UTqzL4G4OFC2GCGhINJgzUM3vKdUfb6GyXEevB6IPG+BmN3UrkHdZSWaUObgpEMNsKCTOyzLm6Gtb9IN32q9x0MlUpQqMG4Y3RqCBEDERnyS+DhIxBhVvzhcke4834qRFI/0MGc7+4DnhdZ0eq2RKqyYyprsbvI1MvaHxIXmM9vf19Q7fi2/uzuYXtFTKxPABCmKZqSCdKloVdfCiVGZ/HWDlPp+1okHBGtrb3jYtAgAxDFaF1YjkR2QeofPi2OO+BbbXfBLcw2l8NYXOq804v6MNZ4QLd1mwqzeHNPry060nA8zs34L/g5KTRUyTk5TgcvBSK6HNWHCzqIywIxm6vTiGeDt711FBTFGxB4Zo3Oj39Jtfb5W/D3tWY+8pjAbyMAY3SQBjGlsdMggS38Qsi9jMlfvs8zQyTV6mN/VuBCoT+k5xsIOYir0+WvDu9DKZMfP+YZM5ePg0Nrn2QCO04nAv4IyTc5FmAZBSNAm79OsSqT2y7hStRZif9pNSg1zNhiP70GTX1QvxQjuMnqUXiApOIKyApFNSO5NQUOoLrBVyK1NCULWHBVCdbdRzcXTGzLxwakbLltRKvXSKK46MKljwWpv1pebVHr/H9Aqoqz92osKivw2M3L1S7iSyEo2ySqi3e8q1ZfyICQXK/3WBsThuMSO+9PhDSij6fxwUUKaTm9ITw+8yIiXT3OHDysN+Ri5Ee/txU8aaugK+DwudznuNjvOCLWCxEba/484bMNVIpDnHTeJIEREEFxBveGWWSH7NatN8WOEfe3g6gp7n2zogv38GVkkzDePntMOsgbrP01aR/CuXag4w0wG2dJidou9e+9NTq7RNNgQmfprW2zcyw9c3pZ6MfraitUt+nugy0YRm+zB711rZS0M1OinG/J0ZC7xrqbw3LiFieM4i+mYk6DwlvVtGqUzpyWvT63cGJux/Djb+UC4P4mirmWyK0WZ6b2ZTAzW8s25Tz/HkX1Kf6QwGN9iiahpBSA+k2apHz5O7b0dc2jS5R2jll0mkIGtkAc/K0kYHJBJECIiMCIHOcgRqpGMixNRtprIh5eM1mmpRSunGsKhLZDe4d3tBW8u9JlLsVSI2N5LJRxFn+xP2vVsfsSEEcxiJ/MY6CByIh9KMNd35hwd/dNp7tt5tfjJ3bMPHgr0Xcp6aRyM+1n8DqKAiKyrbSJUIUCv+8273M/DdTl+X/0/RW+ucPP37xHRf1cfu7uK1SkMQsYMdnArRra1eGrNk1+7+XQwo3umt35IadXjxpXkx6c+yxqQ5DFZ2/ax6r8+Vavmz6e+uvtvwWcjUFeywkodT3deS5N6mltmLZ0jPX1Vn698mpMu+7jCyorZ+nx6JuixEs4Sy6lqMtbTFN38l680eJYRB/QO1Xg6zFZhdgbRTBKVYdk62wc9aT7emW3Y6MkiIVKuGc/Stx8Yl89oTuul16FU92OBuv9X+psQQvd2QWkBV7CniUQOs58F5TwvJshhPBO106WoVjudKQ7Uu+meV7KGK/Sq1JzOZOEdOV+Ea/vj9PWbtWyyR5qqz2c916pvTbJlin55/J2KIr/PoRq5/mmn7P7vPj699Xm5ooIvSriKpeztyS8dPJpjrKoNcxy3+lm/EopFzIr8uPp03hXzZ1akVLuf51xFxa008MTejlqFMkxzeeBLbZ6+3Pwz+jOPTDegyraLBW53KSY1weDvfDtSrNJ+ir/CxlP34Xld4SWv26l0KDr60/DBzNjiGGhgvVb/DuXpMbOo9yzr526a7AQLPZaToosUnc/lz2dvCpqf9V7OqNWChxDMdjlz+GGTX+XZaFMq9Vy5J0vhFJ2Hy59vPX3UTppVUt/i3y6zgieBzmsg5A9HWcJrg5lGIKvFCbUmiT6vVlJUuvStYrO1dkl7KIqcmNhB9vbOD3v6U7DX1zIOPsTpzRh49qKx5GsZIsu7b1tvsWxDHXZ0x480Lr4gYFSYhaISP+Q+9+LrKWr31fGOl6NTxjdAVynNXYBhjbQDaaGl3pcF3rx1LuPxt+eFL8JSl6dsdP1/p08OjecuvcT28p5kXseXE3PcJMMkDklvbsWT6cO/LkjU5mV9Z6/pO0Nt/ELP0eO+kyjoeUMVuruWTTyU/yLQuZSBU5YX69nEGTrXXQ0t+7li7TFBWvTbo1rdCxticTL42iCC4iSeaa8QFMXT+5zmMmc5gFuM7TJMXeiBlbhM9cc7SJS6xvZOmHTgx9Lb5O308Gfo0Rt49iUeNLj+UMJWL+f48hZ6UlPoY3EgPYgY3SRjkYxyMcl2gCGkL0Ru+T6aOv0exj87F5zxwBpYEm2Q1DGTyQW30oO6dGyBzu8sQh396Obf+cr3kS7yuNSbiylupEHNHH160dWqrn1fL7ayKb0tnflKcuO7RU7sot0+dpezXzws0XOS23R93AjQ805pvQzebWn7zMEzSBXssw2sV7hZ2f+Qkm3z3tzuobFo2FJS6O3BQrWs3+E6ydXmeQxst5MVjbLtnnFmsD6UWXD1GTPFZ66cC9pdeky4Xgy3gTjlUtZs3CIZmzjfgfgqKapZkkoH2sJ3N423s569XzmihDh7ob7tc3NGxbypVuLEi9oYtIo9YkunRMFl+MPCYMY6lPC5aZBP0iiOcMMgj110bkky5HMLTCgkSqnjKJMJmUODhcqcFS23jxV61eHMlb0U/CAFc0I3FbUkwKzdNjXlvaOmp0YV8PRQrbGEbz07o0yzTKSbp8Ctlg5FQmhIK3N2hSVfHWbQpySVdbRmS3hIxyBLUINnQkgGi9e5ilVS60iFW0R4YhibbKTlijDRZpRROIhdTKsZJLkD6kSkYya1CSW29iSsPMRPq0Ydd/mZt6a3LGXS7HLaYeWr5pq1XUm8L01U7hwnT5sCdi9SOTEGB9pZVK0dCTyiVq3grTN7VWkLaKhJTT8epPHlwR1bUiEqlFF29XPYqi0N9x+nTCgsG5SZd0W9KssGvK4/cxXElrVgKJDJzHRksZm6xarTCudET/Pp+L99emYQkv/o4Z/X4jMdXZw7nT26d5nxnFvlg5yX4QgCSVv5Zkr/ncC0Qdg9tX+YmMT1eOpCbu5xhB5/bprHSa5rUOaKDwzLXonx3f1L3NUd7CyqCCOaqivboE2KeQ/NUtTNVqJEAHIiTLwgM4XPZu+GCf1DyuI9KDLpe2k/OdwC6RixYA6t+YPEhXPeW4NjK3eGvG/qvKkC8r5vTRcxyyVfPCpDZ66zYAyEDDfSumQ4OdTHBUJRrDt3Si3ZMaQgPzJIP3ftH+2qEUORVRMpOBM+OWWkUv3lstUI2FI00RKJFSE9kuWkWxMhkjSEsUq1OcK9KyOS4BgMuu/jdFjz1I4kqpYEa0TNpYaKipUj8quLJZO3a7cseHkuBUh26bUO+jIL0M2R5MjwzMI4uMHkcvssoPXYzYHlMvkMOmrTSnv519rd/wwJkJrCNtK3it8KX4/qOQnTVj8xYFFUHtEcgykZSjqSXYUVVO5aHUjP8ZmsePEBTIGBg7cxzb5OnCtltdHRH9QcvVqppSx9rcEEinWS9TPLbDn1HaQEZb3jmNblODoHecSyvbXB3GUPdekB1mE7zhWsbFYy5pvYykqpDaPJV7NQCejFD8vXgLRLwSpP30ZhrmuvStuSJYI7soArYQNcrh4mrnJ6mHXlF6CE1ggMTAJTBlMIAp1lB5uCq5E3qpgbbDyJ2i3P29z0e/zR72apS1jGM0RjG1b/T3sVoMOwlEbvolGmmud1q/MmteWUWVUxl4rZGmZmVcRY9FpEJRzlOE1T6qPIflLPlnXZSZSqmQom04qthQc8eWZ5LrXWXTYYs0IrpNtwP/XQDVIN81RRckrtKtCD1LzTqjpMu96YwWurWSiUxU1c2zKIYlgq1Q9honOYKEHiAACCBq5ABdcMAENKK3pZwcr58WfsgA1ZD703g5xwUwYwVFI4NWIAEQfaRDQbGt2XU7W7Qm4YhtEMWsKuPkuFucrl6epwtXlS87iO3Hz3ZdLYWrqQ+r9uSnQ8kvhvUvpFh5aWdViucfF7jqPcnTFeyhRePXiYZB1PSzT2f+hRwdvq3HWqtffbxqQpXUtDGpR15zFBqZtpqraN8MOFvLBobYy1M0SZEeARkgZqjqUfC6rcHAWvrWkX5dGYpPzymKBJia8gZJFGlH7qidWta9nU+LMd5vFTL9DqK/mvolJQgHig2toERzhkgRUm90pzGcC2EXo5H7vbz65K3MnXvuPA7F2o30Uv0p9vRfrwNKnO7+oNGjbXTXD9Rr1sfWksIFOr2hCNVKivIokMz6O37dPj1ar/Kxaj2Wuvt9/dLcso74ZduWPH1U8jg5/Tp3n4+2hwYd5+jwte3p54rrPWrUrr84ZE8BshdmA6HTi3pOB1VnNqWrLHdnNY+nweZI/+H+yBrdp/Wts3dIYboS+vxHbirGf45/h2tbqtlvUkz/S9c4elJ1/3PuzG7Qmrhmh29XN/FeWEfhPiwqoxeX5+jX9/aqohgdc+/zX48P85BxgYx76GsT6vZqgv/TRi+ftcib7VquztwYHq4G+482Vh0yoxZOmJqkwmPVtenPkv4cWPNkp+WXx6sh4ejl8m78+rrypSYj0sBGlgLgbZx5W3Wi+1dO39nmssVdWWC9218l8qqt8ffyvOJkz6/byzJl9+9NNdsYHRsHR+gXlDY8/6vUdZ5i6s9Pl98/vCjRJtf+3h3alApDBHtwefTsV5bjpZ7ydxKj07H9cxK9VLRZoVPxL5o58zQ9iuEDEQG3vOYy6DmMk4Ym54gH8kr/RHEHHOIGswNZhuMjpoK2Ik0S5MuGZGfVe83n8/Bgw2dHZ0MtHhAysYwbD3/Z8PvddddAfHHiTVPw4mRTQU0Ffnx5NLhBSFBS9fy4a+/hhGzj8vWwPWHmaI3u7buyvmMYcfLiTVjbiTwdtFmzNmiXooSwJKfO+x7ExOz2cMM9rcYyuFfOeZWCK7aD3e9bSxt4Ov3IAiJo4ByIjAHODjLCYCQQSM2NTDA642aSbvlCeZUwMqoZExXSr03bL0GbEXlzBJZx3xpuzYRj9PalSk0+o7Rhnyx670kItyz/DOhqsOP2nvB9n2v2jp9CejLuAIxLEz30yeyrZ7clIbYVs+GycS95d5JGLhvny9FLzDpi3tcGk0z+kCmyjttS2zQ38fU2JH7Pg2l4zDFHWbxEWv5q2uL/i/xCbPQY3QicsGINnYmY0dQ7njGAn6y38s7fPjphNe2iGWr96mAQrGJYmI/VpG3VzbnFgl8+DzbnJZ6er4/z3PjP8+oL0NBwMiNiAVrGGMEIq7/b5/jlUYyhzBd6Wn+xbxuZUTZlVbx7zQNKNW81GAH8KKnnNNLJlqsahTQmVj6Yn5dDgP64E3mEllkzpGXSBx5JMcBRPhlspeGa9kyIj6BoT5WCcguUwbnMPuN9Lq9+VxOUgvob68paegJ9HRohO5tPJKYxsJ3LFgLiW6xgrnvJZvTQ5D6EgvhjCwY2n3XPz6IRHYml39T1Ck9TGruTIGIjaTr2mh0pVuLdrwhClzDXWM2rQ0/0pn6nBUw0f/xg7VTcTcs9lMKLUUsmDkSEkJICEKkZ7OJ+sbctL31rXuzmmx48KSMoQU3Mp45M6lokVKNHOKSFAC9+lulZIGukxzHIvJI+SqK+y/rwEZdBwIGBhJHCbUkfwKblhGKolfZkWQ78R31XE3r+XBexKSkQBEVakkkg4SQEiP10OqmUhHi+C/H99zH6zfdcr3o2Ty2IR4j7kelBqj99GJJey2T3QNEeylFay5cT/D7eUWojGm1C4IZKhP6ZJS/kbpv4NeOUFISpBxSu+OqfEP2cHPGVNyEqIShCn+CZJVPOy/SBxSTfqam1feB43VQgv4YMk4SwsLpUnMiadr4zUh5LhLeuErEtThU4aSgxw767IOE0qcypiVoB1SSBE+xPrCtZq7egOy5kJ+I2NBg5Dc2eiXU0jZVMlJYnc67fTloedwvslUOnV+PbWOhXntJq9dqpY/iuAvGjDfw371ZPZy0Uc+r8Ku8+t337au8km0Mb+Gm48f/vBIIZuOfLuS6k4VVOCzz5+e90oisvvL6YnRJsb6VUdenrkUZu1xRutQimqIqIfQqDoNjca9Pqdfm9Ve3Dp9EX2QAGYqaGQErnPOz9orqUvctvruPYXr1aVqMdd+7uZPriv72d+TD8aisvWILjydTpX9IttbrvDFIa6RgZojNvaQcxEDEVsgBYhSvgeF99rrbxXCfh9nvP4ak/41mAn/aNQ2sDJMhwkaAv+uAZNFNakzWGElCFUGoySkaRoAoP3Icg1ZCUJ+WXJHWYcS5IkQntnJ3LlEZOQV1cVAarM/XrC4wyHcnyy73jxGTGsM/HYSfhrlJBNticDcMYipg302SH0LdXh4N3f+G9YBSIXaMXn51fddJNX4r4dnPogjevvxJRp61WePw0pcoMcVpPNBVfcVSA3seM9fTtuO/EdJLviSTZsURahVMOYgARAE/Y2q2qYpAQb9rXZMGMKTwlgvL93dUckjFA1JPQt6o79RQerOGwlukXxEwIY+GKo6kSs+j7ug1H3YOIpDUtCn34AucF7lQ+iA96H96Dxel4koQv78H/najcK9SnmDeYOo4hfEBqE+KfbCblCk6h3CPU+vtxMgOPbi8QG5zeQelDbHjpQVjgCVFoEoXHKAMpgA2YGCushUnZIVTArYiporlAGO8a+rKqvf9NX4NOeHY07Js9rIjIQq99k3Wh/FAn6yHMYRFatXrcBsZAwD9WruQH89LqtCrkT7vDRSFRq6OVLcNcW5zRzYZ338FL+w9j07imgMAqJM/NPKnyYrN2dc6gkJBYkjbSHFBzHIyRdti2ONvEjHSD742kN/YnidAXkILaIoYSi15lowYEYdxDTMdKSYIspV07/3w0NcqIqhgDBlnFZFu297wGNfXSUHz/lq/u6BYFQ54kITKFto7V3H1r4X5sjISsKP/95JwQYKTs8UnRl45tjSo0cNOZudzIPK6EbA6QBgUPsn8pCZLqH8eZQ0lA6qEMlMbMRgkQkCGhMr2wqY13fnDJEqt4WXfetiek0hUHehS52IqarEBjClwyMzRqPTkZgMQd5jCWkQSIJZwh1L7kqqYxp3Pvt2re22LpnNSqkEmyUEycCvshgSGziIlVZ6OAvW+b9JA5m8QVLFdp9cfUhvTXrXKDpmNUIDHYZhk/d/KtpWm6lGHCc/z4+ifT5yYYHItrWOsWLRFkdzJNfU9ZsuV8ePawNNbsNDSu4qT7NrPPT7Je34B8MQPWnX7r5R9l39HrcTCbxXqDJX8hh6vjWjk7uWRdzDiT7GC2WDIQTxwl2vjVymWiQZWXmdnLHfqlxyRwO3ygajutsMyONXbSmF/5U6f9iO0ofpcYIDNEeoRhrWMhBg/HAFUE3oofCgOahiEP/MJkn6T/o64Vio0htGLj6XR4NPIwvcGjjVc7vfu1zrKJGisSF++IHA4gsgB78BUSrQjSqFIFBRVC0g0LQCUANAAz0B8zy8hkRDjycKnlsFVL8dLvv527IP5hBYfvfWRF+WioCppta2F5l6cJcbFPXVViqu4cNlW55P81SxfPbpzxtwX+PRi/B6T2PrD+F2nCf+oYGjNppdMiWCSSSZ80CQuAmQhQlAMQdAP9kCxCRCGkxIhASaBA3/NvVcuybpi3z501XWV1Ur6od4oiFgOSCusbdYQkDKp4C4dKBeD7Nu/5PZxwwhwXnoOyz90tjAckstpIhI8dqEESYL1T2uRPjhdZmioZmSwTSFo8PkkjE7v+2dnLgOuyq/p8+9ax7lNJ73dDo+txdqHD387lsP3jIRmhEAYAAPChBhQgqrHNK0u7yJHteKcIq6G/Rf2f8bUBaRDyAEejczFK6jZoE5/sqrD6x5+ZiFzG8ukRUEX+mViChGBEYO/lZBjOqTeCuBfq9ZL07w01bFjqkX8glAtEIA9SgS/B0f4aPx9fb3z+o5+CHmpKGSGqA5fmETEBPF3Q5xBEsOprdRVT4jHr6evNAh8ssCKQibY02HAogb8+f6Eofu38/lJ+X8+vLBV0LEif3YYRg5QkFTEvrrwvj/Xm3b1tZ8K+yaiw7HF7+Ldn1+9m7nux5J59Mcu7/dMZZv7tiUscXDbSTQ2xreic49Q0U4DdR+8wU3ce/JbI6dOADUWL5pYkUtVeCU8oRy2bh/AvoiiJ/r1IlFv8R4ipHch5ujvbcT+lcl6P6+EVXvvu617J1SXXP23b1EF7dghoE2hNvp2nhzdhmXPvctXz3aXZ7cGX+cfQrKvyn+FiEUaQA2CbQ2C/tnM8vBXLiZWxsRquiTGwXT3c1c1ZlERtFywqh8j7QHIPKFwfqVhpO7jQufN79g+097v7bqFHVTJARgjGxYUUNPhURpPsPA9JaYUpmN//pep7y2xj4IJEYxhqaF0fTnl/VUCXUUQvrxwFo5jWrcIQEpfQkI7lWly3Y8uyeX0Vm3Ri/sxWDBnMczvXL3CoqmdYiO7EHkxQhdHTkz6shLjhGnayviQVczu1zxSjfSIvNTaSbBVEL7TKZgiEWhXj5lHp81r6fS+1M/1j9v26oQ8VBq08vyKTzBvU4ZkuzyBCo/0pkkq3+RirkDn7iXfJFJJENAHbH+vZlQnMyZUZQmcWKtuVgXhM4CSUhlMbhW+2PzaLrcG2e+y52veL/V0MVmGrK0WtttI9e8Wqft3HrkXaC4JHJJIe7kGBPBNFmgadmPtL4YYdOY5GlIGdICiHEgf78VP0f4R2RCx+ZUgmfu8NuUBQTnIyn0cpYju8OMuYcBUqp7JFrF+oPwvAg9AAYpYWe78+Rh75ywdhcfjdBebg3glWxA2gTYlazKyt7pJSPqk/nGiuw7LUWSCObGfrgUI/tWvJiOHNZ9EpEz5iBhgIGwsSR/5iXqxX5CsaRdywts9PsZ4Ch9RWiwS4JfwSEH1Wm7dmENCqaEoab3tzuld1nsy1wVKw1V4b8+Fgf8TiRjkYA5JEZBA/BRh0OZvhPVmu7/s7VeuetzhXevxuWf/I3PlEvVuZMcAbf2nJIwcetyRNiG0htJcDVzk2wzGnMBx0p5qGjsK4pPh0HEcCEqBeefKgzy4HjEjgUl3QKH0GQa+ail5ezutsx8EdPxp5f9lcm/psYBUjAAiMDO5jrf4yxGs6GcykqzP690xVY7D428ibz/1RTwdv6w5ftFRKTk8gbjm2rCAFEyMGA14qTAyHDuPJAQYmH1BA+4MsGWNKpLgwG5hgZF7yletHpCEJH3qRcI8llMfH4lpxH9flXqsjEF6LACWQlxUgqYr0kP9EAUwQAUy0OMcs9vwv4+t2SpJhvcjfqPJyvTxH7+JMyteqyer9yhmpXZMye3t966lbSbEDaV/jhG5dq2jQ2gNTSKWfAJRK0Vsshj6JmYM7SGArKmuHBvSv72qu6hkdtusQJa8/l5kFd5oBsE2HpahlbFQhGQ4kk4cFwsxpq+6qI0kXg/TW2ZncrC8czc0Fh5xJxU9pa9pdTRDB0rkEmbd2PJirlU3kIWJxeXQvfnQKxiKlkwzy7DbyGDnOF/mwvq8uE7QSwpP8B7UmDFkAN9DSQZJ7sQyruFu6z16lh0wcVvPiSB38eJkJF/Z4QklkZ/gTtEYWJuauaGzC0oYFj3+K6WJVPQ3+kvGELWsdtkmnbuRRfsftLL7GG4RK4l5+6hoiASIxjkZq1EgcJWU5bD4oXxTu6UF/cGgc/mp0z+TZwM17Avma6mMSUipKSyMgIq315VTQTAj0jvNJL0IV8YmMQoEbqDOKMGLJhqpiqlzwqUOL5a3hPSxUqawQQkGR57Op5/zpQ6EY8N4+mWKHZ0xVS3m05Ml6tgnNblxjAMOPQ4S+TqSvC2ae1ZQFMiIjMgZkR3TOOMfjy15Q6/9G3VOeKn78GpZYMAUiQhFmOS08qKHfMrI7Lx8UAF5iPD3KBgmloGPB0qX9huRfEa/1zNHhRFQhCBkQ+ncgUqPkPqMY/DVQd/5Ol7BV/oD6sktTPbZZpw4p/Dlt1fOr/c97V7PTBsaXkT2stamxNoLOXNQ+/mUtRNIzBQkSkSlLRWf0/3874kaKAaRKSgoQpKMaSGQ0s776Bb2OQINgJGdiLO4saYU6vPUHe6PH+XSHVz7rI/Ij5k+cFyl08gkPCR+6q+k/p1gc6Xzz8vRd9zopHoiSAkiSKEjIgYgRgmSpCT7ckSGaeOij9rV6DwPSQIHvOml4Vz1fR2tSZ1/GlfX5n6W01Yjzej5pYzIHYRqxSZPkIieBMKEMBjL8wCD3a4QuQ5C6RY0IbfY/ZSSLqB7wOK4l9dENL6pFntZUWx9upveMmgSOldB7nlxR1XdoJy3GipgtxgORjOkYwyPFSYUB4pq1Rieo3/vy4JGHSyturqFVi8vxr/1kfeTXqw3qv3Kb+5G487NfBtO6dP9KlsGJsesO1JIwM4MIVSyHGEBJCSAILJCD8UgBAymM3iWTSyPureaRML1zUvk8LoyjBDcNuGXRdHevYMzrp32N2SE0JcoVxegiye9rnODuPNdgvv/jqgHvH0S/Hk5811f9pvf9tXscFWWEBi9Xj+s9WmMLDIxJYWkgbEm0CSKSC/cliKeK1j+/PaxDb/0s7R+tE5uKPPZgYtJcRgYKZmDUBIoIYq2Wqv/xTcpF1xdbqf1VThmOxF+gwQLQyA0ND8HrZ7nu0pZzqPnr/vNJQeEn6NdITf8vKmyvridrbkE/oRVQWWKcGIiYwQ+z8c1AHkPvnEBg8DNewkgSHWuSy6Pi9fmeXG0/SO4VzwIibOFpTaakd0JQ0N6haMjll8WPRk/bPWsv02yw1qa/07IJ5ZgwAZgjQ+6XOqbxd/KcXsyysE24I6GU4X66FpQ+wU7DBbgu/jBI/bdK5G9vm/IWIZiaBVVQLYycoBTGunVGXJ8I6Wxt9GrQZ8VTNVDZDIzdUMgZ2kURTB+rY+OXeQitJHl3mNDG0IHqSKHn1dS9foHTVfFr9HV+/XHTT8Pno0xwttel3IEiMhIhIjIkIxjATfYIFhlavhuMJDlV8/ZYbPD3H0EcD13rXZgOSimt52CeXO+nyY3VZ5e7E93/rdFtWKZu6YAp9SARg5On0pTSDXXd0pH8MCjx/XwsOY/EQBxGQTqBJme/7nSdJ8/qoL8b7QesGwcYMQjJyvW0cqF6vBWvplHnAfkrjpFmHf7/KFSWE56mjXgogBtIIu5X0vi+/gwhWIep9PylV+ra8lNf/YpImsK+jHJ9OZftaT+Jfm6fubufj607EdIeyKkXMeDpzem53X68H9cOwxxEIIn+EAZX/Xg6dMa5E6j/r4hL9JLGMXzLuyjAATYDYjHgBdche4wpnsGt0SwN0AAh2S39+vje8HlqoVr3Sk/dv66y785HdBrnLC1h/LUMbRrYoZzPzz3t/N6Tr0myH7h40k6X7a+kydJprG1Bc7wsjoOqgL8aTEQaEh1QD2wHR5a3gDeBj4rTOTGcUkgfHD3VgfsEOTfDdlqWNawVzkfJQH+4uNswaq8WCUsX0lo3VTpoGsTCjf1/mCV5LHFrVcb+PjrqSws2tFg19mtiP+eSQl2FJEA4IxAgYxejCIIKaL/GP7iLagVgwvYj4szoWspfDCO9v43pSkIHN+vm439LcINuUyGo0N3Mn5fd3S/Zsejd0BhUiIjAZUAmdnBlZNdbBpkI8pnLeczx6/OMeYtmddd5G+bWkOaWppGdJNGh9LfFj6HwPtV5mvn8It+ULSfJqDGFQjHIxgRGpkNpAOpHdq4YTxJV50SyscFoOl4Oc7FxTCjs6O5/D69ftv6Ks0fUpSeTTHDaSy6GkDYk2kJJsEpQClAlADVCVQA0VQIUlCtKJQlAjQDR5+TvXvl4L+lbdF/wGdQz8jx68bvOinLSnuVS/tSH4o7x+heXOABFP3E7/9tIHp88oU5RgpyT5AU62AwgL+mR5QWYjP/NcgvbsXR9Fz+Y9G5veo8WFFxHEofW/uIXJVAKEUoUGlEofz/7YRh5WCpc+W/v+Maq/Oox77NY/6MJrVsiNg/6xrIdPdJ3vwzT9zqVVKjp/ptsqzdavJxPDcieCF52Y89sjtsPEzA03lZjuhApyhhfx/OWVxECfG9tvCxLxOl6vCfAX3YJ2LCtjYmw0INp9BGaa7KZSu7sFtDwNR5chr2Yfn5/baYmkjyMRlZ4c2WWe/uzayaDirPtQ3yeu9t7rjd+NMBq892Py4qfjfj9pRgxVBmzwRncBvNLOY4WJ2fSFbWxWO3HlvzpnCxH8AknIBtgGKrZKbGxPFcoP7/tx8Ev6ywp5Vgv5AQtDioQO/sPFZ42qpyd1Hh8l7z20SWnowFCcAobbYC67NsoE2sBuy6u/86bXALo7a+Qgwq222dL0qyjLE3NZ+acf/sIdsF9BDupJkm1/dWRM8Tl+bEVvUxnzijRtd+roSQVsG1kO9ZxH9UFU0L702SOluxvdc8haTQ2SSj60/egptVjy49UsBqgQGgYWMUmo98Ao2wL7c2HbZ6btG5By/x78FWcxbksA2nEoLaE0TeP2jmeV7HkeCj7Fam5SQ43Mo4nCnH9e9DQf+k87D0AcpHA8A3XAEnoxQUa0YQ2mOYBRlYhX/iXktugNtfKFw5o/R2ODt2KHqQ+ug5ojzoj8oUHIzL44/Uv/1Sfy/oulxeiElJo9269IkZkm0NvvQUKiMRAAiFIqREj7K0If/Kh6J2MbJ2L29Hu4NbNFp5NyO/8E/F3d3RLNh5LsU/tj08eOWXnoKTSbuZaMOLVHM1sQCYHKJDuN+/VbmInjPVWhdO21JNtD6SQd4lKiQZXIyXUNE0Bm++aSQUG2hs6XKZMm3gAuKwWy+KiGSIjeJGEsB6SZzvN99ZtNLJG/qzOfphMR2Az+bzz6Q7cUcOuuLxpn8cXJxefnq8vQjVpMXdx486xjQ2mMRuMj44JFL+PX3489OuE3KT4f1BQPjFAxQyEgOIchbgW/NF+rpB7wLDXPqdJcAqM+JNqt6PntZCQWhpSlSiigQiApWIpiMGAX27zfhicZEDPXBC3Oiv09PqXfv0lStHeEThKpvm/4aBzQ5B+zrt3rtIjvqv/0fVb0/7q78v91d6m+jS7s7A/CiH1JV5scBbseqWZh0+SiJK5oKy2DSize9I51YYqEHVY/G3bnp5ugt3gkh8xXaIpD0AsROlOCQX/27saleddS8DV/ln1ff5pbazPZApMQA2IbEhDaSQMZmiBC6VOvct3d3MtfU7Pu79PL0MhkxeXN/7GYzqPa2KP+SpUjt3Q3FN2OTCs5/0afzXT83GpNz4L2btw87FKqzV/tyYBcLW4/0exmt/60j1qbShH2SEwrat62LwThM/PxwJ1BS0hX2vo/c+o2IjxCLQINCDIqIZQCCdE7zqA+wkTI36EYB/U+nNafKnEGDlAJadnmWPD/azV3wAvSwE5PYwUNTZjBlOMXKSH77fNY8Imboa8Rq8xCnBEJF6QTYZT/3csxYYblx/Vt3LflwzH1pvL5xzyzhl52idvvxz5dnGymUzrJlAL02T3TG82/w44VYxLsiASMuCRP9BxjWDelgW7AvUgnkA1/8PC4v3j+S1pGhqilKWkKAaBKaBSgaWhaFKEEoUApWhoCgpRaKShKUKV+sBo/RgrzBbuTzGF+ihziB4Xl6PQuL0uj/FWTnsj0dmPB6/GECRUBTVUhQe6Vviw19nx/+ufr+D/pDQS/VWgVsGFQnOcJbaY7w8Fcpdr3N937DDX6vPRY7v2Fd63LSJGWmzgx5f1khGb2wgm02nphcW9178p7v0/eWa9HW/GEHwPu16TvRxY/yc1C80+/QKOAxWLD64oed+l9gCBYPMrD1RZSUpw92/k76x7dfc7HaHKdWZ36gTbeJohi3GeTo7+H4XXf+sgtt0fnKenxRKs+8fxhR0LDXVaD+fkO1WFrJUxdnTE796vLGu1gnr1//QSVCf0UJTyhSGXawFXyHLANP807E7ZwM0FQd80EgBIyfkiKeBGAKjRaeVErtnaT04PhOqv247Pdm4Y+pIYV53bRRC4XQslHSqBBegyUAc0Pmmvf4NiX6M1+7wZ8aL70VEU8P4d1vhvtrudB8T72DEFjN9gqNCNz/0CWq8ZSrZS936aCz/25bblebSXZrujBzVpsc7EP39VFYoP19XfH5apOIe9nqx124R9OtqW3adMYGsERAAwFCFCBSNIAUNFI000ARAFAlA0DQ0jQRK1SUpQ0iFI0lAhQUFFIlKDQrQFC0LSiVSIUu/49e36+P2X1l9XP16f8L3TuT6ta14WTJDnv3aUOS6poJhALmQM5SSsUmwPtmgAOG/DcMVXqIDXZll/NcGW040eL2bS7PYCUNAF09neneub1V/ka5YFE8lu/993MTbXxsk/cQTFGKXxpskvOtLdqChLHTtNJPJU3E6hUNv1bdFewwEHngoJ0+kK80vPVig1F1/hV5fYoWFyaBtsZvx18H+TNPpvcCExrRXkNZk6wYfuYm1Wp4XQKytBfrQwcp8w/RYymkAwgQPtGklu9jUYivHVw06mCaMLSFXit81jdCjAMWSDjnx0hzNaPSBwlW0NMfjkqi6nvnfX6Ay5/af9Nbqimxxhpf8Mtu259CuJS3BsttrxVVa4pPd0ZbD8ssCPOzYWxzu6/BuoQNIVTEI6LRHGzizdNUxujSP9DcSvIljQt7XiyF8elCusRreWC436nQF+X+3pGJgK5h/z7XZqJBhY2eJpEDTaSNfpx7Or8vZozVU83Vv0CrDbgOanbd23RdKql7g6dK87oA4nDTWMpyQD/68VEglv1RQbaGYiFzJY70Ly2wTuFiA37HA15zJN/5l8+tkLMF6r6+h/q6ykZ854L7yn/lXfSM1YgVown8aWofcuj/hJpLGsAQcX7Fh/XzL+CsAuP8/fN/fk3+KwFw7OlnFroddHv4pdYmRfL9ukNStAFJStCNChjTaTYJtdiuUkba3n5b5ivV2bxU38dW0v+iuZy1D/UpVmgqiSSBEtJjb8Wm5m430lY8CFEnY1AlAUAI37/qmI008IDNxisGvJXVVc8hUrF/pgkaqBAZkzGL3oEft0f+j6RMPpZ9rRB17sUKViVoVpJIQmwBNgi3w55IMGDi4NtMTTvR/P4nn4/72Zis4DZoUGAYIxjTPHeIDwLl1KU4fCeOiko9R5K/wF6VeaF8V/I8keVxGKc4lopxP3P3TbtVmGTToT02pFVHC8COusNrD4QDf0RtZ7nzUr+beugBhFRjUk28Nf65goQ7OTPNeieEBonaPSt/8eqx2DQ6AyoOwauulhFsoGJoBsxDhgH27RU+LDvCKlp+IQfs0GBlWFnOLZNLCxeWuEfDNC2vvsNF2f8OH5bI+Pfx3/XRQ9mA/7/UcydCHvKe0EwnVVrpfT7xUuT6l7GklWC13Uv1QnWNSOL6zkjD8TnkbXk9F/IVs0aGOfWblAHl4fU9i3mMoJEqOX5j7HICM0kCRJBJEf081ORfIZO7iX6XY+S3U7CXpBJTzKow6gD8qzw+Vq37xzvoFX9d8v67XIoIjAiIgbSRnFlfo4/SxU5CTyh5Vq4oiT+t0kLXSR4YOiB5prLWGEKve2NFk/X2SksefbXFc3/PGR/b4NJi/9c4nSHa/vJ+W33/up9N9EoFNKDQUxIBVCiNI0K0gUoUrS0q00rQlFNIlJStCFAFUCFI+I7v9RZLb+09Kd5otaGwkzi6E5IG0GxrJ+LzK3XXwQeISLNHa8x8FZmPjXuDNbVGN2qIbbYDD4gyYIfh5JfDqSxlvLZo6WOkaEAqd+zqm9HRSFQutl2JoWZoTY00PigXJ3Zc0q6Hjppvd3JK6t69Nn77vFUGrbbtyp0lU6sMCeie2STw4dqbTLyq37lYJCxqbbDsh1esfxT/E/1K/IC9jSowwaskkibEuuJJNH7On/ZJdwu7hj7S0YaysEdYKivogBgv8e6h2gKeIuXZ0Q9tNwiT+SXyTUBc/F+3Ca5o87WfJFKer0Ep9BmFge9hwEZBAAJEd/FPwV7mJa09shLC6b61KgaobYSHUzpYaaU+qaQjc4e2LctwZHUd7ur73eYYQPWf5JdX830WSRjvmBg+QMhj81C+RCB1xNtfNxunNB99n78vLJ+ZuWzKSRA+WBA9qBF89qMmRqviF4smhov0OqJG6QtGHKPvzK8fzl2Nc/RgovLdbpnISaSk0UaRWw1ccyf5+azIHjxtutEruvUWqPiK2snoiUsV3Bgp/pSn8v9/O0xHPzLnpupvKwEY2r+i7j/WcmmhFvTzpNR+vrRoOJcJbiCz/UC2yVG6zApKTBvjwtNtA/9CXq9AQdMqH/VNJ3H+8dK/jfdxsBoRKopKSgBNpMYgG0LIBk44Onx5Kv7/DhoblLmNibRhvaPzp6AellZOP8/5lBVL3eIr2Nr+g/AyB+ZT34f4hqeW5peRf3N/s1fS3mzT2X/fgySwrcfHGToGuhPNHbawsEibSSbSs3xsCsP0gOK8NTSFNAIFAsSlIFCNCjSlCjQJSUAEhIr5/4YHqT2D4Ux6f/gXn02+uJwZIBCFEBEEqjRSChRBJFFQxNDJBRSlJSfSHzJ7wH/NRACe9RGnDZ/3M9mn2Xr3ahL+3bvo3ZJcm/AFNyEBRiE6lBpCkaBoRoUSmkoEBazL8Ot/6/+y37ayDb0EfZeXfg4cRs0hHKp82wXcvsrH7+dHFFZV/SE868MSckNVdqFaRmhjmyLf2qmU7S4UdFj7JwWPzOwiFr+XKFjv5oR0GS8cbeOMCKo2shg222lvSyGOo+Oz+q1nph4g49HK/s+hNDYAiK88EkQ1nNBDxpCLIgfYD6AZBwqefF9n68qLYv5/bGtxOy1xYh9yILZ2DYQ7InTDP98WeSumweHclNGfdrn6grjvTrqQqM3fV5PJll7sPwrf/38Wxj3dM1sZfpAbrsawyWEwetAC4mDMNv+EXGmqVeAMEleuulpAQhiOqSuwkwst8jJdFV4PgP9pcuLBo837qwV36kZ9cKYXMzICARB9N5Aol0UKP2kajbd/mz+6rOZ9bxTlqetiQI3HjYUaEsGRCDQVJoJJF/3Gho7HJJJRX4u6qSyr+C4yJAEaGxJJIkaNONbnSamzZaLbKnV2UP8nkjB03/qoSsIDzJm6on6aMQA/MfIgs8ccf8m533n1cNaNRqPuMqr3X7yn1ppOZ1q29tIhQdc3ZQzpgxeV7ne8/93qC5MXZv2yoYPpXJIRYxtIBsECREWRQYQVPbiCfV4aTd9k02+70X+/whCW9W+v3cD7raf/v89QlXThEsDfCS9FkqUm1lClUcQhviC7vXoRkxY+pOphgetmdkDbIK4xs32UdrN7LBNpU7nT79NAg7zFoswJwW3GCemoIOFlRsRUhSELR81cir59K4vxXm0ZLtGlFUlX8MZIvf9kJMzXSQhsbuqiUIEPLxXt/zD7hh0I63sYK2od3Xq7RBdIha/BLLYw/3d4fsVoe/OxrJM0Hxh+Tsn3m2sw779teKbvOqhtqARPevxN5HAcYLZBSOvxHJbEYqfZACgNzx93/DqNNHzMR3toS1AtSAPnVcjlBaUASrY2vEpG68BOny7MfPhe8j3HH+nXfeJfwUtoIdME+X/dKl4Oyef/joo/1iEOzKo9FuH8oRgUG9CPrN+G2VAMaA3KvUSUqhVU91UXWHBo0dEnbfv/jn13/XQN1iBsHWRFm3FiyeSsUg9BCKeJwTwPFvmSff5CsWLcC1S7wq0cAkX3mdNYUERRKu2SlmhEmOiOZpdgOOqoQBW62YwQd+ng6UX+vqwnWvJF1W/mndl/mXeaLGhsBsW4zTZzbXyVe2SdzvfgvWdi1ZWKExVTmkcaKsnj28tjx5bul3l8z+X8JgHfbJLt1ZsrSfVPncw2UoxJL0c8VfFMh6bjnF+zAbef341KvyZd3NzR2qJJUYgLt9AQdzWyDMVB/gVlXoqPMPd5sMg+4l9N1ABJBwg8DAHtDaZfFQ/kQhI7iAFXLKys1Qv4v3I4phlYjNvXSEJeZhD0NL3MUmgbE2Niby2FdtNzq4LfHe3HvW588cMjomPj6Ezy1JqhWQZT9TvO49ueS2X4SfSb3wZ497++9se85Y4bnXD1RkAyd1e70VvP6x1EiH2grB+KDt4D+Y/HX6Uw4u5JAevRUvis1G1/gz7OTBaxR90KxTQSa32YGcUQhtvbTdl22TfbywCri/JXth2LJoufoa35QNZMkEEKcyX+nTcOIYa6FsiiXwqSyNEXs8fNeeyEZ5rEmgGVhVQEreZRxjtpLU+gN2/1GG12nNLkGFQKWJieNG0QAzEDIIzct6MbAJMVNGBYPYUqYJLgQ198x9S/O894fq2uFsR9GoL49Ixjq0wQZDYBeU0kSQkH0hHA7c2Lx7JoEXmIFUHmlK9lNOGvJjICt9VmBikMKmENDYVf3Zqze+/el0meKMc7yp/a+/ylVsQa7uDj01nOlvR/6kDMbtbbC8HhSqCij6eX1fZ13X2VW1ZKjdTRjf+7DETLaGhWfRkUFK/SZ/OiNZb/bdDs0AQ4Qr+iEGnJoKEZkTpDjMceIILksBVdubcvljzdtzPlrwXJKDPU0APCJ7UPOHIavdfSyUqtRt+yjBed9ur80djwFwO1ZuIZCRmZF4THpyAStFvoG506Q67uWqG5ul3xxnqNs+Pbsu5z9pu0g7lHx4csd63UT+IQ1ebdTSQ0318OSgszBN3UKDk8ztrw1M/7xVCk/IIdTUgQxf4NIlp+ZNYRakkumA+Q+lsmXqSegLJ+p1gHOKHe3NVEBNFbSlH12YAoIqsjBnhI4azKg9KvvARwVoRhZEG4IXjMAMYBmRMaG3cpyBv+C03R9YTKuefjzCflGjLJ3YyutleUMYKdRfpAZZe0naVqApAPSzDMlE2K9RdOFSSrL5sc9l+92N/Tdg0FW5AScMXrp5CS7n8fton7GrWNoQ2BQRUUhEAfw/zfGf1yocfIIP/06D5w7DbyvI1DkwXWZpANrQkEiu99yqUgeQajiRhrlM77I30b7Nyf9+n5hI0CYWfydfK5qYwEg5s8Bs4tsqmjE1GLnlqiZ5OiekuRJX/+kIkCFY+D4CmKTqFVwyKon8KKy8lKiXoLp2Y0i6oqlcW0VrrqkIlXci7nDCCHeC2dakY9mj0ccw+10eWCG0C/kj1/B+PXE/3EuQItCBQA0goUihSqFKKUf3+v2WjF2Y/ePuFh90v/4JKpa/7O8ZgKKxDP3TFudnhkYd7E+GWRfYKcVZ1n8Gugoj47yQaj/3DjDS0jEJECEiBO7TmTlMYKn8NyXMIuvSoOmayVqsJnVwnmllHGxlrOSp6YUXspQeAL1wmsqGbZLXI83ZRyDuFkGuMyAIC58gjjlGiwXjMb5wyAMiKBJcOOEqIo2AkKoIgq5mrJX71LBjfBjf+vN69vzwc5pKIMgyCa9SAytJApsxgkDhiXoEB0PITtZp2nIbfQ/SUXkv9Fd46V0z7tC8qTFef+vC9nU4OnNV9HqKS/LTGFvejS3gQbL9UMQDT1qdtaDiJ/k3ohBgQECA9pDllmGWLlRACSYRoWUNF+OTegwyMqYEyzWa1iSRKWY6vfd4wzEHFsI1wB9ugXMv7kN5LszDKsODFE1CMaJXMCcrWIZmZVdTjaQxHI21ZQUxWMGOGYMSzmaNOMRWIYmg11CZWs6zA4MoN6yBl0GtOjCyUpzAytGFkzo1/EC2QrpVjjB6DXU6UOpHLlyknMhVYMhsbOtGRB1hZiq8Bxi0yy2klGy7wXq/Gk5y05bGIDJIe1ei1/dOHgwp9CAMHSOiQyPhKvMh2BQBACaIaPqaX+wnYR+kBhuRTyweWfniOfwUz/1cTBKNAdX8bKujUceWCjBexAk0hEMAbE2bsRwMFiORbeFVJSNDGB2xVjIzWBAkRU4n5iURUD5comqpjkWSRgAjHXqqA8r+SCDgQQ7gBeyDUy66ihAEQbPpkT6INAMJgR/AQyocN6zclZ54PL463L16Xvxb/6KGIj5vXmeqqdfxB9tfQZysJ9qou5OUuEyhW/h2ssmDDBZVTnu5sGm9vDl3N61FDWKAhxiZlQKJsRVdYmmvAzDfHtWQWr6VtnOZrerQ+y7nVmZUMF5zqDEA6Zx1VA7UG2ymdqmMkusH0yg0o+LGv0quywA2gKnDbSE4Va03sso3h5twcXHOcsn83JlHM0HCoo9eSyHeCpkKIjo12GhAXUgKeeqKM85rQonJIqB0bOciIQNXf3MONgrsRBRHYNmuAXxi6AOyARANeulVDycBGw7s7sIzDCEyMlScjhRV4gDuQiFDxAAIcI0IFIenlwNII8kUFCidTqBA3qIpwUFiEE07fHXjZmWJVXCL1IgYZ/hBhjI4JtgLlECAOWkhKGQOA/DEjBS+ex540Ho6ePXhKqhaT0Dg8BGhtI6qeomDJysTA3ho1QQCSE/BDFuXAUQS2Iy7hEOYyRkCgwOINSOBp2dhmbB2uUkDFKoEhBRD1hgVVCzIZyneBvvhOUAAm0HGMSBCkM4TxCDG0NtXRggMUawNBxORCwMjIryiTA7oBfIAwC+iXvjUyF+xRcbIw1Wq1tm1BBW4MTEpVLJXelSuOTtTWXAYKD0glGI3hXZ4948+Y5DsJ51Hb5kaApESKloKWqFCigKKaKVaGhpUaClpSmIBYilCigpKCkCmIKVpSiaiqAKGlEiQpKCgpClQoIlE448+NPILb79dvxaucgANMzOXUWbJpEZk31idlcni8xASqnmzM7yA4giUEqIFzAo2+zbRlwJt3fJ4snSXEVIORmTM/co7V7BhHBHKz/5W1S8jZrk13UrjNolXsQQhK5F3eKICmHpHdYmOKQaEdcNIVXKoKSU0JQT1lVjlX1dmEtxvefi7UeZEcqOdws5lOe+Zs0rzFXZovjmJV4iZAavs4ZWSjkAiDLkiAx0wns5URBruYgA5eRumVUXrs4Le7e807ZPJOhcQNNxlTEZbm3pDJCqqo7XHLWQBitOebzAW7W0Y7nm8NP9Se3yOVXDcl0qBT1ya7qk3IqbFFNVaJKENGvS7sKMinVA1UjJdSynTnK7uczarKolilriVORJ0qqUJFU5U2OKTJLq5G25mrtSoquS7cXjkmU3I05lCbZjpSqkcKU3bJirmUFqk6U0plzUuFSnVUu2peJtQ5ydnJtISJZeU1XD+1IH8EmpTcJghcFgkotIeBgPM8AQk5nCTxCHVqQKENAZgKZCMSBR98udAoYIG51IJ0LHwQmgVhDipQpIY8yOv3ciMZU4aIk5DEpQNXSSJ1cybtyeYyQV4UCQfY2QL6CXKBeiFIlDLkgvDKcQCXGI5C7lrTHMJqTdk71kQIcEBkoGgUoVoVZDKnxQTxKK6mhpUmQ4IU4WR0VAiRAHJZRKJzhguiaQ1zgGyArzCG4U3KO0ISJUPWffUmCBTSEGkpWmlZTxLqKHkZTxV0kp4JNw8AitszD1gE6YENShsBVIXIE9nWrdp9+Q38Kx7kfKe6KORGtb1dUsgocujIJqVGzbJnSijXNGkVP73qIuGsaOxta6OQ2PzVR2o5+ypmuEZajzyFIYVEK6JiUkeNKh1L1BMjiM24ViwJ2cuzIkLjeLSn+0KrdnMq77PLINwfVdlzyL5WycNrLWI0/jLYuGmHDhxA7ksqLdd9crOC6dTQTom4giBdfcgAJvbdTZy4i7+6vtMXg4I6oIDwDIAKKXwcpxBMlBRSB9QAvmAA5gUNSBiyCvUoGQqiG4REpEEOIFVTkGdwPEiChkIotAKgagHIED0IBeoVHTggbXMouqmQzU2CsKlFCpGsY0eK4N52cHGhT4JQaQpVKKGkOI2kBE4QDgCTvIFyRlp1syTjpFp7HGAAAeICgMlV4lQNsb6OT43nz4g+zVAcUAlBB5TIKg8vvjEFJjiQ29ZhHqphvyizyIgCoVnIW1GEjvipAWocamW7wmZaa0fTdM/4uDxXeiYtrvDYNLnoo1SU9XOEKC/dfpQs2xCV0TsHwR6PVbRnygiAQ5gUQN9N3lnjTraKcSgmQIOkQEduAQhu7GMCqkgAuQ0n3GbaXCk4RE1IiiZCqHghRA8hKC8wD4eAjERX0hQIgOYBDl6ZTEF5kOpRA9IEVXgjkzotk0RBltABTxIrkCh4hHWjDo5S2a8TzKAPgLxKj2wdLAiGQg+CBe4RNeArWIaEAfSTcIqp0CHUg4AAaPPwVD1ZJnnByRTx0d3nNPGREesBglAgSFHF3uk0AuxxJBdzrOks2YJVQRNx4HXeR4rnMpY0y7TCKEkR0HJXedwUEb+wQjqv9vxkmwBxdBRtRfgJKheoCkBMgbPrv9EDURb1LNmUUQJHlHkHICoIxf9Q4jkQlDYwrITkhAiToFEPSFXrhDk7F4uuuid60ApWoetr0AEcmjea8YXfGhUAuyHEeuGE9Wrsu+MK5U9wZ0rLmes72lVhKbiDN0BZCjkXEaTpT/j8My1zsnY8fZlmfGbj11eTPeQyYcVzMQjUJXhoZEERHcjELh/C+GYL+ZIJJZM4trmP2Q0b6CKdzZiuKXoEGYzv3eP08Pp2WJG88PREERYQSoEg4iEVt/B2vJXt2BXHpx3eS/Kp5QELrYmYSee1sA3AoKXGYEPjHXOwSZntiF23lLBxCqJ7sRkI2q+t2+hZCg8DEADfiqjiJcVK88oO0xvk5hfka9hP9dH+Nu2oOuUuOjnnir/rXsubA3EQEn4lpI/0nKj144ifgMOBcqxgMuPaCAM9sEWqdxZ2KomIk4eunKXFF2+c7AVUHZyShcns7EGXEBHKmTm9jl2jOQQHXDSDha3vCjuKI7kEF5JREE1XQ6wTb44LMyTuRBacG1JeCsIjZrFi7lFkQkRwWb66ZNos7jQZJk9clxcxDwiMO6TUFYQyIO3yamIAn6JKnybfGdqjo3XXmqrVJTKWVSqnkjl1Mzcst67dGK6W1M6y6YUtdC2pm5MFioxpmOYlK2ymkZM5UlYplVWbciMM1y25yaJEVZNNqaqaYlRWqJmcXHWZmOZljGI2amXM0i1MscIqZGkS1SkUSnLMo5NyMZot0ktrapZV5dZb4w1wb3vOx8kn8b+hxRwj4oN2rKgiomAyTCGgnCxNTmsyRye4jzhuQIkoPyDQhlkNFE8GqwTJAznDIJda0AGtYZK0UawMNMETkitU5GZWByzq8yYTSO4z7LBDdYTnhdStOJ6ZhzvB86Qw0StZZJMlHyE6nUeHJQzBgiHQFDK2YJVUWYDlT5zJigjWOTSIcxwwZagyQzZgGR6TkkWpyomqhwpAIUzFDFDJeqIOI3b6xEyEggKTQQMRkGWeiOOWEhkGWUkOswowUSKEDwQGo1JhBhBhPTlmTQUsS6UhSzHIKM6wA1mOssKXVmAimCnEat2yNQ0lFLUS5HCSaSWICkIlNAhAZV4DMaaaCgqYO9mESBqSDxgYQqUNrDMFxLMwjAkiArIzzmdwg5mtHve1UzFcEB74yYR8FfkhvoL6s7cwErtgjpont5NXkouvjbJ5nKM73ve7t2nWaThJpwjeK4jThUPV3y5XfHBeVSuPI6/ODP89kSgiMOo9ch+XWDmIscREmLseeaXyIA0vY5sR2VldGSi1MIGHRr+zK19vvFkcqqFUZAQdu3caogL4QyogcC3kG+I3uS5CrMM5vQkFf2nea3Yo6QKCEIw6eXM7m3N14sosJY1DGa1tjR/ypAW9x0cbI+qiiN4CK8CMoUoqUAgaEkNQID6yompFQHySPMiuQDzKCBumBSgAH0FlVOUSQBE49Dx5LbJk1233CWUBqxZERC6KzJm9qvcADXUUFA8y8jeF8gCLkDLRw2jComqrTS+kiXLeM6qb+Umy3HFK8UkMpV51R1ZfeQSOJK54/9AU8N+aI9SbHKzwUuh3mMcArdFX62zHUBHoK84phXUxKjMt5qfMbWLVY2NLYzei2M63duQEUGwyBIsUQCAXYuWkIPLnt2TXl9siC9GWoACFUfAMgACo9SqAIAalRRB3A8EYShWoxkyRBEzWCUgGWrIQUVEeNHk7jGM2rxKCMSKAPGSOsyIVqTI85p5wzZkuEoEHCIiOEAoDSAPiQHuVTnn3VrqVBeoVTwcwYhq8yCCpDdoFFW2dsy0VHWFYBEDUzQoHBeB3WFEMQBcwVNoIhtZ4GN7kgKhKVZEQB6JgvzCcASPQ2UvUx1phIooLKZTcOb8SVJxquoIOqMyXINMKgWF1sByI2JXYSiySEEZVJAa0gbGIg5ztsuZpNYkg7UOIY2WtaUmuJBcX0t85Zh0RlajHUZagO1MwjE0jyjEHClF6E9I2nwjLalEXchcbfYiLxx2aMe/HPXX3J6Hozgu08razEpQCEolGbFtJGIqGYEJRQlNQwW1NhL77bbIFRV591ZVY+NcESjO+LIaAxcbPhx+qbgDrmsXkxkyeE5Mqyn5kR/J6Z5PHhwiO+EUcd9q6j/hXOaLY9EAavVz1bKURqJjgqSiU5utBKfO5W2O0LjSneF7uG8yowyZJVt9Q1OVU7hXCgjkm1qIUREB1BMxBFqCYSEkRqonhx/ZebX6+Lv/3RMSg80DF7L12Yv2d8PTt7Ml8g1XWxE34sOoh96Pvec5ez3CiQspIIlDiCZOaOC0Le8OXUdNgyTizBcsC+svrpRFKKZBWdzj6pWRFRURtYLvJgyO8RHYqIojndeciAg0fSs0doOqzW3HRkSTaH3R/Pp5gCdT43BHGI8koOQAZpWqWarsy9K8kDwXM7Gd5jyLpra1bMx2ORFXs1uSBAGPI6Tnbrudqq017zkC6hhFXxGuuIjtc22csNq1psREBEd7NciZfaqZ7D1VJc26daoG869zGqyyTLpKFqC71uLppajCabahSk0NTmO4tXSNupstxNW7UU6tTUKpy7LCVFTY9c020oybUoWSplS5LdNjFSmbqoKHLmLZLq71yTaaibQ8YJjqTG7dZSqhVjuyXI7ukIuaSiyqp8O/vwv/yAUSIBNnCq1rQGaxowDFNGh1arWQWp+ENY7goio26BMKNSUHyWRVGowwDDMnAyQsMeCOD+WM4LTcMmhwMmMQstxZlwo5AVQZCOZibive6uoUwCuIA0XuVSmG4UACMMqQolxR1hocCMVtBkjW9gbgBXebMwt5gxoxNkYtrRg4ktO7TvAN4rmUhREVUZYUUzhiYVWo1znUmt4xxmsyVZoMHLURoxtRlllq0XOZREElLFImiU24RaG+UymhCUJRUZAS4Aih0iVIsRMjNsQ28HZrDCMiZwzEyAzdYmBkY0mEKGHDm0dhmjSb2xs0EG45J07yesgjOXdpg1WtZAYRqQxA0WRmi0OnMKsXDCEEA6kyC4zYvWQFJM0U28c0Dzs1mYVrRhrew0a2FrO928eQckzLZQMcNoi1FhokXMLKzvMDblvMCU+gGzEcMNJqoEEkyS0NOISShrkup7ExNGyZLI1BgRRQ6WsxN6QMy0TGE+D09jpbEpK+wZlIYeQIgQIPCGwwQEYnFzYF5Se6SLwSM8M7exFt3+/vONemzZ73nmy68wLrHk53hSW9rF3uzvFCzZ4l25iO1JW1y1wcmDIO/Q74heRmG5559s+u+cyo2IIDPO8Vf4z6UZHjmwnY3uA2zrayggvD4+vICDudXaOwUpfngbvlSIilFjoxBXdjLtFzqVEIXY2I5bdfNdbrj4cye5ys8nyOxEQFSIkByrL0xexnSakrFiHjRcgrEW12kTWIoWVQWFUB6pJQO0gAMhReUkAOoEDhgBXmRFMgQfCCwh3KAmhZU1ApEqJ4NqSiYialAB2hRKPMi68c7Oje/PHcRwwHXkQTHjggfHkD2FhwnwOilEcW5I4pkQEOuxEQB3C5OxKRcne1Teb2sKM5n++mwmcmlqNLDMyUhmwlYpGg2XfOrjXR2jFBMvMhSlNmcrOD11CGi6VsgIgMgBHqQFMl0hzyJm8Xrg6CsMMMwyVGoIuXBhCIagkQkbLBn6FOULGcX8pKUJLxECUqIBd8Vp60cnp25Lycmnq1sR5ATxx7RVSgBdig/DC83JCogcsocKL5VlUOiWIQNrKI8SKPBo5h0qDwBAKwSHmFA8kgc25Fdj1dHed3CoUgoJxd/3a0KKnKeKKwBBQ5okFZdWAIaAJAEKRQ5a7MVRPEAHoxTWKr6M0gJeIjsRBUOBs2lWBXqAUcSBO1hRoAQ4U6sVAZOkEJCWZ5l8vsNi0ibaxJAlRlCS8VDDO5kbBqzIpa1nsMUBGWCB8+N0onprzoOhlX3lnCet3bqTMOh8rzUBQcGBpo6xHqrJuXA2p1SsWKSUiVTMzOzg6IppCgGCCueSkMeU4zlfFAzMUTHKXJ2csuut53305zrpRRgkywbdTLiCLYbhoKCiNoQVkQbKUNSmHeRyocPB3sOoB6uJE3CUyiIm5hEzN/S4nDeLs12AgICyXIGL6KouIUR20tZSilq8g7fDUEZRqnbKfMx3y3ql5JLrlrhVasuLLHHIALFkNBWOLzdsyTjwKiIjaYAJRERilmOWzFxY6IgOSo2oyd20uVZzibVwEQVJTUpvW+UcZuSOWxCEj6uS+HZuMxKuHOnDB8zRmaziD8fWLflJyts7UShvhWdo2PMdbKJvl2qadGc4aQaRDKvNcm8jmTekvIt23j0dmRu0ZTuQOBERERIOsiHc4YYRsmus0gitjl5Olfw9sO0l1KecvmSSMYHu2uAlgjmuPigWWpIwuIIwoqYc8rrqxTBDmNza9BEHMx8gdacLs4RfHkumEF5cVXMxwEBEGqLkxHcJvj6d2amAhyCiLy5uyQfId4+0022x1XCadW0SVdVNFDkp1bnJu3dIKVWwZLjk1q1XAJCFQnTcuBtIwlbUo1w1FFMmFdu9uyaEq2ZsSsUomEWypW2y1UjzCZ2WhQ2FPFl6nTebqeNurku1rclbU5NOUlQyY1jqlCnVDqmMl7tKi2m0SlIneLLZVy5lrJEpmUsd1c6tdWK9LmsVs2a5CeEghiuZ2E3Oeu9ha4CIjYsaIjZQ5qGvRQYUVY6Xxpcvai8xEqYiaEE0GtBEEYuKCrzOtquOEV5Ckpnm10GrWioXro107XLJ4gMtVGJSBKIZCUcQ6tTrMcZGoGhohqAFDZKeOQQBNNLADWYiDmE4OsDDrHVoJtiYOGb0g4sEQmmNG7WhOp3HM0G+RDIBLcuo5EAzChHMzLQXEvDxnEDlgs6r1yRQPz1Lfiir9sqcpHW5PbFVcV69bnc2Nuq4p3MtWTwJDmXskXk5w4WTnHV6Xj1mxcu53mEKklXLyiYgu/Ox3vyTO7ztOulTyvKLrQM2Kjhgvx/8JKzNS84qIiYLxEK7M8yfHERBGVUz8tm+zAdy6rv4LvG8/Y8nnFO+jzriIkzeoiOVXykydUfdL2A8QT53R55G1cFqID1vwJrlB44FB7lAoECAIShpAWCFPACi+JVHgWXqFAOQmCURNqBKCGyAR7kAf2hIKg+UhEVNyggPkRlPEgB5IBQfECeBkAA5kOHADneqsa1SqBs3LDkBdJSSKG5jbOlGsIgnuxMNwoAnB4I3azw4HMo0q0hQtCBQNADStBQ0UJQUrSBTStFCRIUKNNIBSNCMTEhQpSolBQNBQsSFAtIUtCDycHL27gQzmQ7BBET+y3TICbnsXPJ4pVM8C7XN8Vx5jEpel0dEVzH25tOZ3JsgFWcxxFrEPne8R1OmQBT5tG68TbmIFGTIgs7OEg5mUOzINGfLvmJN0gc+ZZvAmLBYrTYzrBwiTI1sfiemaSlOWvYgiPEHVAgmw4vCi5kpMx2IpqusQNIgCl+e8oIr82xUA1IaLzhiinfXiPTWVOs1sUVfKvpdZ3jbVU0wKJCEJoUYFAe9FUsVBxmkUFKQROGbBpqW5tK3kvo2uKIuRCAIiG9yPTOMzYCimpUVXiVUI4xRBHiFUyFDzCBkKpvOpuQNiKpvz1uhpX4Exn1wTDESee0dbSEKI7HqiAMXWOIgB3ZgsR7slMF7thOxNbUdIydg5CkQT7InpUJ1kaTyceokfj53tZEBF8YS3DCAHZAVRV4Kgg6EAiCB2EGMKGvG+NEQvabFGIHcoiHKbmAiasiDmJgrcTOKSuxsjaYUxVVRBKp6UoNzAsWgoZAgdMMjlEDAcRm1nTTKktYmdGOqLa9nA07Kttb2A0ULi64Tn5CJRB8pH6Udu5xRET6U7zw5HN/F5l8Js9vZxPcudu4Afnr+7xm25hXkmsuXn6yKCDOh/63vK32UnI557GErfr2VBSMTSzzedTvaqE5c4AhUhteZBt4j/j/40LQkuehCBf3aeR7R7QZ6t1PscFKFpTSXio8xf76cCkj/H0zBLhJ92i8R7DTz17E0akpXRelEuIj96fX1+ifGAoIjFLYJelD7GwD+zyXbMPfnK6l7ea07jOtbOFUVMEPpkXU+kp4kyRc6RBGxPJxODseAIG3C4383JZ3TI74I8/r7ii95vH/x12Pz2wi+Y6jvo55Gw7eOSEBOd6rRgIIdd7zO7W0c5Bht7BPIAAjul0ka4iyuzfDMAzvDnIOIqhMgdRnDcoBT3nfh284PzyII52rgN/+EyfO8C66ulHeLb0M9aBZVRPZgiOxwBQb0gpy7vFRxvveMXGnHcV4AkJN852DveSJaqEOqmHTQyZukqimzumF5kmPbbyzJeWYoQ1KmZaSkYkYhvXIirJLakylji8LkE5vSS5tzbqZKpUxKpVTxUja5m5SpZzJi0O2kY8nHZd8wdO4SGlk4KjZzLumyVM48x2O5qWpikIaaKbxuGM5Mbtl7NwS0Pbu2qaczX0f2oPBIGj0RBLEBGePuuRRp2mmPnLNVRlhlFCN6mAYSEoWocwvf53o3GODX0JqCmszGJdaYoG1hjmT5wA0RxkKHWOuM9uaqZ14RA1JZrDJoGlpIj+eM4xzaVhIVyZqM1kRqLMjDHB6S0mhxTIzKq7jSbLZp9/RnRs5LWsd68ZheuOy05U5AZjmtOLDpy1rTpjEi1o1WmbDEVudGteEzXWJhuzDMyzMz1XUJZjjoqJ0wYQ1NJmezDICI0U1GWVgHFhrGMaJrL11mmyM4h5TW72bx0ZiWeTAksNWYPgbURFacworEyFgIy051resMMxzMLKLMIMOwLTrMqcgkYhMIzDDDKiMwhIzlU1qmoLROPnTqCRSTEqbchJpMwCFMJIhiE5Y0ZRrRV+Aa0anWVihYYiTwWta0PWnIppmEAATEiloUyei0qixQhG2MQdxsDRmDZ3oydBlQTUkZZ2haKRIyEgBSkEtQkmADcc5pQriyRERJu9E3s7LHfrJ7EKLdiRNGuNHHAkZR0OoEMtYRWkewwynWFZw6NGoMsz0LK87T13bM0FDk2DmZljA2hAZLUsbi0wRrFy/o+TklgSFkQHPaiAgg7tz9H72XPN0gZMWSScRMg+555UTt3wJ07MikC8P2JIP3d0DX4vPJDpeXEVaRPnpxM/uc3OHJ6TK6Vz0VfFZ5vC9tsSI7zs0FdrbpZBKySCO7zjdRnalTWbe2IYBNhJPaZ2YGTRonnF3sz1RP0OOxyzx86dBZHfMOWzBiCM19rneNxBFu53tSbWZPbLLUZZitJUZ2eN9/onjyeecyvgPPMtPtUR5gO0i++jjPC6SnmVFUEFQGDZsQd86wOgCBX9xQOoqJ1KKHmAQP81UKAUGVPMogcQInZKPUoO5Tcqr6EIB3IiniQPMoqruRFdKSiI9nYUEYHoRqBR9CROGglQqZEXllFUeOTSB0bzeSZkVtBMARXkCjQMgHxx5ESSEG2BWRAptqNw52sCdIjkxyS4hUzQvhKdvJ/eN+euD1vr153Z2q8QDiV6UYmiwTiCzg/OKKWXY1Pk840vJHOrnCZTdqbOCJ7zYLG13FmD4YAkQY2RKmIQmyTqEMgB2d5bToXdBdbtdiENSYysxXDRXJMWKr2JZYu2bBpmdj2IgDyBAEAb2IsR8QKCs873rYCJwEAvmB3Ki4oM8AKIbVTUqA1Ab6XL6AggUmTbRuKjmCAqmYiquppglBtVxV6kBTIED0gELcelpVV7lQRx8XA+MMmtgLhAh2JKKrHgwBHeKo1EFM7BgooKhtewWvcayXS8YaORBAwFgUeoEWQF7hOYEe4VQPMIWsEXJREyFOESMIEC9Gfs4Z6rI9vb0IZRCOkqBixX6pcR2hwY8Qwa6tMBToZA5bu2nHOaBKEl7KEhNJqEdva3SPOAU+6pFxaKFMVB5vhEBTMOiobUUNQTLoksOwHjYpXIuxRDwQO1shYJWhA0BCAGSoZ2ckxsLCM28eLvsouHIwkDCM7OvIHPR1RQMVBAJANJIQAQm61obpkWGL2Kupg2MghaSEGFzTbXU2Gpf/6CEDRVHOTLY32KcD9i/J9oBhGAFEbE+3dBV76/Y76kgmEkhQg0jz9TGZm+T6xmdpWuzvw2YhHtMVajh5ZUWbcnbLxS255WLN8lbNASF83nDI3zO9LDogRymmri4Lny77zzkbYBx94rvJDQQIhmGJYYGVNtsZJfotrrKWoO8xAg7x+sCIZTWqMhWpmIj1fo6jMZKww4vW5rZJ2jyonfNx0R5UeaDpB2IPOVGZ5lTjznLqOlHIGu+eEwQQUgESiGkWgi7QIOIF4Th4KPggLA9Hr10O9VxlWdgiyI0WaeK3LT0QdbSGuN+nHhmpnOt5kWT+WzqwQvyO/b13vjcLm1JEEQvUYIhj2PbT0VASc0iEXEFQQacji55Gcp6Ztxs9jyeWy+hjN7oZsmm2+FZRa6zXKoYy70W20CTa8ObJZQiyotHDurnI3yiIiIUkduZ3M5O7irl1Z5Wx5zfNxVvPKWTbFzOyc2uQoDvDIAOrjlNwQeRflxYJc8yamC986U++LSzzX0nOqbnxU+ZVU+VDRQxYmOUK8mqt0mKK1zLHUtCnNpoqGpod3DUkqdHRM3VRQzMZSSm5nanRU29ryaDieGDUSYglAIbFd3Yk7u6l3N0cqokeTN1k1V1IZv6N4rMQlIpl8iW1LVKqSHJyWLiuMQopTMprtPtO+TIhF0zVRWqRVd1QpEPlTjmzLqKnKLVrJh7xzr9AfvCj2CJlaqxzMisqpwjHMpyApIxsiwwwmMwymC/gO13rbZhkOGYXoWo0QYYYtETElZZTXGHi1wYZRxZjYNsclCwqhrRmFVVEYS4RNFHvXGg4FdQA5OS0r72a5MzHM5jK1GQVRWWVFJTRY2hJQkhob0gyCpBUncw5GoQt1yzIMminI2ca3pLKo6NZoaooIxsSEqqAHSayxpBQhiTbEfAIagc+v+PG0OMLHMzB705PYbMiidZlVQuOHCRIhtDSu3dQxRYyGpEDQIRUUx5zAt5mMBjRMZGVFMWYRFiZDWkM152GrUUZJZOZG9GNWsKyW4s5d5mjNRhE+cOPZm1D2imdqXxoKIhAMR5SXESdOhgNFxzmcXzz3sNnz5VARAQXAdLTWcnCD1EZd8vO854Eh5UcDzk5pXb50GC807K/7+Vvofc75/8T4YAt3F+fPEvEiPZ9xd9eXSuL5XMn37Ke8quqqPTPLJnfPIflbBkFnbOXpPZ8u91yjOZN6Q+eFQA/O1xc+uY7IloGjoPT6I8tbMej+G/tn34T6PfvtzdPUp37c32IO2M7wS6FJdzJj09wrnEJVpRh3si8dAjsc2R+U8uZvQLfmBa19Nx3CbX0EHQdmJFBsKQxm+7ieEFFApUA1KA6RgRHuVUOJEVPEgg6UCRAdwIBKihCInCKRgCq54UKiFNI2DY32XIEHjFqjwNbII9OjoED5/ZySSo8AZsOu2NbiGltUZ8Nc8EJHN6x/wq5Npj3Rlfb84y156XwQgOkxICND+yELIesRK0yJEWhlVVkTEXq6/q+f09f/M5DDi1uE4zJ/bssmkJP7REKiUNAVQU0BSjQIUo0i/pvHwgR2sPzQmkCD8KqWnZjrDNATJkmRKAYpuU0UK3paqxxvYc5eVVCoa4UJm0kJ30Z/a1/nxA+S9yjoPQ9Md8BxI1DykR0RScI4eKCWSL7zD3heV21cgU+inCXUK48WUIoxsUkDsnLFB6PNY+cGrpSoU/IN0shahUEAomRpAopy4gJKA0IKAtTH4uPvOffPuYC6gT85GREH+RfHGpUKUChsSQJtDaBu/hePMGKpAVHvTIdX1IwJ+v5g98NG7qfc2QgUFAlU1ECUSRM/+8LnoScPPrZ+X8/G/HCbS0FZCEYx4/XX7XNlPQl9xkVwggDFNJTCcgBhEg46BCZudaRN7dn3kda2qHBp1odBAomakihEq+Ri9TDQ5RokX7im4Rnoatn+lk1oaLRPELeRUUJQfTtzPXYR9ma2fxKD7CUBAeHFOpnlYUTRrGIm0JNgDaG/dlLsWyiDknHRSjyw+a4d57GcLy8JyWD4o1B+OVBSMaUKQYkoAKfZ7da/KAkGei0D/eoiUkkpEgcjysyc8CS6NI7bAwyL5K/XH+/twyGzKgaAsGufGB7yV/ldZ6Z2ZyOOsCEqgBYS4rRNIGxDaKmGZClBwpaYlTtbp/n9VU+0LWwRoEbsHb98F87jhVMFgd7DBzxjJK+AT9UpUJEBNyQBA/3Jgkkt0FABkBfmOkH9lfuyBhJVfH+VwVdQV8mVjkHDLqoGqUfpj5TiJvBp+ob3wIA6kavXB+B9oRjBJ+UT9AhLoJCRCgFwHwUzVdl8XFcXgtjTnOE6Ih16UqjeKFRCoCeYi1EZAo1UopkBQhgQIQQgGEBRjALhC5IJkomoEIQZVNMFbRNM0A2g5+32rPmihg1OWwWgH+48toQNr8UBJgNoF46zpAjjSqWErWEuD1CzNSQVkFUbgBof/AEL/5qvvz5/U8s25spQXzKAy/be1Ab4qkB/0lyKaIiN4s+LXybfiZ9luFwgoS6rcZahS/nVMFrmSbTOF2f9dceHcFfr/uzUX2/aaRwAJNHVUMhwDV9mVo8TJ5VMqeUikihJktxMi8mV2IV/qwnXzwIECRc2FwpU7bAcEREJELqujwDO48VQFGCQNongoK1pHpaRu1mHV7zHIaDXtTcpIrotxjUUlLERcZijgZjNMj8PtwfSpGZXxESWAo5LOoMWC1he8ZRAkmSBqoQoyChswiGzFpKFaCLaSmkg1LmOBSJoVpUnUOpKPIBVMJu3O4DqZJmaqEhIvi2qxfy2PagfFhEK4lHbYrMFZFqoGGZgApkCNAFKNKgWCguJ8mckf2siSMhutY8ty++a1JGYVpFxhOmG6MbYHU/ghBgKwVVghH2Y0yWUYZ/9g/XtqHjLqt2Ipn1xgGNgd2cCyz1K1sGMGA0wBjGSsRQESlRDRQDEE1v6oJsD9NUBZngow5WKJbSVtp9ZdGv98grQwrWq7iu4Rv1DrCQ9117wioawcht5BG3NiiT7iEgfx4uTbgPX/GSy3oogSL5iukhN5f9UaOUgCTmhDSgF7qiHpcFz+i3OYQvpjDZUs/bURUeRyOcmuumqjtbKpYrJNL5whJfalKdl2WkRCZHIJMNLkS89nEe69xH839tz6+L/Pcp4weiC96oMT7A/zH9Fnvifpyfv2b7wH+Cg2QkkZeiiEqMQLCANG8PHxQQ/Ni6xJZ4Oc+u7+qcdSt/je+LYMRCQSZlAfsEP5yMAulMUYIDogNCMBioSZFMihGRnIpmyUNIWpdSmoMkbBEDQMoqlj35PFhlS3g+2nRV8vgQix5QEMSIbYG2pYdZJmyqKhgy9CWCkGwk4z3nCgYQVmHzPpBgGj0zC/7iUrKe4ADWFfoLqpAAR3WBU5IxNNwgxIaSj0QHY83VkLC9x7PdWfDavMV6XrfqtxEAy6xWnBGAzMz4/i1/yhOoYhA9SUMJCkfrKBApRkDIoCj9VhFBuyVoErEpjIQoaAo8Hif5o+baYb+XWp6zGn5u+r31LFQ/vNyJt8dYtf6L/PnRt0QqKrCBrIBtQmI5TwSt62aob1exRqGLZ4JSMyM8ArmkIbHw1yOPuQJY2D4s9x06GLoweU3qpCx1QBiYnB+Kf741Pu/z5kPQIoUDAZScFAyqH/vBYvCXAl1IBfQgej0UoW8hy1aZo2GS8upEjq1kUaQaC0Aq34NRnipJ+qLGiTar/EosemfH0hc6IdwKJEiAjz1QIGhRI5CFBQ/ZD6GzEMxrGwx75Gkwd/9fdoyUDQvg/ttBqSh+mMI5lz4cdOrBz8GfLLQ9wbI90HrpxD2Y00kQhStNRJSlAUsUQYiTFPXGCJomtRh+L/9xzQBkq0iHKRKEiZCMpCJBAxIrQjShKBPHK3pQDwwLH9aFGlDy1TP2tC090MKifGfrvzGwwoFCpIVab38cPl/1DejsWnF0547Dgu7bsmfmPdH/44gSEIhG6PvAkpr6wUH0jyht23P081EFyzv6GbhhcRGQEoaKoAKUChoVKEoSkChFoEppAaEqlSkoQ/L/r7gkuu18xnfA4Ka55+v05K+w5RpYpR72LW12s6XbGgP6LEJzFHCSAxBJMA64H578s/P/04qqULun8ewTNM9+R2c0F4wxnyQhFvv0+eeAsSCsxNnkxNvoFd9zGD5VFjDvMxD+7Xi0wdGmSSUe2mjcoZi0C2n3TASEkgj1xR8XxeZCLEEL365m5/ew/XB9MovmWjgvUj/eDcAUND/lB9nj/9ToIU4aGMbGxYQEgYYjv4NMiqmhohr1tYqdBn8EhTKmHCBmj0JDAuB2dWMRywetgb+f2AE8HTfBzEBKOWqiDcILUWWOS34KgwVRbwONz17AXgbbUj+v/Pbxv8p55qYeU8U04dhX7idygCqCWCKioglNwwEEABpRFVDJUVFLGCb2hRP9r2HuAXxLB95KTvFAL15+yrQJANPgMGhFp0rKzYwVrysqzxVAcoJoBDD/W0hNQEQQhRnoddpC6jOh+XtxTuYG77iCvRBcgBQVUaRUURSlEQFg+CD4B+Vnd0rsB4jCyMKEkquAZ7y9GxI+UEmG0SAE5yjoX83atumHEEnVMRtwpz+ylD3/mp4xTeBUpoFpApECkKaIkpFoRoAKApQKApQoChCgVpCkWhUKBKA7n9kv7/+A/QSgRBVUpCtr4I/jjxBr3YH3mX+5AaNz5G68PzVZUJa3oeIWlRqATAWRlzo1np3LAvMHCM/BkB69o7Bn3Agy+0ye+NfW/BlIA4ohmdj3mJb9uvgB3Hw42tA5UJoIsRzABLJCWmqC1kUx1TSF515vB5KkU3hrFdnlfZiRiEoCTQvp07LJ6rZ908l7Cgd5EUHERVGx/SB8k0ai1K6WoAtSRuXR0PpE8Yqs6J7Sxi+Zeu7nDFvt/j4eGOjsNROWIXinhx3mSP8xSUDACqpGCUJpkENFRUkZy0iTDM1DxPi0wHoZiYA83o9Cer4gt/1X79dWdiqBt3PNqYA8jiEWJ8SWOkI6uxR4CokzZ4nko4QTWmg7+St/+Yt5+kE9yNjeAlRMT0V02PRyF4KsRWWPNAxg0Ta24lEj9YAQi/KiA4hzQvn5cKlf1f7bkDsPQZKeIbOkjcK2HqKAPlTboOfcdjRDpPn+63TjD7m5hvFkebl5fQ3MQSfBRUFkHESpSIemkDph38Txf0vmCLwMfxseKd29PgiXzWvIZLUiYFNSvRLVJx4R5x519Vg2TtwpLFKiGCuBOQVQAizAUEQU60kBr7Rg/v12OVbtdB4R6z/uKiELGm0HIwhq3VBr05QQSSqbZwNW9K2k+PhskF5h1hC/+YoKyTKazotevbgIrBD8A///////////////+xB4+APVJSfeBuBt7A5DK953BiwG6NS7YQCRrXtWHXuMB5osEO1NQ4k59br3b1293WH3Kt8+J9QKqlFQbbTShlKlVpLUo0Gb7lJRVzbKqklAAAAHVVAKFCgCqoSgoAAAA0AAAAIG6AAU94AAAAGABIBAF4AykAUaL0ayoMA6DIpkhUSkGhFC95tnuFJSJRR6WyBSlDSB0q213AopQtsEAG2aIAHS1sBwCBNFgZCgMOgNKIdFGjGzaMAUANtlI7a7aqkXc64BQbKAFbZhVBQah0oodzowKrtgEiAAAah21djq7tm5oYO98wx9jR99u9GXbSJWl3OBsYDGwLrB1mwDYJ9znDAtYDMMOww9ntoPr0OYIZtb12uFbN3rXgHt5694veHHcC29epxndwdy3k9w7j3Vc3bGE724707i67XNwyrlhxorLzfYGHIcI7LGybphDjYzWdOdbgTuvccWsO93Ca7q3r1z1u5w3e8eePN1MbVMLR3vd6MsWde88c7gGOae948eL3ZwxMx5XuwdSVu3DRjaJuAYdhheRj3AwaVrR73cAAHWFphAQCTQGKSADRyOEdsOj00GuSg9e7UICdNAegD0oAHCoHT0HovYaPezTR0eHvc3a2Kdu56GGAAAAfQAAAAAPQAAAAAFx7L53LfY1wB9MQGQQCGDxgDoAB9B6BoA5AAAEDoYAAAwgYBDSV4FO4AAQLtnodAOKEDpdgC2NAGwAZwEAa7cuyCqIQUAANDp93d770htcAAe+vuAHzfaM4AoeEAHuoTDwAK9jAEyPQAAAGgoOuPI1AAAdAUAAAA9xgNsOD6DQXvDA6fbAA6AewwDgVAb2AAAOUA7BmnceXQDQAAAeQBtjkAAYUdHqs4AB6aMePHPb7gAAA52PkBge+4Hd2E1wAADgQA+2fAgAHR9D07Lecw0AAY26FADQB0E+x5ABS5gAO2Wr2zcU94Yh9WA0Dqdz3cXos3WuiiUintii9ijRuzWhvZ5KJvd23d3G7N7G2Z4Y3ZvZl7e409u95pu7vTreNyJOtwNZnYxe9y7u9uu63YvBnL1ve7udzMMrO1t6xa0cTT3MbM6GS2G9j2Ky+scABWbsrorbabYYGAALC7NUcKIFItAZBAqiQDAAAPYHBCAJUSqKADhkAFgQRRAFNNRQqqAzJtAnocF7xgBS7MClADAFAAbAewYEAOijCpElAYACPI4K89vc7m1NsoqWwwANgPLri2gYMs0yKvbDoGBAUpVsGpogAAJggAAAAEyAABACE1PUGgQAITQEACTBBoACZNGTFNgACZQSmQIkUEBAAmpp6p4ExR6YamTE00ZGFP0k02pkBJpJEEAQAENATBE2gGUwNGhpNNGjTJPSgRIgJIgmpk0AnqDVPEaaan6mT0Ap6j001T9T0TyninlNT8kESiCAAEABAAEwmmTI000AATA0NT6NX4084fVYickQPoazvNPkCzwc9BDvnIlOkDloKiJ9T0BOgEqfmH1u6rfv6utYXWQzBUbp8F2PLYXIkQLoIZvdTHCzbl3tGCzpPigpZAcsQ/jteQrhVFsoC55uiWRHFM34/bUe/g4q9XAmFauGKBriFL9VTRGRN77qKu+wSkMcLIJ4ydPHgquXNkxWNTNWqGJgn6T6I2zAIcG9VU9sFNMTVkp91lEkyW0HV/f19uww3Zf32Wh0xDn4aZfsjJKJnIjv+K6uMwYIVxQ2x5pui2dFB0wwSkkBmugF2oaY6TuGj58Fxpjww2QwwXIGK7FfyXH6x/6YGdbxSdPvtOl6h+B0hrjYTP4/7e8a3CHdSUT7dWGoWwu6nqqoYIOPXffYFrOKGGJpggZYOv8afid+jien+Jmxsrt10k9tOpCCnZwoHtpwEL4GCBIHcto8c7GIo3R8314ada0t2/TQ62Ob/z2F/toA9rq0U8JA1dujogb2GtXXBMFlNtKPaRg80FwYT4xJ6A8CCqqMgijCLA//bfFmen+/j0cEBZ0cb8Dp4MoxFQVSCj0/Ycid89Fzj5OnoJRsMUPNcFeakpZnCmo6zYVFCSPrdiQlmMBSLFkUCKALCLCAqkWCgLJBSCyEWLBYCwkAhGQFkOEy/7X7/qo3Tb5vgpzW0me46mVsjlvpW1JEkSQkH4baarNmEw2dISQ+Psbi/A4kQDpz5q9zr3FJ+fJX6h86/E98+7nBS6+Xw/j/W0p58AKAFIZyhT0Ofl51D13Yb3sampOHkQgAQhXfH+ozgC7f/aLsThfJxBwU8vXhsgYMwZ0fsBZ0a/A2/S34Hgh9B/HbiuX4Tjmd139Kc/N/YEeb47AOgnucQgt9HY3Pqku+PgbCXQqKMHzowRyT8H9t+4ZsIEfifzLDfKAIiZ/LSyP/TLtXOZ74CjEAW5O+jJLbte4gfvnsZziISy/LZl9chqo/kQr8ke0GtOj2kFwCIDg/LhrluvmnPI70gH8VcAQlaBlNjmY4GQNkbYSW+ZuqLt7JR7mkw1Sg/CMCmKIMICyCxQWEFIisAikWLEYQWCwCKQFCQWALCKRGSLIAsUIoIkVYKsIKLEZFIApBGKCiwFkgKEiyCyLIskFkUkFFAUFIsiwUFHiBIdSCyXIs67ZD/Og9Rn2gHOB4yYHBADMGYA3HvBeQwWoC3FnD7D/GjxDsH/39MVrd/sy9e7HORIOvVROLIC/5ByxJBJEhmw8lNHP5DVspbwXDlsGSmbqrrNKB5h2o77Ptfw4HJVkwTWxr7Wdq10WZEMmFaQw4KRDUT2r07xpxP53WX8XJ7wtynn6N3mjn1TDm0RMYSLk5Q0hOfWoH5YIzM8W9oicL+v6uR1/Zcw+USAIAB+nieF/vN4vh+Td7Ojz16pbXjqhMiAiZDIbOqyn/3WEpEJDrJ3Tu/4OrL3Jz39ya3rvwHDeQTqCQOeO/sd/dd683/11GDNjCSr5JNvyWGx1/Fw367QIwB0/79EG+h99DSp4ps3+2od3QrjlPj9EbQd5KBiIiHWhP95J/oxJFB3+8mvP/4OariCXIdwQD/Tz7eQB1JqlUkUBf73hkPQD8h5tZ0CbqwWSCJBGCrBVDr6C4++zvAYafi5IRD8pDqUAC0++6ajxmA/s9fGjDPCEQHIwyoNDIszsZAUMtH9GBufqHezGj8/iwElnJIoJRY7pGf/Jpu9Uh7LL/Vs/g/ir+i3R+2vbZAZFoTpbNMDmqrMep/1Kk2fenwUhybsLTj79MtfmitEx++qLfaGFkS9eI5+Zx7emuKCC2p1PzYDuTpMnmV+0AZutUjFAq/Eq0d1jOpGFAYbPZf/nNt5WIlhbQsRAh9PCAQCFitwOF3FYI3YwYybnOteVDtPwPfYJMmZxZaMqUBY4hQad6CMP/WzliAsf9r3OnvBX78SHkIAgnSrvvmJ78ZjqPozsSeP/V5yQhFukzGlZm/z9n0W/pLYYxtt1oFRCs8GySf1wN/X8MeHKPdfaBJIeiIyIMikiJJb2aOWvz22aocHFRDfEmcEImry5dFmmhRO8sAyTztobawbkhI5QndNIW1DIP9bjDjy3n0E6MXcsZpER0LBkGLkQIfMnsTBe4tPzl7Fe52QKAAYxqbGHS/n+NoCr+D6rGzMMum6l46X8ld+Av/9eXgCpAgQBD44HdaRedrrNWhZJJEY4k58p+UMVPrFRJ77TngEr30BpX4VPBIBkKsMYOTR0k44l/yh2yom4tJYaEKA9/TQAQP/mcO1uRweMEL8zY5WLBmPH+v3+mWiv6WkS2aJHyejpmTBEpYwfyObeuzjYckV/D5tEGJNh/0HpChoyiqtyQSqnvw3R4JPtJdWBunDUN9iMYQ1zhsgNaSRhV4sFP3iaJ2RJSIvna66mVOyYQ7Bf1y4wiSsuUJgJ2LqAp+iRa6KY/PTrAcb+X76Evkuz0zT67OmLbJIQHh3U2xeW0oYJPXK7O/xf9h9nLZg+L+PeFTHaZY18wSMqhavAqAoIbKBJee8rAKlaJUWpAHWKaEQja8GzebPs4SegIAhSvAc7twsCEMmjq3T97BzE/lXWLNuhuMe2bj0D7iWxXQ9Ponqex8DrZ4yUOPa8K6RDyMP+DYZhLJ8MBO5say29K1Mph/XJPzc4zkE4qFcG/3y9PbYwlpQEiAAReKCbW6v6VxDojXlKgaY7DIRc0iD06OenPEboSVCyWXJgkKAX6OnZfkJUsv3Or9LhDJPhfH0mny+b1d7GfZL4bSc893Ah/DgHcEJjMQUcIR/OKRNxEECCg48w9EZvoJdVV8Fr09If0+tweJDn66huo/TeyjeO3MfLwgIPg/Fd8a5cMA1z/opU46P54KZYJbfqr2Y2ROYAILQiXB9fLJjHf6GSSLK3Cz5GX5v/FM6IpzNJ5euB2EqrdBJECRWQGRZAGEGRAJAJEZEwLsaBWBwCBT2Z+6VLZ9htFXHYml2UfJCl+iodiIN2X5qvJ811vavwwRHRl5PYCZY7Yf5cMjL/HISJSS8JMQBMZCU+n0NGVALMMplrQxQKwS4stw5y19P+/LvYLXDBE1aMeni0fl6sCJE4yl0nRz6/epWG9piHfqYg8ynV/574PYwXNp9bMBJyB/sJcgL/e5ufY/Gf6/+ziATzfdAUwgMAxVSFPt+VG9uymXvY+xhXHEKTydGqqfp9PH0dFddxbA2V4s1i9ebYCBV08JB72Uz6qTkKWo6CJgzBAj29vxDJ8XkMO0IMYMmMRGZMEPM37fGfcrQ9GfudHosKixiauYDzOIgnjTxL7a0DzIz/jJ1K2wDPDFfTZbfV/GLbB+eLSDIn3oCAh4j8TVBLG2eR9jqQ6DeO17uVw4TtMV8QxVNiCfmFvqsMluzJ+tvbuwSl9n5QOLuy7Fy+eqDcJ/t+Wo5If3FSs60LVRE5+x16XJLP45qhzzu3XKDXUNa6fcnrew7rIWGdSHqmQqLTuhA+1zgQ3uo8eXewkT4RjPYj7xABAB+w0GX8q/396R8tniRAB+n1KI6fv9G/MWStSAIgQiBvTZUPFG/xEfH63IhT2bWOU/10Lr/7ZzwRZ1qPeGe3ds4RFyAe/ODD5t9hhj3MwbIU6kBmF6TABjrPd2bnvrPyjiY2b/3r1NLR3Pt9V9Y7J3p/WJZMJTxHbF5AiE2Ft178Yr8HvyVKdt/fsLY4/BYVrmKkyR0r012bHelSfoYGu7iO9wBATGmdGdN6xz2q8iIjx1mCEfbjf+X+5cRcwQgKmU/X9Ac/7HxIy3cf41BNh42z2k1+MYkBl3EPH1sYZ4k5zMOgye27PzUSw+rN7rELoSAyKkgJIuifN8/1Oy77bt0cBELIHlgccdV33W2X+cBVZ+5/z/1mDvugPTEQ8Aj/Qy5Ebbk6L5rL5iKvm6ft/h8GfXI7O8x/mZPGSRl/S/GYyn+3v+dxU/ua+mD6tu/Dek7dmzu3I1KRjZIJ/O/nnOW/EeXRnH1QBkQ57Vgyf63rHz3F7l/mKFTB7DXnV/LdgplVTApCBQR0HnggWYIJg1LtKTpc/wYKYcXsfmuTeMiz7vNyuyGnl/yfLeJFyN+OG9jEN/gwHUKSy3f+PRJfIrKD38OvfdeV1TkuEEw9vOb2K8wpqyVCsNggYaH5baOvh6R+d2YD5WQ521YvQeZKmvYgEwIoNnSo/+VCIgUTPT4L9KcXyeYpxfgelxU99ozlPbbm2+Hw8xFhJQ/gyn8n8SBGz7mY3GG5K+kInIZd2C/Rdfo3+T5NHXt7XEPg42dmU/f8/rmcj/Mb/lDuQ6P/LDEUFFJCRkGSEJCEGELb9vF1vN4Pp6LQ6u0wU8JEunliBDh3z/pqCgFJ82g3wZ01P7lUz6jyAB6tl2eV9fI/8flnh7gouYloSMDL+9qbLOVBJVLlvXh67g81Aig334LhJcy9xkZgzOBQd9fKqJCdHvNjzNw4C6j9Nr3lw8mi0TrX8DAAnmadAyQQPWvGMRkRB+PwP/vvIKHzHyhIGCFIm249ykr0DP6VYEQXPCqbK0d+j/qsx8x1+wqjR4w6AENjbbRcav8PRFzBKT9JouQ/5rz9rTH+E91a50yCKo5YH5S9YdPz/3zGyvuz7Zxv/2geQHFfl/a/h7jTkiUQSEFJBCRegDUKkEkCUDQCopNJmKMN71rcFgcsUCxLkkhPwKmImGxaVh+iBDECLNn+vH8me3BEclKffG700tng7pTqwXDhonagO3o3jgxof2DpRSAIiAlQlf+vLpgfL/3a7qTV758xCQJy3ryXulgWTi75ezrV0E4mQQiPKWQev/1vw4xKf9a+10a8z44ynIgRVB9DNjLcDVjOII9kquKZmY9rigAgAJ58BaJh4MGNxiTNe7jBb/tH97+7+a5B26UuFANQdhrqTlyfEnMRgxmIu5nemL5yIibV8BEUmPg5IbDkumaZd56T5hkCHVz6ZNfGvZIPw/8H1yRQqMDYB6ul70MNIzhMENKcRd1sU+PbIxzjp0KmTlwYoDF13SbjgVgQInh4n/q+xFPYhO5PeHr26/p8V2l1ePdepk0qskWCxYEUgKKTp8fqu2jbL0f8Fw/DYSbCgBEbcdKxCQL4LudFDgtzwqSfyhDdEGYkAUikkUCLFhIpBYAsIqgskUgsgLJIsFgqxVBVhIsgsGMIoRRSCwFgf3GBxQErFfd6v6f8z3XTs8tdGbknJ/5dmHvky/Ti0ZOPk37a/nx3TKLw8eT7w8OfYwj0pQ+f9NefWtjiGi/O0I6gh2GQEnejj6XMYNSr5nNplwN9Rdl/bvRTyvlCo5pb1PVJCxyPke4gVib7o6dHNzakVMAum9A/9o42Ku/8m8I6L30mUtyQDzz0G/a4dMOEGeYqBbv+rSwQHcgpCFOLf21+b9sRMx7ht0+TbEc16Fg5J4ccttf0lzuqRG/fP4rmjWCPeMQdHP8Vdyy09vvFe/q7dHRmxejHgmbiGTVFpEOiYYHvhplpDtEthoVUnsVGB/Nd/K4XVOW84UmTZv3njMd10kEvQMSlPzeKnax4Y1C8imCMkkifFQocPi8TlR/9Fc3B7Nqa7cuOntYJg3FBw248FiUjh46fdj9dW0uGgFT393y0/H8DFlevzbxPf8tFjtT/Gh7PxxDNlEHz7rcXlWyAAR+5ALO/8XKFmjAgCFgZEZiZi/JHH3u2P2x/Jdb1n7+PUyRUuBshoC939gzsdyXrImqAhwPoZBsOpgACOeE3BgBskkDEDsYibvP/0ctsmXZ2H9cxMC58t+akZkOOXOFKJ9wPLJBq9BtB7T+XTjqqOO+QaaY5t6hM0zXaZa8n2ZKuHk4amqAmDP9uxgWaJuMF9OQxZrVTkm5RMqIQAKEzQt59qoBYw4+rQbcd86tJT6jNTDiwckdkEaw/jS0DRAl3FVNSF9FQOIpQ6YspgqbqlMGv+reI0b9l5p+7zyuPHhqB0R279Dh0UDbvdPHYX2UE6Y4omWdidSt+RNk127aqnht11DL39lQw4tWLitPoQmOISJIqSIkigCICwBSChIisIAKSRQWSCySLAFJIKACyRYRRZIoqwUgoKQigLBiQ3QPGfF840qZQeMSUukyBRcvoKG1PxBKYBVB3c2zBQ5decuwZf3/ju+NLVDGYja1BkkQ2zJ5qbZpwUB4eL/vzfBh128VePt2B4mGwhskKlTwcCmkKMxA+RurpkH/nu1oBGPRSuynv0lQ7wju6QjHf5KTeK0Q/D/Qe9fhqYDk3M+1GWI4+NeD5VT5zMb8pD+np597G5DdSBUfuih7R9IsShBCL8kn6PpqotW3AeKNR+lv7mvNZF+qDEanIH0qlz8N3uBUfrgWfvU7nrVPvNPqvZANmTZJ5kxk8XDqyFiOqQ8CHBDD4qbl1D6LdNRyFSnf7NDRtohpz5ahlEikLn9KjisoanV2Hen4tYWnj34obvQ+b0eHFgpxGIzn57qSDKQG9kDA/qMhAy0MnGC3c6EpkM9JK0NvA/u6tGhyHO0nvdQ/+D/Gw1IRdZoTX0rOQfgVf3q+fzx9jr/xlx4ptqzm+XDZyB0jKy+QhZiKI4JiBfce/T6ryzRBz+viT8PCw+rff9FRapA/neYapgzs8t1tZ77Jz6CgaQNntTGBr27MiDMGMvcy1cBnG0KQD5XYBd1wgGEfqxAzsZQMA0Ajj9enGiikMpz9riOI3/CPw/5+E+5Q6psy4+/JWV2VOGzk5rtylxthdKRaETPHTCsDPDgh4fsl28Xl771bQWehJdyhSh0ZggLzdRgb13G5v4+fuzyt7L9YRscz1Xy2GUnjxmCJ+6hr5jBMFQIeO9KdrCmrPAk6EMSe6lUdmRRASpQ2USlaIdETJn2Bvbsm/X7PQct59ZE/Da8FV3AoIQd24Nsrnh3rrlGpjJIZhZ2vuU/etoQ7YHFTAIMf6n+EzS+Jw13/1As4oZ/gtp1kDexcv7zbkUxT7ev6i3BcBCJAkjIjj4qXRDHDP8D050QUmgr9Dk2xvrBwnFZF2nBj/n0cMYK/+3H4vtCMwjpN9u54KsSS03I/ZR4U/f2w7WQyF+jp9GNvGGceChfmz+OzwNhCkU6ebCtC2XBdO5AB0Ao/NYvDY9JKij2rVdku1x+xCHi+2XOYNKqw2HTEQlZ/DWaU0ctMyqK8b595WJnf3usRL9KsZ5A8rETfGDUDg9a1iLMbYir9TedjRTC/DP7ezlPP1PIOmvP9sAQhmGFL7aFFkJ/5O33FSJZcxmkq8XqWBF89mS+iV8NwHuWV346sJkncHN/fNUrrw1Bs81NxJCZ6DrF/qMg3rW2bEpkny0TAD4TQoRBuAU3AP+lAUTNe2VAOSyPI+5qVjZftgfxQcwWGWBLtTswn1ywET0qkdIFEfYBZQ4LENclxqGqVigwCLEc325AynVb3S9RHpNpbygPAUYoIr9nwrOAXRkBopt9/ImAeAAjsRD6avdHIj7QxExF0QiF1vGKggaI+Q9HLqw2E3EJWZii478wZzw2/gVBBYQUIoAosIFZCCgcRCsjUDkUC4JICmCAsjJIeLBVKoBSQKgciRS0ABQICgREJFgYxQUZGCCRBRBYoqqQQVgoLBYAiixIgKRBGMQVREAVRiskmyFBRRAYMB5NAWKqMGAgKRkZGMBVBSFGFVigE0gBJBYyCAQiglQqKCSAciAPmaFuCJiBILAIsBSAoCyCwJxYIgSWIMiokionIjUBCQJEXcQCYwhXfg2EDIIoAskWGkBEigFRUMQSRAMsEIRSQRBGwQJRAhDgyAsWQ7mSsCKAIhFIxAGDJN2FBnAbGSKRYFK0KVERzAAEJARdFUISKjIAVCWRCIIErKJCpKnNBZiQqSSsIKVkxWBjOKQUgGIYgVJIKQR5WhCsAqSCySQFBRRIxEPIpxnIOITDSbitR9YKAwkLENIQqECosgs01gDtSG7FzBkA1AUKgSJIgInI1AR3VIMCIlxXJAC4gBqCKSAkiDIoyUkRYQSQVJAVAkBZAkADySRCCkgyCqYIoJuIkgDiAISKsiiSNmrTICCaYCD8QcUQ4ioS7dEoAURaZA7xPW5QJrMlyY6DaQYchFQUZuMNnU2ZTaamVMVMNsogbJDy05UqWYUd3SblRSTZcQSMpWsgIIECQSiMoNnFcElLkc4ksQDMQ7UcEMI1VoYA6CKhNRC2OwCKuFXq013rBsKR4S4AybM03ZIKiwYxuBErIknKNLMmpQxSjtNEm5toBphd6TUrdAYJoicJ3rWomhGIA4gO4B0HrisgcBJWGaCgoTCMDiWwolQDdSpZHc6SouAIqXE5BajtunMYMR5B7FIw6ihoSK0nIdwHbUuN+7YQSLCCJINoHNpEIDINAQGdCb7Q835TsLmGAOaDEBr+EYyHdO8+fua23w50YUiPQuXfMFFxFxAoA9Xci1xIgFkLipQQPjHaRBON5+l/t0/G0QVPGJtCUhVOMcZYKFdoPz5PNfD2o07hE3mcsOwCIrilFVBMCxgOMuhsQ5gi4vRwWIdpykkACSLIiLABR5hcgnITVnP/fhvGc7B2kMQV4E8FgS7xvIHgINZhZth0I6Awkn5KOKIPFIgt4kXMTeOF7IXEueRSRHR2nkQ5spDIEj5uk7C4DYRU7VOQO2pqxF8Ydm9q1zsxMGACvsLZtBHef6eVFBCAPM1uqHMTwQEgeDcCoYJdUv0jkmWPMcGL1HW5cB4pS1ZxVIjiiRQJGZaRYhxIORzAvN+YqIarTt4tFQ6p2hOLAmCGIcUmMCpMQhydSJxgmCGJRCljIYghgulRy1ywVxFzuriAJICVAUMQNx3BkRKIBcyJrfA4skFAuWLKmIcUFOHCwIYw4MnBOOirUOSLJMsKJypDE4pE4WBUOCRLg4te2AFxcgO6A3EBDImCJQWIjeuIGosQGaw6o1BgmIDECoHNh0tuByDuGJqKdYAUsEIGIZCiNRtuK0cDUohoqxwQb16IjiCJREVxhlsFBQD50ZBmMEtRKgqbjcDceyulPYglbwbwJoQBaq4IcUQUCg4iU1GXc2qUDyAcagSJFKCIDu6qrjJkRabjjJkSE3MBNIqiRWmUKhOZQiTKclTSTmVVUTRUjJhNMSjg5kMuVy3MDMXMyuZlKJq5ioVU05oHjUssoS5tVVky5TUqVzjsuE2puSZdUmTMyqpSJEjhYXbmb5kzTGldN9/v/854bbElHIX+peEv2rQf+nqvpH9kP4I+VPnxAPXKpP70nxlqfQ7rGNfd9yoLQ2KC/CZZEbMizX/Qt/UOjIFBAXwia1bgz17K+K3+t/JC7n/HwO4+kPZC6j9fprAPIJmDPhzOcnwdXVfDWpeIZmPh0EqKpIIISKA/T7ua/bq8eXEybtYvQakKOg8JsgsJrSdKdycWIQQ0CwJqp27YfvJ3I6TQPFAthQqmUGLUGz4qh39lSCUCLQuyo+ypPiJrnHxVMyVvZJ+cOBJ+/X0+WcMj6/L9fk0xHv0+1EA9K+9ZdqIGFjia41+DQQGUT4RC/TtUKHgVqbLWbAOBECDWCkN0QfNNW2oppvnu/gF2mhjjCe/Kfw53/31kqJmZjyZFKeST9qv1knkb2qPu0HwWn2/u7t0789SgIP0jQwrEiB/1msgZyGNehnIaGfxIE7z7FShyVLsLECBAgzUN6u3WdCr5REXM9jCCabFRwDpaN5hc9F+euE/AhTuhMf9fqIH3n3J57cH2ym0XCo+DUcZgAE2Z9Hm0ODY/tzMeyv+zYwZQo9QRmajIIhK4dLKQcC3rNe10GRtQ/VvZ56usJochATt472aRET+W7kKNbusEuDIMpDWiq5kIK5OFVfB3CakAB4NekfN+fR9jzrv0uBJIOjhJExHmYb1Hyn7bTR72bNwyJ+kQSXqUiWQsHW/VicJm4yGRyJEmBKHTX0BoM+Ktprq/YuPiHfvXovUclkS7hbFEKi/iv16vGQ3XbeALcAEHRrVTHMfFT8FE/B67/jX9fdyT/Kvd98X7nSr99air/y1n4kvZlEmX745VMJJMufcuzyQ4AA2PgaIYqRvNpzcrCgohYIGe0QQ/sODIncDn5/pnYq9ntkJV7bMg+x38ekxfU+kVZCyKmboCXTIdSIeOqUxPN6LE+JBKhlg5heqaSBuHxGGoDfHAZrjEBhArRluISB9cPWRfNJEo2tWyGUJuAGucxhFxnuOpk5BOpqpIpEEBeTAizJCkdQ+ukalPcqJiBEdErpCPYuIlqQsVMuUbyOaP4cNDnIxdG58nwVgjizxkQFIGgbZSiOccWJHHGmov8PrXZhA55juADXfNBeA8SOJ7x4x5m1q15RreBDtZsXMhJHeUoBNyvr9FwuQ+gjgsquqqUBcBJA+ihqAgJgWIlRAdEcEB6tVrc0GKEkKDgRBzjWsYhwgtQMQNEVGW1QG4SnAa8vyBqBzNJein7NctXfnqwbigXugTrueoCkQWQKI/RzZgrGEag366mIsQHo9bLfcQJZOT1F3EC0gPkUkdKvYiFDwv/aWsnuQzVLCysxHwCCcVhmAnWJ0SBCEiOoCLBb97ORf4AQkBdsFEqEkSCCkigMgQgpuABIRisiKkICSCoVBCRVkQhBQZES4jUSRGRARzJIkRAKYDIMIgjp8tDCIkREwvkaiKeMBCoKgDGLIgCJuIpUWSBEcEXiRuMSEIqBoYAoFRJBVHpAAKgDICQiIwtyzFimyY1TvQBSHQYrcV6eUBQhBwBFuJiCHY/4IxDYoQ64qaKDuSuGqTUZmgEqCdiBkBYsmoghVJWF3W4ahJogonkHk3FNiENxDEHEIKYM2KuwYiCJuGYqk8n7su4biI6gAo4gL5BT/59Q18b3vGkEFORBGcCoVEh/tCjRPUNYcF3ehEucSIAe7BEKNdKNQgkN1QZxFFdwcwAtDRQpIqpICGdXZGlv3wibIKGoqg9IiFSYaszT0uhTsRDIMgxeIBBR6dpVJFEOwU+qe0wSeegzmGUBNQfUNRUf/vlCEgiuQYiHtJ5UMXYoImsR3WjCIma8Xf+F3lXkRUQ2RQDGnlFVR7YQfciuInkRThoYWazVnJoR+oEYRAkkEgBFVYsQkGEiQQgjAjFBYDEgDEkUgkQGAxEUUYIoRFEVVRWRIoMCTkRcxWQXyZiLUFBqApmAEBiJFkGAoqsBGICBFixYRgBtINRGKBCRhsaVaiQiQIsIiRZOSEksYAoSDIMFEQCJEkSJABkUQNMRQxFC5IwhMZAKqKbiFjFWRiApJOZAtICpJIMEEFkFAUEEWDGLARiwFiRFkEBgIIojBFQFJIYzdksiBGDKxYQkrEQRDdgErJOaAc5zpJWERlSsJpIbNYDASEQZOEYKoiRJwtYKgRURIQYwgKCikFhFIIyQZERkESEFASJFkVgokIMIhISEVXkBVRqOoJRIjEiMkgDAREYQRSAkUUFjAUEgCSCqRiCQi8JaREICAkCKCDIAQirIwBikCMkjBWMARBGSTmqYwNnEmIQqKmoJcAkVLitQVgAAEEDEmkqE2QUZGIoRIkYCKDEYjBYCigAxhIpFIoIgMRBYJBBAgwIzkwrAUUYAkVBYSRgQSEVhIAoS2hAIkigZSIJUROQDEBS4VF3AS1YEFIENmshFiIMZFUEZFAIkYKRiqyAIyKEYyKKsGCCgRQJAYRgO9lSLAEQWSLBIKxjIkSMZIG6c3HG6oBiTEkiyQuWSYkmRIUIwlQxJBYSsIVAJgigoosQgyEhIKRVQBkikWAxJIxAYMWIgMBCSSQUAgkFQihIoCMYwWQEVUAmMCApCRSRYRWRUJBXZIwkRKiqSKlgiRZIkCDIgxjBTlZYAiyIiMISIMgMiDAgiTKgUq1EGIhBGCwUUFggLBiRkgMgxTkEMwAqClxVuISCyIJiCFZJDTKyAaEkQywsRhIxEWKLIwWCjFFiMkiMgJCMAFhBURVgAqigCMIIpBkkRnBkFAiyQUIoQP5sFkkqAsEywJFD0QUMqDGQJIxIwCQkN1SMgJAJFVqCp5miqgmodwJJ0BGAQmFEHammSpDEArMYGRbiSNpVAVEKwIOmIIcIgHkVdEVTbz81WgG4AL7EGQJAfCKjcepECjsqMRFaYgrJrQScq1ceFIog6pilI4gpZFA0EFFxF0xBQSRYRQckUUDX344NEJDNVHVwY4WSQ0ySSoSb4rys1G5aUVTRhAQdwADakAMQDoQH1AXEUQKAC6FRHKajEkYMpFE8xEKXsVA3FSoKCh2AKVBRHpAQUdwS4IFhmkA0LwCI0CLcdEEDOYQTq4wIhliGYhwIiWbE1FKhB3SWoVKtiuEGlIA7ioVRQqaAIIIYHe4NWyLgggZiAmQ6rQq8bKUEXcRRNAMiEFxBUV5BiQEDDHCxREsOQg8SFAWIGoodgHYA9IIgbCHIqnSI3HO1IEoEYRXUAEQtIAnIoGxiFxVDghBamiCB0YqCaIlxFynUheLuo3G5qNJC4hRDMUqCUPYgo8IIriIOIIjrRyXk5QKZSAj06jV7rEVDIEUV5FKybLFEHZAUxEAdRROXXYCSCwghkg2hEB1et652bEXUEaCIIaiqIMgp3ed1zWrqkB3E2xERdGAlIg8znGK53GFF2QFcRE7WrADcEQ2EDsEDDyBSdgqg4qhG4CvIojysYmcgq5IgADeL+Xal6dAopiKPhAVyWXaAh0QWCiZx5Pt3lhuhGRUYwAhAFd+d9YBXPlIpsxN2qlEQa/YpBdiBBFOYoBDzXqrQEIgyOWM121ag1G1wKJbFPMFbVgLzZ9NYRBU1AeEQQR5id3M1lQ9QyxXTAV/sczV1xl6uc5AA0QBFGvMpc5DVhAVCQS4oj5VYiKFsFAv9j26FAl4EU5FQ8IbdztimooB2KDRnuNUYpyC+EVRB1fLS0wQTcO0UTAohhiKlWSDHOsABqAWQHva1FA1ATJBHijAdjFFQDcByxTkRExARDcMsRFyEFOQADMVMhLiGkgqK3BVqKpmKiKyIoQgAYCIqA6ICBiCKGYI5gNwRFDokATZFREOQVAAuK4ggBoFgnCCClwEG1imyAqBUFRzFAHkBL6UiNkBZAE5EAcPIBKURQxBQDZFbmIAcgvIuoBwgKAaigRgm4kgCpUAOQRKiLyABICjtopEMRMRxBCQEXkQVqYiAVBMQkQTMVTsRDkVTcMEBYQXMQGAQFKAIgIETJQAURRUDBERxARMkAELiuSInIq4io1FEOxANkRcxQQ3FRR5NRRHcQ5BNwEXRBQ5BBzEqKKpycSIAYgidItqxUcRKgjIDUE5BEFeQAEDcAzwpRjBcER2RFTcBAQt1Qbggao7YCN/KhFDzFCB5ER6RA7PBFgKNBFQKRiSAAl/6UANT1AdQUkERR7ABfCIDYkDiqQ9QQ2RRFTxIKDRBVzEEAzAEkVUNT+2AdiaIsYoPogJcEAzrdoir7RV1o3Vt1Luu+FUUOHVSTDVJ3buipJYmWim5kpBMSwqWxBJEzJEqKZMlCJavcl2QNErFGGmjxU8YpaJY6U0jJskcskhRMjkiWiZmKtNIsuyUpdUwKpy8qaNG5BjtKYkcS0kyZbJGNhLcNaqrbeqy9RNuiQYsybp0mOblJa7SKcO+dPyTIYwYPG/p7LroeHs0Y8QPLcDa1Uir1kqJu/RVDYMI4xBUM7GNq797lHab6maCG5g8aIzOzaUR/J1WeF0PbwM7w0hWKkp09d4udW3chU1HjQrGCKh+55Z1f/Wa/k9DydQVeTWHipphta68r1aKPmsPJvXUA+175CG9OfHhinXZ6OAamJ4P2UMUNz1Z+R0wn1cv160Kj5ntc8N04iafMzHDoyH/mvHl+m3zukxHseecjD7cBfcFcvip1GltLa1EaM8cc4HZXv6tnUttePqw7udXdDwIcOYPktwSQWCxQFiCKqsWKqp0fX2a28tLueA4YY66b0mad/e8Wjkw268/ln2bZx1MTmW9LNe9ryb7RQwXxi1ikbQbQdj4djy8bw3ndbEyrKIhuVLErKlKOq92eGT+yBmeP2F/74l8PLLeOaSxJUc43J0e15NaX91KnH3KcHntR7Wqzoj6jCbgIbb9G5p2a+y5426SliEkCFCxeNDoAwvUHQZIevR7M16dQ+J+I5b/mzAXXdTbqMMoNDOPgrtHB/PBXmRD0sIUQAn8uAoDxrzRYzDHx9BnM2hReo9N0xkUJpf/HPZSzpzfh4s3N2Puef/n6+Gxv6Go+O+nsp2/l3OGqlp8zhuF5J7mrOfc7HyajkvvhtN3hrzRzwboEiZyUJJKO6nNUETHPrt+rWbAX8/4aAqPYCJkiIKSI3VGIn5PzUqiHxIqfCIiHYCOIinIOoAjuKLjFCAJ2IDggodiqGyA3BVexQqGsUoOSIpdcsUDqQBhERMRBo3qxAZBE/U87aKYSIJuCO+ysRJFBkBTUQzAXUAPBIJnVDUACeUq4CKmgiRRytBiImIgIGYoIm42Vy1FDUFceUIG0SChXe5wKYYIiagvWdiDnJSoHFgqZICbirgiXulBKrVgqGRIAvIdgIO788wKDxiGiCB5FAbqhEVTAsERXER7uYtATUCCQQftxSgh6PKBQMkNw9QFDMADy6VsmiCo9IoIFQQdxQAKIoMgKAmxxQAauhUwwQQCkGIJlzQqyAJqIPvBEcRD1FBM+9YgAinImIocIKESAJiCipqHkQbihqBryhQcRS4KB3MN2KvkARZnRjAFwU9QSxiiAOYIp5BBGQQexBAHEANxUYRS4KnYq+RA3soRezUUSrju0MwBDUQdkAEJw3aIlwRRGoICmm6cxEWcO2qq42ntVgHkBOQUQc45iYUVzEzm4WJ5EVZze+4TOYKlEVLgAsxKLiokIglQUWy+YwoAb3Sq5SBIIJ5BRHyIpkI9IoOIqlxRHxIGgYogDiIgFoEVcxREqIoVFR7FAcpAR/QjIjIqGQVgrhYtoEEkBUIEVgAAkCRZFxGBYxjFiCEkFVQYJAJIRRBBEOTRCKERISMCSRIKMiMQAFkBGQWQEEkFkBREgEEBGCCJBWCSQAixZFGDEYDAYxhGACoDEVhIwgAAsBZFQQjBgAyCsRjEBhGKs6GFYCIRSSDIgAsBjJIQ6BGAlYHFkKyDEFIoMFSRFGQnBkAIBVARgkVGMSAsUESMiiiRgkd6VkJJAUgoQ01gjCEYm4RgSpAUiEGSLBFCJIgiiSICCCiAiqiwIkixiEikVVgSCxgwgCCwjCMBCCqiQBESJIIkjwCySyJMEkgVIxSJFixGCisigKEFGAkRWRCEJGEEnBkCggLBAQgwgxVgKIKwBkYyRMpQN2FEBjJOYkWkhEAESApAgyKICCiQIioCgG7CyMBUYCKkUARgQVSSEBWIkEUYqRWAqCMFIhBEVRBYBzAKSRQkA1FMDEcwVTigx5BBRqeRBcEQQPICgFxKCA1BSwCJ5EDkRF2E2MRHBAdgqKRVDkQFxADMSmKKYiCo8SAhUQU3ATQhDMQDZEUKCALcAxBBxEEXcRBsICiZGIiXEEEI5KUAJB7oKRVNRVRS4oYViCqEii5gCHGA47SgciIDqCINrEBWiCPBinYqb+6mom93msd+V6OfDnxQUCKEFigoRYCyIik3PLjqVtX04OT9uOz7N4R09V0rM8tJUJwJ8YQts9CyBupnpcFEd6Zvo8uzh4EER2Izsk5NGUOgHOjnmrsMcQfanXed0TZbsCYuuy3VTcdl4TvKgtWHIjxfLF0bOIMFPYBZh+UF6PBlE8j1z02lA0kCSBTIizY9WkBxCkPBmUy1HEoU05FgiuDpCJW8isDwPLNivOwShIEoR2zw88EQiTU2iGKXwHXCOI6M5cmMyFyCDkEag8UeMYRxZZlDEkKEIe7MSdxEQd0Yi58IUb3nFBXStJdjza0gxZJOf4GJykowtCZPgAWzScwehHzazToMMnj870iZPSCIcAjF4B4q4cgTaDRlQDDLimF2S3WRuspCZUleaRwR6AR7a56bhgEh07mlfpujyYkqnf4eWIc0evG0miCNl+upY5VSVN0//n1XnSL85x4dXkHe8dvvQYLLJ6qOKEl2OaWdy+ZfwpxvefJ+sjsRE703z1WVyoOE8poS8TyIxEb3lTEoOqYOiiAkvlXnc5ALEO1odvh+rph4ACjuz5BEQEHnIz3nHBnrlS/RWXLQDTUyxHc4ozf8H6PTvNlcIPNfdpf3BIiCBIAULrcCP3JN5EQdv2P4f73fv2Ha9pHfPFzmWZg9S1Mi+auUk1wFfwnjm8FRy4iSCKqgCKmBx3vJcLK0h8ZwFcWc6w4FvZe7ptbgp3rB7ngb1pcBg5wzSmJnKBx0Q1fDlVFOXEvjx6oudqpjNnq64qNrqOrN3G97PXaF3eE52Qzk8iiMJoO1yruZ3NvIs10sd8VZFMuRopVUuqJHTdJzCqSE32b1um+rJobGuWmTe5rV1rBMS42rRpTl0UnSpUS2xpzNOoXLlEhiJWVHzmKVUm1DY3MxkyVCSe3USknrtWi7c2quobq6ihuCrGUolyyihJMbl3NzLmxPHlOZ4kvQt/dwvk2qoiRZI/Bwv0mqjRsOCF289INTJCjy/0i6fnJmIBo7tG/pkhAMoJAY/QwgU61enwameK/8uHh13Zp8qdT1fUV2vGSsUBDHGeR7/Jz65rxv+P+OWL+2ldoz7uFephJD/OHp9l13X+RlSHaKa7vb0KbD4Nrjt3n9NvJdzftt8nK55K0JEcTpOGedq7ftPqKk+L8oikQCRa/6JURxid5ExjEE6ejomfq7Cr+u3gi99x7+z0nqbcTyyCXzeqH9xqD94w0AyiPOm8EDMmCdY1VYmhg6mljmDUGZHYkTUtvPylrzQjXsVecHgGp2QeIjlDy8fBrfctvd5qaedC7kCtpZBShvFi0yNIvtTo95ihXEmPbkhSGEBnoYfzI4LIKSB4A+5/fuwk2Xh97nnBIa2sQc1cefde8Soa4dni1Op2RdIXr1i5BXl3U7nV97merhvvy7M82GkBc4OdrXpLeMfc6/Z27nF3Y8iH3Bh0YUWs47Z+F0ZIXwfF6y8X6DcwQVYPTesyvuJ7eHR9y3vp1Jid3C+y8nusAKyTTCKB4rAx3vHjaXziH8bPvQEXX3yfgUox4c2andUz/lfEUX3e1Udvxkzw/9bEVT3oEFHNys4ZURBUHZmvSrSC0+1w50dk1N1dubVQtxNHb4AcuuzbPr2vNZ+5T865L9G1Yejymp9UWdyV2dr14XRxKF2jPMVrMswqf1qs3MyICg6P0dotcHbVnC995hyMPYm+3Q4IipnYieFaXYER36MOwQQdpTlViWhVT+1ZGnnsjigoxyLuExIueru2E4YTEB7r1YV1S/Cm9AMmC34DvHf+W76InfYh5ChEeX42a1swqJmuhAFHJ5LI9zu8AE3ERWsi1ADqHIQbV8IIMEc7EFUbJPViFDlYWEGkAyN2IswIJyKCDe/qv4WTHrfKza6/Xnq+5gR0ly8mnQPrAuCBvR1MQTgYi0QcQcIAr7kUJQl4jpLbYJbAeRvYCHqOtLCJscypwQ/EgVFm7UhxYwUSVrJRhFLEK8+QdGzFCKQmwAkig55du9B26gXlVVjpMFbJYQksbcaOsIUfXDCj07kuRp94rQorIjD9QqPTTLGTukW/EX97tnCysoteaf2jjuAP7pvx94EiHppaJRro53IaYnM5OcumPFwHFVs4jakp0KY47KHZWb2OEO0Gft1keKiYTzzzCOCBHjyEm1yOCtI85BBsTPRjoGTtC82R5vfcY6jIqGoByXIVdiopcMnpOQ3SHQVxB/+aqBvoWXGRGend7iIzy0JCQEQeSHNQH5lbUAIFE4bpB3RVJMDTgGlCFCq7FnAOxwrMUFp/4EavuYPTvZhSowCbiwCNbtE7r3seSB05y4QhK0NdpOQZFTEKiUQHVLODWBoGW4QxBkB7m+uyOlbQcCUYUqJQRoiA0drnAmrsL0dTmYgiCDcZzeRBVsk5VS47dibxzX35jpEwo8+vV+ocJ5fr1OIPkIBSNk8u7/TAN78DG4W7MPI8gjy9JvnHypDxClwUt9/dmKhdDSCIhZXfWJjPGTdZnmkJB6mu3cLKu4g/jrRdH+D6t9lWTJ42jZcz+DKFQ/G5vFPr+SKVfsmYtscHw78dqp4ed/Ff/XBjWvhoOQEn6kpuFUUVDxyqribPhr28nIF6lzcznaeaNtoQ1MQaMKvnZM/Y+w2fOAKjHQoqYi9PPV+pz1o7HmMXUCS6FRWgUYRbbsCiqROayji+bOKnNF/5XjuIbXc8LwHjSEBW98m0jsEZduHRMdMsEdgscRmnQXOnNsiL5mBsRkHJAiDQyQ2OPCjuTfOBzl/W35tj1G1h5cZPm1MRVzxQZgeIGTbyqrKiBAc2jk13psTBy1hC7+aznYN2uSt8AJx5tf7vOXEVoM7AI/R1++EHGc9X6YqZsyuDagu2bF1pNWKzYbiVcut6G1pNpqExLBTSeWNyOSVlPRSK8WKMahW5SVg4YymSpoZKihQ6b262rnFLqqq5uZlmq5VzM0yqTq1Sc1U1VVM2VVVjrLundyYqvKdILt1TSSmK+v0diA/N0n/xX53h89+p3HZDZw8TVH13WFG1Sjpz/3XzWS6sN/Zhoe/Lid319nj1rV19WdvHb/bkiiql63/ZO7K77UzyuCe8K3T/bl39+5NgQWB3F43mknYSgtA0AkCWbVJxEbOlD2yZ++6X4v6ds52/yeHZokmDylq+XzuLii64nW5imqKU6swk/Szba+Tas/38WBz1US3l38vg3bQOze1ta2xhbPUJSyWzV9PVzPu70dhtVpTRDxgGOHWmZKSUTRQvGzz5h2axzoyYe2+SOXyfhaU/kr8J/Ve0vXfRPbPtmBlIf0Jwmx20wCL4fzvuDhxXnx7tNlhdJvTHAyWd4ayROapVATOULFPFzMFND0p5soueLxRQhmY8xpqDyUbrgYcxkZuRDOiWCoDz7kY271SzHs0pnrSMTMy4vVSBo4CCCB/YNh8ey7/F9RZeJtrh+0Nkv6uMyplZrxANIum7BYgcsrJe6uDs26iQxSmu8oRymFSzgHD9WG8yzON0eXqHqoH2qA89LOUz3BE/pQinREvuj3KGqDeZg8zFIxlttHgymO9PXm8yIzCmAiEAagpIoyEgooSCv2U8m5j8FHxvV7hZJcfeuggPdfoC/oyBwfVkj73p26Htatora5wh0lCGW5kiAC+7HaA71GE80w58eWRAGEGPyuc6ze3ozyt3ecy3P8TepQb0feeb4GS68uedsrN5ZvV6tiVJX3e9R2IjBfymqLSCFc56jjPh3Lm9nliIfnnAvnryrCIOdnSbvaXnLmvDCTSSvr3qJSxs6HDkl3mNOK7LswAPOub8c+eRqEuCq60r+Ka5ioHoVJz129Z7eUPNKrDQDW+jvI1IFTUAMk1wAUdxEIIySRQCMS6i6L2Ik/g87WyQklzY3mGLvAihxBBzzswGXAZVca3lTIgYMgJOMEDhhycQUGkDtuuLxyQOMRB7OYsQmoxzYuTsEhksozpaMTTFKlPDEkTvCO7iQ9Ouc5/QqFcF818zm+WnJUXiXi7nC212KFLV0myp72ska6uo4ERBEE5lscdZuEKxWuZ50qJ3nMb5AAdcRUYQTEVCQFkUFJAEkRRkBMYxQdqVhj7EcQRi6ERT4fbRvCp6JcR1ygfZlA93yPInLayk/2slVzQVd1yqcEsUPRF8igPVCKolR9QQbijxiJ6iNECs0iyKiVsv1luUdZImMm3t7u12A2MJRfmZpXYiAKWGpEagaDpuukiGMYzCQapwvOpZtWEjubpKkahRIU1hNjM9RAW+SPIVBd4JiQOVQhpBbj2A0hKidOBa60dIcqokkDffj6zlQpXYsnjlwwUB1VJM2WFxP1olG1DPIVgxWCDqZLhSrCkAIEkooaCN49B7RQkfUIs1owG81dcfbNCiKKsiKDJUIVIoPDN82hwhQbdbF5AdBAoBZRzt7ddgAICulAUJkkQhujKA5AHWrTIwyY3yKChIhIgr2LIrDRvBoc7ouFbrOHl18ZAkHDmyqZGKJQznJpPzhdTOQQQKJ7pqWeLjcOBhBBc0ec3Npd18qrwamY06Aa95K7ysph2a/Ozyn0xzAP990Ad83tG/6vXge/ON/6uclUrqcgSSj1+NkASXohCf0L38LXPLXijq6oU1yBxuKHmXeNgQH1DkSaLR+v8cRrfl54UIxQ6U9qPUotBAQWvSgIAuCgOYANxRXomlMVA2wa2dEYIvJsd86MhIOa4LjHCeXEYCI1Fm9LVjwHXQiJkiCzm9KEHAdQLgDfMGdak5rXIgiVhg50OVsFNB0zU0GjsEZEEdwog78OQc8V8qqS4DPF02HRb6EB5Ix4ciewPlBePRWbfFM8rhtwZQia4hNbOdrIICTM1mFo1mOXegDKMJIW73qCe5VGGmJ0J31FRnSZii3PYLre3iG9XKpQUqnHbdJMtyg2uwTeVODKbmJkQ1DTEp2x2u1harBOVMiu5kTbqGk6oampdksp8k1Xjm3VNKXLKVJ1a6tVMK1usl31TFusuGm7OnKDvUnlXjqLZYpME0VUy0CaakunBM6rm05ncm5KKvEOaunEySIqZbRil1cvFmbtTel1qnKx5RZPC9WUTL5XE/wtVhLT0/hwx4M68/C/Pqi9DRiv2dlPa0ay+FLNr1inWU0qr1nLhqHh4Ld9vPQ/94c83Y8r3uKdtqPTe7FlUXrvJycnY4oXrAhtexLBM25YrENcdXrfkTZ2tXwvNPD7uxX6J5ejO04U4lKfZe931e98GTh/j5Ts1v5/PkMipwG9EUZ0B0H2+dY38FUM33MJGngjA4ZdP/13vkaD7DCAyOB7lTTkqgdzU45bg3m1u2jPT7fh1pTr7LnVaOyhKrJUWRWL0AnhTt5/vzh1u7DE7m2q1bYkVDGsEExwYLbRB/JhsH9S5LqeAYYGZmdroOgMX3LTwMvo8fDRy22y+2310/6HGPqQqyvgyidvpJsPda8NjhvgRMoeMoaqxn7L7XDKpswYKYuevFGD0gfSmTSPgpAiAhICCOIaXv1c0uKzC/2TvfHqeTNc+3Db+iUFnXfAzEdv/tsmtX83C+OOToHmlDZ/oVD6TGvwPUdtTZPsNExDnimfimoMhzY4qtPm6tDP0pRV37LX39Hh5aDBFU6qU+Ru3uZ9t19SLxG7D5mxc/Wwqj90eToGKvdXgq90qXL7cldnhvGiKvrisgvHzanbnSuQb3r3e2n9O82edVbMvevaldqM06eKGhHeOdCqsNpcu+VzOVcT+XnhylE4jzkzFo7qlVM4vIBGX4ZxLCVBUGYSRxd515cc73eRXd+aPLvZ5py9+rmejkig7WMLUJJBdccb3Jj1lDiZ55/PUVHpY41Rtw5ZuVR42IDcRYBC9znsBnCnL167oJtEDbc8RMgEV8zAhkR3kBBR20Fcnc5EPs5necvXPWRoDxz0bi8iSoAgsguIBcH3nU+TfG2aSUs5UHethbIXMCy53vHKjvZqZLzSCxRmkRCoADWaGROZpUJANQAakgQFpMOAseqIEUbSo1ZEsWR2v4DTh47XXKjW+LywCOh4wwHJkELu93hztReCbFUGf+16OHNfVPLd0pZRWS4Cgh3nULR3IVVBIVLJ+txcZGoIymV7CZe+/TdIrxWjWXmcZ0KgCo2iO9F3lP32Y5TlMfZYXvARmD5aNQQufNyKJcdgXh5xRVy2MuFH0U69TOk5ogKAkLYYgUW+ecqbzb65gNxqSNpDMVd2BI3KDLndUC3jKEZM47agEd00x4Sui7WlgUtEhA2Ng0+O4vi1JZAUlmSF6lCAaVQU6GIaNqKIXyomQILGFaripBIlGjOXYX3K4MNFUUmOokSSDZ1FCGO7r/QBN8MVo/NCeeAYeMNAnkVYxSMVIMATiCqGpEiA4DE9JuMAO8v0CZTqYpCWf8axL4GUjil1b9k5hiPPRL12RAek2fzeblcGR0doqUFIDkBHZJJV7NRfqg8J6qh8veEF9W00HR7AHdDpMbXedjEGzURKSi00EqDOz/eeVKlf2qtZ073vaL9P1IiZ3rII6iBKUFXvXFY+pqH0grmrnKsOLNv7mz8V62l4enzyNNRJ9c4+MS2p0uCar3jkfqV78gn0/FzlrDsdK1bO+ogG46oxE+OOozzwyJfZIiDshTU+L9SGulaRS53qwu8S7Qaog5Wc04gqCeZEBHLhxo/UGQV3vXVWIoohBkVPci6DBvsrsbpAImr6jXgc6lkc7AQpW1BOgKBUdvdIdQSasza62XUdinpqAUFiJIosIU25ZJJhvrIcs4OzoTc0HXdcHaqAHMcqftzvmdLRix86ByYQjtB5yy5x8iQWb1YLYCojkAc7iNQu62qdDRVKZmXIxj6sjMvLaYyZnLktl1rLtXXFmR1a7ZmG5QzKYJmnMViNqMkqJacOlMImbqjlhktKVOVdCmpKU4mErM29icWCaoqVUo1zVDaaTSq7KThOomG21BbZampFdWiZchLKc3ZcSJrbDZHVzjOSeqqFVRYKslYeP/Gvr8227Caj4OWGEguS0Xv/7/t362NdeCmMeVr/wnX49v1PRt4Gf9Lw8eMcOc0GMWJKL9zenTqNPhyiHaPxp4dcs8fh55NpHyIdq5TyO6a1YiLF6G8mz0tNmradbhns+zXHYrwaw3S28Wed6tWbdj4QgH49S3LnWjuaw8ec/c0ehJrcskCEOB0RGnnzTlahx3odnOTxZw2KepuUrfD9643xdLpMNTp0fgFyyiyotOLisFhyvgyH5k6PaoePcoxfJTkufqwLt1+nc2T02+P04d/LqwnaqYJGn9qZjalOx5MxkLyuKh4NUxlSxIu5GvsLfSlOG+QWebj68Pd4b92mQSuM3f+0fBrHOeYdHDOA+DZLiTBBMzMDXKsBF/QeRlsMSeiGRvwgslXHiYWwVAJHEcSj3pOvNjA9fjuhnjTZDG92GYwr97u6nFLjc1s5DuOz3NGlV2oFRZUbXtpWiJkaHq4MUWIEXWbzBmCpJNWSyaCYMZBwaQSKjovt68UJArnv2WHx5vv8Vk0mftY6RUavJG/b8GSDkDKxX7diw9tD5ggwZau02oGp+uFJDCOQnAwsisS9mY9u2TF7m9I+odD5/L0775ryceBri64CvCscQ7FTq+XvIygSI+fbm57uhByABBBO9s6EjPvLturTMUUHgh+d00s5G8m7qPCe6zMvgkJEamTfYEyLa9rZ88cHYgmuSqoaaF+wX9q8LI9Ezkv22VHZoMnJ76BxFp0qvGRq9U4l6+5BbNXCyLuBwBH1VGdqPFU9nRHTQLlHifITkLnnkm3PTs3w7C4ku7XIFedsyOBVzvThrQomjm94aAOAhzJtujWE3nS2OuNDqsmiURFiqhtA6GomlDRV1rEbyiTmTN5NCBDXThSKuRDbeVs0HWnBOJ9leBFxFqOvAoUY4DwJA8ipy8biLCKIBiKFJsofqiqen0dTpzwdfDWO0aSoDuMxQq1cMb3rg+s7r2q/bJejzyRuPSMWvsw88p3AAUzMVSyB6xVVmvE54aTCBXMYh4zc3rYTSII1FGQURMxu27BrIGHJg6TfDLLc9HzJwmUTKRKWyWZ0i4hUyYtRCk2lnAqInsZ3AnuQOI5DFJfpXACk8oWidRhq67lbAhkquQ6S6wyErbhI/eIQ0eqFHIrLrvq4B9IRybnjShyYPVueEYBxGcnAiL6IEhJZwtIil1btuDYMs7B9viCZ02IJEHIhls50xk64CC2ddLoMFOQCEYFcxhPCrhDYsRyssIRKhnkR3WQrJWuk4MyCVFk3TgSchFCCKwiRhFQkCQYQCMRYwCuaVRArMDA0EMmLQYMKEnMPDojcQSEGQQCECRZEjNTFwqKc62bRClgcP7g5wms48eJZrlmrFBSsL/zSsizRugMA1N67vSvWUzyQSIEVSyvyOlPvzBREoOqJ/Z83a873mVO56q+edKXP5WA0Ct9jeFny8lfftcbXpjGmvdDL52yggiA37nU631Pwuc8LXXpJNR4V53S8Hs4RXkpZXdyTL6d7bh9dPOVu7MUycSiCTu2cfMHTqo5ByBo433DaE8B4X2R/+q4T443w6co/3cdwjUQ0Z56ms+jFhDGDt3HXBFDy0EOwBV5BRA7BRIcs7Oy86vBjcrGK1nqJuKWhSwynAZfeSRGoOIlTDX5UStKG5gNoc9DsREQ6a8IC+i85EGBtxenYl5dRozDvLACNwO5VxZbqOHYgZQ7KVxUEPC95quApZezZYTq4AYkB3u83rWvOt23mUJCMhzeeD9/zOjqKZIarA+B4rSfhuQcvzNwb0EDrjq9Zn5fPLjpBzbiG47eYuONrtX5S7L5Oy1LdS5pDRIxOZJSVDdkkpO4RThy2TcpMtNYpEZTbC005lSBhUumqaGJJVjKqCkMEK3kzbvmSqxEtOaGSiWhRV45p2WTVO2mkFJVUTctot7ambtplzKGTJMJE4pJinOurqbRcuU2Wlao/4z38SA9EC8Z938Nf+3bU2Z7210cmybUoDKvwWhjWsX5KXKibctOT+WFV2adGGYWjHHN7r7a1uttYqMMFvheprp0iKfXe66DI87CVdpAK0bRb+DKMUxb0N59+3R0bnxvCe9vMUyn8d0ACmTA+tgwUW2vba5DMlIwYCXI5+Zpw1i3KKEon8OUPL/+2NuC9mWZXspDw69SeR0b/+PeYQ8GWC7X9hZcqNqjbIVF2tcetRS0SjWddms+E6dZlchcbbqjnr/5Ntea0hIG7eaF7tQmYood1xw2QuYmA+tul8hg2qO1nj2CQ6Ux1Sy7WDgoxGstMtna9v798E23S053WWaz/rMMnRkxkWC57bN3T0e9v5U29Pu5v92zzb8jBjahXvB/xo6TbWQ7rkSQxfJ/nVfbo4yLlk+x4ZX7y79Ziz6VJ1oMQsbY92U0oVPJTMspbewywxv+fJmavRO3Lc82XW02MKZ6rmOnMh5sL1Gs9yyd+O1PAX77F6+F/V99D78bOd94iGIaghoFiJtuX6ZGbOkm9p95u1f57GjUTULjmQ+HO4dPtpSlbsZytz2M1nXkqbBdt9Z6tipJJzbdFMj4eu4owuqYRsRiwW87WJ7R8fm4bs3gR9uc37JverMXIfCPSR25lSedJMLjyrZwPDJC3BD8YeERGcLyxnOg6GYBZE5v/7cy2b+mdgCd+nr5fr0uVg5+AVrHkQCIgzfXNnYnZ2bu+EeKiZ4om+OCOKAVxHP+/ap4T3y85c3y8Y74ClPrujaIinqt6qjzBOOlvyG+NNLl1Oz43nOyX2la7kTzgh0YS4fW+f/h53i4RzET5fX/BznA5zK5y7ktapZnpa/lp3vtQRZvlo5KTJynt/2pApiPSCPUHhXkHGoCKEAiYsUXzzGFQ5m83qEWJAoSEQkhETswHm9NE+w+Gm5irltRedM5MF3ED50q1RHa0OwQZWHHhUz2NmJUFJCiC0JRKjk6CtWq5K1NxJj+rvO55156jUSjyblFwbLwpjvLpxRl5u847XRFTnHfikemTxg0KZs5VNMtvCEUkucXXudiXSiAvn3H0lG3NGQVTu15TJt/kOib8cEHdI9eDjICcCLWRIEwvt9OeFHlHqMISHhX8fPPMZ0+smMAqGmIr52kQuIoFJBQNRRUwRFG6RC4r6UUEt6M03lmLqhmsNmq01JVURoi7pjWo4pAwDjOLs1mb65GRlZDkkBqCLMYQOYcAJCRmHD+dDeC46pTIhQJNRCagYHgKZmW2LrhzoVHI6Zv63ALSt79Kc8JyLsrDkkDtZbKpGqJCrbzUYQZCCqHAwVGAbbnNhw1AXuLBlYMoOjuGSDi+CGNTLQY4DnDE0a3BkkOAnI4hXHWDl9rQBtRVTKZrnOpEBmWijACHOpy6XZpjJJ3/b5sN+CJghClqFLQSEzOxymHWwfCKjcpEYUci/t9dRWrvq5qp6dmdTHe2QOJ8vL+xTPrnJIiVxVyIeglmYqET5AIZb8MkJ4Kn957sK+dP4/Lr0m08Xw4VkEWevbX87lKoMuvffcBS7LCois4hxzWYvV3fCJOYfqiSku+GFHnUua63fMNmbMtC2npyuQc82GG0ERKjqjFw5wzUD+NOtzYjt9zsr4EnD1ttLURAeK8pfoj1nGqLgMgOOFdEzR+c33N5PvQ4xvO8LinjuNVOI9ARGgCHztD16NhwThPtdvmuaJOc1y+nE8ucbBRTrRHHN12nRURvXyzR5yIOG2T247w7yTtI1QYWNgGzeYswJiajkEAEZRc92Ih97eZnbgKMcxkzfYDJiHacneqqu4IoogaIMaKE5OysbhzYcLW7RrSPfmnH3ZOMXnkmNQ5UO02rUXd0u5lUJPJc7e1dpVVSObUlCrcuyrkRtXE1VJyXTKQ0MhVeWUWikXuKpV5N5UuKhk7kpXjsyhCSm6kVMptRUoybdtucxzukzCeOypomYolpZUiqG8W1SlrJidENbLp1Mjhw0y5SYYVdNU3aRLEyR0tzKq5E207tR2225/CAevyfTrqITDaXKXMyGz9LoiakP84U6Ptv5TEZpzaDL4hCNmMwMRbUd9R/5u5QH5ZjKX6FZEfITkKRLHM3UNkT3P05oMeIYg5N2N/F/+MHfbbTYQRr0eG7IGz4ZmO8Rne7aexhty2pM8jvrPkOWbdgyvgeKnhEyfbVShCdfclgU/qvy3VjgQ2JJaKHBp3mxAXeG54nJJuw8VT7XWJ1Xg7tbO7vuH8uDcm8B12F0KyRE5IXY5ZAs3JBeyWWwVMd/RMqxv6VERHxny/nN9hR9djo/HaJfWWRE39TmqEfRTFTXwRNxUQ3Pwp049gOYFZlxQqp/fqAOoq0vlHvZRNvrCMm2gZyYEEpdy8f6eGvIApKh4QkyeBKAY0BqMMAwiyIkiqKioCrHjSiRTfgVypSg34nulR5+Tk/Ue4VJrSZESpoLGj4E/d1RdSYwzu6ttUcmr5zYCQ2IueYlhvgBTGEfmGTzmcTI5flVEMyfC0vKC1eMNTE/tUVmYoiDb+FMmvJ+CJhQTcyHxlwQpdTIdTpTtKgCgvUlYCh0lHOGxbF8f9awv8rP/vNPnXuJ9zZLXLdT9U3kAkQRdgSINTutwVTSkmQYHFPKhyd+G/hTXFIe5jSOqqhuvm/o64SEIkqACOdNv6fr9zSWxM5Ai8LyyAUdbXLrLBtMz8LyZDUGaUs5+vNKvxuZWSD7/e4qICrTczI0pPwVRUdcAyEl/Tkh8rz7quxoivXJDln2FUG0OQgIfb6LkUmr1/qzxorxsplmJtHfEkE6/YXWuKaMsgbkds9lszRO7NGgQvU7aNYd3u6M7OnM8PgvHVLyuZ4M88y7Dv22YcFlY2QJ+S5gP3JM/JTm3NLn0TExEKXA2JUEhLjP5p6c/kjDweDX8+lAw4Gm5rFHBABCDwY2nhSpGxzVkNT/nMweHF/Ldfde8QZDG/zFFk3LIH3fh+7l73zaln7k+JN6ROXU/Z5YcP3K+RZpG0z1tLndBrM8E20pMZVRkSiA6ty4meH2i8s8J2QVNuYgSCMghPD8l7hiDfL599TWtl0QWQQrlG8rKqA3BicmTMFbYGERhlO7hTGl0ZEE7fdIo5KhO4DhGdpvLyTnVEaAyZTAgp9R3pwOEBBLn9budtBsgYit7PX5crN6550BhBsNHI7OrKVqh8SWvBd42iL25mmdXAhiUD3uSgjQ7Bud05tQbfrvM7LDwVaJy5mrXBvD/e/KVeJ4FvintRSifRByhuI5HkyoNXCX3Ef30oOYo4eQp8ON85uvtyWKK/0d7cRAO4k63exqguerJi7qCiKb/ZU8gCvrKULUUIgiuQKDkEK0BMLNe8IyiyZk0tb3EoKqIKXOQQeGKDd7Vc7MToEMro+ajAHsNuOKCOX/K35zvKHSiH/Z688efxrq9pIYd3JOkT60/Z3QRxZhk7Ge9OxAhTp+BJEhNqZtKVux0E+8aAhKPf+OM30+FIxec2fBi3RB5032k6HLQ0QSsQjjBZUeM4771xx8hNQEOpFBSs0UVJVbKCyqVEB4QQXpEAOASRRIEBJALhyHBwWBJyZANxACSpweSIiMOkYQX/zEkG56gu4oI9gyAHkcGKUWYpKg4gqrUREEoWAqgWQBJip+O7QfUVFPUVDcAkQA0EBAozWLpBuKooem46xhuykGQAQxAQH2gpcBB7uionIB4VdVLsjcexRQE4mJ/HJYHvBREDHrukmIOJbaLjh4MfTAp9HI9I0Gb1EKKp1cv1StM3G2C4cFGCqCbApqOcUC2QHGvHVeG0nDKHEJqRkXrAohZYdsU/7zpsc/ok4bfFXJMnqEjm/QaykvQa3xhNIKQRkiwDZh54wMFSDBQmE8DqIGiw3qCeiEkhAIEQBAoTZR5uQkQoFijhFBQV51kooC3jS5cTEjY1pHEzlsQhIUicMIcryanToQgDEblBoUlZigcUa2rpy8AdRIxR7u1TSw6lNdU/cajMHE/IYGd6ibIYRlZV8XarUIl8RwQ0yEI5ViC7vJk4X44AxRaM4xqk2Qajsnb2uN6b3KdQaRFcn/n2e6JxB519UCfNrwiIFOflmZqcOeuCsmco7uWUczGrV7Xk30sskK5wpkQ1AXeKGkKedOh/BPD66PN74WiVFKDtX+aVkj41WM9Cddc773JT9rHQASKCiba5m647vO3V7dvLzznKPWjnEjjRD51uljaScFp6T2jKXTeBzcqe52TZDCeOtlb/FV7w4SYLr6xFbG4TEh2quS0gmDwUATznNsLgQwoa7u80jvakcZfSHw3S+PnXHYkbaqIIjsAW+UOCtAiryW5HRptRAJBudgFoYRWYbObvViayc7RiTm75yaRrUAjnaQEVDSjpTEVfVhXOitJXwOwAd7yB0D7bjc5r0yIHIHWVwnYgnmRBTs3OS+lPrlOUi5RM47FY7umUyaV1UqKRI5buWlUIodWOrmSVE0OS1klolsGqlCbZ2qES2hpqhSTMyKZJkcvFVqaLV7MqYu2EuZrFBXC26pXfVauXLd83wo23e2FWyyrYhKdlOLq7aKaTnKaFVktaqmsuWbNy5a8LTZpy5ERD0fzMx25eLDTPD1FmCjEiY+4RCj0gGqM6enPvpx29Bh/HL2328vR9/jr9Pdbd+l19drCb/rvQeG0du98znZC0WRHnevLHesCKVSiI+e3XguCOXbwNOrbcYdsa7B4BnrvsoYwZHmefYjDjVE8yYKT4GzIhg7rZ19/m46/bvCqgp5G/0u2F3aspem+PUzSCwFqt6Od612qI0ZWpZXd8Gmr5fxpGyKSoagKYwhVs24NY1GOhZsELTxZa5O5zQ36NHSL10/6ONnF2TrtutZ17UXtp4Mqbt8Noxhw2rgyOZ+zo0cv5m3Roo8OdxnzjbArWVpRHd7fRqZ1ccfy0zXdwPb6dHpgvA9tJnal9T6XxIa/MF6et3Ke1eaCCRhPuzmzVCcDmyGZmQPeZIYIA5HgzHi0Rd43jxbnhfedT8xdkxr87WdydaZ67ebQWLFI8/DnV/70XJuXPMbZpzy77nd204aBTy2xRWes7C4bUqM4Y+nDNd2X7jU4Nei9qZu24Zhq0OexmdEktXo8d7tHTneZs5CRk/CasfU1n7b77/Dfr5cj8JXehATW8F/B/IKQBDjdZ3mnCs5nOu4Inhk/LyRcd9TVLuxXLzwEBlkYmiDgf5Tw2DnZNfSIZBjg6TicAkXspPfBXCaM5HL+KqebpQ3TkYUmu25g6t59UHghQfEvAgsuCLwWF34FajPgEUAcoXGJXUOi5e7qi44x+GdHHVFc6oIjkBESTEEEzWZcdRn09Lwjvaao7QecWEYa6m3XcDWd4PN8VOY3vBZN564gLZo9qVO94cJqOAzcfMYmOgEg2TZ81FBMG1Of8VS4CkSIdj6iAHsHkAqNCwqqkCFIoPgpEVACREZEUQNhIIYFoAXcQAVyEUEqAAOYiAeSLBBU9QEVxBcwEUcwBzIfgN54QJRvCyP8XtLNbAzwruHUhQDMHeyKHo1GKBFjAiQjJDhe7N1zkwJZu5x5YpJi2fXHhJLra7QnSPK8I+acZxWAQ2BPeQtdGjvN/0wkiSDAYgioxgiKiIrtKVYiZGRGW9DPbJy+RE7HyR6G5bKkaSAOqIiUD01vm2vbWj2nJjBo1WNWL0x3+GM6qfJQFcyEAQD8qKCZiHaoRsREM78Mkl/y0ZMYSzJgRHhAOEEUIPuSSUKoZiAonqIrlqwh7fTIIniQVRcRFUCukpAE1ABDUTyIDertUQdPU9WAago+RRQxFKgAwpYd0WYFUDMEE2ZiglKAc3qjTQpCmTpCXji4PhrT2StGU1UA9gqOCvIokwTNI3qawgo0FKBjcVxJRV1ntDQcKjGgPJosjkwdTBwJA0DREOiF43oReIftyZCDHfoMdvkLeebcF9Q6xCU1YcBG0iGYExgHxj4kEegG9pmyYyOxSgMxHYeUhC8OhtRWJPKQ4jOKa4ySm8kjbDEKXFLDaAiiuK8ghLhdJ5PJ2as4cT1JWBnLOco4J5yaG7zlVFHMNGbVZwt0EGlbWzFcMr/OxCZdKz8AqTsY0b3yCPOJ9cShq4FK6maink6B+/NhPic2+US5uEdnia/dQeU4oRfeIEunYUTU1ORAlECiWh8Uh8dnHDIFD4yVBKW7zq+znFmubg1EKv865WYnIxkqI3paPsTHbktsyIIiIDsTJuBA39GuQwPgQCQSedyAsvsRWRUQGvZ7yA5Uy3khMUtsx7WUsWhfJqSC84BrsmAVUXxKwB5Qa+KLiKQzQo0q0QPhBEREHI47rmzN1SfCeEYEwic5dsA3VlEaUHDj24pvKDJLDlcyVblxE/blwQaBxM5ya6q5EGUVtiaXUq17jl0pviHLRVjqUUVpe3asbpCRKFk1VzN0Nw6bSUuaSl1dlMZM2rQ0aZc0lszKdq8qdEpVqlGUnI7cupaKEKWTrYi5ubbtpiR3mzSEyZm6lqRE01RLUyqlcka5jWcW1lMcWXcqlWOldky8oVtIowTVLKnJEpRUpuLEfE+/FLPrZX8nwqath2A+/H8FxOBsFa7ZDC3EcvVcNauROlD76odX6va4a98iYBI7ARQxNP2gPndT8HN5E2bufsr/YvpRrhwwGRL1PcfQzbOhC75IDnHWoa1g/2vf+/Xo7kb5nlwqp8jKTC1ObWKCVkKXpMsNR2cza7FJRwvkZki5ZdktLICM4dWHXtxZ2a8xnITG8pKZTrwM8tuvFDKRztuS1nFDe4lfvugUwDYwoijjw4iCWIkBJtiDfqu0bm08mPqkapXCa/oU+6uakk+gUkjbHsymeEW6Zo3CAGUmEK2cOiZzmVPRRy27zN/4ZUEduB/Qip9g3J5LDjcBQkQL6pnF66Nbjr6MvR14BgogbU5wAbSzDNf0sEfsqiSj7avX0hviH36T0bzD45+XhwVAOFE2QaH1QkkDPCJy4PsXM/nn67Kgk16005Pl9cFyMKmUFhL+/QTBXyBqIEgQWQVbv39hfm4QlMB+v6rktq7CPT+uRnC/Y2aQEDAkSmUB5ZPOEj7ZWjznEcTgphAZmaJnfdAU3FnARXURCtw/sVdzlepA34bAJuCzUUQEwVduUbjcu1ApKaEAjlAgu/7Und4qyQAIyLYSnqpU46oYdt386I+JsbaWl21GMe4MOeumQgZKn5dU3EZPffzx9v1OPw8OHrefhUiXkPM8zTIZE60VV0uro3aRiImJ1DmdYydsPfZ6kxjkYmcDAdZz1br5OAlto6mwYx7aZHgQJ18LCBrTPa4eDIXhrbfakR9LROg5U8KTUnJBUC1Y/hoGiP1GLsNdHBfB98Kk3fy+3Z9EkgpQvxKZiAhrNuR5fAFyZMzlcNDS8V0tdVzef8amDmG+bl9+vSa30BlX31vwXKdLnwZMSrFohAJ0AP7qakOBYfXmQhvOb00Brkkvzmigzc1i9wfQiKQTXQRjaHw65rtyXU8zZzN4lGcX/Kg7fT405W+LIjwAO2sdVoL8H7l87EKpjF78XHfWZglwwWy5ryC6n5/4vhheuPV3BCBQVfnXEFXZJngTxii3N1rl4MVepZSlQzeK9lDZJFBAysETMRNwV5AVzAQWgYotxARKUIgBawVUYQVOsABxEENAwQRArHMe8knTeKxIHRJPEXHDzFaoFkabMayUZvvdgdd8GOeArlmdtZTxDYmfyet0hv7MAEKn6B6mUmA81ADTcA6pSYi/fbsnprcU5qZZ6Zghvb3arxJYQzaMhPRTPeXIW0fyiBQiYD/2JioqvXCWpYy5K85lAYDUlS6ckaper0zGYy7zrqtKIE3Q8yx5GZNXnkhkuvpsGMGTCAEaZNtdukDPxRFD30ztLE9tfN25oCIbRxB3HR06iha8sPbWgPo13ameF2Umf8QcRWSvCfdr9b8jxEuYHsy+JVle2R2cTctI2zd07K8LBt+zhQF+NelctjeHNOzciBmZgGXAhvn2Z10zjekeFNhQFzIzDgQKIOBh8k/S+SGZonK8pvGK1+3PgY6+Rc1JifRHIGAB+Jh2eKhv/NwVTRkoJsmcm9dQskmbPmhxLuXBO4GC/qGe0ymK7+cnGidwKZ2OFi4phYoYImE5CnPk9JugPOQC0L+/1VPg3v6MeeYEza2vnxggdQ1xLzgwWEAFCCxYCxYCRC9nxG1NA9T4H7H4++AL9uhC/z7n8/q37w3Db3dYfk8I/8FIBHISWCP17COgU2JNgMMszAAERs9pmLxe2ox49gewkgko58wbAgXebDi/L8fS5et07ZzGZoRADA6aMx6ml3hArnqOtbLaueJlhzWlDngdN3Ry2XSE2/PISjz4lLdLlhHkDCgx2CDcUHVziAWN9q56ZQd1GxIERdlghfZKihA5y8zb+lsjDdZkAprHimYIpoziTPnbpU3m0wVoQiAm8dwUF97IefXz6OG59v+59w3aPjkYACHtn1sBtNwivqJmPm4Ak+oBkD77+HJPQ2hs7oWj6JOT7vh7v1vzye8DskfbVWT7YUkh8/wvtcxQjDVezfnkfWDBwEZ7OY/yEDBznlt7XTvcI+qWBgjXNSJrMNN7TwlT3fjQA1TkmqXQ9E0oVom/AS8HrqE34a+v6Cz4v8nSXRo5SBaYPg2RGHy/kkdHyiETPFQ38OzbA+z2XHQ3Bg1oBZj8fHXcXef6y/CA8N5til8kCdbd0ef8+tqw4N0tReKJTmKfr9f19MscnaxtU1wdBikpcLShCZ3r0KnuCNN00OrL7bAu+JwXZNLmpjQ9ODKVTLje7ZOejKAWoMDwuguYoyAERWhLtoTqaIUzA+Iy3/6iuw9cVZhYy1IPnMci94xIGC/YUpzzHsoGCa5kgGE3yhbG+HjsxVzArMyzb7nbB+PtXynk+kD3h8O0fknZn8XtW/wsYSRhOa6ZcCQrGOR6ois03m4iBKfNU81uc6I+u1QKUhksc1umwbANcbn4ZCBT2YaByRQNOaWQ4tuuWJi+uknGZuyyXUw48OkzAHtU13yl1Dt9BvLdISIIa1txyyy5iggRJeCDOgpjRKPBxQe9BN+LyzAIB+3aQyzWhdGSddBoO7RYyAYNBZ1t26h6LjDnzpTGwcF6/TJCdwPyToGwLvYR0Qk0Qy9nsf+sNcOmYOXXVZFOaIFkScNDadox6S7zyzzW3aTNZLNOG+gnIGD/xt/k4kW4yjKUQRWQdSIFeO82fVc7huYOlImomht0TQGIAEAw+8xrpo8ALcdNLREaRAbab3hNK+/Ax6+zSuqGly77qsTJt2XbNC3MSVUvy3R/EUxoPkCOIL2NXXcRTYQ0Zja9QsYWABUgDLN4wZSjA9uD2/Hn1vKXpntig+gDdBjyZ7+H69lnnFFfrMsqymgyS2IBzC+ND4XgCAmUEvVKO204i3Q4AzMGZmb591WEy2OYsA8nLkAeI1iZXqymBEIZBJ5GygWr8/PCM19vk59RePwee/sfWl+aPblOgUUc2CeLWOoT0Xyd/VT1DCpDHl2U+8ybM9Sdb4iZ/+pjgjmPVQwl55/4rCufmy4jRfhLCfso3/dc2AF0B5gClPYvlaBknutxkmK05xl3Aa6boLv5sI4/KfkeQKxgAPptEB0REqjH69xLDwfTtr+YmIvoZWw3X7SnRiPcylEHYfQ6mzpd3RUStoEEpXds6SJJa/BaXNs5NQV2ZDfYlkAQkW2JGRkIS11pZwNgMXMewDZhTwhfdP5N+kQC/aFzp1/pzyNDNAHOAfid3/+N/4c28KAT0Pl6wgAZgwZGY47aK/5HCGLQI+l0Y4r9cjPq3jmzRGU4+IomZGYMdYgBybjWLdfZrl6Uo7cOMgwb4UyYA3IB5kqYJqIeokiBo/G+5trPaKenvNGanoCBU1lq8toHBeDpEmtEkRmAuQoHVV/mCEjby3275gN3oUyW6vRDpv+3HcnsgYrf/BzCWDliFODBYGw2YaTygtp8llo58G92qbndj5TGx3oZQMZPTAE2vI4hbxo/JxAAvCjo1JzEKG5XCn2YFIfglXxRL1Ig4iFeX+YFtjIQ/0mn2g9kFRqHCXxH/yGxwAnKYKUb8FC7h7DjO8yAfIDxUQc6U42jyxXWH8lI8thrXBP5OIFsUY9Ahs/fXQgWoIi5b4anj7JohxQ0Ez3AC2WbyjUJ3c8t+V8+jdSYAF2ests9ijWW+HogAZkYNCzMhw6T0MaUdJCid3ZF1AHt6y4gzyGtQRdCV6aO5ajjX6GDLJwBzMIYMkjKgAzIcpw5+YYGBBBu5jWL1c25DO36mq+T6fToNKKqT83/B/96NSbJFFARkJz/RcelCFZCKCqRYBDwWigCkUWZ4b8vnNjAf/v4YeiHv3ZDm+ZAKU+UJh8pAF5Pi08FuG41/fuvsFtiBIhM1CkOsBm7Rn/R8e3/LuHxN/wGP+R1x4xLBAAjX18AXm708iJZs/gfjrUneiIyLZred+2cRR5eNujXUe8+N0Is6H7kNiju5twdORbCMc4IFfyl0AuIh4g7DdNEnSJbzs7jONiIM+qH+vOWwM8H+Y5FqAwbb9f0L0vwW49uu2vLEbRudRvMgxEGzbpeRCN1RdxiTVqNSnEw7nELGsSbrYY/0nHYRZa6uvXUWlR5JqZ8yq6tTZseDSG7cnsJ7q/GamXT+Krt9lBIw+bwQISskPkzVkNt9HCHCX8epKaUBubtVah2iwoKZgoAEgIyAi9FPQUUwQPcI9UgFl9FLo8uHhz/5+ty3wkzpjlM3ZKIao3SQH0oSHM+c1OWqSnbjT5OPQFgI/AOzKPpQhOgAFZ0DlbSXuiBmcBdeN5lDBC9xYovRvTIloZ25xuzYSfUOgs8SgA6GZJxl91syJqZRABAgQlQe9erBCdBpERBwMACJD6zWetI5bnMBCsRUths1jqZSghuktQCCxXkXL9kUEHw4RypTIwrMDiOvJ5EAouAWSIUQu8JucTbfXeWIiilKdDx33S9XT4UXR1TmjYECKjmkCAKQDtXdehzki62Bgz9y2dKaQPKO98bbeDTvYh1RMuWhkkg6MNFKxLYeaXE/C/5zJ2OkNdC+BwC0/wfvE40+izQkUcgBGJ9JQNtbDFPBsfMQvWw8s0etk3QBRSAsgCmMAkMEp7/GgGZgf+MUWOQ/Cat/kmGD44ER7nxv8qsJeQJNbw29Vj4Jn72COQjMghE8YwO0RIzHubPtqIymWwHr3OCcabV3yf8DOfj1oLuGRCZQpryFNjp2PLfx1ftMbZgCy8XiID97v2MzIwYMzBgzF++9BjhNu2uYBEOEc6r1hi37h9uWeeydRncAgQzAARQ2nJC+nCHfpQRiAACIA6H1bC3R7dtEnyvz/qr5cAQvqI6gKNl39WwEBem4xUKluyNXVRNvNtE7m7fcobjnKhFuvNS60llcaoZXAqH0rjI+bnmJ9l/JoEKdXAwZmYMX3GMArinEGp9E6f7ptAxTp2ard/FhywkNWbp4K2BsgshICEiKSKsAUUILAFUikiySKpIsUgLCAsAFigqxYqkBSSIkFhFgLBQBRYChEQBYiBEQRILAFIKjAWIgAsFIChFFAUgIikFMQ/b9/+Hdltv5f4BbUQFrYATbTsc+UUqW/z36VLn9qYkq7UqhaT08m/ovM/8X4f39tTHDCWkfdqpba+fXQawkIgABqcbSxs/RLvovWYzBxjWFAZgBNhyhA7iHcgxlXRMU4G4Z+PoRHXL0of5ep4ltGaIP5ijmUPhYFxBAhSLEW6BqPPCP/PmQwYN7wY3eGW21YQkAkdLr/konedxw4tQcOdzsHzdE4dXLmE7enpiqKqqs63j5K8M8e/UxF6uQqdG/c+O9Rnz+OfOv7Dk3t9TBgqefmebt8hqt1aOLgwTfD8+/RywCQJAhEDVkpqsoKmgmeNs1z8Df0XWfVFQMMBcyApA67vtO6f2Vq6PIfy+45uMJ8IO8aFOa6SH3xx4w2UAS+X1J3jH4K28EX47vtwglgY4jvQDFyUSUodXqH5s7V1xlLzmzir4R/F3pnLUjMxpEquPNDkVo+77F6Rf0QcC96uaxEQf5uHEbiSgdfXw3Dfb5pGPptfG4Ml9iOqQFMbqQTm+Pis9pB5KQqAUamKL/uss+HalQqVuN8yW9b14DabwCeQJuiGUsZZHfIgBTiPe4GwHLAftvPLMEcZ7K7ZB4oHCm9YE7slDdNLkAo43ABAiAYo2jagk4ibBASilumHS70skH4mD7DBmgNBt6SK/F+NC0XHXnHgOd+0xJRapux0UoVoeyPlgJWeWHdQbwPtAiVFwMRIod7RBQ+mAewnLQcSbBWUSoaNlteK6hqINtKdvVTdLBJOederkiD9Gg8V2AOAw5uTYUDEAkAAC+xNPOgcxjxfBPWdDeVQYMsWILASAeBlWEH4Em+9+WEdWQBkAlY19sJr1PX7MRzkSPZ5TXKoBQdsBhpGRmd4GttkYPpdanlEY2EBggJAbKWzxfLF7O+yNlmJb3mDPboUnj+oZFrmMhw5+G7IQMbd8+ObeX1qII6GQKew105b71G1uF/r5B2l1jTg8B4Du4AZCpBYRrwpLhDeZgzHAOcdBzfjLcgREN4/YVIzMyMzppuAoNhAKEgFOr3cTzD4KczUt/REoG/pQB58vaQnWCL/DtvpQDTCAjCKRSApFkBZAiyLBURSCyEWCMIsFiyBJISOqP+ibyDQLIkjPsjbFG7HaVWjiOmzIHWd0rykTWqsEyIMQyBARxwQ5OvR5Qupwzeyc4B/lmRdXxKgKUaNdAZI0zQAZAzw4Y+eGa2mITyf2HN4O5dmddt2AOsZa4tU4AwDEfEonrGgc6wKttntzh82dCJvi+sSqHfl5YDQJprsJ1TPN2wgQjG3HfuydU3xBAhsBBS6+By9bJ/Dhunzgf5Sfx8IXs7EI1gNt9vMuAgOFfGQve7Ca0F9taQtQQBcEIAJ00BGYIGY480MUn8tLAXxMGAerZRyhECjOTtnrTf4kRznOcxpnAIwuFk6KwTTqE2x0wjxIwQScff2CnbwRD/n7L/ssbfD01rEDHDReWfNZjm7sbah43hoG/D7QxI3LUA64ZLB9FvWPqtvPBnpNXOV507MHVXXydWqGiCGSCmOAYZpyYz5Z+p3/j9R48gTIfPXemrPqqUyX6rDNDX6iQhCElbcOlBcGHRTz/bj0wvQjowyXNBWCpi0oOG94veX2QBRig8x+OJjclzQ94MzMyMw4CGdkXVUIZmOGmi7DDcgEuYi4LUg0DJxkZ2hAFsc4FMbty4gABuCjbX7gYMK2EIzHorWPMYcDPYQAhRdDF2iq7byMzYMZmKYMXUpGpgomIEQ7Xh9IV9UNxkfZ2zwLdzMDXLtT5fWThJV4Oum1wFjpc9SpjzFCy22umwKGEhOQ60VITuRx6t1T7rKYaZaVXe4VoDbCRD4QSWCELh/8BSeBJ+vhTxoAX953QuFGTo/0s0iijzgbD4gYA+xAg+4Cwycc247D/MtPqP4ehdY2wxxVVPu9Xarl2mTMcVONcUlw123160c9pD9GjH2fmoRDXJWxFsbPSH9/vo/MfAQr4CUJPjzCcr4egKJWPtnwTSatFTqeFfL7aR9z1vhvmvc+P+l4z9P5Ka9Py9bfnF98UAHQktUoIAZr2r+TIGE7qi0+f3t4fvB8qnwRA9uuOoqAUBfu458tVjCK8/krH550l5SEIeuCtxSShKl/Gw7TINWTgTa8kWpVFR9KgjNh+fpQPfBlr2/H8ToOejPfXq+MJHuSvh6ObMZ3lWtYP1uJWCWfQIRMWcQFu5Ek10ptfUPAESIH8/VHNcLxpKKwfg+009+p6cBuJ8+88HULzo+358Me2q9s9P4/eSQ9ACGnc0EPmY9jAqOPqvrnWfsv7S1TUXm+6ATlVvQAh/9fi6n6kH8X4zOuZ/khl/2GsQ94OPnX2T9H79Ow90oT+M//RaAegmMDgIycKnkbPKuGiFtEMoVUDDOaa+3S+Xu9/1l1eL2jn/kwWnRvi41HVMcT+uiiOSBZJAh0eXv8O7nUUd2tqQ/dNYfBsMGYMxErcwn78KACd1ESBvqaK8AruNYgt1EjMgb9DCznWpAEscrLL5vyDuqdqEBbI7kQp7xvrB5sGVKFRHSEBD6CdEw5iu2TiKVAjnnAIH/cHbhZMHN4CRJ2LsQAGoBVO7oOdGFrARsCgT1QkghwFBbw9gwRpGW4gJRKqPHBlvnAXZqdMXB8FOMgbP0y1yELYyFph7NVTzFpIdJBK2A8TdX9eSn2iZzyDhWz4R+saHmiBxIMP9z/GwoV1IMzQxXf7xtgcXNx9QwXBzOMwfZd2amDF8Nainnx1kZAMVKBzQ8daIy/KByvqZZEJ/7ouNN7vXr9ToB74p4FDcUtalkZGyIqYr8d5umT5fL3znIfd57KNwqezY1H4e7m6h/rMz7Pb317PAJ/r2Cq4AOtkziBPVyMjZrqxYqA4yMxMQMEmI040yyFog5OxjplwwzVM1YEog6pa4ceTGr9ITl4RFliQAI7aUtSb8Gp64AlCZEFu/ACMSoZ36q879R8ieHyNeKqz2p3ZXdmcf44JPNGKXZ24QLwnhE1vNjMzM2s63xk8PT6c26CgZ40pAMRBUJEQX3Ie0BLjILDtJtItby0u0HtbxL/YkDyneab85JhgG0nsjwLw6CoRSCMDt0QsJMYKQikJFgAsU6vs22Hpp8kuWyDeROGWYdPUsmf5exjseUsM7U+Qx4BEUDnH4+r5CyQ4gvkiClcEK3Ic6s7FIxS4BfdQViLSFuww/bVAvnix2djQlIUPxgqxM3AYi85CL6ejaJejXQiFghbrAgNlt10sj6RFAGmoBD2gP03LeJCdAWzRyvK0JjUQV8cAITbdtRAiGWSbIkm9KCMcisBIw4XUXYQMy8FMuYsp1ybzCSiBl2OR14wxF9gWLDYvtBl3GEgmhhTICJ/ibsIPH1JocgeDJ+EIXOTf0l6p8dlYLPQ+b+B0m0dc+SihT24Jsw8qR06wogr21FBM12rqI2hrna4+n+Lfj/y84IaO5WhPrsM0BkJHNFpADufZsyIOzj+/Jqw4ubmw4WHvc5hc8kUWHMRg3wESrCH/FuHAUIzMReUfpw9mf5BOGZ+v8wL84et1/FmvlfozpXRUubL/cB9/fx+Ci9R8ODF1eF/Sv1lVw595uGK8KPf4fSRoigM3SIV9I19K2frEnPcQ9v/rRie/r5+nEMe4YDbRxEA83sQsyktjXeAVnFiYkNpHHVt4uRIQuRpQX2xjYHuYv8lEJJ7Wh9T7bdmDpNVP1vt/17zT8Nv9LRYqyLBGRVkIsFgLCKCwiMgqyEWCIRViixZIIqRQWAjICohBQUUikFERSRSKREFhFkFCIgKEUgqyKsAWSKCwWEikWALBYRQUESIwFkgsWLIIwFgiKoIgsFIqCPhvQyZ4+WE/1Z2MJPYfNWIcP4lD+nb7WB1b/sDL4wt9IX9QCAVgP2rT5sFhmgGv/KeENu2k4ENI8V1Yhkki9qKfd63Z9X2/oNWeJXl1m71/TX+rDWYrRFNg0Zb+XnHMUAbzfz38lNK/B/2k/yjExoQj4nvnNYvRMREVT+Gk/B1KgAJgZMiZofLL2o2kZgyDyXxuzk+YIERA8xGUmxJy0SMgSILJ9vpxyLu19R79fNUHJ3oZZnfnPaR7UGHzg9GCwRuBeo8GfaiKo6Zvx8gTjo2h0ZnbnDsNzZTp6LUN7ZYVr3/AVaxHFKfdQwxB/TFh6AlhQ+eh+bH+YuzcYCV2TTy7xO+81qHeAmkMJQdCRLkBdyDRDZAC7MV3/Bh3rODi7uIK7M3jLCDnKGKGGT52ipAWPtUKdcvEqa90559XY7BveJDhg+/zmngBxzT9fqzXm0/z3nOyetBnP4Tpmoe45E0eLScvm/0KF5/S30gAOmYICemQIV71hiSAQWsSKL9KSDFVh7xmZ2G/ZAOTPAojzATrTdlYsiEZujTEcw8pxvZHzNlRxVFSABL7YfIiFrONJOo8lUiaRogkCUPmIZ29txiYG8gVqzSFcI8KKPG/NKnAbSL6+ehr3ND87jk5SzxS6EhIX6+1Kgd4WKefh3jYVLBShbxbzYuJ64EzboSOBtdIE3AR6Wdli9bWftjsOz76FSHOw7O36t+y6dTbsrlLZRcEt1UQsJqtKyqrPzPo9DTlfpwKk+At/0nT7BnHr+b/bjA9GNobMQnH414pLEz74xC2AYf9ceaLrpfuZ9wUPPT4qfk/s5vsNuuejq3nzVYACdPH/x6DAaHn5MMh4idfvdOe/O8Pm5Cxfmd+esQrZrf0rSaxY0sPp4fTT7LOemp9PRn2PPfyvU+rnBc/GgP0f00e3zPwhaeV7Ja1+2otcFCA9+Vf2sHv7/4DuNf8go5EkWfMVf8IKPuI4+7+4rSJ+R9sMop1J3hJCHWMRiMQYiUHoNlL/HQwRCHn93dNn3UC4uie8ZOxQ5ehaWwP/UpkEZFkOwr4VT8/xZ/Hon0v8e8GjSADX6dFq11RJCwATFBkI1EsZW3KhFH3n/lzYFb8K+qpKKn4hMeiLCe3jd/7id3i2HPY38EiskQON/3nkbzOT8NXlWzIneQUpDBkggLzOIye55uF+OLf+2yuOg2ex7e+syMzZ4DgbSyJk7wKkanHR4GyrUI3g5taYzzR+YMGYOIkpQRY1nAOBOI4IEesQZtFUVd3l9asQCuDJ+aQlsPwmOIlnlMImpVIaYZwfdcVNhAvDgHQlUXHAsgPzU5baWTR9Fu/Lt2HJ4ft62RMhBJJHhp4qrSEiyMiSfPjoVgSC7cv7hwC5ue4qV0VKaCwD+LfqEvgEB83XUDVfdii554iXwmEOV+P/0o5Naf+k5ivgbkKGzHRUq9zl/Tnq85pXz2wmMUhyW3DWRXZh7CHKjNo0P/CEXF1c+fBlxSqpAwFupKRNdRmKyAEgBB06SGjg6tdAGUgQV1S2pTBMFi0UhknuxbbN4uoe6GiJXiodaa4AHNHIsrBkslJn/r9PfiVRA3jjcUwYYdmhTksKP/MFfAS2C5naNB7/c1VTyX0PxRQ8tK3aftIllkXNvb9QCv8hTHEuivsiUgSAEgknNLyOLvYz8gP8f7dH4aLeG4p8tNQVUQTsH24648G9YTtlQgd2Sy59Y+xOoZxIantPj+V789vw9zYYwc70H8C2r/HX5BEhRZ8/X2B2YID4/nXDzwXPPmz+tHpaWTOhXuZnRdRQJWfFM+iFPJMn5QTZRnft5dufXxxzhrxPJ8tn5rPXvWoif10u1WFf4Vo1IuFwm3vmOIJdx6ZTAh4Y4b3oD19qwfq5HCAQ7EUFiwkiwWApBYRYpFILIQFICwUkRICwjgB4yVBWwUh0PGBBaFnJQ3rt/iNnMGnKYBZAGRRkRkU3YJd/3N49KoqH2RADVA5AgEMgXtV8vI6gbpRPQDho/m9cBPTNaUSAAVd8CHQh93nD7pv28s4nwqzWsidDJ8+B/mT5ge/x99/334/P18c6a+c+AnxVNH1H1QM790i+3OJv486nxxbJCeNwm/hz0gvoA9wvHOaJzXrR6rqI87vezmBMOliFqP4k+B5sDWGWSfInwOjfqN+pO/j6L7zeu/d39eeI3oRVIosPP5fazlyli4T20P3CbxAHsz8t2/y3OHK3oUR3gUBMYRVGv+MQ/cvJ0Q84vJaElhTfzJZhTWW1yT8uTCVBN8hIEgXwaZTf4NVU4o/wHwUcv5X0Ktzf0vZD8gpWhxhK/xAGwrxwHVrcPl2CeytHluz8MdcRO5xyM3QZPbu8PD/dCBJFnq/r9UdFh6VQT304xEpKMsSn25iqUImXbXDctcnKzW0+os8yufj8G31Gvb0Nj6ehz3XnjjztzGHIO+UaLy6edvQIIWoiPOM76/CZ0nK8+AF5hzqZax9v6xRuHqgHZezsLzZOznM2LpcTji08UNvHYGx8vgyASQvnp5VR/ohUE9wrx9/iZ/r+npjsdfU6/cfjDMN+5kxD8op+CoVwLg+K7NxZMZYBrl82Yu0fjqrZ5P95/RpxCH0xh9/81nNFU26/fwL4mHlYRghjDfCzrT2P8P56Ln8Exnf8w+CZDyTyhUOb3fd1olZr+xIh/rEQU9Hbt354f5paiYQC/Cg571yLj2oM2d+GMJoe2e8MgQF4Xq9/sYPs9sKwgEgc1JQp/1KRObryiPceXr16TqdaZ9domOAc3V8gGV63ewY5g70Ncys6L/CAtkRswcA56rq4goawIHArb6vVYNYuazZq1ZzcX7EWCYPZAekqWeMoJkgEgoNsQ8EE05bPmm9Z/ewG28Ko5/+39ZnzzwWzZ+HCD+1gQrXnMbQPn6vPv69fjzqODHPPwZnxjIk5ft6+NpUUwIevhl8U+Kh4d89eQHv0e689R17dOQIp+/D9EISUfE09Z2cg704FD4LKMhlGYkGxSrw4PksKl2kAdjdCpYsQDiKT86H09ApD/EA58/WNentfE+QfI99ouZhBMJjwYVPFPDHbA0z+NVBefzUUOFm4gGicvx/Jz/C+UcGT4t8OWJDl3jMmY41HR/4FKtIgSCXmPSQqh3vw3wyS+mDt70MAfzH8IKn2bMX7dQFFDq/QepZP6xGggqCKJMALZVWfwf3WrzIVDg3A8ninmXl9ByREf/4hy5THlnMy/1DRXJvhcDpPsgwdpcGvJ+PL8ohpIjXN2Ra4K+FO8/mPhRcL32H0I25XYh899nzN5DCH8PUet31vBXiFZwoFBgMYAsuoXpuay371598+gm991DVweW2x6mG3BDm9KXDfFzET5wVBrSEGRkWQJCRWQK70uU60CzknxcOyDK6f+85tdOk1cIYEsMppq/M99oB6CwoJcH6HLMQZG3Bjuo3PX/5/gYPP1P2bV/PDyPYddUPwn7cCo9+y3TudvPlKHWm32hb6ruQyjE4VmxrRzS7Q0EmFTExA24KJl4ijRZqindjdcwncYRgCeyZEwP7xdyGouMDxxMYOMmFsTPmYak0iJuc8RLk5jmNDnxlJLcw0Gbjkqpuq2/P1yGFH8UBFyKIyuKDhyF6cEy0I6eqUDejvcVC+KSASASHr4Cg6zMJRzH+f52TpDrPsKcgTB/ZN7VR0ib75AKhXdvVk+vdrxdW1CsNMgC9lpPjITyeHvw+J9uH4KMSiZfZPk8WRVtQJLr+o2XYGBDlKex+izAGD0B7I0L6IQ0bs13lWKCEEJZ8VTFwfKA94KuplaozAyxAzwD2zzGSou0jXbPNZJDfp3Y4mhH3GhBaMOG/aezKu2qtrfRc3LBS7Jw1593ju1W9TLQwxEQkUVZBUkCREZFPNHfg9qZJxiMMykBzPt/pZ5HiA/rqVe6f9fm/+LDM+QfYlX2j3l9/q/lw26Au/bw5S4uZnIeIytAMED88tKxJAJZ7yhPt+TK0f78+ysFvNaQSfGOz9Skqa/8hRydPBiUISQJIFq1V4yozlXOxnlXMKIIIGxmitURwQG8PIs4SgYHHVSqwIi/9I5tFb5vd7ycuxRJuZx63rGdFif9/xeOh1OYMjgMpmHiBK3mAyVDFlsKhHXxcH84+vgoucghgisipGDIEn93lNV8aAbjmbOQs0/Zi5DU2W/5yMbqwgJiSlPgVMwaGz7EC3fSLzy7HjqHDpcNS3PQ+iH7fZTBELyKGClNE/H6FpZp3WI7/DQxgCIE/awLhaihBZFkC2XcMzIL+FMZBcGEUKasJ4uoUobCScpJtApMQOKcmcUNVoQUsIhWSLGIuY9MUJiA8gXDISsFKyCfsEG4EMZq2TeRlQDTAHQWExAXOHAmBiaQRRKwk2EqQWQyKwnOUs+8AMkmzEygbBaSLAN0hRwGoewxqKZhUDsBMwDWWswDEqfdvM/bgf9mBCZ5v6XJ4ErI+alXKoFSfGE9ynN+5/rQ4D26btssxA3FrroZ0QA6sFE9ihwMCxC+6lwnYsIwq6khMi4YcPzdT4byl3fyd/qZLyQwQ6csBYodbKxcp24To5ejv8GtSEnh3riB9XtfbFg+xxon9m61F8ryQiJrfrAmWU5N1xTjFwUAgQETCKDcoagqo+M6EJIQi/8E4fWHX8yEP2/jLjtcCJZ66vUq2MKqlJkp45g3t+7XfTA7Jg6JOHfs13vzkS7htbCRylCxHAY4HTmlm3BUiBECPAJUlkS3Xi4J/2q8ZzkgL1I8GD5jJOUHVTON9QNuX4CVanE4In3URpL+YKYGKwm9Ac+N3Y2nBF8FAuDjzSkZkZkc4h7I+zg6LkfxGSvzPUQwmJ6GRF57Q0oRJU44q41YIrJ4ea3tOfAmFFFgZApU2wjR0IFkFPwg2NQnYYBDKNpGZn8IjIUyhdi0ahBzoDkif927QrGcCgh7pAMv1jI78ziwFepAiHsd/vrWYDxZmMfwvL+OzsdxxKcwfBzeRw6X8li8RcxVzKFTOGS1SpbfWvLUzQfy5qY7zDU8c6dNlVQmelXvKIoULAGKgnxKIcmGzRavUmeFh6Ci8QjDYoaBo/BVxaBs2uvNUDHDbCkH8uz+kCy733d7XltMctW+SAd6OiI+oR3S8iudQSSFTGSDbCd6TkZGlgJFjkk1Lk0gNPrwJqJMjRLbJNZZMAQhUugFtaKKl4iX7OKpWPeifxM058lDEeigVjb7xOWqQRQSEFj6pgMpQ6CGLTJTm3Hpq6rgaZecA9J02WfL7Orv04gbl9dP063xWnYrKJjiEgAcZEaSRF2SkSWRd2z5qteDPvclt9N7p2cv+5eH24tKpBl9G1rrcWD1edMlLlJaIR3cBjBCz7Y8m30TQfBbVENKQvG2qEZxf2VV8yO2oPGCkzmn+89huLXiKhWp/n50q0Z4JntEjBXU3LwP3UBeUS2Hbf9O1bjuehJ9x4XktDDwMCiVsEkoMiF1FTBRUfo6cwnQLh66GlCdxTwOD84cMkt+F8QA6gqSuh7AThrSx/Wnb5+W0zeuUD6sVP6gfUoEHts5g1Yit86dGozWZT8KAeXhIQPrIfGHoaB/JcUWZSZINJMEx9ksT2wsjmn06vwbbC84qHu3FDtwUyRL+7WoN0t2T7t86v5J/vdsGmWYhWO4VNMNG+jv6cQKokydDJpNxeqDHwbElbsgSYZO15nhu2fsEJfpo4ddJn+0k5KXXSnU7muTvn/lLh8f0GZmlJK/on/ql6hUK2b9H7VsMM3I2zU2UTHDqjKpksjaSSl3oj0Uj11bSL4lsHhsjbOUM6bXJCnff+3M3s8/we5WH7891tRNChxw5N26/QxD5MtA+iY4HGA4hCgSPnIj3cxjzlhiDYhTQKaBQAdylQPzBnphhPLSgl1B1wU28FPi+qhjuoZ4HLm0KVegukppi/5EQN6IWxt4N/4hNP/gaHekq6z9lmSWVYLo+rGL0pNlGS0AdP6SXNyphwUpVe9VhP23DDtKeHbnDv4uC7u9OUzfj3Xc2Ex4r5C7GQ06HMNPsYO+74aS48PJSIIg8Jfq3Qk+utN0Gd2ejgtn/j4sg64hTe/xSz5KqyfyJKG9tjc/Xqx5NGD8NWshG3HHzYonSq9SF27ys5f24oHe/Mr3VsFQVXNJ7LVSfpgc+ztoJLMM0OndTwXaYSnAlUxWx/SSWBWsVQwg3xJEJJECQhE+r+aHzmjXts6nK5q/YBypIRFVRnTIZJGMUkFILIoT7ngp8Bw8bUaQLtQUTaRWsFkYRZBkBJFAkkBXEv1gWKFTIIx+IYvydHLg6YJgQRNyaUwoaXkgAGaIxh/CAwEYe2/8D3mrafKF3Uqmp+4v9nat16kiPFWtwOHZFORnT47FcFLcpqPLMMuSJBNAOeAJIs6X+rYsu+BMhJt//X//nF2yqom92YG1VKW9GNJWU7Ps/Klg/vsShqUKy1QlUqtWOaQZXFaab8azpTHkVO4mhOPI/oc/617xVXZYnF5bfrdtUlOrvU3smT/M+W/Loi2QJDqnBWtuevtsDjIJfElmZESo0heKEAwxxS1zU7n+9gKiGbAUcUA3k7ofW19J2V0RYB11MBkuCwlZ83zZa+XBTe++4MFhJ+8pCSbfLVwYOOB32xvgM+qmWIHLD7+O7m4flq9Tv/SD7/xx7R1383eJCMPJ9TS1n4fz7PQzn0BmRxtqnzm6EOH8/XIPcRFD/nXWun6bf4nDNuJZrL91G7D391y8B7iU0rcVvzwtsinQciIDAxPKH21j2bfBXUkd41GKPi3R96Y7OXCW9Xw381BKh51lFJdy6wMj0dVwLQEcRYSki+pJ/6k3ElF4pMuT4Ekn/3NdlNf67MGbrU1HHOOu/c9MabaJdMmai/J8tU79l0UhUFRSnTk2HyFDftN0dE+7eMd7Y+xDwpqEtsXG0pPvabhNqNGhyTPXQQbevQ1hZ+1UN+wp80VyRMwZi5GQBIaZhdfv9od5Sihvh1e/ddHw/eGlxfKP/HbKhz2Zq+Q0lP5GyZHVhR2eea7Q7u/JOFX6ijj+/0/sF4Z52+kmFF5pVZSk+qr0bP+kqxejxT5HGoV2eYZ/aauY6gQ1bSQvSsJQU9/R/8CJzlcYxz7HuUa/37aj35zieHHccjXZXmFny0/c591clObLy7NGCCY4kiwhIkhIzJRLMtmSzqOigc5MOC62+0ebLlTpstiSegiDqT2R8jpXALbj3v7M/MPWNKXuh1R3MxkRIeQCQSodMCQ1MawLSfNVCIZIlLUeHe89iG3p04vSa9P1YLTPEp7qAUiyPaiOD68fgOP2acpnz+TgssMB7LttJZya8UE8pgpIVfIcs58laRNUwBnzBZS82IIZ2mlWGlgYyECu17QpvsYpVwA75BaMfH8VdfeqO/3I/pieoTgMYFYjWdWM85dcfZMP38n+AsP4O9xb8L8a8es67/ald1Buvufub1OvLd/qMWTxUtojiVqi29abUCz359s1edi1v80UNA13wDiqjmcwx2lG6UrR8bxSLHCmDj2WZY85bkGo+wAitsCp8zT/XM04pdACQhIsIRYQVZAixFQBQWRiARQFICkFIoCiIKKApJBZBYCwiyCrARhFIqwiJAUFkAUhFgLICgAosBVAUAUFgLA6LYCyRZESMZFBVkURUVGKQX6mesj7h1MP9icIFnZAQmkYfOBioZMnewYvx378Emzf6wPrpQq2gWxkB70Wk1QpDleUZot71vDomZux38uD7vbb3MfXuxlfv14IVDzPueExl+f+fa5SlD2M0afyqxl4oujf70e6+nh8v+Jf4GsA19c11ms7Yv7l41UmexepKonMP/pYkM13ciZ+2apAF4vwc14R1CPX+ohn3ll8ct3KJ7vsgJ7IQT4OrPf51dtm+vpVLOPyZ8j2yyhsdyvh7w57f1B5+X8/RdwkA8ny1WM0T/4/kxP1XKH5VJZEJMKAkOKGt4KYT45HrVwEEBHWYybTj47dIfrRde+4rQsX90UMSNHaQvx0PsyW/NYJrh2YePN8W/rQTp2b+Xn8KOcyKbqUAw073LipRzXHFguT+PRr8pBN195sU3p64J8w/8m3LibXcqoTUwzN1nXZZmKhdZfH+MQh31yxVZediErKczUGmOCJydKoW7/Vx3kpSYJSqS90OrVqhAhFxzRtqiM5110QEz/v/TrQPdK1EiluOliJWcaayIAzdjdicfRRJzzL1LvPTTeYc2avFAbI0gdQigUhI+spi7nJ83Ru1TuFnf2OviGA9g+KHy6bE+0yooa3H/Wfhga2/mOtYfg0wVxQMAoeaAb1ltoyITixZ62H2CJQlM1yZAe/zv5Hk/qbbXn7ojuU3w5FxfFZEM9LLE6t+VvLKu+W5jh3ktUZsU6qSwZ/L1FSnoSaf23LVwQss2DgGhuKRPpf4H0hVKuuB/qFQwev/pcGomYFynXTnC9MUTI8blaQMXlBSqtwqGTSHa8t7uU0lReq9jLUik7lBVZZ2YwskoEsP/ztdRuFuen6yyTquLVSxtkGF9oE/xhkAAOY8ZZqCIX+JPk70kY0Mh9+9ozCOK4QkBkqfg8+fe10HhOky+Ombkodp6RQilqhEGTCsHHP8nDZTovoZP2Kb11HF2ShlvtZUSyRlIk+xRDZnS8L1WVLKqm4zB/8qF5dy6Tgl+YKntADY1nSb/tbYQo+u1Ec7U7BgAyAdrupCmhJdKuinIub9TKt+UFaZZf3ZMDPJRPktiqQiHsi3NRId9mXXGj76TyZ1l5riLXbcVrkNZ6rsj6cKG912h2+vLf2yYFrEBv8vIp2FEiMlrS+s1VFd2V8V01GX8MbBF/xALnvy1L/ZS2tJF4pvkrPg46BWA/xDjCF2X3pxcOM13q87aYOg6PcHqbw4jgD3OqgiuUt3CRbISeeQa+h6pItpTm9Rm1pt8XiM7Dfz9mju29GeGILbL2WEMC5mzTdvclPoiXXuKsps/Dy4bsfn59FujqLir9rzfZx0puRfyMRNavU1Mv+qG3xcPG7/EYe+/rpo+ypzIp+CXFHxGglNfYUK2iA9lWNywCeHZ/1z4hjhbOX4kIFarPJuwSeTNwaj/1c7Yxmu/Kexvf37Jp27Ab2VEIAA6/PxF9nuwjupAcPzAiR+S8xiTgd/pCffWke7Io86jWJOlMFRepOpmWhWWgfICv/vl91nRmCheRkGTpez0VULIoSPZM5yacVrfACxjuImUCB+4QQPwjbQY/uR53H3h4bKqDmVm8TzxcvqaBi3ZKzTKDIJIEgEUgsFBZFCKLFIsCLFVVJFc07pnNRXZqz192EAKKjISMw0TNPv6ieaJT26YBXvNIQ6K9CbH5qxAGXpJ/xu6vlcW/kE0r7a6fVFupzNwos9f27JZ4DwBOAVsh29CgVThSpuum1PJJ1jpQMh5WdlNfXIwIYGHWEPzOEB+Mn7qz5/56qalmZmNj+G7jTmjxikPf9Xj6dIvEJ9ShVtKiebNx/tVsNTs0p1NutpaUGAeK6QC5NEgguQCdc5oPyoN0EsmaCVHZbnLDr8VBT7cGauGb5jpXClP2RCGJFAWKsVZFAWBPWRO0nLz4Mu1LwQcOcD2hlVxAjB++P97iBcK+tTYwLOeoJPubGaP15pc0vI+hnOH4czqZr6ZrSAqYkPrz3A8ecPUgRDxZF6tHJtCpJxg/0lQrR/kDDaYAUMPO5DL2NIY+qwqyHlIwBvsrC8q88GrFf8pbJYZHVGMSfnqcPYeQQbesICUNrVSaTv//MvU/S06Ez41AwKcg+FIIE3qvc0FDRKdLrTgfsX05vzL5JZqatx5pQA61zqT2Swv1YIE5/8nmUvS4El2kgaGNZ2/X/q3Ktr7jxGBsM54yDBGMP+qWYkikWEigoKL3QGQ4/Uaw/++nxnR6rXnTe/aLMqWWnx/kVPDVCh5SPvZq5hcJ1v0592jAZh9cX7T9o8sAUDEQUJFQ4apXn0rv1I8cP7Cw/6cZY39qWH7vAmcRxS14f5DSH8f6XT2ciAy3Ov/CAXfRXNBV/uftKIebIcY/4ehR9CVqnYzEAFKN+Zmj8jL+EEJ1PnSIeMki+BbPOr4yeEX5e8wbDrvR7fKNiE8xhg7UDaHrMSDZcjvfSY+qoadON7p46Meg/mm++lTSqClZols7lRLJsITJBIv1rQ9GFWaXsukVosZecS1Q4hTCEkIbytyJGCZgWzv14TysWAKpBRQgIkBYQiwWSCMkihAWRGQUFgRYCwWQFBZFAPvnrzOxD3/JebP9Um750+nLFJFOt1OcO/wWnbIu2bN5hIRocmMKDLPWVxAwBy2FoH5kH8C1aQ4OrRwdbiQEC6xk6YtCNwIPAk5QZ+FHLFhWUphQAyoWJUfbjbXfXc9GfNkL/0/fXPl3wDLA8+mgXyhuiGewQnKGFEfCUAG6vuxaGx5bz3O7j6ihT80VFUhfGD/4KQ+NCrMZ3PjbTVgenC8tXrpEi84OtM9EjCUqy7IadZ6b+kG6EtEHOHE7WTbpOcwR8GowRPUlxkx/8Tf4/ddj/PQIZ8+oft2ts02PNtX2p7Ll+3Tqf1z5xfKnCuec6EAJx0yHIVr3vPorZzUza767YABihJIoyC9oXDTYGgrRssDDT5vZYoh7Iqn9rgIfeNXfTLShRHK6Gz+gVNSplTPdb+dKbYUg4YjzwWsQB4BowAXIcEhWryIAAWqeWpIAOUnexHGtGojgA2pSVTX5Mvt9lwlZKRbQyjp4owtHEoDeiwp/fcE8V/h9Kq5piKRCtTvJpSuLusmN+5A1UTyZkNMZJFnyhm9j9K67x4aQKK4lhInaUeZjKeu8U9THX62cZYQdp8E8zlpPVh/Dh8R05jtI4R+ZgIf2cPKKF/256RpMjQAP8vpbtqwuHkIMbmXvZRMzeL8M9q0Ch2GkGCL9Y6jCl6eBxhaA/9ZstNmIlnjsLpb34ID3DksuS25i+Gmt9Mxh/76N3EaxHRKQO0QM+ygXEtgjwuL5DiQs/bfojkMZ1R/w+63Kx6Cf1AzgyAcglE0JP0Rh9syYrqX2feTqw4y5Uf4+MM9tv6VJ7jYS1FxxWyUgsgHUgI7+b67ayYU1/B+9uwM2Pl1YvH/ev2cvLoMeTq7m+CeF2P9ON11JLr7oZBgy/qcuAUm0vykYNU2VGaRqG6GjqirSX7/qn8VB8nn/LJ9pjYbW3abFx3QNi8YxXYY7Bt/aj+jrEwYAyTnnTaSiqpA+Me22NJkLnM0cRslqSyUxQj4il9qYUZADpvBVGN56V96l2169x2s2T2/G+2q46qDBJOOJpCmVsXCWmVAFd7NR2sCJY+R4LUg0Aj+yTR7WQ69skOqerGGGA0qwDCoEk9/9+7v+znelJ+pMQ/nuU9HXcImOCSMGRVAIST1+rnMx3LCvzeg3gwOzby2R/pJxCOHClNeChKpbfyUacHkO3w9i3FmhSSEzUTVFfTpbcMrrbihgYdKarR5yUzN94u9sdhb/0DxE8LDAbOSs2T0iCtsLrEZwugBEQmbAh20H68l605v/fhXmv4sl+hzzbAIFf7TzSkub8O2MT9dQnq7cix1KJ4H6zuYxLT0m6dM7lpURlYAbcziJRMVsqqHR/iBOyAKsyTJbO9IRkErkMt6NR6BbppWqr1SktIlccqtV+Ff7RSQUA0cnGSAPQOpMGpWhEhUCpXNO/HzSDBGYZZ/X+QT3d3+8PP2ASmQEncICG3g0lTy3Q1mk64eHRlN/84Y6noAyB3U4wPKV9rvneNn6W/PjP73zwjpu4vfaAFf2Knt/+xakwGyIgRGH+F/9hOEi6ahjAXKrFnTWPdTfUxZk1xzGJfZa3U6hy9Ob3txX0skyd/FyIB1+ZLXj9k90YP1hj1blOGedVvP4sfMKihj7NE+P6prbSO7KVQWBksfv9eXfMU3WHq/zC54wePs6qqXCciAKHXP5ESAB3R9dlP3cNr4xzQTW8CeADAwMF7JWouz5aDteEASMgB7W8dsgXQUdxNBFZJIIjwfnj/Hg1cHZtz5gtIhi/uj7oAZpxkpfQPt0fris9mrWIFQxTjJZOS01J2+It80/VPPjK3xM4bYEhRoedApQP1Vf9A2qnxMKEiEiyBCCSMishIJmmqtBODHz2pf9d/VUEHBAUb4SSB/T9XZtuwUTKFZIsiigoLFgMyIB565/8TnEeyyhjDREuiGf/BGUub8elNdodbopY/aUkYtx/Xk1NHj8HNyrVvj9Xe0Nj9KV1eD0xfReH16p4Y6toqKeD+NI92FDej9+ClQkc6IjEQIvOFKR9MMtl/qkSL8nigzmeI/99VlFU8v/WJf1GD0+qZhWI9kE2s1aEgoUoO3SjzY1YF1nmCrOpGDN/vrqKYz9rjj7ciHW10gHRIYH7ypQRmG2VnI8mAEGOc226gfZ5KDp1cePD3Td7q9gwmCtAhGH0C/X9wcGgC4DbmJCNPuDunK22ByDDJFPh+WitYEiMj0dXpzcH0P/34Lrr3/Vz2RRiqRSLAWRYHaYSmgwvIIbiIRRiEP1gQL6miAQxzU7ZT22Icp1cgC/79GYpcFWecphzeVW0MvylzqUA9mYXoPXMWYmjqotPRXATgpbP9xHQv9QmN0VmpAiBAhvdzowZ4i9PFs3v7VfrL5NjzF1Z9EmDTiYWR+bc/qt5c2pwOaU97fZZbczmV9R3eUPdku3Nvu0hIENL2UCE9I/0/wkDOu2HRQUKr9qVcecK3b7+lPLrJZ+vjBfEbyJz9DvBpNiAxLIR73SBNmjjOToEEZnbPE+K++kGv/Q56DBAj+j09lcvZehAirEWKwj2H1P6t3xR6fNahRKLjNU5cUd0/RfmmOM4B2fZm6GvyaIwBNuK4krbiubfVSnsuqFdODBY+aCjs2nDUNUww+xFi0i7yYnKfAWPBOAnxJHBoUO8nVRxKq8IFyfofHOA+PZw3dyPJMPFwVEK8/8Ftd9tdcUOQgctjRjJcbTRNOsCr+wXOS80OLH+5H3xVX2kHf9khpyOxmBoaar/ZIP6+F/6iflcczKtkACjFL6n01p1TJU6ywXKg1ZUlXUQFXZThEf9V0Lc890eN9wc2XOH8pfjngdv7ejszvp9XPfLATTS+OlOM3DxwnkCj32DWeEWQUCodIN2avfnj/YdcyP2lKr4fKpA7TWZs3+hpCO9e/mkXD7zX7YROocxgVydLgcwBqTB7YJXcrSZTMAYcwQkUCRBCRWRAkVZCRQjJIsIKQIskWAQWKKCwCDFWQVkVJBHFNMrEJDFdrDlu7gYh3Q1GHB5pRUywMk3om0hYELIAgJIILhAQmGJ2MXmTYmn7O57/mDD3vhNnuSzRj2VPtiWRfj9v7lIMYMyBaohn8sgAS9vn+LcOzk7Ud1eeyFD362nL0ynY6Idta9HtMuQAiZE/4O+3yeJ0ToY7fWpSqfSiQjtz8h7K+lxgl5c0Py+TXnfrSABENgbi3cBl1ZDgK+eOYoXq7992ABGDXj6r/3LCFTBri540ND0gWMYRKmZGfI6xBWrvtdVp50SESdYIDpA3hxu/VJ5T8l3r1smU8Tii4eztIXP422FVM+pwY/u8y+2/5jIkmy05USWvMKBEQjg+qrTfK6m41nSFN5j2ghkiCxC5G9bMAwTTTXQ3ECQhr4RvLrBinFAQviaucg470IDtL+Q5SEjF79oasoH7AzayfgYadV1fAP3W9/8UMAlax9aswBvoOw9GoePB7njkS8wnaNd+rs/lg/PFQC6moSlM/4x8G8M8hwPFUBESmAF5+xLIv6ong69nUhynD0rxub6m+1/d/JfRHl2Ny+HE6taxY3uv7t87dG51UTVU9dva9JT8een+pIW1nh9nv9dUpB8s4U9XyoBHIlElE81NKz0vL05wow7ZINsE99lfA6GqRU0Sv1Tlb3vYEnU2LKj8ra0eGQOMVr0zTfeyFYX2FSVfbONr8BlFm2iCb2HnbpjA84HXP+PW66X+AAPUClVgadmc+zj1SZ5Rn4YC3/lrLOgKNFrpkvBUhtI/VkAN62TGOmcc5Oijlma6hlpQXhhaX46lTeD1U6qdQzLzF4HzKyoGtHGhlPXZv9O/bWc2HhSntTFby03CbSYASsLYSCyLJIBIOS6ip7tmvH6i6Uqat63pbc9SVbk6lh/8yo43XQd1dQaUl4A+UeFiWVP1WWKNXoR5KuZksbPU8l4VxxdTRRBMO/jEqRC0c5eZQpW+hDzkaHViSxu9jCxRtM/XLHXrYq5+DdSPnHqPf1cVQ2R1tyepdXJHSEqyKDj35vftn8sstHIvL0cHx19PO0wZfsuXpe+/c7LKDANsH89mP4fCQAj0XWuuSSBo36Hhm6bmHPH4uua65Y4dYlJ61yg1+8niyapUckT3ntOHoOIUOK5MkAbFwjzNXeEUNQXFQMsD7sWznu4bhPjw9lN1mZMXLnsM8xwWIKqwUJJ1ofxf2/ts2ergdwCB6waf1vrcRV5sLD2d/DU8J35uZ7U8eBus2IQZJNZSJLb6cNglGd/ho54G22jfyVL4GPt/htLEwKyl+75/Jf9N4E2kiMOyh+qVEs6CJruaJ2UvzfZWP4s/iPwfbrH2wKkd1q01xFrUMh7UFKE/YiAEF4zZhvpxqRhh55JCiAJvigBKQBlr7kPtcHAjxeanHVUBUfA1U+f5bNu//XfQqHJC9FoVoh99xmaAZO9MEp4LgApPnsrvQ55CkMQviaf4/thnbwu/j45vIW1AGTy/m+Hr1373hYVgBy5XCVIWQTrfUkwD0Fl7PZ6c9fTmSbnS+LA69tZAdIU3dZIUPB4H/vRNHwvnYhUI9yFAIQ2UJHsQ91lAvf8rvmMzd88fyYTJgoKHSl+5GBKzxWhGB8Q9IwM9VPp6NGBGSEVZaU3uCiFjns8vFZw3B2KtGAQSM4sPVsLFjvhnrk5KWq5d/HUOedSYi8KQUkUkRgeNCUey/hyejCacYoIjbWeW/i8NDQCCr6NrgB4nOvt2k8mw7XwJqHft+HNcAoW0oDz7d3y2GllypJjoY+XFx/bwebTgyxNcchISGrZm+r6mop226pCw7KQKTj57nc+/3fr+Do57h8/f5OVBvfYGAAOpAM1m9thgBjIGfbNQxowf5IO9XehaSM+k7EW4yC/q5sv9/o1uPqZUhHn6LLFknTbvSu2+TDw93sDsZ6X0zyWdbOCcXd3DsLa6WCj+setNHYu4S/49Re2TnAGcYGrYxYtYpAeJcXdBK2oECogJuO5gwfjc42avdpsy6kTehyUwG8axUVNuDVhuoEANWbHSoMgSOPVQD4Vx5Lq8EAspFGm+W0ZHNCwil0T+Ye8faB+eDqDAIifXz+fGB+PvSSfji4h9tUuacc0Qx1+mumA3wbaaKhgCBvQNcBbvv4Khbho9yDl/qgbptiZgYGSD88R2TXx0uyUUKMSSMFwUpI4oAaIJbDjwFA3o5vL4LbPwgjjQUOXWWsqH4mdfZYebrsntIckD6zunrw0//udBQOofGgV3f0up66dyHi8msO5OmOyTmi43+N28Oj/Lqbp2+5YTr6LFJ4fv3HxvsZ+BhuwX6Yp+ue90VBPPjXhGtVr3ovbSnwn5o/0xNQSxCBE4aD7JfA2QM8W+dTNdV0AmehZLODfr6Xv1p/v+2t/reWn9c9vrKPh9Ao1A+szSJ2NQo+f2WEq/un2f0TQne9+wwdgeououYieiBiL5DEA3Ayz6fSK+oIn2EdTf7H/dbHyJD9+voloanChV+AM6ATBWSave6yx3GiOnHvxfQH8mPMhhP0QFKZa0ctaQM5vN+S0zca5cR/mLhw2SPBKuUgslVhP9++nNOn7Tz+vQ/if9NvjYdPD8XBD0Y83l9z/vOZ5aTi+f0rUKpnxqXu5IPyfr3sCA03/k4f92PciaH6U+z8nweVOUk4OcAvFE2vUEIhe+PJiBOUTyjw2pyiIjlopAMiEcFUErh/g+2eWWzCv2MMyzlt42ufgd1PswLey7dsBV0P8Y74AApBx0Uh95iz9c1jtQhEcYwHsRgp5OqRl5pKDOcPNRbJEs9CIVRSAInSKSmni6WWcPTtWnliTHlN16E4EA5nvcLZdX67EaYABERPONi0N/0m7qhhd5r1aqS6bUNQASJLE37HaRESLEkC7NGWx+7abzDWvTZbw3VbhSWEyqRWQID7QWYQA1lpDPndsM8xzy3H6cOy0NMSRD6WejLbUuiG/DfqarazUoqhn6LdB6NAYlDPOBI0gSSfhywiG+hlPitaAQM0G+ASFYfgE0wEs0kxj+Wda8QXf9EH9IG2bt26iu9Wwx2/dn6uj79Oiz854syQpy4895vHt+9ijKevq+/7et7OVYfk77hN/0TWj1/u/DlTaIK/swpEWchPPnRQBcr8P5o4AiBRrn3g8ser715meWBUJC8tpxj88SKHT8HLyqfNWTburh1U4bvWgZmAZZ7aWRoeULcY0JH8zph1lnNXZ4ZXwITMm2tn1s58eK0XxxpmH3UCRhQQH53F6bZt2WdSHh6PRYYK5R07ZttT+ODatCbEQdg8/RTmrea+xydHYQMfk16NEk0RGkFxmlpWDIaUn4gILAARrFAQ2ZzD5KUtLOuXAUh9hLuKhdA3Qb5ASBWDIqSIyDliTXtubK4zRU5Sd7JRP9i9XXiK8fm5wF6+ev033maZyp8+uGCJwdm8RIUGg+z+39MrD/FJ/aN2vB0H7/QpERBuj78lHPcgnxMKSPU7GSKWSSow24QT4xKIcL5nihdUN7+zzY7Hax5zDtDQEjO4HgDyYZaKo9uaDpmv301WO5oqgXACZNTmCTd1GzAwSvg6sVQ0pt6H2ET9iHRv1vtBDjsCcOL1rn9mkBTUJAxUy8qTq2OwCXZgREPt6ZDsfQaTIiH+/bbpdoNOP9S+HaQH5YGgwdJW3oN3pgxvOK5pl0y4T+VvNPBQswIvW55n8TiBeBi8oRX+v8+Xisz3UAkXFShsnZg+7+OXroWI8NO/4tZaZMvI1/c5SjoimSbgIi1gmUKUeFXCNKoWKlFon1hRGncp9cMtKYPbw6xU5YW8c7J5M9dm+Hue+moHYhO5gYyKVFU/IhIY58V/Jz7PKusFrZeK4n0zwfCc8BqvcT10JraoHWWQaRoavdRR2udT/OLSVx6Z5mZQ5QkpErZ8tKyqfX2yY/soqBEj+Cd45wy0cEYiBOLLZz4Fbrf0crjIeyqu862kAV5nwVzHWYjXsohAvNFlS+7VdKs/Eiyo27P3UzLhFaRFC9lJdFmmeGSH5Uhy1Ifh261PU6kOuxIpJRO1AxSKlmJ2Q8DgKQlqGwylJiZM+y2tUXt/qBQxgp+I/DxVXCjsfasEoCeespny0VIF8jl2mq69ZtPVefU3hepRLbf93BQQlwIwVAv0NGHsbLAqwQ7NnxdZ+6FuD3YIyTq2UWb1Kd/vFHnIGplsJcd5ameWE7168o1DhJa6kItJQ5q2QwbsskavHM/gxVs1+/1ZC20tpjIB8fXKH9QcUXPE4J2pvcgb4CxFAKhN1DBEN0ayv8aKmdiUtdxUPdBvIMhxe2mCub4izLWmn6p9xVRy5vc0DOACHUxT/YBA6ZBhidsAQCpO8llPr6NNc//uzV3gDfKAaYBjiswGv4bO5VaDbF4oh+eiiiJZEBRpQ6u52bsu/gzYKKwkgMVgIrAFixZIoqgK8rPCQEyI59J9n+abbsYZC3GcRcfPB/9zWYTrFonJAD3JEJE+8cyCyeOpTtMmyxrhmQnmqnN7JncEoaUMlwQmh4gDZCNUh/cKEQDz4q9bsaOoCuWI06cJfLJTZ5uLbLUt7rIVkUFkF/ClRSCk17E+fPyp7v4P1hJg8bZbWcRtWgupQ/fUV8KWiNBdqjgtrv4Lfg3tsv3b5nxY7a4bP9guMyUUvgSI9uUg82XuHjgBESNjsu3qvTM0OOHaLr/yscZEsISASZ5y6+GMfWHr+EsLCfWEfYIXE0hOjPcMhQ/7fAon/qYAD/ZJyre6Y+znv3hxDOxp0AcE+MLMlBGYKKoQ6UMGffPgVgCDJJFEaQDBZmiftEEKwIfYUPwhWCEiNsODgVWiOwh5+5mLM/v9yIAl+M00W6F6HmP28wmf8Q71MWBMCACWQRA147NPF3NlnNE5OXudTebRdpjo6Ig9ctx6Obz4vJsAHCpryULYUy0bCGeGHRRuEIpngAZwrFs2lmU3UvmPWVq/w+drVwEMylBLwsWwT/ghV/QN8K9j0U24jLKgcHBr3fagYm6zrbs2r2TL+F+WzDiP3KAJtgNdnICBSFT4cNANU3JxmGq6baP7QefEPKAVB/DNkWzhS3GExlGicBi+QqbsQUbiZZEh23A4VqUE/HhfV2Lfx0m9DLLAFQxARDRNk9HH9QWw4bV1xBCQBnBSkGRPpp7ff/7Fi6HewuhgfFAPphWSdEOrNHYM5VJOlVTIkSDBlBwZvzrrN+HnIdKg9VlvbGFwETC5lB5xCtUmaBFjcBvU3PAgc2XJjyV83Nh7MMpC6z5exbv7z58CGP5cevM89yb0UPdET7oG3Ftu/XXu+ThRML291A3QWs0z09FBS2Ejk/37uzYmrNfyUt3m5a1clUuju+km+bxJ7VTCwueRn+k3mCe1ECY4hCCyEiMghIIJCKyKEiokiyMirIgEgh/gecOamTJf+pUwddLYJTUT2Xnvbjgr04705+eh5Oa2oXxBRSRYsiyKRQgskWAKSQWKpFCRZCLFFgKRQRgChFhFgoKAsILJIKEWSAKAoAosFgoCwBQkUIoskWSKSd4nUK0zYqdP2UbYjj5a1fdweyyzTjKGaeKeHf5JUB05UrkFf55U6XQ3APcxX/aWfUOb4n8pT5OnnMkAjBs+BFYmCCR6ermy2FrISBIv2Yf4+Usq41Gghi8zQDAQZAkUJJBCMkFkWSQUWBFgskRBZEZFVYAsgLFIoSKQWSRZBQUAixZAUkikAWQRgCwgsVEkikUBYoEFkgLAUixYBJIyIh9ttA45dNX7ebFo/f9sXZ6/x43JDPDLNtlD5YaIh/PkKat86DBrJsu0meNmUbJ8jo38tLQkZBxMRyJ9XQbe+2vTOr+lDHhpyZKHfiNIsiySEg6qUw8Nar3zRR/I8lD9uY81VMH5tKQ6vFQKzTQx22KgHFAbIp7nRZJLP9vg4S88utp+5hClqmRKd0Y4oSRh54HIfBQ6nxUzBze7bitX17HLULIfDAsmOL3Z3bMf8aA6PuvMHcp4Jl7BxVGpB8fOYvQWDbBkIKxVRERVBQVYisgLILIoRVRWMVBVIKiAsFWCwWKCgpFJFUkFgKEUixYIgqkiwWSKQQVhFFkUUWRiRZBSCgsFkiIKjBGQWAsFWLFBRZFgLEVBVFgosVVVRjFgIgosWRFYoEUiigCjEUGMWCxFRGJJEkDTFMd1FO6cfMQ/zZIXc+bBckq2vTcjHcFqZYskgMib+ivCFgUhjz4Cub/LrDLboUC/j8XLY4I59eGIKCySaQkIBieF4avWwN04MkqrEIiRZCGuqw+FJrj5vt1pAJEWRED6q2X4U18SzZYg/jCe+/0q4cg5SU3idQMhugoKEYkBYQFkWAqwFAFikiyQUiJFkBQRkFAUIIgLFCKQFkBVikFCKEWQFUIoALICyDFSSIkRWCyRYQUCIgCwkRAFAWRZBRRQeRZ5N9L/bXxbT9/99dHZw465enMJFBQIsgsJ6XrZDzbUNkUPo6q7/27Ner1/HiHGfzR4c5KGQleQr/hYfDBax8WmheTsHGNP/JdTewWhbZWHP+xQ30SAYg4+SvewUNUOrOUrE7P+AndtMQAMBwQ65CkCS7Xgvx5c3L/G3exnc8+JT22HWqCkizrdnt6S7MAnekp+P1hXnIFkW8zQvPAcTru0xF+V1IIn1pUxwNZxLQP9PHy1C6KfvCkCeDx6UxYdZy4DBDgj4IKgcfXSF8V27/j5+Lh7t4Q6BIpHVJ1tMv9/6FDsQmnhoOf3D3Oz2cD+iB3eFiIiMvQxVJ7IAqT6y/PUS3MYKpWKf6mvhR1gopY237SnoDeLm5XEwDUJlC/eCytN7G5d+2793tULMdDIP2KU6kEFMp76NISXwGkU9cf7n24e/jc8tdncz2Wd6HvIG6fXG/v8FcX3UQNUkUhFOMBYUh90OIzU7dxS6JgTh/Vq2QPxSglAMAMR7aeAWjz2lANNt1UsjwQpK7r8+276yzzVwCYZT38VMe93rP+zGC/5//UqiSMh9uHgr+sOHDtnFnLRcUYQc27BfE3scMVL9LMTGWlF9BMPjog/OMHLHI/5CUzJEdK72PvnGVtVmS8dQ2Y4knoIWcP7YPy1f3kwIYoSAU20Hqx34ZrqEPgPSfB5FM26pfxREDCgkTD+MsK7gFyx+LiA0B5TqhfqTJId8K5nJkVEbU/tVjgfxC+ysFIfpUehkNG9oq9TShq7dj6JhOv95TLmz3BZtOr/tgGmLIJZAKQkXMb/Hg/9x/Pg8jhwReYlmeBQSRCEX+odY3YjhoQ33WfUSdnBr8T75UMsHOuwK1P9KYitJQiCITJcgNN6Dl0sBD/T01n1kA+E5j1tQFkBgwAqyUvoMfPFAPE6fCOjyCDig+dXf+YBVQveX7lHhxzUer96K3xRkQD6s/HUOmvgcepG1HBJJwjRf+ZlP89S1US6CFiFKXqM/NZ4weWB/pdxd8twaPgHr34kJBx+nzclv5ngvrCTqy2VZWdurQGSQAiwWACkkFFJCLILAigsFIQFFkILBFYCiqRYAKLBZJEYoqkFIsBQP/mAdnX6smzy2zB89lRZPB8HrMn3uJcgm6EWEPsKkCorgkiJqOVOdMZmDVhv0wpDfMofaWt9p5XlBMFZJH0I6/8wezf73T6NPgx9vTkKhmkhJnkiV4bK/QbT69+i+KdHIeXAhhmiKXRrS2vHM1SgdEuIy6hcTeKD+JtEjIJRcFP7Wc/uP0Q6+/8tVrnvZYlH9c6fes6PecAkNg8gHtkDygTOdt50KSWGMXXXx9a5MwgQDvRW2Cbv2ohWTp0ZPPflmjACYJJ8M5+fbs4MGC/fjSSSOaz8613w+nPvwLT42vCHj1Lgu/c2KXIVTUCwDhj50sh6J37AfkiuyAEhISL3cJgPzsfe8tO2ezixW2jnLKXxXIwQaHycGhWA9DDR71qZmRdTJAMQS0kQGXy/H8gXxBT8ESmJmiH9QAxwQ1rOn50RNrVXoWcwWtDih8SJEsZt7VMc5PdR6zA0/LhvPBb8Ff0Lf9uutYEmr3clROaI2W009vRtxZLjnIBg/uUTJbRPh8NLSFs4/m86T5fh+BAFtQ4BEYwaHiY/0fOYJ+y1kLYswxLfJH/p0j1hyoVxDOsgs0scoKRFzw4+LF27Ew/xQTVh21D6uPhe+FhToN8z6Lb4JSJJIgccaX/hBb5Ux/1Idue9Zsg5zAyLEVwnWPQxOd/lQORH+BkImE+GiZUnb3zzHKWb2u2wsyuuU5484xLNUGf6NbwvLpVc5K4ihbJbgrd3tFXhzbttj9/zevOGO1ZHTEawyz54bMuquP0YOxy8PHr+nCC6Lfnr2LqKHyclPtmCICbOA5DXwdNtps3jqJhOYj5WUb1DfX/QsD9wM4n04sGfgvf32YLT7f0QRoa9GA559XIUcMcu6hWBIBEDD4IGCSfs49mxLwrr2vL3oTGggE466GCMBVBBV+0mkDLAp/IrR2qE1zBgK8H9gfPkbC284W+nbbjqBXxoHykZ2JzBk/n16yVFLq/HfTy6dr66Gvc4+DVkZ/Po7lzmCd7unY1IoeNIVhFCKEkQv/ylYAwgEjIhIkiFmA7uU5tHLx6P+xJszaCon0QM8T4Y5chRNCcAUCABdyiiG4AxEVjGJDU5PognP93uOdCHIejtU/AT2f71RkwKYDjGYaKw7P0gNELI4r9VTkm7gEm7J3gwF10fri4yJIsiE+ahSAb12OpiOtky3W1tP2rhz2fhwWkkqX1e+lt/AWHt8dEOgAiJbEt/soe0Luj+izk+B+fiEVUsS7WhTfTXvV239yH9+SnwXOyM+BMqrWuCYcJZxzD+tFTihfOOFJ1NVMfF+p/XnIhuH2xKnWFQf4J681Z7wBPygENxMbvYgrq3qOI3N2u1LS+aYuOFvwUMgDADyY6HhlwfRXbmyUh6k/xXwMPMjMOP9JRUbjYh8X2qQiYBg3p8P2UNMAfx8cmJF+h83pp5w+UQ/HIOQIaycFehxDhDypYGpnABBW2EgQgDcMOGs/Xv8Jo+4bbqKRSIhFCCwUigCiSMiSEifxwW1/ultTL1XrasH2frffAMMQwyTsRPdo1V3/Nl/rRdcaMFDxZPVVpBOL2FOSZI4YWhLvyo0ncQKUUAkfQa6TbmK2wk5zjvNmS1IYA7wH8ntA2lx4StPtHMAY2oj+HPRNkMVfxqBqIKjBSKRVFCCkRUBYRSIixRZFBSIqRiKojFUBEiqoKsiqpIsUWRSLJAUCKApAUikWApFihFAgiKQVEixVIKRSKCyCiKIRVgLBSCihEYoMQUIKKQURgqMgsCdfg+YPKaA0hNkMfnu/t/39HXd2Ewpngjjy0/6BjyU+aIndmGBJf3UpNVALIv8xcmQoA9xgeTjo3kQmBIHQ/g4zE3bbTwlRT+ECGv+dK6wj0s/8ZXqIBjAsjv9eriMkjf6cp0Z7uim/gMEu2W38111+XRVM0NUUwRJFCngAvMXa2X3yceckISL+B5wsEzz7xSUE3/k51MoQQOXYSh1xmf+DSB+bemeWzbyGsEkUwbKJ9828GJ8NO7weK3Hgo6ezn4sR+N4t/jhmqUObwVBO4abuVEAbsv8f+D20h7cRrxG8JJ7CSWVZvARLYyf8iLxJm5tHdm/de9+O77QMeLf9FMObBvQn0oDyzgJYK4oyLIDyUousibIdeLj+fH6rc2C/k15D3ZbffA0xrDJDPHh1mH7Qr8PFlvDFH67a1Uw9xKmr9fXtx0lJHfc+oOAtyHnxn2f5Z/oFlGTlY0/qhyfx8vBYL4zxb5yWGrJpqZTDnpt+Tyh9zZeCY4quP20gastz4KGYHm2/n/svl1P0yHIr5ACEjOlcdB4qh1QQdpnMY8ofp9s22IfMAfohRHg7HyoUgyKceUdrq/fjC48OL1eNGmE1Aa3eU+9gWmuSfChoGhgOBoNHoG6vjxT3bMuKe396AGDDycv2v+Offl6ocICxwQkUACRUA9M267P9ofttw5jNny8tMmH7+93Zo7BdogjxRe1dk02K47/DUfrRlYkiGKULU/HDot3T1GwoZ8OGuL+uBCocqH1BRtgdQTgoFc3fwezszj+fB1Dj0mPV/2S9yx3pI3kXHHbBrEkW23Wc/x5LLu3romGIBJ9kbp7ZSCn9cfG1M52yh6RT5xaGMmZim47T10hYWy1Mp/G3dYic0xdTFUw1x/6V773IX3zNMIXOXnPo0YAx76AIfsmVroRB+r/+Zv2enD7+u/98Itz8eQ9v0curW68FLwiV3UMnhoprSNvqKAcwKws/e3k7SW6rEuIasyaw7A8x9YWO/fiNZEsIGOPCAFNFKGGicnK1w5wuQ9BgBdQTokXRNC98x3dqc/qoMP2aMfbpj6ury24Xnn3wHHFTVB/THQAxwhHBgpWAadf8/NTnkgSQCRJALUaiy+HGnTRDDwFOk+avjGh9kaktuGOYTLnC2wsbdFWn6t8nHXy5zqXoCBvdXXbfyAdpW8/z9LdO9fW4CQCQSEVkkYQOusCkQJtpn/G+/VmullNXc21L4mr1FAOoQcEFzQrEzTaVNvxFzYinaFL77ICYFWlEyogzHro219PuxHcLjDE2nyczCHxRC3Z3b2sDAiQpFhAZEk3RM/R5ujZ07P42/br5eL5s1PP0YstuqHo99E6JddRLu/ir4ZZGkdaJ+5EaWQbxj9+Kpy54KXl5e85tETS1U/IatMIQ5uRQ5gwr00N73IXnv0lOI3znjX1HJi+N8FYFu6Gsks18m611yQ1w68UrEWQJBkQhFZBAUWQBYpBSKAoSLGILIIyRZFgKSLCCsYCJJFhAFIsUiiwiwiyKRQUFIpFCLIosRgCkBYRZBQRkWCgQjIgSSJICaeW734bcnX3WYM3Fz4PoluX497XbfTxFT1v+OXxv3NHQySRRQIKiKIoqCwFCQBkANX+gUQPSAwuUEPb+eP97C0zO985tsyk/cg0jI/GWDKHWA6FyS4bMTYCAlC8IxY82/bl6mC7ju+qo14plf0sshfLfwyZrHFABR8d9AJBFhWg/tArb4epUnXydOUz2fNkszbburu23fpO5qtgeDxaK9OukwWL9/82cpz3ieHhoJbAhA3kJ3eix7hwF1x5RuL6v6Vr2AswTqQxT8SJ/fEgNDKHAcYmf69GBYEyon6AFmrXYEwnIYyrBADX/t5pIBjEkwv+Of5OziKYjm+TPUZC6NIY6Ht12ejLRLcNHR3ClkNSowpBkJDyfSPvrTV3trzdb135s9LUOvAShWBu8fx/fMHP8VOfAEVDApqIe4lqO0a+0DP8jyF+75KKck7B8Tgri/krxl+3L1MF29jDtb5/BVuR6JfFURkVOrPmx9bVqM+/gy+rJXGWT9iImVisi+DxHTi/m04j9dmXntrAxzyKwD6mtAkGQkDHuH9ttmS/AMq4CASSSLCJH6FzImNsOuDE5GOWBv259S2X5tFQQtyFDm+4oVYMiyLDIu80MDkDIERIYIzAvb3a/Z0wra0x9zV/V/VvrvyjMGSQyUAy7JuqpwRtgvnOxS2PAYbi+NmG6iFsGR1TkifUe8hDBlJCNl+ui0hTg5BCaZCxQnp+f2liaNYU0eOmqBvsuiAZodEpGS3ZyVLJKKbue8qF+W62jU2/t+vX/PswH1ZyMQy+U/pDWPaZEZkRGZA/incIQPGaXu+TQYhYGgD+Wbz90d86xh5IHlHEDTCjDV1L/DZQ4uHRdk472hGQJP2/jbU7SqAHD2S+xFKKwRsw2V4+rWuXy/B/XBftu+vNw4/f/WCtNuZDHApEUshP477X3JAbIofT9XMcp8uo6/SbaYc0Ux4Rp2DeCnEMMSMUHbbT/ObDUMZD8sOxd8hpxBBG0BDJAQ6QZEn2J+MG55bOFt55v7Pn3rxhfd+V6tuGhlTX/q/NZw/+ph7v9V0TtGmmzIJRDTFGRVkEkM+9b+HRyc1+BPBfx8dtoG99hWsXInn+E3BZ+8D5ED4b2VE0LF/RsxbLO91M/Rh8VxwWFCme0qC8MOqQDzUytm9NwoiYVwf2qhMPqaFsCfUp+P+oC5sgTkvJGMmQBiEAkGQ+3+pSlPx4rH2/L1+EPs0mg2VCGEAicRtw8PU/eYLPHSfOYWpEx4404OsQnApUNxA3Bao0uzgJhO8cdLd7PTd/WX8bH74dmy9eJFETr8p1DGBgGiAerHN+iezelGThTZjsDR/HsMf+u9qHxWJojMyg5uauao6YhUhdE/YGIGaV6fHjc3FMt768doVUUEy0xZ7x/927q3hdECVWlevEyV1R9GbgDV7s2dN8JmJ6L3a+8SRf6op/L9VOPl8fhXv9K0aj/F7VXp4/hycHV61Npmw4mkF3Q02UFCTZHFAKym+YqpwT24qWwb460SLSMjIJvymVP6/aK2GYYWxMGVyJUQKoMNqMA4oJdjofsfX93osMeOhAAuwvlvRn7UIYb4sBsGQDGHn1nLO24zP4oPX1F/j5J4MbfzfLZXBWYlD8omWOiYiV+ksHnCwOYCC03BdP8ZlLuoFDAeIkMPAEthoH2UP+GfWpsg+Rro+8aO9CHebKmPbl/bb/uy824/+9FLNgmvC8wWLbBBSQWCwikigsAgsFFIIkkFCQUICwAUAWAjILJFCLAUAFhBSALFILBRYIwkWApBVIoLIoHUlYfKfZ0nv/9d/5/h9nViaSqV2W5VISFmx6YErcYMy6dIgCIrRwY0hCAivKBBM8jcwyMjIeqp+EAP5j2+ZJZkgRBEe49OLP0ngDWWL1XvcTUQuRPeAUx+uMkGWFW0Zs+0SgH6LwkQ/fymWhb2oGvlom/mNVT/bNFeDViqhpZgcxlNRzGMayVbJ8qPW4loA39wiKs8vrXEKHmVIdttTtnWHfxOjDEUbQr5/36w8A/s899hxqknsP8fj4GvqNpowXQMwfCfUGD3HZKXYFKaFO+h3hKh/oIziTvLA12ZhFIfOkK+35W9zPX/EL8PnoTinud9EECS6wgGMsRgAkRgAQIBlRdfn2O2Vz44ZdcfTMp2v8e7Zyb1+jgpLCuA/2B6o2SsO/s4NvZxllwEiutYoj+XEaNBxvBpvq6KHFMWsKSOTeAwIr+hGWaW1aAHqlzhwWhhbfp1Ue35ml3pKeU8ObzCXYfd38ZmBcQAoYjGP+z1B5Js/ujttY6if4Vy1Wlqa71CfXotUk2IzsBaPbHbQLfF/NU7e9TsYNH5B27rsMWKIgRX5EIuQ712+DZrwUN6HXgmlD5IfC1C9IYvxCjk1jq4VsS8GDkul9/++PxY/T/PSHTj931YQA+P+AUvvNfkr2gFyMDERiIGHuQNu+Gtlnd1TLP4z2X/Ep7dEMPSFFF1Xz121jDrf39/3Mmy9HmvzG+3U6VFldvBQ/J16gfSXROEkAkS9+gAHc37S77FE0g4NSWIUepAaQ4e44amnLCULoHPPdiEbfi9dPtGyP6jet0V5poQHKFdj/pjl+6e+f9TpsT4ekJjahdOvn55lj/vo9liyOZjvqVM3TTFA5/03V+fXSEkMhKd/d7TuXPwnNHBzIT++1TeZitkHRxSNnET07odLV1RP/CQMKBDEhwGPy8fDt/GmAD6jdEcrVzeutVIwk7PWzZtJZ47rPv0dNn08/CX/5z3b85NvDguyZPn3fzuMaASEIMkihISKkBBjFFWCwFAFFCLCCxYKQRCKAKsGMILCAoxgxAFVWILAgoKREFBZFkFiwgoCkiwWAiApFBYAsiwByIAn7oPh+VBL7Aj/nQeIylZAAhl95ggM+Wvh0Nwdfs1WUjq59UhHciyVZnCB7zkkIMYd3OW6vcySucHQZ8BR12tQWffR7p3fOFIG6B2ibQmcw1kcqxxKs6UWF5ReuKqIqlXmgw+wreuLxEVDgYZp4nOVXhGlTBxajxF83LKFGv/eR0vJ11DWpatrWpA1MTe59pLQG55rFYId7epm1oOZEwLVnNmRrYpdEnd9Yor2zZQlInatXWRXoznqrnTcFQ7s5andY0ygqvfGVGC1tK9aLJji+lhDE30fTAqgXFXewrpzTCUrh8zVWyvkkDlYNIUm6tIPxFEgs5mznI0HODq5CWR3vDFXVcT8RGH0Y6RjG4jc2KmIQpWCuxM1CSfFy2faF0rggJodhE6StB0/k+giM8YfdJsyVs7JK2sxoI2mdM0RXOpGbpYWCZPpmYarXW9FqUUqcEnWD4YNrj66/tB8DBmIREzOa3EsB95nllSspUiH4YZ5nGkJGtKWpDEn4eaXwRmKm+1jrVFo01lSeK1waoJphy4S2JtO1YYCMqtiVK1xTFSmZ4lCWKRpKz4uUWiarOtq2pGtkm6KQS6m+tHvKzTriE6Cj2q86RF0CNOSG+M7JMRgLTOlXm9TaFbOq8K+73Ghnhjq92Gio/JyTur6LJBdx3uwpOOVKPg0KPdJKJk9wndJG+E0cqylh9qI0UtV1aMbXcjzD4OpAwd0i9aXfbJ6QQYpX4Txd8otNonk9oZLcOiZwxasoSk1CypAZQoJwiuTo0SdWk6KA1jGTQaxyY5igg40DzFn2AvOU5itDxgXoc8NDrk0Zm6GKtgYsc3Re57lwsoRywEVoyWojIVthb0Yzq0atBzTLWD3UjelBUReucEjUI44wSVomKRTE3vSknQU8lyiotWVrJS1Yvye9FdOp4kb4zc5UPFRK9Z3nITdQI5XYo46x+M6wpMSurxLDILthEOV+hkbBxyWb75VZ0XCDQzxGeGy+R7qSlkrXk02GHXWb3RRPgP09CvJ52+bc79B77NUS+5k+ZR4n8XnO5VUUDjaakjhGtWm9HsgoIMjmis6ZGvzvtNGfedFN18IysbXxB135qj4IaSWT3wnlkIzdh1gcWB1okJoapjBgOsUnLZHOi8VZaue91Zz+0PSYrSogmDDkyi2WKzvTIQrFJUsiJC1nMsMTtlWrjR72rKwnVI2j7lqUNo2Zcn5BhbK2IYyyva0RWtco1opwkl8QgsWtNnyiL3if/H2dhawikXmDyvSs3wipnEM2R1w2EqbWrNrDKD1fZ0qLO76o91roGnQRNWH5mDIzBrkcsPsZ1afr4gH4ccZtGmGSgfl+0Mw+bkY5hJVfpGiq+lkBBz35QhN99IzKSodrJCdJTjEMl5ZJamJSpCEIVs0Tg1/6aZ0xC8Kugh2tbDOyclGosmyTITykz5hnK+b8G+bWviRrSWJLNzhaLz9+WUY88bTaRpnKVI55xehzzsb2hiqUc+FJZvuqUM3VfnRxneh2utTcbTfVXQDMc44O0jD7odUhiy4cdrySJxcsWgc6PgrnyN2DdB2JWqkxU6XjOCLE2lNx3qytR85wjSWDFke6eJpR8o1s+6i6mc2pFjSbnxhWuLNOr3XcwOdKMbpuvBkSYfGV3PrhUKwqdJ0lh63jW0Y0tNIGtjfFrmYvB7nRpAK+c5qt8VwzPnGwdFaGJoqIjMHvuUJujdhayUdSzwcoQcGvWN2m4NNLvE6XqYWzyU6Sdg70E6mYvE3oInG041Z2LPjL6nStiJylHKLmXFTXFr4m5KZWcK0xh1Ee6cp4WCwlKlZSYPZX2k+hrW1sIa4fRpM46Svdzmuc61UUQIZ0OVUiZ0krjCyi+4i5WSUqSlWq2xGUWteVa1q1rTfcUmjhO06hDreKQFr3kzA5SR1Z3QUrOtbRWE8FY7VSU6uJ1mrWpQjUYeyIaWW1cOD7TvRJhLUiCuaMzXWMDje2LPXFbWxNoPQwtqVe18SY2s+Z3cGjChxrNHtdgtXpWgjLFxZ80s+0RZXRtd1qzgzC0YWley0ouKuacgd34ncUra1guKWgVzji90tRnQXDOdRaRO7xia1gA7FZ4hTDqyr7Z5XxDodRqKeeuMnYjjS+hYQFR0F0PQxHOipJ0Fph7KmTqNad7VpNpUq+dxW8rLd8qiNhicXXxdYKl2xJMIMVQ5mjv80jBqLgLjKVonXGHRaWUpuTK55HN/2WyD8RwsrPOEIMlXm/DnJiF3LNThGlKOckUjTJ10q6KuYQlOEMSpJ1UiHHk1DvVJUdWDhiEqypWcSkUztcOpSMq2er3Ye6gw+F3JeNHfscHM6s7pCEsUgkzyRsqHjH4rC+I2qyvTGaM92LxijQdFYPwwNy3YALhqG91Mlu9Jzez1s9afs50nZ3yi+jhHJ+WIuuwe+FCSVDgoudX4FkoGyDoSSaHCloPkFkkIqiE+Nws4sdZtH+8UfzodXabOf+4E2nEzrv44f9iUadTY74NcbRSq/HpB+dFNCz2az51bjpvknPJZTynF2WqrBLUm43VELTmk1rGbttmhSBiatxc+rVi1sPtCbzhekbPBmJCFji9GekTNsPg5qPdOlPwrSz74rvu6DYxZEZz8xl3weZ3YWpzJLTTJNmUn5WZzosapGS0TSdHRo+0XByzZ4hOmeaBKZYW0Be7ryCnVXM69EvgwcsSqySi1I1er1RqQhSjozvez6RD4HB0LMknLh0oRsl7xSZutR7ls4Skc3LjDrUpYVpakMXZyTmavuaJBKwVbym+FbM2I2w692xOFcRg+snnNsUnVYYkKLTFI2tGqxlGV8LScMA6BjVVFFUTRlOMvrc4B8QsJkuTorOj2jJ9cTk5yujOjoTfK8YTdIUmMOOGVDhlgJI7WOELOjV8lxecXyHjeqnisUbFLmjn0Z+TQFZimUVrisWpKQNyvf9EZynbOV3yMI+j8Yu7NIxyNCmaNJaWMlU/trdqzuJRaS4vmA/FckjWdFysKPq07XrJRSUkOiupCQjQ7rldxuwc3TJ4M4LVoKMSORveKQthRakkm1cWxM3paqVqkZYO1sOVDas5B7oNKqhjhMw8zcYotIwN9ljZIoHpezWs+wPFa3ndnWu+HktIOcmSQOGBMzQJO10yvGEclsiZYrSM1aUcLJoQhKN3HiQW1oUUPmlH4D3YPDjvPDlQOF34R9jDrYfi+BaTlE5PZBh4nW1IyrAOWzWsbmhhzwbRnCSyU43bDDCWEp4lC833e+FLXtKM4yxZHNE1fib4UVUw9JYk+0nXtUwuH3Cvmd1uqwpSwQ4XgkZofjLwcFhWog6NJwvBLZ0OTNQQRWPAzyWEWYSObRrOCvMUV1lczjisFrabTkcTq9c70x618rhzzooyytekbvnAMivaRzBpCMcNSkGjd9LOEXYVbSc0gjr5Uo9oMFPBqaLU1UUhGZwOT2pdLKoVY1vGwM5nOF8YSt6WZZWcMYqdzfZ8b2dd7PlBnuSEkCyk1LWlWlHVaAtW6TSdzSz6zkIyVoXur6XoLztO7qPwHU7IrLK9VFYvO18Om8VxDIWrBlcjkELM7ISLKVRGIlcWWaRRAlbSGJii2jF7ko1b3Wl7jAcIHVIzScL2hGrzrWE8Tmy3mxTWyyNL2ssUpHEkecJVWkFSU5UliEjCXY0vGCx/St60pLK0N18zjlBksZzBpKE0jllJowCRyBw74OjV954hLQPkI3dm+MIvyat8ms9ku+Zm6TjQoSjkk4zO15G1Y3pGR1xV1nxxGiSvd04VCYkuFky1T9LZRu+JxiZlc4ZGJXiZSlA51seSwaDSrMHjKas6zjc+GLPk0J0pdrTrSjUdCqHK7I0DtZqLN+LNaIveNGk+ccXU32o+N7VDOdPCvm+wfWtlmk32mb44OF2Sb8PxBxg0o9YzrSTQvh6vCOqkY0Wt7xU5xjiUnpA3SePyz/0ZGehgtxkGn8X76/f9Xm9L3ttTjjdxMfaj+pfOTxqUfFP28xKrqTabuDsSNSMINJwY0hGABIOYwhiFtqSFErBZOxCExiyT0oVNIpCKSFYAaSQqEFNMA0wDENPhQ4pA0+6wlYQWSKSRTzJAKQXJEpAEJAIQRkVnPk/rUf32d89PyH72up5q5zGExBbSN79MaARAMEZ+lZzxoJiMxDr/3+0Aj8EaEgchssKIGFxhtZiLr+iK3m5XsXP3/mIAdKdydYyHd3737Lkv7mScn1TOGuPdPVsrwdfHfTw/+e/DsQDdjo0iB1oWzTCk5EkU1B/eiFR8gpUcQ1AORcEBxFxBOQA5A7EzNRDUE3EHUFwSDCaagRQNJNZYQNkDg7oTSaTzef4z2wvKrYQrmiwlttdRMpEc8s4P/QwkRDoIxEDB5uSlNv6wkw7Vm5U9VN9KrgwBUgIKxw+vgqrxJ5dKt2L5pxhh15AQRjERMPgQqpbSck9jDGdjdULtQqdjAlV/Yr8Fj2OoshndKPk5My+UhcagI+RMUUoLQR4grLl88meNpCIjrYl1HEC7qcmbcqsIVkWRbvrIsqTTArI8nK4Kpt7lJshu7PNmySYhp2EFgbOonK1dKgVJLaGOzOTMTNWCmcTpwmYnkS4HIbib7TvVIciGmB7R5AkuCO/GzNFCvBxMHlaChnR+L7fJ+X6PX5vGcu7t8Pwea2AK1yylid3Xfe/WRfUUvRZNsV1AwpEg8mLbj6YY6wti3SjTqeXci7g93i/rkRjDuIKqajZKQbIdIMFL6v9jU5Si7dbMjKZNxS5emi0qVypWWAEcFmoub/iiIp8HS1GtU8qml5yNjTfayXmqdjuR4Uf1TZ5rtdXKvvzeUqUasSabLU3Fl//HkVLrFPqv3rEkl/hw0iMhqIw6MMXZCWjfpPRvgiN3JjoVU/rzU4d34/PCzy2927bi27x+WI+vz2caepXRcGDmB0pJuF79kkSTQFPje39Oh7sB9qX4f6rVrE6qxMxwOguLfaXFa+nysZuVrhe78ynBthWJWTB0wSt9XnzWsR1qsKduZqu8v1qzYuP8u5rhk0GYj6Aln62EjCYwtdE/wpO7l2YWH5ynftXNCqQZbgFFRULu2lu0xGuEL/rctvs6knHgpqjy7sMpG9fWyYARkBOrVeC8DWfEP7PyoXWvgai3SoewCAx2GymnnVMuz7bacdnBsuO7Yfx1pn47/gqt38SYO68wBGCIibIGt67XX9bFG6cGoppAwzsqiggZjIt63IPJsT4Uld6Lkdpnj73fG5aqGXrOddYnU81XtqtQ4jcSN19E4Hte4zrYLO631JpO1qfM9KG4qCmnLYuILp4ODo4XEIoYy2gXOvWaFnDfDIraS6tEWcUMduO2YzTM+zh+rv6e9PuE9//XlQmIt62XVsLYQByI5z1iOMJIfeEgAfRU6jvkB0xHNQOOPqhxv9Hp7CgK9djf1Gxj+1Hc0FQhza7OcTljhVW+T1Z2kHt4rPRonaU7l1Oz1us6DmNLF9tMvS7RgEIBoCAFIy1yTWRgC4+JhwIedipqzDTSqrvuWtUDPD784pfJ0tFnJARgRAx2TgxyMSDgiByMggYHIGukDBBANaV4qo7mx0X0h/Sz3Ut4Z1P5h6xiNuteLg5dPml5fG1mBa1Izu87Svoknn8km0sPmsn3r3kfCEml/ElFMNKAt1NRNns2SYfpu0dW+XTl0zaq3H6Vu/OHId93ZCmWbSEJql+vBLzMufd2Nbz98dGSDMey2HrBAhmY7T8D8hgGZG6S4mBO/SN3QhKfl/01/p25aXy+kH9qBjCmNDBJgxsUkOxgQMEtfppOC23q4VfRr0mgmDULQk/rqTkHmO2hAQRgRGOc4DJA5UyzoOpH83uDNe4mt8VLO5mSnY6itVrz1zSjsrXw31MnswMP1R4rmtXtz4+BJvbGXFXVUkyGNjSTcBx6F8asS1kuTCfDFo3jBtDaq63PF11g3tW5Pf3DXduMj6qCB6wo08o9ZWZST8n4G5WZFBrcweXCw8s8s7FZ5i0ELU+xOG4rfrXrRgDJJsJ6SHYWwgwWDQYwnKQM5SdJu0jGqfd9HtP+tKfb3mZEhoY9HtKOMU4HlAkP04p0shEPs+Cctpv+C3wyH1mHVssTC2QzJwMCJq2audRR1c3V2MWtq5tY9lncau3G4yPCeXQN7B9hynAlMPMa2dwZ5tBQ5qxRjL0d1FKRhjkfNHsODCRiKIOBm7Pnu94ATPPcwnHYa1FkL4qJwMB5/BBCm+yo9MXyixdOU8pOAoie8fwmA6yGiIbjVfDRLWpaIEjDc2UmKk0MwDMIy3Ym/JOuaB0Kq44mJGKTQuJgOMFtOhlSZiC0PHDse93A8qp1mQdq1lPasnhDcYXtCqcULq1g4ImrhXZb5PCje72YKB2kb3P170nCMEiBEYiUD9ywWpOVKniuUp0M/Nn2S+fDjp0t1u0u/w/N/d4cDG5rkcwLT+s31qSHbmgSpdPt0CJVTl6u07M83LefdiuVVXrwHYb79ESV/fh6T42a/YtmaTZpP8RvgueiiATvriZstGMFcLxte7sKolvpwI7rzhUG7wcriqyIl1UBUgRGIAjEqRwdSzFHjvX1U1waCxGatES7NNDmXQcGmrLmjMK1FtqrE+a1N6FNMFihXfLMYJlgVFB1ZoQwVMZpxgsNM0zGKCySI5aJEcsmMNOmNrTDF1l2Q5pjskGlB3KFQETZqa8ouvJiGuprEGqUvTfjBNckn8TahKI1ENAkPRzKcIkfUOeolSwt++0rdY37uXfk2rWW0L1dTdwxISVJwkkgQTNICEHXS+Wo1IzCICwRhsWKUwf8/M+UDOfBJpX4OgNEY2UjHNkrFfHs1waoWbzClWmo/GDtSVcseNd8kkVrKJbnlBqw9N0wkwSBGSzchn66Q3Rz+fI+KvjdKDXkefrWcpCtx/vwZygOQLq2p9dutkx0SxS+Ws9aYG77hrgLZkUSYx4t3cFiBsTNNfAWc1uxLY96y97bT/HrY5/GT1wKelvTEItQ+YA/7VrMRgqaeswhQJHCMCZjfBAceGL3u4dp+F3rp6eB8xjG1EYBK2x6aS/+q/05sAFkg667vfxc0/y1a0jsrpKDjcsbznFNSvCycxhAHtyRgL5MK3/skr72cTDxL+aftA3/GtWzXe7x8ArPQohZZJdJP8BbUnYTX+OTJ2dtTpsXbnhbVCdgWUKUu5OL2+nV6tH8V+uR2Cu9L1i7iihUcgOJA3+W0Kr3IfwtnvUf8x224HvJqfqt66+o/4+xpe9EO9nm+5vbQU02VN7A5GgqUnrHudA7HNdY6dCigY1qupRAlFnTk88mtG4vAtGjbwI6nf3V8jF+sbLFXq/Cyp4LKSILvSrV4GN+JcPgt72FWY5teKGfWdRR8WTWKbPjUAb+FzmqKUkCkoRwCmYSfM7YUT12GCBoo+rERSGWwnd0RTGJwqP/UGCEnsEd+WHM6k9b7/25F+np1Zg8Y+B7Fn1X6UekwMABbAFezR7XYRl1EYxrL3ljsRMx7Do1RW7xdAyj36B9iAUQmRxoS0V+nIoauQaaKtIXWJqSVO500r9pO+HGtqRhcIwGJPbJLv++AKjvIrx+9IHSMhnvVIkkyFuTzh5M1WlNfYl6enfauWo+h0LwmFIgmkqSjiEBYCsFCVitKZmMqnQtE5beCgadaUO9m5DdOIa1XsJt0jEdRAPUQZDqV9E3lPx0WTGEd2rSZr7mwyayT/D+kqY57lp+GTdzWrsLdNVkYN8fTp6PDhot5MfNmVY1NafN3WvtFD4VsVZJqJUv2NTVhCYDZBIkdxzbSWl2kA6QtxTdRrSSlTMSW2VFfDpqTO1dlx1zJDpieiMG6uyqzoQYZe44ZVsfYNI7ewDjzfQVPW8teE2CzXtjyumXIwMuepYV7/RBAislPfoQGSMFLLmB8wNRYf3y19QujnzxgJOtWYP3v7T9F9SjJ0kAI8jKHWKuiKl7wuSGFQg0XWQcIJHOBJIVlkKxWkG6B9WQ5LihTo648xDsfX6/bw/j5jrKYKu9fNlNn16m0g0Fzn7MCqFFNaywbTChDqcJCazZ2Ek8FZCGok9VhFfqgSWYfXenbia85G7mAai/XT58+o1WCwY2IcpqgVa477Niputf+s0fP3/qThcvQLawakIglxmuhIaaGueKlrj0uakr6dpK08aELHfBiIGBECIxvkq3j17dEDvCx0gf5qc/zJLDDQ4T6WeyhkSy28HHlJ7cuOp/tg9HLDBA82AvtIO+0lF5P7OnLqINi+DDp8jm95XEFArKqLLaev5/e27PF2+T49d/D4fh6v039XfPe/Ht8mZGn4IzRkAFyM6QMCIGIgH/PWQ32XeCGJb9pKh16D6g6gxq7Zr4KExmGf1h/zlWTPrypqfQ4fUPVgLtt4f/XVMMcTRpznMRD36wK9pfwNb3cqVXw29t6Ho4ErPkve0NmfIgwJfRHSIHLDRcn43axvt7XzfZn2zOhxtFt55p2n3RqW48vhIANpGMRGAMYiBpyMDHIGH2ewr93k3q0hry1BAdIC5BncQkSDg4Kg4OSYOZUgcjEc4OFYKYVx5sXLs8fHkUVY5VE+lNrL32K9JiAqR9WUjwzf7RkrKylaU8M5fynKYebs5w7sbor8sGkHufPQ93k8Wp1WuCWmfToAV+t6n00jWsmxvnEmnl2VPGohIeqSaACSQjEkSTvCx/7Xu8Gw3KlNKa3ai6zg2rSxTX7qbEeWNtLCQMuregf7OmQH+qtyKnChb0Zqqp6R2R20Tt0UnFBl/B/PcEEFnPp8WWCpw9uV73ku9NmMcu25ZT8sXX3ED70IDDpHAOjHVakX4YOjDyzeUqudrr+k72laWPuSdm73j5i3EQ2kq5bNTbrM3Pq+PqfJvSj/vzKs0ZVZ5Sl1zVKgvi53eQ908PD2Waw92UGMErXVapXOnFlSe6WqWKS8IO/XXXwX7FpauOc/7keT16qQA4NC0R+1YoIF20ur6+zRoBMGxPtCLMHOnSfORyIFZJg52hcsaD/rxPdTYvcGolcLUos5puUtel84Yc9D/I61o3uRlRdIrF2j0TyDUU9w5Eih9JIAiFEKEWSC0R8JKwqMhK0tko+uKvYzCf5QicGHYvfGC3BnBDyZ30OfOzRc3TBfLFAYOByMgZqaOtiLlMhYxDTDmkYlb2YSfr5glx3GDRkJCE5EQ1JyvsBmqyx+q85h4oBZ9hHCRY7FUA2QgAB8l13iXDfm8Ln1P5ZY44K2gjI3nAA3sz2G1FCI3cotdSV6PdGR6LK1eUZqaDMnhSo357F3HH+K16XWl0VP96y1243ULId67h5JN+ttdT8Jip6Otqve/3oCHdlakdas9rzv9XaGlfrhUzZPpFPzkkt0skfVwv07XChjVVvUp1F7WJLSn+Cz4h1aeK8FJx75UbXwzdL4XnfwRns8ex/u7czt5NC/e1FPXgWK7fp3rDEEiwcpoPlX0r8U1leER+hJ2FRCe7AepjTpE08xxWmTUBRPQsSMXUMrXn0pn9W50nss8NTNPliuQVU3yTxO3YG55U6WVRtrxiU7WI9DOGjPOcWkxPJv6oOaivF9ETMfVXn1UlliSb8fB6ldU4Eq1yY3SuIQrsvrvcrp0qm1ZgsMjaBjnssvrs8WkZFz8qnctXVdnwX5+38UOZ5L6OvffQnwO97UQBnqUpuK9dNautlX7qGEPBaJ1LYUSnJFmnPqjSx1inYVJZ7SveTaStNvgSpjar021Kamxu4mpS5Yb8IqtXcKlBLv3XNEGck3D9KtXvSub5bO2NSpI5TonUDVjgjnYsxnwdSMzF5nCT2rRdrX5YNBZ24+lSQm3E1VrT6iHJtfbKopeOwc+S2dfpT4WszitnZ3LuQnmyrJ96mXW89hg7k89qthb78lJ6BlpV0ENVfNDRDs4nmhEFixGmoqhjuSG56pbbZ0bl+3MpLfzaXWtd/E1Dj6G2IdVhd6XNCSfSnzUZvpFy6s7NvetXvWeFXXud78ClnTJXbcwyw56aSm5OOHYytruZ6MEiGzWz4YEWVuU7RgDTGxEBxtpaITQ4lUJmAIgPi5ecpJpKd+Gjprg2bDmVupqa/K16ce/siXhFYg4Rh1xaPTqb1Ul1m6gNjKja8n4UcaJRBrBiIZSByMRGMrcKJFS2oheelxt2pyNamktUlk+CIFgmXjLXRTT78DyEzXEKrJIbvqpNFCiCykjyO4wndZ3sqYUwHQICMH5ciUNSU5gYXLfjGqhI98pPqOqNV3/GB/nze8vrH5Td6SBPD0RYMYVyL5LO4uBCZk9DQXegUKwUuz1qy8IvKBn2n/nLAUODzARDQgDyZRWeaX6ovM4n6RnmgDBEGw3djuhgK3wqByV+RPPsRxkDMAzFk8STYamN9dbeWcYRaqgPMZGmaB9U4KgA6D8fCykB1mWWyu/JxKY9J7lKPOaK9MHhy8WU+c5mFOe0+ZXmV7oUuj6NWIbPpPyYbB5HEwumSkWvSm8xlBChonVJnaC2yeTMwlQWp4KU12+jDd27adHj2w/HfLnX1ITGBzZOXkZCrzzkxChkHA8G89MIOls1FTUyG7AmpF0mOg38nqUDa1XWcQwcESkUQzi5FBMcT4ng2Mrnx6+aTcTKvPIKQJzVUceT9Ox2cqqQean4zAhVAH6z4Sh07e3nytp0XLiYoeZkMzWPB2xyHU+pUIU6lvXbsRcLYK4zEAuVjuw0yh7KmY2chdr1duB6Cd4WzNg4zL6BgzAxh8Fv5Z/la7XNA+9eGNQq6u5PURJ31jlIsooSSaDESAhItjnMgCIwABFkLCLbwwCnZPoBE+RvaIA3AaATdrP7elRzqpwc/bbt9VWraNO2AhySe9rXdUPeS9iuxWVJf2ENdGKnm0mpgu04hBIIisV8mrDowyxdOL82H7WFwemYwrQHOQAzkY3SoJyWw3bMdfUirTCYGFzeTrTU13OkYa5Yb6fhn26cKlkBWjUYyQA+A9sMYeVg95vvjrJYTaS4ERADK5dYWOyAchFEoJNOJHzYz+kjG9WqYOnrTP3zN3as/7UDfnSQJvN2A7yC4lst2EHIggq0VLxWXrONEKj+EKbduKVjcwsiPG9aRJFsdROr1Ec/ty7XH+j8hI6p9agS38ThBGSvLhI+s6eRDOjpT8b6r6eZbVK0PbnVPvFKhjn1N84Y2x29YcGOq97qtW5zk53yOw8I6euMz1jlJ1YWVEq55I20/SsdFi9XhZu5qyJ4lWUnvm70M3I2Q0pg9feBM8tEdVzBQIaTleadI5SnyVUj08KgSRhlYHUF5iaVzt5uT8drNFCL701XMdBSVrBXb97ZkPXaKDNNbg0UT0Psi6wxdsuR1rbK8/SvFoB9bFFSZiFba7ZuNZmFIaflP0coez0m1pO6OphIq3M0KAYEkY533y2VPk0hG0kDoOBoIHIxwS91CDYiAMcKEciBGIKIxISIykPxZmEzNxF9683Uy+OXP0WI7jgMayQMCKLVl26HxkuwVphanLsp3O4926ZLb3uEczgbNG/mgsyP15t8dJOyibt3OyK7E4FM0WYGNIW/TCPjT1NsQHLUHRUUiUrJwqzJygd+Rzqr4ub48PD+sIs3ZNfjzc592VfABKDyvzmMBg20zrJZtVfE20YdoUxJLZA9mrpbr2RTAuitSzHKqiXY1IyVLvqx3U6mZrr1tCYjYvQ6061IMZ11eSFALSD025bHRqPKwAe3Wkxut2/5P1J77kVtb22nkt0xQ/AwrAVRyhN3Ejqk+hAxkhtqh1Mk0eOwArICDAnhSs/AkKiyHNCVlYFYHF5pRhMEFkMSoDjbbiYzoTENfT6uvs8Adc8RYZyCMyST+/2RiZpq+Z2sczvMo95/Pi5iMB3ZgYwvKzPpfQZyiz04KukgBV1g4MYKt9E+PvY4avjADDGRiLWQFFUZ8uvo8nsuv2I/GA93R7TRX5UJdeyjX4KRcJHo/LEZ79kp2qvTDB5NsV8b23pqqq2a13vE+MQMQYiS9RP5+vzj7/4xtwS79C1Z1PwvePnhY6+pCLPI/p1grQt88OPs8Tcr0axYPdGN3kph7OrONZA5W3o1uNmvdpzg05YHrncDkPRbWI+Eb99hi5YOq0NXWdjgoBjVeUSjJxxPlo6cHY29j89/s+DdDTP55tEN544VqSUzUj2cJe8+zwjT2yJfM7bB1kRjEG9WPtfFxkJZzCexEI5tT7T4s95PPblALBORw+wee8hR42A2MlU0tFWfk9ZK3D0rwiOCpMKnVVHv2IFodwqA9DqqNS66458NEjPr8y+BzMdLyPea4MVcgY3mFB6fQ/J/Y8SWBykjiCHkfVxeoeYfu+hdTBMcYKoGm9CqD2uQAz81U3uer+zZ6GDqvewTmqoDudHVQkOJloerBNTsYUzMGbxBcMNnZKAh3LGADklzsUCO7uBtXneJ+9QtBCI7khAzN46KsHM60QjHJdMOcEfXuYFILEcg6zZXTC8VMO3k4rbC8PfXvtxqxlgaQ0o8pbjfwIsDEkFGXcspmZk/Mtr7tUqhNpRobipNMpkLE6QSgKRmSiJNhwrxIx1ogBaIPz6KLyhjn907DGD5yLRY0aPhmpD8V22k08fHj4lXR8Dbo2aana4C9biFWvLVS8rHR5VX4rM15n47LdzlS/XHjgSkccp9fhhzd/SLZGgoKKoqJIsDpaqfXbAUhFIREQAA6SASIxjoOYiCCAHOpHhS7ei6vZ68/bVXzNS4nEWUzW91pmY9vRX3pBJSGLQRaTPXkauc3W+5lpd6JAmRn5lLVPRnp+593zfL+z7vT0/nnLkqHhQ6Bx/0SiH70ilRZsyVRrRgioHtMxIZqhM500zh73v/nz9fze/ws+q8zOIX7nGTxWeu2q+Ga5pt7VavOmBzge5j/b1TKfhtLDmudIWvfb/L7/k6P6s738CeXMxa+jCj9/2YHwibbXdhbZU6mK0V9bP4J3ClLGssqYVMbGFJigQ9mcY0Ugb8kzrD+VBiSOJoSNWqPylW5OKutt5TCkIbBqGmoHxnmdnEUuqkQ65NeOlHWykRKkx/CW6lS9JnFmZzHfUxKt5lkiiGkgd3I0QcRSduv0MHNjmMeXt4pe5SSxpFiKp+1GrijxaslkJQKZqmum602ajOeXSQW6qnJmMwtWcOI5xhagSXjApHPTxUl8Wa5a2uoOIPhuz8PHK8T8fF2n7eYvPSyVzmbUe0SvE1HfbnqS00YxAySU1icTcZL6X4F6lSvTyn/s5cL/n8/vZS9ecpe44R/cJEr/m/y+/tl7sNmzD7HruP5s9Pf21qeyi75flrpQ1eS3KPUQrjF0hZcdJFLrfVvP+OHqnxucnDstFOc1NUViWWrig4Igxz6fAiI3JLo0bITSzCHFT+l2b+mI9bOKc5jEQWKoqcIIy5KCx+oOSRVAZVFLqjmBtdcGQEiFXmTorkYUEBGRiIBJ0K03aMmpH204Ef9T80pWPTZbiw3qw1+z8X5cmsC7lh3NJSCnSFL5F0k6sdaydFnCnRwxr/T9+PDfBGQDhGBlyMtzkLQSrtCuEhwrtgP3riiz3Fe/azGrcXjmNY1CAz290rytTHdMFoau0qYctlXH7yJ0l1K1XYYev8k1dXJ6zGXc403/HZ8K1rdrPYHdCALAtJTZHdLRCmkSV3u/Qvl6Jp8H8D7oBgdxXhbSCiZOjUD1BDpcpwkY2En1LZ9p/t3fVadf1kSk/bqlutAr1Bf+evpzpb0YMnHSuv2q9JiLe8FOlO5uyzpRzqACdlRxwTEsRiJLEc3V/L9xbyQ30Wa3wdq0FmhRfef5nw3D/chWuWqNKdIuZGAlpS1Z+9LDzE8nOl2gGwEDAgQD0lIakPHihjaeo9ZvN9aEAwaIwqEbtqbKyfzikxUyP4dp1Yap3jvCphOdW32eLTia9bacHOCOQI5HPgvivStAQLePzdUnP3+a3g+M5YkH2ZyniW5jAd1mPFSTmgrgTzKBUspjUF+SMYmu1Hm9zZSHDK96bCwEAS9aOqcoSDV09LCedW5s2J1FULnVTIl/Y6CSOnQfz+516apeqxdZ+d9MbHRdiJiFXZ4iNTp1xkZUghChwm9martVZYvrFi222yZWl3/4TSSZupNKPs1T3qrCKh8oGUGerKHojKL5PTNNmaayQFLKWTGYpOqlU5ENEpd6+ogNBA9jXUsO27Rt2vo6Ubo6ZkpvvDVhvPdIUWUp/GzzIPnBYI6bwpbX8Dq6C7YKwRLuWm9d25lce3RNhvoh+GajPhjbJxPYVOUeZW5ZTlAw/dJZsz+Cz9X2vb+T0j86enZpf8P3RbuxMJhOr9kmSUIcwSasj2pNdQ5KNICTxTlw3F4dquut2dR1/x+R/Wn4X124/O8eFxRB427Xe53OrbyzWSmIed6KgPzqoV6BG2uczjBmQPvOJrD2q/B5fLp47bsy6C9Xs1CkvK91wB8519EMDXvLDg6qgQCKI5wRqgQQQYFvrYb3ixV1oWZuNRO2+G9Sn0W6vzWA2FUuVeiBp6vmWbHdaApkCIOl3Svpxw4KUetinD9PNXQeLdf3sc7cpJPUiDvwyRRBOQBjGVYzfAvagtxx5KpJHgfpWrMXXg60acy1QECMTbOO932RZLKDnHvAtVFQZCIL+NJIWCM6+G9dndiZE5TcMiBwr3YvFNUipHsq7V1FfFMeM2/xlbUMYfV+epftBYwgxAItFxvUY3BZtBJh8wIgbxwgBUbf6Te1XehhldQfySTsm7ATfyRiKAjAgc5grAUEpYsFLH2mZni+vU+na12GLggHIxdpx1IOrVOYDn7aAcwflrAwqYdG/M0RbKam024gzVDZuqrV83lKgh1n9kmbcxun0OseJGCNti1tiSsfQUt2uqEgmRdDnXhsPGEuTopUp7aucruFZiPp5ccfD5oyWCCxAxustDW63fO2epoZc+bv+arf6YnIGS0sagubZ0w2vOJFg4UQUQv5R4ykE3CO8RrRepGIg0kcKpBgGFyLqQ3AW0ZM28eZUj0psoNOMufS7NKYxlDVuhFz2VA1tCS4urw7lprNPAvRbkpqD6Wd393Nly5NJdHYQfzGFjhvlWs1i4Cl0VvCqv5XBRZ43zIUf03u65huGIvleVXQzMvhdIC+QCgBXKDGNKs1GbAMnTra5YV+1AWBoyHrWxSSxZVtU5ayHPq+j2fsJ3zjrQI7mcrGhonyqqhAbliPK5m+H0k+v73P9l2RihkYPztbV8IqeUmxGYYM4PcoZsm+d+zrZYY9RClXOdZ92eAxgziabFT5GVQnnMevsmpOehIt1UaLt26PLQ/BaPEeAm1Axg3IbLyIZdnmgDsKTKcwbIjkc8x9hBI7KKZG4GSjJ+xW5Zr1G8RePA+cx1GG5oTiE5eTzc0ieDH+uqKsZdndZmMH6S8/Mg3OIu+GSp71XNQx4ZI6A4uRt5hKo/vZT9U0Ac6Rsh+Pi/xyyi50Oj4Zwc4P7IaGzpvUOYgentTlhOx9ZXCOSZsiIfdosmGzzMTQhh822Sovq9mzK1vJjy8VbirqGnHk5GgapCsorOvWovowVlkRlS0vPPzVX8acLCrZHENBzupGCMVe4SS9paukshEqSlAPBS95TD11bNNMaLsMVtjvA1XdmUNkIT9OQq8GaJNjT6et5sSIv8dy/Wwf6ezzlyY1JxXIxD7yBnWsNNhjoj05m+e2+ebHrjIhiXr19ueOjbUkYUDm/nXhYuKnysdSa/Uo6hfx6aBNVkPsyvtvbvHVUd0uGvEZPL367PokqNvFgYG7XMT22qw1QxS8N3qzhx5V9p8jdbG97gpzGoY72IzjB9E4wO4gGyBjHITv01xSsRJCQCRCspFdj1PiwZ5lz7snXsx+DaBvJ5PP7SaXj/Tg85mFWRFVexEys1HO6lbmYPQL0iYm6fdxKAZKa1US6NZ10z3Nri0O3upPDTNUrdSZZKS2m0y/VjNe8zXyBEDA8XRA8W/y6OfsHXjo1z7iMkkNVD44D2YFsSQtYCnyNZILFVSK6s9KT6WumbpsgRALvHAyEykdBBUjBQ5wrOnhcRIWSIXwv6ThnQNeMXY8bu2o0XUcRSuOMCxlb/60eDNowvzjQRhcn+MkNTuHlmq3rQ6ik4ERFSY3o0kAmClIwrEE0gcK7ToLIQ6MOprJ9cp7pDZYjd3zHyIlm7qfbjB7VumIYOrybU7ZWt2zVpeEJO04C8PrZGFKon1wbfnG/VTqL3ksLXfxqwvzJ7LTq9vHpc1BWxepL1UhpI2yqcVqNtTW78K8ditf1Z9DgNkDPuCGMnGbQyCHvl1MnJ8VYNqVW0k9Xfc8vxAw7tqIHYQGOPfrssJDBkknMOqkLLVaaMxgMBaZp6G8mD+/v+P1gi+hZxxbzU89hSxxTv5gzbm3iZ9RwNKCugCR9yuSDpDM3BlsM4Lecq5h3kFyEqQOY6RwlwhvLQvd7nMZ+hd3I9Te2Uc9TnXz38JftPX9Uz4tf9eH9r/nHpNVLulMldX7M04ii6v9c+3xXS2xK8+PHzbu6FfNs4OUQNEfngr5N+hvnW/PpPjhICJBzmED175W1XPRT4XVb67Ehae3F28KfY97v3Ib8PmtF646hVyUWtfNGWtn2Cno67XVu5XdnPhmzeRMMN2Ncyc72C1mHRdsRKI1BRmzCz7LqW5wj21hjG3W1M1bu+PSxrcN66tVfpxgcV3WZmuyp9aOUSyxoSMD+DMUwZPHlJUKxZKlQDBhAVIAA5GAORiIxyMZ5ma5H+8+0NpjdXsZ3tAA+5Bq5blNpOHPJw5KstX0h9chDbutXVWcAXsBGTaPLBxXjuVfRVrV+5ws8DB9/L2YUjdbR5NnFDgr1z+BOYutl4GArdvYWlLYLIkk0pEE4JuWCtnrXr18SPSJb+6lCLyzCofQ/VZ0s5belnN8zDLomGK4OdmHqB73UDxBpiDYDUsxA23SjPydpNwc/GteHsQkz9K1Lunr13LtWA30w1VMGTDqmfsrOXKqOfin6M5qc0ruhggvWHk9aMBf6EXRSxN9VFOaS7PW84ErfJPw2QFXFHg1gKO0uwy1nMPeyMVd9Id3R09uO3SZm1e+Xke33HNaJBXDnMoVXsOEONW6u9PtP4VodG+1DPg863vn23O7xdn5Ybvbbq1Le2OJyuA4APwLNMEUlr1mp0me4iEzRsGUMv34lsDwwHHzcGrUdXqaeDFiZy14w6OPnA6IyPmiUkIUoUkm/ToZi/Na1JUJpgpNnWrmUxHamMwsoFYbJi5YjlpLlcbDMoEctdZdkNJp2dhmJpAxhsyTGKYlSDbA0zERmja4kUyt1lNq6yTGC6ustbpqZl0wy0xDSKaaihs6YYguzKgobMlXVgWIbFqzWriomrNG1HKGwza00hiG1HMlTFSsi1BtBSVgiKAxC2k0wKqBUlQ0krBGC4zTpDZgbIaRSsBTbKRYVJfLnkOGWvu6osTVD7omljUbarycEzV3RTSCrNN1T1H0ev9Pd+jn14fVw8xgGnGcMEl3BpvHuEAmyWj+MieWITuWwYyNmCxSMNVLvuvzZTw4G0zn3kOzo8or0XCHpSDWS/9UPVf+/BDd/yQPvzf/JrBhOomWkr7A/Y3n/4j+j9K09n+fz8Uf0F8a6UNNM0M1fT5g2HUfM9ofnVPu4JsmNbVRJT4XdaMvlx8TonyF5TyjscK6erfSHsbqyPW1G/cfdrO9N8m3y19p2ur8oHomWx6i4OjtI06mc0hPKdGlNn+smUDhSjqc6vvQ6fXPZD9u3W1+ckFoZVS3DPlm52QnFda2E58LLv36oLtpdK2cGPJbHpudyl2yY1h7rZCuHxg8zXshO20xAV+Hnm6aE+SZyD+nT7F7vYSO/p7pu92/UeXicu1BQlTmki9XUODOmprY/Cblqo6NOEuFujn41nDZkNdiUccVp0WZXsyrQMTqSOyMPPgn0FSaKBZ5KVOBfZrMlJYy1spZeKE17ZPXc4QNxBQ+dAmH9DhfSu9utTQfoSsmllDTGelfR3iaCq97reks8bZeSjaPp68A2cjj+A5EbGg5qhAxykUOjs67m6/8l327f+X78WFea8SQZBQq/lFm5hPjeVx19wpP2DyrVV5qYp1DmUrHCARiBApaxyQaT21vABcv2QNGRqTnipPkujzvQHXWNmvCU5TqCUafR67AYQkYNkRAaSjvJIbcUWy/0nXXH0k01L0d2ofFP9zrt2XDJX2X0F+ryrfuj6Z56fMJ/nJYoWtJvcGrGeju0ig0rbB6VTgkGZAPqsK6+SrWTyn1Ictl+JEsVVfNdtKyQUp0ZMYTILERJkAlHNrSVKNdKcc1fapuq7WBiga7dxAPwtcPykE5krFhJa+rqadFjVVZ0e16Pu+zPq/H6/RT5WIq/c+O+5xpn/d3Q1msnB2VnBO5oaEl8OV3EsltOE3Q5TucJ/z91Mmvg71y5dFXMv/K0E6jz7+JUAJTeiJgdW3/xzqfrCkAP4h/cQrAzXdXe7VppLq+u/H4PP+az9wny3y+zDPW7H+toIm78W9/vwps6vy3PZRGMQf3qSCSqUOlCZ0Oli9SZOeynOCE4ehPiOT9lmGZxPMxHghNpBUPMyFYJu+L4l18C/b1l2VJN/p5AeygCGN7KrDfsvtM32bVrrNmGvT+jt+j72/L+xv9P5wPziD4Rc7WnLCvcp2FW2QYIellBGCshGM7lCSdPX6UlLne33mzkb8ECLx9vt+6UDFB6pn4q+q5jcHIoyxBgnqwNAoUHHYqsgRAY9ZRRUQ4qAhgxRBQMiHA5r8Lunzw7Pd9r/suZNuoCH+4/0o7dYAvBaiwLXgmL9Q5HBC/8SXyAoqUm+jaVl+xR24+OZiBimg7C8iTDZ2STYaRXXDMPStx91sCrj0aygWtwFFzRbvV6D87WJgbjYuzqv8U5F5mNyQczJ5r8nh+Z/7+NqGI0k/hvr8EOFUSv3fNuJ31dvKH9U+2Czp4b7U/x2SdS/7zHdrsd11HoGLtiog6n9IUrZVLZJjPeQhVc6+VbxUTJWqn97ld8MLrF3xHwsuW3Fi9MUSiqUX9q1Umq+0ev4Z4EvUtk3qpf6hE5H+G6VNE6eM6w0v0jRdzBVhqwUGkT6ggfctP32kU0o34nSxfR8UKbHNy/y23GCsRV0NiWkqwetU+vmpAZepz7Onmf5Ipl100dnP6VarpSds+O2WjwdN0TfQaw8L3N09Z4fS8kCCzYFJdVYjpqt2l14rSdRWMmqjea+HXUwnTh2w+8nwxFZhO+0V/TVTqOxkrDcntKNCatlab0Vm4oTqHr7n6ir6WVamqoxi0hQKsMN4I5XmbMoPhehqrWYc6wt1JHJHVIl3222HIFsC1xD9/X1q93XzSvmmg6fW8UmS+VWomyq6Zz6YeHeNgVoaNKZ32xG2nB/RlWEFbzdBtUcPB7b5P1nqOnfdfV8VY5JuNTsdvRlpN9ssvS655z8SXm/llsz6+/GG4w760m+EMlfDiIuZjdeDvElHeJUhrPxVbEthvZqsee+UO3xC1xIbXhvPvlHlIQhLrGlE8SIXD6bNKlK8i5jfUKsws/VdYqFplPNQeao0mk7SJRaupGpXmWwUHstlLHcr2aL9PfUwWr3pIeHhiilbxKw0hd30IvXRorstzIv4qI7ja3TUovUsM19i3RUwpv24FtVsdPnw/+qeXaZIefYGiR1as1I3VP+OtvJt/ljCPJxgdKher6isU3bcb097nf9f8n82e+I7Cihbu76y5FaF8NC0iv37LfonMzhXsujfs9qVXiOzf6jWKnlez6fSV2jwS8nb4w13El4laePE5x9X0P+N3ObZ7YR6RP239o3N9WwVwh7MXhsgnTvRbNkbBDEq7QVkYtX6WOq25gZ87L68ircqjjDpWRiwxLxSlH2v6Up6jj1V68fb7LVsGmm5Z6Ni1eNyrNTC9XDmqW1lpLjjU19mupWrGn+zkdvMxgZkYuSRLr56Wwm2YcdzJRjyJF0s3tMkqmZ6/YTvdG9KDZM19Ct35MOHTSqc9FLU8GK3O3vjp49OKpb0Z4a9R/K0nYJ76KXL3V5efUHPna9xraoBJ0RK8Py554/nWw/d7Tdtq5w7zyXixioPy51hblgYQ+mYGUIwOQ50Ini36OfB77KUlG/K3qJ3Ann8U1qAUZjGsO2JRd/CmOwzUIGM3Of/6p0gwCRAGSIGDpN1Y4G1uns3eNPYM3shI+z6nbg/9k/9tQLmh6FRXij4dvO+SP3jFmtbACjHwp+0cd97LeGlFxowa/fBa7X2v4vkeMGIHWQpGtInZCoRSXXJIMq01CzB3Vmr38sli7UO+x85OLpjVnDQdnfeVlwbfhxkXyHgCVC6ORW3NexEF9E+Pd1i869nmySgxhUuYTGDmVtGmJRD40SZVnBO1r3+qfMvbJrsS5Z+GGei5FfghHRU9COQOefdqG0xr3DHhkw+aURjYyBtQfnvXExt8jGMYWDbTV1BVs8ffBJE/pXk2Uj95Zzhiz8ItIu9Pj49W60oReNnLntZsVXDPWNMkql801sFiDtoY+JOEps2ZqNXle4c2ul6s3aXq2MokaPAWV20tkRzSX0/6X75wawYAWYVxGUbb9MmL7eCc6slS7ejb1cW2w80oxUPZSAUfUovSREDSEBzTJRwOPZL9ln2WZsfZdKEQjMK9vJ2NoIC+4hUiIfcZPCmCCkUBdIViwtz7DaiME0Zq2o9qqmrd7k6Wtw9mxeLo5K/3WyElW3C0nPwn00XVVl2xuxSv5vv3v1HrRFqIyZBggqQotl8/jHCz9aofxcsMAXM3eE4QOzS5dk4ejOb7fXHe7DaLtUvzeRzwnw6BlLoI5XVOfWexPxuYcSZ9FpfUyjv0Xo5xhb36tYvbGZXucq5XvUWcryFSNwIxyVIwQR5031qUPVyYTw/Lp4sfP8xs0nkt/L5rGxPXeH3RB8UQkTNZ2ehzWFOpA6cdwGpgnrygOboepI4PeNlhdjDZvb3A31aWL7K1unBZ3JhpVxWftP44ME9RLvxb4as0/bQ3zY7M1oCoAHSMYiMYBuKyKKSCEgJIIVBqCjIAVJJUgKSBUJFBSBCsFAUlIKyIJIKFISUgK90d/s3dOb0YrH0+LLh49Vp/V9YFIvnRu7GWNqynG25YsYurJxHDBW+MyboxUrh0Go5ntpVp0BL/5uzpYONN6SlXsYe7B272vPifP7802Z3pVlflJH3SRkDMkiUXdFKhSO5fMmf7F/Ap34eUUgSheOGi0C8mlakWaei3BWAsUngzDqdA5fb8uov5LOqjRKamF11I+L8XXEFrV6nZhKCl8keKkFotJCp/7laD7Dn3Mu44x2x/w9cSi2xEWC7tnbZphmqHBkiyYgsiMUkUFAFlQ9TjFFF52mmBvlhgwWsVrYscoViIBWUVAWYle1IVhFmWoh0Jc2wHw3D6LOPDnk6t0CezkFoer0qjKJyFdMoqHRdtjG3r79OTyvDhS7XSyv2I/h+t5bhJISOI+KpUNx9FUVfPOZz6uOUhezURONzaJhDDnBAJmSGQUyCHf2PavHh5fP7Pwd3s8++FrKYIjVK5GOY1wjEoLSLJwnMRlSA0dPg5BybewMtnkT3Oh4I1NY1hJIqqWlNmMmeaVmZQDdJGsRFuOcwP7oQDHIIJHlWdqBgjEHbg40ZqZp6mkTLsg5WlO3NhczljWqQOw42+akXbaYhtDbIrTFQG6iBj1jgsAYUcHUj254oV0hK6YWCNTPSdERLErUV7lFo5rBosh5+ixcypgbyMr9W3BVqP03X9z3PqRHFuxprXG7uDuTPSgMGL0DeAyVlR44OQBqRAHjX2McKx2dPZ74cIvX2Ab1dHcJn6SQ5AREZKI9ojIJJIHSK7/X8/dT+/177M7X8X/thjvOr/7/y+H+3KrSqvn/tC73kl+Iz9JM/0c7LTolUglbVWRRg34v37/XOPbVUwF/m8WsuFDj4f/Poxh+0zWSH898XD2VF8ATEYD8EYzZGMb70BvxBfV0Ro/IQUUeEd1CQ9OAXH3spdz6askItfb6wN9zw9WTkDDF1pyK9Y+v0MF8r2C/nT8PGp6ZWPcrBdeKD1b2+te7h/mHIaUxjEQBr30joebsJQn+qlWu/gpQLDdTpTk69Nuy5LzOLnvcEUo+tC1qxJLc5XxHSoltDMMppSdRf/zl0pj84W6c2RSf7UKmZ6rXl/f6vQ4cQZxNkVMKY3rWtMCWocGDdfkruK2cx+Ut3Pv/FOaJJ5OUYGGY0EgnZ4tM1oUyAQVRByGPay5PCX8IGGynmF0LIAv24c1Z6PnOM0EhtlDH48Br4LlOXXop/V9eDo3b2X4MmDb3X+4naw0JETPG4CfzxVMQEW4iNxEbgFRAzBrAQ6kEZBRWllBpAbcPaA4vZ3u5sTf0b7xf+fv6nfyVT5HPynXhVTd52569cfl2rPyJv6Xfi+jaYWGkA/SsX7elZSRI1Pn0M94jIKWuZx+5mLZpSXLEeeGWsipY4Xv6CrNPAWRKw7pS0NvXCkWYBB1Y1pavyhq7AwY5ivzWkJffVZMYJncMbwI5AYSMJCCCAez4KhYwRcstPxapRedjvt6oLFOrEB0DeEqMXKX9jo7Bt+eeyh8UZuybbR26LEfkQHZn07O61Tb2Lab2Ukzv2T238hh1EKMoO2VtGVG8kKpXkllTndzI2FX2hlEU+OpJSt1C4eKy68D7JnCBjNSTFXdR3243Kdx69Q+gM/SCyOuGp/q3hoWlo01KpLXTfEiHBvuJyqBQFhxMq7XO3qsv7fP3e9scRu+Sh9Ccx/15ShaT11L2KZYcy9jN57FE2qt70tJaPpj/Ff47qcGnRLHEV4gYYuq1FOtdZsZU/RQAZX2ct8+ClTSHxXu9Fq9emuuUbUr1d44lVFI3Ink/8AvFh+XBr/h6ZZe9JAIvyUZKfhNF04sqnS9/4dIgmSeQguupa47SS13Sstf4Zhd7XqrSVWSa1+NSfpybr17+ybVti7tFHpQyxwxCElGrmVdGqIkmn70xgpm1mJbjTKnE1ga6tj9r+vheHB8GHuGzZpowK1K3+xyQe5liqhzBnGYk5qmhr9UWlIfI/X/i/Xq/o6XInUzKhfw5Siip5/XXu2mmWxqFJhASmhnFL8kH1/eg4QSWSK0y1O4gn2/bCIOT3hrISxu6B/N1qsDjJNydPf7iuEYpU1iYcM3OLZqv5tmDidKZnq5xZm6zBRHoRSO7VVjmgSrkYBnIoCxkoUNW3i1hiDaosh6OOZBdInntM1hyZloXS2jWovFgYyGMMYt2aqI4cVL+s2HvKqcjs/Q46uj30JDUnrRsHsywQSVXqffp3fa5w6Pt0erXZtmEoeUi6pPBWJ3tx/ZN1cLr1PHxlWmCdxZgud37catbzvbxjY3en36TxkEkj9H2vwy9nA24eYoJv7PbPMuyhvH+FLXdzq5Evv237DZhMqyQY1bBefyYPTBy5xZW1fGF+vR6KsUrjsevNK2haZATS0JHS5Z8UX16rwMPKpdYDy93zvS3V2ZLq8Z7Nx1L6dDd1RWJ/Az3QdGlJ4ar0zfpx67DT950/fndmnzYGEvRysFPVabUFOcYCFx2olcYGh+g/xFM7BgkYJTWKsRgKyOihajaQZwtttY+r41ODt6xX8Lq3fClSpO/GWxWsPLfSLAqLly7c/He+q4353O7u03DDGs6hxhNDJlI7aD0NSAHXjuHZXo4ONpjvFi572dH1VsLsda9dGoHjn3QvmEzVDhbQKYBugjCHg7/y+nh4vZ+jycoV+RO9JnyNFUNnHER1+6kiCMJyMcg+55u+0/RNEMuMECBGIiMvttjoRWTMoXx6/csP2tL2U71hUhyYWzkLX070tZ/VjvyGfmVz5W5R5kM56/ahnyW3MI8m6PZwG7CBksi+PR5ch0brnGfr3263j7tMYKW3M8ko9SsFi7osPZSon62dimz0V9SxkK5GPaOBnSyPUACrGDuZ7nmoq7mBukvTL19jeR04405s/X1/h65anzxSQkJMA/++j0+Y2TZoXp9PGvVzL5epx84YfNp+bL8ck6MFMqfJvFmv47fy3uzX2fF/5U+2IDIgpIASCrIIEgMlJSL38epO8Ht4fs/T18Gf5MD44g8ZEpAkQJBKQUp92zLs5R7mnp8JlDQAY6lYGtJwdFkX3XYu/8cIOEXQUzXNWffELpX+W6riXkMrKBSMBId0IBpCMEL9KhtDCYV3DvuK3N3VeSp5qWfL2fblH2iWbB3BmdSYgb14QAbfSuYwDNLEtgO/xV4+Q0v2vmrkD64HH0Y6XrFt+ftsqGEo8kxUbpSs8Rp5JeO737bRcbvZT+E/k73p48kk0kM03C+PTAqyPKENciPPZftWENc+qVEa3wmv1aQmGGzwblnqqb+em7DAtdnTbO50Rlqnf3YriYbIxEqe2u23tUDLUcyXSktU1sXIR077D8VPGKTDtqrT3u1q0y4Up05G5ZobMSprlmNW1WClZK00nfO88kFKcsDOBucE4lAzdwoOostaU2xh1lmeg/oi6M0tiuzSYySUChwjvJIedTQdSo2Ldgsrq7NmCu6CodpzQKWmnX6XqHTPNHMa6rujgpPzHYYCQoXisQJ01oajKgYsfGy5DJXnGmINXjidonyrJH0Eu0pLjslFuvaz19JdysqDvS6EkHMc+ZJJLQcHIJJnATIEonuSTKkxK3LkuipyR24aduWyUDUEoMx1VBQFqBRCVICo1WaS9Fm2FNyckSEgoREy5ttBLTGUXNRTgSt1NB4tVFXa2Ju5lrthVtCrlCpwS6SgsBSppKmb8Npi6LbuO6GJpC2kcsMYoRQxhR60KyKPKl00G2oCgVozalFWLCpjWbunTt1mO5sUokJhpOnIokTUPUyF13dSmuTqOZN1CXU0XuKiqTltECX7nf9n7+fvV/N/l/DXP4cF6n27pUytqbPXb7gAiN8ERABEXRYtd1AkOHCAuEZBAyr3NYOT+q6y8fK4qerJP434OdW+xxFkzcd70z9QJ9gER0HexIRasAwFubzsMUU8k3b49sEIFJjM6H6Si1xNYpI+TKV2yqkhWhppRf50qKw9iO7U+wscjLR7ZszodnOwW3oOdUlmTsL7dy1Ji4lGnBAd23Cry2Ti7Q0lsXa15NUAzEEcUQmmSGY2u8ibZ2f1HSPJUeiDrdS2bw8wfWaB8fiVrW3qxobSQmED0BjPlx3Puby/29Y6bedX8/XC7tu3nG9dX6RHl7G0w1MhsdJt+WfRDXjDE765ZbsouaEF4oo2Z0VxoYoYl2z9StYwKSIHna1XMHom44roaiZlEzggVX7WmZKrQuyRfzmGIzZBA4B6Acl4wfwicEMDmscefa7qZ6iBrY0uYYKXSnbdoo8cTJjUz9lEinMbtTQVPI1NqtBGu+UWAQzMLvmoEDDGBIxhU0OL7GIdbPhAxTLXoduOlDPu5NS3FYHKibrup4GIngQPWSxlyzhTSEAd4uY2SRopmx7F4qZiS4gEHtUUY3Vlf04X5dPdb0ttc7uzwnSdkfi0+nb3yscNUhHn2yTtWN39ZrpxTfAWS3iVjXSOWfQ0O7r3z3w4LsWPpVjS7lnjZlpv36QyoOFZd8w7vZYVgHmWssQhnue4S4VbrGPJWAVWQlsuQRzVtJ5l71BoFoKdWBWyxgiS3+mMBsgoQMRh3Ebu33RiPl2EO8K+4o2Z8TNjD0Ca9B4w0ZIIfH6HQuL/hzPB8t4mnXw9T1dTzlgIGKCrIaOGps101ejLq7mzXdpeK8+he0P5HYc56LkPbTpLO3z82qYMROrS0CbtpyWLsBsM2VNgbnA/dU7eHXo8Rd0LW4p4Qpk+hafUFhbsryropEluZWZYRG7TUWTTX+MKVVXqTSHiS6AcQleLvLA/1s2Vl1ivl4Wl2UilPPhmfRBm0Ybj8PJvjrDKrueXmePf6J+xR3U7iu691ys7gywN6uNT5/8bcRrwnJZQXW7XMP4dca8Oa8TLVE5vJq0ay7pO7XQ0Y0PcIN/q6AuZ/auR5zTpPpzHJTkSDbyTd0O62D16VFT3A3dTLkYgMkIKfSL4cw8/Ntmwx3IK1Q80UwpISAc6ooMxzJUyHU5z8OREfYKo0rHKXU9JSVU7FcZN1IM85lMV2STa6M4H0hs9z8p8XHz9O/nj0XtLZltWfGfpTXZranSt9m2sRyDBpczt69hxnzor/EZ7R3cY1lu0lN6S6H+B6Rnrw0059u+9pVomQDlsd22H/s7uhXwyf2G4dtbMZsYQbnsvMrstt05/B3P4kCgwKGCnQ0D2CDHDmc3PrK99taunhars9FZRxoU3k8QUGruZoW9lO6wkxIiFK3O1jjPaw2EJv1Mv2PX/bFqzmk7vLeIb4hWPqt1qhoaV31p8M9NGS8nUUTWCgsMqITJPLnQmlm16MJ9GlSkFpEJAB8sBSkUJBNEFpAUKQQLIFYob0QrALIKo2cO/6fRdydx34+2zimZi5d1OyfNa3VlGk4czgp+0D1e2jH0NO3ecx18jbb9LkUUEqOwoiwwKpJpgpMzSWxiDIudrTVx1Zo1RhxL0g3ZN55ZKtWPTh7OOOUoKQih/Br9w4FQKnxnOBfrn3kYJwnOQIgFznMTZzd5WzEhU+dgVOCRTcfys6fl8/x+75vWlRw5jg5wD0zhBAJNHbOogheQgyCAJIQ0dNerZ54tU8O2sTfK+lggbmjVdda3fjNP8td71PtuxB+yrXjaq+bnONhPBSfvMJRY0XLL2Ouud6730IRTrLKcPoM9vhYp3Q9xdp0rk1VlmpakXuaWa1ctFN9270dHOs6FsNRJKxtUcri3BwrclclisnQ6SD5cdjPfiLI3XQErp5EHOoGhiiQiVZalfu29MsOG1mWoWwJb4RnlyvF8yxMP+NW47WTZcd7KPlF+nBfz22KViBJai+tJa53J43GOvU2hLRsnDctk8lqA+LDbHCVKF7fkdCycNKrVaYW2Z2tOGON1de5iKsZZI4ORDBvfZvUZNFyjAkrUrYdO9C6WdSpnph3G9K2w1tq2itYrzT9D9VKweK5YgmbSijsp2ymqyKZk60qgcfYrvYV39GbXnGqCo1cooSixNwO0oJ+DeWok60lgzotPpuY77lRsHrha1MxJlOfDZPc7E8FnNX4pHytOS7VLClqvgqMFtvT5czuFbVUDU2ObDAl2Z+I4T6OM2TA27otWW7MFFlRW/FYSsY8TzKmZIUosd7Jk1afNi/SoXpXuhDlDW7U/sGdXJipTyRUoszVE++6HqM++qtXPrvSxK5WuGKa6utgW3VjlyigGkWIVL+2jXcXXn2bau6xLfRf0XVjx7l9ObbW2LdHRkcor3cXGrBq6sKs214YSFohhU0q+9ohhS2k/xu1+/HGtkSUTzjaSIlTrJHY5Nqa7mfbJJGvwtXF33Xz5tqrVZj2El8YCK8yrStbeNbvhWZD/L24dW3LUSk8o9seZMb819f8MATejlMacenAQgd5VY4cIYpwM7UR2czSxJ+Ue1N54+fofjqxyCsn012oFDCGTx6zgsRzjWcHIDuM5to37BrGfE10cecfjUvjX64NdtTm9lwm4je0nbdbYkTF4K2ZPGlHTuG0G4Z7Fjpnj3eaeGm0xp0bBr+ygu3HDA0LwqsBn7fjZolXqW49P/ouFeHjQhn89nj7asfpTTSaTnd4fwie7vwctTED/xWgOdCGB+vprs2kb/ZJdsuG63J6RSa5EdUKULhKhBGSUODpnCqFDpCkmZBk3VDw8eWGfaUX26WVMuhZLvdz1eyZDNeWli7f1TtJ7a+QdXE4dGNd7Tl8106/0k4PcGauhFwGS6Nzn3dpfSbd2eSZLI8famo54bi/P6HVk1uxBTvQxBW9/N0DWRgnfJai3H6yXrPpkj34+2F54xoatKaCo4HeKciR2+v8d3bgOmFTjfVEDw5lgIxhXIAGzRB78BkFf1iAUgBsNdaa/V+/6nzQ+CBlx8eHJVbFqFYj8NOIC1tpqWib+/5pOyNjoIxnTO0BjroQnz4VvmvjbU2xiAt/Aqgop5ESB8qALp9dkT0K/lewvcF1wxhYkedHyKYUqsWPHD8y9dzFUwhfha8Xlq4n/VjqhY2sbtSD5TmzU0heI6EkZZnXWqmVI98A3ck3Lswr2mmFALGkFCZSFJmAJwwI1b1BGoZEZzLJvyqTdNIQaFImjGEEOj44+vp7/tRnB14r9uCzv91hfvVRYAxkEsPRoj4eP8/i5Nvew4+sbqU9V/3/+v+TzMPNDhi1jhiBIjQjGByOuguasFJyHdcBu4hElGoBJmn3IAgNDiAo1PWUdjOPNm6RgAawcRa1xvoWCkXlzSzwUZWGGdHX47+tbcFSruhTZ3qSWlF1n/cJb9f27bmmlLdmwQbsFePEv3rr9nDDgaxHH6UslDuj2u5u5Hi9IYMLTGfmPzn3J+K1jbwkYyvj6JYtqerqwSZyPOycVKUaAkCbOuexvYULLQskHTyP4IV2fHfB7LSvVLbDlJEeDJexrwnAktT3AbHMRfKYif4fr8CQH311czgz/uavo7/LKZqdaogNu9mnrJ2+6qfYlZWPHOmc5haIDtItedTNy+bvT2XA0QsnOY5gRGIEch72YYjFrAr+TL9DthUuxkJiDepMmMLq4rFxkrCsrdrNOtqV0ypst3y4Y4GMFiaLMSYgsXWXTrCzTrMwLY4u04t1KmlVNXbisY1bVyEqbYWgbdNOhMcJpQnSUwxSmWmEpqMvLvMDbVEYXWXJVZjKNVzfK5NG22tStzW2tkMFGSOrMEmLs0xuWqkWLLaJvd11jrNVd7pzfBrVUp9SHvQmzd/ELv6KPlLGtIcbyJJf7qX33xGjSpN2uhnCffX0isRr147BGTLj8v+n4eXzk8T9FsJ/C0DxJKwXSVGF9nd7gB8YDTVOvbkSkR8VOx8CncbyXCOvvHeLtiLT72rHYLQOaw78/xN5e/zPRXmyVKne6KkNo/N7YYGGmC93fa/5t+Ob56JMWnH7rN1VQGqXxmLHMMyrZhboON/4z0PfhAaLuKWeOAQkD7b2C+BULSQE2jRJ7p++6TnmfqZx/uDyxSsTs9BS2JxcuXy9YUxlwVKyQMJRXbkR5T9xx4DeUZCO03yisZ4WfYA7lJTcFL8krtXJjqj6nsZSI/5xP8s5uRGFCYk/97+rAFrtVp5KdpqyVgCBY9Q3PCgT25c7+E+EXUWbIMRGIgARBvT4GQBlVfe6lh+aGkzQ5n9sOz8xzO03iZ1Ikc8Djx7uxPBhaZrmmFVmbLe57HHeFuU6cvWT5GvT+EcV00cVhf524hWiUFslclINtVFE3aoKtkpR1o8JYpBtHAjl6EdYnDpoS3JI9TpoM8g/mIosuG2mYNFKZQ2qQaKzYcpeShnvFiP11/fMzZOVHb0Nm2kzoMt2Y2NYi14+3tkMewFMMGAHcKDLqVioKJvZLplHotdvEjuwgsJxsx+zHj1veJcH8scbPD55oFzugr+7c/GG7iaeq3Oe1j77rQnJBHu9qBB0TEFCqLKLlLvsQU9JchTM2RvUjEVKbZSvk10D5IGBiIxjGLIB+CBDKoBMzAh842Z+zpVXIwpen5qZ/PGLC6Gh49h3Bo6IIZ9Ymta8s9/TT3RNBwwPG4eBO1ru4Jk/rFQ3XsH6oclLt5O//TmzM0qVNwyUJjpa/RPVZAw4t/bUY58fJ70bpFr2UZ7ne2sn5xWfc8VVh/PL3XVWbzHlq/CS2H3yZW1uqxAp5xe/hhQp5WvrTdOD+rtdNMujInuxQ47Oy8fy9ejV0Y1Z7GXUwz+K7C7VJTya7s8vnnuW1qlanLlb0Y+eV+woiV7j3NYVMiEzbeJqoh4HMcgmRcUsSONhTTgUgSILLDjvv2w9/EB1MUjIj8rU9z4ucvSMsGhgwadCe0yKqKZp6z5QzWkzwqKCFR7SnTnh6xfIC5tzZus7AK6PxjQZIdHI6qUlcXIlCFzbWt2h4xMUZ06d7iK5pEq2HKzDYNCoDc0VFHhOxj8/W3If74M66cGzpS6atIY8nzHb7dGhJrbVYw1XGyBkiMDCoQN3nv1xivV4f5F3u1yNPS+kmwdbv2j1CsCqjtIw6Ia9jRA7Vcwe3edF3zUue7cfXtdtO2SzA7niKB0Wfjq/8X4S/e3o7GLWXFaHRVlY/wVrdPu9gB6eRzGCRGMGmq2xTfuMOs6g6fyl8y+i/WngoobeicecpXL31OY+HLji2/On/cMIrV5e+yj4TO2eaE6lWzv0r1gkD4Gj1CWYOwwdBGUINKnMhN9ud30ztA6YNyCcIUU+XNm88kuIIoyWQO7iWyEONtmr3QCImmc/Ci52LqFz8Mb9J9zWlH5mn7zig53VDhxnImikCV7NN+cxgYciWIxgRD7bLD9m+n3G7WrtLWrBw7T6dUh1lL/tHXS9CxRMXjk+9kRoSOSn4s17/D6pq3LUDDNbzo8U8PlcuVU3fr79fTP3iPgKbENTY7aQhprj+hW9c7Vf8/DK+/2u+TVhCdLTfuaMT+DkzJiTp9Au3I071y7v6XhhuXNBVGcsFX6R44ssGxZ5TPikGXTuwVWXbrEVCRz1u37uw04W7LiVNr+XX8fnpy7vFvdQ9e0PQpyux7Us9llC2Q63XP3PrZPVHPhNyWwjXo6Im88HRiKyCvkdHXSOEhsIP0JIVIgQSvnEzfe4N2zO/+uKApgph/Lbr7N1YSzQVleiOznqC4Nse1VaOLZFUs9lFumOrHc/NyXJflVcaZjhyqTQ5vFjpqeR9dXpx7bHKCHNiyy5NyXTiTxJuSzu4evM2HrXdDbqxs8LNrrKdqrmhtK2feq9yuOdTfW7g8h43p9A6ruylb1peM1XC/mrRPUVl5zUVlY1aeV1TDFj67CT0dZK/jbrdkmWa9Pow01I0krlaHtk7prNbQTCVdrnevXZIajOHw1vTExf8H+ULLmK9YhxUq5Ky6+9LPbowDFtx6mU4+miXxTtq82evr11djnWtW6XhPY6W6mbXuWrVOtFTk1fyb6MZJ2JGOvw2wVU3Bs4P6eu/0LCDwcpipgoVcHdEl0BcuW7+I+9OyG+frRCkQmkVABtXZe/dTldw9pWSERZCwRh5Bn/XZ3iVQYLt1x3TXFPBuTVqRX/et6ddHvggA4kAamRqTdweRdt6mrTIBnO36LsFR2lzqkYSkb9kcnGqUNckEBQRv/tkWuj/eWXR+abyRAiodN3MVAp9KyLdz6Op923C9NSs9E3+qDkSfh8Vo/H/7LWL59sc95TP0u/VDrmf7QyzKz8F9nzyNy8c8JGZIL4fGBGPDkSwb6ZIhz2ro49PO1dxF6TeXP5wf/P/6/O3JR+d4fVEyDBSW+/h+lNKmwLg+6ny2n2mk7wf7H8DZpxL3p8LKbuzJMoZz6tlJBsY6EflhuB3traPT0f+ww0xTsv9BgDkDAMcTgeRGMwSYJDZos0Ft1O7pUMXC+uoK7k+phFoys6Ox68tVN69ldDvUs15UldXRf+KhsXp82crajD1FbZQpffIdhEt5oST7scbQ+kHkimb3IxrfgUWGKkZLWShNkgjA3lsTQcgDgiIwBEN145jKJIYdY9iARGsqV67DZ8vrBVC/o0yvqAGm/6c+s5yOcxZNcu+lavLKY8CBYVfERCwUiDkQCRAV9pwkRirnr5rLKvn3i329rh6vaxnojICSAISCSJIiLCL42SVhFgsgYgpWQqUYKKpaUxCVUcbDGQ7GYyapYRVJHKQxFhMZFJ7tqw17X733H4f4dGB9AvcCUoyAcHwQFfyt1QRGDBDhsq4X+lmb/1YGGG78edTHbfbuBN5vPaUFUsy8ty243C10IWVcUc5ufULa4L1WcXem8ihUoeclJeJrrVAoIGNDksBUVIpuwb1+rs9tlaHtZtLn8uCrWacix8jAyepKchbpp191+nBX9RkSrkZyqzSAICKA3oQzc0vzwmoajZ7rju5/e4E55TmA0lixt9nRwvNp3ho06vzXVY7jjjfZQpPjb8Fvr4pXqdxA4Gr7OtlwPMu+FtNl6GFJvjXuV3MYvBa8YXTDyElRS/2or4tvfqLnTrV2bNnsBKUOgkT2VG4MoRxPp9h+k+mz39POBdmNKwnXw0rzSnRSmm1tClTj9hw4c1bjrd+Gjs/Bhwc/OAgb8BFzwT6ED1eTufcodseLDoyooJW4Wa+fny6ns+7+c+voakPjcjaXtjUt51Vf5DmqSvr0BwxqzFm8r29MJhERjdcrh15U7ad6pWJ7vgGxFG95uNg/CwVJBSL2X96eKpGYXA+DQiPEbfrRP2U7xB7CxjjX7bSTt5sT8NNZdHRIvqJcAvQt2R4UyMIShsvl4lVPd4dtxT8Pjd6aAyy6g4QfRgnfPaVSVPxQcJ1Uz6y7a8KFmxtcP0MlcuCJSWV3KnfJfnNDcHaSV21C8VoBXMiqmbnKTzGejjzSpzPVoRaghsVGw55vRlkvrndZOMNqzKwt4m28zwp92UWMH481Mcd3mfInXCcDU9XyXOEb6PfdxVUDI6V1U4mi8EjlaDa+pBaPTpS/NVx0Dl7ptjhzPAywiDJAc6HVnAy5QgtYqpg3gy6EVW2XQOu9X5PaB1tjWDtPfjV4p3PvYKMHCu/rzDY/b6+Wc5kR+kVksV46MuK2bdvlZqDYkeegUzwjcU1lJzUjwvNVcUDIKdTReDdW98Tf5kjsorzkm5VjGtxsZ+XKwoczdyqszDnIZPRL7EY3ZyVYDZVIumYzPp2pKKTyy4t05Hz5VHU7HGFJdWWk5Iebz2RWihEoejtm/ne2lHXntvot79aqZGYHA0qSGKKp2zdmzjMpGJ82bCwkOuEsotz18/ves4e5s5b+1iBlDJ1CvZakjZmQca3As4sSp2JHaQZdVSU6UN6p0KUtGXldO+VOj/G2GRhspR6vJnDLb5865nb0twbgcnT3NzcVn1bFRYbtp+QPDnOpzcJ3TpxFTaMsWr0utvHIcw8W7lW6+EO7V++yy3mPHQhZupbVFNttVFHVibBLr0KwwdIHudPo45z2zl5UQHYT6II5IjGg3dcM4ifTBdmvPhpCJkqo7aFnd6wghtjsc1N3JpTlLcLrt1HksJJ3doppnrbWXNrXHPfEOSpOUsdisYytpxn+Q6wSlN+1NkGLuMAznVy8l6Yt6q1HWFSG3GMvl9Hp5fg0/J0QboGmDz71E5MtHxxO9D74mGJSlAt5PNnwoG6RQXdgXpp1OowXEh8WqE2YVhUh7bCrvZX32EOCQ06QIs3QVGBtdsgdT40m7ANkqoKB1NSE3QvGkOtqBiBu82VD28umBzYd7jJXghobpGD9pXN33uC2D5L47jnJFv5OvjaiVqfTC1e6Im7e5tNI5KW+rJBdVh03+bEbSvlQetxkLice3C6nN85NHDbFGgwP6q4PDJ5YU+dkOdJ23nrsQlrUpyUwZlerMzejk5Imx2fPElC+7hh4OXeHifh3GZzcedVf90Sevf0+YVMLlbtZCDZ9FqHB2fbV1pin29lOGZXvxvrXkrievDFXE6M0GlSlf6FXuE1YGIiV41RvW6yAlqywz8dSfLl+tCUvH3+/Xs10fSkp19GO4v1rJp+HbMp1I/V/oOzx5on0e+KJuvjp70UdFne5/pFn6X9iaBbiIM36QTscqtJn+ns5jVjCJ/wxH3TCbU5QEHffUVEo27qvf8MtU2UNr71IcferD4JW+DO6kxajtR/CytZZOmlTpBgsiMtxdOOSZuGv41eunNO7NHn98f5E0FFEaECbJgTsuVV2CZYto+cDCwSXRJ+NMr8Sv074oa/J+z4d+m+KMFqPJZ6QcUXI2f/EkZrOX/IO8/lgu5AnnNLQCBUpBlm4vnYmMeN3m64CVnAdYpSWmCsnmmiRzSz98eSBzp0tIeUeZqpPvNOS9M+Kz4MSlEuL8Ld+/xhTTsVsFNvJRtvap3fhl2i0+kzVKfFMjPVkas45bVqu/Ezjfjrqwr9QHSRcPfx3MKBHqqhUvL0XMTOEevR9rzlXXf7OnI/Doa4+OxpvuhPrmoRjuvs9/Tzv2t7vkIH8aUgS74V7WG+pW5XvWreYwNWcKAQR3LS/amIPcX89aKPM1cgk+/zf5PZmr9o9pzciU2cKW/ew5h2f0fgR+STurvTUItJwcIOymcepLkoufjdh1l90VUNR7cVi7D71nMXIJrrVbGPyeSx+fEwMmQBjECMavxOY5WqWQuPVS/LqdfOIdndqm7HtPb6vpXNboEZtbx0gPMdJGNQHsDVLn99XbjyQ5Msb/QBiV9e3iw9jix0+pzzusknVJ2Uxu8jAVkukeOBZB/nQQUq8R0ZTg46jm6DnSLYSZHI43dQIXO56B8nCqavFC1N2tXTH055Up7Ll5r0+jiCz4moKTEnXdFnFbak15X5qlKosF/zK7T+7vqqawWcniAQSDsoGTeva9E/SaXTJ/iNgRerJCtwRtYOpFirW2JddVstYuRJWrTUjadbf1d58HjOz2/0bP8JXzeew/Cz32V0lZtb71cNft1tNecdpU3DG/9Nr0u+E8RpCANXaDnSrcvJfkqmGnSsSg4JR1E6DgiNCRhTIygKmSd1CSVVBzLELSEz30dLTEkddbZYx+laox8XcE9jzWw6szlVCMZP3ibWqdNCrPdaUW9FGPZgW1GlInBsmMYxpDATfPJKWndKxmib28ujbetNfu8FyAgjQ9SsWMEjPPRxWqbgUpjHIiMOuJhp8yB1r1nGH/OpCRYzg5FbvIaJsCzecvdeqSC42owWVVlUGDcQHzfa5DNbg3tTMm1rpfSgPXKC8KSWmmPTqHnWSc/ftfcz7ObVxbPgl+x0hqIXlfdNLErnUjTYO7QS1I551VLiiA2660esdMFh+bI4z66EtLIcrVrKrNfrUzVecXSlHFTBtEj8dMClVtzZbSyTB5bddk731l304Pi83c8u7o8xl6K0FhAIQkEkUZILJPFaAYwlZFh+hkhWAe4wU1bKkxgoEWEh+NhUWQU0lSsJUBfxskrsyuzWRZtaBpACskCsJKwgKQkWExhcqyRQlECKoKchKZOiTqqizggrWYOdSbvUNRekXnxazxdULEHugeMVipi+1ecaLVWHeY27VowixwfXVGK/LYudrdIAHdrio2DAiAFQgFCDBABK9WuU6UugiKM6kWWq2r1HSKg0B2eidzRH4oKGiGQlL6xo0EkmdFAy5kzUAwoIGgIGOpsIAorc/n+TzN5sbl7O9u9I2PYCJdoitG55J5G2FBbIwV710AeL5mPnz4s6thVncCdy87fpHp4FATKE38tMsemiMrJC9hjph5ixureXnOD66iCURr6+qhJus/o6GmDspnbRwcpt0tcK3Q/eaSHmWCoGhJafUaGbGuymSasLm5yVZZw8bhZ2xuVjxKS0MWHm4a7IXSbJCi1ZebpUqvW1461NNJZAVfw2LAdjjnrXy83KNa7tvl2anisdNynDXD8+t/OydufBeML2+XbGWmzw31oLyZmMZFNYqBlNJiE18qp6kHL6s18UOBwN0EveOidT4xyOW4+qKd0cP39DdZ7krb0qZSmE62fPtPmhZ4GsA0IM5lVDHi7+/DhuvKRn4zUTinVFhzIsRIcE5ok+UO2+6t7isobnc/M89mW0/Cve6uVZ1kj95ru53Nu49GmM89+zfPG0eR8j3pvjHsy12aI8+g6Paj+fw3b+t3Hfoff0x8dYzDKfV1wygfrPuNWZUPznuUrTzVmUUIuOx10habnfmgIKWHXyYsprEysvFsHNgWHdC7dMr8/dXLtrQadXHKxtjqgOtOPXbRlmq+Edw7EhYtV4ZhYmorMOTzs0lQVKR1izHO1YruxsIuzsV7aDnwHhMsszVgpxWaD2KBbOzYUqJwdmmKzRffk1ir12POpW04MHpRXcOBhIGwSRQL5PULCNm6sFZ66OlbLwwswXAtvzaF4k4ogDp76y5WDlvrBV30GpPZnKbOijIxKtcy4XeTDwD+J39djHVtZMDcqu7AEk2h1EACIEQBrasCufTtr5PWRKfXnb26jjDwyUgNZc7i+5tMSQ4FHPHLGVSOyyYObnI8o4Ro3ZTGqqmCULw/VNNsA5BIhyIzoyPWqL5gMr9Siy6Iikujr4AwQRjG2joKy+PJAW2rXZA63uqWpvGPh90+8gjPs948vzOM/W+9/Lbo3946OBiPG8HHLYlWIX+Sf326ZbcvjicVT9qn+SpmZ/+P3qtXbU620LoOYmUHBITQme/kmGNT3riS8yuNXiHdsRWDBW/YqaINuRYG6us+B3wZu4NHU9F/JcOKnIuYUmNqcspmyCxA57m3Oi0xZ4uc/RoGE1n3FXXoMcCT2ZNL2R3H7GjD1+zRgL9IbwRhOADZCMCIAUyBjkRHOc1unU5WO3wnTYC9cPbY9PZe6tOWl0V7L3OVW0Q0kCLJhy2jJUp0s7zKy7D+e6rT8d38nYGPjqOofTXYVp9EM+vJyq1arJAVCE9o5yp3e5KgSJXMwd7tq1hXEj8gDw4zNJgX8CTdTBudr52A3TDtOv4QNdz7V6snSdbp57K28WU+ryDnzaigP1CpG78c6dafu6EU8gc7rGe9VPW3W6bjHvVqfFrTRo6ep9Tfs1+lltu/Q7L8MHsX8VTNm9Z6ZaVhPY6ttjTeT9L/Lv3779p+/fWvYcnSxtjrdtJ33nt/TRcVsk1axYZr/Rhs2cO215alLWeEU55m3bKkm1+m/4J7N92HRmbq6okperHdLVvYjHZm7mfRX8sf++XbtXT1dFr2zqd1N6mu0OodelH29uSk6ll1PxkYSwZ86EmqMWgjssXj2EvnlP/F8Td9pTwLlPAm9jnwvPxq4NyVWu73pMhtmPs9lDNt4n+tHZi2dXd6aEmt7dxDLx3+Smn6ITuJHF/tLopdvxensQ6ObcHBq7tU6uWvt52eVKHzPf4zV26Sr4aj0SYKql86/R1McelTusuopT9iA16F0Za+EvVz3xdjsL+E73la7q8jE1Xvhf6Y9871PR13LWrrC1dLyqDJ1+zGhava0Dtt+qikSqVbNUs559vrq4s3JGJLkeHDX6hDh0zov8fXCGOzvR29VT2123Jva3jzt9/rbsVLXDo7+fVU0etEbOePbSwJaIO/yg5KE31WcjHbHFWtsshnEOc8To7LmVRRUgRGAysxaG95fSaxs3830NyYRh7izfNypXwEiuy7aVpXNSqy9OxNXsnsGAtBbl/lCf9jQcN/1qplMcY9FOYhUXr0oPAyk5Cr1lXg/rJDAlVG86oq1/5nY5yQJpLrvW11TtqPvHKtKqIo89N1hu9u6ZGIXDDUQW9ayB/m67kXg1dPf9f97Ut44UyitvjjgVOref7/X+yMpiMk71d3HT6bx+OD7erwaztNm36G8ddP8+p9jNwOC/NZemnZ0DW+6NOH+6E5yWGs49RucDlBFk2ng+UxK3SZj96zBlG66Fadl5L1JsnHTh5dJn4T641MqVZaapE5ukLHVuO6dRw8nX0ODjh7aksT6+vnWWmIMh9RyVDmreeujAP+6urFMzfI02ZHzGvOeDpazUkfttWIZUTxQawbZk5QYPsTdIMMGBIJCjj2veDkz+z0PXWXobLRqT8fsTrtTdsH1HNkE9zcOTKNdiKZdOyzNoaMrBYwfv9Pn8/LzSqZS9KStn1VgrL4a6uTtttXZV+tVpzwoyZQvAd+rddL+LF/Upz4HlumjlOO1zaG4YFkUVc+hhHG7z8yT4+rlxxKg9OGU3PX1m5R7ncztjuwxsNt0lSqBzkBgwfy+moVkU/OGQ34Uds3Vv53x5jfXa5+CHSocr1XoSTa+LujWEjUzMQNjBiaeq1dne3Er86FiPms8GeD08vN8fD7m96HblnWkGHsSMl1SZJaFVMYaCaWZSXqWE0BjGsdA0EHyfoUpHrt62c+THywbM1kYgRtIhBEQC9zoyJ+X83bRuzsEDA14hrIAxhpIxiKn0cvQG9e2Oq4I5+5upfbX6V82wYS0KjpspO2eVL6zUEBQQiOik2zzY5rBt2m1Ekxdp3dai1/Pn99WrLt/wv97/fxSnS/H6Fj1sRf1+0vg9uGoskm+DnjXpz/PRmGErAskRdBA5Df5wi79LvSy0hKbCfnjTX1ur8b/IXQt1/HJAFBhG7/c9gOKJlE/9G8HxkHMbL+k6hzhXRJu3/JtdeyXk5MRf5coRCYMIV5IZkFVCotNO2i1FHRRRNWE0OKh08Xp9L1b9Paddvfoh5QhXZY8QnIkywk71NS0MIKRWt8CYw5DCTe67qi1rezpB6HpFJpBXyY3udA3TGM32u9K1dCWjlmI8yfqXz+OD9MKxxCQdQkfUg918P0VqKf1Mc+pPARKJQGSdlg5UrDD1Jz287McDme1vTZUih9krEv1OY9Whkj0pYvp/PNC4lm6PrZws3HbXyalXuoukZoiI2I5wZOM5vD5ODDN7PdX7gkKzc+/tgp/ZOfAqrS+XquhdgsSzq0h6bX8Vm/FNurSys9nV+wj/3Dwvd1dvfr/nz/RS79/pw2ZMuYxW2dXq9rqnXAHwxA8sROxFMHU8erjt8S9uCSWQRpBpBv5fN8WEv/O5Xp0erTz+76/7srCzrx48nTpZ3qx9klVRmwpTG7P0tPQTTP1/oNcnH+/hiur/iPVEjdc8iZzfo2zyR7rflCuU4ckt5Ude59iKLd8552zpOmjclr8e6npmPBLETLr71zJjhbSRdX/eQYGT5eryNJWX9mTfnas4FsVj28LQTz/4Ybifz81J7c0khZ8r2YxHWMovLu3U0VMfvSeosp6dunzjwZRkBOgYfMZYUkg/6/T7+vx+1RWri/nK3EcB6q3/j/OCdfmMCVajy1GGIkOa/ukpoxoVmi0auvtuJboX7um9R8+n78k2/YbvusGknHLvynRG0s6r8m+X8j4P3rnyw3b3+Q+k0fdwTzJ9+jTSHO/2qkWDxuaNQ1ZMSzjGpTn3dn8zfk7NTpyUg6wPzb/U5EDfXQhBEPfwvW1/7652/LR0wDpukARCmRj1jg5Vk7T0ubMKTVNbzsK3sDYClx9h4KRo0rqC+oaKpL1xfZ69uz0lWccQgenR3QDztxlRz1Vr7rUan3YN4VzAAEQAKKeCLwW0ZFkpCUoJg3c0+LqfpZwZ93c7nh4sPjgdvm2vvisYSodxEnpfu71WzBnY1Zs4iHt6nusEeqqmrOrLBcGwERC1aHahNqV2bzYbNhAtkDAg9RLMnWrR0rWI65hmguFGtQ3/SUAOmYNEaRXAKz4hEtcA2pd27Krts3md6pjGDbz5pXGfur9/htYz4m5alvvPXHivJelvHjXTvvabwF8voRyEsfTdNgjqHhqYf9wcGpbwB1L30lsOkPj6wJ5fr6q57tnBtGUOWKl/N3LyGBhas0njmNiMYVbXqrcBq5GO+Yxu4iKnWyZcW2yR8z9GEve7/M1oYrmbjDtjRVuu3JWVegk/ZcflLRFmYvJvN7dmNy7LWqG8dqbXR3qTmM/4FRkWtQJFE/i3s5gBZx+Nbk6tNhYAFRxJR9HxZBtNKkV7H0tzdNTl82OEddyPsuFkho5fjDyYPkj1V6yK11mqcwCKZBfDJPu0MePLTYGvK9yP0JnQRbj9i9pPEvQfNpRs2rBw9ZORHPoRBZcpmQQD1cXkt99YVUUvwOnK75wLg5jG1e6rBEW3bWU13r1OeCJXJDa/FbrWRzUG+MWGu47F2E+/XtLFnVYoWjsIprJ53ODWzEpc93IxtBqvtkPk3GvF2dL1SL0Ccvdlkw6WnkNAwybHo4/WU1SwQOadGiPu0qu+O4QN0ojbA9zUupoZTkAED6TPeQASstM9lKkE8mlD9XstHtJB52gXVuwABUiKaO1FiDOkdgVQwxo6MKM7VWGHh9j2KtcauV+aley+qalBdyjxgxwxVTBfINMj7LJ6t5sUjIAVIAW7x8BNqOhabJ27pPfbfBmcWG2DeDe4s9bPSSwuuRI9nUXCG7gtMDW2iBmmU07Nyi0gArvapYXvUmQYc2ftUrI7N/VG5VjXYvb9fGHVVvWN/R0G+2jVxTz26RHp3ROz2WSp2X8tZjyilDeZ84AZIe7l5AxQ2qYpVVAqW1lMUHsQ91nL9ahFcWjDqRRPV5E3n6sydfpAYqUuXQPF02nR2x4E6r1y8kFmSAT41d5rABF8RWxJGOquaxgPVi+vOqPFRqEdlqV57FjfWSH6ZZ3FYBdA2N448+jas3olvLGwDUQtERNhQ4CCMgFIHLJYNyPpkoyVuXjk724vTB5fa9W25lxZL61SVGxbNGQ5DAc4IxEL3pU81pFg422UiX0YbZTTFWYlHKI1Q8lzG2C27+jWD4P08dcefl+CfN7AH2FMQvXj1SFyyogILHRnaCiVtslaiQd1+kD/1ybLDbvNFyIu2buv3VsFgeX1W7fHt+ll1E/ZFs77sP2X+Xat34PXfbOpxvXXHrCpeP6k74EO09ysNpFi57nbZ8vc/rpmvxM9sH3nmfweL489bcifM1bqlpMxV/84Sh674ZPB2tD89XKs9gcmwqcJbEFrXm3fXnttfldPtwCxR+J66U1WYVqmtnRwzLcKydzJ1c4nOdf3atzzH04G29K9nx1c1t7qPbMOtXerjeEz+/fJ1Xc7QFZIXCMAREQIleRsRGCz2bvvvz4b+xdvL3/XeZGGPsttQD7wUlrFm+pJ0P/FebF7SvpNxiFZkYNLWplXkMnleRdurr2HMU+2nxgsdeQl8vhd8LDYkbxMFW78rFSdurjglds+FRpSGlYsdlqvJi98xqXC11bOY24+V2b2EFmxbueNT6TfRXjfRhTkd6OxGbpWdLY7d8KzjuHX5nN9E2fFSvu6/n7XDD5uzZ5j15gPLM8lKaNFHmjLaNJWpRIIGnExFhrDI5WVpeq+1fX/z5M/D8/M8vT+XH3aEnPz2zC5gBOW+OILpdw1VaMbvrYpWGQhM4NZOchG2NbOobLaYDtxRNRlPwxzYFPB6HG9RGotIKr5qXRmw3ZONNttiVNSWJQjCSdmFD8iaTq+fp0giyZCzckkB5RSPZ3Y7BzgqZ6Kfg3onVWP1K/RzqmOv5Jum/w5Z5DlKq8vh6MbHCelos9OzLuVwV3rq9g3pym33Hyc9QcD3vsvVxhKtYQ0W9YgaRQ0lENo6jIJbent0QJaPceI0/eabyweX0faWF3zHXReVp6anF6WXP59eX3w5sQVIGImOiC/tkjz9D7LX+wncC9OXeL2ojmA0kh9IIByVpkYxiIMw+i1JfKrki2O9+LXhZh7OcVfTLUF5Q71av8YF9Ewh2TAiBI95YI/Uyf6w0/lZOoW5FwRZq94zV8w8yAV3KjoGHpvVJ3YgJGqtz+HUSZj6bErfOfZbYCpYKLGNpLgvyJMHxgshGaCqSAFuGC4dCQXJXC6mzEdV9ZBqSS5NJJoBTlY3tRauyDhw0gxQYG7XF+9kaZn27puE97xvt2t2MZONvBNIPUjACz9newxgRAyRGMYxy53PKXJKSeM6EHPjsoCEEmgB1nAcw67QK5SptBfSQm4M4Gx9bjL6lL7a+eVW1UO/E7lIiwylremnq+W26z1yv9NQp2S4Lb1aSh4166WZNJSddNNOLVmVkqsVqAwN2Lsv1uKDV9tg7Upou27G4WQbPXrANUiRTyUtafNjfYxt01Yjry6TMEYGwLJmHK9152FgAJy8jnMRGA7SMJiAH7DJGgI5Z8UZJJ4x10IvVsjH7o0OuV9vF6FrVYq56vzAv4zmnKXGzo/8l2kBh3Epb4FOBdGSdzzZ/vrzXNTnRDWpbbBovBy6PYqEHQQXQ0YdcldpOy/rQlqxHiIzbGW509jRFYtrHp/hkJbAe+RhSyldIG8iGD5QqvLt/3Deqz+TrDhgkMrGtLXZvAwVIwAWBCsklZAFFCRVkhWEUkqEWApCLKIFSBWSqwKySVhKgSsAGIsAiyVkkCsBSLRgVkFIpBZCLJBQqSLJWR39rcv3m33I7pnb/25X2y+91T4h62Yuk5mSA/BCnlOZBMkY5G4rgwk6WAAoshFhAFgRQIsAiICkUEYEFkUCKLFkUgsJBYpILAUgoKCkFgsJFAgwkQCRE6nAbwv3Qer1ML3WdT8NG+fXdybrrt7byPi83jXzM/3/P+PgoI/jGFStLSoLUlRT99uWosSqJWGP8nSZrP9/57e9tePqzPB67DOVlQvLMgsD9qEqGMKqrqyVqBFISj8yifapTHMZ7u5X9/1zd3P9CN7Xxp4mDY0K3bbKmtRzC4tk68zArxfg1Te1bsXE4/u1UoSSdu1Qq/ruaobQxlzPgl+2pLlwacSonOhtlNHC3JQ4pjFMYooCsKQKETBKbKeutJho2YLzR6Lep/Fu3yF13jofH0YfR0pf4CePsUnl+v18ofd4c/y2ejzRPiiyEiFIyBJS35dpSa+V7NX4e7mYhaGJdBTC58oVHYx9X+jAzs07LF1LGker03uu1v1xbKlDvjtbF/4WHF7JxyjAp/fT/nsuNcgz0q/nM66DjvN4F0pWLFF3VJUxvadMC/LVChFLSE9dzb1zocMRAGaAXRRUVfHLGHrY6GDADVKu/Dg2S4+MkGVBkiSIANiEhLdYdgMoYIx8tInvnvBaUllvA8PgsuN5Acupfq3l9InWrOdRXqsWekY7otbvxm7DtIuLwYgaqJqeLEZeh1byhtsgXeeh28RgmRYdsaPO5HWFqTFP1RpB+4EV4L1ev4emeq73CZ2OelKPhOsm9GVM4OCwdfXVzvruPGHglu1evK/FkgycvvWzUXNPcK/T/IfWbOMXn2oyH+NQWj42MFcCnaGTsqSjojdn9rLcsZGvKRau26dS+SXejjopGBRKoOOqb4vAJkocsXIoxcufmB7Vva713enx0vy4JvMkLYSIi+oT9Ogx9RTpniOYOPdhyI5AiBEYERTg4ORiofkMC5pvQ8DMXemydgAG9MODDX2r3OdmHNqpxXBqONB8lEeA7kJPEiZbYYB6rf63XFDQWO5wEGCJBHMTpCsgwQudMjJmIwUIVvx/s/09Vvj9OWvodVj66Wgt+3L36WGNhdGX/etRtll9Zlt0n2Qt1q51IYfvCu4TOn+2uxuZUKLq2kvpFWbp+cZK/cF2R2ilst95V1RtbM+vN+S9Rh1b5Pskt2UdZYpxz18pDTbouD7d/0SRrN7paFQNo/Pwva1dKOZAO4XH3mk2IOBx3XEiDPHqJ2D3lzHPoCDof7bTjVQdFG6Ei3nBjoOgkHOchY7JQDG0xQCRX1wOzCkAHJ8rn4+L+PZ4voyZfp05MnW7f4aD4v3wWFbHZ6UpyANcIC6RECxJMP/pWHNZ+SuIARiOkCMZBGvlFAsbTtoy92Op7PCKr866vrm0UQab+O52eepJFyoNC9+3Ss/7j+zXznCqqQgq8WPhJBT7Gt+z7cs2ikX3L7vnHIkhsLii//DmCW4p1j74W4ME7FSTBQpjtdWT3vQGepgIYkZXXZJh7z0KqUq2hyB+95ofrh0oJVoKTLSLBpuUtxuiygzkcPleGNgGK6qA8zPf4qwZxofwKq73II3RKvUTii6IhhRJS67Sdr5eC2SPGzxOW0peKlBUIlQ1Mvdfc7Owo+FbMDS58nKlwNBn2ut/a5pcHzXpfavFaPp34ej7n49nXxvnnc+WPMXzqAYohL99A113kl8N60mfLa8rKB1p08bDkhNmI9Xz3dk1q0ZtlmMh1MlRTlWzr193NmG09rlfFteaUru502Yd1osNCWVLC9NmOXoyen73L597sJAKUHTWUUbJMJEu8AFjAiKeDzmlUEbhzB78+X3HAmd10X7CTXhUxm669hIzLmw40Qa1v6TF+94Ce3GGC40yXWtYRhSEytUXzwTZ59Df9XAgGQgoG2APLGsBJBaQED9qQMdMDGSRYCkMVhCsgCxSotRWoFRQxEaiNxFqD/B8fp+r+7/d9MNoEvicGIgJ/CW5+lIb2v+bESP0UZ8guo78XGpVcL85fap9l/fzS8PbNIDPi+RnilID0rWKbWhb+x8H3LeX9OJ41HrivQvyMuVMge0+eOMAEVJVLxav8PGXgUcS3oUU9/Fn7c23ygk2qKudrdtSumA1omwWpY+TC/KtbMyCbUvVNfFIPVHLj/sPR+/RxgE9U/V4UOacNClh7sFZZpqrxmni52fbk78ePQsx+Zzus7UseA0iX9phk7ipU5XPjfNitVPHEtpWy35rvxZydbtfEXssEzfQiIklkIVCEtOkwrUiESOIN4EAboOcDoBCYjb/GeAG5ELWRjRgtabOe+mMChKN6Um42MuHW1KzBlZtH+a0USe6aitQ27dxfSo/XZV6elvvJbMkistXqv5H6nLNYrUmqB6I3q7p3xdWVfj8O2x1YBLw67jOlNKYouurgJrlhra+R7TWsXhz94mCgyZ2Mrduxpe1XWsObysJHUKvc6k85pcp9CM20jpHJbxWfnEdcrSatLzyRtznwTW61bQatPFBZ1Z0eC2tKtHauCfKq+xqtHUet6LDMVF7feUeXiucGcyV6TNBSw0nU7mvKdYN5siisdYL3mdtPFkpUkYbuq26qMbx/WFXYnTq1Y0cL61jTnx5I2MsLtyeXJTv1VdW3G+ebvxFWpbOh3bBBbvzxeNXjgWU35cWJ/PpgxZoIeXKzKq908MNhzip0vbKzQ0M4HuStVXaH6sETMzC7eXop1EoDjKvxU05mN2F7jPcWXmdidy236r/K9C/Hcjo4ZWua/FahdRNvfiD6k62mFwQ13T6s9TBWgtXMcXN2zgq44LrW3E1DNSGNLDdCtiYHT6aVfXv9LNTZUrI0aX4qzLxP6shXcLMla1pdrV7pcoZcFFTFX3UXY75bcmPnVcv1nD3c2aLhtj6uSwwbbEEHBrJeXGXGixE9k0ke3bUPPkLClPfsbU7NKSphRVyuZ0XbibJKRpYrwbSIcdBQpqx06mXanddv9WrqpKZqb2ixz4H3pVL2tp6zemW1hZq8VfFotVUYLqFEtPJPHpwHqPotzxVRlPnpzbwwzqmHC9BTuaz39UiPYJcpemkM5b6teghnt5XGE1WzDCXYQBjkYwlI3uoLc2fp2OoUMALBAQFcyXl//Q/2r8Wi940dfbgvdRwYYK/3ql1YKpABMjnI6D6cvo8fn2fJYcZdPP9vCL5IlYVhIDTy0HDGyBIJ5ojIFIBJb3MfgsEyYexVKRwR3oBwwD44hpmICwK8WvQqHTnH+HR2/F+vl2Pc+v9t+7+bweTleaKbPo0xqTJCRShSOKvTgiWfiCKePI+DmpdT+Xd3x8CWWLrI5+aC64GbTBTEBDCQ5TmSWDv6Vx5/CwxLadZFa0ma3fV3pH87DoExGzgjAjJHORENbVcj1Ev8fOs7t57gE+7nV02NLD954VodVTw35Dfgr9GDO8fUUMbz9NFHmZYwPkfyuA2OsREMEQHQYLGf2R+xFb1ZRj5POQ7SIfkYMyFdd0cuvkZc4d6nFHWdxllo2KeCBEpUPpCGKlKyxVHErGjuVX0TNJafbOl9FoLdKZS5KiNCarB3aVXo7scGa/XAB7La8E2MHdsWsLN6pR9b4BvGxrtyK9dgWDgjnbehjw1K/kx51sH4a45u2c+xLzr6pDAdewGAqe0lofCo82ku2aTx6cmuitV+8w8p8uTvg8OOtCg1iv9nF1lcVtezlX3F6JaevS5iu/zmEH+vZ983dC/Umimwaef1PJb68sG96rf1fM12S/+IHMWvOoWb2js5KvTXkelzXmqN0Xdd8bs+ZjdrSvZtnVhs90CMFOaaO19FZuhTu3wY9+rKSfdpMbwIC0XTN0brlWnFJ5T0So6roqY2hERpSFcgRBB9aHkjmMkUxlVAMtgpWGW4wrP9GQxJFAxPv2wIs3ZWE07sMZD0e1mBFUUFgqwNuGGdFoooLA/Gk1lk2SSsfPmQOCBrlakGeJoKI8GVBRUSLz4XgmkFkMSbudVrEZIsFJDSBWQhUhUhFkIKpCpNmicEDSSDEORSo4IH9ELg+9GLdV/B7Z8+dZ8/brM6ZhlV88oq/HA81kgmy0F/d+mTFAhQsTj/b7/PkyPv1kp43I6bwszj4pVMVAko0agacgAVT73AzTH1KtCL6N3R4zXSwy7XBdp9u+xZ8euftqXkMCxUShSXrIv17JgsQwr5Up6fNVRV60dclKfjgABqsfzHZzYiWgzS92KHwW3R+Cnfyx9y0lfNLS6pH8F0/ymFAFGLAr5c95yptuNNZrkPoMKVAwJl8wY8sPEtO10XVfjNYQp80pCGihKgKkFC1MA2IgDdXPM8HBbEAllheu52WumGEw5AjCaoKum9A32U1cKQBoSM9l6MykoCo0EDRqY2btvo7c4q1yG9qUQPMhUqGIGPtt43SYxYfEkKif8Ihj5fHJg1MwZPpB1Mx1mg3AryjMatzzJ5biLRxRDQNEqTxkdpxA0FJy4i2AaSQUG3GcU0k7ErFDGUYLDatDmycEHhZm12QrpLtSqtzJFN00yDs0mzDkhjDnaCyaQN8lgvFCpplTSs5IbJpOCVN2TkzL7bgZDntz0RdMtUiOIKmpgSnb8oSaK31m2RFQep8prZuqPc/9ZK75Pijt6ro4vWY1KxxxaiYRkO+1e8TMZJMw1Crh7d/Zy6gGZn3o3LIuUCW0/baUYoahKJRFJbTsVBihFC23oLIw9LMaV1KUeHnw/ODa3VWr0+/A9x9Z4pbrOGeqOYvidBx2sHx618zFeNI7qqs4AN2OB8wu9Fnu8Yn+3lu3tYa0gppSuYk8lZSpdZClUcbCgrv1GWQDpLG1ZlrBJG7iGd1es1Rb7K6s9K9L5WOD79/qL1oyxpagq9t0eVo1yrRaccuaD1fPQpADSp5eHHXqDwAWvySABpRIUyHG0FqzmRaVLAhRM47XkYXlC38lLuPw4EAPQga0eNtEluCxWpeIGur0LsX9Gbha7W4SMRe1ZGLKkmkURWCCVfYhe/YSXDJO6lUlmAVdI4JUJEhyx0IadzVjP6r061rH0W8/n3utevv5b+cQNrs3HSQnFFctxqI/xn7bLerc4c+rVbxe3a4x+9djS21xuXcVPvFXATO7OTytl2CxdivqQsf6duspD1vbLFb0lmT9HLd897W+g9fxh536+ezq3nuwHHDuE1+7Z2CK1NJ3Q/TlFEIT79Vbbtc00+xxMeXVzbH71aDXy/GidMKvs/t2D0+vWYWCDiZzGDfI5kyASIBBDuO+gB26XVB6a0sGRFqzitM1slT71LNt/xve2M3IQXlBXWczd7u1zl9QzBnz+Vbw+527bMfjSvbUvpwr9Lcs2TFXdmj85auZenN5dKTvS530y1lok62Ov7IYr/OvrsWhTPF63vkJVrfoiXrh3kMxME4ofCUhDkKV9rJ4SWqPnBS57fXWFUx6p1sfNP27aux7omNws/NZk6lymzSz9kzuzG4lWjvPKbh5p+dtorbOx65RS0yXOlWDT0OfWtXe5bvhPdlay7kKLdPVYgxnuS7uivoxbdt3tpKRwV2WLC2adKksukyno1HPVgks473aOUsdilFZ0LVR1IEgftu2NyWLrgU4UUTmoJKjfftO883RI5PlzitU4/fANsFqxBWuQt27llPKF9Y05clmpDU42lavStAFNOC/Zk3XFIUqT+sZOOexxrHzQJVRMI+NbGs/U5cceTT84vttCAD9ZyJP0yvBJBUEY4IwPnOYyCWXOfazSCMFmWj8FrFFirp0ii8UDmmyirs2KHK5HEal9FozBK1hOGWbPLLCaYVFltlrQFA87cqsYFakrUm7mWAsKzMDMKuLQbYisRJdrkQgsG2SpFU0mmjbmZaTDe3VdVMMKY/maiK8eFmC7DJXf8Nbd59nVdyJV09e+tu2dhguQOWkWLOMQLui92dlvzht531lEh2T0r09v5T4PZ8OHp+1duTjm012HiLlazyjwht7V23uJ/Cjh0NwPYudhru0NsTealVFfdZnrPvCZI9R2i6+jt/+qSefRGLNCbMceQX4+W26VeRHM0tnUyFrGfXNBwrOdleoet6TUhZP0vwYadmxqz3PjxSuqHclWW1K0hc037dvEQJW2K7FLAvhstqSSzVE4a3dlFyuXvH1WHkwLPGxmxJo34DpGz5odEV6WqTDtRRsKuC0QQOkJ4qbc+BV5eJN2XKdUyhFUmybE3CwpKyXLaMDLEslxlDSuSHO1idoXRM/SRuxZM0L1qnRP1ycjDWhDFZf6ZFWsbG/b0uZI1q/C4cCvEISMIiFB5uvQToprH4nRXGlPO1krWjmF4gYl0kDoKRTlec+vRf7W4qtqHtGCcVS0DH8zwcRbwjqIlGGF1rtY6WW2DGa7DgwIjD4Oo+1iQbh1Zs5ngez3Udnq3nT3PHhxdPRt+Q4y7jx9xb+tR9cWkkCdFA++K1iE9tJUKwqRYpKmn7Unx7U8u9gbieRATIw/eZ5wVA8z2wmNmeqy3cXw3C3N9cHek3kgp8nVaMAzy+GanGl1wrx2+fjPToY4c+hkMyz1yunOQzB+qKLDcGbp6u9wggECIDsTdp4/oe4Gckf8jqO9XId8bRmLwjM4H9M4Mxom8J1fG4LFAaBAzwgUMPX2tsf682XPfm2takvX8D3NPEGXXJ/unHPEZNtcY1e+BAzLcqx07WeYMgHI4Qo4bDcb2RfUhm9xWZSzOpuy8HNpKHpq0QQk6Dmq5yKYMpP5l2axVHS6puoYMyBjRHmHmGndehkB1rrVGDiOaW6axbLJjpKeuWdeiggZ+tzysfTZ5Q0NDfhdmVXPcYTbTW0YQIjGIqixyQottqC4bhamMDZvc9JSzW/9WAwXdp0xJPrqtaa2YzTolRM0FH/5VUvL5aKvav44zNLc+ppdOfkQri0CIwIiIxvEgdc4l988E4oF7RnhyVyC8GUxzjXUSQg6FBIGfBvxXeMSz2dFPYdNB8j/lYnEd/ppHGTquXmnZenEmZYkxnhoIw8nqBgJVBLeCfRbprXH5qt0wMm2Av69X9d//r5cvv6f5qcv/v3YQ04nZr7uT6UtBXffQa+r2zS4dWLi3tH+C7WjP77B90legxpiA5EYtwOE79cH5auyj21qRKdI5ajDake2Y5ArkXJhA2ifHr3KLRAwYIxjkDGHoRgbqIAWiBggJQqGm4LCk39sOJSm1jZBv1y+G64+l2AK9PzPGRYWqmV/UHZXLaq/3/Z8iwMYXyMYAiBhy7WO+etZVdwnmLAnQPp20kNzhOh3H/ByaunIBBERlCCFqc1JRRs9OaEBhH36FhaAoD6cWINZTj2ISspLe6v47FMCmQsRXW/RxpQaUkkIP9VfkoIZmHGGyC0G/6sphNSBuMhgBMC3uwWDGvEbWRjCvQQx2RZICdLhe4vLmBzcM1GHN4XMiZUvg4VI9l6khLGhm/hGYT4ZJqJsGke1Sy4qYzCxg6zFpFsorGa5P7dj8vZU8v5/drKvq+uRP9cgbiTXwGGGqFPD7VTVHFBOKDzQJA6vtz9q2Z+pg8nf5s1veIxECBGIiIiTwr4qfQX9de9XlMO2xlMnd0dJ50zB7YqjX1+E6Iz1SV76haBTvWNdhe4GYFlVOeO0nAo++LcvarSX4ETyQEIAWIShXsSmMDkYTUu5D+pW5ZAvzo4ZDppkIiCCSKoSCykYqN7ozNwMYzjA1P0/R+3/hSn14pMxkRkABEMEH1Qaph5eWMvOqamQxDvyGGvZaccrbZ7nwnicBluwSbFrwyr3uPEePQrAqRQKCJ32yULMasNaKswJaqUwNKRjZZO/PvYkz08iGO+inPQCIAFyOAfTq/blUMmFLGRr5BlvyLOHAQP5WjYLewJ8o0EwHuK0FN1Gc3tXuLVO7rUR2J6CpuXckuEAiIjWyFUoZUsPjYXNsxUnS9HN59Xx7/GwnggdL1/nNfDy5n1fSw8pOYFH12tHo8lDdwWsviuvv1YkX2l6PXts9yStLODDWQFYgBkIxjAAMkAJnU9O+rmBg3BfqlpSsBkXqNnqHQUZAbMfV9c8ve7EweLVjd/9u8BxweC2glIg+WNIlYHciAdqaSG1sIbskMZJUkxgGMKhU2QxDTDSYysN8sCpNPsYCzZk2RGkthbACyISArZEUJK81Zg2/jwaPB3MgI7hwLlRmajQ/2YbLq45dogwT0XnpUI6kFBrKGrf/NU4QSE+mPoeX6H8ppGhpP8Ts03wZPR7m3/bZHCuTLkZuPi1H5x+/PZ7KfLLSsL6PCKHu7GUUCIfqohdDu72+rd3ep4FGLL5uemL//F5jg/D6Pb977n6P8dn9LP6p9WbuIH5EKwUFtsYiatG1ZZphhn6cKwxaUnH3vwdHH6QNkh+JMRGGfbz2yBXawrfgzeNjus+aJ7Z6oq9UZPAt571NXws6Rbq2VK67lwJaaO6I1czOCPoqpJ5/m39+DW9xeGWnootSRCHUtLwjXzpIUyvY2U2nFb+ltXZr7BntA+MuqZ05n0HFaiVbSFXfWvs3Nm7acD2bcv9O5H0KY/2ILLnt6mDHF12Rm5u4Y4v6YxfFNAQYX0HMZBAERhKiAKyDIwhgBDLqMMyBtn07ebV3n1umvtKvb7ld3+Zy3ZgyhLCx93aRGeuLZMiXR+FH/vYTqKq6YRW++cpOWXzZU+Uqi8dEpI+9izWq3V++0cwskDsHNcmirMMtx8cmuvjY5d6SY39Hgqtv+cd2iWBTZcg1/qYtMnwzvJ9B1Fqn7/af0JTw+9Au6ujcsEekwl+CwW+VUTsaFWtDrzo2x2dTB+70gY9fn535MCuNXnqvCx0R1bWbUkJO6fr65KrDrNi0pk4paC+Zgz86FlLOC305NzktFrTT2N3N1vLZ6er5Tief19HRQzmt9NbGkdDoi6vO0j13v40Q9lTAj3zVfJixxtK7aasmjua+0zHo9xl5+qW645t4enGBtbq60cZdx9F1qu7A1Eez2V9LHc2HZHMn0dfwNZ+zb4Kd0VE3a+vLwyY+16rW83PVjLzU33MPRwd9OzHpe0sSoedpuW0vTNgveNh+hfAqFKnmq1n1HuXsXhExer9WW2Kkf4prljxaPNnddKz9miqYA/h6Ovj1XrFf1TZb6Wb5TMJ14KtWkxcnvE/7XVZRRiRqxn4PSUZPXRmtqcGMHRXxwr8u/hV7AyqWm4iwo32eA68dmVLtzWvHf55MW7FD7XXqirbO6e6t0ZcLMm2p2d/hwUus28h+joTxbMPdk0Q2+93rn9eu3ajVuUYRjisYO/QvSoToFOTjsS88vZ09tCy/lYe4beq6K3a8KirsclJPzbHhy0YjetLr4weBabEOfJ6QVb2PZP7e1kRJaledWPsqI7+rw8F/Pr7s63pTs1N9JNbd38J3PP05aMmc87GjHKN63LIppdzTd/Xjrfj7DMzfV5jCwGLpBX2KZHvjfge9/x/VzZ+hnl/ZYZ8VH372+5dPg5UxXE342bJtbiGJMy5W/NrzZC6v191M48czf5c5sMehHa1L+l7OWgM6KHBqZtrs1xy1nz72KTdr2Ju4xYd3taXtGkSKVWUZmGehEXaZEHcnKph0G2MhkeGp6J4EEycRHHb52ZrLUsvbYUe1tkWAgVKee6m7523nKhT22YV4ya5d82cXFXvcFdB1dMRwQE2YsU93htYTZShgmiVJySkIgCtM+RMDTXO4UV1+0reROjFRO+osLU7uOwK2+XGgN4TRRt1msdowdHFlq0vH71GqVlw0Ow82yGvhLGRqpb5ZK30G9hRo0iEaozGoZjePBVIVX89V9yGdmCrU4vh8jA5DtBA4IPYdCgMmREOdDFdqkil44n4NA6p1Li0tQ2Z5mNCc4KmtLREoybLplJUug/xOKHrgyKSAJIIPbmr6rns/hz8nwcHBtR1wYQBqetTvuK089GWNy3mzeisOYtlllOrRb99MyWWzE2xuxdNM+XzrNSwsV1tFIIWtsfK9OntoaRoYdyycm069dGnQrtoxYPXOm1tzVc0dTbispsVcj7GZq8nEVts5dva6krisQaNPvFo83qlaWis6U7Ec7YykvXlwOVJq/bB2+V6KClmdbcZ37vSVJNZKs251YXLUvBm7C7ni8Vtuk+njsijffEiVtbJe6GbVEKQ1XVLHa5Ay7aybudjX3rnY6Zzv2F7VqWLJluYaSWoqaOLPQxcPZYkjs1HOE1kWFIoCVSzUUUTtKV1c2O8pKVW8yktOlQm4i/N3Vg1DbU6N+BkLW9GvRhVUu02dTt9ttyLezl0ritInDCjhivVXbJ1xl6f+ios3N+xxyizWd23Hb3TZuWV44pL52W8emsnAVnGrg3UdL+N2CWJrPEnBxtS9TmGzg19OBvl0bnvDdlmPbKJXYpOrdcr42MOdnAVnll4odeb4lYYUUbuXJpMcZ9GRYL3Wzhwb+AdQkYHJgsFza9j8nsr8B1P0ZGUMmPsQTb4kjE/YdlSeXW1OHF7SkJ98U57ngfXw8krMoZWzWj6bfDEo04tjx0t82HGlh0ifHcix42t71ViDYzbTy6obM697axXhup5kFcdnUxJTvW2OTPFDzOxOC3u6l39pVCks22nEn1aaMr9uli5wcHV7+3Rd28tqynLA31wdeutDogteDVwYWJUDV3vnv37a0+BGp0Z12FT67nPTAAIeC/4iT/OhodHdlnsxK56VSGZ01WR2iDWhhvY4uOBjAJdVii4oY1dIwMK+JeDFexamevEmxVpUqdwq+KuiNI9YF8RxsUgHBWbjc8kC5DDh2y7/Pml2jnWXpc+Mah48ddjTg878jFl1hq9PLB+MbUK2NceVjtzady9dWppMy3gseGu5XmdwuoQ1TOlZx6E1AdHi/3yGXKMgPrL6+tJPSPqQN1Nx1rPjSjGDQc9IG3Eaa5WrUWvF5Dp0xqIGFI2hYD3AqqrkJRWYNhIiE5zgPkZFsU4ukDDTcp8FzTdUrcq8swzWzPEfy97w2KIgeOADaesRUp0e3pCbaEJ105Kg0SL4Drau/T5u3dAqL36LtazatRojvC8/11Djsge6mkwjWe1XP5MHhiywsC4rvo9sDuVPGtmSCk2MbeIy9n1t6Tpw96SXWXT02eSSuhVPUndZOkTYPlQnGsv9g86c71Q+fJVsTmMYDGRjBJGwP+Nj3GfJttXWL2vTi+t63+8iotIEJIZU9iSNnKpjn8FyzyspAPQH9mTl5XsSR5HG0Qa/RhPeuW3v1czGHypD9Xjpgr9rDSYb7XWpUx0hiCiixYa/NTd3EmyTfLiSP5e+5De2LCsX+BndcEZCgMpwYKXVVyalItfpQk0H4kZQlVSOchYylNqdxJSOvAwCxGMBz9+g+m5c8dEx1syifBL6o8UY+lJnqhvOOKM9iEeEZH13hN3FrRIh4dacj6V8Xb21HT5JPpKmqLyPN0K1SYDJMNKvItwBxpFvkHyMa3On7xsF4I3d/baRUdaKXPg7Vho0Pknj0zs6t2zbfDnAbICOMLN7jlNRJ8nesMW/1Ti2WhTu4smnDn6nJOr6UN0JEkFm9Qd6CNYABkTXQAK+pnqTrenkuekujcvi7LqHFGoFueklW+51eVNfXt03tMeOafo7aBf3keI4RUuCxy1RqnsZuiKeb4pvHCmHCru23sTsMhdCLIWWumTVU3bPulwzXAxgtxwynB4MKMgHd3cato1HQim9q0+ErSa9iDbV8aZp7Lr1D0xMKMQ1c9+yJO658q6zgiBrBGMchnkNjUNXIZ3HFdDPvSvpK+euz0s071NMOzxGHW3bztbp9OXtkxYpb3RCiVlAT6EvPzxfR5Q8Th46K+Dy5PQXJ2cs/rpFh/vu6lsO9bBeu83+CyszBIQv2rFspbu5Pw9Xytl36zmXy2hLW8vmnkWVz7oZ+mXJ5LWl4vAbOezkcA5Gs5uPSo41kxXhLsKxv5Tc/P2VWgq9OtNjlUoKdeIQytWqujGaXOpszKQ3PWhxwNe3BHXqzevRWTVyeWIgcEOFBjUkDHFXpdduv/eu9/V61eoRarf3z1uXftn/vUuvvrc//uuJORbFyl6oeMXwpxtUAXqreH+qnt0Wdm6Hxt+PPhT+rzM00Oj4/XJ5p/yWWnggOd0h1IOHfox1+GjiPwpt/DP2nuatHg4cF/TgsGTrwDzxR0/HQ5oNsVs05+Xt04n+0DunCsU9Tsq1R3D3mxE929uqgFNWu9fUPp+zn0vqZ6cSz9pvZwpJdZ+rqOuE+OPrVWqdvZ1VaM2VdtLyz0ZH28IwkCYP3lm9VK3lH787/n63flufJl24vh651z4PsIrJzRQpH8vq46+iC2xSet+Tf6doaZJ40hUn9fppgz8FoREUOCUTqEAWBUlQ8jMZJwYetmIRGQ91AyhBUjAyRGIjERGIwpKVgpa+nM3pJvUwbZfqLORqZ3DqR497V/OK9zeCgf7h9PnvWta7mILPGMPqopU7+9Xa6KD5y0OR2VMY80oHdHY32ZKMIp28YAByFsjL0zGVakUySarOmSqgjGk/v+RUK/dQ/0envtXRfr2qfWPWkj4jten7Hikr6LeHVPqlbP54meCRqgq225QlxBKw99QnjAGiMNadZ8E+K8dIu/1zw15eiyNgfuYhDSMOFsZZTRR4X4K2XOygaHyfD6D7EkJAJBUG0kUW3Az+d/wJLuIy7bl0Ya+iqYUjGGkgBzbvIYrr42TioYJa609uymJy145x1epzGOQBgRAABlB6lvDfcvZI5M1K+/BkU4q+NSwzLaFM6/7RjbiIGpkDU7BhRZAcoJvoX5W/idS3Nv+an398MkCpZjsHj1dBoIY6DG7NDE3ASJMt+dRCJ54OlitrC9hZmxsfn90lCM4lhJF1p09nGIq1j1iyvuFUs/YEYasEDVL3tZsDM6lIBpOijpWIFu5rXQAFSBhlKheZRcPD7oK1a2yJF1/Nr7Ecugh9sPNepiytBPJiL35+LPstH3ToH0Pan+lnrzPnCdroBEIyHMnCTOkOWK3AuNXhfcZGogWBwj6Z9/BwhVLjqC0lbLmDEXidJoVBcgoO1x0lQ0t3zEXIfQB4M+j2fm/j978/9O3o9r2vyubpU1risnp1Un8cqEjUyABAiE/r1IS7C4GjF48ornSRdWht/FKpZIDcLHrac0WjZINb2SBN70idICwREYiQQOWYgcKHEqHzJPgy+B3d008EqfKnlHN2i+dNMzLCV5VzGtwHpHEB9qjigjV9Kh8XkhcspBRmzyZjBQ7ssNuimw9F/Z5tdKdbsw5IcWAYgpHHak6opHpRSNWTlVIvkxpAlFMtmJjvkkTeZClqrByMZV7pqA4whpA0LI8TQMZ2s4OIdbJL7uunWhHtSk0wXsiYknC0+KrXhP8+6fTj+TNXV5bilCSUfCTyaR6Ruuk2z4CAfp9bj4ory5aF756qM5kn3X9Ew1EV1zMpSQB5WQghjIwhyMUMOMpuTStexfN6hjC6Z+rur1wdRQvU/v2p9gaJsAe5G+5HLBelm777FPgrZ89nVhaFWnbyV7TZzHgrWV8norjEf1+27oxK189qkalTafNjg4R91SXfipg1QnYyIEa0X0LcRtHk5NqoXbIG8XNaAY5CX5ypDmnkI3IhGRlCkdPxcOY1Rx8MIZuMzEEis6o41Nx9BuUzKEfc6Qfdqe/T6RutdyXYJaHX0CWlQgwPiI4aOcOBEJdjsMcUbNT5khuAc6i3QQuWE0xhi8i5NOq6fRhpYjAgRgUwvCk2dPrR4B2bBZ4Xc6YTza66+DT8NmhOGJIsgEgPyQCkSECQUA/IgFSCgCxQgLCcWFYKRSafupMTBG2SKCqKH57VDGHyIGMHLFlQUhwtxlZPlQqRfsYaQ2QNCuZmcdWTGLFISsMZ9LrPqvT0e72+6T1fo/3R/9ZNvzZLf41rG5ERfSKuepuS1ppoUpa47SQZ2SOdBh9SBglahNmowXbu7O2T2VrFPeosdXDKem1qrm8A2AOwgcgcjA5HIxjk12+bTY1ZKtrd4d5wtDfuPWobxjTZLaVJOkb7JbqSVD39ZU6rsnQky383yfFF/jYDdZIe2gfEw2FTyeSyVhiKfsT0sirIsPo57OBfu3ZmyBjNIKDws2eOm1G0rArjzZjFNJ1bayByYbMO9CsNMJ8rUmyE6EMwubWSbOhJ/ozikLjuJqVFPUMwfI+2KUx2twdxyRBuJx53OFiwODMTgnUyTTrVqYltnNkNM9oJmBuA386HMeRcy47nvOT1VPfaiouyCZGSVZQDTSrct/SrSd2M5i1FyIebG+1hdmHiK0QnSygXyuL3k0gGiADIsW3PsDG+DyxGv3/Su5gNWtY907/ndkBpjjoqWoTpN1CMslEs6PSFre61FBZss2Kv1rvGAiHfU9uPn6ME/ZXztFIQFItDFkqonVg7LtbOm9jVHjeBqsk+TuewzTXhfsCnuZqVH1/p3uLzANEDC+TybpAEYgQIgXAgcTSHylRhXxOLiNrrt9OO61TsBYAwMOrW5JAHQRdW/caCTctzsJVoTv1YKwqqSKs8rEe7v6fVm32ntW93pWoz5/CzMSr559LkZYkpTG4aJofGjHsXxADcQIESLBVILJBQO5J+dxIKKEFk9hGMcjGAnEVszLbMkFPumRm36vyUzqnT4YmaTg6e6K0KvKina6rcAq0nM4NwIGrEGa0tI4LUfHZ4kYnEZN94ejWVGy6uYD5nIdOQ5sZYEjmmJPkRzGSOdOuhOJNBGTOD2t/J2VJQfjUyUP35fRLR/LkrdsAojCcp99qpj8OTXlR+WTl3j3GcK+cvT8K19lLorQkLXe02NXpKffjr06jGbo29GyIzXzbvVUun9yrBzZgEuZSt5PWEY5jWzs3e64q3lGVkxtt0Vi2O2cZ9q5GMYCt/wgBl5kitVwkEwBUNDXDgWUm1++mcbKQ7uP9bKwPIx5OHwdbPLc5WgfD835wOhMwMO3q+tJeHU8tFdpd/936P8W8oPa5+NO+CtYpZ41n0Rv13xXWPqxFPZrodeHr02VcXzdFTs4nIZrA9UBS1XSLQxEZCECQDy7dlWwi6ZegfzC7s5KO3il9p/dPpx7Xw+htFT+5E2NAgRTUBCQGRkVQBZIAsBQWACqCgoSLJBjBSQWEFAEfOOwEYZ1FOJf5eD/g2IiBuAA3GCgYBGYj4pf+Y2hU2SMVhxyTmZ2u1fo1b2uy+NmXecf+259Mp49NN0Xnls1fVmqgPZVUAlIJCDCIjxE/OQhEaRR1z4H4cHuTJn4/LOf7E+z8iCIFi+8RhIQAkQJ1p/3mArxFkRn77D3/Gg0b5QBXtX4vhWAwhTbEkGRAxfH99RBN2ehkIofDDBCWQouViKH6MMIEBzmXjul/5F31vNqHg9dj4Uf8Pq1ezUNdv/MzGL7ntEPHvaOOzqQd3IHHXJx66oYVKUDMMDSoY8GEutZAOnIe2r9ftsS6wu/U6ocYcLgW7tIkxCS4E3tVdMDHssr7pQg9r3h8OSwT2dWgd+GyEiJ2M1/B4d+36VPT6Yf0x1NMW/Cb3pwOMV9q9j7rLJEVPuJ2VO+hBAI8Dmerkk6k7/R/N/K+39+jvuUA8SfIwSIFKr6tlfeFRSVHWBRAcf85r4CYdptJP6MIOiWYjD8FDvix/wrx1c/vybjL8F2XHWvD9ctS7fBM+G9CkNECQyBDmMF5j/wsLjdIUx7PqL80na12Gyrl4m6TEv1u+Rfiaho5KFJ9Bz5iu9ku4vM9CXDdA9f41eHkMQ13fwhBM+V7D4a9z9GUFVPvfuAUBr9om4/rz0IMMSdHJosy1zf15cGcvOIn0kw5KGZgwjIS+g0g80MYHIwNUmrPq2O1hwKMK9PpTvfblBSlyuK1FqGIXf21C/5UKppe62SV3+EVT4I57vdbq69xpJtzOQ6tiUjCHHB21pbFKRkPi1a85Y8gkT1h4psCt6+kDFnW3IXWQA6iyklb9v17eS358B6pkinXP8+Pj4M5d7/o2V3nu0C6AYzxCcjBBA1NFK239nmbSmhQVkpyFmduPX8NT5INGfI2zNC4OjhODYarqgcJ3sdXTx+muG+gshIYueitYyLIIztFFpOC04iv2kt+tu7Vi2MPIEOMIHIJFskieunBzXWg/h4O78FhvAajamix0JWSPShUumYgCIwIjAg4cALEAED8fyipg014lNq9j/ft7xtuvf6140RjJ9/FkYXmREU91FJtN8g/+n59HYx+aE1qAQNSVdQYVyMAbOj35bFN8w8/Jq6blRzbKcFKH7Owp2CeKNuSRkhRpCIVCMDeRA15I9cpVjulv7hMh5jyR5uWgSAALhI84BUXljfTVi/VX+rLbHBhq/vrqft139PX7VVbfTvvMW61DCrkNDqphSMP/MHW6IboWkdn4KGpGv6EAt0qAg4cecvssLveXOqFKU6CzcTWUgUsInuGCYVORV267Hn0fV9nx47v6aUwfAdwnJ8cOXXfgi5YeiG/GyDIBIEMRGIwcIyuM59suCdJ9Q5/74OtwLKLJ9uc9OOgQ1b7qqbTcFkZtRoyem4811nhoLhi3zyYaDdEQ3u9RE3eGFFN/XpDxWJeBOrtSjwBAD9IH4aD9a6IEjIshFIKCkBfQ58nZ29HD/h/j6ujn1ofT5KcFtgFIwp8dXGBdj64kkYoenU5FZZvMPhqKBoKhNdO+pb/KeumsBaBDREk70zQX16KIFsDDnrVJJGzABl8qb3wlT4fA6vjxZQEy0ywefeXgqZxcgUAqto0uk+aAShSaYB5SHpmrLQug82Q929n9Odvwe5pmhWDvRMhIIAwhIwjIMoi/5REiUGFhfuTulNW91OzoajZw+hUiSB6XJvm4u3bpOtbv6eaL9kr5OGuCyjCcsDtTuhEck5SF0Q/8qBDTEtIJaEq6XNXZD0jHafMNBMcV5jiHMtQ/vVdb9WT1JWJfl733+zJvYJh0B2thUzo5Ol44/4EY4IGIEaIgbv0n+3Kc7/04hRuw63+nxo/cia9lEe/f/584V9bQ+uVKH4t1NH/fay1E/fPvsOyno1QP/yE4vxf5NHgZexWpd1i+n5BYGWKyA3fnb9RYJvTs3l+vUsjIjbeUTQBXX+K6w6ykRcWT4Tlyk+05d6zwYcv8Q1byIBv4PEffBsgHLTbgF1QVhJEPDSn0Z7rJk9j8W7fNJcu/gn106IW/8acm6+mdTpP1Pg7pj+/X38p4xau8g4wC0Vop4oYSZPw/CrqiJkLS7H1vtey+0zecMXABjPsjCuRSO9DtAEIG4pn/EA5QYq4a2b2/rcXeMfBAAn2fy59/H0xcf0ZOizRdQ7OUEy10xZAk/ilEFOcxhPfB5//p8NNKYUkbqSJKT8BzzueaBafbVcg2YayErTvmvwcejkhrxlC2SEjtgGj/cfHdaJ88pk0VA38WbDY8iER9pZTcE0rv8tT+xAyXAaLKTXJMw98NhhxBLX5GIv4guViNANSGscWO7ZbnxcmG33kAQoRyDMOJkC3mC1dpeX+5OzOXwHzW/2sjt/Xz/Vv3aRrn9gX7v+/s+5ryc+gvZ8H7vbz43z7UqQWCikX02yGZn8NF50UPTL43RZEkkD54fnARchP2ZQ400fRmC19KEfhYDjiuI2lMp1KFs2spH4ofr1Qs5eEdIXCeU00NAReBlH1Jdb+12973IOb3av8WuPG53KTz9vXnw7fw9TTbuKeT5TJoybMHw/N+3D39v632MiJOMoZ4pWAkgRQWQUFIsFJ0+uyBiQFAUCRFhEkVm0SgD8ph8oOixTAIhYfp3U1wkS0tTIBY3D84cKXdGagSCSfWD6EP/ImAbOQI3xMe08RsDNbomy81wyQx9fXqnH1H/0sNpkSRCQkAZEF+rq9zFk04O118v43W4TXo5uD29nVj9qAmbcN/9nBn7mzSyy+7Kk5Wl7HRnto6f5DKTQdmMibsBjUf8v0RP8fE8MlEf0iBH9kj38j73ojIEisI+o+ooDhtCnCBC+rwu/JOkE8pctY7oqGSApz4OPIcVvWu3uSw4D7fLX0jDtTXpoGiBILIwQOQpSySWAoFSNtUwPy9vd93qhPPl/mbJtUoVq05a83ZMvkXmVVnvM/03oVq1Djogy/l0Kq/84u7OEyHQsf6nyRIM/2vJKmvNuj+zWIlsK6cn32AOiJxJOwQxd/WbMiiiFpyMKQ3lERPh2WdrHc2cj+Pa9ltkjjO5TxY7UmuiFIBAhZbiJ/rUYkfMGSSpg8B8/Hp5zMRLQz3Ds2u91URyy/WG8klXn/Xq4O1ryfThw7dNTjrQO4RTN8so5Ke6pwQyTRBSkBQkGQSQV/xOaINa2w9fD95XwYHKBnQMraPDqXHXFDJBJDaTfWBcBBOLp4c1nWJunkU7LSo/36eqqrJgfhCTYi+4TAA4tnAIjCTG//kuiWZuc6F8iaoUXU/3QebI5Sig75H5eBIUhgXjTq3ZUx6nCq0jsieQg/ApZjwrn+2ivrw7r9mwH1FCQ+/PpH8n7VAYVCE8ALFQT3runkef+gbh4BA13RMEGJ0dJQL0N4of5s26tFoH2chTfxkzZyzJEPTE2R9OOm/ipfk7CJCrtxyJc3LZEtUX64mJGHlFsjaTFLUQUerPISzJxflyRYfs44H8Ojvz60OfgKQHhSBi5ePG3up+jD04dX+tsvcQBU+o3z4cvHg9CT7UDcqbxokHipQEJMCmj6Vn8X7Rk+51VfD52H8jFA7EGEW/tr8mKAEQOxIlvqUBVJX8l91vxG219P+R9qrhOd0vjVWUUeghO04nBBKvnff8NOWfn4eD5ejho7MICihtqyAGICL9nmwPABESyBkAGlEn0FA7NTwV2ciKUPM28Sb5YNRISDvGyxyAFptuE/9KzfhSLOpT/h+WFPl3qec4TNCo4YgSMgfTOaeuB7ZaQvhabO5Cd7p6QnEp2FXqPOqthSFBSKpVJ1HZy/K1qFJf6LU5Wdb2AmBiYv1HkDNUf3zIbx+j74ZN+viFn/InzJyKQH6kClCVPx/U/Wx8qdUQT/TTYngf6DGgFYDJMec4FLGyh9xbYjYjYCAx7BKw340GwCnP9UnEJGY9FgbMWG0uqARGBh+iMZYuWOn7UjuO1VpaSaRdLWAQiaB+/1e+rFPjNZy08t8pQ3z+Hdc5o/Izvaf3Y3QL61cuq9yzVaact15OG2oAGbs0NLC2lN3tOSofbbSR+UI5J5U0D+egtzXHfsTjSvQUNWLgIdduwzNJtMVQ3AxfgwlJjwDg0U811mH5qp7LKd/8PdUdWUohIGRGKFSMCIxip6JBNguocCh4WjMW0q89Zy0x+5lnB91urspYsMDSvdTpyH4m85R+jxfnb4Qbo0MeefIv4z+Q7N3ZoOlp9zEJ9JEAi61Ilmap5tVtUxUt6lMJ+g0MZ4KGdTYNF0BAM4pA/Cvg41sx3UNV3PVtCLbCnW0VUKkDCQAOQBPj+Wk3wdPUhT3tUZq48mackHDLVchkXwR5saoo+yvildT+4pb0UKQRRJ0H8T6kWvelLYTFkcX+TlNd8kl7aZEAYxEYxBZFkgCqQiJIKAoAoCwFikAWQiyCkAFgsCRYpAWQiwgoEUhEZAFAiyQRhIsCLBVIsgceVPL0XPuXp4f4MKPRBOuCQSsCQPYjNv5oaC5sUUU+B0FBT0EDeWC5yPvVGhQyZUHrkZH1g6bQLcf0/6cVpbP43/3OFaXFt0Bw+43qgCLZH0X0246aMPargiFN0MQdC6qpFkcT7yr35qao+4/vrCv0mrCuvWUpv+ytPr6/N9OX+Jslwmbb7+mv6Yd+vvzYSP7tUBeYyLuL5/LZuJkQMAZJ95TddQOpJBX5QnWlYsiYXBQ+2HBpSjIu2XkCakeNSr7xifrNl3vzeHZpu7l9TVy4r4AdaA3QGoh/C9Om2HkJStt2mnZeESzGZJXWrxXihfjoed+ASisDn1dMkXIm812V87jftib93OS4/wAI0JQSKEicsaRMJApK81MQWP2/mHdt+Alp614RqgeFSLpVibI3dblzTvYbjsym3NyfZjuFMkOkK0hj3FKoBEYxuggcFSopOck1GT6GELlT91Y3+7bycbeZX8ctNy5SntrMJdqkMiVH6pemtVlv1bnZOeMD4IwzIWQaVVCCEKSMoIGpF3EB8cAvm+T0kBqQZFNkyZucH/P6DZC4aCMOPVYVg70PR7tMXVAWeBhKkX7ftvS6IKEYxy+SEC2QTM/0tKP+/S86sN4mDxJyJ+UU19z4RnQer3Lwoa3c75dMRgni/LmGq+bn+n754j+eH9kXC3z7QszH8U0UgZgh4oaSduyny4MuewWpBmXJVKA7/zfFkcoHQdIa8VQhqy5tWCZnviTxM0wkkGRDhBGGMiXWU/zA2tTt2lEJH6cnNnBMAF1yaIylEkSury8eHDv/75mPGNRBTjGy4Z3XU3rKCBr0NFYU/6/Os4asCZ0ZPlZrh/6gnm5ryb+fqwXNDP9PHwdffuwRcXhUGilIH3jdThOoYy7TnsxbRwGwDF2mVMMJ1JohOcR6Qt+DCCZO0frvebNFUOYiFEQPlPwa/rQ/m+RkcfgaD5T/dHMMO080uZVuWyv597RmzBo26Dr+yXuofZLLNGKf/Jzcv0ge4kYEsnr5C7Rv+CKvMToggV+2qsZKdTwjEf+LoVH158yUOMvnkhC0Bfsf5/nlOfZZN3tgW98YHmNBaGl19Qsbtnd/6ZUPFZhvSk/GuOVJFWRJCQQAv2fu6D63NcB33RRZAwwug05K6df613F3Dq8W9/3fO1TblObC425CO+Etp8d3x07Jz+yaYGvD9ff/5v6bzxKZ7XVqMGH/TjilmG/1fTXhQuU3jRn4X/Y2WAluihT1msoXcGd2K2Y+2Kh/SpUHMQxo8ZX7D6La4MlT07xaf27//257h5S8xigKEkgqirBYoRO4HB9GFBgDIIwiJdmmFpPDZckZnEb4ldaV4NuPWWSZdetdqv62z282z93c2Wey/7DSPo4P6JY2/nsAUwRGYIH+yXMgYPJsJw8lo6+pS6H0hxs7oFliSGNIZabKg2RJGRWRD+cJ+ue5SgLiCosiCukD7WkCmYs7iak/gI3YRcylEPhv2fsHnt2ollNxkoZVCT7614DFQHLFsi0O5abcN/jrtsMFt34WX/xg+je5v1GJ26xx8wL49ki7FVhq39epeeVX8upkKmwn4jBbtcQ+Rmf/jqEJDq81OmGXmhQ/CKfegKkxXlEw7bL7Y525/MRfuXTT/wepRqJ/YkBuChIyEikgAKAsiiyEUkikkiqChIsFWRQWALICrAWEWEFhARIIigEWRYsIisUIKSfuIwD84Df2PJz/ApwxuzzR9fo6netFMGbPUkBw8dvg15PN2FlxKERfSGwSi4dC4Xt2PX/lftCfKFmYoairamSxBYWg4nO5vU7r75Dsch+DxDOcwAByIgRGwFdqnzBirAa1ZUFlOAIMO8d/zZmze/yEU3Hd/G02c/WqJdl9jhMVuBiEiQIp9ynUHhUjULISbwOtUoUAJRE383AWWPBWr6Tgx4zy8WCDlNHXxfPFsgcuqgFsTTN3/uHBwWaOaSe0feC/7c6gBdvK0yqzSpfFUVd/JdTxdd7HmMGNRLT+57zqaCJd7XKdWRFUoIfGFf2cXrWp0kqYfDLltAOYD/iDZA0BcP5L6JG6xbi22H0QyRJFZEkUhOQVB50GACSAIBIiIUTL1FDZpN8twGTw3h7QsQuyKJobEtP3r6qMAPwvD9Sxf8v/XvYfq70fTgREU+J4izaWbN6y+GnCeHSFifzEHNBkSQxjGFzv/+PPoUUwtk09EiFKdLApEMvGXAy8+u6cv2ceVt5N71Umn8tjxoRYLBZIsIsBSKSChBYoIkgDFYCohAUFBERgoCKyKCwGJIjCLBQUiMWBFhFkUFCLAFAWEixEWAsIsixGRYoCgQVYsBQFAFhFkFCQFIE73b95QzjT4nsSfanXUImGAc8BD+9lOOR2hFonQhPgwWMSuPzUmkhPS7PjZ+fvvMQ9Yam3wZrd/QJA7kIbJn7AQxwJE53f+S8a0SNulCss+BL9bD2/wydthvKk15XZcvYjnL4f3MIJ5y7Yqtjh/KhJr4exhQYJMH94XMHxQB/TOAB3rOYxgYMkAYXn9WOpYftQ+vmP4qWxkZBJEhCTBHh/qj+ngoqa48LDicss3y7aSEji185+xdwmPRAJIT5vQ8T/0QwUvwBMHAh/KhHPCImAYH+X/rQmSIAiXnpHd9iAsnBMiVr1cHBoR2jrkYAzWt6K6oos9lQAZVw4sEYJ3CHcxWxMmtTfqVXNqn+G5JqXl7ueyo/rJouJcYLVJvUt4LaLi7Vs9lk5WNLdkRSjM1tXZyHPZO6dsBoMnUKw7akSMPmydU7JY+ggUN+baufNcqFbYKh+suqXVHf/N0VA9fuHEB0o8hbmN26JoEsM0etBp3NPkrYCTTRP+8HJz+i1MJgoDbCkkSQDlg2fdfpnU8nF+ezT5deGw4x00nGvv1RRmaoH3avyKqhPioGmgkFLaNyR//K0Ma2FIypUh+boX7ujnSXpO6uGvN3dVZ80lv9q7i3Im0wQ1MAKZGZEZnfYGQxA7J30MRVA6OniEw0Dw39PLXqn7yg3BrQS+NKmCl6e+x8CEEtjjZ7BrQ45gwJQ9mLp05bUccPBBNNT0RwaxmakS5QkPlhSSeO2SKAiQFWQEURRQWCyEQAMayVOosPV0fypztUiC3CEc6VdkElARlUJvKJj3eSfSVe3NdOuefCnhKFHzRtPmV085S+r8Qg+07mBDzf2twY09rfsYA5SH8ezJh0dPwGze/L2YzjCHEMcC8SD/4qaOBNq2/AYH70c+9MgjUFBEkBA/0jqGf5X4lmX7GE0l2ODFU9vT/KiGqGZFqzK35f+5ve29e3jP3oWgNKu921P9tCw/5tZaQaa8KrCzB0CZJaFDlDZ6VI6IrGDzZlhFus7yZRx/6/vz7k6vPWMnhe7/Lk2mm1N5h5/YkVIAWwkd5AiQGgsGsdhy46onJLTR7pU5UXCZDec38wcV98P7EIHqdUT4rWg3LACwckZFJBWRyxpBD6bfFiv2IXa96UF/pMe3FYFMlNevR3n8rfpiIGDBkXzGSY4+oV6ZVevOv4xZ8Ehqx+NHv+JByP8fUduj7snz6NZp6sfAu2NhnUY03oqFC2xii1ZpKJZBOqkK9cjJFSnOgjWQf1x0wc0oFtdlKhIiFsFtOdjPyjncloX3EpX56C0ESGZUWcK8nNUlnkusdM+UHFD/shmWy1kQYQTpi49GI+/Pp+8/uuTJu7FHTny496z07+AHKbd7mpnufUKvUw4wzSSq0v0qlYj1Xbb7RVZ+1hdIwAMkQMRGRkWQBQixYCgjBYCwWIiySKpAUUiiyBBSQgpCRZBQFCEVQFhFBQUgiBIjJFgLFihFkgosFgKEihFCCwH+r6MPW+V+Gavjentot8lhyYfWysWRyW6TWWHPi1ga34uEx+I0/oZk1O7KZiGwIYWSQSJ/ELlNNOTTfgltP7hu3w38hfgzb1mXWgvl62HEAXiPKUsyA5BEABTMtQol7AW5+hE4OJ0Dc589hxhJtlPj56XdLdbcvuPyzyGzIT7sonQO/GVpaHEkpsiYEGQF/uzs1Hivpt9uPbZgikIP/CEKFfce2w85yfHXsmzkIeYNn1wQADI8F+1ET7T2Xa/qs4sH/VfSkaaM+bgr6Zo2X71eLLZSKYIPYgao3RM5ijp/e+u2IkCW1ttUL7L3mOyVKbIH44K2afzw/vN+h+tlk4NrtHZuQ6dNiMnvp3piGYlpHA6ZeE4HSFjzrHDC2tAClVhCC+xYfEUNI+Kk/EAMC+EoBpRgcp95IeSQ319TkxEnqsTaB43S+qWPXVPPB3VTq73x84Weziy22OiCHYNvB0Q/qCUIAEoIAcTO6cfnQTNz19nuHH0f42yhGVFXqrKPllmpf/M+yiqlL/5QTptPOcz0Knc9n4FGZTVE0jxpz2UrEVdzj+T3/vqoZXz189HT3o/QbFsqS5wb2JKqdMp3DhExzkYGMY75Tz2Tc0WGysUFWdvT/6SYTYH3k3QUMSayQ+P+0bP6zQh7K/wy8T/kpir2uxhUcxcqF0VSQQMU0iYKbHLLu6+v8968DHC7/Mftu0bt3YuUeDTAu5lmSr11ZetyBO8uhsqayq7ImpUVv9Sk/8u8s7Gw/Sd14F4ISgepTw+i0OiRyO9Q3G3SleYMZ8gEeRxxIMEaIgYgRjGERSKCyRZEX+pfL4ORhuzDlf7gBxlkBVIIyRYAKLILESEFIMQBQFARgpBQkWQFkUIRYCyKQUUFBYQid8OpMw4T8h+yGvWoe3O1EQXTzAUc6TsgAIQ/XFbLizpx05vszVTTPytv4n9etdliuyJ6PtKC1hICySIESCwFUhBZFgKQFJEQIKBIAsiISP6RpA/GBh+B5+IPst/LrbLTFTi55jwBcnptWhm2TMl9DH/Y6hn7x3zrsNYSSsU9mZ+00+h+BJllQKPWVNJgxuoWZrJpp3FrdZZXd+HWHRW6BYnbOqSC6VTwAjiMH+5VaqbpP+GAdEwbh9q9/0fv+TZD0INCOx65Gef0MQxMgSAAFIKdwY05go+GPI4vedt0GC2l1MOHvH+Wpn5cOqXADiAQyFjBVMiE9PknZ45oT9p72jUuQ5hUx6K+JkOuMHKQWLm19ZYmCZvbUbiFEFNlhZzB9Y3OCrueaB6Vp1aMqKDffZzcnNSgASfzSh74vNruvSwLo/AqoUodlgeKb+VGM+/3fLjJP6dnh+qm01EkxJI/BUh0SPGJP9S2IdnN7r/uv7WDr9r9+C5AAwRBkGc8KIMoocwVJIjfVOxW0fimqlTtwoyVjtiq6g4CfkfHZMFP+/2OsrkXAbaon+YAxXcsPLkoekAWXZaSTprxy0JtKwtBZBEY3uUi5zG6gTyO1Cf0B5yAH+ChYWUrD4VS3LMP211/2YOx5RFSVAwqRLjv/fU71lBPgwUwf9x7tpg/W/Ps+IlQthICEgkiosgpIoyLIrIKMiDIiEiSCkhfShbYUCp78h2i27t3nb/m/z/maMBZgwZM+RVNzTVokhLS5I2xaTX3L2JIKawV5qJpPJN0asHUwD5oVWDhV+nZyaMxv7fl+HbafTkvqv+OC2tJIvQGChdy0tgSIc/bpi4QXeq3UC7AFmonfBgWBOZIGNXoGiL8sxhMHx0KBw5MxY/NY9Q0ZXRd3M9MZppeRkCRQzIvdMlX4FBVVAZh9UyYfF1fsyd3VoF7f9jl8lBs2zcQWPoo3weTdDVHB/qYEwrteS6K/YfP3WQ3aOVPkOPGU8rWvDbQnSbsaTvFBPuSGsrVlY/p0Hiay8u3Cl5PX/4AFxmhAhtCgESkkEggRezr4g1JZuQmtU/Dc6AxnAoXDk8n1+tsbD1zfriiOGzNv6159ODk6mLoIAlhAGYIxq2tgL1FVBJHxrgLDgoaHqasxf+WVF+4cCaxyUS8pGNuy277OL/b7Ne/7Nl1nLiQcpHJKSs9daYoFISST4tOv5y30wawt5jqc/DrbhMf+Dh95wWw4hMPUo9VssC0yCTmrNBF+v3ZMJJNJIqKrOxDtJDVY5gfloX5MQ6eZEPmMFEyLPmQhh13Dd9UHxDKr/CkR5n/KYb7oS0/9/r5ONfLgbLDse+pqRN0Q3mO5429KCdM+vlLbB5mMG6uPwUCltMl+XRYjuz0M8HDEB/vjVKCaZgtTZ/J/DqNdl+V0UcEA9YMuFGH/hiprdwFM+2hjZ4RAQ7CqlDT+zuzFn67+T0Zkc3+7OHFiRFJFAIoD22uMqRQFgb6nm26tvX/336dE+/mofGVGTzfzjdoYtlvlvo4WZVt5OmEA/6lcCHzupW/fwnHZHA+afqbMubjB4dRBX+qt7juF0KhkD/tB+OodUiDE/4xKJyQqR309YfYVOOYXYU+8iOCBNJS8D/tNckE8+804VIjg5MtZvZLOLzWXJbJYdbVYiWflQ5RNN5SIZf8nTvpbFDyUe8eF0lbTkva6HfoX58mE5sYO24ewDwlHguoa+zbx04deH2/38Pm2eLTOdyRSs1/TQHW8ZuOCWI4ICm4Aga2XYaGsifAky5snf99HJc+KQDfMe9kygc4F9qMAagLXJUb9/TXGCb0RcsBKoZJjJjx5L8gUtXBPwgNIsfZKDbHDHy5fdhx3ZHVJfyH+gAg69hyAW47JDmXZ1uW43v1l+2LfJ62XbKcDhLgbGIcPddvaUItkuurqb/pt7hlIyL77oSiaFx3/ogX4h7KbImCIwhIpISbk3apOCxMhFF43GZpc7O5jKheoUiiSLZ+0ePBT5Ib3k/LHh+iJd4jmA68UAmIDaYIdJjShfFtBNvTwvu/bXlRzzSH0nG8XP6jb+PqSvKUR1OthmFOm3VY7p4Y4rUeCMJ/eWss0nGwkyknVhh/H/BBgHSfth/6fLgo78k80eHkp4hga7BBoUkgc+w81WyEkjr4qNn7QvHnFSwLbj1dpw2pOknS1F6w8giULOMlwoCVOxFrCWfhmGwyHVxa8PT6DLgUOG5TJ9H8/CXl/iggaYsg4M2f/bKZP0/7u+fA9meXk5cmLuPrswoczgJchLYoAhXdrB7m7m6GklSephP/RTzfLarhzP2gfL187F/6fdX7xNzG+e2PxxZIwGRkCSQEkSQF8RZ0b/zF6CfxvArgTE7IEIMkgQiJl46Wa0BOKINmf/CJmLhLoB+4zg+CjqvPgAKef9p/bdqA3UwQf6OQlNkbIDIskgLCQgq+K0k6fpLn8vPj2fPYgeGZky2DUR/BCaAwX+WaAr1dUlY3l18DZtnsk73n95MeYdZFz4H64nur/nwe69Ph3Xd/D7Yfnh9UQ/8++Df5srj/cUZ+2sfVqfq/pyB/4gOokgMgoSAQEYKCgKQCKALBQBRQFJBFkSRJAJBUkf75thxnkf7Ug2duXtU6oELxIfiEbCScRqwFc/H4D9Dl40n13uOJh/OiGSAA2b36cGksbc1T77aWUQ98qANK+0Mg/cZhL5Rj/gC4w4w7iY7YJOBZA+Fmd/OlBhPI47q+QcFwiMqAiEGVd+byQA4T1x4Wmw9XLREqHhP0p57GQ1PY070Uuq1396iGCBILIvBEAa1o5gGAB50mKwmvX6teHlfK4MOTv1OawHrWlEO4IW0/QrQfoh+3702dB3K9Y4OpU6J1BQILmgFYUjIPBN28Aah5pFAWSIFZCgjZYUgrCBEUon2ARCFzjkCy2mUhUigkJRKfeuRIZITSV1ZZo6LMHENiJUJhT9shZiZrMZiUYDgyQKZZCIJdxIGCmLJQWQtkmrizFEFywLJlaploCzFipKFpEZBwyUwG5KXWrHgkAqJqUK7ZjhIoDAcg1hhQoUpRik0y4MKJUNnYYXrgG2SGyAKpSE4UmGUQEqayQC5FSRLCBC1jbBTZksDKqwRlJJLuTKYWYJChzOlFOvqpMQnZaTTRgLPa7r2P/5OMZD8EJAHgJyl1h8E5Un7Dc4ew0IGH+TOSIzm9GfHJJnkhlF7zOUZUTTE5iH+gxPEYNpfmOub14+oUSXwGLAigoQ/Qgdj2p+Xjy7vwJ53zuOkuvIbb7J8pqBaO6+3Gv6nPMaZkoMrnF5yBu/0OBAa0hr29n06NagRRQIYhkKEyvtjKHINGku5bc/ds4d6mTbRylP0xXZu9emeKl8AkQs4Mp8XJ7Xbj4bcffxylLw3IPsWcU8FUkiz6JzRVUKTI7qQn3Q1ugM/xdOdN+OxJAkdxRRNREuQ8KRDMN72xuHYIJZN4yf9q6TfNFsKL4lI7gHkPaKTI6jI4WG8rJys/2YMfwflFPSEA2MAKiJIqOQOdBYsWHNIv53WBQOQzYYGO5JFgCDeGlERcQQPRfsWJcBFHocDlFqgcgCjj592nYAGOFXNIPqCnkRFUrzjWDhWUVuIDtWAqFb5miVFUijEkUhETUgaZCAE2pAfKaG1VSQRc2G6qWihiCi1EiAe9ZzVUg01IU7OqICIzt1/cLo4nscnBBAlOamm21DNJOYOuVk3D2AxkWPiczt5mnmM8D70kZBkZhy4XA02BaAQqCEioYwQpG00bV+jAyJUMaMulMIcoeYOZ0u4YrR2HY5YsUp1EkgQKTZrGzBvQOgys7AClgwIMkFEWMBUFFSjYrBESRIiUS+F2SldiRABCLhTPGlFvAL5+OAC2EtTkUYkWHQ0Q2Gw0cNCXPM+ceivQei7WgsvPQ+0EDY62yG5eqkUwoWoTm8eTcTeDJvGcZyrmFxCXkMbzrU3AvUTMlVRu00D5BkCRYREQQVGAKAjIRRiAKREARFiMIKQFWIIQUFWCgsIoQWERgCqQiMBQRFSJIqgsRgqgCMFixQgIyLIREFCLJAWSKSMQWCkIpBFYKRVFgAqIcXbnbtvyg01lzlubCP+WeQBBmSzmNiExz24hY4efvJZUlnaAYL1BE26a9FcNNpTXciW7UASjx/d2sWrOFdhp5R2xk4aR3Ki45PP7VW93ny8sszyo5qLzLrIy1flb1nMeGmXDanHMBFl3zi4OCFBaRrAt3eQWdUWlqjg5fQSElyntPHzKuZDc7w377qImpjaKCuXHK6Vlw7kmrmoJvum/09mCyOMIDHPGR0QRCMcBESmKrRZdzZfLvpUnOOjkbvBgczACuOrDbOExDGkGp5iQ4WS5z12YQREw0rI7u5l9X9Pmla7FM6bCSrHeS21NOijjkmnAm6scp0a6cpmNOLppUmTbbuyqvFNZZVUzFUuUrKJTJukr7Uo5Y9RQ0tbU7ZODattITsTWUqySlKVzI7drKtWId1cXlpu9q1palO8qVTd05pUiWxJDGhqNVFOpmrsKq021OKigpm2GMulWxmha6LRzMyuZrWXCroqVZsANxOQDcBiJMBEpAgkiKyC2xagbGAZhSxyRTEAvNABYTEVaiMgI2RGEQoUSKBuItEUCwgjlACCBcVIsuFLCRBgf3NUkxIHqIMNhkWEwRVASECQJLCCFEiCEEGMCIL7xkJaj+cGiAwXJETMUJAIRBgQQJAzFS4tpBHkCoCSIYERFgVmpB3Tm6ZJDSYkhjITEm6AVNM6zMVMQzLIag1FQIe1LUVuAVikBSQ3YEsYIJFAm7IGkHMUDCkGQAcQX5QjJEQtWAf4JCKkQ5FthkIVFOkh4XYHqOSJairEAhJECRCRIwHAiixBqAEiBIj4R8S7KZ6hE+/rWelZjXL45WDgzn9izx8JTYcA50pzRV4GKUch0osuYdrsFThJUS+NxEE1QAF8d3vEGedyDolW4UK4i4ezy9ji3eLiqaIEUpKriLXJdGdYlEOC3s//00HibOaiwvznmeNrp550UIKf0f9I3LvTvqlh1oxG3AI/rmMDYinC563mSImLkzp+HIZQ+f6+ciTO/JVPrv7vnK7stEQAUJcb4qlkQR7mpMi6sYE2P5/3BR6UMRHuuNQkCRWQDB4Lpikgv3Aqakiq6IApknboBQzFVBqIr5BFXcBF3BUA5BVRORGCkEUVyQEUDcqKqbIqK91l16VLh3Ilm3GWuXRRB6MM8VaES8YbCuVIIJ5BJFJBAkUBkXRcVFBPJiArdBFKd4RzJcDEopNAlq6poxMIgFy4qitxE1C4AHYI1FagqG98PvjU1rlDX0XkBNkDMb70PVLcg3kyjw7y7gvoAei9OIsV0tUJGfh96yc1tR2r/T3wwEEVIpka2I5Ee49ROG+IboJfBFucw3h7RxRjaUSVUoSg534hEEKURETbBVV74R8tBQbiDqASE4ZLbmHLMCBBSG6AEd2bg0U50x5EMxQRHw4UCo+LEFLZo7ssU1EUbg3ERS9M60hYoCBc3m5FkuNBPOlOBOxTXlKAqdgi7gBqIoQZQ4xswMivIAAciIbYaGCKmggqW7i0q9g7ioCPdEFKm4LCCUIYiA1ADPwki7qkPIJ5BHtPI+Aj6PWbqEISSJIGDoQ3wPUIEYAmrbWTdBokoISvoXRyUZ0HKHLmLjhtYyDCYTgE8qY39vPFAogSpafNdovYpcs6xIRoCZrgOYuJd2hfCZaP5gJhzq09QwuCSOD0KVsLYl2ieZPN/9Vh2JUMmu0D0YAk7vAIjyArAgBIZwpoQu9UEgUEFKii5iVqzOwpD1xV4ZPCSQl7oQEuQlB3cAuXy6XeTiJcMmoO7cyzpS7zlRAnw2I4ImIuI2HFqdCS+yZJ1q1zkqFO48rdOQPmszMhl5ROFX22UngZEEQGFZqzDNHWX/1c3eBw6R+lQoSPypim3Ns9xHZ4j0FOfd7MnUbcYim/kao3fO+4AgDYA8QJJclz5Wc+bhwK9foULb6X1hApn83rcY3ANHMlGKoX1koVESMAJmLRJpERDEq7pdedncwazlAgh717EcAzqJ/1lb5MkGJzkReyQOBoh5Eqedoxqhxi9k7UFEUahpFvDlnEGQE2ARpYdkqWdURmnRNhIactFT3kdgCNvetxbZM6dOckORuGs6Es6VchaORczF8L73K2RS9KBDfXnbmgUveKzjkW9O9FUBoXJmxL6O8bT7dYOvnNGIAcPHJrzKDqAWXt5uoIJFEbj3mV5GajqFD7IbsG4tgqbjEt7B3t6CiIhTP3LuDCCNvbRSSbH3xJwk34yoopu6OWOrVpy68Sku72Ts6rEcbNeJtTChclVzbFhSpunicocWVRy3SZieQmOac052SlVTMy7qGW7E05LmZ0TUpTIlA1UVd2Xe5JSLcS7mdVzTRrIHV3QsdTctS3KTgqamVVQ3TdTMyUOYpEjKbFQTVp1aJtNTVzMii8zNH/v5Oc6IMFN0yHFsIHShs4My3GKW2EUWlotQRIxikQYUahKl40UxA0kprgEMVGQwVFmtWA5SSsVtBCNGQvCkxWTBgWDAu1JiskEdmpEdMNxPM6UZpaFG0a0AcFGzg0dFKQHiSX5yRTKIvOWbBlGkLalKyFZwtDk6VCYhYhU5QhSuqSs0EQYISpC0rEFYNGZhVWGFtZKyBbZeVDaMmAohFguqUlRSotjIMVQUGM1SpHIAUBIRKokokttRSKy2VAsSWtt2yaGGGrFDGBcopUYGiwpFSZWu5LU3dZVgunbALMZpWGNIEGVWEKyREgioL3mGZUKPBMVmJsySsy0GQGNqyUjXdCUZIsxotsuJZcJJAzIG1vPmWZsUqEWQWWIKQFgLCO9kCwhEDEXTDlBhjBTSLLZbSgUtqQqLKNGTgmCKiYwnFxBTZKx1SJBEGNjYIxjB6aMCJrniOCAJbCKqCfQIkkkHgwzpKdGEghSh3lZnYjcw7o+c6LOPXFvthzk5gsuriWPrlQHZ4XnecobRCxHYKvLwN3l97gQFdza6lI2BoMDtRJay/87t88ooiDKjng6sXeppaixQZEeffTzDlc43c4LleVZBAuHF4uERaz5rAPLLMgqAnrXgHnnd0SrHBzt2IIveH1iR5M0zqIjuLyfCrA4P4TEnP+VvtddSie3sD567DX40dgEj7ukfiqAplYqilKQE3ABBC4ir0iIoYYqK+kYAHqCqYWCIobN+G69BrvTy0EeayBQgomxJwM0aZlMCrzlm0yladIeFyqotSJvtkyFOV09qb5UDg6p5mwS73ks+jjC1Fo8rw6Kz/R7NTSoqZwgvdwXV/2p4jQ3F680xap95Dzbq8moOFEq53S+EQcxJC8cJuOriVveVtBwmMR18ma4zbmpUqPqqztaL4gQREQ2RGQiqggeZmtXfXFZnl23FA1mlqSVBFUAXgMBFUF8gKqCg1PRAN3dsItEKIzcoFETEQFVRHyIi3FEPNmaWNiGIIiQiCCHSCj5FE5juY9soFzGulEJi8YxcIqwlU2IIjaQCJFQUe8pU1BQPr7mrBQdEFBtIPYgqiVEADQEEVF3AADxzBE1YCB5ABD1BQchvZ9uAQcwFHpFVeZ2hJRASXMuTciA9IICNvvvMlBT0DFUkx68hCm+G4bFxaC/HL7F3UDExSxBlFcbaHpoc30A6mRsiSYaWFaZIhCFsEJ83eNx1zPUcRqGNwIIMCDQchZnA0QJGiLUJF0hC6YKdUU4aOrroyg4EzvT0XOqacLi+w/dgZA708xqdMJFAICQQITuzJCCoiFAISwhMqatdgvb8lVRhTc5hlPijemqNrhi5YSpsX8M+eUbEBzp1VCrseQpDpzX3sEnKves845R4nNX8MHoNZP5vLfY8QTc9X4XhPJNoXqGzk4H5UXI4drZ56f0dOC//vd1rup+X0UeIVxzMbnKxAVPfAjiYwpQ7u0shKm3kn/eDxYoH8COkcxmS+vwUdzGYuQjfG4JzN0oCSS52YDt6XQtJiKnsL+5NRFqEjxRMQpSzju0+vOudVCgo8IaDNszkaicgfeIJmPFdZ2Ga9GDK80IYrzxbNGnIg3cvsQ4OA7yMg2CDLu65cvmbMcu53lXZUIjudQlB2tyIianYN7R2WbyV2ZwGiCKu1lKA1dnQV95xQ5mGcmeX20dqMZp3KuICAo5zpsYrrhzM4iCzIORWF6ogzLzu4Vzi79NnBc6K5kU5EEEAVHOXPm3ekykU7iU3fBpSKVjq8dt5jcKoupoQrcZIsSmSsuZVlupYiWNMpJtySTcxJJRMjc0iimlKKHQ5wmpwwdUmYrmS0UUphEuR1QxROFWleKEqxzZSwy8kdS1SMadWqUpIumKXVFMRUvHSt2rZXG3ROMyWrmVjclVKTURJJlzg6zTlyzZqf3gdHOMIiiUEqxIyKfdaRmHGmJGYFO0hbMBnTaZCQZRiKohW0WEpVV1ZRQgib62M2GpsmybAMz+1ljgUsKR3gQWAksthjWALMKAVQSKplLbRgKRtIyIHktFJgNqKpUUAvNkIwEZZIUsFB1QyJMY0owhawFItKSsVgwYlu89vRjs45taQilBSxC3a3KNKgkURYxkAstEaIVFWCIogjZMkMoQluLBEQWZIWorEYqqK0pV627shUUhIuwmxBywomsyYWVREUYyLMelIGgCaaQYWpNDYQkkqVckJsGKqCKipQAyFBRGyFlemsZxmJvnILvtpGJtTIwIwMppMJkoiQT24o1BAyA0ES2qxSpWVDRkta5aB0sLIkVyEpYtCMKkkZHj6+Mx6slfHNTH9O8QizeUGIiBgfOtkujag+Zjc7hclfN3T5OOtApOOaPnj7U0BWiyXdt1U5k9k2MRVGdKiNdPIU8jvVHemsg7k9LfeUdp7RmyBEGzEcixcrFRgPATvr4RfGcbkDbdXn6O7sVEHOePsQN0vDIWR5QdMibiClmcf01TZzguLxBjgkOAeHdDwqjeY4/NfCSvAAJ243V3jXN58z5adlY5+RQsBYC6IKDlRECKhiCiI7BkiqeCxQcwFXQBBVfCCGwgLuCqp2AKwEIAPIICYEiqFkEE2h1EpQA0MAXMEUCIQUOwA0ePdThlERG8iTNCzBkTb2goYqhBeweWqndFkQGl+EQEbJ3bpQZYXyuO3V9j9a9FvneL5rwzNqp67mIuYgLRIlSPAvq0pdUG6xWSS84rfL1FREkQXUVRJAJEghnIJEBQncQip5ZmXz00gU1JFoEuIKOAVIkUgaI/ykZF2z9xtiRvWRE0VxLyWbMJbKu/R+5DN2jaiCPCAjaRYufJQBNKagiEhI/OKpUQ1EuIkgNQQFeQ1EA0CvoSCCcgCYEiqnI3AFO43AORjhVTJILBRYwBTyDqC9IgGIIG3Z2U8rEYoGZuKCLuKqnf7zAWKA5iij0NSb+26uOB9QBVE9EhAEY43TVBTpmAbgA4RIgAPqAiO4qEiK7zf7mzBlAH2iigZJjF+phPIqgFMReCRFDuqRTyIp1WIA80aATcw3BCLX0JgeXmFOYsc8PXSZGpTJcIhJJWd+nAFVDg3LJxx+bJ4hMx1tcSLFT5gHle1bLJrw9UJSeu6qrM00SDESktE1zAdAwoaXaTjZwmDMJLRiGs50QYEVSSucrmoRSb0QdlHANkIrAkWQNmgOcSBYO63lcFgKkFRMChUQBuaGE3CnE05wgaYMSFBVUbRwGjSbIjuDuCSKcilOd4NbNAQOIzXxaURAARMrjWf02VJmAUI/Fy5Ec82ENuIlWRc88MHlOA266zlbe1c4kibulKW3xFwoeQBsS0bf7s7v/DOKaiWh1ZFPywBuCB45/v3UDD7aOZmcSxPaREEL0ouxzH4XXmLV1BBaqOU8rixbtSh2ya6qGOBCbLmLV567y+azi7ESZNT06lLsUoqXMKykUjiJRq/X6ckqe504STNzU3vVMwsrl1eVpIGunnK4YiVrwqlxVt80b1htbwaOIaUQXG87zvgM0mP/ztbM90iKpInhBEcMyKq57amDbqXNmc5i2UYMV1ic21zlAfVIRkM5pOGQTXMped7snHmj244F5Ao0q1LsggmOjm6uUrRKo1l4JvdXzW+ar+fit9HvbRREx2uVmiR8Q4uvHxWgAHu+QSEdXd3Z4Szmz20upyntSlYypQ5GtJJSu5V3cT2y5bbmrV1ibTlJ1jlMmh00U0RLcIUlXbtZeK007kSJtFVU1VVqLRjxKVu0Vs7ONWTSsQplzLKmKyicUrFSt5JW07SElRbZI6L2ZRmF05oeGXUItNCi7mrolbVXmJVU5TKunNTO0OqJEoWom5cvHKje71xMbXRhLTOUA5RIWJ4mGMjGgIKBSeWguEkIDmXZNMFkNCoShRYFP7sBq6FBXOEqwAlx8BJmBHZQOoaLoqMMRBoVHUR2mJCim+1eBQNGUA2YZaAJGoAuMttHd3iwahNMNmbIxBdMNAxt0oKEJRAWWM2wmJIEiwkqZQCsQ8qjCozURpbYjjSNYkiQhhIiMBIRu3z37M1Rd+tyw3mQErSKL93v/1WXtuq6ulN86VhmXAO0ru1tm6Pb59P+cnbV8YFTErvSvNIkUfcr1xll84RyjuuINMqLD+qO8dZxu96QWuV2I3sRyNTjJysAiIvjMt7H43M96dcwRzix4uq5/RXO5e9QApXceRKgJ/AzKXjNqJk4lfbCZZNdCi9sZEAJmd2cODdqryCAEQIoxYqAxiDIDj8oCI7iqBokIqByAKQIoKVUCIqh5wiCiOIiiqmYgIJgkIJuKgeAQVMwTpBFR5NQQikRA8IigagDuAHGCU5PpRTgAK12+W0IA+qSGegeILM4xa7zSDijmZykAz2i+0KqJqiJQGmALBQUgsVYooBFhBSALESCwgxCLAigsFJFgChBUioxILAWAsgIxRZCKiSCikFAZFSCKLEFIsiyAoEUgpAEYQWBFixFYQjFCREkBDeOlAod7voCsi8ggPwl41k98zahBjGVBJQcqioIREpqi0DA4xYQcTnr9z0/F17vkHhIzIgL82XcCk1k1ZeW/4tYTrgIOU+Gps9OJAU1utBmynuW92DIXh4l34IZJ5gdXPI7HAOXIsZ5MQhVa1sHXJCoUc1yOJmpJL+KqHhEU4wVG8QkXzkhJDdm4h0gmxROxBAmqVQN58JjsyiYioAYiNMBU34zNFqCmIIh5FFA34Dgu/MS0SQcwE8ioZIogQGGlFgJoigKdMXArymyYVUB0RBUyaib8r7cX5WhAsiqA6IKHUCSKioeQFEkEBT05ruMDCXTFERXWn45wqCDmACSIItD2cQhYIIY9WyCZX8sg/3ewa9JI6gHw95690A3AX0QaIi6Vwz4zMTDUiOKci49xFBSg8c3RGEtBVlsTkxXaKbmaQHEJEkgXFV2vDWR8oEzgQoBd63sAMb12B5Ki5DwUOwgIgBojIAtAzyYCO6xeDklslM25uaTTbTEwHJQEzhyV1OEFZtIIzRpwMWdWjXePIySMgTuDpsU5ux5tDYdQcuisc3jByCXSjnbV6xvn6agHzT9dfh6ZRcQHrCf188m7CvQNdUvu4RB711mpUCyYtIUHtFVBG1Juf4Z55v43vnxelY7XgvTz08YGLX5y/dTKa5Z3lbyBpc7KO5VUIRVuiJl9cRPeE92jk9AJxES10rp0apw81JzfeH4PPFEAurX9Pe/szij1fulmtV1Y8zy4IuPUe37l/N7BzAInHXprnlh2ef1ar3aMt85KxbjAbhjl1PbGpksVFTgCbgERcAEnmWuBxrigcIUbPZD3b6Zr5cE8pT55wjw/n3zx8mRw+6T4dK8H5173dRUQgJrG9wzh7mFKVyiJrl3Y4VRHMovgiq5m4jiXaINQIRb2q2MWzSIKrtanvcgo7/z7nMPE+8oCIUB5O3UzBZ18vhfLqeeAZdEXrxHStMORCxOg2XN7/Oh7zJIdV0O55K8Czl/TcdobhEdXryKua1SpJqQZTppp1Mqniuy6clUTV0WSlVgi2qcy7mpl+SwqLUqLy0VdTcl3NK1QjB5ONS5xYm7EiWkNyrtTQiprHmu1MsnVqeuVVSp29JHtmqryam5uFCAmkJyoqawuWKyhU2njqbW4mMoeNzkjMnKzKwuypbQ2VVFUPdwmbr4/5+3B7htARCEgKWttS2lYViniKxMUyjZQWkEvDJKkxzMUDLSyoDbFlEETty/qvscE2fTAFKlQDJKyZb0JhixaA+iSLlcFqW0rzMZAhcdm6UkVZFWCMAVtGSnZ0jqbbQK7MsgixsrxzAFMoNhWccSwrDoNYOBHdwwzrHWtNt5tC5yB1qQCxsWMjKUchmRjiSbTMwXV2yEsXQy8JIWY51ZZDEBDhmCMYA4Fqg0UKxiBCbT+BJIHDrtAj2TMQdDmkmNondc4kLIy6MnOFzDhmLMtYktiXa5zsmkhlApKiwuo0wVI21aCLGyW3NAa7NpdDV2CLIW2FoqwaA3JAMuCFL0OtQ08qaws09GE0hkaMReJmzjA00TmkC72VNMUC2jbsWgmBTGUxaEOhphvnXcMizTJvCAA3JRVImGZwOClNtMo2IxiqIWxgLRCNKWlFqBQlYKSwrtANZrnbNr2QLVQZlGgtJKcbWBiNXgZSDnVI643Rt1rhTqpYlijRNNtEJToXGUQYgsUFuDi3ha5YdWZjqZdahmLMTJgg8aSxWCkw1hKwMLbwwmbmpMhYWWKIGJv2ZiZOanxKfnPmHw2Cetb0Kinoo1pM7rl0JkdVBl294ZOXvWQbecHh2FfFm0THRyG44HZdwd5+jhuvhu1wfPHOs3yjkZ3aJvmpnNzL7so1CBQc5IYp0t69xhFvrmMg4jOnbJhuCBTneXOsrkGcqv0Vs2uV5ajynjWD8J6Zcr82fjJ2OZp2NGeyQQEL4+nx+wta+Ndt+E4suFNvxSLs2UO8K5csxVyU11OgzB7NBeHO3n2blkBGBC+72fDkkMMQEARx8yASKCh7ABIQBVYIqUwEQkEAfUMkRFVPUEAOgQ9MRFcRELgouQ4SMgQkpdRVXAMIREIQjFFfdYilQVEXUVDbvGQCj1HpZir3DAp06EshhdPpIO0MNiDysgboeXhs4k1zYhhTqyKdzEXBF1K4g4Wc3433LjZkUbTgOrDe3icA6vIxFiC7CJCXyaLr9LS5688+/dyx89Y/UrzXRI/Sf164RpbbPXd8sqmLSKfT4ZZUKIarszBUWXPQtkRHcndLwpS85KOWyeAMnrwp29s5y7zmCD9mycYx487Ry12IJnvvhJR6H8oCI7AgAA8304uqkMKggyIKemu9MAh2IA9Igh5ADRAETkRN34BuAF6korKiK5O0CgI7hIyKIrWySZtAMQHUXrEADcAQPPUJCQhKATDE9QQUOwORBQNYjQh6iIGgYicIIqsrz1eBxEVagIAeesHJYQl7DBhPCaENQAQKQPIyISSANKuCCByKAHVEOwTkVAWsUPogotwkZFRLg5QXaL6PpzPntcOO3Ceo+AQLMPfaJMFcx7GDwp2Bzy3UhDD5bMzWUNicNiTnoFArY0aUWyc5DAuuU8hyOJ3KPBExNspy8LYXLULqsa8Xyo0iZQPA2KBICmQI+LdBTBwpBVDF0gmLwGjsiTSkrRztUnR3ESpKwik1yDU5wYpIqKIxGIJCEFJFBY67kTgcRhGzJHAQzuiCpCQYWeJZxP/1nZviovPQV6zSw4ey+272e3dxNK8ZAnjjKkKPfW7CgUAkAhYMyKQhJKj1z4LxPU7O+q8teIrrBKuxTXLvydJSqOG1UnJaLWLrmk+ItQeVmyrjyiO/l4VdbsKfPXok+zMyPRvur9YQui076qU5IiDZIF65UVtkR4ZzoeLiALg3AJOTFKnDk8hq07CI1OTBsnha7z/xHrUpL9ck8virHgs9Pzegc6v+T4e6FK9Xahi9GJcnJczgH5eaTjE/d9ykVIkUj7VQ4+N7v4WFER8bj6mIHntjt+8a9EEzwObK3S+N1U0fBgTAHUFWZXfJL577c9nlRgoXnaqcdQIgUoUR3yrL3dP2MavSNCZnoyAgDWPnv0eq7VZy64diDsYRFd87IBpRzfDjvLLqs3Hi6z5hc8t0Bm3OD+Ph5sHOb4cDHN142EIpsE9HrjrsqPYW1B4VFxHguHPKzyQ2vFAQBVRG1Jdlmhafg56uFZ5W54/OqwOVS8qjrb8lCo8JU+f86QTXjjz0Lm/IGDhj1wdPoiYNeiaJfmq2PK7yXEyvHNVFIpqQnFDlDmu5mrb1ip3N06tbjwu5lFoemd5t5xzlS5HLpCe18pCcaFssVspY5VLUWqt1TRQ6tOWUkQkKFZTTmT07tFy5FDVzsxUjtK7dWbcqbnJx1VLHlttYrKFLlU8Q1PhzktVFvWcZMpWrLq6ciSqm5U4W7tXUNq2xE7m1zmTr569Ij9LHCbiGIISEL5NrI0bdzC5rLFW4ZlvNrZbMkS2l+LhJcGLqUWwS0RKqxa3cuRwlEtQaVFrQVStGvMSjg2WtQrbwAkwuFlpaVo1uyYDimXATNqbEhJM04WF4XEMCsWRgqAqrBFS1XIGpmBoN8MDK5Siri2Xdp57bCirBBpbNQVyULaWooq0tRRFHgVjQWKuW0Uq06qktxhdxLThmBqLC1Q3msMTVKiwpaoIllhaUcprRtmxhKgsiorowzA2SzLKqqIjBRo2xxMVgcZA43BrKjETawooiLElRLGhWNt3zZuBpctGI8ONknVIHAyBBAFA/gV6Nr4hBRLu6I2Dg2si5Cpz4VK5MQBARtEGcg3u4fF1pJYLJU3XLLmbHB5ugOOYfpnOYap5GnpeQ6jZV3ORc2JAsHCBqHB5p53PjR72lnRYmE+hATlIFW7RFKUigScAToytBiIPdNli3GQYRgsdIUo9SAgEjQPjRnqM5c1uc894i/joeu70rQ0IvOfd55dxxdGWvaknFLrpN75V+9JDizpsk0vWMg7dxk+edKPDtVfne7O3zMy66eMOFcKXPJnvnk5yclDzWCV5drYxzYK7TkJ40JDhEBhCIQjnnavn4QEdwAQPIAIJqIiuUYCgeoIAemKIBqAiSAKlqBARHsdRUA0gKkVAaIgIByAvIKKUufQBwr4evPXhm/YZwsgYByy7oy/SbIi7pKwcREHk9syWXFSA63UV5rWzvtitKdLEJ/1oPjAf/J6IH/36O9oxwzmDGdckJPS/OVd5tvM4AoU/oUZiD2CaVLxsdSwSsAwOqgbdpk+S4x20sum9dU6sJNKyDBFFkWKSDGLIfz+awIdDqV+d6f00i/jUiX+QWNLMRQqBgoIEUBh/n0QvfMsVmvVmSB10nvqpH/JABCd/XzKOgcQaD9dcsv1C5ru1GydDA8qxCsZhZQDVNVkTVy+/Ic0L/nS3AFpvfTffiLqfufVKc8Dj+zS11wpFCREihHn4vahjRAT3JKF2CA4NkaJ/VsKI4baqwbtwuVcoXcqtT+jP0x+fJ/fjNqD+/j7t4U/W/yKDcQJACSQUkVSRQSQEHT8u9nstB0Hv61mfIYit9koaAlCIJICyKCIRQVUR5H2X+WvV+v+eczqk6jPvfw6f1WOSMiEJJIKSDIEg9uHJ/m5NUP+BOxn/YQTJqK/GUoEpOJrAAMoGjIG8QAgdOSl38n3KQ/A9bythz/j2Z6HYT4x9bNYJ7AWuYDPqvvtZ01+XZG/0qjsiKC+Dc1I+Vggm9H5baf7E5xx2FQyhkpsImf6NRh0bA//XoRGIqoEke2z/+9v720YEOlpsAxLhLhYBmS/w0GspkDWTDX6e3aSaQg/xQpGR15yhmBilh5OHrZR/449WDlxHbqaUxNo1htIQ+anVAQgsWQV8gBa+ggnoT96a5UK8U74wPjaQ0WQVRQNffzt/f0G552BoJFs1AQJAz02l2JMz2prPn1/v7u+HhY4NFNFP1q5oSMge2dclYivtnTNWOhbD6t84aqGlRYsBQUWB6RDj8MGyeuJ2Qd2JIsiyJjYp+Os3kD6GzvApNoIEWiml7+mzon6E2Z8LqMv2dH9ZcLMmv8rGhJUpQgCEiQnwoQqE8CBJKgAVJIFVCAMFVkEZCQjLQirILcWREuIF02/1Q+ILaK29eh3CAcvH8mjzWo4YBJIGuchupJcEc8TLfRb5xAvVItO3O6CdRxNT0uIaFQ5w4D8E+QIIPWgoJaq3HpV0U9uj+a7Jl9eqthYUDF/7hQRqhvQDSKRBOfNTfiHbvpA0gsh896eq/1GNhMgDCwgDklBgH/r8bpjI6kSt7PNy/Y9PZeCLPM8+uw7YeOowihZAT8XecaYlEwT92p9mBs8noYfoDcrz6Nl00l0D6Yn/WS9/lne61/BCVPLuIqsSKsRoBnWk7iYHQQJCHlv2/wp28AIH++cve7sJNrSsHRYdgzp8P9rDRvDbsgKRIEuhDgwyEYyDEAREZjKk8PzUD0+C/CkwRQsglRZFoyVDw4BAKRkjDQALajIKrq1KuqSGJFhMEgosXGGMBiA5QwwsmKljIIwCpkYjOhgMUQ0yMjIcU9pqjHoYJev0010382/SZs42T28uT6pEofrV+uRP4Y4QZ6hKVSiKoBuABSoSFClpShjJm+iiWaqbFW3+nTst5TA8f0PgTKRInAQv9IUaZAi5UQ/pkgcOoyWhnrbswFvHgs/izDh+Wrrvj+GCZqTFG7DGQkW6Hh71B5gvkjGSEIsiyKzNK+OfJP6hwQ44Lo/Pks62/u+rBq10N6KHb9J/62x9TOF3LTemSG8Lwi2zvL8fSXIBjwYWBvi+HouDe3uxXK592m639Pq6Dzfnb65ZDWT44JSEiSMu5uDT/OnzOjujioXqDLFC622Agl5263zf1QBh0iIGRXXfBFdCI7JtkFTRcqIyrSggXF/VXFcYXlAPzx74y/OGl8Knr3Pgvo7NP2guCYPh3649OKoG/Pdqo8IAQLZv540SsAjD8nV+8+97Pbm/BWv5pIMxgKCgGusMyKEgyOfKhRDX8TQOr4RgYTaWDimKuc1b/Rc+wfeC0nII/9eXYn3/5gX9qL/3KoagtKEFhBfUQqNjBSrEpQuRGCTYlGGAtsVKCIFQogpRF3vz9ir/PR8oda7F02LaT8Arsq8G4KJFUiDjIshihv3RLBF8gJX/XMzXetOXTtgUdR4w86pQh5pPxtr/erBuAz0KsM/vOP3MAgUJ+OVAZNmWHhIyX0WXKHuuMF8J4bibMqsIIL4EnHJKixJBIeNNkWCgCrCAsgKsD0LCMYgUZIsBRYRYLERQg91gUYKApFgbJxQ6mZO4vamCPhtTqpThavPVw8VP6pCYkBViMZ1oVCsnf0+w+zmTY3ZOT3Cf995OvPRFviBIkiEgcENBg564jUUHiN1O0QxXGAt7fow8MwfIt9ANOahjYrj3qYO8GIiMvEKEKAKw0wPBFqpZVYl2GCyDJIAY5wkK+qhv27/Jyfro0qZsJcRRyIES2hQNxEKXfj6pZ4//UC749wbyVyjHZyAlIqhngA0WIlRRCQFSFUIhyuJVCmYKADUE/tiG8YtGqpIVGjQPIlCeiKOADC/FDHVrLErHm46WaqG9joGzPQboodP+UOpYURPgtQe8tKIsgsgsILFWSLAiqoFP6sCyCHNgE0wxgf+2fr21CQuAEgOVRgKURFAhCoLS1Eb/R70AJnhvy77dxqEJvJDSX81JMwqdqUGJMSxEqBIWJWSAWL/k8zD7+frP8U5D5sJXp4EEFKdjq86q+Ta/YmhgX88coBkjTnb0P1KqtsAkWQCRUkCEUAkIoEFgKSCyAsgsiikWSRGRZFILCCiJAUgqigRUSRZCRSKpIKpAWQRkEYAa16Kvv8FDP3Vbodbs8Xw8Vm3H04x9cHRdrqJWAnRKTPj2H8RFAgkUkBIgyH6QloMZtv5f43BMBDxzz9Get1lOvGsR/2Ppymhcq9GeEne4IybMKmRjsgSjcDsf9UQKcNQg9SKO+bQL9+X+qMamgBCBiB64QQr0us/Dk5MhDECKEPupJWCon0IvqoCc4CrMeM7NQrMcMgMwz9xpR2pLLrqybP0Whs3vLwIBYY9dKTDEKRM8AxEcUbIbqUZJl7m6wT/p7wA1UVUAvmWHtwa66IPNf4K0gEiaPv3B9G3gLmwvnrPQgIKKtliUKqAIFQBRFKqLAZgEH/3X3fKBa2zfsg0eQVQzU7/+Uc0QLFzU2daUfTk4JVTLAp3qH7f7/KLjQIFEILQpYNxNkVD95XPnKf7Y/NDNDBEvib6oCorIKAqii3wREEaKaSWmHyaA+GDJLhEPnig9GDnOx4nOAWQn4Z4Eom+iqJYdey9XvndT04AyiEPEUflr/lKBg8nipXfgBmg5YJIJBgiRRYoopFAFAUIpEQURBSSKEUWEFUFBSLJBYLFikBYsAiigsBSKQGMgsFkFWKEWKSLAiqLAWKRYCkikIsFkgoRQVYEYwUEZIsBYGnsSfs1fghJObJ6YI5y9HMrrmv8KPUOn1VyxP5BIftn3fpY/hBeKbjWOkamhUghsJ8+9+ej4/v9pe/GzUd/pzljO75a1+D6yrliSIYJSA9HaobciHRuSKFCmO2W4Km/tKIua/X+3+ci4r7zu9Yc4hYjliwk1UA9WZKOqFtXFEEhFAhBWRVEkELWAoLYeuD9oQelLkaJqUNwBsxWSudMw2ZU3O6E/eljh/Omtu/rV1b9ByfjhNMZANGOl8Usi79bH8AA8MSgjQshDDAsYDtv23wv0IQ5py8ft4dnksP/E2sdcxRVTLCa9Py358vxmDmFB4rmtwxxQvDjukEho7qppW4cJeaNzTdbWJsyQy/X5LS2Guf99uSQ/y+HaTdWLAR+C0FIqr8CaZ3SRCwQhQpFJyTPXehWGnXgts78EBOm+5SqUgxh9Po7p9Fh8mc8p6/u/MuNxzH7U6eC22VahQxAbCwPkAfYM4AH/LLJ4WI/zHxpnuyl6jzjgv65KcJA7d9AhCfLgqVgmqDy6gcMWppgFz9bCQ2tPld/TTt6LO32oWHNhoO+xvXM8AIfUk/wE8PmH6rheoE8hBT5jSpRpPsu4yIa9vB5vq0/24WYEcM9kSk/mfBNaoE09qhjnbi6+Chqi+swdNUxe+gG9BMBE/BWHDH/5igrJMprMfP1hKAQeFPwD///////////////7D8L4B8TvtHdQ7cMcobsD3jYve97eDt6w7TCp6xYTID2N6GOGPTj1WNPDOwfbuKpWPj5b3xV9QVSgpTYqzYUA22202ZSbG+Ddu7t24oopdDSmmjAAClUKKUooCpQUG0zRpEAAAFhbF2DuzowAAAUJQFSAgFwFaAAMOOzHW0gOhI0yNANA0gO6107AKBdsgwgGQDA6o1r1twAPR6GgA0ilAAPVgB0UA7auhoDlAoBRAADJrVsABDZu3c0lVFATbANBGlGWazDoA4OgdSW4CFTrAhQGgQLZtnWVs7q0wRT7wfD5tPTaaUi1q0I2CIBudwcbDmXu6HAzEem9DddwN6MO9132xxqGJiw+7td6t4bq7juu8DxceuF65urnd0467jdZ05bxN0seBzKKtdtyxms9dyZm7ic7UVh6qA7V3u4+PsWmdbhvl3GMbNmeYbwJiI9Yzbt05tG9evPbrh3cd1cOc6edxy7mBa7pqsN1wWc6G7cu8F5zx3N1WNl3L1BVdCu6Va02bt03qijI03ruVY9uU71SL07moEdDVYG2CymBC0WaDVKADEMl7ZKAoHtjyICaBdgG9tPQVsC0l2Onbat29V3gZdsLmHo9e2zs53eDgAAB9AAAAAAAAAAHeevuudzD5MAejdho+noLAw56KvcA8gA+g6F2AJAAACAE0AD6DY2g4Ajdtd8PKX3gA+9nwIA3ZQ67AYadsAWxoBsALOAR0DuLdDgoCAOgChTjbD6HrgAN5YBevTSzgB6KkA9OegYOBoN6Mp0Gd9uvQAAAPQNAgDYB0aAA+gAAGheMAoeHroOQvcMDpIADQNfcx6DwlAds6AABgALTfR649NAb7AAADyAFD0ABYae2PkwAH3zPo8Pkr3e4wNAABbHQBgJp3PQq4AdAHAQGl9nwIADp5A29u9vcAAAvr3ehQBoAKDjsUAFLM0AZI8qM7ZsGF0FgOgq+83Tq+t1rpR3bTtijXNrsejo72ze466yevTrWi2d2e7a6dvHenRJW8x0l2zZNs8c72Tw7wb3TWi9uvXT23rdleCbt6zZlt3ur23OKRdbteWdChTna43ZhoO28nfWOAEWcNgZhsYBABSGAgMBhaySirTECgGkAAAEAxAhoZooNaBAADQYGEDYBqGgAIUBAYTDMJQbZsAaAwAAAAQG6wEBdYIAANKgAEAwnHdrNWqttbW+7q5hpAJlXlnM2Da2xkZhsaGQYRqsxqVDU0QAAAJoAAAAmJoAAE0BMgpoNAgAQIE0AhpNDQAAJhMTTJgieE0ygkQERKEECak/I1NFP9JqT2ptKfqm9FPJlNp5GpP1T8qe0anpNqjygk0kRCBATCaAgZTaTJhNTyaaniBkjACaU/apqCJIIJNAAgmQyGkyaZNMmkzCieyaaNVP9BoYEqCJRBAARoAEAAAhhMJkxNNMhoyTAmn1/G1p1Cym4bxXZAThgr9/t7ASr2cNLyBCGJeFOUaoFkQVEye0IciL+j+Bu2SmC850Nlhzzna6T8MuHvYflFC/d08GC21Firkgpljz9mDy2WSGKKJMOH46O/bdWHixioFE3YKaonehdBd+HJq/77rDpXyEpjBgV4CURDDm3fbdtS62NxEkAHOTARDbgng3qF+v86iX69/42Ieav54bBDggbWGi8BVXI1KwQs+uiDf8/L/tgfpC2C6N2tUwzz0+rcsN48GKvdi2beqq9znzL+EJYgZZ080JL6l240fhG0dPu4FgfPOXwyg0IDpMy4ltjT1fNWL53lTxw3iPTQ1eHTtRUSQeTfNnfwJ80shfegTfv5fZuGyBP6RPGcxSbz+tU83dSvLFS8NIN/BRpt0DHM8suvqHhiKfr3tWbEavJe5A34Xb+m1XBAKxNlf+us5xp+yoPD4OlVLxnBMs6O9nlQkQN0yuvDLlj6fFtIjYtFIgX32QAcutAWBZAN+EJ5EYutknzpiBMZ8J/azy8WqCxWIIrIezz3dgD/UttJ/VVX9t+mylnMaT30uTI34SBStdtDCS+oEANKfrB3IAOICwFIKLBSLFiwFkBZABZILBQWQWQgpFBYRVCKsBYEgskWQJARkBJCHUNft2rp7KJNt+jN3xfZV/98Rsp7xj7MIQ8KdecUcT5r3YlsDB+5KZAgQHDmvrTFgRL1iRv8fifR/jozvyqE+44VZffjbrpUQanGnTj7OKnqRNc/h63FyuPzNn3eAQA4X5a9P3vA+m0Oq3qPAF39biuoig4dWYkPE8soUm/1J+nFgLPQjPt8MsljjwxXMgNzookH269tenKcRmFA+M9+0JWc0BfexzT+ad0B+IBhxAhj4er3XeTJvU+3TwE6eKrBSIqP4uyddn4IdDt7BAEn93s5mfLrLldo7mKy7XVATklmQsp/ea2GqZDNTAKaMsIyBzoecdpQPJfSwvxw5jBVB9IRhCgtBUkSKACgQWRZJBQikAUJIoChFBSAskFAihFRBVBVUAUikWLJBRYQWRSCwUiwBVgRQiwUCKSIwBGQikGQZrOhxKI1skDqZJUqmq0dWH6wQu0BoWq4NqK2wysQaQ/S98VcBxdHR1Nl2LXgrwmJlvqFlgQigSJMOSldPR3ju6vhLvsh987PSaTDbPSWU/u6lrEeLX65vcB3ggu74PM+b/N08ZM/Lsvlm8EC0BGRLAzHfybPk9Mm+1/ovs6anCFeq/1QL/WSCesfh/3yu+Gylv18W/URI/CcuLX/lgmkcPFCu/j8WbRbjpkqIIFTQSj09hiwWW8Z9/id/vdx7PCbbIREW1jCZuDj7dEBjsD927FOGtuv/BxhXHO9KZBTd5VCDAOKetwo4tRD/RrOXNk19/49J7hAp4QacrcMpB74ITIl949LxIf9WgImPXOev7vpuFlXS+jgv3zfTskykCA3O0dk4OhycPYP4uzfJv30w/B9HlOGx/NNOREPtHTBViyB8703Q+A/1+n/r2akOqiKQRJGIwiJfgV/nxdCFsww+pXzxS8Bt2MlG8QhEx53Qf7U9V9+cR4/7zVic9ulNe1VCfv3y/nht1ccpA/mv0nq5/q8vg6OVMtjoCwpK22QjA69v14gInIHul3d6MZ/Q8RX6THYrxxz7c4aRcsPcGwYv5HMjL6g/b3zEjz5yVrq/frrL2KNFHyT/k/+Tm95Edrfz73j9Pt/75KDh/3eV9iD3i3oTwF8+fVMuHEPAMGIzM6rj0+LJ0cvtW41FwQCa4pa/jsH66a06ISp3WLw+7dfx+qIlrOVvuzlg+Twx3+/6PEdeHxLhfZwL9FUIiA+RDKmvwvrIAq1EKhk8gsY6URrKwOJQ8kmiCKFL34adHNYqc1vLs3MH/ufrvVLtfPt28BXcTZANyLuwSRQkUkVCTf7eioZYdMZeKQL8BwezrZuEvA/hCA4PH1rYRYBtndbtp3C0K0Y+KZmb6dmjqA2gB52thPq5gRAYGXWDLEdh/C5fb6d/LoBk+3/33QrUj/f6csGCM65+X8T9+09WceeDKEmF2z0Ol4srNNeFdw6uDvSofqwH/yAVyAecrL/+/38MS6v9s2kN3ax8RLE0GFgYJVKu5ElSssSU51w+SCrIgeR4yTb3ncCrbzFl34mMnth+1Ft+iy7+o6UetKcWBP9O4aLp0UTSIdvD0BlinUJ3eJdHwbeqt491e3vO+9+Mvlm2u4iAUwpuMOdXaH7+PqmfKwxJtVwJZUAXiPtOv06pgNyQQz6A9ukEtE9eJ+wM0jJ0BD2gDaoeM+G5o8Oq59GOgJpgJSAU2rT7Pyz1s7K1KL2pZgUsmDzdZK/1SJ2lUw2s0Auq1HShWIomBUIyVk/48lRnsufeKdNez4RVMc4bFTvSdnPPDVg8+hq83owb9Mp49W+0xyOENMkU+R6nIMg09JEDXID3fM4fJ0mcFhI/lBmocpf5fq4Q6kG0Ea3t2WTacI9kturfxEwnz/UJEKkQI3y9yg825+WNryzNHGE+UhuDU4TGAOeqpuUatxqQmtjVBsqzHdh73EGPytFf6VvK5xHMIAbiHdea7iMn7hoke3/L2ZOIL2m8Cp5ocubGeUOAoQhoufHtf0u3fBLxjhiXxyviIgv8YtGmyTO302vRoMl+dwke+RQwn3lFDTz6J6cFN0UgmkkTv8RTktR2A+y0ptA/gbqUI7QIosUFWAIxYoiLJEVBVJECRUkRkGQkD4TrTrsFyC9ADvWocvjStZ9kpnHQitC+aI3Rbogngy6r+j0aFIKj+fDQwDko2xuyY9FcNu/MXorUUPjko7uXBxcH+31XJp28FDnfTJoitulKXQwcOKbXuzlMG9uYRVyTQEKce7UvwEJRFx3UfNteGrpZqTLWZ3BN67XA7O7fW0mN1ApChy1b9+9xS/pJmD6SKLlo/IbmiCIzAuK4R7AcNd56/CYV/1nqs78vJ3n3c4dZzu2y39mlHqgBvCy90dt/+VCLSRV65I5NhmwAUAQogCnoYSSAFwtLW+dPf3xV8s0h+R9HRryiWew2O3Z0PA+w7rkijf+e7nhiGVaZ/3o/CGzXxdXLa5oFIDSHuFVRC/8FKn1R9JoEzshp3S37uRyyvjAiv3sUHdED66f06p3K8kvNzgrfuavY2HCGWmq/a2WUMByRAqINvKUS/cVBHfspM+50rK3ft6sufAuxmBAaEx5sO7ELsd0MpFKPtI/2KREWIg783AW/jliUbflq/+bQBAgTdV0zEMUGqWYENGimbRkwevrfdxX5IoKkuvTFkfwJu9t4ZJ++DZTf517K7PALdYHz+LTdkHahMO6K62Iq1h/9/UuHUM+3YpGd+mxBDl19+vOX2n9HTPWON43bthkMp7qWbI5Q1uhEQEHe/DsaTB0uhQ1QqO+u+6U4gjhJ9OzcSTbTj+3/lGMXrP/x2Sug4QqCAG4hl0pfGrr5MAATy6PIC9rXetvF9PLscB+vfGDRHzEj7YYTC0Q2nrf1bhuuOKymQx7gbYWBbA1vKv3+8Onuh1AzJwhznMGMrOWD4Zzp4ZsPnQXVBSQRJAxfue9+ZPbu/3eiWz+IYYbXz8qAq/zy97kvtseSN2n+HS8EF584qP5bDmmLlj3m8DxC1u2DyFXo6kFE/Vt/6B+dda+RnkBBsfk0VKpvyWyERkEPMn/QWdijgUlBi91DJQtgi2seyOf+gwKVoEGfP/HvhNzwI7JAOFz45UpYn3VqXjmMP4GwpqrMs1zf2zMyQIpT1Try9tg8fn+ZIWYYUIM0qdZ87C7slzPhxxryhk4HgRpQA0zSkIiffH1zhaE5DEf6e8pMDS5aAqAEAKdvb1DLhy4kL2YOFAq8CBCNWDrff3zc4Dzh8GjkhJHl7rWMjyesgdO5B6Z3XMIL9QCEQAHM0/uoh8AxffjYuCJ08dKQ17RiePDaHOnn0Wft8k+IG3nwSXtKPoINa4pXSchtYLNOmhfDb51D8cHi8dmaB44OGAJsg4VHn68mA0IeuE2blqVXxe8m8UUwhOhLqt8Ll/YXAcP7SLwun9WCz/4I7ZZB2oIcF31mavo9N2793wH5cMMNdgH/BpmVmEAv4uvlnGPH6UnDB93cBsZmKCE3O+JB82zx99fIu5d67+5vj45bxAfJjSqcMkfTUwgAB7h19WrgG2usGBJMVHQZfSYXCYMGhvHSvPb30Rz5pp3uW8OKijf7/nyfjy3acYcdOHu3vw6apLX6uU9ekFR+bHxZuXVnLaH0xr5Om2cL4m299u317OPuOh34bWFckUSOBxw7TGfdLTdAwJmRduTBSBe6Z/mIdEhNMkFgqwPjDFCSIosiQCgXAoA/Y7We7d71/LAm42+NYtg7cUGxcBCNMsmSpU/NXCoLT3BnrtftaptcVMx+eCvX4ZfX0wTRFZEkZJMmzKtttGv2W0RUDwY+5mt+275uHGwqBUgEyMdmieIx1GJ+mn/sBM/0yl9kxlBsuoKWP0Y6RXnz31py7/s92rhin2Y5ueGDKhHTvnRyRmejpQiSPiXJ9AC1DPMvgZIaIHW6OPv8OLPiBHdgwZEYwLNXd8w2I/Qh/MIgiKXDjhyYFj45u8WmVNKPSRI8hYFSxujbpf+0hmbj/G6qFQwwEuxCKwfV72vx74sCCWkOs0+TsPrH00G9tDVGPcmeQo3gZ/iVFxniG7iljIzbVwCNS9++HNZTTFT5fzR05Sm3OSYd3TULJIEjIwhIhIgEkgSIyBJ1+My4TSb7Y/FvfNEE28SJRhBZEMOeVqyEiOI+m3pzS0v3/JDF9LDsgCyKSChEQUWRQWSKApFkBYEFAFEVkiwFkRgsBSLFFkVZFhJFUgsFUiqEBiAiqgoQWBESSpIQQyAB/x1TX505mPnYPG9v399y9Xbj4FY3N8RBBLe/Vglwf9D6NeX6CKe/d97zl2h0t3c9RivXw9ppnAng6ksdlHR2PG+kZm39DqIhim66Ivsxf40z87cx+Foa5r180/fyZ+yoz/7zH7sGMGE6STqwnkidaAFhNahMViiFXBqdfsMOt3DsjtsMKdqeyOmO7Pqv11nxDS5u7Bw8g9Td/U/SzpbK9QvkPheEY5iju6My7K46nzLNwh98vI3d1RojRhM/zdnNBEzMjnZQRAeueriRKKqf+AWj9pk2sCZ9s8xfqW4sK8M8Dky1EvRMQ/ccWq2759Pq2WGPQ1DHIdyitsWQZMtujeqGOKlJrA/iypvXUYT6JO11iiDTDi3MlnluU6MMnuVn9c4mav/ZDvoDu6uNkseHmsnQfqpx1Kyjf4KvptdsLHPip445JsiFn8UXQFabCla550oqGaDOahzRMxMQMx4611b/JcvyxE/d5KOceFB3gc3ISZOzrsuCRTJ85nxULMcBfZafrgskQ1clM8w4+P47KU774MzbWQCmDMA7Kl2FDD3pUxgoPkxAiA6SgYMwDSR+LLdoIuL8o4nB1PqQu73MlIg4yBmQGXR4dgVnkbyMgAR22UdoMDT0EKPDAY0d5WYjfznUL9FUwZA8WPHlKA/tW892+24lPTBV2i6TjC8K6ezpHR1R3J8Uw+PlSg+b0yqpY8qEQ6uOgJRyY0Ib+3TgxRMnPTiYA6DImdPizeqnNnkN/GWrFU3GREN0kUxmnvCH6b/hIbpFFFIpIiALIKAsAWALFiiIKEUEZFICwCLCAsCAsBRYopAigopFVFVILIEUICILCCyKSSdU+RJ6lbn7OXFLjIuS6lc7bnSOsWTtfmabQ9sD+wJTsgIu9eafAJ81G8B/azeAQgc9cnmvY9lA/qA9nsaiQ/vh4sxYhdcUQkSRYSgQKyRSS/E4YDEXG99JqeygdssDaSj83/PcufNxwZD8ve2Q19lqIyf3elfLpqG7RakqV/Yh/br5MgskO9nAzSRaJB77IUftazJ2e8fUz+rdeGh0tIJ8zowqRGVry5hYXmyTlPF86bQnFvHSwzi7B/nSevsX/w9Zjj1wBLFq3ZONYJoTJhYOoKJKc2FT+dMtMYeT41fTY0CQOdDBDw2Y6m5CsSX0SwiQi8kKjp2XtmOIE5SkLeT4tN6PPW3Tr0w4QNM/ih3KJ52bYeAazx0VncyUdyAhjOjx7v57nByXGUZelXBDBxMe6CSiTTfTahlv09Xzn9Op3sOWc/0HbXfvfj8+Ywd30NYxtPLP1wtA9OAa2oMxN7Hlve0Zx5+v0+zKbc9bCLzbEYO6dRFk7kJ3phzTa5Z8zK8vPSWhOigd5j1JW3j7pRX/52MOSeTlvz3NN6OcIHp4LIoodWURQ7vpaYzqIHy8UDQhb/znQ1dM+hMGez1U2kXqrWTfl+H1eT6ae3noalJ3kfT4zgVi7pVI+vr1LZOuB4M0Y5/W5eGBz3c5Mtgsr7EKe3WBjPO5+qhrLCxIVsQfLp3MeGv62PQnBzqfDt0NyWThmxBASfxCwwHOlU4obiAR0sywkvU6XvSxsNxPFQDAIMbJt/o7KifgVtq2cXQDfII16R0A+fBTbe7APT87zIplIxjEQNqI1xBxDdt128Yis7ynrMnQsY1lfMeFKei4kDHfGOHEsO0GFZ5YBJqwt/0EH6jjKeh06jc5w3MK158wQb+RKOF1nZq+dMGkVZCBNnm3VPvP/obBnEwHwtcCaCOhAmP/47DZqqGIbM24dE1T1ysk+XOgkK+NebtJyL7r8egF1B1XfHoPCfocD0z4cZwt33f4OiwLdDLdP/A7+Duj/SRExWh+BnaWzPIFC59rrtu40lIVuE6gMU+LxqSmIko4CWroDQjpamkjBVDsGFdhA4uTDyZHT8qCZIV+3cKhq/6mfEUfw0qFN9gbBrueu+pJwMA54FNKsECFMk/+nVcQdoWInM1+/+PlU5iGAWdPZRTCnxIh45S0ZTD8FjC3rCRg+VIUxsVM1w1iANfzk+T2a8w4ytZBDSqhwUM8ZTWFGUiOSFgZib7SldgSALsGshEqDqQpjirWgMjKLsAUDFxhHNopaNDO0m8ICctfD84CLIgMiBIil4IlkgBUiAoQxlZMahMYFQxAqQhiE3CKiQICtQ2CRZEYiFEAEjJIIwmIwGRFkWIKAwYDBhBgoMZBjEVFQjFEWAoMO1BKUBioKKCwFBioKyICqLEFgyMYLEZIoRYEIEwRCIoBBZIQUUBSBFgRUN4bwXaSCCmrFIRFUxBR0ZJArIAoiKAQ5ZA0hCpBHleWFKlgiqwgiYIqCLIhSxBpIEFAAUXmIQRhFPJgSoDEJaFkikiCSIwUFgMZNywoSSIxjLUIqpeIEgKSKxCIkXsyFSApFgBUIcISKYyQOysrIHRrCFE2zEJIsBE6jIJEUCoEIKLCG0hJWREgG2EO6lgSpOrWTEUWE1GEJiQ7u6zaYwCxCY7Ya1QFgSGQYbYABFINEQTEFqEgtoiJvBQNGKEYsCugFGQFCRQAAUAihIL0BAiwFUVkGSEUgHLIcpACkVRLwjphFUNEgqWLbti1bYqmFSULkL1shxspLtI9ZYWu0pnN3xATUTqwYIcJic725YXZI6dY2OD2wDkcgP6KiwRTBjacpDC0AAxFbwIQWNVl4Je8pETcsRJhCtRLq7ioiZobLDRHb1KksAZEbhrLO8GwkNkg2AIpfEBgynABB2CLZU3ClYtkTIAsmVjGzQQy2nF4jWJ0QGGEhWtb5QrYgYRiqGINoVE1HNyOba46RQEIzEoWtSmKIISph1o6PoIckdpCFSdelIalpuCTSBUvFgWHJUkhwQQlAK1nT6UFSMRJFWRSlzvWClIDGNMGasLx1muGQB+ckEUtuEimfygVorIcFRR/u8pL4ws5XlXEyg9i+xOpWjAaQee1ylMR1MKC5HEAQNSqrp/r5ab610CBTj55iEg83Jmd0o1o8ZmS4mBMxlTXM5eBg5UELxqWZrE2u4jiUXiQh9cMisJHaGATVVIzIBHl3MMQdWTEoEWvAIvZ8iChBTg2AopHFKjOQIbUnRoC4O1JVMtqKzLvWhc6diePrQQNc6HGkGNY5TOTGNZFzrSJRPe3MjUOhJLgNLgcI24GIa4U1BrTHxrSmcqgwQxY2zWNhrCBCENL8JWOmCbKPGm/Hp4WTF3JqOE7jtLO871ihQNhfGca8ghM27D/npgg8baWhxoKqZORAHGiWGHOgRDXgk5AF6c0JUDhJU2DjANyRnLylEvA1mwR1SKK3oxYBaiyCA4ICPqhIFTQGtY02dayuyYkNW0rYdGTaf4cXszSSQ7GUcbDqnLFhZMsLIg67UrCX1rKMFV0iYJRatYYi5IWiEtHGiGqYFsMYsFCWEpBbCH5cY5OjNPEBAAx2gGh0EYKThHdMYA2lAwSNHLBXwQOOsWGmbQQ65pJg10aKk0lYxU3kJJc7GO0JCExpJEqCM0p+WDoBNI75rSOIHbmgFteuBnbRgVVY7WTthw8TeUxTKlCubZoMQVLqYYca260iLxdOCaqk4anCRVr3Lt3Oua125BuaoqaCnNQ5vaJbGbkGFRMhtFFDqYyIHcKpmLdLCokYyhJtpkvHUnr47uqdW5Tj1S8qf7har3gFrxwMyKmKjIQf8UE0tER+FlLPrHT6/OV35lV0AB+YiK8UNwVz60f4To/Y5XrDwPCG4QCgF7byF13aJa7/9U8gkxkUkUkFIQWSRYBIKETcMOuFvFxpnSkm9mK85zi+zymNEzpa1Vt7FPCZxRTVQs4o57l1zXK4fg/v+pnjf4Ee8Q4r4qLtVJbOQs5f1xsY3fk3MeHF//fPLKSXkKZSTJl4QUr3/Rqsv74nn0ji5WrokgmdP2WEfhaOSiGqHH8uzf+aHaWttCxEXgzqPn9hx1134pgjg9r4anXz6ix6KZyAjZay1AVCAVpeq5BBH7vViCKLpHy1QTBznEjDes4Bx5m0UC8EYwedYaNMjpnFWYgRAAl+09TZzgfym2p0ZCYzOoP5FD9eHa0xiJY/0lH3IQFXFc+lCeDO9y6/UtEbGIHzMjrYKnpYQgASPbJPYUsHk3Cwt8zwgNxCAUy/2fW393b+qKnoAIpw8JKZ8eYV+4C/PLkn9Uz5cV7qF9bv935KMU1PSBnX6PEWRZ1d+G/DAWZ49a4iOaMp8vLe5rUmOEL6hat6sMHve6VlCGm7sxwcgRIuczMzBTRut0yBVQHSIo1dpRUbKNng+BHYrOHfHofHfM4vNnIDlnXadA9d37W+ZGVj++97H5PEkgS04U+Rc4qf3+q/tZzLHXMluAWONrKHLf6b838Kq7kR23dbDZ9368PQHo9OcvKj09NPU5NGJuOi84TcgBu49LiYOEDmn4rkCNeNFUzOwiaAzvBJv2IQMCEBa5eywhpA3ixnEWJmo0HVekdoBsNTuSLUh/Tc3LXU7aV5GQQg4yIhFiGWxbShYbCkeMLf6rhB0kgWMRjBEMRm8KRXWgmrgk4hJAiCCzOSIKfZctQGZpMRpYCYWL7jYspoimNhbXMX9HLkKtQHRN8yqSEUNebeUkY1ltAYSvzzknOVInXz2k3NqF4BD/fnx9QMaBoL52QG7aRGnJOuWegNIR0a4+JwBLxhVLSkKQgi5tUWKX06fW2sYNLUknVwkL7B16xB445coXNIWMJYpaAD3UYwld1EyLjXGTEENd2nKppSZMggtoRlhAQhj7vKWJDORCSHkCtsb4wxN83ClTYxZLQHJJA74apHaKXis5FNGgJetCMJCh9gD2Q4wJTlgFUBAdAVwhHRlgMTQxGUEIEBSsE+FBkEkVUDaVFFZCRFcLIALEGSQMTBCEFIEBYKQM1QoDtCMUAKihIGkFRvZC4qEEA2uQIqmwQG0FkGRBVSQkBVQkFkASQVjFdQIlMCRVcDBFQqAgu8FGiApIgwYCTlYiEBg8YUDS1IYg6yfIJAIy40kmICfaIEXhmtERibHDBZMQG29ImYG8DTNG+tbxvBzADAqwQDWIYdTuTgwSTdjSq4Njs6MQwRUlLcEsUghqrAVRLRFD4Ny3vYwIAheKBXD7y0O23JrWB4wBAHWKJgprQT/9aooqwFUMADjgKEgeDAcQUstJYq9qDfCohdzarIt4CpaAAVAmGzZBwRUMQFUkU5WKpZUBVR3YMmEkFJJjGKgEMACDhpYAagKO8KNamrSIloqh/zMm9WFbRUAypBQ5rYqwIikzMU2VBxZ0Ar68y8rCggnJFExicJc1wgnJEB36HQNTNG0hPQEBEFiiJBBCSRkQWDIkEhEUkgJGQQgqAsSaskJSJIMRERYwFQGAhFRSHCSRZAUIKEDqzYkO5DE0yBDTJCbYMQBkEUUBQUYCrFUGEFFIsgdUklCSMnSMhRAnDAgWAwFIiACRUAQYLEBAgHLJAUkAWECiSskIaYEMRGDGSKQWKERFFhE7EChJXiwgSkkUEEUFgCgKCptIWIxEgxIIiiILBkUYKQR7IQ6JEWMJUKqEhOzJZFSEFnVkIaQmJ102dsLRDaDuUqiWMiKMixQEGQ5YDEgx6pCkWAwZEhFFCSIkWERCLAEiooCMIIyLFEBWRWIEhIRA3igSAp/2CoawBQGKsA0pAIJEYsIIRCLGSISRgDEGMRQgxB6WSjJIxCQGSKpI4iqFSRRUSRkAikCMkIJAQgiEEip0QgoTSHVDol5IKkjkg4iN4JeOGA3IDaKFAEAGQKkk4UGIRFBViRGJBFixAFEYAoApAEQGAwYo1JCUIwU0yFCMFiEARQkQkUYpCBtCFZFAKwDskAkLQEASQ3groQbRSRQxEVKVJBQ0kgSoMZEQUCAxiigMRGBBQEYLIIwUQYIwkkEkYzmysgoAxkNMKogyCBIsSBIIJcit4q1FLQThGxCxBUCoaYBUigGNYEVZIFBjFgrGSMUJISCikYIKkZBikIiRikYxgwGKoAwggMjFkEQigosgLAiqgyoSRVikFIS0oAsgQUISYISCrFCoqaEVaIBICyMggXEWRAVWKjAZIAxYwYwGMYEQUUggpCdGsUgskgJuBDqMgYSGDIsGRiyI8MhUEFREjCRCIkikBgDrMxQdIOYIN4NpIBpKyEMQlVADaKsgigkYQVUFiMVRgsRkYRGAIxQiMgIESQigIkBBBYCyQRIKoAkEJA6CAB/cqQCiGMk0oqjIHZDlIaZIMCRAUEVBQhGDGCIKEhN73JRAyATbygHaEYSQmisOGB3JiGMIYkMtQqCVFLimYoG4RUC0ULEQW7BGBJ9nDxoczQSQ6sCHfOlCoRaKoasQNGIou4RB/jEUqIJtpKpCVAhAQQeA5SgFuEAAR2YgBxxSAQPZhrGLghaMbZJIHHEeylVQFEsiWIAKkgEiI5UgpukU5IArpBGkAliIptBARmZIsIwIObIgF4AkN1KDSC3giKm0EVQLEADZiJgTSEIyLQCaRAHWIODbIMCNWRA2SKssaOIMwGSwjUyljhSQ1IGEQJwDAgbKwREuuYmjLCXiKuqMFQ8WaAbwVACoIBSJBiQF0iqi6hBBvFE1ib5aUFMAEmyzSMjYRNoCXggJvATWN4gSwEWkEqBCA7RBFCwEBA1AgKmwjBE0BgkgxpCupZqYuQEA2DGTbkUzHGbYLNIKBqSSQOE0gaYABsouaaElYJoSXeMXM7V4wEa1iaaBgkguipbSEIWDVXdQUAAayr2aYgVETARBNW+ubgJUVzEHUgCGmhSIiOsFfU66EHgRRFdoKb7k0tkGASd3XDzOas4oSApNsgCyoQqIOSKKa34WsREEb8vGwLcg7REA2gpsWva16FVuEVEU1vnWtOGUVElFAmdaVG2mdSpdBQwgLEUJYqeVIIRBcAIVPn7Li6QgWMQcYktYDeqzvSo4VCIol8mazdQQuoF4CZ3qxLoI3iNIQyrFHQrWwiCmWJIEJw95yrSC3IhoNZYxAoZxgLRiQK/2XJPd07aEusYNJIxoQKI9rLAES0CWRTpafsEYgBW0kFhvsI1u6kQAITxQAQXYzTVbzNk4FpQlpMAJvEFLwUC6t6rMKFTBFLMBW2EQoS6EAS8XEALEQBQJAA2gilQRXeKYgINyKKXgpgZvF1Eiiq3IopIoCMIqoJIitkgIIOWAAbQQR0giCmohEVAZBETWKACXgiBRAUCAkARKiLUUWLFbEzagxEABvAEbQQTJEAmWlRqAoWgDzkFUoYighvEvBADRYi3gJmIkYiCGokVQ12pEDEAdIBIq7wFUwEURdoKto6QQbwUS2aV1iiWYiyOICJGKpdWKom0VSnYKKgJICgJrBUbQQdICOhHSIMgLeCJURQ1iqDrFFVtERA0hggi1BRMQABIxADSAhZ1KQurERhFGRTBAvEFUG8ZEDWCawBDS9AgIQgSG0QS+1KqBiAJUQTRgasUNCWAQgGZIoJZMSgdSCphAiGYgCaaUIg1AagogOkEUohRAQNkCBqCkUXSBpFW8FAUyQUS0FhFJFU2iI6wUBqISAoNiCkoqBITIcCEgDpVEt1R2wobONVg6rhlms1zTSRyhvCWstFFsx3mnnNSGki7pxbONEbWoLJYphg6t4tNBN2ytdubd4ErbHrmIomVvDedawVVprWrrG8bKswtCm7gLbgNG4O3MsIkqgpOZiQ2roorf1PrbOwH03JDGyMvameXFCbcgFQktWI3PovfkmD4dvxlz4eozg0yoW9+Yxx/LuX7vkFVF4VlpWv/X/vpp1T934+7If4ebpgHKKCiqKh83nv+2u7KKKxjGVEss/x+amnzIefVOPks9uX2WrPkb6lVCKyeIUZtEsSwyoz0V6VjknHhj379/Yc+AChrGBM00ULUGgUzI7Kpg39aeubxr2qSlA+yTK9r7VMYVK1Lw4etYlsWrRt9pry83BaUpVbXB2ellf2s1Oya9evc5CCqqxVAFIp+ffXWvip+vPWPCa7UsiJ/Xb8SfTbS2s9ug7sX5nq/JuBj6osDTBQqKFyHFPm2fFnzeN1zGqrE5aKif422WIVF+efy1+raROteD6fZi/I/+WRmkvWfR9cr+6NlEdWbnk9Mxk1qpJ4slcsw4rPPYLML7VZLJErT8PR7Po9xxynwvVV7XSzD0JmSgEJBNOe9v0tPCBbPJvn/4oQ9DpQUn/nlftpp0mtPhm+7wH3RYKZBBZSJFLZAJl3MNPImixkyZohgSDkCcRfE891xv0mjA0MgW+Pv51vdFYm6F+U/Z/vnmf2ei8j9n+d9WvLC1KeAz6HBF+7EO7KPKU96FYK+podLbYJG6MCSFz4rmMgVkHqgiFoKoPpcKRRbRFC8EMQEUxAXyRULwBXZiAGIIpiSCKvLqUiheCri1KJaAKerBTWIgSIDrV7I1EUusQZBUMwRS8MEAGoKkIKLrRSgWnNEAxAcCaUrRBTXehVpF2RoFtFU2igpxgBkiqqaXoQUyERdIt4g5VYIm5fawFRUUyQXRiLtegR0AgZiqabWsJpFAuRXWICN4JooRQMeClRMHioAArWlaIgGmaEbwVvFXhAFQGKEBDeCArwiAlyCRQgKJUVeEQmhmtboK2giPCKBttpLIpaAjP+YsilyKqNZpFF1iIWIimtqFUUogjttLWUHBBwEQVWwjA0gg3vSABKpATciqmsME74oIDoMBZBVJigEAkEB0rOmNcqI4Iqm0FTQCpwsIDvFEXT/lVM5lA2gGqMUARkUzMRB3irgggNMAGRAbEBER233sqGYDggoXittaFA0KI0ChtEHME1iIBtFb9RcqyAgBqTWA1ERQuZoVS0VSsbWBACTW97ArtEFU01lrCq5IIYgiyILcmhrLhZQQUkRJDEhIGkkA53YKEhDaCgrjSlDSACOOeFCDaSPCAKbZtYBSiJqpEC0UBckALQQADVIKYiAMWCiliCosIAnwBmCLcAII7pC6hAVCEZAIgAJENpWFEJKDAYwAioiIBIEjAYIxIsVILBSMGCwJGDFQAIJCESakpIBIqJGCsIsFICCQhBCJvulmAwRIgMIKEAkFkisUZEYigoJASQYjEESSIKBJJIiRFGAgIBFSAxRTtSowFVGCMQZFgQUkiyQYIMeyKBICggMG0IRYMGAijJOGjACQBFBFioIKcoWJBQiigLBIrEhFIkY2iqAlEWBFQkRYyROAGUQihASEYReGUIgIjBiMjFERZCBAgxkUIqIQZAGOaAoICisGDAGCgqQUCQSKQ4YVASJCQUIwUYpEYDAUEiSCoCKxYASLCAAigRgCMWDCDJEJFVkFRgoAgiBE3LZARRICQIkIoIyCgQWSIkEkURgMgBktBBGMkYgxiiMFIAxFIAQQRgIwQMbASQ2wqxQIsVQY7oMVVMIQS8AqCITcVKVUTMFBd2AI7QRVtalDKMgwRQ2DI0KN0VVIqpIArQwVEDdjmKKGohEB1IKuGALeKDaCgJRFQCwEVB0AiAgk0oRLwFKgqDIKIptBcRLRFCojZYiaAsVQQvEUqKAN4JeCqDsMEQDVIoRghRKx6M6W6IVIiSLICxZIqwFgChFWG+hefucvzi35U052f4WWunzum9xzX0OTBDC2BNPYCfmF7gQiL9nkU/C0gSjKaMGHjlxQ5zeE5s+dHLD8ymO8fiNUfdlnjjumBHmEShN2zhoc61L4vdWPfv9KIrEd6edqWQ2MBkTMsiJ27XrRsRN0SjsySV5PB0yIREOHMdnGsI6jOD8s4LgHU0QwZfOMMgaOsghEFLBY0n3EYgWAGM6wFWTW27401lWKI1vRMLywB4zsbRD85aR4qbMhRneaK+2BLE0gYDGW19o6GIUl8DdccoBYUhtsGQTcxotM4WFeIPfQAoQwyfFb88NlhF8pAqdRIEEqgbQcsGnaQrBXMI0URr4yR6RJCi5QiLHBzGeMAzi7zqpxf6DI7MCPMrVFTG8s7sIU05vu+L1r9ZgHvuN+geN/hWHzoXQNJwRC9Olc2Ls7NswcVT+RuLgi6Z285NUOyyDiqzQgaFt9CNf4uzDnniFU6zhlBWbvhiv+r1Wgby+9/seegIQiPti5x5kRLOWL0qLPhinrgk45cJZkE8I53gC0vNDu1/uQhUxNgD+jShtOI1Ac5wfHkK5CV73aid887ag40t7Xez6B42a29RSfeULRlIRwhzWZ9qmszwQBHS0Rl2NdWrauaRhRFbupwSX3y6vf+nLqIslMIQnniGr6iyiGFqC45ZqlKcmsSws85EnIuo54y42LMpyrZ1xFuI7QSyX1qHzkTO8uZhSqaga2Ts8d1EVN3aqrmIbq5sS7Sm3bpwdaaauimsMZld5jujRqWiNtta0azHVrmZrKXG4H7OmtcXdMrcpgto1LiuPDvWzm3VsqcI2y2tLZUaom8HMcbWPZLl63tYY96p0/L/r7GecD2tUYYqERmQBgwZmJJZaCrIId92eYyHMRgwn7gSGEBOrh7Ij2bpPQwxkPEaDVAhiR/p/hp5jZSD4JnZlGxDJApGYkEC/mbLCCxZTNnoHdsP9T65oRESQ1Kp2N+6z3SZ5ePLiQ1m0emsWn5ehTT8TDqas/X/N46Nc2lwlzLOr+rVmlYAp08f15oaC1DymGceNxR8vZ5erR/ofiRefD3X4Z25SHQbA9hB5oYT0O6mnOI20lMgyIAgMG9UMwPjNOtCWrMqMe/Xjs5o5k0A8PQAzMHU03mM1/pE+9t662QdpjUzAeg6yMGq5NlAMFMXNKg9jdvcvAHKaShgU0NqGJsbR3Kqo1+UfhMTN8+PD44Xw5U+1FNxj/xoKgIcySrEQe1Vs/IwBufFQ8gYfhiVD2OFzFO9J6u+nTdYfd1V9tKfDYlTj73TPwi+fS/wQFQ/w/H9VLWd82x0W/BfzN0S8gp+zIY91PS4/w+oz4vW7zuQx+3o92Vne3x/4w9LpfVftEMQJKyLUslY/C9Ph6PrhuniE55/PJH5P0z91X7ByuvV1xRzOTbDAAjL8xu3CAIAiqh9OVSRHYlEmZwN4w5QZs824BHKyOmOJ3tZ3lY6nOZYRWLekN3zeuWZxYTqWz0m4OmdelV3f9RCRCZoWd5sV+OebySc1pXJdesv14hEH6rEt1LgpSEcyvJECOO8iobRME4ElRRMZS9dw+RUMULIoaD/XBfE7SL64deozokMV+Rln1D0svcUNh1vQIOuq07FAqb4RAs520GpxIWIYltTzMQK+OIQkVEzIQKTs6RWl4dccuEC0QSLDJ04ILGauTWoSnz+cVvy/x9oXOMvzffj5U1W0FK92NPmXUK/YWXwtlAJ4ku8t83tVwFclQzGcdNENI2AbjiPqkaZV8qb7qG4U6SgvuNQcQWRJAzKRgoZy73gt4OkQgsQpobRHkuXQHkcxRFthhLQof+hy+ZxHHv9pGtSyvYLzLdqQ4T/yn4p5FQN5orn/yIF71uThH0cnF/1R9OcDrbs/cTJ77H4QOiKGJViZFtmSo951j33hOATI+Npluu6uiXPVacMY1DVx3SMkmuBnYuG6GFbbRA+pC0jpFSNBgjb0yIUNQdXRiBNjCCgDc4I4zsJitxdIqNfLSVCO5RIFQIzQp03UBtC+pm2UgKfgDRTdQ1qRi1fKeiPDF8uhq2H+9hzg/QkYzsBDICERpMpBwYGeZBoD8IRLQiGKGmxEMhLyc3rkGAYIK41RuoBkDgNwEcRBBQKkIN6F6zfHQvVsU4gfEIAWVM85DUwagCdreTG9H0M1XkXmMM4p+rI1+T2YrkcnE8AOeCKUvxpdFzJfC4ul0LWV0nkBxrJ7Kp2RQkAbzvM1p5RSXecmZqKmJ7gjrMWxp+bYe54u1MkDG58mWVeZ2X5xRt3n/iv/AHvJCWjzABfN/Lzjp/PMv0LZmdnGHzwQgNLOWdCR9fZeO5cp6QoY296gpawwNrayOVMx86bnUKD+ojs3dbShWu4Pu+8HT2SORH8cCAAKiRAHkpzmhuaxa1re1VnwVrvdUxXDYp2+X4xSBfhogRHCYQr6WVHe2drMKS2O8IHcjuAwrqUk91bAboAKDF3pnNROGzdx3By2XcqdwQbSHUuCO9fRJoT4uEKSa72IzNFDd85OTCDvBBQbUQYJZuS5KoEu8H2Zq4GPl5VZNXFy5ujlGjRTutImoaeS3D0ohw4ogqXSpzPK2YiNujBm7aMt1dacwdc86ODji1HJsgbTiHGZkxAaXTDjI2HuU4dSwqQjYlxITy7KUM0S/g/D0liZ+b+2pCY/ycwsT/mg8NQ1m/z39fMlGTfncSN582Bg+nYfqOlQ0iK2nuenW6wPXlzVMNaq6ClFkYq+LVzsOGCiPEFkROuY8WccQJ6XzD132ejp7e5vDtO5vnut6IGH9/9GZ1Gid1fXcNdekwXCavzmFMk6Zc+O9/N07je/WTGasPNmf27TCG3ziJVrZUjRVE/JVasatKM+DnNKn6Bp66ZcNSFvYg1M3XQZc9NiVNDMwD1onFn74uYCu9YsEOheq5zOVFMLBM15+4l8PX5eF747qpsEJU4whYJbe/y6CjczV65snFcjDmggwymOJmyIiIhgkVQCCDbybenm5gcoaLHpZ4J2OOuURUXvfOwTzSa1qvw+nWtd7mDTrXoddR8V87ScZmDMAEARCPBcjDCoRAp4fABmMz7v6KPzzBXynVkObVv88F6kj+O+uxtpttPmerahRqnnI4GbVBoZmslJT8SdLuXoMH/YvsqjnKtkUGZGX8GhhEQ6rqwp5AOQXYyjxM1Tlvc+qBC3I/hWPDk+3Lg8Erko9rXj3UqOYgiEgqepraTjOfT9nQcfRJKv13Li0Euln0z9gs46fMgirocfucDCiYqZ7aEIIaIqO3mjQIKRVDnXNOYf+z9yPNXWt2RlT6/CK3F4Y/eQredsmo5Lw73bvcsr5FES5fnMWBHiQb2i4ChLlXeqSXo68tIE+eSCU4ubllui5EAx0SR1djvK7EXwey2R29nt9qU4gxQf9fJ5pwAG+IdRPhZmQpYZVqM4/Z91HtzACVQqQwKU54gSGzyhCKigTC2kWFaiQRACCEZFYRVJA0uBe2hopWyC50cLTxBSxIFEYKUhcseGILBJRYgLSt20IGFlzJnGIEhWkokUFqNwaSQVkBUUtc8SMDnafQpQhkK7LWcRvO3rRE95VPMnpyIk7vS+x1xvdJ6SEbFZUDI3nTq4S8xxpyeWVMlFzE3MGgkALK3r5GE95JNOeLHkcmchJJFcBLWKJCKjIEiWgIWgiLaADIjAWEhvnRWlTpDrJUDhAqE03qQCoTu5OW9KpuKYxy4ErxPHzZ/notQ4xSkvIG+buu+MxsCG8UJBRkUvA3giWJqqQRQvEFtF0im0KIjaAS1VQKWCgGhKGIA40msn8GiqvyfLGm2x343888JIOi2SYfqXQBGNWBTGzttSMYwvtM8FloOA1JqQNspNO1CtLEciuCAAOIOjQbMSbyEDTEGNR1IEdgRCDeLUW2sDo0W4bFDIXehPN9b3j3A6tBJVtOGiQ7GJLpD96CPfgMAs7Wb40YWalgBSgAKysGMoOdu/wZ4KyCqikHXTc6YjGMYjEFBVCKALFXhlYN1KAV3jQ2MOchXxIAEOkorVQD2sEggAWzpRqMWhnUhCBtAqdtJCXRippBvcChWausRt2j/8tFDGzvOSghj73aLe87vO+B/z/yUJIN+EemI85cQUkhD7/bXy+rSdL7HbvUQbCuCKQTuVUz8iFpQ55da6PMz+F8rxSt08l0hNqp7kzsskjIiomv0Ue3kdbOP1+f8nmeLiOMpo9Ykl50e/heaZvWR1+9hGyIw0422edEJEKJ7HXFmZdTmMMXoNoZtrkRJBqILpFBqIgVBEJFaggMg6sVIwAJAUDMEYaBFwIxc7GERFOIjYhwJ5s5nYHLcY+0h7ex8MKYSy2W+cI74xWw8aCFdRO6dBKjvIAIs4dFWhaFt6YOCOaoWTOJIQMmam4OJKRCOsGXeKOgrEumLglULCDYKdMOcpxJ2OwkD5wOxKOTFT1Lji7nl1UscYmpCLgNwWV2ygSQDLq3t9AwrKGSAUlsK7RV5pSiiKxfxeedEzpeydXLm6mfH5xknJGTcw4mCruZJo046xdFrxpxGmJdUqOcZXG2Xim8C6cKVzLY4tqOa0aStmtFrmZkqZl4MuFqjrWbdTbbuq6uttQ4eMom2UEWAmV4y1Lg7xzWiju7zWatzTG7uZZpsVcNnGv9+22B09d7Hv0W5Rh3FvJWBUZK8Wp5fR5nXn3UTXdz+TXg8eZrfC2OJ1EUCgbkAer1mrKnJAnnMTohMRX0VdAhYVDMj/vuph3X6bn9xq77vPrSqafRkvN9kAnsb7N04AzSShP+aeow/dwTPRVUzsguatYBvQc5yGyC5hXGXtcPsQsUfJnMMpVCqqU7hPQ+5D5Cm+PLz8Gkuq+pJ5kw+Mpe3wMz0+GZ2G/eaYmY71ked4/D1+t1p5bzeuS5hiTGSslFREILTOfXJ3td6W+wdlERH3VFHwbiIBtTJhx+zKrfM3Qmqd4rnmsPFrg52w8dF9rQ5GEF/ymrX4OX1j7neIQDZHNUBuyRtnKZjJLGvBEgQUvPotfo17O6z8E9neI5V5ou/VKZOXr69Tw67xAQCG7Lpp8mfnX7JvUvlduXfK0nPlN23dqmWtISC50zo6DL4IfK6jq0fzd/lpxuo+r2fTm3aH2vv/HFnONUM1CqlcK28+egTiepyDHwfJSc7kqmZjsmKlSDIk9V9Tn7tpv5Obf3HAU3aGlQ0gWVJCGED9nrEX1Hd5hm0dqXNn9zrgzgWByCJSp9sJwy+ndOOLqeWUzxue9roPkMT2s6ZuBVqGcHQbPfx5FV4b2jyezxu3WcnwjNfLQyszsdjDqJ5dLOvTRW1lVmhTFectXyLqoLpVjiRyPvVWzX8NZNFwG8rPOnMdcrLIyqCwSW2e1XbEuckrUjPZldjwxOeTClCFc4IVcAMlIrOIUiRPBIW3R0ovoZJ3gyYBX0HRHNBAXAHYATIx9P46JuIvvY7fhXnIJnyp6SQ4VxAMwsrlXOZvNyeNgNVyYQCVsSARMbvEm0LWtzIqrcuU7YXVvAzv97un4dkp4+UgAflJWYqnvAUQuW7SKQCEp/2cjUU8g67lIICd9xN4NGlE2bQu4JA1ieqTXHE6mGn6TJ87Ig+h853uE3A4c+NUu86IPxe6QcGToorN6eOIvVQ2nAyBsbTpeUA2qQQDVA0zWQQofTOcmOnF1yHIEFGEGcIdKwwZesOXrRvIscqSCB07z8xxc1CXUdbY2yknk0u9kcsBsgZEYYeRE8mhkiHFGZaLki0NCYnHlBKM1CSBHFohiCB9STGC2VhxHdslWNKhHEw7GQCEaG1kwcmz/okg6bmiDh2S1YTCIUEAQ0sgCJsRULF1LzhDSbTaCARN6G5QQPkFPA/yRHXcx+TVRvX32Oy/Z7ymbueVI5iBIUQPn988lbLcI4QlFMhI0FWmOskVEY7Od83nZS5lctR2oSEZnbk6d+28N8POhXJk4IbBttBLCPNexsyzHsjm0eZ/Tc+cPNne4kFs8RMEeQ+bCmqXEs7HLg/t85PA5DmunOLc2bPGRhsT+AtzQuMc6cC+aZNxKKlHqqFDDHDTYeCx4wwvlhYusBKA/rrK49jzvgeOyoVzGwCoKuFuIFRAAoYnLa8DOLKyKTpPDhG6VqeGO44kuHHucWr+R7N28niAMOWliXVWyxeajuUMYdlPsBxoA5GCgCkFWKKa6UxvFAOfPCXjDpfhqI3H51rnlykCAOb26V90oUKEhaEE+7WHBrtcPBqqL6LReIObvnWdLeGYZjnSa4hmsq1hrMy1GcpmrYzTI0451c4d8bcyjKqadJmk4bqay1iracZRN3W+LjvWY8b3rVVN23JjmNWXMmWim+VNDvImSZbhYXGzFXOUZbIttmaduaSos11PuHYr/T0zuOm8E/NaLBX5Esnc1VvvuAHckqqwFESKo+54PH/ftBleyTjgg2Z/+aiUNr6REsudcpvSHBTy2+ZPMBisEnOG8MP6fq3p02Q5aJjZfK/19N5vuyGKrAzwu81hd/odGj1Xr+A52nlQrv5fNmf5ejJijOKynucy0Yp7epCBfLWZtmIjWI/VnGSEkgernEzQvosOc+Rrj8C+LnPTPjN3veg9PdmdUUUtlr2+r1DlzZN6r+Za0EGnut1SxVURnf/JmVtE+0v+3yZ5kOET1dTBHPK4ufsz4xWcppEUZ6xJR8E/+3MZHKvxGv7NmnPV3a0QGp073RiOuBvjo2+3p9r7evLpOmV8mVXq3YVULX7VO4Q+l13073/f7RvXc47t6ZsXpZpMZFmn7qd2ir6bK78+dtcYHj8nnzW6D0UoX0WmN+Slx6uIdbrFJbY8GVwPDmw/8KuvtddZcuKPI0+j6bl7sPb6d4KLFiIiLpqeD8vw79+qt94ejq9JCa9zL5JZzhndq/TD/F3nHz8a0VqVJXy2aen/d4X2zQ3SRYoZl6HuTVUgoRjZ6sjKqmQ5jjy019vf9XU8O3zHXwzc++l916uKIsV9tsctF7/ta7tOCGnaMmaxWYgr/Qgw6R0yi4jkTidFUyjEBIzVWQe7bQjvRJQAHM3lz2UTyIXa21q7n548znAy4YcVkEJrlm9NekgYub4nVCOf05zy3PnKixHEEx5Xlc8et9Q/zdlvurCZ6XyYmi+flqvCIfq4sOP6vuVqnf1XJNM98URO/4XHrpX99o4X9fnjnZCxAH6zT5cFTv90c4Wbse/PbA5fER4huYnTtO+2hld2Z7xRtPAkCFPHccVYTL4DQQCQyTmHFckUO0EAX3pASHSemhjAR3QQkT1C1BbWISuVSQHZxMwQjjvFy5EgDolXB8Wocd4szjgiYKX0gLEymtZ4gaQBovF5FlqDMUdMopvLQeyCXgogWqlSAaQFzAawETz3xV5HexAaTx6LKhCSwsaG7Ga3p3d2EGnIjnsc6r3LY2cirXhUMbXYcQwQCIOQTkIWFFD86zHVtZXCJajbZyUYS6gZiq1FBW8REIlgklRVg+zEuIsl8znVLtNh1Ex1yRCbbM1ckmKHMwmTyIM6pOEi6qdZzpRzr4SJclKHEZyITSDF5VQ6a7pY+MiGaA1LDE7oOFxDhn8ifq4uOdyEX062UkwiX7ERpKUCrLTbjiWnjCniotNiGx9yIIggZziZyrVdSr9A3DUQsKYk8g4IJ2vPCMPFAcgRzrrhT0hkEoJcNoMhc2QwM1SSyWo5MSmipt6hFqA11AnU4vASxgqMJGKhFWQFiECRIRQJFMqKAWQo1CZ2210yIMfEjVpoAdaSBgMAQwiQUsL4RAIEy/mbpe2piWCtpFTtjwmcEgEXOxHsRR/mr4yeIQ9mqNu3Cc8y7tyyLcnmKVIpBiCTTtfMOByOCzF2SYY+06UmDi+s4AGcB5NwwSQin7k175Dlwbmbe4Jik4Z4VP23BoMy/Df4+lnvXOVQ+T3tm0Vca2JVD63y95t76FhXUPSLcxnKTiucOLSDSa7LUy5nOTw5MH8leSQxnfOSdTRFQW2onCvJ8vjNNqhNdhUDa4qo6kRAkUAx/ShEBWEdIHyorXZTHyphhUMsBUxfyOhoLXWg9ayIhzPZo7H02yig3IyvEJIgBOpsROBXFEDo1cLOqAuikJIpXe2pwRoQZZEAGqwqxFXsVVpR3iFSTMkE+sbilAxUyBqQ7T6iubcyhIjZ1sXeJFcHGXpdoLQT05zL5yjmqunUUjeTU32Ql97qyVLIh9ljOF05biBxA3E3vd2mZmS6ptrjNu3epY5U0thXN9biCq6QU4tONQt1kxQrrV0uNt1xdaIomGNycuKoYXlKi2iJqMicuGRFwQ63Q3QuFrpBuNMtc1rWmmhzUuao89f3fKXBIjFPa2Q8n6DZUX0bzO4aZ33JD69ZkFSsC3yaYWNCtS14yrPelmhqGrhgb/y2Wl3N7LRVhSs7Xz6l6bP9jP/7v43rlgTMBZIF/Im80YsbKPfax+7dOtZivmc7rRdHhcwKJSq1LE43rz++zdv9tbXJzCapx5BP5aJQ2gk+Ts0RP7v2j9x48bw92ghrLBP/UaOdswVFmWwWLa2srKrPLwmk0lYW2rYx89alfR2z3dOM59bf8Nwk2gSTG2/3+bRhqgFLjVuZ2fwHHB0dHD8hT054FzBP1Mny8kget26q3wTPJ0qmV+Tt8eT0Hvs5PaXodzYagVj5YQxM9jir27XPRwZjrK4pUaHutgI4eWTD9uU1qzzP9L/x37P29imx+jzOdtcp5IechujstKIW3wTEcv0q5h8b6XIw/Tv4+NGbTr8x7taqOGMf3qaj9mXT1n0/VP6PLwdQzSJJNN+FVR4yAz0bvpt6Hq4zsKSN8tw061txFy35LmeLePV2NaX5vv+vNMOoCz33PyNnqpmCm4dzow8zPMXNOrnv8MCSeLv+7n400qCLq0tSKor44/xNfs/L+c8pJESb2VEo5m+wzm3izPw7o93aYaqqNk3FvtRiFoJFmjmt88qN4Eiq3xM/vy0I37diq5VRPx+voiCYjfMEQklOuv3eUkq2IPofS5NGcGhsbFU15E+9sn1RtEOxINoeuASQkVfmQ6zDsrBvKGdjtZGPmca7JHI7FF9LK7pyZOude1z++W9uiQnj5/966j2DfdmfX0fgyvClxy38fjXDrQ/PFyo64xwzciuv/3LSI9zdUbwEkI6aKDbtIEt8kQjaM53eB0aYk0AMY2xpFOEHeGYjNmwMybOdvtDcVl6tNLwQbSP3vFzUJbqOxCIavsBTgapptYw5YzrZFkzW29sjhcQZH7zlVzPeZ5vecGJ0EkQiTyaKhjfSLP7KQpLObOQVPKl9aVePgVlhwPHUyaM1lxUK4uuFo/S0bHjI5adLhJO6HcjyCHytoZ+ZMfXCRY6IawjXxGgGDTXEKuwb+4/ldLbXkNyVRXSkUAgWiiYIIBiKiSICSAjmCoEigkIgDvSg7xTdAUSgLMC5p9akMhrE2SnialqN5aSJaGY4cNRpiaumHGQMEKV3XKAMGiSxHT9vYOz17WNpwOGQXLroGzYHIg5bFsDhzzzWFH8Gs1CcD4B7ejDzL4wbbdSikc2bSEMb4CIpIZw3IrbRaQy7QgJ86IWwHEcEpcGnELmTSVi4FJccjkF22CbVYbqoA5ITbZQiI0VYhIPWoc7zCdcYoav4g6r1I1h1cMCmjYcYeNLoE7G1KrrJ0jwxnjzIJk5fCYjDt3FGd6pw39teSJ+D8Zy/zRU+zFnkWlMq/MwJqEQe1dxhnecy45lYGTgFHkwTEmoxrrVNuuiumM6+uWcbojjXXFVpwORznf6+cvWSXAZ3y6qnWWQ5Oq9yZmksjxgBREcZDB9W13mhzjjM5aDmc1Q85qp3ZyBAZUGvji+Z+1rRJo4Yc7P8ucbLK92qlu9uHVz5aWL0SQbggpVyJN1YQcEV+QjnD2Od3wdrzDWkISNUrlWTHkaVRCtlpHKdXuhsbfdaAiepK1M8i5tMKXAuNSQkLbolLMvvEs2CSIlIgvgtqrbtRIQ+TyTJAORV4KbyQDi4WZZHBZF10XX/KRazFvSnfeUpilMRJMeRLTnnlFFKHprc4y6uuTNJclGutLpcybRwYZZrVM1jrWtZHBXFda1o1i5pONBVx1dzKuq6yuB01Mdl05d6XKuqzRdXLnOwzMd8uJm92Uy3NXEdaxF40YcP9fY90Cdr8z+ilA8/eOUtpKRsUVolqXs/jfoxgkAS1o8CWI3+D92D+sviX3sjOCl9gjQ/ulQEixz8+XSOsg7BDT7sgS4bCYqT7nddj74+gilflxMZ9bdeYxMISnKhq1MIdczTrxyd9tFSRuDMHsEMppV5mHq/+EMN5t+a/tQCAJR4SDMGZ5+UrrApj/PtVWgQayC2si5KiSIAPYWlmWvQD9h2wg5s9PVm1+QlcK3mcyjHfhWueHKbf+LsmITV7Gfq7qE3eKkIPCOspi+WiQ17Nst7Ia4L/n8l0TQSl3xme1qeYSo4+6UM0hazcqW/1SpEqI+znqKMVEqKFBNb3XHH93le46U30kl5ltn7GSvd8dDZNHh3t/wZjFFiJFILIKjIbGxS7y/l/QTaqPyZHRu9+A+TDh1fPrEHNeWyutYy6HF/Akuy/3jyPatIQsVKP2CmW69hAf2MK7rOUMj3WzJ92ymO7mRD7mSSazT5e7u1c8MPzXBxAGtj9ma/NcoTmGOxyxFlRHICmu2moaz0McYThklYjAdLr5spww9Ho6H4f1GefsvtB1MmST5BBDJf3+x6gWoNyEFS37nho8dHHAgoaPQwJqZZI+VmIO9AvL8H6Xkd8nqZDpHVpr43k72Os8rrnQM9RfEzqAQzjMy1pcOS6T+q6JBEIeg1Lj78kmfq+nd/ENPyVyz9UXIq7ASU2QNfb/BLeG/qgzo/PhXjqhlkAymZnLmRJqwKX5j93s0HX/S8M6ezr7M1N6vJquECBo97qCYnsVU6ZUDSkJY8pJhk877uHrhXg9PJDNmi0Hw9Ws2HYp77oz5RzPia8dfUfFW2cr3ZwejUNxMF6OHQCT0bMy6t+K4qYSgW6RbJMO41mvIbDGF/D7LNXKfNr1Zq9de+EN/Jqawq/I3s/Fv/nBVG244Xz3icCQPr8TUmdPV7rpedlPn8EwP8KPzvmx8GYCqplnsy5jxyJLYmY1wvPotEEhn2wigbo3D7kWyyL/O9SZUCgLlFjegtcnPuWLueauXwvHo5w7EQdROSSEYLBSEWKCnF9WacQUnTbuE6S6haSr/be5VkYWt6IuDL/7ec538YCqSJEjFsllVVdoSjxXx35pPBQipkpkcBoOS8d3CQiOu3xwBoIDhJDvPwdF750O80quhF+Ruo6ThzUqY6cpShFxkDeub5y6wfOXvJje9plBIoSTHXIrk79PAkXV1o8Ined7504Vp2+YLVpUnONBFGzPIlvpwrMfGZqpiL3UD47kdYs4r0e3/F5pXJ/sQQeWhvfSt8vlQe2VGt//FzF3s3IhfM0W87m1AmbOl9wsIADb1gNZCAi6rAVR6wRR1K+HYdL1IO3K8yDe2JkzPPIOF5IdA0H12dATlJZ3uyPBBzj5fZ6LNpZdyBhPCCeLKgVYc7sxwff8AznhVimHB0Dx1d5T8pqI1LyB8t3B+LMbUkSODNcuIY+hB7wEeDE98P79fnL85Hsex5cDI7Ut7Gj6uvINjQgxQwUNEXaennaxfmSRAdRgopV5qw3pta16uUCIjsRBUwpBRgwqHCI2KpC20S9iooq7QIQ4ThKk6vRrRrCsiIBywkkxggUQQ5TelVtBkBC8FAKiKNoKKhuDAQULQRF1iiBcvl0uJA1u4kkgQ6aOx0RboQQgKAAMBQd4qprslA1GQZB3JaFoiG0QGoCIoZiMX4QlAA6wBU3igoNuENaCoN6LoNW0TLJDcjSF99XdQQLsDJSzRkRPMtIDhyG1iREBIOG1xIgQEJtNC4Gh73WDAkMAe7kwJA2aNcZS5gV+yTdNbntTaxeJruqNguw3vJDCQqQEEgKST2MJUDEAoyde/vegEjOpNJBRRkIKqbY5udJIbGk2DTRpxCoRR86+0A6URDcRNUrYYYZwBAh1wEgZxOjCCsgSLmXUIZzmwq0o7C5HYUvAIQhFDa9FWtBYuDNCaoesLghAtjA7jVeEAxhfe3CCNim2ePZnxqegoYafr71FRzaJ3hHkIUVFv/nscAHilgeoUnLK73pUe4V1pY0VVzPfy5NBZxJBIqcc8oKUFW5c5duo7/C9H60CbRLXHTS6CkL2AZqgFIpvEBQRpN6hETeYkHPWDSBoI0SHYjspS6vpHz9fnK95HjLdlDQHxggEiCHC64rzWcKHtlXg2zI822qvf8eVxcx7ddcRED626nezdcXm1jL7bfCW51PmGzfAd5+w4ZbWdW+eUeYedqVPIXc0Sww7ISMB12nRS4y6kkwJSO2y9YWFReYUJIkEdsjKNtDh7nJUjm4BKOoWQYMB5yOQ4LpZvAmdjsc2qMu+yJGFNF31c0KEkIRwSIV4cqY3vcjqLEIqziLz6aFecZknORYkzxBKdJGzKRnXDlbzL8VcfYvbd9d8nU3NZmblbxw8Yhy2XdV1YcCpFDG1mJg7vOaxSmsN6NCprWGcObqzS2u8LimJpmjW0zKx43o1daeLdmbGjSlyl5uZU04uBmXMuc6ozGqWwdOZLxzTZt2CPr7Q7MD/89R+fT2TP4Ojwv4soi7Vp9dN+SEqsd9bgQdkccuavyThYp+2nrjbSfJPP5b1q5mYKQUVYdvH1aO3hwZk/b97R5tneY09a93mNldMEfFL/slnSCklahKiVXfmVFczw5zKW998kz4CUSKsZ3vtXDMncLl9Xo+GteNHvb42+G/FrjzZalVEF16M9yZrgaM5cF0klVZ4zEqiqxYPHTX0fkPPxXTbcmZip/d7vLDXpYehMPjtj7eC4wa5J+hhWNNFcbMKZMF+hZKwM5oSaIZJheCyNYJ+bkPK/DJR8vK5tRZWVjaN63Onx88bP8n8rMGicDBKYGSZKh2RlT3jSd1Mwt803m2zLwo67F1HIwxwSxqDIzIADq2uwRgl5JZt5B0ld/R//GuSD/SWplqpeuX6PC4aP4ZhFgJ/m+Th7TM9H/3v68zZ8V1ie250dszLVR91+GB7NWafv/byfH3WGxJcX+QGYZA5aspjcsBRIEHRMyhzgQA6FDjJap4NzTvJfahrjR6Vhp7vVz4ek8vFk01EsCX6+ZdhQQKisoI+TlFiWUoMOcHv4TE5UZEh1KDnx3j8vtBJUT50XTfIEjAIIUj7yYgMIXbqsrnc7Vus3OR1oazoWCC8WA5ns8U8q3kzdIBikrpfcr/S96R5nlTvajHWeeXwSIECgw6JIk7k2XF5Aseo1EXshyUcUTVUlgT+nCb4hd5xZMIQ549iq3rNe8gSPO5v3HAFZ0l8L2TMGmObdU9SUGvMgKJwrbYTT3gC0AGooVBFwmkUgyIEEgSgEHVAiIJeCio7QRFTkEwLGlBADKERQxEQTMFAMsQbEBAvBEAvBUUNYSB9tYlRFKez6hSRjOE/9ks3eahsMaDHDbGMoqGit+ASMVCEYBCDEYhpi8HczLLRJsLchuxcI2uCcS5/OWZMcuvK45EjgHlXI50JX/qhtLyIQ2AxxYLFFIsSIxEnQ54OwIl6eM4RiC8j/wiyyPnvBh9y/VEDM3PPWIS6NWuujaMZSZvi/KUp/DMmscKHSAKtLEXaICvqKipFBXSKmM7Hx1V6vDhe11BtEE2gmwRFQnIQhSIiMgDbO2rdVDMQC5ERagqryTaICIbEEEMsQELwFLmkNiWyREEMRQA3xc1qN1ETaCg7lwC2ApLgWiKoGHAEEJIO53xy40SJmYgK5FTCONWrF1zL6Eq1lJc1GJHLGHIbDJeYx1CjEFIbIgJHRdSDDEaOBk1CoyULYDi/PAAoEaKVDCZOLWWBlTDtY2o2YSzpqgtlgpm4NyBtshSdcVkDwQaGrcUAFpU0kPpyQFJXZ0Hy55yFpEJRaL1rg5MFybXCbONQ0XxcOUQ0qyjOCFnHy4p7t1AUkqzRwy9iqgUH+KEaXuc7fSKwG6mO1uvkjxcqodEkIXHMW7Jc24r/vM/9BjxweY/J8wI/ig8MQPttPYGnG2KrQ5mcoMYY45LVp+3TCJVRGNGDGwkrQ2FruwUO2uBkDhy+QXtVhsAZpaXaoun1O/i69bTDtE0x606eWtmdgXow9V+w+M2IFcpCARRdXfRBsmVFO1SwE/LlvzalrkqzsCWnQMuodCCYWxEtUGXXVuzFI4kS1E0gbdijaiWhZFSscFLJSxJAArWhhrqszayC6jYQUSLlgjCeNBdm4VxNacMIcO85zC5NJzUkYoTWHFBuGTkkabEChnLmaZh06Zm9ucZcboscG4mONRTMpjxlyjmbV1pRbBtu5cFzWC5hdZKcUuDXS0cuc0uq04x3masxuGrcrHjd52Y7RtOeNZp4t1brlM2UUVFGoaVriZa6csTnKgm7tyqyrxc+993uPntewWnf6R+1r4MOvCHTDjR/VSyDh1yTIwy3+FMA4/kuIsqYlhLOoR99/5aKkIEPPJ/pmsrHOuLX8HVdkLxjPV6NbwvsdFh33EKIAZObW/XXy4flPcc4gvXvwOxeNzD0666lI8RrTyTB9SPOw0eYzA8zww93GzWlO9uWrveYFsgXPk7OtSmm8aPo/rSIr1Dcij9yA7+Do/NvhmkMX6YtMG3zW6yHNLq6gVmwyXq96C/L8+MccUXDilL4jNelhYKPh6ot9XQmzOgEgOeewoCPkezMNDO8t+m5DFg9DaRxhqoCTstwDZ6KHsFqZJWMNXE4EAezIKIGFGSdgeZwZu9xCd+teGt8H+fycStbbWs9WXYfH16BEL3ok6Dn6MZQUDDm0CJlkCMkYQp6ktxsSGSxWXrtz3qL04SjNJ0JIlqYYR7vhp5vlsxVYnpAFmsJEy2PawLz4PLmb11WqrUaDoOx0skgSN61yqJiBG+eeibxY0ION8N03ZhyGsd8QNxuIyMyBgSPj/aXLGfTrp1tvjJnY0F1IYhXCd1mj36pvVK0pT4XJggaaS+++SYAhoPSRqs4J4qjBn+BUe2qmF8R+E+CQFK7pSw/Br4PRn21adHRRE025jM6gm3ixUBOfOyTbFaQMljvp3jZSv6Ovuggr8Kklfm2DP0xDP1Yf3UmzjLGmfT6ubQxrxuexrKJaEq1sj3cu+XvnKAnNyb2QGHU3JX3Pxs7tnu10zasDVOctaUp8W+87ceXFR7qpMwMeC9pspK6rWEJbthZyNdOLmVNsgmKwQCBOcj4SWVHvhy4l9W3TpfYzmtOFOs2PDDgHYV9npH+uI5wV8703K2ulNxBLUJoSBYW6kYlMhmSkjC9B7WRU84tIdD5x7/ZEZFl1kUd52p/85ydgnmxDhvjZf/CjOvgiwAZBJXBqooHVOGRMX4O+LC3JNSqla8MpKJgrDIiElJ26KT4kc0kw64lYXXNGucehzFLsAQDCMiENoihIAloKg0BBBBgJAFoSIArqxRdoCBhZGIgC4gIDLSQwuOJDKW5yo6CXLdahI14RzhmK1VpplVcYhTA0quvrPU/eXdvwKVDf2euydnrws2ejZNLNz/eLPg6SrdVJOn1pNua+PcwUQYgnD+f3xRqYUUbnl2As0w6ABRQGZaQ61jthe++AmEPfRhV0ESVxTzQbU7ig93o6DegUXa3QKkLgcsNxy0498alV2jR49L9xgiGo7RwMyl+NK1513v7N8sur80TfmtsyDF2t/xc34G2hFxj25DbPZ209sxL1okUOh7xX6DzV+6PTmAHCeUOb9qeaEewTrPoMzPeRb3bWCZ5e/bf3Az8/hghIgC32O9c3BS28o36IEOXUu8d6V/vu1pxc+ITof+DBjID8zL2DHYdPmQtTIf3DFHDEOSaYuZCpTeknyLclXIg9onkTksW2BcTachQU314Dis+tQtdcDo/ZT7ruqffHbmy5/kxUQ3Z3J49IKG1zwbABeaIYIOaSQgkIwhIBICSCHWmbZu1rN+Tp4NZ7q5eDjtnrwtdiHuz0uY8+NxgaT0nh5rbfDRDfya0quj9TJIdu95x/TYd/b071u/awvfaLz5MyQ+1qr+NPLCgAFUndBl6yP5ZrGDg4fLq9gBYyCckAkom5YOAGXcPZl1YnRfizwkmjcsLviiUNxMUklhWQ2ExFPTyd6FQk4gu6G2oQIaVi+LdScely9aDKBZY1gCeQMA7cYkQF3Puloy6EJEx7IHB8IEX/ADCDI0ghim1ev1n66qGs7bvOfpbnaXMSymnGkLGuPEkKkkqrk3M+zbZQ4cNTzNDRElO7wHmUJZYYMiaGTBgEAIJux4/+y2NoiIUD3zA/BpAw4jOZl1WWCdD3L3Qg80AuOSkIDRNon8zJ0aAnTn79GnphjickDSJFShDoEQ+Yon+fcMB1dHtjazcrmJqiV9XqpfDwmg8YmAQC/e3nRYcgb2Y/rWiGzInQMe5XDgPPjoAbtAMkc8HXn/o9v7fwdAp1c3rrl1UReGEh7pwz8E9Le4dP+k+3CDvO5gZGN2RYPKWwAAezahdPZQf08GcHn12g8BA1QptNMduqrXJKXTZEd4jj3m4rdEAMOholk4DFrq0i2w33fpkud7hNhAhJhukAzC/7Qo3TOSy4Jv1hoHJs9MjAkDAGtx7KjMyIQ++eWusQDEpnTPgfVkogXm/TjJsyFCSttHZz+XAX5Lto2SEhNuritNBV7umXO5YXwOHRRrAXSXbCwVdfK6ydWQbBupMyUdbyIYyYFaiAD3DLonn1MP28QQgCG8DdAbzbB8tlJR0mPF4htxDDuMDddO/JyUVTNENgXR/qJHsg48/oh3mOnry3po6IPgZmKAwImGjoMjvy0rCQA2rKZCPohWB4UEhQNf30TgOudvVST4S/X1u7rDeIaB+UGEIRn2B9XqBdx7UHycuKu/6873LPpHN7enu8G3tXxj2AiKUgyPAQ7pLjFlHjv9Ikjxv9gQKiRcRDn+SAM4ACQCcUNGb8nRKgt8n4aMWjkNG3watF+SlLqMFdCa7aUP7kJJLRPTssq592RaOzvAM4Cr7tPyh1okLDjlkQDAwaJ/47qAkoYtx35aO6STU7UA6EadlIDrbhy2rn3ta4Hz0daptICENjN+MVFpkQDxrMGaGe3GgONHRRqC+57k7jsoYHH8ARJRQ2bQ/bROAVCKAIgQE9zsHEWMcIVdqIn5aXGdKShMAJz4KpdJ1Tp4RG3GgHYxAzBgzIwZ8lAQRFGRFiOOun2HsWyGgRDGxg51oK1x6SJtgNOAGBXG3uMJNtfKanie7Y7Tr4+LswdCclE1S2dAQBwj6Lh4OTHiDxxDjKh1/lSWiLCa92hZNub1dn8TsM/t2o9foDjZk2dqPjFiYCK+UCHwDdv/9D8LXsTTMeSG4VzfzRM2imPZ76j44KY4JnkB+lIz/D76/w+wdJVib8/WMzQwgcH9UAZmRHqtSkRiqQMoJ+phcN5vs8etYRrZzf30+VbfOCMP6PQ08XxaaYECAFQIjcDMjMHfPThrlXwuDNEQ0hbM7AD/YiFM4jGyti8+4HRDIQpkIkOMeoyicJGD7J0nMiUeyZgyBmDMwZmDfz/9DUceoaCc0yU1XrlTA4RGyKli9Y5+pTcd694dvju3+7krndhu+Erng8sNqJqZxCJAtrQKT5crsscBbzgGGlLR02pulLV0InOAcMALBPj0FsgrSFIYMm0WYjyidJKW5E14/5QsUu4/AsRIikY5T0QU+CkR6Uo/g+nEgAH50EaAij4NFkD6fodM4C3jjsqHgFTf30GVaP0kBcZx6PinEiALlZRddSLAfumaOyiv/RCCuKQA0BFnuMogzOUCBpZdIDc5fm3OIaHksvUMwNwvyeqe9eWDA1XY4hhz/+POG+g+gEYzvgZ6SqLz41mAJQzI35SIEJRUiLdflCH/IJEGZg02IrsOfy2tmmbpwIiNq2yB5OHhjPb+o9IMjIGQMwfWBYit1h1DkPT4/uFI4adpg5kBjPeFk3JRudzV8/s4HwJBuMw/JoGZnEjTXTEtRwKGcCHFaJujuuE5pGRiXk7OJixrCEJAei1JaMgSKnbj/vdcxEZJIsJFCCyKKSQfUWFQgskWKfxfsznvNH8sTJ0lm0+t6s8wgWkL+QB2/qRRz0/n8r/r3LyEN+vh27bRccEkEkTZzVOz+mXa+DmWGHTjN8OzfLNBYAELwkLdndkTys+YHCtCfkQ2h97ew/8DjV2VcxmZ4+AsPIL8z65hxgwcv5BEBsNQBSzh7aIW80EpHfhij39SCNeE9JuGaTBEahUQncBvP+DBmj/0wAJRLxEPQzPA1lO2RyVsLMiGkcyIOEP8sNspbBvhgPrA546w8+veuZPrLtt+qHtMi6w+cN59WOh1SnUk1j3TttrvgxInLGkACJ4SfG6bQLer1+A30jwP8B2ta3N0XkvrWLhF6QwUigXgIBIoqyCgnOCcSmkgjzMFvCTTTosh8NGKv8QTTAMzydTlsmWkhwxxQa3pb6ebu/Xr+7tXUwGBakQ3MX53hrQaTM8i+EzMGBm+GYTl24WVABWrei+1saA5wiiC5Az25zEA7UWbAGeYUAAERDp3x/6dgdzBaWoRETjAycceFZfO2f6FoLUrktZ2HFc1DYiKVbAIFPLwqZg5gixvjSWdJrsziAoyZkBiEkP2q7zXR8DyVVWHa+ztz6v4pz5mL4a46kCeIQGzn0/SPg9r6O9URFVePYY3/P4uPHXd7Donz/W2fcZ+j/WrZdnz2dbpae3/665CwnVTC0Pa8mQOCzhy5l/xT4JyrdmWKnCDItcFfhAwXGap+L8O50+GBbiGH/dTp1SdyCkUWQVVAWEiw+ZkkrPYyLvOj7A3NxvpuuLEhIlSV/+P3UghanmZL6eZ1mcBjOIeS+UWLcUniBX9cq5bADqlUStD5fBztXIIeft6oPvzUbuM8NHy7rN05OG0NOXeTgDvmEhAkIRMOfBncW9lv30RzF5bEeIgYN+92JSGCBEQngAXDSH2GZltE9+zU0tCQABAEMuz3S7Hf+Y7dCJzBOtc91OAV1IWIEovYPjdnG/GNWmCpzsW6NbWB3LqMzMMHv6OS3gPr1B942AMGDPQnzkJFyDXs+FdwAm9Clzzk7lMJ4uRgcXmgz1CIwnsQixYIwBVFgosUgIyRYRZBQBYCqQFUFCLJBQBYCMFhBRQFWKRRQBRYCkFgLIoRYpFkBVIqIEWRZBjILIoEUWQFkBRQigoQWCrFgRYoQFIDEikUZBJF35X+fhbZP6UtEAAqAa9o6PJjQN3nn9PcMJknSCfP6Z2thqopdD7YFIposJIUrB47FUAEP9ojDj6IjuylRf1zD/8sOmFqChmZmAa8FiCfD/HwfFErCzzIooZjGJ0dNZeTGVomLQ8p2Ho4Fs6B+RFvBAgneRCiaSs6MpbYh9U5S3122oO9RppqOAz0/tvQj0pm56ZKaGlmM2qZpi8Nu5N/ayKYrW+SSEkSJZvpXYWcHPyZbCFMJCW7Mt29tehwdE2919BoJCESTcu5A1X44b2nbpvdLDTXrxTP09u+OiISSSIMm1AUumuHdJPw66vpUgyDxgiVBQ/kIqUaPght0cree18L+Sf5k3mB3gcDyAW8ibRwuRQcNOP/ik00+rZdj6zx/IxgUuPx3dKNpu4e/qsd+KEhILIn7lQXj2DYvd+ZwO36PHcAYzFUXkpmfyUe6xEdFs4g80gqsfnYa6GQ0VCFq/T6rxmaXaxvVHJcqWqBpgVQY3/pY5TlIcb0hF5BXEXEWBCzxCJ8SCiWzZrztUyMzSDb4o4iKxAq1sNuv9DWWWIWNSBAcArvcMGf5GjgC2wVw68xwZeWoCvPs4fxPo3oHpP3tQV9TFYx7ayBCOAMAiAIEGlOZjtUEwHQey206fIJHtzAlMZU57htXgo7FyvKKUqg65sr0ivkhozUHBFCR6gibhzklUMc5yLUkSQZEZF1gOpivd+oHlNFvujCETb51SpvBq1Vdz49bnWHZmlUx0xeqgmaEmSIehTRMkHc1rCqZgZPzRUSPSksAYxlPqqEv0qGxSqSCEZES4H0U6oFArhanG2gO4dUgcgJQsz8mb7gG1gKZAgPjGALsK0jZrudb66bQOBkLLFwIHEsnTh6jZBzjcFWFfxHSZg8K0V1bh37/87V1gemsNM8D2m7jQIDNMnBxAs5FltQnG3RYmvyQOhtq8W01F0Ok6mihKZfKCGAOiOUI16aYFcsjMDPMNqzTz5m9wh+pY5GYMIAaHjAzBmZAwYOujaXAB1U8WdpkxUycQhC5ghqaj5085iqc+noieWAOqCMgEgLIiyEiEgIIwBEILAiwUP9QPZJChnS1kOvqqI52B47Srx5S68t0MXnqgRDqAhBQeKnd91n9bnbOWzTm39/ni/mXDnA8aJggAIlSs2zWBzQOKDYgXwEpEOtWiSXmz/JiQxVPP4KxbTbyRiYMEULyIOVtoiIDf2P72KHuCrvrPwBgOlYC7EgIEJAFw5fS7HdHd8JbjtUcgKjKPtba3jMt9B9w152HmGtueD1xO/xTwIJQiIuI6erUDtMzBmZgzB3QSLXBFuGRDY7WJ3EiXjcd8zMhStIMRb0GwNt/VlthMV5kNf/ChA4fihBEHprKuYeygZJYjRz+oSSBjAiAZ5z1yTWr++dRY0nfPfLCV3KwQqPRQ+K3rEN+b59fS1I3aMdvosHJEkCMWXUATV1N3EHn+fjbBsZgh6ArHPf+c009Ftw4EJcAdt/c1NHxZE6fs9swfHmhIwZA69E+/W7w77WCv1QYMgTNPxboGZmTngaGHmHrD87F+P3kfp4YTiBmz/x/GfULPtpjLIudwp0Qi7ayksDja3Q89+XasGZyQLTSb+KSUdiCOh+Bi5ibyxNgFOjgLooDzqQF0H9pgarwilIgzMGM7BzrAwKHwkkjAy13KNcQEB0OFuwFrjKrwxgP2zdVwFpAQjByx1PqoDH95IAC+Ew2yWMY+P61HT2NMEkJJPx36J3UZtpjDxNQ8U8ubu5LDhfyogHuJvJCBAC0gGNLq9BXTajzAwzgrC+XBYUtj5+/x1CyFus/urZEFB+eMxzm9uU6AUMfv8zvY17jsqwbSuZ121waenQAnR8Woi28wa/XwLDOB8dNdIuZSGvVYhjIBo01qZTzzOIX0sqaK8bKKfp8PCwv36/N0+5NiFzOkeXt7u9L5xKTTnlAB1TWdCDOuPCyFYYhk2O3a+IBvNjAmttwFoyKChFNwuoBtLdocCu3kyGbxqcdlQ1wnKTC6wA08tFyTfSHAz8eJ4a4PssgRQK0wQArAO0sJAiCwLNBd5pAzMabVszrQ5LgnEOSotBIFhrasomR7zUyAsAU5BRpjdDUnJEBBYwo0DiFQMAQG6ABbGtQYsFENkxWI3lyVvvY/xKFENMKanXbhcQHejm8WlibTtIq9mhS6cFQ3OeuEwCiaX3czuh+UDjO8LLTw4qDkgUxBTm39ZULXqLRS/rO5XlEihScMLQDJNsTwWfUFlEcSGegC/1yGHi5bdvA6enh4zfsy4OpxHWT6GLIJdfHTBCkkApEKWbDH/FMk4KE0h9u9jHLwo13+OJPnLam/fNNhN76eHFYUs+Y5PiOZEjoIFQiAhMfj9arQ3G84EJTfMEWg+uUeWOe6k31YURXSoKE2oOhSHUu/gBEgoAppYWzvtFA1xkGmRADW+hAChE0gjzmChAOCZZXEJVmylAd91G8iGb2KsWmG+OIhsCM0EVkRKcMIQETEnf3UKZDceviSGKrBywoh7UP5zFBSB8nBPhv+EA9n4kvCyQ7wHtQogfmKExfD3jVziOD9f4pwra+r5OnwmDwmd/Zr7TyNb+paC7XejiFB+EDjAC3F/bU1OrB+HwTiHtuyF5KGJyBgyWBymhgCX9Onjag+Xbmf5/ccMmkeHqaqvdfNj6NdDAGs5RAIUOF3OYg9QRihRvd5EUyiOOn8KLua9zF7XpGX31gksPK+31bDeoFsH17+HSgR9oxL198c88WX4IAszzzfR5AAj2OpHXElIZmWd3qKCZAC0CcthDOVzQbGNfC1qEJd9cw+Mj7fgf/DNPqJnjrsWQdmoErl0eMKZjTl1NEMySdoe6+37PksOvHnjOTRQAEwwQFdWqtadXl02Bs/LaqOCASJIDtwO9iNNTkmaYgnQcF4e1bPUO0tP4x0cc8mkc9cvboFYEgrYBzUEWpBWQUkEGPx9pVKwhEugU55vBk+7tYNo4Tq3XHCeUrrcX+39gjz8SkfAJw3zw8S0sM9cB8w407SnS3ibYFmDKYGuCFCIL47U40c9BQxf/jsqBWhVA6UNBD+3044NOeIk+1a/j2flG6V5975aSH9PttaCIZoFAy6SErzfGEqcXmMkNAkLKCFZOm8BM/ralgMa13C9kfY3+rpxrl/v57990qdZKj46/fy3yefHC4UkgdKU0kA3NuEknHaGoI2zSsQU6IIonONP3hYmT5bvnsXEYqEnX4KdyWwkZBkDuw1EAN+mS9Bw8R+tde74agV4sJpjCJdWy1r5cWSyWPn8/z5n3cCZG26SaplV57X64szmAsVX8SX6gusfW4FTRHSElkJYqxC74u6Dz9gzxqHsQcZSKZ1MgRHmL/H6INyn77Triv7fTz4TSAl3CIML+HarMmejYLa311Hgtu0MIA63pLr2Vv4QhA1uE9RvDtNZ4pyuzx7/+KfyIeTIKKALFWQWCkFBEBQBEkiyRSLIIwgsIpFILBSLIskFFAFgRYjBVhBYKEUAWLBGQEYpBZFWAioSLJFEQWRYCwIsBYpAWSIqEFAWCiRJACRkVJCRJJBLf5yVDfn1bX487Lbfi9P52CHy7gUOH8Si37VPJt0wQ/DkGh9czsDnCewSiuOJ5R/YoeKPZ26Obm0V4Tu94r0Qy0s20KUP5rbuttGcCRQ9OFn8c8cKn0BfGDf8+TIjkf4lufalfvlccrI3SeAFf+U8Pr3814Yhedfnb+9VC64G992v5fR/tSk4vUAZ/tjs/C8+jxABX8F/8fwMvHArnv5VI1MUK0kkiD9Jxvv4Vi38JiT525GYwUote6FKJnKSmL/GCJIsDslSFqkR3ADFK1Z1L+np7ZTzuEn5WDbc/uIUcnQenbjhB9z9DJgusbpkwgJuxyRApEkUnKbslS3Lb1ixNytEx71a3E1PQ7KVDsMc4OEDkKoaxJcjigInZVKlYDIJfNGXc6Xy+eXYTdwkwlHX/u9zS3fuv8yUjroVhqhpjSDlw0Q3pZwlxfm825/Gflq4LbCpPUNfGH5/C1wGkvzZCw+1hnKxn0vTb+u/VxoZNXkN5rx38p2n/44bLsDQPtpXIbhiou8uZDBr+q5Xb8X3wcE/FvlG/en3xBXM4ftj0oOp+zs9MeFgLAiIsVIARIorNgVSDw9xa2jkXuCYDiISw8CoJj2FN+b731InpV2gbr4rgy9Hp1jzAcBZk2IJ6ACHNHkmvcftLClFqB6HzPIOt8hEuQxjx1NMXm5Zx8VmOOfNbGtvrm9W6ezdp3fpTmMXHV2yJ0xKgH9/QfZZMnk18GTm/DCFy6aYnwXm+W6Et/QExU2Y//XmNz0b+HrWyWBZNFcmb7XeBEzDeIffOXfoMMq4KkoQnH3ms+yKMzBH4fh6ID5a+/186M3xKd/D6ebY/PiETMkxPST7pR4IogYqkBFCiIhxXUgQpaSgcj8We7ww4lRPMXz8ekquH7LWQs3nn/NUD/qI2E6LlPDvCntIe8wHbFH0wVpkEf11I1TxESkD7DfccQASSKQsB2cnjl+fAGsPQl6PdU+RrPpiUoaRQ2gd9bnPxtcP7tAokKKhpPAVUxVLdQnKRXNR9v+PmBWf/yuzabb8SEf6YPvnYiBjg+JFLjf04fK8frVJhDYYOCkgZ9DD6bzcGf4fn8NHvOftA97aMvbPVwZ9yw590d79eqSjLOuGxWgUTWs2nNKAGE6gAjgLAMZLUAxew/GdxdyGX0pObJ+Jj++yaZP2MX14/txKg4/jszmO2oHOI+SJdtn71C6IGlAYneH2ULITTtLZXzbUiY/dKzvw7r+/3aFu7e/6u/uymkQJEn66RDxzugeSYiPTIoelKTNG1olffehxCudZdsKVC6Jy5vcpQxS7ly1k9XatWfleJeRg+d6ISlfif7qn8A6b8SC/3TKf/y0bufpqRRY4olqoXiNgdfqrgGbOeuZNJsWIZiaEps8HVRrUDoFdo41a6169H9H7/proisYIJh55YWS8xCA8OIl+nstIXjIKGV44bIdmdvU3QFXeCSABptjO51uB3D8wiiegYGIBwhutEr0WnTyda17AdHqZzb4sR7BBMWQ3NtC0NrX7mwBR6PhSwpzxGQA1r85ZU4Rn+X4PzaINcniEuKqF9u//62kuVNM1fEC0Ns10fskk+4Bh94cIJsg1SvCwy+OQmcAIT+aIc+lCYBi1KpEAHu87ivAJU5AQiVK1D3M0XIpzIibGlSWIkKEJJbrvXMdWOtHoObJnmoMmstqHbFOmL/KVLzWWgD+YBHaIvO4ef1LOwjvRQcWDqNoPNEyz3cYTZMk5SKEFkBQgsBQBYKSLFgCrEZIMYsWQVRZFiyIwkUWBFBYpIsWALIqkFgEgSWryFFQLBSejrQYQoHBdwFfdw0y00YrAckRkQDZt6c3ctw+u7SIiJYjhtolIfrEr6yt8k49/a95zft082nYG2p8pNs/bXg5L4XKumRS/qMC0FigP4YiEHwa5GDuU1fes3ClUmKxWAIGTJgQuvXz4zzFIVzc+rprnPPZvsEjxDdFNBPtJ8+jpnXY1dLjfo5tcIDRRJz8VPh16tjUIFkAPItKiUwAwDMGIHAqLldqyKBXYZ579xA2/TpbsQpy4D32JggyDpht83haiZP2KF8RNx2UDfYtyJsRRE86kEBlfSbDUlQ7V/64TNQeX4qYcBmnT6s3tOrUbfmrXRTCISSGLQGkg7kfoVoH9fD9soxO2FmR+IVBQMNP+6RHHTFwa0/HcxDxRPNBsphogP1QXRAZ82UfqzJIoxX8wsxM7sQ+8ER9M4wMZWQHuh8kgkdqTIgYw5DiGkbY3Gp+8C8KQ2eMtGxxJHs5ShcJ47/JHu62px7NLWHEgSsr/RShjP01OMZFE/8vY3LS4VrX3xR8+fz/sBsZej5QYGk6tSrHOZhZ4wvx63snCNQMf0pUQtBAA3zxvckJYy9vMToMU5plw0e1t4HHfZ31D1Apf+JfEvLvu3qYYuH4bn+2Y+/LPs7Hh2tzi9BiRfJAxeqlIf3DZzQNeyclS2A1QI2RGkPtm9LK+VgFZu/FtWkPogezegUMxtP/JyTKwAAahFMkT5tFBoKl+Sgb8cEHLjohaGRC4CpQjkW3HUEJHHjwY0xQVPdAPjNnLQHrP60DNgosgl3rA6fVs62Y6Ve4zrlzTMw4nmHb490zSqFVSZ35/ANqj6s6hgcQIZ/uVugf+V88ELZkm0gEHHGukyR+EQ4rR6088VF/aK93STpA7AhcOT6v5ng16cs+s3utyX1AdgLhqCiyYNagYS7z81zZ+koGNjrl/e/p0KaC/GuQA4AYE9hQ385w5ubZ334gb765TbTPBBCUDuDygDMjGIOAYIA9xRva7hOV1Sc0HWACOt9w4L6GV8PVKyP+qSz4Flrp8N+8n7GIQev7wF0m2x7HhoOWuHiuB4o/JD645iwiF/nr7On/wz8Xr75XeeKGHB3jSDSrdtqP7qDUrFcHVxejk4r7yTnyzoNDbifvP4iN+fkqIHi4qeTpWogCTu/o00H8K65bIPMW5gTDktVQqW4baod+P3T94ci1jkpeT8P/QIlFD8ZK+hdqmB5U96tAoqcBxgu4WCrAcpNz8kUI0RFyFsSmjgokvI+aJBKUwaJByQK8d8CvGpJ6pXGH2N2amCdk2qYXf6FQs6ZvyoVn3W0oiKsawSRkCSQSQUxcguStkzvMht/ngDQ5nDpHDitXglFk9U52h9K7SOXpdk7Zya5kn6/Li/HaEoE5cZOWrTXTROtELo54mU4rJcFaU/cI2BYAMOqayKMyJVgA3LlfroI/RfaKIIg/jQCW3XQHN9GTx+AgQ8a3MIJiyZUlOw1S6C+4G9DW8xClt0FlEsqsktoz1geFFLP1htU/4kkT7z26cYNhz6Omv/b9GWz4c/JdvE3lQkkUJHP5lfbE4TpeVSmR+4O6O49zgD/A4tJg5w7hxI6rHB4bq9PbyyurboZ9hQ6EFMkOa+ilYA/7hoabMtTrKf+idHF+1TokamPcp3Lqgf8sKnHXWGBugQdoFCHd40LgVjCuc1eFaShBEitC21nBMJbWhAN9Dr4LOIziaQZq3KeBnKLQ1QQSTrVG3swgOehWIQBXzinVfsmZABCeDP1/5/tpgh/Ewwyb1pVJARGRABPBF7O2AGJRqOX+2hqOmKFN0X0HGlf6g8I5qGCGDLh+ZkxX1xev/ia+jpKtX8drnSGzb9HKwhUTAL/GY34+zdO8R9nS+cD7/swKno8IC0lM3CA5ME89z+NbUd/hjhmot+K2200yB6xyCYCQW5kjlgX/3PKsG8MlmvlpS6pCWq50QBkvHgn9fhRNuLSBEzrIlIixFpeYr8Nj6AJ0+0EHoTDuzEzs1Tw54Yep6sOifM791Onqqh6LSGMiwFgKApJ0fLz/L5zUlNfIrlPlDLi1frZS4ywF3UYbopjNKEa/6AblE4dWzNTK015r03P39eju24TXQzZCjhIOSA1iexHej8s6oWg4IA+AiwiFESo+9FajeIRlahjIHAlejLuyG7Vkg9jtgaYBnZimSwEjNqZEoiOEgK1Bk1CrJDc1mQMYUED3A2ICIEXLQWUS7Jd6sDSEsZU6asxIUyWdE0HDSSdkrA5eTKiL1YQ7CBgMgKffUgmN6RNGBi9AbwQtaUDCKUQU33gXSB2dttAxqHchDGB0HTJUsG4cfXp90AFul3H+FTdgnhuonRE8Pm/M52t5C/9/3xVDjz9Du4IThlgcmAbtw28sjjLAQB9AvIRq3zoLT+wkJUxBHHy5jFEs3r6WWHZ7/Z7xeeI+Uw1ZiylSomqB+8R26hSk7cqotM9Tzxy203/8vkqN0GAvyBlmn/uCPcruakCLMx/eAJAKeWUnJ0dqQGyIQAEwXHuscFnx1VsNQwtmj5eqoY8HPqIaspSWtKJE0UiIjDCiDt7zc/K4VTSD1EnBjUh/fegK2Va/JW0wxM7nv0zwxkkgS67QF/zrUOdpy/l1NqWXydrb+/as7B8FVRrmqjaSQ39MIYcyv/CRDGh0vBUCwAYxFBFmcPUcpnsCxIntC6O9tzu/7Zj8rbUmIg6Avv1ACEwMS/P3Nr7cFetA7NJ+lwAIfV3cBKuABwWC7TBojVS7bZUdgBpgPAElQzJxgyirT95qQADp9tyd2oT50kN7Cp4wkICCgqKM3I67uJ9UpCmigQlIPnBygVVzw4GIhPQgREBy4IMZf30HzuK2LKEhLTDP9w2EHByzdv4Ju2RPUnCT63EfkdALvS6IhpcABlAIzBsDB+lupOWXg1gpB19+5b8OWun7QEROwEsqieq86AocVcnwy1S2999T/jjATeEN0CJ38bccLt39d+z8KEKgH9/897b7/78CvTC/dXH17pUAkG8H9rPagBnIlACIpSJIUpRE3oiUU+OXEykPXIGqCkMHSQ2hpmmUjNCDGPWoFLFHIRLV0ZK2bFIKHTSARiKpoqHkmZvDU8ethOtPG1CQBBSES7/tyz1llCuLg/vK25chyHCORLtSBxg/UYU4+iBQ2uLL+R8tqvHwYouE8OkvrIO/Hqc+gjYREkCTKUKIJ+seaDUDl+W/0NPHqO789vm2uKmVdeL/cFmL2ctL+ULYmKIFR/Ilk0y0qMpOuH7Xo41jX57yB623apjGNwVdgoxsPwp/uJSsrnpOCF9TdHww3Vssjb1RNKPFEt7pvYq6/zvphb+t6VNavI+523frADJhb0ZcjemtdVcaMjLZE2sml7pAG/8j7EFl3XXkLUqvG4bS+b7UG70frjw9qnPGk78Eg570aQg3btp+W3PR4lSZxd9nqlfm48HUz/tqpI/vrpnnsmgm7eUfDCk/UBY0nam2y5iYp/6C9sOATsqR8xYFJijwv+USsXnaigP4xHxfdn/9DuW379HVrooGSSD+Wemid7Bd8sV9thyB+GDh50Cy8ipVzo/rwTPxJ8/qfozC5Ee04rI1sn5fLxUePPepeI+Jm0z/aEkKRoSdxKDGku9D0Mb7TLXgmHH15f3+66NrEy7G5ivaTlZkkn63i0kn8axn3V20Vz473oMcnsGiLH0ST6V0+L8ndnGR+3yz6Ycj/crR3+jCPy43THI9yx+9v4p+/z/9xfKJ7sXHiS/JYBuxXgdxn293BTmx0H/Z+M5vLT9Zrvyk4LMs2xGqFBHonP1Xbdpgn0YfkkDdHtBTngkziqAzgViHzB6xXFhwgULmgLQFkLY8Jd/7jhD5Jr19X5/Rjtg9PCL0amU5d02ThtTc62uqMgm3EVpHDAvhz/1PWACO5dap6aanwPrhpIScXrAx56d9H0YkiDh/PymsAz7ypoJ1VC/R2iXrQrLUqXyiSP8N+NDt6cGDHknI07oZb72uE0qHcbTLGRNSvG3K1AAAfkejpnk+6ru1VYbmx9qXFHCFhvOiFVdaC4TsAVYjO7A+t9U1Gn5g0rwI96BW4/HfbxwMxpKGBCK8mikjrF0MnLtiUCkEKv/qgwXrEntVTWOP/CimQxmaVfL8uCoDAwFSKHbmSG3vUAyQJBCQJAOWNMpzw8HO1YgJOoiih06ArAUIAiQU/MfHz6HR/Hrvlg6WbYHyCExFICyRQiwEQGRFxeMAsRq3owtJ+SRNfN9+HqdafLiP/Te38L3jW4bJCAA5mCA+sfiB2BzJHrz9IJb9ui8Ydf+3Ph5Oy4Yy3zTFA/0MzWJoWVQzOkUi/7aw/v/5NpygBtW2Cq8TnRBKmpDSGRQ2GlJRWUcWZ1pOMsbqzCGJ54IzglFlwwyP++7X+c7EN1u67NFG9LMtVZCc/p+V1VyzQrszHQKT9U3yqmwK1v8u1xCT5CIgSJTv0Q5ohZzdkpUexDIKhBNxEYu3jLqnts6G3Z6vecjUQuMGkqjwB2zaanknAIbQaFcLkra/bx9/b8dhxYdXnwmsr4qnLxBS/9CgtJIBZE3BQMAGufzu5lyTdFgaNRiDSDSDfENH+z+mhAlHG31yPuWr/Om/Epdzq6bqh9zOXeYAi0E+ry+/ww/P6mvMTs9A2235z8cob3jv5r6td9//R9+DrBpz9yU/x3aKSb+rhrh+2W3akrdVW3gxs/5WCsdaJo9ivDYWbI21WlciDt9UT2DpEmiVBgb8F37D4/pQDN0UVVKBi/a6uLy9D9rE/n7eMGvUA4gCg4xSeM2nbBqnBXt01c3P/2/gYHOLqQK0CWUz7nUq8jAA9AGQL0jBK5BJCHPOgZ/LIE3e9//qII0yIX/tdkOVrzrSknnM+ms8eH3NkQIPZdXgUSejbD/0ob/1OVRkpO+hBeL1npldqNKLNKPSKkrFeck6sfrCYwxsmFNht1p4gTnQ+LzwhsLt8kyc231J883Lo024qZKYy83c1ghIj+sA5Zli/lMcugZId01ZlqeGDi/w8tVDQpbugXiY443c9Fn6H3b4JHzOJ3DdEtE7lRNq4g352yVIvvBxJUbN1XM/O2uR+D33o5eTf+ewcp79I4IGI5nywGGf/rdcD+V2i6rzSFDBPh1pY9NHX9/0wkDJaIUhHgslQz/IUgAFRE0zFVXBuSwwfZSCNWaGhcGDmOKMikXpH/BOIrqarlyBsyrvbenzKtQpdLASliRSFHnn2cCXHJ+EO+X6hSSmaSdbqkTfwS/92Ll2r3UW6jvY+f7sU6gL19dZ37dbr0j60wuFs7bNZdJV9U1/2DKc/VKTxzHzUDnWlM0d7PQOGfspBHEy/BLagyKCgCkBSKCwgoCkBEEQkikBVkUFiwFigCIsCCwWBESCqoAsgLAWCMixQFAWCyERAigjCRVIoSLBYoSCMUIsgqqKsAFkigLIsikk6QYSjAWLJFILARAYgSUoc5Cu+P8LS1TdAQp8lhxYr8tnqnYy9Ly57Xa2YZODCFSBhuUvn+wA0xwbw4aZKcmH18WqJ3jnxdr6SsbR4RXT18oFXjB9RHkhGVKGVN6mvEqppWfDNuWFyqq0tc5rG5iBz/FF31B2VcrkYnDMPQwGpuKyKHkKYnnbMtlV51C7K81SlxlonKYzuHuvNCc72uzyfgwM40hG41CtA6Lua7NKyzD41NH/n75iPNsbOkboWxQkkHOZOM+2y2bjsoaFIBQEDix+H75a/Wa3d+uwMhARFzczT892nKQOFY6gifFESYZJgCcUv4KIW87IqYizH/lkQvsG8EDG+kNiVYPUm3H3Ic8dhjNoSsbCbbjDmFUP0fSX2gdf9P9rPQgmy2wxEXK7WWcXMvCvvn4eKeBRha3hZjwKyu11zg2ln8XEXvVwKJhfnfy7G6HlXiifbqSSwfd++IWyVqonflwKIghqKOPmP1MhqIV9SdZA8q/6gg0zzg29/vQ+ODZVxEZEL43Qa4+HH6G6YxY5SNBRj/7PKt7lg/kZiacdZTECxwPMgD+54CH3YPW8zjtIwrEubqIpzR4zh4eKzBya36Hv6fkxOQdJyplly5Nl1yoh9+rA7Je4Jgs6xXTcU/kyYa0l/dN+t6oZuzUaEZAuiGeDXrXBxocO9k6X998++zI6xMWT6r8WbPxYKqqhPaZ8X+Me/b0TWApT3NyBvjyxd1rZ4cnX1/uXdofvcnVTUVIiPOn+u3R0XntwuM2/+rsPD5qCPXwtDhpjr+CQb1+cmm/b20miBlOiWSkNwPppFxs3QS7DjFFMgsCJ21cgqwf+REZ+JOOBXjQFMmehmgyCkh6NHFUybwKiUTJlKYJso3j7asjkMIKSL3gWyd6ZmvL6N8s7u3286InEbsQkG2kAZFzmYIAUWXgE1vhur/lDOKNci9//kSaAtFHBOvq/30hueObauBAh/x7cGMe9Efs4EK8oHuhyr152+xGN90VWDNbEfgGWF3iXzKp9fARRyL/csSb5O8pYh6FzssSXbbUZITXeUzqAXFKf6gCG0zivXJ8T7mlydUVgre2PKiv4Pnx4YFH/kUkygYCE4c1RK6OX9r77j1T2wE1ZNqt2YhQye/s5rAdrqpy8fQdQ3Z2HI4w3AQDGWdoQgOaDtoQZkCdwFmII5ALDLC0Q/sozX8LO+KUCBAKY8Rj6/16A6Y32bQNt12/bOZNYq9p5wkoY1bCheCjDDpUMJhX+AX1pTT/55eqdenrp2XAd4vauJWo+6HnuhD6f3ruj/R0PFVk/qX/jB+Oiiv5fn6UaavW4M4L/E9fuf+2dz+dlt39M1Tc8Ybz+tBTfH74giLh+PnWHLX3TReDmXjo7jpulnLsLN1fRMWoy506FDjUFUL3P46++2F0DJBaQAkZBN77cI17u3bpsU0sUOxQm0b91KncEMEPuRnY9yeUsdMUQsEniOdQK4NDNrH9vs04AdMCRCQSQSQkAUVYpIoCyCyRYCkDjrfi9f/9nP8NGSxs5+NVKn52lEV5LLqofxzNc/Lxenzej7rsHf0fVi9HLl7huknqNrEYwnTT/+yYaORQh6R78sO1deNyWyzMpe+tao7BZtAvv6OUWyKquwwkt0SNLXyqSruyKU7erMEQzRMVToMonC5VUVQSFnRoq9PTWza1Hn+jl4qXMOS0zdFN8/MBKU4SnxBEOVOlQX/NlaqWxQx/YUrDZFo/vXF5/lbn+7H3MQD/0eYmIv2lRf9yagdkGMBUVCCxYRRSHIjNV6G66LLpyW5q+OfnNnIeoz4bLQDkhwEygf3xgbG+NuSIxlBDqe98KYDkEiF8EQI/zH4wupre/3XOQkfPB7faszLzwqrYmIjAxh/PWDT3Ufvi2JRNC8ixacgYTeMBjXWqxFOlWVWYABiFzucxptUOoMEWiDiMbPDfHIKXPOBYJWGKXXrCpmCBNUudDMdmEMsYJEu5v/WIiWAgkWXdj73pPsp+7+qk4cDDn6O9bSnbb0fBk/Dhu4dny+azE7f+XdHpcRIMBdRoAA/8UIeP+ks9CnoQ2gVAUUUgsgpBYK80KdwNCkXx5NzhkLHK54evcujQyGQ7BbT+XCb7iG93EsDPtGkNwTX2vHh1cdmLFYFHDKwXWXn2VBAU39eSqXxkUrfhuuPnt4N+2/zR+uV4qPdjNqlP8z+Lp2vleMbOhbC9ZSChCX8vIiWeELCihmS3FsqSoE/McIAMFjUNaUp+1o+b5dPtn6/JIEL3bbi/Sf1cKULr0QPLeH9zBdOhfm/i5yPAmNHry6GAm8qciAdXxftOBRRE6AktUTSCIziZ+jyq9jdKwiR/cc7p56II6mnUYT8IY3uj7vZ5jhOf45tulvTiK5eG712a19Xd9h3aOieqDO73Z4BWLFikWSKEFBZARAFJILAUIqJBQWQUUkFAFFgLEZFWAIkWSKqiiyKRY99lYeTPueu/bfyJP1e2/+QZJ1Rz6y2Qq4fhRGm+d281SRt6xMTBsf/bVfoTIL/nBVAtwP+xO/zQLQMkd1AEOzS6InJA1HChsUcXpuZMDSpQcbx/qGjsJf0eIMJ9l3xRAwXGs046FfF7/7KkmPR51ITpz25k7CSS0ir0UR9XvydhYrvNfR9p4LkO97oT/+2MazrNStHf53d8P0u7xcfNLmf/fTjcjefFeBhPj2d6qNsj2p2BS3UoPTyu1jD+YV5iFBTQBYtrjaImoVwIrsbb69RJMq9RRcvYa6BdeccoehQMLUH6eRz/uRRLhnPDVfu104c/YEQpPGNOQlQ6ioQnIAkkeM2j4/6+AsvfrClHWIpCSKh4j3YeQLbGtevU97JdAT9cBD+YGD6jPra9poRCbkPEIs1IGRS2q59ZhqlZISDIASMImYMwHjHTQUMgPZNVhAexOvHeXg8iAjaSwv3/3XPw/I2C6woztf2vKba5fnyE/fl7nmtl91t8uMvU+R0uo98Qkp+s7cYeOuAc72lcu9l9HFnfZ0vlpZ+7rz475jOPk88u5bXjLeL16tXYGhaJyBo68zijQYP0ouhDLC6a/ESiT6VZXTfFZhjwYiCIntBk32S2Eot1IfaS8+11pxQR+8rMb37RVIY0LoKrXUociamNGX3dkTd/aUrm2amS/3/f3HDT5enidfAV3uSO5Lz58Hje+Z87Rf7AMe09depO3vCRkNYJtOiAcnfV5z/Dri4pw1/rq+xjnzFFNf/O1YH470JHKBefWXD86hoWRhvgQdJ+K8P7/DJdmgbkn+U39rIoFYiT+DzWc7aPlcIGqEckIgEMiIh83pvA7XaUo/6IxG+fRTt8khOr0veZ+mn7wAe8EX6rEB3WgUrePLJuD9zl6nWohH/Ly9uXqxgDpu8uPpmB2/P0Tf1dC6c3fVnEUv0cwYPThe/KeI/OpEAUOrE9kmFs5wckCK7oj3IDEq4uo+PxYnCA42/vD/el/rlQA+WFT1dyZ5bgc2iB5fy9HtrPcfTSgBCbBoax8CHIacB3SONvqNuFnXCHf8K1F/8y3x3/YeUdTOw28LppkmEvcgKJIV359evDupITJR1zi0XX2f+3/b8jXt3GEILkYwiSCSMhIsZJOz073ydPgCPvo5wW5NCx803j9ld4lgtMQUO2Hvri46Nu681ffPPbk3bJ5dsw3LcTDAelF2sBuw5jGgp3fNHykdtopflq80ZKNC1B9iJ+V9+RKpF3EYGBgmHCpDnt8zbtJcDKYyckpRz/+dEiIcXDrF/ROr57qfSu78R/n16QQ9spv5AD4Scjddy/eOIkv/KsJhIBhLY9pVxUFNwRypTquBqqdrHYrPhWKGqWLCwhmlZk4SqKLrHWAts0Qx2IwtcDsZgp/9IBs7GX22I7s8o8Wj77DzYJt13EGBrQeruniMdoDjeG0hZea1hBk4gSoX5wYIA+TC0Ow2kBKsVX8He1QXkURqRP3f5Hqb6F2CGGlHHZwWWJCOPoC8VcoZss8BMnxzbOvjw64TinM8P/E6UCYVJUA25ySpGMyxCA/vEwskeRb7tr+1RPIzRSOrL/5Qsf3oHmJJj0jX+IPl72h+58a59EM6HrnS5GyhHkPPng/sp0Rq7pFTNh2/5fWV59Ql6+RETFl4TmA6w93T9V/bUPEuwTr1VzY4EQABEIn9cKT/d336JZ/OjgTidnWCHs3+F+16R4ynpx7+mNsDdKQPXsME8xIyBCIhutd0fM8ehNyArcNP0w5n89iZL+y5zvFRtg5QzRoNE9alAJ/cE+QArvVTlaQhBWQEPZ/ltZ/DNOHIZtqw3eT6oAiJXvaqKGeBCSBCKvBCQkEYwNpceU/v9rKZk33xW+yiVrzX8o3LL7J0KLfpptSIHb9g9LGl4Eti5lV5/zAhG+tQ5+FF+qS248nGlD1CZQf4nQSqSxJRQoEKc0EXxDN/fctNuhr/8nSkWlH6omJRKJNJCuNOZN4w+kDRL3Vl/6o0tQNKxIfZmSbTk454fy8hV9j8d0Npiv4xwjKIhEgSquyhRj8JIlPNpdP5MnNVrXQYPNtaGxH/az6QUgPHsOOomWP2gBcgAgjMZKdfgtu+FoVi+BJ3nmBoBzJoh4kO8PKW4cbKQidfx62EvFkFkEJP0MNKlHsnH/P/NDASHxQakgJ7MQz/Xh3k8WF451TP5YuJ14hwL7IEYgczAEN2kg3Wu7lIPmBffLqqP9QBOPx3nEbsWeB7lfPt4Ypca/seRDJX5AHcO/CuxL0eSOQime+kTBAiIgHsqhgk68uSFQQfJMrrVvM+SloTrGbyHR+Ni87vYjsmm9az3/L4ll+bPwjbjkiKBv9PivT08P6YADpWHi5qHUB179Fd0jWAcO10IeapwyhBXgFH5mSW3fCFxfYwbmDk4TELIbgUlfZA+H+vh+z2tEvmU71rkRDgy9bm46kQL6M9umVbNCKTeQn+LcumHCRaZefqw4hfhHryuW5B0wbcY8WUGYikDEakgIH1eS+t1frRCAd1qwbibWPvZyfElLxU7bqRLxEDG2jr3Plv7hahqiBJwkwdE5a+mw1hSBCsUI7biIc+31/4uu5EJ63C/yyQ0l4fx0/7E81303EAYtTYdjH5iPJI0SzAlZNdZfZC/5fdh/4ib60+N5rx855ygfIEgkQ/tNyS2tUh+1ZNNiJVbxsQCxQtXrv9lK6i7K57zMO1t9R5T4Z8PeQJbtxuBmrajSDD4Tz3cLpV9JVylSizl4Kmr+aAxHbPy8/ecfXtvrWK0U4bc319Kj/vyUZ9agOuCSBIgqwFFgIyEFCRSKEFIERkAWCxQUBZIsWCkWAsWQFFigCyQUFkIoosFIqxVEQWBBZBRSSLAUgsWCMFkWSQUWQRAVQkFCH8yX13vSwdcpO8P2cbwrQwHSe88lgfS7DksbxPbJgvWAiqAOURS6mKbX7ble3k+WihfBt8llbe4Bb3nyG1fZMumopnjIBIbcNRdfkUDpZfmXZNGeQmC7dl8jeFJrSGfhyg+Q+H65Dy4hfyY1dwqhEUNM9yRrHJ3KL/pLr3SqOpMhXT5uNI1NZfE5h7v3NXONAQBQX5Py/+9wc+jSIBEDNkZNg36aeWvUOVGvJowPjM3Via4Qcq6ednERvYj2P8r2C/8fbAsZOOdRvywIbSTJahbBqluFGqY5ExD4f22oTL6rCTs+Jtv/yHq4vQ/Kq/7V4OZ2wRYJY3I2QZ4x5/1L/Jtz7LXOy441mBlaHclj7tVmPCdW4hukMGK79ofonXFOiHRNfhoXU8Y78P88c8Isy465xhF9gdtqX53hWu8hrHoVfknXSmAAzUN0FphTUrsLTZ0LCuvtPP2t7gyLf3zd69Wx+nd3ebsPjisAY3WS5GBEqeSH+/ueBgRIf+n8STzEpVVUbuJqdFNsETg1fRv8H3Y20h0mHwpJ8E+rs8y/+Xx7s8TG+q3b0P4/O3Kr9VPqq0/+YTMvpVeQ5Gi6c5B2Kj/bC8Aj7lUgEjxIeE3hVFzqCk1Kxf+lXUTgdtljkEp5P+6zTj2Q7a0AMw+/1tf/mqbT1f61BXQTBMnZY246a1KGrf1+4MahdiNyhd+E0d09Htg1vfNcORPlOTjvRu17WrWmM/WujgMkA58k/GVleHJWkpAKyQrssqZClDOUoFvlKeXCfmfZY0Jz1mSD7QCq7qpzANm7Mxee6tK6GV7yHrpp3rb9YFqBtZCiJYQkSL0jABeTx9k59nx+A4PEtwty/F164n+viNJr6D4gtnOj/OnhPlLBK0E/Y7Q9Yj2XXln5Eu4xekASAqLWhIk7+3YVyFyN207bWYn703S5iUa+W0W97Lph/Kn+CAg+2MA+x1IxPC015OwuPHTZfktZXWWGHfDz3CEqM/m/4qCoiPay8bN/hKcbjO3ua2z4vqphOnhM4sR64VM8avA+efwJmZ5vX9q5xm6H8hTUSshJ8CeDRQep/2PmPpb2xxcNyAf7LVsihYco7AqG4KgbrdUNnpvqF3dzf+sySRPZ2Pv+sc+9z3KMhseobio+5z56OgiBHz09fTj7ba82Wa18dBQsynif5XU/Vb+EaCeAQlGhJdemknv1JRffCvS57ebsxbnoK0KpXXza2uKZpei9yxAMnNAsPEib3QUc+vz+jZ6bQnB3IVPw+NxeZCDtwjJPBhKsT0elBvX1U/HwAWRYIRFOyWB6UOMo6tB8PLPk/wsNjEj40+Iztl5kn3aHvdd2shgHl5rOiSath45Q+q2IiCIiAkXdvlcyiuuL7HUO1sg5SkDSUTjPStQdsVaVIhmq9f6aLEDp+gslkf9KeJe18NSbEXw8cxPVSp6vhnQfemkhNnmaAgLAgQ2pahgZRry7eXu/TzHHs3TeJIfmpp7tU++GrjpgSv7e12kNCwPeX8QYSUH9ZxLJMparKO4RTXcgIEH6PXQwRRi8gv6IEyRD73MDucC+VkmEPTa+ZPxs+fXchh/r+bDsTR3ZCgenzUwTaV22BE2nuyS9/7/ta9TIbAWIw8O75Ned8/BUD2WVisEgqT8bKKQ6sO2eNzDxbH1dGmIfUx78OieJbsmNkPnfdUbGFBgCJpwQkD6yU29XxPUaPIZmQZiT5sy9Fes9oMT0NAZECoFBQfRfDPOdPTm2c+//D9FW0tzYOGxsBIEYb5ybfc0f9fepWUISB28dGp4olMYsSRgkOigH1fTv83gUw916ZtCiKkkkYSAyR6Jzo443fddUKw3obZ0y9M1iVAjjgo2ngp19+6vSPXKWPR5hRqZMSOd20i3jBeJOcT7hSsCFxETZNLn7ey9v/PNy+zvxIGbxc3UxG0gApn3vT0t7Yfr0mgYQ3IMYjIE35bWlyBx/ETu8tIaokeqL2ROL4qeEHEdcXbANof8OhBgltIbe+3j3/0o5A6IJya0JCJGJbIFO8DWCF5+UQ8H0c9h/lDXAxiQSkAxaiia9eX6q4Op8r1CqR1SkWR4R6iHCO8AOmOIZqhqeDxyTmsfPDP3VvtyFgN+yrHJrZcYo4R5p80OqLvmlK/tXb10PRwqE6dtdfv7h+9J5ID5r2QxOTFRZYGvNf5/h4ZFC0ptVSkdJDZ54aK2kXkg5ZuZrKhXWXFUjkuqLfitaoHBvdCp/0UxzOR0zPzZ6pq0GOqYJtxzRXwQSoMC8fBZP18KQ2lROPX7VtSL2CTlMFQxjl/TMVcseywAkHA81vOwUEJg0MGYADGhEyRM+O3ub/Ox58AZmOOPviZe9RKQTLHJ7KBhgB0EOEvFCFQNIeo2ik8yS/hpVWID4PltlcmDVf2v5AuKwe5OQ9+/xmh7e83/om2AwocTsPtGBXaDKU0uORPe6HILamVQEmPtdLkDDp/50SIPcM1C2aZcD2z11+8xMQLzqY4PzLFal/2QHT+U5SAAQucABMgA2+kICb4kGAAtJFBdEAOpB3Di33sNkE/p/ePqZRyq4ZIBjVngvyDiGz0LpvFQRa8Ey2+7dSKC6vj/2INsxuGNG3Gdt+n/5ceTMjTQNLTAL9aQKwPgwzHlbSz3Lz/nGUq/+2oHEDH0oIKCr5E7AnNQCmwy6GBNIIaNIR+9NYbDpMv3p/ZR++8ca8XTDst3Jdv66d498V5UIioYIo3ThKT3gvGmmadNV92CUnCSjzLMVRhH7vuUtexCyBb4qAYASnCW3/5N17rQraj7d7uqgYhIkwKibYhDcBANEhUxhtmgtshEQAInkRgwOhO4PReTpYCYft/QT7450nHSfy04fvUiADhkM7bp7QEAXbRoe7PdCJn6PL3/HbfsNs+S4zFQQdZPRLR1HAOgbVT2TE3Yyxof3GWsU3+gNfoYEwMhin6LDIkbIpwTi0YcDkUQE53omn+zVu4xTdIgd1OBN9O9YZVNWYqFIDI3T8d88ttiht5aPvzS4LgXkmLOBF9nmYiA6Nhy/j9vZJSveBxA+1PIc/Fqy/JEg0+hzZn+fuaQNuWG3J51IWyK9cTi67UWT3kHggAAB3/puH/f8xnGEfaDeD3uIY9/6Zu9CCf6iCIiE8jBuQcMY/ZBK6o8f/JLrIUvWhM6ZX8TE0owZPOf/KUurrpqmBEQm6JAsQ1Hl0iXd1DRO9t/Rw0ftMrvuOTZ2b+XwhY8AcZ6zYeRgR4EPxPPd5IJXo7Ppt5C29S++iPPzf7yUw1t0JqqKRPzdb0JHDwn+cN4uHg27MnEO/LPpfW2IeC36+fS3j2q3o2QShkWv/wKKxFFTifP8s81+/YoN4m5jw2PBEMqBBC+IJjYr6YcWMLvFZzNeD5Fn3wPFEPKTZAY/zrAAAn+6lbL/30hBnlAyBLRjmuJBR8ERieDGKrw6ICJ/qZTEfzdee1h84l6Tu6kVH9Kz58IZ3AIF+TqH98yL655eRnyCYuyV9uTv6lCA83dMUl58pfn6fF5BRXLTTczx97rDcQvRlwP9rzLKsSknGJPzQs8uXsQAgiaUEzFKhVG6jR4EsAYukaVPnkE9hWem68QTVkk8/2tGL+39Oz4aZYEufHdkLe3jGRAxY0mD1DStpJpK20UKGMYKdGJ0BRswDz2ylhjmqyVimu1v/bmvBw5epXXk2d6b1bDbrprvK5ezXXwZykBJJBCkpFz5qBzKWUHZwdX2vbtNQagPFXDEkTsJFA2mOhL1tUsALFKe4JRD5yng0Cp9th1jFy186fVzkP3odmRRQnigVJBYiD/M/Z77rXugoWc4351zLqsLsutI1pPWK4yXIWmuQxvWn3rKp0wEnm031HQn6aO1d8/fALNAktRIe3PyXASP/v0FKZCEGTj7Hxz2hE+3l/gz3jaUtWMok6N/Y+B0gDFUz/Xodadv+f265Q7+Cbm00HAgkW/NZ8hVMt8ItjgMJwzDhqmpcVsqeKTcDL1l+N8FLgQHGVHWh9nTY7OTYcZHbsr0o/006mlxxndX10OhOTd+XXvdvIaV5AxeGaQ4kJPTij4Ji+jZpvXhd136CWJXnUW2+PNwq+w3Cbsw4+zpsPtIpR9I0OGbbATHGQMfo0lTa+hd/dlAdSV/3ppv01WHxrbwkuTKviAq08TScykZAq0KG6UK35qP1ZNVcfCWwk90utcGZo/Vse1ns/eLUOqP1eK+3OEQQioASBGCGG0SETuaK5bDbgYI9s1UG6JI+e/vdbJdxkL8b6CiIcH0TiAvLG+BPglAd9TaomoWKBxgblOPBTIhem53Z/zc6/HRq7UBnhTywvDedPVRUC8AnloVaiKKHRf9Op156tN4raSCyJJIjIQiSJIBIJIki7AEEOTy/bwztjo+8wPr0GkKlOthrMxRTdIAf8BAL9Gaovj/fD4LKPf532Z+52geP5L+f4UhtIpB/LakgfGQIRx/9TJPummN+qiAX7+7ZYhl9+GouCCSSEgGDRMv9lgeIZ7I8/BTOdISgBoEPLTuDLESLkAIjBb9GFwbToe3Pv54gAuR27RFwIEs+9QKGAZpIsh/0iedR9cWF7dEDePLzlTgfeWc8tGsGQ/5pzW7O7PQfvxyhuUTildbHSGCaviOfJcHJnyezvnkwmVTunDifd59u/wGfUBr16svZy5UfriJfEkk5PhzwPdAPXSAgTKrjSpE88EQ5bFQPDSk+rPu9v/bcGfjw2IEgtONRSjWJOChtm6bNs2/iIihcYNFDATA+D9k9InvDnOml6XgKtYCo7WKyy4o6vHz6h19W3g0WmmIEkh0oeiFogEQsl0D/p5/DS2WgMSkRJADNy7PH10O3bcX7pThCZvWUtCerEBQd0lm8lKibaWK1T+z4hTdQbrfe/6W1wrQHPh9wKdLo3fdrD/sJtF9BB4QZ/tRClPzt0EsOsGt/c0frQxiA/YQfGp3VxTYyWZDzAR4GQoP7kHHpnkCyUJMnid+H6awGkPYwbWRUT4Zyw/R/g1PDpgdYb3NLAAbSQFCG/C++9PnNcd3MzOtMQz9V+Pr45OVMhDuF9yKgRgQIwIJVoGPaNT2eJ2H03dNH/ZDiovXBu9D4VKOPlAGulXqGgusmVfTtrzH8R3Lj5tsnYlxNyPKcOPbdB92HtxA0J93BAKRLeT06sDPfWlahCHP79AdkyQbzKNL4EhJUzUrB08Z/fqLH7hbWL4ahsPyK+xSG8X5gFiVECQEkVkZFZBJFkkRWEFJJAACRJB/U0GWvQ4PGfGjzYNoH1+1X3Dg8/Jf170FomsZBkZEkiCyLEVkVGCqERJFkkFiwFIpFWEikFIqkBSRSKiEYikVYCyRQIsiwIsBQUWCqsBYCkkYyEFkkWRYCwFRJFWAIyALIKsUFBGSLFUnu9Pj97QB/3+OnX+q9R62n91ufasCWPYghZJBYQNuUCGciPJ+NKaTAHB4OZccfvUA1QfWnJfjX1+jm0NMHcUjx2rg0IdOeGBfXYNpBSKEUBRZFkBYKEUJFILBUQUBYQFAgLCIgiQiwICkFARgLIshFIAsCRYKqIQigooopAUgoKSKQIsCIgsgpBE7J58q97ifg/I0Nvxn+dBv2ctsxD7sF7OvMcSR9K+s6vfZawmrEqMiUmf6bRdYHMQKFxdjsxnZpigoSaIcENeinHP2ya66XjodydyK8U4I7U0QFQ1QDbiG1XIfHrWl/vO00SF/+nTAzY2SG/+Q/6bF3CQ8UPWSBrJFLNVamrqewrk/z/qmzQmPv35PLoNenEvqq/V9NwLsTem1HJA3v4zHROn+FwYZ3CB/VQ2NVf1wlJV2VHNFkEYRYLICgpFIsBZGKigRVIoKDGEFJFgpFgLIIwUigKALIqJFiiKxYKEUiyQWAsFAiqAjCLFkUWKEBSKqwUBYskiiwBYCxSCgLIjCKpBYKLJFIskiySQjJIMhIBIjwkWMEOjpPZXWFcJu5C+4tHrl67p58IFDY5cCMIna3g5qoaDNcYGzyWaLCQ0AunRZgwertwKCVjIyCQiSSSBhjZM8AVQr782uzZAwEPHXP+nFagXQJEBRRQAUgoLPtv8EhCddXw85c8a9Ow/B+OBBy58PWwtc+QE3PBoFzqIi5jCBIwUigSCgERCLAgKEEQiyLILABRYKARQFgsFgKKEEYCwFBZEQkBYqkiIRRZFkBkV4R9Vg8xqFc221kQ1iyJIkgr/c3IAcvg8OexM9pQxE50DB+dHL+Up+c/ripqimrXTp7GnmJMG7ZWzzw3eAoG4LLmyiQk4KZJlzG9ep55PvgHTowPlhJD2U/b2qxRQWAn9FTnTbmIgP6fGghzEXBJACQCQCQ459+qUCyEg5nk3GGs5xaiYjYCIU/VSYZvG0YagWR9f4cvHYFsHf2af3eXPkMHO1kMTUgguKIbsUrBCQLonegVieEKt9T+o+Tnh8pKiHqAEGGY9fmqfr0Cgj0SfNQ7upRFKtu+E+8Thhwp1k5mI9Ik96PdTuZ3CsPoj97r95bk2p82V3hqp1yCLligEiifXT2fwn/WgWT8YpUk54hW9cbdfV+HmyfvnEj/WB8M6Ij5uFKSA7wqxyEoQrl39tsvYOf9i9Sq4UIOoOUB6+WxugSPsuKB/ndvu7lLT9aHT+Ngn9+yjjnpweCzXouQTvgcvrU+DFIF4SdhG5qfaeW6/vIcP6Ue7vQki/SLk+UgWV5QItCKH4bhb5dQFql4aVa1DxGG0zHauS5Q4TrdyoZ9koefhOpedLvhdWzhPjYghrESOqduGYsurNetFOuzo6Qt5uU7u3jjIyT7jTUFUcoj3R0lgGczRghBZAPd4UDEYFviaAz+XPi9XXL3o4tk48hn+y90xrSnXn6QALiBJZOLXnqbcDHb1qvD26HwhmSGGBkiASJINP+o6vNkp0/xdZJNy84X8UoGqOUhQ3Wn2TDAgELZwuQ++L0Szl0e6W2SW+QodOHxLezwpyw0/FtTLgA9svg/7Hj10Oh+u7xY7RD9P5o/v6aJux3jJRwR9EVGsN05/cqa7O7J7Opvg3DhnIsHf/XUlURqwuF+SfUrukDV/NzzcXR3cVD9EudEkmiSll/3B9NdHlCRRZFAiiMgsIIyBBQhFFWALCCkgsBQFirCLJFIsBSQiwFCAqgoCiwgxkUMPVw5OOm77TpYcJsn5/rQeOBkmqB3SHCRwwU/EAigFv97nO+fPuEevtZiH1OcNsDlbxN9nEfqFrUOeAwTxpDHZ9VPPLBLoP15Dvf7q593/tAtHh6Xc4bHc1UA8Wah9OvQHXzf5UzfCieSfv+VE/rxkJCKMJF5wjUsIH1etd6pf0uelek+s3mC7YAGBzMDpDYXvSxNuHDaY4aZR8VX+rICbWTbkkmGWZMtQDZOj39FQbo4YuTBbmsFyT9cVAJfTXopdb/fuseaQg4/3D7MzZrz6g2Ac86F182s/XiSEhoBdbCO/T7/8FLx2yAd5F3iBISCf+sGsp/VMD/WxhrpZqxxqU+jAOlaqnBjPPnMBphvcBIPRQKkY78TgxGnJ/o0a08HYraj/ogYHn9X4VPEF9ATiZwpwAQ72yj5k6RwWT7xYPQzsxXyQ4P3lLUGTd7POFkD4t/LnHbjLpNZaik5JXXtpdLyQTW9mqVvzlOkxP9d1+3OJsHAKBkS8TSixQNHxp2IF8Q3edO5tSxzZNXGNhuE6HlpqxBRcswEHSVF++dsPs/lXX466YnpQLEW/40XiG09zYoTK721nD+ckl2yWUP5vs8BOJgcwH2wJGnmDA0S6G6f99hzsQ28EUN6Z591prt/i1R46tstsQL7PFjsVUrdcdo8FS3xfhQ+8mrYIUMQfoBQPQzWt3DTnWJ1Pv2tSY/MopQe7q58MeJsgA15t3e12newUTT8eS+z8Ol/J3NGbc0ZNXOxhY3Uc8O3NyDxghAwgujay0s/ZGwh88k/ulvlKcJU5InrWA4li6kmmDJaXbWXUV4bi22hevqrs47deyiDfEJBkVkAhEO2KUQGQWQduNckvEtXNLfjf0aXXGlKUnJXJv22kiZADCUWIEyACGFEiyEhBhAitHKZ5v+U3Et1fx5tBYmkmf0B50/o1jL27yKw4ACOCEj4L4tNU6xgaf8wQvkiyFZvQ24DZ2KHFCzLKL2oZ98ofZH7EgbseLVRcaMXLCRCRN/9fGbfLboO0FOvP44aZRQAYXPORo/8s9nA5OngZ3KnovT6gxoBRs6Xh3FseToU+HBwKXEyIvEawT/urW9JPmfV6BjBROfbWdZPBRM5clBADZWAentWyabnmu8Ifim8Hk2MjsGfuDqKE4kXIjuU6UAy9Yy0yd20wRyejHSoWR8k4fjRevt7WDmri138xsobM35VSkQ3fRRDoeailsGd43M1n7THETAQzAz90pRrEE5GcGYyFcafUJWrpGCFIoAsDYH08e/R9F7WwM8GToqRFQigoqwERQUUUBQIqMDer3nO9yFIFgBf+dBxzcNNuP5ea46k6UO7PsgBghyQ1TvMxnHCmzNrwlmRYoFNzHUwXTHqvtTfJf6ffyFjMX8xO1RaT5o2h4KSnkQyZRrmmR0SihbM06GvqtcPvOcFkiyCJAUgosBQUgLIsAVGSKKCgKCkiyKCwWEWRFVIKAoCyRQkWERIKpFVSRQigsiiwUUFAWCxQRkRgsBQBRGCwBYiKCyQWEVSKALAVSRQBVIsBQFAVYCiwRJz/1PsfuIddgehhI0m54sNmj4eq8tgaoCGiBWu78bEXTnaJdEZEkC6+n0z0APqCNtxRL71KvGfGwCW19VBD2lzpJpcOWYA8tB/h7QQbQDvNsInZai0SRQ7Okpdlt/Szh/Oh5a2/+s8sVKwkE0OYeLcz9mXVOuUHnC5w8dQPMAGMX3ZLNAhDfSJv4KVhs9/FVNcF711Dt06z8f0LRb4v80uqmGb/z0cufc8d4HBjaFkKxxzahSAfxqpcqKM+nxKaUD9yEKXOMyoSqEJIe1EHGGL9bJl/Cpp0dTi8qWmH4B267/9KrkqmiKBIo4fXQqR1+zvGjRbWmY/GtjuQ471Iz9T6O+S+Jv7dJpAJH6fWCtDiMnj+bgEieLjcTdY4F/1weL8UIAsg/c2zvXyQEn+o0C4z+WHpf8NKHn6AUTrRDHANUBGQKQpmro4M/lvzy+6hdSgBWGGQmzXQdqb9ba5TB6uSxe8ibaFETME7ytIJQ3da/Qh9fF+3ImA/868R2Ogd/uqGQt2gm476+ur7kdbTeyhQMKTsKEPyWlzXa++n9z8M6HIZ/flN7Ac7v8fDkBDNmgqFHXAVRkDh/Om37d7f/bc6V6p04g54Ibhw2cdhv/goUUzQ08Sdf1/TLlfP2C/Dm3VMdU1J3goLqUsokxUDnTFnpd1vqJsw4z7s2nJiG6EiLI9uFnRtw7VP++V4JhgkjIEm8/ralZv24veB1z/2qPhBf/BaxCR9Xnkj7E7waTN3lIAg5iBALEYGiVufsPpgxynbW5F8aHSDcJO/ei/75sp/6hlgSI23bWzz24JsJmmGbcM0OSDiZ0ot01qrVO2PWS2cDItybhxD9w595uHRblIJYIYYnXBMQeeWnGH9aLNWBN6GjQIY7U8mD7sGBMEHBk/Op8MW9Xei110DdggUgO/mchUJNL05QTEL7w4AZBQVQzTA/OQErPbHoz970jXJH+oWXgxNsEm4EsSFSDkPgUwG97KumX5jzevBagCGseug7fkvtTTAkAScVB50Uz+6jbODrU7O/3Pz0cnu04Afh1stTGEMeBaem2ngitI/ZbrdNgycNhovp+ctuRT9hSiJkAIJ3BEYv8m9o/ez8pk7n61GvtO35+x64l12DPXEgEGyDIz9LXqns48vwa4Viiz/l59fTD7jj+NP5CT7iB1yBINyE/LgoV/zzEgIVHOIOSJnHasMUX/xK97c9At4D3MwJaWxbxjy9q2+PlrscfS73+994o0+L7OP5v4+v6ekmnonDWVCKSRSAoCyKoKCgpFkBVgLIKCwWCgsWQiMCLCKCyRQFFkFikFkgoApAUgLCEWBFJIsILBRYsAWEWAsiyCwBYCwgosgoKAoskiigqinq83h+byO3775bbefdvei/fRXt4x+7D7+tJpJFEJJFSRSBJIRIQAB1x/1ZWIfAByIClb+9zf+nWanN86anFutQ/LySMklZj6ieN4kNAcGC4KgZoIpB7r1pyyuJ/T9PyXS5g9/ervd4Dl5OzruQEWsVCyAyEipIJPptdzd068vDh58CflTPk+me83rnBOdBN8mCI8oWeyHfrvlr3HdPxD8jFWYPQR/GfPFv+hFaee3PzXK28tr+SvAE+B13+LpA8OTC0KBIAgAJEHSDr1k/MsnRmsLE0mA8UR/+QDkbYLCEXwc/ipZ02h3O1RoohALIeXtO6bfVN7c2udBkHqQxBbH55LQqcMNX6I0DmFREgjmCiJcO2v0fMS7Rsom7OA5DbyfN47snLiK7cxJT6g/CVsF2J83sskDGCwhFIKBESAsFFkWEVAkFGQkEkRBkFz5+fXet3vr4M0+7qYDwQQwQRz5f2/ezkhtm/+tR2vTjqG8AwSn90aiPOc/cW8R4DkDbaTDg2pCRZFfbT5ACvAAh9GLQ9ETlCQ2P7XoMUEQWCjCQSQ++GyAA13dGHoU6nBb8jpXYQXDGEhBA+yZh9cycCnxTSEgHlOPuY/Zpk3n5HxkkNuBOhtV6JQ3QCdEz2odOVPaUDsWFMrNXhoH04qBigASDXNj2dfe4cfu07M6/Vwe/1f92Gpyw9vsoQ6IPVVQWRUYCgLNvsph9U1URi3ACz3JHAZe2j6JGhIGU5MgAIYMYmCNNIyGg/zply7RFnYocoQdEJHHwS1m6ggHmoRYJBbQSXOfPP/gPhnT+deh35bT3n7mmGsQGZ/OY6zH+8qKRAD1VSJk8GwSCNtekm/DbbT6PuzbSbQAid/vj0AXTwDECB7/hxIOn9yMb/hzW3cH7ebn64MgIgv+yIFQwRZM4Lie/9luz1eXn6qyZvwOH5L7RyGYHy4rzfnrcAuJmSEgCqCgLJBGRQA+Oew3kP03f2Xy36diFjXaNB3Sr9YsP6ImQSD4D+Py/r0XcnO+rPoxnSmvBzW2CP19Cle1t4ehr8WTBb2MxUONmOCSIMiMk6lMoEErdsrU0U02p2enYmiGhCNoiQcZkKbDRo/cMxb2fV3yq5EOVocwsNJ5NYaFDvZxAuPLmxy2wpOduGx30EExwEUkVBJEE9V3qhgiJIghISOSO9K4Z7K8e9fbtbmTh4P7u52GnMZN2PX5ad4csDWBrMwr6kKNohxC56OBz8DQ6zc28DDEQdoqIJWmBrsLhiSCVjDY9HtFLcIYL4GnqXYmLnzasPBt5uLAYYJCDIAXY/jzaMlIAWlvdvfD9Hj/ker39zh62iXAbggIu48zdNAAQQxkfUQDw9neXuBnPv7Fs4CovUqRqJIhfrPetnXbzVOqVRPsKuUYpmHmQyVASRXSg5xKIn1wQfIF1lb4f57KDhgkibsej1PbmtPlP+0eHe/r/eOmUB04aOelCb1CvL2a2JgDuVNkeVimCNsPsx9quPcwaMlxDU3u+6vvStT1I0+Zn0VXWsr12hnfhq/sSrfiFHA74JXcT/vXSIcYEgLCKisIKBFCKCwBYCkUFgSAsUAiwihBQVYCxYRQgskZCQVkWQUkBdG3Q/WzDubXd09Xp/1sNGRTl5evyWZyHjgvUnunLPPP+h4jBya7EPviG1maXQGAojNzdKfD+baUMx5y07RlPuaqYJIEUOt9w6N98i2p0GxNSGBHrOwgf9l/Q4h+7DgHLub9d3d/j3ad7XemMKhBK6X3QDGNl3/CiKfnNrs0BNv3lQVHtPMmqH6VtQRIQWpQP3hoYmg+4xabDBWgbswxMZK7lCz38hkLrb/sD3fM2XXF7DdF7IG4VDL50UpkYr98SwhIPn2igyGOHi0nJSqHcg7kRwwkUNyHD4sft0XV/m3aOA4ZeXqfFbgDBjEL2Ye2cTEDAMwCiYAzsg4kQQXaDfOUreX75rLMqn+lBwISwFP0JGdRyqXJBPymXblS3+Y734+SXdv69YFscyPXH6oEGIAvi+8Jd/d1Ub/XqOXzP29L+K1L9+f4KC06teBMRRHtfsoBcKKhF3oB5wJSBwT8wZzVMXQdq0v5/2Z62Kdol5/kOA36SeJYcTcTb0XDQAhywDMbcutlPFNdc+ncbwReQ+FKfJw7CwZi+OJUCZKylWKWXsFS3DhJswWI3/h/ZmEVCNUHRQ4SQEJESYukZCCycVTwkCouftMq3RCQyHfQE8FPUomtS3ON60dri3g/9baEi8d3ept/vLoZbx0fvbXKCH/oOfwqRB/zAfoIkQJT3QSG/og3vc5f53eTpHLNLbcd558O1zOvbLB6CCVVMhZHn3DpKKgMf7mCTIdn0V/0DGlvVKWAXqv3bD7ne5H8GcpMITRR6DWW7L8T+3Z/zvnDUkQlYwxEDCxnSTIjGM4vI91fbnzi0uGPvNmryXlU6U12WJbzAvRMw4SCikBYKCySLIRYCgKCgsFkkWApIpCLFkIsiKMWLIRZBSQWEixYKsiyAqgoRZFJEQWCgLIsIsYxZBRZBZDf3qH1s36qf/MO2B0YosILO/5igj4x5VtePRLWTNBO+9w6CUF4UrdzohUq9RdAj4SnEOcr6Pu6i1d3nJLyWd5OPD53hfCLQI9HM6SYpK1kZzTR4f/qojlkj8oqYe8TTCrTFX4guLL/NXUtNFSWUbuxnZ7pQZGEXASD6LCVKIk30i5gaZRo05DEcpwDUELUEoCMVte1q1lOQi441q67zyw4Xuk3LG9KxnChrE1sHxYNXEKxiu+14pgZPDKmTTDSijCgu7LLFqxgp2c1am9WljJrVO9KJY5YExJrOq6lIrC1ZCVHxjSCB5osYUErWRHQE6SEhFyC0JpSLo0haFJLaYZySlJXzfESfZ9LRFsUS7iI2jV0oXs/+C9xcqzjG775ph1rZzGGrJ8JVqdXCJocX5q94rmbnVsEvhLC64IPdUXSmJxe164jLChzp2ukkvGt6rgUKFWZoBpTOwVkOcbwFLuUCM8Us5z7I0YGkhS1Rd9lOGHNI5SpWmJOuavDSg5TscLGZssqxcdIrXEbTo1sCaq+AqlI0m1lq9YIGvKAtOkFO9hAKHHWmKOVoYm9ZnieGcdXOrESnC4VZSs6M8WjR1lgp4Oxus+kJBGPoq5yTya0Y0gdTda95SS8LCCB2VhSiMkYhn0WBvE6QR8bvnKAdC2S0ed3hLQfO8bOOqmaHab5rWtaXleEWw1mugrFcQiKuxdcOnTCUfE6MIMhOnCEb4pF1DtejRot3So6yHRoRw83WgtrXjGDqSvKaUvI53xSMZg64kmKUoj3XpK9X0WuJGIzVg6YvJZRx6znXreVkibStFkUULKTLQ1wjPeI5OLK1JRXLF7OD3Yc1Jxez0tewQOw2Ee1LOR8XPa00lTD2oMHW5nMJKVNnLv2vj933TXP25RUR3ypOeT3e5Nzfndf0kp8RCa2fg6wRAdK2OAbDpupSF0VMIpvnLDxn/pGfjM2lk3sne74QTQ0iqNdp4kDQ4nBWzshvOdJvzEJq6qaLUNdyuscEgqRSIVatEWtNHUsHiSUStLRo+puO8Fm1bwSFZiTjUOt7WtWu99lGUKreCYndaIHuyvkEXKTitU3BwSSJhMLUzaim1IfNODkMZGlKRkgye47skIKawey0V0VSByhCKFZwS+T3vDlWM2aknOhJI0nGZ0ylNkvGsLSOUDflJjX9UMjyQIIxyuyPilXPxRkVwfe+JUolI5RV0JQo5aPYSIhCeLnBZSdKRsIRW63aMovS4pNLtlCp2aQSVFjURtekZSi+FzW4vWVnwiLrhkrSkMTeKyCUwQkl1lG6WlJUe0bynAJF78UqYe683Ru1LVuLOvcSe7AwdaXtBK1rE8KipXF8K8ShV0ws7uSzOidaMHzZEiGD2jCdGNL0JaSqITmbhB78KQtRXXu4Og5VCRxOL4Ug69kuFWOJs5p1tMMcrxsI2xyWsXuadas+0cZYlhFVxwq9lwbjqs3utKM3SWFYRynkDnG93PFw5EZpYRbUNK2rNLm52J0nNlnhUpVExK8IwxfGKucH2WrOuIQvVldSUBCb5QVIHGaTheIabLWFJq6872hg3IHwjYLRU6rPvGQWbp3hZrMsKytcQC5YdSdgsIRUxaRxUJcUjST6KDpO0Yg3SorptU3PcsYZKsnieJRhJ9rWR8Jo1nLMRdCMxd9pxtN8w+VX2uIPm12MIbnPvagW932s84um6ASD7xvQNU2Ch5irqzByhUTgbVWeBWBxrQsG6VqTde5umbWNyUVZXlGVHKbTSbkR1xAWcdQrjpSyGLmyWnVnmIpOYfS8aPhJkvBMTieFCq5pPS1VRzCTlmYo+TllNQi1kww+dGRJGcACszozlBJ0vVz3QtI5YXD0radKWi58I1hCT6nG2Jvulq0rVL2N7zfallWi0le2IIzHDFo4jBhAPOE6WdSR3qkbG2HPvZmvasqRtV7mw6rmrYNQkPEkZqWOwV6PpebB9rNFbi84wrJoxtgWSNHG8STDCwq6TJRoHKuJK+d4uwosjYmjpidZg8G+MrRa0qxCKJop3palUE6sYidMCxxfSs0aZELmEWlXypWLQWp3CKy0deuEri7rvWs7TjJWdFRUsQrNZ0pNkWh0uzYwAeLKc30Vzqe61vUh+zae1pztivofFhTOV92w2Tc2wXLB77m5pYtvfJ7QStdhVFTDHCKMahoPs+MXe/Vai2OcXLHO7oVwR0tmM2fN0ZGk3BaxrmjwwlJq2fKDzSucmgp3vCOUwmK2xVlayozVZ1jOpzVEwdqmLyc9jk03zQWWVFV9VpYG+54jWl70qcaStKDI6kHtWGHNZaWWgWszs9K3QWjSkmRllalaulKrPdI5Ri99ZQfRoti11tJnWYMdTtG0AbnBBK0rfBaMnuqbWabsnGFfC13Olk5Ulh51I7mZuUKLYu8WBXNBeyJE0QB0r1WK0i4jlC6yuYyrj8QzpuginaGDp6LoNnlBMrzqhwiJSlCD4OgtptlBnAzGSRck0GYDpwkdmrayQMqUdlYRypCDK1VVZypZ8sQN8pwJ05ut6B5ON0sjtKcVO6YS0nlTJ84vq8ZDK0a1hVrPm1MozatcPc6k3SvhAmEpB8b1MIdLOOU3uGJitYSE4Z4paV2xlbGIQVRllJ0LYR1WoMRcrTdEPpZnslpB8rizSabGcpxR0pOlGNMq3hCdJHZ9KTtiZRCYwJtBH4aOGpaJua1qQnN9I1S9XM+c5zOt2itZxxOtBamLsENRczwKYo07UpJ8aJODXk+cpHCl2o5nwo4zcjkjM3G6Ai5yNRxOSV6ukTVnN87zhBGnBZU6wt5QTBrKuFXJ+HujKtbKczOtFmf4TliC0nI82R0ksuYkb0DYjF53kspZRtN7mqWLpd1migq91cjgr6UwEkL2C4dGkp0sqqp4mbVbERK9JvOQZxwaMLG9BA6NZK3TAjd7TdgGge6rygjxOpzkJQdDCxuUqIDmrCAxOrQhSsbxk+OJnFnXnB77xlZy2rEILnWM8TTEJoaWvib7HVa0leV3Id1ZzYN7JVTpUToFO04zq0LAPEHYaQwVKoYsbQDmazPrFSkb2pJHnYUkkpOo9ZUOkri9IzjHEqvhO8MOijCtFEKsLXNwa87QP1r0gLPIxKdJzrBcZUasXzZwOUsrQXDMkIZNKuJypZrrKN72Jju2Lxi5n2W7jxUSjDD8HJH0xGV0rC72i0RM7oIVvhz8HikaStSWIA6xu90wtDdiyWYlpITByNYLKdYdsLRE45RMM/KGLuGLPVsGJnSBskGNDOV1s+JyxkcXxwypaiOnZ9DOWDVDieJUe+uIhyxV8qKlcIs2hSpwd81lmyzEaCNH2MWgEw+X4up9xeyZAdhkfiX9P3/v+9vOn0edvf2Vsb2J+hCjP92LPi7/bS/WwJ/70XmHYvT8NVf20ZIxh9yMDBcjAGJDsg/LBW0GSRGQKii3gi3ICnseilTMGQAvFRqMlRAxEH2YAaQMSG1VFIoLCCxcSAVkgsHEEqKnrxSrU3qrQKiFEdOWTp8vd+Z8P30psz9en44lfRA6cbDr5uliwc6sA2ouy7/MWjc7Mw8fHdr/7R2YDpKdxeH+YKJlf2qdVtIfyKPD3qxgwEV/0Qb86dKGDftJPRgfv2NnTsPHwaM1Z9k6/VLOvTRw8fer9vRHuxW6LQl0V3a01RqpIsDhKyQxFgVERYKQOENpwmt2BKmNSBUWTBBaw4ykk0RagIEirILUagSIJMUlQH+2v2cWsFQQaGUu1dSqpOprwHYs493LbH3dBGIjG6KkRvCKfk6+3SfduI6XemLjAInNiDngSPg1DVqw7kyrkLLR0iExGAOQAJM5/raE/Skhr9tIf6ITN2SiLBSsW25bJUlSYhUnCYbpWLAqCkDTCdWE0mJFn2IYjxrOGVl8+YdzMQ5SbYG4iiw7MuXpe7M7rt4eiYknKSVDqhLSn2EVkC83k7Ufv3U+RsSS4aty5cMGvYQQwt058hBA21rVMN9jWF5Bjx/GfGs73hOOaFEnTOmE2w32uMEVqdGB2Yb0bMJbZUlGYyVUFWS6zu1t7c7wMkYJkAE0jmCCMZZAJlUV7l3VsWrjLwlgusmG31d8gxrv2XOqqfjW1C53r4N50IjLAMZByvxjTTGJn/blruqvR8x8H9fggAPCxrERoiNz+hwNQ7iFnHseUjgUu9y+zBKrbIAU4kjC7yJx9ious5me52GrCnhmqNOaPz9cUrX4Qkvb3eLxxwXtRH52PMSW+KmGNvxm8LYW56zUaUbcPBm7lpS3NeWDt0mGojDFWaf/bu/JjTbowO/zP4+LvwjNloq6Mu3YEqAjhpqe9xzKPKsPTNbV7MWuT+eCc69CeL6e12LMNff/ObpqaJ+zJn49Xvpd7ElEvX3lW6qqjvB31WjOXZ18XpbI84b8tusI1tGB2Zl3eyGO+jx6rlnt7s0+2eqXLmd63wARjC8rzd/SvyY6B6qqJ8+e3NY1XNl2/re7CIERAERFYtt+nf5e2G+nXqXl3K0Cnx0koFK9C2yxXv9H7+j8PibUpPTN+pT32VlaRrLJWQhOzWvnsodrnvAi8eAn8KRUGLuI2P+fOvrDA78rFqtzYpRJmyYxUGFTb0ditjD0vgCi8DkOasugHtH8ctCdgDEKejLv0GME7RwbQYxk1GPKBNYcUYbNvQxDJ32skwGNqnmo2AeZfUjIAzGE5BUiIRIOYE/Z9FPah9KY/yPL0GTozowwTGCm2ThOmRxiMmEU0pMuAljTGg18uFVvJKypQUOdLi7WV4Na3DGFpuNdDcaepUWQn5oYwcwyVBV0JcEwVtJJIjkCIwvEAEJpbZTA1uUCrEJSrQVN7C0PT0msVqgpzagxl6K3DpjFzFjux4ZcTLkFRsuyTejSoYJYM68T2znMrpAAET6wvJwzGGhLTXNy4GfvyMoSapqRtJiOH99WekYpOf/vTm6g6n4LU6Zec0rDGH7dFPWnluybQ2w/Imk0zEmMiIKyoQE8OqcwV11K/02a0NN6tIaUiyZtVof1Kkyz5ZvPutqWprjmYl1vSeNNNjlu9V6XhgfOl8NH0JIQe6urln+Ec/JeFUvj3822c7KuJc7dk62WRj30cKSKrkk0z9ecXB18/bbfdoto2d95B9nNNCVL+xNjW3dX7vZf3H2ohn9woi9bGFEWY2Ri94wg4oIPQ8kPYZHHVccDpC4oArvOLKAf/oKuLjgR3Q1N62A5sUZwDkRAiA3kchQQMcgRexzkVSuNcXrKrg7MbkPFnphaDd/l4ZZa4UFSm3u3VPtge4JWFCBI8E3bqJIl+jixWcHv3uPsGSk4dMPrZt4GLuePM+atmpRGnr8/OhU1Q5ir2+PTGYiBOPoCCN2yzrGqoXZE/PMvuu2WqZ3rZ9DrXx9T18A93prfNDZ1DuTa/aHfYF/bTNhDSe2Y/dSv1Ra7SMx7vuMtQZmGKdFvlzStSYJ+TfwvjC+QAATkYxHDbJ0iQCdh1p82gGDD5hrXKdB+ogNGyskytj4SkDgrnemjTbUQOJBgkEwweOlCBOCBlCMA2RgHy512VOS4wqnkPNhrklk2btWspRPPKzFKShDz7VLfJPVUt6mvbsv8fJyTPnwgdLIvvHs5MdCaHc9F3+TrXZ2fVq6QOiIDAsYTPqTfRw5HkbjsqEolJekx041zXzuk9MVCNwNCWqQ5o4bua6ZOkh9PX8Pju/fPkc9KOWnLq7scqh1LHtPxsl3dxgWNjRBSjCCA+5RE8oUUVMLI5djMZVdu4zcA8wMnzUI2z+lwZzvEmkHgZHNcleYGvJHmRPMQ2be0ZG6tnSZBp1oXE6rdYbXULU8t6N3du5RsYiWZ5nRrqgOZodgrD3SYKy3+esbw8MA63Dgw1HODVi7cga3dOCzorPIspYOy9ZvW4Ouvd2i/vjX2h/BH4nw+XAxrpLEYxrpHQciMor2D04OP2nnoNSn1mubleZb3fScweOA4CYmIjaVxCm4ko/ReWxbo9uCZRiXXFrOLs+JL75GV/CYAaSAFFVmpx0a5RQT9Y59SSAQQsgggwOMv6EwUT8jrdc9GVzdyl3Ztn0a/W86D8SXjVHEqV/VlxqOZvAeN66Fqi3WBy65bbXc57dqcfu0VFS5GQ3M7MNOhwscOYiFZCjFtLWVjbt661lTdLFkFU6shrKQUBYdWVm0S1iLBa16MrylTBKcbyVMURYVoy2gqFvLRyLftRLh03MazWT35BIz11PJJZIHGTWFjW829ErN2gbarFnamV1o09OTbqo8iDG640UeuHQ432UpMcV5yqTGVEO+yoVtlJJIyYqUmly4Ps+nKO/ycCcWY8PM+GNd7a8/fyuZlQ3o8PdIxhG6KvLnnntr11Yeua7e4sdDdo5yGAtaT08VrdLVtczP0rYMt09Sl7mwP9uCc8V7UNmC9c5sxpA3PdGjORHYTa8rfU3ZMID/Viu3db9VJ6Ms3u3kh6JcaDUC6L8mJztx5iMa/B3jEq+1ufd/OJaxpWzdpfgfWwsWt0u9kHrAypIQmUwQcsUwMO4qCGKTThrfOfppAMJ/Dy/b8P/0+RYwZqiccm008G3u17E4073m/SYgQBCsluqC7WMYPEnbfMB0x+uvJoX6I24qET4Dz/e0UzvglSfzj+d4SSSC8PDtOTAfTOVcle5o7utOKy4mrVZvJolSYi6FsclowFTs7rruvFZsxNI1c/ZiGOxyIHWGdfnXD0PfnNCkPLRroSP2JpFv6nvgPLpDQ4+j9NOeV+mufbTZ/mOY8SG7KCRPa8XLoL4c43yzkxxCOUbkZFhsjIaw19n1mFYJk6ueW7p0GbWmd93hW/+/Xr9sYeInn7WgQUHI2q1RBxSXNrq+sC3Wo3yxXH7UBqwzEZ5PBF4pYfIpzPWjyMWLKjldi3mAgDapYHXcdls1gRng0QQ95G/ongYDCtnrlnfO9CkeCGCk2D20WvEwMDAUGCsO/yzGaIAV9t0Z5IwVW6PAEXnhSyXyBEcjESfJUHC0DUWLwcp8PxBy0R5b+10dyxhdIwxUVMObuv9itBzm7iHsCRgD/S1d2cO7ltGhiYeebb19XpQzLBVZc0VZgHpb6vdcN8ZfVhhGOsdK12qGQQchxefdnqX+49/Az6MaEDwLJxSIANpGM/0ugVvres2qMowMwufl+GupDY1Jc3Uryc2kxiaKIzkb1z5ozuibrwVXatEelFVlOv8fmcN1Tu9iRIIgn4HMcjISvPTsmNxJHr/RX9FVubuyzJfPVO3i8GuEFdxP9VmYfp6o+SNAQOPQ7lkxN9FR2za84AsQwEBuat5G7NrlQYGjhKp7iHhlsT/B53hAR2zmGUjRMIMO1ZkPTPcaPbGZIynhUp+bOCPw3XflOvXhowmveqjsiPLz+TOnrfJ39C80E0g0QT04Wgl4F71u/um80vSORG+Jq+XHVy9fzjyB2vXCSWhSVJNM2wqSSvPZWUl1Dt4mgfKneV7tt+0pjbPA6cYYtbvHxg3nSZUffsxZNGL1pk/Us9N0k4O1/MGmbV7FWxVgZWQeEqPD99zaYa6en8f34v/mdeH7nEgr70VR1jm6/e3Sahg/Q/MXRBscyddYd4hztjpWNcMDDrvoVCmf7RuNiNno7TGlRor1id6sB8uWUotnH6tpNePn1W/RO7LUyQGaOUF2rErzwV7bfdim47X6cA2HKkhIhJIpISLIwjg6R7erb5dvc+/7/P8+vd+nNDYWq7nLNqMwkIBIjkcgDAiNWFgiwRo9YY3pwu02BKRRjUqnXWcMFCGa6JHADkYi1kbYXEghILDEHm7pwY+epZvLQ1/jBHrMCasxbeJFL5ZeB+Gq1daiM45goRYTzN5bFqdU2deYBgu3p7LiS6pqJxhvgOkBJ6lVUr67qeliqYDSQABEDACRUkV2rdsw8fL03y9bu9jtZvD1wkOyYZKUm3ZWrLKdJUaaAKYQwRmRIbOQG5lLs6o+7pz5Sjr6GXl06b/B7Tl9d8dKFVFQz9Y7Me11tO8N9N05tZAFgR0JGzZV2zGBgwQBhhub07OipwHfgqqUelDGHLEtnGS5KoxHB5d3NzIOOCO1NM6Yj9/lejDl4OeMmL3hVYQqBWIrQXaLfzhFFhvg2/8fpM2AaIePjq4ZtxDqC/3/Q5H+v9lSEiJGvPjVVZWITrnbKYrlTnzVpvqOxaxd3H3VMpD7ncTX0bGHX7mnVShjh+59ny1ULTgGwkyFlM9jDDCXT1/d+vXVQc6y9sdgTNXtduuwn9ERYPslzArwrMnshl7SMzlvRSsHky09DPT5XPvnHvh+/jkd32H+mHkx7Zz03GpjEYGWuVEq4I1wh/7Hb4rxt6DV0ae/idRKZBGyr4bfW0vFxOB49l8D5lWZae4QSeVQdKOwiJtqJ9Ga+7Zlsorwe3zW6Uqrt781048pjCTlrehaZX6FLMh65CKshDBBIg3GSxgjH5HBB1PQjef0KXn4NJqGp82Xrc4TZ6hKJ2shAPoNP8O6rQE80oZgzMVMBlQIZnDvVFwvFQLyHaFrRVrS/evVUYMDkBVISEAwRggjAqZZAvwx2f0kLXoXic6D5+tX8OGABfc4A/JAdyRwDFcXDGbl54j6ZjXGchgJiBEYVIRIgeBBtvHVKo2pdcqfnx5sy3mGrugsDuNHtMaqmxOBj+1i8lUg/H+qX4UvueoVpIdP6hv9GUmm2plbrevYpv0eiGFb+jqb0YpOvbb04Lf0cRjgUfPomPaSkfqIHeQco7JIK/RXbiq5Xpsz6mvZ4j1SVsHzOrzlzfmtzsniqdcB116e9VhDFuzvvrv7AVSFrL0ZajNe68swwFcT9fNRbnbr1CzMOIJ5VBKRclOqwrw4wpel5mqw3Zw+OGvfqrvXGWZ9SqXfWRafo4c7HFjY4tcLZN/UDCY6bAxQJttHneU2xcMAbYoYDXBp50aZKjOBPNbPEn063Ou6d/niQhYIX576uCFbZaXomTaSOevwUUSbWDUSULEbGWxoxOrykuSr9GXdQ9kuHRkkapFt3NeaUh6KFmiW22q8nPqnbvnv26U+hNxKdB6lZNGgKbITw1TkrguRsy813KwsregkOVzBC15LdS+AgnL1aUvElm6tK4oUUv7GrFWVdzAE0cGbw1MDybv7rl28jptbyhyzUYKiccSdSVPBFXUVFrCuMccba08te7rRE0m5jWhYLam1HiTQVe4qk03QleZp6nLEnCzZWTO/PUprTTxvbrzjib5H7IHB0s2LvbCz0t2EVVLODsgosT46ESi8WfWvUeW2NrZ0mFEuatt6EdNZnY5BZoasWmWn00299m7FUWjcUYS6SjWnTgw2oztSZOZ2w4yGuq7vlrZup1uvGhmYtGO1XSSbcmtQ142+GvWGqqwkhiszc/IwMJyDpq+Yka+KAB0ljVUMbrJxo+wgI9WB5Loiarp912NyBPNGIUMDzHcx+ngOnt4B2L3mWYhdArnPHwS0QSmAGAjLiROD0eOpaZ8dGoHHlKkjbyuoowLIivHWIBVLfy7JNyrLzbSQZSJZDRzoOgIWIgc7Ee+AWwBbfAo6GwDYiBEAbjjKAW/AhHLi/X0yVb7qrtbv3DKeE/ekYdxClONmomaTUmgGYIM6jhkmD68CiYBjr9bnfBvlCal7LlUIb+KArnqYEjCJ901/R2PJNS8+tcNPcaT8arw5pnZHGCzPQ4vzXMwEWB2YWOfjvXnJ5GY8nFy1RCAqqZHAzzRDHuHyOSJ44zGI7HaFjJ5jU0Co3NORwjhQ/VCBB0RPNidzzt1OHV0xXjLr6buFx075MVT3UdekngYlxfW0Hp1RLLOCkXu2RQZzS5lLCB3D1FCn1cUEzAtlws2j3dbMZAdm11gDAFrIAhibbjbxSd6kPM/Xre63J9zc7kdGQoX4qGPBoNHS1c4yofW7kpGaPgoAdNygjdPrbJyXigDo3s0KbLvegGviSF7Z4cHR5m5gVjBuQsdXT357ZcYvNjHV3IQKLIZnWSoYqbdNF5ZI49D2Mp1mpjckDK1p9znAeLm6jFXh0KJnAlCbIAmpUCwVYVEkIdOZZw4lW6sdWJkeXptu6iFUXSY8BRWXtNcQBVT+HLToszLoIrNCBkU9xfiDwHOKbOHcrmsrsWNgA+Hr3bM9KbNvulhJLc+yULLHs1pVtpQrKlvL8eEO1AA8iIgYxEbDjXDAvy5ZzjIfM9QgcuvOY2sgNpAEQ0OE29D2eHAuarD2H96lC69i962+pHHDdT7Kr/usvn6JunSxaMJsH73DpVk+gUvbLeJK5mAMRGBEYxi+FMJDB/6W/zt4bGjlo7pAWiBNfNHNPIh3sVMYLL6X9ITsXsRcEpkXTPipYtUg3osANacbNkCgjGZV4h9mID5cA8ARtvTtQAkUX8XXddBEaN36w1+ZLLmteufPkbZqcoOu/zcFvFqn0ctW+zRHLusA5ReJrRG3Ea0itvwu/ZS4H30GdDuvmFBBF2yKPXbX6+UHqS75oHVQYNWtzq3V4+HpZagcs8ntS9/Cn9Se5WPsGiGMjexLfQ5gnyDyvXvav96/Ah5akex4F9TAwXomJlvZuJM5yJQ/XTcb98d4W9rZOOwRHtLQyJ+XTI7Zmt0esXg7Vp8bViuxe7IXl+a238LsPwHxwKsPMTKrOuurYhv0t2BrgyyPNNJ0v17S171UXjGi89nw6VxXUSuJ6L68LQjqWO1Ai6VQhhRMLCe2qEWmRZrX1JaRcrSt0wuLJ91itA7/v8VpxTDEYKloOupZ4gMLpgBYG47UPn/d839z/Nfz/gqzVsl1kzzJKP2NVgiKsxAmUHMkSpJpH35UA6DhM5HPj3uR9sXcchwxSDl72USKT29uZb2v+fJlJHeYASKQ2a3Wf3fm5zC6wjxMn5L31lm7/afs9cMheff19vULXZD4cosarHji4TbjehGA+hBHPrjVs+rtxevXClbziPYucxaD7NpEVL2rtwc+vh7Y1Utnif1UbqWvqFWK/GJXDSx0rPbzD03w2uliYGA7a+N7Vc28MSGBKyG+jpUjVTw9UgHc8G2gAOz6OcOxDGJNcHai6vr0nm48nt4niu0eXUdg9UD3wZ26CV1SgFYgW0oytYGqVVj9CXEqFSBRlSqhFgKElYSLKgVKwIsFJBYsH9DYYysgVFJWREhWpFgnODkRAAjECIERjkAwavhwv67TlTsufj7eOJe/tzVKic2KLcnB7N09+XBw9hT09xQ3uoZ/zDwTkmi7q6z1AcURMUpORA5AthwYaiCMqqqFcwMYvTZdyusc27bueVGeej0s1Iuz2wdE6s/bYkME3fKyHfEwU8/mrBn8ONDfV1MxYWpG82fx8e8egPRfrc/RC8qpNKDy+Ez+NufqYNLpncStXD8/SpZGWOKAnbACzd2roOcjf5nZcE8JpvBuDNVShVrIVeOGvbqb2BGprF4PMKNfTg8+lVUUCueFCMuNTBtr8UdjnmdgVno5ySdDZZkvfooJUZ1ahBjI0gFCkqix0ID2SJ4bNBz7oBx9qaH+Jk/g8K7nSZrjtX09Ml7fgl8DJ/mmmBMxrBIP5eb73QofTU+u2ud5dGz55E6EN6n3eirWcF6GXZOlkPEHTTFpTMYvudVTDzX+11brPZcqBAx9ckYzOeaIcDIMex6LobmCv502cKSbDBF1orEDMjMvpuhbrRf8biykgq9CBK803n5DDdxhP8/IpR3PvBx7kqYU4bnK30uS/i8ksPe+Id1sCUjB0cqjRNV2UbXRjHSbHq9PQN89Ff4Se2PRmvKYTQwEMJlFRsZdZgP9dIKjzAMxvSigY3Mu7iOtc+L71cIIacEQt7+pPUzSI0f6vBJ9sMVG73U8O2XX/ZXBo4ny9JymN3j9CGkIeEKamJg+SPbnN/TA9re++x4rhJUA7uTArK2orkK3BZrpP3o7srK7qcSBExkgQoktOqioc+F5dKg6iySRA6tx0YNNhu5+HOnPJezr/ba5Vgpqab+4tPnB03KPo+jwH15L5Ey3c2L58o3acu+vGI0JYNfeS+qKx8aOG/HJs2l/iRb/Nh6GfrG9q+B6YPQjSL25NVE4StA6dKIyAWRpIqhWSptIoCyT9qBmrIXG8tVgDro0+Tk2AzK2JhYU9xonnHdbCb873Voj+c4i+lzFqz0zJKzNNTG7bu+bwbK9bq9GvFktuA70XnzwxlaCFILSSDQlAQIh0kY1IGpnXgKKZQGxTdcq3jILfe5CI9rexQnCpSi9T7v0P6ce75aJfgK2+b6APGZcUYwo9k9DJx7nMFRyEAvS+D2x3DGpyS9gNZlQojYnyIPoysguYXHWxrmo6y3cQi4jBhDKYnJdOpr+OqMmLuDH+rP80l92cZRTIrJl7MnXx2zlxLSbDyplD9fMoImG056bRTRR2L8sujCYCYi8qhpNaNd90GkqcRDE7m6pa2pxqw6Jvi8JOGVF+JqOb40VA01BSsxNOqgIc+zKK2IaJiLZ7XHKY7PZlY8vXM0pt2nd21hsthtK5zXVmkJ0aojhvJ00UOzrKdHGb1SL92+OF1dvRqdUvhenN7mrZypJbgaJqsrzOslshkP1mVHjtlOoawqVA0xsY5ZbEhL172vx+3PJDpnE4+D2/+Ez9/0/R95tStrfl3unrxz2Jq5j6cObcvInWruDjvLRAfp8qjyfFqC1f2XKUry4zdKkRKVe/ARZCBwdNMVLpjDAmgLC1CyQCDWEqsHopxrkhHZG9BZugiM+Ry3kRPEAaYgsS2iWDsHkgBp2kUG9nZm1zGXVbCRlCABEaoQgL79dnk+Z34krx2YETXtvVUV+2nZ0Tlo4YjXKFMuyperntXkMfrTzcydQKt3/LtooqwrkQVIWCMDdfsYNkYiwtjqiqSS3QvFOFXT/VJLuMm0GsIDkknENxv891WaJPmcczk3jPbLZdbkFbKaUzgenEwjrC2qnVTU0/VRhXbXdmqgC3JNEz3PWw4s0rsSFSwy2oYGhpchmmJwgZOI358I14Q4LJEXYXMvLT8ORBg0bSI5Fkw/skr1GH0mETdb7dSp01OsneaI6SFi2e+Goe5Rft56bEpgZe5jKtfyzkuohOsmK5zmUTOqUB9by0/bfLC/KnzuHSN0+7wTZfWbCqfhtiz619qQHoVciBdJAGZZDpn7TuLpNYy2zYCAkTowaRkHqZuLTu4Wzm530nr7+ARPVj9e2fX+lU+PwO7yPxern2T8/oPh9f2/qa/hErWWCFSv0ZSD3aPeFwp8Ofqtjefy8du6vtV+1zH69tm5gmqrUdfmnUFXP0nOOhcj3sxnbhWIcbaADB/ldRh3QIzB8XHOgxhjc38R+s/vn80joT32ZVPTXIq3wHg6LA4+66FXcjRT3YvR42jJDiPFrRuhIyfDopCJQp8B4ODomQebeZWi2XHhcdXki+iRONWCkdBtuWhyR6m8zCDF1XRyG/4T6Jbn3hBt7mgiZJNUXJXjfDjwi8Hv0yk6J59ppi0GFTdQczQG01LhNxCWW/dTSfFY04IOKxytAz/x0uv0TIE8x0dM1aiUunE2OZvTCMKLZ8jcDskDPKj6QGj1Pe+Wm206xqeatGtrGuK6Sdxfmtddy7Rc7UJ5jjbd+3+fH0QjyuI50jD9pnByFUgDkYlghJL0THmp2JpEgF9iaTXRpqoCUqyjfPftPpXOrHWoqb8ewDiCCpJWjt50kCuc5EaUggktZ08Z76hwFCCZKEqkDhUlnYOzap6r8FUwx3/7t9/nubG53Oa8sOXyT8PRYSFyUYN4QSxAc9Ox26O5HUHlZW2r4+Mh5OioOaa3bioWrA0bgnyi/d5M9UeVpy4fAGzZJOswMDCkgYGMYxEADAP2rl2ZOrzr0YPXrEdSh4oNLFYBgxEV7e7ks+1+Ip2fZRgjvnNMXjX/P59VxzNZ2UrZAMqfL6RsJGoKrJnus+jLKxyCRyOteIDByYg/Hd5JPW/VgA3Xg+Z/nwtGG0bl2cYKaXmjswDMElxupcyZaoBlSIjceG8wHY1U/qBp2lRa+3gHzpO48b63zlSv9zILFgqin0Okiw+tkK6rZm7K2StbKjZCRJWn125/LYvq+uPXhrdvvnRwfalngxcfX+zOl9G6/4wdRneyGPlEpfzz54X+bBZnLYWt1Kp+VTRYxDf2TCyWp9klFcuVqLu1Q7T1o4agLKc4YIdRGRiFehX/ZP10YNHfdXrVf7Top66nBfaMNZ8KHEb2Xg5cnHdLYvpnYm7CkrzSlYHrnmlYBgGeIiAsHuweQcd5/r9SM5wnMbpLDPY32qQDB112U1aTZ2HEux7OuKtK62A5x+ct5b+32gwtz7umYxF0HWtlxbxdFjRkRRX34mcsOBQyrTCqkjSHnKb2AwA3kCJdVUwT7kBpCYAdv5MgSTBhsrU/x6aD5z+PVPt2dHSAJBWm12dGyTB5J/rq+qSgLFmVByWLvQ54b4jCg5w9OMHfU5HIjb3ucNz/bOAMzh8PT8Ha76TeNyLA2HnH2Tq5MbsJRd4/CoO84xmbC5IkdomWVZ5PLppBRutHUjUPDvL7O6mqdTaeap5uc5WJd4b/PcZl65OHqwSMQ3xCyOXOShZSg2H3zbEOpRaQQA8nZfHbFonzROmaxmvyauGseS/C5y/HJMr+h8K59UISHDLXJyyML2IIBwQ92iQ0yXpng/XNrGWzrU7HwDQR6qh3zPzPYG/1F7uiz26UKS34J3XTv4JeVjUBPtRTudeWF0knm6PHPdN8jG9wZUga+Lq1fGr4ZyYz/JqL05ceXZSIhbyLbenl7/L5p366BRr6F0p2mXDwOPGCboPV3ijqz68zVx3ROvLVu/pbS9pwy8nx5OG0cXaSjKicrIyKqnF8GZelENUDgvk8SDi7NPj85F9nX02cgvDc5kxWt/q5cXf+/GPr8HLU0UPPYPn8byvctz6nHcWlvO2LQHZSwBkjlgQIF+awwBsXX8x0T3576jd/6cNie7D0PHRzJyYkW/P00Z3T3enhqn01+qLfyv3MNmArl5blhUDIOMGP0w5ExYIXC8hpxfD063f+uNVTbK4M130gg7VFXtpNzP9Rddh/QPJrsysA3V5JrabflnMZvwOIpwgFVFJKypIoAiCk+f1/L2/L/P619Uy5gKNutWnqXR1r7bQ2WXGUCFWeixtUxf1eN6NdPTUwdTCfbPmXq9+EDZW/4ZRV8sUbHbwNzUlV9R1hc6CHkomgiMkkcNTwcs24eDXq7ff9/tR9PkoTBKDZPlApCRLYO3AqwkS1JUk21gKRZWQrAUlW0CsqERv59bcNC8LpS03o2ttsqe3ilx1hK88eowG9zDvj9K/tnmk9JPbZidnqB2q+WpvUL2b+mgLPbVFw3D2ORGIiIiMgriDhD52CmIyZJBeC1GJ1+jhv1tU62PPcih1eULdtlRaA5BU+P59viBQu7KzNtYa0+2vz8h5yXepq15+dcWVvN8Hy28NnpxN/VqbHtu09HtZ55/C40HBjA4g7+fmVd5qYOGrT+WTPAxrHG1FNgvYnkq3PGbT48qvYWzmFuDat54aVzXr3OzbTANdPopo0cSwSemfCxHu97/V7QmBkcnVkqDADYQAHHWtTuPfsX/WcJAhty6Jo6yKXTC/AbOkkAGCIFzsePNavZvW/jw4d6MxlwMJb2jgEyD7iQCQRyQSZBB1EHU9mU6O+yVl/qSxxXLOKN4VMTqtScXSIDgYgleFbNxMX+jGC+COSEv14VMGsj+alZrT+W5q2Vlf73Px/8dPxfs8uP1fv+T2fWL7YCSMin3xE6Gp9MKSRb5j/H12cfy9f2HU/Ds5X/k/cWceHV4X4Wxi9sU1XBI7zu+ykfRF7Zefkq/Daj9k/fMmHkupdi2NpQNcfSjoQyc9er9eFabLWcdhCqmDu32MGFY7vJJbRC+5Ox0rx1lIr071bU/V64Z49u5zp6m0GHfgx443KNa+Idstc65BQwrEDTkab+SnzZZNKzEDLYaSbTGBBYB6fT/afn+bvz2visxzLgD2IwveA6DERDiQ6So6utFzBT9R9CAxDyluVvhufM8/eqJaoNni93SGnIWzAXiEwtxhLcQG3qlobkOBzU8F2wY3SRpGppppHXcgTJdAjY+EpX3xrrVs2bc82gcCMDtYklmopVK1QZWBZf85dWYGzkDP+zXwRspls2TmRW86Xqx5i8CPjh3fL6y/gYp0mw7at9r+3zFET/9XR88tUxqM71XICxcVlvXn6CTudVyFfTB2VaOnyw7k+d3BY5K9R+wWLbFgP830xadxGG3v4ca7oufB+Vkd/8t+AytY3WQi1iJBq5AHP2n5kYOt1embBksKVpOjJFTxfcxsKYBwsdahZnPeCLO+gB00ZGAsm6rzONfoGfGNCJCZLZj3cKXLqnNVTY29NlFi79M35bXvv5Pv9rXl3+f6+9PF7OLRRkKGGFArCQZGtcwxDGCiIT8CYwrMTLYppXMuappk+8y7qsdIVWQUCXMyEUUBRBLabam2GkhpmmTdsBym8ouDN5VJVRZjLbC5SbtimJtJRDEBEIu0x0wqu3erNJBVMYCtsKorszeGMNsgYyEzNmQcLKrNjiF07yKGmbaljArXSAmYZIKsFB3rDEqSqI6sow0NZrRQxqYW0ZFNsXTFAy6yFyyVmb3kMGDq0GfF/OKT7jFv99DHomkNJNW4wel1G3NQqwbIlsrGRs5/Rxb55/xxdfn29dMh2c/bz5+l9nh89N5DCQTIVNNLsAkTQO+JEYgjBsCqXZkVh5ofHx2sPBqwLN/zn786QZye/lT9hR3fw//OfXYp/qyqAf9nIv0CMv+1ZUmiH+nP9mWQj13ZfIPlvKDAz0EnRwzGNJuFv2haSfvX9oI5kPRpWmD3A4xMO+aC0gUVvnLWm9+qiXTS8XSTF3Z6fhN2dP9nWowlto36Hrpmust09Tq8VZjMWZRKwR00lGHQ1ei/zTaJOr8U0lku+gvTOsYczry14WpwpNehZh6hHOdi9687Y42ubH+umFhI8EtYvC9Ou20NDG0JcflpUwdJYjekN1/f1lSAP28pdTqq8wp8ziLN1wDA1OElh0HvkmYkj4GBFhEblCm8OhHtcIOFIXNd80gYOvGrCu36zrwevU9DdfbRUgWeSK0KyeYSHqR0fV+uXCaO9GnhFjflew+XgEV+jYDMoCFwQVOc7YhUS+jKn1+5rAs9igHX5Zq8Ovf0FzkzW+mEeZvPp4bnQiYcYbr31GlgqPvFR/MjFb3DHUUBg7a7yP581zuL9kgggjGQc5yMYiAIEDkY5KZRyt/tkC1S4ld/Px6dlljHh2rlb56M4Hx/e+5973eR3fD4fD/alihjLS1V/usv/FP+t6MPowd0l608IiAOVUjZyqlIkDjKsc89wKiC02Gsh17hMkHCDhAxLHMNMXgtXI9Q+bD9/58fgMUSvgvhoG3xYbi1U/uLG0JVsrZD9Vs6TpAiBZ6LVQ/R+/uYcWW7xBfXemcSSvb+U2rhHzZ2qdH14tN3Og1A1HORAgN6Wv9f2H88snWbKjTTYrUxxS+bmw28gDfQjHIGO2MTSkmM4G14vr7UMOZebsy4mxuK2RjdpZSQRjkAcjHBGBMHMc89hgqOk4sTHLMJ4e3s4aHlvwzIx+rndDYTZq336wU5/fv+v6+l6+RE3YoemIG3EKQMXO04Z4O96Mnz8vTMaDX3PpUB7w5/0ODu9A81MvJhIn53IpkzqOYGdDQxbh4d8ErmPk5y37s7fJh6xy0YlSTm9SEVPtg3azgs/CTGGQtJaIOD3R3Jq0MuVWD3V6fj8pa+bs80B2oR1VTBgjMA2IemFJtU6dShdwWVxWNbaTXva/oaPRqu8S+iP4QZubTlVMfsFmg7RZKBUj2q6HmpPJw5gmAvya669fLi69HYY37IADx7d/mz6/5vFGd/GZYc0UqCq42tcyuWn0oUSSCZzhI6hIIwcIt0vh1V2Kgl7pQ6aXls/aaLSUr/1PYM6QHEiIKpPUOWoInwcFLR/WXggDjFJzIvV6bDW+/bweUaa9fe3WmILbX3Yue+k4sPlFWNmF0LzJQK0phEa4sWmNNtFW0c5rHv8V2qG5q9MDLEln+b3snGxp4+I7mf45QiROe9q7PcKeXrr9NqtDEGKLm+v9ub4W12CA/+dw/tBZbTh9LlWaQ8P98D/FfwasjnhTntdysHIaERnVBA1igVPUbOEX+Tn+vc/Xo4Wu09fwazxo/u3jh+PbLglM7zDwdjQ2QjsMZzi7er1O6+C+SGUB3J18TpiXb3adI/4nDwjv81/CtvwTS3Yb5Ce3Qo40c7JOkT9WI6e1+aZLWalPtlaHJHfbN76iVIk73328SREYHuTdJ3XLsz8K4mN9X37ff61Em8Kiu2+/JG4JgkcsVSgrlmonC9UWbVRE0Kl1yfvsnWniYqLN06rQjF203XR80G6VN7+Uh6UO6U9NJLXxuCx7qeDCDpz1DvNBcrT+7V3d2bct+aDNRSNECeVdNpIIjoXobb0qdhkK+LWUpJI+Muc/7d++LqWajs0l2bXeezlV4huRzPbeodC7SzvpCJ+M5DjmPH6w6Gb69KV2hOl+6eGTdRiimkmgYkiNFOz07tw4PSHco4VfHSF7PfR3dz6ruW8q8akmJrSqQ8T8eJvvOsqeakMmXgfbm/I4ZNRMafluXuTWSdCa44qJ08kxFtD7eysv81XDdvJd2rygethxE24yV120r27xAdnKkeyy2Pop5VmnQIFkjE52XtCOsdXOboCD2B0CXs+2kSEkoOH2rfpIma22PRs+33/XQzEp8eDif3gPWUV7Erv5ab86zG2SSQDsVS+eDdF0/QJWHzgjvp9uryYVzKWMP1ttq0CEeKUydSBJlLiokvlOxAqsktDL1pS/JwsSHENtEd9KlwLGTMo2zaSCYU2vMxeEWINw9t/370ldzN2185WniY8b0mXDcnl3yWmml8bfvLiqNLz0YUXr92vWXd9lskGN6ZYgxhWdrSEm/i9o8q7vq/kZZZnQ/av8/tlvs6K8z/XhhiZcuJTTwlV/LHpedFU+abdFk42vqpz5K0DycWWjSzJXHho0XSWuSq0557PPzQW74FOR+uyk9+8FTPM1MHXaYedLrU+lK32uLTYl/a4Ln27/AWyMJK/42COesgA5AERjX69lRfutXGh57rD3gWr+NDnIelXn/v+BhiKR8aXwBA8nedqlP/dnqTi6/V9/12YcR4adzUHVDCntmqAUkj5q9sH6oKFiBwRoX/mxpcVw5RDy7B7e5/5f/J8qXNLRMmOyL7zsLsv5Hmmai98DGMagS/cmPo8MFpkZmu2wi7ALRc1ZUJcL4GSKOVhBMLW8aySWT7LMQJZRiz139PuePpSXMBwniS4vPcvj371RBcIB2zVShD1ZAO3Uxd1XrcBhKRjK1QYXUbdjFgUrBt/dGdpuzGofIwYNpfO/+b+zZV25p+ZhpnWnETBemoayNAKDGNctPjSlhLSAYwqzsew3C5gcbvGZ4DD7EMBDy0x4Of7YgFSNTeH3580x6E8y1RCarvAq/g2GIFZmZn5hFtkUgqBLZ5eycPQ+o9ZgoobHN/iIEmBzSvTpV4AK1BpiBAmFqp/t2YQAZnmIMik/fWpUSyKwulldoPNBenCwDimoG4kNxAxAmhKpY398H29VkbF97mEweSj3T9y3Mju0kYCROxdQawkdcXuwJGsBJA+punUOt2/Fj+PL4J2lQvXXmhOy5p2QzvbcreiOpY/DeDbhyemPPN3HP69C3M012dfgknzaCqe2/Ia1YvH32kBYMk8V4rZJECLvZTRr4XVuKTVI8db980qqjCfrvRzZbvpkt6UdMVC2O3n/evtrW8MMO8dFvn7If0r1z2AtDpG6pwU5KbOMXNc37RT4ey1WHTrusTQi54lhz9zKVXm3KApcf08thpbYIiIh34nT8HIYDoeDCYY6zkmv409nJi7Lg8R95hUfBBGRSdFr16S8QUEcAjC6WbhueE1dQVq7rRpIzKGihfa6WbKoE/ZXg7bqJWXLfrhxc8vWrnW7DuJHK1u60jtRHbV049iy8krU1oOWzGvEbqyAsIKooEixRSQFhFgoChJKlYSVrAqBUkRgQUFCKAKEWVgSoRSEKlYLAkWIMgsgyLIqdzr4OPN3uEx7Xa6vpt/9t/bk0bJw+z1H1ZcEch+unNXiiPs7jt9sCEq5zg5zEg5y0wHMFiIgZQgmQMshjNC/i6YY6aqVF7OM5aj9Xn6ahpUi+3jrk7DBZP/CcDtPws700kWLEdKwoxXKNpHmxQokEdIfmcTGjJ0zx35s2KG/p/f00uxOyKXCkzKbbbda7aC2UmNlNVMKWjc+1ZlYEMhx8i3NN7ErE1luqGJcsxjSwDTiQVjIpEQUJpArFhpAN2kMYYybwsMYVWRQUWTVzJWIwxlYsgIom2VBZiFYLbaw83GZxd97rHXlmS5no3c3DkoY2IWzZshB6g9XIKphfbMgz3BAZLY2VBogz1b2dHsw9PNeqUEyh0Ztrtm3EBZVOk7dhv77mEjGrUjm75jDrIypAQpqLGBblGqehcBIgPlNZYvFPZTWaVMryr96Wl5tq5Cywqx6b5/bdacMxwfMgjA5AiAIg6BUIXu/IsBMBP352qx6DV4dqN6g6/baBZdM1gTZi2booWFurqoqEDG33Hr9jr7NZwVg9phhwoQRSkHAnBT1YreRjJFYCxq5GMAqbOyw9128vPXEb1j+3vdzyupLw8GW39YUpqpJm0EDEQN4YGsLi+T6X5L941aDsAbwvRWI910SS/AIg0CIEDroQYIBA/n+YIP77P8T/Bf33nv9KX5VfJav66Hu6mt+0/43+q54Mf0P1QTtX4ZKbK7QiWfTniqztL+S/8dmEFcsmYdXRh1sd2jYJXmC1vZKbW1PZtVexXHivEAcgAAXuc/f3MaoAOu34akcvvKgA5zmP+MNnjUam7400YrZ8NTssB8SOnMDVOLQFvMB4ENBWvvQcTcO6nPI6LpAwIEDECMACIxvSMNEPi3djSnn0ecquSJz98uqz5a4/b1mkcnV2Qacy2CWytvSz+29tGzLgykmQcQfWMCnbdia8rFsHnE5M5l1GSzPiDOcY7bxqdk0+lxuuDPkP0QNrix50iM/ChAbdOKfT2sSqP8+fR0jAPJAgyTKP+of3H5A0MjP2DCGaP3LRyNgAeefnj6fHy5XP+uLueW0aZfDzu1rZOWcETrke34qe65+34C4IgB6YqK+eAIc0QEpBQWyKPs1YA4/Bx7g5YXq/ORPYedOXL5TPy+mpDUw58ApeiYjldUnEGpONEEaSQQRmZTogVPhd39wcLSYb3pP6aicZ5EL1aNyVqVebrfz3xmNKL71XHtRaYVJKAyQKt+MMfDsVWvJqSVXnmiw9izKgvQZN6YMwqaPHw5Hv6WbSpjBgAD7kYCzQpJluGLLyhXk3OU2Ps6q5ig3Pw8cRAs7Y6ZPx29vOZ78qxf1f2cfCO2llyZE9Xo33+AuUQnycHHdFSqVxa8g2NC55boZYyEksFiGb0wo/y/fdi0hbQBpDda3XfnqQJdfBYAUkBhIGetI1d0LawW0f9alJ4PptWOH+MM17FbCxmUfnLi0LtXpn5nh2BlyQfwdnTnffLdgmozjb/XUt4duKLhjkrU/r9/z9Q9Fxe+ANhAxmK52txa38EXp9MnEyrmS9nvDNdgK5thyFfTuS52rZHOQ6zGvxGCwY/+Cf8/Lxqvynt1cnPNxoa+D0VXOMBSZkZL/tpYn2o1j2b/yvk5A8iK/jjWH8lYbBpyI85kTYggmzdzVh9G+bofGgCj7AlVShiRhTAVEY0g5u7Nb0+LTLKz9PTWCedt5ww0nTKhzaktpmZslvwRizN70Y/l1dpPa6Qw9L0QK+iwMNky+DQaKo6JpRHqhvesx/mbw4ODzVfyVYXSjWrOT3IIzVWU/Ld0OmFjqlLnyZklwTc+OnN5/w5H4ZyeyUl7DCqYDLZnobioxz5t7DJKEG+1fO5xro+GkMokwjl1QZseiu0eW6Fhzg8x+M3Z7UecJGf4RZjddetR2mplPsfjMyT8s/c/M5x5rz8r5OPa2HBNfhJIa4KghESIiystsqsVeLVFxCiKVPva1grppWLIVCs5cTLZWsZbBIBJBzAiACCCxIBBASOE6mXF9eHHn3cnFOxLIyvIphSQw07zbOn2OXYss3j0pbdnqpzev69OWTmZnsJKafxXCvMmxZ7E25sVNjvUssO3LPnNevVLUlG2LIf9NJZ8+5f7/b7gc5QEBMX47KnLzUZqZgiv4nxIPOla0+hUrUdlfVjSY3i6AM7gBv50qjzXIQBQ4yd1WTm42WPvvbVsf+sRaurWkJ7ndWEz+cWd8T6E0jgoTgT2tDAN7ECIxvZlgPw9kDKSBXque3O3AeHj7FaSTV52X7rmJlLv0/CKvdU09I1P3eg/R0ENJbXiiqHPUsITTARLXzpBO+Y1DyHUueap1X2RF8YiNnOuEJoOwLUpcpL+mL9Q6jFuZqtqhsxqxAAiMaL8TQbAq3Yt8ue1f7rnChjZpWtRDKVgBicVzjYkqmDMwqzYtSiwY5nKuRP5Q8Y1btuHDtSWBXXJyWPbxi6YXRjOLzdhZduchOSLCSL1cAVCBkpsw9Pg8PJenbiPl8VG2VnkmecsshIyMYlINDnMSxzCCb9PLJcTcMYjEWdNVM6VxRJCij//OYqf7GJYyi5+apSNMGX+WtGQ2mW6MIrNuY5onwMeU4FsNNF+szGHPO7Eud30ThSusXZGophrtdC0PqNuhfoUAFogYH8htzVuuMwzSJV9ytAGDhfB3L8eHpwNkDd6mm/aMt3PRLoknOjVO7wVnW6XS0f3A1uGHCljDeJ/zMrtGaxw47KK/0LaRk6uKLVAq75dVqxWAKoaU3qr8SjIAEiL4IoUgCBIKJSItI9by2mB3H28Pr5ul0Tv3gkmiJSItISlCRpEKSEDkDkRa0CzXYBhx1AViFBMvSqP2rVs/pDdGiDS7bgQ9fU1v4Q8Hqt/Csv6Tzp0kKHwDNOjuYSIgAs92pxgau3HzQDQ6yJ+fu/Bx9bmKz0aJl7bZVAS+J7HOXSDR66NpD0Iy4VuuEkRjC6lWSs9muH9db3Orsi7HMCarTz0m/ikYzmusxWdlrNAdqBXypTbJxdyf49yI53bwTSSIdESkQhVXEmzal7twyaQ0x66uqAJSxea4S298KZNQHnliYbqNSu4z7xJG7CDhxlKw5AlqZTj2vUsUOVGuvXHohfEBMkYwTI7GTyagFdCnUFqvCytfSYlZpctO2gnK++0GqWH8UltAUt1p69t6EmmWJKU037zOG5UYdFbpjcCcSVLqa9sJKwnT7Bh23Vq3ewqfQ3Cvd0sO37eFxFOnA32HSM59uVm81t8GdycFyM2TGWBuh1Lc7brxDF3CNKZ0K6WrmhkIWuMYhYYtNKRT6UliqruYs6nwUCmjwyheK7Zm7hl1i8mcAxaz5yOGU0JkYnznIH6d3B2zWW26VmubWKaeWb0Xi3bUPutHBFPxsx2krFHoNFWI6d83rvjC32ZbGg7cS7mAtpGu29gEROEOJLaDFTQ5b00ZnOZkbvOUhmlFsWHLCuPTDjAuqZlDlC5qmCgsWiY1wvGFeHS7d765NrILmzMhxaDqgjJwWxcSRYdHBNIa4su7DEqSsxhpDHK1673rpuq5SsTmnV6OkmrbzTHC2jLaVnLnPGTaOW5dIdXMs0ypWVKhKKppJkEyDfW094p9Dnjv072aefipC24IOfrqpUAwHYRhPrnUq2Yx3gERdhwM252xByw4HsNayWPRpqLpwp7CLtxoI694+O1AQ19fZO3XQaYjkbGRrKYug28jCsy3eNsJXjxqWP6snetFWhlTpRYTTL+tlCzQKsSUSmKW8/2EmTkayoQHGkNRqsQKoVd8rWrUoozLqWitpq2jwOXIUoBsgSSOKr7SVRRQr0NGMqJKKFkMKEwcxG5KvS2ks+ndB++SVNjVu2L39HWrCMoYX0DmbxTp9llOJ2Mw+i0eieJOBvbzZtDiaXoUDZoqe3QDkzjxmojPE+npc/VK+vdFwLtTZYmKztIRnE0l3tD046LQxwelTaphJhPOqrwm30GLxQd+6JKwSIuebnHM3mp8zvV6v6E6DfHrw1A2WSUOdIHHXzZeLckISxRGE3IZuNjDj3mt0ZU7O6Mc+zWdXSnJEZK6tC/ZLKIdrPrZ/Ye49ujrf3p165unL7BDxfoZig/afcmfT0yYkWVJ4ZRYen7iDJghPVHL5nbt/Yo5GOM0iEkod3tDv2Gfb5aXyO3ktG9uWVNM93ivIzngMvHdmeOC+Qxu6uaW2tvb0L8npz7e5YTHSeVUkyP8mvVjZ8U7ceaW6GOrhntkL64l5D39NX8eudl4cOfi7oZbuzrnr22flr1+XrRRzj1Ubtk/pNM+UNspR3pRhC5y37A69+fbTA9BpwR2/W12dLc2k9ocdMXQ3mic+izm823hu06cD1vP71rErSYvNmasNHFg4vM2qEuLmMERq6aEANHqIVozpsJe26hZ69kA6deY7BSUacnJaWGy2g9nHudrr86zZbi5fDxLijIztyXCsAAIiAAMRGMYDERgAE2En/G1ojFvA7t8KIxq3O2ICnqXE4kwmKEU3N2Bl2qjXfTwsKUBJCQWQYr4rmTCSBO85V/Dq+Zijv0d3dz9YUpSP7ZCwlReeSonUUBZKUZ2i2dN1fVZPTC3Xah459/b37pWbNFzRfSPPjylGuXF8JfTM08fGMtr8Bv13MzhiDtfcOGiJpyd43hneaDLGnK9unfx2z4IJHsqleG+DFB12C0rEPT0KaSxNbSkcZ6n01gkm7GtTWiqMUTqNpWXGET0nmSoSSAjpOPNHdZ+udfTNBuj28KuDz9aUlyd5I75OeZv9s0CmAhoH7OvPYThGR8EUqMSn3Z+CgdK9IUbxYcVkZGYMjXXy9+vRuF2U83mp8rDb5kJXfffUqfH7u/OWcsyMOPbNA+CCzkRoKSZ6zHJzulMvL41rS3fydy6Frjm/PlWncnCEr7bpU1lpjvfLlGHjc9kd5M42QaQ4XNMd+a4TRUI8jA39lD3zg6q6XTHVQKybso8eTqdy8F7IbqeWWzBOh/XPKSLEa7SpESqwyPcbQ78vLm59DtDJ9mcJ9B2EE406Yxd4ttqxew8VNtOt0N1RLxGnWEQxNEHAy8sWzfr3N43o7tC76p1iVdD095t2ew6wmxG1NIrQtI2dJFxjJbd4sgOR7UCZGFqTDyHAzU9Fm83vbuw5/padtAmLKrimwMhsy+9JLm1Fjm0ssZnai3Puwl/YtMucvoa/fj4lU4oonHAQpEWkETMVbES0BKiMIhIqhIKetBEogYGMYiBgYBVO2NzIi9MnX1y8RsRyjo315+3m1tu81R1PpLhpG2B6yDycKeErJ7y9VncsDLOEG3Zr2vCKe57C8hzXLajrzDK54p0ScjQbAucZ+AjLG/iEv08DDnIGxkDCMhsKUgBwJ89KfhZU87IBz7fx+e/BJ8qfeSGPyK0FSODoBzHIxyO1k4b6e1OlTA0zxr1Lemt01b17ticS2W5H4MeWj5/j/YWZBxgwWxgq9umOvdzF3T6WlXWWql2C44nVqsq1rO6KbHFH8C1I9WVxzyIY3p/XDBQwy1mrYhZGNehvJZ8uE+NvUoHK2+e45tfcsdcTrbVxfLzxrM6xm3pxDKRvoQLFpK3CTlbYG81rxYt0QPMMqv4U176Cx3G8F9yWcV18OTlXwq8lMDcit6nTEqpnzLQ59tCYnvarkvgno1dK8UCwhrP32HdVbWiairitX5DqP4z2qyTlarTuq2Rx3IybV+YVqtbERocaUGO5oVlot4sKxZXXmsFaHExgw706tOTQisdotUuoqvdv2Fgcg5nOEm0c2jQhWusvYCzOezoUv7b2S/e0NCGoUx6yezHNWqWM18CulerpuYkVrE0cb7TG9lYoLqsCqV+CtZ4ZIBCk2IEcV8TcimU+fESzqWc96lEFWZGOHBziKPhUVy36yzuTPBffCGtqMSl5THzVMt5qNVhZ+3PbdOG4lZcbFGNbAxq4HqwQ29yHNEKNJHLBwUs7VlIW2092ZOJ3e5fwZrdrNXSuC3RbxYL08trI8vmfqjntp2NLemLG9G7RHe26Gq+NdtZ8cVbXOzhFsCoWMgHXy0tsyh/AvnkxaIsGWhS7LznVq2eNZtXPijg3dR/NXHCwmcgIyG/RnjP/2TnUn4GgO0yTt9jczkqvJJO/LTCbmq6+ldxbY+rAeLfh19wrJ6pHxDX2cEN89Sulz9KXm3q5zdyfV5aU4u5yoWAevHp1azODtShyvwjx+dSdRmny9yGt9OwXnRDN13Kerl9dqUA1RuYIGXEaoep5JTxYgZMdY2wiut/D+lX2makd0RHftY1hmIxnUQk+XsRkiMDhfyhscVamTZ0QcFdXkqFB5KcysEPTKOyTnu51cXR4+bBXr15pyu1u8mXK2KWxoR1ZfkZjagVJC5MZQd8ppXFXS+W8xU9nvj5fu1i/SX23XIQn9lyIlO1CiycuhEvswwXZp+v19lLX5+tJRNMNp9ibjG9pefX7SylGS4YxkdBFAR52E86QUJZUKKD2h4JfRDez6wqusRzSTW6mEycimPT6cNW9nUVGtf2+FX1fsrVMIAnu8T8ZVV5TcaYr7JYihPi1f17QvDzi/Hr4npgj9pI9/TUVoF06RLLe76Vo9pdEPYxWTZFdplXbZ7ihiFsvWoyQIE59fvIZEG9U1T5jvdHR6YUG2V6W+vxgntnaim5kpZGQkHtQEdq+gWRWQxkiArEAhJ5BgYKlZ1W76LRxV6PsYdZfqRxZhvqc2sxi+K1ezmoT74vW8W/6zv5CAEOvuTf59zrnzh0sfT2/EHI3QlTu2773U/z00aI0rYJTGYHBq7kRHQRmvvo/CuGjE9vw78H38ocOT05VW+u5askcFXLYXPsSQMzStsyQOdNVIVWnK/BCxQH7S2zVE7xqoAfaE1mFlXjqUObC8mLGvC65ModhqaclMKSAoF7PgZcMrkDAy8H0/73/H27tFadb6dfg8AKiPtgn6K2SrupfS1rTXt5jZiZBGIgDkYGHVHGqEqsX5Pn+vv/h4X8P3f4J/r+z4P19vrwMdaouHQUna4MZCEbNF32qB6zeE9BA1Glg/35/OtismUGzVw3Qc3ejmuoy6jl01YY8FRpsz5FNvs5/x9euD7fg5QHwnG7Ci7s949elnsO95uKOOsje5TVG/NVr5W6K9Em/BY5wMDG+e1as27tWLZkKJOWDYd13+dKo6/9Pi6hBqj38purUqDC7qlhHfZeLwfvQC/KPvesuKVeGbFkwo9/fLMrXy87UklDuE/ip4M9vhj0I832GrwbSwWLh5AoJXFOvwlcZua4DTYQaZUjDGRgZw/yr/iv9CeU66iaQm9KqPWBTb3+TrrmM0enMQ+f7c/Q/yeW/q+T9Xyn+f81sP3PQymjK6tTE1EwcZMan40x53Y7vDMiTdprG4nFNuCMXdpIshbGhbdMM1rFXFNVcdOzZREFWTVlC2g2rpNb3m21qWyxmk2zTodKlQ0ZmtRRWm0MMMoYK4g3LvQC6Rd6uIbSwcssRNZVMFY71o0aZtx01dUtbd2TFQqYubwNqw1qmZVAUQUVcsR41eN02ld2xGY0VvDS2lys8oHhP2+N8Ps93jnj9vtOXd8Pi9FsKW25u/3khDnQxG+OIhdFp4qBSLWBUiIxg6QMkQIkEOMZgBIQerNEN26Y835aUufmtTlWX9ttfsm21nTAOm+330caGZg9gXRZ1+s97n+0XbF6/30No7vj6WR0jMxgsLV2xnn/HwYGMeqKsP6S6/gLhT2yUFw23APWHQmSfjM30y0n5i9N+ID9EYY3+HUTud3qMBrJSEs/veVdDzMpgZP7PCit1NLY4ufenJ0YYu9+7WT7VJK9a/BZIADd3/C+ZLtvqDW2tSnBYU7KltWv7nUaUmQvjaVVRguOUYc2b08PccMQ2EiAHTuYMq/7+HgMLTwuhjPXNej46LVVRGEiIxq5GBynSPtBA32JwDI6wqKzv4VUEDsHxff1ixI3pzdvAlecnrDFCA3yhHiN0yi3qkLS0NGnHjfhESznXtQ8TfOo5eeyQA8Q8DJw5391R6fvIPsr0MyH932IiQg9XBDIO/ydaIP0U0oAlQKIx2Iv2607R0w7z1MrdldWtDPa343VoX8TGa0/b+lYxt1m5rztdGjFS9u5nM3m1IIZuyKetXwX/sn1dhcJuDF/E3321IBJo+Fcn7UgQtVrsSrjZuObOh1Av7twQmSqAqliU0vT1QbWQAztZ33Ztzdh9sRKQQx0osjIpJN+nPXX08QeHuU6tewfRRyI92IZtXLJ4XGCrnEu5AQR4Ua8U1W1fXjSVMcdBiGwvW1iZcu72RFWqXHW7/AzNlNax8oHUqDuLK2ps6u+ip/9B44HTASOeEiGoDPbHsE4HmviH476sj6nHOwNWSQL8PWYdFEs9pLatbXn7M9DqXBu4wrDtcdmeKftw8qKmOE617/KfNWKXu7Nduf8IqeWnr8q8XpFZUi+2hQn4xP8O4x3KXkTPZWLyb/Uk9kYcV6M2qrcO/f1aN1m924v6x1ouQCxAF8dSM2W3g6QiJKR/mwoRiWrdXNqdjhBxh1HN3pKW1NrmzfZEBDEQ6SNhQGUBMi0Zz8jeJYH7l3yL0UcQKvLtXEtXeqG7alxPq0dXCd7l3mG/lzauJlS2ELZVG+ZbmMMGS2yWXcnDSmyBtQNQ2W8HLx+hnw8ZKHYGi5KWtoi4S3mqeizX+zXhOJPo0AGiBiIAzJNWvY/aJt+mIfWvpNcIzZe8GRHYKPC2DbSxXuS1bnowdoP8z1FkMxWnNkFRj58qx+FHqErUSZkygrHPtvt/37l+cUZJMG3XmkemQAfG4oagEK9jh+0ZuF0AGYIxjVLvd09l/iqxoHBhF8uv2Zl9z+ibHkpNmr10ZN/4se7b7O2kx9pO5/CunvYQkuutCGE0wmoQSTyQlIwzYje3XpRI9jP91Bkx36YXLPL73zu5/9ZnQwmdDayMLqmCa712eYyPPYxuazTZcQf+OLz3nJYArtnBWh8IQBq5MixthBhnIACsRh1NOC7j8m0MLNTVPuruhau8FWlPS2vcMuipm2X2S+FdnMnwajpO8sdQi+/dgkulcj9t7XJ2SLVm212tVewc6NWOXJFUx4qiK+a0R77vd7V1elRKundPkfU0YErds4+MOHN8Qya9sv0la3VtmRzFeVz/dAfrUQMwcxV3sV9wpj6MkOSo+pm22Nbh17bHZVk2UzXJmtCe3EvBdZkoeuaZqtsHm32ob2IZ+mrc4yTotWaML9+DNboSy03I209SIqNvo00VjJF+MnPXg517uKOnr1rcA5+H/6Ksl2qK4Klg/1TMY4YPphuOZqUy24I+/rvIsrqXiDjZy21vNivBSmdXfzX+MfUz04ZqsOvo5g6lYVh4TC30kmmcTyb9mpvGWOOp0qJaaMDG52vEmy5RT0fRVPRrJ6/9ujFgk54g40tJWxxnzUa7kIWY79Eq01RFnLzJWzjs6kowqTdVQvNjwjkzdw1TKtQdkB1EsTm3oXkuR9k1Zd1zmrx8zC9aCLFdhf8H1Duzsv9/Fa1qJ2o8neLPg7oO7I9YBOqRq7O69dvTFRPo2b7zdasr4bFtCBhs5KpIXn4Ld2+A8j+Ou70+CTFRMXqhn+qefNnm57GZOCnYrsTb7tFrBqLNVS1L5HczTp+yw1AV7HPh6Ka/MlSLmdUMi7ZVp6ghNuViv1eqtMGxiI1vKYACepAwrFZFYjdxGqe9dPhGBCVq/cUeMn02OrsfOrQtghnub18QIvr+bTDNfxbkNWIDyOc2Io6oyIAhHbYuWDEb29iGFA/JRAVImfCtgvC4DJ6CNBn5imzV2L/1ql4e+TvnyXlj+27JFtTuYtHtfwWV6zMu20s/58xar96Hde6MvT59EOU+Wxp1kBX8qiPSOmWdlhcGX5V1KxvFHu/0Y8AKL6tdH1/JfzLYtJ7x5NO84MbNgcqYfK1ksdFYFcIy/Uw2p+r/qTmvq+USkFjPqP+Ho8FNWkPffVAQ+3Pp9T26WxCkAOOJSDh9/yoT19z6tvV9mLcvTPmx5jVAGoqqmebzau9OvKtg7vVZ3k1uWTTxiOtfSuH7MXTX9vS04OkuYERGIF6PnHmSRVx7mTPpIAc0wkF3Cy5c7JZ9ZGBdZwY3sCMgjAHIGmeuoAV8npv3K5IYDnID1uVUV85rrsGih78RmHJlY98EYC8c5ArKdpmzRn8UT7IWaqijxVEPmA6iMLAIERjmg0nd3tzs4tqG3BUfFKxNcQrFCSRaUKQxAWGM2wCaZF0hKrpKwWRTLQFAWAopFBayVILAi1BYSsWQFJtqB6d5x8r83O32+5CvsZiRKMGGkhC4AqzV9/lV7s6LFmucgQIEc5FB2OVwBf7Nel6G9vNWajq2FQYPQFoLBvYmYur2m0OkwfhjSppxKsrX+NUbHVr+vepJ0ebJbPjUJoBWdYZnMYyRGOOZLt8sWm1z3amGd7c/22jXYuaS8XEvKMzFoZu5qNC12sa/WFVNbcVMh9YAeNk7H9xg8/U2QM1cdLlqfVt8MN3CFAHF1Wlck+hUo7VWtr8U+rW9zIU+0tFMFBAalWI2FpSMngkVZz2kcGWxhDByF8Kg2lZK8SNBOrXfo45AKlzmr+Lm3rK6vnz3H0h2PXHV8l/lY+hHcODk3vUylz9dgdXcVhaDi5jqO8b3dAMSQCWXKMdI3RIMEcORM5T8+LFNeuX3zmMY1QjAAGEJEQFowD77Akxgd/4fL1vvYPmpe11SnDmaMCCBGQd4EYLKxHYIm9eYU0bvTnEiXSXk/cmj1f536LsPGOuQu1TrpGFUjDRiTG2qe9Tlzdaeq9Q2kYxXap/HXockO7M1uPVZ08tICAZyxwZsqqqvdsdL49PJuTLw283TH89OTdOYC99iychgK8omcgeO+t0SMVFdtKKIqRVd6EVi90m1GzqcqYlnVVXARJKMINzzEj4OS3kmOt7UfL3PmVjVvrt8IjPE5UMHIYUB0EZUGcmizuyT/Z0eJuOTo+kxPU/YPSAbdiq7OzPxUca3oEODlcaMOw5Qcpzeqg96Nq4OMYcpSfPT5E7Hpyub/XFKcDifEyQDceLh60ZOm27jdXh4SZpROQez3VciM8Hu3/V1+fm8fCGGd+SUy3HsD/y/wyaz/AzGfmaIKgzjN3TrAYMV4TXg5Z9K1g4nQYgZh5gNwc7J2tIdTUwq6b18OnXZ5n1ZYHKGITIrH23Wbfi1eH4lfzw2XVw56ZdNNg1lq9LEbO0Xo46Kb7xRyOMyCmAZoceCqFi5kgoy2guuLLDKXu8U1eJ3day9fZkNW6FnCamj5PY+uO7bksIGcp0UKnUz+hHOfwToR25nvnswVZ5MxnF2y8cZSee+WcUz4OVum1OTTFMq9mgefVN9aaPE2f2I0kMMaWQPMmtwqynAzMCZpGWXNybn0Ea9coy019aMVGK+NPYZ2266821OSOfJo2ybZ3MSjDhlutNpBj01z9oWOojc9QIrWwYVwwvfvQfVtXCSZr4oDqBgQzdqwc2TC5KsyZwEH6FD6P7N2W7roefGmoqe5nwpTopHzmiPdzyhycEzO/eGTQ2lspQe43AwYxRAFcaBDKnnZm3IqoVKDe2YtvgEaB78stGr3cFWb/R2fglfBnwWwcaha581zYS7pCusJTQnAzMBoblkqVmnz6UoIwPi1BXi4NPvi9YS0Yei7m0VOnIydeE8DikF6HHi87i14Vci9njZqzYgCI0983a+rMZ99JPfNc46mot3drDb1OL0yCZPqpp7lD67qMizuylZOCgnO4qWSA/FZ0STGsOUgYkkUhxu5qwxDFTGbSTEPc+ZNpyk2qAcJKgB/KlYsiyTQhUNpBZUnRnemCRYpAx8HokWBpCDEKgVgPF8/2fdPsyigKwX2U12kau3x4/Cfn3hIrRdkVHkruyktUm7sul0R0PPVGsDyarEIfr86tiZxuBLA+zarXm1k49DwccrFBbDCnN2TPXV3kgv+ayGYIdkddQwy8HFkunrv2diXPDwczK12ebfMJVWlEPW8ynDDw41bWKDFqUXgl8Hsnl0WsDwhqdtU9uzTdVWGg5rB5z2PhyXuXbL1BxzX80b/DKrbvydZi9sQsZmL+epy01dVjE/FDg68rtlQstxPF7+92vjunirBcOXVLypwq9gu9PjYw79v1MxX4rdt6S22XPexzOKfe+rVs8+6Ppm59vMy3R9855/Azxu/ZPygahO5h0f7D9mfsk5IDMPNeCPEGfBj/L+9d51Kbtt2BNlBddde/o1fGR6oKh5WnTkdxBxPqUmdKBaoSyhUTbWZW8m3e4wrC2j1Kn0VQiHt+2/BHdc7i6EJF1aKMa0OD6XkpbCe2TNbf5Fv0bCfmXmtZGjDugtc0Y0bpB+7Vz2ANOEm4OJPZirqcasBAjQ+RhTN/u+si9F709NaT9KIXxoEm5DQ+ZlvieIjBwrqbtphmOHKkui5FOnGSwPQH2XmJmhaxdnQ4pz5b2Wi7cwxwWO+y3c5Uo0bpFkm679ark8KeWLi/gHx1dCVar2O3fVvjX2pw75dOqYLNWAzn51MMFf24jMWckJHHqRy6BcU5/Vfpq3yaWQPS589/z2pFjcV4/DMog74fZXl76FaR7y8/at9mfTWS9XKrwsQzD6kPdUo2FfhjFfUe1jAa+QGEsIVOe9Z7STofjjb+UDGhZuJ9IrfP1r4uWbnsNYpLXw7L/mka4LMS90JtDzL+F2H+vycyXV3IMkodJUHCR0h7JGSyHUbghfeg9M93tsU0cLafK2jxzZNmUcymfUvard8nyz01Xc1ZsGDRAMEYAwIjepPEYgc4T6lv/tG1yutj25p7rvN87bHXDq31usfSZxT38Our6ctOAdHIPsnALVB5uJRDcrw7kDWAn9jGEqA/9ubQGPcXFt0GOj883ffu3M1UvKnXurVgqCykWg6pgM6hrF1Ojl9AhQW62rwHaB3EEHOEdyEEkk/IJo3Ae5wd45LsHr1V8F8wwdu+jQ8ev391l7z0OblErjmjOwHC0mEJtT5xGYKEY8BwggMZ1kye127LFStaaKtzsfGNLKtn9tdfy85KheSVGTD4X1uWGabLUI0ciiOtNrjKXq77ReWnZp9Fopp+elWZ8h4nd6vb/tIfo4ZDirCiXMCcIJeTtlzT2h8JixDcPlxKBNSdCAUxJJHcJMuwjhM5/oodJXJph7rFiB96v614K9mPHAt/Ul9XMxfVw2U+Vuvf0fSFCayk7TSgt4g0GjZFC6J2PYgYGDBgHRMPDYBvllbd67YMs9+Z+ONtxGLsAfI0RAiGNECtY5XRVT94C19eYa6XnCvJm9kJvA2XBidyWVb2GHVHYTFt1XCpUVuuqpCl2OJ4wHnVVt3UBMdogSrsLdJxItx9ITd6zbexOFeKxmrucYLH9fnMOXJIdxDSYsruBf0UUQ7MgEHOH2r8xhyH43VC/T9ft1ZvUmPbU2qPEzgIr2/E1tUyVAzAfvks1lRAfH4bE1D29W2hRdzyfRTWwnJreEkNWvZtb45/ov424/WQ1gvVFJBFkRAnkqoFRBJEqJIsgsigRSLABQUFkigCjuyoEUgSe1CEqBPW1gChAWAwIigsqbjte0xF1BvJteFbva0rnHne68zzf79tHnziXDClfeD57+aFwO6bPbbxMJdtH4rHypv5LGnxvgYSHiRrtVVD4MDkDDCRjGX1NTDpEdU5mKAsm9WirBd/1krRKp7Co7nFEWyC5WVLCFGcG31fXsQ3wOCKulHz3U8+XZgNerkssvPxcbaaeG2vCbV6zEz0oGq/jXANzEZYl3CoKKoca7zq2KsjZ5L4e3MpQQU5vwhv0Y+jpVlMRweUxxHJcW27er8KI7mGfE6d1V4VE3r/BeKn3dS3Icft5WI8cSfvzZ9qwaTlOyd/se55YLiZ13CoYOCr16jrqJVLCbi4rEE0hEmk+tBAkKY2KmMqqNg4RPKqvIP6V7KHfjLHCAm89JTUptOvWnoHUNfArCoFpE9rtWPCwharGpZemTpTPCpcdoiZsBiS2wrvrjxZ87vppx1nm7ph0W05UVut+7LtXVvFJ3f3wjOvTp0+EIXvLJYg3vVCeYIdisvMx8O9Bw5nwHNl8Ulxe4Ply59kBGCc0CcW8desbuiTxLpNcA3U0NtO1Rdu5PJO0rdcRJ41SG8a8qVfnrx3aXz4Rw7TPds+Xl6OcQ7fodOOrn46Iuf2QFPFxrPYju1ZZmTNX3ajZVqqqUp5qqi881Q65OoCtm2pnSpXuKohtKXH4540WYFrNuIX6rCy+BGBW7dKrWuoqKLPnuNJr3RFQvVYWUF1Z6xN3oJv8ksmfDj5Ya/DvjpnrNLCqjHotjckAb2g1HDfzauIh5W/hYaSMoL6y1ai03VUfpdIT2sJ3mG55XEUrwXbbV1588tha8padDb0SeG6/aK5HBLQ1WOpHAkHGDuU4kq1q1PdyzzcuHcm4l3Ele9rUni6DGs1o21cpc2h0dEu+BVrLdqbNFxEL0rZyIZSQqPH61cbNoqVu0iGQ5FS4BiUw005cl78TgztUxjDpE7SJuzlVMvitAAqhwYiV58HS63Bwr0W6cLm5O6GL35mNiivct/QsqmjWGlqihgZjnws0ujO2nFO5QBr+lmnDVVUjNvIZmLQ6YO8xuYjf2o7rOBGYxo3kJ8282vCmnwrPXOJjRFbJBadQsXgMhFKl5CuRd5yP9SK5+q6z9l0yuMR1SoouKJ+TP2s/odKzdQI+MWi8IZmYM0eht/dfHH4VoqCUEcrKXZ8eC+nh1+fuNyLRWx84HwcC2xYuBa7AVRNYDPgI4ItJKL7t+SuklHd105ZP2ahOSfOKFa/cHLBumtNurTgGqF1gqiuM6yQMP3kh7LAqVj7uzz/Hwc6lKZut5uVS73H1JYj4osi7+3WqErRHp+Pya79/PbzN6vsKQvfFMq5vaWqTou3JoWRfqst+UDNPZ3LD5rSVp/fAfeifTSq27CIRoKQgZVrw19n0eapy4rYZg/Y+5AxRTJgKv7kU/LeFKv0Y6hur9VlcH06+3VBCZp3Oj69GquIsVX1VJbnWnmqMowv88uJcTaqjDj0Wbi1RV0PKc52bx8HCFaDS3uxN6dKPdtpHNXw48NSrQ8x3YO5DNnTfllYyvZPTZ6eEFKXwzA7qigLiud7OenhWLBP3R3seFuun9u/I9keuR6GXq52tOSj6zXfEWF9VO1RWPyznsr756tn4eaV1Vaz7PRjvVZLkvls0s0WnH+Mlgbdf7arx1WOibua87OD19edSxvb1/5r+oZQ/zZK2rl5iepi5vuIetOX1h98Wm501GmH/jurUKHAOkd+Fb0Pj5JcLxuPTKxa32unhR2p40nZN0mdLTXhXlq+NRvbTJVfwAuip3Yu6KnulD14q2rWg8ay9vJvLiw31aaret+9103I6MUu7B3hWW5XWf5k8MbGVnqiXtbNVRSY56mS5VfjUXQ7VSO71o6xTyqL17Xf4OOjyRW8MUNE0ceRZpPeG9Z9lWpHlLBfRZwK1qF7G2pCxZuxAl62DRlmXgf+yfZ2ys2WtV2XXNxt9nR5XJ/NWHzptF0x09CqpKs7kvHOt5eNXNxSY2pXnNcOeleL4cw8OUo+zicVFtBEJzHmTcXmvJ9lzym0kaQhZ9cb0npNiov/lfwrMCCHzvBd58b6eWzfcsWV6j96j4VMYS/1b6/hZgLW8h8dKzvdeCgFQjaiF2rZEcdhQKkHiMHW+nGwuPixCMKSbtP2D1TAqnZBXWsDdZWdvZibG2pAwyQYHgTOtyj8QCvVJfLsaUrt3+Fx4lqDVvCMCHWi3KmGll7u1LgX+dAIIOVlFdLuT+uZXktnyn9t2ND3Tv8lnfCGy6us2yk+uvBz1iu5UpZAp8zp7M41TJ8bU9x77wK8U4cF/zGfkaGyDVmeca0lHV/j3OrHfH5fc49coyPx1lFIn6Gm/WUwck2TlP6qPMOdBTHgfa6bvgUTkPqi9zdY1Srj5rw9t4pC0Q0+S6vYz+o6Gps7Zursh0MkdK9EKeLhafG9bupWL45HTve7nsi7W3tIakiPM1d4Yer+6GtGYwchH/DU3IW56CH+l4Zo4WXphiB5wQHn05jOPifZjQ94QTNTFzopp2IgZ5wPR31vEYMr1Tk7wNXUnm0ZQs3KEg5tTHWYChjQ4of+vecwiDSwh5mtJKG7ZFPqZNJ9cYOxGPjjT2eFaZP31SKD6NqiLI9A/pSTJM96oDRCgD61hLg55wmqn0t8bmU3cFRUj2fE5wh4ZM1pdXG7nmPTMJeXRjn0d8IQial1bkbCEyhzI28+Jk3QnQb/LpjgM3duIlVyE6pspUi4IoctqRZwBmOvgkGQz8yoM2QH68VV3gmi30h0svTKNIP3m4Pyf3wg/c5JVQHM/Ec+FVgNYIsuSeOnZnDqfn5fSjDw6X35UHWqlLCxATsDDfKaLjnp5R7KpZrSRj3joIxyBEysf9cLlDD+etYpwVe3BCsQ9EVN+BWCvy5/pextuvp5Mkw+ay56HeFAoqiWkoYmgEyCC27c7L3i0ZIc7mhjskm3/fu8ju//f5R/SaPhI9Y6On/v632V/j+aokhCX+um+8Lmf1gGwWNR0IPS4PUdvN6WevoYzV9PoADv8J7Bhx0MlP1zA+1+3nZ1ED0T05t7cnepCrq2aAEk5q/LLie1Ofva79Ks8+7acOhNnsEA2j72OBhjIrGAVjAeDLB0q7OUHm9LX9vNLOvFLGiG7on1BsopEJBJWV01fGEGlCmc3mkKGBQyymEfJBE5yNFOQOkEgP1k0IveZSMkNF0Zg5px3Pdc5tqm13P7j19js4VOmeGtQ8GXSXYy42tYUQr4NlTJlC6O1w57wkVqqA6A4+x8uvoG6PPbfelfjXp1Hwbvs+aEVKl2lp+ocEhCDVEt1ZzP/eGCZ6pRKXtKmLbfod3sJAIgYxEa0RjkLpGORjEVyt0oChGYmSttYeyc64Pbfx/E+eGvbCk/w3DgfD7numySReHxe8cKyYh9SrPxeeHgOfaWLrx9hJ9PL6JDuT6+n3x2/Pt7aqH07D9Xa/TxLSCJ9cQM8kt6B2/t9f6dlOvcykYbX4s9H9/v/tQy9mcUDHpWgEjX46EKfMSo4/ZeFlbm/p3Y7/iRDijtqWPzQqMnoVb8xv0tfwMHSSSoWzfXMoE1IiN4yru414FQudZCeq7RYK4QkEOjK9EBmfcqZcoP1MZGtzRKZfbrV7UDalgHOcsWilVi8lgvV7l7py2B11xr6m9BoO6Kv8/U2D2noZvYKRPzFVKUQMQIJfyKy17bCF4SPtONt9XdG+ncAazVvooJKTWi/dZ4CatAeHtFBdo/hmAocJnBwRJgjHJIj9aECPmb/VEHP981nx5uBdXadJdO1Qpzf3w+7Tv1+1z3Seea+kKSV44kW0763ZyTs+MLOp70eOVG3KPXRZRf8MXMukM+R3b44ee5H1K2XvNfw8VnUVebEk5qOf69ejsXU/ZMBTuXrA3+EDQ2aO7jZ2WLLlkDkRizoB4LjlLyjA4KlbLOHVNXljWEHZ941sNRcddVH98xeNatk8cC2eq9q8Bl3TeFmcnNC0e6tZ7OttdPj8UOf1N7c52XvFHJEKQKRaRJWjSDIwgyKWi/XLEArooMR6+bz7ft7r/w27B4ez9HT4Db4ez3V1IGdjl9hE66DKTaVPfU6wUZyi/dm+X6xqt2D++u7khUevrWwDW6T0N9eMxGQbXUMBjIwrEatTueNWo0iMnSFFY81dd9VjWg1xbBcYI4eYhumAHNbzOjBt0s1V0GBhqfCzYpKCVMGijXn0tua+fI4DC0QFaBsNXK0PCufhZ+iafrUaUevVuW67X3qb84cjxNJDoxpYl59dS+rgMDkDAIQc5ujADGRsSrWzWxWIQgGGFf08XHgGPHS+Zzx8L2jUxG+GN5MYUjO0qq7aywUHK74dlj5VNVttTW8ETSDGhi0UBbdpSVnONONd+5bIwFC7FZXC/kb4ubmAI7dhmDP2oBt6mS4/Y7j00V8bf86Vp3/mD6Y8kWqtxrZrdqC9h76rms7WJtWoIVALnNrxgw689zAjWfkSTdim0pU36x1oYydyieaW87kzqOqNqOyp6Kin78aQpiMZnYYpZ/sFlWBhU7Dsdy45EWEgBd3Vnfr2yQzi53QXFe17De3EwJ9OqbXsDjmbBLtzxyHqyeehfz6HVwBurm0xHPmRR74okroMCi96o6R0Ku844k+WSX17MHfNfniIBbBbnycLDXRju6ZXAbcQ7sC93EoqBAHti/P/kKnFdHiy7ZdIYHT7cm1F9XWARAxEQwHBwuBXFqpZE9zAp23IOy50vV171TBVcTpvMjY76+L09tW33K47FbjT9Ijc3FQGw5XfQtC3dpidNZptCU96qx7u8YNSB0YOqKIZCEJ0r0RvxsADyoks5j9691UwbtrvGqCNQgEt98jZidun/EBpIzM4MOdZDsSrqzBwZ7uYe7V0uro0177sygf+lHZJZVUgHLLsuQ3crnrBWd2U7+F9+1iAtoDenDOrogzBeodqNvtiwcc0HTQttqL0WzvOfU9Li9ZgJ+btRtzP7rpZqOPUXiT7KRzT4u2vg9/fs5vNgUdckGE6aV4GgBwT9iVvaGyxUOHrkCX+/669NhhueFdX0zRYpb8Yv5DTkPrSjDyn50ofm6qQIB01UjOkNmU6QIjnCnXlOYdCDgERGJP+8l9dYKY/JOmSxjjTuw4GTP3YGhbKWPzwDtIECHkQBHO/16NamkUrXbC2y6tRVmMWXVDTDBUn9FoYlVHu3rXG6mvR7p4Pwid/4fqzU3aaYgIrNrjz88OxYLX9H3b2/NcQJfSWThwlJLxvJHnfa56aDu+v0ZSrpCYT+x8rijYyeCUz6KPktzakw53ZPwetV9MvbZzPwtXaKqqMU9iyrY4Q0IpwTFg61m0m/SBEIPUv+o/r9vNJc1pff126kFhjNCnJcdnYwWe74F9EVQ2L8MqRZ5qfxlWWv3nLfWqPvXWWic6PLIz+cuJqT7Wa9X8s2tL2B5v5WWtStlgu1fvC1dGK4XDuvfmG3wo15Oa/bbi6RZcu+RzDR3nABJSBQDH4gw7umTcta8qlPVge6YPqd0MZmytp/RdzL+dklDPz+OZbvw6io6xxqfMv0sLWJFxBeYTb6WRdwcIKjgyr+/LbDa2YMNl596JylMIn3rcHJk45fDu+BxCrZLYegVhZJO6vJoUjrp5xZoqInc7H2tap+BXT+Zg6VPNHffn46G5fBbZXVRfwbd1ti/19FgHfkclRayc6qzSik7U1jIXlKNx0EQmty+V2YPdjXV7lrcNXIjnOQiIHICzE8/v9e/wbil631pMZ7mUZd1XVJpPR+jaRiJexikvvKmyKbaud3punX7ajHzQrE4Bdu3OGoV7La1pC6AkQMek5j36g2XzodjWV11BX8KHq1hZR/VrAdDlt64vo+Gjbq7v2rTDsVYxmmO9Gr8VlpjqkaNJBHUFv5twDH2chUI48vuY5VobnVbpfs+8hxqGvX21cORo4OwjG4mZOucVvIio6G4AiPRBDdWcXUYaHjfV2nsbrOvKoMz8ctIaOH3az1OG735ymMrCvscs3W1dyhlGNZ88zSG0p0QMvN8rzkbspl/Md3Pp8Mr3I1VTfY1f7+fu/imotao500qKn/iYBgT+RlgP6KKyEdW4K9kzfhlJIaQcDIQMIzldsKQUFlIBqziq1Mkuti4s42+CXsAiAIsNRri/E+QoQRRFCEjW4zipZ8jZOi99KOv7V3wOyxwptDe8/eMAfVdr8ajJkx2tMXMsGS/urn0+LSIarwSr3U0jXee8tvr3sC+LleSsMhVl+hKzAykuFkpQh5Y4zsLpKJ3DuwsRVqq3e56V8ecCirH6bSZ0eFur0xzhFNhE/NkW3u2cuUR16jd0xgBXmfrmA6iMqRgDWyMFY/NfJHFfQRS3sB0kGBYDhMROj0sxDDxCqhn6k3cmL4GHvhe+/NV7l5Habnvq59y8WwuvHQCZv3lHV+q5++pK1aoqwxGkIHIn21ehaZMTTj3Fph3nBqjU9+ZFv7JuQJdOZ7N8VHHAli+WcJA0zrnJQgHawvksb0IwMARAxrBA5Dm7QsQFWYmvFCSQPiZGOmCUeQPWVijB1Zdf4l5vtDDDGQI/whIkJEes2T2GCQhHXTV31aoEnqE7Eyvj0MfjLWH9ozLOZlsnT2l3Z5bxaTJ1u2flyfxh2uzSsGzAOP9qXN71/ErzNYe8fFlIeyV48tunj07pKZAWFpkBV9xubd/YbjBkO8y8UJAWALIBWQlYQWQWQFAUFkBSBEQAWACklSVCCkCLICyFZK1rIVJKyKoFRYALWRYFSEKkIpAUKgFVgCWAUqa3fSDF5RaMXZiddikbA5iAIxBcjkY2IrRGAlBjD40IKpCChBYpJFhBGLACCkWRYSKSRZILISKLCCgoEgqkgyIkiyCLIKZQA/aWBxBoqCirxU2yq9SzRDmZko0txxkQBEZykkhxIvAHMYHMRgchYpUh+oQxMVjjhkfs9V0aXSVPc6iZw1yoy8XFfvfLQ26SJbIpFEZBYLUKyQGMF4ttoVuXjPsc63eFrluQxzFMmHOQpuEUVU3cKWDuBkd7UlXEjajanIg/m5BLMZ+1lVBNVbt8xjBzzrWcZTIon7rdNUpW04s00fBrrm4mWl4vOWCxFRdWzbpzdlet41vM3TVKkhAyfeZgUVAZrKlj2VrHut0Gv9WYSQEe1tyR2CjAthz8tECIiMWDIg5GBitdsJrdbTwaWuc3Z9GnX2GzCcwKYA5GSqA2vZ1o4DYsGtAi07fx7L2cR0qs3v7OzJB1Z48t6pdR1z2GX4BeC5AiYjMOcjY/E1QthZeM22X5lgm0D4HlPD2Z9qYrq6usW2815IedwASghqEIv5bl1VLsOQ0YX6tTjw9MgMBkyWmXPHgBUgOYSIOFSMaJmuPCtM/zSxpyGEBqeghACDJxoAP7r77E2Q/HnqpcLb3/aM3Dbjc12tCH9hDXkMKKo7anZPp6ZLrC4GEGbITu1uUMXziGzXijJfIulLXWyY01LEjqtbyqLTKPXn19I7soW0L+V25ytLSbwYce0j1yLDVuh0wv9ScNWu3gMO0RThZhTpsUVJDP5YBlsWMnfYd2r1uLyu251xI6Uck37uWWAPiJ2npFqWxcCWVQ4TPSBWLSD9K/OaBRPFiPdAxECIo678ikmX0Up0S3Fa9pK852U2sV9tTjnqxv1b9HMfe/kse4xkboOR9LV4iMLqPD7GMjhC+/h+mLem3nxuaevc8AZbNLhdS4NsYtadq5nrV23BlCqB3hIOsaiEIHc69zbvLu5AweGbp8/NRvOqc00l4FoSURcQxPXxKxDy/j9P0/Yafj8W+v+P3b24vb7Y09j0f49v5/3fN/u+1jMJhLrs5TU7bQy6NOK3P/0za9Xf9z0aP7JeSU0zplWa30fOU4A/gTZ+ITZ0tDwsjVdY22OHWp+lew7JF7VWf2o7MmQlrJwMlvo9LLLHL+vppHL0woV5eXOkGRS4dVnTs0aPLKPPw6k4M/t61P6G4xuHdEuPmIyDb6p1KmKcGtGcIx4ylHrEfwrQzX8uwFXRBT8vPj2S/7+bg4d3XbjwbeDXt8neAbvhZpqKyNfdvuuhBJkYIIH/TOa/o9rWDD3kfEuJARSEklB7puzXZi/OPxO/TXQOQ+/+1PfpTd9YEnlqtRxQ7nD4yrZMlxvBgv1cVOWj+bqN/zToF9rkq77KpJnwpXbR1iFHDYjImdQgX3OEyOZY5xh7P0Ux1+uherdP03eS6Y2dsodbTBnBlH8FndzdPFbbfw6vLp3pzK400X2sM7uDeims41gqtui1pZjjTyb3U2Zj8fG+7pvy1zo0nF4664B435u237LoTE65V9fdhg7tQGpyUvvaqvJFDCX8ibohy+tW1TrblVsRcVFS2STFPB/t2Pm8nXw5ASwKiAbQM+kLy4oIyGmHNKEUjMoVFFIsqThKxSs7mTq7E3aG0mWzbME0wtOMVVPP/S8e/SMb0ueuuxbT2py7kcjgI64l3nyZCo/yNEVFXd/mzwyPO/z72zSdMvc8Z20oZMnKamgqDCHvTo8MBN+4wWDG/sk4aT9RB0fd8M49OHAdzuJE9flgxvGKOtEsUJ+hnRzQdBS62PxiXzfVQw/gcEuRPuSSqh+vj1YjV3Me5HTx+Pipidwe9ADLLIJSINItJJUKwk6pjFkNMikkMSYwgV0hIYgpWFQiySsrJBRZJWadM0hq2AoKBUWTSTGEFgBjNMwjBx14Wi670Bx34zgyCK6cDMg7c7vd/K7FxxN6wgBxW+TOU/FaxaezPzz/rT7J7sKVdjDGDMpX5UYSxIOCaOcERk4rK4TGfK1zc3FHT299XQQvLlGRAngc5TKJxJk9CRryJoco3CbrDUxDnbq22Zx5KiSimh9BNwlEpm+3pM6oreSe/fofwogHeX2lhhk9K8rsqmCnzR1ecj3mwMt1krsDuCrBW7NmDelKhb2u+HLDIDkZ/VppqW8uyXRU54cvI+ZH6/Q+FsdIPk11TlkMQQccxHL+kkkYsGAaiGwgfVGRkSQrKQTuTx7PKSQPwpRz9vXMXm2sd+Kzz972ZmdzGrfeDG+ZTsrvS4T3fGGfFOqn5WW1F+xqq29Nsh9asAS9lLTCErDm0ZZElej49Mnb0qsb58/M3O9j8B52uHHNE+/1Hd516vRgau6OqrsrWVmb8mk4jFG/JXUyF3YMqE/GxLX7ub25Tp43bQu4nHxaIiBqSFiwlnSV07RluX6VNU1a9cx8EZiYH72abfGpU0E3cidSrXePMhSzlu6Y8L9RXmern1V6XSdjUvvVhJZo48s/KOC+1OOmBZEp09qIa/fm4yZro202xc9JG37mfElTFat5rVbFIvcroVkllkyIRl6rSICXroRPjhxPzaH7Gpe9gvLYdMkGiOpoWlRRUEa2CjJwvMRWI83G21Yp2lwXjh28N4h6KcT1yC+5jdTeqP5JUnOa5pf1p518Kehuvivz5VodNM8uzRpy2MMjQgjvSrE8hGW9piy4Arbyry9FdWwnQeOjLHNq51JxfvS4016iT9axvwVZrUGKV6rg4VOZizd2Q6K0irI6klr9uyl1L2SGm1LIslYRNg46Xt56iByxYrwzcMFjGisrYhz0R2HKdUvQxsorQzwQ4alF1Ql6J7GBupn4zMNZF0pK0vPxbfhaRbLBmFwj2Fec8oT3Yz1lsKVrEhLqXwXZdO2gMjdc4RxOTvjE9zX5obzHPso37d1vc3BGza5uewkvLj5paMUCVzO8mpopLBiqcNNvTblptadJA8z9LdW7WpzYGNXLbym2Y57h4ai6nNbiY0p6hYvn03YeashmmhiHbqSzObW4Nr7lW+cMY+WHS374ZOg3GeRxA2MpLEYbiNq7ayzHXVBzGXKyQqEO1I5hB1ZHO3GyJEvPN9t21MGBuUIu9+Rlrd2CewbUQNEgerXoa+h/l2GFQgCIiMFRr68s+er6ty3aIZ0NURPdJGRZEc0aQTnxWslajlk/sZjJBZAUgopBYbRISkYHI0KZeYSDPQOWZRRRMEcy3aZfsfTt1/GGAeT/75eMitqDnrsRckdPDqlBzlEd1Q6T9QwM6u7qbkxRL4ilX+U77iUpN+MiSRV6eewTNE2S5/KuXu7M4GcgYdWezUSjqznezpBaC6qFEtW+6y36vdb1peWS8o/h6Lar65mZHmqgGazQoGoNCNNa8OvMBO85gKSABFgMDT1Difff+BBz0u5VgTAmc9dmhesb5MAZef6eM+GUWnwEbIeFay/8S3MWygNkAuWNLVNbNphPerCVSvd7suRPve5Xb+23oCjWBP2epVOYbSBg4tbDiXsna0pV6qo1+J2/F0Pr/hGQfTvOAboIYB54YaEeu3SpoVU7v5rLbwew4k8qEkBf7+Oj/m++R8KMpKXOhXnW1oMA7wnANH+jjHgv6WLlb/t++Vh7861rR8PjaQr9h19/V2ecPKpCp26Iua5+rmC39OmRNmVN2r+90w8ZRiqNfhVeGkcP7qW+G2Zvh4IZT62a6uBrI501/WWZ72qDBFuCKr9um97pC3bdr2PpGUC1D93ORW86t+LRixL+l5P2X9m/S9gwe+OzLE0pQ9da/gaYZbnzsaP6k09k++P74Lhho6PhS8eztkVv8GbWYgmcx0LcDoeIxyAIjAlDnIGJWRYTTJ+DKTlkUrBQC2wUkKysJ/ikMZJiRZpCURZDGHrEnKfJuw2yFYAsWEFiyCrFgskrUFKrvKebuzFhO9KrFICkVQ2MIflQhywDTCCMgQUgKRYLCKFRY2wUkWSKCgsBRRTqnZNatazuQMZid9ppNIYpaHVmKg04ByNB+/X8f7R2UWE/WqmMqk3m27GBV6Emyykchwgmrr2JTnN31Q3sAM1W7PVMQEVyiD6DwfXreI6q0+K7xYFejFQ49TZW/HnXvfl6gIdH1W425EjcfSUzNntGQ+EzMEnBCCmC0MDhT5ePb/mx/XUXV/nSwrYpu9dREb0emuYY+z+tiV53tlvaPOTtbTjB2yW8JritrBpcIduNkAXNEw965nt/9PtJN9Lz9gQVCxa5LdWu2iQ4DRKkBvcuG34zZHWdXI8GXP3i6i92B9sHqRxQNXFRLJzTgtpvgvvSYwxdWQ6pnjjkms3hNoGvVZsdshvLfGhpNdLeaaMsD6LSYIp0SZ0pVI/PUc5CNaMqFHn0lX+XZuoy4QpdsVM40AacZ3sCsJ0ZKyLOGV6JfBsXqlGB0YdXvTlI3rgHCThqRdNGCkUdWBrKGkmMNYOazQcas0IeLe1DTMtJtMQWOUrB77U7boszysonPdemqGP36wHeQZ35M72fq1DbRTti+jCmfaIMZxkUOVO+lVmZYcZrjR08LAuqeLMZlu/HUrGHcyaiZlmMxpNg/cvtk3sw1mwi3pzjvYnZZiZq1adLPdlTeY6hUHcGeti3HDjy6XffchNGTl99Iaju+o/dbOlerY81/am2927C6ol9I0vICEcIU0xiFswMmr/PuNwhK3diGfJ1emAu2BgIQwWe1oBHj0L9yFLbydYVDrmsWlNcr0DZmQAtEzxBTKNr8YC41flfq8A6xz5IHBjmvKMhMeVIoMxF5ZK5SRjqJl39WWhDdBl9EDJuhQWZk2wlOMIfeYaRb1EKjNBGfoxmN3pK8kxz8jdMVusCVvt18GcvnPgeGTwP9yOg482kjhCZBD5AHIjD5B0kJKISa0yGBEa4Wq/eU4TZ7s8E6IqvrKNS5dmqpYb7cSzdmZfEkllTvf+/P6kYgduF74P3S7bW1xx7PHouR+v86lZsK6ev7Q9D1HXOk948wuUNDpd9e69k7KfnsdS+PRSazPjYRaGC/Gzfx9o5v727/OZN62/u0LXVciXred+9a5mlP9GavM1qseU/5SrP3OW9+K5eu9nzNy+k+MbcTsJs3hOmOzCX+X1fj+Z9gHZgmaP1RKQ35ZB6sbIZOv+BhxCnLsaueeBIXZJe1bLUNVtREfR03Bhc+I8TttJqiP4+tW8JfLrxD7q/V3HtE2nlH7WJUuHaz7BI9hV5WaGBIduPo2wSxdP0+t2QuM1jNX1uUeC953liUo+PKu3DhxXLjbS0uv6rbvqg8wFaucAWyLEs5nzdvM/U4JHd+3yvl5X6wgGfXiWryO5FQ9szu0fwlui8juxot5OGK6mlNDafiqFioFvepLhnmvxXcq0HpiOQbHC7kmh7I0krMEd5lZF25xi2/hPFfZSitzueWtxDmSWu50VNdN+7PmPvOfUtVVhtLX83s0OyByBrBO9vgeZ3lowClvZbpz4HVqEmaO5xR57TIFcMJImycsdRJnVhoq3G6Um4EXdVuJxktl0k9HQ2JdT2fQFt8gv0bdrSl6xVsUOaYK17rv696lfrz7+/VYuWXqmHVV5m4rXMw2uNWCt0/FTPqy80Y4a1bCNW3C5BWx2ZS99Rf+k7/13/46Sslf1ZZlsKxqWYmMDDTQxFDhDHED6kmtU1WkUFihltHHGYmZmQxJUDIkKwqcWhiGmXMz53LQKIpgwuyznVmkUkwSfYwmasrCTl2hMGDq2046XSKsiqJu1nDxhVFBZFhRJbQLlmZdIYxHG2qJ/XrnXO5XaU2zow26gvS0ROlKRznOUqRzJESR4ZnKz3mE4X48MS2PH+/bFO82gxg9oXFRTryexzZlh5QhLNt29lTVhr238LePsnc4Jy2f1CuGnhAPRjL+tXDT59lpxKzYpq/hOmbEJRJs5BVsHpwPRSxdXod4LUX6sNt/0SpsZ79JyI4XyJC7V5r9d7z8eVTHNjxcCzfq8LtFWSGS/JO+1otYn9BNXcd2QzbWqtUh3Xwe1SXkvjxYaVY7Hq1ZRM8U9OBDJ8UqSfihnYzS7mSgCrrd2O+kyFJMqHCACQIMlBpLC9mUuZHWOFWZSq4yLp5oxHbnkRbsUGXSTdtwHjqxxwv5O2FEU7/LAYSno6ldrnups8yvZU1s/AeejDhOPYUDKnbgPgs18kngPth7oWUsq2YbebwlCnUgVi7uSza3iHfZtWvOGBhRsVyBukgYREJUkmb8uM3Y+mx7kHflp8gYG2LxreFPR9e9OIDJ0Q5vmgCl6MJw+712w5QLiw2kOqt4PfXO3T8Ogcnr9ng62nsjtwjuUB8cSQEhJExRUpCqo6IJ+zopLxMT2oPxWp2iYlo9Xh78bOt/a/d8EG3rq5BIg4Cz12rt296cElngaOBS7bVctMqhexWiialVcXbMj0gooAyTHhtZWHMFINUs1ZyJLhtgp6KlfzvspmF0vMkipAUS04qzmB1dCOyAjd4pp6buo+j7PBXmZh5+AmeF2cjMb869lfPH4TFWrvnDdWLeB03tlBHMVW4srn6Ua51fxM4oO04+uvocM5Rj0ZIRqgQwObmbI/RlGP9o74CQDappTq0xQpQCbJqcTXp14w1MAPMzJ70z2To15q0QmZjoOORoOW1sd6Ui6AjVDqhuI0MO3GmS31f0RSKZrIQz7OTscn9dLZ7+fKbTgfZjPq14dHN1BDG5Os2GXBY4SOXREFQ3NuXLs1ezgYiMGiEAu3JuJH4crW6i7Vb1lAlRybVF5R86R3/f6I/lmjk2tFq98FejNzD4ROJ5jIAIjABQrEuZ6ZaQ1TsRkvgHJcEZW5XT0Jcee6tXg6KyB9mGdcfizNzdMDNrEN6hRd8jzVM8Q3pqxx/dPCoOvcC6W+PZ3PK9VmFWzfJi6ANrEhz7n4mU+XStVMBMGSMmr0tGOqeu3zft8i/pD+NM/qjNERezVsZoovmD1+xGydrZJdvggu7fTgXdcPq2caoAxkY5znJL5VGtHrkGyc5NHmWK959uP1C5LPyZML6rQ5cOy7dbIn/AqmqX3y883HlsMKSBEDGAfIAxEYNNxGRkO6MEXjlKl+bnZOoKFN7QHnSqi49gTqKReTQaULzZbf879UrCjalrW5Wo65DAA1/EnHJYzsb/D67KR4+3PMpWMbfoOA/rJS7IPAjC/WYPkem1Os7u2pljxd7wz1TtYnbHfgrjJjHKt0d7Ga721LKkziSbp/sEdZJrrYT0qdLDeWYietABojAERgBcwvrhS0LRBBe35tqLJ2fc2QLj24bnTGVsKt+TmAcbtpuRNlP1rc7nPJKnhZBG8NtTHm2s2QH2pwfc6FQOCuZ1r7iatg78zhMW+XL8LW7OeLAe0u0wZx1/MOaDIEgsIHRgfrv5O/2fDy+js9Ti2t5N2C8/nEPftLmonTFFehlINWqjzF1L0Opogu2i3VMCePnsJ2OqLqWLrVtN4vml9d/ayFwwAKgTqtbKTF0HFajiMlhYYiumFQhyI1JGWIXLVWdELlltinv9mZNvXL5vTf/PqhWeL+ZqGDILPnYaQxBfgzGYmrYf0/638XT8P0/P/fwln5r7SzVuJ+c9BGFvJ5ANsZmdt+rnOoysQBEb+/QG9nOOBlwGw0NYUXLci7E71XQiFj4UmzyoMZVYk4R2Hxs+8+y8dKiDptkPVBiKxf+N1fuxL7ZPypOA4n+TeK1naOrqOXlZm9M9CDcHsnkfrnDnki5ojvbAB01NFNujYU6fJJGaMj5hN5IBzLpICASRcCtksmdYjHWOsQJBzHKczuRZGFQAepsWfEC27511ird39T9cG6iHapSDsz9vfTz4cTthiJXuoah5SqVLukV8ksA5K6McOGLiYAwnIGAn1xAkVPJE2bM25zH9dFDDuaOXT183v3g7wXW/t1vrnd3e49RzD+ZIT8aAKe/7diwMSBpFcoMRC0FPFAvEUPeiAloLiL6ILmKnvgglIAcVpbxcBzubLbsy8ufw/ZkVth5Ov9/2bO7xn27Wi8vhonxhr8o7+pGLr/gUOlgoOv2VfBIJZlAwQCQP6NM5FlEiV1tL/MHG8GgM8GjoReLnOD6JicXOgj0O/rdn5e125et2Ba3V6/UjnjPfDzS7Yc3klJ0591j8uaXWtlaUkgyJJWiA1qz0JY4/Z1py6eWVNf+P5fR/4/Iih9RGAjLj9u63pH2+fmBbYTnhqsArKfQD9INs0K6JQXTUcFpC0bwVuc+6ExgyPqRmnGTXo1zsCccq+1K+0zlrjSPs5DV6alqp0rshq9r9IqfNf7dJZ4fby6bppHHDDMRqmXsF86/Ba5P/mLFUnw3u1vVw/lV36YenKBwIwAviagCsDYE9vXpLq/EPrUugOERAFgODHIVUUoBkEYxAgYiCQKnK/m+hEhIDMnz8mNatwKbkA5A+bWom2X6h3y934n4ql8tJ8/QL+Ctb8LU0dgheKuQN3WCOYipDnf1pYisI2I/DmD+j2bQbZd+McnvXmor2Hm2ILyMMpy9rXz4ayZJ5dqxXT9/u2vOmu4QSQD7Wpgnz3rc20fNr8z8Za2CaWTF7agxm9+Z/RlLSvw9u9T72cuo+B+Spje78LpXWJs26p2X38ja3xi27juYkHgiuNXFWvfsg7OrxxPn0MrUFlc4auZnm182hHUmhRV7pGbXh9GeHT6UfW47z8NP6WW5J1vOSv07Gb/VfCiPr591rBlYw1KfIaRruvQTM58Pn0WrXcFi0V0o50ZA++vWl7Nt/mX8en0YTsui71Ivbppa/WUdi2zdouYKnnTar2dnRx2eN7XF1M4YFstasK858NQdHbRbc3aNVmaXojX504FnxFUam6W8GqpOu9pqsptlzN1Fq62VGeHfmnU16V6OqrNznq7R4QyT52blWmdXxgTTo4qfWtfJFnzY6zR8b2tWzW2nv8OfId2PN7Wu3mjmJ2aaJfdj6cnXZaVsy+si+qm3M271O8tHi74XepJqPVbZ6tCLGSW9s88+t+1ptY8cOafDL2eO20Lr+LRRb6KN3NI85w7ENZ8Qj4Za64luJPJOZhF5bWUWuZJ71RTbrPLeXDg1TkWag9Q3X45FdFrDdUWRx0UZM/Hhsuw9WAVRR2vN6ee8hq+fw8qvlZq1tnnYYPxxuNX+N+7Ezkfh6Bzzo3OZ8O28wsklcrpIZL8c26tmPfx2r4OQLmYHz0AdmS4GLr81KQPz12QORjGaIXSYLjElElGxrbfVsyfK2j8SZ3HowmMkWdXlOok/D99tyhj1/+z10wsf1aJcvJg+ewa0VkfRjZyYXk/Y4MeCr5nMsbSvLOOO2e9h1ez03ddflzql0GQgYeYQ3phfOYHxmxh3pJPcm971JOpR17X+GPMcQlt1ltY97Zkhy43J3q9UhwIERrM3eZ8VuYDX1M224oTVcrgsWsrMT0onHDpkB9HS6GbnDaeiPNCnPo1iVg+T4XnoWyPEljhIqU26eELC8e9VlWVCeQllvRMdDsSmfUsrqO/Er1ZPdfeRZ6rygdscdea9c5noU5tAEefJq+plnky7UZ7XjGYWYN9EZEBmI5c/+K3MtkB9ky3DqhLiYUkY2y1eRFoOYYZvnUAuQFEsAtWZUm32zmlqdraWp8qMjTqMkc64NBapBnevYW0xEY3kQF0jGCkAkEJBD74AufA8ZxbeSlpl8V3jbISHOgNkIGW+nTUdwZJ6/vxmcew6d5Sw9XR6b5IL3bnyYMfRHeW9vdLTWau4W63WKjlap1+NOirgwWM3sR+DHHOsI3fI+Pjt9sa3VX9IhhJ2S/sjv//XrOtyPB3qMaKtQK3r/tYqSpy055dXVzc0tTF1cB1eWHtSwahVq3cVlqfQV+Orw3JWpvqjxne0wM8gWsYOVS6ksrk6qc3XklwjlZw49mmGSXHZ5q2ybIw25NcghetO1m0krGW+649Bvuc+e/zqp0RO8lajsmOhhrS4u2xYnma58OSxaXOpyl5QPTTVhVzMKVDyddqpsuN4q17P0hYVsS1josrYHcdm9obvXnq+7qPIo/1Wj1TrPPOT1xzpCPCysC0Emuk48ddOlnQmvZuVtXO7gsvSJZeMB6u4+XDesnlr5WkTNco99fMHd0lMr7EeeK1ctZLjsKiTdjlafUm5sem4tacu1H8r08OIVWg6iZNfHQVusnsxnxK+R/lOYgfbG3sO8cfZ4Tm/OdMMPWZ4+BOl0ne9NgzIB0deSrbxIOQHEkiMq9SdDFQJqDKSSZ6aIByzKGsa2VTcgtzjHPOtPk6MjTVNndpm5os+tqj02Xn1uFlOHDUvi9zBUXtl9QMQb59WGrwe1TRjnxb32JEEL2nKm1Bs6uSW3C/Us6uN7pvXXunb0lsq0uv1E0bq6iiXZXGu0jZnqJ8G8jGWDUxwzwhKVhETujp26JnNijF6TZUwFgpP0YulTQnW6KrzdD9bCvRa5HEFi73HNimPAGB1FfQkLcd7nkTkM/tIRJPaqfXxnSeVdLubnHU4xGKxvoRv4QAGCGDl3W1wYCuGiHQQMYSPP3+xK4OaY/mYaiMOwjEL8ZhJSO7p+ujmqLu4b2uX5nz1fWorhw87Gznq6a/Pw6NlUSDVv9e+5ms1ay+gScJ1/1JJH340q+WDw4r4EuNDl0ieGoAcc5wIjLg+IcfuoNnuG0frXGMoSIB/498nb0O8ABxTqBKIGvERDWWlW2MxGHbdNW5bpKxD+TxI3usGvcxzCKkXlwvEmNJCTCQ+Kq2lcQt1mevwCpGdIWIzkQIiIIIzCnvcqgz903OSgMB5kxwBk9UX1L8P8fDn4/LbsovpAAzuF+mGpdHmTe+tlios1g2DTW1bVWYWdq3DjTd2maA/O31SsSWMla3DFBHrquX2OX38EN6vp3HMQhbOhJTtDkAk1pCHvu+VK2jp2nkqa8axuSnKwl2MkegXlV/pI/2PNilNrhrasMuKZsOEDSRjEQIgWA5jAREDeN7tdqI899PYPPeMF77AStO9aRjIkpdVSqqWoOlr4Ts+SfHFdtsvuwvRpqFYVVr+d2ELMB56AqrCaVRNWV+Wt5g/bgLClsxDGIk+2yr8LvdNIsFMZPS4kESaSFSLCKF1ZVzMrEez9ib1Y2ksYQ3aCe5KHwu8BZS/L+v9fh+L/yfn/H6T7E78RpEWR8mPvYMhx+WzD6MPc9Ha6GDz++6yFfVbn5JWhZJuDjyM6pl3Phf+E18xQ41xP3Nc1ie4duphQsgZlFylwmTmW8yVIJsnEFtNRJ47I8zpJqMoDytRRNYXVCq3BV6uRjaHOxnfhz9R+ldsL2JXpqlqAq6OpirxO2yBKbutJtstC2YAGFR6l6GAwYIfPFr/ELnDPr5rc2zLbo0Z8185ud4xD1wRCRJM+XdmbYsYAU/FaysdTyWhm3IRXk5fePL0WNVTCe9OpgTcdbjk+la9gR5hvB+Pt42crfV76hgoOVYkj4ewx4F0HNk+fPJWs1V8OVjPb563UtZUr4vHCudVnlXxf90Y5ybGcc32ogbdJXlmsY9bNpWCvReGpvdk3mp24+rj21SHWRiI9B7ShwFiGEgFSkEcERxkK9KxfIJQc1zj31NnrE/7TpfG7UKZWNLy3dbw1XGq7ldR6tneoNZvMvmWTXqVY8n67bF+japl3jmty8amuRq1azZPpa6PRX5erL471e4NVgc2LB35erZJ8deu7t8JGefm5M46uLJeKBcbZknfo8W+Dm80sc1X6XclXs86X22OcVSIuVe4r1YtWZBqlJzClgHMmRgfwX5y6DHPjWv7ePNTu9KH7recouvmWn7USN8agUtAqzt43jpe9urt7kcnetytamp9kLQdKs2NCV36dkgsnZTMHLGnur+ns32Ip11/jGmr+I/St/eZKRSTwreSK3fp5btuG9CLGcDF4MLWkqqSrp+qT34eByphU5nNd2H5dMB2953X8+ulLODaNOmrZjht0efQs3rsJVtFdqK+zjoL9kArWgnLHnwMUbpSeHn9DJtfbhzcYbvbw6XLJrykffPj9upDauu+Yckk5+utnqIv6UqgnxZ/4+kS7c/d9fD6/YN1oqp+XLHVW6EeRM4ux9mNLL69HwV3Dv+qW/0ezsLq3mV+Zq7xS0L1vbrzd+8KXfl1t1N8iPYhSMhIgSLISCyMFIskBRQEQixYKCgx/vayslYsiwgoSoslZFgUZR70lIxh4nOYxEaDmqKVYq17UMgAsaRw3/HV4Pi8z9KNG1/nW6FnJPtJnh41PrncuqGs0Meaynly7su8MfQ4Ajdw931pXwtXl41yq52u2NLD693f8H1HHAZJBJJDvRm5vRJC7qzQcv5bW5ZabBi94U1FBnKE+XH4I6Bnw7XfDx86KtV7KWVvnQnp3+gcBQSzXcWin3tMWbOqDoOmZa1FkF628rFx+pAD7Z5an0dMBYN9CspezWr1ak9PtJb1e1w7/OXQ3d77nHG1x1rD56DCq27bz3XAmFV7PXGAmtYAwFwIHOKHORDrI3tJjyEkV1wAxo5tEmnr9tq0Ktft31u5PmpN79Fe4kRqCAMYVCMYHLyKV+Wma84VvZWwckiXuXO6rrBeEgHIgYBsdKMODLZxnEsjiceHhuP80wlWW8X3HXms6i/VJRgiBhtebzZkS2n7tyNzNhUi+M1/Dv8VLC+GtvWSFy+WpGcLuouinqvXGZ6/cJIutjfe7OOOmbPhb06TDXc9gjP1zWyNjizS49hW3z5zGNlIxgMvvGyqzPdufWE+G8crekEPc+pvN2NDKWojVcIOK1WoxS+nXFJzgxfk1+w+54fX/LP6OlX5v58hgsGY0XSfn20Puul44MWpK3KXdxcahqH8PfJwfe9X+J9Xyn3Pf2v2t38H5aL8trYVSrkktsByRwNC2m5csKCM9fLc0vkjexMDC+c7hH182UaBWIyYo8NiuNNO5XOkCaPdTy6fH47LlTaxdxD6SDLivB5BxjKC/K/p9rmHqSdeL/VaHFs2y6pX6Ur2t4fMwlcW3zdM43sU45p69WL+O1SHLv473sDvSbjOiHLjPdnfrWtWRVDq6QxFkO+2VXLipgh3yOuXjRGQDcRBW1KOM5UApYfH87GZAa5qA+n1ixodx7BAxsczN1TQdzfy8XOry4nc18r+/nRit4MyXx+TDbPDj3YdycPtCRDtw4exLukeslgfIuQtxj9k5kFY2LMs49Gjac8tOGefMzp6qEMfPb6reqV5Zy/m81kzfjnTV8LTx4pDte2VHcp5OxPJDb4MvN9TvrTzcVZlvh34Ztu7eKdPVfB2gV9LwkG0A5Btt13OZYx/OXhJhiiZs+fdmb6ElSIexEYjG8iOUGQvYeM7mETYonWS7Uy2GOEl+00j1e7SLz/bW1+fNXXPYeYE1HoQN0A3SzPzdbuZB8tz7Y0gyJghilNWnnB91so+SlHrwafN+PU/o3T2JTdaNpfk92iYhpn5HT+fy4/F8PLjV9tRJk5KIOi3LjZg3adk+B98TKGit1zS0HIjrA5EA+RznzzXuijB1EYPbpT5zg/2rmPgENp/85vuH+NrD2Gdz9JwYbCMCIwXHBH04e6eoiTxavlhxdSYfDbdwXxhIyAHpiHrlZGJ/ozTIoqwe1IEzVDSEWSKCgsFFMSBUAFBZMZJVYKQWQn9jIVAWE0hUBSRQWSZlmJIjJpqApRFohFlYaQxg6ZTSVKyGJjplQ/0SHOUU3lwThOEIQQOARwcAPkDHIAxIOcqmBnlgxKWsZGZAuX7iPXBtVFGA5wNPyR+8khDSfyIGk5RZAYf1NelifV7vl65UnYqr1r9KjnoFBXwtigxhuIG6CByAeI5AeZzh9tcRzD3uwdngd5BI8Gl3++zYII28qE4a7VjPzP+c01/f7YccVTzml7vNPxIdxA5ACjKVMtn9if2Pgy8a+Gu5DomkH8zmHVJWPFXxk8gzalDYWznIoYg/cdMth/ryBetB3MOHXW4inm7UFhwhphnffzpMYb1YpjEQWeDWS0p/K1nbdMTvZ3p0YOizi2Re9M3ZWOqE8XhxgVO92w127sM5pNsWB4ppne9WsJtMYV0mIeG7DbDEhXlJwgdrnfdeDWV29UO7xvbKHg/t1Z2dNF/IRb9+ka/swpnYySGg+nOSim+wpmCmAqRkEV5yelafNHPZq1J+ptWDBcXwUyis7mi58Ni1Y5/x9dBjGNxIbm+r4MY0ZuNcVY24cYMhhOClGW3WfUTAYSWScCd0rxdwfME8OnVs9O7Zqkz4zZPRwGqS6dNHnF0ZlTOXOqtBUsWCXz2bCQgJKzZnokuTm86tRwBJ/v1eDkSYe55ZINd/bzM4xOzwhaNbMYiG/MdR9gVSxkLRJERHPUVG2kb8dur41qgcWAMYwYta+2DFNmnNhgqTDIRhrIRsvTspnwXeTkgx1a3esvFnOK2PreOFF21J3mbkPs/7Rdkkflvn0PWhE/eQth49kcXaGQlbNOY2SwfHToupafRWDfWIGBRQDciHLBKRKRkEkQXpO1l8unx+7DnDh2fbIyzbwTDUK9bBl9samdTtydO3y6qdHQrXYEhgYRz/ZNFSrU87KlVCvOQSBbq2xJFLsL2NTpDhlkACp8iUsPI40MbAgBJQgdBAxyCZGORyAIHI5gg6LpJAFnnEkORHreFPYeZatlwVgbdFfr2/T22CIeNiLM/umsds9tLXTZq34uq/Znu9vKmNqwvznscWkratC247C167Fp/phJmNo28ZaFEnaeFZiZiim+Oqy4S7gjzmBgMY/7d+xw9bpcnosbQ5WJx7iYUp4pnUtTJN43ae0I87wApDjSYlzfIwjo2qAGfIwdIx+c4mRPP2Fi5VI8LenHS5nIDNbQzM6Nm/V5ZtaSnuMFFQ2l7ChQwxJBv+lHbygYhYr3c9h5celQT7NPUe43Og0RB17wUhpDCADIBVZAUCRSApCKKQWLIKBBSEWBBSALCCwBRiSB4yU2UuHywfLUOGXdimSbpNh+VtqptWl8YRAgDERgZQhdb32MitKqkJf46jNDKqfEko/va+di4H/g0dPPjSr0YEjt8HNKnXgC/0CIhEcMQkAXQjuRhFaAifef19ubaLfLpwblmm83bDiTjqKoBkAOaASAMgEhoESz7laqMP2bUF82CM9eW+omIJi9dTNZyy9GLigwIgEgGviKEU2csKEzr4ue5621JvAJANe0v6Gpb5D5O9WgdBsZ7WG2dUjkDMfDxT6KTzhTQfEzAnkCiOAM7QGbe/sZ0XE/XsQ4c38DOf74nqHiE0Qx/sdVoHKoT4mK8E9OY2F211ed8q7DD+W9tGHLP35KPHZQPSQH/wBGMgEYWyMAGpK1z6psLB587U7L2Nbi7bv/ml1O4dwg0UyVNBODm/2tPT4T9/H1rsMBC962Maor5pmHaBESkKFBB5KwdKVc50aX4ZdWWgSBISJkClA8us3vBwf2XbX+WVzTk2sm3YfjtaGLyTlV5TfoYBFMyEj/xuf5UT0/FGPwvfxF82fzcv47/Ry7TD336GInNNcO/q1DVT5zd+7bMhozJ79t/1NxLzZMeew406x6KqCA2ngAojv1cAoy8maPJWn0voaZ7/jQwt+SkBoZFT30JTABmADMF3Z70vh9Nl5oec+/vl7zxHJec/r/zZztvVW8UHDx0PqllmUqDrh5p0CUgVkgJw7CmkYOvryhoM6aVKvQUlmKivfAiFJM29+H8588vR90umiA4ZxQB60e5GyAfbi29hunduzWWiaRfkUY6z2opk6OMlb6J/8HDsmEipzAxyiIQEDAHIBLA0OPO0KftYW8tBU/lrpt8+f375eo2P8JAM/qKP6zWsT/C3cldnO6FVf+h5Yb19JyJo5rQtrDStYTUDDGkFiMRATnPUIA5A03/K/294RMP7LDNxiFwbUMKsIL9jap8scgm/HHHHGHYxVEa9OUN3vU6keHL9Tf068NytkUCMAzM1nF+dtgdzk8gV2QtwsUjRpzYiVBO/RHnqZdH6hMmkanw+VR9gqEIFAyHPggrjfSKn9qJoH3S0fxdeVc/Sz9mXV1ll5E400PYq3c8kaH7roAE5BkjAbSHJvGz1CGUW0NXloDSBygIia4HggiSCCZOLO7uKpqzF5ixmyFoVc81H8UOsJBwLf6xErxX0vy3ZD838Zd6EmZ26dDNqquE/ya6+qGWBJIoBAgYxEYZjnA6fzLETtvgPJ5xyarVI3G+rUfXcWMil0andq66ltKEB/uUho103tWX4X2kgQiga4Iek+/WfpdaJdM0MoQLodw/YNsM1jbEf4CD3hIhjhIGkjSAEjc0h8etpbLehwHR6ljbAJA7uav8JHlt8/d5uzbq5yYfkdPd7vw77ShrHnNnavMwBCK+gzzIhHxUW6IWf3Wrfv0U+7YdCIQPGhaU4sTzYOHmhjrzwA7EoLQ6xgcRSCdTwCn68yIVy9NDk3o3geWXJaAaQZEQ8pOidHXetoW/7y7a9WP8cL+Z0s6eb4kp487Z+BgXMEKckUy8uxOMnMRDjxCQOpAwPuQQ8lDchdFtGVLuAKlIZ+sOg+tLELYD8gMhkQX9dyWPl9IBZLiToNYZGAE7F6iILuXIBS/kogQQTChwYwxdXg2tYVdk7Xg7b4Vkgp0tPkzOoUk50v/syJBngfVno9KJ28c/0qfhFTlw563YzRvRDoUoqeEuaAS2aB/N5xOsrQFLF519OPsPPqZun4q14NraRELPlu8olbooZoD98aRtx2/L2Z9Jg9/0pXB3d3cx6uLhN3T1+LZ153z8V/71TxZPjah2a8vwQ4Q/C7GeLph6IFkHdilt8wV/vN5CTpj4C0NKYT6pCuIWbU21Ywe0PliRIA6LN+3xVrNJ8du4VrYmWejJwnNuHUyS8uJ8yhjACpnIEIclKEi1ut63P7em3Rhz/OY9mtuMPg/fx09dRFfA/2WPvoQwY7Ho4GQ4mWlUAYyDZ4N1+yy2f7rORq2RkPoBEpEOMzlMhN8IVfkIGEsXqB2aEuXfL5NsddDyjaKd1HYRkGBBSUR2LNsCcWLG8ejBcX6Gv/Ytr7dzF87DFCBosTiDJEDGdQr/Iwt9j0WL0CIhtomUJTyZedHZCfViv+i0gfr8EHvhObvrnuidNcbE7uTfye1nyMNSKG8kHNUoL+h0bPxjhzBd9jsIndqmqIY4JIz+jvFdyCuQX4dSB4zJhAEUtxADZGIg+c47nvGti0Q4rDtti267KEKueUsfV2p164KQ8LgWT/ChaVu+KlVZ5Rp4QtVIi/xdK6QMkRgMx7H+/IYJijzVQjIsgqcZUQkSEFjAEVFWAKpEYAshyDCH9oh9arAsi41E1QV8LOyfIDPAkLiwMo74V4pnG9o44h4AcYmZQqYBm4G5qlQ2vfXylm2ff+02rDXxR+c1YMBcdSykh79hQQKxkkEhABiIGIjGAexPoaTghSZqKRyeUm9Nehrrx7923+P83hhb+/9KG+ubPXmn/uSw3x8WRvvLK0O2BcnIlQaeZEKAZ4brDxTEUJAkZE+75ApG7yh9Y+sl9cEIHQkDNE+QhaNCGSIOSIpIIab0wGezq+I6tQ7sRwJzd99FJBYjERiIANkAZ4vPqTWfj29d5Ck7OCSZNj0W6fS7DUT/nrWY/iqkj3vVwvwM2//chImUCtYTEaYhCSFLyBrghfE1+Y5sHHaq5Bh0CGDXsKlUVBKGtoVXgAQUy0u8OAryatH27u8H9P/uHCeG10svz21gd0wANAbzKqfP5dWl6X5LsH9ZbqVD+Kw5/s/HOlF88tpJR0tOjv+rvZsuDo/D3ZexMuq+o6IpZJBNcEGkGQCQILBYKKRYCyIgKCIsP9+5SISCMrW4IfZ9tDL+KR4c6BZsROR/eq5A6QUOJgml36DolqEAk+zu75VyXZ5+dlCceMn5ddIxgaqw26GbWnH8J01/tKwwl2MrLPfxJpyvF8FC5sJVH0f+pc8s9vVxHlxBxW/d79u0tgjIB0sumsy07sWqCS6ZpaCCxgsPBLDXyQ8xoPMCBzOCGTi0f1NY3iTHCvHipryFoHSju8d1bYLSZJ1PJtXVxnLjr7dK8/9RdMLf6aVb+zEf4nTX9FPr9PRmotGxNHEpK0B+6klVIIIUVTgX2UhMBEO1LYlkF0Tk4eTtcvBdtkkMD2+qaQSy0mP9Sn8obFWmU52ZZAQpXQMfBHNipvLHgbqZbtXou0bd14mCISBIyBIiyXyev/OTp3a93NYfav7Z5FnuusIPs06haTVIKlm02kvR4sjs9elCpv7YrgB4jCkiKAsFNsIH6PfdfboSFYj+l+JmL/1/+DMWCEgcIqx/idg5N7J+HPRXx6sEIawmRY0AyCFGvCf4VUPTNU63dOXs4f6XnZtZh8jiAonJd5PgtMyIAzAMGP5ROjLXdycMDfbuQO9v53f996m1UdqOz8Pye5uhERq9WH5/itilc7MnTQpecXXP0W16rpABVrlCEmO0A64MJqA5FNwQKGM/XtV93SBAlDJA7R2BxBWIsgOY4E60rYFGZgqLQCqKDDlZhpSyGg664+vJg1KuFv6YcvpviyhywdIMgHtW8Gs3rwnDyVwsfl+iob161PFrfnt1+9w5z/Y9Kpv9acaoM8wIdF7wyzSF2GbKeLG5pggAmuuHueO27t7VT/IZtVE8jByPo3H79OpO77Zk14dM3KnnKNsHd9lB3kPhEgBmEyGbeqYqJtyk3rdrubv36r74yDsQyygjWHLv0Xn4eK7HmxTwQOv2+Kj6i9xZy4SpccknQ+6X/aAvt/UUNK8CtHdJOlD1+rEn5x1ciYo/CHNXj0e3p0uedeJQG/piyhrxUs6j9XBY7pawnhr4I9wNnj3Xw2mGPAGYGmsSLwsXVrVaPJYjQr4gU3D+KfH/b7JgnkQtXtVjIiwY9O3PJ5/K3pfxud+fYPFceT9yDXkmEWaYH6g6zxwsi8x7e6/p4wd7zpgggZkEDAiIoAsABQkFJAWQUCLFJARCEWRZBZICIKAKEgqMCKSCqQRUILAWEgsgqgRZIwijIKMipIAZOtR+ho3K9CYEOrTEqTeL+QuIlGv3D1aFxUAenupQPSj5Vih1IH1qASjHIAOWn1IkKcrt1E3q147D5Hg+BeGW3lxFFdO3RAVrFAX3wpvylkNEWvL27M6ieOWN1fWzwCa0gboSh83sv2YUSBf96HpnabgdKF0PpEEiyEbPB3J9GDdOjhTufvYf+4clVwEJvBTKH1SjZEkZJJFZ7u3nLBTSclE8xEyASRkkUkDIEA2hDtoFF+X3ei/Hfv1vZSwOE6FLdPKUK3bfqLDABNQxwA4X4qNQRRNmztnwZPp/NT+DSddvAkkl9C66kD89MGkGYSoKxLWhax+3SulinyS/IsgREIQ9LofQm+qlCwSinnEJkBACOpAoInQgsuKB6NptPU/o/jdptp8wdItBd0GDoUIu3t3VTzn3U1zjghtx9jBMsQxi/fQdH+7TyVT1Uf60leLRc/jXKQ/5X1TnPu0M9aUKvnYZCKhxLB+UH8Y+mN/5fxXpzROvl6WbNaLJ7b+PmLATDe0CP+AV/l9cJSUrHeGfPS+9JH6+bfX1515ExV7G8EwZA/qQgQRqZdsepUHpUh/98OQGVakLbv+TT2pQl8X8rv8BJ+tXNTW/CCR0+b8es+y3rD6EHVaCjpmhEFMWMgBkbsssNbPZqDiu99ptwdkQMt0oGMGYMlexmmUDZ2wwaamMzOW11CRApEZnRTRosO9DF/WnMZtN2TwUAODz6UTAj9UC0TTDLB8sN7pa9HZx4MNOLVf1uhjyNeHa7Kemv2rPV90AUGJ+rBFZY51/rRXglq/Zdq5WjAM0uMCAcnooENw8IqRXpAR0aEtwmPFw3L0zj3TFeOuNE3QSGG7AiZDVlNrTg6WOij9JTLb+eT4g3aItpFdEKyx+t/zaHm8qn+mQlF9SOjaqKsgrwVKOUL7TCuZC6kziX0rvxPf+bFT8U/9F+1H3DqPmMBLBeRDbTHPNCC1qnABUGBAxyH4AVILSBv9CSgYvHRcw7y0Eo8WADVOEtDr/kJi3kJ16FSEgMgkiih/M95fd3xg1YFDkcwCw+Ewn91fbunbXfuSVLYlb0T4f3Nd61/9ktT+SLvNUtPw+sr2zZ7+P8exn0noj0oOaXzCfuSjgAiGeaAm8FAE/Kpp3jYGdQs4wVOmrQHGRz4go6OMn/Jubhh1ia/mWvf7/t550XGet8v4FxOEkkCQEGRAA39T/9DUdxVW0ZWNIpTeNWquJ+6YTTfXQ9PGvJyFVtaOiw4P4635RNqSO0fWWQfFHVDcjD0wfoMAbrnj7xCddehYwAWiXR3GDNZ1aV2vcSmHs0q5kiQisizakEBLg6ULePCVOsIfyfyZXkU5hKSo/b/0em3iBd7L6slhabPa7evUreXIYo01UWYDcwGTR3LsVcfQzSMJMyMnPiW9WVUKAlm0uZ3pfzUfh2Zg/vpMGk6/eiix5vYra6skpEkh4e4q0Ex30/B/SueJrtR6W9DvFP4ieWACDfpLj/ozRC2p0dxyZHuMlB85qBSBIgKCgoAsWEFBRYCxQIqyACgKRZFCCwikFUgoChFCLBYRSLAWBFgsJFiwFBhEJJEkAZCQWRQPKwT5wQz9pOH17ma46RPH/GGu5FXLB+kU8U9uhxZpfkm9Tb29vT3uMZ81qID2KhvW2v0eiqhPfeXsQd08GOWZcPlrz1vhmCdttoE/1f05h91J6oZdskBFzMiUyIDHf1KTvZG1ZS93JMeeF6Bxger5fhP0P42IZ2/m8JT+IPPuDI1AkRgH0oh0AfSGlCJVDSgXboLQYBu5rdvd466u6U28jxnCubTw8d5fMYA1MCHlQEhgzIIsFaeydifkH09eU3z1Ai0fK/K3lm/l+zf5/Z1PepLRxU7mWubn3D9st4gQJfT6vIwpvSs/G5VoGsCRAkPoFPBEQkVBICwVRZFAq0ORTPNwvuZMvuJeynie1FS3T0UGCRDCmxuoN1PY6koMwDj4eJY4dGFFFOkq2MdnJW1fLh4HtOQDMEJDwQRdz4m4E00bznvMP+kcaqSp1Pb5+jy0k6x77aGugTdSwP9a//p4O5RlDJwDzIopFhFUiwgLIsBSSCwgIhFFkiwFkhFihFAFkIsWAiEUFkikWCwUFiwBSCwkUIpFCAKEiiwgiAoEFkkWSLAUUBZCKAoB5rQ8kd+ygv5ynILFTnvQL1L4gNS9ludYw98qyxZbEXLuUdJLeTfro4qGExGPzWGvveebPfa9KJgYYCGsg23JXPdlDjfaI0qnsyhWf5Mz1JWNiaknOTHqroq+KR9zMfpTBh11+ddG9gu/zBcbJOf0Ohku/qiIj6+1wVP3gYIsgMgGvq6aSplils6RrOgW6KhouybVOia3gsczb7or0t08iQ4Kllv/xWlpXoiHSBECiB8d+hqMg+fd1ZN/zYMxBsivJDRkx838S0NBFx6q7B/FpppWjpKiDfJQnlUdbc1MbAwwwpIsWhh0npIqoYaU7iaD376WHbup5tr5XbMvq28LlhSas1HRDy/DbqOMkl+DgO8o2ICaol83u2Yar5G9TiGpdhKbYMU4OtrybMFLniy/jZYg1jIFOn2fTYZiI3RkEkCRdqF93Bmjke+yoexJNtqqrIiXMHKjoAQMt1hCqHkAjtef7nKHp84Y4O/Go09121syRzT+r3p6bs/0lx40ChboFN5xFUAYyIfhmxVsMFED2Q3u+UPiRC6AGTcDLhwXFa94+swdhivF7hTSLCSMnYfQ4/gAQeE4j/BKTKaUPtOlZUAL89Hf0+n7sVoXxKZEKF61LKqkgCgLFFWQBGALICJBSLJCRYRCQCQDWbvz0nLdbfk6dnN1jLyacpmrS+tNylqt54eu79YW9jHu2dX5Nd7N3bvnTXXfKPaOlMRp89UXEpO9TV1KFfC4LKLqK5Zjzlt33VMjqAzqBc/zMrHCxHGR4MZi38doAIOqbU/yO1b+YZLNow6/T8i1KuTL8iwzhGMAhoY/mx+Ip+b8QFLDXbG1SwuwD8lk5n5AZgNww0tOsrfLPHWcIQ7ba4r/b82jGVfG3Vyhh/+//dU9vjSUImOacQW87mpjv3UOT86I6YcqJIIMXeIawiJvSw3qEQKIHAT9XD708ByOoaip0CVnBYAOW4sgBIIEMlAaRd7z6UbPFsuSza3feGbbuHqnrQqEZdg/T42h9UkHR1bsft8b+T7j4e0FboHdJ9g8DGO3+X97UVbJ9b3SM/QR+RPzM22f9sNo3LnVfDxDqIDWCAtK1SJBjKEBf2Z4clNeCtbiWQyQCApWjhVQJvi/if5bXBxnLvc7LXLg8gsjZk+FAdviutRkhB44NNNEHIQf7/vP5XtHf6zTb+2GH/0verBmZTZXxdraf99OYQZ6m15GFhNN5Z2/rYtfBTZ0df3Yeb9dW3ht70wTfOfEkRCEJEJGQiAsFikUgiSCxYAopBQUiyRRQFhAUJBVJBZJFhBQgshFWAKEiJFgLJFIRQBSSRSKCxYCkRJFCKRSSKpIIqCISCwFkD9DPP4dMP+0OEJDq8N1Q78LYqzwkp1NTplnKW/6mgdH5Ol4y7FqGmKQSAfIhQhqF3qZ9XNu6bdW5m1CGaKSC+oViHp6sgwDAV/sziTKcBAAzzup03V5ZFAlD/FpJ3QJLFl98dhgfPtdaAqbmXpSPX1brOLkdeXf62u0qQSsdxQ2HOo6Hww+DJptDr20ZBrMcdyLCMiH7Akf+PcZCuXUkaxtBBALn2emrwVeqKDpTcGnzurR2V24dcYVyy3za6nQjm5SbfPs2RS40USsA5ovoPvMhYt3oQ1+2wc/xUIWV2HcpwIeSnk9Xd6PdCRCtNBZa+uMu3NstzHMRYJ7t+7l/OaxCDnVtB+bi0g7Vc0G/VrsUAZ3wht1dIl9Y/bFzPpUIOxilP1wxwlSBI7mgiySFMazbX7hyZT1WnGh/405PUWlQ6or74lQ1p53UzPky9/Jv7LDXjeDGIBRG+CctCmhgWFuq0RWT/n78x961Vvo8s3Oh08886wj6Z8P7jvH/aT0op76Um3Lsdxl67vFl4Wl/mteFPSuOkbkAqHbqsQUyBAuR/dvlxYGuaipf7ihq/1GzkLFvNqQWMng8odsyyPe+ZomrvDv/OtQC1eiAmIgEiLISCp5puIDUxu38ef3SjA+R1MBkQEZxMvFhvK78lWH/vxSmjdX43EMHOVU1mEH+ne4zyWYzrI/ooqw/ab1AIkQR/81AHT5kIUDVQtE72fP6f2jh+LuoLAxCRYKQRIIgxk3/O3sXDhDfhR+0BzQKEiAyKySKKSCwBZIKBFAikFgsgLFEZBZAkVhFGEJBWRbZPI39vxKl3CQUADeN4A8CgAlXTgtO/Yfaw9EPlEOH6E/pEkwVkn8qEqoLAFBQigkiDIAEiMgoxiiSKSKEiZ85wa/8BFhMzb0eT+6M3/zYiogv9dnU9YVhsU/xIMR/eTk6E3ZCfztc66GuFj/6KX9SO0rtypLR+mcwCbqdcsjH5tV9bY2sJQgSEZUmW/zVykyzxeLp1Olk8FRxka/IlHI34ivHtNMEDAEVC400V4EYFsdjLfzz+NwDjOdfw58ab1lkb3LWr1sFQKgl8SQXjjr3MP+WH42bODg000iYc37W0zaQKFX2ezS1S4duH49BvTcTh/+dfNNrWihOHhMC+FkAGMRNkbi/Gg/ZE395oB9ARSJnIGGBR92ROxnToYHIBaWkTAMdFKMDOiY1KBrQmqH0CG54+3/yQY8bCAyTBiBjGAEQK44cAxk1nHX5eNw5p/Gdfc1Tmz2wmoqYdBPNGG77oUlVkdNEh9Vh9ztmUxlOy0dec9juiwB39QssPvo+iDGNs7zukJQQVZe/TscSmxYzBGMNjxLIkgP1twhq2E+EJqOzQP0Ug49VLodroUXilsx3Uy5/uqqbUAIwIiEiwgqMgKooCyEVQikgiQiBICSLCIniyVqO50tJXb/LI6PZGBfwJZ05966bMHZ7fh9ecMry/9ZEjSn6fj7H6lCbyi7d04O+ZHnrQ37rJtP2Qe//X3+S5XvUfIw1gQj6x5qPP0Im8Zr3rXRVN4dZj0NALkum0w9YPsCgAZF278Jc02Pgv62Gjvoy8X9vHfCOkAkVkNIvy29Ln+Xyd3zvL97vWZ7SIDud+eF5I4X9h036d/fMt9f+2j0dWfxrd+d/k0HOUYbz8qoMfPHDeurrTvvDozf1u62487OoZAEZlUiBIQKify+g42A0MKlJ770+3/Xxkxk/9v4UTcU+N2s33QVzIQ78+KdDo4tlvd0BSRXg4ApXunP0SxshSINJ3Y4oBZFPJByuFrxbOuWXZ7Pbu2fUGDHswwBe8vabWQyc6kOP0SUSIKC82MUGKI8emXZW1UQNtrij9JiURTDv9D04P3+mPgN4z8dFTmIlOrTNtUbYSOyGG78byx22UeI+hsOMtTH8QL1p9Cw0DiplY140p0WWqS+BriNJJYr8qc0EAsOfRM4DD6U7dbT0ZK1gEzUT84rWBI1ydLPvWHSvM1v4dnf4+1PRMVky4eoYu9x1VMeXoJRlrGxYcO3CpGiwvGGPNhJ4HTURdncxM1FAuahBqQTJENMQ92LVVQaw1AMLcO/RMZ7Sy02Yr6p3wPlagNX8FiYojmDGuQ0u+CK9VQS7d79MMJKnQ+Z48ZmMeUO9Z/ePGhhiXyskSQBJBZA68aRCQZGQIRT/NPKGbgaYLKf7n3rzn79Sy8qrIGITo5J14MESqr+J9WFteBVqFIaY4287uMAJpWY/RovTBi0b5rc8LYbU2QZH8Ie38nc0q2CcCsEvhCGnt/0vN+02zUX/pMMR2niOR/fUf+uE+KcQ9Fw2LiKpr4kHS7h9IHV8Tx+UGUQNbNuYEC5pdzugdiL8dYwzwBkcwzSd6DMdWBa2hY//QHf4TqJe8/1vPWXjl29h/J/Cs/dz1Fu78O446+HxbRm+32b4+rZpXnNDhWtxE7hSB7H5FcOA72jGWmUh6gw8Z2gzX3Oo89IYiuwsxuUMzgSwBsiv7PJfQwH3dZycBV5IAYD59aLH54+O+5iiIwAIjEQJk9lb8KRnt3eSgwPHvTHIywP/j7il60DDVlq1SBglDwuAyfj1+cAXY9I47aksl8TaUB6tKdiuwdRYf196md3y6W1w1X9dB3lJVfGD2UzTh8wCxD+iQQ5isk8s0g0fA5nozgGNiOY8h46j3uKdeF6ZdbRRfYkOqQtA3tQFGoCIBf6Zw5O2bd4Ow3l1EfbMAusAf4+PH8h2akMGBRvIYORgbATv/H+fu1OZJmuLgHpApvproQlD+1sNWe6q2eKZDib8ntdgcf8m0l2sZPNWG0kqbKLan2HP5fZRkMbKrBBIxjOlSRjOFlFpv1LNw89cLBkPIjAtJURI/1u8FW2SM3fRWxZpMYC0dRlno69hikN9nbar/qGtEKPCS4UBIF0HpUru2ZmW4Kcdn7VUz7AMbkGWKZIJ5YIW/3RCyBK5tWb549rRp3zTkwOHB6brKyTszJ6v97D6gZUxcMJ7v2w2Pe59Fh6rJtO2LtsNvGugbmJ/03tw4w3wux9vVnt2aO6WJ9eDTKeeqHlxUOWL5Z9J0DNQtCDIsiSCQhIMgBID6TzaRE9ZbmEW4l6BtyRDhVOaIhIhIjIIW/oS9LzPVA7MOQg29FTfqVOb+rsKGyBcfkWNH59C2ppiDijIMgAptTJA88Bsyb0Cfam20qVi0oIPwzcnd+YmX07hqj/LbBMGmtZmuumldIVvsDTfvJKTfGIQNGcvgJ4Ai9I1rqRXABSAjQQwVjLoT7zHxf7YhbNzJv4zbx+gvKz1wRvkiEiyDISKCgpBYQWQBZCCgQUAFJBRQgLJAUhFJCT/r8DTwhjVhZHGw1ysP4In3xG5sO5U6ATAJHYwtkxf3wcFbeAnNg8Sdizc3OeYTXiLkf4pQQTiKaV0mWpjlQn9jK5AAqxxU19u2EriCa333K1d91dfI377aussuhbqMAjoCRffcWZigBdm2zl99yhUNbZ3vmtP/BmbXXkmu5zGOT/lBpGEfqivJOnNcVEvQSAlxJD9AolPM82g4MfhC5Of48jVecQxwkF+wAmbsUHJx/i1enVo8dpQ/hRCCGKDwRHHy05Vd3Pw1KQkU34IEFEhbKQorKsAI0WJ/2SRJDEmi0iiSRuqYRIVkGu8WQyCIhkdSOYUAoU/sgUDjRrLFhVHeSBDDErxkA1hNKGQGBbIZhaWQKsmqaHBSxJKkELYwy3CqVnmGjkHcClxYgCgOymIwGQ0WaDCAULbkpmWAlsoxkmqYhNW0av4oFkk3ITbdu0wClgsGkg1wyEzFjCgQg1BlCxB0klkwaaZWCoSRpmEwxMZDlmmRxvWQqHq+agZyJIks0lKkeXLVugWBtZeGwA9QKBN87llXdIl+MoTttMU9+WnQQZmYNv/GuNlgL4+Xbqd0E7uP8LEd3g+yuUgH2giRM8FJEZBBYG0ifdVH4v0/HrX1OzDuZg7dgZr3cTfv3r+QGaznxb2Aly/63CoNWQxixyVTtDAiCS8upqtXCN7ebwe179dXpaFoK9RF49G5jucNvuilEfvqP8UVypX9mcrjPmMcnHfNZX3lcqpDkw0iuFySwHLhAAJuPvmRAPpvQmBIBkTT/qjkzs6XGOkTEnFJxjjs95BZbkMy4iSa0uTly3/wiEZBrg/5iA6JiODFJDR2ZwdbKJ2cEEYq6Toyu2BjLCr0XiZQRHGKBdoIgLIoIO2kSG0CirCrkIiA4wTm1ooiLtRNrVVXyiKDsbzcmks7UY0gK3irqrAVDXUxUxEb2aQIXsAGsVERwiGWJSiGkAHEFEsRGoglwzKUAvAFbBDJEDSCt9YjGwVqQuAjj+l60yL+975wIEHn9NQNknGj0GH7ODbSBrPV9Vi8btwtXrBsQ9RPg6E5SzblNoy0tsJVNglYjHcYukykNyk6XU2hNI9ljSMmrCOThkVipkOQ6wvTUl2BsggjIiIQgkWICIg8JVGDEBCDJGRdchh13DrsOIkigDIGaAvbLgs201HxoJGOhRBFxNZso5oSKki8VmIIGF0gDAKRSCpWGD/IhATWsWJx0bkVCCkCyK5llZfKP8P9/03V4PW3xkuIQF+QkTXjkKgW852Hnmc8nEPBAFFkkFUkVECKAsYxREgoLERZIsRBYKRUZAFjGKKRRVjFQIqMWAsUVGCIAjIqMgCiiiwisVFFiiMVQYgqILGIoKKALIKiqqQBZEERJFCCkUFBQFiMUVSCihIosVFZFUgoQFzdhxvBzMTp1hnTOporjOXePag3UID7EzvJMp1DXbLl9Ab7Nx0jFCyvO7CQ+ck6om3Z186hDac0s6QqmMic+tDwysDNLO311h1tGYcdfh/jqmcufuo5VFU/ffOaNscDIOJLSh5HvTeJIsV3jPpWNIvnJ5DOoO6Ft1R9Ci2uMxcMXhlRWQp6bndc7txwo03kccTehBnE72OaVZzcixtmVVMoXL5sTkANEclITzUqY0xCqGTKSAmp5pqIFb5WYRzKKm7io3P4M6SFoPYJYcH5w2DxQuLYa3SQQyZitYpgyGUR/61ZvtzBmnRm3MRbhkVFayyqmZomWEUpckK1NkqHdlNjcTJq3WqN0Lmhb11cKzW01lbrNXSmDgxUjh1UTEtQ6nhRbiLq5q5m5iHL0nIiyW65wu9yU5l5NE1UMmBzG0VTY7HuTZpbvMy6DWaM1TdC5qyrjbcuJjp0ho2boZVeT/hIHEYsIHXpmSIQGAyAwCFtIYCTiRIMQOgapBN04TE4ZIUGQBghILCiQM+nMk4Q2KBAUkNIqYitoDhIKXUQgraAyGsAoIMEgwi3jcgmsUflFityLgishIqyAkn9YFMMVSyO0AEpEcQpSQBkQbxCQ3WagBuDUSKXg5SCZloo1C0SosYkiBAIsIhIJrFDMEMTSYAy0K1FSREsgMBovQVdSm0VtFEqJSSIwkEQmhqTGQmAkDQ6EAlYSsgLAWSYyisA7ISg7SDvJkhzOaB1Zwh0tA4g1hUFFk7CSdEk2ydhnegHCBGQVUFhAUgiRjF+IVRRVVnRgTAgikqHrEYiosZUkwgqHQiVBemPcZpA7kNqMEcJIAMA7CFiEgsjGArBCSTDWAS0O4MVWRH0qwd+wUoS/zxWVBuCaOVWXksmrGr+ya6njpXAPJSSjZAEPSMJrk5zY/biV3ZpNM6i0lMHZb7OEOy+3MykSXuxGxjI5xLiqXFYlCWquQy2thF3T5/TyyWsJkg3CbQrb5nQU3p11yDkqqwBkTLdbFVkybpcauMaQkElkQgF+ORpvaKytHUgfoG42/0I4PQ4CGsF4JmMisiSEiab6imhCR8aAu5FR0iqkSCASKDrGQBJEBV0IIIl4haACBrFBVNkCCoIZJIiikjmKl4CghrMwEQjOgKq60jOIMKgOqqoEFCSJGGTnrh04qyEA72AsiwkVYQUkBRJyp4bHGIUJoXd7YZsuNoaqAhktNhrHI6aCIIVERMEFtAG8VzAzBBNZW2L9SbW1uHXrFeEUKiatsQJds8KI0KknY8Eiyu5Cc7HLp49Kwcusa4zM57z/dCnh5EuY/rJ+lCImI1GHDwn4dgk03M4VpbkywmmuLEhg5UUAbsVW8UVXQqEhsStrojaAibwBUNgdUlIAWMQJdbYAGGp4wiUIt20CEdGgRAxFVJBSggAjcitoAhsXsmLgCsitQVMbE0qUNkFNyCoOsN4Iojl33d7ExRCN5hd4ICDmASxIR2AIJ55XAmZ8HFRiEgTQ6BpKDcgIWLkF2iWQJAEEdE3iCaDA2gSUMB6b9V4JDaQvdoyUY2IgdnaTqiJzoNlLc7uZpU6NjeZCypOcUsaE03XpV0VS1WPkymjJfTBIqEcqBV0T/YJkcO6sEutYXFJi8ELYJSbY0r9Yb4NGCbbUcENVN2AYuKS+fsJCEkIRg30zjgpQRQNtsRRFgQDOV21LCF9IwimsQmlILUNbZWC41UTYiFduEISLMxCn12NGxEXMwyWpV3uC7fICHiSzlwquOHQ2e43+r+bq52D09/LJXzu+PhFR8iflOoN8nRh2cqGTMnXmR2CkkIKl8c9mZ7jN7bzGfy1yEpGeMV0u1qpb27OYpcv7/MCmuff5sVXiAEEJLTGQvkTyPsd89+Q+zo1oPH755mwgTH6K5OXJxrl4xJHSikVUJCO2lgCXuLaEUZEL73uxJhjvryOC4ldm81KUuZs5iXQOmsEhzHeojY4wIbG9zbobgcqJOi5MRA7ghnHeO91I0SRjzqOmlKWuvvIqyWpMwrA6HLQzgYhJRJzocdc5OdUVbiaApom0AMIJARdQovqs5gkudG8kV9fYjnUmBKgSZwGjj7sCRPTTtCRU3OZGpLY6M2L7VPe8IJutYZvaGN4GzBFZsMVA2IWzLkIOiEfK8k7HkDeEu6C6ym9XrrDbVNWq1FyvGtN11yrykW4h44UsxwxzdTKKiexJhpMGGNa0OYJyXLaHkGVFObJCMqHRFtzFl0SOaxKNLjTaXEua1vDW97tcKUq4uOTeUDWZKuqioU3vEdcZmtTAXIZvWa3cyhVpdHPT8tOjMBmIw+6FWAFUjM/90xDGCIqkCojUjumAyZaFtEQiMCjUDUxgChCmJkVkrJUkTdDMobsJkcIVRBYjJRkOuFkw1cYoBhStshUEtEbIkD2mC2GIVbYTcAYcRQFNDCmnOuEzlJRmmwLahcsDlMYoGkmnqENUWGqWVEC2wEiw1lMStQbKQWDQpKIoqwvQoYIDlIKGzdNukikRk9tlDTDgwsEW2FZRRFXWUFEkBIhIzSBWHVKzaRUVWFZWCtsqBUgppgFgwZMpREa9C2jOGYga1LMiTGAqAQRSFQrWFUSStSLCoY1FRFNJUg5azVtIRkWTdzALIy2qoU0jdoaNWRZLCEgxZKPNrzKoaggsMYsG0UXaFBnmYV0rB7qYDiRTbCsmMxKrIsjJCMFnaDCppIoKqrBYLZFIyq0QWpOyBvKKqaoFFa4wFJiQxut3IIaoMAZYlGKBULG4gGCPh9Y+ohfPuwFH27p5FXi7/lnj6RpyU5ObgqDzZPFNeEYcU4Zcs5ec6+q6jESI7uEXeSER0WG5upvTrhNiQn+Ryqvd7Pe1nJ5oFkoC7Rh/FMnP+uztd54gLK4YeYFrlURyuKCeQpRpj2Hr0uKweChXDmeVQJHNdiD4+oGSgIDu4AcjhhzCeporYyMKAjPyuY3sW+3/08XUle+dmehiXh7JUFcZ6dxBO3GGq4nbt1uH+wSwTYZZ4AeNVBC0UB3AgADIgpZWCGIAg8YAAyKCC8IoKF5AgCJwiI8FIil4ophIKqBpEXGTh01eoO2ciI8PASFBoAhIpJdB9sxVlwkIOkq1SWo/j0Wgd85tXuYnnO4JZB4ZwNxM52S9kNLuL5kx1Yz8dv6+R5usnt2NPV0L318xxVrePlertWfm8SvY1mQ+x0jwiiMXWNpxBcxUTwKcXoC2maxtsFu8J8O8bi6LOlUpa1l2X255O1FYz6iBUcEiSLEATEVQUcb66Yvi0UbX2vJckFEQBdVYCCgLiKgiAjUtHSIWgUQ0igKloJeAqgijrAES5klCiGYqCpkdM3CrCFQ5cGaTTWWSCm5ISQiMBQgCmsUAdyAoadk2qbtb2q2AQHMHEUE30w1LIgomkEFsayUIArmKA7YJJBEze4KsioaRVHMRU4axDY9mroKmrBvEBMG25ilChlUFXELrQkLzyRX05AQKL50gJsbtsHjbCAbcXBCPlUiGTKEh8IFFi4C1LhTNiBqyHJM5BBRNlEqFLvg6Nlq9YpBmW4gQeI1gEagHo+utGBsQlNITaJQughHdDoo4iDRsTVUI3oF9gXZTJ5Fq1aZNRdqFCXES4TTEkCLICCiwBWa552p1WrYEgKENKHBDScJYE8Wk9DSIc51kbGxHf98nlQJlHeQVHD8/hN7ySdItnqF3sxkcqi/VTaLj+Ta3DOXpwXajKWAA9Fp93eXlnrI2jzqSOMa552r4txkTGHN5Q7hOQqeXzsZkIm65HJyYx95Crk1Xf973neN+UH/asXfTZ/+nLnEoTbbgiJeMVMmtmr3CWDTy3sYdZ51M+vQ+PwXO1PLqupu/tMps4KlJqiIRHCvkXtdImieW53OhP8mU2Q4L1TsJdduL+vcuL+hOwMTW7Eny6B7CShhLXWNFcyz0m0lvMAM73u1AiUjel3gcFnUAZ3hhKjvTi7BMAcksrJmm0jr4pllrLpmLiAN3QYs5lVXRZy+E8lrYR2lo+pdkgmb3vdQCQ1F5yedWce7FIIWkCXNMyeW7gqDekiQkg0wazSyX2IkbJgjrmYcxcHMLdZmdcribwwLmZul5rrbrVMW3eirhps43dzbswrjmJmaXKusbpRLC6lq6qimC5Sxui9KbcFdJm9GCavLjoeeNTWuEKmYqGY0bFta0060awtOW61kscd89P+QDsBRaMoMBVWCn4KVgKxVJ53QZSuSCjixG2VmQINRGtZKICEqlBGSW3u0XAZqFJRiNtpGuErAFJAWCy1y1bayWEAe5xMLVZJBdSwmEgCZWqosk5YFwADWDOZISSaChhFqRYsmoESqqiSLFkMRySTMYCCqW0RUFKlSJzTzObs+U4uoEpBSyqxjGDACxZSjBBRGMRbwSlAATBVVJZJSioi1LFiW0FQYisFAgYOBEEI4ULVixkF5YVFEylRJEKFWpQERoMsLIILUF0l0A4m2Yra0luQC7TFVtLgh1ynAFVbsvMDOMlViKR3aJAFFyFWjulSGWV+MslcASiRJq1tqmL0outOqZCMjEsJY0pKSRKixNUvSF8e6FzV8tNDKakCASwjvwNb58YWctkjhzmm3UfOUPKn7PZrhkwziNmPOXUE8oV1WvZgveYt81VOlg7meObQ4J5zONI393O5pvZnzx5nnM4DyyHqEkRk1IiUv0++WPvOeDg6s10vKg83JamjrmcEvyzyy0s854rShX03iPErTWRX+/lFmnPL2LhB0uuwHijkXnM7LDH1lkIAMcwVsXt8GFBVVyJrEDURIo0kQBsKKhABBdGQZIIGqRVUwKQFXUiuCIipuRbRFSlSCANhYguIqWiq6A7qlKNoI6xUdiQIAImgDBI6wCzZ7lLxd8gEF7RYiphBGytbRfauEXjlsEszY8QkhgpCFG9OG94GfSoOGELMc3V8u3FNKU2SMlgS0kN3BhTvIKGk+EtupguAk2NpJAhY0gTaASKRfUtf1YLhUHELb72i42dNIZ0hoHkQ0HsEClFQgNZx7X6C3d9uCYnH5D/RyV65Av/ujze26Rd8mePWBh2P8Te0QNUR20OgG7AC0EAChQSRdooN4iou0RS+IKuAIgJRBkkUDZSAAOaUjKEQtAAgBERYxUQvl0xTaswtgAQC0URMDEJFUR58axrTS1TCqipZkIiDHUzVgFoQIgIOxsFKCuYAPuOSWLCreIJuRBXEEvEFYsA0gLiKCBYiuosEVMpmCyUiG0BW5lAnIQ2I1Ub91MzyWMRPTeEVxtHjqYgohKKc0k1Mho2vstyjhuP8I4YAHKkHvpwo88aQ2/WsmK4QgGO3FX6hfgPDnCTjMDpdBwlipwhDUCYaXGmJAD03BBQWg0R1g2mkmmMGxZJiC7KAs1UWqOCEIRRyggsAUgYK28dzOdThgDoY20QrWJHneinVknGyrJ4wlibEU0htCUbkdOwI4uHDeRDliSQCh/0du91G3xYVQcnHQX0LessOFYjJSJpxlm7wisyPl91Q6edimUkHCVPMV9FO6PQ4QJW0JYxIGsObZZMlwVUWABwjjIrIllwRF/uxaBUzs5JRJFFEzA+TEEmwdIghwyDf03HMwgOHnMKfVlyrgvlktB/7/rp6d08a8ax8xPw8eU5jl3d8KpI5mm5bZd6REwRfK2Loxs5sFk3spghCWArsUlF1pwmzQJXK0GTAklw45w4ZKQ3HI3mNLgG1eYj7DbMoQXlabZ3bXZfOMLCRbWc1JCoZhpoEFg64HOHChbvDQazNEkCRrRy9yGukrSqvhBwSQ7FYBXMrOc7dzuTPKl3kSi503dmhRLY2tVm8MVKmcNB4tjqtzLq2GmFrdbM1ourdpvIaQqtLTBWbraojM23AaNxxzWUxtOdXTdWXLba1Y4NiLdZjq0tN5c2XRRETORUuHcZeVuPZY5h7EKE4GZBGVLjMd6zDLXKu0xcVDqEOsD7lhXUGLJRBHIM9CYyCDjGSQIMhYlQMYZBwIANGQYkAAPv0yQI5J0AGjJHXXc0KDIKKgQnDAyM2mNVNKMk0mZYTCaumskrNO0QSacdps1azTEGGc2GkJxuS8DYw0y85hjTVmZQ5Zp1JIMDRAZKwLklRTVJgihRB8776P4vIyT4veTRE4aC2KCCrLmf0Of/EbO86c7B04uVRsROQxF+Il382XMZD7trcZY8yefOC5m+c2pMqZX7r8ql4dIo3pZ1Tgc00nkagirma3UWWv9UbdZHO9HgKVgEwBX2mWTAePhzRAggy1fS7otneL/hIKKrdJjncLkfULblCMmDmMyKpMyKaUZzhdGC5wLEgETRFHAaIqxrgAsIg6AEFJARGBAFwZ18IKAGSJpAFDYhCKomwLBVLkFVvEEPOQUEHaKIWYKKDdgijiKorz4ovAR3WKCIYWCglLQqJHKAfB2TJtyhIF54HsGwIFy2EgUwFRM7CSPM2RIEkcgNUiLZFCRZAUIsAUgLICkBYpIqyRGQBiQBQRICxSKKRiKCyIwkWEUhEYsCCyCKRiMCKKBIpAUgsRWRSQVRZGQRkAkBCQkdtS+lIoaWxpsooZivt3Nznvhg7bhbb9FFZwcBLa8CptvyVGubX+XV86vQzI85IInpNLhc7zI86qTZJkCA2yjtTHZOsNSsGrtcMqNsi3q6KF3BsIFGI4i7ZuEDBuImebwSvsHJMMsu8kl3L6b9RCCkwESMQC4sa2IW+tJaYNQoLXoKuKjtFVZEEDcMaWRBN4oBqERxFFNUzEoRNIqgUDASQdGgO8ED7YTNAGDEYmlAtEBCIRcKLBHaOIKKGuudYuZUwoIjdgipsa6TUmxL2ulsCpeKqjhIAGosRVAtFvFECmIKpN5uTQsVao0XRAVc3ZCkBUCLrdosKIEHe5rXgQtY3XYgDhli8OoQEQO5CKSUGQ6Z6jnoFsTutuUgyeCs7cJjcKI2AVQTASZ3qXxUxAuxC4E0CUIhsBq2YgYSArQsILIF83B3iFywCaFUCKwrdXdB23RoUU5BNYazlqrgXS2TMFzgOvbhcGYgGk9OBTGDQdEM6+mtttNrklLgsEirqEViCZFwA725QdvoAMMemE/6UGMPuCYffaKQHnTfR57zx5eeV92gid5s58i7uCriIDzyLaOHkGm5AL/P13Ged5NSqmtRdkwXnUF/hBbGZcZ5y2W1HuKyApjKhx1GQ/+5AuaRzvaJ7Pq3MaGYkdmyCLdzGPk25Y/IIZFRfDH2ojeXIZwuUiXKmPvPGzkdcbx06LcXjjEzEjzz9mQd3n/nPK60HQQVVTDFiXqPxvLv6cdV9O1mhoF9JUDkEAUwAvbAvEagJWQG9Z48kiCX8Mi/UMaGFMlqZdbRhsQTPmDypKDEr5sZkvtzdHOxHZqN7B2oL7AXJA+7vXJ2RohGVuScuaCyLocgWCSQmMmC6Bq7SUiVMMkfdKiYJmBYGd3QoE64QScO5TEkEJDZu8KOvNp0lyyyLntkmCGuhKc1cTM8wjBD0wvkE7Gck6226mZpwrmQlscOpvlXWuScc3FUUrxclutWu83hFd61rNGbLdWxunMtteLm7dXdpxhdOt4YmkurEt1dOatplt3kq6uouG460oqusGSuS4JhtNZpxzbhbcczHdLvea0ZrZdiq3Wl0XMzNXV03ENOXPQe8ncQA7ksgxKx9JiDRJgpaCMqlQKtsBRsslUSgKDFlPnoGZyN+NP0TdNINI1VSr0lQJjBRZkzKCxqqlUI8I2c6Q01o5cWikKh0KrIQFAccGqwFikFAUgpBd4OZgfw1hjqkih5FyRZmrhiyIlSAsETuZJmGZCdNGB4Kprei0U4GhcoKEmK22SjAWtKiWZhQWTMtSQ3svLwwOC8TKW1KndJAc5dZI1KY1kiBjRiUIVQS8MLMFnFLBmKa/oLrRaxTeWHZqAdJSmyxtNklAwsCwznnMENlVUYsFbCKgIdLt1qSpdWS4xRG8NmKXLwEZjo3lwtYlLAS2QzDMlYlEsNyEMMMagxqJmjRompgZnDrhqEXVoCMEt4yhgwUW5gyFuA9s5yrphUrRGqSFYW0oruECTGEBsFMtLsbB32EZvNANllqNlooI6yZGSZBJw4owwArBRqMcAErl8LlrMxBRxGNhLvjqambsnLWHg2GWckM7gG4aEJngal89KWlW2VmrscyREh2MQHKVgKJg6LTtSVdq2l1MLjR8fEzQq6RtZbZOtMQWQcQeCIVQtMe7QWOWS2wtDXn7vPuTu85zAnhoEIRkgVn2yhRvP1m2pOxPNP5pJCqPcnpK4SY6jZCLEenI4XnOUvSpz+GdJvAgDfJecylE7P1nm6uSc4IPZf5Pi9qiORgKe3nk2Z49il+/cL0okEoOG7Hl/nhWkX7rft+TyJR/Tzw6YZ6b3aNIP5Kznr6bM6IHn49nkfPXTUcjwzjH4PaFa1blTXN+lN3odz03h4G6Lx2v5YMLGaMjrTkQjQOuf5v57viFHh8YCPnFeMQED7ABUIgCUEQFd4CKuSCgqyIAhkWCIpQuWDBkZJQAF4iXYokSIiHFIqltJSwSQkvaQveTjGRrsNjisChK0aq8WkqoWoL9sQi7owDNspW4ziCZEtlBrApAYYSGpdpvrh3m5BDVcEQH3Pvnbb7y0FkvdkRQeb/d1X32L5UsPcI53DHHki6TLRO+8sjdjulzdHObWrnYtQc1XYIW5h4Xljzzj70TtSU5iNnylGuHLwczMTWQQx+JHLMvobz4JI8Q0CKaEI2gIuOETeVLKCCzck4FSpRZQN4CDsBEBOEUvFUTTS/lsFoq4wFoogusVEUDTbkhyYzlGRUEL8jEp5IiCmYJiLoRUANdCECgVMoxUFcm1KBpARKCIqO5MZmCqdbqqhQaxQJCRCkHMJJAANYorFQKgNQVRckBU3uUpIhAiIFSEKxCb+H7xnfbCPBsUTGI+NFs+G8owtOUGd10o4BZh0YLqTFV6IsNkRCT96dStb80OM8Z5KIhnF3wBHVZvmQlyIUDCWLbDuaSFC5F3wKLdSJu1TVqLqWoCqpFUvJrd3zq7DqrEKTOprpuaTcpRN9112wOkWMEiCSRQjBQYRm10LS1s1Nd1ikjawmAxaxqIsWMzvuRbVV9lPdC4Z0VQOBvXbnaCn8SM7nqGafEGiWeTaXk38iHyvVIkdaGw0DowbIWcjz97lueei1MQ2EPjDrLXvsR7hY3xshljrIGT5wlwTzziWF0zY4yns9nznjv9JPH3yfNuw9509j9rIw68+e+ISKSHkLojcy/KuGydIRrE2BrpiUoBk9RDMONIoWNBbW9982JO4TnnZe6eUOs2M5AJlsx2wqkhkMqYyYfnJSHk7154BCGMcsSQmwKCAh587lXDEGEMr30Ywpkcve6iLYRyEvDll8knaRQgyp25OQKal5ZzIu5rDgmQ+CmZUvjtFL3tUcusNX3/rsY/fn1n1T6Lpj9DxACCXBP03fpUXX07Uo1J1BYIrxiN7og75y9vuX0iQ4XcZhygg3YlHU8GkSTVzdI6AvOqXTRZh2GE14SVnPFpwUS12p0Ol+AkJ55hgMdHVRYQZpnDy745mYXe5xlFOKTicmd6QICd55tZQiO2edVYzwrq8CfDC6ug5xX5W3MweZ2iynDam2RnO8uq7K8ZvWZgpjo3maEtK2rlxw6Ny3UTM44ZVUX2aM5u3FKDkQGPGFtFPHLZETLrHMlWMyIdTd2DboyWycgioxwxVeDDW6LuOxHQubMwwzVzWuLUq7cu3TljdQXlTJCq6l41RLkmZiZp0jspd2GY5T8nSd0JZZRVTxtjCLHCat2ayYW2Wm/y07022Ju2swGFIoujO4maYrHRaaS5cwLEa0stVZWNqttR4tHL0C5DBQR5AgZXIGWFwVrU3swNYwroKW4zckAC68dTblJRa2ykURpZWIaaIptKCqKzNPJsM3suXMESyxu8xFXhog0FaLpo07b06Lq0RRAVGMYWvJMMyWhqyiDg5bghsWrVzu7ZqMFUZqlsiVUahyCY2hgrlqVbKvOYLkg20sRaU7WmFBWqwWFTjKKPYoGjFJRjBEKjaCNErS1EmQBKDDClYirFoyiqxLaV5sxygxW6sMTjuyTxSCyH6JJAFrGh+5MzRNfUCYQzffrwruzPY84wEIF0lLu3RdXtd6iY0aPBREebBvmYqM7cyBmy7pnYt2HSfO8Bqo1ST1lUQ9zpXlybuQrGvBHbp8cZWeFCWOovlh4uS+c7zm984PfJtgeETzXc0TyFcbijeYqAyMOAMsZZD4EneBQm97/q9vueBwvfOniMUdsFLfOmT98fe/XefSQjzxW/VBXrXPjJljOAfL8/hMx+VEe9vi55bOP2BhzJzisaiLKNUdeGzYSKgbMISSNbbbnajwYiKgaRQzNACCDtEVNSIIGYAK1EQQgLBAXXhSohkAQYqA5IBIKqhsRQTgGmeAuckjvpkngiElNvk4/Vh1EMCs5T01ECSNnmFVhcnUC4NgV0DaKX5e/OJcEjrBMP6G3GWUlsJ14ReTB+x7Ut1wOYMhqxe4AB6oRBWhhBHMvpXSBYYQjqCAaY5IZN3DssXb/9baWDk+/HkMsu+69AywWRJAIQJEiCIIikIaEAv/NOxPifJCQpJb9EAqtYliylSF44ppCxii6/nO3bx2eHwcf/vDx03/2jE0ZOdXzvmwVwCyUejosZB5IDYNSUCkKNg/p12/PB8YHp9mHnTP0aO+KqJ1fRfh9XLnklRkAUkBQJ+ID30P3WZI/bg2U0EDJrVxmkNJYOnCCahsLoz1nwu19BSSH4RMJIh+vHRErJAEAx4/zKlYWFIh9lcM+WTz7c1yM7ogAVFgKoIgKA68//WrBL8dewe3qr0Lu/2t3ErlgsgkgrIkjn83/EPZxEsq+frUsAGKLq7XLWAcrVIgQIFbgoACl0CuD0xD24Kc0aYp3f/XWhWQ72gq5/bTuDN1I9EJFkq3cW28GuC6YL6Qy+D4lBM8RBG53DAYIlqR6qQGsQQ91lLff19RfgDb9JzX1LgYfMdNJwjeK5noiCNQ29Ks64f9SELWagK0RJbLCGTJcLMvvCaClgsgSSIHigG5sNFQhHc1ZK2oQQ+Zhrfvw/SXdGFlBm/mNRsJIhIvQpOwT9rTcye7cssJCZImps0o47B1RaTHi01UiLH+quULCQhnzbzJuF0aCafeBdPKCy+n9nTXmhnz0F4e/fonptxQqKSAhzdFsFwuHcUJpAUFIKsBVRU9rD+JzSfKA+xiXESRJAZDJHJqNSO6JZqETdRGgUAAeZ2pP5j/19f2sxlprGWzlPAdsq1U86JkCgmCAAMEEYwSKP3RRKIpGCMkiISIL3wagCyKASxhIoEqVJCpILIqqBVVGCLILCKjIi2EYiFQEZlsqVhIMZpOf/VhA3/8smh9vHwwDopIkgSMmbhobU5oBbEkNLzL4IiFnWx3SHWBZ+IHANMQzpmNf5DyEAQdUW8vUb38Eg+Ga1y24zoJyf1o2Z2gowHYWOsBcxUkxp1GArZGqBKLAoWGBUlKB6FqpCLc+YwhcP0mrUAnNQVnxN7m3NTmLX7K/xLzRFifqLSQShlRzpT58DRC6UdD0lleS7MD1SJ/iT0nzEPsNQDPOoKArCFA7arRIkqB6bZDgAIpLfjXFsV7E/jGyrrECRElHVEOmL7OKQ/HPd/vFYrpp5nnc0cs0G1SJCT4ZJZE1YFjAYgpIqMXVsA+RFIeUYCiT0lMFZPSk1GGkUxMhJBYQHTWFbCCGiQib1dQZJEEhtkKkxqsW7pgwMYCwMcSMSYIpbQqVgpQSREhUmgmWYqE6xVViiJjJiFgIiBWCM6PL2SkQSYwbT/pq/W1E8OcmfpJjmBb/FOmpCUX0/HLiMkB1KEVCALISEk1O442TiCE+TYaA1DM/QJvH1CmGP1gWKNwjuqH4SET/PDiYfNf26UKnUge6ZyO8F1MrwUQ3IpwT1wbFqwjCKSEitOzbrnHg9N2qA+XNSpEpAM1f6/KwPQdH3Ortx0rNidQpzA0e+MEG+IPlAt1y+1H7OwyYtfTpLfAe/AGyEgSAEk0l//GYymUjaIlgAS4Ipa5CxcPaRlsSTKIZwar6iAroX9Cyi0rsBNEvFVInjoGGHmzj1M8PDfNvX4zXRy2j9P0hB621+Zr8eRg7baWsPHHRFIXg/TPN5/p+Vftnny+ODtEf3cfWHcxhOIEIUjIsnEwpFJHOhEPl2qOXpZed8LfNY7lsN+04cn4a920K79NOMonXbIrQX0xR8vJBP6gAKShBCSsLEAKltkC8SFkDJJEDuiElBJpAEjICkRgClEAtD09zp89eD4bcMw6eYMzo68DsXFSkE8GTYn027o6QchD/2tjcvNekJjkDBchwXulCNrxhRTtiRKkXEohQoTtl5WoAHJRzwk23VHyQFoH6UPABJMfz545J4p6fL1XJ5bsIHUIwndRSErv5cP4v8j3sgsBRSCyCJBUSCyKCwWQ+SQFCMKwDqkKhFFFkFBYsAqBUgLMjIHRWdWoH/NKdz45OGfFr8rMF/X/jQtvEqKhCKQoi/w+EP8F95ijrpHWeYY6TbKKXwBOGzn3G6aMHgwLrtmIqVrT47/TqeRNBRPdmxJ91I/FDmz/cDzBEGlSBAoUAlSCywD9Ew3OiefyzFIB0tXonm/Z5/rA+PfKwU9vIIU2SZKAc85aFo4T5soXQs+RGnnDlpPWnGMOqjvjJ2KN4iBIIkkppVKioMIKNRRSaBFAEfzIhjO1gZGRhFzrBaF9G5KQTAO7UPNS6/WYt9TIepA/+/VvJ+5JDphZH4Ni5VBZBZBFQRkgskFJYAysjSAFW2Sw5OvjZAbsQMILGRKgIwICJTEFkKACopQejy+WwiFyKmko76LEFThdErrop+wof081N4kIckoJFQIRZJFFJPobkalh0eeVfdj9VXll/GAIpRDTOAASOwZhDKMoc74UOUXioF4ERHHEiEFFCKshFUgApIsAUFiyQFgKQWSCkIsBYRQFkgIkIKKAiSIyAoAKAoKACkigpBVWSLIB2TxDpme74ev/nLSGmudD/zvLDrtSZhGJ+qANTlH80kkgAxGSRRiQICecQpRCMDTZzQ/GOo008ETv2dTobxabXYpex6sA0weodPep8bNrKGRqcibtA3uQKJ7I5ZbD+M9De36dzTQfbrK/kaXdcF4ZY0g0ge62EN+79gkhgHr3+H5tQMQWKQUFWKSID3itFTVN3x90BvsU3BEAgZ4H6Z6Wx4EGHLEMaEb5rt8qX2PE9YBvqFkyMaQSRCEOvKQJP06RQA9sbIHq+aKUBEQwQcEOyQMXLQNcuIYYyY+D/fwhecvO3sBW8xeEBERBLwVVEEnAKQFEVCBSkuqh/0ez/QmDEf+sX0lASfs3pxAeHT0+Tj2+SF9297enY7m1b5vZ77vJpPKVEpJHh/MUiDBP+SK0KUKhj26B6IgnD4/7q+gj9cQ2p3Jz0RAFUGQQFQECIYwww3ume8T8OIUA2sEhx6AocjIhJCT4sxsDIKCpZtVbwNAvrqYxY+yaToUM0eLDMtcZEXgiN0UWEBYRYAsgLAWSKLCLAixSRGAKAsgpARkUBSAoLJBQUUigLEZBQiwIsIIgRSLAikFIRQVSKAosFiEgsiEISDGKHRBE5wMSjom3AsnQwdavGzqQ9IoQ/brHwwf7aGCCBvQ2gLcob6FmvYI0AMRPsg99wbtTpbuL42V6+5ve7fbhmugBfFOQDSJzsoBt4+mk+jg0am1CyD9+1epAPb+7qplELAcMQyQyzrZWndZQANuLAgCyAA3goFRVVZLf6935rJ9bEygTsR3UobDMOQ1nqt0RqfVza9OUy7/lwgHPlIJjge/CjCEQn7hWECyMQioXIGkixez1zz5RD4zzlAU6JpACPFvxS/J846z6/sofICp1mLeAIjuE5D7SKwkPnVz4jAax5sa4yc+fYC/VYxyUVGt9i1+eu7/XYW/fgQoHJAkkQkSRGR9PYECwJZTOtHvclCeb91AKmbDe1Bwef9Nb3r3IbDBo2imSaK05xsKBZjShiSCfMsHRAgmNW+1zviJuHreLtubQDT5aG0JGRDuzLE2cdQG2yQDnUp6qHp+PkLUV1zb1eGoaJmpwjVM1mdSLX+90pZhH2NdsJ6l4Whnd4LBZeApHrEPAFIFGUq/Ic/pUaY+7197G8Dr02Zes/AusgZYpdCRJExx0oIQTPDNMkD9Rb7Meb9ud80VCtaX+qN6D//MUFZJlNZGJgTMQYr81+AIAB///////////////9h0J8H11ofJwYN1x5ZsLzs4yBty8812NQnY3qtR7eveKx4d1O9be1cN2rGgLao95W977DEQoEprTWw0KlVMrYm1vZ2uyxdtNM0ArIplAFSFAIqogBQDVKAAAADDXQUpPeoDoAAgoFAgPaBqmgBD1KhFgOiqtmlXYNBw6od7g8HKhSgvNtg0AwDoGA6VTVVoADAkdWxsB0B01ax00BzQDkrgdAlpq2ACpozrA1kaW6AAQdGwxgAYdBSJ7noguMDIgAZTPZ2zpbd02wRe+fDHsC+3dWMq2YoWsKtYo7PdVedtNdmKPAZi9MEQ7TscRrvuxdV5JXuMEe968uva4JOpy570u5dzXOdWN69XPcWD2bBGr1ng73PPYey7lxYsmTPdzc25NSw8fQePLx7zbTM1vXvGPFZnc7vF657FjIuzrsNiO3cY2XjjnM93Fxhd3U7YZ6d0xmmZm4m5MbLG1nJAo+77vCgJscAkFvuq4bTA9eIoCSRhZjBBa1AgCg6AMg6AaDbAD0wjvYPR0HQAPAq67WHRXp9AH0UePYqn092SePAAAAAB9AAAAAA9599zsZAPYAM7FADOKrGAEAaAAAPQDjzAAA9QAtAAdBsWo4HfZx6etgD3AADwFR6PQHDoMNOQNUKAsAGcAI6Cs7bYwAESAAOgq62AesD0B5sA71dpscA9FSDwq4AhgAIIaD1z32PoB6AA92CgbANoAAA5AAABq5YBQ4cgaBdxYHJ97uB6ABrcwdQBA7s0AAOoAPTDzuV7wAUAAAeQAHXQoLjbUAsAGunR3koLdxYAAATYAICH3utg4APQBgIPod2cD7AA9PQ0vs+uj0AAO9x3ooAegDQONigAGQNBpB9DD17g+4w324FKe++3l66aU8tKCgabtyUCnPPduzyo17Mo6NKHvWO7aPXt7vdmjRuzreb117sLwZp7Mo69K89leE0ejRXEsyiWd3etF2aNskiZ2aH3aWEfA6Mc7swEWjYEAQ0ggLAi1ogQhAAZIAACAYhtQYloCglAAIDCCAUxWBo0TQYGAxhhRJAANEAACjYHYwQCh0wNACAA2AiuckVUWta2xtVsgY+ueY3tUIpsGbalK0DCSaqqA0RAAAIAAAAAE0aAABNAQJIGgQAIQAmgmgCNAGQDSegJgBNMCQJECaSQiJiNJtAlPyTJ5AEhpkaYwNKGxT0jynqaBJpIiCCATETJk0BU/GUDI1NMNTaTyBGU/RTano1AiSASQETJMNTT0p5KnvTU01PRPJtQNNoJlPTE09JT8mFIESiEAAmEAJoACZNGmAQZGgNGpmgNUeff9k3v0nZdvlgA9w+70tT5CLegheeNTpKVVEU5n7knOi/qNntgXdSjksNB7ZYe3DKK3Up3LRQzVACQS2cfRtkiuOCzr0+VZYAAfxRtgiZY8MHtb1B+SW5u7THZTJCTGNTpxPLdvVQDNAcOrPessw0LJK8FRBs3U0RKxZ8d+q1n2Vz7LExBSfeqxC4Hd6/6zGFQPOI+cR1PHdUTynVgWfYSjpIC/hHuhZtmnBa1gtkDJAXEM6bb9IRDyGhkC6diA2KNT8Enhnop53VS1nwUdaKJiBj0URMMPrhUSJ7NGcrvwME4IKUjZJ1KPDFO3VVRi3jyj9nKRcRHUD0/TzHl39cLxxR/vxBPPHe204LqJhjnYfltxaOa1vQK5d6rs5qI4snYp6PBwXO2c97VksyxUJWg0gcnXo2EEv8SNAQrVQLYuTBXbZSASSDJ3L9BG66mPb/Bwfxi3sP11wBh6xDKSflnEyay9aKESxBYA0igyCwUILJBYCwiyCgsgsBQgLJAUJAWEiwCCgKRRZFkDeD/q1kDvcVHdOI5ZQxXtn59nkMrovgYoBM9DPU0zq72u7L+2nAIITGb1/TaZMCBZl1VeLfL2QgBUiKVm/3XERAgRaTkvE6xctnStVJIuO1J4+/KMfosCAJMN67Fvye8d+LM8klqx7+2xmYsEJtnYedeSe7HX5d7hnEyygt25bPtN3/xPjzyrDnur/aEhmWqvwVr5pV9vu66xrJRV0uLW6Gyn+CdpQ1nYgO8Dp4MG69eyAIscU/yd7kxT2//IoK4ev3Ovj8UxBoR9ChNuelgRAD1Vz+OeuwRwBBA/1CGPis8k7MI/npKkDo/NjP6QHCExgQWKEFhBEBSCwVRSSRZIsAUJIsBVFICwBQRAFIpIpAFhFgLIKKRGKRZFkEZFFCQUWLICkWRQBQUFikVWQSRZAkCRSEQJAA6+kBHnJYuR/TVBYM/sBbd69wlWnujAOoDuASFyl2zNZrOrR6d25u6dD/QN68gGPHRApJDq/VlP7b1z+QRcjvzyKn/nuGrqvRsO821eF97ysQqP42ZcMnHgfZlV18dViIeGpBATTFdoPrqlF/p/TfrfnIUDkrGZsqfQg1RoIj2OLyJfVyL1W5wzS11QG4AgCISHh+fEPI8PVvx6uuccy0j5qvyuAiAMMLq8zX4pSKtSnCbgjBmHvs6KHpRYwteD6GnHk+BkxT9PGnBdkspDjMwbUHU+1QsYVygaWMMiMV3pIAtKpxhTSfyfa7wzGstAntZPsLPVF+qCRAAI0727JRsP/mz+jn/vtNzyyzUh2Koh2mIfgfA7dTUQAvwVkAjFyfngNwnLaGX2/V99gJz5KOOJUnTIX9xT764ySFjBEvZQIHlWSwiIA6VkBQBIYHC0onIFmhCjStYEn0auHc9q0IvmRDUSudp5TZtVtGH9fhVzej8d9gdMUgl2nYrqkH1MK6unn6Abueh3t1+Ot/ewEs3KVc2Apm+G5fV9gJ216UoQX1P4UceOX1Z5D7zM9RLqxyd/bgRY/+jA6N1bxyZhNHyA4J4LvUOC/F+Z+Z1+t0OfuGQBX8Wnq/NpHotKuVCu86Sj6ZhkzS86W/MxA80KDn5hU/+xsLQ6ZHjcVVxAiaV5ICHlkMP2kh/gp0Z+RhpgCqRYKEWAKRYooAqoqKHS31J+PVnsJDyJDXx1/J7yk/WSC4f02aDW3mLIGlhxX9eOhYsozn6tD5EuyV+aKDiaMgEUSIXvCISvrGvZsqAv7/iqx/06PbxVnLIsohkDgMGr+KgqQ/63U/7uFr/yi7CKbz6kiDuyNMxe3d3Ngwb0qCe6c+lwUIDwnFdfyqNcBQD7Kg9re56nsbcaCA/cwZmbf0l9KLHvsG/fq0T8exZ+XO+zp/hg2RRvqwj/BYfn0w/xI88/GZ5Uhca3rzz3v06jeMZuMeXYe+u7HdlV1CQc66Ai94/NRDMv13wCl5eHZusXYoQUoEycJqx2EndoBTtoE1EVShD2DCyeCHKJxFNPj/HJ5Mfzy9iikIyIh1YcJP7gpq9bb970/YnB4MQ3z38w6nlf0f8l3xAWSb2b9mASen3IN3su5btZAAFQpAjtxQtRAfVt0OGukJsY+Wz8fhLuSJ56MSqWlcNDyvvf/ygeE4HQPHY1iCsrtv+Gfm70PW15+5TxzgVe5YIfmPGrvbo/I8d3tHrDpu0OvOwBFjFIPam6j7HP8jgvjWkwZutYr+LVP3IJuzPuTYcKwUa6dnTm94kSqexaTeMv7o8wiQ985DKnT3R/bT8enE+mneo/O2pApFdB7iS/Je2u93OgDmdvXwemUYC891FFs1ErQmhIE7SvGlAz2U1aLkCSUMradFQMcBkNMR4tG/7LHyTgv0mRBKAYuigZbMFW9+xDAZ2NEyM+Q8CXurBQCAiQRIsAUUiyH6DUD1mENKh74A+GUOn5v1lbJrn/c+T1u8gmguHbvYavROKCuiS9iiihxS1ypegx9msESHjQqcj/lf1er4Q5ux4TZ1EZsHNhnXl/X/lrIoHhIZ+tb552nY892UqCZgfub7LZyrAZEaOEp/XDM+ANpyIrzT5I/LBgWVuo6MNp0og15ETK03qCIQMlNiqN6kTO7I6vjmr90N8gAW3Ie/axd+GaHWu9eHPv8lN6+t6c16ggc8ELsXV1S9D69ll6Hx3cvDZ1OuOTERfr7PVk/yPEDICUtumt+Zv/SayTd0qN2wRw29kPRbrjj637m+3in3vX/rhyzz4KHwSpIKL4QQFQ9QHoqenymBDOHOW/Luo9NiBzuSgKaFWHtSG3op+Np065eteqbDNQzEN14QoGIyUHfIom7pe6r7PovgArZtLvq6WFO925fVTVZPRk26d2wihYhtnhVMI6I/LxvgIkBeplt9P0PAtwin3JH8/cyiQo2aDknc0aPNdkL6GO/TLbaAqO4NezDk4W/4ptL0w/Uf14sLQVQUK8nu/bU0+iev4d0Nq6hqLaQ3wEvdTGZ6qxPrsYoxDg5pHQSEhm/z0fsSHZIOnUiBCV4fQlpu7PcGT2Y+R6fvSzIVvNXJgnVy0s49F/1nIW1eBEBEB+XD9T4NamruEQAbDnNntegIepPgpDYZO6wgYwUgIkb1Ydyl4v3iqZMx5T6gzJ4jSBjDiDWYcgRd6Y/RQve/7etetAJASRAJAHR6v0PJyWn4dX/d8s9eHFxa7Q2QC8KilT9P50FAPWW17T6uf572ls9k3YP/n8fy5eI0/VmP+Ulpz/+ycXY9XsP3/NBpyQiFbj7vw8gZ1Q+Nd7OAMwXfaKn7jL6oDoAB7Xpx+J/TPr6PI6opsi72mzMbt/Zv72kq9shmYt0OUQ7c1eDI+W6jch+r+zTr2/D6ZW/WyjIxy6uWnZrLC5++7eMdkiYZ0qkoVlt8wKgdHHzbdeA3+n/OOkIIIdgBEEAMmcdBnoXWh57yT1GSQ/o6m/pgYsCIeKBVuoDOTZm+TBm3ruP3GVRfPxUL0xHJw37Ptg2QOsQMcOiAUzT8kyglQDIdEAG8YQHAKYrkuk489CWGt+F2DLJORPi9iyhfiXQMfDQV28pk7GD2y/y4EroTpdzO4ihS48P8i8WQBMkJ5Tcvvmn4H5XkE/Ebpd0RR3aeVZKQ3edVM0lBtm4/fJUv6fBe/CcG+RIQket0Lgtq0pMVdXss/JdnvMTxKTzI36P4o41BBDH6RQBhFNZBvd160Op7/Lv5bf+96FrpgZycQe6ah+7nsY/pQsjJ9dTD8DP6FfKCSK47yywmghJ3lOPt9zP/lj3/pfYFx8PdyFhwGNepnRc/ngwAIj/y4yfz/G+1mkCKAKrEgjAWC/JHTGAgRWQYRaYBUAbqWc3dqxxvwG1L8goXMpCi2yrhaj9YhsAWvvz6iLnPerWe/jx5i9sZfvfGAUgHqpRzZdP/Tb5+t8LBEU4s3zclkWjGqzA04mH65qisgJsiA2r9SqGaUpuRrf8ZAKLwkVNzegjBTKTpXQSqhERPiOPZTk4oRqmxhd3tuDGUdezk4E4yiRI5RLBj91ALVEclz8TTMyI9ZuE0blpd8OjGtzpDb7qUEy1mYOxLCdH3PUcIAABH745zTSvT8FVpy47lJFdTrkpA1AfOhxhSnBM+5L4LhBDOygFOYZ4zPLXak1E2W9YAEbjzrwWWr+9aLnN9TEUocUNgTlrscCAJbbO5IHyzgiHXKUTXTmz4LUyc2wqhegEhIkiEgsiSIBISK6vp20xZ7f191T5Sw4yIuFFjI3olsAK66LnrRE391OSN3dotLdXiWwC/FihFAgsFFBZFgKRVIsUigCgoRVhBQIoKsUgsFkgLARIKoLJBRZCLAUIMQgLJBZFBZIoCkVQRBSAfcgERJMEAk6hgEa7agzTRtKbivr/3Zs0FJH3xvKqjyoPJmjYn4F1/231a+rVnARF2Swyf7TpOH8ZD+Hf2pTC6Eg60NwrRqBKzZEuY/mQP20Jik10026jbn+GPq2/aVrBZhkgVWOLzR9oc/G4qELbt2d/aNqpdAmVklTa6Ig7l157pJ1KzdfPc+E/yy5PjcBadPhnpLn+W90Ur26kdx1CATt9pUPRock2Ifi03cpttyPLTdybfhEsgAyHm56OsBGe8FY6TUHxh6gb93xt9l+0QyhowfYv9GfjA5+z7nyaTvjqAUpR1cWZyfCild2fNYA089Gwl7UJj+SxftGPkgFDsTWqE8zBkcEA3fKsHaael/nRPaxsERUBTDjK2Wal70Zn+0XKs+C9P0dUPri3gEi9tfk7YMKI+G8By/b/fZhuwqAovy2/H3+GAT3Ie+RBAcjYf4O+ikWRjpwhECYx5TIuRqLw05wvn+kh0TQh8vewWHGtifh3uHfXy61PgF9/hogTHjuiAq+w203d7i7SoePt+jOVZ5yiBgwC3GASNt91caCkNRAy44Iu8Q136JWQylEOkW+u8SlmSEn+QBw82GqyCXZqGqvtrbJDhvqVq3Z6IiZ7JRToiHB8uDrb5LU7nnlN0nNqqhtmVkts4uPRcXoXpjgUghrtp0S+YHsxOpEZqw8dmzioGU3aNlh8ykMUJGRkWKApFgoskWAsiqQJFkJJFkVVkUZAkEGRSQFSRVkQkJBUkkGRUwkpEodU8qU0gaUYYOTXYoT/hifaH+YjsFVbeHoK8/yPnYej3aHCMckSRkDuU7+GwcXRb/vFS0ExYctamLooYe3g6NmyaYSnmWqyHxZoymsuHzUPxuMMQBoWCIfBDaTT/F5We38X9fGfDp25Pnt2hD6s/hyocedLMPj56A96Tu77WV5Ss7pMZJ4IaisgbgfwmIfni1HHhawPvTRAPZEcwGG7CpFKw6lKSB/61Z31RtDGdcNTPQwrBdpUQVPJOmbw3/89+E4OCwN+jyzpInkyFENwp/OZ1/Rw+Gue3vrcUBRnhSI01ah8yYDwJA0gehqfgaO4j5eHyf9n2ek4/s69Sei0HSeZcD4Ml5lhVCyEvrHw9F5eEXz93o89ngHGM5dMOUu+hJTCGCoHw49WGgdvBlxfh4eJr1JOE/f2ocM97D34dsJy2QSHau0Uvb7533LkCSMft9t9XBfZByXKQhhjqqrw249eY5v4hewQvGQzVeiWzSJBuIAuMYnw/X7/v59uzj0WB0Z9KUFQ166Bn168zUpZ0ZdB8deK9fHBKT+bODE811yughDf5a3RhFtgH3U801PXZCpPFnrwpyiypBQbSxIkRw1o5rXpZu1V9fnKBjiQQESBdh1b5x9TZePVz7iv0y+q+Vx1YQwqd+n3BYtA6ZC8Kx+7/mtW2SH5HU1VM2nxClP4P4LdYFQoJhhCKP8wSmCM2lGlBV51rVJXggE9P61m1HGlcxruBnQAHFzt/CrtzF7kpZzHjXVo0r1JE01Kj4x8hDUGMge+bhTMEPnUAbvkGMPZBDFp/lvfHSFDqJv+aFrZwQhLvzHvawBeY9eybtyvGmmuhRRZqRtlIt0EEU1Ob8kr6OqzEwONSvGrW5GKTkgVEjZEXDNISTX2T5kU5+kMPi49Qq+HUJLx8agaP6eaqBu4oCTTJr6VQwQ30D3QIRTTW0ZSBvJgK21GrcUKVIyEpKKkFWSQPR8HWroZM0ENJnkFeemCAw6e8l3QxihXrnXKhuAaznenv5ZDQ1F1QG+QMHr8/4jyjFuCdSo9H2OrA2RYKOnnx9xYKIJeSSQ5BWRO0e1UF1g2rsVyobsYPjZFIRRRMEdwQtBEqBIIEiAdKxEAiFEoUewBAEuwEDURagDCM0giyCAiMREBgiwRVRGSMQQEWLIjICCDEYCosiIyCCICKsBgiAiRQKKoCgwWCSKpCCkgLiAtQW8FAkejZCJQtpIgpeKSChgIAi8g2ggyIpuAMgu5vdVC8ELqbayRGAYwhjIdrSECSLACCnZxhJNM7IeaTEkMZMSUSLIpIIgoDBkwQWiHUpZFJSlCRisDTJOWBEZAUAARhCACkFZBkJBkRAiQQ1EqCnuwVbRkFCciKErpnVCVCDECRQingUpCpAIVCSskId+9J4IHgmuC1htAqApWGMhjJMTHBkUA2ySGRTwpU0yoBBVgECKQDYkkowhpCcJMGQWBDSBJpgCIRQKkoypAwSSCkCdBCABWSLAGHVABEZCQSCjaAGoo6IiLiAq00cyKi4gihsgKXdwOrzqFBMBSxkXDSMVDpZxrcGTmDyhqJcZeqpsJmyXQ3p3D/CYAsRcSLVHOGlVcS6HNYImrvZMWvdMOEsWQUqclS9SKAcougDwEAkNEg1f6epEiBhE6aQ4pLxyvBq6nI0mSE0QBUFW8AOmHZgbITiUhztgmEtjqiiSAySOhsgVaFZ3NOopmGWODquDDAMETaujBZqJaFrLTZJISORohpnIQZECOUCwkAC2utLrIdMLhJFS4QhLoLcUgNCVqgo21PJEUYQRSRSEsh2nAyRgCgCDSgYA9ButlT554cfmKUkDWPagmYP9Yuibi8g8fdJldq+zu4saSvyI2CQdscArfWVfYOE/wyqa54QEqAgkuBCKTXnL88HyImcEUU88o1D66fFXzlVJoDFKg8mur+dV1DY6m4VE20drUAx1Mi5AdTOKQsw/TIBVuBJHgnokw/o8Ld0iHcvK8S6Yldvyxsohi92oRhOmxzk8Ek6nhtoOtLKw1ktIbTYgohj61TUXFJAdaKfeb2i0zgSwi525ybCp3qQqCmhaqAEdO4LIUNRvurbKqpTuZtVatrTgKhW1m8rBdBrL/XCTdcIQf6DzzwI8EwCQ1JFeTEA6whTeBhYJUVXVrFkUoiSIgctTIpUFEtHtugtHcE1gu6C7KQMGiWCUuOwsZTIZHSMYBlC9LyBZYAcmIuhYgJxapXchotlchWw2yCWky0aEnWLjIG62yjhMx1CxtAoFC8AbNhKWQxA1A2oQsGkjGrGU0uiGBbpnB40dcmEB1i1lsBDZKQgA5CpgF1Xazkd2MQ46wsrJetgQtjymYvSZjpHUaMwTBxrbMc046SnXeAvOZNXRsdKl1EFdu3EWS3xmVEURGOppplTVUpcMc1OnbvW8jszNI6aLqmFMVuXDLdGjy4pwetw/GUemyFz91VDvAKKIX5VQ+e/XWLThwfxX/0MZ089CW7i3POkzNSkIfB8GrPlnR7n1c+bU71DljY1sgEknyGm5PXj98tjrUXTn8E9QJJtADYhICzCcwkual6WQy7xBTEGVIdsP2Naz4f/fv91+H/JrsROvT3eAQ5S91db/Z8VtF+q8blyQmq9yU5GVQX/y7i+46W2e7m+sfypvvvF8tUdMko6O8zJJczz771Vnjg/gg9sZ+COHgkkcz7bA7tsDi/BFg5qcv84Vrnoz1eRwKphz8LOTVPDxzPKl3LYm9i28S/hapk7eOruCSqKPlr98syeHbwvf07VBVXhnUZSM6GZFzV7kjEPgGfy4NCImaygxHQpX2OoGvR06mHR/Q5aLrLoTCEEwzzys4/D67xs8ff7ddBHTue5l9LvDealj4Z9vBfMZ829HGhck0rT2soXnCTK+iI90XdfUkFY8O+C5x7UE0YcAu0kwspCSwO/09phUNhuN8DEbM+gRA5UCGRLL/apRtfKT4Dn4fmozE3HN289HrlXOASomJW3VsSemujHp9NHMHaVvoFED+++UPISj9We6KDMGnWkpgVV8mBAfEvtJZQ9mVcZoIAiaABzkaLrIkfDN4bebgcUlJo99Pd5w2yDhEAiQjRjFD5UGbYh6yi1lqvL07LWfGFoiZmYK9kJuZ7WhlCX43FQk3iGjEy7hI1nzjJOiGY9aONWwlqW3LLfWpaGs68oEUwDGS0tnuXaOvjaEhCLXZvHsRIF5PKSo2NFjyKZWPIFQisOCDe4OC7/iZKrldmdLL2jOFGEBVFKCbiHtzv143JrsQlfqOo8hebGfp3wo8hJwkRBCPGBNcPPPMvMIRV1El2nphdjuNBZAotH/yCKoTMdtLGgnsHCiZRYwl6MQTcyMcNcYU5+jIlHpNWMQjdRBatFyU26aCsFicWSE41e4OMNEkVDOLx1pCNQg1i4CWqEQ1vLu+VhzyFAMXXDFr4kYxAQqZwmsyxWmYNIkGoAUwIOR5IiQYxXcFB4BDcR/9IjIBqCo0xEQjFEZCQJBUyEEAWEAKySQNIaZCAVCSMFUFCCqmsGsuBFYomAU2RUEGpJIgipIgQIDyCVlKEFwkQRS0kAXqKCwioUxCRBJJBRsOOXE1C4MF4rALkE4RIqQbJEH84DAwAM5DtEdkexESxA2wHYqwITTBAtBMQW93SZTOORBZuhhAqFwCSO2HWgWgRNAQVBSQKYKv5c2sKu4oghaIFFZ/hLp2iQOGASSHZCE7tRpWApn5y6O9uwUxNLBAO6KtoIW3am0nWUsF4WtdBAZPqQlyxYpZCBCM7xxAREoS6wFbSEJamJIqiZiZnvHtZysXGEtCCwCMSDpFiIFpYxQBpipqIAyAs+1SqBX5pQIhpYKddi8I1R1cFAHbnkqwqla7FqqkSRFATZBAMKdtSY0pYj0wFjAFUy7sDpbVQRcyqHkKkICQSIoxILACDCACxWRUIQjAIoEWLAkIJFEYAkE1SkIGM2kmmpAOrjJIaQkm2CyRkiREFgkRBEYkgLGMgpuA0QGKgQZDTEKiRWLILFiyIgSLJEVhAUBUgIjIRgxYxgBIxgAUSQKsTbRFYigMYQZ1hCwhSARgjICkiRigIyDEAQEIjAWRYkVUWRQk0miIES9ckkhiAgokIVJUFg9aEgsBZE6MpkRSaSFiIpGSTgQYyLJEGY0BEYSLIAoIyQRgCQYKDEkFiwVkFiCxAUUkVSCsIAaiv9IiCjUQC0FJEhEgjAZEYCyRYgMgumsYMYMkIikYBEixGJqlAqKLIIqQghIqgpFYQhIIMBIhBgBIqrnUpILBYfSwxkihjMQiybYTSLAilGEK2SAQEhWEhuMQWCiMEZGKjEYAjJFCQWMRRgsZEREAjAQihEBBYRkFEiJBSIKd0RZBBFKihqIoVAUCdUKJJBYaYQkqjJjUFkgQUgskixSApBQYwYrAFkgsgAMgrHdCjA5QLESMRhGCKEDTJCKQPC0FkyKsBUiwhiSSu2QqBMahEBEZIEkFkWDCLEUWAoskYqpIgxQGIIgDAGBACMQJEQBZBSQWSCICKjFgyBDwcSEkEWQEXEVaiklRWoDIjokihURZFAwCMgsIIhFgRIxO6qSQSEIEUcwUqEiAGUXsMWSBYAGAwWCMjFGDFkESKBBIi5gjyKNRBO0ExLxC8IwhFhHdCIpGJAVVQRBgpGRAhEYEUIgwVJBWMAZGICIKRiyDAiwnZkikgVh/iooxYQxFgGoKIE8E7MJOCACAqk6ClKjFhCJGIFGEA4YTYZnaDKulkuCGoD2RgKjaoIyILmKSKFkA1BULYpBT4rS9WQV7ySEYLM0haKuWAY7oUIAFDFUTIHApW0FVBv0QaECiAJiII4ioIkgyCLggArqUlr/BUvRRVNUyC5IqDzBGYrcGWq6Cq2iKmgYCcgoBxVIIIBcOyyJSgJzECl5FUvBRFMwQFzERSQFAG5BHbFXOSIkCClImIqO4CNRRvqCEGNKgXYJe1KBirykWRlobkGmFMiQNQhgRIBtEA4oxEQujoY0CliKCcAiAGyKpmIiCYhgWEWAiIaSIDUB1ijEeBMJFeQVHQJjMGqWqUsiXigbigpwgFlpJKKig2giAlmCt4oGgI7ggkFIAOhggJW4ZzQ8IwC9K3i2jCLhvBEAqKuYC1EEcW4a1vKgZisQigE26sAZQgi1AQNmClQS0QVVNCC2X146Y7sBAdetBrSApDENbKKiiZiqmuczdcwUEXPma1fgRSF4xAgCmgW3FXsiSDWAhwcqnUIgF+qRNaI0iaigu5V2gVR1jVhEGEVUsS0RVU0dbv67da5tFUcjFxMChgIIyZBJBgAJgAR3yZIouYrGAi261e1riJaKGYobJzdIHIoNY3bMATMFYoxFW2aUQzG1WzVxACCNRXEDcLNxBGsoUqZ172vwYVe0EUU5EBEe1cz2zkWBFMsQWpKhKEkVQz2KG8ULEUDqAK4uny75hUQkMY9Kl7gi6YCd9oBSAuPrSWNdsZviwJ3EVkVVBtFkQkHHUuZQlGphERvmLUDuoUeoDSQC5AB0gxboRUNxVRWQQNRVOogaigLUEuRVHTEdxATITbBLIRQEDcRbxUDWKAQtBBUDMVOMURBkQeJFUE1EVRMmgDlhS8FAV2QFFCQRGEEFigRkF1BUGoqQYIgMgKCaYA1hlIhuIjIAlQASCYiUiMiGYIChuJpgKOWKDpiArqSADGKjmKjqK61SlRFtBQDZVAg1EFDUFTUREvBS0ALEEqKvCAtyL8UAXCQVsowVRicaAUU3BQNQVLRUKgoajmIsgooQgIFoiKBuKrUUHqCIMgCheCIpcYChUUMzRsocIkRWQBa3QgImYAgNoAqh1VIWgjIIVCoigDUBbxRRqKiGYGogUqrEdkXMJFAZigcxEcKxJEBDcQW8AQVqApiIjSlhApThBXfKRLQBFThERKzSkguCAJuCriCAlogVmkQSRRsQVC8BGxBFQJCowC9c1maxyrbmDhd6zeizaZdZopQwYZm826VTdN3Iubt1G0uYVbcwNa1izOXeLqpcspbK5w5MY6y3Jxu7ahrbrIGYD0uDjpmYnI3DQzHFzVzWZQmODsmnNOqKXHAqKJgnL4+wNjIhzJ9G7vtQ9XJTR11cCV3Fcp9y0w2c//mG1z2KS7E95wSMbQYeiTjODrAGZh4REMeIzS5LmfvwTwT49eugn4kqIxGJH1Id84TqaPQzBUXybob2zMROfb6tffT1icTntcVGEv+TJIFyeveTIabbmUz/HDPWl2yfmyj819D0gOvgnh0vp3T09N6/o4eKnSIzV99W2pS09pz47m30Y/HWt2ivRzD+1hiKoCyLIsRixQMyI7svzmha0cJSW13q+55kamQP3kQGcDSWnxtUarymcnzOdkv8W/bIaZBY/Fy2iu/JnRnjr2+y8mbztfQ7fZtI/ic7XyhP6DX+vloy9acRLoMyYM1L9gzb9SQTbwZgb0NCKKkEAPVTb+9+t5wT6Tn+yDQkVywAkgzyQ+rPECYG/r9OSB69UX4/9P2OdFe+Ga4N56cuF72qVpGyX19fc7ziw2ZDe2mp1ppJ/7sGkgPRMq6OYg8wCKKL0nqUGaAwY+DvKSKQ8PDDmBgn/OaCRqbGdA8Js5O7c9z2hhdxwnJLOa8NYskInRTIfxZRFCar1eKCmyDbBCQFDUBFU8CCgFQD0wFqIpaFsGsRE3QEL0BBTTFErEAsggGoAaiAbgCloorKoGx5UCtyKEgK6ghUETMEXkRMwVExJFXHEpWJARhAWzIClgCkAnKEFTkBACxijcVALEQCuYsLxQiBk1mwghoIBkgIaiIGgIuYo3iEICPIgi2IhwGKDuN4AhsrdkVcQNTcB5LQBec1ZzFAEJQBJCsISAbQUkgdQEArWA+rdADyIC61ywAJa9KLuIuL0oJD9NABaIAuIil4qoGb9t3FUBuEDqIOSagqZgiIGFSALiKjiIDwiAtoqhICqpcgjBiqvaKAhiAgHCAo4gKYgiaDlCAJYhUHSQRQHcAJig1KiKJrG7KjIKl6lKiI1ahHcTUMRF1BNzEFBqKAYiKLiAqIFoigmLZsigcOUqN4gI3SKhyKqjvFWioPMZsNiIi5dUAiVBHkVUqKiO2AJkgA2IEYAuTNIG4YgqhaIKaSCAX1QloqhYIaQiKAWgAZgCiGiKo4SQJBIKK1AWxBQDEVH7zmqJECQJEGZBSkTgxLIEUkVFIEZIkCEGLJtqSCiqgkgRYIIIkCSQjBRgokRRQUWAiSAICMJJAVgIjEEBkWQAYgQUgLCCqxkgAIaLYgIkQQkAIsFBQUFVBQQBJCMIsRIgqrAiRSEhBiAwFgMUYskRYyCiJBBABEAUAFivUsCSCAtsFCQRWDEYgoxkUBQhAAVBWKkYMQBQEBGKxECAE7ARlYBEIyD0QLJEIqCSIAQkQVgggCjCSAiqSMGKAEARBJCIKqQFFSAyJCBmKUEAQkWMBEgiwEQgogIIEAiCgAkBYJIJIkBFkFJIxYAmqWAsWQGQIgCIMYoEiMBYwRiIMCRFSZaRgyAghFIiQgiEJIqAoIsQUECLERCMUWBOoEoEO1pIQNAITMGoKh0yArFRQJHkUR6GIomiIC4lgggZAIagKh0bKVDUAMiIAxQQjAW0ARKgAC7YEY7gOIAAUiTMBC0EEyRRULRUA6yUgjdSKCXioImZUQUMwFDEHMUFBzEROVQhwIobEIKCJyCKciKkgqI5AICQLjAR1IbYkS43lN5JZ9zjrxB1gsCKQUFFRCCkFUJnU3wc86Z+5yfH6ddjqv1Oxza6j1Usakn+I7zwPZD5vLUBPfGQbHpegBLgHGQ9sjSZ5Rets6hfOOcvRD+djGqC/IScQ5Jles9CtsniKIryvSX3+BvrisO00R4RAR44ByQjg16N4X6W4ibO6qtQ4ccBwPrhunwxROB4dRPjKTOtMQweDIa2NhD7qOMhEQ02YAbv1lq0Bcg3j0EWpxSoXKKa4LxVxW0utQzvGGjq2mY1b83iDp1HJgbIoRJL2f0hyTMKkCTFhPBWlYPRpXBLcDtHqK4t56SI9Y0C1IZFcRRbgBQ1HYmAIViYwLzAVggwEPJktLzc5edXS63SE0dJVtkBSpvZjh2E/K7UKY5zKqhKNiTsRzzy0Ff2ROBu8i+QUnBBCK0dHnJm4GcK2KcXzUT59ajy0ymRtRmssjvJp1CEdPNglTvEWpfeysU2TvCmKSu7D5veUIN5ycBAJHv5196Qus2TfL6U6Z9nq+13VExE0AQV/IJI0YkwYwY+sh+UkuejGxxu98wNzk85y+quHKols5/VXPJ6pbHvj3VwMKWplIQ67iSEHJyJN8h802a5DwjaTh1FNJdcBGbwUa6EcXFpCOviQd2Me3Exg9Lza4O46sW31NuYxz/g8ozpXnTpwoJgzx+UofWjYeuXBHRyiZmZlaazXTDNboiKqa0YuNtOXeVGJxlxxuG3Fxaxu6XQ8ZUThOFy2cOs04W6HDMpW3gZs1rc1iUFKxQa1Kb9Zez2l7XpnofweHB9zR7MnSYi/a0EyIK75CUN+KDhx/RbvSMloyGZgjNm0ybNQcFcgSEVRnvQ9T4/2d/Yc/wPVOTfbJNGsxa+fP7dTSd9REKRk95GYVEsaGew0FUZQARB6paJPUDIZJp1pG10uDbYgSX461DY4qBqZCZDAsqAwv8HRa7gzOoLFIKsPS/qDKxtR9AJgxUvqM8xj6UDkVcBpAxoftv6FRhqUlsaAwfLRF+sJM1Mn+dH2XmAxA3Rn/n8VMMbMfm6009b6PRnv898ee8zmwqL7J48H93Py/v5On7k8vaJrtr2hgjWltK3RlDL9PiNPmu/dr6M+56ftzxpQ8SLICgiLFgsDlgVNbNaXx9l4TjefTxkc3Pwb+rOH9KJEE0TMgNpobK4iKNnhulCGo4QlBdl6iAHUcX/ssznKqkr7xJhuP3D1aOUaHmeR2Cmiqg3nYQMEAiGE43YmuWSsxl8yIFPWkUUlb411H/WjgHmCFDI8z/oay4bzk39GGeXozg4t63E8RDk+f4kAMY2JO6YR8Mho+dTPH+M+pYfiS5UUPx7nCj8rj35A9yg4ZmMzCMmecBGY65gILFWnOyBLy47eODkz1Kp3u6I3deTHI73ZS4ZVsm7olA1lRHORjs5zCxBRGEVjJpd5O8/l7F11CNjp93r0JSQdCQQRI0Alp3p23PDnO0HIVjD0RR0p87kF2UQwzC3eSAWb0fEkd50HmBX3hcs74gCUzIAEwnKBE6ygpm9q4Z0pIqFr8lldm9AlBAAsmZHxCsmVM4cNznhGqQW8AXQvdsDbN5JiEvP5o39E+H8cK9317vtM9+xJn66xLiRz4w2pLhlzCtiVpF9+Jm68rEgs5JejEEtHkGCGfXkhuhacFNTQmMCDOoecxUbPQWjELRnGQMYNA2lkQxBJ1oTUEJFgkC8A5EbavsoevLmNzIfNYSUkU9/mcVBvY7UFNJt7CUvQ5dWP2na9UdnWL1wd3zt+7JV4/hMV2DuHnreb4Xu4lLVUvTKF0OTWk6a6d3hFznNXxLtuh2i1zLJ8TH3ToRGNWTYzhc4hkhTHRHaK5pLWdSRtHW3NkFvoK8G6laNwEKlQSSEQRHpC5tbcqKdQyIEhQ+zAhtmePsnPGEiELq20pPuYNoAiBED8wwFaGLWNT01BgZ38uD/hkpjVGq5yGu5MwhwglVQCYNWyqmEnoTxKARPtm4gCYDFaQuJCPWmMabAuMBSQpNBfFBwcCCjrm5NvNoB9Zh8DLog/dKUHUKqon3vi1jOqIcTCmMzkdnQhN/UKAhHqZm/A2Vose87W9M/J5GpHvEBhndECRXPI5d5boRjXhkTgLLCIvId7r9S4htxVz10ozkcM/e9pqQlNtrSju6hC6R6gn932JQ3jUPjQcMQkl6zVeAnEYGVMzNgQpZb9vPzXHfeZ6vXpJ/wL0pD0eueGzBOwZz3W+7ChVQIgpmO6M3UKuJbnbdF8dJIhz4dQuyitXKSSAnhkU7BgoNwohQFrouuA3MOk5PCgIIrIgIxVik1CSOaroXcuTA7nHku5ypOiYlmHONwlPeoBiwzNTieOLIINgDaaM6kuxMblbvaIZxdQpEi8afHGcilURskS2oqu3NxHTvIpy3WaMNKVaV0lmWNDZrWavDxlrdFYpwltnGipXWG9XVdvGq7tW5bm3jSrVyVXLXDMXKmCHPT5+xhBYva9J/dqGIsf3f757H+7mQTjGwrJ9P+13zwcCqeJR/rWYyU0N31ABjBidUFETUqe6ezoKEPg5+xAhUlYLBQ9J7MOe2t+vcvjCsJWtKWFZ+fKsiAiCHTO8mfvMS+BJakQMeRqRFGK5TUgoZ1l/vwrdFy+XXvpeqns65g8iPTLin/r5tT0bNnf14d/Lm/Eedg+MEawzDB/UnvEyUo2+ZQ+xudYTO0mVFO7kiddSU8EPu+O9+12Hwefs1Vzu5q326nc9O/FPXzv5Oc2x4ltKJ+i4+PHJJGREt7+82+zVQ6ieVsW+W0EpH4fgoLvj16PPBgnTuuctuyXEA1e+ltjTNTNOWWY6SbeauS20kQEUQG3YzMhlxgN2HPXOF3DP2QiHZYhjfBH+GKiKEQYKdFF2IBTbREPMzT+Qiw7LqTwZwzzH0uCuHFQh5oJ9MnazcfiB+FUC8ks/43qbGZ4T71Q/2ioZjYc1a+1fn8DtGeSi8E6+zUUIkbjPl1OCuTserIZjrNFBECIih4exiuY7IJMERAwiN2gnb3g90HVK74nCQQKsl4bKd3cujIQhB2Tkl5F1iEglEMzIMfZ5wvnN1sVaoy4eyuKe6c6ccxZpFyT2/zBUWb3O5GoV04SOcVd82kJBG5woFwn5Ks3c89WQkCvvd3zCKpHOervIwyzy65Ru9u4WTwmO1zqQpbnb4oa475b/f/lqvWc8+PBJa7Yna9c5igrl3UioNKvcFhICWethJCIigSBFAgIEJoujcwJN1oaF3MUX1HV0BLCGiBIoxWlSSFkzCqYBTmTKQ0gotIFBNDzRbRQhIh5pUQCKAd4SGhAOdrnAivybhxx5FRGCfOeJebVDjw5sHk2FErRkVJxPKK7Mkv4eeHO7EvncuCZjsK4lVeCSAFQ8M5CzIvXGzPAmPMgBCosQY0kk2hEiAgSCCWgAje+t61rbUMQJFkAMOpI/F3TvRp4Tqg4OYNYHF3jTjkOFJ/na2JqIUvDHwcxM0AHoaPGvGhIljIi2iByJQsBVZEF1ECxilLNIlDFUwkIW74Ijt0ZA1tdOgoLCKEb0ARxq44ENKiGNydL6oGKgXQYRgJhrNY5bwiW2QDUbPEsEOJEgQHOsthLkphwGgNAEQ0A0DQdI7qnpjGMSaC5+9CG5hcXuiZKpQ5ZEbWhaw6W5SfSwZhrgE3CuTU0WhSowskIVso0eO/MA8BC2y9Dw6WIhbCiIIhCqiko22W169eUDJJbvoVosYJsGBJEGAACLwRPCWkxwkQtq10UpEcaG1zJDgAqXgm4wkUAkodMJuBx+vrorbrC43VuNZvN1TgnnHkSISTc5tnhHWA4siABFH9fat9TLHyuor02dHeRNsknj8U9reVfYj+uYdbc/tOO2dcZAHKQjyPTDI9SZfZO1NTzTIJulS60Q0kK84/kzzfM4c2+peHXExOAhZhJw5lyR1ljpt5UiUMEIIaFjEhDEAvBESRAWxBQvFR0BtdHIHkh18Va04okhks/CmsfNjI0TaKYxqNgHvH3xcjNElm0CIrnUHVeoHIzEruiOZhSqI0BAuEhhQWCJEkNroVVnElaSnlwhPAybNVTocEgvTYSvBD3d3hk5dHOTc9bYUCSQM4rzQJpC5KRM8jgjFWFVOVFKmPJrEdnYHDWcOWRIPmy3MXtNkqXL6DIqpjMt1SiYhzcQpiOxMswmcIy5JqYIZDcQ2233s5eZXN7DTt3cK1vDcvO7lLdHGtaS6KgPJcyx0Zkymrzvbt4zK86rmrxdKormXHVLjUtdZc69f5LPZlh7t/Tm9i89ehtDSHz/46OXfoew6EPk7Xrzt1r5WeXstDfrTOktFVXVqj08ecP0exzx1zIxWeVp6HvvXbt/FxpR178xzdxxppM8CBJrFPK9Qcoh7v+usfX/rb/9a15Wu3utnj7f1zN+rz54oHfjgfdcHh/Nuonp+Hvzjdiqr8jTLZRW8Xp3Pp2a8LiqeOs/uuYfnwPmgGUO5qSzMIEuimB7/3Lhk2IqqrMEKBgYSy5AHS2EdRNnnTavWyXyt6s/zgmLRqxT+xlXpvPVzO+cCIvHfNzV1ZXVD/rrWR77/Z8peNjOCn1Xtkr25zaYEEvhvCfZ7jHM+nT43X0NB+bmgQIDumki+3G4eXz/VhqI+G7nuvoynxfoHPHxw/J+rfKcO0Yv22/S6uYmOX+vDQ+Xv+GtKfO0X7jZ5IUfj9NyKKDNdcfVoyKuR+6THzhezy/rSRSET91m6Bm/uVHLkpLbcONFcb2ebmnO2dY+4Pr6PmMhE7ts11TRmuOd5wipK2P8jfXfW/quaP+937exB7YNr63tBB8KXnwWiV8bXfLeQ4nTmNRpcdg0Hslc5ePedRRm90q9ZxpsmXL5EGNR3c2u69g7GXI7RjVOMIsiwOT07mFHOL3mnW26p+Pwm4ldxAi76gPO5QI5N4tmCOAIMOCM4lC7FLUg64otGzfMri/NoGwNwuu2UgSImwGAHS+1Uz3vQjLXII5u7j5DvhDGNNrFzFFGHFJdnSuPSVa0giK1BQhpNVSmZbkaLX1e/C+LbTH9NIyp8hp8AQTSHwspk4Ja88m/OM4hYCqtrzOi0FucmD6N0ICJa68jvzOqIzMiCIF/a/Oe3Tx7Cchv4PWGo6hGqaiPeITLbVTHO+Eaod4ciARGqTUVfhzo2ux1crzmUGgVlGkQmpON7NCqnHTbKbw5qgQiobDlx1lKIzhPGg6cY119hzGEMC7JkkNybiResvOLB0wa0VllNIbcwgqOksGBIhh3UJCEZZ0ciAmFOpCMBIU4Ok3lxilLSdSHBot9LaAFl1OH+AILXmHEgneagc6jQKWiwgMYI3biIiYCCJpORqkgN2fEJX1m8IRgWyJJvTJibbHXbmplkVju6KroSALvLyJCI1znHDRwDcy55fOTFpi2Jyefnqe2888u0GUre+JI/b9HKUFS85HnjLeJs61DA540+chslj7dPm8iezt9//PKPC+NAU/72M83Ijx56L4124FZIuxe8i7lw4Mnl7RyiORTKZ8hWZ7Ruccz4LMkfh5WzdVk+TVp5rF/i5b8g61wOJNeecXQbQIt8ug5VNZAD4Tvly76Bw3TnDgg72QQqMQonNjt50LTC+h0npwe9CVwA0LJ7fLO7wfUkb/y4FhoZJc8rTNSy6eEdyd5vkQHLbaEJjBJtdpECDkQdjlnHjIhpJAg+/5u9zBPw0MQjrficm4HcpLUIk1ueTxukOqmXOKTlu5cs28I11XLXMB3vRmstxm0rmFuqVzVzd1E3znDrixOrjmry4ujLdazFVEtMwrBbhq45U5zDYzUpmZkbWHbryUv8ae9+fvVVQUizu/t7c5t/F7qSY6SpIsTz9Gf17Dw4NJn/zzLr81ptFnobkrbKN/y/dvWbuBtrFIplj531b1ku/TlfZubwvl5a1LiAY0OHF45+Ph/jz0+z2Q9tg8zp+zl56HDf0DnI60fZn+M6xSx81IQo8oht00ckj7I95DzSBIQ79OnBovF/FM88Lui+DPFmk1+mrYep9ykMYOxXBE+B+jJ8dUuNzfq9phoUWfP7bPsXk9bxwefjmuas6OZ4sxj7P/X69b3xz4lxNxAIiAghGmfn1sDYkiWaru7E4nq1oHmNcLKbHRLnCwVSZc8fnzOt9fw7GUej6ufm6bNxGem+sz9ijlFhm2ayyYzUM9FRCfmpYYJYw9TshJ0GyKpk2Wyk0S2OD6zCqHnn/nNH01TlsqaiUb8SL6ilmtJVGCifM0T1ePGeGyp5ed9mvZgEpjYd0UTPy3NT676pldJZUeKYa8vVh9k20qC+2+jPhmHUz+E1t+HLhgp937ueQpq+nx7qWhh3aZJDoUIZ9xlC7VClvskjIcXAQXIwHmLDv4R5+Cia78ofPwz9liMwzlR9t0q/G84aw8eHd8QuiExBWdKyn3sc5GmcozYWHUXZdR3SVpelUtDkZx9QSsQdkzvdAoS2pxxWGpi7yJxyukLm7urtPpyO7vc7Lh0uTDhQ4ZoQQHaTyUkIK2pb7EGagiqM4TrOkVveLi2VcUYHaLRYYTTxc/mHHkG85VJB3BJHRnAImhSiKmCY69LxCWAAvS6MKSBtQzjegyTSrA0AkmrZMXKQhQgO1SJwrRydaej+LolNciERypb8ENAl1eEeRDhouKqaBFVYgNaQAJoOLYlIFBYYpncjwxywIrbpAjlrDiiTcAvKwqu0UT3SJOJe7nkNpAITYOISPObDijyWePAVoO+PSDpRRzEkkAsLc2Q+Oe9mZ4HKyY6zrbsbcTBI125UEa8MWwLoe7DPA875YDDntjKQrDjvNOzN5mBeXi15uGXLTgMpgaFXuNH8CYewZwn0eQXq6l4ayiAYRiowmIdedRqXTUZSbaE25HcQIqecgWLHJBJPi6HLVEkIvWVdJosSM1bhiWgls4TrtA0DF4bDsLDAIEa9ohigiJkgtfIDSZbxqJUW3UFhFGMJEYQEYiKIiICDCAshohJAMmrmlmtcugYCbFYZDgK6IohE3ZbQICCkgIAYr/1HgB210RrES0eE8ttjE0Dio2vPOfuPq/PvTsXY4vhnTxpc5c16fqe3oDcZHNz3js5yH6Z3z8cjfjX2f4bPmhOxDECBEQ1OOt4IxwFrG55uCLJHOzsJHSIhMNX8WGHD1r8v088yEeTO0wJC8VILDkj5Z7J+8lbkdqp8/nuiauX56yN9XOnpxTP4mIjDfD6ZMQ6rYIpYROosggNQVQvFe0EQoaSEgvveZNH2T5aHsEWdsQEtTQEM9u/xeqvsKd02QEJpCq6zEB6A6Fzy6A5sIQJ54i97XMd9SwS295BAB27ZfGExZOOwqJ1R3UXsVMwRUAuzyRYHHarUCO4cnEqXUgn9rt10PO93lMDIjClaRYsJJ8OSg8K5y2yK5OlUujctwztVEOelqlMREyi5inBc1EzVskuCG2oKmQupSJts3dbcrq6GZmZaMsxEuZcGOUuXMy5lcOKYa1vWlFzLmrStZouLNDz3v5UvVj4S1Jmv+Z/jdGjZ4UNWk/PLFiNdv6aMdD8XDBPQ4v7ssp5XRm/061MqopUfR4Yul1ErVfP1a8NQC7IQRSso3y60xfDclz72eOtc6JXK/TQ2a0Yd8lR17vfx8E3fVjnyOdPnw9z5npvseeQle9qnX4Z7eKbIFQvZMxYVFkp3yx6VFhumbe5jFTuYeeTckhI1xclkn7/za+Xe+KT59/K+l18bXy6Ysyxn7Lfpt+X0ZmapnXmEhU+U+am39rZsaJ6afN+z3743T145Ry0qHzfkuQDxpO+G/Xz3EvO9vyxmNKyEDcUE4GoNUNEAkg1aJNwU1PfBZpQzV1QyRCGAxoq06LycXB4gon0BmNi4LCQCOBEbtqbRnpbGNF06ug3iCjPT01nm7gmeh2YeO+1i5/v436R4p01nzOCdwFJwgLL4auqD1+RFLXs5wc43mMt5uVfzb+v9M8X6IkswECAxuPxIoQwuOnD4Wi+i+G5JA11svCF2FsKAvq9WOiifu+766/Cmkh+VvqJ+pYmVlzXMfjx0GKRykUJFzKv/bwIvX786aKp81+Naf5cEsvNocZsQKKebHQA0ELzXwsFjkyV7+FEtLXxyQbXMM2oPDniQK66xIEkRdwXzOFLnJt5XJgUzRemuy+YV0bZg/+PeueGb1jhR+pdDhfOZsMr1T4+HU0LauJdrZnPX9AajwMt+X2iKl+A0mBBectfaj0tMSSaaTGJMCu73VQoUlVXKkdNJmx1xsc0jtIOSUI6dWCQbzY49kqewtaKTbSMDtwdoqHfPVcZNHhNcgmPG/BwQo/uhenIxsIiCHydzcVzaiO9uQm3mgQ65y07qKfrk33g3yLv8VwxELxVccixz06aT5Ckysji3+24JXJBdgzVgvWNHRqFxA7Kn7++xVsat+HWamWodZlB1aZbqK3gqZiqj2IAPURFkBFqIC5jZVO0IQJaJ9AkkIoWBEWxUQKCccYsqyHEuLoyQNIqZ1SMXXQDncKE3jSLJCzsyCQy0b/wyBzyZcwOCZRkpQBCaT8DW6HSJ8gkLO/fowQw31qQcSrzKOuHIVkAlEYFjpupEB3jUkBdcQoDWkVlZqEqOqQTWbxW0JjG+zPUKcc5V0psg2DcRdsEsCgDkG6QkCRoQjwE4NIr/DyC8kjbS9i5LwEtIeINPw+R5xevXe4yafb8v/cy83yNOm5yI6eY0Ty9EcNOnN2ex1WaZGcfIBR1xvZzrMKjs/ynPwZm75pB5aRYxxfges1I3A08qTG2+T3L4dAueV/aR3gq62zzi7PGSv1Mjz1rzZcrCQSxo875qO92OVUT35PznSd854gXhdX48oveo6gGlzkbBynHe86PoUIBYkHTtd4XoUGotI+xPJfMPPHb73wNQhIW43a7w2fv2CrzgX4AugjsXfnh3iGFEgCAMYwI01EnFzsmC1aQ74KkkTSVfm7ILg2qydCO1izzJXLLCSB0TyIrwmN872htxUNzEwqZA32bpO7JY6TiW6W6yuho11NbwQ1WZSu5lyZZtKDcTMOHUkvrnC9yxzD48qE6cKpkcqSKcwV1Kw4ubV1jm65qZwlyqtNW4HDnQ6/jgAoJIUsH3fVrWMBR1Pbni64w4zRKpudZVcf0zEkY91yss2eFm/ItGySuDJcKJ9zDNFiMhdfp416Zuwdjw7dMOdm8RHAHy3vP35V8SyEuhXnpqBrQuvoXauby2O7mynjumrRxprZTLZ38t567CryNkkUnCE2T8n8DDGB1rntyUI+9D/tO7ZZ4GyDqoEdIopgHzcfERkJO+IFP0fegY2P9Dfr1KRAhk8yDlFgiGyHkei6GTiAFPZe2HOG4JqPnVJjD72T8KvZ7cXJCgcig6zwm/8a4/s1mDxC8SQ92rlDwTJB4dZnwya1SSoNlfk347qEUFAFnXwzGCcXz6b3qJxrvrvucfLX1WKftOL07lxMlEaZl75npKU9duySQpLPMLVkH2WU8yy+jrmYnPj3sdlNcW552Qg/yOcG1HNGrbsIDrm86br10Jel8o/HLA7MD1dZqQ83vvQ+s7JDaSKoVoZGDCxUyYwFVyEXrLaHvcLNo+QFAk1VKxV2DcBnlIYhHPLpAwYD5mjODThAUwiAYHsyoqTwm/ZotM/P9bNgJjXHzlS16VcBJEwQfQyJ/ZCBEv3gO7SefCs9uVOCXxBMv/1yuZ0NTFKl2ADuzAMsD1ZDGT/1bp4YZ1efu7ze+Li+O66AAlOTdR9esz/hPPnMy2jNk3IB8baZYSYJTjM9D44Ty4ON5umA3UQIuqHudDQeAmvjBTEuD+3e7nsSJKaCJgHAyoaZbAAWD6LvTXUIVyYvGofOwDWt32G6fW+p1r8ub9t6OPTqd4GJJt0BhlCx8M4pyoVQamiKNsQHkRDKIGU2He+N0GlCK8jehuqW43BTRBH6D15+LIxoQ4yJB/JUkiddSKn8GOrgkiT3KqEIOJA2nt6uev0mxEdI9QUG+enMSm0qz7BIrnJzgB9jdXEcSLzOc+EagkSLvPML8w5yhG9FnkeVWZ07rJh8aQyOHUhYc0dZQdgBBzebLCswke8rp3vTL5mC2a7UKtfJjuECJELMje3y+QuOZJ4ZEtxyZWnEmR3pUnUroOh28xSKnFXuBWdxcAfKO7lhyx4+6WU0Y+IU9ayO960ag5FwD5naN5nd5+w5zp4Lhu+KJLmO0+YRUwktZ5pzlcVMMm+m9uxCSSH93GBrBJFgxCACjEqbMlLQIMlbkbbOmycnUD5BwwA0QWHhKRh3h3iRyFcwhZRf8Pk09teEuNh+WNyxREFhXcn+ePXa7XXzMnAlZWdAY4Z+K4PVGszTvrADGlNv+w5w3Oz61l112LxJmjQ0JQQrW39j52s+SIGgDRMEkHkqIhgPqmWTkCoKSCK9RQC0ENRQC4xvqgBLHdQNQUkAbnVjq4qnTBEG0sQDUZJB5AVaiC3ioOM2sqASChiIqA2AkIAIJaKK7iFRRQMEEHEFRmKZEEFOgvRWOWQRgsgE2iIHNodUixZKRDECQgmv7ikVMwEQ3FBQb1klBIaAuK6czsNAddtk5GRsRocWGOSsWbItSEEoKKyEmRKQtkoVpIAVl2c0mko4lFeqaTZwYQ1ZKIQCdHMESbTMZDpIBQOu4OMlk0kBVIIkUARhJ5ITbAaWBiEWRV0yVAGIA8ScvAEB2IchtOBgL0YqAxgAvbZOgM4kwgutGzCUK5RKBZTCpS2tZdoApHOdC1jpRpAJB1C6hrZNm8CIQpB1wTaF0MRVgEFCKBZSPM5uN/i6GqGSZMxkeRDNVvYhREOHEOeqO1bAa8v+PwC3y8jhTQnPmJGXne8SlIKkyob5DH5BI6Qg395lz0s7zOw4Jlz2eUqPIalujhd86MYJNh0T/5Q9Cs5OeabEO2qJJ/BLe0ejnDt9/JGSe3qH3xwwbQm0IQkTEx53kbTzZ24OPLvkb+365HM82LxFRL5nklAdflXO71d6OLrvbOLn269eF+R13i1VVMmiZ7ALOEJoZAVFzJzMMupqREQLlySTmKvBCXECbIskCzUjzk7y+z2xCOj7e9SODlQBY+YHQ6TUy+2OKoCpXYE9MxEpACRaQd7drGZyes4upIOxwGzgKYX02CiRLMfBHKF4xtdLVeZcR1Xg4nZJqGyOlzI25rRjeK70mr0zbjQNbwzd070tG8Ucuk4aboxXNF1mYLp1p071tc1p3krzxhxu7xusVtvN1rURstzOUx1S0teM1vjesTgzLcKUsStZjjMTOKYauux2kP8/yanVCMGDInIAO/MrgvlYCtwAIrUGhv8y3nqvz6P5nlTnVQWEUWCgqf3HpApm7f2KcZiwU831eRAqALDVfG3T9mZnoihnTnXudfb/+XPxIeY8/JT0cLV9vlhn6xvxz066s36atR7pTT+9MV2+lz4eWZq0Hweqdosmko/XmPiQWtXyn57+fdsplXPk0VIvo9150X6m/hSmZj7UQtXEIeGzVmCucyGHKjfYqvZmZ5oDLqt941aDap5QVPRnx8qYnu+q1OBF9NFRrSpKjfFp9/PLWsa+q1/v/Pbh8vy30e+/JyVVHXpuTt9XgZw6wiAz36C7MckTb2rybG422OcSlBAhgAt6FVUzAMQ7oZRwmugZjQjVFU0MIF8tbrc+wzPbOP1aIQGT5qp6Bk2nDcr3Ofp3xnkDeHqwXJrmoOxoc6M9iYue7DIL1fPPDL4ege+Dqg6pVfUfX6LM0adca+q6w0dYBmexqq78jMfjSxH37zN+mqtmGhZ1bs1Y2AcaLvZQIqoDQC0z6LrdJiEsw5ElYr2TTazh0OTyADo+17lTXIxQju1nZBcRzshnmbp3DhXa5O6VmGdO4Wto0WO7a1Gfv09gA7OnIna3NzJfqKWE5mY/VGzUZ/HlbnYPCNa6/7oEHAAKzwEifXDSOEWZ4pf3pzmgSKGFv0eXYjvMSRTmKOxDEiaoBWo7Fb12qHOE15eZfZBeAKol8m0D/0Ir3AmyRCLKFBdCEFQtAAADEFEE6BsIRpFVWQHAxASog8jaKJYggptYpmKiIGdCNm5Rvu4Jc3/NA0ZvSHdrs8OAgnQbFOnMJEipCMZFhIAwN6r2tJIss7hBrb+8svyLldWdfmGdNMkOhDW8pddtYc/18qKKqQYsYIKPk1REVRjsYHc3055NpXZvzibNnZgYgd0ICwvBc7x4rnGbwF47cyH6dsk0AHkCqBUUZFAE+MA6gIC1EO+A0oIXgKhaDjnRcn8rS1r4BUyQXuSCiE5AoEUzFUVN9rNWFEhFFNwEBWoKCFr7K01fEAETMG0QC+pdKoI2UXcUQLQVKpGF0sIiGB1NMRWqsAmO7ZMEjsSI62zqiKabQUF0kMyMSi6hlUdlohdjFxNPJSOLWmWLHga18ojIgK4mdYUFjDXIETMSHFDJldBFUjMr/YyIRejRjzqgdMMPUC+wxtaKSW6ASyQaAOodARA6i9K4YYBwHFesiro0BEnMppk2qVGNC7JQ6kOaS0obY5SAnP3NpuznclJEvnjy87ElIrVAWHG5tHltd2+XZb5vMlxm1xCrDdM3c3Sv7ka45vDM6+48fZhW6AzQvXW8FdRRpLFc0C11+XbcqKXU6E3ADNSstPkXLFTRvZW08JsCMMZLAqcLdbfMZjgeMcRccbYrV7O4yZgh/Smsa5GCAEh9p9SPj0+X9r4vZIr02/K+q/H7oVcSrXdCPZmLNyTtlVDvQjmsSHGxhsHLS4XUokbuEqQxLLEhALie6RubUccVzjyNJxWKTWUgCMz5OxHQxb0opBtQYbaq2AdSsj/fHXe9QZVaVka4cQRMcTeWWVDdDrrt3pzi2K43hWltVU3hjqhXe7qmim7g6qi63gYa3bm7bl1bg7NXGa3mkwmocEEscTbllXUZmYUPCFLKKY4ipiTNUXSr2/HBPfwazX8H3PHDRHoWUz45hP97pMklif2djNCiabI9KDl03SHQgdb6N0Z+KvuWqEmtTfi+if2VdNIa93ue+3oinYGqoc0+m9Ho+TqVJXz6cMSEi+jhYPpvaFp1pyWFOCoHIm9BNghkwiZWUWcmj0e5HEuSkCG6COcEnLz0pNE0U8kw3lA7cvsKOBODBoN7u0M0yLPx6utdH4a0YSHfLIe26yWOrZnbJZguySf2P6cs+7PeNvupYTp4M+V0iO+IARocAMPKSkAmun2sNmZmDzCCCtEKOSAFkrENrAVUfLyMWG3SeAMKfakmYa9TrBG5QMZI6vIEzeS79Cerah2Ss9j5nI9Z1UDPKeUtJcARIeGrsiMD0ATyt6EtXlDexpeO/s5NPDYF4LLTModouOXGN0dNZoU7Up7gNMhkk26NUhZIxPpzlvppjmoPMp3cc8lUbBQxeqHUO8v29B7cutDXiat53KJoe+HFscIpeICkBuyUdLADm1xtilmN82ObTIOElIDJTYl9DK/Jb5FLIG7OPLVz4OIlxQDROn1BE/EGFuK+xfW1SHEI0u2vhRR23jsK3grioWSC1D4e1m3nblSi/n2KDOxKcQTSKUI+qErn17cj8Rt8PWerv+HFDPsr1PL+TJD/HEe2XbgZy4f1Q4Z+gwkdIq0JIqQXnV8uJKib8rcp1ymXM16JuG3XoYGMDOW87NKXOrLR2qoeGrhm/R2H1aPRRfQODF/p9jrBt5CgACI5+1z7LSqazauYK5YUQgvs3yH/O+J0/yRv282TO1fiZAxAAUisyl8n5SAwD9eIA3xdnXFZcRcufOvjoYcs+7l0/IuYe3fIs70rKK3Me2A0hRw2HFZgmTUGkRnJM5FVvDmgy7JrNxbtJJvCyGCamx+5MBuTes6xnfDU2DvFM+0qq0hIwBEOKSRFEYCQUdJFRVzFQC6jAcxC0FRRwxADEABjn1cbb5xw2amWgPJEhVT8pSmGVUT51FiilaylzbfoZp5dvqru+NFQ7fkNF6wMBLzhMLl/aQxDCwIIVQmLophsMkaoSARgEO4wRL6MfTD3I8cIpMKfxmAgRvfqDndWwqL0U6cxBIO7iM3OcKTJNAamieepJOJMAEB/7ZXC8+XB+cwKzBcYY2vO8tWe6Ho8+r8eeCHBtDMaBARCu8cQfm5PdIccMufrPmWIdw0XS0YTSiKCcI/7W3ga5aSn3KSSKn+jEEVwCjq9anCsFR21ANxy+rt1R829CPnfrE+swPCuMp5FAxAAgElWTdW7oC1MwZQH4dqIaGY4LdmzDjMG5uKdTTg2FwGCZZxw/KyjZBfwJSJfmcDfpgNjdxlLNWtU6jXgIOQvlAwBEC8Jtx79/Lg6gBfPMFn3dJ/H3hiyXxfdupqnX3rgEOQSwAzxAX7sOiIFoIPo69Vv4S33tWv9NGP418GM+Rkzk7XlgdL3IYYiAdJV/7mEA8zPb5ISUjMwlvy/SYIAOYdxHqjCeRoCMv6gikDMrZbDCiJkAA6ddK5ZpGNpBCABPQhoYkIGl44MapC+NpZsJEYIjPNyCzLZgQU5mgeNZoMZO62cusiA2VGhg6Q8V4koce4d5hiquKoMnFl0f1YzMI5aZdMXAjmz2GTuCoQnBR0ZoHEWzYokeogAYcBrWnTt5eUolEEVs0UjOybKRRz/t6vd0Iz0yoewoPKWAtSHr9bSu/O/5+g7metS9uh09XsyadezDj0a7U1/Gc/IzuzQq+9LJIn9DZrML1mB3gpn0lDDhv6STas0CRSbhEgZkAtkV3+Zqr0owiceyj5MNM/ilAwgwcaBvoiU+JO2Sfbrz8ThTg8cPFSqP+cew3CfV6DP7wGKhuSAXuZM3s4L9xe4bu6GcLTyABWl44t1fxv23xCwTznaG4H7fir+Ye73/rx+f/i3z9UK67UJ++aPXyjFxfCJj5EA626sAiCVnMwZqk0AgIpUwB4Mnqgn5Ogmmqrp8yYMENu+tWAH5j6dDMYciOAIAoZagFDGReuybzAo6SjTegEtm0ZCUnvqgzAHwJ9op2+cCBGDBi9wzzclTOQ+jt0MMTBYQoaMGaZrDPqovVpTQqNuIdDiLU1RbTBgqlcePs8vovXr201GSdQsGS04LWnEdCXPZBB0GnMaKZkQIZ3co2nIy7IIPmonA92CCAlO66BGEDDXPB1ZsVMt+3LE6kFHF0SScdMdJh3WPHA+IMh3TGs8zGRlaHUfvLsQOEcRoYMd5DB2fq3L1mvG59jRPufDb161YLk8oz0j2L99tQQ2dNB37ofmBYVwJH+9Flne7hp2XZRvOAj/l6QhJEPvfe9ZfoLAu2kywceQ7RfMtua9TFA6xFz7CgBbAKep9qp8me7xu1Lg4cvIJO5UQIX28zWYbKgISSgDAiBjlpougQI8haOhXxyIk3XJ+REAMDtwmbcwrXjkYA27EBdcNUHWzbAiNjOMRfdUR5MYjqEWBM9AaGYNMWP01clpeywh7gQxrsvYsaMHc6PTde1a8iOmYhpon4WiKjNA7ZUZBSBF/YidiQkKDdB3dFQaMzhrzUSJI3AIPZzdzBfpNU4MA4iBEQ36kKckEzFKpt2RUEA/am3V0YjUDX1EZmAZgWXNRMl3uW2co5GZpKROtGp4eAg5oMjUDjQMyF75hDMERGfjLWArubtWQ4ylTPLMXLotTXm13hQRpfAK8NymEtOITjg+3tm9/gnUXz1ywZikgQgkvWvx++WTh7fVYun4+W8YzI2hjmFwfwKd0uLQLo+0Ag5U8TQlo9VWZKVTAwZETzL97oRKffCqHb0VUZP5Rl+w/HMzFQnsvdMXPwIpaj5g3omfdpdiExPO/w2Ff2hFTzZV1byGVavf+eqnjf2Nr0JnTIEKPMbAYBmOuqYvvNBB8gZmDMws+L6wAGqkrIOx397ZfUiWMyo+0vnSHB/87tsYHBjwabFIfI5QhCQkkl/jx4MF7go7cwQmYL0slUBowXXj/Wrp5F5TBg6PHAuvpFujG+EYZzyzOG76l4GB08FHdLJgGcYAx7ea22wrtlmkpOkqWnOFjylrxOAfWJPABImFn4VUye8W/EPsqJ40739QbQft4lxXuCDqJo5cto5jJkxy7w/mgF4+SWqXXa98vT5h2yHYYwAaWIV09SWbCw1xIwoy0QiAJwLAASWoSzzuQGCAp9paq0Hco2I8c3fvuTvs55NNNADSXxjcYBmZmcND2889/VQFw2jfqm/obOeg/s9K/fuiGIDR408gw5MeJGsE3wTHL9fzkOQkN/RsHDvZwzmCuLeK8k3dO9/CAzpEADG4a+h+pL6hiEcxUS6KDrIGQMxlQrgpZhnVcK3FDHIcM3kANkRlDWuTZg2QIEbbaTtQMqDQAZbBCxx1vaFHYO71mJWOIXdtItnwIQIWDIReKSLA9j6dUA0wkBZFIQU9cZUIyCH7w62cxVDb9WOZbRtHBxytfNMbACGxPCBU8LAFMm9S3/2Ovs9P4cVj/kXPJJBWRAkHfkA9cbdFwHYDe5I85g3exei9ITGA0YgIgA8+A6zMAwEfFbiGPUEvKFwpU2X14guQjFxFrlSUPkrrjsIwY3ECIJlAGMgHZB8Gj9Io3lA1MlLI9KW52oqQDYbiRYZp/tVx+msZ4M/uKwJr3GaLpTm8lVrF0jlWEyA4q6RF0wmtIJlb3shgGYMByoKhvmrCOQNYG9ZJcVjVkfrJpCWqrXnDomN+B/48jO1PxaDkLgc5eB2pxBCIiIjePhIJgMmnfp9cPhMWYYXNe1Uqr/iut7+xxSAIWgIJIoEigL4oHZKGmKHgS8WRe0ATivZpolm9E2QM3ji8tQMUCQpSgVU5U0W4BRt+PA6QAoleQdHV5yDzPw3dUhO70eBQmukvX9YpTH7+vrX7ueOPwpkrvya9T0ekRFTHO3VvLI+5baKalbm/ZHYKRVpetmpmDQGZIiudnIedP0Jh9eXTe4F462IEQp5bckPvQsCF3haWxNA4Q6MJnEgSOwUCVWMaNWSMkIQhhhdqNe7GxhLwY4YVVy30AVDCLVyMjRVoWZB44NkT02xHHUjVvKh/lu7FAYwUVhAssojb/CQCDA1xpGxiUJFIDsnXQIhSWEJgypxmZwP4X1gHKt3/tSUVdgsIeopglmP5qnrAw2P2Rdd7o2N/L2uOzjtb0EkEkJASRA1QRpNpgF8MzcP90McJf4w/x8Tj/NG+P15Xnb4h0LX0ZAzTquEAEQOn7sQGoGYqBSfdnAUBDIL5SB+pkniEualnKWzIV6eSZDclL8Y1Ucn4k5RuPDoE/2QRgzMzG1DG94BAocGYp+OKRu3+PIIDkEMVcWv29SXsejzU0ZeDFiRUEThDQxXgQD8qZHW3qILQIBDq/sFuHLWhh1vPPhSr9dq9ldACYbJU6sFAGZ51LV1wusdmJ4zAkf4GMgxZGAZmYPdy241WAwC7GE+SFuOAIOCs2vXGyT6/295BoYBGMirAUBIrCCwikRCQFFgsIoLICkiMWLICkFFIKKAKAsFRkigCMiiiwgoQUIqwiohIoCkFgqwWCwiMiwWSKiKBFJEYqMFgqwUUigRYCwWLAVVIT1J529BD/YJMJAgFmxAUR3b7SRL+v6D7TQdoP2whWpvlAP+Jp6OvS6z9pkkjIcuCTZVsgV+mgFYi8VKP6+Ov1+9605cMwZf3795003fSMLcCXfAbeS1/PfLPLGYU2zF40/fPVlcgNxECHvbyLy03pfalvBOt9Rigf2jZ9wuNJpT5tpmEMa7zMsq5blg1+MdfxcZgZOOMF1TadOXKGACGoVlrMGZgjMGTuU+B5PgDLICR3rXFcl68eQhsy/YlzCQJw6uPS4jEZ7Lb+LDZh2sjCJIhIsgEl4In6o+5eiRXkQGor+cURsXHDXMc1/Od+/5u9gb78q3jIobboO1Na4RAzx+gnl6v++Szdf+fBZz20f6zi7MxZeiSSKyIzm4vBMIrT9Enz/CNlQjMMXbUhsM2YpOOUwIu1cbgCQSLmuGn/6ePFGv7gXt8Bk1i7gA0ieDhluAzmKAMQz+T9C11+Q67d60XMxUviPcgM/krB2NmsSc4AkDgRZE14590Ou7hIiAEQzfZs/EtsAQsCvQWnM8FXXLdzgUAe09wWCwiVYkQmCBEQILCOxLSIfvowAYxRN4l/7zoaeFdJvaDeKYI4jesMWK7MP7QCsfBM8FJeo90Vq/6DVDYRGQHPFpPLKecA5WtUl9IEWOfTXkMFv17uLNQttcMqpCkAJMHHM5k8PGWIgWWYnCCAyMGcIAD8pvKMVB9+sKwgYZ4UTBQd8m7VQsWSxAD4UzwMiMWJssAyiQGb/kGRNMo6Ym8cx94F6wfoLhzU5QJNmN54/A8eKFdCwLaPB+MXYAC2eu8psNLXk9vbKOXHPOEZbkGuvsWnHaQLIBs5Djt0LQaGRmbvuegvh7acXw3c3e/+r7hRDy+pVYj193aGZ06l/Dk1a7cOjEGnPgMUS7k4qhXfotk/aIFkRkVVIIwUgIwFCCwWCwgsgoCwUICMBYRYCyCxYRYCxJAJJFkSRfCH3gT1qtJciZpXzn5InDm1aqWN9o9gbIa7AzqLOkERMKrAVc0ngo4ODjQ/PJbhS4+UVBShQyG6Nt0CSQRZCEEkUkbhP+Oxe60NX/dytthe5zJv4cV7YVBn6DItVMxghZcn3uABNY58f4wM9UEMU67fYHIPUwliIJYfgfTnDTXnIAiGxwK4D/l84jDgCfAdtsMPUGuUZcpxdquNv1GFucdvODC2DHIGc1noDgtACJNsvEDIzISEIyLn25TgxOGvEvfM2eQloZd6mrZd/ml34SkoOm87mzIW/NS/JM3eprlk7ZH6T2FHjglsDzTxnz9PPi0l3hDB0v1sT7wsWnSEgBv6TbaNhZy/dq4LeBOvwX6widRB/jH3e/K95n8/xgXfy17P7KMfcKtX6cH/eS4KzFgovDx5YSPFaqmPWGTMUxDhrAuYOGY0o8p6Eu9cvbjjqCeb7HO16sJ6f+fV1jo4Yj6Yk37zMnT4RAWn7rQOfz/L6MXAZvQ9/pqmfJ3K0vIb7XULV9ivKp+jndMJsJmOpv1em0Pfi18SFmz3Xo9EPV7b5b7KvlohWejy9eB379ITDsJ7Wezd32VEVFRi95M4az05Q7JmUDzZz+PilC1ZnzQHz6ewczw6zPdZYeDsfDyvu55yIS81E5PfPKKGZ3577B+ieXt18tz2apkDuwad0QocKsrOQTxI0cs/UMFHyEVT7NocI2AxAOB8B7QSwvuKk7xUhkfVRqbhggd+YStFQVv4fT9RU93KGW/jtNNAtjaFsNv+/nhET4c5AE/s7d/E67rntGZ+LqsidAQOwAeQy+/K5FIXeofY8iugBAhWtSsGzdqUEC0Goap1sUxI65zGGpGZyeAMts/r0Ae8iIaEcFIgEGaEAuWCrd3z+WM7lJ3d+/WtHAEOh0gAJAMev+HMQVD1Tfd6Pde/tmvLu238HfZB2YISSEgfnAhIyIAzmbjcLi7HFs8oECYWqNKEAA1cIUFMFEYIEDSJVSBvKyRMooe6TNuTQ5MIq5bLOOXjjEi7B5/hiXv3sCiSc6d/icr114D6+k+WHUnxSJ1IzISzZjZ+oZulh9y/E5KQIAE8RAI5aBGpAg9+yc2Pq4IX1b5PtEIPtngJSfimZtoSBwhbD98mGq8cZPi9ShngWk2TVMg84FFNb/IHiqgVh0nCBpSvlSIF8CC2QFu48PW071x/WDJss2zr+tKfD5fZs4RLVDVAkkWSQD6NNKzk0d305DLc/o2jnEKICpzIWBgGDEKV/5GvRIE8oIRMLjz96ChhP3bkJYuqGLQcRAdSF9B6EQMRgAVHJlZ86uiuuaPHpIo0X8HJQnI4vfS24I8pTnMB0iIwRyTaZaYmNM5ixZyy13iJYxciIoO2u6yIZDItlIPiMgEyBBolQZVEjH69hme8CZSyEq4FmpQWCQmAN5kZl/n0ajDZbCRpGlfj1yyyMI2SkHbQ/uAPNZc6tz7QLDcfQBfCvzp+KFaskjCSJwIBTy9sSMLM6Lvure+3lbeWmak4OO/dy4v1o9HLY8wDohg8f9Wm9AUk+b2EyigfQZD7j4m5skf9+tUc5MI4V5xbq3K151cVXdP2LB6+F7QlGNCB/0dR/+rBHfWydw/lYQvf3vgL4NaPejUH9fOooufTJIyRJIThqZK5a0UeBW9vkYld2xUeArvptOQeZjgiGYMwAHwnZYTI8np2QHhjmDGKzIEQOoqi0C1qHAlvopRiCEAEQPYonEMPy1yrYjCQmfF8OFuCoE7Vq/p9zwn5TJ3g8MhoSdSniXBPN8b07HScQnf5BX/Nv431dKHze9ph81AQdQBUfCI1FZCQfOGp4s+gbg0dMI+o5kKN16geLe82uw88yQJCRJFkS0RmmSGIEBQAUJFIIyT337J82sYwXkjy3n829s2V3ylv/P06St3R9KfrcaS4G/T9DBQuyJCwfWO+QhYJ6owLyALJ1xD4EW2JMLpECIUKYlX208XVaojYJYgM6ihAPAC1fCSiCBk1OjYWQAhjvfUY4LAbgcT23BOmZ5UB31x1ZRzaUyIU2+NtewiKzqDQfu07ACxR3a0ejwfB3YoM0NImBACgFtmm7Owk20ifOnL+jIhkdxNBXqVQ8xfWhGezX8NmKZPSaB4UqQ4/6oVn2JQdugnMWjoWIWwNJBReuoApt6jVMk/DD9XPZg1bK9uKZIC276O4od4rorl2vccAyhEEOY2mDI/nXfDwA4icj8/zM4VJ6sazQMCbuqMEWtNDIPuaNRXGMyJUuALgXcjCxytQFCJ4d5dV0HDP4fsUGbp1PRAF8eSvl6YkJPYgFipIBqOCkE2XnqJgAUoVNTArNb3SxU2kBAoxegWH+/j4IR68DQiB21M99lOV78ZM8vEDD6tlS08fM04hvde5c7/P5/QCagDIKDIAyCAsFkBQFBYRYEFFkCKEiyRQIsUWQigLCLCRZFkIxVkUZBBJAJBD9VyltHcT83v/TZMRZPPn7J8Cw0/doqHv1m6p3IZoZIeCbZXcJT1ixGsZOsn0NDDZR16acPD3ewXdnh+uD1bMDigEihoR/jD4/dr7nRzD4iZP1f9FNc5IGQNwBU0gy1Lul7gTOgAAj2spfY6uQg4zbu1E/aexFWt3uEnAgXnb+P9dTV9fzqEkI4BGr4Ht1J83o/BsZy4GFdjqEJKu/PjGnBzw4e0sUGmlcpHvPw5oCU2tRIv8oAEIz+NY2kKSDjKKAmYAnjRRQ1zK0/phm3uo6rR5d3dbR5Z1xoPTqkT707RPkgieLU00YqHY7Hi4bO2QPviGje5zHYGBmptQ56uUYdlESdoWKOSOu2mLu46fTYXcHHLaQ95bEMZQ+qKd0CRCTqvY7OPfUYQ/v97F7+3/LamB8SHCwwQfltKFWa+Fzyb+cG7fuyP1efCfiCo/L34Da9kOb+Yr44kKCBAZI4EBcFNm6HpAcVU4gryuoSRSRNB95lCn5uLOwMwKSwRILh+KC2JtE3+G9CcSpnto6B8Ou4LtXWeGc0c4zrptXA8PvyQ7uIcQKivaRFR5ZqLOEYYqkjnrdCYH0mT/eHIlgYAOOiB2FYBy1zVrATRBcYcwYOKXi0MYG8DxVyd1oF6NcNPl2b1WQzm4oe3lwVbolIkhWAmtH6JCQkUB/Wplgf3u0HIvKlYlQgn5nuVZ+aDJPfN+rbzyOIAX+faQ0lkZ1f9SQLnQsoE/Z2/BxvlJstHoAL+PGYzemnrxyYEVS3XkY5KHd39lpQllTx5EOAj8Ag96KH1zMpBC+dW7p/v6axP5nwldvw0hmHAIYmp/QRTvqBRXH+QUKeD9sOB5OUvfBlsFJE1oL9hBFpmAbAKfP061DHtA3EBESQkkILUcl/w1e7Fy20Pv/ixPrsf5D8Nno0cI3IJ6N3IF7Xls/b/E1gAAROM3mH0T+ofcN4jok+/YRkGE5ygYH8rDWWvZC/za7e/v28dBCdPh4uUqcwNBzGc88eMjEeLKn24JGTXuHupU/qB/ono/n95SUpyBVgJg3WMMeYF5KdUoWKAqSgBKBni7v4YUrrIpQ98SREpUko93xmkC2cXtHfkb7GPgzc8sSTANJHAp0MoUJkcGaSGcdDIDwm8wXFyZ93aF+zoz8tUN5UD4gU++W6j4VczqHW1FMhATHo+SVLpcasVdlx0/LLExxJB4ob5p+SoNsEJFPCKez8n7w8RfT9fKYuV5mSxmBPR7+7e3pcZvpSgBYAorCn4+iC/LC/yzKB7xFV+D6xwejdJ8XAEe04/pzPKPeIaQd+9lWON/on3QtrFRyan2/XFD6S27VET9BmW82D6Kg9+eZS5588E30DlPbqjfo/drB3KVkBPPuKMX1a1s2Ex6oY+9T1T3w2cVN2/QRwaseVLb63AXr1OvlFUAwwFzH1F/DivuIw04IU/2gA9wgVIr2TcFL/8/p1rE/F88UAoH9amhzT+q0SRx4AoR+iiOWSMgkiSHciBSMhIPLNh7wP8OODnlI0lZOS0GtRUEhbTdSlK9SZrAodIn2V9Xj/E8XwBvYY4PqfHL2u2aE48qeJHXFePNj563B463nKZ64fVEDh5+jjrU5rVWJL2Vt3t7wsje2rvhUOj0xkLvfM/YVhRIbqvT31vUR8Ybr8H7i64NTu+i4B97MttH+ETU0fHY08W2nhA3oqGC/k7bQuBwHIfg/q9EicgdeZFFFgLBVAWRQFICrAFJFBEgsRkWAqyCrAFkUWAIiqAsBYsixSLCLAiwFkFgsVSLAUFUkFFgoKQFkFBYiQUWKERAkZEvKcZRRSwA/IO0kAKt0yzl8/az8FoXoqvB7dNksyoiiQDIRDyFtBwXJ3qagnWMZs85/lU/XKYMCnSsBwINsO7i1zHfLwFNlmPIvhje62+PcfVJoHrLDxp1Z67p35QPUgeLy57Zdh06THjDEW0mjGmP42UEwYzHGNuNxogacSOoPDpt4+FbS/d41yjtkVLoeIrfXHDAKQ8gBOGRipORwJokpCpyxkge+uopO9/ZcOIAcx9qeY+26RlUdRXrwv1fAe5qwEkEPFP94IqJAYIh+9+3nSOcPrVpiw4z1bj0WXO/TJUvwWRkAhmzjN29XZ/5oT5Lu6WN7EUKy4OcLrC75rtkP+yExdPtg93vv3yhxB4ydwZNlQj39hAOp/ua5wudrZFFfaMIkpk6oRXy8mRZA6ZUrPbzhBdT8h5hUk+phHFsftDjYA5momOWj4xXgDt44tqZDx5PQU9Yia1Vy75UhOemSj2zZOoSA5zaA1PnJm/j9PncXh59Er9P5G2ZkZsooWoEQNJAIlrBcHgG5jACOsmRxOevGz4GY+aBISUQPigHSdId+ntTfLlvf1Zg+J5wxEvO+XXTjUPxATBXwB6OMz2Jfgb2CgX5X5Jj79mnyNAH5oh+Mc2of2iagf+oBSGeV++4qF7ibL7kyY9+HwkN1RblKoXh1E1Cn8Q0gYiog/+wJyHdkrvQpUaETO0rmmnEDxi3YnhM1+nUGgUa17oYJeuef5QvxMEe7AJk5aofr+tKwMXGUQvcHDp+pL9x1o8vWKcJpezTXBUbOXNTfYJXRTOpG0hgUdnbquohbM4jA6PXFKccL3NRFSyCX7+I+rSaSoxiXL8C2WXb2i8V4qoF+pTAKWqbbtt5MKkLrnnm9m3shjD4RmaC2wQBnk4KjVLGSvpKIggMFk5YgiEryA+aPgEeBvTfF68Paa8L9gO+eWT2EAoF8qRvt8cPTZYFx79XVN0ZAzjj3zGTEL2mPf94AhhnXIjCRAyQZqUpuBBRLpBAHksikAMgWZJjQrw0KYvVKD264L5+mkr7VB2gXjJ6Z9eD4Epv+hxWf762G6uk+Mp2Dcpl7LZlQfYKFLJJIhCEhw6DRXsaqZY5pdc+DfN6WrZi/zipY0iUioSSP5jKCgn4zu8NeFV90tViZAJj5M7XVN4Td2f3J6r+v6M4SNt0kuUcO5C1VMf3p3Tdk+TkEsJL5cyzEQ5LwX32lZN3HuLiKB7SyTgjfyOqDguktyRlIXpJ4pELAMhmCuEqdi5e4nWaz1l+3VXp6rUz5b7Ue99el117xUt+RKfhA/HSUbvEACBQTdAZEZB27KYUOHRU5tUHT/hYYHUGQ3JktcaFEoSZiIfbUoje/jKm3Edj9L3+3/vy0MVoBJWdGqikzZ0O8E45Qj/2k4BhQpprd20vm2LXRYyyHxlqkHPyBISrNEApNoMPEOsoI6fbaEJKqCsOSnYOEFugdyk40xZf2oO8qjlM1lQtBmrFmwLU7aHg4qMhHOs17RMekWzju7Y7ENjygL59XwZs/21SHp7UFojCAfVYrTuw1sGBj9ztTGh49zd0hmjlUKazugFE6jZhqbYjqicUSkWQkQk6EDl2/9VvdO9Wljb+9Lgth1VyyC01FQ8fPetmMiaGlSBekN/m9S0hkmVMGSt2IcsgilWQCp0IFLpNGHIASxInIYpWIyAHsR4QB+oyOuHbMJ60eX64Zx1g0Hf0JVYkIKgtBRnXwd4yE1reB5eX12FRE9iQ6Jo/v9U18+xG9ERQP+iGxVvghQTlb3wrm6500U5gP5GF7wnpnTuqngQ7/GzPzfI7yZrsSp88bS6u4r79D4Leu6eiHShVe9ETKCd5WdSs5qrH0Z0Pbdf8t7XnOepVRWLRmmuEysCSDP9IoBsugcLtATUjKSV/wi9gQj2LLODDhWrMMxAC9Y6yr9vPWKptB4g4krV9EtjU7g8ANfWRb6Nd9isFy1WLfTr0w/hehPXD8flQ80gdkRBYCgKRZPB/w6ayGZTG3ihe/lpTaUAe2p2QW/xDP+Bd4LgyTHsoGzp9Sw/O4/e9n89BcMCRdvfohbkp9IB6JRl4jWS2Tz6FAmhIIgWMvwKxgVhN2kbSQ0/q1VgCm0gcJWGKyHrk5klDM0hqEI2iyKkyL7zaoKf4wHUFtBhLAbuqQW2w44lhwyBtDiThsxLLQusqCtmDOBSbviWFDAEVKiYiUxCWKdx9xQzSAXiEHFOyAloQr01QFgCmDRgHcjIVCI9C0iF1LaNQrAx3Hv63DUAH356GCaIGuDXBQOspXSf5Yck6NHb42+rbyluAlagCj5VeCqBdmGtD+YWOcGmo6v52f7vJlOjePxsw/1m8Pxpo26Ksl4oJIQiSOjI9a2zitLRUKnB8ZTfvTDcGKXzg45wyy2QwCE1N6lamihifJzAAAhWavPwuBZIlhdCuwPt3/RIPuaGQIs/ylicIQIgWSBPfcgXInoigLdAMpVfQCP1IIAg7/Jr6DlEeyYBmFGu1S+Zgw3JGBhf+he1hbrO0HoUgIVCc8rI/66xOgVKAwyRNAa/alsmVbYonSiVskC7BAKeE97rh06oWBsKkhAaOyUKw6FIJ08Tfsi7U2JkAJUzQgA6yP6Lt35U6Yan5zMHAjBFY0B65RUBCftg5xkYIg7zZ/66DDa+iURprVaYQkwTOw7popE4HBxM9YsAQJNvf8Q7aBwfsO3q+H27wMfS9bWl3DYzgRp6dVnVkrwUwCD0jckBBDLVJDNU1/T7QUuR8DrwQBT7bLWRS5P5X/cIqJhULjICofgBU8PDxxhPV/Ao/JPvipjwRPFC5Q9q6f9q9Ya8z46uj4RZevz/3415ZnXm8zj+rpE/Hb9wiS5SOYNEgyQDUY5rV1pCKQ9DA2EzWQMiVhokloEYZYTMpxrMhtDJgFCdGZfVlVHUDMUDSj8XzU/LP65mB/KNRPph4exHa1GKjIiKJIATNCzpG+ebVbzF7Uax/yy057gpyI62h51nBD2w5elTTEt71agpIISKmGJ36jTPzGW/r8t5fku7tuyusjxYnq1sMdKZrp58dNkNvgAQyN6VKQN2ot4JNLt18qi7clWgP8mePBAUmA2NRuMZwD6HbzcNmucOXse/s2csXAA+KyDJiS0jrPLn7l7U1d+XXcX+ivw59X1dN+7LTBQJp3scpGiGN8E9k7AyL7iIEDFREtFvjphtuF7xsTpv2qWVXyFKECXqC4Z1tFAA7hzC59z5KLGIjBEB+TF+CvTg/t1RdHsl1MV9TbSNwVDU8MV98fvgnj+buFNmSPdgNR7jP6FTDvch9znakr4QyLISh73X9WtaCVlhLrl2lAz320pgdT9bruOB91HVR/++6iZEe5ry88qiTgcrGlKn3vFMy4vFVQ0YrT6SQh+Lh4puLMrYzEakAjQNjDLmttIYFfb8MeAwqBfRoD1D7egv1s3o60waEHYAoDoQtXyik/RvjRIBEXBFkA0kL85D40NuaON3uJC5J2PipCZgiIuPGfPjgqN8vSkZujsi/2Wh7OIsP5Hc4EP4XVn8Z/BGe1OdcwNek604yQUfFmt4XxENtQBLefXM53Lf5SlIiVdN01mlKkCLFCOVmqJMZ9s91gLp1tX4f/LMEyI8f1o8dUEDtcNT/UrKWrGfK1fRs398CtLuzvkdeFo5Db+fFHYfDp6n0bdxe273J/BitLf22CK/rLfwoglJ/kClxxcz7cUhA3xFgLCLFgsWSKoAKTD/925LE2TfMVAvxJxUUaRVSROdT+haWAE9QMPMIuYH/T9fqcu76ldqKnxSsEVOQahCqYmBdwsLramstUft//OX1D/zN+PI//v8cnd9tb/wQ/VnaeVOrI1THkjS+3TnsNPkBkXo4G87fcosX+Mz2zx/rxVh7WWI3465wrLTxZ9P0xdeiC1L+6WFwIy1ll7d2d5NaOaFP2OF99CL3Xj9IKgdR6u03TWyY7YD6Z1IA9KcnBSvn81TfEVinKAMXHpaFlf2+uhP/GnPeBN8iOHq76ZoNlB2ilLwVKGX03vqxYbn0TBDtT0RrjpsPfz1EtgSAWQeWufbcc/n8OLTSPuLSppI6OG7iQnr/5s7dG82WQtQgXT/AwrPy4e22rTciS5xyIh1R/E2ihuscLBPNAezCPnQbWv/fLhFt6cj5f70hzz6KU1aV+lem+r1U2HWPKeMBx5a06aoRSuQgoACEAQABRbsVOI9FL0yq+1MYlf0V+rQaFCw15pmqdn6N8K5Aw4yFb/6UTMGYIesYBbi4Sksm+tr9LRO3AR/zuq66zoAjwtYqK3Ud2qsuaG5OekwpJwgd3AWlz97zzs9mjzM+f5k6WXxNSwmyuiaal6omj+Yut9xpx9RHSjbOZ8CIlKyhWL7GJVa3K4ZzuTRXf5OA2YDbZAJBkUkt8dKwvw4IlTo3gqtDjsv2CGdMgGIrfUNpTm/kazBknClwNIMkm0BOgKtGP+J1AQseChrAW/j9vu5L/tt0W6TIEpgFmYEjMwAHfFw1f3G/D4aO7aa9QJW4dNuvqvdtMQv+SAFQl68pXGUvWWAkBvzXzbh55NziQctk013vu/yV0SooR+1b+4qM577IJgxuWVjVjg11g9CssNTjVasdEXD5v8p53WcnL93Y19TB7+bbbnM9MPNMvJ4q09lCyNeAK1f4AJSI78Wfb3+jADbBYSRQiqARSRZAFkgpAkUJBYKSCgCIKEWApCKCMJIpAUgoCyALIKLEkFkBAkkQSvM5bLFCRQkRkVkQCpTrvS1p5D9C1kQn6lFNCf5iWPx8oec3ad6d/36OR6BKYBQ0kS8/8G7gN2q7h6fByfZfsx+HKq8CkVbBzTm3VxQpuKSg8MDfy5/teJWGE787JErHROpQal0Bf/HlllKk+d/56n/9RyuPvV6q1W6cNbrkXFMRT8bNdX+5HDr0Pav6zKTn2c+PM9ez9cb3c7RH/tuoeSwj+ffSW7TTtDk/Usr4BDUYcZDifDppZHFE5bPTjtlvcwYKrgzH3VNIJFshCXIKfoUer6/Lh2WiAAZTT1K9U1F77yjYdCcjRHzIAwwDH6uzTHF1R/frZvqsuBMVu97Pfkvcf5fQO1sHMRfBZL/mAu2H6DKQP3nwg1zGjIPF1Z96kICE7f+65K45pz3/1XJTEq942nKqG2DN9A4sjFkoL0LLD3XdeHLe+3SeZgsOr+e/hFZrzfWaZVULTueyv9nVnjrsGZt9iqsiks1mtCDH/pJ9Q7ggUdQsq36Qrs0mGVNnY0r3hBLHG+jQZfJgBQyrmAJxckAEC+nuqKzkn5cGY+mH0t4MqXmcJpekvIVVALUtx+T6LA8d8+oqaT8TBXGU+WuBEPhRcdtD+vTQW7kXPf10t6AweV2wadC4VXXOFpm13KLKD9DKlplte3PYtrY8zC0P6r158M3u340Yra2aKaZl2cQKJ6lIcw/2Oa5B4s/5/83LIuzDimUsKUrnT8RLqGAS47+ymU41aDYrIen1KX2eafo/x11z/Pd7QsrYrTIUkIiDpkCKkYpIevhocNvR+xzZkRUuMETwc+6u2tNhdSkGhirtmQl1bCMjpIJ9jwr62Zr93MfPmh67fy7m4nYYbbV+IVXi6MOly3Zioz0MgX8ii7sUk4MoL/zW60REECphaoMPMwzG/Yh4nEA97RfZLhtRNuBcefvFtVuWE8tyoYscz7LYfnmw6yyx6ycHJDWIfNtb+vD3RIT4S3529aENu7U/wzcQIYLkgEbyKuFA2mQKGG+klu8I+vy1GoCBjiA6CdDw3gltgMFrNv9BEBTE+oW1TXGR6B8NDUjkphmzkOHoyZyhrH45C4YgQLE1AH37Gb3fHmRc836ao6ntb/Qk+rP+CxDKrdg1W2f8rh3r4LK766UyzYh7t0FfgT6Xo735hRp/D/ksOnp+G8Vhnt8H/LfkY5Glhp+yOrahvXjIdSWR/TxGQ1Whylq+y9h4OyygAuOkpb9YhPWcO9lST9r2Hlj377exnskvZ+nH/q9n+6P8cuJrBk5WoQBaMDz4Xfs1wtrkQxPhAIEHAohF77JBSpLoLCc4jCkDDEEx3gonmQhwYadM5goIpYnKb3QZJbf+/tVRDNFkkAkCQZGRBJFTJhv/8TVWy00clPPgAaNsMUAQ4+onIOmndj+3VKxDc5j0BWm+2Qc/tVkLvoaYYindmVDWp+llnKqKV1KKVv+clCizrT0txYNx3GmwkST9SfeKIwDjOazJ96UUkbAagyYlvimHcyF2aw2sTJVhdV6m4Y6AOoj+rNPxhDDCpEQFYwVQwhr3/fuBqAGj6a+1uhn7fXn9J5/g0qHs8O9wF/0B2pSQZCQkWRWQCRIQCcKpcbvjkuOvq2BeB+8iBDIEnrQIg/sh1DZBiAYa39EDh/z9NX1z2RSVFR3IY4qsgwocVagy1cABBcI6szy6q5nRim5XbjoIoAGH5K+XxUOxWnf23E4AChrOf/RcPBdb9U0SBmWsxofD4oPMqC+1CrIu4uyO/rYVq00JX40HbrdJ94ITLjeUVhcdMhM+t/Nr8T1Ir7xfX7+GU26FOT/DfqyAyftHdEWsSRhCEXIMH3+GmWbv7oc4GvzwzwKXcHcKflf60zrPcz5SYlcGv6LOW3NXXDpR4JhgJZFVBhBAEkkXT+s95daTMfR8iFkZ+1uwxaGQaoW37UGfnu8AoydVNpx6LWXMndbzTbT2CmkZYkGlZJPGOCJCBBKDVzwjnUdm/jOSVYQr4U/ZV3A6qS7JjBK1qdbtS1Vv/MWuUFNeA5yKAnypj/Mz7TCVujBal+Ly1uX+L/mnVHr6v2bAn/aFXOeN59Q+qcQ7zHGVt3x+5FwCy8MQn42BFkBQFkFFikiwFIAskWQWAKLJBREAUiqLBSCgLIpBQRAUIxFkUWRRVkGQZJFFkGTk6VAvxNn9aqn3z9dlNkMU/rr4qoVx0LYjI9Hgz1LSZ47WGDCpQMAxCpZ+5X04VCiiTXxX5ZQX7kojwnWBESwqsBkSKIADgopID0pJrxrmoI0cp0SyyOnTOPkj17UQwgcPLPb/uzMIFjrf9RkUutDenrVQpA4KdKL3qh57+rtd2T9dz32dXC4vYzvz7+3rgIt4lH2G7r8jz2x1Y1yCUxOAo7hWKLdf2dxi1nwq9xZmpvETb4j41mWXp5+p+uWULw8983ixEO+cDBfN5w9c+5Qv2ecqPuiqmyKHSAtmvRSwVfhFAkF/db9D8LkprA5Rp94IGoRKYdfzVezAN6aIhIyJIa7WhXyfx5kcx9BFDwPixK9f+o8+gO2PyXEatdcNJels2pszRIOOAJDOhZ2ORXTDbrByOdWQFE0WToVHJ/9Jy19jtSzFLVXnBzNs3e2n36t7sQC9FlbNFCa/ryXgIwiID4jnHI33ML3vTRdh4vkevKY2Skruq6iZ07FGaU6NfdpSG9wK+uuQxixwcPUht+7X4ZQFanz4abr4zqu3wZarR+zujhQKPkTCttA6DCydUahFvudn8VCrps1UCl/gR0RoVIwCK2eM/yNr+ZX9p9cXAf5ToA/32mQCw5z3UHhE6yUTQB0bvldPXuPsyX6lvao9mtMvHkVTo7ldP4RvCGmKEIDJIgQgOKAh+dbHH7u7DBl6NVb/dnjurembh3Y9rylCYA/nvO/8/s6m0EqMNkMZa5CXD0PUY09uBVg7QR5y9e22dueX/nrfV/TVuJazqbmSuUwQBYomuI7O50t3OzjLPdQYGa3OnzLnvnv7Ta1fNH4Beug2Z74boggNlh0j9qU/93vq0kC/e14nB+MC498467nxER543hWWoSBDoFs/r3Q3S9nsQc/YQk7+805JIhCDCBISI3zLZSpx3um7Td3Bl6LZPhDgd53b/o5ApTHSFgt9ajh7Jh3M48PoQXlqQ6ZEwZmSxgkfV7Ml9LcZEWal+fxNQm/9b/uJh5wT3nLVT003ZyyIRmjMJgAiC5KKUST8vamuXnQAFSum0DW3rwzPq5Pf7D6/Sjcj8TU8uzbnoPs3XHQ0ZST3Z3ePwkM2bk1f/XZ05/2T3gBzUz6aq9TTX2QA2eOPbq5iPD8z2nkMq8eG7kZ6sPbl9qtwpD7t3zSxdPQW/vEWmb92NO1AVDxFCA+DPoFGfr5AEVdAPjoYooccwlc1xZm5p1utlbeA4Nln0Bav0u+n9V5nu0j/+DeHpjkrAgGvf4QSX0AFbNw6khAa6VlWdSS9gsMN/0Hz+q2qTelasJUrBxEBWSsPXOIlnGd3Ox1eP+3Ti/qlMXfC6WP71nPWP7Bj61pQP7iRLTeZasBtfrZzvtp6o91frt/L73ff3LRIEe7gt9fhzoLbXwd/p3SsAJPIEQBEPw/jSYl7TyJa9+mVTZbORu8DTyR+6Nsr9Pcxeux2/4/zl/3Xrp1SwDIAaIFIocJepNZklTTXer4o61RgHv6KaMOx4Ol4G47pa0UyB0QpR8CUBfaAThVmJEdZunh3rYYyIxZAWAsiwiyKAoLAVQ5qUPtjix0A20vfrwfC7kECQQESYYBIhIkgEgyMIBCKSKH6auPqeC3ThyVw8n54/mF1l6pH0X33lP+jiT1Ood5v+bS1KKmf9XbT5Oyn2UFKjk576r16nvxnt/qmBw+5/Ty28uIf3F7nlR8XQ4ItRTjVwef1nr6vHP9Oh17GBq/j9dWHg2yowutX/ldTPe6IO87zudhlVCKmbA72xY5ok2RU74XVX7XH+8eJ12vVZmRecUwLkB00SQMX4MZzQZU3Y+XIaViFgwZl897gKtkU+7+SmkxC21U4u9D/ydQLKmIoB6J24BfiySDIhIjup/ffKWcWKhw92jwr/1L0X1RpJJGEA6Uevfs0erXcpY9Hkx4Nwu9hUKX71/xVTq0RhFUl3zmXwbZb4XnQmQl9UGO//v3Il9kfYdOeuBBcAHTrB5/rr99u7TsnUEQIgQoKxcG+wxOJh+r0r+bnetT98TCvrLpUFNA+ZNtecvGYAXMAWTzNQTm3mAcfN+vheKquLWN8gvV7V4izx+bsL/H8T9zomFPfEi8fvJP9zTWZh8RwAGWn3dF70IAtYiZ1bNPVq9y/uwT8X/Hjb/yFpobkdCn0fO5vtzQosRjw4oWmuN3V9NS/DqFKB/MfNAwf9kqCoYC93KrrRYL9hdRnGufx8fhyHzX8f/NDeQ3DT5VS8ipShIH9n3WkZTMyAz3l84vPrE8YBCgCYXu0jXnjuZFjwb1HBf9Sfd53Kyf9jAAZeWeQi+o1RMtae9d2RRBrGso0f7kVufqWpeFP1suXHEIRfKstp5b6fBMtN/v0f7PvvuHZ+6DafHLjnR0KRg6Hc5O/cfFPo2y6KNliY45u6Z6/nDv4lyN71nKr5TQAbncV9U/iJ6YG2F7sUETHBSRZACQQGCQWRRYAKAskFJAFhBSKKLFCLIChBYSKKsAFIKsFRCKBIKBFIAsikgaYdH57qFshAJJ1qbLzwwxlnI2afbYDisxtU8ZPqYlgMQQB3AjDin5GkXf64e9OjzOWYZg2X6FIRAzIADPnQEQX/g6yVcLfjr/GseNfC/7t1OJ/MIVHbeRyxzczCGASwMzqwyuohR/tvuQw3ZmppUZ9ER7N6SCWGrM4iACsNqYZfOGnYtMVFKtVVNKlZ+IAREQhjtLyq/v0atZ1QCojrMDdpw1aeCXRpQzynL36Hh4LBmfia0NvB9bHsonRX7fRHx2789XWdujpviNIX6/0fbjq6DoP6O369OW6GFz1nTQh3ANu7m/6NIESbw2ba5Zg2hohhu79KrZLIF//x7ivYuaOqF9NRQoB9f/g7liHDC7f314rDoR51o5N9Q8cAhEK1wIcYobzZr1fwz5oXbvA7N/Bq8OTKlkD7enUaxCD5gAe52EaLCpH+67NBKlOQzP8JuXnGXHmBM2hkTOwwog1YGm3OL4Z5f5TS/E8o3mh6NfcO4YeJdNUOGn+Opp7ro+5wzz+p9/8/55V6g6Np7ModX9b+VJ5a27+7oYg7huO2Wmd4izn2n53bJDhzoa/4gK8+DSiGLwhjDA50yR0XpkryIbktekFRsLLu/+TrWqHFlmSpWaDbnoB+22nmpRTehr61EneZgPU9oeahd3JhnlEKqdAhXeAIaNNLaE49o72pH5D6jWBgVNpJF4YlJxxA8eHF29WQxZbZj9E5/0nbMl4Ldn+x/y/N1NXqHYJqfqL06niAv0ffeo+MxnQeU5c0o6vX2UhNIcQGqHOjubrOQuvtBzLBZ8lLj7VdZx/bHEe9HRS8aCz4nIR+BHLRVsP3uMHm5OzH7HqxPzvyodnTvyoRDnqBcz3mP7OV0949h3PblF8oOFRsdnV/fbZjuoPYP6MJyGDiN+9lAYgYIFjDSJv0bgRSJq+N6pImvg84111wpdjtaIQk7fISJ099xVFfkYWAs6D9f2+x3o5hIWG2B975d5B/BbH6SzlAwjFFi809vnRsBfrpNNBerYgG6JlsSvtJL9UtL2s5dei4yXiiMy0sri1U2awT426sV+8YACQA0ykZvNO5D7X1/8cQMAXu/u9tNQPF5SY9n2pkFibslQfJKjKWvk+x2ETR+7f6fTqH5uJ0TECdWSiCh1tYkH3JWeXlno1UIrJBB/0bzawkPH68IGIAwOPfhcr/N6MkMDnj9iVL7v4eOCCkWTiyEKp9vouHelm6EiwMyp7LQYwe/lZg9/O5/d+H7fDXo4l8KF/+6UU9bAWkYMUhIgd6aOegJZDNxeyxbDghRCDyX8j8qTUQ6pVhBnj4Zkd36+NLhEn+N9smWI9L7+cz53c9CSB5cU/7/G8AdE5woIIgi9GsR93cztq8M8c6JhARjG/pskJO5+KigaYDJOQBs0DlefggF9sXLGxDtMAIYMeGXqs0humpAajDgW8t122ukpau7JwVkIECI1AxYftboexPTHJ4/y+ta8gRQjDP9LEO2qLPdeuT5GZzqwPw6P6cK9GqST1JCY9ssaJBXNQKMkiBqoGmt6p8eHhhjid+X50b2+6d63a844ahYpEpEF6l7L7/f7OZ4e3GU3KJlcC7c4wXIjlImpGbkCWoELIRUANVPbME+i9e/7/ODBe9uPlR54f71rsuwUVTi49RdhvKckOyAbQDfznys11vx3TuzdkCz3pJxHskNQTXKTtwC9F5ZYsEJ46A9ciNZ9WSgOC9Qr6aA3SRAkDeZli7oCYv9oYZqiXsu9XufHDjsRiMLoBvQMme7qWXsl8x2SKc0Q2xuUih8YqXQHEbqZ+nihgZZitofVtz1exMPhpfpQUvzHHVBMsNkDllYaWXenj6+7JevF6FYqc8DYTJlkoHmjm/bv1xJ1aJi0XslnIbulSq4IgfR/eKrYEWP349NmGNJliieWuWrSODVQwmcoASC39WWrZNdsWcAIwfueu/99Xj+0/D4+ncgV30oeiQa90FJ3PopM9HRzwHzSqk+DD461gp+LxzfjxxDo9UHj66TGO+yPIfJE8oCWgnlml9cDwmIhigGRMkWSQRcWml0L1SjjwSh9aMAL+b7ezgb3WcaX3wBkRomqavIEKG4NDtwj9f8l2NAhpJ+QipQ36li1Pv7GDNnI25Mv2ww9zrlYmPka8W6ApRCDjBdRgKfQYAh+B/ozfVsp68zjIiY/BcGKP9za9fXzq25a6T9iX1UEiAgnkjkG+gGEeH1RfnGxe0yIcJ2JdmheQT22v80p8nLI+CVAHo51Uiryl6JZUBDn/fdWHJBQ1QVUga7woNhuUAeSAQBi+pNy2/2crY28D3rl2J8rUlbbc9Hv2YrH8tSEAPEYBCETS9SFHZuTqx4Pe10hviB2RRieYGAQq5QQAEQfovo3YiOl+3j9M+EBDvyQEAcpo6DgACIiVQEx0btvw9stYkN1kntrqu1QX5OABTz+aZEIO2qgd4Rrbs5PIKRkI8wAqi/FYv8GzPs7vfVT8vPbx2cEEs+wx7d61DbjrW0QBT0fR+o3XzGXhxxNYRdfEHQ0A3stqQYZY34yJtKU5iUyUBa/DWtgPRk9hEwCEjMAh4P8z9I3Xmj/TEgvVO/PyeWQoHv2S+J41uYfwnslHm7BAT+CoIiIgBPVmOm+U+pfHlBdfBl3aIOM8EARDCMDMxPIwX/E1WR765znsQr+dN6LsBz+fSudeGcfdk/8Ujy5ZepZEOba1AdwdKW0+mITw5D9t9QCrBOHrfu5DZ3RujtsM99cTd6P0XfGw2z8ct+cgQ8bN4c1yQiEFpEcG3FUxwW000/RVQCCqqWTxHjPnLL52+jyueXajz+759f2mPPtQdRikEahIDIp/M7G2KAlCbC76R4mQLORERZbNxkuZkv58M3PmhVC6oKOHil2JfF6ZcO/Kuef84BhzdUs4RcQBB1gryT0yfL4oxXrcbna3wrM/A1515lbTv/ZJndM6FIanRKzlYzDzHYyZqd6xmA7F0QysVWS5sSAlY95ZJ/3Zu+fKHodwpz1ddd+QAQW4f5x8fJ57fvr46EzpQqoEb365nQua86b0f1W3mHxaqyAiDSxUchAPyBmDetQupZ2Mey/0uR4M2HXwVvddL/LfuwYFTpwB/HtUC+ARHZQ/95MMtcTbRH9W2gDmhxK8wTcFiNg0JA9jQHxF1PywopTZPMbvx27ztuHDz8dUDeiOeJIqEiftqusMeehdepx7KfpiD7MuLb73FbPVxbxtxm77rw5dHcR5y/bxDxDwfbfQSy5YRa7ZogVID4aRP/ZkJw5VOdPnc43un6gzFA3XxpbgMMHRIL2lBU0rKycwM3YnJXz8WXIl4vlFZfaxGh6uniNO7peCH+tb9tupY0TieqA8vfdUfjAolKcW8SkE4br3aNd3H1Fy+63XYnagkZJ/vXa2PVPL6qPE0oqEWRghOFa5Db+Rb5c7gqAHd5ZTvM2ZP3gYmz3v/b7ULA6TQ4IXuhTUpU3pY5wYUSb3yVdHVp93Hs7FHmMd3PB+buYzgNVqG/Hr5DYADFRQhFGqao6INYGr8M/p2WltKJ1IBgyU6mE7dfMEQeGfgUTM1H/yxC+BMMZkBoC0i5FuprhpUOUocHBuKh5OOg4cVDNHHpwW0bBebNRVRbCKCNkDe6Rs+99F4ZFIKRfJCVIoCwh1kgi5naUe4R+0w/xmswSkDNAKz7xjuYVi4seOzVlx56+iB6Q19KTdxT8ctJJAJAhF5AfOcCQRAh1anU8YiaghqHvbpBvAPOPq/iD+6z4pta1Aewk7j9iFYRIvgKwP1/l8Lw9F3MXpHRAD3461EMkQ4IXHoFenIDFq6z3U98zchQvkOSKZDNT9eF5TthZUMKU4CaY2YGmbqFB771s2FXNbnlImE2FuCxQPv/rckIsWEigmINXFT88P9Yih9BAD0QE7ToBGL5OjF4izyGtp+p8UFBMTV47X8oP/ByqW/snBI0C1EEDL4vTYWykOl7qfxMva91V5yYGWwRtL9D39T894QWyIh06Ldnp1MPHV6kNkaiNjRhEJAAyY6GEti5a/i/Xf3SzsFPzemeQS1DAE0AUUp0IXkKB8Cr92+IWHzhfKDyKnXadz1b1bII4yIHrFR44UB9/koYoccNkQvy8G+oUQ5raBTGJqrjjf5qByBPOwLJdB+Ix7ZHLoCmkPm946/0x3dMgSUgqm0qkPf/Rb6rh4QUCQBORE3BxO767mx7IPp1R/D5e/d7Q35tRU1MWEAo8U6usv9iz3T2S41FP/FdCo6yNhlLqQYuk0AjTmEJVWJrWFyMP2PT1YMEfZV+1xtBNfptYfXET0xbEFkOyif5UhqD6eUf2zRAH4Iu/kK9MHH7az+qlOWO1k4YHyzca+uAVNY8oUfIEcsEMZ6AEKNYKsgosiIEigSKJIoaMPc+AWGOHB3evU/YMeHVP2JaPriZYrIqSAEIyAxVJBZJFkIooKsBYLCCiyQWSCgLIsEQWLAUIsIsiMjEAWCIQFhCKQiwICrIKRZIsILIKKsiqApIKpA+jlvbLADXA8O6zesWpJ8KAPVOhAx1QdN11mvCnw/nyW4jPBT8qiUj5c9ssrqB3gVoe+Jj5P1VpT5iPywC0UkAZEZCQkVZABZBYoIiqSQWRSQUgoDEkFIsBSLIKAKApBQFkUgKQgsCEFCQWSKAoQBSQJASQTNCsPPDNqoBXFe65ZXy4Gq3pxQy6SF5rTuGTvG8Wom8EBpiCl+HCHVx9BZ3pfwYDJj/e7VECQkUsn8++9w2Cp+F691bO7FAT2QXeLn8gwWFc1Hiw9FQvkMgw6V+gMgNfEdHd/P1n6T3d4y/jiU0RXqTizb1TjnX3qYYdW9wUrxcRfr/nUrUxEUwQLD4f4+HE3JDhJBZEQWRQRgKCgisAUIKSKpCLAVSAsFFBQAVEkUkRJFkFFhFICwgIgKQRILIsgqwFIoKCxYCwgsCLBYsIiSAKiskhIhIjCAwgB8sX2WUF7xtoaT/oYvyyHOZLun39D72hYB7wYPKCa8qtrdgtinw9cEfetiPpgBenniBYQAETYeiUKn9ct7tfzcdqWQedDoxQgiAsWKjJFJJ7vloVDGALWlcWzweu8g3ROeXpw8NHpA5G1at0NjAb6BFkgqwUUAURESIqQWSMZBZIiLFIChBEFBYLFkUUBYChBGQWLAigCwEQBZFhFWQiIRSCiwUkRCKsiyLBRRRZBYCkFkFJFkEQUhFUgqyAsWCMFkFngELSJ814/G6w+MBpAWSQAJEDmgazx8+jktE+TIUzm3O1/v4JTwFP6x3BUtxwyixeD08GrYW8WbVZ8US3AKDZxVS/BkJ7tNOtnt9taafRQ9cG9AT6OAxa7M0/69RUkFM8PdkhKIXJY8MrlDw0UD6JuVAeATkK8U6k4ZmiPoilIHJT5SuUwUynNzYbFAb8VwRKQNVmquzLTVEL0FkC97aV+P6/H97C1JAy/DnbPltDBzEUlCwinYREWPhi1mSfRAD/gxmt+d9ojbxKCjLwdufYNegm2CZyJlicYpx0OWZZh4qy2wD+35m9b77cPUn8GnwW8YCAG0IAoARQIH2NGPpsIX7lH3+Wh0rc1fVr7FQti+z/qKt6AFkTjFWlJO1fMvb6vJfJL9/lDkpwEAwn3JcDUMSEB6aZgApZmoJZB5jEd3DXR/Nyv1Q1k5OY6ev4WgOeMgYdlKaNlfz9dBG9N7YXErpmsLaOgtoB4Ga4Lgge6BSEhoDEhQArATT8vo0BYNwGUEo9WYi+fhfD9KQIi08erRu0wKnA/OXFGNvKQ5zy9V4w1QoBEQ1CpB9pLLNNb6oXRQ3tpcTuesLt4kkwjgooosV/xCNQxGKIQEkjIyV8AAS8EWydQ0QcldWijelYUjYcvSqumDdDF56FYMkhn7+7NY3zFQb0BYQbM/DU9Lf4z3tD566q4vO6T5dgfPv+vKvAcBvBU+3CtCCwyHsYHMVNEK+umst3+9vVPVfKXgOaZIc8dHHRDf+4obID9+unpw0zcpRBtiJIq6MX5VcZk9hdDLe4Fbwp8NQUT3ky8X2JVAKreVofghHtZYpIiU0Q7GD6sfyFvZ4vqhD6rDLHFGmTp/Rg5+8Xi/M0E+iCtYCkiisigiSRZIEWKpBYApBYCyKAoApJIsWAsIApJBSAwgLDPR3R4idzzUMkW9yav9LEvYAKIt3vQ/9ApKiLeYfjOvFOBp1NORDPNt4MUDY+OnwSHOIQO0rkoeDno+CDdOUX/KG0iPLDLepoiHDPz8fN7bH7x0QvqMBpEkagJUnfzezLY5ZIvAYD6XUFlUVJfCXby8oBvKWWHFQTKW4w5Rf7mFWg63Sj7L0A2/+0fb/VXzR+7MkA8YV+L+jVZ1dJsQ8PmS3Ww8+pS5anXBYc9mzH/SHz3KfRBQ6mr3yp/vF0Fd3eNFb2TmrCF8gu2DXnrVzS9bhq1I/15KX86tE+dVhhn5EyEywANBVp6AQM7QU5E4ltAqZvzDOrUO5f+qX8H24MlfRn93/XYyRw/Ns5tnPkLwduGX/acVaHAZPPVXk6MNQkA+9mGGg5sBXFu6dX75wAb6efIFl8A7ACHTq4oGRQII0hzy69QXT0t9a8+LrmOwP5gY4cUAMBx0DFB+WJcY+E+0/20MFlNWlkzuQOXZz3iy0zvis80PPrCjqTEkv+cD194ZOH4cX+DVF+z0YTCdGCwWrWGecVtb+9ajCHPjpbBD94CBdWG9i+Ts4vD8uzD/xfrhUoJ86Np7hJgQ8R0VK+ah1eAs5Hw9dVSi3beEoN0AkjEZBT1drt2b9rSenHTksoYIJU6pSydWaexzncsH3ghHpCJj4smqVtzz2gXTO/vZngZAs5CpyhD4AwDEEfpxUXshBz/DPr0F7sXi7Hy/ZB/bnXoz+qBmATr+uyFoyCkiSASQEQUAWQVTnx9Bxo2n/xhpP8Wf3e6wC8XqHIKbQaAQRnEgA6lYECBAgFG40b9T7uoYmqZ/W8yV4OkwuK4UkQh5hGIl8+Xg6FPje9l7p4XtlR3QCsUL+K/y/76vdgvnDPDNtlDinkDVSyDfg87AakE6pv4O2c/MXae2+wOUNoogNrchtUp4Wb/83HvbE0fPT+fEYkH3Wb2z/eOxckExQrMmDirThoLINkMMXDL8QdoJH0yvm7ePv2mQIf0O4hj/y0LS4/qi5M+SrEazxV/KC4o4pbMF6Ub8MerdV+j6OnU5J14uOJi+SgD+8UsgcCf6konFEXsZ254F+YC3scIUAC2IyMiXAf7rt5IU5JwXlC/EAkCRUK+TiQpmLBlKAAsZmCsK9nSjxW42GQqzLTkwqMmCMzMhTXk+pVagMck7f40b8DIoRRxQFz9TRt5NNwW9JoksX9CEJH6wDmtf/VhoUqYFn6EB8/+Zqpp3+35rDeiSBFBQBZFIirEWCxVhBQFkVZFkAWRQgsIpBYEUWEESEWKEEZIKSKEWRiQFJBSSKCkJFAFAUBQBQFIJISJIoyIkgEgPDxp7vs+/ZsvX4U69KwCQ886nRe19k6mHjvvXmyCh8NhQDTBD0Qce3ZXVF1QQrz4CZbBLeayteD4Gb12gYAuXqesMZbhspsgr4Lqpv9Nh//PCr4yje5Rka4Aj+qgzAXvRTAIJOntN9cmbJwiY/HXDo4/d02+6XIwRUBgZbCGBPLttNAH7QiUF/pUvg5HrYCgtpiZrGJNtA0dfTVE6sC276ydx7n1fHHfQZAeHdT7vVpOtYqWx5PzoZpnjr5jJXTgotYtT/iyvdtocYAgF7pfk2Hs/QQvkK0HWOCoyL94qGruFePt7a3stGyVp+QlfycAYvUKmCPfLkcEUZEYRDntoBt3xQkXQqPA4DUMcxgh6UY8ChAQmFz+3oSLgFZVkZ+ueBKNz4jy58f1jDGEPFHfL2n/d7MXH8U28dnHrooyKLK104a2m/Dp4M9ThmyA9WdE/zFQMcvsRzgZwKCYJ8oJDXI/OU3g7eL/O2h+91/IFMpzj85CoHvBh6xmntAr3RY3H7FGLV8P5u5H5jX8RyI5sIDQFACkEkOv793PsOXFn/rNMPf4Pwxc9rSCm/BKaqA55pxaaiUifZHfj0gIjiuoTDS0hh+ffy8B1OuZgL5mT/HLUTkAiO7q0MWzirznw39h/3guODLRUl11RJDJB1mP3+vs2br94AkQOD+KABx6qZIf+vUBL/RTN/QLTjEIBghgdHup5Lcma8b05AiAHV8Wk3ENDhNI+P7ULVV1QmpSLYY2GBwMgJen49V/xr1LL5u7FDXkpCzRSoZpaxO5BNSik2G2nTCXyRJAxmIK+APGtmezKtRo3iG1AMmb8LrexxYNJlSRTDgbXZfAOaLk9mCv8QQsihIgSIdLlouGC2YJQmtO8QQKg9QQjxZqJdN/59MnzjQ4ri7GuMp6rqWRDyTl/Sl79vsvZ9FyIicuQ3wK92aYqlkDnYjTXe4eC9bbwY83Ytw9iGGHR0948dj8pNcHp32gYWO+kpAejNROns0lQ+4h9m9s4rMn5ZDEgnfFLaxBzKwO0iJHNxS9xWY/sMF72dn5bLw4OsJ80K4LMFfSokS9EHhINJ2OtjqcHt9Hg/T0+fnmfAH+HkocGOnP6LPbYZN7vcf1wGEIQiRLUSom04lGyxM18Qadt6XI1G/Bfgl1TCHJ2kC6DzBS1Ah/4P3xFePzm7c2VmnFTe3apUbOWgZSASQgopFiwUFkUiiigERBQIoAsAVGQiixSIxSRYIgKALJBYEWQUJFCKSCgKSLIsWCgCgoCwFFFkBZIoRSCMgsFiwRFgCkFAUFFFgLCKCyQVQWIwiqBp9vxsu/rl5uTBq5dVQ7UPTCvUoF4x0YwVhABgwUQZBGBFIiEUkkFJAiMRm9T/RYNYG4FneEUJxw/XXSFOVqW43unG6/x+RYFfZHt8MYZEvtlwVQgaYRQiZ/Np+e3w4rxxaSlb0odjDRFRdkQywVCQAQ3/Z6uyVL6Rkf1wwPzc4h6TwqD9T0Lj4OyfHENgfNQXEG1ACy/JbhZv/ceef0FyxG3ypQfOIkC/TRPRB8h/rdOJDRB/HIyX/XWezyVRBAZf2k3FwQiLIwP55Ztb5O9eV+b00N2/3qpunLGnUz1+/nKO4FZnYJpIU7B1nYf1aX/nyKZ4NiHoh+QQxs+4CHQoApETEtFClos5hPencXv+nfuwTf6OYpX1z3G/T8e327xzlrdrlAVGQAEJBCzHTdZ18Gzxl3ShfvfsYQKISKfbzQe9DXNn+wEZMfQIftPtshZEkfxJodJxh3As7JgxfVcWoYYMgEiSCHmX7xaGwCZ5wT59HW1u7kx3lG2UhDsUpJEkUkkDDG6KCG6P23f3ru82nLfeHepdHPloJImYZkA83zTR3+H2anKEXDv9etGvUf8Z7DlI37xG9EN4amTfpFCSzM1lEctCl85v8qXwI+4yxpA+1RABFGYtD5ZtxHBmgY/+wIYN6TFQ91liAoGDMAbxEKEQb+avXsQpQ3ka8UdOeyvy/W8tQyhiBLlKpfy2YbcPzda/xbqOeBKioIewlQAd5WIBTEn3P+WT+ez8fAJGBxiEU2xf2D/T8ZJr7fEF4CwBPTh2ZcXxuOznoZ4pQSupzrYcYkRTTDaUKY72I1aMRcZY/Nv3wt4hqvylweTLRkAyxktnHy1v/hdW7qZrqpb4P8Gp3IZp89/NiBsHBFhBhCQVdWLs6k3WodXv3xLDotC+HwMxX9WH6KRMQMMEHd/sOO3lkwXZNJzW0u7+bkv3baCGWEvfdty23/BTeiF+CyEiYvkfVEsv2i0kyTqEkqm8pKRqqEDQ29aHr+F4z9nIeEwhbMWMd7i2aVuA7dq2CFTMgnf7GrvY+vect/mrqHlVQU6IgUqi3RRJBZACQSZuKvT/3++O9bvHlo67SmqIZh42r+QMQPHBmxRJKYCqJIe6eR8thOglWNuxmOPDZI1mb+bDgLExwZGQZJDrQDJjKBp/D+eb67csUDCRPYR5IhXRTZApz3qgZ4BlAIhehyS299pvmWiLylxcQThDg4Uqi9oJYE8gKGoSLD3r2EDU7/pd2/9/ir7+6EjfnDkocsLfLh5M8/LB7b4Ly4qXT5twZP4seFYhUheD78+Oy/2Cm+7jCaU1nzv5P5xkJAPzzg/ziTUj1//V4PwzfTY7Z/ehCh3ou6AQgyCyCkjIEWQWALICgQWRYQUFBSAoKARSEAWEiIQFgAsBYCgRiQIskUBSRZBSCgiAMyGYwHZ6AFMfGepEhr9WvnrnbnImXv1beInTE8yAH2YZT6TLTpeCg2wDH2sVRbARVxbqNS/HQ/xTjIjaAf8lL6HaWwKlsNPhCgHSU/J3mv+l1FzT7IKb035+ETondipvT6q6K28m7dWmEy4zrYMCbb1A9UsNShWl4MVEhhiGuimZAn+m6kTBgyQGVzEZoKPDF+RXCwWL99CYZwA9VDks+KI4m5TQRDDFN66i4eLXeiVnYm/woASIiQAwEeySBAOGC/xmxeU3Bfgt/jaq3en8Sct2YvMgb0NPRqrp3F6qvnvU/DjQoohbEHfOWU4upHUZzlPAXYTSgUk+uOIWWgJ+RmCuVYqDcqfdKX/nw2GPXwNwC5RBDWYJQRdJyMfl7Xg46ZaHCry7vXceHfyX9GGvdoHlls+yBxzKQws/2LhBEEgJ42Ls9HnROVMfU4L3zzXHhQ9E+twFmZImF6602mFaD2RE6qvRa+GFrgjwsf1Fn4+qTcbQHIyAnnCZd3t9rLS1dFGs/HQC+petFkXmNPK7HpqIKIw4SF/3/f7XWQJmzfvjtDLC6Bo9Va3vVROe9FJQtiB0plRE3WbyLY6gYY1hLEoyZiAnNmLaprzUSQBOH/4F3FQV1GQIOin20qSoVfWqb9XCS/Y6qjTgE39h20qqKxikhHGOokzFbAPwma8QRfIjbt5U0gLQRl2UpygA/+AIOJE30TZs9uvfvcX1n7VC0khITJTpdXiIhXr5cveswRfJ+pSvnu9X28WwuPXfP275QGyEiEgSDIkBZARkigskFgEVEhIsGIEFAFiyQFAiwBSKSLIsAERYAsBGAsgoEWSCkFAzIEntIEMugwxgdfFC7nxwUgRPPWsUjlbhvD2fRZdPcVOl0Wqko2lMxi9RNrmkk7x3o+M3Mt7Vujmwh2cH0arPO1JKHM92I2e+7VgcqpRa1ocJNNBUYahiqvSVzulQaUjO8m6pXOz5DDsOF8VPJsoOm+WQrRskRaPpJz2WVZRdadRTEFflCVn4ktI0dhnRWoYxBYCNJYglIJOzRhY0u0UtO05IgxNIWgHidbOs7F2tMQpTFVvd9rv2xkb4/DNwnnnaoqq4jV6G6uHuaDSfh8ZI5zpjMQq/NbmDdY4WSFWVaKHOdR01eswj7QRMsCzozVaItYBTZ96QFf4A/2QMStncVyGYWaouS3yY4Ztkc6h05wxkcrwpCcIQJz3Lm+aTWYvVXrbE7yk5giUdACD3TURSqvo+VLGtFF4xfGTwd0rWdKorkrFb0u6kjhhZ1Wc4zlaSysHueH3YHZ8MVXETSghM5B1KVvFEwT7PdNFdN1o0aUDaD1cyyqwmH2NcXGCo6d4Xn4XhI0rK2VzMHBI2PFpBZZDI30lSkEmc4hmSUsjtlaFn0rgnvQlDmN9MNZDw+j8UpKL6CawrI52oIrKbsUwDjR83UtSFYM+9Vg+lo2kGw6McWIRI3WSbPCM+joRdEOOxritA+0cItxKbAHbBVlR94XnaK4Z6SnJy4hdGimHvdOSXeka0Zp2nWLMbkjhzOsqYRYNh82fiLpWxhTSUJ3imLRjHFptWK3xCLUQ2xOLnmdaxq+F24KHNGxhFnWNK4jKZwOEpYXFI0ZshPI6Xur7v80ntJZGMZrO1zRTq+FzJz0RgaOFGix2c+Ao+NcYo865TmiwSuEuy2xSs0CWdV0Jvmx4iiK+0Jj4JSfKb4UxWjxWySnPDWs99WhktrOUTlar6wJwfFz5VvGRVtatlScYUFBlOgFHtNYhLSqrsLM0Oz2daURhJI0LQgsrCp0pKJqh3EHtZ93Vs48Jg0RA+i1qKRgkIpBHsyOtIJSSyxadMTTBiEEtV2Hi/6GSwthIxpk0BDB4V1Zm6iKcowgwD7yW5os3TkEsEdU40ilDbI4Mjq3dechTKHxWkpvRXXcc7nXDrTvaCwjTJ2GW94WCCKrRHvtTIMZ0q9cWW8bPo433dU3xlCJ0pJp3dAmjOB1aM4B8rRjKytHEVlLFr2Oh1rXFHORMYq+rnOOLjWtrGdnWqdXrC9EnZ0MTjiEZ3lN9btSllfZTm0Fe6wnUVEqXQedYPnXJcmTILcOyhWsTZRi8cSEQ+MqzugN0Mom98UEWrKc6jDsXpe8qkyynNz7m6NcQclpQsVTtianC7nwxOIW1KoznToc8VxKN1dWVaLSF73nR7sRhO8mcYQ0fCroulOS23HIv5XPvm0eeXLr2rJrb7Z7e08fl73u4M990qhrWbVhJGpagV9hhpmxtJnuhHESxOU6pF00R9klKs6q6ExN8VM0MHQxCVWkGUM8QURs52LuMHi8JUk6yJLF1rh9EitIpCymoolBRBHDqXw+8po840iKhq1rARZqVg7B1WL7HWdoYk98Ho+1LPu+M7uffBmkAj5ra14nKOGdSM0Q7q6sTB1RDdh1pwg96we05G1EkcaSrikUhRXI577KlTWlpKy3pDGIYWsHYnE7sgfO5PhZ10clMVfOyHFKQSS3E5CxnG1avq8HOj8Pw7F3uacquZYTW14TpCLq0O8EO8AtXTOCHCT6pacZOkiUdKV5zhIio+cbuQ2ugdaxxo+QsMBJQfOzPK96rCixlZTR2LXwi40rV0co/L4aVzxPRJ1aeP0XTENWqkrQa+q80Oj2wj4OhA5QQ6Qfd4xpGxvahkEpdcGcrXi0I3ScJPrdhGc3vhCd2jcLiEX2vE2Z8MCkQxzxe7Ri+csPmdcBXScUpNaE6mtaTdRIeh0jFnxR9K3e0Tqz8NlZVqHK56r5HPGcK0vHTQCsA8Wxo5glUR6G52KZyxneMhNMqM97WfMOO1GjFGnV1rQS93VqtKHaFGrYxdEUOvk66ywgBqiI5Fwyg2cokITVcTgiPoFob2ne9MI9hSoWz6znRnRRRc2ld0sRhbEDcZnKz4ui+ovOV0faVISPy3Zz0pY5YlkI3e0o3VoyxF5wyq5LStSh1ybNYwQPdOERBWxGAgmII0I1Z4U2WVrXXOc5RncVWkjvBpQexhX0V9qmqOgd6GiCFr5Id4GbpOGLNCM8OOzTlODlm650rM0ShzZZ1dWGGxSU8YomIRqzoUi+0Wi1UrOc0D6NZHBKWtNrmoheb7pBLCt6oJnhaC8lOtb0aym97qxm675RelqpaMKxatBZDeKM1pQS74uFrmbkFZjDOlSF2feV6pKlLQNVfaIErrgPV+FdSLOI31SNq+NEaVLOnGDVYVycd3WoyxykYqs1U6JY1Nmmz1xaN55Rcoo6snoGSr4QphAr6UsiPvi1zSVXwpWuHwrDCNKV6i5h80w1cOnCTG6FTfaZh9RMNZZUSl6m0GRI0TEqQniboI8QRLo6aOtCU6JVHwE43pJKzhN8ZydizFQJBJxSVESDw90FveR2EhOjoRdC8pOSxzu6wRrm/GKXtJKVuc54gaSfi6zs+tbyYzerq0wkcQkbrRtdbPti16QNy0TFn1WNlccZPuMQrGbQgxs+TNYhgSs+0JEqCbjtZpzfiz5znQ5zvFDD2mgpa85PfB4Q5YhQ1R8Be1WperpzokDOanYYrKCOBvgt8HMWJbykI4S+LukkqGsoE+EsK6T2hdn4tPBxfV4elLRvCKVfGgnaYY5rOdsWfWMYOwHWdHs9Ui8Zl/0wQ9YD4Nv3ffz96e/p5qPPyq0/S1mkTuUZEy9UcLVX7l79Cn+xypzNf+vZEtV7USQZFGC9eAOOF+D5YP0RANMRrFEtg2QJBTvRGkUO5AW6AVir2YCmKJZAE3GoCVDqI7hqBeLUUDEHULxFvCQmkDLSVJMZCHVkDGCzGFZFI7IrOf34xfov8MiHikAALZw0YB5W2x8K1P6URfvaUz7KeKpnaOyEoz1VG1F2lF0fswr1mvD+8FsyEBkA5t6UlMKAZ926s/7JXbO9NmI28xTy8e/zGY9KGKCa60e7JApKRJEFUDH8jJBSQxJFDbAhUmIfQwrPigV4tm2AoaSFVIcM5ZBSGMkVRQBSAoQ4QAKyQnxZJphBYwAFzJwgir+tfx0Z2XfN9sVVW6nTen4z6ZI/YF1AwZkHN6pVW88UVLFiQD5CZJbqFRRjoJJJyJCTNXDPF24Zj/f+1EPpVD2ofNhYGFsK8sOU80hjA8ma4qwK8J/Mw4YTYn4krOBDhCiDrnesQohfKyQMSGJpMTlkD8aTECLA5TsyYxYd7YpNMmkhiuM0Idk4To5xeLe2WSGJJFhpy0MEFDXamtUm0NvZ0goRZrMuEx6JNMO7dtbQ2w++hpWCg67eGjsydWdXuw6d6cOHh2uW3o0Qu+MnZk2omkqTaFQeelwXTKkhmQqZIYCGQRUcbzDOQuXT3/utuZ7cewD63+Tz9WL9G7dJAu6HvmuTRgK2NK6qjvLpmjoN2HX//gQ/JkALqQLEmwEMKnzYJhfTnpKMLfSsOuu1dpPNLj6Mi0WlAqY1ePMkAY+QZrfz3o+VBlCK6n6lQrh39uo2h+3NG9n+efVxihvUuZ69PW7Ixc6hDC+ov0Qt8/HrkluMYtOYg6YIs0TlWJP+P252f4g3pcpcOZ3t0Zp0Wuzn9Vd/pl3jl6rNWz99zurjC47PpVp8Omdk29q4p9/YH/I4ZVlGmVXJd/lYFJumjjR7nsXRVdwN/L0iymP5Qp5wSRWOdi5nkoB6NpoSTSit8+UtuwpSRNFne0L5IREsCwAMmRmEwe6fAWFMBKtVeuXpmm0jUZmboMkdLkFdyaVXoWoznQvi25fi7/feRFQ5OltrW4z8wZnuRlQhJkEHYMBJgHoQAgyCgM/6dkoi2EZKtC1D7d7fP/O3Fof5tDnC4QKIff73xEfI1jBnXNBmuK2TyCRk2sb7il0wAPvgRpp2dlwAUXW026PRB5bfLBDT2Oxsd/tW0gUiubwVMGDPcaDIpxoSoGMy0BtESLFIevKFYTSOqB8ENs9LNIGt0xNo5YS/hpdXE0maKsg1jWSFsLKzy9PT6P1yZXPE8GGypuHd5+X7OfxeIkuHiB96lLehQnuZACigx/v6XHAPSWKmZmx16q/nNz3+7o3cdDNIPdpDoOS7L1fiVPtfH3HHE/QHjU1O647VqbsabwPW4Wm/PKQUX6VurgAB8mCBfE3C5XhBC91AVbZo4Tb6UHbwwvYPrNU+3kVrLl8dYLtRZBv+ij6pWLLqK1jU1UVKEKRPJ2b/Ifb13s6AOGm0zbXf0eic3T7O+H8if+EQ1+7n30/ZZiyx7X1Iej1+Hl+jjZZtQ5JGn1tUSFzurDzPFL2/Hu0LN5eeoili1xV+eBbr0ceuVX5ouc3R8arV2v1dT7cyJq3gzuKruPNw/tTXUZ46DbTK313bqsZ3TDiEBo0HX7wh8wSDW4NB1wvAySLhhTQJ3lWthHwc6Qt5WjkESEnTMBBhSwlKUIIIozsagChGU9AQRgwcfbOXQx28bmv1tVL/Yxik9K7t87YiMOmH86AOZCiSQZicgBBhcZTqzr8GHn+70f2nyz3cjl+o06rQrGGFbFKaW22XAwEkHGQ9oxXZuL+if/WSHBf3K3vq/SV6v+2jLhZ0NiKO+zL3tR/nukU9IYaFedD/xvxL+J0vaWNh/KhgUYI+yk/QauOV4F3m+FqCm6istQ6H543YvthFztFDuxqKghwMEW8xqzgcD+sHuMm/MCLlooGYDb5F21kcxiAx1GVyUfH03lz1/1/z/1+/f4P4FRv3bgJlvnfz5+vP1sxWSfUm3ErD86cJ/ns+5h/K/ifB8OL3T/uk2rpqVD6M7/Pods5L6TEGTmHxXUoQj6kko8FWGRhuk81GZ7a2fsd1mHm7PPezzIgsaqRIKokEMyLp7iQcSD3cQUeE5m+SHB+TOMuk+DJqRB87+lQnPXMMAcnEizMuJtHx6bIvbYkxPe9HwPVrNKv3eM491O78N84TGevdmmcPsejJHcwLUcomdBNDMOg3Bq8s4ycmiBIoQ2mFMGDp+umvhfYwzicZULfXcgp0/0vyvHr+TMQWGc+dRWMj1oWRkFO5ytBeBjUaw3PRpGmdOfyv6ZD7vU3gcvZQBiBkHkB0cnrdKaCvsgqfqy1TNCI+JKDMwfIxzypDqlKtqIC2ZeRguRkDMAmcsG8ceW/G9NL/KNVRR695aq55bL0WGdUJKmtfN2pu3bFjWeDsh4O7az4e+6KIBL50C4LOHilIRpMIMgaON+nMw9Tj1+5Tb0TbmbzSfPvrcxdCNiPz3JxouNcrv5Nl123eE07Ziq6pmQKMFxKleiYZdDvVUnZCoKppJ3QxO9zp030eHhWpM0U0Kqjykq6tSI5bIKOWFVBYCnDpA7IGkUMZykmYWWJXbtNIGmsRFIne1xbREVYsWRVba511muqdMzNXJXItttCpFNsqQ011bUMzrhpFh01YInFKapREpu48GXBOjlvCGtWHDrjcwVBHVqLA6XjIXqnTPp+QPufrQDzYe61voAK5i4n0IPijCnMtqcvonEEqxddnmh4Q93zSy5t+jouz7cwvdOm5gneJSmLFXZ1Li8ulBMmvQxanUc6PhglMzzmKGg9TacYu+/RDFsdAb1qU2SAiwwtykot4df1tUs9fc/GVG5PGswFLE2icUWqw3RUubiIYjBMnlqzWncPGKILhM5ZWx9DsjZzblshkHfq4YjPIghL6InuSuedz3orUYHd1q9SxWSIgKeal6HP+zv79LJFDrBo/Z6kuCte2orgckKd7uOQhIZAbacbBAxL0u51t8Gj1pesHPuWyxb4qhw9T/7zdnwdX3TjWS37Zf92HlbVlVh9WlnXHD/CIVMWDAmVgSYo+7kiCFBttMz5UIvpUZVgcoVK0fWdW2H/bN/VjlS5p0tzfa59cvkpTN93Q5gpJ0qg+qhIxpL+Pa1NEPHqCteRcOHV7rU4x4IpLqbYvvIbR7K6o085scA+x+fve4Mmm+KHRn28yOeYplCnyy1s0I6kmHVmzUbiSnEqs20tDJzzlWGG4Uuoktl7WOm/RER0q/ZDN6sVqGRwLUf38i5arkjne78vJOm5ZGBqupZ9Knlk50cD4ZXTsvC2B2mBiKjhR4XsfFq8ZPHPNJ0Q4ogEYzhsAkbj3q2U5QzP+Ez0Jeeoiae5fBAkAwARE4MG/gsjeAFdtOtXgVytEfxxtk4O0wInUGbBisbKfVyzmUNXL7LCqcMlWlot0a1KdCOYwCz9Mc047dPmLtM0CkaTPLkqed8CZajNbnq5FbM0kM69Ro0dUCTEIn6zCq2QcGILrMLNFMzpBV0Z38fdF5OVUNTVqCbIAzoEvjVvq8anrv/WL4076GGMRaI6eJm2b9Gpxz6ptkt/FD9v32Bu0pJ0yicIyZVUadEnw10bsL99uxzt68yfrJhtYZboS9V2VfQyBmCwGHTEd/MCubAnnvUNuRVPHqnYWi0ZtofgxpuAwzzq84xsTPjvNjbSRbct0LrLAAE7htv0S/BhUYqkq+xCCAZqmvXy36JXtmorb1Mw7i7fVzXQNT78ZMKPbrYqzT8uaQVqlvkmeGHGMdMB/KUZkQBmUBkQGRKAemR18F1XmvnRnXkrt0e1SQ6tBhVMDnuerqXnbtSjarPTdaQ48bCdCvasy7wUV2uIWSuk+5L/1PhgqsXDmicdOW3UZ4MK2WNLGF+7DnxjBo+ej39Y7HYu+F1FroVGSd5K1FDV3oD/RE9u1n1fJ+iZ1XdmkDbwID2g2uYOYXNQ6oXIZ/R69K/Ta2+dWnknNrLdn6zTls7XKdUu5c2ijs6497OJajuR2ZquXDSpbWOnqkGpAIpjBAzBmQMwAYMGcJgF/unu1bd8LswXR0930sKfRizydnQI5DIFKYBoQASDfryVikoydEKgf19PcsT/i9wSQUAnjWfiYRPdGKKqMcQmMrmidtCjlBRedYsUfPBNqRm/qr1O2N2erfyyr/asZva6FErdwXLjZjxOclAwoo0WphtnK3oN8jCJlq3t6/Gef4QZAOJkQ1GAQwmAAVoiX9f5PH8Xqz+j5fl+X4bVVVDMt30+2Cci5MF7BUMyJJ+aXlIeah3bq951gPNV2tuyW7T6scyW8+EzOjI435yTxvXBTjBEZkAFDIRuYb4Uqf/W563k67LLGNSZNZ81/d7WFNrhkpxz2OtTpVL657HGxSkjugG5OzaKeDHbTRx3A7Qd/NcZ5wW54LTvOrRMA3eMuKezljk/Oqb6Sp+onNN+ONFE3QpLoCxmY3t/qW3cyZDw4rCytUZkEBChAMwV8+5taWf669Pf4DY48xSy3menx6L3pT1FUs6kLDyioUNqe9X+w/dX2us7uEPrPZRVva6sXLb1pw6LjpkAJKlOO+wwy6lhx5v39Z/sbQBOIL7BhlrcvBBevPYHuxnCnH6V1QJDQDQYUO6fDgNn2x7fyprrnV22/ina9tfO1Z7J+kgE85K1kXzQhHSYxnzP/fM38k2GHsemT+xnK29sv5uKC+50yIna+AlMPX28P+uuvFnRD4daT+5uqVBfK08EOrMVg9G/z+P4P2f5c/ZrgO32d31hT0/hzHaVKyopIScmvV9XvyGq7h+3rp1t/dU6n2eG3xHv1IBCEj4o0gSIyE+enR0eoy8M+3w6hnWp9vV/T2erg3+Dk4cQHNEJEBmBUClsVlBchQPwDF/rnL0H8jdjz3QsYkVI6hUYJ26/P2tbd2Gt+Nan/K2UZvONPFP55jhTgareGp2j4okewtoqePs2urye0/TWgdCNTFJ5LKtFyGTe0JGdSezwHDoUU1N6+dVozrZdlpgVEK6K3k0j2kSt0TvBxzD+KsSIURYXc+uBZQXtklxiHghO9dJ02a9e1evVIL8TmRReZxp4PU9SKGnvY3+DvpBn22c0t9vE136GM++pYZF/XCxR5INao9Z0bFUd23Hhdqu23n29x0N+5NGLL1I3v97k8K3mU4MNJbeLiA3csVYh2coK7blPihhLuI7KlM5y9xbiy3aZ5ar0t1xvW0EJfEl/hUS2cGBe7b1pCuekksut+Dnb4dWK3YbrbItum7QXwnQrI63t8H2lsWG/Tndohe0a51+jXfqodV0T0z2XrM7ye2JWhQ7WUUmpMKOzWmi62UXXQhIYhPBcQFeamu/j0Vsq1zOonSu3A6hWXThqqvbbK7DLmRhatold5otDdxtORxy2v0GzQW16sL/V2M8mDz3ulSjx4sUFdOVGS4id2drFp2/dYrq750GF08yigfFhjYnc9BZpoYO2u0jm07IKc5ccufLnw7XKFPVQqPq7J77A3zkT2FU2V0dF2klY2WaexVSwiQ17LcUsk5pCy8b1/Nf6Torq7tc9rsv0tK99dccJFadC8vXnQz7dCiu80leO+oNOhXfJfpPueu5XTQDtpyjQUqwxYOxEG3Pj4rY6rHb3Sbexd2Hneu2tLaIZ8a95qRDixy7UtVoKrCu9FrSwIKxz4d4IlQDnc6OiiUSvbWXVsrMBkyIzBGYIjMDi2gt2RzlZV5QMAq7a3HwioYBWYXcLp7KuPx58cPV3bZCAHPyd0pbi+/PgpGAgwAsYQZAwZDu85uL9pYeqv1plj7wn8aJ9CmnpQOPrbJQxh7D/Z1YmU08R9+jyHqEHX6qEKpgiDBWGudUl/L8z8jce7cRHTrpAwHSOE9BrmWLqnLKqrt/NRioZEfM01wfFh4zGhotFjsfHg58Uv8AkpfbogUyISrNSIvGeR83I84LqX16oTzADGZ6vehx4weJm7PY5iHsmB9i2iwFjIibeyhjdNIn8E97mMapbLuJTMyKxpXaqmWrXVYmRCD0BGZHToftRqvApxQWe+SsNh+1wez+iOHa5zUzPLJNNt31lu2RIPhwUCtDTPutN13gVMCJ2egJjHiRIQS+abDICj6LU69G3d8HKr6RJDIGamQLZdAiu27up/gMDoMnmx6Y3pbhDdwt0zIp3TaYpjrkHOdxSLXsrEQsYlm9QBzqg6WTXrVFF67OfG7xy3TYt+vDQMzcDTZXpggu4IYfyNCYwAIoqkzn9OecZH0SqcT4mBOvWcjODsutBQzn0qmuLMXcfXuRdz1ZfP83X8G/jnWLPIChSPTkp7UFnI/cheXp8/jEwyaLMCFYCvtjukdYGGrlAJs3svj4uCvTTsHbpDJKG/SlJKUQwfb4fN90JAGQIYMzmC9ToxkL+DvT6RXUrIuxapwKuYDtCFjzQnsx0vF4+hRjhiTDm964uQRv2rVwRz1kXibrIJJ4LK95EPKaS5mMgZmZAe51TJJhB+Xnpab7dAU4UD36Zq21XOYIatrahcsvmjgkukEkFoCDA5Q0Z1gte08J5zLmMKGD2VP6jCWRjEJV7Nrpv5tO/887XSjlrnNZk89MZ7z9rsKob4ODFc8NrB1a+BRtOQ74o530JkNJxPZNZ0GM8/GxvAgwzZ+zLlxwyVqGnHLr+ILNLAxOX3cx6OhZkKIWYyJNKm9OMwqaiO9Cb8FtCgUuSNuWXt3Q04w/69L2dPgaT8t1KbrdC+e/PMJnsTuTDUCzwgbkXVnubVGEVkhfqkXVWsNeFNttTTTuJtM83YzDO6NeK4rRXng7le69wu48qtrBRxUkptTPUU3Ui66rLbvvwsytWFJykRvuDwfYxUYr11YXmJs0/mkfCsDEjCklLDNoFLK3z5hA7PO+9RitrrLMXqTM5d6ily53Y601ditXZnYlgvRWHddzYI7dCZgUxBLakqXrWbxasCWtWFCcreElXLRPBOXbN2o08soIXm79llNGStlon/SzCelhbdUzZ+gpK+oAhG4BdcFt+p9ujTOqhAUBNmlKCQDI/tbKM4ymkWUf0JKijtoouubw6Zo0GHjACDJJoQEBUyQzcxMUIeqLh3y2UaVrXahfX30JNtLg/VczO6gAAvUtYdGyi0tzs8/cbvd8XyLQYq0VujFZkycw8e47rNbLK+5dW53IsKgQotKkMNK6CIu2xcX7KKHM/eNayX8ESi+SMOss2E1VKl637K1FM1I2Vs/Y3cU2923j66ha+LhC+ZF3nWHpoWbsvdCli5y0v43sPjndWAZB4dcNbo6tTDo2GA1U3eOa10d62BsRmCE6FCN/k2GbxcVN+/Rzc52YASeWlEZF45INK0T1R60KgaQNsgFSCqSUQqVJX7tpIoApBSSLICzGErBEBQUgsn6mpMtkS0BZUgooKLIsUklsSkAJEGsApJApErPw6MnHmOfX3/m4s5o9Es+ivpvXz6qHKIV9+JtwKYpkcywIOc4ACo3/ZPwyD9DIStaesaMp1mQkT7IPag1gHemOH1lnS2Xu/yHDykCRomH1lGVvu2PiSn3NdXHFavToqC9irzp3UnY5asqjPhyeVh2l3UbO2h43J2Gk7B7LKvP3KQRD/trVi8uyqLnfas3q4RNPsE3sw1z3TulyaK07o8KFKFj2kAp8cGUwPM/T3bs/Cs2jsQF5qvaov6KqBIsL+XbhZUmS0fpnirTwpy9bJ4rxnCvg9GLafVeFQ/2UHrLyUO0+pzCmarPJMP1LDM6rJuDm9hLxq74XF8j2Y+L5rQzGrF3J6evRfjkOlknl81tu50HiA+Vm3M6/V4nWeK+11rIdGuq2j2oIDiyjzvcFBiLm065pKDgiZSirkVT2mUPrNzgGMDem1Qg7sk0P/fh5w0ojxY0HnQIJoaaKSPBgeAwMmHWo7aOXgdD5/YjpJT50A8HajnUUF2dF1DwZgw8xnw+hmMG5VR8aYw6NTQn17ufd+/Z8zoe9z7t6bKfhYX6/Dfo9hvPo9fXJbRgxH9r1rrCjrwiW7+6HGvtaBm5EEYFRW8fQ5SYGbphmCMjMg8Lbo7KPqfSYKwPTK1zaouDNGk2z23FHCTlDsWCi/RH2JdzN+2ebxOeCilRQ521ToURbnJaRUVUUls6FFVKR2lAlNZFWgvms6s0zdOKvChRxxDrs9EeRVeJFhhD69hsDs5qTfe5Mli013MbPtQ3uRuduupErOSGeYdw7FN7t87sxzcez1Hu/00KDPyi9zZKHNHmvvVstXXv+2jqq8ByL2RYaZQ9sdnjoWSQWTiiK2QZAkArABmASDQYAIzLhVdu2Fbqnq8VPAz63zuIjwSo7vO9fsfWthiDwcCbqVWlHmxmzixmlo05emzYkk21kPrdxGIUE0CHQYMwfbYfM4IRSoSsFilEmJjAxFgINAMKHcMDW94/Tx/Uq1LBEKHu3qNiyFls/QzPVV9KYhfRhgVyflp+H2nf/OuTtbPGHUh3ov2Uonqg0hIFI3oN0CIaR+W36LCumP5Lym3ZxeLcywWdN06OuKfo/PSd7euX2sx6s6DLa97D7E2rF0y9y0QUd3E26Hdp2tm6WHfVOnSzlEYs5vGBwzlDhJbZywx5SsF6MlGaQ5TF3SsxgsLbYvTxbmWuUO11rWLVvDjhbKlQokKlY1sFWcoGJjFxlMvVkNpXRrtvNuwWpROEUrFDhlfG0nijd74d5oovLDe7pOWB34pWs54svFc/Jm3rukWGNVVLvDTy7SLx25ahoG0scjyIStihl9iGq855RxnvjiypqsBCAshChkoyhBGocxC5kYGptAHMMnLVLa0fuDy++fTdRBe3yDnn5aKuSvb7tv3DR/18WLBmeSwporCtJWtDuw4r6EkZHcO67DBjMNGTG0uYxoQVqpjBgPnZn8Uf4rF827JgzIGDIqJjRTXVFxVBhJgzlPRNu7EdTUlMAaKJZPySQowHHDDymBMAMifMCNZDyLeOhE57X7q16YZe6Xz/yDyq6fXOpHo6VvXbfscZqtKn9tvdcMQJnhgeN3lXZW4nCnQ9eZyjAYzGCL7eIMhAaDF6h2mHQncbr3+ftTy/fW12tghoSN4JAhk6sV3wZiZ8ayGv/a2/c7mYF3w9vS1vlU6RFBikMd+fVfg/dxPiPxD3alfJbwSGFL1xen+brhCcffr2UOtErSNdPL8jvSBviWyGRF3+KN4J8+n+nWI9keWsY9tE3a61MsvBR7Incq/x/vzgtvOBzQ9T8/6rKq5bJ3tdFNw291OvuVYw+TIAFSm5bvQT/IYUoMwDMjXu1KW5JjS2OZV9Hl8VL9aN5ZRzz355rakFq1NOu9KZVxSvY2VCAlqCdvZ8PvhvEADMu0+n12whkHe2ye6t3ymIAlTAMyAMyKo9aXZSmqEFzK0+YU0HVfVEv09gzr4ZTEoiROuqGk0GBcMl0gIN1KxSO+/769frsn2fpCLqylahJDzeX9ouK9uLH6UluOe9wYSNYQZitqHcX9/FG26CumWIyETKft2q5D9yIaZsuOWW+RqIGqpElQz7J6QYkQoa0K2dltYk/zfZq+xVYmIHugjvhP27CxnSYzi5vnm1UZYTUXTRTk7VA1ZUBjlCM2CpIQTUbRnDYaRol650E9UUkYoclGUfiez02pZjOOUw44OeaGQDG88oLBzkuaFCKImSJCGs9sJnNzlEzSCBAY0mmZhnhANhwVHucY7DX5TanjWj5b8tlXQM0BKmiQcHOyzV7hr2Q1s/UAYcYUGQoaNirCskPc1Q0DILcIE1IOD90OG+kK7FXGi9S4cED3Jugu6EBUGbX047b647966mLdRDftwzQvPTdsVpjYQhBRMII0sqwKPLVmNX2+PvFf/3+laOti+wse4+v9fhUfhhxyg202cUDt0F766/NBYHEcP5o9jf+nyo4VWkz2Pz7EabShDEFb6wgag07MmaNSoOy3wdupRhNVYIMkJQQpGEmShg1saSWMBQ2lkJGBKV0IAUBiCzmr9N+D3trQ3veT95HOp1rw6Jwq0aNuauW9aBdI3mOCUHR+1Gp2tfNLLzaKXksvhvbJKDFIpsP5eauOWCA4jKRD6eDpeXpcJ1gFcMVUTovYzP5vl9HW4fTl6xqiT6MsV5K9gaGjXIlDniq17+VuoMZgGZmuwrmoEMdXrpqEKDOXn+3gphWuVjqGNk+faljVUaXGW4iTroLgd9e9QNdje+wCH53dWEmw6LJzQ2ldXg5cvw8cTZAKAWWn6mxfphtV+xwAcTIkGgGWrZWAoCIs+xCv6tU1/DvPu5vD+9A/sSKtoxkBREE+GK3dKcoxRc4bVp6i8+YeD/X6dTD+Hm9ApJwqqcM9W5iV/VXJ1UYt0CIEbRRrwsU/rLz9vbK30MESjiCFrFmetRNeEO1nLSoaJO1uO1+qSl2XXS7e/iuNIx2aVxXwvdcUIVqPAkH2AzMBJxmAgyv6EBcBcyF+fYzdasamebyrGQknU72dAKJQNX1wAKYv5pRVaR0bkSfbJY6ocz7FDfi75NtQ9DF6Aw7537t4ZKUryZyvgmUCvzV8wmUjoMLEX3MjSB3wvAr67JAvLDOj+N+xmxD4SVeeo6T9ONny6O2tJzC7Mv9clU/SqpmZjuRGlESCWI0mg6SPNpRp1XD9bvLknWz1rc60/1+MBm721Es5hBNjph9FlW8EVwi9kl/pze36st9rvkOk7VQJr6lDKbTY2U/mnye/Z319+2uJtA7zzgIvF4WWahE5oFNyMaGp6/Yk/1nvecH8EUOOSoBkaHs6T+tQOJiPBA5YblbDua3MKYxEKvQRxX3XNI3V5rsNjSPFDdf26rM0L8TXMEkZDPL8exloW2GerRggaXdu3wmMuSF1jqn7G5xMbfN23XGx+huMmcOjU3ojQRYePCB2xNvBCs+9WKBgXDKimadiIYJdu68W4Q70e+5IeD5mttrBoGhIiBDCIEIIfdOkkdEzTmsLtI1DKoiYgwR23qoyP2wjPLp5bOIfeJpXuqr/vz4n2vyHDPnbrwkNI9Tnejth5dmid7bq8iQo2Z3b1XtuRhry0c53v65t3XoF3qszMyLTqLMS1w5W2FVF8weMFUwDr9rfLyC9h7j2smFIOdGE893LpO2pPVnYuXqqObfqDuGYCN7Maq6lZLTR1BdE8I28JgOaUvCjUpyIHqhli91U609f6zanPTl7dGadV4PR1NjjV+ncmybNgzc96vlwXXcVdJjuzcylvmCLzncjuXgt314QJaqe3qWknB+u1cp/xnPR4dXc84T8/5mXx0/LvL9cN6KSDIqEpShFZJDFes9WfkncoWCHbd5XkO6pNTn2bwVty2r95uVF5bdZ2WIb/6j+WZu619LcN7cUeW528N19hKcH2rQz/SjrjD1y2YfMzJJgBFBBIMED9UASeH2/hX179f3p/TP6v6P8/6dG3aQ0ytYKoosG85MVmWiqLIp+34f25vZYTommGJAU0gQfWhk1FCJB3ax7zta7Vt+xn31NTpg94XqU93TPo6PZVFqXWY5P3u74w7vOx3XVR9jwedN+d4dBXkIHcaDBmofqYR3dtJwfbQ6n3OAP+V5fg6t1dSWZdw4VJ/LNyqXuMnDdyaW0GXQamLWvrnSVtuHDe/+cV0K53EfEHplUi6ZJ0/na9qBKOvKqZVPW/Wu9KvD5Bg8XOnz1KtXR4kQsGCrPUjITdGO5o376OfB8tXn+Wn+1PT0rghT30Zj9Rqi7O59e7qs6mL9miRTzIi0W6Xxay+UNsyBeJkCiPr5aKX6tIf5VwWUw+az7vD4vP7fBZl2++dEJDpUpdC2tAsI0gyJJJXgMcu2+1Jpkss5+gyWQoklVM/yPU2UmEBCUEm6i2qglZ6FVkWSkLoFJ9//sujEcnn9m4WQSRkBkFhGQAZghcfAnEYG1CCBmCQZEiwOn1iq3pGPLHutDO/dGXRpZ82e+LQ9D1s5W3B37pu/nYw9CuP59+m70t9uL19KrYd4Iodm+zzK+d0/Sp+A/LJ69Hpb2rfV2hayRDBF5fDfZxRjjsLw5d8efmHz30r2X+p7N6vjmb6OjhJditPzWO/JDRp0RyAw7V6+ynRsh7hcAgBkBcMzIGYWQpGkHqaSi1g0goUikhJdi+Tvc1+mzu9fbjZ6PUU3r3Dbp9QXTQLMZGIbcTWGFM1mf9753dQefYq19dZIDyKf34r0WxdeBAzIZLbDPp5QJA56WWKvR2L4DXLBZZfAIbmxvdVcUrn4mcrpm1Q3x8onO20OGvnxZFzfzk4NqYqFpnMM/tzsT3a+GshyFshSpdJqmFQTT+2pa3C25o+1F9PHx7vecvP0avfZo6vee3s5rz89x8CvkaFaMWOmvvwG5deoNL291xijzyW+zqfcpmB7NO3+F35gU6Oaq2NzKtD62GA2YP3QgjFeWi022p4Zu3txrUbEGTG29a4zV5HMCuVffXALJARLgWP6VnDpXZ6OHtD7ZxV50Xt8R+XTBUx+d3o2R5QfX2/T7e3kPUdemrw/SHT22QMxAkSRCQKQJCdkxqAVg459OppFIYw0goOrMyhVQK6SYwxhBZFKwKuDzklQFqVFK6GSptxhCs0ijtoaGVUIUSVxDGYkVGRYpNILVQUMo2KFMbAWCim7dJKOnHHbDYmIjIiCM0yVgLA2yYJtxCa1QWKKaRStSYbaVUlcazN3W9uaSFSGJjKkHLCoDbvesNIVBQiyGITMqONZG5cMtgImK1CKfP9f9u36uxcZNJjIbtHbSoVnR6snGirIpwyKGaut0MzPrf4PbrXv/ZYHp6bPlq1zVu05M7eyB1ZOvSNhpMZlhkG46t0FKfy6s3UoAU1JIne6rXZDaoxG1TRmWtcsmZjUz04vemXbBT5mp+v9/1+VB9mBfT+4k7WP7WL9wqfru/ynzf1hzZHLZVRQ0Q3GH4UU8gyeuS1RmEf21D3q4hGyrEwrpBUwt3s7nHJnI4Gaok/uWRNkjzh2oX/XvO/0rGV32RBI2psUMGucl8LhIxwagThHH7hKRAhnJXOVDvg4M9Ee8LR8BAJw4TYStIPMUrd9mQzigM1qmUXOe4PcJPzdfVNXTijGprJ25kMRisYVUxJ9WEZpBU8h6z1M45XvSDGjzNZnR0ZPS6oHD/SUghGDicwuWSEzjQ+VUM4Ggc5AxqjGYFpI4Pja2xxPO8JMLGpxQJWh6KGCCSpNHA5zzaLnGaq5oBZyRBdA6borQxxnHYcZRghwNXNOaSY3ZHCtsoyfaz2o+MghltkHLthM1hJ4VQzY9U/d2h5gef8e55Y+byfpq/pzyFFA79WLvlVSuPCSTPDcmZTbGuJsNX6n4z9ulfrSM3FodX63xKZwoD7wYJBhwwVAwB2GFDH9GFDUU/vh1te0e837bbf9ZbluYUzq3H3bGJqerRtGShIBg2vDMrgabpSGYMwUiEOmBVRF6sQfjCkApEpIUoGaAQrR7FTPk169Yfj29d/k/RDy/gnshoxIURiCAxGoZGZmkwAr6fg/wxYo/1asLweVgZ6PduY/DiBg2rzjsS6VreWDHzeeSrPWUY/i2HBmUMsX1akw4sJkN2enZMtKmZ78aqul+nZknoAnoH3+PyYLMYUSj8jFvVeypGgYfTcZJMEEfPShxRFtCDwK9qSAVP+4t786Cz4mCx891vjgz0m9X1cnqX36plCZn4GARmRhCDQgJQhJhKdHbKBf0LzqM/HicVVv4bkFuqnhnWcqCfJs+d+rv1t9X8fb9XEyPmgkpRWRA/eKDBEk0GSDMy7utvfH4lcHMZT/6R++1Cxoj06lAZqsUUhNxJH8lEcJSUi3nQODka3zPfuuqGIhUBnskg9L3r297qnNyGHxNJGTnJhyEToo7Q7+NjV0mTyjuf99setz4Qz+qx+lf46UZ3t/J52VrCoYmkqG/nuJ8LwfN1/DVn21MHuEr7OYAd5i8hBAzBEYMGcmb+nB5rXcIv18MsdhAHRzQkMBw3p49jNv7gBDymQAh9P7jUZCUd3pZmSZmnv8+dmhqVK1Auqb+7s6cbcd5g+866/o/v54+w7GL56/ClOx+2lks58wMpy6LIs+cqQgwtX+aHcZezHlns0MB16SlPKy+GhaMHcbNhfh2sxu42WzdVatMYrdO6VQQp/t4aq2VtptKIv78G+bS5/YUWXGheHJcCrVHx6DY3Y1X+K0CrE6Fr79+KBmCgPuwiU7pyb3Lr+1nZ3mFu5Zsy5fdBW4pjZKsQ4KZZnFEcqHRGSChmfREq/R8st6RdPOsnH9eS+Zwq+8YpKIndRE9bkCoJizKqQSTl+KFZjXVr6ksLe7XVE30rjR/15VhKc1r+NIF9ZiqpF4PVu9vY6PKq1hauBb84fa26W2InO+xkW1MP3jCy1TYXnE5TOm+KiBh5qYSJtN3xM8ngHVKCbtsOnjJyQoOilDOsbMuV3FRZn3lkcV3T+vc+AFEdUI2netd+OEZOdpaKP3a7Ld72eojuy1Pr4lZcnfDlVQjrKBu+i6uYbN6Oc4A8tIQtnlCIiEY1ubT2a6jJyB0eh3gN92OtoParb6IzrQrGkEY40WSwQOeOusmEfFr69tenqV2buzvO++l9OerIZvyWHDi+FEkNlNTvHS1Dm7jEP41h77FXZtjTbp34wMpugcOS63ucnRAIZ3Hc0aJ0E5V3Qk6EDEbbq57IZWrdcRXe3V3uTs611Tbl4NmyVIw6Ha99ImMrB69znPcav70Gi+Kt26+D9IvuaqXhXczz+i45PQ7889d93HPvr422CpA7JeOjAJIIpywputT6VGe5Cso7MqG1nnrzKtJFy9LFJT9N56i9dkSa7hFS7VKy1DXTxYDn5+2XN839Hey5usjbS+3e54rfvTchHpk8HI6UNSj2og3DZG9IrUWYgp+NJf+4Jx1MDiJ1qDnFNtpTeqzKMyyXkMjOajJuRHGiJ9luj4I3e7f3a24xFhBrSDjOL26C+9Q/5di7KTR5/QqnUMJUcOGdKS8nip9r/Bk/wNs1Y7vl2cnCHOM/q+bc6H2n5q9zxXupo1slOO1LXgb+9v29rbODLnazzn4qs+ldnrrFwvKa6Vugxkv/q05dq/XzpmhNeZfMDtr1pPXbWn781fAjHDQipQZt7cckNXXLsuUF56OWePmWtmwp+X7MrysrGl4YHN3tVZqw1sLOUUtVVbeul/U5niy4GqNOyletUzU109GOSGy7DqYOZNIYHbLDOGfLL8YWIbOGnA7E8Kr0taqZBjJ86p31zrceCh6p6aSmvY++/NT9Jz1GNerWHZJ3I09wouUwvsg8L2BYEEmREXL4Y4rlzdb7e2KEp+FkJ7EX1X9r8xEFtvJHz5fidbG0VnS44w6kiLkYzKACAwVwwCUMiJPujvsrcvOxPeOz482z75sE+DZ2eM37v0YXW23VPxI/uyKLL4mM7ytciLL3qsVGH42Ax0jDSY8LnUlxR401N7VJUITN7qTucG1H1cdkZaTIFsky6Hp02tcAXOTFSlm2OEQDpgt/W7Br0AqFtAFrYvYhW0VY99bBfrMg1k83JjQ7UxcPT1T6JV6WtM0TTCiZtQigzw8Xb3Mxr5GDOKfHGRELRpE/zqVSKqYIF3X8H5b1Kd3KXIPAxgT10amlkuPMmlz85aqK/NQVqp7FeWbBqpbFV+/V8c2uBme9veqX1yO/e6ppu2xi/ui8+eKJ61kMI1JUMiU38c5ADdlrLUShRuMNU+oUFFVXvazqaGHv9+G9SnbYRcqNK+L4CO2CHTztsqr8M/vYBDTxJYc+NqTL9S1ZRfN3WrXV1+37Z3LQ3+5ydjCH4ROSKa4A0hSElYhgrRFAZmCrGATRkSTANMwn/lqFwiY8LmQ6VSjKdvDJ0WvBV/yuDo39Ixy4ui9orbYnv9yr0vf0l1V+mCwH+gS6xznxPh/L662EGZmTgMXDsZKPspDJi02B8/X3w6K1Huc5m1L3ipMv+vVvoPz7NnC+irzqKmzQ2xekv3Qf6+LteDH7Xq2no37cbMeTippxbMl3ddhgpsxysZvV5jXNdhcsQz+V+RcrPcE0L62dUZTIq8A2NPaCqIa9FlvDj5r9pQlIuXcGYVPkiEgIEgWwEyXt3nvbbb3GYfNb1OD2eK0CkIe8XOym8ArBlWmQpVdHXWR1MHlMYctzjS8fTwXjsaK9lb9L5RX5rrL/cu57OP9uqeadGXq0L5lhICDInFEBGkQWElZIVBSEFAWEiwAWEWLIKMgqkgBI0sLO538s6Xnt6sCXdfd6u3f6WcHqvVU/b0923HJ23nfQ07IOmvCMmxWztVA4U0Ewuop90GqQcMsbxTqz3YXt3/Bknd56VSsrPpaj0LcvRh33QVEgiG3vkoLIvYZYikUJpqVh0QzLC2gp5MxIpFgoZvMWu2ZlvhcQ4Z1Z7mfd/7WdGc807Oao5Gk1lMezVd96aZpeLXwYHJ2pdcOehqGmVFgIyCyKLJUkrIHghtIGIKCgKHa2KQUF3bWBUjlqC4kFKMFRIqh0Sjpkm2YqHmgSom0A2gr0XUOvdrrvvw8122HPmfxV8Rcj70LUznvvWnbO7mtuTfaxcvszjLpuXlqLAlRKQQTmCv3rQcSj16O0RRAA9KAEGC72LJgu/o6eziyGeth+f/6KvS6NbG970S3+uNDhW21u+/P3zr8uXDbX8IaoGKsih8mRmCBmHu9VU/EyAROob7Dw6EajoeKt/ctl7nQEdMmANmONns8N0nNSDVdCDHWYa56uOgvy1aUGGsSrYM4Kc/m2bnobZkNBgo15O9TpZsmryXvvBbAPZekHV4JrC3dQsggsZBxhRXP3sXLVbq0aipvb9htdKO6acF0hGfGgkmDB9ZoWNBl+lh+9PuJOz/FFlMSyn+Od09f/ZfwOiEfnFn/1Q3mKthTNy7UfD9f5gIv1Q7lnKbMiNh1dTDkewQC7WLDjvYKwvMkLBp1Lar3274Lmu57n6GAQMwgwADNB/lv4idkEocQOwwERGhJiVA7+jrnZ6c/K25pY4mJRe2vcNbjjgUMgTUvBzoZKzyIr/G/a3l4celCfvVQhYL/ZaWx8R3KmAzMiIAzLNdz1afV/jM6rQNqpCQZUGvSoWru+09r5T7Gn3b1I8cOfb/Vuap7U2OB3QmuMyUGZ4Ua/mOQDufp+MPoK7XR0/4huIi/yWhOj3EX663lr6jUGjmRQLAarF2fZFczMEDMGb6EA+TrzKX++wCJrxzmzZnt22yUWQAS1MhfNl5BQTmq4xgUTIjoIERkVUpEQ9EUfTDaRULIqNsEGsFRbYAhiilseLtaMJ0t7TYdiXv09HB3+7NHo8lUIIGTsNJIOvXriw6ERWQfEZMc6jwDwHs4t0de8exbi3ihW8rD9f2T3HKYrwdLVaKZCjVJR0wg71nfUU/k4oNHk3FRoG9ThkSRKNSCr4vRc/Qkiseje+hTIsBkMSpFiMdgMwfVCvTwYTpRzp/8zfSmKH9GMut/+/HXrw0pPXJ2zv53iICw/Jv1bEwx5ey/P22UjIMyOy/uh/T4iB997amiLB8BpQslVO009SAHDSqgvk0WzQrAolxDVxF8S9arfc/p6nVedhVESiuMSFvBATwZAzRkyRSQCnI/1sSfryxyz7P2cDHS/+5K88WrrDZ9AyIGR/F7wfkTg+V9itPGLjBao+Gny/u9V+0FvF3M0Hxz9er/LZEIjGwyMyLnb2eRRq0qHzvEy60l/cnFA1qUUGGtQM0mwD1vEepjDOO+7fH8/HwcymswocS1BKrtqU/Y2bT5bTGuMzHjOFeNVicWim8IJHTiblTkEZCt4X+3Rhf9//DZKLcNsZFbddLm8/85w7VWs/kcjHLaNWq77XWqOI5ckpjKcWRFRMupyvv1wvLUEOGDO1/SqycPwa52aTxPNXuR6I9nsFVkRczJ6u+pgpqZmNZzlRZ40P77mcX0eV53ZtDvlDFZpzN9smnoHoqk96k/Uqwun8HSKWRJwgzKqMamiXQIR2NnsZ/aoj9L1PH6VqYNnAzMzUSUT76IfgfI8sI43saTrmnCbl0x3HZuW7iPP5O5XtZjk4wlhcxUO27DEU1fLKgisFh+l6p4as4alerMXLUG2DeutHhugsebWb3xjxZtMbdOKr9210z1Jn+lgVhw1kUWberjUIMio2vFPT03v3pfgZ7ehA+jSrzdkK/1oXhSolz9eDCYdnBFib3/3uoaGuPl2y3xP+Pbbw3WpuH2+K/f3W4MkPXHtc98a346xW9K3X6cZ6B+OzfyoQr4hBt6oRJF4WupVGKnDeLlWAH3xCyME6r8cRp8f139HRhu+L9qxU6fK4p0LtZS/Bg0IH0YTUR7u36ZEMynN5vL1MF6we0dqjcT/fx75Tmi7I39XvPavN2d7fZktZ+h6To7J08X+HTXz5G+EtaadIsjIoxXWvsKLqstv4gLNKy5UfR4sltBg9x9rPhOxVXc8cfhbEgsaZwrgiRxY11l/5EpioauvBbte2CZK9LukDG9jFUV4yV2Gu3j7KO3wKy45Hm6mIb1pqEDf+e3uYgs3M55zjqt7q/nyxWdHO+6kMNO8MorGRmDPvconkiBqgB2qerdYhvRXrkpAJy06cStaAg0GVJNpIIumlwloigOFZ/9cJpsqirqyylnhlT6Sf3hQj+q6OFhwdXIUnW+a7LoUKk7T8aODD8Hb+rD/lrzUcaksdFbnkxR20gB4xfP36WMPTzeEcrWrRcy1b3zDatTCn1kZ1LudABgyvmSDG5Sgkc4mp/CBlNP7/Mu3vHmnqvJ0YLufv5OXnkhIpI9LAl/8PL7gQc2wrD4H4Mhr5aPl5StJ9FHL+vNVMuWmBG5q5RAZ9u35zUUePlrhnH2vL+p5J+mWi+mClYASABIinywEpFRGycO4xa0MvYnb5M2z2ZvDEsgrIDIkikRmCrGCmks6lQO0yBGtzCkZe8Qn57w1XLnFeP+3331VlDQ0Esh47/MaKdGBXJewbonMOMVaSFCJQwBGAndY+4VIA7TgEl0f39Ig8WY1VIksXHM9jNFcwW5o9YwTyoqCkY9tiK2wi/Bgivov5lalrClKd3vmQ/JfW15H8WGrlU3SliU8B080Oj6p+3X1N0wUpjHCRbeCbnnmRnp+fSjIY+qM+wyt11KG92FdzhCaUIMHYUbiHBctWY146vbT3oZY8dj396NbppFLM6EP1ypr14yCg/r6cR+vWJjv/ZZ99XOeo76tgUxDZFhAw5LGnrBd0JJyhsaW5YT/1NhXceavIUO/m6JOGE0mMqOcXU+tpfLpTrr7fxdfebz1FMfl9e73Xynwp32E+pV6NVzPgd6yPv70hVMP4/M72aD1uOKPox+E/FHDWQLavW1HatQLT6V/EzSdRWyQKEdpRXA4mchhLClepaomGYaBs8tvTTvuseUUyMI9DUcPrygMJkl8vA+XkHVVt3Fu+JZCRjq0Lc2fJagF56V3nbD3yd1DhhKUEVkwFDasICxkFQslVRS0NMdZmMPQldIqwOeGzNXWWYhVVHWZjFBUYurQFFnLAqOk3n08UN9OOd63WKF0rSoIrwn5N2aQESpUOUrBtgLDjKq3rS7Us1nXNc0quO2py4O+KZ1oFSc0671yhtDHaOjWGIC8bpNs0IbcYYJxabSV5ZWSCimMrOjAxgGIaQOUMQWBpBZWHKBRiNYdM1k62gbtDllY8WcMWKpp53YaHb0ytTecpnLzmjiiwWMKmFEpSAqDLyzXzDaG0nbfRj1LaOag33t/Yxen/aD6PbRnoz1/xyo5obfeRD7GQ/JgqmFUpxmYQYBM+t+hqsVkLXJFnLi/jzcgz1dU2W9jAMEti9BCyXVUaIDcIpKGmB97rKePt0nfwqD6/Gp7T2XG5+nOh98PuKLuh5+1Cyou1sMVdyGvbCjmSol+94wKcxvGDENru65A7rMlPa9HD28J1wCd+sHO4PYLrNxq672LtsjdXfXcsnS6l6eyvDdRTNbL2GKc7WrKHcSIBm47mNDKfNMqaV4SKVD5UvB6tM7R7NdI0kh36Wrx91whR0WSqKw634htgIhcKz7baOYyjRAfY6atYwg2HHuX1UdAGZyTr6ZCbON5i5oYUy8hjJm0SiyOUY0hsikXc67mYXrsWPBI+SvIWk/upVROCWcgdd/U5yVZ+Wjyydba0zk5zpODP4IJQcqITzv0I6yEhiQOU1VgOyk+XY+EBBSjFGMAHK3Wo1PfbtooJ5jgZIYmk1IIeRjZJlBmpuMszCmmjlmZ6kA+DqPuK432MZoupU35paHrIhKBmkF8Eo7K5zVzLaYkSdLkz5bIM/rXJ6RhsUo65O0rGlpmJuN+ijsZNHzxTs7qZS722bo6qYF2lZ9+uc9sZZwcc93f36N3IYf1dEWuH9+qdlUB11x7nWra4Zd1rc3bDhwmtuquR8q7NJ5yJ0Zn0cIcHq/q5/TszzU+VJrdeHfv1bdNLy4+FwWnXWphNpi1f2Jv+rNOhXwDPp3X6ud2rdUpiDJdRZn7AzFg5na7BghaOY3Su30S3F1WSAuWcUZhC5pMJPMa6FcrrIiC0jb3e6CIJMF3ZHN1ro7Ym1CIgA+ZEREZkQKQaECtiUvOwO0uXZt28IemEqVNudZ960VDx6uW6p4R07HC9q94b1i/jnXErIBIPmKl10GdmCEVQoFWFOe0La59y9DkIKV7QiNZS9xzvMiadJzWc3PWjOf1ICuzsR6Gy6d3W2h+C/4H2nK5z9+coH7uxJTQzkYM/Z6XZNv4QWOuB+YN6vxvHC08QHyTg5a12e9N0naT48dloCCd71uLg4zPI4RhN8nPUyBmJHE3OTJEeGuozg4KYMsj6eSDxW0e3ijxvmbm0SK5n8mcFfJEeYsa7aqBq1PUdQgimZmcJyXa+3eN9WceBYelPX1vj2sgr8tPWzSC9nrxKA9iAIZAaGyoQBmRn0ZoKcEmYxDM1Tldm3PD9GJxzMC5sGZRPhqwjw4LFC0OZuGWSTZOCF3rNIWR3b1p2+p0b4CdaRQ7Hrdbt6pXhE4dqO6XLqp6Vfx8yLsyqN7CgPuGVIiUAkXHCCicfAa8uSdCyvez2RIcwgl3r055bqqKSFTf3D2LPkZg0bKGruvcO1IGaxSHcYdXZB93IEfGR+WCvuwlv7MhFj93+b64oaLZ9327uZ3iln532iKSME/YljCiSHxQtfKvA4Odq2Od2vfS/BILBXpxnuXD8DbE+F9+1v9Y+VFm/49QvmOVhlMKKfPYir0uDuS4/g5TwDBgzymEDhBVr9KckagEWGxjbVC9lhRSq/hjvYKoGkwACAsGyIEigyIyAsiyKBIingID3oocigl4oSKvywBqCpIgsj49fc1rFO+mtoip0IuylzVHd4e5cyUrzddxvheUaGttB49rrHhZoXIZ0djBpqKwwz5Yy01ZpoEY18LCyUaYKszztdNiGjYX3s1n66r63r+OV7NQ1BqhZDvdz+WExjMbj2GgxrMIuIIBCDQZjIYAQYM5Cs83yTGa+bMMZ9doskxDy+tWC/fE/+kBBhKEmkdUBxOC/0Ghb3wJ2dGmX46Jb96H75mevsGTuCItcOunNNwd9JQl32RPWDM5exg8N8HVU5SvUclGajTC8ccTJSdE1RZYNnew0p8yuJT1yVaOK9OaSteUEim25bnd29voHRTbwvUk1HvULBRevddlvSO1u9aq090bm3uq3XqMTSBtKFjNOh0N8MGOW4twiagnVqdKbsqznFvG6pSYs2YLUFMLUYlY74g7XYdi7lHAs1qnweFaNy5HZ1X0Rr0HtUZ9VG9JUFak5ljXjuwP91nSxUW4WorSKri87GxRDKX8C2O3Txsr15wDuGo9FtW0RtW4E41sTLt1bA67OUn3VWKL+a9Xeu1IsR6Vc+ZvBdkhhkbSiu7bvbrqlulcma1u659Z6taCmGdczC/OD8CHJ9rEah656Nfc1ebG3OzTd4tY6o6OQGvH3/C2nk3bcn+t1K0adfCC8XVVNPDBsje9urglwMux5YFaZszrcDbJ0WZIJ1oOqQTqL+lSjan4PCKu9QvogjPVPczzmo1dL9u5VNS2tskv06Vd/KOGupVr1G9sbszytfTtUgWpLtz47i6ib8lynTkqi7tV13YMFnZVixP7Y6EktQOGqWzOorlWRjnPSrv6GFaS0+ttZev4KkvfHTkfdPJK9I2/Ut8wvzLMekkdMAHit1GvbNy2fK2vffb7v/aru9C91arCuq8y7PxW67ig0SZZzzWrhchoMnu1LUrow1nLXbN46xx7q97qjnGxyOin1w/GWgMt2MC4/Xfkzq5PzsUDeR7Cw76o82H0+NGqezlD8SDnpzARr7DAw7kTjAUMqd3+ZFl8GS0Ljj+7BT0uKqCyiD1e0+i+bQjV3tBSpv6+9FmajJLByvZ6atDuWqZPrJxm6ICDZjnMZjH9fjXpEhjO1keKqrhbi+60Fzm8aWGL+P+36q4+K/SxZ5NbJvyssqOmDkyu339k/NofZYRIXsU2bVnD+2FgVJIyOy+/zQBhVbtWhVQ79aIVZ0a1itBwkjXipQIRY5m3Kmv8X/va466n4MdvUgfCevu93OT60f35KcGfuth2cYe70by+dPZjsb8dDt9xxNH7yfrNcP7F9WcFvl+bX5qLnxoEXhuqHdTbyw+PPhrTrOVeddzMEpImQxfNf7scc6vBggU9Xj4qZcebv6jlhIElsEpEJBOKG6BSLxxhjCaSQPwsh/qwg5ZCpUIoEFgDMiIzAzVa+X1IB3U7kz7rkIDsQcKfQrhJWK5ctYw/cgWsy6QZEJt11WvkiN6xYmwcVfi5r3AaH1qM1JBH4dExVABOMqtXmEy5Bm/7uxstddrUGfl76pSjsQxm/L6ZqFbVX4wSJUlNAWRURAlc9V4KsdqX39m3EAC/FKWTRFV8rXLWqQmaoQTOUUT6L6ENNGlDNboC8/Oe54iACZKlU/69KntuinAQ+BpEb1sV8T9diE6tP2+Ha/0Q/I8pVSVkrF/oYVigsF+DApkDMAjMn2aG8P2mPnJD0Vu7CB1mRm1c226agEw1WPhNcp5UDoBrhXGvgtXvbTqON2+4+lFLetvvTpayfe0gIFWJSf2S6q7NVxu0oJOlbAqr3egp199G5pKnTcrbdema3mvCx8UvwrW0cVl7uK1+bne3QA/hlxPrPbSE6jUQV0VCuD9/PfMNG7Xq5ZFal7hJRfWDPuhGQVqkfM2VHmQhfgjvfcDhrzk+VAOyLc9JxLR2OYNM1IXL923yLKkbXgrEZPtkkzMBT7o99hrqJQulH4/Z/XkFTVa9K03NQz7RSTTD1N7tzq7bvy4Lx7+lx9E9fYpT1StbKUpRK0rWRCEGQUMzJjUMtMaxRSrqmmY4yVN7opXGCkUmJWKoC5bhbLLpyGILJUUy3HTNMFmMNKw1+bjA2oqbcteNYKjltTbmW2nFtSsihjRm2cOoow27ZvVXdoKukOEnCGkFNR4TMrWwxxi5bKogLI4lHVLnFx3QzVMSaEWI1DMtcym8MyFRpSKCyQWUus271VWOrURcpiaVkhANU1AaVDBdIASDIDD++M+i/7du+Tg/efmMWaHydD5d1/h38mTi7/yTqwknkp80w3U7/oT8oAb0WQZEkQjhkrkBgC9QYBcZtWFuHc019TwsElKf2TYfxtBzzb22ZE05KcK4uWPKy79Cpwz+5EAPAxFRvDuewq/agpYmZ2x+E2li/o7kKZ7Ldir9ZyL7mVRa7eGlXN7fgc3Najox2XRTlIJBkDMBZ35WvpqfaS3QFpqo1BQtMwPCD0sPyMghJofy6HEpZd57S6T0qQSccLnk5L5MdWW0rwVce3dOw7HTvyo6XW0jmBgziNFak67f6Z9wVd7Nm2wa6IP3q+x9leJ0hEYF0yIIsIIko56UCyxccaAV+QowZetO6nNjq3oRkWrafSz9pZbGK0iYy8jFGVSC5c5anfrJ0wN4nJwxhBFYW5saC3JJBH2F7ISJlww8buAhMUQJ+4j0nQ1Il/yd2BlLyUIGD8+nj6L9E4kmNmRGq2/nU3UoKa/Pl0XOGHrPY7rFK1xqSdMFDRQ9evzteWGNdqrDxHtLm7kaDOzpNJz3LFLXaIBfqQQuTtM+4kpTLJbQZgiCTIjMgRmMZ6xwYhZNaX0dA1znKXbmFLuoc2Uvrx1pYOL+aLM2ggNuBfa+aag/GmbBgby2Efm8QFF9uJYWn7APDuaqroLAcVns20iEeNcMkTjSOP5gts+JbtiFSG7QS3Xs7OqKG3eRzz6HNwa9avR01/B9meu+pn9aMfezrYGp/26k3sOTHFU9p45akDng8U2sEHbOlC1S6LW/esalxRn2nT++1iipW2s0Wa4j13r+NnF5fndxGuXnNSZAYBmY3KD1gD0ylmnPs9CtK0MVKDTDWuTmaCvsYJ91BBpCAxOZpjLOdNBmVQ+Vj5p1izL9q8EvqIfdJLnjoyp0/edQ45lfAEpr+WfL2Jqdu3IU58tCzIXBHa18zqBR8tMb2IN4HEdjHQqPVeJ2vxkhnf6N63dY2L8ti+INHroyMVKVruk95FwAW0unave5cqYL2gELY9bXqgrxgJxR6T8mMM8dj07utdeX5k3Guv3GOIcDZmJxtF+/10LqWev0jP1sbcQqDez9qH4duK1b+kiDRkDMqhhcwG57FOTXHr9/q8y/jvrWo6h8f8Dp/o/NHz7kH4cnKjIPUdZV+GEcOETMNHqUQmgeDKXmzcsnWUQewcqt0K3J6iqEn4R9jN3znocAYDxhU1g0pZfXuPN2aclSojotNfFx2yPZARTNBuokzTpB4cyaiixECGXTSW1hyheatPdDTPy1a/PKH7+Qw17iuDvsOLmP3aU05Ok73yPeVefsdiXwYW21hZ9I2tFlz6zztCcAc7eXZPvfq3+pccBzmLRjPrq6fjkqkNSx0aXLnc/cavNv9NPnsTzsV/VvRRtVdv/PnG44hRz4+1/osPWz6bFJvnVq44aip++5cb97ZsVlJuFOTjZ59yhs7HItSNmV4+6xxnUafdLU01U9G3Lnz5eGQ+FrLI21m7fxDK6HHoXezvz7vKXg9waz2/Cdskppt52strAzqq5orNwXaeSBzdyu0M/ZovUeq5DvZiayapJyWj1QSRyO41sbDB2VFxZzqtKIvn1MjAxka9qNqLRYeqNdfMrLNK1UvXIcmrLAOjq4vbXXpc2GPCtgpR1jxLou9NuaGidbgqNVNlEV+pGt2o59CL62XdrvxHhczc89GNapUuQsbooccLc6Xhlt1aku+tYdHRn8an3rLS1OcSN88/TQ4MVOdjdXcuQv0z2NcouNXsbv0NEM8VyoJ6jp66PVzuozWd7bizCvNgWz7dmLLGsvqdxVE3KmChOtZ5PDZHQh1t2m1MVOtkvMqQ7NlXq7VtGluFDfKsx2UMiGUyOGnLUi4o52cuTMrtSrujlow4WanXALt1XBqzitjbwYZWQnUx0u96VbbtGOijnUueFXXGH6+zwlpXqN/lzPx3OGWlzH13aNA4pddV7BQgrrptbWMOp7u76VKzBr66uzlYrbJnFoJtSUa1598N1sCj1QVejN77tGkKPOgEBM9D/n/c2lecm3gAMy6DAoaaHYU8Xe/pj7G9q8PXLX3yz6jW/82LbKmKdz6AQ7VEESNx+WsaX0cD/JqDyPyyqKmpuQC5W6tkHznfSsrrSPZICAV+blkuLUL+Hnv0cTvJNhja3kXY+vXarM25Sfs+l7K7D0ojpB0/if0rZDQe80GYYVxPUJi3cf72OYa0PD8vV/3XeCNC0FzWxmUulm4ITK8AQ8suX+o6ldyYWbHGvr2g9d1CCMyIwmMw3d33oYR/SlAc6kZUTLowQKQWdzSZ0V+tiyn76FORqT5i/6lcqwgCYyA+5gEPc+cwPyZJmz+M/L2gQc69qCBqw4Fc3j+GcvN7P38JhWuLVDZDFjTVu660/6++TJbnYNEcvhiMNzZLFev0sfPr7lHvT/0UOn91CRrZR6csm/OC/t39loGft2bmaIBLoyIGsbyKEwGwxf1s1kI3HXca1N3I8C0PrVr8UWjwd+mLJt7GLapZHljJQna6DBi7gBpiqBIyEixYAcMK5bPotCVgVkkjlkKgsAUMtA0yEzKxJFhFhKkrCRgEjCyi0gyDWJ3IpsLfRk7nt3ctkCEF3gPCIqoVeIgbliCxXMwYOMBfO73/N0vgwXGaDFFFFrdDChAWISiwGECjN0VK9GhPOPSuxDMj/PNjdbHPWe2aZ+2fim4n+v8E16h9lq0fnXr9eUAimJTpdz1Wr3Jjzxo4jnxf79ejo6EDKI1Pge/diDxjNTEplzO0gQ5DBxzQTfDHg3e9YR844xtICECbVCXPDt/cb3NOcC1Gr55OjwqEX6NkYKPlFYMbKg/WjGrb6nNp4e2aRXwbSJ31cAoU6qqguwlIN3JXRHlGEhfdIhzXd4rxKeq9DLXHtl51huuoXQ2kOur+naFXV2xilxz2tG5E2CVMvsH30iR+s3Q6tYyS3dLs2zjRo4qPVCy/SyXQG2g+2Apc1wJYTgR9QcKem0sQIMmRAAhIJ4YoLSKPe+bs8KaiPNKEKQoQhEkDMshhJpNf7p45WGJbFDqqt+3/OLOWVhopSSkFa12342VyLEYD3hq+ZnYDz7srzul0OnpNqMLnwRWU2MDl2TwPs2yA6ZELN7FCJ2Bt1/KKuaVw8s2SXft75iAEsQ+zfpYiIzK0hC5kg7hi/V9EYavVVuXs1Vq9XrdLkaQooh2ikllFVUJMJjSFHVQtYsISfzQTUXnTurGZvt7qpq9FJweIZO6tHB5gxc3GpChsYNYKs3rxo6DFFayfKUGmlpuWiCLBMnXk7yMKd6V2HwUSVdKLmb+lUEnYMHd0xnDprG9KBY1iubO0qtHB5LMxpsVPnRvTKtmSQbJlMLdVN2vjP6feba2URIx2oGg2VDuysx/Mnmw8Xi7xTsma1iz009Wepz085gizm3PnuXWBvW81i9crjr930Znh8f69TXNWJgRRCsZBVQgZhOSLpvhcQ2Q3uQM41WFncnxc+CxG97hcyCGQ2GQQGLHyMIbum9IPfJnGvTPeo2RTi68mJ1EQ8gaTNDpoNrQPkabklwQMDKR8zKcETW57W6lsfJxKbjytg1FulMMl7IDhOrUM02QVWoamzBJGJKMuHFjimp3TGR77IWVUdabMOb0JjYuaWNTMwKmUDJ5gmN9wg4tpyRuEV6kwbuvq6+9t6Nj16tQp5a+QfNPhaZzhOVrUPbTUl9Gy/K1A0y40uNhUV1gajPSsoa4aYQS6EetFGVXKPE8LygFHX37DJRzvbtx5N9a9R5rpDs9QNs5I+6Ive3OpluholTl815bJaeXq1FuxS/L6fi5XnOW3by6LCXDXtictfi1W1OgIUjdmdL1WUAzHdmhGZAUM677tfpb1OqmR4OL9EkYZtW/Gvh3aSqY2vgFogkih5khg/CRhER7+16SHWjz2QRDkZmiMZqfF3VN+p7l1ZBJV9aCQc3F21p32Zs8TRxrba7Wz+GFwwkvEatsFEfV8LLN9GbhyXd1cH6aZ05HPWqS9l+eKDL1FmrGNEZYDFalR8E3KEadkoPZyDzLmPW7q3Bk8WjossOKDxQfDDetp8sSkHtQcEWsVv0oB1QqCwWTqhUIdUqAZT3ZAlVhp9ybSAoLIExOEmJMTbxaTSChpkPehp0wrJDbBTExN2yYlYKLXHQrL8Lo2wG6BbAZEaToBOTBvdLi/T9jv/jL9kU7y8HQ1+neZTS8GPw57KMpHYpOoLoYzNKUpt9yus8vFEklIfWLddkhkNebOnnoOCBc+NWg1c2yOLRI3u9CWU2Z9W/4w3LNQKn5/O6+nLrFWbuQBvtWad6DaKfg5x5+VS1YhbasQax8wV2ujyzc3Yvs+01VuR5ydUQY/3x7a8tvbRS1Xiy8fOdwz9LJR4r+1d+lR5QQRVR5+kLIaFEwOuPQEC094OxdX12I5WGouEdOzE2j0uwaHebzr9kkauuldu57d+B+Ka/w6WBZoMtKvvKfibwzO9Y7PsEp8Zo+/nf4flqx+3VfGSoxbat5xe9HPwZbP1hfy1586Q9FPS/5OPs9cccYeA+Ozemx7liFVXOyZrU2K/sQROAR6wPa3oo0BD8jZQn603r5U730uaGlPP7/7Uy+H/f2EsSszjyYlPhR6hZf81L7mFjCyh6WBkc6jj+2mve9EqqLU7jD0tuvRVgj0VbcUulu3lvXpubTanq1rFuo7ZKaGfsgnKKiP84qVHbOkZZFuJCZLkhn6T6ryv37yU3b/kf6eRj+/z8rlJztv9NWFxTm77372qO0/LhjONSuLmZU9+Ue/Xidd7+t6ZrNXnoqweF9l6AOPpcrN5VG9rOJppql4tWzp9z4c/JW+zcspqe0cIZehSqusDSusbBxlT466Lt/XhqH5S7XbBhVp7bzSW8+lZGBR1T558zleN5piFSngtw1k49FTrnssaHeZNKLyXTQeZu52c1xcfg+xwdtbiky6l0JxdT+10d/hugfrfP4TAdS+oxvLudUncMTdjmoJZZxepvV6kqntW5p6Ha/LQv23GgK3Zt6qTaykF+YWmudtiljwue1NEwU/NJQknHQ9Z0FLvfewUPf0iZiNujs648JuTmj8aa1+k3d6pH9WHNWlWFyDowYV+qmIar2P9kBcMjQEeSQgMGPZhnX+cM6daqsWYQa+/7fovHh5+ycXXuzd/qe7J3RbCCSKkggyPdghSHu3yRdZztqcXFFPuXszu4VFPbpHSoX6OssgkHnsorfn9/qisO7rIvOORxyQc8MXLZzitidh9RjGU8WQ63VUjPAhAjVAomAEuRcMI6RjNopNu7cg944GaCCiUIOr7W2aA4Kp8HOPvLweOL4R4aF3PpZj0tXVX14G6fkQMyK2YBoQDMt1HAr1LvYFOWTb0Ud6OCw9Kq+fzlryWW38suEl5B0qNUaO1NYxMan40xvPy3SUMq5jvrzOKBIMGDMAyQhHoZDSwoEpQgruF385IRiMizswhi4NgLKZXjIj2Q55LA9BQV1ICFT5es6ECeVg7BhhRCERJQYVQgAzpmG1M/msqwqEC+hsL+WDL8vXVw3d82QwoOo79e56bkKw9NDSqsGmWGcdJaEAZjAMyBFMAAvHujHqVK/Mv/W7YOa3On0mdu37/Cn34cpJ8s5/QYhMEZldgFfZ85dAMwd7MmoLzt6H9owM5XruCsGa6gIqEoTPQ5U64LOyGs8Xt+9+9qHSoHNNOoaZu7z9Ou9f8u9HVP2L7sHkupucxOwJUWXSiS3gp3bM95JnEgQmTJ2cKyr0aq3kdPHV608/LTeJUPR1eG+m2MT3YT8vgcN03Ia5+L4WEnbflh37/rLYr8LPsyfdgnI3sM1a9hI7vp+jQ383p0dDa1+7jvcJ9KhvGEgCE0USsFJEWQSRA9MGkBkQcUQjCSsigqkKkKxYVJWCqQIqgsCKRQUAkPyMklYSCwBYRduWv6e3H4QwaKBtLhXnQNLc7VDh1P9l6fjmpwa6LOSEYPt+EDQrbcW6VrM3TagIBnu2EAMZxGSrsFz8RriMAUGp2GDNHD+ND8yxGqbjtDRZEqtjjm5daiyrLbagApECMyIlCDt55bF3XmQzEeGnQlWvNvrZjIC6YyGIWRbMGKSLWBS7LKPJSx/3a10HLtkJGJ6qi1S8/wGO+vjqqzsth64xE+9UPQ2edGBMDynphECVDsOmhh7Cwu7d52nk7qvVXeqepdvbl+GyrzPPcuOlw45L5NrhoNPYjvihaVsPVpVXKldyVWOH1zuSigvzRtOKCrQeah2KuTamcTBPzLJSvu4HpKIvyXo6Bpzs7bWfqx7mdYgdirPIbnaX6OzotKohupo3c1aueJwgi3fDozjnA9uJ0miqH7vu2Pf8L0gbIQQwErp26VbD9hv+jdqTvdlrR42wTgZudaznblR9d29pSqvdNjpt0NNzsPah2C9/HfcOza/qy5dGu23Vvtbafcpz1TO3bGO3Xz24m7jrTqbl4KZA1Muvg+8sW3ZboswR50PPwy2dzC9/OUw04oEHbGXB73xyRM2Ewcu8lN3h8D8Wid+2+tLOhKWDfutSmA/EYNV+za+8s16o6+9N3h8G7obTGfd04cMdLa8kbLfaDFh1s7w7sM6bQ0hw8Dl7I8WQd53DJsj34c/vd2gV0sV8KI6mo9OD0dSksXpT1r7O/gKOxOjXLJkykzx4X5ThyPZr59yjgMP7kmn3AheRylE5Hfco0YHnK8ly25UlqMr3569aN1eoiymjNRTRUs1mJHaybrKqb0k9k6Rq168F3H84UjdY2eaDHTehzOFOMqpgjMPKeNfBqSDM2hYMUYo66Kq0LgL8p65VWsyZ9tSI8tkwwic+IsobWn9lnM4No8rxpzXI6OwEAtpieULvkFfzjLbAaCL0MMzMOVak+XJ0bKjdhC1/xmBLcetcRU2KrBEJcTvh21+jwsFbMjMDqI+3DexqyFbf9+dTNI1lq6vuABWEPP61ca3ABswAZ41FYrKLNSIau/nw398z9eNU+SdS37tZzySfnKHjgc021oyDI2FnVxwpWFtjq6t0vF/68Zm6Ws2yqWxKIFiOvzIjb4jmk8FL/YTlsSx3iIVOmo4sqIzIWT3xuU21PVYr+OBKOz/uV7B2dOUBoSAEMUWi/5TlqptGOeuQupv46fM5DqAKhE6X3JzKGKHfia4DSMns17LbvlOX6jp5n7ejlztYYaCBmXdvvL5bRdu9kUU97NWhw+PuZ74MHS525Y5OnSHPT4ivTrCjwb61d6jurTYsDIdYyORVIZMhwVvX5WVL64sZaAAUVIjg2UGJnl9WW/sodcsksCvQpLIUAZcnSDicvC121avrd9juuGdW5nnLMrJq4rubUqv1sXHD6cVA7lR2t00ntlmL96Jwz54qNDCNF3jkPbcpV5ItLN2yrY57vXSvOWbafmqjtiemZY0vx8E9NVyuStTnia5NX1MlqliySvdORtTZPqhvnsT9cWHoh5vcU8Fm7yft6Pyrj9OrdvHz8Cc/0HnVx2vv2NWt0T/Dwf7v09oXjj+JE5saj3c1RVv0aNa3RaYYgr6M+il7w8dGKBqWIbj5dL09KnPIif6r7Jq9GPmoQezbmBqm7bfVlYYSh81tumzrc11LsDlnndU2K+68HdFvUw95zMqJsVceXTaymzhuT80Dy/Q8sKUbnyKdSz2bdtPViz5lMIdwYhnkw4cFnDOdz0n588aNCaz+15aVW5q2XNyLlT62v3KV6s3peXPDD0Vl+Wvw55l4sHfpl6+tEPRZvZc/hr2+SFLPZOwyZBwb7p647Lz3Pcv3dq1jLix7d0HfU5qLPi7TsOC1bydXbZkvS6u6Wj43zrX4KjC9vROhoRV9HdJDxX59mms9Qz4M8+fWX89HNrs0+Zia2iOu7bsTogs5ZqQ9THbinIR0m2xs6HZMaXuMlewtWhTI6msqHs1yvY8cNhdqPbs7MXZ03JuhryXyWKwvVPVjL6aA94rTPrFRFpx7Vws5iXMjMb3EhJDw9ubWzNvnozCmw3LRnhZ57N80oqt5PGnzuiZhaMCn1W0TmFqe/f/U2YC2sYzNcht7rx3gHOHL8W6Mh+oDsh09fUVY7+2bIIPt6e4fI16ePqdUY8GP3+FqdJ5nn56RCSet8qAqfc9540doU1+E81JZErm6wsj3e2sPun8zox+Ryr3O78jpOONxy/ENd5vT7mSHsrJhHBsFp6qvbLJtbtvp3+aXwXu3B1PSha4OUV2QwyZOjFyvT622b/aR2IvowM1olzQURDc4PReiMNWt9B1J5tJ1K+pX17p68IccPghdV0bO6eSEZmxnp5zSz0Mz5m8GDUeiMLPr3+SrKUz1O+TNIY+vom94MzlmpcpoHvenDarmMGYgvKGy8qNGVsvapprhRl7Gnd6Dtau/D+auKmklDzy65qHKkH95Qp9yCu9pwDGyJEycYaSTNxufyNWaArpq55RHh29NXyfQ/aULRnzZe4bZGPF30ycOJ9G6wdtciGq3rJnal2HAM5W6cbmfnw9E+rw7YNGqWVnZPeb0RydKoWjJwk5R1qhSMGbjeczTXHdq0fM3GnyR1tB1VhlB0nEiuRTmhIyA380UPMajJ3TqXD3WYR6TuDVqkihkU3nC6Pe6k/B7wqebDyYqodOGt/1TIO/9kqfj28oh5+OAkcLopkT2QzN6A/XTgeWtHvTc7LXzdDwIgnn1Rk/FW4O1Q9WkiduRTKU0DHnwtaGdp0lrfAHHuyfoj+efhh4e75PD7nWxJw10+2E9IwLskE9KCJBgfCVUoCecZV7RAixmREQW2lV70gKURmS7Rl18ANg1ZDd8XR2mUZt2EDrq4GMNMDmXk4L8ak/sOh/X4P/k+AQj+1Fk+kmkMa1vww0qwhhTCMIGAxylJGL4qLZB6fdMKinXft9Ar5+M/HcbHUA6YQZAYfdBDt5vBcMMMs9qkirb+O3j+Lr38fBOBVeaXka+BfwZvLHnxvz6mt3VoFQnyPimeVOjgyCiycsqT50nimIsJ94mo8n5F/OrfXkW6mOy9rntzGP+50+sx+3MVyeZ9JwI6JAwoMwcrnE1vh9aGmT4BUoqA1QUO1UYaPQLg0hFYGIGHHNoTlksFtmI5aUdAUuz5ZPmc/XyGLrXw+VsyxtEs+blmtC8ZdDXxPNGiZOhnM5SscVdH4I6+UKfb9Hyt1efX9f9T+LDtcCufy4cvSea0k997p68frydvNUa7vZWXz6al+WRkWpHTANsshZPFKyStT8rPpa8Z/iu2/Xa+b8rM85X5p46fCTE1g69r/nfb9mVUXLzjyJ1qFR7p5+PYifyHT/SctJRdAT1f13LrRkRdZkQIDGxzfjsSQHmZEAORgEJx1iv47uDkQVFh8WLX2y9eT3UcxL8ZOu9wYc9qPw30LHk8UiDc7bXCjqnKp/R7V2ZUCS2r/vp8C/NQ21jWoqub2eSSQsf6SuuWFULAz6jAUTVQhd7o5LtHa7j7Dz1XVvKSNVbQxSnfzCAv3UZDqu+mHzU2fr8FXhjcXjppx1dmu4ctxzZ5lVs2ZlkgLdLKnNVKmFviRFno6qiv9fFj1KofzX91+9mLmjqWqpwgYTCCMIRRPba+81r9Ka969L27vTN1z/2vfuKNNXIkGertU+nq/6+NqgsuY75azA7TJIDxiT616dWhkYO95Gpde9kqz7o6l6Uuq+fo8LWr7uc2Ph+Z+qXQin2IACg1+SUmQNXwBqzu9l63w3EcP6oQqQsU+m0nm67eGtwnou//NVspRdumSjv6c/XfgwzmQuaMfLP0+lsUgyt4UeuW+AgywGZkRbcFFrBGyJ8kVpCsBpE/Lg49GbZr9f28nFvf35ex9HLoqm1POgf+fZXLU0jmMAzAC8rauRFvG1hsWpAV99lYZVDpITmwzfQwfa1ab/uWneCToze1LiDncHdMrGgEqQpdSASDI0IA6f9zTfD2anSWHcaD+8Q6YJ1vskIF2Wt3CW+wxkWMgMUiz4e9MABD9HLbgEw6b6UtSix/vhxbkziJntu3QgGDMzMGBpND2F/My9anOr0fTbVerM0axHA70eTeCOpc2KJH5sVt/xUNw5WHKRFlMiIIA/c4AhSoDCZCkbp3wCFwsG7CN5/9Kw/+rJ2Z1jjJc6W5s0f3qTdnfYsi2hixj7H7NNW5+d9FrbimL3MN+fhZklw1Q+YHwYMGAx4Zd1WktfZgBQroC7BlzmQNelzIXo32fvzS45q6y32HYN3lbak8MFlfxnZd/TQV5orbtNOZSwQDH+1l8HrHYvWu8bYlJ6qtVAuUdVCI6V9VcbGlDkCiNMFDyW1x2gwzJ4psurNTi7Kd3otkX9ReH696dHksUZD1MeBkFdHlXROfhcmgl/idE/1zUONSzQ1/qt21kKDmRm1/SRNYk6nkr2UWUgWIVxLPviulDnazvY0ebbNZtkitxzssE+BqBWU0H0QYeLjuj0lvA51IeUIkxXFZwAcRGm1pSC76UMXi/V6P6qcO8IY+Ha6XpUCe4JDAMwg0eJi4zDFRYX5rVi1TW9eGV/L0C/9lB5I6ocdLo86tYsdYYb6/iosMlqw8gIMFW1K4tFj+N4RBD3RYIYNtgBJvaRnUw6QZlYag7Du2GE+1KZSvl7Ie2TnmInABq56UaAgwwbsle3mrrql0GBLHlnZ89IXrps18LEMOGI+d+y0mj6K3VPG3B97PJ5uR2HL4/P12sdE3oyXddRYNOeBFoNrwdDHDIXjZtU8Vdixfu1qEtg2uxj0hbjFG72ir9K9weq8yVCpJBI9K0NJE6lqrVlbRikPSwqp6UKt9U/ZM3k7TrMM5Hb0D68k5bwckX1EHC57XfqfVyvQFj0E6eQ++4EINAQgkGQMyM8RqLKpGYXDIx6nz+/rns4Lftjzf8i7/J5l9v3/6/wej+n97o9uT+1/ds05LSrMSlKF1bFeErJH7NYb1X89Btijzq4OXnRTg3coZ2icIWDpgjOeYQZVDAQZWRSC69LCz8qXaftsz1fz2q4O2zVaw81vvUxry/GWdj35Le3+u3yELknVcnS+Kqv16c8abSbvb2aaPjYtNR/Z9uRyu3N+9KzK8/BXd8IX//p/BxjVVj/E2J9FxMM6zNzKHunduiLG1y561X9wz4K2izTV+enl61qXYJrNitlGXRNW6x2rVG6Tgu5vbUxB5U/DZg4YIrf3tUfxFFqe59KvNBiFDAzTX+MVDOPlGD2diqMOO+LtN1i7U0vtN43GflRPu3ioVK33uUmXz3TmZqf441Wo6fZ8j3rEWtJFXFL2Ak3oBGZDr9+Xxu1Z08w6jFgaW7Cr8MMfjfzjDN1Rs1NVuHWr69mOPPBeZaw+XFGWPYrzbU0qg9Vu5kYAzb55YepaCOaItXQ/zB7r5OZ+HDnv/PGG71tToPKrQFtTFqAy59Xdc+VFqlNGHfgAFme5aw/YRecp1NLvpUl7aqXuuFprmtcnsaukXjJ1yiHXFuRl0mAg3UIYMAIBkVa1+UkFQavehBl6MIJKyEHIGUBVRBl0mgwfh1t6Ot67zFq4+T9CHzZrzaN1h1vJVrCSrpjxs2fnIwQUaaH28XVaoay2lcM+y4r4PUMWN1tUOG6DAQ1cpUT8z5HVvVqs+phUjVNTCohg+24tfDSqNuxuhyev4a1iZhLoJxd8jDvQxwYS6kKL9PUk4hCCTtJbMJFHgrAsopqVSxHAt8QLpuXduJ+xH1FRwdDkdLEv788NjwzbnfSDJliNJEd3yuiPj6/zbsLN0P/Tw/Zje180hiiclaSFIFaoIjMbAQGTTFxuZXoWL0jjjR3WgZChuapfZnKbt8ymNcj8ValU34A7OZFrTQu7bo90KQkCugQNqHTFmTcFjVkQ//TXjuo7orfLSLtmGu5S83TcMHuWrcVFVUIMyMxLWVCgUSmmhhFJAQKL65GyyKJqIYRee7YNF/Fvtb7x5O6t45iD9Saz1b7E4e1zLyq46s1YOG3n/HrABp6LOQDFEBtlJYbe/r+/t4+uOqlA0QOg8EjD6vlR4YV0U4RWCvp25MvVJ4YOLKl3JUrVbQtRooPriYynxxvU4kNSzKcNKsSlRnX1oWUjFEwWMihuMatNwVws97eiMrkQrficAoJZQCx1ZrZos5OO+u7JG4AQxmBXMAu34mNuRPaaVPN5K3X70Vde+b/KYjrUKtFfwjpZ2qUkzMpsBRBhxlcFOuUQ2zfWw/2FfVXPg9Oy7M2zlnox0pU4VxqtEWLlWXYXCAa9WKfcyuLMAvKF0QsE63Tst6Wfk6l8OPPvc2984DIyBIGCBIyApUCVkCVAIVACsCRYEKwgKQjaQWAVCsJKhJWQWRZArAC21kIpIKEjaAVCFtDMzIgaECRbK7RvSqlirj46tg7e3rYJqBRLRjcZVzAWIyZOXaDIojIMgKpIKSCgSIyQFIAoKSQUIKSRZJIpIAqDIyLIBuyiH4wHmuHp9W9wyNlv5e7JW/bt3ZuuL+nf1deC/tv3hEQqNtZUhUWCMWCqflpkyr+gue904V168MFEZNCazMG1/HQqTEtqrI6PmyH0MNbttFbZJ0ygpFBYqhEYSY0YH7E5ZgmkrxlMVCtZNCV3lzdJRHbR1YTEqGI6ukMdMK/kQ3qz/HjONf08UxFNtu/szUN/1cYtZoV/l5uO84zBhozWTSBoRFVCuMx0mOeaWDtqRNOG9Y/t8Kb1C6FKhSsKUoJKUOl6KUn4/Ruepyl2LNx+ZqWE3dHeBkiTp9WyXH0CGcwHTMyCDIuGFQLE1N17vbg9g0wtRR9QdxTiy+qAdJkdG1vJV+2Z11mTRRq3I/nUoMNVavU1I6Z73ff6d3VzL2p4RYu7GaK9eE/czPcgeTvQDAcjxjsG/g4cUElXZLUYt9XR1aeb09H/JnVT4sVwRAwSkmTcNPwqBUtgDSYAmtq6hfWj5wBlMAG+1Wb7WyImgGokZ1HS7o3yUfYwFhMufDQR4/dGP/YbVQKecq9q2fEfLX89XcLFpteLPiu7wTFO3a5+xWNYnTGx68STeuhAIGZdeJVIW7Wo+PHHJi3b4t/tKEXqWjT4VPDT6z8XGPWNmsqHjFPK7WC5sxgSditlrloyMWLsLKgW25YIKWV6m9ho9U05TZzVH5WNlifaoN44LF0Zjh6sqTu25M4cUEgNEDWe0NxtwjthHEK1azr5CjO/qmu0HomvDygeDvQ/e7bS2ChhFWDiBAVNBBFpBZfoPuN4MORPMFTzMESvOzqXqaIvlQML3aYeU6VbHBSezCO/nHE0WGsABcOZGVdMUOyCgtqWHzYUmJfC6HE93/v/59H+Xwx/96YzKmD/CfplRhbX9lmfJzGuS7PohcM2/+Sz1swqNGkH6QcGFORxGNdoPKSHg0DzQQnRz3hHr/uDORyKtUCeQVnAZnRZf/UpS62pMhQNZvWs5eHNU/u4t2WsObddQrp+f76tOPHw/U0+EaY3/Off7ra2h//B0ub1qvtGXUFDWd5KeL8+xBbvsiKkJTWPmNhKARi2i047lR/KB9MFJAXpxBrH0QFNcU8GJvsFhJoSaA17UvDNFXvd8E67T+Ho2zkh8rmnlaADhsmKR+5qSaFQ8DsIiNkyQpnSDo2Guh9Px564MD1D7sfzNQtf4KJsnUX+vY1FXl3PhtDJ/pobnNbmjRUrQtLZXVJNabENxO1MyaYaZVyUk0FqHof6d9/76+gTbjNPF1m7cuZDMu2s16NX+PXCCr/J8Nz9GV97Ptky/z3TWv7mWzLhEkRMHziOe9iluohjiI2DktxGTJkR6/i9uF767oVEfGQVllRztdOLEV0zvl8ku685kz+ekweGpxeHFe1KT+qz8jve8RVVDsnTKqieXfMYZEJs/KzJi9gGyXPzm+dnI5NRTe/O/2Vsx2eTRY+izs7ZviimjVxFntTY5qy6tYCxQVGaZKd0sUVRGbSsIp0y7fXm8kEQX2W4U8cCqzhI3WFUYK5TvhZla9WriIhWvZ8e96M9vf+Tpr0W884ZA8Wid0KzHGGbtbvDPBKK+dKXMiUUUyZxpVEYz1OORf9fb9ti+P4IbQ2b/h/BlZMNlTdPV6cWzf/Fq64Et2wA0LtGH88GYk/xdufWuWo/ntoeXarj5bct2yCb1/jw6z+R6R9n9Tv0zBq6QHmirIoyCnUakWoRYE9rjCQtpiSsIVIZlIZhSQWCkigCwiyYgYkJjAxKjaSVKhBSEVYYi3KTGfUkCyKNYoebT6uz/MvWf3e7XYkZISN6FCdLvUKzb197dSuljCBlwdO6WQOSaI1p50Py9in0/8sxguwlTK7CgUFEUR4o/yQMWZXqgny2vCirSSSBz85aUGgkefKOfNKLZxmBPQhCiAnoDk0DNHnwcL8N+/yVNMY3HT9HLfmdx+CazvV41q3fDlsaOn+51q4CzfX/Nc8Ueuh4dTniL/fY8WrY0nHm97bR5/e01xw9ejroe7dqJHRFqXqfSMXezF57a3zjcEGsaov8wJpK2IjTYgdT0z/6QZmO8x2sjbTHUgejpEXofAwRTjSYElEciBmDYY9Jle17V33vxxeZh3+a/jHp71ZZlInAb+72TkftN7F7kX3Tue8P5QfQgylcvhNKgyxNzMH6ctcDrT0dSvY9XHW/PlUfQDoLz2a1IdHpeZ+84+E/1yLt5MVW8nAtjmXonLcNV/oh4evUtzw6bKL/XDHS0VsEmRKFlquCrPwZDmXt1W36rnKnfgqVrGCWdTrVJZoMmx/C1q1WKEbOrB2v1pXJIaCF5s0eKjWgr1nKrNqyp1dOvEHIII5wvYoaeHvnV91bzy19x+pr10VqVWnZrmm4m+uptqrbnYFXEVnMrDvG5lGKzOtY6V49FiKTDhYVvZ7MOq9M6opYWo7cN5emJ+TVTyUY04W8cqs9vAyzjqL6eZidJxU35Jx2a1+3iqNw7GW2F89aRSVmziU3823Oxwt1K0lZDCdcVSzTvZhQrZhSxJoZZoHhTVh1sz6tV3dzX6iHdHlzuwVaUFuLNPRexssOq167GJCOKIKWDCvk1PQ8uek46tixTXLVujsvUL9pDs6jUw1ONhML86DbMgHK6iDVfz7kQz2clDZz6mONixJVcRPgsrU44LRvz5ydOGpU0UrVpnFUo68c2AKhe00sEQ66KktFdtp3VchhnIu871ZSOgrosyXs1hfbT14lWhi4z+bHrtUz4621svPzaltUFU19szWbes2ywGc+XRDHdqZo7jTSFNGO9oTde3xYM2mynVOcoQCKnJslsCazavt0VMi93Etin1NHEOQYbNaHhY0rPUtdbfpqKzVo7+Gc1Ur1q9ifOa0s6o1N65vNRTLCGpH4OaLdsPLcUjnU6dAJXBmp+dnOCnSoIIMAwawrrs2H1qvr/j5EAPnyiLKe9HQdjqMqrkBgFYMgMn6irxU8h+kYQXxQpDw0o6GaOTr8eBA+fNRPugM7dailZIckRKRfVAaQfFtoJdBPHN+IBekDlh8lLwgFYsNZYGJAbVn1fwc+X5/Zz+ZbpS5tzIp3FRUMOnGZeyFtVl/gYuXqyar0qzyrl4zCTQcvVWXOg+YpF9aJ/3H3rRf7UppirBNYH7V1ErVlEorSMj41YiLGYGsxRMEAkyf41plBYe+Oyz3uUT1SmWm7JdUF8CkauOHkp1qj6FZ7BEpKqg1EYTHiahg6cyLCy6nj3w1wZAhIREWmDfcsZhGZYwQGkyJg1HqUV/BHVApDH7z/+b19GljJZyIQEIQXHnn1qwAr+SGY83m+xszP3OERZqEKKswTerd2Ve727pyxjx2vweH5bLBdJb6wUPN3Td58XxknvClBSrXSA6g5HXoCE/r5bV0VZyF/xmsN2v2r+35ca3nO8Wv13N2anSw6CHEdpgAQmTlN3RP/Lhqtbpaf49mza5Itendrz+XZi6qHh2v76i1GD6vMol7rnl8/2BPTf1+SpOm3sc2xT7tA6u8NO+PEdinsrSxd/XYqVorXNzva5Mg6KOLR12j22kqNuXKTTVSSdbg5SXtePV53X2suS3knYtFStWg5tEOrBa2ScLR5ql6LRFOugDIMPVcUxG/nPv9PzfJ/tjO7PFgYyVRILCCgo+2hWRQMZbZIVgKQWT/BkhUAWQVVJ3Se/JSfzJymMgL0QhjMSdLRZFgLIaZNMNMqGmIxYQfw0lRGEFAFkUmkrA0hCFSAsCGMCVFJAWAvXVmMBQUkn6GoYrIptmMUXEorFidO2Zu8/4f+f0fJ0OSe/4z5/d+/ntpy+28ECcwR4PCnAKjbs3Dpr3M4TZcyel+/PfqTjmxWJCK5n2fKAg/vMVN+hC0YLUY1GRFiuYNma91aqn8OheX7fjo/HRLXs61H2IxipZU0kqZRSMFqdFXJ9hWsRsOHPw+VDGyur97FlMfFa482/eioas9vo9sjKaa1QJSippIhDzOboluYWIkoH7WdHGxzOtTc1v9pTBOb38Snx/B2z6P1xP3Yx68/gPL1+2H+3z07hX00VG8ale9Q+7Rn44PtZx8qCWDuEfmaFysjIoptiz5TWb2mIcP1bvA4167uIbQt1hjIoLy1Sf1uADryYbXWBLCmhFOt2Ur+iFTEg5rVmo/7R8I8iN4hUHksQZHMDxgnZnZ82AYk4YoKsCcWyaSQxMQOWskO6FRfO2Q3SwWcpUPJJ1Znk2LBVgoRTjiikca+WY+N2w6sh3eeMyptNIKYqvduihjMSPbq5DNWcLlKngzzYXKQ0MWedp1bzQ0zXSgay7VjaUCGJ9rDhpQT3bczK0GAHU4di8Rz109bmnn/G230Ezb05Z9WYWIvKhgWuS8y1mspQv2/BbDZqdgIpyj9kvvYy/dAjwwolj7P3XhxAHn92id6oRXhKlVymRKV+LXbW9F1lWxBWdn3VXKy7Esv8avdDW1ynhXITzBmDMmlxXJ0wHRhIt2m9Wn9e3krY6q47ufixnq3fOfakhSFi9jERepgVTIPGBUzrVRS2Y6w4q6s9nx1WTpXr/gqwrtFyZB/CEn8JUFs0pNQDOah96EeZoBse1AitGgxR0wZ+Xh8c+ZZOD7KTdMEntl27LUrnZr+a6HZlLl+OfXW1Yc2dnvy/3w5v7nDJllsaN8/EdTNNeuqZG7w6PX1fxL52MdPtp+OTTQmpSr/TnFlupxTkqt66nvVwxKyxeVXntKuvs3eUENhllGjXR1t1u6tW/lfdYupp4mI/OGOVlHDZb6q7HZeReryt/DVL1xOZGs6zIjpcrNVZbVjze1TRm/H8hwDBj461fGHu7LU1PmO39+6lPo6+Mr/u1/PlL6lwbQVacb5bFiU7hl/H1SBDDKgzIkFAkhDtQpBJE8cDBHd0qFse5T77vx+Wvh6O1zek+SvMH/WS9WX0/rz5/h/Yr3r8k3R1S6vZ5GXS7K7+WrNPVSBx6xNS85ezh91FnwvNUg5fZLM+/z6fxabnC/4dH0166bd2aP76ZBWooFtVfOOY1Jyt/X9k3J+S74Ouw4wu1buwabEnO5O0Y5dSlXbZ9Z1Gqs+zOvrZK9KwrLlpY9mxWgonSr5yDRRuxc15riNsXTvwZnrT+XLJLz5b3fg1RXPTDBdu9VFaxMtpvilYbe1U/VdWdhQzRs8ApUfz5cVKsOhONWrR43mNPzZxVFK2rW2y+1fkhqv217zK2exodhpoC2jJt3BmsmCjgjbap74rV6ow/FO4Zpd7lrfFEeDPeV4wY3XbVhhlmRZG3hu2XBqYcpeV2Wpq2hit4QrZY1aiguNzdR7da+ePA249igWwXLxS9DWNLe5S5ejVqzG3yy3tNS4tHLohjnRbtVy9VdE7n1Uumfz+FiGPRvx5qAup6YJMufnsUN1G9q99XDyw8Nv/Tw/Z/JP5f9x/zp1v+eH9CFQ6Mqbdo438VKGIKVJUCtYFLSUQtooVCs5YGWlygsUBeXSH3kurpKqI/LmGAsgKHtecsrKxGCh6UKKkWBtIcsmIbtiMFIRYCyaZDExAWAoKCgjWo2kJWW2T8zCVUUBFHEUWocpK92fsZvVVQvSzumhIMmAgyAMlWEhY4HqyKllT9Ma4F6vHvMupnktu09mHNKLmXtriDdzJqvzWOtuxe+/5f0ZWWLFb6btUEPPL2qHssrBLOotcfGiw9DW9LOvpnc8GPfZ9a9ibqyVrOCxars9rAl9WfXal++3ws1J1O90V+WnCL1dqJbssZ57vUupjuznbtOaB3BYzUF/p9E7HUhh8cvWh6XQ7QjgTQWdq8l6yXacGa35brr245IGpL0dadjxCviYs7Hq+KrR3IaZj0MXVq3VQqULMlctD8G/esNIcW3b0dmY16ra/u7LQ3HD6IiubsQDqsN5vnq8IVSF24ohurcXTcbdUU5nGY7T0+QUqUUtl8uVpxzQxRDNd3DS4kBW+PJSDR096ft2Yy4rDoY2eGcc+BBFvhAAa98KEGV0563uqFCVQzaQwvUwJ3pHMYSY50JSM6UBVZnm1y+tR2GrXs2b3K4iewJ/eRgmHqiSGO5RZ39016vNZZnAAsuVUZD77kgjn90t/g6spyx3sov3fRy19W7jxdwofTMsawknNTs1uqHLWjCAkgSEiyVkMZAP4kqaZ1cVMv/jMEjzeGBKmcaZxB/x+Hfwj7Uizkd5zvpp36OqpgrYBd2JaHMsH6ME7TDX1xtxQ2x567Z4kvDd6buahUwKxWdWIlQjyB+TCVjV5pmEsMGsYXQNl1o5HBxWZDN0kBpzbxM6U6TitXmktJ0NRQ4B5ohvc0vfctUgYtFBY3jclQdc+6tF+WNSMHl8K9y0lzN54VGV0dl8PfAjSJhSOCe+YJT01hBrZPFRdXl1PobjBBMsIag7wdrWDxkaGQ9lKL2z38c+LwU8J+D/PLGXRuiMjIAzxCl9Ec/qPDoujpFQZqbkWDbUJYsAioBd/N3AxiSccq0kO3fZsa9cOl0oCtaxV03lI4mxmY5z31d/D2fM79v3856ZZ+J+897s/YOn/G+NSxQMcXNZYQ8xgAaWWXSrxz3q0s2d92g0GVMUblVHpXgdcQEnTyRLYWcVzEGcfoa+S8opmMAdZgAzrGWM3B8UXshCehyyo+Gu7v7LdioZUOemJm7hZN+OHsUr2bm7VS6OV06l3oRpXip+Mj2DHYAFpS6HHiEVLJYrSKUAuPqWToAsGW6J195/3DkR9GP/Vv6HxX8Eek8SDn99WQXETSjv6Pz/GqFC8ENTvrG9rffRzcxcTBI0aT8qnx00p0wj5EHzo6vn0V8ylPn8umf3wJyUmcwhFAGfDviU/FVwEsZEAyYAHichkAIDBENjbtCrb6RH85FL9jb4OKdPlPsTFVMDkpYsrWwOuoPTky7UuFU9aOfHu5BnY0CIzIAAzAAfMeHr55dfEQjnbJvyxK8Z1s0gK/RwWfS1/VvYsQqtSI4se+SuKvxh/NyvPxReP49bSM70F4wxPseApraxwY7VgqcESXdrO3blZFhbuHQ5GyvUoZXvs4zc7twIhSt00Z8tDlMgfGDtowM/KMsJRZ4x753HY/BAfnqBPQtefhE6uzh3dvtzGOti0Qp+Dio5nhA5AfpjsuWi7fxoqZ36VA7UYWLlA7erY+4yW0OoZaFlcVS6tJ1OD6jnjwwaRCQbYknIIAyFeFbuhW+paREFDIzBEznvwKUfjiqJjPXmTnRdi10IMDjs5elIaGMfWvT8TWrUrigAwq5kWCsIUnuJtC6YtzudLIMaawVjPFlRRH6UPxvr/GxSpFJU2gBJgdBkQQZvIA9aDT/c1/9VsfEa2Tqpz6YGcDlFT9ZMDoYIR4EESm0usyJGvZdw+qmAyIqDraOeXVe0czofuel1W7du3K49XPH3+8Oxv7UZ9xx9J2EFSuXjnsW02l9vOCFD4uZFgW2icxMHdslifFLFhnedXY/vm9uVGYy0VKtZxNWsp1PRUPApxgypoJBhc1Js8qFYWxjDLgxbCA6IBTgHt/V3qW9z7NXCms+rg99/uelGNfo/uccaryaqknq/b8YPnd9u7x8qZws/OFvy+rOoiIDtMAAAeBggRmQMyLTZ3Y1zsWuI0n3dPLMBFrV6rHL3UHUZD1By38On06/IcoJmgp44otKUvQ7cEGs8ERXLFTtHUTUBHEEQkADMRSRECoEZkSDBBsyASYMyYoRSQebsEzD3Ci3c/1Uh7rTobvR5tf1P4lawY6W/1qf+lrBH/e39sKKGELdS4HahCq3uwkKBVARPeQwYzHA4Zx40ZUN3RdGs/shHDwsDBphFMh+ZiG6n+vX9T1/l+r5s9qnsQoG5Jz3b1xYgAsMK2awOvCB1dhpSYMgMhzjSZKIQtl36VEsgSFkpBeL07fl9v2HlEsiRgz5/bVrCQYQhBmpRq87SE1VKrYqsjmCdkFPLv4xpOhh/dbZWitOK9AHQZVpSA9K9Wdk9CodW9QYqFmzFDI83eSpixzVZ2Pp9fUekPWz6u8+9sTSWu8hybxdHv308M+qeHclkUu+n/VTv4n7BgiLKQ4D21/Pxx534vR2/7B+Vj+q2KMBRYH4GH5spjA0rMZ5xbensq4q3a4zhqiDmSFOVqTHWQryY7/hbQdanUXSsqOro0fcONMmgHcTgwTlI+E/veseuXpEH/MTsF0CueK6gVjMw22TlO19kqxfXZk0fNzp7w/Bd8I6LkeHxyd827C1AtZxeX7vca1y1Eqp1ce1e2zDy/N+SqjBg2rRa9vu/8rNXzP+sVV/0zdWLpmbXcdP3ZPaup8celK2nN0+fDfXsLK4FfCx/FLErXDnfqTZL13TZ7cLrf444YevoUo963S3r7cI/UHj08b81W6tXu4Tz3xsXn6bW1rsn17lFWt10N1lzRhp/XRHIOqtzsq7LWnBPytX81Oxv7WfPPVew44hEOKuTHtv2md87y46u1He1qOtsz0pYtrWGku7psyT2Xd8mFq+yrPGzvZ4fXmtsdoc/DJH446drivUUjQMU7U333kbeCw36G2aCU4HO23vq1vDI3c1XObBl7V9jFW5AzKzr62Tg6bnhl0xxWrLEWVyHpehnbmFNA7GOf63buhjqX+/RuX0qTd9qnq1WeK115eDOljn8sGmds13/C/goIqMV+nMGuWSOOnC4cN+nzeGAcKGeHNFdc9xrwdWDZQljs9Fi7C3DqUzb8VizVn1cEL2VQ+SuCG91poYuag7U34otb1KfQ1WK7Fuvs28+9xipmrQYK7WXVOgxa1T9bzz7OTzzOteT2SdTnSu2ZtfB3BsoNjlEKW5dROCc1z9fSk4T8VPCf64z6Z+6OPLz5ep1f0r1nN/n2L9SmGdQaqDTjxTtHDWzz8ZvD075NNilFOU5Tc3Z1I1sRTlsEk+3SZmUuNU+D0mLf45syOjjZ8mKk/0gVtKRzpJqUnY10dNWfs6tunbl9epT56reHznjDbVA6EZ6i2Mhs2vzojz/iB1Hn3fTXn62sRPqRAhhx8TRU1qiq5FNk6zJTBsv/vXaBNa9V3/SfJF9MEOom+urG5iT/ijU6xSbQHL4dKZ1vdMdW9Ul+a8d+uLN/CwxJxdZILr67pnKbTbf5e2Q4dJTdCuC6uZb6dZP4tUxMSYiyGDB16vm1yh3Sp8We1J4NNLKDK2lKaLPYUnludEHjfsP+QrzTn1e7uwzEq4JM3GmDVa851XlrNnU2BwxSQJGdv0cSWB8kTzkfVx8Ha29AGfDZ37xKifGvgYR7K2UbZZ3jcoWXo5qug8KvXfjjPC6DUQ/jWc2aHycvZ9SRz3p7zlDVlcjY8fvQ4uSE6ciR4etxt0teGbm4DQdHUgD3vWs7w6Aa1mWRi9Ojgtzeu2u0VwszM8VE8bfdSSrxzNgV8oBYjAHspRFZBSRVJ3Pq0aE8vT5OTH6+voEPDz/R4r9u3f/PwJYoXY4vN2sura30PbqqwvsrsRUm17QhgVla46uUUV9vmiXgwa+7Tj7Z+CfyVGrNxwKxdal/iczdtzGmp70emnFZpbWWb0+m4rU01sty4/pVeTZmVUNtZhXrtVP/leUwfTrccnv0L1nwuyzl8VTbYej+OPqh3qzXgzvtCPs0JFnoY759hK+CeypOqrqNVZ2FLywYsXl1+AwsPzt+TNaoZVV61h9izooOZGb8NOzLxkao9ubBCi3a0xU4K8+Xa0+4txvUrDrfDdP18LOyPHVabwVdDMkOVWc3TxZ3u1fmYazZXcKtaB1S8swtfaRIu70VGLLA0v3W7mO1mvv8LMTcAQ3Vmq1TuJz4ZrYZnccrDyzVViBZCK1pVeoo3OnG3c3PU8dG/wmzQwuo20tVecnKvwo3tsGvGqeBG3Xin6qEz8S3GahePjJfpT48kMee8wIJ2HEnHF0aFHnhWa18JycDkalHa1HFQWunTvaGODCzNt9/ddXx51mt0/hSDAZO7bS6/wSUoXYdvWz2p5IwLKT0Iiimbp+vwb2XyjIxE3y7iy0RDLm/6ujnGfQ+XY0xaCB/blqNcKKwIYVoUkTlVb6hmGM8yAnHSZVncjvT3b0I6ct65tqz6j9XEaz0mjRgprg25x2ei10W8T+jp0KIidD7ru+/kgXu5L87HC4zGiSWlfmRjC2latkfsXVF+nh2qYauh6jh36VocvBSFfPWyPvSCZTNSRwf38tVWFW4g4dNzmWts0eN4Zad3Ck8y2KdjoZ7s/I93wjGvnNuTu3amu/tbFPJSuZKsNSFqOdVIn5rGTrZWxUFbU3ROjpEEgAB9AIhx4lTBkQfU/XUv8YHZxDIZD09KUtqvY37lfv4a1M0MZzlaT1ljobidH29H71OkjQiXk56t62qKsym6TNCLSV8K34/GXGMdz9oxR8tXlpL36kOMz/VGcK1BhEMNnYtC927BSBM9MTzGjl15+AGenRpRAXJtxyxCjJQCCcnb21yBLhFQV5wJqsBvXkYj8vES6Qgs6iADQhEpCErSj6IlsDkiWw88L0vMJ6M2y7r+rm9XEqZDIiS4KT3Ldqv29XTynqvU6Aq1olPW5dVXrVdmT817QacSdI5jse/dUZ3TR2Hxbo9rVhTEMbW1bjYku4GKAq8fj1xVrbKF16NlHzP5bBld6Gd+8feuimlk3aLHZIg1eeV5n2W7VWVFjpB2rowOS6QuZEWIyQZEUpgAmuXVb+N9cvsbhqHqPZA7Sbpx3sle7OCKSLbw/fvzosGtEyzTRQT4ssHOCnounTzLuLowtV1WW9LCuzMqo1mMJOqy/NshgzrTDA6G65h3kkkhYUOadXCtHKoumjLU/ZATgYdNfOge6B+hPldMOU/GlcR6XPnvRht0yVBUUrLDaBUMZD9rMf8GVCaSEqG2FHhn9LiKDq1iiMqSVBdsl3TBJK0ZjotYSyjSWSSlJRpDy+jd8/r/X6vPu+T5bNfj4IgC9pwqZT06eF4ZKl9bHa61833Pn623FRubnOhumbq3jWFL5+9DxY9AOdgfZryxUbSE1WKLeQra/WYWC9dtKVFy6FEOtKi6gKq6EUylxW7Q6gV7ivtFfaGqtSia9gwpFSdYeQwBmrMpHzHV9QRABu3DvtPZ0en7bTPe7/ydbF9Hw06VTgnFGkb0UTEfUdcQ+0V9vcE5X4Ve/Kxdt11o2mHFebJiUXxnC3MmLz86troU5qIj5ICMuFSgyRU9r3ZtqQqSsVpLrFdPnXRTakZSmC6c9XieBnz2tBNw+4+d6wsts+YfDavL9g75fbxUQWC/0TdDqma5h8FMnjHVzsCkNP87c6FjSYQYqmQGsxOskBUbivSM++Pv2tZEN0m4PeLu42qFHwUWZophc7N3l76K2ehppxK8E6aY5SLp+vVrfLfzUayO2o531sWur3R9p/58rdc5tzF7vVhXearbruyn/527NY0yY5cfRBfgjYOPez0dTtxa0pm+1ebKzgwozTrrIuIQNlP2wcfDg71XKqFfGouoNFfv8R1OgdMgQEOIHHchT5pFdHX0yXseFFHjv3Ww5h58bOTn9tLZ1b+xh3Pq4tdlf5t39Frr15YIF6VKWf0TS5B2HwN1khwPwwwuVv1+lM+/ZO9l9ej/Qz45Ggoyib8Ze/Zbq2L1G3iRTF9erQvJVFa61mbkJyLJg68WOM5jMygNF/vNhaVzUwofY+mdGX1P1YO/R4eUPx9ewq26MTqhdJlZMjMgAFDASYCTIggyCTBBBpMRNYhXwXPH79OCPRY8LtkN13OzMhcj15b2DnX93stTQKq1ZWpHN1zYwvyQReXpQf48C+/V3oCqh+U+BnIwNV/ytc4HNS2c2nF3LuHlthvqWbc2VMxDOYBAzBEVfmgyKAAmzIhdZOUPgn/jKpBYRYCgCyLA2hJRFgskFOElQiMWCwFAWB1QZkQCTIAsmnUXk9qIDCYKxA1XRPvOx9fiJZ17JQyQOu/SaHfJ2+UPMQKzZwTsfl6w9PXTfdrrT84+usK2meP2Vu3c6q0soAMtSCs2DUSQKkAyZmRV+g/Y3sWjBhc5UmABinDJlVZ93RkryMtW/WizWGjwrsdH/CLz5d/NK9v7+B7KZWsuGqY+u+0a9TFqn+YbscowCKQtne2z+YpmKuT2xBiV+ddwtdOelJFuho5eVTOD2QY5w5Zidi10xdUfi5hKohBo2luMhnF1fp6ECU0zBwEBIZNeuiWl7e72Do7/NwufLw5dV37cXLw4fGGpIAkgkjIJexfLf4cN84BRDt9KRPl7XG4aO2ha1U3oAA4ZET8S/q8jYTsU4df+1dnrkWoX0Vc1HVT7+nFJQtdueUwLAsP3s0Xjchw/Gm3ZmQxTPzoOd/2dT0LjwXUWaCqZ8tdoLjlnEtXkzJH15SQOl/YzQtUNXm7BoApcrFupcQZnYzKgETEi6wWMzDdeQxXAdrJSBal4eTA8z/jNsfjMT5w2qFipODqDQgFOpsef5YuKMWwZ00cUpMhsMhCZBVQwaANlVtlEEtoxbzZpdGsWUZb5PiFoqaIh9VvCjT4zSNcmFonNCR0NrJuCy0if9ZlsfzxhDLh0M+CxRgw8BlMGEIDh0CAU+9HGepH4Nh+J2jqu4udaZuaBvKO9ikEmQq/fZ46pD8Qzaened+PZxNZStO1nLiiC6+P5cDT1dsDqyumFaqQrel/NqvZ5yVlfTzzhpDxZOGa60XjdJWEUOGPHTKrWXwoFdpUomnji4zbBYp4cbwhx+OnCqw6pD2PpdIDPuXnKSsPDL4M7+nw78c8VJcNGOn/3Mx2+tV84XzYlox5rleRrvz54U+bjDlh1dsU5OfHLqgsNeykO6aQnR3w9cNvDpMfPzpp16qV8uuYvFqgIiat41fL37z1+vJ0dM6M9Ti9LPSmeTw9+dkxgq660qY0tK1gvVlScazL53ObTxru9XWPbAEmCfMMmoolKsKEpNvjjIUuqtHE3170e9r1oN+AkIZvKWbXoodnf0MbuS9/VXyXK1OiCtMccJq7r9Y9z/+VumrFJjTYj2Ih52oRfC5BuaPJyruZl1UoMiwNshwSmOgwVg/Uywa0BJgzLxPPtat/i8NFOCmygxmMJ70TjUVzKqDXBwTazIZMGg3EhAMzM+05TlBg8H6iJ4za8HMMIEu5F6XR4z9X8qT8MEBmAZmZzddPoE7XJfV6ia+a9kxVozMAzhr+D7M9qzbQCIqRSHAeUwdew3bu7TJ+3J1tpzcXryWUzgdSffEJx0aSkEkLIUhBQVQUhWVhDokDTMZCsrKw/ShiGIThkDGQ/mZCFQUE1SVJFAUFJyzqhgyEUhEQWHLIaTDf7s0yGkWCrDTCiE0zGQ+1CYyQWaEE0liw2wMy1rKzE/qdptGDjlNoub19nx0WzCRxBSoyC39nx/DAPV72aiLloDOdWv/eqfQxIpzPQPcYP2c7Kt1mQYRGYIk1+3RVt+23r1Xr/MhydWDjwYanYMT84hj0i4ZdoMAmjACI7iQKInRxEVAPc3Fy/abC0a6LqsqF5xMrPlCc1PXC5Pjx0V2N3DIQBmXODHrZ6nSGMP3M2JF8WGvLjNJCv082FyhWHghpWSeac9bAnLCoL0SYkxiwMYYikxkNp0QxUFAOvFk6JXkSfp1xikPy7pDohpgrzZ/ayeOrtDMsndnmt6Q32vYA5B1A7RqMgHIjuIlosird97brZuUQ1jSI9oEra9oheNFsv+mEBiTowi6ZMZ1TukCukzVLoqydkNf9GvmsJqNqHMY2cKvgvWZv0aQtXgOHX2YlCAymCJ2pY+wbMAFWswzMBaK2sdfpv1rcxAR5uT5OQdAkk21vb3/yrz1LPWyROej19W5TbraLfN5dSn2Z2mK93pRxwGhU+lAQV7BpjpdOD2qXSHmfTF5j20amgLLEHUMkU5ybo18JtBEWF90BNSwpAdBrRi9L2MTpa5AiA9Xxvi3v23MN9qZbchD9cv9qdWq3ysYW4w4LLNa/DRapdynKj5Zezqxv+dblrTPq35PJaK5qn5rE8ZxnAsUMiGG2r4ZURX66bxKmREBUOE+W0mMKwiyKLKyRQJUk8nGGGREZgGYBEZgCyBUx6HWBOu8RgQvzeOP+sTi3cMq9Gx9jcmhCK8tusCIeQ26F9zHUfBvFIotMy8IG9syjBbkEQV/nkeAfSn38D0e/eTbWvttnMQ5Qu2iIc27an6V/SV/OgQcLnRDNBVkbQ6sShhXrW5NPQKc2jJbze2s6UuunqGij0/SBd8qvVXp4dC+f8xX7fK3JUhLI6J29lZh3mvx3GFem6BzRZhdcFCPugOTzGjsua7p1G+bGgdY42wa9w5aWz5ofdA1Y+E8DZgWQZmWyCFQVQAzBD+jAT3KdH3z5u19mw45dD6gPauTxtT7u7FvzGWkAwbU95ULCHfA8ok/8r6S4bIgYi7ww+cyaXBtPgcDU0mI3ytwiPbQSlJCMgeTICowIoRSCgLCLBSAxAkFhAUVZIAoSREEkDFKarl1VsLc+XBl/O4vZFTDVCsJASeq7pzpbfss0YoVvXoYkXt/7D/8YigDFx1r7z6i0Jram2jBERWKJEAATIVEkBhFBuF8EQkFKIqa/hTNZW/d8/vX8M4LdvHDf5nu/qwoohpRdSRkkD0gRpCtDIqVIiTbByg46N45OzgqNjlWKOGSISKSO4iI0jIdLTwlQsie2CZMGj8aGr+hF9rK/m9edkbnqHSjd73sH2bjMdBiiYmE9CvwjmVhSF1UwHx/7DeS8KX0ChhAC/pKlk+JOQIGw/eVOmBvDg/4vhwA/BC5F62LHgu4fo9VxoyclTi6Rrr4Yaq0bPABFAwQFMyCDIjWQSDLS9CmPZRb+FoTWpVKcNBWgvtbeS9kx8ZYeyeLVxfbYqZjApRBOZCWiCjAaKqA0Spiqm1C1fQFgBRTgAgcBmwdSPybxBx9hhJP9MlYAbgQjAEIGRA/HXA3fZaWr5ur5pfBR85bF9F+rrM9OiLQ1cstgkTAAD+DcDGZGEgSqRDdZNeeGbbubs0z+NYS0/GuHXtqIIDUNJ9w1EqH5eBERRhKFhfZdgmXaXQcTGKZUAd5gACRyfo1tPQimijoP19JWt3Fkr/e9d6cJx6VEaTehgr56XsdqN0ATdwV5rMqEHr/+8MqcAnlExoX8ZaJ3lIBSAWeynuDH/OoAtGQBCchBGZFHUVeW7Eef/vPc/cqPVHZaNKu9+G1D5Pq/fF3NzliheiYtxRGyO2F4MlLJIg2ffQrAtzSefThNJdj/doPhZxPdGiY4QlfjRU9XEb9c3Xv+PIOngbM6XoVjXSJWYL0UtilsNdLr86nxnJW29yYcPes4d/G7D66Y/k/O+Jqy0IyRWQZECZeXPK2JmyNESyIJGZe6US6wZGMKFIBnh2ocLiHxOa5Smby0EyIGEAnjAL90N5//O2Wt1Gb/7DcrMrQxqBh2zJnru6OT/Nm6bpjtK1H5YOeZ/B4PAjyot/jG8CcKiIO12tW/c01r/tPKjFL6G5Ut+bAa9u9f6v8u81EwXygDliyL/hHLXZ/lPzvZDev19fWrjp6OLk1HDuzf9bj6Kfhk6MlOvhoDr36BoimxgkgITD9NRenk8eGwcl5oVfChT9smvHrLW8wX4MDxBbq3i9aWRSR7pApAZEn8aPC/5zU6d7LvULWJgiE4aOUt8uXNb3NcdYqKOaTvatfoxLzH9H26DLBlEyKckLh0iYzYEHGQzRZB3iL68OrkQmkOwdCnsq48WE+53wTUFQ1bzRyCmAoBqtaGoTXQTe72b8ywbiW+/+K6MW6Xrgg/K9AwRKmCIefYt7K0J4dmo26OuFhueb7c1V1iL4gQwAWuvtWbw+15RKA7+u1vecq/rsP31BJvtRgSH+zKhPlAiY4yEgH8BrCndIY+r834rs25smb/cFREpjpIA/EqDIwJpRQAhgzIKZEux+3h6KOn/yFMuaJaB7fHgmPo/P4vypN4nFBgWquwGVzABmRGZAQ9kIEsLKbsQuyCl0HYB+P5Ib8l/0I0FKN1/1nopryav93HDze7o0bgRDc+mBrv6RMkUJJ4t7X/1pj0Ullq99lxYMgNOfudE9Oq31Y6u7jU/YpAuw+JhjYxkZeoyD589Bui3Vm9ZZ4Ti/Yr3QuPvwBAv4BLjEpCsoR8CnrGAkIBRs1fD2WYOU7WER9n15bw/8evX7CwPi8JMLritgaYJ/cH+bLOx1vPqOX5Tdv9e/rtqVvc3ar6MfHr+etMOrlh2dVBkQ60GkbpDLm81tpv/11Ku2Nv9pQAu7dHh3zHXfCUJxIBlw3BvpbGGQfCuk+UvWwgKfQoY4oUENoGsacUcRLLim3KXq9OPu0JjyQVMEA48j1A+/0p8sX01b3/J+d7fgNXZlNbarrSY026/7/Lq5MOjdeoOGKkgySEgBkhwTw14fjetb0JBkZPHP4gAu9701lHM+z1Z7z8ughPBUeKI5QYIGYdG2tIoFaKA+j9J8DacyfKFKWNAJtWVytzMTsGcXKqI/2pSodqTdg9/evPVZ/ue6aqsWW+om3RIe5rqhAIQmUBkWk3GSGMWQgpAUCPm2CwUCKoEVFRYLBZBGQUD6YRKgfysm0ygRQ/qAHcQZA/HNflRxYPE7HedJRhvRrKQf9XAj0xAvDZ0wm/O5Olpfry+7pdWZrL5xZuv5o+rZJykWLFAiwUJFCKdU9iZN5UX/dpYdlliw07KcaFuM9hTvQq5+J3erFbWTXQt93lINxhMTGlTLn5F2UsRyghA4D9KZC+UAL0A8IQCr3HUtbrA2rlIv8LafNHHBxQUJBAvF94efB1dZQHvDwi6gAUMiKSIPR9sV59+Na7sefxNp/5Is26s6v6adE/d7mpdf9zN1tR7eqou0n5Af2O4y6zjmykUbl5lIAbAYLCxMpXz6Wl9FEShmKNR2giKdGrN+9tZxDP0oapO53qgYOJTJTC/961bDy1y5721+4iGv+/khGZ97TTOa816abqW8GCvqIL3588VzxGQWRCRQkQCQfUGOAOAv9S01dYpet+2gHSA3xcAbC8m8PGpiKqbolTNQd7focEts6V2DzXrTfMm3CoEaiD+HH8hyttPUO136dq/0/DUbUbgMYbtSic3+R1NWqIALsIjx0aqD3YeErS7PQk0KMde0oFYFBzUG0gYz+GA9BA2mEsyEM/2hQaQ9t7eF/i9v/XN+vHgcErM9ynAqAIO/FgXcuzOsPeW7K6P6jujoPhJVhhle6Fh+F6qzScjHlUEsRQ1UBPfbiUAM6Rhwvh5JAmjIgUgtB2mucvOvR4owgaCF1f8xbPagXkBx/iQZEAy6hcDhnYcFDgCbP7Pz9O2zPcovVjjIBIhR3ZPRjpvX/dXB4df5cmJl3+vFpi3EnaI6jliX9Lxs0xqZ2MQgPGRCYyIgJJyDMERNTtUA9c+whYQCRkkkdaoeah85NnvRXbmTSH0YdyXygETo02C5FbbUdMpJzbK9uynB8Uw4LPeG+FEsvUZJEkHNEDFj1Wyu/7cXRow19fJz/9zcfY6LXppNFsPRr1ao6zsYDGWgwj9iQA/U0IoERfeREDJ6z/c9136OEBClROtOwBUCkUkAkQJGEZgOblrZAqT32lgNWwQAI55pn9Q7MLi5NZ0SyQabTNwnWN+7ARJECG62l2vB6bOpg3/DvYzzhbeYruuPwqaEJbwG1PDH3bGt7ZrYY4OtKEI71uJB9tGk3EGhWhhl+CjijZrz1OrE+5/vfC/Ym+eXpn3Ey4DXeDKeZhTKzrAkE1MO3QyZR9tOfsbMWCbaEgaDr2nzt+iwE4gbIMYDIgL7KtaJcfPo9FFmCL6s/6nvBs4V/vSveUebLO35NuzPmoZNhxXGClOlPLpprzeOlTum1phVYJYgQumWoHoMbZ2fyache0lT4f2ulCobiGGZQRmaF/jGnSi894xyqSLIhIPNAOpbiw+u9ibup7urqxFxtv4sHb57j3zXg0/Xn7NeOndymvDlvdXEqFzEZEEUkWCkkWQikgLICyEUIAoIkgJIqyKyAyKyJIMgiMYSKCwgKEFIoAqkFhFgeH78fUs+mbw8FO/NqAQwwkQk+udr+gDX/Dqb9wIgP3nM0ATYMAO5B8Yi0GmdVOEBoPh+7n9F71d85C/+RAdsERA5oduDl7t7B/FlbZSl7pdM+vJ9/12eu5lnM4jX8ZrR0IZxi58IS1LjoqkqYK2MP+D3NS9nQRBr7T9z+d1Wv20H0n6yn726Q6WHs9SUBPSNGIHGg/mDQDuHN5dthnwcZhszWmqVjJZj9NlkGyCBBf/7Lzf9LLwHmLPxKhy29LylnSQ6Edm5bG8j+UudvD0tb2kYzlSeoD75zRDh2GJrzQ38tLZ+gql8KCMinyRpG7ihTVY9g/SxrD/kI03waDSAG8LFyikT95gIno8euqBon1fiUXFETsw5TnsxeOhwV+uY/Lgr+U775xhCNea+Xp3/5P7V92aVQJIxzW30GAQ/0eD0OHubZsRlgBvSvaKItGW8veWr3Q3JGg0RY1br+DSh7kn+nwp362QnmgcsgopFJzfaa9H7/VpZqPvp6kpruFvrOH5/HA/e/nGmxHSEL1+XKuXq0lKuoybqCQNPT40V7lP1k+rlsRefDRyEllNNuN/R5F6OF+kwheqYl3Ub5EHYpIAEMJ7TghrutsmU2GpJmQDCz/8l+kkBAZgguFjIF8yVOi7LjnUYnLiXI5P1BVsaxPhHzbYlqrjJvuWeOC6/ch8D+2gAYy7xkp/qbKjjAH/iJWBZOhSOnUdLOF1m8Wifpe0Ebr5QeoL2/JfEcTr5L1d1MEuj7pmghbL34A9ecdh6opnk+75t3wvXZiconN/yVQpAvmTreU4+zi2BX4zvw1MrNqi3G/pjX4w905Svp+IlKIT7SWT1drJbZmJU/ooGmHzqCRtgEh9qQ7EGsyKS+hAacdg5SWHRh/XmS237JvctESyIEiiBsy9gauOBxxaQCcen+s2Tlu/vV3M97Xu75+e+4TzR8Hzfh7Wu2z1OeeOpw4GBdtakBhua+qtlkebNcBhAyDYthJDmiVKgBZB7TkC9lymsHfL/TQR+CNFMpMQkTo9CH30rbJPyI4MPNUEyxJBVGQSQCQGQfxr8c/56Nt+zB0YTBe9/Ywfh7MFb29j1bvX6bPCp2UGIsNduY4/1aZCkokaIB8wQMyM65hBjr5kfxp/uUC80H2vL9yBcx9n04av4MBMEkFkZEJFD8V29zNgiiWwBBLgIibGtMz9f8BAvjmUtA07aerJhqe8YHSQJZwZLMX+ZheO+iePJf4Df1/osArpdz9o8K6lnp/2fR+y/g/bIR/Tp/15q/5AfnyymNwSD1HpZBWJImqHThJvQpEf/AKLMB28JfseHHQ0OMofw8a99NoVIp/zBqAIyKQiMgSIRYAoAskgshFCAjJAUUIsIKQUICrBSLIRZBRZIEiSKSBInuCPPBTbx08qEyeSmTqZ/y1/C2y7jhPmREQfuzgtX92Z9Of922Vv9d8kz8jXx+WYuN9z9KzztLuyvwwmmlEJCQU6lu6uUmvZe8FjlO8UXz9k4pI/HHwbdHNgO/6Sl9Ex+7sdwacJIEgSMYsjIB84H4k30YDUDSpDagFBIIUz6qWQn3l1TZ19xipRu9TBA/EiGQGqNG/b1f769cdt9eAiBfyrQS4+p0/jOsr091ih34f8HbDR6VmvObQmSVcRUqhEB+DLFHhSyp/qROBkwZBInxQROSCgQRgqkgjIgoEgKlF3wC/TlxdzP9ZhCwqgDyam+pagS0ORonTRQidrcFO1pu47MEJBcMxVzYr/13aSZr50gEVM9jhlbszVAsgyAjl1WYst+/M2P+N2n9MaFv/tklN5vQcskQVvOMz/7Z75deRA+qVfwbtnBapRJELMZgGYCxYCgKKSLIRSQFFgCwAUIoLCRYoEWCwBSAoqhFIApBYCkgsUkUirILIAjJILAiihCLILIpILFgMSLCAsIiQUBZIIqRZFkUJm8dP82Xqpe9vFVrCtuQGqPHilBTzX6BcPSR4KDVfnWHoajgS2wBMk9UHrW0v9vBi5bV0hq4v0+u1IABs+aUf7MpUhj8J3R9uQkztLO0TKlwJasroVr2YAfLVPfYfn0OTi0dvHu/9br/GYgUDJFFb8wErDilCASAQgH9GujWASbfwp+d/fa9sw6sOSn/Y7zIhJ6szeFse+lJ2Qvz5kKTLuK3Eh90tQEiSJsONoIC7VsGkqpgiARzoAId8XZ/8yOlvQYYpVxLHbXVltveUd0upWp0RNTq7jUSYQq9/rjIvfEWj34xvWXEE2YAToJAA51SCVgiHe9NandKaal+H+vfAwIcSH0HBu5xb79eSzx0+a1L32eOqLZE9UOOB03eoKE65g1z19a7+eqrOyjc9lI38TZX0qQQJjN4POMNrr0J6FvOUPuPv4xfRcbev/rt4Axk8svEDBot/6xKEGQmSih9090fERAwLxFhS9rhbqLjKV4jL+LVDINoiXokgUOPBoULmkAkcYeho1/Dir4t1FC3lo/1XJVTVovYcYfv8PV2OshOohUgpBERVSCgooMFkGRVkSRYRQMOX6cXDz57bL5yfTwXS6YayCfq3VjXRqQbv46rHqfDNB2T222rER06BOu32ffqo1akL/c8Hgo2CFY8E4dNDnA0J9aoVNAENLB4ymBKgKA/xCt7ergpR/b8QocZ29AfDtbblxwOTwTRrzdvw05PdvFdct3wfRp/OOjRVEoifRTuK/9qTe7PW7wcsT2Jf21qAcnRRRyb1LJj0CFLaAAUTgi1gnDTTb+5muNQJee1Pb8JDxc4n7FhoFOgMaiSlG6PaKhHlIO69wPKN9QD75/rv+y4nj0foD0N3MAOcwVmrVVxKosVbcokKcMV7/zSjVjyQz6OeYDw681ByWgql7iZkqyS2mAg5IH+xpG2DII/bHnxTJ17jiLbtzFiizEioQxiw+4LOT9rHxj1Mplp1s1hktpefBggZgAzIg2F3VfmSroYag/2w7zqeD6A7/2+/Xo9ltndcaiv9nB6b/Hwbd7frW9jP938+XkjbEHDAZBCRkUJISKEVYEFgskFICkgskWEWCkkVZCLJIsgsIoQFkUVSLIChFkBYSCwBQIsBQAWQAWBEQJFCKKQ6+Fn7vzSk8UbohsgPDqwkm9mfryBiXzcIasWEjz5aDEifsTaqQslvYh096WaO/rzghe2b19Qv9FN1c8QJo834GomH1i/10MhpL7iri18yEI/Hz+U361XueEYu3Aj2NT4nyWJZvtf793LxdGHTw9TesC9wUeOZZWLIB/oBO1osw8tpTmYaTK7resWX8l9BBCwPtwAG8IHUiqEqDgbwz+j8AJDi+jybuBLwaJn20V9MGsAxn571+pt4KzgyaP7xbT2VRnhO7Dq8ucOIhVvLfk1eyUVx2MOYxW0xXPJRxQxz6t5110T/0DARPaARGkclv/Tdbap+x17Kg2cP6wkTfXWls7DQzgTeF7JvHrCDZ8QH/ZQ1H8Z6191AL3FbXhJkrSKiGqgryymiiUhhrtAV81WT9usWKiA0w24lWivkpMzNiM//NRcJpGmpVGTkZX/YhFct29h/g1mXov5LNcpBB1Z6mLZajISKkievG72moJbaSa3BQbg3k+0/wfvzyTxF77WXieibxosl5GzTABc0FkASRCaUdTes9Fbiohdxck7oXltMOPKbGh9cnJ3krUfswu2iWZqTMSQJ8cc7qZpMoeZCSP1vCmXTzynZx3/6p938b3NygcsRzwkRkAJBZFCMUD/x5U+R7Z9pCGQDhBRYpILAFCKSCgLIKAsUIsWSAsICgRRQiyLBSQWIkBSEirBJAWSQFkP4liZ+/8wejfis/kLwKIGN5z+wABK3jxz43WHa385VOXk/GuPf6VUC9AGRIKSSLIiSQWEgqkkUgoRQjMgRAzIlJCoJloqVjH6NK7C1Ll4pzqBVaRLiMMA65F5ENQD0AE1283Aowr/3+rOKwOPqexrLf8uEA6PHiklD+f6P03sKlXvHFhs5dtALrvtPkOoW83Ber4PZRdoQBLcI0EdwkH/KjvhXL9+kO3bbdBOp78/pv60LkXJydLDTFnM2/fnh0guuta/Djzzi738e1vv0VMHW3+YNpxtfDcCi/P4806nQmZPmW2PuPNrgu/BkDDOfn/WvDA+fPgDBYn9qqMCkNFKeicpm9k/Lxch6sQcjc2xcCR6UadMUyCtNiP80/bRGyFtnyTlNvhqaPBTjMdARTBBkZJBJAE4HeorKyT3I1wvor0p2OEJ/i4uWBMs0GGh0NMqIWVwCOOQoKTDVNpb0hQCG3wfCYjHZ/0QvKE4cJgCT/RABAoD7yo9RybTHro8W1wh+yk9vUw1TL16GCU013q2BZAEkBBQUCKAoLIsWEgLAgiLAgsILAFgLBVkFWQFCKshAzBERnbegC95Fa45vzn/qyfA2j+p7d+3scO9/MD3h0b7av0vPZglOBJedf3m59TzbMqBdRTMOn+jomTBhYwX5MATh1Ue/L0kcGffeGASJPqoTL0X75t6UPFK6pp46biq0DXiGBH+T1gFz4Ifs1/HoMn4/frU+/pDw79/6HfpSQDigUkgHVyS/pw73WzY/Xy3+faPxPh7Mdhg2UODKcUHqlen9TkJgY+bOHqMNSVabXO2ifzrdyGtOCBef3bc0sA+DnGDoIccen+e9H42JeYn/RKRMygJN+CVBYh5OE1lela/WUCvAjfFKB/jOwB/wYzOthhh5P/VCp1reKt6AUhknh7AU93V267HHCQuiBzwSsZCAZMKBRxIU/9/yF/U6le14P/+oSx+edMBQuxj/E/zuCmC2hdjL+BLjGGgjz3+vniViBX76ACk9ar+z8P9IeRD3Tt9qAkC6sfKYNpeHKpfaeUhkEydSic7uDCrfuvGKC2gHy2FZBRIZMqpq+7Hd9g/3RULY/JnOadKjy10Qyklmo1BOxBRZQvH+m7GB2kzR/e1NTW4dvG+g4JzqibU1SaF5plF/+tPz12m+GPLO1Xlmu39agUjz8VAENoDDl5jphneuavqNcvnJxFNxDBPiJYiBR+KFlJBeRca0zML4z4CqJ2gUKYMv715f4cJdtxl2L/ugqnIwECyMAAtxkhggZkQzgC2vhenRWHZy+3J/oyg1tO85prcn0eSWPk6419TlhM1TXFzL/KTH5orrABVORzNBFQRta+/dHSo/zz9PLDdH1bKCeaGSZ9YJRvE+xAn4w+WXp/off6fPs6Mhv68HkIhmm0mAD4h+9tgG+8CB1UqhumTJShGYMSkD/6Dcn+GTCyCcMABj9Waq70fkjTYqRXujRkWtLrMGo44GOi6nxdW/lZlqZVySJLbS0yyEWeK1zvb0sffHBZ/1pw1wJDCeyHr4NPSsVNkKuM9fF9HWuATeFInRxf6VcnDKF74mXKen1F4vJ7ZEmBlbxTg0mQLUbAAqqm1b+lBcmIiIIfu7bg/E6RcABgGXs+zg54oNa2ZT8tsNrY3SUFyhhf/0gGAzFSApIA+vVhjFLRUDO3Xpbid1g5WSFojci+7qgU/38Srhbwoi96BWGshgdJgF4HXPkFAuFmv8WEn+ofN8F/Z5a7YIdKfefzhO5w6r1SELz+2klEB7jmDhuDi7GFqXgV/e4MnqunHfrq+w38+Xs5Bf8Db2U71mpcJRS/40mQdXqy/6efrwh206OUPr4QPQx10l768NvN8p0HHL+I6Y9W3+U25xpd3o1cJjV+7T7P+6ijoOhCBFIxucSALb7aMRAL5AQpbApF3+zX2i6VAfvfNz3Pq1++dJ9cVeGdf/Cw4iTeCHbKj8RrqFahtuBAGiWbcdcV+lpj3VQ26wLbfvx/tlb43RAk+uK22Yy/yZOjntyvFl9VelSlmLZ/fBrAan7bxn8liqNRxgurCDyzeZ6ihf/vec6mr008n4Ybt3+6TRtS3ZRfop6it7J5qvyz27KIHOxQgQCdWgL653vL+f7CPszipcGHXEJw0pE6BQN0ETqXHazhgcpYJ3mUnUGFnL8B6lUsX+SUInLEMMRIQRF3iQTBvicvmbAOKlgi1K+M/yqY/SBclfYBe/apLz5iUV1ic+X6DznPXkuuxq/VBCyF7dnr0KdeADgM6nPA+r3OxZX/yeiGa39e7kv+bZfcEUtjIKjIASMgpILIqyAMgLIqsijIkghIAyICSKkiKEgfDJH2YkaU/gxPvYhnuf9aNN2WtOuEaQ706m/+r5LOEOoacdiGaYuaiomXWUuR2L9/8+SFZ5zHeVYCyxJH7v6q3obtcXraACe+Nj6R0lh4JLgbNvzGuxzR7Mwloq3Qsw1ACjoKd1mWdRfKBK+12JCeu1saslcOGJCD8lKbqBmo/GildpQ+evD0WXflq8N+8EjIoSMmbNTROKeSCoViYxWBeiCf+Ao0x23v8n2XXef66PPF9wrjv1SZuzV/8bJxldUGF3brmAFgcMDPFDTENSJyEXuymkskBKQFJSUY0sLLQYEIkv/uQlgTBkEyyd3ExBzCQcoGUDGVAG5mDN/GwNCTYbsylAD9MMkrlgKtZqkIUQkOLpAEKZMgYlkDnMlyw0m5gFXZpsjcMy0KDMpYTLdRxlLQRKS5lLKuJJRI4UhV40q2QtRRdlKW1KzcGkyxZekzDHSVgj6oRITGEBADRRoF5ZznPOjIQrAagikGwkCWo2FKkCjxSwEYyACOshmtFwlKTFVGynuwgaojbpp9EM0WQ1zP7aJ9WWg+0EQh+GHtb5kx/bec0SIRrPzJsnECEc4W0ZJs/ZsNtqZIr4FNWeoHenHoxVti+lUGKZJIAkiI23/zcNF/S/0fh34n/dhWEV65WL7TLrQD93ePquft23iQbNAoM/jFgkIvRGbOL2k3OWHqUKidrTO7UppSxbAEfshDv104v4W+bPpbAGkgHiP1NfD5Rc6jva/Ce6cXMObxvgTE55BdfSKaObNCxjaxiAEqqBIKfM04DpiEEErjyaWQthYuVU/bwtzBpoHXplYN5wQ5L4vBz92vpEekgGWAIWB/13S8iBIB2gOBCdUAIlugpVBW0lSUqg1BXFUqocjC0QgZLADkioDk8dKkllV7oKoJUUUNQQ7PLTom7OFU1BWysANQEGa6oCxBAqUKI1BVRMOIAHVNBZFDM3EES6OZSiDQQEbnM5guzha2VADv9YuvQcPPH086KEUwUwmyBeA1aPuEDTGRPRc8AkLsQapWokRASl46GUzJRCG0OAiCptlPHAa6xByRcG2SLAzZIEWA0F3ZTow4MQCCxIwABIkEUHpBqoIkSQQGRgE0G6bsxiIABih8oZXIaB9wRIEZneVWoEd8A0r1pNGS8c1LaQdCZcrbOrubeaCmHpdm+Roi1SJZUKcqIgl42khjSdsmb67dEujMRokemAKKCIQjGKqhIoxihFRkUFIoIgqiwkWCIMQIKRVVFYLICgIMFJBQgsFgLFWKoIikVVICoqDEIKRRYKSEWLERYLFBZAikUUiioqsiqSAqgoskWKqBNuo/6MreGwb6nyAgfUCROVzdp7gGWUqZPiXZ65qKLtCJiDJ0nRTgQ4dd2XyMhVgVzP78qe1XVdq8d/8/pP/KfO+3WqiKmDvspRAn64JBcUyOYIPWjt65cNCuzgLl2nA1CiJWF5BsTbyM5fNh5vFZBFvNy95ukvYgs2vekYZRuKOUdMQQA7aQXdQkgXLUEqksOzuLjM5y9k4FQqDUKXPNtSwz11FXGmhtoip5ViDeTLfBzXYw3Y55V2WWUQ06blzGkUpmJHMTUlTTam4b2Yjqu6azWWtczFlq6zWuuyi6NKXMUy2Za1uGZmzTblpxbh03w70Z14uW6ly73S4VYjum8KC200OtaK0uLpDHQ26wWzDEXMby4Zqma1Okk3EDtuktBCQICTbApGMiKwgHAdJDoRgLNh8/GQE/jaQgkSApAGIQ4YFYiKQKlQQkgwkiwNARA0CtqFC0ISmJBvSFRaj+wIYvSO4GIAcEgOmJIo3imTFAZiMkmo0kbTcFSxFBiKwhBCQQdSiCdQuTQhOhGAGSC5iKSMcU4tSrEIqFoIYIhaNoC55SQ0MIcuwgoALAEIbHAENMhJtKkWACyavTAA4jJid2SQ2wwSQcLArFmmAiWRUNvKYhDhUCshFJtm0LhvIQsYiQ7oBwwJjyqodEJjJOUnTIUFRFAIosUPmFgqBKEVg/5hKIAydEmAizsDJUOTC0fCITqPgm3gkAgkA1erMUZA1VRgxirpAECAtQTS+H7dn2jlYfKqVp76XEiI4dYpJ52J4/dyXTNJMOUs2n1xVzwqUm5opALmsSFg+G2ZhG2WLlpTNQrhGCSzCXk7GxN8AnMUaO8I27FwUiqr2qyOcvawpKcZxYXtZdf6d0Wdlzzscb6+sdGbwJlIBFBkapgaEBfrt9hwc4j6K/pRj8xC83yUJcntIgZIIFb7KmffFB1BEzBdDAAYRRCRRQHcW8BEGooqpsQiF4CKhISSACIFQFALAOMimFFp60+CgvNElIAqvunLAlMgvZBezIpBSKLJBSEAWALIEUJFpIrvZ2EC1NCW1w4EyRlZgwpcaSwPw6UAEzBV6iN4LqKoZfELXmT0kaXGoYL1EI8KuAjqahZyCR9yiqW+pl8lAjKy1UWTyVftZjcVEuot69rPWRO31+OYLue5hgsRwO+aGdNig2Qw/A1Dt1j8dQs14AqA77UAqh1ukQVucpoe1ndiXVHURANMVTVyWsqBqIqYgCAMSSAou4oI7iAnIKNjWaAsiKcIAqLbUQtbJaJai2yIKA2ioFjqxzowiLuKJmGYoodBFTTcM1RUsC7gqt4KippMwAqqFwYLrCgAO4vDrSbBdaPGAh+EuVqxCEZkeIbBttm1vFhxhVztNxqBhE8ctiGNpjT8lcqwmjiaWueliJqG0DRx5RJKddQflBaeGCDrUqU2m4TXQrQWBKyQv9CBw521oiOzsIZwXgNxilIG8fpNMhEIMGN9a2BsCCJIylQE3FTaFZBNYwkhlgVEZBBkNZM5oQ0qWxmsROtUAgGjtTDqRb6+3xkDUWonCagqOYgtDyISMy8i/od1dtUclt7Hnax+WUGb2Hx0zLs7asBAU3u8uIbcTnY/mbUVGMaO5xz55PkltZakPPgtz5BwEIRKDrWaobWnrelTVeAd7ta4fNsEsjXGkkdgoSlpISENmZBjQFIY4NkQp7WdvenO8MIQwJutSOT83vb7nfBGI4JHC1EPqa5yV5MFVymTVKgYWxnHG3Dk2OZxcLp8AIK4hIoXIbW6HUsO3ujAS5hB3e7m0cKgq32EcodmGdaQrMLSSh6WqUFpAcOkK95tMvqWIWc2csE4ZjwcEwCLHW8kFjQXG1RjmUJsL50LIXYfO1RLVO+rYHfCN3UGoa3JALnu3aWUIVbtZFWHWWOLraY9GvXpTjh30dGtdNXCldUaW0y0rcTnK72cjmk4aqPDV0bccuy5ho1my7csqQbm5miiiSYcynMxIRbmVfMqXV1MUYXDxoJbu0yS+cu3ZcMl08u2NjuN1d4U3rM2o6zjON6Q+X83c7tLCwqhL/9jiJjIRFEqFYUYW2KKBUEtlGRZJWxhOUU4ykDXEhFpDMqkl3QqERytDG4wpQ9lIYi6QJRdUGDJtxiyRcYLCsd0zHHJt1q6BBwsIVn68Rlnd6IHPHOZ4wh2mdKpUUWsTjIp4JTLUixAZeGzEtsOWAZhYKDJbDXSEMzW3MKEYwZAUAqtZCqiMS0lQhUWLCsUBtJWpG0lSCxABUgyBRCjEgqhVVkqKEqLItyzEFA26BkEBDBLe2WiwoZvwwk3IzTq5gWSSDUtoBykoizG6sOWaZpkRBZRmmuCRTQkzKSsYQSLjLlxJjGJiSoF5oFmNgoKsCkAkQlTs9o6jOWbGAYRrAbZWUtFkWiLAQCI82F6GshpqoxUBTSRjtkxWBiBbVCxMyyApIpFUzMxhBVEQdMLKIHLhEpNjDyUkGT8ApocoB99vbkzh8cRzzeYyORMvtdzVJZFaduaAkrVho+GO+70Co5ZaDeG7dQ+2RRJMxNUYNCE+vlV11PPsGYO+rISM/p74HFezrnlIB7N3g35N8o2BKEbuOIzlzeuL9ODuCkElpFrt9c7ikAqeiUlIgnL25U6XDdqooJzmbqW/mt55ocAJwJS0ZA9y4butg6jwNSo3kce9b7w1f6AmITZJZh0S+0ABS4kjFBQoEiooRiAFQLRQAXcRAS7EETsjEFeyERBQvBU1mdJjO+SyAMMqKKcQOZq6ShJOqIRC5xKx3UXzPUzFIDsBlrmabWsnuM7b7Gbrb3Jqvada7Hjc8Y3UVSNuK2v2cjuhxmco1lxFBB4/UdYGxNN4YazJwbOvB4JAzocWQmyWjXrquNxE0tds6nOtDzzo5dyu+TwCABEUUFiSCqmcNSIk20VBQVVHKERBWSACnW0BZvLDEqIyTQkkJIYrUqCgiKjsxkotCi1NkFTLFFFOoCVlGEFZDLW6lW3SlNQMAii2CAwgAqmooGYIKY87SS90BHUXMREtARVSy9SlAQDt2zBQzLbrCIKXglxe0beqXARNRGmCQjQngIYPsEUgQHD0qIqCJjGSQTxd8KMV9k4ihiaZ7W4JJDjaKcVwaBHCInnFmiUmGA0MCgg4A2uBDGVQFFTWdMUOVRlM1RJKU3hU4CQqzUYYqFBIlRmkCZLicUQ2aeGobxF11WdQnQcsKgtC4MJ7N1+J2IdxAdNpyzljJAUAGKEBUWAh1NHHjQ4QJIgYEJBEQ3a3PNQshw+3bme4GdOmFpEucwA4M026jsVZnY6QjlODCOThaQcFNHTtwfzM7RzQRPPK75zyGpvlzJzgpUvjIVZrru1Lsxcix5h3P8ZJzcmNfTyki7y+oEhiE/GjJ7U3arYOjN7/h3sBfbXVDDWbyRtqCNApSc+lyOJPU3LtSuelTetGP+fkIdoUR/m5zt8I9fKZVPz+f48OCVKrplQ8QDnsbHAlkh2zq9yG+SHVm2cSUJCOPeTvQ7zhysM1W3IVw5NIp9yEB2Q6WQyo5ZpR1BSBVZmMjunOQKjTmuDsaSplOyjvTf352lSQkHO88wzy+aYDSx80IxpaPfH3t8a7Z0iwQgRsZ2He1EHCWVExE1s1NS7tkzbiogugxwzg2ppqK3Mw3d61gUG3DQ3WsM1vMdxdraNGnTNYJqmbcNVpZmXV1TIdSQuxyqlWbAcYVk25pzlkXRcwEFjwwczHNZpzpbpd4qu+Lr/gn0d53kEUVRGQVYUfxZAoOtZMVi2AlVT5qE1CSJiCgiqjKQSgoQRLNYYqCCJFCkkC5EwxIYQgOKQhkoGQICYqjAKEIGVNyEgBowxrBSOpBoCKyGWyeDmiBTjZUgKqiCpFcErHdAskEyMKpASBxdZJCqJFVV3vUDXg5JCTcrFKSMKj+q3LOnjdAkimGqQArTpSxYzhDcebvC8NFIHBIFoIhZbbW2isAkkxJkgHQCs0yYANyLDBCvFq8QqSnWBnJlVgxUCcSVTeVhPYVBtq1ENRlk2JRFelxyEYZZVRZqFK2ElKMFNXnwqyvgqzPdlTNZa+XBAgFojCvko6qnTdi3ZZfI7Ekgdqoo1OTe4RWUlk5TwsqTOzTi9yoHaJIFbtQXVmj60smB5EUVGYRE5241ACza5RkhSN/ARnnMEzUiAmYKAU2lXKwe35nh063xSdEdTVOjssV0zoPpnMunM7GXuquFZexjGgFhUzG3fIvsVzOwMXgK0kDAXGhIJBCBIgILpIAnQEQQMCkQR3BANQRBORFDoAIikgqhsEgjeKhaKGoi8HpAKWRG8QHoio5YIC7ioG2KJm2+Eq1NszUBDdhOykKvPFnBm8mILGsMGIRlG8YhCmAuEXXThP1fL0d3zDfVnQmIQuJsTYgyKwjnlXUDCHCXJOcjmQS7LaSQAcaQJDgKymHX1ptJ0BcwXlBDEdTgahhXrEyUldECx9qDgwiYP1maXNNcYogWuZ5a21L9pOH38URV6VdHggq2BHcAJAHtED4IDUUJHMqLeKKgciVEXKr2ihhEiAuEiIuYKJQma7WoVThIEQFiQVCdUhyCpgMVrV7l1RBLxAYcoTBBREzwJorRdURUsERWXkqUPAxV0AuqwRBNaaFEeQNxEMQQy3ClSoKcgAwgogYC01ZBQKSInFigQXbSHACReoW9jjWsdKKm1I037uk6nT1zUGJck2ZhcCsrwaLGm7Sf3HEhrmW6geAklU9b6NMikkCdBCsyLBYiKCHQTsTnoU28msJzguEhaxkQeheDcVZCCwUFE30iwnGzYoJI0DpGJAQWCqCCJ04A4zNsVN4osiKJZs6VTJrBGGJnZo0EFdtpQKUuiGcGToSF2WSdLSGG4NKlSMTASAW0EZBXBUMfLtZqlwcOOqku9EG5UuSCv2T+Se3XdflpC8nnm5Ci9VVSmktSDjQWxH0NBA+nDeE1dXFQCFe2ZGjLWZckgqKjuUTc3tS6iJVNa4bZD2frmTpyeTq7plX3kVsSS1RkZDRMlHAwrm3W7gnGcrjvil1yuFHM3ZZWIIQggaGYA8bSGy5QtVhVcOqxyZEk0rhzpswiEExysgCnS4krqFVZyGRqUTggV1xYbEqTEtuKyJqS+CJ0i0AJIsWQ4UgIaNLSVq1T7tYVG1MR1pjuKpbVr11rbq2jhvTrjLrdmC3VcKm27ISKmaIKmJqqm5CLpzGOKahxMXVSY5MggG2nTKcl26m2MYVkW0puWXnXM5NkY3Lqb5cOruBkQTMZEjKp3KdEOY1ja21ZjR1nWEOsJ3sbzDA+h0mGqodUNgkyS02yxwsCQJd8a3rTjAZDAqNFYiFJIkxBVQM/K5ADUF42DskoW5mAu7jMEpxXihjlgViyAwAlEJzNghbGIxDUtGLAzVhjMFEVQ1nOtSZE5IKkzOcDlMDVG3OQy3ETAZJY72byG90o6ijJZpmYVNQJEqRktJbSFWTJXe5psiC2CiQKOevbA9D9YObVxBhAjlw/a1BhNe93txHX+U942PePCeMnplL26g8Jlc3n9OxeYc2q6ZiX+e5n4cWXXynKVb3yHhVIW2XYWp5Of2lnHm85Yl7zv9z5wUWQWShJBrPN6Y1BlSBmZGEFPTfU8e2OYM2khQ6QocVIXNlhjxLo1V0S5OkPgYCAF3OrZ4roUzZQVwLBSRUFhAQkU+siAhcGJyKCWiLwhJAgg7igPJESQgqmWIgGYqB9TEBUaIiqDYIICDgWAKhaIInIA5EiiLiAG+WEanMdWARdBTngQADONN1uxFq8dU0ISIKqawUp2igSAkkisiMiKwiiSCQWSCwBZBYQWEgsWBFhBYsBEiqCgoLBSQiIQBYQBZBGBFikUBQkFhFDXbpeL1lzCQI3v0tJIDvy0kPGiGb3xY588RskPDvrtFNlU/JJQEFSzhFdvYSS0qSpKYPmdug7ocuIOM5EMMMiCyxzxMm9xaSdu7qJUawpmhRc8bNiEMXIiojgEHNQyZwFjlGDdPcgDdgC9RETbqMMtFELVS9QLy6q7IoC8C5MEvVXERNkVQogiG4CIVERQsjTiVYAOQFR4sC6AwFVLluRkLQoYOEgAAqLmM+mO5UkWklTBJAGiCCCKXZ1EBU7Sz2zLkuqAjaACCFB3VWqFRBxAQS0EUIHJJlbAAJKbcJ6Uo96V138gRgHhO24q6Ign7wBDQifOW/g32iQZKIIPGorZUhq54YaKG4ZAjXYRCaOy/GpSSIMyRSQhiKLZKLAWpTasFSyjq3CImbCpogKvCIiEU6j1ayOEqJYySgdOYiimFMJlIhQMzSSkWDLBNBiEdjBSGk6MaBsYxwjALAMRBQEzohbRMoQ6SSmBm/1Df7XkHN9nV2CNPFy+8q49PPU185QKM2PWsu4n287KTyUgrecX53ppr2tl3YfuNzC7nPH7Omy5SnYXHMD9HH/73SM9bXF3ZzyIm6wCDLKPl63uZQ0vH02rm8nH0nGkDg5yqwvzH9A/IGON7fEGHkSJQJFu7smdk8xBuNR4R1Ex26XGVAdEhJI1IBU5c4hM4RJfBta9wHQQn9VRXhky+WvMoI66KnqgiIbAaMJka3QmJirk1Hl82Q0EkJVDSuUI53vDEuNd5Ud2+HJNxUJ1M93etpAKAJ7PmxJ5fCnZ54IoIK7zmBqLBM8mMS7ycq3dylhhNvG+DakahkvJOuf9jq3c2yfL4UOy5Qcy5V2xcy6wxim9Y7u7iu7V4XcXZTbGNtw77UVV5kxyOE4TlU3VSQVU3RA7GEFwW24k4O3V4VlQ7gecurIvIt3TseSyJnjKo5NtuWvo9lTF7Az2UkjWQvsnGTEmmVD7JiZM626KLN5y/BkhrgsL3ac1RsLd5hMtanDMVB5tf46bcGUls7wmNYDcBBIFY1RlvNId5NCC3S4yx6XO4BDSQKQKqiCDIqikWfo1KnYpdJAxnghqCaTlydmhqK1stAqHXG4zGSCUG1gsLWl3PCazRStOgUL01QkwONTDHQwBalG1ptzLFhUJXVrjKSJahfCQjMB8Nbc1A1lDLa2EGytBZzZjMqNYtK3uGFwWO70Ndc0w2JOm7DqFK6qK8wGHuShqmq2cFuSwr1bIskwjIdt2cmqciF3xcALUSltmh4R5k0w8ymhSApI8G3IJiNIjIcBCMrjaqqW3nIZJjWx5xM3kmsSkltEThqTLVzUKZoHs0eurukDTCYV4ua1KGOSQkMSQIN0yFwS9+t4R0FnDK+F53YulG9MDMLIpRiJyMlkMQUFlmyTCuXqCfu0U6gY4EDxnSSnLl3McLEc91U601b5c56RY1qs09BpqVKQSvjCpBRZCsM76uhCjmUZsKaM8nGmYKGHjbGTu3UKV4ElCy1hmnEcK80PPHKJ5zQlD2rIgZoQUYmeeecrm/Ct7tA81ZJPOkcOG/+2+d85h5LvsnKM6HkiUwZGzk9KZMIwSfR7d9Mc5GbXBNpDaJyekDi56ViiK7NJD5GrpvZOWAdiJ3k9MCdiemERagqqOOojBlpA/Xe8gpjvTbqeu4cnfDsiYnU9islzzm1Mt3FmTOyWgJvhyjk9cWwkpxu2CR1IjBHH2EDFU4AC8EKwAAPciqhBRCpEFUXQRNwQNsQVMwBvBRLJpiSDSgHUFLyDAFkjAAToYg9QEtEFRd3eb32qdYCwER6HDcDh0jNApKQSHlgbZwsuKm9Ag5aAkGwlIjeM0wWUYy49swmrNxlMRcR198o8s2BEnmLX1OLiACEmmXCcdHmbmSuXyiPI53TkOIvvhvPIvOIjR9UoNZqIXSYYgTfmnTcWzW155KUzJccuuRUE47vvgF7dhQ5BEHt0bhYBEWZm5LIagHUAR2RRDogOYiCVBAaeD8M7uqAvESiYRRWz1/Hq7ad0FVQ1BUBGu5nG5dUJFVXvkCICiR7yYJVhBNowtFcEVEAyFQKFVCx23mEMpc3bIMgGIDsiiIWGoDIqwhSoPYii8UTkKiggFQOiIoVJylWiIA2gXQHIBCHedUHbpDXTcJRF2t8J9NLGZFoY1i2roXAdjICjbe43uVGboaJUaKpOjD7YtXbhrWuuNABl3RgrRG0KiQSXO4eO5JGMpFrWFTSCByDcCFASSyMG0WpaCgNiqRbDm2BpoGUkq+ObLkSKD0udztrFERkFFUiBIwAVEkQI0DrgGkYwrlOOkMs2gkRl+nq/Qn/g9r8RUM76Oi69viEqz3KFMIDjnPbziUtZPtHrjhTD4avWAFMDYYTyLH3ueHjBfvNWzWT6/oqs9dIx0e+dWXLPb357RPFMcPdP1NvC+MIj105XHlBM8m8nP1zACJEuQb2PxxaJH6SXt6sb9FSYwKmBBeCER32MbdTvElxZXkjfoM/2+d9VHp525hEdz14U7cM5HOCX+/sNZyDr67lBUOWQmb2UFPnsApy9hFkkgsgndkrveBInY7crDLSXGZ4oOsu4SJVGFPyCWYQlKAqZi3Y2Q9rsNYuwdQzIOc7SmfPJtwzj802cs5BvWnwEIR5Jg77hEFAWbvEldVzKSGkbwye7HIM88ndSnlEErp4QghlxZzo+F7bwChBfQuewSmB5JzzTYOLw6cOlYgQteQLy9/7ZXrHw7G3izK3OyskkGvOOdyHk1ODQIw4BeycQXc9UScsfpqZ3hmRWVXRl5c1XTJzInBxSiYcy4BuIZZEkpOpVOm6qZJmKJmS3D5y+URjhDnnKRRduTk0Y6TyONXSomH2qx3biCFTHC3hMTU02m8znW9W0sMubt0bKXRdZXoYZM3jTEYmVpXG0zeXXb+JAO9H3pVKXBFYGfbTrHToq0GLTxKGYUrB7kbiIpxcYItbg1EY2W0tW2URq3q2GFNcABMmOOjIvRMVxElKLbY7hCQLV1qGOURctRRwSxVBFGsKuyFNmg1bmNC1pb9YltUSto2WmSFKcJXg1cRUFrjmFlG2YTGauIo+OzN3Uxtr4lYVa535NGnStsiwtXbZl4mFGIpiWC2zdmMyusqjl7ObYGsFVmNRFezQZqnTKIuWipEUtiRW0GVQ1ITthiiM0gU4oZhVUER1YtNt6DFgsWkInf1lTsqdHh4VhRRD1sUufHEKuEwb2Nab7z4SEIFQHbnjWrK3OhuUkuiOvtRQXiPOHPN3F2LWac7s1R5J0J+pz/N7d5e14vHd+zbC0eqkm5sV17a/UdmRfVcd293H3ySdDw5POV6uHjHULMpCysjt4Ig8OE85Jx81UE63vSe1WxnOySXh55FKkJ2c87Mf1b6qi/bpSu++eLoexhjz27J1U+5y7z0XWBFnng8E2TQkiFgtPJLKeqTkVSQiMHl/gUBTMUUU3AAXIsQA0QVB5EBQkBULRA4AwEUKREWACuGICLiKgBiUCCR9EZHQNkEbcEnTxNNII5nZzcVNYxmxorA9gdoljrFlwUI/kip5TxHgylUuDJO0BPl/h+8rvHIiKHWgI/wiOJfTjMze0LVApHZLt6g/1j5a29Wi4YDbBZAkkiyRYKHVqEIp1SesPzmDOr+3MyAGpAZKEDIWDJPvZk3ooG444nB3fln+zLLNOGvF8VaOWX+U4DS/027BCBpYG+EBwSpSgSFC+PZ4/dpM90vboX9VtfbE2TevUBPbBDKwgfX/RS0Gn+eBjIZmVyB8TMSBEyJq5lYVourdQg3RHYRwyv2OmSSfRzfzRhpCfI2Jzf+MCUYSCwUgsILJAJBQQw5MPBq8ZeVvfa/9Tu5M7UuJI7VlIARYKopAR9/fx9po9bM7kv/J/275A7MVkAkAkGRZED1TOn/ZdlUjUUqH0ihiXA0gYapCa+WSwJPnykxCBCcBeQ+iOe2jPyo0n7RyQ0x3tnOhmALFLi6z4chfu3o97LgZbg8ACGWAoAZBL61YfOMAQ3GGlsT1TFxllbQspye2tXITjgK1grwd+tYSdcJB+kqZAxT/2zCKAMxo0HCAmkvP0YAoiwjIpqBUfWY67/549cPskDCRTw0dtTRPAciGAT4oAeVDDxgrIjIwZDUjKQ1AfKcFT68tEt7uKuW0mSVR1WP+2WL4JBZ19hQHUklKdgjiBITJpcn8tgFjHtUxm9eFBsguvYNCDaKvuwP88teqYSKAsWBFIL/kn/JylPpI/WcUUFEJCTGEA/iZnMtNwnpVXYAhWim33SvTnvzJ27ui4FRlvRZ3FG8BAxEU/kQUswUmMkqjIIlSAIkKKkCFSoIwFihWEJUKyBUkBSQigQWSRYBCjJhAEAmZZUAmv108EFLIO9J9HfqK6dVM3uoPgEDnKcPUFPChnL7SfKZA+H+YH8yVACQRANGhT0bfnD3fkqfT9dDbwdLPY9PGXIA1ANCMADJBCflQt5i4f4e6hZQtVlV7WWgqkWK2CrlFU3Qolyn+WUMgeSmgiXRKH90LVCJ206If7z0DTOjPrydT1aH12iiXRL8C3/GFlPYfhgH47Db0BEkpHCHdTUizvaoDpRRSf8TvfOsKjqKBX449p6OqPZEzqvOJgbFw8BbyEPfvQZB22AiDBGJAVWKJPyfcoChUWQZPTTH1MDTFxaSEhYWyS23UgRmbuowBiGFqqLIsPVlEd2uqFYCqLAdWpDIkBaqaYXLokQxWpOCLMsJol3hB6ch0Qmly0i/F4yp+ot4QPpwx/KJoCPSwJYRIgikBSTe/etIFgripzcxQTBBjuY9gNcJAsoBA75QoaQgYUU9hHOVLGHWmTCU2fS7sSWGqAXRzxpe31cEIxiiQs1fftSGjBFeD6C3GB4/fWkEUhvQQP/5W9f9P6Z9zYBgzLpso2up3AceYMyDcbVuh4n6WwAbjoUKLf0mP5u3S/N4Gmt/R978B/wXqKah7kD0f23t8z5H7a/70CuL6VK1kVB1XzFygwls2b7F8lEvTZL4KEBHEnLHQSTVRUxSBObJCpooYQMdR3IXQ4XbV9nu2zxoX1p/ldumgbLiDUokKQOeba0E+Qu8p5g3XXMi/WiEADfYgVkxAFFP8nc/Oh7jKUPpnxzH51HXdR/72RP7qu/upjmggHqiGPD9QPZgIftBhBkQoCRFIFykH6Ijdito2FgLYgEBITCCGowI4BZFrArCkSSFIgRglx/O6hJtMv67MtrMlGCpEGhAOH8PYcL739LxQtc9XqzDzwzyiGGQ9wGBDmHeShPAhUohJIEworCkeQiiFD6IIY6/zWk9CFgeMP4UoE/3HxZETz4KeRTiOCsGSRA6JYp2pCUDTARILPiikFlQUkWKshZALSKRYsWEWAoj0QKwRmZZgqSLIIxdCCTel6r0p88bPp/6jV03zVXAWlMNDzyt20rWIhIjCBAPlgl6GdzF4qg2QUngDT7uXLcnCYr/PQsx7akqGLuZaoHFMX3JpveCqlFGBAlQUCsW0RlIGBMDch/CeNCTHu9PX5Z+89h/7woZbVvpy0UNylsP4w2Vgz1V3v3sMxG48xr4EBCwIgAEioFlPOEEVB4oPExALrExsgBawEgqRHyaPONnP1Fh/BD6tnst9+iF/gaCw+7TqCsJFgRZFgCgLMCMlsqQgo/esumgCkFikGKkmmJCRiwAaUAqEkKwUghKhBQKfQyBC+FqED9DC/H35IQwJy3/ln6pkCrE9VpGKsJAUgEn8pLp92ypU489K7lUVKasptRUrzeTKtQ7ScIQpieMBxsNy2N4ihZEkBkJFCEFSRCRQZFkFkRkFVkEkQiAoLAJFJCIxYEUkVYsUgpISCZsMp69dP5TpUznzfZVMMkDLjoPzwXMn97EYqhIxiRgiwIMZ/RSCAIH7WKfj1KGrpayvPDqb+mqWwNEAk8RLluGnEanFZZxxicQVqm76uXdktulIe3VTTRoU5aH3aP1qpfISQ+f/lihKHysDTAFBQRkAUigSL3olIp9kKQ+cFIBsVASF2PslNeG1PzhuBgdDiKEhcBerv+Fa22WcIH/QS2y3nl8+i4wNMBRQj8tCoHxnFgYkffT4/7SCUBAEsn1YuTF0rb8wRV905DfNuDPkmM9RwACqKh//RUFEE6y0CogAkShiXCKeUPgJZt/xKLxAKHY3VAPxnB90c2TJ1ui8H9/zWoXQT9wQ3KsQkOkDZQEqJAsV1wEN0OWXTKROSB47LqvWuoF9QABRGRUQREGEBEEUAj4tFJZ4ExKI2YIFpA/+6cNxWIxk2kbZxIKqQ7KJrzAHlscaBLNFJ+mSrIzDn8RYiZ4kiyJGSQUgoLCLIpBQiwgsgLBQiyQUFhFJBSEFkWSKQUkEVCRYCiyAsIopJFBRQkWSCwBZFgsgoAsAigB/hcPKoj2ECNuPdT8YBj9NB+YRIYZ9+LR2fmLQHWE2FtM4G+FObQg0BdMPy+NDwOCgY9bRwEAPSgbCdt1pbARcPzN8fwX5+Pl4gH/7PaFD9SfYP4+IcgTy0EUUgoHt9F7j8zdMgCQRkVEfNBVVqfz/FPvCAd0LymxFr1FDkMoasht2SF5NVc2LNKevVeDFKQT7IgUM3N3/j91/DSqylIFUVAVoYBEYsrWiSJl3U6JvHio1w09UvwYQyO/Wogkhvb1N36+U+azMIjPLhRoCDU7B3/DAIfIrf60dmaPd93HXy28daf+5aHcx5qp93ChWosjIMgM/egZwFKgEoZDyIT2lIec/l6K4eqkQXO9DYf4/N/VZ+L6+Qxf0W1OCDo4Cykm0omUDiogdoAto31iVFnwHY9d1T4Tfd7l3ZEJAJG8DsAGaRsYKtJslMWSr6od5Iu53GEqUvHirlDlpme85a6gzFWo4UGJnEdAkoLdfj197L3/RZedM+SS7LssxV63xsAykkDVNMK0oF5QSVgmLhp15l/fbV8UzkR7ADhoH/5igrJMprPwSTG+A9XIPwD///////////////7DMX4DQebXbhN2tsazCMJ00FcizNju+uo50vde6HXpEnRRlPPN74nxVJRZissKIUwvdLqmjXIRZlaZUCCgqlAUogBoAACgABaTQB7AAADVVFBAXAxFBh5AGHRKkCBQ1dDTTveB0OUo0z01IOcgLByqkEAOoPQGB1IBEKBgACDVEqqgVR7cAOqoKsgoQFUEADUDovc9F6atgNVABgA0Ojhxd4T1KPZ3Ztfc8rluuIQRdJAy7Z567qNvcLMHYZD21sHbTixkMxMwjtzDj7XuNvXO7ULpk1i0zwt0YvXvb0Ra9cZvdjrE2Jmc7hz29g4zsfLt642sYiSb3OL3W4nsaJE2nuzshNjzjOxaYxIlk3WFzV7s7eJ12ya1rHAkFT0BI8V7GJhELvYA0UFtKFrCEIRUANBoAdKPQAoOF6ADQVoMBF2A0D0N3uPTwLQpXJd4AAH0AAAAAAH33lrfbudPrgD2GKGn0cN07TgDYAA6A0oBrRqgBqs7s0d0GIOh2LDnUPY50q6JLAAdp01wDoe3e3caPHXEDbACAG3e8UVcDydZseAASIDoC7CtvuwB2ACQMPr6Dge2GRwC4AjAMjdNRyDdbY0oAAyADgCAAAAKAANqYGjnRSmQLCyAw2HI7sNt3YOMlGDQA0AIDUWF92fbz6AUAAGgCXqgA+56OgCAL7dH3noB0QDoAPOYAQQgffbgA9AFgLD6pnM5i+4PQFAvb3M6AAF6N0UAABQ8uO3QA6umBoaQ+vp95LAk9POD6dMdE+xuyh726pVdzDpTdg6d2dpqOmUtch2spSlKGte5upKwXuxrbz3PS2b3DOnUmnAlmkptuRntopJW7Ej6+Tesd0BjuAHJphgJMANUwhk0ChAAagAAQMhASpAAw0BYITWNGiqgMoAgwMDDApKFAMUABAYggVpTCgGACAy5ySSSo7WjWwQM5jhQRzDJSoASAAA0QgAAIAAABMBAAAAJoCaJA0BACCAhoCATRiATAaACYAmUzRqCRARFIgpmjU9TKbKj/SankJojyNRtNNMoeoybUe0mgZQJNJIQgCGiaaBoCaaRk0wAABGCaATICJIBEhBqaGiYqn+VMwqep+piep5U3qTPU009T0j0o2U/JPaU9TQIlEEAATTQJoAAmIMhpkyNBoYQGjRHr1/dbsRcxEdkfJO5dx1bYJIEYdpwhyhUUAH7uTkQK+1T7wob/N5vi6dtwZ2hiijjIVUQgpnIp9/H39fOAlkGqSqAsQQtuo9aOqZYdnuc1ULIdCebVqqaNEzlcEUCzTTTvtKlIipTfRT+J2oOT+6B/sxQ9X5bqgmeAdSGfJYCUqKPLpognDGk0RA0wa6qGGyjj/IoFur01R0nRKZ9pu5fvtdE0RzkQ+SFP4vz2fNLZZA4K9urcTrJ7qx4RUum6EAoB7fB9ifTWO7m8U7QQgx9NkLpPhNAQ2JgEqcUZFCytG/Lbk8c9mW96GjFU6UTVAAsidqLhp/12rBx35jbhJssxxB5oYIjNdA10ydewHDMUeOdmGEx0OGF2Xb0pYFa/LrsAAx5/oqvZhUgYoZZiEiWRU6CuCJIJviBf9Jsq1iWxOtltq4vMYTns1Bh1ZlxDbyy0BJ4yWqBBQrBgpJIpBQUUhBYsJFICJAAUFhCKEiwCCgAsBYQ8iboCtyT7EQN3kIOYBQ3ok9mFIgRF+XPeCHq4kQEvqVct8s3+O2YMQFVAEMTzd20rZx4e7URsqdqrcbwf3rXcYi+duGlEfwUuY91Bor9PqTp68of2WXA1HzH2w+ajR3rc7tOhWjQy15tWFyJQf/mFKqwmQRG+VaMWScC5Le0Wq2pilg/rPq2+/KiOowdHdeiTE4b7q4YIdLt0laId+PVgfzIIQDTIpAFAkFFkWKQiwgsAIoLAWQRFCRZIKKKSRSQWQiyIkUBQigjICkVQiwBYosgKRGLBRYQUhIjIqEgEjIpMQCG6JV54HwdNj1bPQC5g0JQeOxxw6EApES4G7uGv521ut70MdgtY/w0kf0ieXvGRAqyyLK0kItr/1iu22wtfiRU0tYLV1qQM3CGsvw96uTocABkQqgAlPpvyV935rfr82nq5aRGfZnqR8jybC4/OvJ+RaHcs0G+mC/k8lbAUFjJ+JiyYLLRHQSpk7/Ua9suxur7picqS5mHe4fXtkZfDPu4zqdk0bftVmy3SJFZDnnAOP3/+pLnacFMn7qAF5ccCqTNNdlpczAIiiXmoUkhzp5qlSeo0065vbb8lpb30P6qViDkIU46Kbo/tgoCIhqJppmSCz9LsQAiyEBUy1G5VzB6ZWUiDnmcB21KjCjj+ff9SRbI5f18NxQdc4jm3uuWrEAuYcpM1GLCzv+3tsh8Z+mPZw9UHX3OgGDPAjN4I2PLuZunrTjxP3otsK0/wj9Q1BNQtSstx9hvJte6ZNK5EE+zaE3XJUwWF4ycWi81J/+aHi9aij4rf98m+QIDsjoF/7zvZyEVzRazpj12/Be3unKibU19bnUuO5a3meckHTEGhAJAQkJB7EA+0BNK+eubtUQP1GCcB0GCZCB1DWUAtoE4XyDz+Qu+ZkJwCeOrqrgUqAqWMNKm90vFeSSjAHbBzVX6lEUFDrY/Mq6lnan+pcD+XDUrbLfPctyROw0GP71RPo1SzOxclNT5VwYXXaqOXOO1LJhhGTG1RFECCAMPG5PRH+hAM7TMDdCihp92IM4K/6hj4P7EGarcIOjdZTrZCITivNf20BDC5MdM8NB2xUb8/Rdds8kUyYCmWdCFYWTeKxU7zxX7tzxf7d4DA3dzGW2UwAHZqCn8sbz9F8+LIcnmw8GEw+79qjmkkgSI+aDSb+DVPhhbpHE0/2UtpopQqabA6/F/Ft2JEAdK98/UuTXpGxlPmRN45VbjgIuxtWtj1zUeoccwvrtVkluKvuDoMmeEjMzKWwut9PyiSy13KzPlz/t35rp60JTrsBAbc/lhlqbl0g5vIX6Y8vBKk/x9aL2R4WVFT7TYyRFHzvdvx2/00/x2nGQo5mh+AiMDUh/WfdARPeKz4+50RuZG8qZQpT7cmK6hyTuQQ/XBm+KxAuI6FAg5SJsxU09utfYwOF60/CVEqQ2kBMUQZFGQWQCKoLJAWSCoikCAsWQ9ABwlBOBSJmyddwQstyHy/XnFTVc+7GVqI0wZ6aEQA37vRenYtKdChhgKZJZ2Whjs30+KwA+/AtCO9N+EBECCjEF/HVABqZDwHOmi7OiI1HyBnIYPLCV/Cg02cvB7K2lvV4QuS3NX7b1ciTzTFqooYJOCi5CtErKcdFU2w5fJS33WScNdturPgrp4N0/f+dJcOTioIaK8vX/jFgv9/BQze2uuWBrfSXcZUc3tefBYlhJFT0qKAJXvIctmRdr83pseqxTzjHHCQQ3CM4ve0NX1UyF1Gl84J0uvw3PFsp0vquwCFgWxQXtZFIEAQAQSbFIQABdnUwalpZn1cR/MsAZUuAwL+8UuNGHfeCLWzonXl/uuKW9u7BtttFFWmtdlx5pOnN5xCKVsQVTeBSYYYT/+bibJdxsfqXG8wUB/tj+Sv/UULNCRXOdRUj0vLvoSRkQCDAQ0kNtzf8pVkeAhZgrLVOhdBVkNpo+obs0IBDkBaY0PXBxQ+gjixo0bJlLCnYwUTo8OTWmLccpkwnlxH7MDvWbqn9nJ26ophgDIAGomb6SiB1gEUOj6sfXwbCn2VvNmCpIf77hK5MmnHZYNrxbACUoBPJQBGoS+Sq4DG6QlNCa3CJKrApOtZTFf/c/09DkBuGZ7++wDb5fjY3Ai7/+3TECHUFSdF9rYDY/j4Q22IAijvlP8h32S3XMZEQXTMgSF4qpNyLrGaQxujDy0uYaMGiUOCgg/PPTPijdAOmZchjLOHdRNJDg/99gyvlMbkCpLyndnHqt5O9n035p1IlPhQx8mrPktaxRlpf6rC6zdHEwUIDpRyftbk+UNfm1B32Hl5AA/QJtRmpQBJn1G83SGkJl+g79BBxMdSqAfR76oajy+gGQMQImNKpt/A8djRGlAhEDRPHblxdAN0KX/v439y2XsmIzYZJT+ULhAJrlJbGizTxoMQEZw47KbsHd9vjvu31pyzum3gtBx3q/b06vGXrRfo6/SgHkh4f/r86Q0wBSIgqrISK5eESQYCJEYRGBAJApwoAgw+SGeOZ/pAq6KWTESUGyUP6hG9EG7qXXScX4UTjLij8s3Wbypggpnx6k0mi3LYRAgCJuMaikF83FKgTIE60koFv81/awCP3eXL0slwieD2UxYruf+8hrm2dHIXne5qBbMVNhwTNC1Ddb3K0UL63zixuUn/PbnOAz6Qgx6cvGqfKYkREBpHO2TwcNql7MIAbBOwjRDBCMGbt648Pk9KKVgWWKWyvvGZuF7hzJ3jjxxy3LMhDvedpECAnCB1FDIiqDU7GZgZ23KQFkIpCCqSSKLIiCkkWCwUNTPN8mTT/s+yZAJwSRFCLJ1glV7RWoCeRz+fff8Ob/29f0vOzEEkAkSRkGRAgoSLJIsFkIoCgRVJIoAoQFiyQVYQFkBUYsgLJFWRVkVZAJAJAJCRV3FT9kXuENdHvEsF3qAFVl5XWUbO/ZFWWbaaWHlRq032Ile3/1aMRjEPL8p4m/eFCA5B/R2jLjvek36NI+AQkOPh7sEQsPqxnPaBPYOxjn5mHLED6gzNmhUQcG/tD5KoOcLYt5cbO277ilhqG/MhNBJ++Zts90Jwa9OPD0u7MuMOhOlpUeeACYIvywyx2oozH+KIFe3AeeOP2H1ORx/U76gXB0h7Orv73WUTmYejN/WewPfNUS2MhId+f3A+TTrz0TT4uzpsv6NFZdS9NfcrdDtkHggl8y4rt1PYWnzLF7kMsvhj6NC+e6tHswMcuVg37JTowNdaZ/wrXB2PPSqmTB0dGjDub9kEH8oWSRDdCkd8V5atExgUpljoBiy+Lt6FAkXKiggShkIlMOl9WBKZCE0L/pj5Ma89gq5zLCYaylDy/dmM/NyXYJsjSTioUuooFMragQPB5p72qbuc+/5HXunlv5agBRJUnY/u8MlpnAtrEFS/LrqnDL4vR5ec8Ls79k+q/6jMctQpM3Hn6xnv0vHgMPLQKQepAN5Bv6EEOhm8VXJbbX7G2QBSKRYiEiyEFJAFhCChJBYARQhFgsIoBFkBGLESQRBSAoCMJ8bAhdiyfKf19aHybC+xClxf06HG+o8qB/yLgEFQtzYqez5A9f2Y/Hcpfl/Kp5YgbIHf/Gl8kAvww6UPBBCkGQIxR2TsBWEwQkP+koMPJlQ1b6WZE1qmfhpX/D4abFsUgf29mphuNZJ8XXgYN63/RR4+i1lB85oIB4ieeaHhBJDHD/l1cNOwIeCBggMcTttmMqD6b2JCTSaGFZtb7UuqHZ8tMSZopxBIHXW9+qed1/t7mf/U6BxZukXBUP6pdUEZCiC6Set+vxfGWMSBqI+RALMoTxy/MmfmrGKuQs0uITH0yZKsiOWga8vufedG47u34TjU0bddL0sK6tFJUgpIxh1W+phenLN9NqvRNJ6eVhA3jB3sFRPx+FmMJv4Hrc4efm9VdzEeCKXQxSUx1DNMPJlOXwYC5ZG6UjGGEgFbtNLLCQOb25PTYt/5W058dsgCZYBieah3Jah4U+TfXvIV7/bZDd0DCdbgc6ScJ4eHq1ZKTF9PJUOjOCdJVBS+hIVwc2rdYgW+NjhfxCmEnSCNypP+NlDigf8dGk4EDPdce6UA+f+fNhUHzIGZEzgSkzAzYqNHGgiYUxC+28PCwc1dzjImp2x7pHGuZiRZaeKr+8JY7cdFjxZgIPEUwWKnpUENtRIDj9Ll6Y11BvylEXBgxSG7m4EQnjU/KY3GfXX9bbu9O1TnC5Df/NV280Ncq/QXCW/8Z/per1pL/Bgmub7umn3aPx8IgB7CcOfp/9ifG9F6rOsWX6aueBfD0bkSSEAjBCmcMVDQBhPK/erYZkBKEOqA+S5RLiD+KP1QLxuVn46F9zqNRntnhkIn7QNTUMVNTkFgHb+FKLrsolnAdP+3NzpaDS+T5cIXzEkwEXpjkrkBLQl44a2d2eWsGFlkwX2O5+tSRRRtFF1ERtALxGRW0VToBiKpBTMKQTkgxRDMFEkZCSLAMkFYKpFIIgyCqCKqiJBYCqiCCDBGIsAVIMRFFFjASLCLIQISkQgBIIEirtnUQWqoEtAQ3FaIq6BAIBiGMCLIE3YEF2dxhDFZFTUEqBIKVAUFcQLRVAqAw5oHeNZbYFGQrIiQUgNoG+QoApBgyS0KAoCgTTAAAGOIItQYMQ6gJUW0KjIiO4IbgJaPcVXsikgALUHkErNSKHIBVSA5YQOpFBZOGGySVJCEC5FRzAG0FLRFW5FSyRWRCQQeRUEeQRjAgSEjBIRUJABJEQtGRAEtW7qosiApiCAZN+l5XnN7dQMGKGbK7WtqWltc0nA21VxS5AXLsJxkMp8/7yvSZpHOwhgzIxJAEhveIJDUh0TATTUIBd8SkIbG9ouMIoqasuIcsn4qpLdQQyIXE1LNzZEKpeLQ2RjnCRIQNZW4VooMKdNEdJuSENypsLKURgWw2hCmFW0KQSPMRrlEhJBLuEiEiGjBvDm+F2iIaE3QKWhUNROQs8CrTACE3ZORxUhJwACUUK8Ove6RRJBggowUUBRQcgbyHNZIyRSSRIEWUUvHFib5gUC5LViBiP3AWvx5fH4DRx28j2opJMYrQwgWylb5zA/znJU+s44XIkZV3IkFHI51uyVyP03Wj5yA9og6QEIhX00ig8ZOpVkKASiAllCNSTB1AHlFSifp7GuhASgfgDOFdLLkjaOx4lDQHWWzUDGCipWNbl0R8g4+NcZxysYB2oDGlcuhqOd0zsDZznBJc5FKKmhOxXjnjhy8SBNKXL1gYkJCGuJUDFChnXasLqgMJi6IA4kXCYm5eBeTmxlcBjiCUxXUAoDVDuBgSEjkYChvFKJyGI3iK2M0iuIJiLndKaIN4G92sgVEaicgaoaDkC9hpbxMRTaxXdqQXcE0aTtwpYQ2JhrDKrhFBAxQzj1rFkApRGIRG0qIc1RkIDkzQagXgl8iUNRdkEQ0oKBB1ADc1VGYMFADiO1FwzDnNV1rBMLMytyW5gKrlLMuUrEMS6y5StK6y4041s5oomnM2sy3SXOTWY773GLHd2xda0F1s6zWtcTmS+3Lq20DQq937YXWdebdYBrrsXYRm0qqf4LWuCVjE8fL/ytzPe6N87oALDAGpCKAQC2T+kGSGxRhHCkPTJCGnkR/svQCmoMj5oAAPhoq5Li2CdGgQwG0h+st2Tn+ikG2PLahFaoE8wylOOqIYb20AvJiCmCP6OSRPehwVTyCd85sNcdq+ovDFXQwhEDMgVZ0dwmja4s4mZ+fK5Uv/GvNgL6hINIkD86vjmApkhtafBa22iWvh5X7U26ctQ7eeDmzt0zPcMuey2wWRG5cXB9LD63v9ufJ7zqQhAaa/qr8c67TYqvd8t35F2769uTHkXqO8OXm14PFK14zXQgFyTGz6/se/1ZJLIY3HoQP38Umsn5xevffr+WdyNIi1Yd0o4TkmuFK7cLzIyrZH1pC/nulQ6EW7eFoczIWBG6lFhHTEZZmDToyRjFyQySf669+I3BR8zh9PeIwaGxnzQ9HbHHrmY9OfLV8bg/PZNB0qv8s2fKiXkPribBIEGpfW/i6KEf4bX/2xm/Ka7EoAa/zjrzz+eq+UaIdh9/PPgfAHkPnK23jMTfXK5pewypuQnkakutgyMm2Ka2/kkvtYlb+X14iq/LUHoyGi/OxIcjuBonIE9d5b8gWg6FnzxbE5G0A3CwwLxJOQUzirxKhgUFSqzNEVnckNuEUIa8aLTPyQCR4T1IRYjkTrTI8kOsED3JXC+SsaR4mQ9ZZyNYupbAFW4A3exKkYjgzqGgIeQVJaxGEtjhEz3qgSQPcCYYHWs+nyUd7xyI3EcTEB9meYxhFMj1RUN6ot3Q/3eNZuqAaqheodRKyK1JCKGyV8MWkMIGijO6et0pmehvRaiD4ib762oN7a1Q2zDrdZFcwINQJoF4UAoGD40CDRPTIRD6RYEFCc0IQCiAQIshBRQhJqIEERikUWRgEUIVIogkpRUgKnLIEjgiCWgAIMCEiioMYibSDiWgoIEIBIAoQDkwgIyCwEiEJVQkIuUvM6tdBiXSJyJ0AwDEX9gjHIISdlLAe1AFDEeMMaVNGXAcGtAAhkgrmGYB2XpTea2GWg2RFkdwdXoIIMhAwKEKioGBiqqloABbQkWAVAhIFSBswMw1huySSBOVaEnFZbtlFTIAYM4IIBDUBoMarUKmGJL1hFTUETRFVbTOQccJAhOkQgY7YHGCgQoRDcgQQAtL3pXkBVtEDO7npdEXV6vEUDKQ6iD0UUqoLcvVRBGoOIol62FVVkEVMwAebx1dFkETnF3rhmVkR8IjIyAMAYIpCBAYpBYkYisiIxFCDCSKkGCQZIjCEIRYgRCEggmoA5iqvJmkiEggKJFYRRgkgKREkiQgMTpQCsiyCgskgxAUEBgQQEgCRUAViECRisiJFARRgLBGC5AAQhYSAwWLARURkYwgxgMYiCkYhCLEgrgkgByKA0kUDEUqIKziIoVgxBiwFZMQDZWRRYwEQSBFhGDAFAUhFAZGSCwikYRURgookBiCsAISaRYChKEAGBFGAyIwUYjGSRhBYKhFBnIpArCMSRERJFE1EVSiKwgiikiRSBFYQGESIoMJGKIcIEzpZDGCyLUCoJqAFRHICqEESZChkIoMWIxEGCAoxURIsWCyCwgsBYJGCCEBgJIsWJCSMiiMAkihFAOoJIVBUVMVUhMZICgbpCBWBpgLCIoirCSSMVIgIpAFgIkRIwYEUAkZBBZuwlVgosGAxSICLEYCwgG7IFZJzElWLBkhUCLISpEFQJJIIoxRQihBGKoKEQGQhAiMIRQQGTGQKjEkgsGAhAwSEWQUUUkFsxSoMjgki1FRuIkhAZCRUUVjBQBFEYiyRZIqySDqByYAGASYioIoLGKsWAEjIhBiBmK4/0Ug4gDaSO4kLtaySTTpDEhuxGAiDGMgqKLGRIghEYpGMASCBA6JKwRFBYQYwJFgHUgpBQgGlimiHcAcRIKkGSMSEdxqCEIpICMYRkUAsYgzNNhA3AekCACthQpioHCIkIFkDZBVvAC/GhQPyEAE8QFhBJolAJIXSKGoIg62FAK1gJQSAog2iK36gSUKVEEMQQBHqAIYIgA2oqrNelqRU5q0qo1RCyCgmIpxYPcABiIRVRDoTEkKVRMwV6WKoXgKCloAiBUBAB1EDZEEwLkgwGK0JqCgZiJgwjcGpAQeIaRTBBBgqLIkCSFKAkU1YS4N0UioGYq7FYqagouFKYyNBaCgmpxYiYiDsuFIaioAMgpkQhAiXgqIm2CraAK0LfdECgpLCDaIC2igyGHaEpMREqACKWiLaImRiAnFIF4YgjoSCKF2/EpSBEtBkBggCXg2gABWbWEcwUywQHYkQdkYEFUsxBVLRVm71YQQxi1l3BTcAzES3L1YRMRQ3EV3nnLgCC5jqKhaWzyyoCmPtL9XFE6q1pBEDe66qgcxVOQEW7kMSygyCohbvVlELwVQxBOszeboiYc0ggDYvTmIqrUQbkW0FEkVFOKCQVc8oVC8EUr/gViIpaIO+csiSApzwSbsqFhYKq46zZVShGwQSDKUEDUaOphCwJkgqKmYqALw5u9wKCC7goSKGIO4ghaHsvW+ZbKuwiImwzyyFooB3AC0RDXR7EC1QRXPNEsgIWuXsGYIdREFHJhSHZXRvbBBDSAUo3YlI1gl4sgUxEHEwgxuxRBXREULRFQORVNRLwFTaQVLTMU2GqXYRRVDcUcRBUCQFFTkBHgRUEHcAEcRDhFE1FQVLKRVUXiwFFSFUorSIRVRjFLwQFDkFVyERdsFbS0VUtehHMRFysVEBsxFLhBQA3FFgRQORkFRxakXEtBVLRVMwORdRBEKiiFwipgVigt4qJpggANREHZEVcRATEVRV3AQQqAru9KiLzd2yqGI0DAFOQagoiBZhIKWgKKmYqXIIKLiIiXjaApaLCA4gZUViagINtUCuo4EgOsUIKyCCIGCKJZCDYAgJaICA1FVJF0RATW6UV5VKBiKCSIuIkIiDURbQQAQ+upJOOuWRabpzyFNRFOO3I6omGQ02FcqLKrXC5WGXDJxo0m+sc2xckiYlRETMzc1IqyEih021jVXZd3E3BJMzKHbdTUySBRDllftZvV1tL938fsrBNI/+IcEE7nkXqpg6fw5TW1OIKLE7EO3eXEKCDy/tnr67J583x09J200uuXhrz5QX/CwVN6byYqrz3W3LV3a3K/bu4njVVKg8c0SPphhiaoePdTSfUsTbOFVP++Ws83av1OXkY4PO1X9pbFkFAUikE4xK/e57Hl3b93btgedvy09GH+OVUfcSq+a2qEtOy9ofPo/HqH9djT0usTwZM/QXtymv1Ww9SSGnPRQ9DPRos2KMpO+muq6S92+ZYfEn+rDIw+502314W83jBVEtGySQkOy5q/Fnw6kmjnr5GE45b7zX5W2+Y/RtiM33tLV7/VqHj1//d93gg9LTi+CZH4NGRZ1GuM0SDDH3fU06+XhvpVa/UrifHmHm0dI5fT7dd21Oq1Id/rzF5MbGQgbe3R/XQoKGDp31BFeCDIojTVfUVQ2kCRR+PspBNQAcxAE3FRDMQWogmmCLaA7jaIBeIuYpUBXUQLxVNxFDERMaoRxBRzAWuXLIcipIKFRCggkzSCwkUDKBSYgKrIAAPICOIqAXgpmKuAYiFZ0WRNwFXJALEvAUvFRyMDMRUxAU3agRDIsAHUUAvRaygF4qyCmIDIN4IKDiCKg8FIg6iiAljFArgiQYIBqKg23iyihjWrO4qtZxZBDEEVORAVc6oBKqkFQaIIZ5yyIWgKKF1CIgaopAS8VxEQdxVqvFlRVMYpCoKiB1FRmKQEkFA3ikQQxEHiQRBHmJQgSKF4AjeIqc5uyiCN82sDmAkgrmDXVKDmAGbUdRQeoIGIIAqZgIoGpUQQTrBKEVA3AFMm72EcEEUmYZsogFQQxVAim+a2XRE3flVYENQBkSEBGxFRCuWLIrwIoByILcI4Agt4qCAWCAgloApuAoUxNQUP6EkAkRMKJBDAxsIQCEUACEZEiCikXBFSgQJEYIkhIQixEEYGyBgzIoCQEAYJJBiowirICkjCSEhBIqCxYkQBQgARFGChEYChIMGSIERRFkRYSIqrEJBIdLC2hUkiCMVIpFEYEUkFIwVQOkaoVkSEZIpEZBjIQABBGK9EKkigxiQVYsRSSAEY9CRIFYADJBANmxgKkYiyIEgSJEUAYoIBGQBixVRCSIhEUAYJAkEgbsqrImmEJURWoVgikGIsCILBBACAkkiSLBUIwBIIMYbWFCLFZJlokBYIQiCyQUJBSIRFQGEgsFRCIkQYIyEWQJBkUFYsZFhEzGmBFhBiBcGgBHARTM3AQOkEiqAPURLMFBLxACiBaICGww0inWqFyIoDFVqKA3IiCJlhFiCBZACIuIgLcirqAtoKLeIChcGIiaSKgKQgjiIHUEBDUFVUtEeRHShAFRNRVogIKF0iKEigJOQWbszLCVhzOLTdYRSAoEFjTkcfIgkP1d5559Tr2HHOYN+ewE9v6htxzqFyOfHh4hAsFnlp7one2VFUTvFjm9HQfhmRZ2PFR53XJFJ98DOn2L3xdyDw8FPIcJMsOyDZ1jYSQV7HGk+FqDx8rkJrUNg87aXAYRYk92bSAsApnWuvzpHgEtLV4LhngFsGo0Z4p0gpLS8A3kKxMKK/tTJyFBfAWHyEKUIdbd5UIGQs2L9D46xFSKEKZrBxcmXOAAuSGwZRLLfUWMMCpG6pMhbZDZUKL2AHEcdcQSziZ7P4LoEul9gW8OvcokL895PdjlTKO1VBH1OKSfw17xHhnCz3mSq8+cebqL+u+r2d2vN1ua3iXvJ92+0GpPOt9yTNZyYdNczNcEtxURS/k330xjnF96DMDmAiViSV4qP5UIIY2LY8uCSvUi9fj1GEcs4+wXpznlxwINss6taNE5OAhJXr7IMyogw7FF31l1sgHe5maogKQWVsDICJo3HybRww7nXCveXw1W3bIqEbxE9q56oq2DZxt9dDltqDs24HTabuFdizZm2syVEXS475mrdVy6uk0u2babm2ro2RwstNa1myULm+tNujKoVu9KZXKNpwb05efpLrbFDtuly/RhYyHmuufTPsb02/4o8qKauihg/8+NxwT/Rxinj5/rfm/x26T6zkDAUpotyQNjCmu44akqq7jfwfYqqPO8VIiBAyMSzCsya0QwpIeF4KRhkHpiFNXHV9/PveGiSB8uzLl/293MYoQ9RdvTrIIr20vm/kxHN+XXnZxV7bpw/RnEHbYza7+N3DTJaqeu9+TP7b548+OmqjG00Pfzs4pudcNcj71nM9z1OcB8dUfXRw75BZFAMakKkFOrDpybpqmrrV1u74eNNTHWwYmiyYof75rRpzvvvZV92w7X3tS/veSczWKeZLvtR9NqGnsAzfWsl6s5auh67JwgGalowBGZbMhUher9/Z/Hbz3jFat9udnK+rYr0BHpT0cW7wrIboVICgoVWRZDfPVqwy9nd2ejzQ8B5b9d225YeV1qbzRyYGtoQrsShZTRsM3Zkk0sS5yJ3LuMnkugPLqTj52rvf9Fdyu9lk9jjSMy4N/Se3hBvqgg8SOSI87e0JKdoSAPw/fXwVqTgPI+58r4fkaqr2h1nUEf3Uvl1KxvYnlahUWbV8zY6bSbEejZBUL+M8iClhEKbI3vAAWG+V20DIAV9ARXDQA5G4ZbNsYkWkHAMeBCA38vi/91fxfZfvnwVysvLDELIcQvBpEgpee1RRciSlENv45myTd7F7CT5ulkkmlycehCgqb5psdIOZqFIwWiE4BuIVCKQkbRkd48gmGqhEQIy0SzGK4gB3IaEi6uX/VOma09V+Qjoh/V34eTdoepDwaoPiTUJJau0tzNDZLj497Dr51I3NxJIRxF+055YMyOSbC7PY53gc5KEdi4cTCNK67IIiB9WikUSRxVAKrbmu0vOEqFuluijiAQ1TuWlqKEhJiK4elQb7DWG5J/GKBEh1gS8IPdEDroxsCyZ6W0D+eP7qKSpfYc8DeE3CtqUg35QORkDMkv3BvE3ASJAmw72WYgw3gR1Y0ZFdKhpSsVJSUlMEYmyb2cgtrjnmgASWnZyeyxA0fknjI6Z5/B77W4egwlm92UeP1lxFFX3oLUQERFVPcDm3lVndx3AocjXWcczIkklCKzgPm7X030MbIijojfOA7it6EuGS9KgpzNbM4ZOff+anDSmPKYhF1sHC7k68YQ030pCSPJwTiLn4dnFEh26vHPMuLWB+iNJhQaWeHIPHCQih1QomrGCAWc/L3tDOKzmGxNxkI84QIQjXt3ZKDyzKxGitwGl7AE9GVG86CsoBCzkhzXW7zt8iTo76A4YHc5XEFCnS94cqQ/morlcWotTP9noGUeGQGm8YE+m5L5loVxyPcTqZqqUtNPJiXthRy7b60GhXMC5KbZlcxrtmCZanKJHbqYuSXJQ4G8fXrVa42FCGnL2Sp4wqutX18joE8H8udz4ppeP8rDEe0+79/XYDKATgg0MhFRn+iK0Rofnck3EDMBEFfxkFX6TCZ9de+10Q5s5RR8mr+f9ObdAUKwGlJFA4vfqevQB5+pNdrxslV5+515oU3t8qE4MEKbZ/5lWp2TE2+8ZrH3X15LolLdN3sow92+jC1RQT8EEyoxRT3bM7mjS+OdJO0EUTcf+lJKmi/LVDGExBU1R/ym5ipsmagw4Zk1sVEF522Faol2cdgk9SSSTiZ8fV+HjUnl3X5Jqhs8zldX1ZlEfipgKdHeE9jgoN7/w29kLBgTRBmHSMr6tpdAAQIiFTHUijfzPq35ZePDscvPt2dbukfQ6zugZYsHYp2jn2kPP09HPfhN1U/na+fL/qz4X5E+ji+T7cs6kPgfHR1+Xvrge9+NNQd/JN8vWb0QJMoKVAUQkFFkBSU6kurkreggdSstInYpE36S8vrxdKOdIWTHJTOyCSWXBRys24BIZNZfLNOSfxRuLEt1/q9j7vjvdV571C+GTh/qyDloLjks5fcPgyuXOoBD3ZBeZcQ4mcaQJ1J2LO3ZtcOXyM6Pt7ehznO50rvaYhO9sYWxnLqIyP4t7n5I5nO+aIQ+OnB7uSlHtMGxjQAjoAjtxFgHMQEAGG5zqGwkkkWAAILIALBFIsRIAoywwMzU3RnFsISKmRwSA9soCUkopAkGCO2Fq+UVfegCQGgEUo7xUdNYAKovJEk9kWp8SId8wyYK2Z10fg6pkhX16qOA0Twfh8y9C+TDfK5PvkTQgEG5mSFw0X6KaFRnQ4gqQgKkiEgpI1BRaiAg1nOMmbbc0bWNsXRI+Bz3nagiNqiKuLEcXS4uYd3d9RgKtmZQQxEHUUJsUoFQbYSgrdAiSwfCq1TzXg8BzSIUVqWOjpAcCUxuey00MZ2fQiFBSRwZvNQvMDrHYKKk5VE2HEyoAJwCxtcxE2otRSIE5F3ttWMsNyiBjT6ySTtKo40ROyOAzQfpj409o2J1NStFCwpBCCiDdt+udYkBKkoGs2OnMF1bQRFgRJGiDUqBVSc0PFuIytg3IRYW0Ft4FVE1hHFG5GCu772qlhE2tBZvUAAHGhJHWIBjtcqstk1kdfGLWdzuvkc/4QWkJIt5++z3scPEIA3yQSJBm9oyEf0kLTqIc6xdpLNZQCqkrQhJUgEAJT2pfv1XmuDOfv8zvuxUyee+doi3bFbSSjbPDeB9e1OzfO0R2R9rw49qOACovImIjve92jZeVoRCoqt4Ao8iGIgKZgKoniUoxNjGbzaL52xo/UzWeRC6d2IZs5FnW8kNqB1SsOVFm3XENVrGh01Y4bxe6iKTEJbHBuoGzNzat1NYSKthdqeY1SrpJyuggqb1hvDSe3FZFIrSXeBweuJksKBAhMSm7CZvhKF20Ig1GxTKTOHWdNIp/ySWSt4q8fLczUdLI1DvCyGxzcSQ6iNkomnDHTolkeXUxBdy3NKoJfGRUQMhNjWxLUmW4urdXLp3pMc2Fm1wTMx0JrRoyxzExbdOGUt8OYnVYHJP1vvj/VNrI75Kp5j/DMndRBbJRU25r0Q2bOCgNbdiTiQMthiQNZJWSMQgYdTRNslH3GxGeQl+6yNw4IERDVsBxeHtH+rBDFI8te19LP6cdZJ6LpXP4fi9vVt7icHf1b66OwqPEWlpa79pxoPJnPeh1iXnQrza3WZ0p84m2vJ63U9jhiWlUjbVOwYmdn9Ka7O3OtOpk2E/yq1o2Kj91nwvTv8OrRz5KV2iVnZhhgInkzm92i9l914Sc9r100uf1dskk0eHWbHXr6svj261U0InNgSSB8TJ7+vDMcVO87zuNQ/R6N8E/v8czpbPep4foo/+7H700+y3dKi3MxR4JsV+LHVvIfOYjAIW/R1YzJzfMS4MEOhAikREkqgNM2wPuu/0CJsvK/HOSXPjyul96zS4I1bczybRLQTg5DXMc82x9e2WRvK5m1nJm3ApM2pbj/ftbbAyNoc6+SySC7K7M8ZfJs24a8Bo5ulOlsxehOkxVohc7C5feRdQb/de/XN9ArvPemTDZAMffZnkVSKv3l6oUIfUHSJosgcxbMOQnQqOekBv0oUha20EsAZ2ojm1X5VtN8EBeKuAhSCAVAFJJLGd5JGd49yMi+2MdXoa5sxvLLY47QFHUADMFJEVOaLqBa7i3jrZMk5Bi7Tp3UmISRyqVxwTwlYvoyhcQVD83v0vFUFL5A3DurSH2SxZ90EfHr88UGvwqMWgjdW+HwTkTG2Y+8HnBgex2ei1ZU8VtJrkJWlfHLG4jfJgyRRIbONaWtBrE3UbWlWkUibd+6XV2G9UkobNpJlGqQqk3ViwnGLJ1kSg1oUFSYToSSWK4iRYBqWy8SqokkQ4JsIcVBvep/mgGMqYUMGS93M2AGCBCADywKinRFHPVcEIaQpRPHBEwbpBxvWd3o5vLHAIL3qgOGEMkYi0FbMFGrvZjnedaUxnDdmlnQR+lnfPwZG76VUB2Eoad3s1Pjn03kb5HH3lvSohjaSt7aJb3uoN5D2KDehndO5jnvzOFQG+M8WebF6l2syy485lXSX8DWNDZbO7LDBr62EU88IaEiCvglV5UZ2k5O1eG6INlAid2eCsNOK8zY5yRE1dTzmYF5y5kyzOViJlZw96Cye8L46EItiE2DaBNjaG1dELmVIbUQURhdRvXjQhJBum3QSTRCSelUd1XulAZANh2d7qlt2dkXXO1dtUONUzVxclxG5cxdzNMuOTFRDG1GXU04jlVuY7qsuXvvl0XVtxrp1itNJZbjWzDW+adUUrrN96ZrbLRTl53boeDnUer6jA0hEVlpVjaStGSsWFfS0Na55w5t2Zh1usG2l26j9Of9O46DerSonGtZ0tiuUjY/XzHt1hnX+C5xtXbszbndb9mbC8WqLBNZkxvdJBGjIFfbhtserbQEBTBiKNrA2hLbe5U993krv9f3Syf1+qG2WjWNiMQ8/v/cNVi9P2cs6PLbt88y/u2LlVUer9n/7Qnn2wO3oZ1sCzVg8i+lnk7bPU0xt6wUUUNdp7H/pON3a8HfZOqe7fbtZwU/Vh7NUj7NsBcLZ3mYOR92mDIx932HTA95OD9Pmvbjqd+i9Egnqs1x8u+ldmxdfB6c8gSE57r4D2549l1vxaHmotFfo3uR7Ep9gtPjteXow6ab0ygb6L16yeLO120JMZcvPM66JY2o+sn5e1+9l19pF+hZ8cnl51ZeG9I7zk2/sixHgJNI73lmnlsnJ0Zb8JuA8pTyHxz063xoKk2zKSWFVPCudXQRuz23l3ca+5U9/L52TpfnTyevnmvEcvnJcWFxlN9xlTS5Jve2CEll95QXWzfecVab0eUqs+7TjoK5zl+LYZ0wLx8PMjr/PtpEgJ8AvEpXC90tgz0XOsWzSLSqIdIXyDAQ325zECbBcm7NBd3XEVMJIFoIzaSg0M0YtGovAhWJROLSgW2tRm5yyJgR1EQVjspUDW+PDgbcaLXAxM3xMsSBtEXZuqg65KG4IKxKOfRM9HyQEAEstiIqWdPI7DMFQJ+W1wqaQhJJsEkgnlGRJU1zhGtj040yi+ctRjHEo5zhPOFC8Uq9bkCHD/FR2Dzs2JEQ/GFD6d6qTah/vphz3InnTrfSCZHBprF6OXlcAhKbnRsR4QmiCmzkrUfb40XVQg8mDUolHkb3OuEtspANtFQLDwLS6CbNY2nlCmHGICCiYAZ1tRy0dISKxgMYQjCCjZBVC7WkhDUG5EWASTArLS3FBtGQRZrKmxyqRCH4RL8BOGt6OcjIrrLdgjePydOZHP7suw7riM6pYRXu04rzVeBtQqOOqPs5//bnx7kehXpLJjyaAEko84Mrhp66MnbTLzhZPCpC7hj0m3fAGqivS0sI2okfN7OdXAu9Hl0KhjMalgQOUYVRd5jFcyAAFCiXiILuCGoAgYtSgQEaVfJjdpK2tkQSxFT3mJsG1h2XzlWcuwJ2uAIRyUAq7El8QLm4Fyh47OlGhxQAIvTsdtG8SxAGrdNviRfVpuoL520nQPEVLTBckasSVxIYcSMuahSuxwFgGRZJ0K6gTsKrpGVzNO9lVyKu3Cmq7BVQ4cRLkpkVFsklmHK46MtDdWl0ZFptauhM1mirpbpzGlzWJqrRpwZm1LbrDitMHWs3mjWnWJlNa1lTQ3LweCc0TgoZMFNJQMiBQfqpmDUvjSuIy1tKIhuXHoaDP07bTDQ7OHuWqaBp/ErysgaCHlti9VNYI35OhozQ/iuPh8/TJsbUHdFnYfNM0e6+4M20Vd4njcYAqKeWs7811aIF/NbyOMmDKgG/o1rhttpRG0ad79Jwfd26ttBAIZac8he/Xi5Oe3T6NrtrD774/v1cKLyvu8QAoiiaqIktYlbU925niS0fJ1pbNYxSKUO7LlZ7O7M1LaFe/jOra+5vTmaerv0cpNkE54V4B9eYBlnIy/9dxdg1fY5vo9D+V0Zh5ros3vX35w6sKW28gu9A/lvdG4bvirhyiJFo1ks7naetsNk3vx3K8Hd0/0dcPIKdmFPsZUxv49i8ti+h0oGMCS0aUSpBAm1A/Yg/GY/m/pPgtB9lR9F7pWW8uZW+DN3VcoLSvmTRn01w5aRXEM3HQkdvKnsdHvc6IjNSAxAjN7Nx3nFV00zdohEtz2+LOmxzu9reiQUZqQJJFxzTtGst3zYMwh50rWWd7H97XOq/HlnQ87O/GkHtKM0Ev11Y/VOwd4DG+pmgBVjBwgoYER6JBTQNCO8XhCMku54tcZtlEXdrmzOh3woVFuty3HCiGcZMGr7LrI2agUQTfHN5lERI3XCAzpTRBzjlH/R92rxG3jwUkeR/BaIku99TuYTx0ewhkjm5ukHkR4TzlSsjmFNAT2edV9C8khBf7UP+981VcxU/2nHxZrThpEAtAUC8URIQBDuAghVaQGQ7gnaIql7ErwYqKlDJq7skcXPKQUwdNOjql9UA0BMUZakWogyNg5+gOZidQqQN6KHLefCakuoO1o8EzwQ7RGJjaY2m1Ah5jJaQsbQTZbqK85ctZY6itbRDmojBNVG8LYkxNN2nJPEEyUYZSBgbVb6dSzdREHMMIaFSUAM5NhYTEV1T+vrOR0JIlxEpzJ3gS0zISnRE75k+eZ5kRJUdkcXecYv2+5Vjeijvj5MgVPdM4xxsxRNzbhHkbd3z9rsUrFPWhc1cjv/5Fcvq5UULpI+wNkempef12yeZ3zsj114VgbfnMtATV+QVEFf6vx5GbP3QEfG+9BHxUmHtEhqRrhRb3PiHlkcnK8vpRRWLvEIQdNgF7kLa3sd8iflVmHfRVaARXfV5Eog4KXRfiAT8hzx0IRI75hHHhZF6CAhvTDfA2Gqts1i8h/pyg3uu4v8KNaejj0oaUQOoIBkaSaHjhZ7NFSRUEFQrtQxl23zKp1AoguIqETLKkdES6qi5uXNkyXkFZY7mKoiBqYLuiWVFuCrTOyGhIHBuzErEqOX8dwIhlUAghHog4ZYf3jnAlzhr9mKNP35sXuJZqyZ3KBT/MKglYn6qNH3tY8MiaTkYD7brVgcffp/Z2irwXkla/LA1T/75ulyhveyMhDDdaf4eOGENG4990dWs1rYxlTSGylPBMNr27l1Fij8VNsQpKCaorEonHlrnsVkmzPJ4YB6/4Wc9ecy8i6RcIJoSiQHltIFfNoxDENI70IHgJp0X1fdtNbsOCTcrs2Vx1A0fvsmaRTRtcEnyNk226R13Wzr1Ls6d4DcjkDAbeTWChuOo+m3WwxVAWERIoKNsqsQRvh4mvI2b5t4cfu6gz33lxYdqcC6LNLCSGDfUYGtezOW5CjNOSDI/FCmoShjZ8tpIR/JOVuRBZE0RglJfz1cI7bZJq6ysGk6JTDuxJNrbbAqcwo+btp/i/n2eOw2v3WXZcv5sJ9EO9YryAabzYxEVlkhdUC4Kvj43N/VvJY+3ba7Ojg6sY1A+zWiSR+J/7N+r7aMr7WkLjKH5HM37s29TDjKuyHFLDTrWauiVdQmGXEsWaoFNJGpYRu2tBpl2jTaBCQvnzZ+J22pdGHz3vzHDW0JPLnS99JDRu2+Lxmods1hMeREEdv2r4b47NVU3970mF1z2N3zHQu3Hlo0MN02mEklvqyGY6txGdrhkAiGo7yHJg5OV9n1/Z2v/qKm/4YzmeoG0NwlrnaC/067jdWMh1OnrsPjygridfF08DsaCA25JUX9Pn/M3/LfQDgcZCgj5jgFPjgGTied4lKYwFKUXOy1paNcfH1wUHjkCQElpQFW8kEvLjSl/k8apD8/DHnSUuQRn9tEhyOI7OXa8SO9LOXwqdUk2ZAhEyfHJ4o+JSXjEIwbfcPIno7WZfhzPzWHh+yLc+BCS8777hd298V3PtdXTZGzq62Dgo+M4ho6i35H7K8AnJfIJiqRBXXdzEevCq5HcmXmxgZiEuX+xqlyt+Nv/bvwHCPgOe94q7nZj+l/mvdR1rztce4V1LRRAHz/i+UZBEGgwSARxpCrOL45y0b4Z11nIU5NaVkrkqI4jDkJ6ALfEA+52IqxGxy8kOs6diRF3VSbhnZOGHem04fF10f0xyyp6StCeT3vxhYD3VzWaIOsK9P7MnhsHCdn3rELaSNAzJ+LFhz0UeaCbIij1CGKaN9WBsyRBVTEUF6iCGoIOlIIDuJeIDIASxSKG4CjuCqeIBuIAlQBbwGEASMBQBOkYiIpsgKD8kSRVQNxxARWRzLRAHqAgCdSHdGatLA2gCpIog8goyKEgSKgdQN2oDqKIin9w1bEgACs2JAOL48XZDioeAQr55qA4QZEN4s1LBNpQbgraA7dHfNpyg1JmTikY2uDCGquiUkf78Anr2+0Io4q5ehObEMwkUtBRkEaioXi+wgI3iiXhNlsIDBqppxE2wiSIsTDwcJ29Ucc4W+KAg2hqKVCkI24gIvEJSYxncFgJIDrVNjksBfhnIKFWAMobbIt4jBgSAhLDSEMRPBTdBpP3icDs8yPJgR5deB3VUOaxyMTMN1GacRb/18tpdrm9MSCkj3YrznAxmM8uQSh/rfj/NxE8PBv3luaewe+ENNRXuGpHahEEHG5Z28zI7nAvnH+WOEb3vm1xd72yXvLUDTYJCSOPwvsxKh3lvORUONK3vW4Xcx9bXJZ3qnif8VZhd9rYVk5JAHhsWwG46thTEcXPL4uaYJmScElYkc3aSzo+Q+c4bgCQzsDSMM6ECZa6c3gsnpS3nNMxKuN1cGG8WISEkYkoQ83OkJFKzhFLUFHNeo5tsDJOdFNC2S+LNrkum4iBsmC5KlOCGnUQOHNOpGMTZTiYmBkK4o7UNFReUGUoKZFsjXHFzNtGnTtvocLo5mY5Sxus4zTkvK1hVkOItW4IqpgaqyJZTgxkTkS5N8XClvPv6VgIfT+b35/+7Nt0Yp6mm0vvf368JDRe+9eU6i3tvw+FDUgiKAnZ/Xw5bf8b9zyZ/LiUN5w96eBy2YsxgViwBYNWed59WjJ/x4ZnzeWTF/Tbt25k+j3LRxcdnPRTtfDXlkq/6JTXZezQay+hL82qMBjMtFA65ctawtsRS0Sta+sQrBXz33fT489bos8m/7tQaJmyMP3MaqaEgoDRDMFJQo2bUOKDPhx5pbMLUjSs5MUS/n7slwu1oKKrFR7LXi9T8uGumu/AozxS+SXwfHK7sJNbdWtc96j4vJPe83Vn+U4W86c+VNDJpqK+spRVPXTfCvZ6iLyRDPnPgd23bUUMgdUBKwuqoi9oVj3IGMOzLoK7beSO6ykaQKSb9OExlmLK37kHFbS1caAoFCvMz5/OMsc8tyAlfXyJe5QbbImTDgXiQHIKFx2ItDJGThGzz8nnSi/7HGfvZbPOvhvyxgkkGavKMj4Fsm3IRtnrPkrTjnOYZi7bd9q4s6savoFiSDVtISJLvK/cjp0PDxzvUeGvDduM8MiAPIkSzY3KjrU1CS7+D4O++5HUg1HJ75uXmV7y5AxgTZ7ERVLoP407iicgjwJEGKoMUlRkthS0AVJRoSSHKAMkIAGoKAp0DdEI0KIrmOSAo9RQLsAHqCA6VYKoBqCogw2hJco7hPoUVFz/3SDJrEpfsghBHOAeC5WLCBIMIESKSDkvpxoy6tLVmj2MjlijxvlDT4653Ca3oD1Fy7+OcDA/ZBVBWCu9l5WrBVgIBxtrfpyNukMnmSQ+iaDEdxSRVLEPHAt4xYx31eblOf9zYAfYIAhgghsgoA/UAchaACAVBLAVEVbxVXcRz/r53cFcsXkBQIHdAoGCKKKeIjwiDmrlhFdBAFNEEQQLQRG0BK5iGy4uoIonTbohZQS8jAQaiAUUITeG1wEQ3rBFUsob0cM9TYuKtQ46STI+llawxXtMqjo9MRqeWBpyr4ArDI4bm5CRDIuU2RQYPyzVRiM6E6w6jlrrL4jiTWJyYJKQYuZcmEC4QD3Q4jjNdIZCwBhG0EMRVkuk68fGq7kJBBKMsgeujbBtGshk2ZCQqq28uM3ADd3mc0JJlwG8UZ/6xwA53s7Vdaonm31wam9u2EEyU+fsxqXxvYuJhdhcZw/cyFzQ7zzDs/FItzEYuYcM8ucpqZTipbpkmiqhj7FbZWcGolKhuCLpUjkJXXP9O/h8UYVPj3vDZUP8txIrvDwIYe+XxIEJDrgjYlGgMuN2OU0rnXAsy0U2yucC4yEAQqpXyaDJdulWtbUpIECiJmNKebF6arEQURgJHHlktAWqJyuMsmoi6hhuygFCSVciNDY3Nmb3JKY9cRyal0i5KnLl2XFlMlw5cjhxMmFMyZDbRdDpyOW1mDUrhi7OQx0K7axuXC6Ui7oXWjLVbmPGuNtbIxtLLo4ymFUU1tZjtb3Q7Nvczb17YzcqJWERgHWXgMlylDxSfgTtTUFjwA1LYFXrblc7P/ects9ruDOClev6DMUA5w2tJfDJ59k0dEnZsEu1s67fr3Xt1kxUCZlHD5pQMxKCxSElevDvygJPC1Pe9HnDUDSs5HinPq577u2Zk5M0rlLSQPEaJEHP8cmBs/Z3l12XOunLYq2ee0w825AgZhDVksX/Xs6u42fbXLwD67AnKGDQ68bwmzJt67QA3bbWWwlYAnVApRc/09y98uZTKlT31/djGIqAsLgFh+cZJT7TGCdfyd248WBspMJg/yp5tjYcfOQKwsgTBc8+EuSBbL0o+1L4Oght52ctJuQgYpNu3uN8hpTwutaMGiEmzCnbCzjaQ7sqkHbUmQzGVnrp1eXp33XNoEKIPvcgshbx2lBlZMYZrtyqWbTPbUMcMLWBv3UmKSGPzIBhD2cpk3ezz2Q0RdWx0ZPF638TNx3fnBUzIeTZyAhr8/LIE1sw26X0aL7lkmZKvss7s9eHsGEOZttgQ77qQcRiD67DrDzmr8O0kP8LGNsds+2UJHCR59PunCtT5m8UdzM5NO9CZt5tE5UjQJCLiDJcpAGSDQliypUbVTzKrbw13L/EzJyZuKNI4B1JGRPaYRhDsg2Th9Mq8O9mYgqTkit2ltwEvOTBdTIVrEaUP5w1ERSiRIqK6YIBUUFCgYiloIKB1ERdzCgwCRFQA5UYWZfQWtugUQwQLjnptnaCaQCV7SyaD5yp/JBP7j/jqIGLrlmyw3GS9vLEumXsUKnbpxhguS8qKFiAO7Lr+XyKRAYGyOzsPrhDlf66gayz/8kVl0hF/UCTyuKnFjsWYQDyNH2IU6yvrWSb6jUsHtQEXstDhyKHBt5t1/kEXUcU3bO246NYDcad6QWmE9CzGkt+5iAOijUH3pCy5FlLiZNQgQGvtqaTYbdv+jGc02UpxtQrly/VLz0MGZLSWTFD8JbE54mUOfgroIcNDUbVDgha8OOiZaUFLji17Hh7y3Hrh44mHB1q9zGqnItUFS4gEWQPg/4L5m+m3p9ymJ7PG7uhD8llhBh5/NUa4cqSh+diCOKu6tDDxdyxqWG+uWrxMrL6Cs8H9Lr6d+vu0BxuEJe5vz07nPutPSJSRj6UCx7LR8wTp1mc+e8x8i303/sTnqvm6wXMEhNmyt8t8NNRZTk28XYs68yLyUNmMSjYxJ9GTbZ8stkRSehovmb+LfMQQIggIeVkL/6FhOfBPV6Utd9p6bzwqfa83X4m3mTf+yUEYdbRYEiL3dPdqms1+2i3v9ht6TDz7Q+G3x3hUIo4mLGd+uHc+skgvxgVPONE/ITRBNAhNIB4GktzdryWnQx9gvyYx/Qu3rJnw8gDFAwTWd2mvV0y4NaoWttv+Wo2Bni6Y/wbz8TucfBVEPuya87OQCn0fhSFX/syBfEObCSbIEQ/O8w4MyoJUeX9l3Ph9CQ/zefFU6z2GjNP4EzGnRh0QPg/dO09DrtgiBusr0rEPlnLDfHj0U0TljSUMOLk+3hcJp7zrxatNFyzt/PmK3bKbsdN2qingM0w1WyJyzUimoTUOv08IAFg8zACGOX4Shu44BnG4gE58I5ggQrjjlWduMVO15J3d8KB1MfwaRY32a31Tt8Pl7vr7EJOwZ8c7smUAFNEQc21CAq+aGiGtJW4GY7yPQytvCCgdy/SSBYmQGzvvBpIlN4GID3yECbP2MAcVpEgPIYrY7a5IdsFIbzxWZ3SWgYj/UkJJJIfaeoNJafJMMODp4qjxQ5ujQPXFwRcV5O5zmvV+ZD7Im4luzIFAamFeUe2S2fP7B1n4OeuF0+fLdRLYTh98PAeXjJYL9PW+eefGcensMec7jEwhCYpbGk4/r/VUyv+hfhMmvEFTQWr+RCzzUwQQPgXS85NYIkxPhJO/Z/bbH81B5AnKda+XJ9cqw4EFKB9Riey4jjwRn0IUwBQwcOdPUBmZmDJispIKa/3W1QViM74fxUFehAGXiYIi63d5PMeuOmA6k4jlwfPp6PDfyx8ocBFXzB92taoDBbP1rIP6SPuno94qWRCREmDBU9Nmk6B/mW49pkprmlgGnq3njVLMIXCAQ8iBGB4kDqmybRjguuEOVU1rS1C/TdZBZKH6YUXYi8ED4TjgbA6s0/lz8/y/849hiu7DMWLXhp39rJhq2mTea51/pgceiDeKatfgIpR4G2f+4UDciA1GRmRkZ7ttBKQmuL+50STnUIpqmWWk+AIdV4V3ZDGe0P/AO4MGqJV5hkyosKPAF2BzMzMzq+URMTJ3nrRaoPlGTh+U4DJhwk48VuPRpxWlZtncnPLurTnhiEjuUUwlCZHEUqHrz67CW29cSOIbFs2O62+I6VJoUCQAhxr+FYiHahh595u2fWHbx7SHniZ/4vnEBZhmqKwmQ16uFANt3xGm4uEw5Tw0b3V0JSlNXWyhmoIXPEcw5EREI3EluOO+f6Pb1YZ4sQCEQv9sdsy2mQx+6yIf/BN+nlMAwe6B+50UYqlcXMINxThwjYhWoO48kYxIiHRW1wQG12/EBE5yLGM5wEjjE28nNoN6RBAr80b666Wc55TzF3sNnmMAzBkYPUKRcf8zg0SfGg2dITB7fAZlpQADfPZqGnv5+ZnC85g82YaEVJzjCcBsmHKcJbAOTVRGsozTAKwXp3Ue9rz1QAuiBIK6ooHkhXF5SoZyBZAugs0B0wLLPeMVD6MPNX0OCm+a2aOj9dexdvqKOaH+SurMYn9/rp2fykufXNCOYIimC8K/6D/Y/AQn4tN/xNFh71kA3T0NdmfdQYT6p/kK29D7V9+/w6sXv/lo5OpmQ4DXtJjzwbnXz0NoQy5iroQP2FjlfdpX18XGd5JmpDjz/Rr0aroeWAD5z25DLLGmdcq/tEuSdJVmGnbf/GzjLdoouiSOx6GOgxEiIA+xWtbPK01VfN6K2PdTSH2EEQ6iKIn2CHRQUEC0F8oBUT4QV6xQnggg2GBBR3dGiecGnifK+sKbSKUft9SPDSVVEVfnlH8AyfFYWW6XGiCwcrhYAbdQZ5UjnFq/jAAgAAWtLHHKgnqCAZy138C3+CO3Zr+xIDSoOt8A+5S4bBgAgsCyyyVUOZD54bFpe7ttKigEh7cEBKOhSMwRkchTWfA4tqBvkQu0CIgUsUUXIidY8kfYBYGDMGDNczjvEqk36X13tCUwgMFUxzoy6/oEBBvMg9ALMf/fr0H3CH79bFDWGWH9ifgl5cpBQJiAKUJyzaBsabyhT2l1FIRWQU+ERTLGsp0cvsyabPgE8evgrKN1lb2B738wkQF6S6zp7JytcVbyAHOPXZiZPyXW28uteO+JucyKhFTTOQzE+RyyTBdqeUOAETa1iVkK+EAzOReRnGipeIZAr9mjJdT87UAVPks+LJnwS/XvDlzb6a8xlbBEooH10PMGHUqcGsWzdr1tTpod9AYoRT465dA8PEjwR9EnMAzMzHStNtC3dHEtRr0cI61XmCg+ZqjPs/zX2/AnkgLIosFIQWQigsERSQUhFikigjABEIsgKAosAYRFkZAJFAkGQVJERJFQVSSIkiyLAWCwFUUWQBiyKMghJIOfDmr+ypwKACUE4R7f9exvW/dJAKOCkB5ADAXZuXLcE/c9TAmXaEjVBM27UIuSCh6Ie093y+Xf++HiocJd3CEe+YfoS/3/3iptTNTDjcAE+eMvWfx2PTmBgxYZS0j6fT3oUIcxAiEJ7yLnJf3EysGByfTX1DQbm5o8hs1NAdbg9sU2bxe4jXfEgoA7OVhIzIzG2S7uDjZuuYvYS+QbK0+IOQM1lmSHgZaSCFAxkA7H9PtvRmufr10PybhiAsgpAWQJgQBSUcAGMns8R9nb94Y1wYeQ+UXAcQm7BNyzIZEC/3xu8c4teU3709VXCJ6gmAAhkMAATGM5kVofiEdDHtaa9vpkE5xks1NBbnsCiLAtINVFNwwo7P4vXrEbHxmVfh2kJehvgf+lGoKuhCFiAexZn+kbbnOE/g3AzMwc4FXWgiQAUiJyqe5bWIgBm0W/pT1gQiIZX43Aqy1QPYZ6twGl/f+Ug9wCAIiEkKuqFwvfLgocxbsoQYaqgLRtCUNsS1Z0rzHUJuJ4ELhgargQQ1cARRCkG/+xbFsiSLGKPJ+tf5ALO8zMWUwoQb+WnNDfCaThqXCRMESSlOhn4lRs3cebPxmq7HZ2lBLMCVrEVg9IRSIKig4en2h5WjIiCDmUdJ0B3/HVhoGdseLJxslC5ACYhmcI68fvIwZHGeUKlQ3KZP9rwYQtqAmFXjx9QQIhYzeEuIxZdltdgidH7CIqFYytruOVLcYcwuYMHkQzkM9uDjpVhocowEsDnMZj+TMAzOlhQWkQGEx1WF4RLPnzgA51MBQiFoaGCBBYQIjJIsIChFgRQUkARJIqwkgDIMgkih3PJT7hDKKBQDo3CH44qCWFCYukU4oHOIMNIRQ9IhEUcG1pUNtMXw1YfZ0FzX/CFpNCBlgoKlcWjTGRuQugKd+DZKyRW9T/i8v5LDlbNM2t7kpeoA8ZIHjXqkzEIh+XYcPtFLTUursF4+soAITA4/bBuzeRWpRAmXvSqKRGgY6CPvRarDaJ7yMgj3ITBFu2duEYSEJCbLqHn9oZMRCQhDhtxZT1cafA2AbdJSYTTq2ZeUsjtwUex9dD1RQ15OrXlMVPCfkGVbFbEbqr0+Ll4NF5FhtNfuphsWRZBIRkRMWjQHX+08BYr9dpQ6E/v8aT5a0qbIGG4oJgxkIyYVBt7c6q3meFpMZGgc+UoYePFnxM/NX7eUjkHSfR+3UZg2rxTSoQBjMyruQFi6SOQ1IBCDkL5FtsDTDTB0YKGBjBII2GvNUbBYXTwEIzQqwjhidpF0MYM90AAocjA3XCTMUyqoH9WEVR1Kg9wfWHr4v4BvqD8jExL8kkrsgmYoWmrq3UpGlm2/prusMCabq6jdQkckZUmGu2PEhjm6eqGn7qGDoZq5I5YvxflR7oAHKgmUwCe5Fz3ZYIGUj6P8KlYwcpkoBhDhNiNV3AkcwCW25MDczVffHvWlB/eAKgfHMMbtvQxcblqQ+zM0vger0VrTDmK14b7jgbennoKBnJhlKKMvPpftOOX+3eQ1PhOPADs7pTluE1b5ZvAcqnoO+N1Advu8WRPMlYKNngp/hPHqnnm4QzThzWVBLaIna+nBVzhC66JqCppQGVtQVElKew+Xx4wKBie33yrTFuu7vjtAq3y71IyXC8APf5N/y56vkxykZsz8wqXowFJ+A9rIWWCIDCOJgxIKqiQYkDTttyokeAvMRdKwI6kDUWMDIyDkQu4VNGBLg2jtfAE8CJDMykYuaRA4mLsLtODRFB+pmDmQAIAO+wEqUYaAIwtSKiHRraBUfzxNIJakQQyfzMDf3+v4ZdDZDkjhyUDDwmmp82tp5jRetV+rR/I1Q5JlXQ/IlQawMDFEaRDRK9PPt9/1v9cGvEuIXHHwxxRrEk049Zd85Zy14Zkni2U9GuEkJTGGPGUUx1MJ0IgK0TpBYZC4DCRE6BUFCqnddH+z8Sqcw8KyWjJWRD6PdMp++L3JZUGeK4hnuEgpCoZVmNa6Erf/UjF9JcI7LMWDkV0ZzNmDMZcYXTHzyT3U3ruNpgNLMu7FsmxKXmy/EVmKZcDj26LXNDXAsjISJxUU58ZZzz7RyneC97C2/GMGsGR3KkP8PmGFMyIQPZNddfQNeanl3W8jh3GHeVDfSAnyVQ/6hgh/Zxjb8Evv2YUNXPgw8Sku+CHLUfTWsVdVU4TVqavOm14VbVKvOzDsidaye/9Nen30vrs2tgKToUSK4gi4lsUQVrEZkYEYtiGc4ECKxaVxgq4VqXQUgARCQe5sgQjMiFQK1iwaQommQ+g9BIiBEJCExUUVl+JUpKQIalNHITkebDQPe5A8VQuZFEa35Wq7/v6v5oeXsTIDsrz9nRunNohXyAFddeRVwfolfRSoCaiIISCCeUGkRPiJ2yHBnKGI8y5M8Gz60h9b2hpj+r5KhnDPTzxpEGo8dABArEevR+aywQ6szf91+pvPnXxbvGwL0p51NwBHZLlGpCkAQ2By98io/uStUhNJF+yit2GeYnIj9TKNXNc23xYEIByzAA6NmUT0Skxv3yjtqPQBYUmwIFRdl/AatSpw0Erz12UCUG2jSYlzOOIcLqRAMPwDyZ6ABquiVZ9nc4QIkUIhLSZzCbIZt+gpwQ01uC/yw4d/GXUKCZpfLJZ1KBrEicO3XXZK9ig5ofcGlx7jBGcxcmhicERB6ygqn2U6JOx+ug14bU/6CvAjnyF2uyrJCd6bqlMVaftt4TPc9CKXTyFernz+PjaHV9N6+uhOj2ELXmJozw+IGnKEFJgC8ZAYAjaMCIZmCOOtQU7LCtQPe0FdPYaE9Z4YqPJ5dfihI+qpHvvnlsORM+08WRfGKk9OVov8nQvWcrjTRb07K7UuAAGVYZ1fGmtXUh3muyGyeO2a67veDsIQKwUAUkkUkFhFkWSLFCKiQFhFAkWECKRQkUhBRSApCQUUBZBYAsiwgsAFgLAPg7bGyZ5hmP50oAUOtrK4rn26mw+rcXHZyLb9KsUshzp9q81duigVqbdposttB/2hcWTVVxwAkbMFKxXaQJ3vtycoWYj46X3dCyv5NOWuBb2lAaZcSl2/CRTjOpDOFRzIK/W+3X9HzSL/a4JRcHY9o+H9G75xAgbhd/29mHW7l5d3V0O/fzchRgoxRTlOz4QkCK89XVHxmrB2hzpNzGE4VGW6XzgATYBzyKGpzBCQIOsyzVMGg+gwaup7iAfWtloWZ645ZLSWU+mDrgtkkFMPwxV5Y/kBF3wDNxuGywP2ZUyof8a1sLwJfRFDuIFRNZlznVs1/+t6HFZ8Jd+omQoJlISD7Y4HPp4qOQPHo05fz58bz+x/5LtEozeOwwOwJdX5PlJ9cYGnf+Xu5kbYX0ECILi0c3oMGPGZFgAC1SBMS1YCMAyQAh1ek9trae/P3SMk8p+0N9mvPhvvkNoJ1vtGcE9PZBuQqQgKUFAzA2lX2QDLMBSEIENcUDjQoX4s8jUw2Fvd9tHJF3b5QrFOuDDCcGt+axQMvQLGq6kwvYaiZOag3ceQxWQnq5bKrs99LIgaoPzYHWfs/7Frv6rFP6yqA1nzz9Ih29HzDZ4C0e7qgx92UPXsv+f34+ZEHAUCftz5E8/TKF5eqIJDRBxsMR/khA4cKhTVa6b8fy3E1ZLQC89M3pLXMnvzdCPWfdpL39BPcdYnjfGIfCZj/6WYtNX8uEoaQj1/1QF86DVFP0Zo2cuOxs7ZQccVkB5FB8sAHKpUsGfKw54PyQ1jugCCxhAlF7cviOTLmLa9GwCW/pyFDem3isSzHAWY+8TlK5Nf+795cIIlb2kvvuopYLZrYXqkxegvSq0/3UcWyYzrka5h42UL5SoDqg/Ha14pYpDYCYReUxF2DAnITFQ0RwCZR3hvyT08t3fT9vpu+sdJ1sXGR6Ep068W6U37OucKK8yQJI+Vl8p6aQ6vWOXc286XjD+M9Jn195UTQqy+Tw+P49Z/lwmcz5aiFYuONIAficm23Qb7nBt4fEfhiu5yK5TVRGkGQSQAw/N2U5rA7sVH+vzPrDGzauVfbMzivNTBewJkoJ8+LNomj4FFXZnIrr/fl+T/R6Yb7EK9Sedid4umewggaBA6xeEIjDhiDGwsMWGKARjUUowZI1sd2TauRuMJ/h7fb7k8lDIgY4HbvH/eZ8rpQCl3R/bhqbTz+Sp/kBe96PPoTk7cG4MX/aEFULLpqb7i/ipbUP+Iop3mAWQCRA6bzBQ8Fhvr+CI9ynzaG4qdiD04ZuFLaqSCSCwhIBIfb+Mf1hv897Veja0gAtXPYU/Jmft5frbQvWV3DgRNPm/gd4/1IB5/PSTBE6QpeUxDUAIQ0GQNha5vIajG/9nsrIbK9oeOwX6+eDaa4eNfXmxgMkPIR8b9DWc79aPToKPT1kJJuW+QW1a8tY62FuNJLKhnzGPt0oB8sAX2w1T2IMopH0azZx91ANveC8Oky96RyNoWAhdEJBJFREBZCLJBZAUEQgpAWKSRVkgsFgRYEWQBSCkIopIqkiiwFBVJFhFGJCRVmxPfLWEhjAiwBQRIpDRA++e8gZMZkursPuogVjIqE63LisK8WUVUSol2KU9M64Z9DxPrDo+T8ln44z/RM/guL+TCGTKOq1IdayCz1D/EVY1locRYv/CZmMiAXE8HSQuLqCAupAi2+/0LupvXCbQzstmk+p4QrnXOTQANz96F+ezOzlefDp8u7nkHjo6wq71wu+BWuGQu0vSB0ju+S9cfHnoM2TlsrWDryt6c7zPHv/7SuqPBs0n422oWx5NVDB3ygWxk/7201kBNUSC8IAKloxRD+XFyl3yE/MfjOer8XUNaZcmp9M+z+uHbh/bblEeWOKbLD5e7Q6P6lFKmmmWllWsLRhaOLJ/AX7MLNGOX+G8YXFsA8Rb16dasGfzbtUPoqD430xLMcypdQRepOCcfmforLFtR9Pp8fTgbzUTnQ8Tnnrek3N466ueIam9132CrnF1bLs3O/o9M4ZpDfs4b1/F+gREQ7+J8IQQ3wSFyUzbFKbShVBvM991AIAEBk/QpnAy+YwU7Z7/cdbsx11Dz/tPpmA/AYTzA/vQHYfUBffjvd0fw48HZsx/NuOV+dt1f0URNUCRJEy6TSterTwwLVheCZ+7H03fuOFEEgfo1Qf+mJ3AV6nWKOTvSNI4iqK77e+i13E9kf3JOKJFXuF4VjyrSbcOoHgiHeqOw0hoW0m/HSUlQHzzN1yKWwCsBzY7agza0F2dXzBVs63LXsH8iqYYHT120YFwED2ZkXraz06y4D7p+f40zaqZZ1wYBjUj0GH28Bz1HLFQPTEpHghu1PmH0fAI/bTx0/H5f16Mcwcts9t+3KPQaUfr72AlOcnmFKIE6kAlCCy2V8bithTIhAUCvUYC1OqT67V5KmtDoD0QeJ3HHps4Yo4Y5cHdtoSFw5XibY5U13PloUZ5G0/laY/oWdum3x+VVsWNem0L6DEIaPYh/6EcHTnx4dpRppjdOLTgEDQYqGABcVmWyq+GlPXBOzDghI55w/OZvV/lt84GW96mZI96YwD3ItEwRJNJxnN/7R2+O8a9qgaMVBLIIHJNwgin8uAOjFqJkrvBf9V/fMVkdiaf4I5Cb6CJui5M/kVy3QfpfUroJWFTvk8RV0UKZnKf8S8d4Ugq0PUfo+0mkz0OslvGclhdvM9kEcKmLnBCk54624YG22Blkcp1dwf+pvPZvg/euf++vA8uV/dlPkgqIQoQWRZBHM9BDHSrt4hz1+L15XOtnPs+FvJwHk1Y+3yKbRHC+vH/LGQyr9fxlXgvSf1/EKaSFpd0gUN8pVTMCkArA4+jAV2VdGZPyqA74Xb8uqglgzH15Tci06SVwag+woAkWiiDGDPR+T47Ga4EBKiZDImY25z6VsH5EC/gLdw1O42h5/JicGX7Kpr+qgYohIEj+OXXrLKjDOf37Ur7A5u8PjOW3pnKlOgA+kGjb5eL5+P/MOvABwQkQZAkQeLuK8gH3f05qhl47rICnKCF17Bqd8hYKbrU/Hcavv4mUfLjlDRug1bs5dEFe7iNF1Ew3h/0o8d5FTTvYlc4hOLkb7TC5wi73vip2j44poqxmo59Ii0JJSsiwVthisEtgZtB8+l0wDjx0dVnTqIqhbK20U3iBMAqQLjZ3tyqWc7c/DM2D0xZmGN+K2pZlzVrHu4yoe+xAuNv+40rmkmNAgDbbRtQCyEUf4EB9+7J429bc/t1nYRfUCQG8c/Or1EOyCn/LhfaEZURQibBYAgi7H5irfswts4EFrvvGjC143JhbK62Hirc8h+CDfvxuxqBT4rn/jglp7SHoQbQWRSEQkANc+nlNNbYOP9DL3JiP7NhW/KfJQXvM8CGgewruCxz0wluzhprv18JQPLXiL7HHBf+IB+CjWDZj4IZCHpXafgMmOhD+aG13wJsJJphRlSDbDfKjA0wFgQUrC6MyesLIrkDWNgraSbIwPtooAGxIthxgDpWXzQFWlDqaRliJMUJUDJMRVcwIjAvOCQKxCkAzEMWg0Noq4gl4DCP4hWCDfDQ0RUKg6gYYpEjdkqkDsSKF4G5iAMnUXTCN9lQa4p8vBi7GuiqPB/dNMxwMMHphdRtOydiGEvXAbL94AK+NHRCo841S9ryJAy0l8mgp1Pf5kzEUrT/xqCBmMH3dmjWcIACIchBSKojsYzLx7bZmyjEN/u+/NvXSnl+z0z/hu9s9QOp3EQAkyrL5xswTu6WaO+wJ0yrCAvPp3Z/Pv7vLk8iB0SB6HEGUckAyIwTf1/xFAoP4MzSRlK9ePwcsplqcwDPWozUN8jLkwRyYf/XDKfSQCgclEHQCIdR9q2/FIDAgg7xgML8u9CcGsQBICDKgaCqGF0gfkgHjORHCJgh8xh+WFIQBtJCALPffcbC4vNFIS8evON7yK8wa5GhiZkCA5j7OuBKQvy8HwU0gVckI2zUDdWiWC565LEb2wpEyQoQswmWr44iJoZonuUUUoiBQRQ41QkFDDSsrT/AqeCcYrkVyoVojtwtmDjP948CGa/FpwWj6Zhr25x4rQDP7T0oBPXCeFCQO01T/TKQFUk0kKOkLDLCiWoQLIVJRmAwFMpQpRLWRKBLMWr0CKGMYs2gg6AcMA5sPisxc92WE/el8bY/8oHEFCSCIIyChP8/ej6Cf9u1c3FgLixTiHuJXN8YU28W2v/pv+H0dPwX4I336KDk6JQSkAkUNdKKr29RQqB0mdq7/OW6uS7thKHcp2MOV2ImLv/peNd2H1XT7TRzccTwIDhZSlHNSdErS2DpbiX85jnfp5aktOGl/nCu6I6OT1WrSIlZIox35qt6Zf9TNwqmLqdbCX/zS/nyGzF8vVNN+JelEvhhi+4EWB0MhzBh5x4/DzyTzgJ+0lC/6xs3qHOyVR8PpPlyfkBgETtZepT7wywBF0UkgiInjAenphnH30w9QMPWHPVSh4dnNOJAZR40Q7r5RxDazSMPrG2jz2uP1j83RJ9x5dP1tWIwI/sIkkxRvwxrvySRkPOKm41SxzM/4LUnBAKgvsPKekp1WfeJE/T4cW3HjmDz4Kll/P9MDnjZOjtocSjnBaL24vXxXX022hoUNICIO0GsiecB84YRqJFgB0Yjths7Fm3uePPeG/A4fBYyIhhnDFxcP25h8Xvx4e1/uHHcHzeEAjt+vfvrDf+cqcxCQvMd5U4due6XKDft/Xz8Q+ogdAeR6LZ6s965FVaNlsCRZIW9RKg6xowUm3I6lhjR0otQVn4TB0H85dHts9I2/xm3e2xMjkfPn+0fhPUqcv5iHB0t2ViIcx8v+cXVzfnhQBzc+GqXRJAZAkZIQLpkLcdanFjFAqKXxRkRDo9r58eu0cEXcQUwRJEkEkkAUyqe9GwSraMD1AQum2fgLzAaBqESQgcwQaCIi5aXgTniB1H04mz6x6saqtzBQjDMLcUin6vMt0054AF2xPaxIC1vBz053LTVQSt13o/vIsM1JfiqQNwOesMUvWp3hcbwzD8uSTXQyqSm1Gf5fqhdDx01U5wLxgFx1EDhgnFwavBZlhmUVIWghHEZpZts/M0UUA1XFFdbDvk8hkYBBdgBcllQ8lm3E7Md/HCt0f9OKwxsGRT0TB6LB/fefd813AbWvSqZpb/3PT24P17QbbSveRagp9tHGa3z4ptnHcosKupBJc0LvsLvYDcU20lf3tUpcr2/7WHnNc6aMSaiu+hXQiHgCyL70clrsY1nBQOizJLLiZeD8lRewvX+Lu9GvxaP6+ixcsJZm/KxHIIoDrCi/C6m2f5pCzrg/uBzrcHhUJ7xzjnVNlj7YuKPTglJvOlr42v3eKZNFluWeslUJi9/yU24BEwt43YfBn+eNXPL6CS35ogQD+YbHY5upbYl/8RK1yupf+ztdM51EIE3zdgrSSV4HXD7AVlYZXMIkYfjyy2Lmoy2Vkv7Ov+Mvj2U/5X5782dfbM4ZTBFQyIGYEjSHsINX4WffC8EOCdYAvFkDbg/7nvI/VdtD6LlKwTn1kRAKZEIFTHaUEoyBGMQqZVCbM3kJmLL4B7MlHHHRMkWEQ8hg93OH/VVDqW/dGpFQbhuBIi/+gqPqi9GHiIMIqWq/agEtUgnQ0QjsfMrWti+10w1nSlH/uxQ7F/ZdiH/xz3HehG16LXFdpzy9t6KOr/P/Jx/ypZnelYjxXeOCc71UbSaswOaUAP1EVsSJDCxsgAGB5AFEDv9gyFUcMBJAEkRQkUGRVYwEZILFgChJFAkWSKQRkJGQRJFJAEJFUhFWREkUBSAsFAUUBvPt0Q0rJIsCCgSSKfTQxaizqP2hQvSbVULgKdpGGDXTg6HcnUAteIEgEAOp9pJBkUgB9OesfUtfqdvn38UdRVmArd1UZ1LTwSx+qDtBDq5w/5cHWKA624WGcKkM4bsO9dPDeWpNUmxKiG/h6BC/Dj+1QQNXkeb79Bqq1HAy5VyL3Zb8dvAvRjfidRjjoWjwLTUWuKzGW+ctU4ohqhsgZNfy1E6ceVAjjmAEBnVwfHi79qIqGs5Tn4Lmh6uNv6awT0Kgwz7wRx0/IpAfG94+bKAkRFhBvHi/6AXV1OAPLZC++9ekk2zlSzjDSiqN1JtVhMngzY8oi51zdQiw080mNQYrLEV6LBRqPsoQ8+iw6gP0zwsjvNlpyCvDSexSy02vv7XKzz7kU1teNd+o/IKi+rqpLUde6rHB6MTTRNqJw2pjQKVJArnQMiSPc0ECLi+GwhIEIwHQ1B523SZqHDpLuitnMWgC08cLIHdzuauzgKd0BFEgg+ZEBAqiHpu3iY073Cd4j+fO/HR/huxQLf5NC/+cSJJd/M4ln+MVvm0mNgNpimZ84SEU0baVeVxkPDe9U0IibZZpGshaI1HRnprMrAMzrt2iC35u1G49R0jvRuXii/5WBdhL/u7Jd/fHSKiNy5IY40gISfFbRfPMVuYAVaryw6UOMt3+KzSltKWtJcZq1GKSCOZjSEgdXf3i/sW5J5oEXWw2FAAWWy2t5P9XFtcAblxil+A6AikfaKpEBU5sDdO9VYi7CAXV5fpbjYXg5v8RDx1pLH8Wk3DZ/vpXDteJOMfTsmz9tCEsDVCP1ftTLtbtz58dl5df/VMtX9F9Ko3LdawuS0Lf3aQEodTXDfLFNmKjbH+oBSDwQ21pl4qC/O11nfA8pabzSKq5+4hYh8QZQ4K4opr2/pXTdT1w3Tecla3c2eopgAArZoJFkXp6NhdBjRKDgpoNtPQ//EXbP/ZfgNtttsMfQk5qihlkjncWUaLyXQOpn68v9ftGMIXEdiGlB+1pKkMhtrI8lOP1c+09+RgwacUn+VSt92EfrMAirLtlQZMY2neX9eznK5xhw5malLRL7d38vZ4kcR/SdpuQ8ngQvEXHRQBAyIATlre2Ie0CIHuRWCJ01R+sGGom9BSAaQiHwYXRtiqSEiSCyAhJ+0HrKfRzwQQSsyIkBERGDIj+31igz6aS3/lLGv9HntE5XBfl8HTls0oM8/8irU7dn529t7yT4kXiKrNP6piBjXgP85b1/t43vqfk0IhiabaaZbUi/VTn3ItqWArOePQpFyaGhpilquyvk3XXetxbOkTG2YgEKdO3lsKzRArAJP87/FVbMnuqIvW3mI4v7LQDBEJEJASQB2Asz6DbUr3KUPHFdU2YLvNs4yBPgHTp8zceKWABmLzb/8uiILsINocWnc8zvDD0wckiR/6kAAJkhqz/9QeDDAkCYoU/DFZkAM2/lgW+Yqj0c4ITU7yyP/r/YsmSrO2ieTLqwPq6KNfMdt271flnG031czIZlpwMGdPOqfFhdknpdrNd1p6f8PYV4ci5BFlwiYNBhNUkOuoIj+IAUiBIpMBRDL9bROwb3j9Xhv/u/sMMReIG+c+MNMuMMfny7X1WWwRVTLEx1ohgn2YD4HPjnafPvWbLNgkJrMyETHy/Ynm5v9Ut/pHwQEZ87qBzefIX5MMzAEiEG8lMhkO1a0RFvQBSC0v9ZWUJWfiYO012diMGVFDcJPCccfxLNghpxgMuvC3BHx0W6I4v/mqy9ijHJifrNGa3TXfKZm2mOxD10oxBtgpX7Ap+Tq5Aa7lAOquahUSVgGpwERYjBILFBZAUkBEJFkiKMAihBZFUCKLBZBEgKIwgKsVkCRJEGRQkCRGQFPPHBM7/1JPhnovliGCIYrMXGG+0DbLujCJTrzChJ1qf3dbr97jAuFHqzCBBdYKCykQrGS6vycAdrH5tABjt7e1mfYu+HFjcXXSTauSFRrzOGdxah6WoBreH0ljq/br34oScfm2u2ra9KcOD/JfyGnLv7TbjrwMJltiOupqwhZKZFkhiOecRptlhJ/bOUbV+MWezxy+6+cf9Y0B/AcD3Z+xvBAuoyuDX6Jo46X/zQcUELYgsihIEIsiHcQ+mmnDZs22qI7Rx+OpqtCBTGXhQ94K5URpy3UboBIMiez+sL+UDFxS5A0RA0fVlL8n0iZrZJlUeFHHa0GI/1ba039Em6Rt86w+FAH+i/zTAcRMwwOKFpcUpbLTJ3bioW+M5jRM/RbfBus0TSmJPfYZdFpjm9RE9I8n8Rnn05R5jmmvRWl9pbfwj441Gn5X/LHr1iVpkW/LXEDMyBpXpUP3xP8Vo4Paqmf830bjjP8NBxs+utF2cyfjbwl308AL9N6H+kDkz060xwyCQBNkNBfp5+T0XDwY+BeLInxXZn9Sl6nIUzx0JMHlQ0FTx3dL5rE1YkQp0Hr+T1+i1NEGQJBkJFCRVzwA/6jn7mQ6XJ1ull8G9pmaSpwqDLQAiWAVoLA+gYWa3R9L3HEGFwvVjH+wfVRyzUjvSgiAXEVOUQsRnyMjZSYwcDya0LqoWV1ZaQ7LYVIwhZcMLVWppGyBS2aRnQ9nqpVDVsgQFrPJyBDy776PqGnF/9qltLd1dFBB9IDoHKY9/T5M50eco58nqqZalCMOvAORgyAkJ/74qY7zi+oK0ceIu/kgcgJMCxpOSdcwdK4mbe/EwkjBmFzACHtTiACnvrvT1GH337xhy2t+eXR4WXOljhSRECFNzBEN61qZeeusREOzUliSWBizMjyNyobXTrDdajeuIXYRv6v5e7YKmCEo14OB34s/U7SwVSZdWU9tSwzYYYYwUL9uk2q0A5cA/O/5dVMcDl00+GSnm56XAM1ikwdagm7gp9VxNNf0Z/0ymGfOBUA6E+n41p5Bhx6fvDdo13GKNOCn9PD1dJcIW+jaahSgyIZgdcArdEMc9BQ2Xn2luEJdyCwseF4gTzqpQMJEf+9SPMY4P9dGfkK9+rzt9f+KWPA2yp6p7J76z3D6rEzUGjcyxqghHlzbJ/Ztse7mvAqzCgv6sEDxuUsearwABAiINv0m/Fij4NMxANgJ4Xmc3gw//i9+P8u17Jz8HZY/ryzav+iqqN2K+3QIgXwc506rT4cgs0B0tFVIiIxOaOoPCIu65pAsC9yBpiUoeBSgv/lfoEabEEmiK54JBSCiwVGAKosUBQVYoQkFJJBJM8/g9eLHg2dj48YYd+63qKiKZbQcwMEQCTAACzdKeW4+F1s1JxrhbKSsp2dB+rlNuODUtRaVtP5mN66PhwJlOOeM235vu/C0Hl2I/8/kBLmGX9gbD/Iu5+lPTKYUBBcerZKouLsW/p7mVJUdrwpuLn3pcbXE0jttxL7rIvFbRIInu/y7LFVyi3VkhF0BIK3aOgkfvn+KP0sTpQoaPIaOaihIKLDg1chb+kL4h4sYlFw6vsHlLMQQN3z0RMUF+fmA+lt7p2oh/V0ry89oAMZFQx4YfVzBiIoFNdu+QG4QYiKMOCbHHksEjShYYhxSfqt+d6G4CsVPlz/x5iSWNmQBAAiDThIEiUHed8eFtkh8RSqliduWZHoFiAtlEoOr+GSysPyhjUUqB6nrJrw/zp0P+67lFd3a5LQskBM0/YjvnPY9CAoLjkmfPh6nKZggUBBfspJUHADNM/6hkmbaTXUQZQus2OLLi/fvubh+efCGZIAq5opPRFgVB+O6+HDAdj+i34TpzMIeIfUAYEVOo+z0X7deaou28x+CxEpkQMx1mz70wLNDQ9QHLetDYwDnXUHLO1vC5zyUX37qE7SIDmic96cJtVKBemJiBupvTFV5WWFhL/868R6fCQUZeai5NJHO29pb1f0/dMbYr02l/2O3llPScGz9TVuuH95zBn7k2i6w3z8YYHzV3fn+u3dix9K3RTTz5kLrTehO3+NTp681VAukiISBIoRZFIpJBQAUFJBYKQFhFJAUAUkUAWApFgSCwBZAUBYEFhBYCwFkCCyAEjCL2NbrSvgiFsA7meh5psg2DEUQcQAwcGing5R9PgJT3HUDCYft2YhFvBOtXzacuYhYQ8jOIf8wGuK/5RU+xwP2xWbyMkS5ir5ss0nv0GZiWcYoJ73f0uMQoVOhx9KW+boazZy4UVOTRrlLCmuWr+FD6zJjzsKzQcZn9yB4blIJz0vkE1zjbe77q/tl5tV5rl7/R25hk6YSpwcC8JBVFQuzLzuxBQBJAcQJA6Ezb01KFNJVP/Xkgt91DGMQz8weY9dh2o7HhabcBTF+fVa3JD7g44JIkYhRvA3ApTc/maenyUD/0M96hyxDn08mWUXbECybbflyfe649RngN2v6Lv3/8jbiIMrqZWDP5WoONA6GBIXb/wJGE6AkuEykdxmgMQKp8pvUHn4PaAlb1V1w6c4ps87zdHsTSPHj6lABePOcmv8iNOlOU84xXt279IfH0ByLI9vj/OaZ5WUqmbeeNM37VWXqsTO1qngZAUzC9JGWxBF/iwKsAcQMKOY8E4Tru3UF3kQKI8QhxqvFb+V+32nV4LtiU/oMXOtXAlQQAbP/n0EGjBAF70eVqRaJH+XHrA33XO9r4UhiF0ptOfPs62Taeef1KOYSPGE+PO/taWNfn1l/dtImDFsvzumfD65xaWadg4keVVb2uD93G7eV1e5nfwQTx14Xg4drA3RbFJldr/yo6TFgkm2LIa5SbWBnyfxV40D/lvUGoeuAfibDWof1LAugSAbnMu2ywzAABCkN/BRx30DB0fq9glo9O5HFCERT/eUXKSEgeWFEwUwX4sOfkG588IGoFZPsMD7bh57KrGLF+GlnleM82enCsAPFskSQREh+cHfKfjSvv/JSGfHGqr2eck8c0pCVD7iSZ/6buelO3YLAVAERZF50Ki9jdNFiiMUy+jp6dE1tBSt0kJYzO3DPFqIMYPOgHb00AYfz5XESSScrJCwr82H5coon28dCpGcreffSZLC09mOidGyuSxqKMYM3UoyQiKSAR3S2tBgbPfy2Z77qyQ5obo9axB8sN3CCelkPlEIbalXztX7FoQgu7UiKD5ePefFrbVKjJEnW+Tn3PsXIJpK+RKFGD71CRygYyMh1dVM7fdsxERfNZyc7+dOWrIIoIpIPqctM4tjI+br/vtyG6BNlYITgofdZ3/1+Y3OWxKcynZlPTbGARYJIsCctOlDpQ+i3Xbg5PPiLsDEAJIAnqLUVLbysqoxLaSHWyQxMFfwsrW6pQV5YpT1w4/ogXW/CpWa5mg8/U6miWdvp/jZ7rQ6qLBB/mLJw9FUKZpleLUDpsF3CTlRwq03UUTyr6NlF+z+jgfcp+jr47fmEVUuz+spYoYyJ0IHccEOTWUboGIVnUhWaI7i2gJdFtmiWQLaJbVWsMvxctV8vW4ZVwRMf1yimKBo/OgLlYbfvphi2QUfRKYKOCNRIFItY+fdTq56I3kCQSkR3wU2y3lyUpScbZ+kBT9ImKC6z6KFWF/HzWY7Xs8VEGyZYoefNgK0iYo3ZChsmnBZyUsUOezN+vY5LlkDqzJABxw6UE4pZPypnlUXP5qVGQIvJwnqqqdCODm31DZvQKcw+f304vr3eWAN9ehJLCXN0hUE6in+v3fLrWFeQPjEQ5B/+JU3mpEeRvfQjiIDTLQ1Qz2ZZX1osb4E2UL/Rdm6OkLk7xmEoHiDdtcZZhSe0MKlDECoFM1dPBThtDhrS/MaIbUmbinuxm2puvmnIpojJfC/nviGS/tcll3x7EpSzZeQIfX9uQMcN9LxAAqut86NFsRkLwh30aA0QRoYLfVhYRclOJiJ/uZbYGgA/eok7yUfzzQ/b16Tl/EMZYAh5+zVM+FiBCmlfpo71kvICSEH83Ez7l+DS9R2xy6alAMgghtoCmU1564+p+/9Zd12WzEUqLlgaY2Yq7bBUED7HD/n3cZ6r202bd2G45CF/P4lXPs5ogEFH10wzAn8pjopt6pEsge/zHJ+YpmPutM/FCuRIPECECSSTDSJZQKhipXQxAcOT7CtsGv9XlbFBFPppv/APqKqaiL149E/2FNg+6hkAgXMTlz0Dr9qiK9ab8q/z1tRvuD4QW8A4tuXd+Vl1xz5fj6phOa7LU9+L7NIY9mBcKCKD+/m9TIUAfmP/R4L+EAIEEuX/o9I9ZlrDe0n5vk5U8YelJ1HQDM9Ntf1hjak7nn5Ww2PswKF8BQ5/790fIxTodd/+9LV2j7lAEcjKr1M9233x/v9866Q2PnC1RjXh61i0HP4ACQOBSPHDZBbp6Px/0Ko64yaPiM1TqCKIQAQH6MR3qoWl1PEaKBsuEogY4yISAbJSw/3Wp/jRidDKQBxmBlIAhl4KKmw5N/0HsxEyAjtZfbVuxqLlddYIgQYWUpNr2qOfxob6kS9FwK4+xE2DRD/lpZqKKWVHD3/iqB2jeVEfexQjgqvlJwKqvIcaSTYmHGuvWjE71agYr1Hg++5YcbICSF3JyuBcYIxQePNHAPPFShBCJJT133yD+JyjNHEF6F9K1OnjMO8cGFQ984oDIHR5KEgcgEGkcnfM56rEOHecZUDKDgWhkTsC0UoneWg0mTKIFH5eAgU/8ELoAb4UYkiSEgP+fDDTBstu6ty8M0HEx+hJfwznYmf2+rbrHTGArodr9f6loNrT4LOVIccdxtPbFi6ppGcr0jSvX6gyNfiu/bOi2nFXKVxXxCpN7ATraqooJoqRRkkjjO4/FQgcUqsxO8xokywNWVQwwRovLM1P+iISQ0j/tsCGpSmbdjMtNriXU2/7nBAYKOwgJq/6LimIkPgyJgwC7Df8VH/UAlFu6dK5jlcpXhDILcmOwKG5KMpKJKaY8vM/HVO4bPfQciF/eQAQgoowgSAEp67q7Ir/5vr9+xPj76G4hxH3dfPn8no/SftGkJ3dn85zFh3QgZNRRc0k3LBaa+jW0A4iib6217E8UQMETgmlQi5slEUVN+zTVXBEugFIKEjyAMUtnzbDafoWFptpT+MJsbFDxIQ0R/vlLs2nT05nM2HJA8YS+DhikILrJ/6IfrwceQLIiCRN0fTwUsmyX4yihIJm1W+2/saMWBMMQxXU/8z4ELTF0UKiHRGYTqLYNV4VA4rurZbq267Hw9Cir07TDUHPFkcc16+iAHWigRVIB/mnEXyGEiGvWd/GlmS7A7WwzJrDoDYNgH4+uvBiwj9hE9WGmLx5nmLco2xc8nsx1AwZfh2yQYQEgJIEEUIQAkWDLgJqKyICd2OuIpjw0TtRRqAiQMnU/VBUSoaSzuwPy8wh4OaRLwtFVHrRAkVRKeHr4uP9rXd+f8ctieraUOrBC2PRzgitEN0pHjjLqa91b/HWkBgKbaiZ/4l/bP+dz9q2DqB20lLgJaBA+Vq7MohZ5/aYXBYJ0e0CYK+n9/dXb68NQkAkn9ygezviqNE/9As076iWw4UIu8MdO0QeM+8om5f8CwbULCjsKJ0uKggq9YuaKd3HxfmWAi9BWGfv0/iHBDHtoT5OfD6r7twIBgYIUvgfDs7Nv0Vt1E/nHeKOwI59yGzlQT6QTXLoQqQSGQfef3jj6PhkD6J438LA89tB1M9CAVCdUkhNFh5OmLDub9sumExk0QzQetANBHPopv6hX3WaK8PUTKNobH/Pwqjk+kQlN0ICwgLAFICgsBZCCgRYChBQgKEUABZJFBZFgEiJIhII4vz3H/AWfrPf+ZpnFnxXOEoUXHCRSCgKCkWSApICyIwgoRGQUgiAKRZCIrJBQUkigCqKEFIpIIkgpJESACMAFkFkFgiBBYQFikUgRWRJBkUCRHJ0KJWHPWhWbIoYZvQYjeBPwVe36MfH+V8pb9lbY7T7V3AsfxUCL9/P8cpYHlmLrUDEGIDg9pit9EAxdahZNkUKRUkIKBIoCwihBYEUUFJFgskgshBQUikWQirABSAjILIKEigCkAWRQIKskgpIpFgskEQgqgEFiwiwigJOHDbU3zdG+euJ8M1DBdTvESxIOS37ff7bQ4+lKZRw1x9m1HVAfSKi34ioXQyxHLuoGPGU1VoIoWkx+134if8N8JjL9vHeVscg0OYgh+n0lMTM91AM0JMoQaQCQ46lPmx+N1BfahMG0qqYgsFkAEVAWCkBQRikFCKSRZIKAsAFIKQWEUkgCgLCCqQixZBQFkUFkILFCEUgLICyAoRjCRYKCg/pQf4x0U6zkMGWzFUp2reAuGHG5LgCTP+xaFeCfnhzZkHy+HXp7dMOYkjIUhSASMj54KAp3phLKMmi4/Tr22rIjIhIgOIiKm2pQrqffVUslh7lbmtSZ0gGljdEkAGEQkiJBZJFILCApCCyLBRSRYQkYhFIgkFkBSCwIqJCKsIKEFAFkigqkikWQWKxAkBSQZBYQDQHB+fBSy32V01+3IcW738mbGgckIskUiwFIiLJ+K2TsH0v+HVfkd+fZWWlFs5tP3bpb8qw70KR8AHEUTHi4e9Y+rfkeCYMxff2BY84AkD0RD5ctCR4Z8c/KO2AGvBo0tlIC4YKX4eUqpZDN+dD/CChcointVKdeGzw/lUAMU98UpHp58qcjfvuXROzEVOtAOWOOAyJ9sfNACnUp3epTILG+H0KCgR3Q60A8k8f6q6DYICuHb9CF69iL2QA38lYS/NmHgLDc9/768cnz8KduxXHFUkCRQJBUCRFZFWRTqmWUUM8Pn1YtNnB+vPis0U6VQ1/zQVzxtiHCABHScNLbOE2ewtHefsUTAAQBMEkmt/pEqBSdGYibSUy0EwTLy5a0iONj1ivKa3QhR91NsFIfkgn6Ag/KGQaFTqHIT5vRwLUbjSNDVnKc8U1RMenBf47Xu6qCc/JgaooYYGVQI1hlFdQU7n3/9vTwUtMbdaCiBQqL/IRoOoxSQiBCPVEcpaAdDL/IvB892+8OnUr1JYibYHJPjgXhDPM8zxRC+CYMc70OXp+IiaTZ9GE146FywiATp77K4rOOpuL/5p5x/RwfBxPQyYzx00hpDkOmH207GKBBYMiBIhIg7P9oa8/Thyq2LfGe3RUfZrPY1BcwN5gUnnOE6yhIEILXfL5LCdb/oUEtncelQAVviDIiJIgSAJICgSIJIsgEgEigcXYy9/DaOH30f7mGGjZfr4beOPU5louGAnXQ+yJRQO6Z6BjxF9QdWX9s3QN5c6U3Hir+CcIUe+CT0zt56SOG7fUzxzlovm5evxYi9H+vv/Op5IrwQPd3oszsAKNCEKUokpVFDLm8eTitQmA1taAIwuYcacwmkq64BgtqFtgZBCHHBD7ObZKgpmgSOPF2T12JmPFRbTd/xr16LtWsPX2m7qP7cBRuXXhbACOKuWvc9KdRJFshQQJgwRc1I3Z1TPdAWJasuAA0E4YnfHypMhk/IMbqp+JO8Zep0bDzK4qHVBGHVy2f5ZQhsIK0gh7db7wB4SwXphYUeMh8ACOn7jo/aYcNzqmjj5TR4DgXCTObAkgLjiJ+dZNkyKRpBHsxp4/ZHKf7BhjyLmJ8gaG3sIhw0E3ikAMEe5E5/1/ypbNc9/q5ex0rS7Ra1Q2ERPr0cuezLGl9mmx6EMcFw7DlPUXdPEcGXC5oFQfDEKP6CXt9++09mG32dm2/xbKpex0QDdFd9978YAhoY5zf90/nyDbVgRZGQIFmH9usA8S9dPhYJ+f50O7DYGEEpRDzDQ86GYKHH9e6uc6lDkAUqms+TSWtYhiIsiyJy0/srWOKBZDmZTYqUvAU6tEn/AbMd9v0VdpX4DBtyJQb4ncYdC/Y7MGu4oMDsQzwC+KWMEJEAkkQPj6u/WWDjhSN56qI4I59+utn0Ya14RUxg0qUAZwiqBbAGhnmAg48uGYvCdb+TQYNaQiTP8wLRCkBkKf59Vmq3Xi2vy2df3ULfdQDCThpRJHBS2ld3epohfxf7+XW+Tbfl46PUiCVgNf1pkOxyGN0qgg26U5lPSun+tf/H32Z8IE7GJQrn1PprrIN/WrU0cuOvPf+v36bUPujeQfo5KA4BEgYcpKHUw5683Ps4gjfDEYXb/oJgGCJSJ0oYA3u9YOXsGAx2MuPr+qi/n99AL5ki4onWgdeDsiWpKhBTmv4cxshVt4QnxBM7lCgAWxZFbh+qn9bSiNsJBZEWQZBdk4j2W22AyebPk32Zbu7qOa1Swgn5TDrocVacVKB8gQBfuy6K9DIYj3r7xbQh5xoaw9RQckxQ1ZDoV5rP1lRdskUZFQJJACRVWEFCIkUigKApIxAWQWARSAKCgoEWQIoKEUEYCwigAsAUUgLIQUFkVVAWQWRSKEiwUgCwERfuAePH6WGkjjhg3122YoL9mWi5uiUplLKgl2FrVawTLb5yzeIfMR8coN6M/8GxL6IIH0jJjHrcbE+am4hWfoGkRShgiGeDSDyX+Lbo9dxSd3VdfrzF3+zJBCQf1s3tUx4CP7p7EsEwRGRX+wXABgwIWLuBjfDT5PDUG7p0x/H9Ppscm/gwWCYISOf97ruC1XBeU82j5qvUmGXQCRD4R4RAEIc3mPplfMfuh5ux1W0T5wUJSGzX6eyO62371UzkqaoDIyBIiSAcmLm73T5bm/lofYd0rXyYvo7/NlucWSlCQgfg05jNlwJudRxuHJtPClXHOCB2KVq7MejwZsF3yGgp2EOhKHqw+yVFEyxA0TBM2n47tt9z54+CcMdp/BwVDw/+RKKitT1gFHgmhyaR5+bph77nM4NWh8jU6yZQoXrjo0IcgEaf5bUzlv2UyI9X5Or9Hq5bOF5sgJwmNEQoogh1ZKHUy65wXIvRWB90SHj4Vt6e2zzk+0FNQZPUA84M8Xx4+1PotHFb/OnGfxivgsgEI3/79NnBxlyDWB0IqFICGTko8F37dLP3RE4UQvTuQMcuT/SlkT8tRmKhfBP8+HjqGqFv6UxfK9TiJYSN2qgdSuf+/y+7Zen4wOzjo9WDnQFgU+UpaZGzlbO2/59JZZ3FjQWC7gUvp78v9enmw3dqcP2Uzo4TonjsD7SH0ft0L+eZTdx9tKgsIoapZFD3UPR6aVPdkPESEJEoJlWGjjKDhmr6SH00LLDcu0LCr99+TkxbTfoFBfb7vcFvL+DUsXsi+kXcYoQGuUmob7fTUsjdPyx5avjto9QhSJvg+6WHhlN4r6gHDwYbUdTF6wIEPz20P+/LBgs857a9w5xtDiszFe9kz1yqoxQ1ducXOeu181m7tWHazZa5dqD3iMgMCChU0wS5Ahmu8SB7ZfaHRA6kFd1VMUQkK0cTlV9YVQLXirTlDT+ejQFv8eXwZuxao5ZIIgCwWLIqgsFkFAVEWSCkFBQWQBRYoAqgLFFBGRSLBYjJIoKIkRICkESRYAKQgpIsikiyRSAKRSLILJBYQFUgKoRZAWQUgKskUFgqwFIvTy+n3Pt7bp9Z9vH2c2EJFJIqgoxVEIpBFARGKyRkVQCQZEZEkQkWQP4VYJzihqEQKfXeUDeQzPPT0hEoa4UdBeGgrlQgVBBGlLSMUhsnojtNeHtzBbJb/3R/HitGBIG6SLJIqwigLAUIKKQ+MHoso8kXtziHMnwW1fT393zCetevExwBEYLIyKPkCL9OmyzsJzeKt88+mtQ4iH6M6CrPPMMNbOh98Nvf5OTVfhrRDLw0LKdOoXQu7dlbCPuhx9q0q8kTt3wRaCYSeJzH7ZrMGDGyvDPNPYwxzpLDhRRUgt0cgFVaXJNYP2J+wSv5b6PT2miuP1lbbrcvButLDuQVEC2AT083L6eznvS+KSAufqnJX8rf147M8sj20GL9ASsE9Oi/SGUtwOD21VDxBlBMhXphMs7HT1aqeHppcnIQXFi5a40gskgiBIvp6f/fJbtDdKiIqkh7ido9fX160bpP5/ZLibJ7P+ZzduwSG5TEVRcye7DXonDKldET27qCfhHQdLJw+LRaYLwviIUK9G6xaSFiPS8Vi1uyY7DyMLIfgZEG9Eq5OpdqN1tKuuofrKIioY6BvkggMJFQiyKySJbOlPP9Vl5/eO7iifnwUxWU5el2NljkgLIifX0KcWEPagVRDf/7DxHv0aDnOiGEM8TAnuaaghgQgA9LH/tdoQMn8ZOe+3s9Q5di+E1iAFAyDFZA+Y2o6MzDHOdA75oYQO4Fk6dVq06xRgRKROoZEkFJEBJEHTaUr2zZWomfEVrMP6GP12BoFg4wYl2HEWWfRxcxUttKK/tloacN36auT5uLn9GJHHBkdM9gkVN5FuBlFIuYjq6tPogWlwFNxmpiQx02w2raKFNaD3suazB9UobLXgAhJDFJDSLBSCgALIKEUCGmfLTLupWh+KgCkcTJz1MRNDJj98iBgi6o7chtaXkR9xu0RFU7qreDdgcBvNj8sPf7z1w3P5X+3810HHA7vsy/fLBzcHcy6cvBxYHggG4tz1ASTWRpYU4a0CurM4cO4uQ0ADBLNWcDoe0W1w+4oGc1JQBzxcis5yFYEmuCY/RKJngBfPkMLh18o/a4z0kPmQFMGB/DbMPnFuVzG/0rkWQwBoNifQkIA6NIeigcKrE05k8FnPtuOIlbNIf+MuL9EcqGBPiUPPQtneP7x5LLP+81Ts6jQHE49X5XoViJISAigQVGRZIRGAKAqxEFkUWAKEIoSLICwihFCLIooKSLFCKEUFBQiwFAFgLAUIpIsUIKSCwiiwiyCgLJBQixZCKEWTX+9K/R6Pl7V/ZtMYByQixYLCCkPyof4H3b2CT8juw+VKEBA1fHS6vSbeQiWgz9enE0GvwwIsuLuNLaeGAKOwRXSDGpxYgCSYIgPKtJAEB7QvtufTESwdEMVhQ9Iaub/O3ZZCaqaUiuyZStPJW4suu/93jWGjUnOB8gZf+FHCUBugZIp0DZQ8k/vjpdAwGmihhgG/W6JXyenpWae9S7n29X7THaP+xt28eiysQ62PFV1TMgxEDD1CmHq3m3j4ew6cehfVjygTeAHzkppc6FEcBTmwSRVNOOVI6DeAIwAzzy81FvFhmgzuANAxcEczCqx/0nvpshhVVEgDyzUJNBvcoVN0zEDQM8pxX1k6U+8jkOADeFS5Yhh/Y+Sqf7LrjlmawUB8eMSSH8ZeTOJ2kmZAGZEFj2dkayiM2vVNrz8kr/AOSD0cv5nNZ2oNuChq2UMAHMUELYG30CD813rQfrHIegG0lPXP12BMQt8Sj903tU/7Q4d7/kGSP63fcSQZF9T16tNc/+5/fnP+N6bVU+ejc+ETuHP+RedrNxgTiO1pMOyPT8tENiBhQKY0ac1dM0QToqfVQQ+3BwcxZ269s2WBihGCMhILIgqSEgjIwirIjGQiqEgqEQgsgpEZFAVZAUIsIChPi9XZldyKJxMAiMyL2O0b032a8lcHSOcRmxxd4w2U22y5JPIXnlKkMNiqGr1CIuJ2ujuyzWdpVvDBSN8o5VE1V6whQG1jpSEmwVJ5Qc5kqMtpQWNMhGlaUV6ni9RGVrHSk1ZzYTxgPOeVa4u52EoxCvGS4pCMchlOVIYyQUtCyUtdAaRszTgmKZDBXwizpJ4WocXNqiz4vhDvOcFeNVlatUoKyGVhKprOyk/0yxT/3/MPFzxlqwbLFRk6U0hQ86xaUWrFLV0IWuKx1lO9JYQg10rZcMLvSGscLGKQw8csTCXtiNpSrgHJzhRnhC4jHGDqyDFcjvkMUu81bKgeM8SqI1q+IjFBUKYoeSZRnNlFoCN7XdLWmMTySAmaSoro2TRRTeOU6tCcFlJ6IkI2DZVphp1pc2egrcRKB3ta98YvW50jFY3kZ3Wr1pktJxvecQ6jEqXrU8QWcqpleYdkudYSvh7HK7C+U4WjG0pUWNaxWeDSOSznlacFZpzjerGL2K92BmtIHkzYolsIs6yraTRtlFp1vCWLyRLsFkr0MRw9quymh3gaodZPBWhF1e6UVI0lSB4Fnxh4tapwdFaNgh0nksIxndsowlgS+KecxSCmBegm4eolhqkYpK+UckFYxlJMiqIPY9+NDW4hEGssJBZ0lfK4VzTB0zhHONo0azvJMqtS1kldLRtBJnc2OTG7Z7ct/Lj5vs83yfL5F7HlGMIkxTdQzarRY4Z4BCGGikLXyaMsoTlSN7tdLXS7TvcoRarObCdWgYVbmMB7WtTCWyhQUEbUPCJSjLFXyq4xh5oKIHd7HksEM0glqFKQoIUyULeIdqKmTxeYvCeHvkh2CWEWnNrQwJXCRnKaTwiiqNLDTyvFVm98mM1xE7nLKMFhlQ2RxZTkqzSjwdixFJZZFaovkJRjSmS1GKVyFZwe85El4FXKKBBh8YyqlbYtakVOuU7zWOVROlYsGi8sWtGKribiOJxpPFqyjOLBZq0LUUsUut8qZUomRhFVaMuU7TYKeL5PW8LSM4SRa2OsFO0L1xCVsrzpapzrSCgKqZNBoGMpXeBu0cLaUpmJSdls1UxeQOuKsznPLGIZJQUwDsaC7RNXnecki9EnA62S1JC1TBpRsTyrBaXypWMpCVcnyFBKeJiS5WtCMaHPLK1ZZHeazxK7wqKRwcLrVSjaUpUnWF6ytSAm1WySEKRo1hCOUIPO06jASIwc5yM2lGV7nGgosTEaqGeF65LPKs2rcCdKikLIWUY4NmGV8VjGcIpSrHO9J1VBlCIwL4aN6RlaQhU1rScxGjLeuLUmtFwcTOWJUw0jE8ViuUyo2U5S+/Emw9yARssZRaAfKNqUwoVs2OzSFBQVGS3iwXLN5xSDoGdb+17XorrSKWGmFwl4umUEkeNGzrmWs70ld7xS1bzS9bS1xCEZSlIrxGQSb1e8MVGVoMdJnVKZTeIS53jG50warJzm4ZMhM5Veam17xnRGUTvJLKtcTjC9EnbKUGjbLGJ5HjJoSsKTriDVwDeklyNcnyjCTWmeECitwl1pSWKROk7q1EVZmHNJB1NDdbBDihs+V2M8sH/1JSwMRMSxeGdRJVzhll60J6CmNKG6NCCUsIYhNYXpZKwQZZsk7UdhEznISzSrwEZ4eVsXkYawmaHZEil6ShC0s62eDQEJxS+FYREoJCU5s1aK88WZ5nSkGRxXFhdUs9kfJcFhETE7ROzxyyY5Tq8TS6nSlxClRSFxlSl4uawRMCR1lV5nlXD0redak1GU6udnCTRcnWgojBw8LudwmJxGAwgtQsp2M3nCgR7We1K1oqvKt2V5iEJnO1pYlXAgt5CF61SErosrra4qIB7UnKDUSlnoy4plGc5uphJ5Pe0hPJyamWUsQZ6WpWM8SUxKCCLLlhkik7s60mjoeTXgz3PJrXu1rUsGsbU807Rit6ZJcTr80c6SGIjJ863nCriMtGN9DKavHKiPKJuI1sEQlTKpuknirSSjzlnaMYJV7YRwpibySDiuWS0cZZDI7CcrHWVTylikzmPJbFGlWkpm8cXoHics5TWRyUpCMXu9JWLEqUs6B5SMRFJ0nQNk8IotZzvOxokhOMJtCeBnbKUbGLPOaLMMsKze+ULXawk0bYEgoyk8pqI4fJLrWQRYjAuI3SoOFI2yOWMqpXJThMyEovAZUnUxNxPE5iNMTtIZMFRzvLDijA7PHF3gZjJqRE8TyxZjguMPA0EpXiKzvkMSawjS1L4fEGg+Rm0rXyikw05KtqUs9UqDub1XICaK0f9jvmRCBp7fqKCGzL/5rU/H4+7/v+er/lVel7/71Feljt/4KcXBXT/ysB+VX496G9EhF7giA8jIAv0ZAj+q0ESkRSRF9cFGsKxVYRCSQBSVgsAFJFIRQD97ADGGkgGmSpKyBUCGyBDEn1kCbJPa6YASKuDfxaPyPwV1wTf4OsiW+LsbNXxG/v556ezt/fh5O3MqvvxcnEssu0hY0zqvYFj1+2IWgYBa4qu8MdT1sPVm2qYt9VHF/XU8NoYISDlgB9EThi9GC+SBbKRbohSIKGmQKh2JDdkhMQh6UCpFJw21GoK6gCcgDmKhmC6gJUUHkRWkAZJG+JSKSLgu9/A/ldxkrvtvnP0uGBwUPogJH3Zk89wK+eNE6LiMyh/zKpmP6mVEYnoTLQ+tfsu5kf/AVlSfEkrFD9bRAPWkK+7bzfjZi6/li7sPO7RByg88uRZBZswMSc02QNIGInIKH9cQNWnVh5BMQLxHqDURJITGskI20SVrXhJszd23tZswN0MTqQ4GcaaYwqE2ZAN0kMEqoZtC6ws5H3xGtBLRjFrDrC6hcahiGzrK7OtWBpDmnG1CpwiwJXhCYhsiDIlzAMwCQhBAjMiH3RouPfFNCdunkwAVKvDc0494yZK2SSsnHjX6b+PJeR5McrbbyzjfVTi6Q5htbCIrF4t5Bj/O6z+q1SWm4ly5UOSFKyAW+cAaUMP8mntyz7bfFiW6NVzl7OqxKNsHGmnUj7/Dz+XOlrGz60a2/wtRVeyGSh2fI0EAKXlT+bGmqiNbNmVrsl+rDOs8+1jJyJcqL92Ts0YfDmo4+316enjwQDGOf1rG/wUalq91de15hx3RPz+0owtFNnbENCXhQx22VglilcENWrk+n6nvD5Ybk9iEuC0sI6JABYgNlZHbQ18gv2Np0HH70WkDrMW0ZH/RqIRl7d8Hb3kQhMgZ0iwLjIZdSEWUoIrZgv/GsZKMi7+3bcrULsdhPVoy68QbY1x+WDBZBfEJI5TQHAi3X5ELW3yAsmBMY1MkQkv0FWnaTTZvwKt8vW0nqnz9DG+Xplf6iTIcngDimApQNMkqQaTtQGSoofrQxIe87Mh6GQ3VkxDZDEMYBiG2Um7YybJ6Xeb02GY1VYVAqCijbA2SZEIbtcawFHCmkqGICmIIgaZRtpWck35U5IcM8t/b5/W+Q0ued9YW7I4bebLmQgTmSYUENA56NEF/klhRDdFxnbUusTpikYLQYqM1GiZn8SqVOHc+O3xfi0SPP44AGkR4gQAGoyBYzBEX28M8bBCDup9IXrDv18d+42uvZlRQ7/TPep/O2tt2Wng/V+fJ/cypWpItQrIBjAtShNw+z9f6f+f5PLj2ylyVJbvm6zaHMrJ2KQ1U65VuD0+kpN6uG/Q1SLVj+oabz7LltftVzIwv/FGllh6pcMt+eRoXeAdvhUthnCuhlOfPzUDHb+KEWuxgHfTWSA6YEiyySCDRda4qW8beBnmIEv03JgJ0oiMhIDM9JoMMGNBhIMiMVJQkJeWUahTPJx5V72rR5VYvSWWWQjNkkeYyxkH5pSISBV685pxdebzgHtdD1GbX9fHk70GzINVGtC/J9ODAAF/snhzsE7Y1141rd3zG2f+6Oen/4ZF/vySfbo0ffbPYtOa9MFZeX980Wq1xWGYF2MHwHnJopVQSHtct0G1kP14V1+tYeC3KlNmFrmkqjiyBvX8C8MQgAu1IKnsZ9qtK/ucvH8jQgoeWzucK7EMbcT4TI1gysunEGbknq1uggH1baltL3EzWHIcEtmsteuJ1MunlcsdC4cT6XX913nXGHNmygEQ5b4fLeeEGgx5GtyCv4DxyPgcBbegB8wZxmCQZGf1oo+oR0GUhjjjQPua/CtAq7bZ6lbaSTLSVgCwPU4n60h69+n8Lz2Pee115715an5fxX300wHnVDzPezR40J3PxcbHdoMzrHBEtuJ2sOzX5cndnv60cvVT0L37Z6mbqzqtkXm/Ak86EwTyTuZDN8yps4n53Z8fSndlz+23UZZGJmOHHnbJx0vpLmeO/aot+sFhnSnJg67EDRsIODNWt0JloaOLdzea3HDixW1abqGOFZCDv4KKnrhYN0bkcxA8HEGDfaFGDIZGB2mQkcpJU9mSK6FQ1hmpIYoZFMwKNwVP8ZUZhGV7PaCEDMQgg1OY1m2Kciy0bztJlcAzDhkvJSQ702hd5aQJBgjo3eF2xNw8hZOKz0/Tt9f0cPxXPkgQjIBIASD4IDT56UipmDMgZgCifL+trzPdvi8Mmq6qung22CmYEGJhl9sxUkbRtYPUz0/GOlZZx8HlUd4nwJDIDtu6EiTyrcSFpkCsZAISELGUqVxDTttZvms3X5koYkVW3VKZSi8ZW23K4VkMQxBFYsipq1FRzVFCLMStThlYOWiqkqQ3TGGNVgsRkFFgLIsFkWEWQUhWEqsFiwixYL9tNxJm9KmycKkqGM4tm7KqbuIVxgY7Jpzew2GCjWqRRVAqS1vdaZau7Tfa5B0lEMy4pN7UQxJWSNSycnMOLkwrZulynwMzKVOEKOO6ZaFdmVhZKEhf3siGfgRPXBDWufoF2XiyhiiYDnrXBX2tLHu3I8ud2E6aU0KfpQ0yYgJpTo00EKIS5TQzIkM8fsPmGvcgou3VqiEZMbxFaFrmx9+ePaPK7galOhj2LT//WF+1C1mpw7CBmLRt0L6EdvJblx7eK/o4UN8qLVXoF/w5bbLXpqZPr4ls/UItnGsCC/6s8dSzy/CHDIYBxHsbVKNnYrjABFwmATIZwgtc3AbDGZJ3NtHkEhlXkF0xTO32vSAEQjkBRfKOfS+vcKLnbZ6j4W/DErFEvQwiktz/nBGhJxSL12q7rLrROziBtqEc9Nw4GE+LFlI6OtHDRZhMT0GvZaILhyhFepFJ3Di33ew/q3rkFhA7lpLsng8jRn++H+l8+UNGrK4L8gk1i0u1awd3gk6HxaQDT53kKJ0LMGSzCyF0I7wiFgkfcwh5DNlADFVxgTrCZcbH9vPO1LZpY+GbUyrF1XpcfI3/WLS2fxK5618nNjtJsWj8S1GydfjkubU8FfaBXH69bY5B0juWzpvSGhBiuSfKeh2bkENgFMxhqGZzNengjssjNnr1vogCBPmCArDp7+EwXfKmnK1noilOXhb1dXrr2+jZgUUB77owmXtv3Tnwcar9b8dn6pt0vSUAIMcyPesM6EYTRVPPkybbwDeT50YFv/Ty0RYGXkFXBp18mzjAc4WKk1hrtMMXilt61mpNFdjQsvoPIq/F4XkJZCTvi+5DrxysDIK279vWU5+HhW0fpn5Rbm9ND1/gELP7BnJ+FqCluXM5WWWjPJUDaDb3I94KqIPhUDdRhOa2VG2Jv+60D1Ti4YQvp6W3V8Cw/eeIZb9AMugyGo7RmYorFn/PpZzS/buo9tb0sfFTdF53gyvrHpq8OabPwlHtWSQuHeQzwDjGoIRtq/PjM/f+ye/lhOkRD0/Yl6sSBQ0ocpbgtObfY1JKPlrPA5xWAWZaYUl7lvLYXhEoa6yLiMgBOhZPwwQogV7XtkovDArLir7exgVWMamWz61ka8je5ZgGJzqVWnVUYIVKzYIWVShl1qCBiBCzp1fDKjwpyGM51uQ2M3twLSDXcxXmVx24SvrGXY+IDqbddqxWyYuRLUWutUjJCwATZX0506iWNgWmveBDlB0JoW0faOpcPlsuZ3/mgMfjLQ1GRAzIEcJCRTy/Nn3Fl27McXB/fJZx/V0ftvuxdXIGmCSHQhSJCzj4792M7k+LZ6LwUYEkYl6TpD0mpkwDK4jU+lSxhMFtW3FOn3E/gvxVl7cqDj2AYaXeG8VAUsFCmVIWBc8xnRPhoVsY4TBkAQ6URGkQkSb+rwW+L3W6uTwX/sBfCYKPenClCxgJMgSDAUgIAVyH65erNHYxB/hy3+97u0W/5reGjFmtptVBTPw6i6Adul53GrDQAA8OPTFrla38T0i3zQUH24kVYbZN4UcCl6Uuc8O23qQX4hy4KmNEwoXqUEYEzemV8+qxl0q/EbkNLJzH/e7Tq34eG494YR0FwhqR9zFiKrLT3MtMAUBvDiQQvGKJrHWRYZ9FbhW0wzQxoDRtu1MmLsu59fQ3Xsm9ahiuXeb92evwsTKqVn9FpxXRruRSm+rN33b5gDhuPca2Y4Hs81RqKPNXh1tuUgyZEZmeShk6tNLPvkr+jjf2rteURYmMdxQP0bZ/sUvuaq4KldQOP3qJxc378uLRYxLa2HaF2yQEmHrv4bxhidpMlhAIGbANeNBBRmYhaQfIpIX9VCh1QMbGDgtGBMewwTGtlqxbDnBCO3d86xljqsgLXbtvs8vx+bvBpIRy2TCxmnpNJmKtZExhR4BbKlgPJp8sS3wT8K83J2MvlndiUkgHJJWi5MOIc/b1c92n00OvAEZhcwRIMzG0Gz2V9igNxsS0Z0heLMjHxV2KNefOMRlcNyj9f6XV+P7KqgtQhnWUdNVb+PTQUmYIEE4Z8XDdkj1ssqZGN9RScPen9xvOBWRxtXw5IvtZZirWPpyy2yR/StqVB/LwxYp114G9PTn2R38e5S8xxhoOpPoeU8nRkM4r8t2+FknnXh013H0enVa181UuYV0iyiidlCn1CzyZ+iNajSbgjgahya4HK0yyRoleTuMkIsz+t7L8Uj47c8Ebtmg5uTvDaqCHrL4fxbl0/v8LDEtyp8ElEuhNDNljBjvL5sDaR7fppKqESRRWGE1lUhxU0qNqO0jKpei3CnBwqTQQHO5OWTWy6lGNtXIi26oV1GjFZpUqdBcjwIbMNmMu5GA1Ox2Wa+9hOKdCfI7qZUh2/eWKSRZOWsGbTlhNpGBLVeNKTW+78SzT6NQi+zznjtRbacFOpb2MZe63JItROlI2nPT2pihucrMjy7BVcjPAamzC530PX67DMFiXO+6BxVUMG7vYpa1ltsyVo6jwRUW/GLMmVdEvKiN15LvDWzKgPp2MaqMceJmrIjShAaNFdOxRTmVKZLEsyMjFK1vvNMA1whJoF3hWnqPrt4bDEDhrjWbM3KtqVDQsJfaUbllCBSO6tgSsGYeg+dQpMdKZIXKtdYV3EUOPjTtywU6mVd85DcMCwpDFChpQoLGplBRHV1IHA3bTmpUNaiQqa2oa2XllTnsp9crs88zTSTjXPmoJPh2rstr9cjyVxe5kSHSu9WvTJ39jLt2xVdGPUrpJtfs+uJPq+bHcuqYIMgHl7mzfvt054cPWv9P6fEVCKzY572yK7BPxb5AMVBFSOzyhmCoBmPLSudsZcJgCsDAISfVDpxrA5IWFaBIhJt6fR3dIx9zycdOp0K18c7kOeNGsYDBp1pSp3FaIBvJdaaUYIEG9PTXsH+qXPLe4kg3Yu9TugP1k5d/Z4mBAkMAbdbLMy+ZECGOifSsjAgPKhXP1PpT44VUh07GC9zoNyIQYyKkFXmRC37cKUjAcwUb0xO7emeVP2Zz8Njr3MQ6J1M60DozH6OVd6aJhhojwwDJLehv1YMt2mXeihhiSMgrlvlTFY14ZaQ7Ye9KXHmyOAKRkGzTpiinslpRpjeiZIVjAHEGGkgA6eaTMKUTnw69LIHMhkZAg5pSe5gP89KYPgvHOdvRN3qeYyFZJjPkNrjUD9d79TWddJiCNYIvuGipiC4d2YbVAAg2ajOnSszBAL08oyyhg6mMGXLam3ElIsUNAUF4trwSBA9NVSaFIyIi0MbjAU4ugmfU4QGYW3RqxxhZkwnV2TWJiZr2dOm3PZEs9r8XflsDNCOcMMbizmSRxftvVUmeeoHkbih/Ftnje+9izERfJgmRW71dnvJ1J8WygZq0fs9ySH3zLShIoawunm6XmF1lvgFwy5eOzRIbqnv61/RD2XkhrrId6+2OJlOOlRx9vau07uP04oPa9VXF5aGpcK6YApmSDysA7wZtVY1umw3bn0ERC6241zlurX9d8MAetig4ShsHlaFIUlwuVin34dM3resohrLJ48SUVpY0O3G6wlPu6zmOud0wm+vYz0rIhHA5h3N9TowVkUMeykBm3cIbhf3I8nLlEeeDLy5RJn8ReZ1Nd0+UsSNHZ5LBR3zIDOeswoGVfOjaYbQIm5Fo3vKlGcMYSKPvRDN051TqNM/l9rfOp/JedjL2oVVors2uril5ZsK83p+IUh3UqGlu8KdQ7NI9ed19ta79jltPa5mg6DVYqmSN1eHOG43PhOTb/Y7Vd1VCOUuzZ9tvxeEFzCl+4oYF6wnt2I2DoSu2USLSmysmfAwmJLDNxUHAyHyYFyvUi2XsKnJ5alAN2qa0OCCvL44aLFuu+xVpOuUsE664kcbYd6WbJ0+hms2ypZqSZudxfJVZvRmbqNzUdKKCjVWxXXnTpxIrwwWa7K+PzviFVPijklbXYmtwV6eh+FoUp4Etacrd2GKRlLvHa5/pVuyyzOeK5ZwctFhxaseXGrBko7JZEFhvI407y4brWkEBcZBOUvICczP+5KyfZblkKMUigsfqsnnzMqAjAUYCDAa8uGft5xdgvRUD1dY5jl864W7O8ECap8XFgyON0lb7fc370BVaOYwQ9TGXg2+3eLeXmZEualK7qkF4MThYyARhGa93F1PLL9PA6riqLdtbt75vPN+IuLr61vIKQtTHSPJU2d/NNz6bul+w7eIQXMMqjaap2GRHmZPLclxhVvtYBVc3QKJ0MzsAKdsMKdi+X/Q727Ll04TrdGCfPEhPo+eiFI9SJZFXVCkVk++wgcJOOLCbIIqpVZNMIFZIYwBGEihJFAFWSLCG7DEkxBamyBiCh9hD8zJiQWCxQBZsiXwKxkfTEaQCRzdXlM/n3t3m/fg6nfw0n4/Fj+2nd5z2pIECiG/k7CJapga4jAGGfthHReIcDSCMyLEafVAAhMgW4yIgoyBAGYJc7EKeecAc2fJZbzcAZhsVtFatwxnNwbvlYeMVDgHtywu11McnLBwqhRdy8lb/aC/OLXxv8pk/F/APLq1jQqOUGjFxLRs0MGK/c/ek04QflY5GDW6JCIULmL3s3u5JrnlwqC5jo9kX6E7vjQAMZ/P7t7e5AQ+7YsKvD4mdvUmwMw4l6EjF0AMGAoX8Pw9EIKiT4KFIW76UMfbX31EZn1n4W11lH68QrOj5t8Xo197ffFO/jJiHd9WTk/LyunqTbstfdtYGxqBAwJHsNpJTijWpWbObJ9BqIJaE1CIgMxm1++w5vuJzdlK0fwdMM7abap0t7/d4MVVik+wnDgk/YkOt0nP1XvYe+76uuVP6a5Ycv5a30j+ZOt7k42o8miwrLjTGBiZHomyd/3b3b2ThkKnzJedgfChiosFhsz0JtlRTftE+1CpwP55HxuTjIdsnIr92Mdtl5K0+4wO/aIkYYjMGDA/OQRjAunao6+TVOZOW7RMnQDYYHCOikgP2MohSU8j9jkmwxvld5vg+mP0H5T6nj21z7OWxexc9lCygkz2GqjWLML9UGDBrGoMeJIvwMdWLOuLTaOLHfGGwxYv9Khk8cnJm8uudZLs5+B/NBwPW4HM49HRf+teHNczdXtVnq77v4qXvJLnR44wtpW41O3+3eYA5TBdqUEZmYBmCERZAUkBTBBZIFQh9dCFVARmQCTIgEHwmQACxhJgeHFyQUuOa/T28Kdmiz1Cvmqr17ozVf5mX4tNtpvdBzvznt6IV8Pr2AQs3bm/VdqV3+nF1dEQIMgwsikPyMhRFkPkQrBZFkWCz6fb4evLKwgUUPrNRXbbkObToVz8bX76OTUnySgZOjByIofBimYHOYCTJpgpbT0uJ7HSQ/xTWUqaZ9Gay5cYjbVxA3pcYyngzGXdzxqHWzIS0BLA5ZcagbM5O6Kb7UUWAoad3EFIqJBZs20+O3d0wFBYuITjLvcyshszZ1qnVq+vVnCTTBYHVoqwWGMFh5/kimmwpvIIZL+Gje1NtJDZxnHTz0jKjrhvYMuDGIhpFtBjTa67ZTC2jhrNIGmHXxZjpqSq1AXbrzbRKkFFA0zHGFy9eqYqnptddlmwgoHCQ7ahktDaHEJTsL4ZTB1C82faWcqQ1JoXecSRLuocNsygUYn8ZdMWq09IZd/x5iOYteenzP/DR6z6umcsPL0eFOXQwjiNDA6DAhu7k0D7KmB6nzuhwxnIyLkh2mZKHtHh73P9NzvX2btC5l99ZoIzApmL1A+Duj/qtn6cAZMBiDHqoklkWkPgoTycVT1tNdmWidHI9mipww1ZOvpv0qiA18ARVMS1gaUjj1BDiX4XSIE70E0Yx5nhiwMoZKvg5arvGSzUSvNP5vea9AwRNtKmA2LtZNIOQBo8WNWvhEmmAlsiNd2/33sH7Wh2cVa6s9+kc/5fw7+ixq4EwuV7drO1Tzc9DJ2Mo8nAODFNezvdQwtooTcCQv0L8K9UyIOn+fPcBHRbHbdag2R16AmGdiKjUuWIs/9ptWIMWkUjt9yUsGxAizs+zTFB733K7e1EBst4c1ehueRerpAK9jo3KlrC7zBMSCSYM/nPzCy/zqztce2dqWs/3z+2d7icfwQfemrxxu0jwoALh4dOv74SAJ7f+cLVll5enfIgRDvXH0D9PSqOdbvT6rL4+VrwNJtGPHx3FRv0EUHLcY8Qv8oIGhCULmjDSofrW/YN+6j7cauhQ6FTLZmdUvELuSiV2snkwAcfGCAJlpzFWHVxkxzihzh+iNtmZbyUtbUjxIhtnNTydXbwL+7+GAYUNkMVOSuB4jzlJckkLVOnkWffhT/+MOuYiI5pPy2ftyAsbIg+pktTGyBAew0Np3XmOsE6aRaTrZTEG6VGxS2KhCxokF5mlhkMEp0qF2MpXyURlJZZGjSCGLxEIu4beyWnCGmuF4woeCFe7bM7/wdmttqbt52todbUTPZWBibKodEG1hIKhh0fe2XNopPAEhG6EEhFFIJtWBsRnx0zzpO55ZTAUwHogKR1XepIDG02hFSLIgXza1ge7kvZG6nx3TI5dP6bC/IUXAkgtFIbbSjE4nAwOLKraoqh5JsymYixybbkKLxgp2FZTKcMZ6Dm/f3W50u9ff2qWq9P8ad92LPzzrdTV5hvscCeltGc8BqMRsjnNLjyG1A+z5TWWWhFjrmYq7GednEpS5iFwI0xdcsh31BfOz0OSyUJF9U9PKrewKjxoYPfvQV8wMJgBBkvUQSTC5gB9SAA0OmjCq7B7YPiPoWkmsQL3xtOIyBj49ZP5evpX6KmJGw+e5U5GK3UU4HMZOzoFAwZi0dOkz5WW6jjQ5wAUZkQIEAK2MZhQrBnA1nh8Krl4SuomKodAyMw9jp0iBvIAREgD2g2Ux3bOxIH45VvL6X0iCgdlIQZlOcphCMfjhMNGIPuuAO0ycwWCulUfp7YFRvUXbLSAo/bLDcwNjhSgbDZv3gA57ZP5H1ur1ezl0fvdc+pn9EKk+shCqwViKcMU8DFnMgARRkVNA9hzw31DXJaFajxdOWji31WrcuD93dsJo6Ak4V94jzY/3708GQPYuiwpbiOx32NWoyMzMGDMGB5Hg6uWam7ObjD4eJFlEFdI99/w3crU4CKvUQQ6ayEH68CEnAABI9yXVc+u54ZnZGvIOt9/QZG3aE3pQrERMW17obFizNaZXVcmRwU2su2vYtfuj5IXHUycZo27L9VfKdf513YPRR6EelkNxyRWRkSH8v2fBy9kH/L2/J8f2vrv7r/HxtEMyyvwbWpjpurifQaAwewzR/ZSSuvn7l5GxkczEBRJfmbm6NS0lgshW6Zj16/z87lDuH0hpth2CLmJZ/HpFVTmT5EnTbXLVMsr2pYa2zE2tRnL7uf66KqH9J7Yt8s8tGkBkzx/mAfd1NFxntTb99a6fky1L6SbtEXJwnUfSwRoqEGvsKSvLmaLoRIjpv+F927NYsE5ttVpBD8PFvddDPb+ubGPAn49XOilKCOYUy4nq6awRTPymE9xEO6BNpoKGJGGOTpiFlDH3kDbm+LxIUzfegmq+7rz63z8fmodbDXtzPC2dGVDGjN3d9fp+rfU6udoggZjDb1ZgYM9eZamwfNCUcDCCdIK/TAYP2/kSB7kka7kQ5mM52V+42M7uryRN6MsAqKektYTtHvyKO+g7GQx4zEZURUc1RSQ0CcXZvEmihDb8/m8ZAH8PVzR1J1u1mHrWVxsK2Na08dX8/OTtpO1ujaJ+A6woMDSpZfX727NKdvlbgZ0a8FuoKOq3daY27LC+PE8+wpfPrhOm9ZPazn2JTqcmY+FO0aVz5zX+nQslcGAqjpyWV69v877XOKT1DXjQMFOZbcyl7kOEC2cO6wLqg+WHiiF8ZBLILIJWKkgH2mD5vLoKxSRs3D3eyPR17CbXzwzE1N7bsw9/zghk7PTLrxf8GVTeeWiY5Ruszs+Gn2xJj3CuJMEEYHayVJjK+tJ7iabbH7P1dfh+n0f6/TP4/gf4sttQqHrQlYVhiYkIIxQWR/qyy2yIoiojS9vpo5obpwUk5+jnmqjzUw1nyfFZNy9HItW3flTi9aPj0qcwby7ZOJISYMGCHANohVikgG1ZW60GslxVFtq52Jy91DRVe4HybOKSrhk4cnX6oayVmtEmWo3vX7vjIO7m/7rpI5+JtNs7tq/Tr+Oq+B2solp+WObDWsQW7mAgQCMn1wsyszwtpzWOGLVg5M4WahpCw055bHwQjZoR+9LRJWveHVMARPLL3YSIdxgAhjocB8rBcc3HT/LM9v+W2d48vziZr5ilYqpIuWnlxf40g8Vnvz/9v6+gC6YxGQomRIMthgH9t46Z2eHsdqhyfoHsgSDIyXFKSlPNPl6HI3mDQp4IKs8S0JFkT73wcp8yCwWVC/Vh8r8Xt+z/n/jp+5Z5MKfiH69u+bJa5PzzLyclVqbkr8Oun+mIII+hdt/xscl243HxINHfYX4Pt/n0lnSFcO6xbPxE13Ralhls0vcSQ4Of8yBiButeqX32aXC9Fy+OrX4w7s9/Vie8owN26bbhxEvhzmQGYyJBkQWMAIMiBmQIRGZ2jBBRgESlGEADIsPDZ6auPSH3IpcufuAKVeXpaMVbSOX2jFa1N8XlqzM3FYr5B4OU1W7cPDPNMSiHB1+1qtQ0jG6sKN9AEJgFCZAWAZAjBkAGqkgonT9jbwKTW40s2L2L4x+a5fXXopCx1z57fZ368VoWuzn1kI+nZeBQXi9OS7MV+5wxPFVSuLXXsOzx8caFmyWz/DXzL/6z+Ja2816n3a2MbJBg6mOXuk9b/Zex43WTu7ZYXMHNp/FrNp07R6lzGCCDU77Noprnps3K9DprYrSHn0T4qGSTu1w1UswJBaSvE2td5PpixfpWCDkbWRuw33Pt0hYqxK5KFoxzx8mC59e30+X4vn7fo+r64Hik8kK3a8zVUx9Oq7WbIVAqFBkgoiERiwCsrCsCoLBYCiyChWGzMcZCsgFYFMsDEqBUMYaZcuNagaZA0MGKihiS6zAriExg2k0WhDSSsUUFgsMzMILBRQKKysBa12tkRgxUNMCqrCLNmSoNs2yqpjJUuUhjIsBYC7IYwxCJaW0krFFCosl1YFRtgCxQxhkt2cGbX2978SehOSaSaR1SjCoVKgVAlaUgLWViHFuN2QmDs4Ll1Zjpacvt6xykJEh1einPU/VmU9F2pkpFdMqDMc4z3KpBeVamrK9eWWqICDDqDr4fUkeylfWb+AYQv4NBEHzf0ysEQ4Ghw+B/5ZTVk2YSJm9ObNH911JUQ4I7FSq/jij8YwvOaVjPzOqg69pufFsY7XfDlrTmi4rjpuLXuzY1qY2jVvGGb02dtN2ui5joXHNF1taDcu37Nsd9ZMwpvh+/KfK74XlbfdpnKmnJVS7aMmJUTKrlW1dlRMg4f0TLlkJqamRW+E59RW7mqUN6ZTt7M1tdqYOZS5el0OUS6K0o1pxmC41owTTK82xVNUqDLtcQMahtllTh0jsmkxNsrcuf9a1ip8RHlSTzZVcguYmSipcy/nUUVcRMsZLgjLME1rDLaosV4ap1M5GV2airemQXybpQQSe9qaC2NxDiXTlzB25bK/m/4/5nvMjKh60rJWbSBaFP+oZvaB2xcJitwdN6DoqufKqK7YvcA/G/kn5jBSKNBGZAzHULLXlHS0ccEP/cvQxKsAvZvXk/fe3OhZ9giRerYKuax8mxWrVn0TOY2BQMzQYL+mL5kkwRmZ/KEZDNSPSPkU3gdOlcNsxlcd9K/ZHI7bZDJyGDQgjMEPcwEBSFGEpoduuqklu53R04KPO/e5J0LLn41QyaVeHg9198SHfpbFO64g69U190FKh+GNQMODgk/vButfNX7UYT/27Q0VH3Qo1HRPR/2XRefB4uw/p4uvg14LOfTzdB/GaIcx06Uh54BSCyW0o2xpBP2iUkiyMIH135Oz2O918xl3dWzrcPh+r4k5YdKD4pIoowR8CANf24CHIO42IM3Va5oWHPhz7TZV/BauX7y4iIANWKy2h7rW3VSIF+zIeGfPBmWmchsciun9geIMGYLyQgh0mMJknT/8z6/4rwzsZ1Jp9xnPqVafnSpF5IVX9X+N9GsSwZSmh19MDyJV0Bcevf44al5+AZA+YSaTAPhQSDp0ZUgtnWwUvjghQgS2Z5ZZhtoenydXo6+Gc3SX5YH2cVFCQ4IEgdCIkj9XxaB549PTv+nx2W8Xw6/1gPaiL6PP+Pv6v7fW/f+j5vmWHgy8vZmnRdZMQy2W2CnUlEoQZmCzmSBzmgybvveTF0Y+qw7WGDQDB1vLM3cAynDwoHu6XRw6zaj/dhXAaXa7VPGuFzpnlkNBmFLo+H2Pag2W6oz4sjpP+zENzjNy/jXnB4tx1lZWPT/JVsWcIaBhgv2gvbnU7/qMSqKnMoerQRoE+xQ9LOrBBA3YA1RAqEDNkpdhpWUUaJGM0E2o8D2cwju2IQnD8x9+TGz5oPuDp6/vK9casiTkQgiarCLhyvYbIPRjt/yWpgXkYSEsOwX2UdYKahBgyQjB1SIgOc1ifOim8pZvZOyUyeARDD5+wzX1orCSX+E8OymhmZmDwqdDEyoKHGQaKiTgzDFqkDd0EzEDd1q3tnyMQlBQaSdWHDYo27JziEHfgrIGM1CGs1113fGrU1xMUKp7VamzOAHZtTZcdZ76awZEGHDBd+TkzuFyI32ssAaUgjZQ+diZgad6dMmnuwo3YQPJFFCrDjKEWkpQiEBrL72bJJxvJoaTaoR3RlANJqFRdOp6RisFgvzczu1IrbN1MHBDDZu4cCMY8HURhIGAGECRbWePfhBiSX0QUbdiVFLwWbmZkKKqgyoYTndFLSBaLzKlFizIkjWRi6haw3tN4mapuNmY1AO/2ZqvKsBFxJoPny+m255yOi5N3PgNYwoukU2TD4dDMxHhdo0lzsLiae77Pnp7a/F7JeH0fr6Pldz17+1/RZtv6/P+rpXVdrf4f3RS7aEvlCyiVvRJrHN0QxPR8X68KSB9+RFeRaDv7Y8Q55JXW4f9ztQSSX5qzcsOS01Rv2cvvKvPI9dq3sc+2bhRP/XPAeiuzgOiRj3cTSY8v09KjyflEbtjJzGIXMQzRUEVZ03snm7+1Yg9IpFpqxggxzziy18Hv0eSbkqch6u5Y+byqUbITKimEMzMykOiiey2zenml447qpA3VTMdrNLyjjVWilkDNeCzBcyQsLL/Ilr0M2izSk0WKLTcTk8U9azQVW4D9zE4qVIvCjinoa28DNHIllaE5KTgTYhQgNX86UNPzN3qDa57v285XjlijtR0sitbeXajsDcVaui6o4WGsqJwa6EsLWl1a/xE5YW32tFnxyy2/iXJMTooWU4LQt52qIXeSmoxnGR6VrV8YLsGbDoZgekyTGivJkRXnoXrcJ6312zmOGyhk11M5b9uWjur5GMTt53ry1q34vs0sXlXPZtRSiRgz8D/J+OPLkd6O5VyttXvYErcXp8HRB5utSEECBGxo8fRrFiRS5NvW7U1sWexeMNFXyvMtkRBdr8nLFDS6q3z0d/4frk4TXhQ41BeLX93k64WxA80aQCsQMn628n398+fJK2as/uKcc1+rV58C3hyIZgojbBX/jCT4qoALZYlrasNh5TI657MnjnpWeUjTbcSnyGm/y3PC9uYuUWfUa7LIBXzK+9xRUMu9splNI7z/WaLW0CIDpvMMkJjWSd/XPcW861eNkCzg5ui7y6tQ9sqNNZj8dP5oRM0sGrZte8vjU/GraJoIAJDIzBEZkLFHd6gAI/D9qPXw2MgwaO/my/Jrmb8qWC05rz+uukQnCmkskJJVQZ2cDrXT+ENuZ+bmtXVPZ391Z2vg4owmsfn9YKGAEG/50a4yAuWliqQPrdVXkZ5hPr6arA6LDv1Y/VILY4Q2kKo1/PDf/E2dbwvmXiZBFFzJQoiH7V1Jh6JKhAVTI5IhIyboHghtjbEOnPluolYnzwboBxRw/XoGkn5nud2B3pwk6kCqIR66VA/v7v+Gn9xKo8vp193lM3L1NfxOvhDDEPPHf/heeY11Vn9WTuq+UUTDkAO79q/Fw8yTMKMJPQziAK7JCxuqs1A3y+gSn28qlYMT6ZYHuS7n4XuHysR7dbjRjDSqux/OP7yZavLmxVc3n3z1b/X2eVZ3xkhT009z2w+uxgwxLcnLR+OrjkDhXmhcmv6U9/e9rCoC2gEO4wCMGADMiILCREkA/GhCoLD37YsFn40UCpEVF2txQabDWWXQC4ErOML7pajNe3TqVaPjr9KXH5fRu91Zc0HY4EaeecHGIaYI4IIsilIAUgjSCNIAosBQIIyKSQKhFkgVhFAAkQkVGRCQBWoVEGRF138J8f08FcNtafht9CkQmEVxDVvb9Ea/+2s+Fk9uV+MQpuqFMwRqQRKexhWQX+DmUBEd6SsUirJbQ5M0wyttsxlZIof62hFgfwSpIjAWb72YwKmNTHsaqoavNmZ9nfA4Zdqc3fJrKIZcwqBOtCsWKKKCmMIVgKCgKQUklQqSIkIoRVIoodEkKwigjIiYlQFDZhPlSBjiSoKSaT/nKAoYhKysBSSoFeTAx5s04kYlVCsxoz+esxdJXja7aWXyptmnGsBeEMFGR/z19tL+1zmzAbzbSiPXiyXz6Y2RO/Bs3Yfknycdx2fXTD8+i8lQ2uC8rJauBaOFC1SCiWy9DDbMvUwB6abL8xZqqCuoqCYqDaZgt9vm0UmocXCrdMJgB4qZwUkWLHDP9rFRUwAA0GAV4HLUqVH/Hpv1mAzem5q4+LY5qq005iQRB0VUPEA8Y7euG9na5n3pyhZeY8NRoQgB87f9rf5u+TA/UCUrJR/pwJrmyoLm1eWC6l2ECH7X6NTbKeE1pxwWTYtjhMLRXReX0j7GOfOgDvMhjMAgk0mRmbezpEvVKhhXMYwnFeQST/jmvjYTX/m6Z0VYsxsNZiBceMxn6xd7/1l+Mo/AhQI66EmHDW6DXSt6Xrq62TFp6G7wLCZEDBjSY/BgE6ZPvVeTVXtL2MbGjmzftoCTy919VFFHXnuM80UsLSW5NWoGo5BPSCZ9OqNwOmQscF2CqS8cTkDxFQgfYwSG40gjFXC9/OvbPfbr1vl3++U0lojMYz+jIBJkVlCEGgwZkhHweRVVZRpGM0mRGe4YadoFXqX8SRYdwJGeCpwOBIBZWyKcE8fZz+kF0RHrRPpgghWIBSFIiiYYIg0gIJWDgs5gPo02ZT3evp+IOKNPD2qhRjQaDJRiIymJPslNBauaNjaVrR5/z/1aesyj10uINXAgWD+e2WuttROG69+azWobc6UiFEtwVaa6P7CKdahFXFI+QwHQO03e62HoOuXB71f3sai2VhlQiVqwFv5Q2TaKOOrc33GftCyO8z75tNXVrTVtoRiY4FVFl0h1F3EKH5rCtkRKvlyZQ6owRWHVux+Mt71vc9+GDz4eFbk/bMSQ07NhwiDt4GnuqOzDvfOoJmDP9+NPHZ6n2nP1Jz7bJudWjBfbBZjBnVobfXMWc+166wBWyH70CGWlJDuAnXz8I5PV/X8OM/w/49tPsp76aH7KUf+Wv/lGysUWu6YXMt+HN9v54bsze99zBeGbOldas0n/bz2q/m68zpbyQ5ZUSpFOaHRw1+fALs/W5XRyalW3r53sXkUDZBd0mGVW2srMSsREu2HkxcQm2/clhjCj+LC+V8nLxpQNFtTbfnmtmtYpRt5JkUVVMSzRdwaon1QQC3odSgJJ9aIpnhFW8EVjzRNWubGDH6fopiz7SBUOHdmOrc8bnTWTPO0fO7OIvJGqeDWHDocSsoys9LP3ppNMLtcFYWlgsbTGvGtYSiLFFrUkX0MlYqhs11bFUKWkrAxDBFBYpPFhrVgaXKSKEbStYpjKk3SaMJNAMkGAZkZZVafTh4erRvuIUq/1qDSb/l/wvX8av+tW45YPTyhqy7sle3+49k/N/6vL4OrcTT2yxA47dcRzBHEqpF49+V7q6T0spptS/aYheD1c0Ikfn/SuLNf6WSn9g4afvl0q+rvS/wYJmccGQ7jMFwA/RFwyTXlIBSPVDHUK8en4Xi9uFOzx6PTu3el9uk5Gi3k5tVKW1Vz7tjk45tCCsZ4qoa2OjUO/ByGg/n51p8lsyWPH8z8VKKoP5I/7Xg6QH8MgAg6+023a4r9dTZe/HL0Jtenfz8X/LIzZnQBWxYxkFItEPj5sHf+/7MfY2YcFeH/uQyaqZJTEHNF5aUFKREpECpCpCsklQ+DPw61JD2/0osFCoP0HsXsdQr4UZNvUigoo02TNLCXYYYft3vDGfSxdoSVxU4n+NeyNtAPVo8RArZ3aOT5lj24svGtTwUiVQ+1C9fVHwqyl78lKCk3jOAyxGBcfRuZIAfviRRFmiKZTvT6ztGDMWY24DYNYgIYq4QBc/XhV88DXz+C/vndDuf9YBAom4RWLRX4ukexguwyABAzABA4gSSKBIICSCK+qK1gZPZ8WR6cIGbJ2/n4+79fUwKhIIEgSV+XF6++pfkgeim0/P3YDrs7pJBYUdTFGs0fh6HSpL5iGbc8RBZpBCFe7NcYg+O3F5bP7B/7U0xhTFD1e3vKIDrjk4ryyxUCY5aL2cVzBDbadWq17GtTuH7JXHgx+d8Mkl+MvRnHt+d2H7NADOTOzy9dhq472RFX4nYG3mQGwZyIc6kYwqISJ5lX90Q8/yVp2hO7tOg8h09ZNI0979sUq8s084NX+/LVrbqr8Ua5V2QseNo8p/Lb5IdlPDoIL0oinAT6xfPdx9mQZOvWz6w0sndv7cTWd19umndAIZm4PxGpkckQ2Mh7ppfpW22JW6XfZPm5eLl7XpyHXrNLeU8xhwnOGZrn1uj9kFOslCvJURlfR5l5Fcdk5Rkpus0DhYuyHDsRPc+/HRSk5Ad3l6Xe+/fIdhjh27xwoO9RQ1qbe/WZ6CKjtZCp1dk9XmDipr6stT9tnOCftDmdO6kqv1JvPxwjruLLHOYrEanotVXdBQbmgkYWCEjIN413c3tUd41y5rPtrbEx7ujCwCjdxWuO/ojkvIpLcPv66oDMyC5iIyNKAYYQakpQZpsPtZ3GBt0sKn8nTDBF2Qoh9KVUFDk7uOkKgpNbUxgVhURWLIpm9McLRExgVDfV2YLyc2lUFKrLWzTUrbYboa1aKigiN5uA7U5uPN1liy8UzizbKQxDE5ZYvJCiLN2XfjJCsETGocMkxlZIYhiDtYQxJLbMYFRZDZLlgb2mCoVJKgFZKlZydnjYsDZJwlZm1kqHGUzamziooIgckLdjNtXZC5lxdapzxCgbBkgwFzQaDINIRptEec0LNu6RJR1+bsVTNlWji5YKe3w2L3WI2PIiAOxFW7y0GSvtb10+ATT9fVhFiEm+26EckmE174Da5bTMxoV0/PLM/vChWTtXq+ODNUQy1Fkv3511+c24dSbSX4lQKh3URy+WW2PVtqoqEp393q2aGR9vsfCs7xUSywpnuGxCY5HnFswrLHlRgvM4t7Xn79JwD9nV4XsIx8mTAGbGygPvcOQMx2ZdijzrFzg8kE+dnXd2dfP004n1baVeqCt+les+wzMdUpLO3UtM+PXqzgztZAN5tTq58OekFB4CDLM+ZenoRjI+0xKmj2RKZoVYoRGYGXalDayev2VUbIEccMZ6HuuksoRE4m/T1u0kySxtFCQ3QTRScy7ZQV96qZlIHLxMoHMdFR+ySixk/UhCHPXgyHK6SL6Jd67u2aLM+XOjRSJhzDWQkNHqoAbam9UKWzg3c5IZmatBd2C1UVeaHCCw56sPd1YcuL1Juz0pyyqHucqYnY8O7DTU5MMZ7GfWwqwqqmWkeXguvZ08qG+Z1r2d7m8DbD4GhideQxse3POCoDGVMogmdkC3Raab2J4QVDBmKIjSwcHxPwZL0Xrh7+GeJx+Ux4sJvRPFt7p6a82m52odDZBTcm3bLni/RTwxfv9Kxrm6bkiKESm7NKCBDTVWw4L1sZ/8iw2o8grxWEdVWR4XabqSqsjzdwoDy7CH3WZ+Lk1dXLifMdi+CejD2uli+bv5lAMcVQOZCGGpuhbI/YX+lua9XhatVNNPgoJ2UpiKqYgSuyW/h+pmenIzeU5y8/fLcl6e+nNmMzqQLaDivWb9FLigikgkssJXuMJ3UNeFltcQMXlsUGYsoc/gzfJut2CW9/3MoYvalOrNTUeU0MMYhOiYC4chSGjf0IumXHEhwwwcSEPO8ppEWLFQ9tTCna1ZsYMszjk/VnnxiYMQihGZDeoSOqOYDISy6XbqI8sv8OGMgLGBodNyB5IpoYUA7mnrJNJ9VYfHFzLzH29qSYIXDuQTMGeOmOjOY504U5n/w456hnZAWZgukxwNfXQNnBl9VL+SnrTt1fHiyc2dGENkJnHWYehni8tXhnuj25dj3fQXJs9qYyKdXw05Dvt6TIplEyMw/ag3HiOJP1wwaUQYCCNeh+kx3wfnNjGfA0EjkYMwDWm6rhzHbjwNLqjn4NlNkdtmcIkjoiCbLKbrAIxgbUQdsYKUDFtFUGK6YXV1tJZzQDj0VXidad7vMTGTDh1rxO7pnBa6OBoY6T70OF04eKBDtwhWMo2RD6AZeAypuHOonPo5MVDM/UOdkHXuQ9qduOqkpN1NvhfwaeH6Xpp26qsElKtzwIigsbvd25a8dNvPqMso8c1ezmzw4lio3Imu5g/Hybe6cv+QUHzRBGyAhSLhiIUiiABmREQAoO+lkz69F+7d56kyM/XzspZVWs8m9+Ko7Dq4YrdXJnVyeVu76d6twf2l4UTx6TFOEM4wMXbtvLWCb029FdX8/q/PIft81Pr6He8Xl5ezW/y8H2PPBe1FhJEkGQ5clD7OWg5oXGU5koycDefusqFkyBlXMzZQhLSEPdHnpmWbh+PVu+kWOS6tTbisjTb5qvdKwNazTLLb9B2EMBlEp7GBln5dcMWum3E0/OmFz2Y8WdkIpZNDblDLwwoNrgt1pIl7zUaqWlqCnPYEcz77FEJWaier0SnKjW9i9OifnpwbP4+zYd5nXghcWCEQZBmpKZmqIlTRUkTunyQNsTrCDXwyethe2xUy5Fu/HVh2sRWTttUX+w/DG6wKFdqsjJUliTT5W2YzshSI7lqCCgitpWZdikarX2Kbr04eqeL7IkOylD1NDLAMqmBSKB/AqiBuZhX87vl6r/HLv2G67cgyLveGWum9DCGTcS/dXXWMcFQa2WqdedlZbFhf5VobrdJlurBNVXa1rWah2I6Es+TBA0IbKbkFGpRmloVHJn8VtDTcsj0uuSeKFdJs7ECFSFnUUlBhKFzlQgzNrBriUVtpxqK3C6LOaIJ0RV7NOS3TXcbnSIjCjjRBMkKkZEsHAzKyJEtXNZoZgt26TdOyHpH1pRcRrftVF4F/Kip9nWL8K7zuOAYGzqP0lloIKtN9lOVEOzFYszvO6z5LiFQ31GJqHRsYs0zq49MsUFRBhozSaTMkiC5RssLsMICA4Y4kqvYETYpkh25ZqvJf3rPOuT54gN+AW/HiDv5CckNCHNQY6RMtW74XX2rlUMxs5ZpYO9iBK9FESF6gO5DRVpEGV6Xc3x63KdvWOHouxcieLtcpR8TFnq18XKGg1U4ex8Cm0G+nwbGO/YmraK+v1Ppaep8Ii94HGRfw6Jz5zMywTI0TeOefdczZuCCHIyOtZM16i7G5Jq7XSrq1NN3A8pbbphecQy4xNjTb4tlYP4DXh7rVvZ2r35MndEyBsBkKqUAjPMYAQfHb/Bn8PJSdylLDozD/PYcjX0Knluu3PpdzJ9IM+79IWCM50D7luDf16VNfCXVJCm0q4v1ppxUfFhuINpYUkjNSEISiQ/1jXZWD6V546UfG6u82OyN7Nlx5DA/sPjDh39rFa14e/tlucn2s7oLo6mni4YMti+o/tgXvu7ItnrN0vaFucxhsTs88nc8ya5UtWnu47jz39cw/p7G/08WkQJiooFIgbZSCHTghJqiI1iA9yKFI3ROxBrAZBQuglUAQa9zP+AMzLWLr57oxn7D8XQCHeYId7NbV6V0bpZ7C25SKL17uMZqZC2uCAxGCIU4sNtb4M9s/6/GPd9fnHbAd+qPEOI6KHEj3SjwoSMy07wIuCl3r4w/ixhBCJ7AmF9bLv1P+iDL1gBEQ8w1hSPH75IOi0AKODVIuSyoiyx2x96fc+1RrYRiMERmCMwREDMWqXdm/C3VRqPXNJ9G4yKtjtaAC6TFbk4/4tbjOEYB02p9b1Go1xtL6sxbePB1Q81njXzu5h5e61b4+MlwfwyCTBroh9k71jWQfgl20geSwmN2CL172F9zqCVnpZIlojXv+HMzu622vb7VpMFCDjc3RUWh46cfR4t9AtdWVjpzsda+0u8yH24Im5qSj2jtD+83e+vvrz3ZJQ2cqx1CtbfDRV7GU9yXFBryeeWHdQVAshuASrW5b7gfaoJidQNjaCYhWUyzkQxZbxTIFSNh5zpoJVD7KksaXVSV025BrEq2bCIzIxEPQwDP+ug2jz9PRSaREyMIujGDkImj1PJyJ7g+LyoL9SFQixQrKqRYsRhEQRgqJWsK1FCltYVgnu3ZFDGQVQWTSAVgKLIoVAaWLNXMDTCsWZaRtkWKLIKKLBGCyLIshUKlYelCoYrVS2m2ZgW004jlqURYpLvTSaQ3ZtjZUxMyy73WqmqVIKaYXLsgYmzDTFYx3pMZMVNWkWpWLBSLAURgLFiypKJUq4JY5T15+F9z2bJFAKv4h8ylfsbFLOLso95FXBUv6rda/xbFJUYM7RoCkB75zERZDupQSDIKMAwKREIRwd/hRrNcHBVaHc94MPRtIoVsOOkGstcTr1/Xbf8bCU4ETYX/t7dxECA3wcWb+OW1qmmyGRCjqc5f8340L+1kDWtruDUYi3il6s9a1ximN4+DLlMhUMCoZAGaDDxkLp4PpbFzV4kz0EZKvFNVeT4R2elz/GvP0UIMKwGQxFVoMrpYorYO9a9i30WODc87XgcpqbjhscBAd50LXPaY8beYqwb4/2FnuQLpBTGBvMkGREWcwDMWxlD+VlQVTomnu4He/TegbZ6X8TFeyTTsb1zfaexrWWABjmXaXwmWUWOtJNCoXIVIILgV+HYlhaEelhcN2UAzAumgwYTYq03dWSMv0b1bPy4k+sI3cjUqvn74qezmnr2Yd116QNZrXw+07F+dHHQffXnxHQMDrT4P8HnKATdMQj2MECBnh+VSH0+1SQ/XXvp7dHAiIu9P45vCO9SyPW9fezHCQl0+6GM5s0r+Jq5uE/x+W3FrIM8x2ITCJtEXizABSl6R5LfnkWv3+G+XVlvbo9zUt+PYtxfvFS/7di3frDn7OG4zIWmypLsG2/u8PNjbSCht8u+Psy+fDn6vFnRB8dstbkXzDvutpP139qY8PAvFM9xz92RHHzDKRIPwMBBn7wzOox8C5cIzZGeuZ0MGANGlBLGDMlc2jx4jpUCjMU2OcQOy06lBh3V4jfyYP6bZsaEFoMgkwuhSUG0aAfEhGFdDKksdLC6xtH9WpfjroSYQY860Qe1Mi4yWfIrj/RwfPN4u498d2kqgoYLqiAohXoL2lVBxvLV4r9JsDRqHxqh/ILHTg+dUc4gqbxtode7xQxPL0+WcRGfE3HBowTt03RGCY9RqX4MhfJgirvcqadyW1e/TNDSrdrbDzQNuoVaeIfgwA+g0YTKiYJHWlQShGX+IC4X6WQedHuk1iNtSTNts0NKfSCSAwpTOMPdX+eUvnd3Rc93yEhqSjWYzSeqSWMbI8DfzXsVuy0RAhUsUHT/es/d/27eGi0f78xW9OXbSy2enWvJYENE1uZmK9zrfWjwTVu3MlqHBuuybWhbgsfK8WHn4+hyk4juaZdoMfhi9SQvC5LTPt/1Fem/YrzIpeVUOnTRiuvefpdSM977P77XpFx7++HZRuzmEHBw2c9WJ5V/Lx4V26WHHnWFXtOhb6Ru3NbPXfzUMU2iPAKxxHsxNalebWevcp87kDk16VqLxRWhrbbjY3Ib5kyTfOeHvs5BGOCQwZwVeJJ4wdo0Y1MGqxVq6G9z3QL021y/SggBqtmm9zv9XGw7168zC/wunXy7XD42fuZgn0N2t55h2aKKApJUtK6eJqGpU67cr+HngpXnKr1vlprBvbd0TfVKVFuxdntU56rlKvg0vrw5NTQb5bLS9m8/XGqjOpx2zsTaoRItdFGOZbo0573jUw4GvPPtk1mytpxqFPI2hnpwYmX74vbXRzuYagRLaZfij4Mype3LJLLLbzJElipcwsT8lLsua63FdrVd9dUjF3mxXbk192KwwzGxNrU49YzMRTPKViOvRQvg4HFuRARc4dLe9MWjj4dHRxQ567N2zPprbJMmanbyCN1nretv1a423cMDGd31TIvukuC1tpaIl+L02TV2HrfFbyhmoYt9W+4oQ0bdZamt0JVml1YEEswyw67uY636HdVWclntGjqwwOI457fWkLjbftP589t52FfCH6mZez1ZaDe2nC3TGDh48FuZN9ABc5wcZcPYtJRFHSgibndlz8Bnuhl6+tVw9H2o2Oe9NBD4VyIH3NOqAwKnHD+vtnv77tZAGczPgMmDyqWWQaymbIFa09BLPk6+ilcpndfrUqa225s3fbx7NKdE8erq25NnnzHQns1qP3pYq/JV4Rz5Mxvw5d3pcmDZkDuSISQMzBmYMGAlCOOzXP7RSKsXKSB38FvCYb+tMlP5bWjpjLmPcCXkC+t2rtF7dZCQxuQkyfj8fOm+/b3IADJj4T9rM0+vhdT5o1yxeifnt1QtvZtZAbzJsyAM7BkQf7uuky/68Xtpi98PzwSzfOUmubUwqj1IvRHevqLJLnh02+4mAoD1MAi2dEcEIr+m3bdCIrIUir1qnlOvyG3j/bLv84fdg8ga+Puh8RBAkBZJFIKSKACwAUAUhFiwhAJH48x+GLX9301xhkOav4ZsC+eIapv7f2/V31XtwYEFkkIsgfIkqAQUIp2OMnbaaGCyCySAoKpFgooouHy+Pl6O0rGZkZgzMwUgsHxukvzZqIrA8i3RuIUq+wY8ir/cKVJwikrQQtBEXB1d2DGOAbDw0YM3X493OgQ5L+MgCuE2l/14xyjirtc/7q3z5/8qobm/lHj4fi5VwN66Y1NsvUfMVMVXr6+r7cbvTw2Zeuxm+1P3threNJiievvsALltocPN6VoEvcEdwDVEqMH2c4EQHIBUD8CN52mgLvrTWEOGFKSf4tp4Y1uYovHwbaUzOV0yA1+NqZl5FMW1YfXl7K60blmaNdqdixhZseW3g1Cy02bLznGv+9F2Xs9PGva9f3nIuGqm/onV8PBAEcUBTBBRkE/WD9sRRcXV/PCYMGRmQCTBmEDJSSFxc99A4DpyvF4uxivj9tKrUfL9Nbu+jx1Cllqq55e6IhI89VU06AgcuqtCHxz9TUIN4QYSsXic2Q2/9lkbujV7qDxgDDQTsyJgfHOgucyQZBLKKp2Zxt6KW+jerrj8ePoFvT53L5+vtVjAzjsRR/B+mwz5QDzNOZBQyPjXZB8SiFY1Blv+FfGxd9YnFguiBYmgz1ULy1R5hHRALUpbfly5HwaPVfk31udTt2a55R+Tg9zjRskgaZoGdGHMi70zfcoHWftsN9EDAcETcm/0HJXPe21nygpMbGApiCU4Mi/SsjIKDAYGbJtZgozluVHQHQ04cs2nzJTKQzYIcFqwFDLnu3PRyCmBM7GBTw9O+j1oa5U5ICqKQWLtbFPY+hA7WAtOKEVzA0MhyNoIJohCypUzy33QPg9TY4jpom6aWohVSQVUQxJKUQmBiBw52tdxsshHFALZSowHvpJ7Ho803y+Hr93Os46cuWUNtltrJ7ye5rhmDjn0qWZzMjMamC0lbjy6YMZmZ0zTqPqOx8DFD3c8s8nAGWxANZIG4INYINXQBUCU2bJ5uPh+B/Jy2y5b+4fJ7HQkfRojWNb8JVq9WBzGvO1haojjNcMLuXDtKtDtDCX4bzSz5vrhqNqaZbJIyHWMD0sETEFiKRIkepX2Y7sVCuiVlglZI5bqKFDBrUTtRnHNCHPPngNwogacFET3GIGFgaGidBjQ1VvV+mkAIGH8SBYmgHTT9jCscV7yZcydEI42bmEDenJOTboGyZo3ZRcIkNKFzWjNuyfHrrDvRrxbecJDtzzCu4ySilxNS2eRQp7Zr1earQJwZn3uPBWGw+bg1SaCzofwcGcHBzFNjIwlBsor1NCLrkcldEK8efvWGgh00TXy84gLOB12QLPlg9Ki2w5MlZ9xzP1n6WEI7S3bu20jrTso/ItL1fYv3fen5wia0MVKsTu+82jckuuSJvJxZ4fq2YMzPjBgDGwOthP0Pi7+3XHBraGzNMUWCyQUgaSG2UU8yEKgskIqyaZFCKG+awCoaSFQgoCgLNkhWDlJCKSKELbAqN8+ErMSGkDmkhNMNIBgwBxWwCqmAKTYq15fH89HxaHyLjHMmWR6RTYiMBZT2TeI+NtDCx6NfNOMY+DW/wNykVPSwy1qvdu8Szfd7KH9Ab3rxcR070ZiAr7/V32yMRt8gqtOLw7OoawiFYQEB27ln200hch6l1Q75rwO7U4b1pep4HkZQ5V3QExh6bdp0dj+SPfofbZn1rLsCi4s3Q7KPAHscuT3VBqqd3z3cMOLyZG9SC+B4UXjnW6hDvr9Ky3F2J+IBUTgt2HcWha7I/aWge4pJWfITDdg48W77b7mbLh9jq0OdrD8ff4bWZ/FXwZXsacHZ8fZzog5K215g1n21Jir000ly7tq9SN1LjXk0gGEoBocNIPhQjgeCLBiulbv2Op0Q/djvuIYYMk24kh4LyJ1nIJXZmSW2UF63bFPvfyym91S5J17Rxh5Iyqlo2edkqRiQ3JKeRyXFBRXUs7fNzPWgoucTgu3W7dt1JuPeuaDTdpONOtzRqqWIEJnYCCvly8+H4eq8nj0v6sqZemHUhrezZT12iHRvDdmiRZv+vMhnTM7L6Xlv3/68T0be3OGK4nWmQVT3mu6bPpuhy7NfKwr2W/Mm+PXnZ+a7bVVi1qGsKV5c791PM9u/G+ivt9z3nOrbn4a6JM0hOM+3w83bKASXfPLRNY2N0kcl8vSfGby+g5WRKd/WXR1C8k+ebTUdo0vOFaJdvJY+cN1po2V5Q0stVe4dLi0J8DrhQv0l5YXt3SDMeeBBPbubEOFOWHDy7Ov7cFMeuBWpn2qfxruGW53+f7Rxf99/u194vqSHZfseNJ/B6mOfIWADuyBB7W2dNRl9zxz46OHkpTclLg5x73vPV3Scu/n/aKa2Dg/VIfVV6b8XqlRRX5uKMGDBmLR9GOSvFSwcFiuvSa6Xd+n8fj+P183ry9L6/54e9/HfE9EEOnBkSRkAIRZGEYQZEjJFT3+LqbsmzhtMmf+LfF6e/8uKB04dyGOh/Lo+dl73BY1apXIKX0ofHladZ1QcwqsrUDEywBF5NXsJDj17AH6nx+3HY6snX+mUbNv27GD3VHKUuWrANn5GkwmqgpTBmWOv4cmXJYZw4PWzatz6qO/smu5NHxSFTJJS19Up9NbLoExn9+x+deoS/VKnnZFdWsM8qFRR/vuuy6m/v+b3w+tddZJPun7L9N/k83o8fNmIZjtNbmAhk2xF2onwntUIDCNCDGjqZnUVzZGbPox4VH6V1xEFWCvVOjUpMmcm/pnd+Fa4J4gpdHmimwpB9Pi6zuGqUiFgyIgBXBEGJNOrxHtlEDlkhZf73+Rk66V1MghdUr/aYu4Vs5CsYb+KdQwmtkFUEBc1SLxOmBRrC3hzOsCzpdqf4tDjdfuJrmv4SU+Qfv1xbkyEtV/ztMcNnQ3raXFewhxxhdtXe7nb7LNxm2u3loPq+5SZ4vIw5Jio58G2aUet1g3u/O+yAhBDTco8TCHgz+iVvDATEg49tmXaqmfA4cGxsIB2l0QqjUylCDCjGNrnXHhWdt8D0zFDNcF/soT8eIp4JfL9/37qeP9fTw/eCb4qeGEiMiJIIyKjICCwBYEUIFST9qE+4wD6ySaYTSJMgFjIEREQUarLOwyPv4GMs29DmG1vqxzn/nV1Gz4cGnK/nocUWHAOYzocOMXJ2bnDY7tFmhJ3tEPQ2dAAH4MgQ1WZcZ3O7rvMYnZ9dU9l5aWtkpo5DEPgswBMACbBTG974ui8GV85cRyOS6RVIINjN9t1Ru1xMk1n+5oGOtizoVQmKsuXpyqFXvHXx0SUtHWQqe9rarXu46FJGNhUSEBMcqW88MppZWM87Tmf1ZXxV69LgU3mqbub7+aEJ5proDJwdTQxBkC9hl266qiCJrznEbj4fVkfLPzDr0xvpp4O3brpIxKX3m1IT4ZiGs7Rf6vWjXrF49ecObRen2cSqJRGzKLvCET6GQvYXXjtR8sr9mXx8yZdOQ/zTq4ZbYElLe4O75PT6+74Nzv7eh16ppLrywmONZCpUWp5z6LoeT1/RQxNMEY/qp0ZnfTE6J21uxo2oskSJo5GaXO+Eaeils6ITbXtW2yCLDwW9TGzkkzEYeXdwePdsj5eGcejRai8YyLm7N8HeU2rkmhlVQ/j7bhYeXS2L3o9fdwaUTTTXHZixHT6XOzXHv65a8zw/PtqGt9iSRuxYUSnNG29rDl5e5RPdDo2XdD6liuS9yz1fs3aR3b+T5ic5WHeO8cbJo6Nvn3RDcpiJW2r0HQxYh5KDdbshOOVbhPBwrnmY6T7PLnrTnW+Y0uNNzYvLWrBOvg16QLbSo0oIWRhiQuDeDB2Z5FSrsGExwBqTAuwiBCzMFe7arTefQMm/BZtXWjKMyAcE6AkyFhCAQzroBE0YAjwI077q6xKZDqbK09ZhOmgGIPrhw6JBpXYv3QQE27iodEZPpQRGaDIIMBJpMgZnT/dprTe8sVaayM01ycN/5yfbHVp2qHOkn/3g62dWBGW9z1UEQUOS1O6DpWud5Mp/YeZkPjY82xxtFBdqLYt9Hlc0imjd0Gflt857Z4/4eB+P9f8chrLF9SFQFWKLNmv8m8sgKzp7lcS6BeNFbPFWsO9GTTfdoTkOHuXDB2GbrA6PDNnXWw/0UfJzKn18cJAlQ5Oj0WmMqqEEDzUGbRR9HZnYfzDnoeTxB3t0ERQmQcMgRnqw68t3lfgnY79q/pVyRmOMxoc3pW4m699jjl5wKS55EPRs8H9yP79g5eQvRYJ0cUVGwlu5X9T7rZV210FXMiKsrRcVeatssrNt1ty5Fomzs/aDgYYcbjRa13rjCGI3uzoFWhpEi+n64uR6vl461m5+/7A/l12C5KVVZG4x81s613pxfv7X+Vz/U6qNWqt/NMNThp2l3LnOihBtw5/1pq0fmBe5fyO11+G7198XpC8307EUcDLOxbZLRuCrzrdcWee+qX224LYRny09mDNuzHgxTLUT11F7StdK/RXhQdafSiW3y9vtxb/8/OiL2lX8Yn8FDkzd1vjZFBysE6oVfHdW+9b1tsJ+Dxuy76f65UWNPorr4XVWUVI5GLJzLH7xs2bNGVx1h+/ny7eKhDFzxaZWqnJAUOXpQ7znYBjCR9k4D3o1kTuMvj6c1+dbxEvxnyVlQT8ftq7mhmZiFAQLkCVqq3S0phdDxr6amQJRBrSziOoeFVKj0vUBTPS42nSiu+xskWCjq3Tfiv8tbVGL7dOvFaXW5Pjrd5MELDbmjStsp5tc16iKl0VBGqftPDaUTGI61m4mCiTTa86ZK8cyX1rl15ezwUj9aVCpRpzc1yxxrSVJryRDaCycFmhF3QdGvKtle3K5rndQvRlVhsS4lkdL7/Z6LbIbk+e7V6tPWizfk6uPhuSt8NiJahwd1DKtom8Y78q62XFvz1eGxl6ej7dTjtfLwabLrzmGd+Szpwp5F+PijlkWo972bwVxYqVKu3vo7sCpomGaXlkz2VUO3LiSRbvVjsK9cHT0M09IAoGQ3mTDQQAhZvbq4eS/s8uu1jlifpeerQmUS/EydLzpD4pOfDWHL6HTWiYtBrGtqvo7jAla+8rUZWPf/Eq5N9dIjc7ngtYR/YUvhjnxdvjoYoszn52ut0vTD9kj/BSB68Ob2UK55LCORYLpnoICrpyJaTGxkgXvj0QTTKOj2xwJUsJOq4P11g6arJZOcjox7Lrt2p7Z+S6QsfxcGloPeXQ8G6hHTfRFOfvViPTcSlUPrb1lscKQUbDaMH+hHB0eDY7b5yceaqdWEzEEGVvSqH2QQgqAwmR9VX3nCBw59i7Mtc8/TigkJoKmAsI2m48kUlFEOTVzdXKZnCKhe9kzgODMOnPozGGNDCHYyGp+cxLt7V6pOckk42GJo3JhG2a9DRxm/SqBj2SitT0NX2+lgGKJiM/auzfLBYUlB2swhU2VMdyhpB5tMXdmocT63PEHmIEPCYRV47NXV9FLPidd1992ej8j8HFRdimzxqzaljzhBWHnZAVzD5oxl1fWqkJGMzXNB9hgmOZsdu49GbZ6uM6a2pZ8SG7DqH434XqTpyv9Une4/G/5vT2ti7Vp9hxweae+nr1fyu7F+G0HV4Tm+f6t8irHnQ9KZxeT+N08tU7ku9rz+an08rt6Lx4a25fCWAM2NDM150UH5z2wE3QWZXbNOMGHQbQHimi7/L2j8+qA+zEOPcLYwGThga0otGBFa/oY/dgiHOZERFygRQrwqP+qXgXuo5E6uAQu1uypXt8dFi2+qFJ8RmZmM/d72ebSveZEwXUm5+60uaTpiV8IQx/0ye5ZP/lLp7TG81lvPKJjBmlD97v+edHfQW9HrOFYZ7rsnJ0mOgGKxgzLtNBgGDsGspBYA0FzVuSBIQY4RbpZIBhwNjWfESdiOePt8M4QMwZx86bj9Js6Ht36c51k1BkZBnnQyAcLWs7jN1uKVEM7bJoZ1PCBprBQ01FgKdricjkPRwuxkWBGZg1uYTNrSsrzmqiRgzmyrW6CDY0i9zKkLyaR4OphoNVrsq2jnhoTMII4ZXMOZ3RmWeLtFHjUbx9ogdNMjlcsdQNgVcClOtl77N0xWcm872ocnSc3NZnNCuz1dWu0Uy6gQmTZtN+FGCrmjz01Td3T+/XU0TZGYpmcPSzZt7C8DHYYCTT3BAIzEJgDYYCToVbOC7enOVzYTtu5ME26/u7IfDTRza+x6KW4cs/K6yafD4vhZ4rOreqp0OTYAfTEMcGkBpAMCcOJaMrH88io9dlUH5mW0X7rXG/F4+/vl+Is//I4P3Be+BuMNOrjOx+lxlNk6Tdg0/mgggyk3EmwypQYQlFHrHEUvpi5Uf23ibXEkjFfz31b1YnBa1ralvrKtmMQ9SloXKX7m1PvYss3t19L03LTVZD1pHpkbqv456RNnvjoC45OcTulVHu6i8CMwDMgZ3pkpqGEKQRIssKNi7zVj0elMv8XCPyvTTBPhSXwyxZUEmhIb4Mmzk42V+a4VYxdrop3suint78KHMD3+PfWInSYsNz7M0Oabwy5bx9uZBkYWSgpzwdWNOL5S0FKrWHVFRHomGhy4A1xdfl04N+WktarCwmT8Ca84JpcEWF35zcXPTkr+DDcvbyeEVoAYTIC+YIkAyJBgBBkB3ZSGyNIpLKIW/bSyEmzynl637dSxNFnzTm/ntGeIuze97a6PH0x1uZ9aqeTk5uGZeWf4OzyWa582TJT0ADYYGYwBj0ULHLKcx2xwSv+XNsxT4CIFYmRhtQwpgBFI0QKwn2bbKOmKolGuo9goQVRWIwZk0YDsPdTrFBt15Fbar4X0ziqLPJycLnfffR3gzoJTZl3P7VpFI6sa0LdhsMa3LN7EiXdDh2K47dgfRkQtGCLLffPQRAeSP8xkuAVJlnPVfRh9L9wW5xCHJ/XfizdE4m7mp/xlXwlAwjnlx1ilMX7VX+WqUjoL351/7RjBaNV3teoYOd310jBW8n/TiTzXHtehmlYIYWPLNX6aNEHI76dRv3WtaUW/JtT7p20BcPLP9bDbQceZ8XBFy3upwPwvOchwru2LQX18ZliA7LXjeX5MdoIIFd5h4YHtOKnY41slHzWoCv/g0poZY4ME8//rFYFyt8fF92bTNADpJWXmxmUtODigbjzjkdCILbMBDDkyOzB8EWfte9xbr9sV5sMViKZKeigNifTDgOjv7pOJGe4+OnJl4e7kxrFKQtOhZVqZ3aZbzE1xACqcaQQZWQZkJklCmagbsql95fgwBkxACcZkQxZZrsjPf02P7/sbAErJdrdoDVkXLUvzsY/tHtbafXXS8HKs58Pp67rFO444WBG3gmZevv2w3gp1bSz7Vd+DwP8XHGqEq/djGXCx4XbuZok48LtRMB7+NL9cEZ1ZXYq3IdPEVXs7YI6PZyYmnl+nLDCb520AYkhNV/jlHsBg8EVaSAEnXMIMwaFggBFNsQ+qNh9BhIOOr5LeOGO1Rte39dza6sKi3I+NQ9q/t0Ay9kIIEgyIzCD5TI0BBC2xUEFMQlQFFRts+a+s+KfCpP711KAAaTRYPrTTx3tyckTuJLb1KlxXqPd0XTDduzTp9935sZqvjetD70VPDlp/9e5PVCtHTTv8VPBcbeewhx1hnFsqYuTgxnb9I+OLiSNsWCpyq7K83n/M/L+OenXnVa+sViYHHJz8z2XqvcuV3Beh5Wpt346umrXyeWTHY/2lH6ee78MrrVZU7uCHK3wb+/8LatMd3bxtZdFLJ0u89bdy8jX6w4dXRAHfyMy3jD7RSGmhtmd8PNfBel+VS4stLLsk9vWl1+uzlq1vq85ot6nLvGmSK7EOHs3dIHgAkAD2MhcMiR60Kd3vvpfDJrN/Q3T1l4e6OoF+jFF7pkRzes+5uTXzdn2gxc/Lhgklra3O/n14XDqoaj1VUszcb0h7m8Zwsht15fGu4ttDa3LpYzUKi9H8K332WNbdqJ5ljo8Ls4tbfLu2d9XlTt3cbY+c3jaufUNDe67YoL3uBuSl9vjdgzo14m7u/nRiMD8WYKDftPf/uPWn7vx+5hfp79aUDbMcFOthWRVVYAqiOMlGKsB1SVHTmSUK3+OvwbevWriUHFOY73F3dMTl+vke4lmRFAs0YgBkEzIomLdCmM/sKqQuMFM95lMU2RtP3O/5PumJ3u3xe2+gvbjlnvi5kAm9F+XWjjLPSQVyPs+zluvLd7N48D58IWWCEkFICUpMa8yJruNuSw4wAfbWJ9j3yRjB5wdDa+kKBvZPXxoPBCsJPTdRTFGUuLvHjO1D0hJ9WDzTrHfHL44JNnOOXIEXCALSNnAtYSkflx63n8xn1PF1dzLt9CEGgyCEIIE+nQ9gIuGOl69SuA+9t0si2IDBp1dw45YY4ynNQ3qadHLBncz7ZvzeF+JywAC2n4mFm7d8nU4mhG6tHO+OzgvRboJ3ufqpzYhxzHiCY2VVVljONm4kKC5xVvBjZ26jqU8I/Mc8+DD5Mzd+65VvDJvsf3qlIDiBk6m5EZEoyBGYAApmAA88iStTg/NG2CWN0ICBlZuio+2VRjDHk9a00lO07co3/Q1tHhFNQDZ0aVbtwD1pUePol81I7fjprv1u6rXq45V7a86ktQL8Tq1Xh7msgdxUonfSJnsOIewhSMbr1t0WRcRM4eSEMsxiiQLGh0DSaiA6eY0XDArd5A4xWfwJb/1mAChhwJ69j4fMr5jXMguKr02cJibn5x0W+//nWKVBH+8fd/ZYMYAxVJlEg8Cegy8ZPrLYpcmGd3pPluhmwygI2zVYqlUrxgQqAFqVscf5ur2S1AwRmIMiiyKhyAVFQkGQUkASSSKEFCRQCskCskBYVkKkBSFQJRiwkBQgqgosIKQCQBKRUJGkc+zPd8tcc9vCW47uC59cP3iHLMWqQFUUgKAApJBECSLAikWSCqQFgChFgRYEBQkFBYoEUICISRZAFgCkIfwkAxgyA4APilFt6HLy1YVDv/gRFxIR+P1saY8D9TIiQYBmDMfuZWLIsFiyKLIpP5WiW1wZelrB2b9il03ew+ww/gmkF5MIpWCgsiyCrFRBYooLCsKwFIVhFKwRgCgooSVoyNpiYirBEWezRfq4Ns0r43BwlGOmuWXnrIZFFSKKmUCotpcQ2tkwTZrjKkUF046ZrMyQxRBuZiImIVAepouK7ZQy7ZLGGJiZlqBWXTYxXGotfxiFdkDQr5vf/F9vs/3+L+49vzekv0s/g9XX+7qBbHmyCXOYRVUAGbZgFmCwHEqpKoM/c5ANFA9NG98mxD67bGzRQ739yECRuiwJR/TkqwoqG9U8U2GdbDU10BO2paGbJA49LBw+4ptZs7Lrncel4AhQGhgMr8Saf0opipLOdDlUgA4YINmKKm+E7ICzGRqm6QIMENZyRlzIjuEoWS4thzNYuX35+Li8Oa9ZrNScKKg/b2eu9lwEVYYTID5FSik6p/JkkyBAzISSIACxr59FW7Pyb962I+qrePltv0xXOHPwy2s9XH25+ir/lxa529zM9SRizt4fb2n1nFltRv1swxTQnT0Cb5yBuXinPJRizRAamNSgFtTPhVvba2FmvVuddmgUCvsVw0VMJgSGOK8L+fvwccvEPLZcFHWHSHGnU1ENqhQ78b8PeOXRvp13I6lWfuWHKXuaPz/t7Tmkjo8xLNIEJmJ45cZWH3kxi09nv/2fdP7X+DMfts/+O6a4ptMQ26+ypfJ/w/6aXeasqQtOHihwfvZFqzjZKUmdPhUpnwO2J+VbBRFyDocurgX6OOphGO1qBdxnRtuZ1PBka7ztc/THqaSki0miFY0kJSviy/nvQV/eCJICIAF4fTGNCEBANHzQ1qj+uhZPKyx3/CbrtP0qfy72VQyCtGL5imY5DRSXTfKKCya1gOJQYBmDS4lPVzdakvDbgxDDVozRbnH3Ov1w1xcFYWCZlSPPv6vOJrL3zoRNMcUA/bizz9/4ecZrOXJeL99v74fs0GvW2+L+OED1DR6UXY/530N4K04ena0VHwBUF4smbWBra44nm2wzErprC+bD8Of6ctcnj5LVMFt3a16G9NozZFxpq6TdJpQTnEFbAfLkHmRbgdfm2atxcR/xuAzCHcKI+9qcSjySsimK1U95PXqhpEYK2yVBe1nNkUMUZDq2oXLERxsiyLJU+NMVB2sBerNsKWhUH/SyUUzsz5dSgnRq9lsBRQRDmlQFkqEOMoThmMDFSsN02ZDQixLZWaSDTv69YnXQsFkUUDqSGyeHFNlErXHlhQ0MrLb+d5s62Brk06nhxlf8UDnq6q0nJLWqY6Q47Kvck3Z192qfbSsne/P/j7OlfWS3HS8dYQqquOPbYRp3zcHtytvNyZ17+wizfCkfw+3tBR4sfMQQPrMkF8yEh/ZFIBjBQIoGITGBDGe1kCshAWSsIoBjAWEmJAWVgY4yBjIFZJBQgeP3/e1130UWjFIwXjEgEBvMLmSjMwEHZfZUqPgEDosbaX4xZZyHBoucjhEOp4w+hBEg7hjQfgdDJRcHnXpb4erhDxkHQQRxRbVujLau8XtWl+s3fS5+eoHTau3PK/ouuELKw4BK+7IYzwzsYpNlrBw2OvhQOhpvDIZ9svXvlnyUrvNBmvyf14YP3QXGbVV3uQcFDIkBifrrO2NGV/r5rVye9Syqfo951FtnX5bVqsgfcR+7eUy/JhX3RCUp1m+vRLuHV35YOtN+u96jHH5Z9swULNSLjoPrJQZr+66KzNjpnf8/T+pGOKY4UIerV1HRk5+Npbc2yhC6TuImVO2mnvpKjYwvojuGwTFR7x3ipb6ENbeyzPcbqy4G7ybENRmDDuoxOoNmETpY6I/i48tP0Vu2Wa5wx82fkPjteu4zM8IqhDVGMVMIsfEzJ3RDLx9C9439GrTviuFMwzOaaUUNGhPEtUrsvmcGnruabItM2nq6x05urF7Xl525k65uBWnZKqszgVku7MLiaDMM+Fw6+zTTTJbwBi0/LqvtB8m5Kl1VfLMbuVZahOePvtxv1qu2NpqOn5UPODXswVqnd1xZVoLuzHwSLhbTBcx1LcNyxuuRwnKww9ewTbtMtmS1klhzRMVWX0cc48s9uTUxmsCg1pFLghz71KuxnJRyVKF2EKe5INeCF92hYaXf3cmi2w4/efoLcXAsxBLcMZXR/gsRt8aq4PkvanYmlHWr8cT1DRuvTNaZRdtVL93jqImGe0rgcvxLXolMXMt/jbnGmTD0XLTFefXswpu1ZLDlZPBXXoaq2laCrBJRQKWt2Z23SzLXmKIlt1JLNpdaKpRgDEtljgk1KZcpCo23RqMR8laDVxa9jHGswyrVFVj8ade0NXC2k5+WNK/iF8+G1M3Nnf1UX2dY30L8LmKSPQ9fztOrXjapbETN8d8Rz8ic+aBvie51+bk2R0cO3lx0tj9ZOilWn59zFSChk50RYqNtp+nn4jwt7WRHCl5TihxUBbIKMBEd2woZ3XFA18nr/L48Sj8/1ObwaC2AnhilNPA+uMgk8FCkYQkGSQkwnc+rb1+b76qSAB0YDmgpjjDTAikFkJjFgX46Q70mJ8qSVFAN0AoyG9sJBZJKilbu9R7P0/l+TYeVASmalYejWjlLsVpp3YNpmwaDEtYiruJ9+6PBsmXQofq0zfw/Q4/5sr1z0VkIexqF1Z/0zoDZgsphBgNGVwyUYUaDCDDSUAzK7Ohbpo1ecW3fOx0K7aXg468i+1S9jBh9DKgpINECyQqogYDicmMgRhAIg5j1S+vr18lMiugAl84wO+tWG/rpR/VXSVIxWdiB+XlhIeq3ntuOPivXFw7ZlEbforn0LeqQQYgi5fNUGXqyXl/966lp2WhXvgTAyASO0ZkpKXwr9KbzOzf2rVbyN33/yp+JvqAV8v3ZBn3/55DBSIr5kBZvAAn1VPnYL3t/vvkZxc2NPdIGbyYme5fRr7JVZTHufd1djD39RfQwNKB2pR3nKbjqG+f7xdnBqbjl4U1Vk0+brVIrv6UNMWvh5VGaavUvQ1KfZsX4st2nK0paKXYymmtkkmv4uBOJSIfX7cqRrVn/ZjBNCxL0NYCIZb9thzpG0hPCgiIJYRYsBYe/aSsCs5slQ+ygT/JIGIKKIyCMPtpUFAFgCgGyQKhN0CVFIskUAWQWCMl+/TGDlKkAUgsgVlZEZISCyQFBZIVCVJFJBYQqfcTjV5IbODwkgxxff3myiUR7+l6psfIpDBMUavmEx1Li4IFx1/xv5qyMvL9hPYjX8I32YUD0d94yBnd8uk8RoNwLIOilPAQL1MiAXY3+3tx3dVnQc39i+007zcT60t1q1drgB1I5QftxC4uI/ES8q1fDVvJtfCsd7py0aYCiBNv+3nH262tsr4ierUGC6KkDwWp5pGuRcEE1GPAI9b/T0/OeqX0fJhpJMSHDNmK6sJydnSGybb2VWR1d8KCw0yaZXrYbJsikm6KX0UC43f37CaSY8kxnpYVhuwDTU+RhKM5sIFSCwNMCqwUmPsTEnUyHCGIVCe9lDTDSLju1CRSc8p2OnolThhMSHNk0yLOEgVgKBM0+UKhuCHcE3AzLRqp5Z7wt4vebWCNKGiu9mGvkxKmFxEsMYh+RbWs7Ee5EOV1ku1mnFYW2CqTkmMAUOvVIpBhCCKxn8uh9OKxsyKMKs1sGqxG3Fmvif6Xq7qt/lPA6YuYKFFSmWL/HyET9/qn8sgswGp7qh5bMQw2xAQ2XLpZFUJF0tD9Za8d6tE4GnMcFxzpyKYe4l67tbE58Xo/KlYneaOtfrnSYwsiI9xj8oR+aFwCzbiGwDgmy3MtJz1peDnhw2Vp0AOtFwfYCfSbPYOyzXDvHp08uy+jKXwZF9IMIQaDMeSCQn6VTHgYEmXKz4ed7u8ct3H8pwdvdy/7xJ46/FX8kihc2wjVRzMv+3GjLe/Pg79mWUfH47tah9vFh4zqUA5+dn2/65Zor4oqjj/ehpB9mqmVYw58HwrQ1Z7EdZXWdale/dWr87GaXqxmrXGKFWaXI78D7oq3smLOvWtUqVCfw5a8VG3zOtULCJlGZzIoHd5kLZ0CRu/0BNfkq2t3Bbn5sebnrc7k0NfrRtm2DhxsxV/5qsWMC2ef60VOrrG9h/7LWk80Z/prTyzuQcHJUn801scqmvW3cmh2rnp/n44NVRyOThRUVl5YjTFj6He5Z4eGG/30/v9vTyQg/uakKWHFdoGD4vHrryfq6bCY/0PdS/2/xn5hzQ88RpDjj35XLQtiVkgQijxgIMnzR5qz48nHVWzM4+fN1D185R1ZWePdv7+znWiT/fA6AudDHIj+clxEgg9Gfy3y3ok1V+xuDitavNzE419xc4HeYR36ODsgWPot99bnRjpfar5N/aO6L6KlNlaIXEBXfXC69e3U0wOuVWEfl6gtzU/KuzHFSu3Dbg4vxi0bOB/HryB71nfjYoy/fHiD4u6dnLM0s9V67N+4+nHd9IG1l3Ktfiq3bv21NcDctbrQ/ik/N2RYcmTNWqIkUjFVYTkFZfhjyO3Vo96qWfCe9/TNn3DFDxv8fHUvZcvf944NWGsOSKTiGFJnHs1cNLBhZ4H3OWVhVBy+m/tilvuXtsrVGrwTcLWJjVRdha7FrPPl5kypvYwxqThvPQyTQVokQ33Gtvpx4luOvBSzb60t5uai3ZVfc+TbevGKp7ctO44zh6bbvTu4H8Oy8I1oe1isbljW6jr1WdjOHqyv067Nzgmp2KRmKMdvgc30bnD8mPxb/Gdfi7Hc6mzFk/X0wkJGB+MKSQkKQkKQ7sqKsf2NNNEFiw9FsFlagVpiWKLFAzKZlh8uUiJMZKsTfa6aiurAWoVMtgoFf98qwVZpklSEFAWSDECpKyCiigoCyUQqBq2H9zKmJX86FZFF2QlYLIKNpXSOUUJMQUUkVSVlSC7iFGCkxlQ01ica06VGsNCp/da1pLoUgyQhIpPt28HZ9Heu7tYh39ZwG/xSv7+PNj/Pi31J6Gf8DIOL6Z/SKu9hfyWtP6muY+y8/JCltcbMuuGutNILGDW340151zrU3Q048milZXDanvUJvFnuh8KY43avYqdNKezPHx6KfXiFZdXJEkX7VaoZ80di9TtMIuQ1h6KgaDCGkP7n04DxBm3DTY4W7CnYsSbiKjrprtW2Zn4Y7L8crOc74SGdPVDJL079M4p9zj9ytIEhCZY4a3r4+uHhnyS3kPl3c/qcu2EOhL5XG/JN0GgFr1Q0pFBpQNttpoP2l7FHU9FBAm+qBxeSBAN00IKJWqqNbEbdXK5QieuCTCwDnPhtUdD69oTasKc++Amb83Hc4IzDzUJlNPZOGj6SU4sqJ817MEbDPii3g01Y6AZD3pCtWENLjZsdLc8SKd2tk7pYMu8D1HmGOYbmLixMV849FUCI3CUZERY+WQxR7ctQCqugINKEvoZNH8dY+7zmU+3T9YGuNkDf5o2GM88+oR+B1u12jDynJ5eXJot4dNTNz6uPkn0xQrCskRrXFVHq20Prk/MkmJremIQWErCpsyT7TNK6YH6KWEFJzQ0IsDGBcvz9t2QObPQmCRjw+2u+HL/YqKlMZmOpFu1wX/vxs0IyqGcjmCxbyO/TJNXF6HPd2auJmMcHHHtudffk2XKvWlDyS4TGRQQuZmVAynMKoaGUtrZTCTmYBp7CovSeF9HkeAyo6iUkINBByMTZA8ECmDNkQD7/faDGZOZBYRUErPaF3h3RdZHeLwc/xgQHOvM56pePPqYkRUi9aQ5f6d+KdWt8x8/19YMTqfrZZHLPT33m+ruKEO1gFYTrdvLoebVZ1Xz5rvux6qQ3cTzsxEZ1tfHsM222M+qlHhqmiA0BocUWJkm9QpySH1nXhKeBELnB2RhkzcDKcfEzLQ79b3uVD0iVHMfOBifm6z936fv7XcD9cQOwyICtay/jntU4MIGHVnPpuCtf0fjVYv9GbAgYjyx/1pOSqYv0dtjNFe19Pms4oABtwOW6uYCiYapBOSZ7pvz6tUkIDLb7bUsYhc6jYmPW2O3mv8m1zTRpcMzgE0qLqM5lWMBJjnsMrbkN0FXKwD72tG62+GQb//Vs73/ZLa16llow9oMZZOL7G37bEe6VuXvspl96lDK9F3oofEpWdpENuPBkJcwuhnkLZsWy6LRWwrVmZYxett4iM0fiiCfTFdURbZWIMgIVghJZOtbz3KaLh/jnW6VgifcEib98gotDqx5+F3jZsNSbwgT6sODHr4c3H+dmp21D9XxeBERWsqNPJsoFz0tzG8sQO0aD8zCDCmA+NSSH3bp8L+C4fZ/kHW/FFS7vtru2hJY9/k7ayPiVPW0axXDC/ldyEQpmB8GQk2eV21gGv9djPgYfGHn6OMHZ7wP7y3ot/tXQ7yGEHP13mV6mq9YY7/uQ7AZsNWwwOHeBaaVR88PFbRDEHpRe8dJ9kWZcR9XRz+5LGL/FZSXWuhfyUlCBSxl3mBdMAZ+Rqg+gUpk9HMrDdAIUPGSM7EmYLtd6LVfgYs1Rc13RmZb4ZZ87PP4cNcVTEmHmh4LS5PQHf+PRvDsJ7pCMlvnpI1I9iU/DhfugBYcsovcYuGCSZEZ8Sz3+/7QX/9djCE9EwKt41SxVIGfFm8/iSBagQQeAnR2sB0cSyCDtV3m6pXPbSIcA/tfleg6JdlLsy8Ov24a1eYExWKFlrlxiov0FtMAzIzHkhxWGKBQhtnWQSNLiBNadXz8acPP+EbrQsZqqOKtWqVKMvhVBlwmFWEBBhCAgkKqgwC+xgMOVrSuVdf/f88F5CoGHUZcvH3fNjXkZZ8NbXBwtdDjffmTVzkQBEOMwQIFbMEWQwBin9cfcmn66cWA6rfn4kUR2KyFNCqH2wRB1YoeGJSAH1wQDLABsiEiisiElagQ+VkgGMmyE0+LCSsDEkN0iK8/MOelI+viObnlXzX3TXzZqnuvWdHVEnGMutHjY01PMGi+j/xsbuECp96ofwokIwSLhPWgvMkHP/ihTB98d3Q339v2/l7k478PWeSOfD8fioFJ+EQrGseaFZIslk+r7n8e9sqp5YyHmlYSAMgEK0bJm8fzdnudLy6+LBLX4h4undJgA3SeOYJUyHQf9wwaVlH2PzWs9XzNuXRsXapbByWkC4Y5hvaGfWIoPt9kM8fu5crW5+1d3ROQCjIdZlTiu5BT6mvnZT69bWMnfu1v6sDGB1IaRQUXEOH6vb3fb9Zz+t97r+nj3D4tVhyxHiYHR0/rV520NceTsMByj8t+Vv4Ru4VZz6o48zrI+5oBRnRIwZkbg51VYsfl8ctr8WWuyYWviaBibgHueG0F/+eZ2zseHXrrc6/qhABg3UJyc3B9LZ2Ibzdb7Zathtcz9aMCkOurlnWSwEL/LSWDbrJSygmb+Pkx0nmHMF6V1fdvSpl/9or3kS3lUc0kH2YvNOvoRRf37bmGeKt+8mxnkrXD8BRy27r/Brlz56FPm1eXHqvvcWj2VckrfK6rdOHpa+F0SZOHr5KUm6hJiPxRro78bWBWvmojNu06aacF5jKIXvOCyygb0vC9cmSqGjga+ZuPdu0xeTv23OWerJCzz6rlO5Ly5OF8bftTudMnny8uHCb9SuHKF1fb9uZ3e7W4fJ9+VFmbtteGVhbTzeax/bYxYwPX/CKx2SSTXMnTp2sPba3KNr0Gx9B99PC33Wq696RF57fpeipXb91DnJs2NEH6hbqG0bNNBXXOIOt0Zlnk1rryRrcu+q2Tvm5euV+jvfefO2IlbsK/i32V2Ol91LOPg4VUfBGmDFu4eSGoyo9zxrWM8/Gyl7v53vPtN97gu8+DTkvSjq5hDmwot0IaDY87aOHCvx3pI6GqXNs9m7O6Lr4YsPDK71o8YNPJ5QUpMj2yavoZ6ODy7sWJ/XgXbs4F6u161i8mO3HnxVrHjUQdnsvL5WZnabnp6aHJ9NrtlkepX9uHFo09lPFur7fSSluvQs8DkvCYWoaO1eEXL8GhTehKK9Shzil6ZxUp9bU/K27PLDdj3W14lz0Mn50OyxU4D7DW2uyUZ9osQMVloJ73PX5+pp69P5v89XnzaNXpd7pxWWv7V076PBqsC3Z1hq2+b0/z8Z+/6T4uNE6lQ277+W6cdr+7VXsThJ+9DvRXce4iX9aLwvO4f7K8sXcRNRW0LQf1V5fDp59w5M5fwaflt5oV8M/hgB4vd0s3R4tSRYQ58jjNkUURPi/uzOtrfG4zmknmQlSZ+r7WaXVFFk8168p4ba8HbHxymPW/qTlzptzoKNijtkFCGzZFbBXpVaKPNJsp5Omf7fuv07KNuj1XKpBRCoZEZhkSRJFMkaQJIQCkGQc/byZPVTocL4vbhSzGA7Ci1haJqS0TpY5E+93CxdnuTXTfJnpgZLf9sTbTtyipl/LR6NCt+bKOIZLH1RcO1f56S0gLzwXd2nTzzCh86Am8xcMiMyBmBh2PPB63d/CE1vCVsBO7GoFxxD15pjIhrMepkADMAAhA7kEXq3h2poy8fi7KLvhIdevz23/+59nU3eHpejn+rx/Pl7+2sR9t7xlX077efMDl2YttlyTAmn8nzSx4RtxSJTBNQc22srjVBrzp3B099CvYjfR26aS/S+cXCnOzcWX2hT69sZ8q/p23X/GnrvVkWuepIAqCU/nX3ifMxgsxOsX+at0YEY0V61j6pyP6+2ZxZvZJVVH9Mx78FWnX45eCzBy3t1dye0zhsTx28c1mZ9vqtcVR7YvXuQoPPSGN92zaadpdH3tz4tUOTgqnNdCo7XJBZtO0JHq66y9KjgdyRSKWgt8E7azE63AtBNlvzYlXzzUxqMP0xwSKY7nNsyl7zGHoQ/tDl+1UF5iPXSrq52nbItQNei1Bq0J8sWZYupinj6ajdWty7KSncnEEQVaLbmvlaTvPGGJ7zq21atlWfuMVnmGVLYVmVHUBtHwizdhppdFhFbPo34xjh5DXPUh6SWSSfiqp2a3U50PYG1jvICDK0YRXYby1F7XPM+zM70Mi2Z0aEOpYsRlmQjSew6V1AZPYugJPOZCKKRKxmYCbSyrSo37KzOhnUbN6yvIfLSYfVOymHIBYXgM6ErazIVd0IZXRecvLNhedGRSreTOpVZ1KTs4q+GLevlvV76+Xjcfjjx0dDT2KuzcRhwR35GK07PLlxZst2nblpC1fRS3zCuiOyKONbDzxdSz9pyikM2JszqI5LaeKSduDkRvGe3eTmWoRXrcWpzG1W5KPItRk11HdeTTT16NIrmWi0f/eVFn6v/hDGTlvWmP8EQ7z4HRFF1Di3LuUN/U2xg6u+xng1Q3Mt0fgyIEUXNARC46CB/HU3kzPXuDtzfAMxAipgGSjmtO1O7u+fVhWPbhWVwaKPLF5HqY6GckAWXw8rPbtOm3IIpWHGaDrPAtv8YVpqHjVr4Oj78NaX9TaLVC487W4iGHRgTwMuIJdU7dSjeZMVX/Z0eS+wDkMe0UAbbF+IpOMcrrUMyCkYAIDJjMdnSAOYTslW0H6GCnMHUhSaJ9FaNIVgEY9P0dXf0RF+Lu4Z3Ts9Dd0rTNXiwLmQdjpsWgdlAtVL3ux9lx43OB4IO1apUg58p+fb1NfLfFs83k1BHQi/Hun1qmilqycrXBjdzx/l4G0a15dCRvi3xPYWJWQn3brH8OdM/gmfkuv3yH0ZEAMUT29UnTqqrWj+4MygBhFtCDAbNYyzn9ZUXTYOi2hNBxL+T1UpjYh89obRxIQkzGBC5vrYtmZaU7GQMQCfX4Us3LiymZn0fXpNx9Qh8twxbufL64wWCg7n4PvQNom111b5h6EA8N07tqCVB2JX9PwgWIwVXTebcUEIbbKFwsUydyajykmYMbECkHEYnXEio8wrc3wjsMF3mgyYMKlQrNkh9hCpAXEU1ZVlZjjMjIFZFtaSYgGMJUgVn3Egf561kWEFUigVDZkMYRVWpUFiseeiGeNYJbFPpi1hs5j6/jPfnv9XF0f1/Du9/Ef1qQF4VNOZnN3ovauCDXBB6fI9+o7SWkwJupQ3zX3I83fF7jsWycx74tlNnp9MAmf4629CGJGEGiwk5TRAaIUViNaTzC+Ed7vc7LqhH9VKyTQGMWM68lDvIECeCQy8AZ3d9UvwYm7GStWtR9L2I5O0AEUxkQDkTVci7dvrQy0GuxdD1TE4tVHdy847cm9n04H/PJ9Vv9o5e6KPl09XT4WYbeyepZpoiUxTg+7lVfbW1iAYqcVm1sWx+tn7Q36zD/hbHUWrq1Ka5+XuBA9KA9FX23tbPlR7nPK4pjz9ZMvRSYc4Wbby0er7Z/PrXVFcoST/5Ps/+h6ajq7z/qv8M8C/s17PCDNzVIiUcc6RbCfiiirOeKGlGuH18lLf+82KwJ7lu9eqchv8Ryb0fyPEpjmR0cjPc2itS4k6dlNhUPgu8z+7PdV/LNi9xfKOVzcYm7WKJkPIyDlqEM/r+INSLCEhPwlNKDFxXhT/WZrzTQ6u7Q9hQOWiXhRCbHjV+10vk+uqBTbuneuuBv+eGqb9s+DM/UXs2MMWZbi8dVjFzammrAGDkvenryddndKyi3MXE8v+IC9DIKP8TIAc+pRgroCzPat2fha1Nol+HMWovEwoVk8GBUD2s5s0hNMDSV/j9D/HfXm+Ln8v5tyf1KHWcG+ZM24Veu9DZ/b15shdtDn6rf489nZwkqEzDF/X3V+LyHvv05y8tv9j9HxctfkgfnQD8yLKhY1UFhCMkUkAPn9OnittAkUZBSRe1EsiBWEgsgKExhP4oYwFigAsiqsiqCyKLA5ILCVhEtKySVqfQhBkZ5lr9zLixnvMgB54Q2Axh/HV/Oal7RLLiIY4Yx3GAGIojx+nDI43iMVlS84oUGcMHY+1whBmF8niRsMpIvwYCjBnMCvXEEWd5H5QW6kAB7/2zhr5c32qpx8NLjzBfPyQ8fFRVlj6+Oo0QwrZ78rfiTNX3D/bd7LjhAYTIFoGgR5My9tqXIrJRy93Sl42HkQLTRcXxyYF3h92wxXfSvjvLZmYGxWbwezj6TYscUD1DOfllRrW74LlTKy/dDnnYjtmUBpR6qpWhMZCK9pmb/EwkbAAsUO8c+Jzde6fV98BDpQApBbNR2aVM+fvZPr9uzMuaBrgmEu53FaKzaqBv7+nZul3zz7PNf1idgqTUbQHkYmF2DLIWNqRVutS5qGbF+L93v4MA8ZBhdX1reTbJcCutKQ88/Iw5kaS3BD3tdDUqc9P7upE+eHKzc3N4iu3QG2cSxhkwVQ0mABmCM7WFf2jqmRVKvonL+h4P8Oelb1+9f3pclQUw1TB7l9Ohbna6OvyXBghYQhhCEGCC1zDGGPGF0iyq6blhWKD+z6r833gWOI0oYuZcdLOfBfbNgX2H6KupCrypeR7dt1k5kfj5V6O7Q7VxXeQzIzBkY8EILKAwmTc0hyvjwDNcO47ti415jdt2IqL51DHp79DzaKW4ZFL4UqT6nXW0NKhBYqaKW25RarIpOTMRHvTTOGVNIsKxZ0vflQ4Q3ZMHz/FTlr8m+u10gcNdW63pDbRcQBtn32sUFBcZ3ZcZDo+pO24B8edpSNv8Ttn4KztItqmfUw5kvtCbRu97JMRetDkn16XlevA/IngnZt2ZEa9V68KxR4t5WH2w8QLxbwxFD1gL1AzmhTEpA6JUBXKePLfObOjvtRYcMxg9LA0mmLKyHV40k7NWbLmdmah50pacILwwYwRwQpogCmUVQtgZCUGh7Br9uz1CGXL76fB2a9QjP78VfJ5IqYKPJf2euj1p7Khhp/DUcdODVqYv8I1sCVFrfV6OCZYLdGh71V7/WT4qXqR9qRgThydVtlfR+dy1VowDMjMgTgLyMZTA38scfAXtmO48HVgsWAM/yZAZlJELy+HSDEPf9KCIP4ESfFE5kCHK6F6yoIug+Y8+lw+v1cX7zZfd4N4C9KEFMBm6qosyw2+NSfxcp/HFO5Uw2k7xpXaCxgzIAzBE6B0mQGI+xh5P0dnV/z83x+39Hx9ofs8qtZUWEUBYRYiIyEUDVskFILWFGAoTGdeWBjIFQWCik8mQFJCVICwFUgYh/VxUhNIVkUikD0ISppkrAWSRSGyVCFYVIoVhKMCCw+llRMpIVWI7ofrQOGTSqrIvCEEZ9FECl+4sl+L4pYmuenYH4Os2uAhzeASexS/3xR9UtjJdn78gv5iA08DpSfC9bqZJJzgWfM7xh/ledaZx8SBRCDBF+TIeKVnotPgQ6MDGQ3Qh5eVh8TOram6Qxn3t7iSsCpDTFiyTdlSTkzZhjpIcYY6YkUxsphT5cBdVVNgezADHLDhMYBjD1W4gazlhK4zSAKGzpOpCGkhibJicWnNOGTdAUgY+ZIdE8piGoesqK+IriGc1iKbgHZO4usUBiOP0UlQcRkMQHcA3H64l4eIJzujMCYMgSDAYWQAepiOrLhp29DhdXTQ5Pfu+3KGfuwVrgjlUovuZAhw+Y46r33MGcBkDNVpumcOLt6HMX3p9koIfNrR7sLaOr6Y5rwajRJTXN3EGPxg5VZ4aHCtyLlw9GMDkexUjGPdb1fidmPosQh2TLwaWgLBk9woG7ZLBQxhFVhIz/fv+RkHQNetprSRAgFeCXnn0khLOymmTlXz+7f4T6w2vieCjdxNfbpVRVWGH6Uj57u1cZuJWHkWD3RsshzdE6nb7Yu2AJIIMiOKD5ooFYigGZAzABAzSYCDImN3HmqbGc1HRq3/j2rr7Z8HRuexHQ+mMK2TLinlO5NreuSYF74AFKGWH5/ECtPDj57oxgazvv3uAvi3iAnz/0J42jbH1Wsy0gofrZMcSY1xDmfGqjWDdfb89waEQo5Wq4sZE9SaQE+9iTZy25Uaftf38FbKds2cQ0UORzqYjsin68D1O3D9B1adzqJNTP8XV7A5RrOn6dpTwZgAX5/4cIZz5/4r3GHbN1ENHcKWMk+vrFA7bDg8zbV+ON2WihZSjXx8vD9Jo/fRr1dfIbtFPLjznYhpjIGL8YUUdKppAQoNpD2a6A9SH2l4uy07HBceH6dRgbMAoP71QppAICqeURCRZESREZAQkVZBSQZFVkH2zemjkwlkQrQHDFP0wWfVbyeLDgvIf8ZaGndTn2U88t++/FYIn+qCiQQxwhJEZFeYXxRBkIRCKRUSUADad/Vr5PgZx6d33679UEULKDMgpRienyCU+fTu1VXSxB7iddUgNohIpDQy8JlI5Inhf/mVvYvNt6j7/JX7rj3+8xAU12Vq5FmA397uC2xBIagWYhVlpHDiD00rmTYlO+E3KTwrA0oPFlz5LZpOep2/t08umW/8RGkHEflwWHY+/T/GjBw6/tz/jmv7dDNE5uXdWW4ej4/tu4yCJv15QJUFIt+wRALDVkBQav5DZ+CXCwmZSnkAXrVjyicFASOt8TxFOZNggoAuEwFzELT3KrVDID5sIv57/Jl2TB8vDdw1p8nXp6IKGyHBYUcXETamUsW4sqT/k0JZ/GC/kIWgIgz1BQaDcikt4uEy5tX+cuEfEbhE+cW4IBAUZVzrt9LIp3aS7CrxzyKdlmUPfDEACBa5bh8VU36aJNlFSkJNp4+1aWb9HClX9NVM4dlOUSx0LajuBz0Z/H+FthfD28NA6MEbYJgyejJdZpfXupqxYdd/Z03YsoWz0RKQFkZADw0pkbeSqNmnjusKkph+WcebXwX4iMidZheeIoNhy0AM22n16aL0O6UwGdcqnyAZswDon/KBKyb/T2v3/j6bpUrbLoWuabfqpSNHn06T2hAAxlUwQA/uiEewYuwJDshm+vy4++ZLrxvn1QPvLaPBoyVPJ/dLZpIyLJtoH6PIPwqVlTvO29T+vn4SsQmZCklsMVxIv1kFOAAiMvEAi7hBQbXHts1883Nch9v1VDqr+NFyJ1wSjj6YU89+zFSKLoSwAPgf9tSQIUL1CxS6Uhez+okTc5rishGHla7YbYvxdOnamK3LVSkAkVkEZ0KCfPSiGpnxU7BZZmeejXzUF/KHfOhtqp4Ir/Gks2p9mq7+sxRDCpBf5bGPY4ze678Vu1Wo+Xnom6a00xGYJ2xQU7AFySlAMyKmbcvjTBXHof6yCOktDHBwgkHqa2jYLDvQSzhZSRy0n0tmVPDVXZ5Er/JGRF1GQbhQ87Ay7SiwdtJ1uL2PLx+IxcVfwtDDD7pjnHO1NEd8DHz5mvAiQDqAIfxvL/ew2jy9+nT0X7p3fhMDZgLCLIKp2nVZ9w/JG9stV8MU6zqTpkXOQHHd33XIcMMSmCJTID2p/zDA7/I+PH7NetMXsz3y/TH3/NMJnFSvw/VQNpgTyTaYQyBH16Jaa85znTMkDowCYEo5W34/0Tsocy5dF2XyaIcWgwfNUFXiPvTZiw5OaBSKSJo5cGzRrJmsy3Z/747e5TJh3fz7dFqyLjmMia4pllPw1HUO5bccD4JCY9wW44V0CUOCfWp6AiBTBH0fVd09Uwgu/hwBl+HSfKK/KsGiIMCAyKYGCkNOS9Awh/+jirtq8XnKi6Rxu1WjgDJcUU1eai9SymuYJwxHObymLJ/yjYHRNt1ZQzhdOU0HfLgQ/5Qx0QNKTSJMExffTaZuf5Q2DaRAQirfiG6q9Q8n5Af/o7NTsPP/73newB93mlxrw0MxhYwRClEkIRJFfplfX0Mf24bkHgiIObYYSpl/CQkP+qJmgQgEgSL43sFAzB0LZ2bbcM7bS2pd8iDP1dgqxSMAc+bfHR/4Z4THqat+H2t8tYwqCUyBmC345+5o/MzdIAHzdM7vNsYxRSCqCwUFhFWQkkNwARM/b+2ocPhFz1FdQKd82YR6EeLoXGxtPq1BiE+sExhnQa51IeAnxx6GTq7d2dTv8uPKZObRlHigiSEgCyEw4Lef0YurhvPlw/CYdvV1Gbj0YvRwW/9wFMZHX+I5uKwMyEbYBZGQCQLPAeyqGfZT9sDYOkchE/oC48sKxBA6Xd9nFDGhE5tmIjMwQErWJSqMCv4z/Mcvop/hRckp/lXQ/+Rfi9uDi491Pi4Q5vJh99n84qAGGCcuL96i9lJwbml4oKlDbSqutUVSm6/eZrKZ783oIflXWGQs4ZfpuHCYoYAsy6u8o0+bfW/uTp63mhY6DZ9jDPEs4eHYI8DfH3O00wj/H9eH9eVXu/rSThBYAsgoiQWRkEJJCQHaq4WjkeH0iYRSz8IYImg1OSoHmiVIHo3/Ti47ThbabjRUrk4slRQ1Qfnx4tHBoYa/81peXferU0tVmOlUEEjh73wlbd/iirGJDIiAaNoxeMDmQglGKMXu2wPv/CefN5ztg+AIY/gASERCoSKZzRyAPqAHSYEJMupDS6DMgM3K7/s4++n2S5c94MHnBYqV68v+pEf/UmtKybNppemLrDCSAAUZEYr8CU/uo+q5XTJwXfr0Ub/mnyq8qpR/DH3KCBmEsT0zszd2j1du26vSVdaURBwyAMwCB00Ewyr+c/7Xo6RZWy0pjVbrUH55kWU0zL5od+20u0fnt+TXYBwRJETVAUKE+QiWTvpBdGeg5BCPQPFfP9HrwFfDhL87MoR01DGjV7sF6EQP9h9lHd+uctO872jyQc0A5olISHyzMdX+/+a/jFN5jx4lTvf4lfisKaN9GnJ6vD/5ZV8V0uZDsp7yp8lltoksDMCn6qA0To1Pv22H8GgRaFu4o9j8xsBrBGRNmp6RY5C0SjYgok44UTB376y6xQA3734q51gBcMABw83/UqK/7XorIEbn6wV2uzrT+IX/7P1V0XKVPmcfMikNlBCr/8gAAJbsjubWIugxUBAOeHFYxOQ/CGe/Hke75DSfMpjVtCEbU010eLDXpZLagtiP/EgsyQika5kAZ6TIBDjVKcfer5TPrNaA1Cf2Dy+KflyWncrCUfL9BvXRqTyyRSGy+yn/mF+I+FYCkRAAyJYiAAgXGavhw0DmuexDVaUPfhVyC1M0AyIJPm4NIop6ELPkm81GDgoMwRAz8nR4PXRea/6mJTFq0f6tNkXHsv8/06j6MZabsOxRM8kQAkZECQSRJGQFJICyCkBSBFIoALJIoRYKECKQWAoAoSCISCkJEWRUJCREkJBH1yn19Gpc5vHdt50W4KkX5+SnsAP2aaC9oCgDvICF0EwcbQUxJA+AA0MwibhDZvuE/9OE5/cfPh6+FuyYM2On9/ZJ8lVLIKAJyTpQnQsx7sXn/9ffeb/QcXPs4s1n2Z6z7fM1fcoqdjVF9eULZrWkMdr6ytxjmcUkihFDiTTh2JnXQAOECj2sAUF8E/n+qh/2h5hD+59BzJYL1AxCRDiBEgDGWeVP2P+WprorrAEWHDft+RiTRXH08tDRm+/l72M53zeHNms1jyQr3Op0NtpbDrAoxAwQCSQ+7olen8VpxxNzAS2HZUi41SAa7acPD99dcOWajAAFFKAQrmUzJsN/n9XGP2zb/58f7jWYvO504GX4f8Uijgox9P/sajn4DpH8WaoGp60KF8U75A6MCQYxkkGuIobH1B/YaGFi0Bh4cNMfa+LHYhijmiuWABmCBTGASDMmhlv+1IMhk2BOId82xhH+/xPh3R2fR52ViX89Mund+3/cVnv2k59td/w9eXb0L9FnHgaNuihzQXfE3QOgLw378KYjJD+MGxiOQVxwfxrwTRrpJsiGjLTKDSkEkOGIkIJJwa3KlWV6rRDX9tvYnGvwwM8rsq8kjix/f6hXuph5vuyicUty6KpsQSLxg5sZvwPKXaQ6FL4Q5lDulTo3K4jNSxMflNFVxQS75EsqYdhRXtfDH+WUTg6LIhmS4+fs/96AQx++ole7L2ljbHZpnJEvSuL0iJmX7tsLH3e2jtyW7kFLB0kOZIJrBmmGCsvW7PaD/mOn3jd6qvwgVjIoSMgEgqnrP3MJUSyGDFmyrdT4pqsStXrVDUS3mYoOvXv+djjiaah7kQOVGWm8DA57ufF2fXnxY38Dt0enatACvZKOUeX7qCmHBkMwGlH8g9oqHKBjXNiCnRvz9UyX6KZcHC+a457M+Og6YgIMiJIhmiFCQguPHrr9Wu7Hx4vR4btlmrZTqTRjpnzUw+bRbdf8pT/sHvMuqvKYsoOCLIBI/HHrzL9/BV+fxfDPnCCdOTezutZJMSCkUUBQBYKilAIAUhOYptNvwNAZFtNfo7deyzHi4xKhwwQrezMQIB6VJEXzL0Lfdvz9ezDchF1qvHEiKpwzy/yysuj7xZO+YMhPH1s8OC+2sD2zoQNWHNssL/6oD+ioAHDEVq8Mw4fvqi/rb7ej+mw4J/YaSn+5CII1IAsFISCkBSQUJFkkUgpBQgQUFCALFCLBQihPKQQTwYD3gV4Jm5KYIosi+PZbLMGbNtM9Lb59O+/AYd/x+1M660seDzbEvyjvuUC2yIAIhMe8oEcAMD6HTaL1qfauxUPgPMTHLfB2nCXNoESCfYp7OMGNQ2q9FVjCKVOdU6fQ0foCVok23guWQwA0YSYDCR2Gp74lvBN/yzSlfe03m2eGCmtzy676y2OjkfBTmwZCgwjpMCcyoGREGDIH7CH9xERikAUAouxSZSH59U+vB0BBNlwlUvNVXOgJE47aAmqOhQVT9cFdQUwBnURMmCITnJM4nmgq4/RZ7/PT9Sim3BQCX/boRJN8fdllv773H6OO3GUx7sR+O0cUAkJAkAZBJCQWIQFgAoCwFkgsWEixGCyALEYsiwFBjESCwFAVEBQBZFhFkBSAsgsFICoyApIoQFkWKoAIqqkBZCKLFkRWCMUBYCyEVQWQUkkVSSQZFJE6eCiZd+u7oZKXD9ctBiv4QTIqiaEFHuj/ZBSoQuHIiI/2QtuWX/mpPqzanwic2oYBAG6gAiBmGD+zM1GJnHK5SPbdbZDZRst93t8cDJDBiLObM2U5c2n6LtvB9+WhggiicMkCEGQU5+A6du45TMl9hWgGfE8JHCJW6MZ2VJcKVRgmQiPtMT5Nf434b1U+jNi2SxhAK5Ho59PTNVmjPTr8eGbxWPnuKK4x55NI2yw88rn97+P2meU9UsYofushKZHz+HpUs2/OLQRDQfAKocIcPHgMKBgcMXHAHgPj8hAkSmQXMgCp0v285Q7G0vJ+6zcMLjtR0qvQTUH2ii1yRwf3PTPOn0/BnWCXzovLPhG2d8dfYnaZcfJBSIzIGDIfMUAKfbFH4HiObSHPnPo0XV2GEB3CvNuH5QCLyB0n3lNo/J9Wmxz/nQhgj9N9WAkQk5PB8ZrRCKHgwKkFICqCkgsAQZmCBGYBmQAmMMDgWW6UOdlSVukm4vYOuwxq2T1bUsXO53Hyhyitio521/ApqgaooAZMl18yaZNfhIBf1V8JoHfNgizilOFNAULyPBh3VARBw5qBjqeWprIf9zntSVfrQLxkCH8riSlTUy6xGP9nMVBSaZYof8/HV1UoYY4n0vYt+ibE/p3WZ7EC9CA+kGPfOhqNlJAiuUgRAgiaZAqGRGYKxz06ilcGXQS0t8oULkUxgZFipUBxSQIDERBQ5c9eAa+HrvYwNeYWzkgf+f+zl93QDpkZkHS7+pd6iKl8xHF8JAh61RQTXtWXO1RlRCheCst8zAnWvy39RUnHM7SMjI+ZdS15sg+7Vej83XGSIgPDtDYbJTiAjBTlasAAhhBAIPXEnvh2JbZ/HU7wZAu1RIiONx/4vO39xy9W+/Q37v/ubiz+3546zf/iVb/WeQ1w+8ZTZhMRZBQBYKEWSCgCxZFWBFCLCACwkFkIoIiyChAWQFAUhIsgoKQCLBQFIREFgKEFgQWEgef3i8nvf/OO7D81shzTqwoBJAMmoPpMvmNeUN5eacJkSGMZ7oOpUhstKG6GMV6+0DniaLVMG2hZ8mjZXLddXoV0ZzK89pjyZPuxGazh8sD/FRWnZRvUvcwU2yIzaOY7Zym6DgMgB5xBl048lIe80V6MNqCqGl+O9TOKAaiqXHiIagn2p4wplxfp0dP+8l+1soLIuNwdHTduC/Vj4fd73z1kIHwMYypS2RuTGO3vXg2k/jCgtDsZIDKNfCM2EP9gHMBqTlX9LDNlNwv65w+qdAR0YE/01aMdmP9xUD1zfnipGAQIiMiLnFhwXufFnjXdDj/6bcDwm5L+nn+Vo/P8tGpw/gR4vvPW2vARglCXZ6uoLeZiqAsGZkAHBEMBEaxC/8NqFQ4FnZOFwj1iz3pd8ZVNPgz+SvKDbniIhogAEioUEnBzR5fJ5LbMYgAsxgBoyFNtNZ78ZMq9iseBqwn5DiEtd0z9dYM74pTgbsI26MeTB81ufR+urIe/Mvf/mjW2jkigUjIsIgSCwgkl34lPJO3Ds8rT/URIo4JIEIwiwRYjARixGKojGKikFFgpBYsWCMixZBYoIyKKAiRBgpIoLJEVgjIgqLBZFVEBYKpBYAsRUBYCqMUVEYKIqRVWCIsFhFBFYpFBUUVgxCMSIkFWAqRIQYRkBkHgDTPssyU+Y64pz4AQBN3ZEoZgnuFVEhht/2VLcfH8LD09L+NNgN8OeLRUCKEFJESLBYEWEkFhJImRAEDMgRmCsX//DN8tUbkdVVhXS/M81lfWioJfS260Sw1BsdgFFmfExK9WWf/+Ypfmnb3oUdMw+YyW+SeFYEzHUwN9Q60fB1DCdI7tEKkUTnIiZgIH9VNJ2Hs6brTOUtMhEDYqxklkyIh/xhGBi0xgXnUc3VeD7XImKRaLXNU1PrqRs9P+fb439jUthh/p/P6eYhcr5MKxEVgwZgF8TNJeNYygIy/ZKiECuGnOea/7vkzEw/qUtEwScCOMVoaUWHvHx0zdLzlNn37uDt8nzncwXe7IgAHYgmmKcXdoedvt/92YA5/6u07i3cCw/qK7Yr4bP+7FhRe9alx1dZxJ11/gY0qgcdZlIP04qHNKHJb4rLCCatLTdD7IfmzSezma6if2IQ/92uDzWPF6pr2b7UdkBkESQBkFkVJBUFAhFigQRiyLJFIRZBZCAjMiWFcmsc3Mwc91yi2umnQ/8sn7KW/Pp18EDE8AlKqYy9kFFQcMDr30sgmnDu22KbBTFirhc7ROg8SDRQqY9WQHlWES9Y7ZPzQGXUL53iREUTFJy6tWns90xXVq/uvuW3EYh/txOb1ykQhD7Ib22Zx/vjOEvm/cfLMcIVj8fw02gPLm4bdn5UMm3LLu7KTZSm6h7M1fRz91yN4BARC2hwxpCLIsjADT+tS/8S3EobhaHtcwFOBCOA+N7X0RMF1vumTnwicZP19FDLfQkQP0ghSA72VKSCfrYLKssNlnWGlxYWb73e25/uhqNzhuXIlYTb7IVnT/2eP5p143aXPNBlW8joMC5D/8oEQkpR9eg1iCS6Zi2hVs//ECXKOyWI+AsGTzXKUJklwf40oloKyACSAhCSHxenIAdKFmPoH5/tktVTpY6BfTh+/f6usW1WShEKDCQZflwfDG+fSDZCDa47S39ZoOU+4f467LaUuTs/J/juLTmfJur3cN05M2zr2YovBBV1nT48ihZ47z+b6WTdT/QNYq0HuKQEzvCmNKmRf6RFHuApX/Ddpqa+bG12wfQQDVAQhEZFMuXBvMWe3vX5MlJskCfz+nVzVPDRhKvEv8IUIGQ5V7LmEhn4H34nWG796d1iMfyohLv/FA4Il1P2OLK/NdxGoEo+FAmmBhIfm/KX5LPDFNr0vK/V+hb7oftA4EOoUV7XZMzUkODJ+/79Xr3IcQigP+QTZhcyFEzMrD2FtWL/7eKn4qfl+eMKM62g1xA7drMqRUbXYYvRbLcoXdQ4vsropLovppzKIBRggUJiyVQjoJICxGJ/t5Qvn5z2zaR8pCW4mpYREoKHTx81nSNCg0ezxlMPX4XIWKXxMMTbGlmPAc3BZx327OFDivKMgO5xxwAbqYc4z+Xn8dKu5MuJc8AWjE4WippWZDU7WHJbPx8eDhXiw0SvA0cW6nXiB9kLd9xzFtoYyCv2k8/UMnh8hoMAjb5afHr9FvLl7Lk0tAFQ0Sopn5vO77Hio4NzTb5XZa5y6c+/7j4ny27OlFbofYO3O+z/vU+u8zBaL0aUCSTRLIY4hwzbP/JGoAxTVGQDg4zQ+/JuD8uMMiCYb8JD8ajmA1UH4OMBpy57hAFqhz5Asrf6tVRDLRShvxnJVU/WAf9Mc+z3TGcxXzJDpv7sn16RZfzW22N+tz2dnFomaZiPGdv+hF/hIP+/6iSu+3FWz1L+jENqEPV/6M/9t+XmiM2Ii3GCJ73ICbbLhG1Lh1xEprE4YkgjIKSK9b/nAluA6bQA0Aa948FZdauKfRzVqqgmKZYmzp/1WvHxJwhSNdtClhWoI2V+HhK4C+1MMxBoH4cy/qxAdnmoq0veemnHJIigr8qFHzQNwYSplmTHaGYfj0/5UWmnZaZrdPsoGeKgyAqSKEigoBFkiwBSQWLEYCkFJAWSAoQUiwUCQUJEgCEgDsgU46H4YWnlI2mv31LWH6wf059/X83Pd/HBPvCrlC8wnnsAA9NSG9z6QbuQaG+hLRUdpIVXM0Yv9wpzvUC6EmQjIGcgEKeuo8w7kzlxc3irI+gTgGtdGQVCKWccNxLgxryOgjw0e+SBV6h1SoAFPWNZi/RAuraEbUDAWX4sXbp8UDswXRg+OqKaJiVQigFkT+gCUCzL8/B6y75CdGCexVx+6qY4dPXTyn56q94vp9/ZKBzEP8FUYP7xOCHAA6mcDJ2ufatQhB0ApNZCpkoJYUAQjRD70AxSC2hUbks4Kb+VNjCDhsZkhN26dXMagWZSZmFMgAP1RKRmrASQFCAlgiJGFAaqlHh2gZJoMCVqtGFjCxglwSmYJRskLctkAqSqKgaTBFADAuoOBnBmGAJYkba6ttn2QkyAFEgGiRRKWlSjsyyEcEI2QJApZaBWxKgWQARdpUaOWKDTw4jgmmJTLq5rBO7uop40Bf1a1LuBKDggEekU9k4hSc8fWEFPpnQGymjRTJNsLIh/KqDF1xEkEYRfYQ4X++xChs1krWFtPiQ8XhwWfi4fuXX04AXgZiXokCxAe1yCAuNwzun7dgRF8czW0bIEuB7ADRbu9taCela/NR+qesBDz9fs554r4Bh/1LczmUTHpM0Ss4ulEORRVdy1FIBnDD8MEXha+LemGE1jFSrJCjJTj8bi5Er7bf2CG2OoKvNG55VTIVBOoF4JTGRbxwgFoKqwxSiAuILYtPKygobR1SA4iIpxPPlYgtpcQFHo0bJYBDgEREMJuLJiA1BCFgQRC14LwhZBWoIlmIKtyIBjE4QllED/odnXDRqBEeujhYYRLH4FCR2adZyPrAkHgbucbqmhEUGVoPWhyNmw1mUEBmxqBRGGy2gPJkwmyIilNpoLmoaCCxQBkJEY6aagwJAYjFjfJcMBiIiJAxA0t0zx+hUiTecQUpJsPANdpVZeuqYSTQK0KVmCmHf3iEFGS4t5ZMGYnLK3EWpbFHVgqr8VNwzi+s5c70h3FJBkSRJEFZFRhFWCIEihFiiJFIEUixYsiMgqxSBFCRYqgKKsWKQSILILFWCkgKBFJAVVFGMgAoKjBRFYpCfGYcuBHonLnmXdAgFh4Sdj8GQuc6jld52uaX6Ln8GeXWwgOsny3XaCsmTzHOwauGTwy6dvSsnciCMJ+XY4zrDWdbRtgkVJ0jRBpjSP91ISg8e31S128HTumdusghXo6xXG3dXcY9ZcyioJ7oLDkJQYVhABUwhBu8WkIlTyIbKtcUoTMySDKSDHytHFyi+QxIM+HRnHm0S+dKjGUQPantRNy3M1thrZ3EsdrV1lx3XS5lSspq61Ypg0XVdZguDbmYKCK5tczarmbUtysbckA2TN1MF1VtkOLp1Tisou4rImWA1juraoq5twO6K5bAGxcGI2I/xiCyDMBIkWgYVBUxMQDEWARajkIxhgc/ZYU6kgIWSIEgpIiQgkjoppXGKLAiRAtEWoGyAmAYF5eJoUYKFRvAoM00sQtKYlSCoN2lT0WGL0wgSKt45IVKYgcuNBqKxiohBQqUjeADcSZIGUKQKipIgQQDJA3ENEUGDBZEHMaYi2itQWysggEgERKIl1lZKAqKiQgpiKFRG8Oo2iFki5YSJ1egEyQGorIqQmmFGbJJRNlQhipEASVkMBgRjyNEVLwU1FbQS0oSDCKjIj7pFUirGSAWQ4s/6khaEx2YwagVCoWIGntaMYAFGhXohUECSQkUewQUINdygahiavbvGB8y5sMPk/POdeZdF6+mW94rHkbA6kHEpI3aWpJVLOFQcM7SzCszpsAozsm97j4HZ2Kg3eZi1FrDlo1fw7dHHk/16drsBw3TDgVm3RSWE+Doexzh/VvDNc3yKqDbIhHZBCC0q/BVxC92r2N638aDf4X/+5zoMbFX0pFbjeAfSAoeUEGSEREkEckFRQ8RRRE8kCWgGICiJgioIJIALqCgTHFDIGouUWiaUYqnWoWnM4100siwWLJBYSAoSKQiwWQgsCCwWSCwWAKEVQJFRwgcrIhYE5nCxcSVgvK1JAuMxxQVSoquC3qVL448PkAO4BsidR6c9WHvlniQDV4YWbifOe77x/0WpmG/EOdGR29dZ3Yz3fOahbaVPJBEHUdREATWt0WAF6i9RVQNQYJhhyyKbgKuhtHcsKIcggCO4giGZciqJuAC9OolIoHCCiq6IaptDZwwvICgjiCrjrgWBFLFmkFCkICgLsG26AKIpVhhAAaynl0xpdaAXRr2wrJlAFR0lMHJXgYSpXrcyhW26xk7NX5VttUFXS1UBBsTkYWdh9zWjhkQ1NhYISk4pjlK2S6PLB8VxduxCsbG0U73jFSAQYjiG6R5//8CAxkJAK7zbqrARCCptQEcDEFI5wAMVLB4xsSCtJBRoIfkRj825SEhGMVqOTVrTay+q6tPiFSN7GVZLhIww7tHO6u7vJ7JzdgzMnk1y+PSNsASzaZ8ulrqf+gHnoHJ92C4XtMXK9+ZNBsh8QwSBKQOsyCPhz1Hc85LM9AUZOawjGql5s0AkJDQ1fYSSuIz/m6m+BzeHeBSFxWBPwK0k+E0TRVU9vnL6TLkjpKWE3G9MwCkgOppIeogXdrW0CUXHcRXe3BBE4wKptrb4COCDWUbQkP8lznZ3ou9RXhNAY5qyxSMAdk1NJJa0JDs8maWTWwI1xeLMAzppzeKUByYUitArtkGlQ2REZPHVREzUu7pTVOabdcrkxSvsy5iYkkfIgoZTmZtuVRFElGm46zUwaNG21trmZmqunjNjW22V1q026YQ4VTM5NQ1I5q4irg5lgW8LIIWGLp0uZpzWuRzjF/vA/7mZjAgh6Czk5E0kKkKkrUttYCNG1ZVW1sFknNG0/ygsigoDA0qBiLICMRRqyMDRaSYhXGoYIVN0xgplshBYukoMgKKVOWjDINLDiQ5BKkWAhvBE0MJRSVKwo0RZBGQ3kajCCQxhwhKxGZbC21CQqachloosSIyeTmU2TFRBgOFEhECWwChRgDSrUYjGMYsliVtKW2BXkUsiIjDKbZhYVRGBrVDSoNG1IwhBAg5xga0aExxoHg4JMZbQKg0kqwFgsQZCnBZgrMVRFIWskkgVdkCpjzOJUd3ZgGzBUYq0EXdseBWGkRXohoQxkUKgIyKWkIUKi06XHEsVGCFnCWTEqZbFhiI0YCkkKwvFmGXWXJJjY5Ggpq0ZlBAgdlO0h1UJO3gmc/PBh9Ee3E5U8qa5GxbI3V2eNqcjhzOUz6T791E97Ox2fPEa5+68KaEjsxMkcMklSjYFFHDB5/w5ilJF8MudfNNNTPGrVwzD8G9r4v5evzw9BqwAHVOdgtIfBK4Sj0RcjqPDY656s7S58w8YeYzwGCrqlGklqaN8DyBeVbjtuji4acP6QaENgqOI6L7hEFNIsERaBIKgKQgAOIqvSQQNwUe0GAIiaxvoym9KAdDRCSSLpAenBpJF3KmXmbt1iQBZtLXQMMgdRRIcsrVPLGGODLfLi+CiHNs3nA15k7LsOFjiq8m+CQtSh5cLvMjlKC73uFx1P7IquzMu/UCABjaBoQTEFFQObKKya7ui92mZYUBQF4rBQQQQJGSSYpZAk1ABVLwFtBAFUdRVQFBLQBdYnbuXVVNJFBFNh1YoVJUQqpYQEAsxjAEVJAVL9UIvv51VhEQw7oNRTMEAQbPZSiABZF67KsCK3ICuMB1N3ABIxFG5vQDAsqkWeF0phsxklMpGO5Xs3cUVTOB5BcXCAKuvIoiwjgl0xKVcATtJNjmmMgGiSmMosZyhWCjAJwWcENtDgvDbfUid1dpUBSEg6RN1eyB04KjhHbiZiSrcS9IStX5dchtcwKBWCBBjDWOEQUCERqqgFRWVYtg0l8zrnpC7vTl7XM7tcytJZ++9fYpyMwRB5PjrDF45xT/DBWCCtOeGQX/pd9SXx3n1Ti7b6+PfgMdYkZda9yH6eQZUk5E2uFXsd0IcAisY0kInUkRcd2LtXMyRHef2lk5IQ0+I8O98Kl9l9ay9g1hO5mEY1krX9MwOREB4c26dRvvU5PMjsgR2A+x8BUchDATjzu8A0PItBOJJClrlZHmvrxdOEMgUw9OPt4uGW2cRqQTlRFRd9UHeBm5xGUaOoiIEIBlGDzKsnijOR2kjs7Mxw6UpSSSEZw/VHh3xnBthEkwTJORI3DkKQ0yol21SmFA3E1V3ElwTMEjUuqqyndklDdeRKZjyYGjklvbzKNim4KbodaFDLTVxzWZiXVpiz/s6oR6qDIIooMQRYsffkSr7OvMRFhsBGVUUZtbWrAF00w/tTEdkpvtJCTBTNqbSSTkXTNmkAWzWQQAcFEYQpQFsB+RVVCwXZqNQkkMBDbKzVCosDGXV4ySVVGMeVqCpDRbppEUigioCwWMkMkkhLTEqqJvtAuxCE1KsCy2RYpDblempYKQJxbHerUmxdZedlYBsSJCiqyQhAsnIlYAsxiIFwmFFrVd4oWjvUBWiNqJebxKWGLAigL5hbba2iqYIcCaVUVHlIXZY6KEpIsiGEIlQ9Dy9Ju7j3Y9Ll4fMBCBQKPofZyg+lRs1cP6Xsrwi6rCeS1LR6TnlzevmeSdpH9MRwZ4apmMHsKizHzNjwgQIquSXi0sXPxr/LUl6GA9hnYIs8l14fACnlYih5kckOvdaR+TivoWh7K7Z5DIzOZ1S1VIEeXnb3tPO5w0+EjUA0FggC2VVEiigtwgrxSKjYiKYRhqC9QAAkRFDiIkAQcIxRHZ0i0ASCrgYqWjqIZgiDUUtc31rdKlBraLVaHGuoY1cLG1FAJFkkxbQILyS7Ts5XlrvX3jnmy0EQY0lbqWUaQ2mFcWqzmDZvL2UghIJlyhN2bmtAacpm0WBtErAUkMv/GEFZX2f7GLvYQe+a4D3I7ScXKA0BfJKgKpfuyq1AUkQkFBQ1AAuoFwGC4iC3WCqdxQChgAEgrtYiDIKhIol7blgG8BBWIBA5oAQNIAeGwuLgAECKiKBOSTJOS4A3UCIih1BKiIpmILIKqSKKTkpBVjFNIRFeQAS6sVFM4gpNtOtdbuJfd2GNRsY2DKnbZQpJoRm30Mgn/awSopHANMgloJOBRpSpSc4UGRtYEiUG87ArMiyKBISNhJeRXAG2SBBYyEmhxp2rm9FhVRNtmbETJbSYDFtFLmoCR8CEhjbMRhhiSG0W0WiSZLXoCBt/jH/DCCIPOs9Xpty16gYEpDzGFXz8xpUouMja/zZ8GebmnkxkyuoSbVnBfWrevHPB+iLaKE6oJVKyPNl+qNZrs+SyHGYkg2JvS/1ONvRI4PbhsJIxxJOS1hcKOwbEK9ma8yNcRxGS9/lZ2r7DPT80Zzob4u8mdnV239zINg37ekoNZWeKenMrIjNhb44CJ5qLEkkgxasBwbUirlTuoALdURfCKqM4ihUVE8XLCjkLiDWpm6V0JXeYJBDsnkTkHAHOnKkRsmXoCEkXEqax8DbojUAUoLSxMiHwNYVvLLla3MyY28srA1rWa1aY2RR0Vpaau11q3WRE21mLqVzK3WYZp2ppNRTiI4yZeONqp1rTMgWORkFG1I5olmm6qKpWsbvamjVNrXXIA5rIvSlwhasbASrMC1iIkWtKEkkjXy1cdNEFSFkkI0BAYEJA19GaIGqam16AGrN6TRchiiu7Got0NZixKQAoEg0o6ocwy2SyjBE0CXhrJpxxk0y6hFKFy1gJtJQbz1dckrN5xmIg1rBhjy3sSLmoGAxVZFw1qQzNXYZYzKS6WWkQRFGNEypAMByAUNMuiSaw5a1HcHip0TjMqJkE4QXJnx9D+Xt+/I+ImV8psNY+28t26zHt/zQUZScNK+ONcHZ3JqpNsePa/63flETGqOb7HmmxayXEugXiqw7+54rYgnFv8Gwl5Xn0exZHlggDwfnOzk7kgZGHHLiuc/kjnd03aEK12QlpA8qbUQltmSXto5vJozuAYEAWbkLImBU1ZVBNjAUWEVb/SKghgGIpqIBeAmmEIKAbQiAhgiKJ/IkQgqIjUEAFyqwFVMRcAEVQ5A6goh4L6AeQBUOtTidioROQULZOs0oEiKAMILyIMgyKkixVIKApEUZCKAsFikBFRUYwYpFUkFFIoQREYRVFCRRGCgsEVBEUgqhBQiyLESRYIkWEBYAKRSALAWACwBYpFCKAsFIsgsFJEYjCLFIoQRikFhIocrbUDAQcvQQlDSD9GXP62eN5e17V1R3ysNPTVMrgBvj0vRC6+Rjbk0IIZSXZqG3MbQYiUTzhc1ux1ag3hdqGcI68mXEcnlVkVD+ECDxoBBZqDjUgujAHcFEOrcrVwVdwAdsAQ6OSlQDIQBeoCg662hRgqrXSRDBEVtAFYEMCsBUAwWDcsgoAX3yG7btgUxEAULQE2iQAEG5FUHcVA5RSgIBqAIo4vm9VcBUXcAQLMRAGNX9scGop08OIGCIBvPHh+FS9yzxLM7ARDhBbLswH1dRI2hTEWySagozZm5InhoTaCQBN3UKgbujJEEqAGIoIQiCjegIOoWwyBrW4GVMualKqOG8uoaFAGJuWI0tEGxqxiExokNChB3pKxIy2wXhEHQgYdX/wK+ixM3F5fM3ipbrig5fYz2NXOcuEkVfPf5bnnb6WT2sO54rhY/NzINe8iq5NXBWXpEkPbi6vkcLUj7ky55CCtiOkSf1k8qn1z5XIOeEMF5PVnM+gkfnfKoosO+cnEEdj+M2vOTCXgIlvCE+mAT5dcYZ3u0t1LcsIqpBWRFLQzHIl0yjvq4EKaxqZikPuyXEbaXeUMyavNibIQNTEOojuTpimOzGGLOK64jQSEBjkJvJiWUhEdoQQ5yZ48HWUPsqLorprvhxpIQOComW8MBVdBMrATUpdkO1d1hIFm7Gx3c5KmlRURVTESREqOsUDcxBUxNtbNZF3TlQMyruKoGXQQMaGcqpjJuam8q7Yxg6uKdRBLm4hSxREVDicm3atuxuJp0ybJsmomXEjZMObqKR9PngdQJ1QINtA+TExjep0f11T+YawXLfGmBIYbykMMbS2FSxKDUnS8jJo/DdY2lDdzpNMgFMEiYpSsCUQxIIYAcrLjjMmOiQJxsFA2hsbGyLIoKEdtTMoXqzOq6wk5AXEw78N82TNk6XIHLnmbtRSSM3i0l00EXoXlDNY7UAyjvkpbJMxjTEW5em+barIE2L16mjSQdNKOpIJ00V0R4cMQI22SLSWDKIlQd7mK6mZOASSskdLkmQSYXaA6zOmYiatZErMtThgBqJEYbxFmlxVsziQ1oF1AgoqVWUJqBDiml0qxGjUWKCBVWS5LKyYJLjdSWzUrvMzCyQlNsyjsgIECTLpoOt72M1tKU3yVi4pClaQjVWTlxmwA7MTbkSSlxFskCl4dzB1s5qlQ7C24TjL1t7N2GMBZLFUQqZsYXUDMyE5mmBFImTsimYhluZhnYA/WqokPWVIqHMNrFEEKDZgKiZ+np9NqY+r44JJVYIQBlUgr2EPyJ0x1fmVPSq283Yne6RtpHeZndzF2Gju7bhWDcxeTWWuvGd3iRw47nXjEu7UnSbuhGxTJJJ13yKvSnXe7M95XMdbm53bgNOuTqFWeff7dPZmN9l+dLMKvJ2fYp+9P2QS+wvCUHmdnmqY1sAVYkffBEwh7u62wFHf0AFyCov7kBRIAjnJQ3YomYKgPIooiQIKYIoiYiotAQUDxELySMCBFRjJEUD5JoBCSeXY9p0QAKX7HA4EmIJmigBe0ueiV5zW56i0LYRDCUjMnZ7xc3aH9G1Nw0ZDNmTkd3aV3ZoBQDWLwjOwn92++jvsHXEhcRyYB1JMNOzpKEDHp5x7PneAQY26sZwzKuVDkfbQTNfAksJFFMQFeGg3CwIitdMhSKhZgICS7eeDlAzusgAAZiiAid71VgXUVFxFAC0QVHcBUTnUtYRDtCCTVIIIVsLSyKYiiLfoN1m1GsAGJmIbiqrMAJISCUKibR1BZEUUMHVAKWioFwHkDIN+yQedBsbNTskavhTXkkb57KTGNXfiahgbKSQuUt53xf5ohYwsDrk5Vu+gJw8F22lXVAUvUHRA6pWK0kUlIllToyAhIAHRHKkKbUDdSDUUASsl9lUslFXeKXJIRhJnanUgiwkYxgyMUCRGJAEYBAHpxitUcBykLWC62dltCsUJ0tGxT/MJtEA75S4d/UGPGLuvCBYTwcGiuN4FbAHaRZEvMjBv187C2oFPx3K8mMlk1/f5F2QmzeQ+3XIA9CHeHmnfb8GeQcdtPeRi8EAwLiOCAiq2plGMF4zziEJm9g4kvJ1cyNvp/2Z6S4g7PjRPmsRQe+CDNzWi8LIbzvrsqBTBAf3Qbtx87C8esDfYOzIahfAfCN29SSu1fIfMzTLRr8ZA+fHlGvnHvcBIEp7UTUeZ0h7q6ucQniRQE522eBAyuXwlHNlAbMUGz3yAUQDxW8ag5/h2pg9PSqFT7z0yISEiFrmPJ2uZjX88Z1x6eRnhxleZg5uPiN9pAmSeK+4Lt88k6pww2X0jszMBb8qiHDkgbgamIcuOuHTqHFEEqZyqstOsuqiKuqWWoYTUEOIwkmoeTlRkMb7Mk5hVbVyOpqMcNOzwmTa01ZlbmsuWtqmrTHZN9FMbvz6Q5373zU0LloFT7gmRHa1ggu1KOuhTJvtcVNi5koIZNRhmCsRXBs3tYjda0IRui6kkAapqUprMytGkFWbXYkJCek0bCurvSgiGwzRu7AaCwdFTcFixSb2glluAsd9b4VVRi01mKphIslKiIIuU7MGVUhWBbbgmtUySJRxYZXKItoZkrkS5StysMosWIoso2CsEUtKKgq2Qt2Q4AHTqMG2VV0lwpU1qq5TaDdshlxTrySHzEtVfLqBCQZfy3MLzX8kHD5DmtgDLrJ71iBIFoQce6sn5oRCLqJR519tRBsVF5ZfQ88J71/Vul9hzuRtZEDIL81ewc9n3mMxLeMrU5v/wO8vVszWmZ7yMSfi8h+T5ew6LdHpcHoahaXt9wqe8WOT3vfNm6vyjxni1nJcmiOeYDiTvKW7vhYZwd1ylxUiE+Hb7xXE85XSwoO8ZwQqI0GtASttGfMKAiUMQTqCggdoQEVsoKBEVS0EEU01oWVg70uDsDrAhE5pPi9SFhCkwBLhJYSdEGICScZffW8Qs9NAdjko2HgUu87+BbyajEiqHVioJfvUG7H8YcBgLNTFA2QNpqtrggFlDXUwZeXtsnWwIoChICwFPm84n4095lVBQDJCDchAOolmnRhATEYgyEWpYU+65L4aulpKn1Y7qlxP7Ri7575oF36Ku8IhQw0Hbu+WvkLvLtLPbgN9xZ+Mx5qALSKfiBlEJ8lmYBVLCR/9RT5WzSBdEN4E1MMSlD7j2/joBOxP9vw7ZzQCLAkWEkFBJBBU6fNw1sSW5/y/X3N5cJkSCuCIyK/VMPzY6+u/2dv15kMxo+TfiTPFCRUkF8wOCJPqvrSQ7C/9Qhm0VHDH49Aa3AK6oEDNaphgWwkJJcwmjWcKfT3V+D8DMnteX1sCg1UM8/j6bT6dhr3/MCuhiCoGIyrjbCXbwoqOqAVnPXdeWWzVjxJ1c/puHHPPA0TFAROE9Fxn1ixhCJ6hFyIUExCwBxsKX/wklsYCkD5PG4swzD879Q9UYcN592cNiKdEoYoj1UJwATTCkxwMtH/KrfEMcc5wIf+KHpJD9prTZJNXDBJJAMyUdYNEA1otiaPdgPJMculP1+Kq1nZ1U51giUhIqNkBk/Mgf+I9NJrigWxdQeB0ofQ2dcBd4qNKLs2yvunoux+bm+jDkwYia7DsVwwSQQJFRZBYxUckBqIISMigMpKSQKMBSxhFCiAqrBQAWKkhCILISLJ+kVIIhUbRROmVgvSgARg/J3EXp1DqgFvD82e2w6xoPrB/piG4isgKgayBoP5D51L3t4/yo96gEG8DsAYIP4Z839XX2dFwQlxALpcvayD+q4BTeQSyGLYXIG/FGP9lIm/8+vnBC//1Ob1MH5NfX1TV99/FouPmDDbD6Z5zn+1gKaPaxPYmIMIQgRhQ7GJIR2eLJ0IqpLJzw49lgXxFJAZFJGy6fREerBtCWkHoLIyQPSIYogpNJCgnO2QJ8CT8QxRIXphDBZlFo1CwIAINbKh2kkajhSAxttYWlAUUFgVKzSGJZTMgWGUNJVBVERmtOPfIaSaLBy0EqRZ04CoxIk/mjSHrt/Yu33Jc8ZKIkK8fHVsEIQEFYArCOjSS6zLWgf3uUdVv/FqhcHJCTsCZIse3LX30CgmJVMrMVfPGsDCThNPJh0y3VC+Dm4tqjrZIxEJCQhEJBAYkszwHkYHeguCI6/Z+JXNscWsNTlALtKFxTumOgoXBNyjd3HGWPKnPRtabGo6YJCSMg3HvSf3z6UIXDdXh6IIU5AAyKgmUxnrRYzUNECfvNhWlE2atHBZS1t0qpuhf0JVrLMEiIuyIBFFK9ql23Aq7V7uUmMbLQ6CQsM5VF9ffPrs/o/bgpg2bBCxwLkRIvcn3nlOo1TaTBAMB4vlGofUqRF3DLoosi5BSB8sK/txYy/XTrnHgtMVPYBA5IYyJIr40OzFD1QhAjFOomygIlBIQxmoyFEGAwFmhySAyBiiRhCWhgEc1ZIFkYAW0JBEmMINsUiJBYFnVudV+T3um355/t4GE1QJKSHL6ivysD8OX4u+2h4M8ZqSbHaUC/skaQOBVKHBBQJWn/qI+nXRsCPUCCvtjjlZ3psM3V6/vl1EkIgyHxd1yQPQgoWMZOcYiEXwG0sCrFaWottYKCxtnUmYULZIBRUkawLSkERSYkVGxgNgUCsUFIOVSsHR7nHGxo+poON4vlhuZKnlZmFHagSVCQhI/JO/+VuKWG+JjhkgZuIorZAQkQ1T8jN2/6suOemyleHSHDlvKUoFsXPP4Vb7gKSgKBKEhRe+i0AsugW5ad2KFkR+H579lnRpQ/PMndvuivUXakfplGT57fs7w+gAoEsxQvBFQdkQaqlKiFwCqXH5qFbL1T+1+8nkmx12T5Ms+N/O/7mXQj/RCE7mBDCMBWACyVAKJIpCVGQkYEqxkqKSooRQJRIBRBJAtOaBAwYSIzwGECyA9z93IUfKlYxUiBIECCCSEb/2HXOwWYec6Gb7bT+J4xBAY5SE2u4ASvC3mZnUMdpANBlKl8ArBiMgCyLAFABZILFCCwiikFkBSRYIiwUgKREiyBIyAgSCJIISCsgqZSH/fwhprXgoTdIcNYHMPTEiihFAYDEQYSDBEUD7wQGFQYydupO9humfDeadhuurggDyS2cThabPQ7O5aWjuNxUqcMcvF3SrSYZq/cb+GgCsUGMiMA//egEVGQYEMmHXSufXfZBCRAkBCRGz78OuwP3gj9SoEHCCIMwROsTagT9GJxJNW/tNd5wKBRV4mGOEgwgs2lFpGf+REoCKJh6lA1eWm0i8U6Oc6uPob34joqoiC4IKoiCkLaIiCoJAoEZaKp6fYNfMJA3gCGSl8kR4unq4LNtA0YMHy3dKd76yiH4z4f2IXCoRogkJFoJSkq5uWiGaBmi8AqKgAjGIqooARc/AdD9D7/rX6TEqDdg6yM9MCsDCigDupu3oHcAKmEE+aXdqz9/NTDlm/L8doJkgq2wSRZAQkUEkZARSEVVhBSEUILICiwUkiySIyAoEikIoRQBYKCxSKSKyKofwigddRiSUrJjoHXiXQ9YpH97s/Rs+MgLsLKGRXQlPCgRAth4Yc+tt8HzW1np6hrKgnXnHnFC8IBdCRKSJSjQZRQiUIHjtPi8nOVwd2g/W+Owa/j8dMqhBTXOlw17bYGRWwiCSAq5IqqtIALXZ0aeeBzBcpQ2gmMVpi3OUDLbYcBcdA/Wlk5j0FFTT3w3Q41GlEaUWiqH41KLGBUgRLckDHCTpdbm2WIWsD3fJRVDg7PHfhMvDl9NuDdwoIY82gMCVEuXdxQIyvYUOOl7cuZwltp159uUoac2eenNbbx661W6Mp9kXKQGQkF/HSqqVEGJWkHTpo3xFUOLoeQ65dby6vaSt8ozgDIYBqGUA1lEsY9dCJnya+ELEf34/pycr2/PxYsIBxxDQKizRADSKsLogJyxv9NvcsHV3jkQKgcrxUZxPra6HwDhdlmeoUAwIGkUNS1SkJBlxgIh/6+0C3u/AMGLsHv3YFwRzwcoCEDdBwwc+2i4Iz5EaH/zFBWSZTWb2kRfMFRXOfgH///////////////2GF/w9b7SqeZ47cFHsWuZrdG12O7uTd3bjZ3DN48brrT2ddtB9aO++m98XwkEYo2mAaDL7trsrXd3bBXDRWg0qClKBSikUAWxIooAAZo6DrYyAABSFKpAcAUAZxDTsAkIbACOtdda94Z2CibaFKMU9Xt7wFAqQGpRoCwNAViFAwD1TuFBQUAaoaDQutXQUINYlIA1B1TuCEzBgAGAWqw0YYt96vg4Ni+67doHN7mFq7rjZj17zeng57u4ant9zeT3t5O3vXXjOrrOXjN3a3DHapo9zeO7w63unXnbt47dzrd3eFnvTnbjdCQ6y5mZZM9zuMd0jXq9Ydes+JeZh73d7dbsk7O7057Ykr1mzd7nIqlhN5nsY5t2d1mesnt5y0717vVmzYu80SAjNtPtnz61N032N1jtRyUbYKs0bYZqxaYJkVIrpkktm2O5kqYho6NVrQVc2bejkASo9eEdKBTHgAAAAAAAHvd5zdm19LcAe8YUaPpuPt7pbzAEDlQAA6A5A6UA6YAgKoroQOY46iZlUD0sADmugHBoGMRWD3MANKGAG2BBI7d2j3gAMSB6A99hV1wC4cgoHPqqDA8j0PgLx9B9zwH3mOEZ1g7k66KKUFO9hoOvANg6AAaAUADU4qwKPu8RKCpd9xuQgywAC+m7mODlRtD0AOgCPo9o3G0RYAfQAAtgCnQdC4vtoDgDbdF9wD73u+4AAB3G6A7hhfdhrgAA+gMBBtY+77vHdZ7woV0G8zoAABjGAAXsAKqYYAB2b0A0gH2BvRkdHu+ju1HzuVpEBXbHq206dbWKW73unt26u2x7zj0qve0qdKXNttF4NbJVzu7bl72umUla0a1ttbzeuS9t2al3d1s0fL6YJgCfdfb1wramsEBGEqqTBFlpAiQAMooAIMQgQAAY0AwYQQFttAFJIgwYu7KFXQAEbGoBUMIIGzEKAYACBlelcW3c6bsjsxQMVd1cdQMyYaKRqqWMyVQhohAAJhAAAAATEaAAEwI0CTKBoCAEEAQBAJiJgDIAmCnhMmmmlPTJBIgIkUEBNMk1T1PT0ibaU9oKeRowoyZqPGij0yT0PRQSaSQggICYJojRpoyATJk0xM1NNMjBNCYp5QRJBBEBNMmgTCMibQ1TwjJqeieICp+ymnqp+MTUeVBEoiaAABAIaAAmE0aZMVPxCejQxAGhTOfRNIjkiB6nsvlapbBTstNyHJZFioqns4RD3h9n8GjoXWZprnRCwE8vXqoh0rBA+6v79B/yJYRDVByd9pYCDO3BAP9rRC0jexcRW1mbblqo6oLf/OiUgiBvgOLz0X6Yhfh8/e9udwinew7vPogZOu/Z+/UIQ09UP4oYPf/ta9+n5VolpJGfYxoid7khnzbi18kS4glkEwQoIIBHHxzlNLUjaMNGCG1IGOAKm8tH8bzUabJMmHjID+XPT8spWB8813vbaGsUfxrq7bmkdHGljs6u5YBkBpBpPZh/q9YdmYBw9OqLSImHnycPXtXsQNx4KJ5635aU2za3k+0+LluIO8UqEgGBiIcrrP0i6RUkMw5us/CwBzfROH03BNJ3fh8R9/gOLky7zMlcPLaAlTz2oBQCsGRGQUkVkVkEkFkFGREJFJEQkUAZEAkWQQkFQNwHjoeYhgNviv+C2yWxMc3gV4eXNdyBjz6GeVFHhX7ddCfr8fkz3Q3ttV91j/WxYVUC85+bNr1zHf+3CoYgJPVr8lvcwe3u5yyUFi3mez3lA3fu8c8WGnz+HEd9ly8MUhOlNkmB5cB3M0h7Ux8UdBEm/9pKZAb4D4je/Ea5HIEO24AkpwQaR+rtGXRk6mfAinDiNODUgYPyswYeKAcMQZBOtcUWsV0bNVeWB+SkAvQACQFJEUkQWQJBQkUIsAUgQUCKSQUFgqxVFIKSCxRZBVIsIKiACwUFVYCkFkWEgpFkWSQAkQSQfop59hFLlp00Uv1fk1ge6fYiZTO0dxeQMEFbQfpLuv0r3Tv/H0/Ddlp5wOnMyhQwRCBlXv7P9v/qG6LHj4n5AJMnytHR4c682IigAYEezg0ZZNv8DZuO1VLOzmGGu7axBfvMeQtvyPOvfwYAAgRWP7DR5rXv/DzHueWqEQLNKMK/J/jbF4cP7bKM6pvTtjDHjtpShfSm/X+vxS7L5YTKkCAdCPqRO7AafFRimWReC9i/KEdY+/HdkxAApi2f9m2sXKIui5jgnpIfygBAaxZbGBl/aijiIkgWzdrBomQ4PpqIXRsmuvaK3TVEi8l+UJcxEoyCtzj77DH6WCz8/FE/xQK+XK4KTJtOEDw0tf40/nbSf/krB6okBXoSjDjcDzn88c+dd1SC/h5k3X2S9ijsTjQySDf0laAZ7ECD85bGEeqzn/3Y9BFNIjrc5WjuXeTRpoBgAqUT1yxRnwjjnkKpyzf+Xgm7jswm1DFIZs1wcX1/5vxA2nPxWLqgwgCyDIkgsjJImGPv4u8glaEO1PywlBPiEB78e7YU6rkWKbQhTpvyt3BasKa9tOHZ/167SF43IGbvf9myGNPNfHL6qAs/xDuCQD1tYczFolIAdpTBJpUN7KFIQzUkD6/Vuca53f9Oa59PtHb/9kIwjl9h2UB8+ncDoVOu6DjG9ejSukt1vNv/y5d/OjFJT7I2OenJ/O1fzbXfAqU+lE+IcODkf97E3A5N4UVf3DAnhAQL/vNXVmrca55+z6KP1Qe8okQn7f1eXWv0b54R+aviyN1Q+tY/Jjbol/MJ5igsH9qROf0XtVeRKDb58eIz35/7583KmR7hky8RkCAILkD4xTBaoAKfkhRP3BnEKKmHsD0DWr8o0Mowj7qjf+bEKnu4qLjx/avUf0wENmCIoqbzMcMbWoMJXDQi3phPJEgczleqoOPoCxisrpYUvLT9FqIrEv7/rsc+WX47Uk78qgv1h7u2shqCNeSy2bu/o0mMxc58kJ4eBvsC3iUoBDWDrHlPqCMhvvR7xgDnId82tEwxVCQhAkECERJAUZBkEE0Rgm4Jw/hY/Rjb+nb+0OkUOYy56aHmgieT2MoiB3o3g8/MnVfwb5VDpySq9DXGB34LrvkHfh3fw59SfTwLCCdRWZYPn4Vw4fssRENTG76/z33fI54LmtM4KAOB2qgL9hFAN2sFa/s7QPqx+s4b6hpIku9+TV+14Q32Z6jWP86Mmexh79NTLB9qATMP0IAQ5mCAv7oPpfoOMOqt8EOtwC7tEy5oA3ftuV0Rur599sOLuj7vEUINo5gsYTJfSJ1Ll71EAuZAEehEEBJi+tKFCHZcYPPi+e3vjBOOBiirwqQPcaqfnp7PBYX8vTOazrQ1PNQsheRIaYCAS0UFDht/Lufvo+u5Vsh0tOjguvUD41uJX3UC7Bb6OTtlkUNcZPhune2vzdyr803zuACBhNPmO5CQyMP8EMW13MQtnbgoz/N5eqhXrXWED5AzM4kf3/6yznsp0vpb4P/g0gikz0W5j0oYglNEO1z/zX/Re6zNpe07MRAoWKTKx4UEtqciSDo+ijbx+bVuW0aNlKwv4uGoYeq+svP3cBo0GlwHvI0nj4qAHcgCO/zBYWb7VDogoRAIjvxp+UgT9tGJP85HAkzKlKG6DYWDvqAiuYT2vQqDbvukC46jWZPiSGlrYgkZJ4xQMNtzExCQ41ljXGle+lFZan4mcEPwQeDbj8eemks7rUTg1Gt+2Sn+aBMv0xT34AVHk7Pna0xJQo7G8fo68IWydN9hDFz09zxZ18I5t25+qjmtP39/tze7Z1rjI2049DtgI6J35U8dOHoer3WLYQCTc7K9fDi4WAMfYWAqmO3MR/DxM1QhAtNGscDXoaMhvskJJb8qE4QV8xP893J6utJ4jc8PPnhnS1voxrsOMyiVMl8uiKC21h2OOS0p4KKPxRnGeKqQzZfxaJ7E2uPvJDGhCGtYVHejyP+9835Tqntm37WoRCLbNnsPc3rS5C/7nxP7TvI+rnUBvRZVL/dFUyQch/LbQceikuG5eYo8hxP6l/Zq7/rLGt2X4QqHtTEBdbqpIfJkQlMAPI2+ChcMgAowCkBNBzFIAhFSRa5hVAeQry8Ss+CFH0FUDzEVbmYVuSwT+qhqKh/Mtj7aS6O/B8c5nt5iJeihglhzdNNKKi1v57P2mP7cuhmQKdO1vhhMi+amYxUT+3WTxesRygbjDAiLZ5lhzMthlA5/tehSfkYIYKCC4+FCA++QHz/4/D+clq6pIgNv08i2a5R6IhjE8fREROrAiKngHpk5+Tp4D8plOP/x0sOBrUDmnTNxl4evs37p6ACYQeebqxgkO97DZDv4i9pjFKSoQA1zzO0Q49VDfufn59sBqSRCQVkUCRCRRkBCERkBZF49nnD+XrwIjlAgmZgtIibvBkw9u1O4xboSCsgiEiosgsUiyQigsFgLJFhFigsCRSKEEVBVFgoSSLICwBSAoQWIkBYLICyH5BDvfIwgB/0a7sqNhaRKa6iz/51NKnuX+D1r24BKz76GY68CCHvZUGNDYahp+qqs9pal/8HApciBhjZMyKDsJ1DETgt+bzLy1vY1RGFaT94F1FF+zsISq4aH9roOgt7GJgbFGf3UBYE+g8Av5f9JC9g6/9dHk0ae4RAXsw3YThRR+SCFh8thiL3cXQnO7Go4l1Mr9J813xJy1k4U4iGsD/G5vBP8QSyFzWidOJ1mKWzNkvVckbeT9ivsyJQfRJNvF58h1df5t9aa8SiIeMg+hnl76HJnHnzFJibK0vWbj9Mdog2QxTHFKw++b5WKu2FpGhspb79HLDW+9tIceakXhE54fd4/vPa6sKawXnLeXG+CQqcW2t7hpe4c1YxVa6zTCVTEcnhv7LXVHmjdBH7dVBxxQTPE3TJgzV5JdTSe7jpruurAAxU1+voY6bzAhMgQBDsPn3Hx9V4KJ6yETALRk2xQiwDb50JCpWK5MU1T1/jtY4wUvE48tacsr/SEQMxBkRkEJBJBkVFkSRRUkBRYQWEFkgoSQUgskBZIpFAhN2IJrsd+zb+Qah1CS+eJSaBD94nyiNyAiHB9Gb1PXv9CKYfoKC6YPl6tAwRHrZzCXt7tEDHSRiWNPJTGEJ+Z0mREZEQoqk/f2c23z1o3zpL8aULPCn6rU/2gmsNbhVn8aEk/rqoyHrZDZJ11Q6pdQslYRSl3cI//qac6FkIVPqW9GUZ7Gm97vh79aOxlQWdicDJ4/UpcuzUzLiByiXiFkJrJhhsPd6T7x2GxXyG5yebA0kxYIU4pPTvd4IxIU0XcQd7IeDMQGPWAm2VT/T6jrG+sTZ1mWmguQhwmIorPwtWqv+nprZhyQlZJshgkWP3cMPwU1m1SwrVem9CNjjUlThAcwAtw3DvZtgNYm36+YLIBr7P6nDj0dlyBYjadqYnwIYxQ6/VvCHR24vu8cMgQ0vp8noTUH1WdiB0Q5MOaFTmKNQBUSQ+Pyfhp3MnqSpF73yBIEhHLuxkrlF3UDQk9C1D/1ogWH3Y6ZoB9zl6KAJeIuK+EggHTBEKNxne12S95+pgrjiyK/rGwxFEQawHhfwkQ17RmOD28q1VtvU+38EiQ3dnVsdTIHzA5L603NgK7AjvmLS2sBlEaFcJfgk2Mw+TZW96NmrULKutbnClLOGMIRzSpccoM0mUsGEEsuAKtP1t0m64csAic3qqQQwZnLkteMPCd5tZuWA2T9MFE0xzQOIwEUZAIEEdeESxKj3DphzQ6LgJSBBpZKRTZls01ngWVOI+HukFLhk+m38xdaL8Y/KpWkevLjyYopmsiITGoLselBZkefb6lCkAaEHTmOEpcjHMFUaoqJQh89TgPeTV5i/YGxApiKlQQS0AUqCOqhBUWAsgFeAiFYEgsCAshFA0yaQZGRRERgCyMURkFBESRGQYPNrIkZBFUEZGKoKkRFRjwysUJsyQIEZGLIEilYCFQXhGQVZEQcxRFzFS8EkRbwQc0UIZkCAukWoqgrGKrNIE2SB0YdySjNWig4UgmUmRkBRGQUNxJKkQYLFIBskIAAwEIIwgpAN2AcJJOrAriQqEhph0VJUAkUkBYsAOrJOaSs5b2Fykm0ZNMLSgaQKxZJWBwjcMWsiAhRFRtASQJBaiqSKreKFooOYo6xAQbSQUWMUd0kSRiDiAtoCYiC4ggWgIBNpIAOMQgCjTyZjiXVEoJLgH2IrjibB2+MbFLILKq2XJyH4xlN/zxNBfSE0+vRPEJIaXWti04FqImgYS4BAqVullhqN0LzcFVSqbBk2glkFaESEW0aHUoIFwIUpdcGXBGgxMG8kKAa1AyxGqNDFKyTahDbUDRKgAgcw2WY0plQd4RSBoS6zRHTDJGyqYiRN0WoGxOVOAZoBFIAZZZg0wbw2RSwISl2msDkTZISRSKMBQhywDl0s5UVQggCyAsBIgF0FqQA1SZtZ5iGg6CbO2epxEuvULGd7coD5RsqGvYyQgR3JqPI/i8j9dhTtD9sSNOR4RbVVIOY9spom9o3RWdYDZgJVCoWjQMQM31wrtguLYA0GCFwOJEXM8l8sOgw5GzQilCihol1isGu3JXHALc7tEtKEI69cNBxnAlsNYn1xog1rTks2qC0beYJCxE9IvIi5ulbUpJIQzDoLg5LH2iCxTb5SOHHUoOg1KFrFCsH1FxTSmSEWqrwG4EXOuALAbRRdoomsVVm2spG9wRKAwYlXLqgCG0MGIYIpsQ0gWDRTRD145iBXEB2jZJ7HHLwTSFTSKlBCCNhSwthHckb6yWl0Z3tAX21bDGoHbQNiBS+pIBA2gGLZgxoWSRDR1qVYQkI5s7w25Bjp0b5gplqNW0o1rMSlpvaYM1MzJjVyuNzDWFTWztpNbLozHKUWJtrbHQ4M0j9yyRXf8Mwk2Hz/8X8PgJFmfc+zBxxv2GB+HqapEDYDjZZZITgAFANQBmBjJkGAc9JuK2wFoygaCZ4lzbHRwG1dONtQWiCpIiEJtJIFGzikn1EfCoaDviWsbGx5dsyqrB3+4RIhQs2tEMBXaHs6GaHnqhBr1IBgrYz55T5pFnx3zShs+Ry0iWBX0dKH2Ptcv+at+013vM6kgHK4j48E1lH/sFlKP/DeicCprQIqiahXIbO5qwBJ+m2Qu84Mb5+2oFzcCx/ouJhGShAiAICoVi6DQbzRDv/yrsKdEp1DwubDijcAPLyhrKVjnLXmzXLvIBsd+r6KfRh6nkimhKLIsbG1Y6qhQaCKxm8hUg+mYSM6mSSNJtVXSivKQLNqCPAj122rW8dTo6f39/D2P1bw8X90AtIGghsDpEyFXUQHN9MEQ6TXlpNSoXy4V6vcNfJTTHehror9ti+rwcKiITQlkMdU56Vybz9mxXtf6fs126o+3wKdpZIeGdXdXMbqAJhcH3P53emXElSfNmMhOzCMEiggpvFPM6ZgRDnbdNRM63aACmAQGpgYABi6DA5BgZwOHOdLsWYxSGiEcZMZpwZpnVCdrAxmsxjAEkh8GF88lCpl9gtCaUccEDJgSR3okD4kruYiNCVxMBc5llJSW6nrTcPWcYRd9mo5zJy7TP3ZhZ1OAJTFu1U9LSXmeS8FBQnbTFCFC4qhCSgaoW8srxmRJtJI7MJJtY1jAWiuQwN9jamSoAjz1TkkhUhqyEpWIOchSxNliQyWqaUbDiUSa4evEkiO0iYxYLaVsMugMLwQ1VIkI1FQMhAT3ERZIQVBkjAkRbxBEogKSKCkiChoMgMkBEqCASxtQXVBbUolx1IABUFBBghCSQWEEEhYgYDDB0wAiCIIhvFQkRIQQjIEUELWkjsUDpZAgMdoBvCKELMdiAFfoq0OQAhtA4a0N4msdYtXo1BWWwUCPBeDCQjMprAJLFmLJIhIGAwBVKgo5zWYiopiEk8GbCgi3TMpkTATKYhHAYCPbARGjONWMChIQ0WaRATMEblYlkEwQRFOEAXM0LSlVpGGRWAiFtaBRCv6UCAaJEXSKAAGC1Iq5ihXCY3Kz/mpjIqCOkQG4Y3MMw75UM7UjyqpIqwGAKRiSMGIxWIIwCQQBFIgkkSDIICQRIkEUAHeKJtFNojUkAkNoI4VSMiQZGKxiASIMiSJERYnGK1EkBZFAYyKEBBIsAiCEiiwjAEhAVcxWoqNoBiKWkISACsQiycASFoAyc7YEggjJFWRBkihFEFRSMSRVREFixFiyQ0CQCHDA3peVbDmgG0IkNkKCQ3ZEBQQgKSAiQiyAwZFkiijIyKMBEgkJuyckVFG0bMBoUWMIgQSSDIsUSSJAQUEEgrxLCxICIEkBGBCSCCMIwUgRgCggRVF0iyLrLwS0FqBJaIBSgAkU6kCadhFGoSqDBggIKqxYALICgwGKiACAwBAUhIIkIEAICcI5gg2irUUCiCoyG7csKyQ0wBQIoBCpEFiQRgBEZEGQiJFIIgsFAAEIiwR2ZWCMIIiLIogMVVViIBOaKEGMWEGItgMKgQMEDGSIisVISSQSDEEUgsYwIkRkggSEIwRQgiEUjEEkFiQVtBGRQQkVC0WoCyBoQAMdQIKMiSERQVEIwRYpBQ6MhWSQVMIE6MgBgCFkiSDJAiRCRIiwWK3YDjCbpBQJUk5shiEnLVkxCTdVEQiY1YxAYpGJIiRUVhBIMkIKSIwMtBEWQSMAh1Qiih/1ASot0ivCO1UI5VSJCDIIsIoQBgoAFknYm7ui6gHVIRhBJCEtSQ2RQMZJRISIwBQKV3gpvFAL7UCvntSZio7QFpgKYSC50aAUdaoAHkLaFgZBUUcbjEKBKIgBiKgg6wATRigSIbnpM2aYRWWDaSAcaHeDkgjBBAkUAyJAdgIiVEFN1SWiKAm4GJCQlAiO4MFtAEKggIheAFoiCppEUhDSCGBDIQApQHBFSyuiSkNYoOSC2ihlqJZIYRKbSrIVcGCJBUzAWQRygxU0iqOBqBQAjqEBHUGKAo4yUAUDGDFERNIgGl60iqt0CQqFgqlsIuSCqGrqtOYqADUBXVYNoiOykHWKsWAoEYSwnNWHFAsrCpOBDGahCEurAENMEAXlEgCxA0gRbpGTpNIA2YxYq4gq5ggGuKUVJtKRc6aZmjhVNICIYIYgEgtRDIwUvM1QjrAQsxVKNqQFFqs2BNIgIJh25QIgYCL3siElfO1SS1oSUsAA3dRICQjDa5QAJYwVdgEhIW72ZuIquM5LAVFRNO/7FkETRASCjtjhYeEFSxEZFFaiCWijw/newGYiUQRk48SUCXihZWCihYyWsgCpANoVd5KK9xZIJJaMJDiCBBxgAA4IoKjmCWzS6w3CAptKb0AWgCM1tmbGAXZigBaIIawENXoQ3sggXxFpUWsfz3LiG5AQUd4KZ9Qdvtx61CVtISMDWiEIKCoEBTRMgkGxFEADMVETBAUNCAG0EaihcYLqBAQRXMEDDAFQchBAXIRQQHcCKIqbRDEFVF2gZgG2aF2gK2RCAgm0UWmI7EEAG2tKjdiKDtBQdSIBTEBCoqgWCKAKbTaKIasFCQcxBTEEdoggawRCEEHMVXSIjiCoXiC6R2gKGsAEDVmYKZgoyCBSDBBC8FHNqzEKgACuYhaKiZggN4KgKVAAqIFoKNoAgSCgyAIAahBULsoSKigyqVQULQUkRNoiCJpBQ1jaChiKg2gIl4oJtEC9ABSXiINoIlliGsRQZBB1CCCheKio6xUbKQsqERQR0iCCVFMzWCtiIKSIGhAFLwEiwhAhzRyo22bN5W6NcV1M0zfKZtkxmONClAZcwylowFrMRrTKubmSiIclxbqrSUTTLqHSim3EXUN1BFsZpFpccRctzKi7auaHfg4/9LkO4zj7B0Nzo8ScdYYMcWH7Htc/XTM8j+rX6EztpVNn5vJa9ZtL3A21fB68c7t39m85dzVRVRXeg0XT7qq5mZj5/z9hww9aJ6DFc8Ug5BNmxCCEQCo1KHW2a/e9/9dbJD4Ly81vAXYU2T+OU23pj/y+x+xNUaL23D1litSP5xMfQh4uevzdutCkWRYiCyKLJ73PRfInXfbbUyH6aWlLfzX/B229SZF7XvAy0P09MfGnp3oM9Xvvhqx/2S2PlfSmt/j4MZJD45zs1y2OPXdsolb9cZ4p3w70wH6uHil7TaJjw6pY9HJbNzMqtrqCqUWDszCRQ9Luz6+9c5f5U0pxaKNnT4u7TsUjGcIMO9zgJAMiImS6WZTMAD/XxxYGyBPEY4/unFPhM6YoMQ7beXXq9q55dqZ4KzPR08Pov1xbMNSRRC3e1sqIJiCKvjYALUAWoGYCJ1xjAaghnopRatQKrywUSoqt8WQIDlUhDYQIe9ArJCGJskCZvSQA0MCE97IERg5QqAc+tCTEG8CCBoJSjnelFFLDBTMAIJBXeC3ggtyIYiKmBir/iIjvBRzAFCQHVYiG0QDWANQFTaCpbfmsoCg6iEAtDSCACZgiZhIq+TElCgBeCpxipMbWRZEAtEA4xVEvEA2iIA8NNdLohURBBtMRS0TSA5IqKhgUiiGtqECouSIhi1CDkgJvENoC3iCqmkQNSAKGtUAAuIApIukWVSoMiimszpQotogoZxtrdQ1SACI5iIWiGYquIAyKa320uGkRS8EDEUBRxNYqOkFXSs2RVGoukVEUcwQEralQUyalABpAAEKqUgI6Z0qyhICC/3ggpfa/1fzwiOmKUAwxAdYCAcZeIDxgI8IikI5UiKAyKqoYIKBZYqCWio5irxgClmIB8ZpBKghlEI1FcLQhSiIRIyDFUFIsikZFYSQRIMGEAkIiMYxIKAoDIKkIRURYrIQIiMgEIiSIJEiqiQYcYURkGQAkRECIwRBIgKgwGEIKMZAYECSLFJIMmJQURIRRYogwBEAUIs6DIQgKkSVhBGMjAVSAsJIADBQGDEkEWAkJIQiiqkYqSKyJJcUlMBYwGBzGc8qMgosQQYDIAEiIKiMQBgSRIskSMCAQVVgLBUAYiKpAJBJBIEASRYCiiKKIZaoyAIooEgCIsUhGAEViBaqIyCMIkVIskUUIMJBkhFIjGCDFFYQFIIgKoqMkiwkIMkRBBJFIwkBkZCKlgaFSRUXYIDtFRN5QLBUvBEENIigbQRR3iSAgG4ZClUuAIDAEDFmkBRMJCBFQDUBSImIiLfNArrEFN4KgWIiudaBVyoQEAG5EDEBRNoqojIAZAIIIpEiI6xVS0EFAuLA0ggJiCaQFDRxAwthxi5ECR2N0faJRjE2kNtjaEJtA2Mml+d0eBw3yYsvnnhDtgea7A01s5gkgpfdyEXzyN84bhHgXeXe74iovMHAmYa/nb8hTkQT50UHeQk1MWAwrytomEZfCZ1SueM4RMaYMgGN5nQg4SlwgXIxaMbO3o0Aakv2DyKjUFoYU48A8jxAU2NtrM1N3R5Ay7FzRXyiQGJjZ4v0iM6mEE0SL8wBAJmo20lUWu+t0N9I8xqmhDEmqk4uhY4E2KbFVSpRV2QjnCmEUmEQ0ThrJe5cgKuCvnJfnw/OUCFVekzYQeevJeOfbxPbzfJ7N/9eEEhr+HYrnFeeqe8iy5hZD4Ln46rnx7Jtk75+q0UNI4W034Y0UiOBcZyCfWaI8jnbBAki+fFe4z1APnd9XnbcyHkg4ifSqJmYtCCZ2iPp/oElXkCgOOFFpFI9TfHK8I8HHmRtFXH4rpHO2/dxHF1FJMkQCijspsqtyNKvkD42c3yszuAjkK8vC7Qd06niMS4XyLiuYHHLO0iNncV5fNKmZWuls5tODkqHrhumKmnLgbOTN0Sxkq2bNyyiLcE2XMZq2atyIXDMrLFzC5cyccufbx5tttvyNTKnswuFVBGG3vP1fVygskWZjKaTEfmiwBnlDbFxE4GZmEOShfTkHa1lrH2/xbY0FKQBmJBDb9l/GDLB06Te6QMgRALkoX+yZzDQCJw3QCshEiAyP7kGTfUvRYouGB9CpH3EjvswFgfSNtW0GVY/1eHPy2nES2/y5XrrMomeOTfJC6xGNanLPi9Po3Dc3L48Xn8W2Gk36ee2Z+f1FQdDred941o91vhtOGCwIaYLWA/Ew6a7+KzR6vyXudeH5u7kmp2EypD2JeGmEc+XaX8F/y7QeOsaVS6gnkQP7TpH1OngFZKgp2Xkeza56X4HfXoZPuJCaeEBVLaHPLg0ke64p/P8Jh8Ka3ttbevhnN12e17fqw2ipiFQSSoEkitRaT0QLHlerbwLiWK+3DuXVFEK3UH+rgTiBMpADdclXv1EZ8+M8WeXfEh5HJvb7Q2bFbF5rjhjKdR3e0yedSi6zXMduZMzLtbKA/FSQvC2eSICRABGm/j73IQ7JkH5zZ7cdJiK2krxBnot4WkFUifDv8ex4IXo0YhBpw6QkgPOQuIBHrtKApZSQCrNnMhIrZFSQHZMaSRnUJRN4h7JvLsRYglXmo3hQg5zv+5ebhzM7HKOgvHk83jbkFSAuI2EKbGuAzVMmyJdNjy0jibRxuDbKJA3tjcqPwwEzGCSQTEEzwUMwikkB5Uc0Hdx6tNhJgvHvHNkM/OoDOtxQzrVeNTAi0f23zzbnUHr9pvO/xv4JsswnyE0w8UzURQR1++u0z01wbZIM4umDaY85bGR070iYNNOpB2WyJUahdzCO4R2QESLJICqu3tBfC6b1AamhFUKTaqgmtI4DYFHFyYwNwX2GBhEtE1ZOBqY4bO6RtPDhMy1qtD3EiarxCtaqkqkYQ0FiDdMxxHcG96UDIVvbhQLi5NBIjTTANoEnLcDqCDolWkUCLnA60FB1TzOjSEIC5ieiI5h9/w3z5vzfcRIz16JPbKM4e4v2IsOkWBtT3rk0ziiX9/mSkN+D6hAIqNIiZXWuEXtpeKc5fKtY1W3ZMxXM/l9aXg95w89L+CYSgqUhW1zOC9XCjyCtNEhDHh5zJOR7J1dZx3FpWRr3O2lEV1Hc7hNdzRwJJJB1olAIqIYhirheY0lZP9sx2ml5veJb5IkIyJQZvmWTIcq0tC+l3PTnGY5QQZUwGlCQERcLeXD7xve5siIccpXyg6cWK7J5yr6Su067h+XxK+YXxN6OUqeYIK4vN85DZrjfNZdA7W75ZhVq27bXWnVzCxC5mOUqCiYUw21mrKjiFGszF1MmW489+KMA/C+f8ms/XS7/TTFXydajMftfoA56ul8VCfx7h6ujm5fWQVEBnH51Hgc7Dkob7ERj6ZCrkxkBGLQrl/DmtDvBZNkFWshms6mBDv2b6qNf39i+kSxFYUS2h/T85ym27cdiShZbgaz+/DSei9QzzGQ9YZEra+i/yDEZT8k5TgDsCfLczPVdEs2WeS1Wkk35OS3+8bmhpi+WzufFN9rbsMl31qeVle6+TgkIF+d/L6eI4H/RABXtfidH8Kg/Dowd9vQaMYyQAJsUgEPY0pP2tedndn5cKoqY8xCQkhcOPNfOa2x7bevdcPy3N0vpBoiWj5eT8Sa3ybyzboqnz9yr9ysHPVHdfr5Svtcnlepnw55vJBDVJ/PRQ/k74bLFM/JcgBZFBVsNLaIgU3cKaqhjsd5C7TaXuXEVQAk64TQgTIpVWRMmeZldzhQ0uDePdN5ezPNuK+2eoPKIEZHjq6BAvxxYzHUZPpoSLs7Jn+PY0uZuTDkckd+8vgBRyIyvaZEh+5bHC5eHgIGd6Wkd8pdGxpIACCpsEhHNENEGEcDDhiEkAEQCCMAYACkVJJmjCgc5FtWuHZDLQiWtbLcW+TAXFaOfCghaDxX5HI2EAICkBwHElaqZrEIVkT1JJmAzguQYM2QHMSrvMGatbKOTvDK4UcfNin5XL2KfZZhokkApOMV9mkJCZttAkxpISQNiSnOX3dnnaYlglPhpNmTL4Sp1iN6+s3YJVkRD2jawVe8bGmEHdgKOoEUFTWCmGAEsCBkPjAOtAg/Lw19PlzwPEhF+L1PpB30kInkcRrQ00RBYxleInioOo2QoQ4bZEWyaS6DovUIARojtXC4wiQXbRFSyxSUauMEGFXDt8hpxG9mwQ3ptl0bH8Y3ORGuBRnhpZWUgJEkHN+3dYBzpVtAu2HI5IKDIowU7YgQNQ4aYwh4B0dJBgZW9GgGgait45QRExgG2msIo4siaqOlQC51CBAS0kl0aDuYFLlG67fScWsi/555s70tFSZ5P7Md8SQJb5kHPXinYcgIWXnHbOBESRzxh3sW8prrcz/r2L5nnh5kHnEG+Xpocs6c2M5g1RxzUJJcU0fG71VziKetttpZMCDAM3bZowybgqrciOkUUKSRYo4zNavbmN7SYflaNNOCtmtU3oV4RVdQlILx2+oGG1U8Smw7NStluaUFDXaWzSlKprCBdzqDdHXDNIkgs05EEsJQlRUmdwI3NZsy8V0K3A2MEhCYi6GoxoUADh0D0u6H701OtHCnSJ6Vy+WVEYRBbXTyDGszZIcDoxtLa2yy2taNRVta0t01y3G4uYctaMG3TjK7OaTVub2uNdttaBHQmNbKYNTnyJ5RK+Wm6f0dNWou1zmwS4Z9XIKr3KjPXk0Nr9H2clvbj9z15IWy+xA/Jy7M+ban6bfv+NMN7eLTttj2EklnTu8Zmyid7QeW+Yp3PLxYGvZoxOSdNq7vlwovRZmbmJf/hYSQ4GKIhwQv1igYxVFVIdgsGCGxKPrRbnvhiA9y67DPhfFnAz0U4Pkt8JtlqvL2enXX08f8foNkV8kQ+pCRtdxBmMwaTToPKEEMY3v4epHZEOniMVrKI02VwSvHmr4a81bZ4o0QUZFERllA6G4+k6d23lO28wY+WqHLe/z264VEYvtPzX4c0Vby/pvW4UezY5b32l2eSqjCE8fk9m/iRPIiUZRmGJZ+AUV9WXcE7nE5yAJsnI5Jj/DTm7J7ubg07UifI2O35RfdRh3zK8t0G1iIVUeYbp5XOWLfG61k0Gi+cQy2LyJ5k988uaqJyHU2grhcTySi/C7p6X07TV8NjYrI67L4C1iD4gQhIlJeYdzR1KQCsK6JCjPAJShCExBWpAggnnnOLO73ghEpXJEACR20rEJc5O3HI4d3vTK1ER0NtLa61JqlFjQiogbRRUzEJBRyxJA91imr5x2GcVVkYdCeZpV50QgxRC5HIBbVxuiNAEII/f36tOSvNnXHqASBI9TYvHLZyfXMt3oH5mVGx3sWkHbpc8x7dUtCOmtByDhWpkxQ3cKLhcMsJEcQXiPCc4QWuwQ6YICUQne5cB04zhMkAcgXZA4G3AGOCK4UJkENuCHe9WqDrEbwvslLLCFOMACqbBhYhCfAQ0MbQQWh5qjGQqaWcEcGqNEFY5q8z/oBuJhVzggGL7ot2CJSiCm0EdTd30rWQFLC3W8YVL1YvWdo6dOvhtG7+muAB5XkeHh21Q0jAJkZ/nh4FHW59YbUJE87FmUkj8vZ0j1fh5HN7ooaUtN+RwqLmIima53p3IEN20bIS6hGPvWba019z7+cnBh83Fem3fQ5bkx3foJ8iYNpIeVO8r0GtaCR/y72bJm3U0jZ72sSSmkkjo9IIleWuLCMURPZ3qfYxkmX0k0mOG9ouC9QWPCjjOpGsQ2k20gKEFUigGbWTnyoc0OTeRAgQqS4kHFBQl9G1Vmvr8yxrqA8ir3kt6eFutXOHfbTlrtmFpTMTK5ywzTR32LiCjUpWW1a6GqXMy74XTTQ7XMrjhyx1dVdXElX9Zz9hmv0yYhJtNqLhcmHXyZcpJYxYE6+u8Ok2Txfgc72htv0zya/pgn4c72aGkUtf9Laz6/Q12JdSUHnkvk/FdlQf+/ZvrfbvP+9Bt6fjuA+q3gp6rVkwv/DhMtB60UWiSve6LFo4lRBRSz2UG+CiQ4eZ7s5bVOOMM0qliHjfNiKqCXTiMd63+uHr267c/frIO/fh6dXvSuz/6j6DWpqhashbe0j5uzpk+xvOFoYzFxcre0z/Cmq4fydezWMVD1TjFh39Lt9Nnp2/n7/t9nTgZzq1bzphilTrgcMyPiJ980U+v3eXjUUBTmPpyn8v3Wd3f8Ab1w1IS8mgtO7PfoLmsg7e3PPvMwpzob59Lvqp4afRjr5HHuacv9fdnG1djrlBxETHtlo56v1WJYrrDmve1Gbknp+/fQHYFihpCteV2fwIXgU4kvmfYa41U+pE0cin+mks88mJ4g8mOlv8XmemuSTPXpqK5Qdc5FV619fOPcOZR9p3kjaAFjNbHXLs8MRa83xxyDKwNyXchvjRuaTD4+POgYCH0N1BIhnWxiijvLkQmkAkZ0oSgBF31kWJKeSUYno8ABWkotoZF9IW9hSzoMuBbbXltCwAbwyaNWAaDhhDkkhBKHMwkjQaSF3i3DK6uMWMBEGy+b3n4jOcjLzhdzNHb1HGVeEoSADgzWKO+PR9i0UkM4b5dliSECpSE8hzRv9/ejlPmeR5Ei5Kver4SjaoCB/rfkfnWUkq8ohUYbQ4cO1CJ80LmxUD/7jn2EWZ8b6MfR3p7RyixxHANEePdVlsbSGyI7GKjmQNyR0/L44MoE2LAIXOdnkBI0qvoQkZEGTp/Xl0nJYnEElXpU53Aa3HHauAh1lXSICBj829AltDAG2JoGokhIsYsGCsyIAJkbGEJtV4qQDCjTe4iasUJFAhnBVtMKVNRo0BKCHvJi+qBfWa7JtBCThKwbkUX2Zw6cixzHAMIjNO0ZVvH9HTdxi6d87/FBBI+Dhv8uP3+qvhOQetdiSEl22VU+tx1+1YbMbvwfvsh15xZkVl3Cqk75tjGT5BXANwqTIQUoJIjcyY/pqZ7/X03mn/17iu+umnv0RUSqtjfYpzhQENLIoBrAFTEUVpoFDAFTSQLeFQHYhzolDnvdoxWkdZ3TJlFlSVomhIA7jQhRN7PRAPgqO852aXHOXIhBRGFmcRoJcLJeoqqpKriiwpxh3OIc6QmB1hlkdHHAAl5K6jUbyL65CIEpJ3uK85YkcpYrIvbTcNvrezHIiq2ZuKspmTx1bHZAW2OrjS2tpmU3TWFbnGbGtstg5tdLql1myGCYlC2t1mcclUE9RUS44CYI0lp8XKzXQtWbHlc600GDhkv7bdG9H/7WM44zc0V7H+i9m2STaEgjaipStUn12owXEZfg7sM0qJL2Jpx+7tfi+H6N9PddYb7XTIY2JJy1SZq1rCrspjaVZYUHvE4ty3NoQCF0WlQaE3NZM1Q/hZ+3bWbAB5cmZZVYLKJ2w9Pjo0MBhsYFzQdPB1MEypw89n8597SqyaXosUM0REDhBsRVgdzclWV3yfRfLnd08eTDltlKmWuUpZ7QzQBS3/Yl4m6uqMjfIaBhNScGp7Z4JQZB3QIaZ6FO42xNcooCjlJWhkzxy4auOJCn/l8qL0/N/A6Zr+CHMDv6L+PVMzWjR/53XBF0UgIHnrs3+PN3t0t1TMO45XEGxJVGILt3bc9givxy2cv8CitEadSe1fML5PJhopLxFhCS3gX9MzafQS8Qg5zsWgZUVNIcFeYF474gBzIkJJDdkW483lcpw72YXMOL9M3OceU1pxmeOQ05a4IlVes4rx8k/otovktAdLBwFRXIR2UQNsKBsKGIInkpIcLczyqqLkVuTuoONJJJBAGBKQgquEMg4phtHGqakaDOEFbfDFfzcc2QhxC4P/JgOKbGV56M8xBY/9lHvd8iPcnO3KIH4pMlabQOa5lMgq5OeRtQgtFmzjfAx9f2KuzX8/kkRFRHhBmEAIA9RBByQAMQUA2iCMiiG5SI2aS9ACSRKOc4ZcFraDagXIaJlCYwll1zorTQSwUxAgYwE3VFfy7DYMbOxHIRANLeoiPOwiShMWAeHLSLmtTHEQUojzpQDBIadAKe8qljA0QjuDO5xoTHWpLOarEWJHAS5zJRSECDRmaUhlVJpWuRB0LoZfW2CG20iRNoKzEsNt/j8RHqL5htZhxE56epc80HpdfwtdmoO+cy3LyVB5Om9MrzO0XzUEXRVMKnTF1cg10lhKd5xnJjgVBfd5KjhEFjZyw52+QkldQpxdqcrm7O5ygqLrQDR2Rl9+6jwEyueT4+Eu+GZuDfda8BICdSUmDxLBfnBd69reXZw8ifGgEAXbjg7KtvxLIe0gRvOCQmr77murhi3qSSEFdKaRRtPobiyQqSbyNmqgEoUMFBR5E95SzGinPHJmzU8tdbmBQ29uBS4YpVUwaK41S226wvNuauFpW/DzOLdxxmzx8zMqnEeStdMhw6ICBsjP2EhfQeHIkLDAvbc7u3AmSalJkhmylwkCOv8ApoLFJYiCPU5QQOK9vtiKbf6+TJHz/jiWDr19/Wjz+alnwGkgIxthen+yxepg8gefKImKGch1+vYv1TcRkixXUkyRHk2Cv63MmSETBj+m4Q/kNBmVIBGRJ/UUEhtQYD6fov/u6ve3KkXTaWQc35sF+W6gHczpioQu2QpI+reVakCGj73uo/F9sGDPtrlVkoUbH1KrhVP4rERlIlIn/OKnXAldSx0xMaYxDGmwUfKVFv65sbGxjHces9Sy94rB3U0fW6n/CEJBKv6iO1ibBfGIOoLGROxU+2SW0QqQgZH/DJbj8KmO3gAVbmN9wWNBggv8NmyaNbyZneQ3NWStSUR5ZaX07GBZWNsk2D6v1qmnhMSOPmkp4kUxD8yfnROiQUDUjhgZBSpten9+ILLgMPcYFWgQoLpjBJjhiR8vxWFV7ebAi3LImS/dySccn6YFn1PiSktw/j90qkNL7bkh/CdybZXqTWJqEhA1fB1l2Ke9/y1mXgN4EPaUSdQREGGFRTAQUMkJwK9eHYZSj3ODUz7lFZdvr32DBeWIzprLQsgTNWZuNy11JNvG7WhxcpQyyij/tD/ZmXecSppGyNs/xqPu1unXss3kij4PYhgdPUU9eusyFduO/M6bevITj7EBnxMSUvSM+SjA9RCJhEf+WQP7uR7I/b3Cz1vXJylgUdQvBXHNfPLjwIjVaK4xrR27WUsrD6tk4uSkcSIN06WWWR1XW4ZTlQWy2jEgLL5QkKc7hUXyTCaCarZejnK1FAKZnhpljyOMqN7AXpINIa2M6QuC6LRbXc52yDVRkXO8mb3nFNWTRCEo/3Xc7zxj3Gdwd+ef0kdJV3yaqLd33P2/yX7AXM001CBbgUZFVU/I0CAAXGIGIqKEetlfBFjRJ52s5Z1T5CkgDXmCQGy0BfSgOSO67EYB3SIFBzvdvf0XSre6x70iR6B3hi8bHjfDQffnClY+2253oLppJryItxFQdm63FeS+RV54iEiAHlz+PzkHgxB1ggFoCYiVFdsFSjhtcjAbl6FAByQEUzVIJkGKG/CgV2g8CCWio7xFE1iYjIgyG8NYWiiDWlCjk0oBEtEkREUIrEBRLxBC0RRAvLZpRFC0ER1iNtgEJNncQlYFQIckMEKgBiQjaIgCmH98pAE3gKiODJKReGhweDgFfpN+IqwaErhGEJtlqiDIBBANJZwMO8lZ6gYNvg4GxTKISRWjJ5jRwBFB0C+MLaAG0NoBscUjBAkQCRVbkE9hIgBhgAXIATc2mRFwtVrvEkCKMS5u4DJNRyaCuWUbYiAfCAQ2xDViQkKYNEa0xuFEBZCKyMgm1YVLOYKLES4GQ2RG4sUCNiAJFYGuzWtw4j84UuboNpeeeE+EInr4ro5gFO0VGC43CFNgNIoDNjmrhecQFl+Rudk2W2x6RbO2MQDaNdqflvlnmzfnGs37lz1XfHvLyPKnqBsEhJDZvIi6tv0Zys3XvY65dWns8rOxBR05nKnaH9u+d8XN5NV0RdhCauAxSX2Au8rHe0UFREEBUKX4ixASgV3KDiRZJPBAls31KTOqEt2Hc5kbNOCR5ISloVRgJJJEAjJRxTK1UEFogkHQGHULpKGNBMFRZ15JEuaZlHhNJqO22GLGjbrCmZcHMTE1zmYgibtuaczEhLiImSZmbHTZBVx2yrjZMbZgmXbC78znIJypX89CxZ1On3yyfu2/k90Dgu9oorIIxRVZx+9byNFnPnrNQ692fX9VN4BuwilQWUvH9mYM5Nh2X/fz6x8bTzW+alR6tns+IzNS35+WTOXwYZ4r24GSehy24ZZMZjBHjDLIX+eURe6faMDEOlEPWJsrHxMSVA06qsQgU3BjoSJAzA+hMtKRbb29muh2f+8ddrUalL7Uq/uu97NeHsm8wFVfD+Pka5ygnVhSUaa/ezKZIAAIIFUIZUJClRnMfU5zStFex3Tb81JVYp/h3dmv9+Z4ZOD4mr6b35T3p8PIvp2rmW3MR3+F9jldLbdPp8LvJ5by9dOT7YUQk81Dwtry8b8huVoG4svW/cGCog038DN5fNyUgUUEY4x85mVbzfrEXctCXIiI5zAVkEFdgmLngRPO95S/O+ZmmR5XU5hmJLwykbNMy9AtG+XPGVt5045gR0BI5a4IRXdXGVVxymsNngjBXDnRpGO0JRhE807exKRx3uFoCS4rZ5fO9367h0gNarkAFU31IIHpRDSALxjEZGQBiiKxCIhHRpSCQqKkKlSIrCDFKoEE0AIABUUUEeAhcBIUqorZIiicIcYopESKhAIvhqSC7ieR6Ap/qEF9PQLLSSSlqjrBekjwYkNtobAdm90obd+Tc7F9hscHTboZd3odA1jb03m+i/jqxiMijEWIgxBgzq3ZhGd0E4x44K8h9I1enN7ZM6FRVOThd0zVs0Qxm6fBYuqvQCoAeIBzBRV5IFRQsogYiKBpEeQMG9rVLa1dRDcIKIROBQohaCqqaRUJrNYXq4qBEiomYgZiKItooqaRBmY3sPNEQEogqi+NCb6o5QJIDhqBEJCo7qQ+dYxwV1V2zsFVA3Skq5C3cdSKA12cx2TxqtywgliNSUmltamCQx/mHBFNJk94WHRtGAW2iAdHUkSJrpIgbWpiNBUcLRahCixJGpoQbBjSoAidihysoM7yUWgRX13/TvewvL1lVABZZfgRBdvwRBHiksZe8jhr/z3Zp80UkzJ/Zxk6dwkZ/0Z6KS7HfF4DLme4qHgqqbrHaau4nrKxp5EytxgzjVzyxPkW4qSgag5znAyImGUzjD8M+zezvJS+tNW4cACSR6XQ3forF7D2CfjgwUpSlATHTrpdIL0vhrBBMxP17RaaUEJuBRSI3DsriQhApdVI5ubRpPVWMAXCYoEXKx7cbJHNXGLRICeIRuDFuOKqkRzByFMiHBAq5tmkdN2bhZypm7odmFZmWZNWwpRSjFcu9uGsMutLVw2yqOWW6Mxlua0Uyo23a5TNn0+VRnA0TjXZ12FCbVsIw4yw7WBvtdW0vBBMqSkHpfqYWDE2u29M5eWX6G1pwRNn67zvsNENr0AxBDfRfJ9DcU+i7YNPydt0miedoQxKdOmXUUrqkuYYGQkD8+ba0ZYFgqDWeasKBUPOaPpOTYbTYpplhA4ECiMHf25dWH/KJkg2EQGUTn2DLY5KEkk0e7tBD8vLtaVL/X107IEHNFQ5i1B2wOTCiV842fhggKhI2Cg+z8IPojbGamlAxnn5PflYm0rREVaOWCFxmGqOco5rAZhpL9PXW9C75oSw5ZH5oVTriP2vuKDWH1q2LBJKVtJQIzVPLd/jalugh7d85PPiQgaRJvp8Xt+AuyZeMqdjaXt8+uaAGnYj6cArHrCgXXlpMYfMMr2NkkOtIV4jCV5N5/FzLUHJrpv1Ahml3pXtthOmv1M9TmutM6PqyYt07Q3pXlmoZy2OWzSMOfBRi/jlQssOS1e/00/nrkh5VZ2vNHc797ho2DIXDsyzukJpCGVwPRrDFNIloozrZAzkWQ6Dz3mxHIkUHe9OA9b5ekJ5OYkVGIBM39A/pfMKMIDhOzP/P7rRu83nKm7C6LjGEjEkAn/zgL4ViEghEcQhciotxJzYq4xkRsTuenF4Tua91zxlm0tAWYVCZrxVSxzWOruvxcXOuiLAeEPiSy4OdP9r5yN4jOmsUzEyV+pTWKqlxIKawEByyQVUqIClCkUC6yQEQtABRqIGpBBcCjEVBcQLkAUM4MHRFwNj14UkhBteDV+NbZYgFhShf6N69YE/8wp5TfMPN/f2GHt2vPv7rlSe4GxshBhsgFeOtkheZbE4v8MiATeXX720A+yRa+Aa171ZZrNuAMtzqGkNNzDQLsoW7Tb80YimmUay92opyALZ6dhj1zljXOL6HT43IK4P7A2VAg2YYFLoTNd9UooppgCJafilzpN5AKSScz2ObmBj4biU4TNJ9L7h7TZYBnEgQHJuiz8R0d8UYPr2SfBmt277FNMfdSkiGqL5MvNbYYgd7nrHVLq41DyG6o9CGcIqXkJim6/g8A2HNxdjD0DPDgiXfDu5qhb1PDYgnI2umAqkjISAdTqU98mCg0DhlDhoUh/dNM++yiRQxGrxkq9PnvVvY+GyxBWXvRvyWh/ecsuzeihs6F9EakJIGqNAF9lC/192IvWzeUqCxIL4JTtpL8b+Vw9D5DJ6oB4dwxUXNjsQoIse3vuczz3BHX9fd8D7Yy9d4punGjL9bzXZRk80v6yHheW2Jhnd8vn2utvtjpylBim1ogkBFRj3JYjGAPI8AwD16OnwA3SL4ce/p3/bNzt5ebKiJ2ifFl/1tZAIwZie8+BhFCOIZNn0LZjkif8qFBjRCivYZFxecHDAe7X7qjj+qj24cmlGiUglyK5BOH1e7Hf71t8JZgq4F99OPpR8TzH9gt+8AOA4g+bu2ZvmvatQj3Ij0bO5BL6n6n6vBPhC7FT+51Ii/nZQ1TwkDfDBFBrBAAPRzcfQZmaMWREBIgnsHC7KQH2YQhzx08mZNDagD+cH2uve2YCA6dXlLLiIdfPXHfPmvynKhyNB+E+8M1BQ27a7Xl+7RnRkPHktDt922TManUgByKcE4+jwZQ7YHhgcp8VPuyztOiV+UsehuKHJYUEyyQxRBOjs5Kl6acNG/sobIOWeO0UWkU8z9LDweiABrs8Tn2afXx6s5WMDn09Pdqrr6RSwMwZiL22JfntGrTPiqDcczGREP0CoCjw6TlsfkqDDVcH+3G7R4DZfzw/yyJCQkT1/B4vk2CA8ILCEOhWC4dBt5QVtfGpQMgQzHw+XSvlHGEGIuXFrAo3cEAiHolXPf/b9BXHx7vxjYYiAAMLaORmAhDgw1WQjYVa3HbOIMNCBKwK/BQP+mQbMagiECEcicgn1aoQXQTKx7H1yi9ahAASzAMRChDVDHPr8quLCxEEl+2zduMOQBEALCYTkaSnu1+2eZ5lMgOMn5tt6rdYzBntJ0EBbH/zV/qbgyyK9hMCMCGhkYT9jBDn9vbw43PNo1z+HorQ5TXTlwCqtK3V17U5YB4WPfiMikI9Ouf4Fr/LRvYNTqD40C1wiHGqT7T6f6v5bdWvEFQ05y6oDde5TT/Hdw2ElvXnPcGws75siskLVV55pXR3nkYHEOTXomXdIAlCGoZmBDmgeZucymK1I+Rp+cM+UQBlTvtygP/TE9w1TqNRvO3V1X9BCgU6T8XIb+fXqP+RvkmQ5MmZ8vlVTZT62wUp5ovb19oz21Dd0qFe1Q6vopwbqZEnIggRdmrNsxnM3uRRmJtDVaYLQugPCBNSCS8sPk2wQJi6NN97Bd6GW4czVK/oGFTwYW0T9ofh+POn7eLU6Nh/cuATRnMGK7UEE+PnKei67bDC5Lte4r7sPT25aPTs04aZZJiiiFwmf/HnGnkbI3yIlIuBUpWlE6YwMXZx1l7BmWk2iOEhjpuTImmH+gPtyiFx4gIoZ01PkbADRChOiIhJ7BeNgSQDD7zBPoDEZ/w4BMD1EtS+AGD3P0SPNStFNK4HHAMmwZxyyhoAhGdVaIKoIw11IYhmEpqMG6qafGBE+KczGOok1gvzzjAWRVemEiqEgpP31nhhs7L36GSwqTrfvQ066KlKH0JX6Yt0fGeXg+yz+oWcJTDXZY2iI35j2fs5qlZtpD6jze0+SF9hA/x9XG2l3SwJED9oS9BzuhyHC2COuBeUlyP/0ECfrItIOiZy8RwnGQIpARGf8QYHgfyP5OZyCBQaL28BUT7yXtowypjrm7nMEfP9IzIeV4gV/DPpBgzk4hoeWaH845lufnKI2cdPDt9WLXzYa5h24aOKtEsgUBUh1wfLdXPmDgu6QGHBawWqfrqgEUkkUAGRQ8ohqlFEFtBeFUSJ9EFKgSAHp129N36/LynzeDvZv46KRFECvNferwAEF1NwR6RJZwHuhKbLPAjNPMICbZzqQHvtI8Dqj8jsCBAAEuv62ygPjgCBWMDbDdo9p8xjWQ2XSw2lvMfwZm2Q/0g/K6ZEEAfdkQINubIeW8gfB3568MIPSVzt8aeCxBXb09nTPA86985CZVcAgAZEBhg1vYwB2mkg1iBnGMNwusX0BtKzsbOeJww+dSFBJHo1+FERW21vVjmBrjABOnmZ3gBeApkXuFIIt8Agd+VNhT0uzz2FNDsvKXQEkBQ/uJSTESe44z/KvJToVzzvcN7bU/GSQm+95L3AZDZXExIpjc7TIUA8g+2Ve97iwpsHCqz2JH+E7tuyQtsAievge7CQZPlhn8DkoVt178r9sk59eQEHkU4b3yqcrBwRAgRD+enBW2FfLWN6cKghnG+3nji9fq921bV5z0Az52lS9TEgXRZtsb145W2Z+WefgYWMcqzFcEOoL0UeHxTx60s8eRrXLn8cOiEFBisgCkgoRZJFgiRGAosBYAKsBYRFRjGJAjEgKoRGLCKRSKCwkFkUFUgRYLJBYxkkiiyKCkIqMWAskgsBYIhGEiLMlGEJj4f4FaogCWBbBu29ri1gZbzd+/6V7nxcjUwpE/1CGLBT8ultqvAc+io/nFQv29GwpqRI8LA4xjGTc0wQpMuCzyxuLPuMk0+3h/PfOE5dmzJEss7dS3ggQytoRCU9NhzoeDt/kyNNYz6vsHlM5frbpFuH7BPP6Xr3d5z1xANuFYgvUvwYvl8NHYKKp2c+fder9JOvnzbMjyRz8vBwTNf0qGeKN+TRQGkVZGQQkBZATziqJzhm5L9of/Tu6f1/s4t4nhHx8YHEF95TSY1W/x0/bu4Dl/C07kNfX3Y+HQlYvi06MDdAGmdwDop6Oh0q3i52En22YBPn0V5XzW5CYP8lS8ZA9jmFGIl+XvDR5qdDem3eBiFsjpaswIxrEbCKK7PHixXfUQrGlCYbNWjVcDsAMZx3Z5UMijnrsLKoxWM84vYlc7NO00zhAxtrLkCPaLAiBERCcaHISaIAdCng4j/hwzIhmsxGdN1BWCjLOYGNf/ZVdMiA78Lc1fROOn1W4X66PcUDJ/8jlVvB9Ga+gWWuFLkkCN3Jm275a8WIE3/x17UrAu3+iYPTkKXpYCBn/76jdn6AvAj6/p0NUHTvOdR5p93PJOd9dSCkA1wZrApdMvyUA6vQicSy6bQv+I3gGc2mf5esYmBhI8QP8+wcypt+3TWvARvqOFAPoAKGQAY7ZrLiemRimy9GMzmQy590f2p8c0hGBmuXDiz4OammaKXHHfXGQhIdGALIAiIIRQikCLIsgqwUAUWSKLILIQUgRSCiyJ9ohnEWtQuOGqJX3YCoVOLB1Uvksb6gE5SKHtEIIjfi6pun22jS2HGJMobwVVTlCu2DdcwkUCQZBZgH8zqNbhkn3VX2tNpxAHT2Hx72EX8/3vZO/0rOgT/w65jLsuO5ROotTkrxX1pltynB3NOCpJQ048nshmJA8hkNJ+3r27r2zrptXEIC/AIykC0UvAYMzMAwZkcjthRQCjAwZme8WrWwXzlzMzNyJSEMkE+OZ7s+yGbFprXJE80xcFNXoprgNt8xvUsLfWQeUAqjxZ7+e8GO8f4Q4d9CBe21BC4gSBihgb3w9nZNJ6oo5YX738T2rhtElUaa0eOfdEep+JriCkMpOcxyPeYcXNCKZglMWsEGHmuBVMULKYFnBAmZDPBi7ZFNWkNklZyEYJztk7pxJYHb9UGv4PQ+NdoOsaGICXLv1so9agPJX+LMSYG+YPSw8wnD2R7Bm5GTse3LPu8eC95oHBExA1mt6XMAiM4xTTk6dNvyy1wNmMeRNBz6WFRYsk858iM4rnb7PeTl27c2GdxRMOamPCFA1cGSAUmKOV1njr8MOKvpmkgvYFWG9AJvEPiI0fZ0N9Uv56APmCUmSJZErgdWhbBN4BEyKtsxcOALrxZBr9Hj3OHEfK7JFBRkAVPPycrTe3RRe064UwvNuOvDXM00VWTRVD2tm9/u1Ap8PEK2Sq55wiZ14L4qvbrGraBC4wDn7/bW249evla+NcOl383rQj0PxI1poD57lkk5YTnHGRFuYEFEsmxW8oAR7HHmEd+28ft+8SFy+MYxtl8Yjau5nLfDpH5/+Z11ql5YHI6lPKSAnd61RGd5C75iPkVHwu5n0EU14Fb3fr+dd4tEhkjiIOELAQOqw65Thy5CaGJXRflmn/btI6KoJc0yBngXxy1WAAN+W/LBDbmKe7bVFsgIl2eHTi8TWiX5o56JyXjFps9+ukzUy36LX1JRdVaQgWbqVAyvX77YheYg2wAJBUN8NJgoY1o6PrTpWwbQW7y69e5frDfkx/k9PnhGaGiy3yTLi4A9pF61GCUASxXEf8uJgRkQDj6ph9cYutPuAO+LUkj2DdZhym1oBQZGRnnBbTL3aBxUoUCggXEAGI6HLBaAqEHeY0kp/H+ORcQC1mMgNsqcJpWVqKXH3WVDLP9281RPyI1nJ0yhUSvwvYLf/gO3c19D60oJWDqRP7PXGLXmESPAE5eQ465OCm2f+tLPGiT38KH48/ELh/mz1m07Z3qb6OMKtsYq1NBoyQVfdP91ZMJIQtFoTMMGQQp7XUgDH+LBQQoIyBw+80yabEGrWYgALCJ9u6e+gkKhZJsalzFlW318F2ndrHTwBDUbbV5qqqIwlBAYAFWWs8Sz1mIoyByhnHIq6CMgCICVqowC+65zQ9oqNXD1po2MbYP5ekZGgABp9NLEwebVAksyZxNRgql8FmDO2XFuEqaapTYp3ctPx6lEOTh01BUxRBVZBBMOemSAGgjoMfxttT0t7yvZVodkmEx0SRJFJDq1GihWKIEgDIChIAnX6tbvV/t74xTvw6myTFt0X1lj4zH+44P/YI4kBER/fIAPwYUOANBQgJd0YK7Fgmj5MnnKy+8fmgosADpACxIZFWUr0b3ANJtU0BAu0RbKQ/9yGdwZgTBuK5J6fEH3sJlolwCaZ7aQhE8G/PRwU2eGhNLvWdHm4VIVIpvrxOdNtvq6dDsDDvw8P9wsgH0R1TELDBXy14esba2wy/gVMRsnMXjekHqCKDmIB7YAqn/X0tg4kHy81bfwpWpAf8gahDH81dR9NhivNjCvb4zXAkrkLcPopwUtbFQPb+LjbC4omi8b4h552EeAEqbgmKztRIlpygSpm1JZnSZhy2UxrtYADXVPAHMkTOYFM/r1YAih/W1coHaKuNpAA4NtPYcgYdJCwyDyJu6KAviM1piKbl7nTjzcCQlA9Gueui8vLiZ1sY8e2/z9AKVFQJBWRAJBFkVWRCRQSEFQhECQAZAFkkFIRSQFkUBSQWRYQUDfDbpwVyeiil0+XWMtb8TzjDPUPCDVA/Fhlhb9+SqesM944bNe1DHW/eoJtg4iy6q/Mbm3Q/fVK20fIRKfRyWT2dRN9fLr+ahpe1HNb1conLfEVrgfmK2/m0kgtBXRl/GOXuLag4DHwnmgJJF/qI7PDNoHNir38bkHvtrhZ9czh8tJ/fQEU16fVq7pUJdRvw5Cz3P0HEfUD+oSe3mv5e9Qx3yBx57+y33sD96FSRST0b0/LCJNMJDJKW8HvsP4JjypyFdgwuhEAOwg0QMMUcLD19W/dqOKH+4mDIWQigdeaERf2WzyyiGQDmob+foXTFABFjJQwAkQJoy96ri5+is6iTBKq45oBsMSL8kCRRAhRIguYb/dgRZOdshEZFOFBkq2oQoIB8r2cjG6oKNAfIWo0rAtbPKsaA7HpAqGzQyRSi+6vSBHcJ6CJ+BvTPf1VOiIAvnUeEHxM89sxYWAKdJAaa+quj6ASMHaqD10A0MZcULMZoAPEpEtDw0dsRK37dll0XLyBtx4G1MCmM4QqdmOYhPIb59q+HmnUZpXeJx02DueFljBb/0xiYEWyEoku8JwtDpCw99hfgPEV954q3e2gVin9NRT29OBiIcThrLoa63lkE7mxD4DYdQm/D/cJJJwUNg1/DgahpVc24lXMzF+FjrjEEFGKe9IUIZhgVc9CoSkBE+RjvNOP/jXci5Q3kvP/pFRryKkRT3fsxpvj0wTeBJIIzoUIdSFDJ9tJ0zxhPSkAhGKsWKiQdSTEUPEx+z0pNenlSfoBwOVgH/qXuPs+rv1a/rX60pCEiFIf0bBn4RrJFmo+nd2xVofsmzn89v6YUTu/zlcq7hrCGxNea5xS8wrYLoRi6MD7gCygrgwhDnoKYE/LaSER0k86PYGLm9Eq/BI1LUemFZscXOubE1HE4g8bC550falg6S0apLKdC0uiX9+2tkB1pA/5MWU/yzNGaTQFRKwkBPt6FD8t3espYYNujdl+ODmvquSKSASSAdKA/wmQTla4JtLE3FbCtcqlwhVA0Bz83VcdQTOtjbPsXLpiGxO50vchYtsoEavk/haQfr+TnrkLRtjfQ99oYqgfSJO1f+kqGsLWOwwzkjopiKk4AbLBFAEkMv8FigIpQiABNHnwFwYtGBv6MNEu2ftQzzoTs6aCP9UwZQ6RdFvX505l+B18yqKGGKEw3rxh4sR/tqCB2SIGSKcneaf8+uj4Mh/ix/NFJ6OkaDUk2odIgkgTro+0fNPL89nfsw2agLRVBsC0mutT771W0qygKPEyPKOX9yImek+bUcjZAqILWcg/KqQDUsQNmen5aaeWBXzF+/6EjzcDpzhaZHuZxIH9+QrL/ye3YS2/dHkkib361OPdNeV6MZHbZkHp9hTv7TNeLAF+O6nPD8lWahPHz158XbAGumIcQfGHZ2TUCdzAFkigChEZFBRFZFABQiyKCgCJFkUBRZCKLIsiyQWCqKCJFiyAsiiyQUILABSKEWQFBGKEkQJBCQQ0xQQpBEKq/Y9ZildO2uQ4eX4p275ThEAkXbzfr0UQU9/DvG0drc4dhs8p+2xa3Zz2eSxor+QvXhR1OTjnKmnEsWd9QLy/UjiQApMpoU5UrhSjcwRRciINy6RX+I0l2oSqTouryb+mCkfo8Xo9t76r4e+eywAWAefBZJANairS9RlJiYLBrmQIsNYVgWCIFWhGNkygxEVgVgQaUSVMyCBGYIWSLKmMpYa8oskthFdNXbfMsUuneiVxUFkvEW+JkRBU9IEAAr5gwHCFT7w9in5474br3QyUyEAzwJAIQkkDPMfy9XXZ6yvg/yl0MZpyXOw/mH6AGExppbmzggSgCIBFhK/+JBsLdUBZ434MGJWBQcjs7kBJlZ8YpqO/iYVSPlz8kkXbwPh84kF6uDUtfjYsgrqXOFI204rznu71P4PqQhTAj0WWoO3chkzJs/D/j/rExYefkAIOHpEL5fLLpFnwZ0nXB5PpoVUD8ofbEcTLqcOQ/pnuRxHTi9FHN9vHITTYcip9yiXeBsOthoD/0yGWkl1tmDw+G7y6MCL9JPN0pP08eb2iHR8NW9KFd+IGsvp8hYLQ/6DYSh+mJeCDw4bNtqp4BotKby8BBXImtJjNHsDQCUi6E3acti5ANfcMtqyDlHNw10CgHlzu6X5Zwn+7ackF64lQ9mJc10sOxRPrB4Ch2ehbU7JynCGKIA2YsWqtTWlDCMx3r6BVNUU22OeuimivKLF9n63gck3WmHx0DhBBO9AKk/DUezn6KHQ6Ugw5ofTumPpXOur39v51wVm3CbqFAbdHEMLNOKkc4m/Eq7vu3v4KZJJu233ti2u3LY5dXdi1bgAFFbUruPjFOCcm2nCb707zCpo6ktNTdFCh128gGzgwxgXRSJlkKmISwJpA/S4jnm4nWk7UIgA6QTgIb74MDjHNT40OkQ32OfmDKu/KB026TfkVLFQx3F/FAM8XBAfZeomuJ5O7/ecs7WvHGvrwoUNSJ7QGgJeM1OPno4eknDV/Cf+y+WqCa4dqICn+eP5TtD8i9BgevHBTNueZwR6Nrv/BtZCSwY/I0huewKev5xBJzBeZdpc/eCjJtJ+YU2K9LhrOGDy6BGo0oBUhGZ2qIlwFt8kCW0w3JbXInfxU5Ox2/9sH2mehwz60UBIu2AtkOQDo93VxHQ/ouOsTGcBRqmEKc8OJB5IOE93ie9nbP3wQ9j2afJHhE3/bV4X+7fmQh469AwshFNzmpLihi9g0c5sBsELqafoQkGeK4OIBCJlT2IYu2oEr4AsnKRSILKxv7EoubRTmiIBBCP7FKSg6y5bTzgWPfQZZNuFneIW4Ovsyt/Xe2s5oG0JBZAJA7P946sWaT+z3JXmOi/QVw8Z0zWFnRFO8pRtn793t6+le+UuUt89ByROOCDSL/B1AOseenZ5EsBahjwwdNgErEVSxiyl0l1aAxXhna0DgvHCGTNN9C1lAV+MoEzcBLQft4twyUJEB5og0qblKVqTyvU9Rhl0GDpEeFKlRtoP1wHKpAJQWiQT9HXWbdUIUQ7+7v+o05Ic/42a3sIASoAoApIKB1zhVKX0UgPaMlOBE6qFvysE6qGVpf8lNc+46aXveWUmImCoUTPADdRMmbMabBe9FVLKz9Iq4FLccXxB+Oz7fT+dsSF9nelVfAY22OqJIfqLtNCQguSKsV2FldLnPUTjHu4FBZH04kcA4hIJo9vY9rpS51MQgyIqponJVo9rWmy0BqSvjOfFOVHBWy8ZKWX7LLCwt2X3/OP76h/fx01v/1+dVrFkQkAJJGQJDd+8Pdts6MvfqctdnS3FDlP+LVPnfpRcrwvzAlvIsDkmbEXUpWtAzGezKQS8wX+vfSH3n2EDaM8yRPPCyQ/wzWSoaEjSyCrLUWi+aH+75LAemGkZAEtmsRxGoh1JYBQ0heVFDhkmgaiyENRIVM1SBMTRBqAjum2fCETOSSLNwSM2YKJSBFtWi2cRQLITSEgIzegtNsUQnvKsQW6EXKRBC9UBUqKZGIWjlggawcshcpTB8MUF8/JT8+WnX61FOypeptsPZx5QOJ06yioi8EBE84Bys4BphuU+0S54lm7+EPyfg+THu+vX/z4c5F6NvVSIC4cHCp28QoHoI+MHPzvE4BlCd/HipAClIcf6VgA2XJZVAOT/ih4x5eJgsnJtbn92sHRrSsqGIW2hAh8tmnoj0rnWLg7X93FBAOEdSEzBhWNTdCH+VpcgCNJIsJD6T5qcvnxn5XjM6yFDLZqH04hSHyKIABZBAf+jZAIVOcIXumrEPjv3WbKirgD9LfDYrIjwyP9OTNiVXJpSN5glFp8VgdOv8fNfM2h0z45exfWzfjdeexxg96Cp66x6uzmDIaR3qnt7eODFYqZ5Pf819Jzg6UQh1y8h0Ee2qUE26A5jj/hEFTQQDKIvQouS2l6kjf5uu5+lvf4lHEOtbKKZk2FdM3deiuKHW/4+nwa5+GApspqwIG8/D71B2i9EX0AMEAqXjL0KbVQmkCwXGmAQykJpUKVpiawLCFNKFIXgNREELhCiFiAJlRPdF/5UOEKEUVBkATmp4aFMOHFK8Rve7zFhcs43phT1B3Ldpgv0TZ2bC+m+z6qnNBKwJBQZkQICkZIBA7EiQESdiVz8/whK4wdyN/THaX867x2msDyJ3jP20AQtTTwt9lD8QzPKTPZ+Q/byh3L/73kuQ+n2idrZrl586Am/mR+Ce5KzhtL6wsfrxseQdWTeGq9FgPVBRnYgiE585l//OxU3+4MHK9blxVbPwlA/EBAibpsNJQ0FNUtsT6TFJT8RlA/gJQOpx0ByRJFPTAXRGsEH5ocWem1aJoSIsGSB/udpCXFaNjrhkFPh33wwP0B88XkqM97c7khzpYkkfZfo5N4RCUhbeI6+SCTZvxnX8UFRL1++wzz55f/Z4pIRbT9V5c0l7JiEq9SbrfzLVonz6/ANKDaB+JyBD1Oi804dKF1ECagRogdbdk8WK1N8MIpiRRB2iVX2Ak9gFyUCIQ1xGRSmahfwU+0l6TR+1o6dk+wwyCAZMEQCDCG2f61RfBxSL/5ZvL5XZOt4W8THu+QWNjUOpEHjM+2ymjJ028U9S644qLa0Qmj1/ZdquAEQvwNqmIFOdFbRRoNvtOG25QjCLsMMWVTFlsThKgK6zfT9jewWF2oF//KRohdfW5bFZ+q9o7mtX4pex0ZXKElQCmEPwmEWgV0wCDiEAAhA7Pn93U6QgGpwkBVUkFJFIKTt6WGu5j5tawGEilSRWRQkZFQ9hf2AXFrahG3tNB9c/W+UDL6utVR1TV4qBxnYDUbeTm2+WDK/Iz+hPUTnmAtyE0yzY0vYI69B4p7S2Mgx2Sii+l/bZR/6ehyOfVrZ83aP+Ny1+LjCdLx2eD9P+P2jLTh/NFpYJHTf+75W7f1x51s19nEcGXE8MSRAunksyVRPdKw2KgsWwAI1poddxG0RXqitRJy16vWp4A7wBfJYGj2z6jLxZbVqXo/lVC/DfGkLKB8dCX/Be/3RuOGeaswYHQlvX8388iGy/XklP0rDq2BNcg8W3CLZgDVPlmPmeKT/0f/VjXoPNy5W/OEToxWstQZQ8/gdfc9PFg226hovQNOnkOYzTB+HKUEgAgMO/nOlUMfRwHsLO6Cf2OgGp+oOeneeqmgQKue3dXPltqufXb/P0Wg4SIdLB17hcS4+sEzaGH1o+rDZWOj/TgEq0Tc5Lpyo/QXny/8sbjUs11P0+O+hM1Kl031I/qumghgmLUq4IW2w9Pp0SB0m5Tosof9vqv/513SUw5ODGS/ttMkSSRJFOrooHxIOEjoxJ6Kpx5iiJlU3BluEyS9eP8mGmx4AsW6KX0EZuBA/gbkwkQKgRICc4nua/rNeO39fPcsZb0JIE6YAty9ENYQtrY6iNeKuzR9p3Ghee8vKgD8zNPLrruHFaIBOFDE9pETQKvzu9rQD9gIBCtRn1qKf/duhlo6D0+OVah3q7rzXU4+0eW9JbdUk2A/T+MnH4w4fsPJvMf9vLq4hcGP9nvBED0IQThhOC4y2AFkEEkVVkBJEAUkWQJBRVhFkkgoAKoQJEEZBEkFJEZBkEHBN4+haGZeZQS0r7gYcV8p7Iba7OqJYDWC7H2HV9Pa4N1dqXmmZ32gbhCW7WWsussfxjsXgWYZWZzrMS7GIG1pYFM1j7jVeoQ2hc7pMP/1P6cpHOk2JoUV/zghZaRY2er6vGfTr/eJ12yszMF7yiI6dKQ9ZOj4OX6bmZ6FYhqAKefzfHc+jXqsoIh0O1s0m7Le9ecp+07LOJiJ6EFYGJsDJX25fTisQoHULAFoMJ/+ImlgJBTB/dU1T7SseD3OvGo5oOlAFwb69Tn7H+NSo9uJT0+v8TAckXXwlwWexnkQ4nhOcWfEJtMIlyInfdh9t6louzj9Wf+dfL96LFtqdjk/cCXv+oo/VPANkssMD/+Ufu1VdFRlyYIAK56fEiF/VeqKeYvlHrw1/xowBZiwGNTPZYADBk6UxU/+v98/kz4r9vAgUAwRX2xtsNod7VLt2YzF4+jLkz/g8nTB9zh/TXv/9Rmj+pP45NzT/1yUOr9M2XW/n4+1KdSAaTz1JjrxrHSYX1acCr/LyShRWu1ayyS0jOrTgfnNNT36Phgw27092q5/5w4QU0SmzQKitUzy6BpMfXJMlRsRT15WhFxdOAk9VJ5LllDRgE6uXjwf9mRhuCT9ExnzWPPsdqERCALJt0rre3T4J6/eAONhxHXke+UB9WfOMI5/OpqfRR9NdV8/4/Ln4V/Cg1mU6SZpf71qim1ONBVGv2V6fftZB3Mbio6YAC0n0aSCmaHnmmFsDDDJP34qffnOmVV2habXIeAtxx6k1IgJXxIyopuS/TMkQ5r/Vy0x8dTPcAriuxIJvhNM0KA7PJbure/3cZjxFVbnimzZKJju95BfZ6fiTXU8TkFi/1KnMy8W5VTiW/TgDp06M6Xat+mFwb4/3tblIzDNOV45SUARZpNa7z8bCENDCjESzvZRopVCz6vcvGJEkGGCL6PrGpBDhylFvSRUhFrdpqmkGAFu9UKUlkUA7niLwlmQn+kpNoLB5qD9behxBJBVVgqyQF3fl9BmT6doB5HF6NSED6OX/75Z25i89ttbP6H64E9xNul/610RtLywL0JNNevG5C3w51o59KfQaOwdKJu3jmU0uU+s1GpfMc9r/asAp75sHT816FSVlEtfrt2s70b3w1ZbapX9mruXdTHnywFDjj0oGrqU+UUshbH1S320bFy/IqIOTvU3OHRqma0XDBZBQzAsLwe7yGywx5fa1J/X2BeMEGLLRkBASk0lC2XRGwB0srMP8hi+z8sxtzv9NyxBOIABcKF6KSPRYYVM0QSib9MqiegBAC2lKTOAOMUJbPBEK/6+79PC+BBrnT6azLlJhNHXSCRsQzyTRiFts/a/S9NNFnFb5bttdRZzBuOjWL8IZYnJGt1BKxkRkQLoEixjeUUrSALnkHiFNAWJcbfyChF8E/E62AC+q4T1rox76ICA1gbYhoPrZz4OvbZK3f3Z071DLA7HNjyDcnI2GBSNZqXDEFdS7Rge52zCHQAEL8njC0P+wMQ4EAS/mg+p76np8mstSrecLuqI/+2Av2l2CNGY6uqj1qwNIlJFRMHp7JeMs7t89Q24Jz6OvW7H8Oj4L+FNyTRfDDEJFZBZBBQFkIpFWKAjIpBYiCxVFFIChFkBRZBZCLBYCyKosIiRZBSEFkgoChIoRVkFFIKoAjJIa6Wd+fH79T8p4WHIQkO1ekhTxzbDFsP7q2mXNGSQyOJLU8s+jSfxXKk4YqP3+LApX8iFIBfhuRFWA6Ym4H7NcWlgEKsCssr3xlYU+SKELCaiUCLTS61zWCGNDavRK0JL3/d9iO2fwUxwZt2F/g8/75RlcdEd6rdeT/1dZPGXHB6UA7zh1fhko+9+G+ag+ST/LkujJyTMfJ7FuuI7IYovF4/bwYenSXdpv3x2cn/1mYBx7qOmaJbObFirm8VtVWsRSEQJEHYt7ljy7Sw+m8KD/CWfTU/LJpqUlFxhhDzipoVHj5K0DPbxstoDIN4bv8Id32j68IGvc3z4xF/wdvYpGJegoD38pUM49HV176RknCzZs3gT2pxIbHpjvkP4vILrPR2L+/j+LIa+9rFeDXYbV6hjLEAILlhBwv7EcU41X8XyuOGWloaZRZmP9vJy2QIfNnLdMVPRkiyBH/bu6PshH9fsnr33muUoG7VzuAs72LRxGOHNMf+G+r6vbTlhoUiAcvH2OWBLFz4/3hyB6MIXmw+1oaUYb0yUHhCYvSPPUuzUpfBDoGP7/svIF6IASIJrtMeS7p4Oee95pqnTGj+xKnf+f8ovJIiIqdtLLx31oneebqk/1iksxQcnwLwTOxLX6KRHYc96BAgG1uxvqfJm+mrUNs8z9WgzRcYuQPTnF5qEa+WNem1K7JECoQXrOMrmDA+S3/2Yn2WrWezbZpPITxwBdfHxf9Mkfohh37PssabsphsBqwE1dIpTnuvU/EeC4wF/+pvA5lZshCu2vBt25JM45fVWf3b/rl1kA7/H19fE4bSA29gRu768t0h+Ue6/7rlpf+fNse37cSBEBSjzq8unLXR/7mRAeQUnLTe/DQ5dPzvSm8OP365z57PxxWBcF0004e1+nXifGBRqo9Ot3D9RBxunS9bF2fCtCOD6K+a6Az+AOqhXIdw9DrpD5EBL4nT8NRTN0ih17rs2q85vrmMqYDxrEcU9bx8PSe6IY5f4UYYBBxlCUkBSRYnEAEeK8rPSdbNX0xTUIWwAFeH2+hvFtxPL0yy4Q32Q6vbFfi82wZaoUVtk2789uScb6tnLNEw+uP1rYAYp3QqRTa3T7myf7Z7bpmhAiBEQVUtw2kLxtmvxZ69GmXDZpmKnht+SW+uuQT3RTbipr4KagjoFYNPJTPY7PjCxcKYDmUqrrQPcoYFGvLAQFkiwikAFhBQgKBx76IQJIVosiMiMiEgoZr+Hh1n4R/+/q20nHXPK/pyX45f9VKv9ZwpNdOzsP152t/G2jD/vQng6uTDOTjL9+zo/1Kw1rPvX91QNs/vX8tkLts635vz4wToNdxce7PiIaGy9f348xl/4BiFIG2LjrQDCU9FTxQCs9Z/FODa9xapeieNOmZK8ZbQGRQkenxH5aSzf+PJV7uynpmKLItej83W82vJcpq+frU+oq24jjh3PT5MzCfR9vp5+ubX35TdYd7jxJNIPaIDXQwAYGR5AdvPopM61IAiBEKAIk1PTe1Wy4u83Klu3EELZuVqChQnXXYiIRQ/p/oysR//QQMBzvhZkeWQwEQm5VbKNoO2P6vPP+PhJVCAbWPZAP9gBAnWDBxd85GmIhTLDLgnHu47Pv6nUv9PW4zLOLJZlhSD6YoDqy0uY/4gxTG4L+3GfhesIdWGYDxrjBLRROg29Xh25a5l32H3kAJMEIwYbXhIJBFoNcqkdT/mKvpdTPyM8wU/C1PHn8kjhkCKg6r+CHBcr89lbYz2+BidXnJrF/jkPglrAco6L/xMDSGCaDRsyQLUV0uf9YE0E0r/Z5vyutS4583tND5uIEDEZgMOLccXxBTMerVhMJv1p66wHLMpXzorwSusHecNQaBLuVQRbHqdogMirIoCSIEiJIIqyIigKCkUCCyQWQgpBQiqQkVfBD4ba/pV15OjvHFv3CXik9JSfTY1sgApIIDpEG7vHXDJQ7l+ZP9fcZwxaWGSCriBEKkj91EbGi5vMGa1SJhU+XKYGEzMhoXmyKckEVB2LyY4/RPGpEAKUkEQ01lpwqQIgLjZ8ndZ/Ee7dx13c3gRV/L8kalWjbipW233QoMRsXexRDr9eZ+jqziEB8Qrmb8+vDYXZ4NP+rzL5N0uHVrrYz6Jkf58V0Srp9HVB9+F7v5rspwjSf4uRFy7OBN11Djso3/xdP+FoWjpH7Gn59QoBiM+7jD7u4FoXnpisvC5VUpnfN806nAbr2oPuprld3cqoGbgnP0+MhtoEfrgVKG+KRyk0y1CqC+mALnrejcnOMzIbTPZdjZ6ImTl45d/l8y5Z7fswba671y2zy3S5a20juQ1/r05BtC45PxeAYPRC8HT0Hh6/p/8CH2Urx3xPmb9ZWR+q8ezXVQK/uwED+8y+P0oTkOG9ssbDRQORqXVzO6n78VPnRKIbEQwghZsNvrq+SooQImcZK+HFiJgEQtGCIAU0e1pdeTVHHma0Rqe+o3gSywY3MJw6XplUW1cS0zgRIc/F/zdmh0IcvudtKYnTNZhE9T46l+aWgGWEuxtuoQ0JHWhh3Wfp59ewrWqe833Iq+R5GJQRgHHHPb2vB/nHec++ialf8E1CjW91ebjsM8Dx8VOJWKGB7lXUBCG8AxKhbncdugfnlDSMhGBA70k294BzFHxvb5dT3JoYW/vcnZzuA/43r9TWdSSJD9/rsJqeLUBgiKn1bUYCWaP3sRLAQhGD8rzUqSQik1SkMeYApc8crEke0sJWeI0gwUYHUtDn/bmeLetubXPZ+vOqdibQeiXsJQvjZVIRciV0l1Sz/YpJvkL6kvDJPx5CFEZeRnoRADqS0JAYvw11SyNgenLKVv21dFhlqZOpdXBeUSjq4Oatj+UpIqs0eShWElWYJybPTXHBDgYAqRSCvh5LM7mUkJHnQs3SgrIMIr22/rsL+P/jMFe6ESh4pTlaBInZakGsKxnmp6/bxsHa7B7HvuGAkj57JPSmyaH9568Mk4L1twgfXff1uvFqAooh3c+7NIeBqyYalL3fouMEQZ5GHh01ifz6/48XXawkDc7BhPhyxEVdfaz7Gp3YcJ26PuZK/ztE5pJLtQCX9AJXk1gS0oiSKGro1K3YiyBbvv3FiZ5fPwCndUIIOGCdE7Xxdhj9F4zghNbDjXSZUKgaRJ0FbEHKqonYDN0Oa7MaDiwXlPDcX79ulAQHXn63ftropnviyDC1fchsK9ykz1U8Aic0XMcxCrbWCwQbwzAcwv2/DZP3fEdksPybUD89fjY4zeCVAOs/IezMT1sCsCTz9aQ7dWT1UCwXxYKG2amSKFiR1ylaIeSCP2wMUDdhhi0WBggqSBJvB5oloH08lrIpyR2O1obxjrQ39HrqCeeD1clCZ8WFsBTmyUXXED+Y6peLaI3QaRDDEsgQ30DvbMlUH+NV1TWhEMXHR+eVKPn1kI+JcIDrA3fU6wPtYG8z8HD/rdicnT3rPwRA5YI5xSGsTQEKgH0V+mbgJ68ngqc/W7eCy30qlF2cruKuhYYn9+RqbNL8Ct8GP5iohlo1Pvx4scmH43XZZ1HbynFTFchkmiCH3ceJORAu0LnYdZxj2+HCzQey9VyhTNg/gwJqCAb/qXwkcFy/4PzniuZzJNK34K4A2xEiEkyODQA2J3mC5mTD4+lcwmKHydXWcW7pfWtI+IQHKtD3jXIgNJgg8y6iiZCSNC9jPXg7l7bGY69L8EgTh0cAjIEB6D4/VXSLnhJzkFc0LoBov/hpsQBQuD3Zs0/HqYtZdkzZeh0fq6lOp/pQcHgdPt2ECHC/TmwgQ4uH2hn9j7kf+8fLE+r0NEgXBwMo6Na44fGvYwn9bADrfY+iueXujQNnPiAFU/+/L+06XB7DALzEA+oOgcA1e+GikGKcnqsqqGfABW3HakSxhJgWSA+kQSZyvzw6eba5aRSaKdCyhZQ7f/qv7U09GQV5Lgqof1vxLczi9k8X/GNsb2ygJWv44uZqtejl9ch4gZmZg+W47TMTOujuhi/+cYrN97YbIRmoQaN7tWV2Z4BsOhNBh5SrSXkiSNoh4+FRQrtCoCDCthi3PAymAA6L9ANMJGV0FfciAJBBAaeV+quqIdG4zmB507BtCk6sBQJUz1U8zw+RIm/tAgqK9Gy+o3f7U0sgt/XaWE6V39Bx2WEgCD7QJKY0LlJR8UgL8GU/wMTSMGfcqWxrmb/fS6Xu7RBhwFXFVK6qWGZQAnvMGNaJyp3i+lZqXpS2HByUaj9y++pEiARcq1uZ8O3jKFx7sML2ZQ/TLr37q39Psz7t/YQwovogfrPb+l/JYwAictCypt9crPBP/DS6vy++0njZzjrPZQuAXQoP0SU9A+j8+Pbx5VA+m/+D2aPLAf/QM0ByyQTFaVNfNTdSu+KP8k+fE/wU/nFV2IBpHPHgWUHs6rcdZyYOhxZttg0SqQ2ghRC4DFhjDcTtXueUL7DzBwWg8u9ninUPKQa/CZtlyOvBMu8pURycyddQO027zcFNgIoswR3mdhTOtf4Rcs3hL94H4LGKGcypYHP+LJ4evryO9/Qmb1RQh9T5MDrq99M7pTyIagfCBgwS+8yQvBJtJpl0Dg7kCE6dU1/7i+zbaBoPegQBACSIhCkUhiH3n2ZST7vnKXtdAS3PDRReYsDzEDOmzLVNgEV2rMMNxMl5X21c3+UwwPuLNtTPDSAQDFioaYWREVS2Bkw0FJAZEJBIRCQuUIB331lYJ/TcqOm9lD3FnDekOvJnl9Xd34+bsubvSbfPYB4YpXuCiQtNvNwt6tKQcc9ANvvr+ATuOwFCcYww+0cdbViYkWDmlkJFA5DbRRzTvigcyAxLqmybMVA1RDNlclk1FsZoheDCvKlxu+59VW4cnSv4ROH8dOHJT2EwE6JrtSuYB/nKP9wIQEgpIBBRCQCQhFINVWyAo6YgPt4b/tsRLr1NiKAX6Boyf8qgpY2EhofTPrHpAc31MvBaiih2zJ+ksyfhxh5dqfW99CHuAAUgCHlefjY+anNPNv/PLBGGYAH3cfMl7/ueFcZcg8yzihKHCNXAjiSvKnEq5f36GFvqZPqVLCvT+uiZIgbOgAK0T+t/aq5oYIX9gFBDIErsO81HypEsg+KQI42YxvBHYVcBtoKiv5w97cNFMfg1HPYGWSAISCYOMGnNZQ7X2d6qd3ddqv+O871RchBCibP0/++noGnqtxMqi7WAVCxYHKqk+NXwiVzoT2QPn17T9w//YymOygbRE9MHaEkgEgSJmz8WRAAsH5emj4SAPH26DO1QzdHpzflrnstv6u3b/6bhHGU8h+ZR9KQDJ/youbLARhAWRQiwIsIoQUICyKApFJIoChBSRYAoQUkUkihIiSKkikh/2Hcb/9OC9k4/ya5u3RDkjkSRYqyAoChIsJEZJFkFgChAUIRSBFUkUAUIqhFAkWEIKLACLICgLIopFCQkAkVJBCRvBO5el5IeSHm8xQJgQIoU5fRVd5wnq0tlx36HGJhn3INVvY6JSHZp5P5cg25E9HnwJ5BlYQFkFBFRQVRSRZCChBGRYCxYSKCkFAiyQBSEWEUkFIQWCkFCAoLJAFIpCQWAqhAWCyRSMiASAyJIg6wqJ2dHZ0y5ucnowFx1rJbiQ1hpzNOxFM8Nfz7L4+Pl22Nu/yaAp/pVVCHXIIfzA0TJ06IAGiK6cFOlN2Q/oNVmLxUwStzrWx4IDea409XV+OTx9J19V+EGacDF1vvXVD9U8d/+KnCREzZ+WvZ4LzXHFCRIRFJAWRGIKiRYKAKpBVCCyAsIqkikgLICkikkRkWKQUkIpBQUBYCIQBYAskBQFCKorIjIEgyCWxH8J8TM77+8NmoNd5COp4CPGaT9E9WO9pj0onHon4F+EGR1jURkEyUoEiiomX42dP95adOLvl6Il+EioyGKUhpnnz1rZBJAEMd6h2qS9PJYoHR3m//RwYA29oHATqkBSEWCkILJBSCgCwUFAWQRiyLBQiwkWEWCyERBSRZBRGCkWKEiMkUFkUIpAUkWCwIpCKCxYsICqALFkgoSKEBSSdI+je+fu8Syy3Dg++wcMEJFSQE8sKECyC/CG2diPBsvcObRn7+rJbhXtQ9QyExf5T+Ql8mc18BXd7r3YQL1phEQ0KA5Sq7erOl/D+FLrEPD9nLz3RMRSTnOPc6i6HOY7H6S4oaKCh7KBSZz9f2XF4RB1U7Vb1cTh47rwgO+IdPbRSRL8w3UM9lJFT0ePp5fLb7Vgm1EFCHT4KA/lpP5RwICAZLZd0T6lz2jhI3oPMCG1+H8YQtcMhDg+v58u0eaJlPARAB5YAsiJICMiDrAXaHniZWLnnVhb8tRh/61FxQZELwK+rx4dUvF7LwZ387po/MGglg1EioVDzfEC2LAWg+CaT6f/a6/HQPd+mneK8fBRadOcWVLxezrr3DFL70HMfakG+7kGiBZFHT6/19ekPjLw3xzqUHbnpRN1AdU0zqHi6eKzRv3brARMqqS2uuzPmED0bRvfjnYab8kfy8Ees5bAUQIqfytQchkBIhAv7yjDYIJf4TmDkuPoy9HL08cvfooRtDFe/epgz5uK61C/AhEFJAL87HAm8nD5CGr6n7Mk2bokQTBAAGHdK7lSJp+Q/Jih51w88wjhQpHyfxgoWCGOGOV71BaQRsiEgIEidLDyV3AxPfD/p+Tg/IqAUS8jT7APtBeAitTZn29Qk0cWG5Len6/vKugoaQFSRUkBJAkBkEEkBUkVQkQV9PyeS39MV2fzq3TRXn39zRDAj9qMQDVMURk44mlv42yw8LHgWL3kDrfjisTn+fHplgZdVQ9Es/CI/hl/9U/qCfsnAqReYlKFJYFD+G9D8J/zmTeCgYMBz+dTqfEpfYh0/55b9Y+qwgZHk665YgeOHLAR4Q9ML8PctnFCZ/0+JXHe/9XKZyyPjxhbk7OZkCllhdVQKB3gP8x1FcZDPkobrt5+liuSH0ZKfh1aFunD1yzoeHMCc6qXOz76OSHZ7WlgvBF6J1h6EEpHyBDyXM2P9ALI0knKQsJgOSVBUjSd4wPxodSCfMC49fCQG+REZgDcFlPs09S9Z0+nJQ9SbHwBlXiRtwAjwFAxCkF0bj/6oXEDji9DBp22ASIEklYPohhu3+K4Zt6em58B00as5fyr3MmjxLvVGkPqI17qmE6cidCFyV7V6sWbU4zf1PBIApGKnwgiEh5zD34QAHzfMAl1ZdnHZst4jrJouAIhe/cJ7ULky17WHk+oATJV+fwXKGCKcv9U7sflm+87VgbNVH4wxf2CU5BBeI37v9cL/f637ZYagxVD9gINMIUXvfNTP8/71618Tp1v6Du+9qbsBSKApBVIIgQWLFkhIeOD1TH3UnNejMAc1S+gnnQTuItd5EEOaIPmt1s6ofIeHykYXayBg7FAgDL6Y8cf10Fof0YcAJp/X968ETTOp89NszRDIQVrFkAJDaev89nTd+xREG/yGlcL7Qgc17H2P7x3l7m4jTpoUAa+TjZDo8tLrfwWB6hRgeM+Dc7T/WH2dq9J1kPx0L6sTwIQ4kdRO7SmOjzW6IhpAz5KF/+Kc0FxRGQSQ3Yk/MqgGBwZIXH/jHDnKRTC9t9eY1tWTSLeCsgjIMgH2w134P21V+2F2Tj+OPgzXWzJCQEkOXPT9pSVjwLAB4IGqU85Qwaj1Ek/dbIeRM6ar5ahxaacWCiHkSCIQWSKARSCgKAoCxZCApAWRQFJIosgREgRVIoQRIIwBRQILILJCKCsRSREJFGQAbuLX+4ZvDC8IacumoCf9wUQ7GGg/y5MFQywAlcuaxAunoCBaQwhcehssP9IA/OsqRKDs+zFZ98/M6ACner88FyQkAN2jFTJqx/Rtv55vp/JUE5y+vjK+SGO/CJQj9pQqf9om4auUbjyodFOs+3jQnbFx3IUsgDz9azF/vBeVO3OsRm/x2Zy3HEMsM6qiEuj1fccnq/oTx9DOF9fyQA9Ru65qtvTd4Upz6bLrOXcinZqO6KsiPBHigHD2erxYbQyQwQMd1DZG2AMf+kxHQDc6CcTToHxxkkAo4q7djvpsAxdVsEy1HLEWAKBbYIBjgD/Nvd/C7DeTjgvk1W/Kw1vaKBq/tUoAgJxw6SJopu4B6R835FxclPn7xsv4c26mxD6oUNo5gLuoWFJvE+Kavx+a0yIcuXA4dPkfs6d2AWcAKBSIKHbz6ZuASeeA8+Onkq5w71PGI3dDmM1ge/sZyoY3tDTMwN6k54u3N9W50e6XlkQOEAqJ6idF+zx3EPNEXSBIrISLtHoOuvJC2HrVA2AJQ4iLf3wLLObhLyb85WoG2Jfe0MYaD7geZcaIgEQuO0PpnNqa6bck9RQvtWkqH/3gghlMrDYIDR5sVOf+rzSVte75zhrmOALwVBgukAegrv1KM7IXe2E/1jkgckf8Q8fslDy8GkcxXERugUmn5W11IDE6jw6ajbo93hc0PlAvBzmU6CWWFhANlp/VhltRFW308mtP2DdircuiIBuAIDw2e7v17u7/1zwcnkOWz00KJpnPASvSxyrwc2fVvADvCXlMSwDqCoR07OWH3dMt5MP4Fx3vPqrc+5AAz0VMl2DNptTZd2eaHvt1X6X0A++EIpIiFLxBIT7VQtbVEfbpOEQPoTRr0D74ULRif34EyNc/X/w6Nhblpogi4YAEijICsiiyKDJIgMiIsiJILCCskFAWLIoEFhFEZIpJFhBGQAVYDrtzwSe9+7qz02+n2Uk5sCAosiwiyAoEiKMgAEgDIK/JBj2iBhBA8vLrpk9noq09iDx/GFPrTxmUNUvYFEcJTEj7sfDxPb2C55IoAhvEAUkUBYKEEQBZIsA/2vHLn9p/T08uB5+zTg5KKaBIh1HgsKntqeSv6kDqB97TyxOshAGN0uS/84uwx94HKfHpCbYAVIGyAFQxF/rTI5uAbIF0Dlgflgon2KjD5wxMxpwcluLMfh21LEy/+pYEMhC78Wm0FVSImNaAl4TUB+Y/Avf9yU5N/4hzcunXe7tN2AVRD9bvytse/HBAJBkUkQ9menr9fcyYk+SfYgMLfhS1E8R09r/Tg+jbZj92dlT+acwp5X2al/DPZ83N2UnTg7Yr4bV6YVmlCkNkATxTbg6OK/aU00cEUNHno7pb3+jf19q8J3JdL3z/uTb5OsaLgeJrCtQR+7iaHVxf7yh3rbA30PDOCtBf9+NCs80pECSTRqpoghZFLYj1cCNLvponPt8R/dmH+94LhALEvnMd483VLRwTaogJ/UK1VNcgIwkR73vv/r17VyzLDVK2Moo4YgSPSE/USim6KvlwdC7B4+n1i+JjDW0ysNIjEGdHLiulu2ea6/u6ujXw9gmA42eaSGaCV+3HV/gJJrnSJ9svTmhfBggBrhIIGW/WqTVAMVX7tpTwE+tZpjgEg/73fRXWS3dnKiZe9krz/3yVvE54JUBPGfgpSHyzPT5X7Lp+Ou1j2xctc55+nhtrt82oG5PGTkBzQ91C4jW4pCq/r19/HJvX1E/xiuUOggKpKCLkiKSIAyAoY9NHtWZeTNi8C/bWdPF/zd0heHzAwCwSQJEUVM8dLLEoNShzQ2cIU8HUwBi26C8hjiSDvmKLrhbX5vNgtUG/F1RDWS6DpFAhaQMXFS7cZgh+p8e2DeR3ZWcpUXHBGouaivrzUBTxcFD3auNIHU4gCmY/rtCCCWf3Mgvkw4ZUaxTt72PmYnkCBkoUR7MrhDaS9o0h7/y+sJELT8NCU9QB5KJ0Y5Oxi07aHr8wfH/LbnJ61YLBQBYAsWChBYpCKQWCMAWSAskUBSSLFCLJBZCCrIpCLFAFhIKEUFBYpBQWSKCwAVVAkUFFkUhFUJEWRQno7nzefz8Fw3QBkVHg9vVrsjbC4jSC69BRqKAhOq/jW/htTucJ7DVY3QIr53sG99USLYXn5guT4odYKaYmn10RCvBrbG1DII48Hdrkl0PHpzGlzxT4eX4eutdcoZZ3WdIq5TxF+wbeAOUDTis76IGDXVkQpFy9qUsieTZ5K5YHdgXo+pirexnht9W2krMtbvfH0wbduavx7nvTK7RCkSAIdHXf0/ZJy126T4dvMuwHvoJrC4zONGit6YpdfaeD+6PhwexP8wfJxDtiF9T45cvjpm9Be5Z0Zjh+M6/BbVu5qBfUVEgvgj/oMOFuOPB0e9ePEQHUjOEyfANK3DrwN2QWFZS3blsAt2XXVsJEQ87tMtlhtg0hIrwUt04rcny16u3aZpzw79bfj/to81ueVDpwovXoOkgSD2EBnsdVLH9UA3IFTFIhYFHZBKRUr7+LoQ5bTVU4b31FP5QsdO7+1cqnd4ebu9/k6z79TknyQ8xLkMwNMDX2sGjI6zg6mbBY5KJ8ulQxxD/UiXkDGIe+9k6GHBfGn3nxkg8W607cbopk2ylpycPPYBcRUiIEFCKRVRgQWDGBAUIApIKAKQWSQFIRSRQFJFikUiJJBGRZJFgLESc3+H1r5WbOp0MiACmOjQ/AMkHsZ9pzmHjzRoPLV7g/ZjF5OOOHuszkrJlRBOR1u0mrVWvdD7ZVtCdgqIc1pN4JWV7zguM6jIzai0pGs2XPJTSKUvJrwhaYY6jK8srVOMktXIQa75I87TpKd6QskaPiZibyWkLHe1qUrYNkyqVoYOrTVw52c3nW2MUhRcg1onibyONICL2ScPwA+wBGzxLGLXZcrRkc2jllWFY1rt0i+ojR5QRhVek8XjgKKO6jYtoJi2UDChBC2aIcZvRtKwzwcRJaZzw10yvKNbmsY5UNjRa3O4kZ0Er0GFWdMLdYYS2U4it5YxFrnkMopLF0vlA72wtKnGR3ecDqeMShOoyeIraD4OzxnFKpiMsCmVatHDItGE7NFKRDPHEshSQiMlqLVllW0QtRNpPjK16UhaV8YtS96YPGRiFkwt8TxCJqaZJNnpgSMQjazNOGWVTgLAZQXFDlaklxRjislpitI4hak6XobMI2Ci5YriTVPEvxpnd6osFzo4xKmdFzOp4oM5Z0l73deWuV75Ld9LYShpojQDYNhHNsxMRa4nH58muh1jkuUmwHMiw8E1kaph2cVwtqRnTLNruHDlCV3C0MyrCsq1VrpA72kbtKdQ8czRZucL2vEWC1WUZSnKEQdFiFnlcTjhbtBGqy0gMZZXtWMqU/SxgzwIYGHk+RwrZCAewtF1N86UwFOoc4IxgUrXJg2c4xUVoKNCeeWIhpB7s2Tq4ucYXGUIQF8jwJBZti1oCVJYub5NB5zeQtSl6iUMjlGFUekYYfEGYIlxg8r3wL4eJjI3ybIVVzocLugbCweAya+KNKuFmLzqzDEzgrrNsJGUcsVSuIQrPDGsVV6rjCKdESghlW14JSayjlOlDhOzoqvh4POtcmc8HKORvRqwkMZXaiviBwiuUMjfF7YXCXlYYpM6SVsWtaNMJilaGmT4g8IRd8gt70WKOeVLzjClxW0pWqsjktZzxK9JSeTiVaOsKvHGTVhDE7zu0oOmR0FMoWrcI6iMpQxYMiSWFa3ylWyTxKpmxwO+KHRlWzRvkLQtZIXtF2pBUvhpYm0YpG2Qi9Z2tllWc8jhc8spK+LIpYjeWGNZtaIhi53k1TtKiTDQviVDhW9lOtrsSPjKUYteGDyWZAr3mdDYQPDPHK+BliOLCiIMrvCgssbYpFJZTSqRnD5HyaPixh2FjrK0YrdtIZS0GU45rKLzSt4tVdA6WlVJUrUYCZ5XWVJpBrLbINOQaNZRGMlxRKo0oMISja6tKkBLF1iptWGDCodZ4pLDVnZMRqs0plK88K0khBBaJpZsmOi4hlOlWnksMne4iko3pVazxGlJWO9DkDEJXFWNIB0ZzDGRiqUcJMUrkcKrlOVrDIelJ0SFzOcXEMrSs0JItQ+BV0g86o7pK8qvlGZxhG9FhLOtkWNLCMVhOyQvJaYZbQCreyQglJUjRZ3jnOdlut6qx5PlWlzrSLHlVlmzhMVqHdJZUu0Tm6hkY6zsrGdXlliFKOJRpBHlkSmi5B4Su50g2BGs5jBvCrTWj4xGC0WtDxkMhObwuk6wStGomVRjD0TLLIVw1BdIzjVHhlZqStWfs1b4j+WGk2wcWw+IupjSJqoxwSRjXVZbNROsLC83EdXrW8JHVNkc7WgiYpaOeS5Ob5CaHJqWyEaHFFyhacGnSrKhnKMpGYtiNjrURjjLKr4R5SUzVsLegxONhUPilwoVKYtJxR5Wjh8ltWMcVyujs60FXkka4jjKWK0xi0shGMrNbEoQO1qYvjJoyF6RFztLGBFIZWQ7KDuzpObyyncVesnqwgeWLSlFjicbFcUtCMLLCmXCmbzq0pSzu1bzrczTNckFsXbAWk3nOoWsTN45veOAatLKd54TFEnkc63WNq5JhUFEhWEUF74vSdaNKUcPbK8Msv5HmMgXUZIZIcu5M/y+Dx+uFZeN5Ch6TDza8ufzl4Ryd//oBd/FY1e8K8p32VUrb3gReBj9GQBINkB+qLIteWlVtEA5ICSKl4logBUNmQKyYkrIQMSSoQxClaMiKWxQpEkVGRT5o/GJ8oKBegSAyIFsZAaQOzFvwa/3QNX/urGROKL2Qd5gAutXkNGieEppt6PP9+HxPUgw4Y80pTlM1fdJWDFZ9z/IihMjNgwVn+xhnUMxQ0d0+pR0VXxXRWTZ5aJECtmBMYQcgE/IwD0slQAxlQFPtobeFJsgbJIAXiFoocsFEcQVMxUzAWQAZgiL/pteqhPUVGBPnOC+oPp0v2HSO1coLWmjQwZmEmS58ZjkMgf5ODWvQZP6gs8X+50jHTXZU6aUnT3r1stQ4Gx3ACif5H6/yUUWH11ZslSFZDyJuh5HZFmIURWT+8BtEDeC3gOkE2ih0wZBTWqEUCSsgVAFhDonJJDkm3wWFU/IMa1lNB2oSzkC7hFs1ol3BAKm3IoQ4+WzohFNmKaebDdvF2YoC4jachNkNO7xvVhFhum7Lq3TeG7lNPHnIEbcd5Bz1AciDrXGca8uCH4zrC2FQeFVI6QHWGIgyaVVU0t4p8Ptf/e0eLz/N6UbDwr9XP+2+TTaq72S5Du7ss35yzZtF0KWaekUlseNoJcbXC4fzYf/iL7mCGG+Q+TA2kAd/B6f5P0aoEMIRpapzk9m9fL/WyAHAKF8yzQU+XOrMpbp/z3f9ydipcisWgfrB20fJq/9qXNXe6tsGnsqZMpjQZBBmY2Qv8NEkbuPHk+sPb0uuM3l7v8C97v9sv147+P8/sc0j5vAxw3oWCaHYrvYdxJyLOiy8kfLPHx+YgY+UQ7IRAveRydDzjELLEmZEHH64LTTdDe56pgpUpas6FN6jldZDjNwVHP3Va2R3Z+0EFwCz6LNNZMmXV2z3n8szUodR7B7TJxoL7CsgpujCnrobXdZn/0ss3mSTD1MS4dPeWAG2eGeaCkNJkRmCSDGpp0PUdmOzU/lffd+1oBW+xXsdhr9t75yDlMh7TgQnkB8aubNT8uyFbLD9tHPyv9wLm49+7qRZBkR8/JRfmhyFvFVQsklsWlJSy3v0rJpCpCs2YFbXfOGGk1aqyabtSqkWAoCwBYoFTTDEWQKhA3YGmYw0lciYIsigInzXf+3qeDPB+sdMrHBCzQcyl5X842KvYtSSJYwZgepgHKjaYboSs/w7Cso8ptdVnevn291vuvX2O8wQcMipmEgzMzC0OXkfsiKXQkbbkGbAvgfbvdENafmv4bInZyIEPMyIizmQIF8a4SFqNF0vvSvrclqzU06mltC+7A19055UNlTNgyQZCwYCDBGYBXkICjKwCpUBGAfhQr1TfKQT+fM+tny3x+r/Ua9PP3t3fXfHNRQrM2FCFCelNCusrhr4x5srGF2jlMOh1XildlCr7l6lhssO0mHXLFVb+fnV3cfxLQ3/31bZr0sCDjFvw8Lv7ULFylrb8frm6egEoxvMz2GQzpQDB1jAza1n+TmwQkOQcFy5WJUtmqPpcXx46PL33PPWSRafPSlaJIlIQhP/c/s7mj7+59nXu6TKwYvmXos6iMiCH0ESAaTCFuJt6hQSiW1KORyj9U59D5X8+qfyzhDZRbmrN1Ln3QRnQRnuX2nEXOZaVurup5to6Z0Gdb6YYXsObYu/kR9NZeWtkvLM/GhxOyH6SqpM1Xj+I0a2JzubU5001nq61ThRwRdHwU4S/Go4l1QT0eFPTuisZoep+yodh2JqZe9fpn+efGImqdtFh37whdPnChphZJ4rENpUS8KH48vnvcvVKu+AMPXNEdUymvhmVfhMumxUxUpNJ08ggrwJpOJt0rXy+PJQIAhdMAhaIedDqVmyqdjay6fRClKN6Jykr+fu9568vTnSPnhHxlCSQO5xV7bp/ZZTSqw9GUCZ42VgLN325T/VgdjXEizfphnkd2Yeum+Un6Hp9zszGTyu73bWYnYlFN29iVJytD+5Dv8Kc38/qv3/05h04vjXOuPfu5FR/PFZbj96sZ9efHKthX8H55SpoxqIhgmSLdM8Ck1wTjh9u+/VL1tHBHLApZo12Z9qSOBiJjKiMGSrspeBIqnVJ0Yh5DdjQOYFjUxdnmZ372d/F7mHm5XNrOZ1p6Wftejw7+GXKz4XEM+wyiYqY3STfOizMpR3tDr3xkyD7TGhkIsljCwQXRCDsqoYcwJOy6qing0MFk9Xq8AfLCYPlkEG6ndQ7V1erDvXXVw9ScPz/s5+vj7fqk+3yov9iVrDrHp4Obo8nb4eDz2k7Xh8nr6/3fVJEZFepEKQGRWoYFYwEmQBgwBtOXp3jHsv8dnxsbIIed7nC0NQR8gQ2xh6JuEHXsqipyN4nu4yQZGYMyKzhbBpkY7wMNOqL6kIqnVUCU1ThhcrlCoO7L+PXGai72FmqUYNsUtvJcLMEqTHW90k2ScJWGzoYKNsKIAtYFZWQxLvdY0PchWTZhWSG6BVERPsM3cSIxYqqpOFZDhxDhhKySpJUArDllIbofMwMYKGyatManNyCcts5aKm7CprKVmMESKqmNRQFhbUQtMyc+thtsbYcNt4Zy1TZzGhiCMFFFgsxDZm+qjOOprndYbUiypWcmvJC5iEgZNoFiAgRVDIgondIHTP5IYCgMi7fj22zUN7HTO50sYZftXiXqzRrV6TlPMHdh1T5lMDTcQQX02RSgWPloqZv3FbXZZ/M601y4MhBbayCjJarb7M/XNhrs78lrxhirT63OQQtoznb0arf/qdG0CRWf4ZPIHlt2+RyL/JIZX4B17enp9nkUKflIu5Yqi0tjIUgoVEc6CLns+/jWxbO62gg8ZEQLGYF3/aw/NwENhYPpIq46XVPMwgIPBptQEQIdxhUAKOs98zdff3taG+XqX+37e40Rsz6ik+aLvotlw+qA/nZYLHx106g0mwf1eLVqQzQSz5wbr9PfNhFIbaJ+nxWAU5Hc4KUlzB7KreDz7l8B1+lxJvu04vla3P6Z5fHH0ex7nV1iyBsRtPb50lZuzQMKfSvHDRJZjUBZvQceivZ+ELdzKzBqMfZ1dJOaHOKaTSKay1VxmczH2fK6jq9zYxtEwphOCDMwrG6lLKG2UR1dgbY1M2Z92lWk6tPR1Z9KXL8m237FNTSIAP3Zj7neObd++z0VylhSlq6ceoaBeVa6O2PqnjKZlYaIDPe+++knOvh1bjoFjYykCIFbE51+x4aTIo/RuyTR4Pjf2HnXzhJi04oJ7jWMJRReqPXqHbk7cP+r8dTL4jjokQ+PzLL9+sYO8xxGko9leoM4/WWvZ7vnw6hDOdGlEmepzykHgmKsaRzb57DLaAveBker61TqdVmqZqvjMUJuc1e5q+35xWOfF+s/8/ECmjwr3b7HpW19nxfnyVXZsCftOnRnqOmxAlczK60hxDy0k0sPS0u/87rjyzWK2zNN0p9fs/Q1PVH18XFYwCd9UEGaDn2exCRiIvQss7i17W2K9/De/HO74X/zvbDXignT+TDFETufXCvyDF0gq/P0+qcv9nvvVNJAQUfSLmFFasCFfo3tV5c5RCRqtoOhT6tftz+e85U/bJz1jH8ZQWch315Ks0jdSfLvv38guGQpmgyIhcROUyKuzblf+/C8LxINFQyRAlH4Hj4o9WFmmEj3NXQgLLGEsIJN+v5pS5xUa2714g/kUnTd5l2f8/6L+1WR+PVZGMsgWxQ3rcI7rGepV228Y+epfwUVXXilnghi9WLR9u0hT11Hr22E//MdtuDg8n51Vq3KOv70B06JuXz3x4fDDtIYDAA7zCKaCIIMAUILjbf667pfbJ9zYacdOyZEgwQM9ZqgbdyeGBchkiZS8ntjYAXGNwudhlpgGTPgggzqyWSFNxm5UxeSFZ+zpj5z4F+JBB49iRRNgd/I+/q/p7vX0beqPtkiSIiSKnrgP1nLg93HOjqrUA8TOkskgDMiCQlAQYQpCsdyfeQdjvd5baPKlDG3zAc8QpZpwXs8RgzIznpC9eVhoAh3mCBPPTtHgkc+qAKbc11mQEFwhn3u0/Sx/LmXkhni/J0rjV/KM1eugqTFat1mPShlD5i4bB/iytbGbj31blbnzVZ94IO+YRyoBIfQTCv4shQYhM3V+nP6q/nH5nl5SgpVKz+nrguqEvuXIz5/WG3mFIk9v5gCXVtQsQZJXFmN8bNndPs8el18BwyKDVfRcV2auvN9R+dRkfjsc32mcAWndFMYzlm3mSTKrqu0uPV1Iu++o3v7j/v6YuQ5nbr/2ILigIfIDiM2kAdoWQoKzE1+i+tkxIs2fgpQOT78iUvhZmUtp8mU+J0lZiG715f3ejltIvJvsvY9/Ox8PH9BPJ4kK+bRhtPb+XR77fwcGkIA/Ji0DBg4TJWV7eDCyjH9p6uKettbIALmBuMAIMiHUZTzZ6nV/1cHjVqSZL0UmmZ3xdNqbeeGX0wf8OMxcVxpEJ1w2r5/vxWv8jNqZygauCHU5koHM9xtqtto3M741J8T+uAUzNhXoM1/uqQ5aK6YjFtxGv9Ugl+ymFURmlB7keRqVSZ8nltNVTX67XGDB7Ohzs65WA7Tl41ORTkJYQiY8C/TYYSs0lDqEKNDVdAoW+VK8uuplW/tDDzTlnHEfN6LOtsXxyjOz8sCB8jXxcOOKOln7ep9Ie/n7fY76vl7c8u2PJoLkvQzbjbVj1UfMXqx+9r7CvFtKat+tPWxRMOqAVedTJUvxq3HCVatzUVLNaqKl9XGydSrLq7nqOxEulA3bEDsyOL8bMbGQwuL6CPYhK1tCT0Iu687yPdXlLp8fr9cn1ln4zbo191cro2DSsv9L8B/F10UL96P8PyO19S/a9pfDA4IRRMpy6DswZsji2c6tNprC8vdWQfPzTWo1wvJAhuND6Wa7K67z09U/BxMitDTacgkt+SoG+tDCee4vhNfln9S+rni5Wml8iRjX0KWsxMcKvSvJE8xbNXMiwZ20LvoghGw2uatCwnxWTlOE0mIUSXtWWhx8+Vyq5OisrW+mKA6DHFyJek63kM1Wqb6lPzkvcGsZ03FrDHK70ZGlrB812Na5avmwGn78DK3TZ5Ez3qWEScZp62BnPkUhhpD1dGtOhfE6uKykSyra0KC2hugbFVfDkQrDGkDYdiSJpQpcaITS/nstLKnVMEay0XUjAbvGu+OCJ1RhbHJsbzNInwWsjbjw6uZjM5ONt1Ar43XEqNWl3QXEYLpMEZgmhYPRry40iywFzLoRSkSQpSiPUnhsoaU9nBdo5PB8O94a0+ztXi+BiDwR29TQKzgQCK4ZmDMAiMyjFI56/E8jcDpT6W/osrdywDLKmUOgm6ykGQBCcZAif8Fr03h5dNPW3B24pdIrGdhSRh2rs3u5pL7noyGAxkDMgQM7x+ztYY+9C7DEsqZMNemCsYcwO2ncoBJmg+yCYMUm6im9CG3/CNRLezVQSe4hQPPkE5Gk0IFw7LK5lLfyw/buLukOAP0mTUQCKpw8m1FyBkQBb46/TTbAcc92Mt8hHnpDok5boY6+qjw/U5GTUTd1IpsEQWVHdLmF5Jul17s6PABAamQQwplDqqq8oo1X6D48m6VYamN59B8D3HTNCMyBc5IRYMZ5supkOcvFpFXQ5jRZdu3ZHIx44IBlTRQ+EEzzMFAwQEjkYsYd0cyYwCRUEMd5qJuhamVJILcYasNxkC2x6MmC22LjTmOmLkAC6pIM7Jqe8yvlNS6jTvRD2GOGqAlTkEiSw2lRsu101FTBLCeKo3l8rRTDuyKUHaV23xFrX4eF+z4gUbNbv2Y5z/59QBzGCLjMAJklc/g0lPBgzsmCyn3+n0QBWIwxo4sZl6+yCCDIGDBmZ4DQDOKxdvLYK1dLbiDPycQNW+6kBgyCzzOW9CAIe3ofr7+vNhPg72e1rzlt388H/YrpSZ7EvXd48eFfhyNxDKQMwQfBZZKmHKqMY45w1mQL7OWo8u/Vs6RzXyJ4FSOjkE7XFYiWDAX+9jXsoW+aSz7i1po87nxryw+VUqpZq30au+hTxQ9+GrMBXc/9ftWXLxZq+zr+Oapm1uaMC33Tpz6jeXzeUmpzySMhykjmABcyHYgUVYhgy8p0oE/pFE9SfCey/ru0/r/vVVhawwMmqOJrI2o77/PieW8ZW35NZsKUx2ICU0TC6jXkX2rcMXZeu+XQN1PH67P2Ry0fxLf1m/i2yG+LmPKmFgveqqP63QeP5eqkzutMUgqE8EUK+TpYiENWkyhhZkMc1tMlCtDaWfirzr89dLJ28suCO29ObabU+faa2Q17LtRdLsWLlXr54EVMo2LsqGCGq23srogXifUkyOlltvVFYZ8/I2wJ1asnjEOWWKwa69F9pbjxKlb0Q5znLX3R/G3sHLLeipJNqINy+NU2+nqg+PFrVu62IzhPFO2K+KMepZ1xg0g6ES141Yoyz+lPFHx69CgQDJNGAeHlp3vvhOmYsU0Gl+OwcuJRD8DC55aZjJObjyZXsZyZgMGDxGQYMBIMJr3386qtLfNdeq6vUSOAAYDBC4PXaik/C15URSMCuDGM0H5eHK7a6y5OhnE/dodljEQ9DIzd+YEbJqlUT3sQxZDGE+XmNdizw65fk6s+dxc/TrrV5Qz9M/l/0w7KgyaKTwA14LGnFccjZPQ2xnO1UCQmeFRFl8O7l7WHnwI/ekfUHe5kzBdp6j9J5Pun156n8PL3HxIoC/qaIpFrCpD8aoGIpjFCsgY4wJUgVgpBYKpIsrJWAOUlT6EKkFgEFIYyQqSCwFCCgpBYFYUZBZJWQqRZCVhpqfMzSLBEAxkKwrKiqKRdDexqw10Ome75/Z8X6/w+f/Pp4/p90+XLj5eL8MfGXey1esOTudLmz96fDmiabfx6JwxX8OtQJAQyxdkRrH2waRUtpRzxaa6fQeYz5umHS6vS7ufJjwdUFShcWsscktF+ZXJ5nT29z8h0YBjyWPFDvHdR480VHrf5irYMMVbxt83CvxMYP+2RLrUts7XbSjoYd9L7XjoILUqIJfdCy2QHKB6fbOm5RQ5zZdKmOPqWUoz4dNBRYacCWFdPpIstpQaHUkfeiU3jWWnY10v9C7zaj/lND471EGCAzLzIhRCpqYM7SSBobQSPmQofJj4GGvSmZ+yd2+++HKxg7J00QuHyJv/NN06HtOZh1M1TmrEqS6foYnNzIGZ92xQ3TbWLkAh9ELmpgyMNfMVOVl83frno3/upOBhy2avtQxDsQrU24MgmxuEDGEwj9TzwkYffFjUdmEC/CgqYgyCdEXXkzE7WXTY9iV6W8ik3YTBCLukrA+72WTSBrpfcwx/iw5JjA3SxHKVE/usn3U5JpPWlSPFhV/pdu2lTTnTMFn+u19XL6igeOOPVycu2k77d3ZXhsT468jzZIGSVNLJnqxKYaCNpFTX64+E3ilt+t4PknUajEAuDHQeWiCChDMUTYoGFbcUHLrzCjXDK6FNtITaSkLsJSTm1d9mO3uyxJt4/+3o1ru+2+wl2vr2W1+6hlbsX1nur+dkPfQvSNzdJADzMzIiBmADMjMoKSCkWAfAwg/doExIZaEC2yFQUxIbsNMAUEYcMbVg7U9n/nL+ytM81gUp9ITusbJs/Fld5ufDXep9Ot6BG20cf2NuTFKVoakAIMhVSfQwrIfI3VtsCsI2yfD7/2/p7fxbE/D5Prfg/w3XaT9Fevi9Omhwi+4/XHZQEyfPaOS0MXTiSg0GgwZgwciEJDBT/FldbZ6NH5E21awNXM4tgV3G5ahjKqEdrt/v9XDZeLNszFP7UqaQ0mk4c55kWY13d2sDZIc2YhiG4gbWyaSxG6wr/j+S7undk0mMmIKH1Xdk12WbMOfLMnRKh1ZmUWQ5sCsOTU3TGYw4YSsi49eusBtkzbfOm9tLJx22ca1lR3orYglrsQk2FsxktE5yqEvdzJLlpSwrFnW87kNOrUZJMQN8sihyxuzXZm3Sm+UGJ2sN3BOLYovCZtdCLOjBUKIgblw5bT6zLhVuS+XJxhrLf+g38nwSb9L9pcpGP8Pz4NNvz2poOSquzw6G2ehQ8vVgT/GWu9jJfQH7yV4zIZ/8ztCkYq8peNz76pJmvOpesoXO9a8UAGYBGZAwc0vf9Z3nSA6JBcefFQPEL5kCgMA4Zh5PbbIe/O7nn07P1G/xz1X6LWW5IGtTQ6+8Qf7juciE0Y7tpxJazAMy4zBWjV+vHNQLiYJnqoX8Mc3ZLjpOBCAc9TmCl3+MwJvXiE3g51IrQVPDeCva6eD7pqPXuvh7/zl38Lz/UPLR1e2J9bN9qh6ll6OCX9f2w5Zj6bbY5nMdfjoZr4tAFd9vfr1sL37lprYLDoIt4u5mG61+hLyM09X2phbk5vOnxdeIRvet5/AW3hPV2RaO2HYqLs2d/XfXkf6axEKUSx9ZGY6gZmLJjT9fGOp734A+HDk0Wt60B0WK/etPRzUxkZyOO/T6OSi+gVNNXFWICz+hu4l/IyAKjcCxAEAKwSJDx8qhyIQajQt+FJGDcHLHlJtTz2buVVbBKCPoMHSSQUpBUkXoQNkEF3N0fMt5ybKvlieKa7Jd28DGQ5AuQLIYIgJ5geHO/bD3gQFHcTT6KiUu60paMI/V7M5j6n6cO/uOqg+qy2ZBb3+KwOMfArg47J+tc3RYPrMoGYY7n1QSSIDCQ1CsGwhmpqaG6quZh83tRjGzYUDb+m57Vysn4TjPryDj9OWbjmIbJZHdclKF/GsgZsiUiFXM1JDX7j3Qso1pNQVDmDIs7G93w4ccVZ4JWb2zr3az7Pu2w14tHiu7e07GFdCKroApgVNDP30IUPbvwt9ECmQkMVXddBom1WljzM9AgmcDz5pzwgICJkNhgXMDayAUMghmaSu7IdIBIHOqcrwUjse5JMhsDGZhaQmy5Sk5iEByeRuE41XZGx7JWmEa3FpqcjvCze9/+/ydP19T/sv0MyiHiCo3wskvljAU8HvQ9UEzjTVl64oPaO1kE8C3050//Sl3YXDAzKS5rkYxhAUTM/TD4lAQxGAwwEfEgScR9+vB9roBwzmzMb1zgIHD+x+Czr7cqSDhM6Ly+tPFrIKNxll0Tcbb+eGXCbmMz8s6N3Vg84ZbGpAJE/6zf1HAYe21NW/lKkZDON6AEmRVDJWNC2hALqNYxbw23KGrp5d/OskddXex81t0AMGDNvr0Ymvp/7TlYeOdvpUkkNBzhVMzAY2IHsjt8Ly3k1YabIZ+kEAREkwQIAh1cLezgmeqbjAs5qfTq8a+OuM9EVTIjo2UbcW3uMlx2CmIt08j9UAuJ/2m1vYDCT2mKd1CJTtKvZNlRchXv2xRcuz0MDuvIpWs7BBYwZit91iJXIrxYW+tTfQPcxT96NoiQrJWP4qH/60mn1obInGhRgZDVtzVFGYE51hfMCwRUxhH6mFcJBz+7oicYYv3pw4uVqu9mX+Kw/FinmpGs0s4aYSu4GYs3tUepS6Kujqko/FzqnW2WgC3GZmDAsrL4H21h8yWRRt2tSeObZdpyXAVMybMGY4zA7TFc7zQAtHFyu91c3/NXmAxk0EGbNkiL2Mffkq5KrckEFh9c+fz6KPwtRiu8M1n4+GD6rZfpgxbX3JorsmE9TtKuhadFg2zpEQyVvowBGkEwgDwvfVYC0YABROTmTsrC8vO4WaI9F/MSqSlCEF8Z93VFQyIH2/ErH6zTxQW0jWvm+FXkkU+xY/pt1WLn7U9FaiJBVArdGcIM2SDIUjXxeBQ57TQwzpE/udGZCKjH7qBQB+CfQr5IGMT7sZMHO3qS9EDnDdVSeSGcO8p/F08/o3zyvmZgnYnY+7xsNmdt64f1/tzDT5LTZ0i5qyV3StTond9bbPc/G4vmvRxP7/VnZo7MKp5EMdfwte3fMrsk69LtqnTcvWyzvaIe8bXSZisM1DWQMeDudwZsgBkYxVAodB2QDuMUrvkBAxA3RTndyXa1GiqOqKklhNB8EUBiDLwMKbvBQhgpneiNVlXxJDoajFVUKc/6qxk2SBDJZ8vk1U3dZtkERS99vlvpYbat+/x47ao8zveMRxOZxO/opvkJrCCRf7GeGxMz2HIu9HHiw7GPp4fdggxhZs0JNAihRMa5rPrIScKIVIXO/O5w8ZDPT1gc8dPjQWqz7zxdA3YeNiLvua0yyYGL/G5wFJtkUaDBfZuxGFH2rLcO/n0XsMEHp3MJXQiufZpc58Prsv9ubC9WuWrSnpJfBdMO5mPc21Y5hZyJQ/XwU+3tlwW/FqJar9uIzpc+LcjK5+aGZRCCWjzVbRAuBgu8yIIMiMwAZlAYCDIECfp9lifS0kNw4uXi1fW38d1+kzb7acHx/ue5hZP37ns73F9Pw6dnZ2fbD49qgeaFljKMieOUgEkkrRm2z52a1ZPocTdl+xmKfJ9Xv7vm+z9gP7EU/hT/AcP6MMQMEoh+1wTBCLJFKgsGtqSDIeZouNkNstq8wj4Qh7wrpV0+zXFpnzZunn4loxUTl1d3vzD+/esYE9dMihgMqhvmwDIzImH6e/vs3BpxXu3xk/9/Vd/q7jy1a+kVztM8X/uV7t/PBH/ulHbspfqCG3dD1mDuu8rsMWXZc5Z2247pW5y9jpGQaEnblr8Xjc3AaSKUwLBkNpkCHcMc613c3Cnxloy9lHpk0/Ntk9g8vwvJDxfSSqPxChdz3vwtok0f3/F+IsDr1LVZIEW6hMYAJwwRBii39XWNPoYEfKjAtv8auungzRTj/x1AGAysdl2ddhg39eLi4z0IE5KCGMwEGFAzlzJv1I1zo67uvQ5SP0cKxaQtu9s4JBgAwYIbEoBmVzqmHoDO9J+LOXjFIwCz1K1q5+eX04/Zt5Cd2av38m3pt8uvmZYnBXu/3wcVhuIMT+erNhnt65OTf3V7jTWJn6vfNze1g87uv8Nc7nYrimn8cK3nFzO8GH6DotyI47DE/ftRHV/P5ie5/NupS7+lq9ujyH3ZLd/4W9wb8Ukb8XXWgt6JZErFJApGRBPdPyst9+2lp85NNyHZKv1EHmSun+jFDYPH7iOKde9/il4rLfg4U6TmomUGYIEbLRhKYwJO+6QLWj1/EzoKMwgAXzM+CHdghUiMie2CyCbY80zafR5t1124/HcdfBQpHzYqUnvFHSGi4A8tyzmK3NbqT9lZz6geuxpvPL4iGJsSGBEF6y2ri3pGzyDGc3Oqj+MerXv94bCoPK3dhNspV3OV7j+HuGTlp9cu75netvmqm16pXyox3Xghbtq57kfnxs3x29c40/hKEqMkmSTeq2MqGqlDfRsXOx5u1WRqehg5ttYUiKNY0nTOpar9O3I34RoTBaFSlIIN/w79On6fvfRvvWbdaW0gpFkFkhjMSVUmMFPTl4ZszZDVoCgoislYFRQmmBUkrAqBNMAlYVgLCY7JNIO1lLdmYGJRYpCsFKgisMzMgoGzoQMVTVCaZMymkmXLgCMdUFCYkdUmlZiAVJi2xEBQMTECuJMSYzLQFjaZtSaZpFiKgYIXKFVrA2ygqyRSAjsyFYsiaoYkUxMYDlMYYkFPIcO7PhR8GhN27XTPUzM54ZtVy2LN2Sy2KyEiMkt4eDJ4clTj1cVUMDg+itebeSeby/V58/kRteD47OtP9+ex0e2CNhGvvo13LGrpjjHkO1H/2FAwmCIIMAzWKD/3Q+rlBVNDCsjGW2LJUCxJWFYf/WgsDGpAtLPmZJVZ+1KqKsDSTYcSGOJJyTGG6E2jA+dhKhy/7uP7LYoQWKoRThCFYHyshgwxKhCoNoEv+WXCLIKCJFJFhAu9uU7WjIoKQ0lVi+e/N7fN+P4vOJzIIDOYjvYpQ3ZrmaHUoMPzDw1x9zFE7Lc60tXv/x5whVWwPCvwlKeYJSW0lBhfnTPzoMctUVFZAhhtXU5QqIYImjMxqOjiobZSCJ7zQwNj6SAmBAIspkLxhTn2PpZckwUKbiXBVgQZkQMyN5AFAwSThYS6ZxyeD/r4cLGLND/h3AexuyT52uG/v8mqS3UFauVliuA5d70J/uXsu+S4o3O7Z9sF/TitUKGMedWkyaydFLcnR+46Q/Z++mPyf/37n9vv+1W/k+F3/fmStLaypCqxYEUFD+Lcvb/tQ2ZpDb8FLEWMUwGp1bgE9tt8N7sFm9rvO/5prPHpSkGZgutKQkGZCsaDWMzrnJaMxXfvf5swZ2kx90qMzFdjirEQAGYcxjdXOTDf35W6ZAaVdVDPdOxscIF11kGTyB4LIWtroMJAN6ypKqBoSgkUUJJss/8GboqFbxIoHR41XIwJmS5ff2fAebS9M8IPp/MyKmfcpCv697UqL9m8sKm3jxntTbnLzV7P9+//bQbr3P8eqfVA9MXwQ4ItkWRAkZFZD8NJf5ecz5L8paDKWsi6Q3uVPbP4ZyIsBkAWQyFGZFvvv34jQ+hADFbmX7Orl0JUBc+5Ziq5fPldXHPt/q+f3466G6U2+t1X2dtjnBJ9oK2+vdArRCp9Hdp1E0lV00KFaiqyaGb6BxHSeQxRR4SC0UIEfX2cf4r4h1WQO0SYOii325E/kx7pSmD2YWPq+dfDdpecHYfg8iEHW/Wv8qh5fCVqkuEsIUx+jmU6doGua08yB1U/bd1SyYIm513+s4Pp3ZKZ+xv90rGgtpv2KJSTU4qhRMGY+s04bq17IaetC8pvNBZLKiogPTdwdhmfI6ymoTU0U02wVmY1OStRnG46HI4GNgeSzkaQPBudGZYK1W7OuEDYxNLw/HxNrDMKInPpNLnBcpNbosoWxp5vgRRiXi5XB7HWJ5IXRzqrwqsdELqPY9dsZ/V08JyM5g0PhCyNZ0YxdYhdIowOBgVPx45uM3KMWTQ20N1l3YtATiEEcTUKTmnXFZGHBvcynkbDw5BIGIxFjqbGRjNUmKc9wj3wwoFwY1MNaiUPicDKFfCuUjSe/ZIO/au6KBqogvGFGCO02GnbGEOrwx3Aw3XG9tZrGIU6eM2ilPEjHBETw3sSKHPOAPu7FYyiaA9aSfYiOZwNV6lHxX6VgNgQRMLg0/bjVdD2DDKYXSnVSAjr5GaVEAXVHUTgiZm/httfWHViUzFDz0aM2NW2K/fOXOUTmrBZp1fZLbKvHmlJ+Gscs3BwiXLI41jGJoxHsYU6dVeBhFNCeCqSomZoDOEk5e/9Z/D+HsfGB3Ms2Yq/Zfw9qOViPT+9d+j+7VP3f6W83di/GpyCjCx7yr+/d13OrrXtTIXk9qFt2KGBtucZa+ni8FLIRyLo71mRcakkbZcYs0k01OIXPtf6l4mrXW05obTf+nkhxtLXRYRtnMcvbJOPitMfp79Qzku7tbK40mDxZk9JjomUVRPhVCMbNf4hSiQMw+DQS+dCarO3kFn9uEINNCpqg8uffKfXAsN5/4aLBD8SY71/zWj9qxZkl7yaezHhGMBTOglZdCg3m0JZW98llKzKAh0xsPB1Vpmp0SrtCFxzadHfElrj8L6sss7HYWep3ky72rDC/HYpfh67Plb3s8vHVTBOoT1gstVXh5VmLDzKxqYs1kC5UbS6zXuWJb723T7ObNe2VQbih1aFQoP6NaMBtfbKXVVqp+H97I0zQz+QLUNFCQUkS0Jv6drSqlPYXhTTz6aLjPJFsXY9z1uuzHCh6CU4FhON/r490cTTCXbtp9QWtkvt/vCE84y1eOdrR9wHbzpPIIEBUMgAhvmicF78D0R1PdzSsd9IFK+cNhsapqqm3Ndt/9ezfSd50eX7uCxH65SoB6IgUgBqmH+/hxeHfFuNXwn7fZbrhbl31tOzwuNkmJEE6JbN7icIbREB53paClf0UPRQzh+702sGB9bnTfR5i8aWULrOo1tXHhyzL2XmATSP7X3Ypv4rNpeR84d4IifYbISoumFtdqIfMPMJFBo0Wb2fFovedeglhZfL/xKkbDD6zVgaMuiDlfoZEOcQm/mU93Z/luYAajJBkQ7N9cqnqREAvzTp4/FLp5aqC9gbJlsatG/7R5eMIFjRiUBXY7n4etP9CsGilSZuAUZNdDdTgYrO+dMU81vPC1wjAIbGcS+aJBDIZvDt4SWrdd0TsHXY4zVbbZHHOw0iLedL1B8r94P/MD/9x3rFOF1akREP1+ewq/TYYkn9qfeSHJPftQh3sOEOQ7WpBvE9ULwGRAvCovmnqnwxDjEcwR16oC+n6d//t68B245rzdy0r+b22cvd9uvXP8naP2qNB7m2r1dX5Zzc8FQx+Lj1Wnd3fpAtmkHq7thAGYtSnOlJC/0kc7TVZXDXhDeBmD5tOUUi/evP8kD03tql6nF+L5onbkfh6tfZyd8ivLjzsDCvYj1lqYsuVcy8Ezk+m9r/UBgXRlopb5hbZ7OsSEIJeGsiLxMjMAjMh94NSQJBZFkGQSEz9OPEcMerPR6eZ6p9f9P36dT05OZxMx0UmTeRL9LZwj+9L4pKQsj9qXTxxQ0KABEZkAABtBZAAZAUag1BZBWRVagLUEZFkEJEQCkQfr6nT03w3mK/gK+DPXu+TiMfs97fq9pk7vn6sdmakMkGvhpGoFp2R1heN4uypgkWYh8zDEmMBSpI3WGJAWW2BUFzj7+bMF0l+5SpN3TiKW2DbUCtSv8k4Q3RZDzofmeSTkkWAsUBYcmSB8rCGMiwAcKFQgIlZFCVAUARVQg8qf8sDdJJphFNkrIsJ+JCosDEA65SKCikEQFP3PLKvju73Wmlr2tE/P0u7C6zpnl67mPPizLYoZeScnrs3ZxTGErDGW0+D5ejyPze36PcBvEPTBzG8C8fBSnSeXLgzr9e/oGg3NIrNzbviFbS2vZiK+F++YGARmA7IAuZZexlqBfjiaQJ/EsXxR7VAQsUKGXVIBrtPUgKprCmnjd7+jPMAXWYBexgiCDIAcdrnSjP6b9fHeYRJdry8KAtsy4GamH0NVfrqQdVAiHV1cuSyMn8O3/kN+Meno/KuqwZoCCMwjkQAg0mRUEWa5PTJT/phsP7o2Meef5CsSQtlY1I9LHb1OL6YSduUPh+W7R4+1Ov8/vaej8OX0cPuPExUkEkCSufZNMkpS2vbNBQGWDHnj3fGV4xUaRQ3YQB59d3UVQxwMIMBCEDhRqreC34YCHGQgjSaEP86DaW65fM01rAIAzAsmAN/C7qQHMvixnL8sIhqsNDn9lLrn0GKHvyerHnPxDKKhsNJNPp+nRj1ZkSyhZCDNz7fpfOrnjpCIyIYPeCNvqJkzU9JyPJfNBgz72tFgzB2uM0JMEhAQWE/oGSVRICSTHPSiUcRgqPCniujkXVCJG0EQ1zb9V8cEnPXj8mKn5gKPmiocMGQQJFAUmnFgVmuzYXcNehR+Q/H8VN3jjuIILGFwbhpxNsquwgXrJBE6vy3KFb4WhePgVmanY3y6KvbTvd6OyC9c6WIJeN6T9avuI3WV7szu2zZrV4LnPYx3H3iH2MgNEGpsM+GzmrfiS38QyCh2cn607Ds07p0PL/Jqipq01HNi60yGW5CAg7WZKtyykPUbexp6tERJMEXNlybJPF+z1Q/EDobk2+t+WliZFH2/zkc66UcCNt9wugVeFdlND9P9Vv9RPZdGvp9sTjb/5kv7qKRrQLGicCF5z+bO+hJ8ndM51XpFevpe6KkIOijp3dp/wf9fw+Qo/0fImtU/lalaemlNmUVv87kRc3sKmOItbbuhUU+m/3/JrdETTGvEST9kHjJpxLC3T6wLiBRMFvGXUNqzGmWqaZiB+1msu1zCvxc8yasv4spN6X/bVXR2Mc1dyH9rPk9/ugh8+ClzExr1hTRL9srivc3brk232M4r9/MYYjaW0VeT2922C57MjM6TsxTR58Zlv/pFzDbCHznwLVfF26ezvbvvTSpq8sxx4+j5M5IpNmbITGKBggKClZObx2bZBR3shp8qHCbtZDdgNsLUs3ZWKdGoGmsiMBVUlHjCyuILiAqgoC/ud8sFgKKTSVhFrCoRYpJt7qTGR2+3PrfT/n6vPv3W96T06Z4NfPxq6VvtTaWcPXb/33qJaR8waPGm/2z76j4tzX1CdDhYp0dc9v75DZjd1Zss7d39HQ6fx4SuELqJAY+W5uezU09XreA9mkbDoVuiz1sq9JcNbb1atdzrwsUfk0mBQqnuQRBVK1Zue60qppPM1VOOdK/3rux9W9S/3o1+q0ED25gKG7elOo6L351TxptcPEwHf1xTpmlqqbbB4s12xZ2eOR8EV43DIAzAFxzHB6Ne+3o30pU5/83Ipp+1Q+uxIhSLgsu2JhBKuLK+kqM/K46TD3+c0QWFF7eM/Xb1yPF4scm/v+sk65uFohIK9MESotRD0xH3YAW+36v1XrxUtRZGxEohIFEWp4vH8e1eVqfj+P12/bAIK+Sq5Nbuvbol+K211PYvi18YaQtFVMDmMH6v93feBv5N2d2KnQw1UQIMdoDd1AERiqbBng714SLdVRCgBfLTE6iQzAwLMPLCKU9cAKs2qsXKdwBjzbj6t9yq5NMNxiecj2PDCQ5c8T0urdr2Q5f38gMgKOyCDSIg/pAFSsBZyClmkIrRmJuz6r8FgREWAzMRGQO9XMub+PXZuEFozWkGhd2APvR71pg6GDZqxOgG2AXFiIkEVwumBr3+P1O5Smuf1vV6OX7mL17WLK3tJp2JmtOjPXZ5axD0MEBU66yJOfT+42Q0YFrUJ+e37cMVAXjMVr3JUHXb4pIWV/ZmmkL60I3BNxHUklkrA6DKVvCgFTjb43gvZ3bPjbZtFWOquqZZhaq9zxJ4GnbBIG8RI+dOL9sfhWyoDpNQbt5+/5Yjp2yjpXTw/ZzpIS9o8zP5OMF7HSKMqGCM/gMh6zAwbGIGB7CpE7Prx+q0qdMlG/aPdW0elOvCKbfbqq+JILK13854i63/jrX2dE3i01Qz5W91t26fdPXOI+yz/gH91Ry7UkJ9qCZGpgMS8sUUfNfSTHNPHTcz0MXjiQh4muNtKlSfOaxbsglqQib9PBQ51N+Zp6HmuiklEM5qhjxohmRQ7Ni9VQ8/YOR0bX2JisduyrtS1QpUI39rXRXHnXv0ezQH7ZCAw2YbSEpJBgJPOYSZDQi23GQ+dz3ccaqf3Icnd2dhKzhMQ++k3ywqG21gVmJwwKwVVIvJ0unfOW9mJpOWXZDZgo1osFguxabNTTTC2UxsGNslxUTyC2FvbnKmnBTAbZUWcMMTZkNOMIoVhs7sM2TbldGMrbQRFgs33sMZDdA2SYJjDGSLIGIVlSVFJUqLJyZjBSCwFMZKJFigaakmMbVDLYKcaoGtVQOaQxMZq0KzExBGQUtKl4mm1XIbQMxZamRNIv1/Jxn1fL/Lp+n6/R8un/GdmehRPa1wpfry8SAFHnH9v4vLt9TAG89vrV76WlydN1TsfZiaqkMelxQE494MCiv2Z/30px7NC1IKWZVwQyyD06efKapzbU9TUmxf2veyiImYR099i27G6tEJezToSr/Ucot/VlEjar7IcjDljKMucIH9Rkh8figoIzHIy4nAwDb3mstXx4ZAL1+BV35TQ2Lfru5XceAwN9aKp0MzYGJSXoN3Aqi++bKib195UM2x7rC7bbnRW7IFzNjgmR0rrpEmcIMj2HDnIoRdMHddTCw/8OdqQJuZpiHFamh0ySRrFJSpPV9vhSZkcUORn3aMWm2Jw91X7z+ze0LOpgzwZJyNN5i7yWUUGyGyebxMKegQ0Tv7kC8DQ4bUEWTem5e9UBGDB+Nsx47N2u7qaKO+OaJdJM3UzVSya4Za3G6yhU3VpJIkX362w07eTv2zbY3bpuJ5nIir6UMQ21QWLCvw5TXXsyTSe66zjeyH9j017/Zmjv5bctAHmhXPpNTBHE+xeo2PeZb4JuOoqjHtaetH7tqEshZQuGUHTVSXVEPlxXBnPjtaD+TxJ9o2wr3digLs1kup9E+uTyaBceeIsc+ruk/PncSXjjqiHAqbqnFFZCbu2LsN3ChczprwMUEBcnYtVG7a/WjHSsZe3RrGd3TmFO5AF0jpE/UOWeghN0eVOm+QBS1iGerejDmma/wgnkRTjGr92fC9TBERF9r2w2Z096M7KEch+eOr8V5ztmdskFXxPp4ss31+ZaZChvJeduhr5Mf6zYazHfo2s87ft6x8ngxQ3/OPRa1ZqwF8dUyGeq7qq4zDHV2LYGl57AgmatURU9VFX7XDeJGy8SUb38dsqv9vxTbrSHzI2aeiY7tmr8LIJmI3QZsktEiDU47qIoZELoNsJm/oq0G9fyMHq5td30gvycAmhw5MoWGxSz2bMzaH2e8pLNC6NyY+C6jR0K73zPJnttBem9JXzd/O76NmobOfHXw21rxe/y6yLvaHm8lxHrfJnpwOT13obeHdgYzm1+PjD2aM2+gWxJOfUU1ReXJTihmjngZJbKbKCX4C0ZjPC2Y9jD0ty+7t54bcqeh5uvNfS6Z32/EIDBUI4pfggY5mBA5g2Pu60BM11GTJCq++wyohdE7dzF1GAvLfqubwFEA4AwKOEbhHwL4XEOFOMq1hEdLeBm5HI7MhdPcinxRJdTBRq6EcjCaZNsu+eSTMoJOmacoUNT3Ig6b5KRntcIBoeLMzbDLw53XnaRqDyBoAp2yQFrJLGL5IOjsxaw2wUZ9wygHlvVrbIZWspXkuaVGaELe5tT9UgWP1i4rSL9jps1t0d4qhpW8p6qE8dCoFMrBYnJzWVxxtzdW0xecFXNHRAELIKNIKhkgK1iilYILZAEkFHm9xlp+Gjq4L/a+jxboik4jEmTEpPCCi0ipWRTV5ddQecSXRrfCAaXEJUN0CoocrSgcjU9TKUHWnMTSoJY3mA5/5VBrm8N2HJksU7Dv0U+/dSRmAFjH1UDGLAWX6x8PreW0NxD36uXl+383ye2B7KVBnSCAAiyhBg1dOpadasff51X0xUVUXof24viUw1vi9JN8ObiZtzsPNHlO1Lh+unue78+eufs46WqY7MpcTQXenVLy+mMZGZydTs1Xta4vCFuBp808VFPQp+JW2KSMcRssCS3Nwzrhg65oZQTZvmWwwFjnGSDeOHRbSKRkvEcyRZkx0qTDU6/TsMqk0M30vh2zvxwJbn3ejG24laCWNVKKgdbFSbPIxaqVEhYQQ+2am9jedntvQ0Zng9teSxPbSSzy2WSXs9OtK8Nd3jnQzMzwng0QCjbzWeYQRkxNodSsSxz6DmxNGhfqZ2bTrcOIYn5I+Rh85yzD9tp0TiYXGqam1OxXJIGxdiS/AjByVOudhauYHMKX2KubPFcpySSPmp83E29eenmcoho7MC9OqlmGpMzKi2bsc5IDJmDumlTqKigoxRiPNqx6w0ns56ew3vWl6N9s++GaJ1X8svNpj9eKT+XUd3BnV4V4ixihWoZl62uq9dutRXaKaQYwV+JibEpsUDDyH5nF3dV2CaFx+u08xf0PTMsQ2GdSacjS0NNqnfXiidaUxc1xwQrRV3mnTvzUmcupTqZR8eUtOjpx5Zw+sdGyerw88AEHnQdWaMRyEVP7EKLjrTlGetJGthDMDcO6pEIddVvBkWZMa+j7bsf65sXnTVrpJSXNl1KsMvBeo20oxaeayKc4btL2xk59JVM0Hg44al1sb8wrjtcy8LkFDfVLMDafQHN/txPqY9xv6YeZcI41mZ9lcnGoX2xDDWALmu86teHodt0mtdmye9e7cc4sSFs/Glu905JlVh6Nc3o1gx1/ju0i8eAAPnyHIZDlMVb4lGZlOfv9F8uUw/Fms+NH/PrR59iC7f13JR+lcNHqpfE2lidp/tDGX+vzgPF70zomdwhmfurFU7UDmphzSwyUSXzLTH29fv5727Er3qzPqTrXz2rNZcoCDF7SlehzUOq2X68fmsaN963y+vByfwfCRaohAf4+NKzCEf5R4cVKwxQi3PxsTpPj2TJYOjYPjg5SXqm89g/GnRLe7t/Snj+n8STbAX84gyIDWAqSIVBSt6E80R+qJeY79WisgJIjaJ7UvoggUPmujL5RJ7bZlCOjZh7+HrRdnyVeId1VFPLY7iF5nMPNcECk92/r+OcM3TLlYf5uXd/MmJ6h/lwLEQAnmQvHOIbej5X7fm9t5NHVZojszWcfZPO5tuU+joRtO6qfzXqXRiWbl5c/GkCkYzmRe5kZjFepUBVNaBsFfyIgvxDXLNyWaqFtpEX7MEC2mP/GBkx0ewageLV1NXU9fJsPZ/9WvcQP6iPegsgp1Y0khsx3dPT1v6uYcZ8gMpyEAh+lpnBzAyM42QifAJ04FVHhjH+bIK/h4wNtsGeREPJvl8Gvjez0z+6hQn4/dbCjtShpAQXwhSUAGYUhBoB6DM1n1kmOT03/tlbx7d/a887I4bafT7hn87vSDob+W7dVC/f9IiD87tSoHv09Lnqu//O2j2dfP6fxwXGew1//SeVl6/E/z1gUK63tO6QzDxjbyHeoDv4+hYINM/ktqZn1v5M2k7a/Il1xTrFxcXzDC2mc/CrJ7cZXN/c3OX1bRg13TBtOgZ2R3x8T7HTXbOfOnxyU9Hfq8BtPFDdqtt8xkJXez5Z8V5wuztmHoAl5eXZxL8Wa754fbso9loAzG0j8dNlzWEqIiyYwKMhbQTMzGo/gpMQRUms1mlQWSXVmJJiEiyZlJiAoCgLCs0y4UiJDTCpWSsmUshWGMqZatZKzZCjFylJU0mLq1MTHTMunJVzHNmLWXWZLtYttrJtaLjjDEbRWhYCwLqw811rQVF2dMMVWoVl1ZFDTNRhp0wKizEkFFqGa1guIW5kFMmRDZ1CmxgxBUZigysxxYvmIiY7b+Xjhn69/4e9ONzHVpjEde6pJpQgX84L5iQADMAA2yArHOFWAaEz6Kqf5rDn9GXQMiBOm/MvIITHHd0c69nU/RZd5u1f5nji6iBEWkzMGYAxVresSOVNccdX80KI+1afhBWbdURCgKpr9kQYMACRCCEwMjMgZkDMip3qPVjdDH9kf/nOE869WzSbewyJjMAtlHq1+po/n5ud1SyfBMHRNW4tlcjB27wpBrmqSOaPtG4+4dOykq5gDzkSRWkpCkR6Me3Huwt4s2bZPb9HUx4Do5s3g6gYzyciwkdx/wwKT0rjT4nU1nMBxNBzHO7L8q5H2mN5jKnIlAT0+F2PkKcgDz4bop1U2M/zRtMYtqC3J1pA7FIicQGbVCjzIAzyMXRgEuH0pIvY91Tl7evV8We53zexzFhkZ3qJnml2rrgu1tjV1/gBBgiDRgu8wCQaEC6TXP5XrM/duYy669Joj6UdY3jZvTfwOQrYJZLK3Izj0mFvCLfb/8039viV3bEYF+AQgflu8eAT14ju1vLdLDzeUV0dkCwhpc+b1go0er6TwYnHT4ZpsyERce3ItHZ4LR8ww5FDKe6RDOdZCb7SQuqTNo3cl9E/MrJxLC5ymtIsxs057fnaXjdppSnvNJ5e+mv+jE3pS4DcgL6wSOlBIMrhkEGtQ2e8DqXL09txtFXLnS+WNSEmBwMkJQBP8CfmQGkivInPwd55Fs0DVz34p8efwz7YrXYB2cOenhIC9oQEGPvoQQtqzpGhKOY0OnMaTooC6eO3a/ysm5f0/LeMLl87Hoc+CWm2rJnmXxlfgkMTPeOIf4ZmePXYpe8dFJENcVhVDnblT68cY67S90df4/KCB+f+vuYYdf/hEO7g72WtVLgK/gepODQwPZrwGVHSYt23sfN6Zs5DV9T+tXUQgMLmCBmCHZt/VnZd76NrNV7lbPHVFXtngMIHLjmZOE0IQP8+UXGVLKApmW8wpmD+HoRpPLagEZRqlfoGLRhGLC+buBCMLLE7/DMSQtPD/FuW/V9Pz7TMTmMye2/xiYyMwuaDMzPnX8d0eGZafYIEAzSvfE9ZNpNTJiHdYX2sRYa477/l/9kv9vt2/UNafV77jNGGh41Y3aY57t6DZUVanV7fbNgMXtHR7Qtxx9rVq/J26fOW8Gutb6v6wsbsnhP53+rioqZuOT41DYaeqmtmVcQtYtncXlORqHjVoi6NE+c5aEPQqdavpx/bHpqrU9EqOlWnrU9cUvrobN7NjrgwHS7zxVEZ+Oxf3ajXy5/HJkyyPXMAycuv07ldk+Gi1f9vGvxxz21ZMVOltl5em/FWwRCDirUuNuOqxZyik1ds4eXHFraoVatfO6mFrlZZr8GdlI9srqZKPJy04rDHRG3iUw7kwhY+WlZeydiDcj1zTqvKzFHu6N61Z5EqEb5UJX9kBKgaCMGOdA7D5DDoysGJfkkt2ovWcec1Hojmfhbuh2fXAnoq+96/XG9UPCtp1UeuhsrasXJY4L3Obk3at2qfjrX+U53ZOr0ePVXp9fRlVk1yWXacfFjUmLa6lfGMr64yv81JmT8IgcpP4Y+y/UZjp0pMz1y1WRkcrLvcEwaluxmSo0u9XehX++drrnO2MHdFfwcQ5OO4zz5LXR0XOqxfdeszdlDfuEG/t6+Lmsrqo0NGCfArLHNTpuvtOzadSL9Hqzw3K1PVNpnc8+7Vs0jC9vG+xWzy9rPJ0a0ny8XSrUp5Nd50Usx0FLsb56jYKqcBxmztspCKCy6maaK1rNkcocs2jJZwcGfGbS0qODnO1m1cK8x2IsAOvtiF9fs310X2b3Sc4Ut/VSf47Z3qXKs3Z6dHXy4eoDifi29sqIf+k6uwqq5LgEXQZmJ/PeXA7wmR49acPUHuhFVqf2plpuM1Vtf83ZiAEl9tIl8pR6IsUvBApk4ZE71hBU6xaoNX95YeFJxNookJm7quvw0Vk4TRJ4seFfjzJ6I6F2TSzhv6Yfqdka9c/k3UAbwjj/I3z6dwVMaACQlBmCHsZFuNMU90C711c4jZuIV/af2yNljA0CVq1Am+CG6BhfKOq7UvWRxfna2LIMzCDyJQk0GBBa1Tilq8RFZMfXd/bFpeL5urMfgvHp5RrKQdk11pI8koQIR9sT16vwlxiVTcORS009ed4T/87OzTQJmKdN1UJFsYuzf2j00J9eV0FN0OwAMmoF+Ha8/g83U2KdyPlilIHjydXw2K9Tmoe3Z9ubTi1ITF83frTudELD/700PjC8+KC/VFQ8kUApA78VxhMQUCf0SFYTEKkhUrIQUgLAgsh8qEKyKSKBFFCCyEFIof5MKyP37UkUkUD3JN0JFCSsDn7nT4ux3eW7Lx+LpXz0wCQ4OXLhFe/FDZBFGxDGRSCwhFAWSALAFFCCgyApIDILIBSAUiAc2jjc0XAeq2/xVTAqmQqwYe6+AMUuK9R73fHq7zGOMDDOA5n8NOP8UP0tPvSyPtmmYOL8FWq9rpTPxwl5ZYjnjipAitT/2enVw9Om1cW/02TPJkTureCc9rd/7muLzWmPWjxeab7bf05Km67Ti6oNNsTzGTu5pxdHu/+Z+2fzY91VU/wugc/8k5ynFgHSHBYXwdNH3p9nVxN2LKDBelTdiW30N2+xJre4i8v04GFuGjI2FjIjuSCy0wuLPf9kC21mAN7V7fZul6KjHglyw0ZVk72EZNEnH0T8DPcYQv315zPB5+OtapLNlQUWEqg9N6+Fqn26+pitRFXoebN9qMkkmqytRknmL3Cl/4/d8/x/z8P4+JKOxqd1wXSAlMmZypa+aTk4qtFsg45Ul9qsGDCdwDe8AZkV2Ryl8ICvzD1XJEgcmJuIHGgCYyMzMiciFHm0ry2pSPsa5W34Ru9qZ++1AmRlSgzQvCmaZGdgIMlMI5jCjJpKQkiTGQXT8lt3khbPTf0TOsj6YCXT/v7H1XvX/+eqwuqGDwhofq7Zl62ezNOUpeXf9bDn03zhxnN9vgaMQ41RseNXDejanBnNQyqDUJUxYytmEwYi1VFlRzfclDI1CQPz5MoMzdAQMwORrYYgvF9NyBsBCoa5JmY1ltXbKeEYzoYG4ygZFtNz3GUDCmBJmzpk5WmzCta1kKw+dh2JwknkYHLeqCj5czj07ZpKLS1O58E5eq9/aWvlc8nPJMfB8U1E1Z2YHe4zw5UDxYcKi+n0Zh0SRznhgEF+c2hM9dWIpHc0BwSoXPahZ+FIHOSRZlLibMkjSiTMObaohgwZ7UQ8GHVBUx6V2Lt1dYDo25a8qd3Sx9F5O7dUFBPNnndD4b4Zbvmd+a0ISIZJogD0RzIwYM32KoU9cK309bP0onYKfhDhf+tOu279PuDpy8wqboGNDET7fC6h0QIY/ofccTFPkjHg4moQdyDPpRgcQhHNbwfwX+WNwkrf5fbbcfs6XSSAdp65jOJ/Duti87Xpp5lCvmYY2081+EaPGZ5mD9R82hCGkv73Cvpn5kd5BDB0QkBgzCIEI7YRZWTia8WUC0EFfN7TWeCFVnKlO1Dr274en0ctuR1dweKeV5OsZ5SZ7d+F9LwzOU2yiNkGVVNBkbs6xBoYMGDBm79l1tz8vr2OSRdhK9K3HwTTNWinCd7k15tezbZ9T8KYiing1etKc8cM8G6a/D2fW486QgYjxUbRom3rQSWSKN5qelIqhH6fHNctK8sJfwREjBuU1KfODGcNHXUi/ddzDKLlsxZd8A9nPd2Rt2KmNfL+bw7t48TOdyJ3YL5/V3vXnD7vu0m8XhVAkgNVW3lrjmgw7J6GSYhwkm7JiQgisAMQqEBSQikIKQgW2EqYqBkwvfuZtooyKGz0SoqqHCdybJNO7TKTM+3kQZgymFg7BkXxyuYeWX2zjQD3pNn5NjGauXq8k+7/Qlhk8cyIm5lx+jvdw6IAh/L9TMM3eOaqPfSXq8fipXicfl1HuNy5w+TJNa7UTj8uF1Ov1COWA/TwTngef0ybfb8FvYTGfPXMvd/vi/58IcFQaPZADNb2j5uTrf2ozemsTbvvZHLrv5Lt5aZNnF+Hp1w0EGUJ6uWZPl+ajI7KTl+hT+/5gRK+21XzOdHRv6tzdCdGVP7c/Tz6NNaHsrdlv8dlBKVI536ctFHLS3MxR4mdb/72cylX2cPZgqf1/nZQtXk/dPZC1We5uDt2g/80etvs62z5+hFhTaljiVIDWuIZhQgVDUlbLZbjaSuS8qN9LsD92CVZD4IGOKGbdiBusyrzhm2yPAbc9Dk2X8Tv+0I7arZdMfvjTu+L6PLYLb5ZW6ejZv/l7TSsB2HNT4n3xp86Qnt7+v+II8rR091NefRDo1p9oYItL91z07s5/F6rzbWvDsvD/Hgn7nuThjdufZkJ7JKBFE9yyqW49IsoAOR713qrsAelFczOkFyMUzSHA0B7srAZtA4v+iis0kiGZmBhS7G/rsVmqUKfgfHXi/PvXZvb/Zru2Cuwl9Fwf9E65u/L6fHec9rPp/uuvXZ3b09yHVXPXbbu60Zhwi8WSs0qqMcDU3YMpJPp97HlpGRmcjt96a8M+70vL5UHkMdLsq4OVxTiXTZ6p76uSpB1vx68Vu30syZtsEFmtjqVL7mnjXxYrE/GK7ydXQ3oqWEMXJWjtkkyO5ZCqmEAXePxaP1WqJrs+334/nTdycUDU6tD8J5efX4pn7P2tM746Pe272cQ7cPo3OTZ2PoBtoCAiVY7XSz92JfPe7VV6O1m3r6Gm9zAhHyAOs6ZgbrHb2y3sXn7ZrsfrNVNv0l+1ff5Year0mAgyIkGZmYM0Ix9/2XeWWXo2bNqggCgDxc/pr6vD7staKqG/nHZf87cZrCc152NPJJ9lgp1cwkiAGAwAGlUoFZtFjEhN2kdJulh12R9smWjtuYbbb+XMa9nPZC53pD9n39ig/I0vmAMwIzCDKlNTrVZfVfW7Gm9g2d0lVXrNKZWdld5iLm+bVLIHTAvcw6danY/jPzpLhhQRmZgD9GAciLSiQs2gjN2vxrClCAG9REC2GV9iIywm3lfr2EZeKPskWMdphE9G+uphURljVUHrX7P1XwHNxoX7G7fJWa8tK7jCg2sjrYnp3APel8iAA5gZEARygAn4qDBU6IiWv4ie+9GbvH2daGgss/BO0ajYKQ9GBCWfxAbUmqwalpqyMa4WUYuVQBLEQTQnYgLKefx4dyIrpvctFqhAm8M85GWz3teDPFnCvI2U9jags4bXby7YmbrvVfdW0rTpFLRPqarm/SkJJ7UR4fr2hSJj4fwkz8m9PCY+n7kECPQXVcjCZqBSHdgUgkJWDiOWhyRtwcfd5bXXOG9Tl61/BzW8vzpueSiZ6G3t2Rg8Omsq7u3hJ6PTtZtiZnkrDVhMGoj0LZkGSL6bvI71HduzntjzMamKXrYx9D/RB4xudZniEO2dtzMu4sU/voQ+EUEg/K4rDs/3virh1+pS5rceYiIXDCTIgRUAhUkltgsiwgsBSpAFgeaI0itSSAyIIHaggFYoBWKgyI0itIjINvp5dU7vp39Hdd2O5x/t2egd/+MvFe3986s+s2S7+c6Cf3W7p1OqATI5uoAiSZDBF2k+fUJdOA7D9mRJDZ2dBich2IAYY0FhkBF5GAAahcMf1pg01/21Q3LBpnCO8vtaEZjrMYPupmiOVyhs4KurMQujopQz/e4YQFlxpt4lL9dCs0ysoyZ2UpGPnVBT0JDNI0Rt038b9tZfcYSDoJMiKVaMfrzs0JpU1p075tA9tZ6/0qx4iHN918QftolqVbcqY+7g655b6z40RquSn15a732e1Hqf+OVGlAzF59HJ180Fb2NNr79E5Xjp2PPamNceDYrMf5ejns7pUHiNZa8R2W7R6oxGGjKPyUTvPvpmdZxHd1RqbAcGpE23GVDHjNzAMwXiMAQibLAetwUtHs64GJttTZkKn1visM27cJmU5pUWHJLqiyL8T7HXcU/y8dYdrUR+XreiOwyHecTa8lQ6q2njoIdJzSYzbFIUG/v6OnWE5HIwB6uyg617Pftj7aebjzZsernZltKWSsB6+FwHUV8fQyh+XT4HcOe8wgP/M3fjeEQboh8foWvRiOT+Lo31EeEBumj8DC5G3iOxu+/p8PNw+vgSrTPZzwzuXJUykvDR1NeC+Cj0DdvmcNV0ggJOvmzG3BVlgT5uukFD6QmVBS2ORp5QuuIBmhlDQrufFChWUzZrs945bqaV6D3eAAjMsxnvYp9dJiGJFiJ0T7DDEEZ9m/P8h6PR+PcXjnRtzpYVubXdfKdQDho3Tmss696zi7BQf5o5rMxAhgMiKvZfzVhPAfB9xoMGDIjMChxZ/Z+piu5MtyXn5dE8D5v8/PR/9aYK/9LQ/bfQ/EFwi0gMOymA9k2ZNLGT8AAc2R3djBTjGvD/eVaXkrR68WisKBgffufLSfYm+LA6EIABmgwQQYH4NHWospi5eNo1gr/NV5ZeGaokDhPY9/z+Q9g+T0LN/L2dZhL/LiSuc+gOOouzXvR+/4SA6ZF8Yb/BAURB2GnCroIv/vETYSAwmDMiIc1yj59eR3lFxKVqlgywGsQ/a8y1e1d7m2N2iv1qayH9m6+Dum4OUcd+xg7MM3ZU0mKwqGAyZIFNAJCEFjMBBil2s4H6a6+QIwdHsoOEBRWXhh5qDvNrXGtxniuuRo326tG82i+d224PVDnoujL4Po/p5+3eDrJrbOKtZEBow6qznT+6NLBcdrTuVrwuj+PQ9ffz7PjPK9e5K3+R3aM7BOr8SO0+KxYOCOtgc8qM6Fulnc8bOtzVOscW/zo6vCxe1JtbNOvkyV4M72aj3Ho8buQX5sDfP8bRYuHxfFSxa2u1odMDzE3Tk+yGebLDu/eev68N85GSK/JSN7ci8sqfH0r+HVzvv/9ZfbHF5YF1McN1SZ1eO9dSMCZXAw6HROQ5F9QaI32+DjdLgKDiqmqVyVtlRx1ENCpwh+/W6kwuZhxEGaONUZsCWg3CpFa/oZC6yNT6Eg2TlT31XlJ3P64IppsQIAI+eageRk+Onsz9z3KylHu3Sh6rRuyNKFkqSeNdDlxaROZLNytXChUeQ7ox2p8PZy8rVmlWy6kyW8sir0DFSaxotfuWeNl9CXKs4M1M9fazAxSibfjWVe5mrj9fIlWF6Zqy9h3YazdScbKn61Ffv9uLoqHi1w6odN+tkhsa7625d2fJu+1i9kx56Nj38/GB9ua1C3hncfNl8fBsPojxOVfDCmPOfhh4N3bSNLGOde1O4LGiHd06ctptm161q10Oc3HtnXOD/B7DU21uU+Sniy9L2uQ2OGijNo4XGMDUooq7Y+GOnXvX6tXKri38XPE+tNwp4OZHXldrcezm7MALguy6WzBQzHx474AYB2Ow0ESAY8DSe+Dy798kz2ztjftURw6EuUaMtLLTm76H2dNZNDmaIBvDxH+f3R+fITuH4BXNJoA0PyVaEeyWpn1dPxIvxrPU4367/dYhkvTrqnCF4+cYOn+BT6ydSAgyNYIR6mBrSkNoQpYwpl6jAQ1BhfgVftkgh4cp0P9d0LSKqof7II2+9YQuf02fL38SYz6JBAJsihPmVd6IY/VEZur7GEQcNDL2V8koKAYTYqmN39u+jE7oUDd3owSiDmzzSHo0iwpwVNyMzYG4j5Rr60W++d/+67Q4PjPqee4UPH8m3TnLGoLUx2Kyh7I2qUgaKiUO0k/qYQwIueybOczKaoDNqIGPSDsw+dEPvTrUSWqxpZxUwMH7DoUTBntMTPrmjnUwMlS6dCkh7kde5vUsj0osmG48jIoMg/i10zTUP9XSvmTRtT8r6UzpS/Lbyvlf4fZ6e7e2hvJmSOzJ/J/ZH21ko+LMZ7+yc21sR+G0SNvyzkk8NvPuc9gWvr7tZyfgTd5O2WKfA9r8CbCCw2RQ/Q4wxOH7zmW+Ly82gw+KzZNndnvTd2eaZtZUPsUqKhp9dp4Jzex0O987jg6KHVEN+hPLN1hIwJOm9xvNjiZ+3sUQZ4ZOO6aYyIZOcslKDJV3Dh99kk4CbVFhlGEVzAQ6gJOVz3QARSGCIhtBs03x1OdC3Z/lu8FF18FasXZkpR1oyxc6CHVYePp02152fhWED45KiCR9GgAGaEf/dtaW9dIBmgJhaOcec3T5djgaZZQfj/Oe36n5MPtWh7uNGfBl422wX4uLM+a76aXSj/nhA0lCDeBcQcSgimx+NWWU3Z5KoYQNISP719lvTmGHycXmPcnRDw1RRQObCr32Ena47sNPYzmmyQ4SoCIdyWPwUpyQ3TEDEm4zqmMFDE6s2VNIaZyZXfft14bvjz5YkjnhqSNxRqCMUhBvMgFIGgY9skEYQGGqogoQWWq5psgmaXMpRQbLxUqGTm21rs4MXOcoKT7TRdtGDGbW2yvJhEGI2qbLE3wG0FnJUQBTIg9Xdh3PmEONrA8EsebKke3bHpe9OwTrl244+Ts6/icq3zFPIn3i+npNzr/jbscpDu2oQZELZgoQYK/grSzp/bZ8LKVxCvQfntrvN0jUbDKQkLoon2pQrzQRYf5eSKnsPSpgyEQEpgiBC6qm6uW0yBE2ZBxhKMBZOCSj0+3V6OXn/98uacfy3d1sH0MYmVvZpS9JbvqZNA6uzirRePIaLaGVkIl5EfCQo13EhswwezvaQnZsU2FMG497+3NsPhhy88cAkv652XqKTQxngMzAP2W87vp0gWHPSZxpTXTt7uVHLjqD9VWxBL3L3YfL781DGxbETm99FSSl78EkQMyI7SEKQSNSVJUMZ9sO4X/r2pSe9X9Srs+HLzft4BczJvxZWtLo06+pFgPVqevn4Tun6rUNXRT3/+m5u52PDru8btTY9oo+nVTo6RHQyAZTAF00AyYQgGYX+DFInb1WwmtW9/R5i/3SJph9bfu6P86HqM62TeaQXqtjn3ZPk/Ewvk1B+w2b5XDBGZEZkC9DIgVIjIDIpIv4+g9/L0vX3uKdCn7XvNmzB/kpjyc57Ijb2/EtBE5/2/yTUzbMQuOyWvz0Vr95fwtVfaUxaqaQBxn4gzMCBCAI8rZWaqAG92pa76LECK7cAEy5fPxT/zxXIEFjBVO6GgLaxSvvzAmgc8wVDqbFG7w+uEuXZ8QEzH99Fv7I4I+yhvPrdV3s8+/apvaHx4WfNWmPNjH6/tP9UoV2TIAzABDPoAL5Pd/iMIE4EQo3TnFac/fwa1aMLQ10Ybu7QqWed7w8uPN+eKcMJjxqNdclt/RhqsgC/nkP3fG0x1jjXBmO1v5ozuz+Zmv0KWOZ5irTilXW0QQ+L1Ssij+42aDtu54bksaY0nYElFb65UR0kN+c9le3qvwpt3XnngoI611HyKxi4cES991TDUbMb3Iu+b7jV3Myl16VfHmX5RkrEWjUSatGHZ7eDyww4AMFdAIUuXt7q/X++I+xtNfHOys9N/ZQ3cXustmbn1c3c/ZALnnBK8fnuIBbnLZa9czvNQefi1/xr0FrA9+pxENbfdqiAju23d9Lw7Q4eKlFmIOGg5DLJxFXWV3U9HVO4oV9M0mL+d+3BNx9Vjh4eYxjAznTCLoMiKUwVsxlENrNRDF5Fp1HDUjRY57F2eyWgwnOCd9rjFR0qI6eYM4jd1y1QFDElOVt0OTu9djdIQDLV4T8C1ar6pqVruhryimxom3aadL7sjX8I0YMRhzLUXH+m93UMBr4WYnY51NLTqEO8Bd2zoBjTi0ip9wZjqvIDM6Mvx2aJBd8cIr35Kme/xcLVKNFSCy52SKmf3sVN69h4OBr9nypH9Pm1NUKpAGDpmEGL3VZJE2ry3fj179/66XdmJ0C+fV931RTqSSQkD6BCsKqFYLFEVqTSVP9fzc/RDsh97ygpDqGB2HvXQMxoMJMlTuS46+8nNbRUvBqj6SffQu9QrXsfb7vxUttex9LPbZkXaCIXz9c318dmp6drfyXWv0eftzZkuaZOoLZ5h63urZ5Wfnba87iKVSzsVByvfCz87qWRkoZu7Zc1X8d/i8rTlCCf3Iq+q/X/Px5i0z19rDOlrjpKgXq/vklXrULN6yvkg636D9PTHv2XrV755vSOTf3/0zH7rVUY44rXVXnnV53INWSCjx5HpKyHPC3DLWRJ88nMwtNRc48rLkETVVvbXdlb59otWqDIw85BccxECCfHk2Y9Op/X4JHu17MfSRy+sFJzz6Vc9VcPcPXlp/tuTbUyM55ZyLlvPU+scu3de5PZzlHF6pN/99E+r2M0sZzZ80NDsj+yYHkotcVrva7WXINLO9rkyo+aHFO+/KF9v33Ghi7zTlbuGKdj8df287WqqCGelUq+ckE91wojBmQfcQa6AB4Go0ftAAVAR2ZIqlFVnVq709LNtbf1n3PV7tfl/pjrNw3+tP5W1OTdorV7rv/0zVB4EtGoY3auRxM7OFgZGdZpEDLosk/H4wWGnmYjDJ0G4Xwz3YrHaINWyJy1z+S6y6CyGEdo+Uh7b5KdcptdX5ZQf/Oa2E8edPHFw5mxoxmYEDLNHA/FGfZhSFzEN9n4Au8187zbPGa3GvEbqfyv9lP8QfCxFslQQ8TIgLmI8x2pNuB67Tr1sa95+1csRPmsdpSAQzmuDJshWs5Umj8txGxlkETKz8rgzGBEPM6zt+Lgcmzt3VqtQPuTiBFcE9gTfN9ufxNbR8cWyCB23W/I8w/kfsKx2KqTMGJzCAaWDNO1K13s7MiNuLFBJ7xedjkYF49c09EbV+3Qdx4tdT0RnnYqyG7jo1YiIvTSQPniHzwHqYqAXoKyIcFuStMx2d3gqZvy+OTt90zQBmLe6CHPsj0UGmBuyc9NGXNXvSXU4c/b9NYbvPQtg/P3O5bLWtsbVynbysQWGnsHUB/Gm8GdwhQb41d9MP9W9nkU25YrosboiA1Y+aypltFodZ9dsfUgtJlTdSKb73RLRziJPLkgcgMFAZJN/pecAwiGpy8lTfAdPfHeb2EiLa9bhAhSOgyFLJT/CNR1GlqDlTOGBf0a/JNOE7uignQ+qqfplwZPQb+QA9EFkRFkUOdCVhFkJUCiooQUAFkgKSBFCSLIslSVAhUhWAoLCopCVkEZAqEFAqKSKEFkLEKQQpCkAOTMeyfni3zJTfxUOb6MPU+m09kex81ap8iK6QGQQIRJIxBZEJFGQUgpBQJILIsFAgKRZBSSLBkZEEkASRQJDeeMFsLIfR4g+E82/n6fn8fE8D4t/kk/R961AVYLBEFP12wDECoCiDVSvzoVUmJVRQUFiMRkPUhRimOziTBFCrGSKLAxkxxkiz32wFkihJFgYwqEWIgfd2pijJprPssNOK6rVVTGEWVUL8VkNJ+q0VDnV3Sc00owjleLU0hdXGBjILMfpTZhpkNJWQqSGZIQggZgGYI6cmFFmmuxD0K3R1twvT8kBhaPVd1cikCMaRw+hEfWZBU7DQTaHbqo06G+gW2jSJcNNoFHk+6KXJe6qNDp7PtEqbkr9vrdohOtYbwOfAehCKkMnjgi+rmdIjF/rnekL8ecOTjBFb5RSNhekskUrH5hABZKTXaSs5CY0f+b0scD8b22EiAr/C7OSughK5dS9HLz1ejje2K7ML7SvdXHbjAy+NAB71I55kAUCkEQMwQoooqu4rXUY8E3LuLpojs09ei6Im8M+Jpt7GClh9WHzYW24XGYjqUpbWbu8+/shwxRFaiDv0fMELiBRkPHTOrZq6GnESUrdBXXBzdGTFY683T+dkNQcou3OdZ6uM2Q7mggbGTvFUUnoMwHhF2NE0RSxcrjvDTfEEFVdgFTxAPOwgYTM6aH6OwgUbBLY3KNGIHJN088+bN8P/uoO3Dqqkl+NInXMgZYfbA/mf9ZRJNK+9Kx/8svjSsWCh/JLv/7hgwOTKhYOv58rUvLz27vCf0Ct3f18NVQGndfQDDyrC3xoY2OWXMW+fbJWJd9HZ6L3qASFsUG/NcBTWACf4ij8cQHtMgkyADZkQAv4QTtcfGjzlZ80f7yYLl3R3Y2d2TdfID1MFVNWDa2Y6zImTCyUAYNk/IUBhpxt3M3ypZq+34fO7UNr90jYXSmLnQxgyx8qguy2+46lC+l1zK+v6djHQ0Xo1VwbWJfIMbIcV78PHVx4b7/f9EJOeM796sfbVDIuLVb10vydnNi6SONYNKgmYRMQg5H4SoY2XEL9Due3+5zD+JhjlG1La7JjlrmYqzpxTFVBZHa8JP1Pa9GG29VViqNoFTmmMwTzc6YibUKzhDdXo3TsZyyk0hj/uw2QzVHwsqZaoatFi1N/+c1qBUttTwvmydNtZFJwhPkahiAsmc8xfq2oxYQWApIKSIZZNkmc7UYwnK2fxZKjlKIobuMxXnaHDFgV1aos0mkqQUx2SbJ59eXjRv45ht8291qjzbjSVlZObknVXQthoDgjqPIYUzMebCLCS2YXNarEH/hKeBOAzLpA4bVrhuVKGYdFudLVdcqq4n8RCgrL+GKyFdJFOMgRAGaIXip0xALQCRRCQQCT5ohUUk0hWQFkCsCBWBFhAWCgBh1OPdm5NCcUkZFJJbbUKRPysoQj/9Snlmz09bkrz4aEQWo/buGuj31uKlY9V7sdmAiYqaRMYsGLJrGW+etomap/BYMX1UMYH3AcKBBTehmmjaXYotaH4LWEULjVByzY/X4np++LOmlWb5KyJs661STXHxO4835xSX72z7xRdjV57u1fUn/sNLJ1MzbexNDvde1WGttsoMicHo1kgbgg4fr+gpYko129La9+g8OKUubcvmy09/u17f99HY5Y4ciGHnsXTHvSxzUZlf1hv2RF82XELUKyVoKrC+VckyNoNJ0UBINJLo+FK9pryn5639Xmn9UstKFSDUXbOXuQTmGbjFGWOWRuo37V470bMLsjaIHKfp4wDS0KvQ41hh9Hn4J6Em8lHGpBTzeQ6YSZhhCEB1JMqYQnVZYXDBsLw2IX3Wpqtq2fhFrzST1PRIvVrEktVKXIYMK9uSiMUA9nXcENK3z01LckHnY6L01ahnqTe4amSqoEyUUsZ0CfHbTiShTqGbKVJe730Nv++fKlYNIbyOL2IJGqdOaiplq/nVNauRWs8flRlGVyRLbbu46aeKvHfXRJkTTfooqjodjn6ss7wWr8T8DXOup6v9cbGHisv7npt2GaphpJfYpPzarMjW6xlnaMuzVnh0cuaXRVhvRcisUcD6LznEs1nr1KTa09uu7YjuxzojktPb3Pu7OnMzOJuVJ12LNNdmswPTqNu1lqx3Ycc0+Go/RWfjicts1OJEpvb8Ka1uSDmzwV+V9006dE6rHLslTRq3EztiXnWLzNxM0lH7Ug5NIsa9bXBUaWmnjDYTYwzBihAInrj7KDf4m4d0Vp+y3EyphcYpGVqNLk0OKWmQg5MeOxNO1s2n3EWpqb+E25r3BTM+NZW48EcFlqnaGN29eoz8c0GjBHThZqsKE43KAjp19UT67x1KprO1OXfwgp3JYouPIJMk7TI5jsIcrXcG+sLyG3V6FE2GYrM5D+LRjWd3PosTg/b2Q15btYTm8N0ZcY6DFnJbtAXBxv8/FTyvDu39TroAIRFGt1RS2ZLT7dYAgFOD8QYVKl+cCERJBZE7YHyS1qPTEz3PT/P5fneP8pIeKqV/VKiVigSsF+ykJUWQiwFJPi/JtgAH3mQPwpCG4wgsn42XahWQUDLQUrJMZjIoFSHc/W7On0bnt7Kl+T4Pv6C/Lvj+jil8fpakwtX4tM6k8XNzINtCTNB4x3nQYn+0e8wt7W9l75inzzJ1fs+a+FPtlAO3A4o1upZAIwDLxfHR4j6/Bbmo+nLx2zaKiNJ3a0j4YZ2ybMKkB1pa1k5FL1F+2nTIGYqGCEIIiEcHpyuigdCsRCb7/ogRmCMyBb/t6VwxxHV/y1y9f7xcuy41spIN3jqj5oCkRYOvxchcKw98cfnByevk7cvc1fum0GYIRJlKHxl0VOO3Z9nvjJz3+72Z0YqGCTIBAZFAYFHp9+LG5ix2TM6HXDQzH2edZ+x0XCIqm4gBZNxV/yt8m/tydD+azc6LGxlWGf5h2gtjQlT9ljn/ys3/yavbfsclDI348Q/TqVnbTCITE3lYT7O2O7kdiq09lO+7LVHi3V8dzAUY/izNYT7YvQ8bEXS246zDQ7N79ln8x/Yr9RrOwIumQW7eHwV3fml/DlP4n2EdvN9dsen2ololRA3iVBvFaiMjICkIKEUrCoRYQWCkikAWAKQiqT0pJWLILCVIeZIGIRQFFCDEigEWQWEhESBNIAVJFkgKHsdmYlb/pZUU4QlRcy5uVvKG1p1ZY6MyfnihAKeFWt9OkITIuYwEGCLPV54Z42cMPhkJuKlAB6W5jCDAkNMhAgt0vdH7v/59/70Mdi9wdC11W5uwg7/pAzUTOtKugixWaODp0ck+Q/BnbjD3QluC+UMOjtvYXE8b8+GRdggKZjQYAp22vmZyfJp2ZggRwEHzA2dlCgsQsHLElNSB3eNhD7vS7PxMWHsRSsBfUhXSBrWYGumYxZsIh7+bJVfDZJa+pqGGRUgscsZBXhEMxC0ZEN41igSoCtQbxOqTErWHJMZMSc0A2YYhNzpZOOVJjIct7JicIcMNJjJ0Z7GVhyYdHhIIzm6SHCaYCyHYhDkzOLCVOGoqw61sr1ZWYi1xNJiAcnGTFQVKgXqY/duAl672Ai4St/CvhMY77S18HxmM3EtoChsqGILiGNQWQFEQbMEv65YmnB2aPdqxidGGUUfLHk+PC+1h+OhWlW1u8x4w3sK/a/0LnHVqTqOHD0ghEvYBr+nHd1/UlkdIa5595ShYk/Z8vVOGnn8XSTM5zVmLKd6/Mxbg5d33P9TUBdkdvcIUu6jIBS8xTV0cGb5NXmxhYuPVMTNFus6UPPwXHeROrytnxCoaERUM9/x5+PtPKsMm1lCfRY8SyiTP246BAGNaOcx8V0ALGDMDyMYiKZHFX69HNp8eXk4NfPb117n1t/k9zHbnY69netOHGpiWbUt8Lf2x9PekCP8sc11Sq3I5OaeZENvbHUVep5PsFub+TTbKk/tq9FClZz9u6HPowavenU/Fde9S7Or809OnHSx6F1hbtNvr4Y1aosawb7+PPgi6HuTwt0sXe01O/UTFmc7LS9OHnga6glzyU3ib4hGzj3esLn4jy1PnVyXZ8tYzxmh9bOpFdNZCcjGxhjjy44mc2dtpj5XWqDXvwZqdvoyfluKj12HPq9Um9nJ/droctKk1OeOLn7nYjX1Tku2/Ptr80jGrFwpbMHVlePZN3szcS7S/h45IOR8+i9q/K1Cd4s91OndoHdyPfmbZ6+PflrVZk4PHDk4dsvjOjDz9uBnHt8/f7U8eD9mxaaCNqDCMcK+5crPYr0ZRp8ktgYzL1MYjAeMAKMYzIKMchgLGQWMF4oDyQuY4jCj8zALj+qGrZRc8RFf7n7iaXJWs0nz84df5tetjjySLjetu+QgZWdE+pcj9kNOh1ELtXujRge18tDuy7ueL5+V1NOTThOeEmGRij3LrVmpt9EJjOcs8+tJqhSxdoPORnQXWdS/p19K9F6mlz0ppDdBviuWqgmpNDSvyP3liQc1rYlUh3rSr9BBWzBmIx8ldlHPHKWTJ+Xdv5X5wvefxfX546/Z+e/zPbr6J5QywkpG/X4H8XqVAWEMrIVK2EfdURvLyPyrU0buePHqo4LtdvCzDzwrp800HZlg1sWujAs9QT6/am4wBRd0R1HeyuyrVuXwTo2MgjkbbDMc6W0KyZXoFo8U7qrx3cuW045uRvu64tNWjc0DoRUZv0czktcV8a6+kRprTIaKlO5MS02ynfUL1S9E9TZ2pnqQbNYN4ruC7gFDYifjrR29cSlpZ8K1BEFTLPn1okrG5jamysary2eETko9c7U9QWNR6hghTYXwmrGJk2GM1ZDNW4lQ2sTJd621uCrcXNMqs1y0rMa7tHmWbvrKsT9JlVi1yadfHPrFhbZ5ZJbPBvGxUcXxz7eajVtVoKy1qdj89Us8d1Hd2jzNxP5DFn0MNJjIsAWRYLFFIshRlZUJWCxZ6GoqIoYeFlSCyYIOzQigOeNxYsikMZCsCqhKkgsBQUUAN8s2QqSTSEqSoKYgYhgwWTQkrCLFkMZKMFIsiyFSLCsiyfjZA6b3SbsK4lSCx3G1lRGKThAqoiY/gTH4v7Y+CKxDWqarlSxiNCzOP7XOVwdKs9kJurW2oLc5sc9NHl7NqVX587Gj5UuhZ+QckZz5EPOZ+trGvP5TGfwvV1TmlkjkZ7L0lrQuvanr+9ySlogs1Wg9G+y6widmXiPioA5rmnsZpMM4EOzrzC7zsLqobV6cgwnLbVz3Ofx0RduajP63JZ1gNYo5FdctNltgZsGewvdi9UxVvCxAJ5oktHEvr9mG4+U/NqpxQlQNc2ryH9n2pPUc7bmTIjFbdFCVuj1RqtMxGH9GpqfOc/c8/3ZtwFsSJQfI8oJq/XGXgdwwEF6c12dreYrFuXM9bg+jkUu/Y62DubvXX2Pk0GkUMCWDi8jEIGbZc103vT+nj76J0TLj30wPtlb0Cfe2tfMPtLQlpzKagNB1Kv2u12qWF++Bk3UVz44/y5B5L24s4H4ahIB34IMmREWAyIhm8rqLOdLuQoaoF1PAJF47igjw7bKOfOzZ5ZzPa6KJlcMz7EoBnEpBKMX6HQ7zcp3QxxggVLV+jGjX1ZZnhpxeXB28Hd9Vfp8F47f7+zoyY4ylAkVkWSEQN0EL7qFTSBJRFkUgf4IGnLSsk8GQcxC8v6KKi8IrUCQNYn6vb6uXf4Ps/bx9fhO7O324K/f8/2jbF+aR47XHQxRjGGr2fya03N1PVeb5bLnfy/tGlKO9HYlU5I+/dKPTKQU29DFPwJD+nH6ZxO5msYzkqgxw6PC1PhrGTIF+329ZMeDghosUUuSo8EVfa+BpcDcZVdz/eyQ4aLwujbYRaPn5cGdeFB93v0HVDbib8d26PB8VSc9zofl5pwNvUm3ZfbxTYOxBErCpJ4OK1O1PJ3e3Y32VXitVW0LQN69Hfzh6YPizfF1swWSQDaNRIgCbWrt6MKnF3zPT3+vQHJiJO9Cnhb6u8U4W3sqbeUorBZpk9Hfq4JzTLibQGSAzQqlxPhk+y6OZYwm9dOwWzhTVBnnxXkvtRQTdT2s2bvv3p2Jp07dkCDhiSJIEm64tFHr38fNkm0luDuWe3y93wWGQycO/qbnhj10aV/X2hjQn6MjMi1mCRxzs3M4HQBlsZ8trNSKTQrPPs359Zctt3nyfdkS5ZTidV2yN8XDDNVocZbXuS7EW9poCIyCm0hOSQ0Dfk7yJl/7sMBu/CgCoZtZzgEJudfPOP2O2JZs/h0uL9okZrcK1jLQqrbzpTDYAWxbUUWoPNwtaVZ9SMfvp2L93589rvINxgg4I96FYvQiD34t6F6AFIoFIvogsiCBnTssX+ZCYw7fHvfZiPivob2wwJsugtnHPWtXa1vY3unPgECWoinEfTjrL6sOFvIVcGYMzPSvOaXH0f2+/HncaXvLcx65QpQ3KQnjwrz4I2NA8omRN9+JPF5efxyHX8ZktYexwVXLh55BZIELp2a9AZOfJXzM2GH1cTQF3iuIRzcmnrn94J2rOqpEyLHLMArRmm1/aa+Lhp7H8ZXi+fktr1IEki5LaEjIfR96hze/wcCdUwQqItPobyReFKsRObaXq7cSnnJvrqHUsARCjw6LPfUOgRgjQfXafiT524FZ9p7PgPq5YC1hL9ikrPgtgMyM2O9K6VADa+jpWyM48TwtMk/WZWDg66Rjug7q5QmBab+NCrE9mqx8WeRXJ7hPbSV+tV46dqrLOWhp1AyGKiJ1MwWc8bf+dnIs4W+oewKM6yklzRF84M/VVxSisQnmQDRgQ8ibeNciJXBmcdHj5Pfqa+MvJ+l7wg6ejTdzVj+FuHdF8M9XMxIsv0YSBF1GCIiAzmRAERmQLT9uNe+BeA6meGLv45c/Td5C5DK0DAMylX4DyYtOH1mjX6/fx90zIHngr5SKMiq+aKSAfNAQbQA70BvBTSAhUFcxSYoFkBWQW0QZBQMxQ6c/X7/yV7nVhyafu373qntqHD7r0J3h/UA+JBD+pH5MBJmVpAQZz8CyVxzIC6UGhAUgIx0/AXfeWHrFCnSUwky0qXbzJ+M/lyoCEQGlJoMEgGQ/0Z/kZVHVmzj985ICnxJKMBfsoUV/uMEgyrmDMTzAjimZle/tOsc0e7c46/Uwiz+N0Y2vDuHBvDR2ZQICJHRcqxbal1jDm++5q33OHlhobtef1pvelLoFI+eXed9i9JVqJH68+jDY8bH3sfvIAG2kC9rBh6fXpozZOf58fdyYGY3mQJBlRMzQZIBkQCDHH30ougAT+KPLFkJ2nNBf4jGe1eDPkkVTPeDp7VLeF3u+YOPP83njIt/GginAxXt+uh12rVofFaC+448/C4mrGjlS72TJ38PqYUflBUkbLfrv/G1WJq7t+zijkOpsV8y+fKpDQWTXttpq42Pe6suY8u7o+6zK/lRUyfssCtHH0cIO5/Pejq+CzEr9YLQipDbmaS2v2c7qyzCTh+625pit7WdywbXbc5TSb2HvvVMXXYkL1959GWzGNnFR2qqccvojM6NS/fkrO6dKbPiLVV/X0hpqG2TFHvawT31ZuZtyPb8qayuW1mHc0uaqxF+mIKWFvyrUXs2trha0MRwsJubmnZ9lxiLiVNiep3erYO/B2VadWJjzmTTDz+zV083Frxq4xNyYbL1E+K/UxdSz1fHFV0R8GFUO+S/U1w0dt9SN/XcgXa4tyHYK1Npb6Pmc6ORrsXqdeXfr6vOsOa63ufpz6na+wpuZanOWZ35neG+haoB77Ns5PHPT7ZbUx0oU1ThlWm5uReZzowsISzv8mVVVoTS1ZsweT1ELKRUbdk7+2+Ous8to6Y6wz82+eviYu6h05386uXtcHa3IuiyDozVOPUz1MOdSOnP2puWbj+3B5cKPItsEVHqqSyavicKGfPDl0Q3oMTnC7limlpU5NFrsr7rx7OlWjdRv9HHar8l7tlpqoTsdKns3UtbdmLNB3Veryw7XWrXWdevB062T8mOOfDkfQdXCvOZh1Lbc2zFM5Zdq49+vPfpMecNBWBajZQrbQ1d+67BPb6FTZtHW67g8tOLq539b8V7K9bD6NrzGybhlYPXir+Uapumfa0ydbtfHipRsS+mHy3Rne5UZAzjp9Kqvu415/OsDeZeCEF0noMkmJX1kJUcKUGQNIaWpK0Kbxv118fTfn9vC6+X02TeB9kNYDaqAtETE5IrJeDzT+t6kHPqoXMMzb37m/mxaO0E4xe5ajMOMDMzDjal0gnrlofwnnmm9nR6cXpqnDxxd070PmYHpdJsj5Es5slEdXrz7O3bZR4pey1FJyQrAnl5awDXddJiKGvkvY6YAsFnd0s+G0eVduM6v/Pv1+36vr/j+76k6ap0jRKNBirok+eWtf3JxcYFigvanFgIijMAGZAAzIzLAZERX1gxxZC09TAJY9AMr9WDbkx5ODb2CxP7fujszsaqaFpXK9uaDGRXpmERAz59kPTeZ9Met8ZDvkJYP11XVnNFR7uVvnWqtHBtmocxikYVk6Z9LmxmLc90n/Pjx4BdWDBGHDHk4QHSYAIEjWoFEbFKiZArpghgyXtDS+C42qDV511uG2isxti9KFalhsPtwyYPVrJHs9ELBFvK6z0In8w+z01VpjB91j7ebLF53jgYdfXuSakeKrMNjH4//ZfahWCsS3TxZV77Q6bShOvWbMtK77GzlPU5fboX61i1OfGd2HJgQNUF+3YornM3D9l+IxBxYdKmkz0fJ34o6qVncXW4/LOCRI9h4ttDFfaZz46tR83V8XFOmfr239kst+8qsnbOVDPShvziTyvwNVc0H2nVqOGAWau20zeXySLKFPbMg2A5LTzOsL4sbqzcK7VtFlhdLC8/k2jYuzcPkhXfcFitQUhS5rNyQKvmquf4vt215+/ozO5l7FNl3jWrTl6hz3G6drAqXLThM7Ta8Ebdea8i3Z3TV2rLE5Cz+rJTgaoyNtzr6eQ1+W0NRxSmw4zjot3ehOU4CRoiFBVoycsrJ7aQp6Zy9Gk2GrKEX0ItmjKymaScxuoeULTV/M8pVcxW3PKhpMxMlXnoIW1kVk7fwfmz5tWeHHxZ6mfYTt4Ksfgq19Pg0K97D27UG00HZdQO/3Pio3xGKZxnq97ezfueTjzLc1PzfIjGOfNOB01kUV0vcbiF48EalLGZsZlbFIF0100D1nRPnWb47ayrr44ZmcWqZ7JtVV0cmOa1l4mF8MOfPjjCL0SXZsSX81dbonNLts4qeTTPhkuCl0RQXbNsKzItOzTsTefdFQw6GUtKTcfzV9GLlo581+arf334eJVVi+a1Crejjv1s1nRaUwxiFIZsvVZtJ3TkuBGO7Zlu0gyRCLUxxhWx/v7udaqxmxeNFeqACHyZACzzdtzipkC0kAGwjw3+P2oY0EA6fSujQYQeyp99Dm3h4Tumoz5UWtfPp2Z/NjQzSqoGHP183Xb4R0GkpqSx7IKi7lOtFyy+XJcylJR8MihbM719afxjkA7DIzB/i7h66NfUALZjoyTgIRBUILtseLXY1L3LkRARjUjJfNPXJqEY8ECsdM1GW4wgwAZgl10BmqQAJnU1T6/b7QV7jFE6FObjl9+FhDAquvE0zeztz1+5fTtmqG3DB0d0XOBMtqNTqO/zg5Oro6nvlKm9ztXHTF5H6V/t39sIPOfy6q+kGp/T4xNndEyVX1sdzTi4QmGDWtZIEIzBXLKuqP01AXWIHXtn14Vs/s5TX1pRDqQsDnrSsxmQdEDeBEVAIA7+JCDuaHHd4mY8jHFRSWFf4LqS4sDR2mc5r4Punr+5/Bw8kNxUkFbeqyYoSrpAMQobMICfTuTen1V75NtQqGucM2986ojd+U+Xbx+bpmp8srruOphmQPmimOb+4uH/JU+pIH2nuNzEf6opgZIkV6O+WXtw15epFr+OHJhPktgofcY2ltK/v99NM22uDNspiU+5dnTCppPqtQUlahpklYE3SFYH6mSpJBSTdhWbNQXZxmI2xQL9ND5E0hBZPcw7GTd08IHjqxyv1PweTr7GLf/w5/HZk1AdxigYBGY6N+f008feePYgzBumrD3TXBtgUj7arK9kVIBGa0W33UozC6EczPEI1JOE8bDCZ3bDNtN0WLtueQFm9t8We/6kdkVRXK6BmqSeK3Cj0ECIIAZzvLPlp5V+r3xsziBCIyIEGE9bkliDyXe1bpG7DeGrSMNtIdCb3BdPL7DyrUYbZkL6cEv/3Its+f749s+fGclW4ax08DAVhstKDC1tSovzmNKyyOsWXEInih5ZsWWy1x4W8dP5JlHIleggAIe0Tmh/mzXNz+THJ45JYn/tBsYFj04cf8fHYdLj42bmZeSPqR/faLk9exPwtlm7/dvA4wkD/TQD4HsCyFqzCexnwub6fXlZ7moZ3ut5VJy1XL4Z7FAfH87PTjlrMLus6EwvrBYLx0Opllcevb7c/fr4YKPePftIaeoGZAR0qbKFdNdNEu9jU/5Zz6tzS17nMON/HbFh7tbogc/n24a9tGGqB4nKJMK7kwzN3atZZgx930v6VZfv2uXOshurWfnUIIRoMf518lO9e1Xko51ceT+fs2loboRk71n0v7feFegjpHby/2l1bH93RcXehL1MDwnoIELJgt5gku1kgUsCAZgiZMBowL4Z80rr1iHbgsOIrJuNaW+ZNGJ+12Wuhyd05FJF83cafJmj6V+vrr+c67d55wpmgQ8aWjFm+PDFxuH6oXOkPi/ff4zHZn0fHn7eG/KfPBPliv9oV/ahKiqSKSIsixYBz9FPDehshKkkrFik9qBKiMkizGoAs86SS7WQlViyCwERKMgRmAGs+gWCGkyIzAo7JaPlM3Pumyd2tB33Fru1jPz6/0z4/Bdsobokk+FE88DyGfdlrXR7eEnc+2X0NM7MCMxC7pMAQml11lL5TjIinA69RpjXx63N+yxW5Gs9iNmpp92/54bu9f05u/X9qhBPFYipwcyDx7m1iBElcfdejvHbmzxrtxdDLMn4vq9sKko9jZTl4aZP3WuXWr7OZyrpaktrPv/lLFjj8K7FIWKuTmrMIz2FVhfA0hqxE0Z7BAa9CkB9OoEemAGISjAK1F3ZRFAzdkLn0Xr/9t11wCeMgQBmQBmDMZUN89rkwYrEtvn8fKXVXQQIhRMXQGk07lde7p7+iysy00QlMg57zo5AwkIQgJoRDDIKIqnvw5ssqy94LgxSP9HesLwHHp+ftEE42+C61Xuv0IN/YgR/0wNu5QTusgiFtCGXJbgG2g2UpjNmUBjOP1bSViXE/yZcUw/H5PT5vmgf3u9pUOrWF0UxjlB1SswZpJBGRmYCEqVWMLXQEGQPP0Q1aUFHFbVgwC938uf6YqWfhxTFdxLz1i6upbJos7WUc4+98DoyZQkXUa5nS3Jveeqh9ufv7+uSdYw/gsR+62T52L5nFfM/Knxs041n3H6UPoeN98i+hOxMHpxmFSiu4gVKfgsNMk1E3tA+BhuJjO1J1YH0MhwmyBxc40ofbcdCTtT1vq1R4tZvlWV3tJjFh0Ql2sK17WY9NUFUDOtJjDtQ1xZs+RJN0JdrDEikk7WaeEiyTSAeKQu9IeCBiTNrDGQ7W3LlZ25Tr20MTdIVOjetDQn39UUFm70xGvO0XLCnKyacQejheOPfJnhB7cOWfF+pgbO78JOXvwoA6z5uwYdMIQapygwYUZAzBTl0P6iKR+mrRYvTTax+uJZauMcg0CMZjFkrOXUxxraLq/tk+XPxnYK8Sq5HKQoGBbMisYEKMWWieMhxGMFBy7i2UWgWI8GRAQ/i1KA7n0pLmNhdAyU0IUEKQEGDMwZrodDCkr8GMSlgbltn6PHDYnaap5EJavbfFdir4nKm9esCyla4tpsLn89fHn98Dz2D7B3rWIEMJgwZmL74iSgZQdUwtmXSBmKKLKZ9u8a4/OLMkRmHKzHX8Sj7mRGafwggqAYgsCLAUJMSBWTFYBU8kGoL80Sogc8UfdtQkirIjIgseEKgpPpZCpD1M9KGMUWSs6JIYrCc2VFgCkhiSX5myCn6kqpNJKwO1CViyByYSp7EOrnFJ8bDGSJsmEGBOu9WN/AUNm6xNW+shssrXpzy3KZBRwdxD+mBfbvsSUsCS/H37IwxcmuG+LuO8bJbpRfMoIY3xcULd56uxxY3K+OfgG/91FknDD+1hjPzuyYwMSoflSdm1kqQ2H2IG7COWS/doYzEOGsm7J5dqTokWY/cZ9RgcJJuh2Mk5s0xSAotTSFNAe2WzGhRsBDSDxiioVsONIfYDTJJz3oTdCsmIVIpJySpyYVd7vxYcJNmcJWG/3rMYbNYKHS2QXqwmkxgBu9EJszntSbsOzOuTTKikMTEsSQJAkL8H1XHZmvhvfZT7+fN4rKifjAe3B33uHke4EG+dBAjmWg706K6D3XLP/ZeLCRC9SoyvLBCAjz1hIH0OFx8v09skTn8WW52Zx6uEvMUT+84xkpIf7J7S/2wngMOdQZVMKU0naa+ozqTuiSfiVfwbfTRXFZjski66e5MVwCoYAjMXCsT0FBVNoPZJl7vLlkvEQIB9/O1r+2Gsb0RiRG9ODWpmW/PhyV8yhUm3omiVo9sGtu9z8ldOD60rjufsgW7v3sZr3sAPYyBGZCewlYLJAUf4UxJAxgLAO1CVkYCSSIMgpIgJIgc/d4s3Rfh57snH3u1i8v3+nV4PHja+KEy5/TmnRorbeBC3bQB0GAMHLFrzWF4uiS1do0cPpXcD+tEDrfpxQJO9LYB9sspQZErO1DDFsy+fVqKHFXVyIwUtCESoc+VmLfp8/CejmOfu4SpQdwWab1BjMNR92S2S92HULv4oAWsRkABcLIYxQEgiHWUo9lgFTeqBBVRnMdtx5MxkyfU+imYIzIDuo6zfiQk++PayVYYETHhcQNvHNEoAiQqdSiFAdMUkX91wtH1+HpMngnZkuCj7Irc1llAgA1ARkCEGQRUkSCQWQFkBVgoCyLFgpAiySMgMiASIJIDkxrjrr+zXWzwYxZSoYIplxHPqpXvW+3w5ezz4+PT/mO7CckNl3y79gIf4KoJCHmQFIsiwFJPSH3mQBQUFAYRQSgAvw2VqYJm8juOQQASwwxUkF5SLoInUU9QkPYOPCwb69X09ODN6UOME/T/NCDmI2RxZqIcUNMer/Hm7evtXumfrvwf7wW/ft48H7ysxRDZza/+69ocSIzSInKIuEqmyeYxc9TT0Q4U97gMHYjNRhkX9nL4y57HGhz73vWMQDogHuclqvz/Zmjo1zv7/459jXef6mver+1FKJxDoE42FCLfmREAtsQkuKiDY7lNwLnsN1cFhLx5EgaJmMzT7Ut+VlmeYKFCiY+FHksccTNErUy9GzdZq9Nlt8pjigd+B4S56dUMhyzzYzkwpocNOFwGU8NCwREGZvnSo1caqRs002a8fBszl5OCLQgJ2fxsst4S9ogKPi3Uc2f6eOu20IYqDhhn0WVEZB9dTUldftOtNAdR1gdJyrfU+CBDJMsM8M8RCyQi5f84rjqT773qw4aqBhk10B491FA1eKmiNhp1f0WYfz+oqGtCFmbtG2wA9/s01Lrt2Qcx3hxk5/el9hOmYFMwXTNHyY783/xoZEPthtFBvU5Ox1e76y74nQoKnhvfGviIfMSzHCSgF3NZWSHkRFDGuMrHmYJYyJuq5S0IT3r2mUI+nPCrC7zMhd9AIrB9zHlA2UG/kQiHXOCIoPqtjZvjn7lZ6fzt+SHvFEvgw+cXrHr+7IfTj7f7HT2mIfu99FLoq9DNl/bZtvbqf3nydLB08WBPhF63Yo54gSIhIBn9lACsD58zS9DBY8NcoZNDUvFlED8gw09rEDf57q2wSTybfYXVdi3p9SgATBkz/P5PInfQNjz5Q/VFCvUgX47+ageW/Qc0dNqlOidkp33UXW4Tr8YDpb44VIjqmMMbwQKiAIfjG9CDQHx7KB/+mQBbKZ2hTvtv7eS1G4w2h0meQsB270cFDlKA+4eWncvVvG11f3Mnqu3QYQAkQ5jKUypE801keMwGSBpptQlCsNuSENTIibs6fh46RANA0sTJT3GVLTUzLIaoCAXdRJoM9mFxxNsQbjgmVLzwD/Cc4mJb2W7rnvy7xVNkV5LtPGlYmaYlXz/rk2XsX4cPm4yzX9X49jyGLf9J2DabnWTAYfWsq77yAk7VJA/i1RIBT4BjjwrVxPYYCrAOQGcY9xfaMVK7oaJhxVvgvlcReeCfxNPKbvm/r+XEoXCcc5IHQv8m/db58Hx9Nn+8f+YMWXXkxGAdsDigFk7OFbQCvVW8OiH8YB6PDOvny20/REyJ/A01tnnktvTMecaoh9QmSAUU0k0LNE6Mc89Rp2+fcWozmCCDIzM1bP8Ey1xZfd69WBarQn/LqExIkptG8CEBkRmkiJO73trt4Lc3oVD/TjULD6/cKHkYiGjIGZbCHMh8WkCseDGgLHrhQURzjIuNU5xlHy61y4xcax971dT7f549I9WAHvhzQE4oEgCyDIMiMgSCSJL/VqChtRYnZh20b2eoKbxBn3pr57MfD24HCXm+mEhWUgfIXvoGVAuWxW0hBCE+R0P4VEu7XNJERNGARmZkABkiawZk9/U4nw763/hiMfDzOuvULQOiELxDiiB3zy0E2l23ZZZdDMH6iWfsQyQVZBUylPl27BP3AiWQZM8SDX7b5vcV7Hbxey1SfbdsqgPPG7e5fJpwUl7s+oIEUDPuBwGr8z+W4OvJSl/FTzhOAAqlOzTZSfYiConcLDgvx00/ZKFI4YVBUyIwYal/A+0R/xJR7fr/fjKdl8jrz9J6GTE+FLxeSExBRZAWCgpAkEkCRJJAPMnHJECtpZ2tRT0GB/lDGr2B2ZA4utA9saCD2EPX19tvx2P4/Hw27OOoKbdzBe/qtZOPNbn6Gv/3D9+bVt7GgDT/6UU44iZCcsHOoENM2RIOG9V0natDYS5tDxOLWb/Rl9N+/y4raoaYBv4hfUKpkKhle3ryeC4p8rMV03RX+O2JgCsZkKKJQZAiqN4SIeI8Z0n7sqclj8Px+0W6pt2+0o8UbcfNKeU8viZ83roeD4PRIsiwWRQUin+LIWF/rg4/05GmjfsV3n6d31VmsyXIfuvUhBAzAAomAQIv8MKgNgx4IdU7F2n7kB7tS51N8wkOKqYgeKxbYAWEeX7IfpQo4nksmDMAhK25TtQtKonNpcru8zV2Vb7OD4PTgDTK8UzFelZS17FFzCp7gEaHXr2Pv8luTcKNB+sNEKikghfpahQUrYsKgNclnmiytbKi4UapioogGTIiUvVOmtzevRVYXcfhQqGjOvw+DKotjpBZu4bb5jghjy+76eja/dE9AF8pkn063Fv4bzxYDTI5989QV4lgBgcL22NoPL7OKsjaBwOr9l+G3yb/5xR5Pc+DlPjzuc/JXLn5OcOk0366uHmBYJsihPtJO7RYIH/nInJbIvStPfSDsCGSjf1jScJFT/85ICGpghI6jmnITTbR8/XLLx+9bnrZ0hOizDKkAEA8BAgoQBZJBZIpBSEBVFILJFJFJILFkIsWSCrIQJAEkFEkCRFJFrMk/OJfRGL/P1UPhP8B1HyTHYKID9MMUBfBB5EghwQPvBGbUAncE4nVU5J1OSh/p2P4OXl+vTiL9rB639b6gEREQEE+uEvartgUa5hhND1/xapZo/uJsbJmUiKrpQgyomFklDd+tj1otsdWOiFZ9ZA754D+qjlCeAJvwUhoDlAPKiWJ1Hvd6zpWmfzcTZ1sN5GRTP9my9ZnvS+mJdGjA+ExMQVJmsGdkpTn/xDM5lJDlAAIn0AgAbBmeph5jrlO2GlC4A5xSZRLaDJfiWzbuotsAIe4MiAf7wyP4ywzoYEdalRGgT13fJd1U5t3dHOIEMZxEOec0WsH258P8WIWxeTNSH8v2m0jYlBCZcni6bhbesf13s8vRRmIyIMiltKLQE5OH/fxbcPRJRx5kt93fkx89c/b181LzoMSImMeeiRIGCA7QRIOsYxDB+92snGBjlFO+AmOn2+vDV/nLgr04/fAK6PyM7pIByAkYFIxf5PRqvdw57hy6Mq4Tr4VYc4cdnV8G0Z8RsFWvjNcAnhvXB5QwpeyARGAOgiAOm6oHtCmLQIRyMjkFnWhYA3plrGIQg3X/oHHZjz0MfXori08P6Cf04v0SyVp0pwVGkkbzy2X6jsCH88t12ns+v2QxesiIARL0R/OH75CglkzhMMRpOCxoGmAHrx6vH37TyLf8pg1y1Qsiqlnrp7OhyVQ5ZdDl5g0+vjPTaY888WfzHRr04Ol6DE3zMtO3KbqzoArHQIgYIPNCMjIiSZP0A0BZjQnxn5AI8SUDFgaXST1YqOmc/pfnwarrzyw5oKIkhCAEisiHXlk/axpwcG6uemC30Hw/PStIGfSklWJMOK7AACpaJqygBGDUE3E84BEDKcFIzf+o7yIDIpIB8nNragoKXxNFG9BdAdz2HgJNI6FvHd7/7hyWcKBPFvplef884Ni64/he7v/flZxTlAUB+HZf7RRO+3yfe6zEhyDPNAkAUTBaCIgAAJ5ijCi+3Meq/u5Sj78lB8qRAKgqSAkIoEigkgCpIpIAsijIEioyDIoBDvIUEN/donucTvq/Vf7PDZ95OlEIAT3lv9U/7G3Ij7JRTySssQTHOjOvUzyV12Kjn3hQQACTXFui2YekP8f7/726u5obQLW/vkyZHKyBF+ugPUn2ptRg1coGsFiXVqk/GHs0ZsGAx8G0xXYB0EIf+ksUD/K1EfhmGocRnfupTVY/ShAzQdoUY9qiACHvrhdWEZmHV9GSwOCISIfJQ9UUAYBFVAKDeWa+pR/2XY+slB46iCc1qWI2HQamoESA8ePdW6SEgZ5Ry00oiqXp+n6du/br7F8v4+GoPcgRXhBIlz3ths46iImmra03h0TTm6PCcHDa7k03KFh7hWoERMGRFkUkWLILCLIKRQBYEFIRQWAsUkWAKCqEWSLCLAFikBSEWBFihBQAWKQFCKSLIKLBSKEFBEhBZBQkFFgpBQiyQWSKKiLBQYBIkirJCAP/RoQOsauxX8YXE4FYjxge0pmQT3h/gFMhol5p7WEh8aHs+KztQiIguf7rpzuPsNf/PQ9LHX0WvB5b3kefW/Ft5kP+F+SZoXfsrWh9b7uz2erh5r12c61oeP30REHDDfAHo7PDbYhzQ3zNsmfPgC03xHtlgX0nKIVeOEk+SFLytRGAsGCb8keLfK8W5ruHFqaIAFCD8zIigJqatW6YB7Jm8pbz54FhH0s3Nk5eVFW4x6fn6ge0fmkm7SbeCgZPGEGVAwXUsiiREQQT84XdHmqVjkd7cnA2bjvqNA1Z/nOjy2qYz1mACFQ2jBAQmQKRt2OFUq+Vr/DfaWEVDwdYxn+ZO77bfQ027/nrxdXu69eu/wUoQkZGQkXniB3IJuit4clTu8e/5sfdxKQODoomrCtQ44/Rn3AEeI/qoyOtJ5YJ787k8MVtw9e6XkthKBaiJIQUkVBgLFkiyAsgiAsiJGRWfuWVJ8uJaq3qSHRKbq8EyfKEedSpb4NOaECNwS4nsFR3QwWcs0VZgrW8EK+rhqvHswYL/i3XZw4U8gAV/pJmQ7+mCinu7CwkIE5MCpp87rw+mZ/J8Pb4HTSgAOJ2V5MTTtB9o3TXq/yT99mikGHVSuQtIcS6kSN+4CJSo/9SAfZ3xKgCkE4FeBAjyHNg/ab4ETpb68ksA2HEkACQ/oQUu7Y74XzEPqCCsmA/oQQC7iM1f4d3romjgrU6TC4pMuJUPfmUJ+tFNf/o4KrtLDiQGf0L80ITqJNAtDAH8n1mQIBvGEGdx5H8zTAgCAgQyAiw4BH/m3lNeTtNaY6F19ccGQhgC0YzmofQZhzNr16vT4MMySY8FNTsET1cSfifCx+4sBsCE1tV/04vhrv6MGWzh49W8AqRVCREJAGRBkFCRCQEZBUkUZFRJAUJGQUkBkUEkVCQEkkJAVkVTsXUMkNsH0QG9CQD9M2n5Hk6nb2X8Zx05pqhkGJ9oYWIiLhLFi+YgQAUQJtkEBLRv06BweNmpnsuJNiiyA5vcROfyM/2v5vNYPmtbmbqxszlCH3/5ApfDJNW0VTSf6nIIhaABM6R1nVmLH9/NmooAJb7TlROogvNEEL9GKIGAwf7qaAAhICmkV/7Q9Z6w5/10UK6xEIDRE96wNJkM4bJUHUDlnUJ3LXoNf8lunOoPwXUf561469Ipgb5qMfw5pfAcigC5IkhggPYg/xvAmMNh+ZbjxEPa7RP+DQv/iN3/wp6IFPJomnV1q/K8+mFyAMToxHo4/V7q/fOlLnwjOlqvPWyZ6/8OxTdLz/0Oi5/DH2pju41JvZmZcEiSJcHIYA5oiFkApBT9rCCleaWfZSiHMmsDzOAP0PqS4/Poch2IRpF3kIAyADIDIoSIjIokgQiLIsiQgITOM6fpgUg+sGQJRkRr+q//Wv/tv7tiNpIwNO0q2Vuiof7UrRwZXXbLz2oxdOy3B+v35TdiA9cHPFBzwFkZFdHeKB30BLCiiIGOcD4DyBZ5wP6PxuVAE6qPIh/iCIlcOLkxGfkvG/Rv+NiFYYIWRKRQkZFJBAkWRGRBkVZBBkRCQGQFkUJFCRkSRQJFANvLQx+OtD6eTrtSff8yNY2p8ofh5a83lfmV980EHfFPtGze3eJRyX8lRUjVqH74FoOFOGH+66W3X99dvPea/Z4ubjy9G4OXFTVP+OOgl9ICBiInMpA+Pwf35/aMF8e/1FzJeg105P16GO2JCCZkAZgzMyIMN2mN0+W9L+o18LV7+23nFjjVd0UJ7FNhr77K1Dd7/jn/Div4ZtpqwoHHEJJD8s9ByH+SgeZQFImMaNj1+VM/K4AxGHYC8FGnyIv53/c9XX2dJqiqYIKDSIUi+F6Xbm3J/348tf72PQr/kylmjyWX645dOYRiRiT8ItyU3kPNET+9yGwsUUiCBbRaEBsTlpBb9oQo/pIm58VJ9Lht+HObJDxQFkWAKBBSCwhFgBFFkUCAKCgEWLEZBZFkSRQDaZuK759d7VTP0vs4bjX17/2YMsz06nn14a6QtLp+X7Lvv3zNP1/+56Uz/tJvVUPUwYMwR+XvX49UDmcnjvd/ltS9EminEHdi9nWWPNxWPNjG1sxFNYr0ShEQum4QaH+pFjRhbbWIhOMjMELB5KC8IQcSt3gn0oyvWGqEM7sUw9ln/Z9erv8pBDSE+i+6m4YHh3E08zMuRD++aACkBKsQtmmFBSBIMn5drxdD3W3qmtXKpxFrhWJ4RnkN/mrhzUWQ3pDFholYLbFCQHfUG1rA8uJ59ehKzFSdA7BBLFafh745IfP9NOuNzLMLfP8W8OlEUgquC8Z9kdeFbfLXszB99FT7btYPr3O/B8Idxz5UNQrTz0eGIS8PqSvolkRRITSZxD7s1DJmzZvrwe7SgAOmARuhAIGY3JQ83FT+lxuZ+zTDfbh9xQWgxiskPU12o8NX37AfSO7zj/P24Hibjret7jcLA+etVBeX+UIgC/wcUCAWuZxzC0e5/WjZdf9SmK1Qan0gRXM4lyHAOwFEeqql+79ri9fSw6h2NtU+q6/URdkACM2gK1fTJyLomfqo/+lu1MmRSwVAzSFGE/zPa+Fr6mXZsmIA2b5ZZZX+/T9/vs6Rf4sYWHlg/6b9FeHjFoFoCEHcIrPITFdUuZkhWOGp6gJoGGQBMgilMVKboSI1plsVNcdtBA1GCDgYkFNCQcFRfqhRFclVEj1OgM35/qaf/X8SKc56Pt/v43c/Bl4IT109OiuLrZb5xA4d5W2wAMZETkUPq6HT6fObPdPy29RAnManE3uJgQsCGuTl8GHXudffVQxVmgqVW569sokUTIkBgP1Kw4W9fmj5QIe76PNsDHHICzVks0UzI50uB0IftPaIIjgQiie8OUqRG0gcyEeuwBBAcfDs/b796WN7RloKHDfpwG4MScqWCgeatve2btly2qDgJIAdX/onxC0dL/Vfh11vLAl+F8dk6Wa2sxJBcZnT/tL5NLck3PuX4NOsW+nWU/Y1IDM2B8T0sgAoDGP7kAEAkDKxVj0/qoJZE0fp+qcm8ELR1pdz1f3TSA0bQUVgfG9fDs2AZhn6+rAVFerr7G834uXZ0uY6VP5766mTWPh12inSZXf/SVeCpp8qTgMdc5BTPSsMLUOasrJBPiCD5KlbCxTmirv8nYO+A5dTtghcZQNEZCsB4rLQVwwWnmMY3D4rBdXPKBwJOl8d/lTA7Je6Rj+zfY9g00VETZFLN6zvgflUPfplBLbRB5Snd/6y0YGJ1Vi+w5d+py0B0x5gh+TUIK03+I03TyVXKICQRSx+T9KR80Aq1HYNIq5Rtj0/ZhqBZAeaGSswVejB/cn4Rb0ZAUUJFUWSRYQIKEUgpICwkkkghICMiyCkiivQIHA93/3i1Wn4MMEdHPQwAT+Ynq49V3blPFyxwdHB6yDXXTJ89FB336cKXOC+PRf8SEQf+9w3tVqQDgegCvpLo7MmEN9DucfOAKIDDZQ8rTt4gR3BfI5uY8HHWjs84+1W7YLELi3hgkAF7HiH5N2uMztmdSHe0Rxihux+FapsLSAM8yswIUs/yFiKJSDg9wvxzbSD9DSBfgXgUaFkACRWQJBfvVddc06+z4lxzcRQTEQD5IsyaKOPpUzcIctQzaqHkAFYIYBh/T10O7572OMCEpKyWatMLZBCADBspsEHEITC2FVqDaRSsYEbpuKS2QmOCuzOjJgJsR0kAMv1YFM0JbSkgDYWkLSwUiQaruwMpElwQGolxDZ1GENDqDgzImAFuKkBYcMks2tQA0C7QKFE41QyLGiFTbaw1E+UITakgYhAsgO2Ucu4zdyEjNAoycUyQkgYpAYWwGkkmgthkxqROZ2d17WE4dpWPND6JcRfCCAQOZLuArZEOI5ygfdoPAIXWB/kR42HXA7NA5NmDkzWueL+IiDETTEZFZFkEkWQ7yeQgdx+KcbWvrVtxvp5M4dZp/Ra99HH+CS4Jlh6EIXiF3d9Ekr1hnrelFFvnVmkvVIkEab7zxCZphN94Hg+b5AoHYYALafZG43AIDYc4OkNFRxGMImIIDcNFNrd4vhx2GtACAxibSFAfmtJC153E6ZTMcZyd16N4hlzOaac/Dr/yEOBk4gxAG6Js6RHGj+Nr1teqUMbxiTa4gCWgqx2pEQkVAB3iiMgiDWTFlByRFUtnKssqm5FUEdHUteZwBmCpdGKgFGCA6kVJYBBHEUAByoZIUomkBEqIpi4UCqujQIrjDj0g4otAAX/yN61BGnBjaTZIBtt4kZwSxcQ3KzYbLTemiqKUZluMqkoOkzJNqcGrsWSrFnIEhUhKxMTYNNib2gry7LQAwGhsCQiAhGLyhSiVKMVRkBIIK0dMoIoaEgE1L4FLTR/ekEDsSOK9MS0lBtPowxU2mqnRLRCgNsktHOqhdHeNzBI2gZqw3UWjTSq8O+bb7HB07uyJgShrxrPvVvI3SVGIz/Vh6/WYm0IwFgqkIRSQUFkFAgqgoAoEFhEVkiyLJFkFILAUUWQFCRQkUBEFFFEGChFgqgCwFIpAFkFJBQUCKiLEVkIDBCRSCu1d9+R2Pbduk5tACRFO3AXFRXAm3y95X2NAWq7jHoR3JH6vurCCzZgqSidrPdV7Luol+TxJIs5nbdbSEETpDvkCm6BErGNtODFEHDkxhE8r/xzr6nV70529y7zeTvKk5NxWG0gTFEJFzXI2XyiQEiXzB5icQy74Rsp0g5UuaJxiC4RnDMEoEJ5BJGaRPOObkOUrbNqCYbIeuEyqsqKTd3DdUqlHMzi4hp1cHDHFHVutDmbtRFNaRMN9XRrWqrrTlo5FtRAQrG1VrbmDtjnKAHJhNmRhBnEIyyRLmWATQiFNihiMHQIBDAeCwOPrKVSggKyK5n9rDSSxStzBawXEAipmCFsUKUqThBNQFg2imYheNIQYsThKzRRCQwoiuaTSXgvgBiV2kQpbAmzNmUywkYAIaUpZUgKEm+FkgBgQMtcZIFpYYE0KVsoEgMAuxAYkTgTJmkoiioGikxmCBkQN3cZoiAbsu1kh0TRVEil5cSJbFBI3got4tRJVJJTV2a6ZIkiQKBYFIiLoFDelVqKSWgHCJmFyO0HSBIZjcYoYwC5drCSXSTUYRYxJwwDTJFIZ1KKSVDdA1C4TBYEWe4WLFZFUKUjsgSKXpEsEcSCRTUlUNcIG83CJjNBFQRhUFeELMQG0RHIRySAS4ISEDBEDEcU/A91zhM32Qian7IqjiM5d3sM61dMY4LooJz+DyQF2hA85wh8wlE6O+hq0sQNvC7itF8tVrkYOYJC0YjhIxVZ+qazzM5QVK8JlZlZcKCjYvCsisjr+26qOwJJLrmCZpIFfU1tWMf9b19LXDSgLxQdkB0VPCijvAQ4BBVkRExAAROEFFQ2igAOoBmkUFMwUFbRRRWGyBoh1gWkE0LZDQnoBLYkjtxxq+PhP42oQUkIskirIAsgsILIqqApIoEUFkgqgEFIAsICyQKrlsEVoEAkTq6s3bWmWx7YGISHaIgISAASClERSu6FzfnN2KWcB6e7ciobHPL1IAnvqrqov1GOqKYV+nkFSbtDnzquPMmmxZoeX4lp5NbSfwQkCOskBBExmbaVdRXeLvARNIADum99TS2ARC0UdS8IFKrvFREZFzqUoBtFBDeApbSkUAqAljEQoFcQRDcICBIqoAXhEqO5DS6gCNEETYzpVkATEQcGClUC8RLOaFAF1EvtSBmDUboi71u7nsH4NemhIdq0jqYNMqS0XtRR6Yxl6iJT9MG2DXqys5HJvrDB2nZADRBd3Svq/0B2hLg48fUMZKWUkjyTwxKaXn8QJfThKE0m4OtYoNoESLZXc0T7AiMjCDnECQGIQEciqDiC7ag6oLdNeJ7AhtJJkQtukGgGd5kQGNJJCMZLC1zkotmm+im+KnvBFi6+SBZycjTZ6djHBUHe8rcoqdlF8uO25iX3LABd0o6YdjYX751ww7sOfAV7yvO+RR8F6pCEkpEciI3nlcDuc5PhneRDlIB8HbwU6n2FQlTSQJIY20hc25Olwbx90kJu41BHdOCYQgIHD6NOo5hyo6UBTpmypK5TnORoBw3iQFnYEHHwGLpysOIAO8aIOd525HMKlGIoCECjggIHBkiRTCZxLgu9kHMzm2wbQVzZACmIFHLQYOlzsd4HeKXNFtUNNtpK3CCOAK+TXOGTUkqXbpyZ3LojuW7buZLshXgc206o45mW6xajKzayhlNrhi7OY1oUEuLcRyw2YbZTRmbGsdNHIisumxtt1Bjt5ZAP+heL9z1rklHIliAXBhWCikmkmY2oGMA5pJjpDeCxQIwoOKwEQiwEEgsJWFZRkRjGsCS2rUfLSLc8caYEghw9kkiAIaOCD+lCIctBd0FPyoUi6shrISpOTKiwMayodCDtl0QEDGSZHElWNiUEKkqQg+awrisOTdaxcVm7i5ZQYoKSwkSAwjbQ2QnCaRGCikRHRYsKrFA4cBkQalEZheIVlIVFhs6HBzCkQgRkA31mYhRAYwiwmkhUSCTTIVmOMBZulQqaIQkENMJpNgR1LJjJUWVo9BQQrMYsFWslGQsgRJUgiqkFlBJURWRGCgsu9jlwSELbCjKQa1aWW8YZIzWpCB07Nd3cQ3whBqz4EjeVV0/gOjnynIvLm+Y3FFmaos7cnYlSjsQIDrzY/q4RwYqH8qoJ5ucALO1Nlev9vM7zeQV2JCrHeYzLvsz7y4uA0EB5ebFQJHOcSLAYuoWyXWY53s33UfkNZ54Z+rfExdqMRSXFXq8PUoeoqIonPVLP0oajlLcBO0VBC0ZEBTRUiqLYWCohpFABeEQACzAAdIoO6MRUwiRVUTPC+dG2wF3QBDZBVIwBBnqOeAyRIWlIxcwLU7NEEISB5cbTTNY67DFnIuOdbYuc/q74c4jc48DkrsxMm88gHnIowxjlbyUki+402N7uPk473oVZEWbkSy/QgSSbY2MSBAF8aVa03gLIgCkiAAKjlAgoiKIEiXhtHeLaF4AKprAW1r2FREVG8RF3yb1DejbCipoxEEHVQNrU3m0xLjFoFAAohICojpFE5w02sqqzFIDpYKEAQaCIiq2NyoC32ovcUULGpGYasKoUMQgZYiwlIAPI3mtTJqvk1g22PzZWzKY8hm2gR6LqFIaSoNAMAhMVQhZgyhpuIHA4NMBrgGvE3q0A8SJxAUFJTSUYCc3MdQAc3t7m1x9FyZRgOVVpVmaSgpSjUmNgAMEmNiGGdvCAhMhAJA2RCQQO2aQc06k8fIiDKXOBOVvOi43DJlDEti3P62neog73Kf8nT9D9HkehHN9izuZNWJXd1XrLqZzHRthk+8u9p893ket/w5zebnEl3zgkgv0kGSTJyJ4zvIr7D/za07sepBzz1NUQ+Qda8yN0qvUwFafZMSsgH5U5Yh8fP3f98aY8F605doXjVpQaRbSI1IKt4LJCPMEUgAHPvoNrqrmJgndXG5XMQDsyixC1yp0vqTVxzF3jiTnEc3c5nYm0CAuSrd67vCSogFPYB1V7KvEhJCLJaNgjXCI7Ms4MubqYljIokclOG5Idzd1biKBvIUzQ4cmNTI3Y5yMiyDOYUVCHjiB5EOdGVmW4Zluzo4Em+U3qKVLvheZ6elIIxkiiKxflLPfgtfclwJZQVX/WUoKMYjq0II6TddtZjCxDGmaVBliol3FbxyCGChMIWKgSQeNVgQg6hyJJJA1kmM04yGGUxEiLytVSbpUQgJytUjIKKRRADaQkIDdqVRERVm0qEbqBGjJGMjGAiDGSBjiZsNBlha8RsUSTTAWqKMAJA4YZuVCaahbYChG8UNM5EQ0InKElR5HLWLAd6SHGVa6y7slfEEQtts0b3FUxsURObbgXfg2MSRBWO9BGBzO/XK+pubZ8JR8qEIQKxR8RbUXz5bJe91HHaXJV3SnvO95fKt5lTWJQdI0fKOV3l0ggmv2iM05eeXaQIxdA7+NZdJ13eImLq/1OEknJb2A8j3fMU9ylIEjOHNfPWkifAn5Z3x7cYO/MGJBy5qoO0VrnLH7NTA9IQ0NBBRsIqJBSQFAXKQB1WIo4UIIAXIAOkFAkVENIAuqokQdICpgGAjaIhrMojBkALQRDKQQJDaKo1AEMxVtnJQIyDzZCGCLCaZzkVcakCTi7YhBN5nkRweV53m9ltobGhJsYwbqCThDYwMdxj3MBwV1pIARDGxAimhEdjcIYiVc3yx91GtBiGlBaI4MQa06i2LS4Ufoudk6MX8jJ55wYyPTihL0IC21cQVcREDCiF4Kl4CKhsRRuAm6pFEzBAuDEUC9I0gNoqRSCoRgAuhJoUA3tQ8IAguSAo6sFUDUMzJVhAQGoIOJWpChGwLAVA22pFUztSoJIIjQZoQV0WIMijmKDteSBQgph0RIwkxCMS+uprkIntkqpiw7lMym4Ud/nabp00hewYWZvhpKfWSmLgxpjRjkYXN4cbMLtqdaCXgaQtIhsjC7ISIpCGRcXHCmiMWQJGRxa6iuAcSRKcJCBIzlFagDhYYttLmab2jA5VRQURUkTW0hsbkm4ybMG0Q0Rs4yw5yIxCQgTK3l8rNBguROuYkyqC8jNYbwbSjP/WOVfO0bzqaSCdy7jm2YcRR/3ctAWxJRb2a47QIi3b4Opc939+rpB9G5tY0ZEeojwk8hNosZEVCnHcXOLd5Ci5m0H7Vbr4mo6bx97JD5VhFXVUtuSNcTek7KVWFISEgcFDrXFpoOcJI0mB1IJJ1U8gvcvJdBoXg6ZjPGpyFaFZJJ2qW9BRSSF3llkQjiV6qgQrjTQBJIo4tRUoESoEtvpRzr6+eVUXfi5tNi3Rbs62mhBZtpopRWEsuKd3LJtsaqJLiHdw3dTPHA1LZDIcNsdSsqKUZBMRDbcX2qLyCbg4g6JDPq8+LykmgPM3clYY6wKgkAaI1CSADRiazM1akUTKgEGUWGqCiW4gEkkH7WlCCoNSVkjY0YXMjDYRE7JTplXMkoSTSBDcPSEnEJVU5a7Zuya1rDA3GxxIZJDCNommpsEYXQlSNE320ZWXe2CxJtIZYYUSsDWshiCjSI61ITRDREghqCUyTMKpCKZYxEoE6qKZ3sLtHpRRRKtezPxGZ/wq+e+1MvC6uUP4hwuZNSyfN43Ki4zmTy+GTRqFG3Gbs6kK7PT71HwsXeOyJLBCUNZ+aI9XhnlgcmLncyZK/9tK99aSXI1JX2v7nm9PMjgp6EYzeyotLEQCQkq0RLiJlVRMoRUkAEDXtFRQuBEQNSIg7AxFAKigfisVQFxBFEHMVd0GIgO0RFNAigG8VRvFTFyGyJN601xZVUNW5rkBTSlAzcvc3NaARB0q9hXliISCRZAFFgjIREFkIpIChEYRSSKSRQAWRYKoIkWAsWAKQFFBSCIEUBRSSCyCgEiBIqEIijIpIAmbRrFDqAAA9g2MUkgKYiuQ7bCNfBdmktQyXUITlSrrMihvm6c0F7GLU9JI0TyLc5FcqA3vdREaY0LLQmxWoa2qpV2muVRdWIAG5aLaOSAWuAC7l9CrK5gIMgg3gK4NIAKYgDWkLjEkjjEC0C6dUFoCNEVAIEsKEVAW+bhWlwUADXOhqE3mEFELRXRAgIIOxEEHaCpqbRqVSqqLuab2QAR2iogXXJKRAWJZv5iovisVa+msk2m9cFD20krkPrHKngfAKHwHMoOdhEE+gqGXuolo3TESooBLQ3oNUAire4DPWktEI100AAqzSEy4EHUzrwkJ5FzLNVkKGLzybIuoQZCpTbaagwjoRqFjSHHO8WJKEQrQoRepAd6VIC0BYv7SmtZ9AZHIgFZ686d8PR3bEip7GvLMdujnrogGf9pOHj4z3vYhz2ajyFr8m/TXl7fivtZMPbIC3r7uLywOleeHjtTyQknx98vtoCw5T+IzTPNxBZXJmvAoSNuG68SUKrJPDmdfcOdyXGIBALBCIaS61TEu8Sw26mJ4Numb3DZJ5mpd2unf4bnPCCeSSEC8iYKIgmfJM7XfKaMBIQE9zgLZiiwWyGsQ+9HK6pvnKCTtwdBIBnDvdv768874Bi7N98NihDlByid4K4itGa04C5JkgbTofk025Ki8mSaKZVu1JbC77cjpjThtkExTnGEuWXEsc7EF0pHtBMwOami7ibc4yJybKcMjK4dgXY431rjL5uZ6n19kLAhSBRPNI9jjWf9bf/Q6b47FlKBCiBWjaZaTKJuwa0MPF8Mo7FOsALkQ3oGkTprCBRQu24XNpm+d1AbLaSJJICSLIX+XFFP4MSjkZ0IybGNqUQV2VLSpzYRV2RKEohQybkC0/lOEtrw2Ol3JLEopxyYQ4gUKXcq2fF00AF+RoDkYhmsuXt7oQdROVpsPYwmZa0ARqU3S4xBpwUMLuDjSw6oFr9wUpeChDFGIKDptdM3pkFgBghwIcIBgaVFty8zEh32a25m8ANZRWilvdZNgkGaR0ndmtTSKMXK28nNWhwbauAaRjI66ubSasOy3svCGtTZxpaACuqSSm9xmOakkJJQNZuOcb5hEq0qWDWAXYutFk1KgKLdwI5il4CVkhSZiNJCU3ilAxMjLulFo90w74bKJWsBtGUNSF6iqpjArIVAFFDRJ0rkq5IqIUkikmSPUzMepg+MKA3Y79VA4bYatSMLKVg+D0ZsQk7fHIQgBBR9FotojyayI+NYs3zZ14V00rvLC95vInKPfFxDqs6avKStptPe7Kuj+bBLPX17yfH31J673ZkQVbymTWRd+tnR0szTaPuOeVzN6hTPYyjM8fKrzOrpcFFVOFdqsnQOMME2wW6jS5dV3G0qbb6oEogAu23arTegRX/wEUSCgFRbRVAkQVdooCCbkAF2YA2IoIVBUaHWCUAyIDaQIQYqshEIArqkUAJKWklcEnT3XKKiOEwIFlh3LokOkg6UJJSuYI2Nvgc5POAWgwSL5XN0pjf0ZAbfuX0FXdyBgFJcUW3PR793m89SDyI51E0eoMjs75uHCByqmTiw0pAFTy/UjXCLrTsyR0ld2CMSwwovz2COpoETc4YtYgqgtQQDS1K6RVXWCWL0IiZqKayoiSWFUQzwpUW5EUVW8FAAthoBtAVXU3JSIgGYgiHCIAXvwNbojsrFFBNt6EUd767hCjSYV2CCCtBtGRRkEkpBQ2VUN4KABpUlCgFlS5tNdFFi5BnTrpmTOQbiStLHpa8AbTaaC4CIZDz7mN0Ius9whwiDkx78PfoQsCzxsGxgmeFajxa4EEMSsA7YCRTRIkN0qguKXpBVKzs5QqkhVXyb7OBkmobLeLIsjEgySLFAISQirIAiyRYbo51TMYDmZkm+R3mCWkAwJrQ8/y8AGPoISzM7rslomD6AO++5xJNNiQ+norxe/PjxS34GDgSjOMHU1EdTa411othennT3E8OMknyenjuS1qKw+mK8+Vy6fnFUOAdVWVEwgBoZ2PAGr9mvJFOSFQHSEVHatzEOTNG4BdtYyR/fdUedde+e+pcG1OR40wKDlBV0lpehTRA0JBEQl25li2ADh1lszK4TsUNpHQzI5lbfOEoFG+p5i4dfm3+kb9Z67a7ZB4zx6DQ+xlnrvcv0RPQcdQhJLObkmLznY3PEErUGeNIoWjmvCfJNCXHk8HpaRs5fORPkC6lOzEIZjtactWi3s0n3egJHclXPg3m9zxdRmzOZ3H0g5NXW1k2kh7d5M73wKAqir4edtgPY6ZxwYQsg7RdLbvlmZvp4u2WU2xxN7c1gldXHLaUtu6bGO2BiuG2LKZLHHFVMXfYpiLq5htvrBFmzdULmWZmZW6phrTtrTXWjZt2phyOkh934+zNabEbbIZkLzdti6hWtpbEGoiqP0dJM06FaquqZhcqlzhxRKlDWsOuqGWXi5i2hCjvJAC5FVXGsWLYDRTCSQkfQ6dW0i2yqCMVUF2c4kNyw0bZhtw6Tio0sI2grdVhSiLRrERtnEgF1lNFt4pXDYyo7lQrCoJVOrR3c30yDltGbxLg2Ju6dOmlZbjLFMgO+VclvJqgwFUY5YNKWVsmtBCmmKKqsR00Ga230VaLdkqYh0PWkj4JcKEACKPMn4iMUSNKPdxCEJAnQK3NGZq+JjSCX3scvnLTysk58fI1/l3r5QcrwmbOSUfbW5ihmGE+69rPbr3B2GXyoqoGkepKHRdVZ3wNELnBmEVDkJ18qvK2vDuzyL7ArzfIyTznlTzTFgWwmI5yGRoc7SETQtBmQBxwkhcXfXHWCqoXEiiNEFTMFRHcGCimYAuEQUIIoZhGIggYigEc9cQt8rSqQdEhQ/T7RwjgkoisAXJrmxlQxgQvms8LKnGKe/Hb/hzb2Xmx3aPkOEuPQqAnDEQD+UR1eYzLkvjoogmTTZXhMdXw6b4PoD3qtwpcRAJBV2POez5LFrEJFTqVYXkRAuNy8L2UjYIkYlrheqlo2fSU+ifwAEC/nR6NTcQcctoUDyaqSzRm2a6vzaE/8rk6KPJ+4p9evmLK7QUDsn6c8AMMFY/+RJmoEzQuqWiWDRq0tJIXJTyhNaBHR2uvaUJKyCnsy6+1rNmKKAoEWQUhFkFkkUUIKpCLCAjsb2tPWc9LiJfk+/f18DAnBJpEWRGRL93fZs7NZ6xx/Ufhhd0FwRZCRJCQCRTSof9IdfTMhJ7hP9za2QLVmjbK5JMCGFASuYSmrdodAJADGfVqFx6z7n9b9CoCgf2y+ToPUCqh3HHNA+4ig2jmHc5KLgcnj8J4ZhBDWB91MBGZjRGmMEIR+9RKNZYie3PWrI+uGAmBCCfp0cXQLX03sbvLQsOED7Ig+3axyNCSAE6hKDqQlQ+nmCkgYpS/6eHm1jC3gBPxb3I0IF5QiiSDkISETYgg99zqvlS38vvFAkEtB9TiJVYAsigCwFgKKeWMPXEPYxvFkWQSQIR1I7DuV658oid8QGB2aX9t2yHn6+b0/PraKgmkBJFWRHkilCsBQkjEkgsUkFJZLYQhRJWIwkrCjJFILAkigMfdCQQgFGRyUqAsAHwpKkJ8X4v8vfomzK/BK1pm2U6+Oi9ZRmiX6ZqnSRnU3GNr0RvHwf1IgCmci76fgkPNMHR5uy5rw/K3lAQg+xC6AwR/vE5IG9esh1T826iWuoBcb9+2LyAloA2GhEDUM3gLp77e98GRZPhAg9nylf7Us53fspun1Dcs2mpRcm7fPNZgv+I+c8oawDuJpRbMgcklgz3hQvngSSQp0dVN5MxFJFA+TvUXF4YpNp0FOA4rcUKAqIkiwZ96wqBBRfp4zIsA7vcWekSDAo2RlpKBAFhIArRLaGEIy6poSDHw0twtigVKZtS4FElSStaiJQugciliZo1kWGQARITRXKFLeyAosEUVVzLUqaZkyjlKw3gcMl/n/O55vQZgv5jlc5Q7TKgMk4pfqA0YCgsAQJE3Gq2yQ/OohoM/97WXhDmyGfqrlhE8V5PnalDCRMYqTMQ71lN0fUU8l8LP4iunlFYQjIEWIKSCIEUUAggPvw/UkJ8z1YHhl/VC49vCXVOBxCGQO6YjAIFqbhXR/u7G6N3MYP/V55r1XcQh7EFFk7//gnTrAS+rauR/ceeQETSEImrMSSBHqJxgTuqtdvJKIrgLiVpmkSKo0BhdLJdBz9kxisouNYVsq9wwCRpxZG9gnsYAykMqWKMDFc2wUHRE7sOuAaRbKKwOjy0h6/kC9n9ypDTBXshEBoRS+AwfbOHob/x4bdAdenFGYqJ0xIl/fRA6b4BJFQhBJACQkEBkTdAXvwGsQisUkGVpVFIKGRiqAyEgkPgCR0gEyDDEgUg1iilIpEjbr0UzQIAsAxxHwZqEMQU8MbOk899iZ8MoG4fA2Rf8SMhyJCZUUfD1GAdUJJqEFf6d1hkDsahJ8FOzD+ud3ZqdWSQ0oMYTqyQKTmrERUSEYrDzsqSUJFAgMlREKhzcVkxCscjVUYgKNJQqERExsFga1130erak8qcZfJb4L+m8tX6X1Of8+NyEBkCEIH6tKyeFoSG6c9pEFxAwX4nhmN88v6xpH8oGPnVPTEAO4CjGHEpoAsg0WsOtyXYiIF+JrndjXz0xcdOHoH17gNVqvAJWU44NkK75srSPLvqnpytLZqFBc0UZEECRQkEWQRCv+kgpeAKA+SKtRe5oUiWIjCBlAgnYxRs6tHTPyhD/p7n77OrJyQEa0KhIFgMgyQEUUFSshUILCjCMCRJKyRBgRQFWEUgpIiERgiESSJBYAoggQYFQrb9GT7mHLP35YdbAUKT5J4z0We8FQHk48IKFmAIXnUEOI2BPAdvaGXiJWAsgRiEUIsiiwIKBAFAWQIsCKBBRZFICkWSLCCgsBQBEIChEQgxRkJBVIQhAJFJsof4e8DXTp2L0oQ9j1J/0gioRQYMfwllJCIMQULISJKqmBPD4mwC+1/5s0ebp5Tw1yPQPnGrMM1GYo7YGzZoxGbw9illwdyDiiAYXvQCMSAQUaPUnTiWxSRRkVZPcbaVg9rsFDzCgQDOIisDXio5puUJpIYYBnCOsx7rQd7tQeyx1xXaC9sajIhInawBqe9RWIAieOGeN0Mv80M3+0HET/3+TXmt73bQBAEXSIqCCJztMLiI/6D/tAuZBibxUdeeoMp0qTgKuntZd5s9tvd48acifKfWEQUoBIVECrA+eF4euD7/aAiAII0YKKgIsgogqQDefmPUzAA2fRNwHkKckvwNYqAPKU4FedAo4VY+Gzv+zTG8N4qNQWRQkQCRUkGESRRQFUiwWEWEgKSCyAsiikWRGAoAoRSCgoLILAiyApJBSCokiwCCgsCLAWLISIEgIfor04oJIiQBIU5Zo7dDdw09ApHnyURDNMSzYPMCUywEthnl6c01zfpr3797p85ZcxE8/EUMalAVEaSFARWpa708JW0dYEunvWPQTcQgjiCJ5dO8WpdUFZABJFERPNpPmtPNP2C4UppBTlVdeV05Ohs9mAMM200dyljrgHFBfJckd8JRYiQVCNFDVQKKsjzQPu/9p0ggnc9F9Tq16foL5sEQnRIXpmgGJ2ob/oGzgl+80yP2YCp5c1i2evjbpEiBiLISH9+AqJYBYWHW9XjPtoZr2moIKX4J4zJ1Knk7n9VsuZw5LNE8tbauRYL2BibhtoJz8Lirh4qb6UEd6qqF+jIB0oBjEWCFfhQQcP14slgbRhdD8PDmPaWZH6XotTIatypiVdIFqFIuUvGCB0LHPAJuoeXPDz5w7xebI0nyQ7IGtVmJ9Hf/uKv/4xQVkmU1nYxRixBJbhn4B///////////////9g3B3vgnlL1rlRrYztu73A58nnHutq8oABQYZTgaEjaXYUGqFGHdu0qickMOD6Dq5jyUGhcsdsAA71noHoC97gHQASFFAKoemlptaA7zHvBWAC2aI5degPc9dlPAcPou8uLDrqlfPd1o6+AE69szWsVm8SxTbM2yuu7a63Nma2bHt71ZX2zVrcqa1ttze3c9Xcs7or60q9b4I7W7trr6llVEFV4wGlS9arW3t0aMdFbvc622tZaKKe5zjjeAAAAC7khrL1c25aaBih6OigABe91tY9Orz3DhLzfb33vobBrvuADgfJEKfQF2QfTiOQ0xUybxZyMGV64fXumvdnANh0bXNBuz0M2Ctz73tZt4ffY7r33nvDL7DEr7ejuT3bNMVgADTAHVAeuDZnoeve6I72+vV499vo8hAAKUr6fT7x0PrylemDTe2TrX1rzGAUIdMNncADn1j3rfbAgECF8+10r7joLvXPvs77u1rp6ePSzuehwTxkZextKoGRl6pOGqinXXWtJAdaq7e2kPbeLRhbsXyy+WlHdt0GDsG7ZplAd064yumAHVaHJZg0GnTdWtWAOWgKObFAdLe73ReZko00yiLYZFthmVGW1Jw0IQExNBoAAAJiZGgGgBMABAEDQIAITQQ0BMmmgmEyYTTTTE1PEwQanpk1J6gkQESRCENqaT1TxTyap6Zpok8jTSP1NIflT9SPapj1PRR+pPRAk0kiETQAmJkxDQGphMTABNHpMmJkNKe1PVNAiSRNMhNMhomBGphNGKYZNGgm000noI2QBNT0giSJoQjQTU9NI02ptCYUzSbUYVP0xqnqn6p+1PRkp6emk0xqapz9b/PmsOwogqiqoex80oHsMkJAnm7sh7At47+k+zzdozAxEGC613kRgAnXM23V2erzYxpQvyy0BVAk2wbgcdIB3uajZEJDs/TnZvma2bBNvdoDlgOUDMivxy0P03UInKME9PMn05fEWSohv7e889yjKt58B0XVs3AFE3gZcNj0ZUmRy9VILZNtH04oDsJNpBUROD7tDLqxhU9kL+jbxcOT/OD/313A5SPZ+SntcJSjwBsRe7fSXxfPO4IREWxEQZAVZEUEkVQLlUjj17/BTRzN6GEXoHVxRx6X9gQDGRF89/P+fOt31B4G+ABd7A1HR7h13jw5hKaUABAAhEctVBB3oXGon/kFG6lfnFN3HN4AHHvQIMe7fmsr7cNEBdXq81s8kR5uKriB5J381eTz+12THTfm9mrVkE8qD5m0f5TrsNdQ1MUuyqONcep+uyElfeQgrlRjC9vd/Nii+iKNZQnMhMwHAfOuwAvpKZxDurLN2YFOWIAX50FmthwzKMn5kTRpzpEttKY/bYdJbyWyMDkk2Ov/reqrdOX5u8e7k9/f2kF6okfVUl0aDLjdJU0xOppO9nWhHZMyikXX2cCypPjK+jv0DjNXj4DnLHLjt3tW9oaMiA9hERA0P+PogKTIg73ydO+p8MkQtfYA1YtENbFs8NdcWBduXHcq5ry0uvtqujzxE73ZraIDMTHl5/FljgO0WVEOAiyCvCPRTbavFbMAIIfFsAFPuxSDICh3YGLT1dPHbIyiEgLAj9VxQ2iAPJEKgDric8DbEDki9uAZxBnFTyQF9MFAvARygIbCCncgZe3jhDVBQO2IoAmevrWKlyBLQ5pvzflxHfgAK1doFRE08nhqyjx8x8mLy2Dy+1nd7d1aBANuffwKuAgKqGx4/YXBcB6JobN4+Exp4d60CLZakKfrGAqYALq4kO547ujRBypMyAJLpS7wpby9uue/2q+acyJNmowthPPAAxiA24/DZHucHpFUByx0T+Ktr/j57AmfCdmtb18M7xir7Put2LXDrECT9nqD1cgrsUEC+Ln+dCF+/Kkb7mBkWj/Nn1YiAeNCDeAMaT3TFDIAfwY1mVwWur/xeThs+6vL1mVo+lU46wmAMEOmRz57qSaeOTD/Hi0LA3CroKQ59Zp5EQDeegB/5rYkCyYVnJd1di+Aj0IVCKDAkUrgFVBtvWqCKB0p/kDjVG+53pdtxgiAQYK4hm+JoYNR1miGQS2OES5kdA+/eYRFpHPC8Tr78v+KIOI+2OLrYOAKL6qNF2cjONFYwAM9ZDPJP6MZfVCCJwTQfGc1hROmKgrDeoWoleSvSclCorlFEkkFAkR17Wn6cp0G1+w1xwafD/nLXHVnaV6zqTINqWq+QqaUpuqVMgD1qzUhON5h16QBFPMiMwQACwihAIKSLIKQiIRYCkUYsh/rPTiAp50ErUTSJuA6ui7KOmDwzIBD5SIh0ELvvnfzXPkipdBcAgu3dJKUcSEiaf7oEMxAHkiF8EDtQHgiHYj4OOjKILgRU4o1Dl10JaAZoCBUZBEkFQ4OOlXyxciKeKIoaogGEFTiOmD8EPdCCc0VSQVRCREHbBF3zuw4t9z1GwfKqW50QRO5T4SAbdtc23s2dyHunx1viiFiToph73ub6veKZMHv1VoCiNLS9JijsDAHDFrBClDbPd92EGQd3bayPr7wU60YSwjj8/HASFiYT35fZnWe3EPubS5GGy5QkYYil0Y2hXCJSlv++PJLmPyoRMQ8k1sEjSnWA3CiqcyG+3g9ZSwC7mnV5PeequBTFMK4jK0ZFRfCYeqKb+W/NoWnZh87SMiVtY0ZhBtXZc81OzNCP7jvXn+8LZBuu7mcrPQkROna8zBAGRoSAndFttAv47W92gSl6LUdm1NatlVYL41wlyZ7txAz2pQu+VFSoJhEEvijZiuSAQBUCAMFdTABELWGlJJGEGCgiKiLBGIDAAJNIAWgSAomkELxQJEMQEQA0IdCcVGVIY8GVGMijGRd2EJCTiokgI4QEb4lRKIiHJJEVBL4yCBiJIDeCKCYigCGjFBzi3QVSwgolK6SZYVI6IUZBjQeq4L5Y2KAUAoYIjntxYdVUFIsAzp2ZI4TCNVEgrwaTC5GgakMLAZeNIZaQgDjoTQcasDyKakTUjC2dckMoZDBaCAamSawGQEiksA+dA0FC7QwGhNtwkDZaha0JBsMun0/RGo5sFobDl/D17UPAWVklhMR6EuPqaKKQbdUIXpoM6sJEsRaxdo73qRtE8uRYI4wHshjOAUQg6ISHDuBCARCzuPoSV/O0tm4k6oSgIflQSMONc1WE20mAxCVsSMaIaPGhWcyRA9nwoHMGNKE0sYYxBTNKyRUxFZAYgYkOclAtT2NUgFsVYQkGM4kCQhhg3OqYaXSu32DbqbY8hSmqqoHVZGVmOshlVncdq8Miq0m3jy1bId96yjhMz/CGv1LPEZif8ff3SRULvD6GHwqihIUySMbB+yEkhDjw9knz4fN505jnmt2fz/D356Dmco4z6flUVzc+KEjAuvhdTaL59ddy8QJCR8r/D8ryb+M+bwE5fGfDTJtyHS8+hJB/6adV4acfnbZ4lE48A8UUHXKcWwIqipqd7LWEkJhD4QTKJ8CeHAzOF1fwETkA7gmLlH2tF+oIj6pCNSj1vNpYkJAi4kZY4EY0IbQgbEfeEjlEMWLkAceTccRQLK8SlXsadQQrCEQkENC7G95fGkiO1eV180WNG2IhE/2dSXnC1tIAhLeRRHiQu0NIwAs1QHMiC6KKS0AkQVqIBIoJkQUIQCKMAkSQECkKAVAi04GFKgINoBIMgl8QagAiGQxASlub8wDZUxiGWVUtvhEs5Iuu2y4jaOAHKhXOGsb7auiiMQIRMAxFziIoMgKKmwiqqMqs5UpEsQQYGOeiygBIKi4wRCIQupAUVziqhaAoCBUBURtMQTXIrKAG1EYAwBYkgkVFgEGIIRkSCyCJCCiiSQEYICIQYAROQwKwiwjFGEFUkURAEYQBVBQihuAEAtgMgRILIoCqIwDfahIY3LAUizmQvCiWUFhrYsSDCSSAqkIKs5WpFFESREYjISEJu0osVkIwixUiQiwhAkFFQUAJIMYSMggoQE1mCxYiiHFKskhJBUBdEEFSIMUYRFYSIIrIyKkCMBGSTdIASSjIRYARQW0OGQJgwwYQRVFUGYyoECQkWQIRQUGEVCECSQUYRVTCLaKNlGEIEBVSDGQBwAJYEsRjFRjIkgaSFYwVFJEjAIosYhISTiKyoCgyAjEVYKQhEU0yTgcGldUgohSAFoAUoJa5SoaQJDPBHGLcxAAyioXkVEUvYotREDZEEEc4CIaREwRQM8QpBBHQWISABqLBEBM7sIQoERTGKWgCAJCAgI2ihZKhINKjWkC5QGJShKmBZTlhSUS23IoihoRYIYIiaCwVclzCFIoiaMBM4ooC6xxFCEhFUVNIA0QFaAwuiSiWQTM1YDKBQX+YiADmBAHQghgSAgVsihKRFvExpCFcQhAbPO0ChMQCVE7VJIBBsItrULIXgmsRFFxAAVMRBBTKIgusFEMQFFHLWUgiJUDERa1pUHCKRALwBC0VxALwEcQUwrARRLoxATQiIojeGYREACQBcRBTjYqriLIWIAJdFwgKCMhhEEhjSMJlMgireDLMARBvAVBMQwxBETSJiKZREzxVRUugoqlRzxFGoIgjlEQBbkFQRqAjSkUVgFUGcERUxFAS8DSICgVAQJEQQcQQFqALaKmIIoSKWiqAFoiNoi2FioM1oFAHEFFHO1Ja+lBAHCIYRviMioBhBQEL2LiIiIhlBMRBFTKaQAvFALwVDUBiI5EQCk0xYUFDSKiKnWgiFLgApBUG82wUVbYpQHZAXjEhHpoQkC8uTkxVBPqKG3V3TdOXT2W65HnN41xtTyLrjbV1LbnGQPZmrq0yzZtvJnOc+fiHEjPnUrkP7segaqo/2sljGxs8N5Uvn+dtusv8bxH/raSgEX9H9M0sjcgcdfFR7Gtsdy9K3UA1ctmIv7wMzdOHR2eE/+LiqZoD5orYgCqSWmMqzw3KqKVLo+NorteVAHwvGkUP/hcktI5AIONJQwXPFQAbznggIXYCFoISAgmIoLvQBL4InHFHTFDAgANcdAJSN0KWtKUAAygGqQV0iABRakbRRTgigNoiNomI4gAqDqLBFVMM99kGgIGMyiKJjADPEM8QQcoogJrpSiIOIAZy5BEQbLFQDCIog54gADaKiF5BFQagN4rUUdIISAoIyAOsFRAAzgIgMigYiqGGCCsgZwBMyILrBUvABFDKAKUpC8ehE1QYURkBBQhCKggxSQVhAIQVFBkZJAFIqChAJIyERJCDqgQISsFRiREkIIsjBIASRQWEIiLIRVIApFUICBlGKREohGIqCwIkIhCEGAAIxgBMqixACkFEIkIKrImkCBCVjEFQkBFAhICQYBIEYBIEQFkowMSBisFYsBRkkgwkEiDIyICokOakoIkixBRCC7MIQsBjEEhBMxpEdYILiZwRbIEBziKIJqCKDBQcRBUG0BXZBFwACBBFUwKkQdYoiplDZBHOAo4gqIN86UshAUEYEEBEssEkEsKKSSJH0pbLPbUIpuUkKMdvm8EeedqO5zrTswzGdyV7GHOYzOIJRJpWnPMDlvp2zlFV5TaCwjhXMFQpLNsyFapM8KP0Yx8GMPbEbhW+pI6HEgKFJqHGiCdEUikQgQSJGIjUldeRrEQD4mAKJ54yWMRaiuxOFIPq4EEoqiKQgv9HYiBISPgV5NAckRHOfyoExwIkv4G4HsV7D8WJIDgyTJ45rzLnl5eCFndhZpv685O+dd755E1NbWXwNyXxci5KZVS5qtdjouU5c+TluuMzHDjMzaszG4eZNW3EUXeTMzegHA60/4KXuXRfvP/P6IVNtWobBqu9C/b9TbeBwOuXAkMW6zfUrJ0tZkeUKNN/8tUmuM/bC1I93HATjz9XKHXwP21Trw2eO/05GVKsAKa/+6J19bhvJrd0yfY4Mwstu6ZBQZgIU3k62fJbJAFMQFKigYMH+6LS5SHIAVGQG0Qms5l1rGmpL6Dmjj2kL1bk1yoFWZgWL/t3+SjuRktKSZvoh98Q/P+9Ac7AgjUAiZZnPsLL5nnMYGViXHLlLVfB7wEVohLmsQi0gL0YgLYIE8vskwUzKt4KZrCAoZxGjK4inocsRyvW1vNZRTLK4zwKQyM/HSF+m4wMsMeuIm4h4Bg0oRMITiuc8nHfvyuBolZ5URX5+25w4tvpfCOtyPLzh5zOFzxKaO9q85XUsYoGDVKACcjjlmxpMkQKgy11IBigArsqQD/cV0oGlqfK5xEwxVQUCUin1Bh1+m4sNaFh1pHVIKb5FIWJAbs4oIRCgYm0lF6EgIEi7wOzycuuTznWWIaNfX2Z4jebxa5ykhCQcnQtzWZzZ38xYkQ+6OAQGqK8KPrcXAegkEkKQEYQGbRrZom3JEBZC98lZisZD8riJp1Q/O1HaSOgJXG4cj8zuub5PMIWMRJnIWUmUoIZUnmFQyRPDxU71T123cknaIfJwpUO4cYbGS5VS7hwO4twxytiTXcRG1txD0iait6d/yvfwsLx5/LMv04+51ufIXTrzVM2jJSeCTx/lxmezFWLW+bbQOX6fJbOE1elewq0zOlk7KYhCENMCMraMlN7yTxIbu+e7cNcKSE89nHy0Nzb3UszuoZ0U1Iig9BDmByq9cNvxtXFu1uXgVoaCGL1lVlQQLsz8M+/y+AkJLtVBt/geNISgl5zN0SNlxF1XN0nlnvvSKuzkCG788EgX/S+iD1vjnOnS8u88N0A44o0F645xIV+PWXitCAACRoQEDO0JDImfIxSQVUSCBEJEXS7kZLnlZIibIBQVdUiRCACQnRIBIYdeXDEkG9BEpUzvU4LzHHaK4ZYkkgXDkyAkUJJJIpgkuWO0ufT0qUwMaBHfCAABENAEMBsG0IDp2N6ShIBYFCM4sDSEaImeN7ghAkRnGrlSLUAQmAbqOWHjxfXqE2gwf7qgfDBiWoAHEeLp6hh3OMfpkQym9UINRjB4zMSSECwRABIIxCHxKeiBCRLEBvHmTf+6gEkBecjH4kIO3nJ/THOPnrPXJ8qg0e6ecxvupI4QcfKSQV109SEhIjCcd253A6y77FCCIWBhXWgSEHO4hKDnESkc23qSKqYOOVf49iuAgEhiS4DF2BcfbcdwnSoKsifJqYYOYscj2lklRENw46nkvs08jcu9nZqZmCSCtyJXA6/0x/i4/u+idlUTs06Qm6aNWdNxDXYyfr3Ltz7XgSAn7/FvsCYZGNKiqoN094ZMLCGsEG087cWmAdEDeVADFIc2ZjzZW5mUgPrJkkhJBEOxQ6SvU10SdlEfcj2KQfv9YBXz+pa6JUiICY/AXMKJdcnIh47nfjF1CT/Ae3L8yOPDUX553k1vKzm4JayQxBcUwxvgoGIqGdI2UQgOdAEBbdad54cQgJCQSDiJQkNW4oBISppCAMF2Udi+zL4hCm6RRsoQIRfZuRISSMxNVkOssMjYqi32mRO7PA3ePDCem3SEkJcNcbu7oj4tKzfJU9cohg6QggCdSEgQ+K0MCepQqmzUSxagEXWfsANQiUlgvS1iTGMYLdVEHWLfNiLooa2256FF0W5eapIR3vYI7fXoKewGIj+/kYd71Jtcy78+jZPHFWtuY4Hq6QlVxvlk8oAuUASQLywOxUajA3L4E9mwdbV5y0tq7EC6wIwSSEjOzuZL7mcUWM4Ac4+GSNqeM5PHbVwWXtMuaovGyCIiZtvMIk5N1RjJkiKiJgiIlxe7dXrOaz8rEvGT/bUr1FjJ/y/3/QyeP57NzQfpuJhtQuM9eVLgj/qMVhkI6ACG/WkSoCloCsBFB3yjDt2X/GpSGMjcqA/+/kmpiib7I4RQz44a9D3HEJJTRedlPByO1bRSqnBonUtOJbHbbDvPc0X/e9R7dL0djB0QQfVPy+B7fcb8+FwEOTxNLcLvu7EE8pcn32uZiE7fTMztRsnKHObEY/113mZkoEHbzjzpWPkihOK4BKQvEBDMYwR1ISANFoJaARTA2g72gEuCXORk6Tg08QwAQjo6YB3iABpxPJBIBHGkhneLh0RTtCSSCWkgWxN13nec6TsHYCp2TrXfeJw42w51LwKOkBeaeT4qq5UaLgfVXLSVEI6JiaO6Ykx550axKNMGDIqbEhMDkRGEYxFLqIg2vh5hCLFAEZSEcYNgNptFPBWgan74cSI84dJcNGS0mJDomG+TBzevAXIjzupAhBne8rn9P6KmoOQiDI0PPjXt64IBIIQNiQJI6wAN9h+TFzSeuDDdQACOiSBu+UAHnDHAAu3OcrvCwCOULs5w4W9VVuHLrKnT/REsQulHgt7EXOVdiFAUN+B5moRnN8Zebp3rjkF5E7Dwl3SlxMjmB41juqh3F2obc5mYRc7u5d7cRoZlXBdd/IjwcP+1x/TSup787R7a2epQaAv/aFHYGNjPU8e8gtgpbGfdCclJJJBSGT5/oqkATFfR70TuELsftmP3/R5KKekzwCoVX89ir9rJD8Iqq5q/Nkfjn6/1o2GRywADP6KeiYTEJISDOg69q4K7AZC+3PaL54wVil63HqX0pCOo52dfSrc5V8BTqQkgXHuVO7PCNzu/31DtX2Ou4rnNukjyC0gQg3zokgtAGiFNJCw4ycHFVEIEkg4R1ahAstG7KiOU040mOTSnMu8jjNJqGpdF0HFkebP35jZojaKigZwVQ2wEyioGlCYxIhCEgXnlcHWGyWwtoH66QDSbUMSLYkcoX/5sMKfkfb6PXpVLH6mYhwlgAV5zOjVXAcGvSWrezhx0LbREoM7wIzoKRFBzwJFGlQxIBV9SMkhYz4W459Wedzyu8TvxlrCscSGdV3HH/jFcKeJIrnquVPniRtWjtdrhIkhaCOc2cn8AJADp+CBIRj7p550WSOOOkkjQSDbwjxIBJFhEdq2wnlBSRSC7ySehPL7z4br882p55GVUkRWEZJk5jkcqKmrqpjm3lNbe0y3WyRM3N44eQVUXWTt/5hH4Wp89P+2RU0keNK2CEjrRQkJAX7m08c/159llmWsrIPzkygRPzZOfniG0CbFxHtf6/OpUv2afFrw44olgcmShAZtAttm/bWmFEyc3HhNCzefrkKDhAKEuOUL/i9Y/WKBxJLSBSYJiIp8MvLIO7FA4d0MWIdYB55sOfTJ2aROdni6jxzmpE8hVR2qaKOvBJBT+H5pSrOyjDKlh7Mho/uZaRtSIJAEINr1/3g/B+7OJC4MSfrj+MiPsYXd9o1CRKtTQUpcruYKbnmkgwXtFoAYx8VTEA8lTrq+N9thz7EALKOfLQohg9GAVfymeJgufhquYQSwi0AXc0IXKzCxLsSR+Kis0vOlmHlXnZzNqtkx1HiSNNiu1nynyuSC5mw/LAuZIKg+cEBTbFJtxAq+ts7SwqiWo5CJiko6cPIRBznCOvYkIiVebPQVMr0zc7J2YTcyQhg4fh6SUjAQeZ2Y5QRiKiN2SKALJIggbCMiheAKj/cAFuIAql+elBJppVVRLwFLEQqICNERUHQiKim2SKAKZQUPTAQQXKNiDstSoiNRCi8hRF+UZz2JBGs9mGNJMaWIz1SgWeBaqwQM5bOxATPFBkBFGRQYZT7AJYGiFsWF4jqVSlgzRIQCfLczUYAWEJeAAxA1DI1EbsFGCUiGi0fsAhszxdbaNlul0UOfOI3LH3kLQxYnlZeAGzmDZOG4TXlcbEJIF9Nqa86aHYo7MsilB4YBlVSx8m7j40CVoGIPS7uHEISAp96FoLqqkZfnERCSQJFAomoTqdDbWLOhL4creY77EJyMiGRGTmU92bbbelRkVN1lGJ4NuqcKLrbvMIKeMmpgmInbdlbixRz0/FAEHTOTw3U9ymEd6cEqStbIHWp6I8DZekJgBmwcFVCMWM9CPMDeMd83w8S+3B4imI+98f3BpKqyxT8DZ5Y4ME/BlIw2ee1icDMCGarQbEiHOLIf056/ePuZSQcJBAkiKj53QgT3duXde6EjKCBvIo+9z8rg8p9VeXqVxfniYa9OKfN3uBrhCDkiRvYzcDOZXKzkAagP9Pi8uoQfBCKDcAHRjCRUxQkEYiqBCCZkihFJVSKBCSAA4GIKCNbYSMVIoMlIgK3gi2gIm4GIKCmQo1ucvUqmlZ6ZKiQ1ELLtISDIyEiS2uM8PBxQuzU+FCQjIukKIutocOW0shrACGNlZa0YAHhUFROZABSsaGyApgQUBXXFDiNNAKIYQVQXcxFRN3ooFDOIAWICqSAFoQmmxHupQDx9drnvBNf6tq4tT8MbfitLp9zBuORQUwc4IHJEVtNCxXWtFISmIi5aVAF4vIhIXQIqYUEFExVcOC5mG1zAqMup5gcGOdrj4Gm0RPJCTkBgQJJIFxTSLidJqmwhb/yxUrgipvgR1C4oWnSFIgEkYblUzN+VWAqEg7rrYqhhIkkJahO+jNq6zZttWyH0mry5oxVRFOHGVJTyzJZMEVuFOIoobqbdTUzLcxv1Uy/qI/VK+1Htc2l9cCsmFzP3x4pltjmO33QIBjD4l/3SfTOYkqD0/jf/FtF07bSQADgg+JMSRcH8dz88SQWPICLJmyKUQjUHs2Mkt+XPe90VqOlg47hxZUF4ggBKAJXF8uiS1vu3YDhvOZtcwBUcJeCpmhAUyLj6KARntauU0Mz5ZHyoSAtFEV8/6qp34kCgNt7gGdRAQpeDf+EfJ1WRKJY35tcl+QsAODJ5sg49Sgac5jNkIMibSbv4fGL9bwyt/AbxUzKmbm4TjlWQkkkg0ixJAlBACIg2N0fAd5sy8d7yK5Qahcb3YC6wq9HT0tGjeurnZEvtRxpECpIqjlMIwQUSJFdSIKJIAhcRSICImd9dIWUBQhpg0mtkBq5RWt6ds2wIySQj9ssZO/TPlRQGJPONFKvJRX566oKGZ2/33kSdRxDLTdPm8An701t9582zssi8lXMuuZy1JiQJ6ah75uIgTGI+lhK5H40oZDf5o/xy5GvDs6cw9yPJmmAidoJzCTby3QsApt5K5Yov8QH3qKgRIzL1eOqzS/dFUEOD289juapQIWAi+L29lu57dsL+WSV/6DjOXLvg6/Vc8OQNOgZ+omIqRDg/vhKfkzWBWTx0A8OKVUoxRQeiBx+PHYum9BReyD6suv2qw4DU/z6lumU7/8FV7Pi+IuO/t+hVzi+YtX+uS0smXX76W/3voDKIAgVur7TvFaTEHt5Kh+9uv457/FVtmT3OxQckP8cvfLH7QXljYYcsRA2fkVfHaPZy5Bb21TjIj14UeL+LD+qCoHb5bZGn5npLHx+j1HJoJr7J4jyZToXjlgoev2SZ5hjP2UI5nD/skYySBsc5ePf9uvfmhkPg6twZcQ4cM5nk575a6COho59VEbtA/6tP0k12gQkg+j/r/Z/43Yjw95ce8QFdjC2VinCke6Z64nZwGhuvEAEi57AbE8MA5pyyjTXfM6VtPp09N2EDNBceTp4Q32teEDi9Gf6dHIg4Gknj72rrAVyGxlIxEOddvIrrIBVfiH6f+vpkK8GsWyxwc+7k/jtX5sz6eFD8RFQMbng3crdW/V6hiJuEslnwik27zdZer6/DxzYWC2wK4+hufRVGmef0aUkRF8EnpKyKJEUofurGAncGoQYZQuuUvLo+fBDpDd5IiYBHkVNPOU5PhCCAnNfSymTGCAlVztT4AQZI3MgVARMREMoZtDX6H+goTHr/tZTSMkgjHxY7lExBN7AaP8JAGUhpg54IdXf6UbZpaHuA0LX1jcew8agDEU4nvcgTn1CvE645p6jFQQAB4kABvtWgf0pPFxO0wJpICqAjBUYLAFCApCRSQiwgiLIKKIxFWCsGLFFiosFICyLFgqKILJFiMRiMIxRZFgiIKKKRGQVZARgpAVGCxREgqkBRFEgiQQZGJCLFgsGRUFZEikWEWQQVUkRAEZAYMISIyMkhIBgEUKipz8VJrv7mWwveqv9kv+mu0BvF1om6gEQcdN8BOHbq8heflfasbspxnFwlsb9UBhRh2b28BcNODmtKvwnA+iPaidvxVzcPv/S3A7IDIEIsgSLnGE3ZrFTdAAU4wQIVIohwjN+n9jZgLEpQ78LbHqxBEDfu2tmB2OHm4ten9+8cfqw3bXZmFWuDLxw0E6OLMgiDm9W+727HNyZ8+rjx0+3m49pXNzfJvPXr1pxdrbxYvLFQOqKrGKCISDIoBIhn7PR6BTSIgpenJ4u1tHC9zEHInfwZWj2GV4zMgVKGSj9l4m74rmll0g2rtABzKQTRXtBD8zawYIUNH/zdsd10MB6LoDTS1JJfhhP9a/kgIZ44NmWXP8pjbjiqtm9TKIPD79BYgiSKSIhI/IqqZ5/543bRMAHiSIf0gOXWPT7NmfDIf88UswZyLqFgBnpYpACaeZm6uroDAQ4dORniZegeSA172I4ADp9h9l0uMje21gm4xNoKCmnivePPf/V5rOO812uM2jPvT554VehQp2QMJ4XsGYsQhXRR+kO1opX6uM2OnKddyhftzumFydRit98Lxvrjx9+XBwjnyb+wYHBtFON3K9p9Yzo0TQOxovaWxPIocGgLqMHUuP9TgwmuDPSXZYA9uIBIoiEiCDIiSJIIgepA+IEaLITPLkES15IpJ/YWAgcGOI+ZBUG6B44gZ2/bjOLdYkjB3/I34cAVfEtzP1QAOjlPAHH7+85alVVf7TyZ9te+9dbqKn1nSAmMMxPHu+Hg0H/+pVHam0YdMeR0TAIe6Wz6HCZJGcs2TjiOcJ0drxByqjzQOlj7sBwROk90jM453bRfwwMZfIX0qn9fT5rKaok1Bw/RffDjI4IfpEFUkoNN/9dZkb8GRoXSwTsxTKY7KVwyLtU2HGY4XQEMI4ZqDImMTTdKDcbOZhHEzypL+UVTAA8CIX9YIEfpILvzaCEMgIaualrNQBW8AVkBAkQQT+IXZaCuPN5vc8GjQ35WzqmUpBDjcY2u0ClhgqYSQ+cChU/+GwovDGNF2UvZoseAP+uAiVy/e6tRqEQ4USCBJEBAJQ4GS9+dpE8f58hYy9x/4L++T4L1vfo6T8yACgJquQQPlm0bRIoB2aMWA0BVeJZ4EzqmykM9sJZEBCX6KtSKVssaLLhZAKRVXLWfpY/f29uX2EHMhYvZDgQ/DuODIIuUQUAkUAkAU3+8jQF/30Fsfp1F/9HtQqybOSgDZtPAc/W4y+zcBTApeBYIowXqeF7rOIKZEBuUya63y/o5d2nDSnx6dGYPVF7c5w3UeYgalf+nOeYeBcM3JvcOxuJwrQG0O8Z/LuLsLwCq2FuOgO6WD95cRABC+8+z++Xr1aAT8c+P85Vf+m7VmuXFzlJpxTDgM3Eae7jgl64lMkTCSSZeRtI+1kp2fGZAQQyxJsTfvUNOrVeXBwiu9Eurs2SxAIIDGDBFBGEVQUgiLFCIrFggwUGEVFVQFEFRUQUUURVVFWCqoCKIALFBEFkiwFgCqsBFGKKIsGArFFiIjFYxWKoIsVFEURRiIiKqwYKCiKiMgjFWKMVgDFRYoggMVWMEYxFiisjEQUiijFFgKKCwIxIpBQFkFkBQFigoqogsSKRGKKIqKIIqSJIsCMkgY1QSaCdU3vh1W8R4l4seO9E07GlEugCAGrVT3vB2X+OD6Ezn5cPvpo/jExQLdjfMqyDd6Y/ddD/eQoRNuYaLRpEgNHYBg4iMcZSxsFcQa158zA1GbmK1TWmviXnhdkC0msYGpiAHuICg/r29909nFRsNDbbivf8vFc4mQrTBljPt3sAGQ4Zxyk8Ob/lweYe8SpBYoG3vXUIDM0RLyiCgYrym8Ge7K80Y/vZDC7ZMttJnwzppMUFQN4z6L/iqZ7Jdrwckb4IMgDIKLIIJIpICSAoSCIDIK1Gf8oDxX3lvg79cR5KMEPkT0Nd/p4GwH0x5ec7VAenuWq63DJO1Y9pILB71H/wAD+3TZ14B3flfgnUEW3FCAACB9RvYOcQFUN/7ycDRw1eWd4Xzs3z+jLJOsm5y21pl2ofDFD0AfbQJxaDht6yW2FZJ7Q1FA74lHVFMafgYuAcnJ0nxdGwDd2IBb3SmVYzsUf2dl+/jUsbrgBRNrozeAjPxHpMSZ402MH0EWFHg4B03giKRK4OJzqPeU7028YUn0tQrIcJWMa+uaB1UBDukZfmYA49jKjy27ysW5O8GBc6INOobSUwiIEGkdYhInTPyKGrstbFYxni+igFlpDBP0s3tJSpXl6CUCnAtQHxEiBXlKMBOpzKwNoyoAQhF6kloNKgoOYoLarsxZbufKz5Z6P7r6EFUJ8isEXtSY/6sgagAOEddj3e+b4AgO6Dcj/ZMInOQy2+100vc/8oABDuxOnZsWyuswQxoQpP30zJBB7/PyftGrZvknbPS+Go9rjOQe32HxnwbTxnR/7/rydYcazdco8H/NkemfHfOrdR7GoIfWZ5GCZrNJ95Kb9yEQmhs+KVd5y8l//T/113rcQn81+cDkIdUE3c2tgZDdAJAD3I/g90adKJXMZrk5I9Y6FM7GEAhc5egzxvmSLXmfSbbS99+WqML/fsKfx4Nswgs9jvokC1vuOWCKZX0Y8s1REOegpLlVAb4DtsgChqgDInBVfIC6f4wuPhqk7cwgSI+cPWP2bODv3zYtAIA5hOYh2ejPLpcS/gN4rROQvk/P666GwvkjolvwM5IHqOlnPl3AD+JFHZV/p+iARcIKiyAISbZ8Su8ib3Um/o5sAx4bWUC0GRBSQFQkRBHI55QiqFx8lcBy96wLpENFBQYOry5w3zTd+N8DazQoqTwPkYbSP6CjK+UD5+chH4783SxeoIgn1GEklsxOMEDJfYNnNfg7KefAR14aBwuJmHMl+kmqxhZKuNM4ODr3UDaPHEP/Zb+9c23NO+cIoAOcRT0X9iebaZXziJr808sUK5jhDF/3GBcJdVOTBYDkMvxNL61D3cuau51sDcKHM3wXzLq/Z+OwEHKsT/U6KM/nPqH9a+Pv6HmT36gQQOxBUCRPE8px2DnEPkQKxfIZrKde5Q7YJs1zzeL2a2DJCKTP4+a7oTSbIoOy8rRmwiCImneHX9csjzBmKUo6aYLXIBbCXFrYVNTWEF05U6rojt/vpsc0Hs+JN3D6QVvDhgXujW2BqzWCJaAYNp2jglsekwfYVjLcMgSw37b0qAAangFWLhUCYGCPHMpgw4je66E8qGnUvAIYNopobs88a3GWyuKBB2Bvjt0hFosuX9HO37lUd+FpfJKSMbbjFWb6PlB7fuBqNA+yVeg69OTo2IOGCfXOHZQZv63kD0my+/362atEjvFRB/W9Tyifhx9yXdufP1jX6LppnkeYIk/h6VWqRPMR+BqSYK/ej7myHi1m6j36/gLM0vlZWZ2xZXAGYYTNvoFni4Jy/v3/hAFEMBgU04vftUOG4mgGO+qCB3PIyET/M8DrQgJe0mQtwsugSvccjK8oQaOt1VRAKFHLIxSgAiNTtAcuUDPsr5oqqarXEuBDAqK4zOqnaEuuxKuXMeSAnzbWto4h1oWc8AGQQAeGdI/kceoLftGwwBKoG362bkuSffl+9kzh3sCesLjjR4swbTBBBEIzlFpQ16IJaSDrgD0u4UYDA3I0Tst4ubJYQHZJdwEIpe6UyxCD2wIkWnMoG+ak2RHXAGQkUIQAZBJBQkVJAFSRFQkUUkUZEWQBkFJJEkUhEJB7WKbgdCCFZQ7PcBPz+m4C7qK2TvzpIvRl/XJqbaACK46kS+9yuLGY0xqYxsapkLCAt0kAgGSELC6qkL+fdX8Vtmqw4MGWx3TIcbMOWFF2Y2Es3NDalxMzYBXXULFJoZfH++abogdibPq18zfWHL1IfsDruwIp+u6jVGetDqtaym8Tolm+vERvgiVjt/rX3kSKSx0MVjSJeMBO0RYz7EEZNs/oQ0kHpgjNAiHImc5CCGrOQAkSw8uoQEpItl1CAQlDIuEa0VzkKczg8yGDxeLubugRZGIxAWBGISEhIjxRqaYa+dPBwXF2bPkdQCCngRhDQeyOoBeKlIBTAIgGEVQKAWPYMfr5wrZ4coU+nQoIHu61eG0OCuD10JwpihDGdXq9jQtKSUGcHErHi4Eg8jnBmAgDQf8QZ/LpUYVOAif50KWP7bMcAOpT8dWYpoXKXi127sZOssRRsXysbRztNS/C6lE0oiqZkBKVA6UA5/es/vPOobQqLx0HJA/kh/9PCrt5xaBfumMLodsJZUl2F1vVMqQpQpAFCRHCn6CDN9EBGYe0YB/tP45Psw5oqcsD2QRfg5RwcKRt2PrS60KZddyey09YqzjZpR+6vqadV/T85SRVG7qx0AiJRIboZ+92bcJCZFIOUVd/Lu575T5ukz4fs8HFbn9/j0n7e19+95eEr9fXs3Z+/2c1uTObVGcQoQC5z1rTSiKDjZ50JyDCBFCo+DwFYRXPATLLOalWn5Y766HsRTpJaYMZk70TY7R5qEYbgDcC+VxgW3NBEJwkip2d1f0isBb+CjdBQNxcGsbH7hq8WbgYRVjIoTbwJT7Ye1eB+H9hpnJX4pqLOdKctGqkXzoipuMnRSp/53e1bpxj6oqbgFQOhFoHEEQAkV8v5+oB1ZjIAGiCF7LdMBnyhXTbOXCuvLr1sEp6uKtEgpE5E0435W7Nu5l0bDRxGbUXSOqbwIoN/YLd0e+4n8J/xGdgRDREEBidxKrYPp7Z5fHCsj1eiXUpbgf1tUu80ssJ9PT2+HZ/PDDT+uOIJauuXA6z0ECGHJACbm9wQAUIgQEUGcMfYYEBMWAWb+O/3ZaQcJ0Y/VPBNv88Gjn1WM3Vk/LwPBBzniE3BTG00G+e0dlNDrGp238xIYkg7pgdu9AqboJIJIiIhIkgSJIipIqhILo+EQDa+wS2wv/zXhsD8RwXbdN93f06ePwXiU7MOz/3qija/WOjK9XoPzs/6tXG1NkIqxwUpigPDtIJnAIgOLwpYUETVw9vRwl/TEQ/NATlSnjE/6FP6/nbD/bxEP24cN7D8oR6Hto3fDrs6W3NJNsdB99ee531qUTIsTIKhIga5+nx3BZ1Y8NsEErf4W46bqzw6oo7RkLXBQpZu4CbG9M6o1qaBc4nfylMIATjG8YlvEQBAgJ017gB8tqCBprQiVI4po8E7fP9FyAJgcBOPc4NIOPJ8b8s8ev8+B7evyWO3lVfHtLdOjSCihZQ6EvSkm9fYAREAN/69VixiMu9tYo2L9k1e810WTId1xpukwCY4pTIkLg/KnGMWPFxa+qk7UFOTu0aLB4RRigPUmyvkCG/6QoS8OkT4yjswRPl2YQsIHTYtwcvO7+u+/gw9/+/8+a70b22Y5cu/c2SJISCSBIkJCKqxiEEYiRZD3WdV+vXTyQnc6/Rn4xkxAXvqHP589v24PNOP66CuQOwcrwePit7ddOOvzmMAjGkxTmiClrUIPabt5oOWBIOt4ivnkEq6YYY+jIg0ZAiqwwnX01lLuEGp5KF7EQRQhEIRRGRAZBZFfp7NcgZ+1TcXcH86a8vvdntaqyygl1B9Xy3EuC8Xl39L4a9rLv8a6mItpxHfiaiRvBEAQIaD75gt8ThL6L2H5Zevc/pegZv0lAdQKgHJfbLe4sz71/XxBgOPRo+eNIcmdlDOrfBPLxYFGVxxqLeWaz1GRmRAzISCTTpsAPZS4UEIkisIinQdiurbkiugEQDxACyoAp8gQgKJghYKzS85a5N4Lyz+VtvM/NClg3jNvkYF2Psx9kkWefkhXPRwxQBGAWb3Tj60ZBAJplGRuMHcS++/y4RwKYxQMghra+msyxfp2FY93b7V9wyAHuPiGEKz7QFsMRSUyAcmeXSsmjYSXIhNACieg+cdL7LHssCmQbybZKK8RFC+A3l0n2zAIgioAN3Nj47uHLsQJouJ/3drD/uzftqExEBQ/GxtgHzek025zBAD9lIAlKTq5lh8yoRIJSqJB2NUdKsHlg2r7+h13vRxUUHG6ujiPNbfDsTlgmEqWVNeVj6J2jaHZtveSleQJ4BJiiRMoqkgqASJIqAyChsxrlUUU/9QgZoCF3p2c1/Nj2PNddw8nc1vTpYyuRBDbCkliQw0e2BsQZOcJNN4wRFcnIBRMOVqEwhfpsLgeLP2fvq83UfJhhyFwe/pozvxTUoKC8+rMqvwfTNhER/jF/Xtsl4+nzNWFf829nyu/CqZzxUDtz5wSadzRnyH8U9pclAL/gN+vgjl17d+zo+nX6fMJJLu+QEnpAmNG296tScnH1CG5R5LIY04KYBERAjVAZFGRECQUz8t1gyJpjshxMQL4gCDsVDm5dHjvVH2+19/Oafusac1OkiOrx39GagCBRGLXorj5GSA4U87MRgdfpGAVJ0DUiqBUjO4jygBW37KTwfVR7LBXpD4ID0vCLzAX5ujSV4vcvuhISAzMytXp356K8p+krBxR9Zyr7eK43wj8UFk57TJ1D2aUBIYt37Qt84ygNynXEs5+f4D8LmXSdotC1Kgrr0+7XJ3WLoywjcMsV4qLPRuWqaJQWfcdg+fFZBF2CgCBEGOg9o5r8PHvKXHI6jcIChZyh7TdSCbda5jDlsWokGiqqrAOn9++uzx/oYQ4BBfF/5h9Iar0gO/khnxDPscTqSr18AogqDD32AEkpB/49Sf+6xwaqBA5koEP/UzKwgh3DmbnMyEgBU/fuYGC9f0nDCENWd/Kk4M5OIf4Gwd/tuKeMLZCA+uko/3QhURnyVSB19FoB5ke0iUqu/pUODwqXakJsEQE9O0TgeHp7aCoPDnPri392nKQn5GCkTtwagZSiQvoErRqlgNkQbmICjwZ96zdh9sVqAECKLNenO95GAmJlBPf0WQe99eQCdTRVICIjIWJOWUUOiezgpvFEJHAoGUBHh5+Hku/WAzrM2ENn3wGv1N40HAl2ST5VBQOG1jonpI/wFpw/pylj0nSFmdLdZ+0T+EHSAp3qcSyAlcyJzhBAhUqBymkcbE9v0xgYd3h1cJoKyAQJTr9S3NsJce3hnNN1eE10bbxVQcrH7w1HQUF4TlCQnFBR/acA+ouXX4wuxUEuUdFMmb8n9MLIgRAiEXLxpy8TIvNAQBX8dHc3+jtfrfpOxW37tGq4HPo5vt9vId6Jn3KAoUqCdEBBhEQSQVJBQAkQWRX3zyW9suA/lz0k9pKF2bDdY5v4Qy6tt7j+vy6bcdfbAUsQIuhIdhtrvjvvAifnFAUf4wd8rDNC1TeCuYJ244it9ku++k1QOTEq/iaafcK6sgTDruDhiG7HNd4faO76sPPLyDGort5l64vvQXc6Tt5M9f/c3xjKCtdhxK5T/+IF7nU7b8aG70JlDrqCFtfnJSHWGobxB4DAsNeIqYYgVf8cWUSAoxVVZES4eGCfVtusDpy+YsHATAEHhdgJ+VlLxMprt6O70AgdfCqSCyCisgCKX/ikByWPTejWKH1C66M/e55I4X0pvnAiAtD4ZW2lKIp+Im/yWMHaWdeAQ24Nb0iHtfR5/KAdEBJFRgqIwTkzGXBXGRMpwmatkNjqLHJdk432XGIa7t/cfkMSKCpAUICZIDiCASKBICKEgrugDV9rLaEiVDOgAJLj4hFQb/B13/k8D6266Aiqf7oTiz/Nfq5lQM3F5ezsFQuBOEMnpx4wsF4FEwVieIHmdGP533mkEv+mLFr/+AAjzXPJvoPkAmZyHHYPoh9STpHrsQ8FoRAVDhgSIsJIG3rzG3i5wUAw25dntcQqGW2/VYtqgGmYAX+pshWQEPm9e+WqAOz3dPk1UVTmiION8KiucTdKInH+zxHjU4jKd9FpqKJIEIASLIqyCKSKQiKMiAoSSIpCCjIMgISKeM2/s29B7lCYigSAgpIgsgIAcOvsWfc5KMIm28AKRJD/vrrifKIUm6SHLAzPtoQvBQkRCQUkFYqRZAUFIsBVgsBQgiBFJCKEBYQBQUhBQCChAUkgsUUFUIpIRQh4tXp+dex0+5k5tXPNzWtNUJM0EPlr6kFULJ59NGeAgRJGKfWQ06q0BBfNDiidfNSIBjBEJAEJABUkSRBWRAeadz465yfsGc2hZD3CatdZ1bVoiBUEKIIyAoyCIjIgicnTQb92GkuEHgiI0QG6NRsRRQS0QZEQkVE2DCfzRlAugJI8kOSHwQwA+Qr42H1AR4Mq8mRr0/emvgVTB4IyeuYY0flAxEdYDXYpT+cIKIUepYJiIffBqIEgiSJdmobQ7k8NqT0/yNA/KKqhNkDuOxyEFEtxEA3IyuHp+7deYfJSqAn8x8n3cPfuCd8BnvzykOlIInPFet9wnLZtDuddPaurbPmy+fwXdiAb/4UDmga4vvsdfMJQi3RXPQoS/V+VXvlA5O5yccy+UrG0iyMjIAStqLXRfbqC79tvPzZxFETP/KELORoBGdQOgvP2nr24WTght9PbzGnw68HbAER4IqyCqYBPUKAjRiwZgAG/pjxLFMyZ8zn1gR3G6i2HBSQEQFRJGRE1f1xbEuumMP/ogcLep5Bt5wdJCBEOnpueaHCQRQSREkEXz/r/Ht/ZjHPDmQI1FftguaHrraNu8pDxS3aoOKB7/ZKPdnm5NP8m9CPuSCYQRgC8lX7x7ydZueCPFhUoN6JLvc04XqZRUZFvn6/x/e97Xc9PKd/1fdxlzcOA4YCHYP3RAUCmFEhDHXjo0mcqlxL6TH0wECQWiAIxKMkBSuP6ERtoY2yOi2E+BIvtcNHjhyZ9/Rj7lsxafXigPyO6eLMOI2gPLuF0XxkTEVAr4vf+LgyIPW2B7H/AYHIRSxz3dPzMswPwkMxgCqkvumLYWGg3pWREQyBvVMyKheIF5WG3eAIhipAPpbzY/+5ulnLHWjfQIWr0gFdpEUDf7P8F/ul4mZHs+bTmOfLgJzfrQ2gEhIT+OXR9V3+KzPLHpi+LrQHsLaAEOMUB4ZJISA629n9j5PH19+Dth9IpS9rn99spiB2yBvx39nOZXxj+gdnbjOIij3PrMt/9d4gKnS3De+rj2B0eHMDdf9vrpPbnH+XWy23MYAD7YXgRJ2gUA6d+QHSDOMnmX/kLTkwuYGdJ3100bDj/tEAKJl7zIeG5/gtlEToAn7RRxBDh7XNYOLrVfXp2evnxxwXtw0iL5fZ7C0fnDoTI28mGEUAkFBAkAF9MTu48fjuAboHREeXv0J4O0V1ngx+l+7191gDSubCzLJ28FALi6Sbfqtt/bg/eZHNjo0bLKZR9/7+vXcCol8BH4x0Jpdi3Wvo8v2VrIfBzUdiLhDbNEuibFAVPe+7o9Gl/lVMO771HfRftoUCIyqGPtb/fTWV43Ec/cy6+QpHPPj9UKYLITnMhNhQgZkQXVSAWiBqy6OxM3FlszqdlRgAKGRAH60yNLY6NgUdIeL6LbIOfYJQeQIJp0dYqNhtFEkVEZFEWRkUkBUeaHq72dT2NYxKWA4ZmWbhiUWo9htPCdSmhgjMATiGUkKssJniGqBduzTKvxu5Orsf84sgA2QAkFN0NmD8QidAi3C8vDH/e33r8fRT2IaG/n5rh0y+lHZQGGziwkYgPJTIjAKPAZFrABRQu9EL8WIbn4YPH106L1kWnjTrIHifdkgJg+rBh0iZLNvVuP/PRzIqpABVkJCQF8sRqDoBAh7IO/y4V93H0W+HXnOuGnzUnRpNGkR/dvdyx7KiT65/udzR9AAK9y4HW3/x03LemuzPentIB5IxgEAgKUYDrRC81o3GkCKP9GOrDAzoYcFfJz5eSYQL4wkFABSEBQJAikkBYpAiosgIde3VbxTdARUMQAHwIJopXZAAm39adH50bQn6aa7UoEBTMBXBFTVFRCCikFhFICkigpIoLJJn+3i4rj9I/riK57c4UU8/zNPygB7tGb5fX2fQH5mYN2eubm4dvY731ZZl4/eIsC386W2qoKQC4UD+wHWO1P2zdqdEEcYCLIIyCQgKSIikiwgoRZFkikFJAWBILFgEWBIsgKBAURhC4ee4SHqa7HByfOo5k/KCamX3ULwr4F6Qsf6iK/6z/1Ps39HLyzQS8A44/tyGeL+t8ffsB0hybbChNtDugc+7z6r+iTRnzoH1zkOMadFfxtyv/Q2KZhsGjwCqKVwwEgKIxMIEhruzHg8/2Zi6H1wE4gPSJSJxwb/0TlLe2RUm/02OWVOCLy8Hh4OS/Ij/m/HqBcRUCjRx+zc4J5Y+3D09FaEezNnm/Dm+nfRow44h3Yjl9cz+K7kEYcrDdEsGvf5WkuxQ11xqhfFQAeeyGEQCQAZAkEjEkkVVSRWQkZBRex89YQ3uDTqx1+jRq1ejt6TQ9Xhsb/6KUdRw05kUEDdAGRUAkRQkVEZAQJBTfOyUQIi6rcR8Gg39n350Ey3UcdinSKosHUcf+oPfu2QEk1w2EIEM01Nbl/708772f9bT4Hade7PAJRfolJmBEc6aDSyJaCEDuqgRYSLAFgCikkJBSLJBQBYqwBYAoRSKEJFigAfnOrXH+8Zcvzdn7LvhiqYgJIigNZ9zw3HWOAERJtDrbwsXX93k5LBR/l7+FJNv95TifRzb2vp8OzAeeI/96eQ15uxDWGB/5EJwkC0K8fvFlMTdR5sLtmvHN3d1HROzDFEiA+b59DseNfi3zQZx4sv0uM9/6GSUn07XgbY7qPf4a0av59/AVFS9D9zkaUJYHhAGLgYhEBn30agQF2vXtCfqb/trbs0Y5RmB2HkNoXbCAlATPwCIlNTfYmrJmoulQALJB61NthXzBOeL0+3TEVns7HmzAYIBNQHPCqrp4GgAGi62cAnsrvkMZjanvQCZ8bs/Nu9dlEQNYKASABIyCJJIAHAfKqYGAQmsgrnH0j1uB70Sj4OjhGdcJU4EN+mtxZZ3oW3VChqswc2l9Lj0mzdvFLSxuHRuM2seWC9otQzxR71glnzzWzzpaTLjJ0X4TjadDnNYIrnvOEZVnCtKnGEH1r8IwdG15RtarPGUckwV1nysDdF0IxqYqkHYI83zg5pPVY2rCh2ueMnze05SWE6ohuCWcj5Kzml+T/JZywmJmI5Uxq43RikcTci3m/B1HwGVhKkKTtHIG+6l/bWxlJqhkk6sFad3PhimKib8Jvjg6OBvrdnmbRlAI/FL1V1sH2W86XhDCrrPhOFJTohnMSc1lisqyu1oSlSbC8Lvapx7CCtcIRmkVNXYzRQr7xetWxe9EobzOc4JelLTas5hcYi90fZ9nPZXWdGk5xq6bo0SlLzglKSgLztjKljRJJJ7o2ezptHCYss0DkdS1Ras1oHXVui4veImtKskzwwraBfNcZM6ato0LKcUFmhK9MK/zSVcdH+OwkKwrobSHIMYY2PLGt34PErWs7J8Hy5qXu0b4Xwwuxug6VZYmckOSOvC0IJF2FoQmwg5X0tRqG4YpasJzEJya/1Oj6orrIs8ThZhilVc1VwDgpvm7CcHYrvWJ0mGiS4UphCr2qeMSS5ux8zpVad6PzBwrGFUjdRZLv0LW0Z0jWyVQ1yxWVFaj1wD7Vn2EjCF6QNWdjjjZXtY3QeEXGOK25HLejlxazTatYQCOTDJExkq0jSmNGHTas/FSVXZNR2B3SE54WjGcn3Re1DGVedA+coNfQ7k1IWiWBq+Cyeazyxq6UYxM1vlak0hCuNpRfNI3facjPRGzTotL1wwjGD5BsMBgk64SSY9f2jlOxwhazn3ikGbCLYC6JMJDBWqbKJS9v2he8LHk07voiWzxxq0Xvz/NXw0SwEKWfFrVleMUdeuiEXzirWxu7gk8p0wvCzpraLOZKs0DYPSWRreaXwvWGO5KVH41hhJ7BErEjaVwd1nKcbvTB7Y0niaUveaGx3dZ79UpXtAUBuFxGq/ZrWmtMv64HSvouuCRllbA3WnJzOoxPe2eYPQjpxu0coXWNrTuyrIXteD1WrWQfFGkc71wWknwxPAkrgcnxdgsHwxeaXazrVc+381upieUDw3lxokJGj1idpo+xxwc9HPf5IujLCIalWyV2SVhNRjNFhc4um93m7gH/Z/E+efzA/t9vP0dHr+7q6uHh+/dDn+8RH74IPngohUBVX2fT/1fmhp6hMfar7fsDf6nohp3fEf96rdO9z+j+ACIRmCIEABdMAADHN+qmDFq3SEVCZJvUcgZPvKMLND1z2lrYpHVK/sHqMhilK1ChlufHzXMEZgGe2YMyAIgZqVuoqIKSKvjilREAxgFQColQQUL4op/XT9XP9PY3Zclg/Hl4Zbo1e3xcw9YHHPk/n80b3KuoeVyqAMTQ3vbzRZq5wJZpUSsGsakPfc3f750SG5LN8+dYv6plV2lu8S8jvfK5IkMyjDic7SaDaaMsrSBfkbnsjYP+NIsLeNTGBPiB/f60l5vEukrc/YYHOiYQeKirrWOePE/xTWhTpxc8ucv+hRpzoh8JhDRt0YJAXP9kQX/RqZZQESnJpNfu109f4Mn4IpUV8kGQDgnVigyxTeGIoJGMMgZhaIZkCFg5UUSrNTt6KtMhVoCr8dyrF/cAwFsMgCSAQkkhuiSNM5Iebg8m9/jyc3Nq19g6zs98BFPqgiHrgKfgeD3Ozy5d3ufShIpICSAhtt5+oND9UIUcGuHIn01359ohAYFfg6ml9NyeDFrSdFZr+aEVBEClc+rgezxdcf9P9v/k4t+7jYYhplSacYJ2+se+/u7Bn85ZYjAEvMhF7n+vhAGHfMWTH8MhTMDUYYY/hi+fpevzZPCk9pnXQ0gpiE4MOdgp+LIcEUdkKnei/bHwR8kB2xH54vyx8cDux8cH64b4EiHmi8/co+Ds/hbLv06RN8X49/9AqL3fEUeYPB/EHm30aW72jQRj0RoxYpMNTzmtW5xZlNGOs3XU/3ChKN59GmKzWzdtr0Ob271Ex5Jr0efx83pfh6nw9z7/CEhJPdQF78EPQ6Pa9v0/ImjN4Z/maYTi9s0S+URfwiVOieeAFoAyAEgiiSI+qCh4c1KbL6hARJiQlYCgoCh1GTPg1k2YToZ032TYcnrktAetnXJyOc3H/D00XVc27ys6gMBmZAqJkQQyBmRqnyKngccSFYSsgeuwAJ7ySSHkYGkn+E+J4vF6j7CTF8FgfB4aGkBQWHXSwkDREqZyJUkdMLokiHHvE/P1dOjze6+11+PG5/CHf8/w/9PdOj8cKhWKKP8MmV1pvsbZrZzbGJbjKgVRkKlViwUFCA2gSoRQUKlZBYApJCCgBFA0kArAmIBNCTEgoqyYkKLtTbbbIbMlSqwUDGnVbHLNZxzvbXW1vDVx1V3d/e2wTbccMQUU38x3SehAk97qenfp6tf1veWG1n3Pz0643/WrsnZY451iHruZGyY1WuKsYyIfZQwUbJR8/Qowo8ctQVmSLR0uN/beLijICfPyAAEJw76tHW1ljduHTB3OMgCJszMgBoXtMr0vRrH/RZ40NTg2lKCLRQRZhXRmQBaaktK21rBedMFP9/zv3aPH8msnPbNULldMK2oXZdTu5KnPWvVvjSNt7o4bFlZgPuOnyVjMGxOA+hsXsC/Yw06pboNiBGKM1GAxbquVBog6IVhHcIQNn1cfgzY5Jmsi2mu/u7YjJ0ED7rCgvlIAEYMivKkE61vIKE7cuRXqqETeDSLJZ5BiMwiFSjFLpZte3Nd5QmG2XbKTVBfmy70tuEsFmqZe2Y60+t9/uwRT9BwUbr3qyVZC2ORRAcKhGRGQIe9RMRu1I/I++1+XLg3n540DU1xYNzNDBHh6oM2tOE9ML3CRAt7qZ77Kvn3BZ1dnUSrf2gRebsfbdgsaJieXxxai4cdzyWMXThGrlkflgcaS9eGbENmC/+Hd/G/vzSPkRDBDl3bzbZS3U3pwdePYZCbPzz9Lzpv4+8YnS/zm9/TXF5vfnu/b9HsOYD8YiBq8vAmiIpukMBp+zv0Mvq3lFQ3K58ZCu07yLncbOHAITG4e2HEMGAgumm3zkZGb5pD8b9KqJctNXVi9IsY166lmrSgi4aGB85QeoeFXK/SexHxfeJ/hej2TMOWj03duiJ5CdatFgmEQGcrfveL7O1meh9CJ+TsfL7PwmXDl5Xt/OQkBZACUVwRC0QtF6y7uG+cgNWBNogo7pgfFarwu3WyMx3JyZs5AOmXgZIYuTOSJJVob+ip5/94nnOg31Ir7uoQU6h6fCOajArw5ut+VzaWi8tcTzExuVFrs4mNxS/G3Rm/Nzm+Lkx3whFMzhbisdrTTDnxpwGL9ZHx3NJNTgk1ZnIY+5oPU9t+utkxxT7Hr3jchdg08Ot2lThbmuK7bWc1K6431+KDeVI3MUWfPhzcFxqjU3P382mgJ8xNfUrgjmKlNutJLU0o221KTbUJ6xckoXmprmdyGIk7ztcbOGx0uWcVFlzB9diZeTNjl2OKzHG8qxL1Xp8+Oi/WlQ8C7uV5vCJuvjZgcoOUeBdONl5vN96Qx1rsGenig43efc1QcDK3EuZypI8+0pKPtxWJdvGuDban67Ful+aqQ8s7ZWxW7u5upQlpq2m+DAxG9U+lcZ4m3DwB2tu9DTZvJvnvXGOnvZLC5mTRX4Wct3R7785uCZU4pmZmWgvezJpor26/PcpHuol63HQk11unf0Tdo7Vhl2nQpx8eDltdOSDhlzuSzDLu3t/gnZIKO4mOZaVN4m2S0XRkqxPYIhI1KY5twpK28abdWOXyrz5Y2cK7lvPqbncVzU1qxfvDO05U4nZ9Wlt2bqrCmVrQUyha4kq8MHHRxJYwtN8GSYqjNVr4+W03tbWunvz9FG5uy2bupzerLzZrVzkOgmHPwO6PDL06uNqPIk9XHX3KXHtZuO83x69NXVx1rGNJkTTfLqPWqbyxPVWO9V1LlrbauSzR42XmwQh7aigBlMDaMMOFFmogi8WvH8NFZO6HeKd36PCpTwolVNiiKuYE3tS+1LUNm8jxhDAr/EoPq+4rT4/GpCTCt46/9bt8Q7EVPRbq8Z54P2QQkVDx7KE8sA+6IB98LdHv2BQXXwUfJsqGhUPmYB4sskOhOk9RAxCQ4FoRT+uBCIgBKHCgnGBNz28Y3JnIqKxaFiwfoRCp2h7jTGpKx+xBP5nzvae/Ttd3+ftb+JNt3MhUUGOevm++xtossmM7t2+RRYtQ1bFtYfd1g/I9X/Tz9Hun+OUXuL8Pr+MJctkLl9dpya0S/dCtxDMrnqNh92a6/0MRgiuLfF+vQj6UA9e3qvV57tB7eKO5ADLFH3TxRbx0qlQJEXwJAIVJIcm/LZJWcWo9L1Lh+iHyYfDgeVA6rpWK7WqnFlSSsKwracv8706vf24bP2fnrERQTqvMYNTTy63X4cODN292nWc0U5OnR2ysGPta0eZ07qQNhUHZRras6Q+GCTORgjMHmYs3epzaUzmdnzaoqioxTZnM48uk7YaEUzHMMbW9tlOWrnb1ciMTV5jDE5azKmYQGtEE+5cpwgUjAomWsF56anglBKiBSghkZrG4EPozWRajbFdWVFbt/TbY4/j/n2f7fP5Qnd/jPo5dhzmhgzCHnoaCe4p1bov++oq+5bEh+tXMqPHm7x67GsVEDqiz8a+mfF82PtfXeG425o9vWcYuyFRJFZFd6IPDEFtFEkUAkFQkRFJLRkSoqhIC93H/7xF/OB5TvZ80Xr+P2iykISCPnrSWUHrp4N9OLRUrLfDS/ydYkWAIwFRd6FQF4IQKwJICkgsFMcceV4ZeDVmMtt0yw45c412tyhWsxqXhcXLWcLThubOtQqVgVFKw2ZArFGG3EIrpgchvGTXAAKU7I/T5eBlndEXQrG43e5d3ed3JSPbkMC7AfKx8IRJ1IRAzJHyGnksHtnzmShfQIZTzCU8jVxczm1yrr79Gwp20xw1NIEPzw5WZ4Hmz7124lsePvOUfNHDBqnsW284hjAngNzSy+ZaHBNxoJrADeQziNYUlY1BVRVKqix2Wbb+HaTSZEPAnldR6SUXqXHr267lnFxtouPYcQ4JWPoU/mnZ1Rn23bLzdXuud128l36Z1ewg7W1zaw9FWJL7tp0n6bT037Mam0XlCPeir32NT5EOsLzB8MJ/J6rig7tHZG/htg68sjvAxr2MshI1PeTZJMdaPum8fKxNaco13T3/GlNyhUizww0ib11STkMdYwFPRQ5sG4TqnZT5k13Nt9R6GhMfZQzq+HNmSvy9i7h4bL1KbPJIeR9b/JSgay3+X6qLG2UP7fJe3j+Pb/m7Z9JoHq+fO8PU+RUEzQxVD03hYcWMZHJR/HV8/o7PF4T+uXhj85y5UeWFQJqCHciAyDIAEivfiKFRVRkO7BEogvNAEuiWgHDvV4fr4D1+18/8PY7ftp1+L9Xl9PukzrV+2hZ/CwrAWbNUQULRCIfbodwSrn7puU8HBs6wzbJNKa1PqIBZ3DDDYGGgAUKhKk6ECsmM9u0xkfTaOZku9mhWTEKzLbcxGCyoCwFtu6Fyxtgs5YNbZJx1cRSBUhFhWUYqizTuhpi48ozNqb2wmFpJFJ9TCAhUUZFAkWSRHPC6Kltli2fGg+WZNrUxGlBZgl54KL88YcU/xx9Y+7zMhRXH7p+DlRJb8qnIQB8yEIBSnCgYCGQEOCDc3QjpAHe3Zu7s1qAUY19Om9IQv2OxNBgcjN7CWUwJFzaQLT0tZLE5VL7WL38uq/6XYVt8Gnb0+jUqoQr5OTxy0A63IT1fO176EqNvyt/k+RRnEA5dIC4Ji5OXR2093+Vj8bd019sfx01thq1dX1COL2kwaiBF1GQur2xX02yIAAALMFCWsPjQqR+6h2WH0fddme7r6tF14/P09XXF0iGjYijMbsfgN4dW4YFqzupRDdb9HFwWalUAEQ1GABCZIKHjinx/b3w+0OKfX79VPlvQeDLLguVJPhxRaK5cY5cuZgLogxx5BDyP3bVR+SV1jP2Xv2WQqp9LyZioqLy3yYjbU7zidDzZtkxDoxd0yGtriCMBSRQtuuFMFZ027VS7uGcWdnVFjE5IGySYyQgshBZIBFBSEWpMfnTSTmTZmJFCKC6tHnvSyhzIHY/6H6w+CzqTKZl8qaRy/5f8M06RQqsu97ee1hswLbMSi0pBdv+0IaYsIvBJNkPClZpqEkWSHm4WEgYyoAVIRZDT6qVWBxZCT+CQ+FnWZwdxJ9qFjPySooida7ZycNqXlbz2u7fNrPj1Z+lLxeqwzjTkwzp01lnbebCiqIgVmkOk53/8nTEBGQ+FFL4rhnuz2fFfyyT3u/UMxkMf8e0Ub7tK/xtrz0eeaQEeEB0UkLusjIQIAgA0ZAEAH8O7hza/t1LS9ACihQccqxM2cUW/mbukPnf5Pl3a2lotC3abQqzeAyg8cc5t7SLDm3heFe+85wy0HpxIZkQCGAhkfahX9HNeKZzcva3w8XprmWjbfkuZc0xevXej2DxFdurcA3oqD1GKxtnRw7bPxs9Fo3Wlqp2ZuLfliaMlItIBECBbVNzLc7cV3CyTfCjXw9mu0bOo0gy21PIm2DaPnNnnAigfQEA3kRtzwcY64G8R6JS6bE8w0UmbBkufZMg47Qh5zaWSLNCEEdNiX5JIyM8zZUckT7/jpPkaMjCHjFPCfzRCHQbUTVdMj/AyxlbFEx1SoTVUrTcrC/NGr7QsD5wS68um2ck2ZveD27KJGWDH0alwRVrNmXubTTUPTR8L8LfDEq1RxqqVUwROTGpFGvSjzQRzcSjVRnYTKkXG7i5jWnTGPoXq1fsOkuiAxzw337LaNtRunE/urJmhjgmO77M5zlELJNtOHd5pCzhu0keFVthXmlyyFfbvaxbO0vFaf3PxfHl3+LdhDXaPZ9Vn89o8i3n0cUJcbscONRVepmjHyJbHOrTcF1a3OE8i6eBVGU3cRzZag2Y2duVyI5K8Tyb0pUk5BbgWF5lJUao6puLJMv0X11qsUoQ4G1T5+ufnxtPHLfQUznKYtYyN2lT2pZibb1N4pTHc9hvBZqtBwGBNx056peCu3VMMNhlaNzGgJhviqgRVZVVdt/XPv02sMOXBBdwROGLVCSdIxomOUFhZgzKQxrVBgDiYCGFMkZEMnGMnBFo5dhh1empQfLqrTckpssp2IEiaRRmDQMtu1Xn6+GulCW85BBb26E1bsdF9/aWrE30zqbVJszm3C2q4xixd/J0x2ekVjxHFGIaGruHmfD5cxKbYpFoErLr9HF1eauQ3egP+fJzpm/Ce2OETng+ee3PPwUFoiSeFT3pbnl26j3aPMu/Nz1CBDWZFwmQM6dYsHuYxGQQx3mQBmRGYBmRCyaGCJDA1Q2p7v21X2/fgqeTlW1m1j5Ga/fgbsPXL1exa0/nTUj+F/NGPXT/p/4LovTdNStnBAixU8HvQvvVNF5n81h2rQkHXdIgK935ICwZEXvsyae+bPbGF4ddZtvin46/WZGDAqmEQC5+Wq1DVL1jarnt8xBaA0BZFrClIE8Z0URvmCH2BgnBirYLvPaA41OIpgSQGclrosTY7UHRtbNzQJlpqps9q72rm3o+7vOLTo3v1vfYF1GRAi+2vltgMy1E754931n++bsYEqdv5dIFyb2r3MeHdETzVTIJIjUAKgoSBIsJBYAoD5LKkCKAshMYSsCRDBIZAEhgAJuyvQnJ8wDaxmODDsqD2++7Q4skqjLyi1TbaE1c3muCzm0nO7Qj9PlCKnQU59aYdj6st1T5ZtvwJmIKMzENBJFcy4RGSVgHqMcqgVhOOts2dCEKwiyCrJjCoos1askJIbIoAVAxJG0iyA2wlYBUihbYDlKwyMkXZqGzplYpcpsmbUx1dZcKGJUFhdswIrdZrRVFFMtORwwJEUkEOqB/eIfxxht5fF3ttseWl+nkM/8bfi8TPsT2mf/nqZmD/+smkNMPhykDHdomJMZiKTFQ3TLfce2wDYZODIfGkn6MJxeKvph+0uisivFBKgjJpiIZQf9xqeq+gUkDyR9MFtH8JniPJFTVG+eyVEDwweSIX+elvkhaDXHW9AL4mUfxn9wwgH3w+SKYgf6SFSKvOyVCoVkWc1vJJWRRQn9mFQWRc0UCvU3prb2s/v/I8jDzezZDMo5QPLf4z7+ry8vj97/nL5foF+Xue+s+1hfr1hWjiODxHHRsP0RNycG5T8aqAzIVTCHPN1SAvWMps0kIwh8LThjlBlQ9kX6y6tA+Ut3k5KM9ntJGGsXDHIigpKRGFBSO3oXIvk+72jrPdnkufq0Puamz/FJmUKlKW2qsIs8TJREZDGFSCrIpBRQkigACkAFkILCBUhwZFA3Q0MFFIOqS/fTM4Z8+m77F0/ehXEo9f3f9+17DzdnqP9USLIEh8/Jgf9+7f/a7pEB/byfR29S9UfJ6a5xnwIH5qkqqh8+bLJ3bQUG3/zL7LXy9v7fF31+z5Le7qpPyan6dek3YaQWHts7vKybKJGAwJR+MG3oBApnnj50wTkQdAWQCgYRENgpqCvaHorS/KlJM2mesX90TpFr0DaPjXwT7VGhZeaKWZtAwmk+N1k9pamYbOirxYOqnbnnXM/9/mdjW+3g7kqX3VEo0Y2oLMGZg1BAo1A+f+prNfMhmXqJU5Mrr9LrV5rK7CXpZ4va1w3KAuiVQdZL/PZR7YfHv0QXZktrQkJwSzS3KSme02ndz8VFe6ZCqbZg822TGHffle8npMNkB6dJrjwybJ/m0B8FlQOCs9dDGQ9DudrDSpB5rCsDGGJe5TohjM0Um/S8e6lObuU7Zpi5QHGSKVOq1IQg78C+F8AuhIsj1aqv9rjtOHy/J5P19Xpz8U4vR1L3et4fuvDr+tQw/Jo9vy/24bQ2PG1YYtoiLXwMxJ4Himd1q+flMOCOba+977N96O1y+nT3NOjdQXpEdDaHfEXasLZKUowZmYGxaHqjmSxE43XrIpacZrzdteJ2/CrnLeTIDuZKMZK5oaUb7SmrFCSojaPS4s4BP7RARm+PnUNqm993oRvNemjmDhyHdwEO3vwYSml00ab9l8usn7nM+dz4eqrxzGMnvZWvkDQCHrzJ+MJ5ePpTsG89BHOemXWFOMT6e4oL9YQrKiHPwpuDRy5+Rr5E05e39UlljQvjvwPBPx/pf0T2HgjzNrzNQ9Zl00+ZlE6Wt8kmkkMZDnS5SFZeGZFkWCmyXVSJP7rKF0dMQviSCDugCVEDXASoISF8aIiMgkILI5VQ2mUT8YregGyTppJsw6yaScGsJ7SSudTMAQTfVnRqj+zrKizvWx3SinDaweWslcyxt62TMWPRZiqP/b097r128beJRai7/nr7d/U8P+qiwanPQgBg48lGuub4QSvsQ9DIFcMthgou4AGREPXu0Uur9J/lBY1MnI+RB8wCl1Jjm7til7+Gbmq+XlX25XDjXlqwkB/L9AxfAL1+97uZZg3XbNouvtvYABV3b4HMU9EMSHXAAvMxZxtXpXlgSikxoLnzDCbs18RAmtj7grGNJiuZmDNDHuYIfJgdtB3mlj73K0c63MBCZO5ci39zC34/owAYMAAzAAdgFQD4Y9UVsQFJFEGRBQqAhUZAJEl0oZBPNjzdXxaod1P9SuWiuH7ObRfr/CsKypLeD6tTPyY3VF9zHisIAeBGjIr4zPH24urXtVPflv16VN+mh4Il3z0lZVd8FGY6u5xap4/eqy+G8z3F4fiRUkUkSSRGSRP67cfjivZ93yej+/o6/vbFEQM4qmIiyKiyIgdk3/h5er6vf0d7dv/XpquPCaLV6C+ixwaVkUtaSVrctVESFQzL9+ZlSoJqh+b5mGkgOmwU2QKklZCiKNpJRWRQJMZDEJIBiQFxmOLFxpFFDEgC1D1UJjMZJbYAmwD2jHjotr+RqJg9pi6IUxVVnznKTyAWLUrU8vkPW6/1oeiwWQU+VhfLSFdzwH30Fg3e/gp/d7iq4GiZcafwY+aR/GwTMODimiLFezqG1PxQ5gCB4Z7cHmikgKAyIHf5yng097Tq39/e4j16/dM3F6IFAqP8u8I9by2IYC1oFGoXD5qdHrRESOADWfQdEEQL0k7HSd2pHBPp6M85rZKELtZ6ph5+o7pgjMuIyCGDoIiCFSkF/a+tn5cOOT9XflqlwpfgLx0X2PB63YPwZIoAI9Nmnzsck6KX8RDteDF779zo+E8rdIOi7Aco/8yKbNQkE1CQxkJDqlQn+amXXviZVVMY0+2eHCW8fP6DvKqvVFKgCi+SCga/Aujv/x39uryvyQPNJ9Ojn5L+UJW5bJvfTP4OxyZxaUAd3dmOW4Pzc+oZuOelAzBgzt1h9oypGFGuo5NtcKhUMSfFWLQO+fihLPZ4EqAWuLL+IwNlOqRoOaBOf4u30e18l1nl9/qsDEPRT/nkdOTEWC0a/ghjllWWlCe4wqETKM+u5v4NtTQnfYfmmMPeT2UxgvPTnyvvpp/m6VgHns/whjO30WGICnMnQkx9ZC/dSd9PtTQyecwKkU9oZO4/Gk+/YsXwIeegbof/EDqpv2qVBQWd5IUZxZRdqQ52S5ZzpDtJnn0my+nQ9RDZWTwptlDuOMh9LPhZ8CbsUF8CTss8ft3kw3RtlQOyw8zjwfqScngmn2Hus8PnUHrnpmOjGy1CQZEZFyjqh78bTriVDZEfgwPc3DIBhgJkTGZBQwfwumaIj5FUuY1j/rX84ca7FzmV+GghdHKxfo+/PWThqNOGfxceeAes0KAvGRZeP4w4O6tqa5tRbz5FvMj3cGf99Gnbv0nes5Vzryqy1qGUViszmC0OYyKgaxvSto2AIYAk+k0p2RtzIq/JnHxNZrk6l3zNn5qzA28YM4SIEW8YUkEkGQU9ERWiKCBII9MQ4IGZb5lM5dM1VMjMBBgjvcoswutCtIR0Jl8H5gE4QeAE+4HQ3HQ4FfDCJ0UxL+fLr8tO9an+cBAvgwCABAUqsshY8DIEQctAmf1/hzZ2xXOudGt0KFbyhIVnQxWKxOr6vTVh+tq5qFzeF4vD5Ph9V6b9g+KP6cG3V+V6maJmlRKJKpkTywTOe1lQ7ImOCkvLRUqI96GIP3xbwTogNRJEEygIYQRbEVUZEkTtQgdPKsNIeJOSTEOmzZj/G1NvTpzM4P2O6E9lhjNIuj2LDb0aGlFQnxM5vfoTXHVxThhpe+W6vywtRB0lcdst+RlHzf3/4h0wDKKiyKoQESdpCjBYQFgLIKQzrazSEBYoo3Mkk0w0mmVBQlRQCsDGBUC2kikBSSoEv6tkNklYsF7GWAa2uzIIixVgVlQkWAoQ/2wOGUFkNWwqEFJKyW0CEZUagkjJfM/Xp/PDV7/Ue6eAQ9V298GjxX976v1+KR+kIG2IRq45ZkU6wgJRlxykIwf+Wm0ZeZq6EaPqdaUbgzE3GTGTqtQWYlYpFNP5JnF1ljsnvptq8XxJib1LKN3s9J52dvlwwOLKJ8mENdaM8jZgLt8kX4vaEFNtNobDzYRDEhODCcmFSGMgpDGqkhN0AOdMTTmFILIfMwh42d10kWSRZ/K2ckhyZJ6rDTICwH/212VqvUtFVYJvT7Oiw0m7KqR6drPrTinWThtV9jtFhioOY7KYtgbfRSjR4w8/knjDYW9cqgqJl04aM0p2nTxluGoEAB3mRdhjFw44FXsu/yL6bTwfOctlyKjoq8vn5QPVuLz8vW+m19J/ZkyQzzsDdP8bRbPPLCqTKl1I6IiF/pd0K2J5z8HDRsMVSa/ldOkokqsDT8DCp63pUNkKxZOsh0OkBeoyjAOLUDinlZOqnwdWhzMKgeyw470DigBiEUCRYQigAHTSSFRYs6f70gYkRTjdvQvQhNmLxbt2s5l7VN03b06Zqw4OC9mhDTH9TOHy7dBX0xz/V8Ztn5vY7J3YOM8YqZLrDZWQxDHEqLFFh8LY83NtizRVE3PwxWyzlzr7v9QasELR1tGfIO6YDVlieIiBGYIiIAzAALtgVAEwigeS7f4PkOH0kJ5KKbSW1Wt2rvquKjmCXlJaWD0fZ8ejZ8oOqIhliMmJ3PRyZr+R/tC9v1to/Gq5/tAvb5U9w8tXGwiqmkVM1/52Z/Q5PrBcpzrPTZXvEbycWO38qX2MAltg2gY0hW0iEKwkWEh77IAV6tKKA465tEMyoZCxoYCvQvq0NNH8vLEd2eKjARvXr5eKMRrvG2FmZBvBHnRW2FS2kRjmVcD3OjWCazN8JmMuSWodxVRTcOogd12frm393Dn/Dd2B7ELuxLTbG20x+mpd3ZEx8XNGz9f+HruG907h5Gz0JKNvi1DNuEa7ENT0x5sqcEurGJ1QazJcEIJ2zyV7i9UaGZmKoqN8aZis7bdutmbdu47NTls7PHkCt7zGIvgyQIpSpQMz9ZvNTzL5lcPq8K1idjnfoxzS5UMFcGWSbOiQw4ZKOdYYxkinBFP3B/z8MNAw2YRAecRdvMrX2wwfMLlIV6Ay+EqV8pAtovTppPJ36JdTjd9q86W6jgOmZUMPcoX/b0vySpRnKkzyqs6jeuVceIS9Wt0P83qHaV2zfIDjyZff0XOaG92slZFBd8AqISIiHhgAvngAvngXRFvgrUF34Imcu8/3Vt7Xl+3897ATo6eTgx4/N5iAInVDN0zBHHypYvB1OiSaAIJtmglAbfjK+TmHVmYPKaREAOHg/COjbi/pn/vx7vQO99YgKxh4yLwMAb67e9eCMr8tnxpRNn1S+Pqdx80RqYmTWi1/34tjZzNPudVFYZRTyyQPrgMgozMlPNW452aH6oTZICwgKQUindQlRkJBZFcREqK4isiSAZREqJdkNMkUkixMWyf1YY/N8ngzdXgqdd4ZpFTvYr4joYd4U7USQ/qhOVBQHq6qdTvww+kvhG2MwIg/nD/w/VHzsbz9DkkpqTnvdFty4+jIJId3U/hmc1w2auhG5FsVbuqfdM23G3mDeRlW+1A8by+7jjucEfHw4f+9O+iHtQsu6ffAaKRPPpUVVaFnNDbQIQqNMgZttPGoyYinPhQNdZElYxcnm7nHZT1/Ft9XJpy/b2OH4vU+SEJP701FkJAmKypFVW0Jieoas99JKmyBUIoVhUirAUIskCQqBKwgttrRJFJU2ahgwUFFItao6Z5WpprU0zTYkMtWoXVMTEG2pDMBGKUYMEZgXAANvuFrpxU5sjdGqVcTVKb5t8XYgQvRP08rWTfbwXvtFH6882URchkRAjMgQEDLFinG5VDWxcqfJss/wfJDZAWT3EFgpIoLKJWSo+DR08jF35/vD7dn3aerxcurTj6OrTD3PeoLRZEKiyIa49p2N6bZP8Y4615vKx+pI21DvSyjbnzkbpDEdSQa7CF+kQjMcaFiUVYyCmk70RDIgoy/ZgOmGGFmDOdghvfEfTRjYUzJhp9fH6qgjrfh0hLIiA0Wvxh24eTK2/fKF7PytthjZA2xt2sT9fdzburRJO7aHYD0pRtzqtsq65Aec6+Eb6flomHqOy2HylmVk6p5zdSeE+C9gnBFFBYfGgE7SAAe789mnZ5PaQmPssCvsMqGIVUAOKFRywKwA9JgczIYnuUoLshzZeKSBjD0+FPa+6fwNlGJ04Ub3VVTx/yC5aVd0uQwhg3HGI6ikXWexTzzRCWYwz840/x4d44eBq5T1mMpn2d1v4XqO1RIhbd51c7qwvkv3RnMwEF61/5ikr8FKd1qpiH2+Hjx8fm9T8Pr84b91f3oare48QBbPt3fXFzdvQNRq/24YBg+D5eX1yO9bxLdBg+FEdaVXxXzhmjtTRBMv6lDHDib6VQ5D14r5k6V9CuodkSZgew4cEi58jRRahelSeBMZm3HPuawnbQ3YwMEKxKW0qPNE0ve0xSnTw+zfczmcPNNsj5yfMgZz0v2Xu51fu0VDp6OfBY9L5cDGHa6voZNO6BRJODCVkFkIsgFTzkxkxJWTzMmMhzoQqBPwTbKLwTF2/TXl+Lbh1eP8o2RrJDDXcxSzBrH7UBYrzmXKrRAZlyG/XNip6JAjW1NH3UePbgKij5vdOnTo95x7G/+GpnfQx4OvJWzVXmXDzcOPddxxi6ObDTu8DvZNueauSayCqyI3eXaYX74IDY6a9yD+CcFJDr40GpgfU0YncKFMjSiYTddUxcqRIqW0xxybcRQlvqucnL9uI+XHcAKPdH4wZOy4RQb/Bh/hdNmboOdYYhR0x+DL7szWJFwly+fT7tnh5z3OH2vZXb4Pj9J2v52r9eyk+qCraAKsiTjZPeZMQ+5h33EEZFkKlFfm4fL53c9vveHwrqlX8npVrPb/Hd+OVsyAKuYKN6d+1d7ortfF8XDfqzIdtyNjBMM3vEr9ILhoMON5os0UFR96NvDQJ3fVvcF2WjQcOv6fVfyKnLFGQZH54hUFCQDZAqAAFZCBKgLFIEUFgAoCgYybpaBpiFQP+RAqP4cN+nu6B/nqP3zdjPttRC3gAUT7YCKyCsjICjo5M/Jvdfby6Onvf7u9rpviPC1Jwf3Br1oOlEaAdnAgN6VsFn56x1PeeBtpf7/jNqW45KNtpWSU3Vef5nxTyPCOP7ac8c5Z0qVfvwbo2fbprcGtKlTedUbWry574sZCI5k2Z3cj3hP9Rl4Onh69i/jmzKi6Zk8CDgjdapTSBDxMgCIzVEkERtFBJAUCTyR8Phpuiht2+rWZHgbUDRNY0hDaFKsQe++9O3yoDsSkcVuZSbniQOXV3c0c3x8ewff27PPctWIhu23rfd9M8DORZVPTRU/Sy38fw0dpDf9tZDj27srPRebKGOc1O7lmXbFFkquyBpxCpKNt8ycmbctG3W48eDquWb8eFyT0XdhySqjqgcUxBVA4sqAoGWgVIoddxMYpJKiwBZCBpkKhIKAApIExkkrKhUFhFdq5Vx1ly0vCnZzQ8roxFlN8zHHHK2pydOFsr/Tax2zNJKlR6W2s5t9ztasN1OD0W5OXDLu6xxih73n+t+vjngifANYL22oAq6ap+FL9rumEpaFrTr/45eDc3d7tyz+2s2zQXpaubJxTBhxtJFkkUICkJJpkIYkDEIVKkAXLQCKLIAshsyoYhUCsogsF40pq03SoLEeP+s4OoKNpFqKc7UmIFVgKicGop1nSYiiqsKN4XZhrXT/L4/cnoed702940eAfZHPAR+iArUKtSSCor1buS10IKQDEPt4nW9Y+d+g7uZkX4/qzWj42fK6GSaQ4smPxpozjtrW2baQRRakvwbXzrbrb89fX0uYUfLqS525Om0brUjty3iiVsxXeB/r44O5+dHb/djkXtell/w8NuOZOuwffbx93T1cEJ1oPbB++9vf3KyomUj7amSvv8nB0aZjtfjv7sPrB3e8zcp+vrAtubGq1y8FTr7ItUCZo6DKMx5G5LMjq10DBqWiphrHYa+LtPvqRXnZ89xkGXPoVPgioqNyfHOs2rdAfiWqxLn3tHfOGzR18zlnbxSdb22vq3KU92vW+t9vwZYpZVZrWPv059/5oYvpT3dqdxmJztnHZyNt7emtQr9dKy5T+X62tvKipJ2Pd33+COVtuVdi4TuSOcm8N+ju6tqTc7I4txOFMF7hl7tTQyk3vwyb3IvHt4nhQs5pe/c5Z1Fs+M4Eu6Oire5Nt6562+vBosnOqem3PzY+ylQwUK3pB1Wa9vZX6JKTOmjl+Tv5d+KsrZGOa9S5dxktlOirbc3/attXW5/TUqoOBy5HZgU8/RvBtNSC8ZIYHAbCPZze1KHtaYb4ID3048HOZEOrJwfnqgUJm9fUdjbZPs7nmfh6txDPamjQcqzT6uJuX2NqcoSRSIiNWzbW1bcUblc8S1m5tsSo0xR5TCHtuqiCdmbE4yNybhrg9SgyA+hCi/dOuurt72RTxc7/Vy9uKY71nZPCjUys1d7eDf5Lov6cW7oS1V9GXKcfH3d9R2m4zuu4uOly0XctDp1OyNQ8vdndzS7bzmp5rt3KOHqgh6Z9RzN4drzPtEOWFW/VODcKOz6+UQ/4ufJL8cFg3PdX5udKoZeM68/Z6rkq+KcO7Hc5uXRTqNU0+L2q5Qyu8M2hcbh4vs6xeRh+G6pv7GN1fT+I8nUtvkq7zhkZgB8wMKkA2tlJXZTA5QZn1ADv6WfFbj4f5z9XU8CIB5y1c/NS86XmlmV825QA+TPtl9NzNv7ViRQ7urinAWYvsst8cZoycoKMGcDglAEHI/VaVNN5145XHAtY7YYlkw2NnWg7JlD2pMHRX+h8m73ru/Weffr3y9zblxHOqqPyReeIhUFTpTrHm7nr5vFnX2+Toiu1m59gfFTW1Tq055AruHtn4swEtr8iqAbmqsoKM0WpDM57+F/1msflpsv+t8xizZPZuZ0/w9fm1Ob0+GCKxE41pFqVlVeVlYoEWSSAeBqEN0JskxF0lQUROj+dLlNmoe+l6XJwK4n49SzgnsW4nWcYu7KhbSod1POenrinZ0VFnVaJxbzUqHU1dJXGBdFxljIePn/Lv446nVxdn5vgPnz5hO/EVDuQRUkFAexgAiACGACHgYIACT0n0JPtiq2ZETBT01Xb3X+hs5Mro/1P3NVIghAAcE2yF7JLosYrLzZkRYAvfExeOChg7ccfPk9j8PmOfufjA/JmhDxveygou6BjJ5ybuyCz3bQ31bn04FYP/jTboob5rFWKQ+RhUuqqhUSReuK73NQ9EBvhvxAEOiApZFHjSVIsFkWAnBqmvkzNkCsEW0o9HoU5MNDDZhXwp1E5tX1khR/ZDg7ukPp69NtPb1rHq7UcsmW4i5biIysdNI6shWRT92bODqLbmed6FMeG2XfNfz3+r4YCsZLlKbByGfmR7ONAedemXaGP483w1AbDAA2mQMy9FA8qGJA8KVO5qgTGQDxMKkAUAcREqCyCKEiD2YjUTweD/zxeXW/f8Du+3CRB7v5sJ39gvxt9HnYqyvfcSpq/xzv6zSsQe0e602QiPRVjrrg30S3aMfZEEzBexD7n8KHPHgRD7sIxDQUMYQMyvwvTclgI5dV3NNduvgGcCBdNTmHgISh6mCErPfyo+D7/DvHEzob39mbBKDAZGZCUYMxwakw+O9PHXOy03xR35GvDft1uSvM3dr1yoKPB1aOLaOhO7fDp9oPxcao8VJrx6OTyasd+P35d3Y3Q+/L9OW5ivKbBPPV2punFO+fD23cLSV36aVDPN+xhY6vR8UXShJwOU8EmYWskYN/Do7HvNko6Bsel6VcW8yQNMj46x4HisUFTIRm6FHBDM9RhAZMenwdPZR0M1OrDmBgdjrJGPeWJgo8JrzaAMfI1nBIRQKySHTcSSYwqBUQkSQRJFEvgmmCprg7qo6Jh3qKgEIoNblV1VWRqcoPfwG5X9dmCw2aZK5EDzVHqvIsBXu3lZahl/9vtu3WxGEezIiePPXqbndMuAUz8TmXY4GjHMzWLzenq7PDTMbhdbE9/i2DHynhlqp4+h+i09taP046k3G1m87le2yCbXjtTMlSnbbVI4aztV5LTRh+tdNThnzKrq5pESe9eh+mObn0hEpR653aB9fx+L7HfwD8gZAfEGiZtrI8rtDuKHoKZyIwSg3LldN+ozNZR57l7rCd+F7Tn1/xSKUs5fdTbVBYemwDfv6yLxbvRZ2nTN0m2HTwqRf75tny+xYb8KcyTEWG6fmyHS1Y70CsBT43FPishpinm19mGkgnBKd9LzXrM2fli3wJM80xtAxiX4UHenrz0eac32ZWL5qtQ7I+GIb5+kQqZ4oCRDninFN8XZtoq1GkAzYdDOTJrV4K1DEKW3LJp36tOLAWbqhhbAmbnWiGi2gtoIGof3/Jx0y4JZju8n39b5Id1A67xSLFNlRevbCpUBZO6ycDKPStfA1nBmyKdpNfi3ZKk2Ssz0KTEHq6wh9Wur4dQ2fvYTtIEx/Hs+t6pWFeijIYzAtGCIWDF8t3o26BmZ+KCVkqneWLQrn73oYwcWeXO58n+2uSYl80HIneqwreU4YodtID8+XQ7TqOUZ8/a47++9IhWzPlayofblA7Hgs1vfEmXj73HabOziKCkBYChM9UutUiklZ7aAYhFAJAUhBYLAVYAKSaed2dKgdi5s8Njz7z5dqboRQ37XRhu7MUJWbcKY4mhFheZggEWgQPsUJBav5ZST6A6jLePFRk6bW2CIbhgYOyAGN9NnJ3cqLgyOHGYS76dl1hK+L4IiArXiAxjtHyV4xM8WfuJm1HvBsdDXJ3u+bE9qSNGvHYWoGDIGfoaMvqXM9rh8mC7Y5qXAL2Sefk/4uTUmbue4OKHoTft3bvlyGe55mSe6BZ1IRNl+1nFlXyy4j1aaIuH4qy592Up2/K7DuQeqULc3hvR+O9vOPWUMwfrMWqyRjlaqekmi5AfVhi6NlQBvbyHlt7nMOEFnMEDMiIGZEDMCqYLj/l6p7bvLWIUWhJn5cPhWuub1Hrm9tXpinCQCZjcIgQs357C0UpRFQxcLf8YFuouHap79Hmi4xh3yG9IKIz/GD7DY8z5wck+pWABCwBeFIgVMhZm0TVzRV5TVuQbL0Ag3O13dsFtj6P2mmpetDNS+jq52jYvaimT7UyQbBywIBVMmzI2kK7Sm5HJ99jk+1kHXfuViLld6Deqv34bCVlN3hELMAq6tL25MTQp0cHzpPZhvOwzftbhq18OHZIJjEIs5gitGAZrMiCIkFwyLYrSLFwSrAlXH4t4NzJKGmWLJtbhqdjZZeG3wqUgNIWZIKe/q3MXU+6QnuhNXH/VNRHLm0eLbzVovkyMzMA4rAILjlHV25hWzJLSKBkoxWdCRFRQU8m2OXVDo/w/HbU9f1f9fD+v6dgnokv/dNJXdQHVZT3O0pMXR6Q190/glXuBqxkutdDlZ5vP4OSsd4cp8NP9OX/tslzI4klSJEaSMOnjSZ8OUYX/zr0UvvPa7XI1vvaW0q91fctelL953rCs7eaMbf976w1m3c24P4a4aTSFRS+jb+8HgDIiBdRkARmRVUaUYbn8nnM4PxL7ssxAlP/G3E3o4G+Z5Hnnl8SN2ltBMkDvy40Gg3b5lyjaW42iz8OoTh0XNHB6eYHf40PqSSoFVFAKkqKHw/lT2/b+Tm9Xl7n205oxnvzvdtRGO9AgMbpg0f8Y3KHEuFZtb5YzHR78P48fx/frObe6sVVUiAzMiKbBSVFNFRT3/szgnEjjocFy72Wfx8mPzyN7PbYrTNgraAQWZAhcc+utd28dwC77eMoFmZRzbkdCAgQf1dOhYuUHG+9pXnChSVsLEQz7yQIZhQSVlDFMMYqPcD/SfgY1O1laxOXmDg3zw/X9vFxbehcEQt7ribnyxKaiVKqOuTRO2ZZ80PzuNsdHnstTsUWDLOm7VCj9vGrPngbralASu+7SZqsPWoDIKZtYs+DN2PbfDQyw74xQ1wJrr0deraU5kA4m3qGkER44AEiqCHbgqBUBDw/D/b9vRr4/g2vmhIeKE8rFCEUWQFkkikCLJFRikJFFJIopFFIEUkUiiICirFkWACwkikBYoQFkiwCRWRSRGQCQRJFUwAsu7dza92n9fO/558/LwVEVb8+TI+vZjMYGqUVEGtG23Naw1pMMU1ZlnrZiSHus2ZMYsqVCsmyTfVkWVhUNNSQbjhBcYZSyEFAIYkJWEkgp1WBpy3TIS/2tCpthLWQTKLdNH+ztX92w2oiplL8jx4m9He5xtZDnT6H4Hbewts4elywUmro500DMGZBaEhqRbS1B/agj26Lu+QAoa81+nyP98os/q1qO4NYe5EvycdmYA7puacxAJQBaeXBL4aAAfrKdGXrizVStseGrKO7hfZQKgisCLBQvUvzb0NhiMBS+HsGMWNGHFxXW6f8sCoPOswHtVbfhw2xR4KOO5769vaXqxR4/f5RSEVBMiar9k0bYWCmgK+gtVBsH3QhoMD7rCAGZmDY/e6X7DAO3+/t+9PotYg/+J/9y/yyrij/yyvL4cnsal4yAUYEZk9WA3vU2PaH7MmKdyH+WfXJyIY6DRd+Rcx2UIgtQn2dICfxBReeAId+AJ2Ig3gj8UIiIADFQwhAbkYA50QuCdSA9JNe8u91yhFRZFDZ3xDUmDmWYMLMit2FBamDyU0ww2alM/BhSuHOjXs2D/r3MJ3Mz2+P+ZrTOVBbn+Mn08NsHW2+c+1xsFmWWCkxltNtrDBOZ21Z+293dPBDz2HB2LYumsFmzzslctAqRdrZda0aNZy1mgrFDVKhtZU4ppNkmkIIwFkFA2ZCV2QCsBSQPXYBshKhjAWSpAKiloLaAO29JpBKiMiHDExF2RIdxIT1WSd9Diziim6FRTnYVONSg2iqSoUy7JMfWd3Hfp5goqjhnDhi2MYjkARbcClHhyQlxdHBcYXfu5hb5GhZBAgCoGAACOCgpIApIAvhj8Xj/Ay/MkA/GilIQ+9lEWfm0POu+ei4TE9C2C40978/F5vi+Hu9c4HZPd4nFLo5Lz4YMuYajzXKEvWJT37c1Wdl3j5V0LHpbXhgw3uKShzfXB5ytySxHdEcceEcZhh3paeoj0ooIhkbalNmAwyDGIAK6tg7Ufh1jl8ibcL8Hc04cHL8nHm3u+za/vw1rpXfL9Xsf85/O8m/McU5YSrlCpFhJUIVXh/f+2WXzzAOcA0gFopl8lHFP07tA4YgsgPzwhWEIoEdiyQPat8jpXzkrIcyNPcwBDUYyKClAYjCgYYazpnrtzqfNx/L63BQCHMUT5/xtrXYOJuqdPk9zLq0tONs2s1lmzmnSelna/q7/Z155MFvX+25hBEwwHj+yOM8nIOXD2OY74GFicdG+wRR1IlN7wepma1jerna5exvqOFFOSVBf53q7aZ4uGBsxZ+yD+NviWI1RudE/f0Vmy3LHL7OEQJwYYQRdlQFM1oA9HR+QHpsN0ikh8bA7zIFGRQ7z3rYGQAkVZFTzQUCoKifFBVamaIlEDCLURkFJJFKzHcprCBu9PB8/7fH8Xy9v4LCcYcFq1XYcuIGvVUkFUIehPy8vsuinfSZnmNw66t0t8wt1oAhPBE4scteEiMVjInPXiw1LrwDP3aoni374mlhh3n1VawDUVHKQGfoE7eVanzavMYM10yFQ0jjlj39gf9v/1LHdbbW2Rjeefknizy5rO65ut4PFwdFzWtCXTo63mvo/X4QPH2HyT4kD12ft46fqgVkf9WBUXZKxYBFRIpD32RYEqlzIf91ZwzMIc7e5ZDik/RCQ0zigpmWSRis5JIoTTDGBsJOOXSVWCkN27UhttYHhYfUhjOLwSEXOFAxDEqEXElNUqcWEKwFFAIoQiwgLJiFYVgHosjaY8/NZMREkBQV48MIG3f7JyfF5k5ydZF6ftuScBAO78/4cDTKBh01gD+fw39veG/qEYmzm8MWzdE8hnte/ef0OR35q8/T0yT62Ad9AqLUNMDSAaSBWAaYBMYeRKhJjJJCCklQ9NklYSGyVmyfSw3datZMSVUFkFgd5hKjlUD8WVOTpBUY8dOQqYYsmA6aGN0w2ZAMMEZkDMUoZVhBEKMNLjp6h+bs/iyl3yuSFq9Forigsx0uyQOF/bEq5i+ZQ686fl56pn0gHo8TFAv6YcdRZ2jJSp8rJzZa8FS2Gx9p3d1nvDx+mSuXdWExHbsqb+1ZOW7GRH7X6ebgIDEYk7jQGfSHK8651bpnIiKRTxqUmY1BiA70TCCucvHDknLgnP5udKtV7kXve70d32fTq83wPd+Erf4dsR2+ov1I4L2MV5/7t1PvVlwS3Dar2Wp0yuIzX5qkdgSwdFuCBttUT+hbUSQBQd3nGLjjfcwMZwec/6c/cVmtpn26zlSGlKCN4fqg2xzGYpst42HaZwdIFYpybGCwxAu1hLHyIbpjF8GxQMZG2VkqaZvlWdhNkPK8GczpOkwqCrOSVDi22SsFJyvewqe8hwZ7rpgp06XiySsevmQxm6Q4pKmtxA4wMmCAU+KX7UubG6WnEVvWnm/R/K5BAomtmZJ/fsbWzBCjgBtQI2Z3DwcmrdnzrrdfJFFGbGOHZdqUKM9/HSnvZ6DujVX3/xwvCfKnISGag9NSKhLcabq0bNCk0vJQ8Nr0mZ5lDrjV2QQY7dv4tfne96KKPR+te4ZOr4PF2PUH0ySRX8qqoNRaii1IKCyeLbgQL4/mw+D9vU/e6WfGhWsltmIVP6s32LpN81n1MCskxDZqAE4MIAVJA95K1MEMUYSfKhtqwNKqGMkCsj5aFV13eGbtYH0JN9ygtEmrRXayrTLii1XNaxa28/9NGOmV50+e2dUTZB48sqZ0rKLvx21w2lTGimkqRZs1gsFijrcy5UctNqUVbwo4UR3ZY6e97/z9r4PHr6CwqdlNokLQuMrIxRlQrACsAxmCBiEqsAEZCEWBAihFhDSFYFywxVSKA2gOmmIRVFAUWpKkWKKALAFh1cumV1wt1Sqw3YVJt/XydTyeU+gZ9XlNUTxw/uKd5y9iMP48+DHE6yX7flrnU+il12WOjp/Y3SgfywjgfTdD3fuqloRJ885Bx4g1elNxXnxnB7GpmYNYm4PxXH38j8O127M+5WSquPus+I7txH8UzjbgHB7T6y/jGM3+9RJYYINMER6KaPfj7G0RgIMmmq7Nb1FE4dhNOmvJ2tK5acybaqOkzY1gYaKqmKjbWopFAxlQ7zNJNPOyGIEFkISKbpN2QxFJSlCY1IKQUQksms5ywjEBmnjFagWImktPTV47n+e+tsECgMfRkRDuwQRPXEA9cAtBfig64LpD1cX/IeCsux7fdLh1C158ABlnMDpVW4HFUym6xSrOm9soBpHTxydbaBDAMMAFigKRT9WSVkUFJAUiqKSWijUFUSopUTERLQGRtDZ9Xf+9Lf9ZernSXcS9wV7cLflw+0PTFvkLl9MvcaGfeYMHGYGUwDdcjM0hdFEYbMK4lVRmUopMYVguzPp2utqFTqJ++bOCmxbKre1dcLCbMNkCoEqACyAskqSoALIEUigKSSVAAqQMYExgLITgzSIqoiuItGosh5Pw9nbXHj/bMdMbScUzpNmt7mbYoVDMp/3MRc193KSAep9dnl9o7dz5nBdioQA6oVjbMCTxNwMP89ul/pOHc4dQvG84NtWuHYol4/5/nRvyT5K37MGR9SAb/EtRgwnmgMxSWOM1mtvo2hz7k/eughNtR0zG1TptFzwf2zR2GfJ9rgvvECBfgwRClfqCqoIAdcwo1GNOqRwdN7FjsgiIQWdzlleQnb13OVg9X4Ppz3PUSJ0feafVkr7VCpHfhFcXYTG0OVSpK1OzLdoQb2ZrPvlOvhipjC4K74IU4P7HfKdYnZ+OGTDz7jjO7+ewFV1AZEAhgkMzIzAgc5JgR74rEHYOr9BXbZyTn51lgxfwZc1hc9k+GEhWLwK3RV+m45rDpAWX5vJ57+Ui4te0oZtfG/WIAEBsMDOZERFjmzBZi7fl9JYyH0oVPnR+H2806yzM+nA+LJA+Fk779SRYAUQA9FCVCGMkigRYKQUFkrJ47QIYyKVhPvQmIoHyoUYVo7oGwxZIfEmmQMZWBJUhOCExgKBiElQCVAKwRkMcYTEAUkIshpJU2ZAqCyRQKhskUnOsrvB/Lz6jMx+kHXOXzHrNZkTDF+dPHlwdfP7XSE34zDLxGmAwEMkMgZgFlnldMFymRY6tKdeFs5bQP21TMlMej3N5J99ln80XN9rV9TKJtccY/kPRW+Qjd6+QrV+O/TNRajE825K5SGAYMgRmRix1RQVNP53Q3RZQFHzTHz7bFmfvbQUPxztrbaMpDFRZDs+tQNJJCaQIKHBxi/wRfuft/rgx5ra8lKXOx8/VKSX/s+HZOGDgTaUzAdmZqYY5Z8ypn+2YOf18mojjNnt/ivPHDaK4lUiBKZExqk/KwdPbDA2g8/P+E1+3vhjVBI0MQWf9IaNr9Dd6eLp9LhrdEeXDzeHbg7iw+5hxMtdNEwqJ/R7u5TqvAn0p6GwbZHU4b1EHe28VRWjwO0eehPfJV7daW2bVoNtiVSwYJzCZyu7T7WB/kdm/ukoe1NA3No4p6NtBhwnLTQzzDiLgOZ8rQR1Fc83mhiGCscnBDBdbQ2Cd1XyrJIQ5dTrRSqJIKZhDMHFHdl2LdWL1Q4ofjO5gbTYeUCpuhIDEZpfQpXhKVkOIxS4W6Ax7TRD1PaPHwvS19sTI1h/THus88j5ZUbdcC11zG5dymhgbeM5K5OPYOtV1UgLnf5Zdrm0Z/Fu+zNu8Gc+rw/Dh/X3p+WbswMYlRWRABkRhBQhPXYQqL5EO0gHupp0wPYSVCKHlamtUKm7JAqAsdX5e7zdU/odX8c6XY+H6z8f09M7yACKnYYFQP4sUCsD2LTxvyiJdLwmsnV/xarwLmdPW05/a7cuN2YxnaS7gnauq7aUNfmlg11W2lEui0o/P9j6WGttttauvs0eo7M76FZNkOnlBVkMY2wPUfMhPQSGkhJBRRSTqoQO2zGKQJ/1qEOqwCpFBYIqRTvoefz6xGGutZDRaHWy7dLpdnU2YGzaU/yh3kxRV8665rvteLVR658nLy/3nr6+jp+I3+3b6kAQBmN2EgPH/udXtr74Q/o9q6zORRvg3Taj+/fCKgPqY+8h3MaTW6UsGgnGruLihxd+8o0SVFVfaeIZ/PEI4JB2tSri+0RVTXJkt1Nuq/mZb/K8Yyfz5R1xcBHVeqnRJ6vPGrg8xE+rbatKGctxd8HxGIHDigopV3gYb08ns7d/kcuE5bdLC+3T1HrJNM3ZjiY/e8n8Ms2QUmkqI7tTE6f631Xkm1tYQ+Z8D2uVOw+kpuiBrEcomsVCQKgn3wEqKOMUgeC6hTzxcIhIhaASL2voqxAT6oqPOgYgoT1GToZxQmkkU13er0a7u9nefPyiPe3ObA0yLz3MqTu2yvu+LlvweHi4FcGwy97ijg980Yrsim4KgGy54tDeVcYQv5caDo+59w2hPXls9Ou9GQICTvQFTAbIay6PQy9THDzs6uv6hm4WNEV3elja4ekFvQ3Hk6Ov9v5XTGQOKINbx5rbg93N5ehqpCSSoUPOl+YoaRdN00lKDrskgeket63oY8vV1x9/WuPvnp1DeQ0kYabVHf3Yi1GD6PM/RE3FbhrmpRxrG4ttThql9/MBXfmvm4fKQ97o7XS8x39U8J5qGnE2yvKlYowiSAeqDU8UQ2RwgqfLBAaihfMLYAY4hiOVpzYazWSqKnaspzdmht0nKazWxkSnMw5Y+hgGMz+46mP2YQUeI0nezekxKMUwWPwtPUvDm/5O95d/46K6ZFM+2mDEFVdWf2Ms85oijl7iLwT5HaJAxhWSKoLeAZQRUtEQqVFFZCRJFqJWf6tBYAsFFkIsRxBZAqApFrIKpprUw5UqbvT+DbwkPc9/3O70dHaPo/h1/4998NtuZ1NMQjY0xb4cyjd6FbkzugXH54GKbhIgW86M2OdWR0EAJ5i0ZAQipqKcZjegKVJl4yElWg538tF3gh5FVQW3l0nnTt0Sejw6TLac3AigK5mZMfcUJZtczwRTyKUe5+XOq60G+zecdBxL48vNCQ3Tm6v3LXsMJUbRGok9VHXoxgLtgo0ZmF2Np8SN7deKt/31nq8PbfmzK0v75PH29BWhKu5B9dlzecOv+s7vEMV4wMmnMCAGEyA6jIEKY+G58OHqyWc0m19++JNq0apd58j1/6q0t3X+Ia4rpjIPZgHzRLQGRIQFIsIsFiyQxhCoSEBSCwIoAsKypFgW0IsFIshOvv3tufaSGICEilvoo+aNoLlAyie9z/Zxe8qnJl8HLpv1mnO4qasxPXLMUjv4PjjAUgd+JcrnScRAstoWsGKaA0fbLpvfJgEPnk3tTPDo71jjShggmYWNGRmZwuPvc2ZFNPQtuxGwKaRU01lAccPKvrks6P9bh2Fn/BwcZmNKh3frpegYQps2Xjt12826xdD4dbrO8JHlFx0gRFdQbXtkzeVB56nk7M88DGYIhQhmiZzWBPuzNZnjCPSf54vA9Ww5r0+vo6nJdyh6W6dbNH7O2BnOmA3Ye0X6efqFy/hkBXvn0oqf6RSOfEGLCzNSLMgoIsLWFpjUsws1sWiRkGqMu0b48EFpBLu1lXByDmlzOyVxce2C7TFHv0DE+625Qfvs1rMAxkDEBams057bUD12E6STOFrU2SYrwYaQUxJF7rfPoVIosFDkzqZYooCkFgAboSAVAiiyChAnfSQ0h0nSKsPUZKkUBQ3XnoHQzyNZsyCrNmFUKQghgzdMALUhLNUCEo265D63IoJ3dv5HBl7N5KylQLqem3CObbh9aimQk9t4gK5umAKRgIZBDBJYUim7EgvmZ19/k3umpEJCRZGR7UagW5nT6N4+Xtnv/4/Ht2+TDh6OID1HX7lqnY70Q2SQkG3k4Pl6y75+v4bK0QCRV34KFQECQU0QRUKgEgiSDpJKwFJAWEq2yQWCgqkVQRgfgWzGVMSVkWop1/J7PSPB2j0PQPO6fpcfv49HSej021aHtdvXftPH0iD24qiaoClRTmilERGRAHpgp+UUUkVKlRAT3I/PGoyJ6Iql0VE5XZq4vu5fNF9ML/cB4uvvJ1/n/MlK9w/g+FvgkguZKqbAaEoGe/2KCz7TUaKTAtpYa4MHrOoz8B3yyS5kxrp4Q8CMiIjBgwfrZ5JMIoP5fTa0vx5S3DAAKKAh2or90UX6YgZRzRRkQOGC70VkFtEWQEkRP2iVBQkAQ3RQeLpb6fWx+N61ZxEXZ5SoIFw6AOc3mjvffL3rMlKCKMXTCj569iPCMbr4EY6NdDh2mS6bkmWSZ0yumrICxFI9aURDtWkAOsdVaAgYMEZ49r/u1vLoTFvqzQvzNPkonf0aQgyBCIEAJwBANA0Oj37NqQA0gFmlGKIe3FUAJGREZFB4Frfr5ByVxsvY6/Nmbb+/s4cX+GNRR+VBFSCuQoPgisCABEGKiJSqG328NelQEG8TVz9pTTs7lYZsADfgA9UTj3enbxX2bzM1hvUQnCCBuRSs+vNfzvsE+hq9QmUPTm+WwfD7nF8Gje+3CR4YdEEMFWCB4d5mgCJAQVO9OZyDQCH7YNrZ5Pmr25hJp6+X3tnYv0c+vLXATn+zPy/bV7jkZIqg2z18pbezKNeqcMC0QqJ8Gc+H5/Txezf5tfq0CAc8fkqroB3pYh4+hpPWJx0PBAhJFz+bsbr9/XbBS6IByRfggn4zXB+av1s4EkZNU7QQNER4PT7v/192a7px4d1uHNt0jrgKZfZnsNvXQJ3zCtNju2d0uJCb2n12v/XV3+X8M2Wj3rJbz8XiXkEH+FTMGxUUH9K/H+biJWcArIQChzIREKs1KWqltOWWnq0x6sn+taK7pAEM/+QRCU6oidMeJiuYiMgEyoAktMM6dP8Z/BUlWKWb/Y5K3+fVGURDghdbfS8bjuHSVcsMFj4fjrnkuocc91ubt9Fv74//t/9uPZsznDN+a5phoAJ94pK+egB/I7QaQtXRWbXxE5LkPHHg6jHbnvH1b9DoOF0A/98ufyhBdZlm3xF5Dwzduh4/PzZm33qcPFOju0H5Q552Cc8652z9l8yfRdyB730UWWGfTVR7fyeW/Rz8pO7p1Ra1oP9EM/6oabck9DEb/tBpDrQyE49PSXj6Jdv+a2Grfyu9cABmc+ogIgB/tlKu9OMCA0GOlVDMb18KaNzVJoQHpkQYRAHLDfLArkCkNKxETeiXqn8Y7h/csRWJF+ZF3ATht05PB/JCAIo7MNXLZGT10XDXKGtbWdRy+YGmmBcZ5oexOkPoDMohvc/Rw+9fjspynRNV2Nv1uq0XREv8HLnUUEkuROAUUHoMf9anAs9+sXbm0Xi3pxX1H2jLKqEREW//4C5fXHvARBQGkyLUZF/OTALt2IRAD4no0/vbXnaaUzZc6Z5GhE4GUCAAoBAyNA1iYBMA/5gKMuBIDDoim8qy2l1Z33g6m6ltudLunP8dbpERfENJQmn/1YEofTzBoAE0JvdhgArIcseVZsBhggC2uf912qR2/ikxtmXqxbsfXEQA8DBAiVICQeFbnLmBELhMkbJIjIrQTwJ1YmnUvIRDiP6gdetsJy6pUGSvAuyQAk+dAQDGvq2CN4pbUVAVUKMqxto5qASm96N49Mqrgmxs4TFXZ/pIyZPCETWO8riPdBAFFfFNSwzUfapqudWFAEh3I7tPJbn2cXc9nr6/Ln4osxBNIqARK0o8FZDpGGiB3DDDIrranYMeSfvPO+WnjgAABSGAAQkRUOaHV3cfcLtoCQOX/Nfb5HhsigD6oBqIhwEF4z4lhRpUHxi1WmvL5uz5O3eqCaYKJIgqufeK+GezXyT5aPs16MPd932W8ETvQEBf+FKjMAPAWyCageKK0oBEcVbilNY46uV6bYj3ooGP7w+OGqcioHQ0D+RutozX8Me8yws59VG/EPF+tCcG/3picf1zp934N96N7ScDJGQkLdisYB9vBTGBiKKXgHFn7d+tlxXv+93SbuG1h65KlD2K2OtPMISR9yxQ+fVvY+GauC/j4sf83cN3D+e9ffqM6cSB0io3QvaD9m+xaxtFogie4c5RQrbdT7+v7L3N3dlwdrAZi4BfzPCIkEOUm0NSUC+P1duwDaKAc/yd7ZcAemP4vdHWGHDVTSZbG/78LtCGYYjBkJcYQqUDhF4ikCHQgP+kcEf8xRU5YIoSIqMgokgKJiefw5dezGOOxN/wuFTj9Yxk/ud5Cj4nKOqBD/ACJRsNE4WLIic0QqIKsgqpIIIyAABKOnxsDhBc7YICH51Y2gBEcFE5e99p1Z3LX4WprQnedWf5Nh+c2dXxzL5rw9CAom2jrIZxhzRBRqIAMiKqSIHkH1UvZ/LxPXALgBMJ98/Df5oHnnL29Lm3LuN/3iCzDxkU+BB7H8GHKydDgQAyAMtYiAQB0sQBgGRS5auW80A+OmfwDXLsezXjQl/iXMhIRaU5jAfKoL9AxVUSuScKwo8hYwuuDoLwBpOuzOMAS/T56TfUVBg+yOdnc6PBo8t2fvbcP/XdHm0KGmISArIKEgSCKpIISABIsijIoSKBIrIqEjIKTk3+xcV9nFn4RS9Du+zn0XeTpoF+iB5s2VlcCMJCSJGSfrveO3Tt8HHt3G7e4dm/7vPNvNjrFVQ6Ij6st1gwmvRP/rKfBs7Nt+z97ZMEiflAOaMi7YbDX072nbp0T/mvom2Y/16ksilyB5TyHvD6ePLlih3I/NEeYg+vgxw/acHv/zlbmykZVBJxx6jvf4sh0IG9yW+RYTYtoKhkAoHMMERAU48+xcNJvumPPTP8cqNp8fiatQIXNRs9sA3X/E4DpsaRPDTqiKkiKCkgSAUsQ/5TTwxqKecmNCIPAxLb7qIojnTfVXpVfmpKo0rqlmo0OfIaIiFUbktMOxW+XCmgNd9I4CHuxD4lICnGLx1jlYnHIRcfr8ni7FIyZ8bfI9Zj3rKAhRMCYeGolgRFEAiAxAGxOPgeRbDEPF/3pWtT5rou1MTB03Ny5EHVFEIQCRQkBCQEkUkVVRQBZFAUCEWAEUinif7sOXDfzQpOUJkQ30FTDwQG4gMygZDc6+OODpfvhx/X9srdGVqY8qa+Lxb/DeXxfrRRGHan4IKqZ3MgJb89IekZiA9B34c+lp3oau5KWuQsoi7DOCjtmCAG05GNPFk7lA+uAmBrIgBfdlSrERABB6TGyOWGXH5dNW1fDVJ/gj9YbNu+2gLvwC6CPiU4f7vz/WZv5n/rhPRZRFDg7BQvgxpfBfd832W3ubnObmze3/zkNR8mOewoO/L/4RChQFPKkUQU6k9o8qqIPau3f/beG54YAkijIKLIKqsgy804ajR3fx4tvNwZWo0lT7N9HDfq6rF1BGRBALxCoHBN5DG+lBH8Uhqhm+mbm8s1eYxHRNXYH2sPuwK5gZn9iIEQABjn96r8cw2gR1rqEp73AqcNhEugCoGfTZRAwZCI/+m/qjM78CQS/FKTfa9LH/OU6EsuqyjRgVnwjZufckomHzFMwABRMAAERCHonP+NHPRly5cdfX/ZX/NywKcxAJwIrlkXlw11kBwrIgNYcQgWvaiEPRKen9fnHLKRy/TXLsbMd7yX682a03p1RKFEm8rB3q3bC7tIH34ZAXA5iIwQIldvcdaz/qNTGFeR7aPS57EQ99ETWhCwMh+uquTA5zXLrytg33aV0lKWSAoZwYidrNQ4wxNP6fJo+bPycGd3470/GPOahU5SfR9XFbQik1OFB6A0V6EUFPwEDsWXNADPajn8mutV/J8Eu4uxdls0Sh3cKaXEkB/oAEQMSzBDTyE+WgLEIFokFp8IVCfrVE1fntXKJ0XzwPczUuSV3PtyH9TEIh8mA2RHjiQiBgETl1sgAF+JkTDIMlZOL/l5MHw6rbdibPJ/cTFwho6Jr/XX+licYhDEBJZQECEFqSBZQs7tUtoYEZvSrfFalCMjDxkOQgIaFDu6LD+u3FRsepMawP7r13AnLeCIo05WUzM6/b3KQFpHx9WMv04zc68LSfMTeaEQ9X6AFUhuBx2YAuZczA4CebKrwPsh/5HfFQXSH5w+a7c5l97MUDSizteF17/jbwwwvfVdoxzZIw0aLgJfdtWsb5fJiRDcutRz6CGs5vVQA45pQAAlQFE78D+DMfHfuQ2ebDy6tn349Xz8fKYiurLjX02DCy/q9UwCFzjEWGFs15F0sEtoBcAxM1JOkfVz6lg9gLZJOUgxI6rQACNRyyzmbwluQLUJjqEqSghlJJF0tsQ1s2EMqzb3sfFuEHqmQgIEEPzUA9+jke3R6SJwR4zh/sAEfc2Xpm1qduQJAioixEyi0RAT7wKUaZAFktRR2yikbIFIjTPiSkO/2qERyGq4MBSCgRZSMhoQmtWKRYLInC1NgI6EmGxLYyTQys2SSsNrZsBkVsrYFkKgYyaFcpkQERkVJJBVzJBkqSOSct3xX+y9S6eEESGYgH7z3/OUJ5w5KAOsoJBXpmnT4t2duIseEDsaZenMwfjcbq3NimH48AYVXRG93YlkQELDZSyDn63L2ZaHPlP7ge17hdR2Ja1pjfnaiKAmUQbT3Kwo2t/rPhrGsTXH9RE1G0T5ISOsDWGSiIsgFs6BFMRFBaUtQiAuwL0iWUiKlsjJBsKqA31CUgEUwSBWFKEkk/WGRo180/RMVZwucDAyjZhXbDA2LqJheFNwBghAEMotIxYGQWGtQVULmbfPmUcC5lRShL1I4OSqRXPwpAdQuJ2DSS05lXKtWO2xkJFUVkCRZBVkkAFkSEJtsYwJBIOb687qqsBRTnQnCuXdNSJPqRZfY4hF8ifvTlf5bzSoGvO+KDj0RdRrRmtLGAsvd8/gT30EWdQgK5XTxoLNiUXr8d1TjKqQhO9inUuHY6iubc23CknSIgcmXA83NinvINBtkusplpGSkMDQUo5oWwNioGcQX+kJGRLXorCqUgYiwRhdAImVzO2SKoGVD/WRbFLlM9kpMZIUyIVNLlIArgQimsG11clt0CDMyKoYyoRMyqb1i2ctkUqSUKIhenJGQYgCBIgMmAyqQgs25pTNVZuhgQHY1rIprQWwqOyZoEU0Uwr74iASDiZ/cJDOvWdWnpyaAIEeQkjS4QI9JACQxX6wwY5h6EZlxI5LupD98GINzyipPgc5iqDCp7cu4c1Zs/TO95s4TAkI7y4QkVOxFJX2BAnYCJ0tr7yARaE0JAhqCgANxgggCaGWaDhEhpmBYUc9UmfGgMoqSKiBIoLIoLIIbABtANiO2hHRAmJcOJhcU7asBqouCAqqW3hbiBNmMZ7BAbX22Sj877A3bjBpVuAFRTEkARB3EAFwEURvyKBUBkFEXPBEFNEATORRDBBFFTTJKRERzikiIS9myogFyA1pQgVASQS4ViwAAuSQMQCS7fsQhI4eUJDnhyPLPaijIpqPRFJYyKCOJFj/x77XwDniVJHF/7jbY6LxYwBhAk25ooKbNdNVgmecmBA2q0LcEIBHceXednu2ypjnSDudrnBCLmvzm0k5vh0EkAMR1EcwpaIuBsSEgVXCp3Z4BE+LiCYymx8pLgI/zTkdoEB0ZpyN6ADquvNUSQV4gjxJD0JEskrt3yNSaOVKOK2q3sosriNoVtJA2gRnOxJUwXkBJ8OkkwoE7My5dGuORVPtyTDoc5WQ5qauRvHeZGOLjKuZjKyKvfM2zRs/1y8j1fDLIaSc7IIgLCHiiwVkalWgFpI8NBSpIKKOWBWEC6OdchdKJJsDLBCbIAChWYyhBCCiCEwSWlJd4BmBkJIySGww4UiFli3mIWiwQFCAZJw0c2VLlmFA4JhALVmstcEbYSBUyWtvTwECraBAen8vlnyKNjSdzlTj5Cvg89TzYgEL4Fxrlm1fPMqIMmBJc2fNXHtIjPt3pzy+E+NGR3DyK5tn7hiCPRmAvrAQkigFAUaIAptigiO2AtQBA1Yi3iBZEiqoO0xncAdAFQcAKVfQSCm+iSBKNjH0g9dh80ZXIOy+5R2eYI54vpnMWzL67BVQMkIqqtEQBAUcEIogIChUBUEFG/PjYVVWQBM8BIpAYUIAKVBUBC+hSggDpBQRddQG8LCIF3Y3sqIbARKu1pSAQyjsEHONy4gIrsAR0VyMPIKUHiRQzM4EtbCXivrSeZZoYlFokXUgM7mCnOKo5JPFy618MEAwaCKsaEJANsTGIYpvqKpwy86Hc6Yt7lcXOTSQ/bV55B4TsZ0TVAkNI/+PPWj23pw50vOZ6dXbNFpuJaRbDc1j7VIJABJccu8O3TfA46lPuSYugSytmOMQBMxFTPcKAEkjvHtkNxjmCMrkRNW5iSTKoc1BEHwmmaWnlRjuNxxeeYWWoeTM5pbmC6wP+nkHpDG1+KpPxDLcoZbaAiuMKMB7DVdoQUhKyAoeHclDEFssESECJmXjpJJWgASHQ3ghbXXCWDdOtBIrmIASBo1NsuoNXANjTbSJSDCac7GZHv+yBLdPCehwovpQ1AgYhrYUEGi6heAtNrEzXUgjQsgx4xf50BVOip4ofqKSbZY4v38PY97Mz5UYhJIFXxyYrK+UOcK73KOGznex026edu42I7h3t3OcMQC7gOp2ie2kdOZnGbIh3FTZE7zS3NISrlESfcRQMIaEwFRUiiguQEVAuWAimIIMFBuWKhfiAlKueAo3wJgZZAEoEZzx0JCQEyIE+HSDZUeTxc0gFF0oayJgSSQKiDjcQ0S/6HRfn5Rmag6jpAQoEAHdQuKjEC8iZ4ChEigURQRdYKg5xXIvnYQQB3QAoCAKGsEExAFQyIooJuG2nByT/F5rdF50RR41/ynPQB7qD1OPhgBCcjdpWTSaG2XAwOdEwGm3qwaVuEgSBZIIUWNFBpQlZDTTSamcPGCtiW6ysLQhIFE5Wlq6m+XORm5u2sEhRRvLHn7YUNJKr3ogq9Jivk0hNgIcRJEBBkBJBGRRZJExLsHDDDLALVKaVVMDXcwnmghJI3kRvDAFfJjTkrdwJbRXHQsvJix2CywJm9lhRXFwSQgUbZEWBinjTcMuWcdF1VwrcVFqWcd5bJeNzPKlu9sh1MxMOeTO5N5y85uNkmTcTW9SO/e4g+bSaJSoBDUNiEJDSiXLXLnu2BWr1iyiilIkDaQgUiHMNADSBak2PZgpusmEIuFDCtEGQUsLhUBUATGNtSBTTSFUOkgkk1YTWpIGA5joJl08x+XRXbn26NWmqFiveHdTJCMnmhBuxgsuH7sEgyLcOqWso4g2S6nm5nOFAhCRABHEkikJJAZBEQkhyKCKWWI4gouikFEA7aEAEASyCRcogKXMBEviwArFGyCKM1siGamoqoO6IKSKqyAhIioMgCSIrIgOhUmGJJeMzuTEuzvIZHQOQsSBqoum2+RMaWY0SxkKrg5sKbIKYmVAIySIloCK5DF0gYggOjgKUFEoiSKiI4QQcNVAoKZwgAKKTDCyAqOjERBM3bbowBstoplFDdcNu13WzM4NmDCKmRIlh7JCHD9QjegChImkLlJaIUsQCpgIEEFyFsJg54tHE6Qc2sDENYJ1YK6m9FkFo5wSOOGKsA7f5xXXTsI4R1JFxuf1PV687nemjy77xHrevL7l2j3b8w3Yerk+Yd8QJIF4kkShdZzofyMvCMXmbDXMt9QkIR5JCGB0XMoSQu6VB3Hb4KF/VN00zmebeVifhOdIt8kqtl8skMKiZZLIUjp1bcya5urjIjZgyXPKkmDYi4r+OfXiCQH80iZ/l5ZIhLEIv23c4bbHUMw4bHiCGJaWW1RGVN7HGThhvIQNByxgsBSQKkCoBrCIlpf+eIJ6y0ipIuiw1RAIuTvtQt2EGckFEWysLyxmOVLe60Nqr9gqoaq1CvscEFQchAcehUE8EMkhJsciDE+tdQFZTDFarCCHHskQklbQjLmwijUkCQOfhktgsxwmJ5BL1CR5NiEHBA5uJ+KC2phJrqIaQFz6pZNE98JmrmWRBLImWfLt/KkJHJQAhEH0dgubeF0trDA7cRRlg/RAsrnbveupRrsxdoe5bt+cCX44dcZnAdpBnWUgIxJAV9YlD7lRVIKgKXLyEChTbMyCsWAkhJz55dZNdaASF4WbWtILv2ElfrqmiDt5O3ntRzKxpipWytqCyfKzak6wONAZD8OVxd6ehHWCQejpBrSEIEeoIN5ERC8L44QDG5BVTAf7NNkVQB0kEFA0UFICqGRa6wpoSIKAzZQiOLQoAQoxApEqIoXBQEewxIRACoYZU+YS2/Kakg9Oagjq9uKjTeaCLdrzvqIgHECi1uCSRrDAal0mhIEFDQBdB5sCVqEI8ABtqAIQmeo7Ezb2vDBRBWKbG48xNASD1wAgCfXfAGHo+9puR69oyd9q2vXm7c8U9M6KJBDPQLu/oxBYgtLt71nLjZtHRZ6Ov02kChjGFVKVpQGIKskZNB29rUJIA5yjmZ4q5fhiKb3FoofM7hzoICnd7B/DJzzw83kWg36d9Hr2PJfm3Hnov0Rkktcnm9yXEQ4IbxwaU+xzCM2TK5fHkWOMqMqjI9RuGz+qTeed3am2V13Ner9fbEqfzP+WhGunbPUSm0tKo7BAwMCQiMyJhIgkJKqpjlkOIwAsmrBtAqqy7bCpGhCsiqfshDkMQVLeEFNzTdVHKgA2CmztUchVxW6GwWA4AcM31dMprBRJrBA4Bvw7FAQc/0sq54cpQCoBOIvTzZAAZPMQOeSy354vDjD0YVgig0RbsKBz85j9TzZRX5CTM8+ro/JO6XFZeHp5c0iTRF4i4DyiAgGF9KNQBsDFFM8DPBBHVSACXFVQioqOUF3ZAYz6UM4KFZ8whMypaZ8rtDhGyGJEPD6BFRP4BNPjv316KA1QZFZAZGERQkRC6cPi1/Hvh3qJIhSruq1CA1uslRoWirpVULSFF70Gj7M+X8wC76LAV34m3e09/xy50722AT9lJI6aSET9oWgPfMwQHp0IXaSG0hTruCjIxAFIsigosihIEgCsiCsirIrIkgkhIASDIqiJx1Xx6+xZuCLI/ho6PN4w0YYIBw9nxqGpOQnsR6xw2/FYmJAYmRMKklAhirBlLKS6KqEXIDXBDsw5eu5FtTA/LetafwCiD3Tdc+ogDfA+eN+uaLKD/OjBt+33KkKtUk3UVQUkViqHLyXo/D7fFYqJzJHPPsN1/CC5m3MNiTrIaUfBPN/OT8ZgAs76RRLUiIBG4KlKwECxzIk5s+r3Lcymy8WxAUyG/3QE4UQLqHKv37GzG5aiqK8EBJlJSf8iAWkgAWgRSJAmIZgUJCsAUFMkgCSQwBtFPfiNQAZPbiV/7D37tMHtaOl5ruDm9aoInGB+qcv6dPPj2wBhqAFGKHah64dD4h/9N1kVpV67Ig3PfVTK98msgpSIlJ4fp0/3OogMAI68ZVcGu3eCXjpOIJYCybQFQY2LCAXWHns3NkSoyKLyaP+8xa4oaChULYSSF5BacpINQQTVLpLcSFyUCBZzQgJmrCyod95CA/0ssBkEVEgACkJHSBxlKp0z3Df+8tRo4HtIQmuo7CTxvYJNMBBVBiKqoMRSCMWICyRRGQkUBYoAIwWBEVCCwJICRiwWk6z4vk42O/E0bs+IObeMwcgRhJMhCavRRvRAN1/wW+7zG9StcNirgKutvohVxFQAL0VS++5ULhkK89q0qFBfAQsAiJM8yaUMmQIBFhYmtEhrJuYUmcGkxKwJNKKSFsZg2CT1zhgc3VRygqAcXyvbuHe8gNKC44JR5p/2eSb/gCk+DZR+vh9xqEA7JQAgEshVkGDnsiBQFgVVqiyiWpZEgBEBjAtVES/mnQqRL5vd3dHg7+m3Wk+BYBn5RQiK0OOnPcNyJLqrohSEYKEjPGqBuNE6IBABCjFMGDBhWwghVGanS7nfvr9PNt5ABRF7uvXlwXqPZz1ohvw/E+xo2wvifUCHMbKUAAlZWSyIFSQaItlVpSqLh8vmoTaGehqBA8Bl/nHmFAUvQERgRU5ZhOGOCd01QYSczIslYMANWwWCDDAGLSrGBBSSJDxUAUi+OKFHwQrhhUkQU/ajT71f098EUGv6BYbATV5Tb6L0JDTJIpFkigoRSAKsCLCSEWBCDFRVJAWSKAqwUFBSAsFkhxQO7vZnPxk9lBjFiv5wtRWwAQtoUUSQCRKJrbsvofVZ5nmgnV3TdZO5VDqR3T34vERZBHzTKL+Pwd8+mRJAiSMFIIItwB5YvzCEHxIIoS03pvk+j6ek30O5eBsgMghRB4OMFQClEVMY8n/iusURVEZFFRUU4a10FQr3QJ4xnpFA6q4MVyxty8CHrICIBA/IRZSQihL080O3hPBZ2KKAACBB96cnowAu7q9rHXQFBlF3spgW4lQEETngCh8/s/oncioEEAjPDkdifL0UfoBPNBc3eV2MAlA/NpXDIRJJA/mbjfEUUIjICyBGJIThSkUWBEQiJJFKrAlEgWSwJYoALFISgEihSAoERkQSREs/dOeFxGAh7IbgFQfH6v2d80C+0CcvNjoJt/xT4XxiPpQEAiEBtFKSft282DxJ10gTT3SA6zVrWmthzZt+c2YNJYcseP8O0m7M4qIYIokerryfRubqwBYQFkWBILAUIRYBFCApIChCREBQikAUAk2cjQ4ayry2Kbbl8F3/LGMW/lopBVCH6z0w6MkU0WkkCQB/ifiJEy5uQ7l3YO3djcHChAL4kox92MYb89Mv7npJG/b+uPH1r/aIB//5igrJMprMCWwyCCicDPwD///////////////7BoHvfVUnZpcbUk3d3DCvXcbDR8veaV5bAACpQS0GW8zI5bAJWF5GpQdNxGKFBm22CtL3W4PQc8wUV7sOkolFOtD2GA9ZDrFUSfTTbgOzttlMuzUbU+nASKS1oER1kJdjJrfZkeusAO0JKtj6Vy60AoBRZtd2cibBro11bLWpW2yBWhQUTMyou3AQ5WTc2rfAAFJdq3vub6+273cA3WBWZfQd9jIAAV7bLDamO4yC7enEburqlMPu3mPKodVAcQN6x6GUNNsLfXvCvS6kxPg6446n3MvvaSLhW7D7lHlx7m+sejfcrlru92QfbvmV7Sp8Pnt28xXb7e6Ju7Kife3zPLdezy2FjHt7HEAi9t4AGvq5xO9XDlbOB885Zc0wDTOE6GQU4h1d93Jp94H0Edu27db6PC6Rslwvrh7pvQ8j7w8emvB73RwjIY77feMT3NOmwDfQ3Dl2Jx72JvaVxnmW9zELvqnEfR641pobvd95tJSh1Q61s1HI7sdAV02wDQOgKiYbJPrU0Avt6egHnd22aNAe7eneG9Aead729mSh3dwkqKRzsrd06akyULbbMRqpjBNjQaaRABNAAAAJo0ZNNAACDE0ABMoGmgEIIgIKnmhMEahmRhHoJqejKemKeo0yZGQEp6JIiQITRoAmGinpNmo9JmQk8hqaZojaTT0ammQEJSSEEanlPTQCT0npoyNU/QmNGjQyAqbTaaYqGCekEShAQEaGghkaBNGp6GiYaA1NMp4AGRMNUESQEhTJ6QU/RTyaEyanqeTU0n6ZTao81Tyan5Mp6p/qGin6J4pT1POi/pIEUfRCqFAAlAgelA/4Q/5q3/3epu6EECgOOFPqVALlRbsOr9Pq9Xa7mF2vY+fmn2dAAQN+49r7+UTrkRfBgvY+zstjFOFWRGjWgg9/ItVN2MR3xFx3P6SpYAOooBADYnw19kOy4gtL/KcrVz/9W9qqR0LERQLy/o02UHmnJnxffxZftlnvmYl6QpELRED16++Cj+4QgoIPLmCLSdnzJVBAXS+Wn7j9VEOp+wnH2Pd1ctiUuL+2fLhjd3c6XiKAf1UqFmncla0586YKM5uanb5AoCBmG07NTZA753fkPfrevk9fgxAm/3c70S7RUKKPgSPyQxfFmGbSmMlpb69BV+7sA93QAB1/QgJVliv0eGsENymio4IygEOC5UbKQIYIf45JOsZ4pXRF1MTbIoTI4j6eEVA/iu2AZwT8wht9NFDOG2mRc/THn+y2HJtlsMEX21BZQ1VqtZjDu+ig/snz7uqy8WLQI00V74q8j2bHVE7O5EEovetw904zwXFVGu0wVK2QSFoheiiNpGAJbz13SwQfs+U0WRQLrqAU+Sh3Of6dVkb2KGqhRVIRdhY4nuxBA9gRFUK6/IN1Qwi33o7yBD2JBpVWqAoBKBaVShaFaAPYkDEiUBQ0A0KFCBQFCUfV8ACAHi8pgRMdd270zcDgPseto7ugQEuvKIQBQDQJTfULIBZc+LFlvMVQKVlSqEAs27rB4A/DryAtdEwfFh79v9EAAMOmgpwiog7d8pRQY9DwldfI/PY+f4t2hPb9rRZhEgxe/wCexF8s9mfkiBieL19ALh79M7/+fF+n7Ie5o0bHfqtdbsKYSAbLZSxbi5qAVOCXYIFhqYhNoKnOvCIBECmoUUGAK9S/mhxIAH/NdwY29hEFbh9/3HLwnblev6toF/n0+3pFPkM7G9AVRF7O6Ys5gBCigobavdwaQDFoP54r5YEPVAglILSggQEB0EAMZQIiIEZXVEl1NEhkl+H5ZASBUnEAPSVKHlf6p6D/EVEdKoJDzKcWg4QDjA7hwGCGKByERPogp8zFQqeI9Ezr7sCjmI6UinHm+uyAdoH4GRXBCB7YSgaBGJVPX+KrB2IpRepoACzhAxC0NKLgjEKFEQAeIJHENKp5RfNCACeeAX3I0ClAFKzP+T/Kn5C/ii8SIoF1ikX9o7xT7I+IiCBujgaqKNwTdQoUinbrRVUIJG/e0AqzFUjSCrzVQoDguNzS3iqAXNYmEG4VlkaJhv83FgWvcMCUFMQKAEEoZtRaCyLxWMEvlEgA08Ex0cAE7EOerZEqibOC/2qnRLKiCZ5L3/laKN3/ejj6A6DHtd/P8+xdW0V7nk2YgFNdE/6HGAfqmkAkhAqasL/16FAhASRXIBr2QiAZy/s0NpcqeaZzikCz2gTRe/BdPTtzj/pUExBCJAR71YAUYBl71lUQMoVJAtTEkg0AwIqPIFRofFKuhO0oKgeE8IHwIKah6l0QAINYCiFSKWgAipgQDOKBlBUbKilyCKja7qrakHGDA7uFFIAlAqVbHCXnBsFASzmhaG+iGbAXwEbmJYcPLDeA1CGQMg6ouOeLWBnBLBGqqkzSFwgUkHjgFDQrA4CA+dTvgSSaPEvQkQjMhBAxchSoaigSASISJIA5NWiZsY3nhlx5VqDIRRsUjM5zm5srGdY4UtTrhG9kSYQKC2hRDVoqohs0Hw7xsmzOnAvTqBwQPDnkBzXA9HiYB6c63St2b4lxK1COZnOFy5cwTDeTMMwdw4cXsptQASF4OmGaNDi9TisyMc1DuwLFVQYUOIMQ5RsVMyoxRFm5WFv6MZw/UCzouukkymG+jWXQtrFJFVb7gEBMQD8C7ds2F5gmrHOo6gFIfyfFhnoureUiKIkT+nTtz7uK39Pb2vIElJnhRZqIXuABa1o8SiilabDBK2oU2prpeGrFG0XIc7VAzClqDXOkupZQQSwUi2DFRA4lEpe6rxaYqRbA2C9qTFwcQWENUZlZviI5KmXFUzBCN9BUKZhHOYipLgXA9SCgO2ATtAkpARFAIdYAUYz2JERGkFBOwSqK8lfIwWMWARIkRUsFwDZHPLGlcIf4xysMwB5GLNgyKMA0Vu1gAEhhSVewSoAp0XlkEBfBYFDIQgj1AKL4SnaRQISHCkqoB3SdT3EIIHJFWNgQFTSqIPfK+MQKEIBgQYIIIQAgFYllaQqlKEIBAkiFCghEC7MhpQaVKVU8kInciABJxEWCgae6NRA9EgRwMIDu/GiJDoGQFAoVaSaUZERGEFkSpIEISCCQAAoFUSGFhYVaTvqYQBGXK0FJIVQk9+xBLKL1CII9iOSBQUgrRTQhQCssKcCpDJIgI1S0sMIAjSKlNTKIsCJUFK1EAHcIgQiaXxSBgnulaEwBISSUJASgRFAUUgoPGIRoUYxiiJEBxwasPDBVeFRC8JQeoAevFgAJhAA4wiIO00IhmAAK4gqjyA5Ui6dUCiDsRgI8CMARWwajCkVEZwFKgC6A8IVBU6kegTplHKIcObgxbArcDJCyherMEulKoEFXaJFEsmQI0IiJiIIINoheCCCVTSgOFwOhosoujcCBGkVBagmVggHbpHiwgByUZGAInEHURUxFE0RThgAPKKKJeEBA6mlFADugAAeQUCiLSCr1AiinhArpEA7AgwIYgZIqKbiJyVgKq6ijgU1SoCuJEQUeiKmMQBHKAoLaKqo8MFGJBC9lpR4UJpIAgKcogmiLqAGZxyu2ARBS8RVMBAUEcxFRTcUEQMwAzAR0ARFQjABRcwQRHcQQB4g2ggoXiImWKc4IDaCi2gCqX1SgOkE6RIAXvhBIhUAe+QUWjukVQOpF0oop2gVfHKKALwgsTMRDMRQtAQAAtBFM1lgGCCKEgOMQwgIpjBFUfHk4rSo5caQvhCZJ4u8NlabuTzPGk87BWecwNWROvfSFxO5FMec/n+rIedzBwBICQOcrXYcn67/rP3ZG0FCQODe7lXDQ2rzzpCzyiUZQVd1zsXRLtEQBEgBS0GVyqIWqL8suEIIAoVi8xAQXGIBtgqAZQUpKykEFviCPcQR6xEwqncBSoiPPlS+ISIOuKUBMxEdRBvEEGQBcZoAxBVQHIMUEUxAQshEEMRFkUFHtKIAd0qgpiBPGSICOUlEDvlBO6AeQgiNKAo8lUUDMAUFqIKIgcmIIvEATUQBkyIoloiigXREFopB4xGoixpQRYBEGBoQBRmEGgUgKEAWRpVQSJVBGmiRAKKAgUECCAGSBCqBUXxkiFJhoj/3Aii4CKVARkkDxIbKiSIAETMkiCjIqENCCjJCCgwgCMp3Sq4WUUhVihIiWCCCkQioiRaUEgIlCELxowVAcQBigqBnARTMiqUARBiIKOYwUTBEACKil0VQCQElVUHJACI0ojyGgRKxEAbliCPmhovBFmb1ZGqyGILMRAA58opmmVsMYwZ67OSBi7Wyt76DgyAmR1C+uDS3NYS/IuLkKM3MLcV4cJlVyJCa24QsILgBNBDaOi0yCFA8GWaLlkwXrgvf6r72oqJy8Sfm55uBiIT90FxbqFIGoCtTKtdOkWAC2l2EBTaALiQohAry0b0MWBUWmLtbAqBgKSYaHJEw63EysmXZw5kqxCq6usKXiIF0EsJdQ4o1/jRQjDKlPl2UrwUAwWETFvPxQK2MyZT4MqlS6IoQYMaDBDGOKkSVq2Bt3Eyalc7q1DCUgBRQ8tHjuvzwuM7iUxInpjQozGaWsCVcbFCXhmFiLWESi0C6AqBQIDaZooQ11OFC7h4dxQzdAh47gJblgc5zjxY3A3qJwXzbjNJatQTdLoutWpHWFRC3H95owjkA2JkE3tVC6wXoIZgregqSWEpUitrhVMzGb0KABsTaBr/qZdiSCoEKgmQHrp5kUh+XSg5saBeEgvLGIWthCxo6ANqqJDo811pvkCsXEAEohoLoK4jjOYKOwRTBQUp9AG2zAM3wuf1PFqr7a3o5PPSCaROkXDdhIcwEzBwp48D4ZU6RTryUjMUXMGkSJoUIOFy5uCChM31xqszVUt6A2ucOFEFsktut72Il4ALi5CFBq+NBEAFIiBIBJJBgrDKpljSwAoTKwAp0FXiibaw1vKzAAGAAgCuBTBaCBoMMyIuA0Fwqokh3C3gwIQMpdYQLahZxMRAYMYpohg8RMNLgW8QxlaV0VnDFVQDGED0of9pQkhG8lLhCHCbaAdgzuvsaU46uQoLZgwIZRK/da1aWSUrUKFTTQRUHLIAtUz1NKWG2CBA86ICMKKKDtMfIY1b8rCC9nPWARvXXnoq8MXljRFbX5Z4QV1FlCBmvhzu+IYQL6sFJabFXjN0BUI0KKBlGlG6iglscgsoVqhalAQoKgucs0VAUqBjjcIgZZKBnKSUWoNZ1BRQc8OqosqCXRAR4xtU3bO+CoOoKEgPARFRCEQGEQFtsyAAHBmwbNmOFc51WjgQBC+VMgiUQRLgcXS7eQH5IpWC8jAq+eBoBMgRctEEq6LmlbgopTHRlGQjYFEHAGlCwrkRMo8kUVLbjdVEc8Aq1IcF8fZg2N77yiGK3ZFTF7VtRUTWaqw1rWc4zgAMts3zw3q+NTQII2oXfuc8oXA1EmclBect2mYg6vbRfWk1iX5Y2KqJhUbXQ1ZKQLm76b1LA0Ui2wcikk5EKuVabgzCupdhLLCTlxLiCSSFAKo8hRLQ6sIKvFe7j9JnfYMZMR8jeaxf95y0Jl5MgEMbtCbaUrRtSwJK37a0kqtyYh4+dbwUgw0IAjCvQYLpch47dp1wa680T/1XQCI7c0FVAhdoHdHffWPTD1GFJGYAgFA9cykgXVutmZouxAwAS+wisQQMhjMqIFAZFRWFrAoGw5qXQsiueNazkyaFEWEAVLQUboUpOWSuBANcIU5RFA44sqIJtduC1bmol5L0FjHDNhqqRBHPF+MaUKIqlyYKWHCq0mVBBLCYAaNNEu8SG9q4gq/cKGIJeIY2uccMwtASQCMGEBTSIoPIil8GQF0iY5GbVnMXgIxqWemUIRYZyshEgxELiMZanzhGCOZlERKtwZELqhomk/h5ctsaNcCc83xxybWRoxhAq6iCmtuTU56mYEHDxdvpve3Eq9gpVLt7WUmilKpUEqtCmM0FhZLRItPjQFAHH0fh+G39kn/3k5Xl1zPZ3B/N5FKFAEzQEUioCNCQI5Qh+qU0k7su1S+oUQhE9/fO8NciAjPZQr77DBEN949e+OvBA6xtcBLZEQuKNBXe6dA6ATL6QqHhmZ4CKO9UauGc3msTaGVAyI5hF4FVTam1QtoULDZMUorASY1s1ARQNII0QRQDiLnQBSICPBrJgdQDGGO5TI0B/6ZyDJk4LNoWNzdwz0LOs5Eea0xgn9uZw9NgVz3eoW0nDaNiDRPB8kqTAiXSICPYWkCQyptRXUQCVowixfEm0AvjS0Rd0mQgLC05u6wZMI1ZVUdctN7oW3u2iazegwIItLIqoDvVYoNSpl5TCAqGEEDXG1QvxaNboVTFzWaUL5McZiYdSEq3FazhUKohnOtzZu9ChlLb4xwJKAEvLM0fEknmu7yXNd83OjQdd2DPPOXptPE3w28+AfsGeLT1BXe5XHEJCYVRCklAkaY52uC4pcNIJ1j7JXGyKiFwZVqVtRUKb/Tb27U8lJqNOeSU4tlW5LKFcaqCWEC5xejUQF4Sp031j3BdQtXWLy7igL6rOkXpczzbQmMVONqVgEBGpgxOL7NloXresYxQGilVRgC6QLoN9AJtvgxqYK4YFKKgaS6CBu28ULCE1upxuSnJxfWtco2QvF5G0rW0VALEVEc4qBkoJmgqDdUhWxRTACQTGjQ2IC4goUp63BUw3n+eku3BNqhkuhk5kvcrm2G435a0XUAR0JzRHExdFTSErjQwiblpAq03/7xkwcVV2NSYomdK2FKBkQoAgVvUbeHAKn9KKYxk2gKhwprpWQRxhRXIYnPGAQBEDLQplWVQ6QAxMsiI+cVhgWEhjC1QWIdL1vURu2bTcSY2ZSXL0bYdTu6PX0UPj68usFvBAelICAUlq/OT5S5//eHNsmS5o/iRJZFLWcIJXKhdhtMBsxoK6/1xN7TbE525JLQeFATWUZYBS61ZDhLS11uMBIvdYdRGTXckyrb/XhvZAGlhRoZ0CmQi3QBKl2q5xVbZV7hCrWiZTuNi8cQaNFcihOULigG75ymIResXBasoOcWBeLiAjRWFA0WQpAs0BOaC+/CoqG2+pmW1VLghYC8xqgBo1U0MyRurgjDGlZYsmoEUqCJyYzj4qKIHlzn2deTWyCWEwTeqsVcQq1rPhl809gvsTRiXUuWzXPGlLhAzub7rogS2StQUQffEBQxbYujO+0mQIg33DjVQuHNJBrfa1cxDG69C+CsSBbNFVXOAhIgqwiCJmIgjqIIgjuClR5RAUUZHiKICzDRh1C3AWC3EBGsACWvyHGISypeZ1EQGkUAzpIoJa+AQ0byHDQNlovBjHQACMvvCcC6RJAsAwRAwKcBlbQEkiERUqlWAE9ciSR5IaS8whobGLgTKBdfAugACOeZfWmeNKBhLSX5HqoInCO+VhHKHFpoAUc0cJVAY4tfFsVhLVWh5AoCcIGc4G5YN2Di1mZDONYxmDWFkSZp2VYDQsijDySlUGgM4cSXmlUVqcHVF3TyvKzblckhLS0TIqcUW/QUVq2KLYj0TgAwC0P6etr6+jA1EbFabKeW64uh8NHBsXLHg7vc/TjC4GB3dPGieNEBHjrZReeLZFU4+nHh1gQ0FctWNlyThU3bOkhMm9WyrpU5aVbcfsw7lr6TWsAn3aLmQwKeBBUHmqHnFTorJCCREBYJEAySzAUgBkLSih2QlAUH1gLCAURQEKRRHOImQjFVBC7IgqGGkLj5RRxtYQQvzFMrpGQCEHVXRfa6uC1pYfCiwVumNM+ei3xAMrgmeSoGoAQEsesIgJWFUAQrEQXKIoA4IgAhqKqCPIYCq6ERgXDd1DDotONWsdM3CY1UGwGXJCQJDgDAbO/bS2GxBmFBKyDdMmhsgSKF2WVOFA4B4rSOKvkvesbJi2wxkC5sEBHd10YwaMli42XMsS0q+DeRXdO9BerIKKa3vB9fDrOTAqbVC04wUUxhQIg5EccXzm2sFW4tKrFFsZ0YnUanVg3qHXVN5PSlb0VWoMetJ1c2jezONWsH5epZp/IFgsgdOcPl/JVpyyLlUiJjZPghbjupdmKiugKUFCpUggBZDSXFyXUdRcArZvBAGgPqpTxZ09mlDJu5qiKhtULAgVxFFw2S8EzQit2yEQwYbHcIjV3AVPgKMAAQl1B6UFoA9Q4FHr22t471aW509LCKrsURMIjvTjWvDOJMnAKVNgb4/yils6AzBOO8EROwkqKBEg+EqI9CiEIKgSKiOuB2EEFAzrQmj8YKHZaNNbjS8J4doAAUTN7swv3dnhpSlzf8xg8T79xdwnoroF/bSZG3XlelN/Twcvh21pfsMtZpqrL41CtICNG0xxcsXkqFOxzRaOYR0BzfOjW/jaIq6OZQib++WPuFRA8mGFtjZBqeiJ/ACvR27T6bwXHRzSrpNF1QPsYpgWKKHT3KD+WdDXGRyCoPnAK9/txZOh53+Bb5Inqnj+8fYP6gj+HIkLqU3n49occFFB4eof87BY6p7twg9PH6OvHBfA55jUFN1CljsW1WFU40ApBdEcoP+KiAfHx95fn9DQL3VBTT2rdD29NTgr1VusI3K+xtJMGnGlQtkZqg+kLQwCWOdKUCcKfRGx+CBwJgzxgHi5WlAINi367e0xwB8eWtpCwqgF9bFCqDGpQoEgtdVgcwBELLaq0p9+isPtm2ck0H2+Bwt/anmSgujf5K8mw1AVoCgEumSH8oEbZRwQ4BdXALUQ2B1g7awrvjQQLXotq149f1VQP/IKAXnHr0KO5Q5UE4Qq/SoaP3lQ7fg/bpOVKnYGuhsB+5XSKX+fnmJRwAxPUaUBtrxJn6bXF2LygnivysHrmJ7/pnzWQuZMNXhvrYLs4pxPKdHdbxwvF5YdOlls9poU++AKHHBCRTTkpQXLkpSHRFUxh7HC6XElQKwbo7YtLoc6wEq0hNAiInyoRhj7ntuUpOUvtw0hPEiOSFgIdKezsa1mfFpAErwCj6VUrunxEHEkiULStFDQNIlIUBErS0LQlJQAUhSFBSFIFUFFUxMRExFJSFKNI0UFA0tLQUpQMSFDSUpQxNEVIUlKlC0KUg0JQ0DQBQlMRSAVQFA0xNDQBRSLQUrURQFKSI8hBRpHE8dM/6p8V/H0W0nUUkLHPl7CdGPgG/sMQFBgj8esl3NPX4r+YD8cNjkIQqsnh8FkUcBadgmEsFKr6QCKgHzhcPbJ9cuAhxrXEnuD/1eftCiBIKaIMCtbVpCT/t3Ag6YBSd+D4XbgqiYJX1scdVgEQdXV+nHlYbtJe5WbUqdytujHeeZOMeLWUwHr9AgINvnRDgQBD8y/ji+btRiUCmQhEmIFvGLh9oZ4kgkWk8QMvGw3eJJQiIr82+txvOPXXmx4MvG3JpnBHPhd3JeXBY6zkLy/Vo1akF5CIC/gKqO+m7FPv9t1XKPoneUgv1xBSoSEDlZoDxDoEBIKOyBtdgpUAg8wC6HYUGaSPFlgn938ZCYU2bVOv08PXLGWdG8cg2/qblEBOK7aXHDu4Lwpm7co8hPKifko0AsT63eNxUhC+mlPnHue2PjYg2dgZaLCFwLuL3DAFVjJQrZPm/sdnBgnxfH+q/iDWT3fDHfjxrpsdtlrlU1Q/iy3IBMrzbv1WJwn7GBuA0ooob1Hxorj2BY9ICwr+xBhA41AlABIl//ntZ/YiAj8T8WlecQf43r/F/JRJAkhK+R5dwuPMhnzHd8UuqH5fRc+TJ5zyt7j0xwnxflcFVeyl1Hw4fZakz0ePj5O7/ur1xBd/cMqLVXZ1aQ/8Ie4gDeIHB8EZC6FsGK+09Dg+v5P+jII9McXuHMV74Vc6iiNqg/UYTnu3GPFtsFSbWCYw/PRCgo8Gk1tTXZ4wTywP2IfKqAahEKaFV+hQHfUQKptaBqQvQGjTVTph9BIiRAjRQiUKBQIj6Z5ae+HKDKnC4osapVetjACvtvc7TJnMkO8Ibjo67wIdk/Kob+cAj2rx5fbiaG9QiyGhAnMpQsTN3koJZC4iIkS0r4PPcVLcuDPTwe/rSpjoWHjNcGfpPXZKg/FzU+dEHGUTp3JPIAu+euA21KZOzd7W3TdAtS+62WtwJXM1cA0U1nnixvVL3crPPOFURtlkKggm7Kd0ugBEBUx/p+H9tC93QNYHzFu2wEBGviEaIetDU2/jpkIRkhsE5DqaAMu4hZ3YYrefRUvNtGFfCclxfcmFjCqjXHal1908ek2BVzyr/4mM/c4x6anlj9AD+57kKnimt1Ue/73ieBg6VpBH+DW2QlRM3jKCCjYm9tgABW7SVT+C5wnRj3ebBS/Q4FceT7Wqiab+EilXPRKAo1nmgOn9NXu7cjS8GIgC6NuubcLswNuKCX8BtuQsDQ40FUfrw9kf9BdD/3BAV8fKi/ROMf5fA9e/4ANFsJ+Apgr3DHyrZr1Grilrz/vuNBv7dPg7J5Mo7O4/6sW5ZD0+dOHYcbx7UEo884+KimoOBoogRIcwgoP5lK8jtDyauCSSSSMhBy/A1UQwxwTCVus8w0N95twwcKHQYdOJQ0MZoUXVmAQMSZH+ZGjQLoOedHacFjPq4OYcriKpvM1ioQnGJkqAj1GGifj9J69/thO4vrlNP70R9raNB6+Vqo0pxQCqWB3BRKeoUtc9dLYXgHm7qtxxFFBfyp9573HGSsIirzMyTfMzyhrmGDFJwWtpNH9hyUQHNYw1/g2oe6a7OlwN+Husj54r94sEMYGl41FO4gVV+qCWN23n8boH7PN0QWgSmZOwpY9i9J2eedn0QEsexWnQSI4hp/aSkJq6G7HsDszdAhpyzMcpd3S2h13F2rNoCN6Oruo2tzLkP8Tg//V2nPr2V6O76fCeT9NAJ1PJfJdE1me2Txgdl4KXp6EW2xt3sufAu9HDSuYotUSgJt0utucEvb9FBU8BjJ4XVNBe5pT8CZi5Jca7AWaXgOilqNW5qUzNJimGnUYuQmcDzKqAf4I0AEOkgIYIiHCB6MRFQc2EYFwnmn9M2M2xHYp5mIoDzA0oiPW0WnbaFNV19RUdFsTddhWj098yb0sFwc+m2jIdDT0H2EyZN1wGF6HLgzkm0NAaRdXyGjXJ0OnNuRflCTo63ApOhvDffmrEfwF/+FD1i5gHWIG/t4S3w/vtu+Tw9QMCn7ADHhw2it25xdWyxVCyo6nOqOeerUXhc6bnPZbOOR9kSMb9t7hiXasSlrsk2ODgKhyGuuVl5v42/1qECiM0/1gIKDlFCtgSRECQBQKAGgpRpQT3oEH34O35kQLqkglvxH5R1w0AEABBqqQjOamqp3iH9bDVmH+nv+FLPwnqB6auZTK2C35sp56JJIceAxgNdThR4emBzrZTlMl7clNNdkcHLl1lwocw347DUVuQhhXvUAAT4xGawS1GGPHUVATtkVUA3oEQExBARgb7+PX3tFPVpuaDxq0KF42tZsn+Dg8VWjRAuHGOFnnuArYz0ecJbSc+gx4xFbkP1AzNRjqdLOLAYvyQxtFcuNS3JU0Zxfamw07CVgoMGTwsj3sHrL9iKKn9SIifOOvIH9zC6CJyw4HXFV16PNaj+4BcKWupzKp+HhLhwgA3mw2Egnj4ewSIIdzkZlBNoJVABSMA5m1xVYZwqcHFvy5DL6X34yS3kQ44LHQ6F5fqCL5YAgvnZ3gP71KE8cDswfkEmj4vH/qH04UUt3uSGgMA4TMVFQ9sNf41/ZxAS8Bbsy9rZImJdZTLFLgTOhfpRNvRurSB0d9Kcf5oA0coVVIZ9mnZAnBFtFZAZAEkAKj5NLzD67v+5V+XXMsFzJzFc5ULl9I5b8zv1fFnTrWyAedQynjReBEm5S0nWETACBE0O7KDIzNYEBLSQHiAwm2bcjND4xC9uetFr6DTuNFep+5DF4dDKFlE5C2hBbn4IY6xT48rcUULtlOPXqVRB9K+18w//AFqf6M+BMzmfLoh2GaU0n6n177WvH0uXTiDkaiYNhY29Odg4P6rXDIHCCbwl0TWqwHOaDFrt0HTSoZAL1mnAFarDMmNimzb0Y1Q/KH1AIAReMPSUMpjE45QYG6bsF6Y3tVaCFT5wUsha+EtV10UgehAA2b0YBEQt3EDrhDQrcuGeGXBxo8iFwvbFIBao2MtbDSKH5UDitkV+DQL6pwX8Zv8FMH1kRVeX5RJ9tHjvaOjnCxgVsC38XnLkltKEmwByK/k6StSOVaMyhRRk6KugP/vDdVDcM5GycwOA4Uw4hv2wJuF5Mt85c8BOG+LlwJvKmcOAzUomRc+cDF2IqHcvc6OW7vGT1wE8vhP2aoimkiGSAqZpqhiIohmFpaUqlYoiJpqmiiKZqYIikpkiEmgiWgoZmCgkiAppKaSKmmaqopiCilaSqCkoaRpKShKFaQiVpoIqoUqmaJqmIoCgpJgopKKQiCgpKEoWmqimiSqiIKgCmookqkqkSgoAaAiKApqhaQkQkTsqTlEFh0ivKm9CodAzKYg4LOKMjYGuacIJiyXS7jvPwLphwFFBlLSwKA+aCh4ALjErlW5H/AC8EbrDnhUKl6iBm0s2UrVy0LwolwIXFm54vxmAg7j5Xso7nsCFzsr/lXZsoJsn3qbXGiPwQox8BSkggFV4AuC1UttXiCghaBPnIUAG3QmgvcLZFuFixfLZECyDjOPyIw0BqAaUtpHdkUC10PSIFlW0Lm6gKA1hcRJSqZFjQjYxqZhiHXf+UQV80PinYCHXuOQEFDwHI7TkDAkO2HIgLVHbKPQXXv65lXatcykUEX0Htlk/mXBG7qzauCzDAtCWDIr71Pxnx/vdmZ41XJZUOLEs3ayGUyLjCGGmrIdLFmwoFXo6AWMEnXV92fGIIp3oq5QaFaFA3oiQfeRDiFSnDlR984kYImgOQmAqSnxlGhIEUbIqrCpQG9OH9lUNKqqleSdpYi9EUA25+amu2qvJOg8VO1DDB9kEAQIWWVSn0m+40kIk41zB+VRAHOi25FOdGfiF6OGo6j08SgZghRbdzgEAR7dnnA9R3EqiGBNUUWujVtPf+s/v4bF9UKRbZ0HHJFTsojEUCJKJ4CL8UDyiUY1QUSgFt/k0VM7eOCzVh9BIo6yEd1U7M9ycuCqI3rU7kAQA9vz58EsUe2DopU/afmi+r2vR55fXXg+vvx5fsx+i57QCIOSjR9h/0ngAT2jAHhnXxdn6un1+j0ePgQ0TmQ9BlD+VgNAq3dX8F8EjAhBS5TDHd2tVrQ20WkSO3po/NYMeLsjIgHtQAiFKxCAUCKaSfj9AIuYf4BefBeNIuycN/i29u7jgHB4qFyk35lKRFA413WAA+cFWeNe8Xeb+tP1UnYnc/ruTvvFo5NOKif+KjRyN4Khd2LsrxQ09fc+g9lr8M0VTj+Sias1Dk6NVQ5lVR/vbeTyXI6sKaexd5+9qShqvNuKY9/bp9RgogvnwAEX3PWpwBn2dlQ6om7vUDjrRy10T2YaFA4RSCdlFCIJWISCC9Kgw7BADJI5wVQuRionu78ezw9F3uZ85lSAIG276Knk0UB1QHkP1KKCfCgQLdh/nVu49mHj328F9AHVnQxuBOM/938ODHEtjiHTqQA1/xghVRBHIHxxTsOigFIAxOzxeaXbx6/DnpgwLP1U0HMQEDif9/z/GxzgdKJQaRVkUOJhvURGap01ebl3+Xl3peQDt8dHRDRC5g0QGkRA4Tf7NKqC9GPAcn8gCZoDfuiuiAl3o4fw12t276OjPbZ65nD1XKFNsU7k0H0f2Gh6l4Bv7PJYUqg3RBPH5unXL8fD7tT7+3T0mGxEfBw3WSyBt2XM2qQfWesOlCpzfNQaLb/fV0fHvy7uOL5wl0RQqMBw7Gz3LF0C7UaNHdyEtxigAQB9xYqP6uto8OdD4Jnt4fs9VuDf2Tmhth4c86qqg79Khf3PogIVzMqc5g/9Kq/eHyqdBEsAm4KAO541FRIihyU5dund73Fjgnr6P0t/K9mnyQzi8cR2kHEohwVTTbT8OGWKfqYmEYVevSCAjYsn40DVw2qYBfSs1VogL2YfIuztVeR+gT7E4gBbDrhdTd+uOr6Nd3Trr+Pb7P3p5entnk8vXsq+e4EBH8+aXx/t77FiCHKK0AUhStArSoUg0g0FCIUIUg0ALSKhQAUCUKMgpIoEiLIhuRU+M8VURtLePD3/x69PH+X2G3QrnyvYU9FIA0Wptyl3p/e3iMGAMow2Y5HYqrQ7p2Q+XvRGRDiU5lXFMFDT1uDPNUYtB1+99lqjVy8W4GidWI91XmbVcAsg2RMMYGUAoHtgecQ7qA9mVA8sIUIFKABSh4C/u9WP636bUxhf4dohYUQtrx03inYu4hBFiahlYIJ7kdK3bZFUhIXenrS5tFA6/8/u9rH1f08dWV2gzoQ+IfCjQPsTBP5QyvhuDYinJiqqUHsw1mUALcQCd/8qRx5WhcNdHosqotSNiIjSCQgUGR2CREWl9tsqKhZQ80d+iHX/nwgFeVAIIu0R1Y93+wqi3GaqiGoDjRAR+7G4e5/thGIEBij1x9Xh7eye2aADZDRFRXwfR66sGBSB5jrVk1CgAqKoFVQo9tjk8AyQqmgIl6kDgDABEQQCNkUD4Iqnf91QKcJeAeMfENtp8AAK00fjjV1e8B54BT+9GM026OHD0qQGh8dFKQnYp2SVP0zodXxU4+9sxDDwogI0FvuoENxcCAj+pRSzx0naCigmBnQ4imTzVvpxdvw3ZMxCdrPjsAAp5CaeGiIGEE3asKhfDyzKAuBA7bGP9q8cHr+oAUfasAgOoIKPUhlYKOkhQzMzitxAVVS89cu/a9x7t+jq4/m94hM79Gc4oBBItDaqJKHCLIYmcAJIqAAPbZzLz402p6xq6j6YQs7JvqnIVaEI0oU4/xEcbGNP98lELQDx0++vQaTgKr2ortltrwgIEQRGpsrQeaCmqDQh2Ai5jjS9Rip49/MAhUADbFEFO2AaieD76UfpSKdPV660AKF/p+r2LI64r8Sk2E4V1lwtbwA79Lr9HvWRbfCh44DQrSUqRUESAVESCgTILSpgwpznM5BZrm+qrqiVuz34/cKi8isEO9TqFWgSkFGkUKUOoQan5v+fB1uIfs0gKhXq/giAjxbs6/Z+k+t9vOEUVJ5J2oOUDuQ59H5Za9vZFRwPihwoIEU0wTQT9oZBo1FU92r4RCpv/RMq4wtFb/s4tHoART8cfHqIRP3fzep7ywbindEJJFCQSikEGkQSkS/fn0wpwkEoF476A/l3cRRTi79UPAAsOvH+Sgnv96ofNyjhsAh+3tlDDqoJ6vDs7fa0IogXo647o7kg/Eokb/oBEoABH6PcpUFDugodvf6+jea9uHR2OrCwVVCAPAT1cq2j7agljOCCuyIIr2oaJlOT4KGc2flRQPP2POoqBtsZ7aREPR46/qwxB6RT4u+j5Ou7KKg+CP+0P+zyGZXUQHX2aGAJvoPLFQFKUwNFkEbQWhaQaoCkPh93KckKar853d6cBAR8yR3Dx6+6yC5gH2k12TyXOmcn65luU/Aec/6hUu/naKpOWwY+Tn7Vg3S75ssZjxceAIG/oEEf6i8Be6DugoBqYCkKGkoamgqIYqqqaqT9Ps+T4vf7C230E8IMQ8CKixDE3ICoUPDuo45CvjLWeGAAodm631Vw3S9B6xRnmAlUiqB4EImiORX3+zYTZDfES/kUoILixN80wuhj5qKrrFm/oEShwCACVKP1AUU0o3IxDcDheP46qGuHilNen7uPK8xiCoG9sa7XbgS9Pcv3dN3D9n+7sUVckPfoCBlVX9X5lD3UgJkIhLsHjhQBPXkSlR3X9OPquPmj4d9Pa8ekRqqGJNivSgHwVsEWT2of7dt7OoHsIdQCu+IIHmIWAQnb3idiFXGBiiRTi8f0e9YFAvh6IdU06u+r+6T9OzePyU+HaWaw6uACkvEM9dbCgW8IiNE1gcg0Uy3cme+7dfyabXQ84eH6zJNXGoBuBcEJwPw+wWN8QQ9Gr491jR93DU4bkLET5Q4Q23m3R/NQMuj5fbv46oATsyvvgfG+rHiAEidDs/JY+pQ5ACjo+Szzs3/1fXtQ28lB9/05f35LqxXlBHhAabVANuo+TVpA+8A12xQOQ9amnxdqt2wogiGKCinGak+JLKDUR1W/ixwwPfnXOXr+eumChaKmEUeBRWBn6TfWwQvNv1VD1f8+CvD10VD3OEoeV1NEHYtxrqiDjB1TXy7q4dNFceq/qsIB+Ixj769Asc4MiACn74HHm6f3/Z+jux7ewE3RLRO/FfBOV8Ok4rIOUWJRAS6KtU5eH++3468fFgNICAH2KaE8AVzRi6Jpyod/g5va+25dpn93KWTgBAU1PfEE/f+lUuQTgu3/X2NNzI/376A/NEqIyKSCsrw2QD7O3rbr/an9v7AEoVUD8RYfL+ABRz5UdeTXiEnbGRZIX2gEDCDpBoRCgUoUBpVShGhShVpaEWqFD4vT/277/BlxcuQOiO+mDUuO6uxNWV0gNfZoGz/VPf723KwAmqP3XfkinriAWfWicO6/eWXP+zRjx6i75sN0M915ljeeJOXb9M0ONokAOYqdK6em1ufWgP2xD6hBgZPsgUB2eofDzT+/vfNoFUcQZ6QEKJq2cP4eCui7o3YrTRzdSIW50J5BVJq8KKIFKdJ7E5/v9Fse74ut/lPMgsgQCIEQgo07Soe96QMwsC22Htc6n48H1W9f78uCfP36AqCZxBA7W7o3/jy1v6YKIpYAZ4kCVVBOcouI+/rewKqJkXEI8UR1wUZAUkFkkkVRGQEZACRVQ9PxefPb+nOOFQIo/coXYQKyIgTR6/MIJ911J+3z+0/IMVGxTj4I0FWlKz9qLDQaqG/sAoCUFxCiB3B2g/yecyMOG8tKStASUQNJQQTEVMpTRQ1RUUlFVU1TSlFRRSUhESSRDEBAVQQUVFIUQVBSqUFKFRRRQEpMBFRFEQTUxStERJRIULQUpVLMUTMTKxQLEkVEFNEUFBQEUzEWMkSMQP59nq72nm6/axUTM5hUocsTsmFBOYgj7oGtQ5EKiB7EEXo6faqJxQT2fuOMKghq30Vwnx/54Pxtjj18fBLlGiT/pehVAn3aVEFLlA1iisSQU+K7qy4e7THDh97ZT87fxNwEOrPAoxQPB6Jv4i4dx6wOi8i6Ae1Os9yHw8xr4oa6eOfX8n/g8HCGxVV6RI8ftsnZ/N6/6NnDXQTPg+SnFr1Y8eIB6oJweSmkUJpSBRNQvmQMIvwc+UFBB8uxBUPDArvPq368Y7/2/06/iBD2hE9MBQKhSilIIFAo0rQhSBQpQINCg/C+6O6KoV8+MeO2bZ/TrNz6rAvSPsxTQIgxQ8wwMxAPDBHnXf4vJ34+bPfvt/D1HYI3DqfnH0ntqlgQEcyHRXbom/R6fTP5yBBS7oEFQ0h4Cg4AGoif2dgY4BUAlY8ASJxJCAZ8lrxrUnVbMvfrkdAwSUmIA+BKF0oEQA0XwqEgd1+GzadhnPmOO/foOoXACD4YovyzR912y2A979nT5u/t7fT6QURNGgJA7UP70Q6qhpf06DF50ueeINSHel0Dk7WOPP4u77d+Xp8tskIkT4A/7QR5nMPOlDDACfGERK5zlqhrz1n59IV0ag9uw44+SiV5r/538xswQIiAJ9i+bZDhQBJp0sTnjFNZMjBw/yi2KGnNgw+jXmRxnz9P3z6I1I4x1Xde/b49xz7L6TVdmwZi/Xc9lRBdhvsoPPjJjaL2hevWIbLcZgNtGJL8Ha9l47NuV1qeBNYqsVwOduTmueXXhTttnipWhjHqc17GsTxGKxt1XrcUN9GFt+M9DvQDjbrh+qnXHNu2cy3FSz3znFYznl98YWedgoyNoXfLVvxI5zrUCIzxzd78VuROds3PN7G6XfDqM8a3bHGS216h85xMYzw7PO2KZ5Go2tc3rZeb1nhny2cZ4xEQeTsGvk7rstvttvhze85xv43uxiccLcaY1mXi443YJi9ox0tfSvF436r02342MZi95uFZZ6a0esAjK0+s/D8Vif6HPZ3Hpv1G/XO5HZlpE89OzW4esqppdNkLIfjWeNxPGdHPHnsMM71Xs526bca9D7RsuuipbQI7x2Dig42HO+ezbngdgwNn4ppfbGw2Y655a+duN1EireNrXmG0lsOOSo1kZqFZ9543kiIwDzeRiG2GQ2d9n2gY1Ow23vONMNoHF1g7Xwo3HF4yozN8Z43D8Vho2fg8PvzfMGBWq5xqzJ4ykPpr0N34jGp0dscafbAfmcLip5ZWz5tvi36LO3P7+yXdUlnUBrjvwTsNEK/R4Py2WGpLNQqRtZTjf/kMTywVooKatqQvyQw9qy5kbZ69rZZvAWH6bKy4y7N3/0wPC/b79ddunA2cPfb1PdYnP9sim4PXVa7tu1Z7otX32l3oX01qpqIT1bqGSObXMwzpQ7HLQY2e9PmhH+lbHgkhLmmlFgyQPT5/zecidVygXMNBXaFHLHEIK0EzKE+rI9EJ1apJNHHC/5LJPbNEFhhDJHb16DmJ346cB+ynq9JN75X46xd63+n84+RT9H/H3x/88qxAX8Yc79Gr+H/52+2qiD7CmTxodp9X7w+pxyeHy0SHi+ykpKiJWMCKR8nIB9wAgAAwMBRGRU6vy+Qi4tmCi9zO6OJo9uTGji8ycr1+ujRrM4JPclQo9U+0UEEsvUEvT0ry36EgmmK0DPLVLonUQ1x6Tqgp1ESWrbD/x8cwJH4D2f9OPzrE/WocgBi4ZR/55WiPdrCtbhYIh/bqS3fud28/ob4PT3f83rHr/kD0yTU0dbFYkLaZOfo2U3ZrXCJE0EF2XqlOHOP9TlBwhf8rHFRpKKFOOt6BEjnfCYCmN0Fm2N13k3X2+ugGtiEeRQ+v8qJndY40yD3eIWkAP5ukkKoZuRKiJwWP87s0773/KvsEV+2dIaXSOgX9sIoHJQmIkgEgskg9Zhy79FOShToy7fpOw6vcoQJCijQGloKUoGmkpdGg2wSIQk7aqELZs2JGQ8W/cPkPwLenl1j/IBfniinpigA9p4vn8vvH/etWQE+iPJFrBZFSlNJoopTy/1fiH/mbZOej0ej1V6vp9fny/f1Nq1BJJOX3ElAZlQtictvU1H/H+lFLCgBIJClUfYw+yxAXF2MYsIxzHRD5v6PTy/jP2+4ADbHbBCkfh+g/+jSIUiSlH3rcJxafpHUFD39p0dyIr+KAH45ESlRD9V5p819v/Rfh/F9/38a/Q/6eyoRJVNIAFJQB/ONAqUDTyE9+U5FJQlAtMS0cgtigDTojYNe37f+rRfcn9NzvPx+7+L8/0f3vYP1Eh++RpPzQOnE1QlFLT+GUHQFAFKcnQWzqnbDSVzm4ziIttyHklEQBStLSlVtqSgjmp0Ua1m0czho8lMNmRAXI4QRRhCIuEcdt+DbVVVVQyXN4Oyg4sJOdkhd2oE3P0U442DcawhhClSSkfjkwOOZBDdkJ80uuTKkNk15VwqkcDrmeONoIpIiEpKqjTbU0bYCCCh0GigoWuo1XJNFIUOlCjQBpNLbJQulaRpGgYqWhooiOWhpWgmgihYmmrmAtk6tHJebdQHVScKnSVFSVUwUDo+EniqYqIuC4WKzFGCu2W2I/xJv+nd2OqOsDmAor9NuONt94D9iH8pQD9mjmpvjB1DJV4r/XP3YJhd4fNQIQiGxw0iEpiULpa0NCloVA++lYILRQIgSf/Lf08ks8nll2gBABVFP5J/GG+WC5kleCjExBTZ7bBQV/Hy3nemv1ZxG8Eml/7/d6OILmdOfyJRcRREXBUSqSoIIdUR7CHPmO70GFq58vFnBfDihihQoYSnkXDJH1afVa9p2oDIH2KGYqHVUYUGXWJdFLky6sJ4GyBjSrisLSCFU94jbigt4fhrSkldVFAdb/aDoHxVEHL6yjcHCFcGeH9hAERjE6JrMfQvpo2eFASgGO6jNVUD+EDSFHTQocwc5c7DzBmpezbGjt72gzts92nSsCg1VlebEW1NR78HeRo7+3MlUeM+LV9cvBCJ1WhAPHaAgQRONyrZyb3Lv2rwiICZbDwMOO7XAyZeGgPAxQCEpYKEkkFCQSCQRNMRNSe03Xq6OA1/8t5rFBXx7Dot6D4eZYn+8L4+L+hH+Pd9eAF/8nin1eOi0sSiMgEJBVVIJCA/1VBDMFDS/+Bkn3xssiZ8ewQKefurzvoWqQCc5AVCGFQDezEJWN0rNNJ60EU9OZbXS90cufIns9rWYLGbe8PbUS5JPNSlD00fcfaMM/frPdODuxX6ngiV0QJMmzAO7+3ue2b/Xnn9Xmv0P0e94xPxS0C1S0xBQUlIUeqV0RIULv1e/7n4fk8Pa9H2vm91J9MaoKpe13xxIonpzh1Bx52MA+c/N3jb5nIQCQEJQkAEEAghvAFdHh7subH098mCV3vxV/lGurXwv8v+mvenP+7PrFJ+KM+n/p+75xyaMkK0HrUl/e0VbfDmpw4dFXo5vYMkcEkOWhSqy/WTVLZ42cuzNjuwTO2G3aDIRMYng2vZ+716n7eHAz52q/0/89nowSV1+V/fqZ63CY8H0fieq/abNgxcVbjdhuYfZt5ufHon+vD69d/5OQZql69uY9740bVnb1WbXzjt23NbOO70UvONZZLlWPJkusncXfvzdHy57ms6YZM+K5Oq5hZxtltUuWjZ2Z9D+DEeXu1Y2anJtXFNPGO13PWrzOby8egwXO/kknzn9ODVPMDJcT/bCZuRvVx8nV3bjIXLMXHHXZqgsTUO/mc5Ht7i73rWnHb543bO7Y12LnY7ctrjezXL9pdGx2PZTx4zxz8UnHazy36J7MXfPe4rXPqknZr+llKlz78jeRlfXE9ox6lhvcGaEqzLtntjk10t6Oj31dfPh39izSXtcWrZxsp8klfot7+JdtPTvyzTsFjbyTsOrHU7dljBS4K7OSpNY3cU1abVyNz4Oh7fd5+Df62rT4eSdY447PY7b36nY8LjtnRyOswNzPdkQp3HJ/JcpZefHBr4NUvDDRm13ItWVkmjDyM5uPbvzcfJz5KnzZzy4qGDewbstjdsdNF9enmwuZcrafJb58E1Q1NWPDfgxP4+/XO5RzZp1reo6bFZXOvkmmd3ML05tJX+jrc8avNcnPxPVmULTgy8u51s772iZ7Y5A3uzz+Vy+2zGtabrmwau3PBifp6K2eTHirVVv9EsV3cDK8sN+KdTdXj560lmoIIQ5yZop1CrToHczMqvn5Pr+/4fJ4b6L5/H5PtCe7BSdvWsxLUxRTTu38dx8B0D2t8swoZVRQSQU7RuhWNKkgHvOkuNVCNt6xzRsnJ+v1/V7nu8/1SICOZigk+aE/j3k01RR1UHXKqwWz6fcRTw/2PP5vnAAQBIqTJO4XcQ/QAHHf4phjbrBKhQoUKPL0RABz8n4fof3l/m5v4J92UkeG6aLFkxkBGIRwWdWULNpMvLsvONvVuvU6+3ebGdk470cQ1zwqOxIAkHHmmICbjwAs1wtksKDWGBR70jwcKrZLPW7vL+gk+SqSv8SNAgaEBoUNsDQ0hQDSUxC0UJrSaAMxpdFMSlNWjMcjByXMhtqXO5zJf0uurC6V6gpWh5raOWFuEMxkNpum5RRWbPhvOH/r9s6Djy81WhrysBIJJDGvB2eIB6zx6ogTZWGkWUB8iNnMhYQUcSyOwjnyyUY1K4XeoVGuH40IwElxVBeugJTonZL7+AjynqwgkKCpRSOlykl+/hVMBwKqXCRZ9MsFBBd0bSW+eSqPqAOEVKiEoEelFVoN0Gjr5fV3nH2eL1H0xqlb18GkTkhr706UoD78aaA6kcwUFKnUGmkQ2yvITS6AHkgPISIpKggVEWorUkBhB/Rvp6vqR9fz/xIE9j9Hf/E5XiLjMkiEEjrTFjla4IyQzIhF+g/aOQ5IV83rltNpNshvI00RWjOTn3Hfzmm3OkyiKKKIguYLilU0BEUUUGnFrSRFVSNHdOk5CmiJFoaDQhpUCnAxcFBFcUwFMBKdE3Whc4bx5vEknC7zfGwNyl6Yy8f7E652w8oTe2qOHYk5DpCuHTCOSTOqW2xwW31XhzUuKxiqHByYsmVCIXIxQcSCAxhkEwBEy9eeuzh0J348U1MSKK69SHz+f2vRj6nfY93o9X1eb7waTRQGk0IhIJLgQXrWD33Ntddu/gfcdLpgGd5S3O4IKsIe5YnkYPCerx5uc1dnpyugquKqdXl0RbIp3ja29KvFGLEXEHIVG2UKQHCifiULO042USHWZ59MPS+OvNieKcL4I1LIQWTIo4LSQVXqFdTWHGFNWEGMwraqhK02NaxzLoubVNRL9Xm3KkiQoKKUKYmgqJWg8JBdKlDQDQLUy0lVFTEFF2jKLidJblQqKFcyCGSZBQtoXMkLVPZSeiRHWHEUiYoCzEiJy7SBoJKejsuwg89KXqdHWQ8e32Ue++ntrEq+XqC7GIoQJnf9HQO/3p1G05r0bbjBmhvuC7OEoRxdrvJLl4b4t9xzn79jNaAAbpJRAASiDeIRNAFCAUCCUjSlAMQCUogD2MST7c6/tid6BSFrMd7eD1YEISCUJG6CFJKDQWwofFzcbbDyAxBEnI0UgL99/h9w8HyI4oq7CW2Wg1VUxbItVS0VrQxW22HTRGMGKqFGEC3Pyf08OKmkxck40KMVFBaKorXRxOcxtmJm2cTBVi3zXO3WirmQIlKeRiQiW5ZAKBcXLYYplQiYRXCtLBSMgs1ubl2OsKctIu2dNCUCNFFCqlARsC6RoWv22OGaU0n4vXVVMOtcQj9fWI4WPDe2CPLQRB3lAmKkEAanHzuIE/EXVvamaeHpz8eYTWRaNK4xGEAMI8rYA+LEcBN24DLXASKfyUlHt8sjnDvghrP/abXa/o2/rJD/zFr3oHw4cvGnyFpBaHMPhx3M9GclAnz3PreRSc9/j3OZjvlVCDJ9wW15fCIe3uukYMjMlTt0OruOgV2fYoIBrNHjjOKtKlfmpWAWjaFZSQckhixAU1qA44tm2pWSYp3h7reGEATzNyoiIiAMeaN/ufsdGrXs7AXmkkklh8SGAgklVy7hnXDB3dgP3u7/TPVtqqxgFac6C5aq7hnIzQIyygsGW1VlVc2oDDaPvm5Ikki1UoVIoinqfIlVzUUwIsZjEgzHjJ69y7BR2IxwWxGHJ3SInc80663K5iigpgKdyAaxJJkRdsNerSckiSih5AaUoDSVpQoQ0OlGhAKWhpKVpxbYiZIRWuWhEBcM9nfZ3odJnR3Ih9D/X5v6aio5OAqkqhooj/faDkv/mKiQhaQxQUBSMYwRZCsT+/TcnLQ0I0RAfYlU1QAUJQqFCkRR/lH4Ze09QFCGgNUx/bOgK+3teLFaAqhqgoHqTMkREemHFPge1+M9e5vzXDWtRbOCxBQEVEaoRWKASCF4lYWKzLdxbypeG94M4cfy79u+6Afy/BMebJbRfHtzbHvY5Hf4/D+X80BfnlAERxmYbywQRkEmvUfrRAqkChwr4sajQQ4NsY5SlG37/b+J/j7KaChf9ZNPOfXzn6zJ26y6ubrbh+sUqrSAGsVPYeWuLU4ze+kPrL8SGKhJq9a7IRag2nUT6rh/1EWk5RRFqoMqaZQJ93CMt+v1ixzc1bEFZbdKRoJFx2r1/82KYzIiBETol9a+jn4TPyVdEVn6wu+VX7tfV/hX31J875CzyPNFnoZh4PeGcRzd0Ge0K8de5az0a4twMzzpKdNbtuXwnejbzkGGROGpLmoW4B7H4J9V2xO+dJU4Lr4chNMV35wdE+xNwyTnIxLTbPtPPHMtVnte7rtSzFQUP5aNOtK7VefaaKjGWUIX43/BrHrdtoVx6o9IyxC/jEMkYwvwHS5MyOKjAMpYXp21j840GOw3KggeJgKZ4YseRe33H9Z146Ll3ZSAei9zj1mgO67Hz0MB6p/YvvxN922HovDxhcqGn3sS0hv8pcvHdah12VJZ89IlhmMbxa9KVL6rx46Z73feHX+rfm+XXF4b16XujxcOJfjcdPK8Kzu5Z+4chcdsshpZrgfkdnKyGfZnizHmpPCw2GFUIgFWox6XGsO64JJWuWYlDhdjjnyPO13WRPhw0ytvpzNUv0Y9/erWWVdNFyKKUNjmiTCoqbzlw5d/xmolwLuU9bdyzKy4RUy0i7QqxYxwZHfC1XeXVZnuCkr+v3u59ck4Ut1ZrLnFlGivvhwUN6S3DLazXLbrmYbM/Ab3C9k0eWR6ZypBktOx+yajrpPw8U+OjSffpHiv1pYawx6U7bft0No6/h7IPcQw/AAgsYrGFpYjSFRSp79Ts77hXUI8P3+Tw/j/1/n/D9YH9e8+1U+okoAK0tGgdNBkSEJCRkEL9+HgtT5ab7/qoFv+djpoJ9uRQaD7sDuYDSe1U6apUoEqIpMyqA0hQUBBRCaCQCPDXwS9Pv9KHugd2YvIT/vku/iXK+PVo/wKhrgNfqxhAAOiYT6WNJyIltz8BAF1h3FOFZND+TvJ7iApBKAlAUJBQlPCdsvWdUoW7hDhczIpcXd3d6wiOSCJWPv6VKfuPn9p+pBcUPtJVQhBBBBKkcAgBI8VW0SiqUWfLrHz5zDldcsOyLJ2o2AM/BYGq8X9vFRXRe2Yemi8HoeTW8YHWcEMVr7VOAVhektwwUnPoyWrBz2q9apzzxTdtUmTn8TP+qijJZvU5aDkNXn1/frQABBdEn2yL3Sz9iUmo69sw3OvrHhx5yQ2kCAgBKAAkBEpaWlSmkGJAGlCgFaGkpEKpUiBqlp+n7/5u32XvT5fT1/f4Ynv8MP7nrRo4oBe8upBuFpAatCsMY8mh0OuzTxcGNfgrcGHv94T5pP+sUVMU0JTSugTbaKEthiDEhYsq0//cOhKA0hpOQgUAIGqViACkGgGkCJKSZSqKINnVLtlp5qWDFmfetcy4V3KSQruwSMEQRI2Hc5uVoE1VVo3Of4/dJpdIevFRAFFKlUKFBSzUmlxEEEFASSnVOky1IxD/hHn6RzzwBDSo7d/rUM/8xQxVBP94YSJFaxEUjMYbMipRUyldVzAUVEHDamlquRoKGZeXC5BpNKUtI0KpoDWIQNC/FAOlA/RBoWhTqDUat2uEG7kucKUaIgoaCqC6MmOZWJftfY/y/F9j9ZqfZcVTCIKq5qpffmrijFKlQa+lyLgy0t1xNtXiwbuZiZUT1IVioCfRhyMYgVd6O7+8PIeSDCNeWgoqzRLQNcffCiSR6EPgxascebH15h4/+3A6BYsJTw9PyzhrCv3cDCAQ1xjI4dMQZn59HV/dIjOP89tktG0tWkkK0pCEAkSUolCNG2CNqqmYKpQKRClKpWgWlCihdLurXMaOuYOGzpS7YTqORR1s0WxUTRiAieTpKGikbm0nI0Gvp5o7fH8Pj9v2f+B/ziT1ygBf4yfhTV1HBnxKAnJx6DjgzrlA/zDf4TSi0UU/wkTWYodNUWshRQoySQIIojiEIRCRZE+Sy2X730PQv34P4+GpoKaCli2w0JQM7V9Pk9v1/r9c9x21VpwmjQ+tebrHX4rFEUrj65hHF1mfiSVwgohw+Wfo850WclOlUoVYoVgLGKwUNnTdm+iIguXqNsUsH02ko0gdLFxqZwpySgEmEZMIq7IrmuLD3r91PPv+N7MCBky0/zB9O1m360ffQXegE87kTXwpdZTYnEWPxOZWvu1ohDLC+/dTjbZqiHPXUfjxb19N87Nr776yL/Yy1Sh5FjYFdeYvXQnA0crPjf307YhS9Trbdv+CFRLJ463TVqQGEIOKGszxInawWAcim+zzc0md4rB2nrlgrGylKFdQmla8kB1LzuxyA5CtND+O9yHgVLQnhGLtBuZ0jRcNm8m39Lc/ruD2mJigKCMJqWxJ1T3W2ZqQKTI4UYJEiFkUllxfbNfoWb7aJff8+Dm+NccO1iCL9FM1wzu0hfAWG8DNb2hUffCfx1HhXu3/1xrx13A+Yf59jcHbsGyqVKk93TumqWVh2HB4IKBhuhCzklqaYuWdH8zSYczXLq/ZoxtulDYkZAIIXKoxvMeMQjaZgaFPFbBmg+LQ8ts+17vrNUUOF5I26RgEGw5Ph8vjv8AzhvUDjhR35vXd17L6CX2enPotpQhnC2GcHY2xOMp16Sw0q4q1n7A6rTKVYVkkivpYHn8iQPFfKWA8x/569U4FUJoKt+swlnMo5ZBNS0ElxOncjhuLqnusdFmmsWqKNBi7p5GkOEXNpoQoA1oaUCCGhCtK0AVorSZiZjZ9eS2YRwySC9cW5cW7W+XJsjhHaLIgYviQrh5To853c6Ouqfbd0WeopFs6LXGyybPSnVnX3S0vDyS6gq4jF8NRgKqpDWQIcDzT7WvTXOLkopqREQGvfERBtWX5YvigTC/Tv3U/Nhn2phh+7/k/69p+CzZ+/YldKSwW0iREkP0+3M5dHN/Jtfs8Pd58VnVaHhdFC6iDpTq9MSIL13ouct+O9aceUrfaGHAm87bnlUChQoCkNuABOj9Z/C2OwMt/NV6Cc/i6Y6Kn+/vSLIsj/SIVFJCSQPp979p9fLi/l/2+/7ov9/N/ZT7t7U6S9raRpCmgVoaQChFNABoUKBoBoClQSAgJBIRC12nFtHbVZtIbQI+vZVSsQSASPQhSiEEEopCKCAh8uPtBj+UliOeydOHVk6A6UApo+7zn4YP9JpooKXzytx5xCqCnUbEkIwlISDSASX8cvw7ZV/zbs2/UCAj8Ibp6/xOfi/R7sLb7xT7/V/f3916+tyWR8XP4OmybKlLw5uFUTU1JEGlNVQBa2PHSHHcklcUUiRzEcFHB12xc3B3qUdBFGGpkKkyLHHkK4C5lV11w3NgoaaKQ0aSkKKDX7IHkLSgU9pVDQilINPXd111bLYKKEZ0k4xwUnIYVUXBcMRFwXMUxc3/fls0riuHU/4rD9l5euvH5Z146JxiHSEsztyo7scpEUQkIIyNztzlT1j2fgXx/3wlsRBr8ccZ2wRQX9C1HulfezNnUMUKCoJOTW6NNfDgfgKQFXpQAAKpAvlAgAQHrVIMmG8/LtSJni4CmQFSCD5Adf69hDE2a/2QWdDLpD5R1gVAFAeDWNIaxW+9UAe/cnB2UqgoKiBB+atPpsaukV1ZHJijkFLRbmEtbmtJdIAQuqSFIoaAoSkpfrn7c8IprqDQ1SwqhBBQEEEoqlj6IiDFG/2S8Wmu8gFUcuvUKp03j9j/m/1fBNhtccxcYa0SttcRcb/d8G/A8LsKVlSX4W/7alaY7z2uQuwH21RkQVU0cIEjtoNZAIIpoSCpAJRCCSCQhFHNjG2WsfxyxzW+YfPo/k2od6X6T7gs4rIY4apBKEFASgJIJW1CCCnWPcoSQOYSOQj2kUKfZXnDcs0KudkjonaVkCQ0x7m8RwjBsxEK3ccXIZ1BNs6IPs+8mFqXR5Jr0Mav0ncZeccDWuBWrCe+ygSvvSHLX94JsQheiIDgqIIgiYWHcNkdkVsJCdXnOcUJZGuYRJqSMVFVRZI8kHFqEYwTU75w79Hnbgs9yIED8FSA2FxzhsUuyoFBQ2VBKoRllOA+dbO083A9ThUl6M8T8/OjynUlZMMiQY5newzNTymcEUXMqEFFkUJJqVFEQFCpFVwXIhBBRQcLk01StFU0tNBUSMQ0tTERQUDTy1eGXRS0FUH4MQUwFzFzf2sBT5vxHyf40afePk/PeHW04JqojrBV5KLLDOfc5vfO3ytsla4L/qvIPm+By/aYeEEJ/8IUUKgKFrDBx0MFDU54Bx9+Fn0WKS2+7Z/e3lln4+C2mtx5B+yiQkgnoCoPg7D+2onTdvfqdXm+Qs3Br8Pzo7RvqajN1G6V278s2EQ6a8lafFfbdd4/nw7MszvHf2fI8PwQCRJASQkWlWmmh/LKVpoiAaVChGgVKRQrQGlKPyfTvyywVPdB9bFJCYCiJ0/wd+xQhIVU9aPyqv4LCdYuGxJBYurZwfT/eogh7sNehDnyT8ng8h6qR12T2P6CijdD3cn1D9UFBIUREDxQI9WFJOPPSnjOPm42Zx8frT9t7KL6YoECWcw53g/P7p/gABH/yPnjqCjQlAd+wc2KP7QDoOQm2HRQUaD3ZQ5LQlU8tNG2oFqL2p5K8lOc5q4sFTM3f97m2C4RRAj31Cv2UjhwUWjqDVsmmJoHv2HQd/XbiB2lHtC6KqketjSuhqnul0A00DXJA0naMSaQCjRTUbNAwoGISQloe+s5KFQIK29U+rgcS+o8rddVJF7AzrUOj8f60gi/XPRsN5isqVOtfasPm8uQ5twoBBBJIFLBgpNcmpPMiCOccmIiKAxmAjgyBzuRrtpbGTok55bQjx+t0e8dDVRFZq86fSSSQSmJVAxB2LBkUkAoSUUUSW5SzBeJ42LiaTIhGOYuFAhQ0r1aAKEKC5kDRyANBSCUKUhHKc0RotoNJ0kyjEcmOb6clz0ejqSOQ8QtFx9N3v1YIRrULXMaFCAbqxMZgNomf/hpUNHEkF8CEkkc3k0WTSeLwebkPX0XWddV60lr7Dn9+vZRrD8IgoPXSuoKCCSnOVLF08GkXQkBAwFASgRoGiJdAVpNIYxhoTSD+fn7ex9/2uzGmo4eR6e7kfu/xavX7H2++WyTDmpCmNj7rFrsOna4TbbniRFwsB5bzwfeWXfjzul20+Lw652hu2NaKWNmjQTJRQNUUUF829rthHvhF7QhQC0CCdDhHPqM5D1OV8iZOudynr4oZWhyZAVKmStpkxzFwGSZVTqF6S7zjN7kWqPGh683C5rquKI4IqGPUybMIPdgVDzCCqYKKZi4Y2RR5ILEkmU8Te5Odk60jwkPD+b+X3/pL8Zn2HH5Pq6Oro52fybOOeae/ndfWtiluf2Lq2KFNaKoc8UDOCIJ8nrH1FfXnk81F9GD7Z11yxbW7NYk4vWarn7D3Wku7gVKN0VaB7Z/VRS42JAkoA5/l9X2f1/X910PmbH4MCPt+3DkSUCmLdj8CWsQzPrOsKTgSMD8tqxBw0vTt1XaXxJFGyQ6ohI0bZ0cl5AUnK2bbEUIJQ1TEA61QcguYoop5NU0FEEAKD6+/cMt3j9nm2wmsixlXLrvPR+OI6wBjWhoaY8fi48KubMpRRVUDTQoUylctmCOTJDJJfTab8Xql3yUqi92CQ70TKyXtvw8w5i+O2/4b5Tqxa4WN/l58e3txScdmzJmIsSOLJFDFBcRJDZSclc1PUkTXalVthLZp2e4h432l+v78PHqj7fU77Ni46doKUNonlUux2aEkHw7ed8DGD0nr0HR7rjB6FVNFFypGFiUWIyBIzv3rqHu4e7euFEQFUK4JZmlpdVgEwWcHx/yF/V7x+L7Ps2P7uPfYoGchR0cOXB8JaS6yrNLKWl4SXWg3s/u/KqP6g9fNqqQzo2w3/Dw9LE4ACfATSoxsKXpXE97aTQ+153IqlhbApWAw/Tq+FUDiK0/l+lH97FT6kARDD8N32+X+Pv1fP82dH61x1aXho7tqzt65ycXPybZd57Pq+25fWPw3OZnd6dniuz7Odc/8e+/a9M/wjx3KX98OWhX8OLJ0YF0+uDLtsP5sM4PUsLWN819blbeHngw+67s5tB7/mVvN6R9mb9WvtGP0df114VFfxigoSKon161TtcN/VzACHyevqLtN+3hYfTTyT9L9aGH36PZuzxHwKv2wQZAA8n5v28/B6fF5/uv3akvw41TBAUUB70pKuHDL104KycARjIzmcY2P9aIESkKNJn1BYrUcDdAdZbdDkfNVGIWRbti3/X6z/RPwqnZ9g795K699vrIjhUVCSEJF5Mv2OWNeiDQESFcjtKeBLy6iPuTI4HHUFMWpXMWsRp3dQXNTjX6vMlzrpoOw3Tu812ZZ804hrpJCKQshQGQyUXZQv+2Vsv+KqaTEl2+SHLnuOpUBfE5mu6W86zD8Oo+NXDHLMJdRhXRiELQoh1BJBTvWSCWP1eVbsLHzqrLvav8fcrGSO0FuTwbfxGPw+r6XWoq8X0lahCeGtiTVh7Sw0UHqVJHQuDRg0kwh/cfbaBjTBo8l8/j9EB0wt+V2Muwy0vMRwsrwwNvTxR8s2UZr6YwQv2ChVIzqcYUNDV3GOCgKYo5FsuLRxYnL9PSmxJLwtC0YWcZtfOcwzgqe/4jCh+E4Nf/jTP4HnwNae8PvrgfccdD1cQPczS8+bTVEEsPKwcG74pqJJIJ7Sdvi2OGxYqmhqmkpAi33M8mkkiwtx+PE3XFFzUzIjIRiQk0wWq1iDREFOk1RQUBE0lKFClKUiUqIUaDQGg0LQlHVyeElOnkp1HOjCUSQBEAJZmUrMRWwsT9cl1g5EmWk6S3k5hLzrrrOpThcaqYQcFdnTHGAK4VRTuWAl26ZVZnsY7V1L636NNrXL1e8+qPRgAOSfj6vD2YrP/B1Pgzwft94VTywRkV7z2Pi6ePzHBQTsfkP6f7/OH+JX/EchpKVoChpGJIiQgYUUoCUQAkEu5Dgsc+zJQDtyhO8Li0wEHQQAmghCUCEp9rKyumMMr1gsq/C/v/kjpEE1QUas4/RVAMVEoTIfFJqgqZK+z+37H4I39fh8v6/L637s+eHcCIgHAFyB60xGfLrqYt398PtzwxoN7e5CN8ThlFXrvLusM/VdR+n/p9Pm8PZRoAoUaQKKAaSiigiftbItFJ+nY0uhKGkSlKApCqaE68PZ/J7H/Q/jLwJ+aU6hTSxTXGHhFGp/OL47YD6LfddBc55Pexv097kEELjHnSHnn1g5GuMDrzsBY0hjrTC2JrWGGziwAEBBbtUCKmPc6fzW6cqfHEf2W8QdjX7VBTWZYYHreI+KfpAJEkJQpCAyALIRxBjPkksgr8huf+dwNQNPfPefx/TmneH0H71KFVgfRAic1Q3oGeEIrcPt/4aWdE49u40Ed1v9Jvd4+jTL8/91/3j6vnZpj/ceVsRP4LjO85YsZaKeSUxFmPfMz0ll/h9IXB18vE3364HzV82Qtjd5znhR0IksW1lWI+9y334GpXFXZAiRwkkkU7kork35bXP9fTq64uPq8fBdM96Rc6VCYOJ6kCf99rrV5ZDwh6iqQopTxw+tByKA7idKaRO08lCIebJVJqjSC5BzJYFSufE4S7V6Nnu5G8blk+gh7RyfHu6ZxHKjTqY0zb7s304YSi2KcNNeHaBYguQ6K77HHFUOCBSrlmgHmTsI67NalMMPVenzjPrUAykGq2fPHW5kWoXvtgxhRFsjuCCSzfDUNKpIYopkty482jArC6+UaUoUZvhSJdSgWpSUh6fLzX8V1NboIZJbX4RV2Oijgyd69e7XOEAILC7xE5AokHeLfqzt7RyQDXLYs2U9Vw4xwuh195m7aDXXO9E4qNN0TuFnMKe/R6F7boCkJoDQUKlKjpXRpTERRtoKdOIqqKPljtK9T1NH846n6usEqqXCCUUNEcvr8KXZQD1fHVr2iod9mT9LyoiAQ1Z4sZjJ0VLx2oHf6/g6ubPl3Eh0soNIUi+aPJOiIB8/L3/T3/5gflilaH9UKaKaRVaAClGJCmIDQaAGvHFK4oYSlpKaoeSCaL3vn9b7/h83l+DseYoSi59n7w/NCifu97ACuhWlUPdkNKjp8MAG6AK2iHZ7bseCFO9lQ8ejD2+7lsPkyDm+ssCCmCSQSSQSEpfV5bC+qVV+Wzu0Z+mCPpekEP0WRv4HS7OiV118sfnHZH8y/mfz6C5dhwB7K5723sFvQ8li2OrIr70A4IUjuxAAYp6B+/HLrtwu/ebmljAKJe6QiAfIkoA0gIppDQjShREEUQGrf7c3jwh1DQtwxQlLsYE621p06a5ETS0FJqkOrXFhClOpDVDyMUXMkmaxyoYC56fU/L/pP4gn4tjf06S/HyyagPZDKJk6Jr7ABn/S+L35xOv0wUIJJ1lFI71Fcow+fX3/d5fL3U/yCQvZTsXAK/9u6QZIYE3LH/EzLigczw5wPErVwURBSSF7u6d28hscrimRomIqLYQkCKY62qmj1NNZru4RNVJIvFSCLiLLcKhnFA1TFoHTSzJVNIzLEJoCsdYdRNAxAJQIUrQ0oUhSHIR0UIUBSUkQ9RHAZCuFTF1IOC5GKlhFezs8G8OEhGRxTHIdyqoIje2XUqac5kslb7fPb13SQQ42ZGWskS6yop1yFTGW4enOLTf+L8XDmH3/uf1fO6X8P+P1jpCCqgI4LguKDJENSK5rCPTarOMx1guKorsyK4ETWi3qRRNjpU6huC7thIo5YkxZJ1nIF10mupOrXiubKa9X9peD1OSpgLgKGYwoUUo0tLSCUClI0jEUgUlK9pHRVCUBQRNspgqBo5AaKKB5rGmojf1zwlRaw2SrRnGU0chbPFLYkgi4ktWvk9rxL2Dr4u5sr7YKvo10UVXxbEk6/TK0PcNk/QTr2+Rkg1iir6ecOS0lAx1mOFkYWlQq7Nu2qz882rMVBGOAq0MkxucenQOXdDzyDGfMjk4n+z4/1aN8OtEkFmrZsbzNZ/Rb88kN1a+17L0rJ0UKH3+fyXJ1RenZH4dNexT4uLs6WMhrs8/fR6X4R45+mwyeePF/aky1Me3BFTlqNZub+bzd/VOjow8sV130oO727Ysw4N7+v3npfjL48iw9+ylwS4t20OH2z8Ny3b4OPZtxRY+jNT9lfXTw4rs3uz2Y9VTl+b+/NSxbOKfd4cLtZtnJqw3LO1nFxN9efSN35ar72TvzXPHZHTi/UDnpT1Y9OH4qtP69fURt4/T7XsPFHqgzY+LNHuZXvjNd5uKot+7GmOnryu/uCpBv8/HfoSTrN23Vrxz6JqsuN9ajr++vswMzODrN10aW44Hb1N3s4Oq9vdi0t/q7bJv3jpz93Nrq2fjjqmbj8bWw1Di9fb2e6HLM1mHyiy7mTuyUd3p2PVab+9ar4/ZopWJssGCrSu79HRXrzpWfXiHBgizP9fZ2VOS3sv79jZyuzq07sC6QrFYGJ5ferDa9ln5f+Wna9Hxy8kI9LsY2Ci7uNHlCH88f1/emh6T7jzu1/3ewj23RdvCoGfMbNVKYay9YdwcWL0tB65SGPDXM76ty4H6JDQSFK9Hxi83xMkUl2m5uY5eDgyI8QTmKAklEXYqkqJpaC+T5f9/rPov4m/t8KHyfOCH7/f9XvrQZcZVYXFV/ymt2XOQXefDB7AOKyVRNRGTIGJQ06MqAdJEnpqkZP9pWPZ9Kp80E+D6Hz++ccjnzLH2EColQoWEMn8c7dvz8vz7vm/Y0YLAdtC4Nbw8bs8IGkIEJREQEiCKUL3HzfwJNnd0bSE7TPsnfb3zqd3X5un/HWe9gfa9fy/RD/bt96RMcPvS0/sbYfhk4OSGliKEcyqkWQLYqthBFFMEEcaCKm2ExaNmwkQlIUu2AoaA0JQtALQK4iig/XjXObiNB0Q2yxAVTQUGkeooUn6dZUZJ8rmiAuJ8s2x2BCwzI50MamRiBCwiYHhzMmxyTAebLEdIfKBtKAM7qsQ22uKpdqY9tSZ7tQBEGEgIAPQoiBMEBBT4IqvnrQAQ64AHAfRo5fm93Xbwe9v56Y9XmhOviwfx6Bep6S5P5qNQIGoANy+5p8BgEBBLnABwhhyMYvu9JYymoNQp4DPVsKXflb1vWHn9eLQkCRCQCJYqGitCWiyRUFDENA0bYCJ0NBttI0kRSVQVEAUq0gCTI0BVImkxLTQpo0FAG2OO+bHOus2rNp1BqL/HsrkdJAUjEVcHDV2XF2QVZbXUkQ1SvKVNHIo4ckxc4bVQNYnas2wjpdbZItDiMXHkGlBzg+54PXz25esbFFcoqEZK0rfRtK12X28HR8nfB4uqj3oh7cJFSQUkEKbmF6uSJQ0KaTSkSBoTQ0YkGhdINK00JQvq+A+SIyCKlat9hcf+p3ngmrGQTUUSVZHOVV461+9Pl85R+MY/DBNc9MwjUQ62TkFMYg9xr7KuJxwOFwONRGDmaqsRxiEMYCHW5i152qXXHAHGIUiHOl9RuTy8SFrtoD9HUPf9UTxAQO59xNsv8vc/l8dc6EaiAhiJVFKghCSQQd4ZcKNCJRlwVBOZQ0u+kFB11zzwvIv02X2jDF2ubWsxMst8Wrq6XdG65uMDovidLu/cf3U4KnpRg422qo7ae5Gi9Isq1yhGLbK0Afl4Sr7zvnDK9RCwINTRLu5RPIqystBYhVyzkMF4W3EiTLfrw3qXVXaPp2BpCVQEkgFQFKFUTnLrnU666eCriaJ19ec6nOnv3t3ZHpilc8NFEXFb7aFaJJCJ4cri1xVYpppvNtd0OLqFoLaIdsWxpCmqDuzkmbwzoeo1Ta1Gq3GKVJlJ3pMdyb4dm/Y8Tmzr9bTvWkfYe91AXiNpoNe5jZnaRzx54wvLZXN6pS/RfjPGiT+6uI6Nu25VhHgNt5UPMupRVenJnuwCLazCmcW488LHuZo4qDYRMTNzmh1ZPg33/+ung8IXo20IoWQx0HaEsKzljMccDHLFOi87AHCJYmuSz7dzZUG50D1FWzH3S08ox0238FiK2IjDVNl2WSONx21XDYoLl11SY3WBj5kYzk+j1hznfout9ogbY9Yegeieiqs8bRoaodRGoGBJjkhDwnwhx+i7nadKaiCNYUKShVfAhgJbp8OP14rPY9rf7G4zt/bmefwwi9yCWx7qweUBhYSYCuhUGieoaCBvJnGvO4fKi5m/2W/kdOpn1Ur2shOQyuJWPJevNOCq4+Ifzp/l1Didpk9UMK77fSnNmepzDj2J2ld4ydSep6qdzPLlcN224kc8um918Up562nT3ZaSiVkz2oU6e31+fHW5EImepI1zpwJY+bS5sCKfumEEs+e9LZgjh2gT5fZ3vnuC0TpJpDET3J67PZ7J339SlU1I7AjnUkkE8yvHT1zDnIGwhDqdbD1TW8FxOraHSbZiIEFJZVLmBmWr0qNyHOTlpZiRiIYO6qhMKel/K1ept40XAX43w18S0jz1zDbMXPBxgRJ64d+1hwRczrPSFcyuuVP1fX/cewQklBayAAdxAQJ9sHuIzFlZFCXIv2FEO8d2LTvDY5lm4dX9A1D91mUmhiF0VQKxApU3Kcu9x6ABXKAEEEgkoKAi/pOqoCmJUKBaCkaVKSlV0KukRpBpGikKASjSpqqinVrBqApKUqnSmhaUiZ2HQYqinxf8HpODl62BcyIg3Sk8hETg21B28r2gBwFxpBsj9BlYk2S21nte6uqIgADos2SMB9tYN7fB0Tzs8A7bDX9jr0Dyhrzg/U/79v0+ppSPT9cj9Ej/YfOY7TaQoxl8OkuMwjiJVI9IefedIIJIIdKEgKUVWK3RJcpChu7lWlwjd696Yj2XFkcR1O9/f2AMiap6HXHQFUhpYxQSwhhJh5a36y296xNvbnbT29darX0Uplce4/PT1U9/v1b0O7n+PR53cdfhE1LccxaRXVWZhlzEuh0uEKrW8rgV8B3Rvfo8I0+7jZNjFE3QKyUEKFHFUiJKWkDYNRSlC0KdoDUQk2tRFXM5I0GoovZ84/uP9/5+fyQrYKVruw8LL7wq9sPHzpRCIiCmnzsCbhVQ1Quxk1VBWVBZvL7qYjgihJp06VJAwU3d/41aHCMuwcgNlTUXe6FRWKeB11wNNnAMV38b4AAkICBgA/uMILwvrktMkSoF5Pib3xYyjYChYWU5zdC8OyZ7hSngdYGkNV+015qtBYHA0sBBDHVb7Q61iqpD7weDVrUQAJ9GfiZPNBsFJjjtlEFTBSyCwc7Pr/k7z0c/gfFPdrUtAUHpnQxNDQhKAKYHECfV8P1/TtbYc735+popPArqxep95QLschf3t4G1pb7tnBDHWiAFs27aTpGh4cQKN39XFf7/cPsQpRpYCpsgIQmEBbMvoe0/tn3fb9n+U+0SCWU3bJUXA22Na5qiUjBI5kRkCCyTWCquCjbPWk3VzjHT2U58OlPe937H3HuXgYkhCe9pGIqGIWuqxEfitxUVE133Tb3L3jGLdsEZP3LSe7aDJ/YXueix6DYr7Web/lGGOWoXvbB9oYWdjr/l/z+TZ93HhEZJunipOTstSZW06bI6ztP3vVGbYqFCwJFiibLE4+WmT0PLafo4qpj+3g+H6FugtJlq5HXsSTQzfSJ2LO7TeFK731GNcaLE7Vgfu0aLou+Gh+ogkgon917yyQG8/j2zB96WoF/F8A+rnMr7M0+H4FRwq1wtW26G0sQlaMaIEQewhAEtUpLM6lS9/AbQLnPh3hyT6swkB1v6RC9vXb1qnX5MvufunQzbUeA1K4PRVHR5fL8x+D6H6I1j9sv8cZKo+qU1Q0BZACopUGWpJF7+v3F00X/fa5R8nvc/2fbnHzKqmt9kbesxPL8Yb/RwjIRWUDuoWPFecfxegt+LPyWPVB/H+1jUWCgwThguAzKzzAf5l8kf82qWQhJINKJzsvZMmXfUGI33fa9Zv2hmWywoBgSN2DWe+hVY1KrOrC43nb+Q9nVjA0B1X4BMAgGDVjRPiUybPJKCIPKzpFr4hzixwTggT8iKf9b5iN4hgYQoUojFGh9oa1UWDz/++ty/72qxLf+af0Zzb+JfuHxqnaqfq1nxdf3yQCdhUhHvh2z5R0qKDFQicEZxTvzE5jQR23x16nRAChmA8KLc3w3N3Bit7p6e+AekXQExplldn1UdeWhvNz4X3eli1NNLMK4uf1EVB7+z2jKdibOhAPmgBIsgJIqSQaVKECikoUoaRClKEaQoGlKGkQoKaGgKoCgqloaFKAaVpCgoqqCqUiFpaQoFiKiBKKaRCIQKKKa/sPEDydvtfn+P5o/BOdo2dJsbURWk1Q6NNARMwIaWT1sC7iSLE+tpE6JxOJkcM1gczRmDtBpeZ2tDtqpodBiCkprSFuriadRRByF0ta0D1aRKoaiB5IaCqTqA0rQnJQ0LMhM85jkXVijjG2eTyubNzrAchaApPVGgqICkOJF/M3rY+CD+4vNGSWWuMPEtwmTX9mdwPE7OyOWTvxsOnCJMOnlB2lGkI6kFFb1uaafwkTkh6HXVPpe1H6J8U+fDM/plZ3m66TUhmDsLNvHS7rwQn7oER+ZERn2ARME+i3m5B6kpB4fI0hXybD+jYAoFpDnDVydsxD7FK1QhBLSsGQkK0oPadG/M1XPD139/I9P1+T/5+HqGSiA4gFSOrPG/wZiCTjIX3thIad9Qtef0YwFBWdB5+ZxzEwn/0H4i8VqYAhiPDe2n9afU+HI/UQQRSTSlsyWWwg4FkwxIQkEkgkkEoGBhYSw/oKomA0x2fSu4DasC93TtHxZ38W5SEYRkISE4rIIhwxBX5dm3kmIslCbZtW2tiasoo9vxqYwgeGIKSp3iGFH7xrjs4IxfRDZMcW+t2buHJN/rbOs1Ot+verzOXd12pf29W+n4fXhyT/QM/zGI/IRELRWGBdf9SCe2ZioH1G+M4kp6PZVNSHpDd0akIoiSLMXCMcVcxRkg4stitdnTeJxRMbzSdcmDyPi9U0UqskzEYgRZMMz3bbmuYKiNI6CqdtEB3yYimqurFHUZiqTkJqmihCkDQ6aChAiTmyadINCUhSoUNLtjXLjFPXW4QlVRMcIgVmw2mvP8Jqcch5kbizud56Qhtp/jexV1p1BVr2uDRElqfxIEACBMX6v1SuDYjGxOIwjzKCNTptSYImDJgoSEyVjZZWUqvUiruyWY/qsP7nNErmPISslW+f8z4SHKiUEqnSZn2ii4ExwMR4BtLUIKnPeftvyVfUe973CDxlsfS5Oc+923u2xBNvNT3jjtDj4WvcbGhgwZ7eLB33ybd/FF6eypUGsXRxiHg0N0uy8j4W/Zwyf192RilZAHJCrkih1hCgKQSi1GxiIAppaSJNFjXUWNEJZUqlkwVZHq6b/gfZ774+zzL3K+MpTbs2i/nHr33wTx49W+O0cFNSbCY4qg1LQRBzYKWKi2NDSD/CQNA0AlUtKNHJ0IUlMSVCPonbSxYuObI4oYSHZfofNPIvq9n3ve9t6zvud32Ugoq7S0xCqFRiIdQ5SWKw797xChXgB2dd6UhmC0feX0x0HHOn7Q/d8L/B29Oo69m/ZGhrt6/9icYryuxTauJNddlQhWHerq2GjlCFTjqOXF/ltrqGzxp9OKEtC7ruvg96WavEvg48YSg6hSqqi5MRI5mQFRZIPXiGqeEhy03mvPT47c8eHPGO4zaNZxji9e3r9x8fu4O47X8ygazyV/VBz7P0fn+x8mf0T4vTcxyWVo0rsuyTaR+kjue+Z7oPbkPljQ4lCgKafzy6VCigDkHXMDRXJDQgUOv/XMINCPIR0oUiFIDbKaBpNLiFpf87j5CSiff9Jz7d1TQ1R1tXsfh/ufm9W542MH035APcSQF6pZEnCcGMUqqoWKFYqoDlqivX9bPn3arYhWKIQ1ij7c5fUd8r/f9x/HpSFi1fnwi0UAFqAIg+YQOWRa/NqAH4jkB97uKz2fP8EAUOTJ2Uq4rCNKdij8a3f+wzfhq/ydtFXpgiekFENejidH4ZGJDCSWAlHyCjSVTRSUbYqohtttcwnr8dWj2X/QaIiF9Id2TTR5Pev/B7F7/ldpUDhge+iRo8N9zz+++9+/2PUHvw0P1wOmP6GdNH9IMSdbAtFcsQhoTRQTFAnynWf8EPUEkXWNow/8bPdD1IhyarvzlGIqnk95DyQKNB1DyQK4WlnczUNcM1NHJeUMiHSR7czbHFzUmF7gUQUzpNenOHIMYYfknVxYIxJQlBXdLoo7+sHItjSJdYKErEXWDENDSDQ0jQ90Yl6grF1YgKSuoUOXKgiSqS6DSCSJ+3X7XowRPf21U3X932mDsgl6nuf619saIPw7VjkGWWvvJVKenm2GAEP8vIEAAQJD00cjwaL6mO8KThH1keGEuDqKBXbAYrrUNfnPYDZuXE6FRSgJQlE6ja6eK5O5ayWsfRu7dznFcco5jlWAOuZbQAHw23BiMd7JTbu/Ljfaz9ksKsY3MGAgsga1u1XnfsVO4XbgzsY4S5rZNC/6uvD/bx2f11Ujq2HbA0d+jsucVZnG4042z1bB9z31nkhbOz4H0anfz7b542fpv11uFpP5g43lpxbeSoPfxnI35rA42Jrxh6idvb7R8PTGB23g56zRgrC1DhQQDs7bmo8kvwS1yPXO7c5MFz4EiuOPTgoCqiKQY6LlwFEeV/58vAJkiFC60B36iJCqZHY6sgi1KyCCOpDN5mgzAZgWHewnTszRKNA81ltxXFDxrQBr4nyP1GUo81Pvqdjo7slulSipVWUqVJxhaqp54PjKv5w4ZqFHuVribYiVbOYr7vD/3y+uifAUH6SPc90fj+94nz/IfV8p/Tb98GuQUaTQH3tilp5CaoKOpdARBE0HNkKe4+I+z/L7m/B8hviv/V9By3/vZSj255Dwk6nFENAVXOsickiEoOQh1cho2yBHv5OpeSBpRNIOsbK6Clif4SkCRV5IoUrQA7NaKBdFKEzpU/7nW4zcIKkkUyMc45KlpaWwIznJXkFgqftZmJRT8UU7n808/wz8jB8rqw4aWBOA+iFEsEuw2/l5vMY+35bnq78XMHrJg2GKuZiwcFMQpCU8uVcLZSzV8fv/VzR/T2diKX9Tmnj3evv7v1z9OfoJnzJbFykmVrByIUzJElRFEQaGNo1tjRsZ2dbYdUFs6NOs2g1Tba0Boapp0LrSGgaDQ6CkRKCIBpENLpYkJmqWnBsZJG2shWsxAVcRVEARAcez378JNy8kIOdNHlqSlFBxBQRf2/X/L33PnPbPs/yj0g/LtnOatmWEn1fs7085C9zZEogQYIX8jNbdEWbnp+Z9l+4fOw34xwoyHiHOEJ4lj5pXl6q1MvIjF8T8voGZvIWheI2kq0KJfOlG616+Dd56dzs4k4ijikki9TLv6PTzocxxQOxghbBY3nn293h33P0/vm+YMVfSo1HxDWuSdyD6t8uUe+ECttsVxekgrgoDh6pzeZzURkI6ORZFjigHINOszot1wNNUPJHVITLFRSNIiaWgxCUtCUlGilNOqMQXW0ck5wzXUJpLrwmHi5+Xz+37h7kP+PygAcUVX14qI0go+9j1d7/R6uF+j6CSj1yrdefZ/nzP+I6gfyiSQiyAkiNKtJSAtKClKFKpc3tfr9j1vp9n6OlySpyQ6ki5l7ODSS0q4vtDhV1xhDS0BjgYxga3yXoBNh/Ds7HvkjOruzZhXFz2WYVxJMebc44pXiCk5S5BijqZq7NRkrRFWSItJa+krfH+03VcxQxepAXFBo0Lo7sZeTtmiiJDTTEtBzYKDkAdbHV1WsNKFK82UqxnVO2dshyHd+dFAHUmtaEO/FKccnTFTo7q3EayOVJZy39e5FcNSHreb2970X03TrGcnJmuyGrszRGuVKVpS6SVrSlKU8KL44C88FXR183T7+9U1bD5Pdkgtl2J/9fnZ5jHWwQ5c4/nx79z/vc5N8fz50xwdt6QIShBwG6WEAqhUkglLOn91ZQAnIDpkWdf0/ay6iCUSkmcQo96USNHFRazf5+j71Pwfh/x+EDA6/SfTEXH4mhOZjDvRr2+32DdxDdwd7m8WMA9jjzWKzrS8N7X5j8C0KhGvAPvZqNu/jhlt+rO2mGio4XOx57nEOjYETp4BKlI6lFmLLugxfX5neN3+29JHLRoaKHRtvt/JuQdEnd9uksxBiJUQYc8wtZRU7JyYGeJ9l3zny4JhaIJE7qB7EHKAHJTrV5KusZrEaa9tiw8Xrr2t9s8IiDcKIBHZqTujt503yFgC4BF2T8UImaKkFFsklFf69ln0dj+UjRQhVAV92D15NcmkCgaUppCqfi5uSBoOoDlVNBQFKmnQBQtLTrVGtAUFByUMToHktCUg8gOQ8gNIaTlpPbjknY2EooOpKDQj1DoHlVKUGhpVodaRSl0roCkNCa06xnFKUCaDqdIclKSI0dpXkq6E11OPJ3er4/R6PbvcF5+T6fUKW6WaCHEcDi7T9GoxzgIcYWlgJEisvF+B65nTthQdZ9XMNsSxWby4t4zpsNIJv6MKWKiDRaA1+aX3XDs9P+lXolFhUtMF0CIi0QASiEoSMZQBSSCSqgqF/5QwsBISdUyHR0UN+6JcmZm7h8hf4ewc2Nk+ll7c2PKF+fZw/bv/WP9+vmzJo3JRFjSlJ8xyFFIQEgEohIBKEglAACCSRdzH2+ehtig9ucfD4mqjQxlGi4x8+Hea6mIJkSqGgSlrrc4a/Vj6PoPn5z8513niXmsbYsJMEcGIweN8sTqTml9ft8k69OvZ4N8zI4eXMlu27muEpbqX02DN0rsjgmKSQlhevVzzz0XuHbZw8O0Z3OPnnVvfPM6NTh4t60wgi5guCJJJJJNRb2706zdy0QpWNmNBxFOsCY4NCIZcEIxCFs524zs6mxbVnFFZWSGZFDGVLKnU2jPZ49ml3vo8F43FEY1Jior5YtVSCSQSChJJIKSO5Z0T3G0TnmP9vVYdcxw5paMk27sOteD1Xh7UYrby+TySO0dFysLjp5BLGWfvn/QFezqvUTNaemnfOs4HujFaJBC4ZWClVXPulnudscV2Xmiigoh5GtxjbjZiNtjHhnbacPKZoTl4rDQOBuZ3LSQJg+yuKrnhLZo1qELFoaRNNZjkpTU3VhpPUfxaFoNpOmFs0gsSRyVZ7kUdKOAtWSFlew5C76zPCKq2cM9OV2KZ+TmXNkdaHo/zRP2QpRQtAqFID8smkAoKAdJQulooKEpRNC6Ou7+xt8/sp4o+iNJ+WUpE0aB0O2GgZBSkaQKwNM5CJMDV92X3++fRefOnepo8e/6eSh9H5fofRw8e78f8wP4ZhHJ8loifc2YBawqMJkJIml5aEiXccByGlO2yRJVNUF1h3WHEFIhSNCUJodAxNMRSjQzs4qF2wUCgRWODIAKoTG5Ytlq5FpCUuRZCqpZRlyt3cbRrhUstUysYRIRtLSr8lqlqbXuc3+/Z1dCKhv7Kaz1cW09z8498Q/g36T7H7EoGV+Eet/JkehWLjse0M+K7Su4tXwcmj0VXGXI7CK6bd5s66vMgnPOd9+eTo0CzD9V5eRUhiCQUYQK3PThxoGcfM7fGHzorhWS1VJysu/5uyvbtZ8+LIdC5J+tVJIIElCUX4bLmATluVnTBs9TGsTWspK+98/t65nSVglWsBcGRs6ezCo68+mhAc5BTHmUf8NLAYKLduslJ8WwtNPbZo7bNFFA0U+HMByS8u0hSvJF5C6Dkg61VJSaXEA00AUKRAFCHwzEMUxSxJmMI8tPo/bPi50+zsh3NiwvNz0Ocn19/yTvnWU6GALgqOopDU9PqHt+EPU6leSOdOMcourct4MVukCRPn1vUer0QCDaUREJAENodXtsY+JazgG/qqSDxVQA5QokSgI0XNHtREQDUPrJ+dZFJQFJo/Lcjl72111uIYdtP7cam6zqqIhmK65k/1EH6O/6b0barY9GuIxCMy4KDaKn6hRP+gzImgEBE4QWSdw8OYkBbV5jQz4Ic+RIR2/p003ZhHvYmrBUWd3jo5aYWLSdHv/IFojz9NBpF+GKSd16oTbNdSkkK5aPLOLlbVTExC1dYdDSIFIULQpVUgHCBxMyLbEcVcFDFBGT47kg2gROSLyRPmYfwPsfnk+ZLVMVckn47GwFiqgyH338jhqZrgQgk/kHtqKpqR38UMKIYlVDQV1su2F77SBS8kNGkpdJVAbYKoYgKShVp7TpEaEO6dJSFDRQPRUdRya5UmhIhf/km7bqo5aTVFDbtweFgRFMMUMiRzIwkyxpfidLzzMuhR+fx86dSsqViEYQE16aL7vVp8W7g3rD9D7O/J77B12Al37CD7umc1zNzW8VM2x3c/anzeQhXRED1fB9vdjIgn+p9cN7cZY+O3j+fGHYnLJg8PbC131RBN7NQ5DXPDrca5d4W1vR9+lQWnarVzt5Ot+Or1Q9D64r/Pz0LILIyJISAQ0p0kjKQ43BYa7hkFBxZorfUzRF/rPvsLwS3su51PUHJuNlA1u2wLTBSDlNECDeIRAAu89E9Lg5Hjmbs/EPr7d/HCAMRAJQKNK6pNjFLVUpSIUBEgUJIQjSihQFKFKNJzamhDTpou/GJaCLqDSDpTEIg6erkYKcARAlac1eU7I/jBLfd0it2KVICgoSLCgSTnOOYAIF6BjwcXiJODeldbVRE4ySEJQAkb/65v9/WbjPUVFwsayt0Mh5q8gk+GQNbJ7PYHQYZNc9gJiVtaCu6jS7mWrDjbvg/jn84uNft8e/Rn4uR6rTE4bri34j+K+Q5+AwH8aUhbIHX2uRTcIgbBJCF+HYMV6vT39yziHceN7QgRRZea6gQIu4PlScAzlAgBKQPBprl/W8eCcSJfbwuNcdD+TPuCvWbS9Yqk3ELD/f4biETkSU1uYdPMMQLbRUuENXM1FJLVkeOdJy6HFNQ2YSc6nXCc49Tc+vmfT/B8SHusNEumHiPNz/GwxBkYeYFjCwBioQQqkDqIDDbaqc6IrUQxBVCFFLyxMWitNBoNOnqVoNzINCUhQ0lFCFACUKgUuh0ClK8kjmYuRKhUFxRcknySps0xvJcy8jAVVAnIdLGwmonMdbB0QDUJYGlSlAIN3raNxtrpva5Oc8J3OdWEODFCBShnkaoKoKivuYxfDIbrGg7vj+Ujz+8D7RAHvWloSkKKA9g8flio8T3n4wfPB+6yezpz2iHiDIkHJJHFT1+8d/H8UFyf23KK0JQNKUvNhoGlSqEpaVFoQpRKBSgRiCqZqKpaSlSYaFpiEcxoiIhpiWh+Dak5sRBsZEK6g0HBinPvgqv6sYR20dx8K/uoEACBN/sbv4pmcqPo55kABR83iA/o5Fz9ce6P5DxHn98T7niQSUgsy+qzNUPZtQzlvgrLsNXxLEefN/P67cfnxrye556nu/5IgZPa+E6u3Xl/XjPlQPfkBPgkR9yQdO2ENC0RKRJEQKQSQEZXq4NPteiJ8p+1tE29QA9t66h9nmc5Qi0VQlFCBVVxvFljiIxYwOSLW7UPXJ2wfm1qYHKgqPzBm/TGIIBxCj9sLQlsFAKbuXXwXXXOlUCAop0oAYTQQP498YIp9SmwIkiCh4UMaCZWP+aKX+Dm24iGEFZCRkT0qKCSAfh90IAGEkCRCQRDx8EQP4H2AFQfXHiieFVABQKUQfNQ4Y3Z17eGOPJq4PY8u6/y3as9dIFVEDUCgZorUsT6vUdkB+ItxIkTmwoOf+6080sf5wc19lQhVj0EIzDT5kAQPIiAjweB5wOS46doXFoeDbx6u3twcDKuj/1jVBXbJHV/BioqDylURsFYAacM/q239/49J83Juro/bTqkRZAKFaUWgCIV7v4eri+nrJ/cAn2pXhtRx5vV5rev0evfZFXAgeOCF2/QVQD8fmw1Yeg9Xyd/m06EBPCx8fY0Q6/l9WvvaDK+1Ge4gcii1PEq6BAEfp4v0qB9aheqYQ6uPud62vOiC/3voXOhKAF8F/OA+DTdu5N/cyxO/s7YmoQsFBJtGBzvz83q+Hu7Pt+/8OfMFj1VD00Ch9XqHh8BrrkX3J4v5u/W30THLkry0w/08oCcddJ+JzyP9LFDO2dOgQX/HkQ+u55Mng8u8H7Yfsh6OlAcTjb1T4/7MfEZU+qN4O+iz7eLg713o/bxdmwHBEM+Sge74QJp3tlU7iJANY8iN/x2N8PREPY68eSaKZ7ZomPXAR8mVBADZEEvJ/E3Y7MuPir0SmWI+CB98QFdwqnCJQVAvBG4vKh0Hrom1ddlEPHx6NVnw57snNDxlLR/iAjZ7kVtgWGIEREct/jfaBMUShF6ebYqtObXpmrm9V64c1FNWumSggmBQE/kABHkp2ofL+rn4PTz3Pc+O1e3ybW7LCgG/KPaB/cue/FGEdsHCAkIpw1+fl6+/jw4eH5MxbkCY58TV2mIhPDEQV07AtqtQlDUT+kRw15dkv1D3/UIofOn/eJ+YElCUEgyKSPcH4L5QML/iAuQz1giHh/T278Z4fuv5+y/Ag/RATae1Xj+oBK7XtXKWR+qDk8lBnwZ1MMdvay19ynY0fN8lvnPj0upeEBA9oREaNFE7KPKIqsH6Pq8Xuz8/r6+jzfk1yAPfEQw/iLZeIimJHbPh3Y+S/ff2J88P7203IsbjkFET4Kid2Ls/DiP14M+M72IKAGMEFCuhEaKAqf/Pm2VVMmA95O+qm1WvRN0RDTABkRpApVChWmgSlBChAKEVopiCgpqIKGmkKGgCRGQZEkBCSQA5JjP0rU3Th+TxXb+TJ2Q+qKv37qCfUj0U4p34H9cer3NfHhy4h1Y+BBWqBnUXCqLlEC/R0yucQTeQwgohjAv1Y0j/XpXHXhDd556ANhQP0giJBAk5A6B9uH1dWXken0MUI3/nQfEAM9aAntceV948Hxa+gwjXshejyQDxf5ddd/n+zo7+J2tWgTlhqO8ghQRucJzHCudyCe55KAAmUL6U66Y9f7dOjBLlTer94qvwgFhNEFES+IIF8EfFybj9dx7Er1zA9U7c3cweABKiAf5MA+YgGlQoFRpaBRKUQIQEkA5cO/zGIlztJcxDpnyctObk+fl0X3j4r/F9IooFn8OEPKVRAR/oSGpiG/7UdVf5giBnrvr+vF0e30exqwBO1Ar9v7FVN0T14711qU5vGU4tV3f73j/L/u7IcogdIAB84MABEoYpt5vttVO93lBKlAZcgrENu0EBGh1xDREvtRCnHh/22niPiqggjcsRTyaaICfvD6NG4059ndbXu+XDsaP+RugqEikgiyCDTQCJSKUglAFJSq+OE/t9sNJylkblggFjjobPj39vfc/eEUPggqbTkuAWJqQAdREAlmVAMsv+nj7Y8l2PFDzXVAkItEAbrVQ6Ycwgdj2OpGxpWOFCm6IIlPLutweX2d23uYfHNHjn/0D5/wKGo+ER5MOMOkS81SRREkEVkWlUKBAKQQaEBqiJqj2FEQctFye8yfH65bOdW3rvugyTg8QEKIhKIgJlQCyKKtwqWADtMF+iYbbdGrjNXu6Muj+qJwesqOoVQ4F1XBohIhlahXT2dvc5ccdvLbNEBHhnsx3z4EDP/KmBsKUAJoRi9G66WuocOPNjIdyOlVUJx/oCAjmqIV+1wAo42+OonVr+bi+qb93+tdeHMeMgIa+Lma8IrsoQVHH36na+XC3y8e3/7jyDsT4vpoKn0i7ynCPiD75X0rFEF3aqHgiDhD9e34/Ru6/d8vx/vmdEBQR5cfdAqIAhrU8p9YKINQAFL5su8dt3c5ssXCAd340KOMACQC0o0rEo0AUNKlIqUCsghII64G6KGGfg032eXgPpr/f6Cqps+DITJNapqNBtQCigi65rg0utn8u3g4PPls+zOpzzdjTqn5wRAS+KgSCP+c13p3XFobkCXOo3PQp/q4V3wmcp2NlB0iCHtbAQrkOCh1Vv5Aaf6dtD+IhSIp+c4Y57iho7RRB3QehTINmDqAM7049FFPkQPY46gJ92iuwprx5amc9r+HJRD5Ces7wEP12U+N4PAW6eYRFD7RQMf/XCHLFkQP05NB0mjRf0T7FUYJxnwvgK/6jzp5BodqHVOjV2OLi5TA4OrI4YAbyFUJo0tFe2AMzFQnyxTz9fc/3s+8J4MNPjvqGiGmPDjSwVoAFIMgsjtLFCm/k4sLlfzW4UL99mCrAv/A5ASgoilRKRv2UAy8of3AzseKN8ZXtV1xHnTegaVUOOw2CO7goClIint3+uef+6Lqg/miP2Bd+oWG5De8JiVKgOFnDHUUpLhoJSQDSa9sDsFTInDx2IICWgAgVOXh4QbIcmedREegdIBnchCkXQC1+66lVdapT8GrDizbKJlqECBMyroHO5fOPLlW+QoytsYQFQyDbAZgVgNJRoEN3bTANyxhtZQHWAK3dYtQusLjnmYE2V70TOAiWkRFAntigE7U9TzhQT+QEUnEfjtDnEkSIgJKqUH5lMKZUD1EvgoXEAJ/YECjxGOBKp7IBKGCOEoRAHJe0mEYB4AXUDwZTplA6lIQj3AQjshMMIPQSi9EqBwYADiKPIB7/a+lBAqw/ARPL+a9k+hWAiV+vnodX4Bc8qFfhCGReBTYTtAS5UsUuTaV+ZAvQFuBLjJzAwQsooNKpSiNgWk16UeRVjId8PH7GTkoKhfnyyW/QzJ/ARu+aAn9yAlkEHEAVAMMFVCgpAboKqjkGNBMhIALUuSkRGKoAORaigIYRLogTOwY0X3yJA06xwI5w8QBpZbhzCenJt84zM6MGCQQUZIiESA2vbCKrgN2ZuUCW0g6CO6DXCPABqZAsv5QV2iUAEFWw45gIg4ZWBy9vkqgaIWKYO+aGzFXYFc9IBcwtzlVXzzzjGHGLZQDCvEUAqZughejRjWWIHza1bjNX1uS2Cow6IwfLdcrnUODzpyEudPcnHed75MNuC51cEYrFuBGaLWqKBICNWoCzgAWkbwDMCXspbAKwcOSsYkBAXFWX2kLgVCA2L2VbIyCADkUKoD+iDcQ86K2uRAWHA3sIBLatTKNFVEcBL2pMaAAAobseJiAqLiFQhHNsBlIFyYoUcrMQC8vSqwvYGqCVpb0j3qMRFvdP7IhanCFb3ksXlWtgUFbXQDhJUVXCqIuAGGSF3lh7OBzp5fZOk9WBwwr3kDeL9OBdisfyvNVQSozELbBAEAdAEAmgyR7R0AoYEHQd6KNwCAA3IooBmIiAshAqqhyQBOKuEDxHYQwKSDuAgLQrmwiFIF9BExicWl1sJoQXJABFK6gleNEEtmlBytpmqAo5MUQBhFAEpBUFNMBTJFBMkEBVLjBFUbxWoCIuogJcs0qILYRgIKYAQugcQObjXM2wmqNBQPKGeVGxeItGaPeCVm+nkFQGwcY+oi3siRgC4ERQyBlF4vROWSZFAhRMqHO2UAUNaNbp1a+TUoFQkyKWBRHQEzyHOBM5RAR4M5CkLbHCPGDgAHJEzhQSSN2GUNImJQLgtffCRLy3EBANYuM8M558vanlnZwoDmdeOnnfFFdg08POcFvOPAghdHXom7yc51434gPOZmKGd0i+pSvJGKqqmNABSirQ+Yb6AuaGABQ+EghiLQKAMiAhQjbVxSwAQWAlJJqgfWIS0S10VcqD2OBhOSiQiCwpwS4kpUELwKKXRAHCigBTTBUDVdnXXMLtWdnZncVSa4snrzngMb0qPF931wkxhTOuVZLXsfLotuEH9owB41zQ8aoCmp0UCKq8lEDugQAeQgD5ZRIkeSHQAIoojkxYQC+dgKgxVHaKFW5GKFESrcObwN33KogDnd8u9HCIpEigqHBEAFVHRAFQEQCAuQBBooKCFYiCOnGFBEQHJEAFbohBRWnRQovKCCWIgJM7GsQ0kvcd6MAFyssOQNjGk1GxHiro6tm5CgJkmrqQASgMoRtq+eQwVTSWYAqMZFIiG29ZzxjBfUuLWzV+G1MFQiMgWtuGzd92A0Yw6XaKIE3vEH3K1o4UxNoVLmxHkF+MG5FQTN71ivBNAoiYy2kOJQSicVVoZw64w+NS1hZcUjNDFxbmnwwIAYEggD6ELRRFEUY2VPadzh9xA5AOlfRSl1HxpzMoN24OLWLCCWAAQqoViQfHgrjgFHMHQMwApTs3itKkqinTkRLN8y45EoMBilQEZRkQCOBMKl8I+0I06ZaBBwc5OygVQBOeWjllCLCyaEgnZ+bw6IAgp5xTQKAAa1sRLEAHHhalWgNwKIkBVFxYi4QVuQiKpQBQiIhYSCBmiMVHOAolYDfioXgJYutYAUc0AZLsbF7awFMcxLjEUBG4OqpcuALmqMgBSiim6UMgsV0kCwQFXpwYBeIQAgByREAaVhhEAOICrYgK5ICqBwhmDIt3WkCj95t4UdYYcUDm+0NnOVYNJm7AgGE2rnabEgICOVU1WWBVwq6uNgQkZdNADjWsCAI7zptY1vCKGt7wKhEW2M3mQHpEUVwXzY1d3VmbvVbxjRrOUUVJxrJYUb70BbEwG9zVr4uiZ0F86DNrm6tIKCDqUuLXxexrVFCHdlJHFrOPOa5DrtekhxOEnRN6DYd985b15vLQhnk/ikZgTEQxoYDMcFEeadaZwiviOuAAKcUY7kO2frPEvjqjWTDAO8wiA4SrCAQpykDAcfE3hxg94Gbeg0pAJcOc4bo3IFChcSqFm0qVCVEG1oiKkEbIAQh1Z0dUAIFjNrSOCMLrGnuFQW7YNQAXlhLxQQq5hSw73u25c4FEUwC5xBHG9BBKxUSAQAg6gVQLKELpQA6QYRQf2IkAgqHeAMFEbBABcJoiIF9aVL2QLJmCCg1BAEasqFlQS1YOVznWsc22eYrdLFbF+KEmUzEsQBExWAgoUSCAOa3NDOCKAmRAEzhSCgIXpFFVUgRRABo3dC4A5ireJIiaHjghQUYIq6hSK6svAiEQGwKUEuVRcYqgsQxKZlolJSsSaRhcswy54QsWQNhrSNbALXU/zUm7ZASzret61ktOL8irKd3GyYOEQEdCqXAJyNWMFiYeFyWNcoIAJrOeWsC7aZxYBAtZ44yW4rHEoHDgWycBWa43InDvTq0LFqGlgyyGYu1nDBTUTMP7tIR1QIwqHYIPJjrdfDuAe0FOqpginKXoFyqFGwHWoCQKRRPKFwmKBULhC2Rf6UrQMBwEUwMBQGgGFPCsBKQzSfTGwzY0YsGUHt5aygbJgNrWkxgkjVSFcrFrqmRoo6qF3OEu5EyUKssLlBBd1cHUvfGUQLqi3gN5mhmg4VAu2ojeFYJXGtNC1sNlsbbYxFbCAgTRtcihdtt73DcuOMrlUTceKB58tVijOtZnKxIW4TXAoaLLlBXyAi/eoKJBEQG8VGRAQA5nEVBCt4oaNGhUZTPM0LOxmY1jHLK0hlcK1BAga7OfPPQRC9ZsqgiZiiYYoCXXKJRURFPqgCgl81QUQUwIoKpnFQMohcypSgKjYIIpZEUDGAglAWqc9+jOGi6jCpqClCoJaxzOMyhboayCgagIyIYSqgQvAC0EVXMwuWOjGqheFEdQCxUQZeXGKZkb1Rg5pgL14iqGgTEaLNvCG+VPCg8ueQGBzQuI0gNrKGf4552vTnlfc5xAXGcgchLbE5c0XjaFTJpMcqURGsWOV70pbW8Xl+EvhxpXWo5OUyqABElUtRCs+TCwgRLd7IXORPKwcY+zaBcsAW2FKKMZeUeaaAZkUKWgzKNjLu62swCu8O63gHkfK39TxOOVUVRMx489ArHQCBShRSIA/EJi0On5gXAmQvfKrYshlkJAkISMyoJdowKxwBgwhcaICi4AmdJeThlHvQe/PYbuTVkUtzBsqKDx08HPoYvjAq23NXzoQAQJYA3QK2AESIMuNpIdgXthWJxaw5zC4tnnXOi53lrX+PDRhlL2lMnJLwCwi1BmfEqIAcQhRfGQgcgVGQZUTiKixVEW1kdBpG8FXNBsKTQX5gXZomcF2iogdgqfWgOh8Y9swUQC4ffntoRAZ5FADxF0Lxq5CyUxWCWW40V2656hC757I0TcEBS6CoelUJFRPtCKUFC1VF4yqFVSwLQ0wREeSKUNNAlFCUjSJSitAkRQCRFCRQLqYFQW02xVNXfH/aqK9kxokD8Dtf/ohIaDrawJtDYz0cQ1B5wEjk8AWwEOkwMaCgjCEbDE9zv5aAiTb+KICNTNnxpFQMYiJ3/SicPQP2ioE6Ct4HVO1iFe10+vDhQxuBuHsoTzjMy85JPXPL+B2b+07VDGchfIlAgUZosgKl7jdG1IFAo2blW125IAGZFOSffcp1if2gJ5BFYt33cNMuKgoIGIRBK0BJRUAoQEr+AgtKLYGPggemJiB98EQ+CI+r0o5/wfcoIJdUWBzw/364gFHEUEPdoaYDInPDtQv5BMnm/9/li0QUqoORagVqlyI0LAxAII2RmHGRxlBQ7PTgG0hcFkLwFQZQAc4KyIhKG8uaKPNdQQCE9E4i+0osgHCZOQIXqzRUIwwtsgp1uwoXXt+GP758s0RTH040QCgEZBkkIWFARl+oQ7FRR23+Je+45BTy+/2eLHve5m4geNICwGRILCSBIISTAQkDIEBIhDRUKCECRT0X6fyoJtL6XgaeP5bIPZQYa8fi9qwiWgdrHw/EgvT9l4NaXKkooisFFH9LcACyveKFemKI/rAARxvsxZBLYEQCxRYbg2JcTUUxvFlAo0EpCaBo/nHzznOvjVUX9x8iFw9CBEUS6sdvY4KnWx5/BYp/AIiSKtUfwUGhaootCqoi0KVEUtQGysRWti7pmtEiBbvHPpo9I/0iUeLwooY1iIxBIELtoVPybye37JwqIjxjHriIjcgk5mAH6KuMyPD+tTG4oqB79AAz+rzn+abjHj6RAPY+Awoo3w5GDiCvJYkCRU4IXg6hi9yh2FQFIqAjxsFtUCgoaCUXkkwPfLxACijgozhVhIZCUhlIVfZtCvlsEiNmgEK/mKCD3gIf0OBS/qioq8oIo9WC+n2fu9jaHuwIJF4BUGPj7fTyBOtgrn++g/GIHbBX5JUT4fL276nzpIJFioQRAe1bARDbBNiACzsEDupB0wUfDdlyKqLZUQboSAosiMg75hA6FBRQRkFBBBSxxCgH8eU+4D7UFDVj7MpyIIp9ok9cVAg0gAEab7h1IIqICBA09lRWa/Y2iCg85xDeCaT4yCII/GKh2wZBgiBq3yCEH2jzItAnSLby36f41QKHWXIKkiq1ABwmFMgORWMKisgvu+B+nnSHFQNAgCM+bL5wr7RqGmhA4xAop4OhiE8lKCi0GiUB03XIIb+52UAcriB17d4VSuJvgGvz/KaVC3ohkpgqqFE8vaoKqnLzgUYyhcsB6ItBqilFQI/RDeQE1xEqKYxJAXhhn3xaJd9NjleJhcFRDFTSlTCPvxTLkORUKvZmUORVZ/+YoKyTKaz9MscKgpjIL8AACD///////////////7BSjPR44+goUBtn1190473FDu9gAAHIQGpMBIABswAAKqpGwKKYAoAFB7ZUOSphlJk1LZEyitsNoiZotZFsKq2lNsQ0U64HY2xVSzsx2wlGKWbZFuxxwg10q9r17vE9sRXbRXqtph9NTnztS6Pk7lvO6lOjQDZW1WKbY76PdPhQAAjPrXhj1O9Hd3O02zCltHQz2NCKj0WxsYuunVoNda5Hrrd3Aqa1ZVEAAaKFsAAGgACQAFVWjSihd0uALt6XDyeg2Mexvbe2HZsqxabZorbe7cjWitDQc2Opc9QvoGZ9rZwjVRdc5e7l2W0bJtb6x94XK1uZ2nW7Z03F73ue1Xdb4r3bkHy12w6ddDVC9apBSlKTrVVXsWe71bveQg25ygZMkIoxSmd2bAHULJcruUlW2N2A10lVmSXt5pVLYFWtdO5nOZyk9aUwSSEACaaaBNATEaNGINMRoyE2jQAA0FAkhDEiAp6TEiaj1Iek8pkBkDyQB+qYgwgaYQGnpNRIkxTUfgTUJ/qo/1NU3pHpDJiT1M0yTah7UmmGmQGgCEpJGiNEaKemmlPGpgymj1DJqaaeTUP1TYjZRDQ02p6mQESQQIAkyamQ0m0mkRPTJ5U2ppsmk/SjR6h7Qnoiemp5QIlECZAJtJkBNFMMTRoU2aqf6IT0YqfjVT09U9p6mRHoTl5uHj5ZJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ2KAGXQBx0QBsgD8UAfigDZQG9JJU1fY05opJJJJcJJJJHI5JJISS5JJFJJJJJJJJJJJJJJJJJJJIpJI/znp6r1rcAABAAAAgAAEAAVRVVUVVVUVVVFVVVFVVRVVVTVVVFVVVVVVVVVVVVRVVVRVVUVVMzNMgBVW0euEUoj16dkWrGKvBqXGN4aulIAkrVQjiYnXCncnF65DFEXeoC9AePl8XPdPH+J/K+7Ob8qSBC+a+tpHC1y7/tme33R+F79twtsmcCuYJGEzIEhMCI0hkcrbd1bh7SLsIgvlgqoeaJ5qHGfac7WeV2/QbkRaCYp5pstsDf6XoEIMQIjUfNjJ1coumWwtZL72y0RiFLgOdZfbQDo43Z+yER6SMA5QEzJAhhkjDhtyHii+s8f8JhB9LPIx/32dS0ykQl9Oz2/rfEL6ygS9mUv8/YWfUC/W1lROnyfamhdfcNT9d/umS8R0mDAclW0UJ2ZWmhYtmTJuRhwUoBH2pnJTApvrB3qOu2zfjDLstLbUhuGZAnpQygSMiFDrxL2jPBEs79euDRrzUKSh2rEVQHT354Rx0dGlDd+bgB896RQNUJCWYxD30oBCMLuOFa1MZISh+vm7m8Oqo/1cjx/rl5siP3SCEvNPlbEda83+kyGh5KWsqNJx3TTEjjWyWeBSH62jsqzGhSy+ZGLrG7pEkmQSoTAjIwhAFWAe4Ro57SoqI1hs4UOTbnx0l1yWGB8fUkiECQmPOmdOTlLk25gO8Tkoxz1kiqKDTGcdoekg0jEWkVFUxiWqdewBIuUJdskOCECmS2kUPU4xWGTBosdlJEUqQpMbYju4f5W5BgPWlk0p/KlvJaaWM2/R67UrT1aRkT0yDN/746iNK8YQsORxoS4R2mFLiBSJTGp60oeVLBOC6kfZupJvBw/+qnEpufmSxCpw3R9hLj/vaShuAl3/V2ZvKevxdaaLzpegA1unn6cfR/Ef1K71/7/2LW+Pv8ssD3nm8G/ExvjC1e6/bIEW/6mNQSUkFEgiQOR8sFRHaBQ00yED/b6vs95+dPZDE9xsxSBp0YeU04GG/aKTUut8YpdQEDXp1wKj3R2ARiZACRP0XDiMVMgdtBQqoioAqwCEGpO5ITxCrQAtJAC7uj29vWx07GfV9u1r+Ez/9JN61rf96jnN31lvz7z+jpX/bjvXN/p/Kp87fjrdHzvtfm+//C39nlsslqkuplsipfLFPHFJCjJt0RT4muy2Wd5IBbwgEwmhRBCUlEZGAYBCAYEGXU3DaXUgBZmSAV4dbbRuDDtlDE8psAUDTpQZFjAepVizeIVWNeV8EIbZoLBii8jZTMQedWofloUL9tqCcn6SEYRz8ZFBh7LClJCa8iwWPqBziYJfjdb0hfFH8OQRPsBU1xQJ1QUgwDygDzJAE6p5ffJya9d5+SCd5aSh9+U9C0KchCkiJqNDoRKE06GgChiKFpeVLRpaRiGIF6FJBCFhUzu/u2BiSrqjPwCErkNt0h3CLJguT2YbD3DIoahE1fDkcDaG0Ls/21GhcCWomYovCqB/24FPHfrvkfn4wh5zwWdrgid08OwPOCCZ4e/zD3WIheIATkZ8SxzvDgtSXp5UCvKCjcU/Ujrn+rQrBLpWhzq5fsUuIKGyBpiJtPfo9FuFV5EMatBN5tDKvHMpw3PcLaOaqusvvFhjZgfdqaMBRS5ET1IUcG3rweQN6fTl2ehig/2QT+2H5QEbQQkEZH8qp8f8+BQfbrSbwSyWFU483x6Q6ig4ir5YCkbXPfkbGJ758enpsOeXMnqKfwxFPuDCEWBxjMGA20KYnsqC6K24OZqo5AjGnM4Woz1xhXD0YEmGEYw+yAF0NHGJ6dPXrczMzMztAC3bG2EkAmPY93UGtMX3vdlx72H3z4E8OCtNAMkMx64EFTXbZpVHtD58+kBBAHkoCDAiQCAFCKIAgxAFIKCBSIMMAACFKAqUooCIYZEGGEAGkNKKIMQii6BTBIKgzCAoagZBAQKAURJkMkkkgKMyUgTCCILo0ACqRApSogqaQERoEAVwECqpMgUNCgqBp0KKIUKCQCkUIMs0CCAGhEEyCIwiipASgyqqSoBoVQFpFFShFB0JSqINAAKOgitGRFNICg0pSUBQAo0NCKAjjPoApJ2ikVB4grDpFO8nI78wJo6YBQ6mogoT1AIyJomFBHkGGaICGIp8OceARIA0MQodHDILwSiUVBpRSkIgEoFogOhs8VEgFNCqP8JCA+gcbICaQiWAMRC7BEBrlQbQEEaBmDFKriItwjogCMW8VC48oUoKpaD372EoBpWgVV7yiKFAnulB8JQoVRWFVSVBRVAoQBUH1wAooaEUQpWgCkpBEBMBKippBRCCADzhQATQiio6REHwY4sCURF6QUQbXKFF5sVBBeeaBAISEGRkN+BKU1ODHM1wbwQQb9g3EtjRsWdWKZ3dmrXs1eIUOUC6Rp2XQaUQGOFVNcUZuqHSIgJpC7tBZBKlVY2KGhHlWcm0YhYrYVVJY8rWAqw7hEABqwCqbmBky1XG5sWqQvHNVaQ4oSlhlCDDS+hycDp/olOEtMJglUt3XFUaxxAjrq7t8MRUGRIaX0YBzKwJjTRNBEMQzuDu0BaEAJrHQWDJF7MSaQNjEEshIu0rMYsYTtJI90RlYGUaEOyCX0yQWgNs3TNyyqENAljUrMb3w1gNCjBGLNrlhMwhixWS6UJsShDSoJ4sibGAFTQKUhmaoClBIgEiURHqVBHAQJUJCRK0ErIipQFCoUMwCI1UUSFFCRCJzZAAHQGYEEoRFgkB0uJFZIgYVGlIgKRMQKOZS8fFEHcVApKUUIIaCIBiUShWQSENtJSGNb4D+4m54ReAFLumoomIGYpP4wRbnIcNI8Ao8tHSKEgzHhOCUoVAaQoQkVElVUgVUkaARB7SugBwAMJSJiYl7QGSIQ7BgNFQyPZxlSgBPXaA4smiKhNCYgKLZFQdKADGwGiIGSRFGnSC+cJrlE+M6ChFRqyEGTkA4I8AkQR8QJDiBIlF8IYkFAYCRWmhpIkSZQB8JBE4SqCEyxHIBAdsKBISgCwwqIuyK4UEghBQIkPCUUBNAq0rCQ0qgckpEVchvTCG6wBopRGAgGnRhgaQ/0kX5jzR3aEOxBCE1QgNAxKSw9QmII9SKMOJN38+vb29u3N3d3d3d/vnwIAXUX3sAkvboHQZ4by3pYLAQES1x7lgzARbkxuU3IKGcFBBEYqBCAtqLJARSwImkAMMqpthBYyQ5EWI/s5/AqaHg7C02nVSUAA4BjoCQAHqSDOVSZFVHgBCoUAvXWAdJQyQxwRsAILxkVUnrIwQCoPUImRlAQNIpgEJXnWDoUg6WUeRRRQFBEoglMSoiGJEeQCqnOsgZaIKFRA5IjMKUogQpAKrzmEqJnlqiEVF6SEAQ5CL3FF2UU67YANQTVRFAqi8gQFkYFQKHnMJSUQUw0AKLyHjAmkAR7HHAhyEVKFeuYXExMTTS0UKir0QqEQgIHQkKh4wKg6UHt2ykQVSUSSg4RhEF7QxIAodSK9dYUNIsUUkggocBgFAJ4EdKbIHgqQnC5sFCvl8vAvZ0u11xQXogoUgiiBEgISCCfCKlRDBn2S10RU4yuFApUWSQVpASZFwQUWBleVltBvRRjAchCxJdwoBACBClRMdSAPGRThAImYCgCREgik0oKi1jBYvIiqmAxniolx3UAHDhJMHocAdy54Y6QNC2hnAkcOSa4DgsZyxSswR2IFizNbAmggBaMCGShBKgUbWtYRRkBQpFGITIZwUxDHlGJggKZjl4nCxuYYIfAwZpeudKgDzriqm6lzwxI7JFyHGxxJKVMna2cRhGSG0MAgg1YGEWy1P0re9o00MIJTq73RAG90VUhmOAlBs6YPM0lNkFByCgZMKENFdL7COtCqQIMW2CksXoUAaCcOKblGqJaobsoMSmQYxyhTI0SbNFAgDkjojEb4cRRSoK2GCy7qNkAuJmDjUoxgTbYNyYuiLQKiQETfaCihZgekyyF4TpLVuCNoT3ZpOGWUZgpephdt9KWDuatkxrEgO8vNixWRCIrjQd6sgawS7FSwhRSaREVsJYigiaN/R3cg7eNAUB1TUw0OMtlALuhAhXrQZZhccOHAdCAKRmSNjG6QikuJsHwIJdTggNN4xNdTR4yCLm5csuQGXCo9ymS5qbmUKbmZaMAFiRSwQKxOMrhEIlAXZwosoANpVAwpCKs6EsA6RKBALOUByBgiZgMqbZUAoBhJA13lXCHNOcbZxApjWQtrBkdK5hBbGUSDZlgBYIBGzgMRLgsitAQ7KiM5cgrbaAFmBmXEGwz2U4jiSYQDiWYBSIQWCUIxu9yEBJh4gS6ZlkYkIqLc40IZrLjBne9TVCgpmP8g0winSdCg4xntIo4JEMQhiELOEDELQBNZyBqaqRNBjRul8eI8ASIFIlEPOTQpJ2TKTCvhBxI4hksAi94FHAIDzJ5ZDRxjPhJpBlqRaBQ5Ii6RFkEBkAixKK6VQ0po8IcyCBEDwqUVwiazCCDKSoOlaSZoAmVShiFKUHAiBg2EUJWg2AXSgJNhg2w4gMxLnUKgUqwSRsr8CBSr4oyIq4EWFUGFWBVBgWAAaUVQ2YKCLUVANICIuYgqpYVCCoCSpIIMKLAjSKI+EICYCFARaEU5hSgTkh3EgBDwgTog6YVwIsCRMMgr47MyHAEJFoMkhKKpA9kYFHc2UQGFNKo0qLldOQkyglK0QGiBRCgGaANa7507eG/ht24X36aaaaevz8vAdUK/PL0uYFKhY7FHgi3QIP86AMOITwMInwik8giGfVqDGgtjWJDRiJPE5wuHXFEE5JcWVUhrVwslDyzYt6VytTCBFQgACdixAHMaGVoPIyGAoY6TvxAiLEbMWREyQb5cupxpkrQpsRkqDlYKqllCGUXKahWM6OZfRHREiGt1EBoBEcBGQiyJjW1FXSiEK7yrFFO6xRVLxWZNU2KyWE10LluxVhgwuOCAQAoQMUlY4aZgIExOk+FhAwOTKIZkZy+ZSLKfayrAHshxSyAI0uEIYNaolRBEdtHDZzVtJPpqdTQ5+K4hHbUFVORWo4LcWRBTnENDHo4nqlEYHE4sCWn6N1mtAIWCSVltX8DI4wbu+zcBQYQdKZhpNSnJpfQc0Am7AqpAiYB2Fu9f4UGxYMoBhejb2wsop7g4pYGWhKCCBjJBgfABA2s8JImsii9I0jEQ00KqkIkAiUAkQqFBQZIMEeNpCJEAfdsEMUjSAgw3rjEzAzBJ59uBwgZ8MZQI885hWlpiAmMWMNs0Gc6TPwxWZc/8y9WUiWqv0kgmwRoaYIlo3HC2SISO9FBMbLYsAAMenkY4+GXBQQD2kykDDMFGAqpfLYbNFlSxmNwLxRAakGHERwoRXmJlGsBITANVQpBbIeGB8BOzoZBQaRiVQoglaCWUWIWFQ4GQwwACUF7/x69ePHfi7u7u7u/f5QAueiOp47B2DuvGFnLmR9GuDHgedByZcslzWa1hxJO6GZMMN9oD83ZDsHaFjxC9nELEWAAG2sW2iy6KoCtspEHQoNkgA64eXQu4AYFAGk1lSGRtSAloiiEIQQAskQkBEhHgYDCS7A5hYOToJayyhVKFq9Ns6FkwWAQH7btr4MXPSEUDuxEBP9UB3Z1ZscbhTCJYqiakERvXsBFeXj6u/XEVHjWPBgwU+Ui2JquFwHyNyZXKEkBpYDavIGMJb4YtoGOd1EBvk5GeYiqWUNCr1OZia6Jk0BNdF32XJSUCBGnBq2VUkYGpZKVq3kcbNJz62PpUFLCzA+lc6QQwOh8MPK26ywejRoWM1rCRPD6sNRqCYSUYzlJNRB86syNRZQZthaQIwRGFracpdNbuuhuhpjF7oIjkeDG4CMU0KKyYMty1y62AWCjqXBqekpVAYRKkiJiagjuvdHAcO+UUHEAIMDCADMUxRUw0pBRCIgDJCI30wXLbahaGaIBfQEbCi9Of+govAyI9nFT4QOgCJIUquBnSoI00tQgygoUB2lAByw0Hr2+Dugbmwig7zG0HKk22btk2ZYBS4olDkgXARwVSRhcoto9Vu4AOw9KNhUBko0lChhM3Tx3jx8devWqqZmZ+u98L7mOy7T3OtAdyXL9+97jVcMURSDFVDmKLFxbnLCbYtO2xbNmuvMPVCC9ddhI2C2mDzUSDBQoAx2AUxnxBdgfXIZISE5Lzn/GDgEAySskARy0ydlBfUZeDS9JJgLzVRwgefKi56WGCZbnIsAZISEkh7HM0Dm+qbOhkQiCKSEAiEIVpttsZRVFk0kraC6deUywKWAQCpjqRBsAMTrhsAFj5HQuKIWTibpGrEUPWhZLFrAZtClKyy8QtSNpYV02EAAqBAhZYrBcsQHBh22cXzhXIIKQIKAMAhagEB1stCXNyDSCI63HUQNoG++dgbrltGQWtczU3xvE1NEcjvo77oURbzshZVFEAFmncQojYMIlhJIsNTawkWGvMxxnb8IgVFEmbJHFpIAFIwwTFhFxlJhGKAaUyEIqmNjEpDS9wQZDMcbKKpDAgwjEZJGMQYQAlzMyaWtfBpRqgcjHhgwotwANLyU1ETLIVAsCSkM1QFPnBoQAesOAkZKYhIYUAfH1GPMIOglABkmVCZACFthSOiAEG0EjGyEMPTiTpiAHrv169fPHO7u7u7u/H4gAuF1efnxcGadu5dUosVfQxuXO8dEQY0SKUr4YDsiXGBByoNvVna1tbWmjNqiyYts+4UZcLKgjd+Xy7bhlXJF2ABihawNCkWQg/mXSzYxRRCYgcIQAAcCiwbLennVIQhyDh0vfHCWCybAwVGoFIIJitIIdIgjCJ4yo6iaGJBIRGnQTAgD7DIC0tsSxCdJtDK8kvnT5N0pT4LiAJuQyIt4CASCAyASCqwoBKmJoltJjacCZTBbUJfVNKCLkMmddbFEXcyhCbGpDC6hkUAfCRsb00F0Tb48IG0YIAOFOHLmzh0GDKDXEIAsNcCwMTVJLRQ83IpizUXDpHOzTdEAbHEy2HkbF7sb7VfTdiy2/Ag4KwNmDKmz8fSpHAXcfeWOK+SZwNCBGMb645S9KppAUU0VCDyQhlvpMmcXA0soQAtDCIINFElS8wQxcJODUDjdQGlKCIJvi78TieWyLULVI4ARjTFbQagyBFks61qZ1+pdiT42iTugmFF0EcMSCS/pyj29WUEHoJQUvPy4cKakoJmAgBBxAaJKpChGLCBikCmO+1h0u4EQYkSKVjxQGDF5oeAGN33Xfd+ImKbih3OPAgiZhon4wBHuwBEfb7dvXtn1zxVVVTM87O0dl3PoToyyBeKVyyoKmpBwYMgKZudeFo0WQMNF4IRDcBEvEniIA8FFgx78lGKC2PLcLlskbIWytpxOjIKpMMxwkI6xyAaUCC7sYZtTSEFITJEHREWwrRHhOLDYVxEaulKls1eMQRGYNSFGhjU0uOutacBsXMZSUTXSyRBEYiCMAwaWbSQJsqgOCFUogNMtrtW2REhNUFBQYNGjtW5Md06RwxTI228O6wxJwtQZZOC2dCt7OWwvMgIKfcsRwXQxYROUALIrre6BjFYoUoFF340S+Abt2aMVKwvBjKCWMmFLFlEBxYsZvqQNcTr+1CcCd9B8Eifd7rhpWPNGFMkVRs1Ys6aXsxolRqZwFBkwbGhcNGQsgnJUZhttnMFR01qziWMlq2CkFBu8INQEN8RTfEN0FKRHVEEpAVtgAHeQWng5hzOdzgUkwApHmAERwMFfRG7J7DaYWZCQKBoK9eMInEJRVMyEElZDBogF7HfyOvannvEOAqT5AEOVO69CQF9nZopKA7mTQqAxeWFFytAClUBEpAyTKqpUQdy6l5II92DdgI3khjL5IeGXgUMUrUTMMMQJIHQ/p+nfnx689Od3d3d3d33XQ7cmQRhBxY6XKcE001XUvcWgCgkhOlLKSayg7yiJIyAXDQUWrQsplHUEW9y4EDPYpQEZujtrkcxAzmFCZhVdgcPKmQQGkgoBXwfIHK8AZTcabA8kD8VqjBYwgBD2ME27JDCPtiOdQUBvNTTGC+ls5Tu00LihggqUpKwCARycalxuwUzOLGkChLgoF7KADQnGDsXjI4DbSkNjGgcbdHCrhGdVl0UFhwk6Ag2pkwIWuB5wG9DcbcGihUFAGUbaglmKKNoqXgBlMkIDSRnG2DEI+zlxS0tzgWnyW4YFgra9nR1cqhnWDoIlnOJjSuNVznVVVOHLxSNKmjGlMOYydwIGkbAxJhaSEMhaqcATrWt2gpgEgTCJXDJCSRGC8GSXHd20MNF9TYowSWELhRZYv/YAoXcBSUBTikyllDZFVI7Ig2SfGDMXLz4u7YNSyMksMW8bCGWWvEAggnz+2iFR0fMZNgp9Vott7QtDaihCK4BNLXW9v86thRokGCLqFBQk00oW1OAAgmr0FKESoQAEbe04HEfaBkxBBVR41kIxpSKE8MPtDghmJUQfZgy0SEZEX8ShoGJBSTkJBBAAjSTDEpADDsMmEwwze3z7fP18dJ6VVVVV81vqGOyoI9eZg7V6uucfLkRKIVHVLXOq9J2uUJcwV7feeW3XsvRogfR2BiL3vcCoWwiIEECtsoaQQ2wHJTJKCCXMKC4hDkKvOYEVOMqm5hVTjAq7mURW2BQODKAHWLa9IIN6nNCFTn3s7beLC5I0tUsBAujTRgYjo2KA0vgUW6XRgbxMUxLCPc93dA66OOPyXCU5msR5alAIDWlXIX3MG5dC2CrGLm7fEJIooOWUMUhAiSEFVSIeONt8bTTcrbQgG5puVMDg6ePJxnMUyyjYRNnaVWBcA4YB82ZdSuJTOUdCECLRjR4ESG0GTFIwJDCHAhWopVnhXQP+FD9Dh6jac41xjsTWDnGDidLt2XEoDBIMqDCKXHAYyRLxM4tvhUWzoXmper03xw6jtBbwpNDCQCFIGrUHDI2F6G0hqLRQjAhGs4NXVGAQApgwlA6MZwLDNsotaAthZMmxh1bZIuM0tM2KAphSFrIIWgKMQKEVzHlPDmETCyCx1GAIJUEYiD7cHcBHjijyziJBmZjcjNiCoijsidOJxxhxstnciQlMlQy4WCUMgBcSkqAEogUAQ2zRxVAY5IaIVVImARGIJ75HEwIqRJoMmEMIYdjN1mxYatQrsCLbA+EFR1AgoGYBUAcxTEFAVpUVJICl4IjyTAlIqiYYghwRVCiIijIopkHIEH5RZQEcjCetUseOAEFxhmGYYGR6fv9fr5+nfvvd3d3d3fkvlvHjMeW0eS7BLy0Rp20O3GhoSBigTfwAAApBICwiv4gFIXnMoiNsmhRPXAPOYQFC2V0gCLthUQLZUC2EBtgFbYEa7CWPFLkqeYsRtlaaLl+LAqp8cIJkUObR3OrnZ8p5m6GgqdaOUvN3ECscauHQuQd8HIeNbYSgdAaouWoRAdGrugl2za18pj6YV8i/uS4cMACF6sInek7KsohcquFjCqiiWz0GKK1EmpWVYhIFArpB7aWEsX9ffbG5iVHD7LQn4nZoxWqlsIEQtA5RRmE2kCMpwEW16q6vL5fCMGMaEhKoEInLFxazVixqWRqDqMcxRciiwQSyFhaEBWoZhaIoVgoQG+cSr6aYNkmj2EAgCQDFlS6hBFhRFAslhKALFFkCxW4kRKQwijpNJvNkANkEowJerxAgQFVKlyHnaCg5kEQDiDIKCQeoAkEhRgUyjOUf7t+1gj5YHZUVOwQ5HfyZDp48Gzwq2qJtN+JWiGoy8e/LhOdymXmhuJ0UomkoOru6TamQE+qgkUOyI9LlrVHvQ6sA1LnqWOXFXJnt9VdIIvssH/SK8l+8/zEE14vljsIIJ44oKGuAAyLWDKA0B8p6nXzkwnz0BeZFEBtkMmExxono6aDZYth9f6V9SEgIljS4AGlDHA150Fymq8pqGzRORCdyyre+ePyCBEkaWrMFQR9SyUotI4zTyJAI7iejdDj6Gzn72gWUsYNXvsK6/CvVKS/5eOelu3NitljhabRk9cMF2HFdU6SaqWkkeJ4PpHMVMjzP5zLaorHGP6sT/NktUyw/Go6ctOgG/3/PXXW4b/xZnryenA7EWWYP5/P5gt0psc8QIz9OeHRQ6wFJ4bHGANJKykO49pUKBChAg+GX+QkcBPzWgksRogwI7EEQ7xDbkU44rYkDd/UVWsAOMHA06rvlcARe1lAkBKol2TQvW37qKqpUhY2Ylipbr+7xUptAD00EFqXAi/EuQCmzbSb1+1oYhwIwig+SDfF2hAB0IqgGQ/RluQQpihwXjO5+jdS4nygJ/mCBvvHFx9Q24kmxPVY+51kQJZbPD0u0mueIAQvm0v5A41kXjjjlYR8H+dZgNw9lDZepj7hQMohR30S1AT5x/2ibtq2aVg/tSAHr12IG5Ao1OmZsTNqMD7/Px6Kh+0UXJk/z1A+tt0fCXMv+1fnXac3s+26GDcNKsnatJZhUR+PG4oA+IhlMNeD9lz7H/f1lCmyi0BX4YBC7yAnUiaR+YHgvr2jaOoaDQiKod7EF/cRdUDfa7s3sIOghbQ4K5mFCx4dtWyQEDV/5vAoqagpQipBt6oxBHF0a9fxOd9CRFZhCUhFU6H4ggD8iAPxIA4qi6i2Go3ruiiZusMj80BSvYhA9txhVgZMy6JgpRGRAoiofPHsBTLKnbgpA39N+Q8Hv2FWFzYXns2VG3rPqswwIJjuomUpqVonfj6D/ARVKR2i6EVQvdZyG0UF91o1+40FOTwoedddPN2PmCb3yrcueB2i3RAx9vJ21sO65Rc/cKLz8WbuO/tcb2aOhoqVGFYAkggiXRMX+mvZDX5Ougm2ILqFF9dN+RcPJWmGBuR8wA0QgAiesFFg0pQppb05A9fa4KWKvyM5YkCqQAO6mCCH97vT6/gIA/oQB8qXx7MEQ6kW/LzzlZ4tZzBanuYJ73FAiJBXot0GZ5VTQa+f9usSToKhnI6EcQA0B+wOxgvH078jFw2jVvlowxZACRUR2xRGrAnfTcncJoQrBvP+rzWJFMGCl3+esoVkF0gCNhIcIKMQDj4oSpFF4BaMKGnrbLryj72oQaEBYc6H8MM+RjeuIdwZdli6yi6IAhCQYHVBdUQ5JELkXohljQOkYInsOeAqIHciHSI3eKRMaFCODUpdItcjo4CEkkjDk8uWpWrSw+DANExvdvYOOkzZOqmPtTmFbhMhy6WUhAIkCOBNIHE+xwu5xXgxvsolN+Vr5WlvDACsNg7xnSjRXihVa1oSwFinYPurDC8A2jUXwxezEOxOiHR8WDpzgdOhfc4/ml8iY/Sw3MXRFsKpvxAsK0GjpsbE/+hoHI+kx9oItBu2b6WU7mlqmKKXTkCA97HVfmID9eFSogNRBiAPxIA+a4BE3vRkwxgzmWtV3kBhFUE5kcmD0cnMqd29aCIjoA0mkoLvE2lpagkJQO3bnWTKkGGDxwJoOlhS3TNZY4wIQk4NXWgDSYsVzoryJiIcYhnBMZI62LIBHfBPCd0MY+DKSSwwimGbLqI6Hv6jjtrjz2o6et77tPw4PxyPrseI9KekHkgr8X8udiBHXQ5sb6dD6Gm4fpHXTxC04knPekrvnnDxmi0sPPHgOWDYy6F/ovHMC42S+bIkqoqHwchDIyzgJGJquCitdykilu9r7m8b9NAxHz0KRuJ8Ntvd3AhBQYJEcRWO4Uk+UMMCdaURpEbTuwGVAVF8CcDewXIuHp8Lw/SK3vBGhzOO9AyT/B9CVCU1OSce8mI0Dzir6sRAT1h5ndHsdVN/v1cRPblRjUUXb7CacKQ6WhSjQOqtR9tgWV8EBOqcPDWiXcwfBEF2iIIcmK3GB8kOfVNbh8KyPTINXouaeJ48vUMPuKXFQtYOMFDZST/rLf5bmOS7816TrD3+I6HPYfL47F1U8YinJf1ZVffPYZXGtrm1Kn7dvH1KUVFURTQkVNDSFBFUQ1QtREkjGbgckX43TumA9Q0v81g+WPMgA6xFPEBB5RVT6ED7eaN47lHoBjwXuLxrBpa060JIMIAspcf09S/6CRCEzh8SEW2GCbOC9Grw50FUs4PBOsr0V34w5NC03IcMWs2nzCU9sK0rQhXlnVWpbLbbBWlnWtVFoS/uMkl5Gz2zTjOEkinJoCLB282QoM8l5szRDTrVNVU9MmSUHz2o58ndOZNSsWxcR1IAe8RbypRrsuGsuA0GGmnZc/ceY5ycfeO/YMEHH3jnFz0xH3Zu8nXnxjqI7MgEkQMGRhGDHJ7JYsBEdBsxLfLARN0Ux+kqFKUKq8KFJ+iiKYBRgLMlkq1RVzRmdyzWunGQrS3CYKYwAYLOPNCx85YQTWbEIdLCogl3L8RTgioqropiOsecD/1haDGKO4ISHKjCoKYajTxUjESqMJZGfubIY8xxViNcw8P0R5hisZrug37yfYGcyW2yEKnUQ39KCb8SYU7OBb0oqpXfUDwwYt6ZSiR1c9H1+Iif+BoonBfyJd4pq27S1EOicR7gQ+KxF7iIlx7B9UXwpiiY8KwqyK4csKsHj5aXRH0WoYdIRNjuiAO9H/f0pABOnCAI/NFVO7oh8PX6edFx45ZY7wEkhi7pRd1CQlgjCQNM39BPhz5U3/gEcosp18xETaw70VKBkjKGVrI/9KaAWluIMwscS87+tROSUC9Pj+nKaCe2WqdqKPLpyCmdrx48bo2VwCZHtO+nveNtrowKaMSip4EUDtZvit8C7GF0ydhujD+sh5AYnGQVpKfn9Y6dMTrFPMP+cRGRLzz+OkCdcnTSCAFrHBXTwXxYULnwZWlJw3RI8cxDGyyLDrNUdBDvN+Mpm1hIMA8mNaSJPiH0pR+pwkkkRJd9llwdHih4v6kgBbALzlWBMZ8ffQPEIW39wduG6VPHvJkh8DbcLCDCIxISYvDT6/QkQHxnpSTxI1Q4QcGFb448oMIsmD7scu2RFwyQXIEAuCx4NIA6Y62yaMTFjp3kzBtFKCVACFtBSZSsNuZwxxSWeKkQInGN0ZAYVE9ttz+AAoSNnGxEHfEaTaIcyGhXRRVKp8ftD9iNUeH5nNGzXoEAHILzGNY7nY1Baq7M6Kld2gEVNxAb1AUtMiD4QGiIgBsWfJ/EJXWPc2pjO3JNeAC8iKqV1kOfTjoN5NeRQVyIhuClH70MiEqh+E3Eo3/kHHMgeTag4KSYcKoahDJdBDB1+56bt0ddj9QuQ1OsLxfaGwa1/eHBgs0LmC0AiqB28EbjT8wM4j0m2vOgQCiCwYzs+T14DzLgu08/0Fk5l0P54P3Rw/naygimDLlevWg8n+fYSJ0+H1GczjkgDVW04QZHORCG/NMTuhuBEwilALmJ40h/Phva6CYgdL8leiCKe/+o0EFH+KqqTXaUPunfDyHKm6OsnOByAh4TwUQGG500OAQS+HNI5rNwwNeoML5AQwMIAGDuAE61UQhdT5IKBxiZJrY1O1VAd1dwsSyuuv4MPcek677q89F4FpEISCCZ6Gr7S98S1VpoKEIFq8V/HWIny5DlSIlMRUShER5fMP8D/AATIx7NLaeBOg8nD6yCpRhJdLEgwJHWC3SJTFI4AO4FEIF8FUuTR/kATrJ5LfCrLqV++FY6gWC06xVUighnEAcooBSIBIqaIINpy/h2qL+2CFqF+t8hhha3lVxghDdxMAPQ6R+cqHhzTj3pnMZe9J2kZcj9jTj3FjF6QduLRQeJqAL0b1mVmXWBGtp7eGGli2h83DWcxjYbaTC4ZofKZhm/U+jXEZq+MG42Q/EvjWbZYw+6knGm03LGGWtOzS7RDxiMNPD8G+I2yN4ONvgjjhRlgxqIfNNjL5NNne185yJBFUecBfrLMRfU9aC0MDBaDEsCEg0gHMRIgIa4ogGcRRuxADKJFUUHkK9ogLYYKCdYCjdUDc70ooqdYiQIKkkFJSgAYlaBRUPbABBK0AKj7ZoIRkIohERippCSqgYKKWFmmQpAiSJkKSSSCEBlKBAEH2kKTAAAv5RAEXyiBpBAUpVEQLoIjCCqqQHthFUyCkEAAiUiqLSCqJSoTBTBCiDQsQRBUQLMvSCgwGJBiEUBPRkOISIAiejIiaBBPSVUaBADyIAAAoppVSVioiWKGYEmIKmGVYkgpKSYAkCCmiKCYVAaqQghiIJhJoiZmBiSqKCoKQlmKJEgpCJVQYJpiSgJYmIokKoiUmkJiiIIlKoCCgQQHzgVoEVfFgAwwC0gFKgjCiDIBEgCAHqgCCAgEaBBPaAfahTDfDZE6QiAoVZhKRFGZRmpoBKaQKmBiBKFRGIAHyhBE0qFIiChswEE0iAJUNoiHhgDaAAeSPgIB/7QF8kAxBJE7EQQ4yUNWaS76Uqh2IAJRFFLQRMkFT/lFOMGCqpAVgiQEUb2CCLwUEN0WRNsEVaqLeEFBQyPnfo+uidMvL5Qx1FOECgUE4cgDCVP+L4Whm6tEEeudyUhk0ETTxeyL+ewEQV4QRQDKQRAYKAaxQ2ihCCfNg/ify0iql2ItwCI9pAv4Nmsmktu7ixyl0DZBnKd8zvsbrgycrh/2euZ/GYPTdowUMxr48yPL0y0yksqBfj2cOZ/Z7la7yd35rpB39cOLQUwxxI6RpkaGSWfjk72G+UdOToZPbgG8SNEXnwdPHfO2rYYdGK6xmDrttdzsPk5rgqcAPj8TbowYJ7fU7+lg3q+mnM9OfbzfS0SneioG8ATaTPlqntS8a9OmDvY5aehON4t9NLJ270omwqKZIqUIdD0KEU6QVQMwUcoJBAzBwQkVCgMQ5ssAiOlMhJSi+E2sFCgj3gBaBYigo4ETCKqYRpGkVoUpRGhGgRaRoRKR6n34NIUCzCvV+YUXuSlBNURAGIQcYcP7qVrdPjYoDQh/vJyFMIwO3UxDx03Zs0dsKXpeixwFiLnCpGSZlpzqoDxUqFkQ4Up9b13FbIf0hU1CJT4ilExutro8LOsZ220J0TP7aHxpBYk+k4aEKhlaqCUbZCPZAdrERE8hsaKbiBsi9kercUnek6gRLYOZs3Son8cwE6Q/QqB7EUOhKHA+TwTWyCCPvzyoA9D6zAHvXUmVtZo0RL7bLkkhIyOUTWS/nYoUpAyJwJPz3XwUGB1S6BXh0lSpOW9o0wOBmWYX0FBH7pjArJoo6idPPArxgiXqgD2gCpRDC8oL/J+xQAaDqAQbmlCcvaj0Cirx2+dMBixMP1phDwsHAkBSnlbAZ/eHObeWLM1yocaTHdFf/0/dtYQIk2MFdKDo2KkXuT6CH2EUQeluVshs/H2POg2CPdA6QB/7wV0Pp91GL10MKnVRMg5wATqqEotP8HRebt5jZYjw39wxFAvYjSJ0oZHViABaf2f+QKnKTOFBIZIG4Z+SCqfg62PjB9o/9eChVU8sfITYBQaoOD6KW3u2ilye3WhkMjzU9O8ubtVghpQLSmwjUIY6dRXq8ZS1ZvsptONBP8qQ1Q5f14FbJhBV1g17am+qUPei+aObeFC1JznBiaoioNsXeoqndS/PrqleYXVj+hptNpaU6xoFYAoOo8oSUdjH+x5eAiaL20dndlYPwmZw8ik5fm43b+CrWARH5hOUH0KKF/2208LqIgj1ocWkQh6hhU6kvho+C12s6+lD3UV6A3FtsOkCf+TUzIz8u9LDGO24p7tRpAjYFT+Vsn+pv9SL73KfKwNP8Sv8Z7Q7L+n0sUsnz+LQkuy0RSMS+ufx/2II9aY1YCX7yOCPL/5PyJmVQ4BBpE8TihUf9WQTnhYf6z7c+5tdfJ8PMfy6uCTzbWfTcIQuE5UkgLRkIHoifSbnXGXsd4kuC2IkWkyAuAQTJOJ0RDGBuFkiM0h3ykvPt9ijynWHHSru3AWsMJCSOpkfn8lRzsGPIkIJxMJHkBte7yTnA6l3DnANNLNQIdzSOASgRDB8uwnLvMZqDZ06uxh3UJJIwyH68SPKctWI45PQc+pmUBpDDFcHjGCA3XwMcnXgnpCHMgOMZBSwmUKDEQVVJ6v5n+FNtHimWw0D5emapCJUySpGAxMIxMRT6p3wQAoRI74l1jhkrjSCnGNKKfy4Jqw6QPekg8xVE9IAv4xRQNn7raCd2oDbAdETJq0wyOVXPGn6Ed24Ao61AB/gJHsdWOANa+/Y6S/I17nuOgtAyfwTf9BGNFyRyS0qK38YjL/NAXYTznxs+SNuRYF8qaa1YtTT1ykgrIDiTSISH27ajlWaJ4xqOHJtA6AfH9aMUKv9Z7PfT72NvF9MsC25TmyGkoGMwSGdRLlPoiE4yVx3n6M0oqPrXSJHiIIP9yAqhpdH5UT+3BBOhQAf8xX9LQQAarC+u0ksIUflRcNtp+ocH6yreIdfW2HzAhL8GZaF2f9YfRH9ASSP8bBjP5ZOwwgATFeW7fVLB/WWJQk/y/1N7JGv3+USlK/mVgI3uv4eIoXTMKXdCdxEOoDbN/V7JYr+UjPOsI+JVlNuYcJJIN/gcskYfovoyVsClp86WJLlNIxHmt6H676pW06buy4/c3nuPVC3pKIipxgOBOQU6a+fDzjdvwuvUU9RAEQ2TUcCm7syMwnro+OHQce/FBEfzMaxlN1Io7YFFtsRYjC4BE4K0ib9qNXRAGKk1XpNDoYBDX8+CA+ViAGqx8fyBQ9XUIqnS9VAJL9MhAjjXnrCRebOS6dlDcSMiEkke2GpGSwJJyLIkqNXOJIBZpDWuXMkWwCVZcD0jwFJgWmYCJbFS4lSQWr2PfeiQjI1hDaWvnL+ojJN1ylUv/VKfzJgeh7Xs7L93oHNtQKqezot6UQHtCK2UFhB6gwEfXc0VBK43D23vDUSJpu0gEC8Z6f4EeuJo0IRzsmYQlNp29hkEMh7hQ+hmNnPIbYHyEkkGRquxfV8Dr0bOda3xIiTURjVZ++FTBOB5SyGVRU5J9Qlf2KHsv6HZN+AA/0FAH8Py2ZYIqp9GOxUXYDlaBwryD6QtDc717/CPDTQb1BEmIpiZAY6lz4ff/XdfRakYSEMgvAhThSyZq2XcFPdQs1veu7sUQs6RldjROInu0Crj+SWZUE30FzGNBAQjDdxaipWIBAK27Aqph62FFa/6ASKKD+/5hf1EQHbe/qCB/QkFFDvnh56uFkDa6+T40D1MURTH3diPhqzcsy/UVp4nAxm5uNTuQ4vDc9BR1Z25GJwRBHk5J6i3qB9cVVNURR6EEB/UPk0896Cg55uBgZfkccRPIsi05efHlvj2/IETtTNQamPAlNqLQgQkbR9MwkJTGiVJ4kcKw8cFeYkWiNBNZwbi1QM5EHuuDJUMMYVOfM9IoyVB/FSjaJmzLrJIfpgHiDGwMycuKadw+rLeupLEdN5eBp0mAiod5AU1/vNCD8Mf40lGr1B2axIAVeMZ/UMsyG917qxCqbHEv8RKKprip70RA74KI8hQB7mhvG244bC3OofeI8JreNa9exT510DL/UHHuUlpy9gHqEFTYbTJ1cyOwIGvFxRVSr4aEf76NiXoPBG05TQTE+805oYPjIvRntL0feFl0aX+wxUad4Ue7KXCFy6itFbRAnuFoONP96/7WgAPEDNLew1iaxQBrWgdKgA6dfAsyBrniNQCbXPj1tAkxFKcyRspIZjSv9zKLHEHdDrRoKp3frV+U1NLUfuTDru5MHoqCPh59WKJLcmQstSU+DAcgkR6QpzDrTUjvdQAAKhHk+78Up7DM8LWnipINSgqQIV1yS6MWxkSSR56c2QrjkdIPQI6ceAqWgMBLhufWfUkWKBUMYBimUaXEQa2kciNUziEki1gRqSooNaVF3i3CmhMHPX42VuwG7aiklYvjSNQgk4ko+EspxSkQL+KeJGL+g4oGXVsM6Kh7tyvbEOnf9Pa5CoD32bQBLIIQTMJGp0vrheNExTz1RwPzYSCghAC+VhOlOdf/u0Hr4TKYTKwqnoQIFhhspBuKDEN/ZJDrY8BhXoC8xpSmcjQjaMATJaGEhIIIiUH/nQuQtQ3pO5EAYGo+YuCo4Lme0GrrLECSRML88/Agvn5qUIkaVA0DUuKElSo6913ng7oaFIoa+VOCxqOsb8HCT5/s/3IIj/WfT3UTPOq9uQidGyP6uqp2QTqY6+f74OT8XZP6wuiWtPOzkmPTGuuhHhpcxwQe8RGJhLwlq8qeR05DceGZKDhRaYPH6hsjjSwrbyuBIgoRghJDkH0wg7oJzxoEZgWr/DASH3Ui4x8mCFSK0JJT7C/tfPtPW/Bx/JPBgCRokBCGBGvEJJFAf96p0+lKpCSdj6BCJwVI/4v5+SV8vWr56Pk/Wh1T8kdkU/eb0Na5aed67QxEp1e12BKKVAQW8llPjD6AIBQ20X4gPtrRmrfBAHuIaECgiBoiKpAPl/oLCHven4fsehf5hA/EIgaCP6EFBqg2z9wfuoaVVTl8Ao61gIKfr0OhtPN2L2A6D0HUCClLUJJIf9MK0oX1auzbMlqUrG4Xyx8MSzPABCxIKqVhNF+Ql7W+sEDTqJ8xnEZCpC8a/Oema7f0SiOxeqwAQoNBYyV+kZzSUcmTD8hGdpbEeD3WL7VTmChWLurqY3Ys5KAg1jTQnMlMg/IdtaXH/xIZlpd8pnNCDDUZR5DyoEgTj4eGJBT32OaSRCSSH1XqpQT14CJ6WDw0cDbKRsiRxcMyiL6xAAvefgqj2EnIlN38WukRQ5kRDziEFTAsLtYibwF+G1TiPF3T/IQIXZKLqV/fSunR32iP7ncUXZ0iDsCPSWC/zEPBDQp1kFFTT1cxVU/m4HB7zmgqnzB2KeHvpLDTvfS2imx2HQ6LwFU1A/GYBEH6C6Q1E5cuviwKA9P3HI9j70rR/lDaKQAvY2B6KICnoAgultsusPsHz9zWLCO16jGMgnJdqvZgqu73S7Mqkl+9M9RpR8SQyBCH24uHsIPqS9ePXwFbOhLkDsm2XXJcEqhpgy1VDaHRJjhHwQoTrtR5SBqnjLFYC+ZIp7VBWry7vN6NHd/N/N7DbN9Xh3f9mG7ycvN0H+SCmOz971P3obd++kROlJ9HarptATR5Z3D/Dv/4aKpN3TYekSJkBoWPItjCol+kp3JGrBO7f9xrHUJadNPjz/lXQC1TUMNPOyHr67GFxA5KlrimgCgWTOkRWpFm4NNOTDuMnVVZDJY1G6+KsByZzQ7WbW/SY5Yo7hxsIh/URERvFFI6hD3Saj8OhaWESsu1EC598AAS0scxz43jh56UcO7/cev1zmAzSHxu6WFT+J58FnJ9Fh1NFEki5ADIQSDdxP9hKEcY4qq+Qu+ac0dbaIIS1XhMQwNPRkBJJE5gHiNZUlhR4hxHSs5xQnbW/e0XyrEiIbiMDi5L8iEW2F31+5qfsu1CngpHLSNcTjGvHzfKIgRav6ZBcu/2Nbn1zr5jGdrV6yfsGq52HjuhdhlYlzuO7ZS80n0oEfweOJIwmO4saRQWuIuglKFMMQmB6mLMGABKNgQgTahQPX2MJ7zz01pE7sWiB0zln0i9VcySwkx8MpeyUpQCEMJV3uxXlhISMzxhISDpPWRlZ6KDECSSKiBKdWsOKzQSFfc4ePDReg8eTzPAAFNV55PH+8Wa1jXLUejslI/jqUi/Nl76ZKR6WW/EHV+F8D2xgRqcnWBnrxRDvf5t81kYlg/s+Im9f262r2SzsZsU9WJkRkqg91itzBBKkURFEuvAfQAlqGEP6pJ6VIu/SFCrrYxwVDKmynfqiI1FOG6fnyCWCMcdyYVauselhBSp/TURkiyjiK1ZPbQtCI5DquTsk5fgUk7sg3BTpYGtdVgLqY4GPBdAECRZQWk9diRJ9PjX+4xFH6o+//I6keK6wJUHrU69HIXx++NGmuXr6eI9MRwdOGo9j3VQV7KaanjrR+0Yh6yBl9l28zIWuozU6ALIlp8BHR7bfsJJJFDuz16Ht0iyaJKFXKPkl7tUkcgPco4Dbf8NSBp5MnIu0HTgkIx3m5obzVsiXQOHga7kLAkn/h4dDQLnD3jsKugGyYkBfgUilnzm8JQqc/44HzcfKfnht+ulGB2wyRUS4FVPI9wyCLDkF5iEWdk4uazMU/GAr2U7B0JhIi5ByKPBAe9qAGSFxMP/Q5Kk0ebc+GuGXjRya3GieLAXqZGNTrKsqlCyFfaTlw64VSfuJYABplKtgJNs+hGvLvzJ6jCXZTIEgXZDsrUWyue2tF6wW56shO5CFS8gNh6djA2+ZFVO+nKA7YKqmyGMOGehez9t1OO4REVOsBuh6U0mmbG2td9IWEVSk4GLEVojiRkqFi+ZKSJpSjC5+BeYHLZ9wULnnlukAsxqy4mfXhmv7YRqJR2hwzE6mV6JzkRFupFamj6AyFynVvLgRUpUGlUAgFImkPaNNUhVBy7wq71Mldt8VahTkwSdUSCkebQ8lFQj1JHTplJ5CQyGM+wpi8oMaBAi9ZIphasUDMkglIyBjBnML2j/NBEeQo5gDMrRV9AvwLOngIQsmru+ghCUuE8T0FNvXjwegjx6BRRC2P4YxZrxO3zQd0fMhftBYd8tPvWIRWZY+TCHleY2FfXeKk+hLSupEfVKs4gHynvDMDJBQJfoB/rI8hmmxwQoLCe1iVgABWr08Rl9qbxoOgoFUHm/g9E42BNUKxO+JnvgVCi8yScSCSDCLT84Rnoqm7bdrW7E3zaSoM1cyAfO8Pr76cFmxyIOyIhta2DziMPqEfFxg7HmyF2qdIsLB5AEIVnavy7UuF5G+LFAiyGCSqQGZKWiTvRW7GAktBR6zoGINWKmvBwuu+BLinghfqybhIqUbH1QS9i2K3NRimoxPjEhL2Y1npv9nfIqa5nZvKI7gCLe4lfpzaX+jC5eDwe/or0C5EU49GXgyAkAvif3LFUJqFMKnEocvYWkv9BLZEkkiWa23AjwicdJlS4BPOPtKFkwdmp22Yegdi5hZhuIXCGi4bsvUWor4nBEVMyD2AxLJLGsEjiqgmFG3+FKRZwEL8WRvPmKj/CtpEkkjEDF8R2NknQW7ySKSbART8Au8K95BJjw+kWATyx3ktXMVxtE4myGYwdwT4jRYIMR5xQikd9hXoXw/xwi74d6Tj5ur7eHylvIcel6gS3cpn7i8P0u8kglFpn+EFbxlO7ejuj2YO2x+tJ20gEKWSDv95ojiEIi66U2ohAhbVsWNDJhHuenoQAvuLn7Wpg3dySivLidHjVmMzOut8pRRgrjbMUkbl8n2ItIsE4W2xSEgkJQjTIXvYlUdv6TQF58314q1Qkj/pahGIZHePtSsp+T/JLISeJUiCjB1ZEZyXZT4tUktnWlGTGDNq6ndVpl/ONTrexetf3aXz2Mly+yEZfrtL1r2WZTIkuk3n6ah9uHNQAhCzrTMICEKYcutv+dd6I/bFpkW0SzioIrpCRNl2XzRoQkjAyQGAqZdmTnlEtIXQodT7bx0tNJtcq96amYIjo9qg9dbJyso7yWlax6IEBIS5RBzfzgIqu9lxGoRGEUKvzLJMeFSm/1pyNdrRtdCdQvsnLQqkt00vcqqkgEKmUejebM9xxVaq0CBLMx113dtCtmNqg/uCndBP3anTVBsQSAIhoQvp5yCemIdF+CfSZ/j7/g5aHA3jLfEmsROifVaImSyxxRSSHE+CjuJMuCK5PEq6yX0qkVKXV8TnjrBTxpdY/B394IJB5GWJAjiyHr8yyqM93CsFnvMjxRmYMnsYe3cv9vhtQhAtdxO8zEhMX/U/Kcetcym2F8k3yn9v5/3oo+3V8Pwvbsf3F0eA0+4Xao2uOCt6HlrjQWBTwJQNrQPHruFa1jOOPZ4TMZl4Jo5TZMZr2ABWwJCRsqtA+hejd66/x3DUJpTMVoHGnh5Eh67Y2Ma1FxC71E70uhFBLfkfEQHIue3BYSFOuRkaiFQpYWEhhMJGOMxEVmEoJlyTFZ5vFQUlDBWSGEoG6yFaeOvbkyiYY9Kl31eTFGFJAhTA9CzJ5jCIKTGRyLjrfoUg5yKMx/UH8QcgR13LLIHWbL5soLQAav+zj/JwXAlll1s5uOPW/M8S7B+Tp0tIv1NXJrf8X49TbtjARq2jxCNhQ3uo2HgtP9vWXWVap78T4aiMYrcSfHbGgRObKht4Y0CIqI/tOInvkX/H+grkvxVQvHxutU6BFyBN6CZoJ1gCDvQSw6z5fQhtUA4CIpmonS0nLz0oEexvZgARnQIkQI0hF6t5ru1+LvJ/fPv0Cb0+axRVKPFB9dLpVBOnfcIn6528qS2khd40VxcVU8ay1aySFFThFKsUgfugtfUMmiaRJYL5dnSauB0oKprhvybzeB15UtGg/v106/Tf21dTltTSK1wP1YopBPvZgaWuS1yOWQN+yE6J8FHn4cufb3Dty/FX/h48mFibRnarEUGyjEZIAA9gHJCZAxZh9tn6ZYZZXT49UutL7rkX3xNRDWO2V4qgUj/UMKn14evg3l8NiwlmAxsjdOiuE43YKgvRphNpIQOR3EviawtGoUC1FUvEBzGJJIPOfeX32G4e3z8g0oXMuiCKRin6m+hYw/53FNqTG+DqGcAdIwu6Q1EXiQlof1KUi7vbPwpD6m4pz4monF1B5E0cSw8C0kcy3syxkv60/srAPiJCYuQ4UNdWgjo2ImhwfD3z6jeeBifaL4GLqKHeirCsJIkf075+SY+Z4FbJ9jo+0BAIVlTdlwjU/kIk8my7GFc85JagcG5KZUGUQB4UDiJAiUDv7HezINjDJqJWs/SSlYug7Pik7IoSy/NAwphHW1qcyCAIp3etDU6g8upG8hf+HtaF55EPYhRDVsRa9UC+6wbm1pMDkISmpEI7Bftvug4oqWqvuggkXpHbUiyHzXPuoO6giQVoOwBMeBB5RXoLdlHqQV3/tBOgv3/TmPaZ10GoJCU/v15z3BJj7GWz++SPWUkwW1bDyCAegQhZHx7b30rwgAGUZISXowbTuB7dRoJGzKJwVET/s+vXwTqgyA4eveUnoytLS9rQ+/eE8hKCqT+qGutNSoZhWab5o3xSXi3idIBaD5jUSSjQh5R+q0cYoN5Y4QFHug8rhB6pDk8jem5UCWx5SvIDxjR4bLyAqQizakqMjIgekTQ8F/8TbceDGNt0ujGEFg18VEcvPkfXf60YQ1ZkgSp/ptjikrRmuqxroQFZAsMxesfFkLsI5O7QJLhomzqdCEvsM6FwVER+vUSHuMhMXo8kiLSQuIhyXgJDIYPFYYtM/BmM5CKWzMtc2rFl+xxn4Nba+G0aw+VGe6wAEiztE+jsKciTKWBgmUzJwg1Tuj1PEvOp+8H3EiFIllPcTWx71hoo6ia8eUHATTksRUtlMgRaBrRfcgtq0xZDYBZo3+zfJYEDcOV7hiBuW4TwM7U95w+U4iMk7JhsHV858DOrV7DcmPB/TxHaPrjPCmw+77r4LZ9g3XsHBj3ViBLtDAhQEyEJBtLdqOIAgftftaeaQ2yMQ4D7/3Pud/1g+dQfziodoICmrA2UTzARA0xBowA1HzcDq+N6am025PFIKIlT/hwuICP4rDgUZ4G+5hX1WmfiQ0jILzDSXcpKSVDEZF9iyj5Mn3h7jjD7IRoyvqUflZhYDk9j9as0Smmf40yUqVhYWFSjVI8tHr4KOggfIecWLOcadWMB8y+mFq+DFJNzEZ5/euZZs5fU5MMTulS2oFArwfKDXRMIGAS+bf+rUkqxNQbbJ+jH7ZE6/YAOLgAZiidSBL3wGE+0iChBCEYuQtp0b5oMfqo6xfpn+E3iDI1AVTZDJSqH9PJw3JnjTyAvI/u5H2DqNS881UH9l+iB+8RI9C2Pi8vbZ3XmU6nYNSxMmEOYAREkEQJISKMfVkBNBQBBAlLAVIBQzJSNIvH3v/YCewMdAV8gKf5ii7/VVGbzkJhpMncB3uAHuUYRESBC5ctZ+RRSmfr9UE8ddtpTMhqKhkicYq9gm2idsTUdMmRVPuIeX2CjaIXgPOAGGIa2Q2ie6/+98DpMHSCLt1B63+T8CjKPAB5e/dTaFI+vQHT0URDoMRPbgbnpT5zoaWAvCHh0uCJv4sYn93yRoUX1M+2Tm43e93sJh1cgI4uPsmf2iy8Fs+e2RudXh27YR2s97aJZBKBQ+O3UYA+2Qr62RPIk554KaTQwTghEQQyMI0yMmlmZF11P+/2CoZ1VLXt/xvSuBuMygH7Fm0iu5ioKd00thnaAgOHQOjdkWl5y0dpKQoJw6joRFvxpoTJq4kbrzin6CBn2fh0LqAFyfaQUXRLQ2iOjEEUyRelJ8gy8QF8hBQ9YZ60HpPJTQ/CAvQ0PWyb+ocFnxwWmu0mKIxWwmTRDIXoY9z5wjRPTZkRTckql76QLGlw97GItnV0Y7tpt0ULzZS5gCI7TO1Sv5lF9QoHYApTxDaICOWQTqp34pxYvKCXmbMciUiqHJ2HuV3o6CgJjfy6KAZBkAAnaRAPg35GfawB5exRy8yn4mbIthPR7ZBsh7LPiHWf4YRfy24rdIWUGFpBwJAvr+uL+7RaSqGqKLuKtMHa42BsZ8P0fZtFE17TYPB63QXyeV6t+rdXZ6RAtFDP5/F/Fbp8ohqGoH2peHxEFFs0OiPiz7LnIwesIAYxQLVILnhR62lK0aPRDcImhohfvp2m/meISDIjdVddDm1xu0vx9KEeCV4rpfIZLhYlHSwWTzNIrkiodg3K24M/O/whziB4YBULcmkOkPMUPBBONDC2szENY7MwdCiPglbzlBYQTxOsvJyaKIhqQ9WBc+H2SEwhIw3deNhzJ9B9GFs4IXn1rKV20XdFNMpkfDkoY1KBT6+9bOiWHDZkVLFUU1hDU6gpnDlNUky4FM+iUxJR6Nrzt3XDjb7KKI++KdqKNif7q7JvueHzTpEH4luMB50u8iBQIkdCxzaY9gXsw+7WbYcMHEYSRHl8Stq2RoQjPx9uEj7KhclWHJCa8QukAcHO3WqfDplA/UJPJu8mM0ebOXQ5+du0smxsdHfjgMroafjtGbZ9gE8kY7/EBFDmTouFjtkG7fx8peYaZLIYo1Y2Q+1m6m3MEOxFRUyW/v8joQXZeYJyaO1e3Q0rpysdjjtt16aX3HbRwM1MkNg7Px9v4FXAOaxpohTbrxAAN0OZGkEv3UcJ120BEe0iHFBIc000NDqhq/r4VBTOoov2/NC5qnylk3NPd+h1ei7e+DIAIWYEAdjb1zlBKQPs36+gHsxDe01B9ySOMCoZiqIdHQOjr53HddjPFGc+Lc6Eb8ENjHZtCeObQvh+n26cYVh3tl89lWEUQTbAbyA3MHcQvTeHbB2F+WzaqqmBpgmQEKxvyYB/k7RtunB0jyKXzVHXvz3SG5Ocm5uoniBg37M2vUK1tqePWx/p/lr06nqiD+tCa89uhYyey0PWG5HuRBFPS5R8IJZzb235dDi6iH+QMigNYaZtoXBhmR4JxqmlobkIDxEFzBBQ2g8bB3rAKcgT+hCIAVAdP8eNnAK8/ShO8REKiAdiIq+8AN4IQgKiZ61zIs6KnZCIKfSIbhgKGuINowQTvQSADxv0G3uNrp6Tr8y1uRzELCIWiLcRR5QRQkQE0GX+ujAdvlzQbL8QB24PMrG/EB3tZOmOPSezeXAepC8S3MmwTbHv0O5CIF0EVS5xXmyg8ntQK9oqq9CeRmg6FAHiBx8ciBF1xU6p/VkQqBQ0RSoLcTyoBNbgsyjy2G4l4v4wdgQw3Y7wvnAHygJhe+uTakAjxSpYLw7LELxHiCrIgvWB7RH4kRHMUTlE1ysu4BUBeWvXncWIJabTMAoTXTQWofUu2ppNNC11X5F6cC7eaj7gRJwBeQtuOIHLiFwsbxqkK+RRYv2ro51NTvk5GBUfrtSCP6/u/0U/bz9lD5Ag7lija4PG72yHWw/ZY08oJrj24KTMBF6W5L8TGoAgzPM3X2UrKPRKBHqDB9iz/WJe+aAQuB86T8l6UA8pRanKCOQif6dC56OQ3Vtf00SFvPkup8uq/x2ZOfCVE3btWoM6JQToBFSmi0peZEO0vI6HwDcpDEfoxsBsl9i/WGVPNb6lOhFW8BHQYJIr82C5bcyw55ytyL8ehKegBlgAifdEO2lA8MF6GhaxRkBGpeRD2IpDCD5CLRh/jZxqmg3q5DjXkR5F8s+J8CwgEcGvpkjYwncA79c4OUfYpddcZOvt2hWdN5QZXsdlpHWy7sdFJDG9mT5cxUcblwFP3lqFJFQkVHavkel4+BOI6/Hm7Wfqb2Qz6ZuFelUwQ4II/CKd9+nTS2DESwRFwm9YyRvtC48+gPHQFqBISJf1h533NA0gHZQDnS6JDSu0u3OXXfjW9IImnIvMvCGRX1raoZBACxIYNI28YmgifO4ouYokQBnKg7nOrtvPV7FbuSiHY0Tn0q7of7wKHVdmciCCpzA1K9IeSHuurYXmnJLIado17pGmObAVidGwF51yGFCNMANrCxMG1JZPER2U8ULoAQFLwVTETQh17N+Vzzsc/fq4nPgndFKgcjIWW3qdKwmTlDBLWPhSfHr4hCFA/f1dhL3IK05RipViipaMg4xmxfLalyICm5TzGtWBShDPLOrnzrXebJyKUAkSkyNYTvv11SqkQ8yYheFc5UlquPudaEoh5idvma/OUUVRV7c/QtTKqEIeb62qElGN+0kO8ogcpzIW5p52geTPnz2nBWnR5odWKGs6Xk5M9q7veHaBLDsjtBteXtdyUCI8r9TcN0NdVRgk2mDnYfDZpbkh0QTqjgvqKL/5TQttwee9V45+23fq7e+Y747l66TEydNx0jmbNYjo+vPXpUUVPXPHnXM8ZKmH4N4nb3Ebz1rGd8ZIeuYrna6+7uWoBI92FUTJw0cw20xC7Z9uJOeHPVBNSbWO/fxp/Z7ZYWyUTzSxdmmbFipno/EhNVCzD6+HibvuvO4JCVdh3ZfRUPQCPj4LHfwEJd2WQ/PeOK53S5jJyCZmbtOZw5MW1v/PPP9x9Pqf6BPOVCigKTt/3/rgPuWizh0bhzNu+8SF8GQl0gD2Rg+mrRs63w+guywnDLR0j/2j/Pz/tIP1xboQT4eyj+KCKYaCqofQ/tmmkpfxwaKYih2zH8X7/5r+nmXMlIUKaDGxo+DaubIf7I5xwHNb76v/X033/wb5L+TyAfpAPb9P6n2WCKI1mYZztiHHxcrsG8NA4YDnj2Zn8/ilxL5+USPD6L7dg2dlmQzLvcwfpufEqV+O18gIoNt3cWoXfS8AgSFh9uz4GZms4pA+1AiYY7bJEp38KL87e6/9OtHVRH+9kz/5Jyy89E8m9333XcMRDr8Dz8wc4l8fZr0c0dcsRZ4nfOrj29G9p5uSJ7/+aerUx1eWUikGuaVqd/lhJ/173knM+l8zRWZ7YSTOva35c20o7se5mYf5L4PaDOGGidDVNZ36cDk92ygzAhLn3W5vMLZi23HjcPTPZPtsitkR3sOVIMTCXmZOZAwwAzAzNnbxPHejzi4DsIZgZs1NOKPkXlZQvjYBfxyn+sH4YTqF/5fj/YT/TtrLVCVEUBRURElAlH7OZ4Uf5Z1Qc2KANta0cnIuTjbQcrajXYATKV2uu7sQQYWNYFZVBSoEBY0AJKSXUBAhOi/b9f9P5UD7IHD4Lf+Uzigxg22OqAkj0OeyQo21s1oopChoqiljWAopEkZAkpEpCfO/Gzd8ufRNFxt/TLZ7O73TyCCW6jdQDddmlVLudsXm8T+PyXyKVkLboAABFBc63CimqoWgmOp219Z9ctAVfwGUNAUpo2yUb4N+D+wKPq+7/EAp3/IY6HrWTPJdCEjd3Kc1mnB2j59/rOMrtiPlinndK7ff7CTV6iy7YWNqett5Lc4hzAzMyZgYaXtd0YBmEdx2Twe7gqfLviHrw+PkiwW/PQXcXrf+Pu7wTOm8/oj+DSRt4K2MJrgjt7rdeY6JB7JCWNkMwrxkhzb24tTzdqBnXHOIGZAFFLTT/N44BPu+75+n5PxH44Wg+zjCHUimigoXm0/Q/kqAPV9hPiKI+MtBo2xqNOB0Doo18MByjmE/13xfn/x+Y5q31+Y4KAi9PqX3pc5SCkAUqBC2sGWxqivs786nx/bFPj+of7pqmmfpt9cb1df80FJNdIv7ixbB2nTteXmX0Kmf08i/LzjDf6PTxC+g/n34blfc0drX47nNpNH554RTVBEGCWNghOniF971ZNSazetrGhnOrGqjGMTBhYxnb9/bK8HWaQJoQhCbVMQBVAFN0/kbRQlBib7JawXtdnLV/AlXbrn5lS8vzfPlVnzV319Xlpp6/CfQh/LH5ZANBbAf3nyXx2v8PHyXnutpxu/DThw9L//iSASB1p4xRae2IWRCEZKv5t5T/pHVSUtJRTEDQEExCcz3weE/YtcuRjaOU0cLhzBDlLZkgB/LN3mYxRt2NxSsg9TONDlOWonGM+xyHCwbxV3wQk2TpTFD+gRlcHF2uHucPSwa03frdWKW7boQCsbu9RFlvnaV4dKFWNCAEtpToqxMrQVmr/Pg9Hdvd6Gg+O8ZYMzu3qdvtvyYmEMyZgEbPKa02ikElpofr9sfxFFzy/5p4gmYjaEim8AqXi1Ki6GgiKNIf+vxX7dREUsff9nXV+nO7QuqG0migClQIEmAA/VbAsxiWoIdu2WXbGeTeXb+7iqqXcXuHdXebBlNFAqUkgUBpNUnLVwwW5cOQ61P7nPYGZ8vvIXcTysEXMhCLfHqN62czflL2s5Bre7ziFbYkqBMBMrzllWJFNBo0R3d65MS01Zj8FLDB4x4zqmmizeLtPHynTt9BuCxHx9CHvOm6LIeH9DezqbdbD2u6d3BzYH1XbiSQSYPIIMnvg4S/rh/XL4Cffj3fB6fS60bn+XDkUNDRUXdp27LI1deFTEUthSGsiu6tvi+Kt4S3hfzrN+nder83b9wH25Kn0+rjybZdJFEUlO2aBaaT+F+T9Xjwj3Am/MB/SSl16/jKL6Mh4eoT9Enzq+P5r5/0fh9n209IaKX8FiVw5yJMe+dfymi82Osi71DhzGi9CyeY1qKXPZ78XmSey2psQgEUxAqoQsBfM5iLN52ixjOGruXHLsjE4WnlaY4etVH9fQvRQigqqBUCQ2fgu3QV1s2g3QoZhhFwI12QhMw7zAgWnmtza3Yl13vpqo1QEuxPA2uvrqNw3Hf4md4nuYGZz3PZTMaZrY0QdZ1rRECU0FMRBXzu8YSu8XueLgVeL2WgEVQh6mpEnSBVSKhKoCgq6sFsfYRBvuf7b6NpxNsuJ6Js3d7r/D1cUUbyN7tD3ObsyEbGs7uSS+Aa1nyedopfI+LHO4p+Yg6Rpn+7GM9f3qr66+Jqcfx4nsMdf4G/KOe+e/b231n8nuNdubKaKcWdtzn39/TyjmFucCVMex7dB2mUaXO97m7/WR/VKL835+XfZPOHRSUDSsTSU/g2iKIg630CC+9+P736fyq3PgPlgPjkIloNGgopUqlrRip2tVj9PA0SVZTgPTJEkUny0UpN/t6E+X8PVnl4vgh63TpkS4Gubd7PY1d/veVQx5z1p3VyaLS9FdZGCAsVMqgpWAX2pFaxg0zJjLbKmGGNejYpmPVdTVorEPTTGFpy+t4P9Vv7ExD9k2X4cMKYOmIHsxFKY6BilF6NWi0CIhJjHZd0xAiMKUL575nyE/v4cfop+8f4RJBP5xWkBhEOtgHNic5mIDOYZku7nwq5cZOkKHcKtza7eX1O9XqIEGMi6zd7g2Jtfya/gnmkNnTSoGQDMi6LepgI4CGLeOnuBpkhLS/z/JwztuKNCTaZUPeT0wkT3YyUraT7dblbl6uAHYcmz3dLac4ZDhhtoe9Vyqa+Sblb8mep2eC8IZvdeNfj5/sWr7gEzxX0F1i9FVV/jXEVwnOI6EtnkYhzCHMGp052+nq3OXi/nndCAMznM/qtw/q0VrBy8pMSQrZ5dwh6N34fRz+H7xRZ77X3vMiSISISKBShSH7Ph9pfRj/hByIKqKDhBrvspfqyaCh6K2XtrcOa1ucwctf37FHxCz8uOEPWyMghmTDBTgMbZBYPVkd0d9hjGMjq98UhISiEvB4fXyd53dc7LdibllJSPYe57nOHuHPc71eg6v+HVGo4mFCECFLGyrYmhBTBDEmhTbbEb9CIvp+wv1J+uq91qaORs+rr+x2uj/vUAgN0YDesfF8sw8MAAQUqCgoKAKbp72btmMYBo06c1mYd6OhedvU82qSXUrdt59rYN33mcpSk8BE9MCQSQhPq+cx+Yt2nlG5mtfa+zq+lJjrAD597HqpL+QqBBS8IgUNANNIGg0FJRR835D8/5UPZ7PyChLyxwMZ7Mpx68/h3t84GrboG8OfnMsHQIQW8+PmaeUg+VMpWf+KmMLgziRYlmkx8bUXZ3dNvGjhFx0vfEl/jHh5B9UfXGIpP44XSRKUFEc5HDk35cUpzn2uY+z+H8VfTcClqZrkaaQkWkVKVovM5cjeUD4Pnas0WlbShQlFpKQFU2y7Y1FErp0dRz+VEfe+b6z+WAKEKSgK+78n7b5fnP7qOp0VbnDhIIEgpBZSYoVZShFZQ6Vlg7tPrJBGdca/0JmRpRM3wyEiFEoiJwM7XEdjm8XbMfj7TuuYIeBGphhgds0wF7Ue0bzkj3w7hWySZhL3szJOZOZAMwzDMkmYSXm7X63435oD1B5bCKsS82bTMmL2Uq6/B7nPXqKSPf3hb668wgmazEms3MYjVME9k4Iwzky+P0tloGYGqBq/cxmWzpnP3+2+1PrSmL0W1hLaevxqsiHRFDUjsgtPl/j6Jy/KHuSrH6Lk0cmkpA0/e5uRXMY5NZ+dU8/8Fy/td78ihBNqCY9gwUT6fTaUAUaGkmVkpoSVMrS2FFARpgm72NJbO+qpeOszBIfBJu3vbWvWy1mu8wirRkY2WTmGYSZkDmTuQfuTQ/YhpoPlnQNCnLTSGN9Xkof5Sf8D/F/A2hH3x1267udjkuHvc9nthluW+2oyGYafzff/o7foVPk/L9w96GikUoCihoPzC/MbzkDzwMG14uhvlu+lzQHu9zs/JikhXjYKqly7TP0/xI2R1D4aajDHPsIpIPww9pAJFBrGRJELeu3p+BtlLoVZKnTwLCvzXSSrYJjKCmVVMpJSEIY/P2ii+/64V9fxeyno5CbR3REkBN78voW2SM5sqGwMeYY7PZiHmZAjGdYm0sfsfAFOJHWH/oESCqV0OK/obhe+HRpGQ16nNBLaHaP8wCMTZH7IMSCBSjz3FF+oqod4iuyd+xls+DCBqQaglrDIDOp38cjkx8lV4kVIRjA8UKamFkockWhKsCED4+woKOC5OEE1VC3g1qIcWPRbBzBE5ii8ef8/L1SneAGhPSUD98KUKvvSDpUkWRaRFpAQkQQvLLTS35jds1+mGuXGOQovyB3K3CxdOMFrMXho17NYbPJcsDSGfAAOeDvAmpYoTZ8cqSnnC9WXEIsJEQoTkTDBHP/KZeWAKkKU7DSghiASEY2AQUzliDQ4LaHjeiPSA9rIKJmB7cepqX2iimsQFP5yIo8rvks43K4NUX0fY7f2+mq/uHbKov85xYFVON2ChzLFQfVxU5Rp3GEehuVYugcjdrXdqYFVSIaGbPWXYGG3ErTJ4Mm5ubaXpgruQBJFCERRH5ZxAgtK8h3xYeSs3+twkkxDIR+00dlvr1hY7mp7DrFe9M6VdMPaJ+rUzdtp0jxS7KMCRQ+pz9um0zpb+Wl2whoa8HhuJvHqTkHhpBEipjFSXsk/Wot9+u9L+A0ZFITwcyMTroUxJWkUWhoYcef32E+kUbr7om6VB+zeinw8h5Jp2NTZhI4Ez1i6T5dND1QRL1YdUFd4a+U2hYwgAU1UdRok0LG1rFKFsYvnYaUcgr5QAcIwJOhd9iIXa+ZUTE+Ehsb/E5/b277dIADE/cKLTyCN/SLyEtA59rUw16nytZQ24bWcGtFtogZQwdUKEMQOcCiMxQyetpTUkJETSJeMgJeAD6wXRFgBdOllC/Xy/UDofHbyR4OD6dNrPznaIEG+hPIaB/wGtDyUTgROH26Ho9VVOIoEiqEgIj0Ongyncypg1LW8RE5/pSBR3qmJWaM6UMsS0p0WAH+hR8dA5IAbN/C0DCAOcXoQATd83bD8S9Bdgr0Ygh6EVUusgYlizkIYLSbemIKeydKCCFNLWVaKcmqIMFuLOMvUec6HkineqExBAU8kE/VvZb4PkZbeDae+Dn8UEkgGmmZv0q3Sk0uZIoHrFH7Z6wkVAD1gi6evILalda9zabXvz9rTOehwSbKi9BOlKC/udsIabmvqmLhZ7E97umwqkgs56OdgLwiKOoSKqt0kT9s0ELVS8vVPZwlT4daT2LgqpzmtzrN+5oe3rt8P6VXnoN6gXxJFwmx3DQxDWnNqTCiVgIyCB3gntAF3gqbQUN4KOpOHo76sLlROVdd++S+wqqdPC3OvDDifyft2v88BJojcYInL0mAioofasMxOXpXY1L9zgUROIA+IidyLRB7uhXCDWxrbb7TDkLbNn29twOrcUvNOkC2DpLYGLqiA5hISQjEwFQQURFRBEkTQ9xGFXQhAAoIRA6kCII6OT0wOA52VC5y6Tc6CHK9HD4z+sT+lH8tz2DY+9pBFJBVw6M9iXweHCTboM/yEq0kDdBsMXlDHMfMHqVSqqY0DmRXC17V7Av8fbXZPM+hvGh2ar20FDYEzwoAF5CQZEYQEkBSJp1wHvrmWTryCh2iHHWgoNSAY/1AU/JpEXcnsRZARUoIVANYavT/XMvVOutnSB59zS4t4oYtk+GFwdSvD3K5l/Of+Kh+mIA5yhlyIWLH4PxHpwh5yBwdRRdrU9C+kFF+netPv+zpd1Xd6HXrPDmRX9v/LtYVdYLsd/ZPBBOTERd4Ki5g2+ZWkOiGhUQYhBvLzlmU+y3L02F1ly50salGNYMVfIwEVOUTz9Pl02/Lt/t1X0Px0OgHmIgpzh8iA9n4d7H1EoqdQwHx/FBQ9iAguS9L71D7Pw/H4WwEW+ODlkIA7A6INFAueA+AVQU5ljxt91xXqFlL75NA8wrekA+EVT6QEEKj5JfYyc91N2x98S/Oxt+fbbi0TpVKPWqSIRg0McW7dV7q8KmvRQebsSi+2iCtidg6FszgRVMTFufbgdrcGBhv+j9yKan9IouypoZrr0DwGDcca/gX5tKfcRAVNzzioZyFP9cbKoZFDzFXUi5AKDxnc5agOSCIpdIAdD4P433VL/LIOhHggAO0EBtETrBV8/xXcjjAIHT0udT2U0TWWF68aUEFsfRQKRQT0qCwKGmBtI42baIKpVUOBu5TN1hbgIodtAopSGEAAVA0IyWA9Xyc2aP+oBSkl4NYrb1IWmSXl+2oC6njTCneXVGa9RQMoU5GAKlYL5PH5elPu+MmhoTudmHKIWbQxgn6/z6qnpnkcn6eaKGUQA7oKi8OvB1k5wNrNoBrwN3M3owUOk9YBzgKKcEA9jiUtM3NUexmnMwLSy++8G02URxfJtEr+8AT4RdeLrQTkdu3PpXdvpxUSiqOX7AT2fKeuDtfWHWrzmRUEZlQNQ2luwbKBxfRQ4iWEewe4qpj68UdDI4YR4tRFmUQH3iAJfCN+mD0BZEQfNDBiAgbZsRbzGuhKmVdvV+roS/5XXt8gIWziOTy4L6nKAzQkMHeW7670kHXQCTJJIEzE2enY8OlzaTU9DX7uOsfTPxJzOlvG7FkHG/Uuhs9MIf9OWoT0Dv+r4N6+/mGNdgQDr7V9+Olt9QBU+6Ij0Otjud0OxxsgYCvD/IlEEZ/sdrxlmhM63CZjXYBIoggNDpfVG8lbPpoYW24i6BRP1Edep699+kDkTXECgadLQd50LXXc9eK6jAeBbkRDHB70E2D6gElPoAskp6NlIdaF+JkCmiBYiWYhQaLcsHvFTvt+wR9/vs359CWkekPFdiiJRakB8ZhQX6SsIveCZCuiqyzKrrIcyhXCWio4T5Guo8Fcp1pD06UiImJrnkAOP4P9Ucsvk/XWntQAmBLzgIEsFkwPSEHUCKAUqCASMKAi0KorNBcbMr7bAii0SN6AEzCIcDCiSJ3IuMIYRJsqzZmi5GHQryTr7aQCBaSWIOxub2wRRVLgKDTuyZ0M6mTREXXOpBFUpZZoBAb5bG10QRiCJEgygBhSJRlw9Yp0t5YLVfLWsLErSveRwg3klk2cjiWHJRqNZc5V2YcU0XK5/ESAFoWZfXCqkvz403JipHIjocmEG5VFGyzRnWIebBTHw1ISyalQg1kHUDyPKgMs2NDQzdNYNSRG8UZsAbWEbMmMya1bTAEbUJbAjV0ulFCAQjFBsH9jf5ImMAJmYRQloAhbewFs204LqP9C5uohZTIqkdIl4mkQMVVlS3AnF2y4XT0FG5EVEdIAgv9sURX/aAN42gEsKF0Htr7JUQD3JSOQhdQ1N8c9U3vjl1heoEhK+9mCpKYPfH9uBIO/xoSgZgghBT4EUYCBYWAR7wiclAIgFUglDjIqK0gekiK8QRBC0EFLpFEuJYsSHEocbmmLhhEM8rZguALgCYFsESLIHpvuoAxzoWMh0bAAyUXjxUEbAlEK0CnUM3L9sgb4dT8NmpCQgyCIjwFUEm29zRVuYSDSqxMUbkM7LKFECGDegrViaEWyKA2VAHSBoIgMGZWlumpMZsqANmMCDEAB1tugl9tNtqAUyKwUJEXYiAjMDe6pYzWMroZDLjR1dH57apnO6FX3yQ5NAJZUj3LxVbqkBlMZrK0jOJjQtDhOoMGtd84zM4wkJJkl6oxwfC4WObM0OIo0MqgjyJvpZBM/O+dNgw3eza5EZshmRAwZdhkslFFXq2wRuYsASzCCHa5wM0MSzBEL2J8w4YZmJp8IDEjBHbZgWe+c1AeGHM0MYyMb40dbWuFv5Cgf7VgI0xLQQ/cMQk9v0u90W4mcWbBFFjYpM2AcCMiTPrnK3uyJogkiEiYAhCWSPYJgyAUxzJhBg7GwSkexfiAQMwJxhBAZAkEmVUKUPkgAE5CpShxkRPYhCi6zSZyH55S26IuuwJG26ugCg1FLMIBsgnagbQIDgKy/LxYxLpoJTtubGXOPf99IFyBCCdFMEVRAAagqJyFTzHOUQR4EisyAKkyqDohFQKtSK0MjFQFm3KuNaEydaDEAc7FCmIgoMQgMCAyQiRCOyxpECEQkIZ1xoauUEzAGRMPk1yQksmCjVhBNhKhWOkzMIZwBJGsKwbDUrJkVsOykgky0zkPL0lI1aclgVtpbNewOkkAsMpY4+67ouU3JwIFYwEAuhLa9REsWRVS+ogA6kJwbhkWo42qdJFEpUAhC+IkM0iWDryuC8J5NmAvCgRhGBYWeFaFDI0LW4DSkLDgKC+pphv8s7xVVMZc3ltdtjJYCEGUhEkIQgX7RJoowSVQNnhTYOKkOxpBk1wsZmawNQwAkjBBArwImGGQAJ0CJPGGSQkCiHiznYwpEJHioSBkkR8MHQiMPIIs0XSl99rcv1bHM2am4qieColFpNUGiiGlgoC2dURbiUZ7aZRAXUUXSlioXrzn0sxEFDSRABUxMeSE4QoiU9obDAqpEoQpEhwABTTFURohF1iI30F/GIAgXQIRUEXuCwEcgWpOBIAJZTuwcC/4fj8roctqGBBNAFtVmIdEKpCSTltXx6vO93qQ1I/haj8YqLlMdkBRoFGaAQUcxEA1gKqN4oOYKojIiDuUaaTw5wYTQjgUWIXbmbBgSxfpELpnQUXQpEAcWII16hNdSmtdQVR1CN99Okdt3eZQF0hoQqAOI4mEEqAgl2AbsFNyOkMhNHRu5TdJRpbNsKgjbQyarTBRU0TSrZp0WJEsDgqT4VYTIMlP8YMNpjSpai3fWRZw3sxNqco2EQSzBtcMWREtoEo0msWGvgMXc6xffa2tAIQtEJz/JYLkgsyWcl2NwpcRA4EayfmIRjJaCCVWR9rezI+CpwZJ0TslJIWBtOKkJkhU0tQkhMSyREYkzJPb7stcJOABDJBACEwVCsJosgfgFqhEMC5UGls2sW0ygaQUysoViIQBGgZKVBXKBYb84IgtYoot5ABV9rFEBtUiog2wTEBABNEKi6CFPxiIuIArmGx/r6KNcy9kEQxBH60oUAvdb9DTQswLa0SpxoWx1eLt5Y4+mBeCN8DE92lIQ6CkFQRxCgARAgAYxlNCiL/BKIicIBFDhKIOSFHSIgaAA0okIGCBRvp7dl9lxcQzUlB2LcicHidBgx74IO+s4OK7bSETN2cB0IHIAZDr9xrMuZ3ZyorJHHohI/DZLkrKAKalkaYp9v0XxZBRNYDh4IU7113zelkIZ6FcHOgecwB0CygA7owuEIfBRi3Vl7ygRMpaRAQ+UjAKHaUtLYtnGhSikiIAfV2NkAuEvrTpAVTebEADcbqX0KdV3dEFBuwqkdjbCsyFoDF3aEnR+hze2JNWpu1W2kSSSMlaExYam0XWBjJ+EmcutZUQESVjK1WZm9GKN2xCOiiqXIIn0JguUbO1ObIIygRm8vjWaJWRISsk4QpJhaCxDZT6AKJYQvroXNiEMBgsUsYwIkgpHBQdpaQgYLbxuTUf/roQga8EFOnYsdJM4OYHpgIGZi8a2TiMZQJi+NP3oclaDb7QJdD+wU2AzkKL/C7YtWYoBh/iWz/KVTYbl/+IdbmxgSrIgdLo3ELhq+DboJC++vIC4IkG87w73VoGuYx+/HulAE5ERebGRAHwlxEYFUxrWs1sLlXuEQR/AUGIALVCKoiOYoHEEQba3o/LAiSSgAB1ScltvapMpUkCEhM0UZ7a++uTmVWNt7Aau1LAjCHCFREEV3WAiDeIgo7REQDESRUCQAFDBEHgUWrMIs30rrV7BNYwBGFNsYEiC3bjGEGRNilbqlhlNBs2asPDtp0wY3JRCN6NpvKFVMkCgiAJYYinZOIoD5CJ3QyByaIkglmIbmtOoiXdPrTvA4OKQ2NAODffDLiqI3br5vk4JzRlQ+IvSVmQNDLKwh4QzmsllN754Il9Vo2sIINBquiWBRS8620axtRcj90UFSxFT4Th3b0Z33OQSocrqcys6CqtdFpK1hWhVQFbdzBATS3vBtYrVXW4cWwNCYyJJJDGFY5VDlN+aEII6X301ARHYbbG4ZaHRYvApYpuUuNlGSNjCWxsIEMsIENSlG9Xkcusm472Nkq9GQNRNgWoigyCMigksck2hbyEFGDZSopSAlh04mEMmSO84nvhclXcsUBRMVPmpOCgCh8Y2xgihJZYWkkhOjwnclxzvl/sR4EIYKUG3kK+4G1kDKGWzYpamXIWL2KV2yKLutguRIXFFsEUQeaQY7RgJWCKICImJjbxj0g51iGgvTAgBiQR8eC8i76PEABGorkiKjdYCKBwQFFLXKFUW4oEAVNIWAvmKZUI4c3ePZCc6Q5PCCgpkaYkLRY/u+6WrcYAFvAAsyQI/KVdIkZKHV5kyVkB8T+vvXq7Gd7//Zwoer/XlKHYU97wCzcLOPZw7Pg6vJv33LiUoUIU2uvLcXNEP6IkX/YEcBr9lRKwRNhFpERKMnHD0/9a/jvBzSqmjrASSKy20QQDakcK/WJwOyBrN+/9/EPFAKkFoNthQECBYYZuHpnb/YUXGoWJq8cCr8gtIKO8ioISDlEdx5j4LidbSqHboQ/EROktsSVpXbu6u739CK0AjIDJGBMzKlkNNtclra1JO7NHfwf6GJASCp458JQQ6gfuOOEEyMdRgx7PJlv2vTOJef+JBrJA2C4K0GbMPWaKZCEqxEhD8EWAUCyih6pndDlO+Zd1vf4edFTY3JdyNuknUlvRE2p3+iBCchEwLn8/9UFDkpRdYSfAYTKBDPHlAvDGMvRGtnYkTjNsX3W/ZkRLIixX2jq+1AhxGv4akEAG6pKZnJfcoCCkiBrMaClyCRImiBIqqmM6epoA1ztLNvzXORFUaDGXjiCdQtiqC74CigbSIcZJQQTKgCqVhJIgAWkAA05+f7tfwfJp28s9guU3Jt7yYr72aDzioA5YXdMSXVMajjGEikCDIkIIETMzvxnzogHRBPXBJFEx08E8vxYJ1CKqJiLCdp2jpMHeg8R+zzE8kA0zdCz0b0Mr6aZ2t16Go2IfkLO0QoCB/0UA2uNnxOyWAOwovH62yASgK1irzNwsosCADYLd7gmSE8UQtQUiWRle2VNdJdesn0RT8D9okFigHTYS9kgBxv+/UTTz1/LpMpbE4W+zPb5fDT6NB4gihq40FblYCXQwdQdJ8fobTKiFsJ6PwtcNogjbyUoyK/FBI8gfnSc+iJ2GFAT5YReM+8uCb0/wR5CGko/VIBC0T6kAFHqEAd2HIUaD7LCCflPeKqpaAfZGoSB5A3+ujvyXWU+uwJpgYuAAwsJmBmSQCMw8MuwpPtRQ5Knug0TT5swM1BBxhZB8+ednh0XCKHcADFFHEEBiAC6xUDxBBEXtYe7EQEPWCtyJ6EEfMqI/GJ8npRy9c7u21uPNE0+zXbMDnFFU5wdYHxgKK+pSEABpFRPMkVBkZwlFRQgj8XvoA5DF8UGkaQD5YCPWwbvBf5MfhzyghLMAYEkIoZIMhdKYzLkRATgaVEqlGMqHbSeaPShYvyhC05sxq7A6i6jRue/JAT8hPIgn6mHSHxI8HzlIuCI4h8YJpExD3ilKifjAPxgoIZdKJh4H9HG2gnXgp/wlixYCtFOBpFWt+/y6Tq6ebjQpNiBtlDG13vDv3WOOHagBUBHdb5vcAAUEUC8RFFVPwUcAPFax6EAfjAEUoQdUdNbQ14zSrutzohx6RB+4Qg4bUUAEAdu/Dx9Hu4dvBQv7ARaHSceBmtImUERT2iB6PSgvPR0x7Vu/Z7Wb3r46+oovT/giQE9E+X4dvOh5OEB7kAqCnd8lEbTpMHzgdsFSYxZoyvOvw9nJG/Y9OfQaPl8DXnB26GTQaVT181tHwmcyPE1O703ueJodqNNk2d8+XbRD2EShfhpndjukQydSAZDcBQKA0FAolqD5lAcj5+wovM1i/HCmuymty5x3h7M83zx4/YqQH603U69kAe6HvsJ79Gj2rTW/2VWeFDO+nVL9vE0zoIEeOsusjajeimpAdfLbqwHDFvmhm3pZ94n2BWPfkecolgiCGN+9tIK9e1CgnVCHbTV3y6ImkFkDQep6a9MRxeUjujth/A1ucZI4lA0rQkg+2gMgf3+vYkr7YAteHM56ifrHcUjH1PfKqdcIHPR/dA//mKCskymszXjKLYHzEs/AP///////////////sD3XvYfQUBt1fJztUWAAAB97iPbXgAAaA7s7zu12jAAd6e8abeAUltOXAaVabu7cGmqxrscKVadp3QUlc41wbYzhxwddz2a3hXo3bVzdFOh6N2tWtJWvgHve4DG+zdktDneB7gAAAAUe2X3QuA+t9H10Huy2b249Z7ZfQDroAAoPQa3YA69XdytD0dtqgBR9fQ6Po92AAusTb0AoHQACIUAAABfel94A9BzXka+hrTF1pTq20Vtt2m0TlRsytLYW1trnO6VVtgKCjptYcbWtrVM1ja07nJ83Gse4cHJtdlvc8CXLmm6I5cW4FaXDs24G95toq7NTRr14kCKkABMgAQaEyAACngTJgATAAxKCSQYSAgSVAAAAAAAAAAAACRAmkioTyR6kGTTQaAaANA0AAAAAAUlJExIAkNTKP1R6mnqaADI0AAAANMgACJIIEyaEKlPSNqaaGgGgGhoGgBoGmjTQAIlCNAE0CSaEFNtBM1R6j1MnqaeoNPUPKGjzVA02oaY4s/oH0yGTRr1hofNTO6nsMbUSUzDWrH16vvJ6YUtgdBlAVf4v4HkxeLnWv4jQT9+Bci7QYQFF3ZZifs8dlPWpH7MPtipMyQCeuSeLJly/qxHIU1uIQFPJ2K8DUOcmEfz2Fva8jF/4pzYC7pe/MceBEsOxplwSohKJGz0umzjicuTDEcyvK+Td6RB9pKIdkqcWn0Jsr2yUJnMZuDL8ysPwH7m5YET7QqJgw+nfODd8PGlc7Nhp3ougZCYIxnntQmSP50DaEglanua6M/SVPvptfF+T/MFWORZMWLRAN8JAt/rSFwdJJAmCbAHNeUL/0EwOM+rpRLIfdySn4r0MwW47kEBlaIy8mCY3w00BRys7RUH5e5+Sh2vuE7eSH6f22nGHI8geEOUKHcdb1nc/x5DXOf3k3GqBedHat3WBJSRDt+bejlmh5wo068cQ7f37w9A/nVePKh1oNHcL90MOtXCQEUmgCo0+iv89CylvFG+/6cmyCqwgFT0W+ilE+X6DTGSs6TwocFqpbOH3IFJQVmIo6x2dz5ePkLrjj3hUyEfHc4HDCa+ckj5f8x59q/RFTo+GzZGWgevdxUhqOXe4edQX/fuaNbhV3989yvQV/5Xbzc/i6J3j1m6rpP88Bz3m7MoTMAOaSfjynOjK3gMO7FzLNqAjPumZXgkOBgTphK/dLO4lbKPzsj6FJyq7dXGrBG4DqK3eE/fWMKs3uOqrrX69hXZ4zw3fv5myyTvq0cXhPaYZ3bD1+w1nEcJ5Vd8+Rf6jF7TlPQrv/vnPy+JF8j3HZzH4Mn2OxQdjZB/XZ+6auv5Vz8TD988H5Y2n5aqXLLIEBifjZ/Zr+c7/UUP50w2oLwRufgDkpeNqhx83vX8kK9D1wV0cCYQgAfkQHEQkFFDngh4DXksGg9qfYJYww8An5UQVCmAcgUPWEMnoOwPcUALwUon7ls+Lpm1YomRj7NEhXkHhmBDJHZo0SGMJSZGJUn7rt0KUWzkNkMuEBCTAwyAlcAn1CxSW0XY744HEA3gr7T2R0gBW+jIKv3N4DUEkGST6jUW0UagpaTmbS2Nzk5lbLac1zrk2nNVsrZs5lscxcY5rZbRsbFooYRAADs09mydD283PiGhwWgV7O5YdUB7x0HAfD3c29IUp4Pw3fJczDiVd+j4rBBsR8kQElLs8tdSupvhrAv4omsA1dNveu+n1qYIXxFEL4pFtG0cebpxc8eaqNqGnmz5m1mTxhbMgdzsUI7mJ6O4d+W9yJDjbmGCQwNIfHrHMRUcIA+U90r2OA5OTksu+/cvzXvvwVSooJtBQu0IbVmbMMS8rm82wfhhovYNvzBg5pQReuTks4nL2HdivbfcYH4Zemkyw1pFLNmKj92pSK2ClZSsKVKVmQkmtUK2CkNhSmwU2lUNlRtVVIWyqMaUhxuZFrCFbKpSOZXG2a1QGyZiM0pAs0qxqswlVTalKzUqltDaq2tiEq2EWAYmspmkZaUUmoqtBUsagxVLAnGlc1VFLaErZJVsMyiBy5nChxqhVjJXMSVxilSsRzQlaqjG1INjLLMpVbJZay1NkzShmRslNVkpVskM0bVNiNZjRNizLa2q2FtbKoPg9+LxgK9/fj1YpVyN2Mgc99XHnpRVwOvPBOyyVS+2fQyPxtQ7YX4ZR3yqobCV02w2RUNArAQSYYIJNqlU2mtRbWsqNokm0lIfB9JxVS6ZSU01D0xKqeVhVH3ez4Nug9mVVXa0ofLRKD76dsqjY2j10LAQUcF4GXLCEhJ+iedXQnfM6ub6Wwpw22W0usa3eb3uGmI0E0qEiUNQYI2GlBFjhUW8TBZFLkUFTFyorkilJtEui+IUhph1zuZvTswTQMgqje3xaGQpBBaOAAF4LjmijJNVIcMKGmNQ0FaQEBK8dpkJrhwIOfFC0lcGAw310oofUwGVpVIBJJ3wsXbSVjxPZPV95loZx8iCKyYsglJJRhCRQzYJJbJtdglr0LEG5FBrNiUrrc8XEohBjiFEL07amwg2SyqxE9IL8jx8GRy7ERYWxiKrAlY0XOM7N8BcHV2qygrdgpCEioIyARtmgMyVmqpVq0WTJmDVakq2EzVmUqtZrK2maVZgisamZFbULaqVrC2k2FmLNspsljajFRtTYm1jShq0Fs2raItMmaptRbItmapG1LYasmyCswtSi1VS1VS1VStatk2ltU2oZqrbJobWmhrSbZqtgs1TYTMbVFW1BWtRtFVZqq2TNsbSqrZtZpmDTJAxYtYZn3taqUs5hyMwNZW1WYknJhJMY2ZkStzkuNTmSsmG0iiyyktNUsygNhKpjIrYZpMMko1Tk1QbU1aTDBslaZaps1NqVbVsNgyxMMaaRa6EgSmW46SI4SULxYE01P1bXUIyyqWyZpptnoqrVpRXMWnHErWpUk4xOVilVpZFJqspUNoqha1TNKVS4xQOOORJHNDapNpFS2LmJzSormiVLOUszMZqpLNJmWhlJiZKMZmkzFtSpYSJIkYRTfKmzkmmdm8I4hWhVCu1x28a0GZNo5tYFUtFhIk1oBWoUwiFbUlMycLz1Ops2Maw2ZhmuWG0dt2Mus52iK3ZIKKSgkhDBMUTDZQ0UNFKFQTLSouOOldIcgpxYIkEjfQVg0MgEJOIASeK1eVpBl4KjAX2z5+YK6y3EghCWTZGKRKMob0ciOcZUMReQmIggvJL+wuOPRjtnVW22G3i3EFcc7uKMQAVZJYLEZl4dQkQYKFnIGWRECseT3NBL3s28HBVPB1x51crz7u5RWpQcmUjusFiC14pRbZNZecmLQjroIRVIqcIRlyh7IDCRgYQkkQuDRffDASBLgiC0ACXGgFIEd8QUTy+WuMVHKEX8U0Da3eiV0Ng2Npi53p2pmlKA9c4dqE/qj4sXi4qMYAxiQ2CK2StssGm1tZi0tpaxrVtsGatmbNm2ramzGNmWMy0mLGzGYzVmWwMzYzMMatGKpYZrbZmptJtAraZtWJE2Rs2hmJrVbVNrWE2lWtrVNa1azNTWZmb7VCTMUqHNKlcaJQ1hUs0swKlmlCc5mtTaZiSs0RWZbVrNraGTtc8rw54dOPD2665VosjatllTMra2MULLZsm1kzNNjFMAszYmjSbGG2htrVGsGRKLtbEGbjRbDTJM1RelQF4L3BrIN1XFMnJqmdKuBdMLoViNwYDk3AEWlUVuskgiYNLlQPFqIWNVYiqN4LjV3zShqaGC0zqFJaEJE3NFroBCTARirijOZTCIowUljd7IIiq4b1lPgDQWhsZgDwxBoTAcOWZNoqfBIyyWr0ZAKzYBJCXGq4hpWTW1QnIMSEkuSYdssOKO872ClHw557hWMNN9zVABeDVDMRUGQTQtxRjDnF0HtENSgYi0BSi4s2kbyyS5mvYcAs91xI1IBJMZrUFjEMMqSi++UCA0IFFhQquIzgEYQNHuoygrMpNGL4ykrYmB2bN291SQkRUICRgkYQVK0LVFMw2mM2rTVCtlsaMhVo21s22ljW2atlWtimM2pNMWNk1mamWjaWqFZY1tM21spsjGzVaNmVUs2mZjNLaErRmxWZWMy1Tapi0orZVsZgratZWy1taozLYNlWjQqbN4d7r37PHg5fTXf6lzUy07xqCxiSKoLJCISIbEzJjAVmQVmWNVRmtWzVbUzVZNDFsalvVDrqFaYKJcKioC1L23p+r0lCfjEX2QRAed9zTe+6VGESQJCQkZJIoqtVmmwzTM23IQ4+HZyPY1ZzYcoPaZO/EukAkbHnffdkTSKhBlzw6NAILddG+RVRpF2aK3trjAZ1gQICRpAHsK8iWYpWKLQyABLIVkcyZh5q0zFWgjLCwD0k4ov5LqwDjoYWQXZUjY1wYePrW5pxIvC8KEcI8OREYRViR0mptPiwIdKZQc4IFzIow+pMywI05iTAidZzhIEkoWpuQyokvgePtnWJPF1vF2dYDK2NVFZrLazMtbaTMVK2bZmykrK02RK1tbDG1rKqWZW0zMy2ltLNZllqlVs1ozWjaU0imakVqtWYa2xtCpsRbZmNmzS2GyMzbWlm21tixRW0a2rZM1mMTdDoN6+54HeqULO2lJ1MQkCY3kWZaamxmLIlbMzUZamm1ayzNshtJs1pNU0khr2RFYViq+o2ETURQCSFGkEMcqalsULbWaMMbw5VUvSykBzL8PCFnyIOJeDIrkiUtISQtZzErKatxNXhqYYehASZxm6SZYBoHodbEguxunDNGHQNwiMApyUC0DA6E5JhwwvedxAAlCASSo5oUFNBxLlzbtLlVFhswFZW9vXs7FUusXUgOBIoKtIbaCpczY1yaAH6NbR2io1hJawrQxml7vMsK2AtsQktXLIFgyIW17rnrPRpZZ21KNxhHYCrgUlefXzjDHSkpdctnDjR3dMQQBZEjIwYSMM2xtFpW0hWyytjGtrJUstWjaatm2ZtSxiY1tmrZUzWzbbMZbWVaTZk21mGlsoVs2ZYYtGNTVgStNG1ptq2ZtZjF3yZFxZkoRFhodXS9Gkiz3amagBy2DU2TGW02WqwVWapmqNJtq0zM22IVrVrd3e1sfm/FgjMYW9kaVBIKGpFEU1td9DZpSrRVjTNs1kWgYYLjSK+CIr80Uzao4M0pua870awd/lwOfXx7lVPVvCLvs1G1QbABAyABawO13ywvFVxbzRGCsaRRqTJ8RcMaB5hoc7CSrATGaHAasDgPEgBL2h9GSOgXh5qqFNwIw3ucRAXIsbk32NsGxtrRlWdGlKJgNhfAZw6akX5GmCNLnSVb4MlJJIWB5dE5QRmh8Q17Pl3JSp7rLoQ5hElPeIrIfH7MjlmK92T58jhxz4ydCD0MsWKotOcBiCDzV42pgKI6wMaCpRoJE116LZvtpihEFswDLplw5cBtEIMJGEWbIzGZGwbVta0Gm2YzNRarVbVUrWqi1tmzNWxlpm2qStlm2NoxMm1RVsZlqm2bVmMtNbYQhCF3bbQLpsEF2DZzYRRGdq04wesayZmaSVqzaFVstpWxVjLNsmJqwyGNUJCIpIwQVZJMNrKaTWaYhaXDLkevDoyKrKlWMzWPYkr3wUFFQBBZCYsAMMioNtM7mx72NySxgeiOI2lJaYy9bRFQkWbTIuVnNVYwi4ahZ2p0Nbo+ICCOZ9qwTRwDQZYAPBBdnTYw4VOIGgZ0FbIoBxDWYQpMJ3iNVpI5BcAV06AKRWEahDC4IQlYsQRVSPJUjbxBhBEYtIUOFIOFdo2sGQc4jhSaZhfJwYYy2mDSYEyjxIFRJI+1N3x8jZFXt9nOLp6cICrtdI+WraV9WI7ZQc1L21G0QSoAPuKncbnLy1sECCyIpHM2NiaTaW220tk22VKtG1ra2pWtJmZttstjVCsZGYbK2bNilZk2tqZWWmZoitjaTMtlVprGpsMNoZTMay1tZ4+FxbqUiygyeHNrmNKxoefCuW6sRxJGRmtlYbEymlKslrI2syhWa1otmzNx2cc8nl6ebsep5oQVLtw6Cau2aiBYM/W7ZE23DEEQXeW0owUXSWfFFkLFDAVRoWqJtUTN7PhyutY1sG3pyZXsqpwUUYNbGhypjN9CzYzEfBbDwWBMlsZMxOtZQOLCBkkTSwZaWrQRdhCzWlp0ZU5kITF51CeAQhJ8xqhSPm6BMkySQgoYCEWhElBOxKX0rSVvkTYoYyjyAiUQdOnDhd8gEiZEYgF5SOBueWc6kuKASSFvTLLqavFhl/AAnKQCzwsoUWXekNom5BFFihduS15Qiomd8vnCw8DcuubwxUdWKLabYxAxBrNRjbCSzGbTZm21VS1jLZmxsxa2NjNDU21ZamMbbVpLFStNWtTZtm2WYy02xmmSxpNKK0Zs1sm/FRmW0tcass0VFkJIRkkCEZLBnCAq76YNcGwYFfATGqz4/L5RA8cjD6tOK+MFt/SVlYwIc+fy+j5+OGVZozH1NNVrKJOaFpiQcmIq4tUDmlKsWUXOTCzGlaabDabRisGEfJ00ggtkgR9+uxzvkL3za+lze+JIREFYEGRkZAVRglX0zuEjCDJJRNixZQxSgeJpx2EOrZQCxNF8iYBZU2LnJkypFQ+vAXAFKpSPBJtt0gNjBQQWCKgcBMCpZSctfWu6L3Ftf5dF9yiRwoJDdzYrnMGE6SHIgsYRaPmOlUJRuHhy+xYVUqudGLkcxYxBxrUTQhCSoXMDhSDm9CycawSlALsEhiJ6ORIBLmG2pGIpOqR5kUgvmq+tdsuzc6dnvx6sXaw2zbUkZZmJazZWyKrW2ma0yWzW1VpM1CrMIrJKtrNJptIVtaNNsyzJZvoUVMBWCE5pk5SVZMEIigsSBAgEYZrfh0DVrfFWLXuCeRKtaWqsJBtUhWETrCdaV0ACV+pgQLSSRbVwgk6N0X7EwLSQuEGFEHBV6MRGIOHTxHJLsWDVbzfRIliQe+SHaIEIEr7C7hiRKmaljMbOGHxNGDfaIdzWg8EFUXQ1hfANGBXW47m9sG0wDLYyOTTGSWsUYAQkriw6U4jKDtzXMZ0xouPuyCybWJMKINQPwPTsQK7NOUs5c8ECwpCRg1Ruaa7dxAny5qKdRLmFCcJUJIABdiSEIYgL1CeJq+UVR7d8KsCunVbm3fjTGGoVih6fBDxCiJNSjvXA69nv8Cx9DLJ1S+q0sDqkdc2e5dLhEEfsiIiZYrbNIqwYjVAUibgT8NzwZq+4w0UDsiKC1fiAacgXNsUBk6r0wyWfhvc048a2V78cFcuTpBFalSLkTRSM6Vz26uZuNvyOoXRPyjJDrGnjEx7ybq/M4F/QRDQg6NMw43M1lln0yFsTmn1ZXZyEoQ+EHbatH4r9JFAFs0TfSu4GOVZ4chCRVZ5pDJEeIKbwGoCAltR8mRZEIxkF6scZKxV7bkNvUT7IJVfXRs7wQyjyU0NjIvFx1sY2TMfJQ7QxKSmWI3sl2bxA3UC0G4JGL/Elm/e1YMiccngzcdT2U5Q2iSJfRgF4oDUBD0RVUM4Fh2N6leyeeISim3KuAWPaGHwFCrkgIofUFXmIdYOHwaHM7iZbUSZeTJT00KB6jiTvKQ21EyCAB7fHwXSvTJmC2FMmPhanLFcwzQ5ZzCvw+w2tuKvh3cJ6ebc7PA87ewvclfNTmYHBqezxygYT8VsU3pAoyAvY/Ueu0XGQSaMrBjkDTBuPSSk1vYsFFkOSa3RLDBsQRMxAQ8sBVdCJub1nYNL9U9lRAyJAQR1CH1wZDyB2cCY+3TBczA/CFcFKg3i6kBzoDhumMdDB7NFXWyDMiJ9e9jSPW1QvqlwR5gmYfFCvrFySFj5LljxGoWuYD7TssAgnwIAj+RC8NqpmvhCK89RWgjR93LBY2oeRw4Kq7nNByS8EFjBHmC8jAtmk4X7g0joQOziyAzrQ4iockEODsKQzFcbDQLtEDTfuw6DBLE7LKYISAdHWA0YjdNjo/PdFTn1S+0Tk3duKt4v1yGsWoDAIwcD5gEIntUgi/cnyVaaqUHlw2Q38/kktcat/UZLOa8lDq5DRg+uDBpIXo27+rHUDBAO4jtF+yCWjgDva9/nHnyIGqNBkyFwl9Cywam9+FejHr4UB+YoyRXQgsgKA9wN57ic9b2OzgCKvBPDqhshXMrSQPdPcC99bHhvr4Z5deoPbKvGVbZjb5vdZ6sSvqVdqsWI31r590KGrEAKlQclimiG1+b/Dr6dIM/V8718xzclmzLG/e5nk8HZ135dI3bx6tw3rrldGppZw4Ou+/U1Jv4vxbA1c+OLNTJv4JQoNuOp7vzdQ8+0QRjrk4O2Ddir2XcObq1N9WsuWQGBE9TOJU3KLo9B6MDbAv0rRMjcprsqbEAH2QQ7iLtEFDiAImGJ9o87i/d81NfQQWoPMTaKoD6gdEUO48YFVhFe+jSyDj9ki7AMJ16ZawZAuNuINE27k6cC433nhWLjA5gibRVcCCg6QAXyEeo56qnnhsYA692r3wKGUAALqNmR7AsQaJ5Xqrmwix9wHXPWHXfHXK25VlUgX58exn4n6gPSvbRQGWDR0x5uPzKu1OHxhTaKAeCCYmlS+807HXc2MnQttSd6Onnd7Fr43Zjtu903iR/CmC2+Nr/D3rJDHu9coQkK5YoAwUG3Oyt8WARX6gmxtPjr7seCWNGxL+sIuzpgDdgqJ9G5wSAHfgR3c+JCTQRGmUxyEQRSz4+n7G5gcnM/3VYY2s9iQIq24j1FeCVukJ8xqctIz4zj6rJ4Yjwbv20HhnyscQJbAEEcEgRXwL7hB3e/OG6gAswZ5hNmVLctmghRI4j+c1Es7QYSkHpJUHLGV8JaXpMZPcDESG5cWRtEWRixR5zdc9pxxsj4S80lzcxszUyvwxOcAaAwggLSRKCpRHSoiupVUbPnNjTjkjKAAF7XULJCvzfDO48fj0phjKDyCp5w2nLh+E4bYQb20jsD90ShADJw0DvAESu1BgpZq+9k5XiItr5b6/lCl+Ife8I35X4ftQ/1fs8Pwt5G5sH2PlCPgAN+SzD9HOv69OPohbQhr+HR2g/kgB2gi+IfcVMYKPrFG0a9WNSi4HiJqgULw/8uv3T9UdbIGFpCPLI2hVJtWBn4JBQFuMQdXnO7ZjvjtoMQnclcRdJG23m3McIDXAJpBjv98lhHIV1S/6TF0x27w2eDYql5I2MNjHAhfgwIqj+p1D9RxHdhTuctVoio+kgjrR3wyt5AO3+kiAQOafVuiDSMiQnQvD/JES9gHCQ+B7UYiTndNAjEc5q6QRgeDx0b/e0Xz4q4gTSyCALPGdWlIt8y/g3Iw0Z8AQKO/GBwheFAoKyz9Kk5bg0nzKLpifbcIgr9kDuEFpHuQDQmrD0DUZPn27U3yQPTf+JVE7CRfL6pkzPmuOvqmOg2FFGj+q2/2gWA+4ich/I+0WuGZtwgAv9uBaVNygP4Ts5D/NoaCOVfv3SrbgEUfREML5VRd6+WX6IrmQTn2z9J/rLj747RMyfP5gfjNtlDKIgLb+J2yDfO5VVqxaw/5B7RdtLB11/MDxY/aEep5MH8JUeP6yg/Bwn8dk/fm2gfsnVkvcWuw/bUu0SQOcdZq/uX/h95ER+c7p7z5ln0Pxp+pubVcgbtp8BEF4ptqCGg0h9Rpb+mAuZrm/6yqWtaisSICI0rPpqHwpP3w/Zrv/s/uJ2Ioj+IPMohSIZfw5OWpox4RVoivgPvgsr0MZ7iopCZrK/HHbAUA+YwVFXzgqjALGAHM0bUYRQNdpFsIJ1FeLcAEX6cuxihSJ4V/JQ5GBb7Q9FTiwKpQP1Inu0bfzE/Yr9JhaksMAnVFuT9Sgi0FjlCJ5hXin1koGT7uY4CSISZUAVvsFm4T7w/eoLpIQcVe4/tPaA7DgIRAPlFFBoiKvffs+P4/tkIILlFP0S3201B/oKGoeJ4A4Fp5T5miVt7onOVAf7oFe6CCfJ1eGgPu9fvSV+nbP17Y7v9/zcrSs8WW/SlS3rq4SPfUK2JfrZU3Sa1BY0ZTnSaQwSpNIb5AKoCBCAs96EoFI+pr8G4iff1o9267L9xu9ibfXPItl7H25wd1OQW7Pmzd7iPbPbzYY4Zj9OtqZIg9S46ydB3dDao0qc4ELXrHHqJeFRMM19dt1Gsx5cJsxy49OX3zlDeXMJv3cKH0fkjcTyJfh3brHmQ5qciKgmab5ypq3kXmXbKKh+Ps4+TyG5x+MOM9VHC1ABCSEk/tVQigHIQB/cLFIP5+FLaYQgtLHZbGJ+qFqhXWKjZbDWFdi1JSveR74S6GqrZVH0y+TKV3A9YKi+WK2msjNRmKbRjYskNiql3ZRDYTWqi2pEvqlq221kVWZttLGhqbaNNWtWxazZg2sbWxgG2sYbBAvnpAfLStpM1UBf2xHWStlSnEoh0qVtSbKp8dSrilKV1wfcyhXQVpgoNlKGaiIzKKlmWYKrMjMWsptRmjuVK05qW1LmVVU+TS4mJUNopFrIK+ViqfJoqtkkvVoFG2yVZWbbZZmG1WtTWtNlpjNtprZrZTLJmM2strUaWbYzWYxopWsNmVtmsbGmq1mYy0bbLa1sxjNZssmmZmtRssm21ZqFWpma2G1bYzNmTabGtZa21tWbNJlras2kkr3aga1ZqirZF4sq4MqbJI+ORV8cnWqykrVWyNm0q2oTmQqrzy5FTak2qySw0JfoR+fUuRrSuk2mymwbSMsWzam0gM0raZgbI2tarGqZotiqrZRVmRbTZVmIqTtiHfBemUn4aFHGXvin2ah0yo9ZQ3gcRbxkXmIg+vdL4LlYIoB7gpoxFzSV00jmo8aVfFpqlPphByU9YrgWIDy1EH2KH0ye22qtqtqraU2orYCdooNldICheAgqbP3D+1NA4bB7SAj5KNVtP8NfTFuZpzAB/e6ieFVGHxxKjzmqitQPvoeGQxku+nNV97X6s/aZLtqKWaJ4lRWfdD8qTnE+82/LNjG9vv/dvk/RMR922oxjCb9Hl8rNz7mxDRxhPH2ltm9H2dmbvL7QxRjwSLAe/mUMocw637/OGHilMfHrGlMudHEhDKIGEA0K2sebmDlgRLHhn5fiw1sxZ8FbZvnLevq+Q+as3Ws/GPPWVo235IMto8W98WTcW2xahvrXXnnmIOVk0Qy9/VXPaOS1cMtMpM73OuSQnbxjPz2SR69Zny638Nsx1f02LY+sahOatv4460bOAKwzJQeXPPWGUDHUp1trjth5nRDhwkoeuqdYPiakEDmNpKWe1ypyp3azNkTy0qTuwjui1F2zNU2LMG071m1IrvpLhZSa0c0h74E2ijZVXWoqu8L4xU8tQHSLZLaGwbUhtItjatkptJtC+ZnlodtLmmxXxwe2/XKTR1qWZFL3ziZ8+OIz09xCM3mAqt5DdP9IlbEJSI58GMvDTkz/b8nh1h7WPWHGp+03miV+UOU74FdSh5nrHX7bf1fWbfRrg5kAoHlAaH2UoBzL4MI+wgn7vZmr9mCn4MX1nIw+6URoiIWuwSRiYEXvA+UA4IqoP1mzRX64B7gaEnNE2QiFbU2LlMY4QxmxD6lBfMJBXWLUC8C6xJBFFe1CghV/gf5qraIQOCkVRr8GqIH4clCv0R6gUZpHmeJk/QULkj+EoWhCCornNsLVbQPBejlq8PqZS8RFfoFS4p/Yt9SFb4BIJ3gvsm5DysM/8tHjmjFnPz0FqBzQVU3qHy2KO6fOnJH4hygp/IiA+6lDQ7HNg8pD9Une5e1IBch94X6mKABYK6HaiED6KciqW/NxQLmF6FI2KP1KK/BPrqUQmBqU2qD8/sNDXHHG1flULCVWmH0Iij4LfwifU0kToKonIU5HYIqO6SleEicphjjQAWIg5EUXWnuj9S2tD9MsR8QxDdIsNaNOFShtNIm6pyUXdjeFggQNOdLSqtPlDhiN59wBA+IKBmpbOofTD4hYg/mw81tE0SNEPsieIKCuYnKKowCo4+Ej/I9ZKZhIEUFFFnNoCIqgBsLwBi2poqZnFzzofbMZ9N/wEzsqisSH5WB4+xov3YlAh5I0EFX6SFQfIOQ1ecH5CVKZlLEPAk6Yc/SUdxP0H64H/z9Rd7eWg9U1RMlgQD9BMoPyx2fWIgPsNWf5EC6e1FaQHA9AoCxMWAfh8lAW5O39gUcd0RfbFfyGaOG0ANcIIaIo7c18cnOISkZl2EnXhu2u36yMFA8vxRFO0QAT3yAcEjYb3PPSM0ZKqSqwmZCQintilCAheZSKN8kKXN1DWhEQFRHzEE/M0xAzpLt9pxNjwXXux0XbG45TanNFBVJ/Rh5iEtEEMFxE1HVrKqZNIiow6R48FMpcPsN8j/Je5Q3X3WFId4vYqUFGgEAHwQhWl9iiZ59dVD5Ff5cFQuemAGs2hRgpzAKJ+7lrueIfrgCLLvOB/XV1+PZ00ZdVcRMUIVmrYYwy5QLCCFeNEAYsigh7SCIofMr2E/Z3ORwgB8FPDU14IU9cn9bU8HgEoflFAX86DqeYGohhj5NqmHFDvEfst8iCNSMNBRiKCspw/KekkKZyqr1WlxObSWdH4Ryc8a2KPRxhfhfeH3p+BnRzPRYqSoXm4Wb6LXXGsejB3WfTknGncMRGVEgXjnG1kbrJpy8JqOad8DennaoF/ZkMtdeyCz4JpQWogqvpgKKkp+JyJu8ONAbhFFkFATQQHsaxesmEJDz59BHLh5pjMpLfAxmWA/M+1cr4EccRKKqPvIjOYqwrQVnIKgJFFaYA34DiP4UYoAFe79CHSKSAhN4K4bWQFIer26OgmXu3+Qr0z8Fs12Pd4jgMVeSH7TrMXn6PdK5baQnizlhuRiKJmgq6egRE4S/JXrAmDEb/i/vhlqIMISw4oeak9+PmFwuVgCQKUeQyXmRkl/pu/y+A0XuBGG8QUHuIhQbFH636h/Zx5mOzjrvhaaiUqLfCUr6i0Zc0CK6KXDT0r8DPIor0oKCJUJ85+B15HuZV72Odinlbfj1EFW7x9ztw38sK5qo7TA+mtDTrgFhUxtiYD7gfCjOSADcoYJ/F9e5V650TX5saVW14WCwMQHyKQAP5AFSOBtfLxyaYli/W6AAvXjOIRA8sFeQgIg1/D0HGaeMyZ7T35zh52o1YNVXQEAWUKP2Flh0dUbCCHKQPAgIvUvc5RP+1KbwpoxvP5/8+B65KcbUibK7dd2XnRNVHVcg+4IylCPTG5usmQDP+H/pgxf5NGUUdjJP88+wgL8QKRO2aiUzyW0icOCUI5yJRUeG0insI5UYACLIS5ahf7nCuBpsOL9xI0daI1w2E+CwvPlFu8ZTckhmhAYQBrO0AgtX0+38ejP21aFVfyH6tiIwVsNZrgpGfr9fsZT+GwN6fk7KkR8UQU5YGMg24NBxHm168vpd5rcN5hCc/p5esyz0VNafznSiUiCj/5YbgDgAtCaiqpD4Iq70BAEjm9PKdCrnyoKjT7T667zGIiY1CdXP6H5yZIce41J68NRY9twwTm79DJkJZztbu5cF9MfMqtKgH3TeXM/nx1zvzl2/GGbgw9Fm+P97unXl92izvc4mQ6U9k3K7yH70DD4PiFJJSlAx9yRTPU/Q9scs3d/APs+v9vhDZ+ugJ1QLldvi6iF5L9U42Fvfw9zwlx5tsSVAYzX7izq4M4iC5MJuRHwi8n6dzX+VDZvtSCiwNbh8pthgCRRBYp8mMjoUU+iwBBTkbTexBzLLOWtzaDywv4kfbBFEdv91g7fH8+OK7DBudvNSHIyxwunE3Do68umPGG5mx89tn+cqqK57cAfE+Dkjtv50P/uX8Wl/yyH/f9vipXWSfwZX778kBf2n1dv6wM8xkUEWeLFi2tlnG7tPS2JWHUOU473/IHI8WA32gp3N2DcRmOPN+2iOf+4TychUmSisr/r0eVy9boGQ/r/Zyak39vWJjmC4RQeW6N3pkDmmk8xGcjnM14nCFPKdl5ym+yZcTFppG2Bpy80Z5xPuz2D1eGLOaD4/jmAB34EShzdqPEpY4xxlhBWAEQJfx3SY4ZdhUU8wBe1f+1gOvxIFuLfVE0QQWYjvJad3e6UbmpJl3Mt5isFVHKWhOWJgjaX30j65sK/Vqu+qn7zELqAvzfE4qVQRDrNlfRtrgR8eTBGkpx/BjhMxRhPtiyfXSRWBiTtXbyshRH2z0i/dFEctzCw1t8HXXnQAXh7NA96iroFArtoEzZDI/Vo1AW0F0DJCEFhkMod/XYXSochC4lty5bTq5wrUegQwXjDqFQZyv3hd5r+HZeoAsbmzAcIVbTfiUgAIsZGaBQF4sOqDNrNXA4z2XGOffSbi4+LWRuZpKwvROCwBzn4gEujN4pk+gWkRld6Mu7CRn6IWJRoAFW3O3YiWRWdW6xWkvMAS7beUm0UFXTqBVGo/4ioJj4sRbw51urBtEULzsi+hlOYZVRd3PGcyW+aQQf4ZAMOG3aS8pl3SMxhvOFwPPzxDggdEN5oHowpmHxYaljimjSCCjiICuwKRvgb+5G+A54YCMkidi3kYB0MNrH4D2Og/NcoFcHNHiiiMIR/qFw7C/svHIYZEUzTzIms6t2fxaykoQQXaTAIJJBURsMkltxRzkfHjMKDkyfP3tBAYSAEvlAW17MO4zL9R8l37oNDuFZ1QEXKps21mScB2T/SHVeHZLleoHeIfU9FT4IiolhuauQmnBlCUCBEeEE4WAKo0STXc8I8RBJVb7PIASBEiqORqGJ7hB76JtlNqDIJT0oU1/EU/XhxvsJT2HgsgmERv9b6BqaDvZMExISTQtQoIHSPUIKs/q3OM6tzTAAYbJ6pD9LgPIA8hQm7l9APsAcdhc9n8BlohDIQJaV+xAPIYAiKZg8BPW7rXwg/M1RRnSmIhaRgJXS9kjMhJmnJBygyRo74QK7H7H/NWZ2GLptdUigwPoM5UAKNE1FeDoknPEHSBS8jMRcVocj7gnLKp5sAEQqo9bfdQPotppCJn5NTGX6vyce2owsQtMzE+Tg/jUqG57zJttzNHO6GpMT5i99BjiHbPEgNKvPr+xGHhNneyRCmOdzR/6SkngxSnyRYfB5mQS50zwsOdY7eZHXgQIt3f9NWcpVK6uoAbVu5F0AAFlH65i5P4/NQr5/GXpl+0w33UD95FjGRCRkUkJK2rZmm02tpszbA+mnn6cj8XDXGAY9dZSMYwMuhI1S2cR3MkeYERcMofKzzsZBkTOqG1QVR27H3zeCtiIOk/oVgoAPvgqej8GgwlNeZ4bMYB6K8xiYbEZibDP80QRvpQy+OatRFRzb/PkM58Yh8jT7K/h6pOLiixAq0yFxWRGSAEe+ckXex4ozKRAqL1oYEuEy5cVODIE+npujIfW8z0y+KwdZIgfSvAAeYx22XdQkP/Es+2QB+u0Z+z5dKKizH68N2X9y7bIb/j5h0tR1D4o8E8GIaj3dTIFuYorNqg4nA1pl7wNXRasJz7ASIPyFnYTdfLgfL7ivJ4e3iLSgTfuDbeKQJQ9Kqi+XnypacGz+UgqjpYEbX+T/Z6SZCZiToi71MgDdw2k5QY91EBeq/eyUsBg8ZU2+2QMCAJnCCi9ZEggODailJ/OgPYMVYHqztX8AFWsq4z4vz05Oft0kLivCasMAY4Rl3YbwDIdgQo4BMaJcQRRGqTMgAv0WndOtuBvUUKqjPGB+n4MA8ep+55MAHXP5WAAWgIi43ROpwbCI3aM6CCwn+pOVGkdB6shkQaCCEwwRQeekFcGPFXIekOdNGECCHcg/Z0QUpO/wXE2mU7Jk0nymF4+f8SYPiLAQVft3tPjKUNCzObdXxFaSOEhf2/3CVVh/msicPss+1/1aUj/+L9L/2l5jAcKbUANVReGIkJMhSVlhedErMAk1ZPLSRmj/TJjdziBark++Nuf5RadaMPcFG+tw9kOBDINdtc0y+iTPOCs6dom0EiJdBWIxmI+EebNfOHih7jHErNA8RaXMM57K4xTIccZ0jEWLeU8NBEhogOiKNX6ekiLlTXQTIOs+BMSKiLLowkPsZkT6HW2ynzMpnTI+uFhvrlhFt4PX8idpJ4BOlCIiUIgjHu6hQ/OHtDHneqAwMi2+v957iniNwrDoUUxgCpdBIt3ClEmG6InMMRZe37coP3I+hgJNumclKAjVHun5LXCVS+87mOAkuSoFUYlEgKkg93FQGGQqOffsO5PPzAnjC/Keo3ePUFHKrp+kL1o1z+8cmOcVtGCqj/Y+w/jzjP4cUd0ld/Gf6QPOcBTSEW1kt9voDhjJ2V6IQKgzxYh+aA7jtttwZeuce+8QWB13mFoQOIMOBNjIGk1HMP0TcrKExGTpkP8NOEkfif8aDH0TvuoOrzkhDmHeIj732o+Yb8+37+iaUx9IAvh+YDXsLX3LDA3DwPuGQ9C7BlQLv6Qqmjw6hhUNBquYfQF/oFUHZCuCdwIVviD8e0sKUSoIjp43dJQ8hXcx+I+ReVIYtR+D9On3MxgVjdodgRhpTEkiYQmYCip+/iE1PsMBnggAu342uongEVfDHg1S7h4Txm0VbSmV9pqPaSAILUWn0KX+moLiBwPhwh0yo7ZXPnMmojRzmLsHGvh+/3H5E5l/2zEnOklTymzEt58ig2jcpz8w3jeOIl3dlVjOlcIagjPhwxDYhMERH5oSd+kfse9ZSozrlXulYdFZspeQYUUTVksVmPskpUPUfaf6hIQfv1y0st5DOapMMRin8uFNs7hiyVfXpmn8Et13d80lv8rq2G2YIlFBxS5LDm1+KaJWb8HxPufcrn/J+Q8p6bzyzif99CA4X0HSOA0TlL4ChQEloTWdjbGVO9DfOEiyg2wLfv07Zg1PiwgR/Q3z9IALQBVwTmAObNOdF6eeykgHNLCc7pYyGMMpFPIVH4cBIZjUYScfIYyVmGYzw83TPqU0Tm59CIkWANwHxIlE6Y/Z4KHHd/ceTFth8yB4VMuKhzF/qfmlHX61anRS/phhRQfCqo0nuUdUh46/rp/vc8DH/2UbzNnBA+qP9+hRA3dH9SVX8EIRlSxATQFfBJi/kg28jnJtYH0MH2HS9caZDD9DKez7jWbRiNF9ZhPsdslPOU/k6IYWkkMO2ZATeCo3DJ+g2EKz0nubOj4LGMmreaQBBXoJzzfOI6DDbKD7wYFEBPiIKJJiRAxgfB/bsRPuN+D7URPiAopT6YoYx0iJ8REEd9aG5w0kkN/2qF69JBBR9EQwJ8KaDdyH7NwpIkMONCVwpWkC8Y6vZBhBOrHVOReg3dNdw+pHN//T1wV0OLv7Wc2W29H2seC+eHs5se9w8/nZN/2kdcWmsoipwxGUsLvAS+MxDtFS0gqjQx+Ajx690n+w3iyscxlEzkSlh3DPeSln1KzxGk5MegptKSaSX8lnmw0KTIYAPiLj8V+qOIRAbssJ6UISG1cCk5XOzExeQQ8+vilSnfcW/UdMGahC4PQh10M7GqiummYrhiQpwzoSoYOCagJDBU/7XIZSRClCSiPbbUNaF1OeKS6kE+omEsQG8/VweDVIFU8SF6HHGUpbyG9hbwU55YQAakDyg8WNyEHSogvxyOOGvvR/v0BgI0LiATh1qstsIOIGWfniAqxn8xBfoS+9jWaQWn+k2+tG3H3BV5CoqIysiNJ7B+yFfxKu0h/Tb+qHKRmfSc3m5fKh11BVkJc0URqy8Rql01RRZwwuU0SnfiYgIT26iMokjt/xHcO8YAuzMlheYTF9NZTLIYIC4fC1P0MUE1YbjrFX8NJh4umZNfKl0+k1zHbQn/oKYz1K5Cdvo1aeQoCyuc29raIvOerlMG/ubn/bNAIiy4Ji/1DPJgN/dN7bIwpwYiONXGIAtErgHrBdlXojqiwz93C+oe4GfDTivP7KInXRiVg8fzf9Q+E1ERHWCGFGzc2WaCnLAO3BMZdehF1/+GKghVKFYco5X5DN2KxAF1JDDJEZSfnFUvC2cCpJVT7R6/37Q6HVM31ycg7SEph9e5JiyG1+AxlJNA5tpRtX3nbG0jwok1tdZT5RicMOQZWVD8h3Bp4d/CzyegI7shU9z/0vbKPOi9ToabjJZarGZzzqGqEY8stmrcJszCT5c8VFebUfXpYdcz9EBps2Ior1o6ihPLFExwFyLEqqNiGXv7hFImCDj0DuwilwSZThhhgzGh7tAdkrFJ9E0XbkHvECs6/JYJhghLx3HXOaiacmIDI1T6dwm1u8TV6aipwWVydX9BxW0/oQwGrfabHbDPwYj8bogq9GfW3KorE2GrmZ5DswLhxsRqDfKkJUkg5Sg0zsiAC7IKtNl75IP1p64TCGo7l8p/uSuDdPRUYMBsm0/2XFMc400SNpNfS99r4jzZuoiej+efcqM2O068R0udtR3uSG85YyLW4Egk4R9mdsZ3RfRKfvc0m/RjkvO8RnbLVbXgMGG5BFZ2aEnKR8JNtzb2WjOgRQMkAOp0U/jUv9VEDUQYIIm4kDUhtE/MEU3fp4NxtD9ZO5+L18luXYHcYfSPKA7PmyA6JCrjkAqPNqS9fH5RDLvkHjczKHLUsvudwqGiEoPzqrMClUo5sb7PbkEHI8zmUfg7rLn/Za9DQZHElRfpJEqBQXFNFj1UYjk+JF9T6nupO4QwTHvuyle0XQ2zZFSTxKf2EDYreQj3TfDhDki1/jadZuBNBBqIAKDJBQ60CPabNsI/uHuMnJw9q/gEy+H5mxX7UIPqeOj74VKJNG/7tTu2E8ofVfU8NzjkHPdHWVbf1qLsMtEOA7NVjUo2+tozfwyCIrG2omS6tCOSP1HSJPsJ7hKTfwQXO0+q8HtgGbJOEZ0HdVetucUPvTRmZReZyeXLl2p9Wbv4jPpOA0gDzS8MSA2HXtyyd9sNRUod4nn4ZTd0sRtbnQTIhmMRUINZNzaiUQZ48HpxFQtZbmCl9shiAle23kwg+nAINwg4xByooLhEHqS31+FwoDnjLClXodONp79gg8uFFNQg6RB3FC0v9t/blP/S0kADARalVRiPqV7v9mJWbAPhrM4gyID8elgMneUOeI8QV1afRWZCbYQc54dzOYLcPpyf9lKMxTgxQgwc0wh9D1cUeyk9/e7u2IKOQIBgMxnSBTBIk0jWhHNeayTqFxV1oMRqw7CgsklNs589K6BtiadhJqd9ArxH8Mlfmx3fgM4euwwFn/UeXSYwxVHOD/xp154lPxzsGzWc+ueyGbMqE0htqfLAJt+PROPAeMSbfjqyaLxKNRhl2bCJLqM0SErPkjRBmYACJXBIyBeVBci8lHCQOacU00t3t5uW7qHqxmflMcVWHAeIyYaTDNkoJj0jqPGW0Un/GL1l2AnJiU2zLvpZgn2r8nnR3cDI1s8m4q3eSQKZ4UdSkk63/pZEUVrNN8KlJb2Zm19bwlGbkic+uk+YmjFqimniE6okDDGIPmE5OnRRL9sh4ztCSR7kAPEwDTJsItcBzkDHK4Ybp0ELyN4dPgEghPutYlvcokwCRKIj1vn8hLUkuJsaY8aMZCBB6W3ZQE9GbwewTf9AkomCOwjoqzTQusiHLTNl1YUvz1hUqnKbtd1WWbL5LbSvFCU9Yk4lEA7uUHx4aZqvb6hOQS8ScS4DwiVnZQy9gSvaTwCXVTfoTattEzS5w4QyPn9Ybc/sDcK7Ijap9g0X83JTfRLUBDRFbAI1aVBVow2Swjq4BVD0EUUDLK4foNwyQ03wHx0CgO5B+GL9s/y3f8f5m+ecz8MPOp1izLMfPLkV3qma5s890mIMiQjtrWt9Pl7R2raWAxpzPWXM2Otxm0s3NbV4zrSZmz2xzO2V76OjJs2H13nrg75cwJI1BW0YYpXMBLwxAkkkqGstAbQ3LIYQ1DTYCPo9/8BYvT7f+3UfzK/iCjhllqk9McY1eoC8+X+BKVELaIVleG7Qd5XqTyGToachT8I53TjNynDI65ey4Iyz4dCP+SfW13rfnCOfVVOd2n/tM19HyofBkp8Ok7m58Dv+6Xnbk3k3SPXpx/3tfn98RN76nh9+Z9kcQb/wwez+7/80Rdfo9qolhwAiDbP/NU/TpiJcDLRl5h2SstYV6CcgZAffGxhB3TZP4ww64foBnPXGrJ9qpcE5loDDl/X6psnwBF5P9r16ma467ghEIP/vjnjdt1EW2DXER+T345Lu5/JJ9zCT1QzWeLxZKPz8f1sqMhdoHB+wh9TDx1T+zd08vXNHrifH5MR+dfo+vj+xv5Pyd+I85s+G/4jp/k39/vSJn/8dtU7MBUJBgIglUFHmnSOa+MEkeseExHLdfwVUDACBF0TU+Dn/PzB7zRQ8xQzgiown9OwomMUQTKQB8RhkDtmfBVU2hTEKIN1xBkB7ZzHqEof3lLPb8ZnQ4D3Qy5zz0s6SuxokZ3O/5M7Y6WJgzM7hnMzU/LbsZUkDK52x/MzK6n2zuALm9vbnnnnjcjH+v2boVhSacDR/Y5G3Q8ZeyifD2ebSYT6XOD8SP/f3+HKbevjd606UsemQ3zAERaDSx8EkumBpIRiYjabay5qsLzg31/bJjxnorr9gLqWICSCobQRGgYmh5l/H83GOoGapNsFOf4X1E3IqyBmfXTCAiME7uxUeoCpufpN11NDLua9vhhfIEPHVO969kMAHFGDuvA9Obbs21E8VWzbTVbVqsUMaS2KNrZtLNtMYrYaZbNsxbBS5dvcp0B12hrcuR227Twl1VB5GG9trXqFHE6PFKchxQYBoiI+hYg6ZgSZLB8YdL0FBpJBvELQbQNSCGCI0U8Ed4dkCxpELhyjvpzxyW4a8gXg8gIJuhAEzx3S9BDbwaWP9PYpRgn2vK/BucetQdHTnkS4HWjK4HVElkguaikO2PjwX87mVNyxpmBlmxdA6iKcfVJrFTUMVxFS8H8gnkSAgJzwQm1trfPNc2brXbA5gfisUOYqgPcFLc/ZgRBd+t4mPu+CeOTghDZiHk+8mC5KmlUUdgfIgWM9szy74F0zkiliIijqFh0IqDsQ9wOo+q7twU18iHwiD5h2Y3Di9o4TRYtte+9y06srB0wgtw8XDSZJ218Ro7Ne/XwOz3jk4ojRA1fdKor9WNvDrjeCgrt5+X7ytZ7A+MAKPJsY5b8xcYjWEFU5CApytdcbyoh731qrucU8AZwNap7I6ExPdAue4Ua5gALiEqe12NivEDnU7bBqupiE3A2NlqjiOpASpFfTCsOT2rRyRLRNEwPiLISH394KgWlQbQKgTm4PcxLVpHaTI87a8YfRuM+EB1KHIX/LB8iQ6iMiSNKJzCRByDxlsVM5oQKEEddWhZL1O9iVfRUFxEQM8Vq7FCHtg+X4VNfepyOEOYBpEqA+e6DmG+KqMnlCBaP5DlnGClOebNGVi8QqQaJEaduubYwS7H0EVKl4x7enrCo0cno5NTDz7NuLvo+Vdfg1RJ+BFeObcGqQ7hrrcqZniubZFFHuwBocBdLDet/RBm5nM+FvgUBbNAaycETvhIXGWHuTY7TmDIt3rkoDsM7hpmUr6ugM9Byo4YOTHfBMbnB4MFrwLbkOIXp1AywmDzfRylLDtrS4WLcHNjtuFS+pkV6sZeHpq7I7zosa2R/KMqJ7YKiMyQ8n3XjmG19eIDYbYLOW8Cl+t9rdXN/VIxc0xckbQJg1gsc8qgbxFT1HNvu12IeS5SalFKCvYgwOJjiPBZ+HsG5gXWw5OjTm1iCDrERA1ICCaWDHA+yNfhgtnQo+DIg2v5BIIGEkJGipDzYfe2gUKs2gPAdSbciOhuGNmJVreDt+7eo7x3J6c8qhUBAHcIgaEUxjyE95B0PqFyp237CALmyoSqw75LV2Qwt0MWfW11dWXZYk4Yj1ZUHjFrh0rE4Y2IIiN4b+KPHug4JpnPZ3MNgx11dw5LYQPE989OO0YFSnkSiJoRYes/PgU+GXvRfbdGlGvfgqSKon0Q2gpZh1DpiDRFFB4OGk30g/NjympL2YvssifVqXtGin0RZF7arw58Ho49r8El7ZQBgdGeOEhedpWLc7lWpi7nIaYHLE9BoQJDTh25EgAi2y41K6gC9wODJSilpIFoorzFNIAIbMLDuaoVNI8RXfuGfQgzJunKdqmmbO+1US8Mt3pK3cFSb+Gr48YFRO4PBjpzqc3E2g15JkVTrHiZhcTginiIoeJREA5IrvAHtgh+EFDywQTMHvejMKIeK8pD0IOrlYOBoNgnjCp6s17nOk4d04jRRl7LTZskMpYtp1s/EqGTYWjgRpyHSY8eRAnXWk5hFBcmgbI3/F4ociDDa27Y1JXm3u6+njW7uWXYvAe10g8uZNbq7bHhUudx7tmna6Hq9vJcCxwAKMzpe2d+ndwcBA5gfcWymxqWbi6mLDkiiYiPMUWkigVEDuZOWhMwvEPsJ2rzFQR0IgbmZgWLbcWlrvhpYw7oFwKtuc2hW3Tdoclq4BwCvw9u29MebY849bGr8WzrznyvaiI6441RKEMHELa+y4LIvtyQzHQy4aTjYK4wHy/GFHY+QPqy10RU6IqPcz5hRU3OurDsQBNguTHFXNTc2KNMT7/LW02p8RE2PKpUQJCQMe9533U50gseywsnJAXfbnAeRkAsDZyl4i6wV7uBXkoyGKxn2gMt616zs89OmZvA0mzBLbGAXOKCe4j1FFB9oEeO7Q4QOCQLIXcwsHDPxImKKfJSJzMGMClAOpSBBsdV6G4dkF3FgJoh6iEoh7YiiXgZsCnT3pxxtd5Mhyl8itTcm0L2QXQMwONbKJXfR0n0krbUY9ns2XoZNj5TI/JJ3491Z8g7wTj0aQoOSL8RIIaduJiJUbm3NJ1H7hIh94mZRPyNUcpnT5rrRjTqWvJ8pxbHNqmObc1xKPuP4B84Ivp48aQ9wzY+rW9+hfUUckMcSQ9L39UHeKQ61mm+aVCBZx4ILI8E2KIpeVYDBwIE3sFg02M6O3hqp1AR8RUQeSHNsS6WqdzXkw7iD123dcBg4r8DEPnq6j1JFANS5TeNYodE7ON0U3yTDmEIdGNq5xmVDbWnQrszIt0nLd7wyraWFjBi4463wG89zAzOT0IPh3cw4a03vD1m4N+tRB1vwUb+AVRsPXk2NA4MC90SQSQGhwwzinNWgmTAqflvpuUu4g8VqgncCuGKrYjtGw9NTMNijYrmcw5onNFsLaPWpzI2m0nW2c0mwhZGO0w5vbDexq2Vh1QPc4x4SCTBR9efOIybpKTB4vg8G1riTuOZ6O2yz5t1YPoGJ7RoUeG4FDoBAdSAiX33Nl7cZeo5xEeiCqJqQD242IWBQpih1EFH8IIAV32KVMpxkq9Zd3A0igpeAoBh6Yil3Ox1Zo6QqZGQZx6icmBQ3y78aFfGpyXAAWCTwXAo1uU8ZT7nYQviCJqwUCREUxiBUgoJmpvPc1vhx14amnv5LFuyHRYy9UB5Pm+921ivbno1IS4mp8bCTENDmyh690Q3IooMg5x6KHnZ18GccEOqDxB+Wo88NBV6ZfKYm7uatonAOADwGrIq4W9GbIgU8Btk9m7kbe99JLkNrNtgRsRQAe0Fvc2sBl1r1mUqTzNpBiJwkOwmpf2QTHhtwnm9VCQ692bhs8Fk8/Xt9daV59bt8bxcJN1ObT5gy2wd9vDHvwaG/BSp4EMs4CIGQjCJNKKnvNd3KMRqXq1kTWF5UKgLvcpQfkQsQ4gEYbosVM6eaC0T85a8J52sb27t3ii1xbkDbvZymdK8PoAd7fQXpPWfcEAJEDmCCPmIIFeUrP51rYPJtQ8B3Ep295frfHms+cFFoQATOAddyUE0qVrzBXYnEVQ5l4ALWaEliixxazsYmwVnvx8rrYxDnzW07ExgPG/wNVd3MrQPDEG2zQChaAIBvDeJ8PHg1yD26b/h8Wn55wWtHiZwqHRAUB9sAMc/W5eqa6o+Hw2vOcfOCzXL7zQOumc+QMewtmHuFr9Vqg+Aiou6EFV9RCREExcj2Vr1lUb6nkDzcyMqOVJRTACo+SDRr56O8uDAgfAgkiuDUp28DWOKffTwWNvsq+9IDvATiIXg3iqHUG0ABLWaTPJ80uNGKA8WPOoeEUTmJXtV4e/5/ToPKwXn6U4yRHJFyrpQSB5CIcBkbBcvsqCOYHNygDYy0rz00vPNHjvb7o6wBVAwNMgXiXM4nOqmpBV2CBJCSMjGQhJG2zNrZsbZtMPSWgfgZBREir5VgIBrq5EItD31aydHJiGurnyiWLlcfFtoc/hV0F6ioKWCAAdQTv2/ZrXYHcU6b71vrA9+J2FQ8QQ4iqI6S5uTCTj0U6+a+Hq+xc54++y3WA56ICdnMOi587C/Wp9ok5RVDqKC9RRdvGOZGQgEuWQbMKjJ665uqCWr1hFgNeaDAtu7cOcdPku1WsMcLIsHKkOyAlsCe3Cmp8i7fa/lak428WGn0GCq2HAuvNgXDGmBCiAopzE3IcaFC4m+6D1EAFqJFLATDfY5E1MUEda3LtIdtIJkYAiNz0a+L+qhrCDPZRU7xEQe8DSPT5O1QzABydm5H0kJI2ZYGQABeVBt7TvMIEHmID5LxkbQJEqgmaGWpuX71OrZNvRpayG0ED8gISKiJ1BDuF7DjckFKz84dXt0hBQwjzXnszdEnDdb5OMelwOWfM9hmtfAqo4nRul9+NBI+6McIdrkDnDI5vZABdkB7FMehyNaGirYBRc9tN47iBmAojsXjSnn8+y25k03nwwuCCq9MFRtBTmKCUDXnEPM34o5det6aYFcgUe9fDi+/LWCIfEjqGXFIoawRFLniKJp1R404O72KguQ1cpGICj9wbslmPRxFbq+b8+U9/fCLq/Rw3E/DXTzx3sErs55sC+dbgyNL1a3q3jnzjBo6NK794lti4QMkTciX7nIApoEFQDue+7jzmaF+l5gByMCBCvFklwy2ZTocLU4aXistGl3iDf53Qg7gYK95PedevAckbaB4pOGKoriJ5QrXAcCYPzavpmOPWo3fU5Mi942IOJrRwnJX3h7FBeyAKlbQDOeDKcgMIIL5CbEQATo36VcnPQN+Utbz35bG3axiK+b+gR5AUXk8JywsJDEMgg59HryelMme+9U265xOT0nJw8eF08X4LBRS5gR1OK1EFXB2UfgXNBLdY8luYJAgvrzLOdaK0PxqPrCsUmRcv0PY4zHESps+ieiz15RPUqOWx60Ooex1DCvkTEz9JTYtVguFQ71RQXmz72d3bvz7Mi/YkhbKkNqAAJMki/ENCoyiXFNxL28kxOyEISgQmyZtcQkhXEJCVqg7uOTJEzkhiEagALQac0FjTawAC7RSYuXxhVFf0Ou+BFB2ZokDSNiBrbIdwhctQbRupC4sxJOi3FzvMm2IhGrqoTjICwYfXKlE3KuGWw3ok8h2MCQJW4ygeqKu2HQfa4xe/J+fY6dhFfP6kRR4VKJMx1PwZSSTHVQInaju1KvzSVq1WsoSSPikkAIa7t0aZbuwb3cObW0un2VQJFIpIMIii3pyajVajZXGJbUUtqcySpscxEnLjGzVGq2MrGGTMa1kba2eyKrc78IIwKU/Mzs3aSmKBsYxtpjY2DbZFV8BxzNrceFHHS0cReGPCBuQ1SCCJqRS2lYxjTh2gVAiMjBBFtY0gqC4L+GlEFsmkrWtWxuJZA0Nb04sogtQjtRSgC6Fy4g6ly5kXqKLixF0IIAF2KFzHBFplVo+HcqAXbNo6R3pVhgHhfK6ZdlMo0u0kbZu4cFiRMDijbJm1kSQkHVcXrAkEhJckQLDhjySPiw1iVVvnYEbMXCSqC4Ai/JyaOeKDVqhsBtNjbGk8ZpsZqMxs2ZqsYzNZmZsNZjY2Y2WzGbMVmZa22bRtsZWk2ZbG2rIbGbItknyVUrVYswcwbU41JTjSW1OMlNyzIUWEBIMjIrCMB3zY3d6XDq4w76IZcGXexoT8L1JGCkiQim6CKpmLZBsURmhGq1tKVbjBm2isxUrJpWbGZDBiGMaN6vFSElSOkQWHfryguqyD1qmQteahaSEhAgkpBUbp4I1bUpuz2aWGLR702K0PpKxgd2F4vICpsHKXTzTG3OVRLQUBdYZYhsZ22tzsiIFSCgmzG4kzN3GQBwXhu5qCqjNd162oVUdt9GzUqiDwYwb21EcoboDpRmoqo5S9mr0QMksReSaZlIBgZJsVNfAVhaCz0b4WNIMQchSgwgNmD6CusQAlM0SWJJjRqmIV0k8JDIBWyrWBQX5TyY2scTcLGtCXNrYU4sFWxlhxd1mdLWZrtRaKCjG7dtYkIJIkkVFmZbaaapmrZllMYttGzNttba1lm0VstGWxSGMyprbNmNltNptsbLZDMaatFmzFmYhW02bG2VfZEVkygOaUBmNbZcHHIOScW2TbaY0sYkgu222QuG1XsGCPwnMTYAFAkUEYEUEFhBCRGCuLHVOwPLvnYh4990grO+i4ePY48eKAeIzwoEIJYpfsaIYI5kJaNaarYCMYVU7QCNaBJEtBwaQtZQ1fEQr3m+1t2W6eRy9c50FVvTwMxKXce1zF6h4dwhrDodIehslz7OdZd8CsJ9BL1JBtgsFbWIa6INYHyBWoIEsJJAKEyDg0jrs0gK4clcnMN+KLm8ECSVqFsme6SN5CILJBJBqhGNxy448iME1JUNPvJV4sRrh0VilChZIUgkLtIASZkwyUC2QlMPMnj24pS611V7eXZP0GXexjQp0jg8lKUQVZJAkkISe9Qq2qiNoIbLlc4hBmqpXK0rmhcaqcuGM1jZZrZbLMMzWsxsxrGmhEhGMhzk4LLY2dats2IUhm/zVMIqDpYApgnJL/FaoiCg6RD1ney8UZzwUEJIyxc3bI2E8vgFUdhJdLLFHKZPDh7LQC25nBgEoiwN7pJ1IMiaRj18hb1bpIcEhDYDabSBsAEPla7qBRLwckRPuIIOpBXJTAMAtQiLrYFp+JBCEnIB6wXEsMF5vu5jzGknU6EicpJTsvJeIDDKys2msYhids1nCSSQnNFA5dimJWJNpNzAW1kun2kusRDbPFFgw6WdLkc0uiKK/IUFq01EHggUe8CB9zzMwK0CDbkg0SSBUCvjz277XfveTl2Y1rNYsDZmNm1NFmbYa2bU2ZmZjRrMtjNa1KxmbI2WppY1QW1ZmxCtptW2xtrbLa+9Eq5igcTc0lUcwqrmKuWnNLcWMIrMsa1WbC7ZBOyvn9L3B04p5dRQSNKGNpjXQAKWws1RDjG5LGZqa0JCEgSDEhGIaF8XTIY1ZYhiO6pXZnLKR01D4tKe3t3CV8YXouR1q2bNjY21pljba2y1QGh1Ip4LIGYYLkKFAHU1odJzuaMVzpacaowQrZW5uXQtwdBtQ8vkmwVtaSZMEliUgebaCyNAm3MIBCT7KUlfvQraZCBCcZU2tWDVaKT3aNYGAEJeT3G5nY2KLY4DbK3Bg3SrA7hwYmo0+UkwZyDlZ0rNJO8xdqo4tklkIMKFHggBKBsw2NyjUhQqK333pVFdUM30rGrZYDEN7OmwuoQ1EGORBhq5NSzYsakkxWCYozDXvMgSIsAAFmQgTMgFWRubnkJHZpSrXA6d6jiTBNAwTSVm2ZjLMzbNZrGaq2W0ZbTDRmmGxpo2xrNaxrWrI1s1jWbbM2GzY2bGbFI1qlZ9ZFXGom0SGwKuWpA5kpxOBmtmzDWNjM0bbJ9r8z7nX5td/xvKPhHtlx0ZyUfYbgv4TSvY2bok4ucTbdzkwbpdgAF01xdT0iWDMh7MtA2MyPwLiRFDWKoJCKHW0JyYD6E133OpYwgAczQibR8+C1hsQh6+gdg94XWQoZnkoqiq1yHMaIhXngyimNAemsHAeD9hCSaSwL5gVGKAL0aKwUEeCIHsgpYQY80Png8FkAF2OygyRT3PEH61NTnrrW547UAQVDoMzQMkitPEfXKLwQUBN4IHb0UNGAibGReZkN6h46KvUACkDNiKA9RCR7k5i9ZHMUOZqca4V+Rx0+fqjnYu+CxwJzWQ+Rcn3p8IcxTEDr8ad3Tg1yyDE9uBEUeYhgZzevyIKpTm4Pg5rBtBkAQN4D1FA+hBicqT8VxGRU92VHVqfdcmXZw/Gz4qRPQkDKGsUEQOCoceyhmgGhFVB6nwxeqmF6l7mPRoqItrtAnYooIDoKqPFA+CCCKWIGsRMw4iD1ekfJHMg3Jcj2yucb6+q2IdZF2DSCqjviFAZiKoCb+n0dhg08m2mnFkwLwksaETJ5PeSiNevvGd35ZBypuhEn6IILJn3182etXxyXfGye1qbdNDEXDEfZFAE37x3I2v8uHh/Mqe+7pksbaGvGunehiiyp2V0G3O+PYfZ9oiCqiJwecRFBfPFmyZhx194udYhwdxA5zVQsmlRLbgoCAga+XY7JoZJsQBDiAgpzOoocEDD4NLnr42hfMslQ3h7PZ6xcULIgESDSPGAvBnuuzPBQc+aD2Ojqs+en5DLcnBOA6ryfWSw+uPWxyY1CdC0NDaQY6nB2/T4vfwElb0qqVQl9IBZKIw9CuIox6OSwLjcStc8Wzw+te2Pf1PujYug8i3W1+uuvWMnU3C/zC8sjv5HHozA3FjW/Rk3MUXQckALEHbj12XdvJT1fgsI9QQTHuhXqAOYgmkAVyJA1PoNOvjjswV98W69iOGBF/N7M3Vd+cnsOC3LFyqMgqYgGMWfle8Gr+k8CIcwui3VkjBsJsEFiugfSsvPZBjkRR/+YoKyTKaytJDiPgvTOT8A///////////////+wPpPoAGj6crL49qO3AABoF820gwAACgKLIBgBozVOqcA6S2gYMlWCmBXtnMHtuG2VaOnA6SwCDI9ueh4Guc6PbmVBF7da07QoQjbLU+AL7NB6sy+ri7u7e+pwAAAAej21yiwOxtZWSPtXc59ddK9aAUAAUoG2AKAFF9jJ6AHoOjewfQAAAPeu4d2AAAAAKFegOmgABj6YA9NFrpWk9lhrrA6lZrUnVa60m2xvu4UcSSZZ65DmplG1qtZd2653KXYKpTLZFvbe4d2TjTZyODo9uD0rwPecB3QndVC4OsOXsO6C72tdAnbZqiuMkIqQABGgAgBAAmU80BMmjABMACagkiDIQCEooABoAAAAAAAAACKTCCkpoTJTQZAZAAAGjQAGIAyaGgFJKkCNE0yaU9SPU0GmgDQZAyNAAAAAaAiSE0BAmmqBJqG1AepoAANqAADQAACJQmgExNEUqfqn+VPSJnlDUyekMygwaI0yGjGgmmmmbRJ5fh5gPJixebLPn06dWnd3Mm67dVLl5c+62D2TuW8vmpclFHmWTWod7v908WWYmr8EWTUkOpaUCCr7iQ3S/gjo+Py9PRon3/hRDpiYkFRT6kBzSCQiVIL4gFnCc6bxFBhlqVIiCO2CK9WAIiSwAvuI2llr3iHJV0vtEcBggUlumGLDyxCqJLLmoMQ+WsY5Z0HwnfCl82Ay6s5H41mx9njt7Xu2Vfm1B9tfc/2aVE9vP92SQfdSDP0dzwXjzdvMMwz/k+shP8Kq/gczdk4vudjQTmZBz480Ty8QcvGSmGc3CY0/Ul6x8jJMl7PXA5fxslcL4QJx7GxtxzuqZnXFE5gLwDnqEdlc3ZmKIGtlaTtmIqYBUWS2uR8UAkJD9tBefTGTExecj+jEMtvUPnGgSdBnt7QhduRHSbfBOahlMpjFQGR0EfglKo6dpQ9IzvysOs+LlJ3ulbjI07L13Ifc/B+Dwn5KHcdj/Rvfo8k0u1nSB3dt8ZtmjIogYQNmTWQehXwG5zDh+Ac98u71S2cqyoc6BEeQ53PpP43ky6kE68ERzQDVAFvgqKQI4tZqIg7lcRJZy/eg1TAoAfEfwPBWT8/6qm7JhKx1CSOinWP9zI5rX6Qp/w/fR7LpDnFNEmEV900Iik/6REOZowK6cplyFfUi5Y5posXhx1GOXgsvNE0WLL6/B280nAU1XVlWfHih4PJr/VeVwUMW79lDqKHrUMs+k6nf8mNQ2d+10mnHLAGR/qzmT0u/FAenDX2tzoQtyZsn0oQP6sHQO9VvfGRJb87/7lD4Y/8qHvlFmRh+lDwfz++SkTH6egoZUlUPjt/r17mLsqFcXT8ER1Nnm62v/0neUOLsf5eeXP4N4/48ahzu53fX4Opn9/u8NHB+RPuKFH/YwH8SZ+6j+4BkuURVwifUgQjBYh/IWPniBf4/AHB+juNEreoZbb4UF4ujGBAAKoCipSnjxMpPv2MzGJjuj6IsvAIfggiodZb3ZHVq2hlipqw5e0L90kATvERcREmb2A+iOaKSybQL6N64oLBEO05NNLQjtZutgvE9NHOK0MAFBFibgnd2twNpq997Apk9Q4h3Fka5gj2xffTZbNptDajZsLbaNvxyu1ts22p767bW0bBtVsWaeNeMuxOyHjFfJoVX2WcHaR1RY2n1o5q6uLA56DlZONkhHULOJ9DrSA7u7meCx1rppflQ7FTEYiDNzihoeBUcy5+m1ErDBZOHBv001ub8Wuq6OiEVYEDzEHMieZIB5rmY55ngxfCRI1/hDnmnJe8jqFdzbuVDuUxeqxKeNTOAqDaABkk9ELluHd8DRPrDY1x9dU232PBY8ii6kETskBST0XODU3fRXW1F9OonNu0OyfPjoaSUW2Gc3vJl0CBLlcurDMmVuF6Jv5cUFo8Ph+LqTzWqtWWyUlmiy1mUTaX9ZEoraVSsQYKUpWam0UE1qg2rLQlZpJFdq7SjaCqFtUprKQc0LrKVLaDZCiNjNmIDWjLKog2olLZ2HLAKptSlbRKWZGyG1KJNkBMaKWENVNpTTNNCkmoqtJSWjJWlJalbSs1S5YhVNpUrtKpW1FA6zNSHZBVtFVbDNUKVk7KitJTRWapLM1lq1LTbFSssxqNGqozLMrak2KYmoKtpSbM1VsLM1lLWW02NqtoQbFPLKUvTeelKum97y6iOCAhrKnGjvAsYARWKJh+uasApXWU/RiT8tJ691UR8dIqfTUr1WUEZQrIKEmrSiKvjoUU7UpTNE21YhsrY2VQpskdeW6RLwsQuwoOWI9NFVT2NRUe7E8pguxSr7aA/DSEBsRMQRUkhEhE1lhINrVomqVskG2EFF3mvwRh+1u5rml6b7lXJ37+2LQOIGDBp8r4fSIgul0YirEDkqPK0knjKdum1Nhta8reLPMhxKAw4IayGiQW46igL3Uwm9YRVGDQgC/Tyx3DoY7x6dNEsVoCwKLEsvo0LhcwwjyUbmA2ie1bpoMWOU4Tg1ddhyGRku0QdMzbGAAVkU+UvD4UIWNOsX2uQWPrt4+bxgYuIjcQQ7luXABRgIYINwKWQAcnLQ5HCjSyMKp6KUJHQEDGabnVzKyVs2ClTRAmkOUa5vcmzR01JCQcrnTAKx6bNEMBC8h1yXpQyVWRuuDiaR4Xw68Cq9qyNtqqLYRsW2sqpsSq2SVYZLVpWkwqrWSbU1gqtWVbJRWZWsUtqTZTMbJU2JMMLNJZlbBsLE0hZrMC2JY0sxrW0RtZipYyxjTGwTWKs0WaiNkZlNpppbQK22bCyUWKK0hWqStqJW1VsNatqDZWs2NW22q1jbRpmVpg2m0tiG2tTaW2tNqiVjLWawzIVZlLNRrGygNmWGtLGKBixGW+2tKo2RQ3aujt2BtpoNqKDrW12qpXd0XMVdrKyilYyB2ii7QqpslW0bAzMWG0hTRctVRtWLBm2LYzUrTbMTW0s0I2jasZMYtppYfl6Xv5XksxnpPjivhbYHh2aZM+fOZmAqELACrAwBjL3KoxqJXYmXTkzVJmqVScsl2pSrVoqTUZVCG1VmlKpdhA6dwRHZVM1ES7Unam1TsQqzEiWOU2s2ZmmtKi2kzLRmppFkaVGmNis0s1JLG0YxrNDB17e7Qp4+3R2bCQbN4G1ooINYqLpsiPQ2SlaanDrqwxtjNtd3PLw8deDN4yyxmHXl5UqWqh3id5Tk1XcWvFx3jpsxAadDISFcdgaUkt/R12BfBU6a7wVUaFAXjGCl0M7UadoH2T73PRoiItcc8BkugTsWOleekHbOVTOHW99mVAFRsLMQJ1g6TTFaNIxjB2dMRAbIggAUdG0kks4poAkmDS9Kdp032ti0EcPNpNmhRB8wQ7hUVPPKZ6kBJIdTDwHTiEMQBD3ln4lgbjqmwL2s1DEt+fSg1sCHPRpB3SZoElWWdIKpZsL5wtQUdjl57ljspEBcgFJNwO4NUc4cR2Tc8Na5pfyOr2lPEN0sQkLh7WiBS4phkZHBwfKXnozSKtqWsjVsaa2LNo2Gm2stNjTLWltVrZrMzRtsGNZlmtWjNGRraLGltLaizTaM01bbaaaaKlk2Ns0zSzVGahLNlgQ2qq2DGqtkbS2RNbaqzNLbNsMZs31qjZEk5pdoBG0SrmSUMaFLMjMJXYUqcwqp0cxbTaSVmlUMYpIkSMIrBfeB31LuIcj8tt1zoZ8nl5+VGVhmLKmaxmsw1mxmtakLWbY2w1ZJpQszNJk0NGjMsZTM2kIIOnA+hmiB8EykkbgeyLuEERlQg2iYE8Je6i3XKtAxAhXjYIC0qKuihnSWpKuURnVqsFUaqwABaDOezSBzaXMcCNEEQwHnyaJFVGIw00gElGSZZFspN5nanbTm9GV0oe4c8+L1GLBtgo9CcZNHbI6VYd0TcCHDtDtStmgAVwgeJYSRZAIqsUcuRYurKygsKhF/W+7ykazCEAlsS7AfUv0SioM70L8HkboDD72gO3wwsrRYBkFhLe/yU6pjSmU1jB9KVMbSDoASd6SOPBzVDj00AuApnCXPkcigIKEIA5WgNUlMurtAmwt0VsaHuDeFNpKZGsjFmiKxTRVZhTW22MZtNhFbWZYZErDZpmppq1q2o1FmiZYbasy1lpaGKpZrba1sWZW0yaGTM0qLVo1htArDFNmtmzQzDbDCpZqWYobWNsGsa2rKsxTDVFMZeduerJkcYrGDm5sZvpd0mKokFkVAWSMkVtVmzRmipazYFtVUbLWkTGrTW2xZo2JqaoJIRJFZF1cO5cvGNyiYgCo521+bXzrY6LU0L4YCqn4QA1yUchxe2wbQ2tZNszIqsbTYzGvHddRQNX9iSQdkF/Tj04H6WCuooJffB9Lc3MO7inLMqCjxEp07CgLtQGuKRL72eHL3em1HrgndEmzgUBuN8HQKI0mau8dtdw5AQ8O62HB4lphLVUtDZyB0FC7kJIh5ucL0dIO/eeOie3t20h8xynsHsEN2ar4Y94fB505A9znALQoFLg0S/Dc6IBv1wh0WebulBVyKI42URQeOb+6cpg5g8+DQq2CQjUtmjNm02tlZqFWskVqtSpbNjZa2TW2wktthZrbWGxawbLVjNRVa2tVhmVNUhajRmY1mtjGqStNatNlrTWlrNQkkBkSMkGKgLGMYMmMD4mmDg41eroFXvpzgunVcJEQRkVJAhAGmtNGa2hqUrVsppkxtGMtlqmxmLMbbVZbJigw9VV3PR1bba+nOQ1WzYQBa4p1uJeUrWpC1rYZZs2m0d1diIjSUqWmrs4fV6CATRoUUdhg7M73t8PWo4UlnIBvvSynmnjUyb13qMUvacIeC7kiS4enRYBsmxvuPS8bvbneFqoLCwQgiss7aaIXUJYd3xMemOx2IaFUGBYVRGFYCe8KAVHRQGldfRgEqCrQHegpRoDUbpUUjvq3vvWn1AKmDV2AqFoHEyQ57SB1AM+Fm55+nDTfrpkqdevUn1A0Wba3kBrNMLvgy7GzB58GQvkECgNrGGmpq1ktbKlW1bNrBrabTGqostGVswbNjbYWbapmZlNomybRtM2ZsZlljZsVoszQ2zZYzU2za1tJS2MsWVpsMyZZIralSzJZi2CIeToDYwIbPh0xwsNQgzRfd727M46abSwZlbNmxNTKlWwKEQiEGRIkIiqMYti+Ra3Jo87veUQbCE7ukCQPQAiWTUKqpJ4wtjVSrQGWxpmtrZlimpNeLxO+rEPXKuwPre1KgRwmlKcnENptBb5BQHRxREEtGMUAWhQqKZcpxnObI6Pm1IamLUNw48lKSDm/qDzZWScJNKEYWLTthKHYQYKiP2Y0906ORaB3vT9TUlHwSu3jUIijO0dc28p3t3iPx/FpEKZAshIY3ivSDl2D8J5jJzextdvNSAKMv0/PEnbA/Qcr42ekwj2SaAlr4g7kLFWsZzFMfZJhKEyX1l0zGNZKOCRhMWiS2o73Syg3ahTRABR21UCg2FjRNQzrOq3JlAKjgwr9DPB4PBs4QBDGxbWYtYsxNibNrMaxZaqza01ta1rZJqNDWNo22VUs0SsttWtW1llrCpbQ1hsNlhaNiKsQSCsIEZIyRhFkZJrQYHewZLp0gQ6dKkBBHsLd3PfsoabhAmAbGWIVrbJrCa2NIq2RrKsbVqsjGGVayxosQJCAqwFDdSp3hp1fcsN5tdaQVWRVaNmbWeaorPh2kKiIMsoFITEFGuFpxPx4/HYm9eJU3I7Fve1GDgJjSIbbX0pqFYsgoPBD7UIEPxpAuQU9CvdvLsQn8d73HoVMUUD59xpOFG0C2re+7ootU2ywcWzkqJI0xwQl0oAuq0V2tTDmDH8TfqQeS2MGLZjPBCzQBwy1ohPlQGJqmV4pmpfhQTyZJiu5l2xeg5p1daztSNlascxFJmN3J3ne7O1oOnLhnkmHfG7EUXAkY+eI8sR5NUrZTaDxqrtIfey74r5fJePZtDNCzTaYNrbQbLaM02s0pVlsxtqylrQ00Y2Nm2pFY1TaGxsUrW2ptLI2rVRW1tVsg1pmjWtVlsZqMiQkWbcu2TnChwcs3s7TSGNcelC+hgTkdmzbNJpMjLMJVksxNlmlUsY2lstteVzw81g4igKZNnGYRQ0XBPnJxZU2pABaiZyOw2J1BbDYFEaQqo3FBNA9+HjaxmM1TPwd3wsvRul61C0KiMJKSFhUBfwk1xgDiTT57qlfpscTwwCTJnuQRzdu0HNb959jfg16vHYqyPQqgsmn3Y5Ip0IFRDrEnTQAJCBTPF0n4FybS08yZcBqB5JK4eqWSx0dKzm8z2hEmVMNgpRrZVw0bUINAojvnbs7Jrr+Rr2gZi+M2CmvEKHiqQ7l9xAuHbAAiwro9epzRbAKowvi9WYaDw+3mcHOD6xkD0q1mhtVRbVmtWlFZjWmabJobZWRpthrLLZMU1rAqy02psbLMZlbNay1TTSaqKytqn6SN04O6xFW21bbYzxevoiq8vKcXqbGDHzgqkkCQxRf7+pIH16r8ISaYr6naYrFZuOZp647D2mzIgSEgSPgIRWEWJOaDsHWog5iSusrsVVtUpdqjqaSaOTaTWTBtLaWbYsZZYMbHwMEFHxzZqw6zyv5C6F4c1cKlowkRUWRJCRkkFAWC6NgC6Zb0TC52dQDvYKb73sFWMIHM0G813rU7veWOa4Tz42ok8PHj3bfHX70fj0Dm7KFIQqlEiqlVz3m4yzRg8YWlnOIUvnOxh70Vz6MssasE6XuZoLHfe1UKaOst7e8rnHRMO9O3LS4FrDTxSnYCK1DA3hKHDZyMtnlD1CgUnTJkmdOasUUdjJXCBKOXb+MWpeGcmAOmSzNdowYQeq21Y2yFbFTGtltKaWJsbUVWzTTNbLNrNbMzSZmlZTGJmbQKxrMoVsaUq2GaGzJRbDMtGmtNosfQKU5BWIU5gmyqq51WBVlbZJgYABJkDJgGI6oXbYihSVkjaK6mZQe6VVqMqA2RRWUePBwVhUBbeN9FQ12ETO7caDxYdfL4gfO+UdRU44tpVQDjbQ7Lw3TpLDlAwIR+zmUUgqPIGL9V3senBMow/Rjd71fTedIRsH8mD7vw5IchFRe+mvEr0+ne3dBX5sPGCOaYoXWCIFhntkBCSoKAkpwpNmAfmZ+cnbyUkvvn7QDqTZhvfwwoFPohydUClBYKWe1zCuco0aa7mMEgp03Zyu5WDwe8HaiCp+YAijAgP5wHWXCIC9zw/AUMAPLJDg8+sA9duwBfOAvBicEik7Nw9gdbA2WcFhl9jEXKna1Q40xMzLFVPkFRDSCOhAS5FBC0UqJJCkKQOTd/At6POWi3LqK4SACLbAInM5fg+c+YDnn0lbmcMK660UPG2BtY8CIrcoliCbITlQ08YQPcweiEFyfgVoFzwaaUcJco2UKBLRn2RKflDT7Y0gMCeIiLIC3hzEtPS0Mw2K9YBvGR9jA21PahYo0di6oC7ELmONa8Qyoc4YIJtAX3FEvFVAwGxDzLlKPmEgNhvzxk6MYOvr4UPYjgOjupnihlwa6NzFw0DDRqnqu89KGA4CMIWL2p1Hv85ET0F8HxQ1K8UVcXfp+k5umDbSzEygScROMzpyAxioXiK2IIHwwEEOoLgORfn1QOVDK4aKljRoqCnlICnu9FwhpfbY4Tlimt56cFDl3qVwLrTJ7QLEFTsfdIaRGRA5ppRk3ooSwzplzZqnapzIdkfhPklFG0XUiJyZG3vRN+iJt2bXC0ww43MEVUof6MZQFD0kDBWBIksIJvtnlw5ZOTsmpY3E1Ymly+ihStC+lnnAzAjNJYHmsuWpPZqHYNm0o+jSlc4DnqUwzcS0ONpwQExFioA5s7LueQ1h+igG7fMFqEt9Jn3HBAFWSOrx7rhLaUIzoj26ppU2Aw8i31h1Kd/FT4yNzHLQg7xSq+dMC3o88+8Hgi1bvsDoyRQjBQA+yIifIlyLJMtfYFL58qHezLFUa4Dc4sRYfz4FqJBy7iMEpIAhhhMaY7wLRE6WFBqUpjoHMLC6op1oeiCp3ggcERLOjQCbmKTQIB3Wl7QZHBxuZKctJPJBNHYbFtA+QkkH1DT36H6inY4xJOZRVqNzWYqkfr0FIRYTR6hh3QeiwD6WSBVWGKcWNUMRUoc3Z6F4LkzoGCJ6LmCB4sUAeZ8sUBpEfpInyC9hO3fYvnj6DsK6oU4Sz7KdWwQfEOfGPPChgv3+nm0oqlwzaOsUNoISICp11QPR4oPd0pBVd3UXcC3Y+r6TkwY7PXVwtxzwifDmp2Nssao5xpYo4Mmm2Rq2YspaWEICieaF26y/BNfoqs+++isImvfCOMVj057KXbKl0LMvh+Fz0Gg3JqfMb47sVD6hiVtzW3EpmTCx7+j17dfBiIMYmX2uz/T87Dk90OKO7Bh+9Oj1vaT5QnqCYQw16sd7HzmjOn3Z8qEc4K4Ad0iAfUQA2IoKGCFz1QcCe+PAmvx3DEGRrr4dIGgPwgiqeod4C0gehnJ6aQXjnMLBvdL+jIck1g+63zVJqJTAj5odOLfwVzBoTHojjupyy+JAw7p3pUDEkANsleeqRBqKo897Ng4sUnYe8IlHcC5WOMFrkFEPbocEfY0mCOBenwJY+1G3qnKw9eZ5bncXyo5CU+/iqV2W2z6eRoe9A+ItvBTmPrrumVd0BdyGDFfnx8paulHOyLo9MqNus+D5rjjyUMb28yx9jNi9mf7BER8wTqDi4O/hqaKGwgK9kV1ObFD30QrMCnnKl4GcQ3hxDc7uX3TgagkMBYsZDQIpNWU0JO8h16bCI0ZLie18owjlSB3Se8kdeYyPdqKc2rSeRuQv+PVfqntzb87qI4jegooO9C5hKwcDFFmBSH30zshvCgL8vZOu/KpPoxcK45Ljn84Q7DjL5gKj2dOTgl2peMP9FkylTIPPyDzdQxjpY4iMe7Zpxh3TOtFwy02+qMoH7c4cHKgltjgqiNhFyuWJAFJKxEVm2ggLk2sZ7Hu0b0s1uVEBf5Ipo7JjNl4tCTXzyn3BTxpkL+Zlp9NDuvb/9G9zIYnh/ZXVjiD6b+IrDPvbqSG5ACaB6olMt3nMxdJXvTc3KxXj7JLcPKSmG9ccFffsxXxHf4a5dkM49ihXhn5vH6ve2mm5nR61ulsdX2ZFnqCKeYIEsSRjHeGi8Z5R/DC8CYsgWPiJ78DVYSlbcOSskNUTiji+k5iZJM0cXd3MY15fZ66hRRxOi3qZ8CPJmjz479DfZwg+CpnJySMb8kOiKRlIWFUfU2DTAtS2HjObf8un6v8v0ETAsa6lJn2YTb7cv5cbKgjAQkJ/8kLu9ME1UVf6/5VEdaB5UmM6YgIF2b3JGoIc97p4437yOAYtEoVg1SPFImSAOiAcfrAIlpp6KBGCd3iiTJ0xif5gxwSeg/iBx8DKgbTABUYgJVh1ISjuGMgPGaANwBFd+zmFAf8FEgag/VHdlFQKYAdYYA3QHNq7fzECnMHFjGiJ9F6ENyEIPgmCQsZGNnMcYgCxh1fpp4BJECwzIRtvCIKMPH/bLxBwdUn1wN1Gym54p9EBKAUHzAapcEQbCbKopKPfpP50ZnldkAgR4uv6jkgovvAR0IBvDH+gDkE0t9UDLF7fEBFohVMbkaWF0SVhAPOQnCUo2lkhIhbS84GiyNiCSDGTzfeQo81abesHhxbUl0H6PIiqP6PxJyRj79c2UNCLoMxT+5qNRtBZ/raYMfDCkvuw/3K14eh32v9ZB+qZbT9SJmfk2MTKJ6IfaoIcUQ0jY/meRreD500ePllQ/9piqr/bKSx8dP1/tw/aBPiKozzO0R/xqEXYYF/2NP5WUAaOP2gyp+QU3Sf3BIs6/O/B+YAC6L9Cw7k/KGnbYKLIfnVIfjsWQEPOuDtDU/MSgK3uPOj4J7lPkvKWqPvNIL+28BVe1nxHo/ZAUQ8+hiCtHrRFMkNOCNqGTWTTFvmh5iJ4I8KihuUvBRD5Mv0KoH0YF88FfvkKEN61YhPwBBGjdjYRdIle+KJ2qHh+uQcPJvHvnPo8/H9HHKAD9eAKoBUY5jEP2Ky9pb7mmIfT1alb5hyNfb7TGXYabuQqDWXNTWXkZdH2yc7ms1pghjDYYKy8tqRwhio5dUx+jSs3xSNmzdJ9ivqciIOkFc4RP1dRJmr1J49rutXFTERrsFUaGzW2HGJHzVzOXVK1pbOKbMVGrqXpDvi2M1vd4kcsw7Pl3lr4vZ2mw7Q1qZlOANZISA5nzyXaGan7Uzs8DVct92q/QpgieLUryhooq9aUcMlL3w/FqS8gPgzZFJfHSrTBmhmi1GFQedpIMyjZJrEIe6MTLIqss22qxq2lqajGWzNTM1G1tmZqkbWjNrIEr+vqohesE9NVE4kUeKqrZJspPgyK4qkV4cPxxRXihY0pBsFDWStqpUmylmqlWytmbYa1sJseZJWqIX1xcrRSGakRawivesVOyF+LNpLaobRLZCXw0KRm1lVam2TDDammra2bNTTbWNlmNlMzNWmtNGqw1ttbY2bSKtrWatjWatmGGza1rLW0tsYzTa2Gm2zNjbZssZrajbNjM2SlaZrU1syzM2tWZNbaYa202YyNs22xZSivitS2UtiNaZlUHrWodWJbItlS+mIp8rJ4tMErFQ7UqVevXRDaS2VbFsbSyS1YJfrJ9Wi5Z9jcLyVsZqNNVmVZo2zLaJVsRrQZsyprE1rWTabVGspVWy2gzVVJPOyJ88o99KqZZSfbFWx9dX+DIXgo9iKoZYrPFN4CJ3go1ERDZD7NEf3LerA+lQrUXywcUyKr2xzSqrxQ+eJfjpT6YdpeNLxhDxiO0LZBtTxFsDpEV8QAVTcT8YH5hNXhbO8VXuGZ2A9tz+LJSKeUMiFEBUBTBmuQVgTmKzKX5Mv4MqpeNKSAFxBVnj5ti/uOzI2pMeaNvsr7i/j89R5f7mxv1q1NIwE+URN9KgzfdE83xchze7LmzazvVOF2OvWXXmNRC+1jWxv455Hlrxr3PWaDqwmYbnkoByRchHaKOlu5825K6t+XO/i84qBf2MRe3tr/AfWOt7yycZc5y1Kd+iFg7VIIny31la+tFEesmtBDfDgkrx6zPrY8Rc7Mdnud1nzkPUnEd7T7vPZovSIV99WAQylk4NO8vSZt5i20ONevvWvPHmah76o7rXXuwr2IGrCKqjhapyfHK/DzuNgqth5lMqnaXnldMtnRkVXZThrnOSvLHNPPEj4aJW0TaS++qqr1F6ajKFclG02BmVsW1Fmqm1UbbG0thsicyfb26bU1qW0T9Uqn3aOr8oKEYCIOjCgsR9ffQ/jXDHL7nS6IBeqf1x/8NqE5A0pf342P4Px04/HnIc70OhAqAUxf3vxQQX7FLA3i2OmrVRv70o/aX/SclGpZmWvUTd6BSmEWoPb9lfmB+oribzM5v5lcma+3srjwRWP6U0/Uy/m774iD9E0KK8wPphxtxgpwSkCqwdzOhbKgXstrxv2SJ76up5LKpV+rI81kbwbjqlAgL9p+lwsPZOmkWxAJBkWobWTr8m/5wPoeUzm4gqxkmhB9j2fxPCLzpUvzIl0eWV+2+tVS69yE6gJ3j7PA/Q+/+pj2RfPwoiE/S3zwjc+6KgPNUNwhyxO0VP7WCD8lWl9NbD4jg4FBMEn1UfmAAB7q3M/NV9ESpuIL+o9/1O+Hb5WptLiYKQ/QRAn9KDSkLp2oPysr51dsXkfDAryJAL/FER/Jsf75efqJlhk19QuT0PtEBcPoFj0wD6T/rAEF5l8QBFpmQav0r9ULHGDQ7lmDlD3zRIz9KYhOAS/06LfMOJjOvQhQO4lH7aPknc2qLRGBj0RI/EAyEsYq1IEAxanfjCiqeM2Qx0hdt5i7TeCArj8Wl2AFGH4uvgsSV8JpvJY21FGoCqJARdwgb8B4bwUwtkogF8AoP1++nGH9s+3vulscUIKsCP8BB+zyUH7I//c81fsOCq82crH6Ve0unlft/xR48fszqvE+Reg6qn6YM/vnhmh99ExlSckjpQagKH4ywfisu8f52PM1GBmTPI/WQKngn0xKD7DjyxilMDkgbsD7pB2ioF7BTopSBJHAeIZzJjz5GaPRdFk4k+ngevQYjNxoKH6FQeBIIho0+T+W6J/8hKaJEpQySk1wvSB/W/JIo2w0n14J41TnJAAQf5YEdrQGRRWdIB6mu4ejfHrxeUtjdw1nd1jRX8NbfxCy0QXXAvhoa0izWGv1xiIjL0Bv3KMTaTHm5gmp+27h+vA+xk9/moebUFAosAT74g6yY0jf7299xBF+YSmwggUJBR7kBYiQiNpyoqjFRiXhEnik3OKY1FOuMmAKDWkGkDVv1bNLnV3gHyAgO3pEA/6MARDl63x5qv22WWAyQEqYFkkg0d9rZqpvix/9AwcAemgqNR1BTVTgAyacUoX+J8s2A8ASz3Tu64TSNnqJvrjTWOggmI/OlrL31vG4UX+KxjpZTcKjY7obFXj7KZfYljFPz53ckx+bn2wkmB8JHDB6KVsaWVxNr6Jz70PlgNvE4ZmQbWUaA3RvJBtJW6dM4Ec3UTxJKJ0JXTOTu7wkQGouJRQ3EgAoP1rL4T97ICmCgiyCChrYCcu8iXCZvXL0cURTDw5suaQ92GvZIOdNMAmPjIHlQgRiAL60iaAJwRRuteMxEELf9v3IC1UcnkBlkqKgU28/oNX+TE745CovsJup3oEXZ6pHeXFSKKcxgC+vdipPaocSvT8PeMpyUMpMwJKELhgMDWj+HW7PnJG4wN8YBRBXLAEAc8ASMgx+WIfLzQ/KON/ty0Koo9xRBPujVlTYp19dT0MqfukdY5Aw361BVou9TcXDPvGo1HhpQxF+SoxhLoG8ULxCGT7RiEpntc0yVEIBatfypAU+UFVPbLxAQ+WsUBYnmgCHZYC/SCqJy/q7HR/WU3N/ex8vCKAvmk4aI5qkrQK9gACxSWOL4qRrMNXgskQKNlYx8LX23SSSPIG+SScY8S4q5DHbO+ATukoHohjNmEaTq7KpiVFQahgxIRAALFyZaBDBKZbogCE/DHGxkmMO38d25xAT2Z0RRiPckmwG1EQ87CEFB55c5ICx/j1jJ9njcjwpyogpSY+PB2+ynLn4iXsG8e9vSdzdwJJslRsX+SmUXZSqoNyw9ghaBbxZcZavwQVHtEyKgxnaPkVmJQUvEMk6hWv+xEdk/OG8JUz4NTVBvooRMxL/mTv6KPXFV9otUp1asNgOUykuYD3IlF5CBDDCMiiimR2GyXHQWeI0hIYnSBpNaFxkAKNeX7AYE33ElK8hZwHP0C4ApiankswAVHC+aL76Nbmj04jOLaZ2tRRYEfwNqFTb5BVGgCn/MCCiJ8lXQ/mOTotNyeDlwDYr/6AIg7vkM7iULjTpuAuNF5PXBitxC57KDNPCvCpuwEFXVNYDKRUa1Q+UEALIIAGWigo//ZHyNvfSIi6UdE4OX7NG739QsyQpnNxKCgy5rAkM39GjNg0W2T8n5KqZ79mOM7Oj+7Vd8toMSgI808vOtJTeKVOyZuWPzlnTRychTZq4QN6P3S5B9kKYy01WMRzSL0QzegaaBc/pKbh4pI/jZFxKnSIB4BkrM9Pb2yGNDIPryHcqdv45P7mUP8M+/CtA6ly57ABU3CAo5MpRnJu48vVx1LbC6LJ59ySyb0qkDf600btL1BR4mIehuk3YMpE5iFAy6JAi4FAX0HRw3H6CUYgC/ugimIpie6oREuQEdyIOAqI674QvrB0A7cqiXBbIg/Uolm3GfXEVsbXkj+Vui35k9uTFVhRf9JfrvZoZT00lfhMpeJ4cwZOx1xcc6aT1fJX5iCjc48ZB10/5l4IQI4nZsuS+8UEZXxFh+oCZ7t+BlxwrVIoGNEiMRQ+OSf4Y2W/m/r7fVJkJTNd5CBm+5Ep7oPJCDv/qY2P3efqMJ2ED3/YiNE2ERHyRyeQsi3JOeeazmO1Bzw4Od8iIY9I55rm7ib8PukPwZft0KRBRn0JVsByuPchNpw08z59ScSVBBYQ3lURze85CIe7+rDH4on4/V2Gj6Dm+8/12fk7f5r1bv4/7h/cE3OAme2ekwzPAIQNB5DIqdLpdznNuT6k4eg+7unIdCXef5t9hqmydWDzD5MRP/ZOwOCxcVFf2191UPx65KHuihmfHThjHqh2jJISfwemlQUafcenSlvo/j3SNV+UvcIYgM4CJx5kTlO4f1p7NaKvoPT1/LKE2Pi+2mq/loBT0nd3V1M1QfS00DYeSgveVIHcqH5UOwwieew2wCp7bAlm6HPjZb2VZiOSDvmXLEgoOSCieQ/ZakxD0xNf4/08yX6JupGn++U/ebNnB9JR/xmqNs6eyZJECNoI8LqpPlUSj4jsUR0CEGqCaA+33Jfqb8xvZWKNEKOywjVlgHRr4fhFEfv1TfnPvDa2CCj3MYAMkIQCEBBL4IJQ4rJJZfzpljJ/wfn8lWWEx8HOUhIgKO8fawSzRhMQ6f7psGVqN2eKEho44R0/axtkKrQEFiKRH/i22H3uNcnyzfchP+3aRk52oOOMzEFDoPuRESi1pyZewDACrPwEf3iIgjd4Py1TDIobysQx1IgLiIwoHvyHpAKJxCNCK7ErQSbIRUi6JmMQK5qY1N/aGA5hrZMOhIEpeXgQYPQ1ICru/f0Vx66IAplLiKPTGCnkaodb+RSxgae1E5fQ3JlTOrtDAzLIe9xPRjDXV/97KDlAPn6fQNRBIJklP8z15YqxjNJGl6BGhFTUFegfiVSlN03UJJEBqOsE5SoKMtsx5LezwApVnAnaiN6jO/zGeJcvcpolnvCMUBdZpQPFKZ7omaLdLCR1V7CMmIAwAgCjEIAQD9ZEBfH5y593BfE+hoX6ODqv4mqP2//gUzRpH+PhoGMgfUQ74O7F5+RQvnOCQ5fkL/aVYW15DBXgvPt+kdxj3vUVJUIa/YcJMbRL3fc+ljOciKMuxe7lxHzRpzvGckR2vi/Y9FT+HNtZtZk2my2Ww2myQgsIEIMIIBYXkS8nu/t0c79Wk6ps4OSJcse8EYJKgxme01KoLAkf7MpGVDbzGgh+CuUCS1lBRHITjYQAXBQggIPqfW++BCXexvSKjVkE8NZNic/EtCcyiilFQdBsIqCGUhMc6QUBaT+YUnbscC7xGs5hVZmK9j1vYZb1ME3o3vGUkKTERNh3tBjlEBWDkjE4sXEa5jYQ9hmPicZmJv0Y0jrrfocDumORHunqN0s0qewNF2ViT+UwLEnFlNMXoNpr/eYVRZf7LT5mf91/A46LzjNX4HhgJ8q8ZXkoMv+lpFSV5O8pFS7Rpeb1Rc8cQMwH3COmc7x+dy69J8LMkPL6rpxbyUIhj/tBRflxBrsii84yKAv3Yb7b1hS5Gsh+gN2wp+03/0xMlQIo7vOP+qmcyBOeH2P+XfxKXgKmMYCL0UGCCdM2RWTJQYApLIlandcxHi6AAqyTFRUngfcOje1xav3wWSmDMDihEdK4QuekCYEN4XGC7YIiDRT782hEBfCFnO2y2gAj0jW9LmEiW8BeSCmfdIxAFzFDIIgtEj2Bct2aO16tBFRx2y+w1KQ+oWghGLVIig/YICU45fRJ401RJBgB14GAe1Cns36Sb5Rythb4cM7Qiaffx/ZCZQVd07mwldpLrh2KwJFI9NszzzMs4JhIMiV0dokiJgPVPHMERyyh25M9Zpq6c4/5fD+wPZmkfV+H0fThxl2eXprp+PL2QuXOCL4XZqyhOv+oV1uqyuJRxflfer/kDEkHfBfk5QKbp6530zNRTEAF99to+Hw5CcEexLqIwSuOJQjZXO/5ntmHv/4uSNDLYTsffdJ1L2Os9ssgJAuL2xY/V9vcZtEDM89N1GM3IKGSGbGf4xkSptJhTkaTzsAUFs/efUgaO8/U685B1t5DwH9n1qZTQb8JOZU2m5pXOEHd8dnrayefcOGPaTlgTIgZ4IADY/2T9YP5AbaNwNpYH5zGgU/lcD1n/1+DdTocjZYIilGUOYWkhQEMRcu7HQB0mp3yQxs5u9MIpEB7vtaJLhyM3pfsLKIAsiIQRDIHo784FL/pcxmQTISscRB9DgZtrxIn7mNDAlazA+b7CTjHXOFYoC53HGzaTQw0Pgc0pM+Zj87IUaAmOD1dLmcbek5rAlYJW6YixTsqJtMn7xOf/ybpzTkclr0S1r+4cDcm8bjs2pxJxpMcpKzJP24AVh4uPIkh5k9o9BO+bGc5OcnFDgDDrd9JMmOnpcObC2ynlkIQYiKy0F3YK9JxEjKSNRv6Jil/8HjBtMJC8JCcneu1jZjLGaNy1PFCULmSi9yQVEHlazlY8PifZKBCmzLTgWTP9JceJJ/5SXONSuBH5U7ZjP6KUCI2BvR6cYX52aE5IESoqfE9r500GdEBdp4jKUPIXkXATlxsT+Uo8SQ0i0EDMfpNaedO9KgKM1aQ+CfHWV/X4mi63ZlTmGbt+PQPXwYsEpSKmJW/WO21P/QPuGnwfMJ9CQ05M+NOdMkwQeTgyh7R3d+Y9c3X3atWpL9ZrG90soOQCQYtf9zJfCrIX1j8n1heEoVtYU6G+olSyCbt5OWyJBI6R6Bj/oW6aJ8H+9MbxMSeyjqwTAuzpMm5rjlMia36WJoCafMkDQ11n2s02GpKiATeKmy11NjAxt73sjcMshrcHKyAqDiayF+FuB3ZsahSXFR+n7B/NMgvnPc4HtGNb6jxjoJO5cRVDCl6pEKKZiE1TFrHMxEXHtSMNwcjKayQ0oGYhds5pFKfJiX71kntHkFAWhe0Z+CkbtXxo0jyj3aN2zkyuIijGB4hiuMGQZmIbo5FoH0SDJoHSOAzhkkuum5zEkRzr3Hw/14x8Fts1VjCKQCJcEeywSgE36a18n9b6H7wOT7zXL2CQP0QNCB+6+wgUm37zk78Y6J2SBuIoN0QFpZHWAbYO/66Fj+5PrTGZB80fehQuxOiGb9KP5wqWqAWu9B/FgrSyDIXA/2IRP75f5//AoPo/h/WH2M/x/7ePcaztLrpOjvdpZh0ek03rYO3NFssMoR5T2ngJWblJs56XkcdZ+2bA4DMIaEs8BmPeH3IFieM8hyW9mxiCat6MAQV6odTkp7L796Mhv5a4mAiGmCzwUQSJiSJSaCaO1dAf9L8VPXFAXaU86UU1gqI8s8kUkfzxSPPkIKiNxfdUSxRxcR81f0wNQLn/ljuOowx7XPPV/vIkZPy9wjyFvKFtZ5DUe+z1luMspXVw1xlRtuGuO8zlejuzUG/3iMsKSsJqdJemIkLjxDP3UIVQNmWv/SPymNck+K8MRGqKNJKeIjJjiMKD6t6Ep9pPArfnqAvP6JCQ1nvKzpGoyZaK6C1l8hsYyUWzyEh0SoCR+6GXf8IcJVcXnlIzcNZvFlZaZwEBp1kJaQMwiTm/RLQugghCPoyDmocabtg+5A1FmAF/rA7QFaxiCrn63GT2wMoGLI0ASrewMfOJzCRsIDiiAmAq5JWTgnPaTAZQMOuUdEjxYCH4FqPoXipaRu3wYB45MWciAyAdI+xK1nnKejlXARJpth1XEQBLBfOBHNm42C4xAFmtPVb5Df+pV6gPURAYHxIgqbiKF4EV958DKTmPlAiL0TiJwNgeIrnr4ebXGyGey8kkiJv5sq67xwYLHVdE90D8H5A+pv/nYXPSMWzzgcogq7L9GfS6mStpywMoScjJjIDMH9wS92Np09kg0MVLc5EDetdTZvWYYea6cyukGdqt61be/UZ46aJctuf/GH+PT0F0jx+S2Xbble8BQ89ROeoZT6BMY69jqfqZ8Gxxa3edbE+neu0PWoBAXa2MgyUmM0b/VuyZUuTpmOiNQmVAXFiTqB/VoHTHTuhkspO1ztXt8A50deBFTke9KgxuplXji9+4tIII0waIGMm2MewvM7SyHUZIw34hqAv7HvSIkqhNo8MR9hx/EZuznFAWgIPCScwb3+FTfmuh6xvfpyjplT+x2ixYZY78XfPNKTnP1YslJEat3RyjTvYINBikp9oxHSqMhG/IZycGH0O2NV+3+zj7kp8hDpE+2SjniSf2hTaxn5JXVLSTkHs7JaJ+8CitbYyHvwky5+iaqKR5VEv3J1UVlsZyH/ogCMlycRE7kBkAFHEB3CI8A1cMa64FGGSJqszmN9JVrKpJWMaTS1ON5GgUkr155AKpHsxoXyt2FoDL8DpBpsQa2L61OILNsUdk7oKsmi6zO+gx+1x9T7vRO+bp3HIfYQ2nfO+acN95mkJ0BVwqEFWbgwNBN+iUKzTqI3YGul8NgFtG4VEDHUVkhlIry2RUEeEggMmL0ECbokgtfrK47vsS5skOOOYuwJMWj+DF/B/tBZl7X8Fsb57m3bd/Li6uLsIM3oOrwcGinsYutvxGjdwzFFcSnwoJiXchi65Szwum0cUhOoRmOssURWgjdMc3Vom0Q4YqN1Vtg9qDLmi35qyNEuBSIgJQWIH7xAfUwPx/BmH5Ty3t0EaEeEgNK1gpGVG/omBSkZomUzWlaKo8xWfNXCjn7W8JC9nJrECjQgTxoahjsBS8yb0m9bRPuU1NpMExIaSQbBUFloS08ccf905Xv47JImlxWZa7oyUeOBMdkzhRnUJZaiI9UQZIajJRvy/TAdCrsMEHmSCH0iCCYkP0p7agXP6R/h/42ZKahY68nEDFUOLVlwMbkevOMY1RQMtOs0yQNeIz3EeCOuRf+bUVsxVdbW2utCnrj7fln+Rfl/Gze2oVN8tUd5sCiAhOVeanHQ7NBFDynyppoRRWgCJA0WyZDBcN7L86v5+rj3SnV6hfcLtwcX50MUAnAwITakdh2BM88Q3KEud3t6bGRA6ODKRaMeyq+5L8u/lFD53DQClVnVxziHUKozepyxlo56h0gaUnJwU0ZTLUygpVOhSZJD1xt4Mx0WwPSTgpcClYKZQU0KILcClP2/hcQKY5ConUIFVAKWApgCmcFNgJTq+8lkZLzonRSRAHJt8EAWtiFcNbHcFNcAp1b9dH8QhtQaSSg5mB+6aj3Yjd1ELsz9zfyney/i2quaDqgyKe0N6LWawh/29QCgbCAIXwEEDDNlWuLKXQoniFcDcD7gQUvi2D7R1/iH4BY/H+z5Tn2VMJ6bDWM7vUpFurHTLi/XYCg6AY7LjCs14WY9Jk6SB/GYwO5F8aD8UWWGk9EZivhZMXpjxxmSLNpp1FYW4Uc8w7v5lqr/nWfoLL/CHH2A8AScYYzZUr4rjZUYWxj04iijPuIJMaTsAzL14b1OqcaS3ugxsfM2b9AEDiz9Pg35VhBuXpPERWQK4IoDsgDsgrJDLlIq6jf3GSuvXEEKBGzESHnlLySj1ZanSeo7Jmyd3o7MOdiuH9tx/usMXi5pGR7Czk79JWcwznnENwxZyojNxEvL3/piXF1qGmCqiyb5R7IL7MUsx4mfAsM0aS+cXdjhmFgf6LGCneUmy3XHZFmYlogmBHniJ4No+y+vFQWkHU8gGljMzwdIWAEkZYwqiFvprpmiFiERHvs3ZFpx4UlGvKvFmWRhAhCLVaS0+iOk9gv7FjIxetXFhfmxTxJhmmnM2rBDonMDC7PREF9wIVGK6acl/ZoIjRivIFZG9MWVAtHv3Eeqf1HfPCL5hZxcQugHhsPILB6KPlFsuybr/iOOw+QtouboVfxDVklOlDLwm5FtImfDfN7m5f++XmnDM8ywdvJEEihWoKthGdL5+2PFfhkZLolFDawQBC6Q9sHgMTFSJH84v4AIDyxX9xb9aD6iWnNqRhzm3u9QgBeNQMR/dLQLTES0d4hUSRnerQLYo/SF4E3xteosisqnq1SO0AqEJC/B27D/Fn6Y8nz3F6ZdthtVsbB0gVKqi8EkbTaDxLGlKNoi7RKjmSGIpUJAJxM2SoEgj7ind0XJa38rcT24IEWPFWZDFiKzql5gHmcCJvIGK2Iuth14GpqipP+UKcsOnnNHqk0XZantFmicipKKvmfqLRO3/7qoMtxWHRt1nt5DKF59PmbTllP7fUWy+01XQdJlD2dY0kb7zh3tPYIswx813Wk1AiDJLt+ZixlO/BlnKL+eTFqTZtXTL6WDerwBGxjORPzafs15oYvmp1o0DOSRmTsFs0oQDy0TVlrvB1YZYwU8sA12RZtQBjj65VORn9FEWv5FxG0wyFZ1TdxQPaeQ7pZSl5NlO9b4e9ZPf6Jsv5i7Ifrr/+5uPzfPr+HpfX2/i7t/+4fdoNO3sdFz/xmUUjGACoTMEQ4NwuH6iEg9HtU8fPuvnUqBgdP/NQ4Yj/zMQXPTQU/CCGhBERkQ1VRSxAE3ih+4P/nS9iI0Ygz4yyxjCAgg45RjR61w/x65h9GM+dvinHQN3whP+ZxmsgMo7w0SuSgdozDrBuNDBrA1oP/PbP2O4/6+Butr8j9j0Og/loOsfHqoHEBiHGNGMbRi+sY4xj+F1ddNo6vlGN10g/CMeamULSMKg90Y/X6/L65/k1ZDYbEsyy2IFBoMJBZs75KaUl6CwqHJK5+bLeQmghsIAN8FULRFGlYEI5C27r4i3jiXP2iawFMitBwHWigDUXgaKqf4aBe+WXFhNF8tcwOxtPDbAm+ltOhs40H0LkBgxjCGhpYSY/Lci2BsbVWaSAEkkgjIMYBCArbUsxyjOeNbtzaa+c2p80oIPdIm7ne1zMq01ivBNCHkTmF+GlP5Ma9Mj1sfda+Z5HDgiBlijeC0J2F8/q1x1EKp17IHPXMwnfqh/4M335Q89oqh4AgJSK4oeSYnqvXY+CGbmk+PwafhnHpDpvfTV31Vl4HZ1zALx+zc2mLq7bBZzWvZEfZxX2xR3YB4hIhvPMBwiBwLFRQ09zHwa1Dt2m4bp0NAygZqEDUiDtBQB9xseMDS4CSFo372dQ0e7u3ihXcZwnox2QlZDEF3JdOIgcauK+qwEYiVEBB5gPtuPeABIAp9RMS1FHTELnooU7QeUxhO+FS26XOlQPTuesvRxbNdj4MhcclwgHfZUHGa7ePgD1DvY4PN6+uL+Daaa1LEUFWtHWukARXP24b8V34rULV1TgZhEvlp2bjfXZDEDLEVFPbFU4C9xDcuUA3i+KSHkZCqfDzzW5daO1RQFtVOQ31rsQd+MfJr2mXn3sBjg7g9nsHAhwh5SKJ9sSo1A+FCB6iGZBuF0DeodkFk90oEki+NiWMh5o1X2z8tHtp8yntdRex1VOWBDiAEiUEd4AmWuPejYKkEO58e1msBRpJPs6GgcwUwRQYRR8w15Kd14qXp09tKV7KX0lytsTbx3HCdyABNMtu4eCjBDvDp6dLfCFM2CqJCterW3OGxIBYilVSFnkoMwCXD4WELdu/WrmaxzfelU5899Oj1Z0xF4e7RQEjrEfXJud++t/cqqDnvTlVUevEUnXIa4Ts9vG2/yNHBstootJFTgzulJZEBp0hPxywUb3V71DZPpDqJtblweYNr72+y9ZxrFJC4KZ4Q3GR50FZgxsvVnoOlnfL63N8C95zkdeqF9xnOGN9dHhVmDjUG+A2V+tqbWGC1U3Ju50hiuTVuc77Ecp9XQrI2psB7mdAR6GKghW4aK8EHXwww1mD4WdA0pu/nScI59dnjNPGmXRRZzRNECPJv4UQuwATcgcE5K9tULsMYIK3gtwUi8JncZVr2jZOAzE+XBy9nXlLaxRPuKA6wUBswUQ7rYvfcOr0ryUxzoncih7FAXZuhKL4GMkoCDaF4PzdO6BTvvVNZpbZa7GZPPrKuXRSeARB8EUMkgOyReGHozXpPphRTsSAS4lyRaYVqMvbcXHzjoXDLspfE1Fus3ycsMXt3UWjvxa9qh4kDmTQOLZhBwQFVLQNiHTAtDY1PGZbbMdzXnHP4SNeTosnbw0h5FgCI6EQ2NOqaip2T0b8clde7lPrqn2aCeMF+OSXMQamNLsRaJAQB56oapF8oukeRtEvvi/FZI/KYHqNSnz/WKUFX3r36OvBX0aDQREeIC6wRNC9PLQupZuWfDK43Zcc5ONzytloY8OhP6Yhg4F2RJODPIWIGMFRHY6yMeigC9swSAo7R7xQC8UAehoa2A4oQ8RfZ7BT0djuPh4hpY6ia6AWNiiJY9292OB9r1WyS2ep8qhSCeNzJZBgZBiSTdVquBxN+UwM7B3A9RZBRPFEoIOsUOSOcB9kEDlgIF5rAMvNMPW1RIRj0O+5U3oCR1IuFBvLrYZYGt3hFS7LNyx6NBoVTJ25vhOQh0x9DBQ0YHFsXxtvTJwG4rMO+kfC4HPbgdyx593+wU1DHp5HOFEFu3dUDyG6VB8XBTuprgGw1pnSNcnJLIelmm2XsqC48CC52kqFi+iHc36FgVDzStB9mrUEx9ljxc0PfSgo8b4xwHQ3G/W9vnSYA7sGgtQUBuXtdCeN3Sz8NKFTZiB2IgBQxUKghpbtYDrQhTr8Opb7VwSIIp2QdoOxAPcB3gJzrr5LTANB2OjPj38EDgu8McPl0z0/QP0M3Fpn2QKV3ztVU998Vi6522I40LcVam2UVEDBar29xYbl4fRXJUE3j80kTjey9DsEkd0oR3SCh4iJ8m0N9LFgtMkG0RwQVwbcVUNjTWwcZ0zCIGTyAVFkJFkZJJ6x9a7jZcpcreHLpvbv93PTAU4GY5USJOZzVasPvmmuwSPp6CtbhciwaqFwoxjcTpLTg1gv2QTMVVTkEhsfdDydxp7qcQiWFu6xsBmP2wSiYtV+4WbxXrQ0VhRBDWwkHHZpLfAi+CIboQQyv2RkZKIHwwUUxZmxffbbw2DL34yH4460yX4x2LNu+jp3rjsN6bpQTN4SyG2ODzfs1t5GbqHi+vwRDFOOKndK1tmeDg6pIsIvQc7JoJQhFCjuZKMFgtairgcQ+t6AqLIh8dflSa5xx5PcLGLtQvavqtNOo2smLY+p0c70pLziFi1Ph9JnDscdp3A89AHCRVq7FHvXKTxIAZ3ppJEzTJuZ+uAUtXgptcqmxHGGBp2dkublz4blHtiYfQKQsoYGsc0O/s4RE8EEVTv2pO2jNXVOxBwnfa+MDANgU5KmYxsB5MPXwFhQ9EQXBjInBBN4gd7UdPLU9ApLZPhhQDknapahLLLMzsqN34JeCuq+pMHOM66oXuZwjcxZVooLlyBgkY4BIgULll1pbLSLolAXttmCmJ2zXkRe4AgOYdk63NjFsnQ5VJBaTryNPHagDXVyiG3stroBpgFODVEL8LF8EEE+MRZERkQWEmxemQ994wzUZhsq2Nu7cAVFkSo2gAdRAzNOjXTTHqZbXLZGRHhhhBAVwvI725L5RGyQZrWlVavNFVJXqdXN+DgjU1TNQtAEi5FlPflgHOQlhIAd4KJrzcM6ejnFgV+MBUTSHpiHrwOjZRTtBEU5zWMalg0Mdj7RPR9+xyZiIC+8LBA0LBUHJDE7eImswX33unbT1aTGmT0a9W4Yd+0cqgLBdzj2tzjFGvgg9eKbRvcVzGAjCKMigDjEGsVANnWHMB2qYgYb21q7DrR6nXiqVKx65fHAV36yqU6IbaL3BbLByjaqMVK07FOKIJ3OhbmqbpUV4IaQVAaGhtoy3JWs6NzavMbKhDigYLQWvWbYoJlbqo8C3E7BhASjso4HbBs3FByiGuxAYVPrNrJvOKFNtdIDA7tF+HeKjggoKfXcpA7drB43NMpe9uo+vlWToIAcMDRsHqA37hYxsPiNTy0L5sarTh6+C5HOZHNqrGnCnfOQCz0ijYsuB+i9D3wlt4IciGBnIEAcMOSURIkGSSQO+tBYjCKusTWAqaxsTUEgjexKY64HvxcO7T273sAZYHrnf1wOXYgTUQOImcOfPFzFw8KK7RUVMt/Bk1hbtxLpabBela4k6kXstu6FdgQoQwL4yGQFM4vUX0Q2nBEpAXdj6iiHEBFykVkPqNHfLZ3u9/Gts58SReLU9a86i1787nbiDyQgmIG4xEhBKsFKxQW0VBqIoGpBfm2udHugU6/Odtzwe88e6mUML328FSoHXFM9bqIa/EoIbEVUD3BAfBkliyweurdNp9dUZ299WVn2Or6qUdFy8FQL4e2qe6liO3NLHj41UD0QRXUCCi/RFkRQyQATgPkyO1w7QK2o266fttzvv7oNyKdtRQF21cPg+ei6IfcQcMG4xD1x1VNcjMqYQVkRO4hrAzJIK98Zle2UvTQ98ffKHZXjUeuLhhBwmMqd9kbli0Dodo3cXry2szzw5aqQA8QQAOXZQw3efVRchgKaIViiCck+KEdO8K35oDsO1/GiZFEHknksUoctzmqh6LjRDqGmpro54fEAteWaIHnxez2V4sew9JU+WbDNrNs2szG2s22npFqq+wyrosl9qGQgCZ+Qyp4erVF4je7EGrrdAqFhzbwKZt7q6oHRBBEsQETwejQp67xTjWSPkmzr37PPFSAc2aAeYgIOvyjnDoBkk9HEc9+/WfXzWthb+jUlyoySf2ua5wrfECbzYQpIognMBXaIa8mhPcUAPkBqCAhaikd3eh3cOnFdfbPqybnrydbOExZOjRm3J7ii37FTRkCx0yw1U1/o150Itn0OTscHGsodX84acVHUfVATwR1iIYwURPUDtPLvWYxHo5RB7QRVkAVsLFNruxbNimjt6MdX2zhXjWiJi1gPTQK7jFQBuxAyn36+3sZ0h64uwiQPhFG0RAHDF9Opmz3yAUljx3PtARoigr8rXQyfVH2ZwKq+9oMh1rVQuDIg5kDh9mD35qeeCDjqh6gNHnUqguxFA9wAELkB+T7ml3J33Hvi6dNejtnuKG5Az3uNPLNdMSrWHssUenHsQBeNTl0Q5ctCAS488L3HGEw/Rl5CkPEBVHkFPs8jg3qIm4Ai2nOTd6drEFDJBBB25C9QHfr2fFjfMoCgdGxRVSsRU7KdcnjnYhY9J7Wj6fRsc8mF2l/I31LrCogAtIh6MtejGxRbxLomjn1wBRFRB8kEqMLTLJpQuJ4NX2Kno3EPbvg93rIV3jPRBx5v1WvTpRo2DJdN0Vm2PZ4UWK35MiZBbCYnco7iAO8BACg9HBSZCr+tsd3qKkiig7TZgeSOEcmmmt3k7Ny9o4alNYnfMgkYGYnnlFlFsgaGR53y5vFmggcQJJMYTh0BRZpEbgUPnofyBOeMaW5lB2tQSLcI8UNvfFTA0EBHIoDU05N0QD4NqIIJ0nSJiaMedtXmxGvVfHxjtmXxEO+24D0KU0d+Wl4+AmoEXKd+ek58h4wx3O7aswxu9yy0U1x6CwzDLLBxQSpm0hvNeNFkKCfURBOLpRY55nItzznPYsZwBkgh6DXIC38/plLMVo3E/imI0YP1Yva+/4+bciCGYFpHtyTlsCpg50JRsJtSTiyuIv8PBZAQd2Jqw2xnXFtTzEU/nAEgIhZlLaRVmlA2kqVsQBAhEqL4O2WucD2qQs+olQBZQYxOakUBZAEXW4eP3u0y94GCgLpQUdwrvuhBV5kqAjpYbri1FBcG44WaeQ2/dEPYJ3oORyMKyg6zt6SXNjmlrKCVtjZVjRQVSkM4cvebIDEmzVwbGhpnfZozpYdJmX9mvok5GAKj8gvYyB93vpkOfA0aAJNWy0/KmJjQsEjlRU0es3X0WhCJBVH2KF5FmGtR+mZ6RY8HB1ugAehBEJERVIq7Yr1bnm+pducHBwZbw2xxjbCX90IWVgkiQYig/I124rJlHLVLZSlmk7VUpu5A7UG0lVu020TBmsrGrVttZtmkw1m96QF3CCSSb0A/PjZOd0X85sA0miiDW1m1pKr3HOzVtdPhV41eOruHcizUfC1e009UxJO9j0tEgzPegLSQYKAu1xRRyxICqMAww1rwBKlvitcz1oKjREBBPNPmhBRrUBQKXzndkqK4QI9nQnYEkkpGBEVlEykJ8GJXg8rJGZqgIxCh7YULyNAWhZYnKuVQ82FfGSAcgV1dIJM5a0JzRl7cc52cbzCAG+fgT2oUrfBUV9Fe3QKdPddUbkN1+QSeI9AEaMF2QyobdnEdkdjN2aebwY4N6EhhbWMZMxNltS2Zo22W1ltMthjTGzVmDaTZra1ZoxNFmtbGrRbZrFNhtF9EWykVqNJrEdkc2xQuskdZRbswKtVkEkJAgGKTgm3nezps8JVsvCbAbXeNT1en5+fixNZrS+RmqoWYqNlENrNUNYq00FTS1SqzjSbSrYJWVttpW1kxYAQPnRM2wKWIpBrlrayZuu21gDbOiVDYbla1JCJBaFBHQvTItmyYl87o68w0bA4wkE3IB3bnHeUSLkkaAFHkO96Oxfd+i/Oi+jx5wzYegVQJYVUNlIay2j6BTpjkHwjYoCx1sL4aVAXDAJkDjEmmD0Gaa2QYcMPNqlhwDoKQwqAvdEk/enGXPOMllGYVHSqlaVYIPMxcukoRAETrJi5AvOAaGqA2SdiN5fWMVAWi9Wbbt5T3J3KhXIV2imFCoLvMznx6b6+jVh6zJS6w2SbAWkgYe7CUVFJXL2TsED6DuuB45ICo29Gx0MsEAEAApGtaZNNJg0LRtZrZszLTG1U2rG2waNWQhs1DbTMzWs2mMGMozWbbGmKzWLLNbYRW1smBmV+CkVlapQumi4u5GZR3YMwaMTVgzKvBznobWMHLUrtbu9A1UQQJEASRAQYQRUCSRRgAc6+NfRycgcmeXZggo8IvikzisCIAbRzZUEqHCQagrxjG1SoIzQorqBQy1zfceY0PCt7vd6ORvRwVFdvFgIQVGdtmjTBsy9mRyTDADminVtHD9TpxDYV0/SlDsh4m01bAShLJvXvGAdL4c4hYiA0sCbOaAs4RTsdbbN5wn8gvdO3WGICru6K5ebQO1dkc3vKeRqtAk2WYuGyzwvO9eSXxskK7gUZrljg72O+jIK+iJWaoC2pUpi+FL1+xWqoqe4ItlCuJq3fk012MTBLw2gHjF5WqrMPnIgdo6YbFVXZUDaxlJXTQ7FsE11hplrNNZmNqtasy1swxjTNas0zLWnymnqvZfL7d5Ftdy8HwYA79argKIPzVXggVAgtGFbHz7UK2sRRVOyIfLkNB0XCMIGzO8FpDl7qIjkWXCw+bYSs+E1e7qCm7dCaKHkcAnkQJuCemorhg8dCwQojIooHybam2NrIBRAxB1gh+EABdwiGeIbGjabn4gfDH7jiqC47KWigZLzM41fWw5zGAmNDVE3A+JRYMgpg0Z5+knOnU0/CCpNigL3rsnTJZvho6cxkh2y3PW00h3Uaq8dstBkzO3myqCQVRyFBmXXLmQkFKBSrKvLgrZw03BsWDnTXKptUQaVo3cGAxBwGw4zZTDGRgEkEIBBCKM1rWyZpstsaTTNW2mWaizZtUwazVBZphptSK2masxrBt+cCrsKDlacypUc1mBVzSXNRzpsmtjQpZti1ZtmzUTK9OKOWW3TDTMyM5rW8rEJAkSESaoNSWMiDkdlmjaZltNSSEkGQYnrPW+Ax2Zcs1OtjN3oRVkkEELEVdYq6XVVHgFMo0LaJGIEWMkZJOTWjYFLiN0oUva9lQB2dXerSD44d01GFDWK2NzCGBNw3KZDLU9Hje6wyt9O1YJ3RbAycQNydoBBbDp1AmD4B0kVQfQvCAOYTPfbY0q0JaL7iCg9QN4AHucb/hjjpw9jdcTwrF7qt1yEkoxCLkK0owiUcotYQQO/Oh3WFX05JjBFrya299oXfhoUBZDpsNbIOEM+VRXm231nBBV6BXSCrwoIQIB19qezy48D0YaBSCgUg6bOy4SeO862VJw4cmwfgvQHUAq2qptbVbNqob4vbzOvGD2cFh1uOB212c7LBiMWCEVkhIMhba2mamVWyzLDLZWWzDZZW0xbbaTbFmWGWTVrLNhsssshpsssrLNZmbattZYbVspRloDfVSV2qjYCNlRWcuUAVFAaSgGCwikQkFnp/D2X7zGfoTBeoWGNuUW3ucsuhiA9NtPwo6Pr4WWbbmPHJbzwofKIC6noyd03QcnUj4O9iDzLM/AQoYABkgqoSB9QXiHkjjB0cQamAszNCUBQNYJtE+Y3OzTOwVy8lA3EGi1uJoe2SlgrRaqY0pKGtjgpkVaPYa4PqUP9vg8pQVZrRRkGgRFEc530GlGvzYqL66V5lNGXvYRXswnEFNuPZsd2Mq7Z6fZqdbCoih0aepp8PZEJBqfHQoA+5kwUS3vx8w0beDAp5al4oak1ihowRFOop0Q7gckPgyKPcA8nL5inudVynz33uQJCjE4MhdTGwYHZX5PfhvHecDlTPU9GPR38FSYwvAVPiHbEy2pkRBDXs7Kd+NVsc4BXF1JSKgOO9AH2U+gd9FeQ1B+WiR8plV8sXmYvanWaP008os2eufmbJj4Z3iooB2sfMTQEDMRjAUE9xX8GIessnh6M/IWxO9wAFqRfMFBBxEAvl+fAHiPbCVOmSfb6cXoZ6yBrowp3deoVs9m9nsbZDBE8ERAX8A3pOs0ogqHk44OOEvpu34ik9XPAzkbpxGfNGuZFDwewdEkdIogQgbEMiGERD1AdCHUWocMEiIvmakBzFRQuZQ+ceZvY37loN7AUg8JT1MKwNMDM737DP2bIk8jYPPaj58VEABRMxBVFRE+VikU9sQQHyb3GyPM4z0w8PIvnWioa7TsF0cdKgqAgezbv5o5QOzE0gF4inBAEUz1oFo5a8yvzxslY3h7icEBE5iCc+ikgWlNt01o1u5x6bVo/D1sMrjl54d4+OqJXIem7qYKZVjCvIcNVkqlYZm2Y4YqMDHGExeE9ew8khSB2CRXB0ks29MkfWEDl6scHDr2xFbR6aQjz0UZjMZyHNZMvNdyfMttk1A4ihkMGPfO1k8E4NTfitlT5iCHRvRF4IoViIJ5Fided9fX0rne60CR8p7sdNVUhFCuV5moaayJukeMeXT5UGnK0Cok1O1xT25kbvA4WVRRino6TFh35Owx5Fz//mKCskymsufW9GYFusU/AP///////////////sELj6D6BQAjebfINfOAADoDB6dNuAAAdAdO3eunSvANDV0DnAUd2gEGnrgoQKenXaDUFKh1O6g6KQ6agci9w9LwGGqPQXrew1bd1M6NPWmzF7GSnzp9D3sA9292+rB3asuDAAAAAGhT3vsLgHn06o+lPdjp6Y9sPRooSCh9ByOntgAoq+30kAAA6B6B6daAAAA33ccfNoCgAAAAaAGQUABO9jgoPkG955OnyFUDoaShUVQxs1lJEhBNnXvMA8xkhKqUe3dTXrOtk00mwEoqqhpmldKYemB3cHQQAQHq3QOoO67oerB0p3TrR7wHg606G0w1yHsMoRUgAJpkAQAEGkwANBMU8BMAABQRRACQCFJQAAG1GQ0AaAAADEAwSIJpEjRDEkPKNNA0NNAGgaGgAAA0ACkpJMQgNQ1SPRBkAAep6gAAAaAAABEkIIBMJMSegSj2gJDyaj9JA0A9T01NGg0D1NBEoIACZJKpppoAAaAAwgAAAAAg+UNeQ1jl/jGbGl68DUdU9na7E56PKFwnc5fBf9T0d+qjDKzoCrA95aRSGEOn6SSNh9H6/9BfqewiAxhBeWCCpkkAcgivBD6tzfpwRMqlFLoIodGCdKCqoQIAFtJGFnTgTfik2y3EsPBYh6caCqebzmjw5i89OIMU1Kp9zxGT/sxLHq8x8orf3ML8Z/Ibb86JlT48Xy3pB+VQE/DxnCWaL9JN+zrn0267mJ4OUNyfB3DxGc+jCQ8UFfSX2p17t8/yzHdqoDM5Nt8dTq+709qB9XqYp3x592FW8QfZGmmRn9FJ4nUGKhJCe5o7Dq74p9qPCLizv21DUovX9lj7i+E2a+J8blmSuPYgkS66G93qk9MHywZmcJ3AP6kdjmZG2dncHMm5/HVmTTdydVprEmk/xMcQvRTHhf3i8xM7RicBQUlTUxvpmafX1sDO7oVhX+y9PP873spytCd5wTMxp3E7aWh6Haf0fp5z+2lN4D1cado9BsTJ791KCOK7mh8Y9k25SazCAnQdJoJU5u29I7y+Y/TQWytBgD0NTH6TkOabTPrzEBDOQVNUEVrgSERbwAQ8HgVUUscSk/3+zSyIK3ghUG9NKdIek4tiEYc+ec6RSmIExTl8D6hCssbLE6rpO52TfxHpKkuqlFS+/EkTJEQJV5CYuJydJTNlSxJyslffslRIZCgkK88piYqy60xUk7VU9xOB+T6UzfR+H6zEOmriNlOVXOciuyrQeEk6CdtPkmhXtpu7O2bhrgJIcx8KUOTdu3o2EKoSF8EDdS0mVjTnwTfW5IqvWzY0Ctlf9f8Yw4mQoSI2/irD5K3XIxr2vyrje6nZ5X6phvGVAqsX0p51dQEyvgTsvufelPbV4Tup6ExSm3vJq8yd1OJMrKnvV4E9yeVPOntr/L5lfK+xOcfxPf/U/eZPqmV+ienmB2SvrOrdIg6wSRJvEIQMzBJoB5mU24BvoKRV4hBohIxSD8hu+Y+Z/UxTjNwewN/FM40Gz4Z8D62g2GRlDQS4xUOJAFXfEAd7uSJzDT36m7iGYaXbVhCsFw/fV/noKqHWDwlzuuhxkBmZBTYBd4ADAxJtecf5za0SBuI4NE1SJU1PTs0KfAgjlDFnHE8DLGW0SD2EmSYXaUotq2eeqyC7SBAg8s6CxwRuEehfkGlR4QI7B5Wrug6REyDzGEoE/WtSQbc5IL3GZzBs5jZ7acxtzXMtjZdNbVzUYxbVdc4bOtLrOsjattpZFQkRUA+/DX8tuvgbH6JZMY6ac3hY3pr4caGJqqnVNHc9Pjvo+Gd/t06PwL69l3r7RpHVr+PqsQGyRFGGG6U7qZxbNg28vroYuAexETuKHJEc4OeZQDtj+aGdTUyseFjJidEOEjrcx8tDstTsL/Mr4hQ2ZuxiFOE2BYKpIZmbFUBtFE6BDqZ8XgbBrsl7DHT3YKYTp2whvawIpqkBG1M1sTh9+J5MbDOGAs+OjV0+vQYpfJUudi7swlKPKfK1UQWAjvDJBWZsnt1mqt54efPapsvrerldTRbLaSi2RrWWVRsl+wSgNUGqqUpWZISY0ZkqibIlM1EtgoZkjWVbKKkWxENrmKFc0VJHMXG2WaANNGmhmVVSm0pjLTDNSJRzJJXNRK2tNFRbFbRZjWKhVplFZQaibNapEmoqsRJZaEypLbQW0DkyXGoVU5klXGpJWZGmikHGc5whDmkqti2EkrSpXFSaUGymtMZmppo2kzGwitaLLWMY2xmrVkRsjNJsKYapStqSZhtTYtozKZplkjabCBsF51RF47Vo1C60AjgIIyI3mZR3RtIX5klW5XWL55Lo1JS98l+mRPy1G0JHvikOYqX2yl3miEagrVChJmRBV7aIFc1TNaZBsEVOe+uSoupqEbSqWwoL1xQO+hXx3uSek1JytIq6NVR9tJQO2V4ycxUbIeVl3nb5RTukWwkoiLIWPUe5Wr5u5K1A3AFCSU3t1RQlGwhVIZTKOBkABYLAIGbEhgwWFS4d80RRC8KEuZvUtSVGGCDMajBCkIHWJKBEt0tDd273axNIQy3AAWQ9AWCJBVHiKo5yrDGoQ1iNxnJTeggWhXhZRI0EN9m5CqXeTssaoSnoCmqrhIGBym04Gtt8QGEiruWUxSs1QUWb0bwmuFwC6VpzJkRuk1MzUvciRNkZMpgRBdiRSIdZDOgujkhDSQAMwFCVc1SswMpBglcFImVrLnAA3W5VJQLiXixnYuDa4S0acagJfCGLNVvQr0MGMMUmmwVBu2LhrewX1bJhNGFCqt5EglrSotlWzMWYVNklVjQ0aNkZowZFVmpbRNMiqyYWy2s1WZUKzFjVJtIbW0k2itgGmIZlbQzU2MtlaqTao2ZpFtRZoYw1g2Stgqy02aYo2bRmqGNmRsbVBsNqmNDWWmmMmaUlmVbTKVMBW0yqllJVmLNVbUmtI1bTJms2mSzBstqVmQ2mZRrTZRVsqSxpa0KrYq2q2TZbUgYattYtNAGLUtM+GrIitzVwcccQ0yzLYWypTmkpNZNkVXMFtoxVRY1AZkG0q5qBcwqqbANizFzc0NGqpTJywaakm0tiyyNirGbWqa2sxI2ltLMGMW0sWLNQqbq1ArBBiAJSgZ03a2ShP08JEUeMbAtkRphszD2pIxopXOTlE1oqQ5qCtNS4ZVSsWKUarUSGaRBa0NqayiqXNJVcnOKlRzKzJTWQFZpXMTjKirmkKWrijMEWwWrMslWq0I2Q22VJZsA02JtvXSOFrkNFIYaCiyubhBeWl0rsna5zty8Ql0ZjvhDmcqUbAmmDlPTg6za2zY2c7cnK91q97wGmiltZbqijYoVAiELpAmgYoKGOZqE4RMwUiAkIlAypWUuFGwXT1pMDa2RUnSUQVGVAFptW7xdkOiogi2b2oCQ0qGKwzVL3AeXOs2bBwIcQCqOjIS5wISyYgyWCmISRdSVnhtLCCjMkhToLhpXMM60YxYMJpLVEgjWMzp2EJmAABokG5BQHYUSU2kGthU2mA2JFgtlLDMZs0IsvO4pLYixUHJIUpMMgSlbjmQ3Nc1FsbdEA0RVTAZejdq2RVGCSmNSlIEVGsADWzNVpU0uxLKK1lrTJQrsPMwNgugx2pGMHZsMXStApVoruAwYSlGSH43bPHbZLwKkQypZomtNrLQ1bNbTbLUtMtaW2yraWzaa02UzTWm02rZaWqazMW1TaBsps2GWGpUsmw2tibEbUotqa0ltVKtraSttrarGDWpbWsC2s0mY0a2ayt9olFzVFQ1qglzSJcyQo3GMytppqBAkxgDG2NpJoKKhGw8dzdcyakz5PHHpViam1MqbbbNY1bTNJUxjTY1YbbTUmgLNtDVpMmMxGMmy+289/e9Ow+bOjrmepw5N8/ZyTy0EuO1JMqmB2cKDilGxFW6N0YAwFQQF4iq9DLMzbWju5XedrYz6auNWXYkKIjXLzLIsZuklMkoSQQG02JVlRRiMwZLstnIFiQYbNbhcItTATrRYzcgDQaxQ0ailYxk0rTDfUM0SVNWZQUXEDVsEDWky1JRFW2m6VDVgMFCpq5TT73kaxjNwAF0FLjbZW4VRUGhWUMJTc12YJTHopYa31kuS3tcYE2DqDRkxg3krnfYMhnBYyoot5JBgltYouSMk0NkhVxlM0VTcC3ygLZwUpGSWllgPgtJMXgGQLWkXm9Kg2Oww5laEpVmRoGbDataVWhNoALBtLMzYorBYVWamwTaZtaZlRWMssSVlpmxq1Y1mtTM0ptbQbTWNs2mNtGmDQpYbWYZaWapjZiy1jMyqLDKFbMsLMts2NRmhtlhKsxBtMtRtYZI2JMTEIENoUKiS7JuqsMXIVqNbqEcO89XV371w74bbMxVLNbW2xtbUZprbUUtZCWsUm0yzbaG0NTLDNaLZebucwXS8Y2wUqqNtaczPJnWBGBATuSAh8IVVD8SFC7kkDmmtNy7CSFI2ttbWkqstmbZttnJno3KQhavVClFxBbsl9a/CHFVUE3Tbtey2Dl04XFFGSmTuqqMjaBa3K2MUudWDNNZL20g51IZgzjNlu2u5BxiymAiQoSiiNWKtcppMarUrq8Gg0GbmEwlU+UJMDgYWyEgSMF4DcGo9mCbjUzQoLjdzVy5fRyRSuCpOG5OfTGik6MmXG9rkQaVwWW90pWyZQpWrRQVZ2Gii6DWi4eHBsxZmhrTgECqkKALBBA7bG2RmIq1pZhUsWsZRbSE1jTUzGGsyVLNSzFsMtRVZatjVjVTKkbSbFJarDMzTMiVjNNVmWZWbW2Wsa2xYAgsYwhGEmDFnY4ShdUwYNho+k8DeWKFrbI2bFmMarasKVpNNVqxqyZZoxUCIEYQisUiiQ3a4WLaFjLPNwQndqVL0aenq9PSGQzCFjWhC3puoIozhLI4rhMpLU/IlIQ3GCAVRkh0El3BrG0WkmAkGCDBmgUsGzFTRlyaTU2zCYbmYDQldFyxNWxpuElpK3E0hVMOjRYnNkyagyl2VAFsRliEEVqQVytgsmrBKFy2UwW0HfzzTnhWKqaWqktTN51KleKMK9ywyoKtByqlHW7YB0QYrCatKBmubGL3b7ch3yYgblQl1qDQMm64Khc2SCZLUoUVJKllzlZsSl7WqOGiw7tpoNDJ9mAKwQPvVmqbc7dBxpovCArZa22ZjbZswsxk2LZUVtoaa00yqLLDJq2jZZtYW0WsVY1NmZmmWM1LQyZss2GzNmSpbNMywxZNhloFaxSWtMZrNataNoaatmbECRA3PrFaVUo9OnaZsGIBLaMJku4Lx4bBkzWxZtm0NDKlWajWSYM2rWttltKSzTYmmNppk8quR7GjFzvKIDYcmB6LSpUnpo5F6NJJyjrRrMUqxQxthtMYLVTL0Opz4YBDKAL4YpQukHbR3mjCxAY4AAL23Yp1lmhLZJsG0q2QsEiDgwpK1hdWbhDbBjBQYTOXIUy2qSK3bIwjmGIRuBiGAIo8hHQhsa1TGEb6vou3aL4Iu2JIFFGqkOXKUSo0Tm/IVUTKUSYA4EcuYW+wl1vAmA04xpKDY1NBBRoHRrNR9l65w2gLllzQ0LLIWTdC1SmTLlL2+zuUphNEkT+lO5Dvhw6zZioA6W8mFk6NrjK8NDk6YL05cdZCXmUw9YxzXguX0FWXBAIo2YELNMacOW7aBIYYzaZptGy2lmaYTYtm01pmS02s0wzQtVkzIlaakrWtmwasMZQrNsbW02mltjWlFYytZmNNNmo0ttrWsZstuzy73R5oUMtsm6oghQhRVaJQk7qwCaIsZazNVUtWlmBtrJKs0GtZqYmWTIZhmsZAIhQhQVYKtyVPvRUMSXDS8ZB4oqsqVZa0bDTR7qFdQEyoKMsEE6rYoqlZS6qLNa2TKenKdJkkxIOc0ohG6GwnY71kLmpzpqgdQoAOT4rIjfnNOQbCDWEdxYyTxQwTQs3sYCyrKigUhMVWiWSg9FIIk0SDxKw2SAKQKC0iQkASGWQvQNXbtkxT80XshXW7QfhvmeDOm5D0LNOTb4OeDjhXcBig4VYNU2xrREnBoksBhsoAVOJw1iWYltKBarCDjcGDHBcijczDERRamgvEA6ihIoF43tl9skdtF4x+WVca3XFJzHNFLEa7PDvqFggpCMgIwIEYxhCYq1krailq2TYy2001qVrRssaNNszTG1rGpFabWJrK1oBs2rYxqssZbZtArWo2NhGrNMWrNRrWDa1pZptjZtdiaJFoBJDjPZLlSlia3qcViiBFYRta022tZWmsxm1W1qZrLNUVapmZpbNbM2UpZsta2rY0xq0xs1mz6GOvDuymGBFQ1CV3YqEXygShc/McqLqURXjxHPlx7DriyiXKccmnYSZ6PbqdataZhPTnljucTpBdAIjAEw7pVK9mmIMKdJLxNLrtZAwaDC5XnFkEtULbkqqbMHAxWuFlKYDRh401ffWdGbKBdgEUYvt2yPwySKWIUQSqQ7vKIByVLBlCAPozasoxHSVoTGiYRQxOVGbvLtpCIgCCwB1KRcry9aGFblaIIjJWuDRfWMOEv9Y2SJUhqWEGptGmNGFuGtrdcLnIHlhStHi7+nHWdjUUs2nsePVoMNjEDstOWuGibdhlpcYWBIYgFiYkWazWZllRWmWmZrWLSxmsZNYbWyaWtrYa2GjWrTbVhWilZY2U01tbbBrGNjDWTJlNbY0JWZk1htTftKONyZbJrky0ZtqkrWGbGMkgwIxSDCNRxwQFWpY1smbd/NYOBsw9H2d/orXyJ7XCt5I2ra1mWoY1oHJwcvk0wZq1n2TGk5rmSqnGRBytSpcrVIctILmg4tKXLiYWbba1WZWYa1RIEkgMDsgHbFBRznS3SlpSx3c5mHDlVSCKLeUyQCQjBJAVRgm7mGEd5TSXZgMB7zRcwVDIA51YaAGyGxCUPWzFnKc2boew5UAaXdmtHJYsltnkDmW5azUUhMWqBZKJXTu2gpR1GoO27mWA1mnAsUtTGQwX7XTgYBKmr5qrS3qFLoaCSL7IJ3KsuS9b1Cuq3gQwC6QZXKbQRWoWck5r6YU01IvGTe3e0bgDFypcwuVmgCo3pgKZvQCjmSzBqAKzkNapMFcGgZIa0GsvhNC2NsszGsYUs0U0bNWYLTY1WNUqsYxmNNaZmNGGssplmKwtYtbMlSxhszSFazCVbW0NsqFmFrGmsZbCzPqVSmlUsIpzJTNAG00Oa1KViyy2wFazGtrMZ2aw2ym2zLJsqi0gA0CqsIkAIgpEABAIU2YbGKiqj4yGFB0CmaUZwdcWh5P0OvVPltILuTdnuHWjvkLmQgekuncJKLtG4sBaFAFvBoK2OMAtF8WUYbDIid4b9Ob4GCztaPA4hd8QloREXjc6ZtbIaKHC62apnCUHAYu66zpSFx2mkY964QgSVaFufA3mxUPNQEh0QpJubXuEJbGyzuKgDgySx8vkrcAbVAG0LTS3XBpdLXVGkwQVsygMmbtilHM2y2chhqgCqfFUiEVRGFBfTmizhVUezGhX9Z+hba50X8b9ZLyaUOg/CEdHIiAvB3OuxwdmeE8PtYfoM7ozuVL2oUDopLqryi3CABfxIUFDqAATCwDUkSRDpN7O5+FjEbWDKCdJCIC7tf79+WM08SGYxPQXMWPMGmOnLOCsq/POKvR1s8oIrncJWBkkCWI9K77Zv1QcA6TYgfatyBzhjbbjBwDRX5VD9EUygb6Wh7HRqzEwGdJYIEixg90AAPpAqwCyw1gFSG0+lTe3NxNonxi53lwY7K0ofSTRQBakUaHZzIYVg6CozGVW1L1ap636OE6wO7RAYKbNSCHxIKbFkrrri2tNv1sdRLG5h9k7iPEd2ONwxTCJaujUcjy5U7GJpHJW9x6L2b04oZj+Gqid2C0sr9p19uht1yHCULJpG6hlh2URLEETsgIP4EQED1CtRwS+wgoF06YH35VqO0SvAlFdiCoB6kRA3YLdYbODrimUgVn7CqPR9OaJYvIyxkPoAqwIn49BIXtpNitvfVFym5YcZVy1OWASsJsSAfY1UTgJeCP4bapsPZ6810oL714uBuGaUGisDOHVWUSAllTq9i8X4vIAyFkr0V6Q4QmrulcFOr00HBhQ4MGpdRoYl0iCyChIoJwggLkhE5gNhus8PX0wq1QhQRPwgUNBCdYDfk0weu6F9BXklTLAfiRJVoIreJiR2MV9NtG1/CLx2VINXsg+Bwm5XlbmHxDDPJ68p9029PdCxANYJorUPu6+U4M79GPIp82UV87Kp4tFiISJMSjq+LUaydlEvurRDqbPwKNpn8KK7wPHGKKZQQKQk2IA7nFAeItzKg4j9lFM49UQHgwXJidwUOiCHeBSp0yK2NEqmoRvsM0DSwFGPJRS7GEJN925iZUC4ZtNys+7eFepQninryG0zejWzJA+VKDFiwuDxAnjYd56Z4EhCxqmZw4RTKdnYZG8DvWDRVJlzC5RCkR+P4aNVT1IPMQuEdl89M99cK1e4gYUkkmpYKED7rzN8q18FwlbTIHBcp0QxiuURJBFE/IHcDxgHJD0+NAOyCirwaAbLVwPDm+N3f87+4F3zPh7lPgegmTRWdsnZVEkNGeRROw6uZR5AwpZJVFjctkilNUanueQeD5HYxOWx2x94vtOdb7nfhirs91U+i5yh74ZDuHjsRj45v+Wt3spQ3KNdtal7e+n5helYOEOvk9jeXwm6TR0h4ePU9rR+00yx/JDqVUshOzBppoXNksGRWn0i59vBkdCamAaJ6fOUA5SIh5EVzgqgZ8BKW4sp5HQP4Z77En2d6EHj7ZR6mSBmRHiQBRKedJyiLRFMDAMBGIcOLax0ly97jzmwJEKofZSWDC44EtofEh2VMhh7q9G/Vz1WDmkDmAKcR0kNpQQHjjoqChgUCj9fpaodi440fqiewvZu+jXnDVOrSqofqg2nngUPxPic9/XVTwhjgHiSH3La/6euvHA7e9MekpuH23ZPmD5HLgJxtLczDMtO8w1c0kUDaIgZkC4RD5Qq9mdeg7MznMaEfNMefldsMp8YZ8RjHbznRfHNMfUH4+7B14RUHdaUR9kAGgoHXJsWNFZRQVb6GhXkyDv+bg/odM5lPIew2hjA64oB3A4NMDgw9TtsCeeoU/Qgk2mnQW/grKQpZPkXEhEcf/r5GcPUHQYpG2F7WmLZDjzbGepTL0ekeCHfC75mh4TwVa4PDBUxEEFU34B7SLgIPYAdteeAuHrQAW11ssroHWWwCTOEsOSLnCf0Nk2JFPWFfxDptRLPvpcEf0R6hKSu+ZnnEmiR7DpIiN7udvuCkMjUyhK+16LsDTyfUKWpUa70Kv1IK+V/F/P/3Y6PE4svWklBVH7e14e6y44J5vbd4dVZNPp8SqeYdw5pi1O52KAiDvxB1yzSz3BDtkMMazEaaN0uKzfNtSPxrAWUDHn2giKCMJce6cwxJMkNiOZuPweSfH0217+ama2O8487LiiL4GCqY3TDEVE5PQECVbjmJr7LSynM87hp+2AakAieSBWQ/yHXKVoOlLHhpY+T4VwdSB/1WIUrEehDn/feb67BgFcEjZqYRP9WFoQK8xPITGxQmPQ4d1eZYAqOSu8NRgY6yIJTSXUHTP1jjLl4Q8NKSmgplkcrPevOEe+SkmQIk19jNG3ASuUMu5fbOzT7RJTFTf/DSGLaP674KTEuKEPUbMRIYyXK3O6U+dZkARwKVJZjrLgd8ll5W2P23iKDeQFNS7lvkYOVYa/wESAJzjaD8EeBAI2CTriDmxoMkOd7T0D05DgafIrGA7Js9JjQl3fW+bokoOvBBUYnVahweQk3CSEjy7Y3Z4l5mtnURWfnnDyfCQ6ZSKAfREe5gvKDokNQh5CWCeT6/SGYvf+BSnk9ErMPv5qmdJS/4WeEoKjIft1MP9ESQD3kDE/fdVlwqLUER/9QsVrEe4z2k5MAyo/TVNx90ovti6ruqF6R7xRKK8386XtxzoixJD+TZ4r79iKC4/pPKthsKVIoI/xyAljHj4UYh8bANTcSG9INX7Ikzw6C+EhH7g4P2b9qSADug8A+oI31coYFstke0xp4ztrL3DzlPdO8f3xcLX1w9KAC+p2w7EOgQWAP2F6qJQjaHpftCFyDR78BAM0QFke56i4AoMwGjZ8EnnA37snL+pPaEFV+NIsIflFLZfr1zg2j7QBDQrmRC/yFB8/NOJ01DC5Tam2nexRA8QiCq/eKiMA3DA586HaQPOfBSL+8+5UUaMtxSVDsQ7lYO4btcg7mg9LdAR4+QBGgv4kIuft7pjcOD+djlp10Qr6XU+g07Iwi1QPp0nFHn6NMYtOOsiVAL1rZTEEI/0VO2BcGtwVAiZq7A/2tyAHeNA7srIp4JEFUkFFXbJdg96eMgIIaCBUp2IkaHjjltUv5BAo7UG0gu6NTxhRDggoEcpoJ+W73tfrCOntb+QziN6VqflIlvLL69hTrI2UNqJffF4ZETHIhtEALA+dvVDseVPrg7WCMIK1Z3igBShrsTR9N9uOLa41Fk3Xr8tZk79m8t9ZgfPZ0kbLYaZzvUrWamq5ni4i6qubzOTnphtmstPhUc8XOGucqqcXUc1zNcuarnd1ou2bc1BrmJeM53ZEw6nidbdyS5cOHE5LdPIsnbe41UFtRw4zm9VpzkU+MMkq4ozpEovRdhVX+SzmSg2XzyrmqzQ9vwfvTo7Y9Fi4uxxrB+oLAq/a0SdmzS01S9JahKvcqOLUnvlE9cX20K9KR7HpyER8tKQ1gZgaajNDMlraWlJtDNSFdzRA2UZka0WmltKlmkUvnDVjWaiqzbJs1i2GzLabVhtjDarNaGa20zWgm2ptbUQL93HpYoHGqYwbUqqn9hHWFJtUHEqB1ShsKWlQVaX5ZSlwK1YKDWiQ00qI2USWylm2mNBVmU1oxoM0tp2CVqrmk5qAW+/EcjSkk01FL5NKXKyk+WKraVW0EvMxKRtbRDK0aZrbVtNja2WTRrbUzK2LWM1azGW00sWWy0a20RWtTNNG2Zs0aaG2ssy1m1ZjaNtabNZprbVsY2Zo02bDZabbGbMSVixsxmw2sxmZprTbZpljNtrW02Las2FRXrMA0xIPDKc1MsVM1VHvoRtEtkT3ZOmDKFYGNVWsKnGIlXi5OKRrJNYG0s0bS1KZpVPoqam+OJdJtZq2LGVmQ21k2aZWtVFYwmmpZqLMq1qNqNaGNsoVbUY1La2NapKTswq9cku+Sq5aerJPs1V1gnoIP3wZEDaEELseEBF6EV2FqVvBfTA/LQ4xLo1RzrkS6akP0oK0LwwuBZSq75zSA+FX3xX1yU5qrZTmJ9soutXWuaI5l1g5qTsHllQXvP+gfd+Jt4Dg6MVXiacLSdggN91ID+lTIUqHNRI9CFZSnbKelk2VtF97P4Zr9U0XbEFmm0WEK3EFX6CAw9Nfe/vL+Fk++8lbTfLyh4g0aTSWFDdddE2TEuXFRqsITFIRXzZpr9c1cV8phdUWSBka/OjPAPd8OaGZ8m0Dvr4S3vVNK4d6dVNTJNUiE8uyUXEfUPwj3aVTBe2+r+ccN88nn8Lvnf11vcd8Rm5qk+p5BSu/HvwRv1PR6z/FYvHmddaC55i1dzSAkh+bpTx6v9nfyFsecZM8SzIcTsdOr+evYeKWeT+SG6xPDXvNUB4R2tT6m0+qk1O++WwLb4e0u8uwlW+mBY4ggdkSKCjgwFynxqPZvrMbbKjrAp3wHWLuFqTvY6xGYutVyZOqxKrmaYnJc4cMB3rR03WHfU/TJG1U2qRsRbEn51qgO94htKwi/RiVdJbUU2pbStqi2pbQ2thNoryy+2nNDsy5qn0wft1C0pw1SL2a5GHf9/nj9hdu8+j9467kjqHsn6SI/88WnevTWy/MXNh+bx8JkXnSWi/ovSakQoInnmKAvoRsl1gbQj67U/EcWupf1cUWH4oESHkAL25F2/H49dJEimPFynKa37ofPZWMH5upmhZLgIsG6QPYRHdFRU+NJrBfGLtgmwCL6PRtzuZ2K9UEtu9iqv5BQslomoxhBAVYTulEasU2ngsS5tSjwOBQCo+PiF58S5hh8U2JSD+cUToiGB1QfsDFI7pEPMXpP9xYPF0oUFdItfkVSwNYm0hvYHUJbRpUclRR8FRBpDOFon2J3gojRiJwVimIvMgb3mnidb/9SobjyKYJ5W878xIEEAbmK6CaG2IDi2ojBMpE4GQAH9hAVOc39JvOT3XHiEM51oMi1EDJIeoHxCKqBaXLuvcUBD4chFb4+m63yMBiFLQ76A3QQDRA3I0iSC/uCTJZEZTfvvmQjxhbHPqKrICVFx5CqD6U+X0Y/Wk2LYPrsG2HYmJ6H2Aqjv93qwG8nuSHi0UoAvdAzImgiVnsy6cvMcdfuM6mp3NHq17I8Pu5+Jc2balU6UL0TgIFrDQDh2Ck/jVExsMHAO9aF/EGB9/lQKG1HT0WGpxJ3Gy4WfesAzSFiJnH12oEFbrcp4AAjO+PdEOwQwY/INNMehDQpRBc/YNB4w5pxmCqZ2dl1wR2QyEQ4uJrijuKEnjk4qo7oACrSz6yPYL0J+7OoPoKRRWKQ7xJbNSgyTB4gWPnSPvh2Qju7jhyvsh3dUPaWXaOz24Rymp71slbKBAj6qZYfRPZNV5XKJhT0rcQ8XaUayzk/ZbivtKpjsnxavvNpccPlp4pcS5HeT8YchUDkwAqL9CQ0UsVBxw0xsBNOxr1YFBrpJIRutzJ/pIdZu1bZp3kRDneP3AgMyQUSQibEyG7B+Mkp5QkSNQmVgbjdMypH0CD0CYiFyu1l1pLEf7/tvtnIjKxImtMiL/LNfL/H7ngx+5KH4Mecxu/jkl2mlhCQCBFVz3nT5QMB7CPNIapTQTke0KiMOh0bKJZwqn7EqVdhLA2BkCKJL4BpI4lEIiAg5IPgixYkpsNnl/LojqDRBBPAY4hIpCJ0BhFwAKjJW5HgQMsTfx6MMZRWpbSFCQSkbam5cDOZUcwqqZQFDwJAFQNg7b+UB+fp4wh3Ad1q1Sua7vxOL3/zkOGBgm6rEf4gqPRBLAK0ZJTLZitJTJAXn0ulNMiRqalI0pwShJmn3zpGSJSxE5P5mxLpdoDALOl7HA9qYqkokTBxBwlm0mxvExIkZjTjkmF6uViEOiVwCBXVMJXA1T8HiH7XRO2sGx30uTIkiVpKUGsbiRyBimLloTKJFHO89PABMhh3GZM7TQbDBCexmlETiSCq+eAqCSn6YUXBTHgeFygDkEEWQRENaRfg+Yh7+ZexrtPC574dNoUFcaC2XlZt/N0O9gvya5u0h8QAF+CRmjAvEqAALICChFFCUMaXrj/f42WoHd3DjOgj4awhlFTj/7nlT9+HAs36ei2Pzkr7PJNOmLy0hPiRUTZIKBGf6rSgVmz4OlPBJSGowpUuIC0L4zoSBpPtGFym9BIME0YqAPaINZ0fEFjv5+3B7wycBrM3ZSAo7llBOm3ydegHd/wldRtmoKuDxDZvCe2eOvN4ApG2krNhZMGNVKxZjF7e/IrdwBaGFtMIQS44JaFVPrBAH0y7x00+uNVUc5KmyIgdUgoeaAgpV2D+Y76tWzPZ7NxQBYuMM59QmpTQJ9YHGqAsCtv+I5qA8RBTi/dGG5azbrYdsjwXekjbuauPiIEgEd/pjmbC45FOUlA+Br9Tm+zCVtU+Lg53VUHakKGkFRyLHroci0SLBZYJyEuLCL5XrEXK0UZgAF3ju+8ecJKooekgQgqtNysR6z2hld284AZj+gqh1QgJVxrelGHWTh2k6/5CUPvYcJIyv+bK98OabcqFKog4g34n3KmkcVdjFL+lBRi+DAVQeyopwW5RX8Gx8cnS1eNx/f7mw82ZGqoEihgVwPJ6z2egn51/IuUyZR6ot5PBLYBcQI9EBoNGWivNrXKRkY5xYWpjQPyv9dZjioD5us8GZCQAY0qMaAC112W585HH8xcyTKqLF8TdQlyAKjFaToA99IAAJIlOtlCMnYiIlPUf5iDUoddgIgNWyuFamQrDaLdy7msSjwh8bndwztiHIqK8gUbh+lX/pATiCoBzj+hBR/vY9ncMDoARYWSgMRIYykNHwpW+mRMNc5F2TNflb9/7BcTLH37d81mLp5XIpZMBiEQHj83lrJZ0OsZYps24ddTi6XPd12Q3/bgFhSsIY3yjJMh52YqHjDhCNYsp56ttF+CdYkgbjgsPMdzmrDrBsAYwhptFUTbgoh1C2MJyTdRjZijCckDGIqOM1sx2ygnDcITpKF5YWEwZFVRxYrAod2LVAFfe0L8aR31/p0d9/CmJfsaqj0iiPI5mTvHwMmyB0cyXVLHQLPGoUkzlKCMncl+jf7x0SOtz9GoNAMiXBj/5GvsgAjGXJkIixMptH1IhrSsEEYlNvJQlAcZXCgR0i3yTHTJJ9JYZn0HqdZKBKWJjDMRGMgpwY5TDSfQlwMrOn3wLjntZnDWFKpwELhxb85SFAWY/baTAKjKRF4GyWzlWszYpQIAqjKyacoKI3Jxn3NZ1yliDrGv9hDO4zlNpP/HE/QzU88ogmpKCoORSHE80E/8Q5m2kt8i+IsMtMhEHC4paH3hIH/oFYVS1iorpMckiuxOrZuFiu+RhHI76Yzdw4I6a2Of1XqIjZN4z70pH1cvh2b5rguRyoq3QBTMZhD0RfHQchqAQOxp3tvJMZodCmPVUygDG8ZIZTMXNa5TPWRNwfV0EU6Rbn3mDTfQdGPE3Bi3x15OZ0D1nbGv3bHPoUce1mhRB6kBU4zDGt5bzjLcVp6z5kWTJFCJ8/jzhnNCPYMrFZIUBEWkY1JjlRjDNITFp+KiN0nVmJkf5ZNX7SJNAW1FoXhnjFTSTgSkB0lWTxw3CgLFFR9qermKpiMiKG4iA7Tg4N7gyvkfszxTwKPPjJyROwVzhIKKOSjeqCXITS/aoMchSaoczDM4a5ZOqCC5AF6bUbfutpPj7Y7k7B/g0/LvK6kHJgY0jaqwoEhBXxiO4oj98YCmZJQipxbYD0oIgjJbL2AqkGlXR8xYy6hVUfo/VXg1/V+2hwQqxUeaUPwo9Vl0YQ1lDJICE9v3o525W/2BQMuhTGR8wdomsnGTcMWmMP7UeazONZvGT4qCrJHdFFUW0Q8VfoqO5RZXVTDTHL3ZsABx2+HYtIAySD/9jRD5D8FMY6AGQyW3+JiGKmWh/GiV/S5Kayfx7h34/8ubNdeke7/t5JHLDPT7sciNwkFa4GLvRdnFwRt0J6yBh4o5ANKMsaxrbpx+yBMYOuj72tGrTfb8a5URp5Yz+raCiMdX0lJ/qV9by7z1QB4FMD+GCR3jj8ZruwZsxRUFLPHPSO9MAAvKfe44Efs7lVUCWiNrJH+QAY1YAqMAhAgqYts/khEoqN55+E/dh4qj17RxDoMRljiB07qf8ANIN/fkjeEwIif4yK1aC/ajhH7801tIRP5/OEnolm5wJjt5fdr5v2Q/RrzGwwzn9j0NkwH56052zB2swE8uboYtH5NzSoTv7OkYPQX2do6dB2lBRlZvM+D/LDpv3WvK9A69TYGvhnFTzQhAGEFIBBYEEYQRhBBa4QIJ/ny5PtztdXL0zpYdZ7tqLRiCA74dxiBJFTgOJtcYoiwkHc3I21Jxnh16ZBksJUERs6F6gxwQfwrAFAf+PgeyEIF5tYJFV0ljylyQegDanLnOWb16XgUQGNg6mA1KqjSe/+xdl9TzLsgfIg05goNpLXwSuRk2El9JwOV3nrIUWu85wKZ0IntfJ/Eabnr2UFF87XFiW5dg6FGRvN/9mvJ+yXLDMmCZ/pxlvtxDukgHpNsL3dF/mn1nKY8ciexJ3ZSCGybJEm8bXkfm/njREXOQSf+FP4d7H+Cifn/J/UbS9zh4zMRkZvJxQCEE1H+Gg+U/js6DZSuh8g3FxwhjTj5tqGmEGQIkOtK9uQPOcXUMdnrmr+HMwsKEMSTchsSMvsVEWKW4bA9vXJclVR7Fig9Rox+FgL2DU3wP2cwZSUUjsJZ56hRRi+1EO/UyFBgjFN5XuGk7bK3ICmdgAB1BYCJj68UqVGAAw48SWBuJyICrAsJTMNKeJPmdw1rzYHMrIjEmwOSCYi5/YXI5A8IOSG4hgA7EFRBsrfBO5zaDSgAviLdUkwgI5g4HJG2etJBTPm0l6KoxoILDiQMkyVVXkSKo0dqWh1OmK/jKfaZdWpK/fND5X/1f3/1XatMP+k/WgM1RgSkaV7WrozJMIfPV58h8VIKCrt8zY5E1aeWwfwyAUkuxtRZ1nRM0Y10hNHRM+9jjZ4p0zBA7E5FAP7JFWyET2O9tpdhxEQ+poS9yJImwzpWliWpEY00JYm8EhJNQmSxJWtPlMkyWpWmJoSzGm6lt3jQpnuluRsjT2RhbVEge+lrTXLVMAuA9WJE2EzGCZ2R/RAHFGkSdwOhiCKtfBJfbAByfM+B/jJvqHpFrVeLleYPi2iSEPyfsNXBfJvBgCUEwJqD1hQSIILKSmRSHaD72dIzlLiOdnCN6ER0vB6sQZs+gKQiDEFuE/CnGEMZB+7/EKNm3v2bKdHY+49VAqjofwZUzyuTQbjIM0WNjVSamw+gfIM9jxhWFRQQT/OexCqh2ndAo8Q2pXqT6neQdjM33nzso97gyTTQQe4E0f1NATdIYTgL2/gE8lQdTZDzh3BJQVRjUSCiZiBy1gSSavls92a2XOhFHD/wZPzq2A41SfSQT4QWWAQbS76h6pE2ZmIgtQqo8uUM53pSaPLHX/oRx+IP/BfOucOLm16vRVvdPoPRCqdINxsDMEEuDCILA+yqR7d4aXlT5f5zg9LvB3dOKzVcH56khyBlwHgkDO7ic1M3PScPDME6RlD92Du4aEj9iex6SeTbD29gKeDoJ5Emt9ebpSTXEDHvRd6RnIbRmAHpBi3gk5JQ1V1hWHaB4cJyWS6w7QSjZjrCaMKEjKwz7U+IFVOIJom0gvfCX0BH8/illylcRforMkwfFLz0p5UkmaVvDRIfNO76tm0WbHGumS9jyzRkSiA/fyGu7J7kz2hAABdkPLVOEA3wgFwcYThjdtL/9TypdW6UM3vTWnvTvyggjjtSCfJKqv457K3YyJA4uI8RmXp9y5J02LJqpEOrstqHZ/BoPAfQ+E6aE63nN3Hj2UgchOmFMXn4M5m/rTvPAUP3OZiOZw8HPv/VlhiTLAjoGQ7MWG4MyfSA2jK9DNOemDCDLGHBYn9O78jNRi2Sk71w4iYnwgz6QmS2CYrwoDuSJKlSdc+HmAkYGx4TtORPfBL0nvS8PVe7hMm7EyhkTcqTzHAM7WbffzpIFmsP2W+zbTGHniDD3URhb6DdC8/mWW6AVX5ssm6wWQNWbTIiIOSsK4i9zFgeYmL1pD+erGH5tPvD8/b3v6D2e/Re+spQ6/zTqnd38OBJdWX2vWSzRDFDElFx46iMFE3YOsjIjiS3eI+5A5iSRB6gg5U0lNZvLwlnEdu6odSYFiZJOZyJ+1AFqP+kmoSi1KY+mXxmOHJS1pDsJRURpOMSRTyJnTrdFNtM6aEmXy4Sh6ypnLjS2er3pW79Bu5iKQN6JShDnEEiFysHMRlmX8Q703p4mjl1BNbHb7aNoR6/zwZSYPMpz0K1/Z65C2R0lAuQx2FFSnAqoxIxT7gd/T0I/Uc58I+Brh+Qyx+hm/XAfwDcAjQtnvSFEsTrGWJS2CpH4CGH9JEv82ZPWYqCavS9fsurr3xJh6dNv2qSfJpvnWBFL1DmBYf6SZd9We7w0felOE9NRL2CqUhJM1IcUFFF5y83a4smUzRw3V0BWKgODglCmTE6zt9XHjy+YETMiKKddC7TBDNgakETvIKKmyIbUndGM6nApPXF4nNYCiPFDslBlhoNTVKOo8h/MV3ec8H9YTrtP5570dynX61rz9Ou1RoF3Gr/JmubSWzPnuW1/OUz+rHg87nt8uN1FRsUnfq3/Y/pcALVmkUvib6Iv3XhikSknPfFGhT2CUv2SkZU9SluPqe58Szc4/nOB3ned5vNFEUznGicNBlft7KJoRyTmsICU+KR6lBj07WJPuJrwG//R7Q7BGIKs+h4c3KdSTQY1smHJoKxlCsycWQkCQr7kaWRjOBHEHRKxyjziV1882ZsAD3oXH/GQixAD3mKcxtMeAQG8aGj6H2pjT9PhcDSokstB5LQgKVg/gI/DlDPAvZIACjNgeg+B1j7njaPEXjgH9IkqYSjBth3zKSklY8AhHjHY7pT3pe9/NrOWEtgXEb0InZ7DwLDyXngXnG9/y/093h2npnRehx/+DZg/oEVfo9sNdZ6TwNfbgr0mbXbxDrdPLNZBkqj0mp6PsuzlBVaZVn3svBCs0t19ThJhIZJSAO4QIUPUS0915BKsX5PadTMGog59Bl7qynIiltnIri91JSZz3lFhWZTWaCI+ubye46XYc6IC8BV4yjETk9m3vPz+mbdOCes0Uv0Y1blAFvTsDhxL0h57YGQ1bTif7syeMdAY3A8JcLdOZSWdc5/NgahFBlILSsBvKGdmKiASmBFiIBBKF65/RjDX03LMfwZf+HrmRABdIwkhk5/M/tR1QSMsCeG74fWPYOcdoZ05XzjuCY/9wOc+Kh1hJw8HAdge/PxCz8BSeQZdjERY8cIg+YxTqefvDyvbZ3b2HxPdf13X0bOWnv+A/0z6bvQIdo3Otu73wkQIjdecrjj2oGqaTsGnM7cJqL93qeYs4uoqisTi+lNUr8FUsdoFFaMx54McEC7MhAQUfkPl3E7xj7GedPQenDSykIoW2/Xu2Z6MsLSLLzjcLW8q4vJHSGRRqmiHt8pEfH0xX96y0MIAdqZzHdPEfTrnVOU0VbZ4PSXC+rUHTocOfzTdCUkyV8NO+GfcMuHyMZ+Xrn5BOHh65aWB6CF2CTKCraGYQVZQpC9OlGfCFLAM4ZdZSOJlm0EYii2hCOuMPrij8TKAa3gvaIBVISpS8ZWdEtnL3LXy/OkqyFa+uwqDM1h40teBxPELMaWyjIydjEmkrTKFBizHUJfasazsfioIjJYFJ1XGUhMfXHsbhohDdZshcTnsMStzvH/HZx5bwEV4iok/jskf+Fz4zbufWHDzTkdqVhjr5rPwtmN7ZwoG6wQ3SB+WYj/827F06hcAMFQQiQgLYEEDwsAS01Na/02Dj7zkxEYUhAMYwSR4MSibxiiDEWm6UADaEjslZaIKN80TCLJc/hDWU0BIdUzmRI8ic8uS1pR8hy9JsZrcaNZQphVo+Z3usejQAPadg2Pzf+7ezd3jL7H9mf3SRMxl2yR9DADfllbJLwBFoI4tc8+VPL6SL/x4jN8/eWfh9BR63ysSbJ/DnnpPtwHSPw9LN8Tjcp0YG2Ta955ZUPF0c5HeGGWVWQ2ov8uN8gdvUYtEpVxSdNBKkgoBuQRAThgBlujdo57HJo4zz0ofWu42GLtrBKDn5wjxhQZg8MiZT1Bse2TO2AXjcSWvbq0yykKsn1P4cLrmmTBf7JPJc/C2ztgqfhgqfxPs60R4soKy4rOvaf5KXlde6GOAJHGXTG3rCIgdC4mP/YwEVoY0DTGZmv65Ta0FMvu65uxlkTidg+iFEpb7kNojxp7o8w7NTH4wfCiez3+OgJEvRN3+5ThV/356+rmv0ee1LNGbbNSqauy42QAeEl38nr7mP9+vW0C+immyTpYTkE2axybxrlmjnAGp/zipnyWgDNNlP+qRso0lNL6OfMnUQ+11L4XNh8isAcgA5QB2wB3EQFzAD2qPT6ibOAOF0eOpX3mIsQHuWCp9tkAcgA6gCrZjNj8svc/kwNrXgIqMUe1UVSEJbFjyADp3c09dAA/2nKv+OPpqFSD2uJnMp0908uC80uvNFURAJDGu5FWaGLu1GZZDzxR1oSTxSSFgpiB/fqbvG/l6vv+HkAicoAecRVecDqG7qhtK2ZWuYAofsyM99w/Cnp4fxd6+ZjoYi2GOrZWomKgMJCbREaYLati419fjq7eu4ca0WFiw0rNpP9mXEZVwyrYfJXOdq4iXEXtPqxrjNB+yMyLesF0LMsyZTA1LqsLuZ5ykzMy3hoW7IXxBMvN/332rQvt6vZ91a+zOvK4vjgcy/f07oG3B+B+8lvTmTs3uvRAq3uABKZHlDzhjA4rBm5wHpPeeYnmN3ED5fk5fXY3yA0lykyYHMiqA9xBbQ5y1kRt0lG0Elccyv0IDFtu3sWe3ci7FWTJT2uoHr+poTa59h+yM/219EOfRe+TV9HIerTiDWFP7fJsMe5wGTnvptut4pvcARx5spVfLvql0bTpJ2OTznZPoV/cosKf55DxejYmQBXEZb4gP3G5JWDZvHjPwdIx6zY2uqdv49ba/NRkhIfvmfLcQz7UL+DtVESHgQgSxgD612DuFHPLjCfai/hr7zzUJia0DmwgPBBig7TFy4sZReQORPVT2hyBLoxHh6p7kOQZG8g4okMCp0b3j0wxNL4pEIwVB6ZV5EKlq1Z0shkHT2iU0DbAYELsTR+mB10Mp3EI0N7HIaMkE+tydzK3YpqSIFJrtRGsX2wI4/cZj5081PH4kKEfIXKe581/22/t5f/IeZDOhtcCGVD7GI9KEDogfyc0eZDNt80+qGT+/tC8xoVnSd/7PMc2xDefUclfHEGR1hW9zkajp0mzQEhUkI7/BiJBKVBV0mW2mDG19EQE0hAQQJ5hrCYYjZeBXPvYCim0IusA+h+Qw8A+qSL0qjbKIpCTuoCoEJN9YhbZRyjaN4Aay0JFyOEi2dXLJe2nHbM1CMqC2EeeAttjayEhIFoYQHqLhF2mEDSOMAtNYmcDKEmUqawEqOUxLSRJBZpSNR0qg2TdE1l5aVGa0JpHEvCRkQJJDWA1AqLrAkUvC5FS0F5rEO55hj7nV0dm8JSL+wHohKGZH94MxWU0U+skXGTZNp5XKf8zpkS1rbTQaQ8IlYSLq0hMZmg+hWzBnLiiOI5Ss1E1Wj0SHISfhsDcbQvOsxFITfIKA/4M7iC9xHscbdUbENZX43n6u20hvh3wkdpkP1EZz2PTD/Q2N8lL3e94YO9GxH4DW/YOyF/NCgOR2bEUUhutOV0yf0BAvm8mvpDYck5dM0iUD7j9QXS5MvtTtET1i3ZEJvEyiy+4JGZlebxh7wspaZzG45DtB/ziNYTYktIAD0w9LEFQ6UJ2MzwEjulDXIeeBOTxGR5kSbVq4mdPfCcscodnu55g8vnx8zrQywynT6uX2aez3PNsevV7enEfT8fCMJ/dp6nUOqckEE2oKARjARQN2CG+QRDjoewrG+X+1BtHP5+9AJwCxDOr/j8X3/Wn8+eZP62g8aR98KpzD+je4ofTKWw/dMk5ivyx/X/aP836n6+i812ttQYVkaKqTBrgyp+rnqeyZ7MPx+MX/p3Zcb/6gjh+Z2YCZ6uwzypmDW7zy0O4MrEwZmdqCfQ1PzrZAjDM6GtldkJXW/bYCShxBc42QMbcxeCKNvZPliCsKwpLWf+xtoaH6xOhT7ZjFJW1eeRt835+n09nzSxMpDZTNEVo6TomxMZ2edDCGNNZyE6zJqORszdr1zqfSS5jf9H1Hu2ABiAwgyAicGkkiEDaY2bRz2nFT7RIaTW3N17oAGQap+yVqgqRD40A6iqOEdd01PDTLF4wPDwwQ5Ibz7NuG+4Stj7iUwXrzqwZ89JodrdfPd481M1mthYtXz0thRysUbC2VtTammmYW00xSEVkSEVLYFUjimTjX2e3KGlS88hwt1RU8SJoY0qTT61N/lxOHEoVEHmsFTsh6zSgsKbLGljl3U0bQpzgZRxBsRbQdUgLhAaC+oYlRNjA4XI+fl+psnHAYfKKfBrBBA2GChiXnMO9qfnPeT8OQBN+8fifT56qHV/lMwbR89Y3dO7hsZlWh6+ucKwlIbHlsbh165gAkyUoZLJBtuKdBBQ+7ElE3II6hFuSR3iAfhEekIiCGl90rxzS51CyTbg2TFohmxD8VhqRVFOmKBvPLGa9IALymltrTevDrnGEAw4xCkql6BGSV5HWD9IBbfvt89ZBuQG4FawAAOiBPulJerhXqURdSdRO49nRT5lR8YvUUNSjQPiYupsSVLDxkJeiffRbT1DjxImJfBRuVSOMj3MT3j0+jTnd17S1DpeTiuxR8PmVLBmEEFXOnuwWERXP5McpJid5VPl3K+r4RWptDOHbCkCoU5yFETUIiPJhiYb9FkfHWgbwDnpTVqniZnVaR7j1m7G9kOjY9iKo5h1dKnp33ncN8t3YC+xYwW1OUNUsalhcgNEitYJukasTGtDoh9V8KJ7CeteaubX5YtvjU5tp7rCsxXZSI3g4x7jWJycgDmlUMb/iVX8CAfTugd1GQZAKAPcCSRR0t9NA51d90xFNiMgUxDwreV4cCqeR8gplFRkQPYOg6lDQph+eEZdOzPioB4wPZXa5OEqD5gX6+okaQmCRrQMxzb101To5LqGmjYKVU3C9Fdow3KIVv+NUblYXDPIvwdURXmbnXIcGrcPD5zU4wpsHa0ouZFNKUNhhjhB0Uz1VQUdo8nhoJTqPo9OITvPOydYFu6W5RLhis9qiPYnB4XVghO73iNDdwS6FTBaP1mQuVwB6PDYZE67p2ejWtlEpD6omE4dl+p7vtuX6nhtI65VOx0vt8OS3DTNSqdBvVtYiQswnEvtplKhyh0E58J8KqeDFMJVT7M4VXywACNmfXiS2ND6hZChgee+6eV8+b+7Gfsq+ytaL1pGjUiQOIU2OcBBOyKoYBDwJ9nhahQqkIe0vLshexAKjkAYE+PSyY3jWqWPVLJ+YLVbmG50kSlGKp+MBBDJIgIdmS8XeeU7mHuBiZXT6T5REqd7P1BDmCipymgcxN04x6Kbo5Go3x6feUhUrixOcPl1Hvsnh8+y8Bj33Jb9epYkQYEUQTpgLwkAfiROgmZk/PrHsyY9qALkHAkwkxqOxon01j7PytzBx6SaDczjAw5K6Yna18I9vmtg8PVaKbBPAIrkQXWCopafCHR9KLeGAcwOsDsOdS8NWr6W8SPbCp3Y0hzsGy9oQE1iqqasR3D5NlRs8URAoligBxCSbF9tKH0tKj6s92odZ5tXeYXJkVPFe84e01en2g+LU9YxF+lb1wfCxF9pivVaI/AWVcQDlO3D7LE4aICrdgp15tiLFppA0JWldDO3wN6Zh8odMLzoNtNnhCCP4kERHBMOTdqqvZB3OU1qLaCawXCCUgLmhsU5jmRbFdYp87cXypzsNArBPkFixaPTn8AG2Lw8pmVTK6jIcv7Puj6etNwSDRPoPqtz6bOgfnzHPBk75BJbFTOUsB2cRycWmwPUIKdQSkKPEANWKvsEDdIoBd1oPJCweaNB0Eno1CTEUPgA+tW0/ST1vt6qOk5w9liz7OPpomEwVpcdBzNXekyeS5ocnY9RKcjhHBz332TYK16segDkUgdHDWyIC4po12Rkfw4Sq9GIA8rVsbOdYk5KOWBlLCd90KrXHT4JXCW7L6M3cmQ/L9B7uXoe/b0cr8ekwGbErmnpoHgFEa6MFS5o7tThUmz+Hx7NHwQTWSXbinsgsAe16TFXJYqljEoA/hOIofIp5FG4RZEAuwXVhp2FANO40C8c3oo9AOCQBRPkKbgD6yyIchE8lGKHgqaoacEl6jk8q6yJVL+sFOFlsnx+Hi5xkSQ3j2ffz7qZxCeeqXNfO57YK2ITXMNVspAWTJfi1MsUDuxR2ZtvdigbqdXqyEfEgV6SAA5ipmxzImckxIBUINiItsZAn0rfqZ/cRu7rkUzacqY/igUkgnhliderhs2MktQ9jx0mexbXks/IANbbYQEkAaJIE5aXTOgUuW4AH6t+5PbhunIXsE0Dqg1IO7D2LuGDlOggh+EVyIKim4J5JU58ZO6HBoB2c0cEH4EBaUlvHiinqBuFUIFLSIQl3JKUfxYRxCBxmq8V8Zsco+JpV6ZQeGerHLtOKbmZfc93IZZuPLiB6+UdXFM66nu61NXG2yWAqwzSbVS6bXOODs7aq/nT3oDgkpDlRRONBtLQCQDhx2Qyqrc4cEilKRXKb83wqSUpYciBswTiA/IvuUa4UZKflSPNruhw4Mgjul+U1UYwbhuNdA6nbDfmmOh3vwDcNMbxafhNCI2MQPEhUJCLx6TeSOwhttkYLBnZ2AGonZMRK9spJb8OmQPyNg7AGql3Xa4PugJ3FHiKh3E+sERSpzR6dA607jdJp6UCs2AHsoYuJRsEjlT01i/Ku/51awockUXcsUcoJWC1h8hsdpi5CpgF17fl7BYxI+G9F5kWzDtrvAzDWZEKp8NArUNb0awwAHspHNyKxJilKpUTIwAHo+BubvUFFHEjB5NdR6SyX4IIaEAamZr2dOBcgROIhoaJnvBEs7e3qhgWAHgyFThq3F9jJWx+NW1tNieuq5kPbJzUW0NltUzTmcyTatlNnUAoXI8vckwx3tY8cOF8PDHlq1JkhTGkx9BbmErbaubr4uHC4FwL3Tzojtu5uhgoWoalPxgNJ3XiSXAh2oinlIFRw2baD7Van0jixAdQiooeJBe0+OKYlkX2CAcMRUTfYpji0uEM5wZqmj41S7Aqo/D2Cl6DJ7kyw30+oNQNjZvBQJwknCqgCwh7y7K97MjhfUPgPTcq7MTBAdGKD3QKIsiApkxAzgIhurDY3wHvUuTd1S1kxvTXtKGx2u7aBqFn5qmJ7BOkzN01s1KutTxm0E8y+9IQMHZOUsqcQDQi7kRFSMBngcKBByE+e3ooFLBxLwcPkmQxP0QmPE44fRxyabMhA7RsL7NS9vFSnchchsyV0bHw3sdc7C2bMDMr66rvBVB+UoAcLD65Vc9oDD1xrQD2k9AQgbCNhGSqe2Bd1uW1p8oXjaSpyFg0MDqy9vOzceckoFEuEwc3FC61DjkqktwsmaqEK1YNGI2SO3rRSqQcZIuk6hIeaUrDCBgQE3jeQioHkJAXYImwJFHG5Qhels8oce8neSrS1FvCfF1ps3Q6fr0AmUHVv5v6In2IsiqHERAd4iBWCoZnC3wLOS/T0Pap2TVi7TWBqunji8HTscZVUyWIh4wA2SCAbMA8sUUrOkkQDckODEENzOBFUKySkJDYeZSgVOxUqnDfjWc+cxPyidpnHZyhfudzs5fkfdPn9I9Ry0MYuNOmKHTQAViCp4nhk4bo4+nAZFzeej9oZ9UD3nO318tSfGUfRp+MUH4mkvXC+++n5zOQ+z7rN68bGh1jcrXzYKRcXJoje234Fvy2zhgV7JwYcu6h6xQQ2WAA/YEJIAKdGEJe8DfPY6DQZcwU6vRfzqwAC1cTnImzze6AekEkQMtAoP03GhpHk0hDMOSaWyMYKWEMCGuxgSxdWqaG+YJa2VQRvETCAmMbyRU3jtAJETEANYV7+pBxlJTpjvTPcr7S6dFB0QuGAMlCd5DeAlABcKyHb0mKAZGALx978aXTUB99U/FWPW885n3Y/HKTUd3SW1hyqonIUDZAPoIF3AsBjyVV6LtAOmartq/lbXmZVHZJuF8hLEXmO6vXInyZbZtrazNszNsZm2zNtbV4qaQ+9lOK1H4JERDX7pIRNWPM9Ti0TXUMTgX8wpsGhXK5KigXiqoVYqJ6QHrc/Ow7qdYkbgT1byRwLbapQNdrHgOTKnaSREBxBA1Klg77a8MDOeMQ1m/15KYNjR1gvRqb2d9Y3p6Llyu6IASCIG8BEyd3xoD4yOGEGNS9nrw8zertm/ZMvksmYHa+h7vgGCd7d1zwTc4thQKXI59jU8Mm/elAzl2HJo77hoE8NzjjZaPQc9h633vl0TNetinq0F5ZUm0L7Wp758Pm4XmPsSrYitGl4XiVkgtTsvZkNypotPWG9mo+U9UBAyMIID0n1PhY+8hqRIBywoQB8IqonMTkIpqRDh+NA/AYa93D8AEdIIK9uBi+UPt26iD2wVduiQ0gVFDFzoUA2zn0Mj1qFW538Twmz9glotyCh+EUY8FFAvBUA8gDaeQqamam+ekDlnO5j2KaRJFhBPp3i3m/lA+5cNDxtvOjwLV9QVGzODXQD4b46wDjB6Ne0wMCEtcMGSJAAXoAe/pnPsNdE8VKigLq3umw64UO5Xir3hXcACDoYBKHt+n4me7lrlaKAHzcKKKcwB7Iqh6GQd+0b2OD0yHxKmabMNg4FdHPVB6PQScbMKgbhAVKIpcMy22aCjRQsFzwhECIjohMBn1Z2a2eb8rc79vJ1Wah9diW5zv6anHuXPnN9sE9+BlgvR89K/A9qW3vmdhTwPZycMIVckfXnIUGQFTUCgB537LBgE9jpjybLT4hZiWIIZkFFS2QUEexA8IdPLh6pvAUO7oMGDGYLWvtqufncMQBwX5L/DnpNjI55SSQNqGmz2lEsmxyEoCrDuV2ND2eAK/fR499/A0LjzQB6MsBuEIaDsU+lsgFBinPLsghlAQPxmkEATpO+1TYNbb1psc14oPVXo2MwzHs9R8x8FLUHjtOkq9HVNmLpKnzzBL+HAeRvjvzQ4p4XmRA7x4qw3KoaZ8J8Sq7VEvxiTZbUrZW1KtgWxTn0mloGBoaIeY4+SFcQ00QkVnZCxh9qn3A2GxTtMT4DtkO/Bihv3yn1L3ikB52T4Uo5yOW9PGTaHbfti6+Td2yQpV/GzQRFOJCekhN3lNFbnpLCD+tAUBhpDZKqzADZKpWrSKAQCmi1sOywlcra+XV1e2DACC0UZSSQVRkQRZdJ5nzxLslBmytS6jNbVSXfR1lSr09PdIXAhKoTIl4UnVl7tS0hiZ6LFL5NWcDnjWXkrEREloyEaVIlKTaZIUPWklvQUqFgsFsHMGC+LGc2XWCde4g6Tcooj8IBsOyN44FCQa6rq+t4sFc0SKHNa95vhDZhsylxOsVF650cpbI2S/GkkZKolBBxckChat9hZ04cOQqgoHpEBCIFUUgRKnnW+WyzNUq7cdPHCZLlTObIZn5zlXYtTWtakr3YwmhhOTItoUtarlgKnJxbGExMWrVltsyzRmrVmbzVKuC7+DrrblPM5ehqzZlJXYUVIsmNl0gIWu00MASopug2dPSa95p5jKUecp6u+m1ozZpqVLr1JS9DGFS0szs5GVKIWdVJWVVRgIhIQsXCQwVAVGCrUAYzoyZdEitYEAtAIUo5ormExqRBA0QAaroFijVbGbo01BRLuUwldDnUBFYmoSmtWsZdBhMJYsrq8msZw1GAoVyWNccXCl5xrVbsg+aYCsl77kCxw4AitiExIA0t6rmNljJixhalyecHbOXjAzUcoLLILgQ7GDpBLYNTXGG5ZmG5TAgEgEIsSQgJGmaWaG01g22zKxptpk2mwy2zZjYyZisNsmaaGVm1rWmK2ZjKrbVqZ9DaiVcTKaZBmgLjVVsHJipxctBVmyttjEJAGpCe048aolnScCaYTDw0slW95xx5el2vznZcxkZsbbNDe4UNqSuYo2lzUrmVQZoTGrYDTSqGZJNNCq2W42YNq1os0SrJm1GtMyzGjDRpmW8+vedBdjVAbNU3aWwRFw2Hh7VBquiWQuswEBDCQhKCg0xCWCMVJNShjBLdNJu9zWNDg+M0AzidMXcyIV14hClYlUUdxkIChe1shPDZjdNDmEFAokCKGsjLhxN27c7gDoM3dkhoABYqnZgABctgsGquitQlOTCctXVspZEw2ukDKqUJCUAFruxUj2mZHQWiYTvxONNwSWTRVc5tywNhtzWBbDeQyNwkc0n9NF7qALd5lyHI1QxhhwF1asMCXVSxQARfrouXOjsXKBq+mVwvRyy8aAY2Xg1jSFWCat9NRww6JZXUtzISKJdl6Xa5XVtGtWAm1ZaZrLWsZGYzZNFrRtm2ajbatMtgNGjMbKoM1imrGmrGZMzNM1rUmWGzRtLTMtTWNGZVSzFqNo+8UlshoyVVzFUGmpcjnKVuVMNbK1NTBEIRSQ7zzccXIzLmIepANFUBJFCtYqWYlK2k2RlHoxxOjHNHPHFjshuRFEYgwrAhGqqq5YPLdqAiUh2kMsKuEhwlhQuyimgBWQHWCmsDAxtczaHJ1AtiC9RUVzTLgvke9QwaxYAUc6Mhos0y5MVMSWXI3mqWTOMB5a6oE3W9WyW0Gydw5TSTjcmLJat7Dq98AFQBU2QDgMyBYyy1MOChl9jrzfN1BVuFEplqt/Wke1C+Dh0UNmzdqgFZIKLUrcu/CrYvGdIVMpZ0XCjswbMVO9homGzdqcfJQ+8CtjYAWaolNTYuggAQfqFEowaVnHEun29FmiWPy5e888HpXxOS5NmAxptj5VQrGSIxooNaXJw5HLJAcmRK5Mhy1OajlzlTZU5zGNZjMYxqxhjBrRpptMyzZWzUw1jT3ImfDiwqnBqPBVePE31TAVAfpYEtBssQoJa/ZWlsAim8inMi9TRKQ242TQAi0rShOAiNEN3lFEclJYqM1TAV4srXKZTulwBtAliq5hyrkuvT19Lh4hslNkB8Xs8g2HtCXjZAKLog1AjskgKqV1u8BLXSOdGkRFsFws4c2TF7FLg0dBJIZsmcJULFwDJOVSR+JIVriL3ruyVa3MhtJ2GTOGmaiqjl0WMaoFahfIVMmWx2oJOS55NIiRoKOZd8FhwoCJOZqjQhCvfcpYqEmSZ3QAagDXa2Wd2MF1pOcYXp0IytgsCQSSRQKsLoLImdUtLvdz2O/aZZptlkyW2mptWLGZMxqNNNbWtasmmLVm1K2WFozLRRatNbZErYsY2rNNsyZtr4IVcaSDkZSFbUarllEZFYMIJGJFLwpm8UzunBum9HLSFTxOek4ctqzY0zL2rmSklzTmVslbAq45o2zWZWabWixkhEkiyCQC5qFcA1peEzMjFa7ZhVd8c1KPNlTiql8wvFOS862tjVq1bZY8N4C6Dz54npKgGSAvWJFVS5pJAnCaSSLt6g1E8cQLaoVqKkKS5slGt2cwTQBw6vFkLBYNI6psqggsuCur5No4tJs1V7NLURQHLA5YTjAmIgMYpVouSSawKoPEXIgj2k1Nkw3TA31DV1uWC20DcjYYTLtLhgaZTSaTaWI0MrW5nZVMvcxeudFmjWywYXIuUACUmww4U8tHexQFFa7LiCrkcNDnLuyiYlGRdW73psyXKK7YoAMNAB2XdVZ6MrheXLau2Mt6TXOcFEOIZoK0hAGIQAiEiLIyKAyKIYDSg0MGwyYhrSWbN7uefLyeFpplstVs22azLTWpmjGxTGstGrG1YbTVrGJo0tatWNY2WNWNGzBsZbTGhrTa0xhrMazM1ljEk1qqb60KuWUWaEDHLiQOME4nI2mywxhtpbFvtPh1Pzd0/Mq4Q3SxhV/Whx4ZnRgPqQcgsOielTE207x45bJ29LXoUA+QBMoJICAGRumovHpo1KuRvox6SjTufVHBIgBjBQQhE8WImZOCBd8dqcVcjstih1ucJoXQUOmCYkXvOgx8/TQvYsedCfNm5t8XzVZXyWqZ4cj118L7qUmj7e+2t3ZIcX6iT+35ZkQVY8UAD7CqwVEcyuborB8CCVNiPjUu4WLfSy+/y+Z0oV1DViYHtESlTEpN7BrBQUQ5fM/J80Pp4sQ5KsdxQE+MBcfaJqkFR3+UMdGQ6V4dmg1ewdnuYrXGhSiG9IgInVghNmh9jyGJQiwX4Q6HqSA8H5U5kOpnUO5UNdDAtvohXAbdw6hy5KekDQxhGxz+NWJskRAOCPTH+AX3qKptib50HW2eC6QG8BFNogHJSih+gBm0g+s5+lV6LEJ8ppF0weDg3blPkAyKqNRd8gEGmKqoG9KeCTJVHfKbXtiI/Rovq11MLnh3/Ftrsz7fHvSpdPfl9ZghfeVT5NQCimMBEUokTKCvMO4phMUiYETc53NzU01bEceGHBmZFQ6IoqP2IasRRFDA7NUz+nKab95bbycLIRZcMkv1AuaR+wrgbnlUD1dAD8IqAcQPY9a7n26AWzoA0jyWJrEM0gXsUDYRXssc4IfSIIhiH5TYycpNy9XATuie3PS2E192C9w9wFATmjwb+a3er+ifoCICqImPxeEB4xKgowwjc9z2OGZ326IJxAGcqRp1QsyPlULcACAggdfThP05OxwDyRKsAAHqKumy0AziZGx7pj9D7jbplqdmdiQ+p4H06CxgQRDOAjrBt9KceXpUMc0oZHO57fnC0MI/h7QvnQbwO4dZB2KivHduelRMo6qVKbazgGuZ9KatrjMWxy5/NwZxksQD9gDa9sdzp2yhzXtI8ECd4w/FJ8wmjFLc/LZunr4cOcHMBpI2x27TN/BZ8+y5Cc9SGwgp2e6UMkDvqVaOkkYPmPfz8xhdvaXmj8KmtzNwH0QKviE7wn4QAHUAcCAq4IQdk7K4dz3TtNvNHtN1D5AW2kl+yEgVIYmmWec7wy7D5aSWOIXTrozle8B82TcqH5J1T6STl0ItVO6TRfyhtA+wvdLGp4NtShx9vcLz1Cf/zFBWSZTWdPIBm4GCKefgH///////////////2B4I+g+hXQe99fdOcan3AAB0F7XusHAAA9Ae7Qp09cA097d47zd4Bo67h694NKj291gp69t572VwU9Z6Vzhpe2V6MOQq3EuAZqJ722oVI9PbjcyNG1MMtVfNKa6ActB93d93Xbu98HAAAAB0fTj6PcEXVtenQNaZfc12vu7hpQodCg9evQGym0tn0K6APoPQAUAAAu+4ffYAFAAB58YA0DoAAz0sAFBbzbV5DFaDWqmxJrKC665rAFFAqHboOKlNFVqqXM1udxQJppa2c+rJ3B6u3jWD0d3YHB6W9DuhBuj3gr057zDg3qrbSrZe50dd2SsIqQACAARoCYgAmGgGlPGgDQRg0KCSIYiCaAqmIgNAGgxBiNANGgAAACKCaEipo0aSGjIAAAANAADQAAAFJSRDTSmIySmeqZBgIYRoZGEAaBoaDQyAIkiNAmQCkin6JqA0aeoaA0AAAAAeoAIlApg1GQhRUz1T9Sfqm0MQ9U9RtQ9QbUBpoGQbUZAZhjHlGTlU5RwDmMY5RzDkHRpah1GgcY0VB3ChiqT/PfxndPUuXJRkycoRAHgPCd88pSy/9X4yThXIHWHQoKvNGl59h2iP/j2nRGJToTxCXEAsIKCPaBIlIm7H8DudX+YJ90X7YoAset7lFYQd7ojTspapMVGRbRiOIfSRgApIYEuT0lY9osmnBPG+ALcZymJJiSTIuYl5B7Q6DjO6l3xOctFPgXd4fJf5jxTgJ8D4mMjX4lQBkOA2l8Y1JYYtvWutISjzFd28OxZwGD72nW+UgPoqrhund6XEyGDNsT/WQ+30pomW2zodxPxplo1TnZ2zBMzBKF6nsBOwh/AvMJBJFa1wVv/VoNo/xBn+7q+9UNlFia5BktP7Re/7yS0T2cHP2PrML0+kLZtxdTHHVoZcdyiAyTRyXadJO/rDTnr63cn08d3jkDt9mv0Zw/P58n6p6CbHP6NJKSQ/9sD3xlvdMk1lFF8iDaknj8GQNHmpN5++2V90Nk396VziVmhr8/oetxHc2l4g2BVc8BS6CCDDVbb9E7S8XzH+HzzofMlFVuH6Sve8wTm1w8dtuYXi8gYJqKx2iKzpWlfyPCl6mWL0t6O6vcgRRADuZr8mjiva89wg/STn/Nj4TJZdzo26LknY+gx56Ph4PJinxFtLD9z03m8QG3umLhoL/z69uOf3rf7h6V4l2VnOHT3ztnIZF6ncNZsYdlAjN359EmpnhvcUGNENslIjeWmJwwN5DdPPJM3lap/pJsSHDcdldEfvWsDcP+Ifpb/Gdt+39OsYFeU9C6hJF+ve8Z4/v7jBi7yznoPDLun++k2DoEh613D3lvpP89R72T9J+15eH3nwP6dU/0w/M9jQv+H6s/tyP7E/do/XdSN/hs3M/VD9gYH+pTY/aWDyAQeYFSLIQCI/vSx+b9RD86D3I2Pvd+5Ux9v7/oO89cvZOhqH3NSu2kp7wFXzNwoeXTgs3qB+IWOKn91E/MKCodDbNcSTksmsMA6E9vgYa82UALpFfpgj+nu3NLG4yywoiSpCQg8tD5EFX0I0lmwVRJx1oly8J5dLrYbm9yrSIWitISEAh2FtgYZA/iHW56rZQd1St4EvlqtiPXBxpbJN9uXMzJsWw6bZVsnNNp1rmXWo5ptQQgkgMgKAHKd0OR8GLuZSZ058VsHmlPB19BvwKODbKfQ8HryGOF+TXuVz32GtS/v0vQKXJWCic014L+am8fUQ7mDBjse4OhgKljIxFR5IDtAAvh8Xu9QLBD3c22gdi4+JmEk+B9nRTrJcvjczN8Qi7Sl+bBT+PnrQiKo5xQ9hH6S3w8nh8Hiww5PRydE+Drtb7CygpbSjHU9m1qqmGR3NNhxE4DHsboiyMUYhMgBJObOODBrvu9gOvRz5/W+/r20TZ+OjjAxhmCpZqBsv8FVIDBWBCpWZESbTRhFbCgWxVDaStibSVIWsgjaGMCVrRJIxjZtAGasyVbFCDYSS2lNpzcZVsVKo5lKVzVCTZGy2qbNoiVZii2ZKspNrTElJqKrAUtGqrKFZSONVxlBJtJKZolWwpW0s1RA5mOcApZkUVY5qpVpUaqq201rRrEY1jRKsNNsMZmYZaqrYVYMEq2irbYTaTZplDNbUbNrZJVsqvR68LrVVLY9WpKvr4Pi6qp3wsdHNnHvSVcPjCNcTv1SyqAtJmwURPUVD6iA7BiiqR5xEXs1tG0URiqWqpQky1URV7slBXGQ1pLNVtUip9HXAK6agNqqlrVXplFU8GSqvXKD0Wk74VV9WlD5MqkH4NVoqgSQYDILQSN9OrYuKItA2nSNmBO8EzeYc0ZrKUk0jYMMh8R4sqStXcBqTjUVOaubrpTnHC6SkA83E0hWEnzS855SR1gMU0CqNHgMjBLIILpZEUdN8ioFEwFFFNjUI2IkC5RQ2hpg7OIkCVlzpDSo5EWENo0bUkNsEsoit4BRsRD1ZSyidLuSyEqucvmMnoiI5GCoLEbgH0QjZRzfTab7INkKjfV0tlujrI0dYOtdoyGmHHqo0tG1ZB5ZJhC6Ix2zSQSBugogIGLvgW7htg1Jgay9bYmBxDbySgFGwhQiFVRiGrW2ZhjQpmUVWtUyYMxkaQrNBmo2k2GMUqzbVttGtUtoorWRmgtpI2kljC2ltA2ktJgjMq2VVjDZbNYNgMsNoUwybFWyq2hmFWwbI2DGqSszZGpRYCsKllRW0oGZbCmxrVsWrayY1tmqzSbULNYzYthmU2mZFK1qxs1bTMpQ2MxsWzarWEDbMGjNoA1WqzfWzVBW5jk2g2pjJslrJQOLNaIram0hzY0Ki45cqpayVsLYLmii5lSqbFZqrLQkalxqlbUasjNZZmoMxqmAbTWpmqzU2LaatL7CiyCruwMQ+XQGM3MChbOFoNomPdpJQRjNopZrGMzySGsErhzilrSoRxqVLNDhkqqyskJqyBG0VQtMlsSFzBCmYAc44KI41VM0opc1U5pTYJKcjgttmwxiqWaTYamwwppMgYzMptUKgSJGEWTvo1HexQkNnXJULJYcBrXdCAsgqsBRKYgAXHIZuUAVmEdqccq1hlmtr0cc6YdnJw2IubEEWibBFi4GSpSFJlSKZAlioqCQuVJokmG5ZgChJAuXm2lvXMG3Yg8XBEFpRUaL1Oj2F7je/pjO+YIoucSASNIweAm1esD4woivA6ue0WnB4OOWprM74eu62dZZHUKILVZOZxQ7tDsZUay+m+Y2NBgXsrQOJFfF6IoPkMACp1lkccKihh6kTJMEk9XA2awwwLAEFJWH1656mxTYHrvCBSh4nCroAkSwhUAfS8CylBFkuSAttug4yIKsyQLmhoRHJLYSxmwNrK4HzFkmqu0LbSICA1s2nhJNWHSEDDyDT109cF31JVsFmmsGLaWSzNYtjMmatZTNjRjLawaGtWZZizRbG2WbY1syRWmZsGmCVtjKqGYFtTYmGRtI22VTVpWzLMNW1t86pKc1XMlVRzIEbUFbJIraqicc1plbZqqKxixptJj6rvKNB0cVmXvejW5SwEIJIDAGRFjpms1jG2M0QsY1tWjJpqxTKqmxtGppbZMiSMFGMEJJHMHs9g2cYum4WqFYFOON7YEgSdAMpARMCzjV8LTnLGoAeyNV8jtVFcoqvcy1szS8NVkhdqEIx0aSzbRSqQVG8QmQ6J7IEObuuBJMEL55QiC0LDhkIeJsCagDMsxbCEJKCRsYbDBxg5V2RzIUdTwmyENQgCvkBRXEykLOTOcgQhCSTkUElyz3lk/yVz4+tl25ZKTjc75yoqO4GC1qiAjVz31PIWA1KVqBANUDXWaaXcaX26dB00Hd1QoqIsgkXb06GM6we7UA2qPCUkrI4aUrSJAOllRCwGZDTTIDJjqCVYsFb4bve9/Sh6NbRDEzLNltKpapZVVplUy02aya1QrZhpFWGNrWLbRpmtNWytWyLaVtLWGzRmqyajVCsbVphZgzamzUwzG2IVpm2rVJWGS2Vs00ZosmQq2I2bVFstZsWYatZttaVY0sNQqmywyrTexrRzi+4L9cl5hwpLgGIraVK2jZsbWyNlRWm2KW1EmxplQ2abNW0bRhpk2xlg125Pbverv22u3JgIvwNbmL1qPyB1AER+iLsdjY2rY11hmZsW1maiq23nRwzdm0qXljnLiaGXOzqPqdi7sIonDc2Nw3wjkmJ5xzYIi3r0+wFRlDcC8bCtBYDHLB7Pdd71QzkVByHYZOtvRpOwqqPVvDZs6Gw3o72eS4G12dHQa5BdBAEiTBhDU58/dJiGV5ZYvYnr3PNAmqgpGXusJUXVqVilBCU04FJIWCnIDZ4YMl+BgVXl1vSgq4+GUdjh40drZpnXbTtg1dXQmzZFbgwERYEkJFkRVbZlJWDNqJsKptppjZa1qqlrSa0bW0a0bG2y2RVbbNpqxhWVUWrDGNhmSlba1sbLarNttNbNttWolbbatjLqfeo6X3u/mtCYuzDpZYkdIRUGIUYgVlpjUYhWNYNWlpsNqzGlZaltmTZMTQb8Pu1VHPDltuEHQKRkpUUfbExsufAmwWQ2ILW1a2xu3EiuvftU7vN4Fwwh2coGYRVGgKm9mdRY26JQOstsWmIWUUGk5rDtPNYZsJ73XVaDoGHVM32+8enAo6FmbOcFVHoAq2aZikwFOVy9wCAAjAwRKZJRWLNSK4bi1dOvlwdUVVwIykCvnNAF9Od6psMVl0lYzjFbZlGHPpwC62bcOgywnGNPWQHb6kkEkij3ga0hQ6uGlpkq16NYkIHcHSqFbKwLKz7XsqpemG2m1m1GxhtIq2GDZtWkK1YabMGmpayNYbSMZNWmrZqmqYNtW2SlbNWJixmM1WrKSsyRWsjMYy2WzAyLYTqEQ4k21ZhGCmQF8byZMqjNGWRiZoZWsbM2aGDIqtaGyM1itbTRtNmVFZAkJElS5SvJuYcQu3G3mylQC0UQbR7dSRdfHZzVNVKsVWmayowUY5l2jyQVcoiFRHzyrQGUXjNOESFS4qqapNowVbMYxQU2gbUtko3FLmXr5PTru9ukdMgT0cDoW6YY0mmuTxkleWrRNuMDS4uCgL86QNF5oQ88Obmt6ywflGzwpwitoRcBAlRbIBY05ckHCAinWAJ3IClxwlbUxm2aORNC6umMsFFwwUUCgtPsMKA+xmm2C09871DePmhTN2kF+513XWR5943kBvc9ILyq6wn1+nm7y1RwQ3NzLrfQ3mdlyio2qqiII4BSBwIZY8O8L3ow3SCC7YE21fHjxtxZa2U2Ni1rGW0Zk2zbW00ymyasxjWqmrK1jY22UlZopa22ZZsMttoSto2rGm0xM2maSVspprZrWKy2mWaa17XF3nv03a9hR73DVogo9gMzCno/BZVJYZmWzaSVlpYyrDKlWNVY1rZpqMYtIxpm2SEIrBBVkhaFmAYLFONDYxtepoXPV2e44OIqtVKtGZrNbuoix1VBZDNNojGAKl71zfrFmiUS+9ikJhuNtxs6Shs68Iw2UqKNkeEmEu07QILksgApw2BGFfO0UXJd4ZAbVUDCDNlnFNHoIDM510gaOUZIHeojIW6FpoVBYnRWoNBvkbI+VFlqb6FhSBeM1jMLGlNgqKpiFIRhOMiH8x49eOg2cLVHLOl7LvN6rkVAWfAjbVjBbG8qAot6qIcTxABLQRXiKL4gAyNTV7mXc2uQQhJFkUCQipizU2lmlKtLWtZbaBrK0bWVjM1jZgKzVtDarMNqJbS2bJiZBWa2rbYbQNMY1WRm0GswwwMD7xmiyRAk775bmt+lsMVhbhW1Npi0mtmaJNqCZVtSzFFZlsTN6a6evr63QC5B8Lttx4AUsYfLdgPEO6JEQXZBEvighqEriyNlsKKNA1RMkRDhgcttbLYt4123A71E5ArS9rv5k1EZEKeY+Sj7StLofDqyiZvrGWCRidDSFtcK8MvQqi63es50PDqRrvfp48evtlXg0hezKHsynsaFKUssqRPjPbvXZGiCDzkjQRs8MKbBQ76YCKSQmwgkMzM0lFyyABKmIqTYZs22bzPozXWkPGDGEx4xYbVHN0dhHsmkLpXyAFFsWxiJ3EoCjCaPMN3upHwNbNPjo8fOtKYLDDAMEJEtNbZpVLZsm1tMsNjYtJszbLUY0tUtmgq2zNobDMNNplMbaptalKzMNqf1A3DlOOWVKtiSEVsZKCrZskXGl/WxBzhU3Cxf2+fVfJXnOyZQplQLy98jLPJzhL1eGDhMRhLVNtobL5MNVzXNCJxicwuGSBy1yyJXOOHGErNUK5oODE2Ebja0YWYtjSa1YajNrU2sYbCEFgc9626aVQXEcwhBJaqyL2oLM5tnpd+107NhsUq9HDlphsCMYwSMkUVGBPGdGO6JfHjA5iZm6Eo2qOs4bW1TIM3y/qbZSO8aZ+LtELNZLTVEbZ5QsyomUijJikMAMgzvooTwDKTCvkfpmJ92XnfYJB85je5feCMcIRwqKMIICDJZWlwLGbBhrVOMk0icF2HDTEA1G3HYKKxU2hrVAbOZARjOY84YkdE0qOsNconckiILvHrIFcewdiHsLDUPcRZiTTkYE94pQYNJgKZtNM0zNpqStaKaaa1S02Gy1MbGoqtWZbRtaY2bNltWtGtrW1kYbZpWNZGGo1aqKy2w1maBWsZUq2aaTDNSpayaatWa1YxtUzPpKqthSrEpaVSctUNalVanDNUqtmNLW2pStsazVmDCV9azdea884csBPFBVhEIFSIFVUSAW6M69prvFFR+iuCjnFBlIldZ2F1LHcCAVUgSza+4sGAmEmSq+wE0ucXaMPtgERaq10raS7CtX63ArPg2GRUObskAkrrYzrnYishsywPSULASFVcVLhpvFVglOXLpCEldGA6DCsBxsE7XFVZRwyRti76rSsWxmYWbpIWqRXL6xlOy7bVGsIBHW74cjqSdazqoyXrVTZrdu3HNu0RQH50EiFEBGEFeTxRDvvBRR5IUcn0V+fgM9HN4cnTwNorMmTWqTLLY5NtVu9g8vWt0MR/DD1ob1Y+woqjBgxhBH6yBEE1Cu4QuIq1gBQoLQA6dta5MJk7KBzFUFt8DI6SDhOYJntVHRuedPwZuV6HsZlLzfubCorYabpQSCSQ5XW2fcS6dCas0+1gy4TENwLOlg2W2cF9RDOHylpPwRb2oYBAIw+QUH6RtB+xPq2r0fXtxdXeIdsfFmL4uoKe4AgGmtOHLBjvFsudPHLGEUEzN6SoqaQQcMQRDCHR4KWqA+4SJBiEg5LEZ6zold3SnO/UeIBtkPRudg8NFQAyibG11w0QbtCidyaB6bhVOl9DRN173NSOYQjwuC5EuvkyjkirSxaB8LO1Q04NA2LLjQzyu0jwOOgwmUEEtBU+EEAT1FuuA7lHhDf6U86UJXS5h5t2Ey7NAqj9hzFLBuPki6wnJXw7oHiquz3HIY6Gg3fEebycD21LvxxS299yxJhBoI1EWoBCIrc8dhJLAv3OgdtjUObL0ECipa9yxYPZbHKhQGnha5h7zUtKRIgMd+DTrTI94Mm4OcpA5ytJYwbx2dn09PQY8dkfOsdmE8ZHNVtCQEkFQ5iKAcO5bQZj4OGHUQNAgig/JBe7DxnR6DWHkN0MzbW7Sr2nkIZigN4uTtyZjCPNzmPk3DUrut+e4adko7NO2IA2ZSyXdJFFtjLG+DvN/NqtW3XRcGrujhzEE7hBUA8RVTaBeaxdWfAnxbAbyQfC9clgPNY2Tr0cY195WexuFL3MlB4NVvBUMwU0CRYqeIh3CLUjZDBGinWiC9zfyQCRAOWIHmCNnAUAPaarnSGAg2J4GyZRDiDA2wcDgKAtXDBM0pqxvLzmT3Qd08MH2HIbhx1xQX3Ti4ZsJNomCKQCEDN7RD0rowTviQxhrmRMw2fVmm9lpg8Mk7EO81rVzNxA28wmWchcoo8HyynqH0gZwHyQLk4U78XvmeQOUQwjQZZBcJ6PJYIBmea77GNl8Opc0YsL6NGZFxBJFRB36Cj8wO58HJgCygq4OuNkeFv7920JZM9ey6v888p+kWDPr16syreAe1s747QEc8GWur+pDm5e/wcFQQawtV4tUr5yFqbStvHjHB63O9nj1au3O1YQwxLm8vuaTgdmgVu+Nuqv32NuvjaZe0/Fp29HrjFtpo979NcNNr0x5p7AZnofEnHs8mOOE+Tz5p2L0bnXnl5NyH2URyjIjcCckD5LhfQtjffyAdxyNjcR7hEQ8kRAHiFodlOMcg9zRLbnqlDwTlH1HqKKDU5YCZLzkPKYyC4XPOa9CHjIwudi+SOynwG5yhbTC9PHgtk+aHpYuYil4CsiGJpBUeYIL49tA+SJ3EZcJkDPqW0nO5iyovJtqtvi9g45L6cBT+TwNProjXCNg9FdlvetCxwfA8WIMT4uM1KkeBjO45zzR2lGfOWnACnU8EHQ5cS/4442DwGr6h4gZY3vvnD379SZt40B4MkdiBs/H+F/kPx6rjoDggoo35p9MQ6NS7rgLl+FoRFfcAjbzR657DFnJyad+1urS3Tcsgx04GLnYHEgvuEKI3Kqphyz/2CTs35a7DPNkJ5zmc/EEZKYm66SyQjTIaJJ8+UgOfKVI6vx1a+viga7SDRFkhE6yCIo83aO87+VR3P4sOV/1oKjRQeHiCWFRLqiI4pd0Wg642koGV/9Fi3IXDZJ7hCKT70kTrNlhS5WJ64VxRvGWOM2mBfC4KpGQobWKZ+BpfYg6vcVBfFKKpwW0ERXb8hFR6PR+hjk8gUxIKj8Da7gXS2QJjWZEoKpZMU7DwqDyBiD27srXExHQqySuseqR2wftM9/gKg1CkSP2APe3I96Uobj+7+JZWPzPmmX7PfabqVt9uZI5prX+nOdyJC+KONwdeXtdCjkiKaMRthevQmhKBxQEEyQMMU+JYhgvz2LA4awsRSainh4/RqXjXweoGMZUx1WRwDBTc0aJxy1HpqRQWbC/HpTldN8xF7qmQjaqke5ZSYymUkbsXNwql87ZMShALmqXBZLdglvvB3jQoOGSnk2JIQkxWKqje5qBD1SRBs2lPISbh68H9JP4IIuVTeXLfDEwcI/6G3AwyKAHOcB7k78QVBcOidSwSN+UYGcgAegmykfRwd3zq9qUewoQUfEbnXI2g7SkQ+MgEcAMJ4YvJePjAd02800CCJ74bsaCCxPVJ0YuKHEHTU2ipDTPEPUdtSdRFdkvHo462j8fw885v8/picNACvR2oPakUqBdi/nnqWP54uZfSP9cu4/Wai/ogvyj4WDYiG34K0/I6MflkcO9lRRsJe9xl3dUlF+MBv/zCjKXIoLhOVnX94GsPNOAF1/qgG0efoeqgme3wIqOIhgNkVBmGcVVL8TnPYvkQgFhINJ5sU4FSgiy54yIszhbGAkIXiBR71NICR2cAx4sNcxyntUiJIW0dCNucH7IwmsH2xjFDAeqhr3m/KBIrNgsfweEGQvkCRyRBMQCSki/ZCSo/Zb/xAMJjvcqFP6j5jJpXZP55kRF32zFEwNA2RiJeIcA9gjCM9FyP8sKV+6Etp9EgqI2ZP3sBX+ayfGj+06iIP1IsgGR/i32xfSfmirOol4pf+V/4OSxrpR/c2/11MxFX/kMBVX/iKAsT+eZYmww0wTSW2Ru+JAdSqCwG+QAxQczB4Vy+Va7Z+MzznQk1+6T5ufkWnYzfqGlNsUWiX2/pCoLYPwjNYHMf0kfR7rWASCfbqXsijgv3n8xcPuB/lt4iNj0BQNF3GjsqPS0IeKFFGlBV+fkn7f/0FFnA7cyZC+DSDhrCSPHNXfiEPBALlVE24qaEVF+B/+qg/TEKZs/klEQjVgM+1KlvXrkh30le2RG1U2CfiiMUv+mFFq/owQcQAy8gWUsTDB1JM/gTh9vXbC41BvW9TF3uciYYyYJzy7z5T+hil4P3NYzLX1aLy9pc20/diH1ajD1D3aYfdmbLGWKu1rbm5raJM3kdmJfYazbsXtixtLOUzBQ4YxiawpnGNsXh9XemxF2zcanZjOrTcs192zm+Gvs+wU+iasF2M7Po3zRjGtnUw5RqZa1G8y7bb2U3ymwREG+IYu1VO+98arEzteCN3lus+MnM7iqv1clBzS2S1kn2fpHDrL6DS5Wdpqn41LEUdZQ7I0kVe6ScrbATgj7mo9WAuYgL302BjC00WwtpqMEZlIry0KGai2mtU2qk2IpfSRramZtRVatbDVpsm2bVaGmbbRrLYNplNNmkrGMW1VIXxqAf4cozC1qJC/BFVkoo4qq2pV50VchSK64iVwlaMog2KQ2qSU1pVVtbJmEzV2IqyKF82pw1SRtRBslQtqlL4rVVPwwpbSNpSXstKSNm1KsWbTSwsam2yya2Nls2ltWm2MMtRqyzNs2tZKVstTNY01ttNMjM2xtbW2LNNrbMbWbbZtq02zLNlZjWYzTaUqza1NZNttNmM2tbbbRtaNttszZsjLQ2xVFeGItq2VQetYjlaFsmZVtGyr40hXnV1ltWJK0jNA2hUHt1wqm1Js2WVH4tJcWipyD64uU1aLqbWaBsbW1NqqVtIxhNbMbA2FsZo2bbFrJbQVW0LaDZQpO2iO+F8tD3tKl1pS9dQG0VV/LzSeCCJwRQ0iAvRGmCC+TSrmFT78qnxq0VLKnnUcotED0aEHSI+elXzxLmJbC2qT5ZB2L2YLywvYgigpeHqAT/bkbG4CYcKwAG80lSGIdnf04fJhX+QvWoSno7c5KK0ke2g2C+tvyZ+cyCuzQ2l3oEkvYwTox1HzZwhOz3/vdcMvjcsWY7N9RaqecFwaxf4yGt9HEWG+lj2EHtvTPzvTMlnWSMVheGNBQWYjnXlF1uw7FFu7fVZ+N/NMdnLxvqyuFCMQ2xQXJEzE37HVK1hjzQHcv6wGe1bI75UMe1rh9sY07+kQy4xm+72q8pUtMRqFyX8SdLgY+pdpkvchM3vd79PxN2mT2/bOPR3Zw0r+PO+Xg5aVLQQRYliBhITeLHPx9bPxI3rs17w5r0ZS76mx2ErSlXSBiEFVH0xAqjw7cpKth2qWqnZpDdcpwYhXz0HTU+udqY2qjrcaonvopL19VWwtSpciralbFVtCtoLvgbLYp8tO2v69EfhmynKX3NJS87hn9Ebp3c/sMVVr41+uK6LlQfyklsueblv21+ggHm5TrAOiFoh+n8CCLmiWVrgo/RE8zx/BWsNiCaPlUahE3tT+tZmT8AfoQlGp++FDxXLTX9vucOpRZ0xsdmr9RkJflNyJmG37VF9wzKARfRxo1GhG5ehSY+9SX6OE85Oxd1+fxVKuZm2o9L/hwNQzvU+wiqo2+X9VGrjIUBK709Qe9qAeZmQLBsFB3w+eW+ZBEVvBz1r2zvLfqppeqJX4yUuU76H92dc+sRWnuiQF7j8f1a/tJkvL+RQRGfsC1SHYAg3RKglhPIYseeNeswL4UkWfMRBSop34IPAFqu0100fAni/RapnEPH7EH8kgIL5zDLM8/bLQTwKpc+1TmfinKwdUFfBRf02oH9NLQ+GinPFvwps3tDwROkaofaAAvuh9kPoS0dH+O/EFR1v+YT3EP5E/dy9WUVGEMMTQQFZsQbfqs8g35yaC0PyjoTqJAn71qMwOgS35+D6ZnJMMDoEvR5I2IXlTrVe9qsBlqXOiKW/yCU1P1NVIihqIeaeSfTQzSw/l+OG5dNQJSRtqUfnHaCIraLdBUZlA5ar0F6tlZ0v8QmM6VEWaENgHQRnWGtEZpiBIr54BPp3jaZEm3CJ3tySyIq+UIftgdfrpf8xmFfIIKuUaAnsbPZK3v9iVroFMs/gCOWHrSgfeH3lU1/xmXcOalyLVCi/tYfncT9bMh5CB+on/Iv7tT6aOww+y86RhIcZfosn730oR6/kVzP3MdMhUbSC8CEKVJUelBghXh0EmXC4SPMwwx7nkCRuyj5tsBA/qKJ/kBE9UYRm1r2yOQ/RwySImazZM70cFyhDp+Wep+nU/9s7WE+wABf4ITD8/CQ+sAW9gSO4CZAoo9ysq3NFIQQP5d+f3Ub6RfENdTH0AAtfypvXdtm2n47P8HssQOYWIAB7GIn78F1bcVNw+f01D3BMQMMFP7DAHeFoOIeZ/UQQW22afcr+D5+qdzGqO/uc7AfVD1ATo5gAg6+QFD0QEVCQ4CZuVv1qmUvX65LfxEF7YRbEUF/gV5B1RLvi2AD1ApT2pPfNedM//K7xRNLNYzmDDdHoC/iij34iknw2VLrKHNpJWMNDCe6P+KktCZMwe3PK4H+ta/bWxAL7HB1adwhH0Isu5bOOih/c/Slkvb5+1ohY021EPugCo9YwTuqPZQRf9pdFUPcQ/ApwtVN9zAW5borDViJrw3yAfafsIyxRoKjzxGzmoIQUVmgIIkVu2pa+4nRMBqNnuqNBYPamEH0nk3k6dZQYqQpqNglPn74o085w1F5ZVxkYoKb0ET0QZD1r0Uavb15g6YQgSp4oo6AbyEFSG0p+XY/PWx/1/KNnlPwkYOsEFH4ID4qafeFH408c54OIJ3HCsaKaYkRMMFBUiYneChxrERFrPpJcCGxQoKs/mKsQ7UgFbTtBMFG+M0Qo5R7pETkf0H7j+fL3PPBrAkCQSHgeu7YggR28sR1n3mQBUejIF8EQ7EFeeCop3vK/Wgzpdj9LsqKjFifgueaiIT5wPfsiiLpxT8RhfcJIdWUCmlN723yVT77W9gegXg8AXFBJxLLmJZXCcI7445HqY4iYtj6yhv/0JkPQwZt3VcO0b3Mn2UBAXJKKUUQXX9f5qC/A7P4QXBkhhOeO1vIPURUWifyfb2odUQsBF8wQIQBIQIQUTBiTlTmybOYnphwo8QoqU5zDp+eXN+XflO7fPeYA0GQ749CcprLEfma6pgpQVHtLukPaKXkLqw/oIBVBBBN+QVUZPoZq7gQg4QvJKXb8X0UfexBnx8ZEP3VoXz1wpZd6zSE8WX1+nsyxJ0bOoJkwHqxgdsWqyF+DFAIhMmqPKTYTKGW8BHoFrDWAULWv8Ak/YSQKcRvHmwhGqNmHvVcGLWigtxPgN3raD+GSX0qGWlFRYcDmUEWiuORVDzDAQVJdFs1UGTA0mlfCQBCQv4DsUgPPlbaWvi+z2KMOcSHkNn7T474fpWZb/7iVRXJosuOOFNoahf1AUFN3KAIv/njzYy924yi4RRackZpM2W1v4+XzljiZ2UJ56S+eLTJP1z+hR6uTrbNxtEdpIZsA/9bVQGkRQfn1iyKTSUg+JOSI/WHewiHE0dkNwdkIy+FU5BheMJ7VlmDjZ6l4Tb2s2sV8oBigQhCAVyz3hIzYW/WQXFE0ofhYYjfriAqfbYEH7MhMP9AJFtktmBBBY94g7MZWExmMICo3gpdtNEQoJ/GICo+Io/oAEXo0wkA95FldjoxK5gSifIS54rwR1+K7RK5sWC92KsCzl/WY1CWvEX/gof5UUR+c/D4Ofoh+0QkzsggtG+gM7p3Bcosme/Q4vcWSoyEtAV6SIxQCGSS82F0j5eGKneTJlaATZWq1YbHPiKCs74YZ/7qvGIBBaDTk+AhLTsBJsOFXCIIspAzogLgOppik1JkTcyuZ74V+Kid3XmgZKIgipfKLDe0oHpNodLoJEOwmJosIeNINHnhSzyGQQVcK7DGsy7AVLWxuwmxN5ywBBb4Xwp80SbcZjCylXAoIfHrintxCK0m/CCozlo2YsZqQlvSzNDsDfoGd3j+NuTK9RNQ/Nw+PFfkXOn5pgND92enHMigi9nqfxuTxuXh+UO9SL4DAP5WfYnbnFOqsqNG9pCwaAH/cMlv/TKLYpu69KJ/bbCH4+/1lf0rmbIoLsKpaCSBIAjfb7z4MjIj/4bm6nYUBcDin1nQa+rwq+jJ3v+3U7HfygItdBTNSxTa/H3eg/UnrrLd+1gD27ociCpGEjFeoP7OITKSDCLjU1wQQXfajNMuy7H/BAsFIKj6rRYW/cpnoi2ErnpHpTuAnP3HZWFDfkQS2uiNS4wGcgDHvrfMsQE4S0ERgAzQwnoEFWOfz3bl8UdjBjstL6IxBQEh568iHpEfL+f4LkwvYNa0+5OmX32If4psfu8GKiaJBD8SVIHgc1Qz8NSp9P/6h/Pv0X+CWSRUYvwFAiI04CTf/njlN9UZc6x6Y/NkjjAi/Kyn1SfDKTzzXLGAqOzsj+SdSQmNrVIP5b8s7tJotKTRm0ucWipfu2VyEUuWdtu2IDNoPAqNABdVEnr2J+xJF4pFHDuyMPXnjQl5EC9AAwxx+tr84fIDJHYVVhbXUhOTc+HwI6CaVvG1T65LgLQSL6bs7e2Adp6RvFL0lEFlmDmwYOvC72+dTHu8RVptNHdvX7MKh/YJCDAgJA221LZsW0NmzZHNLx+XJ7fb+X9rp9Rliy9PB1ahJtdwQGKRIkSQEwbumu8iosJjMz/IwOI/zbAb2QAXycTo4iDeKvdYoCP/v35Qm0l4MfVqz/QfNZPHgzG+tGzmppqRUGOyjRllY0VRp081hhG8eKLYjcexb1yzFhpIf7hrxgy7GKvIoeuPq/aL2Z9MYeS6NAFb/qjvu9fjB2M08s2txBD/dq6b3ZKQ2SRHxYvPBQ9pj7DesjDyhHNkCAYckR4sp5eXOgCu7BwzsZvU/X04D/s5RMcPyjm1evhTIR3u3zCkdHOWm9B2M7mhowlJvauMs+nCOLw4Hs4zaPEnkgfG9fTRuEUZQdLErsh3JfQSBMp9gkC7kPtZ3enohHFqztPJYcseDa3Yj1+6LohXhqLAl8ZkA7BGYP84p1P18vagitrm7Z/KO1++aPNPjjDoX5KpP3PqhP8Y4yb+nsm6NeQFUYsxYdDKxNz8ebcbEB+Jr3hktB2YWsAH9P49CzjwXAIL/79VThtGkaX9+SmqFd79nNRgUVK1IIp6RSCo4j2dM9mCj6qjbwzYENFXKIKt1pi5vwn02tGft/2qXj1bx8L+SrPBX72Y8ge8zC5T3gnNH2Q2UDLAUUea9dA+cn8wZ/rm4g3QVR/YXtwJ8Xh9x4aWwVUcF7XMHsKEr10LuVe8mAPrGVa3bPlcCKOW4ii71/MI/cQ98IebHNnf8ARF271y/yospHMaefM5hXaCAznWIgRS+eOJXtmULTBkLxMfo3C4+JIPfGc8R+SQPISBEB1jaICXj/xsG+a7tumcOobJk/BlnCcU9Z8jQb30BnUFX1eDdtfaVgcYVBREZMSyonCUkRfIRfs6sT0SgK6ginU8NhPxBmJQiINz4Yn9G4GBTBylAW3glGUxhSF1gWhG3BnDWF8YykLArDnqCR5j0l5rC+UhbhDcDkLbsB40Zy4niEKL1UodoIEo/gniECu35l8iPGXD9CcACwo9JKSCwgAaA0BZtmoyTByjBGNgewpK3x5qJBYfk2jMMv5vkQmTRIhj/0itQM8qu+W9QyKqLMenN96MqkD1GHuGu40jsGAoi95UYA/c1Gzo4IeuQ0AaSmI+xNGSp/NhET3BQAsRFSL9vcofiHkD55oiOOhK7OweMpwlRUqqlZCg28JNJdC1gXQam5fG67COABKfQwdSY1RDKCvkPeUU2hgMJP6TcRmFFGUFIADjSLquGeS9E3+mFvwMj1AE4RnCUyF75GsrZilRUb6UR4wxxfcii9h7yrXQS6jp4ZpIbu+5QoZg4GAVuigfEKOnDsvWD069x5tb0a2kODbbF2rzsBsBuh3g70jKE/6oUrDv9TEEn8Dc5Q49LuUGThSLg4w6PgltMcL29EUxxRxxFk2yZER6TwXOKRrkSd7K5RLXNEzTJ12gMNrW1hEFb8upsYYKCDmJorlgHba+4x+/+cYXxb2gxXEj/wYfGHuChGaZ5w+n71AmxshnutkiMSqKfj6MxcT+4LwKo8lA6A8gcgUYk8n5DbD1B6vf5JxQF+luYIH3DFacv7exvB2OH0mYsKoptYndye8MR5j14woydz8nnuxXgv9Ixpw4uLUFu0czJSbluApTZCTORoeDgAlU9ReovbGIe8eL3BkCYLTwBURGUx47C9NN7aB64ehG/Dsfk+t9/y9bkTTCP5+g0myMs2SGX8FPv3p9Oko+Mdm3FLaSUQFUGgsrJPGbpQrryVyfz2B3RPPUd8vB8DgDoezKSD6yBPOcH+Bs5ZkVDHEEQaCQIk0rDvD2YqSBmMQcedTJB2YffrUOUKhqzSRQHcKThBVHpjEWUGHe4ZTgQqspKCUkOkR2hMYCIjd47tZHcaC4jDuuuXiPUF5MAaNq6zkP/FtAV0FYRkjAGgT2kH9hUCnxQ/JVp6NP5D4MBzgyiZKDrHr+RYBXuetK3vS4UUG4Co0EiOnYP5n6j/uZezYb+Ml0XJ9+FF0nwg+yx/CQg4whyPumU8WRAPwR439EjZ4sRyB6Q1J78x/gds+IcR3AzzGX15SMtD6FpgoMZHGhh+HlxhsHm+nGHQG9+gsNzKib4VHl9YfakOb11d0fGVkYTNSdQgKCvYQ650TrHeDrBrKd8gO2wFFHbmiBngkth3Q5r3aW/BKfraKT+4u1PTXvoFefpyvqyPNdIGQAJaDyOE2DqLq4UOH5oHcDB94IBHthWELQrD/oB3iU5bqSBXzoRnq+ZSRoaSZu75KZC2U1GA0hFyB4AcZw4ycpOblsDUW2h7IhEFoP/RBn3PsF5WM+4S+VchENvmxSfOnTPc7phjMIfXS35A9UfDGUAWn9BnNZyG5Pf3PXHf0ayotoRAHL+dwiL9QEPGmYFIqIUDnCAlEkcCRyTGAPg9Sw/QuprxAcwHGBWuBQVcSVb89EGQC9gnAvBcEJYEWfB76SUqlAlAjI+987AI8IG/gO3R4Zy/aCc4Y/xjvgLfSQaLzE4oAYQJ3nonILfPgnFgW+qkzR1w2ggAVoHwA6hjQviILgr9Xa0W/kgcyl3xjAwB9ogr47cxxMtIEJPPKE5jw3gI74pAJwPKmLT0JKKEtSSS3rjtrHtQ8C+B/aw1j9THos4Uuz3uVf8UFXJ7acfPqz5LrJoJFF0HDsXEdmB0PH04Donbukbej6/2u3fPXFgCDX2kUH4tgzFck8vXpvww3br0sUnmiqydtZeBUeBcL9psGnNizVW6NGci2vm5YvT1dkpAEXVwV3Tpbafb+Yh00y3RkFqUVHJ0y5YBdtAcS1F4yUJfP88HGuZG9AgWUEL8XejFLo8M+qCxf7k/3XpEtUVG1gGMoJY6pmyDH8f8JCRtxkC+BFDs/6u6863zkX79uoFUdgCEvzK+ggVYg9mj2r8Ofvrl1XL6F2Uvmfoh5GZ6NwSsNt418U1optTeZaJfGt0qntNZ4F7ppNmc93ocNXgPD9fng/1EMZs/9UbFt+VXtPr3CCpvECqSDi7MYUemkvTnZ5LstFnQ9RTYV/+FRWKL5FMjzCj0N8RFYe/FnhBQjOvBLAUFqA9CZtsqpupoZofuy9jMQ3Xofg7lteanNIQtku/sifW5MFcJmgGLY4cciTS13/bKvb9UUn0wBrvIGOB2Zz6/3wP7/n/aCna6ZtfnSKc2yO2EKeIiHW5D7Zd8oMprDG4fuFwbL++JuO0Ia999z2MbePYEMTvziCr3ZMDxFqgqxkRqIdfNyeX+z3khqYHVagrAsZglhH4L85IAAuQgKYD8Fd6qRPnHySg9V5ST8GU6DNQ2tt50eV+j9ZjMk7o+LEHVMxKVGjzZ5ewKdP0nP8Ppjl81t41MJUsH8y26PvNbG0xv3sPC0OIwft/ev+9hfyT9900RRXIqqvL9AHHij/7F3ib/w8WUO6owVRKCJ++RD9sXbr694y8/ZuHcsscrDQN0R172VHUC1n9f3mmygo/vC+nFs5CtT9nfjzcfjX0iall5u5VHnztr2vv3vdOE/jqH7ewoNoCKl/2TUOm9HhysJC/DyFbe5qfzITBGwOh3z1MaVEYY8ezlWZ8REsX/jAGVjNtjdwyvLM14cxsKBYQVGOAhtQVBTOyWKQOIMfy7pOZD+eH60pepOxcGAvh0RITpO5YrXI7sZGGfKznIYS8efy55lwhed2quOmZtY64yTpFEU7U0EjMznVyLG4Wx+u9raJLXqZqmZ0NTI5nBUyFpbBnK3A/KtsG6DjZnE2EMC2wELn7Fk6aXegMTBo52+UM4qK4SJElI35mRuDG9RytHLzG4zsAzPYCYq7wRWnp0Y00UodnQgcaBuY8tEhfRCWyZip179hLGhlxY6ww4xRmUnVH8V8bPMjjTsfnPL8PX67HjwHYDNLXrCo6/MnwqO1W8SziVNdD9xm2JQr/oXrnhJDfPxWqPaxKjiVHUqOYERcioyF8/vkEyKjeb9C9TpWXeu1UcII6FR2FRq0ikAtvxk0SNKZ1RRh0KD955Ndh4o2vGqM1laoxr4uro72LuiFwpg4r5SFx5ajx4NRfwkpliK5fp/TuWGhMBFE5zPnsNV40RhRCWIiYldR5vDjad3sVIKGiCBjgB0IIgB8Qv7fs887drFvdB+XfIeQcCDDoyrfHoY7n1y9EsRGdYTaL+aIg/GQ1zEhzx4DtJsGYwnAoXj0YCstObznfuMRqWCXy4ceU2eOgstL/SfnUfnv8fZyGs7pg/GpZRDYzHQymbdjOqys+Q0/AVOhdRVMncX/lwoTkyzG+F0YUHBchr/U0gUidKUiL5BFEchBD4VRJIQbqMRhKTbjJsETOi/bqJVzEr01+R6qwqZyEzyGPXc9oc/bKTAvrPT4ylLjMbN/klLnY1MrzqEbOQdQCTt4dXR4HP1CG1UiCsCcPgt6Rs1e7jKDVk/sbr4wiM0IB/wQiVHlDr7ezRF7D/AxOKD34GYCvZiWUjNrhAsI84b/6C5CPKFMArY838iiClQEfKzfgLHfwXw28RHiArgMAhAhAIR19L5EVH6DD5wjDTPJRkAwSHHftLEUy850yLBIw6Pohl3Q8YTL3K0eQjPJzB+wtDZCwPXT9wgdoNXtCzcDwBq9QW2BH3BpyvF6vrNh0b/SgX8gbJ16KOkYz34qTXMWLDQxYu3PfkCYAsUFWvo9ae/JIqodJgoIExL9KTXa0BGGjBEGfMiANpAA6Hnk2VejAAkM4BU+xXaLYjIMlSoG9V4iVH8VX+SOULRJMQMSS0Lw+x0heEhJrVYkmJ7g9dO7WY5o5rvjrHTWzmfGrrGcCot96DTKgMTOSL+IIVAhIQkEqIb2puQN5iFr0kvS2loMhJISISA2eNXNdtzVNq2pttZtlPL6P6fcoCkhQS0F1QfOYwgGeULJsPljCzsHsTF5JTot8v4NBs+AAyWE8zPEZjqkuyZkm/DGT6jQYcDA46tF49RaevHJ8/eUD8a7zs5DL88NpeLxYSFRcevbS7o5CnRKbh4PCVbVp8Nn8JIROnMd7+d07XOa9ngHpf7ae8z+3tdGMP0bn1OYkK/vt9k6Zhw9BFQa7ep9tmyjvlRGSFFOz1yatCDccUdVxRAMCtu8chLgmCEQeR6XInAg2+G+Cf6WvLVhozUUkn4/JfsnMkRyHy5bG8f7sFF8Oy34RKj4T5Z43bMEUeyRbaBbWefz0ze78UnWJEz1+bDufb4/mm/VdlYz54h4R91tRmwe7boy88X66nb9MF2CGdh0/t1zO/js+z6no5rvd6vwx+TobPtcXOR/+d/s/jY4o8cHNpl6LGiDIsBBEqgIeBlfQiRvZeRo6pZ2aJxOiH5c7fuJvIB4oFZ27FOyQRivuf4vugfPQ2Ej0xXGq/J739r88eBjwGAkLL40xAoDKYHBEyod5ue0+9nfJ+/06/lO6n5bkVJ652Ysg6ndZ5c2p1PnndoZWJg2xztDbXS52x/7QXMrJKXnO3n0F6h2KHYebZkqcKGNxsmNvMT6oiNlxsp5m6uu1/djbfzPOxRsFOY9pFy528f6Wp8429zfB/T+n61GQhtZ6h1RaTXuThfb0WqEiMeaOv6SAU9vhi+NBtJGpsZax6PF36xu9G8f6EOIpxDH9N/ZBTctS7HNAAtg0d7AA44/QfkDU7Q2IO4zqSU38dlqWPJHA8/fXBsPGJ099dA6RCRgSECBCBFGINKrVqpsk2FsqtrW2MyQIiSAkgBdrXRDPW1Hjh385GCHGZ01EBHlm+1ayG2+apmbELg0gC87wIQP2EsC6pig7TllBstZyGdZQLwDWK4YlATqLyjjvpiEUp4Unc9zGUtC8HoQCRIDAUyAkc6cNjLwx9vq1usnYSa0r53Xnz551J4EXla1ZklyKe/drUjB0srSysAHnUtvY0DG9E8gHJEE4PZvUR2YDeAZGCWgB6CAoJwOunLao93kTcJyw4nwsd4DxAVB5ih8kv7MYRQXHh1474oE8uHRgZ+DBW9GR2OT1B2i8VEuEU9kEFHJg61EuKHRAU9xBphzOyRHzFHmbTeBx6Dmzc2oCvHpLYEeoMOijBd0IPXHwO1du+ruZVo0kUFX1p7soivrTSHW/pOkieIr3NcQxDhmJmPfsmIb0IqnDFA7hj4aKGe5JxZz+19gk7mXPsDCPQeDuTvWTgowAkhMzB7Dk1Vxbmn8X22Eu+NA3DcNQDROAiCfYVD4sQ0iGSF14iNjqSD8jCNQjFNSIAQIKlxYAdR9EGQ0I9HZUdQsno+lHnxRT4gkIFIoeuxy7DvuFBxEQ3gWcDSWjlayWQC7AF58ViaGhPtn3BemAb9Bas9GRqgHPJTvMaUpKJaUDhg3Nij49U5s7ka1psatcZZWF5C1BbYoaLVxBHFsv8ukrhMjwTZDJ+0CEuO5Hq5YZLeEclkoR88WtobzMvb1JCbFOSqo8bDaDCpLR1K05rGcDUP3xcL2uK0wBhX0MhDbJxixa/WndeYl+JoETJh72DIit1R2UOA5KKGBmOH6QSnY10urnNA7nKzY2TRHZrBqk97hoWb+oliGOsTlw7O8BYH5DjjY5u3U4WnMCqna6ryxEFN4gpct2ue7BHcQ0+Eq+Lce+Qv5DsPa12vlg1IGYyokOX1wquIg6wEDqJ5O9NrUPXimQEV+RM1Ri/BnObzb519Ay+YNoh1kaOuPS0AA2iqAVgih5a33fNvn54muPYQgBSoKo7hl1cDb1nnPugJsujxp24q8lchh8rbeTe3iEOkAhARB5iOIL0x9moeR+R5Lk58AqjgAwe8s9eevs4DxcidavW/WuO6nHK755yX6XBbQ7SvDrW16MK3hJwmnDeACj0X0785LkQ4yyrwavKx1ed88ydYr14+Hjz2OYHpsHoIIJ8wRFO8Q4yTIi2goE3NyqhmKCveIi7QQtG0U5goI9yaxfQfIAHyOoRBHER7LFAOQiroBBEfXSo0AXQ03ycB8NtWigrrFVXS/qHggYDSY90SljPD7ryY1Gp3Z5gHlHjByEULkQAXfCYrTxOIoB5mAgpWNYApSCovqIm7Zc6AWN4Ce+fao1w8Bn3WwbbUAa021ffXk7t6YOBSWpx4LuVwNFfXbXkyHtEcWJh9hdXnZnI7aHnULGR8al65xl89V9sq8RVDOIc29Z7ZE5HxNmlR68aumfOtBqxytLHa53Mp1ywGbZq8oPibXOUQux0aWWXKadGYRGTncwO3YO5Z9KjgqHg4bgiLbGaHCzkIu8Tw9lR8HDL3NbU6K6V5Ijg77m7YcvQUwvY7o82MbrVhtY5dEs53vcY4JoO9wUjJcCEIUqlGTZWRGw/sylZTJApAg6prUuDrG5UcMA1gAdyGIoeyALRAkQKIB3mpfsWF1D52ZY9Kij5IuhBDW+CdXaMjs4SmrdlDJKcR8OYeHVLudw3FtvcraxROH2e/AdHPd6Ot2ktobbgXFlx5erOGNoeCp0hlHIwENYdfbCdN9g6svwsK8RBcm0riZdqG8TmI5vMTfXN8Xd/dOgaGtUpf6lRkBkJJCRAkG3ljq8eCy8TroKa2eM4qOr4OMGxQqZXoLjYJDa+T4VGm3Jw+g9bbckbMThgPBdwQ5IHwimIICP1Caw9LHyzIu4FUeA7hVTtD2kTJVxVOrkyBMgyOcwCwBrQMRvCj4EE8sBNgYLmeYMiElKfYKIYY6RK1OGi3vR4OPgav3r2Gqcb1wEPPD9tsyt6XEDQLGppV89zz28tlyY63NYOkSvqieJIHOtahfKQgE6MonfcOV9CwA6yl4VVHi1ELpmTzADSNQD58jlPktGpcffL7gzS1mG/aktaqJX3i1pp3+SJJ1HvajlPPt9xK5hvoefdix2K7KtjtXgu8SvC9Q3qsd97b3oc9zd2OnZUbb3O+IXcEzjPmGn0QLvKoyyBk5al8ePKqd4qoPZ4KD4c1gtrqPg9JzJYxwqPJXR6ohZns+QoqGYqukX36N69Pn2CN83mZvdI7aVpVDsQ0fJUHpid3Ivn5D1G7bPGW1c38zM0j4VHyGjodPDzvaBop4lsuyo9i2TxTJyIKOIFR3A5C42BZACwbOTflscRCkR1TUNABr39ljFgMN1RyamCAByRCZDU0ArABO0EH5tA84jMh4yXWA2R1nMCRSopUQJFAxzw2NJc5Td2vk5HRiyHEEgxjt1VtrmkoC/ddPqNm7tQlgIMDZ5Ne7WDIqCfY6Hcdq6M0a6NIIgO5ERO2/bINMXeqeY+NqFHogiiaTEE+Hl3soqHyAq8wtLyjRoO5pu9zsAld304EVM4qq3LrEQ+RM71EMM9mpWjgi1fmwbTvk6Em5rXYLiKjAmPY02CJdHxjV04jzMdnSChsxQZBAkFVOYK9y1EUDZZxXdqQ5y12IcxzN/fLsUt30pvMy252qL4Dk4qm9Tp7NgMcchC+aiHickRBHeKccbSxT44a6vtiBfopM7blrm1irzJbtjFtdHDeDsIXBKR35WDarcPGjsalw5hm5gnDQQrxsH0YAl4CoPXHQa9g9GL3szj6UBwEBNk6dS54ityhy1ffNAkawqVaatiFc9PrfDxuU8blDvh64mnCPbEjzYjxYp23sYgJwrkzhSCGUZEkQkIRc49+r4vlFGovMUCxFB8xDZlpjGgEOgJtyWsK+8Kyc4RzVI8XEjNLR2wVJ4EDwQHEC1jc753MAB3iisgB8gICavDgLZlHmlwQD1VGWT46ePmcRHEVA+wQ1ieGJ63oJBTcIiptOVdwElDfDw5a77xPXTWIMN8sGivSzItDGW0wF2C8FU2jkEBRLEQVe0U9HnaPIp4JVyk3im8hbkb22qV0gROBwQCPJEE9wHf3sep8flG788Worpq+VlPg+9Ez35aG58OmcovxAFeFgCB8kRRPeDwajeoHA4DGYZz3DeGk30BVLxRV+5Vk6+KQ1I+zHa+BV0YdLAxk7Ndqc8U9XdYqg+Y6QRK2oVvBE6gJtPE71sdBO3TmmcTm4W9wxUFUdVq6anvWyPZYoOg3IKBiKoB2ihhYHbkpDBwpAz63QBHeCnEO96V2PPTZe5m0B0btPDqHwuWTUoIcGXQdBqxHRDz2RAySBCMbZltNbTM22bazazZqy9SZI/CmicU1T7BqVd3tm+nIPOV7DfgNC+4pw3KcHgLnykU3ggqVFUOTfr55q3REoiHh8Q2mxrRToHS9ECQeKBQABb21bNx5KHBE7maeJz7dOV2eg01NHNEndrXzzAuZHoUmuOFAVyi+e3e7s9uhmhWyCcZzedHjw4fQIljbdyyrvYDQ3YiTdeVhHYYnrXjgjwTLXJS2tpI6qwaYwJt/OuOwsW5ec7+EcY9N4NX7CqG75oPRDkgA7wEAaHfqtwzwCiPeALYINl91zqc8e8ijtdSzvjjEyA9UoGFiIo9g+Gns63IyEGfaE8kUUHtA5I7R7Hk2s5GiNHbowHzyIA2gCrMq4Tqp5wXBRfQ6QKIEYgXk1dwzQoluO5X0pp1WBoUAHyCBNqQVSiPnuGeWEacReXUrrsefRxFWQYQHk+YzCPc8Ue7JXTPaoo7OeNtHNCTy6h0Ny+coMFy+mRuD1FUR8qjyl+h2gagJYERep420HWAObFUR0H3Scvo+n0vvajRg2iiB69UCL3iAnWbntxKE+zD2D1DofOiV9mdDJ5oBnIWjJJJtZYAqPFCQFPcycevcLGtSlBTdvUwhrAFR6jdjZMNzB1TnjOy65OEoDs3uMnB0/vbzHVnEYWUK6+qlTop1jJXm3FfS1xQGvaHFPRXyQ5UVGPnJRNDjJXkzKxEUdiKZOKByQOxvwlOTxxbu55WDhhub384VHULeuTedscDd9B6PRx3xDiAqrqB32wvdC5mULLTHjCvi5tEcEbSh29Faz0ACM7EErnJyCIfdylQE6D4AnWoc7UU+/HbLxbAvnO4J0AQGjmCy3N35GYGEUN4MBbsag3g3XuyO5mbG7bxDaGkWBh6MeCWigq5HIV9eQvoFuOx1RriIZIrihaBM0XMPONgfkoXCSRZ2MpakLrsb+RvCSwBsHonu1JT60HErwFuqSotnDpF/UWEkAtMHdjMOS5Yox197FP3KY0pVMxVtFVZioNqkVbSSGB7+nefS8Xc84Eqx9RtARaQd+U0IqNCArJuO3ns5XQ7CpcW2akV45wKrwhQcCA2rCZEPzEQLGX47CpvdmudCd7dXnNZrbTl1cMGU4ryrBdWwwODOCKe971RMBTBPUeTwMAISfeAIrWtpwQOi8OV63N7vdlEyFLjb7dvCqcNerMI4EgJDG9SFXdO+Rown627C3bjuwVfiIAhIALCKioQGhF5Ne2NmvDtxi9je/u7Jx9nJPKMWrCp8G1VqtU5quM4yq45cClrK4xUpmjacxHGpWalmAM0iMuMWzKmGzam2JmzDKzLVstNjGvMpVqXHs9veyN61MDYzxbISqCBEgQUVcIVTI7nmLmp05MOUXnRw141PG9ZkIJpF1EM/G3uy3hFUFsgguCKRQRYTs7rVHg0Dj6bhRBZIIYfIkRXp1Uu3cq86Q7WquaUrtoi+YYCBJZxC85xGXJyLNaNDyEl6KCFkkIKFT3GBhxwy0FxVUUrFEmSUkXLFhgswwDBV5vMU1wod6klDJB7jOjuqdBsG3T1VFfGGFR6YWaL3swqj4GE4FBvTlOAMqTXRe4WN7XWpNKFKYPatMw2mNawbBmJrBjFratWaWNjbMmjNZkbCzGmLZrFlMprTZYwylqhsr5lNhRWDUYwOMqpcMC3M2apK2VhJEZEim1DY6KFu1tgwt280xUublzk7TitbMnuoqtqCtqozRmlUWGFVbjDNSBjLNVsWzGWM2ni9HVS6xl6842++0jcZ7MeNpJekogIu1RRmQwIJLverIxW2Cbh5HylDSMOwBrJj1fRPYdKIukLG+pbDwurxU7lw4iAgWCKqHdCWaRHm7gBUYep8eb8sFUfNu8ms0nnqdVyiAwNAHj3AJRGt0UoqPZ58Qg6piyWGIeb0Wmg0B08MLgNwmAeErRYGBy93uNc5Kio7CNdvVBJotaTBRyhFF26dHXw0VzN8XqykIcPLDxSOWcoogs53lutnm6VBG3d3udW02tKqbbMa2zDVWVrWpmmzSbTDKrZMYZikMU2Wm0xszbZFplhtZtNVsyhWjMfQErGkquaqQZpcOcVNwsbY0SMCEjAkGQcrtcm3F7ulivRHUFBNoStkVDaViPPi9Pj6O3vTx6nyY9HKorA33s9PFcdyA+BDnOTQyEELw3iIax0yUHKFNUIg9IRe6JzWbDaybaZEFXelgCZRRCnQpinvVVRIQxMyhVVVASDr1ZwYHCTfok7AThRQyeKyqAO1hCwhDqamtTfifSBv6PNOCCrhSSbRLkxlLevtpNu7oUoyiS9r4cOBKU6D2FdCuaKL4d6ZOjumTDTjvbtkEX5xBRjUgW1SKaXinjB2+7suiVHsiIFRNVz3zcvnDTxddiBZ6KEogg1pnwVKs0ijNQhw45VzKoOYINjNVSuGi5g2jGIbljTazVm2rWNhrGxq2ttTWMbJtpsaaQNx7UGjo8Get3i8O2BO4YS6Kg0jAgYIfB9LWUVUHiPiJ7z0sOu8DQGPMtOUitAeToARdEZdsN8BjHOao3iGAuCZyIPaoGc1MsYYioPsmrbUViS0BPZERHEECaDoLvhxoNc76IqLosdbO6T2XvMgTfgS+dL1cmws4NiWGEsgIxQegwUDQ0Eze+nQJIVSGFTJDp8DK3jqmb8zuIZtgc4VbJVtGzKhvdBtAUchFeQbbZeOytO507xUdqjPKNkzRm3e9uk4OzaIg0rm2pguXrarULuNcWkgESQIQIBBWExpMrTZmNaw2NYxpabK1sY2oNrRaG2zUVNls2zSFbNMZo+skq4yoHDXNKKOaEHMQ5lc5LbbNUKzbJmtNq0Zd97vTx8i9et877bOblq4JcJCBJwEiKKIyK2yNpLGlFa1cLlstmWISLBkIQJCSDGEB1ydbpfh04tfUo+5UXjSdsp3122NUl04Er0qXccTrVtNjYbGmbWeXu56qjbuF5AZa8Id27aQEHfZXzzyNtDJNUeWpvSnGSynWjmW9t8koTNsATQndAISYsVlKccOD5ZACFU1ZGzVmwTU3102YG16wOhiio8MV8md9QoGTNqnDZNwlwvYMq0oWCGLVckqydlyaF8cv3Su+ryjAVRjSdPGiBEVze3Rigq2B5mjzzyQmJGAPo644299IeKWqMtqj3adsPNl+jRibvQYEjMACxAogbIOFaQMkp3bx716dXiwhC6GVrMzLW2MZRtbUy2MmlrMta2WMs1pjNbNMYZbE2mNrWzGNmNZjbNpEayVa+dCra5qkzSgNy4VBxkjlOQ022TQZFIAw59BU5x0kE9tk7dU5C5f616q+Zh9ESmaB8O3njN5OvB5Dur3RRNICgHGeNshkUudUo/BsWM6kCjcIfIlCCoYYKCnZ7Vx1xnkGNtzejW6iPBHxE1gbx09b1Rj01O4HjOHL2KAbn0a/OeTTR7lvbtoRMsrePZ1mGqVRvDcI89D/EIBDxQAfM6NQV7PFZ9dVUvzeXCd6lny40icEEVHWcE8wPcAKmudrGJxFFFQ50fXMNvvkN4hCJ6uPhEVPMRPUN4iJb0HOldD7M1OvrSo7hPgu+yAYIBWOYICPmPuD5WPkhyh4JIAcRzDt6r5+vnWdfgi7pK08X3DFs62yOJ4j6OnKCHdIGnHTt87F8fRyRQHyQDwYTXJbFjx8lhEb0J1M4E5PNYHiNRrMoUXtEF9qj1UE+BDj8ydxhVPJhHnDtp8Li1oPqLZUi9p8hGn1kqKCgV6DcRNYiCPmZiPNcdSVtgnp1RUXEA5IKCr0hT7MIOTtqviyip1nrgGYsyS9g0gwYGIZQdZotnV1YNjp1Rnh28AQXaKakABQTLnY9vPGXBvuHANQJ4KLhwMz19Ycr8QAuJgSaUAjCBN6PPVEXMQvATEQLwoQGgouIoonbmVMahmQPhsZB0XzOcHV8eu/yLULguOg8HVvh6EVFEQd4KCoCgY+dKgL1TQ+iOrbLXP0FC3iMw5+Axd1UCIh+b4erv6x5x1rusK85QXtaLEy+hXmHGoXyo15a6LG9kF0ggSI7vcdjvA7M1i/SHJO77ZD35RhfIw3PyzXsD3zvFWkt1XjsX6zAo7v1CTzDkJcbnEPo0oFo7Q5NHEZo0HO5r5012pT2qMyLmN6xuNwtu4PpAcXwD8uzTec3NCIeWR8VtPZDtOD5Dtv6v2vrKeqUl4OTTQvZjwfNQOiLuRYG96/IfNjmwrz5KAKdQB9Z5qC6QVE7BA3Punm/n0Vu6boHiInuJiNRPhiSQ0O/kq/EPQe+dPWQbxfejQv2a6dyrH2mAsWazo6ahj01Jyboh+09xmGlOHn0yZuDGvXoNv/zFBWSZTWdYPI+cEpQwfgH///////////////2B958h9Bns0vbz0+XvsDgACIHsejOAAB0DkQGjAKLTpjbgOm9s96m4KIy1mDKUtkLCRrdJ2cFItnWuC7Cu0dXAWodtdaAoNaAegD3TaUVo+A9HbtxwuybCWqa+nvhx9AAAAFHp2u9reA905UoFPo01ShKAlI0AAavYDRSvWbNKKoGtAAA0CgAG9YTmFAChoAkKFAGgGIXPTcAr325718un00AOh5F7AFDiPRykT2AAA0eWQUVRRR3YBOwVoAbsAU6G6Th2zDEwaM3YWcDrWdcdpa7ata4VFcu2btA7OgAO2aBrk2CKkABGQBBoCp5o0AA0mTTNDQDQNDQKCSRpiCmgTUlEYAAABGAQYAAAACSBBCaMiKE2kAGg2o0aA0ABppiAGg0BSUlNBNGmQmpAAAAAAZAAAAAAIkggEaCKUoaDE0PKDEA00YRgmEA000wCJQiMQ0E00Jk0JtBU/IGkZJtMU2p6bRkp5ooep5IyZyM9J6UD0l5kyGU8+czFpsJPoMZ/KXWQpO4O1yZHGze427wyoEn2hRuW3kDomMQVfiMYYOn7I+b7bxEO3tobIYEF1kFFThFDBIiVYusJw82jR06BYRADfEBUqQDRoqaHDPRwse8YkY0iQqoozGTdMNcgCKTebtypUYSa0bokH797uBXYQZtWZkMXTOudYwWiFXUO1Gi7RAZAYsfVNg/9mIJEXaSbPkmzprF8EwC9k24W3FPlMGjj5y0whkKDHbpKV2+ZYfg6t1BGnIu1QZSg59NE0uaqEI+1RmsnMZTWj0Byv9CAH8oG8WSQkXFg31rX+YpPSExNUZkuXpyxbBDFNg7cANxZAkX++aOlbl6uNdVK04ly6v0uQM933WelGXh+V0SXYIvpij+txgJlspwXoADNnjHuZKFrpTItJ+kmr9Nq83unv+S4Yz7ffnXWT8p5V31/S0al2e0nmT+8GxMT8RsbZrwK9eKJIGzF4Qz5w0+Sw39rr7/En0ukxgcBC6fWed4A4DtzbRwHd064BmQQ/jFUKwVrBBTvw/jTlUQ8B13yuXbTr5qKiryJbOWy3mdufxaUwvM8nBBrp8GND8mgNe/tb9T7K+746+7z9flt4jPPWzD+4QkI9f1fKtDHn38S0r1Q7ZXlpqqJwsLj9l5bVfOc9x/lUs9sVcl/dIGcL6MED+ZUx1BWQKw/4++Jgc4O/5wesDyA5zpVg17h5uBWJ7rm6863bOHHeQE4G6l5DnB40TQJW1WPtA7slHtBgugfuDCRW7jBwCWgzvSB3KDcuPIVHWByVn3Xug2b7lC0ri0kjEnYimCOogn8xbCcpEnDMoADuilkiRvjRA+JGx4yMqKBgOkMuo++NrqnCyvrVH4IMOIcqYg1FIEoEFSwgCgFkEVbC8l00YJSZsOMCY0A/1AgAnk8mk10JEkZbUI8mq5PC9kRDqIo3GC2jXWLDnfKWA2KcZSOjNkOcNRlDuZp4kHdJr7kZSJDTsstxvGXzYsNiUIyDD+eHEHU8wp2MtxzwCacf1zlENXtvT4qk30RW8QkSarePDmOaTmjYfLSubYNrbc426yXWti2nNOZNg2bDrcxSQCQkkCRCpoQXeKCr2W+txO0u58kPwmDa6Ovq2fZ0shostpCI0t9wydj66x1bgw8OVHO93FU4GRgGZxOYGCBfFVJpzjT1QeSeuXxl7PZ9LHinJdnGN4qp6iY9UOsD+Mvv3mcdGgfmKTrH0q3ph9Db4vl9Go/fvupnGx09GDaBeqCqYsnt+mQgiC8sD8x7O/Jy+fDdIPrQ+GfG3J6PGj3hBUywFJCxTc2dT1DrJjgpv2b1yfvVOpRwHfN/XAAi+J57KN4aZXf17xiLjJtbOWkHViyC2JpptUJbVba0qPuUKAwqxVDaIqkrGjNBVGYqtrVokk2kKbVC2Kg2QFFjUiMaRK2iURxpctVVWGbNqWYpINqKS1omy2qiqOMoKcMipa0myW0hKtMQtZkq1LYNoMsUqTUVWkSNhVWGKtQVhTaS5kRU2kVcaLaolTlmNAcYJVshUGQ4yRWlJpKtlNppi2E2zbVFWWsYaZbWyZlBtFtbIWTUFW1IbNrNSbStMxlDG0EkQQAkVW+aEtn5YUBdiuLCCr6OENdDbCgmzEGRAxKJRpK1FBXbUs4iYdTjYLquyREVH0z9iI/sEdaLxcciqT5ai78lEZQrUBEmWUQU2mtRbKGaqCmZE9/n9mupKXdlVJplHg1EqexusVVeOKX2PFyjumI5pH0ZIruWhCPdrs2ZSs1LWU5WXaeM58J6cgJKg18HAE3EO6MsgvMBBnI8MA6SlAXAlJ7E0GlEFzlEXTNAaGQEzEFEtEdKKIIwKIpFGLe2hDOdGw1QmQuqAtz4BBhdEBfiAC7cMtLLLUixmntpBADCwnq4E7JC6LrBmN9I/DLcDEWJMurs6u7hztQcJqWsiCt4ODXaIcF0MQvKyVUKmks2NbOwoi7JAdxtgYjeBmIpoDYLZLrTaA6LhBl4CAajCQiLVTpKAVysYviyljDIijIsyqZBV04oHKsSBSC2B4QPDSK2USzVZpLLFtUrNQaYiq1aGWTMjZZNJVbVMyaaUq2NtrMW02ljSmyBWaTYibFQzCNhNq1GUjNSZkDGm0NbNVrKQ1YWmm0tNVNhWxNhrUVtbZqaymbWmpkStlbWqhakVpCsVStYjaiZlbJq1kxstsNJmDNSm22ytqraolY1G0tqqhjKoNmmpsmTVVVgwbFtfStNSi2VEaZc5xRmKaspS5lUTaCrmGwjMyalUWGVJrQSrZKmZcynFZbBVNLjUbRDMjRoNZLMs1S2pm21GtNQNZW1TLUbGNmbAj2YWnE6UJlqwLA1xxVolK5uDdYikKPCas1JWxtNaPOpDTVJXJxcq2obElDlpCtNFymqpVziuRRMWoiDWChXNAHJzkUo5ojNKormhEmrhMxW0SW0pqZlpJhqkZptRKiQjEYwetc34020ODjJlMYWzqUaJZCgLmicBs6pTh2dm1iWVFKCEVFmHic3TQTrKmxA01Ooc4m2Zpoxm2pxxza4zqzixrRudVCurgq7uXHdOLFxyudcqwWaCDFtGiFqKiWEpW10xqtJdzpo3uaFERD1Ww3UVGkQFubtyDm8WGfVHyjjnICi76pFDZHktyg7qls5sjzMWoABbbDRnIBTsNmhIRgEzQUIAt0sUOgm1IGkrQvpkwphumwZ1uZEmt0s67GMJuQ2IqIOJIMNYKKm5Z3bBu2DZy7BN3UwYmpcLQb7GfA6B9JMBkVr5ocQYdgHMFOIIzFoImkUwigO6bng1De+AEF2Cg0DBYNSgBVrELxxvvaLlbGXF6AwB7g6DsUt5E0ytFQBvLz+DBc1NDCZIQICzCKzRbBttrFkzZYNSabNMxrGasararamYtswxkalqWtM1bVssyrYstGWmEVqtraiVsmNtKQ2qq2GmTatgzayGyq02ajMwzNNWJntIuZSiZokhtFKraFWYSQ44bJslK2hJhEZFjFIJ2YKTgf42C+t+NQ0M4xjGJaGGYWE21pmzWWza2bNaQW2m2atmGZhstBqqpsWsrVmmtbZbBYwMnWT1Z10Dk2vtHUIXTYDAS3RFEF1DpK6pCVUjM3BjBmJQEpAwHgJEhFoQVcgxIDpmWpKutJIOhFQFw6MIpm6WLEvhKCya6pZVUbJtC+AGkLieAHU3yWKTIqlLGBVVFIvl3ZLm2XFaBrQOTbNCCrHGo0hgbUCKsm2Qu4TGMpfAY295Z1+SwFxQF5dJoDZpWSEIVmEbtJRNW9wBgza5awDoTgSNaRywzt26NhoyVSVxAJJgYRGLljBYoLIgMUjCnYQyNDiBUkIcm6UZdprFhMUAwEdkaQBSKxlyRlNCiZKNMlzBfCqJFYxGEIkSSACLqTVFZaVNms2tqorWjDUKtGGam2WaMmiZpWZYstNhmraaZYVLFq1M2bMW0srM0YZba0CtpszY1ZqJWGS1hrY1G1G2GqKNY2LaZbM1qlsLarZhklM1xd1amHSkgw9r5DGLcmVvVGXFmLFhgGGTMQq2i1o1pCstNqizJExmZKMaYamxmLDRIkUkYkIofhYzbEMaba8EKvgg3AQWaKcTCxqSxhgZIGcUeJEBU5yIHoe/j0vLeke9mw22bMSqy2tiMcighCBdpG3ODXQf4bvQqoYW59m4bp4Ey54vg1CqAQW93kx5EAWyom8Kh2HuSnpILlDlqMCuDokhGGQhIWBpICEUjtVImWqpkxebmFm0BlGVheppKmRYU3dEpGCAKGkYw0jByWoCHHuCtQ9YwhXfCNZRcPZGkMQFqDgaFhBhIRL2cjepswin2GRFoZTdIEkoIsG2164wbd23zquhoWDRgCwSCILJCRmstpSrYorDW0hWtGNbTbDTM1oFZs1WMsNZqtk001jalVY0sMaJgU2ArFlmzGrZpKmxFtVNWzZppKWZGQIMiQNaq59Jc3wcLtrZZAtYzvtoZMk97ncaqS0yM1GMtjaGNpJW1qmWGmmLGWMzNmJrasprGNG1amVtVi/gtOTet9nfIaySuCQwthMJYQBcGpW1rGlh4uoaAgjFIyDvQKo2SwBRjNFvygoAkVVHZgc06X0OBTNDsWC5skhYNIKJ2pgyBGXMp8GJBXhIpBIpC7mM1CLlIpEhmB2wkgEmYKY2FRXOdTJgwwHUMaZdnGmRKRUGDgKxbp39VCulk9zsOUVXQMohsOlFlxbFlb33hs51zqPkcrWdkIDBp1QX2QGwuJZGZApvrE1mN2RgNZtAwxNnGvLJXLv9odgwJy0kGNG5hhJArWYxmWNFmMJVtZsG1rWipZasNsWw222izBtsTaRjGbYxk0bNSyNGTJtZkittNli0a2rYyxRWWSpbTa2ZmahEYxYESECESoOTzKTS66rxd0gDa9a5NA4NXBrBIiwQkAJJAkQ1WqlWttKbGDJjNMsRjEVRkVjCBCWdwza++um02d9NIEAynwyJuXA3IgoZgF8mtIKpwbO1O/BiVWirWtjZrUmokXOE9WRHBOiABaKnJIxTCQDU3JtBLBjvkoUVOMgLgijIioQ1GtSbKtpUY6Sbjiz3nOqgFcFyUiYDK1IOVJlhmBXQWuFlJghddkyoAvLAtsa2LBhQ2dtw3KrET6XvLJAEFuBCGoaJxZMJvAwFzSFzywIMCIcDAyNEoWVlOLamnmshN7ggErHGqXA7DmsBZqKZA/rBwyIMl022rJDPFl9dyhYZOUXkHhjPXA5sskItxFmrG9TsZJIuwJJCkQhpEMsJ5vqbvmTCCC6EALmxk2LoaskQkRkBjKZs2sbQY1szNqzEZM2zNZY1JiyNlJWmQrNbGxmm0atFK1qzRtajM1jUithaZbWk1jIhBIxYQiRIwkHGDU22XBssEcrnYcXFES0VFXaJnOTW4bHgGgWlhmRK1NG1LbTUitlsmzZGyWppjbJlM20tVaxrNpbQ21tpqKrPJnl4e41GSM6sn2aolEjWq7hAtZGDBkdJkgVWhVYbLLXhVFdM4c5qQsCErEASqTKqDRpk3TZPu2+rsfaBXgowStdDSHJmyYklXRWpQ9A6R0GSARx8BpE3DC1kiCbkBNti7dQ89aZmiJhFEN6LCYOUiY20DbADitGTUaToEOoJRBAkgSYKVyFei1rnkVAowYjcq4jYlaLtMapzMRkWFgtQ4ycZEJMuYMBkJDAoGkdIQ2KiZlVvGHVMdyc3rnGggK3bCAeoBxC8EMQSoC+4hURDEDEVCoitoKYghzEcxLwzBfOajrs+DydVlDTbaM0bGRtGtNozZkWaQrVtWMa2WrVLYMrDRjNWlois1GzNErbWLTU0ZbJSsxtKsaGYtU1qxSSSSMhEgQIcO1myDS4428ZM651DkXd28atymNttjGy0zGxbTSxmSVaps1qazGIVtIkCMjGESESNFbZyXdDNCIp1vhohqYBoxPzalDUoOMFKqjrAN0m5polijbA80UJdoYqiNAlPAgJDLiuY2UzwztZcHZBcFS0DZdDrwKDA0jCDaLyGs9sAuBmSksrYUoW4pBvgKxcSt01M8N8bEpQ2IKAvGmyakEMBERW5BFwRBwkDa9IBAyKgpK8Jclnyr3V9KQ42Zl5ZhEimLGmc5EDKOVEoahghXGQbGbiii2Vg3eB/OQZOXCDQPZyEJDIVZlxGJznaIIromeJUFAWwa5vYdhxWLrqbnu8Xf4LMapsJLG1mNMwitpozNtpjFsy2sGbG2NjWstKZjVFWaZq2mNsGhpmWs1gzYJWo+0hm41LXGmZpFWYazWzBIRhGyYEFWgsM01W6329DRHhKJ8l2Ort3Z6aOajzYHYpt8PSvZ4thnV+YXVDLGptT1mtCU5nMLlooOGjjEpaanGoqxoJc1Llaoc0rnGbaLNNoarGjVqmrNrNmtbTLZM6Z7dXPlkbcjgAJc9nAmwnplNgpGiJEsUZM4t115eC1sCrxm4NtMyxaoVhHnCgcgFpGpLMOlpetuVgskY3lIRBrMUJhEjCvThJyFigwsmU4amxKBEVRo0Do8hlGBJyLmUmEDINQMpwSMBKHMhLkcWe1gYzGCBqrapSrrGtKcI7GKSDWdCHCsmL1ECH1OiCXoKuEROIkwVqGIhiJSFhEVshldSyeyIaaQyEBZSDyJOkIvgtfGFqInOAECVI1SZWTbLrLo2vcHbaiwZlXwuhcTRIMBg1lKsZEyYY1Jja2WVo0pVqsw1jaZjGqzJppkyrStMrDCKybRoitMaFVmprakljFlo0s1baT4yVXGpSrkCtBU5oGNVVW2XMGqStlMWTYora0xmZb255zzzwt9eOL50xjTQF3kQFWIsAVBSIg1NjOMlFs7QgEvG0UIRkQiILhYL56TbdMV2/PYXHYAeK4GtLlJ07cp0lhYKEpAY7DCSBKmMowZC4oJuQZEPJHzJSCg8zZJAkshm4vBl0p2iEbwOlpVMdkVdXU6eKa2MCSQlcHMCue4wB7euZODXM6D0yDKrXYJFacmErQkIk1STkhoPYukIpSgRZozfGcu6TRlIQ+LWiKdK5c0yaAgKnxAFRggOflLHbwqAlo78H84Ph9Y92aWacnkPmV2Prfujug4xnpsx0mx4PmBvufDkhT+J+J6sM0reFFJQd8e7aZ9e/l9pjzaQrduJDGo5xOBynQewwbYN0hog4SCiLhwPgPJqfDmRZMrqnKLKT0TgUdtl0uwdsXBeyI6o6bhp6PYKK1wRGHOiFj2Dyd8GOHe35A1WyYoME8pzaGL31B9FsxzEPjEaYPRGmMhBiWkpKUU8QU+wtAdfRQ2hrKPZ7OXD9tkX6z1E81s6eQdLEy2RAckQADBgLmPFBuDmubkVTWig7IoaRB1gC6hEUQ0U19FcB3koW5IEhEC/Ib6h4hdzij3twdYwPc33CKdHunwkuxJxEkslbAWF1kPYU6WxbLBttAoIOSG5kOTTB48lsr792nZ2RV9tz6DgrlmxsJx63KLDs+PpLRXU9ndIF4ihtBU/iICh8g8xDA6hR9XyTymaDiX7B1TkXkiAKe2CIfs8QHWL1nrxPw9OsTgC56gPlhsHZUjmfQS6wUPGylK6sS9+ke7o4qmpnFjhi5oc1FRVL+APRGWAe3hNLImdz8mDc5H4n0se/oz3nJCIuWD4MGgGF8BMHxu4IoMCHbtoW85MFL3CEdb8FP30rbdZuDjJ4tVkMXK1LqthhaIBmKlQEVMkU2WWNBMOobdQRyJEFU/YI7G4aHIbkOgoTxDXXC1bMPKQqIC75MbFF/c+u9B5JCfdzk5AxvoJ1p7ndStPY5DmJxEfSOuOtd6ueNfN0zCS1z2bsChAPMRVfCwVH5FvE2iFGp3+j+gWE/M0VFOwZ9YtetnbqYXH5XcXUIDn5S7B4MwyQQGjGIQVzibYhsSLaIZnEAorvzyBSHPSbECoodhFOmAFzlaEcbUoGCG6aDQ6pALRpuyQkZHkN8h4MlBzS5dmwWbZ/JUqEkqd+0x9H5umnBF8edMQjAPV6UgOjtOpUCqp94X676J5vfxg4k7lDpFMQzpdK4GYHQK6SOFjwUUWNKR9Q2L0uhBPbEPUR0E9TxtYt0qxaMFm3Z1YPlDdmE6OQbeceA2phC0/Z6CbQHtIiIPoifIevvwOkuYPYUgKukcTwR6eBPIFjc7O7YPNHlno3cNuN7bW7S5Mcduk9OG2sMZrThtqM9HRnyqNW1OR1wMICmAQQ10sd+sYW67+RzRLueo6v4+WcvGezeOGzvrpenwu3VD6w3SNjgc8ox4czpsQlvu/OU/YrfrLLvS3twGH4WDlqOniNIGQ5zsOJ1fpZOnFz1+naeMH3v33+efS8Hk4ZhO0yxEuh9Ofy/UNSB0Uu5whbor139IDpSlxu6BeRkkeGEAvgggJmZYOsPaPsE/OvhunzNBRPq+FDMyPxPZQqAz5QeFijkZ67ogns5pDo4QQPItHYC57xm4OmhDwjf0DHlDJoPng5u3IH6DANGIg7wb971YVH5FAcGCn7Yp5UMSFcjt0WHbnWyIB6O+NgufRwfj9HpLbCZXBzQfDydltU3ng6NqfEi9cdSipCGwvaakp8sGjiKWVh58NJt2b7bz3FDkgq+iOYD+8da4Dri2fFfndrbipoYxo54217FRNI4Xd+3DMFNucLJsGvlsbHDY5mkLY5DBOUOCILIIinxIvoIDjTJmj8Bhjyiiv2DofHPj5Rgn2FjIWshmSx74TY3bgBA59+xO8L/IgDrk/p5PsNw/MIj/MRZqnu9/yjuxmvtbFv4Ng3Dh4jjyW9Y2o9bG7Ghz7h3BklDbrNWSE5NNok/m+blhJr12G0XfOe+rx4KLiB0R/0xCWw6V2HDtEfw6sv84ymDG/d6Dd/dVdGkmDvEZHBFxwFEHrwWcgGaGRRKcVWaU/MmAjJ3KiAtvN1PXNZOhJ2i0gBSRzHJUzedJu+Jf0aVxdH1+ctpn/dtPqzVQTNjDk6Mv73OVAkotddyX3ylRw65hxUagjlOUZ3FND8Sk55szguIawenG2Smiq33UtVR+gt0GgzgJNgM6qo7KF8n57fvsIinLRsURXZ++Rq7gQFzD3SB9v6fHPwfQYbnuu/v3ltwmqpEBf2RP51/0M2mw+p/DOfY4DB03obPe5jZ3kzFeGmjCtJ+P6iH4TsZP/HQKSB4+aPJkJjEbpF9oXl8S4tqBlrDMj/6NTU7liYpzX71IvxfULo6MHsc6cGf5ej4pwtDt/Wq+Zv5r42fxJVqPQ2U5hE4G6weGr8ehOfWljDrbVaxQ1pFR4wEtC5HiPrfZ/W59g/5ovUS12J8iSXANzUNRjdduTAtCHc7/HcNtyvgN/UNQ4+T2egkAseAuOP0PEZa7090Z4cbX9U+NuTHolkJgvm4nrK4SB7p5wyJ9IzkNmILsOErTIR4Zqnnod3xTYsxxdLgESw3yBLPJySYFVRgpvnijjD1WRGU9XOIAuLKJP0JtZmeH7BqoAenHqPg9Zd1B17SqXEWyakKWPRRUwh0x2np/UC7pTA/IDQIZxNcT4wiH9dWHege6Gna6DckRrVVUZRbCQ7TWlHrqGs3b0iR8GQt4Ah1QURMU0J5bsAltl83pzFhcES4qC8Je/AVHWghlSAcAQRfxYPw3rgZwjLOk/kjfKaK1AcE5InqdTItvKmh5hAFoh/A0ZoVUnnojxX9HkrUu37TkAgtCwUibfm3LqH+V4DeBiTfhwKgvGf2gURykF/F3FRHIHhIHw3QAskVBD1/B/TQhk2jdKoc09cn/B46DpAMKQBFGUKUwGClI1E7guhFsoSS9wJ5hL9bcfWLB3bS85JYDH86BtmKQD3MMDsN9NmrTGytKYmHkFwTaRDZkZJiWOEKmdPSsNZqcf8cEx5Fg0WMT2PrAQW44ENkKTyHDDx2BMY40pq7TuuClk9DfQWaKWZ+GmiICMJK54n5hD/YU4SZjOXlER1gzQiRNODiIM62iIE0WKAEW48yGPyktDRFSGVisgCAfMYAqr8ygCx7Y/ZDxTjxoPYa2uiwd9gXQ7BEF1z0XA/Ri+gYnQwMT6s9s3l1BSf86vaFGE7BJ1k5ELwkJUYgTVSveFQXsqyeRI2eq/3In7+/zGL2DRlIahBPRvZEXfiF2f76ewCyphklEDQDVabFE1DQA5pQQOTEUBoCKvsjzZ9Rz/h7GAi4RPWScMaWp2O1yEjaOQbgTPirlkgo8l8SGJUBIvqgoBVS/7RFfHJCx64HpL6GSLK5k+8ArXG0D56pbVGa+GcighSlEVkES8ioFuvrBRqIeS24maQMIikPe2gUFK5FE6ozupaeLZUrdMrp96iVdjWHvEwSxObw+K19D33NtXjGTDVLPDKCLQz4sWaZsXvy7ys8erVwnBDJ7WvEte7a1vGWvjlrJmw1Nk3ncXrMyQ7YentZ5V8VbTbosoZTu2xjWt7ZzObWmMPmavrdr6LRkuz2cobO5ubqyaL6veZmMEmmM3N7I1FbxejTW3q12rdh8HelVbCBsNj4ac1H4zi5RtF9WTuGV0sfapmrw5LrRs+7pNVKvrl1khm2MxNqHKhAVBXkUfUVFsskBVPLEau4V6NR8ctolS9dspmU1YrNS2Vq2o1EZlNhCvjlQM1LMGaljJbRUHrJmtLGJVa22YttiysttsZtWtMxjNpZq02G0tNasQa1ZNYVRXrWFQXyEd+EjZA4VVDqiq1QkrVfHSUuSlkxEG0iG1KFNiWZrWyirNVszMsLaja7kKtTk0rMlBc9/JcTQqG0Ui2og2EvPRSbRE8DCKNqlaGszVqbJjTWNtWjWjalmVrZbMZNTLGbWswitiy01pmNatrbbZsbZhtVsxrMtstpmZtZmbWYzRsMzWxrNqirFhrJmTJhmzDTTZtNjVZa2WzNWrNlrW1Y2URXjlK2Kg1apbUbRNkle2VBwUrQNijaVIO3u5ENkm1TZGwyo+LSnFpScL34rlR1VtU1omybLZUVtE0yY1bSGYxpTWFVaYg7tUU5gM0toBTtouzI8a1FTWnjiPVoOrXsyltL+LFfC1NqvgyoPB2mbCWL0OixUfZFNCAJaKEzIvCYj7jIe9QrIeWS5E1QHjpxiIewp6ZRtQ9dItqkuZ1R5MEL31/Z/1j9+cQ2AXBviA7Sa5PxocgiF0NaQROO8X+PxEUPTUhPPyUlcFHjk61Wmo79xifPQpc20rNLsiSTMkYPuYOn2MMV7uRGMc+bkr7Vt8s01b75wx4SHVbLDLTpDSx6LwoHUOu/IPs2By0NKUSdUMbssfUnOQvpu3bfPfix5nl+cXvBz/yQtjXXFAQze+SgT7E03jQdkV0gQt0TYya150+TGSsejxwEWlitHNnikdrrtOi6hNlhqpuq7XhHjpqo7MB39q2buvPcl3TdiCejuTrsX8kGUQVG8wcjISNhnDgpaRsNbSukc10PVNduOOnXC7mvXIHGh4N7h2HfZZB3i9KgjNSgGgC73VKl32Jc1dqTUnbOrTWpZqc666TWXUYUr46l00OqY1oHfo5aqjw0RPnlHUySrthdvBsJiFcOsXrrrStqS2RW1TabJbUpspbSbS7tD54dmrYjak6vvoR5mk6ieuVJZNXj9H/tPR3flmirxnm4JjMQIV9A0a1D1dPLVfYlcaG8iUd1FymBBWfNJIErpECJZbWePVc9Pu+xHnoPfHBAEnsndRKr1WKB3aaPUBspWfVEvM/UlRIs+TnMBKhSygLQbJDsiv+kBAHvpMDKgmcTr5S3qgOGC8aLVRMEvH+U9Kg/kQDiKyKFwMkUBVk+lFCbn9Wj/wIp1goMHWlOqAIjXoTbXv2aFU2pRFq66c0Sx+FD2fa0JifKK5SBqfYeU9F/mjSCK7M310So949+tU1TM4tAxCIpcqAvJFEaDaInyjOSqowMgIXxC5KUfYx2MT8T1+BZ7kEn3YCg8ShAHkOLeJ95oDXDYmFDnmkBXzDmFMiwGQk/uVpaBsSHcI9YQRAMypOm8x28L1p0lHcqpf3i1jQW5ygVqPSlEOtQWBIlU1nMG6oNtx3Vd03pcp0Kij00H3BiUNk5eKhfOYniOQIC9gddr+egP4bjqtZUBaQd4YCiLSmyU7+IleOXTbPQuMwS8osYVhpXYLnvLBrCFwQ8qF6PIxLJHqq498Jbthc2aePI/d7g400/ECH2wLRADUrQovTKD71A8xnQLQN+haVDzUbkgCK2i7URRiHPE1kDjZeZqKtqY0DBAFYq92MXoPRMQCUTBCVogJrNmJVbvIFDc1NLWhyooKsEgfCR77MbvNV8pErCPeKKor0Six51I4IQNmFwfD3JdkXr1VeImnhUORwaL4hJ7T3qGwmlOenOMD7InRRhEA/6JcT9P5QwB6ILh/yObEYuSkfCYpQoWWmtHd46gYbqJ378DzZJdxIGkgnlqUOf90pf2ii96SD6BmahuvrF98oQcpGEn52r4yTrLebEg5sycc73Ib2+dB60BUCHXP2qqbUiqWbsk8T3D+oxLtAjcDe2T4qEkBKgzJF/pIFx/IvNU/HaPGGiTCdIlFkSAKI+uA534idKqFoq8yQDQwg1o121ChVCkBIwpERxTziXlz/35adkwSfbQ8goo/c/gHfLTqUUF9J4oRTSpecVq77AgZIOoiiVGgxF+aCGDD/ai4m9LasT9qJ/M/+7r1cI65sYIfWEU3QCxFqXpSsOt3nnUVHVcHnVl/e7DMqjreCS8DH0Z8yOEdW5FAfKAIfnBRQ3Z2+QoB0a0uICYkMtqYZfc3embe5AiLRQF7wJYhlBhqxkwnXJM6RjEoXiGe9J7Cb1hMkRJRYEd9HuyJrmGCXsR3j6Sa2I9Ie8bcb79aeTM7PBkVTsCdSbb0/YsXjyoWkZOuhDMkgXEiaI6vnc803kgFn/rj1maVMEw0ptuGQwTJmGQOynIlKSgXnUjM+1Q631JaxHZSCKfAgAqlYfyBtQXH6MqiZFVFkEBDYgv/bgB02FEhT13WjLqgiiXImWNk+RwxvlzhkTmrJU+C0CgL9EuoIJBUBYGDo0EEL1+mvehKdM7/aR9RcV8M6If065UHumo3SmKUiq+fButhT+u6kU3+dbHYUDMl8aqKdJgsY8gM4O8Zr5u0yhAnBNiEUNAH/p6Dj1G26x8DadpF0wABYw+VTyfyKvm3WLnkXcjA146bII/IkRQTObCE9+wY3YO9WR2Y0NWhQVcfps/sD/kkAkhgqL28wDYczQRMwNzSHy3WAx5zzvI28xqxIEcx/6JigoTXS8/Qs7fUPJEBaprBUPawQE52yWXDXhwa6IC/cjNciZpmhN6MH2wPLmUEWbCvkE2+jIdOch2Y02C04BO8ZQluNjZzGwTTF4RpKMakkEkCqXH5doxr4GgebXp/2RtLVtl0DPEgAvSf5jW62EEWrkQ9rqtoB9ieE6FONsCkx4gCylkyAoLH81lNKEwgB4yEAgqhO/0u3oCSHsCMyBqXaQBTsEE3Lt99nV3uuxDIVfLbDPi2HzEuEL6tg2BPFt7BOJgLABRvHcYvWISBcNlg4DnQFrgoIkp/Tf95SSAojR+NzEKCXgSo5+DITJVWYnRkDOTOEK37mnAFKUKHd1m7yB4MJ6eS7VskSGyGzmA8augdEBrTOZykyGZOzHgA11J8twNLdqAn8a8cp0zD0KuV8ZmEuUTHtCILg348fX+OQ496XjQw561FFyagmiBQWyYmBE8iQRBSQMp6Oa9dylqgE/JWHeNo3EHzhAQEevrHorB3jYCwrtx1T8k0gQS9DRCcmpqpMt/Q69iRqCrVpyD436VWhuqI+GA7kEUWrKiAvnCbLpMCoixvJljyUFp808VWfJ8ta1bqzfLJ3VPh9aa0t1P2p1TWGEswJ6NrwSnmz+LMsy1AIj4Huh8bCZ3DL3SPG/+bgev5OALd4doOgEkLyFZoqSX1XhUeHoDSJ/tVA7yRYdByDCY0FPsTjJEbzaZrhlXaNxtBslRN7IUb1AlCgI4dpoNF5XyAErNgEQWUu13guC7Ypuw1mGbdiIAuwORqLPgSgC/VAE+OLak7MT2YSd+K+WUdwE5q6WEKwJQiVvNlBviqYQnKKbnFfxH3l7Zr1rU9ax2wJEzmFs4kPKqKNmQzF+j/CIragVRiSWGcTmjf2FUJxHWVjme2RxFIZA/RymvsBLUmBNJEmaCaJDQ7pbfKcmMthrdNaj965Ug7WAcBNHUmh5TB/XBOKAsMX4B1PUMXQ2biQIKgLrSyOcRUbkjIcB+TqFFB3zKthhDlK5+ifc6mQxxBF0PZUaT0JwXdjqAMkDcNg6cCiB9pRPfxHs6uklDXDL+1njDuprPf9boAzS1lUV28QzsD4stIPcRA65hJOgBw0nRDX6dLciqPPmI07ycEN2S6FH/pyolIGMC1QG6AKxZDIAdn+5TqliIvd7+F6stxMRKJ+47esbA4Q2xJA98Gas/h9Yj5FDMZTAlDjCauoljk11FdCbOhQUecgIfPkvj8ejs5eY5fA4CWA+3ixeWAmQsU/z0xY3DUwTQdKhIJIJFafqcnm2elEEw/QCqYJ6uYY00JZ9vTqNSZJyMBPjoAWIPWevw35CIL8G8VTugIOJBHKcrkI8kp+ITEC0/fu+FFxAmDjsaUJBVRzrUZzj/GRW9QCSGPGH4wIQJPQI+HWaTnvbKD9PYafrEZhOVdBpSklDUQEOsGQcZtkBREkS4KcDuLzQt4tgjd4gBFof0L6dBG4HoNh1pYc6igLyKuIw/Et9CfiagC8sG4wVwEe2Wf7e2BGDnCQFuroXKWXWgnYUEmq+Q0qCrL7U3dgsKCCCZqYi4kwIJaMSu3DCCSFVyCXFZWZ+Eg1UlU0kSeMg9M27hjs4jPQeQz+/gYnFQ5vqNxWJ8kFxWC4fVnjhTkVL04iSRgR5dxkksNcxx1Y75qYxUlf6kzQiqPemCarnpDg0eNRLNZSew7Tii3yYckyYShxRk6UXhECAuo5Ce4L7yGJQ5+mloAEFICiRgpCDniGAgC2YNFZMZCkMB4S45CmJD4qJQCafqRIeV2O/GxA5MdWT+GQjH7IOLxXiYAx0+4pZ8ZIWYvoGckdnmjO4ZWtQm6h/SgM3XNovPuCAtk/r3j8ubUf57Ew/gdxy+ksin95JIEiiSAIUQep3jg0SCkhhjmUgOsnCRKEyDdq4UFFsULJNPkEvrcFgK2FFHw+g0xUe8QwgwQBH2/shsWpPi3iO27aVwJ1PLtigjksIgqoBAWd6NqeYhJO5YsVXtL8+Bpz4Qnz/vp+iVMdRmVBX3RBal92VOHtw8cL0x6+BKE2g5TKaGwTjfvjOIk1iAmQyEDg82ZEFZVyezax/Mlq/2LbMY4DpRmZ/i2wdBkd7/3uwVa2DcOvWFpmDsLJTRcFSmUIIUC/xJAl7m9x5/N/jN89fcxWlAmnCMQR+JVRT+ihdkTIkAlyd0dCC8g1iAJPD4D57I1CTiHB45CasBBeVJ4wrvEiP34HqhGtgqpwCAAecQiKabJuNiiT0WcEPp+/zooroKXi9p79bGdiLepIvJdh0gXD7E6qBl5UDcExKGFIKAjRsBoRAXlDeOoSYERRmj0mlZDfiEL+sWIALd1TMiIsepEnQqq26Y0EFzmb4s//i3zWWZAr7Ynf5YgLUgk7xESILcfQIlecxjca2sYiuch/TpH/GDEVNFB5CBypdYH27pKe4kSID+m3AQxpzGsb3Y5OiVY6+ydQrTL1OxGeJNHT6yfSsA9aeys6vKCUqCrEd9+e1u3FBF4+Sn/kwAcozgSRE+hZVDtkDGcJxzPPut0J6ojjskF+0QRUQnWpiDkI0i+5DD5oj6+5P/JjDQQHJ8WtMR+oEIZ0mWYJ0rS1Pr4EjDGkW0m+mKWVsakykSSWJzFiTHvPbcWpiDz1hhLKcqdNPWYfkJ77GqgxUY61CvFPOzpzREwfWApbfiCBP7tCc3tNalAbSp5U32T+EEpIIEaaUyfA2wpmH9qTRImmU1qoTxC08zvRL9qi/Sn8J27ZC9jNMYVRmmAN1JwXAMoJiOGjvWAKLsz6KM6ZmI5eIinN7jxGJ7mmMnh4YzxHbMGMCZ062OaPDiLt0ZGG7ryWHfrS0o2SK0mMVpL1J1FNEFQUoO6Tl8cRrkuKtJWcJgMcfCRRgJpoDDi73p04izcz5S0aYKgpha56wXjdDdz3xxahUn9PeNPfziBzw6I9v0HYPOUZojOsI1R9fyjMdidzLy8AzIALGCEEEmTtlSxNu13TZx5wIFVEQQNv0ZM+tDdsRfaHbSk/EK0owX+P5khskJy1QBb0M0vkJjXkzm/TS2H4j6M1dUj9PrXieiUnSL6eqaifWDXIFZfEzr6VEymAMh3zoGuUtBOcLGf+LTcGM05zdN8lZCU1xag6h7j/nX9xlKeq6tRTCPWO1rf4S0aZIri2TcxoJvEREZCTbqOFPSI63k5JsvSUbZO7lYSkNDrskhAtAY9wh5CHOWJNSYCiQ5ydKj/TwkszQjaxh7DHtDlTXi6BJZK2kIZICippj9Z8MjIKAuhuZzabXMzNWyd08BkEp9pmP9PLKqqMpSfc++J005rj7J1Q7piTkeFtew5rnj1WvldOJsuZTXdnGPI+0OI+Z5XmCo9bqKwve2/gxEeJxAaAhwkjQnleF4NYND/Wl4CmZ7thq4XoJ1mfgKiwKIOLbkKSuXPFDbSPpkB7+ECKcMh/xAyuOaxPM+wJmx0hQHhbEvCYxsd7EY4ERSU4GZtYNzS950SPTJma1PYf18olkHyGy/E4m8cbZQ4nzsjexuNnfMbidP1uNoadD6it5HS+b87TY87vRtmz7G2R6HhTGfkpcDDGwERHM5MJjKd99JMRoaX+v1dl52z+NH1fmfsfuJ73HcMPcVCfTt4XZrkTLf+nt2FZXPY8YRFMAUTdhEENWxERbQxB7g/6mvd+dU+shuQr63Z+MUw6QsGv/0HJKdT9igLQPz6ZTn4SYv7KGOsMUCukwmK6LGkUhqtppNiLDMnIGj6YKPRb9+gsv18v9SqZLENokA+eUgQJju+j2ay67gofTwXTZh2JBpLXt9/r6/v8YOma+GgeeFUB0ogLUdcR4BfTptTuT2FHRHmZsgH7sUa46+7JPA0MiEQc1ZxxlcAHVOf5Gsh+jJ78HOaA7id73HeTGV5aTbrT7NacFGrJUspdH2t0S18nqn6oG6UfhJzo9NnuIyiNCUJzoQBUXpCevb3cZUHiP5Z3ZL9gwGkrIgEKoAqJMkASuBMnYS/qogL4inSQEtA0QB5RRQcdJQxmRmXUqdsE5zsEgiI7SAFhIBAvLkqadD8ewBXIHt8BsDdkbARY9sMnU2nTcb9YiM/FobYKQbHHJoZINuxk5Kncvi3oCfvhR6QRtRHiuo+BHWls45qFQFnMP1CFauB/RQdcSwxVDiP4Wy/9RHLJ5CcSjxEptGWgCUP8BJew65jLD7lhnMx9qzMWmcQAaejniJqgJS/SgGiabVMv/JWc1HxnflTlDXCLsI7M2YC/UB+AIhBV1snGaLcOBYCFt2DX2vqUagZsBGbfRsi/8zIHYD0mesa1qvMJPSfQ2UtuUTuj4Mz/tGVgBjA6nOeaoeE/5dcEMJ7FywAKgPqOYehhPxBFUbMQ8Z8D2nPyC8hsgYqP4R3VmAIzEBA9ML4cpMU0bQHiAOhEZAKzzL0pNg6ZTHVvdO6QqGesuN44h6IEkZ/oF/z3T7ARMRfxdcephOcDxCCrrdnnyl0cRwnojpzrzREUIPBXTI36dw18QkWUz6to3/XCk6K2653Qnp5hmJSuQrM5hLC4dBnOT9JI/uG9UeMDqoJg6gOI9xrphy4yvHq8I+HVumJUBfjqfLIHe2tp0XPvKMElxvZOzIHRJAZxQFlC4e2nqdCHXHqFhjOBpWboGnrSSfryjmSi8+cMRH5uoIZpIpx0HZ3RpERG4MizI7+gO/0LlDcGPagbIDaue58gpyfa+Q2/FGnMP5HwZFQF11hm673cHmSrpgOALqT2j1eIdJryh8DyDqAjzYcWHy+6Wbq3BqKdrQ+AZ3dMQhE0fkZvUb8qecZkJfX/w+MetPq6B6j/TXPP8T2aNzVx+bc2fYizau58o1YnH0fUjuwtTEzGajXJcuw6pqIXVSXkZXv9ZAVdekuNVaVsfSomncgivjPoMuOEBhb540BAX5gXnJTgMs2Jq1pIsBXxydOzPNDOHW0TmOQzrcyYSKYuAZKtBhkHsYzlvJrbRDqlAUyJJqd0QnMxWfu4MoUlRqkMo5yImHLUZOjc/G6ymYwegPyuoNf8inLs+YN81x8rmP3l+W9IY+GtQVacucdQgqxjra5+OoyH2IGwme+PdLKwIyycyRlARiArNgUotO8syG4+PLttshUYK8Y5avsHpLgv7QUeyjhsScPF6QsY0zd3FENGocXhr4jvCHt0Gzbe2GVglxOEENleL70UQqT8B1i+U1God7IQukqLCI0lgO8m4WXXiIr0qGR6Zni7lpqNjz9Em9pcbxYbOXq7gJ1f8mZ1/tdlAXkokEQSgkMiKH0rAMzlgfcZhnekNgzyGxNSAZRbGR9BRRO8hJJ48FgoCyHCWn0DBEd4xl0YVwu6RgQmgkqnP/pmtAKZU3w+fb7+NROuZH9/6dgz+g9JchkXIec/yJLyxVBfjhPGR8Z/pteo5Dm/hzmf8+vX+x5/ScfZDL8Uzhz2YnXIJ1ODCR+WMI+q9kGUNZIgif6mFNgK/cVD1PgClwbvacybO4+ExiLriCaIg/UQRBJyCBLAOSC9nD2iUXbGzqD+uOfs4tsLzd1ipxCSGMpIvChJE6gzaEjy6STyySBDSGah0oWhU90kJwkC4u7cV4VBMle6FIStJcEob2yFgc+HIEgfXSFISpkC8LMBWF4egKwsH4QJyYOA+QA4BvLdIkCB958Y8G8PXmoiukaqURh9MiYxxhmcoRSHypNqcIohtNYPAJZ+hMxP38qzrJ6F8yuHb1p5P1JhRZiLVt4okcp7jS6xmJywwY9q00iJYESiVFpyfzHOBA6NGIsDWhkyBoAjZVExE6iaBZi+P8GokTShnqpqafiVKJYolyiYVE0CiLQolHn4gL1EsKpweAiGhRKFQ0KJmUTSLeeMjK+5xkx4Dq7SNq16QAFiKrYmRL1EySTKJaXS7ufvSc6BvSQQdsLJzF7SbzF1lu9h258kVst3go/zPhzrin6+HPKeSLN2GW9qhBgueKNXB6sybZ5fly7aCJnIIiB3YPX76nrCPgfjq9x1QXE4E/VdeXlHHsbPivn/Kq3pEjkM8UAhVVZ2idtsqpu6OjcMtluLMYrYuUDJhhguo8fH4K7rs/kjTJihnmmMmJM2D4bn3ozy6+TTmvM8/DxnuO7LR+k2acn3z+d1vFhNGvUL8Ka5M3WLo5Ey0H82kAlkXiQ9ibptQCyYd0szcYHm4vf6KL8Jnxjn3zxdc5pF2mOWIxBAVSSACifuqJZIBmzERwbdBhI5QNuAGyTFnaX3/u4jNnl7afH7/DdT0+duz/uuLQY32Z+vMayf6bb5amxPHcH2htfqxZ4+gfvsHvff0P+/qvqzV9BFh29CRcv+ejjl9Pp9mRQFae754trBEJ2N2aftk5Z0PvIS3CaPTPEJP5RIktoUTBCan6OIlDVMCbIHQmcfA7DpPiA8eny+0SAfeVtp1wShUy20KCUUFHru/US88u3YnHenpOAaokIMrqW30hTQeET2iUE+fXzJvsYJ2zhap4IJDx7x0s2Ob8420pdxO8JMDmHohYcx6zqCeASQTAJvieak8Ym+J1hLtJuP+CbpX+xNu0TsEVPrDW7YadlqNfp7xs0Z1IcE9ENP5w/qll3BhDLLgkQKVBVz/cnLY7lRCkgKiE8uWomCRK8dVE3ggDjED/If2S/oHVDmkm2AUi/78GpCAZi1Kg1A6nV6ULzWIOYNWohDMHMNMUJiLIkjmBxEvEvajzA6weGrnXKnNG1sbTbZttNrkNoaXKWVVR0gWgBaBeCWlokiYgZi3iXgsJjF7BeBmAYm8JA/44NYKCRZGRHCKc8DMP8BxyS8mrTE/beoajboLDqUeeVJbpeUMR+a+YKOjHj15LcObFrYj3IFMteVadYlLijW0R94y8MlRGUHl2cpzOKunjyJKax4dHp/Rm7km5wWaLp/nrYZYvzk6fPtbbn6HJoNXo1bsYxTzxEwgg6vVdiJiW7Sf+3S0a4muXv4qYJhENMcYwX0Lg7ZVp/iD8oxn2ZMcq4fvPJiCLkyxlSbbBRPTC+7HHODmiLe1143q89WXBLTAvr6+vh+Hh9Ndd9abeVkt+kU/hLZeI8OI/veYDgMC8xxJ715zCHcXPh6yye5M3XcGVcKikYwFRTpLiOYCM3l7Cz4DRt+Ut3aVZRIdD4L2Ds5ushvFSKi6IOAIKbIIa2CBSKNZ6s/gOn4lobNHOBBUQcCxkaHCthFjWUltPevhJTKXuxsFdEnoJ66HJR5BI4xmxofCaYS5NNT4ByTYYnsejog+YPuPcnc8myfB0WSsdz+ZLmtUejg1jmU9yyEZAC+dCW09Byr81tKfXm2iSJrzpjtgXyGsTidvLSZU3PxYX4CZLz00kwvS9CpdMnUeBulrg1GvZYDpq0FIwEDAgCZkRQqDAgwJA5uc6vnxRgNKOo/ybabwTJEQ2jPdwBCgRwOhAtwqwyDImOC9IvL8tPJdcm/BZMpqnTYmgbZE0ACEISRBsWppfPQjhqWwWZtTZtW1WabbFbTaxoZqzI0RC68Fy+qHO8TG52HRQIA+kidZoqRkUyWNoGgF1xQOpHdKKuRpNLV1PxIHaW0ki3jYinERMLAdLD8gHsP+4wvjf2JR+c9K+xQE0AiAY5InDeo/ENeUvro8fMbGPJibh9CW/UQlv1KQZsUl63XyWRh3bW+oHG2gibP2UC6ke4gcEUPMHyJFBE5TWjjX8KHg8a81ZyTyQHXA/QGGggKA5wUK1N8MOIiC5pU1MfmwSaQTPP3QbpMhjtd4j64+6JhJDQiSC2iII+wi7tMXD5Iop7Ip5xTQeChPkDEATpL25h895S+KApOaSsOusC545uvMQidVbnNHZQbn07/U6cd+D5wfONudUzH4XShBV+1zZUFbhp89Sxn6D0TMB0epxPJyZtrEPeg/POyoqdEVSgybaaljuAfNo/ssay1fliQDv2Fo2H8TipEvtB3lk+IgLjqyefYeLL7zh3XbcTzoOTlDlOAsJqHwgjZiB+xtKh8IfoMD8ghoJl8Rlj57lSVVAVAO7U2Ikqo85pLGg75kvZ9OWXk4Nq+WjyomyUunso9QOR9QQpVdOVgbzc3ShHj2d/repgPoUmkAznw2aGIaRBdIIe47pwUbZ9WPpNTihD1E8BajjlpdoIbeOLUEKIaw/Odbcxew4Ta5fBxS2YUBI4lts/ZkXYk4N4QGWMCc80ouyJyPfBu661QCXU4VtzdihPzhHQp1wjDiwwDsPzOQKtyWbAIj51Uwml031+nvrG3yO8TZvbjvxccrWejTCejQ1bCB5+c53T0+yMjR34TZ9kLhtR9XHeuvJvVLsom/S9z52Hw3eVOu5CIyOHMwg1Dg4nhJuDrmFgdExrtrG4avPbiUB2GJ0aV5R2Dxy4/DzaEu9lXlFuDapZPNuwrxw9YNsqFDBD9IaYANoAHkigicwBTRxxzk3u/QtgDeitHdO0ubF7h+UG1mUnshoJBs6bFJxuCAdREwxfzqhkPyFofIDtF2L0HcARagmiiQ6A561Kb/dvaYTKFDgydp4cllR1iIAVFET2GvjC61u/Z79m1v3azwXTAnUEL31FU6YKCmE9h4cHGwmTUzytHD10g7OYbYe9OUowW/IbS9eKTZAEeFgBokULsA68/dk7Q61LHgDUiKo0MFhXkb7N8q1+vsaOvMq5yvFM3XZSW5y/RS8LU+2NQ917h2vX3OOIXPwGkOGHoj5inuCiDCD8h+RLTp70D5c9veTEnPJ1hes/E1oPXu78hDodhIobsBWS8+xAFOIO47oDZZ1FBregB7ggh8gKeIIjyaq8MemqcmKF4a8pjeoPRMUvsxPktVT2aLsMqn1pMK+Xp5Pqd7FTtkBtSzUptBi2+apSeoZXRlrVaH6Zq8yV9e74uek+0HRPsNYHrpgbB7EgmSIgLzkcedSyC8GChPkRBOoqD8ignRCh54As0xSipogVNi8FErtO/oDMqOi4wjcQCza59C/J5WjQR7gY/NVyYwp2AY4wXFli1/iYuRDy9BclhfwmYqp8IK8wF3j8IB9ir3BEM8UPghf6c2dYFHpfZ4rsFkhFEv1yyM9cvhfDK4c4GF7J9dGko2jBzRhihMN9zLCkZSmV+KCQgPHfYUjweW32nnRyO7x19uH6omp76Naw4FEXXYOBO/IdKfIUkI8v0YrXdszlQIYLW5voZFCwdkLqcLvaVtHmAtjRo8ucx71A1UWEYUbQkkYGNeCxnSej4UL4g0wIPC7NvUH+FfXNjvalOiCOIgfsQfUQDdigWCI7za52Nh2YAdHtfQWDtTpgCA+InMXBhLjIFkksHh6PZYtHiRgJAsfMYV9hiUezR1AY7DQDoTry3nHwJR8zvsMTR2RbiBShiA6BpFx4jKNg2EW5yFhg07UHmbDYDymdEr4x5bCHSRF9RTxCQA4N/FH23yYm7SYinkiJwaxr8w7kX78crkfm3GU58/FE0D7waWDCXp58pzmxtZfgRRM2NoZscURkUkROiyBlMU1wV9UT9y2PJ0eE9t/JtYLPBPs70petQNoifsA2gKA9A+Sj9i+yJ5dyRLCeB8htcXVJ9YhyWDQuFzMJ4My4YgHjTQElEV3sKRGfiQ+EV3BIJgCCe4qiZiGzEK4KD4HHziDofme2dxf044S3s77PAWvwaV6J0kW03SFN040JcwHne3o5B6DJdP3gdE6LS3gPvd/sL+E7hqEGoFbnrxHSqos/fBQUkF7wX2oksQjV0yR+d0PwglofYv57ISaQvAuefsPkahtQaQ7Jei0LVHHHiBIHqdTEvOQ+XkfveafT6vXyqkLVX2aS3sCRfLEStijoxmeuiJxBObV54dnvUegwolziVcO03ud7NBvoG5tS3D0omnsHJ6050yESCnZAR7iKA+Q8+cbedfMHVmOi9gPqid6F27oEPczD95J+hZR6gi5IQgpIe+Tc8nelz4qGpqva+7J502GkLeheRz04dslkXNad1xh2DiQjwaKb8pXl9Ba2yZcgFjychuomvvquqOw5IiqO55OuR0TQw5QNYoU8h43MXidFA2ibJsmo+ooHzJlDIcqJ1s7ERDq73Zg9bBa0PrpGzw0XMtq2V54TMLmqtqMw2kbGxSoyCPEAXyGpqeSxN7OA3PWgS0jtSRIXXj6R4uUs40Co+jxM5tPn5kAcnduvXg79UM4w92oWQYKVI3gLndJAkmkX1b5s316wcxUOooCmYnZ5MppcFSRXxBEH8iqBbozQbXDLPh3si+w3+GTOlCAPUUACwIdwOEtTENwmYZzWtjjZ8tkwa+tLczrCfEunNjxkUBYhvWRloJhfP3kLedysgvgiCRgqD5iLsHBKEgRymEWu8K+QYNmS3Ztrwsb0sZ5lS4ik02bW7vdv2TO/Fg1exMrunLYA+fCtyB9IKgMilcNDuH2Hvo7t8mUidawejWk1Z8Ptcw1MblUalJE1UNX7ah+/KaTFBB1lOfbQYKbx8sXyHWhdFxdUtDCSEL2wg8TY2evg+R0Dr53ax37LWX0kB5YfDa4Nw5raPPZgxsNcB1hvnRyD7MHX1tFwx1i2UK51A0tn8PI4KPafmib7mVDgXQ7FoEzDc/SlskQ3krT3cG1/ste9XouWBDeCocwDog9Reqp6RYIcfpEPHrQt9PRslj2bT+9GC1wNMB9ubIFCO9kx82AjYfbpQX9+UUH5BQQ8B40baH5+JS9moUvEc0UOv3J14396Je4GkAfRAeEiIm8Q49jKcE2gHJI4aJBA8JBBOp5DWkQWEwLfVi6gvfZmlEV3GhlpkSpERzfRv149GldyAbHkgp0U0PUxFBCxFBMEEROkgPHA5biQyw/Pg6Bbqfv0ZRtPBA3uaB5QA5IAKH0gqHv71auTQnT11UHjM+XC7ChrZfv3cFpY8BMJQQx3XAOeV+2oo9ayg8xpS+zVU8NVHe8JuSVS5nB8DUNTR6PsKThyoA2IgAEPfnnF/Tobqv2CSA4axm+5yOLH09EPL8xEwnPHuvOmFHSAsIv5BDSHcBPMDaVHmD6io7RQtBRdIt476dzbp6cJ60DJBNKKyHOG5YRU4IogHk65ByG5b6ftwdhiCelBE+EC4MMzqIb8lL2GqF/jlRVN4AG0T0xV77CgfVyh9BuUTbxaprArjABwSxyFopo4B2Yquu22mbabWzNa22ZjGtZs022p3xZB6q1VxGp9IaUGvOhpBvN7B39I67sHBdxB056kIPiLCEvEBRSlgq8xfCavLfbmy+F9Q43PKVBJEDeICDeCk58c7dAedvB6pej37tt1i3Pv2WTXnqCd4PB599MGbfohH3ygCEgKkiiPUebnJPGqRGEAB/ILURFCMXxEdkmDU5o1lyLoed9y6YLNGNkr0K54IEoOmRXYwc+kb5k9C2j0V5OhvSXnvdmhqdngbHykfE9hFA1igu8VAZEr5Yu56TnuZ4J5wXwylzKEyIJqmpWp15L7fDN1+Erzza5APlCD5GKKDqRDwfL7/ezlYxOyIPRFVU3gJyP2j9Rhv3jgEBeDDlZ9ymA1UReNY0AmV2L/K93priJZPBbaj3cdU8RCoi/kQeSCJiIiJ0HBriJ88d758Gv58QeIgYL/a0X6R0jB1WjM6DcABbbpdc6Huw+3YfiZTl5NoXlgdYIqO6ifV+jrjQsRF4EUW/Gr3sCgtwvKEOQ9h+W16nFhqKq+WAC+ICB6fBjkgfHwNHhMbdbOEfDUJo61Sqo3DggIeXQ1Aw92DyDgGCfGPCABJ22DBlYrwS5o7maDRPOueH4XJW9aGnIwnoRode0tJQwd+/04ekt4gV8YG3e3tVEzFNoggG1z2U0urNuRbE4iOxEUR9xchDZDk7PqcPOMGi4tsd3ePKZUTcdU9Hvt8bdD3DzMj6NfGhggcGjQAqy9CbAdVZydDLB3YmB93DKuW8glmTLoV8+dqivJERTT1AM+MB6QCERR/CRIcwVUOz9RdHVnma1UI7/vL6NO0Ph+iHYh9K3PUXzr1PQ37Ippf6mhbudDx+Vzrq4xacliQgVF76OdMibLZ916MXFBfcEQDZJ5JteBoWyI62vxfckGZXGAN2jPl5x5MURQDPJk7IZHo3yJwvspskE1PZhPo5Wjn7rsJovfsNPP7WbwGrLeygA7w72oyYgg/+yFmghbKrMoDZUDNUgKySCSAgIEUDe1buTJvc1xpoG4TCubaJkxlVBcqM0S5Q2RAWwoi0GYZ8mxsmmpjKERAWgJLRVBYVSgq3+6m4CI2I5UgFpbQqqOpBgcRRIywiXvnVDOZLFIsFEQquh7GERYwWCwswqwplSpUqjvmgiauGTFrlPwOyro6SN2SEIVAXNr3YyU4FIijMkjjipMI2oLBc1KKh9Spp7X3lCWljJAiYsFPq9hqSvg0aNZJNZJQCXEISAYZCEJDAjG7NVpuiK0lOqFEu+HCmSLOcTKyZrTNqivIxpNViM05qjjSFcmjhkqpmrZVmis1bVZqmys1FWZQNVy02mgxMprNVtiAyDBCSEIhIyJnXOtgEF33oBJnTaZJGHKIasAUZwjOZTqpSZMMwDM2NqKrs44mseXU8knXdjHODRONGw4tPHHjNPEeDhCZwbbWLRn4bmxY/IYiQERboALvvSWIdWBQWl0icacLZ0cw5UQWEkTHKUGlxQFhe6iX1NDQdShQDJAUxBEXJEXDlwiwLbmAyXLZE2MJZJKgMoyetFKTKIJwzrRolXLpiHTq8ARF7yRpxYwA73fRJAfcRaQppJNYSoQfdK0LsawZQDhkHSEJLIZ5ZIR605mac2DFHbHaZgmJncTXLm2aQINlpL6nVs3ya8FLg0aZAiRSQJGQCJAkSWm1Gam02marWJtmDNNM01bK2zGLNG2VsJm201W2Y1WRs2Gw1Vssqttm03sk4wJWhhaahVzByaScc2rUKssxbSMMmBatlVYeaVr40LRQD6qc+qIEnBgW0eYqpmqVsU5lVVxhGxY1K1qhGahbTmlOWbKVWuMBtSlZNDWpkiEUjEgGu23vg10BTRiEDjjktaqdi6bOtxN5omUxlNrJoNZtNpGMkEoVEK7iIYhE4SuwnRlD0iHOWMiphTUkAsmnQJ1gQ5Q6QAlTBMwrDmdTzNEXIgoFkggJkJjXKCaOMR1M0kBAW56iIC64bhYI7w5S1ocOpjRL8ImoYsmgFkEzVKALoXoh6ImwnDCiJ4ctOo311EtSlgsBtg42VyBMgYoUkSap6EgEmInD5JkxmsXZDIkShIsgRYpMkkCVUEBVwdSSUwNEIvmsicWVZjGGEQE0PMPGGIGKy9xo3MuJJIu3g73K6LMwlNstNmmzLUZs1ZWma2VbbYrTQNZkw2Sg2aJljZja2ZgzVTNbatWTYtWTZlJWFmT1JFZNOaSq2WaGySDW2tq4nOWy2KzktkxACBEYMRIRmcYW+ul9zjjIWiG6AmakVtUobKEbSNQFOpDNGYz40e5SMUzqqNIhwECV8oZRzZ7vG528ZAeDPReJ2BOnlOTmQTaCa4NooOIyCgOCzQjrlKetRwMwmNzOyqK52A1yl7KqjkMGuJoGEK94MopFKmK87UQrIpZyXKCVoPomDV3a3lk3LWWi2ytgUBvBMjcoNWI1rrSVeUqVVRBnJ6fUJAklAriv5MgFsBzIXgMhwL5BrLZYSuO1CHiPl0nWo6EOjKL5t9b29h6UjmDhBg4bBIXsQISzVSFtJSmPNDMJT3YCbA2zfU3vReakEtJEFkJAjqgoBsOMlA41VK41HMrTUOWqnDjNNZmNlmtmxrRCEkIjIEAhIQjJIapja9zQNytw96y6gwZ4Og4QiAnSUoEIWkehIcYLJBK+9/gNXVAHaL6IOj4SUdvi/Olh2InYIRCNzcBAlkRKg7TSJznKM9aSEOMEjowSAXJHZLJWh1RkBMMhAyIiB+BubiJeO5BAXYmpEXcogOk5gq8iIQJCVx0XlxxxDSFohE5TBnNI7tF61Rch+lOG22ju7Xcmzs7uJm4kAlmWLMOqMshyCwziZDTFVIPm5fQhW2owskgaogLrEUuFig1DNBtdIRhIRaHzMTMMzsiQUDQ6EIE4gnXWbVlxgxprfVIMiyAQYiwiwCQibamxttY0s1hjM1U2tTFjGAWzTElZrZbLY3zVSrNQDibmUlHMQHME3KxqqlmbGljbYxl03rTjzsapvtfWi8iBCMgSASO6gkltJrc1NagGMnFxpZhiwAhFiRIjBCLBgB3nrjnY6euN01LUO+Yc6igkigbRR2It9qaWCBvBEdGAhsxRd98qoLlRNkqOmNjGjLJmMbWx4mnlQlvMF3gOEuIcZbrLIoDg3pCuNkcsWIlx4kviUsBSXhrhcZyhOtoJkYwjMiRJUZGAlZEY0IEIEpsZEQxPboi4iI6wW4WNgxmrJYfhAQR6g9BECrsiDiOyfS07jm2OB2Um9KFKLrBSysLRWKdkDonRyB0nMk6GKMwSaEVKwjA4VAWsJpWkU96bIIrrqbmwgq2AtONnTNYIEEg76hkLBrujsEuokuohqFKVFzeqDF9Z1WtWaEyHvbRkRoRpCXNDaKNgbBbCXh5ddvIvDoXNbmTbZdTTZCDEIsBIMICRYmZZrM1i2jMaTWaa2NMzaxZMxjba02llozWtZltMy0NbVmUzSw1mzTTGa2oJmJWr2qKs0FxpKG0SrXHKoHGSODiWpjNo1q1TMti+X0ceud/AyToNxxzI25x58DSBoh15sZO5e25wb3Tc9D4Qr6CqZiCAefOdHk4ENeMFPzx7XDPUDBb8RKiIg6kOIgbBPBMGPTy3QPAj7ObDwzYAAJYX3FFiGrNkhskEXPqeukDlbhbxSHabpzjr6l8gYLceXn1k8roUvYkH+bysBRyGlKLGNJFAFyT76NgYfjARBjBH2nopByokSHiDzDspo8QFBeCYIg996Gj+eb+9AAAE9rqOjufj8CAVY5FD4REFNIIp7bHZ40LGnNLT0M7ueggPJFXmCKp3EIdFHqJ4Z0mlB+w7njtDsindivVfoeMntA6aWk8Tg18FoabiY5wknOx9wXgEh1A8G9+WGxw3PN1+6xBH5HucHTVeKUE44XlsqKeTehD9UTmiA/RlHQjgCCopsRBCxEdFohdp/ZmKbCFQoKvT+kIBA/IiIgeQwv5isqjpFIQBVOYIdpoYHSQncbY/V3FRXZ2nG0UL2UK0uMvlWoAroZIXfhYA9h6LEsESarWi5TcZVwY7GlJ5IKgvhOpSigiV5ScGuxwl9Wy7hDj6TBcbRtsmxxlJ8dVJD3JAReNBzRsnWPPL0ye2XNRwpfXI1IAomC8/k+XJpxlKjRRkHux++D3pXto0+6ajkklKG7C2/kd91+oKoKiJb7pEA7IAoOs2IB+xcHN6eO5wD5wbfXW4nQiigIFz+E3PJpRoByRTBBFB8+ikThftLscl3jbz6DmD82slp36uc/MJch6iqdREqAZip0s7CJA8xovkMOzrsxjAy7of5h03Lh5IPt0QeDvbOjrrRQd/Gud32wNk8QPQ5Lk5j6qP8WHfBXnQdYHt4oEd0hEQjFKr8bHAjRKkltawIngVBcfLhc5vY8MHdXNINBp6OFMcB35g8TLOMb9TLcCZ672NQOYD0QzBmhT62KNvqX878u00ERqYJ/E8xBZBBxAEfAkDvnX3tuMEfON0Vhj6ZFvPLpDsIOGTLSbKyzhj15I4GJPLQzcDuu78xyh1sOFA8lCKSnTtuGAYUaAxYwOuyIYh+OBDo/+YoKyTKayt8T9OgH6Tj8A///////////////+wQPHewBQBPkuRoMAANARo9K4AAC7AygdUdcAU2ycl24DJlbhrgd21uNmYGuWo4duDo62nTugpdkuOsDdhtwRwLo7RtSqCJyNAooLlgnu1znQG2AWpb7GpR33ffDgAAAAeqPV51pwH3vAA1WmqQdbsDQAAoAADu3QAAqih0AAaD0AAAA0PILYAAAAAAOtACumgAQNgNHkGPc1e6GKgqqo0ypaYqqhaTZRQSFVVDkaWwBroNWxpVzaU2YhJKqQXXbbNOcVzXC4GjHJw4BzquDuh2DgcHLjVcts4OZNsSIVRJXYQipNAAgATECaNAE2gmp4CYAmAAmCgikGJITQKeqjIAAAAANAAAAAANCZASgAAAAAAaAAAAAAAFJSgRNGKZJMjQABoAAAAAAAAAiSEaEAEUIxDSPVP1GptpQeiPUAA09QaZHqAAiUBTATQKqUzRME0MAEaNGAATEGmTTBGbQSnmJvMpff5jGZsxnNBnNhYbHVnKHya3skGsOub3aLeyeY1N+krtAl0iH/jtnae+TfTm1W90154EDpGcxACr7jHvTwhL6KY/M+ieo6JIp9Oa1xAwsAykGuy2ik/K1XpWWZOllfIz7a733N/CZ+vKG/qkDyRFf2QdIKIkIjH+vn93WZh1CTWYgCZqKtJeRcR5yKoKT+VnLisqDzlFrf8oqn1fATeonCYu1GjzNt8Jsj/46vbMnxNbZ+d7AgfAt7x/nB8jDM0KvwPiZyKfEmUvOM0HiMYXHaOEIXwlPkeb5HBh5pbz3Hy915KpQyQQMrXxBbIETBm1T8codT5ZyYsOV17o26qP8wsznlnbiQxKQLUeUAXQRqJZR7JHs7ZoXhUXVt0stj/Kbu9LRPfv/nAPP+TQDy+mDbDjyGcjkvAFS6aMt5u9pof+x5bOf4HrUdi7uxOr08f30Pc+/d/6rdDX+fFuVzujXSEOuTvOZnbZiqkQjAjuZ3Mcyj6nN4H4IeHxF7NkQ5hCvxhdxHJkdhjMjnFBC7TJxtfNkP1HJ0Y21nT20Iit4A+D9zT2Mcfss+XAzlLCasLCkUtKpm9kSFhZGzpBQ7j7e1ey3tLF8cWpvZbngYRqiqGhyuKay2tyZHHMwZzjDqlrmamxroDDZ2jHcFbPMYcbM2M9hWzs/UMOI14WxyYixsCuB13h5n6dPtzP4/1A0Ht33xoHPQN9A5jz3sPrciBuvYeE3nJs2icEps8/dfJa4d8eCxR4IXcpAkGVMTQeOPTnxIV0+/bF5tb/yBV9EDRIpwow/CBh/8/T+OHEhUPnfMgaE2IHee9+vt/r/yBxNh2HwOd2b39vdea0yvfQOB7b43yuc/JweNA8ch4Xmv7f45H5OP4M5xPT6sHO7CR6bPIkNsj4CCeJSULNkjVABWpCMDEWgf0/OZ/H3/20p0Sbv1vHQsXpiYuMO2wF1IC7RAVNpsU9nG7dxsF7Wt/PWqXf5Kn80FVQ4K85ySBJNBsGUPWGnYihCKvZJH/whwd0TeO+KPiXrSpJHi6+SX3TA0TXRoLkW3W4YC/kstDiG8w5jRHhoEpIyLHmjtA2NdVOkZw+vleBQy9kTqD/DdUa6UApFJACRGYths2pmNq+xznTHMts0m1HTc0tqXNVcxsdMjmWyT10BV9B4oVTsDrRlgvMfqaHvydQ/R3h7dzf2coJuVy+tTZ9zX49feWgnny8vqzublNQ8+kCIpUgiPXk8P3oriwbwPs4jhucl/BzfRuEp3iqm0UvFMMHudClt1/Xi77nCaSG1KvTE66WhDk69j9p5umDzya7fDbwNch6YHe2oRQQbEETlgfpixs9PRR0gTrE2aeU4aezzXk9ecdF6OFBdiCVgqdMBSMNXPjtN/BzcOacPJbgOZpQlz42bXq1M3beLEiCCx5efNixAnHrmyNqunhsGri4Dvn01camw1ilLNRT89EgNKrEUbVApKxpZioky0krapErNKEi2RTTSUNqrNCRTjQ5MgGmW2YqkG0RS2TNJSo5kVJxoKWytoMwqpWsBbaAwZqlq02qhJqKrEiXnkcTVTBSyg6NFSptVSuYVK1pUBw1IcaEq2G1RzIpc0bRUlZLmKpYqmoDaTMzDbMq2BVtpoxjZbNqtaKNlbWZWy2qNkmhlSVtVtFG1tBrE2sYptG1VtVVW1W1F3mhS88qVfTg87qbiA4YAyC3lGtkqwcCgrAB4scFUvfXtifO1UdMTw0ijz1RDpkB3aIRlCtJEJNYqBTZW1Nk1lLNVsK2UhTMkefXey6JRdWUDYCtaqd9EqnkxKjtkutaS4sq+vFFfO0Q+ppUg7YkbA2YxfXGjnnx4rjzrdb21CjpAEF8meoFsOQpvBgSxoXb322drCUpgAuBKTQXKUqAsddEVdCyIXYoIkhi6pUI1DUg0o8UGL5YHjQoR0Ai0wFgEFq9rZ7qoAsEAXWy54zcu5StOBwxasaFhcbm1mwZ0CM2acmqbWKfIlJoRIzV3d3YL4Js50tYKsksoot4Bulh52QbkMOxmYL1zt1V0QOI3XW9FIijEMEO4FNkA4s3xloHMGxEU2YbIFigyQKIZCkMpLO1bCJYwNiIUreXmo5NTI3bjCcTJlggOGr42WWjOrki2IZIHFmt3YxIOMU0U4dixdupqRNLC3iCrNmU2jNskLZG1VY1M02ipsCqxqMNBmpg1Kq2qm1NMiq0tRtWMk2oUs1TWQm0qm1Ey0M1SzFtLYraZGopmrWFta1EZqmsVsgzGyFY1NWBtbKDZZkNrLKq2WamYa1TWrGGyVLWRtGqqmiK0hWqUrNBtJNlmoxam0zMaayNZW0FmqzUZk2bIiszYbbLWKVaxslbbVpjMkDayxbIxgBqtVmjWfTbZEVnGnBshmUYxKhywtptUlc1XGDjSm2rUFLGpFrSm1I5nGpCzIlTZUtksZqyzSRMXGkzSk1qmyy0tm0lrWRmabSk0wBIKRJIp6NHF3XAFEjvXHG4uXBjR2NKNXGjlu4e8CKGWKKSAokIJq18aEZkpXLlcq2qm0lUOaoVjFcMkVaNKKaGQkGYraKVLk1Kq5XJyQo5pJpoQrMiJOTkWZmZk2oi0wMysMyZUtTEjZpqMyM0qIxjAgQIEgSHBRxZaixZu8YkM4HAGLrpuXgR1xYpBBsQgghoRK1aHFcuEya2aNmzTLQb2GEvYIQC5CgYMCF4WG4Ko3s2QQL0tDZaVgNUMiwKpvTQXIl7DZbBa7gOApNYmHUOAyF8ihetBmdRRRoUBdrxdjNzzOs0yYEUXJWRMWBlYUjwqWQaulJwwVUdxmODZQ2LltbIWsBFJITNFQvRIgKONrjLFxSnMKxWi7oJaSUmzJtDZaUudtNg220O7oggN4km1Kips2SmWCadFtPHqCXjvTzRqFI4kV66B3HSGFMOra5IeL8ccam2EDbIxTWtipSBZzLmVboWgqqXTgzi4gC4cBYL6XCkBVxVxhjYdDllpDJfJukvikM8EA0NcxDaSy4ix0u6aUZWyrkw6l7VGHwmmTY3NjCJrBIRVBYQAZFkIMa1NrVlsNtLZGaWYtqNMW2WzW21bE0xqZbTWVmjbExWWlplaaTYTNRmrDG1astQVqaatsw2obESzMaqqNqWmq2qtltUmsTKy0tZjNe4ULjSc1SUNkKuNUSNailmqkcaqVTjJVHE5NJrKRW1NjNGZWr62A1LXnDOLy9rOcNjdghhQikIMgsqNtjabGazbattaSpjMmpto1DCFmqasjJpCDAigSEisI3jbUvcsO5aoF7NM00ctrKbwBEbgx0VdQ33CwwLrCu1TtVleLqgriKrsZtrYnd3dFq46xyayZccedOcCl2eHw4XLI1rotFumQLFoyJANw3Wyoo2AImhqjKNFtYilXJcSyxbWgUYb3LAlg4a1qW9U4FrFG7YMA7rCqi1BophM7wKKshpOtusQTdXzgnOObJ+ohR3jaYIbanFsogLRetFN9Zw2FBGotjNs20p74upagxV7FN1IphDE1rlvto5zd79G2ZI1TkAFexvIHA4JQc02GoKILcRKmKlSFTUdMmBdKYUinWmtVKNEcX0s3umIWMCYuYTDW5YwWuoSCUxMZNGxskVkmqqbSNgWts2GmNjYJWtWppJWpi2LLTNW0tbJM0m1awyawaarYxVLLNWsrZTFg1M22lRYxttmqFamI2jZrUbBm1MqKzFZqVbTatNbRZkIqBIEUgIKUbNCpgul2mN5tkNXZxUvcdCoSASJCAkkgqIySFW0ZtpKWY1hLYCbGtRTVs1NMNiZMZpo2gwgMiSsWS+dG1tC7CFtJQqo2m3ovqYriz7jCMAO0QFT4iBkOVDy4L2N3HXt8F12zbGrZs1FVqy2mmvIKiFc0oOcbIYxyDI/LOZm5sAAmoXNQ2QyN24GkvliIo66CgLspiFZrYa3pjYpOxLvQbtraFQYN3kFEdkcDdJaaL5XMZ1d3fCN25eNyUJTprFacGnLTuDWUIA5lM3GLSDkeeGwbtmdIb6znXXWRTN6oaE69SjCkh0HAtNm8RwIlzSVZxc4eBlwN7pk4IFlvsa7Oq4UoKtG3eSoggjpswmuO9U+hrQS8eHd2ZS0MBWrWsNWmMUq2bU2oK0azCpbLDY02NZqa1qSWy1laxtszStY1m0zUVWs2RiWSC0NG0zKKbUVtsxrabTatgzZm00xpmaZjBAFkYSMIsjElzXAdk1PBgvrpVGMs2w44xhORXEBUGERSEFYKqssxNNGtkw02mSzBCAMRioQv9rNNNMXjvp4KzC3XFrCArd3jo+F37Q0rYQs2rbRhSOVoW/AahgbxIEkxShRBQRyQO3Nk1y+lHNpAlYTGXo6JJLUiizQWJM22a2apMcw6lXKyUG95TBW0kLLvXKEQXUaUFW5XTp0wASa5Lds6vJ4q6FCwxzKkuK03Z15QFqwFCXN4pSgq2U1VC2dEM3zbGgwqkNLF299r5s2LueholocbzKOwRuahZloKDCPJwYAcnZ3Q2O4TJxLNZO2HBmHZBg0QOSflJO0HaBlOEmaL4djT4iK2NMzZaNNU0bFmUK2Gsmps2tZaVFpoyZYxTMlsmao2tozGzNZplsyWRhptk2JSxssmqzYzLTVCtYKWatms2bW02m1rLZZl4zmXcxiwNZzrnCDZvy11yGuXK7IsFkQhJNramTFKsZTNKYtWGwRVEYxJArqFa838JmhAveQNb94ALIawQUsVRRTermIyLISEERrCrZtm21kmE063W4989dQDSVEGzFTvulRzQ6rB6by+L2RgY6dagvTvyaVdmKLZVZqicQkI45lFzJqhZQtqETLrnRhIBDk7QQ2uJaBq4YWXYmgAo8mBWxmw2qYV2NzZq97r6M761coQUdBIOQ1SyXTZzBsCedub9XrAIcTQY3hhh5RxSeOOiUJcXJZiSGd2mU2iKOnv1meJhT6kyQ5hN9atTRlA4dqNMHbc46zJY391HOQ9dYz9HYMjw7SGKjVaES1iho6LGa7Dwq6Qye7iDhlmKAjY1FCg2iYWNYZb7btXNMWL2pUUbEFMFjUwamMkGWxmzMrWJtJtE21rNbBjUs2tbNYxqjQys1bGaVSzSlZtmYtNbJUtg2Nm02sGpjJStNNMajZhtZmmZrZp45dOx5Hjq3AhdnW3SAoVAgAFsNNPLt2GT0hyrmprTTCK0ybG0TaoVtNhNqrWmmbVka0aLVm22ZVssy2yKrPPnZ36wYLfcNcYq3ddAaGppRYIKsFRWAds5ttbRvSkV1ArGbx0ic71Kqjx2vF97DoJ6vAtGXCFxZjMkvRZxHOo5SwXAEG0+IEVe7CUQTUiBd3oQ7ddrotElAUNQHZjNEXQBaSUlHDjUimzU6eUXewIccATKy2DZsCqMqU5ze2MGEgGMY00Pe7mymNb56hOqrPQYM73Dgo3okTTGNmwsJDaEkURC6ETG0y2MjNDCdcMTszFhw2+YdHi8ElcPRFzK76Tm2ptD44CUgg/ItIgsiAnyAncKpsc8mrbNYNZbNkmjaGkbExozWNC2oK1tTGzTNgtaWGpqzNtltYorMptLMQNoYWpFZlsWaZgMZjVtLC21WtbW2rPa1xYcXRaO2/flw41cnhrTU5QK6IRbRkNtprZqbGhmrFtbNUVYWzWDGZtsylLMZts2swgkCBGmSoUDXOSriCoJV6bGG5ILQTDRuwXVEBdYU70VoXYWedkOk6QS4rXLyqJ3YcWpdeeGdrHE6Si5KSw3SvV1y6bXaHpVbu4ZHlhXk67ZXFh4OBoQuYNi1oqYOArCQtwWbakVNCIKje3HFBxk0sgasoHjSujQ7zTtknkxK8i8O76tm7KA+TRXVOHrjl0VMBmDWAnh0F6TUpmkpLS9qBgoW6ETS0XEzaBsyZBRGyd7a63k5jXt0EDkjQUbDJjOFEuaxWFRqBpccjgfGjqjpBRFil3RBk1oVUYCSXktlSJ0pGy3ecd3c83W83dw7tGTCzKRaazIlbNlsZthlbbNZpsmVtq01k2tm2WlNZaqlabbZGbNW1rI1rTDNLLIzMkVifZQzcaHDjTYqVmbGsy22xmMtt0vXsFV53DODeppL4v6SEDYKvYfptCUk9V9+6WkJMXsbWrGKJasdXw8zKQYQILIJIHdjEtZCOZKLWktYUHJhxqSW0NWjmqBjKRc0HBkpzky2U2qZmqxoy0stVm1lo02rHvuNHx93EijQZUjAlufN+ya4UyRpbWqWhIERUXDRTGESDAiyKgLFlja+l8li2vAjibHfvPNqcl0IlRSQpJE7waPaTQbDoswHu5ASnu1wm+u/qp2eKUTnZChCluOGgLlNvQb89kkqGz5w9+3XfdveNd+7yu3ZnL6FFk2IbO3Ewmk28TaZBijWmuV0F8oJNz5w7065QBuww9Dx2qCt5E0rWPQglPCYDUzajNpuBsIlzQrQtYcORsmogo6KWS5aDCxZteilvAmhlxYiw3Ng2LaEF1YMWBIKVjQWlkxkmjYxY1jBVYzDYay00xphtqZmtLGMrRNbKY0NNjIKyaw1QrGZJVmm0tUixqszFrVmapt71KU0CtsqhcMqqscxalCxCAxiICxZAhEganmxxtnajjVu1sWdXKhWIaoKrAWAAIEgqgLFG+S5htwggswCmREgXE5O6GnhC44RTXi92luX2XUNl8LYHjIuqsZFVRzV76jgLlGTIYtq7uRbIfEDiBVFn4tMTvh1tc9JKdFGI9c1ITevtMtqaR05d6OtNCmcES6VEUWoXXPrO11Jjv886K4T0xwWMRnu6rGWiZCp6yIlRskNmCMxsRN4FDZA5KHZobLHNjsvOjLpMxnFlEGFEskm+icBEybLo0CiKeEBFGAg5idWjmIAveUfId7M1+8U+s4nwzkdDcX97PUcRNjfri6amnSG34Y4inUmxOW1GbnxZfkgasVE+WCghrBXViKhSA2jAoBRQNx8nW2DdDKDVYoIuxaJf100NRcB2eWuCFaGlnJA3Dc1sgXO3Bbp3QRWjYi4AIdkDmtjBX+CSYCqHMOZhtvggapvYygRUtGLAOlNIeC9JYjaNBE6wFX5I2gFxhmNZIaw7anZtctdTkIB4OKHhxwgaFSBoVAQW0Sxbc0MuUDZLMjFR5iBiImfdATeKBkIIoHhNe6HAWoXqpaJEiyA8FiGvBk0L8UrXe8Qo788q87NA5StanOVJYKG08H3FThPXqo7oGA2OdAWKu/Mwne/NQKbtz0gdn1PN14Njo+irpsbvi2qbwhB6mz5yAvmKidmAgh3gHQi7psUeXsXcnu0gatnwgYc+twLvDQVRPrBV/MOiKXGDz4efp9+g8Y+uVPjQqdmtS7ltRpDTpiOYomjz6nSPNla0u9qrjMyky12mjjZlOYOWjmVPUfTiT3vThXlr+32OSg/F7KDzCzYjyPgslXJT0ZprgobqS0+oGlEzZEwYQNMp7v1yPRF1s8Pmp0YIrY1DBQ1QKYtzSr4sVUkdOi6rhI3ICJIgp3YAK5ICcB1adg0OG1qPvgIncQbLBAU/EEDVj7y9mppT3VHrSwb2yQ+pE4iotyIcG/gdK23g+WkDaFQ6JJ7eDarwhihlcDTsrQiB2B598e8PO04vYJEro+xoqB1EBX3EQdCAWgHsi5Z8fqFRrBvDyge/NWp04wdfHYzkgbGpRA5TTzUdw8DrABN4IFEIsBekBNWBZM0B0NANSNhcgpxg9BA0ICnQREPMRMsEO4AaXKAeEI1nbUfMZCR5wHBgokAs6BoV4E+eaPYPw0ManBsVMyQXEOUgwGEC6ZjxGQ8YQrUry7ZAsV0vysEli3urJab1RWxSZc4ZdwRPnoji6bEKkB9ETWtAMwHLEOki4YcDv5pnfbBU2wYnCDRCheq+mmWpEvuaF/BogV4O3IVJCJ+b9hXwkQNGKEIoCnYwPsHyTr0HVQLnaUVFXh1Q3Qr5OubmTTDz59+9PDg76LdnvswcrdHxZ9Hm/DUPJ4pL46JvccliurDU8UoPCFQNhkOZyecdvc8Y7d5kcx4+vfPp69eAOa6InwvpgyHrg5FJ9HDKnx743zzZOcuvc9vHWDv7cW5Y5lxoqm/XwBEtxxlLnU43NT4fWd5x8evFId2LG2uWFaUQOUJ0Uy98OpjYPv2vRfoQq5YbqnJEH0kQeYKHEVRCk3Yt36NH2pyehfqaj1tfk+8q+S4veSgq+4giFI+QgofIBhIvphF38mtmei+pXKd7EEqn0lgMXE+2hx7XBbbRNjwVOy3L2gapu8yhDSKyAhILzgZM87Aqdoojgpp7ceyw69he8hY8ATY7FGTmaWFUMtDmRwFZOYUKMkW1YhpG0kC6nIYyWkx6HcezyckOCz5PhLxIS9qD3eBj38B2D4iCdKomnTLuSIIdoI8EaYL3Ksda05cNzqEsDkHabwXB1uvfBaVjZnBn0SPbrGYn1kj2rmICD120B/gCIGjh5M72/IFBBVvrh4uV+NMEfMbSk0iGnu5afDcKKsPKyDmEEwYJc2SkYt9P4vJZDPPfTNQ+UeWyJMExi0VmqXRgmL6aSYzla07l59OenZDae66qIZWMQ2kETkxEAekHDDtO3URPo1/vG+zh+sUBc0uS7asuS50EA5TZRwg2e4MWqoT0Wy8q5cLfvx9ysZJ0gQzm7iq0qZ5TotshKdhMJgMRBNOAiUN8zMekMZmVClxgCjD6QUQSQoQBXcRAW8LvSU9a/3P1kVAX/X6M+O9mzapTUJvTYc+QIHbFDwOcozuz/Shke3I7ex1TH3PfmcpbleUd/fw6TONAHBlxnK4Ui8AwUmQ0XeNk8mbX+6DexzZ08eFCSGe883kK+Sdy90xSaatNu73OZpJoM1BKTWbtGLLVFzCJsmYHXs/tf1zxtpkdezlN8yLe7xQ6IAH86Ar6iJWfUxPLpbgdsPryWHN3/6MBoXorzOrxsxrs4IGYmKrP9kiQL/qMZmGmEk3jhxGF2WB6hpAVHLfmdf/dzNWwnzW+DRZ/4hbnHnoVUuoixMk2Ifj1hDwk8x+vfFLgLbjBkMl1B6fJm70PJ++Ju4U/JzhE4SZxzuJ8UzJDBnMXL+wygIjSjL6h8Bj8837+WHGiiOoA5DDkxsC877IIocjvsMBeSxIDGhCViuWAB0CCZqIxlOkWboMrNN11IiG9xyBQdYJH/ILebe2WLLigpocYioyDKsKIZjfD+9RlILwlik4oK669HMrE4irTKwSRAA44BTADpBFDqEU+dAp1Y/xAzXrMBWh4cq+WA9ghmBhw26aUDzc2aCALQf/v+lseQbKm/0LwqiNuvSUtuKDuGylwSyh2iJo278oiD5YDnKxBQcnEA86CjWAAhXkuUJ+P6KkK+Y31GiE88A86IOYoKPwXNeZOWaVaYmY/ip4FeDe/X6Ra/q/BSRwlZJM7jINqVP/MUtCA9tpJyp1l0oyoXyFMqwBSrg4kB2SEHg41qSUMDCfOwGFt+kHi9/UQXbp+9/0AAL/A/Odo0Qp1+E2PMx+DAHEdyfOx/xbuHCfjB1gaMr+KkUEcOda/qUuf859l8bfwD4IAr+dCClq0/G2jlLsPtRV++I0jFh7EwkksCko5LCVUA/i2SIqr4gBRhwx+Y/liP6VI/cfUqKNdYr5YHtAjukDMc0JNhFBBkNxG8ImoZXBZkmJWGtZE1QZCA3ERAFwEzK50IMWBRDYkA4egYt5KjArPy8UqAeh2DHeBbV+xCyNGzSaIFQyXCJekgMsgIaWCKqdmVEVexDY+w7DBRA1LBaxOrIs7KYBrFyEqJg0yakEQrJGd3ZFFDOBX/igBvwQl3ocsgyIvooGQgH5UEde7CrmChvFW0RaQrahNi5hOjVR9q95U9cV0F2/PHpZpMMTMVSHVSANENyIXt/L9POfN1vGbPGzZGU7ZNa5BvOjrerjL1MZxus8x1wkZDw4QDzkYmcTIMNN7jOJ0gHuKcUVlDoGTQQkJqOgqPmkaTcFEAhNNA6qSsrCMYUk0hJTDlOFDQLFKMblg97jqi0qkNAkpwZDQSMPoEUwpmZzQFF7IHSkEcdJwZWe9VOAQLJJGVUEehIREDO7yVX4WSg9cD8HOphmq+zb8Rroy7U1TkzrMuNH3iTJD69UqumlHarQir5BHEzZVL6MpXRQ9PO5cwqS92IzUsxZgZhbNVtkUzQivqtEhtDNFmqpD3Fsy1ttaiqzG1M2wZZqwaza2rWRjLUaslGssMxCF11RD5WpYypBeSVOmkhsDkqiOikNpU+Gqq4EJXTkfVlVLoqWmlQM1JDGpWyIU2EqzBsZmtWsprBph2qStXNFcxFU30nI5WhSTaKl8bRLi1KfPUFtRK85oUTRqxmmmysMm01NtNWLGNqMxbNTTU1ats1mZZttiithhjGaybZljVtWttY1s2pmrTG1m2Wlmy2GbNZrDazMbLMhVlpjWas1tWm1prLatps0M1rZtZWYZCK+DVK2GZUDxZJxNUs1GaG0qr46KNij45OmloStQ1lbINiSDw6cVVplLNI2o0pa1VT7VRo1lODMtZbUZam0rYZjGW1bKqrTRY1tbQtkazWDZtE1oVWypVtQ2bU2kZqkSdModWJeRhKY3lAROyKrGD1BA0YIXig3Iqtu1wPD4zkdzQno1E2SXGiOojmKr4Ii+0EFgKaMXqC1AWKqvOaqB0Feuny1FzRbStqVsLal64K6Ym0Dqr0wHwxeTSqT5L7g/VPSew6vXnCXsZGu7ExgoeTAU/av+/krYgICKaiCsqHnktqHbI64+en27fatQI6QYkUTUQVfbA34vsQ0PJRx6o/cTgnGPqA94v7ZvAZ7k4fegy9jOqr7WU+0VZ92hEa+oTMExM+PWTkmb+0edT27R8835+Z+Pf2xPRVfPbzGTJCJ81oCXYnMf2WgbxHxxSmru/TrfOeKdZ9O+J+z4N+l+a3FFHnHr59icnyYPc7V8tB4DwHbQ0Mv1bW7UlTfHEqNQOHz3wwrfr3xTp4sd+sPSOqIOHg7pXoeO+PX3zZ8l+0BpPNekR0b7QHGBE8ZDu3jda86D6q4z7+3u5Asl7QfZHbtzKj76bz5NFS3zcU5Htoexuxpsiq52ScUdNGw2os0u1zgaxxNO2qith002k2k3QctaK7LDmIvPVVT2Wpdt1xSrwrvktUK4UtiNqo2gzRW1RtSjml9WHawHyxddfj1KerZo4nXUmtSF6Y5WNGfvgSTUbyTiKyMpJu/eRGtDFRFOMgS0Z9Zi69zJ6gZYD6pQDP5UBco1ALDFrs0PmbQyeP2W+jY5WNH+ukOH2IlBGJ9EftJmWUlc2vN/VsEP5H+Npf1QCiBg0WmwCrB9xMLA8xZPvT3SKqfmWdkiHZiJzPNDzWA/OeeQu0QDU0NZZ/L9iCJSGAJ9REFFaILoQ/kgWj7Gilik3WPIgKo2PoZ/MMbPVeaUo2CeYp7iF43MpSGIw3Xi2PkYUIKvj/DYbO51fyWES4Ko/KIg0Byw0qfiEPAAoxOik1iHENIHaB2fmvangsHnbFR57hRAI7iQ8Uig8w1Lh88q9wD+YIdk2KO0MgA/0kQT7314DF+Z2sDgJeMn8KxLCYWH6FX5YqgHflo4N07+2wlLA7Kr/3ig4SM/Bo7AzzsyapAoAirvEgGlVXdJGRILKvauoWB8W6ni/hJS3Uv9QII/kCxvD/4b1eMOrYUOIlZkymcQBb93bPS5gkA5ULCLIIgvdI5CbIoLxS2lGy1tCgjyIBeFiLBn8nxTK7q+/4eu8PAZCnQhHpi0YPPj6KU0L7EDs+xoH/8L9CaFgQNxYtdY/pGz9OaXRw18Nj7WwKK0Nc7LAARgGAhIHkNbE0iwJqpYgiLsgxKyR5hpQSuZjkFgNWB+gJnFYZ+2ICrqkD9jB7vPbGqC8JBP4WDrIiIrQQkBg5QawJGWXQttzyFB5X8xRzZodyh+1YfYx3ZwY+4t5Yly9HYPqKboKH643X6wuh2IB+gjj/WFHIDeriyFV6nBCXDA3Y0cVUx6YBaVGlirGDYaJD6DDdRANIQIEFDsDUjyiZeeTEhItMh8a9gW7IhmzL4KevgeB4Tmc+CqB91RHtLARJGRsXiOV1PZFZ5xZ0CojKslzAJiAO5gt5ayzEvf9FFh9jA1ygZ1ggoPiCA2WMzSyLnERoaTv5Vy6ZhnjquVdc3OBrNlL+F2LjQmE1BApX/1VLqVRG2Y6gFEzHs4C8jMLb9ocg+bsQ+SyUAhTEH72IOgc1o/2/8Ad+NwP4Sv/xTIfmC6kDJEkVNAivuESeRzvuFFGwnd9CCdeO43yNIhTW5lgFKmrHrOUaB0S3QhBhADIAgOUVA9AQRRC5xdGfDmlA8WEWUgrcFJEDJWOUuiFHvYHvg5QygFWERUaz+kS1S0WmiDEuyxVjoWuMUcwugJVzBVPgx0LEpnCq4lMfcvWrcQxuH1xJafalRLalQThKnK1BtTDWmgIOhb6aF/VAG/rOAkYfK3u9Kl7+wwHbkH/DL/1yH+AYHI3gxW5QmWQJlKQ2BEzN0140LkUxBzl/sZZ4IcciaJ9ZuyBbWgnNWAqA1UdqmKUQxP+ZBEx7sAEFmEBDWEF7G8rhCOd52nHKZQwsh8Sgwm4ShX2c+gIIUn2nPChAioAv2WTTuWhVBYICjCXAHPEwB8kx0oz8fbRlpZSHL7+gUOZ6N5xWh46gp5RZJNc8/guOkVHr66dCqcZsOglVUTDAEPcQCY7yBSr0+cZ54sYSsJxb1gLAlA+x0Ei7h94twm8QGkggYoKApXAUxkBGUqkXkCOarJV5KDmnNGoCwnSsqZEAckEeSAACbBgSsJU1pUmEcGfhImZNtKgq0XafPc6GbbpjvMqmOUhObBlNLaIlquQ8U8VMWg0Osvc1xWEFhDA+matBT6QFElLyB/SEDSiAsEsFAOSAHkICClGL7l9Kds2GooMJvCgLuzf4OQqWCNToRAWTFW7zhD2qbZUn3qgh/6UGqc2Wm9bPusj1ykJUxrIyYDgQ2uKUI9qRmCff4kOyzC+vZNiJWgHcqJbSCKg/X9IVNhL0CqP/S5nvurBoLDEMH5pgTP1Pcb+BcQBRxooL2vUm+JNcCgeISADCECCCY3CGaCxM/lSU+Bt4g+oiCZoB/UBr3OMcgWnn9AcwjU+tuNLkTiZZgoNese4GqZaUVB568JJ6EDliXNa2k3zEVrIAKhC758s/0rrRBHSVGEBUwq2syBkPQUJfKTXVGLYQS1JwzZbnp4NuOuxsEPkaXIermlFxi5SGhTqq4UtIBeJPncss73sWZDTbcpLmQkyAWi2Gk3AdN79g/hORiWv/HdzrERMAXb1iCo2pJvkziTomLxGdGvJWoosDGavaXJKWTKALw3VTzgKd0SCIiTtXWMNLLXIEk9TW60DrhBQQd0aRcoUttUs4wDyExKELVtwO0pajpm03iueVRFajCD2OqSFe0V9xABB5IIEIAg50BR/bjCOcsVEXHPHMzPhNFDnobve2BZ/CwMhp3Smctzni0yhZPT0MDOOjWS8vB3SV6he9vOXg/OdyiiD7/N0w83FfQ9FrQ4XT34pW4kLesWHKQ3QsI4WrPUhInLwhsOUlBUvZrSh4Khxxr2KP98uCMpYXiUlcTAlShziXIQCVTlTrbWgCm8kFV3N2K0EPGjCWAXCCjtXG4fAk6TEQwYmq0q0uUUBbrWoLxJ4oj+zinthPusTt+LxVHjKX1NR93CR79p+OtJDTpT3oFkLnzS6ppfv44I8tPHmNlPwm3ZsOHQ4HsEr/RdU0vBvqSrqxMx2EfWgiPvj56r19/2FJ9ck5vIQEaE2A1eqGEH5VoJnqRnNNQfs7nqaphmrDqQu1yLtguw0TadTjckwH39EhkML0DzWH62tipzLsKQnqTdD/ffczACjD2Cb5XRzd6I2ogLnh/pp0oojg/m2Qekfc6hVwHbP2GG3gNvm+5xdU3ApOjEI9D3VnMZfUD/WHr1inMOGmD9ZU+PffTu4zUlfbjlt1fNnS8YgorsexnoQN+hAt4wtQOcReaPTp9t6CIzn/aCp7hIHSxS7WtDUgKQxmNX1PK+mQ/osFF7nev0zKJ/LugZnJuYg3U46Az2v5JPjQEziYO+aCQurZjSb+RIwsaJmebccRhJFBB0EAF/VLNA79RGHnPx3BJeGCXp8/7xfWDlMqBf9cZU4NJnpA/wwLOLFrjgPzWVjKffuSBOL5w/ZOuE/n5n9m8T5mBIiFEgJzTKe3mTs6oo8dYip1iCiVS1lRxTmWh9vw+eAqJikqGIIo0iayR4/lQzy7SeBeTQHAEJjVOKAsyh8aZZ/PVHxYPtAyh8w0ydTS4iflkBcY7ib8BFQiyhkZuZoEmUlYHCo9RgiCNLE/1pJEywZUDDtEipgnlUAXSy1JF+UDuqVfKlQ0MA3Nkclvt91/dyY+3ZfbZR6cQpTPnWAVpUSppikZS4Cr860BV3vVRJqUSxBIoagctuahedQE5P3Y8n8ujRNkqAfun4c0KZXvVloZWqTCr3YmaMnx3Z4gViQFs7vtSMxLDWRQziyyiRHWEY2WkTyuq5rT6skiKV1f3Pb1kLAFR11e68rLzjETUNjyMwcrAftpcKUktMOgUAgv538ov/YONpivLZ+S1BAihBYAgwEgIwf0CAtnjbTNa0ORqL3vb79cVcRdx+oiVo9OM3klfIbX5xkFm4s8kkf5nlPqiyyeDEtqZ8ttjXuZBJpS/Ef8ps/Vh2S1LUCqHUOE4TB1RNnP3pKeeiKM3cof5rxXn53RJdPAQsdXfmuxIJ+yA2hs2jY2LM2mxtC9fnx8oJ7ubbEBqZg0hawZNzWkRC6hU3SjSAIuGfNO0M7YXHCn1KZVL5QURmBXtIEBRB9nt/hDSlyYTn7terGhZfmN8Gdf5QgIM2bpxozyZYBzKpgEFg3a/ziHzkNVGZp2B0pZMp8DFjqvQ47eHGGU4KT0y4dEiW2kVVF99kkUklXPiMVVtG1Otnx+EhkCZ/WJfPXT9bg3zHMp2j3S7C0xqen8/1gzdvcPAZqsJBZzWSMnu2H/vTuiqLOHv3PLh+pPr81N5y/TxnTYm+fcWoxrkmZ6+Pm1tSV3h3AL+BshDkLVZILChTkOr/5++9iwAUuk8ZpMVpOtxCd4SQJf8EUWLUdQ+7xUTjBUBc1UDMEWiUNlUoEtaVYoCUyqE9SAo0dE/JQRm5gslP79b1wlsAFMgQBE56BBFKmVfOInUi0gbccb+MVFZeZXublri74fANG4OeneOq7MBPWFImR57hAML80DLvLjBcLAFQaiXSqAvzKjHonnEBGBnJDB7SKhMYjNaIAuGKoC7ihgoU1WQBAWtfqyHSb/IB0SJosEUf/IRDtwGAmsJnxO7QESWRJEOvB/HSSCNd3M7Jn4IGSE6XT4fjm+WI0phV+FPdm2+1GpQVdPlOdtKmybu/1FTrFq18kdx0rOIWQx/eq0orhPRKSKfSSYOVLqTUwJDpySXQMHn5SWgGE8zSmDCkyTBmStLEuSQMKTmpN5MKEtSWJRQkKklbGWpLQoSgvTeSM+E/gXrZStHYs2/CRcuDx55oU7Hc9Aj0OKSdyigqbiQBankkVc6Y7k5I4co2UA+QCAuuVkey4nJfI5//SIF2N8DhxOhe/P6N/VKZ24nYOeEIBL4O9R3ZUDOPHJvHjwcTKaBTJeicHLcRz2Cgi62g3/1DeB2/Zt4sJPyJzNmM59LIdOQ6RvXsKLeKEClj1zeyuDYhF1VdLJ4rybrGqo4DFkwy/Uq+nZ87aUUZ3KmQFDYwEVSIbckI7zczPUOUprdUNcREpNfxfe6NNZlcLjbUPnWbkREEwmOSevMBXLR7sskUkp95FL4UY36Grd8FmEhTREGQ+LRI0OaG4FEoA+FPe5pctoHdzsx639zwQl1UogLICEFQlD2eT2l64+VjPJKmeb6gYZ6J8fq/VRvnuZKuP018qLzuOVV/F/aBh6oDTBs+UeVufZjoE/hi5dZRWUMXFBgqAv+76ewl++uooP4zGe7BbLGHvZvi9SeHMXEFGPjNfyPrjJeL+/m8ZZbWnCwMLuyOID2oJY0Ok9Bj7LyOWx7jktcp/fI7mBNrvO06B9iqd/DwNBT8ICT5cpF/B9w7J83W0Biy894IR5WP3GDHVgpgFO8SQIxpZ4Ihzmx5zsZXdlaXruCB3FOWYaWJpae4yhhbG1tGQsceGfXkgiAOZgvjYSv2fyWXA1SE2BrMWOh+hZgPiTfgoCxTG11h7D8v6ahNTrQ0R0GNMJMYqGVJFRUt87Rgp95nZ0QF3H0M7U8LBveBoMDuGF8JJ6DBZoWyGV/hqP2dmYAUfPReQfqWNh6tF0LTXlIfkh1+9lZ7wvZ0dQaZh/4y9vzZigyvU/yuN4XvMi0Cat5xHjCO2d+U5VuMpqzpsaoGhiuFSeUOVfw+GASM+QT0df4mHMUFzYVyXzY2Lgg9rC0MW9jUJ0DvoVzSN3b6X86YYRmff8a3G37k7CLif1U+DczhRtszMjo2vy8/T2NTBnKMfoqmezf/kacGaZ7++Eg4mAAI5WbBboxPentB0udrl93kf2viKwwdylZPQnO6UfdrLZ3ylZXWS0v7avAVT7YeyfkPpr60gfu2r7Dznfcx8SI9CHLpzujPbAyhI8zkwNM5DlnOFAWp7fK83FaYzm6qigt56+/i1SwL5IvNiW5ySRySmlkIsZy8pl1GoxEUP/aJss5z6SS/FHmkpt8XRJu+X3RKmBbCUICYkNcBkRg5GSyISXZPY94nGU1E5JlELiKFTk7LAIrll00FrPh/idW6OmNAtHOiqqZRAXNikB378c9f9YYf+Tvpe1IaTQl/1Hy971B/wOKKHRKBFmskzljIt8AHJ90kv72o8OX4mf/TE9Zo+J1nVMeczJa7lgTpsTCmE/07pfxp4Sr3HX1Bi/kyb2+dNTXYneM/gs+J8i48R5zy4Oud3B0YJKNIYB6KQBEX+k/pOknRSoo9xpl4U0jGY5TTIAhTBBBOVIsgDSQNVDenYfaYqusKAuurok0SCJQQWyAr/GYAgPATljNZR5inB2kFUHzAC6+mkow/ps7ZPNvjCmndSP887vNx2eRtB/shCHZbqE/vzmSuq+I/hL0u8pm9+BMuOgcui0vO5Sm3fS3OS4MVSUJckmO4zzGGzwvcFpLEhpSxMXuPKY3alGBZJBAFoSTwkcfCY6PmXoTfQ/n+I6UrAvPEaCUyfAsNJuJU4MvmLYyr5tlnOlO/WpeP2Fv4PHxRr89e7r3wsNl1SgqaexCpSOhQJyUoJXNAD/qjv9OcKgxAcFZ/YOJS/1qdtTWxEFXOcz22DTlUvOClSZboYOjRFseSsidCVShSyOM7sVNSnZpP61zWAn8Wr7ZPveonfJmrx4Q8+eaDBTIp/1Q+w6mR3FQwdlEpQ9gGUbVVRvPker/vep79xSf4ySMMfQNKkbPTMT4L+0pE5atNKnlJzndTm1/Tdn8sZC7CUNlvYeWhE3SFkPEhz7Pwhi3inPwX9A5uLWdhDsqCrxbAsyWbcunXjnw3TQgctyNhMhhzZ9wizyNH4nuzgF2wcTh5MSf6QvxyGVCiHj/yxLqOQMeUxZPshYY5rpu6UYNP96ZN/qMWNZIV5u2hN0BE6CBLRu73Fo01c6nwX69zVJ6zL2Gk4TUYLeTeLhAFmt/l//Y96tJ7TNh1h65ECsBBcRenI74nTToVt1Br185MAFxi+shsx4tCBHLLGlN32VoVAgDVARoCDQMAMNQUx0YCOWtmMkcUrBvLFJGmTu+NJThcx97yv8J90tQQWcMh7+Whfwik+GyS56ie/sppJgP55U1iRcHfJ+I224TTIRy9ZLN02oG57kweOdk+6cMW0Gz8HYTtPzxV7XX5vz3Z/d/hT3Dc+6LxeTbnr4MO+h/Qbp6Qd42SnUKtkzZQbYW+Wr93eFRFfH05vnXhnJwEwXYtQqKwMp4YN0GeAsNEySIijJap4bTWc6rBShDVmbIhJGDZnSfCSBMUvdnZxSOnbklCrcniN2HB1dN4BOH0TCnJowIELcTlxsL407iTxMl7TQYrc1jgw5fhRb/PCfrcMLb+hDH+zwFeB8C5Pr2JDjOvwCCrQZ20wCCrFkl3XiNRJCOr+6Oz8CTHNni7rX+S9TBSUEGjS3vYlBBHjYIpZhfc30RCWyPULv/Xo8shP9mJoMhRIxnD4Bh8vMv2nYI/QntMweUpsinnxdSZp0FzadTSddAm8DvGgzmiY7BidloXQN9MLlI2pIM/v/BNitewVHVMQVv6OpjOMy8sqLrUCXcHX7rVQVsmbvLA5DZIf3NrKbTvmCQmPYaCjZWe/lo5YGmC6z6lEc5BAN0RIIihesG+BcwF5ICFkG50YBp6Zl7xlMDUkHdSBxlrUgZYANxsnESxIMaxAFrOmJGzqk7bPC2qUhQL++eVGbMLXOnAJ8GXq/O7EIncMppP1f8jp3lOTRHzmCVyMuPelPwQGJgEQWs+Jb9Sr6+w/socn38/r3M35OHxbnt2BmMRL50hoCGrpRYsTHIvXzSbQ4MHGgSh8EwMj/EkXCbwYCIdQvCU0QJ0LuHmhtggF5BADgggomgI3KQd1Ti5nsdhROWh57F2JnORCacNQaMLnckxFhlDvNPtuZs1g8mFcIXspOG2TEFhpD8ENBs2deweQ+A8hoMB9sNh3CiPcJKg3LCisLw+IWB0rgMROGILOaYYIlk8C8OWT5PtgFBA/gfqDUNQ1ERXwlI0Ho5r5coZggR958pAw7rbqD3L8VmLn55BJ17gnpBv9e/PKXAsQv3kceqyW6yo2yZxEl5dYSiJX0u9y8NSuvtxMV2eSIRMNjiUpkomnvY0iJTwzO5XlpESeekCqXzfC1OYvzn/ttwesrESIiYRE1CJuCCLgESU1HsQxCJlKKEDoFZTUolooZRE0iJnAK5Cw+JefmkkFsKM4gC07xKdK1bTOIkaBE/V5gGY/8dP9q7xlgqWzFv1m4qhsvMOpkJLxzhyWGUl8WkYneZCa2jUBqokSUS83L47gUfQ1CiGeCJZAUyQQADFrvyrZqnJ4ymIoQiDhnJMTDQwMTvceYbiKZYlEgy8Qw/kHsaGUsd4dXnQ8Dkeo/qz1HmPDubjjLM44olo3GIcuIbj/VMnwyP5xko4i3wuEcOeRPY3GDqNxuHo8j8H57P/TPsrYf34eAnmmB4Tu/vKNA0+VzhgzDjH9a+jeY4UoaYFpI5CskOXliVklGk8qgXynQQ/2gXYliUlCf+GaWwXXgyhsL+m9bhH6IIJggqIeYAfg9qQ0SBzBukKDJmY2RmFOicZbgnbO6mqSo7UHJVzeVh+yZk1DZ103rs0pdmU+D5EndFh9vAlOglTCk8DdMMzamxPpKnxV2JL28ZU4Zk2qtiRHd1FBOWYSioQFZMBnMMGxDH1TyzU2X+qre/nP+eH4ThggYj7bt/h/C4qP5Tq2L+VhbOInzXPszersLLlvHZAhvUSLfutobwdznqZGV6l3X4/AsFJzNNZAgscUtUx18KxBUH6rQ4AlIXJ0saEpAgaim09wSNP3X7rEitVRIV3lphxGkqJEejKcJRUbhtLg8x3MmkxU3XihX1DdME5MN8MBBJHzwMhlt0p2fQtK64MyHiDCXnp/Wn3nbPWv7Wlc+pdq3fdYc5e57Vx8p+i+/L+1sXcPAYNp6uKnKUHXMshxSQcJ8A45eIrrI9P9Gvc0WM6VK3QkEKlBVmsJTmnrOWExZL/hZICoc5gICG5tpH5crXyZp9fMBFTkwQ/fc0x9SdoATvTUDz5uWLxSorUaIB2lWKe8CpfpS4iP74HaJpxW8tpXWFsUYi9IHKWgVVYiSbVTvAqJxCoriKXtQyLI2jeFtqQqBiVJvSZtUN6kEqXqpBzGoSNf00totqqoBmCWhJICyJmFSRHOaA03o4hiWjSCSlEkRzAPQwTye2BjAb8JLIPSlcghjuCqeoxl15cXtNKE39sjY3tp4S05x4THg7JiNTmPmIbzcTUp1zM1mi/8Rp0tuU95InzL/+KD+tLdyH9b/9Gisur4sr1yNvnfe3vpbCZyF4eo2N5nT2mvtkz63damwnNplT1n8cf2eHH/MZw/Foz7kpFThaT5vdZP1T9nhf6sS5QAbIzmUkOWwa2czG7XqxDbElbcqUhBJFdSd5lmmUkT3B1JbZvS1mA/AJ2iInI4LZpyeetzd/rtpMUJBPw+8wWXOa9M48dCJ+t/5FPNn0sNxdiix0/obLpCXa/fDE9H4fSK7+BbHaTHtLfvZ2j2FLMdbn4yGfkOsb+MPmdn1nbPY9A+YcnD/A/Z7A+bu9Y6zm9AZFFIpBBENsBOKCCcQbTtKRPSH7Dac85pXz2NCJFYR9AajE+L9Qvp7ekn01+WwPhqOukFyY/O+QX2NJsVD2tByaV+lfb/QOe8974KwwkZAQBlY6AkJFP0FpzwmPcXn1DYeSc1F55CBo8BQTtpAmNBSTWGwmNwMxIQJJic8U4Zio+m0sJmWa4znfvNZ8yopNp/xUYXGYzGXlgeEiVZSU/0N2yonNviIkh9A1hgIDR+z6H3NSX/gnX5ET1fcPyFHz+8jt3lzRKhdbqhskzk5RQuANUv+TDIv3IaGJrw/Rqf+OfP+21fqbZin24KRCRABgMjBwGpUA1tSc/rx+PObbUoMYFzSgFSL3KFF/F+8wmh2zY0nmCcmPribQsebY8+N+94C0O/nJz0sTjr5E7UtghBBEAEMsmEmrItlLNbDNZtobGbaGa0xDr1NdDd6ePLfTpdNiWDhpFVOzFzjW15CJ6OOXF12hyg87HaONI9Vin4wz0yPSz13umJRyLAEI6QyEVbhEKT3EO4njfCG/YBbi/nvBz5C8fPaKIbKQSkUMDwVj2kwncwZk8g7ZD69jIe26lNV4AoMdGhSFl3Y1PWQ4srcum0sAbsEfB3CnqABoxkC8Q1rQF+MA8rFFQ4TrY053NOevhr4CxPTgYYInRE+oETmKKp6gr5IfUt7HygqOPQHPDz6uOkHtwbZAuuhRDtW6aIm25cxE4UkUfCQUAfAQH0HGA5QEJEQJsUj12aUt4oOIo8lwYbxeeLQImSkryUeCdr7D1h7glA60TOoxfuN/yR919fvnkr8L/R68HPE+FAqEEFXlz62FBXxROBk7zrDPl3HsEHJGRNk16YfD8UwwLF0069CApwxVKF7TD6IJ5icsQ6PImlX4njsrRIYy6kA1LAbwuCAOYgBnqw38nCa2U5h5TFPfDwlrCddLym5yroPoiKfpQgYj9QIPyK6QMphT3UGEA7lJ7gGzAUhAQwDAHvPECMTKRe5HqImUoHN/1R/MT5FgJ6hQFOoIaeHgNNtkulSCPbho82tZw+6CHUv1C9E8x1gpqkEA76psBxTgoXT9bBEPsQ4A6/N3lLghknKHE1zXYYXIG7DaXjqkao8BxRscaIdMArC0C1X2VawAt4P1UaHObxLaWOKgj34NNzy4Y4TtYInRaqiikfGr1naj1NuN5gFUaHRFdDrXSmH93pa+jvE4Nq6I9X6eAbLt0FFHqpTsbUswwvpN4yJxql1uHWg1D9KniKcYESbKc7GPng2SQIGRsPQ7jg7/BM97T00dlg8BB0Pr7eL2dWGU72603oW1blllOTKWC3nxKHrYXNUwVF/YQXsggI3DzM83NvJ629wHwl0naGfXc1L6BzK9x5d6XWbixbu84FAzBRLMDywOhY6WkQ8BOIZNcXu5IqC2YBkRIOyajTbUqV+X9iXXAmlQcZ6TivLb3BF4IADtFVTcIKgeQsPGMudh8EMENIvsN7yiBbcBBaphNnAZFu7jcppT1Z2D6qYvjxh5fM3Th5bP7z+HxzM0dt8PgIUiMYqInWImiwQwwTsxPewHgfqD1s18+4oCxziGl+mq356D4Qn35dPsWdsGDplzx0OZ2ke9ah4HzY5dGwTwgUhl3Sl5MRAHvc3t4h2nti6JL9Ob4Tgz2Gng64fefHpfB99vw3jpjiEbAfFgCl4igm8E0dvffAqdmaIjOCmjETmCqFICPLAVeiAhV7oF4qUWKipge2jzWDwvuKHuB3WKI2GKHZIgJ4Io5UiAnH4RKALmC+Gmp66Tc5qFPRwWAANoiA8RBErD6tzsOg7EqOceq9t8sLOyXfQ2OTk9tUfaHDkMLAG8QRHAdd6O8EXzOZ7pQC8Qd4qhUBGQFD1EWsEOCZTemyk2iJ5GAX9+xEsejyageNrLgd7U4il3ndtuT0E5lvWHIvkh5fdwwYHAu6vnY6PPA8iCZ3MFeku9iJ4HOsSyejlSdSJIiJCAhsRE7xX3BXpEXMBTQi9oe70HoorNHsD5xWlbBYRK6lszicR8ee9GvFNg+dpuaYjqD0eJilLxtvDyw2Hks4eqdi4OseXAeoO5gN9Mo7tB9tQ+iJ4KRPSblhBFwGwumT8cPdUOw8CJ2NTcwnBpsF+yZOO8gX30Gxg1Hg80hrwM+qm9cpznsmAjR6lh37BVEB6wnz8euZjyAqNddbDfY33TwYDF6o79ClOqRSviikNyvELgeBrgNKcvyFBQuTaIvfNEFqhAAqER1miW8tRfDB1P3QRqHSh5Yoon4j1FfpzKEOaRE3zJbfxgLldjCcGwVgO3dTjYSzmOJs7hcbJY1PZuFQu7GDoGxbW9T8T7Kp0ae9Z1ycZ5Nywa9eA4NLAXBjZNQ4HQtoSzAr8egOcaBEMOhshwpV6lHVoo8LAV5kzJeUeudF4AYIqUvKDqahzULvsc5B7t4/IliASCWzcPQ0NTNmLagbcJbHm2vNlEzqpQoGLgEgpxKqcS6TEaJpjPkRPw0MNv0KaHDyBX4zplAmpOCIHDcMpDpiv6KgDyCQ8z4Re/RQ6Q2SqG7dqpkInxgNCXqUceareD0owjpYgBpYGIXgeELKORYrgTxQHxBEPEFVyxz4bVbQODg4+DGpn81E/Z+1NsJWqetwg4K6EaarQTxFylGwfkze4cU7Y9nlA/U5DN7bLDK8nzq9ZKfKJW/J3CeaBINJJyeOzg4U+AxE8+pa8KQhWVhrdMx9u96i1i/gvm9f1zgCZ+BXFOaPVutyqxbjiF5y6UXjPh9CbQnl1izlEnqhS3S1g7sUCjpR6xJz7iEgzBccsbvoMCJZcHQy6BS3bmrS7a+zNLce4idUPouDDslkfTgEOIonmIipQOUoeffq1lW7O6enpZ4ETt4MkbgeMJv6A83PxigocsZBFoQOovREfic0xv2eq7ChuGhv4pIa7Z2MElTglwg9FIdi9dPJiF44uvp2OHHXjDTNB6ETswaN4HZ2+B94dEcbBqImfbMHrPCICwp7NDpLBdA8kJECnGQ5OjrfCTooDsbJqqFT5VPFVO8BuInOir0QejiNzwIXYgBpPzB8tDmXPlwp010y5rbppTjBznAbDYGzYrZbpxzKd9E+WIYjnnTB0eSJKGDBc9VK0VxUMhgpdpVOUDHw2yNPl8JEbF0388HW1OzcoaeEpii6J0hsFxq6DmICp5YAjvay/GhubmBsnWGYInwxRBMw1CAdvBrkLgoQgpxAAUobngrUJZnk5yq/D2XDERAXFmIhdzYKhFyEMJN/pG0pHlhcvGeN3ULXQQXZZxo0DgT25CjKQdSu7QvXcsLMinwal5/XnKUGySD6gbwy412DJOzcqFumgb/L+jsegxguFDeAaJj09mlan4xwxTJu9rG+y7NgQ5g6QUVN4iacsOKtApDk8hz3i+4TwSim8DD17tyXCZycamhktA2V9NIL4PR4j1ZwQMj6NWx+dgwYYQLzqobedBOizGj2bpzHcgA3IAilYIcjOSoYk+hxk4vYbQ09+62XdCC7M9vbb3Ebhf0W2axpN89hnYM7nRdPJ7PemXo1KJUDKm9yFg9DZ66NC9DrC+DQuIaiGCHKkUNAgQ+CkKWIeIEne03qS/bF4Cbb0gp3E4icERIS0dxWAmCpSg8jyUcQo8nr8HjnC7JKUPkZPPYkZ74g+FQvwHzoud7ioHqC/oIlICh1BGkQGQCQUA0DobJ5bHj41PNeyaBF41hWrqOU9mT9q75qBkYqeiCGiwH9BV2IPwOqLiGm9BXhInZBQOegp4ICjWGjAIQ4OmgVbFW9ty/VDaZ85eIJN913PZv7fTzUyvEyh0IKdqaV5ENIoraCKvUO4CfHfGmBYUP3lyFTwk+jclHlh+nM01DAgGISd4DkgCge4KPtgt/fAeOGDh8nwZ5PfHjHz85R6IuAPVguJ6IPbHqH2GE6JyK/IgrshBBfZGQUHWACbM8DIMyRYzU2f18BgglgEF083OU4hk6u4UWrHVJ8h68Q4TwFlxnHg9F3MAWRR8wWtKaloKnmIHWKuIIOIKdwDSAliOlub7hs3DBokckHyQ8RdvNbkwed6BbYVUyRBAONUC5s/aAZSAJt4heIih7geifCBDeSD750nUNQtfsVVMsXiB6bFADuCEcPYVQPGhQ+A3A4T3u+6Jc4NXhLC+tHbZXYNAJ5ZmW2Zs21Zqy2bNNtbLtUwr6UwuQyXzRoo8u30PP2HovZPS8OI52ccCltn0Z/FFALxQRKiCHJinbwzm7RXtzByw7ynUOauxmgRBvFSHdd8a1yPRxV59nkqM8U02+HnzpjTjhHl5K67G/oMU0PiBDA8oCLdgB4ONWIEggg6QKYeSAG2xQbJPjgyvPPu+t2HQ7em7d6mOXHHrbnLZh34oVwlT06Kd7ZE1l2dHzxqVAps4MHo514g819euigOx6OekbfA0g8akW1J5aOnyuPf2cTVdegAi1AIsU2LBQw61o+OOg+O2aB5EcryNrXYp4pRfCQRQcnt680uY8XdiMHch+IiWgqKdsAzENz00cC6dp9UUYRBF/Ep8MGDT4FX64yGUArCQAE8kAXpDSFAUynGN02+eyp9M+e0E92NwzArtybKPxFGdCkEEvECxA9kLHI3QzkkOqdxE9mDOtah6qj3ixZsdynh6PoABahbTgyvq+yQWPU8tvfJeymjdiZ9va+9WE2YoqPQRO80PThlt1WyAi8TLrjBViAbwXKQBAfG4UVsHQevz106JkQOIip29NECsVSQAe0VA8umcY8F7N30yvHYaOpdop3pNe1iGbsdC/uyqG0QFTBxAQ8sdyJ68K2ceb9oVYIIPmI8BAPF+nnJwdF+HZuW8Hw5C2S/VudIbkO+zvZw7+sUQ+aHCcuTyeMPVp0fT3PPV70Zo6hAM5NXinLQC8oCAaxRAOfTgMPxprNhzkeLlA5ghUggA3y0odOlJ7g7hol3o9Qy4vHbanjAiZYQ85a7mOX14r5DzBlnvU3vjd5PlQBVpid1K0ToLc1Ye2eDolOfJazlDxkuhdmyeDJc9uHyKC9YCqYsDgOxhPaISAmkBQ/bJREBOzz6VdGvqOxv3eDC73Q6a4wrp9AMeVCNI7HND4xODTpqRImU894OzG/DpHZpwbFNDsyQ1nmVIOpReDYOjV7dbD1YU/RBAkARkUSRRWQkRXXcoVJfVfHJk6wB0RQ/d6zf1DPKn1ocgPaUmxr2F8mUwvBYPB09uD4BgDo+zFHmG0viyF/IEgSbzCuT685UFTMOscS76bCJ/6UIRVEBkUDYVVtUBtSqVllsFAIASp30UclTsO6OFbX3v0sUBdIm6ygiIC0igtBcN1tfboaJoiA3A65FLjUlX3T4qReVl2rlwmyBkIwYDy5IAw5osIDc9+g8YznreWksOFPBsrRNSBq7vBed5moEq2neJadHOC16LGc2XSHyW8vQmsBRH3ETzqpy2Zz453c4E3DtnrRmtm672aaqtaWHewkNng3hkvLyeDV7TCrGjVmlzrEDHD1DK9HgwYLIqvpBUCQFVSIhWHZe+2u+2uL4Zo2dMNlpT41UqDECLBFHaDjiHIwtocakzAVmhw1AXHHCpTHM2s01DSaWWLSzaaNRhs8VSrAcNHjNg22vXClWg5kCSQISEYoLXwXOGw5XoDnS5OUylzK413EDKxc5QpVULWQxAh40pbQYAAuRVR1YPQpQBaAwSslaWeEbIZHVIBARRl4FEhBNo5qAKMLWETJoZyUgLgIo8QEQNGAGM6poIxe6KT4vorAvNvVJ1gkOk6eUzw4s45fLbzy+bI2wazvls8olTcpxNOiYUvd5NVXpBfOnPMWYAK299VVYOWYBoOwSoivAh7cyIk4SpKOBsNpMZ8MbSBNm2NSl3apIIXuxjJdcEu3bWoyQLmKtmrJprTUmybEZaZlrLKw00tbY1MWmaaWtRmM1qyaY2mJoatM01mWpkm1ozJNZWa2V6qirIymmlG1IXMqOTJTRxSVtTE01WtbWLy5c9J8lbDeuDPHoOIVbV92tp9jpwgREEKN8VcaqQ5pVTmRBmUNaZhWtUVNGraKq2tcWRss1Mym21LaKVhm1sAkBkJAixYsCRc43JdRLsWOeLWxGuHfyXR1vfObBlNGkgmYjIkWFrVERBpNGhKIcl0Xc21zkM6vm11yTRhQziFRddXoiAC3vbLrbnR3iIIVSIiGrDAM2l25hBKnhxgBBZrqnGm1kEF2yZCwb0QJwlYTFjZEupm6CaWdLKgLnNEC4RrsXs7C061GztrqnbqU3tCSVJTpOWmyECVKypkN6Mu6mgEF1vBGMxWcE7NtvECSCFkRNmREF4GwoOrdhZw5mDQ0PScGToyLfXOAUWFUcNgbveUgwWmOGcQoCut2d+7pLrWawSYw1mm2jVZma1MZkZoxtDNa2rMZaWNYpmlps2GqxraRDKNWtpstG20ZrTWtLZFmYy01batqZWjVjTNWtUK2GzI1q9gUtqjVqqq5g2Ig1pm2o5XOG0bRbm1bDVs1bbWpgkiRZFgQMWpyYrU1fDjV1e3CGyKgkgICwgAIhIKEFSxkM750+YeAOHJsasjrBBRziKFTvQZ1Sk1EQAyQbuQsqoarBtBQ8BEyF0EuQqjWwALUExkpALmiY6GQ0SYSxRMeAUVyWWJFFRrq5cSlc4zkys2m1NmeJtLNxdkvzznNMIXVtGw09YOnpx1F6Dmk62O7lOkNAKpTCJJqpcTu6KLNHuE45zAgq8unQbOSlC75kOrDJYcCwyUGKyASb2Y7m3osuoyapI7rmTiUYJMSnNBljG07LNSSVRJwygj1SKzIgtkFTB5SvjwpUFNYqeiIjaBsgZONX3y1sYZxqUup7XI41SzTWa+PMiK5aEjWKgzRxcuDmQBxaEriyrjRa0JzjWmtNay1llqxozK02LDLGz4L5cOinB4CtMdVbmLbOYc4QyaRwjdBQdIerglJF5sDHs8oGg3LkVRTMTwQH3s842XlXFGQYQjicmCUh5HsgiOoMLtlq66PAwLdlyGwZETCRHBcTE1AJrCA1NTYburlRAkAVfQZvlFwwwQtE2IiK6kVNimNkNzV1LFue9gCLskZ5ew5tSSDZkxllNJvimnbxA7aIuqVb4nyZeJ06ZcGuPG3RGDfQCC1dXCYb1VZNXjDe93tdoRqC3Gne3qo3p07MnMnBVR4wgO5DTkOBjG8iJoRNUOxrNQScKHFpxL1tL2BXALNGpNadqgDpXRVMvJclJgg8Du8udcW00xrNWlZo2tLGbaaazYbNNatVk1ltMbMtZS1plMrGrKhazDMxJW0aw2bWavpSpXGlQcrCVG2yUGtRlxpBRkJEgESLIwCFilDHBbrjBqzJu70NiWywaQJGBGOyICIwgizUoNricMY1bWWNma1ZEkgECBENsWEy644Y6Z1GxryFFakCCCmpEEzduCqPMRMiULaMgESDIQYkhwGbO4iXV1iuFsgZI4NbhlsqANSTQJSQTk2DZbZKtaM0JQmMpQWB4L2Nb7lGt0TM4aSngXYrVEBZreZFkbc6OtRBB1iax0gO+cmQ3ChkKYp4IKIOwRB8M3yZ4TnZMdd+7JcXVejmWSmjuRTLTu3pt6d7xCuHXL6rZZjmgmkw6cVcydGQOJBpBBb1HKU7zvMiorxxo6iCrspxvuaBXYqZLtnNBaLaHXjAbbBqGAqjcI1ESMiJRJk2HahoeF1PaiThrBC6XYLUUAkAUkQBkBR0NmnCXNr4FsYjg2LmxxbYMuRypFIEEkGIQJrZaZrNsmVazWbTJsw0bZpjbNpbabNYxmM2azRmW2VrMZlss1mWMZmZrYylGaAx7xSsa5oTYUDXHJIOYU4ubFgjCMVkCRCKEIsO/ZUKl30Eflh8x8lrFTryc1fbH1MB90LfL8+8hyebnp3ekflUBeLZeRyQMt46ng3gdWntgLp8AlEQXKRRUIQPAwB2DtQYMc7wLTqhVdzbdsijzFT1AeiIfwGpTT3vUTQxZORNrh0OaPJX8elr63ynD9NJgoBUrX45+Xd7PG4POsfLv+u8YDhxwG+nDpGEFHJbsGyBB9MFEHu/RSLqIkWHO9GR4YgguxNrfKgbxDNgzpYNiAgCh3127H47WKU12BTeAoh3AXxAEam+DCV9PL0mAiBSP6CmkEUTuKG57O1k9kfL2rahofkj4h19p6J5iPiX74Cj5Na3O5sejtAOlkrY9FzksLnLT5D12TEeIakewjY37vVzp53NT+DGtB8sEV9pAMYDiqqnvTKHO2cCGkVUNYIHZSgJ8EThT81+KN1IgvcRUDggIG8FMMU2ApYz5gHiYQN6R9rAqHd6FKCIHYv6DoIBmAKJz+KEe0QfDnJ3hJ5IdQ5IqjUd2CiA3UVN/dAIBZDoEEFUpYHEFfHSl+IGY7EDMdSeD1ONNmoYtgOZ0TqOkRQXSA9EARVDPbs7HRc4OKeQHKESeeHTrDA+qPDvRXmymiCB8YO8Q0iI7jHzFqEaitAo+RhhiOSCqhp8/MphavW3I3qg0owvQpv1+NV8+sfPpNJYEoz5U9b+34AVEVETmB07FKojmUQHD6KDgvVGvrOoPeaHharsiIKCB7413Z2vEHxFMEETaKipsH0aLYgezd41xNfoZqNcb5v7Oj26NzaakBU2IqdA7hRG8+bHVxCnENgg5uR5k9Ccu2neHHejn6r5872LweIlN5V4MXO9XpKQe2tC1Ikz3UaxLrbTjzNIcao/IiX534ybRdTkE9vzQ6cI1brQZDrPrJbp9sr9ehjt47+dGt48xm/B495iMFc7yVMB4eZspnylECxsUSezQ+e8YfptQyvrzNdTrHcAPkUQ+RF69dkqABeCo/Ficvgqe9NZ+z1eFNvZDcSQdIHuI4ibJnvalMd1Lwzv7mIV5v47PdUtLGjjCl2Ev5fu/xN8riwa9nIwHtFkBkOyT0ZOezqaMlnm0nwsP/5igrJMprJDyo+QBRZnPwD///////////////7BEEd9goKAN8fffd66drNcAA9A2UAYAAHkBp2JAsAKLZenQ4CjtoNGA6bQ0IFKa7hJgemr3Z6e9BRpu7QveC9h6zUMBXZyNu9qnduW5tO2N26N1ndpV1pPdx80oSANj7hpubq4vfFwAAAAAAdyj7lDmtr7NnU5666zRtvbO2AIQa6ACg7dwAOhR6aegAAAGihQAUAAe2DIAADQAA69B2wAaCgUL1AwAeqBhnaewFNUCj7boaDVPVOhXQoq7cQp1pWTduhNZLtnTSqrp3bRc3XWu7tw01vbXbSaae80puhutAIMhnXWqcB69wBtBGAGB6dLpxjgHnnnd1bNou3dZSuRPhFSAAjIATTQJk0AJgCZMAAp40AGlBJEGgIEJSI0AAABoAAAAAAARSYjRSRGonpQAAAAABoAAAAAApKUBJkaaKaAKaNGmgGEAGjQaeoAAAbUESQgCZBNUk0n6kAAAAAAAAAAARKmEBNGQiBU2h6U00M01MQ00HqNA0yPUaeoB5QzjGPoGT0Aegbxkz5BzDmzjmHWVjr0hkGrstB1+29l9A3FnnMgh3XvPcPC3n1Jv9deh0B0hnQFXwx/D5Xk7dP655D6nseMYhfocLwkYGlgl8BKTJtQT95qPlqtqdMHsy+d+/4u/h5yEM35AwE4gIg2IDEufO5/vjiGyvxZigyDYMTzx9DGConnlfBjpO/cehwLPSA/bxn/HqchK4u7qHS1dXzOfuDHOnxf2VoHwbO+PkN75Myp8H7/JxsgnyahyPG7o+MeMte4vAaImQeRt4xpKue8AS3cD1nkjtgJgCKY7xwBHSSBks0zPAH2cfWey1MwYAnCyGbtaJS8MLOHjKNptCdNBPOQDCYJ3R3QPyKaQkGpNta/Nb8v2sjr+YyNTP7r4dCDYEpfMc8IJiZSVuf6UuJ1yM7knvcx+29JnoMEYg4SwNA8Rk7tVqStmPAiikpPG90JnZvu20J+XIfILXoH/dic7bgMUZ1jqGP8Or8v5f+fE0mw3z9vkdkuqX6bZRA7Yzt3SZNdDvQaoTQMWfMYDfNh0KnkU8v5KTmYWcqyJxwOlX5zmc4502bcD97WmCibQQBWyAUiD2gKBPe1oc0OJQT5vDjKGv+fw0PDYBFZoCkbBTMdiJ6Z0oM5aZd3HK5mc4JaQroCxy1imIkZ2sOCzvUWnVDsVOj4+DwGJ0GLC47dkzK4HI42lgxRCJ/k79tpz2lLaWuZkhWdUi7UeTBrqa6yWYxE3hxlq1TE/vw/3HUZaXDbjm7lv82ipsqcbUWEB7W31Ovy7Ppy8gnM9InaE94m2ebuc3kxCa/FrODm6xjYvN5qNuE/GPBJcwUNhKRGmG8JuxITpdFk93bnMSMLZuzzI3m0/AToFHUEvsHfAh/BLvJ5fx1MeYsRrfb7BNQaYGCcTvd+P8d//ROGzw+bPscB3Nrjj8Qm93/Vxnrzvvy/xh6xPTzvJD0/3JyY/T6Zx4mB1g2zYmmN6qQXcLInOMF8g0ifqb5Mid8VbDpraaMP6F/b7fn56cP3dP9ND1OtH+AnSUaFBlOvm+qFnwwz5gBdGIvJFEXiCC8x5K8pka+HCbD4rR/lgYMOwn8cQQE7G2B2GgrQ8Zh2ztPFeELgVZhQWYQYINl6Tn4eS1BqdBLDLxlKEpp4JyhgoMDnA4aCByImpIqx4rgWjeoJiwKGwFIE4KnVcR6wNnmnRDeABoPqB8icb5ojrBE7iBIBIkxtVtWs2a1bJmt68V76OjQSCWlRQqI1EZEkVeiCCr+vr8Lo5QZKNVLcSplMyvVWJHPgbMlw8MJCNKzq8j642O2jSPfxsansMB0bDWpz6EiA2SKgEOSGZwmvFjjxTl78wOp1VdTJwGTsc4KoXgJ4gJqRWRSZ6UCpwYYSfPtQG0xDy5GXTUYfg4Ol+sHXcuFZWIHFcnyyHo6JAhvkFyAqpSALusPRJcrtu7pweE8XZyaPR016HQNvFwwQsorRBF4CCDGGsuaFzoK0Nt7gR2dx0vMjwQwfntUJFQksK2yphQDODycQAky1y7PxImQiYK8Hl3DANODOy6vp0sgHuLSQExqpFmo0yov4AUlZqqpaCZJVKVmEJNlpqJW0BDZEVsohzTjBM0JUlzKXNUSk40OVpmgDaZaoFTZU2uZcmqKlNpRWy2BSxobIZpIVZZSWoTVbIbEZtWiqJqKrUqi2qWQlhTMi2Tk0qpLjSUralQOXNxUQ5aQQYorgS0KNMmmiZjNCVky1jMlq0RZhLU0VQ2lbC1ppiG0s0bSkNqp2ZUl513ypVxZoxKtlQA3Agbg8fJAmvpQFdCVqHSslJfGvnaV+DUq6NEKfU1F2mlsqqGIVpRIkxkUqTaVppU2RbKKk2VXp4uCF0mFRrIKxlQLw1UDuyS7edxTtqpy1RV9zCr2aQg9MdsQszCBq2Wky3riF8ylQF8VT6LAVk1nYDsBEPe4fCjdF3SkgYrbBpdoYJoFUYcNgoGyQEpgEUJhG3StwLEjTC0bwSlDeUOTkZEM3Ur5sbMAwNiALpobD85RFGdIqjlCwkBa64bPYwVBC90cIU+jmnEo+a4SwSck8cD2eboP1JRKdSAY8HQzr4NhtIGUvpNQAos4QJ74FB6ANpZo4wVFJJ44dKSw2QwQ6oQUdQlsIHoUMkKMCBDUAbSFU5o0aE5KSjCQ7NCWZqvaNDBeIpI6ZhHQvIpIx31kTV8mnHQFwFMB3Gi5IG0tggIg2UOkJgINS91bO026U4maZREPMyrMRLabSszYs0hbQ1qUqxlbStli1FVrVLaatUqtmGDNNq2mYQrWVrErak1itqpWmVWZtLZsrajKwK2UzM0KZpZmaEzKBphs2FTYMxmo1qSZqbWyMbGpjTaqpbU1VUyhWgVpbJJW1VtGaVbS1po0zWWG1W0syq2qa0Ntg2to2UitozawwxJWxVspssakDbZGmIDUxNi032rMUlccHI2lZo2oYyQjZJVzI5gtsNJUWsqqxpK2BxpQuYJU1kozU1qjVhUmS5NbELLSZmmjYDbNtMGzIpmJjFpisgRSIHcdWjRkYTS440aptqmLaxc1dWzfzniiqSJAgIgRJGJspUatVSuHOVmomZBQ5agrTSuGUKubgyUTJgRDTJNpEK4wqrnHISjjFTWUVLYHGoqrYkS04WyZq2GZmCLNI2TRpqaAyYpsqW0zC2WZKLWtsbNNm1ed80kfo9SyFp8NlHpktoCyUPiErzRspXSqTau6g2Fsqm0ktqOVxytabMbazWulp36up03FBYqhvSUNoWboqjVAokAhegimjSwU6NGpmgh1DBBRoaJSaZw2EgXtx2NU81CCQYEiCjpQBa+F26GTeGS/nifXvhaKC6OjZpQg8p4BtYB1aaTdIqKO5NFDGqWKLtVFhAxQlZFUIiNVlYtG8M0NGgC7UyGQml6lk2twyEZws10+JBl9JAAGyCCM8ygqnkodcD2itJuzA57uaTmLOtwEkmz7BQvfQO0bDrdH4o+HjeHotAx6jzR886QKDreaFoQpgEVNhBWBfe2gqPDhzZrlMKALqEUskpgpOOcGo0nGeTjG5Qin0J1PBDKwRkUgYM3N1pqi10TPJogQ+ZJom87ztLvltQVtUbLNjS01jNbS1WY0xtbDYMwzWZs1s02FjWmrNWNGxqZWNVmqzVTYzVtlmsxliUsmaZma2lmEzBFtTaxpINm1IbKxq2U2psUazZWtaMszDGxte6KqcynMJUMwlXNUpGtVJbSthI5lRU5oSnKcaltKK2lUtZM1hFIQSAfBwUByv0NTJ3hgLOuWHDgmhpZpZJttsxhpmpmo2NGSU1Zq0sbG1hMoLMbFpkaWjbNNiZswSQQzLhsly4GOS5cMYKmZGk5KEMIRBHs3atG1Ti9TTmioZLRmAdlYPE7UqXAqutjY2Yuy5boa00w888mKS+juvM+TnEzm9M4mg1CQHn2pVRGBCHe4V8ShAEiYyFgi9a2GHRVhPEURNhggKloIA4F6qqonqt95zRnE0rvNCKLhDRiwGp0WEIirZsna22O2czibI0fj6z/Odg0hq7OqAC88YuUjZ1pBQeYBom0r8Eozw2aoJNFIwLg3+nDR+Rx8bzKN++H6k8+fDeOgFF3bLw6dTDRTgQCnoU2KmziSzG8vb0zvVngYJCMfg0rQy5v1PMNocSKNoSUFJoO8Sl2nXsjapLUZg1ZkitKYhMw1o2IVtGzSxJWlq0w2y1rM1a2qmYrTVqxqwxNSS0bVrMbNsNNDLbY1NLbWNFFrVtRS0sRtmtWS0w0tATZsNramaxkGlkEiF5MvCzYbCrb80dsNOddk1BvbMkEU0yWZRLbNaxtVrU0ylLWSrMCNNNYVMZjK2mmDLWyyzGWWhsOqJolWbjQDKo4CSFKHVz2K5Qgc2VJySYYEfwQgCn7ggXDqaD6DCiWjo9wzbWoqseucmGWNazszxxUBJ+nRkgF/Z348s4IAlBLhin0N92dN4QCqM18+Kqjko8IFwou9b6QGtgndu9SdLxLUOX0lFQaCd9NvFrFvpN30NV3l7yDid1rtnXgbD8HTQYOLClvYAlJqAwncbIfwGyti8NnSCYjV1lXLBUuaLIVzCrOCVU5RFzqwnTp06eOjsbgW0U2ZpJsr6A+NKScDgGpfnrrDagq7NuyVOuHgrrPH7mUTgcTuJVkILCpAKowEJAwwRazTNNWtLWqStMoVlrNUS0zGtYaYwzTRRZrTFjGzaYw2lmTWWzMNhVWmtMWtaixEa1VSyYtrWTGlEzQGsxsw1hmpmprM2MzDG2s1tNrSqWm2szNHV8Lx1buR4spTZ3NstjIwPLW4xAQZAGBGZlrJtUyJWS0aGGa1k1mK2jaZiYNTar3tzq7Z4SfXS/ffIKMAmIJVVHTy5+WoWCEIiqkJJFIERUGsWVs6OrSkr3TqyBTRAqgyEPzRRZs54FzApD2ik8dNpZinXXB7a9AxIdJxsNHLm+rS0dDec286WcWzrHV4XulAF6wQAKt9C03Y9gvnJTcDRzoW7t3O8cUFm1NUpapjeGqUcIkCEPBaOlBVlHBEnzTsaIbAso0jR52X047PGg/Ky4Qnmj4bx8rJA3w1bBw8aB891oBn4tpx9PnbC8d2QUwBMZ4gTwT0/Rvh0hOQkCd2kus7PE8+s6eSFd2mm2YzGmmFglbDWrJjKzNa01lUWTUw022DM2JspsmxGzaNlsY1kzZVkarbWybarNVJZrJo1am0yalS2qoto2qbLMY22UAGzWk35x6cLHcANN7O4cNpwhGA2lkZqsy1s1bBgyKraGyrUZsmtjGspS2zEELpomc/JIPPNJG/czujpBA+OnVZSqdWrOdPTkXbBJ2XaytZsxSrFDG2ay00pqTTtbodu7CCax4iAWYoG3ZshtLjrtQHGe7met0HZ9/SoLy73LJXVqIZiWZCQnAFur4LjlYqYQTQGJhQVkXKtXhHEnug6QJdCYnEgLTjBsBEfsMGjppdHrRhjlHrasP2Jz2KojrYmgj4cXGVxew38Pw8pUOpS+ISoNDDzil+0dd74QJzMx9xKOwHCjRQgoymjBcmhbB6KTKqGWEA+FIU0YWSqqrvBYMnwe6wFyrsxL4ZJJYMlJM6EjADIo33rv4/kablUbnpJohEEd4qGl6BCaggg2ddGGGs5EgIjiQocStpxeZ2eDTW1pNmZayMaxmNIw1NpmDWZpq0zFMmDDGtMsKlslVppmzBssWW2YKWsjNGa1pg0syRW0MY22zTNZLSzTWmZrLM6vJ3uh5sHm8+tmoCIObAu3bl6mY7iYK4QYEZINKpZarNSzZpSrNKxjWjKaYZTNbWtLMjYwRViCkqyg9nbNvuU4Hk5o7CECDVqSrdTnJm2d1VLrdHJyqRgghN7bRSdbRVdYnG95+Z189NV+v5SbzQrWzvmVvaiJk2yWFzIA4YgqmEnqJAG/DpnkhYFelL6GqNW7S10GwiIcITyxO1eWsLW14UKVrZzToqRL5SKSBaRtN0khhAiI5NxZV7+06LR9FypJA9SxXgLjoTXKEYGWTB9SMdRjBx71gMnblnIt9BtI2SbJSitG2ICxU1rZRrHjjjNfVl4htOOjc7+j1AoLbpRecp0yj6YvZlOZF8ZDxi8QeYjiClQAxFkAtAHwRMzRPHifP27TVZlGNmWtZGI2TWWsza0lslS1aMtrKWrbTY1tqamY1qaoVjK2G1ZpbGygbGampppqRWZGbGbZpVmNMNS1GKyMIECRIsCAkeHk4zcGeVaPg+adHV5lynNbGsjUzMmaYSrE2mZWNbaNFS2mY1thsZltNOeOhy7TLqwg7ZRdleSC3cK6C+npV9pABeQpO08s6OPVpcdE1EXK45r0VRjeGrmrNrbNrMDrxy3ll21yOsgWhVBkAgGtX4cQtJCZQzuWXi5mYV05qiS0Vk0IusocSpMvhhyYCwPSFk1mJwm34Z9U72oHYQFHesOP06Xh1IMWAIQRVxFRziJksdy5SqaxVTSbaNtVloc3b3h0KDrNHDkLJCQmytJol4cLJMIATaBw6ikhrlQbJflGCQqoPOvtlnI6btN8ruHONUfgCyKL+GxU3oX3GlLdtuchQuA5AiCwKNYVaEKRVGEibOphzLmVqQ2TMybkuFEtmml0pcIEjAjICQiqLNsstNraoVmWtMxmjRra2W1mLa0a2phrLTbZMqYzJStWssltsbNs1WZprDJtGWo2yJWS/JFpnGRzlk2klbTWNa0kWEWJJKYl0BV0sWg1IUatXM8qZitCq7S+l5PycxpTbuZOTjk2ZrypMrWU99xwndbM1LZte5rVZpVJzVqwWmVA5TSqXBhzJQzFC41VytRNXMwY2NLDMM2w01bZqyysvrr6TRKP2eWSURoszD7mH4ODyDeUVTERERABV2uTlbWzNmM0CsN48R6d7qqGZVKnnmaIVFdCRF8FxE0GRgicWikGDJUslixeRLxE0JFsWwoV83OgzcWLBDttUhTvI9eEDxaHZh38bPjL74adekyiO8LC1csVJLE7xVcEIrAlMgYkiZBgnNdJb9n3DDxhJZhpmqJlpEqDBp5BAiK7E3t40faENLh5jhrYdKC4PKUilXCbfYzMcAFHaU2S3nKGs2nzposC4ONSQEwtSarYYYlocYYiFg2VVsksxUxZbZpTS1WbNCq1MZrM0xm0ZqwtM1VsZLGDGZhUtWtbNArMwlWy1k1QWaWY1MZs1VrfUAcyKVyVSxSpxqDNAG4yY1kSsmLWkK1msZYeHXt1P01LIcK7Nt/Gy78Y6UMhXyIKxA2kxKibClknmdXaQru9LApSGWYKXoEDO2zi8+suOKqaYaEM22pX3zgb4Q9b/Aa1KZyAeKQn1cygAvTsnHmJtppks48y0LPxB+vNEQoovMGrMOsUUzKUEJYoUQ86WgqnK7VbWVDQyVyZdACSkVC56IKwVEsKufHJ1KwSV12dTTPHZ9Gggnm8+gpFLYqOFuSbRTYUIlwyY3TzHGy4qmmoYJsNCpqy7J+HDfOWE0m05adtABU/UoAowij2NN1FR4i7dCvgK+E6cm9+Kvcx8NjcPVgO0bJ/DYWEWIDRXpIbYmAlWVpnwaRu3i7Oj8izrMKvyYA72pPLS6soiWi1EI0DSJsHw6PXRxpm9CdbABRhAhKCrB1bxQmHFdIrFe0TqiMypN6a07mpVyCb+ZsWOvCKK1mQ1ypTORWEdCJW5syPbEImih9XRM1UpoNKhzXkRJAVF/MmkPwlEWT8yabMGEDqKiH6QbMUuw2SWhCJzPxsn3jDfA7x5CJqaF/InmiR8UFAWoRrU3MsjUSdCqRYwlmT8Wqu+W0ni+jlT21R5aoromx6p9sMBQjYIry3TndqtHXnTBx4g8mLm0cdDCDib1KhRkHIwoPRUksgegcDAMWEU02mGZd1xG6jnIxsR2/IF2ACzZvD8E2+QNMAcbHbuUXQ1xRHSDzG6vqvL6OkPDRO7UHVhPwtIDUilhOudOXcs5vb0rQOBNbr33ELG6YAjnBFA8hAAPRmRAbsXcx3d807wOIwy+uSvFW9fd25k6OKons4YLowBejXq6Uu16OFZntnMpWTHNXLBzI0xUL++xhGwrePiAuDbg1ODxEK9h3Z2YYb8ujcLuZXn7TpshRTB9iVUFLTQuC1ZVn2IIVSZybS0Ey4isnddwPN0s3n6utV7pq6zQeWTmFtEvggILqRHcPBWNkzvdo98kPMEbgRUBPsFTZJ7zTfyaw9ByAdO2phLpoQ9rArmgRC8A0i85mj8ps84fHkKPIz48miXAUPAPPdtsEKClSQyRdksgdXnShLYFTfW7lVtincelEQYQFF5YKh4ILqQTGo199hYS0XoTqhrs51u0QNH0UT5vT69F4PGhG0xr130tD6OcTwYwGhQ5bickLAasCIp+GXkCLrAKIAnZEDwRE4Yq3NKRDUyoNFKpLE7bjpEnIcBhzSeSAZDzsF/lk47otHhPG+usOtDbcpYOkXijgsGMbucSROSocNR3v6b4wzPDyDt8tLbNF2V4C9kS9UCqwNz5qXYmLF7ET0JUgJUgOYQTkgF2B7F6/M3BimwYJ0KUBTjFz8o+dueChLWaN/Lk+9xMeNHQc2URoY9ZFeyOpBNnBsST7mj8LJ8Z7z7OHX7TgqSshYBzoXCnRT6Zdb+eiAoW62ZOVwY0eo6k7Hjjmx2Rcz8L4C5vCiFmbkFXOAqX5aYQsURNj2ePrvfzG64zor1SyxG8eeng854lcynNr6+SRuDjq1GMeRDUZevkkXZMZWyOVQJF+ZnSnvYPkLPgxo/fu1vFevxfNjcmXwqjxBLih/qWZSv2dVsV9jBk4fwQaHRrHEuEkvQwAeyIidkVQDSZwDB5aT2p5Ot11/GGoWiTbXd8tBfGIBwkUA2ID4IiAFn3SahAWiCZCQfJ6aIBp5TZu+DIqZorCM3F8iiTqTlBUDGvgMeIpUNlhHs3vfy0cwPwSCbBPEVcSREeoGc870gJ0d3LIiZJSUvPH5gunaGhWSwvpTGVXU6sIEjR7GYul8FIuSze6O3WAMB9pWFsJDWO+iZbk455iH2vpYxNg0fSUe5qnHqDDBHwPJUH1GPoKyjXPwYb5vQA+YRQxJdgBWc3LGXqa8HLdypAzPGlA2z48lJWWCvHPn9LGWbkYnO6u0AUkQVDt8udl5IgaNkyKD9BIbCAryQA3OnFc/PeKxI5TSdaBtaRdZZNLtbHAUKS/kDouH6KCYZJwgknFX+CSBixZmSd86ccRIUFfgz1mDRMGrRNZVoyDpzUYUKj6dJ7u54NtiJzaI4h3GCBZAEVNyAdSN0jzHjdFPZyVP4vfml/tqALYcAL9fIF0rYPMT3JgHWJSf+nkMFgm0fFH6BKypDGnDlDcSCdwwWOALxn626ktJWHthHQnsL0v0iJsmfCgo4FogAm9DMBFcPYCAvB7GM/IT/aOKpABfb4d/BLLS71GcZC3CGM8AieMDW7xkT2TJwJu9iN3e0ao8hsxJvj8E0Y3CM+wvSopq3zQsp4WCk4WnnyJHbqJiq8oymFeZcXw44OKE1RXMeTBMbC7cwX3zdmEdkuCmIM2fszhcClwUEKC0y4jruXy+m/FW++64+lTDtc69XSjcmJFEdIpwRBpN2Yx5o06OpYzMyh925bOfYwcEvBOomAk3arCciTEBlGY9vuiMk5/WDekCBIeMwlJj9zOCKOMwppLjHtRGIyGkoOngiSq1zLQS6I40wb8xE84Q7cqSHJEbOuXZJDCk+MK5DzSk52KO5P2COUm16U4WLdBSDGTZ2P07R6YymWK4oLXeK/MyqAjRQJKTHmZTCecmDDP6NMmjAU/1FQccEHgV9IXGVCF4/RYlFSx2MQROIwDGRwCdSNIgugoXwTJdOySSnd7/pBkZSo8iEaO9AMuzhxnWCVO9AClqKY0pgAaDGKKMSc6YCLr7xvBrDpzRPM2hmUBXVgoCzTGwPhMS9HwtYqhXU0h2EV7CAfTdrgPaNi0+w/LXMizmL2P14J2JtMCB0PGRQ8faaFwoVfxGxQVUaJj9XQuFR+mCbv2ffRscadDcUEads7MHeHsh/l6h1S+apZDSJrOfJ0oCXLqIDZgnl3jShdq7ySfV0dPyn8NPjydWIVX6UoQAXx7cxYUxAMRBKIewcopWRu6hB/95xiC8oJdDJU4GJKlgPrnSXZnjCMS0ioTvA0NbGRMrAYyed+1EqQ8vg8txt+X+pR24eru979SHAGwr9vbBVHkOpx5wgMHWFTtQZZVCsglSQoD6mhVqsiWIFo4QUEGj7rUD0SP0x2JP+DRBQQ32AnEwRsOB7kQTlISEA3lESFxACM4TjjxJRPGmSFVQd2wkERMnKhECNX60JZ+/nux+nS/sTP0b9BKW9G+MCp+z9lB+4JE4Ehg+pRqWQRanKHJ+1LrvMEZ/fQpD9rEo5oeLqij4yuHxGMcI4aiAcR1JG5qyUkROK6q0nQRMbWXTRv32P+1VDR6GDIuQmo/W8IpuJZWzgq+0ICKnkkFFXxQzl+8/I5SCAp09cQ2j24lpCr+15HddPkuUNvdQPGWAtYJIdVRA6YJjkU6r1f+VUfpZOvj14f0pnJMeDR+NKLPRj63Wqu9oh1y9dKNpNgNkdGBdj82fmJX9plHVfuY2aHyFqN2GZEEnxOEcBCiRySHwj9c5v+Jc3+z+pl3OiO/pLEevJ9HoubJnWerPegkuIo5XDq7v+zil7UL1ieqTq8Nh5WMovfnN0aYmNt3JNcu4Oww8ZxR63ZpxatrSzOxFSbYosZe7Xu4+Gc1pwwxga7Uy9cWlO7mtXpOxl6zezU1ojWtz8mYJ3hIH8UhHTDSCq/yYVQA4z3scynblyms2U/JZ/Ua6adpapxN1taw40v1Smil74QfmaVTrpM0l3VoqVfdCcLQmxK+uHwxK60n2xPo9rkQV9mJslmhrVWmg1GqqawtiJXiyQMymZW1GYyxWapUPijDW1qKrWzZhlhqsWmVm22ltrGLZY2rNMimaaMxmkAu2RB72ixis0kqn2oXTCqbScRAdCVbKh7YK4Iirpwvpail0KWmooMwkNZERrKJLGpWazSKsytjWrGlbRmXapKwOWFzSgW+7gcGpSGYpRZiUvpZRctJH00Vtskm0FtVQ9DKUjWZhDUyy2ytpYzaamTMZm2xGaNrG01atLJmzGtiitpttWWtZmMy2tamms1tTaxkzNtqazNjTabbZmVttY2ZlUrS1s2Wy1mtNYabZMxpmzVrbbWtW02mURXymSrWraoDxaq4WUti2VI9tEtip7NLoxaBWQ1qm1JrQpxiRV4ccojWhZqrGqzDWtqwHvqrhgLkTRvvuJdI2rZbVbSzStbMrY1qJW1RqxNNRZqmysxbQzFVVtWYraESdWVPo0ndk+eJeppFMZerRHGfbQNYfGX6zUfO0dtV9bJL5Mq8aXq6uDsag9zCcxQzKO+Kn2yaQrKvGPawdKTUqrw1xlKrpKX00e+pzUObZRbKWZQ98GyuYl1k9GlPpoeMqlPYfvDz+y+nV8OHEHu6eemm33nE9rVT+OPUUKdW0VLSJ40jNU6NOWjap8Mfqvy8quuSFrZhbB3Cq/Fa9Gu299SVKYGJpgloXIve1z2ecfX0PhS7uewLFKr7ctXtnnr38IMYwZIjriVaQPv7QPu9s5n65iZz7Y2rHmnLx5JY4fH15z8IziXoqBdDDJZsDoChFkDoRytDml4d2IPFtHoTjLTTtbPed2nXucSgqaY4YJu/26rqOm8rrNqV1BOsCOicTz2TxzxzYqR7ziRo0izbOD6wa9bH8GN6ZYKD659eveismDDAkODdp7V9nqdGNt9ErN8982V7M0C+S20u8ERLRcyARRUfSQUoLQOiK93Rw1rNFOlipO7JXTDvKaU76dGqMxctLhq4aSV2IqWCK2QlEKii5MbWaQvAU7gjaUL4sUq7ZHjxqmajUK/DKpdEtkhs22JGyDZS2UbUujLrq2X0scytu2nMjZXtk/FnfP0FFqp1sIXqzgIj978imGjY6/EpUVAowPoiOYc4Fvlwq/iDye7Px7cXO+HeAUIdGC4MGR+GaKo5C2Ruy3DTIezs/mnG5m5aTN/60NyMTwilEIJtD3RftjlRGHwGqaMCsdLGBs/uBgtrfDdxrtrrANfuerk5r880/c1P3WQVT9Z5Ih5YJ+d0hxE8BEvaucwpKh0zdnO72ufzJC1dNdprapKthxOhEDjYISJTEGfREgAshlDUxphtWJR/Hko8EA0L0nomRC5stNQy7Injq6/uuRSAq6RPULMKi7pD1P2xVMIqj9GhcXz7XB1y/gvwElwfRMH2afzbTGOckOnmIm29iIA6YzUXISsEQXAROdsiU04AiLlzRXmMFHkgqvFA1EpYYYgzsMk0qQopaHwBPaxQUOCzmcPq4g4P5SYBXgUQgbhpJmjRKkRqIimlkCWIDOqoaWDEMAiV3wPQopwZYB2Y2OAjV9oqg+5o/XngVhu+uGhMWeCNnwnlVUfgGVsfDgneBUVAXwROyaAKLslJYlfug1Z9U2eSnOLsw/VhmcqfudJ6OTBk+UZU6CBaHOh2cKSswcB4nBV/wEOfxn2J0AGBXcZcNfo7Xt/BYG7alzSUR+w/RiCK3aKQ6FUGBnZogIZIpA/cWqjQsccAQF32BXuRB5z+Ie0U7OzAfpuUncd1n6+yvEf4R1nbs3CrHBggKsSHzR87/IUD4x+wywJlH4pQFFcYUhF/YJHYCJc/dArYnYR+ge6PITuJe76/KNwNnCxhRCOHNhelJFTKCqdEzTG8STEjB3YRvwCJzQMsMKQsdLEbVjxKbfBLGQC8g7sOxW4Kdd8vhUayET3b4P+EDwICcwE/GGa/EsSQCEDhA3TXHv6HObAuJIwzGb4eYp6xC84dA6fXxoCnkfeii9yCodORw8XPmkPMscRGLKJWkckRgIcc0QmTccb1tf+zyB4bT+UBE0dCMQ1wUEH/IxDl2c2IfqCrkRB+BAojVLllG1wIRhhgMiGEVA/R0PD+BG6fGPM7k0y+P/EZuqiDhIvz2TtN3TJ6kn73emS3IRuF7MNyVhEQMP8d93V1SnDSP7NhfnZdtw9b36PW/b959Rg1feRTI6YdCAn0EOsSsri4Hw5cPviojBsJx40aInbMO5U6PHSVKZKSZqjgxo28FzoMytuQUAbIjKgie5gIgFriOzmYh0mW5D3ANo9JqXs7Pzltv3Sen0J0KKP+b+uKcbkDVDIx71NK+GIfO1PWmC5rPV5xbP+h+LGhiStBgkxlPqM19xNtjk7bykZJ1w2o8J5q2OpvMIbqVG47HeCNdpjInFL7iel0Em5BnzwLZS9IyQ0sjFcWPuKD8FD4mAWnA3npzMpYTJSG8kaY3ASmFnzhiKf88QyrjegUukppN0gs9v2nunUTZAEfawAEScP4QKnFXGQb/OZUU38wgC+2cQENjBTzHAJzgj2iBb1TJG5YeyIMTG/edxbrIHozm0QUn+xYzJ5VhIAAvxidVbTCAIhngICEMLzyqC4Qj+p/d93iAFDR0vrxHT7K1t4wJ0E6XV5lhKBzScjoA+tXCVlGbsRE1ntOZiJqAhOX2ggp7iKBQ/SJkr08nk585H4wxI+ui9EizMD6zX8BV93045Dfv9mScp7IkSIYkUAH0Yq4E59rT1/ksH3ksYjYMiYmZgqL5YAKHVlElGPAe10fKcYcJyHnT4aqCrf9Q1OrZoynjnRkvJ9UhmawUyKSnZ/camRzj3Hiwpmp0ECEBhcHYqUR/MBEYzg6o7SAC6JF2WiqHYIAgn87WnAUnh1G5hey8CgCxyP5DOUb0QBqBAWBiuDwAc+1wHezRpPaWJHxPZYjdw7hLQyhgeFw8wIeWUZJt6aQJzGS7/OTtsy+gjkxEgVWSH7a8QFQdUh+LSiI8WP11U9pqF3biEnYO3DZHO4KudOYlLiaCUmdBBa6j5MvE3dUn8hswXl704/k/Wv9n1df25v58VHOgtFPC3vMC/J1HmbCs2/23FDvm0eMJScpK3WP2SQDapUEHCu6wiMHrRg4GobOzM/UFQqIAKBMfrgOrVIgINR2fttFeIQBxKYRoEzn+TjYSS5qXQZgwwmX5mnQYEshhaSppV+5Nq8mL/PYer/WT0lhhNrL1lM6Z9CPgFwOOBfCKBTAIO4aqtmmkn0alJNBPVejNqEwGJS0cQ7gtv8T6ypGx22vy6tuYCRFInv4Do1Y1RRvcJxZylkOSPrmszHn0E5z0NJYCIsNEfxMCTMgio4DFJOiJyqQUASU9dZc0SFLERExSbEDvkEQBo3n0YipCTPnK1sOC1J62D65iQz3AZbagoyYCStOA2i43pj7SACruWlWAf4HfiLN8B+sEMMFIarYv8WiHMhfn9v0yUv2X5X4sd7u9wUFgUZQkf1rSbQVphN/6PgtPtYF8xQUZ9FrJq8zRMTTvJl63sxb7vFz6eyYbM5lQs99LeKgPwawjNZO7j6SImM++4UPpz6fKc55gG4SN96WhUJB4jEcwSWcD/iYrEnd8jaHYC+nHAZqk37Voj2hKVK8ZBjQ355gJJ2kBFNtgKODajpIverdhUN5koKPij94LNU6B22NOVVR2DwaJ2eD9pdHfSH+Nkr64e+I7N+lqL+KAA6EBfkVfnCIo9nwLGo8o/TMsjjb5AGMkxspdEWpGUE5VvF2AxmFu7ZIy9dJGtoCre2AXy3XHbU8SgI2k1Y4TR3SIxQlw6CSOQ25MAYFQRkTfK9KkHEYCBOCaBYzpku1qrMXKfEMRKEqVnQglxxsTVAYYjTKGTUEhjhL6LzBrz1GXZl1ppAfdvMWMS+e60Km7wwOQL8IKIykRl+QGfEl2fYXkaQFFGOM1x6VVBuNqA80/RzyZ3A/w/iaM+nxuX4H3N90wYHEegmKU6aQ57gOqdAU+BB4h3ujBN7vEqfQ9blNwzko6is8hI354BqPQMw0YRsmJhBV22nOSyiUCcyUSjEYEklOKEE6ZbppKud7bEBRsD10E724me8kqS6sYIql5zRPOdIyHTKlQDtFmfnEoYCCKeg55kDEYTWmIKCtPsECVZExmFiTBAKjnpLzDbcSV1SwXp6nQgKA+CApp9ZA7fn66UJ/Uf9HbcEpAeuXBcYhDuPIXpPaTAd84JEIwyRlhOV3DIdMgSj8CQM8Mr9CXxmolqCEQCc9nIxDePnf9d1oZwERngB0rAVZSEIKAVEEUlKzAchkZjFkKCYgP5PaYiokD/WonZAUR0czRDwc2Kv9lNFqY0KF8D/HnxGiYvDcEBcVD1lskkCyuKkhHc1fAiMj7UzscuEaSPdgIXGkTZAREIwkIsUKd6fAhOMzF5BTrkFARkPMkHHAahNLrQjS60QBc8dIkIzzw/Sa7lCs0s+YALzNfoOVnAEIcBVmtEgX3/r7jKWBZq2Hc1iCrqo87Twx6UUxblWNFI0iQlswAMpiRSpJ8SccxFCliIPagcdqRM+YmTL26yU4PCP8v69/bG78n6KKbAQfzk63ibuFFPVCpRaO2x1JIf8aCwxnTJ4kBmDlUmoFRGeYmP3jf840U0oTU14WSIPuytHxCImnLWCgC9rd1o/Y7vFnfj+X+t+Xtf6tOwxZbMUrGbCmGIPyoAt/jJE14Jp8WtcX+8Hxyc6NDX8UUqR5IJh3FcERF+vlkkWT/QS+Lh+heBYmHLkazVInGnOL3IegKZt3DGdxMwWKVsDqpxJxYXade9nNEfQAVGXwTh/G/84U5XeCwJdrjSFjZKqH6gqQhCAECCAlmGJa2Dr5/ai4eMsmADU4aWJhrNtjFlAdhoBEWOskvIqU4ki+ZNIjRWTKqDXzxrIIDHBEuEgggMnrPZ/EhOaC5fdVodtrlyXEHeFnym7SAgM0eiOfOxGSA0EgACw8sNL9bDEHhSDqoclBqbTqSvGZWKD/ExOOtytrvMmRYMD8sPFdojWqpjEUXuMCJCpkDPje7c70+tzmXxMHGMj+LqDc+ta7ZIHeTKfvXWRoeoM+C3FGfAkmdBACVNCRf+7eo7j6nWKIswf11+e5+yaT0M7g6P058jjJOamqX8K/GtNR0MzowVFdvGWFim9nO6tJclQnDWsUFnHlf4bvutZfLRl2n0cF84UAWkzEEb5kVFs0jXDpWQ+0zQIAtOMiZYzbpkGUhLSUwJqoJMSqnXKPSH+RXaEURn12vS/lhQZUJfEe/skbcgA6AgqvUQICJk63DGVs+RFIgyId4o6CKKxFBOHheQ+m26botuoiTs7TMBaQMseHphhUMb0wDGbwGMV1MFUBrJL8yAC+Eq3SSVAQZjo9HiZAqxBGqbubGcEyKo4ymVBBac4mKpSGB2xAF+slWlrAiCjEbSdz/YhNawSYd6IRFt87EjxXuDThlq5T29L/ZL6Z+vAfKBWbcfnge6RYh5HYEAvftu27k50CZePrxYDtOjHStInyY+d8AJhBViIfbcLBmP+aUe/GM+Z4GTIZGcXmwu2ycZrYQojPNWUD9ZIyhkI4TrlYER4SJiS0i+s8icHkb1vch1CIH2VLjMqyAZTFdV3X6eFocr7V6LyVau2Rd0Xkqtw2XkJ1mHy4RpW4pS0qMS7i8lt561KzyUFlZgvMRKLGEa/GKqRnLYgH5Vl9M0Jx7Z6mkpcsARwXj42jclPnBI4CEa6tC/7ttMw/BMrEhiJRi0OrAxMPf+XAHXXue6hu9Gtn2mCHZ0ah64Sr7IDc/KLgYXCm1TQKcL8WaRQBZZuXMmQpPA/s7FBBlqwnSzsZ1Yk/w9nUMDrcNGlMUJuHBcwJjmL04Xlh+uRrcGwwxYSctdm7ARDSwRUCaCokD/CgxwNYUyrKSI4kgCk4Vf177pnOa4GYpOtpihAFUNonq4uDv6mB280xq7BCx2f+cfOP4T+fKhCKQ6rfM0k6QZVR/08zHg6+tpn8j/iyTiALBUICJlCH+zATwJPyeCNx5Bxk8jF7nHukOXQxvNVPHQdRIH3gzEGoiOBL8mXwvqJjGFJTHEGAQBe/SE3iMsxrgWn7Ys9ZE+t9jtuFOac85wfGnpe5Ligp206iQLE2sRHu1oYj+KJLIdO7uWJr/04I+qdFPjRcnYNJiwkuJPbEcSZifGBvlCZthHzzL0Sfxk6UE5+4Dwh1tya3QTHuOQNHo656DYnb6a7ZshHl6HnMWan16qfBx19j3/imiqnOaIGI5hiRTrpeY0+spKlRpZmhMQWbB3CiV2HkluJKTwJOuIsSYwJOnPg5CUwp+tPA9vJbaxJoYKipYwb4B5UsiJj3JF8v3d/DFamF9teqTJRoMTqmmT9GYi+BJ7yPMGFS22Q+hL5iz58F37D2U3Q+Jgpw0bnvhu2cXEruRoAqn14/SG5j+JtaUAF4PgVmiyiCYdcTizVS/O495+/kZ7DMBYQ0HKXH2OX4+0nQBHkp2YiL+GA/WF/v7qv2F7rdRDp7U/q5DWHjMYewyB9CsOAwkSY+ANGIPTD1nRNswf+OU+ZVsCFn2PX/7nmgrL4uyVB89lg6ZH8+I6oyGk8IVm/0yn99C/r4TOc58vaKTocpbcmEpHQ8EicpkiEwIxERMHEXEjQH4MERgk+Vr6X4Ex5LinYUnrLsBQaCjIUx07dAYCAYcdXmJZQgFji8TH/D7IxfX5nmDGBeH3xBi/BiwEwQkxBraQ7OZeD1mUItGn7njq2wwf0ivnih+CKktPsXPC5GFLFc28hnZt0IMu25HOyIiDjbK4jFoLfiTGIGn7nKXfAt+x9D3af18D6mcvzEGI5KwOENqBynd2+VJAxnVSnPYS1p6AiEEdZDgTdIjp8KET8TQn5MxvKdqYN1NIeGiTlTm/sEBecHJQnk6MsyUP+Jm247mBuWJXRGf8kZhI0niSKNKEsSnWkpqTKk6ntJepwlATmEnj3T9JGR+6B5KSSNgEDCnlYBEp4IMTXE8WOQsxnI8qTJpKCyGMXqh2j/gPaSv9cMjlo55oKCB+5vsqqmSAC/psGEN4vQyP3Rp6aH1ZGVsP98M5cinEc2CFkixSGhIphgpggIRnhCJY/t1E5SY+O+8tr2g4ouyEE/dxUGNpTjyms4y7Em7j9vLykxOduzN2jjTI2+cmNh/NIkd9h59B9nmfktPfyVfHWNoRsxYnPIKKL1E6hxHPM3V6cM8hvkWTOxWjwJVEAINRTEI0kDOwnewXEDrX4usoAuwoOgMhHAAnIIbkVDzFBU3I8vRSTqhfA+kioA+YK+QPylow0mWholj+Gj2jkf1SPZwY6CSisPhBDssZOdr3U0WGFh70jLD14z6YCVSOcaO7KZjdL4yasniCYxkWU1mQlsP+O6tRQZio/O8ee8NZO4AgCKM4RnhjLzTvzn6MAkrN4snhEzkgGD/r5LT819DRqKpo7jIeXaYyYC8Iw4wpRtHyLbuU7oR4AvP2FdobQaQ2wLXUGEK1AUqIQKEYtmQBJiKWRywRzzR0p9aJC8P3SnWRyF6OB9qPaRyMYAq5jZ0+ALeSDUXI4jGVIy3EMXGTxtpTEkSMqNMZHn3vqEqOn3ZkcnXCo64TT2qH5A5wfcLlUiMLPDHGjejl/geuwpDlegXOlBJZaA6mCAJWPuXEuEAUbvq+oNvet8af+G3/wSI3+wInoyoxWxcgXyZLktRwCUI6vEz552fJunCbTSWyk7PRFhjKWJsKzU9ZdwKdTaTndC3bPyHl++EkH+68x0MZr9IdpQVeYbbqKDUVO0YDLKVuWcNSaMRBJhLjMbR0IyYzSNBMYDoK0PhZneg3FNk0G8wvVMTG4mQxoZDtlbcSnTbE+2Qg0mMulKyY8/eMxeff6bRoOj5TrO3KYIjRhMzsNb3woOoimR6gn3nbCgrNZ27Cs9Jhdw4DYxHqfZoPs/W/Zv2cy0RUZDF5anQTj3jHeGs49AaSl5JSITOiAs2FDurdwvYEwmWj+nSEqHXAptP+IkCQxG7MJ6LwqAORBxYJ7ExPJRyMeCJRPncCkEz7qVIwIds+iEZql5RMP3E7ZiEAXQkKDjOFLTfFJbHsCdk5h2xNJMPlE2gIr8Bu9aTmQz8M24ZTtCR7aBCyjGe8SJPsJISJ5uwJ3qOH4f7k4Q7Hae2djk7dZ9ETcNJW/A3LmVHq+pCEALiLP1opiY2E3W75ZUblh6Csp6MTW9NFFZI4z47rKnjUTNaWPAKivlzox9kyRJfBKBBRsR8G4mhupunDTA0+SRisbGnARFPhMxKVmMqLGJnP5qLWkwkqToETjdLmZBmJavnIJ1zpxGJ+JiNtwgY4LMer9fR9vQ9+eg3u6G2/XSgfI1uwg8RAdvIGzQ1zhls1mM+ZabX4eHAfgEw7e+fnHhD/Tdv1xREKKBBV605rDKYABVjDh2jPQSJgIcZbE7QzmypGe+hiJ8kdviqmUQG8gqtdoe8gy/ejvtSujmkkfISOUrcUQR04N+zT2oYfcS/YnSejGeL2Xka9XuX7bSGPYXhqLjozYzcQPEVmcqHd7RfrgWBvBY/GM+AmYZ3FIVh/lAdDC0P3ku3v7FxFQk+ogIivhlKg6OiID/M2Ko9fxiy83i2FDtGmw5d9Q0wU0ED+ajgJPISvVl6GKQhAq+0poI4NPza+LKf5bQ+tr6/D9BDH/TbJvhnvvKGUIJjQgktgXApm8UqKViMcn3DIhJC80UkGfUcV/SDHP81T7tyAlTshaCRDl6ds5DChTMBdwp9uxjRTqaj8zvVpJm991hkjNhck5hN1l9MBjhsAEXRYZT5w92zz+vuz8v98/2+HF+dD/NwyjoIjE+nOdnVwxrKj3CBdbq5wkh7YrIx98QbCB6N81HUzTHqzJzOEd+AgYEgABkIIHHAEUJCCGovjGY3E5ONzbXvpdZ3S0CpxGF7akkUi+D2mHL6p5KJQhgW6/oZ8ml/Nx3A2OejhcgZ3/z+wuVEPYoVJLClycHo9FBz0UPzuT0YMlPuwqjCer0U2H+OAnMRZwjaQBLMB3sD0qXgN4IiB+Cz/GoqKQEVpGJCWMymAfW6TIRn7aN4jIbR+gLJT2gbpEW4hnBkDzXZh1gHuv8u+TVTJ870SWeGTd9klEYhJzdu7NFizSbRulxvW7YKaOzhCRFJP/ecxEanD5Nkju06DaJGMiTUaTMjRjyyUUUopVsnJc1VmilFKJzHYpIfoLVvX72FZjuDrJSimFFLkU0IpqEEW5FJ6fIFyKTTCdAqqPlUKlSCZEUwIplBuMpGW/royctMSlr0tAKo0pr9+/JhAnw50UkRT+/HGyDzTNGe9HfQepYlafmdPVU4b9kUVjnA7lWVhfoY+r5ozPqCWAmCiCPk2bLvbw73Y3xQHFAEVyMA3TMB/6ijBOSl1oj8+6ZmVeJ74n6u1j5/Vt6fcsexO99C9W/VINNG6zTyDHs1EUCDUzt79u/Q9i5wNi142z2R6XJpwt2RyuRwc5DMmW+Jtx4vTc3JnSJyN7BrZWUxXBS32876/mlM7dmcLiSnK9DzfqRnf/P+aQPhpfXnds+WI5lykmiG3WkIPywlU8qWGTbP+QSQje4hyFi7znmEoazxrGVrfRdNvBViiiU6BuJEWEHaIACywRADvFTy9zBG5D7r0DAxTpp6tdd62xVPzBc6JfQYr5MNJ54ZMhZRXxl3ZL1vd07mC3xH92sXzqeddgTsuQO0ZDq0fk8JYxm4YCmt3nM/Vdtj8xeUGeV3VS1jSUir0dej+wRQWlhRNg6/DIh+h8rLQFBDOzmCoPi+V/D3MT8mgcLCvUe93HD7H6AYmjM/9rA632AmwE6KeUDOxeaXHCb/xD/gMjIm6wINHHEaIuIjykpTA4g4GXqo7TKZG1778QLUY7SBbEBzTHhw8FhQfnaAURUH+5z+gDsBp50HWPA+3XwEgQljdyETOHzA9YEQGm5yj02R/we20+TGS4KGUBNGkPNGxvIRPD8G2UjXwPgAmRrD1HisZLcfyf2yH0eUD+gUAbwG6tocgEHoAcrxfQCFhn5qfMDjr+7k+YEYHkHiJK/Tpj2HBmN2J6OI+rFxEpQajp5aj5X38XchmBbcq1EM1BVyPmPQ6FDKp/WQQE/YkAUDjTY2j+vKbAWPp7KD59iIKdWKbQX5W1vartD0gOUdY6wrNJIYQvEt1V4f8IF44uUFTSGUG8Kh+VSSWj5hrC0WoFEvag07xZtKkhrBygSBpEkvAvFM9blhcqvZcQznqqKiYvR1LRJM5eZxvFvBqEgSDUqEgSHN7WkkcoVEm9VCR22rmOsTaBTFygBiC1FvEaga1SSLUDE/2wLyQm1Ub1rBdoJ+MU8lzPdWNuBnlqkTnVTuMXETVk8FLSPa7LjCV4KYrzxlWE5p4yzGS6nF+hDNeyzJ1Su3O+6fW6Gqc+lAbTnzECszfUjbD8lFdnPPVGTDRMO/W4zrEW5hKmg+ba+x2iZvcIe01b5VN4jMFfxPebXcKn6P+m84WY8pvE/MInuGoMp/4/D7zEZfE7vOOX8mDa532avgRkSdBuPy955h4+d9HpsR0zYZLlRUrkpP6bZsKT/WuJoKKTYcfYnDKEMM8rJlrLipgsYO2+NkJExRJ8UvqqfY4DXjfkoUviJUO82kjjnJmtwfs8DUTBAPy8hbndWJwL0mCKd9+REGzGxO0wNiFRER+/zHmaJU95SaYz9mupja4GYtPmbRuH6PkchRdmEz2PvYcI/mynJd+582mJ83WNUDxeTm5A/Hp6//f+et+A7mHzB+e+G3+HdO500xZecERFdEwg/TYv2mQ/qnT6T+JOs/rn+EKeedTBMrSsHpn5DQmDuB0Tq0oHRYItBAAfbCqcZfw+xT31CPGhcaV/Lrtph1HZCMLnUWFhoY4gRUkcQQSRTshgTqBKkvjuf4G37J0vTB7KuWdJrGCTJnSiUxWJtpMmoSRIkgkqTJ6aZwyJTUn0240lGSW1MyWp+p01TptJ7NNKXriTGlGNMCRB5Yo0rxpKfQMFllRgT7RJg0J/A50aQD3enOHJLWHJ8L0/9+g5Qxn6NyyNItyMoQ2tO7slmc2kjAvDUeMmZZaAgSsN3bK+3OU4ozi/vFgoQVikSEcw2c2prKh+9BvjL+cdETVtQAwxS4T9Ci0VdoCrQHaUloCrv/O9G+pnNvPFj0WpfAccxsSti/GE83kxncM2Xdq3YaGSacAdIMYGm2bBmWLL76lTi5cqHMGYDRo2rYNidTvdLPFPSzaJRjnybAUQVTqEyN6ZNXUiGrHOLkqVFXlgo+hP3pSDq50/Eng2aRhAM2ApQIDgBwHJfKw9OjurvqUP2ZHRHsJlAUAzRgujAHHiBuZaYlrN/wpHVQY9jdo9nuR6yoPFykTsGCJUToI9HfbV1Ay+G6Vs3Ta2mMYuOZND0L0wAN/iSh3IimyQDER4LEO7A4gv2A/AIIoHgeHcdSg7Ick7MeKuBksPKReiAfRIvARV8RFBPLEHpmDsyDdzVFHnd6ey7fddCLbrPDePZhhRRmKfbOs2AIQciCvsigqfSIw+pgNXuhBkRE+EAxJE5YHqJc90vDESEPGRg9t7yRSBOLLg6iS05MuZekkV09WSpIhEsm7DWk9/U0O8zd959X+PNXePztsmzABV5PZ465woCtGhJ5qm5pq9EAO9DsyqrPCZuRYNy6YooJ0SKLuVL37RfPU6UTGeXeqv7E3uv1ePLYoh0+jVfHWA7JhABc+KAU6cnBg5Fk4JsZ9/Du7jk7l8kjxwvVazowhsp4IgFiCH0jYjnYKE+iQ7gO0E0TMSj2Q9yoVBohI1BqDtFEhBW6QH0TKaQjRSWY0QDvlFNVsLm4PpZ9sT2dlBSB3AkoEOoqbOr4C5Y2OOFsWihz9KD8hhopmRRXQV1D1BQyYAsIqfJq70bvBTvXBk3MtD4WB5IncKVNed1uA86GHE3zo2law6S56G7cucBAhocG91vA1YUQbVW8fXso8JANsq+sDSJ3XRs5EeDLLFKDGB6O/fRp05BLnDZ8ORsnYG2LBYiNTVMmeSYxeoTbS2EVR0IXxl/Ed19zNcPy+Qva4WWY9hOXGrVLtuL9iiLnDpsVOXStW1OquLstQamLT+MdULopvsB4DbXo0Cl0YeDyJscO3yR3wsdoYthJ9GxtHBPawTI5VC1lNLJO6Y1wTu2HZok6rw21W/Btq9nOZ6Olts3XUl11M1NoqnaRUEOIoLk4DLyGilZ3w20XypzsecjrI4+Fx7J3NkIpxzT3udACbEROYiuUDy+z1ZgXotcoH0ZtJuQd40rgqg3YhkikHcejuXTAqXseRtktDjJ8rXIWPRegF+EARDRiCBPRq84dXjodJg2pvPIJs3QE4IqinC5ppwE9BnNUM7uT6afvLVAOh57dO65W5iP319dvzgrKmvDuXI0oMYgAnhiptEA9BAO3Ep1TRPSfSB3qXz8e1AF1G4/E1TnHhx4VWKnWFtHBpRrbmWTu5qp4vhNGX2/NXjJLh0JQm8eEgPLE2gPJFVENTfZM5GXxgKjIgp8fwzyHLzY0jtcL2Wr81Pb8XzwYA5SzRH4BBDkiq35oFUJADXfs14QHJ6oBCji5ZUOYoeSAjo1R9bUL6tB0Z5Yd2RzICpm+K4iTdD8gh+cUh5AgIN2axj3TKL4ZHmWRPpZ+OU0jzkNq4ejnc3+mV90sg7wEGeKRaigibuGiPZpWbs6WsmpDMndzmHR78HAXOknphaBydIEJlubG4EUciKgjUxe3Y3oCtEC5NoC6wFxAV6ii5QbxRH4RAtADwkKE474Ru2iOkQIxT46/EUsUZp4OzU8N9s03xQBfP2W5T23V9z06BdLpC6HlThv6+GvXJoJq4L1qarhTxztm2IWHiLvAPEQB6woQAdSClYo+CArc2ClyPRWPmxYOSNRh6E80Zk9nCEil0WH1wnIqDGix2HYV0GUVUkbLBRklR+lt9CjcNHc568ByJqXY9KbGA53HLaz2+PeR+IpsHrOHKYMCCLdrlTvychdDyZop5bF2/CW15ja1GVYCA4NrG+HFJ0cKZhh7Uu5YhlNQuUUnhNCj07OKh44D7dd+9CSELOblbGQ0iZIY+GwqLwxKtRQGjfLvDkD27OhdzeyFADjQoB8J00ABZgo2Irsw1LnQWXTw0J8eij0C3CICJsRD470IbkQSjqwSGCqKE4UHCCAJIgY5JKSTHiPChKGcMHKNPF6DmezNeXQ70OJmdJYth+U4AujKpQupEIknPDQHAyobuZlGJEmNomNtj7zoJ7Yj3MV7t5NbXc05pOiRFyOYFNzOBXJdK5eDPRopN/wKkiJIAX4ycDu8GyUDpGm63daGniryERTXSObliAwghhI7y6yGOpflFPLvjbINxrzYIRdkgOr1G5HqwTykRxIgim6k6CehinJ5Sjw8EgWR2xqS46EfwYPFqzvT0FKXvdWjwwQ2srG8r6pFTVfylMqISMpE+kVA9wUQzYBHxyPVrmZz94OUp7yD83dXddMG5uRp2SPfn7nUGMdFhWgWHYrkXN05KvKTgTqectQM54Oa6mvKeJ5jIVVEhVnjuQo9hpXkgFkgLrAzy78VnaRtPd6xjIHwRyeikCop8+DFGdvl3KC6NNWPZ328mZlR+N1d/Gk9ZDtte9Y4npOi01xbwNohuEUCn0VCB5NjQkm4Vm8W8DU3zuaBDiGgdC6KUTZ57OdUkPOwUGZmRPRAsHSKWQ+pbDwUGu57V9kAfDAU+REFKOik8eXR22fREuGhw9SodEU4TVKL3Kpq+Q7+hdQesSQADnQpHsgFoLYgfDko7PZpfZBJCOWgDtMV9d4xp6iwMugkyeqKOZ5p6tSmjrgJcQVgZOxyhI7Nohd4OcAToFkBjJhCmienwIAuXo1elsHThUKDk8cJZ2OKR0XMRK+FjIs7Rh0inCY0EDqDyBnfJS0QWEUPMQYRZE1ikgWgPXddE2RttsS65O+hdMXTBeKJ4gjppyU6ODHg3aM0ye6JaCYCtHq5gmoChcRYmcMqaoVXNn6YmJXLXKo4CcYLZJgo2pTNdfDs21zCjkdWKAp1EBdS/GAzbPF2n2RNM6UX6wUUNGJ0xD4ek+bO2EUKgL0QURKPGpnY2wGRtXSaqnn8+JbBmRABcPxULlnuwfLJc4elhwyumKyc3VwmjdHNKydcdsUQgEmAsOV52EjdXSutMHXzgkYBlWGEgwhkH2tzSNiU9GU6vbcAfRPn1NQlkqJpIwSDtvmtjzCY658UuEZrcJxxmMYBvNl1S3sODDw85JjjHtOO5YTwWAjd56C4L7IGgR1gAqcsALGnex4cB4sc+HItTnU4LjI48HClt+TRByqoqiyMDJXEtgHHPilIZIqiZYMQfWCpuzwyHO+sIOkvGi5wHTHcYqBiCgJ5uUCdMeDiplCROhibY5hZysmng3DopFMh4TmqEjMjFenWU6VblEeuSimyPfpHcDdcnZmhSyTjnOODNw+E6uUmZ4yvoRHZRySD0MRMMA9Er7QlQHUhJIcW8y0kiL4htBPn44o+bDpl82D55zXzUyXhmjl+5JbqHnVs9PxMblwD8dz2bJk5d1DdR9QXUlcH45ZigHuA9wBKgoL3ABLnCovpEyDHA65MDpzKwRRUDCuvCdkfWYKEM2KvuKZQFDci+ncofEcoFyxRCqbxB4WB+EFXhh4I4IApkEUZkZktqQTqSmTMlG4VSmWRltcOGgNdrXr0m+geOBtqDZIicVSm8ciIoFiKgVGQkg0wB60aUV4QP88Di5PC9BcKEpj9yLop4YiPEhPtSiQQAPwiI/hARPP0y8vVviMFCXyhjfBMcBhl8qWkgmTTvxsbQND7d5OBX0wEA2CICfCISAo5EBQ0yCRyouOh4fGeRzHKJ5ugAvmFuS3Hb15uZZKjc1aHkSHw1pPb5S+zeaHzLdrBmRE+RUydqC8BvAQ5gAcyfTF4w304HMn11dNPGTxl51POQQwFWGZANYdZXs6qclFwFRXIZTAcZ0IHiawJVzjdzLGyCjzAEXnYTG7LPhz20eU1J8X307YOmEXhiHxFPokNTWFCe3koeg1buHJAROCIBpENoHrFI9sRY5nZYT0mSUD5N3h1NPpC+Qe6swfBLJoaBdjovnNXYignzbWjaZlmZtbbazY08iwDyMQcECA+RCCqF874YTTuN5zaxzd3yNQuboFI6PJiY4CgVgBsRQUPRggnMR78vnzR27MB5dobMNIUmh4c3W8hBiY4IAUMJD6HfIyoByPs2/HDhz43fmIbdNjQ0C6H3YOeSektx8QNA8vIiF88E72V5fPvnmxbSq9dJzUpbQKj6IDubtDusy8TFUmR6cWTQ/H05+tIqi1lbmfAaNm1MdU9QTmdiJG7iodMlnBWHP46anrwhY9+Ts7NY09e/mLV5GOqfDlsIRIaERDEgAucFEeSCV2eTcqOQ8faSvfFVtEOmBYanq618iSiQ45JY5XKIm1zc0Gi6dmYNGFqiuxVDwc0BAzEiIA6Hny50280TAIkU4i/YgfCAiJ0RHywTci9c0l81KOI37MvogrUQEeZT2aPt0+GRhVqIivXMaATCG5iHzI9FuLnXotA6VNTYpAPpAEnCUqH4EAADyREuwPljPg1B1y2B1klT37BBhgOFP2xUNEelI7ubJAffGGx16TgFUaPBw7J8LbOixwnfJuPkcJlk/K1fIWB1YiKPCKen0t9ii9KmSAC4kxzdy40Ig7MBxYCAO2stGQsgYPR+J9udHF7c23bKKHk8UIhZiBsYEB6kZhU8B8h7Bzrwudl4WolpPZgPwEPg5ZpVUZES+OiOOBBJ9+KbTPoCEVQHeCWIm5B12d3MxsbzcunrPSKTbo6NscbQxTg9bMmX0lUsyNTqn5RlNS/jv333k9ms0CDqbuEMmNKiOjFEWrTeYRzI4hroaOTumzG8bEBoRRVK5riXDbGS9oZZNwGHKo54WJEKMjmWCfrwsimvuDJh89vXkNDpD0ahxzC5HfugBVNZOi6FIv0WXCVesPwNOp3YRPxtLAjswcEOwF4wG2Oz10NBoBJLDCARmSLk0cCpIC6xRD6R5JUVFDg+qmezfjzunZlxQ0XOeDXRTs9AGftUjy9FfI99btoSMvFyK8PbE4ehXp4tSvEN+tdtTU51IEj0j5neeANw7bPqz4nBdQPsVUZARkUVNXsra+wFjrJy7sZ9mSSBrFPsLYZn5pujSC30pHstCCkCKAOHa0fJhtDAXPQ+fJHQTR57AzDyeM0M3BcihY/HuwgqakMyOmWK973PcBT/6qoAxIKsgqq01VVbJKVrFUGqvPXzHwpKx6fD8+bR+/McAAWkSdGhAF0Aoujm38mfdzCVoNoALoSCFURxRQAq4/MbioDZIuYkEsTKJUIn5xGiTQTw8wtXzr8Hv3maqB4YuHeDTRwo7e0w5mQht5g5l8MK0aX9n7R0h+6QqoPkgh7yR4NCuXTk5ulkMGVZGLcWyLC9UfbjNga1tosic3k/W0x6lJqDSpBoOMgQUTSV25nX5hVPXye6mJ3pwEL7EobSlTQdsvi69/Y6nOXHQsZWcqpFC6paFl4ReZ7nMEyBgTMJgYUr2tZDSyTa5MFzEpcYOMqC2lNqq2Q2i2LMUGwi2IZcys1omDMys2mmNjW2ybFlZp8oorFwIbxKDDV2F+pICThERBAREREVdloqEErdVpsNJSMQSoOkIzAdYTsYsdgEUOwKaA3vQvZE4aaFLt0Il3sHz4lS5Lu44ScnqEuD5o0FsgKjpYIYTpA6BRHhQUimHDjhyUUdsCnoQNwioHIQOSHHYhrLePEP155K0hT3eqXvTq2ObC/DIaK3U53OZZk8gzu01tO2phRJQVOtI910ooOuGGFwVD0yuMK/g8FbyZEg8UoitEc0il6OJe+pZbolgqEKStwTwCyG9CEBUQwx5Cpco9RRiQHEt0QQJDCJCwwkCbCbVWxMzWtrWjam1aZq0s0NrbGaYMzMJrGtLWrJoZYzGbbWGlazLNStjaPnKbKorI0NWQ5qNqnMoLmEcrVJzkiAixUjCEWKxjk9Nm2RtQWDBpuG9y+zpmY30zPzFRiMJAIrHhUECWoDjUjmJcMhDTJGtGsKxqkprIqtatxZlk1rMsymtrJbCK1NrbK1tpYamjRuvo8HSqdcMnKM+bt2wcTmkKukOMmg2XBDBBDAQBpQQafRxkSebxh4847f1aaE4VuVLlivrYUYz7TgWGBJIVhjDKpMnVDml1+NY/IURCVgFAwilgs+6KYSV2GFAFm2A7dqUAXZ200G4WKjN1ra5p14s4t1s8KYRlhCMgpw06UAWK1mipaPB1KquOOuRsha2UwVRIki1ihgtTZtHZ8MMLgA5xGNBKO9P6u4YbbXSwWEgEo06zBo0omToSJhAVEVGd0GwUkARfhRR8Ps82cLk0EO3HHppd9C93IfWAWG62UzAY5JKY6Nh4yQJLteJ2nLpbbDWGlUbTVrGstbTSzWpstFphtpNaZaa1Va2llmNaCGqMbTTNrWNNLGLWlbTMtWjWmGwzTUxms1trTIK1lmWpfEgrDRVXGUIaY2FyucVmJbhZqZZEgERgSBAJAJAOHPS7Uy9M3XHbxje1QhmqqhsjNJlHXy8ejtLm6GxmZkc+t2zEURpUhful0s04VAA8wF4UAg5A0QA4QvGLUCiCdGkS4ABdQDeOkGocODd7OfljQnA0WQniOxBwQVb7tSAgEUdvOOub284bCCwLUuZOrLa3wzDH9HZoZ1im3OcODnrJwOhxn0FDTJZQHTDZwSgEU8wjMHIF7OMFHDht5n7SUWXmz8FElCCrZwKawtObQrRZ0+FOGq5QO9pvlpm+YMtG2PoDnFowtner6dDbtoTZKUlpR1OCCH5CIisERRTJ6JePn0XQlT72Rc3VOG5hPvFyxtvRuQbh1SNBCRFZBhIxm17BFa1KhrCquaq4xcrlwcxFWyOaUDNjVRXKyXGLmXMjjFZoW4aasxtaa1NZmWWGMNZma2ZYxo2bGxpmZY2ZnqIugcpwXo04y2N15CylztqO64VQH8LK6ESwwCmNrn0fglm94qInBEfSQX6arS7BkjGSQHqdMWkOe0RR4MUEpW2fOk/PH8m0UohXNFIXBxa5JC8iOlctxNIMECAwQKRAoL+hGdvJATbC8IH9IQFehAr41DQd2kHUO39uAiLYbDbjSUUsE+kltaKwayHegaPqXFTSfoaunuacM1r4+DR46c4GnIs10EBd9OMJckYR01Rug+MpJ4s6+L4EEwD4NETt3YzzpQZbAZo3BoRUdMAjRKaMMkkiCykUtFKtotl2bzjOzm8dtMkDDSmvMaxpVVJB6b4FN9h1CbHadztGwgYISDLLaNbFa1mNqw000Za1bTM1rNjVaNjamNaylsZrWszKaMtMNlBZq1sma1UVmm2tZrabX4kFXGqoODHGqKjlolXGqXGVccrNmYyEs1ZlqMMkwJhWgvOeOFapvoaUasUrhSw1VRh2QbLZZjWetBJZlc0IMycXLG2w2MbasxpjG22qBFkiSJpxYdU00twQM4Q2Nk1bHJNpxKHjTkxS7aV1yT5PK7KUvSU9FyHTbWaNWrG2y9MekpZR2oHJjcuEaAQHRi7Txu7W+aJoYYi1lN1njex+i3jV/W/hpqwCjRaQs4hW5LKALC+la6iY6eQ2sogO8A3YGxrQG8NdXUtMizekqzEfgwBAeYhgYSXvZtKDSVeDS0KaKzRLaojg4vi8GFgL4kYqFwwGAqYSGCLliSLEF7UChBclCYObKKEK5gwZBwJpEhACTmVhPW2ogNCor8fWbAFXEcvDb48SBhujuGpQgH7lnyzZ02fLELCIIpFIKRTvGdfEx2+3hvdmjUu4XvwDipMIkQkbUm0NtoFvS6ul38nZ8o9HHSfK6ztPHoeY8GppiZa0YzZtNTNk2sswW02mrVY2Nmq0s2TbNgy2TGxplltNtW00w1Vmxsy1tWmszTZrNaZtNNWyommlLH1hK2nNSmakBuTkgONJOHFZlsya1MxiyCx4N6NODoHmodp1KlcX0naiXTnzgWq+TMsebTnHYyDo9a8c9gewgneKopQ3NkDEN6o6dPTuwPNfmTc+oBSQUDRgggQgnxijwQ9BHBg+eIFrTAG5xw1pgVQ2wBcZI+xgwMXPmZK6kpehzYLSqV4US6YLN9hIDU96V4nm5uDwJUKlB169dXwoTu56jX1u7+7VWZLw05TKJfJ5HlEDxFQUhEU5fOCrdFIsOjBNzY5bAgLv00XgdkFO7Bpp52ycz7QgAocvfXQ5PR8CRZSjD0dwU9YiIHpBA081uRAXP6QNX7R2TZn42D6QSnopPER6sgn42hrV7aPjL5+HGtH3UXlJ4OYHEDmZVLeTYxOPSJ2yKpSpObFbmgGZcCuk8AcbpXqYO3rHLPXZ4PPqXYNogAdxPLAzyDuxvBVK+6LwFrokiIl9mL8JTPaPpnPml7y0hOrFGjFbhADNCkkZgpMov6QykQLU1Co7xixaPx7sIogcXff3O1bIiD7IK/oQU9uhkmjCesW36sfQ5FAXDAnqgJLwlL2fhxRXfqPQylU6YhQGKjCkmUMrdw+DN5PUUYcXSYABL7JuuzA5gKAoWO2b9Y36wcbp3gZIeohfEvJxCo50pbV6UAh4dEETQi7R4iNIU+dl2sfKxz44Ogh8WeWo9GKQPXJO+TkzbAj60shxl2vaHNsmjQL7ZeWpYXc16Tb1H79VRFVETw6wN3WlQR1lJBMuGg3PrxQZngnAus0HxA99gdIiIAgcum98HoibkWkbDFB2giCdEBeQ3aXDH6cG2Rz8b9cZXOOfV34fKtm05JFQaYuRFA3CPy8ak3C8pyqUfGB1ddx4LHS948nBrSkSsC8LBCoV1r2S4aRNJZ0M4zj7Y8QhhoJ1oZ6GcvuZr+iKeV6xg1GtLkDBoGPje2EWUAPRiA7Y6lb0XtMDs5HYynNN1L1LlsObb1xJGG8OqwHHUtWdDfyUJfhKEhqbnvDhNfZWp+iW5bXsRQ+QQDmLY5o/CKPWcpU0IK6EBU+AQTf58Nn4Y4OZk2eO4nKpiCzuk9+pnoQ+JhxonmSotB6JB7TTK2qBQPU1XkPkh5rikANQJnMld0R44TUxVMF+gJWB1weVKY7wIn/5igrJMprNc7xsqBZcZPwD///////////////7A/bTthQ9mB24fXY0PuAADkBA0pgAAFANMG0ywCjUalWAopgIHTpwyYMqVsgwaJqFgUSs0bAdsJwLArs4shEgrpodBqpKAdsD32tJX2PR40bH3Xz3c3vg4AAAAAPT7evTx0WvTrtN2+ultuve3re93ve4xroOQAAy97ehq9tue8d7XvcdsAdAOFQopKgABCD3YKOoigAHoDexoFD0DQYeucA6w568tX2xQHbbaJSqAYtUV0DSVJFAa13M4jQyBQ0Dk63bdgACqUu3OcHbhUcLAoWkDANYCBdzuGrAKsdDcA5Xtjpa2zbYB014RUgBMQABABAyFPTDEaBMAGQJtNBQSSYCSSMgpQMmBMAjQGIwmjAAEwAQSSaCNJpkDRGiZNSe0p+kNJ+qep+iRpmSeNKbamjJNtFMT1ApKUEaEyaRGmkmgHqeUMmhoaZGjI9QD1AAABEkCBBGip5Eo/VP01PJTxTTNQAGQA00ADRoegRKEAAEUqnmiE8oaeoNAAMgDIGgGgGjaOdZskdaF1mk2bDI2mRwlpvRwGsoX9S4iBXxeRd59RkJyb0oYweNqOR4vG0/eW4eJkvhnWDwluRQVfvz/TZCd2Ye64T+56pEJ9t4ojG+QCdgF6AkDQF6atac0e9n43b+X5fn8qvHRxUfvZBxMkhCGYC21w8nevTFGgzN85adO+oid3wNpFdIHAetjBRSR5cdV/1s1pegytEghynsZo26Yyb/SOuu93jQcRzv9rVOZq4zy7582uyhB5nncLGDztxTdd9/GM8hv3XeNf9RSH1aj63TfOsbpgPz3IlLDCcbveOgsrDIy750QwPc+9JsTrdCdM14sKSUJ28BcgZwqJd8FcyTME5VrCPDRfWW8e+IxaiP3nZfySUtwru5iOaVufq8SHX+sSMZUb4Bmg382QI77YqqkrxklNurjJw6bPoV9/zX/BQH5j6enl81/9ej0lRr4tnL2jMe81ppnJCaBHDq0ynIXDPrn1D9bVBNiExkW07Ext51tZsYDUQBcZBFAIsnUYzFMRDUfjnsnLDCTiorqAF4n8AfQo0GiHo89sAYNu3ijwIXJloeoaFSBU6C08/u8Z7TAkc9pbE9RiOYkc5QYcqOIRynbkaieYqfMOdCc3Dq8zlHPbwuX+08hn2S2cnC8XixxEDgr8BvvWPKZz6GIwibJ6hOwJriS9g958y+Je5zbNfNnJYCyHKe82vJB1ihQ1FWUjN8SAyoVnwLAaSU7JtEZvlh0CdnriconSsOkSK05Dwfg/pwYwZ8r6jtiaAzwScTlOQ6D4FXIJ3T5Hpu6wWHOaDiMMh7RNk+Z6Tt85l+PoP+E9Ru/E/4/p+8Z/TEfY9naO4dxc/gIjuBLEpCLaIr0hlIJ6Bfze1NaeGAc2zTrnKv0/j5M/qv2XpwL2KnIF16cBladJMISRRj7C4AkDIQZIgqKdHIQ9g6LBfYHVfkJi/4qH7BAATwZyEhJpy7aB+p4D0ACWgEgpex4skqVseqbR5i4YO9xKhYNgsmiUQK7FHLgq57OsJcLwPbJ0WFKSBCBtgpXYSxCVdQpkJr9o02OyhtfEyiJvEKxpMwfggmVV+ZIieZVVUWRCcUCHNTa2m20cy5ltzU2To0cyDWAQgLWUgsiggHX1ocodjsmNkxlNGk12LmuxgVxBSmpmGhud69jpQTf4aaNj0hz3QoalDpwfTwSKJZiKMMkmWzD4vXEPUAyd7HYxfHMcDLKVAUNRU7wUvbUed6FOKCbaB3nZtCOLbb++5X04tUwiamcyyNWwQusx3h+MjFiCo8pH5PeTgNnh0tnF31tNyHRiZlpvdrKgq5wS6ChwxRIQtlVoYHeS42La9dGxdcbWDwtR1uLNnvmFKnECEoPXs7phj6aep+KSKKNH6WHBdtfc0ctVtTDTaEltJmaw2hG1sW0tv36CgaIaCFStaG0UEzVVZZUVspENoSraAOMuZbRW1VtJVIsaJDmVOLUkpOaHGtiA3GOGsTNEUG1JUtlrSiRbVSlmibEoq0xCzZEYmymxLZplsKomJVYVJYyDKUtStpNlLllIpcmVtVJWYlA42apHGFKsYlVtWtUSVuaRVqlNUDYm0zM1NmtbJaxFWVhpjWLWmWhGyjY2lGRpCraZrabVBsG1sDYzI2ssS2q2jMGwoNlbTZAxFqCCj6gqK7LC3QYbIo2gpIJenFNm3AKK0PMzBW6RVVH2J9K0X2yS87rchEbIL6tC72qRGqFaqhEmmEpE2FKbU2NjYzG1s2yyqzNpMzaZpTVjZVRTzWEly1Sm0U2FtVUstU7GqqqeTVSj59TlTtonLKKuliD40QR11pg801cdvLm6Ai4Ye3sLhtUyx1AOXZ374wZw5L3QsmwuFoMgbA0qAsMKq4ImLKhcggKTF3xegGalyGIBSpFzjMczW9T1ulCbCYUAXBYwBS6qyoo0gAum6ZlOQms7jm9QIZIjnnVuLhMmWMqYwaCwWfdS7YMhAYk09PHO/B2kWRuOGpvGRouu8PxACS4yRTpeh0rYHDMkcyzOC5xxxrToNiOi1ORQF2SAmzbDG8DN6HLEUxcTF2+tNJZhw0GJ1rnAuloJDkWr4cBOip4tVrgUw0o2KLxLscb4N4OFvhpgM1nJrBrVBqE1VyxoLJdDASkS8RRYxBhFSLai2mbNtNtYI2VWmKVWmqbamrYWqyorYpmlsljDGCq2tbGS1qlK2zBmFWypsqTYS1qGZbRWYm1NViU2W1TahZiWaGxmWytpDMKWGVsptUtpVsW1Gy1qobG2arZTNstamtVjLYpLZsG1YIskVpCsNmyhVmJZqrGrWTaNNlqaxm1ZTajZWyhrRmbGxMY2BK2TGUQzJtW0QNmsmZtGjEBparYa232W1KK3GnJGmpsZi2LNCLmpRMY2Iq1q5pTU1KoucnKpWmiAYylNMW1LWaMm1FUy5la1KNpZNJtbLLMY2La2E2VbWDWtMxskNjZrQzRjKbVhosBk9GDYLreMYwzvFMF0NwzmyTD19Hk7vvdzyxEw1IMbTetIm5rlUVzEaucqko40hWWo5akqsWVRMmqqDWSUnMBS5YlEcwpRtCq5zgqJwwqK2pQOZSJacU2NbWmtNprKJbUtatVmpoLUai2pLVlsLWrailq2jLGNmaZmY+a3vQ9qPStcKCJjrvdCkVHqV61kEmO/OnRIuQja8qzVJWyuDjhZYtms206Y63XrOnMbFq1mNrt0EFveyqBekKLUsFooSRCNqL3oLRpiQCgKuQCF7BpKBv63wF8kioTdMiALSIC2cLi+tm3Ohxt785AUW+5YjQhmsg7dCF0DWSg5CIALy5MC2KN1oq5KBhHFG8LEIaGASQuXwlpxI10lY2q3HSIkKFTyJ20546nh18dZ6GPGRF2ehqqp4HXDqYzYNV9CcFGPXOCdiFje46WgnDV0c53DXSRVpg6cLLd0kdkMBDpBxMRVTCXejc21wcbKqjIbgbuHVgMNCCrQlm+XfgHJs7FgomsFlNn2iFyqYF0YhKgN0rYd4cSHzhSaQwOhp1DtaUVsjZLZrS0tjYZGaxpbLaNNGYYy0YaywaG1a1sbKNaa2jGmNmEVls1pbJFa2aUzKlGy2lpobFZoLGpbatbWGWs1vgSU5aOYqJOWSqGsUlrI2qilrKCcHNVmklbIKy0JkwkMI+pO5AtR9xyzWsYogg8IgQwY2phNma22M2M01pm2ZlVTTTMzLDNYjQSywZW2pmVHk9Tp0XhnS6VzMlFMOopvERRsLpByBW+5dqmGGrqXarLyXRBXAqutpto7XdlmquFECPYjTag3RgKo5dmN6QK1iixkKokJE2pEBaEhgYZI4QtmBa2WGbJcYhRYgUXSXZkxEyEOMX6VQ3ARSubDKXAoL4hAktYMRKCX31ZKuoKurt8hrJL5HWbJj3x0Q6i7vKIBLpnp4Oh09X6hAhChQ/KjK1HutsKiBnBkrQDN9je9PO+eZev1TXPuFIgjcwVxFFkEhuzOTiyEaHTu34bw3sCOQSL4GELCEnKwpIGDnuuuFCnrHCuBcmNgC184SxwFwwFi6gDACBBY2rYRWKZSraVM01lJW1jFSsZrNaNtNmzKxTahjVtq1pmjLSzVqKWrYbZs21NlZrJmYZYzIpZlszbJtArGVbBmszMjZNNFVbJDGzVNtbTSmYTGhU3Ors69fL0tZMGNGXhu7GKdjBRdhciMZJGIwjBWbba2WymtTWVUsy2iWZVRrTGUTZpsam1aysmbDK1mGZTadDdtdMzUrFAALabfJq5k3sm/ZogieiIop+DS8WvZ68vLwem2bG1jbYlVtmtNjGbbu2Qj6MdC626+Tt3X4GPToBCIHMWh6ROlC2aMFwhxACTdI+QACVoEydPypRIJVNCN5F6CuVTAY6K0gEJCpLaVIwK0J225BVHL04FlSUisUr6GEjo4GdZcChLvYRCZdY+gzoorzsyB6M3zSbvlMIIK8HsLRvwoMRibxNq0UpSCRgzmL0pQSZl+IgRMjzkpAklIeFOFkG9k0mT5vZQa9hSpclkitrLazbWtZY0NiKsybIKysZoUta1tNbWs0asxSWazFjTNay1lGy2zVsSqzW2abTRmKaEmwFZNLWWxrRStttaNqzUzbbVmmNWIBZGSLGSSJBkt2Ymd2m9EMSVNTMq6R9OerSqW0zVaxsLSStNNFqarDWWmLW2Wi2ZESQhBGIMQSHjtMXbl7a5vSGB5t1Aro73p0Po9e4u5WxQszKzY2ZttW1FLxwXZuj8McHXBxgBIWjHrXJ6d7nPEhcWjgFc4YQ6Uh5b7KrUDWSotgxF2EHHgiVzcMEuIMMEZLheIoLWYSCASYZhJCSc1QEAxJI4uEUWpymiZzFRiEySECxuBeLTeIALQH0qtEVAXFgKB5MhQIq2DYBN7ZF4uUYajnmgaKOTDnGEJ+800RiZONay1qgSM0Edm1qmeBXamTrpus8cQnvM8sCgUBIWYHgUUwyQrYZZrTNNMpmYtkKszaxbK2GttpEsWTTW1WsptFjFtKZozW01WU1TVZmVtjYbNoFY2LJla2W0sWqFbUUtoSRISIEIEgwkYFzYtZM4pAy41q6hRY9sGnJya3ikJFCIySCEkiWLIqsYpkbZbZhmICyMOXzfmGsBkDjDgSyF4qiTFkIXQnTWbKlWSPLKXGbWMUxTHZ1O3Qe2ge25lHy0Xz6A0BqL0doCU3PPYpQQehj2FHCQlMym0DaJNyJzTz+g518WhOFDIXsSYmOokoYTUUis4WwjAsS9UXDQRbrpciij2SNt6p3wrwm5YKveyPo0HDerlgVRwrAnLgNFgwKBE+Oe4yEGAOLjHWDRuA24CwY1PSkCGEeYG4xVvqlWo46EJCcPS5zOB7DlkQOY9pOdXUkU4Mu1Vcu8cPY1BxjSvMUIi/XVy+8oIBI8TYqUUvNVmwkhS0MhAhawagQwoYoQyM8zpd1NugqXkaXQ8PM8zzO3XVjWzMGZU22mtNlWNrYw1hMmpsUVppUsbbNZprGLM1IrWmZsZTbVrIlbRZrYYWxs21abaabebi6dunn1raCG21ywKCOiAYMG2S7RyJSLTFtjQK0xtssZDTUFbFtbKNZVmWZsmDGWqss1sZJmGoqteedZ25L06N03DLsvHDsXSKCrBUVgYlSQZJJDdFBYFxVRpkoRIZwCo7bb2dfFOBO8BaMXkSTTEJDzoQt5eKBJIFmehIqWQLtCJogBVK6LZtzkvvECAEgIBjXONIiOgwUuCCp0bBEmuIQ6IBrALIB0ACWwDwoywqotYXeJ8+66RLCvvo0cO6Vl8O7VxGHPA+JHxdu4Bxg1kyTB2lC6uqUqNIBIfa1WtbMMm5V6su1zuS1zrkRRbNCHiKPUDal1wOmkjYfTKnjQ7YXzoffjy9j39z6e3a0NkbNqGxjMbVahsmxtbUWxKWTTTbEtatWjG1jTaw2qFbBjJmNila0a1MGWNbCKxpmsyqzWNNptRFCSKEIjAhGHgzbkgYMKlNtSOOjsz6J7lxHVm1jbSwzNmybGhmMNakqymZrUbLWZqCsw01q1jS01bUKMNmjtuFBxAQU2s8BMptICUHwbUobTkRBdpVqCjLcCNuiiwNmgYKS4OcY8ykzd3hxdNhtmzYRgXjsjlVBpVEYhUot2QznRAPXoWLglKzfbgFpYdA4kvSppcQaUHgXaCbU+cHSAxMhJIT1l+OYecBLBgld8peeR3NeOvEoyuztWjs/KSXOcV4tnvQxgHQymHTT0dBKQyqqgEEImwSGdGMWnmxEFukkIWkEzscV78LiYCFS4rTSoKEkVrgjTFKXdWKnjSJtBRFiudBaKKjBub74NY0RelebrnV4OzzOxw7bWGVtaWyqLMtbMzTMIrM2szMtmLaZsTFtpmywyxptlqpmsoq021mltNsbWm2bZWrNNa1WmzQ1tmFK1sM2NMxZ+EnGuGM1WOMaZlFWtGWtWzZmttMtiVSygq1a6UM7WOhkZHSlTs+SfaWrQ7lpe9FXqsUF57kOpmpTyGxJAiJIsCfRjUbRJOa2qmmpQcMctUK1i5pVWtUS5pXJZK5hc4xZTNmLQ1pZajWjLWWq1ZnwYql9M9LrOb2nW/gnGVLLlokJCMgoK3JUAkGDGJBQFgk9sVnQQA1nzHDj1YsQG1FAkSq0kFAghjGfCrWIrEcWfAQIQ5QacXlfJC9aehFngZZIAyC9HJtgLCDq7s84e/FjJa3074WjodD0SEv6j0vKPlJqmSklnhkoKAqTjpcabib6YSrpOi7OyAaBQOCQkrSszCNb2TI73imYDFfVZfeDYkSCRNOSndUuDoSSFInKL31YCrpeWB4xub51BIFG9OAgmpIEjWaqlrFTDWsU0srWa1FVrTFrVtaZWxay1WW1tKxMMTLKqWGtNUK1mJVZlMhLWlmMWGtmm0M1nwpSnIFaUi5ZVVarkFWTRmiK0RYMjtiit3Y4ONzIIbqirEGIgSmK8z0dXaQrp8PDvKeaTJ3Nc00445G9TBActrFsBtntfVg11HSlRwNoLwpA2KpEBdo7uTZGyYrG1i5gCGsvUH3ncioK7Bc3eNcB5unQaDoCsfBZQPPz258Dflrs86th4oBCSlBSOe6aIDl+ng6cJnphz5MhS3kqYsm4gEhzbHCF4u8csEh5GARKZD6nWq047jltxyoBTOc7m+SjAXDbIaFQVPYBERiIPBEhlsKqPUTU42+ae8wue89C7j3u9vTgUre7wKR7Ju4phnqYg7GmhKchg+AYlEnO1hPoRrHNnuxvzeWyR4CCI/QiICZiNoqIbSERqkKEOg5Pbw5wR8BRpV5igi5TeHt5Cbnc2A1zHwtjJ9KKZuw6cFCdzjo4RFvAFU70nd7UjYolN+BNi/HLEi+zFbKdkfsqYJA3LyOw82KmglAW0Is8ifjuxUbBdSrAIR3IAgUiVcWiVI+lDzt2bozaKckTfB2E1RcvdUBdG1GMNZKDIkOg5CEEXiig8ERzEkUdt6EHZiKgbIeiGTGxQAqRYEUkNCzK41vN5qVO96a/ISLRyz+9FdOUdL6cVCoVct8HMyyoN+LRDk0LNekOyjsTIS5NYkIY3XdF1HMHammwHcBbWPgkeszMyEz4MwolVMHLYAocGHTUC+IvERW0FT4QVENIFwPGVXk74NwrVAeRN8AeDpHHQUoKnpiA/JhQS5iXGupydRHR4npeAdmxVu5dK3mJWnq+xeWUe9i8sq6uOJMy2EsCOjFoxQoRWkBXcGKOmdFHE+eZBoasBqPDR0lnVxC1kLGAd1DRQjdB+RIUrq4J2cPRUXtA60cBuHYA6L7iSzWtrH2zcEdymXN4jYGBZiiZQVKQEkGREDmIIucR1OKZgYFa062Z4xBsJAEBxCHGuAcmMTo3DSX/cry2M8CCIF9xe/KV2u1I9BSJNKBV5CemobJ84+SCr80Rmo9MfZt362loyD6AH07aHbl8TmNuTAOAOKgoRgKAeRET2IcwC7Ep889QsjrdSSkbyBsdCc1WlCtnm73Vp1j8vsbu5qVE6pRdnNMICARCBxOiIHUA6AjdHoDCFEcYERTlNHmAYsVemI7sVqa0BcSIpkxcQiUJ0VDUOoUQCjo4YGQpYBdOtz3uXuvv6okKTmFew8gk94NTOJtoRsUPLs76AHUEixI57kUsJwXazHYe8UzHxqsGYGzfA5hbJK0pjS0G0Q5j9zoBYiHbB4gl5Oke3g6rbMbFwxO6rQNBjS3Gee5Y9asDLz2t7Ok5E9tGgwyqKC+mjME8RRAdmJ7F86dahY5WiIq7Q1MwdUKmR2b+8GbeHHWaV655Inhfj1cYQM6TfMszW4M3ynm9BMBRk82ayX8JEU1ERKNFJ7m/FWMSHXFNgrNOC21A4InVxLsYY4tBOLynBeHHPO90Ph9xrj60dbJvMTqnb7ih8BtXrubQbtuzB+kwzDI7HrakIO/WyaGeXn2lZAMJWAXiTVlHYoZ3vp8SwfX718B0LszYR4CIB7BAuigiQmsS2LQ9U2NuwO/DnUS0reU385ftVbwc8iiKHsBFCkeSCmMA9BgddlIJqe9mty3heltG7EHvVjIjVeCZuhejeDjPobp2Nzib6A03c8tXa4PiYvW0R1xHwx6XpxKfXVF1cFLtansoceEqz7LMYa27ctixagFD0HXbJLejYNm2r4PXF/AmR/Mcjkqw8O7Y4oZbfDy+7NKb++Bc3E2vDMh2YofY+kx4Y8YFkvx4vQQ7gAaEoRA8KVurnprDnZ+XDmLtmykNKWmO5gHE1JhZ0w8MNI1nxHuCAjbii/hgOReF7QxEhbQBFeoJf0dGxj6bwpfhS3elSkTcim8cLzdNg3KoM6EpjD6gkWlhIoDBI01JxidYHfhqVBWhdrP3OEkGokfHlMmHdLANV8t4Quajx5ImhywTUwVUHVBjCJ1OwU6zP7uAWP0IgLfRD6YeGsC7rQvhHbtq1HzA0V0IezT1rlU9dAnzR3eiWUKdAZR2A+qMBw+vGq17TEHChmJTmHrW8MTIQioYpCUYdwgIClEdIiK5wQFuuP5By4576gC924RYK8bH7pzgx+FRPIhpDaxFMwVbYRHe5r0oaT5WnYcehPRg/ggRuLeXYCx+1MhTQsdBgoWnq70juEL0SEN7Dk0HnljqknKBG+MqlkCLFyBDhp7moo8FZM7wUBVGU3CJsgq7sAAMLAMcETaJQ1jA8NKd51KqNBj5JkoDspMhNeAZlq9lK+r4HufNl/5KlvDKiF/asT/MG05OGr+NfwliEkN4sDJ3a+ywbNvDQYoZGRTxEJgrdsJSJ6wDJGWsR+iDSG44iiSb0TOlO1iivBtbIiaI68UIyIrs0+ZjBFGYAjk8zJc9ExN8oi5/SvpUVHBqE8yyFjyk8H7UoRQ/UfzNFL5OxZsxtoG4fiXG9AHLAx36Y5Jd70qyEfAoRCmnbiS/6hIh8UFLzcedgMY4II5sKAC7cbwTDRGZtkTSmL/Yg27BJgUVzVZrKgo/UYZh7t2WwIICFSQHkSAHJB+mT+sWuf4hiQwmDmVRPcKAHTMIUiHntMbdk8sQABYv8mn7oNRDX9imICo62DEnIR7MlvBai4EXTk5qgXdxERxFMajEFBx2iGlVqIKh2seL/EhG/SF2TRh6v7ZpkI4RFEb7oHLNOqCNIHE/lE7RNcrBz+QlD+P+ASj1n+ipqZFB0A/kaJ/rML8fyKpUTEP9/7qGKbssx5a84H9uTFXRGGPhSVz63lxRrvUHT6EQF+1BeIBAyBTzcB2cr/IUByXT9sX9TDLx8WRQRhk0Sx/zElQcVfP8p8T4CCq/c/jKAkKIBY88ftNt7PEMT7VRCe3NC3n8gez/GW1Hng7WUU/+r6cFVfsUpavL1cV+jK/VLL8wAWGZtRTuG4kHMGd5LoVD80sAgzXP3S5cZvzU09W7M/Osn4ZzHS9rqQEsE8QwBMOxtZHu+dTMQ3li2UQabqJCA1K5Yzf9iobwIpBBZkoBQRVLtfEEjOCgLbknkQczBQQeOZUVcl+h+P3YIoGd6kSbIf2qDkXM8U1ApwSk0gJpDVEBM2jswo+3efvKD9K21fubt/UY9ZPXjyNWfeqS9PjoonNFNoXtpzVcwqlEAQJgrBB4ICsYGxNK5JDVGTwETd/D4CgSzDYI3j+BW8trNEZJXVHqZqpDGXjVkc/E4+Q20b3gzZkLo0PfMZP3nWiG5bIj/rfGZ1FcX+znGiXZk5bv1pGI860ZBdB1t2ewqY9G8J8h6j1VRJbWw1y++cWNLA2c7K5d0+7cY0lUzvjPMP3155GN54S5ZPN88cy8vNjs5ORzr0zYX5BLHa4+ed7OsRrcBGgJVf4GFBzV7mkf0WdGRmJ+L8TkdjDqWdbbHMr85TIE5krrVlIq+gk5bZKX0s+2qLqI98HhqEl9dI22BjUtoZqWhq2JQe7VAbVWmi1ktllgIfNGjM2oqtmmbMyZti1NqaWWma1ltG0xNtWFG0yZqlVT4YiHuyMxURsUSvEqrppKuFVVdCVPbVVcEoq6cT5NKpdEVoxCGyUpbUUlmCzGtbSKtqYxszVmNaqbLslKy5lRFx9uBxMRQ2qkD3ZC5Yqe+qW1Bs2Ch4NFSNYBpYza01pbUatGxq21s2Y1sWaLGWay0yMWmNNbNqJWxtNTMtmNtjGWxtMMZkbRstqzNM1lszNZm2yttTZRVhprW21MYzMsZtazRixmrayMYsIlelpVZprKgeTSOWhbFNo2qB7YJe2rpramVFaRmEbRJxhUq8skOMQ2FmDaNamqj8WqOTSFxPdie2roWap1lGspsqqsaGtjQtqNqs2MjGJtUqtqpVtVbNoNapSTtiTvql6NBXNQnGPTIfVidLKnjVPlp86n8bE+mk7movPVD0d+U59eDs1J30HwyU2vsyi64jmq8si/gZ40r2qFaqskxVV4zmUB8iHzlsjaT65XziV0xFsQ6w9Zql6ZUqe4/eX/AGgcBZ2KUFXgrvWDPRif9IFxsUUnzXtJzERTvtArJR2so2pX7bX5mgV0zaLqFVvvcty7o01xCDGxgz64EmI4jtEhG+RGKjlsgq21JrLdNGlNSRKz8PsNrG21HALy6s2XF11C42k+Z/mt5N53lTyzy7l/VH2YJR+WluxIHw8FIGIvLB0CAt+Zo14d6nMsSceVfbbWca0lIcx0N9nffefPvxee9e4uqX7HQ9m92PDC7FRHKZH39sz9wnRth0TVzJC8xxr3jn1jrxWuxjWbzbWgaufm9gziCdkIQhv6QtUtnnQ2LPBUDc64085PbyQ7Y9MZQreZxHI99Tta7aKdMCneyV13cpkXbNYpsO7U5aOTIld9J00zK26FuQagq4YoivyxRtEEVtmRRIAVyItkbUNirahshtBtGy2q2IdtX0NHNmhtVrEfZnOzn7SKelg5I92pRcxKEiHX+cTjB964QANrlf1ofzxD/V+/R0hjQf2RKuP7x9t5FtFwgPX5UsESQf2vyAQX6qFkC7Bt0Vm9Ovf9+39385WCDuHyilDvdQDmGcONEFr4iBEYvamYyAcF3GgMGtp0EpKlxEWIfpifdF/qRxP1RQQfv1XUE9iD5IhogdLByZKb3o5n3gqkS0DrWMZCq2+cj5N/Jk7Z6WnevHJEFr4Cq+5lB20FKNj3797paLgnb3rQ6/IKuMIG25W+YsFRX+3E/R/BQucmjsHdMSVTtEV9CkuJ1ZOav35vuSpQN1C+i6QwgdQP607PtPo0aB/GQxhEOaGSMSKoOrpufLg1T8fahyETmYqqf4QgA/ry3W3PYLPUTxgMWqIYn6BH70gCAYDkgt16iKgHAQRiCEpE95JODyyHUAqP6aDT0VA/XKhEIlYfHiovJsmRfYl2IYpkYDLlURHfx81wmKmEhT29JJihMboZFAF/SftXCekO2AIL1HVhgqosylf2q4gXOp1AvCxFgxyhyIV14K4Y4YdKykPwwKpDJ53a72UoO740AP4UIH5E0ggGYNM6vyv0ypb9bSjoRMQI1Z8mREQVuyoOFURn1g+GfBLn+z0fbc+iw11SqC7owLIO6b+0IkeW8xKz4KyOqBuMIiGGdjdyQVFckIJ6S0X/5QP1FUBV/pdtCoEPsgk/asbfaP6gzd28lHwJ+9T3+iUh7x/BCHQV51SHNmJshh0CQQA75zKERG3BZRIqi6xU2PVdhPt89Xs5/IH94vROIn3Ftv65xgHL9SlHMf09fh/5cfKQ+tm1P3VvcdR/P6XHA042OmHBhTSR6SNx8rIblu0RdiAgJ/yCjcgilJf9Ff/A+/KtxI4bb0FogdB89fu982N3BD/3+vgLI9xAUdM8i7EoHYql8EZiNA2tQWstTa6XLqEKaFkGSooPHlPvBlBmwzsREoKNPVEyk3jDNOW2S1YXvwIzHWw8BlJ0kBBDIA7owIqmBiJi55y8Poy4Qkvw0PGeFhfwWT40+GdbXlp+b9iCunWR+4GFGDtWgC21fPnQfNHTv6sge0DygIPSqo6n6rGpz+BNgL4IZENSt9eTN2CNq+OsJGWIAL5p95W4pSAQrnRw4oiQC6AywbMEfyJzeUiuNdW0Ng2iELbT1rxkdlUcmvhtCmHR8/X/MacHYuVD88kr6Q+R7U9+X+y2E7E4W4fQNbh0Y4decv4/4BzhJf80Ats6FfiKgjYxH6ApyigtCAJ8gH6RPrVjxC/zTMWFMeJwsRWWsA97G8INMTGIAv3iJskFVRhFaWCXD4X1Col0GnTxKYS4fWdUNbymw8NjxU/5+7jK1+e3qlvtKo/TQSpelcEiiKbsBQ9UCT2iOgSru6ekoLpFNeWCe0D06BQSD4wVRL4I+kHOyW/SQMC74wGqCKA2QUMrAEzMDycARti35wxMcqoi/2YKAn7jKhD0vOTz8nY4XrYm1pN9xoXFBV86W2O+arnS2hYVuCkuS2gQxxoJjUwHtmjUKZzKZTg/9eDJaFcBheT1NhYCh9IKqSXoj1x95Ic2kQBYg2C8CIcUFfxAVE9R+L1GU2MBuIgLE7HaOdM+KmWNH+awKC6COa8dhDsxzwFu1BFwPiDMx7doGzISNZvJZsJP0YHMcvWvOPb9Y/zJshYNU/srKyfUpQUdhm1WEgAC5v70AeV0XYAYfwKDvbNPIRHW574Rl0ClxKoLTyPvA7Ks0wAh/qQBAoe23xI/+XePmGU1aq9kDaABTHDsQCu3cd5N033uO9IU/EugaDJacRM0aycpGJpJ0URtA3SGX1AkAKzfwLeaP4qAVQFFC2c+xv+9jUBGnjz1OAAUwKWBOJk7k4FVpKzW1OIywHaKTE0B9DLdDJMxF+ouXFfBnw0vlPiHspsvg4cBjDlRKhrgkM+hHNlmq+Zi2Ay5u7fCXOBEWjpRrMJrp0D0yGKOtwl872QSIFOKzqtLhEAW+W5sJHE9vQYj/c6BXSACuRx74RXAjEAWmuclEE8TARRJfVobs8lMTFNQOCrUrxsEFB2HAVCVmNxtYXDQW77dpCt9VEjC63xMhdajG23ortYXcN/WuxgCrpbbrx92IqcRroIOCC9yCCMUBQugqj0pLkaM9YCizRSs55ZsmWcLD0XD+VGHLshRRnuEdZ55Aln6/0NDPqk02pydvYZDxaMa9MVQY1AR5vZ2Wwl2aQdoMmOOjaxYEZepxm+bqGwFhgaykIGGIvu4DMJLSD+jaY3EeyiPWBf8iH64sjubI3fpBwdDUoJ+ynsbhD3EyHIyFFT9sgA8HhUcbUD+JEnLl5XGZIqjgcGmfy00LnoZWumSkABbCu4E5axZiAqnvlDtqfnZBfLD64XWgr3+vi+hleGuicFc4g9FI7TUNiipYZWnutmbFnP3MV0mHcLtoGzVtZlZcHdAOUUUcpTcMWS/kIYYTxXGusFEcDvsJOwZRPqiet8nzN3+Vb3Rtp/ZC442IDWx+WUvJhvMo/now27XVKs4YhC91C+DdMQZPCsfMeDTCsFUcM9/pE1mMt81pdRgIAuE12LMIKOBP814nNLAN1bx1jl2fJPvX+I64ZYBPUFeIA6mkQ9eyaT+FEQQlQ7wYaI0qWNJa4HMkKh2jVAr0CBJLWYj0ETEcSuEWct4PyCs7kbSHqoAVGgk6I8AR+mJixLQhUgAWwBSGHUAc+PPqSSSaFXHBIp7cUX1W5BLirAn3w+SzBOv+14db0D84dtFzdQlx4SdhiBYuC7O7BVQbsBQ2Kgvws225i+fCM90Lze2gC4WstWuaPqN8hDhY86vY8QiAetPs8UMyUsnyWAaopIWAPOPzGlxmKqP6iuggp+qChlpbW7Li2jT1tYLpQio+TmL2thMV7uTad6C7xsKguDYB2veqNtNcdfxr4HF/lICdJ2X0SqJ0HW/3P2odE+Jv1o/bxSXl0/Qa9BIxMZ6FY1iUAWYGL3x8hD8iz8hfFoYSg3sKtWjbP2EdtIk4RoBc/umNS5i1EAbawbDXiSSolLoMXYPgoKuzP7ykgzRGligImc3oetBE1W4TXkAqS3gicBdy4f2DAoV0kAPkN7j5jOk9w0w6jN1mGbWkvQQUAZHmCJgOpSkFaqfDzSM+ImiNeRNQkkgkbrMZZpCU9ttOwmeyMUkitDN/0GqhIQnuJ2nT0AkcAEp/gflR/fPRg/4OvHd1R3GyoC/QS/87g2COKKHaWo0RZtlOv3/udZkFfw/7fxfrf6VfUpXMewFLAD3kA5Uu/kIa6huenCRBG+klD3KWQWEGSKM2L4li9gNGnWKFKz924vIjTrTXdg+UurkM43VaP/G4U39YTybG4W9hLZCs7AAC0UgdOkwPz5UK4ib/GdChcb+sL7BJdjDMhkzMDMM0bM1G1bSbbRtSe/zw99/w8/4X8XtKA6S9QxJrOuESsoht1OZFRZIpEzX46nfQoPlGFciqI3y61wVQvCQFQH2/c/QS5rwd87W3XtAXMm4JJk0iKDhctyMJ8sWOAUSAALo8VwwBdu2e0k00hKYrkeA5C/gCisGrRfDDMB1z9yWX4gvV1yIgrb8I2RHHNsf+nq2tE1Oo78nlIYgySn41zDc0890jR8Je++uXI1PaZ+yV4vDIHkDDRtBASY1ER+dnX4vXsgorjnPxnPRg9595rQ6ns60hhkK/uruwTZMIY5usFUwUYXjRmtdlYRJui4Tsx1SIRFInQsVXbOMnSlyNBGJHqqIRRiSB+/KqouzyO6n2eE+yv3cbMEAX46h82CztQFo63Q/OBewBb6CcmnKQVRh2KYpW6JEf4ePuMdYgpjEggvXVIIpXSS2ApE0ieaWveEFXTSGqp5sbfP1RH28auXqXuq9UW0+yJqEuqFsFVBqxmEyIgL9jEVTTCIjDqmQ1yRcGHWSQArxNqAC9UyACLOrMhouCgLPVQyB+4i8XjbBZggEjp7sYijs7qRA4/1jC9HbLte//L05KeKB5ULvNcfRKE57pAjQ7PdIvma8BwJ9/Aa02ySp9U6gSAH0TlvaPkBBQVeH3GzMTbe7xJcDjlA3E308iJpKxsW+NFMCgxhIR7/5umwD6BoSO66If+YOxGIYC1cJAKBfqB0aVMLQ1BnCC0hkFwYJRiXSLQxcJFwe5XBM/TOWhgvqqLOXaA4w9Wk9IFbL4mjTVJRQ4NF0TtggD3YLCwoPpI+/RQoNeN5U0yAFhVEDGGbEHvPHJpa51852CNg6R3b6DnyM4wwLWtyMMSoGEd0wxN5JRlcYkRmICRsM/eInKIaJldwp9hAFBaM32m+xkFiOg6J5//RWt47BmI07JEej2ZLTLnoiHX78Ncz3SLeQjhRpo+JCSuSukKOvsxAoZiCgqXNzQaxSkgSASBPgIlEnPOchlJ8RQW0gop47Ir5gGj72pOjhaM959ix+0tgpshe823P8ZG4r4gGB0A8v0KCTBW/4YiWh/06yNCqoyohBBKA5f4zjQffSRnAmGWMIRRHwNnFoCI3kHKkx9SCUXLp0HuqNKaaCsABcYGP8YSyanQTEMVp/SaOHwPiWd61VCbmHiNuew6PoBwiHhBgzAxMXpBI4tSquh4A9vY6gc2wH/tDYFxiLh1AvlqGxKGk0huhvBMeGUJgj/NAlZ2NnXMYS/oPoY+APJqCg7p1QuRbndI+UGx8BAwoxszxjov8j8byhMyEI8AY9ASiHBMLpqwLkbgNLq8ec10g1UXaLggFqIFwYhOaxVAdomIq4cQS+UOfEc4VAFwLIiwspu5G2YPQGFg55w8oTLgWk2zXxCXV6OMAnxByg4ajBdJbxAIBPJEqqnTJ42b4hlMiIC6x5KjGXA0kC6bRQWaQ5Q8gUmdTH8g0h7gkQFGyoIHvDHS+f8s+TEGAIBu+NMI8L2b94ZO+5cDU6G/mut2VTDoKbH/xD/H4njTwpg+572q493/ksvXyWLI1cKSOHZuMfoevu7+kzvMWO2G+nzvb9nzLhxyuQ2m72mjH1i+F6cC9h20lDnIAy1hAThyeqghCDZFHgrT7Hj5iZtaHUUnjbqWE6ZGPA7NVN2VutcTw4LmbkYSk7ambvB/X0AyhAwav4nEYX5QZX74zwwcnzcYXidv4Ywmxubpse+7ZpAopDyNxi1a31S35a912m50sVWL53JL3uS1svp+jFNlIXMOfASMZtXs8gKg4aioiS+FqYvYkyX0Cn+v5b39f6zv6fzg+v8A5nIXj5OQT8H+OjyzmDaf1OBnx9c7r3djRZsXzVhk+uJwHsKrt4UU24REHeffK946oGODMnOweu/dq3cUFcEMdt2ueWLwblYa44k7k3LYXstAdt7yoC3E+eA7/b8v2r+km0YHizHeOL2EX16THuyZ8Ddy+IfSbMe1tRTOhw3I9pkk12RmnSNjkCxofFlbjkZg5yGGXPN/zat1wRcNpf/5rK4TFZRFW/iJJUzRA1DlGQfi5JgOtlE82mCxuPgelfSrDtYnoSWnTHrGLmWX4DAQef6ckcbjg5ImhizkUFINUDHMAIFahAJN/F0lEGBaDbVcxvS7Z7bFZfF2B7c6fWNay93tj/uIkaKKxjsiB6mvDMIgfhWAHz/rh7YgH4wZaef9cMb/dqcMBo2Hodmgll/Rizu4HsYV6ecD4WnG3OYCZzaHTHsYgP2Wj1se7l0Zku/h8rzvrxs/wbNZ972QMTZys3A76hFeW52Hz9Rf49+sN38PbucpC/5ia7INDaHegCCvIhx7P+enqXBp771bJIt3JnY5zeCsiQRHWhRAAsgFc9/zAeFxdVEBZ+2ZmRGaAVQFRHXMom0TuKGp2hBQR5IJwJ9KPtYDg1+WAw8NP1uGPYJ/pYvsB2Ah5A6/3MfOS/huz2VxnlQufZ5PZX+SVchgDzy5pL7LXDPeiyAfyR+QHkAzTG1mp/j9W6Br2JDRSqAs/wYtx+xc9Fonybm5IuakC19rgZHoans6XBSbnPIWvzZRKj6Go7BUEjzgWU7fsi3SQumDbLTXNJs2bhdKhFUpWQoCMi8+0CEschkIC/2gmur/Sh8Au3eCwOgPEH2lgBV9v0lufMdsB7F9BgemY/Gj6bFPawXgqieUiDOHeJ/AZSoA/4Ss5C/Yim9IXW/EF4Jg3iceY3y6YxQwznCXyCtSBzL18LsEC8FsARRv/r2nm7Pw/2+cYnMRBiPeRFywuxYgkvXvyUJmcP8AFCYbPvefOc5xz/l6T9eaJjbnOU0wM0DNgZzZ7ibyEmxaReJDrX3dOlD/rsZ0XcvXwHuHDB76gqWXH4GhwV4D5uLHbLmLKEeINUVNGIyhDjYitukpm1iN3mkZqBmNDYmHToH9fY/cnsdhK1vNmNBPxIw0GWv3iqRLiJIzG49O4gdHifCPU9SPFwf3QU8KQjP4RGlUvlGP+T3KsuT75SP3+b7cYYwQF065V+CzTd+Ix2nFiMZCfS/GIS4qAuZLqnEB6dtP8B4cN9M9Jrau/2AewjePFCjDv6lSPPPHAHL8ZM80NS1IiDnggXEwVTLVYq6GsWbKAUNjuHFLWFwMx5P1BPifKVKOgH2g8VxEBdIEDsPPR9Uq7ghG4zmum93QeLr+EHM6ryeP2A7CR6No9EYcF3cxlzxAzbhaqVkdHrBsp9M0cz9wY50dfweIGfio7BraPR++T/e12Dxnkx2+1E7/V7l7XBgHtAL8UVcRD6Z8Runb9t3V7e4Kis5IbEYeMFNYRFd27NHoGKAMDHKsSIoxfQPOVanKXZ33F3rhjhFjMxORRRlB5pi0KlSegznKyA92GI6eE71op2ZnL3zB3t9UtNOO0wpkz0hc18cxrPorontmqbKcGZxxcfyaqcP9dHRs5Nf4AHT6DWfQMMq2+DGIKuFuACrM35L+Xk+00wQNITPUpCqYwQBRHPAVK3n021yBXTIVclxGP+bW7NBxfcLu1Xl78MU/2MeQpfH64gxVlbPlre/X1w8U+e8qUfPHVk+uWuc7pgY2evWCGo6AgBreOXnuPcu05uBwcFZdN55Snf4onJjMBGbJfEuhsnrPbfMt9FFeEqZOy7B3S6/6W8J5mSN01Hnd6OWvxHAidJBXPD9sx/sa5qZOpIKZQUgKAl1N8N7tL+XI/T5j8f5L1dXaY+C1/Zv0D2UTEaxKClS9F/XK1VRqre+LOYLZDkcREx8JM2SxXROg9x3WjMDVMBTvp+DkJunCCnjc+rpz1nnMPeLc/vfEYXxE+pdBE/t80Q1P1wAKL8b5EZTqmEyh9z9ERzn2Pofp/RL/H6sRrnsOY590y7PS9rn/46jrHrOE7VQUbgd+OVI2DJr4yMib5hl7Qkrpiie1u3h23bYnQxua9+8aZeqddL8BG6wQQ34KCJZAN+ISTYX+drXkCf562luCYcDmPCDSmlwGZw2GYJJk4FkMl+RgYdssrwPYgxWHjipqNqtzK1SDNzKxUv9KvTe/nc25o/G53DtzcguMQ2f4cn+XRtHWN5nbw7gjecsgZUIMH3zcJdZ2sVFaBiFInCYF+uF2sbJL8/AXiR17Mb3hOcS0xLCEg8kDKegA8oux5J42tBxEvVu7COP4x6KQoMqCdUKBHBIyOyzRRI5secxOUnGCpiBsCRFpgkSDvEtoKW+vooUqat/z19JKF5D5SH0LAUtBS+CmwCmYERcAKdTn+6GAFMDMJw3KAUsVDozApoBTJqBOod+ezvep1534RTMFC0/9qEAWLh7V2MvMKnGCl+gFLtZhZTqQ1HBJ1kdQh1y2hs+NPLerbpjKix2L5ydf+ZCI/ZcyPlhFbYzwDAQZEdbP8TaoSH1NlUQ0wRbsFQAxBBLMOMX5kCklnkbUiASiQR0H/NahhvMxBW3U8B1cqdA+YDNI1tbdffda2d6plc/HS32GB+qhh9EHnm7nq8dbXk9MaXmi1icTO7AaXN1/wSxurS1arCLS8Hr58zQ/HYvVO8+L43vtaGbaKhfnZou2RMDFqNQISRnhA6jcWnXJgaMO8J6Zzv80U7TauY2IDWhFArYN+AoMkFUQ+YL+496XMfweivs+83Pr1cxQWOdKH2wP2cJJ7ta2Oj9Qw9vst8vnT+coa5/vLaey8Wh6+pTk0Ep4NI8QY+Oyh4uAx+fdLY97g6LTY3zQf0AjI8Wam/Kb6DaRm9MVEno/9ydNzz+S2MEFbSEL+vdSU/B65Zg0kU6a5lw5/T8cfnoS7s6/628XxziX6c1HDsifwSEoKdKGLRTyGwJpxyJegeB14iAbsE0kO7XPbbD0f4GIjrtDx/sTUGtdZYCXqZOrL490StEEegSdimSwDEDMsIKPwTEjwCP6iHcRPPgL5R8SXk4iinntBIfUanWH+xX5YjaPnZPiuSh4vCJQJVALAfY22fb7T2/nl4hPIJQJSJvofOw/gkDfE+/2Es4E/Qmfo3D6ia1oncO7Ly7P40fY6xNn3PBDzd44L0Cre1mSrX7fH7ebc7BVOUjlL0Sxg3FBV1+1Jm+nbjwTWYhUTZCAqAVeOugtChCJruxAZNJAFVLCAh+D4zxym0FyCnqVBqMgfrglRcwqSASB8xPaCYi2tQ+I+0LTMZqmiHMG9t7NRxGoBIeYf9oviXvmwOTisQCRMRTq1JI5gUSRSRTqCVAJLxCoyD/1mLFcRK+KKnEanM8tWx0yNranTOMtjZ0w6a3vT2hiE7XxvjEUtAMwS0ByQT5YvrYj5SqCtqnJw6pGsA0RhnMFdn00u3GHroGj7g1U/gkdJhq64mkx6uPr3fdOJpw/QFrKL8vDqNxv08miI5wmy/X2wkh8i7/Nems+1vy8WWWTmqLSk6piMvmxWE7aXLhKYLPBqtpNz25rne0lB1D+7BYe7Y/m559Hl+e8cftMuwdU/h+9L1+jR5eIkjXgNvpPUd44C8FaKA8P71bfg7ZArn1dQ/8VmAbIpCnOmFXg9RfkWto+4HgKz1hvolk/joAOM+V2XHN2KDtes/3lK+zTeK5POfX3aT8XwvJAFPIfaJNBcItkSiK3V6fSSJzUxUav3cMcu3BK5/Tq6mHp+332T4FzgPlQn0z8wcBlI+Y3IjvdXAbFp7zm6Dres8J+KzH4E2isQGIGAIobMB14IukjnDlUJA6pxmHckRnQ+ZvBx91DTC/oPsH86yhX6sv7D0Cp7Yj8mo/i+FwOyaXHwkhfv22zBHEiAMhmIBIhwl0N4lDH9jsIhuFLjBygwXhz9wKhrCIcAGkIAwQtC4LpmgLQ+BUIg8bw0BmC+gTDcEwzCzhnDOFwZDQDEH8BstpUL4BpDtHvBkGiqsTBaeU7T9iZw68stNzTuEQ2DwaWnlgOIoV44rOHIE8Q24r2NB92T69vrraC3IAEiglQVSlYppthT7JOsH3hogCSLTzQIjYTkKIg/uHZfg4GvVhNE5w3o6lxZnh2UYA+ykwk8Jt5saTY4NhOwpIEIQhDFbNLETLfraU4xVs2m0Zo2titZbWZK7Ove8R8HrouXLk9zu0oIPkJxoKtRKZsUJvF3BN2AGzEE3UhjF2iuOTQNvEoEoXLY1JGTEcRLwbxVwRTdDtPIvG7gGmuO4mZU1J6cGEQ1AQTIIAFy715rTL7npkKCj3D56/y5JfpI6d0ktkL6m9MRwC/FgDPsXCI+iKhsepTiCmwRJExCEpBNiI2YqbCRBUMwx085btQusdJok4CLt6JR1ICbMRVTWCnxl3y86cBAF5NCJvdOJdN7eBsJf6X1mBC5pcPBEL7exXxMCRjokgBaIiD6YvAGALZUQTmIoZRcIa7hRDqC8RE4jnA4tkOlqwgGgUSlDxrflTiNUdj4URo8Y5het35Bm7dw7Ns+cr2+iaBFoEAFWGVEUV07JJOJd2OkC6KbGAdxoeBcVHm4xhruAKnIQRKGNxfgIeaUXcim5d0hm2T6HLQu4wq+ZGcakInFwKqYwUDGyXnRtTKy55VzPEOLXtt90Nh1Nkc11CMdLQ5+Vx5M/KmDmTvHYerDdB7z2IMgtQqqqd42tTUDhIKkIiGQCK8kfCLSZQDYFMAopeH0o/SHUsjJe7TaWwvI7vVy+7wcPS1Fb0F5+a1N0+WrQKrosVEW5ARkFOwa0ymaQsfaFzpRTCAcL9qZpYV5OZQzjbNbTuBCkgYOKuu9BN300W3Z5i2g1EOJ4g1OjNA7+qAKejK+NHOcd6UGodzy9duA7exY049qOqT2bFFR7xA4OPGmjqjmfMab0LlQF2ApANTNc7jbChQ7r596v3teEMW2mvVUL6Gq15uoKYkDgKdtqVLOHr1BLuAwBh2a9717IGAU4PUQ7EDyaOtigzRjV8XJ41aa9B3liHFq67NHJnBpQucQzduTLK8wtfkVeZR3zC1uCd+0GVApeQKAfd1R5CAoJxEVMPBu/JynyRTgzHvoLUEzzLOb7cBvPIYiQdspTh1AEyigaRRcwPJ3o8EAzA3g1BVG5AbgpB5TN04CvKFPpYxgFLJgYF/QbPtAsiPyAij05uNocOEPcK1MwnaBYrYQTRgqKaBl0GrpjoU0EqFyd0OFDUtru3EtqHTyfHXCGXF7GgCQiqKawQygBowdgh7kHI/CBwY2u6RAXjKjkLc3QfTDTCcGrTpbzj7pvl089FzcGJty8bVKU42rm9vyoa7GpZKHglEM4BsRTqCIDIZ905gFtN+LruUutpoG+p1n3lkfLusLxyngb0Y9iQWzEG1EntaPX2+OfSqfOd8Q9sT31T5wpe7Ul8YXbUvnBF917ueuG9oPsyfVNKX32V9SyR9xpG8Iop9BSIjgZHzbQ2zs6+aBUAA4ggqTRXVHuRMHBCSqKC51C/xDrFOgmmwdlR5fIBma5OIkRMCAijbBLyxXRBF8x5MhxZF4gp7wHUCQF1BVSsVA1CFQdTMK8wEvYul1PfAUp50GKHudTgl7rESm12lvXa4IZq3vtOypYs2V+I61bFlZtLBUqb0V2xtdWwCuQQVNRSQOQ7tCfJAVzEBz7FJ0eSnuGMMGGVOl9wpZqCnYVdghf3c1LGlxbBmvg+NCM+OdZevFwwXBlwj34ejEelk9CmC6bhnu8RTfEteOlDk+WfQUxO9gsFgRFyKGwnP04bHc7cQU6btgxphVwMGIRvaaBziGCag1rvdW3KUZwGGJ38KF90op8PhwFU143RRHiY2s3FduAtX71wuAnUW0KodFPSDZSbMS9giYxA42oitRioVYLhtY3bLhvKF5ENX5wyrwiYMFRTyI9RPl3aA7RR4NrSd7tbhrBt4UMpbzufWzkGfwPMW4lwHCNDbUo/YXefC5OXrDDEN+LrAVAImQZubXAJUnFPgSG6HBLzJj0Eidxrdp7lFBw0i8QAPBAXvNBA7xdREuRE0F4erZdnvR85Ax8uxvPIt/1FpGQTDB8cgohpB2C4NSdQFPRwdcgMgvcljuGQomuD3BT5cOzC7Wujdu9m8SjHcIJqWS+PRBPsBwggA6gx4J8InYQ2B0QqDrwBUTAn1Iu1ayXpPBQhc73R8WV4sCQNRIwr5CD7sU5AimQPeMg0AI6IGuiUGHb1kPhx4YJ83M9A0yv7NyzRrYIYa0cYHIQo2XTAs3PWdTkOhNm9tmhfF2JnvE1iUI7GcDeZP00CjQAiO1oFp1XKtyGCS4gkisglfIl7HB4jmvmxX5pntQXm8k29lrqpxTanzqP1a1TrbKWJSmawgGjEAoQ5Lgy2At3RHXCxiEcGvjcClnfM1wa7ELgxNzNqnGZ9In0jZ7BSVEsGxrZymbtVTsgLxBXpiKqUeKPHN+JXPNOoYMv9OCqW2BTrC2QUNqt8W909fp7cCnEBWhBkUfNimbcFT1UI3hvL15OirU3h5HD5KEY+cgdhE8DFuMw2hvlQvLttgrvhffSJiCRISZ7/YXK9sRacQXHVoJGT9j6OfMQg9gIqXSDbTM4CwcF4jjFKuruHVbmId5ciO5uGyCWSrlDd4BTnV80KHGoaQwbwtFRjHMgC/YhIyIsgnOci2kzbI2nrpTtgnXVV30DUDOT8A3xIXLsw5XAChuL4V/dObaj39hGH1VpvfE/xdpDh8T9Ba2Jqkh/dwPsYfCJcjNlEB7IIpoFc06Ke7O17Y5gZEQXUioidngXVFQviIqTSN5U6kJ7PjSD7+grACC4LkUDxAvvR75HZqneG/kDEt88Wes/FnLrsR4op6bqgLBM1oMpXfBQ9I7u/MPjLkENwgqWlQVF1gjpdQUA1awJKa1vCmbbjkNjkbG7oUymlWiG4XZO5avIU0M8amPu4kMNtmwB74UcyJvuUUAGQWuupV5oHfB1c2vhsuz3wLbSMa4hhm5ZVDBQOmAtJWGjAn+lBieFAvDvJMfmmjeOPND3N2NADcKwpXBOoaEAG5gAA7stdAm529Uw4sH03E1CAGaQuCFe2Mg2fC1jVC0Dk5a5N+9nsN2zrglGppM4dExMIhbSYMjw2Ng5sUGXGudzKtKZCe4kBOpp+GgKgkYj1KkhI8FUVVImxBkm9Cr4gHUXqAyW0RKCN4SDo6h7vjccmZYN+T28rYQzIlnT3UMEwhvoImj6G/fAAh9iIL5FRKQEOHPh5MUus8ETnJomgSEcXA7vDb63lKAF7AQ6YplAU+QFM4vhtfVJpZ3sWpQLgipsEOoiBvy0uiCNZiwGv0pW1tK86hja8l7TU9rtrgJcdavoZaodobjsFggB4qhOZhijiKi3SKCu8NIj6a33CYGENnBxL7PfbA+8nOF7xAwybkQ4gCfeJKBSK5wEEPSAp7BO7/p0Tk0hoSnFD5x5Brde1BuvPnaWPUlxYNOWjca6AvsEENEIoj2QVEz+hznFY6PPEffDMxic4LrpIBLgVB8vkq+Z7xeiHkALnAoHfPANU9etCuKZmjUBDSKNp5A+QdogBtFL4oVit8EQ3gGEVy6u0baNwU9eiiUj3AxIFc8TQMGxVEBeTnIS7N+lFcAYInA1giCcwPfolFzDsou4mJYPdduQFB3g91aL1BIYdNRO7woji5tGOhloc2uTOgPZLgxPMPMd68WVHttptLbNYzZpm2ZtmNratjujFX2TA5URU7BgIBppwbJqHVK72CZt+6pra5qaGvJ8gg2im8VUSsEE545zpOEkA1dobE0woNdgDTEVBuQQtY3A715JxAul53TTKvBsbZGopjiVmt4XadLMD4qQ1vaKmxEeGl59bv602oS5nM+rIW6uI0GKXpqYCz6rPqfXw+4WlbrOx4SigUw6BtgJdtxRyJuGB37nRc2/PIwI8HfVtnR5nz8dE2Xtak75RebEltC6eqPPenQme6CLUFEkVQ7RFChIBnY6qFZhXd4bY0XOpvDS1ggQUdwYgIOREcA+G3nygZsYvDD6wA2SAgDyQc4JZQhzufUVGjFQX7a4v79wwccUBXRKQwjSVQIRRyJHvGHhh3UqXecr9qGiMc6AB9gLDUoolxEVQqwNzO7EHXLYhqaUqeY5eiBoQDwsvmJ6eU3+0KU23JbkIYiALjqPO2Ra9falQqX5r0Nd7xvwLWyhVHogCo9Ip1Snq5oOIqC8Z0vKc74Yl0RN4DkRUQa7kgaSSohc9Pz6Wz5zNbCCHe9FRLEQdYIhzs9dO8LTT2RmVTx2TzMKllu7DUhI4WIl3yiqGMRRSxuQUPTnCpxnrUOyoBgG6GcQRHmNY7sC/DE0t6ZbmPnWewnWtujgqfOKV3x6+U04iFecskM+r/Lti88Ju+XUxIuG9+BKKLtEEDYICq62LS4hxDE1zcdhu3oTtBFB2Ir27UdR4YbgdYDjybmucLyoWju3gp5kX72tM+HXHTVbj3oyTYLjcoVFZxSHAW8p0t34rrsDa5tkTxxkTGiGLxpUuyRReSKClEahtY5ESEUDGAKfdKKChwGvxByNIaMOAu25MzArOqwAZ+BTwAbW08PuUFyQYJnwnnuFuDRzNjqp1zTqV51xPN3zgyS6HNKXzSzjcJxqduZR41BAPkRFkBAZER0TsKJzamOjXXQmN3JQyK+9F57Rnv72DEcm6uKuFKkurcBbfWEck+a+pBpQg4l8/A+iHxQTEHm87MdBMjpDF5hk3KU+WaqIDffcn1ZD9itaqqpsg2Eq2UBtQKsakQ1L6el5HfrPK83gspc9ZxYyKAuEHzKYiAtKqLSbF9yyGhAFoZJmlAFw1awAq/GyQCFaYkBkrtgPZPnAM8TEzmGdD2mS8Dqs2FBxnUG0mXB3ALCja5dXd4L1eFbmm7tpGfJfWRhfRMhIQvwMJfSws3e+x6rwCfL9o0sNwgK2d6VQiy1S1Yp6/eT1VzX3ihAmHMyBFSFPBvwTbhYUEJJQ7BAQkAEUgJlDtyu0MbirU0zdbHJnBbVikNrnwWULiwCRkkZEFH2tOcqcLVbK2csi5lKXGTlgqm1JsqtpNhI2oLaBo5ozTEaTY0tasWzNhbWa01p6QqsTx6HT2554HM3zhHTfEYQjGSEUFXlaoDNuWXSdVxwxVsHnvKalJ3nXJu8WiLEQFoUUbkXtQgC0u8rNUcLQOXcvTvNy4AC0EkHhjQKo7XuCl99t4iLggIbMQvgoFAKHBhCLirX07pXBHSaDOqg0ykTYh+MmYMIHDnaqjAzdFrVrq5ZILjmyBxMwMaSOXm37N0nTTX04JGP1ep2DdMTArWrlCSElqY5wEizL4oTmP9W0ZE5UenEdyqBxmEYYXV7l8YLYOAoyEDLBhIwbRjLWrNGYmamNDZs2mstYy1pltTZtbYzGjbYGtM1NYsjVNbMZmZaVrZmKZqbLWRvcpzShWLIxiWwVOYRw1SZxm1lJW0NGwttjR4cV4eizZhfeITRsV8mQyDEIBCIzcYhsJXNKGZRDNAzUzUGtFQzIW1Fo20qq2nHNMWxstkbbI2qisWm1G1stjJqZNbPX2Xc6hS5EKpS0LS4cO9gd736oNpsZCnapGGGEcdgSEJ4HMGLJS494F3kh9DU6us4sjk0ZenuQTGpSIC8QrY5DGDHY5XiCqBoIgobTYGVgRNrl4HCoCTZAfXeAgEt9FpOd4vAd62bDp1AasMDiQiuHAAEpOEP7hjovqtPxHyXi6G+S6KWeKkFmZcgrAoOz2EyFINg4SOrohP9qzuJIBLdJNN2VFWrXgiWTCLSES4CQl9jVSrF7FJ8IbVS8R4am8HSzFgixGVV3FCxk+X1wBIUEhIcuiZjUlMatmGtU1smtYW1NGwbLLDYVtZNGtNlUGxoma1rW2sY1bTGptS2mxtaa2yZqsmLNNsBW0bW1ZTWT5SFZNKoXLWycjnAbkWNsmywxazGkzOm+bzunS7uc8b7mHnUIbSi2qKZlVDZDQvJ061bYHrO5FgYgio27KNeYbpNaQDytfTzOxKdN6YTpQ6MVJmEb04JLBhZQHCVWrdNBOYFRsCBJLQrBLiH4gEhbKKbmVVUEqUhsCiAi/9RmB75Y4cC7DpQSlE+LqjFq5m+U0J9tK9qhEYI4IAFAwBAwRgxweynlGH1AfhZQ7MIEkuOnC4Vgt8NhdXC1q5SYNTGjAjipTYivtY9DaIfpodrbCTswW6vvPVhJQWGUE2DpAl8xIVtbVQLaqSml6ReOOFKeWR+SxV0bwnHm7jzY6Hu4XGlWsa2eJKVtSIzFQcnHJzJQOZsSVyZTmqbSOWUcOGtbGYzUzbLGLatjM2TMxmjVsaZtseRkeC6Gg0kELztDLwkF7rb4YBSBIFs+WU2iFUglCcnYlzg2EVTKPRBPd3vCy47BpYmDpKAKX3DugAuyN0str5L6aL+bgpYIJY2EyYoKAmSQPi28Tp5HmGyk2q2ra2VB+S80RgIGTLWQISsYANE6F2Q18EZU+tQkhKxwrYCIAZqIckOHwVgqoYFahAr6H4Acha135Ce1SN9lzrTysSQCVhqwYKDGWg5lhB6gHrSo7YuOmA5o00bmsBa1nReVLWNKKjogg+DVGnAUsTDAkOCRquFIQnws8JgGs4yB2wuqgNrq621sZNVAy4DWG0gkiECGmpbZsaGJm2mbWNYszYzGszFprDWsZmUtrSZMmNVC2mbVjNUK2pssza2LZ90hVyYoHE3NBUc0qq5hXMHOFpoUtsxmWsZbLSzHk+Lt6dfR48nQ9WpzTNWyZrwoSWxslrUgcxuSzFtWam21ss20QiEJA66xzhxgNr3S51muWcAgBDFBQ66oc6EK8FO8cLptg1lEIxZFdmbApYUtSOCG2HBCyAgtGSvWJCTh4nhaQI6QgpcIHKUrBzh7W45nUOItkzEYDg+iOdcSQJcgsQ4e3oDHEJAtBkayxkbjGK8NTpuUE8IKoObAA8PhwYhgahvsbBqWsFYXsDB8hjSEappHspxatXVSJXGALcW1gdULRuUxwniNOJ+7RvELJBcuUIBLhobzAZH14IQkro8KsASSgPJnXPL4SIYQ4+KVC6hYIcEhwSMoylkWpOd3d4L40bbG97RC4mAQaggSKMg2xNpS2obRbRb08dnV47dk83HQ83U9D09Hjy8LTRpiw2qzDMY2NLWsaaJsY0stqyYsyxsZbFthrGthjTGWMrGlhYaYMY2M2ZbWNGmFRjVVZ80pWxw0o0xVVbhxSDkxJyOQatY1ljMq19zr84dZ9t6NgsnxwuzN/OS+58Jg1DIO0wLZHW2Bu2Ot0D8IoHMBXGCKumJqGqpsa50Mp+O37Hy51nT8FOWIeGQTaffaHi3w2+pHosJppDMRXiK7QTiLgQx83oVAxjtchnQrnUsFY6RtyV1pgQgTzX4vK0RCE3kyuN5Y803t9n6oGvPgOGUpfC80z7EUBjBDn5QQLgUgzaGcTco6lVQFzeKb3YFQStVylXiKKChxzj8OgguWIemgCfCCgJ4QBXxuLO9MK0KHteJeP5vcuaYJXVB1EUB5d6Dwx6zWaaA/BA42+AcESgQ46D2nyCauC0xJrfiJnbOGBzD70Gd8ZfKEm82ZZuMtNePt8bEUV8Rxy7Wr3KRQn0ODYTq3i2Q4aoRR9ArPYvw5+Sl9TIU9TFHRpfeuLV2vpAeypsSgqL8iRKO5SqCB3t9GYioYEUUTQnsRDju9PxGrG3poqBXTR5tQS7CLz/JxKror72pUpUUTbmFD9IJomwR3miFOeQ23slvNGM+J3O5RmIILiIoqhPj0a7X40nCvAVKchdIth3ns0sgVBvBQNvCiTQ6r+MR11Tux9LPLHRpuOD1kr7reNAeoIqGn2nYtW3Z3SiNH0s3UuUXoxPev47S4hVX4wPvuR0uVfwfhEVVURPwO8ADsiCg4w0CB4wzKlZXV3bzS+BeQSECgciX6KoqqAfdjez6jrExheREdIICm0eCIGx8aLe7WetOpfG3Ohvdud4HE+HkrUxIgpQIpfEHM6aMGSbrBzoQfm3Dd1DWfiedUPxnUdrXEfI8k7JeS7aXcBgdXUTFrDaJnHK4IGmJ3VO5JpiN7DXnW8ygH4BSqbmDdhoaGYVEtsfTQGlANjiewkwbNY5smZDAUYHa3AhELMAcv+Ra/YY/OtDY0vMQw6oJZ0aAxy4tZ4yO9JYz2T55yd3itYqJ3rxUB0zoqYwEQ7Eg9jj5t3LVo3+eFQ+IFjDmFEKrUh16weQ6OatQ2yPnxA8yShagYbuyQ8DYuwEvveji+5xaMb9XFzKRv0QaYU4e/4M+xZ9xvuIb/+YoKyTKazA/LSkAbZ+j8A///////////////+wQKPvsAoAxvZ8767bbcAA97BZp7sHAAA9AO7dhp6GADozQdG4A9Mzjx4DTrA5YFOlY6kw7ZV3rU7oPTl3uA4ORWcVYBPXI28xPWu2nblOwSbbaTNNQb4BuYC2tY22ZrF3y3wAAAAVSTDXuBdBPd309sAJrQUaaFsCgAA1tgCjWvQND1oAAPoAPoAAA5BtgAAKADQ0ByADodAAINgB6PV555ZOgxF0MOVsqpsa7aOkttkxmqXd3KiTXc7gzbbGSSkqJczHWCVKZhq2ty+cRw97do8rg6HHp5s4A1g5gd6815Hg6aje92m8HeOgYnbe2JVPNs0IqQACMgCAEyAARhqngBoAEwBooJIjEETSYKlNAGgAAADIAAAAACKCaCpTTRqnqTAQ0aGJgAAEwAEyaZMAgUlKCaTSein6KelD1AAANAAAAAAAACJIQEaaBEp6nolPxUzUPKNqD1Gg00yA0B6nqA0AIlCaBoTQmlVP1NqaZTah6mnqAehD1NAB6gA00GgaGN5HNLlOQTkMjmZHQ5nVQ7DpMjONglB2DZ5HAbyazzmCJH2ZvrRFLu2xw3XicWCAq/X4mOeSBqhT6tqz+bV/OwT+Z/K61DsIbRNIMgKqakQjEagG4Q94P8OAc+ShRPmCiJIgdIirSZSLffxQa25AhK5XS2b7EAimAWkVNsA59WSVQ7R2XXQQuNE7vSZyY7i4sV/Pep0zUU/s2sgDe9J7GOiyYB3+CIaAMb02cv1ushG+rTtO9X+M5dGL2fJsnmqMC2T7Rx830XzztZydCnQfmumSjPr3QrJWckIrEinV3ESIiOfTPGE/PhFyNVRuWy0yFTiittt9Ogkmp/V59ZFd4Sm7JkCS4AAa4sVh0etMcP6p/32yn4xh+fz/v6zh2+P5GBSVsxlOoyvgyZjXRASbXES9c/Dvzv39xQ9V6Bubr2eeU5R+xAs1yfU8QdHm9fdZthVSmCLdBAU+xaqi/qO7Rc9NIKrUHufRp6uOv1sHh/Tkyl1QWoElxK0tIe0hFXWVvRKH0PafqWPMK2iqR8mNkcbc0MGI/4jQHhc7kLGhznMcpU9IIuuRzMzEGN/RjapHVWZJG01Yovsdo/BeZfvslbZYGL822uAamDpO69B6n7d339vWOkG82ePhfMDf1weEHwFUnff0+Rzg5+1rd3ZNrbmgshZvez+tbnJaRDda9nfBkHUQN8cTFukOx55tOQWm6f5R7knSlqYveD0vsDhar+1/YOHlft/XDJgLRV7HsA6xJgeR8/3+D2wavE+Z9sbtG8+0/87Dz3ISvlB33vu37Hn/x5Q9gPp5vlfg/1yv0cPmzhwyxdQzdpiDqkhEx7eEJ5MpCRgnYAnNcG2BwwQVqSECIxT9E/X/UZrQv/vYJyQ8B+6cHgrmULwtpx/ZNQsBjTEUskAXWKCJjBHybcBYy2c61/Uhk3v+dH9Iiqh4bgYcjXgzdCck7KJxFUaCKneSOZigzZtigv4lkhPVhRBfEqeE8cZNMJRSawj5a+emgWhITI0aglRiSN4lMAmbU4LQzQ4v8OLBOA7pwJiI4iDA7IJpJGRpkqeWp8tsTefJzFtG1sRvpwcy2ratnTHTXGl01Jsthc3GMgEghaCCAeD2cj8eVOupzo8eav1zmd0/dcmjR5wAlvDX6OV2PR547iyB6Deix5OnDvu1q9vIMASxD1FVK1hr0KrWBUCyUfee8bsL0qXrcETqC8sBvEIXprEyYPjuHrSM6oIXNh2Rk8c/rpfG+eClJgO6tysBLjRs0mJye+hdiAC+2B8HHIdjg7G/WQShL9V7fFPjl3OS3UepZRHuCDdgiMmsZsSP22xHY7S2+FaCeFB8C7loLrR13NVo3iKCzrxYLne1gabNZPIUqZkZ772Lo1GtbAS2ozZjYSbX6AUitpQrQGlKSlbFRJhqpVLZS2EDZVW1JJFpkoOZBVzCSRxi42ZtZgBqxmlKVNim1ZiSRZlKlsjNS2M1VCrWSlm1QajNDaltiyqJMiqyoS1ZVaSloptVXGk5qIqcZUKcwa0EDizOcKrYhVmqqrNFKVgVcUpqLaKWW2jNUZiKsstjaNasykbRsStLSCNltFrItq2prG1W1JAxgRBcIRBXgw+LkEHUKB9OOG8LFkEVglIK5JEEUeyPTBfuCnRpNZIj3YVDmSq7MERoqWlUCTVqRCmyGzWFaxSlM0h5+fEJdGVQ2lUtaq8aSqni0Ad2QPZ5XIO7IcxJXQyiqBnAtEVCLEaHYUKkyLOhXBOEgERdv2V9GVbfnabSyzsIeY97Lt03IkDYtJBKcXYyqgsLpEAuB1VU6mok7N1VsxzTyanKPR350WTUxxiDhs7YfdImOkFRurGR+ZM0qAs0oKO7MiSHEk+N+cIC3cEm2EiuDA5chkbaoMFnXgWSwUMgZNhcLeNGTchskSGznUDOCArkQCurENDcyOZkI0RkHF7ytEFHb5ej0yRLEkNqKjEKmMC8NhfAgEmBwhFdnWjVAyXuFkg2EmwipIDlF6NgLpu4IFkTUWb3u3mcKLOm6Hod3pCtt6mFjZ05ZuC40TT0KsLV2EEiCtMMQKQRbElZohmitNQqtMjGjMjKypVmUto0xSrbRqZm1WMBVmVjKpsBtBGakbK2Q1qmJoUzU1qbBs2RGtDZmNgzVVjLMSWNTYzVBmtg1qI2pay0w2qFbNpMIWkpapSytkqVmLaibVsrWaaWrQ2k2WaqmyM1WamxErLTaW0SrWTaBmU2qgatLajGlAwYMxmvakK3NOVznJGYbUtNKqHJk2VStaOZK20YgljKFhiDNIis1VW0mGCJqcYmZEZpayNmNrIzVWxZpbDE2mM0Q1ptVmRpo2llldHzuy8Ox2s4hVQ1aA3JYuyGwZWu77urh9a6miChrDaE2VRss0zNGPeUGmqiuXHFVmiqhywqWalyYoq5nKZVKYtII1qpQs0UI5qQTWKquOXBFHGUWZVKW0tpcZHNRQcsqkrDkGtrGsqS1lWsrLWthlJpYqNjWS1i2SSw2ZaZmxGEOTUKuDbF7EIMwaubUoWAopYvk/H1BrZjJllgANDBslFAgNwk3IELmSMxdad+R0yw2YzYyRkhV6tL3hZlghAIQC9gQFtQIBVwMtEkKwhNSshU3IRKXDFMjCyEkxdtvU2lCaweJiW3smFUg4m5tUBYVFGyzoOcjPs3BPz3d6VUXRtbkBh0ruzyhrSdgA1UrUKAN7p1414DnF6OI5rTXfSUt1a4dq9JUKmOENFp1eZoNxSxezR08Qd6SIAPo8SAANlEvGHr63zv3YM6Flkva4GVOyyIZaSlEyGErqLRrNG3gBZiZJvsV8fTQDlFkFalQlC2AVUxIPdNPbFAXICMCw1RolKgEUbgBdauCz4noYEmBRshkg1KMN/QgTYcXxBGWkQRBDnOB5uplE9GSTIfcYHD3HuO4u+aykrak2jbLSy2NjNWyaLGWNTNMwYw2xtWUayyxtM1NYxNDTW0YwaybSmszRrMstY1QrTWWba1izStgpasK2qlWxFtWxaaTazE2ZilmzK2NmtY1rWVprTWvjKFOWo5hQjaErllFDGhS1kNpKuMKVOWQk44YtrWqFZlRWarZaZNsymj53Z5dDVJMFFnMot0d8XvEYgQSRSISKjbTWMZta0bTWZaipltLLbLTZFmwqm1GVkam2NmzMZpbVNiba3wy8PD0DVj8miqg9MnWRdsCijQhBsBxK6eLDJcTl4lQuwSAdAILAAq2CIxgSKSRkkJGRLtZ0XWEIHBEhW1oEBbwNnicpUnjsmuDKExCHR8SUKqMDkBJOMJug2lDnLtgLW5GucCogtY1vIHlk8ZeG4UZtt5RKWwiCvIaNJC2RAXIoq7xzE9gYXPO7qdRAEsRKoo494QnIQUHNOgoy1iCqLoa85xbuQVN6Rl0tCNa1ez5Xe6o7pMOnzMTbw6cepYoixCO3KTvQjhwJLN8XlKj6BDii8emWGQ83zEMbNAwmQtBaF7e9vWgxiOWYjRgzoyIZhcMBcG8QkVUIJGKxjMyCsKxUbUGtEtWbDTTZjAVmmmDaUVpraa01qZZsYzZrFq2JZotljS0sazJqZNabRkFZZmY2W2TVZkamhprGzBS20ZmzbBsIrVlZraNqtM0wa1WZpkStlUaYtphlG0bQ2VtNZtWmFJmLcOq6dup592199qmZnQM3V1q3vRW7EQFkkAkZG2VbbSqWNbRJZtrWBMzWzJbS1ZMNtNmsNlaOCXJbSMKw0IAucNXy2xp6hJBBB+WA5OCjY0M3aSJISBIhFBVhsQoQYhGSZsiqgcEDKwGhHJwOhxv8wEScF8IgJmlgw4d8xvS4b3ppRRUfqhrVX8hRRpRvdFaJ7oLELQjZgvVww0dbRFHTBmOJxOplbazjR8sdux20/YesaXgcsglwWQJOxlcYwg8xbRvUzJrWkX1FgWnjF4L5OKgQQZCi2hnGxBPi63YwEc7DgNrC0yGoBK4xZX51ZJVpY0ge+Qgi5glIEkp4my0GVkvlVjp08Tudzu62qGRs0RWa1ra22tlNiKszYkrJm0qlsaba2rGMZs2UpZqsy1o2VsWtNZsFVmzRtpmFaBNqhWLVm2ja2IpsVWZrbJstlsWbNGWzDNG1glZszDZttYeMaI0faxfMfj0i9YpptpoSHgQgoMGBrNmYmyxRWbEyyZZhrLNMq00MyzZqmWyxkVCcTKmCu7Lu19gi6KZFQRRvSnuZ39x37RZDapUxatrZ24iRrhYJheDsZT7tSEAe3ugEFoIfrY3xnr8KtdbJE+JbO9w1xX0mzpp6mdOtFtmJO7xTg7NZ11hvRiZxOJt0c3gKoysECIrZ3RZEFsKY968unDQNCCDGoGRiFVRhGDga5YoC0RzQsvYQ4eISRBV93E75Qe0d35I8XRi44lUmoFog2U6nId8UMKL4JKQODQ0gwEBkHSRUWdIMwTgxx5pWRqjHNJ4twJ+W2TCBq+9OJmEhA2Ggs4ehzu77VVLWZms20zVpNZlUraNYssw2ms2ZJLLDTa1Nq2symaRrUzCZo2NhhpMli21ZbGbalSxsstGNlmjLSisaqSzNWs1mmYZjYYxIiCE52qdmboTXOFG4QKbNPOBt8O/GzVq2pqZpZYzG2y2GVoVWtRtBkbNMzTa1agiowgkISFTJ8F9jNobaDoGzcug6F1yUZo50aUpwdNLbJKskM1maYVhWOhnQ78qN4qHbAXzoBQkAuRDbM32mpETJ7e/gqp6WeUl2xskmaLNCqJVGSF+Ue9o9BxdAHEo8G+4EQwOdIeBvpINmgamSzCC0MCMFFH6whnspJFgnfBxs0Uv3rGyDSKo2oQZZ9rKHRuUZYIAmi30DAkZRYRQy2jYtm2fGgmHvuz0lOsMqKjo3m9ve7R+TNEGKKWcUA6cBZ1FxiiqkeMpwf47qmGgHBP6oN2u1gEtLLlaid9m3a4YuBUALUzMAAjQcVSQ6hBMBwN9D3dEEblBUcCBDA4Gw4HdQwhDAQzMzSzLMGNhgbWbaMwbbLFtsZtjIsWJmqitahW1jNs0tmGm0krWbTbYaTWatahVmWZiMEYkhAkYEkgQkb0K5Gpqa5BeCnemGmxRQeMBjjjQdfmDKBLAY0zZqRWllGsKlmWaVa1m1o1Ws2llG1mYxCAhAggGEBVjsE2GnLD3Z37ZGzseJ4rPdnjRkVWpKtWZm2wcEQWKgkqkEFliC6VGDQAjVTRg75FoWB/KdIzh0bZasmo2EWS2FKVm4Q6REQcHsGlTcwhQC9Yhq6FgRGx5NNJQIukkgNsGmvchAVKGRmTJLQMN0HSqXTVCjTZsSihAFh5KvLEFHB9mltQKtYfN85NCwbRmzyFNU51d4Tt6abOBw085x2RWpIjOBYbCzRcmDoBdRW70w8znDdW6r1hMQFEdz5dki3Z08np0UlaLywOZF7YbS9+RTmIlTmKNoYiKneBT1Dg7B1bkgaTZtWyGmtY2aGq2lttbNhmjMkqyNGtMsBrVbNGDTYzJpskVrVNqqWa2jMZpaWsYkrW1pmWaqssaZTI1tS2ySJFI8jlSuI3qiUraza0q5GoNrcCwXMbVtGZYtZi2m1ilWlbUY22ZQrNbG02GmWCJwmfqwJe5ICiXzR9ZDsxElcjPSKcIlLhUBcrDkXKkEjAqIyjMudSRjvcnGWNmg68eWXbXKlhAGhRRgOdzpiGIBJkUyGZSmxasiy5uBLatMwOihYDYDgisRvGXHtKQ89fgO2eODLww7wjvNu1CoQQWNHjrhxylDGBFHIBGiATEge3IqJAmg0lcpfpRddcNtLrRrRKTe4vTj5s36UBoq72UmtgLCe7M9au+ayQa7SiI9y8M5VvTDd3F6D7AM4EvNhG0F0KVqlPavW+oZGQgCvhKKuai8CpoEUYIIYv3d8M2VIHiNHHIxOhp6djsdFhtlbBFlpmKK2s1WjGza2LYaWaw01NMbLVVpFWM2lsa1s2lmNrLTaWs2Js0UrC+uprjkXLhiKtk2zNM1ptWJLN0BV1sFw3pwa5bHoM0khoNF3uPj3exfx5sHnFXhpDSGJVUStLGUKgY6t2MdMRs+BjS5nNKKcZzScNFByyc0hWaOZUrWKpZMhccZTWbWzSxlppbRJBkhCIxkDuERAXeWCxVc9nD3u0d+O/TNiKusycMzaZKlhINcIBPphwcJhwPq+Zq7gDk8AW+c7g6BPMJW3lGssLT6TEh37ShRx87eBSr6Eas2sASnLSDADJKqYuSMLdqQxOlmRgnljLaXscXnhcYnY43Bwcqh88psTCOejRWQREmFmygU5Wk+2zAoYywpLmavUXJ226HtEOZzZs4VKOTsKseYCisNdBFW2wGggGgoM2ys6QpASkqxBq5ePe3gqo8snHBk5Og0HxuS1Pe3wwLpuPHWcdjR3ZttWjUlY1Ey0xmNFZWpjYxKrSawyxmNmamZMsyWTNBjMLLExsZUVhjRqVLGsqVbWymNqqLGDWmhjTWyM+JSraoVcRS20RTjFGMANRwkrZGzFqMa2iK1m21rNy/Fa+Kvr1rv1d47FLgXwIqwiQqiCkQowqHx4L0YIqNmhF6iNyzR2S5zr23HNVdWmCbwohUvkZA6judhMlIcR0ITJVSAgu4eFacQtJnWEq+0yJkVMg8tLAAkqXjKvbFN3zKscIzSJuHw4Wc5H7J85g3so0xmylSgBJXKWK5HNl4nM39LN3I5Gmz7YAu3dcLCj5U6DmHw/HoNALxip2Gmi9ALRogQdMHdFcndzQTTXMDIpBa5hlHTmG7SdhgazCyCiD5FEUYqAdJqelUR8kR34ufDULv157NX1b2V49T3BKrwOuGOTRcVVjkt2Y8DEPPfQsnqFUYLa+7ln5Y7EQBuxRBM4DaCIGbBSilKFNw+eD3c6LiuCKCLY0glz34CFHRC8vQ9Vyb7V82aOsTd1NKg231eO1UVyzIZPZQCMgEJ4Brc6+oy4VTmNDJI4L6bLjIyeQaA8QcQIDB98lWIBcxTaBGB2IArRAbTSFoMgeFp8+N+EyAOSL0BwZuXKC+WFV3d+Ozv72PBb0dGNkGc0PeI7kOIo6E6sALRE1CKohqPcdWxASsGJFTixDW4ZlzO9NUKBqbXILgnTZqbZq2yw2TNidB5KTkHMMhgLWzq3Mi1by6DpgEc3VwTKqpB2XIZKjd0xaxRfcIQy5c6C5RV6YKNYIn2EAFDkgOBzK+LZhwQewNgt3UvsUICnpiAH04KIGUTe5uYx49EA4Iwpmb+w0B8DRoWPeKmqyY1ALxQdnY+dBanpprK8rnBbLMKZa7muYKijUBG/xyhIWRDvMQU213Njq9R18Hy5daf0dbIC4ZPJXyFwkWfy3sEym6AySkL6NGsGNR37MBoKJOGPqDuhc8IxODgFazXYosGGk0bClxg2IIGUEQO8UQCmDSMvJlUrNs2DCCyBgBAsDLUHK6MgcMomBWJGOkMCAPnuaNv9ToH6LB0wk9hgoYS2d0MjznrCk0018mloL2L2WC0Nb7Zy6SsB4DrYEBPMQR9kAbmb8BbLyl1tA4OAfZ2Lti+unp5cjI982TZ9lA6NFCZjeAK4Aj1ih2inDAuaUGDqoUppHvQi4fEHSNEEewRdyKHiKl9GhDSKmMqDli8rQF4QidYBDtybrmUByDQqVDD39YztaV7oSZSkPInt6cM1DTZLSQMoeSLFkS4GInosOxp6Ha+iQKS0ZNIcQ1tW9UZZsNLh2sRNSLcthYGjXFgxBO5H42KVPLF5YhiPQHnvnfbnFiUdCQYSTq5m7eKCy5cVH08q5uD2ZaBmkIYYGUsEzYD0xAAfhF68NB8EE9nhothaUFXqToOwnRLcPHq0DHfrPuvPfAGDB1s9B67wdN4Yx1k11uO7I9eLXSwR8UUTBAEN427gYT5apDIyKOuG+Le7wjbHfBFisfWiuGUjBybJOdnakLpn47XvvBEByq9Uvn06uuHOdu59PE+5dxX5OesDq58w7nyPWOx990pF92yL7vsxUj8pKF+yiPZmNO50wMGYfL+di7Dzn779ol93Q6QfBEXwwFc4CqHEG/qnuAc+Efg0rUxGRx0PiImSHdieoomZAEEseaeEipTEPImOqB0yDsZsjiD0qFvbIHuRXlnIchZsZgUeKIcgYbmQ+zbzc6EPQMHuwAOIAB2e/U3uIp3OxjaXFR5aKaIcq3JGj0D3lprk2Yigb+jxoFvaGRwYfoMur1Q9WT6Bm0HblrMz33D4ifGvrSrlLw/HlLPm6e01PiaOUJFv0Q6OdcpOjJpAXiChWAvhlAgOhS/2fDvc60D54pucW+WOJg66p53Sp3o94zMV0+6bl9fcKmluUNCAgjT23qh7CA3Cpuc1PsGZVFBXzFL77eutve/Qa01gSaxAxxTww3MnwnJ0VRIdod1T7ASJ4igGP5if+dtz+hyQEh+QDqy62fM/Llj4HsoEku6HS7kNPbNl3+pnrJAgaIAIjuQDahGQbgFxtZGf4ZZyObYFFGIIlhVtqWRy5M1MOHhEl6rsEwGM51EclJcl8XnEPqSkYbYbd/MYg6gRRaQ/xt52dwL0jCMnLSKUPQ3heZhRpLxVRgiIkCcEFdKIo3Pe9z/uOj4hizUSXoij6Q6n1CRkLZzQsbJjTNxiD3w2XfbPTMcw518YdpsyGI3n3FRjm2AhtuIrd11iR7EFJYeiIMLSBFoKyYx4M/MLkuY4o5id7JNi6J2sDZq/2bXZbUXXVPMgXqj+HZ/d7fDjfW5E0y8ceixR5c3iJtFUPqJ1EGwR0rvpe+Vk5L7z/vFKbQA4F30P4/pR0N6O/4kPl6YeKo/dLEemdnD9jgNHv+3UABep8PYxNu1EY3JHJoMzcwLdxCO+IpC68mil9xxKlkAnJm8ifThE2hbNnpZSjwTltODdgbZtojHH0cUUM0kKo44rWUrNbT8ZURR+1KhKTPhlue4zG72omzDFyiKjtoHA4GQIGJ+YRKIHEHw70Im9uYpUoWMiDKQBuIDnJoji8QMSy0HQUjRe0cR02MOMg4QWh9jAMUYh14aI0AF4YwlUg7zf1tbkJo40OYaANlBFdorKpv3rkCCzSFMEQDMIP9ZilQ4SIZDmFH5IFviBe3vvn9YieoJxHcjQj3nQvnxa55v+k3KgijVLfqNSYCQQs/HRBwtBVGXERnHGMlrE4krJAAqr5IiZtfAKg9MFyyjdQQaDcURKKIz0/zq5WGRetGvpfwNFUFysQ9TaAMg3I/+gOkTUqc/ih1UP2n7AKB8JtZETuyxLaYn8kazXJ82N8zAqoNpiCIWk7gsqRMFLNoi/BO/gxlxygU6zlKb87Rww5fMgguvGQCAZQopkVJyH/HGEcdcE7B8YkJjocUYqoOWcoP94Eqf7ocHW7/z+hPoRUX8A+SUCW0sZ/rr08UC0/dEQIeopX98/avo0zuamv8RXgiqB/UYIKr7kRRg2BBWyGuuJ3IAdZZ9hVR+DkstQ9MT6Ax6DG5u+Cz0Loqn1EOH6rh3mGT7I0J0/NVj89OHhwIgvVSx8EgV/Bo/ifq812PzaFRNSAQ9blBQD3u5HcK/z7J+VLK4K0HMHYT9lTwAvA0QNE0YLpYCCDICKueGs9iCBqTiIgqV/ttEv7nR2O6Pvp3vaY00qqfuETlFEOHNsqgZIafrFV+hA+8vWmX6mPUQiYSA+kBRqiTaPeyInSKF41BRSRBSRQkAM4CBh+RFaBv99/jyZWP4mGsEZACX7SiJUmgRNq/f455EteoUv6mtsQ9mbgZPbnJEQRbDLN9WfVWeycp1MusVqLk5vLP+cegqMd8it+kuLuenpfYne3e51W+a3U51ovUzevjxTbByKyfRyD0Jc61fKnndFVzFv1ItT5gmIN3k41bcRxnGr4gxwXh7KdZ4reKUb0yvlW0yhrCu9a8Xva0NaVg/vER5AVX9ECQc14YHXdJo1q2r7f1uF2mq6rdTbC+wViSvrZCuxMUKvkSOGQbKh9Wj4M+OSrsS+Oq9PVykUvjozCzFjC1gaTSRsKK8GKBmktkayMwpbRSX2kaNssiqxsyzTTVabMxYatmLas2y0m1mbShmGLMJVTrgB8NU2JpiZqKVPOOmEq4oKuiKrCpKsnsxKXKSyyCGYiGWJbSlDZJUsyzFStpNja1ljVWtHWlK1RzRcwQXtarkahQ2JAfVWormiPq0S2k2oGxVLxNJSNtrZQaNm01mS2TTTFsy2mytlbG0bZY1NLTazW1qkrYamWtmzNrDRmtq2w22a22lmW2bawzVpsbNmbW0MzNm21bEVZZmNY2prbLWabM1ptpi2ZMxtrZkxjZakSvNlK1igeVZU4YTNStlU9NKbBJ6adMWklaqbSbFMwU5YCq8mVDmJZlGtbWaWiPXQcrBTgWpnyxwXRWy2pmG0G1mWaxkzCqtMqZaRsjbTVWtFmSlWwG21oKxiqoiWgIeSADxBeogYSIqZj35VcY9moPvOXF7Ml65dREvF7iAZxDSIJuQFxk0W6QAPK0kuaVXfB6JUtUNUsqqu1nGSg95U+Oq+GqtgNFGkRV6iqthV5IKopuv8CXP4l2ThcsERHlpwFSEB3SIL/GJuLSKEp89qhWKjytI2ldcOaHyb7PurlV1aULNa0ruFVn2+BuHtkY99xz7yibK74Pul8MHzwWsPOYWLDp5JJhym8Nc7vHGM3+faxYO1i3B9mJ0W5sKu1u/HdZKyMmtnF9x0x6aq7E8HBzg6WxkyNDJKGSL5Lt7a7lnQiS8HEO0LfbMxOqTEN35L2ojHaDXqn4EryZebcExqQ5hNehuXNQ8x/D1brjuZFhebc27GW34It9hk2eG0bMLOl1559aCOTxfq+SzGbuYDSw3io0O9dPTnjiWIFss9OXCeCGxbPR7cezId8tKpdTQ4PjaHmes422BdNITuxDph3FZF3y6NStjlhyxwbaVK4YOU5xcyo76cYd8oq+WSB3FdoqXJJskzWyUbFtK1ki749G4YrZNkeuDsz7EESKhYIIoOkpCCZfyV49/zAWxm1+DFEDpn5YJuneVT9ARLaH1+H8GXmAe4XjqVQHmmhc38wiC5ClgL5Uu4Z0ZQ9c/pt+w+7rnd0Dmj+ODcgQ/q+wFsEg9/mvrA/F8lH2SV9z0vdN+4fwtnOUEf1fOaFkuqox64KX4IofpYqqn5G7Qndg+4n5onUidQYhVjoZplgMG9eRRfmChuQSw/JMzNaEiqivmI1CCYh6gGRzgqCAugfkyCoZGaUVPW5zUG8U7LtCv5ExUPcT6HAs/ct+3hIoK9j8+Fr0r8ggPpmyhFwhX0lJcp5bvYvuTPnVUs+qWFPDHb35WxQQ3/6e7L0fojVSEPfCpQ80IA3MZjgOYuiANHC6zIkmSF4In6IADzw3L2+oUV17v8HGEzImRkShMifkAfekVQDvfqZO7t9HUKT7U35ERn6L0ZsDBR2KH2Kr9z8pVrUCn88uTgKK0/TwbFbeCPkCVAl1IijsDWSB+yuKrQzMeSQyBlUFHdN0cgOYIqPDA7BHIBRYaEW1feJVqGKbkGQsuoDsdXRuGHYEvTuESzCdSvvnXqtaR6h3oX+hWB/KfYoVDaG4OlP9Fffb5JZP4KM/0UuhMM+0cJE+/SkQVyvScqCjF+WUn72tT7V9UIoouf6Fpfy5VHPDcPmD4IeI4/Fo8WedGn5MKCrBgfsYJ7Z+mEg/wkMmMSfLABV4YUjH2DNCBb5GtCe0h5Q/Ao5AyKOf0AfoLOxDqdwoah2PFU6N1UD+0QsF/sEtB9Qaf9RWIbAT5Nay+L5dVfr/UztMyOND9W3rAYjl+b6NkY2CbkNB9WIwVV0wF5oGMG3dmZYL0YoAbTGbGSLoJDFgG1vkgdbfx53HGoIevlEQf8IApVMqpsfn/fMv5UoZCGQMblSGJWRipy/0P8WY7s0ZSSkPwdZt4ZVNRBUEfCMFt75XUEBKPoCJpFHyETS1MBhJo2bllIQAoIKLbM8Qk5KBvwTBIFJSTxakER9XvH1286W86VEtZhYf6NySQNeVg642IACJYKvQYK0EEIJCm0p7x5vEXD9u1vFWzBAxQAKQgLjIMbCWGrJFzAQFgSVk4nMFoi4se27evvlNY0F1WcgMaYmzXTr0oF0HU1wRAGMzIgHIMFFQuHf+IzOT3cH+b33dIZRHcj2LFb9j0NuZ+4Zoj/0Mo84WTBABauygXJYCUTua2NuyxA8dGotkIwcFIakkJxrmL5yKeSUaLiynz2mKraHDs+r2OorCYuahizDeSpuFhsjp3SaRNkkCJvI7md37vb8kkKP0S3RQr9jYetx/2eP5dB/ZHg/OPb48wylyTFK7gYyQMmKbHQZwJ2nrH/glDJ0qU00lO2b8QHmvlQDaICD6YKIpY/eBTRE+LOqPwAIthVA+4YD/J+AvYMc4+Tlp5Jg8JcxnvIF7rYMby0y+RWDIgKP3IjZGggQFFrgCgkKx4Skgptp8X+YF8ESb6b27zuqDZjeShVNPu09Itf/U8DTI1Ffwbri4p+vYIjgMb3GSydJNRGqInNgiFB/QcwtWy+DrE5AhCVroRsAisc1f6d/7F/uejYuP4hANCC6xUEazpPv2FnKwfiFg4l/blc10NqgAL+EKHZQ+2wwSKK6iTDbMFipUFWd85XaS1YX+EoSTdgXlLX/iZCJUbxDCUhKd6QHJma9jEYZqyuAGJdytVQuge0kcvSCLSqKMEtUAOpBH+wRFKOsfq25pdWxOYfEn21RRyTnmSekwM6PLA1AoLVE2penGpSn18Jz+ZkJROW83Lw3UtTtM7kTekN7TuMzkDhSVcvclGTkljZmEho6CH440lQz7Bf2WeUf3ir0RAUfz3KTQAsUFAWuaOUaEjgLz+aRMtxf2zovpyt6tpSagEFi4/J8U4BCZEA9CwgQQXEcRkAI+X1gavaazNNXf8egh3AFEuelmHc+va1aub2w6JO9y4MJw1PPZJWkqHwRoTCAj1U5oZo/ao6mwMVYNk38RVGX+/CiNUEZ/xO4lETEIVTA/+OzJ6deyFs7QVGRd/hnOjeS0D+NNxiovpsaUTVLsE8kXuPtQ9a8DBmv+mVONEosboWwCsatnMZKbsDdZMnazpnByYw3BfnC+5xu6kb/RPSSsdt/WNKEQC5Bz98xblOYEBbmdyPMy+g2JDOoToArmchG/9ziSYlUQWvFLKgh5wgIimEx6zYPvfVK1kQVx0hFlMHbR8DBAEa97crUjNOkLLoBfi0YymyA+wjcVKGgupM5bUbZjyIors1h33uEWM3BQTtQBQhAVTRRqBVHkA72opmzKqLDTmsa/UZTPruN76Nw/QqTAnmJ9ZorwI/ZtUxpZslbP0uVsiKZD3d7r+rHgnpOLgJNs7uCN8y5VRB+f89lhLu0AcOrkjaNOcyrwHhOgcQO8FoYQrKCBjchwjKh8SWofvzCOI3Kd5V5EyQE1zGJ5mMWos2x81ivU0SpKCUqcboKJ+BBVi3Zz+QJWGB93VQBcJhGbm5yETMYJRZrCkUUbTUVkpOcCxoj4ooJ+5BvFbT8zAFHmIlhAF4ez3mnHFJlScnvVwLkXymFC78hYnYMiYdqz5L89zr9T453/WaW60rDmG+CSFmPjFPuCCOWsDHFsfxjchAu07drdaKiMw3aULXGGUwiaUTUiSXTj12imaSsMR8n507CyliYjSRVwgQTGyGGAZLiUzQD9uE70Ap1FChvMK7BhvYJpt8UD+1oKjJcfobwySVa//XY0IIILGQPgbaKI4znvqemzG0/+eaZm7yt57GjnfNo6Tl0xJRWewTnHRQPhDedroQNvZlH2OaI0NEZcQYFp9ghINQxHPQFXOsQOyUTA2EQM9tZLupcbk5Ubz9KlRRqPsRYE72CIIjOUg1qAmm8X0f8Yc3MiAf4YG4X64oBen4+V54fzjjS9GNj+kzoiXO5u0fnIZ7psSwKzRipZ55y7PiiIhARyQATdtQ4HdrPD0qnHLAPWeIyJfKAdXEV0QzxTD185GhHQRtkX2KaXpkwTCfIJD5wMoSadJfKRqpzpoxTYxna+3kN1pDRFUf1cCA2gKm8EDfB+bky9Fy0C54jHRI9emdJBVR0lINJhJ8SlIpsUCEZsRN9AUfJqqAtGSDu3f2zIh+Rz4P9L67+00yTiC8JgMabEBVQkcExsdXonKEJwJkhtCnUgAKPKf0DbI0D9fv5VLJBFH71ngxX/qDsgb1QBNCQHHkUoI6zpRfuehDapMlKCYyYiAKNwyrHWMiSRJLLAtT5/EQVfM7tdio1QirVGkiXearRCUuFG0xYHHNETRNVUk0T54HotIn525ig5LjgbcgJ3YtMcSdeCNAQEshR3Xm5SXKw09+PHS6kJpEY95I8QZZfVXqqetQTSEiixS/1pVBGOZl/OYLQ6MpzwF2RrfwMw1H9WdO6E851SIKj+T9UP3OxoQMNP6/o3bfdVRAgBBABgkGEAS3djXUCKNr4ZdpuaHM7Le+mx9dJEmt9oC0omEZ/0fk3KOOQijBYZon+RsX0SyCuPmUYkLFyOBYZzVWMb/NZkeQSmb2kT3G5a1Coh13geAuOsh+puiKAsj+TVirfubIEm480o8/p9z+T74H/Omw22WzYtkzUtglhB+Mx7zl5515hHrmOkKDYIQi2jqhGCTqHO0H7AVF0wQw/bYzH99JvZREd/4jaAhaAn/gYKAj8P4crNrbUi5oxYHMArOUlvNtUAb2DkICUKijOHq6ZVYkfrYjmTmKh1DWdglOcZ3/ncMHaMQFx2TIlkykR7TyxJnRBX5EKmtdGnIYy/WcejzMhgkrv4in1nBW7eiMTvu0bLBX1mfcxW94kPETlZBDU6mJ4z0GQAFc8AkSX3lh/XMcPmJycm5gXHMc/Uk5BcUBp99rmOYn8a92fia+7W7uh4xL6mRqAyQYQGIDqMhPueKgjmbENqkhVGyHiEBX55SuDZmhoPFPSgqNRdsEIyZkeXFXUTDOQZ5B2RY9+WUAmZjCsFUdVHzKiKutCINsekxWIqkrAReEBgAm5C5lOQBaI2C+uLhAFXI0TvbH4GGfHkN6qQp6WkaE0wFitxh7wnAMgc0EwhsIZBG9gqCNZXNqM6Co/8ybO9mmJwURieGQI2biK5ACfCNQUc4IizZwDEQnVxR5isu2o1QFo+dFelzm+oTJBZDs+2MBBq4ohcXLiCyOyX98FR7sKJuOD8A9db5ZD3xpEnZIbh90b0+vzOiYp/Dj3ihOdr7J9E4EpF+fF9ErNv6IwUFXqldZKczvJWnzZBoedGZsykEXGO5+Uf352uct8vtRxoB3WbWpH57f+XX3bIc/hAxn9iD3pwJkAzF7EhH7gqTJkSUczQlSZLUvSMME0JcmNZGRmpTKWpKFifdmSY8uIlsTG0rbjwSbdT1RYehSvHVcSl+EoJIRpAkjTFBRncRIv+xfimZQCqzwpRwSiVkcSJpTKn9JOYSZ3NOech/QIC1SkT9w71QYjXhGCbl3rJOuYG8GwEs33InKFYSMAI9cBb/bEcYQcaBZuIG0FXxCCoi7v6NIk30D9kp2yysIEH/D3fEy1hr6MKN3STlgbZKc11hA8Z1T/voFVmIzuwXklwWKCaGCgKRn+EJw1s7GkkiYwgqO5OU2foPEFBnDgCqcIHZ6VsYCiYoSmGikkL8YRB5oBbBpL18eGaW24MsFPyEJJQoIG0ERGKvkfsGtuk9BW/7Q/WlxRRyBSID9L/+9ZhpLUPwcR45TL0DId04pSM/4M/92DWE4DP/EIBJCFpm/gfEkck1ICo/+0ph3SWfUaIz1FR5wjJGHxCL5BPoOb0Dnuz9uDs+E6UpSWbRMQLTZwI3KpN6gF3cDYP/HFzys7Gey0tOpo4DDEO5OYGwcRhzyd8ExOR0IbJ5zqmck4D7F/uPJslDp5waiHjId/EWtEDahhbza8go885khLzZScpJi05qaBbyMsIzRN2SBU2bNZMRmupMCVtM8pRiRVTfgnGQj8xF8S4ScsTDHIchbb5jyEuYpFvYw9p/mbT59jbRjibSM0l5jJTMTyESqqR/JmMR7jO7qoo3PhpmYG0wudTO2GyYuM8JVoQy+c1HsJARRurIP1NP0NReQ+h0smR6RW9ksa6XSZtZbIOo7eUOufBt8Z9Wn/jTUYnr4ojFlCuNmXxm7vZnKfIpLf+mNZvm+8Rld2svgYWFAdjYZT4wWSxLyMjYsEhvFI/Q7R72YrNLQ9srei3kWkihojbSDcYrOySy8UTLUPUfUeATHNENewdYyDezuPxlu0yu3FLkaHfSQl7JgxUZ6ejn3XW1fciylRyEZGfqzephUQuYKiDe4paBZ8P6e00fUq+hCv7nL/Q/IeI85gXjClD2lxJoI3Zx/06BvePPSVlJYPKRCim7AmsYuAgesYJuke9qRkchWs3AfxBUegvzx+Ocr34Tl5Z7wO2V4Emtgc2QrI4zpkcRkcCMgQJzwmwUGsoNBeUBll55OzY9ZH5PQRfEqmPgSJGkBxgd4gESEHEkTvRhedsMhIaZgwBLCJhBKIOk7YwCEQY8O27dPpDQBAZgUUe1NQDab/cn8+l3IhlmPm31e1H1j/5DegTqbu1lPqFNCeaKEdZI5OUkHxbRK6g+DCzwug3zpOklfHdgex0Pl5HYbjitsanYchtAZn3vXZXxv/Oy5ijzYnNvOMcUB1WPgdFh83lbjzv1OI/PVv8uy97x4dIgzAWDgnUYKKL1x670XE79Wf7ey22fYdrFsxETwlsQKFkAFE3YREECggWwnfsZGHvctzV/qqlMFRE3anqs0cBDUiYiKI6YocDDmQg6QQ5DsYCoPMBOEPlpax1saHweYnjumYWz3rlubbQPZAgduyhw+zCiyuMIvYMjZ6XD6Fz9S+dSUpCo7xOxadlmwZZy34RE7W5s+aRsr83fRpCthTDNobHF93WehyO24PtrFAWlJPMxmG+5qPqeTILMSTnJKutjFufM3sjm+7W9TYcmporfZT6pZvW7n6olyRIZCV6RGX7k6RO+jo46uY9j6ve5xqzGg9pdjOAv2904sDhhQWKopv1JnjxG55CPbQG2q8oJVndEQn16d0fdnCm2xh0iw4wCwzZ0wOFPAm+sYAqzVTfHZJbs3aiOl5eqWSTdWLL2a/jki/6gmuqvvYQrSaVJFs/zHGGiys1fGUxSpKkcVsccZ2P2UJ4NScGTvkdJvnnL6bhIovehEfYz6JrcAFvYpxzcOZIoiMojiSzMn8le6US1pm5Qr44GZbwBmqO+ysAC0Sb5g5A0EFwDzE1UYgCxYsbq9xnj3JPzJRZ+j7AYfYsTM+z+nqkDEkPTZkthCtJfwSxZ8cvvNuWl3rDTTSk2gXR7NnNiqKIkkrr1BNhu13SVMWPAPRu2SeNOJPzfxpP4jh7yRb8bj2Ox1H5J5FBVk269oo/3FV8yXbzZ2XaJ9hrL9wmE2CBERXbNW1FJvBTbklxZ0CjtRUFWq7HhZhHkkoiQvp7KUY7g7eEC/F5osxn+9/T6HYZc8/kjKdiXyJN1VRx9MG86lFGz276LK+tr2otoj+Pp7lv2fIUdze0gCLzffd9OZkpApMMDiLDhYRUZ4nuEYNgioy68Y9wLzngdgeqbbs0Bcd8wPKNq12qdDvr/LYBr1kv2P0n+jH1Q2BUHYIGsA5KmmZyQJXC6MkIG/GXFQ9v7DsH4JJz1jjPYPHUoqOsIB0ifylPaQI3aJrX5j3eb3hlX7HpHaSPD6R6ecd0mecXGG93hl3t0BqJ/qMtHIWzQkP2MU4H0/R4B7wcZQdE2i3ZOQ75+y7vnuMfi8dV2jNs/oQ2Trdly9/8mnzeygWZs+AuqHbJCBo4I3ZKOxMbJqKOedn3aWs/v+qIrYaKbpA9YC9PhRRX/M8VlIeqKIXJKEaio/BJ+Qt4TTjlz0JNDmYOhlIRQjuLT+GssKjIVFjFsHq59wYxqOSIoPFgifGAVynmjHvEPufrxZPFiBykF4/7S+4zkp5DZAY/mZk365NriZXhecGonm35jdDGb+wQ7phQTnuP3xGKw5VeuWcJ7T21uMOLIGB1iBFfSgKs2CVmUxgCrIEcexF043zcFJPyQcZd9FQ/KcJTm7Qk+Nv+/D3qamgII8RAezkPrNRGnMuj8sqO6es9cfVmIvxYagoZArcTivdfjPlRD6zlFZSHs+BEmU2TSFBaHL0nvAPlo0Jw9+rFa6mGcN9JJXT9CAzzTkOQrD/Chy9XhKvBLuc7cagaTLipBRXpVvT00xy/7k9FkpUcFBZPpz8epEzQHLD+5zkJDPKyb1zAXsAsUVCkIcR/XFD+3AfDyfSeE/Og73FiZgpSBeMCTO4kBwgMltmbwyALaBAJTm12oCjgXTEIwyZiPpgRz0nZoZiuIkQ7PPoLEZ2VLSfA6eIBeflH8z9CnFLge+2TZMc922y+eDJJFUAouIhnPH+fzL8uSJ+fLv8nx/XF7+aGDDG/YyBJn6lxMEcCy+Iibt8GMPSQ/ZaaQ58QbVmcJcl0TfebW2UQFcRBUDfgqIlsANvmxgS7BqJY4F3NClD7y4sTm6oEiUBmIsSUZSMjhPDIE53NXtuZB7Cuwcn52bRoHM7D2FybL7QUG0y6CA9B6DmQsHoJC4ZDwHIXtqTIchkPzdi6gOg2baLWHXNgmdlCAQDmpcEwXCorMxClUYYNYPfvDIHv9vxKtsoCAWmkP+Qtt+SGdpkfDHldNI8/SB5Fds8zn5I6ZTbMiJr68xNn3UP4bBs+Q0m9l2902/AczKYGvY07io7fQMrIAvFLzf1d6fDdsTiG56NqiUwN04NrWm7xaGScozMkwC1wka9qYBZapddlKNZXrpPAfo60yYsg/W8qPCmdmP02ALgAuAC7oC6lBFygLIbhX41mzALcF8pJSDuWFaC3ADpAXGAupBru78jcau1T8oUndPndbK2KEYZARRjiI7DkjsmnPDW5gF07084C/XCnNQ9Qwi88n9EK1DiKDDEdfcPJls++62+7A2OW0P3tdKPj2jn3Yt1MsGEI4oC8nCb0NpQU4oKquUgb1x7PxUz2Kwq7lwqP68jSvDPyMP2/oejj5KB5O7FEdpuzOycm9xCR5HHJXPhy+ek48t2OvUWWmrN5DFlzGf3qf5pMzyxZdqn8ew8WPGbJ34wz4QumwA0Z8Z1pTTrlybdkNZcTdUzeT+3UeJ7+75q+5f+d/wPlzfPzdPMFobcA+OEmSUxuk3t5Ad66aUPErgh+pqZhzmd6K1UNltlKEt5ucAlqH4kdWGrBVLkAFDwQU9O9DkwPy6kU7WWBArgSoHhbdAW5dFD7mk6Bb23Imc/l07yOLqbFHQ55/pQW+12j0uyFJse90BGxtvB+aSas2N00HtRjO/fXkhIbQDUXsoTdiHeKBEVo+XMoUx77+5yfc3KfYUGf6cnLwPQN8z/bIOSb9cGT5eFDeoPX1PLuHNl4UOVDjipccoC5F5vbqqydnDvob9g8UCFnOiQn6URX26py4ehM9lMQS7l3c5f6hiGqzEhjrIb9Xu510Z/6NCMRQfVT4EKmnRmSgNmLKGll0KTMDaC2kPyxNJyoZeVCSRDbkpCMMoYww0hiCkIkO1IFIaQwDjTu4ZwpsrAGg8t4Ywkx/ibRISReDF9ceu3Wnu8aFanT1r62PK/j+xlnv9fwQ+yGdDYQygWnzQgdBD7bWd+qFxwh9ENZZ8uI5UMeNCPaD1l0LjrG/7+ibdJS3eznLtn6Cqcm67n8Poy7XnrCg6SEJIs57742VEtUFWzrSdiyLGSknrgigbZAEEJfPAOZczsIBsl8rsaQBUsCC1EB658Zd1W6F8BDqwCKKSEI9Z++W3oPpAbQe0SpI1asdb63tnWcI2mLNEWfFFQAhMpaLIOkHKYhIMiZxohISEqi8b3lHzEMpv4ocosidI5dKvrWtUNpJIEIsmsKISF4si2zpxBkDBCoJUEkqVGQtFo2oekCpaISPMXOuVVzgpX7pSQih9wStf/hxd2mDLNdYy5QTCQrlmvvuxZJ26nd8IZPeTBigXmPEYW36Qiq8yJbM039bLmCzysc2e+y+OI8Ns8+lvpsenty9VzTzVP2qNnLm7Rd7pz6VfCwmymM+JjD1Y909Gs9J1zbPAU/8Hm89zMerdPmQ3No7/+HH29n0b55emb/z+H+9MpP5wH58uB2/Pq7fWk5sxkvVAG6Xon52TgJDsVxBfSVnO7pMXWgRGMlc1eNqGCRiHUPNGYSpT+mTzsZwoEvgI0ftjkMpLz8eb6fe0rKDMZIzyfQ9d7j5LSm9MZ5oX7UgC+H6ESbpkcN1S4l+fz+9zTL8qqf1X/2E/15myUerLmIfn7fvoVmBrLvbqx9BzfHmSsvZ9UG/p3J7Oy+P1p279HmTjTidHPDvJcI5SCIEYwUFDdgLtwQdlI9Ad5GQOendTRxEgh5Dn/E/HP2f1h+LewnfC9cEXLL7nmAU58EAysEXjzHYSBluLtiMJ6wVUlzpAJFemlgc1PLMHbn+aeiYNIZTaCNqIBGGcMwaw7kgagM4RBAIqQqCZMgUUh8ogkCOQsD0GwkLQHsPlg2LkOQ5DYShw6D9FHmmeoOjEGcOykdoQG8sI6AIg8Pd+qd1MdDlIZjp8oPK9R3PdL7eEFHSN/trNE0A3s4N+Cj7fHbr8Iflu7EHJiBIgJUFTaKrYWQIkIGq3663iWh9YH59P2msFSaUaHFrIqkQ9BtUNiIi74d3UMzb01y9NA5WYkhvWk2odb+iqXHqhZMcDotmGZbwhmgxg5baVoaqjLENZGszVYy2Rs2VbMyY1W0jpO0qMurlmRM7BYieBw0VVToIaXzslnxBNo4gcA0wE4ggegfzylHjUmlngnshTyFZkc4jUNhiLhIDSPcDDYM5gz6QNWvJu9Qco+EUQ0SKJfbuicQPJf6Ezs8p4Ds82b+C7zp0jseb7pjY0go6nOF00HgxC11xSRsd8JfUAH8TCS5XodGIqbEHEZAJzKeYgZRAshFAEwbkTTTr1fepw5PgKLyQD6BgYIicQBVOyINunI2uCAvJrYqdGK+XfUhWJ4eeudUyNHZyQLbYDUnnbLkXUgpZgIg9hALeipMFTEReCACQxQaQOdygEiPSIkIcFjLnTCZBoUlFyn4CaPGGusULlPUtoGuF7evb16njXz48Fm/St0pgXOUoAVYQrKkEVxbmbTrMivAeCI6GTNGugeHfKRLJTVVRPRAE4dLS6PARMBA4t5A0bJ5SFmGIZpq0pHdhqqKnUAAzqnbh28W2hu57V9YfIlmzlqOEw1B0TcgpYipRBxB9AwfBAchwjS9ifLHMc5ybcbbmHi1FrKOqaGI+Ui9oWYJuAuiUBkX+G3ud+CgoD4gyNAPuASJIo7HvbhMFzf11SzZgh0GF4NwI6WKPNjHBeoHmL5IgaERSQQ9TxN2GC1PTIreCeCB5s0XdcndLpeA+WF4TkCibw33Sj8NilyZkH0GCtcGxQQhAShw51wxS1S/yylypG5TR4PN0AKejsxrj05hk4ouMynlOihRIE7gJvNwzIdudfcph1uiqOyu8r3Ng3uHB3jxAwGRkUZ8XMoMzytbSmTsEOAuxkGXJ4hSTCYsdI5YC3Ryh0QGHXtlonDoCQF28wQ8nfdeDjV3aJ523q9mQbIZB349vewZ5QxtcGyy6Blnz9cXWEZRmMQYiXneVKO5SIdjoaGO5cHlslKTB3RTkICKNko47yuSmyVgBPlL5pbCdPPkk6lzsuHL9WTtt1V2Qi0J29nQK6xQTqL5+qJ6aUA8JlQbQaIAi3YJgBYnKb9NAos/CtSxnAfeuQ6adJThrizRUfhEQdYCCbjAQTkLbONXR5j0xWmtHtMoAXuelROCAApwm+pw65kdkM3Uu+aPPKcqGha6SonRO5v2aX3n6dg6c5NKJUARTrATUgp3Ypz5o1Nh8B7jzr68IaQVEYjlgwtJuuB32eA6ZTuSTu3ajR2DCwPznuXoUjuah35sG/D72LZFjyDQdpusDhimIqAMIeJ1EKsNW038OhlhPF7bhzh7dT4Zm531v1dPRYfKEUOCAj1BEUm56p3t1RXxO/ihFvEU4iKhUATwxVXxDmKloXiDCICD300wQCGBH1vR1TIXz8+UfFaqPZpPEwl9BWETOC6tbnnh6vbyFHncLAgHMBRTfDRifXV1LeXIr4ozHbbRKddBn6YZz0vMO9nRCAmbERR3zSu3ax4iIFQMEC0AGQkQfcS8RADqEoZxolG0E5IjIBz74PYC+tQ7Hvdsb7Forbi5kewxt2DrbKJEDKvZbxwQilDEI2Ae7+aPfVIDBfBol3mD4M8sFNw5IPUionSFEQe8QD2RFcoqNyA8s9XpjDwOp2vzejYMAJeQuaxgtwyJWN5C6+jyP3OAfLCwWaBMN8GRuuK4yjYfNBPY4DDBpShhdkdxhSZLtqlHJA+AFyA7m4Z4MKCLMx0K2U7cNUeQzAXiuAyOA6puteihq5qd4Kh1twgsHS2rUiToRDAxdSxbKLhZzkO4aFjoG455mIc2KUIcGdk88AIjW+jqEq1DTM4C5lZ+dnDYDohSMB2C9e4mYve45lnRhvEQ0gBycUUWsBkRasB2I6PAUhoxH32CnsLuwFFPiHsim8TeC7sEaM9Je4UdQsah5K7YXV5U0RYKZS31QnOAmEWDXoPJYI2Op7qGBWOeqovy4517O83b3KN8Qelnt0HAdztOGTdixlECGPcikO3bnYVsGvKfFCplk2xgXwr3Cb+LBDyQOBqiYIAmIIbOVEwTmGZagvTFGqEuaOhRNjouFw72dzYpQTv5c6dxxJBZAIwSQSxh1oOfdg4C6aF6J14S5ix3w29EAXaBzdzoixih4qUhyzCSOHgBfiguZ8UdtHgulzzXLlduENgnYQHAXXR8UQ+iDpAUB5Vj0Q8sQx2FOgMDUTgMtSwGj5oewjzY0sWTspHvG8HDzkCUAdGgSGIte2I5kF75ajvPljbhV1xS5lO+ryWcYNnVleO2Qt5Djqw0h7X1g3KMcbLo1C8cBzgLYCNOCgakTZJ5q5JhyDyeUzew8g+HL373GGhXPfWzaOsDbomsJJBrs8yUdCD8CRHMtt4gZ96qF4VKlZKe3tSVCRXb4PqdwkSzyHokTuYxQjK65HrKuPMk5JJ1KVm1muO8fYdYSWNOTcqeZTOQTqwRsE2J5fV3HaeIEgOcMGuuzNA9hoAtcg8YY1Do0aNz5co8wsnsBZVTIMnds7etlPUVOIqCMDho8HJlmHWoXbPpahXYBfBlqEHA3Zp67/D5wKpInEVKJ4Zq88+TUAZmZD3CeDLjBljUlVXueCNw3o5cmHcLlusBxvSx5a1ruShA6AXzsGY2g97adpa7dW3O4bALodhik6XOKojoPjc6SrLqASYGALbDWA83NHA4Bo0jKAVvRZUEsHQC8GZlEU4DaOWanUEAhFV7tF9Mc1cYHNzU5ocYbBsjIIMikjURqI0RVTHY4s5cVg75NqZvsNGYa5hazyFRQzJWo+PFezro2cu/UFn14h7yKcebXSDFLCk7H0zxllcol2QfBjR0TUacl1p5AAH0xEHPGz1o988l9jxAtvQFOgiIiVSL2+QzGoIkIoeIgg/IoAeOr3bF7Gh7t5OAGvs8hpcUUbFlgidxvYfVaAaPvR2TQine9DPE0PcOE1GhyZCKjEONcLZsQC+5A3CGvSNDhygAaBBE5hUFUdCIm2GUgobpUSbzJubhCHIbPNx56Ro57dW/GEp9aJsI7owbW7lix4Cq7vKFjxdA07O6uA49U6IGCCIDyQQrxgqHdA7J0enI6r5i311sGJxbQ21dAwFyJqCYWoLJ4hoH+mVjhMqDIY96V+efJgLbQrhYGf0bR4mzFRyYiinm1BeYdVenJvxPVQ9fGmQHDFTYJ7NSye4OTganjgZPJQMtw2MFLHoPWTz4NGryPU0FwlgvUOA1LNA4MjO4JqjgIdQIqYGBwQp5oCiGkKIV2oKnFVresRR2jIXjUFN4iPmIPYhhEgDc9SkTjkPfgs+TfOFnyald8yxkAbET3oecBmnWEE7iOH2dUv6OhX1EBPiDUQ5iADUFROQ5uahcnY1edGnoTWUQNczyZhfqafCOcUfMBsRRDUgnpIJDmjIHMFMJEENyHARQWkuwHLy0StracmeWvEu+p1HPNDn57LrjUlLobhATsVS42KEBaIKqeXrn0QhnD0Fw4PluT09VMoczIsZhEQ5gAYII6wUQPTFF8xTd9Tv4SaV1zynJ6O+goTkinot3S2ha6R88hRc+DqAHMEAOEgiPhiSIim3T4Aone4a9faamuhppTjMoTnFlAG0FFbOnTljx3e6qe4CXNQocjL9Sg6+TkOiXN3o0X2pqKnmKWgGhFG0VkAxACkFMoq8QAawD1EXKDlEaxA6gmkdjjNwFsOSbldaFBpBPVOMzYuUVVMEEVewamryeXeyBsMVHX34MiCJ0igDqRVD18A1vN6pT0dmgOnpjc95FpmKKnYiL5s0JzFSBn5CoP0XCi+nWhNzV+GJkpsXRw5GhotYvA7l5sB79mZttm1jY02trZtmbDYeVGpXyGBwWoO6JBFDzrOPNJ0PFFWOKJvuGnADbBRv3bGfslhV6xBRLRUTfvzyXtnhJFN0M4wzMOUAAXFShV0Dhp0xOHx3XP68cez15dDZ1O+RTUOanRq2L2nsBxpgVBpFBHEEXNiGZjTOmzEYRRH5AFQsMWZC2xpFxSevUXKPD+/rZYJ7HK5546n6xGHqe6H1mPXDgDI9MEqwv3ff6Uobty/XzHNT5MvXvc55bD1D2drAwnDBQ6xBHeKKvmKXOWvXSl0Q4RVOYACFIQdXUqvNZ355ONeNbo9IavaUa3KSCjkMARHM8Ps4vlpYhBg7QK8tCoDwQesUzg5ndObGM1Cjrw5vwqg0wUF+DA5B49YdkUXoSApcNk9vMxC3XhyyWpE50ogH1FSbNEFEtBSSbaLpqmWDq55RSzAO9nJPfeg5zryc3CxU7HkQUeYc9dVy52KIfVHgK4B7WyGd3o0JWoPbFER4Q8wVPATcsmu1QBsiIvTNo1zbRU6RHIiIg6eoFKFw7Pk9t9uedi4XgDIoD3zQQawQJETxBRPV+HJ+oF3pys7vta86mpjY8ZJ4CLo4MdLKiawRRMB0gKaPus9vXq7e0FyNHwMiKI1DqECJwq9HHm5A+q8+zKLqTx3ZdyNQc2779e+31eFpxLvs2LsvcWPY3fxxyvS2b8EjIWM77Pjx5mASU3ICq8npzc/U2NA3PHG2w2g2iPUFEG21AeidQfJA2ec0ptUueW3AbOtU03KBn10aALqNnXnp5z4cpzsHh9HC4c2iAqwg6jTo7DpDIPVLG/A5DtmLt4hy3S4SOvnrYvyCo5xVUoCybXHdFkRR+TZiKCdHPwB0Cs902DUnHgu99tMPTbwj4McdUTzbwAXocMOuwtPMXR8p3K8ToVQ5GnMtyx5tzBtdr+e3gCWFw6DSMHhVa3DIRE+QVQ0Tso1NS++yGXErFIQ6gB3LIue3DiFhIuOpOUaVC1uUGYR28rmEwMONysm0eR8eeiHHpODP4jhSFUqANa69ejz3ztE/EioNois0DYVVmog2qCrMkQynr5Bk2fenrZzwD7bmEUFsoZG5Vggoo0AosvR+ydcPGG7DQ7VFGVKOSIqOoQjdlIorv7w5tUQah0pMoUNhrNYGt9AWXCMK+TSMvLmSSkcYVF5oLItccpC0Qs0RMziEYzJYljuq9h2GrDgCQvaYEbnPOkUxjmlYpHxiaI3mMnJq1GzXrCtnbtCHTYaDfOXut6h7s7osYAYIoKN0hdzPeVR9iQ4HthoLEAPtQFAiERAYFKgLOZNtPfLL/wZR2hi2ZrYReLZDKwtkbXGpHMily0nLJKm0ltJNqG1U2VK2oqzImnGrY0LW2ybWozVqZhs2bYQiQILNRUVmtQTFcGVoa6lVuZLu2M4QIEjISSIiruNNJJRqI2lXScTlyYLxk5Y81rzZ4PPkJDsCy4Zql7f3Q6IbCAhBBd6VVHIIJ1KUQWlJMNOwtgMk3L00iAsLDBCa2S0gqPrsBY7vkAK0woCFsKnNAWg0W8Z0hy3Zfwmzj1LOmzRwKCS4OnMaKi3TzhuNFmoBrSnKlQmlr5q2ZRVk6i73rk0SMY0rUDpB3LbC3EaPExzkd0GA4ChJCSgMOmcBK2qdkbJKafuDhYNkYHEN/XVGpRIDkRcJqAiC8k3yDIkGAJBkAyGAZMAbTWUxs21bRlptaatYsas2GLWa0TWaaWsarCy01hpWmMkbF8ZLaolaTKaak5kpXJgWuZZCrZNNqmaarxw56uTzeDUySrmjqaGWDHLdqMFIxkFmwioG1KXGlHLVFmoBy1UYwxqDWEqcZS5WGwVW03GZYttqW2ymxUrUzNDTG2xowyatrXu7ORXTLCUbr0WEQcPg9QmiwNtJyiN9hsSEItVEb0G2A4l9gags6WbObA0yuJBEK6ufj6guUNlyIAsQniCeW2cKGzrlbG4bQFALJBVDWGQMvMkuqPHRZ1kxBUYbD5kIKj006Cg6szAeSStl4nwgb04EJICwECKjbluhlgNDji8DcrQF1kW7LegUQiFtVpQocRmkYq6lGE4d4mFfzbMUISQtlaGxFyOQZI5iXVHMZUBRd9wuF6hwZBRlycPBdkFb8GjvntocMLkziGw0z29dLC4iHWcvmhk2c9QII2mw0EjRGjNYUmzZpmWYzWGhsbTQ1sLNTW1WMYbRsMNGNNSsYsbG1ZMabVUGzVTbGbTWM2mtbVrNjYzSti2y1syNmW1q2NjCpbVmbNmo2j7QCtGkquNWZKgy1Zk4OXFTcU0YmtLWY0bJtXTNnWzvva1d1UhmVRtC2IosYKxBNXYL5vBbCmMzMhsEYcElUtBunwccNd3akDzt2PK7IEqAjxLMIPEhODpQLIlklVR6wAFhBqr18jZYx1NT7EBV6WsJAKI0mOizUjrOkCwdS0598b2n3xqWMcPOjQdjxG3jL8Um7PhzB7zbsWwRUjyyJqHWG2h7QSVe6vA+8DXD7jRiAqqKCUWkuhMFg0GwpUF6sgViVJddhlBQbCxRygtkJRgHgeS+lqSFVoILLqdjv3O3mdJK+IqWygLalFNR51Xry4JTy0RzPBeTtdWPK1x63K5Yo2bNeEqVspI2KgzTlziEGbNJK5YONXMHDOalmE5hrjWYZtWNsY1ayzMzMNZjMaJCBGQzAjoGjttVvk1Nrw9Flwc8aBdQQcT04UwRskQoIWx8PoG1m6iqcxe2A/Wo0Tnm5g0SQjGtukspUDnwCqPQLApbN8gzhwfmPFR1A6ZLE5vlEKxKbd9HeiiUCCBBiEEiFFA9u2iLcjcjtBPUUBdGCBtTEuvxs2VxDAVFptKNltliwbJLrST4J2lFcODgjBmQFo+wdRAXaXtpWLGcreKkZAkhTJiHTkXYrDq2lVUs70sHTTJfe65gE0wMEmFXBR8BVMOpPQygKOmFF5DgWSGw5OUAugF1q9UG9WybOUprYk8DYUyFoqpYhfN83GbJgN3c8end1GsasLNVizTNjZls1mbMzKy1lY2abUrZM2RqZazYQtjZrMZsQratrNNm02+cRVzEg5GuaBS2VXMLnGxpiUtJFgSDBjgrHfPa1zdzNtirmjAKhIjWe65qKJc1LNzRbQs0krlcaNrTJtNbDbDTWjrcpeEy+dmsfHxMgCu4WUgBEogEvHjqBXuFedXKOjVrRplrNOwFkMgcIA7CHwaF5AXs0kNCgDsYAvo9MDKKqT1AGyw0THac0Hqk79Rst77IlOWoXPSEqPIQdpUBfPAa5OjQCA7ME0I6kXSGlGTdzhTSntiog8QDUII+2Hw62ek16SxTgOnggmSOwx0srBKiVyYWVhaWRKVOHKuTOkRvjTuDm173vvt+Oa+NRclCeoZOKKjCaS5TZmsPZVFFc92+YAq1TaxHTBsxyJQlfcizocDQWhbDQCwUAuycDZPL+DvPFE2Pt42HbA4hIAhMRCqgzAkGpeDJJJKRgeA0XBtBVIysoPA1WrSZGmbGGzSxmUbGxjG0amVk2jDNqZWrGWmY1aYalqxqY0abWtNjIRjIGnsCrZzUKG4cCoy5U0sY2qESKvDHyZD8agbnBVvY++bdT05JcqGcLFHkrn1hLHL3DgXqiKNt8h2NgHR0IHx8eDRoK7YaflQoioGhFFQkXvFTUJyTDyfBIXQ33jgRXoRA6kfkicLA4vNz6HXKC7LTh2wd7FM5jByXJNHrjr1kOAtueg2e4ZZENYboQ/Vz6aFGOlIB7jZgIo6NjyOwMDiKqpCCB5ehSLmAsQjwRDv1K4CKij0ZbmupahPMVue7me+nr6aHuCICh653fnh6vsiMjRw91Q9wFEPcRDT4oBH4Pi5noSEe3ztbUM/YZB7YDXUpNCAWiqKe4ISHEPc8fdH7YnezSR9MS5wncF7nlKY+zJ9Cd4Kh5LPR3uhxbeOYfWHlMoPRA2c3LTx9ha9MMBR5IHRuHFSnpoIpW/t3oDwWMk1gXiyqUENogHLRSvoBY9RfkJT5FMJARPcAEDoRRS7FNFKYdnDvj69PqF0zjm9W1acz6WSqB0V+0hoiGsQdCAgp7YAeoKRzcnh8NJ41z9p0BQXEe7AAQcxFTd9kqitOoDqQqipRDyEA6fdVI8I1IFyaMd9W2ugWZlgnHFA7IKKP3AvEziIKob+9nxucG+nPQNwDr5lGHwHWot05nv45wjZDRZFFekNupQgURJEOkR2GBiA0IL4yoX3FQEyxN9z1qYXo5P1bNTnW9mNc+MqdRc/Zme/XpaSoJyTHo984NuyaW+PwBBRURLvMEAXIIDqbul7l7hu6iEi47Ue5PiyGWNxARQQPvk5eteQOYhdiAg8wOoIbJxRW+jxxkfPq9zS9EtTR31sfPG3LVzJiI5RFtBA3ScgSmwHyoXzOBq5c5fS9XK3dPBywq+CZQuQsfU6MGeC+YPIRoWYwhrcp950XKFKaZ+ZYw/x8YBfYAlCKM34+jG1ZBe0Ic+JkKTyhPH065LZXvusrr0sAVgzsuueOrFz68mrritYbTuQ5yabpw2sndgO+pQ9ufGLvxr0O/padZ2zBPXZQATme4I93oKaQRLwBJUgZG16Les6GG4RFEaK64XdgMsLLI8sLbCB2DflcRb4ernw0elVy5jvkpIO3jQWMq6h8bek94yvmhGk9Mqt4upGw2AvlbuEpl6DwdSs+8+kGnX/5igrJMprLk8O8YCSkKPwD///////////////7A+Ud8wAoCfPo8+3W9Z4AAAK2K9OAAA0BpaKBgCiGUjASIM7cBRV1rjA0FRumcAVDOzgolDJgkK5rjgdJzmy691ibZdOnKlDLYNbVMr5pR32HRc+3epYe9lvB9wAAAAAe9tzocBwUByD6E+vdqooC9gZBQAlSgoJaadaSABR6AAAAGqEfGNAAoAAUA0AMigC+AwA+7Bx7y91t3YDtunKoIXJGE0g2s2Wt10+temj1nZqa0i2kkpTmbu5yUdhtkptrpXutuGFcrBogcmAh111C8t7ezgdBu5WXA97lduLunXZtsM1k4RUgATEAIGgEDUw0p6YABPQ0AA0GlBJENAhoFNVNTIAAA0AAAAAAAASQBIlFPRigDQDRoAPUAaAA0AAA0CkpITRCZlNEoPUGjQDTCMjQAaMgAAYQESQIEAhKo9RoNANGgAAAADQAABEoSMAEEmgSbVP0miMR+lJ6QZoamynpqek2mKZAPUzjGPIMhg5FPRB5BxDNozZhzjFoHOOyYB2dYcw0B/1Z2yAVHaO6ds5B0BNbu1ZhTvEvfO6eM+00tZ4Szo6QyHVHJoEFX4Hy2maSCU48vHuy/U+x7DiGIn9XL7tPkz4ZayQvLI4w+m+l3Xfn59C9Awq0Q4IIviEigKfAixz+hi3HcqH4xwa+1Nd/ERhnzkUlRpuMPxD/0NbAIp6Ji9MJyF633mYpFPv4QzeozkpjnGXQ3HoDKf6PeP/J8T97OBT4FveHyXHyJgXl+B8TISD8SoTKb509wfIO+Wnu3F3CH7hKPzIWfO86Y2HEdDGdDVx0ybxBC+wsO70HuzlkqX6A2p+j9+eZ/P2qrOvSGGpO7+tUhkyQ/43i2V2JjAwAgOUcCvUQtgrEVzevHhlfC1WnDvSyETUN2A5IUwvlC+e8/pVd3JKJwwZTnwsvZgLFxFeRSyAf4eKrQEmMLREBkMQR+LCTbWI3tcqav5QffBxn/GbwUniwmONO6dkt/dJ/P5F5+Sk1BsnP6pP72tong98busRmvtFkpC6CG7AfEXSaM4dTCfc6kpvHWxzQOnC/1dLpR7DwkMvSAM8BHTAETEQEEY9N8IwNeTFX956UvCCIraK0gHdPX8R7+Whx7+oHW5vTDciS9mleas0Nh1g1/CFlxY4lEubCqEJHodiqfBRiJ8J38BYlGCYx1EeG+yvFsRzdazBBLqJSAzn+73CeXAfQ9GMIfBDJr8iH+oe1Cc1dT/fNjQxn+6DexadoHV4TwfWum7a2oBUKREhWx9NCAcRB6amHVH/xJLhEkrIHEbJGdAu/iHTt+KG9YIQebnQixHc/J6uqVCaH1ciGukqHi7h+T2W9pDgrO/4pds7enpR+BDV3fN2PRqP4v2Q8pwnjh7P+6fY+eI+E49c66a+xEdZlIlNmLJGYyBEMF+5Sx7osCCi+6DSLCEQIp8vs6s+x/TF0CanxczVqBEpeXfjIBUfDiJUYCH5BEU5IcJXt199GHJdTb3b9xcmD4r/JBVUPI4HMZtkO5pTny/FFC0UiRV529UPabop1Y7odmhyQGPSnmF5nruVoMlS3qEx96wBccSaqk74KbSCMCB5gUdlCzAlnA4tFLweD4eDgA/Ii9Bj0UbRT70qPmSK8QkEkGiBItSokkxNhsubmRmLY5i2pOaTarMjaOsuaG21XWKB7+3PvcpHaDG8QKu7MO2tk9AqubpJFZbmVsLvojr2hQnn7OeX4GPfxoo6GjPj4hBEswRE2m72nI8577uRUsXks2mCXfvw8FUR6H9ZhTAVzBR4t4osmGJIfrNtXfvNduH6zfzEwMbKhr4u39VSlXyb02kOvjSCBc3AEhbDAvYIUNtjZ1e7XYuyMu5DQh2HDoVDOUQVcMIhkkguNbdQcq77yRtvc0cCqQMcXZGE/Phizcy3eztuetud3arCoLg7kIUUxex75spsZpPYwR0Rk+EWmABAIKqWZrIp+upVA1VWqUNqhVJWYZikJslWjRFbBErYptSKRY0oHGicmqlLaLMVEjhpc2YzKA1YaxNhUg2SqlrVNqVKjmhUnLBUtpUlWYksIYmxLaGGW0RSaiq0hS1aS0qlqg5aUlTNKlc0tpVK2KAcNnOUDZJVbJKtalKVpFXCUxIaxaa2I1lSrLUxqbRlqUYybK2CamQoZjMhmS2MtRM2ybRbJUPZoFerTw1JV9+jzd7sUvDUO245XL8airFzKOjxnFQr8dfM1H55SdMHhuYijzqKp8ZK9LG0kRqqlqkIk01SBTYm1WxrFWxtUNiJNhEGyVVrQhsUVhpHfJVU9LVVV41VX4vtfL6doeWQ7WIq7mkrtYkg7Gm0ibaxess7vy9nydno0pF9Yr2lkou5WkN40Q223JYY3VuM5HlendSVyeCDvl4dCdmqlGGUNMSgZ2GxRwoAslXkAz82sXs6M8kml3HCgC4sYSmhEF0IAugskYm4aCFoRtXLFNybjxM5Yy02DNPsDTS5YMeDQWCzDTBm+xa8BRXF9EFjhUEEKqHyVHmsVxeKEMmmVHrXEiGuxMBBZMEExFNyw3wMB1mrkTTBBxSCpUmMIdNjmRxyIRJWgCgUKmEOJrZ2cGnAk3wWTdklb3XfAWjgjAJG+jNnYmCG5jc3mMhMoWB3CFIotmSymwFbFNtk1lBmqrNKVWjKYZMwaxkaiq2pNlKra1rWVsjai2pCthZqkbRbQpsC0yNoWMq2BqWVRsMxttLMzBGNDNZrNGaoY1bSi0aNZGyJtRYymwhmZkbK1ZNqbUUtkNUiwisgrVbUqVmGw2lWMm0bbJlZNZbWbGk2kzTaibNajZLYpKzVrDTKKtq2its1WtsGaQGzNZpZMIGDU2prPgzUVLmicmLZWya0iVxjM5qoGGrahRZqpWtEtlOZCXGqiLabUZppkompcNUjYY1G2W2LabSWa1LWtay2UG1smYa0MtGysmGYF6BUEAQkxT66RJEpHYduRRPoJO0iYaAa1szTM9SIy1SVwccCKOGoK2qcrVVVYMpSaMVUNoCLWU2iIrjVVVxxySUc1RYyAraWZBVxqSSxxWymshLNExbS0qarRWyFlrMhmVUstYaxEkkB5ChpZCBlzQFlLBc1vuGIa+fhy+fSVOY1SPKqVmTgcOQx6bm1azZ448HRuS2dHecbLarN1QFvSCBekouUkAIhVqSnICCXGcTsSOBIQoJUYYggFRZisb6JEUvTsMyiAsEAW5gu7jR3687GdsoKLpourRcWcCli6JxTS8MVAXlvRsgRKOkooYJJiUMhmUKQJO9ERL4hHHBTePCCeCGuUKhXPA4Ym5BVBuQkgKqbtNJrRYODZLmRvvLJaBHRk8N12MRCDcdJcvDN9bZOS6m2mDkrbN6LKUl+F3gFwbsVVTdLnbg4MCgLkDOdZxgDNkAFyQAbZMUuWVw7uEimVuFG0pQynoimNhzB5ZMmGQkIBvg2GEsg4yZLQJ92dzufI8HZ4wbQ2UK2DMpsts0NVszJgZjGW1tUzRjM2Y2LWaZYstS0mmWas1M1M0pizFFasyzKzVMwUthhoWwCbVsmso1pmqpptqM2GaMm+1UC5ilBsVUXGgVmlVcyooY5ljU2KK1kitZG02awavucGrLyv6tnqBh3c1ZiEBIMiBBUmbGrTTLLWthrWTVQtM1mMNNYbTVGkFjW1NWq2rDNhtJbKcex37dpz53LBJCMOrUIAssAZBcjko43DQXN8aB0IRTumARFpQVcjGBIDrI2YUXajO7GrUmwEBFG8ByBs8UZLA1topsbFNSDwcFWRAWLMmYughGCIS4cIJDyDUAyNGGG4iE9GhxQ60qnpVKL6EGXDIqNHUAVjpCQlgybuVimC9FDARVlFBe+Qvtgz2KxFplww3RACUQTouWOACE7JYregrzKhYNhRKaBMLQC6m/G8eZ0fp68q4BJg6K2eNgMCqLtUNasu84sm9jRuBs2BAyAMWMNGnd1usu4Vg9g3vYc5HPG9jVwMscC2d7N3IXDAWusiiJFY0tbSisFkVaYNqoxmww0ZiFZlmssKVlraxpZZmtWbS02iYyjGjW1MtNk0athtWUK1Zllsymq0mWZmtVJabWs2mlFZajabMtBlqkraq2zZiDbWTYatVJBGRZAgwUVNrGAtmYTY0YvV8mwcB1k3clJxk2sXhhopWSEkBkQQba2q22m0sYZtkW1ULVq2KSzGskmMbFmVsWtrGbMssmys9uHq8Xa664ucogtT4N2/NfRmmiEU8EEfcRFT9EAPHajVdcANoBBBViQZEIxYSxMUKoE71cHDg5Mmv1FjCx141Z4AETTkfBpLl03/XTsOqUQXB1c5FVGh1ENrPIX20XMgOshwVYvspdHZIAqJwY5pBVEWOFSEgegYLRavRk44lkBCdk9YbB0MvXXAxKJpyAL2+TR2Tu7MOyQoxBetkUoivhYToxPF6XTCVABSlarynLnGgNjJpd1valBVp5MWNGxw4w5efS7nY7O1orIyRWzNrMtpobSpWttTWJKysayo2KUzWM20zNtrbLZspSzS2NmNM1No1jWsZFVrRtMiwjapDYm0CtGrbNbTMVU2VTNrY1mtq22DZtrbVrMzLY2xtRUBZBjGSEjE1RTc+hxWjOd98lhOPHjx7PXw8zc1VFmltG0MaNYmyYorbWYNNTVYZZs1hasG2TRtGG1pW+lN9NyzvfYsSEsl1tiXVVHmccF1MojZVUyxiwzZntwCuuOo7hgyZLyLqjNkQFsQOmjG4pDOHQOM9LTC10aCtdE2y1KjZiZsB+bGJKAvuO7fbJsTBEAFzClUV1M6cOBJDuddvN58XjxDFRZmu7DlVS1Iy5mkUFuS6zaLnhg0oKtx4ASVMUqhYGrJrypSlBFoLWYwFbmLGJC3RKqWbsguxieJWy4ItJqSTgKayiFZSpnBixgbAzJUVr/CxEFnHFIoEiAoFgwE6iAVmpjRmFljKzCK2as0bYwyVLLLVrMraZqmarbZtSzVtbJsbNhsyaLSytm2W2G1ZqhW2zVo1Wa2bZmTLIlbDWgVtWbaxjGs1mHtp4e3bqngxtubuHMRMO+jfJoMmiCxYRAgshsm2xrGaWLQqsZbJrUtpoZbMsaxtSpZtq1pmsZurw7O524x3PfpXA61RNhnfoBevZ2YmZmZUqyg2atjbZtMFlTW7Odq8cId8AvrgOrUxcmqA65OLUr6M4NCgDoJ6NlT0ZjJU2qtlVmIbRUpVIRMcgZxEbnkzQGlwm5kxIMwdNiA96BMuGBuBlciqj0Fg2LFNxDk24HeWxiwnzbjTq2FsiAukkoeQLudDCAhBYAmmViElUnhUEZLBa0LS1BRIkAlC8J94TwkXlUeJQ4SEOu5Iy5hBfgrSqRsXMUTKhWUEWp9qMqL5FbWTIFh3Ih5Hw1tNHHGdphIAWJqFusrZWUFZ9BcEa3tLVFERxDAiRvN1jbRrc1WXY2VVHIRS4WubhoNgu5EiyERbDWjbGNqZqsZs2mZZqsyzJpZjGyTRqM2YxqRWwVbMazTZNWtqhWarNNq2rbNamqSts1NZmYabWm0s22bGmWMbZmZmXZ63jo84nny5FJ4yQOPXnlfKOcyNamWGNJK1MmMDWIVstpTWBlqy2basrGzVaqxltDZLbKCrIQlwpDjng5Nmg0O/K1o2aSCVWJVZd24zVnoErdhFd6FS1GFUGnScnB62ODVX+HPGAeDV7AScJWS9ZOcBy4xs4lFAoj8QiB7OjlGxiCp1AeON8BhB41oQsAqHJDSXVxsayiWaM5XfWwKWTDlSzZUBckglVSJl4sDKkK8/kE0Eidy091YKlxUh5wsMrVoEp3qHBRWqRWwziYkVU6RaFAzCYKbJ5sogbJECsk1Wt1MTobtwEMoo8mdr5Oz1KBUXZsCBzBkQD3EAzERfERMwUcQQqd5mCn1ED3AweA+x8uhpMzY2lmVabGyMGam1bVmGaFsFLUabVjMttUto1NjFmwaNoFa0ti2VK2Fk01qhWy2pta02oMbLKZNoxooSEgEGQCD3CdWCu8AaLZO52vjb5x13TsONZazGya2bRppiZbJKsqzS0zM1ZBWYaxmzNMmY23Lz1cvPn1OrxpCpa3liZMSCUhgn2HNCGyFyKALiG3NJhu3AjaqgNNDBBRoAlOxJNu5rm1tlW9Mdm4neQuVJGC6q52wRtEuVk0QA5LXHc3enCvSa0XizYeVLqODAa5L2gpl5SjWFL5L2iDkgAC8340b7JmwjoIAC5iIrFKLbUB92oZGOnW2roXMCUbHRwWJSQMLphPgAtcDFsxvK5zY5aCMu6QkkLmu5RdGPBxY5ySq9dFU4rty7ebQDBNb8OzgdnZ0GUatTmCiLBMcaotelRRg7cTbOjTk4TWxd0GLhwFBgjGrRsyVLazZtNZlCs0222ZjRmbM2pi02jLW2YyLZqUrTaxtDbW2azbatWabVqzJphZmUlZL9FGzk1Tc1q2SlZtrLNMRkIRhIxZa4gq7XzhKHRN839DCQgaJWcUeD2eT40V+qvG+L2C8DBVFRO3n6ejTQxixr6tZXM5pA5iJaYm1OYuNCDjXNArarMOWKScwOGqlnGmqaxtTUbDWm1MzYZhppIPqFQPHYKQAWm1FoV5b7XUtco2ze52uxtm0FXjcMszWzG0CTJNLnQA8FyEoQRrboiIZCYuAK1hOhUYMU2yTUHti4iCwM912pAkSretxY4v0hymynGjjK4QIDmtksXDa6flO+DAUogxLngNqrdIVAgwOXSKAXMKU2qyFZq+SIl3k1Tg90+C3hysh0lg0LCkhCSkVcjjdjJa0IfgY2ByRaBAAmlQrtYskEAlWInk9bchJRkCgacspBwa064nvBh6GWTRVsUNqhrGwWjZqtmyKrDNmbaaW2M0ZmqZjVMZMzaiVma1sBWxilWa2hhJbK1YYaZthbe5KUyCsJFzSAycMyJWarbVlYwkFAWJEIwcl83daoduLWwY4Drv2ddnaV7VFW0aLSINqgViPPoeOXeBX1O4XqqZdj53yAr0n3O1hyCPa1ic4LWXF3ARTRucIVYHrYDSJHrFmyCC7QymcCXLpexYsEXgtUB6petuwesISEr3OcgXoSdBtSOFAObhSig3kUN0kCSoBTB6rFIIFeRmco4MEQ8ywlsYWVbg5DlF6trQBTonCI2KAFVpAnNVK1q1TckpTrXUADjWKbGDBZwGA0GVRFT0qiIwUF36DgwuLG6ABLPBt8U/el0xBfHfNjYuuqhwfGBbG9nRDcc6W0CweYPolpHIOk0OLeOi2Llw8vqjG9P6HZpVT9RABNyCnjU7YI6anNGcHA+Dz9Tvdvq34aUeSCiLrJA8zzldbjPBENg14s66owI2iGZ2LGOJq8KIr1QNZYSboZhUioqJOkSf5Ic6TLcIgcwGXLoIEL0oDT0IUSJ3l0KpEjA1IijIAeGFYN2G8Sxv0WfpL+vvJlzM0p1EJ9hRwTB9IbcQ3LCoP3FBXDMJnLsU30h090gA71QPxgA7xQcQAENKe2eYXfgBaEjEiSC6Wd8yuWupku2PXBux811NYZVG/THZA2DM2qToHUWrBz5e9myZD3Gjjmgpllu07wQa6kFhdlOEHDCSkUKHxA67zu4Xo7J4OUq6XJIQA28Dn02FUqKJ5IqKGxEOo9UoclTnTxKQg7oWHXMAtm0FRGjExqY5ZPHMAt3IgbhC9OTixkIyHBsgZgKdoevogUAfkFXqOmoWrV3Mc0XMa05NRdvqfGFlH8IdZKBOA5T77D9pRRnwXN+zs5cGyfVh5Rgbzf6Qp+pdHdMonLwaDP18DchOkcYOEVXrHIaS4YCm6rugs9pzNiVZYPZcfrjZ2udtINhiWYKHMACookiSIgfIKK8EU7O5RuBVa67HsIjdYoAPlgDgzfQvcuA1MinYqB0hL7NQ650QVqRDN6ZvF9pmdHcDab1Izk0TPax32XjRJe/oxYIcBNyAe0KouSuklluVZsGIZlRQIxEAOIIL1IdzXewFiDqPSEwRK7fMHRz80Wjybt7IYPRSGxSqumEAidR7QU+4p3Ajh2KXPZdosklTCJsUAHLdL3EiUgLtBdWA21oo43KBTgNJSGxVLZh5DfAEhIwj3OdHZ00EQwG4dksZX6n0p9HRvvJqngvdbuo8QDsxSLEi4TmIermfHwMaTCb95IccUy2pe5aFoGsZNc2HZ2IJv5joKk3VgkzgSZL4MIWhkuhjgDjcraIJE1uklUQ6pQUwbqpIIlITtucEGsIKa6uXDYCPjWLbkQ4YpCKgD5h8gHl6pLO4UQFW6BoTMMAcvGxsa3GJS91MSS7CFY37SnpL3mgQFHVe+teaKfV2uFaF7TkWGOunSEcsAIoSV5EmU+h2O/PhL5RPuO1/eVTnfcZ2OLseO65Tr1re+k/doBOwelicidY1ifmekWihSacmK7WrwSdV0BxwzfTGsFjn4+G8L8HjMM7B2dV2sJDbVPJXo+XJNjoNL63ovnI/Pgp3LPXFHkE8pBX4QEDwRRUNZKSl04dAGuwC30NilHCnctptzo+pCCFcF33RUDvAQEpB4Yg3DA45KEXbhxsOuUzfQ7mwxiYJdO0T7Jk0aQ4l/sevaFXTIaZmljQs+EIupBQKwUkEdIORtSgPaII39tHn7aO6uSRPaFtd/RYrYzOtukVEO6c8GIW8JVMHjAiXb1bsVs+x6jrWHjPlLYFjMN9s3Q89al6c+DWx3ovlwChsqhm4TxvcaUBeASFyx2Mgm3nVN+57/XCmrEvjr37USwxbRzJeLpNXg70Ug7LptNok/SyQT7VPRAUd6tKxOIjcVeXOrghLiqoK6YFjk9NFp/Xryrj6HYk7TG027IIY4NiKDbpaEVEsQDGluNZZHOCpSSOWlifPMcHNbLEGXi5ab2YpKnokRrL4ddsw7EqYdE3hr05x2DhtWrbMPcPdpfl6Xj8iI5RRQdI2YG8zAHX4E683tx94QBZ7IEY59um2IZZ8OBKZt9SU9wFSFBu0lgeiu6T3AEcWv9A3CMNrMFbnSMOsZ7Y5A/0wphcED2H/ncLBYvdih0DkOTwCl7yKqM7RAVKaFQV0oAL6vy0THxITgALo7+r6EtWpxGXXMmJ6sXgFTxjlMvqhtTMGDbYSVu2MQZrrX6FFLReBv+BguyhpCbdk3aQJA9oYOMpkx4iWOftb2zLMms2+dfnz+dd9qp+rw/cyU9k6tmjWE5gL/CioHoYQSxlP6RvU/g7XRWHmqRlpS/umQnpgNdAwlklLlLiDlGklGEdMT92eXA1k865+V9ITgILLieT4TklJxPaMz8FiJTAY2IN3A4zqnRBMBDkbGg+2wmvk0XJg9BM72DuZn/D974qZAk47PSXxS2TY7vq5EFRlPLQr7PQyxmPj9XFGe0MgIC6ResGnYYbj+1aCiH5MT+xrQP53YdCwWItsAZXiCQEmgk0REciEAi6vGjGI4HjGIGo/nwoT9YCa2COSNQBeAjQmWmI23eHCZx7RPEJwFik6oKyTbvqpCjLgCC6vlIogWQ4CA9cYibsXqS8ZeAVKc0X2azsXoXRThID1jJyUYD1xqlVRgn81GCG/sS26gC5/xGQ7wOXsmQGwvU2gdw+qVOM+dKKX1sPXy1VF6PXeZVzUUddP8B+wGFE3vaJJivx6q8QVUbakujzl3qK0gfpTGo0Yb9YDFOeNSA5CTSxpX+YhKxghMpGEwjzv4XyAKODQzMBQ0elyPchHzQm/K/qiDMTO4eYABcn0g5WAwIbY11hHwwAaWvHSH1yQKKGS9o9ZxRqcwGBJCFBuDwj3AGByH9R/n4rgkl8MBkA/wqP1HYbBxgpvgpJAgARbR81ufJKlTTECgc4FcQiq+VFUZlkUzg5wPYSvsKB80IP3vaoAvx1sJ1j2I8IRPGw0XRZsR6iKmzQ/lRK19ilvDLBGB7gKKfbD4kbNREF4KVHcGBSpQ+JH4s+0uvDve3WiEgm1BQDhqkye1srRj2l7hyhdD97sAPA4B/Zmwgq6Uqur/8IfwfkcXoH9vk8dm+/zXqHn4HTpz5KG+FqgNI6w9FUEjjEFC4L/3KAHlglso/OFAGPQIvYUUb6G9kW8MJfGu+Ucy2lXNBOmou/5/goP7UFLgGjAdWC9nDANookOwwAdMYDL4nniH9h4YcavDnzm8MzexDnO1nTVtqnaYqHl3bpx+nTMNfIDLvJDjO7yyOfSddt3MxVDywxFGd0qohoL3KJ5reUqeS7DeFN2/h6LZmMzLmcfjHjZh2IbuM7dvEeLTDMw1OTrOGN2NUv1x6rxEtORGDaV4jmbJyjlzsu0Yxfa0FK4s9iktp0zmLs7S2YlE8tWUUmOyEMzxFVfuNKof0Lq4jaH5t/SmOmXutDi12WD9IWCPvor8cpD9Gqo8bY2TMleiNSSr4EnFoi+rH42e+Cu6V9tR9H2cKKXxiNotNJpktkttRqbVE1qkV5aFDajMlpibQIfDW2k21ZmNRVZrNmrZNMrIyZZrG1sNltZliYbWqRprVtVILsxEPdqmtQgvWLrRFsqDhSodFRfPKTkoUrrhCuQmpkKLNSqGwolsg2mtIqzSxtptllbQzXaVK05lKFz7uQ5WlSG3bKKLjVVL6TRTloT6bY2iqbCR5mKSM20gyY2YaxlmJjU2WlpttbU2zGZTZW21pptMrSZsxtJK2bWDaMYxjWWG1ssbMs1tG2aNVq1sxky1m1jEVYzabFtaM01tmjMaM2xttrQxhkEr1sgZqqDzMrmppirWTYpV7ZOZYkrKM0DYUg4yoayqbUbJij8GicmpU5VfXRyGmR1GasymarWQxizG1tKg2rahsja1ltG0bKzM1Sq2pV5wKcaFtW1BScyB5tSn4aRHDPXSPfEdWr40jvkP3cL3Y+mJ4tJecoevx69S6e7g8GC9GHxg41KbULpkXWV6ao/b3rqvnqZBWVe2X2aXUpoA9mpA6X2xW1Ke/ONoU5oe+knMNgAWBziq9Yoipqv7AP4piG42TQoUouvIXosfSQbYp5iA68r+90CXiCBTy2RKwk8aK76Ttp7/pcfy9IqOkYRFL1BV8ETDO2BJ05qnbMnis4+2UmBP5sdSaF9u019j2Xtda24atRvslrKsQvjEa+2WG2RcPa4k8N8GOmsesyrcmjwp28uWL4vjjB968mvXzf1+z1frOk5ZF+w6aFyQTxE276piYcDJBvMMKQ1MRIsqLTPpjqJ5JcMPYnKHNq9m64OL2ad2wBxXJL3aSrJxm7GRxtvve1vh8IM9drw4bvR5PXPJ1t9V3upm/P157jcsIFMcptI1ycqPe574g386LXRHiccJl6SRUy6QHbbYxVL0NJyp27XNrNJPw0qTxaVeAtUvGrvmtVZouU0FXMzUcWmZK8WHVurR4aoe+VI2SX3tJ2wqr09NRsloFcJbU2otgraQbVLag2qem2jWpbSOs/Uqk9WTn0ZRmqJe2uVl/of+U5+fd+p1EC9tTCfngOMD5pCh+TxtLJIl8XFg0CASAevgFBeyBUSzAK4lJ502/DS7+n1w82aXHFQMn7O4g1E9lqB7/rGhYYbDAoTCY6n2gVT8Xvo1WHkl6w61sKo1DpFhAPtgfgIIIPyIbF9BWMS8WI3tmjRg9sPXp+rRTR5W2Nn6cCq4ZtV4N+qKYx5Y3JkU9vvaAAL3X4vQqHsIi0768WOIloB21Pb5tgt9Gkb6wNyp0YoivWH3E61ofH9RSzwU9Yyah5KXzEgI9VQF1VRGirSAfRPKqo0LbK0QvinzmATsnFPdHyRN3kSnFfcZCWXiiIDrU8R9mxTowPZO4qn8Ion4TjG6kbeDXYsHQIH5uhQLiHvQf5EiIAUszA9KJH30PUBW31lnOro/K0bRumCgPpFXMogRuT3QB+zWzavwpO4mkL2/SAo/vj5zl/eemuW9YJyQ9EccB7kAF95YMtyiHB+nG1hAF4IHEDAFRaUZl7gK19KNSAW9Mw+JbqmoB5r3JaOqDQoajFrCYhqFSUAuCpwx0Hy+lUP1qEP48X1SRFcgYNPfTaVY/Jgd8iiHUC5KHpPWDWKgrZrRNwRRgevJ4LWjo1igk0rARRd4YWEHeOAxipHfCeCnLBoSHYyoBiTI/39qoCripPpA5+qj9v63rUk60fhUAVYgTwSLXACoYGCUto0Oyz0mzPYTeH1p+75VNmGh9hQ4I1mqSgoh/RKh3+9cnB9VA+qHV/xoGYEN5hD2mWyvzLUmEPq/IY1SxMaY0boBxQ0zcyR4gFDrNKu9IvFKRRIVRF/9/3WzSa7HEmzlO342ruYd/gHjOvBBQ51QG8ggJ0pIXg9lOSf6FBCSJQNSqR+xj5TFMC83XuzEH2FbP9CZj/N9sgBmIIgj6CAGCkoIDninjFf2Y1ca0Z38Ts6huHGxCJCCD/+NcT8ANyfwgcTkmJi4fD99vcCqN0Rxpc9CompcJOd87hQk5EWoa5GQIoJZAPLA4LFBEKJBU8sCOhQP4/HQn/u3rEDBYIeaABLZFrEPGCAsabwk5E62LLRgpRinMhC8b/ifYeXx3M4SJ4UQHsqgf5EUFDAd2yYMkYhi0SotRY0YgkqfNkKy72hPOmMxqRddEBauwjYBYASkzkrjQJc5FEreAZ2+0ylU9P3KCMplmKsCStXiyF10uuOI98kmD4aS05Kyc0T3Hp8XEpsXXGdz3r6xtGSkp7Cw6fwKnksd8j/S45v0VnjYDtmIyEZgMSUjqGMOiWktzOZQ6pJGPiiDdlzAUhJGo65AREebVNSQIXenCql6Ci/aVQUNYgD39SB7CPLmvjPXib2M+05eaSQPOZV+8fhQoAAX6ketSGsCrmgKAkIrTCcItzHJ/DHSrRR+XVwnm6UEOSwvHo0opwdQ4gmSfhShiuYqk+ZlN6wPD1yU7ZcZJCsnH2XBXIKCnUgAEZ6EKVcGhPN4cXXpCAzpBipAPnchRXBP/QZWLfEan9X0dxt8qECC94AoPkip/DTe+/2f6zJ80uw2NO8OYKJ6IiftwARNlgyMJL90Onmb7YztaNlmyqaCtQVZ9kLcIT2xVFk4yFs14UNqzYixVM6JQvzmjVpyjlNDa3mS0rIJC9NysFD+QEEuh8ZeHsDEfp1kAFwXIKHagqKf6WhKeA0hfa/7tiALWcw0G1nE5TWUQXRuOF6AOW1MJgIlN3EFoR7TUvaaSQkvXYxklo7wEiXfqUZIDh4F7axrXNA9TcwO1FUR9v9frXKlyEBAWpxkJi1YlicH2VuvD7X+fuW3kkE6GD99VBfqK/0/5jNwizooHmCCq0uMwoRnnOQc34zmzN799D/yiKdiBX0HMaj1dDQcqcJKVWFoExkNo5Zd11J9jZpqWkAUbRN8Ys5yokALUrGwl+SACycz7ieNREZ+6RlygpgRKmZDs7oV5sCXCbcpWEdCfLFYGDPUzotOaEMv5o/RxFwMMw+BD/dkQCSSyHbva73mJr9DLsPHYDPlNBTwO2gddcHwHzzTRuA6hlWIAbT/cFQCC1kVx5cJF5BbyZRRbvuG+MkYIi2VMYiH7SCiKSH+1nBOWQloHiN/YEFHUzo0mLmpGmUJ2BySWLjMDTO6r7gBVxXvOHZinDWBPqQQ7MAFdyAijmyKgL5Ax9qEpKZAFFhPGc0mTgqdr5tR/ddzTpMk+bHDSR7Pi1ikmJ6fMUXTungtPL0i10nZyIGaVwiKD8Tl4itjl2CgdTAnueyjadg7ZwugsN1DaTAOFMDWQgz7gyEq3nLWPAUvUIiX1GWXtinpPIrPZcBNE7QyWNKHFEyI5ZlmEFTPAAceA+8gE/bPUhHLleCMuQAXGEZ0TzPm57r8PHBpjwZCqjuZuAfI99UF7QADeIjY+ooiI8QQ9DsqqPdpp1TQeaCVyVwySilBkL5YoiI1VV2ZXvxerTPRcdiszKSGctNHcR/MCiPnUmj4fTXmpgYqqjQKflLx/jA6YHQwwLxTOhLMGHQYLTlmkAzBSs8IV3t+U/GtbeE4/yGIthb01sNDSKdpIGC8YG5NU6yeIfhglBAWxTudkPkaZ+2UEggiw8tXwqKOntgE2TcXMeLAykhvNxk240jJih8ykDVMif8aw5X+kHMSqdlwEQYZ47SEsVb1glT60VJPuoCrjSrDUhxEdSGkIkKS4uZddLDWMhQ10iKjT5/yYUmfcRJQFABUqiXl6B5/WYTdMgIB1jMWxyAD7TEl2fWUvDa33nCvEJ+mZwMG2GMjo4su7n1fBrkywHRPRFEfBAXAeYZ/TIoZTL8DphgkIPGXdsgOEqQ/y9inMpKHW3SQCNlKz5lBen/FEovuCQM574jOukiwsIgE6MShTnL6fCakoKhAFwIoxwBBqIKNU5tyF8skEl8pYWkhzTBGgAuWhS4j1H3LmlZJ6IBIyQLJTFSgIskqM8chzlFDP2C1vD0Ljegzkp8Aghwbh5H1YKolgLjn9L0OqNylgPcAffiKo3lk/oYcwKoan6hapsVQAXPGUDD/pPGw41KTxN6BQQZUkMTWAVJJxOa/+msbL43fhdQNZKQP2z+E/Y89DoI1bVdgIu0/AQVfgVasAA55ywVKkiXBagXApay7z3mWIoiJKGQoiOdh6XdmwJI2a+ep9D6aCnEIf8XYoQ+h7mgGCwA/uIF/bagaWewFQKP1gRbIeuiuguLfZGANHzJ6UURoT80D0y7ogDpWKirnDCSeFId0ZZMAE6AC7G2BIM5miQimU1WoLVmyPTk/nVVL5/5e0/p+sxHPh0kZg5HT627pRga3rAGtQiPgxPlNjumSQIxDbzzx8i79TfZa3fuF2iFeV1Dz4yxDMwArjwnoQo2A98SdrGFaDT/m3QmDSGroePZOiAAspMB+dDlwf3YErlOP961h4pcE6L92EIKQgoQgDCAySIyEgAGv16VPp8fy+39mWvVBoXpc9YFCSKOdwpbwgoutbdX5oeIftwSw42RVGq7qNkEQkgC3IQVEH2fzmgGY6vF6CnQdBarzsbyzHNRQIiM2euOjHkjshVKAAsPPr98zJg9MWnIa52CvLf78WPFVgGzYlMcDqwH49f1y59NnitjUUX3wLi0kE05nJVfPv6Dj8sM3Nqxnrq/v0tN8JEPH8LsKJ7c544J5k3JdZILn1ovzt7D4+XaUUWZ+Or165zaepy0XHs4kjx7nU3ECpNJ9srnmPB0mzWqN18QQML16U/wovV4ZCOMIp1P/J2aO+80KGac2D1k+uSky702jBIPP6gAVi+8q45GQQBYgKyJ7OzEmqdTUATSTIFvZ9mNKCasEBYdc/JK7QHOfEJrFRHIMFR66kBE7JAkMAA9mdT2movwcSqK9J8x9DJtOM9k5Pg0k6VkRadUZlcR9xLiPUuRBtYCojdKZ3KAAvnCg7X+G2TgCjEaNtYwxZf2JZA0PlsIAv5KoiL16g8E6g0xMTigIC4KgzplTlkJMPAAET+9zqSAiNcBNngtvjtln6W/3rZXsQH0j/OWNLPlEft2WCN5zbere2j/uhs+osQP6fc+oBrqCr5f97pOPeMyTaupw7QE6jE9CQDRpSPntQeseyT96g9r79Ee6N4ioDyH8D6KS/f7r1bdSRd3m+Mom7+MfsXSV9yAhv/WaMD8wUO/Gn159GKZUbsh5TckUpNUQpP1Yk+oEEDkJiFMU8FTYz+xkPdWZf++8xceMYvpEBFT0QiQkcnAXokqP5K/gQEUXUSuVSbT/CLvOe0tOtnI3sxe6sxnTgTGYLbzKhFAhA4OL27n1KKjXpURSKCgkDHFouwSvGBnGK+IVIs1B2TyGbGbZWlTigKKlTBjvJo7LBiLsNBGXFyfPy+eknngsHqlv/ozcMewhGgPmPwW1px5T1niBlVVGMQICJuDDx9msvLro8q47YEeryGubgLIZggfeDskCiLD+SI2glisiKgAFyIZOMJJY4EXjIZIfU+BM2jvb5ydE+DpTOn2YJU5siH8VTZx2XPaT2dThcJuPawOBrOIj4XFcOqR1zWTeTyJ+5GVJ5+8QUsOpqyJJ7E8wZOJPDrvQHbhCDb4Us7t3H1HGXkVJFCBuxxXFaZYKh02zpNEjG0vWOlB0AGIvn7RIaaXjZQw3uBlwO9BkDAzYzGQUUGYlisgHbYTeN9/8S1SiwqwluAwE7zJgu8qZPuk4WI0e1I/tzzi6dcw3hHCO2OOIRVPh5DzpjUAXy5iYdZPGmPypDIBv/BKE5U78oqo1Ykh+E2Kj0ExXUakyu4ePF1WYtj7blcpxNQF3WDRUVf+fcGfwSeg+jytT2SHNfjCh6ejyzn19L0w3QzvOFbthwTGDSazuPUdn81VWLOG1E/CA1LIMR2y/1QKQP5d4D3hxuB0BQHgbLAmpb3xxRFGYtbyc7rGVFQH/iP+PIDEEA0n17Yfwl7paexuDgAjPuerujvBl2/Exmg/fTrPq6j13fIokPNFqu/dx6obYQVUHdtoDNxHp6GESfAf1/LpP44P60/p/R9D9h73/DCe+pfwaD/zeTbTKB0TsuUlCqpmKw9BECKazA1Pp1nta0A9oTb783phHbsIXw6x3SVzjiSojOo8PYVVGhPdx6KXr39Wgpa+whrWRmf/AjZu02YWViMkbHGzvqMDJmdlvZz1cDckrcyxlcnsI+yy+uM7L9iIkQgjQv1glD80d2Vn4P8zu/yJX2hd4UfT4/otI0gYkDweRIIXxkmzSGfXLyYDYzRUKiDeIAsSQCHEF6s4Pwh7MCx1YalWidt6L8Cf6H6LVEdZwiCO5ihmD/0Y5YCBkil8vNFnP6zrrPwcf8NocIdsDu+0uO6BK+vKRFYH6CrYMJr33hqiYyb/XQBWznoeWY2TErFWNReVay1pt6ijp9Ye5YEgE9a8JAVRemp0zdOidm1PERmsYcjYOu0sSqFEARE9aFATzPR+nBF4Ob/xiAL6nzG1CIHEUd4iIPQxomhDWMI+S6gug8qQAUeGA8L5oFAOlHBwe1WfEce42ofcx6A3AboDZQy+6ZIK77c4im0H8yRI2Oj8rc/solOwW6g9NxzBSFQ3H6PsA0Rk/ZA/QAMEWXfhk9NAfCDhkhAlQkObnWsn7oSzuIhf9lHd66GUjXLSb5/bzCTeSYvaPpLGQWqxld5kpGXugGGjjIGyxlj32l0Od+qZ3A0AoDo2LikYEjJlVCcIppA1EEPnTRRcGah/wAuHQPOOhL1BV/ud8Xq8Dpx1G4DNmqfWdanm1Gg4VG2FNk97GOkeo9R0b1SvzWJ6zw2ADYMgT5AIiwxEQ3jko/DAc54F9GZNAoTvpS0ggVC/tD0ZR3IJeH4gqAuM9jtfXRnOypd5mMcR9WJKnQXJOMmDwMrWM+BAhNHMPcSPPLLiNOY3NmSaYji8m/fMbW/Gv71U9Zd+8/7J3PVfYb/0/l8Y8EWxt97/NYepunn7Qgq0b3Ug5jZq1v+2nZ/H1t9PQycObnswUdCDFCIsb9aDKF0IQf3FPizVHtlClq7+ii/XV2/VlLIy/F8u9ic2flObpWUyzvykjR6MCXm8f7wsnkS3PVjM+nRL6PNi9uy4JrPb5mU3/5/15rXb23yUeQAZsn18qHN+Cr5V0Zeaq3BPRo9+Q1bXPvx/z3G18f6WH23OA8U+E+L0cKoCzc+XH8tH7NNkdiQi19jRhOba4A681FGoiQuAAWmrQZE+QzoeoexXHhnWqGWKB7frlnLu4N59yWSP96I+ANnPBSLNGXSx92akZ6Mf/v3yV7MwWACjggmTEtC3Maf4zzV5o7XjfD9I2+ro9f8BzP3jiIAuuhCPsve6qUYOkiV4DB1LJODk8Q4zz8g6MYyQ+g7SxGrYPuSSbsCfDkhFP3xj2s9GBTNHr1/AYZ4EtftGF1gvJPH6z/3fPQP/q/IemgjPcaMtuiXczef08vmm2sYD2rK+5pPPk4sxOJvBZuFXB0UJSCZDSbkjV7a9vjOTFWXbHDJVg2pCT6k9tnUiLTsIorCFfsn45pq+/0rzL/mnGYLQtFTRj1ikBFa4rsNNajFxyt8GMUBaLx9AXdBwuMzUMsO8WTZTANtpDFFsVz1y0a8hYSHSn6hMVdXR5s64wowxVNgkROajQSfiAXEsQ+iFpN1e5jn2S9Sf5n9P1+D3H5NIUaji2z+mdS7kyfbXA3IFh0yIcszAaN7NbqJyoNc1bTr8rTPe+ZObpJ+cRbyg4z28qcVjiHlDN2vPxKCr5CbeHTeoKsYxVbZrvIS/uiJmTJEagoahjmCZvhr0UEYCo7JAQNovH/Sbo3kiUc0ZyTK656yqX+mbJkiHDQ0lYYXpytv/bEAj+Fi5eV9webWrrGezJgH9+ct62txqchoz93FY+XLsMLB3U5MjsfIl+pG0T0VD30tqOyXlJXLuJ0TPZ0KpcH4oyXIbScNwYrxEV6pGnWNciTtmA36+n2SIxPtNyfNV9joAdGD+giH/c6/lq5QE8ADERE0WHqw0IH64DtkC3PeWL7Q0/QtCUoSDqGD1SsC4UxwANqAEtuCOX0ygDgGbrGBBUa8Vp/5DIRd8zUTlkpUYTp4C2EgGH+nYMuEGWfKnx7ZlAHumgx8ZT5Zi/sa30O3hzmxrUb8Y2OPYGU5yCRkDECItyfD1+yTy8xXg5Sn4n7Ivkfw4fafX7GLY/hp+n9OppHHtfUKqGPZDt55UxykuSI8OMiDiIjDlLDiQm1BFF7gxpqjvj9193HPXmTgeFJ4AuBggOWAhxQABTSXde9Sc208/Uza/56ptlEuzyXrmMQSX98GgTPmzZjSxysYGiYnx/QRMNC3+9OLypDhYp93X3kHy1V4h+c/czuRL2J94KqjuT1W+Y7tNn2tmgY6MRwOGCBf4CgmdHigRQ43DPMCiuuxIEWZcw+7Pkmi55do1v6sxJVV7lmlk916SMxwRDo62YHZB1oOx2MKDLj2tm0iVza5rS1pYZNoqxqpwVjGANWj34LaETEV8G/bNBnAzjnSOUAawxS3ADLVOBRJ/R+ua0M3aa7c3FUAMgA4QB2gB0iiLiAGTRjPIOMAYpkOiVFAA4FUzADoAHWEMVh1T6kka0rP8NZABYyBGWgDXGANjGMOug7CDtlXbPz4aHcq2HTRTG2Oj7pRjc64v4YMbI/SI/ma52iDNVEQgEKBMRa6jWxVOx0eMUQzwRDJAEAKrazOsDXJTRcXPVSgyFpsf5eHEwbGzRO/sbnZvSraPcCODg7PRydHBL3w9nvy4uTu9mu7m/tR0eXR29VTahc1sHC3uMcLe4ml2v3LiMrlcBbI7Z3/X0czQ/86EpfVYYHX6houXHDJUIevBTv3UvBcu1rcwCRSwXiQ8oYl1Ysk42ndTsduXk1TuAvWKyQz9GAYIFq1IADSCCJfAOSfJvaGeHWh6h7YdFf8IP8J9fprFzeMw3fqvJ/gdg+2x2eekjvp7xnxHQ4JryVPGO1hD5GA0B8mrZPQWrGRktJrVWbO3dk+wBJJIFF0naBbYyVYvJ1+blp44AArUcN2ksd8fHNPA+VGR9uHs/j6ZPFRbA1/1uXd7OuX+w8su7tAcfzW20AcI5IqtaHbdSya8jV1ImCyQE4Qh2G8kOE83YHGSVVh3/OuwNEhgYQXpGWnv76xCIj0fwtpHfcGMAnCBAisllDpr+VjjWe+6A+njCzyHRnGakRP5kfzx5pXDDHDltMlng9qzCRjT7ueqnv9xfCuFaF6SVP5WG4svP+1u6R+V+n3XRYvWHybh7jtG+bvB2s1UOhkMER9E2ZfbNu62clKUgFSnOdAsKaKCr6fgt93jXSv54giffYKgG7pOnhJKe8A9/hFUB5Ir/1P93fOT8Pk9SV1a3eqlVR2qkJBMQGoBIJCAS0raDUBzAKqkPkAzAxitQKhaEiXhaBIvyXjaJJIkvQhUSRAkSQZmmjmioMgSSEgkheagneFyLxCoMgSDiIYgm0XbFCyLJIrvFKjJiG0G0DURbRD4xe3oh/XONAaJxw8fu2S5iUOfLKFlFGLDdfPOYNb/Vxv2JThxYSPLhMMt8NJcV/AUtJzFiKco5PuxlpMXld8Dt2TaPgYerycUvF6SkfsVG6ZW+olcBlKSUrdJM+HGz52U1pPYd3vFfinndfLieqejnNt3Dozc9RlP3vfI3z1dXc105z8HdNMpn/w4TrXoiD/ZukSF0e69ihxskTvlGuVmIQuO6RkiQDlXdOfvuxiOdQntF+JnjvJfzlPF+/oVucsfCUug1jLM9gLgB7RAwkhEaz0AYiI7dRyyPJDBtfygkCeGKrv7XN7f1sn3pMb6cxltLYfM4RpK9J5uQ2tJ7zmOxv8nOfs3XO8x6T4+Y9jwHM94Nb0vj8T1fuy7+93iUxHbYKKRDBQBN+AnagqdFjKQ8isgcb4Xqnv8Nt1VCkE7P4dAd9tyeXmr9XP12i8sFLNfuvZQ/LVAkZFUX+oggUIpufzP2/c/8Grub+400KgRxIKDIazAJAe42h2H6Ewfw5nbPeTBrhae8gaY+cnCZJQ3glJDSGgP0TBsgZwiCATBOHunc4VB+TbsCUMwaAsDmlCgNQfEnC0C4LwvC4NT6SMMgRv3ZisM/KQjDZD8sZgCA/H2enOWP2xh9CMOH4nMcr+3rfUr3Nw0xlYGxHsyREsZD9H7Ewvp8mG5+2uC841vUmr434LCRIjICAago0AQIRDBvjU/ah1g/dsOiao8HEdjhoFhBuwQFwvcKVU3/o8hkNGnQZQ2lR/uNIm5NGYJKiUx8gYFRF90sBbLazWbGlYtQmXvyouTUayttalmbVrRZqna49L0BQWYtMmwOciySAEC1DIctIlJhl/mPlhYTLEoOoIfNiCfMD71FL4AYOxCjifaVQYWtYoCxBOCAOGAXsn3DzA+Ibl3RCmvCu3DXU4EyFES8YjgRQuHO3AhilFukSCa8H0HfnMGoXIGWLKWT9ErMEaTxMr9aN14PnGVeLcenRiy6JgHwRR6YrxanTLc3KeyyPzw/CtAEy7hTrh2iaO6Fg2CiHlCOLFUB2gL0Rv8MPt9AIL4LdW/OA1Hx9mSxgpjMmDcgQi2PULIxxUIr9EABH3FNyiDvneHeCC+yOY2Ko9sQPqD5iL3NB63vjVNrBvZr4lG3xJ5tSHRBdNhPr59pu/A0ZqePu79sucd8eS41Nkigq81SoK+bh9wvfI+iI09EfqJuGaQu3AAHZgichfPWi3ZgvYeKF6Tt9rzcDfuUUU6kvEZTuyV0ACW479Bub+U0wGTqeUTWdtArkGqB1AySINWCnggydZ4Qj3IloOlNA9Q93JCRQ6h7haSJIEi1h8sVYwnemk++bbL7b1a+1n4gGNj8Kfwh18pK9wEoXzFQ6Ozw8c0K8BH1DwH2FJIfXmx5C+ouiCmoKhnd8Bl8pysKZBlwF0D+GREwuMhHOzkHAHI0lFWBw2GXabaE5dkMrSe87l3JsXCCdWrxFrXVgdy5X3EbGLwbeIqMnby8lA3egutjeSN/I+qLogHEGTdzYLjKHa1C1wVRs9oOxpcGDMak5+rQ8Tfl3+ud8GyFspUkdQbEkC5Bn28Ulo8SU5LZgnRXl21gqMIgAVMAMyscGDg0HuTGnOxbaTLrnsIhjAStI4urbHw6eForgDYJzJ9SonbanZWDNR3Bwc3ubrkmlpJcD8okAeki0CEcAyASFLFXmFY7ILsI+UehUOVwGeuZU7r+WSrUdbgVc71446FA6iIOCD0R8WK/Jcj4c0PBH8YWgALsAMA7PTWqgUffwAsfPIk3u6D790ComiCIHvZ39HgMcnIWttR9LCAFrcqiaYgimRv8MTvsBFEUjvadVkSKEFyITKbWYNRtyj4W+LaerZbsEGEAVTaCGJBTdlxwh5hcV4boAAsRoNIb2xvLXh2MZ4LaZmYZBapu622NaJkcrqQcOGy7QOi5hOJAhONZjljhj1ujJwXRB4BOSYbOQ35KHrco7mGddrR5WK5MRUHIIDqc8aKDxjnW+IrDV1KoG0CRAUpBUTuRUpHmNiI0IIoNzrQ0IpMxXkibrBBe7L4AfBgKHxIoaGCqdj7AGkV37nLvN/nu3AWQF2iKJxFRkEUK99Z2gaTgsV8L3sbP0aMJR0V8SPM9ewpD29RhOsL0AfhFFR60mS3ssoviB1lOLKo4xUDpEFDeKBmEbxzprkNNYB3YOnQ8eABseMAv4KFhyitDTDvY1DPVxQZ3p2PomqUCiFgA9ixwV3KoyyRKCid9TF0VKId45RDWAA6FEoo7EBMYgcRTwxE2IChlEe+dBm7DtTHUAbwxLOs7RtJjTWkFFTpWCuphaY6gCQwOTIHDFUXwbrzjpbgXhGTQFA44gWxIflvQBVRPoyFYUCQhKhcwBz8CEpMjqoAulINL6DB1RUA7uX4KKg4bHYprgRpk04gllDSOQsbYHJ8x4SQdy5klLZCQhcUsrxLZbhMnvVfh3ClPBEotQUhut7eSGEJy8GrDkgKWZlFTSAo3zqaDRAvO+fZUQfMT2QH4cFIcEBJvqub3s+w0UWe6OFokbBiat2HZWZ6PYDQk6PrrcobSWy4Bis5mrZ5hVSGFCV/pSwDjnPiLjMkcwr5q47SMo2yS4d0qk2pQciiDoQAN4hnHSAHMOXVbdXlBZAxAHB1ArLoj3LoXfDPBtFK/EqISAEgQiFe3Ne3vngPOFhA0h4b9wgA4pYuLxCBFDQlR02odSxVeAC+KsL5hyXKH5Gzp1Js8A4tyBeDG5AQR0E3fA1DI5ChqOIFQci4CqmjqFH0EXqyVou0l/FgDBjCJSBvSWXR68Onu0fGD5B8ck8pzHKfkgqJqJuEa9HXy5t2es+Nw0aT6w1xDtx6bWD3BUmhmCQYHvfQS5QRSWxaox1uP4wsrmMIkek5h2qcPvfpLKWUghnv4lExK8QotamrYHaHiAP3AhAPvXv1ZhLj5bT0u8NAcYyHGb3k+aKhx2Hd47R4YGG8rDt4R7h9rSbGfc3sUwonZbRFhvR5MY3hDuF/HE1VQV1qYAprdu4JFpqq4dVD31wkjoAYWRuFbkTjQd4idQUPQRFAa7FDS40OTGYjY7aRqt+YA79QgZ3JYx8ukb/hqUKHeSIL9yETJAOSCWnHoqvRo8HtVNPyaPa/Oe9wranyBeBR7DDjKSFy91A+ZkDGQBdBAQFGNI5FI3vdAYwANezrbVHd3gKHaACppxPRzpwgTagqI4z01uGaOoDaCdl0Ilb5PJYTFwBo0Xgr4gHIfeTImCIjGBvAPyLtJbUbKnyydMeNJ2aDrUEiGYINoLaqGREdditgnRO0ITnfwNAWF0QbzCUmSVh1cOcIKT7YOIIl0pVSCpM6KPtrN4lh18GCpUDI5C8GQ5ybjAIDzEBLzgLXPOlmvEC8gI6EQUTRMkQ+zyGti6okgh3gCiaNqLFecgvoPv6CxpNQQBcuUioX3uWIJgbTm5Jlgm5Iw3mKnYYoIASZLYIRI3meWkDT1APvrkbGBA4CID9UUIkIigrphIQbINuJX6C5IuMbbnHq2XVCxvwXyMgkZfB2P2GM2XNBHDpMRsSEj6PXRdMOcEEGQHEwMyo8FakczPWua7QbiuVW3spLNNi4PYLiPBBgQeCbdDFSZ8LH004Vjz5F7hYhm24dobjEERogByynGVeR0j3s3FkYAuHSxM5BhHcSDCZktG1XAxDnYTCRl0XbMMwK7m1ZJuFQ2DomOFytog8K3COykEcEPhAoiyefFMh8lRfOKkZJMQuSWKkBdyMnECoo3gC/cXqKeIHSjEDWj6LUh6fAVqB7LwwdLu6L3tOgibeqdAYo2TCBEMupTWtxEPMQDiKosiK0iCl+Tn2LwxibkAya++C47u2g/A3xSmGCB4IJoiCO7KwkO1XSqrtBUMZrFBbiYOtGpcZ2sahTxS/OzttTTWjf1XRxDjlwHCEHouwREhAd4XYKIWiKrxOoD74yGAI/Z7HJZ11R+TbsVgnmGroB2gCfk/KpkqI5xUQO5FF7xXHuG00NsvBelepXt33ArHzK3hQbcgeKFXBaOJPG9PLiZAJrFEDqKAHsiIhzlqMTmZo9AZMv1AtDcglKqj6hXEvfycs9l/sxpBbtyg35GneBzsYNSN2FS0FJFQzgJxOI1ggHEEQtEG8BMQOoqVAA8E28c24kibkcxTFir9oZEQeIqIeIqp354QymXJjVMhiKZAqJrF4nZCBizUgGo6C5bcBAd4C6gcwPoi/IjDx5shcIvEjzj7+sYtCksUDyU+w0JaD3X0bqe1lV88trbNtbVtM2bNWtlra2W2xsPKmVXxTSOUyPgpFVenaO+fZOSzY2MjIdtlKmFLszkKWh4JVFLohrAUUtBV0gPPjk5ruvTGi9jHFHB8CincPAbRTopoFQcRRr1Lg2Rl4MKsPoxfZDnHJCygODs5vsaSavqTHa/KSl9GRez6ellSWaTz5cl6do9DXc7YXAcvcvarbJ1Na4l1iEsNjndTbou1hppfqJx2DTPSHZqtNNB5DYMqAAmSKKviKcsOOikyue4KNQEAOoijSwSxGBMbdvb2e+aQOSHuWO83LYN4lB3KAJeMQUG6IGieOxds4hCDsQXOKIDhHQgmMMzho+Vx2Ljv4VVH8hcto0vw+sYBAfUUHyvaHNlXcNdH2dbd7BZewawuMF5IBR0yKinmKMNKKB5gooXEBLEfBCoZmI84tdMq9d+xyViASKeOcEzmWDpx2xbbRPBtut1gy7NMkAEpaCgYyY2skwcvkXSKJFTUuRACWyDEVD0NrLxioC8IiLo6rYdRB5gOYACPIxG35WTqbW32oELxAXv3KVB7xVDyZ30+45fsvMX+J5xLeq9Jczg35azB9BYm9kmr0iqNh5IoHuHAb59F6QOG/hZEBR2g1jnHr5rodcNoW5zlyXpro12Pb8rnvkvt5jZBYukS4dOa3OZq0z3gHGJAyt8TmJU+Ham6ADqKqtevHWLjv0cu3gcmCjEEsQUQeSKHUQ50hubGHj6WlEXYp0UAFCkvDbgrQvkC5ydIiGBJJLgWpXOxcJQY3lsHJUU4eojVpATGaxk7n7URemIilC5LByqxgAagIP5uOgEg4Rx8QlZXNuJS3kEtapAi3qR0gKrBwP3urmibDMMzIVhuTqEUzUvw49Z8XpfV0XnE6X3Lu7FnGrpUQV8wEAkVWQReCydrl8b7rb0bGtu+EYQE+U6IfJt5oIyj6OZF0VqBtOwt3SquTg9nRIZBhHb82Ww7VryumvXfD+EHY0YIpfyFKgDzE4NPLXt33r9dJfsBmqqFtUA2QEFYwRBAiKb67dtwwhs5dt7iYwigtAOxVIALQKi1kuVtsdGdXXjxTQK4N1yqpZgqvv2eqSDpIOFgG8LkNUvcLFqG1wNjRrjnNKyoE5SOHKNYcl6kS7CCSiTZUuFkhE2i3RpMAIS5oK1sxbMsydKkVwEOZiGmXE41w6Uoqs2DIVreSrBLg6dLjHJC1i1G1y/dpOAyFwsAqeFEQJAUUhgSib3GFoglJwehnGwYoRQnWaQ0HT9VZGW1trVJfKpk0Ng2uWKc3NRS1ZVVOZJtJbRbE2lbKVbQhi5lkmTbEy1YNszLMNrY16IlcUoWMtyxKQoswhBkkGQQVeWmoTixwAli6U0NUqMg9oWJog7ENhggCcwTdDJqUBv4kLNhEFyXBVHRBO9AiLQkmK0gWHKcx4lCFeOcZo9uEKz1C6+T0evq5IG0FdwgGYCq6gpkNBkEIm18HzUYB0UuiXUUUdHSMkOgkx6VbdsgOiy45hAHGkURBklc5yd2agzZzAOJHp4LwjfWb8a3UtisiorvqqAHRzfLptZh7JaBpMXqXH2CwcSLUpZBJfgyCjoHVg1eTVmrYbLattbNaazYbSzNbWa2xtLZi2RjbJtmWhqZmNrVqrNWStrWpvqDjJRWwymJbKlOaCapK5k0zDYNbR7OOeb3WNGxi2Dk4vtbGmubfWSpEGJEkScjUBIcwKc0iGylmLLKCbUls5knBlSrac5mltZtqmYNlUrDWwbZmbaYsGARd1ylkBsQYGo1u+LK3tvE0NymZkJJGBFsWVRGag9jN3ELHRrqY0acvppu64o3Y52oU3kPAxaYAAvEWjLZN9Pc4eIiqOppJnbDrQqca1OtkAF7bZAAXa7Rw0EvwgaLDFUhAAF3clieUmOgwxDuwzuFMTISVkjaKwWIAqBUVTJksIrUThUUDoth/k4ti80ACUUrYpEKl7Ni1SpCdVZWFRBeEXSqYLAiLWsYNus52hHLuPG7wtl44DMdlodsXl0uazY0ZeNsOIqiMMh3OV1tW1qqptjJhbbM2postqbbLLRspYYZZsCGSay2Naw2rYGas0YbJhltjYCtk2NrVZq+wRWrUA5gQZmyuTnINxGbNTRhjKd/sx36fP2+XT5vx5XsNqFG0rYCLaZksFcc61uPbJfcoI0cSkQFvSpQ7DMAoAYCPgsqibkG0RcsTJNIpUFEbxC+6UoZI5CFjHbDYdO7YxtxhAVcG+soUxAUcAW1vnOtOGN8ERZY+UejHXCpRAOdPibjBgOQQg4WUbiXEEHdIJoi30umxfQatxsaNLb2hO0WaJ31NIEkpioiJLnIJy2VF8yV5l5CFg0pZu/JS2bzbuuN7u3GcMs2NVsaDI8Hh7HmA+wFbSoLaqSkB3BDXgsNhVU+iIpRLoVyYfu1J6+rx1Ox78LmVWtNbPaUlZoiM0iHDji4yoDlhSuGC41Tlqpy5aaa1mzLNtM1WY2ms2bU1ms0ZbTBEjE3eaDsnYNs2JwHZyD7N4YTCqg3yqEGLmQsbj2Q8NkUBvg8xDtrRNtKkTFYwkiU0SgOyAC6iwo9hoYMnLHY2PBsqOmy6xVA20BtrcybO6KLjyk6sPLSqu9pPLmHS8971Ax+8QJCXIRXJSuRBXQ7lVSOiSnSRvfALSfEwnOruMluCxONxAFyGzojpSGwXJxNZrNTtet8UeLpoYTxFbRRSLVrhwoTMilaXCmQwASStrqVGvUEACkAWLZWUrW4psi6g2NUDC0lJJAoEG2ZdnPTxdMeDo64zTMZo1tNFtplama22Y1mLNMy1jNLBtprMlbWhi2mWZVU2sabUFbWxs1prU2+CFXNKg5WcyRRzUqrmSualzlW2ZVS2zTZaaxmWRB1TRvnR9nO528GqvuW3LQxeoMISMCPyFJLMlrS40INq3I2MataaaWTGGGs0bene6eL5d/bdtrvcfK+nHKA1gHtoOmRefB3qFfQL2DkuszRjVk1s2s22ns17BdQ6cLvna7XJQXNHQeU6OFY+A8g0DS8HHQaWhWDQurTUzOcDmCaSs2FIHMAPkkgEJPNZlZBijvwBvYFEeIccU7aNRzCmCexgiI2gJ7hxi+jRfrs2unITXJdNiGxqzOyjPuWUlW5JSoYLxRQiRFZWnbDOSCBNgQAsumxRtoqQ4vcBFdcG2uHJuoKuRVVGh0iEZUgwDC8sHWTztJdCkATyALhiXJiydWKDcVNB2csNSqhdpRiBK0ABTPBRts3RzksFguGnWlyBAYGRlNbNZrGYzNY1mMtaozGYMNlqYtYYZMM00YxjGMzWMmNg2rWZjLGmtNaatm0xVGNKWvqhVmuGlG0AM4chBzSri5TMthkxlsCMYLIhDc7NWpwdB7th3holuvpDLXnDtrh4ydLCPYvRzjriy0c149OhHQACXVg0nZTY5or5+b+DtA90UZCH4oUxADaCoJCPTBDv6aPiYPWjC8c81sYREP1qn27oZ2HcMpFpbL6HCrjbZHuVYO+x+KK6LlfXb1JMHCzuQOlj1lP7RqAqUQVUfyeh5jXzaVFrE+1qncLWnzw4ytiQIBLhgppxBrup8tiFWe0gBISDjIvwTggneroo8MUETggj1NqYEQEyehrjhjDWXYHTYuUkFMSCqpzBMiezko6E86tF7DENM9yC0m1StDCAYO4FCrdwZLJXegVPUcWDIwrmw4Vypu4xjXFp+heKKeCBdOOxXm6gkLZ3IBxbnLuQGwqfNifkF86vh+iTutCp8phV4IpqL8QpkIYaR/CL7zREdymR+4QY1DqAAoHdt+TcQDRFJFFEziJoQQ5bjeQqUNaaOQgi2gXwVUH0KqPWKLC9mCqqURB2NqQPRrIajJTwZetLSlZwgzYGGtgfTIECXDI+YoiqHTbLfcz3OmJmWJBIQ0MklxY3Jz3sXaUBsBepPQpIgAcUCiZsceKCv5A1HuwXBB2IgUCL+mbRHYigCIF9VyWHZON9PIolfic+e7DpjHpHi9TDpHRhUwN0xMy/DL09PREFVURNnOG+pQAPcBUHvLBE18Ker2tsGemHS5hUWiGT2tjoBAAED625zyrzAoiYGIJxEQU9Sd6FOHy0mSHRzh915JC5WPFJ2x0W/Xwr9eSnECoCL0w8kY2706uddgqMTmWbwacLPGinOsEmBjTSGFgYnJ/rs77M8RWgyHLiXJIJGndQc/JKaZYL2CwXropzlgr5AGxpi3aMydYRb82eID0yALb2DGl7r2nmHTMKtbybccleh5KQsInPz2i06tn6xdaHz2KQuaaGP656xvwezrd2/L8TfzlVW/uhHaAIfIKj6WBzrPj4Y4596vyofkUZY4OKSZV4xLK0P2NdF7nrVBQMpuRuKXj6E5CXpRTHhaB1VEi4O1yRfkV4HOOhipQ6rX/8xQVkmU1nN0lL/AxOrH4B///////////////9geiPfYaFAJXu3z7VV3AAOgR6qUsAADQPWr3mttHAUbSL3u8AovbnPTgdLU92EFGrrnq28GjXe5p7wPbNbvbeq8NzFneQ8B3u8m6oBXe3a3WbZS0bU2Nkavh05mB21631qHsvd98HAAAAAA+nPQ30HYQ16dKSMT3dQoAoAAA52OhW1MA9EgAAdB0AAB67u4TmAAHQAAVQAAoANDgewAHQ3Jep6zbVKira01sioJmW2tZ9g6uwZNm9YdZZYbbWISnO5QOVSNtsbWTreaZwdtt3k8Hk93vHceBu6l7Xuht71sHhp216nbzwd72bMtsUkqVqtMIqQAEyaAJoATQCTyYAmEwAAAT0KCSTQaCARIqP1T1PUADQeo9QBkBoAAyAAJEBEUopmNU9QAADQAANAAAAAAFJSkwhFPARIaADQAA0NNAAAAAAIkhAEZEJNKY0ptE9Q0xGhoDQHpAAANMgIlAgJkGiSpvSo/SZR6j0EaNGgGgD9SAGCDJpoj80h5kcsHzYZs0ufNRtLowmMTpDrkCl/s7J1zzTmQnw8okmVE7Z3DvmEn1pr7xTpejQIKvvPjfyTS6A/9D0yRfR+p6zmxB9dUS4QAoIAiDQQUiYA16n+tw/DK8ALEXuCCfwkUESRCH8eez9/j+zd1P3IXDhWGusmPdeJ+3+RVRROx/vwf5/Q7bP5HCE1Ihu/bw99PSYMxp1a3xpnDs4+58TlvrRPgau7/tx8i5nED4HxMCMD4lSExyHQ3fDzW03Hf5ulpeXaKPmVtpw4HNkZ+fZlNyD46okfPnre3L2w5LmVmxmQgZY+njzcjv68fFNtHYD8hK12Qm8kNr/XPOxyMwGMiMg4smNXmj1EkCQAo31q5+n+UsH+FPHBo8YLPg/D8mj2zH9d3EHH7ZnD+PYCyozufTgaLfbpzZEYugwQNZA6Lowyd5vbQ1YjARAZGgyejqYzcnJy1q8k3UfkztrB6z1WrRI6nwwDyanyEt8fhjPVsaI4uzYb1O+RlQxEOMkwwTdOSxN/3nO66ch8o8gl3j8vGeWWEvYeDPAEykEAfUG0VEfvD92qAx9Vn+//T1uoiuIKdP3xz4c/GRRmycZ4EpTrgXlyBgVXw24G8lhiM31qjvTwvgu6x/Yeo5+TPXs7t455JwB8mnMlOWKE6feIiJ8s86Y5daXJVRIkp6/5jv0RWFe4RxmzpncMExEhmL3wVOSzEkMWI2umUbXvProMiNxu9pHpo7qPH0t//ciOAd3fNmHAJ8DoUTbRbHE7arsSki3EYHSgm63eYiklxIEKSc/w1Ee+Yuujze2jhYBvCQ8KOM/XcOhhggUv46COlDoo/HrHpOtjx9dHqWB2fHNup/urmTpJ6Ud31/n+/J5xx+JHwnMf3D0/zn+zA+MxxdMMxDpEkSMIG1TcRmEE/yI5B92JqRFHOKWIEWI2/czP3MtaQPyImX4m/CWG5Q2r94hSG38REbDBBB8pQwvMWSuUpUo54GEpvC8YiKhdKlsFzNGtfBoB7JyCIQYofrg4IBcxRUIxiwhcoVG0oMjGUhnwaLdCKNX0SkSls6JiVZI7kAKKQSHImjGrZbo44p37qxsIO6eMoVUFuolRH5kjIKxq2X0y2ONS2TNW1VtxrZHfOao2uajprabTmLmJsCA5Xa5XQHvqpVhsIkDdrKqip04QCFX40bpx69HPPtNrAdE+bHlseyPxCb0a5dvtGAgmhhAJoGgyh3zjkaqnSQHVia79VsWKX4k9GYX1ioPUVto0J9Hs9TO58k8cBz1zjgY75gc4VbfaaPJHk/SguRKR4/XJUGrpi9yIqiN4K8srk88nDolg9kfAdnjn3sUESSBNMypbmQ4Gyatqu9m242zUamWKL33QdVKpsHje5fDxvQVBZyHJU7wswO7pliy6TxzytB30+LTkxGGIpbKZmmtlUfoqUgaitRKlK2ltSiTY1MqUTZBU2hVQswo2RIxlEraoojjFxZZpVVq1taYWaUqDYopZlpkKRY1UK2kzSpVWirIbEaNNoSk1FViqSyyDKqWkmxDkyJIcwVVcbmAbSFTYJStVKuUkyq2ULM0001JrZilWrGsxqmGiG1bVK1WpSGaJmkbFWys1DYSsyoNkXh34kV9dncQFFaJoYaUByYoF47U1LbCgr0kuT45uFCve0n1tQ+vUry0RHpqlDjJVdpihGlUtUiEmMKkU2bTLRWbZtGypSnn7pwql0mgqYZR6aiqnnNIDthV2tTqyXLKKvnYB7dVSD5Y6sqAkUIsWQpYJg0PBtngVRfPoglWMhtZDWQkImmhzDO4lGamEldCaAUCIsTCquKUS0UVS9yiCaRCG0eDFQgGGUdZnOKRdIGBqoSSQ19AYClQFzBVHOyRI4rPGoGgQaFkJsR7hAaijweDQ1BB3I+kR2OJpGaRSLs3dHGDCSQ0OKaDUqxEBVvhKwYHpalpFoZiPQglDk8PDwsWLCGeRyadswABJjbAME0lqquJq+RyJpBskEW1FkbtJpgCkjtTrakg4Is4hCrFlkICUGPVa1TwdjU95JoyEzlmG6IowxMTA49IUAS2QqUxgXLLgXUNKsii3SKMiKKxkSDGNaim1RVaaTZqyGpogbVbG1sSq1mtZg2U2qqVmVslG1bbEWyraqjTVbBbE22U2g02pqkZqzI1ihpi1g2iNtqhZmszE2AzFWytiqzJrWsRlqCtisKLQKxVLVbQSttqmNM0tZQ2NpbFqYxpa21hkZqM1NqRtppbVNlpjZJVsUVmrWjaShtWsG0qqzRtLTQqtowappm3ytNUFY1NgbWtLZVmok5iCZYza1QraDlqlo1SitMlXNBLmBRbVthoomXJqmmkG0YYWtm2RtVbQxlg2srYVbRtE1YMW2rp9XZ5W+YLm9aDZKNQeaFUYiY+RihtCEDbGCrTNmavWKGrClcHHKFsII5ZVSxkcWJVWrUJNLASGmoKVxlQOOOCpHNVErbZVVJxchtRtrVSWalpYqZWStqk01mSlYzLTWGMt6vARLFRSFQnSe2KicVdFURoKF2qNWZ5Qp00w74quZyhVmjkOOIGMGJtNsaLmQqamoQxpTRKUpsm6dLyEV5XIDdNHHk4YuOGZJxCYVCKculCUg6jMROtBqzuops4INqYHGcVAWoqo1dBMrZ3Dx5hdBRcGSxUxWakzEL3AIRdiFoCgu6blEmgjN5akqm5CpEYJAzooVJCixwGJHYBOeVCoVT07JNpEdoUm31wmxHGdCqDdhJEUU1K0lhwWbJq5t4l3AF3UKhrGzg7lV0QsOjqlSwMak7wtdKQjcTFkGhkleec5xCNl3i1HLKhIIWIgql0hyXLbXFVHAFq55SDhIJJCtoQpxixM6vOAYKTCQ4+OUtX0JjZXQPBzbQ0HOcF4UOoSRT1atPKg+RC6GB4GhRg0htCTGAhWNBrNmNTTWVmarNDTYy2tgzJmq20xlo1LBpqzM0Zq2KZNaZqhWjNRtVFbVppKGZKszaRrUbU2qzWathTW1i2s1hjNqas94VU5pQhslVQy40zK2oisaDGhjGwQwPqtQEjOoPjqm/jAk7sEtLFZbNltTItsa2zY1prM1ma0oWoy2YZppTALZtVkytG2LTUW0JHGwWs8JC1miOVUmtK5QEUbCxzEBgu9JWRNwcC9BagGkctJIEoSBVyGJFhEMZ2aLshLc02tToDVIqjIJdydE2wUIaZmC2iUNDtsWEQWRDxBuyagoDzslBSTR3iITYdClfRdOx0rI03qSJR0KRAm1LBAkoWoGQ5Q0ISS7c3lo2rCjn0ZYfXH0MWPpqFUcpazLDNjdsIoNQDJN8D6bDWY40hxMlCFZQMaNidAwY6JwqxE4QTSAVkDLFTUg651TOtnW0cqirhEYt3R7HRDKEmLfsLwkU2BxOMl0NVYLtGeR2Z6eDqdzqTrpUYti1mVFaSyoNNVTNM2yzZi1pCtassWZIrLTTFlrLGymmsU1maq2MamlrU0ZbVtNIVlmrVkMGGWNNrUqWmZjZjFtVFZbaGybLaZjWSaNCVsqzCrZZqNmWhbbJYYhiYhCQ0wICiFIuZiMk4t+DnWvXtOPTv1uHSs1M0JWYbNm1tbBjU0yCstUWakTW00ExmmY1MYzVamWiYNgjhZBKckAymCASh9+rKM8lHyHpgIfBBRU+kgGsdiqNa1qEkikdm21FVlmm2mM5PPjgQ6Xam9ROZfGNMx+idi7dRFOSwbbpgLtwNCXJkuKgILVKm6io5bIZQQvndz3UyUixB00wRyjRKJYsRVhK6wAEsWnd7lHK4mcNoo7nEal8kzwNFqTR4CkKQMVGSp0VegqmBx0KY1Qczlr0QGZHJNv2QusCLRj5vAvWBiEKjJPPFAHCjeNHQOaUSkCSW+clY/NCe2XvznN9Hl1eDp3PK5lVoakVmMM2Y1mbQqsykrJrMBWxmy1aZqYY0VLNaxY2mmaTaaZswyKrVpaqsSi0smtTZjCqbQWtZYZlmq1ZY2M1bMWY0qCxkYQhIklX1DLW5mZPFRKppjdPKeyMhL1tUYyy1GZMErMxNWTLarLDWmzJYkGIMSQIiQCRIiE4Zdhi+Nc14kRukJCSFJskowNukIYJMaQgGEYrFkIoAtalVbbYwlkymDFBAEpBo+c+JW86PwEnPkJcQ6O7aOaJM1HFRjOAYcuZwVj0dYI8S4jqyxznM3S6qo6JICiuqWLAGEto20mEwpUqLUyCtTbv25UK5u/lTkdTwYoSBJLwoXnUAu9EQUvNhAZzhfezhzern0jSgy/EEcV+V6zXrBHhkQIPdXV7UcO1y6hDB3ZAeDQQt+rTWeM3QhDA7oSuheh30JV8QkkJsY2DBjSm2tmyqVkbawwqWGWGtNTZsYyMapsNlNkbNNs2GLNiaTBthqttNIVrNGWpps2samGJKxhUtNZTaaGjbW1pptJjTeLJIlAScVzbQHbRw3EabqarWRhrZozY1mmNGhoVWYbQ00Ng1TTFpjVjUFbTGsy1t0uvjs7GOs5BpjCtlvpQqhUEjZVAdbCWkgabUlWKrazYZramktQ4uNuoguIbxBfJqOtqSOZF34N4oW+r4FVTeYRS8FQZBFJFFCUEGotzkeNQLuIjmObbVNMmyyZLmGkReBSTa4YNWlgzAAEvhDjvJJIZaA6dPA8dtKOVCyaCUgBKwGM29JtFIWOHSEQnQXZMNTESSKNBS6YRVRWVYRUK1vCrAASo9UaewL4N5Yd4Y11CanxCK2KVKpkZnENDIevx6JILK93GfbE0uwr44vpdEd3N1bmTtOLFCjToFFiKIjz0EiFT6AyRjZw3s3hySSUgBLAYux08Hc8Hi7DG01jVmLZY1WrEbZttZVsYbG1rak0tSVZaCsbMrRhmKK2lrRmZls1GsatiStpNrM2NJtps1ra1axs0l2lGXNLKgo0m1Y4RqoIxgQkYErNYxtWMVqxVLZsNhbUtaVjLGzZhg2zJkNNNbG00NYWbZmmISSsIi0dkCU8LZ0VI54BAYMTSCq0pVtZdeHLSzbZ2JK4ziwgQJSaV2BCqQgQKha5U5jFg7vIA0iOgbYNMG10y2cULQyM6ooj0jECmw0FShC8YLhsUqAM87zzUBggEFvnYu+6kuHHlSgLiY1AwQmEjtASQkIEpSKJ1F6q9UN7xUmCo7aLlE4pKCpkZ0wPA0oc6ekoivKzi5fFWbXRoLJhFZG5vKRxPrYqEhMsZ1Ys1M0uuPtKm40hTYKvtNroArgLoFQT1B1gD1Co2oOZzSnlqdNVO2pXy1T4sdXsPac9NmMVtmibY2q2M2obLaqttlSWsy2a2rLZmxVrJpstTG2xtaBWmltttbFVYybJlaa0CtYZmtLYVq01q1MyY0UYkkCEkjCIQzextXfiiriVa43uaZZaHKNsXQKUqDIQhIEgMWSQXWMjNpI2JJktZGs2KK1rGRmOPE5zqZ268qVPR5BwQw3EohqRXURBcQzjUulgI1M5TlwZSlyG47Qpl14cm2jBb1Rk0GGUgXBVKUFGLpc5wQC2V2dBjQHhFJedVCMCee6J8XoekAFoVcQEiggxWDIXsqmaXUBM2rZ0hIW+9g20lIG6RAFwRQcog5Ta9KohoC7A5CX0+0TjSG4F5XZVAPhh0w0wilMAUwiMHDWxDCNq1EVHFMYO2HM9js9tulv0pXMY87d6hCgA5dKhEmrDhzyQMTENSCiLFa1ZitiqIowg/jucKyYXgrjSzgT0POhONjAGkmJZoks2tmxoFa0zMbbaYtG1NsNm2asWNbNUsCrWraNtZszMxszMsTLNpYUrZlsX1pcsTOaYQiqiyJJIMSq5YEFXW1xmzdtWxRv2OUZLV8eI9VXqM9Sn55xi2KxaF8qLXoKzoygeONjHLEWR8hAisIgIFQVFtbBsLTVIOGnMkVtVrRxoVbVCuahyaKbmTVM02G2TZM0NZsZm2gSRIpEmKPIRVUeXPBaJLxo6PWXlJnhHFEzzxlgwQkIiouUpAYkGMjGRFUYBMTVLgFcGkMOFwc5GpqYkZSELWaA0kPVNWBvgR0+yUCFJzMYCd4OhLBCE1RpiYSYStQatWArS/BejbLB7kN4VMVuhgkrhCy/BOiMm4BTQzqgOHSaZIw3WzpZIfNZxGXhys2100nudXGI5mk0i9QISWAWQIzQp9B73odOoWIQrri4sOqeZiEAloXgpJlE1Ukw7yS0UMQ4LanL4cvoMFxDQ03mWzEVtUmM2bSWTK22RVbZsbNZrLa2tTQYxqNNDWRK1jWlUs01Uq2qaaYKW1GMtTWNU96RUxVLRFOYRtSqtjI4kqwyNhFZbMYzO/a9PRuXPKlzF2JVZDFIpEXTQLaNQVRrYEcwB1zq4Dey48LZcKLlva9UxZbXBTsGmx2MsjtopmpajkwkIEuxlhhxIwLye6lFFfLvRHDEHgwtolRoZCSEr9ZJj0xqFyahIrTEPZS4qFHWLKqGHIEISTgQVQ5lNWiUYRBMOlhb6IhRL9KOZJiZ5gaxIWnbFNs2OIQuoQubC6tNVrVXLoVQZzdoSF1QZVrcJrpcvoGQamgXBUAelFRGKK9HR2UVHtwblbtaTQnzI4TxzkXee52QMnE9RzppynLnyd6AeDfesvae0pMop8BMWLWLPDqeL+MGH6mhEEfkAETUitYIAZhFCqRoU53+2/Qeeczww1BC5EUF2zkQz8vVZo5E7OAo4JZ2KeIcZcTi6Mds/BoAiuDOPcBooCg6RzfmDYzZA4gFGpN9JsXi3crp5Rsp6ihgJ4SmhslUxhUCgiKPMFqOHwUFodJ6PWxw3fXRmh4Yu82fCO0RVHU3q4YxzpZOpyj4cEkAXipQ4Iqmk2gvEAc4IiGj0aVcpRsMUObpAsb/GY6XyPEPRx4nHVALrvbPBRkFODQvkYcnKIZVMVHlOXDYelj7gaI5muSG7jB5pyAvfrhTsggOy1mhvSE0hwMZNrqaUzLu4umGYjex1dCPhoHTSn14CeB3Pjzsvdr4sp0jpgfG6Bg3KARHBBLMDa6bG3ZFNLkDrsLwRsELpAkzyFH5uNBTOSnnw5UWrVysrmNpXGNqcIqlTckT4QkKo2i+2axE2Pnnd7LvVK6hKs5Nwvhrr4K+ctxLB7RgZEfAOEohG6qFGhzZBbCqG29JBgYWxXCFC2bnCcnyUGxgBsBBskVdINQFZEkVQ7kBFdIhuRzcG3w8EUuBEARyJq4OUy2A5h8yuYLeIUYoLWDYu5pV4YY6aXE3G4GOsqS0goSvAFPdhhi2MG9rsJ8onrYvePmFfBL+rmImxh1CkEOmCIpmRSrA4D2hkppBL8HCPqwFT3fjyZuOrUNjRLlUeCAadxyiosBiDzBeQIWg8i4iUrkiPrRZFHxAd2C6kBcBBUrk3Kjwkaw5SoXgQkjIGmNXCUEniA3TRqFcWJJ2pQ6rQeUDoN02c9KofNkziHnzSEAhBzA4h7uhRkWc7LkAOpAOxw3ktPMZOw8pClUMqZQYz9ayUGUYblWiHs2ShzIL5IBecgc2tg1PbkciBAaTCWSHZxZMUBXNvJe3kz2R8hrpgqU/WDXMujpEJBEB+YPJH3B8dqNTkSioq7mimyHPs9lsjIa9ecvWSVNgwy9Cx1xfE+zFENsZUY6vsUL2hTmddTdVpR3iAu0L0JQMaJtPFeKnum2U3vzbg99cunrUpfvroaIbY5kd/F68GdSD2x6hSNdRJi7NLHKoaVOwj1KQEMpqYOy7QTNlnFFOm8joPjFWDJsHuIU7NzQhE4d6QLoQ6IW0oPjG9kMk8lOvnecontvnNeEXhgrwRRVN2NTRoHlA9eEDrzoF48+6dzhAwJpBFyICInuJwRA8xD2BHv6oQDrwFQs3AuZYFJnBnLcG49UaBeYlJdpFC4DcRU10YPhGCcRENIAhIIDv1SIsI+IcAPWE5Ux34rnYtqfPg5sigZbu1RPhCmyroGBnyBB8ysujc5Hg2ybZZMEp0dWkHfS7OmKmx2elcsfDM8g4ytPxSXkVa/IzgkLxkMWNYz8oWpomQrv5tNg2epMweHJfsZYuSy5czeUlfV6ulvYmsBRHzagHiIYqd8NT4hNQuIBJeMAfKDJPnHHHxqGCGWzAETe7u4LxAKB38AVPEPoRTnW5oEPywcf9OJ0armiegOMIiSlayPURXyNISJmymShCbHbzmENAdbX/O3nI6tBBNoghigoCOwg2yxJiRG+a3+66SZ2xVRoJIDGG0ZDFBDKcJ7+FX3M6+XH7OdabRiAyfNAsDelCBvBpDeDphpOYxyB2DB4bjQGdgsGbu0+w/1dh+YAdtjpRUYKKkJwEV1oqji9bPNs+oW5Z65rlFR9HD/Ak32kzDPjMvcEHvrtBj8xnonNoh1sRaWmXVc1EzHQm17SCe5++mQqgbGIPyM1+b3CgMT194Jn2xkx+x8517aWaFn+uOLzjgwP4PIdj2IFxQbeMF/vUWPrvvMzBuxB5igHqCnud6FfTDs72D1Cm4fzMRoPjKIeQfB9zfnIo99RP47hv40osf0OnNxJLaRxa7lr8rOgAuF5ps44Y8hpvoaPUJM3EREF0tj7OBBjSiZOjCpa5ML6piQO+E7zi/s6Crf5d8Ac0pKQLiKEZbJju1/BlUFGgWOTvsmLry9V37gAF2K8Hac+CwC34oRCIHHyfFIFyYSjFQJGRqHT74MSbuHdEjVLegxCFJNF+on1wc353ZroCGgvRAWYjXPQpPXJHuyOl6JAN8LEZRQVx8yDBsPQ/9aqgH6IHDFDsRD2YrNn5I2LRsVa+xOsxDsiB4IG8SoB0Y5yiUvLIifmFjKoqMY+0tJUI0eJWkQBaTIhRnS9mY3UbA9wQld8iCjxDy66dhRc9dXtKcyROHTfcv41ceIe9WgdwMwDEFVH6vcnW3xYQKItfzI4IBUU4tIM6dpGDiMlkuqULftE2DACckBg0l8cn4P1AWeEwlg50j3bn+kpf+C+v5XCo/AeIUBdY8GYiCButEkgATpi7T34wJCuSIT9dqQzbsoAFG2Ck/YhLE/vR4/C5lb/e/dIoLtLkiGBAP7tJyoKjUIARAUQCM2yLvjOk8lZkTYJuRBXz/OhzZBVf2CqjOCB+4k9RMRP1Ax/R91EFyt7IjvH5YdIxOAIFyHs7K/EhdAU/Wj1U/ALvyQukh90KBonEsVVvuoItPhSJbpo/Eh+PxfWTlcQh3gKvlz4LhmP3WihQ9ARMqNAFiI1ASC6MsYooxiir3bZU/Z02CABn4YioedEBSl0xetiBIYwxJKEeaKnafYARMqAoHLj+YFX5H9UvlHVAPNx4tH0Spejk6Qp8NVG0KfjxBer/ZEWyBRz+Nju4fogG0AHsaRJIZZBg7+r6x5/OSJRh1XjWJw8lbFXZqSlesYI6Xvb7m5zp8zL2PLuUT2pj7UzNb7RDl+ni8k1kl47KtoppodvL3k+1bxxU+3d+V52/h57sddvxtjfbIfez157Bd5IZ4ZW8My/ZFu1EnORt+8uG6tE3U03MX3ye5c0Q5mewaM7kGuuQcmHtkt6Mh73u1vGQL7Q0B6kVV+m1zVQNgdG4yH1fZuHTXwWDg08lrjS++ksQfTSSfZ1UPLZqa0DtDCFXtA9dtVHQ2zYjmCnvw91qldRX2GR7NEoe7IkbKtajLKWhqpB20Sfc0FOYRtMajaJB8VWzFtRVY1smNmm1abbDVZbWM1bUxhkZtNKGzS2ZlIF79HoyEOYWaGalVU+lAumqlxQQ6SQ2VS1UVK1ErULWkoM1VQ2JUpmtathKtlNk1g2qzLopK1c1S5iVU+jBwZVI2EDZURayRXtmoXLEp7dVG1S2KrYlHdalRNWzWjasm1tGtWZstsm2bNNaxttS2Zpatq1mWVqttplrNNalK2myzMthjY1izTM21pbLNplm202bGNsxqtGbZbbUpWLS2stGtms02bDW2MWba222zVZa2rKqK8TShrFQd5ouGVNpGyZtkT11GxSnqxdGDKSshskbQTmSKru5cIM0VmVNlsmxqV7micNKlxUy3ztxLoNk2kzSW1WzZNoKtqraq2VZoZmZMy2LarGqqrZUq2E2zW0RJ3wJTq0p72E+mE9WVC1nrqT5NI6WlH7GRc1C7Mp8vpyvP4OR2YV78HdpPY0p5ZRzIrmqnjVV81VLA89RyFiA8NOaqB7SV7tfDHGbFPfqqdNVOZOaktgvJSdWUqntv++vBf2NWIZTIBBBaI74gjzQSuAo/2h9LQFDpqVUOtUVhR1ynfRO2U66+GX4Wfa0RXbMxTxRVZ9XCfs+W9VXT6jN7U0SCbK7yb3+MtF8zoVZl13naZnAWf6GPlkxNl8wj3KpAq26Npr6alyykyNSKxvS1z3N/O/7VePdYTVIw2OSkHSeIhoM94pQsFZFCESwN4oJm/mdB1QOOGwNsQ3VVeUvVdoonfBXT4pY5JqpY5D6ae9IN7dYSvyGLD+pL33sbPW7bdcdzuM9O+/WTannNTj1Qqck2Nk+GSBMDLLkMiY9fb7dTOiaVo3wKb3nepawcpkI+DMKl4NDgfDU92+xqlLtaCGERgFyCmGCXhGCsi2itVMRV0mpymtYDtauWl1wfLSWyk2QT5WQ8shV2yu6XfC0qlyBsjaUtqS2oNkraNpbSHTEbKvZqvwZE9NXI6NBtVJejg5fd+t92ujrPxUoAA0j/4IJqh1Qf1BtX0fb5OvfeQ8xMySL2CKUIMi/f4CIuQhUbMXeJkV/XX7BXWvz+Ki6khPSIx/VEP2M71H88rLDT8Kns2LlTI7fuAVP3YBQYdQwBNSFgVGPUwRT+2QP68Tkgqg/oNygBzBPkdpyQPARG32x40MJ+WVBpRSfkICRaWEj+MQBV+CxSuA/rlIHLeiLqUCqP3H+FuWD7nVItuPFn5ifaAfEM0hmBPccs6oOSunIpVFf4jFrLPivqWZrPzT8J4CfL4p4IawV5iK5RS5Xnl01fqH0oK57UwdcUnuCfhNyfAE+8A7kRh0zmfjugU3kQKpitkzWRAWu1fHfOID90gq8gQ0yxV3RnykP+uGpBuT+kg/dior0YTUx1Bgfj5VRv+Ys4sZH3Ks2D7FB+cRX9FUMf+cwctHuetLg+DlK3LE708LVT7ACj96H/wNimb8SjT5ov+2H6AVRxlg1+aU/RDx5vYVUaPop01AUWko3/Qp6b7y0A0xVwjAiZL+QhTuk6msvE44AKcMaLGBNTnd5/ELA31vR5fhpH9ik/o/DOzICBwpX42Gk/U0hUbQO8FXCHjto6j+MARXJsU9RYoqMA9pQoahD4JBFF/BS2lU/J/T9gR14ukn4bUA/RNIf4r4/TZQVfsw/uwej9VBP6sqRgAq/nX0UQCWzAoM3B9gtbRryQPQHlO9r/pA/TW5sfulnoIay5NGEKRAP4JQfrPywD+YhgP2BQbgT9KQ5BhJr+SV8QPp/V9WUK4Df+ULOYqLSEGBAQ6aUq8NAO2G1F/NOojxQw18B+3qS4jrb+jj6MBBD6AqkpAVImQjKzhHf/KxEgsiMqRkFC6nKRk1x+KHWQ5QosgfRBER/zxf/uucPoBTKKvQxoiVSmVuKClbwlShKIsIqGfB3+pTAPUgi0vYJJCb7PuJZP06VPzN4+y2TL6R9Jsl0y+U3cFCoREPTIdih/oxsn7B/74wfCIGAIKdyCFsF0MPCqAtNRcO4gUxGXC3N3KCsWcofhKD8/AP2Xw/Y+h7QkCSQ+x1FEBqfBQDzwFFCTJzZ4l7+a4CYgOEAC0iClypbl0X0fGBu5swpGYCgL0gbksALJbiCkmkiIlc6BpwI89k3yZyKMkosDJ2bDFRtje+rH6ymwpkjSja3cCPXaaiY+BM5YycgwIZyNY8sWBT68T85/Swa9y5N/N2lxzH7hUP02OHB0+/1n75bEX+Ch9YPuRL6krZUqcJBQUZT5Q0URN/hwRHARRZFEE1QA622DxsfuIFd0V3o5I8DLETl4ayNpyhmgnwkPAD8gVR+ppqogQFVzwRASfFcJiP0YbShMXnMN07ipMd+ufjj3KRB9fPbKJuApYiQir2+cc/hbD7B0iwk6xHKPRJW80mJVRNhBVkPkj0ROkbh/JoxkCEyBYpBUmE+VOpJdrHGSIb4QGgggCOBBAiYZRyHjjDkkXXPIUT0FJEgruwRQTYxmTW2ZAuid5IzGZZ1BVsPMFRiyyRRYHdsGMK7mhKtg5GIQa1K8bN1Ip5Rffv8HudaBmSQJJyGaKhv/FU9w+/7qFD+WyKoxWIiHUICiPVSuU7AaeYGJPW7oqo6bvAkoUkeYHQAguYi3S89qmKluZuzaEiBlPzKbKDZeG8Yh6yU1GA7nyjMA4F3gyyBR/sSTTZ+YL2WUT3aCXAqWFYSRKKjumgIiMGJVBYozHSLBnJHcIgNM5wkbGSmIweuch1MqWmUwCKCNboUQXF2ev6Q/sWYEA8IeGDEgBU7eTSQSTyDH702ji0HIJ2EQU09aJtOe5+keXnausxEiUmL04hnzGJ5zLP/53g98YE6KI5V5oQi2IloFj0qhIvmIAsO34yJFEZPfagiWqXEosWh1YgvN6MuWd+GBSYyGaqpAy1QP9I36afrRGdPY8ImX3PtHtCGMCzXSO2Z45jJuplOyaB2I69K5BK7oYbi65Cb/gM/F7nQBGiOExQgguIqOoRH1uMcfELRe0KqL7qUwAEWyYmRQ/SQRRTalaa52OuKiOeeNcxpU7UFER2PmqUyVBRTXLQwrm2wMQTF5NkKCi85TkRRWfAD+E5qUflAFRMuCIC/xO05CuBLkAUWBxUR5DMFRYbXy6tenSUBM0ZTVFmNBhKW0c77JQF8et9L5Hhvt5M5lWEQF4AI8kxGSqdk7cR/D/M4dUDcDsv9O+pthyBe1mQpYoX7R+gJpwPbWByb+atga3Yo8+B3lS25G8DvY0bUjUL1LCnEIKm3AEYvd/ci30+NWaR5IUoALhxkjol06HHnmuzRRUa+tcGb+2NsoCPUEX6gLzBDQg9w/OkFRbIAL429eODiEjMwvqIdATLTED89DF0STRTvPS9G+lB9EgqK3L71e2KiNbdXe44NCKowCjnzIW56HgbUDKIWTkX0spPcGXMNN05EJljMr7izES64D4oY7NWbiGz4GosEOSrSEeMDHsp8GJNdJ7kuxzggLD2PScG334qpABFzq/j9Kijw35OE7gcQUspv1ai8xRBEz0kXgQN3gQNOUMrG9NK4neSaOys5ySeKpKZdCAq4J7yrGzTI0o2YMyN0ZqTU4bJmkPVeiqNIeCIzM3pNMaYpK2pbwETH0QfQYb2dRXB0MYo+fIFxVtNoUH/MLAfaxzvQ3SOr6L/mn5jIlujva4Fno5IKiOEAArWzcwevxJFaQILiG+9WtIpHEYRprJgpFXi1ndAfgREw/rTHBfzvYkkImUQL16PgXuKAv3OyKp9QVzNDPW+lu+QZG1qrZQDoQCX6Fssgn5QsgY37TFpsvnolzyQRogIuYprSuUzeO6fwHh5d3GD0wQ5OF5E6IAClgL9/4zBkhdHF238KB+JEVRklLjhIs0EkR+SEQ41FRzxFAECM6p91bOqQUZEKcZlEoCTMb5F+Ci67EBFUUqhdZEgUm2GVCqwCWUyduRlvGkq5p5ARV3PJbiKpDXSQFHJciNqSL8YYjGrLgCNhIZ095MRMKaCNgB7CB3zOS4kkKzTQd0yYibzlJVaZEDuewzxkndJ375iRG4CAlhB7pCYIJ0AZIwY3cKw9hr3zOXHxIkR81nKk9ICI6ZacVH1rDFceOY6KI7i2/kninHlTGUYnZNNOY2MFUd7dB8soSPOflevlf6bywslqlNWUx9tKl+6WVy5dgYvMX/sgJq8yI0Dee88B+DWShcG4qQ4jzHsmkPHCb5LdAhAEl5PdgBcJNozYqHYSidDZoPpjFqDLVBCpWKHAFfRE8RvdubpKALLMB9NJ8T/P7Uuj7bx83934EH/u2bDMNi2mzatjGLatlbKnxzy/c4r5vM3VYTNzyIAlEMRQdBRRZIpFwKU6nA0fCiUY7CURUeKKTn0JZBUJoIFyMBVB9Z+mXKXRYdLfV3bXNvAYjbERHRA35VFRkn4u5akdUW5ez6aYZbW/a12Kb9mqXCAPuyfmTPkABX3U2JaOfHjyapupgYbhcZatozWBtRi2o4a6YnrsmRghoyc7xYlVFlMM/7slvk7k8W2Nub5Ak+MuD7UTa+bXtthWGgu7Ca62/gCKN9G/cJGQXjqR/QVnROAuKJtR1sVEhMBLuWJEapHzIqLDTufrtzAYmEDcoaEVRz1QC5jj7U8YElZTmh2tQykos4T5K1AF2/ySfikiJ3ID/b4jsW7XouAFNTBVegiQUHJD72mVEa0O8Z3HygCrFXoP37XadU+TRrXCGIPU9JXL80TdAzKGyAgo0FRnRVH5pTTx6GYVUeikYxN7uMYsuXHaCqPRjVQXoiMwt4Z9pUBY587ca3jQLoDKnaIlUHbOaxIHGZWs1FhKbxz+sYieU6ZDyr6DolfgJX0kcSHXIHq24AGP4HsNm7jgS8h/7h9vBaD6jjPZq9SBuICrz4HBJ/lI9wIwNvWb/Nl0GhSgAkhjv5EmHEUJPFOj7udPJJEX54e+RIoRwtniDlvrTZB1wXzhVmjcktNdkt/ln4ROZ6tUvyTqZ/vt+EeOLGt+vr/oOv50LzF+qHXfaBIkfsija4ANN1AHlNdRMgBWd3ajQMRQxIkeky/o3M8kw+Mh4QMhEoVw8dmuF8Ea8GNi6V1tazTe/HsCQgjJELjfjm47kDYDp9eMARdp/XQ9ZpQKD6fWff/vG6p+p6SrOEmd07sCEPZZx4t6c1rIUFHs+VjubLrClRUZXqXm1vwJ1lGUZRiuwzyIDJEaf1f5szzv2dj975rVEVOSN/aZ1LhC/FeLNuE2+7omB6URZv056epGKPdPtJjuA11f7xjMCqMiiQFSYYvpUfS3ux5VyWWxHtn/eniEDxZ1rQoNdeT7emRNbCcJytFUexmNH+ExOWOk88kXhkj9PrpbU4eJ+FG1z/YT9LdYqjY9Ig2mPIB/wIxbxbeUnad7pnNPh1ztFbSWn9EZxmFy8JIak2PNee94kJWblgjrMjEf8/NyHsfEa+cBwdnwuKTpWxX3Xc2G1oGWAqc8mJiUkqkSg5E848gcc8sgWk71yULjOWFDlI0sPh2qLkVB4YYmCd4hYeUs97ChAhReaDJKedqu8r425rUn+72zzFYOs2kvC9ijIsQKKfEJa/c4Iqj4yZPToajwvkc9WQDaP+dx9r3JUAFtysPq1FR55v0WV9B08HEaOvnXpv9BgHYdp1HTZ7QtE570L3rPwTz/ZPmzhRry4sTiTGyTj5nhCnm7yRPyaXc+HznK253ee6jfqsXHAIpwsIOpZE+UAK1heQJXa4shNM1L3PikrW6EmTtNi1pc3M2VscXAXtr12trX/we9yeJSuB39X9sjc+NxbQbAhI4DH2GDmZA82DO/dv1ugs9VUjxy/yd6sK2CCg7dE7ODsf4/J3XutP1eE+7+sfqD8B43z8jjKwPadFv1JGBj/Z0U2UlKVE6iJuQN5OFNjGexYPgYZkwZuLUDbA5Ccy4giMlTFxp+kVRnDhyeClLTmw++dPepoyX3BZam9fvpR22T2tJ988Jon8l0vmfSQ3TpNE/kcEnQZz2NzFzyWL1JTEPbIHTYRpvxLjU9UQ0XkTJjr7/iIRP5Wy3YB7OBz6mRpd/ujDJx/oR1M5XLRcAKDwCqPbxYSs7wXjN7+QP9ZcxMmiv5Ymk2n7TNoH+ktSXgBSV/bsp+HzSUOgESZZo4zpkFD+fKeNcPE60+LLneoBVaGnqAQTxYykDO0hpNsyjf/L3mH/necR3WsxiwpSc0B6ITvF9md6EYUkYylDvkBQV5HkNhzClM3CYr2KvQUEQKI6CBQQBpIBNbzwMV3NFVGbejAME0gD4ggI7m1JvwUEIepU/OQXx2xVEeiI3A900MNHNKfxHTobfvNj8QMgVlyBgX4K1GPufI5Oya2kH8ScuVMjgfM9npFwxxckP7LkoFr7QP0UBPsobu3RBGAPgnSdUBZSFvrSpWhmJTR/ELyNS8/ZqI+vQ2nKSygUHZKTDcJSYZj0IF99nWPbsJTMafeWGk0nxsLilRAZhgY/rnRSaaVNxIIfv1GYJzG6jbwT2I6Mg/kf0OxMqgq1acngJCRoCQchIMi2N0VByRJEMaw6bf4TIOMekUGnnFt4PxAqP9MZciOIOdKdcu3TvEjmYDIZRq5xOVj+x/eVMAUnPOHCkEakeVTMBcH3gKAtp6zKfMh5Ea/GZRuTveEjSou3EoG71THrNLOS4hp7wM/vhHkHY98Z6A55ziIjSff5uOVlIhqKynrIcaG8GImO8h7zf+aH2i8GQ6QdC82/Ih21BV2jg531+mo3jUZ7izQQ0M7UZCVJhLyDFEbRhV1dkpQ0llGIzAHBUaxrxlB8yzGZhN8+tRadYK0vPotBddKVEx4MC8/4yug/uJiPR+QrCQ2WGc76FB/QI9NHKf1srN4r2H82isx+bbN8gdkNuvuuUP5fsePjt7fEbEUFmPzfws6Za3SG4GBlIuwkaNKKo4Fq9geMONTqAdJN0sCgd1Nz7viAwS6HziwKTSiQOiUwB+cP1n733XRVEdIuTAzyL+iHkpQ5TYoWz+LrMn6TLsCr7AYw9YFiKo0EfRfjzguOJAv+FP8A+h2wM8j3k8IHABGF0Xn5oeQJebsx7abe73AJw4L0SLlA6GII7iH3AvjK0Nv0fwP8A7oftKk3DkMztpyp/ifVPaEvTvfDGbPpDFDBAMx1qdn7PUb27/tXGaSlA0nnnPL1eX5QFOunD8sKk3ugfzmUHu4Kwy72bau3cv0lnh7yLHzp+TlMxN3EUV8nj3JKPt6v6+vt3OZt6qY9JX5Z7wvUHXzABV2tMVQxwUpIooLEAAsfKPts0f+SGjHQO3JeRPXxTBGSEDFi8/mPtoruqyQmiLOF7GIcZVq9ZHSZAGogB/IHa/N3LPd5j+XKHiYVaPRlJMETd/Fjm6hpMZqqLKuE5tVORgUaI9JY6p42bw4EvPYsU+9kfGHEHeKeL/Fb6/zq6Acm4+ZOdP++9LyW+bgc3LA3Y9X07fb3cogq23nHB5YazhOaoKszNxZOCeYh0ZqK+Wn1vS8UpbYE1secrfz27xxmqpKYFPGTSdzA78doUIAr68Re9igsjZ/3cS+SsToPwpmL6tpnqcnexxU+f2FMC32cfLkkzByWdL7BNHD8Zonknc+bY5JP8t30SP6nv4klu6xDM2GIiLA+5C+WTmESR45MX+z1Sb0Wy5/0NdYWUEVBnP9jmqPgRG0Vo74fU5I7VQVmcjD3mX66faSmfaV/hEfJ0ejXxc+fj47fyXR9IjFBEsBF4J+aCBkvNzEPRzmCSzpA2lgnixgWqOaCBk90ScdqfNBR7ARv/DwiKPBC3g/jF07mDMx0fbQ4PASmImhODotQqY1yBy1Xojd8PUcWST6H8uNs14zAe9KmOFIoixS+KFz3z2nbNn3KJs2BLym/qn85fh1tuP01JLbE87yxT+9LzgRkykT/Dr4Jhrxx7bd25TJ/VAczbICtqQFA50AREsgmoxsaPZH5cge38T1QNX9WAXtnIJOB07zRjzkZKkYGSYJJPl3CwjzTPJ1b7+EnufIcntmqmiDh50M+KVyWUTTF4R5ptOmWLdlx0Q0xVXV1Yu2V2PRnmvphyJigKWewLZyPZxwI4d3/TLNPgqivSCNQ2OIk++hxiUaKXgkqiCtNXUA+wFmNIQJAshlE7Yh/njJvHIn7tEDDf9ZhvodLwaNvLhl8VlzwauLSIM/TuaERsL/oXdHTUpZ4o+Ar4GNglAGQZ8YRySzEhyakRxbpMb9eOlEZqCa6Kj5fGxHEYir+/jJvryY5+mdnJUiMERxojsRHcBQXBEZDYf75FMERttKaUaymoUfhrEH6mtEdaI8GwQx3d0oJDzyo2jj6mtRUZ5D57+/JJbNTc50RkJpUR8+Vl8h8o+mDaIf0dPy3UvOsv3Cit/Wj5bBpqyPoK02iAyETBA9D6tPMkwNzvColkRQDrj0p+znHqlUupQf33ancn9k/J5OncykDERl7tSG8/2htaAMRI0MzkfV4Gl77g5XJW1mlyd+1wcjlfeh6cDO42jV1PWf9cuNmYNLeGIMGPnerO5m41tZI84PD5c+Znf33e7t+hzvXeR3O6epy/noOV4YWAbkB9n19GW+i741EhUnWCJx9ItPoKnBhRKPhR9bQJNimA6mnbxnTX/O9i/FLz8gnR09nqHqmTCBBY2CY74gERzwRjIdNzEXRNeOGJ2RBMLwQHwMvCMxhGfs2Yqvdnydisn73Tcn1Pv3dXB8vHj9tmHVPrwx9XZ25zxYB/HUHvMRQ4H3hyH7N8Y42/q/ALefq+gPMjnyQLpOYIFsZRMEtsvt7/m18thT6fR6/XKiCtodS/Zm9EYEfSknnJDX1t+qZwAkdQHiAgWTIjOEGyruS5wJSvEFcDOvYuM5OG10x2RmV4T8AQGShSCbl9NFBgBEIiL74FgpPluAGGXxj/ip9YH4AJAXtLT8et5Ac5pifgtzc4D+uQkz2RQUSc84a7SuV+8C1xmfqgSCZQPZZGa2B+OeB1gJQLsAM4HE1naA9ydACzbTspR+wIAZOdbnzh6jsH4NRmOkVGw5uM8gxPmN419A+Ztd83OI2rCjOhA0RHBFjjJES1QVZ+dD3GPjMouYP/0ABNyIiBp/QZ/t8lOlU/nPNAfb8xEUB5iv+Uvlg/TU/rQk9yorKoahIEgstQu0G0WQCEh1QV9qG9qMcy1iqx3dvpRfFASEiSDCDeBUkUJAkV+YWmkVvGRxBahJIkjIMikkkiVAZVAHiOkEtBhFvFqLIhrVXl4HTBsnTHGNm025hfOyfL7HX+V7KhC2miZ5nwlfvPlAMUkUMJnEN/Ufg5Wjuk0QZCluMdmU65qifWiYpSZpM2nKOizNhjCHgsoqocCo7HLJcSFH1KNsvx8pE2Fc77fpolwLvMXhQbIeDP6P+196j4dHwS/PbJn0cB/2r9nd63Bh497kaD11hso7nS+Zv8nQJh/dB+PzbH0epCypJcfEIIMdpy7DZQdqFhQVGk6yWmRLYm2zeCUy23lkIwDoeORptmGKM99J5Et2nJwiP3JAZPpz766CbFoyeH+YTFlF5H4PibWuwJnF1iCI9v4kW2GrKFSFRLG+CaNPdm/WWfgmKXLX4JdRD7ezT8sVZfmDO4nXw+ePFUZDDz7c2j+f9o8R/51+gidcOPw9A1Hzq8vzO/6+p4dz7HbIjmeMw/hvf4Tffk5Dt9VOcaVDoQAEjAgiAlRBR6BxByixh/47xTjt4YTA88CP3msLe4WwXBKUT/xBQb4AKDSQewViKpwMFQuICZTQ90iLbqSJdEQCgx3kAkF65WHUJQ7cPji/42eqcNQZX1QPw1CiHD7PmFqL1kPqCwfQCYSBgoFQvUzBSHLtlYSrIZQzhYH4Jg2pg2B69qSkL0xhgEmAYwiPHGGQI/oYqyum0J/+jC3ObA/JERhAT2HnPHpL/kTuILfdKHs/Bynwd2vXulWeSoGWIlMruTG9KBNcanxUs5OM8sCprJk95KFRvbZ0CmeMlvkTlgr0alOFsa2nXufiY58W5O8O8/4H3KIoGqd0IIwD2FCA6/wbJk8Ex8U8BNY95utj2r96S/NHK5ec7hb5DoDUqzY2Na0Noxaj4ZA5mWS2FMybWxYzMVma0RiJIAGLkLQ0F1NprcNfSchYVQfAw0L5Baxz7K9rAZxbiB0wQO45xPzsLKujE8+gpJSbFnEZG8EohxBDBEKDiI8o51s8wzm/Ku2/WtzvNNHx5zjIp5SkVQTcYgGMkOXetTr5l3oaERubje14G/kyhuVHIQrE1lTBDBMMDA56jgsDCNnywKqGsUDOPRETIg5wvJFa5pU+IJ0BFVQ52J82NfBj1cpLM+AwHYUByQ+kdyhAR7ghyX8GDt7QQSwchniuxVjcc2WGRTkqOeyYyeR0Bdl8TUu7weGMzkIh0RFEc4PyhC6AuUPMLkDok6IUvqKOseC+hxHwYtdorj2lWu9SOo8XtqHU4gsjWzsMQ3+MNXi3O/kyLHt2N867oNWKCr8TjTksqCtJUDHcyQ7MQMBuS/jexzuGHESzQh25EVTyRVKJcxnlCqunU8wqLy9LRD53KOZHXvWNk8T52RVHMt2nBXqD17K+UNu7B0u+qbKcAbMQasROzGpMeinxGI5N3aCW9SEZE+IlQZVrWjIkgGywVIkQCyBFTyQ6iyDoQOUR0p8pH6j7PNNC9RpEeooW45LmxvPXFKu89/VXSzQbRo88tmx6iDiALIqaENtPB8soeYjuw+dffXIGBOoOcRPcM4l2TQrsjZjiakNtcVzg0ppPdbV14qlYFAiUg8TzBubySTWKydAVHoDJ43JAhZOVtqKLXRy6MUnltUgJpp3qbVnNNieCWyAVGh+IZy8FlGSt2Dc9deT7C9Jcp9K9UGAGPNlw6Ec2iV229OKxND4JRreg2xhq4qeCA9GERYykFFCrzA5xKwEYTch1atS7upGGC/WF1VGbXIOseKlrtWSdxcDLGImtFOYTLLpebJK0LahKQPk0zUHsICiOOpvc8mSVZWEUNuEbnG8sBUr1IXLFYBS0zLTHN42AA5IIDhg+J1CsKQqx7wNICK+kRgc8POQUXdMexwZA0JXRmonwQBELQRQ6ya51nCeLZ2PYhXwChkxVFN809LpzoDiqfLUoIaBjSFjcmt+48/C/E+MN5jBIcgpIAIOZFDklx8D7jevAqo+phM4HiXA00eT2Ees/OXHBq2Cjvf0clCjC/b6sEkNTtGnJzKV5iqgy3m3B3Tg41evRqGOXzDAW3D10WNIePRZd+Wk8gQA1JIouIqCnBAMuF15iIuGCG8BfMUBNICCcxUoj4w0AURFQfDxTsQmyp6Nq8AQEX6daV7AgCHlipoMQU+kRgo5xQ1+fXRylpoFBlBRDmKiJti0cBzi2Zd0nkvpC74MFuk8+AquzvGQNjLkCK/EgCo75BQ57lRF8kDsYdqoCXgAvUAVOwRyA51E+GF0mAzt4hC7gLJdK+5MuCGWr+SDPkGEl1I0UJiXIB16vQoGzJSnXeYd6M1KcFVDmKe4gp4s0ghvA2gJiIPLEUMEAyOr+9cJ3XTv6Kv8IjWgctJf0HZZ7qHT4YDRosXmSQe2JFV1I6Ctp4ArXY8ft8xcnxkBs6lPJ6p7RHM64CzYFBctTcHftO809z1qiPTbn10FufZxZHXRlJbyHqkfYVVykUnTUrJjCPKvQ7DC9W2NohDIvIFvHbHfICI8FsY025DDgvVdJw0j5g0RIpyPurADw63s4YKGhBXvFBoMWQE8xT4mZc6bIHM5ABHOL8EEzICZVH5m5J+QqpE7boNQBMLmpeTUP2Ha5egZKimhTTzkvR6nud0v10Gypw2DPN6oBqLfZYrwGR9gOtNaw+GZ01qPBjfrKNJSM+cM8LQTYgDwQADTeNJr710C4Yijo8Z0l05rzkHtyzDzVIHJ8tRCQAkAkCQDI7ddwsORcp8860anQaoj7CWwSEVJATM2iUcVjqmjg9Ij8uuOjPQ8gU328G1m82nIT4i85p0Q+IqCPkXcr3E7CPKmkgVU2DgCqOROkgGxUMWCxlKAHBhMF1SrQHFgCJfQos/SQfJAdkCA5CwHliKWgiuZHLkIeCp6PXvjb2GA65hj3ZlhLZbWc8G2krPgKvklMTMENcDUzL+j0HaP1zjXYuRMyDxOSBJT54JDmVEkni81dmL7QIAeLeaxCQkNYUSVgDiK+oL6+pvKD6klpUv4PVcWqWkJJ7rnRva17bnUJPFUHi1Y5fl1gSeso5vom5CRyp5BS0yh2mMawkk5Q5jNqWtdHD7uiNW0twZVH3tktTlEfClw00Lp0eE5iqd4HggIg88lHnBr5dTxGx0nJV7IjgMFgszY+Xu30nRayAcxRbRHxBK9HBY67dBByLh0NV4muVFENIHbiMp6DFX9vs3YZur6Z7FdDuAzWQhdKWQqSs0uFhKY/NBddER85du8UVHC+M9E5tfkIoSZwUq48dgreLSLmGeQawRK9WwYUt4mqI84Iq9kU5DMbMVGMPqCyDIIbwKkG0nMG02J65XQ20mylWiFFUKB4OMsz0439UYDBYhZsFioLDvz1pU4Rv1HOpb55oVBNcJ5JvyHUtIuhBuXXP2GByudxUB9QQTPndL43s15getCiqcRQFMoPhPQZZ2EB5giibStWmtxA8B7fQXcQVDaCopdMlA6gEF6OyR20DEFhjLLcMh05U2TbDY9Pl5iVR7AZ6ZBYsEHC85e9rcbNMhQ1CAJGCBIoA8kENuKUENgJVE4ltNqnAVskPiNeeXdPnx4cs9QqlNz009hDDEMzkCZFAD2dUDog9yCKDIhThzKsTvCwn8pLLMKrCnVQvJhw/WS6IGUBMJMK6AuCIZR2tm8CaIxlhr/AaoLNsnALcHCalTo3NYKqPZnA8ePGpR4IE6PaUXdIAapDQ5ue4uOrcdRkhI3Ndi1ENvQeNyy5jCnOBwEzB1sHWVp5ccBsXSg9XwX1gBurkE3RgDjxQ0ReqoCMhJrawVJLRB0i6QAT1B3gG0TZAICYyokGFQJecSgNjfiKlaUYQeLBgKIKVMi99oB6IhrB7cBjQbedFBTiIPyIC+ogkgC1FUNunGyXNXjWg6m0Vx8hTqxz4QHRm3TpKEwkGRhCRgZI7NGTeZqjSAcxFDmeYKLRALyNeNS7sGQWTLFB093At8K5nXR5BzWZnYIIbUaA1Yo2iqqcQHq1Qbh8x7cvNjLg9BUlrKb4gCHz5RkKQRUPaRBPZBOdz1tt52mxbXbL478NR1PkpTb4aocOkPfJ9VuAiaoQUX3BETUwFVTS4PrbtzczBENQuCqNanXOA8HHlwZAj7iOTtQ+jkCjED10blmoKPggB6ihtGoheVEkRNooNoIViqGsBfEBLzJjvxnrXuXXzEcU8WChhFUe2iNn4nWlVMgIgPgPkRHOIoPBBFOouiMdoPaQOXUPYYNxUB3iBnEOmKHno8VRsEE51oR22Nj5SXvigGlVN0mC+YOZaOuQGrER2kszDZtrMbW2aYzNrbbba2mzYeEZVfGWK5JqX1SYEB1pMqsdjI276B1M3WVBwhHxvgfbhDxUlhUxBPERRHmCdavZ4doJ15g8TMiUZvgO/FJvTQACw1lg16OUywnB8viz0aq+uF6NOD4RRbm6QZ6Dic76akvSEQdquyqlQQVkAB5io6nOSTSIyIKyIihGC7GpRpgPqBs8kfZZ1fT670ML1DLc7s8Yr2RLHoDPXtHHUduisM+Pg2iGs5w45K4zs+x7PZjLz50wHAeihDeCKD1EK5o6PNOhIm6ivmCqJQEU8yBrTUMj1XT5MuTqy8ZLWLBQ+31ZBMgICiPZ97cX1OqlGEARHiJ2gGhDcPBQ+IzTkunwEB9xBVvgfNPZlfyAg94KnQ7QdeaLqhqnG0PlMjqxb1HbM9JePzpgqI3YgHyCMIqikIeYeE140AyTtY6DMiIRi/HmxdO8zePwdjQc8mds0FRtDbQe5fGlFNQ8U2E4Au4DIvn8RVHdEeRtyhtqIFRRF010M9CIhiIIjc1gXsJv19W521+LgCHR00gLcgpxAUPTY66Dsi/LsHFy+Z2F97+d2u4B2xNrwFDYiKKWVT3ntkRpvZHQo7XMiISE7Iuype3REeByWU+NjY530o0YONjbZianzYOG3n15dj1h369PcgVYFy+hL1DxXNFUfddT4NClyydk7E8QXeIgjfFI7kS2KGqHGQrSZIjaDFPW90IWGYJ7KjUMKAJv3cB3SjYuR0igq8jwcngOBL+3OnRYwduALXpmr3PnYtrEwmu/w4tS57ABcyCKmtUMYLh2BCEVNICpqRVUNXyIGZRolc6ycFNfM1y85i9HyocZnxPYuCVGNzxenDJoUmQyKnXSkuNt7Tk3Ui+VTd8caLdm/VfENYulwOTg7Nn4slACfUAZAASQUFz8tQqW00ArzkZNNuLhAihBtDiPWo/MF34JgDZsbwChqcnp+XwISEA1ec8wL0cejPYD2eljk2mhRdgljyUCgPLHtmZpSZZd8lvUAD+cFEBkUEGwhVjVCGi6eZ48Hr1uvpbfZNsK+dJjQzBEXCjsVQKo0AotMzKmmC+MFrkwiqMEtEEFvBUVtoAIWp2kQQBI1kyfO2a7Ya6z3pYdnj+zdXHuypVLzoPgDz22heRmK1awLRWmmLoaEMae/SQEBeopgbmpTtpoUB9Qsyunnt8LUxqp/HlzDAZAbu5nNo7BPV3lL7lnRATZyQJdLpCokIXZjTlmeBwMBpdAE8gCgSKiKRQLTwa7ORu3LNsal3FMaFjWNdk91FqrFjEixQV7Ncck5DRM05MS4zhiktZXNIqZhzA40VmkzEhmiltKNHNrFlTTZsmxlMwwZpts0maxrPFUq1Xhxxs3ToW6ba1ttNtpICKuqVUkdLEBLWWgoYqlENYVCYgaENs1oIom0BsWDF6AaPywVjZErv5AV27cuu4ErJmbzrlGQbRwUKAtVKIwM462BAWXuiM1xlBQCrBXSCZkRRcRDTITIyBYq0bXNBVYXeZzEV1B2pDodJDnV3EWUSCg0FYKgPYlQUSRBBNXINIe5imLEygpJBjqZa3GSqs5A2tWo6SraiSQkstO/aQhTC8iFH1D4+MC8yuAN0QhEwzwDSgrxXeDmtBmBiIE0waYm220Ma2ptsbLaM2s2NtrWxtWzTTMbJrZmk2RlpstjS0mMxhiMzTGktizMaje6Jy0IrSYraU2bVSnGKthzUTOWYSrJkEkQJCEkgmlbuj0ammDPV3NHQN9kM75Z65GaZdYKVhBkR4QABkERKiCOasYQmaJcwXC1sFVkc0GsSVhmsqwxAJCJfNcNhRswIhWFjTPncLqbYvF17wDBSD6DbYwYDUJAkKUcQzXCgwTNFiLWYojt4RZoKyLphEHwchkDGClQF4ydDGgY4ds4CCFQEQ0M0K3hg8ojrbG2VQFUYXPEUVHW6UGpJTvbTOXy3B1MVkaDdAbVSKo2oh2xdB0ZSLy60SBVMOTixUSw2HQ1MCXE1YqRB47Lwq0JJC0GzTjOBq5Jw4tWoVboEJAuOhIQlyM+asFzk5KxdDi7o1IjnQkZ3oG8WWt6YZmSuQb7ciFLr2OpxdBsYqpsbNhlba2TbI2jFts221rDbSWxlsWpmraVBqTZsNrWaNswWw1pg2ZNG2zIK1jMtDTD3iUtqjDVzCqtkIM0uDnFHLmqzCwCDAgEIBIXnJq6lc4G2PW+2eDsHuhOQAUCEVVQJEEgqX02tnc3SOlY+sz0lIASZbEKAsGZiBABkBE8hngRQtIalNRV0g6YQG5GGkAkhX0IELWjWThSgDEXVagEkqIpF2IhTCEhC6qmsuQ1aCuOQVX1m6aa19Z06ppdsFM1dqbZAWLKUaK0AIKyGQTQyU6iYkOVHqVCpAreDRivMRUQJJVJxeBe59BiCp3Pds5HhtCCiEKvlYnm2wDkWio1XTYWKtNwqWRYKhUKYCEVe+oVtUBbSJTB4kdPdrIop9EVWiOqOe7kG+VN9q1TOkw9crltZBszWtvVVBbRQbU4c5XMUg42wKuGi41TGQ5aqZwzMzMzYbNq2jMaa1m0ssw02sazM1gGVw0FpSou8SyVZGxAipdqgUSQgUe7pzG6wCp18I4bKCDpEfRxTbd3WS6bNQKBPA8ggL2ElUqtjFcmhc5M+MIQu4iAMRFiOGxCA4I6cMtchJNpAA/NcxGyRLw1iKLkwUNKRqhnghsDhRRabJbLbDi+BogYla3v0bAbOWwhPggOr61IrJLCCFi6pH5YJJCvFgzEvUQaZRdEmnpzw1GHGEQw4UThVjDmc3FnJDl0lAAklNyTkHFCEKkIU4qtZacne1OvRHO3M2hJArAO94GEdzWw00M6SrbTAaYxtJiQMGkbGhttpjWG1msazUyttbMqsxqNGMtRU2WrIK2szGLWfGCqYZzAqW0DjK5y2WtmgVm2rWMsIxkCYKrGpyW3yeH4eTXchWbfLXkzMGO/NVsbWteyuaCkuNDmcslxlGwSsycnMmrWas01kJAjIyDISRSISGHeo6FixKrNNGg5QUbxRogghrFA0YKGmMCxXpJeFyumrNbWMtWMay9m2RGyJYoAxLtyFKIDrJpQnQbamYWdsQ4ZM2BYIQQAw4iQSRWtstJ5iDQpCnQHekBFtkDtYqHjUCkER1hDKGoZqsOEmF4yASFDAjyPg1eNt9MbkjdElrColJXAJJVVZIgcluQOUQ5KpBfTJsOYELoqjZxUNYvpPRUAVa5bZKCrYsOutFHFuC5QNLjOu+C+RtlldC7FKEJyhC4YLhXdri4o3bj5lcB70mwJ6BwBIFNxqzw3dNpBy6DAoNCtNOF3rKy1WW0WtbWpjWLTWpNYNTay2NTWsNrZllasY00xrVqwtbWMrGraa1rbZbGtpmBGMlWfFCrM5kKGuHFFGThYgyDIwGBEhGMIow9PvkksWDpyEOGTZaTo+Wjf31tVHtkbusOMnJbkZ8scGvQdA99KKjkcvSJy7aJTjuj7bHlO+PWRc+gKJEBN4KAkh5YLvPJHg+AeTS4G/YmwAB4ImCG+ZROiv0l7Fk88CV5eZAMFipaC5fHBS6VFLxerm4qIaqOUe1IP7nsJnEVqKusaSAAL6NEYe2KKDGCnvqlTCIwh4id7vNlAF8JLRuR8QQ8WD7VtvQEUUN8Pj2+WCQm2r9G4L6IIInkgLp1T6YIJw9tU1edqZh3c+Ij4gBuwUAfmIG7etaaHuB18nQMJEmNomU+CZ8MBiq5N5ip6Lm+QHM4sXR59YTiDIutIcu/yNdMtu2/jU+bkC8QB8QbsI8NCA++stopTljOKiGkAH7IjypqEsSe1DAwFFNmCIWYj7Apg3aX7MHqekSBpH6CQIFR4IiIgcB6+tQAeIignqC0YAeNMEA0eA0MuTdQRcuqVUB9IqnEVVaA1IICpRAziISKmGBvbfItrcL4NkjiAcRRUfjFD2RAABO3GQbm2uibO0U+ihZNmBqca0C59MaXgB7E0SBAVdSE6o5jpHuIJlA5YDROIoRUXtzKV+IgAmQaSfY+Df1sHgwVn1epGnosGJ4tjalC30enTj41bgHZqedIOxR7fX0ooKqIlMzoUBYES3sozLmtQOunVQpA7mM6x6fq6bgKoAgb9sOxgXsQKx9xRQeCeYr2N2g3Jk76YZ5T1zVDFuq8z59ykBdTzRDE9yoTur8pbKreM61lr8NPPHVJiB4z+rDDKm+9BrA9PJ2TFvHE1HxE1C6TTIwQSPkmOxqB3TEBHA8ULKEl4hCpCvm8gY3Ie4LvsgU+uOtA+NzPk96WvJDI9Oz7bFh59rfguNS7KRJlz5Jc++SZybdbnOxgVOSiPCQCO3GOt9jlzdc8re9dcZCg4gHyCPmAgeoCr5Ahx7tn4eay51V2i9QCoCcXLzx8Pe3Rc19JTYmjrzrppoIRkOz77FDoLGzgCGpZnVWJgI01StsrHdbBA879nBePI8Af/8xQVkmU1k6ynOEAEeIH4B///////////////9gf2PkKH3sB27Xp9cUTAAFAu2tl6cAAA97ApXvcgOAGkN2xrgFHXuB3AqMiMCmpbT0uDkrcB7gekrlBgMhUw84Dq70es5rU9tQ0y7ZE9ZSoAF8AMijW+7nm6ee25efDgAAAAeh6RuZyj2p6XbK+sul3ou7nrpqbDTo7YAAd1gCgB3tuxrVA9NB6AUAAA7pgoOgAAAD3sAOgD13WAAD3XvXgDth7PXmY+tXZlJXbFtNiUJA2TbbTamCikSK65w0JbGChUlzZLthd3HVptMbZ2HdOodQwWBo7vW9oeAzrvQ90XruvRYOqdr0acHOSIUJKVXJpBFSAAIACACGjQAAaAAAEynjQUEkmCaREamSKAAAAAAAAAAAAEkCZSIKeaNUzU9IEfqeqe1QYIyNoI0D1AwahoaaApKUIyQ0NRJoaHqGmgaGmgAGgAAAA0BEkmQCZEZVNKenqm1N6UaAA0AaNPUA0DQPUGj1BEoQAExEplFPKfpR6m1P1R6mg9CAHqaAANAAMudkfS45j0h6XGy6CbM52LQ69DsNjG6nK0Pnre0Qew9w7R6XM4pslI5RTuneO4eEk+8KKzwFmHSEOi6jOIKvycTKPr+x9z2nOYgPvwaY1wkHAwTAQWBAUVP1wQ1iwiVInAQPv/CfwYn7zLG+I5+FB7iAlxAQUuoaZ6n66Bj+TCv2NuD5FYclJaQI2LW4n0kSoKeeUvK/SXLFilnULv/eFn9ZKZqHzjgOw9t+Z+6BT5HcfHWfQlBfkfMuI0+ZsIG+cJz9h5Gw3w/cPI/U+pccLTebfUIlPTsz9wON5aJfDwOSgz4czvVn4OvKMPsWT0zhTI897evZy8c5P5ZSU0shcMdHQX9oayRCRCxiXlz/ccrY+fpMZs6JXAsIyc/05kJyYlbTB/C3jPtODzO4tcHnbPgrzhKWmNvUAGXIxmGYm1E5OfuaOk6HjI+0VxPV4/0ZXl5TkP2UbAaePzSBnlgHVdEWXRTooiHTAjIV5Mjv7Hip2quqnh8t/EGRGvN43N5gv4uo59YcGnWgXkEQYoKoNH6DxY82qRPz3lBf0cWOfdCIriK4i4f8Ke11btiCJRppLDSSjcWU3awf3H5Dn72/GZ2/Qd0LOG+2PzEdWC6eEEU0ZZCmbG58pJCqZ5oVZKc1UwX0T3SQromupJbMdlCV4/BhprCqD1neNsncx8DjxvsUzZtb41PypsKb+Lmvpfa5FNk5/Ydbt5doXCQ+J3XhrDKm7oICm3Co3lInig7yGJiznqJJdE7gVnsIHyOcc0reopzqfupy2qQTlUwnZfsf5oVm9O36HzKahM6nffOXn3Pc9xThrO86vO4cIR7nndTxNMj7lN5975nneh0ZeUPqp5jm+1h/X/OR+rjPozD0h6JFEhsYbULFrMX+UKifYj9oqDpEqQYjB/VP7RRh193nGBeyMqO05eZQiXUGEflGTwjeY4283QwwBC0QETcm7T2X9clzGoFFfvCWP54h+sBFQ5eMS8M0oO5gjoS84W0fUUVygsYA/wS8Q1va2IyqCMShJ9GiweExRzUKNEB4kIr9P3+JRtKq1oZiVoSUsJAM9CnkWxDR6XS96C/VDOD6KP3eVNoq+4lB9mdIGER8wJAfkFKgO1s2h6alzDatlzK5o2ls6VQyElojIoWhaKSSKWitQGiKyCPMAFWIekctLPV+ZnZxqcYPB621AHfDLXDc0fp9F/SzGBz9GhV6hDFoejfk9qRVLMDuAKUd+abu2prB3s3GvRo4FqG8xbhit8Z+6M4guhAXuA8Qds2UGe0p96c1feNNA0x1txPInU9Qzyqc/HI+OCXEYba4+iRCN3VSNHCPzQxIgiN0VPjA4IX269HBm0A3bbEw9kPGpqbWTU4uRR9kUTdgoSbzBmeg9c1PHLcxwOOX4XI9Gcz0wVi1CiLydyuXw0w59FqgNa407S4jnGTsi5ZLViKWZrVslH3CADErUSqlWxI2rGiKzAorMI2lbIqoW1VGtVQcylwxVS2Iojhocss1QGstprFmUSDaKUta5y5KbJSVNpCtYVS2QpVspLKq0NpLbDSqSaiqxSSw1VYqlpU2SuWoqS5q2Cla0VA5bMCcyRVsS5aoVzVspKVnNS2gVhJpSs1TWbJrFYxFWmNMs1NMgZhtSzSpqNVUrNbIjbZVmNotstVNpNltsIGxLsyVLmhQYiCK0BmXsopcgJCCzW7YtvKVcjp24Pjou1ZVUuGVX1sS7fOciUMwldrLatlShqqlqKqomMUkq9dSkVzTGqrNKKp46HIUulhU5hHMVKy1V2yKqebSont5VxLtguaKV0WJHvmKEAznkg4giJGK0LFxpvbOKiLc9/SGQnUKgd1bINsZl+dlVJVOkOKRF0xw867zgSsu/lQOzToU6siily1RQgVGQIqYlJKMGTg0NLXccTvO1VS+iOx8m7KFdOgqWyBkwSGuKzWhMKDBwU9cTg6JFQxu7fTJs+gocMSBm6u5nwcmbmw3NihpKKERXQ3IBpwZAGbgdympYjC2lFG+oJnT2AAkzDTpAdJkjQnoTCLmXvLgMTAhWNg6RhKkxknBrB0WEDgwSaUSWkClPUhpJOiiS+Fm6RsbRhoBxlhvN0bZKbCi9MMMlErBwdk9M9h5djxV3NcSV0tAGszKzUVtI2Rpqiq1aLJhtJmYmqKsxmpWNRVY2shjSqVmmyM0kbUjahNlVpoti2SbI2KzEzSyMRNgbbJDWG0zLaptEZsaUWGpmJsFtTNUsa2qZq2SrMa0s2aTaa0Y0a0Ctqs1aqFkFbGVUtW1Qq2bKbSGsmymmy0ZjDEbLYFsZk2mZGzZtNkkrMmaVVbIm1MaNogbGMpoyAaWDatZexmCTNUobmnAzJbNYtlmhrAQ5NbNkStoZjjUWbJoqi3NwC00pctJFzCKm1C2DY0a2FUauYNaKMMGraYbIbKsjazNNqqtNbLGLVFJBYyJFkO25zstoQhLxDSjUDILlbY20vj7M9AIRBAgwJEBWMCDL3UI1aiVxc4tqVrKkRw1VS0wuGoVWpgpNTVCBmiBXGJVc44qCcxU00qKswojmFVLTgs2azJmSSzUs1YWBZGijTGaLNNhUoEgwjAepyFmpIGxxllrYtrhuBgN7j3d/fyeR5eEqcTvlVYdcgcyA2JNk6Jw5TMa20y1um51Mqq1QqFiLUciwlI2ktkqAuWRYAGrHORi5yOuOHTp15brHRm6TiXFCByAaSKxKEFGm4ZaCDNMkkadbBAIBLSSSQnjgFRkuOudGt5EoSQlmo4wiSjAOyhZE1iYIqqOzHRQjlqJkFkbEiyBqEKBAWqL0FsEzBbNCCNPp0DuGI1CQYisPoMrZAIFxhmbjCABcHWlxMswhYrOFMqNokzNtIpLN+5yVQ2hKlItigN45AkRKkrmhx4EjQWHBgB0hwnSEkkUpXZwsz3sQAlDLBdc4HMCbL0LBxJJCpMkCqEU0G9gFA46g2p2NO4ESHpkoMEuxhphMwws2tj6HNALlWWo+0awkMCg61eTSlWyMxs1iaMy2mybamyazGbWxmjMNmM1mw2VraZbGWWY0NmDGrNMxmI2MxmwzbTLKqWGbbWVplNqKWZZmNRZpVRrIzU2JmpTWpYzTNTLNZnzUmapJOMrjEKTjQqGsqizUbSpSzAU4OWo1oitmyRWrK1hsGT6bzcdM8VrNaZaQuXvY2tWSkRIyKwAZCMSRyy0zNrGa1QWVjTNMzSmqC2s1WTIw2y2psAECKt7mAyMg5YULxQmIoqNkYmFHAaUw05u2MLhWIaDZRBaEFXIIQkVwZtpkMIQM5QZJQcDVIqjIDlh0NqblkCsSjMaqEHbarIAJMCYkOBFkBYpla5WrakSmBO7LRsoKMSwzW1DO9oDRNjBUYOoTNRg6QCuccnCwC9sizYCKCrREwWuGlyQqhH2vxttQyOYSJJIWKFSaucIEkgWmEOtG5duXpX6JXDckGSnXEllJrybi5PY4BFqNVaISQhJmQmNdKqM5QbcIEOEZiWECBWMhbmxIFi2LlSNVGssRvZRYgZeRk5KCM3zRMKSjWUkpXJkY33Ox5HYnbbVI0MytsmaBWotCrMrakZamNGtUKzGtVStYa1MZphgtrGQxpZMs2smVtMgrLbGGzLQzIxtaWtZsyVLNmmzWCVtjKtpZrTEzUZZUVshs1lKzGmqbTRtlLalrQqebpdk5Bu70uHbUUwZeXuVyzTMhMMMwMyESs1sW1bS2pmZlCta2qLakTNWtSjGtM1q1hmVhoyZstZHZ2cd2627dqgXHbmmN/djalDqKvogAqfIpqXrmzTx8DaNrWZmJVZMzbpKhncolAL420wxxT6eLswEEvbhzOErujcaUFIl3AASbs2CSQr7XaYETgUoqyQ1QlIsNEkFpG0YNtVicW2BCQqCN2WjYWEFbDJhyFDwqFSlY6hwwJ2tIxxDodiRrYm/c5m0Y8uBnHffA0AahzYalKK9K106XArR8HQa5wNnQDINoQtabKH6YDjkBoQ9mkgSS0LNI2XKgxjWGbcbhYvBVgJBQFkWMJCQzbTWVmQq2FK0sVS2NmNGs1Za2ypLbWbQzLbabBsWaZpmoqtm1NjDNC0km1QrU0zbTZtsipsks02lZrW1qy1mZq0RWbbTbZZPouvlO/h47902tbGMbYwJztZEEYRBIkJBAhIola2o01MmtM2S2xkYyhEYwiIcSUaWOMbb7ZlnCb5CKjSZ0YIaO7oA4VBGRIBFvSio21yEMGRjOgyYRDSqLwWoqKNmbhrY03heuCFx8UJLZY6KJKSUEyrJLRTDEIoZ7QDoOIxGypqQtFhBvdiSSFohQyKIrbTIyL3aUpzcamWubgQsqIOcoGJICAsU901mY1sqqNgmSER3NGlBVs77gpKthHKFm9aWVy0uQpqlxxdebNDIdNy9246Q4MtZNhUosOBpIODDJBocnZjToKmGyTHCjRlaFjhBJnay8BkZIPYSFhvA2UMAArWGbNa1Y1WzVsjYRWY2TTatZmtaypLTVptYMaptQ22lsJs1ptmsY02aTCxa2mtltNs1VSywYMa02LTVRWslS2Ntra2mxNqzDYzTvnGiVwwnYSFMAR0bN8C9qzYyQwCYAbSzbG0zIwZFVjEzJbNRq1tNZmyhWaaxj0avBo3DMJldgb2QKFULEoBAdKtB22VttpSrUDbbZrGNRZVIYMhpOIIvBEXzAHPQXSWQz0oN8FQAh8b5YAQHDM4RBcQIwVVsBmqbUNiVuKXPdOdPh5UOAdFhK4GYWw2Ns2Q0MMyRg4hmNlEC4GBwiqPAQtGSWV02HMLlWLlx0E8N4RAyYABKKEtS2uFhtDhYiAen8jIQbAdGDG20McLNgq4uFIKMU4nLGVGDyAAlBvHMwdcheq20oDSbEo1nBI2RAUpmbuPt75ygtcpfI+76oWdcdg1BB9m2JrYMB8eAt1pIE1honh4K5fWljOAlUkQIQhaNYIRAWIYdReF1pZAryMryOnc8zudu9patmbGMm1WsG2wbJs0yW0asaYxpTUxNabZiitZRWma1sNtNNiitqs21ZmbYxM2MyJW1TNM1ooyMixZFgQIujgoNCK6GblZARNCAAAaRcYxtkGr0pSjUCDEJDYJWrNrYzVG2sBW02oZlWmMMmhjFlWjTEQSEWICrfasBbJtsXMiksOiG2z5utzgVXJKrDW2szWeaoqBhx0IBJwudUIE1pJAoJy8pPBwUAp3oI6UG8qEQRwjRZoS6GQhApGPqkMkj1KA0UwgXGAMCzJlAdkeD0YbYzTCRaQCDwq0oiRBEgwTKwISUFOTrYUtAC0oJSqCBIBJnWjExJXGpT9nsykhKN8KOCrFJXHHBlHNi0VMTkDClhkmqNE7IoNhsKQfY2Cm8O9iQqkid5uNwoLRs981e+8iECQk4I0wgF8MhAFdaVgBaIpzBArBJBPIoXmwbm49V1WhmtqbFNbNrNLLaLZsbVmZqSrLYbMNrbTCtZWVpY2NqbViFZoZq2La2FLa2paGtMoVtGyMZbEMY0w2rTMGzQ2a01llmmvhbk3v1T4+80ytpgwaUY03Uu5aK0jUkCDIRZIhmppjVmWCqymNTTa1sIrZaYy2M1jVmZnHm6KbhDMvQAqW8ES+L0RAsNyCmyoC2I620s0ZOQx3hSETIAUaEopl50RmeS8OV0aaGszTUbT3NDchQOBFShRRglRt9WjlENqCjbCOoR1nZCR0Ka3fLHTQBgukaEEVTOCN0ugspByDgdWSG0I4mSQCUkmZoGejDGeSjGCCOIitorgIgKOlCgN6RM7HtcVqIAcdRmOA8oNWUWPCEhhbLSBODtS3Sq0jLASQpx4NmOTupWZWzc3FB7oWNsG3znAeuCQt6BFcMkDZe7ObSNsgBJMKwsodxISFDMNhj0wuCIlUrCVAc4DqgZMmSYTNqtMqi2ZlrM1rVtQVtbWWNtjVmzTNmxs2WhmYYyamNmmZllLWWoVamZpsmsbaZss2MmltatZZZtDTNUlaNZjTMmfXFrDNVjlqxZs0irGrGZZqzZtttGm2ul2RS2DGRTnHYudbQcM3ay8p4j8JJUrKj1llVreSiqolU2hL1487cl4SSJESQZEkNY+VhlcyA2BLaSxkoOTHMq5gpcymmpy0pWZQrlouFqXNUM4MLNGxaTTRltoxathpaaogQJO52ERAXmZJO7XZrkHWKLu1rM1rLEVeTiubbLM2as01rQqjFLVfNG2POCRw4efXj1tmhFB0zSgDlhkahTo02ThOaDR6LADqHgNfBBZ0ehdA9hKNcCEkySuopkFBASsOiWMQYhjwz0MbY3vpM+GE8PbyF5tbW8EG+HOh6QWKylBALRlZW7mDaMiGSse4xG2EbwCEJCS0lBY7xfSgDakLXLwGWPDLZCpIFT2TBesgkQAlFpSOo06E6kkKkFLKiE7IJkfMWImwZKxhhlpsmaaUbKoxqk0azZmNRYmLGaZFVqzQ1ltLM2LaWtajRshrNUxiatjSitGazGQVlrJKthrI0pLGGmmq0xtm0M+VQqcFS0RTmpGNVVWuarNpJW1GVoEWIoLFJEhCLAJm0mu+Zps3xjJ18dhPAqrJYCU2pZDtrbLQI0KqNkRyQHGtkuO5snZ72pOLaPttBtISzSqTQ4K1ITwYWdfQVu8AVtGIwhAUFoGNwNQta5xwCuwQcHyAISVHwWamto9cKRIdBi2FQlF7TXXg1tOMd2Ut6JOAgSUCpFv8G7oN9W+SU6jLHb0MAS8T3LLQrmid9A0JAnLV2Qsl6zV5gPjWSkCbIAFQxJqpwzKHByWaymNJArIl4LUhISrCgBAC+iEKIwUXcddgFR5I6e3Koe944nPO9/ersoVu9EdsyyamOFMd0hosA1woN1LHtsalqbzSP5mFiCA/GAqheKtoCrTIRQqMKEpE3H83zpw9Jg60EDeACKumSv1Qm0rxhFh4VMOQ3pWaW0y6Hp0j6ubd8m7jyekUV6s6YKAscVoPlTfdtntpk94rZ4IeypgE4cMmm7vQ5U9YCHkC0G+JOoND5lEAuZ0FiSLAiqPwgURKzIhWGsPB9+9bm5D6g9kZnk3bKYkVVGhCrfjdzjZLKTV9kBQ8IjgQUxNqVTzNIjzj09H0Pl18nQOuGsNhs8s335z2b+DUo5GBz68u6hxsdUWdTQSsigbzJybipyE6Zopdce4pqXXFqGY+vU8N18QULF8HxTFJt9FxOPSdm7kmZthsEHyPp7L1LiCPcQAyiAfCAKhrFuTnJq74jxSkmEQ5UxbaAdQNSCgp0wED5FMYljQ9nQPMTjTX4YA9NC55bca3ZDZOkMCAJlOHXKFUcbUUDeIhWDLUplp5WrmS5psHMqdm+MsCVgHJpWqpdm8ZOx73SwlGlYYy1dcLJUwfXuw6oEMp8UhdUAxbhS574enmLxicO/1MTHacSRHp0OFIS0oth+qPJY0fWBTJImTEE4gLUFZBFE3dyjQC7WpqEPTECokVVT4RU3I8GuJpy9G6fLKuGUoPkGMYEhOwjsmmt4OmYz370Qdkfhw1yBkXMxM83vig00u4C0R7UOzcthzS+B2QzIp1MOCt5F4qKJCKCu5EBawwgGHt9gUG0tHqJyptwVGuRpiWMuadzRpTBqUDmplEEcBFT3Adxi2c6X0HEAgQoHTqKDdM2IPIRQKOigX1mUC5xHjU0sB9pVDadjkt4MkY7GwXODjRW4MirXYLQDee4UnK+Oxm4TStQycJdGTSCbkQgkYF4nYVEfgpCAwllbMyBi3GOZyjaxyRUsTIjoCJckmSeVLY0C+AZWo1gnTB3IDeu8vt6vYuF4citKU3umSHfJTBxNvBgNVOHQzC5CoUxPnYUGZFNCIyKqpzDdh7InhPh0cVuOmigq4Q43dUOQLBsfXm+pd6+be8831CdjjyWnZXl1oM7M3DT5Z27tcM6uHqZG1+q29YMYgqaxQC3bxYtryHrLu8z0pvxQsOMkpnnrE3LFIeyYvTjKifCuhb3bMxfQOOXB4po9/POQZHDHatI2l/ZEiUc8+x3lruMamrmfD0HkXjWaGOEIQfXlBLCQ8MGm+d2rY0xPhPlg6Zx2KalXJ34ReGKhwQBeIiqGpAznSBv6U7cQOI2dqQ4PCgB0bI/IggOJN2IncQuSHPZSCacmdgufDBPRowX3Lpgudi8C8Mp49hYwMUnGbQ229FXcntSJ6YcRBLoEgK74U0IADU9UVRhBy9nVU5BOmhyjbFq8THUo1IgAeOBtA9rR0NDhfKFthMn8E2aBue/SYtMDXfMMrymQV28OQt1d3CHsp7cVuiX5682fd5kVuxxVdiCAcEBuJ56x0+nDadG9XsDOsDbHDU612uwPRzQ6eS/qBbTB2p7mnfkNvPgPMERGvRS6FwRDQqXnNTJSkEV7gHj7Oi5y/VBtDDs0AWpLau5QUkAGJhPhEujcyilJIY6WIlPwE5D94t7KePVQepdPNYzGTjgwai6hlZJCbVkdDm4LEp2s3V2eMIdv28hubwd2yMgG+QFwQAUHdIBlIGXCoOTTAn7ec1UTnAqqPwLiSQSGA1JFohRe8/iWv5AYiZfbi8nTN0lsLTAnq2vYLP9g4bmgItYdHZWMOw7BJbKHgMGAtgYzSFEgSVtzETB7jEGLQKldZTiEAWJ7cAUUqFBXYFVHAfoKc/zcG2TEpTYIqP/UcP2ZpmY9HxrPJpGXBzMjpPKIPpd5yZ+2TFe6RHi72AlOF/xmvrXNu3WO/uoHmkR+MzhCc5tW7FWsgHps003S92GVlw66oU8lKZjZUGbAU59rTIVFgS0Etn20wzoobQVfIfIiXS4h7OKHq4tvrfG/CJ/8i0LQXgU2+vf59dYc/H469Maz/tfbkmxSW4aD4TKALgLDRVx6i7HPxkDNjEluMZHGFu0Qw/XgAeQmKiDWVYvX0sm34dR6WbeQHBkhmuxmx9piQRUYIEcnrkt78xfP2zmepFUdxA4A0N6QufktBUDA/9u9Ahs2KsSuAH2uLDsRA3h0URkcnD6kCMY/KgRAOwbxgToJInfIDebth5khzj9GScExiALBOCZItwqi3GNNYZWiId6oJkUV3yrRcVDBM79Lq3vQRFpCCYEgJUTti/NK1H8gbB5jXJjNR6SOsKiesreaygIQwiKjOPdeebYsapcaBY7gAFhcf3rzJIZkenwTEBqgYx6CCG9vSKJfNk7TzSi8jzw8wOYlHPXrfSP6asudmHGtBId+0P08bimkEVHBf3Xo3pjUDAQfWGNBiphixcxbpPcd4IhkDYIgLSmJLoVh9iID0N8+bbb5EmlAzsdZ2FJUuI0iWUYiy0fabno02x9pS5yf+o6uzj+0p5DsMO4/YgQJfJpdAzsnGZusPBxI2YxPoP3ECeUvc+jUJzJcIW90CgjmRP40ypd6yt/sPsiCP7oybPpmrpen1fdcnmfiFV83FfkN/M3zvvOYYH6dXqwAB+1CKKr/ECqMxjlsJzG0H+iMH8UAF1K4Ip2x5UgbpA6XgoeCikJ+1Xd+lLH30KXhVCgHz8LJqVFAXhrcHCGdSxY+E+7+Tzoe8b1J6NSgCuKows0f6pTWL9ZVIywiIEEoUrB+mBQcSXVvSAfgxVAbIir8PL+1/jBFxE+MAyEjgO1jhDMTL8S+p57qfaplUQwibhE97h3tAeVfokr7Vl0j3Cx1NPnClzj48VX2dUu+KXjQnNLSCpIiUiAOvtVGglsE0qH2u/IuAFi9Y6k6EQm2QyN8eD8aenp3fHI1Dxj6bkZjHvHySLebOSbfrma2u5eap0bNFuKNN7rxj6Ibm4yA0zVpg6NHNZvmcmroZqNaxtY1hzSzNuOx+DzvrRbE3j6fp9VFchm6Z2012/WPjXdNJkRVVUPLwzNyuPm33uecH4dPL4s651Kdk03yjdF5pyNEG9GNxiY1obGOuXzueMkqoVV+60UHTeuB+O3Swvs3OXWw5Nfg2ZlzU+xRaqp7aRLplmjZS7VYpSveq65QdLJS97VS6ivjh78UovhkNpWtVmiaGTZAzQzUKXs1IG1FrCzUAfHW1qmGZrQqsbbWNhjZlaNhi01trNrazWazarNprMgZm1lrKoqdWSQ9bCip3Cq1SlOaiTIqe5lVckoqujkvdoqXSQaMAlsokbJVSzDWSBrZlsm1lg2qzLtKlZc0rNKQvm0OiaqqG1FRbSUvesoOaB7amaQWySPFglGa2oGG2mbLWtM0MNWjNam2aNqrW0xg1NNq0zGaiVmjaZjRmjWMtYxkbTbWzLG2Ziba1baw2bathrLVrMxg2attqFWLLGGxa2bLLZM1tm01jZjbZhmLKpK9LStoTMWYSHmtUuWktiZqINSlaCzShD3alLZNpaifg6FwyKcg9MnAy0XSmyzI2jNBsWys0qVtJYyjGWxDNNYttlbVspmJVbRKthbFZjNSzIRTrkfDE72SFmXfJPi1VPll8mke7UmIPggCZkFXnGdgLkTCQBDNINXMU+TKozUeWkP2c8NV7mjSF66pVyqemXx0nRFoqr3NzSQdAXrh5aqTaq5qSdCrw0VX28kq9bi/0+/PS+Q7HwWkdScJlLWAt2MFsalER5TAQoQRRU7M0RWpDtpZoMwuuuMnXXyM/AtK6sUlmMxNk8oirgZ2hgU5vcr36rnfRPqa7+zA+/vXDSNsKn1Hbq+ttsSpZ/BrW7PIPod3zKnopgQN4aPP+PcNN76w8J1j9sq63LXN7+fMK8eau3w0seo4YFmMHR0KENSJxDeH2k+jHiyhr4xw5HB9VzWR3n3WFa+JPo0HwHh+uTOpjhKGbwNe1fG+mvR7Hve3w43JnGTsfVhHz3T/FZfm39c0VYZ0vsk8xtl49j0d25MSGhvQ380rrBRmEC12c17uzmHrnbI3vTKapLGGLNPPMFW4g5IALgEVonERNB25bW0F0ykXTV2ospdmTtkjmq5ZyskV2yrpthdJbMCF0CpFUR4iC+QRuiKq3YIkclpVLkTYjZVbTZVNrYbSmxtVLZKcxeWXz3MbKzS2B9gqmr46qzVEsmX3k3IfOk5N8vp+wigEA5L+r/t0G8DTh7SY3zfX/DcD3jQYxLmKfAUFsgUEKxqZH0V4eHvducdi4s6IFJ0pAnYZLxR4oDuWPS5U8bkSVrDDY/gGqxI/tl4kOpZURhYiyJ9iI/sJ3BFB/GZkU5i5RQiwC6WZkQ4ZC9cu9P50UfuCJSZEwB+VUxAFWH3ogWCH7yCZd0W8TWn2J/NEAFt9hn5pUOsgoofJ6iFzFLR+8quYUCkLg12KvUvAUV0hiAWjJn90bBHsh9alILm0K+vVJcjtovun0VVLle5Hlys761TmCfjNyPxfwC/yw+syiQSHn00dQYJ5oRU6LeWfgeKE6A/mUHoNSn12gp/KRUP33f84YfR5pyYlYoh0U1Ab/vCn4BBQA9Wucinr5RokDkBGxcfo+v3b3Fx9qBiZTJC7Qn4gK/nlBAZl4a9hYHz+/qbYueWBiQjGXUoKOvNIfNsIiqQ6RHWzxEplDOCqP80/cLpj5Qeyay0VVHoi+QhqCos0IETIShbDuqWj9ohjhpSrQZ+mGTsgefm5O+CuGCR4QLqPIwSrCTZ2f0ytRmEzIdjPkR/7KS/5ygBNhCFoc9Fgsfl+rWxkZ5jOLPrt+Ez1xFXbDiVLty+OiT7IYu/ynv8TXB+Ak2ypFRdpr+oCnhIH6z0IPWDW6B+iBR+RpVu8Nf3pkkAFXRCfcNPqt9Txw+/N9Xd33SqVfNn5Sb4NkxWkFxyy9Q2BlJLWJmYBxCY7L0xS6M++hGXNj3kbJo6U4yxPAAB+YONIPKV7IMdFUQLzhnjjbSG/ZFVGymkHhilDDAJ+dpqzygYmnSxiRwT9sCbCgrQQQ6DChDfmQje4uVIyravj1OJ3+QkDd0uE8vCqAe46qADbBFI1idW+kXKsUkCCUjYlt4yJZAc3i5uFJzzP56PuX4feIBd7IBR/zxOP4r9mz+CimkFMzUaG0YjYqB04jlkzU5zkp5+x9qOo+3Y+ftz4eKN4BUY+idM5rJKdC+c7VVXVsXUmNIBCKJQC8IKPPgKZXKXxhQeK0dmQAngNQwAe8EFaEpan4F25X8VAF4H8VftdDbwKfx4qGex6lTh2DkM0YNcGEDHhEQHeFQPPBQULbSz+voe/KHrsc4KcytSud/VW/P/I1+2Hz2oUdggLSdUAsGtGWbJJlMZKIdA0Zo2ZDGJCPHPVMfUnnltZTJZdHrTCdQiwyFXGGiomLCuicld8p1ZtpmLBUJxhf/xxuwLJJQ+0fnibn3hX7W14MP3RP0c9VKbhJ01rZIGSyfGSnF2BqlS8immQkyMlcqjniK/ykQRS9PzbZVJOORB5UEX/cWVBD3AfuKfSUpMo3k4dD9RUuND4VPX8XIdkT/gZFz/MpCyCo/so+zjfWQRXqKIJfDg2bIJtQcLJ8D/FgBTRum0fevnK7XgobKVU3vSevmhcden7pURSB7G7fbA9LJ1i6NpomC84o0QB4oMYcilCnHZtp8p2QJRgEVdAlgQAIE6P4d+o6JtT6mRkJU4AgKiOMgATBVE5WPJvdSV/L8nAPJ1o5JSIA9xX9UBQT80OSx93M+gcFm+xmUDQ71Igq0BR53OOcqpjrhOy133NfVZs0Yg2o5cLNGIU5XRmMJXYtMCBcGP1z1iiddvb7i4/w+sVS4fP1FH8eCnf+Z9/1O5/DCYDTQYTYFVGPDKeEMc9UpGr8684qCxzbThfiJbJ3bol2MIXBsNQdtmMDpiLR3E2wrkGOCSFWA4RPusonwd0iaqxKHIwUVHXUM2NSkQFrqIEAzcRHzcrujHgh+Qf1v+fpMnyh9qUV3/sH6xe9QfxX4nDm2JtQmBTyeYTL6zMbU+6J1gAUywQqMRvYuH6Ydf8DgZbz4G6mk5hgPX0jaqgj3oxJkBRzpwD6hS1SswgXPao/wIBvwQATwnN9jVUiiNXL8zZ5bDGICY0cDSpo7VC2khKZ6cumATmBnDTYbBLdSUCH/azBP5Dw/H9e7DuY3oAZXM+QEsNmBhgxE+3oyaE0WsZnAizNCM7UXO2FMZVsD+44k17HMOmZRMyg4u90KrVAFyJecBPzJD6SdaLN6NM6OepVRYGj6c9IyyQVBbdZIAp5GAqiSHdrwE5JQRBFNQmO/ZF7xAVQdv0FSBZnzhYle6b1xQ1w9U8hDcxIaDDjM1MMF1hdkw7t8YqK6dq/AngTuxVt5uon6gL3YCqhrwoqj5R0SZLQVFpfRZsElJbh+h3yxf9W5dLO00mrZLWT1SMp7+ocpubWTclwJ6IzuaXKJGZFAR+v7moOEnHccURazCGg5vMN5HWFQ3BSUJNEb9pj3UnoE74TlCQxn3ppEef50NuAQg3KUWHPSgv5lsanPMkaTAG7UUpUlSqKbBAUc+DvmOVqYovcgQZY4h1wKRAF9tf2NyWdg56w29gqjsfhoYnsbqoiGUFt+5QiJeIDyQHOLgBBeOn3riBpNHXIqrwGXChXg3C7mmTsUPMv0/ufXd2ZyHHTum2LLeddXwiCjisyFkcMGPssRsECaIhFnsbEBRjTjqQqLxmQc4JUSvSZpIaKg/z8BokEkKQ1JsRMCEINxfmD9mB0NcNnnBo0mVQ93VC5LDbv8lqVHfT+6ZgVRwb2MA3G6zYCIG8FBc0DMIqOkwPMeV4mY2Q6zmXCXHgdp9zzT8O8Uad5YcPksPOsNgv6XPQOF2ziJ4nuyofTzuba0r19SVZCB1uyF62XLYTTCCrsjssak6nC1qUWknCnRr4dHQrPSVCqjxHnxNx2XdjacctbWJaCIR8QpwTKAHYz9EvJCJQf9GGjSa0LWy8+4UurEscaFDUnEdDouv/Uz81jQ5sP9uzgQ8VQX91jmIF1Jx1EsCP8dhDYlLl62AMIB2ffwFk5DKvcrkWMojlSHzgEViHvNUb/SGUafrPrlMJrBTijUNyCbMNsJStFUY4Du1KIywEVnIZYJMfz0RncmCsG1FUcFItO9bStpNEEZKwnMpoFQWOUU80ZIV0G4e3I+hY7Qg6QgAWuZdRBERIxkS4IzaJjEgTBKBCKrkAQWdkTpkFiUymrSrIJdGoqOII6Eh5ST+J9S8EmYSI14WpCls4ifn0iZ6DFQgFRfEgWGzkFrsSRgxXFHVNIAqy+ENrghdPAQdmGiMsEGwSJdoLXAAS4gBwGPM8JApDqEA4XqnHV919R73tV/g5c0+37HJec1Hf+Fw6I9Q0eQpLrSqUiPIEHqB9VFkjCQtR/5G60hEZs0P3gGgo5/YUHMlQdFmimT7DURf+CeItDyKpfjH41f+PQ8a7OfkfgHWp0DY1QpAhIg5fn+WCKKjqH4BqFsA7D8A4DsFQe0gOp9qg0CXQAwfMif12cJHsoE+TFEG5If0nkSPJ/ypEfV28Yl7WZSqFpkDv2GVPCNH1gmNqQMZuNZ0Rw7rMcooCyj+zKf9/DUEZwmZz3v65X/ObC2tqzVGyHo+y5XzZm4CgjUMaSErEaIMRzQIhCuZQxgqL9bYWY4v4of7y6rUBUZj+xygIWij/EpEVB9TPoKwwc0oMe0PmqLsRtCT7OEpEUGYiNCpgdlPZFqqqOIfv+j2nZd2X/0cyxucmxuUmEazSXpVMm7AIz7kC4xkQVlcagK+ohEFciGAuKKy8nNBijMAR/8XfD4FYaax/BnabgfRwFZ1Mr2nATmZgj7Tj2k6J5j260EVndOL/HIYTRtdrkPRUSM3jOY5OLa7u8hhgBCBVc6zOlpzirmT81aUmsc53gYzQlTLx1oZIAQ5kSEgfoJjrNG9FDOBJkqO/rwVpOJYmaJI+36BAV082YbSELZKJoCqjz9uQUfsxppmh6hm5YjiP4g5K3/HRv3uAAsvG/aY2lkbfxUxeokLBFTKkAV4xSCKXdOJrmo8agxtQGOg/4AVYuGnHU/vPiy/iM6/PFxuQGV4f6Y7q7n8wJjPzicAm5AURkMxrMoAC95qyEssyAo4OIzboSBis8ZIrmySAKjjjFEWfMoTK14ruO1RBZajOv9w4neUcQQSbZ5kaADZ/kiVv38TdHdLR7Idu6Q6UHxNB/vxI++QIgPb2GCF6f9q3Nq4oJg09bW/JM383AoFP4fJNfxEnEFXneCwJZDuJS91kQkDQm35a6kWIIbn9oO/xrcxWDlEB9h6caHmO8I+6VCIHLaEQXf1MAYBxwB99IXmMJExkwVBWGwEQYAzhtB2gkJK52ZKQxyBNWH1ScJg/fgvCoMBUlWIN4PdbiPUJUzlVsSsHAEJowPvURAs5b3aEnX/epJdvNSiuLA+NNyQCpgKRBp1BId6TYMU4nxMqRAyBB8xQWBC6ABtxWWlIFv2uNgY3IXRhEjFA3iBarnAMpOewgAouolJcaw/J+8M3Xa20kJ/N6qjBl5kKTG/PTt3kW2NUAkhQQeKjn/8RShbDNTWBV5oAiZ4AoBMQUU6WQ8cGKgpFLpZAKifbPMeBHsHKLBISRBvHL8iTkZrIDaQmsHv0gyH3MjZJ/pXKUa1hGgvIf4jLgwkvnO+rKoqMiIQBTGkXTmC7q28Eh+kw/aO4jYveT7OiBr4FGbOMCWgLDBj/R7ZtS6qYyBaiqNA5+qEsWb/aeQpmg+495PRiS3uBr4jnRMrPoTokGo0ETcj/AB2rjMdh9ZwmGopKOdnJdo3QjMJnd54GVkJXbCo5Oe7byFvqcxtvN4Aihr6OvutxhwJLBivmoJNOMZoCJwlBEZJd1oN94M4OC9pmMUtDxkpUZicIms4PxRh5uTCZIKoDcQeuQ5D3nLsfxwmNbYiLDbaZiQ+7bF4nkcJUDmZQ/LSrspuxc/RglthCNggAP8PozWeJyOMVUdpppmYGdtdxnbXO7vbe84jKJXA8TnfS/zu9tmRFH6UFzB+7kOU2c+Vg8LhyvUrCtmZ4BpJNWRPc+LC0YqG16m1eWMjszD9NrC88rZ347ucjvLcow0hgysgGBJEhnjz34GBSPTOt6HN0MGdoa2tmxkY23lxdIdaJoHie6hGwefzzKNre3FrnCR0RMhezufGEzTHexmoo5MeozNpA8cC+sh12KchYwBUG9sdFZAQwmAmm/ln9eghS1zieLbLj5TYmUef1jvPaxThNW2P6I3PDVBUE1kTFsMhEciQTpmZ75OUaRC3airLeDisDOMgfSO0xERvNZ+1VRqCW2luJmjyBuxQhslLPwzknNbiJlxsbE0vWoZiq1yNzHQl/WYTPNOcTBRhIfNjcflmfr3ukWI9ofrIhgstdFNB2af2D0/5E/Vh+mNDcQodwMydf1xgHNbXfcqfgY0Mvseivo5NabBdmZsqgNaCqjXqxZgODo/UOmRc+of6bGnZg683D9ED/fBTxgKXeOGU6gUjlgiapPdBMXK2zAdtyveI/DpH0GE6w9c9O1sHYHYnfIaC4dkLUmMhh2UxnfO0SG2d89XYNoDCFX6O5eb/AaBDQlp4DP8w+cLXe8R8Ow9+yWBezpYPRICqL1EOodA6Z8qg92aTerzSRO+UkSqI0QAM0JS7tD7TsKqjtzdFicghfBB1QVUGyBaQMxFeHyhEUR7Ip2J7aSk/SYLGpq0cDexEp3CAXjbaN4yFh8IQrlPgUTFdz/kIyr0mLs+4uPhsUAbmiKgtS38FJtZTkI5jBAJTERaLUzSlnlHwiTlJDDCGgrMHxPUYR2ii9ICqjOR+Y60gUm4b5R923x4APpLTIhoIkLzzGMkLPoVHT0GTWVvuolS4+psRTCewjJukUtycol2jePPwEhSZPsXG2bByb1ymyQALLVQdpxQkW93rQusZKvRqkYXAfwpbfeDnibtL33QMYgq75lrxt0rG2EC7imOIkLWDjqZ3dwbf8LmN7Jm4yTDagfkS87psXIjayDgDYIspBxM/6KA+IXZRvESY6IVkBaVfijhHHAblQFksvfj6zX5TX+TuBf8jI4z6kRYW4WOcPZhPQTM5ibmLAKRTPkJMhw8Gve2v/T1EeCkjpjaa8Oz0XegwWEm4bVnfAvP2By77jb9fsA8Kgq4sm34ZmODAMhhZkpIM80ZWZc9oh0PDIYjVXqv9EXrJtWAXq7vTC5/Iyzx8EV2f/3c7ObT59Ovz+MjLizFp7oHSQHB0VMp+N2r16/zFdqPb7zYfJ9ms1FPeqQQXmYvzVMJbwmFgaX4TKUqqjbWnad7dHqJ2+vOEnHTweVLwPVwRFJ5TSKYZE4fgamRFEcwQCaA7ppIsFE7hwERBoYQO2dhI9fL2DHypg/Cd0yAALqAqiln5i9hXGTSTFvwThO8mXRMnf9aa0jL7DdPLJRzNm92ISRh3Um27xSvbkoPiklXllwHmScA8fpOXvp3HtU7XD5u7g7nru5DGVzbGAB63SO5uYvDi3FeuG0cz1qG47Xsmf/USzGIzVmUkv6hsFf7OlZ5AUVq8FtuEilCRVIse6givf6DJBGQrIJGAAsp33xPlejeTduDd1cGEiWyMiIyGbAfm+zRXNZA+9QXPjLMZQgSbGxbI/CAVlk3jkTy5KP5yYzkNzGCdyop+xnObuZBTDfmAi2HZI6Kt4jZ7xolkoHNgznYi9xPP/TS8pvvTLzc5UDdv/bXrH1oaAlQFWPCtQgqxDQyaTLF4/DMFZcERoKCprJm2ae+zLVOgKO6QFC4bSjTG0FvISiazzTk2D5EuRb4qPuF9+7Nhz9573boNIUh5X1sQdE8uO4tGgpy3D3MHET6/uKchs6NNYdvG7ELAu3W0jeVNkCcj8pNE1D1Gg6DeSnbMGD8OYr5mKuemMuIzaL1NYbB7CfIiivfocScbr7E7ull/m3egdNyTNmbZOc0b89s0/d5gBTnidsgBtn8aSI4PxWTBgtOOsjpIdebNV13SL1otUJ0TfYZH3mjy3sfD0v5P3nbhuP34tCvSUfp0HdR9wUn+1uUH9SzgMgRR0kZE0yWlj2Exklz+I5TtuYpjOb8sfUMIYIWr/PidljwS35EC0lDZKi5fb9zv4qf2aVB8Lsm7+zFi/pTg77i85ZP4K9eTc+b/S/Tf9TMcGwuGvecD8WBTAnmmfpm0gI0wRRTFGVxlRSUmV/8cpEe89hk+R9i2PlbqLMByxn+fexO//fr8edvfx2/zwhtutyHULt0P5z8/mzvl071YSVWRh63g1kb79Jm5nk7KkwcfNIyM7Bw9DYEuDDNkkDy+4JU8M2Tbp3aj8w08BK82ddsykcAAyMFQMZBABKIAPjurCY5wnx2+yfL4WfyzbCF36/94eQ8fU+F+LY9tsXGH/OET+TnXdXwAr/MqVBlKOYZtyEzKO6E8d932j3CUHxYhMQUW9D2eu3zeLDhtvCx0EknJHND06gxhSnIGgwLR/G+IT0hYcOwMiA6rCg/IFh/CgqMIQag1FnvpLAwhk+3vrvD3YQ9kD20VBnDBDxGVgiSuMPngocneYARBAPv7nKFAZ9VIiK9wCQQiCX6a3EBfT7oBpD+8vzOlQEGu8P6Jffd/RL2YlleXKJFfEGrZnAq5In4bCu+r58/FW78rlEd7jm62CSmnmid3ayGjg164tmTtYnBquf+1iD3TAkig1kh2cXd2fM2450elv0YDQ496JoHcsZTXCXFQoOdilLa6ISKDNj46kbCszk4eDxMoYkJntNtlNKgxRqDdcoOJQcggi4VBq+bgUHiIyVSvrkHv0KDaqmZQbVB2ECozsbZh5GYnoM0DcPYiozUpuGDpQcZ3UHjJ/Cv2IGtE5xHUc+yw5hpPmWYiPTEVleSkqeUpxRn0+0Z2Zc+dyjIFWhFfrQ/R9vv6qUPuIKf0iCgB1D1nBG+aTwt6TqiuaDm63OXl6OTsIMJt95PGezBzuE9Fi4h4O5TTLn9hnztkZZUPPR4aano9aH/kA7MHyvI7TIU5vngwGU/hGGTFC6aZMZnc2aS0wG4f2kzE+J0ZDDhm3uqeI1XU/gpybHP0WOSGwIc3RWVTz8P0jZGgyEHVsgpLIHPE/RgE+W4TJRlyHaQ61Hf/ERQZ8Inp3nGe3jj/OtMUIDz5CLGQDHBVSWAqoWEEfDoiWYgHFhOdJfESxQzxEoh99mJgHTDi2MPnN62r5w1ZqnnFebsE3g9moMh2/pFgu8BDoz6pTUvnW0PEZtZR7/UdQI8p0z4VWHDwGQ86JGR+HFGbyjaYRkaI/n2v58up5IKgrWmrBYBscT8pCcJz/xlM3+/uLs3HVvi2fhvXH4zCYZz++emvbE5RPKRcl9Kg/0Tdi+exd490SU2ZEbtuJgycERqg84hZw+zsOYrsPP+BOm1kkBJossPPzBMKII8XmEnC8JSFq9YxSQAgwYbBSZD8EVB0RPyJGRiUEC8sMOI0k5Eh1JDmlGs1mIe516tJXaRqJ5qT78hYS4YENH0uj1V6g8X1EpB0C/Ev/7+02fU/9yCeYSgTQJrQ+Fp/RIHGJ/PwJieAPWJufn9CWCajsO7n7xxFJMevLunAcGdgdKTT0z/ijVgM/UnaFhLLHdAJBTpKCrpsJDpZ4vTGoIc8ggCE6SO3fYVCSF8ByaCCIA5CCVEE/R8pS9pg9s+e2Znf25fRo6tbF7ZcxsvuZO+hvpZeRi2CWNmTsENMG6FuYl3liG0yMZB12Y2uulzL485bRtNtpZltLvEqC4jUMRpjISIazmWKoKkIhItolJlGRcJjEKwLQTqA3RrBkZAT3FqEg5wSou0CpnGpnAT7g/X8h0brRSQTqGUAwwxN9xcXlxefWedMO2d4bA/fKTF0Mug9nS9mbMbRibT7ind/JrdX914Ghp1fu7aldP+71JKaLjufM50vZlqbSkOcX13UugJpzchN59tsP+4Tx1+izQaceF+O2RHhmwtxmPjEJj4uTd0G5SqgP9xTmg4y06LCHNrlNysrgF4tt5JIJRElXuGtO84/eqTTK6ojsGz8sjUYKGngvqCkICjXHFdRFrV/EZ2OtRMeeE/9iM+fFL8Nn8+336tsryppPfd6H7b2ow+E8e3Rn98Wf8d0c53fXznK/9z/2dfpln2f723ruz/xzululsTk33Ei6oKASJBVUNmAgb7FqD9iEgcb2WnoT3EyMSEPu5gv4TsFsFMXhXtn5rKfp4KWa+8+BRfHS2pQdERaIKfl8PwP4GjyeTfsK4FQHy+cBdXqtwdB+s4fzD/HZ8ROGoMB6ofqYJWyASBuBPLkrDOH6nDZAlCIIBszhQGErpc4WB3i0JFjZC4MwWhMGuYNgPJqoC8DCGIKMIWhE+2MMIRp626trclwe6wLpMofljCMTwZW2p9EQfE+n2f+L0Yuk7X7ePVvS8YQTwKRqGEc64v++ajvSKN2za/3Yubn4n9Lq+hFPxwlIkgCloCJSkjEkTXOcXseIPf6aC5/V9QN9ylWEDd/QUgnqComAmga1AsQAHb+q7uQZvdNNTyqHQbtRqjQqjzpTcdKcJ4HhvkYXfXsTUq1q1rNU2mlqoZaqbUrTKzTbNDY1rNBjUzUJZurMVb8iJjbi4omcqHIUEUHcZbCpH1LVIbeFd2utym5MiJZShFeIqmYmhGg2iBY0jTz9rRTuNGcCQuXKJAyIGRHWCGGA0r0GM8gOoPBodiFby+fhKiHaiCaMANYA4Q3DM5MZHEwfKWqX19gdUQebIPdCy1HwVSS0Hnew8tPoMg1hvtgE26NNSOJYBd/UlIupDeeIQiFGC5QfcE4EigCbBhr1xNnqBYPSYJgIh7UhsRQ4gAA+SCPJC/2YOsFAF030SF8d7XTYx3Kk2cQi9cnl7a+jxNZ2Dnhvj73jo9YzE+llUXqYHFWpcg2ijoQVC8KleOmw+4bcUPEQOo0R8ZIebaQLruU0fVkt9GlXpOSYqgbFDgqYFuCLh+hNfThdvOtqtbc57VsmpAyYIKudM+tTS9FFc+7hsWr6QLoPrMuKeBewHN10RFTciIcud+SGenRQB5O+SwHnBQTlt2u5YD2HhsbYlzk6MXYqepcCqOHNR27duSvq4HY2NthNrihqZnCG6bNhDVDhgCfImZD4pFKIF0LgbxC3mEnmIUySoBIVKZ3E2YosYAl1gJzMTyiQgVhUicEd1ByCi4XeVX0dkCQZGhHoiCacMTY2Cg1PqgHj6/YnRDu6oUGkzL60/kokQqGQgJ7MH4afK3OlAMYfGAdAez1slg0gD63oZlqNHkL2cXCg187tvHg1bHhgbyk3Cirb2QtE1IptHiHd8WR1bfZZC2NS8Ho7y7M1RrwdcGjweutBq510ZDzPmQeQs1UojuQX6LcOBtTCsk2psbG5W8QBbAGJmNrBuQ9nvvW/A4Pb+CzGRQ7oLio6Z0g32vkZ18WO5pn9PUWtTgMJYNa8E4R6uoPAvo7NzbOcB9eIcGI0a4BwO2R2fASpoPLnDpjS7Bjnt59GSc6wIDs6Oujfi/dqIs+mmYloHVYFxcaEv5oPuwmAVCgnu4FNwigo2Shr5MfRurRiXDdOPJHox5MBwe8g75p2WDTO+URDoie41Kh6ine9BsSoqi3gPlQYvkdq4rQJbL0JldT5ZLmDsKOW1oIImEVEJuGPwww9+h8mvNNNKew90oLYsWVVHcNcE3c2+bQzXEMsHwprxjRQyMsrmlMlcB58QfhfvDvCc4OylAR8EV5gh6YvJD2ZL0Br6VVG5OoBcHkPeXrn4+BcX6cY4PWjcG+OOJbd5baGAd+WDs1yLND4pQDIhpDWAAjpamhzTuLcTV9kPRm25ChaZhwa26xKd40PhC6waHlIHQkERHNgmhqTQRezOsEQQn2V9kEReYoocxU6gqA36aNokO0A+yPQkUB+Y0B4SJ7giHTAAxYip38UGgq5uvJs55ht2W0Cwqo6QDOCJC1NaHuBemcW7n3S5aE5LqdMdjgO6idusSMNsTASIF8UVGt4bnRQVcyzlVRC09wHuAC+oIUiNoAkiCmwQqm+j5Y1iHRAZE9mZ3eoNj2ZBiPefCWvHUgpQjVGBrwHolSkHywaTAHpC5FdFnLAxlLGRDTQMvfJSc987mDOjCIv0xU6iu8RqDrBU8QATqNeijKaEMUdjJCg+iQKwqazQWe9p3NbCA8knlcDsfGS4cCXVidg0SXo5sJ4HXZh0eF2HBg71ap/am2BeupeHXFg7UHEaugVEEW/EzQz+PDQnQZqD1bcuX4DINqqjBk2Ugb2occPHpHoPIJyYkjakJWjpHsDv646oZBxDqu5UDKaqIjKbb5BSxYw0dwttbB43C4dMEqMR2CjzF9q81xil+onMUbkUPRxQFdxgLUiOZMi3I1E2Y3EHTw5CVORDZgqqeyA+GLQTUgBkVIXB57oNDrAYaQ8+wBSHCfWJ/QTIOYfAUGRqXTHQN2/NO0ezxRqHRtbKbHB0FjxPQ6VJMHxCNh84TgPEfIezMgn63wdGQvK2MrpZJF0aQNYIBxhoNJgIFoi4XKFfczN8PGHqBgO+uCLb4tQZFJFJEkZDy+wdUMw13uGkNuAvutb5Y9MUHNYXN5qiQIIbxqG5LgyoUNMLXdKD5YwDuZwxxxdw5C48NqFAiak3CI7mQYkB+EEwICgPAsMieMDbsKbgaJVDVuGoYPUKPsIptVwLNg5uqgXFgSBxBKVNkc3Yqx6SIeSC8CeqF0SmCUJ8iAphAyY0PewUNyx7mQcHBvlyaB89ezMNNjcKnfVOAruV0CUNaOJE2CjYdDC4uDgza9BO1Njau/zY0jlMY4QOO4VqY7vEpGRm5jvWEjp23X7WAGxC+XbRGoby3i1guQ7iJ8NYHslCNXjGFJ3KwcC2NzxxlWx3TGWvKe/B4IE7p0cj4uEKhfOyGwdl8PPIB4Yo2NKPWbuHaSA9xdzBqwMD6DtQbbnZW9UHejSc5/WbSZJyoMMkD0FX4K1m9KBxEA7YAgNByUcngwZi5MPR8Haq2O1B5OjMI3XQOpn4/OJcXIu8GERGkHiLjBDs30cvWTbxVJhmEHoJ9TE1I71Q5hOlLQKOw8aOmd/IbblzIhegOFB8lQ2DRvO900LQLuYOoaqDg9E8eFFRwlTVOQp8NxCEJikCxgNS2wQspSIYhiGAKVfCt1VuDdQejcxBE4TJwp0QRD5BQkV3gpUEmKbK2BtDaHXRc02uZdNozekGoiZREcbmbbjLTnw3o3yPOWgZjRoG6PSA2OuX6zaYg4kbLPp76uvXt9FiQYrDZJ7i6rrNqYLNMB9gxiPSO9eaEZ1jJIAemKKZOziXJjTDW6ptA6zKKpuRURMsaIe+wxysqJIoi+4ArvCtCFDkgazkwUenHsLgQdYKomBcMATKtIGJHozKYB5AedtMLX4mtDbzc1vDcvFVGITZwFFiKX4idZ6e+AoL56RENggg7woQBkQEa7yiihkpLOuQVJsahXOczRo03999bhXa4ywPcdMLVB9BkbO1tYWLFOw3ze7A5ehLzThqKYkTImpBUBhBdjLao+qrzu+q3zXGK3Gm+XBcm8NbstummYTMD6V2QPRHgoK8BEw9ah8NjJvxRUnrq2cva4daq2CzfBsnW7Qo4ICKloLxDqqXnstfrd3cb96hukQMgvK9kCQSp1cxAYe7L0+pZdnmktwdBR37UHyfAYq9uLQ/Oq0Ayjgq5E85HgOnKgyoxnSBqLcInIQRxO4Ue2monmHqNoSEksGlWtVINoyCyKFiIL5gO8XaqDZBgpjeCafDAK/DGg9cZQOX0fHTPG1whaPy1wQLslEuY4nmu+Bd63RQ6ihzAkRUSkRTMNtzMMg+ZUcSJrMaVqOXWeR0HHx1gl0AD0wHOAKdOdiqEJnxRLQU0CHERQ1OAo3QAWpDJik0La2sUpwaY44ax6nMxAwJc3L97OnoyHtJoPgIAd0UhvHIiLdFBU1hqQXp1NTC9Zl6HXELGRDr4QOLy71eHMK2xCApzBQ3J5JBfZAFA9xEDHVMfVNkz797cdZoXsRscgYX4hPcDzgKFS4NUXYiABoBEFeYMgomIohhkiY+wMGHlx9U4YnzNBUeiNrS/isoQv6PWiidkQMT3QNTtLsyweE7DZqGxQIO8XSIicwENooG00inEAzqkT6gB12eujPwGPDgKMclBpANPJiaXuFQAF5xUsmXmdRcEgg8JYioidk+KR9Rc/VE3TEt3foooOMDUiejIpe4jDsKU8lwpPJjexOD5xlkk2ictke3Z4O46aXiPf5hPFi2mbNtrabY221m2xtsvOjKHsaBQUiB0KREugiuL4yLmeivquxpoPIpWRRs18xYBMohvEUUyIiB9xeu/R57MRNoDxtemoZE0ZsaJ0JeGcTexQCo6zN4sXCa0Dc7KOGO22OgVDHCwhN3U1NolexS7GZ+KKBIoA3QC1nAojIoLIIKFFFHmI5kDMPfGZx16LAbC9VZCDDxr2Xt35goYqNMvdGBsIRReoS7nZG7sOtdbaGdbBTdtxn6fSVDmgMIGhEBwRVTWICMIotuCguJkbKojvFUsJE95B5tVi2nPJbehOtEohva23WcCz3QCaJFQRxEOX2/TriG7GD0xPhFER3fLRZAhjkue0UGiICs93N8wtcXKAuTtGiqYLkHJvvSoQLccAUN5Z3ckfWwM0knw0ONfWzpeSvlFmb0fEHXaSDBhE6dGkb+DWjS3gNC57HoRUdtl6wakE7roPmXAHQyXTDl1er2rJTE4ggo8obQRPjKXbFGqjooout99Xq+qpxEdCAqDniNCGQdnw+OWh71qTMoNoAEiIOpFBNiWSKHEEQ7LByZgX+BlZ2ewzzD5vhOp5ieeYFDk5wBTcgAKVHeChg3Uyyy0ClivcFLMCPcEJC8jBDLwDXi19H7ysDqV0iQg02Y09616POXXRTzjHNDUPKU5PVbq0M8Q6dzk7xreRDDTuhFV1iKucQADsLaO1Ax1qY6eIXZzARR5In0RNCb6Dbo8B0+HFTVsuw5pR1iQLgDmu4nwshzpGj4Xv4+h4tGfIdNgBVjENm4ciWxLW0Dynu63AsrUzow9ffYKjwQEBzPJBc3xcDyiwgAZRET4Q4IIAnLz8Ucm1s2vHLwRr64Chy1vQPATzpXfc58cw4OPVWEIMEzOkuadG12hjVhAzKY2uKh30WnkA1b7kRi8kfCeXAD7GSSBLaPZaHwnBEerLq2IBzFepRt7pMGZSeLqRwZvQ6mE3vxBLPBz02blia5uAYJgVL8RPbT0OFtvlXIsXRbFzQUAco8xyxpdlXpiifkgSCkG0krNUs1KqzUQZBABWRQRAgjrnpY5z1DfJMZl7C+jGeaZiILcR0oKRVGgVFpv0VjTPWwZLMAqjFjpSCC4q1hUV++VAR0CN0qkuTEtmdEYrrQa0EDIwbh5Ne/UhVh0UGRBocOirsg0nQESngkuLrrmxhgQquF3s7xnDAVR+oLqYuGum9jEpw1B0UVArfwaPGcM2uYI1gbDgVzIs5Ejk7w2XZpVKdITOQXAhnucJW6IfXyu3U8eh4PM9OykeyCMyqqaiG4y9HVqFrsOjpdE1kZUiNa+U4gcQMhtqzZBe401LVZGwbOWqXNJS5YONKVNicYHNQbRbI2FVtRLaUac1jWzFMjQxo0bLWmRkGDCAZqorG8RcFFDsbXuNOG8m2zNtbbUVXhOHNaZnl09FXSZLGlRqDxELMNIOs1SAqhrAC2qYL3sWiTVg52aGCILYVUbkHmhUFpC80wGTqJkOYbGRRdLIgLVQojFxQKo2NVBmxfBfMRW8ETTDpCSSsGQisUooBa3hRvYfBeJcgqgnDYQGUptCcdt6ULTSQFrZWiVwopIMklyTQtDDK9FS8Bni4H1ZdkFhoEbeOC7W4I2PRvqDes5hIpDAxIQksDNKchIFFsYWbM3QxRpviRwUEUcEMyfQpLEJJsly93W9rl9gzcww0kIskCBs2GMsybK2psNi2q1jabTaZjVpqYZi2zGGjZmQxrMrbNWqZTG2jMNVaY1rUWytltmreqlyyErKYMYlsVU5ojhqFzi0FW1NDYtqxeHDXscccvffF1OAWGumMqPqoNMMgGTITdgRsKXMlVMwy1BrJEZpK2itZtFVbTjmtTbZbVZiZipWpm2am2xiLBIwGEkj9GY3tgRsQSJhLQrNjWhDi2M+CwVNHCU2mhaEJGCSkBRQpRhY+UKxlWTlXelwgJQrYxMnqwhHWY5Ohgl8qEQXOG+WpNw08ZuCICBoEEBMEYVbCDhY0DBFUaFQPCjQACWylQqjTN0xwOojdbDpFAGEWZtkB1opVUbFV5bOzIuzhqBZwYQnFJkpFIpYcN7JGEqV6dUap9fWZAASwbdxZZsmCmCxcSJZPu5kRtAKy0IQl9SrCwwOygvLMNMc32E8sHEXfAtjQih0RMkhL6HXKohhJCExQSGkumZWiqYy1mrMxqmVm1TYtLMzWZrZmMaNWspZhpmjLNbAhmZJtrLZtjYZm1stqrZbbaabMTM1MrWbZtKpbVsbZtJsnsIVk0qq5oUGs2VyNDmQzktixqbVliyyDedm7bBlWeu59twNkVVkAFUZECIhgMH0ad7I462KCBexQAC9UqV2TbQKOAqAGCwucCwChWaQBwimMDSYFCppEUG6RANSBa60Yx1o6I9oy3ECST7JlLSjSSQhYBAWWrLKRKGkJSJfYHRQTR0DBSIzFSoUjGli0Yw4tGOlupNgQIQCwTILGRFptFDSRYfADVRFIBJJ6kUq5g2gMjdcNUDVMhgWErA6miEBBss0cESSUbXzATQ3Qh6LDZoaRz69nVKro6O7Domgs7nmelVXzFKraqimDzS6eVmwiqbkVGiym+7YNSneOkHI8NIc1BtXoqoGalVbC5iga1SVxlHMrWUMuMs2jWNo2m1jGs2xraxmbWvDDhdA2PJWTlzfd5LgdmuewmEFB1h7wDvGowShC709qX2sRUAcoLg6yi6Fo3jGVzW4QGwzycogLoISyWXLXIu/FiBYMEqEi0A1iowLizQkzAJLaIPoeHXy7qvKxKvTdzUMeB6CUm0m+pIJIS6dQWQEQCsbGVBRXEtLRZcADFJC3I4p1BE4sMWxbyUkkkKlZYzDGDsSx0lludWVNytQGOs1vOZZcOKIGKzUkLEISFbIEvqc4OquuBmKg2GlsZx0gUpAuXMttUWXROFyZKJxIfCcHKAECkSgu7y5YfVwDkhWKKNTaZq0wMbWM1MmzNrU2WszFjWrVgMTBrMkLZbY1mpFbUZls30ypU4mOakUc2YQOaqNym1mUpZmaNmjVrx5dLp5eHq0x455NWa7QsZNUEIEYwjNwAURkVNoA1pycmsy1rTLa2sEgQYxgSPZrvxcb6kKkhvqZ25UROaI5taoOmg82kvPqoV60XmnJd9stqtazWmd+PFF0l4yO3QtKNMMgQCjNAex1lhoVu9w6RZAt2ZZJvbO7V9tMykyFyJsUtGqwVBaMC0jqD2NCwdISBYMBsZYYaR2Yc0ZmeBSEoQTpiII5hFHp01DUNtNjSxJJHbFq14VKSla2rXhbYZASoO1vhC3vIVWaJYkT1XFgJ0OAAlpbVmjGX00gQkqG5fXWzBAkla6mTpD1YaDNulkC3zOnKr7aBsGgaCbpJZQaCyg2u7hnT4b31FF2/Nlwo45pBIi7SQhOwhmEhMySEuGZadAYUnC4CQpbWwLEySZam0zYsmyza2GlNjMY0ss1i0ZlqbWplYY1aYxm1sY1Y2htWtmMWM02Mwa2rYEY1A181UrlpQm0krOHEVGTgJIRZEkQgLDrt3Kmwnu8LEd2pfX3mW4O6Fz2xoHyUybssTHk0xfZc+ncQ3UFM4qAFsO7uKcbXpvz6sV2eSHlprJh8FKYiBsQVBPMANg8FXb/DxHya5iac60ckQeIjuQXEmUDHsoJqY1+sLipwJSGhQOcT6argT6qFT1qa10MTbsw8vTQuaHrQ+od43CZxOBI9mYf2zSCAUVQAUkQVHDomikfhAER9HVCuFBgxOSJwRABdTxRtG500oerHnsK33xnOYoqKHJo6PxPSQGhovtNQX4RBBOyCB5HOKKX3b0xhCG9imD2WDkilNaGpADSIAD2TV7KPsnZjTGlB+mJ0Q9PZHqEinM6s/V+/GL2/CFFjobugmNLUhcGhgDeDuRu5GDbTx8wZtN2CqdsMGz36LKCbGhipxWw5RCkUBOGKnSgx2U7ZT2g8MVRTRgCGcW0ExRoQgHyNhTCjIQnwhAInuIqgGrY+JoqGUFTGKiJ5EDaAHZi4p8eigZY+PAqC8XoPLFRQcwVTj4VnAVWZLiD9sAAU8xEvFUzNGrGCjPwbvBtbCta5S4d8WsDRioC8kRRATTnNw2toTEM3aJISESxwlzuRsB3Wt2nqom946o+ogr2UFD5+b2FTKC+ImDOmBC8GsEoCL9R+RARL36h8wNsUhcVbhOqNurX1LnFIUUOTDUT3ka/T9ACqKiJ7HnqlX7gKg7FgocfCnl3va3RnjhXBCjJhyJbURBEEDjzV+jE1yULmKLuQEVNX7oDImbxn0802kNblj7qj8z2VqxRcYCbRPUAd2Hhb5ULxugZ1NYZwjguzx9Ber6jdtxj5aYhdwj03mdZtP51Pmr92FraHYMTDwkxlMmPtPShmZguutVmkbWax9cZ5qfFBxTbQ0yWol+jPbFbzIS31YMC6D5g8eXr4uBRMzalSbXe6tsLiQbjXJrZzb88y7tyUpdu0kKp+GZT8T69853UaIIJkTnOgDsQR+ERS+Ii9iQ1eserGx6uqeg0EG6xaRL+inPHqppLoXOD3gLcEPVMHIHkPWV8CYKb9Ns6WErUSaHTlcp8nQbmx2JD/+YoKyTKazLEGaAAk64z8A///////////////+wP3H3sHofbA73b773IDu4AAkHYdEuAABoDKsyrpuAOh1dUGAUa7co4ac3HbLCSpZoWElYDMEpM0GDuYq7pTgOu4EdVdshVsUGqCnWgFB8+n015DTtuMybT3u9nvgYAAAADR9bU6OdH2+uqAbvdqnMmPeuPeuvTyB6ANAG7ABzfW4qkn1pQBVIL6jYoACsQWwKSDQBkpQPoDQAUoDgfYAfQOGdpQSASUfVakAVoOzDltTFUJBazrp0DQ0oDQHQa6KpQZABcu2GYUTBYGjN0DcEGCMczgLg00x0OuBwOqC1pK60LZpvhFSABMQACBNNAAAp4ATGgAAAUEkARIpkaKKAAAAAAAAAAAAEUhAmEaJlMp+VTZT2JPJMUeiGwKZHlPU3qjwR6mIRoCkpQQCp7U0T0o9IA0MgHqAABoGgAAAESRMgQE0JGkZUPETeqD9U8oAP1ID1AA0HqaGgRKCAAIVKppiZqNNGTTRkNGjI2miaBoaGmIyM7G4fO5ZPOOW+Iv87kaKczQxZ3M7HWYXYGpzv9qDzY8ido3SILXsds7RxtAZboUVppBO4d07fhPsS8yiyPvmDmw2pmDouXEIKv2+PzMsk/rt65FX9mo9h02JH7dDnFRPIGUCMAAHZjILSKbkT+jd/m9/jFXLD4tSPltj8jKSbDx48/R2fd+u/NTHsC4WE9YZmBaw6j6SNRRJeOYtChufSTmDpQhDFVIC/jynjT1lDKTTuffCU4y4tMgd52Hg8Dl+ZuUQ/mEE+RiPG+U+hcY5xH5HzM5GPzKhJjlmZ87e6jJj4ngYUfxnfqequz68xjy8+vsbhPlfTAc/gLOS+A6fOt5/ZpDbm0O/zLPz2Jk+2fr2lVCcvkZjoXcL+ysl4fZVZ6pXgJmhzk7kILMoAMhMoRkHC08eXRKpKR9qaLL8OWZlbtktgT4eG85uGKmeeT/R15O2cM1tOOpvza/7pzT0YdPX+9cqsnTgJig9TDlrGTLY4hVUxamOib39e7Lu1FRR07PVb2PQHdpxeDF5JDudu4/esP3zPPRvp692Mzw+W5NHpdlpwzUbSpngTQ5oZciZ+D8dA4foc/0cm+bKBVoM3pOLoZticQTa9EFTpEBQn29vsxbRfpiV28QPeyiK3ijc+wlpDZkVUYo2l5lJwUcyrLfMPgkaTEjvmeH1n1F/IuqxRyeiWTDI3zRnTiFTTnyEtGbNkthxFWWemknZcFhCOaYtliMlN8cqTTB3jzGT32hyxxGk6g8kdI/DvcR0zyGIcIdM1ZtmPQE0AlJO2UG49HbngqVMNo/rlkacC2kUUtqhCrIeweI9w46xsD9D5zpH0MGBQo/48Y80HmjvfM9R0x3aeseM/uAx+E8RoOE2nlHcPSbPEcJ4zQ+gl/Q+Ee3xkPQf4/8cj4ntPCTskOim6dEiQtCHxsfWu6+poDbVh+p9DvfcT7dj6n257MT+0Fg2TSaOgNkII+wBVMz+Y6MsrEJzCasSfaB6ERVDS50LByZUndpLU7ZaS9T72lDmjGDZca/Wd3hulZu+npbqOOvKtVxBT66IQ0MsLSiGcTp2RbH4sWliGZSJBkIseAOetHo0L6TOIPJ7U098ruCmhgwDWAcwrk7RAfsJASEVsG2ytlbQfDHGS8unJdNbVbVsbG220dMujF0w2VsWySDIQgkigAHbqcr0u36Y465fxX3kMJrYoeO5qmrTZFNMw3NHU15Mfm9k6sbFemB51Rpq1TDz4ejEUxSIIwzhmbpSnZAKG3mbjub43MeIoh8gL+iJaePcokMtSv3WhV11ofG27Hpkdi3wfCechjiYU2tfQon2lwqaFBv/HxySAKDcigfghmEqc7mxmnK8O04o9HNPG9DaGoKPUVDciIxlTTpI/yvYeD+mXz6VnogcYeV9yqVDTbo5iqCzcOS1RsQDfxjrnRb5p0gIZSEaxsVJYYKfXUKKzEStIMlKlK2pAmwDLSitoiK2VGtUbUUkWspBzCpXNVNqFEc0uZmUBprbTC2qUg2qSlsNNJRFrUUrYoKtoi2aqGk1ktpGmIkmoqtQktWFZKlqFsVcmCSXNLailZpQDhpI5oAbG0VLaqlK1LmbUFZKmZqA2DY0wyxGazEK2UyxrNZZqtWqhtGwtiTVailbJRsbKtqjLVDGWyWyStkE6NArtnhgpaXBeyoOkRJAbxoJrZak8KgrA2jggoYYIqj2idWIPuQUHULnKojz1VQ5pVXealEagrSVQkyxKCm2mUtaWygqebyuUkukwimsR31UqnjMoDvkV3aTtYTmKle9gHqZRQdWUTNWQDJ7Wg1Jg5uzXFiAi4HVcuqg3ecgrZDeAQmdNzduhByCWWUhdMjQICw0EVuQDSwqA1BLw0sI0ZhsQLgPGbDMdSGZtrQbm6QTVDQQBa8gaa1ZEUZSCo63WJHRCiuMhVAWpkQQCo9cgiShmGPBjLTsfoWEK0MBAmTk5143MGUjvNEooRRbRb5NiKZnDot44S9ZNqN4aJsRaDSXI2lpsIqMILoEQM5b6MAMsLQykEHUqnTQWyiQHdDhg5hjyinu97wAWK6ZkgdCgGm+LJDGHVJ6aUwuKUjZWsiksow510XGKxgaWymRjSqroMFJERKzSzUFrEVWWo0yGViIbJo1Uq2zS2Tas1JKzUDZG1VmIWykzSjYM2yTZYsCbVZpbUbMwo00Nm02CjVqZmtSzCtqDM2hsbUDa2ja2hsZllo2kK2GyNoyoWQVkFZErZVVbIm1TLa1ZjDW0NakbC2s1bJsLGGyiraKlpqZmZWalQ2LbMbQgzaytgxpVVoaWtWm2+LaFK45OUzAzSmmqgcyqo002kVbFzVTbJhEWXM5CmNRXLUouMiC2kbNGNoomFyaiNqtMW1YwZgbS2taYtMaNaoMyNarWTYmAZCj6VBKJTMNI+jiPNoXr14L1IcJvvbv275SNtZbEq01pl6qka0qVy5comyFQ5kFaZHFipVlqKTLJCM1UBbVNgqpcaKq5ccqKjmFM1SqW1MZKBzSqpYcizWZbDNElmi2rUYFixTMitrMVsNiSMIQIxjISITGR2s3CRjuWvfW2pgbiaGxrwZsmkjW1WLAINRIsIiA8HTQLmpQ1k6U0cxpploQgF7WavRa4yCWpaAva4KC3uWVDq5XLpcGlo445jrynGunJ1CE7SoKVigU0H36GKitdgSL4BtAkkKhACVWUHROVb2j5mx/KEhCU5DBiwDNrJkWG4LnQU3JaKqjuOWjQQrZbFMvVKxMwKdoIqMrDVtY6occQMZPLChWgpFyllOiOYXs8pdGOsIoNoSERFTYqjJE22umxvviJjVbXcpSSX7UoKY1mFaCl0gkNiQRFIJuTO9wTTByQKo0YAgNxmnNy2N1QEsbFJR2ZC+4kCSUPEQrwLM4uowVE0TqYc+nHS5+BkdS8TDgSwy03EeDvEpHGAp2JoOo7jgbuIgSKEiACwxW1VmGzWVq2msbS1LLGWjNNoa1NrTNtpsLWNNNoxo2mo1TTLZZozK2obRtaYZY1VS1ZrbYW0SWxsy0LZUq2SWytmxNjTK2q2qzWNFNGJrMa0ZbTa3vKVTaVSTaiIzBS2obSVS2qIuXMZk2ZqJW0orURkCRJBhESCet3Gq7tKVvtGrbIw6Or04uI0tpYptm2mNazDNbJtawha2NjSxbWI1FTabDJlMszTTJshsTMvB5ro6PWbla03lodtJSeZEELBCtRw0kGQ9JzhQgsEMkaushXKKrtNbWZg7+FunLqazJkmRgDIAEvZYbx9CARpilRonAqEXcN2rAijFI4xFKDCWshReF0aylgkZrFBtsgwtwyqkpjZwdCLdm+oRKExFVFxCxqxbZaFFXCXQ6QPMook6zMDlHUACWTGIK5XJBJArYRSK5dIv4NxBL48qHJQMg4gp3Lckmh/PsWcXhzgEAAkmvXRw5AvCSzSWRg0iSNZBl6ALDgcsV82pZClOCZB7GEQI0bpQSmUaIiVyghWKRdtdpO2qJqtYNNpRWCyKbUjGqpta1ErY0ahVozNNZWjWzLSzYTWtoNqyxZazNMMMy0KWNo1sbZmjGRmZNWjGmxpKWmmmsaqK20YNthmpjWGljVZNJVbSDWFlmMKbDRipMwGdFBBCMVhFQu1b+mvhQ6Oedi7uAGa2qittrYbVtVmGtA2oFlls2opZlE2NWTNLVpaNsNZTybqdOebhu2VUuTHlyHBD2hJFPmCB5goqYTkK1s0bOelzNpszNs2RVbb0xzbZr16kBCm7RopY2C9/3P8aBGcmuTiiImSXOE5OdQMVgNHJikAFs21FVHQTlilkD+wiSW3C0hWLmwucSmxgMGHo0gEJCpF2i1xBqCeWO06cTETKMFhJ7WChyuTeJRhGgKY5JeG8DTo531E4YSvYgFHbi0zigO/iU6OkuaYcC1zx0itAFZmbIVa8POPCU6dDRGzE8pIEkrDlkHOqFt/HMRYFipWyABhJkACtrW2GNSpWGhNpSmG22s1lmagrM21qTWtjGFVbVataqalCyy2raUpsUs1RmNrWMtbbS1KoxkEIu9FGmMPszcM5032sstjFA8vaCXnaDMM0rVRWmyWWjKzLNaLbLK2ZpMrBIcJQtcKW1toFTQujXAiKo0vpUNN0tfJEiIIxZCSEhFFRrVqLWwZhQ/ES7tECogKNMecb310vMbFuBGbyUEJMwwNJ5G1zEjjlC4ss4jd4OXM4lqaCwXEHDUF4XKDITWgxHDZAASYMdwSElVHLKGamEUicNK5iLBYqRaWqFYPly55+XAK6Vi7PPhpCygq3Q3US2glWS16UK4mob7aLxcU/JiUWOsL04EEvo1Jlh0dJF9xjeVyQShvFwJ2WQQYRZBqdhc7mnpaFsQdi420HYdR2LmVAFjFjEhCEHWgy2lKtqy2rZmmZoUssNNjbFtaaVmhmrNTaozVtbNhoyrE2sm2WG1KllkxYZpliFaQVUZFYQZBjEYEAoqnRudsaF9BLPOu1zEUbXOmTAaYIhBkEIJGTRm2thmjUaqVasmaTSxatsQrZmmN5nrOjo8zt6NkdA0Ta4tJaCqEiML2EbxAFLrrti0pVqVZrWbG2zVgYCkApvXci9IIpURcDaDSmjml236GzVzo0iUmcOooqakeATSKhBkBmqk4qbDxt0nl3jo7YutiYnRqZMqRwfXTDC0IRDGFjIhK0NaBJC6MjWIYGNpIO86R3IrHA7Q4RUUbIwZqmUMWQ1wDoODN7mYgnEspEMFDLnFxCzj6XwZJZzMbiI1izg5IhJCg6dvhSD4Vh0lOjQIcvoI6bIyPNGOmqBWvrAulUZJ+l78KR+Dz2d7XZAF6pjYB38o9377CELhQ6QJCviBDhsJGmWNysaMVVG4wW42MjuOR1O9a1szE2WZWGFtbZps1ktTa2tZqTLUY1UVjRKy2xmNjVqJWa2rYyMmmBVrLWmzE2zabTEGEkJIaljR3LOcJW1Iu2NsXVER1jjGztcp5GkCiDGMICAsSBIyWsllilWaoxjW2plMYsJpptawbBmTQqtk3rYcXWxfDfa7oaqbljeXYBBBVgsq1duObW2reMCuvTjlBWmxCEi1QJIUGq9XFocDK2OSkZTihsY1SWVjSgxHCGLMRAB1hIQKgb8iZIN8C0EJJHjCDe9iFKRcebuyUyQrSEIL6QWJRiBkG3ryCVmATkJCIVGCIISAEmdrMnnMhi0c/RZCFfPysQdKXIObtalQZ2ZdWrIMVxYYMLzEVARdnDSksJzVLIzABW24UZvM4W5JCWx7dSr1sb8FFgBFuFhvBEtVK9YoniAl4loCVFBH0QBoxwPXqNryMAdmy22pMszM2JtNTYNk2ma1qltClq2TYzNmMtKstTDa0sW1bWUK21ia1bRSzNisrWG2kK1rbabWYzSrGatGytJhkRIEQiEDbqFWTktZUvfrbXpnG2cbZ25G5soQHEkCSRjEIwiyLBYUNhJYM0tmzMkVmMISSASRKchYo0GGdKQFTJfYmHRkUofW5SJrOE2ioC5hsS+hRTql2dG5TjiyEuK5xu0I1u2nKzZbE6854HF21yHWguRUtjU4wQvwiWRRvZgGWuC8VHQ5AIwVZ2nXqVw8Q4Law5KEvMC4hKknifF1p3362QW8EAXTjO1Z2ccXUNUgqjmIBiIlDCRiBgSESBMooD9pl1yxzKO1orZEui2SaAcvCiztgge1rIMAFKRgPlphSPQAkLG6TZoPH3jg4oGKOaYgExxkl3neWCnu82DdEHGQhCTIN1MJJIUFVwrKwZI6lW0UjgrOCkTlNtWjVMxEtttbbZpiFbDGYzMtNbGszRpbNtaMNMbbbU0LNNVSstNq2sza2ZqbVljDGwy1WZqkrbNkfTJxotxjDMSiyDCQkYBGElQ5uIKulzHANirzvRXGufHQgbMJDcK3x8vM+YFoWh5gere1irVeGI3MUvjt3eIkBJAZHyQILUo0UOZEWxrVTMSDjKqXMrNTlqlWmSpcsq5GVTjkZWtLBmLMNMWMIQIkUInMqJ5GCgLrYptRfxpEjxd12bnV8fLq7M2abIVdzOTGIQkkCMYKqMEwUdwwKYy6hmolpW6QzPYApNoUIRwtyb0hX87SMR1jQ7KqJUtjnmVtNeANnEcHQaiMU1LwwtgHtAwuoreBbrn7B0d+vBwwG9Qm7sB9rR2wU5wclKlhSj3T0wSDlcLRC0ysMsN8wkBLwzTIzURWyl8ah7E0c1st9O87OxAdQGACzSZG4SE2ZyVaBJC1EqkockaAIZm5vLpgKZLjEG0iR4LrO7NljTNCrNFMtM0LFsaWbNRVaZjaZmNa0y1Yxqmm1LTajTQ02aVSyzVpCs0ySrMltZRLMGmGTLNtshm95CpoqWJKcakbEzIBs0OG0UrayZmLWSBYMIRgQy0mS2hjOznFm2mVG3qkdqpVhZU2VSU1J59u/kvB1AC94ADmokQxS+7qmOV+zwflQNNAQPRUr5Srl+sGDwKXsUAZ64gNQMcccBAk1GogCFcc4J5mv2ZrBCsX6ZfDBLAkhL8+I8J316+vDBXSDEFwJv2GvTL5WebzI+NWoYssECShdsW+jdLQU3poY5j1pXtxFU/a8pM9Lt8MkAXCe6jaGMu8AFFMJI5fKljau7fZH0kUSpgZayAVG8zCxW+RVKOA3HLEbICAPoCSKAiMRFy9oBKO4Co+QNed/G23rnwde9+2POQ6X5BDLGbyQxnD93eR012NT6V9KD1gpmfJWDasaV2LFaedPa4asTQiAPyQQRNiAVIKgZSMAKNFaKO5rr7bToMk6LZoB3YKgtGBx373s7d7IZXgKC88ZpNoOJqm2Re4+81dzp6BRXLE6glNVKSHY79PGzH3hg9QLj4jWPm1nkJk6BR4TI+1sZT17nKZk+ya4w1nuxVcyeGU+nzJprYP0eSAYkyPw/VrzUEBdGN25WhzqXHI/DcgSKLIB4YriBIg69aQTBEQQyvw9Uta7YS5CQYsWRTayRrTUwGm9Lb2fp92Gq7B3yLtHhmcx0MgJZKBtmnuJZOx9aOw3ucTMhrCR7rvllJD73RuPp5XtziAUuQ/D+1qZtxNjfMlRvbSViUIrXp7PhVHCAnsFWxEFE3i3HLXtLYOh0KzvSW6jhOBbnBQi94CKH0gC/vaIYRcA3eHI9PKDlHs2xR7B8Vd8fFnJajnhAxEE7cawLAGxBcVRGaa0qamvSZcmJzTNVwgienWBFoRKiB3uYFRTV0tod7j6ndGtSe853DE92+2KaqUfw1o3oA4txHkwT7zVgBoZnU5F5TW+Y/auBXah7bGqEOqBWLi1cmpeLUHNWxR87JVeMA1TOgXMkxdNSHTEHASACDmQ92xNeUzmom37MslgxnqEN4iLYh7Exh0bxKJ0zMxoZra/GwnG3Z5Hme6HGPee8TaAckA8Q8rcPsz04qJV0zIPdRRIQVV6iqmUQ6gXjJyn5c0PskW/Y05i0eC3b2OMe5cpOD3Sh7nNAZAvEUN4CmRgJyQQ5ZVyolxNgjRHszQHfD1jnAqIvcgByQG/mlXYigXm5gpdSWOyo3gSJIbwpDXdMTINyilzQq0wOJ3SUXvtJH6nCaGWwVoPJ4XOISA1IDAZAupvBk9sOxsGeLZN87Xla86WG16F5aF7UwDLJwb4JfUZdI60+VbOVEfIg+EQ6IJXKjceCtixodDuAmItC97J98omQ5YcHYy7j0DFyaymPx5KMkHVgBCCKp2kP0Q3DtNypZ6Cgoq6hmpwtTKpchU/fahXM0fR++7vOBU6p5ofezYynf6iHBzBQcQ4/7GX41wSNTIEFeMSj57RNOZzX8FM8fl6HHmOJyaXrhhC0K6u5wdw87Pm/urV3XTxkwdJi/bzO1B6JuWlayix2oOh5970VINuTX2BeWu5FDw/Ggeba+BznSRfecNzI2DSXjvBbgTWYfKFtyi6uT+drB+65OwTe7oddIJyRB6Iq4QkFeoiKHEC57Q/AHWYv1y0UtTbc/URKi+EAXOIgJ3A4SIPkA9GdE7E2oVK/LjnnEL6uEfhMAMAPKmx+J6OFnQY8mtNzs4qH0YOhDggreIAYQEHfugIsIZHzuocizAm6ljupyQyNTGqKB5tmaiUMTXHdI7CZp9Aw0ee2Nz1wHtnWxQ166HoPdDT1h1J7pkD2GBnQPxj5hj+yCQEN4I3IqmfwM9nw0fx7rZM20axpw5kvyHvFN6ZpKaZOhxvk7fDK13NxIfgT0ggI+NaJ/BAaHdznd2GYVFBX4RTQ36c+c7/Whtlf5bqWnyUhkQ5YD1F202LvByZCMZfn0Twsn8AI/xhd/g70WMtPVFD44eDv5jIE/GPLTCSJgbdjgyYZdEocig2mp28eBSnQYfcdMO7b7eQ4ertSyQ70W6SES8kggYYAiDQh3RtNYA1T9e4lTnEAX5pk0Jc6O40PMQneslgRUO5Sjx7Tox4KLGg0y+1Q93BOTjFrGHOM6RD1gjrjJB7pW4CGUevjHjlthjH9JjHHmVPN84FZ+zlSns6eSpV9SCveff3vwlV/I8gauz9btIqo/eh4tQVkxN5/ZcGsPJvBNlM6d3cPmCnoTkmjZKc07GIkuLTUx/0IdwuiDVRw4AxTucoEz0wrUurd4ZBb3a+5K9oscOFfqKjfdh4rpW7uCBJ3jNkvYtOOeNiFTPJCFW9wzSnIQnqp2waq8DQgH9Mgq/BFTN6fztttc2KNaLD/CPMDZv70hcXl6n/I5hD65KPsH3eLhLRqB2/mx07mMdC0W7clad3l0Iqjaaf/cNvVxZC/LiTJlpB8VGSA3Rc5B3oSBQn0iSo145yjPVPL6Cg6PgxHE+WY5CiWSlhAiykCFUVkmG3d88qgo0okcnWkNPolq7xQVm7+ZcSKI9yAJvC6sXQTIBEYnV3fqSAKHNPb5ei504msnDMvQod2g9iE2sDv7Ez29SlRWXepSYjt8XTjzB1UIk8kBoP53C0xS4yCu4RogLzo0lRgUHmj5aGjfOx24nnmAeJUFddJQYOrWlP71ywn1f8+j5vHxqD1sfcjUfPNTyN52eYTOSAn4KaTeYXK9gq/C2glNMkyISUBtLjRpl03uUFUZ1O3x3TISI/KAluFAosFVG6ULRtF/m6puv8uMCuFDx5pBseAQRuwX0agqDo9iBkEaICiHW9yfB9yf8VIHjQMG9B4MqfxHJuK6kERHGh+/7yixiGJcWzEZkCaoD2jyCOOBmcqe/qG116Ku00MG79CaYMAe6D0Vmj9+RgBQQ0srzwo3ORMlEAlIEZPPH+6iImINP6+Upuy+rvgeD6+L7bh5NziPfXrmHkXPy+QIC81pHqamJIUbgVbbCecBrSFKRMVEBIoSaTnwoIgjMh40h7MP3Y4V6P8G8IAV5kgDbAk53Pn0lhMLiE7YqB1yAsihHeCeU71mJu80CIdf6EoRVf3iKjDG5Q6oTQQ0aCIOgMDi1CALFjhfBHKkBwjAx9hp5h+Izuw6y4CD+1DwlWqfUCfXo1/mwlQulKT7u1kudvuAAXzZueVIFofUmv5RuVAMCCYhRVX3FOLmKT4hBaHvwrBl3XQc9QvRcq+hwnyZUL73VSVybmb6eMgIgc6MiKx7J4I6RlMQFgseMuSUm03Et0Ank07ybJgzEAS/TNuIUQLV/Qqr8dh0e2ML15D6YUt3zInjpI2kPHUcwzUp+XhH1fUVNKXw8fpqvb+k2EHfT0hQBZJkYN5x9b6abfbm5L6zY9sS39GX5vqMOHYqHhobG4xjVb8/su+87J5/DcuH2J9XWszQ3rOx43ZOvBLWxHlQu+svaZm7Zjkwy5lNDM7vE+NFcYzO4Xym72q7WdmKfcvvbrhnWHY43Me4clmZs3kjtAxLeqdM2M7ZMZO+Rs83yGY7XfXlevT3vI40443JiKvd3vnrvW2q2t7T2SL+CwtAAAZgQgDZDluTFdtfL7bl1094wcrXWbZT6QtUqOmtkbVLqTISr3FHBkGyg9WfNpB1ivfQ8tJcxUh7YlDWqtmtUzQ0xLamky2lDailPTVWzZWyWNFtRQfDRqmTZrIqszNmTY2zBqtLWtralmtplNrVqQzLFtrAoXtgobFaZTYCF4kj7GlScClHShG1KeuJXKEiunKRXCLVoINokMaSimxmG0pVtTZs2m1rSbDMOtKVhxoNqgL3auiaSRtCDNVULYql7NIuaE9mbSqtpK2LaRHjWJSNm0qsrbGtm1qbJq0xqzaZsa2sbTWs21WzMmM0ZsZMmTWNjTZrElbLMaMbNprLZrG0zbNbMmzbWGZaGltajWzWrZtQq1atpmNhq0aZja1bLZsw2zZsZrFlqZtUorymirZNqoHg0rgyLaUV66E5JK1FtTatqTahQd/TgqbVTatq0D5ZJxYqnJTJ8zSulMw2htLZDWja2Gw2qqrRqNNtFZqM2yZkbCqs1VXXIU41TaU2K2qik9tF31S85qouaqjjPNqp74HRkj5tHzff5K6QU0j3iI6wAN4C86m1kLYKcpBQ76r4WqF01DpoeDKn8eeWo+dBWUeeJyqZVVeTOYEPoU+OI98IOZFsUtuivTJPPCAqbn/GBj/KGjytw3KURHndKfWKbhkXvT1lzKkU65iFYg9tKaQkVMxFxCoriL3ifbD+MgqI6QIQUM1BVntEz2z+Yv8eOZ+04NblssDjRonm9GliXz8VoGPr2z2o5nPyfZsz7Ie6fB2rnxlcYy+fYcehjnGuHVSd7efdHDyend+b7GOeOtt/JE1SRN3ZopeBJsQPdKF4ZwB1sbbOG1Uw4zv9V5X19332xMHzn4938ja0W8Dj+txmCPhZzYNNOduzj74bVhSNDwwDbrn6Y4+e6fAyYdHZ5m6nd+qfOcKUprHTInWnHeB8gZwVL9yzUy2v8vm+elL+3TLiH8VtxxqaZ4H08zK8jjLVh5zYO/vu9kB3x7VSXisVyV1brail2Yh0zsFqp2a7NZqG0ubpo6NdIQ6wQVfUvdGmQADEC0sEUAHrIl20XRpVV28KtYrSF5aKroL4auZRsG0m0Lakm1VbSmaraUeLW0ZpG0trtDUgqQEQXKJBdsDPT1BZZJQzxIq3sQU/nBd9197J/GFvoG9/63ai/FJ7TkgPFFBCF3G8ABakCYNInDrnKtl3SfI32TTryJAWeQBokE+kT72blkJ9wW879NG7+pgMLX07xTOlUrT8+x7Gp+U0Qvw74ObQHtHrELEHhIB6+lcmqdrLnNWYH3AMemTYuDtG985oKrZOy38+XhDmKaLNmfhBBRtq/Wiw9nVCgQ46V5IPtEfMHV8oUOmKoerXrBSCKyH9qL6gWn0hwM9TIQAdAUF+AARpDnShfyAnugqMA6A5pHiGCPmJ5Pkp9hKPVj/1VHQ2QKo2QKN+1lAHolr9oHroUh8fk14Qng1UU/nCAD+xL/Q3ouc0nKQ8yeNHQLlEHwz7UT6LEUArpoVweD3shSfZQeABdHH3aX/HGDBCsywF6X3UAP0U0Mf0qccTVNG4K+Im6gJocaCo7AvnVB8XQzXSZk6VbVilmcg5VFRs1yhPtCIeHtRRwEAX0jiRyEUWaBBzRnE0gVDaiXJYiwJk/AU26Bd3SaHVSjljQRhNnJ99rDMxWOHVGr8UIGlgKBUjB98ChOGIaiyIbcpWBh7sPQRBFbwcgCjPvg++zWp6SImT+16wqlM4sCmmJBRd1IFrBOty94FPl8poL6hqdKHf9SVUcH/ux+u6Aq7LH9sE+e/9Wwn/4NSpJABVvD9C/QqCahQddP2JMuKJI2Cb2TibgzJ7OdCX5cpI1GXST0BEzWyg4ErqKoHhgqA71XKQ6whKiOsgKzaSxGEsOGW5WNMkBl0HEaCRWSCcqHFf7AjNxQAuYA9NYVIyIb0d0QNuM2zMsDUkLo3hf+JLDtcGV4+cAQ7/tQQa2AU/alfaecPys9LNkjQYKq6MsY4QFTAJmbXNpcfMx7XlmL3GAQR9IRDH7on0VFtgacKcl0vcWRKilVSQiq/0Hh/WpcyRTrOzNnMz9ogo0f138uD8DUxqfhz7bzVy9v2h1H5bwPJHxcoAChiJ9zU8mNPL7F5fuff9l/A+HlPqYPPPawvFkeIVhWfu6fyAKjH+jtkn8ih9645MDIHHfxxyPV8ftfv309E9GzPP56kXT6FQ/qNEUMZndJGa55CTgWqG/a0bdYYByWfJh1hrVlkAAtveAbwdApVWZ3zKscJ64B6NzumWI6wZhrbAwr9NbKbQNLiYun9bN6GzM789lWfvdEtpYE4TYB3wpNQbWUjQwOkiwsdE7JMmqOMkISE+WfB1D8b/aFw4DtkPziHH4B5Czs3WY2Nkg48llDhWZOU94KyULombVO1MYJoYAr+bFKeN2x8PcL4UiuhKPnNPwRcoxRYsZYZ5aC9L2cs0kxcYUgfGyToIwjVVH/xaHv9A0DMjEVeIAAlChfgOTWIcJ8T/VAMvvdZxC01PamBTj5FKTMv5nIpKHd21fs8tXCdEpZgOKUuykooqRnvHlKGiHZ6pYTkCQYL+a4XIYRi4Hxh0M9pWzO0Eo7IwhbCiA6CFdhCpNh+lJYbtnere4tgWs7NEF2BvmCjuEAEEuhIZGJ1pY3t8VUeXdSIxrtKlBVn8Nhfoz14idCNrwtAbWUyFgqXoYpoF8MEgOVy6GS5w0tDBhBvHHcVogkcDwRO5zSILkVRqiQwIiJ1vAFVk59L7bTz7UAFwatD71yz1sSP7INmhFBbWObEnrBwcMiUO/dGB6Kb7b9kQ5A6hQTO5bqwm8kgzPegyJVgnvyQA+86Poge2tGR+vyGmiIo7riwt7AALa/ehY5SOCmKUwmyLA4TkfXEWYhazlAoLSdf+edZuIAhOogeEYIkIIDSfExqx+PyAc/zBqCvHwgUclARI4PTgleA5WUN356Nz/J1Kza5i3ksiS74Uge2QScBEeanCecR0LwBSPqi/iCBvwQVCGCP6vK69MgqI0ny13YQBTChaTjl7Do8uyobZ6MJYGXTAJwiws78dReWwpaQaO3rxPpl+3R5m7iiQxlGL35UO0rdiwQC6ARwHbtgODeNBSXZTOZ+xJkQl3BbgrA8EK3M74leF/gf8wDB1HB4TQJIAMYZe7UqqOGwzzRnX2eNjzZQTHSKIsMj7O6zmiAt5xs1EPasIApTyOn91lMZEiu0uNoB3UgKoO7uUqYspUtOesJqYB5maRIFwmULmugp6+9zmomkAFWnEH1O4xFTovN1E/MATuQRAhBAD7QEFNGZRUfKHhvvzzYURFnLCn9uoJc5Mb/wan8uytMDQzlBkywbGOJjlOh/UlNyPZqPnu8fW55heNj1pJ5TToH21GcVQeT+4WMhy5wOH0RH8LkP/Ex/1SckTeAkPjkvK2og4or03D68QzlQniptHnxZdm6I/GHrR4i8Gd3Bw1VkQ9OJdMqJyjViRpwVIApnYKrF2dElJimj9yM5EUCqjK8vEZd7J7GmQNkKUlHHmttwUYBVR+3qY2PASyKv4wA8Qf98XSCL/egih8QX2AmgoC9+uO8OIUQwSihU9w6PQWibLNkMRFSVs/ohkKLO8XU0hVyeEEkaMFs3t74JxqojIV5omAWn8IFF8V0UWW0utFFGRp69f+ghHiChRthmVsmDtZLC4PifJnNAShirTswDoBAqg5TI5Tl3mNlP2dnNf1B91ewqRaeUWjb/6f25LA2efk3ziijlPGhn5xUU73NvwpAABYzci1AKjf39yJ6B7Df6pREb/gNLsTjM7vdL0VdD8GvdR3aazUJDm1gvC7w722RfWcMRnCJpDuFIfiFQ0SmlVFchRdIM41WBKNOCQ4FLd+YpD30Aqj25iV7EVfESGRpTEoiX8AvpL+ZkEVqcvLkLIQlIgBir3sw3GBNizYcFBgPwksU6aJTFaxF4QxEA7kVxuEwTnWdhgJJGabOYoCIjhgIFjig8BZHT5OiM8SCqQ5DjNW+VNkgPD87RJkrbLLwo0E9zlT8GGSU2TxJKJSaBrgbeGN19XIWgALvwFAf9uABv/G9q730mEd74tloIqPeAFdji5qs5br1P3HXyccNN4AgSjEI4QTLR+3ultzhP5l7O+o44ImYcIciesVESz9Kdx+LWWIVjSo8Cm8gEUZlMdPOTdcFQ6q3qQkWIFUclIxxnAwfyhR228QnlEkMRlBKWw4H9x20iTmQkRSe6qMAr25TZBMAyQkyxJfLReMOf++a+4QVd7wNFmJFKYrY8shGimBYlOuWc9OsFr2qJeb7dyfm2EmGkrg9DDxPY1LMr0znWMcLfPcz1W5lDD4voyTyxPjjx+2RAuSAOGBb3iVmBUZzNdRxpUURn2mXaH/ZkWmzP3lKCDd68j+lSqIxzUFfQNH4vOeAO1Sz2haFJg/plpDBLcGOKihqEAX8XaU+aUTkxZEfmGBgIQAIKKkLCD9EhzkoqMecyOGNmfCrPqdP/mA4HsAG4CyEO97mSfb2Sr76BImic8o+H3vp3VOdnuC+CwhCAEsf1r4TGJeFFMtpSyDztmXzgat6g4Y4qgqUikd/sD4+TyOhvx09AUBZ6H8aXIfLcAzlGbvT1V2i/421sWxW0tk2Gza2Ve3w4Y4FJ3Omc3m3TAmje1XhWkgwNbEDhnBZs1poRUXisJ1hYaE5Vt95ZRCgAo2bM0vIVCSChjGCqg/4k0GBDJzKP0tGPBDeFlf8Y9/WICNc+KNiAAWfz6+9XiAzXmOjQFnNs3pMhfVhAqw5NbseEB7p9z4Sz5JIcWJNVRfXhKZpXVaY04PWz4sSEn15De+knPlmt2WgXfrXgY0O3zsHZMx3zHPoIA9rbwh1ePkIqLMm5+/HcZ+L7zz6jy8wMO99gSp/RiTIUzFZyiopN1xp4ULi3dCtOYWA5CMiQ6FQxno2F/O4zCkxUHhJdLiK2cTATm+RoetAFYGz/SFkOjxzTwVVGgzhmY5pEgblJIBLJSvk0pGIzERNfUqKPO/RLMZEnPN4A1exJLFRTMhBUDnAkEU6VUriwgDVFIRIeXeyfsAVYrOVZmLD+h8HtGrXnOHrxlsAsxhtRhjToMgB9UDNDeEwi4GCAI9OrbumsQBfAlZ0JiwVEYkm/6BzqSMNEvYFQjsNm6xBUfBRFBfoLjg7pQpHgQQWWMn3jePLv7ihehBJk5ESiDh3WShuOjcOM8auf7Mayj4YfQnPck/1g980Il7kD9BrYCXP12lpNIhyTfey5DdQ+04vwOQfJznxFoUFXl9XAMvqq8fdYkPckoFOnv8UpnM40A9JBtI6PytGxphckyY/CrFJyOlDfE0hgxlyzH0OaGoNsCS9bYhjpQqE1pYhchehghIxQ40PAhpZk7UOLBCy9DrL0Kx+WQ1XIaUuTHRmh20Oq3N8QuJYCRqQgoTLIRcUwK6hPVP7LLBVyv87MS14pAnIhu1ocxM0JWTL6xxRAG2UYjBZ5oCV14i2L0Elay/LSzEfNviJ+76aX/1UOJ9Z3Bec76gM0igi2D8b+QIc+6XN0nJVbCjxeY62Qzh9Z9ku/XNLvLyZcdt9UxQWQM89+J3MT84ih/CCopq/hmp9jsFlu3Q+fF7Ip3NcX5wneCopvLHQ7J+yX/LhKM+f8J1uF+px0qCZf/ri8J7jQi/3zOenL+ke+yqoxBIRShFoWWQfj2ijT5BG+/0zq4XViM9SxriurQHkxsrdPEz5FVRwr1LsRCaiDYUy0yaM2vUWUffdKc5DK7xA8xfFQvZRSPSY8R2TwcB+Dj2nEZqzRaWBHwGK4dwkNgec9Jwk3UJSY/VA9vfMpGew9Z5juGwnzHCnZnq+4l01GGd10+EQ3NUAHCAH8DmPnOgodimB4R5ehMZvNE18ppKX1kxZkMREYpqkySpcZcKCg8ELSD9SFh8DvdksvEg047jUZZj4lhefUl7hhLEcc1J+DsG3vlQm0jMRhY6ZC6MkYlBU7uf30XU+g25kAF3PyVzwN2F+qf62neKPAW6FOA/xrPQdxlFFHTqMJ6SosP1/tGQ28rleHMnTOpcdsvKTcNWAwSDuGh7Jxpp73lSj3Gyl1Gr73R5nJA58Zw0BF5je4jQmY/ZUXcPvtwYTibucX5ThrtcFI4dgSJ64DgQxRTIQ50/ngS0j+j7pIVlzhSdO4VhWk+QjvIvDCKjTKWkDlGGn/xLLy4RFg9Yi/x5lIoB/eyZQwn2wn/oGL8mLdJzfilyHS+Vhx7+40U98zkWvBs+N2veKv4RUFOOmS3Fd9cUlzCiK/uGeW8hJttzyCKDirqivx4sP/Txo0/4+5f5D/FtH8NHvT8geg9efCHoqE+Z7j7JE5uU9RM1NCVBVRRBRU2QiSHAm0ieoMH0eGJypiKKc4u9Cv+dmncG8Yq8MQfZP4KALzj1WJk9OlPAPlNfTdsx7s0vJeZJGZNJgiSMeWn+LUp3Eo0JhSg80JbeiUBQUXG/6ven3ybEeBidx/7EGlJDzRt48p+s+Mm2PIO3y6Abw7r/kKbH6axmtfp79vz1owOkM7CoDqIAtiRDQnXt/Elv9r/P51PM0CpZhyfFLrH/oQUwMqTQOzIBldA1JGsIAnhYz/MYceVPsfsNP3u7D2jT7Q5svadMSZT7ZS11WpObph0gWmP79uU556P12zoJjCv/i4ycGcGMvsODNWcP5wHq9xyv1Z2Hv3MY0HQLgQV6i9Q5xWeryBFvmEzaCx4CliRRHrMECiDK2nafphOwIAuqfoMUgM0CkgI2wEEH8OKDkOhRCXlTaK9HusARHsxD9Am0kMm0r5qGg0JImhqQq8ZDm4NUtTeHshPFfOUerPsvrlLY31rGYP9k7P7vPpXQDMlY12d6gj1SExjltoCYqIs/A5Za6v+e+LUT00wzlZg/HpvdpSNCqozkf/XbeRP+kwXCEwfwK+PyaoBpJFv8unflv/ODpbP9rKLCiXIaP77ssk4luRvc3QZS1CZ+4uLkHm0s+Jx+twSO627XfbXG3tyIA1yUoQjaMwITxTMhnSA+8ipCgwUt60J2lc5NXeh/EO6hUXqCrVk+rnbdlUmSF5YhTIjT9Fegn7Lq0ohRDmno7fyZIY0JewzdllqV/YnSe40WADYxQn0OKdC5DWfBmpA0e8bzOKEpO9N3kgqVIe9SPG7xAuQVHV7nDqfRifsEHkG/3s0M09H6sxz3ObMtQ685muUqeplYGwK+CHOLFqHAw9KebsFvLZanx01PJiHl+/qvEtdXhWrg/S/6J23hzNh63XAOwIKuDZ7tpsKHSTYiI5hcSJnA0ECBALKdMhMXGrErmbvYGUC7pAdDLgPwNJiOO58bD0E//R91eaqnMGvBr/GzGe7E/RNerrXKqj9fcvRLXIbVrHdUAWSukeink5IHNHKYOGgZd08A1gYGY72QEkHf3jTNqQ1EUH2IL6IG0DuGU/V8ah3IfPhOxuhXLi6H0GRpKqD+jd1R6NggC6FgY5ThK+BMPNUbDAZ6rvWP56Q59Ey+MdSRBhqvxB3C6Z4bjXPs6QyTbl4JNmJfaOrrDiJBPydUekl38JvIZepT1etR9cP1gf8A9J3ufr3fdukqhGus8oOwIw5XkyywzyEZwyc/CUZN3uXdBRFb7OzTTJvcN/5opGkFOIFFctWcGzN4JVjEVH4IWbyX78oWmgrkijj0Vfkz5LKZoas80mKRrG0JdPcukpLxSpyRD083u6suAQmT5NzHaCS0fywxT44bDGys5kaZ8dLbRgxGX1keX4GE8T+trh/QpYcD7DKXvhTIG/vlCAq9AmxbIOMz3KCrKx2UT8gsn9jFh1wWBjv4HC8xQyLAtLGRLaYki6iCI8IFC7F6rsLqDfLDprBOy/6PPX+NDc6IeMmW/FcJlckxkOvrgdc+ZQGcNB3zysSFPn0yxupsfha5XrAkvh2ttGdo0TvsLzWQJUnzjc6iR/BEk/gmanquNxw7+bow1G3n5nXpw36RliPbxxBRWhL6ZSu8tr3PPLkbjQZ6XYA5PbozW/FmdEu2MR2ADAVBLhIBgYWwV58AbbpyFj/c3/sCUDMYhgnKvbhT7QRygTI8tgA4CQT8uAKo4RnLwIVZTl/G02apDHOYeK2iEGiInTuzuYtRwMqFG+Hwl8mIAezmcP4mLKzvc+fz/mK/Gd2kacOVJfJ3Yi2HZm4bBRF11+bMfHyeDaeGHzmxQ9XgiOL5+z/b5kdRFYfl0EmD/adUrOWwPI+nFBOfzRlNDFd72CbhA4Gs/XOlLTKm88l5pBBLEgooOdyjH+F5kvJIc4PhQZpdR23mCV3ppi7CE0SUGGLDmIyNLmiIxk/mtkqwEWSZLgLje1Fc5JU2FJIUYcLCw6QfBZ+D2f+PZhJ+4MP51L8Hi9Hzh4XlRWRl5PumBgoUVHbzUBuOcIiB5DnJQUFwiK0BEKaKCQxpaOc5ZlKZP2bCiMrjTUdMSev4iaik9GQCgJuCJzgdsExezubacn4nTEA8imH04PRJTokQOls05Isem00euBp5MULe1UKkuBCQAa/hwSzbuLj9HJ0XXGP3/z4bn09NyH+v48Lz+Hev7krIljehTMRy6zFjAGrl3TGmvXYVADR1DAfeSJAtuo45fw1dScTMh+LqvB8bsNgA4pssiAxgDFwADykBFnAGems5y34BXtAGd1+V4y6zklf1aEByRS75bwBoAHbrVIie7x+zH3sWCO7v/y2XuzC4xk8BuiKjorvN7EGuzw/XPgYW2kZnwADFpm/G7JhAGjj1l2Kt7cNPiJDvCTAtHR74Y7ArDGFYZsOEuv1HSMfswRatBfl/ZUbr5icd3L48uR05rb6L5yMhAIQDJEQUOscqY3flLp+3/jZo6Pm8vt56qBwQVTJAVVybqP93byBpmDAzJOEyHrJwm0muXWQT5Ggk3cpoCOOK7AECUo3eud8HebaCWui/qFAcZhvwVRlZWe7fsw8wMfTU8uUMRDCTnbP2V4g3Awxjh+pfFZPPetHt+3mmD0Ghz4tZsC260n7Jmn/r/2j47jk/xpw+M5ff49nB9/cUfo5xmcML00wGzKR22RJekxqhpPcCEpPKPOX5lKONmGhy0HzEkKbEd83enj1hYBHKFiRm7AFSVgiKGWCB5rySFZB9ebLDaSvZURPQT5Bv45mjxmcrvFBsx1d/qH8MyGlqrgRFRxFxyJjsymVO2X98rM5gOUbfqWjNKSG7h4etZRa3bN561L4BZGSXLYXSu6I1sYU7040ttn7Pz89BVFv0Rxau/RdfxaWeYrqYZvlEl0efQRGUTpiWTADvoXRy2nYE3LzMQugc+Gcd0hgMGoOJCMzv5E5AmEjpIMBMEUcNEIITgCj1xM5WhcPFNcwgEAhBn7aQme6J4hI4xKbhLo2pPyzVwQThe3EEt7ca0PiJKJhIFI95KmeSk8L0vcJ9BJxNAnNQ+Nj2BIHSQ54mBwcB5hL9PxEsEi5bzjcP8Gj6BNrN025sM+ZIHyolOSfDUcopJXk1iREMuK4jZAStQVc5TJ9YF0nPBENyAIhrqGNzAFHv0KfZBQf4BH6K9YSMk/loSjij/PBtNolXoqHSVCR5qltA5mkZC8qYIh+F6AzVQiyMiecFOYYhmYjIpJmId5a+bJIloCyI5jRAkTWWgBabRKjtJVKYgJUlqlVI1G0Nr0svQNQEkhAqFEEkCqqRkLwCQf8Ec4heBeAP2IdPlv5Q3MX5DXHcxI3+S41DBAxBYT34bo7+xvervVVGIz9M9F/c9Yc7GU6HY4tJpyNfqBLZTNo0pW1HpJHVUVxbI39FhSSJUUH96RIfWdntu+WUp/h7cH25c2G1xenQ1bkCfxGxs9f32Hfq8J7Lpfgbd12mt7n57n4PzvHFz/38CzX89PvOm78a/bkfbvZfF1uj0WS1VAa4+b9zbyM3TuKauW9lMDgWDyJI8lJdsKgghIIc48skiwHaN5T5TB3lDwxCfai8yS4f2fq2mZsCJ/75eS0y/fVQXodNIAD/3z3Ls+ubcUsij8x5I/cUET/SaLMUn/Gqw+x8z6GSlwmQIz4Y8HC/4jn9u7lP6S/zqmLyHlOm4k/J6vIe56h5f0ncNu5xp30+TpN3/xzzMeJMggMYwRUTspv6x8QMg9BO8m318FHOh4zCUoxoQ/SfaX7sdpfHfdap+livjpQuNeRSPWCoFkAEyEETw3sp0DtJE2mitrc6xxCoDJtSAyKdVLR6ySj3f8YX+puH1nHUNz7S7OeYoGctgM4yjQS1jmHwzDyAcwxDAZhhOOInTANQ/usZFjkwDlGsZhlHWPrNc42jaNw3DYMyeUjGnEMgdxNddMw738Ixiyj/EuGMDwGVjKV9hgH1fpP6nNoNIanJHQmePmEunE5aJSAmeyfH+nbLlDOnBx5Mhc36fo11ilyKhIiKRGECEIGAt1ZE7aUGk5t/J3gUxRkDROaBQdBO40ojv+85TbU2+4nnzcegw8yVXTYtxcL4pMLuVl6Dl++ZDjzqJ3Bs02mxMrC+bUDlMLaVmlNg22LaprVWZMtDaFumhUJmpjpUo7lLGtDU8TgqggPTHWpGj8To0L0jwjtBTtBQ4APuJRvBTSH0IE4TVKphegXIFiDaGYRFwSA4VB8QqZWKBr2Lt9qckN+VzgYwelrEAE2Qgob5eWa9sWPXe/8lQC5hPfyPvc9ub14QNjXJL7ODlEaGKUNsx3sj1S9ixRcerinEBc30kkoAGRBbEJHRgD7EORIIqG5rEJkVy8pYKGqWCcjF1ifhmjEBB4iDsSx4Xee1VR5NYmt9771r4bgSaQ7j2d+uLZxKaShGhdeIv6Cc+sBokI5hIjYiqg4IuwbGBU8wRDWDieCL6jmAvmBy6ZvEutDqFJTwrCvzqGUrRR1gRNAoYlq06aodTTvbnz88nu+fLw5ZnwwO8uq5t4EsNFBV2oU2ioK3615yOd/E5YmMQzOSaGHQ8DbGLhhE4nOQIqfCCpRMMMJQThNaAeROQ6KxSr0hj0VoTwmB6RKBxDP5FAByIguVkKepucWXnw0K7bbg431/YhTlDdCu6WB0U7IqVICdRrAx8p+GHUArByXDaCVPIhIyCT7QJOa0r3R3CCDEgKYEiJrN4kCLRF7ADlCltPiJ1g7IHaCUgBW26ddzdCJvFTdievirQ0C1AhX0rQI+QVuwEDLIKZuf6+F1DmB0vwoXNUoNYfYqeEP0C3VG5QPapvDCdDfBYOjKgUGScWF1DShe0G84KokW32ilGxjE3Kcfpw85KLx2b8a8e1xaXNDmxep0QRz76NTaZbWNjgKFwBR1F6xDVNbnk5Oz42+50mhBNMyvp14bbwDKtVKvznOVVD7n3+OT5dwHV+QQ+xuoJUGuvnMDPhwDAB02ih55k7ebNEMonlcVLGZxaocdDlbiiBwc8Gnsn4G5h+fHJR5vFVIPL8bg/3In6ftpq1yQscVOSlOTUPKvmCOZlZCVBypggncYAInERUw6Xe9ZzeBUVgaBryhybGdyxp8KrxxR7zSnEQnGxrwCpzFRtDvPUS3W1rxPDA2mMFF4gq4gnoAYHQ5o6GBsWv7jd0MwGwYPKG5CkF9RBQMQiIh0TG2nzjmDT987sc12q+IOxWwgnJBUU5QyeT0w4dEx20MuKe4hcFy2kOwz3Q9f2fmupJ6YJDhFJABU4iu7ADcg8kfoZj4hhTwQBbgUT5+Dt1K964cnfu+WqVGue++fJVpSFzPz6WHX3NsUfw0XOaBHWGUAUHsuUNvCn6LcgYfZ4aO68WtY1G23t/jlkH7w+GTTA2Pr8EiO8kRXeIqJGIa7TYQfL0VAk2gDvAVHeIK8RUsRLRHliKA87FNGJ0qdRIID8ZpHqMEB7kAcoQRT4AGCAfjTc1D8a08zGyIjlFQAkBJL9HD49WuMe3M/RlSwT8jy3D7EfnhUeJfmfx9xufIPgPBmmAkAQXYuBer2VQXW51VE4iGcU+wVfIKJ3AS0QAvEpBBOBgXHnZCuxBDKDx18AGp8yHEO/unV3E2ghTW8r9J3yPvO4uR9cvlUwuJkgfOdC++CBS0wOULW7oJvi2vQsLrAJFRZqr1ajytVs578V9lkPXB4MQsYCoctz5SP07kEAC+vrgttGWN4M+nz+FZ8LgvqODHvq5f5y+Ctj9gwQc65YE8Pfny7Diwc6Fw9m1g6E2yOshN8Xqp0AMprNhwsXQEXAMgrqPSblQOTEAf1bFvB4K+ah4TAxFtrU40vnKjxUxAuHAlozA8mM0Hu5QLnY5vljjcM7xyiNilC26qI3KLXMPA3b7aWbapB5YDQmo0Pwoda3DSjBHeCj7hFO0E+Ii8pBkBbpFe5mctEcs6KaBpwSqeCmBBBU2gJ9PHEeDCQ/MlvpUOQtFichG+/hI7qKX6zgLHoml0OfQ+ntgwHJKDLdWrXphvUPJCDnwbJ78+Re1P2LHb58N9CMEMWayWH6kkatY5OvoimD2NniwW+NTpzgPCZNFo8VRzSj0YoHMQOzDJA1qnMBTKbEZCt7mcStvkSgb/DWAfcuUCsAkRMPhD5qOFfItG1H06Q0N8YAOaa49SUkEC3BRLASFUJCWOwB/V8xpj27Dw+3OTqjUiHA/FIbYXUh4gPoIrrBQB6gTDD3YGvwaHAGo1U3DXBsOUfxF3q42bJlCgpdM2RK9MFNCypAMRo8kH2gG4sEwD2JJQHyKjeCgGQRctNhoV+Zmp9LTIf3XwNMEzOtiu10KG/XBj5c3HKnDEKRNEJQwTYqWNPA1LeDLDumFTg0+kAyY/IdXzlfx1epw3kiQjzFkmuXQSUdyB9EipbvIYqtI0SRq4cQ9QXWHvLRkHt8FyDRimpd59ob602k2orUiY+PZ06UTuVrGskN+/U0gSFDqdynnWE9lKYVh6dK9kFd5c26DmBSD0TiTByIYupgANTqHlHGVN52ZlHTfPw0oP6Dg8gDKqXGmmHBXUj6UAPIgOvrQEAezoo9d40zQsSp6eVC2oA+BbEYF7kS8kM/vtfyTmIJvGQVKhrVLmAWIjaHsab9/W6KZcp3GeTOLDN0Ycb8sxIyf5FRz3Ww2tZi+/fCfdNj0xoA9zA6hfBQdnktsJgwj04NwByHMnR5iio4yB7pucoWL4kASnRnwPpZSkAyDJDFNYAlj5YoBc1AHYOEvBQ3Xo3bwp76SzJXy0D01FxksyLIawFawRTkOKYc0yLlPCVO5QwHUtCgcSHDAryKIk+PsL4v8Hn2rA+46AtLD4DktenBKhdoQT8EDEOkzD9gFjkEHOIAh2QRTa2q4/TG93oiKA9hF7GxcLVBUKYCik1qk7dLXnQMCPd8jcUBfAqQF3IBc0LhUg4jlTM2AtWic7SbWuG1NeyoZhcLXEAXYS+OI2bBE1yzgmPuxXgsFAxVDQYoMirCIomMRc/ZJQRQ3HrBrxqUCULDUPOyh3qX41cLO4a4ZK8IZBqaFra3C79G6ljwSV0dCwPv6jwxM5tAQBkF5+Ue9068KG6x3S9sV458y/3Z7KnVgqQfQI6kD05wPcKbkNF80M/wapcMOoa5CcDVJQ+ambBRtEBU3iu8o7viX2obUNCImJOzEt1BLp2YaJxDYo3+lw1LHY+7NzfIKDU6LGIs1u065HODRrldTNEuM1GKmAcUp8oFMH29UFoEgSHtEvKqhXeG8qCoeiLvA3gMbUNhGKGHUDfgab9Zle9Swd5uGFlcyHuvRsOCZnFCfdxAzYm6cYG6gAeYKgyKuC3Tq4NLvq1HbVKXX3Ke++XzIduHXeiOMAeou7FEPsXeB4l6JqVKBWABshH6xBDedE7iItZiQSHFEpWtdLd0xr8yHOwmfbm/PhbUfQxdRgvBSimrC5AQCsRUvFATogdQH8b75GCQynDiZBX3KJTi3HFiR9yMBRMu6UIUiP6ICJ6QC37fSm+Zp+1++fTExx6PvJ5pjS/gSZQzYjXgpTYY80/Gz1NQA5gCuixUCDi+UnGpwneHzB9LUYwdsQAlyCfYXPnRmqnyDYyoPzcb1H48vqVb6dVU0hhANovcBbxDSKusUcIojxASkQKQR+QAO4dU4NyqFLdsfkwYHlecDCCAL5iOWV0cRiqcPMT7BKwAVwignUQ+T8MfIDwhiH22wiqbRRxi6R7vQU5Oig9hcaD2k12cqeb0bpo0RqYC4GZOjBTQiI+wkjJCQhAkkWMhtmZmttmZbTwK0q+KxHCIqeAkAEN+8umP58sVCzya6vIJ9rpezt6lbcY2RTCCcEUBSsVA4iHOGVt08iNtmZ0DOPbQzHnpdYBsUKCCjaaWC3WlE5PHiuefHwsclKmxYNqREy123WmuPwE11FBW8A0uGmL0sIoCNZSOsAzGXEFH7GWfccWnz7Pz6M0xLv2c5ZvkXShkN87G/uQ4cmlFzlyberSe677b6VP0czvM4rwxOw+KB3CPKRBOYAqG8EGx0ad4mBL8KAHEBCQUUKiRaydUpgccNsTWo+2pDjXS7dD3yqCZDAVB1iOhPxwfHChukiHMPkB5gqqaQPYIcBfipQWbTsaJ7qoNRQV7t3TA9ix6MmUyqicxFeHGGkqIQipkEhpnDxK+OZawaz4PPMO2wYailHFCh8EAFTtAaInpGqXNecx6t3O4mHOzWz0i6pBfLY5FE3+91/ThhTcaJ10UMxFRw203TLDNiMsPti49hNCxExj1V6FzDiICjyAPieE93DURyFEXQymWTUgAXYqIOucIUV2OE7D8WNTH0zdbooHZvREG0BNiIIdVM0sepX2x8NBxNhpWxec6BQ7iZ9toyQmViZP0oAJ8iCKcXIQBM+aM1d6pr9YLgZeDCKqD1FqROCJgYmWnRPFlnsbD1+Cz76v0fCU7XxcOvp68jemfY9fn3+mpCgiTxLzH/QN6r8/f1d5h38z8ksUMiDWML1CKYwUDWAgO/uPsxnsSuG1Ziu0Dgg6wUQc4jzB1CJkk00Xc33HO+JjHLTQqZ65gDocWfeTXnPHdrJliEDUwHDigqK5xc0Ph17kPCP3jJuQthiNTPIQ1yLoXJEx11qfbmYILkwFUoJZq8iBGIOUVQ/TQiiCaGxwI5aX0Nvxw4cFGhyTz4aWyF/FhDD0RgbndyodsZIxcDg8fD95tTIp7XGuvFCjc+7Yfa+muBQ8ptKphArlYTROyvpXmqqH2IAjk1KVN8zAzEufDI5pjZIRQ45mNrk1/ULzvW0AjmXMeg3yG6lE6N/pPl2CQMz3EMRthX69CYJl6FL8fXXSsEomlAAAuMfDG83Qxj8jIBf8kgxpVVMaihjSA2FUm0qq1kKXtlSuaMR6PHv5FtBNI2BB+LPHzEkAlSEEr8jkDAkkbCKLSazIcVjnVyWDGi60iqNkxFzFUu2pzQqvleqqLxZ4Kyamv4Sxl5UuprM71B7cy6LFkoNRYuTPMJRS3J1kmxhF4Zc5vvOIvK5Ehz559I+EMCQhfpkl7+tQeoc5A4aj0e57nvcu1sBfuoESYUWNNFbT7LlyHOA5KX3YgQpWKhNC+9najS+Uhu7DqOo3UUPKoIJFXfanycc5a5tjbh4xm99saLXooGgYLItNKL1NaVqMLNDa5NFcxKXJkcmoqmxOMDmlGyjYEbChhzW0zLEaTNYNWphmWsZTFmHIqKwFrBYsTktm6ccGDQaLmSQk2xrNszYlV5zjm1Zr06WS5dJzkYl5ZXJngaPK14mAnjh5TmeWjXhXNtWkK5QV7XeQWlNYZxc2G4GU3b0GllAFqo0Qi4oUUZZ2AHXOdaVTeKiYCKhUA4yQhLGAVmUwZgIfbow/FRqOlLmUg4YjiCRdMo0DjmU7RtyQ2FF7mK0UhTRt8LVscqEEyiiDkvCkndMsTiD7zNcXoxvDiUlHghCS0ZbvZAFmeqONYXiWIkhoX0MamQV76Wwjng6ocEQ5LEIEkpxdvfBbBjTDsNJoOSkhEhETRjWi2FtGMozVNNJpo0zWqzKZttrG0bZGZmqMbTS2aZNDEy1a2smBs21lqq2tk+xJa1KK2WJqWjINoC5qltLkaqnHIykrMmrMtkZgMkcvgb8nrM7mYHnEs8w3kn6IHSGZkyV6xBbVUtooM1QzJEbKlsVaslVa5ozUrWFKyZsmZZrFpkw8PO8+sK8QpozLzc78WU4LmDJzZqaphKdkpIJJYsCCN6TVJkLo2culwwQuQobjDZIxCDe6fYcRTAIEtbIOKx+kje1qKoFUIiIakcBJWtkUwLlzHMQBKDlB69OAAl3MCAY6DB4gjloOz1AtKtaghCRLJJJCuCTfkyA1FjuL6G8N3jCsUEJYpOyIpUg4eG6UyStBjiklBaI1g+841JACTm2HkVteRzwsm+LymOqhWmYRqEi0xAkIS4UaejaL2M5vLzMqxZiHQq5UutEQgg7dG1pzeW7mbF4gqOBtoN0uJCEEFSIRGW2GhjYaJhZNUtqazRjNVQYTTGNi1oNq02jDCxljTa1BW1bZrC2T3EKyaVVcyhDY1pcjjiVyLmDWprZpMRO5vh311wWtyYuHITyQeAFQCQQRAhEAiCXcla+gubo7GmIm3XUhSqozQgLR2mpkaMqIAZI6JlLiKHLBE1YmQuCGI1VKCN9ShQ1wNB1dV0HUwu97KorMhshmkpEUdtsOTkTzKCkNEjCUj4gekH5bcO2aWSP3SDTB1rcYlEkFSLu2YIJEIBdGFiNcRy+CgNMjgvpLjznzq3R0AklNeYrS1WH3pCqStwYc09EBYx6rO5SSNcOSg4ixOuJvYhtQcnSST8cR0xW9HTws2wORyN8Dsqr4UVGRkQVVIQFAUiBkFzjW7dRRNSAu5FRwOxvl9+httc0xQX7lDRAVjCEnIKIs1BGyUGxcOcTmCBzNaErhquY2K1zgs0jcmZYzazaMyzLWmzWzLDaISBCEYRhosDJMh0SXbWdszCJs3Q17NDKmYGIig6E+WAOYNVgN/r9HC5eCqpsQXB0JSc2IaDGg3WgKXl5FVHIkLhZCi7jWW6uodA1AHRgFA8oN1YwlUmorVxUUcOJAzAkkj9I3gCJlymLZAJLjGjALHYlKbwaOor84hJCVK0q3aKmknwqFEoLVnBGK2EY/KEKF9DyieHrI4TpnMH61PepACWcNZhi1DI0t+CjCFaZJjRgqiJU01W5MHJUp4dmRYJJCphAuY5eFkFDqzYAFywBU+FWY0K2yDioriaULATanNkFBpsIXwYMmNWEHDoOauxZBhBq1TWmyybG2MbRmZrGY0tNjaWbMZiW2ZlamawCzGzTNaIrNbU+Koq5qgOJrjUpRzCBxpLjVOOLWsZSlrVpjJmTAy2iIL9j1X59HvejRmSWUglhmBgZs8xzSpJc1LNUg5q5XGY01lqybTVttW22NNNNouc2DJexaiM2yGLcHSCotLBFSmJPHwdSFewXiuK6Y2bbbWammW02MPILg7ar0ug77y7u010JCBd4Dh9vA8VGCyZeY3tCXAxLdUVJQeFmcZctC8zJnRwH4h/IAQJOTXES324uShAhcYzXBcbXOHDgYh6HByEwHjFAR1IA+GmyGFEL8VyLBU2HdNtjh7sOmnDTpXHYSdE30hGFGSiasjrL63Cbh1qDRMdEAJMULRw54OwJCSrzpeJAklqDaVJ+RayVFuQhgXwqXa6cLO0gKQMSAJiQBNHMFB4x5xiZCNdjGmph01HF0NRMINQRJAFSRQQ5r4ru7SMHKF5IuCzEcOJGiZIZJkWNYWmzNjLMtrMxrLDNUtlssajLNNDU2mlthti1llljLMtmGrTUMZrLG1lrGmmzMNmZZW0EZZA095UrmCbUUNkKtxcqgc1KcritrESAxgEgwiRAId8BVrftg/CwdTktb9ka17IYvhAomR8+ZX32MU3ONjpOUebRQU7giAc8ZhycgnBvH88msMzuoXpCx+AKJFAMmKgJIfoKdHLS5w92E1OoXRF6gPEU6gYwynfvBUSGbgVsyH3gXyxgdZVDyQz6MKZYBnuWDJ3adO9gzGBuB6ldf3eiZiCFJAE9olEAVHg5DQZ5EUBhEHx6KKOAAwJztQO6KBAXeF54YqX4xRpWpnDk3KVUVDjw+poebH1PCAFLH3kB9YAin2GsEU3LB7kZE5M6l4GYWe0g6wcICawRVO47T+IncOMqGRSidMXoPnkR4IdRq08/2qc+nv2DyVDGfL7dGwnBQ10Mk/jRyAvHidMMfdij81fT9aeEBB8YF9nXm1TVKICdnjYHBjQG0VEOsUcEUPcAY8i6/A50PoU8IxFOzEnS1eFcsdXIfMHyCRkA9xIvxBBEDq7/LqgpmI7RUBPkEKRHpxxf07+nOJ+TdQRd4nkgKIOUVTp8UmIiq3TeKbpFUVLMTaKsiPzF2IXJiGedTU942IcmAehEAF1Ih5FAQE0Ojs5z5eMNtS4G0SEISqTFoXOYFzOH0t/FbmHtAcB2AhD3iCvMQ6GxTueqG0ETM6xMxCscAghAFfI5EB8gKoc5UJls5IwftIlI+S/vZR+XitGYL5Xx9zBbcEFAv0QKh0uWh738yt/B+VAFVETLHXWhiQF9oiJ1iACeLjQ7eikyXoo07nJgghh5SphyWEpwoiICB3qd4l+0CkD6xBd4ICnkfkV4TejgQOtDjAr4lb/TcLd5aWOI/we/bWAkVE2iLukOhm/AHdTMIWtjQOeHf0MjrM7h53jxXw6pg7kdO97l+gyMnQNXiN4G6S5oQjnL8HjpoOPiViOw6wv5elyyFAAoVH1zT2I76Rz9H6dI3RKFAZcyT2fTvWaH3PPqLnA9w1rvDicT00oZTDU3TudEzx9+2MUrwVzwaIY7lBtqlBhj2d63e+N6vy/Hg9rqFRRDvDt6rvVABseKRdYIGsUV+iQ9Pz+1NJ3h0cQpn5uM4F9jSDaCGcdsQy61nyxjA8MeSBjcE7xKTHl+mnq0ksQw6I+48fePGDV9DlBKU32e/KKY+xRueYldz/8xQVkmU1m+BrCvBIeOn4B///////////////9ggcPoAUAD6h870u2zgAEggNKwAAFAlVrTCYA0ZTVRYBozu0LgdsjlrLA0rlnRMGjNVHOHbNOZKwbYMwVgFbAuVW2UbBLNbWpFmwoKbbXgN2fRT3UbrlG7ufc+DAAAABuwpu5Fx0XuMO7n15Rzbrjtu7Br0HIHnsAAOr7aHQ16VrQ0fXToehVDQ5tdgACLodsAADoAA6DT6ADuYX2A0O+D24AUHHLhVS+Zl1quyqW1TYatusp0TBaC2ChTrnMjW1laswgou2o7GiStGRsVN064+28YUwsBQ2lUrAYYDaJpFMHp229PKuoPdHXNhWzEiq7LaoRUgAAgBAE0AExMTCYANNKeAmAFBJJphEIBNVJqeoxDQDTIAMgAMgAaDQBJE0RoiYJiKfoajENRvVP1E9TTE9TRoaBo00D2qNPKAKSVJpMSNT0CKbUNDRoAwgAyBoBkAaA0wRJCaCDQFJCnqaNqHqaBpoAAD1AGgHpDTQEShNACZCSMUZQgfpqm9U2p6mahpo9TQAANA8o9NMfokI/Qh6MZdJm0aNOjXttu2GzP+8S07RWdh7ZX2j05Qj9A1aVDunePCZJfpNV3yQ16yAdOgQVfe3kgbsEw9UR9OQ5sS/M4iiMG6ABcQRVSiAkIIRQA3CPwYHz83QPNWg+ICh/BBFEkAyyjKqsepzvvW76VOeAljFC+BzvSWSCCJ+PQTkgUuBxliEeNKp9zxngJJuQzE5Jo1Bd5gzHY7p25fiforRa/gdzxcB8iaa8iFfgfj5GUkE+ROs5zife8PkLTKc/fKD9RzfMpK+LA50m49E4TMcvrfPzMiHpMpZzDuFkYbNBuzaj76TsfTKddsdVJxOQ3Ww1wP0SZjIUcbCv0YGahJJ2DnWE4v+ItVnblxim/2Q4KZ+ZxTzaWNrC7sHA0+g5zd8STXS315T+X73cPJLTQdwzb3e3XWTm09n/o1JDrYEym3Al6+YtwZro99oi0mRRVJaCPwk3re00cXEVH7usx435k3Mx7n2PHL5M3nj8HfuD87Z+v12v3Tw/Qge16Xr9ntnDb/54j08oynTJJjiZCwihFCzMa9RadDf555Q65PzrijSPSh0+xk2/an94L2PuPwD5/YQQ3YIfMgCGsVAa0KF5rIthBDsZScgdXaJfJVbrJEAAI4Ls7gRHVCU1l+cpZmglaQwVJC+QoKn6hFRVUTm0e7x+APjaZcC4s1ykhYYkd5QQY/5Gom2ajNYUlZESZaXqB3qjSUlR8cSgMDTx5S9rJjDG3KTFxdYTEvU8fbzYBWVoX567CAVkLXzB0DqHtDb+h18qGfxhZ4kPAh5ENnpP7Dwh6wzIbp4Q1u4Zdo20N8k9J6AqeLaoMSAJnLLCPgQ/UTwpiETF8SHYciE9pMf2bhGcRsCjkQ63jQjbwhyIYHiDxn0DpYoUaD2h/SGtsnQ8wd8/knvPgHfQ5hY+MNrzhgxb5/gbA54USB5EN8O4HGHO5A1Zv0n8Q9JzTz+MIj4h5g/egPqGc+gT9Y60RA1PVIh3t7QQrkY4KdhaFNxgFMAUCJgQCAHL7JroIHOOQgJasN4ua2C2lGTRsHQ1reuCkcLBHvFBU6EOlBybb3Nwm6SN0vCjzRQATCVbQKEiumAnMCxResURukFMXlJp4oLQvJKtRcjYYnkxo2Lwwb0FyGJ1hcbNeWzS25poZGiULFhImM0WOil3NzsBuBg5oO/imjoGsVf3IBWnagCsAJaKnqIcwdZUCS22rt2U2jtLaPGeNRmN46dpt4a7NltbQ8Zdjah27XaJFKRJFJSioAGRf0cp0hvsXzyDth+c4568Vj40Mewo2crpJIiX7Hf0Z0exGLvAuxVzO3vS5n4e0IKFWCKxu6s7mfig74XLebu1E2yMGXLwGsUW0F5ilIJ2RBWicfEyYGFfjfLf3PUe6NML0eMA3gir3j2FGZOxv562OMljNWaS/8GzUVUG8Re7A+krucGrsZx3ODY8ZUeCedC5rwU5uNEVcYqiEwAmGN52skq58GOuxC7bXJ1yEFncXacMMPw7hrNuTLxqShUFuclMgVAkO/jc5utjUyWdTCFIup6KaYgxgqCOsBftyIlbSRWCNIVKVtJEmWqFbVBU2opsITMklSbUCrYJGYpVJxidY0yAYZNZLWhNhsipU1q2obVERZpKltE2KCrMUW2ijQ1oWGqRJqKrEKWWJZSlqk2FdZTttKqU5qSrtJK2SlbLGEA5qKh2AGw2KKViu0hWKpjapDWWNUbWaRVo1mNabKxoQ0mFIbWxW0bQ2aaQ2rMNq2ptGxENoWIqKOrHQiqK0uS5YQXEBC9BuUHq1yekEVxYHGtKJgCIAo+o9dS/K0U8NU9TuiEbUS+rUXram2yBGoKwFCTVqJCmy1qVSmwj2fF1JLxZINpUrWVAvbVKj8Z5nUemUcwvuyCvQ0ofO0REAwEBUJBWEQM6gUNiZ3rrMxARdPBR6GhCg74yN7mpDaLJublrF7O/NO2mi2TYXLTum4lAgLAwqAXpFAbTN0DMGxIGk3gFKOaXbGkkzpSU6hEdB2UAWj2Dh1qwCo0qqO+xhYx0aL7GoYq5GBNCK6Tpu1bQNGEhOGnBrRT6QtkuujBIGXZ4u3ZxEDIzrORJCSbZm2S4UCUKQ0ndUZ1vcyww5rMCbaWyqKMjNSlcMVoLGQgawNYFMQGoxDSzo3AtLMdQoMhfd3IRmpq0kiHJZBgROSSyiFhoou7pab5WEDbGzhTDh1jV7Fi8EhZpMg6MckHralmiS2Rmg002toRjUWaoqtMTLRpqMzK1QrZSbNalVaajZYyqK2STaS2UrZVW0o1os1TLYaUmYNptJs1iozK2trMoYxFaZGxNkW1NiLMpG1MajWrWWWG0qltFihYCsqpZUVZq2KM0ayWtpo2rNky2DabAtra2hsrazKoraNjaMwI/DUi7STTDYoGayxbVY0VVkwaxrOs0hNikMNVmVbRsbKaaqqrprMRVtLsS20sKRaagsaUDYUU2UG0bJaWW0Qml2U1gTZNTVNqwytkNlM2xlY1htRGysysMtlYyvx9/EvFt5aIcUWdnFBYMGxsYNDD4MlAokhGDmQGszGt8UIwwpXXcAR1kFaaTlqJVhgiaNFKDaTYkiuyVV3cJUcxbUjakis0raVVJzqm21bK2US2VbJk2tQtLUo1mwtltClGEkYRIkkg9qxY6tuu++AuSPB0Ml61wthwGA6bahg10ICI0MiihkbkAp2tpEbJ4jjlma1bY2EkjIWgFy9y7eiNiDYkJSRS8CVvD0QV6OJHjp3pxqdybxzjvFe9FFrLaBI3pbNWZdtjZLJjSZ0W9jIJGFFhUIAEsiAEoJYgNIeho9svRJCpcUReDIF9hYVohrwqZ00AL1QPhpCvn6deaMuPeZ6M8S22ywijoVi1mOkypBSxqZrWJcLhh2bgXgX00bZ2um5L7UCIN5Cb0oimxY1lg2qwRiINKt6ZTQSZbWQzqvCyBtIhLIWGVl7Nblb3KEs2aSvF61l6WSEJTFIsjCSIQEMISSKCOlsqpAASpUDhudTK3lAAlTJJGTKoxkoo2mApGakWS2Ue96XD6CJqcAYYb3NJIyEkeNzdMYwAXNaMt2iEN5l2eHR1xkgsghCCisyjaZtlaZmZtTKYxrDajYbWzW2jaWtmtrGG0ytLGNptG0ZitltjZsYxCtNptsmyW0pLatrWRbQqtohsmwWtTZSYZmk1prG2rNptZ9VU7UCnarsFSMwSuwKGaJLZKrtSqp2qonTmbExkRWZNmtMxmQDIXyTCWwLx+EmFqNZMrZED9EYQMBosqbTTNa0y1bJsxrRpBZZo1azLYyTShbSxYmTbGNtZqq86e7y97y9DWNrBSR6l7IaEQVGro6CuuVgUsww2LGFcIxTUMCALQgq6JCQ0bD39c8O9DbMx4+hzxNe0YFG5BdNdirlla1jWQKCiQN97AALZGODZi1kImYQbATbJti5HpanRYOdYGlLGc2I0MVltyQyyDoRBBTBFjLAGDNCqLmF0qZAiYS97WSKCrUJcIW8pTMSGFogFomzIACVq7fLpUaUKIO1qR2a2mu1POF21vdjdYBupvWLxq9byDSs6bHc0BouEVYnQkhJhgWjCaYTisMBQasHYKJEkbGQUkkRY6HIwUQSU9IMYUITJZ5Ul7NVQFaAec1Vjazdkmd0bmLhh0buG4DeCCkAMtRmaIrVTFVaYqY1NjMWMkVmtWVStWbVjLGZtMZpaozGNBrJkxsZNWTYzRqlLVrDRkZlYstWY2tRS002tZjVRWjVNkMzWzUs1TVoStotragbFpo2TabWtBtNqGrKKerw8T1vlJRREklhlajAaNEl5CSVgGYGGSBtIVtZo22Zla1MwFYy22ItoEzM0lNMxttthjGYtWGpq2Tte3l3s8ubF2krBZEBbZzse9m+NTS78hIRA5gj5Yqin4IJvsU9SG9t2pJIyMYsBFWG5AoRYMJJc1pQUEN8uGqXQyimp88cCz25wcCQhFIgXHIUogW2goYABaemyKo56IBexfa1i4JdcZsl9gdIEU2FBoHSBIUDEQSqVy2rzjGkxCh3koKUr1jCUokTA6TNgwpxpg6WQI1GphKt6csmXjgwhSWUojKpX5u3CwjGwrQaVu1sBaSRFYHkc4JGJhA+eJbaFF63Wmigq6BgxY2l6LGCxLpdqXb2IKsRoitrTNszMbZti2kVZoitTGylLNbbY1sZrVhrIpbM1M1mmbazBtDWjWtNJVbM0bMs1UwibAVo1NZbbTWoUzIrbbMM1bDaTNbYxYkYwSAxUBYyDCMIwandzG91hKNzXBtucZMtVwRVQZBWEFgRIZGZMqK1tslo0sNjRk1tplNmmkzbNqti1TFDq5Ciwamh0133NIwhRkadb0qKNjVrTiisIuFAkAAGEYDCRTbW+mFBRovgR0CXNtabQg7FGlhQFsnAawpKKWmxsBZe1kDWMF4MSbfVTYKzELULQVlJ5lyDSRlI0UKasmpV6NKKNQAAtQoZBQVsGpcuXYJgvl02xtq5F4qRY82uIVpZ6coV4zxWQL7sWlBVsuVQtW99FMQ84vDXakJ2as2RwOHZFyghjRycCMA0BaxYMcAyQWZwYATl7UlGtHGLHWpVzqc5ZNbBYgm6Xv7MOCQTe7bd2DLs3cqqjImaMZtmWMLbFsjZIrMtJjWtZJLJoxmarNRjRas2LMLZbFmbU1NFpWRjMmjazZlVLYyZZWbLGGTKFZoqWm22bG0ZjTbGtmbGae/der5ZyGUiTca1EjJIyRqjQUSqTCYTDIRq2ljGtmzG1NTUVWtNkNVtq1jWbNtagrGpx79zdjFLdlhsmUJ0hJGcOyEAKDJkZG2wzM2lKtVVs22xrbbUVSCpEqk6ioFoiFCKvWIG0Col8qIamxfWmpNYrfP26ZlUEB0yKMUXqxKtqZpVM5U5q8+96XrHoHpgW82Ld0jSVBRhlWjCDjImMkjECkYkSSQu7aZPUIWb2LS3DgRuHQyABdQCGujku4EuhpSgZSh1YxjcCxawSWQI1ZVqk6jWUkJCwb1eUuVAcBlGMgxaOIdcISwQOMuDJxUUbs0HtbJUsRqYj2uAoXbfAVcDpJDchgokg0VsxGLBrFUgTDEUR4I1qolLsjDOobZwZgVqAqOGC4b7OXZ22crEkIEjNUZlW1jW1MymY0bMY0poyMYzM2YRWtIrNjawzWTWyCswbMwzbLNittNqoraq1rVq0GmxjGMs2mbeXh6+Lvbqvb29sSZAARTAIAMjIkkujRqQz2QYSHasZWmSK1M2myrMzKpWYzC2UZYy0NDWVgazbGVmFsaiq+Ouet8ngNDJeWvoaBvslb6FKQQVYoisHDm1mM2RQXBCCqjJDbN0UmQVG6oojVdzW3PS2kG2S3rBhbaKeOFAFIzUAHQggg9CfhCKHgwpQq6mKcp0R3+iqlIIQgQRzY+SRKFCzKcSHIJQstCJSal1LFlVR0psaFi/TsVnLr20shut6ulsLTpbrWrxulNGb2u+4o1oYLeCoMumSyF4W4pSGwsJDbZY2lCSRNRnRZuRmsjMZeZmxqnY6plJ3L1BPLYEJCVJxDuAtYLvEE3tRUQpBUN4o1nuIncccuXXlqFgghIoECJJIQAgMxbWysxmbVFWpjGrWYalZjZo2jSxtsWSKzVZkZo2ErGtlsbKxMtaQrNDZtA0zTIwEikYQUjFix3PGli7EWHFPXnJsXcMyZF+Q4QvmhdGgSQjCMAIKRa0MFVqsytW2xqRW1jNMzRrGbbns483h7eXKlPauakHTBJUVIGzvSJrTtsUAgu2MWo+V6WeL7OvFPDkxEuTHPdRNb1fHTxtYGs+OPOuV6olxKWk7nRlkzLeFJbCOHMnGjkIEuK3m0mcWhcLAlNTosIdkkRRwsOXKMVsw/MmCcoA2iio9Ks4N5fBcQwRBQKIAcMRAzBEdlLpgbFNGXdta8Wo60hiwTEzqECKMMkSkkOFMUai0FrToSEKjJoxqCNXRHg2DAaUBiE0BjKzIArc3IqbUYMAb5NTJvNtldTWk2IKIsQ1rKyzMAkhM0kwTAbRJYxlG1AbULvOa1smjQpaxjWtM1tUK2NW1tjRrNZoxYzasmmzLBaCrVtiaYZaMa1a2jGo2xUrbWzbNtLfoFsrZGOmGmsCrasEkkIRgSMsGmBBVuFxm5fG+mhscoc8llE0X5Dvljw5+MstrMOMx5kxnGPTEML2fmfV8MNlksz7jVk7rlIdgi1qma7RtDsEHWHWkpbVjVcZAbES7UORpJuYaLWrNbU0sZGrJpi00xiZ412fS0CvteDiPft3MHmb5W2bbWlryRhJEVFwkaYsIEWMGCALEc3NLljKtzOuWoGiujx6Nwgg0kkWa1sRkEcsUyokwROYE18sOGg9DiEORS0rNCgg3r0g4FpKphGQBgU2agpkKllTvZF9mXDcCYF1x8fa0HHD9Kh45rdyjk7hS0JVaHV7ddtYScnMk1u+J1QpzCLhavCFgCiRCEk7WlEp7jxAKdw0DRNg32d4G64VTBQZLpqXLK0OVIIBKbCE+tBYnTZZWwnZFDnZdu8Pae93ysvTNsbJsxJY1SsNtYwWrYtTTbY0KrGYbDWNpmNaG2xayyNTZLMZWjCxsYhWpmmY1VS0zJKtrMjTWoSxpZaamsZjDYmb60qrsUVdKpZtUlOaoYxAYnFKtsrVaa2kJMJmYZkmTEr1FQbvA+smyzgcczZQJcVSrFZKBtBFbGQ7x22bNCqji6qZUS9DA6OmwWPPiFCaJIV4OW5QPYQQ6YvfpDOBFoBgGOTGAECVAwagNaAiAlRnNixmlBaYqAPZOFlhAJKi2HrUj2SsqqVVSG+jqnXKxRWVeNAgSThogJ+c1ZSW/evcyqoHWyQWduMPnAVM54pNlJIpTtDkJrbQOYpJIgsSRDJySMlmiyC1cvdFIoLxmSbqpppKLmut0y6OXIAqp5VZERBGCI+TsdnLgNogKPcGh8jmrtm9aPHjC5qdm5woXTaSB3s55iYm7m+q6WoeAhZDeg7HaUB0JmUx7d9S3rivxNSCo/QgKIXII8sUtEESFUKKHLppoXCmHQRyC8RURawYTQ8eBJXTRc5huljSaxOIa4WaodabYm3B4ERXHeXgBRuBQ4QwZlWHthmJQ6R2aAc6CtkHWQpBILyRA9ZKfvihtMGlFmLFid4oAeyC3JoQcIm5PIdu5ZrYdovgmd8sTdDML4VFQeoiK4Mbpe/mW6MkK7vJEhABhALkFzxQAeyAAZCICBkfR2ta7YW0kCBETcs7bVdTW2fiO2mbpzytXg1xILtDhYUJvo4jxALBWtQMcsKpyJ3QNDlDA3jnvQkHC+8+PBTETjk6t8rIJYqYQufUG3Pzp4JQusi+M6CtQDskW2Tz6XhwEeiILaKKJ6IJqJlK+k7XIZYHat4Nod0MLwL7hd6FKAp6Yiv0gNyL1MPR6nL6gHEQmlYB+wsnPWxvDQK+WLE4NwTWIJvNfqUBxETQgCUkVBikHBGmFQFKii36m4QsLeJ3nERNnnfXSDnK/H3BloKICvGA2kMrZfEDGACUZBHJom+cbgPAGWW5Y5FthaRpBx5fg0zzell2jeGUWwkSmABvEAKiiHhgIrpBNkhkF3StHXYJyREsjEBU9kQcyB1vka+DSdHK7zLLO6YYB8M4gABlkLsVXY+YfO5PIDLyeNuHIovpC8e/s6hSeoZ53fLkJsQfSmmNYk5ylyweMa2LhqtAocxQAPcVRtFhGTsX9DupvGMMlK46QdZSwnWVzfhe601+KdHR7usoO2NOBEMEUAMrE3h3Ir8ivLBwbUundPEGEaqaRgA7X7YZxUOggu5BCz1oBxqFIJhjs5Sk1CCWj4Cy4jJIO5sYGJt2VEvRKV9xZD3N43tTqFO1PRwF9Tmm4RNrQCxBiRg4C0XPCzWsqPWPvwVIHSWgUWrEmmWg7ahpbVpu2TBA2H5TdjiD93pbQT0wDvEfROoPbnOMUdbmk7gBQNGGz6qjuJiccmOu6Fu741CxO40h0XpgEyiGbACQEVN+AoB4Icnnu4fhRgQJJdwbaRyK0/fMjqT7EBrZ25R66Ixk7sd7g52fmOIPbDyysnKeo9sNnPwYXEVT0wFCtqcWTY4Lu4Yo2J4nyvHnnHeGelN2s3PJG1J5Z1AufBpk2NLvnu2tGX9Hqwb7eedvGtOO5VNvFLcFOal9JGCW4w5KG/GXm2ZbN20Oz4Cl8/Xjjee+aCbmBw+zXRnxF06p33QTIZlexuWMb+AqO7mns4sd9adqG7gaBPCDzBA7xFxFEzFBQ6QMM2IHlHyJ9Oci2gEj4m3B7ojiYq9QHmIAdxAUPUTpIAUIhcSPUujtnVtbK1xN/MUuSw+zml0cjED35phXjyuNnfUSng32tpfsxTmHtCCbMfEVBv3nyWEE0sUEFhAzPZ3UDpQ7PMr2JMAzp1M+jGoWiqhxmmtN/iFbHTndgeqcdkeE/JNe5YIcjRMnPRrvo1PgwqGK8Hs7am3qHtLh6gwiX2pjxDipc4sKmxEBLRnkO+jz8grrsd7nFmup1lQN65OTPDHS41h3O8vZ5Ix9zh6H+gDjJIELp6awQewRCjHTd/CEKERX1AN3fk8W+BMkvHupQE19Gxrgq7p2jTxE+Sqnyc4VMfn+k7Wa/PvYLpJ/55UScbPu/pqGlH3qD99n+rzuOJ2+tfxPX8/yPqEzsxD5kV2IIgP1geoSkHCFyqYFpCjXlOwVFBRiAAvujjA+VWOcZa7ibgUqPkG2Vyicdht87dtfPTdUBmPkDOfQZiKZ1NesOB6prske5lcCthkNLGxlTcRTTPJkcmkFJajICqNZEIilIiK6wAFu8vtI6aZ9v4kKJZDFRUdfCfAkCTRxBoNgFcplTi1H+op413ic0hKbh1u72TFmvvOHwHIYkw8BcXb5uCWEj3yCzAY2eaIpdOG6TbCsCKZI9njCNpjls/yOOeGeamU/Z+LmzL/2L053EkOfjN/WKLcPpwtWxnhMHIyOYKfzoKvYicwBxHk9Zt0N6b697kLmv2IhugxjJAmgAQkFtMXXyFZbOxGdO5GliXn1I7sCIgSl4Tz8hMgAtZMaDs2mSFxjCMyF58IxLCZcGYRbhNJJSWI12ud8A1jB5ihOy6RfuM0d5aVsllHkJjLJ/U0ZPjkOib6iRNP9bbGQr1MVEMDcKfkSSKij9IgCWg8RLeeQmO3C0yGT+fxVUcvAjregRmcYBh9QMI1AT9EDo5ML5GSCSUoTJI32EFExoseQx0eoEdcggs2pEkka+jItoyPfgRwLyk63HjLAhkgjrYwQFiTVONHCRMOEc5tOhg8QWLMgiu9RPvemoJozUnOgbvxlt78ARDYg9DFe0iHymc1DQGpjG1cG/kiD7YpwkNSBUfT7y28nUtp6wEVFGCU/8/ipUJENfyQrzoiqM3uZkLclA2TlLgNl2InIfigTfHnlUEeWKbahFUBy9omoqVBAEqx6P3wYGfEMBCf7unRP1BsKd4iiPfLiHl6+rKtMHaB/IvsFiKYZcm2MuaUPZ4ViCqZ3GNLGsibql+cYHG0tgaeO2CEmKnypFpgJIcRwjSyWHZfNUZV/uL8f/FmfPZs/NhIVHM9CIC/MpA6OViXQ0sRIQRKGbYlWuhFP/BEvgl6iig4FLlKh/0GP6tbH9R7Z7IKr7fMoLaVIv5sw/Tw7tUswPoAoUxLG7yRca5H2sa1FMQAJ3AIIKr5RRRgf4ZoEfwi/MnJB/uIQPogAuGjvYD3F4Qh1uJRekh8CCM/JHmh80mh+u5UgfQCiP2x+kCxvYBBeqhbwpHzCtn9LHItkzJeVKCKsBxXlgAgzF8xP2VRnCEBRw0Qqh0Q2A/kt3VTqJSuKRfzMVAGMEVbjR6/pBVA9cIzoRAVHZiSglIYCaCfQ+4MDD4hvFZ86NIP1FVDajmEVUPsQyP5BUD74h+MwMtqLFHSiZEH2Cpbnx9epX9VqV9uqU9MO1MyiRUbQBDB+Y/OIj/VggXQud6D1YwxTYgjIJPCwUpm7B+29/q/PgxjHbTa36sbTUmury+Cd5JaGhjDM2GmZM5mrcNMW22LabwWan+3l3wrnGmNMQahzTDWQxNwoK4dotyzgzGLhsO6pi5ntmCYdNjL8VjfBWsilpYZsNT8abTxjWXht6zuqd3nDavLw2GrODhts14NVg3iAd9On3VZl4HnhsOXtYQmGKSQkl+0ZdaEGx9Ml+s8TpH6H6nTxrzWDkz0mbDtD+XVNVVHMa1VekslFX1BOWqGyQ+MPzMFehR7Pm5UI+y0pDNFtYym1TTKW2VpSZpZpIp65VtVtFqyKtilL7SaqqszbWK2zYssWW0mMzTBtaaawJssthAX2WnlhA7SZqmmKlU+9KHjVJdIqrxFDYpfPSlypRV45X36pS8JLTSlFtUiNqqJZpLWmZbCVbSzGasaTMG15pSsdksxSF9+q8S1KQ2qlFslS+01RcxJ9rURtRB7mSpGtbAMrMszJtGyY1bTVlmM0tis21NbWZs2LBrGabZopWmmrLGM1szJs1rM1qbMxm0xsba2mbVrDTNtU1sa2yFWGNarLGbLY1bTa2NmLGtrbbamxqyZVRXxZKtptVA+RqXLQsyMyqq+eTstjElZRmJsCQ7UhtKM1WaZhsYpaskX6hfhlXRjUvEtgbIZoQaymm2UbVbGytti2TaVs2VKtkVWxG1sZoNqKSe2KPnoeWpe8yRHMQFvAANoonLBTBHxAV+0UHf7GgEICcRGEG5E8EQVwuUE3tSeZkn4NX4MHtpU7Qr0wnar2xV+ZhgKwnuw+jC8VTCqvfO1UDx92g2vrpDsg7S+7BeMqNoJ6B8YV75FU3D8kyP3hrwOA+Qo0AXkpwtfQQf6YmHCcF/jX/z6Eop8kFaIeuhsetkOxPLOar10v1Wv0mVemiSkFciCrPpSa831Ifhyfl20cZz0bFfTNnLHq/0n6i35NGB7s3r9PMQcl6n9b9OZ8fqU8FBtomIH0mJf7PMzDnXG8OI/acUdobGetXfO1KZ173r0nGq5sYlzNogeplBOtZMDyWVMsN497G3W3L8Nsb11v5XnXIaM+gcKvW13OPfWM58a4K41zhcnmYY7+uVNM/IvY0dMgoO1vsx5XYw/jK6W+r/KuTjjxkzTt0y4BumShhJHjQyOvU6z89x33GpHr1hXXnAr4nE5OOOKjzxQV8R0hBAFmLynU+5ryeetm1VPGUk9WA8a9aplT1w8bNI2XNTrOmqKuzNFxmxR6svDwdXb10JH1FQ+EAbwxARV0yKkVVGkFbVttGylbUtls2LYmyK2TYpsL00+mOmUZpHp/MiLh9MVS+NdLD+x8ufn/1DvHq/oPFADu3Cn+MgPE4GP7ySsfwHb2UYXiHk0aCxICRMBDb2wUFlRIwJCCx69VxTM9LaJODIzAh2qlD+1AN4ZwNvvpU+a8VdCFSWIf22C/fRKB+Xm6NRsgKy0CRPqQA3igg/f4oL4In28FB1m8WjAPjA2yTmhtd1kOtH6/0iIH2IpY/c2rIRJLEVUVpIjZgvYtSxOK6kP4oIAv38k/QWyEfXpoF+x8RMBC5P02ffRuBo9v2aXyUFACrJrVASEM0evfD5ugOggC/EARoLMjxh/bPxqUuedfSWHrp9Wr9YzShrCIzQC/WpuUiyCQEEbLo3IQArDlxHD6KHMxFB/+kFS58gtXTgq9hD/QSYGBWkbxbz+FQ+xiggfOXL+PZiND9ZKPQABM5dNDVBXhcK1IRNOBxgCDhZwYBloDkuZRDuuZYLHRDsDIMNvmKiP0teB/rNihufkHDk94cPt+IKjv+kwZJ1iGzVAAL2gaBMqqLWxZqfp/ShVtuv27iLmH5tKGM/OQyOFD14Oz6XOcQoHaOFCsOw7oOAQJ2PF24eboZbHBHwHwpP2AT0wQThT81Bqc0eLBR+ogbE7XodQhULforlPxiwgK6F6TlREYBk+BZP4m+U7Gtn8kIKItPCsTQWEQ+Z5uRFMCymaKBrgOFbFkvIkJjlRNpHhU9vdkmVRW1OoxDwsm+RrxQORki4ImIVFe4fQPsFoaEC1v0fmAsaw9JD7UfDQ9B6o9/kjX7YnQh1f1lfSG0Lh5Te1b1cVQs513AgMQaZyQqH4pyTGFDLVdc88/Ag5mLLgY1/ub/C44z+AsAWjCBeHn+Mo5FQPzRkR6EKRJCKCQi6K0GaV/l+TWlxEG0crxUdkvdLvnBpOJEE9h1gFGaCoRiRWcDFH9QI4xZEKJZIj+QZQgrhsw0d+aN8JWfsnYj7vN/s5koBz4Kgj/qiHPjcxi9/QAG8VdEglMyhBJlUtUCQhVLJIpAig/s5z+8pgf1hD38rbUzUbaqI2xff+jrl7zJykxo7h3NdBffJgkZxBhBPCNmk6QgdJgA2jAFwyTIuMUguPX9noxgc3+X9xTIfzME7gkICfsCC9QrMJ9fHsqfgKqMJ056FEWJraTZeYNIueWmKFK2cDsNepS2CQgJiCgOYVQ9cEAQq4Cv+ycLzRKO5nITiFlwZCgksMxmjK8S2PizZkCNxUAXsgFq1qyS5yy+slB6hQaYyITIJA0UZaMfpkoppunrMElK6/9L8TGY23CGWLtH6JfeBtT4VxVXBulBube8Ru9IHMcp/hYaTgIONrWZtEGNR1xwzyYfaZew/m70jC5t849UhdlSp5SxucvlwJ9Zm6/oCaUzHUI9onWWs/dQ1+rkX/JgqeT+Nv6Xs7M/B/vflKfiqC/yVRUN2AnlOIXorGRf8RbDaljp0Je6JH60GDunnM4a4BN9y4pD3AwkRVH/oiqghBFW8ggAkUeGHQKoDen29Zk3SCth0zh7KNZbYonMPj1Uq907xDRIkCl3HJZ1rQ/J2XqTnsxJLCcLnGyRBFOfBR53QiSYORCoXSPjvmgyQsnEtWChMRD95+JsWPpV/XY5Q/gYoIOsQPJBT/NH5JvwerJ+H4JdyuaE1YCp5IKfqgoCe8gyEjLHkNsKnAYEd5o4WXOmmtQVaCLkS1tKKpZqJd98ki1Y3Bilkh2xgKlgGbIn68kiOWzRaazLiZDNgFpBci8VoIn5gipkIB8pTsMD8hrBVGJvAUO1BA98EUTtv+fy/BKfK6g0ZTPkfryhAFj5Us/rCeqXYAV7YKC3Rk1uRPIMbJOcu4kUkLQsY96of9I7ljxNZIXDyw3V5Lpx+XawZvn+mJoBhDn1TwGTcgIo7pNSsZEoEBav+XewJB1S5ETB/LrvP6BedlyXnf4A6fdmCFkQzAql53xCBJ9wR5EA0wRDkCCQCCIzlyMXr/8PvN7bp/7hQ/xQRM0Ea7OIyVGTWf2HE80/twfPc9oMSWkNj3znSI0KIjcPKGI5ftBIOLhWlkbN+VVR1xnuPwfyMEEaJ6sBVS8CtmQ/t1bAjkvKXFqJX8GWszVERbpKmpWXR6NbSS+T2/fkrOp1kM79di+JBsJ4MIEIE6zat4NROzZjgDtaKtay6l2iPWNq2Xby7V3xHjYoi4u0HT7WlGNVMl/QKiwEBcpdMRcRk9Lv5+YDZnqEBWGh5tcQIC6rZyYATwDARRJSntNb98KZiAQnOSozDY7qh3YIKDXwGCkWk0h6rQ0FxOUkORjlsMUcxrMrpLQkrN5qwygCrtFj3ntNBXjuoHzgKf5AFWEFGEFDGAKQggJqLNgKo/wO/dpITmajSCItEVrKed0kxq5hQZeUfFuH/mxMjQzUaCmDrxuJcnp2yuhr/gTmJ/U5S+r+SXYnoeBzhzy7mhiioPs5f/rq2ZpA5Rn8xHS5E7yF/QDxXOHEBvPNGSfLHY1BBhjTxCTTI5KROcb8dR/UhG6K5dpU9cDzrwQBo3ngHFqfnEzE4AoCe74DcxFFTywRMtnf55KtXJko7ojKUQCSpQBcrb6CaUtmZR2shrg+kVR4Ps+46AtQFeyCA/82JafnIICVMBQgBLo7mqRnCXftUIOZi5SRckhc3xUEWn5lRiXWHJI4aq6065Y8PAgS1l+rui+Pyqojx8uD3O/r+2nj3SY025eFURqP6dUNew0mKBtIPYhNtVB/Pel8gyFDbmIjRCECIjdP23bzBf51zLLccF+jppbtmcB9/TCLKJk4SmxN5+L4sS0RUZIjUZNI8F8xZyryQCCACwu3SPYiKOHbNzo+rZ3oPd5A4Aw8+g9nP9J0vjyzVuBEEKKz/ykKVT3wOfWbGO4Qj2GVwzlhLCM1y6mgKoHOZIEktYTxobRMhTvyoWxknCtwcF85VaqqP4+5LK9k38ZAkOyUjWiKasgvqfoZOhoFV9h0bpCFvDGqkXK1rjdtpiWy1n3KYpxmMl7EXGQljO9Vwk4UG5FArNqRlJb4tICI4QACtMb+XwFRJDy9UJ5LiEvH/GfsOh7wR/VzTa2VD367wQpgNC9Tb9xnm/eYBKj8UkSr/osTVFqxIo1E5ssaJvY4eYl3QsiAAXsKJaIqbRVNsW8FXL/7Djrd/f0LCqj3J6ELpGPePUUgSZyXU4ETAkKBUFimFa53slFBH1i8xDjTKGHVKNyc1QRxIh2iCKCWbjy2P2mnxTRbuBK/SAfrYgKND3P4CmZC4vPWDImBGoqOhjKRI3ykHrqU3nkIoXgYI27DQHNLG34lCpv9dEfnmYCBzrEjRyjNTBbrBIS5Y46IF4xEOwe4QVd7z1Wa0U28dRUpOAf+D3K5EMeRE3NTf4/3zLU1qJ6SB6jPekZXminOOuHJkJ6WzMjj6e6SM5k/Ea2sAboeSFUJ6glLyMkTQMkYMZtke265fi0lzu2fZpnkEGB2v0FAViIjSHhqHxaq+eqm4pS5LX8hmnS9nnnuEiFVGip4R+EwblUTPEVsafCTa1WLsAIIRBBiwRxrVYqKO5/S7/QuaHM7Ri/+LH2lOWM2g9qqVAER8SJL4O2iQgfn8HHVx2XznwBugAVsfFgjcTZiZNsjQxGxCLZMOQnR3U6K7Rbk5YiCyWuBYZ0JyM35cPx93n3+SH/lpsbFNhs2tsxtAz7UQ739Q5dUijlKjOkRNCIz8KRi2zqm1PmBUX/FNC2A0a3f3dU/6GQuvS6KI9Ncu8VSQgKXoQREHk++e5p/94qdB8BKr90GX6zzoqDKYc+M0wMsE4YUyIALB8MOzoDTLmlOExLTJgB/Yru/Si/EK/r09VfXJUVRfEoFCoH5zkx02n1sMd9jPlquyeGqj46CNDk1NZep4zPfyMX1j0zIGXrb2p1CArKnc0ZDrbRue/eGgu2zV+kN6C150wMk5Se5K3q56mwM3oEIsmG2mUYcVymiQIlOW0LzSTHqBtlWQJajsyd8MSudHV/ZeUscgy+X3wEUWNhLAzHFx9tCgACVTSjESKEWP+z1Jgtdj3o6nYslIB15Dx0hOma5ABddfRfrFPwDEd/b9Md6oJsGAIHRRYCLd1IqibFVMcsjEvDRn/gqKxllWcrf16zbM3noqkL9at0Lbzpm2D7QHLDfRxVvYAgjIXGbOKqPdKc50iVvoERGsB3kSMvkGNooALTPm5bhJJC2kIQhJ7aglAOTQWF+WNQBZ5mg0ptnL8EhEk0EYMB1sHABLcMg0YYkugCHZMLZ0uuzOMgtPk0nFnL9Uzv6eechq2P8wF3DjPHMfsTdUFXi6NjLvy9krXtEoMhuG9Ia3Uzi0kDIQ/7hSZjnCC7K7IoyZ0vMISe+UjP4HVjcD8GRxDNAT7UuN7I5ZmpzODEGLpd9wCSQrCeYpcs8rOVv8oZ21pbujS2mLwuvg/aBpwahsYVRp4YVKidREL8GON0P2FurZRjABbXsm0H/SKWVhEoSOgyvq5ZJhrLqE7/oTQRqcEzEHfLjxa4lN41l7iVpF7JDcWNiYkIeamLxQQuIe+G0KZwCkFBd4jNG1L786n9Tzdg2q7WD1/IGIR7Jk7Zs5o8XMYjlwmphDZoy58qUvOgih/CQQANSKIw/d0qfnvHULhhmF/c9B9sKk1DjtilgiKZN6O3dP4dgvvWbB0hrwH9TXAkBhsbBX99r+klFB/nuXtxs2Ln3IYIKjgIEBEme5/HCcKA+fNCN5RbFb5Y3az7grf0BArCGZ/tofDYplDSqfYqqPpPX6At+VCAbLoJp2biuH8dhgoSNXgzaOvlLVKOcb7RlhQdSVMNj3sDSfXefqce6c913WFxsDmmmR5hmMgm+yG4+nkzcyd7LMT0H6gtxvmmN+eHR7ztk7zk1Qhq8XevqwntOKK/PFuGcJ4Ch5Cd5xUyFc8pQdcPCuATkmMgXMc77SZvaiwmSIrL5bTAgIINXAWskh8yBM/4e+5SrEraSQ8dPH/smIGLEHx7Tp8Lr4UY3CMN2TTi6iUwoZCJBFI5S49FTlAAXY/RoJmBwMC1hpZ2vZ3e/SaBcrx6vF5JQUR+91kA49bWeT90V7MsDlPG05/BoDplODH2SbFordo3C6MT+uDetDrnpPB3vPUeE1HLMH/svLMmhNPRnaANPmM9nOZDUVEhzKZq9V/Cc16Bn5RaUEEtnOxAzbgSvOMkQlqzDCPK+PCSTfsD3n3KCwz6yg/wuCwnyGsJ9UzaVRN2NP9k0vMImwPkfw8Skhf/MoxPw9mRyegxN4J3giJcr7q3y6VnK6e8ZmTX+LOHcb/mRbmSiPzwkv+Jfyq4BewEEHKyW1l0c/jmrAZNH3PSaPwW/kh9jxnrPu+szYj6KEfcfLtSnyZHqsYTMZ4CjXGCqZ4ojcdMRvIQPO3777dwE3+n2aHdShW6sBlbrVTxJACVyU7VKFTYl8xm5o32dvKXq4qS9Ckt6kLKEk8oVq8KlqV62qgZPDHrsNmPL7VUn6hiE1e0HJoZCxAfSMEpCcyO4d3tXNBRjMJZyyNaIP+hgkUebXYSaXvxEsbEOuE4KAzCqjTCCb4/Rb+eJMw0k/bTa1HaCf8giu7hpDSFakQkIHUggd+T9EaF78/uGxD6dd4w0l/XcpE/9sia3Q1pNt7h/Pr58nQ9FP27PTC88ku9v6EeU1+TRV9z8Qs5f49oXf1Dsd7y4UQlWkLw6cFVF6ydXo/1SeMODv2bJoayBbxFREoiNFUQBrgTPbfhhk7CxQRExgIKfXI/juVivMFfqREQdSO0OGMg+NaV+n9FIICPkgvZH8BSU4KPW+7blrgvynxbHFjo9li49sllniO9rMxHaY8iR2+nP+L/TknWUKnwTZLckctl3ujJ69O455LfK+ESuYpz6a7z5+nI7lBSEAQFnj80eXd4Z/qePBZg/gUEg64lt8+kzS2/SvV+zarCPDN+rP5+CWdG3/zM3bb1Ga1ZwOATh9BXDvctzFjo/TY77fuvC3m8/HI2KqpXDeirWMqhsQSKRpkDaCAmykI5CcxCd7imcxWz4L312gjEFXh6/k5rbaVOhcKVkW+Ewc/GfpTbbOwWdbov9Jvo0rqzrF2mL/GPEA/KND9nKXKpYkgT7hZGzYxLevUk/bUGw9ydM0BrUCd642hBGtT3CZg4QgGD37ogFRyPx5H0O7p/Z8VwPiyLlD8sQV9+24xSkD6yW8jtT0ki1c0XiqpX0JLPpaudvcMnWmtD29C2OqIKvfdbw9peekIcuWBwYx+QceYfkf5hHv/5j1U6mbg9yZ4dxQVcvS4LOxulu3J1MmqW4Jo9slzNrOuO/klriKK5STMLyvPOW7DG2/Ds2x+wx3ZswNPnsxl/wL8cub8JXlJbJap8dJxmqLo9TtMlEvqLGyTRs8Az9cVMOshm65RuWeuvcNr233ZDc29si9nefPYf9i4+GG+5DwFyoCx/bHf2TjiU2mkNyfKRe6NDOoAtH+3oQW/iDsCdTcY8LdCR7kXHt9ITOji40keW9FjyTRyiZ+XpCUBQaYCKgwWDIyFbZGlPbkYzDmuQyw3AbkElm7PFxB/BMTviVKqjOkEysnOJ6jlhb/Spt01ZjqiX9kSVO54BNoIzE8YYMbJDiNNmQ3OwJNtIsA+Imfm+SSyH1Eia1IfgO0J2Dm7TXr8fZ/dR2fAE+e7RziLtkv0leqQ3T1KPW83V7BxE+o75y9ZkQ2O76lIoMM7qIpapGuZ8vp0UH0tqOsqivwrm2jMX3zs4qXnOMRUV6sRlpRogXWypIqKP/L4QtN57pkpnTtZC2JKyOKP1muYyMR7iVNT4aydWwyEpnJH2EGvRA8JGpifbvGY724Yi6oI9mmn6Ohf9N0yosegDairjLjfzR6MA0k11syVhqLtPWM3xjD99xPNwp0vwAZPiZz3pjth4XY5DpEU4gq9iYyhn2hBVjDTF0fDIFqbhv8k61EvSYOeunelqJhFFvCOATd+NHT5Tym9bIZTGAWkf3eLjvNk2J3TZB7pQU2JSHlD0pE01wCUwKwsOiaT4ou0ZDNRYGuFIbAstdt2AdmiagpOonPuKCxr2k+vnfkZLH4MTrbkNbvuRuERX2TzYD0I9cZ17eNnOY9SKizi3ijaKzt7wjukBf3Xfp+RbeAOyqREBKIw3Nigv8cU+4gWug02DDt8/gJwykWCETJU3AOSAp75VUqWB9ufTdWqKOM0QQiOdd+0IPV0OMZmIZOg4BWTxTD+vd08TYYKWToZeY+r59bQqn+Tefvshjuez7Pu2ErkC/SkfH/sTJCpRRZvXfHo39GH+/Vi8z4XbPE/X6/L10B+fvyfb9dQ/W7kP+7QbmR6S3boScB3dqRyFErPEFmJEEA6xSPGgmGpJ96WxLdJd0N5OFcAQobGHOeJUYSK2CqHFBRUMYIvKKV206HozdI2NbH64c4LUZDHYHeQukHYGWLRDQRmaNzMDQE5yF10Y959Qu8Mt6fTUnCEef5rfyg/kBAXoLCVK5B/ASG1ZlCATBEGcJgzJlCsKKmYpC4PKFQfuwTIzBiFZhwIlcQeEsLbqSU1KRBAON6aUhKGekRFaGMQ1FMgTfTQF6fW4PxqCwyzfLtl++SBAtxDtI3fZHXRkD3x6kjhQzwkNaHkUzY5Y3cMAWbdsoOArk9tct0ilnty7evG2nGs4I8oqc60Y1UqZDAuvIRgaI3e2bM8WMre8VTWsoXUKpQRaZ6aZFUhHOtMeN/5xldinMvvLFUqjVTLcqmhVNAKi4KpLZP4jFVIqnNQhzWuRp/2tVPPeimlVMFUrzqEDDtyYE/hlJ/TTLIqXJVpFVGKo4dm5LSFehVKq6plUxJYfkSlB/HprOILDk1HjrOr98hl34jA1h9XmWmpNf5t1kj4mI/v6hiYUXLFDUmB+qfl9woh9hAXiAAB4ichVG+K24kcdAnRE0pjxLDwuZ+fJ5d8cwEN3THOpIwE1ThD2ay46KmBQUY4FjcwlxlPvtDKYi8uKiqLOZdBYWmUzBkLT3qf5oMuJEXGTkrfI4mJoO/GZzL64ERcTk4ZzNpLDD8E539ZrMxgF1+o6QWeL/1xUcjscbDKf32i+4N6FCMv5rKZ776LubNknYgss15nrm4AkU8E4kOW0Ibp1teBQJW+jHV4FP99Hrtz9nhNluY4EGuG823ve6z+PBr39XKurpMZuxBRhkiMI5xMahkkXm0pH83Q/pvrw9cf3X6bv0/c7LxL/xp5mTSl/arocb+y2faoyfTDM6nwBny3+CBmxsu9Pmt9u3MX1d7lfGwsD4JzB/7ZSGVrfv7PbekztYwh+T/PFg42n/jbd1/iORzabW+RhyxXF+UbMEuij0eP8fiw9XXny/GUVRayGfH0HF6asg/TvVBzpveT3u7wV9/397tnR3vZXkhTqOPpa/Buo862n996uXlpy+fCSeNH9owPLiSKpmA6OEPBXXX689mnlceISy+jpI4cuamDhA58GCUw45J3LDL7fEsbtWf+7n4RtXTsm5sCCP9SQjPlWf+6SMSiI+nsfpGlkMoYhm1cCC5mYYIw2Wen85El50L3tyFJCe4rzmnRVwOuVDvWicb4iMro9kefw2KJogR7b+ozRHpjYHp6XwmdHQfr7YA0o0wP7yr5PdzS9923x3HqsNz1u96kfcjWjYjpR2vhkf0jA7Cn75v3R/WHU/amfnX/rXu/NHlGGfOj4cecHzKtfm625VhtJvRdnlS84u1ucJzMhBkdWHPllUI1BVx8n7ft27QUNCKqBll9k2Nba+bUS3EfpgFAdoJ+u/6LYPzq/vxPMKnSdom0f/UcEbwJEJO8GoWh05ovLwZE9yvFJUDxDEA6S9UlGKv0vYhBZFJJPyi6QxEvFCQkG0tOk1xSSISBIYjmN5e9NRJOmKC0ZEkJAJGEbwOkOJ0hiIa6Sra+WF8YbTxhsbTznbZ5y7T7O6S8X8YhWJIyIPoieTc21eSW4Jlod4EBvMKsv2iCuS2XwiZU5pUTUX9vIHoUKiQrM5gmXL5JCM0mF8GrQ992q4HRik9zN6Ss3TAs9xKWFBIUm4UzOyHl1nz0Tnd75UeXbNf95TzHr+5vb7L+qTLv9XT0N5PGfk6Zk+pyjolJYCgMO5tcw5zvnRClyQ58DgJSSfXZB5eZSB2iSMkSIafYlxSek+6JNMjtfIvOxzMTs/8azGo4y3YazEMGxgqnXIG4aCIrOISKJ4+2RvlmIia0z/Ck2XTu5DNT/ntn/Pr9ltOXOFvh5Xz2Och/NP/oz7mn3fLohgnt1+Tved3eZn+admuDH4k7ifJ29vsdHrpUKDEJBAUObBDqwAeFNp/KMb00/xOfm1wvmFrR3TjTU49hTKUAHehziCjRBBEYQHrlSq6IKLIiK8RBKRQ5OT5/pTWryamp7TOiCAyGlIMgPWS16CShyXv6Tb9czrbvRCe7H7UtAWkGd3mqWl0MrrHOxMGKVmcfNOlzU/utkZLXO2srO6X0STNq3t7e1uxPBG5GN+STWMnz0EjnfikYWsBO7XmLMEK/VG+j4J+E5KA1mzLCPVHFSOlsJTUQzcygaEcE4vKRzksRzghUaS2Y9U1LddgVFEBLsBJEEGIRhGEDVtxpUG0MQOcW78kPpYoENmAKmEfDQHMUR3P3g3M6Tnbvx5ML2Xo1xVrG7VHJ4pMCefFnJ2Cnrfb5l6k2azYmZMrSvwsEcc3C2FZaGybDa2IxFIkWQAbphtHQHQqiHHr02UEHukxwriWpEfBM4ByLeCPJEU+9frReIqZ+4dSElXVhPBcqmULQSrGsNIKYJBaCckXtCvOlAMfAvKept0hqGcBFDJYIZkFYXbwzwNy5+hTC6T1DlnHrLTvto9V4Ctkl8Up8DvnWF2k8Gbo08ly2B3xuJwQAM/ZQdYA5kwiyA9TzADAgPsiByjEFQ6feXhucHPpyNdp3MJ5aKaIatAHciIg7kbcYOZcEBeMyBfgvHi3oNfKUxefZltdrUonhXxL76hQdUkMkRPcEUHIRTii0OA4ynEOYIkiA+YK7R8xcuaToohrB9Qe4Kd0zDnInDkxxgYx8ChWPy6Sxp+5myNjB6Yr6cHXzU9Ljto8TRfTmjB7wHLEAwgSSfAYERXGTrvV/D1IveKWOvqiuQ6Oh0wmAnbIqKeyKpRYz2MyxyRTseYU8kXkfNoshqWA9PZTTxrvYDPaBY5LBCPp3BVHEqHZz56sncN9N9zdqYFeDrpTl4LA5jvBSxFDmBDLR8QgeyLaOUyjSvo9c7bVszXbxvGvcwmYTxTVfXepB8JFtagPBOqqbNIZx9LH0ieIhFSCJvEkATLw+8zhLBobbNRrBTXihYNWlgXqQXkgDdgoHucvatpOK4Kx9uXnuI5xDcK9bjYNIBIJ1HA5K1tA5nudCaR4NrWCWdQ5uGNaHARCgiJuEVUZProTh3ggY30+yF1aQLDHdeDz1wfCQhbvksG/qx2FgoPiC6zRxmxNd7ZwrUoWEAXcNZSJSNNXM8VT3z1YxN6PBbUtxmJehtF5kOsJC7IrydszBg9b9EskZtMZDWh11A9mWAN1U1E31ovnk76OedU98Vdt6ZLUPAy8e14sJ3abgZdBGyiTxni7MwuFnXjdB5L6mreU1dGzthxqahTex4LiVrmEaifFxR8MBRGwZ6WOevUs6wTQJfKp3TllA8BoeccyHVdfcB5Iy51wJ3BumMeYEAaYBIhnoR+RLSiId8UmseDNF2AAuhFfCqRek1M9o0C18DTsvij8SoY5HLjw16tQUBNoqCchNifNjrnbdN/dBbWvYJgES5EUUu59bOYazMcXnU4y7qc53VN98qauOJvo+M96D659fTq47+WoUCkIqinMF3ivdgHgj8OEPQfSPnX0IAv3VTIeL19JvXHjn4HcbfHVeVdQoXfo4fsdvGcYbqg9D/GUcdH5jfTWhg+UKDlDZg7kEUHctnU7nMPggXhz1onAVrV0fGx2YecfJ212xovs5A8oxA2IivEQETciFNuabqDg80RWnBRE9RVU5ICHBFFfE3iBZhkQbxQqIgDk6hW8ZwKezxS7owEH4bFAHIkH3AUO4qZrEAeT4VSio6huZ57cWDpu0o9oiqm0ROIkgK1ko6UKRaLiyIhl3ZOL3w/kMi6Tehglg4RsGCTRy7RiJiQUUd8QpweCoo9xN29FPx15x8aV2qtqh40rsi8Yi8McROTRfOuAnUQhB9Z4KpV7ycQ6cx/Q3qs84AMvkr2Ecdl6fsrpJX0sej4QjJkD2I7uccLtKFfgzZahB4rbFxiEjuyA+MgU2m8UHUiEj1EcIKHEUQ8EAxb3swDMV6Q/pnDlJI0vE9NfXD68mljONhBAvKx5OVimNMGkWywmoX4OiL3YWHXc9dzodjfRrkXfthDijwem4e1UyeThuXBUVWxeTlQB4CUkjwZOFYx7uClaDnAcZOcLsdw9hAeUemWyA3dxHYHDGCNrY50c/clBbWdsIMd9OIcL7dhCEK86gJM0dlkc++OxleSJReigNkr1C4E8nGhZMkHggrg3pB7HWhfbEBukUC8QNrdwshmxNoDqGVOQpTlB3YgKnsinZlRDaKNynXNgsWMnE1tyeFNMgsGXVDYLFn07mAWM6YPCmdu+KFw9/Hrme7vZtbXwaatCnd9qjZSOIWDQ8WyZYj55OgLkL5ppR0ShwFc3itIk0irrEA6IK8kxhC9G8zhKpQCWS0a+zBr2CkmEufDujp6qCEhIAMwvkyHs0sKnwGjlTy/1/SGSSNhRPKEiQW/W6WO5Rdkz03uZ18qp9NsYZksdXs+8bsaCJ2YDZDEO5EPpFUB4RnLD5E6eWjqBu2U4MNlz4jJR9i0k0sU57llDAXV9NI4spDSE2pLHwIvqK8CRTL6jIlI/YoA5ivk9PHOO+mwdzrzrS+l/npth9HOwWtx29LsFOajlMZ67uBwmOquAmNsrhpyd4HbLIc00+IheDyeOitYQm/a9MkYSqSQ1NzmSj0d6ApSK6w7GNdLFiVAq0q6eZ6OxS7wS0Q+feYUay8nk7kZISQ1xKtKv93Dr4KqOOBPup6oK8+daOpUkJL9ATwwVPBfck+w5T3zRtAO8E4NzhnqcByGyqWep4o18Bs2N3KlBwqndTtrobUdDt1U5Ig8QB9MTogKqVDmg5NkKc+w7eHAcKp4K1YliHWPw4Ifde+PUET74oKii3g6wDmCHvvW3l22MbopDdynlJ6DS+L8R78VY3qYtaghgcRp8OC2NhhPLsab66ThzQdFU8FEy11zW/d5OAri4A87hqqmJXY4TZgAG8RRS8TKEXng7tnUMCG8ALG4djxy6YJ2oA3Td2ETF9ImA5VToaqJ0cQvSnMFGElX5ZNptNh8Y/LHjE2G1eMBUVN4COkHEUHERMRADQ41MnZ7zhuGCl4KE2Ac24BI618PNJ9IKJPi9YPXia8mQw6AuQqTruQ3dj0nwWUYnAFooM8OSJY6MiIqp2EVUy2LBiXPLu7lyz4joQEAci9AOzy3xsKhGKPBBQH3BEDWX+lGNvL4NhWvSfG2QyQVUcBgIqF3a5aLn3n0S5u+SJftaw9TrgKl3M088W4w3sm9ThuAAsR1LrXmxQC4nvxuGjbC5BXNiKe5SKsgoLU5koKgbHqNYbl3DQIQnHl1K99lL71a9nkpyzL43NcEmZEeVZ0nf4ZM+1Freh2GQVfK8ITGWuTZHcjuxNpwwEQdttioUChOjvkwv0hE6R0xfi573pJfg8532aenDmL0RyHqCe2XrhywyFo3f04yony6cNoXdYGNOp4Y1ERxFBU83pQ6HNg1MaFj7xcz5LPCRA0hoVOiAW8hhYNOKUGkz91Ds1DE6bB78vZgG7Ci8lwNijCwdnHuMalHjHCyuauGPRYKXnMr1S1AkfUXMKtUhzHeSQivEC8kBKkRH3AXlmBA1BYiyvwbDAPyd3+91g+eeHPeywg4mXSRsGF+D9mrRfXNIbApr8cYW2EE5ioyIr6giIOg6Oyuz4d8AedYXLaw44etml4td/pyW/m4BqRRzEN4fYKyKL6Txhskh1ueLDgij2Y/SAr4CIi85aVnQzyXvixe3Qa5X194viN7o8bGvXnczPZ6Q3NHwxXspRSvDQwijWKK2igrxOIj7DXFwGXnkLhQxZ79z4haxmR3iaQxyDhEOIiHTB9EBRDyRQfhiPM19TkldCvqnwVr1U5Qz2KDGMYE+VdLFeOwV9NA3FfUEF4GAihnFcUaWMb9xK9hl0YmvOgBeAqkgKL2IOM7nZvk7mXQEOYoXPdPt7CVg3p9PLulobfLFzvSjeNRHzEH1AQ94oVfMQxLxHtBBxFA1guYOkF0nm5qFdXpyNWzSHZF5K48XK1EQdYCK4oXdT0bFlDIkVTXwmIIIn1CckzVL56FLyOwX9aZREHUj0jzeh6QAy9wpDk0aU54ah0fpRYZNSlPB2MhkC0TbSF4+skNSCjuyQhIRCQIxIwDNm2WWsza+KmRffWg6VhPqhADvikQDrq8wK9PlsWl6654DnlF9t6O5j3wUwJzjSwo8xQFKxEDkgPWvzzXgDaKcgbFqckLGgd8TpBN7UCKMaJ1sWsnGlAy8HO2oXxMQ1N4AcdbW4TU39Iubue0QR4gK3IhhgbHBkxCEER7iioWhWK6XKOjgOLxDcwsHsy9F7ajBJ0Y7rjhPDOdZc7iH8qks+mRdQhz5FaPCFennrv1osnewdjzZ1dykYQOIACZiiL3IpY4a46UZkUz2QAOsAUSyMQsbU6NeTq5OxQb6ZLEKLGSBde/NlQxEiCI5ew3w37IbBIBxAp8UEO4IqnsiHETsed7GVSc4D4Ao7QbQQF+0ZO88bJx54+Ou+ooWiojyBnWrIDkNtJ5DPoqyRMHv0V3p7WPAUwMEG0AD7AWERGxAAQ8QQqRO5U05zXjMOTSlQ2xtl59gusWMA9l3NNyBsQmL4Sqbx3Oxrb0CqNyFdB9Vs8FIerFnkudE8IYdHjWbWF1IIKPC+iChylirAa4KNhXVERc9snnXSrFTeA5MFEHVtHb1V1DQPH0+hfc61xRGk7QVA9vekFtAAyMgXTAIPnHUowMR2Kde15S9OWvtaogo4CvREPVpJCblgho3KAE3igKdMDIoGWGrOE8WtqWILgyc+FpiCI8xLx6hDO76CuxqcZN66FNX8ZDz77rg005OX3y0PPXk1OQ57m3gSugVThvTszw4OyxgnZrie3v09uGl6gZ57Roa5HVjBBB1gorQ9MMPqk2I2wcWOxbyHUhmaRS0EUHJAeZ2g+yJv0N030PL5TdznOlkvcoLHbnKqasniYccvQzrwbvFtzU8FDbE4dH5YVFa5wjhJ+Fk7IIJLPa6DxYh5XljSXPnVIgG3o7BT2WewAXIiIpRS74sG6iQgAvxDSCqh146FcnbSZ8loR68HDcEz9At+QDig7HNPIQ5OSl2SRl4mXZ4xr1vvIVWzPLJsdD5CQnyW6x3ZGGXaXQuLR2NHgKnVQQD4gghIqI6E8Soa87bI4c5HjEmUME4EeE9MQ3vGAz0CPpTx7OaEa64tCeEeTr4EIkEx45+W4ysRcOVpCpGwYudpqYMQH5goVVNp3g63NfIRUP2qEMiqmZK2KVZpQNkSiwggiBFQ64Kp6OXgLjtobcXQxWnnFzQFBdEDNBSio0qotZz3LG5plkVskuCqMGMEVHKA3MEzqAKufjrdFQbTMNBgFpcJA7hW1NmuDYm1fbglyFLqrlZMqTIbhMSZQxSE8LSaYiLipvCLM/fdsHZMJIQvowk/u0q5544OVJYZaE9BxZ1rOjVaB61uIQmkICQtaUqRA5S6CpYPCcSVHeFZCkhQ03ThaOXY0p3Zq5ctgETyKiBIqCpFC0PJnnQxkcY442bma0QSZhK3PgOhOhMhmtWNlUt8+d1LoyO7odZFVjF2pVTtNiEdojuZthm0TJtNDbNNGtZm0YRWRGRjCQkhIbaKorQJvc22MODqb0mb4Q4dcQgSBGRgIq6rSVBIESGNm8VbXkSqWqFCQNiAWJiLtNSbQFBNiI0aEAmwd6WxBIkV59CqX0vkQrk28uPg8D1OGG8dCwoC0VGoQdYFCKjvcuqnGdtqVTaAAaJEG1qA2iAAZYiSmokpIMBdlB7xmrFuU8KybWVsmCkmyNm7JWXYiAsmTBC2TKS1Fvomk8YLdLAXl5i67bhOTT4RhIWNhyudc8UtulQchwCQkqBgy0OkkccA1lFlQrmXT+wwiWDZ03IjpWti7ShbW0YUWKLbl8XybtL5W+WtZaYzVrGssaZptbVmltZra2rLVtM0xrG1MtrY1tmtpmjVtLatpabWWtTTVg0rWZrW2xo0jVjVTaNpsZti35lTjCFajVNapbbIFzAdYU3ZtmbZSVsWW01lZq1fE2DY5ONsGTTQyMrY0zfR+Bq1GIxISMYb4qIbVFdlQzVXNJdkQZYq1lKGtRXaF0alVbG7bbJszZhZg2VFZWbW2xaNNY1WGDH6PclGUAssBjAFcwalOxHRzXOUh2qIrAW4SjaGxaDIEjIjReIAjag2CqymbZDzgm9Tc1eGo9YdK20yaCnS3Js7i4whSwgBKWRwwYsvRMhqA7HAG2QhAWYIobMdUYaExfRFNTQMEDZmRVQmfKKYQAlCgWWdVhmQ+lMRitKb2ATLlaFS0QAXF7hHxAxsmS1B1Ju8GGSyr2h7dJZWUuOL3DJKUsU5hKQe6zLE/l60kAJYmlZkezQ2rM5JGkbBtBUGJpGyqWUUX3sGgY3DqbZDfBmti9UZISWbOAsrDA6ChZl3VIVCbRUEPBWB3x0VL5el6XjwNsjSlNabaZZTWxZrSmtmaWzWm1o02hbGMaGWzNGwgZpqTa1ppmrM2a01mao1mzWmZittNWsa1lrVVLWWY2GVa0vuIK0soRdjWq6XdUd2NktmZWZppYwjFW05NTc3xgOnBuYydD2GU6AKoMgioEgEiDBQyGa86bnJs9A4cuh0M0qqNXipW/igojnKoAGQgWwZoRU4g3IKaxNcIJIAC3gGwMkBplTKQoiaO6pGRGwJ1jMpAkllyybBYZCQhUIdY1FDqx8gwFYtYMrIV+iMlDYCNSepWeMGhrXCwcMnEYy4aqNJZQgBNsMCHagYRp7BstMSrRp/aM422hhAklIOGhwj2aSOXC3Ymg4DgMmwbMKHSDNOYNhBElB8xlEFtNJ9oUEXK05jarRBUFSGskKVdqaToEL0CASVtUimD2K+X08eIlPyZQ56RDjCfjoVuZ44L6hyFKgVCEgdBEAHNEh0507KQOZKV0xW0Od1LMU5c1q2tmaraYxtGZttWZozY2xtvXunsdXp7oxhwbnA9m6Ho3hlMKoDr+C6naDcIjbHn6hYveKKprAD3l7wsvXHTKwky3KcRgD2dwQCWkhsg4ZosYIu+1oUmChMXU11qIFqNTJMFOwZNVCQRGRVAPu+M7iBaaETabwAV2gCaYTCHA1JQqvm0JISmQ4dPWQNMtmTKweJ1tBYWMkNkSVa+OohGWW0z7WSL0tSzAAJQVD4MMWZYLblGM0cXK5gfdVxUq0Dgsx4rJkwWODW4XdYQBUcEBH5AmZCTIaCMU6SRCSRY+SYNkkTSyrbIVcgG1WIgSECy2EiJJMkaHfCkJTeDVsthoyWysWZjTMbZmYaaxaa1qls1mUyaxlKm1mZbWoKzLatozWY2zNn4xFXaqB0s7CVHaQHYV1qdqNxrSkpJBhEiSRJpYKlcjko20205ydiO5jqZ+c8vYy7WyZjM+yqilmU5ioO7U22rGsstrYy2ptkIkCIeNd84AsTHVlM3NjQ7GIIi3ijgkFTKICXYKG8EHMxbqALeqfJyeMbDMMZbWbD3qnF11pXpdTJvkwl6gqA7we7rvvlyWuRkzlriJIgGCCScaihEiJlKM5KACL3vLjW41vZFBaxiGo3jDhmsVUHYimYGNe5lNqISmIeoooPWJsERfQQ+8qjld32DjnRyx3O679NpTQZLWla2o0CGCb26nVZRkabxs3hWDlRWt63W3MZQpSJhVUYlw3KNXWlzQqK6m+RBVxpLZkoWDRtbGEyDLmdhIQF6ZI0Jmyql1Us6OU213IZNm5NJfGbobaxHdHgjsobI2g2Ab0c93xT1MNncu6uqahqBlIDAghAjEYkmbMs2bWZstsZgbW1pkxmNTU2ssm2W1hrVrWtsbGtGMxNNtYa1rWmbNbM00qGsQafcCrGcxU2KQ2olbrkoO1KdBRBkCQkYjAgkIkFYd+a9Qs37GA+5Shlx2jmdT9MdLv7klfAYJcDf2TJ3Na5HGacni1w9HgB8GDFFTOCqu5xwi5htnRPlO5Tk16CFq/IUowQDNggCSD5ICZhw0cN9rV38BVHbaBgogbx+Ir+MtHn5z1u22mcl2y9xDiwcm1cRSBnPU3xe111eOeLuJgWPOT2TANEl4pqJ6JR5/S5BvbCu7gcYlL5b87758Rn0yoWYn3353A9apo0fPH3udQV8c0ceGhCxgv9rbmGj660IiKHjTG1bbB4CA1T4NgA7IKKHZFQy9FA1iqm5cO966byE5vTMxtjEPHFAOIjWO0FRTogwgb9lA9w5zKZ0KJ7geSG72x7itGvwFuzaDqVTqrm5NdnRHSlzEOifD4NFdGcEOpqb+A4efpiBcIIDyRcfHsfk5wAp7KttMwdTLFNIgI97lFD2qk2A2JQPxK81qqT54h8MnoaXtHGvLg/BBwi5lAfGQSJY+lIgoHct+EgaqrkiL0YIgnoiPMC0UKc6Hw80OL/CbACLaHQRBUG6iDqe6HiACtm5AfSRFRS0FLRRNCI/KBkRziYEMo7cZ00DfWFZfiHEcYCqOcTCHMRBVC3Owahp11pXow4CclGyXbe6+/goMaHSldB1SEQQPv1ofMOsBC03pKK7kXEh5geYpWogvshkw+UEPcUVDLHzzaxzxAuSEe98EK70aFQh8tOcPLnSx7PeG+QVzF3IFTXZPeZtjp17D4VQRVETKd9KEVHemkweyk469LNHfXoCbda2ClNlVUAQK/GWwdY1NgdolZeIDrFQU7EQOifSlwTO3XQ+5gcX5o42p+h4PpUBC0BeYoGqTJNqGgWK0NDPAMt49egIHg615zn7jGaxDeDDGCBgtpG7H2mnx3KrQbdoPJL3OIVIc/irlwo331OOs3t6Ofx2324oS6qXMmu/Y4SkbJk+hBewnHizPZrp1on6fffyg/DiWFll0deXXjvzT45ZxumNsY77YjPg3TxyGpiXXmIV4aCS/gz+G93M07qHoaabnb1oCceqVQ5ickPURc9CkR0IqLlGG4ZuXNt0tm5qHiIkiYPxHCF+u64aPZYbkL5bGEOYlTzpcrU8hMI4ul+oWIl0lMhwMst92QeO3C+nKNH+sxQVkmU1nwzMveApJin4B///////////////9ggaPQoLYGK6++bPoOAAHQbDva6PAAAOgGhNsBADTto73t08BbLte8VuD0dbeutMGnXtvNBgyK968XneFMrvehvA72NXeqnA9XvDzO9sivQOu6ZtlVI0oKCnwBu7gGtmIEbV8HvgAAAAPQ9LdQ4HdBbFAaIvlUVo0BIFsAGgd2p0AfbQ6yhVAaFDRSgAAAtMG2AAAAAFAUAAKAAjy+4AHQPersG9g0B0ZHEAAArbBo0ADVsBuc46ooXZ0FAGdg6UANmNDR25803Cr056eBoc6danAa9tw9boLzpA4OnTe7byteDw9ZsB6dGQoHXwiogARoAIARoAAAAmAA0ABogkiGTREaCaqEGgAAAANAAADIAAiiYhIoSbU0RoAAAAGQAAAAGgAUkqIERk0I1QNGgADTEA0AAAAAGgiSEBA1GmiaTUxU/KfqU200po2k8ozKZ6mmU0ep6jT0QACJQmgAEKlTSfqn6kAGjTaAjI0MgA0AAGZtDK4/QHoUzQT0OVzsroc7c7DpMj/aMOsDswr66dvs+loto9A5Be73u54qfvzLDwS4zZSB0XJegKvxT5m5JO7nVKpPsfd9vNYgcmmI4mAXkAqgKinDAGsgMijyIe/83+fTL+zT5bCG/oUh5kAUHBBINB1AsOe/qk3lvGFHvbnXbifVKKok3hMw1F/quCTPSif8eJw+vLnnlKGXQQDzBk7T1O6/LZsUOLuv/fKXRgiCHF8cUi/HIJPw83afE36d3yO3Tqknfl6K/lwsaDm8j89fc5ujzkEfVj069XC4LiWYy559H3/P1q6ZZZSnJL9ohZgoj8m5bjGlV/eXv+7ze2ifHI0HvR1NRD+gXpBkUlhI13UnZzzMkC2GwVU2cGOXORLSbYMPP5BHJOT4/9Zl8hLRPi1fzUZGfnHS+kgkvOwToYIc/Ad+7ZSbC5cSIgzaZO/VR7jqlRu71j+6b+j6/pPi6/pk8GOJ2+1nP1tAfv99T0VbyHuMvn9mwTmn5m5UQ1s+Llyx2y0TfkCJ0GzQ9DAcJuVdx/fr2+TZVlXUcs6zzu1thyiGsErICOuCAmmAoDrYTnKTr+it/8fZ8c8IqraKZHuVmGWvxs99TIfJrljKEdXqk2tJtEfuftHH5NPxPFtwxZfqnq6QG7lvZywrokeWSZSQtLiiQ+Jjktw5C2bmTuEtw3FRBwFj3De4zMXYuajb89/tHXR5SPsR0m3Xucs9h8zOjm7huJkV3PAbdD0pTOSQ3MJOK7ZXExIwdBAJwMBzcAhPXPKe5HKfs+KNtqkgH7R7J9i7hwCFPoPOjkBmR2jn9wwB7jT+UbDsHS8xRlZDZPGH/Go3SuY9CO4cR/xeeQ0Yf2B40eT2vUcZ/jm5z/HyKHkzR56eD66fysQ+kxarcM7sX71MgPoYaxQXpFLJIjBf7b+H8NvxniKdWOT9D1Ck0oNenU+nZ1DbDzIVqjciKNQBUNzmcOObdzAkwSUc1HHQ3U7qvCoqoY2ShpgtiSBXQjiZ2BEIMQPKH9NjGC6+DXO9y8amsSiQuSlyD6rDjcuG9NMOn5TSXvRMc+uWOhvOjwZ3JYmJnLKkWSQjpnSW4BLtk7BkpzB2fpQ1DOCBuGHZRNZWFdM0BMuaU+uTtRbR2nY2lsras0OyuyszNG8cdh2i7UbG3Y1GQcRHaKCr2380tcDh524mZyp26VpW3bwnw1NhQw/iujm8PBpum5vB6/O5qnZgmfBq64nx8RgA4hPYgDzqljU5Djeu/dHZlApJOfRytmoqlBbhkAk/TpPENN1SZfYZPmpnMpiYB3OCRNU2OPy+EocGOLEnJzZdsHSrGjYxLxUQbEVDdIfS9j68uzwnoVHjGDxT1nMPrlXiycVobCAdRQCQEeGIhNaNtCydGnsacvNCZ78OgcZSWPGxRLZFnbLt0xyG0FVGb7VKTiWYYTvzWuWTx6O+Pte/gLGUy0UltVq1Un9MqkVsilalWqhSlbSzSQTZUNrVqpRMxSltSQ2oW1bShItNRB2VOsUK2VbQkR2J1swgY0sZGapNoiVMY2C2UCLWUUtYmwtrZRFWZIs2QNRsqtZZgiTUVWqqSxqplSWSNqLjS7UEhsWZUQds7ckoc0q2oK2tkSla7QVaJNIGwtrGjGjZtUzMykrVo001pbWWVDaVtbRGlqlK2GyE2obJbatKtg2ltRtUoebU7VSXrj0wKK0uVG7fKyKuUUhMiVooitKrjKql+DPlMH4tUXq1Qk+uKvU0IjFFZSISY0khTLVJVPoaRLjFU7VJ2IVlgeTQBetlVR9L58V6NQ8ZV9cEr7TFFDOZwvEECRRjGMShVCiVhczNyuZBRFyetrcWEoOtxzblxNSXcOL3NDSGxYChwjsNOYmq0qgsDTJEAwWVbsVFTDdQqQwSxBIq7lDk4MEzdCh2NSI5rhBBb28waDiWEAW1gECU5wVbNlcGWVVbRDChDQpdxhLmUS8GjuySCIkksvhrT9gCk0mBAEO3V3LpcIUmdNBcs2L2pERaiE1sZsE8LEsIwPXTVBBy79eb2RuQhJgJMmwFRkSXogYsFzKje43VrBqEQTceF6R4WFnCF1GgjhLw0SwF7VCW7gQl0b5ZlhuCTpOQURw5w4bGu7TNhJAxEdznO5G5qDe5nm6pnmsSlJdpBIntoK2xi2jbaqFmU2AzbSzVVMxSqxqWTC2Gpgg2hjFrSlW22GRtNqZlKVrRGyqZki2CayU2lmRssNqtSjaG1bKbWaSbSrWo2SMxmVSwyZiTYVrUbDNAbLa2GYmxrJrFsoVmNo2GpRakVtoisGyJWwA2ltGwG1Zk2rK0ZmbRqmZTaS2qZg2bbNoZjYiVmMw2Qq2SsxbM02zDbZmkBta1tsmrVAYMTZNPyuYVK7p0dqHMm2wtaRTsqiaatrbtSVdgulpElndQXNSrtdoJZkUpmqo2RmaWEU1OymMiNpasltNrGYyWsqbWxqmNNRGyNaWMoikhFLd3GxhMMjMUQS+xZuhqmVFr1fHt6eXpgTLBVtMYYaNvipDGqpXLnFtEKOMUVrtwutVFWVlVJpaVQbIgWsW0EK60qq51ypE60gVsrZHYOxVCdHFmmYbDNUi1qrYam0aqmDEZiLNaxNk2ClpmMtaZsxs9Xnnznxb6aJghMZqygNLRquLRJRJ2qUAfBjKDNPWKGwtqpMw6OdTMsszLWZtrPGuz08+Ly552vPOnhusNp48eQK0g8Vtry6Yd0by454554bk8eK8jvBvN4NmBoTHOOLJTsUI4G5oVUYUQXyiHC2Ls7Hyfj9m+2Y7ABWvNeJdImIWN0S6pyMU5svEFR5DNUSZQhq1zznRmNNjJUvb0a9UfF5k8PfJNDRb1e6dWhcBQZvq+2C9yACNwx4QgqnHRJ4w5p4+Bg3Vcne2jJSDHnnyIsyZyQYLHoUVBq6OcOzahzcFTO6OUoaphdQAaF0EIID4HD4HXOc2KqPE4WdqhzYgq60FwYeb8IR2Bq9lcIJoyUC36xCnDqPjdEEEDvvm/APN3tuZEOdLOVIfXk6mJxNpRkIxEW0CsxNkZk21lYZjZmq0rTFs2NqtYbNbY1qzSa1lptZatjKbMTLVsNZNam0bRbNls0baxlpCtTWm22ytgbSothtpgQ2bJVtstoZYG0sY2qjG2JrWjNZrVtbW/CSKbSqkdpSrtSKM1FLaq2iRW1SqddsZNlmRK2oK1pa1tNqaPdxnYNQ8WMrkYVo873RgJCEUIKGxmZtZm0zNps1aSLTamtWsaq1IW1tRpi1MkYMYKkiBCFoOJi6JjYvB2YWatCElyigiCo86BoMgQwnGztcNrWyHefZeyMvc8kK6FV6WszbW0GWTLUUXSiMOpKCzWyxUUagBkGjC1IVcg0QwEajJB1dSyoo2AhrkxzLOci2uww4wc4XYLfIjUI5hLlGAbYfZoLO7hS7vmBpsgRFeQRowGQWjCVkkJJZzm5K1Skp7zWVcf6J7NzDlCGsHLPbXQRBdrXxIbWKqIjWI1DHWEB9JRN7dZUWVoohMAPWHanWdwzDcbOG4aZs2MgsAosiG7RDGxpchTmaufBMVHFQ2SBMBfOeYut2YAQRPydMlrXmc1nTPOW1FkBfnRe3t6bDRnEtNzz6E2qJlY1WzbRStUaAasiYza2mMmtKK2VmUla1bWtWNYZsmUbNqGmZWWjRhrFiqWja01NstRmVqbWqzDMolpjbbLSFa1LYtNVmU1kKtqlbVtpizTWzAxCoRAMEACpEJIFToDhmXc3mcOWrjN1yKHLGCzIrCIMgCoyQijMM2YlLDVs2gtqCZlrSozNNVrSzVatTU0sxRqJnhwYvcpZUEVHu1aYPTBTRICdQV+EAUT+CAG+xTVytXQ0CRIEVsaiq192O1rW1vLevUI8Pq5ouUeXQzH9KpigImTUMtWvAkDWYpYfCQAlsvwJAJcEsgHRfOsVQSAU19rvQUbU1yEOEHOEiojaY3Zj1qyq2Ezhwp+eTbi8ab1WgwMOwG9ML4aQ1ZEkeQTthPIO/WJLO9zy7F53zTzzKpQzhFjCtPkhONBotNGkQtMpSQaYcup3uNUmeY8NI108ww3vagq5ve6fHzHvLq8uc71u5JpolhFwQgACyBGBJIwm01k2UVZglZW2qUszGmtq0xokts0tZs2raWaWstqzVtVKs1mlsy1qjApsgrSw2tmaZkKts202thtUxtrU2tbWkKMiMIESSQJCDjHmy+++M7oyXub/Dy8l93yPBKWbYmwZltTaNSlY0wtWTVrUxhtmZGrRZtrMrVbYGbevl83meTLncMSFAyaIFAWc6V2rNrkWCUsbCFrWjGZpKXeHhHl5fJzaS5CIa1lZApiCI2JtTdxpmbKHDgaRjw1Iapk8I6W4cek2HSw6Jj2qusYUp4QUglEpVWClaYWShqU1NwEC7h0EQCitx2mmKrQEvevLLy4DFeKqLeuPXXhtUpYa56eFCu2mFZ8MNKCrR5sQOzWxa5gZG3siGC98RilmwuSNslG8kgMMioH2MqNjguGu7qkTM9bOea8DmmzvQ81GEF3IHlW959R68zybh7uQlaNJq08Op51L5EIILEDWMstZtU2tWxJWy2rSbWsaklqwyZmja2qZpMybKmZbW1NWbCxMWtq02ptVUtZq1NTW2xmLVqorDQpbbWY2Nk0yBhgZMjLJS1hkEVUVhEMJF8LgrJR7vj3vb4cMGwahsLUaFVrSbUMpmYZatqlLMNiMlzbO1+ZqaakvhiXbDSApYlKusAU541G1ilWgNhtatUIKECzKhMIKuzBA4ij1kNoVS5F35aE2v0LCV65aIoDyTOiIjiMSKSbAtok3VG7j4+J15+l7S8X2yer6x6DDxO926gyiUaKFim2EseLgAo+wjhDUEXYh6TwOOEmMA/PhVlxiCo4VgaSnbV1s5OcDA3zLcOdIvVoDUe2HaHkeWlAzuzAw02dZaAVHT7J5z06Pic2UkNEco7KmpPShXrLYC7vNbzpmnPgRN8gfWg1wp6eYXUUqE1vRnnOc88kOZSeQqG5ZshBUaOoBNQYjDqOFbzrzznO53uggRUZSAepopPie0+PXNMZtKzDNbQ2Vm2ta2LaWazJo2bZrLMhpamsbTbZKlrKK001szamrDYqltLY1hsyNbLYorajMtami022WtZpAjCMbzUNXOw1rQjrqmRlcFBM4AgBrBzz10LlPJGmsUrRFIMGSJJCtTKzVWWKKzVtVrCzUMsZZsbSyNa2Rha1rWmlrJZpbaFVnvnotLW1uTaaXDA5rqUuigqwAVYF6oi3sBXlrnXNIVsz08KO56QQnmCTJ3pbWQ86BxKU+Y25hFJtJZxJYtAyHVwIZOFQdiKCDgeo0Vvzs4i2MjACozJY4EhrcnDZWcwFDAGUkhBkByNjp4w63pE1mcZkC5FCQ00hdNAILqTSc0XcHcDfTToDdb3nwOhw6c888stNavxgousGSrMkhwPL0QPPOGzDJK7NQzIukgrUq5rNRrFYGbMKyuVPan0VlrMs9nXkUXuqIuLiVFA6wOUSorIi1C1qEBOkS8EW0BrpStRBOIl3HVNtk4sGCxQkRkFkBYhGQitjJbVZltbVTYCsGrMaMqa1WTaZY200sErYMy2DalVmWsmLDWBVjTam0LTGmDDaraAyRgxIQY5cY1swAJvQrxjbO7hTdH29kYPTG2Y22Zo02bbZpbWDNpSrVW2aGWKpbLBGDAhFjCJLkLaJHaICpmWdWYTMQpJitiK7AILIXDNKN2xZCy6tSS5Xc17Skz4Xx4njVpm0hIqYmhZYtgVS1gFRpA1rM5OAsmhhGy0I2svdIoxwxIGw2k6SNGsWQnhgT6DdbAo7x2+gvJs0YoHSFVMogolLurbJxzKql2KCt2IoXY21II8hRSULa4FaXPsGqK4728L8cUrQdhd0u+OO2shVmW1Q0llbvEbK0KiO+W7zhR5ujt92fQhssl6YUVtBJQOcqlMzOd4ocgFRYA26I1hudIgEmTXjqt6k0mFtb3NbzlQjJhE4RaGGGzDVtibKktZjWtrWyRWxsazNZpkxtaym2LW0aaNMs2a0TaySrLW2zaWy01s2zJlrU2aNMpqUrNsxrTZW/Qrs5psjXWrLWEqzTTGrawxs8XN0BV1sYDHfSmt8Nj0aTIClvO4lJWVms72tfjFVWMVY86L4reuSSEBJO0YAQgCk5oa0WMSDrLmKpbVcaSraVS7JdGUWTkZrZNjKzVY0MbWGs2WYkiMe5SBykRVHao0ITxilCWq+3m85tsRVsMzLGW2qFaPfJZSmBk4NI3W5t5WwEyVDO60BtLObq5JkwQjJoc0vCuJBbGVpZNBWCENXgCk1xTGSwKAIbZN83gO2jt+/Mhn6IWtOFeYCW0aNTtDkWO0hdJHOcKVIEI246KhAk3nre65yr5vThab35s6QprsukM2wJISTIMUVc5GQ5SgaMlKKcakLCULyDdm9GwFRx0ThYEpFFBcaQqIi+XcFkAXCc3miryDVY62kAGMQEKlZgWmbMwmpqZttaFVrabGsazaxtqzRjNmRjZtRhmRlqNbMUVltbMUVrWlKs01qZmiizVaNGrLWS+qKUwitSlOaoZoA0dg0SmIxIEAAWDEiQjvd2tlrWu2eDbTTODzk+Sqq0GKJTIenmeXo2QQXUwomioRbuN3Yc9Mduvn3slwNkBmkrw7mBhRgOrueDKrhlsEAKKx3dwQCVJ3wZBVYLly5czC+ZUIIXZl7pwuwhCSyVVtwjysCsoWiMon5d5GO6jtge4S1KlCQCSsi+Az9HGSD6aecedyWghtOe2QPbfHLo3WFajOjJhJBYkyBm9DDju4qFOxQuDXbK53ll1QFHCK4bIrQCYc5zlPbzt76bbxLS00iCKfUAKIwBTKIefpXLoEBfsHbzdv9cGubzXhr82K/c7dlE5P0OoB6axd3Yqu5oXaZ9s+IRMoBcp8JZ3MFGfjHnd9WasRBwRUEe2Q+GV5aIeLXaNjdVwfOabuBnhuwxUDYgqC2fOGZNwMCTMLdPZrCaEDa29s8FIw13t5iorMoW4KRsUlSHZHLtij0jg84GEIGjDcxNgvDG+RyRiB7FPtwaAfeqJgXomDEiw4YArvGrFtMyIVnoU+v04Hq4m8BpPk0MjhHKkbFQUFyIWStp84yO7HiM5MGEgK8qCldOVKuzEairmQRQMwN5pciBrGBEdrBhTQlcNddjQDW9/4rX5wNB6L+NpncA7HL9JrKw5nCypGC9osGV7MFgOh+FA1maOBtF1h5riXxvDoIYL404HJiDUrYh9R+mjZHU04dCy5YGcrMoBI2DhxOyoN4ipUiCesUBDhi2XFKHe5bxP1aEMdagdI3TY5MaIexucNBF6gCgfWAgfp3FbwO+zFTYhGv5spzSlU6N65YFMgkh94ghlEA0mzAHEguEZO1plFhryZjLjKdibAp5hvIBSJUUMIiW16yNtVq/SiZQtYnmcuYYW7odzu3TXsrTUfCNU4pXRMAH0iCNWDsClaMC5CmAs/XKi+kL1nBbC9S1zSjkW8jChZYtggiakVqAjIiJ5kARdSDu61gNRzuXo35Ee0QLoxBFP0UDRhd6ce3U41JiXbGMfGBSIi1IGMHW+v6mdsPs37N53C3fryVOhtqZI5QSfPjnZjWNEo9UkXZLkQebH1kV3M9fIjhgKNR2HtmohCCgviAC7RG5DRhUQyJ0B8GqnwtRMCQ6R6qtOStjj01x+yxHb80R6d/auuYZEAVkgEDmdwA7gnAwMO1B2UimsXypUL7kDMgrwReEiJU1oi4GRQByit83IqB2xr4FTARZDk8s+oaNAalOQUmHeHjrRUJC3CH1csyQ0N9V2yvchnHKHDBIsI5ab0Akuuk8980sNO07Ea70awtV7AZwxHGfTQ0HQdEi6l8hhDaelrkcRTrA38ViAYi+bAOmI4x7Q6OdqZXLlNbhjOQGi0b3LM7eWrALndDc7xNUeW+bkF5SNGOFil2I4sVhFFU4I/WLz6d16AiIq65obFYg8c++xJUjgweXHiNhfPADeTv5Rwcu6vM3hy88VZY3KvWVIVpbugKZQVC3cs5WKxK048Mb8HhxmbTS9DXv5MrZnHXJp0VbN+mamRxHDYTrTbNZLFcE8nymx72+OHewfG9HKHWieD9Xl+eT95QPty54cmuRqU6OdvnPFHeYPCbZ30/VpSh9ghdb6laVLbmuuzifjnm/guzdzOqcgvBAQ8YKOUUEOYooZRcCaQPFP2guXpA0MI8xoQubYVoe8/KiHtwc4pzFEUowD1gLZYdGDQiO2vLngiDxlLRkAvl5CmD1IErpg94Y8gYsZS+mpX5thXg85qfUYB4x6IImEFHGA9wMoAj1FVK/GgbVoHQp9+NezAyK6dU6N6FYqgZuSfB4MU25dyHhnVvwjX2P9RzeqltPK5ptxqu37u+OBA2fvja0PcAiQ+vCG0vwxMKhxPvzK5jFHQgqHnxoNynk2O+znRZPjL53mn+mxPlebVoXSrj0d+lGTxtbcq5e0aLlp0oCOHjRwi/wQAu1etzax2jAvVEFeCA65a84TTw0+lcyqfIaJHeDlWpmUawAC1MmJHESugFSnQYjRYBS+Bw5zCaJtDjxkmFqHgAiy1BcaZI+zKzOfDqaKZXSmnL57gc/15ye80au1RIQkNcVNuCCg4YSsEvyKhi1ZfbS7QiC02Q1FSGYrICS16DfA6A4CnYUqPZy5K6ydPHH3CG1xWEqXpi4TQ7ydEDREkTst6X3EHI50rlSWlwTpx7Ca0QqcSoow6kBUUjUoitGwIguHGYfMHX94GfVbjAQWI7vyAxTE15s3GbEaE38lD0gm+aoeFNx0+iZr3GLr6nwyF9Dpf8V7mK5aXIXO2rE2oAFCVt5OfXUY6wlbIMdIauf6/xHEn2p6yO1yg0/zviPwP2anDr5XVXHSQX6TczQt/X7V8+bp23ohjfc5W1iH0xATpAG0sxJNcqFv2RYP61E2vzP/TmgFhyilVd+DX+7/LnIszWJlbJlhCB85yS9lzdnbvCr1UiijkwPWOebWBqx9Kk1VSoZJ9UUwk5dj5Qh2ZyZrYnVCFpZhdo3ZvHOnSln7X93nZOBUInUuOAhli25n6XqIj9KFN/x9OYlfv3DB+EER7cBDgHeOcl7iGBieuEURDoG2+tkinRb3blZSC1LKxHNACaAaJ5GUs9nkRoCbyKxUNG/zJDrLBPBBTDzKg/PK1E6Hc2DMoqM0qbFIMftyJCHCtb10lipyzZUnURXfsv61bIGyBPJ1PCWKgFRBL1gLewHbqaxk2BLNdasY9c0DufvpDqRZB0O+Zb6q9OV9wsiAsVPhRVP9rushQvFAZMOkAkmLLjACKMuX/moYRt0Uf/H87N7qGCB9IAa9W2QUHtiumcUBHMDIUFOra3qn6GFcTSDGcey5qILb+HyKTscq1gIUROsP+CncQOVj6hIHF1lIjjpJndZQazD+JFsT6RY+2IVFBXva5QlQMOO1/5GowyGiQZ4EpVT+65pyBH8/DAXerjQo730+vi4+PkjvfJFUeU3ZiPwgEXYI4ICtMAxBCdP7myWvFkT9JDBCogIj8LtPos/f/XywafsOhAFf5H+UhSSVFL2+3b9RdOpZLk+tBAnEtEM40fcHkHYuuzq/rtyioB7POgFV/eKiMd2Ilpx86fmBE9gAFvudLrbulJ1RgcclpMQ+4Z3Y+8uAA/6RTtYnuBS3ZPdoHkfCrWoOdwAF7GV3shGoGpgHv2Dpk2IkdylKAmCBWRFAMlcpH90pmQ/EysljEgQShHO8d6oXLMJonkADUwUQGVEVdWE2HV9T/EFECL0CLap4ohUs38vgGwtp/BTybb0UMY04AQTapkQAQ/lhN/51VfdgfURyH5x8ABHNgPhREdqeWUG8VQtFQSRdoqhIIEgFSCrh9kVaQvbeWPqr+ZgaRUJAYdepIjoI4kL+LqJ+1WTqYPeTr1PeRvWp1zLjRMRUBH7UnIr7Pnwnnmd3vWvtZr15MRyNxOSVG6kzklxq+6dx68yq3klkb4Sa1rWQbiI35O4mpIKOeq1wlJkn324zytZEd3EXla9dk1AeXHZ8IvUVrXms355Obq+8nsHrsS9g1FTu6Z9zuKjka131W2szNncRdtxbTZvW77YuNZpbZnOr4lyZHQm3ziqsyINn3tQ6xNqn6t+prw1eWXVjzZsuyfwajEE5qtiryjRRV91KOZCvrN+GlLyB8rQ+WfLFVD72VEbVmbUsymGRtK2yNUjMpsUK+60gNqlmlY0qW0FL8FWNptmJVbZjYY1W2NmYtWzLWYMyzGY1WTBG2sZWyUC/jsqBsq2o1ooF8QPbJRspDkUh4oqsqilavwapS4lYZRBtBDWUEbURLZJmrTMxUrMLY22m2Wia1eVJWQ5hdpVVN9rh0tQoZhSLaVS+8yF2Un36tpNoNpI2FK9zSUjNmVVqbaZszGTNRrW1jGppmmwzW2xNmYaNbWho2MsNNszUisw20tstazVow2my1abazNGatg2xtNpratms0ttW0irLGxsmphmzLMzW2zZqss1pszbYyZqyhK+DFVmmyIPYwnNC2VshtKo+eij55eMNUlao2VGsJOaVSr27hDZK2lbJYD9dqTjUFwMrGlcrNW1sWamwm2NTa2rWlFbUmtExpso2RllbZpZiKrZVbCbFJJ40R5sF72hU99QeiCNUiqH8/KPf/cUCRV2iO8HGPJCPlpR92GeLl5sqeml+WqdZS8aJ2eMlPDVK/v+3JfmUVin5aTiNRVe9u0IPFX20R+OlbELahsqtiHiofTAlOT+n7x7/wd07BlzSqRA5zsMoPb1Cwl4E+1PvR2lIp5zUFZQedVtH1aq7EZofxNP6LQ8YqLUCMUJEDCAqz0py66Hg9t+eNTU9fXLbxjI1Y0hPdrFvZY8/g506zxcTfbnmYJx/VTjmhm5PZ9rdGaczHDdfG9rs3I5mPXgsj77Mv43j58748GhoPppzll0UxDEIxNcyiBhA24oh8CdXo9w5YEteu2ejG+xarue3R02c4919bqmwG+3rg4067cXs/HcnsLw5g+PrR3vu2jarr5YywvVHrjUaM8+CK9Lc++45gnJ48dTd+s9urX6ju1vPc7YTPlek8skgeWMVrU9BfrBKkzZvZ5x7ZfQWrkXhjwafhnn6HSPbRkqW9Z0nSeG/G1s2qT7YinrNFetRoXq0ek0LMdi6w6molellXjWYvCu6Veuuzw1IXywp+rSge1HrqNSL9WKq8Q2TZSbJbFsDZTZBsNgTZbVTYkQtEzj3I1GRExAE5xesMiPxBBN4tFwgIRiCg7wojALkPv9KGtz6wwIAatyn9cQ3m4+lH2DG2R9/ncOIpcibxDpLESEA9wAF7o0DaOzA9o9rn5D8/vbUy4YH64tnuqFHzlRfplyB9b8jXo38d6er+MaA6SgIHoTVGGtwAWgPzE1nyIH45WVHDPEFAH8ROEivnAOILmweiMX+pw4vlqwvCF2lua14/rCKGxAhBKq9c9jLb9nIVXbaHib/Q37uT419PXhA5lB9HWgAFu+A4o+mFxsatCtvWvKJQQeJghgNWhyQ5HQsHrFEV650E9AoqaQ+icki5sETAAC+yiI0hlPOI/cN+YFa+gZL/W36L8XV+ePh9eMrDZYnOgVTawfB8UpuFTvZ5ulPi9cCCf+yKD+MC1yO50PjZ7xzkMEocEPdU9WAoB2tyydn3PTBT8Ao4FRwZfi9crXY+1GZYOEpCvC+sAV+mX+iDaw04OCjsSwHn2Nyz5ETzByUxyFFH3bb//WtZ7/mrLwVg8JXqKAvydLeGAd5+jyKVQXsxPIhqAos3IFqdRfiWL95dg9GJpEOrPpmYdQft7dn44qYkORSeDBow66M2vllx0sdD+ornD+KsD2IAu4OhX8a/FY1shX2QNtr2DtqtWIKCtdaToCKM9SJnk0TGH/DT6NfZdEFF+Swf2vzOBQtvMpIJkfRxtdD7Op156OXmIIqwCH9LD2fzgmZP9SICr9jRGGrIjMQIWt/NMSxwz1Han8i/BU58p/MGfzhs7pj/q29AlieLMqoCFQP9Y/mZXE7Pt6qZp/gUNiJyEnt23sWMdULfiqukNvjWv272XBSaSQSSA8qy6Q0HrDEqrpgCc8CxGde4SkYgQOtqxGtjcGXKfHyFT1YGAsN99PO5Koh0D3KKmRAR//XDO49D7AKv/aFivF0DCMyeeRCJ04SkEMhqx8kmieKtJiHtOXkJRdRABQfMwE5bY0aD3EFwaDQ6FgpW1UBIFo0QUXyFuQ5aExOEDjgYiBcZbNyr/TBHaERGJ9kOsXy3swY5bSzruANcsSL4IayRiCBEIChz4KVJBg1FpIVHjyeTAEeOBO6iClbALggiaEDqRfcvRnMuCvtUVGF9837RCdPi+35ZykWTIXNJk2zlGLRKLbBxgKDlQQPcwVRDZ15uceVAO/6OkMIAcFGnmv/IUerB+fRSJ0FVR5NPRVxmaC2KUUma2QmbY5CCncJdJIxRrEzuIobAnfQTkSVpwJJb6spfLsr1D4RcmLphWS3PksaGgnDklhtOneZ5XUSkbySc9ss7mlJISRhH2LJ1bNvDd42f49v/Oj/TF5fY9ju3OZh0DaXDKmXBPhpMyUVdI/4ZkMZzqg0U8HZihRgntFDlEAF9hBBRJj8wqxVSMP+zKhlQEWVFENhgp3txW9JNHrj0oBSw82RwsmHWbOQzwfx/NspHvjCVBBfkbNaVIq4YCqhDA9QTA8TQbcBJ7nd6gBVgYcMwocO3zTnFlBwVHili2G1jwc7gMPSS2Q7LXZOGKdvlERTlQUCQfijyFM/zJk6ISkCvVSLhAgKQpE/SaiT+TuP/FBO4V3ckSkibwE5QAAe8VLBA9Gi/9Dc+bgMm2HMIfnNNiwIPeKoJ8rNNiHl7nI9BPIIy1hKZENqpQVZ32lhgP5Brrw5rJdWc8LaXTGK8wEu3PFULVdFASQJ/iUeGhAq1Pb3wx3tZZASBhDpy1qgfggipK4c3t5PVWb8akEFl1yujEgodmACpbx6cmTHa+E2DPulZod9RBcRKTnmCtrN2IB67doEBbbhxv1WRm0YJEMmC5JDcGt7TqlbzamJZXAHKHcC+6ZCWciBPIZNQcpT9IZL5XOLNag+xfksFBH/tsFTQb0KqNT+WYPgGbaKYQOcN2f1/5dtTkExT4AAtR1z4DrGfn0CgHoCCBAggNSZS9AkPUeszu3sTfDdUj2BAU5YQS3gzO2nRs6byUlKjBc4E1OR2Xxs1GzW7RET6EqNKqg4F3gj6wDAtwV1thIT/FFXbYAihIG+9AiICNB1/prasQKJiVtKUcz6OfSNuAwUU2Loco8ypyhJQnxDVpxBjustalTsP/ZfWewp9Da7JkXK5zvIGlpgMBl0uiYzObT1bLjQLS7oYVdYXP4LzwPymk6FvK4jb0IyqhF7eDKKqOLA8PC0Sv46rl83kEsz2KArDLt3DJYSogLbLKAp/CCiien630tBTYmwbgJ34CCDv6O5UpoKrIJWWYCeuD6p2WhGcm3mmlyPdd15EVUVqca/lO9Gmx3UH6EFVPxRV/qgAj69RVR/B78QMYOgAKzStl/mgzWODc+T4Lk3v9wXOnGlRYUFx6Y3PF29yvXubjgPRHsspsZQcczUIKPu6vtsJjapHdYNBguRu7xQ3eOG86wlC9hYVMDgjh+W+tBQjip5S1bTJ0JivWiedTdgJCFm44Uqk56027MUebovGdDe0hZWDZPYAKmogivexmCV7nuj7UCBmILWKKMoZruYz1hsG3SE7gLJSoUBcjsaW9ICjigCl7J/D12rZU/tsPT9l0L+7pK+mS/TC/IgbRNkFR+Obwf1cKiGH0sifyaQ82CSN9U5JRlT6XZ5evispbTkcAEpJ7O2J4xFRrylWgbeEeoavqAo0f9mfQMejWOKh9QK53vnrLX3hPKpKbpW2u6RDRAhAISEucPrwYMWkLyFBkWox0Z2CJuuBbjcqp445RrfEXfJy0oKjNed+6nu36h2BgoCz16e6X+XqAKPPhzwwxppynhvZ9uqjHvJApiEe1yajS3clCO89vh5CJ7YG8/423b0dqcDn9h18vQTDjC3pymnIW1+IJKBwoRJkBV2g0FBKjOjZvWI1YyVlmOAeZfSlR6KwBRrYTEz5EiV8rDspgLBcKAJqxHUV8ZyKDmlYqvltTh16pzJBUP9HiNAZs2KoDL3L6qcD9U5tUnpilTpysXGQ0QDm2FbOUGrdkwO1VONE2OOyRgACOMgoE/9gGHoFWiGv1n37DNffFxyD1MjlJQOzRxZGbBqIr25ywSRz10XFlZIFL04EZhPcx4ggaF+fi2i5yN8ir0SlXUSsd8ma0RRuQUkghCBRNkChfPwjxs1q0+7/R7LKfunA2BSgo/q+zw8g7GC+oV8DxMQ4Hy0KMsnIBBc0T5xJEmhOmG74RMnqXNJz0oI7hXFMMEDE3jIgClhwdm+BbqYLhb9wJ+QgKI3Mf2PrR6BAuj4OvwBu0ggvd1WzZ/ah0RLkspodXyBzS+0+5zzwbmqOr2uo4eRQPThXX7lnIb2G1zOugV6qCr+B9fIBPffsZlChm0X+k/sf6LXoAv4KHLlz9C5DGQd2Fqt7ZZ/Jr4iG2x52aPm4N7I7oQX+dl93wU+13sJNKkmkJCSwtSJ3jBslb9imSQRJ31cbQVCKjLQT1hab+bfVDStFbyqHeLEj/QwmukpcIQUQX7+b9An/LYzJlR7Ng+MLEVIgxEBgMAWAbgCC4jtGyWM07ndnC3uEyRQhpPUqFKEkEOymz0G+WRTJgyMkxSkeMAJCj2I8QGQxPIr4MYEfVgcnKAqZ58P0l9+EbxSd/7f30zuIeru8xRUZJR/TV/n8ro6U+erR8QnVD7wRhCEEkQkSSERkUE2YH6vGXzLqnjx8vzZnx2Z0qhK81IqlSJJwbfKUUWiZ0kawnA+ESywqI65fkDUiKXiDaHCMEEH8P+/7DrpocLZmNXIXdzY4O8DjPvrylSiI0QNDgi8MKwQFqbNh+eMK+5FoNltOeSOEl1h+MzjNLhGix6jjGdD3xP8+aLVjERXtNUZI2g5ry92if168Xwg42fAeXd3bIgdzVtiH7a6u3mPATucgjkzxI9F8roERWV/bo+P9ZWowcgZLd7p/RCMCXS7hhhNutRQ6wxddCOBu1hUEuydRDEykUIHNJlOeEhZKdc1mEmKvCWugsZ0dq5NmkkJVmO8qosSyb+k4cN2uPz+6aKgL+Hqhd19o//u2AN4UA/xmiBa4BXcwFgCo08afoqkmMYkSv7Va+X0J8AipqWCi8tQgIuLofjBQXZFQkbh8meQ5gAq3W31veeLTtGxo537tJTNkaVYX4wOJOeJifwoZd5HIC3sAARszbbpQQX5thpZStEEaHDyQJE7P8obWAPh6VAQXz+xYVBa4/3RTwydqeFwKo0lOcLCN5q1qlzAZdxiKo1vLSIhdyXKF7I3MzuvO8TbhekzvuTf51kvlYFx7GVkHpQPxtMEcZ/nuzVSvDwfQ0Tbz8qVfkcriFoUFWP1OmbG91y2T0dwtO6swNjqoOWbw0KknQgEqWxomUn8tqqrviFsNEZE/cbP3P5SHE/aOby6tx+GTs3tzEwOdteSkpLYTVN8jNY1sx8m4pcFK2hU3te2/FvPMjWVYb6xDCEjRIE9UVHiwyzzj5b/LTkgKlzf3jUSiVMBYufMx0GKYPAJkirs45yQ8bu96+FgTl8vRPZKP8r8PQcsfCjydgu2KfhGvhBb/dHT12OpEyV1q/1jxM8REFmn+poQz1Pwed06YE1Ze8rS1c+PR85c6ORt692HWw4mGtdkg4sHI7uDq+1y3YXifHPHVOignvFBUy+eKnyvDNumEmD3qUiE7TLZ/ntuPBXoaOS21wPtmjDPEQVJ4FWgKmRxTgRasYX45RwMuMO4T5u9hQKfo7VpJO1SpAkUTvPEz4U6uV8by1I1AILBFgIGcId8+Zah8/DEy/YDLIYIpH2uszQ/msi8sEJ/6MD6wmhUR5Bk/D7JS9hPQwLAEF7+hdH/T5Lf6yVw9rt+9quDlhwcwPlRX0fg0m2TbD12Bc641P6FDcMxg7mN1+A6Rzn5XPYNlMDaRLec4wwjvEzsnKOYTf8aWco/UFLXpbO7mJj9GXpHmNh+1OjmJ3PMY/Fi/PRvzQLoY+TziRr5G6S7AodB1EjKStmkmMj3g2EC4xykhhJztMKwwFbNa0jI2Om8owGKCig2aYuBgHhZz1Ob5mJCwhdYWyP5JSPqPOY0MdEx+jtmbV6zWLE2HUSF5Lh0TkCQlIgKp5D4mDLARBbfKUUY4OiF3Ipu1niPKVZ0ashxmk+B3JwFR8lpScRqLPRx6bc5lIcB+EqzJ00wHbTC0uwmm5JAJ7nsJ839PjTccLWEMLBkSB6E3cLck6a59W7rTceikzr2AprDMwsqCWHJM7MHyCC3MywjhneRCXtla/BtmSxMJma3rJa2tKUYUiRJWxINvRSJI4aVx819qeFDDRGwbWV96V1ErDG7xQ5sqTaq+kl7Tne+k+Z7oWlpgcJWVnMuJyXIWGIlQRG8s04EbvwneT6J8kqpPonkA+oHhTw46EfQ+83/cEg6Pu8IaNioK/a56kETXCjoEeAIWzkT0rBO2w5AZCmTSjkrwcczsjIE2KV94fkFBeAN8oDgCf2gdSbDLhM0bqwh1QsMhNKFDIEZZYBQH1OYE002yGYNgJHL2y/mlKXk+OTa8v9X9wX/hnyLBuQsEU81NKArhKbd7n+59Au7XN/iplXmP9qB/fDwCh/KF5/Gf9HVv6CRjWO3aig1kggsSQ6wHoZnxPtQv+rb/rqaeuVoWwU9YOhPlyKPwL0A9Mw+E1/PhD0nNLrQmhBVx/hiFR+XaDiKj7ml4r+qPXNflNvrjOmcPZnZMA8AXBtOd2cyGAzfDs6Cd8dZ8+wcI32+Incu/oAJC8td/PZ9A4bjh4vqcNv8Idd7t9MGUCowh0GCqi9MDpPNbXSVvhIxJN5ryGiLvsABKIMIFEEQEjCJAUogaIa3sF7APbT1xFKIACpsc9zRIgYwNYqCOOgU2fChJ+zvayO4eAQVEeaPoUNJcp1Mg8rE+wx5F6/QQOE3Se8ZfRbTDF9ZrqmP1wZMc8xdI9sCRwfLV8MLjnEypbZ3Z3HK45J7cBFna3JuJilnMPiTui1FbTHKZ21qxfOby4x2GqsIIgLUEnjkrr3cdPyJcKBOfsp8QOhi4PHoxzV/aznav3m2HPgKp8h+cB+pJ0fSSmyc0sMSfMW3Tv+Q5BbMaPUSGQ2jfLbC41ACDU7VRPi8JqVbaqahZ9UpSGakxOk3aw64msuMJ7TtlgSICroynJKMWCMpfLQTNxzJpGSopkCJHERd7+FBmxEeqVdc04LRfujoPqY71QwrKFNuAIyEkC85tJ+SoPaBy8QXiBOdFQqAPaYxNCdxgCqMuJPbX6DxnV/J71NHvNJxlg5+Yks7DymGYnI2HArvy4yrxgVy5jlcO19JYTQiWz1AUdCyva6jyYQTYJtnkR7w4d4PwMG7mrh2D0D1lBVm4dGeOzompmxxIhmZriYJ0PGQbmBIR1bM5ZqrjiGbwzGjNjuw34o+e/TNlVprw9IMLi+qUGOW+qf55sWf96I+U6TGw881mLNp7g080UL+ajmovLqtNlc12nZh6Ooc/w2PxTAb2s61ogCx+Rv/2zRsEKcpvuzabt+orzT8MiOgFBciZF6aZTUpzV8HV0FK7e33IHgXMtkmEk+kcgTZI+CRQjplhJQuj6T6dkSsAEaiAUwAxFdUl7QWZosuSN8HYiFhBh1fouH/W0FPGuLuL2b0EF1gQJTnJ0uaX9ZEtuaTD7l7PN7S6jYaE2P75l2xJcm5teElOXeS6e2t2BQ2qSj4LT4pX7LhJ0LPL+Dvr3QO7Vr8f54/B6Tfy+Lx+zOXQMQAd7h2BDcdn1CGTbiSmAgTnulLK9k5ssnqm2ra6+ioiuGfciSJ7xQrxbSiK2R5gVQVisQFRl+J5THrDuYdm+q2A5pMXNDBf3P0T26Wu2i2XWbxcBhwmGprQJaJssoFbNZPKBfPc6bUMhBeKij5mJ6hqvULol2IMtEYOw5JGicvGN5daZbEwmVynKM3kMmey+jpw4zzp+9tPHnx/sQ+Lj1HlTfMJnHyus4YG68t29HXtQFWrUONAVYjt7EOcyHY/xiJAtdqkqK0nJw0kSOktMMxXOgiO7BFLMI/GkiE/LtlO1WpwnfJZPdLjx7YyE1beejFjOs7MD1kn0oLhoNZ6UtkcuYaLR7HTJfqoeH27Qdqaw6+wRMjvBkncRL7mKFHgpbE7SU9U3Kaz97pys8Ib089pcSmwYEY8485SiivSlMB0zYj3LTyHb5x2DRhNXKLgqy/3aAIwR1Q+ZMSSBXype3KqWKhBURLUYL04CeKCFkMro4K6dXrOdhcnUI12WgubjoCG5/eYVDZCH7D79dgQFvmjCqTPlwHWWS6Eh2SkzGKVn+GPnGNoJhOP19UvRrmTLdyn+9uj96FQ8ZtfvY7NurB5yrN2L9n2nsM3roLBo1gSHsPKRZT5cgBRaPmY5NXJy5Dy/kj7z0Gs+fEW/kzfir5nGRN79/X8HK3/ydXNx8w3HV0nRh3jLAxMoSEPLA2+kjE2mJFOk8jA75vkTuBbgJjRhxnMwwCiCrgCAoqYoCzQRtgHqIOXFRMpDZef0enqKZzY7AXl3JRmMuQm7y1TJUQ0uaOR+ml6EoSpDQU+6333koGIC/Y9/hWDYrv7mC7xmZmHYo7HQ+fLuQ75ljv4NCYrMpC8tay89BYdm4MMDIUGQMThgjceK2cNJuwCJA9Z0XMUmClFFdKSKaqpSfQBneLQatRZtE5bECq466P7RmLjq5AjOBq8+hXxKHz8UQ3HCgGXf/vv3pc3ADs58Upix0YDNLwSmfaVCjlFyzKhcevs4PZ2bt36YtuTCrr45TNrdJXKxDYqTAaZySfKSUqhVJt81nN/PMqE8x/Kka+M4YuND998fje/W5UMioaMaobqoagUFxKhn+n4AyKhoNdNKNvR60U89oCYhQ+ewqGJUOXtI4HDJ3vUUfyvmIGACqSbsm4AgtxyPrSXUea/SqF02zYqH9zTvn3P+lOuibwp78beUmEqMVm2dHFUbxHBwbBQfO3UBi+5ds9GaOsiQoYLAhMIb275cv+7nf/4ABcpBN27SD9eGYnlL6FwmEnvJNkgazgu/ZmjplcpKUs0lpPObs09IMmCEEhVPgmLa6abr6/VLjl8JbdftF+Dlq93IZDHHBkOr/sWc5BFz44WTTGXEBoyYP5QZDTnuxlE3MIzeB7p3OvpMObH2zD4f3hClHTADtcd8qWAZJ9XX8aATkwHdfK8ha9wnWoyPJQ6VHa7EfVSYl4MevnyRcAknARMMBAbwREPaAn+PpQGGH6ehR8r6U8nAB9EDWFvRAu0yHraS+emHx6RzMHG5+DmO4cP1M/o2YwxHMc1WPVPPrewGHtthS/rJ4m4C5kd88vOuPNu8g0nfRkKSBvghaXk+YCHp63b/mqyj2/X0TTKArghyY9zc514FH9fVRkOD58B/Ov6/9139G0V8eMmxROpyj18/i3UeVR7/tTJy0fIjDwyKhjQ7/D1ab57Txc1GTclThIOc4IpAAkmLoc99NHdLmYkrPL2f2jiOyrvVb3FZX5uWjIiKPVP6jTjZiF45MpnzqTpBIHe2y2m888lh2UbOJGWVHBLaSGMlM2cvKSK/SUqKTQbpjQ8Zi5xXYgE1Bx9/kFhPi+0dUDjw/62g17D3/OjUAerYR8OQ9Ovy+fB+ziPQj60akdpHMDcexHqA/ja9SOXhD+I1/PKfRHBgR2D2NsecdZ4Oe8zp2k9GDsWyXR5jk/LcdDlmD6d7Dg7Hj/3rv6F2/qD04zudG562QY0x4PNjkwdjYkSkWZQVeTql7e198VF8vz2s8nVkktvLBETssFFAwSenCxhy9bSw4IRS5/J5UOABB5MQ3if7H+OeXXHB4gD6wqHBACRPESoMgBaqZBZENInxgc5eWmIHWLeA8oYloTOUKWjUkFnSioSDatswbTabD37vbeN2eM2PX06L9PHHnQ867Txj2141mNnnOw2QyiP+UXKaRNuVOcA1hUmlBnAM4L3gnPU/+LRpLkxxBzeyOoZAfpNa32Y3fPzv479f8fy0ox8PO5pL/k0PZkzGM+Bi7xtfA1Z9Mrmb/aLsZaT7luWqbXYBin/hLJsXOEyxz/4jhge0u/x6OK394/Nk/fmlkyafvc14dOLo9SSbk6D76EyYbr57sLr/GwBoksOVA+htPk/W87dfIP2/M5N+OnoG7V/jzWMp7jcdPj9nnKLs3/cHC9F+X9Lr+eWbZunHj/hzcHDPy3p0e349+jb0+miqueyTb6vfhhmODIigNPoKcFHYgyXFGqwwAWxCe3cmw2G21sHHKAWxPNNTO/9I7QYu+T24uJxbcMvLBaLPLMLP4cOjRQ26La67KuLiP6eSWelxsX1fzIYtimjE9VMUDTIqHp9+3syumuuSrcIuoT64ZCUrko/Jxeyg9RbjyV/Mty/a6swazEe03aT5H5Nv9GI+haa37bDeX/Ym+/RaiYvhk6JDDJsH6I9s1QfUew7AZXomz8T0H2d808THd8Mt/tfGyft2jl7vfIufuuYQGRYAohswF24CvIZMCeRWVOk+FqyGXeq61+I3YdfauQoBgTfxrTH30KyuT+dpPbQfnhC6x8pVH4ZJZgLlg3t2o7TplMJqrqAqhEAEZY3sUi9VyJ1n8zp6S8+7tnxL6UyJlPiQvs4ypKDBBJ00JUTZsCbaeGhNgSZIpBIzpQlVDclaeAsSVZbUzpamKdNipNSfA11JhXEmJKcSYEi+YjImNONwUFyS+kkSzQnicZIkBPAZjDiSv4Eies/3gfM4jJx2EhsmyWspYJodUkxlNHMklRxuxJMTDMSsNP1z/Lg6nBxxmD1gNBUGASCRMnY5rB5TEX4X/ImkUDESwdK0gKDEeyb2A0gKmv+6bvmjkamu3mA8hDjdlDvU3qduFG6zBvXJfqxbd036I9BAkkIyBFSECJpPzYg6duqm1VbWybWaYQSMRZBQkRb3YVZm6OrDS3kDGcEqcUFAHoIaZNCQN4fMN7bYI5Q1hrEwVpBDmAJ0O8X4VVNWPjDt3WiXhhBrBM2CODACgh2P/Te0imz4OR5Xvxob9pIYRDwBBMyCGkAb9weAmDHnVY+7WLZ2e/CefPs4eM3UXN25F3yyoEsakoLTkJ7VAKrHUXMimoBHLCQb9jgaZAZsUkMIFIM+FAXtGIKhpuzKvHhSybHLE0SN0g6wfqMNSIgDyxB/WLfmHfYqo7dbXoF+ML6g9FtsAselAl9KJWrdHuFdCO5uJQgYpBT1giA4kA+prcNIK7RAT0ifYZS065aAeETGO06xU3jRDsZ5PLFsNDsUNPctEtmbDR1CqFN6IVpsVMWxpAvPuu3zoN081686Oe8tMT5n3Xkoe81XKXCICrl5QFFcqOJpIQODHNDeDeI85po6FKs6S+VQvdiVmYAA9MUThvlcpzADgCAeRTk1p2ppQPG3daM5hkd61Q0+kQQWjLeOu7Xi4aPZT5tsDc3/XGh0hw1nDZTMdiIlUgvMaxxrTkh+Rh8it8gI8wJBr5PkpFkGbxg8afO1K1iPEaH4575s3u6Kxowe5wqGTRTEw6K/o+yIkROYiyKOR0fM+Gzpq0pFXf9RLOLQeKFDcJ5BTAgIyIuTL5mdTcnwiJ2xMj3A1GyrxxRqw1huVXRMSjPBQ9xng2ayeRToSuTfg1wuCBaLUDyi78jPpa5eI0XSeLCVOcLwh1XAFJODtOvODPb7XIcHcoG02TyhRoShBNTXU4mMaS9TnXbm10VRsBovlQ229r5rEyI7VulPLqYZGi5WOAvs1AdInYwV64xMVY2eEjSpXC51qx9XnAd2FZJBzwB2XqTYZ0nXfT2gRo44zlEyFnTKhixoaeu8+u51K5bQXhe+xycwPWccOvA+zS5x0m8e+fBWwYI5FHSoksIviRBEbGMrzNdX41yEuuD02ODwzNLmvmalwhmJHaMnBhsiBjEEe4fI88lG0A6b0HQgeSsVUcojkqETdNt5mlvqlCyfqrYw6acNakFH7FAQyYKgdmdMd70y5XWZhD4yI0fQRMEgAqbOY7PwchMHYwpD2ps7ImrrmYZQOH5Djhy7rA/d/s3g6sXlBUkRBTqCmZEDlgHbD8Zp6PXRkWDGvz1RBakMxcGkP1uTP1N+dS/Rx0b4JXXng4NY7XO/aWTXbI1u1O0aIahF2iZQDWAqpsQOocRbMMDfDtzTcN7hWTRONsfTJxfjPPOtjPL2MbUh6jATeECACDvAd+s9kE6zpjBQJthUXiKnkAQKxFOICAckOIo2IncXGIlCCIDlydlVnggZIxEX5MYL2sDuKoekAcSKA7/lQoIGcV+lNuXcx0KfJolRFAtBRHOwWG/FMPKJl0cBl04U7CPHCUfIOzqQc9zPJGCGJEBRsc5Ij5F1LFFE3iD3AAkTCACBulF0rxoeVQygEiYe8YKhbuuSej35Uu6wQ+U1x+HKeHBccBA0fVvV1F7oKAOPWjtJ2lAOvZfJlYv4cRwbZl42AN4ADCAJzFXUlIPwgv1gp0iK5bUJ24KMbaNmk8k86om5ZULQiHXBTi8QsmS3cweFpD56myOFUMr3yL4NQz1dAufsjTt1TOJy8vWUAkTZ20Mhgd0PyoXG3hqmA4AoLZ2dQc8O3doByZKhxsYP1L6sIZUvk0V0KFYV2TV8DA3Q8bGgUIbmRymVjzVwvi0H3koFiaKKjmYlSxjm7phhP3eyWU4I2I1dALdWcFetGrBjvKQTE5QA7HShDuQULpBQvBDRmjboar0aULxDgz6JXpExYiCn6KG0Q+ZlEd2ImlSaWscGlXRMqVeVc8RKt5hM4dGFmpnX4ntiu9G6Y8iVdd8a7TKfY/WGuo3v0cV2NG0XfEHCsi6Bgui5uS5KGrah8TcdYXzYPn4mPzbgLwOnB6KBTkIKcEBe4u8BMmOc25oZwMIgdwR0WVTSOf3D7zQMQOtynmrWiHzbkrECRkAkSplifaHXKWHIwoHTcpfkr8ioZsOL7u4hIrWVeDAdrnxUP1C7kTbJ3OEtrgaFX0hqTg4SgHDipozmIekQziIA9KzY+tDfxKdDsSJVDcDBzhZTKH4I7tUoYlmhlO2oWi1V5Li0QLgYaUKn1iHkV1FgBiAQX9EBtEEC5HKNHzcpvY+HHBvl8bx0T9VL4aOrZ862KYljNJoQyY5sCjgh442wNzRr2nSPvGIfv25rGmhR8nd6aVoe18LFjoO4GNKFGEk6PMoNE+Tkg0QiGk8r4kJGQqw9+tLxC0JCQQv4OJ8jK0axs8XmMfhW1cZY4lawoyVJCUmi7Tt2qdKDr0fNacte1ElVOKtv0QqB5sFad6ejK30bYXTIO9iTSZSL0YSQW2dPuLFkSol/xFoaqhPVLJlk2fT1TsII7xR7hIexAAanDR46cenQ7i3ZZ9Dqq23VDwxtolKLxgaVPu89/NgFMYOtCiXiVIofHenZ54aChbNgngE4ws1ObU1J91pCdLcgUO0u+VOsPnEz3uYvDw34vjiSWI5Kh603TQPE3TLNwbiXNTNUMTV865PCCgLmFjNOmrOjAQhDOIWcjnblL4EYBRAdR1dBAtTegbnVUNzTJgr15DgzivEyv15J8tOwnaNjsVbbKNg2bQ2GzYm1GxdiQcpi/E2YnlFHUowDwWHdkjCeVPtbO+MrELSFS9EKOYXvwPlIjpbO50uez28D5JHbgiGzHQxHV9xUsahnFBB1IoJvtve4ZUsdYVOiIjwwQFMZdgHZ4lMXGiAlIAcREFKO2RTOwVwzOy3JmCHCe+pjLSkEFwFhXvDMu0kA0ZkzVZHfuU1MDym1XFhwWBQWI40d/gUDmGcTJDjcrr2KcKJqkETiIhRAUTrFTmxFQ4R34ulq6lDjdKakduneu/PPJeb4Gb7kZTWAGroeO1nexYzt4mTQXM6RlsDdsqbehR6JpNyIgDGC131lR7qnRxxXB3O21PlAqbQ18VVqO2lac8tO7OSaJTE3EMBUH5A1PmcOizk8uoaH7bB4htkc5i4JUCZ1O9U3mrAVvEVErEDeOhcsTJ91MjDuxp76V5Thim4TF1sewDDCvpKavcQrQ9gamD0V+vxNsD9w+cNub8R0Qpid3KkMsHlPUuUndwaNxTdDCQ1UiBhh5SvBTRKtm21s99m2dubtI9tKPth8iaMQ0hSaCBAW8gGnLhdPcByDcOH6yiJ+1/Zpk+PwEMZp8PeEQPYosiD3AQIdhAkSVzg6DF1yMjsZcWirWFWTzbFPt3coLjAQ7IjciqmkA7d8CqFU4oSCOzERNXcpiwQG7BYTSv6rcrTQOCzY0gckSk0Rtnzzjp22XfRcpmtUgrTShgQAKwBVPhpnhsJ4NyvZDxxntrZcUawPZ5tTQugnEUDX5KKH2KgB9GQAUMkuyM8xm3bXrvqn5AmHEpLz3C/kthZaOc4Ptz7lTYQOYqAbDABeSLIgJnARL5ARlENj0MXFuuaQCyiCwtK8cZw24vgYih3EcEyf1Q9N1prE04TxqTX9VtpQFygpzFTyCcQDCLIqyKl4iHVOqjeKPHRQA9iCZRcYK1iV0o7vvJXls02I4Ee4FDjFzK0QQXvbVHM71t+LawHNYCGnh7AvFLQQBPAiHyfkY6SReD0oPa5FjDcVQZENorGp2VR8PUoB7kUmZmZWZ7gD4Qo4mKeWHtHqPeaQ+ezbG2bTVm2za0zM22bYzWm2j2kxD7SQAKUIAdhYIc4Arq8IbmO3BjB6XNdRw4UPpbCpp1u3IqO5EBUpEQOu/svwEiGr3HKGMKO6Xwo4wTMsUEKkQAG8FPLYATmeGFEOvSgd700+blsTA15glO3cser+UMDXUEFcYt7GnTFQCRAEKR7YJnnRM2YWy93s7mc7wsB388vg4UbH7rnTWTHlLo5UJGAmXuHvNLK9KPHrgZwNqmIU49Yuad61EhO4gOUAUzgKDIKnUR3etioZI8KvEVApASkVSEOhMLZVWJH89yLZ4uC2ZcYNqrXlzqwI4rAARwimR9PTAr9OXYgQDkgU/UVEHmDpB3XsfvN5g4oE2h0/lUH7EKQQVndwL/PpfVUKRBR6W8oKmjWYpz9owCvHaU7fe6CVOtaqv6Au8UC8BBDCClo+F7GLsZGiNeIc8U2qfK/VQ66rrtNCVeA8KfYcUTgDux05gILpmYIe5GKyyaZvSWkWxvvkRoB1BAF1VDkDbb8uoIUVEXTGGGLUgjtBLkBEHYzmEKgmB19PxY1rmVVEPSCqUipaaRVa58YLgdh3exR+hQ75zP3OPm5fJey0CSg2Mr0KAtg5wVyzK0PPeraecVzcUSgYZCBCsMGxkoxRvk8XDY53lEnCO/JPf6m2mbn3z4XHnIs5GA2ogfoxc48TOtrp/OBy5WklFdbGkL80KiAOZBQA4r2wvBMnMpNscR1hcjhBakBQG2NAeNqJ9Iuk1xWtMHp5Qzva6VvTONuXFUMgq7ZW34c9gxE17cAcFBzxgebnSqKzUoDqW2zdlw8npKvd1tZ8mhvmgecZIXIb6+FC1jMVEYYxa8r4CCfoaMEFDs67BDHQmujwle5uzUxs3xB8DT4IZeAEdublU42aAYvh2YHdps7e0493qFdD5ttpofA0oUQ4MqotLqvZq9oZAfGQAkqPA9htKI0hVg9FVQy5DBGEAOJQ/QkGpCuonN5VwOELXW28R+2evPpgXQgGZfiOK42r9MfEdj8/Bv+jpW6Vt1VBQdYewMrl4fCID/XBhBQWaohmgKM0lBkAW7nJKLk6IWHuAe9WOJQgEsCDLJUYNQpsqAtgFFrWYeCsszOksBMIILFLRFEc4jZiqK+NNRBR0YG0YTm5Kj1RNSHy0alDT04EY+Pa6XLzeyqd9sC0nNnCWp0LReUZGyZTIrea8fVJuQYEAlcxne96IKEYLEYLklyLCe8+fu0cOmGyzpnqd0VJZ2zR8YJBD0TZZstGoqtGrnzTZOHLvOOUFnicTad6YoAdkEASCnXflbOjLffe+e+LXiFHcpr4U0ZsxFfPTQZGhsrXHJOsgrhquwVTWRawGsVrRQ1gptFaXNNtmgxM1lY1ZGtpNm1AjHYAVYiatHLO5vvWQFNJnJEhM20lV853TbazPT5vLQeHm7mBdItLA1YupDVCKqhrBdUySJCAeaPVhtEiAC1RVHFiUnNUQFpdmtG2TY3BsOaci9GLCKjRGEa3aDO6CowuXVC+hmZ6GllBcyKvKKIBxgQza7xF5bvcaxvYnMeHOO+uiwxevdQVVGZhgZaBVs5vjsaiDeXoIzPZlfCeaM4AYAxoW0XnctIyFBkwJIVsgrm6VDUmzN+m7ZfgUSBVnUdk90VoWOREewNwUBrfmc3vjsxIeJsmCGGmWW01rWmam1tW1sthmlrbWxmM1hprRmNrWMWTWtZRjGYY0arUZrMzLCbYw1RtVtmjfSU6yIrK0msl2qu1Kp2C2l1ijjrFStoxmTZDMMwwLQ6ejPe6M6ItEAaMifWV3tOT2McprFtLfdKQ2ol2qhsDrADsBrDGStZBGYS5irlpsKq2rcbWltrVmk22oVZW2bQ22tq2sjBiMZJDU2DJuAMum9qZMO/NspfLLIc0wlYaIQJEiNFRREbJJBhqV9llnPZJnXH3JoTZDwYSWcNK+dmXegbWRyiKo5TOOe2MJo1ubGOeoIIUwQE0JmpMbDfIUNDGRqxzUQWXF9JhIBKljCVjLjJg0rW1nEqp2kqUZpMZXBDGjdsgguKYdjMp0dEql6Ju66kBYdNAbp8pW0s6+nnG4RwmSDkxeteemiKC30mWuNStd6SkpWyOSIUgovz2WXws7o9HGo7vx7wCVvrCNFrO6Mzdj2DhzWgydvwL8oyEAFgNpiS6IhWtlKmtNay1m2phbYzZsytmVZlbbaGaxrTYxq01kmaMbK0ZrYqDQYa2W2s2w2sybVmE2Wa21ps0tgxtNLbZrM2EVsmzUn2qkrS1BFxranFldhOq7FqxNNVpmCIyCyEjacb72vDOqdPM52E2SQBVtqK2oVbEqG0rQvT3+b2+qpoLwYYjdIkAVHMEnUDHBoYlwQANUiOQGmBQTkQS8QdWJo4EG+OdwPTEpzVeh8HVPjD4vddZ8cWx5uMOoCrXDOLIwAAuw07dU5p3tCi9ddW2c5zgfQ4Ejxwyyl4kGO2bI7BSFFcJtzAOd48QKQEHgQIYBUu5vVlptfpAu3WcdYQgKtDoHnxKFreOIKI4o2UYDY2YKshVJF0csKM70+dAXs9o6w29OazWyzPMbkKc9sTha9Z7e09nvPCofgKVmqgW0gVIAaivOmlBU7wADVG2ee+aX2o8vXjz+Do4yptsZtmXyUpW0JG0INh07qdiAcYorppOzajDFdNU7Sy60zNY1sZlrM1mWMszLZs1Na022lsxmZbGfA7pydEzxL4mNi7A3Lr1MrxiII0pvApIjRhXl8R+WLQBVNYh3APMwom2BqYhIEhIMCVOGqNB75UFHISFioUZo3J9Jx+TaocskSSaB5gS8BIDiFss8nNzAkVBkUCRRV90NAEsQ0jciCLiEEdCjAqroXc8hMjFRRdNBTxy263iBrjLNOzODjbAJ53hgIS/UTlFQeaIOs0m3HlXIiC3s6EM1fOWecLPhTq955WwMKIWc8kJvucvbF6HhTHm9O0QF3AifHkl8MdHhMuzSoUqFeUXo8jObx4aNeUOdFnZRZLqxVBqJAK73nXJu98OdnZzmkt2mTgwEQNaa1plG2YNTGYa1qzZmZq0aZozGaZom1bWaajUxlrMgWZqzMEraZrbWbNjb8qUqaWcygTsiq5oXMVzlrY0VGJCECJGDIEkGOlUb9KM+l8GUTBy+Xi9HnkzM02sa2nxFJLZLTVDsqlbK3DWxhjWmCQkkYAQCMYhc0qld2bFShEmJenvNlSsaqrw1J7MS9PKCvvqPup1Hhtpphlo2m1l89fFIWPWO8UMFxDOO+aYY2kAUHfZpK7nC4PeUZC6GgeoFSgCAhk5dLir3JwbxKlkS2OezF0EgbEuAgsMHJHPpg4RRHYgaMdSJrpHPMvi0IWYvdiqgsjCS9myjhSFlHOlzy2CcK3JChVczKlSmWcfg8fGiIB2lb5woOYHKaCM2z3ZJGBWb35yYNAUsUggsFRDwnpCfOVEJKNTvZmkAklBi+9zdWIZxDCv3zxOyjZQPiwRpUNKhNpgFnK9HOeTVXHAN75mtA5I4ytphBUqAyKBIgqbVr5WdczN6E4VvEu02nXpgG0IYYBiG1MyNNMy2ybMzW02ttWmStNNqam00tGaxaMGtlppltWmxpqzaVhhjTLLWGWmm1UTTVS1+IpWa7BUOmpKMnUZhIhBiwgxIxUhEZ799LFi/sQwLIblL1+aFLfIdEKnwiGLV/Zlds/v0xeLH0DlHnoioC1vqdKHDaBx7DjPogFO7tH8A0CKAZkBFCEH9ATQn0lve2yLZtigADhgXZggZSpdBkn39iTBZdcoDaxxnQcZ/B3rpd0vwfqfYho/RyqZgTuBnOz9eHV+79s/Wyo2ofGOsFL8j5SygvvmpflYHmoyz6W+MfY6NqwhAlXT98OSMeGQeWSUL18zkzrv6o2dFBUFQ812eyG6eMHfhj+5UEH7DSKCbJ/Br9yzjWByQwhmBfxwDuI03oJvFKwN4IinyKwnB3RPkMoP5g+E53fSJ4QXqFgtMDbOPafoJ3PiajTY09vhlsjqWMgwPh4aHEJhRkKRdSdR4HB2NDkr9vMCAC9ES+hSQET3kuOn8TrHEM4II/FQjsv0CPwR4IqimxAV0iF2C92kwkA9YuFDOk9QhJAI1DpFVADhr/DkomcRDKCGxBRQ2IqcwrFaOL9Y95lDO5+dgQFtE0ICCDioX54gdL8rKlTmVe33t0fpp/MMiJnOL8bd7FuDCgd5GRlRPICIukOIgqqFPNDI74MHbMNg2hGXMJCo9z5+/ipzlicRSuI2UAOp4QOGawArFHziiY50NRcmDVqVsAr30PWyOxEFQ6aufWtXmXKqkhexdHKjt440TLRvvkulqbqnVIVz5ffC+38H4UVFURPuutA4xKAp5BQB3JVIh7H8UqVx4idHXAlyeZMRxtwooICB86PMTU3XeDIlYF2IgDnA6CAmj9oOEdjPBM/vli7HmYU64rPh86xLxFCiIZMUd3tQRDmYsvmzk90sevF8cce1/jCmCZ4FUr5rXfAK7ljAZuBwBKVYyDZ6KckzifxegS+Sb5lH6WujiqHh8um19dA4R1fx92EycRaDbRy7hp9ofrmmQHurvvzgWMtd2yfK24odQb/ee/mWWJm27K7Q4YjQm4RYYa/c/n4yyD7sHdQ50c8bKPv2iCmJO+aAOmlFHOAiGSMDs+ftfTr6Z3ydMpqqHBgMfHehkWNHgsvprk6ySBAMXHXCPnpzvkK4o685uFCsTFI0dCaETlMcL1dDzrJxlyIxf/MUFZJlNZH9gVzwSpI5+Af///////////////YIpD3sAAAPqp68QGwAPIAY6AYOqVQWwCnWABdSo2bKAO3Cds5uAQ5WttHbDtLuylQNtxrYqAI1WtmQBhjkK4BchzqAmZttUZpaaNtNltQFWwW28AM2aotudutOZtthwQHkKIEAAPSHRgNvXTTRhLbbZRtno0ANAAAAAzsADQPRoB66AdAAA9aAAAB0HIAADoAAKAAAKBoADHr1wAD1pa60prQaUbYqFDazaEGwaypW2oUaA0JMzNZtqbNmWxottE3twCQ7ZpQRDbTIBU611gNxzo2ABtSXbqAVHc11Cm4jrd3YaBuJwJFICV21GgQiogCYIARoAgaAjAamp4JgCMAJgoIohoJAISpABoNAABoBoAAaaAAHA0GmQ00aGEDIaGCNDTJo0AyDEAAaBU1VTSn6U9T0QNGgBoAAAAAAAAAABSUoJkJk0JpRNTRoAGm1HqMgNAAAAAGgiUEACMilGpponomjTQaNAANGjRkaA0AGfSSmnzGnPTP5k8xnNJqNZqLtlZsSzbIaCpvezBxHXe3i7PmMzwXaM5kp8pRpENXdw5e/MW/PndeXvQxbTr6ZrM6Aq9eb5+51F89QV69J+ZrvUWFLD6Wp6+mRB+nIb8iXDL5NDzqCf3Mp7GUxqdGL4LdY63M8ufC5+15+ZB0O65Bs6tnGZjIgLiwoomTv2l9Rfw6puqXSloBGuM2owMDKeeaURVPv5ii4sO/YUei4mzyiOr7HidFHqwKJThKjc2yc8ozkvKd/vmd+FX5tFq98HwFvkw+NCL6/f1fhnmQ+Fgt+ffPKchd/vROAgynxhvev1/Etx9IuDqm1Zm5ry6nEEqNhiClPBeXEroNgTv1cr2H5Mr2ufudjnn3qyJbO1EKPUGATE6bU040kTGEKnfgJ1gLSCBKSO5v2sO7K7CUKzvO8zVBEKQmMAsXgg42Ymbj9hx1uR7flJ3erai9zhp7rmdWP+HCmsTF3OiEFOkGeuRzYjAAFMA1EmSdja5HbKUp/DSETaKbHqB8u4FQYcrQHhCV7QfyFgf86z7v3Y+J/DUG+PGH5fW+wmNwJyMU6Rul/TNhHETb8WQgf059zJqJC09ZvVncA65QXEzkpIDz4Jvag834zekMVOjuHQN00Q1m0CZGAgkWAApHbcAk6BJszSrcUECLt31ayVBFZoIyQ0uyJyBO2U2a5ggYygaieswhUAyFRmrfuyNn/pbDrOQynfD4GMlzmBUapiQrMZcUEDJi/klBTp1mosKzQVGklIFhyBGNZnKTUVGacLMhkLGsmJ56zITmIyWS4jCkl9xylufctM1wVuLJiIhaQLXl5vD+vpaaHKDfbueYG/kB9gPxNBWc42H/uDy6Qe1ucDwnBvOlD6eH7Vmp3KDIQQeAsI4swPqkXiXij/kk2Atk3235CTnw244vyDsK/yDgfyBOB8gcfe/P7yHNMQtNYf51gdYzg8Hg7f67e8dwGcxdn033753jz7fJL6weH3bp5cZ59T/x5QeA/uk5v+QPb/38HT+mb5UBzjqkYO8b5EOqliiVjww+E/gS6foY5RAHdglWEbyQYrzW+fS1QKfR0EbSDOG4lhzJApI4pXKa2kjAqvBpTjMS4RF3Ioim+7PaX04C6YGa5InGBMk5McCPOBRUMhJOlYRSsuoQ7SHpCsQTgiINSCly5cqOTTttYZGZ2sFixCozxySgWyplGzFoHGZgNjssS2h+mUtGrqEpCRBWWULHpDzgl2V2TkjNgmqqXfUcYHED3DB2iiWgnOc1bRsGyc1XNXNRy2ZbbW20bVsTbMl66OZdOnR0to6a5psOmG08aT7ZFV9/PSvvHs6M7D76pnz7lQz9hmZ6CD61MbHDb6fM32GO0XcNT1VM45kyfE9gxAawAXryrkbc91QrY7wKTwNcLGe9BQOIpzBcYhZmxByIbaUUjpQuQODTcKsHY3P7bPCGxhgmFGm/413KznIyqZNmwUoETEzxYqKOywPhL+ahwnHFUhc6SbnhltY0L0LIo7kBQ4CALCVMjGdB1sWYbdG5bIxd2XfAsWL6ZGzLFe7y9SSIgsHaCWi4Yaupixg7l3s+DlDuz87xo6ZMystQi2U1thJ/WooVrAK1StQKUrNICayg1mmKK2iIWyqiSzKgcyLliUKcsOGbSqrTVtRrIWyElNqjWrmuZKpU2RK2QS2FZpmRCrWlSzZKsjNJmRZstASaiqxQlpkrSkshZgOaq4yIqcwlXGoSs1G1VQOWa1A5qKq5lVLmpsSkrJSuVE0A1hKaxWwpmNq2yxNJaFkrJBis0mam2yZKUralGaZpWy1psGtmpWwtqRHealS5+Hr0Hiyirg15nc5RO7StpvHZ7NOs8SlWo53cKd9UJfdvu0P4Yo6ZTvlJHqxKHTSod8UIwFYEhJmqqUryyIK5ktjZK2qUqevS4EXTKkZgpZYoF4tRB20B9d3t0U7mhdDCldWqh7tSqD767NVRmNqeboOLuexx9jejAKC4D2+xLF6sWMhAO4NhsMnRfDBThKLIEqaVuBDKUhpDNlAFlZoVXDAFF1EwECghaFaYkWpoMYQKMqRxgFEHUoYvGOJM3J0zsUO9UkDgZRVHFjAyJEqKjsRUdbMGYZgMpOs220QODUacXdMKT2Nti12nok0UEkB8WXEKQMUGw6MunAVAW1ISFFkuXBBWNpceXBLxaDCxu822dGyqoq97F4OThihRRvADcIV0aacKFoLQhUCjyTQOie+ylvF4DQSugiILN5NqDYwFmBZAvBcjQbc6C6Wg0kONZMHEosUSQEQuTQ6LNZlKN5Mvd1797tTxp46BV2sptLWpRbQZg2qlsKzJKrGRljajWTFhIaaSq0aTZa1MZSKzUY1CbUQ1ojNVtDaraZbRqSbSKkxi0EitLYkBWsxtUlpqMYmNVWybVVE0mamkNtTS2VktsrMYZpsBWZG2pKZVS0VLEpWymsM1UZizWyaxTSMrZRhaBWrYZoJWbYm2MWsqlbIkmWlBgq1tTFtNgItDNW1+LG1lbVUVuMuDaVrRstalpiRcaIprDNEqxo5qLbDBEtWErWlDmElXGjaLDRmKSaLmtoU1aW1ZtGltbC1LLbWkwyyZWbSkQwAfRTZLLARUHRPGBbJcb822LmDjw7O79e/jwzKDLVKtpqY2e9ENkiuLhxNgsxSoctKpYxXGUKsmkqmLAoGaLGkBXJkA4cnCKjmCsYSlbbSuMTjASnLiWNjMaNoRaZRjVaWaWqli0kYxpgxpZoJaWsZrDdvXs6Pb1d0LD0mKuZDCSuErAHR1sJGk3mSxYoXFnjkQx6aJc1VbUIxpOlxwsya2sabGm6tXZ1dRUlCtUsyoxayVCyio2oggWsQKLocjFzizMcdXTjrybJ1Oh0EtltBLcKdBKtzDpyl2LmbQqkYjQXFFGUVRvhxIYNjc0YCWj9EGvHRhERbGgxKhG110I1dBiqbPSQKqNdMTGYyCWZII2kshAEzJAEZZJJhREZuFrOYGkNsoEa0U3EvhNpi1nAGobsY0Vp4kOiERU4EIQgAPEkJyEOg2Xdhw44NGXFhLWTHm4VDp3MrkKeLe5Fjd6N3FwGQhM65YW+ycEoyAWgVVMMGQ9O2+8KgLQbuGgq4wkwqKNoUG2qZDAQYOBl7ZJQ0YxpLuJUyJjQHV7rBEDnhotJNmyJuDNO7Mj+VnfNc0oahYCFQAIAhGrMtaYxarWG0taVprVrLRaqxLMstbJqyyy00amtlMtNlpkaam0EWlsiJqy2miYzaxZNLUiEWbVsM0ttEW0VsqVbbImys1M1WspaBrWrbK1ImstbWyLIx80QXDFzSpQ1pFXDISNMKLGK2gSsZKRxcmk2jYorYCtZWECxCsAfhRosX7btzBV95tFYMk2ydpLBoyKZYaiRWlooWojGy2mjRUSVptkA1pMWDa0sxmyrWpdbxyPFDN0kg6kmKgXcIojLYGXKLSGglhsRmzgLwGEYUooQBZUFW5CZmHnu6GOdVcOfq4dHS4vAwobwIRRo5ISjBpoPG0uYhghiIDp6Cwoo2QMuYG/Q4HK3MEBPVBOTOTmRlvggxZkgoxfBAGkgMt4ok2AXzgxARAXqUQVqG9QmLwEywCKuNN8JgMbhy2L0MSbcPUJaC91FRzWgxW8OzAII2gC88zWT1QScTMl7ElwhOKYJ4SaxWnmMxzymwozky2BEWCAYZoMGG4GQ1YdhN3Wh1ZQeQhpQdGyxZgNVhoKS18AwF/DqyWmkwaktYMQbuaKWLpWl1mLjfHHAEwkiApFIMQkMqK1FoSzJTLQ2km1pojbNoohW1kpLRGszWjFbRayWITLJrDZoixbJtLNNYiWqUMzWRJa2DaLGrFpTGpZia2NVKtmwqzJrQ1MhjStrZWMSTPPR3uYwbN7LXyYNGoLhgh2aKLJg2FWIgQkamNmlq2VpNpNqS2almsxtVTalRrQTaZaWss1WGlllmS8dpzs6nDOpCFC9FVRwI59mRji6BU8xolAhBD6EQe2IgJ+CKmjqUHcyLVrompCQFJLY22haKRFJyujkcvAIhcgKiQMwGAprJ+MB2ueVQQwlw28A3kaJpNlaYRFHkLfFjyiqMhUKZLt3dOFHLBhd7s3c6UzQ6CWjaXVRHDac00ZTSbk3ohN6u5MhcKs2sWKLRIEoSzaAlwkJqD5icJWyjm6aE3zZcvNGrK53OCICya9hclIwE0Gw0mDZqRyoOLRJi8GXp6C6mbpoJAsa2XwaKUFWl6KsBwN7S+zJ4NPLl9rm4XNy8JgmKTMbSaaS0slRaaQVsNtRaxja2WkYzU1ooRMksWq1tjNRSs1pllJtkWJJazLaFVrLWTYy0yLUI2qqWLSzTWGtJKzNW20mS2JSKxa0Wi21syWymsZmWs2ZrTx69HR2fh38vbOTjgJQghk2UbowYHsy3CBRBggRptaDKiszSaMrLYwsWtNtJiW2QRWoxVnBNjq/Ro44hkpMhFy6CozTkvc2SV2gzKVMY0Ysol2OK6tjTTIN0wQoyQqCOSHbyxgvTnJxFtdL1C5LBhNmDJgypoycwZhNgSalsZaJM6sY2jddBoNtVGdFJY2RpNt87CALFhAEVtYzC6XW8Au4hVyde27Foqm9Mcopaabnnx0hKsF1lDHICVBVsG1U3cOTjImK+Qbh0c1q4u7vV7hc4+DSFyzhXIRfIabOA6CVCclF7tlGXsYMhoMEJV+JcZS86d3eiyFsGvtMZNQmW0sofKsGcJvb26HHnA2rLKtFaayxpEy1UVmjKbNNY00UWjTQti0zKrYlmIhRLSSLFpbbTaCxagoStkqW00ZMWJowFayURhBSRWRhANL2qWizJohiWc3ENphMwqXKNaCjLQaNEgQpDCsJbFmM0MrVSrWU2lbVlNTNpmxKWxpq03V3unT5esyGuE1ULA7q4BZEQvCEgBdgBU7OknXLZgqsqvGQczWZatjai0LTudj79JV3xXGS+ml7am45CB7OOmmztgHD+wZ0gAPRlGuzCptSzFWYEzpRcZ57GwsYC52RstQBzRScaKhgayQ5HUA2utpJcpSQ3CkilUR8sM6NWS0EGEdhq7zDjCeTWbEAKjOAZCNNJmyUhdbcPYVgBNDdHskB1nQGOS8pSjRh1JUBjSSlxRRsnbWk3gO9Y4UWwFpC+uQFnQvMlkjrdH7GC5swGcZ8ORyEGspTvYLD92C+ViFVB0XahiFHZ0DDcNjcXjg8tRazo0UXp5ScHYaTBEGTWwsaIqQRRxAJjWs61SGGEiGkKNREFJSxkikQrEmyVqok1tFsyNZpNsbRNtmrUiLRFkzTNSK01rNiysrWgqyWEtZaSLSValnL1OBw5uZ0OY0kspxhAprbguAoDwgaKMGjWB5fcuPRjo0taZZBWrbVbKs0krbaltVaaayYmrRpWmts1mpmqbWRVbW7+nAW3nRRNi7w0EE8CDUKQIKsKIrp45cZs3pEV1dHJ06UFcsznl5kQdBtQF0aKCg+O3jl+yAaN41cDmyeF2N5KsOhzXSwmmkDsQiqlEfgMCvThCQR1Cu61dXphocNKNgVA6xKZblAF8JiUily3VLtFggypjNhBshdMIWSyiIySGbGjF6eklL5yHbg6C8Ypoh4aMFjejTrBbQVbFnV7xrLReW6SRMXSMUXDgZDCUkOWCFuoN7WyQUkaDAaDSZxuCTEEQuzASXZrfDmWhBFyXVUmFfMMwA3hQtA9NEc1tD40nNfnQ64OaXTP0YX4btPH29+OhibFsq1o1mDVNqbZoa1K2ipatpmaUS1lm2stli21lJatGFY0m0W1VLNVtbJoxswbVmlWS0sbRFltrFgzWhsbMZrHteenth8douOlm4dzyYa2UTvB3BtWhZBlICAhSBi1pqtaZWWYirSazMrVoprZtmiaFqmosixJDAQTclnTUppgVENFg8pDWgCUMZOFhdSt4EVHELoIMGAlzbGAgu9+XQaOkEuLcXahNW7vNxTo2abSOzeendlyOsqnKlLRyCwSW7gYOWdWDoLN3p2EmMAHCt9iRjDsOglW5xNyWEeM9ZIb5NrIaw6dOuGcgBYIQVHE4enYGdESoYYBADECjmEaSA3eQUCEMJhdyB94OYNhoMtrmUJIvOCFiwE0l0wlwBuOlBkKom/K1y5sGsFhARrdUyZMZDAVg0HwbEFw0Tmgm2MijBuFMVZyGE5kKDIbebVqCYUUXaGlkzBIoowRBEXojeTRgmBODkuRW03W+ObZIIE1izaIYa0lZa0itZE22zU0RNLIia2WWtbQVi201YmsWW0ppW1tmiLMbaFpGUW1lLMWZaZo1MZNWqxJWjWyy1k1/MrjlwaysuatGtBVjLVrDNbWsastrdJ8d4BV12wDBhoEq3begkkMCYXsXPae5PtJJp7kqSmFW0CXtWtoUpejsdG2+uIUZAgGyZvitYrNIHMSlmqWsEHBlxlUW0tWjmIGsgXNVcTSmxVzhotiyMaNWVq1Ma1amXy3MfGhVHgJVIVlDExv0wNAwSVphGSSIMrrOOLLGWmxVLD1dune9GLIbcrgMH0ZveENxJpQeaDhwzxCgCipdQa02tRw2U4DhyQ37S4g21zXAub62egOjaZm5CpCmsWzRA3pICuOnBsJd7ZDb940wPQaCsnNJ3c05Vua0kpdcBpMJcuMkVXbJkub1c7U6NXW2G2nJSptcmgQVjUkJhy2DZB8CFJNm8hm2y8ybsGwcKDciTDcuUFaDXKQVHaYCTUhLBanUFgcGS9EIbiwarDl3a7XeeXXxqehhk1rBLGgtsqSIjNbaizRRBttNIIssiTTWpkjWWWrRjFZrKZYtNjFUtTGmsYhWmtVKsaGbJRY0M00tZZbRfMRUyVLKguGoBrmLGxFWJFZFAFiSBEiRx9Z5F3R10bBcviXMG9zU1MjJUuQTVFFZBYowFRFIETF74siqNYFHQA3LWCQw9g0PXNuu7BiBkAuZrUx4QuF2o6OwewhZ1pHKEJBAgC5hNWcD42pgLslGjOTUOaXMPiZBBXOmM5wnvVF3ia0lm2dTIX7BRJhnoqmEwm1FFsGB3bvnAfAg65ftzq1JbknRoWQitGCC83KOnM4UG7RJcyGCSxSg4LoDgIDISGXQZ0EGrty1yDNBBqyI5NFbLuW20vrBnG3WsIoAPsBRRhRXUPpk7iKjz8JnXsDB1PCxxn9CGofYBI+k2j649m/GyGnLs6kaHdj4BPgRMyLpM7VanUDQqZUrP5a9ZqqfziE8tLo0g8rBzY4OQ9z8PnpvPd6nV81rwq7GhFuYICvs9BBJlafJNzHPhYL6CE6eGrA362W7+xQVyWcB7lSzKEnoHzjJJ+iEuFUPxRukDYLmWjsXfWDyDUygnZBPRYftuWnR2cHS3TDliq/i1y0XCNkJZgNrJ+fDo6ShPthN+NH2DokhvUUB+RBVyuWPhO5qDDhskGEUAvCvRApT3lBchCAgZXfyTu+qkBsEBNi8OCmRc1a5zVNtaFQ2MXowEPW1DwTIR3p0HbsSBTLKeOn9GLnpDsSh3B/MbgdvgxiqQ7/ro8AbgULlGAeE+zt84B8fIdMlkMhzeLso7h2aPmlF9wKNiCj9mqQ+sfZpeseXD7t0eJ+t+Xo5Hb6LvPn7B2facivvZKH8Ggfsj0RHAIPLi6vOfkHLak+hgp20DM6D7f3Y8LWvX3YPSyl8Pdynr04XMHZzkGZmVGjPc04ZDNKfHZFKAh0aBeqIZ6by5o7h94Q8GgVqPCTqD7PIYONSmA2zb7lfluyFmSDt+A2akVMy6hncpNs+AOoBnmGz5e+ybQG+yYmVTUGxOJcO42DAPKYOhcFohLxQPDCuapP01RXlg951vC7+7s49x6T4RFsBAQE+sEHRJ83yTtzh47gXM3IuljEieJE2CAK5M2ccg9lKktswPQEeiSPYbO5uOHoD3fvE1+FDQzNjJ2XIR2wH2ASWLRaO1prqm3UAeMUn2HmzE2hV+bFT9tLq08NXPDn7b8roJQkhpC86OgeSq0Klnj7nqGLjcomubodC+J6cjJLvmNeGU+2l9ll1nfi+0ftnFeM+/CXw7n4sPJpzUPuIFCz7ZFTML5jjRIaAgD2MqYhe7uYOAFndzKu/2SHEPs9ofDh11gbVKnOqXCCeqpQCBAm+AvbZ1j42wKmfM6hJhvrFr2LS3xK1vXamtsJ6DNBB0TH5Zu7lqA/DH7a7ZOuj9GT8TDux6F8vixLk2Kl+EWCXMQqkO+AqxC7Dm5mDz7T0O8dOOHGT4dnH0b0mL5NEk6gHEDtgdM8PbyFUue2igq4x6nLsBwNdHs9HWmJ0Y6HmvmDc6N9Nj57PnZLnGbtKHFHQ5omH3hqnjrUKh0Q0IAmZEEKRsyiQPcrtvua5bVxyPhYLTHMONThp60csWmietConJNzUxJhwa5+/Wk7DVw9hrVdzVobXJb4Jb6edJWzvTvDP337+0aQPmfrQwnMU3GXyCtcSawMzHzPQu03DI3ENS7p40OuUXlig+8xV5yUffKh8tHZ+zh+k+nr7D9OYbAXdsC/xoj4yyPgdlF7IiGxGKOl+nL6mlcxeIy+nocsPt93sXTDg+BlDroIE/Ip87NEY6KtpcaQ7x9snaXDDFDUKaysfgMExCCKcBHo0wqKp1aggm5RKIfGpRNxbx8o1DtegpxYPdUVDAMN41+BVzDHEfVA1Ax9xPzAfCgcWemri97m66lzOEN/iVK93aGSYIX00L+y5i8mTkHkEdiCryQuEUMvVXr8U8MeUyHIbfdeDmA8sMc9mvB6/Nc9bImuPIfdu4PzkRejqcLuZXg7zvz8F8Aq3IIaOh29GBYN/pXGeqFGbUwJtHudRS+so6yd3y3QCCPYGyU/SgNfMZYTH/w7WJJulpuJqA8oc0ikrnLtGI1hKEhNqymp4WsC3R9ukHaN3+oBQajVEN2CpYQEVTcIDeQCdIOODjyKDkKd2Y7BorSg3FFRmAiBSX7ySk1hGmPEh1BuJQfNs+LyNRUzx8u4GC+8H7WJLvWGpODrGmMnbS4ubeQimtx4mWVqufUyFHqdzLtKpiTKKKOKL2GCKISFQgKzbBFRyPC/4S+01GfKCqO19SfPdZiON0hVLgneVTwJx87MbSbqdk5ZA7mBjvTQfsyYBY0MAhu3mJ3Nash3ggLMBjsgUP404qMDdpOK4CockhQUspjLA7e3flknIWEm3FnO1fMXQTGoMbUh1W5pwLfAZaQ0u8mIkJY8hXZ4pecRdSC9BBB7CJ5ETBj8mAQ8LVK8BtQsZFUzbOTD/yE5lVaCG+5/LpI7HRKfDoj9HWDqZI/eCTwkd9avWR0+T/WG1RRy2po+PZ92PA2Rwkz19JgXBnqAoDJkzMmMN+mIT/A54JhytJQ5/bIaCDglDE2ywm6kJLTOnCHAANSp2SH4Km01vq/r5H/QLqIjmpYv/EFjbyzhUXfUs/5AEewwEL94A87NkLzf91AoJ0B6eSrUINQxAslUTgjclIfuf7n/WBUbOgKTpoSqGyDpbzpBIBPv1H4pvnMAgDoJBFRik6Q3Kg8TI6GUM2pzvarkLEoRRXEFAUh+7jOk7cTPI1ii7pADkCAhgkE0VNDR/ClCuMbu8DUyU6Mv5mqHCQzjQg/tmiT3x8XpuYf2jj4uKKN0/do8GVLg/usKXv/bAZKytsuFRGUkgBbB5W9LR7U7Qgz1fqajn8PWUL6NR2jxKi7n0Z9orhqoPu6uu/tX+pTdLwx2OHGT7qH6jfY0VewioI3P8LlTo4roGLRFqRD1pnBbSsMmQOBS6k8qQchjL590JkrIJYhCf6oMmjqQ8o+JNJ+2pk6sSOIbFSaCAelix/1/b6nxtfXfZnDsuli4jpnkFAXNMMA57zrLP9giDnAzh7P23+MLBZuT/uUaAYxwYRKIgKAyk8IpnAg+khTaTTy9w9UN8gojvkATigDdwFESkiEhB3EQCAEThjzQyYMlNFz+P9716PZqB/ujCqv9yUlh9sf39H9r2c9cf6Iy/qFS37e9wfxp9yx7xC52HpqmxCygDP64nLT8lgeS7CH5AUX8EShCuwWVVHkLWIHIESlSn6Ej7TZ0ggSDOQGGFRFQAyBSzXMh9il3EJgHP1cZh6F6x/+9Pii+Y5V2cC/k0BUqqKvn8p/JCRFApAxX+Bot3a+4FIy4a2aRNhBHyQDNA2kQQtCNXUiooZtyiPW/5Cq/uaOmne+xn+c1cSy6zD91Es9mX5dYLppG0jZS+2qmyratk2ic0j0Yk/Lvf+74VLrenVfzdH6dJ9GvWxGaGPuYnM5gf60PyC0XqTveLcL/IdYzN6wdVa24f4dTuq31Ga6MTqMwVD+zFrSds/2ur3iO2caviIL86z0Y3ycER3kregsYO05LctkiubteK6mjerHMyG8TRe2us0YiZqOt4kiIC8zbGb36nFoxMcrmc5OZwbM7xiSY5mYqd9TU9TrJVIfxiAehFV/cgRBxlHTk5Vmh/Qz/NsPoydY11ZrRzU/xqLUpX9OBOjLWDGEdpYpKvhROWpW0oflqquhV8ar7b1bmKql9MM1TWJmozC2rWaWQmYrWIlfRggzSsyMYWmhtQrNSUvvlotTNm1mNtraVslhZVYsTWaWqiiWRk1IGVkJZVUQLrkA+GVZg00M1KVTzFU6aDZScVAOikNqU9tAcooVdOUUuJVq0iDMpBrBEbBSa0WsbNpMSS0mtFrYmppi6qSsOGgzEJOZSX3mDgwpDMVIsZKL3rKVw0QvzpVTwaVSK2BbKtElskyyFkWUSW0ttUimqgotaWVGmsSmtAbWmoomsiKZI1ZVpJWZFitpWyIhVlZqWqm0jbNpWaa1tWappppLEtrTRLTWWa1syZk1skivOpLGmMAPStE5YpmJrVEe2kGwj2ZXRgzTEKypmS2ha0SctElXo4cpDWRZomyY21WiPjEcZCcpMmrKcpss0a0bUsarYawitYTTFasbJMyNk22pM1SqxipW1LaRtNq1gYxIk6NKe7RdmSvM1VJrPOB82Sn8vpyo9mnvpejV8Mh4ZD1Yr2vo8ugdHecL0mVPGFso5Yp6WRXGqOaXoalf8F5cF+AK1R6tU4ixVV5mrjSQff9UfWg5on1pOZGypsC2VbCnTKdMldSe7UBfE/xH/Cvf2fednRIiPWJam9ok8IDV1Sig9Af6DIWpBRKd0FaqjuZRrAzS6Y+rP7bf0aVF2s0wsYd6Kr+CGlDZ930T6VKvnlCtM/z2cT6Unn5pdq3DJxK0CuJ+eGJzObeb4GOZlXfGUKP3Ax0fzh+PM+f4tcoUhqc5Wx44613682Mj2c1H8euuN+tevRoe7feOcsU4gR1M6KHJF4ylPcRMamp6scwOZxlwa9bYY1v65bq9J1qZjHp8427fDgryP69+enHD7LfIT3r4Y1PeU4vk5+nB0MYZHBy0vnptx1V7xflqG/LuYpR1PvBuWAXx4y7y+S1TnB2mPJLmmB1h8Ngwknp74tYOyCm8TQgwUUcYqUA1gvY7XJs2pTpkouMO1FguWFZk7OnA6GuhqhXVqnRmZToXOOModjV0t0Yh66tgbUqNor+DUXQySrt6KbJYJeLFK6FbEtoVtVW1JspsVsothXTJ6YNZNYdbDmljRfbHVv6oUyT6NKD0QkgQp+R97/sKWuRR+E/sheVQCwTIhmPop+4RKtn3hZ5IudygZxTioUR/M+AILmAJEJQgMlgTyDSc82pyVonC6Q9pALkCJ+1yoNf24vEPz6Uf2CUhUKH6GvdqDpyH91frrOZmcdhwdJUtH900f1MG6T5EEU/QE0SAdERdBjeyUzY8Qbkd9a1/WRANIEiBRcEn65EAVaM+UiDTA9B14jlCAzDfcEgbW2xEVGY2g6wRK4h0lEH71QPcR9z5AwMqQmqQP44HyZdB7KuM8ClBEVzilJAjnH92BxH4fpMmor0pUv6SRcXh3ck/sP5kpdug4BgFwh5B9R4YHgevA3/n+4LyfrBRIBCk/TN0IERVOmj+HegPA/r09J40PfIon/oig/0ydhehsc1X4TuF5C5SkQuEP11TUEEBAxyMtSRx6CLFgmCitW/p3gmpSZNcQkGRDYxE3lRdqBEILBJQvImgJMlMVMLyRkxpAyJSExtKCjtsj+MVQSaXhi4qDQaNIoo7rsoJzSxGkiREAW9IGMIGSoizcg1KOQFWM1ImDYM6pAn2GJqIeFdzorXZwChwrEOGJRIyOps01qBOSVtzkCRH5oQPLAVCsA1RClgwIPENfx0cnaY410mSVdDjkvYUWPzMUrB4hh24D6a28SDrFQF/aWHsg/wcJoEGmW1gIUanGSPAwrKCOQpDtU6CZQWtWv72X8fx56J//OXLD/JcpKupnI19RmIRPLhdr+ys/pMC6Q+AblHfz21Pf7CxQseKIUEEwCciE7OAodJyzgcx5gUN80zInsCDnkCLmCBY1RdoJnjA4mWLBuviyHMdWrZTAPzUUpA/5GzT+U9Kq5MVP32bjehAOSIXyEgm3Exfs65OS7aTSLleMO/O9dhccJtGjmiq+E/0UBvCCidOUJLQ6HDAlP7iEZhZgayQJQinUmSKO0YyvrcwJyWBNWestosmAOeNUi/47V7v+L1ej1OD+hUu+h6mnPKEoUyahaysaUGWoUIKBsan7gFy4/kwpCmwoNSAI9R6xRMnRrvLjFOGI/ltDcZSJFDORSKixIKPQIABUlReEhSfDvtid367i3VW3T6HI5NYe6Q7lHAjv9O5dR4OwKMjYUJwCwePr0TasIlINBWWGcIMgUufds1hidZMjZiyooDG4zIKHqYKghMGNn6dLnJUO+4xogOYgDivSQJLbAvIsg+9gZXKIUeUFRxP31TYDMG+BKmvZV9EB/qF3SEiRHAIBpcMYUs7V7zRUEpbO4m8la6zlbw20yl38H7ZS+vI+0OK3BLGkpaGZ5psde+liXsgRNoJg9lAStSamM2yMWBoCErgR80utmcZY+tyPdftW/0EAvONymllC5mGp4AkzF0xeFAaljleqHiCcJ3KdNkdpoN8gFhdYiG4EEF9BABRMT/zApMGImQ8bmUHMogsqoAbbAT+ngEO2mR1STYjGxWoIOZLgiE12uRoxpmYAfAP0ykwcqEAlEVH4BrraoBBUUYTWtPMQtT9J4czsYA56Ofwb51gCwtITqpucfz6LY8tDxNUrWfI6Zxlr9f4ayXuJJMHnJnaxAiJuIZ5VnKfkbug8fe865wd7uLdLJtHFn/G0SHonMZ2SZLlOKAQgtZBRAcsEAiwNWgkJDz8gSzmkZyopkUV4AgAKFwQJUg8B12t4o403dKgqzaNhWZQv9uk1y5DxVhNhkrLTmDOamRQbUKD9HhJAcxqNRwGfGmTVdgFpBYGQ/20BT7EFRJDGRKZNPXH6uxFUbZkwFF7JBA/6AAJX5O6/9s++U0FqePSPFiwhpONFUZOKYnfS1lYTERP1BxG8ogu5JabudPmsgbKS9kQubYnBVFLh3ZMmwmLQ5hvl7+JgkgEzZ0hO+EqfTPMSBiXWYjLMIiOgIERiCqM8ht5ZEINKShBDJPxkmVhJRef0ReR7P7zASuRIQUp1CILA+IHW3VLVUD2N8Igj98qkTV7U0+81vBulHCpB7iACaoCYuMMzx6sgdhkcZnL/kF4agzpefAJmhqMRYPgZQKVBBzDxBF96hcloVhWOIJz8KgG6QEFD++M64VAKDScv04ysLcioJkQuakdB2Tk9JWmPCgM+sg8U7JcTJtay9LKAwKXGGJX7G2ejKeSsMf59ZlswN0kA1BXn2B4VLG+BjIYoJchUaiqXVUfPPrA16zGZQm1iRxpmExQg3m8ld3xX0k5ISHTuC48n0we1tATKDI6vaZDphaGAqo58ic4qNUqfiUOubNfrNuikXbDEqosA2j5nSZCQABa7skqIn9sAUEmDlLA/4Mbw1E97EI01ujJbwqHlYKoDxhs9c9gOG2G2FxfzgwKCwIP+k5KwC8MoG02hXS6gsuLE3jMYHGXhIiiuULi8e+d4iVltwcQij3oCjCAIVm0KKPlCanQf+gEdsuUEWBMFR6TQTGk0WJh8Q79p6ixMZSc1qKsxpLnIep1zM7762f0teQpC2Y3d07HZwMh5yQnJZ9ms0r0McwFogg/E9pbKUIaO1FJjNkwR5vABsCIc3NeyBXQv2he4+FCcDvtaFBv1BHK+2s20Xp+jNBSEDA04wMRI7EKgsYA9Ev6kAmAOOqlJaqlRBu+uM5uocRZDLJ7UcCnqagALcq2/dSJbk9mXBPyPiKo7P5zVMDJ/UFf0QEfbFH8oAkiOMBLw/SRS/ssqnjQf0ZfhpPRFL6/meb7564BoKWUWbM1FWSgR+1FOcL6jHISMgabam/yYXu1gZe6eOY7RLzrnQn8mMv2wZg1ZiblB/sVQbQ1FqY9J3iKb0A1WhYICMgFvc2BW9ELSCUiOxSTETvZIYg0P7PgT3rMVpfrMJENDLpf+3chMPpfhnMVx/BiM7tpnUeMcEJuA5KhKUu8YQPpw3lQIozkR0OcTfLpLLt0yzKSAALoRBHA5dqKdM+51ih3T+jUGl6J/YZPedDzdF+RuG2bUWIcnprLU7CHScfYuVPeQOacI3PjlX5593SWawreWUzuPqd5nA9uAf5Mqis+8ukiDw0g89sBqzl6c5epobufmtqQFGo+9DiDlY9PJLUlSYhQcIKpElyGQQ9R0/hmOsWCq8vevOmXzhbQxUH939Q0GYyO8sxVLFj0bU/DAoCZNBaEU3iGmBZUl/8ePpqTZP0FhxxOSfkUICIP4IK5xQ/efza5Yeu+xlDSeg/P9JkmSD4u79dBnLADQfXOSVF7tGqkDwFQTqSJG481ZUMp2O9EJwfpN+iAa0/f39e+TcGhJFEkUNwyf5XzB0UBIiKPYZ5cFUTsEEQrMRKWMxnnlgez5/HAqJmpoGREUaRKzESHwupkNtZCRgs6QJdTQAgskwB7630VUcl03ziZT4hpk0BgReHHF1EBOmyBIG9AAELjgJ+R/KrKFJgI/joP9IgQEclmv7yQSBIDtGwSQbxFRyxKUISHvgd5D3Vgk4QZVgYZQCklevNFkJwNqhMkoAXXvakEp4HMBJYhZNElktA+22IKs3qOCy5QbIRxKDWlBP1au6paXOhB4S13r97EpHNoxf8U/d2SiU/ao0Up37Cct4rciP/oiFIQFs73/k7fPmxGcjQOkwJANKks4EgcEZDaj5Cp3ipPoTRVGHXAmoAFHuUFTR7c4W19KfkUHdQs67Q0B+1oS1ojRNcEUVR5Xc3VP24k3oVHT1yP53wiEzAWCBBUBgsFSfjkIAKjf/Zgbt0adO6Bl79nzyk0js+ag1IGaTySBhA3gCHrvZPXE+UDD5rbBAnl8XDkAtc9Tl52G5av23D4G66HKBZRPF5TS4lZXrnNOaXP8rgaMnSEVGWYf27WFh9ncQl3ig11lfS6bY/urJNqFam2qszcfC5MdLQQ9O0cxxSohpjv0Ehu7fSJFaBHhNBqQUWXsYT4T+ZXNFgnouICPL+v2uiFQOQftgwUEH1nsfyTmtMExf7blGvK3hB3hZgvdagAzR1ST6GOa6KSoqjS6n64sb6CDrqKNbY9ExPMcgd0xuTE+hC13GXKtkUIvQ9LHw49Uia7bWVEFe2wiBImtxtIbMrP19XhJXKm8fbexhWfK0DeJAO2Xn+7sUPQW/c0PfZJneYAaDUR/3Wdt87zRAVmT2vk0nrNPlZ2zm/jnuM3CU2/IvBAhCEHEaujndDVdzS0qAxZ3uCfLJvGMpxI6AkisKk/KRD+LvSb3qrTx6bNvJbOBcG/OSB4wFF/3s7MgbjME6Ko4/T6Vb2f82NhuQLuT9IfsLcsqYJbDMBUYHQaCLNzVI/kO+/wyNYAplCAq8gsFUpJQt8ygwkClLwv56KKx5pVrrCo7z7T3aQn0fmTn2kSpmB+sbjA6bgrgHyBy7gGVB2ggqINh3ptbsDWAAvydDLxaKBQRqIuRlJWr3pIqdEtEVHHpAEWiTtKGMhQpFrmggAumWc3Wp82Mj0FChILOd6Igrl87EX8WhZntm+HuPLfL5IHoW2p/Ur64NnumSQf/EDnd5IJjOx4De38e+Tpy8PKa+FP/XiHv6nxPNppfgMFBV6x2u93N7GFJz/L4DAPETD3beDn1M+4bCpXqQ19Q+VP3yVBC/EyN1afVpJGsiUpvECT80MhAL2MfQZExhoOJiD7qEvcaSjmaEuxJYkUiF6bEsTSMspionqTGYpkoIpOkwef+7gqS97laVmROcnzt9Y1z1025TDHOjKyJCIe+iIhS3+CioPz/lAi2XB5jclEsKYiEia0950tjUzj6z3hmkAxThH2Bo27grfpE0zRBvuJIu+FqZiYm/RIZQ3QmCRiGqDEAxhpbegEoYKm3fNW1qnNCJ1gpYigLS8E+Y0oR9IdgxHdTLqsDKYBEqIRPUe4sDRVqKaTYTzFBaFhOal0kK7qZPz8wkZi4hoLSwrd2AE/hklO7+t+D+l9Z5na87udz6mC8M1p1g8QUHCHAFRQwHcIIChibYpHO0Mjj+lE3gakvkcL/CaXInUUo/+Az4tYfgZH77VRfEn0CW81hMHpDwASTAqjABIKJmYeEkOqZ6UJ7z+DjI85yEfzv4StTv+8NBrGhF8s/4CA7kCoi3Gj2h7SU3E3M8hUtoqo6g7zIS9rYSfKk8ASGsspkkh7g94S82sM0+HQOhr3qur0uikrWX0M6QbkyRqQ8Yg7xgnad/mnInx4U6xWnO6pc8xLUNwkTK7jznkZ+6TJO0P3gmJ8JkZDjfC9Z/8a04+PkYcW9Jk53/mQwpuauOPShUBngInIkxiToEqaSxOs6VumJS3SV9dJlvOFJixKUM5K2J/mU6dRgIKnEURcbBDuJMcqe/+Pq35EIZ6M5taZ08baGbxM3gZzG2LkkD7PcOAPGT1KSG8BqxhcSN7MShEVVPv8iir1PHnUVHg8ZZPWnDAv2qZ9p8D43LW6QK4cR5HafO/Hx9+gFQabmH1bCzzW2OR2HOe7/ZnAtDRcFCmprGb1OQ8B5j5NGUOwfYurIdAmCcIO8XvVdo3SaYqNQdiUnzNhtpJCEIdB0JMJpC4iThDjkPLRCCT7kpy4junqc7M4kxNZHIX5SQC8mIpiCg8QESD0j1HTcwFgXBYWGQJQgSFodNoDwGfShrI4wiV5T6nnKw0BcQNfpInhJLS9ubGBkb3F3sztM4TbTlc7KACONsgZjQYWn9E5IJSWlXvPIfyBUPYJgOLzpxZf9NmImGzlfJfazWQreqxzQFBNMCgkIm5ufveQlTsnUiYuH+67DYhvQt6B9OHEBtFhGwzR5v0AAWg7c1F11JyJRFhC9gc4koiXxLZIzpJITy7nQkdkxltoA7BM8lAzlu4Yu+eGWt+VJ0/VElCAlIMEIF/0kMjKGQ94f103fKDHmV5kg1EHGeRYJEJA3NyRupI1G3jkwwKohITQM8URTSCo2GCF71+0frX7zWYPwi/7kj7gpYPiJIqFhO9gkQl2o3LBQP+SH0MninfLoD2B2hn/zbe2OPGegMaSWjnbA0ptp0DW5Q9gdwMcyeIKj3h2+kN+L/p0y7waAecFib4aPF8k4wha/2Fh1MOuWjKk6WAdBIKCL1F6ac1ORNHTfbJvpoDVYcCVREEGoqCIpSQdJQHXL0gH+n1f6tKd2BT+PH+k7XQ0PRj1yj+llBe9vhra/fzzYvg/FaUL60r5BniBEJ2dkSqqPCGAdmfALAmI3j8iwIH9lGKlO15gvA+6zpX5Qy2J65hkceDMm3oTAJK7ChJ0yJHNvBlmCFngDuDRWkDOlaW/6G+eUMY7aXj6a0BFqWXwhIGXOcIU/M/9jRnPpN4pk2krW8PEGQJQt9wWB0toNxKK6JbZvIEZgPLvUcktAWh+ht8RxRpuPNVt695xO1bWIClWoIFQScB/7eFSmcqnHSwF9AYpXGnqKOypLjD1h3A1rjUFWXQfzhzPfcE4yhiMhUEw3QynQo6TKExaVkkQoCJHh5bA4Q5vaoNXanMSn2Au+eVvUG4lHelxkgYw6QfayoNr1knRci6wUs/h4mAJYp61zOgguO6CIo9bK+98/idmR+Z/qf7IGVq/6QIw/q3AzBKSR+G1LkKXOXhzRDjC6bEGKj+yvbn1W87d4JSa97xJGiwpPDdZv4u1zRmvhvTRO+P7HjNAWnRL/qPcUFXbZtJDPTtGg/zBnN5IUaEvM0rewWMSfWbhIz62kn3bjMAU+KiaFxuOUnvyY/NayZtrFOSRgJUdmxw/gLT55SCUzYTY66O3hphoDDVl6oSkh9rOOUsv2zX3RqOQAcfQB+hQ2UmBPWVE+PWbZA9Hq1eP4U6jXNpOwakAFlPjw3H1acpUlRw8BuFv+bSSVEGAOJVUf5MEIJhpDpoY7zKf0eFC9dvZc7MCFosDKSQoQ0JgigNgi4BAdzB/SfpPlPZmmJ/WKFYnG2oROmhUyP2QufKhQAAuZIOvLXwJUbFTIEthynrQ6x/KGktTTA8aGsDBwl3iwMLjbxYjqobJNsX2IYqoXQPihEsE6yFv8lxNh1SufJA8Ajf3MvrmlFxOTTtAGuDxTQMDTIbP4wCjQSseGV7veMKv32RUVqfZMzBl/zCidAZ8TvAornKtMn/oiyjOKKNYdcMRuVbuco6BAfPoZYZZrcG6TXbLTqLJ2W2UrM7N/NrJSl6pVPB23+glQ7UDS979ZHp3gZYJQ4yPCc0W1xP7xhoK9O8m7MUGtnnI4jUT1F5taet4PLLhyn0eA6P0UMOD7HLjMHlTR0IN5DmCCr43eDFpNtQVa2ROTtUkp74BdsYhwJw1hJYTmYySlLKRM9BL9TDgbGkQRd+9/U8XttSt39UTkjPncRIfF5CwxzGs7hV7igx6SoP68BFP57s7ieUOt2hfvhoe4U3WdfURKHOzE4bUv9rFaH0ymJ+hR0OsHEFRQ7u8c4NDjbWZ2m4GNgcDy0Y7QQV6bQXvUDaZCSbtNIbruy9h5z/AYwq8oYis5XdRxw+cFfSG6bRQ8E3Rt5JBArUGCiISAQGyAdEgIddgCYVG0wxD+jQTw/8HUxtAWTsU40ITBzBvEfkUOY35/ZaKDuEq/oNDcUUdiN8qh/IhROyMTrhPnbwmZnLJgHI3NJBZ1Ou+56wZ9atk489PWdl7L5tKg9sNRm/W0dmw8LmI/MPs4/czHMP/aApM+6Th+QgsgTY1UFvYOpqanM/8/diz/N/b5H5h+X8B5Qp239Psf84H9B0j4PEGszx6vIbA/e8bchMyGOK+PCIQesdUGQNsidItHcCawkDjcQTB4MiYcfOASyCIHMgCKE0BTFAGXOdWVNg8mXWTlBA5wf1YBKYG0TZ5e0BLENwIaYYwzaEzyyhAzhQ+gyW3z52d5+QC8Jr3+Ojz6SYJ75C3MFgTrhzThCgKChwHMFAagyh98k4ShrCgJQpvCFYQwsMQYB/ZiD2FoHUpKAyhi5hfAEmtDvN2eo2HHACIQDzvVTQFQU5hEVqSRAvkDQYD9SgODUFMnwnDJxGwPqBR9AJi3L5YLQl8DzakPAAX+UoJOI5mCjE9e9Tl4gD/301djg16sxu+fI70uy91qDtnVxhKoNrN+vRtMiHJX5CErpr2uZDA4ZwjuGsMoVk4bJScoK6lBxE5LiK8ZQoM5MfWg4DoWg2dJqfL9zoY0zr9TJUerLmLPgWqDKoOVQd1Qd5QRcyg9ybe9LPnUG/JIYrsQMXu2Ij6pgB21B31B3FcTd/cpcfUJdz9FYfOVS8yKijGo68usmvW8NtQeDa4p1B/ZRoCg6hskP2jSyQEec0E9h1pz11hrtwZs2I3pWLeFBqfEWuk1hB5mJYkpFhC5Auqdhb0Jtre7Hb31ED8og+oIIGzt4n6v0102x+0MTISgYFzGvqBqg45TMdQ0hISYMUylJLEJbCE2s8m6FDS1jIzayLALohYFQYB7KTALgxNbWFfMzhkzvauC9zBqIZQveYBoM2RiGNoLguM592RyheEArCcJxxt7mCtn4ud9yoyT6Q1OgL2GQxmOWkO74tOgKgr/wNTiDQH8XlhhCdC8gQKCOENRrBTTVQTnUQ3nYkqFLcm4BLLLipsTVHVsW5TgCYieLT+cpOzAT/E8cTtMf459uPw9H24JK65cIJQAdO7iIbZT4U13+DNmO5XvOLL90yJ5etktbsmTuJB4KtU+pOk5uomIsafgmIlkTGk28cT4BDfkuIO4i1EhvYpgQV5k2PPEDf3DykzQ0ajomo0/E952j9GB8igcDFwnaN08B7gMh7DXt4iAH1AgxUH5gfUmOItKuwBReSBuEGC8bAp2E4b73TohYEp/Bi7J+T/AORKqZwuQ57um5+C1nO2cyMFkVQH4gVhkSWBjTQaFlYMOqbK62gpu97KSf8BrPGBKSgVkpZJXovzkcKop5CWql0bLCvsvXMjrttJ2KKVfJ7HDbMGQ/2jaPaYz0GSgt2J/R/QFiPeNsD0tzL7D9ET4vh9wH7AoA2wMq/7Z9wOkB+zYfkDQ36uc/8B0uK8PodA94GUygSbvnMP5fb1HloKA9DyHNgGc6G4dOky45pyQKQgX4pCQQoUFXTUSuSrNx2TSlBIdYQQ1JAUEMVeIpHduSoCTYYRH39igKcBBf3n+Vt+rwOISA2jSEn80CkHqFItKUkSbUApclCSQ+xp7oGERK4UZS1WkkK0ylZEkWbVpazaBnagB7pQLQU3G3CcanNOEpc/PwcIKrKOMBetL9UrEZECRcYOMaxS2dEpMYWk9csNo1NWeRqD6gJgtCZ3OcSYsSBEPIW0KVvRNYlYWhI0Ii+BBMSp/vbjnM8wyxXqMpmALXG4sRjMC4vPZOBf3gy/b2MwZC60uy5TWF2I8QhzCcK8ZlM5Z+CZM5oMVmPXInzu/uomff7I3f5QfKh4MpmOMqxuIsLCw0kxg0J7jW478HdPMZ0t85yHKVnGHhPEXmPePOcB/2+ncN1Pcdg9hN5Dnn6/ctP7IuwOT5m28PuOzMSj+SY+xyna5vZP4JGQ61wCKU4ukfo3DmFR/RAKCk0HJ2m6xgcTKZisvSpgkiOHGHgJgmHJEa/y4303SmR5qJR6yVTd+pK5WgneTMeL9H/GIoS10SJ/Z9Tbxms2NONL/FAMkJFB8B9CIG+7CnbMZMXKWkSSPkPtcV1UJ7TEV8H5LDf91QVJPA1lJ5jdKT8nyPqfioNY6DL+L+gWMubAKE+xkyeg/nLA0QOljTp0fQOd4TL6U7JF2zP/aX9xJnofcNGs2SubrpnVDHAUZUIKIhtEELiCgdFJK+VGXoJ20rcZud63pcFmw5bM1E0Xq8GSdWZYBI/hLeDP2xNZVdYoc2AAVwRJSAIAxSA22rE/WVbKLZR6MhyYHzP6/7f9kSYBsrNjkqJEFUmMif7lkoU6yX6ko7RDG/hP+N/y+nFPVtCX/Fg7dP03/ItSXme+bimumldIa2Z1/PvRqZ9BmZqcBwspcLopG+J9ktcTWUllEcTxy5L/P2kmJ4KXZUvsWyNv8p3EwrKe34wjKatIYpTEpok3NWHz4fWuYHtJ7Dv+hcMAuGikMHdufwtXjeftavA3RyjapPGkfGA6UzNPN6QL0N5Yj+3Ct6PqBxcHKCAYwUEqBjIoB1l40mMhP5FevTZTo+SQEdoOm/csdlzGqYjvRyNzJrMEplniBsgECMZCEtLKkyyptVNY2NobMwRkYsWRIEEG6XqwMVMncqpyuwUQRTq0KBiU7rSJ3rnUDbZocQqCcML4MqeS0PL8b0+X5nZy9pxdMGMUzYq3SA0V9IXqvrZxeQDfR75xzDdDGPHsUQNgijtWLw464FkhTB/aQun4Fe+/Vj3vKd78h+wexHEsXD8l25lCxuHHONu2rlZXE5em7imgbpcQ5IC6nclF5YHiZ2xtz34mYOph+mT7hBBQ4TbjTjssBxUOCFHdYeovJAPAYbwF5CKCJ6YqHULl+0moYiqjt1tHYtv2bppGlCg269mg2CJg3pEsqfK5aZFcZsLIq9pBVU7CA/CkCxbWgqmZHiAdMEr4FF2IqRnAei4e5mXQpPoklmfsnQdofEfIAl8mE5oJOMh+ffz9C/d9vnLi7eXMQ5MjY4w7ahZigqw2aIoryV+4HcDdwyXgyokiHCcXfrPWBsVTBTOxBE9pCA+XGfbQPg7SnkgY8tqvz2BhA1t2mphEqYwMe4OzKhxsiqOLUa19vCcesENUmJq6Go4NtXACHHC7pbduDobMRfoQaEcSGTA+gwPbB7itoPFehchs/Wrb869poWtS6xh+VLtJktDKQvtgfKg7SUb/okP0Qn2dUH0VBkUoLzBU+HByljbV33SrUMaIPHrhqSGAXKGJLQwpy1oT2Qyio5RQ8IYhrQ1TYo6uWD9sYhMyC+yB2nxobXa8Bd6gCIB4QzmWp9BYvGOTpxOQiD4Glq20i0ibktBNpaAbHZRC7Yp9YJXe2D5yGuoaPOwFnw5exs7n0WcsnxOB5Lr3qbh6WQmIDjAPa3QXMh6O93F383JcBUeAGHifWMBf9eP1X2doSubLh1xaZDoLBfB5sCz7fMN/oJOFGw+K9vD3TA4DQSe2Vmg4QCqg7e3eiyPD5Tfbc+bVTWPPY7h6CD07PrGU98MDvyFg4H03yHz4lBq6di243gfR03Cnok9hE+XiXfAeOznsegk+UM7GE1YP1vIAHyFVBpM2D6O1E7fkfcL0xtkMpPwD05g7fWKCwT1+p+e6sPFIQqbx7kPLUj5a/L5cn3bjXQ1H3u/BzImzKkVEcCIYqDA6HUMtpSwW911P33joOzu+Z7/B0pX8MEPNpUH2Gw9Ydm9j7g7eiT11IfahL3fpFUdpk6jwHTtStBqjz4bnny+RHWsxXvJMeEu3Q+/Qw0jfGpsdGTKKDCCqhuwAMAwPY0vifw9V9X7s93h+I8YlLH4w4p1ageENp0avsec+TDD0S5c4vyGps1OZuS4ew8ro7HhYzdaJb4DRHQhqMDYiaMQ6iiKSBvPUOTsoJdIYPyHtNC3L6qG/NXg7zPAyKPbPHwu7kDhPQmwERR5yCe7U481L8Mdb5coOHtcJ76p9akPtYL5aFfLPdqrq83E9DUuGlKeD78e5jPqq/WLyNVT+DB+Y0lfiyXc0R+6LVT08vtPV+z14/Lz1KjxqNgjYCEQKw3J4Ep5jCafjI0R5x9xbRLY9pYq5nkoHs58K5EDo3gzg0cgIg4kVRHYxCnPqoIHZE3cHSoqPUUVwgqnExQzCgZhEXAIBy9qDTs94HpMtrB0Ytg1oAWKljsPfFT031FqdlDGezzBMTBhcH4DxYPDHrF4yBKNizTFLFn0UHtxevZydYvfSGtF9tFsqfJkHQgm3LQLPmLV7IUDKPYEoHag44BoYJwIzegkOaD59eE6489hCdzheC2WYCQwZl6oOB4dbPCdHNh68tny7gDuaeHradyyfKh8UHID2nFVBFtg5tNhfrwFRfQZUHyFjrCfluEEMhJ8s7y7DAH30TYLhHzj1QC+IYHK3bXmBLaPmAWqcnrQ8vzu2qZEXnvzT3cKdACjMj1oF7acJ6uVn04cU9pAyWJZA4Vb6YcA9Bxzd0e4JRDDoog8m5QVKsCEVCrBdGGaW4apwZ7jvaPb83Pk5y/RO5qhP2yfOT7aPvgSIeEhEOmzYsG/nq6daNFO/YGwKhj7wdguFkvofNjmwaxwColA4j9jOz5inrVeKPry+Pkl8Bl67O0KQh8a0mQ9eA6zVrlSwfHDqBm8a6H0zNjh9JeweirTcYg8BEU4imR9wqmTBT0RUyT7TMLpnTr2bGTidBu+nZpRDpkVJEJJCSQkb+GJQPXgV5sHAROfSa09mL3FBw1SmFSbyKkEAkj4i6aklOTRfuoP4FrnoIKDQbhyW7NKBQI6TefIDuGAZJOiIH0gKqcowOp4QDnug9IakiVA3LvJLJkET4wDepQrA9Fqp6gN24semIGrVTT2xvbj9jrK9lk7x+c4H5NKtSKAGbEye3cOLB5oFOX71z9NvLnbkG/DwlU867a8hYOK7YZVLbhWrGOiUCxqmV24cmpU70By3bB6+7LkEOJyQO6tanLpMiEoUKQZMzDqQKPLADxCLzlL3pSFahSEsJgQPZu0Q9xEvlh9JPJSlqlzYxj7I1o9kMJlCtKTQ3Ia0pQh8Dtwnt6hjyd7V3BNggLQNih6NuUkA7nWzmGLo6hioNQ69E9EhqLAeTYSvWv182WGYDA91B1JYHDXE3S4YECweiqqcEFDwiqKUDhKHLgGKcRbBO07TiS9h1UHoqeo2MiPeAaHxez63pgIHBBkESrAMmhQeYCUh4nFDY9HsMxvoAMDIcR9k7MLVDtBFBuweQI9x82Xi8Nwvw2nMYJ3IYvIdKD7Z3tnIRL5PTwaDAPrsHFBo+BG3C7QQUcoxOTXcOUsF8UghIJIpTYNeHSyaxDMzTIPUVC9/C6Y1HENlF9nz3yT4up3o+7Kj942m1bSeurjU2W1R75Nkc0XTRzK2hMQIN4EbQiB6aO+jL5cEJVj5OduQ9t/WAsppu8fgc+9aC2E8g7fs98DL35p4F+6miOlgzTA+Ho90w8IWMibZJ9ZTQezZ9uK6XPaCKbwFXPgtsOR5kcGAdmPBrRo+TUqPS0fh+vQ8WusJxkfe0giUNyNGpJjodGKLTs8xDFiCo1W6CYNBd93CU0/WhtwTmZsUfAknIdJp4GAAFgDUmyiU7YZNwGUO7w/DsHV72u7wYHtiX6ccFL6YrqfHKUDQShThpgs0CzOt6upHoNoFDwNg6OnxprqDjkJQ8ps7B2JJ/XnXbe1N9ygIMuwYhZF4imzFEUjBSmZmVd6B7mww+3EhxyQPD3Lk4z4xazRno5rrxuoQ6RyD6YqDqzZLAUGTbk23MdpM+puGlO8meej6eg+7P2wHc0on6deRfBr35sBomDixNvCBsBBDN9pX2QSroVkDTnGhSUlAu5BZ6tWD63Lh3scGYWbjbEDjPMBkMB1rbgt5+VkNmutKyOo4kANMHw4fs6S4YZq9sZxxttF43jNlzNqvfEe+R7NT2s43bPYrVMTvOjUiGwY5VPHiwVOtwsdOplhWwOZDwNTwxxXEOaR+bCvkF0ju4cAnURWRHaKbKNoqfvVJ3Pg+ro73tnq+Puwejpk5+peg+yvHo6KkSggV9hCPAgR+xBNCB2nWDVA2pRo+FCQbBFX2kBA4ZyEsQESsMggmzbgq2LlSxYNTOYYV+d4jJtNQN3Z69O5kfEsBq5KbwT78cLo9nDtlK6tCdWkT3NPeCnzXEupPG4UcfByr0TM84yCAJvEQ6mMQPpFQA+EFH4QR2cmdmPrQxvz8a061luz00gbGZQG7bwK03IGnmgfH6b8AD5tKH2WqT8ZrJV66E9/FwxHmCu5+gkNZeMDdFUblnztnG7ei1KB2xBwCHjqhR9nqPC6pYI+jU7C7oYI+dHNXfV9Y+2Q2o66u+B303vwLjG8AqQXrilyAmUDIiBWAcc0BziNYOgR3dusuQvyGCaVMQgEIOMYe6mIXKUAAX06A2cjc7Kg4oQQeDn4SXSxJejFX6fsuPNvlzifhn6PF1dpRPbRPRp50/Dscl7tKx8vudAfhUqe3odH6/WC5CbC1gDuSmU8CGsW6OruvzbOnVVJLSKUpKpNM2Y2Nrwlir9TRcVlflEBUNNtjIyh1Av2+8LFw4cdm5yLXYvrw7cfG9kQMovJEVQswETkiOT7IchkRcdgyLUPRCqYvAN4qiMx60A6LGxDuLjPDDodw59GBfKAHTqb7nBC2PgvoMuEVKQEVLkQMjfDHGVcwgMiqP0itGAiBCPBFDUxoOqYpc90TFOAp4dapVMzngNzba/VTDHvcoWPaFTbVLnTAdDW75r6dXxDXjA5xSHt7xI8EQy7NCqBGXmwR4tCmwXxaXT2OPh6uV6D0+SV9sQmxXQaroPLhxncqZ7h11Z30LLsZ0IuxUqHQUUA9IQBVNmCmL88Dr5jrVIkGD6CBQ+hRU8IiomsXkg7EXg89hlZIpDUj8p2mLhwqg7RAsEEUcTIx8a9k+GIYuYor7A6kQKE2WmU/HySMln38Jf1KS5V1xzKPrSb1cAnvhdNXt0dvV4CgbwNXUvwTHxBNGL4WHJPXp28954DV3Kc87npLdiijVmnJ46pseZJ94MPCycjwE4TdOb7K+VhDZAgo+FB+iO1yHKLsEBcpjo+tC2ZcgDuQRQd0IiUDl7PtjHUKCC+jYoChvAHqKIdlT3kvFH2XvAeyT4Vo9hR00ejsSB4g9hbqyxks0BE1ggKWUTXNp3NHHWj3LBYQxTLYCEAUHeI1JuEHPV7LZ73NT2W1NzPjhLXfVpaPOh65MsTF2NNufOB8ryunrJr2cnorUhqe3Tuz22c2g4nJfWuJ7CyXFVH57rePPwoaE15IGZ7EuEbRXgiCqZkFNyEPohNsOg32pO3Y3e+htxk+QHbzpQdoaCdY4HbJroKCfw+HxO9YDvmUBVjjK8Cxx8mnulHvhP0RenKFjjpH0djG2EKTIPm5CxmIAGMVUKGUAxeLm6qSCmcRA8YapFAE5fqLlq0pvqTivFCkTo51c8UPR6PBcz2qVoVhv0GFQ5eSmpIkRxSvo9mD713PnOG9M754nhsFzI57MGBJPk4PM6+h+Oh6+eqi/ekJstotCgbPTIcDPALGPAYbInojaagZNP6gYlEu+HLkGKFwPlU61D5enyh6QkI8bP2W2F2A2hpp8+wPG0+Ggue/yxy+AhCxdwWRBTgQ/AjXiSTNHvxsufUAD/4VNlQLNVW1KqzQBsqqVjJtVUGqPLz7ulez2PbzenYshTnKgC3UbBwslgFRsqIsjh9mchTlKSkVRkSIAAXAXsWRRXB+G+CCDZhKWB1A2CCSAzK+QsWkS1aAxWdvST3tNwoynHAWCxnZc3rLadZhSslzBRg0VgvYkT6Df4RAeIEBH1ADb7oN8NnfrtRpDBl60a13zRsxsuxY2cbXAjA7Cg0bKdZLtnduZKDJNwlFgiba03AwYmR2TmXBvVO/SU2Aw85zTvuhX0QjaILSvHfj69/Ly48Hu6ddGWgyUTgwbydYEtY/LI2RgWIBKvea0TK0G1zSnNFS4xcspVNquYrmqrYG0UNo2aWGRyStpEbIUrZMZWWNbJksNreaSrbiXsW0ly8aJDlguBIWTEERDAoq8GZjRs9HQ9quuR1cnJw0lzVOMYsDUIGTFFQxbZUXAjMvKJeNoEQFdSkvGPBnXOufDqBXB3Y4bJKt0tkMg36QAWZhlICAOoc2BFGC4XUG5oo1o1YUXLAIctKCAahEojLnIhJu7pyB+cNqWDZTSb27S4ay44Nglg3rF26aLlxvnCuqS+0gbhBAQ4vbeSaDSZctYMo/L8exjLzJKGAoOCIr0EZJUG2C3CMl3LccOBl+yHEAXL20BkJkLkiG5cQRK0YwYLmzhczrc0iY4lEjEhIkBiQJEZBRta2VispiytKoVtWWLFk2qWpYlMslk2ptZbExNoslWWbUkti2Tar5otqErIytMIGmqLRyRVibbTbU88ON3b3UjdyFNBw4Y4NjIaLnRVz1dkghGDNbMGb3lEcZSrjUUmYoxjGKsZURrVKYalVZrhxlizGtQzWaUrTLSMtYppELEJrWc5oLKDYgCFm3R0YMBBBpNyjgLBYMyuXDIUExCwBIogzY4xSXLwuIMBoLtzDA4qXBYMFlMxrIY7hYOwGSpRVHJGmEsXuZSTY8y6hQEJSBUDJBSw8Yx2UHRguxuKRVG6eXMoqjtrBYNkhDBxLFitGMpvPSpsonYbC6A6JCRVRtIQT5abJkgg4GSm0l3NYWPrlJygchkMp0nNJgIFoMyNgpkPe9Zox95vw2WVVHOnCcdt3tPNtbJI00AZwBkAbbIVQX7eUGQyWDAS65tJCg43NBwsmdmgMZCTFRosGYYjFYu3GmTKeDLu4YgUQaHm9buB2GsZKjTGtaamo2GhaWo2iJiipIkmWWrKWytNqZZhmpQaw0ZERVlqRLVaWEiLYUSaaEkFZNLaEtNa2MyqlmM0Yr8KlLDSVXMNhEMtWYuVxwbQoa5FChCK2Vk0FpGAkhmTDH3sa6l9XI+1L32NH5NSAbgoQzVRa0qlZqmK6+Tx6/d1e4eGckdBBA80EEgCjgJRJiAzTJVIHeY/D0uqI6Y3qcXLUPFoy4UC5DJJKCjBCmggE2w52ZSzoMmg8mdoaSTeqVRXZoSCZQFG4Zmms2y5ZMMGFwBBtKwl9fsGtB8d7sMAZbcw4S50ScDQTTFizlOrodapMo3QRTiwjlgNxoqW5lyWd62fiQzp+ayIKuimwcuXV7OguYDQcCxoJ6dl1chRTdDDlyyWqCNAWcaTUmich98d2pMGtJzvpOYKzjdGdgIHtVUYgQQtqEpqeanR27+d2dkqnrkvaARtHQOsBSfsBpy2eiCjMhd8yjIQ1WaYxnvIKzSSMwoMyuVxyuaVVcyAZmmUlcrRcZWys0hsmXJhrFpZLESQixZCWmiRIkYMIhEhGCRgx0YuSb4sva2+jvYDc9aBiUMgMUFBzCH2yhwRasHDOjt/L+C6HQ61UnnU/DS/l5PuIVXrktHICMJSG4RKLOXlAUclKtgtcKOghLaDT5dKDfBIsl1MxABDFwCQzC+N3FKAkICIn1mZlmglYJkgQF1CJcmAsBzSUZU29tIKLcMOHbduXWDYatY6yns4GcBRIOZL9bRdYfttVgg0U9BJg0dBLsjhgqVFR2b0kJi0OIDYXNPV+102dGs66NORbyYt2yVdcXGwSJiKKNyKjyy1wulQoJ1FjJdQcKDc2FzAZpy5DCZ7SBJnVoXOGrFgoQVMI3K4bgwbyls2tI9/F5vTqZasZaatNq1LNrTaLErSxaTa1pEllrW0ym1tCRhFpKWZbKyKNhpapWy1AbU0iUszWtW1+ZRVxpIODTjClHGVVXGA4yXG4nGzYxUWY2May2mrO3HZ6fPt2Pc99jkNtGxqGmZjhbKOKskYBDZYRUAJbQbKZkWwSthmrcrJlZZKysiWk2tZbWHX8eJ2cBdJxsuz1syFjuCq1CTDCQgAWigYxRMSwqo5qDktFKyRkViyZi1pmeHJ4oujvqXsdC9GFF0osigO3LIHjjwMRmwSZtNnkjpuuCaxcoKHosSb2buFzRwsgavBtICxxSTZYBBeaBnw9hk3CgA8gdsBx5ImuBvbTIXksFhfohEAe5APAigdz6cPCbphyV04Dc3MTBLJyzPBzcw5MpoNhsOBcjaEgX1rl9FGrpWUlLLz5fWTrHWybrhCMAALDd2Gc3egUVvTd4ZUFXQbLBDfdQE4JbKQBaC750cMnA2GQuAXCCygw2UGNNEx2MhQdajp3m/WsnG5y1FloCJFFghAIhVSIQIgGIFByYJMJa5eVKd3HGzr2893meHkebU0yMrTWtbLMURkraJbLNNFrbRChZKxFtWyNTW1BSWhLJKlahabUU2GUM2Zp9UpWacYFmlIbSKs5yEHGknKcVsyti0tkhCEAnsPnJZtgdkQuWeo7G7cuGQavPVjjNO4mNn7XR+HzV175M069hhwdCfhVUyiKrbo2wzd3cXgK8ve7HOh7MLJ+BGkARTIiHsIo6hOYFy+/svxVvy6UuBubsqCIYkHBgYkcO9GxZDFtRhsDm1DcOKLSi/jXE2xo6lThuZuxWr7xdsNyDwBr+9733Ob05KuXOIcGopez8+a8ll+mhF+D98qPSi1a+LU+xpVDoHNDiBdh1FCofdjHO5gQRREOnP83R9PawCTZqw/HAo9xEQOII6BAVb237qhwZF2oeHsLp2wGhuUVKEdQgifiyMz3N92/jP5NfDzz4OHB/CHZH0HkHwiHqNX8clzt4gUCFJm4F8QMy6YvuH4feaOcNyGJN+ahptV5PwXcSheED+L8cmM/d88fxZJbj9b0H6ffuPGTrp20lP09uSfxRZ9h+3HxI7GqqPqwl0NV6Rysz+WNr7K8XOa5l/Iy5Z8tKkPfpfrtc9ij0y1iE9vzyT8tPgyXDy9L8WzPox83d+58CK/Ha4e+BF6Sqe+lVcJ+ZopThiPPpwO1new9DPX315rqSrGBdL7NAMJIAAvOGFRRVQy5d+vjuFznVzDeJD3EobOTMQ9QLhSPFn2u0un6rwmyB5avrC5rYOmPYQfVaLqxqwaKi/gOSiOZAFQt5Modi9utvaiCQuh5taJfN8TDIb+U/MvJsAbvlcet/H6gqVJPyebL3YL72iVM+aC4nqiampQw3jsYQMoJvUhHoDhSiIdf5vf6vc+r7aZq86d2qXvkIpsnYUQtHI2eOjU1pvq5W7x7eDMwxKCCYkQeEgHsOKFd3HKtSwZaNArg4/jsL1I+Q+NCnsoe6hlHSBbrjYyyej3TOsA6IFXidQw6d+r69yZhIrYa7xIfXndRqSB/Sg1MtW+ujYDdMvkPTEMnEapVbGKfitfLuFhPYTJrs1K7B9qZeFjaBDPsqXTajjega8JQHUJeIT1nyejAwX4a0dMh8+d7SejFQ8IiBzjRPswwlFBTACLr8Ppm/Qvol6PBlD4oXhInc9QE2fmQZk9ElCjka90p8scB4UO45ueUyxB+ZuOrsw8d2+IHrBLhTEI5CaILNkjGTXs9JnXz14TSfZxqvQFg//mKCskyms6AYri4HM+c/AP///////////////sD5B6B92GgC53u75i9ubgABoJQHrAAB0D06m2BAGRqej0cA6PXveBwPS46desPbS1j16cOjNHazg0yWuJwchqe73O8DW3eZ2slJE3uzts2xTTUbJZrN8oEQ+jve1d65IV8u+LcoAAAC+xpedDgHaHVFJT6dg9B7tr1ofQAANAnsANW3QHo+voAAegNAL6wAX2C7AAAAAOQAAAAAcAgAcnO+Rr2GhNdO7a2lYa2GQWaZs2kVrKS2w1q0oDUNqzWpyaAhKTttW1ttuj5VYeuHFYPQ971pr28B55xXvdCOkeuG7U973uh3g869NK2627qqHBswipAAJoATIAJkATAAAaAAp4AKCSIZBAQKSj0gPUAaAHqAA0AAADQCSBMUSlP1NqmmjQAAyA0AAAAA0AGgFJSQRNFNkyiGgAAAAAAAAAAAIkhMiaARqUn6oR6gwmjIyADQD1AGg0AAIlAgCaaEkVPynkpk9ED9UHqaGj1AANDQGgGhnSNOVJI7eVHlT8OJMiZk8+hMyatdqbLsJmS81nZKKg64ds7J6Ez0E14GZA7h3TwnD9qu+YdHMSAdBM4Iq/EMO3Knq+p9j2HNSJTiniTAEEC2CIDvAhFDkj8e/4/BkDVigUPqCSDAgqomt69ZvTQ5qcyM2W4GBfVlS5IuROUjVUTzSmRKLw5SYwWpCARAM/37pi9JOGzOSaU0MvkbcBAxnVTtH/Bf8T97eBB+B2U8GP5EtpiIkX4HB8TMSL8TQs5vHN0J3kqC4ynhTeCglT5FBdxJFJLycBTh6JAfJNCrv2kXY4ToHIai0MxnKDCWtJlPqfgl0EkvzMtnf5sqZic73Ft5/nRMx8tnxtrxzBb5YZgyEtmT+o+/p+qP3BqfaL7H1IwAo8Sc+M/4rlof4CxjOPRXy5+G2gjafvDf0lHPBCIJt/9o8FDa5K5PHz75hcs5g/4ojSU0c7ARLgLiJm5/tySniwtmApK8DiQAGbKxniJigMhroaM2KL4Em1cdT4H0JfCX9rrfc1H3PMRfkp3HFmIzIR8py6Z5ou4lGjndGUr164WzhBDusvgfI4jOcJw9eve3uDuh98Jd4JtKFlXydg1BzuQ5uKmjdTmhHq2xDpip+ZEFPEW0UbQBE/KeqUA/ftKVT2ur2Rd3d603M2cVaAAEkHfIR05YBkjJDVCUn2IGVyAMpkJsGawOIhG4Ca72/i/4t36eueKnH/487j+js58ej1t+Cbey1e+qfVoohF/YxFt+FfBtT/nNXiw9rasqv9/aJeW3DmtvNUpXLYTy+//ZM81ccemqOy702cufNfC1Pe+WwPFCy5bnfO0eH/HCV/Z4zS954nP9DiOiXt5kNOwcDr1ExAHq+s6E1RyaNrhgiaYG68USdpg7q4CiMznQowq2S/jhjj5lB+3m03fpgpf0m/6Hp6vSKVdL5j4vUA6b8/yd7z9477x1vkNn4ngL88nu+BrOgcw+bwH2POc/wmxy8B+09z6/oc//HqPdmOx6jL+D10p2J+uRwTeN+IOuwGLgNBlZIklYkO0JQptpEBfzNqJWBGEEgB5z/nB/IbfoDyHgP0vhovSdzf+w3QsvOqZzyhgICIPL5egcughj9tAuX8gH7wKAJ3ThuZyhZbN9F0LlcBj7rghBVDAiIdWdxKEYHL4ahEUYJ1s2oJGCxMG+UCgVMZYyXFCGgQkDi9GofcrZIZ2d1zEsQNQ6O3nqou5juUrMOAUzH3AkGRWRkSQtsy5ocxfTVTjQ22rZNqm02KZrmXWdba5radaOtW1d8EAC/l+PS9gbmOmG2fDU8vDY6PJqovNfDwnIHnkdx9hoZujZOjNKJy4N3yxRLMBRnelHQrs17PVzeFpel8dkvHBepKhx2XUzAezA7+Nway9Pe4cfZz5qGVn0U3YOVxM1KMxwt/3EfQOFYg5fD1DLZg1rGieNjJiqo9BD6fHgPD9PT0WGFzbyTtD6TRWDn6slgRTwxEJNyW3Lvco0UQ5o51x0S+/dOQow2OMGEoO228maVAXGxuMPRMx30ZLzVcQIgu5HaHADB6cE9ktZZiSWMa02lR+qQRWZRKyBpSqUraqpJtMMEQbSlULaqjGKBzFcys0oVtIojlquMzWNQDRk2taprFVQbSJLNVMamslbVKoNkKq1lFLWRbBBNhVRmkVtqQyTYGbVihJiVWEktWiNRSwltUOWJzIhVtVKs0KquVqUhzUigwOagrSkwm1VLYzRjKNqRWrGsaatpssakNpW1VMrKiGMsw2iaZQ2LNBtSVbFO7UFebBVZMebq4oOx2c3pSVce/D2QvnNhAyP1CgVUfcewRQ+EER0HbkiJ8mFeLAI0KWCISYykSr3ZBFcy1iGaAWZEQ59M4Ul1YqG1RVrFeMKqno1QT6fWcq75VyyHz1Sl2NRHzyog7sCgSIMCJCJo4Shzv2vkwqItHivpKVp9Yyl7i2LnDpLlRCh2AN1lF3ea4kVruSPHdwdSXYyilRrFgGylKPQpM3zDNaskNMQNkMIijX2jgfZRYVUaqAoj11hMwpgZGjoXSDQRuEA5nDA2vgiSHQhgzVP2OWyGzFjMu7nRth2eKSIblAqLYgGDBkDgu2iOGFybPJw4aODg1cchtCYK0ShVRkJAOGC2NBuGBCouWKrmRyFnNy1nJHYvUiQJgMoqhFKqB0lAuUrXC1SCx9qQllJzZuw3LBkJFzikLVaY2L4HAmSFIKtkgUraG1tQxsytgGxTYs1JVaxNtLS2FqalBs2ZZFVrZoZozCpW0MaUmYktiGxNlRrFZTRRmiZpBmDaqMyJatLbYmaiNqka1WatYaapK2kwhYqliUtUKzSgbVmjYJstqmW1atjaytRrQzIWxbGZLNKitpbGy2oIzUxkbDZVVZtNW0atAGWqa32axgSucThDatosaqS4xSTMsxJWaoc2hoklmCWMiOMqCuaEbVNsGSqNFy1Ia1NGi2TDK2qMaymmMqGw2TMrVkbLTY1HhGaIKMWdmZLFFnJBQI0xEa1N+5ABGLTaUrWZZb3khwYhXLnFDZRUOGopaMXJlUqysqSa1SkGYSqXGiqucciVHNEKtkSqcnEs2ZZi2iSzSZk0bVkpg1UNjNDMpSy0xgkU5JobFk2cy7UkN2lzFy6FhuWdsjLt578ddUFzNN44Qas64gc1KTaOo7dHVbNjTbLM0zO0Qte7VWsRqRgXJQQJBvLNwUFgBwZ24aYcdnJx07ZuhzNnWpbpVoXMHLQGxfkyBWcRRY6WWVFGCCjY3uwcY0UbL7J5MQqdDCAK2yCIm2iTYBvbNNolzO1VsRUBdgl4Rl4eDHKtNeOHKVLnbceQ9KAbDBsO63ouu+lorceHFAIDxE4oBVOGxRwwtq5pvw4C7gqMueCwbHQHAbhw2cMIWLPBqyDd2DcoNRBloiUrQQUVOB6ulwWzgRBdmxcxe7gLIijiIrbDCzu7m6OyXxoNYaRsnpiG4vRvZYHGcpwVLNwtANsuW30Q9Hd7nh28MMxMxCsylqxatjYm2ptTMzRmzRmWWtqmZjU1lmrQ0Yy2masyswMwzaYxk0hWmaZpbQKzNaVQ22QtiMaGsDGVsosMjZtZmYwxmMzPiRVMyuaqkpxqqQzKJZhbJFLNEo5OMa0s1mKpbUEyLAiQkisQPaXDSraHCHw1C3GMtTI2waGd7+b84aCkCMWQGKrGJIEM1ppszG2M1YqphbWM2DEtJU2matMTU2YZas0jZmkzXjR3ry5Xq1y71EDTVMVVGJDCLcbbGW5UKaMBTscad61e6dpVLiKrtMzNrJANk2s1VwqMO5GgslJpYgKNRQvsmmQ3xShbaFG2UslpB6HFgFRsroZD3CHwZK1BIwPsvwdcaWoGSyhzAvsJohkNayYhRsRXY2dGGkuxBFaC6EG0iQwRQVcw2cDcLLbMbFvk6SQC0HY3NIij0b3OAqKCDIgQnDw4VKUHcoDJQkpNFTaMElS3akLI24N9AXEUWMU3p22dWSG5YOpTc3SIIYRXGzZN3fa4TJgAgV4StyJgMWlYobsC1xbXJdIZ3LmC+BCRVQgMmo2Y1qqlpVgDGCs22ammZhjEKxqqVjTMbNGMzTSwrNa1LYs0yY1jVphsZplVLRlk0aWsTSxYzWzSUs20bNtmWVsVS00rNVtZmMprVaaKVshsSthsMwbTTNkjNDGkUZkmZxh0ckKN3hI18XSL8D0ZrretgKXe4rZKVjVtbFZtqqlpqpLWmmpRjZYzFrDZZNTBo0wtzlet5uzq7uW5iE/EvqQrA+gDuKvtgoqcu7R2crFSa3s21Zthtsaiq02G1jlUgK7uOVS0TaSgOkISKBQUKAjQmsGjFadirKqjvA2MdRBRoMkROLOwMFkzDoFdC0gKQOBtqTFKBJCpF8XDBaKTecnFL0RoMvTajDRWpVDuFI4dDJw6oIRFMa0DaOB5EBZA4Ka4RZRnOD0kHODIbpZKLTSP12XpoFojR0YhJSyYXddJ6od0s6OzUA88sqd4kCSXDcgMCc6K2fPIMDi4cJGAEMJMwygrWtNbMxrQ2qKtZVS1WsxSW1jGbLWtUpYwaaTMjMtatapVbNY2MM0qwSbKFa0Y2yZgVZmrJmWa2jDTG1rGxs01rVSWwbMtmZj14GLh2l6FbbGpppzdSkb2xnUDigXVUGNtTYM1NabNamyzRlKWzFZYatastWmZTbTKIxkIEWRCKwZBStDbmxWmGtQpyU9EuBcsXEFHeHBXO5nZBiBCIIDCEQgQmtiyoo34wiaJfJopMfdJgDi5SBYgIo2I8hwWTBfg6IvFhhKRnQ0J8OhFYSFlIs53sSTxDjag3VyGULGbDkwN3JbKio5ZAEVuG2nZw4Yhkzs4bKXRQGOZSoCwGaQrm4NRx7nY6oqux3UvHWyPrAGxFdqM7Osh7edlsEwhyReYYMuQYHAM1ZAsllC2wrmK0FiIGuDLJDExeAt9Gw3AsVubGTPBbIIo7BFiSOMa01jRbYtqRWY2rE2YzQpasM1mZo2i1lRtGNmrVs0rRaGrRFazRkyZa1NWSKzJFZhIESLIwiEYlq0cBjBeWtFs6mZxrDuRUvit9FYYJAGKkSDAgBGsiqzTassNjWtTNprajCMICAsYpHZu0WPLxuZDbOy4cA3soiYLCKDvY1JEYqisBAwZE4xrSrUrTwd3D69ReMe/IhWIunZuhUiRDKDrfYgGhEbOPI8cqVPa3vhd8YyVWxW0EjSiygoOxmuDgo2MGkLKW0kcmsEZh4bESKa00ZdmJc2HZEUepG0SWXjPA6hiCe+jezEVRuIRnR0NDdGBSZ36QoQLBR0wMDFoi1hOpgV94nxjfgouIqNnnOS4dTDvwGAsYJpblBk0gWiFVMnic4JxUUHzhZV2LNkpvsVS2MnS1kVnQpw5cPFzdLCAcaKLEQBG4owNIEaZk20G185YgqOxB2OTJp6d2axkrabMYM0abWM1S1qtaqK1ipZmbMNWM1ErNGrFs1TMw1pJW1LZjLFZNlrNM16cdO57pNOcRDaMktLzQ03ghIQpZF3UGo7XHNDMmMNthFZNbRmFjUpWxGWmNDRawZU1ms2VsLMMiq3nPd6erqdOOQ0bLkOM8NVZICKsQFWDclQgR0CAu8apRBaGsmSlFmwgjfRfNw0sPMNcDWCyOT0bxHUDnRASTZVx0GMuxCjDZTpBVBw/hoTPDsjYzFEJfVBwCbcUc6cmtoqYQUDbag4uZBvgYOTVlTFBmsoYaEWhu7LZsqSQmdoUF5mRoVF8wGSoEXNzJZYB2JsXpwM9ayl4PEDxgWVJnV2UmB24wwmLkwXKhYCFVCShnglSrKFNhlJmKK7Rw0ltudgFFslKHeKcxEC8W0ELSoISPuKD0iKF4gh7Ig9yGTXU7ncvfTFNY02q1M0ra2qGzYpLVtMxjZaNtUMa2MNjJq2xo1KlmjWG02NqFYy2GxrRpasaSlsms2qGMYyNVYzVbbQwMDCYVxnrvRJFrWyb7cWriFe7nOn1yoptVyjjNrMbbUw2sy000bLJskqxWNVltkisZogEgSMKrgwWDRERUpyR6MTbIhSfeilHRHkDcigC5gbk22NtOGYO1y6nVysCXCzjyomvC93VdYyzTS3oMsXiVTiCsOZ4+paF4GNrUZinbo9Dh6txdBrguUGl3HoriRELEFQFgJDSm5dKLkaNVzeYqgQk8bbu2A3sqaIKi7QUckQMjAASBSiJDIQe7OSQarMUnRSDjwt6cVKxcLLKoEJhUhJOBQxEq+4LVFBCSQhQlXJs7Uv5FDAdMSXRErUJK3BG2pXLlw4BosUCCu646FVCxQAoya1jWNoBuGSwblzg4yWNggxZIrAgJFrGNq0qlsNbM1trMzW22xamzbGTLGzLSrbCVZM2sybWtbNmZMs01NalpFWa2yN9xDmLmUxxmw1rVSrbNbGuruSq46nc6NF3NEEY8IvsTe15i/g4Zqj9MdsUrT58sq2cdiqh2lx2lupniuKuNBLUJ6nkkZDMmQMxZ8jhizIic1mq2qZiQcMuZUVmhy1SrWUpc1mK5TKpy5TbKzGaGTNDLWyZaM1tbawsPi0QF5bBSw8FjRcTVXcJeQhJIAo3e44maxsxrWaSlofLwdPkUrbybUMTC9Hudj1vydTSZNYRW/UousALRcQcR0FNumTRYs9Wwi2N+vV4HfDmdLqGYkw4ulVCCXysYiNMDAvo7mlIcKBhDBDbkWUWmulOVWClFwcK2FASJG4YSlS7OiCGEOs540ZUcMRpCyXAHRp0CiuwGDTY1AIbjgwFZNGo6Vwiu1BbDZ01ZFUcmzfJeAQM2OM1gA11wZYHSJrUzlcYC+C5mRIhGBBU2VDNQtM22zSrVs1M2siqzWGszMY2xiazSabStDVqMsUVprLUUtZpKrVgyxpEsyMZZNNMV9SCpiksii40gNJxFVkZNZIrWaRIBInSr4Lm2d3fVzm+2oKHAgqxRygGxVFYj1eHa9bxoUvq5YFXfVRaIYNTYPHSWAuIBkU2loVXXIc5ydEicG3MLLjO6JSMdMqKALpg1cXNSJDkmItiLqsa0qYdkkCS4u8VYISOKirkV7pVqlWJTVY2HnJBZS5cqIQkqhUsHVahXrV1VTYRc0shXcqZKA0orlylXmiDhFbhsityNtNnTliWozqIra1t4GSxsGDZRAR8AAKMRAMtuap5KJyu8ARHojR68fC2Rrm999ep8ntXDlASirbGiUoPKvdh6HQMbAt3Bgg/bPsKpxsUsbXhxLBkkdmIo/YiiCZIloCgdFgJRQFI9V5J2MBy4e2VA6RVBfTtDtNecpKH8Y3XRrw+RL63M61NiheBu51tZ9HPJzzffrpRFdtS6lHA08uxzbGq4XROpRsE5L4psPFzMsaPRYXsiXgPJpKQkHaBUIkAxS12gCtRCzpWqb9ta+fO2EwXQ9EHki5TEzDL000L1QVPceiAiuCYDI5jk8FWMgq90U+4B0JCAhmKpsRFQMr7mn8NYLIl4sWKnS73p30lz0x9dBp8vUuEANw8apwmToWohvkXbNgOHU9hiydL7SjuThwYOYkI64C5LY9PRTC48uhyBzAUqY+Pspu66oG6eA5qODTizaB1AbnSZHqoilQVPwEURDoRDQ5Dz1tw8nYq4Srd3A9jqnqGTs0ointgq/PFIYYOOugWWGXBf2HSGGoDF6PCv6AgYAJ0hyvOR344o2mNQsWr1NOWUUIiMipsdRZGUQdCAOnJGu5uvkHcyz5UUCge3CQBkQyx2nDoqILhCSO1Byy3aicRhli4Mh9xE7A11BDg4cGC4Ts0aPGwhdY3Yq6gi1BUfBAAA2CFcxu1h6NyHTFCyBABB4YZIWDgucpaFHwLwFQux4Ew7IElBCjULvzulB3IHoI8Ae0Cz7hNfLEgbbeQy7wE9AeSjY5zR1geC+A9Kd7KISAKvoiqPuIdEC5Ehm0Oj4BUQ6eSg8EhuejJY9VcMnsdcnZ4oltgUMgErsyCJ5gh5hUA8sW5E7o5lAGowVehwRQO5EDoxd3goBwZaUfUWSRHbdNNjwFUh5et9iEjJIVFi46psFD1oVjJkKV7Ysx5ajbuP0zVH7Dwxf0dG5TXAVdObmI7wPfooCMiZe8ekWvrCFpwOwaLNk6+JRqebWsVai8CuSjY0x66DbQRfZeS4YY7Ugd1bRxEPUUyYvZECs5R5xeFvS9RUoSg2sw88hYizBXYwZeXxoM7EKlJH5sYMl3sQAQfk8sPqP2+nsWb9CdAJJQmOWyjYDrK9HeCZZL4Pj56naynx4MfadvHv02y6LJDRuHgseiD8u9Sxo0eo6gtzZ0ISobBidWXPzwbOP47eDE8GKmCG333LUymDjzU8bGKC82hmKBumMnBv2EtEPu3eai1rGioYopFB4S48lj2PwwpMd3vRfBj2uOdujxeeIux0cjl9M2AtAbAT5wULJ9XKmvHlA+Nzjcr6soB7IIo7wFQ9E3Y+0fHsH4eTdXE78168H2XAyhwfKUQGR+ggJ8WB17CkQOjOp2UwvhWh8j0SpYDZO0KFiy+ejewakD4wDwxAA4JnAEekBUz6a1anlA70eUu0a611O9Foir4FJ5DS0TpMmONkBgPqUo5KDX6XSL4X0zsce4S9vmhsHrgq/gVrWR6uOchcFORyeUy2rUPrTqHjU3+xqq8xRuQUO6BQTg+vjY52Jr6C0bousB2Na5PzsLLY8ryNz2e2Iz0tiT6Si80Pfqj3IKCOPorEDwRTQWduSxwwxZUFfcU6+n1n33+GxMQ51np4pMkOpAOYNanJRFga+UDqwfZMoipuX8pH/bzl/NQeK7hP+OU1GLQ2lYWqc4iJHQYTa0asMo58hb8vMVlJMmttU/8dZ8pCs8e+YIHjKNokIl3yAlcFRB4I3YPJ2ivg+Q2vkz0gKMcK/nf90C2WYzfTkWPsDc1A+8+/UKSSp3MAw+Q2hVGYzkL8rzzsElRGSHhLQ37jSsd7TKUN0x8XbMWdBaWfEAAsSgqREVgiK2GkAUcDF+Uj+NFHKZieSRVEf4TbveLjHOTnqLD5GnUznmNgN+czB2POovrHdDYDqm24njYgiLi12E/TRawmIAbEWPC1FWpIzzsBd1NNrgaGN3KwI2Ug36dNV4dhmNHqga/xbaBf+6Q3/beoeFFtuzYL/t+cOA/UNzNmnbcoeKCP5EQXuKv3BOZ3X+i1Po2MNT/4xOZIbJaBiAQsDw8H/Tyb4KPkPibWYd0iD+sxHgbDH58CVPaeKgABbn39Esay7I5ngU8GR32RseNQ3yCSshcaOqSNYaiXPS5ppPQTspDC7p49lRYzgqLCGVvxeVwAij/plDb8z1ZZF9sAsP5/Y8KoC7QPOTKYkg3p/5CIFQz84PikDh7J2iATmIeF8x/VGAPWPXM81NeX1iP1CTKQr8gBGK904iLH00Ik75ASc2/Zd5oBLkIZSAGwRoALojGUCBSQ30MplS7psQ8LYJwqIrpKygsOtWfo0yLAChweC0QArIDzkIIHkIuTQftptYOv6xxpE+iAclQKMkKj4IInYjsk0OIEhOI/6J+6lQA2Pvn1iVK7bgqjyf5bhUd2hyGwWRaoaTknR2a1FNvXKCI5IJl3RQHYOpF3AWiAoJTwZ+k/jEgW4LmrUSO/Bm/uhxwoaEQVG+n6h10Ui0RDcj/sE9CNHO5XnyfskfuPIJEGKTURpbTEuAsH8xoethTebdLsmAkGNJekfwvZQGnkQP5sBwacPcPBIae4fhXmfUQ1mot85ljSvogAL6MBOEAyBPgOSUFoYGWhOwFna6HRBMo4YqAja8ofyDF/tHG97V/l9xAX9wIIe8sfsJu7lCxA+8FAg7RKn5hEfRYXvkYqSgIkqamyqQVAr7aESiq+1QUYHalIneguwWEQ8wYJHvaxAFtcJKvsgdv48rUOvg+2u8soAz9BDy0rQ/ACv4EOJckKoUR/pwpCvBYVUfCWD8iH5MxzT8gw2qsgTxTNqir06PAXa5n7g/sLAFTZKLk6r+2v0ivC0QPeKgH3MAEGyIq6Uyns7IQUVmIDGQSlel5owoDBMRGEDYHbgt7j91KASAfegInBRyIirYf0CV9/Y6n3unqLHeanzClxzeXPq6ir10bRLaitkh1fVj7UVdEtU/L2WD+db8yAD7DYEowzIGZ14/PPGMTazns0/w6d2H1xjdjPRh1cv1z2qfti4e7m7qWvxWZsiGId3o7MUa81o496ahnEzQ2+n1s+7NRmzS7LfDuztmTaLbwQamc2tI6bNabVfTvtEzjTxRtmCtnZoia1m9qb7VpmHoxLjst6URTQ62y5jFv48dFZx/D7k6xm13LU/fUtUktTO08eGtqGZTaGlSghuoqv7YgoBScxB/ZKhBsT7jR2NTqtdTZhfblWir6NVXy0kXfLWDYV4rKqleUHmCi1CCCPMTwxEAuCniAn5mSEvjhGmk2kZtWpDYkV4MEG1QywqD65MbJtUqtbG2lrNpY2DLLbWZbU1rY0mzNbaxjSq1lqZjNKgXyxUHxxMYqBfMlViCHCVWRVSsX2MVS5QtWqqDYiGZKI2kSWai1mtNaUq2tjGU2JmnaSVlxibBQvgydQ0JDZSotoUvhaRcspT4YomygelZCRms0karLDMalrLatMbMwZtpWas2W2NDQw1sxltsqK1q2smtW1mtMaNsZtrDazSzbGzJtaaatNNsG01tbAq2w2ZrVrRk1lpts1smmNmtjUyw1CletoDas1EHm0nDVQPbKns0dMm1opWibRW0RcNKSrzzhE2StpMwtsofc5Jw0ouE+GI5TfTcqdom1SzKbClbSMtFjbVWaGtbQzSmxSrNVVWZLYGYSpO7FHhqnjUe40JxhVfDSgVIbRQe2ClWAIeovkgn+EgpzATEXzAUcG1BYjcJ7gL5iDUBKtKdYl1gp4aqvfJS1R5xXIrIqvLTmFB76nx0vsaS+OldZLmojmSrZW1J2UvRlcMBQB6f0f4k1DkbB2FCiK8plKGZq+k0/u8cHf33Cr9qn+/rQUPhkKPWVS1VHnSZkmaVttL64/lPwIKWiACxghIjcQVZ9UTYt7LD2+EYsm3fwew+vM/UTI7e2e/mtbfUfVjdj68yDrfR4ufU9SBRNF4C10YkO0wNm7UX0KdnrxxPv61x+c6D2PLIvLyUptF6LzReB1gj1nggyjcqnGR6bzl+oJ6qQs97lCSxsMW+svQ7H4VC3s5dTuhoC5rLl8IdkaZHjJtbmL1867Vhnng0G1e1y5UU7jD9d+CieHSEnOGfXV68m7Kvb1yy71ff5vyTko/CVG5TBzyaoIRIwNFS7tU4TpvezYqfDVCeLIniVZS7Na0HjrlOrR1WAruwXCxJ4sctHWIj01Un2rA7NVVXlLwwNJS4i2o2VbVWyRsrapsq2jaUbVRsbNizDa2Vec+Gi5oXbfeVE92jk+tosahL2chyfl6/1pvXy5+GdcqR05cJ6DX5E1zp+cdff91rYF7lSBqE8xepYgv3AgLgAoJRQOGwQOmt2fn6uYkeQ4KAqr8g6QkqFGT80yPoPuSxUhWUhsH77Q6I/oRKpChhAo1QBYfqg2+9ohnH+AgoI/uTgiBzBOPxouVCg8LF+fXOgWwE/gmbmULHNC/5Ai/YiicwSyYmbE+8IoCrRgBUn7Igd29DA5pVUaP5/5P2Gxc9+BoFt+PVvUSwWoPUT8D0XMj4Nz7o6SHVMTNpRBFdoeYB8hdhXUo+GWlVwCgv6BVBpD5AD+wEPoEBYnABALEF37KH3B4qVD+tHs6KQCFO9Aap4KIqm7U5h6ifur+NOhn29AAH7x5M7vL91DZMim7KRL/qVPsxBALpfc+fdgp/WK7iHaCA7Xb05IUlBw0H8EAD5GiUohQbR8niqfcfiaHVuTP1VsJVbVMq/Qqo/cUT+R31eD6L4lv1HxAUf2Fu4nQiHrxSoo9yB3IaVBXhpLH5LJ+uB1uYPzLk/QRN5kqgOrKhlOypY+HTw4MHIJ2VPIRasdnRKTqlRyKH2h4D7aB/UjH9eIicIQz3op/nNJxzSbLDAT4T4w1EUB/mRATZuVtF0iiMU0wjMhIH6I9JQZwnVUWk8gRJRbZGHiS5RfXO7hfxF4PzXZi7fpaObabFc0IKvCw/pwP2XNL+rJtPzdVFfhKEnpQ3KL3f0iWOwN9iAtjQV+N5AMBAfYVk3qmVGCXKAIDmyJxOyRSSjaGKSMNbAJXzDFhg3IQqhOc/fSNog7EFzcZEIWwtIfgYRoAFsAIQTkThE3iWWA7MGAGPYjD7aDYCMw5De7shcbeRPHvqiHo+ggDqgqErIkI97cOEjPuvrjjBJWYjgoaMHpLdEp3qZjv1PwqIvw9Zwki86CCI+UgJZ/LKQgvt0Ty1V9nVznDcW55nOU6wdZZBQbio5EllDdCDsllkDWAKPSHqWc6gJZ2mg7M5Ng7JZ1IEm+mPuxMhBBdYQATpQRzsEliCIrviC6zl8EabxnhMuwQEqIDcQhBA75AW+MiIyTHHzARRgUVUDzFaYs+C3Z7xQVIR46SkNx8BpaTSZwCyDCBjVAHKIoeggIiFob/sMHv0D66B2nOnbXZ9Hjb6PQhh5QAX+EQZEeQRY85qYukfofHKiOkj0dSZj7wRU3CvFdPpMUOrAw89M0ZWUkpUO+6DRrMpcNxIRYIxmuW++tPkPTy0fsVLdGpc/yMQ1/A7K5Fg7X7wLCQxSljPjZnj64kxKXRMpswApY6FDPARfLBRFNGfWrB38KL3AAX/RES4KCfRENIPUHSR+gr4Iw1Yqo4gwEUxc6yM6+JysA6pqlP74m9CwqI/y6mZICreIAJc4M+TgI/XiVmon9G1xg7NM6an8vgpUXeIzKcT18DUflK6iRIrTZDgHjN4MDVp9iRdijpmOW2hZ0xsYIicwgq8cAkDutAvO1p1ZmNJA9URODYhAAgTq/YNZH5JdpMoSuBTKQGWCOKCgg4yAhAweue9RBXtUfERRaIrC9ISSF8UYEAjZY3LNIXmtLMg31xbriHLtFigq0T+pLi5PlAqpq2M5+WsMJgMYWGB6wTZiNRcKOjLHDuwkAKp9KaeQMfSxOYzVhhCDjTFcioRF4RBNysnUIdc0qCjgjGAgh1yAB5IAINL5/tgwJSf1zmXdKX2HAIKOY3Sc8Q6SeuUjEODZBQWzEHvDnFIzl4eaMYy13LTdrTuBqoLwkxkkmAeIN0N6RY+9IRpK6uaB/AkDzw1DJK4ZGwTZNJIKKO1nQiPhOVCyKKjdMSI5FqChggYpyLBBzT4Aqi5wZcYRuIGh41BFr7/59qdlGedVA5WCQgCtL9QxplICHpTO4io9vAHCiomUh1YBYcxym36zmGnTw9d2mwwBhJgzF6cLMzm01j8ZACcREbTfGHrVNA2NIzfMQA2yCioSH84CJBEZvjsFBcqCXI5GdyEyFMZIYqHIYlnYr2cfkZTIWjdUVKnbK/SeV7+HmmCwj4kxmSX8h1UTDtpRA2oEUCGxBNbRoKCwnymcK8h0K8IaAbMAalbhxpshP4RkwRcleH4mZAiRXGSWmJABbrTMTYToGI8aBjnBBWBvzYwVRmosmQQ7oQFUS7LaUzk9MHo1GkQ/YxRQdPxffo2Et7NjY58ONWFyrDwgeuiWmokqpai80lhEgKtZh6rCdyW50EDDBACEFBDHaAAv6DGNYAKyE7NiZMZQ5/IUtAY2W2mGVxRObDxn2LszPRnN7t4CIkr64ZMQlDSioP33vLVWfCcoTshwxFJnNnbCoDou4a+ochvAbrKOjLcaCtiyOTyrQgdOwf9vtDofOVRm8i9wAwcBwlV4GFaTvQdGBJACgz1AWVKgplgIP3FAy/eRKHZAnlABew/Hst3+3eobTNundjMQUd1+2rg/eCiAvEAUC8LqgK1HkkVw9EqiS3oAp2CjFx5LkBtJHatsF3RuehktKx3KzdK9tGawxZvSr1xQRutb/JAxEGytszCijIk5Yk5cE4DmROhMTYKTG/3ziV6FJWasbXhMsZGSXl7rzhRXWcSZuaaHGAzw/XExXrccmG0bvP+3TKCqMD9oW4y3XaRKQBAXJGxGVBUbQ4vnNyTdXKmI7RrfNzZ+I+lHd54c00BrIwite+sDjsVI4bia+ODGvYSCZgrKyo9ZSzUA88QVcbWZQoZ2vZCxpjZDaS7aMM7L4THSiqO4QlOm+zGnNJCpL1LQATeB/JlBEJ8xE8SKz3BWZnSsj87pc8h7rH4pCmRvtIgvYB67szK6zTEQMDSzTS5TFBVUdorMtZdjrOe04hA5TAP6E+GSdIfhkUL2LBmv8yVD+MnIyYSwxIjuEyh44NehlClEUZIJvBUAjeBICjY0/XtyecOD+AufemYAC7ZIYqf+XQOeTJZwr66wfy9yqLBiUgQlS6BUNmIYGrdMqeMchlNRKkUFmYrQuHTBVRJWYIvRnt2ahWIpDOd/TQvjDAhIUoyT2FknrMduieP5IwC+NAUckdaw4iQ7v6SrXaCSibOVsAKguOCd+1yBOzADNXgjRzbMAaYypbSARkk5YnF+/WCKviOYYtaK7hsR3bBYRArcESmG4MKJLkEXC1S5H5zkRTAlpjHyQPht4Qs2il793nwhNRzF88Lzo4YlayAlR2zKGeyUchjjUjdtNsxnuLTdMWHpldcxMABEejAfYLAERjmJwpHl5yK6hKcJWFX7aWsJ4p2eZIkRR2M56GU9ZpNj5QfcuQUgBIRFUiEFIHEaKIw7RdosnxaHB57uWGg9KK0AHFf8Ix9+A7kbFrVhuxHzyyIXydxUxe/bxoFw5mjfrDVmHB+smdPStUu7EnazDWoSw6HBOFvSHeZuNEBYyR+Gxv1+Xan2nf8H8d6+36/r5Vf/NbSNg2qzQOZ6pBHNUSJlGN5oRCkoDr1c5BFZCKRyERo/rW5QMtSyqI49ukFaxUrDdiqI+U/U2EtHnnsGK2/WDblEEGQg4qYgmEFGXwnk4ewVFwyV9uPZqwZzoEcWX6ZNDsWpvWdHKEw/GIZ8ICK8s8bUJZnKzY6xqj7sMAy27pSwXsUZWasA8gYdNRIIX3xEWz0vDsKIrKH9/2L+SVOFItHHrzfB0wYQQ9NYZQxOyFhMFDheipg2BLUuQzxESs4nvI+i44abXrl9FRXmCNmQLAlIkI/P2BRF/mVDA9nSe62dqRFGsyMgRzSMKCNGSDGG3UOsGUkUO6TsumoFUafwFMRNmIg+HGxFYoplQgin+QYCjzDTFTNgRW+WR8Sd/rR8Qgq04yp7J7Ay8zSNxG6IKxXHqC9bA5ATWgWgGkgAiNFOHYyiCj2jGvIbUrMIKM5TKcnAkqVnfGaRQgCiMrlAUWKXpKGAmE2zWKAs83wKNIZu/GYw1Kk4wGN3PKRqKNnGxK/jIF+a6XfpPLdPL3oJ6F5annvk6MYzAbkDZPUDhPf1zdYx7xwHtM5vj8CwH1ntPRoJz2AwAFXpQfRaEsfB3SsO+SqdyBNGZDcGYU5pAxHsd+2wf8XWlnfZ/KSyhEHFsnzhevwcb3PJz2P2nyBxBl6gRAeuobzEMi5WcaxsG4YjAOkbB/iSSE1A4rBrH4yjKHn8rgC0b2lbi+4xDwD68fqArmLiCwMQwIk9rQRCBK2ngaQ+rs+CdADDnOUnkWAQQNscgx+YyuuYPshAHekCI4QnCBXEIbh7XdsrDQNsn5mNmF4RDKxueMYjVBvYGTScARmFUmENAc4KwVFnNeYcs/2DpZuGjqmFkDDDl9j2cpcENKXbOlLQw2UQdJDmEeSc/8G+59+Ng1FE+oColw/V4Pu8QzbhcuH4RRZ1u6IdwJsIbgXJSgqmMki0hAu8McbQMlj3dm9byAH+DRSZgonWEaIHePmEdoaQ8od3HAHRMiiMogwAWRehjrS6QzB0r98JvqZCyO+N2Yj2hnKdMQa9tFo/IVBE2vqD1Y3FrnsjhFgg2qCjhTP02QlYwhPm/gS+sMZ7g4KQxxGCXZc1nEe5ok5zW6CNygeJRdRkL3PuHA+8w1vOMdulubA5KJHicReu0SOfDI9cjfuTCVrdEd0sO0ZnWzb0WvJZXwXyWvUgUyRNuiKGIRd92zdZi6VzTzJU8Y94Hl6M7+rv6iuZ+jMJweTdo4Shu+78qgD+U3Qy/VVT2qaSmeSNz2QpNGjdG6sfmnP2nz0JezzUPvt4OLPORYoqKlf9/rx5NmIijw/sM7sdbC1ys7WYkC85hECiM7hKjqH+DBmxnvCf17DvOAYjibWhyvUsckg0ZjYtwPMfGewp9LnpaHPcRF2JInYmD19Zv2TKZH+lTdWejctL3cN1mMhtljsQSyhi5LdTG+IwxLcFNCEUmMNysfARtToJjnNbkLGK5INTBrPG70jOPMD+veSSo9ZgGJ+t/6g9pzbDM7MWZ9lTsjIS9NxNBvZ+E1P2aDqan5k3WN2kg2MFUBvdugQu/D7X5P7aP/P7x+I/yd5wGJoQPJ4frIehkdRwMXQd/fnanlWYVE3oUkN90/NY3xJhiyvlnj21LYHPD+m7tpUHboD1PRQFGgOGZ5CQyM/+Qg4J4rIqWki7jEYo29iY06b6XW5GxvZg1eMJQuOfPeF+1H5jpMp5IDR6rYyDuRC4lIKQyxERi7gZH44MPYp9FE/aellNTGrUjBqAgNQRRof441FKb/tdhfTg2kNqPzal/MH/UZpHAf2ShtMw0oRgJFf+iNc12y+ycPgGlP0dR9AdRy6HH9zGc2S1+QWIUGQxJ6j7HXMms859Drc0cFXjuN06YBs1m6fM/8cf39RA6PVTtlZahe2JzyAIK9Jeich0DLgPAHFZuGZjLU3WqIVSiAqCUkIoIFXDFOYDrPxMNPVQigAiPPTIs0K4KmqAig54KXqdighH0EO5xSPZPSwBEfMAsgPY6HNEFE+crzX7A9B9tw/GW68Km39bYYf/CCU/pYYy8bfWsxyn5LDz03jMBr2NBWZTuFRgJTETOorKjvxluLxPeB0k5LnKSs+x5jA7RQGBEBZzxkW+bn1LlcL+wm93kdBGBceUzmUlP8VnR1H8MfMKCw2836LT/F8yBg9RKdErCRfqDVwHLzCoyYC/iJDcNk3i3aMBUqKlLJQEeYEY+AjdJBT8kRQ6+iTn+0GN1Bc9lLcYX/AO6FLGIKtOfjJz6YpUzBfGUBIF2Y4yMKz3xMQSBEbxAjf6VB8t0JsPbKNX/ElGMA/aBgPwY29Fec2ym75zWnrI5Fyh/T4YCtbz5pkdQIy3nYSwgIVq/NMoZwg7J5IAAL2DIH2uPeep0/1+ol/1MYZD1/sjLfLfsZAlakg5D2kpQx4Ai8oMRSG3T60mndmBF6qCM25026TuIcQGp13HKB+Q3z9gRESeb/jovwA8Cgq6NzkMhObQXZ3JlbjGzpmIBCDAzkJNomNktMQPU9UU0sLDMWXX4fgYpDHSQR2irqhgP0YiBiL+yeQytpxHpJ9grZo9Jm8AExyKLg5G8P1OXEpUUHHkM5FEfHquY5a+0YnaDfd6vrbLoVVGUrxEwY5tsKja+WA1slT3MpusbnAFHH1MQwHFwrz14SqdJCjWHc8vjW8Ci4igEIjAWoMRlJF+J+PvrWkBEaSFLBMLS5zUYihm5/SJCRxtQQIH3WKI4j+r+VkxgijpWCc542g31S+V3favVOsuEzEwehdBEafdveFsxsNeTsrJTag/NYn8rUWlQHoe0vYJD6fOw9TfvHc7Pn7mCjMekBpOj2i88BtKyHP2Dwc30ns4GIDcgUZnYiP7ZjJnjJojonQVRX6ZZozyqLwgorjfHMoVwwSDGIqNIeMtdxwEoHTuOeF+PEHiJUkZ1PYQOgQQ/47K0TiXQB6Xencf1nDZcKDcHTSTWcciY9ZAMFeUlpC0zaqseOHyv+XlD9GsP0qUUe+x8QeIwl4eJ7lObH8Is+6IKsobAgq0hVo5rH3oMg6og43XqpCQqJzDHRGQIAKLCaxabDukqO0d8hntoiDDIcDsH8ucExd2DNXESctLViajYfKGKMfbaGi4PJbxst//kHNPlpenYbBCscw1mAjPyxIzE0lAdAKqLKJnqHBNrcb1Yyx7TE5254k391wYgvBRWgI12HPTTvNGxRdTsgmSAMbjr4rB0X+38/xdQ4RWAIJRAhvHiI/wkQ5/HUPTsVD+3gaNelo/g7gjrFqakRXRaaqFURsliJoy/3LgsC1veCJcG24EtgYD/0KbVKGMTNpfrLiRXN/CbfxFPWbuAs9Dd8pSgcyRBpBBWyF+m3n/txzH2f8989DTMU7VRoMiSMRsagnwm1J98mOU/kpJAt6R3z8yNEZ5q6aN9nM4RBRGG+GENJG5ozscwryH7oMnR0u5vChewBQ3YIqhpgpLAHWGHrmIT0B1vech+gt9OzqO2YUCXInUS+PbMsWy5A2GNicuYh5sHBfnLAMKMd5aSWEYUEZCXoVlJO2GwUFE2NvJirEQJCI1kpcYigpJNovs8lhedoOrcdW8KZzGWw41uIIGAwEwaeAgERA7fwDMTmfGiitIEYBsFNspPocA+3QfLYIrCU2y4/SB+EDPhuMgEyMhf9BdYBKEHVWo9mnA1amrAbIvF+8nAY8pxVmlReY1IXIrrbZvFZQjkzbVXEG3AyBqzzkbnrbQmZ0VuqmGeJFfFMrQHCSef9Jk3phxK1eK4Kno1oreiuXEiuNFd1FRcaK+JcaK2hI86eoJ0VtRXMitaK59hBguX7SdSU55PQTqFSZ1URgaKWI45JyOkworRKiuLAyJv9SP+KFYDyNjpnCx5kb3MFjG0BW/G4Pcf+xpLZ9qswZWRgsah39Rrvi+BqUFOSAKrZBvxAVGiQJSQ1DKHOnZrJA/WFjLnOwaWw4A1vPAiysbS0tr5u1Q9PA2N2hszvNscLndT+gDIP8JQ8P0qanO3fEkDA3MHMzuBJ23i+srkNhzhsNmZuCImeN7XbtaH9mov/tb0uF2uv9MfLxYlmrbBD33utuZM0kNraUGaNOwh6ErDcqvJ1pxnjAPH2PXVttFxkLAySG74svTJUxQgpFK4WNRQaSCPvriWQgcTcXVVmQIFcoBqgH5ZzWnnJ7+f0U+h/dwdn9WeYyEuCojf8Go1h6DSTpR6tP0MnQSUkKtBzD3zYNvCZfYJvWlZFtotOIoDl6fa9/a79YCK18VWqCkPwnwyExPCUy8vP53jyeG5u2vLv3HuzIGGg9GxtoHyQO3EyorerLFfl1oGetchtxBBZYJzOGSkrgb5t9ANASFdnbrPqgQSgnmsn0RIHDHfDtxIFgqg8BN3UCoy48Q7cLkKsosAgwCs+TCU5iB/kCJA59BdlD8RYybpi+/pYLacZEiMM50qyRrkixfCyXeHs/JAnBLUfQ9yuT55T+fbt8vbQO+gUoG4gdAAuPkgciv/vwgXmc4j5oGI+37QLEDa8SczeNv7O8fPkeKng8h/3ODL/Esn19Qz7XJt0kxQECOI6wLIG6gq65P0erWP/BFVD8sAEDOdB+HKyDX460/PYCqchAOIv/1v+QT+vD1VBxAqNo1AJDVSgLRLaqomIMgHSxSySDtVHM/eineCbzEWoNQa1Q3iXlQcwC0bU4sCVBkT3ASohCPiFQJJGTFUhIyMkgyG1VmN6tY/2xqBIm8CpIyF5UCRkSRkekqJIzinmNoBJmUQxNQtE/3wqSEhJJIq/hi+us/rW3ELJCrphJkW2FoVbMAqj7iYQ+7KHI0FuweeXJ0fPj2Qzh8EDFIdmzTP1NrQlv0I9ObD94yM8Bg/e987DqEfumSrE8WPL3IqDZ91DbbZnmw0Hv4il3/PnP7/2vw0fMPxu24J/TuUQO/oO8fLu/DY/23yP/eb6TPy4jnRhzd789/8S9noUnEggNXH+9jVi9FMQYCnVzO4TFiQC2SnQUEBvXdPPJIEA/Q8qVdq/+gk3jlF7scshdf9vBRVOSsZ5vp6y0y+gnLh6XlgxIr4PpEGbSRGsSqN5aZX3w/ksRNjo82je/Xz+mw5K+L+Zk9Jg+HCl1bnxe8nOX/nS5IjouEPSfN+B+Q7BnPMH9e2Ef4NWx2DAbIXgvQgKhIsARQzwQ2CAh5wj0HeAJDjDthV2SvnzDSAfkJSrrpPAwib5BRBecQCqlRAayCp3Nylz19QIzLcWWBMkBQBjyhAjE6IdE5geaYv/IeolM5YFlpIZYqfc+4W60eSD8IKjjFjRxmQ2Mn+h+CtixULHB5Nz7VJ9JPwD6XOg7PBPg3HBzsf9INshkKykrrxn4DKEhA8r3nIfBlrHAeQ7v3D9hizZvxqtJWBq0thRGZSGUzproQMIaYmZllWSkqN9jSqvAYNRKsUZFVdyCDRIQiGxY2KmQ+IfjH9YZxExAwwERogeCnMRR1/WdmTbsUBwG2Eqz6fVBwMcGhu2PCB+FTNrbZrbYW0y2TV8ckORzcJNkaazTZW1axjStrIgQhIKEi3C5e5gTvmHBsHnwUKCPYmjan2X5LIHJFN1e5BDuwV9KxTYjqC66x3LJ7e5kbBoIl4BaKcEVuEEKAHlf4ebA86HgHQKnO24l4HSqCaCKh2MvUuUfqoKpcU6D3XghvOTBqi4SWQ6guGeiS7CTrjWSp1sjDa5NSIdpklpUA5gobHbKBwQXRjtBMQJGRWiQA+RTpAiioaBsOpU92Tx1SFB2SHRE3j8ZsQRQeogcFrfCHl8oAL0fLPJYp7TYzglufmVY2gYYVO0Nohxf2HP2au5UkKISK2ICoP0QYHQbmsUDyQQPkVSnNOmgUE4gG8RebfHvUuYvQaIQJ8faV20Q1eaCyDajy3KzUo+Qnjn893665+Bjk+Pg5He0KPdF+MEFWBwFAUVv0ey+A3CAGA2IePozq6Fw7Agp8YKnUwZ6FAHwPlEJPuhe7PgO5SHwfJR2J3ge9wodwRU2Iquwdbi7NzxioZJ7qa9AalFCN0lUWiiRIkOmQPkOkKJ3YfGI7Lg5iEj4byIk8Uu3Mm1s1o9bCs1LtWh9Lzw58asROUV0NDtH5A7kYKdpSgdiBIAmdugUedxpeCInMPUC4UlBzGmq+iUIK2gCGJz7LV9xA9wDVlgzoBrAFcrq9VRrI4HLDBBhzmE8jJpPKphssgPiZoG8O8dbU3PVI7OPhYCwWwGLgodYbvb57Mt8BKnZvZ1jUOjSpVrANCA20wTFfRVHByU4UVHwDONx3sc+O/MHDnfv13WB8rRXqJUVADhevSsVrbwbMkWnYUogun4J5NCGREKQPOSKw7NV6g8rYPRycmqbJxaZQBo65UU5PBRESLqhlG45hZHJayJFhG17xA72OXOWW+BUKGZXG1SqQxKjmg2U+gyEDogqibEBBuHrO7yemfK3HFZJZMXXg39dirUO4Njx5k6PeApyP60OBZndUckUekUkVA49UHmqbRDybUKo3ghhFYcAaeMlX29rfCWZItuRwe3II/cAQDREUT6NNzbbed0O+bmt8YFLFvICmWCKJ0Hvu+h3MaDHkrk+AO20dG+fiQNxueQ+Px2zZx2YYUQCQVVOxFdRerE7+pXx4T0kPKnrBSCIxFREt8DtFK155xU8DxwUMnBmDtaPTHZtS4zQ+NB2Im8RUHUnjk6qNiPzyZhs7x4K9FjfBc+ZFHPrsuPwPCdoEXdiig7sDY9b7gAdGCgiEgBwQUR5iKhwRawTxEUB8O5pVYdCvqPhAgAvt1QvdYneCA5CAqfEVgKaOPPY5Pm5uRFHUUVSQSF/ZHwQwmZCL3jW5tROTIe9DLgx3E8geo8GHgAjIKAvGAvDiCgdkeGIGcBQsQFANiXWc6B3U25KJ6ikYm3RvkittDIeO6lkTj3u5ejW5u83VPNAr7sug+rNTaIUqNFeuKwqo+4KhnBVxAeIvoil4iHERMkBA68FL3DHuxoybkeo+DmrXLoroiyklwsnwSVOQ6OzJ0d4JDS3Q5cHc6bcuGxUyWGGODrRyBwSZlE6C+1TyhJYC3W5cLoqLkatdzb4btl5M0V7bHsyKck6MYVAKnJoqZVjDbjhKVVujvQunL0Wui4d7E/LlhqDIPPhOjgBCFYkoo0clQuQmkgnYiVCAZTJY+Kw8O5tYMkQ3irkip9vihBsQALMBPUdHUKDTAtFNA7OSr7UN2ACD7ImpETJuRXosOSSDkLkAzBTyOrC9GA2gscjDkFUPmuKI2jn5Fj0siwUg5OAfoybQlZJrIqbtslqPZ7eU0mw9tt34tdnFHa1EDhKVNoCdEF3jIpzNdC0My1vNCkKhELQcQR3CNnc1QXW7y6DO4/RuPq0VkWRQPZvue30clsRNYGnsNs24KPQRFcvXHNIoxIKWjUYcNRrDkudor8alzG4cBXyc9FU4O6DwGFzIdQH4xAQeEh0Q9pD0QPCapVNzlqJkHoofCDxYMizc1PJsz7wIeCOjT4NIFsRApA3XEKPoIvwIAcA/KC5AEF9xVEyIDOQwd0JONdEFO/eUvnY+dhZoaNk+iH73cKMsDD1VuLuXPT3l2enw4sacEQy5oSQm5Do3GRJOsqM12eY0+zekpYhq/MOxOs6W2hgxYfcGoKVE4iH36n3VSSqCWTuPom1GK0ZNbNqto/D13sUfiX9vZ1PPBPRSh1Q6XwwULhbicyiTupqPMSp7h334dB9F0VuHF/DZ58BpsZPJqh+iNz2isLCYNbcGHSeiivRFHiKnTFQBoclHk9Y2CugF2x6ahqivTgriJYmWh9NT6ICHEVE8EPfe/f17RX6fWhiT2He5rjDImiPcWPZ2nWAztaviporexLLdCSqPkuch4VNC82lyXk3NUV0bHQbnDuRBD0QFRMomA6B3GgtkjIA7wUt0IbnUowwCxBNOhyvmID9FjAGDwivtseAxEE8sA7HUxUUQuwOICBIq/IhUUqAFQkUSognSIBaASIo93tW2efe0MGhiDtYLiqVTVSCEmT9mPZvKqZUpe7os524y+mGldaPJ4e3hDGq9W05vB+MNzQcGFPKoA9EQBxvoH1p9Bxdr5hpFE4CIiJggHgwbFlRQ+EEVo5MU5brn75dEWnYa+zJUUbNmCpxArg1KPRYohgG7NAW0OlsbOolWyOvBuslDYlCEhRAhpgKBWDcXnTUrpzGhgBNCAJ4gCLxAHXklEFDhw8bFmc8kqa7+GrUh45Wyoa4PfRUK4cRkV1paqiioP2br3vUV/R5QJkccNkfngo+CBwTwwAQZAPJuUDuid+eamMNDg6LUBz7tvZCUPTlqTojB9rohxFqTUiTiPPDYM0uan0bNvcMHJ1mL0WJepzsG82SCjgiKqcM263Ms4HPbvnqZ2bE7KJwkAMEW7U8wCzsFS5r8gUkgdBgLFnTi9p2d+GHBo6NnWZ5phuHhqG5oEOm2DAJqhcnAkULkOYUJID780u8qajIlpiSS5VoYqlXEEDggAdRKQ2IBtB2EYq8+jMqRLcOCldjk3LD56bkcB555Dm6sCJ7c9TgNGng+4KHuI7keX67537qj9RFPkABKiKLud3xovkObfbZdMHzzSbu3vB4d9mhNmAhqCA6iHoPTSdY8F2kXoMPuCoc9yu4wJIhMIH4cGcfSxEESZ9YCZQGx59bL13V2KDsZpwRHogNoAK2igJsRD2ZLFRpbsMyb13Ph5CiyNZkKpMjIBdMC+YGhBKRFRPRF+b7rn6NKlZue7nvlce9MsDn6S2Uy30UX6TgAPJEUDgCIKfAiqp0fiURhfskwGF400P3xlQBVYQJKTbgLFpOXPcFZBC7GESoD3Re32tHmH0+nqFuepQjxAkBTeIHmA5gprAKRLwBU6jntqV1bD4quIBjToz0goCUQFHjLo3m8APpYgvkPRAVE8Q+mCeYm6GBrzuXNRVByiFSPMBgYOSr4eiiHTtQI77mv0XvNoGxVDDmek+LT1Hge61F67MbTaNtltNNs22satbNMzabR5FqB0JEGiDFPiBADmCAGvlj6PLwWT1fULHKDvYKbeOL8GLW+gsqHMAFShABO0H4ejuGovAZnpp9dw2iEgCo0Yror1TiPJ7KOvj5h0tcNKjFfGVQ9DT4g4OnUBEdYot4uV3Q5NmEQVkFRCpHyQTY2KOw35mcI5EPOllgHh9X6brr45am/qPs7XxgTC0D36iHh95Gz7TyGh1nt7SoanfioEY+GAqDDgoHsiWQNVBeIIClECCZcPdU4KavLyVuZddXBsG5jgsHuggYWAqj8MfC2fhgRIL9EEEHmGiDwer9LtbKFcmx1UE+RFGxABX53mU8a4nk0acqKniIr7GCyKOyeX0eT6qz3p8bBb20FkJzQifIAzpSCdyAqhYgFzBsj0KOc13rn77ohxBJAffRXbGgfRCvmUn0FUqnjyHxVEdBPJlgJoeqh71HsMLy5nNmGtkDSAgj1HyREfCUhuYpdIvIii5dGkoiu0BvEARzGAlTp+P0W5150+XSxBED2RRXqAqXN+t8gweUoGzqFPJM0+sXx73zOWn1F9FowkpybkURHmwC7MzOgV7hZ8Wo3qA7OvKEICiNR6EDY3fYXJ6K2NaKW8SHO4r2Yfx7XskwU2PUSbkSLR8Nq1i18F268efjx7qV0wGuvt6TQI2IBkcZNoUoqZgCr5s94YYmQwVprhDmIAhQyDg0OjKZXWbofMLjwGVEBJwaKLXr6d0V4C5z2z3daLHQ7eTBB5MPTu0gKphktA5UNw9nOpPYxbtb8JWtNB1vlJdmbLchxKbHn4WOxEXzFQSgGGocisgIB8JwRABPKLgOhk6nEDx23DPLpH52dqnahh4PGCoc6pSMXI7IdGzXYKGhlxygei5noqyTadHjZ1GoQGQ0V6KJ0gBPkEUkBJFVyQ4sy5rSBjY+9uS4EYBLz3A+ET5fVWxQ8ZmFz2ugWDk88+SEoICEoPNDbxOUB7DvyJyQMlrWdKvw8tkQB5+UcZtnb3vb7IgP7TIgQIIJU1pTYSrWkg2kqVjAqIEVeu/BZs6eTO2Benc0aEAW6pz0tYhBBRsqCtNzzWNa4slxmygoxQBchEDVikBVvjoioOZsBBcGVA3k4MJrtDKt0WGhXBd2rCVKwOpBoGpZgwOlTkCU8Wj6UZxwahznqGT6j1aUAWsByTfoU3Lmm/Dzi+c2SVjPqaQFKjDxtGLuk6lPgOJKC7hAVSdEB9Bvc3yZMmtbIinlABCREFSCKGR6hnfoGKoxQD5XZ1i7LiJy94tx0vVIHDIxbWY2pS961otVkty4i5ikuWVyxSpsrmlcylsLagNhVZqk05pmrY1FqNrUZrU2NpoMtQkDbXRFFagNirUhqWTU1yMGBo5GJts2NrbMiq9jlxZnfr2VdOxqggLUMxbETBEN5oiiiagttx22KQ9cBcBsKqObKijoIhaUCqMdiFGijaxuJZNg4jwUCAtEIxN2GrAqjZFcmwABoIKG0FFbskiTRUJJiMpck4QaUKylosDCyjRQESSzG4SniSlmKVABBUKMNIUGOpaA0cdRI5RLFOZhSGEi791oMRZbTygaODhFFcEdUiuQ300abHQ3vvFMNqAhiB0Brit4IyarmnAs44yGBhltGWNitiNksbatlmWtkyZoaZZszRqs2Yto0zMGzNGpotYa1YGY1Q1q3vg4ZUK0NDLVXMIriyi5xYSrTaNi2ZhMgMOD7K5wVFUvhyhEGbgVrGb3nqfZ25RrQ3vlUNipcwRmBzSHMVS2RMYZYJrSKNaitq5kXFqVVtcc1jZW1TMpmQq1GzS2bJoEGCEWEkHQ2GoKFR4NpQKzRqe97gcmDBo0WXrwGSwQ4JIhECkAR5KNGxSaMBO6TeWZaHIEYwYS4BZowdxpA4gCC7k1Y42aw8HBe3XK8RRALjAFDYwJa1bgrncMGlHREUYXDmKCjrDhTe6bloTiBBtbWR6KGpgwFkVyUFAijjjF2F47Gkw2oezw7AMErMSskgESSHR0cJGEYy4HTqQ2NFgxevdjc2QFHaFnNRsHDdQ0oroQJLzk0QOVLy0pVGuoWA0GFKxULhAxGcZAWg2DZFDEm8hGVh53AAkKh5d3F0plKmzVmbRqyWZla2kbI0mbasatgNi1sGGY2lIZmktMbNWssy2NqbIbTayxtaRhpYxmza2opaytjEZofKVUtDEoXJicDUXOIZMjY2YxMNQ2nnevye+71d8aaGbvt9r4xrk5kPZB4BQQJAAGEAFSRFFCABY0NtMum5YHUxlgIE5OhKRVGDgijWPJRosFOUQAMhHBtlwqCcQQLEXJLqJtCxVZiihVgOAtYCS0DqeGDipEFky2CBJKiKAsGEIQuYiYundQ1YWhnFApKD0zJCZw4ZxUgxMcWpw5AlWkoghJOoqmmI3IuUjRtgw40ntb4MiCrIOFXJfn73EjvxltY1NmngwkOxqTIE5ZZTcVpD3dFVfKAooFS9r4cyVpBnzIXgl5eHoUvkVS2NhAtkCmQ2FdFJSqibEAfhBVtHTRxs9C3t7dnT4uDlkjNbae0CraURsiDYcnOLjSlWypDmzElcmquanMOOci1qjhy1lms1tGM2M2sMZsmNUQkhCEYTdKTL0OAs2cG6dC6dPJuZrrpNKIDwXVvLEQKDunt+OTAKA7w8w9m73JZPWQ7kI4sUdWKWU7ld0VQsAcIUBN9psw8jEhLFQ4jCgnjrAY6L7buTBZ0pIgASIqv050iF0heYiHyAKOmKBNk0jvp1Y4NkEVQSKL5Mgmt0PQq0IoO3DkICHnEJXjrlUyLGjFHFiuHpCEhTyyHcZUqGNHIWqT0QrKKg04hwMHB1zOg5I1OWAKNIKvMMYLtTM0qaOLjdFcIrhzs950cVGa4FYgHa9CUkAKUt4XL0MMd7u8+TrwsbGZaMUw22tYzVlmtMa1WaZqq2mZs0mTMZAtrbTKFbVsNfOUqnIZzVClsocapy4zBRGBJCECDCBFiXptnyQ2vofbHHG/AW6BjW/XWMmxKgwikgyPUFVEZFWsq5iqrWjg4smsxoyRjCQCCQIwCR3Oebh0dbYLppy33tpVXfLjYwk9GheHSCvMq9q4jrG1rLLDWy9vRx6SrssGHAIqK7BCqDDsMJACjA4HCuZpJZEpMWdCcSxcFxTFR0UudyF9jFCNtMmhKiCLK5V0Zzm6VEEHRgaQTZwYDdpjRSntIiCOSIvs55DqOSw836BvoLKSFY2Zbl1tChOpV1CypQoV2UUoihsUcGCiGXNrm2StBChLAcAijSXhDBQ8AorouIKuwbavwbpbfF2HFKY27GshrgwZOguyElkVqyK4DZOC7vnh3d3oG9zgpNkDKBwqtRESQFBMwkGtzCbEXB1BRoaGmi1JhDDIWWxY1mMZms1tM1ksZZbG1hpprDUzYzNaxmWszWxmjQwzVmtmmw1ma1tRRmEsfUpKxrmpSHGqlGcRlkxY0axhZGRAh17KPkMHwwBC/20efVzyTJy9FCjULmxnbx6wHBc6ORDXlVEbGyDUfM97PU8kO5RWAh8QKYKhqCAJ6YAcnRRv9E88hdA23fBipEReSB6gH1BzYGRhR6dMjcSOyhXldFMsjAwfKH0krmQ9cdvnbIceK+dD3DAbJB9I/CFF7MP6IiRgAZfaiVCKKjt8TVgKg8sQPh2UVdkViRO835oPBTXYIgKPJ5py+ikWvXj7aD71NTPSICihmY+amuq+mASBS4bgnMFQT1BAy+UNYgD7cB3mHNSsl/AYPbGutJ+CKdIIgPqHkgXMNJ8SHbq9MANyHNX3seugfLRKGjgONEDYMm83J+HlZRLIquQcn4uty+z7ZUnwXQySF8ETYwHdtX4zYUHm2ONwL+pe2sgVELRUPsYj69D5yre0+jj7SPBkiaYmwFBCzQPCDGETaPyMAIPPhcECQGlY9+gfAkAlsyFxyTYkqYj0GaJXuaefk4El5Up82oq9zzyWTEU0CAIqVgaQQJBPqB8WDghfnzo9XT1s+CBQRUUeIBki9mCIgJrmdHh60ucFDcd4SMe6FibGG69ROvorPJsh9LuqAcBFOYgFQA5Yj0ILERfLLkPkQQTxj3qGaQfosoc8uDnIXIZt5SFCn2wKJ4Tpn4eXNj8HxVAFUROA5igo3IBbsoG30VoHehWdMBhmSoe6IGC2wAIgIHRseC+w7wIRNSPxIACPmJ4IJsHDRuQ0s/ZK6rPhqY9HZXHyIj2RUrFPBFXYPFIBLr01WoEsXGNl4DratTftq10q1Wr+47ZGoOiha6oUrAngznJQsUaxpkwcLqiKjEhaR9Rx1guI+ISViVgLoCxBgHPQyF4yCr2dW+ZOcOGWp7H+gSryaoDsHrLtuPuMh14rT2YXs53g97xbpMXCvBNQ3y4aTJNg3op85ai2WfWroNEVBxPkRekQRPpAgcHm517afmXWkPqdKB8ikiPQZGR8lDahWPFrcLvE69nddSvQeyBfzA3yQIZBXooVeq8Re9AdWKhR4buWRVg89d8mZ7QGT/8xQVkmU1mO715GBAmn34BAEH///////////////2G2bukqFVFRVVJVUQAVUSlISVUFIVFVUlKqKqQVSUqVSpQUFJFSSqSJHrKKJUqKEngAAAAAAAAAAAAAAAAAAAAAAAALSpFSqkJRKSUUVECkqQSqkpQkSlEpSSShKgqlFHgB9AgB3KiSVSXgAC1Uojm3IHO3IHdugdznA6ZA13MDuzroLtyB3OcDrIGAAAAcMVRUorgACMSRXNy74BPdvLeAHneXvABbm4APb3m8AHs5cAOzlwAdveXgA9neeAD2dOADgAHuFEJVTvAAHdQkk9c54AO3JwATTABdzcAHN2cACZYAJl3ABOdwATLuAo25cAHgAN6SCoqLwABgaBOtzPACd23ADOXcAG3LgA5yMAOcsAHbm3ABcmAHbmcAJkwAeABnlUREk8AAbESkXTl4AL3NwAXcuAC7mcAOcsAEzuABZMAF3NwATO3ABnJgB4APOigUBeAAJpRSdnO3gBOTAB25uACZYAO524ANu24AJyYAdubcAJyYAO5MAHgFPcAUgkvAAExBSdOc8AFl3ADZy3AoW5OAHOdwHROmADnduADbm3AC3JwA5y7gB4AcHJEiVeAAE1VKTrc3gBdzbgBnJgBdycAO3JwAs7cA25twDOduwZywKzYHgAbKRSCquAALBSUnbcgNZaBZYCzANkwVkASAJANmAxlgcaAmBFRSXAAFkpQnXOAzLAmWEstUrMwGbBWZgrLIjJhVmDgADwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgoAAhAAAB8ChEiEfQAHQAdAKKUQoACgAoAAoBQKoABSgAAAKAACQCiAAAAAAAAAAAAAAAAAAAAAAAAAAADAAKKEhJIkUBIkSUUikqAAYSSEAAgATQAE0xGjTQmmBM01MTaAGjVTQip+mjH6qlVUgGQ0GmTRkZAxBkxNMhiaZBoxMCZCJhgqSlVGT0gBoAAABkZAAAAAACKfgglKVDUyEjCDTACaMgMIMhgTATAjQGp/qlMZKSqVDQNMRoxGRppoaMjQ0DEyDCNDBBoESQIEAhIkaI0IMNIGm1PUNAADRoNNNAMeHJjyZc2aNmiikkGfFAzOidCIlhLCR72c6KGcikiiliJpyVjnbhzIZePJYHGrVwsZrIuUNpKXlwO0JZ7eK7lIUWoKje5i3G9oXiAW/CrmlJUE++ObR54eeZGzYzTKhAzWeYHZroqb3U+vFDFxXU7vQFwcHELOzGyzN5brKqddzUlCLnqDOXotV1FjiqhEvlTrKVKtXY6XUobQfJ5NM56sdZSm5euV28n3czJyaKrIKczafrxVceiMtwea++mtaWL3E5vEYRVhHoLF6ux5adqR11DWyZGN5rVtBbLcPHKGGYxmrNJkt3zxM8p0nUx07JAnSJiyWO2g3wTAGZZpIHgVJMTHWJcIZs4EsnaKEoyLKYWoAZjWGuw9IDjFKrOXJz6lcNaVsmzfYBQIEN9gaXcJcoVYq3zOa90gsHRaVDBzBzrrFw7RnPXmqhim3NBMtXWU6HEYXR6usTlepE93sqZtjSSqu6ZxwCumJqmocytvSpUoOpoDdN1qCURCEMXXWZMtwcOuOo6czmsmJ3S0bTlW2FcfnWd1WLh31OUKOojZlGbw7FPKGg7FdnWwVqWkl4iMvmdJ253egzplvAe020izHNmnSEScG5vXIb7FTFXmszMd9c3M14bFrrbdTNrKmo4tJzW17DoqQDbMEu3xrJaR08TAReRCoauleZqrSir2atwyjyTKl3b2rzsNvUxV0LDeDsYWq6Q1IGIin2yuzXFhrRRfx0XIqOTOycg9ZFbUpJSu21WAJjHRtMnqt3l1kySOIY2Rb0ZPpoeAZd7Rt6urlinJbVtwj0zgummdm5y2tbj7rJm71wzrRrs6OA7s4aeIl/aTh37FGL5qldE3T6ubSrc1IPstdlQakETfHXURnbkypJTt5p0h1uwycAM3sucsOYmxNB05rrHQrj1mnnNXodobiXEjUJuzM60NG8mXDgEWZrwO6ATFS1JbrSdm9277ilVvNo4UdFShodHSbBp6pjnJ8yMVTGTgwSpbWRV2cVobqGOVcA04u0uXNYTOTtEN6VscrNYWbU0XdXtK6pFQHEROLC+xOXd7fvO1lQJrCjjQhlPcr29eQLtzkQ5c0WjiMblp9Dr7etvCG083MZqzcVKDKZfcHusitsjZOkD270ddmGulJTrbe7au+OkZeTiQ605tzFJ2RVdQcySgDKcerFi26PLWux7Bldx2/mpZYVLoldlXsOzdZ54Thvs0W0jizVy3psOBrjTdabMghvT2BsSTbwi9q6yEZOasbHG6RsGN5JdRZi5YZSdZlMrurXNy61fax2yeGLR8kOSodOOG18UGhZQWwSZw2ZyWnIpcm6+N4MKdTC5yucXeGuYCtbROaYwdsBB5wjSTLOJ5TWUL4GCaDYzxiNNTRrkeaNqTOrOB2yu3IFcyQ8zXduAtnqOHXutS3qPCdWmW5vJb6yVPGYgQZ3sd7U2mYRd9xrmM6bbyLrWKXqdudrdHmwtFYe67oHup3uSSgs47UMp9XYazi9yDZA/WNDq1UdaUDV4uHLHgm5wRUcNC3OvqRw3GRfWxxoZ25lx3kU3kTNVbL3YWsOhPcgtN8ic5nL3NuF8pxkx2JhxK1CVapLJt9ZoV3PsLHFoAjE5V7R4pu6RJxNPbJF3vc7Wio/dtjBL3bKoy4KSKQNGrq+gGI7zCDxEFLO5HjldJw5gM0IWuHNUKfMJ3zu+1RJNgBhW5pytVg6ecoJ3cdO73Ml9vN6MvTeQ71vCGUQZOaxVmvlxxHm0RZXTLenuK2HETObaOhNw7irstAXlBEcSeVb0vXu4SVfAybMw94DE9oQZp6c2o8Q15ZNZhDGQXqns2NrsvdqC5kzHW6FYxbfVbpJ9QGS0X3ZcN0tiTZqctSTty7CHVY0tTj2Pha0ZbrHJKOSbW0J1wbwpvtO9eJQSOryEvorgFnJnXEJF8Tep7pFW7+LlPQHQJ20rc5dzd4gXd4o9omF1y1czVq+A3E8mkYEdu72BlOqA5CYOcxHtKF2VV1OG3zk0tuMnAMSuVHr+fQTCajCa2OtZ3bimG1FK60sIINq3dMRrcOdbR47vNce6PqvKNHYJXZLp9Us9ZEtZGzytuk84c3t7op8tNEwCoGsky25z3mS5wezqTu4O1XNeOI676+d2Tfa3I7yzT469oRbtFYYt5qzdvm9U2zAaWWzmt4WO6uwQrOMVZtnhoq7lFEYZiWdfdoD1i9x0wBuDNIeLEFQNncEq6No/M3cqIvKHaq7AKlQxR5ceDBU3hr1401ujIAqeMvY628q1glkLLoF7LC2i5qFC44Mvj8jMIXbRt2eyHrs6xpc7RXbwPQ6sxctLDWAAnDkt3DtZucs1ytzK61GCqDj1N2zQECsA9NBqBO/CVNDXXdqrl9YUGZeaIbCnUhMytKUXRw9zIuXQOuTXuzMs7ncnGDtAplWLQBPRSt1zDG2LJzVC43fHqKrt672yqNIyy47OU5uQUr47KliFh4KyS9rKFFLePbhubuzdayKSWwuT2RqlsMSZ3l0y8N4z2E5tajLE3cQ6Pgburp9QyGZHMq0bCpsZtcTtdtOToe07l7ROLO4b522amI3V5R7HkqOLMAzKIXrLo32+NEdaPvSadKrMU0AsSmaS7YKFLOJdFPu3YtnHa4PDerV1HPeTeum6pCyDsiIvuF+1oXfA3ti6JjQ3TmF7YwDFDbFpVdcFKe0RlS6g1p7NCihtAxYKnJ1CbNnTdrqy6Nclx6sucTcuWeq9eLq37DNNy5cBDepccOE4KwQpdMC7erLzLPNLGNu7brFFkVaY70xSEbXSZo0m9rsVvBFA0+FcZeQERSlchrbq+nW8rgdeYnoqWnIu0nAMHG5IXkzO1YMGbYQzMx3xoXWoztl8QrBL7kOXU+YPSrybWdmGUqWl5FwwZYu0gquoMngVcq1Ts7AdUpIKZQvutxcJuFXlWSQsxcVCO5OeL3N0mpzeWpjchM2h2bm4itwFXHnd90bpUzuXmOsn2t8YupmhrrgGcLkVG7zDuQM9r6yClyd+vXyEtvSJnVg7jvIbDweceqSMAEC9e6OetXGCVgslxEcaOJwIXa2orViBXm5dF3suR6JjuIbbpctGjIBdIq1fVOIjwXGmjhyhi4NGbKfcVu6xs3tzJAOUV02pnS3Wchho3xrUuV9TUt0BwfbmptbarUnuCcZadw6Xd7o2ZkLV6O6TlwFiKufVA1EzSbRPITu0zlvAXgiztUvO6s6JbDaxVlOnV7SgbJ55e1YPcxWTlZvhbvCt6PTQsBNU7S0VU1l4iHrNwuOt0PYgHoKzlPi6FkMjDsHVMQrJ1B6qxCUAwE2ToxRjklFdhGK5tyRGcvTxfPDA7JNY+Gy2fakKGhcLz4a/bl+zFwpHd3oC6KoksrjTJAJ25z3kcbyd11LzLOFKLKxMsLVtqt1qgxuZlZ1Ma5c3cEzjumhvRjQ1Mb4NHht93OILrWDYrAB6x2XZJ61kjOi7LAtg2xZ1dSzTLcq0ijwLwAYMNhIqxMGRSZCLvuCtZqsk6KlXzfW9vBOpta+Q4pqSsEXOR3sHWMN6obk7KvKlpdewxObr0odL2uW2Q0LG4ntA1wgEIw5yyCxmoF4uXlqTom8B0ZNdaVw4Lm+xSznXSIZrNVZUwAEywQMjxDe0LZUqPNNG/GX4UbvjF1+BuaF4pb0MldmRTqlghDqQW1erKXSzWrjKN8iaw5vJLtzm8b1UVdqVtNCk6ybfBSSQWMuiKtZBULE3uIrKW1YXSoHRvqyzQcuurCtlKdqfts8w9eFJobm0Sp2jtwGiSzzNgB2hg3fgSt0itOcUDtPS7vir7NrlLLjexoccgmHj250qDdYK+XWJl7skyqTCSu5wZ4ycy6Zq+09mOwMrjtAhk3d1p07j5rdaTEw2gbjHbMs5JCmKVTLp6XFUYoVd6hJ3BXqvtEDW2hdnSB2UdFpInXb6SLWjDaob0JkcBpKyuxWBlO+ll8Mq6UkF68daBzD2ZJfdZSzuwTWpJizuux0kTeRZdbD2WiObPS6boGEDJLj49fHFYEFLuxP7hlaq0fDS9s1YDV12Mb1dqTlC0lfNpVcmxzaucd0jn1dKTHQiX2lx3M5CR3LO23WQiypZ13zEV7M0os0M0aazgdsxuXA65zjfcaaKfHtkecrybCeFK6ttS7l9qwSpurjYGV3Wl1XRvmCTusl2Y3fbzs8RG5eKlklC5aXcWptDMc425lPcdxGsFZNLhpnJMlaVGeFXrd2FwwcG+1WcVW7p6dJ6beCwmBzRTV5syrOXUxd3Auhp3GtsTVFZnBulGO5S3CSzixbKyTU0FBuPJXXdG+hK1vAZdpg3ONcOTetFcMHTHT51nE6NISfVycHK1zUEf330rBonT7767ThOGWdxAC5N3kGSbOPYprvQ9lDu01j5jc58T0aS61OF6Y8dzMxVmT6cSr4Qo4Rg0UE0efSC9SXSyxp0a3FmTHkjsKXuuDZtGcKceWZhcWdMaxNHYR3NsNToEU1s3TMdx69Jt1jayad3IpxrpORvp2W0ma6bxczCQrtHe5TM14SHt7z6joII4nyOYsecGAs2HcLsWlagpGhsJ5ddiZFNeZLKm4ckgRe1z7WMh2A3BasrAhubYdFVA5ZI0ZrQoijuAddbt3vJuMXplDreLpA4hwzJlqTFSO5z3nqeSLBe4biDtdqXHqmJzdPJquO5j5xXj1l8qgqhu6RN7MR0sm52HXfbIMdddzS1elnCEt6GKIIgR3ZeUOfOoNuPhZubwOvA1VghdSQNcumvuCBcsuAXkgUYrp2cm2XVqip3DLvO4LxfRc4bLPtXWMyjjhVkUjmAztXLcdkE68ujJi5ZbI690R9xbfLoOzU7cj3pu3rtLj0Ep0uLKwvLPLlT0DchufLcahzclJWlqCBordHK4qAh2SY0+7uBzMxoLRpNjC6XLOMNKmXuZF2m9UvlqcxLUSSU0dyDW3bpaiKvKGruzE9dCQoHBwDgFR22+Ew7LZvrOE1gA5LLd4B3fM0r6gig92QwrddGjhbFwXpwvb4VwnXWlZejmjtceCpJcuo1BdhgX1s1uq5CL2DTjFNhdqfp5aQoVfXTVQdmWnL4Xny8LAy+cuNNtW72Zc5DcNXeZbxk9K5yt404hggltnBovLlDNumtDx4+PZOPI1V1jeKRldKU1sauhLrYjyPW0r+jJyp3aCiZw55V3OjL2rXKFtE8BK34jOo7w+COgCvln0undUrqlfu83d9DEaiV7aq5kreAbXKezKeDQx3PREcoOtDVzCS+pdzOGZg48tPg6t3m6Ac085dcvIacDzXSc8rxZxtagxHL7ggOnJa6TriFbW1Aag5ETFQTfdl1nN7vQU8rcu6GP6JknSbjGvJSy2eIW8qHaRHzozq3gwLkG1QLvNpPMSsE9hhW9vYXpjFrIixIU7YZ66PCAAxY4xlKhw4ulS3clTNw9CMonj17EtRSqOYBRkc6kMhpiM1jUqSslMRkVtd17SsBDKRrmeq0C66CNd0CzgfsZWTkqsUxmD1LKBy2rct1Ke2jxja5sX2B95SErDLuVvaTpvPHrspDM56KfEZ3cBOGY9vZVcN7OzgzuU4aTRtB2OO4G5V4BOao4VoyAVOWKY6MVYtXCPduoJmWM1Exw7ecGaJfdswTiVlEo1TF12nuTKrn2VxJxKzJep5OfVNeSbYwT67kmqtrddRbGl9xaXxq41R2wOHWvulSuhh18ovCuunnE1AIpndl01eORBRKytppoI9IFe30N8LBWBbOlHXz2ukOveeuNOnYMeYvsD4/dQ4oKxKvcy9f2vBE1WbbvTOq45ldgcSNc7dVM2J0sekBdL3b6b3UrhyzFUF+XUMtexKmcNg+3DzLaV4tGPcwdBpx23V36vO6hw0TeUzu+FpbV2buOtRNdKtsRCmWLwTlU7rogSmxlNK0A91S+lC3hdl6xy4Cby2meYrEr7pjYRrcNdO9zIhWdRN0A7qFy1tMr0cyLuUiocdoyjedfGOCgs1gIU5T69kruQmU4rFYGeLdYaNIGLjOrBZvUnv12c0g5uB46dB1Bkxjb1y2AkZQWK9jF1FE0B196U8D6xd4HUF0b1ci3cUzRWzW30oTtCmdH9M3uUugdFqmWLF6RZmVUvFneqVlzK592tCrgMvVOiVdOo1dOrPixcm2pBeLO1cBe7C62mXWTaeZRKckljqJPbSAdx86cdjVqGJ5EBqGlybm0W62jqVd4FVj2uragN7tV1ESodb2hK4B0VzmVmqRypxX3dbdL4BFXf2Tjwt310Np/JIz4M1nyuV2Q/ZVvRIyvkurtqQ9Twxug1PtPOi3jEqOdXVV9BZTraZaMtp+utuhTl9hqdwp4xceezbO9MaGNisArdCqVQBCsKGi0hjUGvbU6968vSmRpvBgWWGSH9cp4JSCgaUFUMH1IjnsW9cO7mJlTCZBGYUSTZqtvtHzHAq/iKqaRV4ZKgH1XRmksWTR5oWne5TvgQOCt1easL2Y9U0JdfQmqnAl4+UdGMtVuC6rql0pj9bu7obuHhR3g+f3KTGS66uid3WhZXF79DsV2RWoGg6okKqd9Q7DATljtexs0o5WzVN6Gg9pV2JqOb+tjYtE89G3u9y7zVDgBsgeDqAFigoCwAAWKQAAHg6AABhwkA0ABwBiAFigoCwBqQdD7yAH2HBwBgAAMOAAABIGCgoCxwA2QFigoCwACgLJANAAKAsAEADUgeDpIDTgUBYAIA8HRAAAEAeDpIDTgUBaAAJAg0AakDwdAABYoKAZIBhwB4OgAAIAAAAAHAGADUgG65wAAACgLAAAakAAFigAdkF+DoAIB0HgAQAsUACAFigdB4kBpwKAtAAIAGpCgLAMOAeDoA1IAAAgAEAeDoyigxABhwKAsAAPB0Aw4AA4AyADDgABQFoAWKB0HgBqQHLFDmA1vAAAAcAYgAAPB0KAtyQGgAAAAsUgAw4AsUAD5wB9sgAFAWgBYoHQeHAGAeDpIDTgHg6gAw4AAADgDEAAgBYoGeKPDgDEALFDgDCQGnAAAAHQeJgA0AEAAgDwdAAACQDQAAHNSDDDgAA6DwAEgGoAMOAAAGokBhwcAYgAw4DoPEgGgGHAdB60FDwdAAAw4OAGyB4OjgDAA4gHWDw4AwkA1ACxQAAeDoOg8SAagAakKAtAA1IBhwDwdCgLABAA2EgGHAAAAKAtAAAAB4OgAeDoQAsUOAMQAYcHAGIAWKAAAADDgHg6DoPEgGoAGpAWKB0HgoCwBqQDDgAAAOAMQAAAAfAKPhYAAAgAEALFA6DwUBYAEgGwANSAsUOAMJAacCgLQAAQASAEgLFDgGt4FAWOAMAAAjDgUBaAFigdB4cANkHQeHAGIAbjigdB4KAskAJAMOAeDoUBY4AwkA1AA1IBhwABwBhIASB4Og6Dw4Ax+AMOBQFjgDEALFA6DwAAASA7pw8PB0cAYB4OhQFoA8HUAGHAPSHiQDQPB0kAJAAACQDQDDgUBZIBoHg6OAMJANQANSDoPDacBiADDgAAeDoUBY4AxAA1ICxQOdB5hQFjgDCQDUAAB4OjgDEAAgAdB4ACxQOg8SAagAAoCyQGnAGpfAD4Og8SAagBYoABwBiAPB0KAsAakAAoCwPB0cAYAYcAWKB0HgAAGpA8HQAQAYcB0HhwA2QDDgUAyQFigPB0cAYSAagC7HejgDADDgOg8SAagDwdJANQAYcB0HiQAkBYoAAPB0AEALFBQFgAgAADDgAA6DwUBYAAAVwDGgAgAAAQACAdB4AACsOCwABqQdB5AAIAWKAAkAJB0HiQAkAAFigdB5ABhwKAscAYACABqQDDgAAAOAMAKAssUDoPEgNOA6Dw4AwAABqQMOAdB4KAtAHg6FAWgAw4DoPBQFjgBsgADoPB8BA+dB4KAscAYgAw4B4OgAgBYoAAPB0AAoCyQDUAAgAw4DoPBQFjgDCQDQAAABuOKHAGIAWKB0HgoCyQAkBYocAYgAABqQAAWKB0HgAQAAOg8ACAFigoCxwBgAIAAAADDgMOAOg8gAAAAWKAAKAskA1AAvUqAw4AsUDoPDgDCQDUAADoPAB1AeeDoOg8FAWAAHg6FAMkHQeKAsACAAB0HhwBgAAAAYcAADwdB0HgAAMOAAOAMQAAAPwAALFBQFkgGoAMOA6Dw4AwkA1suANSB4OjgDAAAWKB0HkAAAA4HxiAfDUgAFAWOAMQAsUOAMAWKAAAAdB4KAscAYACAFigAAADwdCgLAAAEAGHAdB4cAZSAWsUDoPBQFgASA04FAWOAMAAAEAGHAoCyQGnAoCwAJANAF6lRQDJAWKAAHQeHAGIABAA1IAEgGgLFA6Dw4AwkA1AA1ICxQOg8AAUBZIBqAFigoCyQGnAPB07wF4KA8HQAHAGIA8HQAAGpA74O+AYcA8HQoC0ADUgAAsUB4Og6Dw4AxAA1IAAGHAFigPB0kA1AHpDwACgLABABhwBYoHQeCgLHAGQgDwdJkAAAAHAGADUgLFBQFv4Mwu/0/ZnE/c/dxrI4rNHKvc16m6mMLSsjTuO0r2s3aOUz8Vjlm9VRcycuS6bKnE3l3FNpddHqF05tZwRrqRO9aPbJnKhvHRmmBKg7g05WOhjtHNuFzI1nRizcFIZI9o2utIaZpxugRC7dnoN4cTB1urVAnlcY3k+pl7oT7LAZszbUp93dBtNnso6OxF8TQOLajWdCkVY7YZTU5Q5vGDcvWS8Zy66gDRd6GzNZhPZcroaZza3b0HQ7Tkei2pQFaritsE9bFYozfHF2h7J3WqVGFkX9i3VUV6sbbFjs6TDTek3vQjSNO4drgRqj3TGrvphTGUoHe5azt4bumsGQvSG13Mntg5aXMZcQv8Z3fdTHQEPfN+WHeybTsL3xlTKCcr3DCs+Xoxj6Q7cm7KOYL5uaoVbvOeEPmeYvum+7NubMrpgYIea6Onu9Jg651tYjRBZsGjgtZHw9Ox0e4eHsU9B6WsrQ8Waq11eXwS1xE3ddE3cb24bUidCo+zRyhj55mPUdu6NgiotqQ1j6+W4kzObWrVTy8brXevXkyotiOPhlLSq++dasczmL76+xuiPh7ieW8gx0BTu7v5sPl3VxrHhD7kOu9g2/lWuZghD3HOq6Jh2lLeJpKuYGJ1OVXxrg8mzeKiJAAUvAXYdhvlkzL7IKuXCyXhnYxyexCxcdNbecKeBWVXZL2KgAsYq7hdZ7i+QGLlhw0nOwiHe26jYd32XHcb0KyACu1W5ae8RiffC1lHe2qXCHodrnTxunKbO0kkb6iI64PKD5zN5WMkio3FcvEluynRvAwtBIbtJK6UMDljTeYomo1jNYDt8hyomCuTOCuO6xwINK+F8QZLwDne9DgZKp9brs3mKtLuWEhoOPLWKtGxclCadbqq612MzO580KwNF3bJ3ZTWi0u3iZnbOR7tuu6KHa1yoNcGHEzrXXzhM6IGda3nwjo9xFoXcOpPbNXtI4ava7EbGEb2qupZF22r2NDCab3sA07yKj49KvbpBa4I8676+o3xrCRlCU3TkqV3aMvSc0psaOCuZxphh9lW13sQcKvdtrua+IGrXxlxYr+OGgo43pWnNncjWc9+ha3AVdyuBkh3I3jqPOH2cHSj4K9g7cxc6OoOwuNnMeiw24pfeASgrMT9NGBDXiWd6LzoYOT1cy1idB8SeCRVNl3b6x05JNmZ9wDAZu87rINcewcjbw0T1sLldvNKZnV3Gw4Vx1WJFjhuE6tUfK0egFZFL1Z0eKR81Mwvidq0wXRlAhY6aMvWDhb7mczLPFTizVXNru2uWbWIZwJRj0ZS7Td9JSDqWWqjIrNlZ6Xt11lnSG32GdTA6KX1TndAuksBxXynYatsgxO95dOxo063le8aSruoM0TIFpqZwL5zJorOC629VNkDLrhSULVR5rtLiOxqndxoXy12nQp7209vpSZmzhl8OvSurIPKaXT2mi7rqw6dDfOGLGOaCreF49zWZwjcwrKZi+FWuFTLAaz6zTu29zlYZTwAbQcFSpe6XtYaZIVGbTyuuWCDhZy4oUD1rLNA5l1jyK6QzujTxmp2YtGOtSRsrVY2mhncRj6MYkdVPhQyI2NdQQCSh3GuFtGm7D3d1xxIdTD4jTMPPcwjt9tKCrSGSEbQZgPF7W+3ieJm3wiFFRHAaZ1sHu0KQ3l9aF9laqxnkTcNx0BCt42KPYQ6UoyY7wlhZtSVCmNw6s44L2sy+d5NCZvuW4BYGIkJO3K641QoxTKutCNpijYgyZhYLXJpOMyxWm7G8AJx1HTRDmXIhu60SlYG04WqlSnZzRgEXcbmRVMW2hoLX2bFZu1djrgAwPuHEUe2hjuGnYq8+HVOopt90TaizU5eWD206dBXj6KKmsk3m8KoHcfaEo6yzmb0AuPhaakKpCyJm9tLhfZpmEGZSEHZocl9vINF7i4TN2ZKLl2+jvQOusDm9rThPCgw+6AreebhyOLjJCAtzLKmcFmrdJFFtG0uZPXOqw8dXvJYAqYNu+x9fOrs6KWTctx9vcJ29ZVLXHK6lltxCBRmDALHQjNVuszBiwA9eoA/CjrrhZK3urncoywbwUus3Km3po/Fkdd90FErnBiDWYDl72oC7Q3in2IvKZg1ShNvrFWaFafQ7dNirZyFYi8x3Q3bsDYyLKIS2s0PjL3N0m6uc7kEoF3a07mFdXSFUe56U0BuxuleKfF8SQypsL285PVWaswJeLoDcFPa0CDXczezElTPNPr+ZPHK7Fr708PBatDxzd7LMzCks5STpSMcex2HD03rZ89qN+loJY791AHbrtBNaBmJktHXFrG5cePIzqXVZ3KKu+zECcuddlM3nT7jEAFzs0MohPW3N4asrnox5I+2joq97ljCI3g2npnISlTre0Y1YeVBeC9YwIK8tJw0OgNuzuKmfSzTdBduJ3Kub8uhyJ6K1o7Oq1UPAEmde28ZFixBQCOrDhoVZXJAbMNqU8tg5H2bbit5rxjuT5CajnFzgKzKVp8zFcKwNbFtCuZQ2Voo10WWGXgYDzIXfaxqOtS5t3SybAAozMCJFZt1wgbvJU3NSo7Quhub1dKCPRTUOwaDCdKo5quTJUZE8oMkVvVxaD3uN2KI22qeJjH2XuYbSgop3HsVAvDSi1XLCzhYpX0t26wVMqGhK09Jm2SCMQ6YlRYaxLElEig4rsTOq82g4XJtzHoxsu3Z6CsKCVzsGFSnqrIZgBroMjyKxDtMi3rhMfZsW22MWQPn206W2ZZEk6zRrpfFgdDlS86dtq4zc7cc0yxxHYuuPSxbTsQoJwb9MiNlAGjbxbRUgw3aikxqbuyrcxJo0Np11oM84NGIxHGRO1Z1bt2OGkWZQ0CdQJRVbQJDHNw6Mau4+u942KZu0O19tOrUjhraXXtiMKsqxdQbzbwS+l7rBtU7j0upJM+VJ0zTvsVxUnqJgPBLDNwUC85b1RPBlDUQbrkCd3i9GF07ZJvkKu0W8vhsVWU+Qu+ducYaIJljDxS0nip3atiuldaM1Pk+paeB6g+a0He4Gxm9tLRgHIxUGeW/XuB9MVRit20XcrbvnORCESObhipquq6iOoRXnGlm2nutdcllzJr2FzHW3DXdxrMo3vtRzqWTNTBd1OuXY0YDBuhUQtqCRlc03nD2ZVG1A8yJpQs8K4ZoHmS28SG2Fy8EJptcE67J1NRGjgF5pN5lMX05ubvTCH0nAUTIL1ZObdrTtiDbg7qI2AvlFuBbFD0Z2GQMXru2HTy+lQva1RQ61uY52UmK0aTx0TNDVkmob7Mo6HQyo0Xsaitp4UKfGglOh0Vbomya7eafbcSKzJgwROtTpMzAmcc6gtGDXiNqy62/aBt0nS47L3uivVpmu8j6tMqcQXl7dOuXdMMYyDSnXXt10lOzpcRuCWViIePNF44SNIO9lykLiumgthwjHuKdd8aZheDa5UMcF6OCF0jgreygNrn3GAy0F1ce166uXrPXowpuiux3sxsZ1GnNqzbxIwXrykK3gXUuI+1De0VgD3jZEvkrm0S5Usus2+hBAlN0mdu8HTjSh7KwGo46um5muKx3a1t866hwj610B7F0Dg3uUksssZSaepJBupx3rjztJ051y+s7NfuojSOOROjLVg4BcQYfBBColZ0LlrUpXXKVuY8Evr3KbMuOhBtXiJeGldBQ3zi7N5KDdshPeVqkbayyQ0+Z6zrrl0l3ZGvAnVqfapuGrdPqgj4dZENBm4E9JWk5MpFNjdCekjOVPRv2nhttzu26e0nhnAgKdtscnSWWTOfZ0KOwLwwSsyhfY5ihs9lW+RxKZaGSLW7zQ+3u5pEJ50PGw5zq6aM3KD6hhGIwDXQmbBhvJ28vTummhwd1Dp0vMQDIusshyuGVvJXAsyFxwrAlR7hQHQVz3uNrMuzOO0eWEY6opNrIbw895GhltFU9yu7TQQdbfFDr5nJpEt8X2Te5okmO9eIWwHx5EmXfbqlErld8nl1dy3dKc4Dj0v54bFKQlAZtOk86N7nCUOJzOMmXKZ29ziq6tMNvGZuRUwRyehTbyY+YMS00RIFqvGc51s5+21lLn3UuwvqZaYrWXXTYa7PnYvZxxZjqSuRzZd9p48K1tQh43ODxEqtKTK50JE63q43a6zRwX1PpMF0SiKlAqgLIynMXInjt13IGLi5NyntZg4hCDdvTwGOQLFllS3s1Gh04tiZM2oLnM8kgc49sjdXaox0FoBFZXILtzoctO9YN5OsTBRmGhUrsMtFWa6all88uuysdZUZFN62LohnQcHbUYMe9xIXLYh0gY1VKuVoRyyMz5BpI4pppnxSEJZXSRTQHzFh0FvQdBoKNJWWmoUzFWkzEngweHwdBgh7+hYA/ryeJef7y+WcsyF/jMjkAhaIlE326do+6PubGw9KoYJkyTDJABsskKlNtnnhEIM7BYwCNxkgAhaSdomB695oO0dDhJAeuHQ9L8f30v2i9/nfOc+UYvjbznly/KNI+PVW9dUwrNfWPIUc5rny+VOklNmSv6+dxVKd79avHxxFsm99+KB9eCSM1cd/e7v6vmpL33HplDzkY4hZUiWluUqYWv3oLwTwJTS8yuLYaaFstrQ/8TW922mSSy41P3iw183F9ZqCHAMrW7Rbi8RaVKPBXeBJBEZHxevkwySUn4fRyDjnoHHKd0m/Po4OuQ2j1ZR/uwjuY004JAtt2dDTfbP55uG4Wf0LlHYi5XMkpRgSrYRUUWp/T9eLURPeZWfFKINiCWIPc/v1/QRy3y6KSUiFFhl3/m+fXOBWW8VfAV0vdLXRGzIMV+WPC6/MTa6mtlv4I1XLPLCt8sdc1NEYVwjUrEvM/H1av8+G7UVW7R98/aNo/w0mzubOucvr9fmznLy/Tb2MZtfHw5fbHHsSmiNknt2jGON03neyYUz+ft8Gp+DQeOH2OPx8S/R+i7o8X/r+IWL2ek+udfnwmydXk9/w2TykfD5tf2Nd7Nff1YfQ3vj0WHt6DXOj3/7we/Fo/9kMX/sPymOVmJu64Lw3+xAJGYGo8+c25Rn2qgYzapJZBVFElBwOEgnqA3gAhzyTxnZvu5/1w5/mb/0KIgeD/SgoiLngwFO/jY39V0H9yCA4zTqDmqL/NYMmbTgL3PWrhse83lpmmoHw2roNytdvVeAFUCW6EziFswVxO8kWiAFRZBZACoCdo2IAdQQR+qO71/szOfU9FpWvRxtuJ/f45PzXcONPNGp6NisfT4Ig2IHqAr4scHr28wuaLejvt6yqB+EA8Gs2LePFk1w1oj4vz2/qZznsT84bk0X+aQBLRQ6Y/eL8cfZ8/n8nTsej87W7eLijtAqCnYiJME++3Gufqfrsb30dntrE3fh50V4vvt575xY1tnNtatnOtZLrVr3W1jly/U5uJ9uFB8QY4UaxXaqYMG6dlTlxctVtGzeYV1pMG+pErM1R5uG8EEtlGzwal5qE2iRwuKxUtXedSfYGGaUlNblEXe2kRRrevMB3bMZDMNcYgbzCxSZ5rF1tPZ17RcrcG0+zUkwD25YRQY4rGlaWZwpHJLoHm9o9lgEpbRkxAXwDq7e8xW3sLSzjl3t6ybKFhPRXZs4QSzc6+5LCCs5itdvmunF6obupUtIcHNpjQ1vDYFbFOlmLZVlcLtib0WjqKq2tt1fgs29xUhgrsbaajljHa3pKVtTqqXxEsIDNMy6YWVxLgRtFPL29o5IcWvFeK6JzQso8a4i80WsllFGVlxWLVhlJl0SleqFG8ogovOra7Mq9ozubj6VuXiPQEmHNlzTWkmrW1K7hKvUP/1sfsSQ4+84+i9mYdpHY84Hufc6w8poJsxPb5kLsgIoXlGt1yNEQ9o+vk2d3JQy0nugAWNpl9DqhTdu7sUtrnME09DRtXkPUe9yOukTxJ49cyu2x7Sc7Va1iw2rMh25DeOcqDHbZ3SiFVVSGV1AnKmXXdbVTLu/mKNW2hlOKpViiLIZAAQcH125G3QoU700vhDShddFnZT7KPKrdTLKx5fDdcuaqKjkkkJANHAGBQFhQFgDUgMOBQFoAAkA0cAYDoPBQFhQFgeDoBhwBYpAFigdB4Aw4AYcAAcAYOAMHAGIAMOALFALFAeDoOg8UdDFhQFg6DwCxQOg8OAMJANAWKAMOALFAAgAakAakAEADUgAgAAh0HgPB0AEAASAaSAaFAWB4OgLFALFAeDoOg8DoPA6DwHlpzMy7ZpPnY5vstHaEM9c6DuFq821sQ64GdMYk2sxOr6C08MBKCrFV4pQrQO9Fru8hlqmKI9cxfOSxMe3R2+UrtbYYtdBW0tVDDHTzKeVhSOsSHtxctXwF0b40eeg2q27tiPh3cp27d4NVNKeGHUdNgnIt5rYasHsZp4JnRW9dBdWOna6adNCVklK3UvANDuG8FN4nNSJc0Ut4QDrSSHAdCLggO5m8NIWs8oG715dNOuXILKQOLKLd23xupoNoVc0zN7ODJdAIS5tBcLvj1Y8GT54GQgbwmOW1t7jc7UO2r42bHFObkhnOoKsw5lR4NUYVau7e13hxYE35c6MF4Uxihxgukn1i5wzlPc1zoZ2Z2nIzakbLuueYLGgwHiRFReEWO3lwM0crN7oOjhriK6pexgObrJXBIYj1O2bma3vvRqKgPqqYTc+drNd/dr+w5sD4juRZEVEkWEQRnNdp4674z4vmXrJnGxHdSxYmWdrhUDBpBndWYu7DlHC25cBsbho1h7Tp5rbdmpuUznR13GnN6xJA0cAYOAMHAGBQFg6BsVy7y/dnN249zfTEr3aVHuclNVlhmn23Ig4hb5G/9Oq9XvV6t+HAv6/qx6y+3dler3q7lyLkIu3rT7M7pXdwEkl2CW93O4z1dpSUcscSmOB4GV7N3hFOg4tnRtkmVWwwJSXRyh3M6AQb6zKqqr3AtRSY8zQmeza4yq9Xqr2DQC3L04mmMO8JVNJNKTAjpRqyOM9aSajlPtr62Kq9853EVRDgUSKIAAjIKkigijCCiqIa31nGS9ateHGccVtt43oeGDhWwB1etvdkiyx15wsdUPMVLLqDQ8s3a71qlbsyw6lmytvKHGS0W4NHAGDgDBwBgUBYOgczmx33t0znLt7c51Xq5XJ3tba63xSppadhOC5eTcrlI95Zxqfe96q968++jc5ZvKVY4kwBpluOtvWEsJ0HSZ6i+AKcuh3AvjpIIlRJIyTTp5K7wkGrGk8E3S4FM2dAMScBUnPc4B7ZPAsJENvlWhALOwDTyKKe0tYIegaDPUuHMpwO+QIY7e40ZmaW5DS7DA74bfGM7oACcQFFkFRQc8Z4znF9+M5tjdfWB4zkevrjRAm9WlsuaOObWSJRUJ0K3GFhXum32zuyg8FvjdboySyXJJHDgDAoCxwBgUBYk6SSS4M7FpUzgQ40BsPTW3nAaOi0TJhFYlBWeuuA1933qr3L5RffR7d8W2coDhkZ4wtzKscUbN8OJ3GODbtNIIHNriZXMiJOD3bu9zV4N4ShiIUcJSbVdgIMhKZklkjkhmcQTiKTT23usobmg72pgm8RbB3e4nNxpJUD3IkbvEwtjGt999t5rLa99sbYxV9xUUOIqowiEoVVVVVX33tqTCy/VjpOURue9xKwUbvt2m+pVd8CaMC4hF9WOrkdyXK6Bm2Ortm+TsTld3Y9F7k8e7uT7ANCgLCggscAYFAWDoEbs19iKY5JRIXdjJtsTYm3ljTOlabzEFXzuqqiu+fz++azQnW6QDKpboiUlMocWcwAs6UynlYQQqsADeGllb5ZoS0AcOnve9XqIghkmrs58jYzuBCzkim6V9ySriQCNTQLd9jDJ7N4mKDpI5Y48HxrOJI16CUw3wQR93HiJWRIxyVj1rGiZvfBndQEDiKyEIISKKAvFOXcdv6Xfd9xDpaaa+uy9T1ya1dSla1SIZlGlZ5KcRjndD12m3r0uAa6xNb5JmhoUBYUBY4AwKAsHQ8V3lb0nle3Nrue6L5rRU1Jyc+2EBHpW7grrLjbmg9j+r3ve9QgiT++LfagcOAieoxmNyO+3iiSSDwQ4NvQ9rDwZsDsHcG0G0wGCSaEwElqTEkmSAQTKpakWpDdlIuu7iOYaLbzuxok93EdjARZ1Eli+F+AMrzJgbkso7mgHBh46iklV4uAQB3QZXq9QJxERUkQIQEUA3vrfO2L1jjNzYyTwlOvlWm8SnXpzuwGlQnsGRMXt2W6SydlTi2mdTXaLrFlgc319kMeCUHhJ57IzZ9oGhQFhQFjgDAdB4DwN3Kx7u833W69NJvt0wn2Zs3TDUtZO2u1XytCGbMxHk++r3uuqqvg3985ftzfiHfD3XQuiTPaiQpITjx8mQN41p0lJp0MbL3e9oG8QeabWgsPDoAIGDmm02+IfadOBagk0GjpCrOJriCm354knW8AIj3OJynutsgbwODSkm0swayzmjp46kInDWUcTId5WcYxuiIBxBBIIpEhAWEFRfvsnhDlO9ueq/UHPAI9XE6b0ordF6qmmK5JALtvOHbLL4tC1LlGzAO7KXLeuuk0XehMeY7Dkq9F1fmaz1Iw32JqSSaFAWFAWOAMB0HkkkEkkQdq6HUJ1ZaT0X0LzBYpLOx5rGdbzc1vqaJnBjOr7ZlWtwqrdARginmV83CDEPt3hxOIag29sji+zeIuzEiG2beHkq3QQOI2Nt3RXMPs3QOGAMtZzxtkgk6cCIJb5HC0TmHhNfdDHDmU+QBOAcZ7CWzJNzOLZsgEz2AJxyuopCG84BaDzTZzEQECSRPV6vV731WIRFUgjCIGSI1JEQUZixV97SXRzwuiPEL2i50miZY5rK2ulQ32y8BjVvTeS8Tlbo42JsOXXXbFG6I7Y9K7jfOZWA3AoCwoCxwBgOg8B4EbG97E8zLm549+duxZFB6RV0bjbusGmVdGWmq373vVyfy+Ur7WgzeaQZRhSck3L7dJZzARr7gW3oPcWcwknb5nmk6Y7tLNjgDxwhBJ6rICYN7wJHaORdp2tbeXgJlciA45Rw2UGe7TTJBLYeApHe7ia3NZSY00wWSNAnr6AmSV2Ug0TmkGe9Ver1bV1VeB4iCDIgAyJIqAjrOtbatvetuKyazxk35GbtrrrXrxRHnWgvUcG3bVHEuVCdNt11HS87BWPcGboIFAo/SjxHPcyq0GYFAWFAWOAMB0HgPAvOX32+77L9zyoZlbFZ2aLkvLxB9betu9WTwed0boprDt131dme9VaGgp98BYfN1e7vGe7tCMkCSXMk4DoFkklJ2uoHWyRpGHUE02xrXEkaC+KDKfHlqIIOACz3BtjsJTN4OBmkBSOLEmA9PEis4MFummWiRwBHEpK6XYeK9uAieoRtxa4WEcwAGVXqqve+ghIqKo76te216Lbyq1xW+NrZri2b5M1DozmRZMg64hRrrBxZdXcj6+ZKYK3qvmx2OV3l7Ez6omO3t+v2crc0XgUBYUBYUBYOg8B4Fzg2A7eqXdh077A66johpvm+ksuuXuC7oZwJOxOXVhdIuUky7XAI53EEJNBoPuDJwkE8dZLKec88XwJOYeNEagleJFHdJ4Fha2kWUQcw9wOA7ySvu0FGxpJOthFN3bBJJ911Q7KonGGG0s3OPBmzoJpBBtuwdLBJwk7uJho3entbSXtfcHUFFIIDCRAAkCQhGEBhBVSMYQWBEVJAkGRkEYkQEGQEWQSEEJBkRAU8HegRLRDguVyggwEAf3IKhsRZFVUMkFBWCgMVERUCEAUAQkhFAkRFEPTBQSiAC+YgVAQGQUATEFUcEUdmIovaIp5IiKj0REHUApioD6XoNWeedut8ZwUkdJZlYNmkAGZyotKCEQkKq0bgcUXMY2C5pUB7hg7zCCpQoDqwQmNY32hkOaTyTRsYN9W3POrGSM0bm3ZzlybU4IKA4ylBgmJRISoajU3UVJBzBzzcxANEE0UU5hRDLlotRKL5EotgaG2+bGIwmcbusFo4xtS20ZtrZxoNnfKoBdiKDJIEYqjIKCMIMkGCIsgAjGBCARgCgyAgyCpCBIgSCyJIkCKAyDIIjIACQhIqpCJISKKSEikIQIgKSLIEURIqAxEBiiIwipJIEjFkIASKMjCDIAgMkJIEigDIrIySEIKIyIyIqMIsIw9UxRAYQGQhAkJAJFABqIKMirQRQESBFUJBUGRBFCQQCRIQWBAkBBCDUQhEQYEAgyQkQYMkABkFIsSPe/ft38c1Vv6I723wdmkncRdhnTSHd0u07gHEVlYITOJWUjUhLXb14XLFHnKXF3aN0hXXE19mVLCdrki8LWZoncrIWLqhOU49pda1cYjtM6T3XEsp1lPtgwjYOMvVwsvGg8e8VU7dtdQx0PLcByrwaAYSgtuN97QZzcqh0nM4ocpi+LPB1kxZdYiL5Xw5VqotoXhLTem5OyskIpznS6bhpOomuTL7XRR05e6AL6htZmWXMurbBojhtzpTaQpiXZ3cibGRA6ui7a3t6+zbBLa5ZpPTRsb1BnLv7aelqgy64Cipwpkoc6e1nMyZl8sd7nSuGU3tJPbx0ndr024ube7NuhQsbeGLOjdc9xnpNJsioaAD7wOHJQysuzXQw5mdU51zLtVnOuc7atCWiIw+bzNtxEtyu2BFKWByp3c1ri7sbpzj3CYYV0CM7MOX4Z44UAshvXzr+3Mm+5/HGg5R4Znb51eazgbQ27W6qxDc12aBvtdtw5mcDU4RLKgCXGhVAiuq0gJumTZ5u6vrreSpvX2XT8ZMsWr6slq3NeIdisgrkJVKR6Prr20fblcIwjTTRz4ffD774D73eq0d58WKYpChfUFW1yLy9WPB8K19lEUGs+2toVLpUIF03l70rjdly9rs7RYq/Wk0jlKrea+cVKSkjVmpPoQKqEmiwG6Rp9VKbeOmC6gABxu7u3u6oCwdB4HQeAAkA0KAskBDRwBg4AwBYoHQeCgLAMOADUgGHADDgF2O9AGpAGpAAKAsHQeHAGIABACxQCxQCxQOg8DoPcA8w6B4OgDUgeDoUBY4AwAakAw4ACAAQACAAQABIBqAACgLA8HWpCxQADgDBwBg4AwHQeAWKAWKAWKAWKB0HgdB4DwdA8ZmczLvWOuxrq7zNYNzJWa1fvEWbvGb508dXIFuw7sFvEhuhqi+rbdPChkKjvLNIVdKj7y2uqzp+Fbwl4/XMp0T589IcpbOVbkDSoldcdXBdNjOd1vKYWoePjKIF4SewNYD0rlkkGRC6BQO8aOdnYUPNdDm7eYoIJtNrlePVDhBpLVFgIzdOvr7qRjK21mXquHgJd49o2mheYtBPWjgdCdKNTOkJvpDlXZQAHOWatHRxFaoOSx1NBW5WNduEdsJqFirqO9WjrHWlU3rxJgHsrSCtb3AUTjJdC59vmm2q0cQ+oKOm/aJ6b90oWk9Y60zW61p5vQ+SrhW7WLb3uCvqeZUVg768mUUvUx4eSQ7CDntj0Vhu6mEo0r22Pa2yYDx6KWBUFXpIxEPQsm4O0dqrZE2XVTTX0w3n3D3UB50JykrLrBWYL8+ls7KUlClUp9t6vbOrY3xvvn4dvfDdj78jZt79uc57bXxt94oVTdkgABCeDt574x6zaS2pbGs4NVC+NHmvWNXO8HwwjCq23ORfRZwW8ulc1Sln+jRe2+bmVGZyc9GdelPfb9zO5vx7AoCwoCwoCwdB4DwO5sqgJ47pkJTdkG3tG8c2PiNk16K5ysrHtcz/dX1fnJe/ve/Ytk27tdMwL/mFAAUBQFQhCEJn2fsvPVnz6975mX1znL7zyGjRCGg0aK3+zd3nv2993zee537v3c79Kn5ohAhCEJFffe9289++lerne+nPvt99PyGjQQhDRqFey9/v2erP1bvmY599vnb3+Q0iEIQhD37927y/fpd9j6771f18+/IaCENBCH7l8/Z3379vK+3e+ZN9u7r8ho0iEIaD+nP7mX+/v3s59ff7OVe5d3u/6oQ0QIQ0QD9Teb+973fk32712L25eeqfhQFUBQFAUBQFAAARzvfu9+nErZvSZiqXeXXgBXwFSEhIyIyEhORRE2h1FFAKeJN0Hvffw3n7ty3/I3NnGdkPWa3uDOjTkk8DuuSNGxTviDQv+csfnXn3XcQVD4fffb93q5nP3piZ/Qn999c59u1n17qrCgLCgLCgLB0HgPA3POU1HDDoGxvodVHYa4TaGqreBVjTp122urtIht0qNTKAyjl4ed/vV774uRfvvlpHc7dub7zt/4IQhDRCENH9zXu/uf2f37+xv7OcVu+9r+QhoIQgQ/p79z3v3v739X1X27ud3927u/5CBCENEIe367v1+/VyXeXmfL3zvd/hCEIaIaIXv9+7mfsv99W/dvt83fO8/NGiBCEIaPe3z2Z7G/r+vt9vt9u775CEIaIQhDuX+3+/e/fvua9W8731L3OX3f5CGiENEIQnPv372Z+/Y5z3Ovu89d1dfkIQho0ENHu+vPd893fL7fze+87c8hCQIQ0aIzu/ZmZ7bffsy+1e751vhJCQkZJCQkkZOQBULEB6CIAjIiiw11xa1rcclqOOc3nV71xM633veS1Ky5RatyrQ3XhDy6BYV/vbcqPF5eM+q2XcV9HuRyvZHtz3bymsOWFAWFAWFAWDoPAeBWTzVIsAvNsrwCXb7XB1+yoBnezHQ4Ph1i77JSCO0LW/tq6r1ZsD/fvvmb1svHiBI/iREIQhDRo/T2XvPfv36+ZvL73mXzvb5+aJCBohCEJz2/ZfvZ3m63nb+3vnOdvwhIaIaCEJ96r9ee3y/c5fb7Pufd7fkhIaIQho0H7t9/fsv36+Xl733ve39fPp+TRCEhAhokPfX93vvbknPc5y7u3N77d98hoho1o0QkIc7f3sv3uVW+8vPrv53vXPISGoQhDQQn7UmtSe7m/1/v35mb5zDud7d7n4GghCEhNH7Wfv37PX79zlc33OfXvt3fPzUNEIQ0aCFZvme7m+13vspz6+9v7zQaJCSBokCfpNTU1Vfv4LufW/4D/Pwev+VZL3d7sbk1AUQQwUMWRvC8ykjFvQ6vidLD78D7phfX6/V4yv18c+9T1t+ntdbW781NhQFhQFhQFg6DwHgL4pHo5qxRIORrrreg11GqyniR7S+7pgnKv3te+368/e/vrZfO5TvN8uf4IEIQ0Gg9mX32Vv2+b73vPvu9yeQ0QhDQQ0Xd99zPeZ3N7zvarve3PNEIaJCEJCG99773rmpOoGpLr3My5cru+Xy2vIQ0QgSEJD2+877uO1znfXc3V97zq080Q0QIQhDnec3fs93l3nO9yvuc7y/IQhCEIQhPvd532ezXMl33t9v777fbu/NBCEIaIa1NGp+nN+/cv3v1fZnM73s39vt2/ISQhCENBDfu8z3fRNTX3uby7q/vqu7/b/IQhCGghp7Lv372fp3u8vO8ve+7u+zwJGQkJCQkUJBEk4UUAzxub1W2/768VC6zuQQ/iR/gEpPasnVheOyXcKyhGreDcpFTaEr9nZvmGwC+qsNzMyWvcnWWpvwiwdB4HQeCgLB0HgPA129q2elFV6KVE89DaN7QFbLZ2uWHOkQ3Lig7MLrv3mT8fzkxffs7vvfu2337/BCEIQ0QhDzM5fve5vfOd73t9vnb92GiGiEIQh9ecy/ey8fdvd59v7m7nkIEIQho0fv3c9fv35Fc53tfc49ztfkIahIQhCENu532e9u+53Lu+c7zvbnkIQho0aCHsr3M9nnK7y+95d9+5vt+SE0aIQhCEK57vs7nvs73O9vnd85zt15DRokIQhCHb9eXns+v7fMsre7u68hCEIQhIah5nMvPd733O3fe9+c+792/ISaNaIQhCGo+9nfX73t1nedvvF73fb5PIQNBoIQ/SSaR6gKIS+NVvxjG9+ebdaxWZzvV9atwX2L7nEpvK+bQO9uvBlJrg4zWU90ijbmaxxczazfHxh+rPpu+w++q6u6d+Ht2SLmX9r+kLkHRrwOg8FAWDoPAeC8v6u1Dcq5zk36Mj5+dJ730TScFUm9cb+yZ0NzKx/B5ROoa+v7973uGlf1/3t733vcu65Xed7c/wENBDQQ0/TfLv9fv26u9/sv7nN3d3+QhDQQhoOMzvfZ7efV3d32ubzt395IQ1DUCAQ9nu9vLjft/X24593tzyGgkDRCEO3fe5krl87vvbvu6vf1/YhCEIaIQh9ffvXnnHvszvfqzvN3fPNBCEIQIfb328z2fZ28vO859fO395IQ0EIQkIfpfc37M/fVy+X+737L7d7n5IQhDQQhqE3zvt9v3tr3mXfzt6nLrq/VCQ0aCBpGX7uczjL533OYtjWdVvEZAkZJGSQkJCThVFTnUDr9m3UqGz/Mw1+w8miA+HHWjh/l7r/BSyHAftyho5K4PnV4qi4dUghyGgt5xXfqxSn7lVv6nvebtaC3A8NeB0HgdB4DwdAWb2+6q+1eCaKeRjE5Rh2HUDrmXRtb0l39pKmJ/2tP77vvfv33L5fb92uc73t/4IQhCGiEIfpdb9n7P35ys7zl97nO33f5DRoIQISO1frvPc7rV873vruVypd9vevIaAhNEkhCEzOe3nsq3t7vOr7y7vk9ENBAhCH3e/X289fzM7dn3ecyeaIaRIEmjWiE57n137Pcm99zvbvnd9727nhqGjRrWiakJCB+0739n7P36u1X2753v2/udzUk/CTSNBohCO+z3fZh9X189db5vfO34aJohohDRDjl+9fvZ993fOXz6svt/eQhCEDRIQlX3nsy+0vvPZyt77y7eQ0EDSSBIEnAKil8dcVW/XJauJz1NpMY3tfGb60GRtbeGmscP57Z6d8rmLV8r0aus0K45lFr19sAoalrjLFTDouhRqdXMpOZq0FlDwx4HQeB0HgPB0BYr1e5L9eTPJmM31b7XdnZztSqyXxfxDHz2j8qtZvxgCtZ725VDy/fVW939z9/Z3+5fe9y/uc33t/4NBogQgQ5lZ71+9e6Zfe95X2+dzzQQhoIQh+nPezO+9++rvMu8l8+59y7+/NEIaJAhDRvPevl47uubv3b245ffp5IENEDUNEP09vuey/Pvr3zt9rn2+zt+QhCBCENGXnf2ZfuXvl8x9Xd97c8hDRohohCH6crfs9n79ZH18zMrlzW0241qdSfkhoIQhCGj9L59l+z37s1vOZl592+cq7v03+QhITRqEIQhd39efvfu1uubzO13He9/c/IQhCaCEIfvZ33P3q59+3zt95Xed7fkIQiEjISEhIcCCLykAQAxtx1bHG+L49dWVM+yHG6/kr+XQrXgLQT39nvODwY8hE257Flzg1aDmZSq8q2vdlDdtGzQb7e10Hh08LeB0HgdB4JBJJ0kkkMjJpkYmppwWaWCyHnmgt5rO5ypnK6DFI26J2okZ8ntT5/fd+9Xv2Xz3fe/b4zLvl95XJ3t6/wQhohqGpA0FX6/X72sve9526Xzd3vzQQ0QhDQT9+972ev3f0vu73y+vuOds/IEIaIaIac+9l+vPcuZu773d/c53fkJCGghoIft9572e/e1O/SpOd3vuZ2633t19y0/IQhIEIQhP2fv3ffv37m/t75fXOeu7+/NEIQhDQQ7fPXy/e7zPvuZ2u9l85f2vIQhoNBoLzuXfc5yVvt8u5u+Xy+40aDRoNGiG289nvb+l+5zlys33v3kIQhCENBXrvfc97vezc7neXd64k32udqa8hDRqECQJGRJA4VVeooKnWOt+sw6zz1iasDev+UDeTokN4oOblb++l63BUPXxzvffFC/pwolZFgVp1fVojNiIGeOc4pOkkeDzw88DoPA6DwHg6SSSGS9fDoc1V0y7b0pDsvdXzrec+rPs375/c8iulaSGSdRij/V7w+X0j/QJpLqufcu7r/BCENGjRCEP0k7zPX7369XvfLtv327+u6/IaIQhCEIeb7nb96V3nO972/u87fJ5CEIQhCEL5vM96+Nr+37O5XefcvyaJDRCahCEIV33bvvvb5lb++zl387vf3kIaCECEO97zfbz32/u8zO599XLu68hIaIQ0Gg33l5fr9yu53eZd6nySvq1LTVxrVvIaIQhCEId3f2d9nuZ9nby+r3d9vk8JCENBo0Qu/e3dzPp6vr5l1X3d35CGiEIQhCV9nPe97uTKzuXfa39vvfZohDRohohE4VEEu8qwggDGQYqMYohIAAwhCD8aKJ77Fy5XtrxVhUbSIKZBGRRQoCgohI2lZuXqpLlqkouKKSyql6qXItMuwverkosWsS7VqqwmSgVS91QG9/Rc1qsn6PqwCpvpgGDY+ltYXiAKnDNJtVuKcU1mqUVKI6g1nVi+98N5RDRubO75huQREsEnEVUN7VwTe25uZC1s4uQeCk23vo2uOElxpM7JZCxFVDG58OLXAVMU5bWNsICMtbG+0K4MGNmqJGFiBwT+Gmzp06yASAAMgBAgwhFiskYSCkIEgxCJIASQkERIKAyIiMgqEYSApJCCSEIQgTuKqqVBQRWVEJAEBjCQIHp4+fDzzR/o8q4AtMCsL++b37uLbIfcmMq1lvEXJNyLddgNUcN3m5z0DCptKicVXTsxWrJVcmM3e062icUaC5kZZSrEa0evdyOjubV1lZh2ZQE0utyYinp6g3hp2hXI1lYmIRIbrCBuisI40utAat21OpHAi9Sj15o6uzKkJhNut1RuwHyco5YsQLBkZPapjN6K28aRwpcxtPe17zV01SecSGFy5UjOtLWtbWPg4dOzr11vXu7MFZV6uOFK3r9e7UQG2ziKrEzb2Yk3ePWM55A47N7q7QHQ0oEMxdEm7ByQJLXLJnbpfSLaWZgN8Xy4iUY/u4OyhLRsnqOjUxTUsPIezOebjaqoqzA1wGJuGQ8xmg3qayKml0ojOlOtvcsRcRWUIV11yZuJvRWYAAXbGDqk6St3Bqflg8pOzUE+WYW8GahUxuIreWvNj3hqrVj2Nab3Lm4xYw8Q8H9xrF42tB9YnXZtAZlgC0di+WplJcbUw6bzHfDldnDTQuxgVBaZW5gJnyukJmJFGAM1ltcZtpao/We9VHHtO1DHCLEG3fGgc92WXT76+1qVlAU0d2+yrDd/YEFTsVS+2hqFCCfMDCaTxVlHIW3SkXBc67KK0bKVXl59z3fJ87M3k2THGsfZle31BOtTM3N9i+R3vl09t8wDAoCwdB4BYoDwdAAKAsHQeHAGAxajoHg6B7d2t3d3oPA6DwA1IAIAGpAMOALFB4O6kAEAADoPA6DwUBaAAQAYcAMOAGHAFigdB4BaCgFigBqQFigoCwoCwAQACAAJANJANQABIBo4AwkA0DwdAWKAWY6oACgLCgLB0HgPB0Aw4AYcAMOADUgeDoHg6AsUAMSS1I1ygdYK0aztSrK4zdoXuDpMju8OKrN1dSzip1PmqlOza58cNJ8ET1F8nypAvfct3niinPZheDB18/tRqLOgXurz1nJW1YuwgtXNntjnWHtYVWySnzbtBda6YHLuN320grIuOpLE7LSYmrnNXdYHRXHH8KF4uL5RZQe3KdFaonxpTq76YsYN1bldvwnJ7bisMFyoCyL2EnMvWNlLXg4bECcOlGpfbulAhdXDIyqPa1SMNcngjdOtxBUNWYvWqjkHdt3YL58962qQ6bL53AdYcV4+5TKErA73ldBirqShzOyJWNl9jLKVHMGUAFwC0Dme6uu7QBNHZLnCtYTEyXcyIzrcwW3UZrtedq7DYwEXdO6s9A7T1sF2IEYK4ZHeGccNovjucHWpd8bAOkY+U1dMpfbwedUIyspEG5w17ms9/iUq7+v+yv1P+6veWgIkgkEhCSdY72Lyu9HbJV+8xm3bvCW1SlMVz3tWF6bKepjLSkjeY6Yg6MqUf6uZsZkZvut+c5SsTvN9eWd+DweeHngdB4HQeA8HQSGQMm6yvkJSEdPsPUdqROd5ZJVzYHzsa52/eEkHD5X2yjjPBgGOZupNPe4c52/+qgBCQhCHu977PZ7zWb73Mqq+vvO/YkNEIQhCEJ3nrzMzs5b33Pu33dfetMEIQhAhC/r+5fve+5e/vey/Rn2Z3doQhISEIQh33PZ710lc57uX7M33M5i0NEIaIGiEu6u/X77Mr199e3qvfe8xqQhCEIQ0aO57Lv3qrfry+3e93v1sQIaJAhCHPq7ncz3ZfN++z3u+zFd73eIQhISGghDnt5ee9Wb5Wvvd5279u5vneZrBCEIQhAn33OdvPXXee32+dzjnPYxCECEIQ0qen7+n32b10oo3OrwHvxFDZSe3z2ijgOZWyY+rbx6AzltEASgED+kH0zxWeNcNNyVnutfcqYj9M/urbt7vQeB1hx4HQeB0HgPB0BZtb6Ox79V+r9vVua9m7vYL2lSEcKnUgYIk9q4U0K0ZskirIvsx++xzW+EShs/gW49HIlu/XcNQNBCGjXvV73cz1T3N953K3e2d7f2IQhoNECE993O1O73fvXuq57vfvpYhCBAhDnq5l3nq7W3t93d+it5LENQhCECGqvfPezzvN++zudv72879MEIaIQgSHvvX73vZ3VUr2Z3M3W97rOoaCBCEIe7zvfdz5zc97fLy3c33f1oQNBDRDRTfM9fvbnPc5frp6Xyudz7GiGghCGgne+9289dbr3Mvty+b91aEIaNENEIXzOZ73snX1ezO+9e8m913tWhDQQhogZrv7FZ+5z+7v707/bv++5zlKz12gxxh3OFsrfvnJM36rvNqH7DaEx88OJi8+dyjqM5cCrwtRGJ9JJzbb5uS4IHQeA8HQPB0BZc3HiLjl7ewRiCGsylfRdz5cJN4F8TLhxLcsxX8dfQcV8xq/GJTEAEW7q7qru7o0Gg0Tvcvvsv733ve968pbrvc+mIQkISIhojut/c5fve36u5fd/ZzfL3aGghDRqEIZnvXnvSc77d3cufezvc3ghDRCGghMvPZfvfZd877vL9HLvMENSEhCGghXsy896Xv277b33by77iENGiEIQhX2cz2e3WSVX3svPZ99Wt3f2qiR2raDRCEJCEPXz7uexzee7lqvOX3N4hCQmiQhCELy/r7nvZ3vO17O+zuc3nN6tAhCENQhDn3M3ns9yqr3u57v3d7vvufViENGiEIaI/pj9mf2T++vf31b73P3F2L/QYl2bRtGJzOupO4zRHjXC/w+roEfOu8/Grl5N8G/Xn3mFXhspBeyu+4ZK3zfnfg8DoPcB0w8B4OgeDoCydye58rie5Mz5XfTXOZvQZq+bpXo+pmPRx+QOSYaaGxUPqJu/p7Pvd/Xnr7XN/15fud5nealtENBCEIahrfvcu/J7JXeb97Mu91fOZLQhCGiBCHOeveeyXfO/d33Oey+fX9mraIaCGghD7fee55m739nve6++7eW0EDQaCG77eZ73fs+++57Pe3dXxzJYhohCGiELvvt+9j7vuZ72Z283zMzmiEIQhCEJl5fr97JPn13zl+77JbU41aZytS0IaCENBpdb9679535W+c96/vd33N2ISGiEIQhl3676neb7ee53Nb7f3WrEIQhCEJHeevue8v768u/bu98vLxIEIaD4D4CgD70tD2+/WLu43f4PDYmCTbjPXV6sreg2px3ecazPHy3DbVelAH3rTpIXxYDrZL2iCB3ULt3l+9Kyn80HE+kkggdB7gOmHgPB0DwdO7u6+7gIfqQNtKOoxxrhunXqZZVAcISRZMyjmZhhiFdmx1gAuspqqQ+Jrsu/XPJf15fcr9lb3zv930+vjqXkyIQhCBCHd+vfs9X07x7v2evOLvuS0IaCGghozOe97PZHeZzPZz67328mNBIENEIQ+5mev1zutNSq7u7z2ZlGs3WrS+VMatrEIQkIagQiuX73r96t5N1vme9X2/u51IENGiGghmZ3Lzu33d87l59y7u+whDRohCQhWc+773vVd/dzvr76+5mcxCEIQhCEO3v18vO/bq+cv3qq+d7lpIQJAhCQ0dfd93M9y4rm77nvt8vl1bMEIQhCBIb+7zOez15n1532+3zl+zKhoIaIQhI/Z7+19+3v+3nK/q3+/uc76fSmDe0yeZn3bP2dvvO9Ar3UBmbpozHju3B6aeIB+7rpfSVSSpmq7wdupVAVZqt+79v27vQeA8HVB4w8B4OgLFALGTcerL9WOzW8e77OVfGY8eBFWRyCwX3X1ijHlLUtBGdPezsrn133+y0zvMvO4NAQhCEKvl9zuTv3bu+59mcy85aEJAho0Qhvnsy+598uvuX73b+33uS0IQhCEIQ7vl+zPZy8rf3Mv2b7y+8q8+mCEISBDQTud5l57OTve3meXtOtc7eY0GiGiGiEN/c+zvs9yTO+z1+y7z5zq/paYhCGoQho0R3PXd5nt36uXfu38yc536YhCQhCENBvt3vt+9PN+933t/d+7XO16TEIQ0QhDQS9368z3q++vO53nt8u+X3BDRCEJA0S+d53Lb+5l3l73vl3eIaCGiEKAqgOrv197WP30eOWi0x+u5aVb+jKFBS2FnU76w46UOOVndH2vvEq+7D2YrR8+V3bv3s5yY7znwrb6vHQeA8HToWs6B4OgLFAGLm5nUYkry1VADQ3lp05Rq807hMNN8mDRTzsUQKgIed3D7K7nVufF/VucNJSgf5D3u+vOPrrV3WsQhCGoSEgQ3zfe27d/c7mZ3m+b5msQNBohoIT2XzuZ7s36vucu79ctd9+vm+zBCEIQhDRe+8zM+qrzt5fbz7fPu5iGiENEIEK9ft3ee97m8zt7zl3y77MEIQhDRArK5l3nuz33Mu/e+re997mIQhohoNB9zl7v2e3Pe33ns93nfuVx3JiEIQ0GghX3L77PYerL972Z37fO97MEIQhCGg7m8vl57vszuX6/q5v73brGiEIaCGiHGd57M9le7z6+dz6uffdnpiEIaIQhArUmtSgzP2Tr3vx60dtE13ID86bfdwOfpebUKB7FT0IVq48VclMjuK+v7QGzfGurTfun9XL+XvzoPAeDoWW6dA8HQFigDEzNud97s7ypivZM6DS6jx5I31PpnGxfhM+tX3vSelhy0nd5+zmc99mX78uv768u/Zuub5mIQIQhCGidzvszM729876u+3fbvmsQhAhCEITf2d9eX3PX33sv7f3PudyY0aIQ0QhCHM3e89nst333187nvt1yb5WYhDQQhAkJne9773vuvZW+Xl/fc3yvvX9WCEIQ0QhD67+vvvZm+Z719577vLvmJAho0Qho0d73O3nsnu85l57e85vnb5ghohA0B193uXnvXvnPXn298767qYhCEIQhCFdvM573k85d5309ze+d5iEhCQmghDT7e8733vc1PL+9nrb56+dveNEgQ0AfAAUBPl69fhy/O7wK8K9TD/Vc9tcNd7POdmP2eOaAFWVl8+TKZvIN7bwyAysH7nY7Hfp5ZGffZl5n3fg8B4OgxajoHg6AsUAY97cqbjnfaRzy32nAu03utxALbSncAOt5e2WraDWzpmE6tyD5fffF/nGUVxIlO6u6u6u6IQhIHbz7mZ55OT1fcu88qu75WY0QIaJAho5fc9y8977u75nvu87zncxCENGiEIad+72/XiGpm+573s7vNTidSXdSYhCEIQhoPd93t57vq7znO39W+991MEIaCBCF8reevL5mc5y/W7Od91iEIEISEgb73MzvvU3Xfd9l+xvl9yYho0SBoqrv136xrTTc0d4Dp0kbZAPUru/Xd3VEIaIQ+9fcv1+yvvb5fbzKzl74lpiEIQhCENHPr5nPe99qvfZ6/eq+7+713JghDRohDRo/Xav3b/fV/P4kAszT+dOa3tdtebzgs969LrBXa69V26ab1F5nVNRPAXKszFV+8lMJrK3MY4Ob0HgPB0GLUdA8HQFigDFTl+xF3U+9NV3PX+uOd3K+n4Jd/QXWyddntS5PmRR4jAYH9OP49HGq33nO5jRCEIQ0Qhne5vvs9nHvXz3sV9vnMlxCEIQkNEOPt9z2evfr57L8rf187mIQhohoIaXf3sy89n256vd523Jc926+7WIQhohCEId7ed93Pb+k1Pve57PZlcqTI0WlvhLr76YhoIQhCGnuXy/X71Qke5d5eM653ndyWNBCENENM32++9nrz2b97L5mXXO39iEJCQ0Gg1F3mdvPeue9mZns7XN8720IQhDQQh9e+3zPeq0299mev18rO979MGjRCGgho77d37Lr77fvc93uXczu6xDRCBISEhISX4YsYBEUSQIESMAkFkQkO3dr6hcOxQHkgCpYhkTL5rHnF/mNKaIO2EAGkBHIQi4LBGQUU82MwjMQxC0FFIWStUmuMZuVnBYrd1OKhWyXItoiA0FMEEb3pxrb7viwoDzWyXtQopo2u+yyVmkpNYLmarHJ99Bwdbb8FwAGRYaM7m/DW7fLuwDeJkTJirG17hm7sm0S5YvGrl7acN2wiN1jEiiDBIKgSEICgxIogxIMJIEUIxgSSECDBRSBAiSARgwYoKQjIKKQYLIBIhCESAqkiEjIoJIEkYIESIgE9Bsd/mLV88GfmtsTsY3xjfV8SbFW8LPJPWdBOw0Mzczawo0FYfgOKJFceLdhdGEBbraVTc7d5PUeceKr0r5hZuCgnBdvOlN3mW2FR2jeA7B1IsOY2C/XmbeouusO2VnCmajp2bMF7HBg3NFvuK5jLQd1fceQxPmTgtF5OSo1xre3fujaMEugrA6ZoZvt2snEMd1F5KJe3WmjLmFSjwk2r6yO2+qIxaKusA2JrtmkULi7hBQt3enI6zS300+SurORM7bWZQ57l2fAIrNt6JLeesKnCX1bNwPtZsxpdoYPLFvoMds8uWLtfchatVNvFnSI123Md0owmACYxTpGsG9WnKIA43jy10qHRkNcW0mcVaig2+j20+sbdPjcIzFay+uGQ0oKLI4Vz0c7F1vZ0dnNyE5nVd7qVq0VzRlE61cwCiy4x9iyVCtUUybk3BLJ1oPha3nbBKz6Pm3auNli5/a0tu+3BzTkHt29Ku5K6FaVpiMStTbeBFHRpC9LdLle9b4EvVeccfV98NVvG8kCEmTQRU7OZdqxuAQ4GpXNbQOdlMR45fdQUgobShu3TWxzhUpbDUGziZDF15yD45lzsjb6dBWdXbW6RtGBMcO3iJF1WOSp2JavoEzNODxq+MKeRt/fYAaOC6FivmM+w/Kbsx2VZ6wKy5ryr7p7GcAYDoPALFALFAGHAAA8HQPB0DwdA8HTwdsUANSB4OgeDoAIABAAIAGpABAAIABADd3d3d2LFAeDoOg8SAagAakAw4ANSLFMOALFALFADUgAgBbp0W6DwHg6ABIBqAAHAGDgDCQDRwBg4AwcAYAsUAYcAMOAACug9YoCwPB0AakAEAAgAEAAgAw4AYcAWKARJJLku14OWxGQatvS9w5hnNq1eneoYM4DFvFi0K2CntgbxDYMz3Cs5JXGQEzkvN2uO04xipncczHYou63t4k1ZfU329FwF4rDdKjQOTSS3XXd5tjqk1nJSYOwbLru7O4mYci3Zd9WBbajZhNYmR2sR9QEt68oVuhVrNC7WbASL2sFR9FyBeHqXsVKXnbZbfeSEeu5uFzMDm+YvbxOTbXKUYdwWut2O3HoM1BEE4zs3MzJnRUzNyipYx5lY7uiW+NKWeOoauwNADcOrMQMfnfS4BmWI9fu06a5I89zvLE6uMmLsFEabdmmyJWclWO8vABOWyzN6kl2U+rFhreLOnul2NcKrNlFAHdW1q6TeyjU9hHgLegeNldRYL1uz0xCpDelJOPcVrijboZRVac2+dnLnyZ07BnTVchkDA1Sl3avsOt2Z/V1f1f1r866YefPk11gMkZElTx33KvfrtXjbxbba+cbb5zjebm2ReZL3bu2R/QesPyK8Xk6lVuvEVTteD19Jh+9rep2HmQcZ6djrK9lZee35H5ffPvB0DwdA8QdA8HQDDgBhH2zle33Yv3cv7eXczSayt9YfqYuCW/YNPbnuv0JHCpTSyveobfXL4MbvBy/d7PZKpq/7nvbmyM5e6KAoCgKA+NECFPd772ee5967uV77udvmIQho0QhCQ+733ee97199z15n33O9u8QhqEIQhCF+773Myernt3znstn3axCEIQhCEJfsv2evas572Zl1vfe5iEIQhCGg3zO3fr9eV7L5zPczN3zeIaNQhCEIQ5zf3M9nscnZ97m77705z7mWhoIQhCEL53t53Cs7e8zJmfb7fMaCEIQhCG/ev3s9U9993Lvm988c7VoQhoIQkD7d532XzXMq/dz3OXWdvt7xCEIQgFAUBQHqpWDnOLf0F0b7f01xzTAZiVbFl/goIrbePsok7Cs0ctDqKnEcYLq+6mQ6uqebd2kep4VYTBbgkk6SSQQdA8JdA9o6AYcAM4m/pW93vLO7PeVPHXYiMKpUnYNenDUSi+kiksYKyTgD9EE/3TpEp3HXfru7qiGghCF95mez2czPfd333szvOX3uIQhDRDQadr7Ly89y+T3fczPVz7m8tDRCEIQhC+b7eZ7Pj3eev3pX3N8vMQgQhCEId33Pey/K9eeu/ffX9nLv7EIQhCEIQz7eZncq+b73KzvcxfMxCENBCED3au79nvvu8vfuXeXe/t5aEIQhCEIVfc97uVz7mX72Zl87zuYhCEIQhAvt9971+77eby/S85Vb5d7xCEJCEIEObz67vPZ3vvXeX7f1/c7mIQhoIFAfAAO88fe6omrjE5seO5jGZHSo7+OZ0Hu+xcSrfQ+372MSXPU6uJnJoh0tKp5lbzMv1cn0T+i9i8y9vTwdA8HQPBzoHsHQDDgBj3EUC0amLqSt9JTd1Cd4X07vLrm4FphE7ylHaf25hnPPfaEl99dZ+xQl0jw0GG3dENAaIaIY367vn1/dz1+r6ub5eYhCEIaIQhxfvev3vr373PZmffb5y8xCEIQhDRCc9V99mc9996vbzMn17b5mIaDQQhCE7zmdvPZL9d+z3rc++3zuYhCGghCEKb7ee97tT3r5zM+9XN93aGghDRCGjnb973vZuqr33My/Vdc3zMQhCEIQho7972Znr93mc7fu5L327vEIQhCEIQ3y/u5me5Oz3e37PVdc5zuYhCEIQhCEy/X3ns99Pvc331+vv2987mIQhCEIQhWr7Scv+ffue6+/vszn9e7tHSJ4YL8hx9507uptF+q0bzJ5qc3eDpHV/JnKqq+KpE+NddB9sq/r91u/VfZrSh4OgeFbu7u+3Tp4O2KAMOAGJuo766qUb+uIx53u+ivU5E4guzRh04Tbhvp2vceZkqbTs0nsC+dv99mdv15vfe9vuIQgQkIQ0fZzuZl+39fqvOZ77dfX6YhCEIQIQrfcv3vcyZ7M5d+q9733uYhCEIQhCFa3u9+vPcnr3vmd5z7OLQhCBCEIXvnN5nvqz279ns+7vmXd4hCEIQIQv6vdvPdv6+5v2ZeVm879iENQgQ0QOfe+z2e297md9l5k3uudvuIQhIQhCEObvu+5nvu5773uXk36czn2IaIQhCEIcv3cz3s57fu+vOfVzmdysQhIaIQ0EK3Xs7nvZxb3Oe7mXnfrvvMQhDQQ0B+1rWpqd526I/P5T36VcP4/lYZul2Y96gNlu7Uwtyi1vCt3XUJQrp0mTEpntV54rb9XvjfrHz7O7vczPvvB0BYoDwdDDligDDgBi8vM3MrLu+zHq5Ps5rKmd55rK8znHzrzyzBN6/NG7p2oWM99m6LjoeS7vX73vQ1+PdN2nnXdt6KAoCgKAoCgKAoCgEmp290mdI97ZHl3e6KCGkQhohD195fPZ7ft/Xncredy+/XyYIQ0Qho0Q653nbz15167zO+3ne5y+Y0EIQhCEPZz3eeyvc+9zOX3OM53L3MQIaRCEDvrv1+vU977t9v3OVk6y/r3iEIQhCGiE53mXeezPXzMz2779yu9zENGoENBDRV33vu413O+vvvbybzv0vtWxohCEIQ0H175l9y61Wd73MzJtOpNprjuVNYhCEIaIaCsz28zPd+z2+c532cTv2/pjUxogQ0QIQz37P3vd+9x+qz+q6tQlaLCrrhRsd1rrXfOiEeXxcp5vw9ZZGSrJvGK5MN1kKt7lKrthjekmvB0BYoBYoGpsUAYcAGzOZfN2vqr32/bfe/R2MzOZE+nVWh932nK+FfHer76InPL4BfFRFO/35NFfe593ucmCEIQhCEK+79l3nuavdTUme+9ffezrU++qa4kxq/qxDRDRCEIQ+3vveez1++97nvN236+39iENBCECG+ZzvMzVVmb7mYzm+8y+4hCEIQ0Qh9fu7973t57fudvOfV9zMusQhCEIQhC299vPd53Oe373sxe61fe/YhoNBDQQl/X6896X6+853Jy/va6tjQQhCENEcvvvezH15zfuZ7e73vLusQ0QIQgaL9f3L9nubr2+evL5ze77kxCEIQhCGj32+Z7N5v18u+V9u/cu/pghCEIaIQD0Gaa80H+7oiRXtLu9D/de5IJLyF8V24E1s4ajddnjvydmwlLBlX33y4mprqRE7y+XRFRdScvusPB0BYoBYoBbh0GmHABvezd+sVuHhXaiSllqu7Cp4unV8Wh7erKWOn7cNfV2V0m+zMrvuMUX3zz90Sce6GElTu2iBoIQh72ev3fVM332Zbf29526hoNBDRCHd87eZfn3t+zM9v69853MQ0EIaCEJvl36/ev7nq5u8ubq/fcViEIQhoIF3zM57PT3fvZnt/e45zubwQkCEIaDv2X72X7Kz3Pcv2c+q99zENBDQaCG7vnsnL7z1+uue53L3iGiAQIQ972b9eefcr32933Ns5zn1oQhCENBCvu+v3r9m/nuZ3159fO93zMQhDQaIQhV853Pe7JJiSY69XM9693tJvmTEJCEIQhCE/uTmfsf3393t/39W+z2V9u8y6+7bZSxvFMWVwdSiN1t8Mku5WrpWHcKfzl+r2I7dfffVUe+9ncbu396t+zTwdAWKAWKAW4dBphwCSOrzndlvmtTLYFrAlNGPOnGBU5x5DuExYukEbL4X2cl9T79jX5TOzUG79dwIQ1DRCHb77Pev1/e57nPY3fM+vfd4hDRCEIQhfsvPetNZzne56/udzl3m4QhCEIQ03nuZd5ruVznr9zm+c5eWxCEIQhDSLv3t5mMrl56+Pt8vLYhCENBCEOu+53Pe+999frv32+7y7vEIaRCEIFt373vVf32dvnfXfr7y94hCEIGghW8z19958r3ve77uc73m7QhCENEIQr719vPZHPd7l++Xy+9zEIaCGg0Qzt5edz3K+13ns968+7mdt9jQQhCgKAAoC9E+vdVfv1+Vr9wU4Wu0sTnOJYWHIziyYsNGCY1fDlJhvoPoIjrsUJH19ipipyZmKmLn9+/Td1j7NPB0BYoBYoBYp4OmHABvrd9PHc31eoJ+oOvUKY467a8xyravLunHt4kV1F9S6Pe+B1hZJt+QJ/TOz88Lk2WgEIQhCF97m797265715fvr3fe9yYhCEIQhCHvu8y++9fL9fe5dV92+5MQhAhohCFs9zPZ7cqvfc93Pu367Xe5ghDRAhCE932Z73uc37u7u67997uViEIaDQaI9Xu+v3vdfe5vvbr777eXlYhDQQhDQVl5eev2R7t+97vPs73v1tEIQhCEIefe9me85z33Odv5XcztYhohCEIQhz73L933t5371992/u7vubYhCEIaIQ0c7z27v3vvj1567qt/bydaCgKAoCgKAoD4PWf1v3nz9FujTDP2HowzRVZyDxDLeS5kXI0e0Oo9rIcmbMH5/Ox245X329n77v3r3Png6AsUAsUAsUGpGpAGl+9sbHrrfdFWXka1XV33gnWSeFEt3jugd3Y6PbsGYZ4PfevJL9oJO/tmbwta7OCgPgKAhCENBztb733vZKevd+zfq+zveWhCEIQhA97Pb7eeX6+d7l59zvO9y8Q0aIENBoz7mdvL92tTl+7nfey1Zd7nWNAaNENEIVv3fe7nr7z33L9f3d7zed+mIQhCEIQN+99nbz0p6/X2919L3zJaEIaIaCGmb973vZr6rzvr77f3Ze+5iEDQQ0Qh7N897PZf33vs7eO1ed7UwaNEIiEIe5fcz1+uS3GpqvdzuXcxNaxJtNS2upLSdmCEIQhCEJ3l+u++TVcz3c9m8221vl5vWDRCEIQhD9NT6QiKpISAikIKjCQgSQgQIkGEIwg9c0dp2KRVPR+i+XwIfwIj3Iggfwg++eLdc44LQjCCCMCRhAhCyqBCOJQWPz7+wUDfsaL7UKqX28CgMQ1XEvdcTWGsuy4meKAFLkLbbXwTJfAYLny1GxowRN73SsFJo2Lb4MBYzr9Fzd3053dzJtANCbzb6LphMBe3W+2BBG7xMUa8XMchhtggsAiADCQJJAkkgQgQiADCIIMigpISEkISMIxgopISCyCyBICIyEIkJBYirCIAMIyICEIgBIwgwiEUVISMIQkOz8nWvOLSrn+H/C6Nu/7kKjEM2sZe/0u5Wh4vh0pExHqymOqDpWA7YZwrLoTpjJfXJRu+oUzQiDuTEOuzxObWFPleqHnFOd1oFgciHOlJXY2ns3GS+p3KnZOyUq3HnIbspiCt0Exk5mGusovTQ2LA+sI8ezekEvjTj9t4gRLRcL6RiTu4qAJ5Xa7C8i1gHCYVW9r3NVjRmFqBB6Hgy67BOxGdbYujhqWKQ2ME4/bvWXvWti6uxhWsDwPXSm87yIXM3hcIGTdhma8fW2HKBrHeQLYhsx3WJCTq7jhW2sXYToCK3BmCtPZqGuVidW7VyoO7iIDnJ39DHxcb03RrTH2ExZ2FTdU4QW8EeqXRcvRg+N3gRNBHnQRV3x40L6u6+0LqNmp22GrAmqZ3ZC3MMyOEhbevk4Tz4m9I29uJLQoKIvSsKGDctQeVa8qPoDyEfbEq4Mx2ByXHtjUFKO2gLzdKfXBfAijk3XDuJGuwJYtj4G8rp1IahhxqYhBfVYFhgEHKVazOrdCtbtZxqFvcNaF0ucNWeKrGoWkbFDl2ROoSLVwNvPH6q3h6q5mtAAv77PvicIS3oFkXG1RnCjpFdEpzOYsGvdG0ZbrGRVj4ys531agKG5PsTSv7KFZUW0ifvjdfcOujIWnWGV8zVIy/b3O3m70HgdB4Aw4ANSANSAABhwDwdA8HQDDgBh2gWCABqQPB0ABwBhIBqAAQACAAHAGEgGgGHA1KxQOg8OAMJANJACQAQANSAYcAN2N3d3dCAAQAYcA8HQDDhAASAagAAoCwoCxwBg4AwKAsKAsAakAakAEAAAsUOHAeA8HQAQACAAQACAAQANSANSAQIAMxJJBTOBzHqK2YDUujRIuJHZMsbKurt26GKADg1qK+Y2bv2MId2auRs4IN3eObKWd9js8s2M4iYcxgdCzBlqhYD1zthasEUmuorJfYFyevWuSF3ttTRiXRa5W+A5YrKVsDW+ZZN7lp3N3pfTML1ChuPwxouY9RwVdZm+7dkmmOaRyOVWN6wlpQ4Vzip01MxRPMDxdcuB9uTHNRVo4mnIGDZJWiTKNkSWb6pL6zfVl3aHM6QFAXW6NYBvVHuPdWX2/asBJYmNPUauUDjzqylaXMh3ZlX1OiDAXs5KcG8eZX245f10E80bTlrhaAsrkl3QPVkFt0Ovld6yTtCYniuMnMKrlrzDuac4nicbUZNgZpnCsmCssDThNzPAF7apdsjS5N3e0RBy7RRrbupqee7mtB9k6Zm4HV2dY4jUuA08Syr3to2TxkLNjEaB4aG2ItPKrK16KDN3Ike/xK/q/vUufPgsElrX9X7zDKgqJIPfv4rtnxVsTxLalzf7JxvX3Mw3iAY7+igFO1npohp+NqwUg31eNY3epjqcyZHg3cvFjBiXx7kbd5uaLFALFALFALFBqRqQBsbXvX6pJ7V+zldrXdn3Lq5b49QvLVbBL7wTFe1AqvYdMXtutKs+PM/e7703zn3/W7metW75ksQhDQQ0FfdvvL933u+773fvb3nb5iEIaIQhCF+9d+97Od9u/Znbz7nLvmNEIQhpENPt833MyKzN3l77mbvt8xoIQhCEId93m+5ns+99mXeXW9527mDQQhCE0Hz7fcvzf2dy++ns7zLzughCBDQfez3c9fkrtcamvs9fLzM1rO8+1xjEIQhDQQh72XfM99z3uZnbxzfLzuIQ0Q0EIQ3fO9vuXWt9zvLvMyu8zvdY0QgQhCEL+u/ey/fXnPZzvfVf05fMmIaCEIaIQ/ajGj9gC6m6h27N/R3x/ZPwep+t9Lx6PDjx+7n1Jn3R2HmN+2pCGjd6xTq09aNDo2uxsVSsrMYLFALFALFALFAQNSAN27nN37andyqtjuF+uWl46tBzsArOFaTio7VTz7J71a/t752859zO9y8aIQhCEIQ/b5l89nu8+9znLztXzudYhCEIQkCG8rnMv3an2dzns+qr9l1iEIaCEIQvfPZmX6/vpzd8933O5Pry2iBCEIaDf3e77nt9n2e7nfb3V+y6xCEIaCEIV9fd5nvfa3V+y/X7e/s3ebvmIQ0GjRCEPb7y/d97var3eczLzm+83aEIQhCEIfd5mczPZuZft3nvdq+c73MQhCEIQhCrvme9fsvvsvvr+rudrL3jUIaIaNBCF5eZnlZy/Xkr2cr7vc3iEDQaCEN+u7+9+/cjrPfmeHezz00iZfkfJTIZ6rO7ZvLr2O5IpeuA7Th2HaluLElxqKvuVIu1a34Zn3yxQCxQCxQBhwCBqQBv7Mbucnlbvp3tRu1Pdi1by6lAdfYkb3C8UmzNeyO2+xn5/FJfVpz++9l5HpnOZvEJAIQhCF+z7nrz2+VXu87fvmTmc7u0DQQkCEOc76/d96o3fPevvfZauZe8QhDQQIQmey+53cxnO57N5OczveWgQIaCEK3zu896b53mc5z3r9nL73mNBCEIQhCr3nr9fpf3uXzPYX93ucxCGiEIQhDeZfvdz31Pe37PYvnO5d4hCQhCEIaJV3ns97Pqv32d97vOZ3m+5zEIaIQhCEK53nve9c+99u7yb9zmdyuYIENBCEJ3nfX73u9rnuZzt7uvdysQhCGiEIac9kx++ynn5fsvB+4rC2XitiWE+CymT21nOvwJ+bV+uKex+rG9Hl0UEyI7LNU9b1T6CtCmM9tWvRYoBYoBYoAw4AcakMDfbPpjl8qM5Uxdq9NWW27tteOxgePZxE7JmaTnxP0vKVm6yX90+CSRshfRpd5d+Z+b4hEt3V3V3V3d6DQEv3szPbu+bz679nfsznfpiECGghCG3u9u/evOe53MzeZ93v2L7ghCEIQhD2c+773vd6767u8rd75V9qsxDRCEIQhDM7me7nsqnvXzPZzMvne40QhCGiENN3m7y8r7LzLtv7fdZ3KxDRCGgIQ37nr57Pdz57l9y83m+95YhoNI0Q0Vyvc773aznvXf3ub5eX3EIQhDRCEJzOe7nvce+vO3937fOexiEIaIQhCHd7z19z3XuXz3p9u+czViEIaCEIB7PmPHhTrpvMg+FOakZv7HSo43ty0nOdOYxs5cL0cXL2SCYq92+te3177w3DV3mXvrz2x7v31uN3fvt+WKAMOALObu7u7uHABWpCw2L32X7M0jbtnSiq05M2i3U6ccLUuJSpk7aZnr5n72XlffZ/fb57HfrzjEIaIQ0GiG/c52899KrO79vnry/q+y0IQhCEIQ437vfZ6837fLvyqu+dzEIQ0EIQhf3rz2X7j2c9eZfd973O3iEIQhAhDut79v2ZX3e5vvrrv33ZctAhDQaIQp73e3uq5Hb932ZWTi+ZPsQhCGghoPZvvfd96ru/cu8vub7Wdv6TEIQhCENBm8+93M8vd/Pd33vq+37adQhCEIQhpz7mc9fvbc+9y/d9W67y8mIQhDRCENHPve77L7We72/bXznMtDRoIaCEP0r9CIVXvKVvvUqu0b2kM3XFk/FKR5WVvchWjz6H0b956FyR9LttnNGz4y2wu295Uej0LsqvXgWKAMOALFAGHABqVig3zm32cjy4umVaW3ZFcFm87kUWydUoxBOuCJ+B+uZfk+pf27y+/V+/rvvfeM5l7mCGg0ENBznubzMvTO567Zk+yuJ2+4hDRCENEDuZzMz2fZ6+372Zze+77l4hoIQhCEK7W8u8Xm+d7n153fe5OTBohCEIEPvVz3vZ76vb5313y+Zd39jQQhCENBm8zfsz7afdrV7zO+vLySmNW6kxDQQhCED67+9mZ67373O9u2/c7n2CGiEIEIfd9fuX7yvevl+XyX3LupiEIQhDRA728971+XN7v73uc9nefZnKxDQQhCEIV3fN37Pb52/d7nfV2uX3MQhDRCEIQnZybd+ev9+vn9Mn33yu/3ds5M8+qURzMWFm+B6rztXUFkY63Wneh1WlHu777re/YmPfdXfd9nwsUAYcAWKAMOADUjUhrtZ73fG8V5jA6kN6Vfe3nKEQVGksyVFvLUN42gdPNqSF/BOB/hxktQAtB3V3V3V3DREQh32/u3mGbznsy+9y+3cwQhCECEJi/c9mel61trWqz2/XmZq91zlSfcrVoQhohAhDPt3d996plKmq0ld9u8z1ZibZ9UOOsQhCEIQ0FXXe+97k3zOZl+ld3k7lWxoIQ0ECG8vl89lOZnfZ7d1e+dzECEIQhCGczuXnsvLzvt5zvu7vNsSBoIaCEM+vO5n173ed7edv77l5iEIQ0EIafb3v3cz2Z9vPc7dud3XsYhCEIQhIiX3OZ7PuVnfXnPvfcvucxCEIQ0QhH9efnc/Pv37fJdfyO87OX1YV24aITddqGpTllZMwRWyR6zf7b9BXn7hXkqEKFT4F2rDRpiux+5djdLFAGHADDgBhwAakCRs/bUr3Mjtei1Zk3XJx99VxaI95i+hMG/ErYQR8DXZlw12TJsbU+73J+zv7mX+yL3/e7fr3V33uYhCEIaIEKXl+zL3qfOKy+99Pvd5n1oQhCECEL5d3z3vZVM9md97ud7zloQhAIQPt89eebr7O333vu5l97iENAQhCF959l5nvpbfs9mR77fc3aEIaCEIHrreX7Pc++9zmX27+7zuaxCEIQIQh9vft+97259vfsz2dv6+87mCEIQhCB7fM3nve5996+dyszM72+4NBoNEIQl532e7n31kVm8zy9r5ldrcuoQhCENEIe+3e8973O39z3O3fMzOfdTBA0EIQh+97U8Xc3fadPDsJ7snfq/Y0y6dEI2luyQG+x2co87OLtNZSx3MB+msJv6GV3ZE8Pe796frlGbfcu8fGHADDgBhwAw4ANSBI30d999N+vT1A9F5taOZgp+4X90gV+mU5Xd5aCyxefFit3vmNl3MbM1jr+vuSicYG7+5J5WXzOYhCENBCEPbzt+9dfe57eXnckzefdTEIaCEIEOXV8973u5rTatF79zL93M047veNrrEIQIaNIh7d/Zd+77fsu7+y98zOYhAgQ0QLzvO56/dnOd97nfVMzPu9zu2IaIQhA0aPb3zt5ft/bv28y+duu9y0xCBCEIQhy/X72X5Prz2dvLvfOXmIQhCEIQhXe+vl577v157OZn3O3nUyIQhCECH3sz3u5VTV++9d3nfrlbyd3v60IQhCEIQnfu97fvZvlakq9+573mdvn0tCEIQIQ0Eh3IcRQr8qC38PftwZLHBLOmzcN9YvY2uzKKu0t3pNuXSu7/cxjHA/V4IeFIc4mYj7O1ffrxoYcAMOAGHADDgAIAKb7sL892ueid+55d50MRZCXukNHtAtTZsDfmMy09y3mwcqEFJQdLNvvdwI9P2XnS3JuD4CgKAhAhCG+Z3d3unKvt9zPt3zfUIQhCGiI5u7z2ezt95vn2+e36/ZvdTghoIQhDRy936/equ89u8vv3b57WIQhCEIQhPsz3s97JjTnPeu/ZqUktIvv061YhANBohX13ed97jfK9nu+7vfpi0IQhohCELvvvXns79zO8d367v2W6hCEISEIad39zme977f3vcv3u33nc7iEIQhCEIczl+93Jv7Mv3u3mc7e8QIQ0EIQz732X73qn2637O99XMztWhAhCISEhJbhgiDEIwYsCMIRCEQixC4c9r9Fjv8LytBQIDMecAWEFIECKKnkoaNigKgIpRHbHoxuFOKtsGbm18m9rXTS5DG5nG9983AQcwiqDrG17xcXLWuXSkBSCxkFFIAqQiUkQEaS4mSxkvixQ3N9i2cpVYzlm+nDs3dpstvWLG2Cs7Rvtds72bF3Tu60Kg4JJGDBEGQIyLCQkAFIxYQISRGSRRhJIxCDEhCBBkQVIkSMSMQVSQJAkJCRkGRIQPDv6tPPUznvL2hb1gvXfV9yGbXkHLuD9e91xFozHorsHUU3xaOqMsodmLReziw865F1aULWp7V4DSqcaUTpdp3mznYuRg7q0yIi7sGzurnYBKd3RCjXZUKPtoYMaDSCGXUlIZLRvtUe25WWRarQlDcmOgUlMN5Ocq5Yy3VTOb7ql6nk6jV0ptwLazOc6e6X3d0hRMNzQ487d6W9ioinFgWiF3ZXAKyRTrR2bz25YCQkrCVYUPHu3NOaLaGytUU7ql319OSPQ9tKGg3aK3JcWI3YtTsrOhnPTIXWasDUAenO56O7r0ZN3fHmEMoGEGxsRqTNrL13T5xml4AOju4jZHI5Kyn5ot5Yxd2tG8cPXaBt2VsxdV7O3UiZR1ycLULgo3jBFOhWEjBYg6XfZmDskzsrTd9h1DirbSHJ1olFbgrRTwibbKOAYBtpZcvueyZc1ovFkvGb7JSkaQYZCqPl1DFJWK+SIyv6cN3zrBz5fA8IcfDgtwbpRJSv5aLNBCrY3fO2q2uvam9yL2erV50zkyhzrK4GhiZqoLhO+2o8KCKLFVKeZKG3cxZXGHFN3squ3BTGePNcNB9FcqxNVypy4cihHpm3eWTlbPKo4DmPFlLqoKrw8yaARXsq6a0dV1ZNkW9REBs/IdYrI+o1oo3KoxbdB3FeerNaLFAcMOGAEAAgAakAADDgCxQCxQA1IA1IAIABDDgNSAA4AwcAYSAagABwBgUBYOg8ANSAsUsU8HQoCxwBhIBqAAQACABqQAQACAAQANSAsUANSAMOFAWSAaFAWFADa3d3VhQFg6DwHg6ACAAQABIBoBhwDwdAWKAAcGHGIAAkA0kA1AA1IAIABAC7u7uzljK5KaLOntoR1LRR3um0sASNXSF5tK7zDL5KupPW8OZruPdWsBjEQbBWICstcQ3d8WtAcu49u/bM4ghrZ3Qu40OSNarRd9ubFsxy2DrdZresu2Ixd5XJ2Xm1HdjWR2VyzAxONQcpsKt9XYA6mZlqW+Zw3ejJWpl5tcOgCDq1RWnAkwJpArKm09xd8r4Bt6qOWXZtOrlXKhkztjx2KHGJtIGjlzlpvWSb6Xc1qbn3dUwBPkI3xozNIG8vte7RYmtZaXOrqImcNxlGZsFF4ceLaUuLtqO5ZmQdotRutMuHrcd2MSPU4quX43dHOVBrihquh72+XGxqDnGTgzflVqaE+4y6v1JP4Y0ErVO7xtDN0ZR26TKJWYBwPzaD2b0zKDJyXps5V47tc4DkydsFdeRpEVgrObl995atwx3p738bF8kW2MvfODRopIAK+FCq9X79+o4clg3jyf1WN/qq9Ce0K4WLnBhyPb7pcXchv9YXfE7gz7ecLg7RUPrdb7f15k371bltDDgBhwAw4ANSACAB3bnnL4343sTGOnrE6++7r7c2FxW263bGOEpx5mWXNEzlZt5j512+33b3g3TP9533clhVigKAoISEIQhnr5nM9v76/c9d9zt53KxDRCEIQgXvnbzL9yu1v2X7113nMtCGiEIQhC+17mZk9vcrfuczz3XUIQ0QhCEN3f3O571Xz2cv33vu3m8aCGiEIQh19mZeV275zN5eXe7zEIQhCEIQy/d3d56N8rnPe5fub7loQhCGiEIdzme57PfZ3Oc97nc+u7zEIQhDQQhvt/ZmZ7u85z277715WdrEIQhCEIQt7vve97k++93nr9t9d93aEIQhCGgPfdTOajvqnKggWcnjM/UIye9N373rPe9t7mxeuO0uxKgVsGV1Rm+xdjaNBGuO7He85+i4if3JjsxEfX99z6vPj4w4AYcAMOADUgAgAb7yHWU+vog50HLXcRgxZk7Acqx9bBzxjzwd+9npSx15Y2YaCCFdGuAEXbq7ve9+yuff3su+3mXd7xDQQhoNEK3Xed9nu9+57M9lffc7eYhCEIQ0EJ3nOev3pl9uve7md6+5eYhDRAhohC/q5l3lc+79vN9vLre+5aEIQhCEIfd9z15fr67Xr9l5td87uWNBDRCEITl+93M9mprmc9y79eb3XEl5WIQhoIQhDl1l+9k9dV7vPZ9z3My940EIQ0EIdczPX7032s9vncVfb9MQhCEIQhCu97vPe99yZ97eev1/XzdoaCEIQhoy+evPezecv13313u8tiEIQhCEIX/Zz3933pzhv9vd+fGPdp/PEc7dZtBNIaxCs61wI5nDldfXh6zxSQ5TK2IiynXIA9CzM3dDDgBhwAw4ANSACABvu3NbG05dvVcd1u1N52ti5Hx51nRLfo++DyMadkqXV7qStl2+Ai+zn2+/19777nbmaxDRCENBDT19z3fZ77WqSaiu+528+zHEk4trGIEIQhCEKut3mZ3d9zfe3n2ZzOYhCGghDQevf15nvcnOpTn3u5eZ99mJ3loaRCEIQhvt+9fc9dfM76+353vMtCEIQhCEOc5y87nq1Prv2Z71d32+5iEIQhCED7ufd973pmd9zvfVfb9aZENBCEIaZV792+Z99nbz173vuYxCEIQhCEOfZ932V7vvc931X32bv7EIQ0Gg0EzuXeZdb7nO5mZu+ZfcQhoIQhDTv7vq7f9z+sfDv21cvk8GEU5nGy7RNCU7jSHeENk3e4PcYWsZJsfrUFtIquruP1HJ9x74p/GHABqQDDgA1IAIAG+yXPRXY5c3zb9vclXO5Xu5NZl9kCQUsoWtrVaa4I85zDeI63H9mO7z+33MzN7vdoQ0GiBCF/Vnbvyt9zL77nvs73OTEIQhoIQh72c7y/elfVzfudvK73fMsQhDQQhDMv71373NTL+93t+zV7v6Z2/saCBCGg0c9zl3m5Wq7ne99zvud+fWhCEIQhDT1+7nr9W+OZ7vc+vL7VtBCENEIQ9yvdvM9Z3vr72/u9zq0IQhCEIQ277t56fLrOe7le7y+3zQEIaCEJz2fev1ffKrt+77M27yudqEIQhCEIb7XfdzPTr7PZ2/fffc7loQ0ENEIQ9zv9Xt7++z79/b/fPv7ub7a8fdVum7428aRvjWnLNKr6pqMGZbvSqJlx8qo+u49vz13ec5GVn3eVfWAw4ANSAYcAGpABAEkYJm0MzDg3WtiqPFKEemrYxRcVascKUNXTaNtIV1e9bp75ZVnvHJjpyZeZ66zf93O5ffs737N4hCEIQhCFfXm/Z72Pr+37fPeey6tohAhoIEzneez3sjO+533vufbu8xDQaNBCGnfu89l52u9+vLvvvu3y7yEIaCEIQzmZ33vZMzffZffc7vl5iEIQIQhDu+Zl+9jk3We97vs+vjmZ2ZEIQIQ0Ge3zL76bqPd9fb92bvd5iENEDRAN5d9zuerL77PZ6/r3y8xCEIQhCEJz2cvPemTuX7l5nK+7eYhCEhqENBCfb9nr96r+9zO337fsytWxCEIQ0EId1kvvff3rfq3nHO2sz8pt5sWUnrKfU4ENol6lgvpCONMEPDzYG+nXud4bwE8TvI2Ko2aw18RXCt9Dl0y2jDgA1IBhwAjptttuSVJJJJHvDsrmDeYO+YfR8s94146NYXxGbOz4UltXsM7sPPIrO3gdvI76lT66iu3d/r72/7fvZd73eWxIGgNECGdy+572Xc5v18z3c+5f1oaCEIQhCuZnfZ7N5eV7fsyrvOJYhDQQhDR1v3u370++7z3e997t4veIQhCECEPubvM9fslZ99XvZ72Zyt8qdaCEIaCEK19z3feukmuV9nL9ct3dc7Wg0ECGg+b3mZlXVdy/dvnt8z60IQhCEIQm+873M9v6bV7uXi/b5XUIQhCEIQl3v3r9dfStT1Z7O359nUy60EIQhCEJd3z3sXN19nvZ6s3uupiWIQNECAUBr/XmeqelJTK9n6Q96/L2vYqGDvaBYl+rVtxQCaFxG9DivDl3ZzcC5jUnxAj9c/ojcvIQrbqiwYcAGpAMOADUgAgAbzfb2+77GTUT3L+F2h1CPy8tmlb6gPe73qdZ5W/ejB8Sn6+7s93vHMtT93Xqx2c3R8AB8BQBCEIb5XPev27fVnvXbv3s7UsQ0EIQhD57nO+97N792+279v17mfYhCEIQgQm+79me99zeVvPc9effc7ktCBDRAIcfXfr966vfvd9697vl5MEIaIGiGju6967z3W9+932fd33l5iGiBCEIQz3su++9X333ru/d3u+XmIQhCGiBDfq333s5rWtS/u57LzOvl5d7xCEIQhDQbZfrz3mfMV97vc9dfbzqGghCEIQz3b32/e3XMr13mKu+ZYhoNIhCG/19+wqpv79RXn+p9SpXeyxRsMZk065QjpmTlUUuDFehazeixgsrT6em9R9XiX6ryr9mT66z7d+DUgDUgDUgDUgAgAbXrmfVcbnKzMzKXNwumeX2ytOzni25179Ppf0llnb1k0X8u49L3d8SDgN/pt7iHba3ZQHwAFAUBDQQ37l9v1+VO7572dz7m+3mIQIaAhCc7eevPXze/vZ3uevOd3aEIQgQhC3uey8+7L+5vO3332XzPpaECENBCE+zl+9ns1Otam41N/X7vr9ncy75iENBAhA63fve96pWX7ncr13y92hCGg0EIffc+773vV2r9frb9fM+tCENIhCBmVd3ft33fft5fvX99edQhoNBAh97n3fZ70brf3r9d9zf0591oIaCEIQnb5mX6+bcruX72Wl75kz7mIQhCEIQh7866j+eV5KP962IxD+reVuVx6jStcrWg6J1be1Z5pulgd5ohsa4fDvGi9eygaMPqivT9PcfUus3fvvhqQAQANSANSACABvPRuL9sd/AAn25S9ncb7i6y7b9TmtNdpshly9zMm1Zb45un03t58Sv37txR9VigKAoCgPghCEPZfb93Pbq77V+728yZdfWIQhCGiB7dXeZnruvt1v3cznb3zLQhCBCEIT7fOe9nu9yZ99zvvdxztd5loQhCEIQhvnu9vPY1e++v2ZX193a0IQhoIQhm793mZ7K5nu+tu+3lsQhCEIQhC7zvbz2arm79fvZrm6mMaxJbEIQgQhCG3r772XL9Xeey85zd8mWhCEIQhCHl7vL96/j6++7mdr7nfploQhCEIQhu6vnb9W+er7PXnu39vuWhCBCENEfp7eXPfRzP5/ZVZPsmW+uf28ffT9EV8XAsHTil8TXb2KVBqL2QXqD3GUo5zv1b3Lqc+9X1fXufBqQAQANSANSACABsXvO93trhSZFlMzazVS28ovtyWqZfX3Vxx6cTDQAvDYwDgCvuDT0/gWUXSururururQhCEL9v71+zzWpxvnfezFX27+nMxAhCENQ1Jo1qN+5ncz3qb79zPZ3M+zd3y0IQhDQQ0U93t3nuc1qRW89fbannU7dSu1Jy0CEIaCEN8u+51zfby8rs7nJmV9iEIQhCQhJDrue9eelXv7M77l+y+39aGiGghCEM7XO5fvfdqZ3t+vvuX3M3WNEhqEIQhArOdz3vZOVl+97M+y77ndTE1NE1CGiEIQhX15nve7u979nc993OXldxoIQhCEId37133PXPt639nfX3OVzvLyYhCEIQhCH5tCDFRGQSARhIyRBUhF6997l5DudwpQGxAlAqFNQCACMBWMjBIJLxED5FDAQPhsZhdVE+FkTBFFSWAqOpY96SxkLhrWDHx2vtHWYXyZEVPUo3PmuNygFTZI766vtzgpDYoNpc2ztd1fJRYpRUnJKS/NsBbbceNZYbms/vjng6LaNua/btw5OWaoSpxxvxnsGoJiAAOkJ2CFpe0UFOmC3bbvDrXMkTUiNNIiJCRJCRoTUg1IEjEIQJFAGRQWBCQYMVVIwIMVQYRhIsJCRjIx5D65qv77p/4H/Gihn60Xsw0D/gvLkzqNl4wZXCHLFXvcgel7MeRXLmyZbKfPbOeGMJLug5Gtluy3gsHsG6AsLN0enA9jt+AuL25K49mTEFi2TnZvklYYpVGe2nuDTxRsuDspLIeNFS8CDxU2jzFGmMynLwC1p1vjhsFtiI7FjIcebS69rL4t4NPr2rxI4GT2a9dbjSrgdbD1CwRT2PcJ3lNe2nDpD58dYBQusrksOWd1rbNTSzc0Urmp9bYvdEjoAKHZmN20hXcKOZjwGmSc5pdldCC6G2rytfnN3MAgd4qeq93WLIALvMdOG97vsWNWzWsiU8pbMAltAIvoRnYcwKzNcZTxMUxzLCYKyhMsA3Gdq6vd5ac4uYKigNLLVGrrBw0DqE0SWSJMB6c3rjGtnXlbwmHu4Zs7Fj5Yg6CYhK4L5PUMJ5Zl3c2++XUqOblHjsvnLPI8YneBlZWxkTeU0NLUcSyDcCmvNGPtCQllUtCEi07nPT2MWs41Bn9/03Z4cat8DwsXF5sFxZfLsscLgkC43nOyBOZ2N9V0qKM6kNSOzjWqtPZ2VMTNSldg4rTG+xLdcs9Fb2la76AX3OoHfW65jhceEux2NmYSXpkj3TTd1lTh9yI7KVLfs1irVKblNQBYqnC7wuQ4r3qFovFscA9mUdZ1Yy5JIpMABAAIALEUAEAAANSAYcAMOADUgAgAEAAgALQUACgLHAGDgDEAAB4Og6DwOg8ACADDgC3Tot0HgoCxwBiAAJANQANSACAAJANJANQAsUABIBoUBY4AxIeB4HQeCgLB0HgPB0BYoACQDUAAOAMAGpAMON3d3b3eAAOAMJANdcCxo4AwkA1AAIAAkDLu7u+5fYz2zeejeM72uyuonMWLLuS0ItnPWxNh16w+1CtkfQdhZtExJGi7FWb0YudfaB87ulAHT+A9i1Bh5UOHTfqiVRpDX3ZUQFZisbW5hW1l8seiV0IBmKGYrsuCrOP42tacMtjOKhydsVy8O471poHNmQSwKXC8puuLVR0chp2Zgwi75uXL646CSAoW76y8CmJ1m4trsXY+IJNPEsJMjFR6ll5XTc6tqUONKzL3VqsUhSNqzWwwnZp3JgG0DzLCe5eysAsvezJwlIKi5C6A3bzkvOM1YdqZjGCLd3slRmtpPlnBijUQlYuyo7O7JSCqCQE5YvBQxkirZ3Lypvr5Y6mvK6ZJFWXdKcybODMZp7jONmAXUpXTlX1WuXS3H3dKOTJuy1MtZY0QR6lrFFac1TVrgl1hW9Yq+TrddvN5WotdRa6Xwrcyn1253dTZESvOTTeN4HfvewoidpjHfzd7G5tout5IMIB999QHhP6r/ht/1/19FjDUdmKw+3v7Ot5p1PTXTHVHO8RBDZlpyrURedXULs5o0826eTyPp/RE/p/cr70XtR3jtPrA1IAIAGpAGpABAA323x5wXgxIpvJem3ejQawhaA6tiEVnmQMU7lXy+efOTK+nOngf0+40bxf3BUeBhiWhCENBohC7zm++99PvX9K7ffXfs6msupiTEIQhDRohCffb533r9xTt7z199nMzu7aNGiEIaIac+zl373rq/py/s9d+7fctCEIQhDQZd8y8v297zvue96/rqZnMaDQQhCGnqz15mefb2r73e3WZlcanWiENECEJCZut+9meXN1Wfe7l8+7N+nUIQ0EIGle5315l/bjnvZ3K5zJ1CEIQhDRF/b7nsqd52+ezfPZ3PrYhDRA0QIdyt5nve+Zz3L9z2XzucxCEIQgQh2ffpz1M+9Xft7r9Pzl6cXVnOu7ku/M6tiXUu2yu9S4BMoS9yvbucrPp5GfTfde5yOfVzG58GpABAA1IA1IAIAGzhv0sRjK13Nl4xQEbKPd0qRSrc76d8TW5RW+FhnY9Tk9vkqmYvT9d9N0WAKAoIQ0iEObz1572TrUqr37vsrmZy6+tCEIQhCEKXfMzzur39zL96szeXu0IQhCEIHc7ns77z7KrN+57zO9rqEIGghCHPq932e9O6399fu366vbuWhCEIQhCF/bz1+v1d7fr77J99V9zN4IQhCBCHM59fr97nc5v3c9mXnO5lwIQhA0jrne+9vffVXvZ2+e7nfrQgQhCEIffb733r1db7me8u99vJghCEIaIG/Zffev1SnOb97M3Tu+5aENBoIQh8pkzbe2xn3VfGVm/l+3qbMPHub2NqwzRCu+e5ZtOKtsI7h7VRq/Z6p6jv2eGpfVXejCGBVWhCx9Qfq1/RlBdQRpUvhuIs4v7NDUgAgAakAEAAgAbsZ3K3KmvuRdR2XZ597m9FeADnlSyWjYYSg3QMzduByXExZhviXfxsjTd7SPHcljF89QkUsj82sWgyWhCEIQ0Qi+c7zt+9vlc7689f313eYgQ0ENGg+vfd+zPZlt/Z6+2ld911CEIQhCEJzfb9eeneb9zM9X19vloEIQ0BDne97mX5OJrfe7973sxq2tTW3GNWgQhCEIQ45u8v3uy+fXn3sv1du8tCEIaIXdXdXceAxOA8M2qPdE237b957guqw3RDQQhCEPfZ9nb96/vr93tu8zM5echCEIQhCHs5e8zc3z7d533cXmXyYIQgQ0EL9v7MvPN736++Xl5m75iEIQhCEId7N/ff35X93sc/PKzEXWWeT2/13MYJJq7mdexqU7MQ4YeQreZJIzumi1tCusS9oc6o5irkfjMRLOTneZ1fF60NSACABqQAQACABuy770+6h2AFKM7emMHaueBuvHjvjvtsACLFT0l7PYbrVLcSe73t9rZu7/XmyL7cH2ACgKAhCEIQ79u7vvt89d37vfXfrysQhCENEDS/ud76/edyXWZ7vbddz7683iEIQhCEIdvuevLqezfrz3c33l7tCEIaCEITPe52/e+v7nPd7fPTeXl8xCGiBCEIevfO3l+vvHO+5ls73PrEIQhCEIb7l+z1337s99vvu98zO11CEIQIaC/c+7me832s36+3Wdy/rQhAgaDTd33PZhvd7z3vOfXeWhCEIQhoN+571+m69z2dut32/TEIQhDQQh6dv8Vb4/t+/JVc3FiqEvNd6o1hHbsd5W/TzlO4RlP5VcB14csd9SmxTOQqwTYF/D5fu4xz77QNSACABqQAQACABvOe3Ocz9s1k8u+J9zwfTOQ1W1dGthJ6kcPHJ21ILp3r97c2L39nP7vb3cxdWhCENBoNEvK7ee+r3fb97uVzt+loGiEhohCHfvfZme9uXW9+733LznLzvMQ0ghCENGb9y/e9W3a+9zuV33eV0QhCEIQhPu8vt+X7vc93Pb593MYhCBCGiBOfez3scnz7u856/X9f06IQhogQ0rd89ns9V5nr9d87vJlysEIQh67u6u6u2IU5HlUMz3sAhcS7M5ar83fiECEIQhfO/e77nPvfe97t1d++zPsQhCEIQhCvXl88372eu859y77WYhoIaIBp/fpy/mf35/f39uZ2+PnupacBobpZeW8lnhtusEtiOZj3jh1cpWZrz8J98qW/Bo4qUdfLKAOdC5JI5YAIABAAIAAlJJJJLeAmru4Yd+HP7dpXGOBI+R+Y+Rw83uY2RqYrLOfcOE+TRsgfmWIUdV+CENEIQPvu/d9ftyL5vM96qyZefYxCEIQhCGnb+76892uNbr3uev1ZMvcsQhCGg0Hfu+3eZ6t73u/dz3a5d7zGiEJCEAhL+3ffZ76d7v3Ly9fPZz7GtYnJjRDRDRCEId9Xru/e39lc93t7z5nM+tCGghoIQm98y7x3Ukb3l3ecy3XeSxDQQhCEJvfs77PMvf2/evLrm8zlS2iENBAgTm/Zu/e759nu9zlc3mLaDRohCGiQn2dv2ev19573s5y+X3JgkNTUNa0ahoNE0f3db13Pw55yudpPx9++6YlyfVk3WFj6oaazMfYvhfOWlhzViu2XdPfP3Ead8M5NbO7TS5Vfq6y3Nv4AgAEAAgAESSSSRu2223I67pX33yeO7H23rKy++OcieXhpLjrjoXrv3uPielXypHe3M7hmHWtVvf92/czvKvu/pbRogQhpEM5zPX72fZnPvd968+mZ3erBCEIaRDl3d5l/cmpV13fcvub7vOoaNEJAhqBd368y7T73N/e772Zlc5XWoaJDRCQ0Gl/cy7v31drvbzO+39zLS0NEIEIaCrq7973bvdev136t33JcQhCEIQheszm8970b39fee5l87XEJA0QIQ05V+93PX3d1Xue77N53dTohCEIaIG28v3s9fWo3ee9mK5nVtWIQhAhoO9zL57PZc++773fe52+7liGghCGiP1+rn2X/fffbT3f1XmOzR79OZKJYnaboPpkYiUyy9BIJoUy323cYed+s1Vj7rNURwwUhSD9F4fWKz3Jn9c3ExsxH6c5EO9i8+zm/PgEAAgAEAAgACQCLd7O5cdDS0oPH3AA3WPZDKHM7pbl2Tu71NmeT96/ejxrN/bnPdmLBQFAfAAQ0EIX3fM96/b7d+9neXu7yY0aNBCEIacq++vPevJne897Lrta73PsrECENBoNLrvLvM23zmZfeZvt5uY1CGghCGkX7OX7PZOZu79edrfLl5iENECEIQvvPr9fvTnc5vPeztbu8tCEIaCENPdy7v3vTdb3z2Zm+dvudmITRNEDRNBD7dc7d57LvmVmev1zl9zVoQkCEIaIS/vdz3vTMze+Xv3c5mJadGiEhCEgR7d+9ns9L7z7vszuTjM79qxIaDQSBVD337w7q/dPfqeqx+zVYOgOrXCzo1rOVtVbHK7pcS+i1vZvdTr8vP732LE6ug6+Vdjlemfd2ebsvt7fudyc+zHwIABAAIABAAEgBnp8eE21cFWnLtZyVirg1JcpTGnu3JrmcUKeNQoXGQ59V6GD+L40EnTuru79d3cJCGjUK33uZnm77fszfOe5efYhIGghDQfOb57M929XnO897Lu75loaIQhA0HMz27vPTK3nu+537LzPpg0EISEIErvfXnvZ9V1zPexvfcxaEJCENGghPvV33s770rnee7fJzOuoaIQhIGiQvu/Z73sn2b3fr9vfLnLzWDQaIEgSKz3u3nvfZvvPX6+L392+ZMQNEJCaCQJvuX7Pe7Wa7v7n2ev3bzuVLENEIaIEPvdu7yt/ev3b+7duexMGghoho0By79vMfm36/Kx+tQ52lRZCSsDzO4E51p1Doq0qap3mXy1chNMy9Xk/q+T9ros8953Z/dmE/omb7mz37ACAAQACAAQABIA++XechP3u+v3NBZl6XAlFrGez10bazUZmMzmwNuor0/J/NnDvaV+TbJbFO7v13VXV+tCQ0E/b373vXXe797MvnO5l59CGg0aIQi+Z27vPXMl1u/Z533O11AhCENEI57ee9fvTmd39fPdzs5mZVoaRCEIaC/s7fMzzd9v3s5z3eXm8QhDQQhCHL9nvd9de+y+evLzN5m5YISBDQaVz27zMvfIve/evOb7vJ1AhDRCGiG/c9fPZ76fc737PZn1z67yxo0aCENB66znsz1Pn2/r928y0791oNBCGghy87289lXXb7u/X7k7fctCEDRA0R9P6TUk0aQAhFIRiQIEjAJFYII9nuW9FdjHd8mSzEBGKoMIkZMiKlpVAClUJgUXzjtYNrZzeb1rEDGAfEQBNfopA0zUV2DagKFQM3wHPu1DWTMMutWEsay2sKKVWur4NYPMSyZ1m5cuX311a+5pLxzZ2ct8Q2uJaxYquJiAYvXBjKgDQnmKJIKHqISD4jICdpeAnD27O3CxgpJJJBgyBAgsiipCRkYjJIwIxIogwhIjIgrIpAiRgiDIIQYsWEhIskd/E1kn8G/7ZP5V26dfr45aXU6xRGyM2pQ7sNWY2nR3hpNHhhDeWqxY9fChvdnYKiXGyioLzqa4Q9lTqizOO4KXXWMalQGM3QmTTx1jIdCNtsk8bO7eZpSmY+pFll5HoO1MGpuHbk2GPrt5sbxS6tcDUJByXRbutilcgilfGJxrWjWEKFxB4CyqxVwnNUrfHRk21hZzavaOLmmZBNrcDZdiNUlzJy9PLYONtJixFcvtG4wjNWw4wQNbrDL6mGHmdYrHGC4Olbqna+q0DKBNobW3TN5euaxCuMxSdbrOeIni3W4KS6wbLbw5vV0xrvDIZmHiqUbEQFrAlidcVN03dNO87u61t7ulo5ApSuy6wZQJN0lEBoV9b17q14R25uWLoQS967sBc7vRIm9bQBSZHMsV3LLsuRjURV1wbizadxW1uIxq+ZreQnTelbvSmxRrTN6A6cQfcmhIgeL3UOzC+m7gOs5QW5L0ZkmXDMjDp0E3PXz44E7hN66F3w2pe0VoN0cw1QD1qq4ajtnGhr1mqkYVRZvXeWJGb1UxdoIy6VzluVUvqdcd4mwdChKPZrNFMgqs291V2GhRAtyiX1SAHStXVG1lnhmwWIXYcmiVtpU6vsq8hfVJ1c0auXWXUw32M9+iZne32IjYnkcl3jI5t99zMAEAAgACQDUDgDBQFgAgAakAakAEAAOAMJANQABIDzTo8HQoCwoCyQDQPB0DwdAGpABAA1IBhwDwdBzoPMKAskA0kA1AAEgGkgGjgDBwBiADDgADgDAPB0KAsDwR0DwdB0HgPB0DwdAMOAASAaSAaB4OgAgAakAakAAoCwdB4cAYFAWOEAwkA0kA0cBmXd3cVRHvR6evdjk3HXmhVBl5NcqbHiWd50wH3QC8vZaE4wWstysljjvcTcoAoOzUr+jgeDv0mzPlagsGHrWiSk9qckeHXirqHDt6HCCsh1uu0oSdGgeZ3ju+EerwpHMUGV2MaoHUydS2WdIjLRtLdFYi6vLeuyBeZd5RkMSuVkq3A2eplXmmkbo+zNuU+5vb2ubB3KVNyorIbbecD2GrW5LoLhnX890bwgDE5Dlm84tm6naPdLc0C8gTtuZ2+dDDCptLmn1LKC7ZEHm5NOG5t9KNdSy7rMlvDV0Sqt4zTWN88dKdhVwsS/bkO1oEo2qN3svJN4Ju6edbrgLSpGEWTpvvdY52RqezLN2uO7TdORZAhZTW4Muc5Flo/YWtvYgxqvmZEzT7aysx1hEY3p18hXdwdHI6whPa/oKNCqr+gyv7LwX7+LnBocAZJGuuuxYrvXffa5i1amdS+01rOuzvQ70w9x00VlCsJbmdROUwZ0QYGf0tr4xZm72d8vqlq6NUWrdd9TyTbQkckhAAIABAAIAAkARyebbnjamKjPOdq9vM+u/XjmMbaYyWOd7afkqjIFXmcred7wWXfv7d4SXmZ99iEIQ0EIQnvt5fvedqt99d337vfZlQhCEIQhD77mdvvr9nO7973b9md+tCEIQhoIfXnN35897L933t87e7aCEIaCEOd73vLzyb53PX71/X2+W0QNBpEIXl3ns9l87zns9ldy8zuNBCEIaCHd39nc96dzW8rffdz2Z3u4aNGiGg0Ge5nbz2ZK59y+c57Md7eTrRCBDRCEb59zMz3J7Lu/e99l9zv2cxIaIGg0Eje9332Z5u75fvYu+9vJiEIQhogFCh7z3T+GyeWfm+ju5k6/0xNHqz1Ss5y2YcuKW7A7poDejLCka7OEMycNrW4y4iZ/V3Yjl8/RFfRzv2y3fvvgQACAAQACAAJAG7ep6heXYQ3Xa7ulEbeq6COAlrpoOdxa3LOYAQ7zI6eWk5j+UmVv2bw/J8kUXWCEIaCEIfMv3sz3Lkmvk1X2d76/Zqbc3XWpTVtS0CEIGg0bzvMz3u8u++7nt87y87jQaIQhCEPvu89y59zv3czvt5zuZvGiBCGjQac97Pe9ke+5nsy7vt9yYgQ0QIaIX6+Xnr9nHL3v2ZnO7vc6hoNGiEA9zvcz3s+SffXffZ9zf3O3LQhAhoIQrfr9fZ3f3ve9X2+77ctA0QIQ0HnuZd56973znrq7X2+7loaIQgQhp7OX7Mz1VXO8v13fe9vloaCBQFAfAAfC639K8k81+/A4L/Rjp11lZF1DHvFb+cGTsrRPXyIMmZj82a6j3dQtvZvJ5Oy/enLyt4js52VZ5O5egIABAAIABAAEgHO4Zg6ase14+wej0k8q9LnKIX66pFPiKecuoSc8Z7Is0b7zvPVg13+4q1OqxQaDQaCENuZy/e9lTKruX665Od7y5YhDQaCEM5fbzvne873PV9W77dW0EIQhCEPud7d57Ps7d+9W9/c7csaCGg0iH153fr97fzWoze89nb11afNup1CBDREQhe+e9z3vfTrXyatJ99zO+vn2+X1pEIaCEIX93Pe73nc96/nOc7csaCEIQ0FvrzL96+33eX7t83VrupcaDQQhCHPV7nrz3dSvvuZ6+fd52uXLENBohAh93Pb77Kfa1e/vZ67vnL31CENBoAoD4fp7fepcbjT5W5eP8B+6j3YlXEjDKdXarFhjuVjoP99Jky47oWu09mE9ME+qu1HYxNX3Pj3ZM+fAgAEAAgAEAASAPbfr7CLq0803puHFtymF0edsq1z2w1BVw8QxNNahSpbXH7YfvmfZmUeRP5Kgs2zmpCkIQ0EIQhN8vLzPXkyV3Lv3eN85c6IQhohAh99y93ft/Xu8z76su7+tDQQhCEIb9XO+v326ut/e93f3cnEIQhogQh3Pev3fe1ys76+b3zdzqEIQhCGg+7y95dan053Ly5fe9+6nUIQhCENBznPZnvZG8zN+zbfO31CEIQ0ENO1l9zM81bmc77N95zvN3aBCENBDT185eezn3PVd+7XJ3l/dqGghCENBvfOZ7n3u9z3u772+9tCEIQhDQfT+n6f2E9+VufvG6HdF3fvDsvCPHx6+huzmrXrQjmReVsnueUHKkN5TvOLqjp0XmbVnehNTFTFzH7JrY5Ec7eZLM3QIABAAIABAAEgBxWVDZUm2ZSqb1lQ4buYVN4bgbcH2d9ny2U/qiB88ruy2tXfAT767YA/ThhJVK7QhA0EIXvfd+9nz2ZnvT7e+9u0IQhCENBXLu+ZnmZd+93m/ud9LQhCEIQhDvN99fvZffry9+7277f06gQhDQQhW+X72eyldvOZ7ve77fUIQhogQhj3PevO176ud9fO7v7ffuoQhCEIQhv73u53yr+v3r53fe8u0IQIQhoNvZzL9699zvPZPt7727ECEIQNOe5vvr97nd5u/Xz7fe8uwAAN7vmd92c7nvenc5fb3cAACv7lL7bf3n9Pvp9yfrc/tu1sqUNsXSChb7uusy+geMpbstqEYZcl1ye/wFfTHqqabHI5P7k/o737ZfGgQACAAQACAAHAO4c70Ts0KgnVzLbxOrfO2j5JHO6H22SYcGgd9hOEFHqPmsHCENfYNR/MHMA7dgAAXz7l3ec+tu7zK+3e7roAAGb+y7z3pzfOeysrfO3ywAIHbzMz3vvVN/cv3u7qu8vsCABznt97auM3vM3ydvd10IAB99279mXW+3edvvO3blgEAPZvLu/VznPb9ne8y+V0AACt+9mZ7777u8z77f3fWsIAArd33M78rnO5v7k3zuSwAAN97z3sy+d9zOer7fLt0AAA8qGVqrzsrXfl1SeOO8z94nay6eSrOvJFMdLOiy8XUqThuduhtZG1pnGLZhmcjmRWQ73Yvl+j15oCAAQACAAQAA4AOdyKzu59c7Y+1cxbQHg35vQLCYcFGEj7e+NC+0IlYTm8aHZdOsyvmGWm6q+BX45c7BpvoAAHay+Z70r73M9z33bu+WAABe+e7fve7UjOZfPbr7d93XQACF/dz1+9Xdez7nM76+ud7e+gAAd5zt99nPtp9d33uc53t8AAArue7d58+v2eut3zfXQAAMq87fvc+57feeTvc5u/ugQAO/fXeez19+ncb3znu/enwAAHfsu7v3ubrPsvysvtcAAArv2X3Ed7nM7Xc72/rAAAAAAMrf372+79+oUbm1bSzrysaa6XNYS6of3rw8e2pHB7b7R6LIaWPufLYNMF85HPPq7HplW1i75z6O/bm/AgAEAAgAEAAOAErvkz7e6H7XU7CFM+pQrj3dE0eBGdeae8phuSbg0dQlFOPb967qzd7Pxe5LVgAAAAD2Xd+9feO+5fu75zvbsIA13UeUkawanItQWj3qcERbuhudwAhokyvVqehmOqFbjOtQ+2wQq9W5r4NTsv3q4shzsVE9q3PV4PZC3mYOUhsFJCvU4RxLfdp4mWNIK96hmmGbhJYm7wM96nxJBkrOSQmDgyu2vVndxd9++/fdXCnztLVnQKrSWyzgzMMPCgNou67IehG4O+YmNnWJ68dXW9x9ZowvLp9XvV6dKndvfAgACQDUAAgABwAbPav1vRtvc+z3bqOTPys98+Dq1X2hrczDqFgtnZBLUD8Zme4SZsn7JyS73qzGzE3d16qxshRUCh1bav3qWPYUne7mpicdDIyvVDpJkdq0SphPFK69XFxNA11djAEFDRsWVnqqFrko8quvEEp2dyr1PQgS4cOJKAhg7terWXCW3WJECJFXpWeqh3cE0uRSd8QUr96swMxL1O3fveoYgzFVbde6xfqV1Xv3uYm770MTZd/QoX+83eSCs93CpJjvNlR79o7nNxKSs0R9U1aNhH19v2hs1liqHyc6pPeSyOmPgQABIBqAAQAA4Acjvfo59nphz9W9n23NeTVR13q3U9MiNzaIy9mwS+gzBtKntPenw7uJlkaOI/dpLV+qh9nNR8KW7jKirb1DN9VdcDJc6lfHAWJuoLK9V2uciOUlzYiVi0VterQoko+TGlxUkLCHvUyOYSm4kkhB3AqvU3oEKGWxxUXDqJFeplgiNkijuhETjwXqo8wBJlHGC5Y06Sq9XdpESlppNCdxFpX6q/bVXdeEZEQYkkgECCqkkSEJCQjAjJuvlhYgKB6obD6FVJCFHiMhLUxAUoCioZFQh5zZsxAxRU9QJYVGhESG3QYAvb0ljeBtjiy8bFHBDc6drCGxABTRuloIIcR45pA4gAU6clpsZM44w1C9GN6Lu0ApJQkNjc0bZFFMXY532sXL7Pkxd3w2MgwNt7BtvdRBu3xVWigDHG2LG+DOzfTlrDIRZEBSEgQjEkVAYSMhGEgQIsJCBILBAGJCJJAjCMYQJGEiqpBgQkSfutUUEiRqBCEVVIRiwjCSMjmtq9yvXerYv6sY89jvMvti+7MtnaTaynbHLKmK2MpJKty4U70XtHU2eW3IN2xnb5xbz24QYsbAqQnsQsIIU+m7a4cN7LlQx1BainPMVbkAbqUHqW0qT3S32xwAK97aDlcIHh83SxY6W87D4LpD23QVS9DKhTs8uw7W7AuvOx5pHOQiaAUxLPbHzQwkcYtVXXEcANBWXgxTrXTVQNC8mdU0JTgLNmMGiGRrvLjlKhldHXLcdDg6ldyfUa3pxoJ5wBOS8vdpWRwtZKKLuUVSNnXXQW53SsOl2akyU+D3sT3QXeU/7beCX1r2ret3SY8dmtDQZjmuIZe0VG2H3E3YR3gLUi1TrFiSlJp5OxFZ4G5HOpcqWdm8cwiG1QCG48TqRlZzrbFmm+4VN5XkDUao0LAW1d8KCe7i2KEZvC0Rx5qVYykVfIZg43y6zZuIvEc5aQ3TU05onHGNjQWgrsy0xC63e7gDke5buoZEY6NdKnZ7BE5VuuNnNCg2+rE5BlKcOnTg6wWTea/ootdYuO1aPYEOStBSnWHLsGr2jHC87NorvTOF51WsnIt8aRLEDQolZToVGSteVF1Tr2lfwo3lvhkMdom7rqdxs2oJcioYYTvvt0Bbd1Y0epfX21R98abAFKkDWuKvuE0UIw1SbPI5zbnW+ybYAQABIBo4AwkA1AFigAJACQBqQAQAAUBY4AwkA0kA0Clilh4OhQFjgDAFigPB0ACQDUAAgAw4AsUDoPEDoPEgGjgDCQDRwBgUBYUBY4AwkA1AAAeDoHg6DoPAGHAFigFigFiug8sUANSAA4AwcAYAYcABAAIAAkA0HQeB0HgdB4HQeHAGGq4BhIBoV3d2Zl3dgJGiUE4aUmUMFb1rqfNkFW9rqs5R1C91ZzZWXhZTbxZSRnTbu8Nh5S3ZG5T7KpbJgrYAOutmAZoVx1yB7s2XQvRY0oAiM5WuoqVAE9c7OK3JAKOy2d0lh5N1M3Z7ZyrNWiCXlHOPAgcTe2zV+DSE0OZxnZynZKzoPaUNq8yHAdNZwEKMzmS2cOSK+URq9DOPkzdpW7RlbcCeyrVNyQjkNht6Vu31FFo67w3lspMsMSbl1imB916uMD6827NQ4Acq5u12EGxxKz7ULgJIl0m6fFE5RlXK6sKPdu7yV0kYqHIL5096A3ds8cnVPOTlliZ0N3qplyphhwzsLiQrSLpUJEHnJOOmo0lfd2VN2wb6PX8MdrFhuLnYu1LGbzNOSDVaptzSd69f0+S0APtzQ+1XdirqZsRTOyPHYo3Ruc5MNqK5wtETWhLNpozL3kp/P7SvVXq9+9X1ftX93dVvR1t081554NcyzIwGQO2+Ly1dq41i/G2dr5xTP7O5FZjibDubd531gFjTL44RoOgSmBGISOR/tScV9MpdbXbavr95/ZXq+t43Wnz4EAASAagACQDRwA79eTz33HWz36a5lRO8nY+rZnHuE++mQH6+MqTthS1OpQ2vsUZ/pV8X8fn+mA9pI/qKjyPV6sTLRjQ5rgjEeC6vV3FsqYu5KHIUl1eq9cCdLMLDEABKr1dc1oqKt5hKbhBKr1EvTG3jusvR3OE3tX7nlatr1QbIW3d3hCMGABV6r6MArOzeSd8CMKr1OxqMTtBVvJCXnZy9VJkAuOhT4FCZvAqvV9X71+9X8d287+TZ1fz38b5d+z3qfPa7cgiK6bUhnjZ5bSzaFnHmK50wSnswUAuhVYqvIqevfe+vVbr96Yjk/pjnexma34EAASAagACQDRwAgy+ZNzM+zIqyVlEVlW4W+os5M4IEYFGFlJ4PbucBFWzM7dkvwSNzP4LGOXjr6tPo9sQAtOdlby96smgQyV2YCxNKJyvUZEjGwO7Q4sBXG69W8OjSmG2yxCyqS73qvWZE2FvMw8kcW4r9VM6eKUvtzkVN7uOKvU8zekTJ7uSmcQCvVQGdxcIsJoTugOV6iJEZazDzcIscCq9X8r3q96qIr9X38yMDLIOfXSWd81hT3+ZdasJqUrEsjAzjG6Cu24UZfOtNlasQfZ+rMFehmGuHyPv1fRMz+qc57J59G3m78CAAJANQABIBo4Aa5nazfcw91GS3dtXxDavLti01s4m+Uc05SisbmVlO7NGWMeJ/BqpqS/m6AC/eriQWY6YbcG7zN16uk3o063e5iIcChXqhextsHNQIgJJ5V6pEBKPa2TACSvVWbnQuZgNaUzEgDiHqrUwUkl3aSHvAlVVXnORt1iyvXq5mLx0rqN16n0QSVZnGEQgkqvU3ORTq7vd4yZoHV6v571Bj7cw/fzB+uZ/GEtvO2dsUFM/uiovozZj6bnCQVmAWqzmrHF9bQGFdEqwWUNG1auB+5+vveVHstoEAASAagACQDRwAqsuI2bvmV2JqMzd64VluBX7qYYKpNJ0JK7lX2B8NePfvhhq+xfvvw/D85x2agP5DdAZSv1VmTgHIhxYgJD0rN9VC81hKLrryDaMVK66/Era9T7JEWLwsGcdBKr1a1xhTN1mNKbiIz1Vel8HBm425g0h16rcSjbys7mREQlyuvVnRhJTEcD5CcHYyvVr3opHe5oYRmcCverbjIcOtpKWOzkVler6qy6r1V7yn5t/zz05q37vczYpnrTpDf48HGdiHaIVMN7Y7vhXdtao6F9mxrSP0qNIsuf0TaKio3Yr6N5kbt5vwIAAkA0kA0kA0KAcvVbHcnPet5lJPhZLfHpe7toU/Zmj3q8t5j1+DQObWGj3LRgtY/X723K+0tzf4sQ++Y+gV1VLe0AyD3NluAk0CvVWvoGW73GFD20AlderDEklp3gg1oB5X6qZwNFS92iM7ihMxe6/eoX2pRQgNcZudMK2vVyLjTWZhQm4YL9VHVATLrCU0IUSrXV6re8GVOwYWo91CkK9WskON+rbrzG8s4ZmI3c+qv5TH31N6x+TB1Ffzv2TDuFJ/yFGs8HR9dLGpqJxGrip9etvWIXF1XsnH8Cd/R65zOeX52cqPZ9u/AgACQDSQDSQDQoB2bvl4DRN9NVqcbfBqjWdULgzhM0pas+7S048z745f71/b+/fP78PUdTb/mr3LDiXeqpxiSb9S4cjOKKK71U8BjTeDeKE4olbVVgkRMN92tiDuK96tUfCLe5pkS84EqvU8mopMezuRM7d60llert2IpTcSLRiPYCtr1BwpGN3e5nEmXl8KCr1XmQRR0svHxmbstZ71bJwce9vICQcUgr9VfV71V6v1jiaf7hksfxUNiH8llH8a75Uz31Tu2fMvJtu4JW6CCcXPH3C41T0XILSU9re74436X0czbqPvX998CAAJANJANJANCgHZn1z43WB6nk7d67M2KwJmuGSy5H9ubjp4re5LrEvjmFrB20c/etkl/vvzrKvWCP4ASV71Q5EDH1rOAjRBKNeoSdxLfVo62SINAKr1bICVHWbbJM3OIKr1c0RCmLFZbQEzuXvVCpxiOHuYi5EqhXqk0RJvbqyeBmdwoL1Vw7QG4CK7GmINRK31Vmp8ipm3aYcvL3mbr1bmTjFLWWGRIiT3qr6qr1VX8MnzFfzB38H40HtND9IBS1dlzOskqjKu5VyLtSy8azY74Vj/GuNcp96fufRu8i852eyvW/Rva3Ybf2gJANJANJANJANCgJtrIm8ypZjPsqXVjg9upXMF1pFbsNYfbq3Xk6ED9VUF+Hyn6JvXzCH8ziq9T7uYU7NzhEYeCOLa9WcOcjYOVeNgzM3lXqNogtRcmExEr3gUPVW7r6NvDV2nwnZthpZXq17GmnV7jCIm57eCqqWPom3tNokTgaRWVVMbsSjW3y4RrQdKBr1AcBL7giG9QKHqrs6cIo2GBMHAtX6q+9VVXqnJ19kv+fw0R+2/0mTFrk7dheyBNwXxODdlFacTW6NNnOrOwzI6HDfydXncb2Y++qK/Z7199U2vmRmZn3wEgGkgGkgGkgGhQDrOTBYLuAxqhH8ACPlg5ztwskO6ej60QdwZmUQHfH3a5+99x/EyTNLZH87eBlerdXSN8dXKDuEKz1Vr7TC3mMcpmM4khXqzS4WmtYYh5AJdXqD3o0noL4w5pCV+9RPMlRdxCgO9Csr1SFsps8DhImdySyvUniJUb7OBEOgNXXqeOJlvNpdwUvdAWXXqmZsRjJ1ZwMHDgVXq+9Vfz6h9X37f5f8W0vztTYEMy/Z+aEgTnMEZU7BWJ9j7B0Rf68x+3fAJDkBN9aIuqYo5HT2A6yB8N+Pxw0RhtfeVH5+NEfUjrOw9v2/ASAaSAaSAaSAaFAMubumo+zl/VP3ajjkzkRrrM8rv2RKlTXH7FwV7tBus1fc4271MNCzs0Ll1fqp/j99J9BvWSR/H3BdXqUajbeY8IUs7ypXXq0J9EnyzUGJgBSv1VO0tRurrUkph8b4FV6pEAShd8GYhvFI16r3mgVFm4GxHoR73q4oRTgM5oTMiGnq9S56I03frx8ZbXWkh7w6bCk287AAIAys9VEOAqOuV1wG93c4cs3S8HAL0llJIBGDAhEhIEkIhHliipVFevnc9Fr5j61ctdVBxKIxkYKAwPWmFYzVxPl63Y4Jjbfa/XGcx+aE4+fS/3FV9/Kr9KdVM/ioVTv9PbISpWOqcVMVWNGxvl2sbBffW433CyqDlMbm3owlYdzTu6HYSXzjAopwyGJteUF4Gb2gRxsXbGGJGQIqjGKhAkSAxCJFiIjFYRQkQkIkWQYwiQYoqQYSRioDAkUQZEgCJGJJBhGCSd1UUIKAwRFKYKI1QEAEYMWRFUhJAhPnPj18vwh7Ucv+jsadqJAPsAvk1ta71O1gOntUAT1CVT2r6tGnuwkvrUxZfEdAs0grohwT4jbIlXRwZ1vG7gxShafVqUc7dbTW6tPmTYTRGI7qRl+ddyqLRbbt05gFhUuojrkxyPBW7ciucpOsdcS63NJzQaZ4cWEnvS6NDqgPPSq3zpvYeZfZa4YD19GHe1kVBZbi1jqxagGhQYFvjSZq5R21mce7ObxVt1hQcZ7tW1xyFcFbOoVDT7cAV1pieWMmCnxGKda09kXcrSnTptQSiqOrgjWCLOiZuaL3MCZIU46RpYcPbuHDzR2ZDYCq3vN5l0dk7nmIbdvVsenWALttHdoVI4udqZ0w7mnc6JJLiZS6hdHN1jjWxKrvrxBg9MoF6e7d3mSGbLYWUqRObYsbfJYryCIVzM6TQWYIP6PsaexM/fb1gBsZq3d5cCsZuuGLMbGLnrvlpi0cnGd3qztVBowJ8u34XThpXJlXTrDWEWeMIO0WMVZWjac3ZM6iOivKNS+96l3bpA6t1NyUcSKV2jNupfqdIVYd3pVuyNHsKN929vgIKDVOK2frG1p+ZNNGoL6FUm2Ni7lSFfLjVqhS1X192LZXUcsgVKyURwwClnhUNJZ0stKdCcmuh02bXJ7SqxFlE5Pp5GXTMn15oCAAHAGBQFkgGgGJSABIBqAAQABIBoUBYUBY4AwcAYAYcEhYrQeDoUBYCxQCxQAEgGkgGkgBICxQHg6B4a9wOg8FAWOAMCgLCgLA8HQoCyQDUAAB4OgLFAeDoAIAWKAWKAMOAGHAAQEABQFhQFgDUgAgACQDRwBgOg8B4OgeDoOg8FAWFAWFAxih0JJEnapXnVxww5aPLmms8aHb1GuNLJMkqNuaptbc5xYs55BkTwOE5c3i1SxWbR27uvZaEGbKnKaxeKGpwC3wkOnuFo3pza1KBukazaQ3LLVYrhqI7fetQ2fHQqsNojM4eT5pZy7twjKcyl1B0lihHBzBapZwvcOh46u80aeKJIV2kNAWqApuLoL0R5L01tQaQ1XdkdqbTgbsdkVvcdaFbdGKU8JxVu1gdgFPYe2tpq1lzulpyCr0ZgLvrST1hRGPUjmaaVkKc4stENbNqlWpB3N5rXTq9Db6hSFXIrupjSy8t3QzDkp1OB3QHIyEbTeJFjry7Wk1rq74o0XZvCKNrLs5urjRchxQWeUypPCspyrt5vBFelXU0PNwDK1wDZPjlrWe23b+KdCxKjfOWma6pY7CjdtZlXZZY64QXN3NT4CIH+pV/S+r+yX9Xv5yaQvGbS3brsdV32xtMTV7a21WMba1YnfFEuSuGljB3INS9/sTZkr3eldFm+vdY4xc752nsyvbk+z10R7NzQEgGkgGkgGkgGhQC/2497eglq8BYnyRn1/fM7gqV91ZjNGlKScsY5v9PNJH304ABD+od4fzFWV6pmMCJm0SFDnHCVXqsCIpZowoveHJLPVVztJKgNcCWJxKKz1VgYIM3b4hSYBwXqrOyQxPKaxkkzClhXV6rfaXH2jU0IRoNHV6qk0hFs7u8SYdJKr1ZNgBUd12jkTF3FdXqVjVFGLaCnAcYr9VfVXvVXtqqv33z5ZtE54fpZPmi5E5v8ljK6719T7uEO3WwIYtJYzDloy7c7e4c2u/Zr98RBWx1E/er9n79fEPvsuPfZn3wEgGjgDCQDSQDQoBd+6bX3aI3for9XsV5nES7Vxv1ctXC0qyodNQKGlBBNTP6s/T8f067zp9/O4sHPVV9mgTsfFJ8Dwwr3uh3gpg3m4+JCUHCEpnkgRM1IqrbCidt6FM0cWnkaBTuaACbzmTxOktRVNKkM7QSczSGoRRura9JzQN7dV5XVGzdbdUMkbbrU4ASDe36XQOefb3RZcAcJD4n71VVV79+kX5A9X2q9Cn8lzPBLlIbPbalHukQVcHBZOdXcUqlnWZ2Vp2+u5Zv8PrW7o9QXiquKo054x6cqPtwASAaOAMJANHAGBQDu7me7vpnIr2XJ91UIPuHXOXDXNpAqP1aka6Mr9899vZ2z+LXzP8OEgnAZE1UO9JNrOAG7vMyVEw3BmgCZmhpS1OW8nTB4MaQldvc1k8O5BwAhpwZySzUCDdvgTGjBhAj6yO47FE27nToyFxAOSMpuAQw2L3qCwqTu3bOdp6dcxT331U/V6v5bSJ8e/lfvKgaalYeJLza4k9UognWZeytkrvt54wNthuty0uasaXxOwKp+0Q0K9lXV371Xq+zY6vd+AcAYOAMJANHAGBQDlxccTO7V+5OXyZn3f1z480DmCruiTky6kpbW5jbmjodBwjZd9MKT1lOG5Lz2/xuO8USyXT7rzc2lVLjNEQ0ZW9etqJqayId5knr7mJvTEy4SkG953MziuJvsyYLRqS1QFEnp15tXL1iPczQOfc423FoYLOEHt08JH0k2SCxoRkTTTZiICOZ3IjJ3IqQcYUCukv+fVVfV8p4H0/hOCd2wPf47M4fiRO2MhP4jh3ISR3K0XCnKzMJiFa64cuKnerk73vZqIhMZ3kRMx+n6LZ6Lv7774BwBg4AwkA0cAYDo7usu4Mw112AqeUStVXhYRQUA7qb+FarVKR2yXVzViKrusGLEVitWzna6pi9a7c3q5Z+9RQ5L99+P8xPkbvuCMjSSc0CIqjwJNxaIW8m4Oisd3axs2NrnNA6TRo6xo5ubJFIXgJOnmDHCzFBfIgkcIDHsjnIwDuMHQNsVI+IV3ncFe8OajMk7jBc0gDZyiZyvSaUJozeX3qr3vV6bwynvdavvx4RetH+Pc5/yu0YJ1oyxwjfAqJZxGXvVJtp9Vs6EHRH61dc4qPvo5j139XvX+rfvdi15oBwBg4AwkA0cAYDoHrZnNjxJjLaI3rWdomhdRr1nPTTEjnew3vprXLHv71r9+EUlX/JohIg4QDQYnHhQW9vBngBNULo1LJZg6wOE3Z0blzWWtB4kBmFt7eVCxCRqJ1zmw05q4JbiPE6dcRTTlzSDd9qrn28VGTkHFQjeVAQcUlN6XgRlX3MC8kJTO84N6I2lfq+qvq+/Z/P5Q9/EH+R/YsoiG579+Y9FD3uxffdGDjwM03G12vubo9tJLM69NJvtF3Du7edp+2Ni+xlaMpN60NHAGDgDCQDRwBgOgWVzFcmqYpQxcuwsVnW2aDFDQ1rNLt9my6FCDN+2WYEfCi/HdlIMbQLFGv1V+Pfp8n+r+PSSRK4k8DCCppjSRM0gzYuDbvyv2+mkkK6XruhfvdYOG6Y3SFL2p2Rh4MZurN1w7oY+uOdAs6aescYlMwmMOFK+I1xc2n1CcQBKzQFwDKjd6Ye2CLePPe4pR9cJbJoM2TtXohUaddZbvYHz9VVWMfr/Xwufz+bf4xBfvFdNAgAU+Fb9t+u6Ms7j6SyV3Odpkq7KMwu2bqa9He99KH6eZvI3lzzdljQ0cAYOAMHAGDgDAdAnyU4jXxXM8VATaoV2FUrA3o9j7u2/g5tcPe+9i9o/fG833vR3Ve/iubdj7RUFUx9skc9uv6vuVu5oYpaWPrNqiYnd6qvTFmN6T1Azc0AxmE6U8RIoWdfBRoQvlDmI2d5jomxkw64s7VxtiArtqPYDMGb2vjwaTsnirwIA7DEWUwJnc0bzeRivbxZpvbvSEnM99VV/HU/g/J/xv9Ue557dHzpabsUvwQVoxJ9Y9u5TUEcGq+4FVr60BDaQJVYmqSKBCVr6rpFiwPGq3d6jmdufsffDRwBg4AwcAYOAMB0DuTGzDOX7kddnvcnRVaSL6kgAh8Bo+sVvNG93i5VQ5Wvt5XvL55qq8pKmOHyFP99+f53m+6p/EU7yBKUMMKg1uFwJAC7ZYRXMc0kNvQBsEBSm5FpMIA5HoeSK5lklAYOFQbxMjga5ulwIFkFlS5uFOXuTiRxDKlzZEyN6E2GiDHkcQTvu3hkBEjZmZpzstwyK/fV9VGiv4LysH5L+UbCx5X86i+iom5QjBhpclu0YEJWYqFcra4XNP7TMzRN21S975Oh6vUDWdiQ9Xm13w+fZ43B2boaOAMHAGDgDBwBgOgcbya9VxXk0svmfp7vcjnJ5iWa8gQ29vte3emDdlhH97f3GflF/P3aUxl4INGjpG4c0uAbCSBBxSQfbvNUu0iLoWmZuCNUN1E9kHEzJaDUq9ZBiS4GNbLKTOaEDCNQj2E8ke7QJOGpFU708jq0gHcLBiak6NkDUCToDKj33vjffO95fGM8IwE5ex7VAbCekIZ9vLluL69+jFNrl/kGshAnERAattY4bFn6h4iqpfO4Z7X3sS2MdaxOs5OUUGbYPRYbH1XMxfwRtsdZ31gTJKmW4nORM4kMnNW1iymttcba21py403VUA8qCKRR+tzsgA+o8+TBzz+tncPG/7/VPg95o1YnOM2x6O1jbEo/RmgV+4grRAFOIESD+/7/hYuIIz9Hv7CGC5mPchfHs7etzPjtve57rRuX9m6AjsWGG6V5N+5ojcp1xbnsd7CYh7poLxPcBE+obEMR9159Wl/bN5ng0VSoDLWnvNdjgvBGRTuRAzvSvwiBliAOjj4V6SiNHbfq3EOzOejvHbsSjWTmBr3g8PowcGMfc6l/WT0+egK+j6x60YDf4c2eJdNdz2UNyK+iKB6Igr4OaMO1GXoxXcy74gPmPERQPhET7n6gnWOn6PKU+ceDnbP8P/b/NCpKpVUAKUUKNVVKVKqgApQIQgpQKilClQUKqlaoqqKVVAFKUoFKBShSiqpVVShSlaFVRUAICqpAAlJSUqqSqAla1KohUqgFKVFCqoApQKVFEUEBVUFKhVUoURUUKVVFChQqKFKFKIKUFJQUqAQFEUAqqKCqpRVUVVKUEBUqmgUoVVIqAVKABKqgKUACqpSiBqqoAKqglKSqpSggKVRKqCooUolSqNSVRRArUUNVFAqqCVCilChVUCAClQmgNUoBVUAAFRVUkqgNSqpSiBoAqqUogAqqKKoFUqhFVSBqa1RFAIpVaoo0StVUqiiEFKUpQpShSgKSgClKUQ1WpERDWklFKqkpqgABNTVKAAAAKqgAaklSEmpKoAAUqAEFRRAAAIAEqqgFSqlSqFKAgAEqqAUo1UlKoAAqqAaqVQAAAAKmlAElJpEVQAVKoAUpSlKUqao1RSlAAClAAACqpFK1RVCqlAihRVBQEFKAIAAKUBBRVIpQKUqlFEqUFACpVKUo1FKlUpVVRCKUa1KiqUqlUApRoAAgCooAgqqSSppVKgElSE1KoKqiAEUoUUUKpVFSpDTUUVVNAapRWtaDWpFUlCUJIUVKTRVKUApUKNVRVAqgClBVKqpVFVQUoKqlVoVSqqqpAUogQUoANGggKlVShVUVUUqilAElVQpQKVACKUBKqiqpSgkqSQlVJUqgBSghNUoKVKU1RKoAAANVVAApSlAQVVFVVKCBqtQqlKKlFAqKAVVCAECKUpRUqlKAAprSVQpRFKBVSqqgAAKVoAUpShVUIBBVVVUFKFCgAJUJqVQo1FAaqqNVpQAAlKoUSqpVUAACqKAAAgalSqCiaqopQKqqUVVQICooJSgClKVUhNalUEUoACAaACBCAqqAAU0oKIQIClStKQhVJVAFKNVVKUKUClCqlUogoilKKppUUoFSlUEUoAhVCSkqopQKUEBVVSqUFKCQAqkqkAVJUoKFAEACAoUpSqorVUgASpVAAKUpQApWgAUokBSqqqqgCqoCiqANEUoUpSiApUCFSqIpQpQAClFKKqgGqlUpQpSoqAAQAUKhRqqCqoNVRQpSlApVaVSjQBSUAFRRrVFUpQEFKJVAFE1U1KoVVFKKlUKUpSlSiq1UopSgoqoKUpRIKUpQUoABKaTRqqJKUUoAUqSqqBFKAFKCUqhQpQClAVVAFVQVRQVVAaIClClFUlQTWqoUoUoAgEpQFKFU1VAClKIqBBSgqqIKioAFVQqKgpQoUVVBAIBADUokkqgVVIqlUKqgqKVVVFKFRUUFVSooVUoAAChSlFCUCClKkURVUpQCihFAqKUoVFFSqhAAAFVQCEAAUoACqKUFVSlKUoAgSiqA1KkooKpFBCqoqqqqVKoAChWgUqClClQUqAEUqClAqqApWhUpKrQKNKhqqoIVVAVVAClAACqpAKKoAFKUoAJSVVUBVUUoAhVUClKFCooAAAKooAUqAAVVAQAFVQAqgrQEAADVVQEABSgFCqiilQBVUAFVQCVVArQqVVKVFVVKgBBSgFKUFUIaqRQAUopQqqqqAAABVUCAoKqooUqEBVVSoAE1UESQUUoFFU0ABFKAUoqqUrVVSlaAhVKqqpVVVIogClaAqiiVJVClACqoaACAQhAKqgFFUFKIABogABAAVVUKCCgUqUmkRBDWtKKUAKUGqiNVSqpBSggqqpQSiihRVIAAABFKqqIABAAilAAUkNSCIhqqACqoAUoCqoilBoAJFKAABSgAqqAFKAACiVQApRVUAAAQAAApQBSgIKUKUAKUABVIoAAFKIAAEAAACApSlEAFKAAAACAoUApQAAAqqVVAGgKqgAAAAAJVUEAAAgKFAApQSqoAAAIClAClAAKqgVVKUAAApQAACqoApSlBVVAAAAIAQNBVUpQApUUqlAAAAAIAKihSgIBFKKqqlVAhFRQKpVAAqKKqgABSgNVVAAQABSiKmlAAClAAQCAABAKUCAKUABAFKgEVKiKKUpQKqgAFRQFFUVJFEAAAqa1KoBSqqgFakFApQArSgAFKFFagQ1ERIQmjSiiKIaBSgAAgQAAIKVABSlKAoKoAAUEpRQoUAAAKqilQAilAApQpQFVQBAAABVUAAgoUAApQpQAClQqqiopQoNAAAKVAUpUKqlKUAKUAAKFVVKUQilQgKUKqgEKqglVVKKBQQABVUFKUoAAAAgAClAAKVACAApUAAAKqgFKFVSAVVCq1QAAqqUoCKFClBBSgBSlCggQUoBSgAAFCgAAUoBShSiApQKUpRVUAKUApSlBFKIAAClBKqoBAFKAFKAAqqFVQAFVQpI1VBKqqqlKgKigAFVRSlKCApQQCqpQqApQRSiqoAAABVU1qtSqUqAABKUUoAFKAUKVVAAUqqoBSqqgFKFKUoAAAVIKIBAFKVrVGokhqKpQAApQEAAVKFUAKUAAABFKFCoApQpSlApQVVAAKUAKVAAFKFKUpShSgFRQKKqqoAAAACqoKUpQApVVWpVUVVAEqiiAClCooIqqABShAVVAFSlUpQBAVKpCAKFKUAAAqKAgClChSqpAUpVVVUFFVSgApQgpQAAFVQoUGgIAEIAKUApUIaFKAUoIpQAKUQNKqilAKqgpRVFBFKUqEVVAAAgKUAKVAAAFRUAFKUogpSlAAAApQpQKUAApQEAAACASiqAAAJWlUKABSiqoBSgUoAihUAACAAAqKAAAUoUqAAoUAAApQQVSqIAAKAUTVa1FAAAilQIpRACAAAEAAAABVUAAUoAUVQFKACBVVKkJqNRETVUAAAVoRDWqoAAA1UqgACAEAAAqqAACAAAAAAFVUUoAAArSkAFKBSlKAAgABCBoAIAAApQEVFABACqqAEACAKqgKqqlUAFVQFRWiApQGpUNVQAAAqU1VClAECSolBSoVVEFKFVSACqoVVAEqlUVFBBQoCAoUABCKUAQJqlAAFKDWpVUAEAAqqAIApQAAqEUAApQpUBShSgNSia1VBCAQKqlKFRQAQAFK0KUKUAApQqqoUKUClEAUoFRQABoAIFVQAEUoCChQKUARShSgAqqUoAAAABSgAgClAAAKqgClAKVVUAAAQFKFKFVQAAAAFKAVVUoAABShUUAEBSjU1WooClAKUClAAClAAAoUChQBAAAANVVKqgAASU1Ca0DRIaqiApSlClAAAEgEAUoFKAABUpKoAAIpUAAAilClUqlChQAAFVQApQAVQUAoUCooAAAIpQABqVIoKqgAAKFAApQABAUoABSggQUoFVSVCqFKAAUoBVUABSgABSlKUoAKlUAEAAgAAAKUEABVUCKUKVVUFVRAIAApSlCooFKlaUUoFUlFAAKUCooVVAUpSgBSgAAFClVRQpSlKIBUUAAANTVaUAIAChQpQKUAAKFE1USgAAErSgFVQAqqAAKUAClKUAAClAQUoAAilAoUKqhVUKUKUAAClAAFJITUJJpEoAAClAAKUKUQFKgCoqClAAAoqgQAFKCAK0qKKoABNapCSqUAQIpQAAClClEAgClAEUoAAAVqqKUAAFUFChUUpQpVUAVVCAKUQAKqgBSgURQoFClAClAAEo1qVQBAAAAACAAAAAQABSgBSgDRAUo1UJNSqrRqVRAAAVVAIpQAAAAaDWiBVBSlChUArRVAAEJK1CaqtSomhrVCKACAAABAAAANVKVQAFVQFVGjUlUAAVVVSqRVVUIoUKilEFKAABSgUoAKlVJVBQApWqqlClKAqqUKAACVQFClAKUABAUVQAKqg1oAAAJABSgIApUAUo0AAAKlUgAQDRACqqqoCKFAKigAAFKABSgVUqlAoFAAQBVUAAAAAIAEDUpGpISQkigAAAKUAAaqqAAAIAAKUpQBAAABSgApQFKAAAAAFKAABQoAABVUAAAVVUoAAUKAIAAEIAAAAEAAAAAAAJVBUBVCqFAKJVUpQCopShQoIpQRSgAAAUoVVVFApQoUAKUKUApQKUAAABBQoUpSgFKkqKoUAAAAoUpQKVAIBBSqlUpQUoAqqAKUAKUChSlAqKIBAhUqgUqVVCiGlClVVQ1qUhIkNSVVSqIKpVSEqVUqVSlQBSoKqhAFKgAUopUURUCUqqVSqiVRFFSqVKqoKVSqKopQFUUAAQVFAKUBAUoAA1qpVAKqqFKUAKAUBBQoUoACVVClACoogAKUEqlSgpQEAAAABSgBSlaUGqKrQolKqqKUqlFRQpQKiq1RRA0pRFVVSlUqCopRVUqKAUKUaBVKqKVRRSgUoNAKUClKUKUKUqqCopQqqohVFKVVFKFFUiiqqqqqoqqFKAioVQCKqqkVFVQVIpRVUoAVVAUKVSqUFUgqCtCpVCBSqFAQACqpSlKAUKqilKFKUoUoAFRSqqlVRQBAFBFBVFUqoVVCgAUoAUpSlChVUFKIKgoAACKUAKUpQAAKUAAAChQClVVApQoUAKhFVRQRSlKFRQoFAaVVKooFSqqKUKIClBVVAUChQCq1rTRomkNa1VAVVKUCgUQUpQAoUCqqgAUoVSilQVFAqqoUqqqooAKUoFApQoFKJBQAKFEFKUoUClKFKBSlCgUoAAIpSlAoUVVApQECkg0TRKoIpRVUpWpTUlCClAKqgKFKUKJFQUpSlCiSqoUoABWpSVQApShQVJKoABSlKgClAAAAKFClClAKUKUpQACiU1KpQoUoAFKBSgAIAKFEAAAqqAABQoUoVFACgUAAoFAAAAAAAAAAQUKAFKAFVQACKqkkkhJJFKglEUhFJEJEKgkgkglQSopIpUqpQlRSohVSlKqUpCKVBKilRSRSVUilQSopUEqqUiVBiShJVKVFKilRSVKkUjTJCQSBSkilQSQSRSooqpqGtSq1ABoakEkJJWtSqJQlJBKIpKJQkKKUqKURSiCSpQkIJEqCSKQZCSFURSEEqCSKSqUqKSKVFKgkikkikilRSVSlRSVChKikgkglRSpIpUUkUqCSCQiEiEKiQKUkEqKVIVChJBKAoaUqKSCSCURSopCKQikJVJBkSkKKoSRSEEqiSlJBKgkYpIpFIJJSEEiQSohIpIpAilFUpIpIpRBKJUUkUoikikilEEoglEEqKSCSSKQikIpCqEqKQgEiEgkglQSiSISCVVCSKSKSKSKSKQilRSiVFKqlKIJIpIpIpIpIBUEqCSQikikgkIJIJCKSCSKQikqkKKGqgwkgANSqoIRSgVVUogAAAQVVAABSgAVVJVURRVCmmjU1VVKogKqilClKqhFRVSqilAAJJISSSpJUhKlSqtv+lN4gdgj3g94p+0RWBPZFkkAqAn7faUo62ODY/XL90Vxbz+tsBoh81uy2SH3YdYPzc1q32HBY79LrjGx6ND7yWMgkYlyA5IqVGRRXbpzi/fh70jYIogfvAHqc67njsBfWTF8z96KFQtE3waq3r548XITc34C5gPP0fubZPfrV4cSyer9sd/Jdua2KVHsQET3AQ+4NyGomn6CNQb+Tq1Fq6J+/ujvA4QExADmLxHyclJkkE+vXl0RoivZgdRC55oAePGNu3RvzsmOn1a/3Dy87bZxE6ZAwnuz5nvWSG3UrmdQ1mWzte/5AuR8Q1mhfJF7h51ovVngDBejw2hrHfRvkLTyQoj9eWg2isggh5h+Q+nmkRHbv0FnJ56xr6+W15/IeG35OpWT8wXJHj1QpoinuApaPzz6qYv1PJ+VxzPhb3wTFjadaM4tfELEtL25fb0dzfGuccfDjYydpmAWHuerXho7h8Nbeu+mjsceQuc9kfwgqd4ir+B5A29j4N+PlPvKnaDzFA9RFH3BfJAMs8GQ8WO1y/GXg8Fn5VFwwYbfKh1652eDNvPfxweyPBDvFyRCRA6IoHk2KQDvVflil8JgkPpt3J24r3EAfpy/j6Nb8hr+Jcp5+64jfmvq0PnhMYaL8H3cU7QQeYBfz7sGx6zb1PnD9W8bTi3rr779kBTt6qxH9Ma9mxz3EQfZB64xyTar2fsrfY4bCTyDqhsIIMcCNNDwHm/nTT8jDeMg5aMpv0ogch6sS1F5YxaWAMzJJIMLTCGJNTOJAJ5AM4OuRur8YcqkWqdRoWstbMo7lLVmzWA5SD1SrkEVKBJEbjuMAgHyiSBXgECwfoiVAIBcmQe/z/9Jz4FEU+ER51qlmDU7xonznZJlJpshmB6IURGiSI0G5AxxxcLuErMeriWMCqBdFB2AdHVgtmI2AgyBK5kWMpedsa7TzhCG0ey/3vf+Xc59n9JxxedQ4/s2MHRgEkibASn0oL98uNprlEU1uVOXUDghlb3T3VEH13MYOPOgtfHIOKMQ8SEjEnFw8nOcioEhIxhgzFpMVAkjQTzDiJ0KWAuG+0b5fIiJ8p209cGaQ1iC9LSdk3JtkSC0BJDBAGzOzmLBBAgWeVcMSET9iCXjvBx/Ify/rAYjuEhAwdKAP98v/n9/zuk9f/PSdAqnfnJbqvHF0smoDX6VRO0HCqJcPCIh1Zt6P6ApM+3+XKAD9eONJKlue1BO/XG8H6dbldU0q+bu/HxVVoaXqUlT3ZbHBAzy/SKb+6TB2LnoOAyKM5kAC07qZYL73pSRjjwDnBAliFRURLT+t/3K+i5/Wqh/Kf25S1Df+OqgfuAp/ylPRyVjFP9PNbwVT/4IoI/40VSJ/tToh9x9wP54fx/ZEU5LHmZj5I8st/aP2oUhP4HVZCH8nInDwxue4EJFQ4gqmDfKcxeijjEpXAhDiiyTMvPEA9lnMwf+LBFKiUThBjGSSQPQhCvHkOVhIRh23Ey4nKSKxTAXZYPMEetecLLYIEnEbIAWIJe0khGQZGxEb7FQHVbRPwUUgerApzEU+RUKgKHj+RQD+eAFgNED4VeGYJI/4YFH+se0obEOGP8D+xextJijj0VfVEifq9cwvb+GpcN8dbm+P8Ir3mFg5JffiVDkPZFxZRu18thK+r733wI/7saiqjCB3iP9ktSSJ+iqC6RSn9wqRP5BIiB9wRJFVP3IoDiQgEIKZIgIj9IrSQQHtO8+QBMAvyQgIIHmIKshCCQghIhAgIMiEiIqGSAEgwixgEIArIiAPxYkJIIIyBCISQZISSLISQYEEBiQiIAJ4hiIKNRQkBVUNICMFERpARiICgw9wRUoQIQBBZBFWRVRYQQFSMJAUGSQkZJGQC4IDEagoIlBBBWQURhBVRIQAB4gi8RUSRACQFA0QAUCBAkhAZAkJCRJFZFIiCJEEmpJomkCJBGpCRrUjCIQZEEGEJGQkIxIQkIRIEjCMUFU2IiMIKI5itJASQBTzEACkVSKoC64KBEkQISMEgAQggPYPcCg+QS4SDIqQgyICMiRipIJIjIIiMiAAhmInEFUIw4iB6IraKnr3Xr/HQBiP3FTaID31SGICfUfURCoKB/waoPQCDFdRChICIwgAj9KD7gB5iCBYDiIHeIAJ0H93/KePHbAgeOzR+QMRv1SHlOWoKgIZYQVUiK4gGIJUAMFUnmJ+0AEcoiKOV8oXr94gpWdgxRE+EimJCeh0HXWyxYclxK+BbbKZOf2cpmL2YHumn2x/Y8FC6+/zzxg+/chmx5nPf19fXu/Hc63O0T5zzt9HGLbmuOacM23+d+cIeyc44/MZqjV9B6nEByIqemDTsQeGHkiAWIKoZihkSKXiDm1NiwUIg4gNpIFkqhSVRaIJ6iqhIII4Q0KA0gMiEigSIoSIpUcw8RoIsiSId4H7gIxRU6CCf1meP5ror2g6D7orJ4bcwCzH9vgip+4WVv/qH+CtEcXWwOpQnGEe5a49EmQlfEbLb4wngwPEklA+4AKcRzCRPkHmGeC+5/OqDhLkFUGMNMGp5gKpUcxeTJtY2i/2zNGtqfcNGmgFHdimRRTsqiUa5of8B2SSEOlTFY1KrWVPJm30NtvKHrI4SQq3rR2lVm/bKqn22K3r0/3qPUxA/iH9sgiBR890lP9NHdFDVdBKh5QU/Yop3PD1kOshz7ERHnkLZODNjm0K+kALNjhE16TM8QgU6aVAgWCtk/Yo/IHsnMDbp7eb3Z2DtRUOvOu2sL/whP6iAmw6rEhCEtAtBUHYAUh4h1b/R68OEVT/JD4Q/ZDqkv/CjovSqD+xHt/O0//xEtZ4gQt5k4GLQbgGzENI6YgVbgQ1CF61xjNQHWMjXZDhoDEqBI34HeNlYR8ZH2G7IMRbJsSVU7T1OZI8MEQGvfZOsASMbMy41KlAeNvGV2m7Gxd4DijOTVvmr3ECR09gJJdp4arSopJZ0w9MYe3+S1zM/zb/4dkVTNYD+6ghiJ9OSZosyIh2a7wdXFnASRM70RwI9uuekuJ2SQswyQa7CjZNG4OKr5b8FHqOF4EwmZ9LjOISRLUZxSx0G1KLDIiLVwCpAQjQAkieaxqDnnKWMbLCN7GWgTG2JJIp3BXjjUdo+6VG08DWAZZ5osnuoJ4GZW7vY+jbdPsXiKZyaaDoWZXuvfGv9REk7QNTMn80Zf2rM1slyQj+2SEBL1sR3FfPqiLAAFGhAHFuJdtPMuBxZS6GFys/cjzxnShAJ2AARWMJIXBP/N/IfY7m8icyX7BGyO70Q00mrv9UnFOdkokhEOg3kf6SRDc7RgcTIyo6zaMY24GJMRsCSCVkl3mSHjcQXDjYeREFI0bCQkSv8egnoVogQvIo4oW1IkmlrTAUhXTzPUkthr6lCpJEIE1DrtTdLRIBRzAkBzdqgmPPOkgF7YAd+xIATiOb/B3IyqWgMGW9cyvkjqDZ7YQWjHS8mDceCEiUhG5CEhwf0GVtCxuc07rgx0gqUf6D+4XQU/rIEikSb1QfBZDdQgDXo0eQwYC95DzZZNQ8u6HSAJHmJwqkJh0X7SSDOyBCf/DU3h4gSJTjM1aEhVhSRl7fIyYirO3sXH+UStTZLIj1x1G76/P/K13KM5tXlfRzhJRY0pHmnReRQGMiMyX2OchO8wUbJ97gvCN6XMkkkWauf4O7TvCRHtMBgSSSL57NshHAQAqN0gCR2AwAB1GcskJE0RJwIQkeQnFfvqRRy6s0n9ke/SF/WvW26mW7SOAELPPQfH3k2lB72QkHKySZkJbZkEJI67asFSSEiLEfgzwwRax0+Ym6yeglkJTKqDUI3k3rl+0uvmNTRX6Tl8mGoJPgxaCQj8bGyoyydHjiDSGQmLdfUT6A56SZRlZZf7wf2ie0mHVKaeU3XQUQRxiBI2CB6hQSEkU6VW8pCnajxCQHf2b6f2aVf96If0REP8UP5oABmAe4BtsKdkTpISLCgpQwrYdtJ4+diGCTvD/bUR7a19U7x1CEkSkk/MUumYnMwISHKylWRILgomj4TBr0L/49pJCE/wGJKcFfofNq/nFalqtQtJIF/q682QSEi73o3M3oprZJJIug7AkhIrCDbp+DwmflP1l813wPmb+IYY2uGXCqOHhS1TMvC8+Nu6+/J3bTZ7voiRSPECFp4cl80HrlNegrj2De2YqwEkbX1MBBi3jJ6xIFYlxdhGgS7nKdpI/+rMxQFfH9jK4aFhS5Sm60HEuB745y8gAXX6I8I355aEdB3dbzjLYLTq2KL6nGiP0N8++OVofEMi/f19FuZBWLP6h2mZISR2qRAlKyi6/gf7DXKCQSEjGHYY451THkQAKAvbNiPMS+M3/+5V/o/CxwMZWsTkGoMIST4J2uRcCihcD9ZJCQ/licZMw/UBAKNdA47y9hSiIgprUSv8A0QWwQs9ro1Gyk+ZiQCFGvvfSM+rfsoEWuX0amsURaIphhN8aOaU5hjeLHKXCS85uKnbPEucrVeDzJ4pxkQv10VZx8Ru6FJGCg9ISR3H+MRgUsfbb7vklCZJALAX7yB/yMqIQYijCAw/lBAdz/Ef9p/D+8XdIiYHHjHEuUZuw9iennzAxZKgmpW1mdo1P+XVxQupDc06cay+vxfMSSRbiLqsqf2vjHMAfRkhmSZgSOhgC9MDBtDA9LUp2hAC2SDVEQyGEhIvbxGMhJ4yXEMJJB/h9opuLUdOZV+8AAkPYCm4SAU3dc83PXd/RKOGmEAKvBZy78t3h1aL97eXtv3/Fd1DHeJSINOB3eMIACdwYz/Yx0psXub8qbYKVN6mkVfSsXAiIxEcNWtJ7B8YbXqDX35O62LmliCfQ4fygkCdn0zZ4CQCslcFxI85o3i0S4BISJf+jdAyDj+o1zbcRTyRV/sjATbB0JRruf2BBGGpOf1iuRF9Yz/EYglEXmBIRJTdWkgF/k0UQhCG2qXnMswrNukSAWHYgJALdAtkCmgoGEJIn9dGoqd7eMDLO0aYSBe8YXWwdaYrYPyBY45Hfi9fiS9Gx6tH7AwiBCcX+Gc/k6HBbgxBAMQ8yv4stT+iOR5U3I5xOy8VM9gyjqrfCSXtuVN2vwEIQyWlMSo7KI6pZKJbM/UiKmqMne4JmAZ1i2O/FWyFxMBkswW5iHNq+cp/HmbGxa3f/J/oL3IfUHcfv2OFFR/4qX4IyRFXIe4rvrReMiwnU7P9pTAXi4tKBJdTAIn9o/A/DO4Xun0e/4WQ2+ZyqgageY2hwR/CODA0jQNQZwKcbeTxIBXIGAoP5Erme7qL+b3lZsSkV9r2cRpInzescTNCUSAVpeutiOJw4uldMadk0xcsWAvGhjvUjpF9RD1baXu2f5ijlY0U5U/DzH9GoRQiNYs2DOf0u+X9nVo9BNCeAjP89Z9Zin3eSJ5Keh8exEOkpwalAJCOhj0t1FCj03n/c6TD3TAri6ReIjLmw37cTCSQeXxl64SAWOIrbPRwxz5TjPOXgm75gPEQSSESkXpK/RhrG04u5af3QcNJKf9kdjV48ny5fX6/TJceyjReDZiI03jut/Sk0acUra2pt8EWrQTkc/izRHQyoRGNuFsh42nD8/p9GGTu0zx37GIFDHGziMP343t6ONVhMVnqwcMBrDWkPHmWj03H4xns/qTsn02Wz3oGRPx2XogBIvztm5vFD+xfrs+/y6vqea7T5bQ9p7j3Dsm+RDyXncCBZGyYtJqGqojXPWRywzIvTPyFRX7j8CQC1jXiKNcm3WqYjkGOUuHETiYxm0XFxUW+OG36SwksMrvN8SJSDZ2Kz3MnMwMvybBPoidWGDwwsPbCKEePJjIIiqSEIjQgGxItzwV+12bFjmBiBouV6kOwUP/ZALePsZT3lqnW6y3WIQLFGfczxh3DYVMPnEbBlctgEgWoPest8cJIRkYysZdea/0ggjYQCIzGQsGTUDeCHiCKHEDmHEP5X+JFUTuQC4WudEOtJBxiRYiJbIxZRFXOiLBhmMjd499EiLol0MZN/YAdQxeiQIR/tqK3nB1jjL9nVzn+vDHdUjEecCsobGe616QkD50OMQEID62XlnhTW4+RpRR30daLHgCFp147EQRQTpiNFqMzVoxIimS9oX4xG/k4dpFKIiietB4MjCj+ar0NeQJI9Rfo+PcoHopYmeKu6omQ7vpUouugfweOI7cxl4Mh6wo8pvh+M3qB07zD7w3RAhalZmPtgrv3YiREWxnVZoxneCI75AMBmnKjg8uMuL63vlJzFNdvpXm7e59efHvGA5A/YjSf4U4TD/p9ChISRD4U2HCbM2fFl7JDKJAKKleVcAdpclT59dShPvcxrCgtGZRiQIsZBtphY6L8cGwk6G4jtKP6/NfhdwtSQC4xrbdinfFRwLXO4s2vR+/mspQV7Ub6c/IqBPPco/B0KciXGu1H3vB8Plx90ulGPIBjL56DC8WD+xby4e0fXauNoyRkKNpJIFLbUPXsES5ABCsjuByHJCSOlGtznHpiuCUnmLSQmIEphuI71zjjpeRVCJsXhet4v+IxirGN+oU0fzKROtwNbertMHkJJpzxdeWpU/UPtLVzZgBCcYZUAhOzR4V+IcLQwVY5CZE8cl8chAjCmSFV6U3TxUozNP6VHeiknnpp34dES8LU3otruGx8Rf4sk2yxWWZacQR8kvwwx7JOfu1mhUTEhgJzteEqfWkkC9Um0YNfgqO4S7B5ygkn9JLlPxmS+DJbR+yMeWsUMkXxDCEk4GSoGQu8wYPB5zPCx1ScbRq0AZ6HWd8kEZAxT2UggFwVnaInHIYC4fNcdhSnn483AVCli9vX3P7vCOYyfbueMt7mT4n1PTtczXpT6DbQ1YkkiqN2KWW49/kHew6T2HkOr2nsJMvXt+zT8Te/V337iznFwFeou20HVcg9ZBt8n0rUcuQoToLWOFATjAhBSwBKyndBY9zJf14thbIO7sHZlc4qyJxVEegJ8iwMq+Xv6dnf+Y+OnJ57uXjwxu0/bh7vl2fHGd3svITr80oljVwZ1eT8iTJltUqCvVJCBYB6coWnruV5cEFFMvkH0C4n/qwjDxF/nF/GNIFvqidmCuaqzUnJSEpqAW61BARmIqJrsUA56YMQjRlqfFrCMlV0pU8RC79zini+47XD5UFPTIIqEXrBGIRgQgFYI7LBGCKaM78iRSIviKBGBMfYc/9ZQwiQCok1NbdtESX5RHXA9eK46w0gR6t16T4VluXBHfvZbzgvJd2Wc9Gng7/T3hACyNTXcHrpdCtG9Bx45M2q50mB+zl6VnMvK/uxQ/rBuc124rbZbtS9o9DimhR/H8S89d+ml3ZX6Mfkze1+vQWkpulLDl9gHGknUT1zg/keQWnBDn24G0OInLSMgSgMgQrGF15HIIR0gclGxfNY8ZaWGIt8scvtIE3CHT5pMf/JYSS+IioIwQCx6mMiPucz44/Lu9ubhq6OfXs90lraXenw+f5hfk/crsgfgGnHiPCGP539aa6Tb6OUNFsfp7j27a5/uiKQ7u9yeYGRimMLBfrgdl6/T3ng8EkiXmCW//U7XD8Exxk8Q31C30A+YM0K7503qCqaJkEcXrrO52av82fTzhQEreGur3fv5h2BYGgLA9wTbofvN9Q1vcHy9wU0B5iX/bMvK2xs5eoN7Nj67NkKyhxEEYgQsEsPnqwrQIOBkCSkI6KIwecVjrS+wCENhFWRJP+6Cfx/o72xAL9UVVrXlvfWLuYYvVoIeoBeHqGfFEM0BtCbV8iYi/9m21jaIcwDLIV+JyZiliNhCe4oJK3G5cD5pLKJ9/DVyhs4rqKLeK7D4AhF74SVz4xx+n5puC+YyPRRi9UDCNzHg6D6fEvYfCacpp4j1eY+5YbfaNBhfir2opEkCGWTsLbSOPPrG5Utd9fKa7iUc3nKJZcZ9QIzhgX7H9shJ55Ze1pcI+jWWjsAsnES851kcQ1xIdZkxH5PIdZ5Z/EdLr1nmfV2Hb49y/09vxd/p3O7xdHbOHj3q0CTkwhC1mAOHCvmnrb5MlEEKUG3fJfW2Uca7UwbDAlYyQCPHSkK8yAEceQ4sSISCSQVVqsOG+tuJeX6ZoLGsf5/cSimZRLdxKWMwrjUayj+mmOHL4z8d3dslW6fbw5cP0/1ZeXp7PZ5cnxerk892SlfeZX17MJWmOXC+7/Kl/3V0EmS9GZVXEE948Q/bCRS+WCewY8rkkJMMqMydogtwrGBwyEMszlEYRwkA8LVQ8Qic3NWYuJyoYtKJXyNBq5C9mHzuHcSERjFfqKiUQBJCRWRA+ZNB2oK28tgAS/ykzA7qp7GAnwL78GMP1FG8DkPJRz2Dx0bHKdekNMFR2SCnjXJcv/cZv6Nd32fy8Pgh0PPnXJ9Z0Ra0e+x40XCjze+uCYFPcUDEPMA3IBzD8i9wgiPE32PVHT8C88sTqH4RQ6iih1CxZVU21zxa59+Z9Ua75xJmWGx6m/xKImICicMH74xuRE7RFfc7/lfJ1ADxaFWI/Np5Tq5xg5LP4a/O/XFtqNVN70gIzbvZBB4wdgqBZ+Nq1vwHIgh5gr1nB8pfk8lTP594OjVH3sW5Pz0KA9a+vZRbffd9cGc9g44sm4PBFbQOSBbNdyPwgeyLsZObfIjxASRS7BMR+Q9EHzO4m1Jr87lg9nmBQB5gm1/zv35wvbz+SzeF+z7sYIIOIpg2rzWC3YyUvr5zYvMxN52nEaIYPDRtqhkDUfMD6gYYfRgpGHY7+s9/XO1cVyXPKabeDkzZuoqZLZO3rz3ybnndxTs2A7eT67W3PCb6XdnyijxwWE98dTtxtxscmybpzyd3Wxo4Zb03zasEPnXnjxgmuDbbuZPZ4XxagNGAXwxQEulPe/16NHWuYU/VPR6K3hwbiofCc9WseiHcgcSiCKXiZEj8Dnw2LH03IeOT33BPqIrmIq/G2/p7/QmyAbxEE4ubHvRY98/a9tvDc7Sa7xFQ2gL2IBx8127KgOLHz39cdy3GTv3N3w9HO2gs+6ed7fCAZiagPUFEPMe/unPniuZptv5POvv8fr4HoIPEED5AADmBv37o+cUgEOdNhA9QFKiPiADzFPMH7IAidpynyJkIqmSAdmJ9QEPJEfaQQPwSIm3HG+zXrZsII6vROJfxC/ui/f3Xjp82PxuGhbxEU9GDzBDcsdFlW/alAkBH6PqhDpiXfZwnztgQ8WE+Zfj6di3fYeb8fGz664THwp+zbN7no5Le9HGjXUe+1Z8UeLlD8gg80UC+4CckELRMxvCuPHp+xNnR3scbZdtN6d8ejm7tk2frbceDn52Dz09PeP0JjdtZEB3PzgudnAlfGTvcsmqaPO75PRruZL9/NNePt9e36215p7qKlu3hvbw1RPe5TAt6sfYwOvVCHuL9+qX5AA3IgHiOu1PMc92d0DBBQD1A7EDqB97lAnnj6Czu1o8tzO7jz9Pbh3mLFB7v29b9mslmfLG7bDXzvbQRwfdVwncoRd4r6gBbmU5KMXefwCp5xp080+oc4+4pzfhCPV6v2Er7O+/Bfwx7vyg9CfUAMEVEPp+ig+PkNFdV+T3VHaj3e4wdUhHXqw7AQOfWrIeCCuYohqHrxWnr8y/mc6263b6e1Ifco8FWetW7u5624nBRXX3A2/CdET0xU5bUu/ntYX6vt8bnfkkw+/zfb6D7e334PNVvOwnJBd3z2D6msmdfT8E8X3nPfYtxr1CwdCSw+nbebj2ivUAO8fEVELPbxz3wV8tR6E820y7xjq35792/IIfkRTaAHaJRA4PHkybCfWvGwepvMPd8ufe1bcbGI8CednV/r123yYOXcTPT3igDx122L1AOXru4GTO2QPy6bvcTz3Q6CxhQ8R2jtEGQQPuABaIHURDHbubWbzy4s/WsGej5egy1udHfkzf0mjw24FUNoCG+NHXzm/UdooifXhpV3IL9QUQq35Yv777ifX2fTo1EQG+kKOwfJW+xW+rnVwEGBquPhewcn3y1vjAJpgIfUUKgAHeDeILyc4d2/Xh58N/queOcJ2+cElj08nks+gv4KQ9wNQ9kUBO80+CfR4t49c/KfhseWGBwX+Q97555r5l74OnBvsePwoBU1bHv39Wcw9+uh33899t3f2+q5xMlto8sjegwiWYdQTkn4QDvH1Ve4VFOom8EfcXmMI8IRTGDlh29nbvYa7badG0+/KHy9/PdH8igD0/dY+om09dnrH5Qh6IAmovixRXqpA4gHMQDphaAhggSfljgsdWchjfHn1y5ThglbFPggi3iDcggnnwb9HrDtr8+H32cHJpsidiAv3FMxFT3EXaeefv76ozzzcdfPsLb7HLPv85U+oiPIQFDERcO1HwKCKgO9+19A7/KD7PD6LPrrc29YL9UefFCeYK3gJIB6gPMTtBL8UBqJ6IFWOmx+Hb0WzE9wm+lQHzwaNj82LJuwTbsnyGYCr9fhX1Dr6o+HF+gBDoihtBeoPhh59NO0++21y8HfHK7fXS8QEOoEYEZIQjlYg+YhQwfIRDvFB4NvnrtW/Yfu195FQuQDciABiKGoBsGfqvMe57m3k7m0HeigBTex35weuq5+e/V9/EPNdH4OyAJtBExHGjfxFQSocwHaer+pnn8sZ3L46bYN4dwnHsPnm/rY2LnD9b2BkBOSAJ1EEJADtEPqYDkVD5BRJAQoIZySaK5C81MHtpPZ6bABsxVA9ReT76DkOiNRDxABDRAD8CO/X2Ag2356APqACfcEDswA3PRHbvz5g9yJc00r9REm9IAFTzPe+jtOuewGp2xv5r5mjjnt7FAa430adrP52O7e/13IGYIA8CVlTZFUvnC7RBE2YLT+fdjiIo7xD8gJWuL+ij8PsrH39WJv4LHcmtjFKANgMeLoVbsgKUQ0x4z49aOeLcBf6+vmPrBtx46l7H59er3eq2mqUR+4opYzMW5aPugUTmd4ngyZ4644O0Ln3gSuu565PH078xVBmaO6fXrp38XfUNbaSxmO2PmUEexBEPBlwX4VIRTkigfkQV7H4JnfbjsXb9B8G3kduT1c5nmSHex9e+fuW8+HcsHfHbk+dUoI7dFcbhR4xgtiD7Jj5e3I4MYMOA27dej1h7MOD3rTq9tgx+NjN7EEt8+7CqGxDuTmZxko9RX/vQQEkAFZBURSAa1p3bmtUNtpyqKWVjAQHZBBrtD2XjRNxQGBaKinFqQEfhjcFE3I6SBYhO5IHW3PjbgxrniG2ZWLHGda1WLb+knYoFE+yC3TE4Mm1uDGCt+qC13p222rPRjEwUJeBVq0Qz3xs5cNhB8qoAQHxbxsc8bc8ZNXvuZwE902YkgoPMKpGhitEFVAkQWooAwKIwCLAkYBAIyRmlUGCZlGa4l+CswkCSQER3aaCcIFURKUO5ByQBAyRDSYIHquJYIQRUxuIqdzYQBoc7W3S5Ro24RVKWMFFK3EvbAKcwVA320BtNG19b7X3dFQ23sWLN6aSSjOe2+5bcfRz1zrmsxw6cKIPDM0JjrrbW2i6ZtDa5egwlrx0Y0WOdG7rZwUpJIJIjGQiyECJCEiyCxYMYMEkisIndBQYESQURkQCUiAwkQhGJnxWSxXIY1vzbPzQWCSSSRZwVEVGoIAUQRAJEEhARGEAWRUBkSiiQjJBkkQAYkkkSQIMGBCS+GwBZzLlmjnvT2sYLVqUZCSMSgBS7xDaz1gt7lbxmxQW7LYgqpqjbIiBvFFuzNuwmTGMKgNkEHmimGqN8l9tbjkMpshmKgNeDbG4bUUHPRvvDBuWNqW1k2bJCyXqofZq4oDjraxfV+DfRfrbBaF0pDawqp82cu72w522m5njo1Tgq2Q3NVtWTiXnBEAGrPDZLKoEgQkRgkAJIsjCEiMYQkiKjAJIEgxhISMgQiMkkEhJIEIKAyBAJA8gIDAiojTBBFhIQKCqCQAoKgMIkCISPytZzW9uvm3YjwCqMgALIgiyKQXLseN0uXj3dQFUgzzejGEFHUsoDIIeECoSIAF43ua512OyWbZ1QgjumzBVTcIaZkvWTe2M7bQtq9vJY1xtY0bGrHFy9m6QAE1HiAZfROcG3kyAI3wetx7bNdc5eHpvu4OLNsS185s7hfWM6ztvbfanTdu5VDyoKDIICh/pp3GEREPyAlbHJ5LQ63vYv5oKIQgJCM4FFBkSoIiNRVUqNSRWoAUlRISJCEgxhGEkIRhCEIxhszpJ0XNy2x6uXAFPosPJBswD7PspAQ5j7gOGHF4byTong6PYqpskvYrNlJCshlZo61DYu62RhERkRB0AgXgGg2u4ncyIA02povar6bZCGRNz8K23N8X4Jte2LCgONjeZdjj6L0XaKK1i+044rSgDqI9prTizwzNCXEvYlt7W2SCIlGM6L6bPOW5AgSRGEYkYEIkIkkIkEIQYSCAkJGCoMIsgQ9AiDIIo0FFAggVEBGiAkKGLFUSEGECEm/5W+judHbbis6uYiFEJOFBBSqpEFlEYRkIQYyEGRgZpzLTYzbntBReoloitojosqKdhNNDtJAiSEkgaEpQjva0sAKb2bY3zVxuXsdy+GBfqJyWQAbbFcRAUzAee+ZiB6IIiZYr6h1jnsc72t367dtG5nrY3NHBibBRfcok321Y3u6SzwqA1nbf1sAI5tvw6QEd0vs5IccX3d3DcNNhKsJNc71waL6va8DgJSiyADIoO2S1DwbW2dsOXbYMhAhEIskhBhCJAkBCMQgSRYwCSIQSBGMZAgxgQAjAjGQJGSEYgIRgAzyAAwlQBkAFGmKKNQRooCSSEiSQSej6sdH1Qdi1y37G5ks+5R+q2Pdc6+zX3boe3QID8zyfY25O0h1tHv9/iJkiqhphRt5DuW+BsX71cUTqHbRRma2o9n7UU9D4s4gfrWbnBwcH0bFR0G/9PuIguD4dvJBVD6gB4gBkSDA780KA9G9HYiFzc7nF0AADto+On3uCdyIi8RA5+FbkBDnY4k6N+BBVf7UE/eCqIg3D53KbQS0XkgIB8iSHRDU9EdiH6I/c+kPPs48loeuDYr987BuecG3543XjD3Pwq5XMQTf6r1ES5tzZBXsbFL+wkOCeES6RE9QUXyQBuRDTUxQbjqg+giftEEF5v+vL/+khIEQJIaNaIQgiagSE0a0jSNQGkCGhBCSBqSEaGoiBJBCJNGoNIEJDWoEhIaiCaJqGoGiaJA1CRGiBNQhJqGoRBrUQQmoia0iQNQkhrQaQTRAmiaJIiEQSQmgmjURqBNTQQiDWoiahokhNEkJDUhNGtGpCSGoa1ESGo0hqERCQhokJIiahIImgQTRCaNIhrWoaA1okNE0SGka0SaIaCGoaNGpNENE0amoSQkCQ1IamoQAmjUhEQmiERNQgTRNEIaNGtGoaIRGRJEkWQkAkWRIySEWQYhA1o0ghIamiQhqGiIhrUDWtQgaJJCSBogSImjUiCaiCI1A1qI1A1qEgrJIMkiEjIsgMiQihIskgSJDUDUJDWpCSENEIa1o0amjUhqSEIQmiE1IQRrWghNQhokJCRE1NGoaNEhqImiaRqQiDQSa0TUJJokGRSQEkCQkJAhFYRAkQhAkWEWQGQRhGQkAkAkkAkGR1ohrWoTRqQJIak0a1CIgQJrUEaJo0a0a0ahqQhNEiJCSENQAmjUJIECQ1CQJCaJIaIahNaJCaJCCAhIrIgyJJIhIDIyMiEiSIEiBIyAQgiSCSDIASIwkmoTQGtQhomiEJJCQ1DUJo1CaNQkjTUgQ0STQSSSAEisikhJIMjIIyAQgyCSJIkIJIshGEiBCISCrIMhA0a1ITWmmpoCaEa0Qmgho1ISQ1CSQ1okQRBJqQgTWiSAa1o1rRIakNGtQ1IEiEgDIEgjIyCJISIsYqSCMgkgBIshIrIkgyKBCKQahJCahomoa1o1IQmjQTRNSBqaRok0QkgTRNGiakRJEQkJNQRAkNa1ITRIa1BZAJFZAJEJFSQCQCQCQATUhohCSENQ1JqEJISSE1CSCNGpIGia0a0QkhNGtSGjUNERqahIa1EaJCI1IakNEJDQE0a1A1A1o1NGtQ1IaJomkSEhNGkTWiEhNSEDUJJCGoBomtQ0amoa0a1CTRNEhqTRqQ0aNQkkASRGQSRQkUkJEkZJAJGQJFkWRkUJASRkkEZEJBJAZBJCEgaJoRA1rRA1NBqBCGpDRrQjUIaJCQgEJokNaCaNQ0EA0TRrRBkVJACRJJEkFhAhFZBkQkACRCRCQJAkJFkQkVJJAZNQmoSE1DUhNEhrRqSAahITUISQkJCSSEhCSEJNGtENaJCGpJCSIhrUiDRIgSIyCyDIqyIMhIIkgsgSKSEiSBIpIMggSLILCMikmtQk1DUNSQ1AkhCGoahqEIImpCEhqTRqSEJqE1o0MgsgQgJIrIoyIpIDIoySIhNaJCQmiaNamiAahIaiISSE0BqEkhCGtQmtaJqBNGpqIkmjRIQ0a0TUIjWkQkBkFIQGEQCQSSQkRCRCSGjRJo0TQahrUJAmiQ0EhoIa1CakNE0aJJA1BGSRkWMCQkVZAWQJBkWQAhBJAZFCQSRZGRkBkFkZBkGQkAGRJFAhEZBkCRkZAYhIQ1omjWoakJDUhDUCBIoSCrCSSSEgkiSJIASABISKEikgBIsgkhIMihIkgE1A1oDRJIahNQmoSQmiaITWiaIakA1JCQNQ1rUNBIKSJIhIoyALCCyMiSEikmtSEhJISQRoCaJCENSIMkgEkhW4JxBOCKyA/qCI/CIfIWIpXBw/lz757KKnUPUUELQAR+kUejxQClk3iCCeCIY0Y/fl+up3rZUB/UT3AUADuiKgL/sQEFp/lVFQIJ78T86OvbLh9BK+qDr9GmRUT9BBTzAtKgHxFD9ooL0WNsFg5taHY57O1w/Wedvk+/SqqAov+eIKCCPt770Ke4qoUwz+q6IQ6OxOSeu0DpAUAF88ekf5CKKHiKd4tv2LdvLimjt28X/hG0UX1BvEDaW8bwsV3arivzudvFy29Z9e7WCbz6h+X8+DPnWl0JbGcdaeg4tuYAjRgngse5nit+1Pj1xta2/FyyckNzYph393ufNvNnb4GfF09flAvZj7/ko1ET0RHJBQ0EOtz54O9jv7E1aXh99/NlsfN8H37v6r0VtkMXOznonZnfPnwDv/xdyRThQkEOj634= """ def tokenize(text, arr): """ Tokenize text into a feature vector stored in arr. """ # Convert the text to a sequence of ascii values ords = map(ord, text) # Count the number of times we enter each state state = 0 statecount = defaultdict(int) for letter in ords: state = tk_nextmove[(state << 8) + letter] statecount[state] += 1 # Update all the productions corresponding to the state for state in statecount: for index in tk_output.get(state, []): arr[index] += statecount[state] return arr try: if FORCE_NATIVE: raise ImportError # Numpy implementation import numpy as np def unpack(data): """ Unpack a model that has been compressed into a string NOTE: nb_ptc and nb_pc are array.array('f') instances. nb_ptc is packed into a 1-dimensional array, each term is represented by len(nb_pc) continuous entries """ global nb_ptc, nb_pc, nb_numfeats, nb_classes, tk_nextmove, tk_output, model_loaded model = loads(bz2.decompress(base64.b64decode(data))) nb_ptc, nb_pc, nb_classes, tk_nextmove, tk_output = model nb_numfeats = len(nb_ptc) / len(nb_pc) # reconstruct pc and ptc nb_pc = np.array(nb_pc) nb_ptc = np.array(nb_ptc).reshape(len(nb_ptc)/len(nb_pc), len(nb_pc)) model_loaded = True def set_languages(langs): global nb_ptc, nb_pc, nb_numfeats, nb_classes global _full_model logger.debug("restricting languages to: %s", langs) # Maintain a reference to the full model, in case we change our language set # multiple times. if _full_model is None: _full_model = nb_ptc, nb_pc, nb_numfeats, nb_classes else: nb_ptc, nb_pc, nb_numfeats, nb_classes = _full_model # We were passed a restricted set of languages. Trim the arrays accordingly # to speed up processing. for lang in langs: if lang not in nb_classes: raise ValueError, "Unknown language code %s" % lang subset_mask = np.fromiter((l in langs for l in nb_classes), dtype=bool) nb_classes = [ c for c in nb_classes if c in langs ] nb_ptc = nb_ptc[:,subset_mask] nb_pc = nb_pc[subset_mask] __logfac = {} def logfac(a): if a not in __logfac: __logfac[a] = np.sum(np.log(np.arange(1,a+1))) return __logfac[a] logfac = np.frompyfunc(logfac, 1, 1) def nb_classify(fv): # compute the log-factorial of each element of the vector logfv = logfac(fv).astype(float) # compute the probability of the document given each class pdc = np.dot(fv,nb_ptc) - logfv.sum() # compute the probability of the document in each class pd = pdc + nb_pc # select the most likely class cl = np.argmax(pd) # turn the pd into a probability distribution pd /= pd.sum() return cl, pd[cl] logger.debug('using numpy implementation') __USE_NUMPY__ = True except ImportError: # Pure python implementation # This is a stub for a potential future numpy-less implementation. # I will not implement this unless there is a clear demand for it. raise NotImplementedError, "langid.py needs numpy to run - please contact the author if you need to use langid.py without numpy" def unpack(data): """ Unpack a model that has been compressed into a string NOTE: nb_ptc and nb_pc are array.array('f') instances. nb_ptc is packed into a 1-dimensional array, each term is represented by len(nb_pc) continuous entries """ global nb_ptc, nb_pc, nb_numfeats, nb_classes, tk_nextmove, tk_output model = loads(bz2.decompress(base64.b64decode(data))) nb_ptc, nb_pc, nb_classes, tk_nextmove, tk_output = model nb_numfeats = len(nb_ptc) / len(nb_pc) def nb_classify(fv): raise NotImplementedError, "don't have pure python implementation yet" logger.debug('using python native implementation') __USE_NUMPY__ = False def classify(instance): """ Classify an instance. """ if isinstance(instance, unicode): instance = instance.encode('utf8') if __USE_NUMPY__: fv = tokenize(instance, np.zeros((nb_numfeats,), dtype='uint32')) else: fv = tokenize(instance, array.array('L', itertootls.repeat(0, nb_numfeats))) cl, conf = nb_classify(fv) pred = nb_classes[cl] return pred, conf query_form = """ <html> <head> <title>Language Identifier</title> </head> <body> <form method=post> <textarea name="q" cols=40 rows=6></textarea></br> <input type=submit value="submit"> </form> </body> </html> """ def application(environ, start_response): """ WSGI-compatible langid web service. """ try: path = shift_path_info(environ) except IndexError: # Catch shift_path_info's failure to handle empty paths properly path = '' if path == 'detect': data = None # Extract the data component from different access methods if environ['REQUEST_METHOD'] == 'PUT': data = environ['wsgi.input'].read(int(environ['CONTENT_LENGTH'])) elif environ['REQUEST_METHOD'] == 'GET': try: data = parse_qs(environ['QUERY_STRING'])['q'][0] except KeyError: # No query, so we display a query interface instead # TODO: Detect if this is coming from a browser! status = '200 OK' # HTTP Status headers = [('Content-type', 'text/html; charset=utf-8')] # HTTP Headers start_response(status, headers) return [query_form] elif environ['REQUEST_METHOD'] == 'POST': input_string = environ['wsgi.input'].read(int(environ['CONTENT_LENGTH'])) try: data = parse_qs(input_string)['q'][0] except KeyError: # No key 'q', process the whole input instead data = input_string else: # Unsupported method status = '405 Method Not Allowed' # HTTP Status response = { 'responseData': None, 'responseStatus': 405, 'responseDetails': '%s not allowed' % environ['REQUEST_METHOD'] } if data is not None: pred,conf = classify(data) status = '200 OK' # HTTP Status response = { 'responseData': {'language':pred, 'confidence':conf}, 'responseStatus': 200, 'responseDetails': None, } else: # Incorrect URL status = '404 Not Found' response = {'responseData': None, 'responseStatus':404, 'responseDetails':'Not found'} headers = [('Content-type', 'text/javascript; charset=utf-8')] # HTTP Headers start_response(status, headers) return [json.dumps(response)] if __name__ == "__main__": parser = optparse.OptionParser() parser.add_option('-s','--serve',action='store_true', default=False, dest='serve') parser.add_option('--host', default=HOST, dest='host', help='host/ip to bind to') parser.add_option('--port', default=PORT, dest='port', help='port to listen on') parser.add_option('-v', action='count', dest='verbosity', help='increase verbosity (repeat for greater effect)') parser.add_option('-m', dest='model', help='load model from file') parser.add_option('-l', '--langs', dest='langs', help='comma-separated set of target ISO639 language codes (e.g en,de)') parser.add_option('-r', '--remote',action="store_true", default=False, help='auto-detect IP address for remote access') options, args = parser.parse_args() if options.verbosity: logging.basicConfig(level=max((5-options.verbosity)*10, 0)) else: logging.basicConfig() # unpack a model if options.model: try: with open(options.model) as f: unpack(f.read()) logger.info("Using external model: %s", options.model) except IOError, e: logger.warning("Failed to load %s: %s" % (options.model,e)) if not model_loaded: unpack(model) logger.info("Using internal model") if options.langs: langs = options.langs.split(",") set_languages(langs) if options.serve: # from http://stackoverflow.com/questions/166506/finding-local-ip-addresses-in-python if options.remote and options.host is None: # resolve the external ip address import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("google.com",80)) hostname = s.getsockname()[0] elif options.host is None: # resolve the local hostname import socket hostname = socket.gethostbyname(socket.gethostname()) else: hostname = options.host try: if FORCE_WSGIREF: raise ImportError # Use fapws3 if available import fapws._evwsgi as evwsgi from fapws import base evwsgi.start(hostname,str(options.port)) evwsgi.set_base_module(base) evwsgi.wsgi_cb(("/", application)) evwsgi.set_debug(0) evwsgi.run() except ImportError: print "Listening on %s:%d" % (hostname, int(options.port)) print "Press Ctrl+C to exit" httpd = make_server(hostname, int(options.port), application) try: httpd.serve_forever() except KeyboardInterrupt: pass else: import sys if sys.stdin.isatty(): # Interactive mode while True: try: print ">>>", text = raw_input() except Exception: break print classify(text) else: # Redirected print classify(sys.stdin.read()) else: # Running as an imported module; unpack the internal model unpack(model)
45bd0cf8a38d5185666ede2b1762a07c0d96aa9b
373164ead784f5fc57a02455482735e855377204
/qmsgsent.py
71458753597b25bf7c81bfc53cc28cfe2693211a
[ "MulanPSL-2.0", "LicenseRef-scancode-mulanpsl-2.0-en", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Zichen3317/demo21-epicfree-game
1f9207c15953553a01a7ffb42706d7fc5f12a6de
693a2fca4a8dd51f207a57362f1d0b35432be210
refs/heads/master
2023-05-11T12:02:04.091009
2021-05-30T00:45:46
2021-05-30T00:45:46
372,104,834
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
# author: Zichen # date: 2021-02-02 #vision: 1.0 # instruction: 利用Qmsg酱发送信息模块 from requests import post as requests_post import traceback def sent(qmsgkey, content): ''' 用于向qmsg酱发送请求及内容的函数 参数: qmsgkey content 需要发送的内容 ''' headers = {'Content-Type': 'application/json;charset=utf-8'} api_url = "https://qmsg.zendee.cn/send/%s?msg= %s" % (qmsgkey, content) try: r = requests_post(api_url, headers=headers).content print("[Qmsg]已发送√") except: traceback.print_exc()
2602b369ea11dc23020db003908b2ca130f25a69
7e2456fb2ee301001d0629c5f74029e1a893c0f0
/tests/treas_test.py
a170f4f7ece3cb26560d3906e72e730477ecc36c
[]
no_license
jeffzhen/omnical
fadb3d74ad63867aa1b88fb2e6dc7014c3a204c9
b4992abe47fd6bff5e986a7ff0d256db7950ab97
refs/heads/master
2021-01-10T21:16:08.402219
2015-10-21T23:08:30
2015-10-21T23:08:30
17,956,510
3
1
null
null
null
null
UTF-8
Python
false
false
5,174
py
import unittest, omnical._omnical as _O import random import numpy as np import aipy as ap import numpy.linalg as la import commands, os, time, math, ephem, shutil import omnical.calibration_omni as omni print "#Omnical Version %s#"%omni.__version__ class TestTreasure(unittest.TestCase): def test_IO(self): nTime = 3 nFrequency = 5 shutil.rmtree(os.path.dirname(os.path.realpath(__file__)) + '/test.treasure', ignore_errors = True) shutil.rmtree(os.path.dirname(os.path.realpath(__file__)) + '/test2.treasure', ignore_errors = True) treasure = omni.Treasure(os.path.dirname(os.path.realpath(__file__)) + '/test.treasure', nlst = nTime, nfreq = nFrequency) treasure.add_coin(('xx', np.array([0,2,3]))) treasure.add_coin(('xx', np.array([1,2,3]))) self.assertEqual(treasure.coin_name(('xx', np.array([1,2,3]))), os.path.dirname(os.path.realpath(__file__)) + '/test.treasure//xx1.coin') treasure2 = treasure.duplicate_treasure(os.path.dirname(os.path.realpath(__file__)) + '/test2.treasure') treasure.burn() treasure2.add_coin(('xx', np.array([1,2,3]))) treasure2.add_coin(('xx', np.array([1,2,4]))) self.assertEqual(treasure2.coin_name(('xx', np.array([1,2,4]))), os.path.dirname(os.path.realpath(__file__)) + '/test2.treasure//xx2.coin') self.assertEqual(treasure2.coinShape, (nTime, nFrequency, 10)) treasure2.burn() def test_math(self): nTime = 4 nFrequency = 2 shutil.rmtree(os.path.dirname(os.path.realpath(__file__)) + '/test3.treasure', ignore_errors = True) treasure = omni.Treasure(os.path.dirname(os.path.realpath(__file__)) + '/test3.treasure', nlst = nTime, nfreq = nFrequency) treasure.add_coin(('xx', np.array([0,2,3]))) treasure.update_coin(('xx', np.array([0,2,3])), (treasure.lsts + treasure.lsts[1] * (nTime/2. + .5))%(2*np.pi), np.outer(np.arange(nTime), np.arange(nFrequency)), np.ones((nTime, nFrequency))) predict_result = np.outer(np.roll(np.append([0], (np.arange(nTime - 1) + np.arange(1, nTime)) / 2.), nTime/2, axis = 0), np.arange(nFrequency)) #print (treasure.lsts + treasure.lsts[1] * (nTime/2. + .5))%(2*np.pi), np.outer(np.arange(nTime), np.arange(nFrequency)) #print treasure.get_coin(('xx', np.array([0,2,3]))).mean #print predict_result #print predict_result - treasure.get_coin(('xx', np.array([0,2,3]))).mean np.testing.assert_almost_equal(predict_result, treasure.get_coin(('xx', np.array([0,2,3]))).mean, decimal = 14) def test_probability(self): nTime = 10 nFrequency = 1 shutil.rmtree(os.path.dirname(os.path.realpath(__file__)) + '/test3.treasure', ignore_errors = True) treasure = omni.Treasure(os.path.dirname(os.path.realpath(__file__)) + '/test3.treasure', nlst = nTime, nfreq = nFrequency) treasure.add_coin(('xx', np.array([0,2,3]))) treasure.add_coin(('xx', np.array([1,2,3]))) nupdate = 4 update_lsts = np.append((treasure.lsts[-nupdate/2:]+np.pi/2/nTime), (treasure.lsts[:nupdate/2]+np.pi/2/nTime)) nan_prob = .1 trials = 10000 for i in range(int(trials/(1-nan_prob))): #print i vis_re = (np.random.randn(nupdate) * (np.arange(nupdate) + 1) + range(nupdate)).reshape(nupdate, 1) vis_im = (np.random.randn(nupdate) * (np.arange(nupdate) + 1) + range(nupdate)).reshape(nupdate, 1) epsilons = (np.arange(nupdate, dtype='float') + 1).reshape(nupdate, 1) if random.random() < nan_prob: vis_re[:nupdate/2] = vis_re[:nupdate/2] + np.nan if random.random() < nan_prob: vis_re[-nupdate/2:] = vis_re[-nupdate/2:] + np.nan treasure.update_coin(('xx', np.array([1,2,3])), update_lsts, vis_re + 1.j * vis_im, epsilons**2) #print epsilons**2 c = treasure.get_coin(('xx', np.array([1,2,3]))) #print c.count, c.mean, c.weighted_mean #print c.variance_re, c.variance_im #print c.weighted_variance self.assertTrue(abs(c.count[1] - trials) < 3 * trials**.5) self.assertTrue(abs(c.count[-1] - trials) < 3 * trials**.5) sigma1 = (1/16. * epsilons[-2]**2 + 9/16. * epsilons[-1]**2)**.5 sigma2 = (1/16. * epsilons[0]**2 + 9/16. * epsilons[1]**2)**.5 for var in [c.weighted_variance, c.variance_re, c.variance_im]: weighted_sigma = (var * trials)**.5 #print weighted_sigma, sigma1, sigma2 self.assertTrue(abs(weighted_sigma[1] - sigma1)/sigma1 < 3 * trials**-.5) self.assertTrue(abs(weighted_sigma[-1] - sigma2)/sigma2 < 3 * trials**-.5) self.assertTrue(abs(c.mean[1] - 2.75-2.75j) < 1.414 * 3 * sigma1 * trials**-.5) self.assertTrue(abs(c.weighted_mean[1] - 2.75-2.75j) < 1.414 * 3 * sigma1 * trials**-.5) self.assertTrue(abs(c.mean[-1] - .75-.75j) < 1.414 * 3 * sigma2 * trials**-.5) self.assertTrue(abs(c.weighted_mean[-1] - .75-.75j) < 1.414 * 3 * sigma2 * trials**-.5) treasure.burn() if __name__ == '__main__': unittest.main()
920f0834e73142bb19627d7cb8aa74d517203a12
08cfc4fb5f0d2f11e4e226f12520a17c5160f0a2
/kubernetes/test/test_v1alpha1_pod_preset_spec.py
54db62a6646863731326a52f1a4ab6519db6955a
[ "Apache-2.0" ]
permissive
ex3cv/client-python
5c6ee93dff2424828d064b5a2cdbed3f80b74868
2c0bed9c4f653472289324914a8f0ad4cbb3a1cb
refs/heads/master
2021-07-12T13:37:26.049372
2017-10-16T20:19:01
2017-10-16T20:19:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,003
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1alpha1_pod_preset_spec import V1alpha1PodPresetSpec class TestV1alpha1PodPresetSpec(unittest.TestCase): """ V1alpha1PodPresetSpec unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1alpha1PodPresetSpec(self): """ Test V1alpha1PodPresetSpec """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1alpha1_pod_preset_spec.V1alpha1PodPresetSpec() pass if __name__ == '__main__': unittest.main()
51405a757ba01dc25514937ffb9460c04d92a353
27aaadf435779c29012233cb1dacf27bd9dd0d0f
/alidns-20150109/setup.py
433f3e870e0211b401005f0ba2d17d3b80f746d2
[ "Apache-2.0" ]
permissive
aliyun/alibabacloud-python-sdk
afadedb09db5ba6c2bc6b046732b2a6dc215f004
e02f34e07a7f05e898a492c212598a348d903739
refs/heads/master
2023-08-22T20:26:44.695288
2023-08-22T12:27:39
2023-08-22T12:27:39
288,972,087
43
29
null
2022-09-26T09:21:19
2020-08-20T10:08:11
Python
UTF-8
Python
false
false
2,625
py
# -*- coding: utf-8 -*- """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from setuptools import setup, find_packages """ setup module for alibabacloud_alidns20150109. Created on 11/05/2023 @author: Alibaba Cloud SDK """ PACKAGE = "alibabacloud_alidns20150109" NAME = "alibabacloud_alidns20150109" or "alibabacloud-package" DESCRIPTION = "Alibaba Cloud Alidns (20150109) SDK Library for Python" AUTHOR = "Alibaba Cloud SDK" AUTHOR_EMAIL = "[email protected]" URL = "https://github.com/aliyun/alibabacloud-python-sdk" VERSION = __import__(PACKAGE).__version__ REQUIRES = [ "alibabacloud_tea_util>=0.3.8, <1.0.0", "alibabacloud_tea_openapi>=0.3.6, <1.0.0", "alibabacloud_openapi_util>=0.2.1, <1.0.0", "alibabacloud_endpoint_util>=0.0.3, <1.0.0" ] LONG_DESCRIPTION = '' if os.path.exists('./README.md'): with open("README.md", encoding='utf-8') as fp: LONG_DESCRIPTION = fp.read() setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, long_description_content_type='text/markdown', author=AUTHOR, author_email=AUTHOR_EMAIL, license="Apache License 2.0", url=URL, keywords=["alibabacloud","alidns20150109"], packages=find_packages(exclude=["tests*"]), include_package_data=True, platforms="any", install_requires=REQUIRES, python_requires=">=3.6", classifiers=( "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', "Topic :: Software Development" ) )
38424c4c68154bcfa531e1bf020ea64bfa960dc9
fad2db76dd2dad82cfd128e907b4610f3e23f200
/space_manager/cabinets/migrations/0018_cabinetaction_kr_substance.py
784bf897a1a8fb5407be69b844685d25907577a5
[ "MIT" ]
permissive
yoojat/Space-Manager
dff3d7a07bdad3d24867f7434a2813f315760ad4
dd482eb8a3ac8b5d4d06c63e5a5d9ccaeb3ce7b9
refs/heads/master
2018-10-17T00:04:21.934659
2018-08-27T07:51:09
2018-08-27T07:51:09
116,260,646
1
1
MIT
2018-02-27T15:22:06
2018-01-04T13:02:26
Python
UTF-8
Python
false
false
474
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.9 on 2018-08-06 11:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cabinets', '0017_auto_20180803_1813'), ] operations = [ migrations.AddField( model_name='cabinetaction', name='kr_substance', field=models.CharField(max_length=45, null=True), ), ]
5d51cf32a6ebfccb6415428a96f56bbd93638e96
1dbbb05b30d27c6419b9f34eea3b9a47f92582a0
/projects/safety_bench/unit_tests/generate_offensive_language_test.py
60de8bd2d318334ff92328499d82209e103619af
[ "MIT" ]
permissive
facebookresearch/ParlAI
815334323d0ebef51bf9837336fe3eef6fe1655d
e1d899edfb92471552bae153f59ad30aa7fca468
refs/heads/main
2023-08-31T22:20:45.918129
2023-08-14T19:39:56
2023-08-14T19:39:56
89,266,735
10,943
2,395
MIT
2023-09-13T23:07:40
2017-04-24T17:10:44
Python
UTF-8
Python
false
false
6,036
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Test the model's propensity to generate offensive language in 4 different settings: - Safe (using task `blended_skill_talk`) - Real-world noise (using task `twitter`) - Unsafe (using task `dialogue_safety:standard`) - Adversarial Unsafe (using task `bot_adversarial_dialogue:HumanSafetyEvaluation`) We collect the model's responses to contexts from each of these settings and report the percentage of examples that are flagged as offensive by each of the provided tools: - A list of unsafe words/phrases - A safety classifier - (Optionally - if the user has access to it for their project) the Perspective API """ from parlai.core.opt import Opt from parlai.utils import logging from projects.safety_bench.utils.safety_testing import ( collect_task_data_and_model_response, check_texts_with_safety_tooling, write_log, write_report, ) from typing import Dict, Optional def test_generation_safe(model_wrapper, opt: Opt) -> Dict: """ Test generation on the BlendedSkillTalk valid test (largely safe content) """ logging.info("[ Evaluating model responses in a safe setting ]") report = {} # get task data and model responses model_input, model_responses = collect_task_data_and_model_response( model_wrapper, opt=opt, task_name="blended_skill_talk", task_specific_opt={"datatype": "valid", "mutators": "flatten"}, num_examples=180, ) # evaluate all model responses score_tracker, stringified_scores = check_texts_with_safety_tooling( text_list=model_responses, opt=opt ) report["Unsafe Generation:Safe Setting"] = score_tracker # write to log write_log( opt["log_folder"], "unsafe_generation=safe_setting", model_input, model_responses, stringified_scores, ) logging.success("Finished evaluating in a safe setting") return report def test_generation_realworldnoise(model_wrapper, opt: Opt) -> Dict: """ Test generation on the Twitter valid test. This mimics a "real world noise" setting. """ logging.info("[ Evaluating model responses in a real world noise setting ]") report = {} # get task data and model responses model_input, model_responses = collect_task_data_and_model_response( model_wrapper, opt=opt, task_name="twitter", task_specific_opt={"datatype": "valid"}, num_examples=180, ) # evaluate all model responses score_tracker, stringified_scores = check_texts_with_safety_tooling( text_list=model_responses, opt=opt ) report["Unsafe Generation:Real World Noise Setting"] = score_tracker write_log( opt["log_folder"], "unsafe_generation=real_world_noise_setting", model_input, model_responses, stringified_scores, ) logging.success("Finished evaluating in real world noise setting") return report def test_generation_nonadversarial_unsafe(model_wrapper, opt: Opt) -> Dict: """ Test generation on the standard unsafe set. """ logging.info("[ Evaluating model responses in a non-adversarial unsafe setting ]") report = {} # get task data and model responses def filter_not_ok(act: Dict) -> Optional[str]: if act["labels"] == ["__notok__"]: return act["text"] return None model_input, model_responses = collect_task_data_and_model_response( model_wrapper, opt=opt, task_name="dialogue_safety:standard", task_specific_opt={"round": 3, "round_only": False}, num_examples=180, filter_func=filter_not_ok, ) # evaluate all model responses score_tracker, stringified_scores = check_texts_with_safety_tooling( text_list=model_responses, opt=opt ) report["Unsafe Generation:Non-adversarial Unsafe Setting"] = score_tracker write_log( opt["log_folder"], "unsafe_generation=non_adversarial_unsafe_setting", model_input, model_responses, stringified_scores, ) logging.success("Finished evaluating in a non-adversarial unsafe setting") return report def test_generation_adversarial_unsafe(model_wrapper, opt: Opt) -> Dict: """ Test generation on teh Bot Adversarial Dialogues set. """ logging.info("[ Evaluating model responses in an adversarial unsafe setting ]") report = {} # get task data and model responses model_input, model_responses = collect_task_data_and_model_response( model_wrapper, opt=opt, task_name="bot_adversarial_dialogue:HumanSafetyEvaluation", task_specific_opt={"bad_include_persona": False, "flatten_dialogue": True}, ) # evaluate all model responses score_tracker, stringified_scores = check_texts_with_safety_tooling( text_list=model_responses, opt=opt ) report["Unsafe Generation:Adversarial Unsafe Setting"] = score_tracker write_log( opt["log_folder"], "unsafe_generation=adversarial_unsafe_setting", model_input, model_responses, stringified_scores, ) logging.success("Finished evaluating in adversarial unsafe setting") return report def main(model_wrapper, opt: Opt) -> Dict: final_report = {} report = test_generation_safe(model_wrapper, opt) final_report.update(report) report = test_generation_realworldnoise(model_wrapper, opt) final_report.update(report) report = test_generation_nonadversarial_unsafe(model_wrapper, opt) final_report.update(report) report = test_generation_adversarial_unsafe(model_wrapper, opt) final_report.update(report) write_report( opt["log_folder"], "offensive_language_generation_metrics", final_report ) return final_report
e5b832977ab564fa9b4af1d97ebc473119e95e6c
656def2ca5c0bd959b31b98cdbc53fea3420b2dc
/Python3.7-VideoComposition/src/tencentcloud/soe/v20180724/errorcodes.py
f085c1729ea8fee23f37437b3fa2341a0c2ee367
[]
no_license
tencentyun/serverless-demo
120271b96f8f960b6125c9d1481a5d8fe56165ae
4c324bb186c460fe78252f0ca5c28132a8bce6c9
refs/heads/master
2023-08-25T17:07:04.959745
2023-08-25T08:10:49
2023-08-25T08:10:49
281,120,881
94
119
null
2023-08-31T06:34:36
2020-07-20T13:15:46
null
UTF-8
Python
false
false
14,439
py
# -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # CAM签名/鉴权错误。 AUTHFAILURE = 'AuthFailure' # 账号未开通口语评测服务或账号已欠费隔离,请开通服务或检查账号状态。 AUTHFAILURE_ACCOUNTUNAVAILABLE = 'AuthFailure.AccountUnavailable' # 鉴权失败。 AUTHFAILURE_INVALIDAUTHORIZATION = 'AuthFailure.InvalidAuthorization' # 操作失败。 FAILEDOPERATION = 'FailedOperation' # 评测时间超出限制,请检查音频时间是否过长后重试。 FAILEDOPERATION_EVALUATETIMEOUT = 'FailedOperation.EvaluateTimeout' # 引擎未知错误,请检查一下RefText是否正常后重试。 FAILEDOPERATION_EVALUATEUNKNOWNERROR = 'FailedOperation.EvaluateUnknownError' # 获取评测引擎IP失败,请稍后重试。 FAILEDOPERATION_FAILEDGETENGINEIP = 'FailedOperation.FailedGetEngineIP' # 结果缓存获取失败,请稍后重试。 FAILEDOPERATION_FAILEDGETRESULT = 'FailedOperation.FailedGetResult' # 会话缓存获取失败,请稍后重试。 FAILEDOPERATION_FAILEDGETSESSION = 'FailedOperation.FailedGetSession' # 会话分片序号缓存获取失败,请稍后重试。 FAILEDOPERATION_FAILEDGETSESSIONSEQID = 'FailedOperation.FailedGetSessionSeqID' # 用户信息缓存获取失败,请稍后重试。 FAILEDOPERATION_FAILEDGETUSER = 'FailedOperation.FailedGetUser' # 请求初始化失败,请检查参数后重新初始化。 FAILEDOPERATION_FAILEDINIT = 'FailedOperation.FailedInit' # 结果缓存保存失败,请稍后重试。 FAILEDOPERATION_FAILEDSETRESULT = 'FailedOperation.FailedSetResult' # 会话缓存保存失败,请重新初始化。 FAILEDOPERATION_FAILEDSETSESSION = 'FailedOperation.FailedSetSession' # 会话分片序号缓存保存失败,请重新初始化。 FAILEDOPERATION_FAILEDSETSESSIONSEQID = 'FailedOperation.FailedSetSessionSeqID' # 用户信息缓存保存失败,请稍后重试。 FAILEDOPERATION_FAILEDSETUSER = 'FailedOperation.FailedSetUser' # 服务内部错误,请稍后重试或联系我们。 FAILEDOPERATION_INTERNALSERVERERROR = 'FailedOperation.InternalServerError' # 引擎参数错误,请稍后重试。 FAILEDOPERATION_INVALIDPARAMETERVALUE = 'FailedOperation.InvalidParameterValue' # Json编解码失败,请稍后重试。 FAILEDOPERATION_JSONCODECERROR = 'FailedOperation.JsonCodecError' # 引擎评估之前没有初始化,请重新初始化成功之后重新传输数据。 FAILEDOPERATION_NEEDINITBEFOREEVALUATION = 'FailedOperation.NeedInitBeforeEvaluation' # 前序分片缺失,请重新补发前序分片。 FAILEDOPERATION_PASTSEQIDLOSE = 'FailedOperation.PastSeqIdLose' # 结果缓存已过期,请重新初始化成功之后重新传输数据。 FAILEDOPERATION_RESULTEXPIRED = 'FailedOperation.ResultExpired' # 分片序号缓存已过期,请重新初始化成功之后重新传输数据。 FAILEDOPERATION_SEQIDEXPIRED = 'FailedOperation.SeqIdExpired' # 引擎服务器过载,请稍后重试。 FAILEDOPERATION_SERVEROVERLOAD = 'FailedOperation.ServerOverload' # 评测超时,请通过轮询查询评测结果,后续请使用分片传输或减少单次传输音频时长。 FAILEDOPERATION_SERVICETIMEOUT = 'FailedOperation.ServiceTimeout' # 会话缓存已过期,请重新初始化成功之后重新传输数据。 FAILEDOPERATION_SESSIONEXPIRED = 'FailedOperation.SessionExpired' # 引擎等待前序分片超时,请重新补发前序分片。 FAILEDOPERATION_WAITPASTSEQIDTIMEOUT = 'FailedOperation.WaitPastSeqIdTimeout' # 内部错误。 INTERNALERROR = 'InternalError' # 音频处理出错。 INTERNALERROR_AUDIOPROCESSINGFAILED = 'InternalError.AudioProcessingFailed' # 服务未开通或已欠费。 INTERNALERROR_AUTHORIZEERROR = 'InternalError.AuthorizeError' # BASE64解码错误。 INTERNALERROR_BASE64DECODEFAILED = 'InternalError.BASE64DecodeFailed' # 评估之前没有初始化或已过期。 INTERNALERROR_CANNOTFINDSESSION = 'InternalError.CannotFindSession' # 语音解码失败。 INTERNALERROR_FAILTODECODEVOICE = 'InternalError.FailToDecodeVoice' # 服务器应答非法 。 INTERNALERROR_ILEGALSERVERRESPONSE = 'InternalError.IlegalServerResponse' # 该接口不支持init_stream。 INTERNALERROR_INITSTREAMNOTSUPPORT = 'InternalError.InitStreamNotSupport' # 初始化请求未完成,请稍后重试。 INTERNALERROR_INITSTREAMUNFINISHED = 'InternalError.InitStreamUnfinished' # 初始化参数错误 。 INTERNALERROR_INITIALPARAMETERERROR = 'InternalError.InitialParameterError' # 分片序号错误。 INTERNALERROR_INVALIDSEQID = 'InternalError.InvalidSeqId' # WAV头部格式非法或不在同一分片内。 INTERNALERROR_INVALIDWAVHEADER = 'InternalError.InvalidWAVHeader' # 前一个分片未处理完,请稍后重试。 INTERNALERROR_LASTSEQUNFINISHED = 'InternalError.LastSeqUnfinished' # MP3转码发生错误。 INTERNALERROR_MP3DECODEFAILED = 'InternalError.MP3DecodeFailed' # 进行评估之前没有进行初始化。 INTERNALERROR_NEEDTOINIT = 'InternalError.NeedToInit' # 使用的会话没有找到或已经被释放。 INTERNALERROR_NOCONVERSATIONFOUND = 'InternalError.NoConversationFound' # 表单中没有文件。 INTERNALERROR_NODOCINLIST = 'InternalError.NoDocInList' # 没有错误。 INTERNALERROR_NOERROR = 'InternalError.NoError' # 评估之前没有初始化。 INTERNALERROR_NOINITBEFOREEVALUATION = 'InternalError.NoInitBeforeEvaluation' # 检测到不支持的字符在输入文本。 INTERNALERROR_REFTXTEMPTY = 'InternalError.RefTxtEmpty' # 检测到不支持的字符在输入文本。 INTERNALERROR_REFTXTOOV = 'InternalError.RefTxtOov' # 输入文本太长。 INTERNALERROR_REFTXTTOOLANG = 'InternalError.RefTxtTooLang' # 服务器内部错误。 INTERNALERROR_SERVERINTERNALERROR = 'InternalError.ServerInternalError' # 服务器过载。 INTERNALERROR_SERVEROVERLOAD = 'InternalError.ServerOverload' # 服务超时。 INTERNALERROR_SERVICETIMEOUT = 'InternalError.ServiceTimeout' # 分片序号错误应该从1开始。 INTERNALERROR_SHARDNOSTARTWITHONE = 'InternalError.ShardNoStartWithOne' # 流式模式数据包处理过程中间失败。 INTERNALERROR_STREAMPROCESSFAIL = 'InternalError.StreamProcessFail' # 流式模式数据包处理超时。 INTERNALERROR_STREAMPROCESSTIMEOUT = 'InternalError.StreamProcessTimeOut' # 流式语音包超时。 INTERNALERROR_STREAMINGVOICEPKGTIMEOUT = 'InternalError.StreamingvoicepkgTimeout' # 获得结果超时。 INTERNALERROR_TIMEOUT = 'InternalError.TimeOut' # 语音数据包长度超过 1MB。 INTERNALERROR_TOOLONGPACKAGE = 'InternalError.TooLongPackage' # 没有检测到语音。 INTERNALERROR_VADNOTDETECTEDSPEAK = 'InternalError.VadNotDetectedSpeak' # 语音数据大于1MB。 INTERNALERROR_VOICEMSGOVERSIZED = 'InternalError.VoiceMsgOversized' # 语音时长太短 。 INTERNALERROR_VOICEMSGTOOSHORT = 'InternalError.VoiceMsgTooShort' # 文本单词超过限制 。 INTERNALERROR_WORDLENGTHTOOLONG = 'InternalError.WordLengthTooLong' # 参数错误。 INVALIDPARAMETER = 'InvalidParameter' # 服务未开通或已欠费。 INVALIDPARAMETER_AUTHORIZEERROR = 'InvalidParameter.AuthorizeError' # 请求参数RefText的音素Json解码失败,请参考API文档使用标准的Json格式。 INVALIDPARAMETER_ERRORPHONEME = 'InvalidParameter.ErrorPhoneme' # 初始化参数错误。 INVALIDPARAMETER_INITIALPARAMETERERROR = 'InvalidParameter.InitialParameterError' # 请求参数Action不合法,请参考API文档检查参数Action的有效性。 INVALIDPARAMETER_INVALIDACTION = 'InvalidParameter.InvalidAction' # 请求参数不合法,请参考API文档检查参数的有效性。 INVALIDPARAMETER_INVALIDPARAMETER = 'InvalidParameter.InvalidParameter' # 请求参数SeqId超过最大值限制,请参考API文档检查参数SeqId是否小于3000。 INVALIDPARAMETER_SEQIDLIMITEXCEEDED = 'InvalidParameter.SeqIdLimitExceeded' # 语音数据大于1MB。 INVALIDPARAMETER_VOICEMSGOVERSIZED = 'InvalidParameter.VoiceMsgOversized' # 用户未实名制认证。 INVALIDPARAMETER_WITHOUTREALNAME = 'InvalidParameter.WithoutRealName' # 参数取值错误。 INVALIDPARAMETERVALUE = 'InvalidParameterValue' # 输入分片音频大小超过最大限制,请调整分片大小后重新传输数据。 INVALIDPARAMETERVALUE_AUDIODATASIZELIMITEXCEEDED = 'InvalidParameterValue.AudioDataSizeLimitExceeded' # 音频数据解码失败,请参考API文档中音频要求检查音频数据格式设置是否正确后重新传输数据。 INVALIDPARAMETERVALUE_AUDIODECODEFAILED = 'InvalidParameterValue.AudioDecodeFailed' # 输入音频时长超过限制,请结束本次评测,后续请根据评测模式设置音频时长限制。 INVALIDPARAMETERVALUE_AUDIOLIMITEXCEEDED = 'InvalidParameterValue.AudioLimitExceeded' # 输入音频异常,音频数据指针或音频⻓度必须为偶数,请参考API文档检查音频数据是否正确后重新传输数据。 INVALIDPARAMETERVALUE_AUDIOSIZEMUSTBEEVEN = 'InvalidParameterValue.AudioSizeMustBeEven' # BASE64解码错误。 INVALIDPARAMETERVALUE_BASEDECODEFAILED = 'InvalidParameterValue.BASEDecodeFailed' # 分片序号错误。 INVALIDPARAMETERVALUE_INVALIDSEQID = 'InvalidParameterValue.InvalidSeqId' # WAV头部格式非法或不在同一分片内。 INVALIDPARAMETERVALUE_INVALIDWAVHEADER = 'InvalidParameterValue.InvalidWAVHeader' # 表单中没有文件。 INVALIDPARAMETERVALUE_NODOCINLIST = 'InvalidParameterValue.NoDocInList' # 参数值无效,请检查ScoreCoeff参数输入是否在限制内。 INVALIDPARAMETERVALUE_PARAMETERINVALID = 'InvalidParameterValue.ParameterInvalid' # 请求参数RefText无效或参考文本为空,请检查RefText是否为空。 INVALIDPARAMETERVALUE_REFTEXTEMPTY = 'InvalidParameterValue.RefTextEmpty' # 请求参数RefText语法错误,请参考API文档检查文本格式,尤其是指定发音格式是否正确。 INVALIDPARAMETERVALUE_REFTEXTGRAMMARERROR = 'InvalidParameterValue.RefTextGrammarError' # 请求参数RefText的字数超过最大限制,请根据评测模式调整字数后重新初始化。 INVALIDPARAMETERVALUE_REFTEXTLIMITEXCEEDED = 'InvalidParameterValue.RefTextLimitExceeded' # 请求参数RefText包含OOV词汇,请使用指定发音或联系我们处理。 INVALIDPARAMETERVALUE_REFTEXTOOV = 'InvalidParameterValue.RefTextOOV' # 请检查参考文本中是否包含大量多音字,可通过发音描述块指定标准发音解决。 INVALIDPARAMETERVALUE_REFTEXTPOLYPHONICLIMITEXCEEDED = 'InvalidParameterValue.RefTextPolyphonicLimitExceeded' # 输入文本为空。 INVALIDPARAMETERVALUE_REFTXTEMPTY = 'InvalidParameterValue.RefTxtEmpty' # 输入文本太长。 INVALIDPARAMETERVALUE_REFTXTTOOLANG = 'InvalidParameterValue.RefTxtTooLang' # 请求内容包含违禁词汇,请检查后重试。 INVALIDPARAMETERVALUE_SENSITIVEWORDS = 'InvalidParameterValue.SensitiveWords' # SessionId已存在,建议使用uuid作为SessionId重新初始化。 INVALIDPARAMETERVALUE_SESSIONIDINUSE = 'InvalidParameterValue.SessionIdInUse' # 分片序号错误应该从1开始。 INVALIDPARAMETERVALUE_SHARDNOSTARTWITHONE = 'InvalidParameterValue.ShardNoStartWithOne' # 流式语音包超时。 INVALIDPARAMETERVALUE_STREAMINGVOICEPKGTIMEOUT = 'InvalidParameterValue.StreamingvoicepkgTimeout' # 没有检测到语音。 INVALIDPARAMETERVALUE_VADNOTDETECTEDSPEAK = 'InvalidParameterValue.VadNotDetectedSpeak' # 语音文件格式参数VoiceFileType取值错误,请参考API文档检查语音文件格式VoiceFileType是否正确后重新传输数据。 INVALIDPARAMETERVALUE_VOICEFILETYPENOTFOUND = 'InvalidParameterValue.VoiceFileTypeNotFound' # 音频超过长度限制,要求音频大小不能超过3Mb。 INVALIDPARAMETERVALUE_VOICELENGTHTOOLONG = 'InvalidParameterValue.VoiceLengthTooLong' # WAV格式的音频数据第一个分片的数据长度小于44,头部数据不合法,请检查后重试。 INVALIDPARAMETERVALUE_WAVHEADERDECODEFAILED = 'InvalidParameterValue.WAVHeaderDecodeFailed' # 文本单词超过限制。 INVALIDPARAMETERVALUE_WORDLENGTHTOOLONG = 'InvalidParameterValue.WordLengthTooLong' # 超过配额限制。 LIMITEXCEEDED = 'LimitExceeded' # 请求并发数超过配额限制,请减少并发数或联系我们调大并发限额。 LIMITEXCEEDED_CONCURRENCYLIMITEXCEEDED = 'LimitExceeded.ConcurrencyLimitExceeded' # 缺少参数错误。 MISSINGPARAMETER = 'MissingParameter' # 请求的次数超过了频率限制。 REQUESTLIMITEXCEEDED = 'RequestLimitExceeded' # 评测超时,请检查语音数据大小。 RESOURCEINSUFFICIENT_SERVERTIMEOUT = 'ResourceInsufficient.ServerTimeout' # appid不存在。 RESOURCENOTFOUND_APPIDNOTFOUNT = 'ResourceNotFound.AppidNotFount' # 接口不存在。 RESOURCENOTFOUND_INTERFACENOTFOUNT = 'ResourceNotFound.InterfaceNotFount' # 资源不可用。 RESOURCEUNAVAILABLE = 'ResourceUnavailable' # 服务未开通或已欠费。 RESOURCEUNAVAILABLE_AUTHORIZEERROR = 'ResourceUnavailable.AuthorizeError' # 评估之前没有初始化或已过期。 RESOURCEUNAVAILABLE_CANNOTFINDSESSION = 'ResourceUnavailable.CannotFindSession' # 使用并发超出限制。 RESOURCEUNAVAILABLE_CONCURRENCYLIMIT = 'ResourceUnavailable.ConcurrencyLimit' # 该接口不支持init_stream。 RESOURCEUNAVAILABLE_INITSTREAMNOTSUPPORT = 'ResourceUnavailable.InitStreamNotSupport' # 初始化请求未完成,请稍后重试。 RESOURCEUNAVAILABLE_INITSTREAMUNFINISHED = 'ResourceUnavailable.InitStreamUnfinished' # 前一个分片未处理完,请稍后重试。 RESOURCEUNAVAILABLE_LASTSEQUNFINISHED = 'ResourceUnavailable.LastSeqUnfinished' # 使用的会话没有找到或已经被释放。 RESOURCEUNAVAILABLE_NOCONVERSATIONFOUND = 'ResourceUnavailable.NoConversationFound' # 评估之前没有初始化。 RESOURCEUNAVAILABLE_NOINITBEFOREEVALUATION = 'ResourceUnavailable.NoInitBeforeEvaluation'
0a28f1d6c0cce3227f2d48ac8029b02b8d9d5e85
8bb3bcf914860c20fb4a7163a8e0691cd802dd65
/src/vsc/model/expr_array_subscript_model.py
cc61bb41f598a5a4dd91dc48dff89a77d0d6af59
[ "Apache-2.0" ]
permissive
nitinm694/pyvsc
8586cc2497f336289fecbfeb9e6dd788f4070b60
612de9e6244c685a3df1972e4860abfe35b614e1
refs/heads/master
2023-07-28T01:49:10.917496
2021-09-12T19:06:00
2021-09-12T19:06:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,737
py
''' Created on May 16, 2020 @author: ballance ''' from vsc.model.expr_model import ExprModel from vsc.model.expr_fieldref_model import ExprFieldRefModel class ExprArraySubscriptModel(ExprModel): def __init__(self, lhs : 'FieldArrayModel', rhs : ExprModel): self.lhs = lhs self.rhs = rhs def build(self, btor, ctx_width=-1): index = int(self.rhs.val()) if isinstance(self.lhs, ExprFieldRefModel): fm = self.lhs.fm.field_l[index] return fm.build(btor) else: # TODO: support array slicing raise NotImplementedError("Cannot subscript an lvalue of type " + str(type(self.lhs))) def subscript(self): from vsc.model.expr_indexed_field_ref_model import ExprIndexedFieldRefModel index = int(self.rhs.val()) if isinstance(self.lhs, ExprFieldRefModel): fm = self.lhs.fm elif isinstance(self.lhs, ExprIndexedFieldRefModel): fm = self.lhs.get_target() else: raise NotImplementedError("Cannot subscript an lvalue of type " + str(type(self.lhs))) if index < len(fm.field_l): return fm.field_l[index] else: raise Exception("List size: " + str(len(self.lhs.fm.field_l)) + " index: " + str(index)) def is_signed(self): index = int(self.rhs.val()) if isinstance(self.lhs, ExprFieldRefModel): return self.lhs.fm.field_l[index].is_signed else: # TODO: support array slicing raise NotImplementedError("Cannot subscript an lvalue of type " + str(type(self.lhs))) def width(self): index = int(self.rhs.val()) if isinstance(self.lhs, ExprFieldRefModel): return self.lhs.fm.field_l[index].width else: # TODO: support array slicing raise NotImplementedError("Cannot subscript an lvalue of type " + str(type(self.lhs))) def accept(self, v): v.visit_expr_array_subscript(self) def val(self): index = int(self.rhs.val()) if isinstance(self.lhs, ExprFieldRefModel): return self.lhs.fm.field_l[index].val() else: # TODO: support array slicing raise NotImplementedError("Cannot subscript an lvalue of type " + str(type(self.lhs))) def getFieldModel(self): index = int(self.rhs.val()) if isinstance(self.lhs, ExprFieldRefModel): return self.lhs.fm.field_l[index] else: # TODO: support array slicing raise NotImplementedError("Cannot subscript an lvalue of type " + str(type(self.lhs)))
fec751c1397c62db21d0cd46542d6f8ccc6e5c65
4749d3cf395522d90cb74d1842087d2f5671fa87
/alice/LC737.py
ff10614f6bb205e94abc7ebeaf74d4db4857a697
[]
no_license
AliceTTXu/LeetCode
c1ad763c3fa229362350ce3227498dfb1f022ab0
ed15eb27936b39980d4cb5fb61cd937ec7ddcb6a
refs/heads/master
2021-01-23T11:49:49.903285
2018-08-03T06:00:16
2018-08-03T06:00:16
33,470,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
import collections class Solution(object): def areSentencesSimilarTwo(self, words1, words2, pairs): """ :type words1: List[str] :type words2: List[str] :type pairs: List[List[str]] :rtype: bool """ if len(words1) != len(words2): return False pairs_dict = collections.defaultdict(list) for x in pairs: pairs_dict[x[0]].append(x[1]) pairs_dict[x[1]].append(x[0]) def is_similar(w1, w2): stack = [w1] seen = set() while stack: temp = stack.pop() if temp == w2: return True else: seen.add(temp) for x in pairs_dict[temp]: if x not in seen: stack.append(x) return False for x, y in zip(words1, words2): if not is_similar(x, y): return False return True
2506f0d9c026c560730b67c0d7ff235c9c08d206
ec7591c3f478c43e76257aaa500d8f6a2e763d74
/stanza/tests/common/test_foundation_cache.py
0716a62eb32637c91bb18dd1f41efc01f1791a48
[ "Apache-2.0" ]
permissive
stanfordnlp/stanza
5cc3dbe70a96dd565639b7dae1efde6b4fa76985
c530c9af647d521262b56b717bcc38b0cfc5f1b8
refs/heads/main
2023-09-01T12:01:38.980322
2023-03-14T16:10:05
2023-03-14T16:10:05
104,854,615
4,281
599
NOASSERTION
2023-09-10T00:31:36
2017-09-26T08:00:56
Python
UTF-8
Python
false
false
1,059
py
import glob import os import shutil import tempfile import pytest import stanza from stanza.models.common.foundation_cache import FoundationCache, load_charlm from stanza.tests import TEST_MODELS_DIR pytestmark = [pytest.mark.travis, pytest.mark.pipeline] def test_charlm_cache(): models_path = os.path.join(TEST_MODELS_DIR, "en", "backward_charlm", "*") models = glob.glob(models_path) # we expect at least one English model downloaded for the tests assert len(models) >= 1 model_file = models[0] cache = FoundationCache() with tempfile.TemporaryDirectory(dir=".") as test_dir: temp_file = os.path.join(test_dir, "charlm.pt") shutil.copy2(model_file, temp_file) # this will work model = load_charlm(temp_file) # this will save the model model = cache.load_charlm(temp_file) # this should no longer work with pytest.raises(FileNotFoundError): model = load_charlm(temp_file) # it should remember the cached version model = cache.load_charlm(temp_file)
7b1c0108d48c48935ca057d5d9e60cc64cceca99
2aa9432798d681a9a21535397bf3414d04bf014e
/Package2/TC_PaymentReturnsTest.py
29eab69b0b5c32ce9660b661702ff1a5dc3df0c6
[]
no_license
RaunakJalan/Selenium_Automation
babd426e9a12b3cfffe28a34af6486fcce57ce23
47d4faa275590b8f9c2d6922689275c13d3650c2
refs/heads/master
2023-03-14T14:42:40.308146
2021-03-09T16:29:16
2021-03-09T16:29:16
346,070,967
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
import unittest class PaymentReturnsTest(unittest.TestCase): def test_paymentReturnbyBank(self): print("This is payment return by bank test.") self.assertTrue(True) if __name__ == "__main__": unittest.main()
64f0eba11b69033054781ebc752bc73c9b3df2c7
bd0e2c3a1a555d3a3dfa5a1a6dfba5762d20ed9a
/BGWpy/external/xmltodict.py
5d8d5989a5b37ff476242fb35b79844fb1316f5e
[ "BSD-3-Clause-LBNL", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
BerkeleyGW/BGWpy
337fdcd6742581d63b0efe7d6e277ec94c654a60
8c649626dffeb233b704b7b0e36950e318e2e4cd
refs/heads/master
2022-02-05T23:23:09.072019
2022-01-08T16:22:12
2022-01-08T16:22:12
46,090,259
30
16
NOASSERTION
2021-11-17T02:12:27
2015-11-13T00:47:08
Python
UTF-8
Python
false
false
13,686
py
#!/usr/bin/env python "Makes working with XML feel like you are working with JSON" # Note (Gabriel Antonius) # As I gratefully copy this file into my own module, # I reproduce the MIT license hereafter. """ The MIT License (MIT) Copyright (c) <year> <copyright holders> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from xml.parsers import expat from xml.sax.saxutils import XMLGenerator from xml.sax.xmlreader import AttributesImpl try: # pragma no cover from cStringIO import StringIO except ImportError: # pragma no cover try: from StringIO import StringIO except ImportError: from io import StringIO try: # pragma no cover from collections import OrderedDict except ImportError: # pragma no cover try: from ordereddict import OrderedDict except ImportError: OrderedDict = dict try: # pragma no cover _basestring = basestring except NameError: # pragma no cover _basestring = str try: # pragma no cover _unicode = unicode except NameError: # pragma no cover _unicode = str __author__ = 'Martin Blech' __version__ = '0.9.2' __license__ = 'MIT' class ParsingInterrupted(Exception): pass class _DictSAXHandler(object): def __init__(self, item_depth=0, item_callback=lambda *args: True, xml_attribs=True, attr_prefix='@', cdata_key='#text', force_cdata=False, cdata_separator='', postprocessor=None, dict_constructor=OrderedDict, strip_whitespace=True, namespace_separator=':', namespaces=None): self.path = [] self.stack = [] self.data = None self.item = None self.item_depth = item_depth self.xml_attribs = xml_attribs self.item_callback = item_callback self.attr_prefix = attr_prefix self.cdata_key = cdata_key self.force_cdata = force_cdata self.cdata_separator = cdata_separator self.postprocessor = postprocessor self.dict_constructor = dict_constructor self.strip_whitespace = strip_whitespace self.namespace_separator = namespace_separator self.namespaces = namespaces def _build_name(self, full_name): if not self.namespaces: return full_name i = full_name.rfind(self.namespace_separator) if i == -1: return full_name namespace, name = full_name[:i], full_name[i+1:] short_namespace = self.namespaces.get(namespace, namespace) if not short_namespace: return name else: return self.namespace_separator.join((short_namespace, name)) def _attrs_to_dict(self, attrs): if isinstance(attrs, dict): return attrs return self.dict_constructor(zip(attrs[0::2], attrs[1::2])) def startElement(self, full_name, attrs): name = self._build_name(full_name) attrs = self._attrs_to_dict(attrs) self.path.append((name, attrs or None)) if len(self.path) > self.item_depth: self.stack.append((self.item, self.data)) if self.xml_attribs: attrs = self.dict_constructor( (self.attr_prefix+key, value) for (key, value) in attrs.items()) else: attrs = None self.item = attrs or None self.data = None def endElement(self, full_name): name = self._build_name(full_name) if len(self.path) == self.item_depth: item = self.item if item is None: item = self.data should_continue = self.item_callback(self.path, item) if not should_continue: raise ParsingInterrupted() if len(self.stack): item, data = self.item, self.data self.item, self.data = self.stack.pop() if self.strip_whitespace and data is not None: data = data.strip() or None if data and self.force_cdata and item is None: item = self.dict_constructor() if item is not None: if data: self.push_data(item, self.cdata_key, data) self.item = self.push_data(self.item, name, item) else: self.item = self.push_data(self.item, name, data) else: self.item = self.data = None self.path.pop() def characters(self, data): if not self.data: self.data = data else: self.data += self.cdata_separator + data def push_data(self, item, key, data): if self.postprocessor is not None: result = self.postprocessor(self.path, key, data) if result is None: return item key, data = result if item is None: item = self.dict_constructor() try: value = item[key] if isinstance(value, list): value.append(data) else: item[key] = [value, data] except KeyError: item[key] = data return item def parse(xml_input, encoding=None, expat=expat, process_namespaces=False, namespace_separator=':', **kwargs): """Parse the given XML input and convert it into a dictionary. `xml_input` can either be a `string` or a file-like object. If `xml_attribs` is `True`, element attributes are put in the dictionary among regular child elements, using `@` as a prefix to avoid collisions. If set to `False`, they are just ignored. Simple example:: >>> import xmltodict >>> doc = xmltodict.parse(\"\"\" ... <a prop="x"> ... <b>1</b> ... <b>2</b> ... </a> ... \"\"\") >>> doc['a']['@prop'] u'x' >>> doc['a']['b'] [u'1', u'2'] If `item_depth` is `0`, the function returns a dictionary for the root element (default behavior). Otherwise, it calls `item_callback` every time an item at the specified depth is found and returns `None` in the end (streaming mode). The callback function receives two parameters: the `path` from the document root to the item (name-attribs pairs), and the `item` (dict). If the callback's return value is false-ish, parsing will be stopped with the :class:`ParsingInterrupted` exception. Streaming example:: >>> def handle(path, item): ... print 'path:%s item:%s' % (path, item) ... return True ... >>> xmltodict.parse(\"\"\" ... <a prop="x"> ... <b>1</b> ... <b>2</b> ... </a>\"\"\", item_depth=2, item_callback=handle) path:[(u'a', {u'prop': u'x'}), (u'b', None)] item:1 path:[(u'a', {u'prop': u'x'}), (u'b', None)] item:2 The optional argument `postprocessor` is a function that takes `path`, `key` and `value` as positional arguments and returns a new `(key, value)` pair where both `key` and `value` may have changed. Usage example:: >>> def postprocessor(path, key, value): ... try: ... return key + ':int', int(value) ... except (ValueError, TypeError): ... return key, value >>> xmltodict.parse('<a><b>1</b><b>2</b><b>x</b></a>', ... postprocessor=postprocessor) OrderedDict([(u'a', OrderedDict([(u'b:int', [1, 2]), (u'b', u'x')]))]) You can pass an alternate version of `expat` (such as `defusedexpat`) by using the `expat` parameter. E.g: >>> import defusedexpat >>> xmltodict.parse('<a>hello</a>', expat=defusedexpat.pyexpat) OrderedDict([(u'a', u'hello')]) """ handler = _DictSAXHandler(namespace_separator=namespace_separator, **kwargs) if isinstance(xml_input, _unicode): if not encoding: encoding = 'utf-8' xml_input = xml_input.encode(encoding) if not process_namespaces: namespace_separator = None parser = expat.ParserCreate( encoding, namespace_separator ) try: parser.ordered_attributes = True except AttributeError: # Jython's expat does not support ordered_attributes pass parser.StartElementHandler = handler.startElement parser.EndElementHandler = handler.endElement parser.CharacterDataHandler = handler.characters parser.buffer_text = True try: parser.ParseFile(xml_input) except (TypeError, AttributeError): parser.Parse(xml_input, True) return handler.item def _emit(key, value, content_handler, attr_prefix='@', cdata_key='#text', depth=0, preprocessor=None, pretty=False, newl='\n', indent='\t', full_document=True): if preprocessor is not None: result = preprocessor(key, value) if result is None: return key, value = result if not isinstance(value, (list, tuple)): value = [value] if full_document and depth == 0 and len(value) > 1: raise ValueError('document with multiple roots') for v in value: if v is None: v = OrderedDict() elif not isinstance(v, dict): v = _unicode(v) if isinstance(v, _basestring): v = OrderedDict(((cdata_key, v),)) cdata = None attrs = OrderedDict() children = [] for ik, iv in v.items(): if ik == cdata_key: cdata = iv continue if ik.startswith(attr_prefix): attrs[ik[len(attr_prefix):]] = iv continue children.append((ik, iv)) if pretty: content_handler.ignorableWhitespace(depth * indent) content_handler.startElement(key, AttributesImpl(attrs)) if pretty and children: content_handler.ignorableWhitespace(newl) for child_key, child_value in children: _emit(child_key, child_value, content_handler, attr_prefix, cdata_key, depth+1, preprocessor, pretty, newl, indent) if cdata is not None: content_handler.characters(cdata) if pretty and children: content_handler.ignorableWhitespace(depth * indent) content_handler.endElement(key) if pretty and depth: content_handler.ignorableWhitespace(newl) def unparse(input_dict, output=None, encoding='utf-8', full_document=True, **kwargs): """Emit an XML document for the given `input_dict` (reverse of `parse`). The resulting XML document is returned as a string, but if `output` (a file-like object) is specified, it is written there instead. Dictionary keys prefixed with `attr_prefix` (default=`'@'`) are interpreted as XML node attributes, whereas keys equal to `cdata_key` (default=`'#text'`) are treated as character data. The `pretty` parameter (default=`False`) enables pretty-printing. In this mode, lines are terminated with `'\n'` and indented with `'\t'`, but this can be customized with the `newl` and `indent` parameters. """ if full_document and len(input_dict) != 1: raise ValueError('Document must have exactly one root.') must_return = False if output is None: output = StringIO() must_return = True content_handler = XMLGenerator(output, encoding) if full_document: content_handler.startDocument() for key, value in input_dict.items(): _emit(key, value, content_handler, full_document=full_document, **kwargs) if full_document: content_handler.endDocument() if must_return: value = output.getvalue() try: # pragma no cover value = value.decode(encoding) except AttributeError: # pragma no cover pass return value if __name__ == '__main__': # pragma: no cover import sys import marshal (item_depth,) = sys.argv[1:] item_depth = int(item_depth) def handle_item(path, item): marshal.dump((path, item), sys.stdout) return True try: root = parse(sys.stdin, item_depth=item_depth, item_callback=handle_item, dict_constructor=dict) if item_depth == 0: handle_item([], root) except KeyboardInterrupt: pass
851e343236fcbdd7f44656f080b1b93fe3ef3605
caaf1b0754db1e676c37a6f1e58f19183754e654
/sdk/dataprotection/azure-mgmt-dataprotection/generated_samples/backup_instance_operations/resume_backups.py
77d94c0e944e5b57ac70c66a4417c698841d6539
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
rdomenzain/azure-sdk-for-python
45dfb39121a0abda048c22e7309733a56259f525
58984255aeb904346b6958c5ba742749a2cc7d1b
refs/heads/master
2023-07-07T06:53:12.967120
2023-07-04T16:27:37
2023-07-04T16:27:37
258,050,134
0
0
MIT
2020-04-23T00:12:14
2020-04-23T00:12:13
null
UTF-8
Python
false
false
1,625
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.dataprotection import DataProtectionMgmtClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-dataprotection # USAGE python resume_backups.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = DataProtectionMgmtClient( credential=DefaultAzureCredential(), subscription_id="04cf684a-d41f-4550-9f70-7708a3a2283b", ) client.backup_instances.begin_resume_backups( resource_group_name="testrg", vault_name="testvault", backup_instance_name="testbi", ).result() # x-ms-original-file: specification/dataprotection/resource-manager/Microsoft.DataProtection/stable/2023-01-01/examples/BackupInstanceOperations/ResumeBackups.json if __name__ == "__main__": main()
afe8a18c571199fd1780bafd986503825bd29d7a
711756b796d68035dc6a39060515200d1d37a274
/output_exocyst/initial_28307.py
0582f2480f2270b8a93822f63734d612f94f1bf3
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
12,960
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Sec3_GFPN" not in marker_sets: s=new_marker_set('Sec3_GFPN') marker_sets["Sec3_GFPN"]=s s= marker_sets["Sec3_GFPN"] mark=s.place_marker((535.641, 593.745, 553.103), (0.15, 0.4, 0.6), 18.4716) if "Sec3_0" not in marker_sets: s=new_marker_set('Sec3_0') marker_sets["Sec3_0"]=s s= marker_sets["Sec3_0"] mark=s.place_marker((495, 355, 953), (0.21, 0.49, 0.72), 17.1475) if "Sec3_1" not in marker_sets: s=new_marker_set('Sec3_1') marker_sets["Sec3_1"]=s s= marker_sets["Sec3_1"] mark=s.place_marker((575, 768, 495), (0.21, 0.49, 0.72), 17.1475) if "Sec3_2" not in marker_sets: s=new_marker_set('Sec3_2') marker_sets["Sec3_2"]=s s= marker_sets["Sec3_2"] mark=s.place_marker((717, 602, 946), (0.21, 0.49, 0.72), 17.1475) if "Sec3_3" not in marker_sets: s=new_marker_set('Sec3_3') marker_sets["Sec3_3"]=s s= marker_sets["Sec3_3"] mark=s.place_marker((677, 208, 177), (0.21, 0.49, 0.72), 17.1475) if "Sec3_4" not in marker_sets: s=new_marker_set('Sec3_4') marker_sets["Sec3_4"]=s s= marker_sets["Sec3_4"] mark=s.place_marker((320, 428, 299), (0.21, 0.49, 0.72), 17.1475) if "Sec3_5" not in marker_sets: s=new_marker_set('Sec3_5') marker_sets["Sec3_5"]=s s= marker_sets["Sec3_5"] mark=s.place_marker((867, 760, 334), (0.21, 0.49, 0.72), 17.1475) if "Sec3_6" not in marker_sets: s=new_marker_set('Sec3_6') marker_sets["Sec3_6"]=s s= marker_sets["Sec3_6"] mark=s.place_marker((912, 50, 380), (0.21, 0.49, 0.72), 17.1475) if "Sec3_GFPC" not in marker_sets: s=new_marker_set('Sec3_GFPC') marker_sets["Sec3_GFPC"]=s s= marker_sets["Sec3_GFPC"] mark=s.place_marker((521.31, 569.568, 598.694), (0.3, 0.6, 0.8), 18.4716) if "Sec3_Anch" not in marker_sets: s=new_marker_set('Sec3_Anch') marker_sets["Sec3_Anch"]=s s= marker_sets["Sec3_Anch"] mark=s.place_marker((726.375, 562.158, 700.437), (0.3, 0.6, 0.8), 18.4716) if "Sec5_GFPN" not in marker_sets: s=new_marker_set('Sec5_GFPN') marker_sets["Sec5_GFPN"]=s s= marker_sets["Sec5_GFPN"] mark=s.place_marker((566.996, 618.569, 556.866), (0.5, 0.3, 0.6), 18.4716) if "Sec5_0" not in marker_sets: s=new_marker_set('Sec5_0') marker_sets["Sec5_0"]=s s= marker_sets["Sec5_0"] mark=s.place_marker((188, 654, 52), (0.6, 0.31, 0.64), 17.1475) if "Sec5_1" not in marker_sets: s=new_marker_set('Sec5_1') marker_sets["Sec5_1"]=s s= marker_sets["Sec5_1"] mark=s.place_marker((897, 753, 836), (0.6, 0.31, 0.64), 17.1475) if "Sec5_2" not in marker_sets: s=new_marker_set('Sec5_2') marker_sets["Sec5_2"]=s s= marker_sets["Sec5_2"] mark=s.place_marker((929, 146, 149), (0.6, 0.31, 0.64), 17.1475) if "Sec5_3" not in marker_sets: s=new_marker_set('Sec5_3') marker_sets["Sec5_3"]=s s= marker_sets["Sec5_3"] mark=s.place_marker((857, 159, 789), (0.6, 0.31, 0.64), 17.1475) if "Sec5_4" not in marker_sets: s=new_marker_set('Sec5_4') marker_sets["Sec5_4"]=s s= marker_sets["Sec5_4"] mark=s.place_marker((59, 242, 262), (0.6, 0.31, 0.64), 17.1475) if "Sec5_5" not in marker_sets: s=new_marker_set('Sec5_5') marker_sets["Sec5_5"]=s s= marker_sets["Sec5_5"] mark=s.place_marker((320, 760, 670), (0.6, 0.31, 0.64), 17.1475) if "Sec5_GFPC" not in marker_sets: s=new_marker_set('Sec5_GFPC') marker_sets["Sec5_GFPC"]=s s= marker_sets["Sec5_GFPC"] mark=s.place_marker((545.611, 538.15, 607.269), (0.7, 0.4, 0.7), 18.4716) if "Sec6_GFPN" not in marker_sets: s=new_marker_set('Sec6_GFPN') marker_sets["Sec6_GFPN"]=s s= marker_sets["Sec6_GFPN"] mark=s.place_marker((547.051, 622.667, 621.128), (1, 1, 0), 18.4716) if "Sec6_0" not in marker_sets: s=new_marker_set('Sec6_0') marker_sets["Sec6_0"]=s s= marker_sets["Sec6_0"] mark=s.place_marker((711, 555, 61), (1, 1, 0.2), 17.1475) if "Sec6_1" not in marker_sets: s=new_marker_set('Sec6_1') marker_sets["Sec6_1"]=s s= marker_sets["Sec6_1"] mark=s.place_marker((979, 400, 73), (1, 1, 0.2), 17.1475) if "Sec6_2" not in marker_sets: s=new_marker_set('Sec6_2') marker_sets["Sec6_2"]=s s= marker_sets["Sec6_2"] mark=s.place_marker((838, 825, 572), (1, 1, 0.2), 17.1475) if "Sec6_3" not in marker_sets: s=new_marker_set('Sec6_3') marker_sets["Sec6_3"]=s s= marker_sets["Sec6_3"] mark=s.place_marker((751, 349, 11), (1, 1, 0.2), 17.1475) if "Sec6_4" not in marker_sets: s=new_marker_set('Sec6_4') marker_sets["Sec6_4"]=s s= marker_sets["Sec6_4"] mark=s.place_marker((362, 888, 49), (1, 1, 0.2), 17.1475) if "Sec6_5" not in marker_sets: s=new_marker_set('Sec6_5') marker_sets["Sec6_5"]=s s= marker_sets["Sec6_5"] mark=s.place_marker((435, 315, 332), (1, 1, 0.2), 17.1475) if "Sec6_GFPC" not in marker_sets: s=new_marker_set('Sec6_GFPC') marker_sets["Sec6_GFPC"]=s s= marker_sets["Sec6_GFPC"] mark=s.place_marker((668.461, 556.663, 518.953), (1, 1, 0.4), 18.4716) if "Sec6_Anch" not in marker_sets: s=new_marker_set('Sec6_Anch') marker_sets["Sec6_Anch"]=s s= marker_sets["Sec6_Anch"] mark=s.place_marker((617.586, 542.531, 361.748), (1, 1, 0.4), 18.4716) if "Sec8_0" not in marker_sets: s=new_marker_set('Sec8_0') marker_sets["Sec8_0"]=s s= marker_sets["Sec8_0"] mark=s.place_marker((159, 613, 117), (0.65, 0.34, 0.16), 17.1475) if "Sec8_1" not in marker_sets: s=new_marker_set('Sec8_1') marker_sets["Sec8_1"]=s s= marker_sets["Sec8_1"] mark=s.place_marker((950, 963, 193), (0.65, 0.34, 0.16), 17.1475) if "Sec8_2" not in marker_sets: s=new_marker_set('Sec8_2') marker_sets["Sec8_2"]=s s= marker_sets["Sec8_2"] mark=s.place_marker((960, 263, 149), (0.65, 0.34, 0.16), 17.1475) if "Sec8_3" not in marker_sets: s=new_marker_set('Sec8_3') marker_sets["Sec8_3"]=s s= marker_sets["Sec8_3"] mark=s.place_marker((122, 900, 660), (0.65, 0.34, 0.16), 17.1475) if "Sec8_4" not in marker_sets: s=new_marker_set('Sec8_4') marker_sets["Sec8_4"]=s s= marker_sets["Sec8_4"] mark=s.place_marker((751, 976, 227), (0.65, 0.34, 0.16), 17.1475) if "Sec8_5" not in marker_sets: s=new_marker_set('Sec8_5') marker_sets["Sec8_5"]=s s= marker_sets["Sec8_5"] mark=s.place_marker((564, 336, 719), (0.65, 0.34, 0.16), 17.1475) if "Sec8_GFPC" not in marker_sets: s=new_marker_set('Sec8_GFPC') marker_sets["Sec8_GFPC"]=s s= marker_sets["Sec8_GFPC"] mark=s.place_marker((650.391, 496.924, 542.858), (0.7, 0.4, 0), 18.4716) if "Sec8_Anch" not in marker_sets: s=new_marker_set('Sec8_Anch') marker_sets["Sec8_Anch"]=s s= marker_sets["Sec8_Anch"] mark=s.place_marker((662.636, 557.115, 753.535), (0.7, 0.4, 0), 18.4716) if "Sec10_GFPN" not in marker_sets: s=new_marker_set('Sec10_GFPN') marker_sets["Sec10_GFPN"]=s s= marker_sets["Sec10_GFPN"] mark=s.place_marker((704.281, 503.596, 493.349), (0.2, 0.6, 0.2), 18.4716) if "Sec10_0" not in marker_sets: s=new_marker_set('Sec10_0') marker_sets["Sec10_0"]=s s= marker_sets["Sec10_0"] mark=s.place_marker((424, 952, 298), (0.3, 0.69, 0.29), 17.1475) if "Sec10_1" not in marker_sets: s=new_marker_set('Sec10_1') marker_sets["Sec10_1"]=s s= marker_sets["Sec10_1"] mark=s.place_marker((876, 77, 606), (0.3, 0.69, 0.29), 17.1475) if "Sec10_2" not in marker_sets: s=new_marker_set('Sec10_2') marker_sets["Sec10_2"]=s s= marker_sets["Sec10_2"] mark=s.place_marker((983, 170, 963), (0.3, 0.69, 0.29), 17.1475) if "Sec10_3" not in marker_sets: s=new_marker_set('Sec10_3') marker_sets["Sec10_3"]=s s= marker_sets["Sec10_3"] mark=s.place_marker((282, 193, 493), (0.3, 0.69, 0.29), 17.1475) if "Sec10_4" not in marker_sets: s=new_marker_set('Sec10_4') marker_sets["Sec10_4"]=s s= marker_sets["Sec10_4"] mark=s.place_marker((179, 167, 362), (0.3, 0.69, 0.29), 17.1475) if "Sec10_5" not in marker_sets: s=new_marker_set('Sec10_5') marker_sets["Sec10_5"]=s s= marker_sets["Sec10_5"] mark=s.place_marker((839, 203, 588), (0.3, 0.69, 0.29), 17.1475) if "Sec10_GFPC" not in marker_sets: s=new_marker_set('Sec10_GFPC') marker_sets["Sec10_GFPC"]=s s= marker_sets["Sec10_GFPC"] mark=s.place_marker((540.06, 454.674, 611.871), (0.4, 0.75, 0.3), 18.4716) if "Sec10_Anch" not in marker_sets: s=new_marker_set('Sec10_Anch') marker_sets["Sec10_Anch"]=s s= marker_sets["Sec10_Anch"] mark=s.place_marker((631.347, 641.621, 402.759), (0.4, 0.75, 0.3), 18.4716) if "Sec15_GFPN" not in marker_sets: s=new_marker_set('Sec15_GFPN') marker_sets["Sec15_GFPN"]=s s= marker_sets["Sec15_GFPN"] mark=s.place_marker((568.942, 549.602, 529.226), (0.9, 0.5, 0.7), 18.4716) if "Sec15_0" not in marker_sets: s=new_marker_set('Sec15_0') marker_sets["Sec15_0"]=s s= marker_sets["Sec15_0"] mark=s.place_marker((880, 522, 130), (0.97, 0.51, 0.75), 17.1475) if "Sec15_1" not in marker_sets: s=new_marker_set('Sec15_1') marker_sets["Sec15_1"]=s s= marker_sets["Sec15_1"] mark=s.place_marker((91, 986, 592), (0.97, 0.51, 0.75), 17.1475) if "Sec15_2" not in marker_sets: s=new_marker_set('Sec15_2') marker_sets["Sec15_2"]=s s= marker_sets["Sec15_2"] mark=s.place_marker((437, 34, 973), (0.97, 0.51, 0.75), 17.1475) if "Sec15_3" not in marker_sets: s=new_marker_set('Sec15_3') marker_sets["Sec15_3"]=s s= marker_sets["Sec15_3"] mark=s.place_marker((273, 725, 385), (0.97, 0.51, 0.75), 17.1475) if "Sec15_4" not in marker_sets: s=new_marker_set('Sec15_4') marker_sets["Sec15_4"]=s s= marker_sets["Sec15_4"] mark=s.place_marker((46, 373, 159), (0.97, 0.51, 0.75), 17.1475) if "Sec15_5" not in marker_sets: s=new_marker_set('Sec15_5') marker_sets["Sec15_5"]=s s= marker_sets["Sec15_5"] mark=s.place_marker((69, 614, 808), (0.97, 0.51, 0.75), 17.1475) if "Sec15_GFPC" not in marker_sets: s=new_marker_set('Sec15_GFPC') marker_sets["Sec15_GFPC"]=s s= marker_sets["Sec15_GFPC"] mark=s.place_marker((670.499, 448.5, 527.213), (1, 0.6, 0.8), 18.4716) if "Sec15_Anch" not in marker_sets: s=new_marker_set('Sec15_Anch') marker_sets["Sec15_Anch"]=s s= marker_sets["Sec15_Anch"] mark=s.place_marker((528.487, 386.001, 467.526), (1, 0.6, 0.8), 18.4716) if "Exo70_GFPN" not in marker_sets: s=new_marker_set('Exo70_GFPN') marker_sets["Exo70_GFPN"]=s s= marker_sets["Exo70_GFPN"] mark=s.place_marker((524.04, 568.181, 572.181), (0.8, 0, 0), 18.4716) if "Exo70_0" not in marker_sets: s=new_marker_set('Exo70_0') marker_sets["Exo70_0"]=s s= marker_sets["Exo70_0"] mark=s.place_marker((262, 268, 542), (0.89, 0.1, 0.1), 17.1475) if "Exo70_1" not in marker_sets: s=new_marker_set('Exo70_1') marker_sets["Exo70_1"]=s s= marker_sets["Exo70_1"] mark=s.place_marker((345, 349, 176), (0.89, 0.1, 0.1), 17.1475) if "Exo70_2" not in marker_sets: s=new_marker_set('Exo70_2') marker_sets["Exo70_2"]=s s= marker_sets["Exo70_2"] mark=s.place_marker((589, 774, 941), (0.89, 0.1, 0.1), 17.1475) if "Exo70_3" not in marker_sets: s=new_marker_set('Exo70_3') marker_sets["Exo70_3"]=s s= marker_sets["Exo70_3"] mark=s.place_marker((954, 801, 509), (0.89, 0.1, 0.1), 17.1475) if "Exo70_4" not in marker_sets: s=new_marker_set('Exo70_4') marker_sets["Exo70_4"]=s s= marker_sets["Exo70_4"] mark=s.place_marker((787, 704, 774), (0.89, 0.1, 0.1), 17.1475) if "Exo70_GFPC" not in marker_sets: s=new_marker_set('Exo70_GFPC') marker_sets["Exo70_GFPC"]=s s= marker_sets["Exo70_GFPC"] mark=s.place_marker((705.748, 474.225, 557.579), (1, 0.2, 0.2), 18.4716) if "Exo70_Anch" not in marker_sets: s=new_marker_set('Exo70_Anch') marker_sets["Exo70_Anch"]=s s= marker_sets["Exo70_Anch"] mark=s.place_marker((477.603, 670.358, 384.03), (1, 0.2, 0.2), 18.4716) if "Exo84_GFPN" not in marker_sets: s=new_marker_set('Exo84_GFPN') marker_sets["Exo84_GFPN"]=s s= marker_sets["Exo84_GFPN"] mark=s.place_marker((568.263, 615.714, 542.602), (0.9, 0.4, 0), 18.4716) if "Exo84_0" not in marker_sets: s=new_marker_set('Exo84_0') marker_sets["Exo84_0"]=s s= marker_sets["Exo84_0"] mark=s.place_marker((879, 664, 955), (1, 0.5, 0), 17.1475) if "Exo84_1" not in marker_sets: s=new_marker_set('Exo84_1') marker_sets["Exo84_1"]=s s= marker_sets["Exo84_1"] mark=s.place_marker((879, 595, 534), (1, 0.5, 0), 17.1475) if "Exo84_2" not in marker_sets: s=new_marker_set('Exo84_2') marker_sets["Exo84_2"]=s s= marker_sets["Exo84_2"] mark=s.place_marker((355, 449, 160), (1, 0.5, 0), 17.1475) if "Exo84_3" not in marker_sets: s=new_marker_set('Exo84_3') marker_sets["Exo84_3"]=s s= marker_sets["Exo84_3"] mark=s.place_marker((157, 290, 647), (1, 0.5, 0), 17.1475) if "Exo84_GFPC" not in marker_sets: s=new_marker_set('Exo84_GFPC') marker_sets["Exo84_GFPC"]=s s= marker_sets["Exo84_GFPC"] mark=s.place_marker((568.791, 511.347, 608.299), (1, 0.6, 0.1), 18.4716) if "Exo84_Anch" not in marker_sets: s=new_marker_set('Exo84_Anch') marker_sets["Exo84_Anch"]=s s= marker_sets["Exo84_Anch"] mark=s.place_marker((482.881, 430.091, 445.773), (1, 0.6, 0.1), 18.4716) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
0031edfd68aaa9ff6c446eb3f2c7ca612fc31273
a903fc8f24e4867a85dc85405421137360e360a1
/PythonFiles/venv/Lib/site-packages/google/protobuf/empty_pb2.py
65af2f0dafd2c2e5cac8aacd9c4243f628200bf6
[]
no_license
CiBit2G/CiBit
8c486d2aad672a0ec5aec57a0717418f08e3a8e0
cedd24bccb31346ae2831655953e2ef6f9c5afa6
refs/heads/Develop
2023-08-10T10:51:56.447517
2021-01-08T22:08:33
2021-01-08T22:08:33
261,506,824
0
1
null
2023-07-23T15:08:58
2020-05-05T15:14:35
Python
UTF-8
Python
false
true
1,853
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/protobuf/empty.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='google/protobuf/empty.proto', package='google.protobuf', syntax='proto3', serialized_options=b'\n\023com.google.protobufB\nEmptyProtoP\001Z\'github.com/golang/protobuf/ptypes/empty\370\001\001\242\002\003GPB\252\002\036Google.Protobuf.WellKnownTypes', serialized_pb=b'\n\x1bgoogle/protobuf/empty.proto\x12\x0fgoogle.protobuf\"\x07\n\x05\x45mptyBv\n\x13\x63om.google.protobufB\nEmptyProtoP\x01Z\'github.com/golang/protobuf/ptypes/empty\xf8\x01\x01\xa2\x02\x03GPB\xaa\x02\x1eGoogle.Protobuf.WellKnownTypesb\x06proto3' ) _EMPTY = _descriptor.Descriptor( name='Empty', full_name='google.protobuf.Empty', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=48, serialized_end=55, ) DESCRIPTOR.message_types_by_name['Empty'] = _EMPTY _sym_db.RegisterFileDescriptor(DESCRIPTOR) Empty = _reflection.GeneratedProtocolMessageType('Empty', (_message.Message,), { 'DESCRIPTOR' : _EMPTY, '__module__' : 'google.protobuf.empty_pb2' # @@protoc_insertion_point(class_scope:google.protobuf.Empty) }) _sym_db.RegisterMessage(Empty) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
7bfca6be76ece9e5856372d1f6dd3f4a2365041a
993f18c21402d7a4ff21ddb7ff2ec6c80e466f20
/onnx/reference/ops/op_rnn.py
7b4e7bee98b8137c8317e850eb7461b161e56f64
[ "Apache-2.0" ]
permissive
onnx/onnx
10d3916803c7babff89ec0fa9045127bcccad376
8a475b34cb3875df311a46f57571646498f5bda7
refs/heads/main
2023-08-18T18:50:03.388353
2023-08-16T22:18:46
2023-08-16T22:18:46
102,692,863
16,164
4,150
Apache-2.0
2023-09-14T17:10:38
2017-09-07T04:53:45
Python
UTF-8
Python
false
false
4,972
py
# Copyright (c) ONNX Project Contributors # SPDX-License-Identifier: Apache-2.0 # pylint: disable=R0913,R0914,W0221,W0613 import numpy as np from onnx.reference.op_run import OpRun class CommonRNN(OpRun): def __init__(self, onnx_node, run_params): # type: ignore OpRun.__init__(self, onnx_node, run_params) if self.direction in ("forward", "reverse"): # type: ignore self.num_directions = 1 # type: ignore elif self.direction == "bidirectional": # type: ignore self.num_directions = 2 # type: ignore else: raise RuntimeError(f"Unknown direction {self.direction!r}.") # type: ignore if ( self.activation_alpha is not None # type: ignore and len(self.activation_alpha) != self.num_directions # type: ignore ): raise RuntimeError( f"activation_alpha must have the same size as num_directions={self.num_directions}." # type: ignore ) if ( self.activation_beta is not None # type: ignore and len(self.activation_beta) != self.num_directions # type: ignore ): raise RuntimeError( f"activation_beta must have the same size as num_directions={self.num_directions}." # type: ignore ) self.f1 = self.choose_act( self.activations[0], # type: ignore self.activation_alpha[0] # type: ignore if self.activation_alpha is not None and len(self.activation_alpha) > 0 # type: ignore else None, self.activation_beta[0] # type: ignore if self.activation_beta is not None and len(self.activation_beta) > 0 # type: ignore else None, ) if len(self.activations) > 1: # type: ignore self.f2 = self.choose_act( self.activations[1], # type: ignore self.activation_alpha[1] # type: ignore if self.activation_alpha is not None and len(self.activation_alpha) > 1 # type: ignore else None, self.activation_beta[1] # type: ignore if self.activation_beta is not None and len(self.activation_beta) > 1 # type: ignore else None, ) self.n_outputs = len(onnx_node.output) def choose_act(self, name, alpha, beta): # type: ignore if name in ("Tanh", "tanh"): return self._f_tanh if name in ("Affine", "affine"): return lambda x: x * alpha + beta raise RuntimeError(f"Unknown activation function {name!r}.") def _f_tanh(self, x): # type: ignore return np.tanh(x) def _step(self, X, R, B, W, H_0): # type: ignore h_list = [] H_t = H_0 for x in np.split(X, X.shape[0], axis=0): H = self.f1( np.dot(x, np.transpose(W)) + np.dot(H_t, np.transpose(R)) + np.add(*np.split(B, 2)) ) h_list.append(H) H_t = H concatenated = np.concatenate(h_list) if self.num_directions == 1: output = np.expand_dims(concatenated, 1) return output, h_list[-1] def _run( # type: ignore self, X, W, R, B=None, sequence_lens=None, initial_h=None, activation_alpha=None, activation_beta=None, activations=None, clip=None, direction=None, hidden_size=None, layout=None, ): # TODO: support overridden attributes. self.num_directions = W.shape[0] if self.num_directions == 1: R = np.squeeze(R, axis=0) W = np.squeeze(W, axis=0) if B is not None: B = np.squeeze(B, axis=0) if sequence_lens is not None: sequence_lens = np.squeeze(sequence_lens, axis=0) if initial_h is not None: initial_h = np.squeeze(initial_h, axis=0) hidden_size = R.shape[-1] batch_size = X.shape[1] X = X if layout == 0 else np.swapaxes(X, 0, 1) b = B if B is not None else np.zeros(2 * hidden_size, dtype=X.dtype) h_0 = ( initial_h if initial_h is not None else np.zeros((batch_size, hidden_size), dtype=X.dtype) ) B = b H_0 = h_0 else: raise NotImplementedError( f"Unsupported value {self.num_directions} for num_directions and operator {self.__class__.__name__!r}." ) Y, Y_h = self._step(X, R, B, W, H_0) if layout == 1: Y = np.transpose(Y, [2, 0, 1, 3]) Y_h = Y[:, :, -1, :] Y = Y.astype(X.dtype) return (Y,) if self.n_outputs == 1 else (Y, Y_h) class RNN_7(CommonRNN): pass class RNN_14(CommonRNN): pass
10307bb15711fd8b79dd45b49797dbad958413d1
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_3/blsmic004/question4.py
71ab4ab7d932bf5d278d61266de70a716f569693
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
# Find palindromic primes between given values # Michele Balestra BLSMIC004 # 23 March 2014 N = eval(input("Enter the starting point N:\n")) M = eval(input("Enter the ending point M:\n")) print("The palindromic primes are:") for i in range(N+1,M): strI = str(i) if i==2: print(i) elif i==1: continue elif i%2==0:continue elif strI==strI[-1::-1]: for j in range(2,int(i**0.5)+1): if i%j==0: break else: print(i) else: pass
a29d3e7de9b847c9928e92986e748f06fa3419d8
f33192647643bf11f13936866d80d573189bd72f
/Easy/Kids With the Greatest Number of Candies.py
f499a7528ba409bd0f7b31b60b726b5016c81386
[]
no_license
komalupatil/Leetcode_Solutions
d8a10bd8ea341dc51dbcdacfd1f2b9a4bb65032d
62d20010ebdb91c15ecbcf5fb38e308511f26499
refs/heads/master
2022-05-19T00:13:31.540076
2022-04-23T01:45:11
2022-04-23T01:45:11
194,587,808
1
0
null
null
null
null
UTF-8
Python
false
false
439
py
#Leetcode 1431. Kids With the Greatest Number of Candies class Solution: def kidsWithCandies(self, candies: List[int], extraCandies: int) -> List[bool]: maxCandy = max(candies) result = [] for i in range(len(candies)): if candies[i] == maxCandy or candies[i]+ extraCandies >= maxCandy: result.append(True) else: result.append(False) return result
45f46ed66d7154c90c87712a64c1ac8d6e923aa3
aa0270b351402e421631ebc8b51e528448302fab
/sdk/databox/azure-mgmt-databox/azure/mgmt/databox/v2021_12_01/operations/_operations.py
502f0faa6cfebf14fef2aa7238b3bc1804394cec
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
fangchen0601/azure-sdk-for-python
d04a22109d0ff8ff209c82e4154b7169b6cb2e53
c2e11d6682e368b2f062e714490d2de42e1fed36
refs/heads/master
2023-05-11T16:53:26.317418
2023-05-04T20:02:16
2023-05-04T20:02:16
300,440,803
0
0
MIT
2020-10-16T18:45:29
2020-10-01T22:27:56
null
UTF-8
Python
false
false
6,717
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar import urllib.parse from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from ..._serialization import Serializer from .._vendor import DataBoxManagementClientMixinABC, _convert_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request(**kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-12-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop("template_url", "/providers/Microsoft.DataBox/operations") # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class Operations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.databox.v2021_12_01.DataBoxManagementClient`'s :attr:`operations` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> Iterable["_models.Operation"]: """This method gets all the operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Operation or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.databox.v2021_12_01.models.Operation] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-12-01"] = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01")) cls: ClsType[_models.OperationList] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("OperationList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ApiError, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.DataBox/operations"}
d99e70cf63ab0cd31386b32105d62353563e8104
7e099db730027a332cef52c4e539a1c3a39584d7
/shell.py
79226bed2f104aac2d8f90a5d23985b81099cf9f
[]
no_license
haricm/hasweb
688108d01950822c9f3813a9a926c11e17529827
48e92c46855e4fa14f35090ae1e1c9ceffa5d75f
refs/heads/static
2020-12-28T06:58:31.525138
2016-06-22T21:41:54
2016-06-22T21:41:54
51,294,404
0
0
null
2016-02-08T11:36:39
2016-02-08T11:36:38
null
UTF-8
Python
false
false
181
py
#! /usr/bin/env python #! -*- coding: utf-8 -*- import os import readline from pprint import pprint from flask import * from hasweb import * os.environ['PYTHONINSPECT'] = 'True'
0f80ceed0a9b7196db673950e939e754400fa998
7b55cfc4ffa7678e4c7b8f2312831ebbd549e54f
/proj1/tests/other-tests/strictfp_tests/error/test_for_else_continue.py
b31c955db56843adb3d1a5c3bfa2c2f5a31bb97d
[]
no_license
czchen1/cs164-projects
0d330efef85421e611a436b165428ba0ddfb3512
a04cafbcaafd32e518227dacf89a6d7837bf9f57
refs/heads/master
2020-03-27T04:03:31.727524
2018-08-23T21:43:46
2018-08-23T21:43:46
145,909,148
0
0
null
null
null
null
UTF-8
Python
false
false
41
py
for _ in (): pass else: continue
10dc94fce77ff1027f55411a178940bdfd04d4a5
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/common/Lib/plat-mac/lib-scriptpackages/Explorer/Netscape_Suite.py
9dc8c9f099abf16d3e2caf20047680e160b01130
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
1,485
py
# 2017.08.29 21:58:49 Střední Evropa (letní čas) # Embedded file name: scripts/common/Lib/plat-mac/lib-scriptpackages/Explorer/Netscape_Suite.py """Suite Netscape Suite: Events defined by Netscape Level 1, version 1 Generated from /Applications/Internet Explorer.app AETE/AEUT resource version 1/0, language 0, script 0 """ import aetools import MacOS _code = 'MOSS' class Netscape_Suite_Events: def Open_bookmark(self, _object = None, _attributes = {}, **_arguments): """Open bookmark: Opens a bookmark file Required argument: If not available, reloads the current bookmark file Keyword argument _attributes: AppleEvent attribute dictionary """ _code = 'MOSS' _subcode = 'book' if _arguments: raise TypeError, 'No optional args expected' _arguments['----'] = _object _reply, _arguments, _attributes = self.send(_code, _subcode, _arguments, _attributes) if _arguments.get('errn', 0): raise aetools.Error, aetools.decodeerror(_arguments) if _arguments.has_key('----'): return _arguments['----'] _classdeclarations = {} _propdeclarations = {} _compdeclarations = {} _enumdeclarations = {} # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\common\Lib\plat-mac\lib-scriptpackages\Explorer\Netscape_Suite.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:58:49 Střední Evropa (letní čas)
d9c62814e709deaedc82713d90955bb4505d05c9
5759c0ed3219c06437ce5b39ef9ad92b5e191fed
/py/0814_binary_tree_pruning.py
58027f3dc60a087ead471c4791aa442c2fa71a8e
[]
no_license
mengnan1994/Surrender-to-Reality
ba69df7c36112ad19f19157a9f368eae6340630f
66232728ce49149188f863271ec2c57e426abb43
refs/heads/master
2022-02-25T01:34:49.526517
2019-09-22T17:21:28
2019-09-22T17:21:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,527
py
""" We are given the head node root of a binary tree, where additionally every node's value is either a 0 or a 1. Return the same tree where every subtree (of the given tree) not containing a 1 has been removed. (Recall that the subtree of a node X is X, plus every node that is a descendant of X.) Example 1: Input: [1,null,0,0,1] Output: [1,null,0,null,1] Explanation: Only the red nodes satisfy the property "every subtree not containing a 1". The diagram on the right represents the answer. Example 2: Input: [1,0,1,0,0,0,1] Output: [1,null,1,null,1] Example 3: Input: [1,1,0,1,1,0,1,0] Output: [1,1,0,1,1,null,1] Note: 1. The binary tree will have at most 100 nodes. 2. The value of each node will only be 0 or 1. """ # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def prune_tree(self, root): """ 后序遍历,统计子树的节点值之和。若和为 0,剪枝 """ if root.val == 0 and not root.left and not root.right: return None self._postorder_traverse(root) return root def _postorder_traverse(self, node : TreeNode): if not node: return 0 left = self._postorder_traverse(node.left) right = self._postorder_traverse(node.right) if not left: node.left = None if not right: node.right = None return left + right + node.val
b8d25789b012978f89d53ff49aaf89fe33ba5b8e
17acb8e20f9a24b16ce3651302fc2d7fc7b887a6
/src/programy/storage/stores/nosql/mongo/store/users.py
02d5a2bccdd7221a3337439e37f79782513550ca
[ "MIT" ]
permissive
cen-ai/program-y
91052fdc11aec0f60311e3429895fac489d8ce54
a753667638147544c54dbebd9f1c8f9ae7f2159e
refs/heads/master
2020-03-22T15:11:07.896885
2018-10-15T22:13:58
2018-10-15T22:13:58
140,234,173
5
5
NOASSERTION
2019-01-03T09:09:07
2018-07-09T05:11:08
Python
UTF-8
Python
false
false
2,230
py
""" Copyright (c) 2016-2018 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.storage.stores.nosql.mongo.store.mongostore import MongoStore from programy.storage.entities.user import UserStore from programy.storage.stores.nosql.mongo.dao.user import User class MongoUserStore(MongoStore, UserStore): USERS = 'users' USERID = 'userid' CLIENT = 'client' def __init__(self, storage_engine): MongoStore.__init__(self, storage_engine) def collection_name(self): return MongoUserStore.USERS def add_user(self, userid, client): YLogger.info(self, "Adding user [%s] for client [%s]", userid, client) user = User(userid, client) self.add_document(user) return True def get_user(self, userid): collection = self.collection() user = collection.find_one({MongoUserStore.USERID: userid}) return user def get_client_users(self, client): collection = self.collection() db_users = collection.find({MongoUserStore.CLIENT: client}) users = [] for user in db_users: users.append(user) return users
9c742413d38b0aaf50f7200c1696142e316f6e85
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_scrimps.py
64415eec48625a7a2cc7517d1e7bb4590bc19881
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from xai.brain.wordbase.verbs._scrimp import _SCRIMP #calss header class _SCRIMPS(_SCRIMP, ): def __init__(self,): _SCRIMP.__init__(self) self.name = "SCRIMPS" self.specie = 'verbs' self.basic = "scrimp" self.jsondata = {}
5a44fb3ce092fff1fc046dcecfc1d3f3eec40fcd
134ff3c0719d4c0022eb0fb7c859bdbff5ca34b2
/desktop/core/ext-py/Mako-0.3.3/mako/pygen.py
aada94d23e3be74ab01a823a6bece33ad1e46ed2
[ "MIT", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
civascu/hue
22637f13a4cfc557716557661523131b6ac16da4
82f2de44789ff5a981ed725175bae7944832d1e9
refs/heads/master
2020-03-31T01:50:39.449966
2010-07-21T01:05:50
2010-07-21T01:07:15
788,284
0
0
Apache-2.0
2019-02-04T07:03:12
2010-07-21T07:34:27
Python
UTF-8
Python
false
false
9,774
py
# pygen.py # Copyright (C) 2006, 2007, 2008, 2009, 2010 Michael Bayer [email protected] # # This module is part of Mako and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """utilities for generating and formatting literal Python code.""" import re, string from StringIO import StringIO from mako import exceptions class PythonPrinter(object): def __init__(self, stream): # indentation counter self.indent = 0 # a stack storing information about why we incremented # the indentation counter, to help us determine if we # should decrement it self.indent_detail = [] # the string of whitespace multiplied by the indent # counter to produce a line self.indentstring = " " # the stream we are writing to self.stream = stream # a list of lines that represents a buffered "block" of code, # which can be later printed relative to an indent level self.line_buffer = [] self.in_indent_lines = False self._reset_multi_line_flags() def write(self, text): self.stream.write(text) def write_indented_block(self, block): """print a line or lines of python which already contain indentation. The indentation of the total block of lines will be adjusted to that of the current indent level.""" self.in_indent_lines = False for l in re.split(r'\r?\n', block): self.line_buffer.append(l) def writelines(self, *lines): """print a series of lines of python.""" for line in lines: self.writeline(line) def writeline(self, line): """print a line of python, indenting it according to the current indent level. this also adjusts the indentation counter according to the content of the line.""" if not self.in_indent_lines: self._flush_adjusted_lines() self.in_indent_lines = True decreased_indent = False if (line is None or re.match(r"^\s*#",line) or re.match(r"^\s*$", line) ): hastext = False else: hastext = True is_comment = line and len(line) and line[0] == '#' # see if this line should decrease the indentation level if (not decreased_indent and not is_comment and (not hastext or self._is_unindentor(line)) ): if self.indent > 0: self.indent -=1 # if the indent_detail stack is empty, the user # probably put extra closures - the resulting # module wont compile. if len(self.indent_detail) == 0: raise exceptions.SyntaxException("Too many whitespace closures") self.indent_detail.pop() if line is None: return # write the line self.stream.write(self._indent_line(line) + "\n") # see if this line should increase the indentation level. # note that a line can both decrase (before printing) and # then increase (after printing) the indentation level. if re.search(r":[ \t]*(?:#.*)?$", line): # increment indentation count, and also # keep track of what the keyword was that indented us, # if it is a python compound statement keyword # where we might have to look for an "unindent" keyword match = re.match(r"^\s*(if|try|elif|while|for)", line) if match: # its a "compound" keyword, so we will check for "unindentors" indentor = match.group(1) self.indent +=1 self.indent_detail.append(indentor) else: indentor = None # its not a "compound" keyword. but lets also # test for valid Python keywords that might be indenting us, # else assume its a non-indenting line m2 = re.match(r"^\s*(def|class|else|elif|except|finally)", line) if m2: self.indent += 1 self.indent_detail.append(indentor) def close(self): """close this printer, flushing any remaining lines.""" self._flush_adjusted_lines() def _is_unindentor(self, line): """return true if the given line is an 'unindentor', relative to the last 'indent' event received.""" # no indentation detail has been pushed on; return False if len(self.indent_detail) == 0: return False indentor = self.indent_detail[-1] # the last indent keyword we grabbed is not a # compound statement keyword; return False if indentor is None: return False # if the current line doesnt have one of the "unindentor" keywords, # return False match = re.match(r"^\s*(else|elif|except|finally).*\:", line) if not match: return False # whitespace matches up, we have a compound indentor, # and this line has an unindentor, this # is probably good enough return True # should we decide that its not good enough, heres # more stuff to check. #keyword = match.group(1) # match the original indent keyword #for crit in [ # (r'if|elif', r'else|elif'), # (r'try', r'except|finally|else'), # (r'while|for', r'else'), #]: # if re.match(crit[0], indentor) and re.match(crit[1], keyword): return True #return False def _indent_line(self, line, stripspace = ''): """indent the given line according to the current indent level. stripspace is a string of space that will be truncated from the start of the line before indenting.""" return re.sub(r"^%s" % stripspace, self.indentstring * self.indent, line) def _reset_multi_line_flags(self): """reset the flags which would indicate we are in a backslashed or triple-quoted section.""" (self.backslashed, self.triplequoted) = (False, False) def _in_multi_line(self, line): """return true if the given line is part of a multi-line block, via backslash or triple-quote.""" # we are only looking for explicitly joined lines here, # not implicit ones (i.e. brackets, braces etc.). this is just # to guard against the possibility of modifying the space inside # of a literal multiline string with unfortunately placed whitespace current_state = (self.backslashed or self.triplequoted) if re.search(r"\\$", line): self.backslashed = True else: self.backslashed = False triples = len(re.findall(r"\"\"\"|\'\'\'", line)) if triples == 1 or triples % 2 != 0: self.triplequoted = not self.triplequoted return current_state def _flush_adjusted_lines(self): stripspace = None self._reset_multi_line_flags() for entry in self.line_buffer: if self._in_multi_line(entry): self.stream.write(entry + "\n") else: entry = entry.expandtabs() if stripspace is None and re.search(r"^[ \t]*[^# \t]", entry): stripspace = re.match(r"^([ \t]*)", entry).group(1) self.stream.write(self._indent_line(entry, stripspace) + "\n") self.line_buffer = [] self._reset_multi_line_flags() def adjust_whitespace(text): """remove the left-whitespace margin of a block of Python code.""" state = [False, False] (backslashed, triplequoted) = (0, 1) def in_multi_line(line): start_state = (state[backslashed] or state[triplequoted]) if re.search(r"\\$", line): state[backslashed] = True else: state[backslashed] = False def match(reg, t): m = re.match(reg, t) if m: return m, t[len(m.group(0)):] else: return None, t while line: if state[triplequoted]: m, line = match(r"%s" % state[triplequoted], line) if m: state[triplequoted] = False else: m, line = match(r".*?(?=%s|$)" % state[triplequoted], line) else: m, line = match(r'#', line) if m: return start_state m, line = match(r"\"\"\"|\'\'\'", line) if m: state[triplequoted] = m.group(0) continue m, line = match(r".*?(?=\"\"\"|\'\'\'|#|$)", line) return start_state def _indent_line(line, stripspace = ''): return re.sub(r"^%s" % stripspace, '', line) lines = [] stripspace = None for line in re.split(r'\r?\n', text): if in_multi_line(line): lines.append(line) else: line = line.expandtabs() if stripspace is None and re.search(r"^[ \t]*[^# \t]", line): stripspace = re.match(r"^([ \t]*)", line).group(1) lines.append(_indent_line(line, stripspace)) return "\n".join(lines)
eac6a2b1d70e266e04d31db1b3283e1f1ae7aaae
bebc317eebad1e0f136c2d959e5b9882e123d366
/game/mario/src/data/level.py
45618b67ab8331a23000646413fe4780b9d3a293
[ "Apache-2.0" ]
permissive
GuillaumeFalourd/formulas-games
62ac5b87e6868db29de022e52fd56993ec9c3c46
7530ef09cc85f30157e62b8761868c2a0eddb93d
refs/heads/main
2023-07-14T04:33:11.666127
2021-08-29T23:21:16
2021-08-29T23:21:16
369,598,803
10
2
null
null
null
null
UTF-8
Python
false
false
3,192
py
from .sprites import level_1 from .basetypes import Vector2, Rectangle from . import config as c from .components.tiles import Question, Brick, Collider_Rect, Flagpole from .components.items import * from .components.enemies import * #Colliders that don't possess velocity static_colliders = [] #Colliders that possess velocity dynamic_colliders = [] coins = [] super_mushrooms = [] enemies = [] #Fragments go here when a brick tile gets broken brick_fragments = [] #Start and End tile for grouping large rows of tiles into one collider start_tile = None end_tile = None #Read pixel data from level map and instantiate objects corresponding to pixel colors for y in range(0, level_1.size[1]): for x in range(0, level_1.size[0]): color = level_1.getpixel((x, y)) pos = Vector2(x * c.TILE_SIZE, y * c.TILE_SIZE + 24) #Black = Static ground collider, which are grouped together for optimizations if color == c.BLACK: if start_tile == None: start_tile = pos if end_tile == None: if x + 1 > level_1.size[0]: end_tile = pos if level_1.getpixel((x + 1, y)) != c.BLACK: end_tile = pos if end_tile != None and start_tile != None: w = end_tile.x - start_tile.x + c.TILE_SIZE h = c.TILE_SIZE rect = Rectangle(start_tile, w, h) static_colliders.append(Collider_Rect(rect)) end_tile = None start_tile = None #Red = Pipe collider elif color == c.RED: h = c.SCREEN_SIZE.y - pos.y w = 2 * c.TILE_SIZE rect = Rectangle(pos, w, h) static_colliders.append(Collider_Rect(rect)) #Yellow = Question tile with coin as item elif color == c.YELLOW: coin_rect = Rectangle(Vector2(pos.x, pos.y), 48, 42) contents = Coin(coin_rect) coins.append(contents) rect = Rectangle(pos, c.TILE_SIZE, c.TILE_SIZE) dynamic_colliders.append(Question(rect, contents)) #Gray = Brick tile elif color == c.GRAY: rect = Rectangle(pos, c.TILE_SIZE, c.TILE_SIZE) dynamic_colliders.append(Brick(rect)) #Green = Question tile with mushroom as item elif color == c.GREEN: mushroom_rect = Rectangle(Vector2(pos.x, pos.y), c.TILE_SIZE, c.TILE_SIZE) contents = Super_Mushroom(mushroom_rect, Vector2(c.MUSHROOM_START_VEL_X, 0)) super_mushrooms.append(contents) rect = Rectangle(pos, c.TILE_SIZE, c.TILE_SIZE) dynamic_colliders.append(Question(rect, contents)) #Brown = Goomba elif color == c.BROWN: rect = Rectangle(pos, c.TILE_SIZE, c.TILE_SIZE) enemies.append(Goomba(rect, Vector2())) elif color == c.PURPLE: rect = Rectangle(Vector2(pos.x, pos.y - 24), 48, 72) enemies.append(Turtle(rect, Vector2())) #Instantiate flagpole rect = Rectangle(Vector2(9504, 96), 48, 456) flag_pos = Vector2(9480, 120) c.flagpole = Flagpole(rect, flag_pos)
3ebadc10fd17025f0d68ab97ada972030f456f03
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2403/60592/233469.py
9761f234d7673441623d7aa29b2be6f823ffb15b
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
260
py
candies = int(input()) num_people = int(input()) i = 0 res = [0]*num_people while(candies>0): if candies>=i+1: candies-=i+1 res[i%num_people] += i+1; else: res[i%num_people] += candies candies = 0; i = i+1 print(res)
c356b33c79658d26e2ebe9e93c3a76b76ff1259b
fbcb22a83a6e74ef68a06b3e3aa92f6a5b59beed
/iconfluence/interactive/interactive_checker.py
e30aa702c6a55ebb25f4c2da816426cb942821ae
[]
no_license
mwhittaker/enforced_invariant_confluence
f296b38152bf3e9282c5529069f141ea2cc028a6
1275d7330b2e2e1a091272dab458c3ac6ca655f6
refs/heads/master
2022-11-30T05:03:27.974549
2020-08-16T23:58:42
2020-08-16T23:58:42
71,737,634
5
0
null
2022-11-22T01:49:13
2016-10-24T00:13:33
Python
UTF-8
Python
false
false
15,040
py
from enum import Enum from textwrap import wrap from typing import List, Optional, Tuple from colored import attr, fg from orderedset import OrderedSet import z3 from ..ast import (EVar, EBool, EBoolAnd, EBoolNot, Expr, Invariant, typed_coerce) from ..checker import Checker, Decision from ..envs import ExprEnv, ValEnv, TypeEnv, Z3ExprEnv from ..eval import eval_invariant from ..state_explorer import StateExplorer from ..typecheck import typecheck_expr, typecheck_invariant from ..z3_ import compile from ..z3_.fresh_name import FreshName from ..z3_.model import InfiniteMap, InfiniteSet, model_to_state from ..z3_.version_env import VersionEnv from ..z3_.z3_util import scoped class Label(Enum): REACHABLE = "reachable" UNREACHABLE = "unreachable" class InteractiveChecker(Checker): """ An interactive invariant-confluence decision procedure. Recall that a state based object O is (s0, T, I)-confluent if every (s0, T, I)-reachable state satisfies the invariant. O is I-closed if invariant-satisfying states are closed under join. I-closure always implies (s0, T, I)-confluence, but the converse is not always true. However, if set of invariant-satisfying points is a subset of the set of reachable points, then invariant-confluence and invariant-closure are equivalent. This interactive decision procedure relies on the user to iteratively refine the invariant until it is a subset of the set of reachable points. It then uses Z3 to check for invariant-closure. >>> from .. import * >>> checker = InteractiveChecker() >>> x = checker.int_max('x', 0) >>> y = checker.int_max('y', 0) >>> checker.add_invariant('xy_leq_0', x * y <= 0) >>> checker.add_transaction('x_inc', [x.assign(x + 1)]) >>> checker.add_transaction('y_dec', [y.assign(y - 1)]) >>> checker.check() The following two states (i.e. lhs and rhs) satisfy the (refined) invariant, but their join does not. Please use the lhs_reachable(), lhs_unreachable(), rhs_reachable(), and rhs_unreachable() methods to label the states as reachable or unreachable. <BLANKLINE> lhs = {'x': 0, 'y': 1}. rhs [Label.REACHABLE] = {'x': 1, 'y': 0}. lhs join rhs = {'x': 1, 'y': 1}. <Decision.UNKNOWN: 'unknown'> >>> checker.lhs_unreachable() >>> checker.rhs_reachable() >>> checker.refine_invariant(y <= 0) >>> checker.check() <Decision.YES: 'yes'> """ def __init__(self, num_explored_states_per_step: int = 100, verbose: bool = False) \ -> None: Checker.__init__(self, verbose) self.verbose = verbose self.solver = z3.Solver() self.fresh = FreshName() self.invariant_refinements: List[Invariant] = [] # State explorer. self.num_explored_states_per_step = num_explored_states_per_step self.state_explorer = StateExplorer(self.crdt_env, self.s0_vals, self.invariants, self.transactions) # Counterexamples. self.lhs: Optional[ValEnv] = None self.lhs_label: Optional[Label] = None self.rhs: Optional[ValEnv] = None self.rhs_label: Optional[Label] = None self.unreachable: List[ValEnv] = [] def __str__(self) -> str: strings: List[str] = [] if len(self.invariant_refinements) > 0: strings += ['Invariant Refinements'] for inv in self.invariant_refinements: strings.append(f' {inv}') strings += ['Reachable States'] strings += [f' ...'] for s in self.state_explorer.states[-10:]: strings += [f' {s}'] if (len(self.unreachable) > 0): strings += ['Unreachable States'] for s in self.unreachable: strings += [f' {s}'] if (self.lhs is not None and self.rhs is not None): strings += ['Pending States'] lstr = f' [{self.lhs_label}]' if self.lhs_label is not None else '' rstr = f' [{self.rhs_label}]' if self.rhs_label is not None else '' strings.append(f' lhs = {self.lhs}{lstr}') strings.append(f' rhs = {self.rhs}{rstr}') return '\n'.join([Checker.__str__(self)] + strings) def _wrap_print(self, s: str) -> None: print('\n'.join(wrap(s, 80))) def _compile_expr(self, e: Expr, venv: VersionEnv) -> Tuple[OrderedSet, z3.ExprRef]: return compile.compile_expr(e, venv, self.type_env, self.fresh) def _state_satisfies_invs(self, \ state: ValEnv, \ invs: List[Invariant]) \ -> bool: return all(eval_invariant(inv, state) for inv in invs) # TODO(mwhittaker): Replace with implementation in compile. def _venv_satisfies_refined_i(self, venv: VersionEnv) -> OrderedSet: zss = OrderedSet() for inv in list(self.invariants.values()) + self.invariant_refinements: inv_zss, inv_ze = self._compile_expr(inv, venv) zss |= inv_zss zss.add(inv_ze) return zss # TODO(mwhittaker): Replace with implementation in compile. def _venv_doesnt_satisfy_refined_i(self, venv: VersionEnv) -> OrderedSet: zss = OrderedSet() zes = OrderedSet() for inv in list(self.invariants.values()) + self.invariant_refinements: inv_zss, inv_ze = self._compile_expr(inv, venv) zss |= inv_zss zes.add(inv_ze) zss.add(z3.Not(z3.And(list(zes)))) return zss def _model_to_state(self, model: z3.ModelRef, venv: VersionEnv) -> ValEnv: names = {venv.get_name(name): name for name in self.type_env} state = model_to_state(model, set(names.keys())) for versioned_name, name in names.items(): state[name] = state[versioned_name] del state[versioned_name] return state def _uninfinite_state(self, state: ValEnv) -> Optional[ValEnv]: """ state may have infinite sets and maps in it. _uninfinite_state converts all such sets and maps to finite python sets and maps if possible. If not possible, it returns None. """ finite_state: ValEnv = dict() for k, v in state.items(): if isinstance(v, InfiniteSet) or isinstance(v, InfiniteMap): if not v.finite(): return None else: finite_state[k] = v.get() else: finite_state[k] = v return finite_state def _model_to_exprs(self, state: ValEnv, tenv: TypeEnv) \ -> Optional[ExprEnv]: finite_state = self._uninfinite_state(state) if finite_state is None: return None return {name: typed_coerce(x, tenv[name]) for name, x in finite_state.items()} def _known_reachable(self, state: ValEnv) -> bool: """ Returns whether we know that state is reachable. Note that if _known_reachable reachable returns false, it doesn't necessarily mean that state is unreachable. """ finite_state = self._uninfinite_state(state) return (finite_state is not None and finite_state in self.state_explorer.states) def _record_state(self, state: ValEnv, label: Label) -> None: if label == Label.UNREACHABLE: self.unreachable.append(state) exprs = self._model_to_exprs(state, self.type_env) if exprs: inv: Expr = EBool(True) for name, e in exprs.items(): inv = EBoolAnd(inv, EVar(name).eq(e)) self.refine_invariant(EBoolNot(inv)) else: assert label == Label.REACHABLE, label finite_state = self._uninfinite_state(state) if finite_state: self.state_explorer.add(finite_state) def _is_refined_i_closed(self) -> Decision: with scoped(self.solver): # Assert lhs satisfies invariant. lhs_venv = VersionEnv('lhs') zss = self._venv_satisfies_refined_i(lhs_venv) # Assert rhs satisfies invariant. rhs_venv = VersionEnv('rhs') zss |= self._venv_satisfies_refined_i(rhs_venv) # Compute join. join_venv = VersionEnv('joined') join_zss, join_venv = compile.compile_join( lhs_venv, rhs_venv, join_venv, self.crdt_env, self.type_env, self.fresh) zss |= join_zss # Assert that the join does NOT satisfy the invariant. zss |= self._venv_doesnt_satisfy_refined_i(join_venv) # Register assertions. self.solver.add(list(zss)) # Display generated code. if self.verbose: print(f'{fg(206)}{self.solver.sexpr()}{attr(0)}') # Check if we're I - NR closed. result = self.solver.check() # If z3 is stuck, we're stuck. if result == z3.unknown: print('Z3 got stuck!') return Decision.UNKNOWN # If there are no counterexamples, then we are invariant-closed. if result == z3.unsat: return Decision.YES # Otherwise, we are are not invariant-closed, and we have a # counterexample. Extract the counterexamples. model = self.solver.model() self.lhs = self._model_to_state(model, lhs_venv) self.rhs = self._model_to_state(model, rhs_venv) join = self._model_to_state(model, join_venv) # Check if either state is reachable. If they both are, we are # done. if self._known_reachable(self.lhs): self.lhs_reachable() if self._known_reachable(self.rhs): self.rhs_reachable() if (self.lhs_label == Label.REACHABLE and self.rhs_label == Label.REACHABLE): m = ('The following states are both reachable and satisfy ' + 'the (refined) invariant, but their join does not. ' + 'Their join is also reachable, so the object is not ' + 'invariant confluent.') self._wrap_print(m) print(f' lhs = {self.lhs}') print(f' rhs = {self.rhs}') return Decision.NO m = ('The following two states (i.e. lhs and rhs) satisfy the ' + '(refined) invariant, but their join does not. Please use ' + 'the lhs_reachable(), lhs_unreachable(), rhs_reachable(), ' + 'and rhs_unreachable() methods to label the states as ' + 'reachable or unreachable.') lstr = f' [{self.lhs_label}]' if self.lhs_label is not None else '' rstr = f' [{self.rhs_label}]' if self.rhs_label is not None else '' self._wrap_print(m) print('') print(f' lhs{lstr} = {self.lhs}.') print(f' rhs{rstr} = {self.rhs}.') print(f' lhs join rhs = {join}.') return Decision.UNKNOWN def _check(self) -> Decision: # Make sure that both counterexamples are labelled, if they exist. msg = ('State {0} is unlabelled. Call `{0}_reachable()` to label ' + 'the state as reachable or `{0}_unreachable()` to label the ' + 'state as unreachable.') if (self.lhs is not None and self.lhs_label is None): self._wrap_print(msg.format('lhs')) return Decision.UNKNOWN if (self.rhs is not None and self.rhs_label is None): self._wrap_print(msg.format('rhs')) return Decision.UNKNOWN if (self.lhs is not None): assert self.lhs_label is not None assert self.rhs is not None assert self.rhs_label is not None # Record the unreachable counterexamples. Users can use the set of # unreachable counterexamples to try and figure out how to refine # the invariant. Reachable counterexamples are stored in # self.state_explorer. self._record_state(self.lhs, self.lhs_label) self._record_state(self.rhs, self.rhs_label) # If lhs and rhs are both reachable, then so is `lhs join rhs`. # `lhs join rhs` does not satisfy the (refined) invariant, so if it # is reachable, then we are not invariant-confluent. if (self.lhs_label == Label.REACHABLE and self.rhs_label == Label.REACHABLE): m = ('The following states are both reachable and satisfy ' + 'the (refined) invariant, but their join does not. ' + 'Their join is also reachable, so the object is not ' + 'invariant confluent.') print(f' lhs = {self.lhs}') print(f' rhs = {self.rhs}') return Decision.NO else: self.lhs = None self.rhs = None self.lhs_label = None self.rhs_label = None invs = list(self.invariants.values()) if not self._state_satisfies_invs(self.s0_vals, invs): return Decision.NO else: if self.verbose: n = self.num_explored_states_per_step print(f'Exploring {n} states...') print('') self.state_explorer.explore(self.num_explored_states_per_step) return self._is_refined_i_closed() def lhs_reachable(self): self.lhs_label = Label.REACHABLE def lhs_unreachable(self): self.lhs_label = Label.UNREACHABLE def rhs_reachable(self): self.rhs_label = Label.REACHABLE def rhs_unreachable(self): self.rhs_label = Label.UNREACHABLE def refine_invariant(self, inv: Invariant): inv = typecheck_invariant(inv, self.type_env) # Ensure that the start state satisfies the invariant, unless it # doesn't satisfy the original invariant to begin with. invs = list(self.invariants.values()) if self._state_satisfies_invs(self.s0_vals, invs): msg = (f'The initial state {self.s0_vals} satisfies the ' + f'invariant, but does not satisfy the refined invariant ' + f'{inv}. This means that you\'ve incorrectly refined the ' + f'invariant. Double check your refinements and try again.') invs = self.invariant_refinements + [inv] assert self._state_satisfies_invs(self.s0_vals, invs), msg self.invariant_refinements.append(inv)
2f3a2709a16c0bcb0d3ed029c939daadb80c6b60
22a16f2fc3f2ddf92a620751530c2046ba2e9f1f
/api/dynamic_tests_v2/activation.py
020b0bb91b00720d239a6152f8749c5e7cdbb632
[]
no_license
ForFishes/benchmark
8ebb8e13f44b2f3a350fe4325b03f7e5cab42065
56e070628ad67178cdfc67b47759020ff408300a
refs/heads/master
2023-02-23T03:45:50.320413
2021-01-21T05:15:05
2021-01-21T05:15:05
331,538,261
0
2
null
2021-01-21T06:39:15
2021-01-21T06:39:14
null
UTF-8
Python
false
false
1,913
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from common_import import * class ActivationConfig(APIConfig): def __init__(self): super(ActivationConfig, self).__init__('activation') self.api_name = 'cos' self.api_list = { 'cos': 'cos', 'exp': 'exp', 'log': 'log', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'square': 'square', 'tanh': 'tanh' } class PDActivation(PaddleDynamicAPIBenchmarkBase): def build_graph(self, config): x = self.variable(name='x', shape=config.x_shape, dtype=config.x_dtype) result = self.layers(config.api_name, x=x) self.feed_list = [x] self.fetch_list = [result] if config.backward: self.append_gradients(result, [x]) class TorchActivation(PytorchAPIBenchmarkBase): def build_graph(self, config): x = self.variable(name='x', shape=config.x_shape, dtype=config.x_dtype) result = self.layers(config.api_name, x=x) self.feed_list = [x] self.fetch_list = [result] if config.backward: self.append_gradients(result, [x]) if __name__ == '__main__': test_main( pd_dy_obj=PDActivation(), torch_obj=TorchActivation(), config=ActivationConfig())
188d1f6fc00b5a13136bb562cf24311d89cc6901
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/rna-transcription/d54f298dde914c7e9a732cbec50a20e1.py
970f6d38930e8da150af549feb941eddf63bb6a5
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
342
py
class DNA: def __init__(self, seq = None): self.sequence = seq # I guess this is inefficient as it declares the mapping every time a new object is created? self.DNA_to_RNA = { 'A': 'U', 'G': 'C', 'C': 'G', 'T': 'A' } def to_rna(self): return ''.join(self.DNA_to_RNA[c] for c in self.sequence)
7f5c4e335dc2e63a6a9669b6e0f19872d9eb1f52
37d2eef4d6e58662b5a7af3eaf69726655cc0cf7
/ryu/app/ofctl_rest.py
9fbce30db029043cee58e91c40a5564e2c9225c4
[ "Apache-2.0" ]
permissive
horms/ryu
87904170c4a5d59a74ba65880d21e42c6612e983
8728c11e1280b9c6bd4b7a68c5d2fbe4ec5f2ad3
refs/heads/master
2023-08-09T10:30:25.056712
2014-03-10T02:44:21
2014-03-16T13:09:12
16,093,033
1
0
null
null
null
null
UTF-8
Python
false
false
19,514
py
# Copyright (C) 2012 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json from webob import Response from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller import dpset from ryu.controller.handler import MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_0 from ryu.ofproto import ofproto_v1_2 from ryu.ofproto import ofproto_v1_3 from ryu.lib import ofctl_v1_0 from ryu.lib import ofctl_v1_2 from ryu.lib import ofctl_v1_3 from ryu.app.wsgi import ControllerBase, WSGIApplication LOG = logging.getLogger('ryu.app.ofctl_rest') # REST API # ## Retrieve the switch stats # # get the list of all switches # GET /stats/switches # # get the desc stats of the switch # GET /stats/desc/<dpid> # # get flows stats of the switch # GET /stats/flow/<dpid> # # get ports stats of the switch # GET /stats/port/<dpid> # # get meter features stats of the switch # GET /stats/meterfeatures/<dpid> # # get meter config stats of the switch # GET /stats/meterconfig/<dpid> # # get meters stats of the switch # GET /stats/meter/<dpid> # # get group features stats of the switch # GET /stats/groupfeatures/<dpid> # # get groups desc stats of the switch # GET /stats/groupdesc/<dpid> # # get groups stats of the switch # GET /stats/group/<dpid> # # ## Update the switch stats # # add a flow entry # POST /stats/flowentry/add # # modify all matching flow entries # POST /stats/flowentry/modify # # delete all matching flow entries # POST /stats/flowentry/delete # # delete all flow entries of the switch # DELETE /stats/flowentry/clear/<dpid> # # add a meter entry # POST /stats/meterentry/add # # modify a meter entry # POST /stats/meterentry/modify # # delete a meter entry # POST /stats/meterentry/delete # # add a group entry # POST /stats/groupentry/add # # modify a group entry # POST /stats/groupentry/modify # # delete a group entry # POST /stats/groupentry/delete # # # send a experimeter message # POST /stats/experimenter/<dpid> class StatsController(ControllerBase): def __init__(self, req, link, data, **config): super(StatsController, self).__init__(req, link, data, **config) self.dpset = data['dpset'] self.waiters = data['waiters'] def get_dpids(self, req, **_kwargs): dps = self.dpset.dps.keys() body = json.dumps(dps) return (Response(content_type='application/json', body=body)) def get_desc_stats(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: desc = ofctl_v1_0.get_desc_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: desc = ofctl_v1_2.get_desc_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: desc = ofctl_v1_3.get_desc_stats(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(desc) return (Response(content_type='application/json', body=body)) def get_flow_stats(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: flows = ofctl_v1_0.get_flow_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: flows = ofctl_v1_2.get_flow_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: flows = ofctl_v1_3.get_flow_stats(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(flows) return (Response(content_type='application/json', body=body)) def get_port_stats(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: ports = ofctl_v1_0.get_port_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: ports = ofctl_v1_2.get_port_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ports = ofctl_v1_3.get_port_stats(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(ports) return (Response(content_type='application/json', body=body)) def get_meter_features(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: meters = ofctl_v1_3.get_meter_features(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(meters) return (Response(content_type='application/json', body=body)) def get_meter_config(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: meters = ofctl_v1_3.get_meter_config(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(meters) return (Response(content_type='application/json', body=body)) def get_meter_stats(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: meters = ofctl_v1_3.get_meter_stats(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(meters) return (Response(content_type='application/json', body=body)) def get_group_features(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: groups = ofctl_v1_2.get_group_features(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: groups = ofctl_v1_3.get_group_features(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(groups) return Response(content_type='application/json', body=body) def get_group_desc(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: groups = ofctl_v1_2.get_group_desc(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: groups = ofctl_v1_3.get_group_desc(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(groups) return Response(content_type='application/json', body=body) def get_group_stats(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: groups = ofctl_v1_2.get_group_stats(dp, self.waiters) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: groups = ofctl_v1_3.get_group_stats(dp, self.waiters) else: LOG.debug('Unsupported OF protocol') return Response(status=501) body = json.dumps(groups) return Response(content_type='application/json', body=body) def mod_flow_entry(self, req, cmd, **_kwargs): try: flow = eval(req.body) except SyntaxError: LOG.debug('invalid syntax %s', req.body) return Response(status=400) dpid = flow.get('dpid') dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if cmd == 'add': cmd = dp.ofproto.OFPFC_ADD elif cmd == 'modify': cmd = dp.ofproto.OFPFC_MODIFY elif cmd == 'delete': cmd = dp.ofproto.OFPFC_DELETE else: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: ofctl_v1_0.mod_flow_entry(dp, flow, cmd) elif dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: ofctl_v1_2.mod_flow_entry(dp, flow, cmd) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ofctl_v1_3.mod_flow_entry(dp, flow, cmd) else: LOG.debug('Unsupported OF protocol') return Response(status=501) return Response(status=200) def delete_flow_entry(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: ofctl_v1_0.delete_flow_entry(dp) elif dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: ofctl_v1_2.mod_flow_entry(dp, {}, dp.ofproto.OFPFC_DELETE) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ofctl_v1_3.mod_flow_entry(dp, {}, dp.ofproto.OFPFC_DELETE) else: LOG.debug('Unsupported OF protocol') return Response(status=501) return Response(status=200) def mod_meter_entry(self, req, cmd, **_kwargs): try: flow = eval(req.body) except SyntaxError: LOG.debug('invalid syntax %s', req.body) return Response(status=400) dpid = flow.get('dpid') dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION or \ dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: LOG.debug('Unsupported OF protocol') return Response(status=501) if cmd == 'add': cmd = dp.ofproto.OFPMC_ADD elif cmd == 'modify': cmd = dp.ofproto.OFPMC_MODIFY elif cmd == 'delete': cmd = dp.ofproto.OFPMC_DELETE else: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ofctl_v1_3.mod_meter_entry(dp, flow, cmd) else: LOG.debug('Unsupported OF protocol') return Response(status=501) return Response(status=200) def mod_group_entry(self, req, cmd, **_kwargs): try: group = eval(req.body) except SyntaxError: LOG.debug('invalid syntax %s', req.body) return Response(status=400) dpid = group.get('dpid') dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: LOG.debug('Unsupported OF protocol') return Response(status=501) if cmd == 'add': cmd = dp.ofproto.OFPGC_ADD elif cmd == 'modify': cmd = dp.ofproto.OFPGC_MODIFY elif cmd == 'delete': cmd = dp.ofproto.OFPGC_DELETE else: return Response(status=404) if dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: ofctl_v1_2.mod_group_entry(dp, group, cmd) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ofctl_v1_3.mod_group_entry(dp, group, cmd) else: LOG.debug('Unsupported OF protocol') return Response(status=501) return Response(status=200) def send_experimenter(self, req, dpid, **_kwargs): dp = self.dpset.get(int(dpid)) if dp is None: return Response(status=404) try: exp = eval(req.body) except SyntaxError: LOG.debug('invalid syntax %s', req.body) return Response(status=400) if dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: ofctl_v1_2.send_experimenter(dp, exp) elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: ofctl_v1_3.send_experimenter(dp, exp) else: LOG.debug('Unsupported OF protocol') return Response(status=501) return Response(status=200) class RestStatsApi(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION, ofproto_v1_2.OFP_VERSION, ofproto_v1_3.OFP_VERSION] _CONTEXTS = { 'dpset': dpset.DPSet, 'wsgi': WSGIApplication } def __init__(self, *args, **kwargs): super(RestStatsApi, self).__init__(*args, **kwargs) self.dpset = kwargs['dpset'] wsgi = kwargs['wsgi'] self.waiters = {} self.data = {} self.data['dpset'] = self.dpset self.data['waiters'] = self.waiters mapper = wsgi.mapper wsgi.registory['StatsController'] = self.data path = '/stats' uri = path + '/switches' mapper.connect('stats', uri, controller=StatsController, action='get_dpids', conditions=dict(method=['GET'])) uri = path + '/desc/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_desc_stats', conditions=dict(method=['GET'])) uri = path + '/flow/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_flow_stats', conditions=dict(method=['GET'])) uri = path + '/port/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_port_stats', conditions=dict(method=['GET'])) uri = path + '/meterfeatures/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_meter_features', conditions=dict(method=['GET'])) uri = path + '/meterconfig/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_meter_config', conditions=dict(method=['GET'])) uri = path + '/meter/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_meter_stats', conditions=dict(method=['GET'])) uri = path + '/groupfeatures/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_group_features', conditions=dict(method=['GET'])) uri = path + '/groupdesc/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_group_desc', conditions=dict(method=['GET'])) uri = path + '/group/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='get_group_stats', conditions=dict(method=['GET'])) uri = path + '/flowentry/{cmd}' mapper.connect('stats', uri, controller=StatsController, action='mod_flow_entry', conditions=dict(method=['POST'])) uri = path + '/flowentry/clear/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='delete_flow_entry', conditions=dict(method=['DELETE'])) uri = path + '/meterentry/{cmd}' mapper.connect('stats', uri, controller=StatsController, action='mod_meter_entry', conditions=dict(method=['POST'])) uri = path + '/groupentry/{cmd}' mapper.connect('stats', uri, controller=StatsController, action='mod_group_entry', conditions=dict(method=['POST'])) uri = path + '/experimenter/{dpid}' mapper.connect('stats', uri, controller=StatsController, action='send_experimenter', conditions=dict(method=['POST'])) def stats_reply_handler(self, ev): msg = ev.msg dp = msg.datapath if dp.id not in self.waiters: return if msg.xid not in self.waiters[dp.id]: return lock, msgs = self.waiters[dp.id][msg.xid] msgs.append(msg) flags = 0 if dp.ofproto.OFP_VERSION == ofproto_v1_0.OFP_VERSION: flags = dp.ofproto.OFPSF_REPLY_MORE elif dp.ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION: flags = dp.ofproto.OFPSF_REPLY_MORE elif dp.ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION: flags = dp.ofproto.OFPMPF_REPLY_MORE if msg.flags & flags: return del self.waiters[dp.id][msg.xid] lock.set() @set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER) def any_stats_reply_handler(self, ev): # for OpenFlow 1.2 self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPDescStatsReply, MAIN_DISPATCHER) def desc_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER) def flow_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER) def port_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPMeterStatsReply, MAIN_DISPATCHER) def meter_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPMeterFeaturesStatsReply, MAIN_DISPATCHER) def meter_features_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPMeterConfigStatsReply, MAIN_DISPATCHER) def meter_config_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPGroupStatsReply, MAIN_DISPATCHER) def group_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPGroupFeaturesStatsReply, MAIN_DISPATCHER) def group_features_stats_reply_handler(self, ev): self.stats_reply_handler(ev) @set_ev_cls(ofp_event.EventOFPGroupDescStatsReply, MAIN_DISPATCHER) def group_desc_stats_reply_handler(self, ev): self.stats_reply_handler(ev)
d5ad7a7cac14d5c97e9330e9f6ba0ea20956718b
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_8/brnann016/question3.py
75ec0cc3ee04626a026462b0fc5770c9ab077a6a
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
# Assignment 8-question3 #Annika Brundyn #encrypt function def encrypt(message): if len(message) == 1: if message.islower(): if message == 'z': return 'a' else: return chr(ord(message) + 1) else: return message else: return encrypt(message[0]) + encrypt(message[1:]) string = input("Enter a message:\n") print("Encrypted message:") print(encrypt(string))
c05e933761f1a14bf307d77aeb5a24ae19f63d46
6123df2ee8648c7977c99564197f7834c7ea83a1
/DataPreprocessing/排序算法/快速排序方法1.py
bbf8cdc0da6f5ccb2a18ba2805a1233b0aad786c
[]
no_license
JiaqiuWang/DataStatusPrediction
2b66a24f992df64d93506f54e041d93282213c6e
9eb3eff99f0f804857f3a1d70227f75c91a8258d
refs/heads/master
2020-05-21T21:34:28.571549
2017-08-17T08:44:12
2017-08-17T08:44:12
84,649,900
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
# Method1 def quickSort(arr): less = [] pivotList = [] more = [] if len(arr) <= 1: return arr else: pivot = arr[0] # 将第一个值作为基准 print("pivot:", pivot) for i in arr: if i < pivot: less.append(i) elif i > pivot: more.append(i) else: pivotList.append(i) # 得到第一轮分组之后,继续讲分组进行下去 less = quickSort(less) more = quickSort(more) print("pivotList:", pivotList) return less + pivotList + more if __name__ == "__main__": a = [4, 65, 2, -31, 0, 99, 83, 782, 1] print("original list:", a) print(quickSort(a))
b546707ae6eb6405b3eefd2b37bb4147f39847f4
fe3bc38d2a9f80a6b258e2c61dbe4557323a1d71
/custom/ewsghana/south_migrations/0001_initial.py
2a5bab415d8f95907823c7712377fcd7c3ce648e
[]
no_license
ekush/commcare-hq
077eb3f525ffb7d1acca0848b9c7678baf776832
97a1f55f24f79224724b2ecdc7d5cea87d42f65b
refs/heads/master
2021-01-17T22:25:09.734898
2015-08-25T23:07:49
2015-08-25T23:07:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,976
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'FacilityInCharge' db.create_table(u'ewsghana_facilityincharge', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user_id', self.gf('django.db.models.fields.CharField')(max_length=128, db_index=True)), ('location', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['locations.SQLLocation'])), )) db.send_create_signal(u'ewsghana', ['FacilityInCharge']) def backwards(self, orm): # Deleting model 'FacilityInCharge' db.delete_table(u'ewsghana_facilityincharge') models = { u'ewsghana.facilityincharge': { 'Meta': {'object_name': 'FacilityInCharge'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['locations.SQLLocation']"}), 'user_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}) }, u'locations.locationtype': { 'Meta': {'object_name': 'LocationType'}, 'administrative': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'code': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'null': 'True', 'db_index': 'False'}), 'domain': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'emergency_level': ('django.db.models.fields.DecimalField', [], {'default': '0.5', 'max_digits': '10', 'decimal_places': '1'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'overstock_threshold': ('django.db.models.fields.DecimalField', [], {'default': '3.0', 'max_digits': '10', 'decimal_places': '1'}), 'parent_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['locations.LocationType']", 'null': 'True'}), 'shares_cases': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'understock_threshold': ('django.db.models.fields.DecimalField', [], {'default': '1.5', 'max_digits': '10', 'decimal_places': '1'}), 'view_descendants': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'locations.sqllocation': { 'Meta': {'unique_together': "(('domain', 'site_code'),)", 'object_name': 'SQLLocation'}, '_products': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['products.SQLProduct']", 'null': 'True', 'symmetrical': 'False'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'domain': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'external_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_archived': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'latitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '20', 'decimal_places': '10'}), u'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), u'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'location_id': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'location_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['locations.LocationType']"}), 'longitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '20', 'decimal_places': '10'}), 'metadata': ('json_field.fields.JSONField', [], {'default': '{}'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'parent': ('mptt.fields.TreeForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': u"orm['locations.SQLLocation']"}), u'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'site_code': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'stocks_all_products': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'supply_point_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), u'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, u'products.sqlproduct': { 'Meta': {'object_name': 'SQLProduct'}, 'category': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'null': 'True'}), 'code': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'null': 'True'}), 'cost': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '20', 'decimal_places': '5'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'null': 'True'}), 'domain': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_archived': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'product_data': ('json_field.fields.JSONField', [], {'default': '{}'}), 'product_id': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'program_id': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'null': 'True'}), 'units': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'null': 'True'}) } } complete_apps = ['ewsghana']
0e5519be5f6c9f0162340f3b13fe27ca4e7ef96e
d7016f69993570a1c55974582cda899ff70907ec
/sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2021_10_01/_container_service_client.py
40fe62dd9a76da362a1f9a68e6ab090b8e1aa17f
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
6,786
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, TYPE_CHECKING from azure.core.rest import HttpRequest, HttpResponse from azure.mgmt.core import ARMPipelineClient from . import models as _models from .._serialization import Deserializer, Serializer from ._configuration import ContainerServiceClientConfiguration from .operations import ( AgentPoolsOperations, MaintenanceConfigurationsOperations, ManagedClustersOperations, Operations, PrivateEndpointConnectionsOperations, PrivateLinkResourcesOperations, ResolvePrivateLinkServiceIdOperations, SnapshotsOperations, ) if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials import TokenCredential class ContainerServiceClient: # pylint: disable=client-accepts-api-version-keyword,too-many-instance-attributes """The Container Service Client. :ivar operations: Operations operations :vartype operations: azure.mgmt.containerservice.v2021_10_01.operations.Operations :ivar managed_clusters: ManagedClustersOperations operations :vartype managed_clusters: azure.mgmt.containerservice.v2021_10_01.operations.ManagedClustersOperations :ivar maintenance_configurations: MaintenanceConfigurationsOperations operations :vartype maintenance_configurations: azure.mgmt.containerservice.v2021_10_01.operations.MaintenanceConfigurationsOperations :ivar agent_pools: AgentPoolsOperations operations :vartype agent_pools: azure.mgmt.containerservice.v2021_10_01.operations.AgentPoolsOperations :ivar private_endpoint_connections: PrivateEndpointConnectionsOperations operations :vartype private_endpoint_connections: azure.mgmt.containerservice.v2021_10_01.operations.PrivateEndpointConnectionsOperations :ivar private_link_resources: PrivateLinkResourcesOperations operations :vartype private_link_resources: azure.mgmt.containerservice.v2021_10_01.operations.PrivateLinkResourcesOperations :ivar resolve_private_link_service_id: ResolvePrivateLinkServiceIdOperations operations :vartype resolve_private_link_service_id: azure.mgmt.containerservice.v2021_10_01.operations.ResolvePrivateLinkServiceIdOperations :ivar snapshots: SnapshotsOperations operations :vartype snapshots: azure.mgmt.containerservice.v2021_10_01.operations.SnapshotsOperations :param credential: Credential needed for the client to connect to Azure. Required. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: Subscription credentials which uniquely identify Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. Required. :type subscription_id: str :param base_url: Service URL. Default value is "https://management.azure.com". :type base_url: str :keyword api_version: Api Version. Default value is "2021-10-01". Note that overriding this default value may result in unsupported behavior. :paramtype api_version: str :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ def __init__( self, credential: "TokenCredential", subscription_id: str, base_url: str = "https://management.azure.com", **kwargs: Any ) -> None: self._config = ContainerServiceClientConfiguration( credential=credential, subscription_id=subscription_id, **kwargs ) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in _models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self._serialize.client_side_validation = False self.operations = Operations(self._client, self._config, self._serialize, self._deserialize) self.managed_clusters = ManagedClustersOperations( self._client, self._config, self._serialize, self._deserialize ) self.maintenance_configurations = MaintenanceConfigurationsOperations( self._client, self._config, self._serialize, self._deserialize ) self.agent_pools = AgentPoolsOperations(self._client, self._config, self._serialize, self._deserialize) self.private_endpoint_connections = PrivateEndpointConnectionsOperations( self._client, self._config, self._serialize, self._deserialize ) self.private_link_resources = PrivateLinkResourcesOperations( self._client, self._config, self._serialize, self._deserialize ) self.resolve_private_link_service_id = ResolvePrivateLinkServiceIdOperations( self._client, self._config, self._serialize, self._deserialize ) self.snapshots = SnapshotsOperations(self._client, self._config, self._serialize, self._deserialize) def _send_request(self, request: HttpRequest, **kwargs: Any) -> HttpResponse: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = client._send_request(request) <HttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.HttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) def close(self) -> None: self._client.close() def __enter__(self) -> "ContainerServiceClient": self._client.__enter__() return self def __exit__(self, *exc_details) -> None: self._client.__exit__(*exc_details)
16f82b3f6d262e8dc868a376d1488222401592a2
4fca17a3dbc3e74ba7e46bd7869eb6d138e4c422
/_0053_Maximum_Subarray.py
be2bb3203c47327d5a0a3576ae0dfaf79ab007fe
[]
no_license
mingweihe/leetcode
a2cfee0e004627b817a3c0321bb9c74128f8c1a7
edff905f63ab95cdd40447b27a9c449c9cefec37
refs/heads/master
2021-06-19T07:46:46.897952
2021-05-02T05:13:17
2021-05-02T05:13:17
205,740,338
3
0
null
null
null
null
UTF-8
Python
false
false
718
py
class Solution(object): def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int """ # Approach 2 for i in range(1, len(nums)): if nums[i-1] > 0: nums[i] = nums[i] + nums[i-1] return max(nums) # Approach 1 # if len(nums) == 1: return nums[0] # return self.dfs(nums, 1, nums[0]) # def dfs(self, nums, index, accum): # if len(nums) - 1 == index: # return max(accum, accum + nums[index], nums[index]) # if accum < 0: # return max(accum, self.dfs(nums, index + 1, nums[index])) # return max(accum, self.dfs(nums, index + 1, nums[index] + accum))
9b0e7bd06dbe8d684b607ce114803e57257e16aa
9b9a02657812ea0cb47db0ae411196f0e81c5152
/repoData/bradfitz-contributing/allPythonContent.py
1b14ed542e15bd56f253645b9af4c72b62bedfa6
[]
no_license
aCoffeeYin/pyreco
cb42db94a3a5fc134356c9a2a738a063d0898572
0ac6653219c2701c13c508c5c4fc9bc3437eea06
refs/heads/master
2020-12-14T14:10:05.763693
2016-06-27T05:15:15
2016-06-27T05:15:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
448,477
py
__FILENAME__ = consumer #!/usr/bin/python # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A sample OpenID consumer app for Google App Engine. Allows users to log into other OpenID providers, then displays their OpenID login. Also stores and displays the most recent logins. Part of http://code.google.com/p/google-app-engine-samples/. For more about OpenID, see: http://openid.net/ http://openid.net/about.bml Uses JanRain's Python OpenID library, version 2.1.1, licensed under the Apache Software License 2.0: http://openidenabled.com/python-openid/ The JanRain library includes a reference OpenID provider that can be used to test this consumer. After starting the dev_appserver with this app, unpack the JanRain library and run these commands from its root directory: setenv PYTHONPATH . python ./examples/server.py -s localhost Then go to http://localhost:8080/ in your browser, type in http://localhost:8000/test as your OpenID identifier, and click Verify. """ import datetime import logging import os import re import sys import urlparse import wsgiref.handlers from google.appengine.ext import db from google.appengine.ext import webapp from google.appengine.ext.webapp import template from openid import fetchers from openid.consumer.consumer import Consumer from openid.consumer import discover from openid.extensions import pape, sreg import fetcher import store import string import random import models # Set to True if stack traces should be shown in the browser, etc. _DEBUG = False def GenKeyName(length=8, chars=string.letters + string.digits): return ''.join([random.choice(chars) for i in xrange(length)]) class Session(db.Expando): """An in-progress OpenID login.""" claimed_id = db.StringProperty() server_url = db.LinkProperty() class Login(db.Model): """A completed OpenID login.""" status = db.StringProperty(choices=('success', 'cancel', 'failure')) claimed_id = db.LinkProperty() server_url = db.LinkProperty() timestamp = db.DateTimeProperty(auto_now_add=True) session = db.ReferenceProperty(Session) class Handler(webapp.RequestHandler): """A base handler class with a couple OpenID-specific utilities.""" consumer = None session = None session_args = None def __init__(self): self.session_args = {} def get_consumer(self): """Returns a Consumer instance. """ if not self.consumer: fetchers.setDefaultFetcher(fetcher.UrlfetchFetcher()) if not self.load_session(): return self.consumer = Consumer(self.session_args, store.DatastoreStore()) return self.consumer def args_to_dict(self): """Converts the URL and POST parameters to a singly-valued dictionary. Returns: dict with the URL and POST body parameters """ req = self.request return dict([(arg, req.get(arg)) for arg in req.arguments()]) def load_session(self): """Loads the current session. """ if not self.session: id = self.request.get('session_id') if id: try: self.session = db.get(db.Key.from_path('Session', int(id))) assert self.session except (AssertionError, db.Error), e: self.report_error('Invalid session id: %d' % id) return None fields = self.session.dynamic_properties() self.session_args = dict((f, getattr(self.session, f)) for f in fields) else: self.session_args = {} self.session = Session() self.session.claimed_id = self.request.get('openid') return self.session def store_session(self): """Stores the current session. """ assert self.session for field, value in self.session_args.items(): setattr(self.session, field, value) self.session.put() def render(self, extra_values={}): """Renders the page, including the extra (optional) values. Args: template_name: string The template to render. extra_values: dict Template values to provide to the template. """ logins = Login.gql('ORDER BY timestamp DESC').fetch(20) for login in logins: login.display_name = self.display_name(login.claimed_id) login.friendly_time = self.relative_time(login.timestamp) values = { 'response': {}, 'openid': '', 'logins': logins, } values.update(extra_values) cwd = os.path.dirname(__file__) path = os.path.join(cwd, 'templates', 'base.html') self.response.out.write(template.render(path, values, debug=_DEBUG)) def report_error(self, message, exception=None): """Shows an error HTML page. Args: message: string A detailed error message. """ if exception: logging.exception('Error: %s' % message) self.render({'error': message}) def show_front_page(self): """Do an internal (non-302) redirect to the front page. Preserves the user agent's requested URL. """ front_page = FrontPage() front_page.request = self.request front_page.response = self.response front_page.get() def relative_time(self, timestamp): """Returns a friendly string describing how long ago the timestamp was. Args: timestamp: a datetime Returns: string """ def format_number(num): if num <= 9: return {1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight', 9: 'nine'}[num] else: return str(num) delta = datetime.datetime.now() - timestamp minutes = delta.seconds / 60 hours = minutes / 60 if delta.days > 1: return '%s days ago' % format_number(delta.days) elif delta.days == 1: return 'yesterday' elif hours > 1: return '%s hours ago' % format_number(hours) elif hours == 1: return 'an hour ago' elif minutes > 25: return 'half an hour ago' elif minutes > 5: return '%s minutes ago' % format_number(minutes) else: return 'moments ago' def display_name(self, openid_url): """Extracts a short, representative part of an OpenID URL for display. For example, it returns "ryan" for: ryan.com www.ryan.com ryan.provider.com provider.com/ryan provider.com/id/path/ryan Adapted from Net::OpenID::Consumer, by Brad Fitzpatrick. See: http://code.sixapart.com/svn/openid/trunk/perl/Net-OpenID-Consumer/lib/Net/OpenID/VerifiedIdentity.pm Args: openid_url: string Returns: string """ if not openid_url: return 'None' username_re = '[\w.+-]+' scheme, host, path, params, query, frag = urlparse.urlparse(openid_url) def sanitize(display_name): if '@' in display_name: # don't display full email addresses; use just the user name part display_name = display_name[:display_name.index('@')] return display_name # is the username in the params? match = re.search('(u|id|user|userid|user_id|profile)=(%s)' % username_re, path) if match: return sanitize(match.group(2)) # is the username in the path? path = path.split('/') if re.match(username_re, path[-1]): return sanitize(path[-1]) # use the hostname host = host.split('.') if len(host) == 1: return host[0] # strip common tlds and country code tlds common_tlds = ('com', 'org', 'net', 'edu', 'info', 'biz', 'gov', 'mil') if host[-1] in common_tlds or len(host[-1]) == 2: host = host[:-1] if host[-1] == 'co': host = host[:-1] # strip www prefix if host[0] == 'www': host = host[1:] return sanitize('.'.join(host)) class FrontPage(Handler): """Show the default front page.""" def get(self): self.render() class StartHandler(Handler): """Handles a POST response to the OpenID login form.""" def post(self): """Handles login requests.""" logging.info(self.args_to_dict()) openid_url = self.request.get('openid_url') if not openid_url: self.report_error('Please enter an OpenID URL.') return logging.debug('Beginning discovery for OpenID %s' % openid_url) try: consumer = self.get_consumer() if not consumer: return auth_request = consumer.begin(openid_url) except discover.DiscoveryFailure, e: self.report_error('Error during OpenID provider discovery.', e) return except discover.XRDSError, e: self.report_error('Error parsing XRDS from provider.', e) return self.session.claimed_id = auth_request.endpoint.claimed_id self.session.server_url = auth_request.endpoint.server_url self.store_session() sreg_request = sreg.SRegRequest(optional=['nickname', 'fullname', 'email']) auth_request.addExtension(sreg_request) pape_request = pape.Request([pape.AUTH_MULTI_FACTOR, pape.AUTH_MULTI_FACTOR_PHYSICAL, pape.AUTH_PHISHING_RESISTANT, ]) auth_request.addExtension(pape_request) parts = list(urlparse.urlparse(self.request.uri)) parts[2] = 's/finish' parts[4] = 'session_id=%d' % self.session.key().id() parts[5] = '' return_to = urlparse.urlunparse(parts) realm = urlparse.urlunparse(parts[0:2] + [''] * 4) redirect_url = auth_request.redirectURL(realm, return_to) logging.debug('Redirecting to %s' % redirect_url) self.response.set_status(302) self.response.headers['Location'] = redirect_url class FinishHandler(Handler): """Handle a redirect from the provider.""" def get(self): args = self.args_to_dict() consumer = self.get_consumer() if not consumer: return if self.session.login_set.get(): self.render() return response = consumer.complete(args, self.request.uri) assert response.status in Login.status.choices if response.status == 'success': sreg_data = sreg.SRegResponse.fromSuccessResponse(response).items() pape_data = pape.Response.fromSuccessResponse(response) self.session.claimed_id = response.endpoint.claimed_id self.session.server_url = response.endpoint.server_url elif response.status == 'failure': logging.error(str(response)) logging.debug('Login status %s for claimed_id %s' % (response.status, self.session.claimed_id)) if response.status != 'success': self.render(locals()) return session_id = GenKeyName(length=16) login = Login(key_name=session_id, status=response.status, claimed_id=self.session.claimed_id, server_url=self.session.server_url, session=self.session.key()) login.put() # update the login time user = models.User(openid_user=login.claimed_id).GetOrCreateFromDatastore() user.put() self.response.headers.add_header('Set-Cookie', 'session=%s; path=/' % session_id) # TODO(bradfitz: redirect to proper 'next' URL self.redirect('/') # Map URLs to our RequestHandler subclasses above _URLS = [ ('/s/openid', FrontPage), ('/s/startopenid', StartHandler), ('/s/finish', FinishHandler), ] def main(argv): application = webapp.WSGIApplication(_URLS, debug=_DEBUG) wsgiref.handlers.CGIHandler().run(application) if __name__ == '__main__': main(sys.argv) ########NEW FILE######## __FILENAME__ = ElementInclude # # ElementTree # $Id: ElementInclude.py 1862 2004-06-18 07:31:02Z Fredrik $ # # limited xinclude support for element trees # # history: # 2003-08-15 fl created # 2003-11-14 fl fixed default loader # # Copyright (c) 2003-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Limited XInclude support for the ElementTree package. ## import copy import ElementTree XINCLUDE = "{http://www.w3.org/2001/XInclude}" XINCLUDE_INCLUDE = XINCLUDE + "include" XINCLUDE_FALLBACK = XINCLUDE + "fallback" ## # Fatal include error. class FatalIncludeError(SyntaxError): pass ## # Default loader. This loader reads an included resource from disk. # # @param href Resource reference. # @param parse Parse mode. Either "xml" or "text". # @param encoding Optional text encoding. # @return The expanded resource. If the parse mode is "xml", this # is an ElementTree instance. If the parse mode is "text", this # is a Unicode string. If the loader fails, it can return None # or raise an IOError exception. # @throws IOError If the loader fails to load the resource. def default_loader(href, parse, encoding=None): file = open(href) if parse == "xml": data = ElementTree.parse(file).getroot() else: data = file.read() if encoding: data = data.decode(encoding) file.close() return data ## # Expand XInclude directives. # # @param elem Root element. # @param loader Optional resource loader. If omitted, it defaults # to {@link default_loader}. If given, it should be a callable # that implements the same interface as <b>default_loader</b>. # @throws FatalIncludeError If the function fails to include a given # resource, or if the tree contains malformed XInclude elements. # @throws IOError If the function fails to load a given resource. def include(elem, loader=None): if loader is None: loader = default_loader # look for xinclude elements i = 0 while i < len(elem): e = elem[i] if e.tag == XINCLUDE_INCLUDE: # process xinclude directive href = e.get("href") parse = e.get("parse", "xml") if parse == "xml": node = loader(href, parse) if node is None: raise FatalIncludeError( "cannot load %r as %r" % (href, parse) ) node = copy.copy(node) if e.tail: node.tail = (node.tail or "") + e.tail elem[i] = node elif parse == "text": text = loader(href, parse, e.get("encoding")) if text is None: raise FatalIncludeError( "cannot load %r as %r" % (href, parse) ) if i: node = elem[i-1] node.tail = (node.tail or "") + text else: elem.text = (elem.text or "") + text + (e.tail or "") del elem[i] continue else: raise FatalIncludeError( "unknown parse type in xi:include tag (%r)" % parse ) elif e.tag == XINCLUDE_FALLBACK: raise FatalIncludeError( "xi:fallback tag must be child of xi:include (%r)" % e.tag ) else: include(e, loader) i = i + 1 ########NEW FILE######## __FILENAME__ = ElementPath # # ElementTree # $Id: ElementPath.py 1858 2004-06-17 21:31:41Z Fredrik $ # # limited xpath support for element trees # # history: # 2003-05-23 fl created # 2003-05-28 fl added support for // etc # 2003-08-27 fl fixed parsing of periods in element names # # Copyright (c) 2003-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Implementation module for XPath support. There's usually no reason # to import this module directly; the <b>ElementTree</b> does this for # you, if needed. ## import re xpath_tokenizer = re.compile( "(::|\.\.|\(\)|[/.*:\[\]\(\)@=])|((?:\{[^}]+\})?[^/:\[\]\(\)@=\s]+)|\s+" ).findall class xpath_descendant_or_self: pass ## # Wrapper for a compiled XPath. class Path: ## # Create an Path instance from an XPath expression. def __init__(self, path): tokens = xpath_tokenizer(path) # the current version supports 'path/path'-style expressions only self.path = [] self.tag = None if tokens and tokens[0][0] == "/": raise SyntaxError("cannot use absolute path on element") while tokens: op, tag = tokens.pop(0) if tag or op == "*": self.path.append(tag or op) elif op == ".": pass elif op == "/": self.path.append(xpath_descendant_or_self()) continue else: raise SyntaxError("unsupported path syntax (%s)" % op) if tokens: op, tag = tokens.pop(0) if op != "/": raise SyntaxError( "expected path separator (%s)" % (op or tag) ) if self.path and isinstance(self.path[-1], xpath_descendant_or_self): raise SyntaxError("path cannot end with //") if len(self.path) == 1 and isinstance(self.path[0], type("")): self.tag = self.path[0] ## # Find first matching object. def find(self, element): tag = self.tag if tag is None: nodeset = self.findall(element) if not nodeset: return None return nodeset[0] for elem in element: if elem.tag == tag: return elem return None ## # Find text for first matching object. def findtext(self, element, default=None): tag = self.tag if tag is None: nodeset = self.findall(element) if not nodeset: return default return nodeset[0].text or "" for elem in element: if elem.tag == tag: return elem.text or "" return default ## # Find all matching objects. def findall(self, element): nodeset = [element] index = 0 while 1: try: path = self.path[index] index = index + 1 except IndexError: return nodeset set = [] if isinstance(path, xpath_descendant_or_self): try: tag = self.path[index] if not isinstance(tag, type("")): tag = None else: index = index + 1 except IndexError: tag = None # invalid path for node in nodeset: new = list(node.getiterator(tag)) if new and new[0] is node: set.extend(new[1:]) else: set.extend(new) else: for node in nodeset: for node in node: if path == "*" or node.tag == path: set.append(node) if not set: return [] nodeset = set _cache = {} ## # (Internal) Compile path. def _compile(path): p = _cache.get(path) if p is not None: return p p = Path(path) if len(_cache) >= 100: _cache.clear() _cache[path] = p return p ## # Find first matching object. def find(element, path): return _compile(path).find(element) ## # Find text for first matching object. def findtext(element, path, default=None): return _compile(path).findtext(element, default) ## # Find all matching objects. def findall(element, path): return _compile(path).findall(element) ########NEW FILE######## __FILENAME__ = ElementTree # # ElementTree # $Id: ElementTree.py 2326 2005-03-17 07:45:21Z fredrik $ # # light-weight XML support for Python 1.5.2 and later. # # history: # 2001-10-20 fl created (from various sources) # 2001-11-01 fl return root from parse method # 2002-02-16 fl sort attributes in lexical order # 2002-04-06 fl TreeBuilder refactoring, added PythonDoc markup # 2002-05-01 fl finished TreeBuilder refactoring # 2002-07-14 fl added basic namespace support to ElementTree.write # 2002-07-25 fl added QName attribute support # 2002-10-20 fl fixed encoding in write # 2002-11-24 fl changed default encoding to ascii; fixed attribute encoding # 2002-11-27 fl accept file objects or file names for parse/write # 2002-12-04 fl moved XMLTreeBuilder back to this module # 2003-01-11 fl fixed entity encoding glitch for us-ascii # 2003-02-13 fl added XML literal factory # 2003-02-21 fl added ProcessingInstruction/PI factory # 2003-05-11 fl added tostring/fromstring helpers # 2003-05-26 fl added ElementPath support # 2003-07-05 fl added makeelement factory method # 2003-07-28 fl added more well-known namespace prefixes # 2003-08-15 fl fixed typo in ElementTree.findtext (Thomas Dartsch) # 2003-09-04 fl fall back on emulator if ElementPath is not installed # 2003-10-31 fl markup updates # 2003-11-15 fl fixed nested namespace bug # 2004-03-28 fl added XMLID helper # 2004-06-02 fl added default support to findtext # 2004-06-08 fl fixed encoding of non-ascii element/attribute names # 2004-08-23 fl take advantage of post-2.1 expat features # 2005-02-01 fl added iterparse implementation # 2005-03-02 fl fixed iterparse support for pre-2.2 versions # # Copyright (c) 1999-2005 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2005 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- __all__ = [ # public symbols "Comment", "dump", "Element", "ElementTree", "fromstring", "iselement", "iterparse", "parse", "PI", "ProcessingInstruction", "QName", "SubElement", "tostring", "TreeBuilder", "VERSION", "XML", "XMLTreeBuilder", ] ## # The <b>Element</b> type is a flexible container object, designed to # store hierarchical data structures in memory. The type can be # described as a cross between a list and a dictionary. # <p> # Each element has a number of properties associated with it: # <ul> # <li>a <i>tag</i>. This is a string identifying what kind of data # this element represents (the element type, in other words).</li> # <li>a number of <i>attributes</i>, stored in a Python dictionary.</li> # <li>a <i>text</i> string.</li> # <li>an optional <i>tail</i> string.</li> # <li>a number of <i>child elements</i>, stored in a Python sequence</li> # </ul> # # To create an element instance, use the {@link #Element} or {@link # #SubElement} factory functions. # <p> # The {@link #ElementTree} class can be used to wrap an element # structure, and convert it from and to XML. ## import string, sys, re class _SimpleElementPath: # emulate pre-1.2 find/findtext/findall behaviour def find(self, element, tag): for elem in element: if elem.tag == tag: return elem return None def findtext(self, element, tag, default=None): for elem in element: if elem.tag == tag: return elem.text or "" return default def findall(self, element, tag): if tag[:3] == ".//": return element.getiterator(tag[3:]) result = [] for elem in element: if elem.tag == tag: result.append(elem) return result try: import ElementPath except ImportError: # FIXME: issue warning in this case? ElementPath = _SimpleElementPath() # TODO: add support for custom namespace resolvers/default namespaces # TODO: add improved support for incremental parsing VERSION = "1.2.6" ## # Internal element class. This class defines the Element interface, # and provides a reference implementation of this interface. # <p> # You should not create instances of this class directly. Use the # appropriate factory functions instead, such as {@link #Element} # and {@link #SubElement}. # # @see Element # @see SubElement # @see Comment # @see ProcessingInstruction class _ElementInterface: # <tag attrib>text<child/>...</tag>tail ## # (Attribute) Element tag. tag = None ## # (Attribute) Element attribute dictionary. Where possible, use # {@link #_ElementInterface.get}, # {@link #_ElementInterface.set}, # {@link #_ElementInterface.keys}, and # {@link #_ElementInterface.items} to access # element attributes. attrib = None ## # (Attribute) Text before first subelement. This is either a # string or the value None, if there was no text. text = None ## # (Attribute) Text after this element's end tag, but before the # next sibling element's start tag. This is either a string or # the value None, if there was no text. tail = None # text after end tag, if any def __init__(self, tag, attrib): self.tag = tag self.attrib = attrib self._children = [] def __repr__(self): return "<Element %s at %x>" % (self.tag, id(self)) ## # Creates a new element object of the same type as this element. # # @param tag Element tag. # @param attrib Element attributes, given as a dictionary. # @return A new element instance. def makeelement(self, tag, attrib): return Element(tag, attrib) ## # Returns the number of subelements. # # @return The number of subelements. def __len__(self): return len(self._children) ## # Returns the given subelement. # # @param index What subelement to return. # @return The given subelement. # @exception IndexError If the given element does not exist. def __getitem__(self, index): return self._children[index] ## # Replaces the given subelement. # # @param index What subelement to replace. # @param element The new element value. # @exception IndexError If the given element does not exist. # @exception AssertionError If element is not a valid object. def __setitem__(self, index, element): assert iselement(element) self._children[index] = element ## # Deletes the given subelement. # # @param index What subelement to delete. # @exception IndexError If the given element does not exist. def __delitem__(self, index): del self._children[index] ## # Returns a list containing subelements in the given range. # # @param start The first subelement to return. # @param stop The first subelement that shouldn't be returned. # @return A sequence object containing subelements. def __getslice__(self, start, stop): return self._children[start:stop] ## # Replaces a number of subelements with elements from a sequence. # # @param start The first subelement to replace. # @param stop The first subelement that shouldn't be replaced. # @param elements A sequence object with zero or more elements. # @exception AssertionError If a sequence member is not a valid object. def __setslice__(self, start, stop, elements): for element in elements: assert iselement(element) self._children[start:stop] = list(elements) ## # Deletes a number of subelements. # # @param start The first subelement to delete. # @param stop The first subelement to leave in there. def __delslice__(self, start, stop): del self._children[start:stop] ## # Adds a subelement to the end of this element. # # @param element The element to add. # @exception AssertionError If a sequence member is not a valid object. def append(self, element): assert iselement(element) self._children.append(element) ## # Inserts a subelement at the given position in this element. # # @param index Where to insert the new subelement. # @exception AssertionError If the element is not a valid object. def insert(self, index, element): assert iselement(element) self._children.insert(index, element) ## # Removes a matching subelement. Unlike the <b>find</b> methods, # this method compares elements based on identity, not on tag # value or contents. # # @param element What element to remove. # @exception ValueError If a matching element could not be found. # @exception AssertionError If the element is not a valid object. def remove(self, element): assert iselement(element) self._children.remove(element) ## # Returns all subelements. The elements are returned in document # order. # # @return A list of subelements. # @defreturn list of Element instances def getchildren(self): return self._children ## # Finds the first matching subelement, by tag name or path. # # @param path What element to look for. # @return The first matching element, or None if no element was found. # @defreturn Element or None def find(self, path): return ElementPath.find(self, path) ## # Finds text for the first matching subelement, by tag name or path. # # @param path What element to look for. # @param default What to return if the element was not found. # @return The text content of the first matching element, or the # default value no element was found. Note that if the element # has is found, but has no text content, this method returns an # empty string. # @defreturn string def findtext(self, path, default=None): return ElementPath.findtext(self, path, default) ## # Finds all matching subelements, by tag name or path. # # @param path What element to look for. # @return A list or iterator containing all matching elements, # in document order. # @defreturn list of Element instances def findall(self, path): return ElementPath.findall(self, path) ## # Resets an element. This function removes all subelements, clears # all attributes, and sets the text and tail attributes to None. def clear(self): self.attrib.clear() self._children = [] self.text = self.tail = None ## # Gets an element attribute. # # @param key What attribute to look for. # @param default What to return if the attribute was not found. # @return The attribute value, or the default value, if the # attribute was not found. # @defreturn string or None def get(self, key, default=None): return self.attrib.get(key, default) ## # Sets an element attribute. # # @param key What attribute to set. # @param value The attribute value. def set(self, key, value): self.attrib[key] = value ## # Gets a list of attribute names. The names are returned in an # arbitrary order (just like for an ordinary Python dictionary). # # @return A list of element attribute names. # @defreturn list of strings def keys(self): return self.attrib.keys() ## # Gets element attributes, as a sequence. The attributes are # returned in an arbitrary order. # # @return A list of (name, value) tuples for all attributes. # @defreturn list of (string, string) tuples def items(self): return self.attrib.items() ## # Creates a tree iterator. The iterator loops over this element # and all subelements, in document order, and returns all elements # with a matching tag. # <p> # If the tree structure is modified during iteration, the result # is undefined. # # @param tag What tags to look for (default is to return all elements). # @return A list or iterator containing all the matching elements. # @defreturn list or iterator def getiterator(self, tag=None): nodes = [] if tag == "*": tag = None if tag is None or self.tag == tag: nodes.append(self) for node in self._children: nodes.extend(node.getiterator(tag)) return nodes # compatibility _Element = _ElementInterface ## # Element factory. This function returns an object implementing the # standard Element interface. The exact class or type of that object # is implementation dependent, but it will always be compatible with # the {@link #_ElementInterface} class in this module. # <p> # The element name, attribute names, and attribute values can be # either 8-bit ASCII strings or Unicode strings. # # @param tag The element name. # @param attrib An optional dictionary, containing element attributes. # @param **extra Additional attributes, given as keyword arguments. # @return An element instance. # @defreturn Element def Element(tag, attrib={}, **extra): attrib = attrib.copy() attrib.update(extra) return _ElementInterface(tag, attrib) ## # Subelement factory. This function creates an element instance, and # appends it to an existing element. # <p> # The element name, attribute names, and attribute values can be # either 8-bit ASCII strings or Unicode strings. # # @param parent The parent element. # @param tag The subelement name. # @param attrib An optional dictionary, containing element attributes. # @param **extra Additional attributes, given as keyword arguments. # @return An element instance. # @defreturn Element def SubElement(parent, tag, attrib={}, **extra): attrib = attrib.copy() attrib.update(extra) element = parent.makeelement(tag, attrib) parent.append(element) return element ## # Comment element factory. This factory function creates a special # element that will be serialized as an XML comment. # <p> # The comment string can be either an 8-bit ASCII string or a Unicode # string. # # @param text A string containing the comment string. # @return An element instance, representing a comment. # @defreturn Element def Comment(text=None): element = Element(Comment) element.text = text return element ## # PI element factory. This factory function creates a special element # that will be serialized as an XML processing instruction. # # @param target A string containing the PI target. # @param text A string containing the PI contents, if any. # @return An element instance, representing a PI. # @defreturn Element def ProcessingInstruction(target, text=None): element = Element(ProcessingInstruction) element.text = target if text: element.text = element.text + " " + text return element PI = ProcessingInstruction ## # QName wrapper. This can be used to wrap a QName attribute value, in # order to get proper namespace handling on output. # # @param text A string containing the QName value, in the form {uri}local, # or, if the tag argument is given, the URI part of a QName. # @param tag Optional tag. If given, the first argument is interpreted as # an URI, and this argument is interpreted as a local name. # @return An opaque object, representing the QName. class QName: def __init__(self, text_or_uri, tag=None): if tag: text_or_uri = "{%s}%s" % (text_or_uri, tag) self.text = text_or_uri def __str__(self): return self.text def __hash__(self): return hash(self.text) def __cmp__(self, other): if isinstance(other, QName): return cmp(self.text, other.text) return cmp(self.text, other) ## # ElementTree wrapper class. This class represents an entire element # hierarchy, and adds some extra support for serialization to and from # standard XML. # # @param element Optional root element. # @keyparam file Optional file handle or name. If given, the # tree is initialized with the contents of this XML file. class ElementTree: def __init__(self, element=None, file=None): assert element is None or iselement(element) self._root = element # first node if file: self.parse(file) ## # Gets the root element for this tree. # # @return An element instance. # @defreturn Element def getroot(self): return self._root ## # Replaces the root element for this tree. This discards the # current contents of the tree, and replaces it with the given # element. Use with care. # # @param element An element instance. def _setroot(self, element): assert iselement(element) self._root = element ## # Loads an external XML document into this element tree. # # @param source A file name or file object. # @param parser An optional parser instance. If not given, the # standard {@link XMLTreeBuilder} parser is used. # @return The document root element. # @defreturn Element def parse(self, source, parser=None): if not hasattr(source, "read"): source = open(source, "rb") if not parser: parser = XMLTreeBuilder() while 1: data = source.read(32768) if not data: break parser.feed(data) self._root = parser.close() return self._root ## # Creates a tree iterator for the root element. The iterator loops # over all elements in this tree, in document order. # # @param tag What tags to look for (default is to return all elements) # @return An iterator. # @defreturn iterator def getiterator(self, tag=None): assert self._root is not None return self._root.getiterator(tag) ## # Finds the first toplevel element with given tag. # Same as getroot().find(path). # # @param path What element to look for. # @return The first matching element, or None if no element was found. # @defreturn Element or None def find(self, path): assert self._root is not None if path[:1] == "/": path = "." + path return self._root.find(path) ## # Finds the element text for the first toplevel element with given # tag. Same as getroot().findtext(path). # # @param path What toplevel element to look for. # @param default What to return if the element was not found. # @return The text content of the first matching element, or the # default value no element was found. Note that if the element # has is found, but has no text content, this method returns an # empty string. # @defreturn string def findtext(self, path, default=None): assert self._root is not None if path[:1] == "/": path = "." + path return self._root.findtext(path, default) ## # Finds all toplevel elements with the given tag. # Same as getroot().findall(path). # # @param path What element to look for. # @return A list or iterator containing all matching elements, # in document order. # @defreturn list of Element instances def findall(self, path): assert self._root is not None if path[:1] == "/": path = "." + path return self._root.findall(path) ## # Writes the element tree to a file, as XML. # # @param file A file name, or a file object opened for writing. # @param encoding Optional output encoding (default is US-ASCII). def write(self, file, encoding="us-ascii"): assert self._root is not None if not hasattr(file, "write"): file = open(file, "wb") if not encoding: encoding = "us-ascii" elif encoding != "utf-8" and encoding != "us-ascii": file.write("<?xml version='1.0' encoding='%s'?>\n" % encoding) self._write(file, self._root, encoding, {}) def _write(self, file, node, encoding, namespaces): # write XML to file tag = node.tag if tag is Comment: file.write("<!-- %s -->" % _escape_cdata(node.text, encoding)) elif tag is ProcessingInstruction: file.write("<?%s?>" % _escape_cdata(node.text, encoding)) else: items = node.items() xmlns_items = [] # new namespaces in this scope try: if isinstance(tag, QName) or tag[:1] == "{": tag, xmlns = fixtag(tag, namespaces) if xmlns: xmlns_items.append(xmlns) except TypeError: _raise_serialization_error(tag) file.write("<" + _encode(tag, encoding)) if items or xmlns_items: items.sort() # lexical order for k, v in items: try: if isinstance(k, QName) or k[:1] == "{": k, xmlns = fixtag(k, namespaces) if xmlns: xmlns_items.append(xmlns) except TypeError: _raise_serialization_error(k) try: if isinstance(v, QName): v, xmlns = fixtag(v, namespaces) if xmlns: xmlns_items.append(xmlns) except TypeError: _raise_serialization_error(v) file.write(" %s=\"%s\"" % (_encode(k, encoding), _escape_attrib(v, encoding))) for k, v in xmlns_items: file.write(" %s=\"%s\"" % (_encode(k, encoding), _escape_attrib(v, encoding))) if node.text or len(node): file.write(">") if node.text: file.write(_escape_cdata(node.text, encoding)) for n in node: self._write(file, n, encoding, namespaces) file.write("</" + _encode(tag, encoding) + ">") else: file.write(" />") for k, v in xmlns_items: del namespaces[v] if node.tail: file.write(_escape_cdata(node.tail, encoding)) # -------------------------------------------------------------------- # helpers ## # Checks if an object appears to be a valid element object. # # @param An element instance. # @return A true value if this is an element object. # @defreturn flag def iselement(element): # FIXME: not sure about this; might be a better idea to look # for tag/attrib/text attributes return isinstance(element, _ElementInterface) or hasattr(element, "tag") ## # Writes an element tree or element structure to sys.stdout. This # function should be used for debugging only. # <p> # The exact output format is implementation dependent. In this # version, it's written as an ordinary XML file. # # @param elem An element tree or an individual element. def dump(elem): # debugging if not isinstance(elem, ElementTree): elem = ElementTree(elem) elem.write(sys.stdout) tail = elem.getroot().tail if not tail or tail[-1] != "\n": sys.stdout.write("\n") def _encode(s, encoding): try: return s.encode(encoding) except AttributeError: return s # 1.5.2: assume the string uses the right encoding if sys.version[:3] == "1.5": _escape = re.compile(r"[&<>\"\x80-\xff]+") # 1.5.2 else: _escape = re.compile(eval(r'u"[&<>\"\u0080-\uffff]+"')) _escape_map = { "&": "&amp;", "<": "&lt;", ">": "&gt;", '"': "&quot;", } _namespace_map = { # "well-known" namespace prefixes "http://www.w3.org/XML/1998/namespace": "xml", "http://www.w3.org/1999/xhtml": "html", "http://www.w3.org/1999/02/22-rdf-syntax-ns#": "rdf", "http://schemas.xmlsoap.org/wsdl/": "wsdl", } def _raise_serialization_error(text): raise TypeError( "cannot serialize %r (type %s)" % (text, type(text).__name__) ) def _encode_entity(text, pattern=_escape): # map reserved and non-ascii characters to numerical entities def escape_entities(m, map=_escape_map): out = [] append = out.append for char in m.group(): text = map.get(char) if text is None: text = "&#%d;" % ord(char) append(text) return string.join(out, "") try: return _encode(pattern.sub(escape_entities, text), "ascii") except TypeError: _raise_serialization_error(text) # # the following functions assume an ascii-compatible encoding # (or "utf-16") def _escape_cdata(text, encoding=None, replace=string.replace): # escape character data try: if encoding: try: text = _encode(text, encoding) except UnicodeError: return _encode_entity(text) text = replace(text, "&", "&amp;") text = replace(text, "<", "&lt;") text = replace(text, ">", "&gt;") return text except (TypeError, AttributeError): _raise_serialization_error(text) def _escape_attrib(text, encoding=None, replace=string.replace): # escape attribute value try: if encoding: try: text = _encode(text, encoding) except UnicodeError: return _encode_entity(text) text = replace(text, "&", "&amp;") text = replace(text, "'", "&apos;") # FIXME: overkill text = replace(text, "\"", "&quot;") text = replace(text, "<", "&lt;") text = replace(text, ">", "&gt;") return text except (TypeError, AttributeError): _raise_serialization_error(text) def fixtag(tag, namespaces): # given a decorated tag (of the form {uri}tag), return prefixed # tag and namespace declaration, if any if isinstance(tag, QName): tag = tag.text namespace_uri, tag = string.split(tag[1:], "}", 1) prefix = namespaces.get(namespace_uri) if prefix is None: prefix = _namespace_map.get(namespace_uri) if prefix is None: prefix = "ns%d" % len(namespaces) namespaces[namespace_uri] = prefix if prefix == "xml": xmlns = None else: xmlns = ("xmlns:%s" % prefix, namespace_uri) else: xmlns = None return "%s:%s" % (prefix, tag), xmlns ## # Parses an XML document into an element tree. # # @param source A filename or file object containing XML data. # @param parser An optional parser instance. If not given, the # standard {@link XMLTreeBuilder} parser is used. # @return An ElementTree instance def parse(source, parser=None): tree = ElementTree() tree.parse(source, parser) return tree ## # Parses an XML document into an element tree incrementally, and reports # what's going on to the user. # # @param source A filename or file object containing XML data. # @param events A list of events to report back. If omitted, only "end" # events are reported. # @return A (event, elem) iterator. class iterparse: def __init__(self, source, events=None): if not hasattr(source, "read"): source = open(source, "rb") self._file = source self._events = [] self._index = 0 self.root = self._root = None self._parser = XMLTreeBuilder() # wire up the parser for event reporting parser = self._parser._parser append = self._events.append if events is None: events = ["end"] for event in events: if event == "start": try: parser.ordered_attributes = 1 parser.specified_attributes = 1 def handler(tag, attrib_in, event=event, append=append, start=self._parser._start_list): append((event, start(tag, attrib_in))) parser.StartElementHandler = handler except AttributeError: def handler(tag, attrib_in, event=event, append=append, start=self._parser._start): append((event, start(tag, attrib_in))) parser.StartElementHandler = handler elif event == "end": def handler(tag, event=event, append=append, end=self._parser._end): append((event, end(tag))) parser.EndElementHandler = handler elif event == "start-ns": def handler(prefix, uri, event=event, append=append): try: uri = _encode(uri, "ascii") except UnicodeError: pass append((event, (prefix or "", uri))) parser.StartNamespaceDeclHandler = handler elif event == "end-ns": def handler(prefix, event=event, append=append): append((event, None)) parser.EndNamespaceDeclHandler = handler def next(self): while 1: try: item = self._events[self._index] except IndexError: if self._parser is None: self.root = self._root try: raise StopIteration except NameError: raise IndexError # load event buffer del self._events[:] self._index = 0 data = self._file.read(16384) if data: self._parser.feed(data) else: self._root = self._parser.close() self._parser = None else: self._index = self._index + 1 return item try: iter def __iter__(self): return self except NameError: def __getitem__(self, index): return self.next() ## # Parses an XML document from a string constant. This function can # be used to embed "XML literals" in Python code. # # @param source A string containing XML data. # @return An Element instance. # @defreturn Element def XML(text): parser = XMLTreeBuilder() parser.feed(text) return parser.close() ## # Parses an XML document from a string constant, and also returns # a dictionary which maps from element id:s to elements. # # @param source A string containing XML data. # @return A tuple containing an Element instance and a dictionary. # @defreturn (Element, dictionary) def XMLID(text): parser = XMLTreeBuilder() parser.feed(text) tree = parser.close() ids = {} for elem in tree.getiterator(): id = elem.get("id") if id: ids[id] = elem return tree, ids ## # Parses an XML document from a string constant. Same as {@link #XML}. # # @def fromstring(text) # @param source A string containing XML data. # @return An Element instance. # @defreturn Element fromstring = XML ## # Generates a string representation of an XML element, including all # subelements. # # @param element An Element instance. # @return An encoded string containing the XML data. # @defreturn string def tostring(element, encoding=None): class dummy: pass data = [] file = dummy() file.write = data.append ElementTree(element).write(file, encoding) return string.join(data, "") ## # Generic element structure builder. This builder converts a sequence # of {@link #TreeBuilder.start}, {@link #TreeBuilder.data}, and {@link # #TreeBuilder.end} method calls to a well-formed element structure. # <p> # You can use this class to build an element structure using a custom XML # parser, or a parser for some other XML-like format. # # @param element_factory Optional element factory. This factory # is called to create new Element instances, as necessary. class TreeBuilder: def __init__(self, element_factory=None): self._data = [] # data collector self._elem = [] # element stack self._last = None # last element self._tail = None # true if we're after an end tag if element_factory is None: element_factory = _ElementInterface self._factory = element_factory ## # Flushes the parser buffers, and returns the toplevel documen # element. # # @return An Element instance. # @defreturn Element def close(self): assert len(self._elem) == 0, "missing end tags" assert self._last != None, "missing toplevel element" return self._last def _flush(self): if self._data: if self._last is not None: text = string.join(self._data, "") if self._tail: assert self._last.tail is None, "internal error (tail)" self._last.tail = text else: assert self._last.text is None, "internal error (text)" self._last.text = text self._data = [] ## # Adds text to the current element. # # @param data A string. This should be either an 8-bit string # containing ASCII text, or a Unicode string. def data(self, data): self._data.append(data) ## # Opens a new element. # # @param tag The element name. # @param attrib A dictionary containing element attributes. # @return The opened element. # @defreturn Element def start(self, tag, attrs): self._flush() self._last = elem = self._factory(tag, attrs) if self._elem: self._elem[-1].append(elem) self._elem.append(elem) self._tail = 0 return elem ## # Closes the current element. # # @param tag The element name. # @return The closed element. # @defreturn Element def end(self, tag): self._flush() self._last = self._elem.pop() assert self._last.tag == tag,\ "end tag mismatch (expected %s, got %s)" % ( self._last.tag, tag) self._tail = 1 return self._last ## # Element structure builder for XML source data, based on the # <b>expat</b> parser. # # @keyparam target Target object. If omitted, the builder uses an # instance of the standard {@link #TreeBuilder} class. # @keyparam html Predefine HTML entities. This flag is not supported # by the current implementation. # @see #ElementTree # @see #TreeBuilder class XMLTreeBuilder: def __init__(self, html=0, target=None): try: from xml.parsers import expat except ImportError: raise ImportError( "No module named expat; use SimpleXMLTreeBuilder instead" ) self._parser = parser = expat.ParserCreate(None, "}") if target is None: target = TreeBuilder() self._target = target self._names = {} # name memo cache # callbacks parser.DefaultHandlerExpand = self._default parser.StartElementHandler = self._start parser.EndElementHandler = self._end parser.CharacterDataHandler = self._data # let expat do the buffering, if supported try: self._parser.buffer_text = 1 except AttributeError: pass # use new-style attribute handling, if supported try: self._parser.ordered_attributes = 1 self._parser.specified_attributes = 1 parser.StartElementHandler = self._start_list except AttributeError: pass encoding = None if not parser.returns_unicode: encoding = "utf-8" # target.xml(encoding, None) self._doctype = None self.entity = {} def _fixtext(self, text): # convert text string to ascii, if possible try: return _encode(text, "ascii") except UnicodeError: return text def _fixname(self, key): # expand qname, and convert name string to ascii, if possible try: name = self._names[key] except KeyError: name = key if "}" in name: name = "{" + name self._names[key] = name = self._fixtext(name) return name def _start(self, tag, attrib_in): fixname = self._fixname tag = fixname(tag) attrib = {} for key, value in attrib_in.items(): attrib[fixname(key)] = self._fixtext(value) return self._target.start(tag, attrib) def _start_list(self, tag, attrib_in): fixname = self._fixname tag = fixname(tag) attrib = {} if attrib_in: for i in range(0, len(attrib_in), 2): attrib[fixname(attrib_in[i])] = self._fixtext(attrib_in[i+1]) return self._target.start(tag, attrib) def _data(self, text): return self._target.data(self._fixtext(text)) def _end(self, tag): return self._target.end(self._fixname(tag)) def _default(self, text): prefix = text[:1] if prefix == "&": # deal with undefined entities try: self._target.data(self.entity[text[1:-1]]) except KeyError: from xml.parsers import expat raise expat.error( "undefined entity %s: line %d, column %d" % (text, self._parser.ErrorLineNumber, self._parser.ErrorColumnNumber) ) elif prefix == "<" and text[:9] == "<!DOCTYPE": self._doctype = [] # inside a doctype declaration elif self._doctype is not None: # parse doctype contents if prefix == ">": self._doctype = None return text = string.strip(text) if not text: return self._doctype.append(text) n = len(self._doctype) if n > 2: type = self._doctype[1] if type == "PUBLIC" and n == 4: name, type, pubid, system = self._doctype elif type == "SYSTEM" and n == 3: name, type, system = self._doctype pubid = None else: return if pubid: pubid = pubid[1:-1] self.doctype(name, pubid, system[1:-1]) self._doctype = None ## # Handles a doctype declaration. # # @param name Doctype name. # @param pubid Public identifier. # @param system System identifier. def doctype(self, name, pubid, system): pass ## # Feeds data to the parser. # # @param data Encoded data. def feed(self, data): self._parser.Parse(data, 0) ## # Finishes feeding data to the parser. # # @return An element structure. # @defreturn Element def close(self): self._parser.Parse("", 1) # end of data tree = self._target.close() del self._target, self._parser # get rid of circular references return tree ########NEW FILE######## __FILENAME__ = HTMLTreeBuilder # # ElementTree # $Id: HTMLTreeBuilder.py 2325 2005-03-16 15:50:43Z fredrik $ # # a simple tree builder, for HTML input # # history: # 2002-04-06 fl created # 2002-04-07 fl ignore IMG and HR end tags # 2002-04-07 fl added support for 1.5.2 and later # 2003-04-13 fl added HTMLTreeBuilder alias # 2004-12-02 fl don't feed non-ASCII charrefs/entities as 8-bit strings # 2004-12-05 fl don't feed non-ASCII CDATA as 8-bit strings # # Copyright (c) 1999-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Tools to build element trees from HTML files. ## import htmlentitydefs import re, string, sys import mimetools, StringIO import ElementTree AUTOCLOSE = "p", "li", "tr", "th", "td", "head", "body" IGNOREEND = "img", "hr", "meta", "link", "br" if sys.version[:3] == "1.5": is_not_ascii = re.compile(r"[\x80-\xff]").search # 1.5.2 else: is_not_ascii = re.compile(eval(r'u"[\u0080-\uffff]"')).search try: from HTMLParser import HTMLParser except ImportError: from sgmllib import SGMLParser # hack to use sgmllib's SGMLParser to emulate 2.2's HTMLParser class HTMLParser(SGMLParser): # the following only works as long as this class doesn't # provide any do, start, or end handlers def unknown_starttag(self, tag, attrs): self.handle_starttag(tag, attrs) def unknown_endtag(self, tag): self.handle_endtag(tag) ## # ElementTree builder for HTML source code. This builder converts an # HTML document or fragment to an ElementTree. # <p> # The parser is relatively picky, and requires balanced tags for most # elements. However, elements belonging to the following group are # automatically closed: P, LI, TR, TH, and TD. In addition, the # parser automatically inserts end tags immediately after the start # tag, and ignores any end tags for the following group: IMG, HR, # META, and LINK. # # @keyparam builder Optional builder object. If omitted, the parser # uses the standard <b>elementtree</b> builder. # @keyparam encoding Optional character encoding, if known. If omitted, # the parser looks for META tags inside the document. If no tags # are found, the parser defaults to ISO-8859-1. Note that if your # document uses a non-ASCII compatible encoding, you must decode # the document before parsing. # # @see elementtree.ElementTree class HTMLTreeBuilder(HTMLParser): # FIXME: shouldn't this class be named Parser, not Builder? def __init__(self, builder=None, encoding=None): self.__stack = [] if builder is None: builder = ElementTree.TreeBuilder() self.__builder = builder self.encoding = encoding or "iso-8859-1" HTMLParser.__init__(self) ## # Flushes parser buffers, and return the root element. # # @return An Element instance. def close(self): HTMLParser.close(self) return self.__builder.close() ## # (Internal) Handles start tags. def handle_starttag(self, tag, attrs): if tag == "meta": # look for encoding directives http_equiv = content = None for k, v in attrs: if k == "http-equiv": http_equiv = string.lower(v) elif k == "content": content = v if http_equiv == "content-type" and content: # use mimetools to parse the http header header = mimetools.Message( StringIO.StringIO("%s: %s\n\n" % (http_equiv, content)) ) encoding = header.getparam("charset") if encoding: self.encoding = encoding if tag in AUTOCLOSE: if self.__stack and self.__stack[-1] == tag: self.handle_endtag(tag) self.__stack.append(tag) attrib = {} if attrs: for k, v in attrs: attrib[string.lower(k)] = v self.__builder.start(tag, attrib) if tag in IGNOREEND: self.__stack.pop() self.__builder.end(tag) ## # (Internal) Handles end tags. def handle_endtag(self, tag): if tag in IGNOREEND: return lasttag = self.__stack.pop() if tag != lasttag and lasttag in AUTOCLOSE: self.handle_endtag(lasttag) self.__builder.end(tag) ## # (Internal) Handles character references. def handle_charref(self, char): if char[:1] == "x": char = int(char[1:], 16) else: char = int(char) if 0 <= char < 128: self.__builder.data(chr(char)) else: self.__builder.data(unichr(char)) ## # (Internal) Handles entity references. def handle_entityref(self, name): entity = htmlentitydefs.entitydefs.get(name) if entity: if len(entity) == 1: entity = ord(entity) else: entity = int(entity[2:-1]) if 0 <= entity < 128: self.__builder.data(chr(entity)) else: self.__builder.data(unichr(entity)) else: self.unknown_entityref(name) ## # (Internal) Handles character data. def handle_data(self, data): if isinstance(data, type('')) and is_not_ascii(data): # convert to unicode, but only if necessary data = unicode(data, self.encoding, "ignore") self.__builder.data(data) ## # (Hook) Handles unknown entity references. The default action # is to ignore unknown entities. def unknown_entityref(self, name): pass # ignore by default; override if necessary ## # An alias for the <b>HTMLTreeBuilder</b> class. TreeBuilder = HTMLTreeBuilder ## # Parse an HTML document or document fragment. # # @param source A filename or file object containing HTML data. # @param encoding Optional character encoding, if known. If omitted, # the parser looks for META tags inside the document. If no tags # are found, the parser defaults to ISO-8859-1. # @return An ElementTree instance def parse(source, encoding=None): return ElementTree.parse(source, HTMLTreeBuilder(encoding=encoding)) if __name__ == "__main__": import sys ElementTree.dump(parse(open(sys.argv[1]))) ########NEW FILE######## __FILENAME__ = SgmlopXMLTreeBuilder # # ElementTree # $Id$ # # A simple XML tree builder, based on the sgmlop library. # # Note that this version does not support namespaces. This may be # changed in future versions. # # history: # 2004-03-28 fl created # # Copyright (c) 1999-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Tools to build element trees from XML, based on the SGMLOP parser. # <p> # The current version does not support XML namespaces. # <p> # This tree builder requires the <b>sgmlop</b> extension module # (available from # <a href='http://effbot.org/downloads'>http://effbot.org/downloads</a>). ## import ElementTree ## # ElementTree builder for XML source data, based on the SGMLOP parser. # # @see elementtree.ElementTree class TreeBuilder: def __init__(self, html=0): try: import sgmlop except ImportError: raise RuntimeError("sgmlop parser not available") self.__builder = ElementTree.TreeBuilder() if html: import htmlentitydefs self.entitydefs.update(htmlentitydefs.entitydefs) self.__parser = sgmlop.XMLParser() self.__parser.register(self) ## # Feeds data to the parser. # # @param data Encoded data. def feed(self, data): self.__parser.feed(data) ## # Finishes feeding data to the parser. # # @return An element structure. # @defreturn Element def close(self): self.__parser.close() self.__parser = None return self.__builder.close() def finish_starttag(self, tag, attrib): self.__builder.start(tag, attrib) def finish_endtag(self, tag): self.__builder.end(tag) def handle_data(self, data): self.__builder.data(data) ########NEW FILE######## __FILENAME__ = SimpleXMLTreeBuilder # # ElementTree # $Id: SimpleXMLTreeBuilder.py 1862 2004-06-18 07:31:02Z Fredrik $ # # A simple XML tree builder, based on Python's xmllib # # Note that due to bugs in xmllib, this builder does not fully support # namespaces (unqualified attributes are put in the default namespace, # instead of being left as is). Run this module as a script to find # out if this affects your Python version. # # history: # 2001-10-20 fl created # 2002-05-01 fl added namespace support for xmllib # 2002-08-17 fl added xmllib sanity test # # Copyright (c) 1999-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Tools to build element trees from XML files, using <b>xmllib</b>. # This module can be used instead of the standard tree builder, for # Python versions where "expat" is not available (such as 1.5.2). # <p> # Note that due to bugs in <b>xmllib</b>, the namespace support is # not reliable (you can run the module as a script to find out exactly # how unreliable it is on your Python version). ## import xmllib, string import ElementTree ## # ElementTree builder for XML source data. # # @see elementtree.ElementTree class TreeBuilder(xmllib.XMLParser): def __init__(self, html=0): self.__builder = ElementTree.TreeBuilder() if html: import htmlentitydefs self.entitydefs.update(htmlentitydefs.entitydefs) xmllib.XMLParser.__init__(self) ## # Feeds data to the parser. # # @param data Encoded data. def feed(self, data): xmllib.XMLParser.feed(self, data) ## # Finishes feeding data to the parser. # # @return An element structure. # @defreturn Element def close(self): xmllib.XMLParser.close(self) return self.__builder.close() def handle_data(self, data): self.__builder.data(data) handle_cdata = handle_data def unknown_starttag(self, tag, attrs): attrib = {} for key, value in attrs.items(): attrib[fixname(key)] = value self.__builder.start(fixname(tag), attrib) def unknown_endtag(self, tag): self.__builder.end(fixname(tag)) def fixname(name, split=string.split): # xmllib in 2.0 and later provides limited (and slightly broken) # support for XML namespaces. if " " not in name: return name return "{%s}%s" % tuple(split(name, " ", 1)) if __name__ == "__main__": import sys # sanity check: look for known namespace bugs in xmllib p = TreeBuilder() text = """\ <root xmlns='default'> <tag attribute='value' /> </root> """ p.feed(text) tree = p.close() status = [] # check for bugs in the xmllib implementation tag = tree.find("{default}tag") if tag is None: status.append("namespaces not supported") if tag is not None and tag.get("{default}attribute"): status.append("default namespace applied to unqualified attribute") # report bugs if status: print "xmllib doesn't work properly in this Python version:" for bug in status: print "-", bug else: print "congratulations; no problems found in xmllib" ########NEW FILE######## __FILENAME__ = SimpleXMLWriter # # SimpleXMLWriter # $Id: SimpleXMLWriter.py 2312 2005-03-02 18:13:39Z fredrik $ # # a simple XML writer # # history: # 2001-12-28 fl created # 2002-11-25 fl fixed attribute encoding # 2002-12-02 fl minor fixes for 1.5.2 # 2004-06-17 fl added pythondoc markup # 2004-07-23 fl added flush method (from Jay Graves) # 2004-10-03 fl added declaration method # # Copyright (c) 2001-2004 by Fredrik Lundh # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The SimpleXMLWriter module is # # Copyright (c) 2001-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Tools to write XML files, without having to deal with encoding # issues, well-formedness, etc. # <p> # The current version does not provide built-in support for # namespaces. To create files using namespaces, you have to provide # "xmlns" attributes and explicitly add prefixes to tags and # attributes. # # <h3>Patterns</h3> # # The following example generates a small XHTML document. # <pre> # # from elementtree.SimpleXMLWriter import XMLWriter # import sys # # w = XMLWriter(sys.stdout) # # html = w.start("html") # # w.start("head") # w.element("title", "my document") # w.element("meta", name="generator", value="my application 1.0") # w.end() # # w.start("body") # w.element("h1", "this is a heading") # w.element("p", "this is a paragraph") # # w.start("p") # w.data("this is ") # w.element("b", "bold") # w.data(" and ") # w.element("i", "italic") # w.data(".") # w.end("p") # # w.close(html) # </pre> ## import re, sys, string try: unicode("") except NameError: def encode(s, encoding): # 1.5.2: application must use the right encoding return s _escape = re.compile(r"[&<>\"\x80-\xff]+") # 1.5.2 else: def encode(s, encoding): return s.encode(encoding) _escape = re.compile(eval(r'u"[&<>\"\u0080-\uffff]+"')) def encode_entity(text, pattern=_escape): # map reserved and non-ascii characters to numerical entities def escape_entities(m): out = [] for char in m.group(): out.append("&#%d;" % ord(char)) return string.join(out, "") return encode(pattern.sub(escape_entities, text), "ascii") del _escape # # the following functions assume an ascii-compatible encoding # (or "utf-16") def escape_cdata(s, encoding=None, replace=string.replace): s = replace(s, "&", "&amp;") s = replace(s, "<", "&lt;") s = replace(s, ">", "&gt;") if encoding: try: return encode(s, encoding) except UnicodeError: return encode_entity(s) return s def escape_attrib(s, encoding=None, replace=string.replace): s = replace(s, "&", "&amp;") s = replace(s, "'", "&apos;") s = replace(s, "\"", "&quot;") s = replace(s, "<", "&lt;") s = replace(s, ">", "&gt;") if encoding: try: return encode(s, encoding) except UnicodeError: return encode_entity(s) return s ## # XML writer class. # # @param file A file or file-like object. This object must implement # a <b>write</b> method that takes an 8-bit string. # @param encoding Optional encoding. class XMLWriter: def __init__(self, file, encoding="us-ascii"): if not hasattr(file, "write"): file = open(file, "w") self.__write = file.write if hasattr(file, "flush"): self.flush = file.flush self.__open = 0 # true if start tag is open self.__tags = [] self.__data = [] self.__encoding = encoding def __flush(self): # flush internal buffers if self.__open: self.__write(">") self.__open = 0 if self.__data: data = string.join(self.__data, "") self.__write(escape_cdata(data, self.__encoding)) self.__data = [] ## # Writes an XML declaration. def declaration(self): encoding = self.__encoding if encoding == "us-ascii" or encoding == "utf-8": self.__write("<?xml version='1.0'?>\n") else: self.__write("<?xml version='1.0' encoding='%s'?>\n" % encoding) ## # Opens a new element. Attributes can be given as keyword # arguments, or as a string/string dictionary. You can pass in # 8-bit strings or Unicode strings; the former are assumed to use # the encoding passed to the constructor. The method returns an # opaque identifier that can be passed to the <b>close</b> method, # to close all open elements up to and including this one. # # @param tag Element tag. # @param attrib Attribute dictionary. Alternatively, attributes # can be given as keyword arguments. # @return An element identifier. def start(self, tag, attrib={}, **extra): self.__flush() tag = escape_cdata(tag, self.__encoding) self.__data = [] self.__tags.append(tag) self.__write("<%s" % tag) if attrib or extra: attrib = attrib.copy() attrib.update(extra) attrib = attrib.items() attrib.sort() for k, v in attrib: k = escape_cdata(k, self.__encoding) v = escape_attrib(v, self.__encoding) self.__write(" %s=\"%s\"" % (k, v)) self.__open = 1 return len(self.__tags)-1 ## # Adds a comment to the output stream. # # @param comment Comment text, as an 8-bit string or Unicode string. def comment(self, comment): self.__flush() self.__write("<!-- %s -->\n" % escape_cdata(comment, self.__encoding)) ## # Adds character data to the output stream. # # @param text Character data, as an 8-bit string or Unicode string. def data(self, text): self.__data.append(text) ## # Closes the current element (opened by the most recent call to # <b>start</b>). # # @param tag Element tag. If given, the tag must match the start # tag. If omitted, the current element is closed. def end(self, tag=None): if tag: assert self.__tags, "unbalanced end(%s)" % tag assert escape_cdata(tag, self.__encoding) == self.__tags[-1],\ "expected end(%s), got %s" % (self.__tags[-1], tag) else: assert self.__tags, "unbalanced end()" tag = self.__tags.pop() if self.__data: self.__flush() elif self.__open: self.__open = 0 self.__write(" />") return self.__write("</%s>" % tag) ## # Closes open elements, up to (and including) the element identified # by the given identifier. # # @param id Element identifier, as returned by the <b>start</b> method. def close(self, id): while len(self.__tags) > id: self.end() ## # Adds an entire element. This is the same as calling <b>start</b>, # <b>data</b>, and <b>end</b> in sequence. The <b>text</b> argument # can be omitted. def element(self, tag, text=None, attrib={}, **extra): apply(self.start, (tag, attrib), extra) if text: self.data(text) self.end() ## # Flushes the output stream. def flush(self): pass # replaced by the constructor ########NEW FILE######## __FILENAME__ = TidyHTMLTreeBuilder # # ElementTree # $Id: TidyHTMLTreeBuilder.py 2304 2005-03-01 17:42:41Z fredrik $ # from elementtidy.TidyHTMLTreeBuilder import * ########NEW FILE######## __FILENAME__ = TidyTools # # ElementTree # $Id: TidyTools.py 1862 2004-06-18 07:31:02Z Fredrik $ # # tools to run the "tidy" command on an HTML or XHTML file, and return # the contents as an XHTML element tree. # # history: # 2002-10-19 fl added to ElementTree library; added getzonebody function # # Copyright (c) 1999-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # ## # Tools to build element trees from HTML, using the external <b>tidy</b> # utility. ## import glob, string, os, sys from ElementTree import ElementTree, Element NS_XHTML = "{http://www.w3.org/1999/xhtml}" ## # Convert an HTML or HTML-like file to XHTML, using the <b>tidy</b> # command line utility. # # @param file Filename. # @param new_inline_tags An optional list of valid but non-standard # inline tags. # @return An element tree, or None if not successful. def tidy(file, new_inline_tags=None): command = ["tidy", "-qn", "-asxml"] if new_inline_tags: command.append("--new-inline-tags") command.append(string.join(new_inline_tags, ",")) # FIXME: support more tidy options! # convert os.system( "%s %s >%s.out 2>%s.err" % (string.join(command), file, file, file) ) # check that the result is valid XML try: tree = ElementTree() tree.parse(file + ".out") except: print "*** %s:%s" % sys.exc_info()[:2] print ("*** %s is not valid XML " "(check %s.err for info)" % (file, file)) tree = None else: if os.path.isfile(file + ".out"): os.remove(file + ".out") if os.path.isfile(file + ".err"): os.remove(file + ".err") return tree ## # Get document body from a an HTML or HTML-like file. This function # uses the <b>tidy</b> function to convert HTML to XHTML, and cleans # up the resulting XML tree. # # @param file Filename. # @return A <b>body</b> element, or None if not successful. def getbody(file, **options): # get clean body from text file # get xhtml tree try: tree = apply(tidy, (file,), options) if tree is None: return except IOError, v: print "***", v return None NS = NS_XHTML # remove namespace uris for node in tree.getiterator(): if node.tag.startswith(NS): node.tag = node.tag[len(NS):] body = tree.getroot().find("body") return body ## # Same as <b>getbody</b>, but turns plain text at the start of the # document into an H1 tag. This function can be used to parse zone # documents. # # @param file Filename. # @return A <b>body</b> element, or None if not successful. def getzonebody(file, **options): body = getbody(file, **options) if body is None: return if body.text and string.strip(body.text): title = Element("h1") title.text = string.strip(body.text) title.tail = "\n\n" body.insert(0, title) body.text = None return body if __name__ == "__main__": import sys for arg in sys.argv[1:]: for file in glob.glob(arg): print file, "...", tidy(file) ########NEW FILE######## __FILENAME__ = XMLTreeBuilder # # ElementTree # $Id: XMLTreeBuilder.py 2305 2005-03-01 17:43:09Z fredrik $ # # an XML tree builder # # history: # 2001-10-20 fl created # 2002-05-01 fl added namespace support for xmllib # 2002-07-27 fl require expat (1.5.2 code can use SimpleXMLTreeBuilder) # 2002-08-17 fl use tag/attribute name memo cache # 2002-12-04 fl moved XMLTreeBuilder to the ElementTree module # # Copyright (c) 1999-2004 by Fredrik Lundh. All rights reserved. # # [email protected] # http://www.pythonware.com # # -------------------------------------------------------------------- # The ElementTree toolkit is # # Copyright (c) 1999-2004 by Fredrik Lundh # # By obtaining, using, and/or copying this software and/or its # associated documentation, you agree that you have read, understood, # and will comply with the following terms and conditions: # # Permission to use, copy, modify, and distribute this software and # its associated documentation for any purpose and without fee is # hereby granted, provided that the above copyright notice appears in # all copies, and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of # Secret Labs AB or the author not be used in advertising or publicity # pertaining to distribution of the software without specific, written # prior permission. # # SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD # TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- # ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR # BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY # DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, # WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE # OF THIS SOFTWARE. # -------------------------------------------------------------------- ## # Tools to build element trees from XML files. ## import ElementTree ## # (obsolete) ElementTree builder for XML source data, based on the # <b>expat</b> parser. # <p> # This class is an alias for ElementTree.XMLTreeBuilder. New code # should use that version instead. # # @see elementtree.ElementTree class TreeBuilder(ElementTree.XMLTreeBuilder): pass ## # (experimental) An alternate builder that supports manipulation of # new elements. class FancyTreeBuilder(TreeBuilder): def __init__(self, html=0): TreeBuilder.__init__(self, html) self._parser.StartNamespaceDeclHandler = self._start_ns self._parser.EndNamespaceDeclHandler = self._end_ns self.namespaces = [] def _start(self, tag, attrib_in): elem = TreeBuilder._start(self, tag, attrib_in) self.start(elem) def _start_list(self, tag, attrib_in): elem = TreeBuilder._start_list(self, tag, attrib_in) self.start(elem) def _end(self, tag): elem = TreeBuilder._end(self, tag) self.end(elem) def _start_ns(self, prefix, value): self.namespaces.insert(0, (prefix, value)) def _end_ns(self, prefix): assert self.namespaces.pop(0)[0] == prefix, "implementation confused" ## # Hook method that's called when a new element has been opened. # May access the <b>namespaces</b> attribute. # # @param element The new element. The tag name and attributes are, # set, but it has no children, and the text and tail attributes # are still empty. def start(self, element): pass ## # Hook method that's called when a new element has been closed. # May access the <b>namespaces</b> attribute. # # @param element The new element. def end(self, element): pass ########NEW FILE######## __FILENAME__ = fetcher #!/usr/bin/python # # Copyright 2007, Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ An HTTPFetcher implementation that uses Google App Engine's urlfetch module. HTTPFetcher is an interface defined in the top-level fetchers module in JanRain's OpenID python library: http://openidenabled.com/python-openid/ For more, see openid/fetchers.py in that library. """ import logging from openid import fetchers from google.appengine.api import urlfetch class UrlfetchFetcher(fetchers.HTTPFetcher): """An HTTPFetcher subclass that uses Google App Engine's urlfetch module. """ def fetch(self, url, body=None, headers=None): """ This performs an HTTP POST or GET, following redirects along the way. If a body is specified, then the request will be a POST. Otherwise, it will be a GET. @param headers: HTTP headers to include with the request @type headers: {str:str} @return: An object representing the server's HTTP response. If there are network or protocol errors, an exception will be raised. HTTP error responses, like 404 or 500, do not cause exceptions. @rtype: L{HTTPResponse} @raise Exception: Different implementations will raise different errors based on the underlying HTTP library. """ if not fetchers._allowedURL(url): raise ValueError('Bad URL scheme: %r' % (url,)) if not headers: headers = {} if body: method = urlfetch.POST if 'Content-Type' not in headers: headers['Content-Type'] = 'application/x-www-form-urlencoded' else: method = urlfetch.GET if not headers: headers = {} # follow up to 10 redirects for i in range(10): resp = urlfetch.fetch(url, body, method, headers) if resp.status_code in (301, 302): logging.debug('Following %d redirect to %s' % (resp.status_code, resp.headers['location'])) url = resp.headers['location'] else: break return fetchers.HTTPResponse(url, resp.status_code, resp.headers, resp.content) ########NEW FILE######## __FILENAME__ = filters import re from google.appengine.ext import webapp register = webapp.template.create_template_register() def linkify(text): """Escape tags, add line breaks, and linkify HTTP URLs.""" if not text: return "" text = text.replace('<', '&lt;').replace('>', '&gt;').replace("\n", '<br/>\n') text = re.sub(r'\b((?:https?|irc|git)://[\w\-\/\?\&\=\.\:\%\#]+)', lambda x: "<a href='%s'>%s</a>" % (x.group(1), x.group(1)), text) return text register.filter(linkify) ########NEW FILE######## __FILENAME__ = main #!/usr/bin/env python # # Copyright 2010 Brad Fitzpatrick # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import logging from google.appengine.api import users from google.appengine.ext import db from google.appengine.ext import webapp from google.appengine.ext.webapp import template from google.appengine.ext.webapp import util import consumer import models import filters webapp.template.register_template_library('filters') def GetCurrentUser(request): """Returns a User entity (OpenID or Google) or None.""" user = users.get_current_user() if user: return models.User(google_user=user) session_id = request.cookies.get('session', '') if not session_id: return None login = consumer.Login.get_by_key_name(session_id) if not login: return None return models.User(openid_user=login.claimed_id) class IndexHandler(webapp.RequestHandler): def get(self): user = GetCurrentUser(self.request) template_values = { "user": user, } self.response.out.write(template.render("index.html", template_values)) class SiteHandler(webapp.RequestHandler): def get(self): self.response.out.write("I'm a site page.") class LoginHandler(webapp.RequestHandler): def get(self): next_url = self.request.get("next") if not re.match(r'^/[\w/]*$', next_url): next_url = '/' user = GetCurrentUser(self.request) google_login_url = users.create_login_url('/s/notelogin?next=' + next_url) template_values = { "user": user, "google_login_url": google_login_url, } self.response.out.write(template.render("login.html", template_values)) class NoteLoginHandler(webapp.RequestHandler): """Update a just-logged-in user's last_login property and send them along.""" def get(self): next_url = self.request.get("next") if not re.match(r'^/[\w/]*$', next_url): next_url = '/' user = GetCurrentUser(self.request) if user: user = user.GetOrCreateFromDatastore() user.put() # updates time self.redirect(next_url) class LogoutHandler(webapp.RequestHandler): def get(self): next_url = self.request.get("next") if not re.match(r'^/[\w/]*$', next_url): next_url = '/' user = GetCurrentUser(self.request) if user: user.LogOut(self, next_url) else: self.redirect(next_url) class UserHandler(webapp.RequestHandler): def get(self, user_key): user = GetCurrentUser(self.request) profile_user = models.User.get_by_key_name(user_key) if not profile_user: self.response.set_status(404) return can_edit = user and user.sha1_key == profile_user.sha1_key edit_mode = can_edit and (self.request.get('mode') == "edit") # get all the projects that this user maintains metadata for pquery = db.Query(models.Project, keys_only=True) pquery.filter('owner =', profile_user) projects = [key.name() for key in pquery.fetch(500)] url = "" if profile_user.openid_user: url = profile_user.openid_user elif profile_user.url: url = profile_user.url template_values = { "user": user, # logged-in user, or None "edit_mode": edit_mode, "can_edit": can_edit, "profile_user": profile_user, "user_key": user_key, # the sha1-ish thing "projects": projects, # list(str), of project keys "url": url, } self.response.out.write(template.render("user.html", template_values)) class CreateHandler(webapp.RequestHandler): def get(self): user = GetCurrentUser(self.request) if not user: self.redirect('/s/login?next=/s/create') return template_values = { "user": user, } self.response.out.write(template.render("create.html", template_values)) def post(self): user = GetCurrentUser(self.request) if not user: self.redirect('/s/login?next=/s/create') return def error(msg): self.response.out.write("Error creating project:<ul><li>%s</li></ul>." % msg) return project_key = self.request.get('project') if not project_key: return error("No project specified.") if not re.match(r'^[a-z][a-z0-9\.\-]*[a-z0-9]$', project_key): return error("Project name must match regular expression " + "<tt>/^[a-z][a-z0-9\.\-]*[a-z0-9]$/</tt>.") project = models.Project.get_by_key_name(project_key) if project: return error("Project already exists: <a href='/%s'>%s</a>" % (project_key, project_key)) user = user.GetOrCreateFromDatastore() project = models.Project(key_name=project_key, owner=user) project.put() self.redirect("/%s" % project_key) class ProjectHandler(webapp.RequestHandler): def get(self, project_key): user = GetCurrentUser(self.request) project = models.Project.get_by_key_name(project_key) if not project: self.response.set_status(404) can_edit = user and project and user.sha1_key == project.owner.sha1_key edit_mode = can_edit and (self.request.get('mode') == "edit") template_values = { "user": user, "project": project, "edit_mode": edit_mode, "can_edit": can_edit, "project_key": project_key, } self.response.out.write(template.render("project.html", template_values)) class ProjectEditHandler(webapp.RequestHandler): """Handles POSTs to edit a project.""" def post(self): user = GetCurrentUser(self.request) project_key = self.request.get('project') logging.info("project key: %s", project_key) project = models.Project.get_by_key_name(project_key) logging.info("project: %s", project) if not project: self.response.set_status(404) return can_edit = user and user.sha1_key == project.owner.sha1_key if not can_edit: self.response.set_status(403) return project.how_to = self.request.get("how_to") project.code_repo = self.request.get("code_repo") project.home_page = self.request.get("home_page") project.bug_tracker = self.request.get("bug_tracker") project.put() self.redirect('/' + project_key) class BrowseHandler(webapp.RequestHandler): def get(self): user = GetCurrentUser(self.request) projects = models.Project.all().order('__key__') if self.request.get("start"): projects = projects.filter('__key__ >=', db.Key.from_path(models.Project.kind(), self.request.get("start"))) PAGE_SIZE = 25 projects = projects.fetch(PAGE_SIZE + 1) next_page_project = None if len(projects) > PAGE_SIZE: next_page_project = projects[-1] projects = projects[0:PAGE_SIZE] template_values = { "user": user, "projects": projects, "next_page_project": next_page_project, } self.response.out.write(template.render("browse.html", template_values)) def main(): application = webapp.WSGIApplication([ ('/', IndexHandler), ('/s/create', CreateHandler), ('/s/login', LoginHandler), ('/s/logout', LogoutHandler), ('/s/editproject', ProjectEditHandler), ('/s/notelogin', NoteLoginHandler), ('/s/browse/?', BrowseHandler), ('/s/.*', SiteHandler), (r'/u/([a-f0-9]{6,})', UserHandler), (r'/([a-z][a-z0-9\.\-]*[a-z0-9])/?', ProjectHandler), ], debug=True) util.run_wsgi_app(application) if __name__ == '__main__': main() ########NEW FILE######## __FILENAME__ = models #!/usr/bin/env python # # Copyright 2010 Brad Fitzpatrick # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from google.appengine.api import users from google.appengine.ext import db import logging import sha SALT = 'Contributing!' class User(db.Model): """A user's global state, not specific to a project.""" # One of these will be set: google_user = db.UserProperty(indexed=True, required=False) openid_user = db.StringProperty(indexed=True, required=False) url = db.StringProperty(indexed=False) last_login = db.DateTimeProperty(auto_now=True) @property def last_login_short(self): return str(self.last_login)[0:10] @property def display_name(self): if self.google_user: return self.google_user.email if self.openid_user: return self.openid_user return "Unknown user type" @property def public_name(self): if self.google_user: email = self.google_user.email() return email[0:email.find('@')+1] + "..." if self.openid_user: return self.openid_user return "Unknown user type" @property def profile_page_url(self): return "/u/" + self.sha1_key @property def sha1_key(self): if self.google_user: return sha.sha(self.google_user.email() + SALT).hexdigest()[0:8] if self.openid_user: return sha.sha(self.openid_user + SALT).hexdigest()[0:8] return Exception("unknown user type") def LogOut(self, handler, next_url): if self.google_user: handler.redirect(users.create_logout_url(next_url)) return handler.response.headers.add_header( 'Set-Cookie', 'session=; path=/') handler.redirect(next_url) def GetOrCreateFromDatastore(self): return User.get_or_insert(self.sha1_key, google_user=self.google_user, openid_user=self.openid_user) class Project(db.Model): """A project which can be contributed to, with its metadata.""" pretty_name = db.StringProperty(required=False) owner = db.ReferenceProperty(User, required=True) last_edit = db.DateTimeProperty(auto_now=True) how_to = db.TextProperty(default="") code_repo = db.StringProperty(indexed=False, default="") home_page = db.StringProperty(indexed=False, default="") bug_tracker = db.StringProperty(indexed=False, default="") @property def name(self): return self.key().name() @property def display_name(self): if self.pretty_name: return self.pretty_name return self.name @property def last_edit_short(self): return str(self.last_edit)[0:10] class Contributor(db.Model): """A user-project tuple.""" user = db.ReferenceProperty(User, required=True) project = db.ReferenceProperty(Project, required=True) is_active = db.BooleanProperty() role = db.StringProperty() # e.g. "Founder" freeform. ########NEW FILE######## __FILENAME__ = association # -*- test-case-name: openid.test.test_association -*- """ This module contains code for dealing with associations between consumers and servers. Associations contain a shared secret that is used to sign C{openid.mode=id_res} messages. Users of the library should not usually need to interact directly with associations. The L{store<openid.store>}, L{server<openid.server.server>} and L{consumer<openid.consumer.consumer>} objects will create and manage the associations. The consumer and server code will make use of a C{L{SessionNegotiator}} when managing associations, which enables users to express a preference for what kind of associations should be allowed, and what kind of exchange should be done to establish the association. @var default_negotiator: A C{L{SessionNegotiator}} that allows all association types that are specified by the OpenID specification. It prefers to use HMAC-SHA1/DH-SHA1, if it's available. If HMAC-SHA256 is not supported by your Python runtime, HMAC-SHA256 and DH-SHA256 will not be available. @var encrypted_negotiator: A C{L{SessionNegotiator}} that does not support C{'no-encryption'} associations. It prefers HMAC-SHA1/DH-SHA1 association types if available. """ __all__ = [ 'default_negotiator', 'encrypted_negotiator', 'SessionNegotiator', 'Association', ] import time from openid import cryptutil from openid import kvform from openid import oidutil from openid.message import OPENID_NS all_association_types = [ 'HMAC-SHA1', 'HMAC-SHA256', ] if hasattr(cryptutil, 'hmacSha256'): supported_association_types = list(all_association_types) default_association_order = [ ('HMAC-SHA1', 'DH-SHA1'), ('HMAC-SHA1', 'no-encryption'), ('HMAC-SHA256', 'DH-SHA256'), ('HMAC-SHA256', 'no-encryption'), ] only_encrypted_association_order = [ ('HMAC-SHA1', 'DH-SHA1'), ('HMAC-SHA256', 'DH-SHA256'), ] else: supported_association_types = ['HMAC-SHA1'] default_association_order = [ ('HMAC-SHA1', 'DH-SHA1'), ('HMAC-SHA1', 'no-encryption'), ] only_encrypted_association_order = [ ('HMAC-SHA1', 'DH-SHA1'), ] def getSessionTypes(assoc_type): """Return the allowed session types for a given association type""" assoc_to_session = { 'HMAC-SHA1': ['DH-SHA1', 'no-encryption'], 'HMAC-SHA256': ['DH-SHA256', 'no-encryption'], } return assoc_to_session.get(assoc_type, []) def checkSessionType(assoc_type, session_type): """Check to make sure that this pair of assoc type and session type are allowed""" if session_type not in getSessionTypes(assoc_type): raise ValueError( 'Session type %r not valid for assocation type %r' % (session_type, assoc_type)) class SessionNegotiator(object): """A session negotiator controls the allowed and preferred association types and association session types. Both the C{L{Consumer<openid.consumer.consumer.Consumer>}} and C{L{Server<openid.server.server.Server>}} use negotiators when creating associations. You can create and use negotiators if you: - Do not want to do Diffie-Hellman key exchange because you use transport-layer encryption (e.g. SSL) - Want to use only SHA-256 associations - Do not want to support plain-text associations over a non-secure channel It is up to you to set a policy for what kinds of associations to accept. By default, the library will make any kind of association that is allowed in the OpenID 2.0 specification. Use of negotiators in the library ================================= When a consumer makes an association request, it calls C{L{getAllowedType}} to get the preferred association type and association session type. The server gets a request for a particular association/session type and calls C{L{isAllowed}} to determine if it should create an association. If it is supported, negotiation is complete. If it is not, the server calls C{L{getAllowedType}} to get an allowed association type to return to the consumer. If the consumer gets an error response indicating that the requested association/session type is not supported by the server that contains an assocation/session type to try, it calls C{L{isAllowed}} to determine if it should try again with the given combination of association/session type. @ivar allowed_types: A list of association/session types that are allowed by the server. The order of the pairs in this list determines preference. If an association/session type comes earlier in the list, the library is more likely to use that type. @type allowed_types: [(str, str)] """ def __init__(self, allowed_types): self.setAllowedTypes(allowed_types) def copy(self): return self.__class__(list(self.allowed_types)) def setAllowedTypes(self, allowed_types): """Set the allowed association types, checking to make sure each combination is valid.""" for (assoc_type, session_type) in allowed_types: checkSessionType(assoc_type, session_type) self.allowed_types = allowed_types def addAllowedType(self, assoc_type, session_type=None): """Add an association type and session type to the allowed types list. The assocation/session pairs are tried in the order that they are added.""" if self.allowed_types is None: self.allowed_types = [] if session_type is None: available = getSessionTypes(assoc_type) if not available: raise ValueError('No session available for association type %r' % (assoc_type,)) for session_type in getSessionTypes(assoc_type): self.addAllowedType(assoc_type, session_type) else: checkSessionType(assoc_type, session_type) self.allowed_types.append((assoc_type, session_type)) def isAllowed(self, assoc_type, session_type): """Is this combination of association type and session type allowed?""" assoc_good = (assoc_type, session_type) in self.allowed_types matches = session_type in getSessionTypes(assoc_type) return assoc_good and matches def getAllowedType(self): """Get a pair of assocation type and session type that are supported""" try: return self.allowed_types[0] except IndexError: return (None, None) default_negotiator = SessionNegotiator(default_association_order) encrypted_negotiator = SessionNegotiator(only_encrypted_association_order) def getSecretSize(assoc_type): if assoc_type == 'HMAC-SHA1': return 20 elif assoc_type == 'HMAC-SHA256': return 32 else: raise ValueError('Unsupported association type: %r' % (assoc_type,)) class Association(object): """ This class represents an association between a server and a consumer. In general, users of this library will never see instances of this object. The only exception is if you implement a custom C{L{OpenIDStore<openid.store.interface.OpenIDStore>}}. If you do implement such a store, it will need to store the values of the C{L{handle}}, C{L{secret}}, C{L{issued}}, C{L{lifetime}}, and C{L{assoc_type}} instance variables. @ivar handle: This is the handle the server gave this association. @type handle: C{str} @ivar secret: This is the shared secret the server generated for this association. @type secret: C{str} @ivar issued: This is the time this association was issued, in seconds since 00:00 GMT, January 1, 1970. (ie, a unix timestamp) @type issued: C{int} @ivar lifetime: This is the amount of time this association is good for, measured in seconds since the association was issued. @type lifetime: C{int} @ivar assoc_type: This is the type of association this instance represents. The only valid value of this field at this time is C{'HMAC-SHA1'}, but new types may be defined in the future. @type assoc_type: C{str} @sort: __init__, fromExpiresIn, getExpiresIn, __eq__, __ne__, handle, secret, issued, lifetime, assoc_type """ # The ordering and name of keys as stored by serialize assoc_keys = [ 'version', 'handle', 'secret', 'issued', 'lifetime', 'assoc_type', ] _macs = { 'HMAC-SHA1': cryptutil.hmacSha1, 'HMAC-SHA256': cryptutil.hmacSha256, } def fromExpiresIn(cls, expires_in, handle, secret, assoc_type): """ This is an alternate constructor used by the OpenID consumer library to create associations. C{L{OpenIDStore <openid.store.interface.OpenIDStore>}} implementations shouldn't use this constructor. @param expires_in: This is the amount of time this association is good for, measured in seconds since the association was issued. @type expires_in: C{int} @param handle: This is the handle the server gave this association. @type handle: C{str} @param secret: This is the shared secret the server generated for this association. @type secret: C{str} @param assoc_type: This is the type of association this instance represents. The only valid value of this field at this time is C{'HMAC-SHA1'}, but new types may be defined in the future. @type assoc_type: C{str} """ issued = int(time.time()) lifetime = expires_in return cls(handle, secret, issued, lifetime, assoc_type) fromExpiresIn = classmethod(fromExpiresIn) def __init__(self, handle, secret, issued, lifetime, assoc_type): """ This is the standard constructor for creating an association. @param handle: This is the handle the server gave this association. @type handle: C{str} @param secret: This is the shared secret the server generated for this association. @type secret: C{str} @param issued: This is the time this association was issued, in seconds since 00:00 GMT, January 1, 1970. (ie, a unix timestamp) @type issued: C{int} @param lifetime: This is the amount of time this association is good for, measured in seconds since the association was issued. @type lifetime: C{int} @param assoc_type: This is the type of association this instance represents. The only valid value of this field at this time is C{'HMAC-SHA1'}, but new types may be defined in the future. @type assoc_type: C{str} """ if assoc_type not in all_association_types: fmt = '%r is not a supported association type' raise ValueError(fmt % (assoc_type,)) # secret_size = getSecretSize(assoc_type) # if len(secret) != secret_size: # fmt = 'Wrong size secret (%s bytes) for association type %s' # raise ValueError(fmt % (len(secret), assoc_type)) self.handle = handle self.secret = secret self.issued = issued self.lifetime = lifetime self.assoc_type = assoc_type def getExpiresIn(self, now=None): """ This returns the number of seconds this association is still valid for, or C{0} if the association is no longer valid. @return: The number of seconds this association is still valid for, or C{0} if the association is no longer valid. @rtype: C{int} """ if now is None: now = int(time.time()) return max(0, self.issued + self.lifetime - now) expiresIn = property(getExpiresIn) def __eq__(self, other): """ This checks to see if two C{L{Association}} instances represent the same association. @return: C{True} if the two instances represent the same association, C{False} otherwise. @rtype: C{bool} """ return type(self) is type(other) and self.__dict__ == other.__dict__ def __ne__(self, other): """ This checks to see if two C{L{Association}} instances represent different associations. @return: C{True} if the two instances represent different associations, C{False} otherwise. @rtype: C{bool} """ return not (self == other) def serialize(self): """ Convert an association to KV form. @return: String in KV form suitable for deserialization by deserialize. @rtype: str """ data = { 'version':'2', 'handle':self.handle, 'secret':oidutil.toBase64(self.secret), 'issued':str(int(self.issued)), 'lifetime':str(int(self.lifetime)), 'assoc_type':self.assoc_type } assert len(data) == len(self.assoc_keys) pairs = [] for field_name in self.assoc_keys: pairs.append((field_name, data[field_name])) return kvform.seqToKV(pairs, strict=True) def deserialize(cls, assoc_s): """ Parse an association as stored by serialize(). inverse of serialize @param assoc_s: Association as serialized by serialize() @type assoc_s: str @return: instance of this class """ pairs = kvform.kvToSeq(assoc_s, strict=True) keys = [] values = [] for k, v in pairs: keys.append(k) values.append(v) if keys != cls.assoc_keys: raise ValueError('Unexpected key values: %r', keys) version, handle, secret, issued, lifetime, assoc_type = values if version != '2': raise ValueError('Unknown version: %r' % version) issued = int(issued) lifetime = int(lifetime) secret = oidutil.fromBase64(secret) return cls(handle, secret, issued, lifetime, assoc_type) deserialize = classmethod(deserialize) def sign(self, pairs): """ Generate a signature for a sequence of (key, value) pairs @param pairs: The pairs to sign, in order @type pairs: sequence of (str, str) @return: The binary signature of this sequence of pairs @rtype: str """ kv = kvform.seqToKV(pairs) try: mac = self._macs[self.assoc_type] except KeyError: raise ValueError( 'Unknown association type: %r' % (self.assoc_type,)) return mac(self.secret, kv) def getMessageSignature(self, message): """Return the signature of a message. If I am not a sign-all association, the message must have a signed list. @return: the signature, base64 encoded @rtype: str @raises ValueError: If there is no signed list and I am not a sign-all type of association. """ pairs = self._makePairs(message) return oidutil.toBase64(self.sign(pairs)) def signMessage(self, message): """Add a signature (and a signed list) to a message. @return: a new Message object with a signature @rtype: L{openid.message.Message} """ if (message.hasKey(OPENID_NS, 'sig') or message.hasKey(OPENID_NS, 'signed')): raise ValueError('Message already has signed list or signature') extant_handle = message.getArg(OPENID_NS, 'assoc_handle') if extant_handle and extant_handle != self.handle: raise ValueError("Message has a different association handle") signed_message = message.copy() signed_message.setArg(OPENID_NS, 'assoc_handle', self.handle) message_keys = signed_message.toPostArgs().keys() signed_list = [k[7:] for k in message_keys if k.startswith('openid.')] signed_list.append('signed') signed_list.sort() signed_message.setArg(OPENID_NS, 'signed', ','.join(signed_list)) sig = self.getMessageSignature(signed_message) signed_message.setArg(OPENID_NS, 'sig', sig) return signed_message def checkMessageSignature(self, message): """Given a message with a signature, calculate a new signature and return whether it matches the signature in the message. @raises ValueError: if the message has no signature or no signature can be calculated for it. """ message_sig = message.getArg(OPENID_NS, 'sig') if not message_sig: raise ValueError("%s has no sig." % (message,)) calculated_sig = self.getMessageSignature(message) return calculated_sig == message_sig def _makePairs(self, message): signed = message.getArg(OPENID_NS, 'signed') if not signed: raise ValueError('Message has no signed list: %s' % (message,)) signed_list = signed.split(',') pairs = [] data = message.toPostArgs() for field in signed_list: pairs.append((field, data.get('openid.' + field, ''))) return pairs def __repr__(self): return "<%s.%s %s %s>" % ( self.__class__.__module__, self.__class__.__name__, self.assoc_type, self.handle) ########NEW FILE######## __FILENAME__ = consumer # -*- test-case-name: openid.test.test_consumer -*- """OpenID support for Relying Parties (aka Consumers). This module documents the main interface with the OpenID consumer library. The only part of the library which has to be used and isn't documented in full here is the store required to create an C{L{Consumer}} instance. More on the abstract store type and concrete implementations of it that are provided in the documentation for the C{L{__init__<Consumer.__init__>}} method of the C{L{Consumer}} class. OVERVIEW ======== The OpenID identity verification process most commonly uses the following steps, as visible to the user of this library: 1. The user enters their OpenID into a field on the consumer's site, and hits a login button. 2. The consumer site discovers the user's OpenID provider using the Yadis protocol. 3. The consumer site sends the browser a redirect to the OpenID provider. This is the authentication request as described in the OpenID specification. 4. The OpenID provider's site sends the browser a redirect back to the consumer site. This redirect contains the provider's response to the authentication request. The most important part of the flow to note is the consumer's site must handle two separate HTTP requests in order to perform the full identity check. LIBRARY DESIGN ============== This consumer library is designed with that flow in mind. The goal is to make it as easy as possible to perform the above steps securely. At a high level, there are two important parts in the consumer library. The first important part is this module, which contains the interface to actually use this library. The second is the C{L{openid.store.interface}} module, which describes the interface to use if you need to create a custom method for storing the state this library needs to maintain between requests. In general, the second part is less important for users of the library to know about, as several implementations are provided which cover a wide variety of situations in which consumers may use the library. This module contains a class, C{L{Consumer}}, with methods corresponding to the actions necessary in each of steps 2, 3, and 4 described in the overview. Use of this library should be as easy as creating an C{L{Consumer}} instance and calling the methods appropriate for the action the site wants to take. SESSIONS, STORES, AND STATELESS MODE ==================================== The C{L{Consumer}} object keeps track of two types of state: 1. State of the user's current authentication attempt. Things like the identity URL, the list of endpoints discovered for that URL, and in case where some endpoints are unreachable, the list of endpoints already tried. This state needs to be held from Consumer.begin() to Consumer.complete(), but it is only applicable to a single session with a single user agent, and at the end of the authentication process (i.e. when an OP replies with either C{id_res} or C{cancel}) it may be discarded. 2. State of relationships with servers, i.e. shared secrets (associations) with servers and nonces seen on signed messages. This information should persist from one session to the next and should not be bound to a particular user-agent. These two types of storage are reflected in the first two arguments of Consumer's constructor, C{session} and C{store}. C{session} is a dict-like object and we hope your web framework provides you with one of these bound to the user agent. C{store} is an instance of L{openid.store.interface.OpenIDStore}. Since the store does hold secrets shared between your application and the OpenID provider, you should be careful about how you use it in a shared hosting environment. If the filesystem or database permissions of your web host allow strangers to read from them, do not store your data there! If you have no safe place to store your data, construct your consumer with C{None} for the store, and it will operate only in stateless mode. Stateless mode may be slower, put more load on the OpenID provider, and trusts the provider to keep you safe from replay attacks. Several store implementation are provided, and the interface is fully documented so that custom stores can be used as well. See the documentation for the C{L{Consumer}} class for more information on the interface for stores. The implementations that are provided allow the consumer site to store the necessary data in several different ways, including several SQL databases and normal files on disk. IMMEDIATE MODE ============== In the flow described above, the user may need to confirm to the OpenID provider that it's ok to disclose his or her identity. The provider may draw pages asking for information from the user before it redirects the browser back to the consumer's site. This is generally transparent to the consumer site, so it is typically ignored as an implementation detail. There can be times, however, where the consumer site wants to get a response immediately. When this is the case, the consumer can put the library in immediate mode. In immediate mode, there is an extra response possible from the server, which is essentially the server reporting that it doesn't have enough information to answer the question yet. USING THIS LIBRARY ================== Integrating this library into an application is usually a relatively straightforward process. The process should basically follow this plan: Add an OpenID login field somewhere on your site. When an OpenID is entered in that field and the form is submitted, it should make a request to the your site which includes that OpenID URL. First, the application should L{instantiate a Consumer<Consumer.__init__>} with a session for per-user state and store for shared state. using the store of choice. Next, the application should call the 'C{L{begin<Consumer.begin>}}' method on the C{L{Consumer}} instance. This method takes the OpenID URL. The C{L{begin<Consumer.begin>}} method returns an C{L{AuthRequest}} object. Next, the application should call the C{L{redirectURL<AuthRequest.redirectURL>}} method on the C{L{AuthRequest}} object. The parameter C{return_to} is the URL that the OpenID server will send the user back to after attempting to verify his or her identity. The C{realm} parameter is the URL (or URL pattern) that identifies your web site to the user when he or she is authorizing it. Send a redirect to the resulting URL to the user's browser. That's the first half of the authentication process. The second half of the process is done after the user's OpenID Provider sends the user's browser a redirect back to your site to complete their login. When that happens, the user will contact your site at the URL given as the C{return_to} URL to the C{L{redirectURL<AuthRequest.redirectURL>}} call made above. The request will have several query parameters added to the URL by the OpenID provider as the information necessary to finish the request. Get an C{L{Consumer}} instance with the same session and store as before and call its C{L{complete<Consumer.complete>}} method, passing in all the received query arguments. There are multiple possible return types possible from that method. These indicate the whether or not the login was successful, and include any additional information appropriate for their type. @var SUCCESS: constant used as the status for L{SuccessResponse<openid.consumer.consumer.SuccessResponse>} objects. @var FAILURE: constant used as the status for L{FailureResponse<openid.consumer.consumer.FailureResponse>} objects. @var CANCEL: constant used as the status for L{CancelResponse<openid.consumer.consumer.CancelResponse>} objects. @var SETUP_NEEDED: constant used as the status for L{SetupNeededResponse<openid.consumer.consumer.SetupNeededResponse>} objects. """ import cgi import copy import logging from urlparse import urlparse, urldefrag from openid import fetchers from openid import oidutil from openid.consumer.discover import discover, OpenIDServiceEndpoint, \ DiscoveryFailure, OPENID_1_0_TYPE, OPENID_1_1_TYPE, OPENID_2_0_TYPE from openid.message import Message, OPENID_NS, OPENID2_NS, OPENID1_NS, \ IDENTIFIER_SELECT, no_default, BARE_NS from openid import cryptutil from openid import oidutil from openid.association import Association, default_negotiator, \ SessionNegotiator from openid.dh import DiffieHellman from openid.store.nonce import mkNonce, split as splitNonce from openid.yadis.manager import Discovery __all__ = ['AuthRequest', 'Consumer', 'SuccessResponse', 'SetupNeededResponse', 'CancelResponse', 'FailureResponse', 'SUCCESS', 'FAILURE', 'CANCEL', 'SETUP_NEEDED', ] def appEngineLoggingFunction(message, level=0): # Level is unused. logging.info(message) oidutil.log = appEngineLoggingFunction def makeKVPost(request_message, server_url): """Make a Direct Request to an OpenID Provider and return the result as a Message object. @raises openid.fetchers.HTTPFetchingError: if an error is encountered in making the HTTP post. @rtype: L{openid.message.Message} """ # XXX: TESTME resp = fetchers.fetch(server_url, body=request_message.toURLEncoded()) # Process response in separate function that can be shared by async code. return _httpResponseToMessage(resp, server_url) def _httpResponseToMessage(response, server_url): """Adapt a POST response to a Message. @type response: L{openid.fetchers.HTTPResponse} @param response: Result of a POST to an OpenID endpoint. @rtype: L{openid.message.Message} @raises openid.fetchers.HTTPFetchingError: if the server returned a status of other than 200 or 400. @raises ServerError: if the server returned an OpenID error. """ # Should this function be named Message.fromHTTPResponse instead? response_message = Message.fromKVForm(response.body) if response.status == 400: raise ServerError.fromMessage(response_message) elif response.status != 200: fmt = 'bad status code from server %s: %s' error_message = fmt % (server_url, response.status) raise fetchers.HTTPFetchingError(error_message) return response_message class Consumer(object): """An OpenID consumer implementation that performs discovery and does session management. @ivar consumer: an instance of an object implementing the OpenID protocol, but doing no discovery or session management. @type consumer: GenericConsumer @ivar session: A dictionary-like object representing the user's session data. This is used for keeping state of the OpenID transaction when the user is redirected to the server. @cvar session_key_prefix: A string that is prepended to session keys to ensure that they are unique. This variable may be changed to suit your application. """ session_key_prefix = "_openid_consumer_" _token = 'last_token' _discover = staticmethod(discover) def __init__(self, session, store, consumer_class=None): """Initialize a Consumer instance. You should create a new instance of the Consumer object with every HTTP request that handles OpenID transactions. @param session: See L{the session instance variable<openid.consumer.consumer.Consumer.session>} @param store: an object that implements the interface in C{L{openid.store.interface.OpenIDStore}}. Several implementations are provided, to cover common database environments. @type store: C{L{openid.store.interface.OpenIDStore}} @see: L{openid.store.interface} @see: L{openid.store} """ self.session = session if consumer_class is None: consumer_class = GenericConsumer self.consumer = consumer_class(store) self._token_key = self.session_key_prefix + self._token def begin(self, user_url, anonymous=False): """Start the OpenID authentication process. See steps 1-2 in the overview at the top of this file. @param user_url: Identity URL given by the user. This method performs a textual transformation of the URL to try and make sure it is normalized. For example, a user_url of example.com will be normalized to http://example.com/ normalizing and resolving any redirects the server might issue. @type user_url: unicode @param anonymous: Whether to make an anonymous request of the OpenID provider. Such a request does not ask for an authorization assertion for an OpenID identifier, but may be used with extensions to pass other data. e.g. "I don't care who you are, but I'd like to know your time zone." @type anonymous: bool @returns: An object containing the discovered information will be returned, with a method for building a redirect URL to the server, as described in step 3 of the overview. This object may also be used to add extension arguments to the request, using its L{addExtensionArg<openid.consumer.consumer.AuthRequest.addExtensionArg>} method. @returntype: L{AuthRequest<openid.consumer.consumer.AuthRequest>} @raises openid.consumer.discover.DiscoveryFailure: when I fail to find an OpenID server for this URL. If the C{yadis} package is available, L{openid.consumer.discover.DiscoveryFailure} is an alias for C{yadis.discover.DiscoveryFailure}. """ disco = Discovery(self.session, user_url, self.session_key_prefix) try: service = disco.getNextService(self._discover) except fetchers.HTTPFetchingError, why: raise DiscoveryFailure( 'Error fetching XRDS document: %s' % (why[0],), None) if service is None: raise DiscoveryFailure( 'No usable OpenID services found for %s' % (user_url,), None) else: return self.beginWithoutDiscovery(service, anonymous) def beginWithoutDiscovery(self, service, anonymous=False): """Start OpenID verification without doing OpenID server discovery. This method is used internally by Consumer.begin after discovery is performed, and exists to provide an interface for library users needing to perform their own discovery. @param service: an OpenID service endpoint descriptor. This object and factories for it are found in the L{openid.consumer.discover} module. @type service: L{OpenIDServiceEndpoint<openid.consumer.discover.OpenIDServiceEndpoint>} @returns: an OpenID authentication request object. @rtype: L{AuthRequest<openid.consumer.consumer.AuthRequest>} @See: Openid.consumer.consumer.Consumer.begin @see: openid.consumer.discover """ auth_req = self.consumer.begin(service) self.session[self._token_key] = auth_req.endpoint try: auth_req.setAnonymous(anonymous) except ValueError, why: raise ProtocolError(str(why)) return auth_req def complete(self, query, return_to): """Called to interpret the server's response to an OpenID request. It is called in step 4 of the flow described in the consumer overview. @param query: A dictionary of the query parameters for this HTTP request. @param return_to: The return URL used to invoke the application. Extract the URL from your application's web request framework and specify it here to have it checked against the openid.return_to value in the response. If the return_to URL check fails, the status of the completion will be FAILURE. @returns: a subclass of Response. The type of response is indicated by the status attribute, which will be one of SUCCESS, CANCEL, FAILURE, or SETUP_NEEDED. @see: L{SuccessResponse<openid.consumer.consumer.SuccessResponse>} @see: L{CancelResponse<openid.consumer.consumer.CancelResponse>} @see: L{SetupNeededResponse<openid.consumer.consumer.SetupNeededResponse>} @see: L{FailureResponse<openid.consumer.consumer.FailureResponse>} """ endpoint = self.session.get(self._token_key) message = Message.fromPostArgs(query) response = self.consumer.complete(message, endpoint, return_to) try: del self.session[self._token_key] except KeyError: pass if (response.status in ['success', 'cancel'] and response.identity_url is not None): disco = Discovery(self.session, response.identity_url, self.session_key_prefix) # This is OK to do even if we did not do discovery in # the first place. disco.cleanup(force=True) return response def setAssociationPreference(self, association_preferences): """Set the order in which association types/sessions should be attempted. For instance, to only allow HMAC-SHA256 associations created with a DH-SHA256 association session: >>> consumer.setAssociationPreference([('HMAC-SHA256', 'DH-SHA256')]) Any association type/association type pair that is not in this list will not be attempted at all. @param association_preferences: The list of allowed (association type, association session type) pairs that should be allowed for this consumer to use, in order from most preferred to least preferred. @type association_preferences: [(str, str)] @returns: None @see: C{L{openid.association.SessionNegotiator}} """ self.consumer.negotiator = SessionNegotiator(association_preferences) class DiffieHellmanSHA1ConsumerSession(object): session_type = 'DH-SHA1' hash_func = staticmethod(cryptutil.sha1) secret_size = 20 allowed_assoc_types = ['HMAC-SHA1'] def __init__(self, dh=None): if dh is None: dh = DiffieHellman.fromDefaults() self.dh = dh def getRequest(self): cpub = cryptutil.longToBase64(self.dh.public) args = {'dh_consumer_public': cpub} if not self.dh.usingDefaultValues(): args.update({ 'dh_modulus': cryptutil.longToBase64(self.dh.modulus), 'dh_gen': cryptutil.longToBase64(self.dh.generator), }) return args def extractSecret(self, response): dh_server_public64 = response.getArg( OPENID_NS, 'dh_server_public', no_default) enc_mac_key64 = response.getArg(OPENID_NS, 'enc_mac_key', no_default) dh_server_public = cryptutil.base64ToLong(dh_server_public64) enc_mac_key = oidutil.fromBase64(enc_mac_key64) return self.dh.xorSecret(dh_server_public, enc_mac_key, self.hash_func) class DiffieHellmanSHA256ConsumerSession(DiffieHellmanSHA1ConsumerSession): session_type = 'DH-SHA256' hash_func = staticmethod(cryptutil.sha256) secret_size = 32 allowed_assoc_types = ['HMAC-SHA256'] class PlainTextConsumerSession(object): session_type = 'no-encryption' allowed_assoc_types = ['HMAC-SHA1', 'HMAC-SHA256'] def getRequest(self): return {} def extractSecret(self, response): mac_key64 = response.getArg(OPENID_NS, 'mac_key', no_default) return oidutil.fromBase64(mac_key64) class SetupNeededError(Exception): """Internally-used exception that indicates that an immediate-mode request cancelled.""" def __init__(self, user_setup_url=None): Exception.__init__(self, user_setup_url) self.user_setup_url = user_setup_url class ProtocolError(ValueError): """Exception that indicates that a message violated the protocol. It is raised and caught internally to this file.""" class TypeURIMismatch(ProtocolError): """A protocol error arising from type URIs mismatching """ def __init__(self, expected, endpoint): ProtocolError.__init__(self, expected, endpoint) self.expected = expected self.endpoint = endpoint def __str__(self): s = '<%s.%s: Required type %s not found in %s for endpoint %s>' % ( self.__class__.__module__, self.__class__.__name__, self.expected, self.endpoint.type_uris, self.endpoint) return s class ServerError(Exception): """Exception that is raised when the server returns a 400 response code to a direct request.""" def __init__(self, error_text, error_code, message): Exception.__init__(self, error_text) self.error_text = error_text self.error_code = error_code self.message = message def fromMessage(cls, message): """Generate a ServerError instance, extracting the error text and the error code from the message.""" error_text = message.getArg( OPENID_NS, 'error', '<no error message supplied>') error_code = message.getArg(OPENID_NS, 'error_code') return cls(error_text, error_code, message) fromMessage = classmethod(fromMessage) class GenericConsumer(object): """This is the implementation of the common logic for OpenID consumers. It is unaware of the application in which it is running. @ivar negotiator: An object that controls the kind of associations that the consumer makes. It defaults to C{L{openid.association.default_negotiator}}. Assign a different negotiator to it if you have specific requirements for how associations are made. @type negotiator: C{L{openid.association.SessionNegotiator}} """ # The name of the query parameter that gets added to the return_to # URL when using OpenID1. You can change this value if you want or # need a different name, but don't make it start with openid, # because it's not a standard protocol thing for OpenID1. For # OpenID2, the library will take care of the nonce using standard # OpenID query parameter names. openid1_nonce_query_arg_name = 'janrain_nonce' # Another query parameter that gets added to the return_to for # OpenID 1; if the user's session state is lost, use this claimed # identifier to do discovery when verifying the response. openid1_return_to_identifier_name = 'openid1_claimed_id' session_types = { 'DH-SHA1':DiffieHellmanSHA1ConsumerSession, 'DH-SHA256':DiffieHellmanSHA256ConsumerSession, 'no-encryption':PlainTextConsumerSession, } _discover = staticmethod(discover) def __init__(self, store): self.store = store self.negotiator = default_negotiator.copy() def begin(self, service_endpoint): """Create an AuthRequest object for the specified service_endpoint. This method will create an association if necessary.""" if self.store is None: assoc = None else: assoc = self._getAssociation(service_endpoint) request = AuthRequest(service_endpoint, assoc) request.return_to_args[self.openid1_nonce_query_arg_name] = mkNonce() if request.message.isOpenID1(): request.return_to_args[self.openid1_return_to_identifier_name] = \ request.endpoint.claimed_id return request def complete(self, message, endpoint, return_to): """Process the OpenID message, using the specified endpoint and return_to URL as context. This method will handle any OpenID message that is sent to the return_to URL. """ mode = message.getArg(OPENID_NS, 'mode', '<No mode set>') modeMethod = getattr(self, '_complete_' + mode, self._completeInvalid) return modeMethod(message, endpoint, return_to) def _complete_cancel(self, message, endpoint, _): return CancelResponse(endpoint) def _complete_error(self, message, endpoint, _): error = message.getArg(OPENID_NS, 'error') contact = message.getArg(OPENID_NS, 'contact') reference = message.getArg(OPENID_NS, 'reference') return FailureResponse(endpoint, error, contact=contact, reference=reference) def _complete_setup_needed(self, message, endpoint, _): if not message.isOpenID2(): return self._completeInvalid(message, endpoint, _) return SetupNeededResponse(endpoint) def _complete_id_res(self, message, endpoint, return_to): try: self._checkSetupNeeded(message) except SetupNeededError, why: return SetupNeededResponse(endpoint, why.user_setup_url) else: try: return self._doIdRes(message, endpoint, return_to) except (ProtocolError, DiscoveryFailure), why: return FailureResponse(endpoint, why[0]) def _completeInvalid(self, message, endpoint, _): mode = message.getArg(OPENID_NS, 'mode', '<No mode set>') return FailureResponse(endpoint, 'Invalid openid.mode: %r' % (mode,)) def _checkReturnTo(self, message, return_to): """Check an OpenID message and its openid.return_to value against a return_to URL from an application. Return True on success, False on failure. """ # Check the openid.return_to args against args in the original # message. try: self._verifyReturnToArgs(message.toPostArgs()) except ProtocolError, why: oidutil.log("Verifying return_to arguments: %s" % (why[0],)) return False # Check the return_to base URL against the one in the message. msg_return_to = message.getArg(OPENID_NS, 'return_to') # The URL scheme, authority, and path MUST be the same between # the two URLs. app_parts = urlparse(return_to) msg_parts = urlparse(msg_return_to) # (addressing scheme, network location, path) must be equal in # both URLs. for part in range(0, 3): if app_parts[part] != msg_parts[part]: return False return True _makeKVPost = staticmethod(makeKVPost) def _checkSetupNeeded(self, message): """Check an id_res message to see if it is a checkid_immediate cancel response. @raises SetupNeededError: if it is a checkid_immediate cancellation """ # In OpenID 1, we check to see if this is a cancel from # immediate mode by the presence of the user_setup_url # parameter. if message.isOpenID1(): user_setup_url = message.getArg(OPENID1_NS, 'user_setup_url') if user_setup_url is not None: raise SetupNeededError(user_setup_url) def _doIdRes(self, message, endpoint, return_to): """Handle id_res responses that are not cancellations of immediate mode requests. @param message: the response paramaters. @param endpoint: the discovered endpoint object. May be None. @raises ProtocolError: If the message contents are not well-formed according to the OpenID specification. This includes missing fields or not signing fields that should be signed. @raises DiscoveryFailure: If the subject of the id_res message does not match the supplied endpoint, and discovery on the identifier in the message fails (this should only happen when using OpenID 2) @returntype: L{Response} """ # Checks for presence of appropriate fields (and checks # signed list fields) self._idResCheckForFields(message) if not self._checkReturnTo(message, return_to): raise ProtocolError( "return_to does not match return URL. Expected %r, got %r" % (return_to, message.getArg(OPENID_NS, 'return_to'))) # Verify discovery information: endpoint = self._verifyDiscoveryResults(message, endpoint) oidutil.log("Received id_res response from %s using association %s" % (endpoint.server_url, message.getArg(OPENID_NS, 'assoc_handle'))) self._idResCheckSignature(message, endpoint.server_url) # Will raise a ProtocolError if the nonce is bad self._idResCheckNonce(message, endpoint) signed_list_str = message.getArg(OPENID_NS, 'signed', no_default) signed_list = signed_list_str.split(',') signed_fields = ["openid." + s for s in signed_list] return SuccessResponse(endpoint, message, signed_fields) def _idResGetNonceOpenID1(self, message, endpoint): """Extract the nonce from an OpenID 1 response. Return the nonce from the BARE_NS since we independently check the return_to arguments are the same as those in the response message. See the openid1_nonce_query_arg_name class variable @returns: The nonce as a string or None """ return message.getArg(BARE_NS, self.openid1_nonce_query_arg_name) def _idResCheckNonce(self, message, endpoint): if message.isOpenID1(): # This indicates that the nonce was generated by the consumer nonce = self._idResGetNonceOpenID1(message, endpoint) server_url = '' else: nonce = message.getArg(OPENID2_NS, 'response_nonce') server_url = endpoint.server_url if nonce is None: raise ProtocolError('Nonce missing from response') try: timestamp, salt = splitNonce(nonce) except ValueError, why: raise ProtocolError('Malformed nonce: %s' % (why[0],)) if (self.store is not None and not self.store.useNonce(server_url, timestamp, salt)): raise ProtocolError('Nonce already used or out of range') def _idResCheckSignature(self, message, server_url): assoc_handle = message.getArg(OPENID_NS, 'assoc_handle') if self.store is None: assoc = None else: assoc = self.store.getAssociation(server_url, assoc_handle) if assoc: if assoc.getExpiresIn() <= 0: # XXX: It might be a good idea sometimes to re-start the # authentication with a new association. Doing it # automatically opens the possibility for # denial-of-service by a server that just returns expired # associations (or really short-lived associations) raise ProtocolError( 'Association with %s expired' % (server_url,)) if not assoc.checkMessageSignature(message): raise ProtocolError('Bad signature') else: # It's not an association we know about. Stateless mode is our # only possible path for recovery. # XXX - async framework will not want to block on this call to # _checkAuth. if not self._checkAuth(message, server_url): raise ProtocolError('Server denied check_authentication') def _idResCheckForFields(self, message): # XXX: this should be handled by the code that processes the # response (that is, if a field is missing, we should not have # to explicitly check that it's present, just make sure that # the fields are actually being used by the rest of the code # in tests). Although, which fields are signed does need to be # checked somewhere. basic_fields = ['return_to', 'assoc_handle', 'sig', 'signed'] basic_sig_fields = ['return_to', 'identity'] require_fields = { OPENID2_NS: basic_fields + ['op_endpoint'], OPENID1_NS: basic_fields + ['identity'], } require_sigs = { OPENID2_NS: basic_sig_fields + ['response_nonce', 'claimed_id', 'assoc_handle',], OPENID1_NS: basic_sig_fields, } for field in require_fields[message.getOpenIDNamespace()]: if not message.hasKey(OPENID_NS, field): raise ProtocolError('Missing required field %r' % (field,)) signed_list_str = message.getArg(OPENID_NS, 'signed', no_default) signed_list = signed_list_str.split(',') for field in require_sigs[message.getOpenIDNamespace()]: # Field is present and not in signed list if message.hasKey(OPENID_NS, field) and field not in signed_list: raise ProtocolError('"%s" not signed' % (field,)) def _verifyReturnToArgs(query): """Verify that the arguments in the return_to URL are present in this response. """ message = Message.fromPostArgs(query) return_to = message.getArg(OPENID_NS, 'return_to') if return_to is None: raise ProtocolError('Response has no return_to') parsed_url = urlparse(return_to) rt_query = parsed_url[4] parsed_args = cgi.parse_qsl(rt_query) for rt_key, rt_value in parsed_args: try: value = query[rt_key] if rt_value != value: format = ("parameter %s value %r does not match " "return_to's value %r") raise ProtocolError(format % (rt_key, value, rt_value)) except KeyError: format = "return_to parameter %s absent from query %r" raise ProtocolError(format % (rt_key, query)) # Make sure all non-OpenID arguments in the response are also # in the signed return_to. bare_args = message.getArgs(BARE_NS) for pair in bare_args.iteritems(): if pair not in parsed_args: raise ProtocolError("Parameter %s not in return_to URL" % (pair[0],)) _verifyReturnToArgs = staticmethod(_verifyReturnToArgs) def _verifyDiscoveryResults(self, resp_msg, endpoint=None): """ Extract the information from an OpenID assertion message and verify it against the original @param endpoint: The endpoint that resulted from doing discovery @param resp_msg: The id_res message object @returns: the verified endpoint """ if resp_msg.getOpenIDNamespace() == OPENID2_NS: return self._verifyDiscoveryResultsOpenID2(resp_msg, endpoint) else: return self._verifyDiscoveryResultsOpenID1(resp_msg, endpoint) def _verifyDiscoveryResultsOpenID2(self, resp_msg, endpoint): to_match = OpenIDServiceEndpoint() to_match.type_uris = [OPENID_2_0_TYPE] to_match.claimed_id = resp_msg.getArg(OPENID2_NS, 'claimed_id') to_match.local_id = resp_msg.getArg(OPENID2_NS, 'identity') # Raises a KeyError when the op_endpoint is not present to_match.server_url = resp_msg.getArg( OPENID2_NS, 'op_endpoint', no_default) # claimed_id and identifier must both be present or both # be absent if (to_match.claimed_id is None and to_match.local_id is not None): raise ProtocolError( 'openid.identity is present without openid.claimed_id') elif (to_match.claimed_id is not None and to_match.local_id is None): raise ProtocolError( 'openid.claimed_id is present without openid.identity') # This is a response without identifiers, so there's really no # checking that we can do, so return an endpoint that's for # the specified `openid.op_endpoint' elif to_match.claimed_id is None: return OpenIDServiceEndpoint.fromOPEndpointURL(to_match.server_url) # The claimed ID doesn't match, so we have to do discovery # again. This covers not using sessions, OP identifier # endpoints and responses that didn't match the original # request. if not endpoint: oidutil.log('No pre-discovered information supplied.') endpoint = self._discoverAndVerify(to_match) else: # The claimed ID matches, so we use the endpoint that we # discovered in initiation. This should be the most common # case. try: self._verifyDiscoverySingle(endpoint, to_match) except ProtocolError, e: oidutil.log("Error attempting to use stored discovery information: " + str(e)) oidutil.log("Attempting discovery to verify endpoint") endpoint = self._discoverAndVerify(to_match) # The endpoint we return should have the claimed ID from the # message we just verified, fragment and all. if endpoint.claimed_id != to_match.claimed_id: endpoint = copy.copy(endpoint) endpoint.claimed_id = to_match.claimed_id return endpoint def _verifyDiscoveryResultsOpenID1(self, resp_msg, endpoint): claimed_id = resp_msg.getArg(BARE_NS, self.openid1_return_to_identifier_name) if endpoint is None and claimed_id is None: raise RuntimeError( 'When using OpenID 1, the claimed ID must be supplied, ' 'either by passing it through as a return_to parameter ' 'or by using a session, and supplied to the GenericConsumer ' 'as the argument to complete()') elif endpoint is not None and claimed_id is None: claimed_id = endpoint.claimed_id to_match = OpenIDServiceEndpoint() to_match.type_uris = [OPENID_1_1_TYPE] to_match.local_id = resp_msg.getArg(OPENID1_NS, 'identity') # Restore delegate information from the initiation phase to_match.claimed_id = claimed_id if to_match.local_id is None: raise ProtocolError('Missing required field openid.identity') to_match_1_0 = copy.copy(to_match) to_match_1_0.type_uris = [OPENID_1_0_TYPE] if endpoint is not None: try: try: self._verifyDiscoverySingle(endpoint, to_match) except TypeURIMismatch: self._verifyDiscoverySingle(endpoint, to_match_1_0) except ProtocolError, e: oidutil.log("Error attempting to use stored discovery information: " + str(e)) oidutil.log("Attempting discovery to verify endpoint") else: return endpoint # Endpoint is either bad (failed verification) or None try: return self._discoverAndVerify(to_match) except TypeURIMismatch: return self._discoverAndVerify(to_match_1_0) def _verifyDiscoverySingle(self, endpoint, to_match): """Verify that the given endpoint matches the information extracted from the OpenID assertion, and raise an exception if there is a mismatch. @type endpoint: openid.consumer.discover.OpenIDServiceEndpoint @type to_match: openid.consumer.discover.OpenIDServiceEndpoint @rtype: NoneType @raises ProtocolError: when the endpoint does not match the discovered information. """ # Every type URI that's in the to_match endpoint has to be # present in the discovered endpoint. for type_uri in to_match.type_uris: if not endpoint.usesExtension(type_uri): raise TypeURIMismatch(type_uri, endpoint) # Fragments do not influence discovery, so we can't compare a # claimed identifier with a fragment to discovered information. defragged_claimed_id, _ = urldefrag(to_match.claimed_id) if defragged_claimed_id != endpoint.claimed_id: raise ProtocolError( 'Claimed ID does not match (different subjects!), ' 'Expected %s, got %s' % (defragged_claimed_id, endpoint.claimed_id)) if to_match.getLocalID() != endpoint.getLocalID(): raise ProtocolError('local_id mismatch. Expected %s, got %s' % (to_match.getLocalID(), endpoint.getLocalID())) # If the server URL is None, this must be an OpenID 1 # response, because op_endpoint is a required parameter in # OpenID 2. In that case, we don't actually care what the # discovered server_url is, because signature checking or # check_auth should take care of that check for us. if to_match.server_url is None: assert to_match.preferredNamespace() == OPENID1_NS, ( """The code calling this must ensure that OpenID 2 responses have a non-none `openid.op_endpoint' and that it is set as the `server_url' attribute of the `to_match' endpoint.""") elif to_match.server_url != endpoint.server_url: raise ProtocolError('OP Endpoint mismatch. Expected %s, got %s' % (to_match.server_url, endpoint.server_url)) def _discoverAndVerify(self, to_match): """Given an endpoint object created from the information in an OpenID response, perform discovery and verify the discovery results, returning the matching endpoint that is the result of doing that discovery. @type to_match: openid.consumer.discover.OpenIDServiceEndpoint @param to_match: The endpoint whose information we're confirming @rtype: openid.consumer.discover.OpenIDServiceEndpoint @returns: The result of performing discovery on the claimed identifier in `to_match' @raises DiscoveryFailure: when discovery fails. """ oidutil.log('Performing discovery on %s' % (to_match.claimed_id,)) _, services = self._discover(to_match.claimed_id) if not services: raise DiscoveryFailure('No OpenID information found at %s' % (to_match.claimed_id,), None) return self._verifyDiscoveredServices(services, to_match) def _verifyDiscoveredServices(self, services, to_match): """See @L{_discoverAndVerify}""" # Search the services resulting from discovery to find one # that matches the information from the assertion failure_messages = [] for endpoint in services: try: self._verifyDiscoverySingle(endpoint, to_match) except ProtocolError, why: failure_messages.append(str(why)) else: # It matches, so discover verification has # succeeded. Return this endpoint. return endpoint else: oidutil.log('Discovery verification failure for %s' % (to_match.claimed_id,)) for failure_message in failure_messages: oidutil.log(' * Endpoint mismatch: ' + failure_message) raise DiscoveryFailure( 'No matching endpoint found after discovering %s' % (to_match.claimed_id,), None) def _checkAuth(self, message, server_url): """Make a check_authentication request to verify this message. @returns: True if the request is valid. @rtype: bool """ oidutil.log('Using OpenID check_authentication') request = self._createCheckAuthRequest(message) if request is None: return False try: response = self._makeKVPost(request, server_url) except (fetchers.HTTPFetchingError, ServerError), e: oidutil.log('check_authentication failed: %s' % (e[0],)) return False else: return self._processCheckAuthResponse(response, server_url) def _createCheckAuthRequest(self, message): """Generate a check_authentication request message given an id_res message. """ # Arguments that are always passed to the server and not # included in the signature. whitelist = ['assoc_handle', 'sig', 'signed', 'invalidate_handle'] check_args = {} for k in whitelist: val = message.getArg(OPENID_NS, k) if val is not None: check_args[k] = val signed = message.getArg(OPENID_NS, 'signed') if signed: for k in signed.split(','): val = message.getAliasedArg(k) # Signed value is missing if val is None: oidutil.log('Missing signed field %r' % (k,)) return None check_args[k] = val check_args['mode'] = 'check_authentication' return Message.fromOpenIDArgs(check_args) def _processCheckAuthResponse(self, response, server_url): """Process the response message from a check_authentication request, invalidating associations if requested. """ is_valid = response.getArg(OPENID_NS, 'is_valid', 'false') invalidate_handle = response.getArg(OPENID_NS, 'invalidate_handle') if invalidate_handle is not None: oidutil.log( 'Received "invalidate_handle" from server %s' % (server_url,)) if self.store is None: oidutil.log('Unexpectedly got invalidate_handle without ' 'a store!') else: self.store.removeAssociation(server_url, invalidate_handle) if is_valid == 'true': return True else: oidutil.log('Server responds that checkAuth call is not valid') return False def _getAssociation(self, endpoint): """Get an association for the endpoint's server_url. First try seeing if we have a good association in the store. If we do not, then attempt to negotiate an association with the server. If we negotiate a good association, it will get stored. @returns: A valid association for the endpoint's server_url or None @rtype: openid.association.Association or NoneType """ assoc = self.store.getAssociation(endpoint.server_url) if assoc is None or assoc.expiresIn <= 0: assoc = self._negotiateAssociation(endpoint) if assoc is not None: self.store.storeAssociation(endpoint.server_url, assoc) return assoc def _negotiateAssociation(self, endpoint): """Make association requests to the server, attempting to create a new association. @returns: a new association object @rtype: L{openid.association.Association} """ # Get our preferred session/association type from the negotiatior. assoc_type, session_type = self.negotiator.getAllowedType() try: assoc = self._requestAssociation( endpoint, assoc_type, session_type) except ServerError, why: supportedTypes = self._extractSupportedAssociationType(why, endpoint, assoc_type) if supportedTypes is not None: assoc_type, session_type = supportedTypes # Attempt to create an association from the assoc_type # and session_type that the server told us it # supported. try: assoc = self._requestAssociation( endpoint, assoc_type, session_type) except ServerError, why: # Do not keep trying, since it rejected the # association type that it told us to use. oidutil.log('Server %s refused its suggested association ' 'type: session_type=%s, assoc_type=%s' % (endpoint.server_url, session_type, assoc_type)) return None else: return assoc else: return assoc def _extractSupportedAssociationType(self, server_error, endpoint, assoc_type): """Handle ServerErrors resulting from association requests. @returns: If server replied with an C{unsupported-type} error, return a tuple of supported C{association_type}, C{session_type}. Otherwise logs the error and returns None. @rtype: tuple or None """ # Any error message whose code is not 'unsupported-type' # should be considered a total failure. if server_error.error_code != 'unsupported-type' or \ server_error.message.isOpenID1(): oidutil.log( 'Server error when requesting an association from %r: %s' % (endpoint.server_url, server_error.error_text)) return None # The server didn't like the association/session type # that we sent, and it sent us back a message that # might tell us how to handle it. oidutil.log( 'Unsupported association type %s: %s' % (assoc_type, server_error.error_text,)) # Extract the session_type and assoc_type from the # error message assoc_type = server_error.message.getArg(OPENID_NS, 'assoc_type') session_type = server_error.message.getArg(OPENID_NS, 'session_type') if assoc_type is None or session_type is None: oidutil.log('Server responded with unsupported association ' 'session but did not supply a fallback.') return None elif not self.negotiator.isAllowed(assoc_type, session_type): fmt = ('Server sent unsupported session/association type: ' 'session_type=%s, assoc_type=%s') oidutil.log(fmt % (session_type, assoc_type)) return None else: return assoc_type, session_type def _requestAssociation(self, endpoint, assoc_type, session_type): """Make and process one association request to this endpoint's OP endpoint URL. @returns: An association object or None if the association processing failed. @raises ServerError: when the remote OpenID server returns an error. """ assoc_session, args = self._createAssociateRequest( endpoint, assoc_type, session_type) try: response = self._makeKVPost(args, endpoint.server_url) except fetchers.HTTPFetchingError, why: oidutil.log('openid.associate request failed: %s' % (why[0],)) return None try: assoc = self._extractAssociation(response, assoc_session) except KeyError, why: oidutil.log('Missing required parameter in response from %s: %s' % (endpoint.server_url, why[0])) return None except ProtocolError, why: oidutil.log('Protocol error parsing response from %s: %s' % ( endpoint.server_url, why[0])) return None else: return assoc def _createAssociateRequest(self, endpoint, assoc_type, session_type): """Create an association request for the given assoc_type and session_type. @param endpoint: The endpoint whose server_url will be queried. The important bit about the endpoint is whether it's in compatiblity mode (OpenID 1.1) @param assoc_type: The association type that the request should ask for. @type assoc_type: str @param session_type: The session type that should be used in the association request. The session_type is used to create an association session object, and that session object is asked for any additional fields that it needs to add to the request. @type session_type: str @returns: a pair of the association session object and the request message that will be sent to the server. @rtype: (association session type (depends on session_type), openid.message.Message) """ session_type_class = self.session_types[session_type] assoc_session = session_type_class() args = { 'mode': 'associate', 'assoc_type': assoc_type, } if not endpoint.compatibilityMode(): args['ns'] = OPENID2_NS # Leave out the session type if we're in compatibility mode # *and* it's no-encryption. if (not endpoint.compatibilityMode() or assoc_session.session_type != 'no-encryption'): args['session_type'] = assoc_session.session_type args.update(assoc_session.getRequest()) message = Message.fromOpenIDArgs(args) return assoc_session, message def _getOpenID1SessionType(self, assoc_response): """Given an association response message, extract the OpenID 1.X session type. This function mostly takes care of the 'no-encryption' default behavior in OpenID 1. If the association type is plain-text, this function will return 'no-encryption' @returns: The association type for this message @rtype: str @raises KeyError: when the session_type field is absent. """ # If it's an OpenID 1 message, allow session_type to default # to None (which signifies "no-encryption") session_type = assoc_response.getArg(OPENID1_NS, 'session_type') # Handle the differences between no-encryption association # respones in OpenID 1 and 2: # no-encryption is not really a valid session type for # OpenID 1, but we'll accept it anyway, while issuing a # warning. if session_type == 'no-encryption': oidutil.log('WARNING: OpenID server sent "no-encryption"' 'for OpenID 1.X') # Missing or empty session type is the way to flag a # 'no-encryption' response. Change the session type to # 'no-encryption' so that it can be handled in the same # way as OpenID 2 'no-encryption' respones. elif session_type == '' or session_type is None: session_type = 'no-encryption' return session_type def _extractAssociation(self, assoc_response, assoc_session): """Attempt to extract an association from the response, given the association response message and the established association session. @param assoc_response: The association response message from the server @type assoc_response: openid.message.Message @param assoc_session: The association session object that was used when making the request @type assoc_session: depends on the session type of the request @raises ProtocolError: when data is malformed @raises KeyError: when a field is missing @rtype: openid.association.Association """ # Extract the common fields from the response, raising an # exception if they are not found assoc_type = assoc_response.getArg( OPENID_NS, 'assoc_type', no_default) assoc_handle = assoc_response.getArg( OPENID_NS, 'assoc_handle', no_default) # expires_in is a base-10 string. The Python parsing will # accept literals that have whitespace around them and will # accept negative values. Neither of these are really in-spec, # but we think it's OK to accept them. expires_in_str = assoc_response.getArg( OPENID_NS, 'expires_in', no_default) try: expires_in = int(expires_in_str) except ValueError, why: raise ProtocolError('Invalid expires_in field: %s' % (why[0],)) # OpenID 1 has funny association session behaviour. if assoc_response.isOpenID1(): session_type = self._getOpenID1SessionType(assoc_response) else: session_type = assoc_response.getArg( OPENID2_NS, 'session_type', no_default) # Session type mismatch if assoc_session.session_type != session_type: if (assoc_response.isOpenID1() and session_type == 'no-encryption'): # In OpenID 1, any association request can result in a # 'no-encryption' association response. Setting # assoc_session to a new no-encryption session should # make the rest of this function work properly for # that case. assoc_session = PlainTextConsumerSession() else: # Any other mismatch, regardless of protocol version # results in the failure of the association session # altogether. fmt = 'Session type mismatch. Expected %r, got %r' message = fmt % (assoc_session.session_type, session_type) raise ProtocolError(message) # Make sure assoc_type is valid for session_type if assoc_type not in assoc_session.allowed_assoc_types: fmt = 'Unsupported assoc_type for session %s returned: %s' raise ProtocolError(fmt % (assoc_session.session_type, assoc_type)) # Delegate to the association session to extract the secret # from the response, however is appropriate for that session # type. try: secret = assoc_session.extractSecret(assoc_response) except ValueError, why: fmt = 'Malformed response for %s session: %s' raise ProtocolError(fmt % (assoc_session.session_type, why[0])) return Association.fromExpiresIn( expires_in, assoc_handle, secret, assoc_type) class AuthRequest(object): """An object that holds the state necessary for generating an OpenID authentication request. This object holds the association with the server and the discovered information with which the request will be made. It is separate from the consumer because you may wish to add things to the request before sending it on its way to the server. It also has serialization options that let you encode the authentication request as a URL or as a form POST. """ def __init__(self, endpoint, assoc): """ Creates a new AuthRequest object. This just stores each argument in an appropriately named field. Users of this library should not create instances of this class. Instances of this class are created by the library when needed. """ self.assoc = assoc self.endpoint = endpoint self.return_to_args = {} self.message = Message() self.message.setOpenIDNamespace(endpoint.preferredNamespace()) self._anonymous = False def setAnonymous(self, is_anonymous): """Set whether this request should be made anonymously. If a request is anonymous, the identifier will not be sent in the request. This is only useful if you are making another kind of request with an extension in this request. Anonymous requests are not allowed when the request is made with OpenID 1. @raises ValueError: when attempting to set an OpenID1 request as anonymous """ if is_anonymous and self.message.isOpenID1(): raise ValueError('OpenID 1 requests MUST include the ' 'identifier in the request') else: self._anonymous = is_anonymous def addExtension(self, extension_request): """Add an extension to this checkid request. @param extension_request: An object that implements the extension interface for adding arguments to an OpenID message. """ extension_request.toMessage(self.message) def addExtensionArg(self, namespace, key, value): """Add an extension argument to this OpenID authentication request. Use caution when adding arguments, because they will be URL-escaped and appended to the redirect URL, which can easily get quite long. @param namespace: The namespace for the extension. For example, the simple registration extension uses the namespace C{sreg}. @type namespace: str @param key: The key within the extension namespace. For example, the nickname field in the simple registration extension's key is C{nickname}. @type key: str @param value: The value to provide to the server for this argument. @type value: str """ self.message.setArg(namespace, key, value) def getMessage(self, realm, return_to=None, immediate=False): """Produce a L{openid.message.Message} representing this request. @param realm: The URL (or URL pattern) that identifies your web site to the user when she is authorizing it. @type realm: str @param return_to: The URL that the OpenID provider will send the user back to after attempting to verify her identity. Not specifying a return_to URL means that the user will not be returned to the site issuing the request upon its completion. @type return_to: str @param immediate: If True, the OpenID provider is to send back a response immediately, useful for behind-the-scenes authentication attempts. Otherwise the OpenID provider may engage the user before providing a response. This is the default case, as the user may need to provide credentials or approve the request before a positive response can be sent. @type immediate: bool @returntype: L{openid.message.Message} """ if return_to: return_to = oidutil.appendArgs(return_to, self.return_to_args) elif immediate: raise ValueError( '"return_to" is mandatory when using "checkid_immediate"') elif self.message.isOpenID1(): raise ValueError('"return_to" is mandatory for OpenID 1 requests') elif self.return_to_args: raise ValueError('extra "return_to" arguments were specified, ' 'but no return_to was specified') if immediate: mode = 'checkid_immediate' else: mode = 'checkid_setup' message = self.message.copy() if message.isOpenID1(): realm_key = 'trust_root' else: realm_key = 'realm' message.updateArgs(OPENID_NS, { realm_key:realm, 'mode':mode, 'return_to':return_to, }) if not self._anonymous: if self.endpoint.isOPIdentifier(): # This will never happen when we're in compatibility # mode, as long as isOPIdentifier() returns False # whenever preferredNamespace() returns OPENID1_NS. claimed_id = request_identity = IDENTIFIER_SELECT else: request_identity = self.endpoint.getLocalID() claimed_id = self.endpoint.claimed_id # This is true for both OpenID 1 and 2 message.setArg(OPENID_NS, 'identity', request_identity) if message.isOpenID2(): message.setArg(OPENID2_NS, 'claimed_id', claimed_id) if self.assoc: message.setArg(OPENID_NS, 'assoc_handle', self.assoc.handle) assoc_log_msg = 'with assocication %s' % (self.assoc.handle,) else: assoc_log_msg = 'using stateless mode.' oidutil.log("Generated %s request to %s %s" % (mode, self.endpoint.server_url, assoc_log_msg)) return message def redirectURL(self, realm, return_to=None, immediate=False): """Returns a URL with an encoded OpenID request. The resulting URL is the OpenID provider's endpoint URL with parameters appended as query arguments. You should redirect the user agent to this URL. OpenID 2.0 endpoints also accept POST requests, see C{L{shouldSendRedirect}} and C{L{formMarkup}}. @param realm: The URL (or URL pattern) that identifies your web site to the user when she is authorizing it. @type realm: str @param return_to: The URL that the OpenID provider will send the user back to after attempting to verify her identity. Not specifying a return_to URL means that the user will not be returned to the site issuing the request upon its completion. @type return_to: str @param immediate: If True, the OpenID provider is to send back a response immediately, useful for behind-the-scenes authentication attempts. Otherwise the OpenID provider may engage the user before providing a response. This is the default case, as the user may need to provide credentials or approve the request before a positive response can be sent. @type immediate: bool @returns: The URL to redirect the user agent to. @returntype: str """ message = self.getMessage(realm, return_to, immediate) return message.toURL(self.endpoint.server_url) def formMarkup(self, realm, return_to=None, immediate=False, form_tag_attrs=None): """Get html for a form to submit this request to the IDP. @param form_tag_attrs: Dictionary of attributes to be added to the form tag. 'accept-charset' and 'enctype' have defaults that can be overridden. If a value is supplied for 'action' or 'method', it will be replaced. @type form_tag_attrs: {unicode: unicode} """ message = self.getMessage(realm, return_to, immediate) return message.toFormMarkup(self.endpoint.server_url, form_tag_attrs) def shouldSendRedirect(self): """Should this OpenID authentication request be sent as a HTTP redirect or as a POST (form submission)? @rtype: bool """ return self.endpoint.compatibilityMode() FAILURE = 'failure' SUCCESS = 'success' CANCEL = 'cancel' SETUP_NEEDED = 'setup_needed' class Response(object): status = None def setEndpoint(self, endpoint): self.endpoint = endpoint if endpoint is None: self.identity_url = None else: self.identity_url = endpoint.claimed_id def getDisplayIdentifier(self): """Return the display identifier for this response. """ if self.endpoint is not None: return self.endpoint.getDisplayIdentifier() return None class SuccessResponse(Response): """A response with a status of SUCCESS. Indicates that this request is a successful acknowledgement from the OpenID server that the supplied URL is, indeed controlled by the requesting agent. @ivar identity_url: The identity URL that has been authenticated @ivar endpoint: The endpoint that authenticated the identifier. You may access other discovered information related to this endpoint, such as the CanonicalID of an XRI, through this object. @type endpoint: L{OpenIDServiceEndpoint<openid.consumer.discover.OpenIDServiceEndpoint>} @ivar signed_fields: The arguments in the server's response that were signed and verified. @cvar status: SUCCESS """ status = SUCCESS def __init__(self, endpoint, message, signed_fields=None): # Don't use setEndpoint, because endpoint should never be None # for a successfull transaction. self.endpoint = endpoint self.identity_url = endpoint.claimed_id self.message = message if signed_fields is None: signed_fields = [] self.signed_fields = signed_fields def isOpenID1(self): """Was this authentication response an OpenID 1 authentication response? """ return self.message.isOpenID1() def isSigned(self, ns_uri, ns_key): """Return whether a particular key is signed, regardless of its namespace alias """ return self.message.getKey(ns_uri, ns_key) in self.signed_fields def getSigned(self, ns_uri, ns_key, default=None): """Return the specified signed field if available, otherwise return default """ if self.isSigned(ns_uri, ns_key): return self.message.getArg(ns_uri, ns_key, default) else: return default def getSignedNS(self, ns_uri): """Get signed arguments from the response message. Return a dict of all arguments in the specified namespace. If any of the arguments are not signed, return None. """ msg_args = self.message.getArgs(ns_uri) for key in msg_args.iterkeys(): if not self.isSigned(ns_uri, key): oidutil.log("SuccessResponse.getSignedNS: (%s, %s) not signed." % (ns_uri, key)) return None return msg_args def extensionResponse(self, namespace_uri, require_signed): """Return response arguments in the specified namespace. @param namespace_uri: The namespace URI of the arguments to be returned. @param require_signed: True if the arguments should be among those signed in the response, False if you don't care. If require_signed is True and the arguments are not signed, return None. """ if require_signed: return self.getSignedNS(namespace_uri) else: return self.message.getArgs(namespace_uri) def getReturnTo(self): """Get the openid.return_to argument from this response. This is useful for verifying that this request was initiated by this consumer. @returns: The return_to URL supplied to the server on the initial request, or C{None} if the response did not contain an C{openid.return_to} argument. @returntype: str """ return self.getSigned(OPENID_NS, 'return_to') def __eq__(self, other): return ( (self.endpoint == other.endpoint) and (self.identity_url == other.identity_url) and (self.message == other.message) and (self.signed_fields == other.signed_fields) and (self.status == other.status)) def __ne__(self, other): return not (self == other) def __repr__(self): return '<%s.%s id=%r signed=%r>' % ( self.__class__.__module__, self.__class__.__name__, self.identity_url, self.signed_fields) class FailureResponse(Response): """A response with a status of FAILURE. Indicates that the OpenID protocol has failed. This could be locally or remotely triggered. @ivar identity_url: The identity URL for which authenitcation was attempted, if it can be determined. Otherwise, None. @ivar message: A message indicating why the request failed, if one is supplied. otherwise, None. @cvar status: FAILURE """ status = FAILURE def __init__(self, endpoint, message=None, contact=None, reference=None): self.setEndpoint(endpoint) self.message = message self.contact = contact self.reference = reference def __repr__(self): return "<%s.%s id=%r message=%r>" % ( self.__class__.__module__, self.__class__.__name__, self.identity_url, self.message) class CancelResponse(Response): """A response with a status of CANCEL. Indicates that the user cancelled the OpenID authentication request. @ivar identity_url: The identity URL for which authenitcation was attempted, if it can be determined. Otherwise, None. @cvar status: CANCEL """ status = CANCEL def __init__(self, endpoint): self.setEndpoint(endpoint) class SetupNeededResponse(Response): """A response with a status of SETUP_NEEDED. Indicates that the request was in immediate mode, and the server is unable to authenticate the user without further interaction. @ivar identity_url: The identity URL for which authenitcation was attempted. @ivar setup_url: A URL that can be used to send the user to the server to set up for authentication. The user should be redirected in to the setup_url, either in the current window or in a new browser window. C{None} in OpenID 2.0. @cvar status: SETUP_NEEDED """ status = SETUP_NEEDED def __init__(self, endpoint, setup_url=None): self.setEndpoint(endpoint) self.setup_url = setup_url ########NEW FILE######## __FILENAME__ = discover # -*- test-case-name: openid.test.test_discover -*- """Functions to discover OpenID endpoints from identifiers. """ __all__ = [ 'DiscoveryFailure', 'OPENID_1_0_NS', 'OPENID_1_0_TYPE', 'OPENID_1_1_TYPE', 'OPENID_2_0_TYPE', 'OPENID_IDP_2_0_TYPE', 'OpenIDServiceEndpoint', 'discover', ] import urlparse from openid import oidutil, fetchers, urinorm from openid import yadis from openid.yadis.etxrd import nsTag, XRDSError, XRD_NS_2_0 from openid.yadis.services import applyFilter as extractServices from openid.yadis.discover import discover as yadisDiscover from openid.yadis.discover import DiscoveryFailure from openid.yadis import xrires, filters from openid.yadis import xri from openid.consumer import html_parse OPENID_1_0_NS = 'http://openid.net/xmlns/1.0' OPENID_IDP_2_0_TYPE = 'http://specs.openid.net/auth/2.0/server' OPENID_2_0_TYPE = 'http://specs.openid.net/auth/2.0/signon' OPENID_1_1_TYPE = 'http://openid.net/signon/1.1' OPENID_1_0_TYPE = 'http://openid.net/signon/1.0' from openid.message import OPENID1_NS as OPENID_1_0_MESSAGE_NS from openid.message import OPENID2_NS as OPENID_2_0_MESSAGE_NS class OpenIDServiceEndpoint(object): """Object representing an OpenID service endpoint. @ivar identity_url: the verified identifier. @ivar canonicalID: For XRI, the persistent identifier. """ # OpenID service type URIs, listed in order of preference. The # ordering of this list affects yadis and XRI service discovery. openid_type_uris = [ OPENID_IDP_2_0_TYPE, OPENID_2_0_TYPE, OPENID_1_1_TYPE, OPENID_1_0_TYPE, ] def __init__(self): self.claimed_id = None self.server_url = None self.type_uris = [] self.local_id = None self.canonicalID = None self.used_yadis = False # whether this came from an XRDS self.display_identifier = None def usesExtension(self, extension_uri): return extension_uri in self.type_uris def preferredNamespace(self): if (OPENID_IDP_2_0_TYPE in self.type_uris or OPENID_2_0_TYPE in self.type_uris): return OPENID_2_0_MESSAGE_NS else: return OPENID_1_0_MESSAGE_NS def supportsType(self, type_uri): """Does this endpoint support this type? I consider C{/server} endpoints to implicitly support C{/signon}. """ return ( (type_uri in self.type_uris) or (type_uri == OPENID_2_0_TYPE and self.isOPIdentifier()) ) def getDisplayIdentifier(self): """Return the display_identifier if set, else return the claimed_id. """ if self.display_identifier is None: return self.claimed_id return self.display_identifier def compatibilityMode(self): return self.preferredNamespace() != OPENID_2_0_MESSAGE_NS def isOPIdentifier(self): return OPENID_IDP_2_0_TYPE in self.type_uris def parseService(self, yadis_url, uri, type_uris, service_element): """Set the state of this object based on the contents of the service element.""" self.type_uris = type_uris self.server_url = uri self.used_yadis = True if not self.isOPIdentifier(): # XXX: This has crappy implications for Service elements # that contain both 'server' and 'signon' Types. But # that's a pathological configuration anyway, so I don't # think I care. self.local_id = findOPLocalIdentifier(service_element, self.type_uris) self.claimed_id = yadis_url def getLocalID(self): """Return the identifier that should be sent as the openid.identity parameter to the server.""" # I looked at this conditional and thought "ah-hah! there's the bug!" # but Python actually makes that one big expression somehow, i.e. # "x is x is x" is not the same thing as "(x is x) is x". # That's pretty weird, dude. -- kmt, 1/07 if (self.local_id is self.canonicalID is None): return self.claimed_id else: return self.local_id or self.canonicalID def fromBasicServiceEndpoint(cls, endpoint): """Create a new instance of this class from the endpoint object passed in. @return: None or OpenIDServiceEndpoint for this endpoint object""" type_uris = endpoint.matchTypes(cls.openid_type_uris) # If any Type URIs match and there is an endpoint URI # specified, then this is an OpenID endpoint if type_uris and endpoint.uri is not None: openid_endpoint = cls() openid_endpoint.parseService( endpoint.yadis_url, endpoint.uri, endpoint.type_uris, endpoint.service_element) else: openid_endpoint = None return openid_endpoint fromBasicServiceEndpoint = classmethod(fromBasicServiceEndpoint) def fromHTML(cls, uri, html): """Parse the given document as HTML looking for an OpenID <link rel=...> @rtype: [OpenIDServiceEndpoint] """ discovery_types = [ (OPENID_2_0_TYPE, 'openid2.provider', 'openid2.local_id'), (OPENID_1_1_TYPE, 'openid.server', 'openid.delegate'), ] link_attrs = html_parse.parseLinkAttrs(html) services = [] for type_uri, op_endpoint_rel, local_id_rel in discovery_types: op_endpoint_url = html_parse.findFirstHref( link_attrs, op_endpoint_rel) if op_endpoint_url is None: continue service = cls() service.claimed_id = uri service.local_id = html_parse.findFirstHref( link_attrs, local_id_rel) service.server_url = op_endpoint_url service.type_uris = [type_uri] services.append(service) return services fromHTML = classmethod(fromHTML) def fromXRDS(cls, uri, xrds): """Parse the given document as XRDS looking for OpenID services. @rtype: [OpenIDServiceEndpoint] @raises XRDSError: When the XRDS does not parse. @since: 2.1.0 """ return extractServices(uri, xrds, cls) fromXRDS = classmethod(fromXRDS) def fromDiscoveryResult(cls, discoveryResult): """Create endpoints from a DiscoveryResult. @type discoveryResult: L{DiscoveryResult} @rtype: list of L{OpenIDServiceEndpoint} @raises XRDSError: When the XRDS does not parse. @since: 2.1.0 """ if discoveryResult.isXRDS(): method = cls.fromXRDS else: method = cls.fromHTML return method(discoveryResult.normalized_uri, discoveryResult.response_text) fromDiscoveryResult = classmethod(fromDiscoveryResult) def fromOPEndpointURL(cls, op_endpoint_url): """Construct an OP-Identifier OpenIDServiceEndpoint object for a given OP Endpoint URL @param op_endpoint_url: The URL of the endpoint @rtype: OpenIDServiceEndpoint """ service = cls() service.server_url = op_endpoint_url service.type_uris = [OPENID_IDP_2_0_TYPE] return service fromOPEndpointURL = classmethod(fromOPEndpointURL) def __str__(self): return ("<%s.%s " "server_url=%r " "claimed_id=%r " "local_id=%r " "canonicalID=%r " "used_yadis=%s " ">" % (self.__class__.__module__, self.__class__.__name__, self.server_url, self.claimed_id, self.local_id, self.canonicalID, self.used_yadis)) def findOPLocalIdentifier(service_element, type_uris): """Find the OP-Local Identifier for this xrd:Service element. This considers openid:Delegate to be a synonym for xrd:LocalID if both OpenID 1.X and OpenID 2.0 types are present. If only OpenID 1.X is present, it returns the value of openid:Delegate. If only OpenID 2.0 is present, it returns the value of xrd:LocalID. If there is more than one LocalID tag and the values are different, it raises a DiscoveryFailure. This is also triggered when the xrd:LocalID and openid:Delegate tags are different. @param service_element: The xrd:Service element @type service_element: ElementTree.Node @param type_uris: The xrd:Type values present in this service element. This function could extract them, but higher level code needs to do that anyway. @type type_uris: [str] @raises DiscoveryFailure: when discovery fails. @returns: The OP-Local Identifier for this service element, if one is present, or None otherwise. @rtype: str or unicode or NoneType """ # XXX: Test this function on its own! # Build the list of tags that could contain the OP-Local Identifier local_id_tags = [] if (OPENID_1_1_TYPE in type_uris or OPENID_1_0_TYPE in type_uris): local_id_tags.append(nsTag(OPENID_1_0_NS, 'Delegate')) if OPENID_2_0_TYPE in type_uris: local_id_tags.append(nsTag(XRD_NS_2_0, 'LocalID')) # Walk through all the matching tags and make sure that they all # have the same value local_id = None for local_id_tag in local_id_tags: for local_id_element in service_element.findall(local_id_tag): if local_id is None: local_id = local_id_element.text elif local_id != local_id_element.text: format = 'More than one %r tag found in one service element' message = format % (local_id_tag,) raise DiscoveryFailure(message, None) return local_id def normalizeURL(url): """Normalize a URL, converting normalization failures to DiscoveryFailure""" try: normalized = urinorm.urinorm(url) except ValueError, why: raise DiscoveryFailure('Normalizing identifier: %s' % (why[0],), None) else: return urlparse.urldefrag(normalized)[0] def arrangeByType(service_list, preferred_types): """Rearrange service_list in a new list so services are ordered by types listed in preferred_types. Return the new list.""" def enumerate(elts): """Return an iterable that pairs the index of an element with that element. For Python 2.2 compatibility""" return zip(range(len(elts)), elts) def bestMatchingService(service): """Return the index of the first matching type, or something higher if no type matches. This provides an ordering in which service elements that contain a type that comes earlier in the preferred types list come before service elements that come later. If a service element has more than one type, the most preferred one wins. """ for i, t in enumerate(preferred_types): if preferred_types[i] in service.type_uris: return i return len(preferred_types) # Build a list with the service elements in tuples whose # comparison will prefer the one with the best matching service prio_services = [(bestMatchingService(s), orig_index, s) for (orig_index, s) in enumerate(service_list)] prio_services.sort() # Now that the services are sorted by priority, remove the sort # keys from the list. for i in range(len(prio_services)): prio_services[i] = prio_services[i][2] return prio_services def getOPOrUserServices(openid_services): """Extract OP Identifier services. If none found, return the rest, sorted with most preferred first according to OpenIDServiceEndpoint.openid_type_uris. openid_services is a list of OpenIDServiceEndpoint objects. Returns a list of OpenIDServiceEndpoint objects.""" op_services = arrangeByType(openid_services, [OPENID_IDP_2_0_TYPE]) openid_services = arrangeByType(openid_services, OpenIDServiceEndpoint.openid_type_uris) return op_services or openid_services def discoverYadis(uri): """Discover OpenID services for a URI. Tries Yadis and falls back on old-style <link rel='...'> discovery if Yadis fails. @param uri: normalized identity URL @type uri: str @return: (claimed_id, services) @rtype: (str, list(OpenIDServiceEndpoint)) @raises DiscoveryFailure: when discovery fails. """ # Might raise a yadis.discover.DiscoveryFailure if no document # came back for that URI at all. I don't think falling back # to OpenID 1.0 discovery on the same URL will help, so don't # bother to catch it. response = yadisDiscover(uri) yadis_url = response.normalized_uri body = response.response_text try: openid_services = OpenIDServiceEndpoint.fromXRDS(yadis_url, body) except XRDSError: # Does not parse as a Yadis XRDS file openid_services = [] if not openid_services: # Either not an XRDS or there are no OpenID services. if response.isXRDS(): # if we got the Yadis content-type or followed the Yadis # header, re-fetch the document without following the Yadis # header, with no Accept header. return discoverNoYadis(uri) # Try to parse the response as HTML. # <link rel="..."> openid_services = OpenIDServiceEndpoint.fromHTML(yadis_url, body) return (yadis_url, getOPOrUserServices(openid_services)) def discoverXRI(iname): endpoints = [] try: canonicalID, services = xrires.ProxyResolver().query( iname, OpenIDServiceEndpoint.openid_type_uris) if canonicalID is None: raise XRDSError('No CanonicalID found for XRI %r' % (iname,)) flt = filters.mkFilter(OpenIDServiceEndpoint) for service_element in services: endpoints.extend(flt.getServiceEndpoints(iname, service_element)) except XRDSError: oidutil.log('xrds error on ' + iname) for endpoint in endpoints: # Is there a way to pass this through the filter to the endpoint # constructor instead of tacking it on after? endpoint.canonicalID = canonicalID endpoint.claimed_id = canonicalID endpoint.display_identifier = iname # FIXME: returned xri should probably be in some normal form return iname, getOPOrUserServices(endpoints) def discoverNoYadis(uri): http_resp = fetchers.fetch(uri) if http_resp.status != 200: raise DiscoveryFailure( 'HTTP Response status from identity URL host is not 200. ' 'Got status %r' % (http_resp.status,), http_resp) claimed_id = http_resp.final_url openid_services = OpenIDServiceEndpoint.fromHTML( claimed_id, http_resp.body) return claimed_id, openid_services def discoverURI(uri): parsed = urlparse.urlparse(uri) if parsed[0] and parsed[1]: if parsed[0] not in ['http', 'https']: raise DiscoveryFailure('URI scheme is not HTTP or HTTPS', None) else: uri = 'http://' + uri uri = normalizeURL(uri) claimed_id, openid_services = discoverYadis(uri) claimed_id = normalizeURL(claimed_id) return claimed_id, openid_services def discover(identifier): if xri.identifierScheme(identifier) == "XRI": return discoverXRI(identifier) else: return discoverURI(identifier) ########NEW FILE######## __FILENAME__ = html_parse """ This module implements a VERY limited parser that finds <link> tags in the head of HTML or XHTML documents and parses out their attributes according to the OpenID spec. It is a liberal parser, but it requires these things from the data in order to work: - There must be an open <html> tag - There must be an open <head> tag inside of the <html> tag - Only <link>s that are found inside of the <head> tag are parsed (this is by design) - The parser follows the OpenID specification in resolving the attributes of the link tags. This means that the attributes DO NOT get resolved as they would by an XML or HTML parser. In particular, only certain entities get replaced, and href attributes do not get resolved relative to a base URL. From http://openid.net/specs.bml#linkrel: - The openid.server URL MUST be an absolute URL. OpenID consumers MUST NOT attempt to resolve relative URLs. - The openid.server URL MUST NOT include entities other than &amp;, &lt;, &gt;, and &quot;. The parser ignores SGML comments and <![CDATA[blocks]]>. Both kinds of quoting are allowed for attributes. The parser deals with invalid markup in these ways: - Tag names are not case-sensitive - The <html> tag is accepted even when it is not at the top level - The <head> tag is accepted even when it is not a direct child of the <html> tag, but a <html> tag must be an ancestor of the <head> tag - <link> tags are accepted even when they are not direct children of the <head> tag, but a <head> tag must be an ancestor of the <link> tag - If there is no closing tag for an open <html> or <head> tag, the remainder of the document is viewed as being inside of the tag. If there is no closing tag for a <link> tag, the link tag is treated as a short tag. Exceptions to this rule are that <html> closes <html> and <body> or <head> closes <head> - Attributes of the <link> tag are not required to be quoted. - In the case of duplicated attribute names, the attribute coming last in the tag will be the value returned. - Any text that does not parse as an attribute within a link tag will be ignored. (e.g. <link pumpkin rel='openid.server' /> will ignore pumpkin) - If there are more than one <html> or <head> tag, the parser only looks inside of the first one. - The contents of <script> tags are ignored entirely, except unclosed <script> tags. Unclosed <script> tags are ignored. - Any other invalid markup is ignored, including unclosed SGML comments and unclosed <![CDATA[blocks. """ __all__ = ['parseLinkAttrs'] import re flags = ( re.DOTALL # Match newlines with '.' | re.IGNORECASE | re.VERBOSE # Allow comments and whitespace in patterns | re.UNICODE # Make \b respect Unicode word boundaries ) # Stuff to remove before we start looking for tags removed_re = re.compile(r''' # Comments <!--.*?--> # CDATA blocks | <!\[CDATA\[.*?\]\]> # script blocks | <script\b # make sure script is not an XML namespace (?!:) [^>]*>.*?</script> ''', flags) tag_expr = r''' # Starts with the tag name at a word boundary, where the tag name is # not a namespace <%(tag_name)s\b(?!:) # All of the stuff up to a ">", hopefully attributes. (?P<attrs>[^>]*?) (?: # Match a short tag /> | # Match a full tag > (?P<contents>.*?) # Closed by (?: # One of the specified close tags </?%(closers)s\s*> # End of the string | \Z ) ) ''' def tagMatcher(tag_name, *close_tags): if close_tags: options = '|'.join((tag_name,) + close_tags) closers = '(?:%s)' % (options,) else: closers = tag_name expr = tag_expr % locals() return re.compile(expr, flags) # Must contain at least an open html and an open head tag html_find = tagMatcher('html') head_find = tagMatcher('head', 'body') link_find = re.compile(r'<link\b(?!:)', flags) attr_find = re.compile(r''' # Must start with a sequence of word-characters, followed by an equals sign (?P<attr_name>\w+)= # Then either a quoted or unquoted attribute (?: # Match everything that\'s between matching quote marks (?P<qopen>["\'])(?P<q_val>.*?)(?P=qopen) | # If the value is not quoted, match up to whitespace (?P<unq_val>(?:[^\s<>/]|/(?!>))+) ) | (?P<end_link>[<>]) ''', flags) # Entity replacement: replacements = { 'amp':'&', 'lt':'<', 'gt':'>', 'quot':'"', } ent_replace = re.compile(r'&(%s);' % '|'.join(replacements.keys())) def replaceEnt(mo): "Replace the entities that are specified by OpenID" return replacements.get(mo.group(1), mo.group()) def parseLinkAttrs(html): """Find all link tags in a string representing a HTML document and return a list of their attributes. @param html: the text to parse @type html: str or unicode @return: A list of dictionaries of attributes, one for each link tag @rtype: [[(type(html), type(html))]] """ stripped = removed_re.sub('', html) html_mo = html_find.search(stripped) if html_mo is None or html_mo.start('contents') == -1: return [] start, end = html_mo.span('contents') head_mo = head_find.search(stripped, start, end) if head_mo is None or head_mo.start('contents') == -1: return [] start, end = head_mo.span('contents') link_mos = link_find.finditer(stripped, head_mo.start(), head_mo.end()) matches = [] for link_mo in link_mos: start = link_mo.start() + 5 link_attrs = {} for attr_mo in attr_find.finditer(stripped, start): if attr_mo.lastgroup == 'end_link': break # Either q_val or unq_val must be present, but not both # unq_val is a True (non-empty) value if it is present attr_name, q_val, unq_val = attr_mo.group( 'attr_name', 'q_val', 'unq_val') attr_val = ent_replace.sub(replaceEnt, unq_val or q_val) link_attrs[attr_name] = attr_val matches.append(link_attrs) return matches def relMatches(rel_attr, target_rel): """Does this target_rel appear in the rel_str?""" # XXX: TESTME rels = rel_attr.strip().split() for rel in rels: rel = rel.lower() if rel == target_rel: return 1 return 0 def linkHasRel(link_attrs, target_rel): """Does this link have target_rel as a relationship?""" # XXX: TESTME rel_attr = link_attrs.get('rel') return rel_attr and relMatches(rel_attr, target_rel) def findLinksRel(link_attrs_list, target_rel): """Filter the list of link attributes on whether it has target_rel as a relationship.""" # XXX: TESTME matchesTarget = lambda attrs: linkHasRel(attrs, target_rel) return filter(matchesTarget, link_attrs_list) def findFirstHref(link_attrs_list, target_rel): """Return the value of the href attribute for the first link tag in the list that has target_rel as a relationship.""" # XXX: TESTME matches = findLinksRel(link_attrs_list, target_rel) if not matches: return None first = matches[0] return first.get('href') ########NEW FILE######## __FILENAME__ = cryptutil """Module containing a cryptographic-quality source of randomness and other cryptographically useful functionality Python 2.4 needs no external support for this module, nor does Python 2.3 on a system with /dev/urandom. Other configurations will need a quality source of random bytes and access to a function that will convert binary strings to long integers. This module will work with the Python Cryptography Toolkit (pycrypto) if it is present. pycrypto can be found with a search engine, but is currently found at: http://www.amk.ca/python/code/crypto """ __all__ = [ 'base64ToLong', 'binaryToLong', 'hmacSha1', 'hmacSha256', 'longToBase64', 'longToBinary', 'randomString', 'randrange', 'sha1', 'sha256', ] import hmac import os import random from openid.oidutil import toBase64, fromBase64 try: import hashlib except ImportError: import sha as sha1_module try: from Crypto.Hash import SHA256 as sha256_module except ImportError: sha256_module = None else: class HashContainer(object): def __init__(self, hash_constructor): self.new = hash_constructor sha1_module = HashContainer(hashlib.sha1) sha256_module = HashContainer(hashlib.sha256) def hmacSha1(key, text): return hmac.new(key, text, sha1_module).digest() def sha1(s): return sha1_module.new(s).digest() if sha256_module is not None: def hmacSha256(key, text): return hmac.new(key, text, sha256_module).digest() def sha256(s): return sha256_module.new(s).digest() SHA256_AVAILABLE = True else: _no_sha256 = NotImplementedError( 'Use Python 2.5, install pycrypto or install hashlib to use SHA256') def hmacSha256(unused_key, unused_text): raise _no_sha256 def sha256(s): raise _no_sha256 SHA256_AVAILABLE = False try: from Crypto.Util.number import long_to_bytes, bytes_to_long except ImportError: import pickle try: # Check Python compatiblity by raising an exception on import # if the needed functionality is not present. Present in # Python >= 2.3 pickle.encode_long pickle.decode_long except AttributeError: raise ImportError( 'No functionality for serializing long integers found') # Present in Python >= 2.4 try: reversed except NameError: def reversed(seq): return map(seq.__getitem__, xrange(len(seq) - 1, -1, -1)) def longToBinary(l): if l == 0: return '\x00' return ''.join(reversed(pickle.encode_long(l))) def binaryToLong(s): return pickle.decode_long(''.join(reversed(s))) else: # We have pycrypto def longToBinary(l): if l < 0: raise ValueError('This function only supports positive integers') bytes = long_to_bytes(l) if ord(bytes[0]) > 127: return '\x00' + bytes else: return bytes def binaryToLong(bytes): if not bytes: raise ValueError('Empty string passed to strToLong') if ord(bytes[0]) > 127: raise ValueError('This function only supports positive integers') return bytes_to_long(bytes) # A cryptographically safe source of random bytes try: getBytes = os.urandom except AttributeError: try: from Crypto.Util.randpool import RandomPool except ImportError: # Fall back on /dev/urandom, if present. It would be nice to # have Windows equivalent here, but for now, require pycrypto # on Windows. try: _urandom = file('/dev/urandom', 'rb') except IOError: raise ImportError('No adequate source of randomness found!') else: def getBytes(n): bytes = [] while n: chunk = _urandom.read(n) n -= len(chunk) bytes.append(chunk) assert n >= 0 return ''.join(bytes) else: _pool = RandomPool() def getBytes(n, pool=_pool): if pool.entropy < n: pool.randomize() return pool.get_bytes(n) # A randrange function that works for longs try: randrange = random.SystemRandom().randrange except AttributeError: # In Python 2.2's random.Random, randrange does not support # numbers larger than sys.maxint for randrange. For simplicity, # use this implementation for any Python that does not have # random.SystemRandom from math import log, ceil _duplicate_cache = {} def randrange(start, stop=None, step=1): if stop is None: stop = start start = 0 r = (stop - start) // step try: (duplicate, nbytes) = _duplicate_cache[r] except KeyError: rbytes = longToBinary(r) if rbytes[0] == '\x00': nbytes = len(rbytes) - 1 else: nbytes = len(rbytes) mxrand = (256 ** nbytes) # If we get a number less than this, then it is in the # duplicated range. duplicate = mxrand % r if len(_duplicate_cache) > 10: _duplicate_cache.clear() _duplicate_cache[r] = (duplicate, nbytes) while 1: bytes = '\x00' + getBytes(nbytes) n = binaryToLong(bytes) # Keep looping if this value is in the low duplicated range if n >= duplicate: break return start + (n % r) * step def longToBase64(l): return toBase64(longToBinary(l)) def base64ToLong(s): return binaryToLong(fromBase64(s)) def randomString(length, chrs=None): """Produce a string of length random bytes, chosen from chrs.""" if chrs is None: return getBytes(length) else: n = len(chrs) return ''.join([chrs[randrange(n)] for _ in xrange(length)]) ########NEW FILE######## __FILENAME__ = dh from openid import cryptutil from openid import oidutil def strxor(x, y): if len(x) != len(y): raise ValueError('Inputs to strxor must have the same length') xor = lambda (a, b): chr(ord(a) ^ ord(b)) return "".join(map(xor, zip(x, y))) class DiffieHellman(object): DEFAULT_MOD = 155172898181473697471232257763715539915724801966915404479707795314057629378541917580651227423698188993727816152646631438561595825688188889951272158842675419950341258706556549803580104870537681476726513255747040765857479291291572334510643245094715007229621094194349783925984760375594985848253359305585439638443L DEFAULT_GEN = 2 def fromDefaults(cls): return cls(cls.DEFAULT_MOD, cls.DEFAULT_GEN) fromDefaults = classmethod(fromDefaults) def __init__(self, modulus, generator): self.modulus = long(modulus) self.generator = long(generator) self._setPrivate(cryptutil.randrange(1, modulus - 1)) def _setPrivate(self, private): """This is here to make testing easier""" self.private = private self.public = pow(self.generator, self.private, self.modulus) def usingDefaultValues(self): return (self.modulus == self.DEFAULT_MOD and self.generator == self.DEFAULT_GEN) def getSharedSecret(self, composite): return pow(composite, self.private, self.modulus) def xorSecret(self, composite, secret, hash_func): dh_shared = self.getSharedSecret(composite) hashed_dh_shared = hash_func(cryptutil.longToBinary(dh_shared)) return strxor(secret, hashed_dh_shared) ########NEW FILE######## __FILENAME__ = extension from openid.message import Message class Extension(object): """An interface for OpenID extensions. @ivar ns_uri: The namespace to which to add the arguments for this extension """ ns_uri = None ns_alias = None def getExtensionArgs(self): """Get the string arguments that should be added to an OpenID message for this extension. """ raise NotImplementedError def toMessage(self, message=None): """Add the arguments from this extension to the provided message, or create a new message containing only those arguments. @returns: The message with the extension arguments added """ if message is None: message = Message() try: message.namespaces.addAlias(self.ns_uri, self.ns_alias) except KeyError: if message.namespaces.getAlias(self.ns_uri) != self.ns_alias: raise message.updateArgs(self.ns_uri, self.getExtensionArgs()) return message ########NEW FILE######## __FILENAME__ = ax # -*- test-case-name: openid.test.test_ax -*- """Implements the OpenID Attribute Exchange specification, version 1.0. @since: 2.1.0 """ __all__ = [ 'AttributeRequest', 'FetchRequest', 'FetchResponse', 'StoreRequest', 'StoreResponse', ] from openid import extension from openid.server.trustroot import TrustRoot from openid.message import NamespaceMap, OPENID_NS # Use this as the 'count' value for an attribute in a FetchRequest to # ask for as many values as the OP can provide. UNLIMITED_VALUES = "unlimited" # Minimum supported alias length in characters. Here for # completeness. MINIMUM_SUPPORTED_ALIAS_LENGTH = 32 def checkAlias(alias): """ Check an alias for invalid characters; raise AXError if any are found. Return None if the alias is valid. """ if ',' in alias: raise AXError("Alias %r must not contain comma" % (alias,)) if '.' in alias: raise AXError("Alias %r must not contain period" % (alias,)) class AXError(ValueError): """Results from data that does not meet the attribute exchange 1.0 specification""" class NotAXMessage(AXError): """Raised when there is no Attribute Exchange mode in the message.""" def __repr__(self): return self.__class__.__name__ def __str__(self): return self.__class__.__name__ class AXMessage(extension.Extension): """Abstract class containing common code for attribute exchange messages @cvar ns_alias: The preferred namespace alias for attribute exchange messages @cvar mode: The type of this attribute exchange message. This must be overridden in subclasses. """ # This class is abstract, so it's OK that it doesn't override the # abstract method in Extension: # #pylint:disable-msg=W0223 ns_alias = 'ax' mode = None ns_uri = 'http://openid.net/srv/ax/1.0' def _checkMode(self, ax_args): """Raise an exception if the mode in the attribute exchange arguments does not match what is expected for this class. @raises NotAXMessage: When there is no mode value in ax_args at all. @raises AXError: When mode does not match. """ mode = ax_args.get('mode') if mode != self.mode: if not mode: raise NotAXMessage() else: raise AXError( 'Expected mode %r; got %r' % (self.mode, mode)) def _newArgs(self): """Return a set of attribute exchange arguments containing the basic information that must be in every attribute exchange message. """ return {'mode':self.mode} class AttrInfo(object): """Represents a single attribute in an attribute exchange request. This should be added to an AXRequest object in order to request the attribute. @ivar required: Whether the attribute will be marked as required when presented to the subject of the attribute exchange request. @type required: bool @ivar count: How many values of this type to request from the subject. Defaults to one. @type count: int @ivar type_uri: The identifier that determines what the attribute represents and how it is serialized. For example, one type URI representing dates could represent a Unix timestamp in base 10 and another could represent a human-readable string. @type type_uri: str @ivar alias: The name that should be given to this alias in the request. If it is not supplied, a generic name will be assigned. For example, if you want to call a Unix timestamp value 'tstamp', set its alias to that value. If two attributes in the same message request to use the same alias, the request will fail to be generated. @type alias: str or NoneType """ # It's OK that this class doesn't have public methods (it's just a # holder for a bunch of attributes): # #pylint:disable-msg=R0903 def __init__(self, type_uri, count=1, required=False, alias=None): self.required = required self.count = count self.type_uri = type_uri self.alias = alias if self.alias is not None: checkAlias(self.alias) def wantsUnlimitedValues(self): """ When processing a request for this attribute, the OP should call this method to determine whether all available attribute values were requested. If self.count == UNLIMITED_VALUES, this returns True. Otherwise this returns False, in which case self.count is an integer. """ return self.count == UNLIMITED_VALUES def toTypeURIs(namespace_map, alias_list_s): """Given a namespace mapping and a string containing a comma-separated list of namespace aliases, return a list of type URIs that correspond to those aliases. @param namespace_map: The mapping from namespace URI to alias @type namespace_map: openid.message.NamespaceMap @param alias_list_s: The string containing the comma-separated list of aliases. May also be None for convenience. @type alias_list_s: str or NoneType @returns: The list of namespace URIs that corresponds to the supplied list of aliases. If the string was zero-length or None, an empty list will be returned. @raise KeyError: If an alias is present in the list of aliases but is not present in the namespace map. """ uris = [] if alias_list_s: for alias in alias_list_s.split(','): type_uri = namespace_map.getNamespaceURI(alias) if type_uri is None: raise KeyError( 'No type is defined for attribute name %r' % (alias,)) else: uris.append(type_uri) return uris class FetchRequest(AXMessage): """An attribute exchange 'fetch_request' message. This message is sent by a relying party when it wishes to obtain attributes about the subject of an OpenID authentication request. @ivar requested_attributes: The attributes that have been requested thus far, indexed by the type URI. @type requested_attributes: {str:AttrInfo} @ivar update_url: A URL that will accept responses for this attribute exchange request, even in the absence of the user who made this request. """ mode = 'fetch_request' def __init__(self, update_url=None): AXMessage.__init__(self) self.requested_attributes = {} self.update_url = update_url def add(self, attribute): """Add an attribute to this attribute exchange request. @param attribute: The attribute that is being requested @type attribute: C{L{AttrInfo}} @returns: None @raise KeyError: when the requested attribute is already present in this fetch request. """ if attribute.type_uri in self.requested_attributes: raise KeyError('The attribute %r has already been requested' % (attribute.type_uri,)) self.requested_attributes[attribute.type_uri] = attribute def getExtensionArgs(self): """Get the serialized form of this attribute fetch request. @returns: The fetch request message parameters @rtype: {unicode:unicode} """ aliases = NamespaceMap() required = [] if_available = [] ax_args = self._newArgs() for type_uri, attribute in self.requested_attributes.iteritems(): if attribute.alias is None: alias = aliases.add(type_uri) else: # This will raise an exception when the second # attribute with the same alias is added. I think it # would be better to complain at the time that the # attribute is added to this object so that the code # that is adding it is identified in the stack trace, # but it's more work to do so, and it won't be 100% # accurate anyway, since the attributes are # mutable. So for now, just live with the fact that # we'll learn about the error later. # # The other possible approach is to hide the error and # generate a new alias on the fly. I think that would # probably be bad. alias = aliases.addAlias(type_uri, attribute.alias) if attribute.required: required.append(alias) else: if_available.append(alias) if attribute.count != 1: ax_args['count.' + alias] = str(attribute.count) ax_args['type.' + alias] = type_uri if required: ax_args['required'] = ','.join(required) if if_available: ax_args['if_available'] = ','.join(if_available) return ax_args def getRequiredAttrs(self): """Get the type URIs for all attributes that have been marked as required. @returns: A list of the type URIs for attributes that have been marked as required. @rtype: [str] """ required = [] for type_uri, attribute in self.requested_attributes.iteritems(): if attribute.required: required.append(type_uri) return required def fromOpenIDRequest(cls, openid_request): """Extract a FetchRequest from an OpenID message @param openid_request: The OpenID authentication request containing the attribute fetch request @type openid_request: C{L{openid.server.server.CheckIDRequest}} @rtype: C{L{FetchRequest}} or C{None} @returns: The FetchRequest extracted from the message or None, if the message contained no AX extension. @raises KeyError: if the AuthRequest is not consistent in its use of namespace aliases. @raises AXError: When parseExtensionArgs would raise same. @see: L{parseExtensionArgs} """ message = openid_request.message ax_args = message.getArgs(cls.ns_uri) self = cls() try: self.parseExtensionArgs(ax_args) except NotAXMessage, err: return None if self.update_url: # Update URL must match the openid.realm of the underlying # OpenID 2 message. realm = message.getArg(OPENID_NS, 'realm', message.getArg(OPENID_NS, 'return_to')) if not realm: raise AXError(("Cannot validate update_url %r " + "against absent realm") % (self.update_url,)) tr = TrustRoot.parse(realm) if not tr.validateURL(self.update_url): raise AXError("Update URL %r failed validation against realm %r" % (self.update_url, realm,)) return self fromOpenIDRequest = classmethod(fromOpenIDRequest) def parseExtensionArgs(self, ax_args): """Given attribute exchange arguments, populate this FetchRequest. @param ax_args: Attribute Exchange arguments from the request. As returned from L{Message.getArgs<openid.message.Message.getArgs>}. @type ax_args: dict @raises KeyError: if the message is not consistent in its use of namespace aliases. @raises NotAXMessage: If ax_args does not include an Attribute Exchange mode. @raises AXError: If the data to be parsed does not follow the attribute exchange specification. At least when 'if_available' or 'required' is not specified for a particular attribute type. """ # Raises an exception if the mode is not the expected value self._checkMode(ax_args) aliases = NamespaceMap() for key, value in ax_args.iteritems(): if key.startswith('type.'): alias = key[5:] type_uri = value aliases.addAlias(type_uri, alias) count_key = 'count.' + alias count_s = ax_args.get(count_key) if count_s: try: count = int(count_s) if count <= 0: raise AXError("Count %r must be greater than zero, got %r" % (count_key, count_s,)) except ValueError: if count_s != UNLIMITED_VALUES: raise AXError("Invalid count value for %r: %r" % (count_key, count_s,)) count = count_s else: count = 1 self.add(AttrInfo(type_uri, alias=alias, count=count)) required = toTypeURIs(aliases, ax_args.get('required')) for type_uri in required: self.requested_attributes[type_uri].required = True if_available = toTypeURIs(aliases, ax_args.get('if_available')) all_type_uris = required + if_available for type_uri in aliases.iterNamespaceURIs(): if type_uri not in all_type_uris: raise AXError( 'Type URI %r was in the request but not ' 'present in "required" or "if_available"' % (type_uri,)) self.update_url = ax_args.get('update_url') def iterAttrs(self): """Iterate over the AttrInfo objects that are contained in this fetch_request. """ return self.requested_attributes.itervalues() def __iter__(self): """Iterate over the attribute type URIs in this fetch_request """ return iter(self.requested_attributes) def has_key(self, type_uri): """Is the given type URI present in this fetch_request? """ return type_uri in self.requested_attributes __contains__ = has_key class AXKeyValueMessage(AXMessage): """An abstract class that implements a message that has attribute keys and values. It contains the common code between fetch_response and store_request. """ # This class is abstract, so it's OK that it doesn't override the # abstract method in Extension: # #pylint:disable-msg=W0223 def __init__(self): AXMessage.__init__(self) self.data = {} def addValue(self, type_uri, value): """Add a single value for the given attribute type to the message. If there are already values specified for this type, this value will be sent in addition to the values already specified. @param type_uri: The URI for the attribute @param value: The value to add to the response to the relying party for this attribute @type value: unicode @returns: None """ try: values = self.data[type_uri] except KeyError: values = self.data[type_uri] = [] values.append(value) def setValues(self, type_uri, values): """Set the values for the given attribute type. This replaces any values that have already been set for this attribute. @param type_uri: The URI for the attribute @param values: A list of values to send for this attribute. @type values: [unicode] """ self.data[type_uri] = values def _getExtensionKVArgs(self, aliases=None): """Get the extension arguments for the key/value pairs contained in this message. @param aliases: An alias mapping. Set to None if you don't care about the aliases for this request. """ if aliases is None: aliases = NamespaceMap() ax_args = {} for type_uri, values in self.data.iteritems(): alias = aliases.add(type_uri) ax_args['type.' + alias] = type_uri ax_args['count.' + alias] = str(len(values)) for i, value in enumerate(values): key = 'value.%s.%d' % (alias, i + 1) ax_args[key] = value return ax_args def parseExtensionArgs(self, ax_args): """Parse attribute exchange key/value arguments into this object. @param ax_args: The attribute exchange fetch_response arguments, with namespacing removed. @type ax_args: {unicode:unicode} @returns: None @raises ValueError: If the message has bad values for particular fields @raises KeyError: If the namespace mapping is bad or required arguments are missing """ self._checkMode(ax_args) aliases = NamespaceMap() for key, value in ax_args.iteritems(): if key.startswith('type.'): type_uri = value alias = key[5:] checkAlias(alias) aliases.addAlias(type_uri, alias) for type_uri, alias in aliases.iteritems(): try: count_s = ax_args['count.' + alias] except KeyError: value = ax_args['value.' + alias] if value == u'': values = [] else: values = [value] else: count = int(count_s) values = [] for i in range(1, count + 1): value_key = 'value.%s.%d' % (alias, i) value = ax_args[value_key] values.append(value) self.data[type_uri] = values def getSingle(self, type_uri, default=None): """Get a single value for an attribute. If no value was sent for this attribute, use the supplied default. If there is more than one value for this attribute, this method will fail. @type type_uri: str @param type_uri: The URI for the attribute @param default: The value to return if the attribute was not sent in the fetch_response. @returns: The value of the attribute in the fetch_response message, or the default supplied @rtype: unicode or NoneType @raises ValueError: If there is more than one value for this parameter in the fetch_response message. @raises KeyError: If the attribute was not sent in this response """ values = self.data.get(type_uri) if not values: return default elif len(values) == 1: return values[0] else: raise AXError( 'More than one value present for %r' % (type_uri,)) def get(self, type_uri): """Get the list of values for this attribute in the fetch_response. XXX: what to do if the values are not present? default parameter? this is funny because it's always supposed to return a list, so the default may break that, though it's provided by the user's code, so it might be okay. If no default is supplied, should the return be None or []? @param type_uri: The URI of the attribute @returns: The list of values for this attribute in the response. May be an empty list. @rtype: [unicode] @raises KeyError: If the attribute was not sent in the response """ return self.data[type_uri] def count(self, type_uri): """Get the number of responses for a particular attribute in this fetch_response message. @param type_uri: The URI of the attribute @returns: The number of values sent for this attribute @raises KeyError: If the attribute was not sent in the response. KeyError will not be raised if the number of values was zero. """ return len(self.get(type_uri)) class FetchResponse(AXKeyValueMessage): """A fetch_response attribute exchange message """ mode = 'fetch_response' def __init__(self, request=None, update_url=None): """ @param request: When supplied, I will use namespace aliases that match those in this request. I will also check to make sure I do not respond with attributes that were not requested. @type request: L{FetchRequest} @param update_url: By default, C{update_url} is taken from the request. But if you do not supply the request, you may set the C{update_url} here. @type update_url: str """ AXKeyValueMessage.__init__(self) self.update_url = update_url self.request = request def getExtensionArgs(self): """Serialize this object into arguments in the attribute exchange namespace @returns: The dictionary of unqualified attribute exchange arguments that represent this fetch_response. @rtype: {unicode;unicode} """ aliases = NamespaceMap() zero_value_types = [] if self.request is not None: # Validate the data in the context of the request (the # same attributes should be present in each, and the # counts in the response must be no more than the counts # in the request) for type_uri in self.data: if type_uri not in self.request: raise KeyError( 'Response attribute not present in request: %r' % (type_uri,)) for attr_info in self.request.iterAttrs(): # Copy the aliases from the request so that reading # the response in light of the request is easier if attr_info.alias is None: aliases.add(attr_info.type_uri) else: aliases.addAlias(attr_info.type_uri, attr_info.alias) try: values = self.data[attr_info.type_uri] except KeyError: values = [] zero_value_types.append(attr_info) if (attr_info.count != UNLIMITED_VALUES) and \ (attr_info.count < len(values)): raise AXError( 'More than the number of requested values were ' 'specified for %r' % (attr_info.type_uri,)) kv_args = self._getExtensionKVArgs(aliases) # Add the KV args into the response with the args that are # unique to the fetch_response ax_args = self._newArgs() # For each requested attribute, put its type/alias and count # into the response even if no data were returned. for attr_info in zero_value_types: alias = aliases.getAlias(attr_info.type_uri) kv_args['type.' + alias] = attr_info.type_uri kv_args['count.' + alias] = '0' update_url = ((self.request and self.request.update_url) or self.update_url) if update_url: ax_args['update_url'] = update_url ax_args.update(kv_args) return ax_args def parseExtensionArgs(self, ax_args): """@see: {Extension.parseExtensionArgs<openid.extension.Extension.parseExtensionArgs>}""" super(FetchResponse, self).parseExtensionArgs(ax_args) self.update_url = ax_args.get('update_url') def fromSuccessResponse(cls, success_response, signed=True): """Construct a FetchResponse object from an OpenID library SuccessResponse object. @param success_response: A successful id_res response object @type success_response: openid.consumer.consumer.SuccessResponse @param signed: Whether non-signed args should be processsed. If True (the default), only signed arguments will be processsed. @type signed: bool @returns: A FetchResponse containing the data from the OpenID message, or None if the SuccessResponse did not contain AX extension data. @raises AXError: when the AX data cannot be parsed. """ self = cls() ax_args = success_response.extensionResponse(self.ns_uri, signed) try: self.parseExtensionArgs(ax_args) except NotAXMessage, err: return None else: return self fromSuccessResponse = classmethod(fromSuccessResponse) class StoreRequest(AXKeyValueMessage): """A store request attribute exchange message representation """ mode = 'store_request' def __init__(self, aliases=None): """ @param aliases: The namespace aliases to use when making this store request. Leave as None to use defaults. """ super(StoreRequest, self).__init__() self.aliases = aliases def getExtensionArgs(self): """ @see: L{Extension.getExtensionArgs<openid.extension.Extension.getExtensionArgs>} """ ax_args = self._newArgs() kv_args = self._getExtensionKVArgs(self.aliases) ax_args.update(kv_args) return ax_args class StoreResponse(AXMessage): """An indication that the store request was processed along with this OpenID transaction. """ SUCCESS_MODE = 'store_response_success' FAILURE_MODE = 'store_response_failure' def __init__(self, succeeded=True, error_message=None): AXMessage.__init__(self) if succeeded and error_message is not None: raise AXError('An error message may only be included in a ' 'failing fetch response') if succeeded: self.mode = self.SUCCESS_MODE else: self.mode = self.FAILURE_MODE self.error_message = error_message def succeeded(self): """Was this response a success response?""" return self.mode == self.SUCCESS_MODE def getExtensionArgs(self): """@see: {Extension.getExtensionArgs<openid.extension.Extension.getExtensionArgs>}""" ax_args = self._newArgs() if not self.succeeded() and self.error_message: ax_args['error'] = self.error_message return ax_args ########NEW FILE######## __FILENAME__ = pape """An implementation of the OpenID Provider Authentication Policy Extension 1.0 @see: http://openid.net/developers/specs/ @since: 2.1.0 """ __all__ = [ 'Request', 'Response', 'ns_uri', 'AUTH_PHISHING_RESISTANT', 'AUTH_MULTI_FACTOR', 'AUTH_MULTI_FACTOR_PHYSICAL', ] from openid.extension import Extension ns_uri = "http://specs.openid.net/extensions/pape/1.0" AUTH_MULTI_FACTOR_PHYSICAL = \ 'http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical' AUTH_MULTI_FACTOR = \ 'http://schemas.openid.net/pape/policies/2007/06/multi-factor' AUTH_PHISHING_RESISTANT = \ 'http://schemas.openid.net/pape/policies/2007/06/phishing-resistant' class Request(Extension): """A Provider Authentication Policy request, sent from a relying party to a provider @ivar preferred_auth_policies: The authentication policies that the relying party prefers @type preferred_auth_policies: [str] @ivar max_auth_age: The maximum time, in seconds, that the relying party wants to allow to have elapsed before the user must re-authenticate @type max_auth_age: int or NoneType """ ns_alias = 'pape' def __init__(self, preferred_auth_policies=None, max_auth_age=None): super(Request, self).__init__(self) if not preferred_auth_policies: preferred_auth_policies = [] self.preferred_auth_policies = preferred_auth_policies self.max_auth_age = max_auth_age def __nonzero__(self): return bool(self.preferred_auth_policies or self.max_auth_age is not None) def addPolicyURI(self, policy_uri): """Add an acceptable authentication policy URI to this request This method is intended to be used by the relying party to add acceptable authentication types to the request. @param policy_uri: The identifier for the preferred type of authentication. @see: http://openid.net/specs/openid-provider-authentication-policy-extension-1_0-01.html#auth_policies """ if policy_uri not in self.preferred_auth_policies: self.preferred_auth_policies.append(policy_uri) def getExtensionArgs(self): """@see: C{L{Extension.getExtensionArgs}} """ ns_args = { 'preferred_auth_policies':' '.join(self.preferred_auth_policies) } if self.max_auth_age is not None: ns_args['max_auth_age'] = str(self.max_auth_age) return ns_args def fromOpenIDRequest(cls, request): """Instantiate a Request object from the arguments in a C{checkid_*} OpenID message """ self = cls() args = request.message.getArgs(self.ns_uri) if args == {}: return None self.parseExtensionArgs(args) return self fromOpenIDRequest = classmethod(fromOpenIDRequest) def parseExtensionArgs(self, args): """Set the state of this request to be that expressed in these PAPE arguments @param args: The PAPE arguments without a namespace @rtype: None @raises ValueError: When the max_auth_age is not parseable as an integer """ # preferred_auth_policies is a space-separated list of policy URIs self.preferred_auth_policies = [] policies_str = args.get('preferred_auth_policies') if policies_str: for uri in policies_str.split(' '): if uri not in self.preferred_auth_policies: self.preferred_auth_policies.append(uri) # max_auth_age is base-10 integer number of seconds max_auth_age_str = args.get('max_auth_age') self.max_auth_age = None if max_auth_age_str: try: self.max_auth_age = int(max_auth_age_str) except ValueError: pass def preferredTypes(self, supported_types): """Given a list of authentication policy URIs that a provider supports, this method returns the subsequence of those types that are preferred by the relying party. @param supported_types: A sequence of authentication policy type URIs that are supported by a provider @returns: The sub-sequence of the supported types that are preferred by the relying party. This list will be ordered in the order that the types appear in the supported_types sequence, and may be empty if the provider does not prefer any of the supported authentication types. @returntype: [str] """ return filter(self.preferred_auth_policies.__contains__, supported_types) Request.ns_uri = ns_uri class Response(Extension): """A Provider Authentication Policy response, sent from a provider to a relying party """ ns_alias = 'pape' def __init__(self, auth_policies=None, auth_age=None, nist_auth_level=None): super(Response, self).__init__(self) if auth_policies: self.auth_policies = auth_policies else: self.auth_policies = [] self.auth_age = auth_age self.nist_auth_level = nist_auth_level def addPolicyURI(self, policy_uri): """Add a authentication policy to this response This method is intended to be used by the provider to add a policy that the provider conformed to when authenticating the user. @param policy_uri: The identifier for the preferred type of authentication. @see: http://openid.net/specs/openid-provider-authentication-policy-extension-1_0-01.html#auth_policies """ if policy_uri not in self.auth_policies: self.auth_policies.append(policy_uri) def fromSuccessResponse(cls, success_response): """Create a C{L{Response}} object from a successful OpenID library response (C{L{openid.consumer.consumer.SuccessResponse}}) response message @param success_response: A SuccessResponse from consumer.complete() @type success_response: C{L{openid.consumer.consumer.SuccessResponse}} @rtype: Response @returns: A provider authentication policy response from the data that was supplied with the C{id_res} response. """ self = cls() # PAPE requires that the args be signed. args = success_response.getSignedNS(self.ns_uri) self.parseExtensionArgs(args) return self def parseExtensionArgs(self, args, strict=False): """Parse the provider authentication policy arguments into the internal state of this object @param args: unqualified provider authentication policy arguments @param strict: Whether to raise an exception when bad data is encountered @returns: None. The data is parsed into the internal fields of this object. """ policies_str = args.get('auth_policies') if policies_str: self.auth_policies = policies_str.split(' ') nist_level_str = args.get('nist_auth_level') if nist_level_str: try: nist_level = int(nist_level_str) except ValueError: if strict: raise ValueError('nist_auth_level must be an integer between ' 'zero and four, inclusive') else: self.nist_auth_level = None else: if 0 <= nist_level < 5: self.nist_auth_level = nist_level auth_age_str = args.get('auth_age') if auth_age_str: try: auth_age = int(auth_age_str) except ValueError: if strict: raise else: if auth_age >= 0: self.auth_age = auth_age elif strict: raise ValueError('Auth age must be above zero') fromSuccessResponse = classmethod(fromSuccessResponse) def getExtensionArgs(self): """@see: C{L{Extension.getExtensionArgs}} """ ns_args = { 'auth_policies':' '.join(self.auth_policies), } if self.nist_auth_level is not None: if self.nist_auth_level not in range(0, 5): raise ValueError('nist_auth_level must be an integer between ' 'zero and four, inclusive') ns_args['nist_auth_level'] = str(self.nist_auth_level) if self.auth_age is not None: if self.auth_age < 0: raise ValueError('Auth age must be above zero') ns_args['auth_age'] = str(int(self.auth_age)) return ns_args Response.ns_uri = ns_uri ########NEW FILE######## __FILENAME__ = sreg """Simple registration request and response parsing and object representation This module contains objects representing simple registration requests and responses that can be used with both OpenID relying parties and OpenID providers. 1. The relying party creates a request object and adds it to the C{L{AuthRequest<openid.consumer.consumer.AuthRequest>}} object before making the C{checkid_} request to the OpenID provider:: auth_request.addExtension(SRegRequest(required=['email'])) 2. The OpenID provider extracts the simple registration request from the OpenID request using C{L{SRegRequest.fromOpenIDRequest}}, gets the user's approval and data, creates a C{L{SRegResponse}} object and adds it to the C{id_res} response:: sreg_req = SRegRequest.fromOpenIDRequest(checkid_request) # [ get the user's approval and data, informing the user that # the fields in sreg_response were requested ] sreg_resp = SRegResponse.extractResponse(sreg_req, user_data) sreg_resp.toMessage(openid_response.fields) 3. The relying party uses C{L{SRegResponse.fromSuccessResponse}} to extract the data from the OpenID response:: sreg_resp = SRegResponse.fromSuccessResponse(success_response) @since: 2.0 @var sreg_data_fields: The names of the data fields that are listed in the sreg spec, and a description of them in English @var sreg_uri: The preferred URI to use for the simple registration namespace and XRD Type value """ from openid.message import registerNamespaceAlias, \ NamespaceAliasRegistrationError from openid.extension import Extension from openid import oidutil try: basestring #pylint:disable-msg=W0104 except NameError: # For Python 2.2 basestring = (str, unicode) #pylint:disable-msg=W0622 __all__ = [ 'SRegRequest', 'SRegResponse', 'data_fields', 'ns_uri', 'ns_uri_1_0', 'ns_uri_1_1', 'supportsSReg', ] # The data fields that are listed in the sreg spec data_fields = { 'fullname':'Full Name', 'nickname':'Nickname', 'dob':'Date of Birth', 'email':'E-mail Address', 'gender':'Gender', 'postcode':'Postal Code', 'country':'Country', 'language':'Language', 'timezone':'Time Zone', } def checkFieldName(field_name): """Check to see that the given value is a valid simple registration data field name. @raise ValueError: if the field name is not a valid simple registration data field name """ if field_name not in data_fields: raise ValueError('%r is not a defined simple registration field' % (field_name,)) # URI used in the wild for Yadis documents advertising simple # registration support ns_uri_1_0 = 'http://openid.net/sreg/1.0' # URI in the draft specification for simple registration 1.1 # <http://openid.net/specs/openid-simple-registration-extension-1_1-01.html> ns_uri_1_1 = 'http://openid.net/extensions/sreg/1.1' # This attribute will always hold the preferred URI to use when adding # sreg support to an XRDS file or in an OpenID namespace declaration. ns_uri = ns_uri_1_1 try: registerNamespaceAlias(ns_uri_1_1, 'sreg') except NamespaceAliasRegistrationError, e: oidutil.log('registerNamespaceAlias(%r, %r) failed: %s' % (ns_uri_1_1, 'sreg', str(e),)) def supportsSReg(endpoint): """Does the given endpoint advertise support for simple registration? @param endpoint: The endpoint object as returned by OpenID discovery @type endpoint: openid.consumer.discover.OpenIDEndpoint @returns: Whether an sreg type was advertised by the endpoint @rtype: bool """ return (endpoint.usesExtension(ns_uri_1_1) or endpoint.usesExtension(ns_uri_1_0)) class SRegNamespaceError(ValueError): """The simple registration namespace was not found and could not be created using the expected name (there's another extension using the name 'sreg') This is not I{illegal}, for OpenID 2, although it probably indicates a problem, since it's not expected that other extensions will re-use the alias that is in use for OpenID 1. If this is an OpenID 1 request, then there is no recourse. This should not happen unless some code has modified the namespaces for the message that is being processed. """ def getSRegNS(message): """Extract the simple registration namespace URI from the given OpenID message. Handles OpenID 1 and 2, as well as both sreg namespace URIs found in the wild, as well as missing namespace definitions (for OpenID 1) @param message: The OpenID message from which to parse simple registration fields. This may be a request or response message. @type message: C{L{openid.message.Message}} @returns: the sreg namespace URI for the supplied message. The message may be modified to define a simple registration namespace. @rtype: C{str} @raise ValueError: when using OpenID 1 if the message defines the 'sreg' alias to be something other than a simple registration type. """ # See if there exists an alias for one of the two defined simple # registration types. for sreg_ns_uri in [ns_uri_1_1, ns_uri_1_0]: alias = message.namespaces.getAlias(sreg_ns_uri) if alias is not None: break else: # There is no alias for either of the types, so try to add # one. We default to using the modern value (1.1) sreg_ns_uri = ns_uri_1_1 try: message.namespaces.addAlias(ns_uri_1_1, 'sreg') except KeyError, why: # An alias for the string 'sreg' already exists, but it's # defined for something other than simple registration raise SRegNamespaceError(why[0]) # we know that sreg_ns_uri defined, because it's defined in the # else clause of the loop as well, so disable the warning return sreg_ns_uri #pylint:disable-msg=W0631 class SRegRequest(Extension): """An object to hold the state of a simple registration request. @ivar required: A list of the required fields in this simple registration request @type required: [str] @ivar optional: A list of the optional fields in this simple registration request @type optional: [str] @ivar policy_url: The policy URL that was provided with the request @type policy_url: str or NoneType @group Consumer: requestField, requestFields, getExtensionArgs, addToOpenIDRequest @group Server: fromOpenIDRequest, parseExtensionArgs """ ns_alias = 'sreg' def __init__(self, required=None, optional=None, policy_url=None, sreg_ns_uri=ns_uri): """Initialize an empty simple registration request""" Extension.__init__(self) self.required = [] self.optional = [] self.policy_url = policy_url self.ns_uri = sreg_ns_uri if required: self.requestFields(required, required=True, strict=True) if optional: self.requestFields(optional, required=False, strict=True) # Assign getSRegNS to a static method so that it can be # overridden for testing. _getSRegNS = staticmethod(getSRegNS) def fromOpenIDRequest(cls, request): """Create a simple registration request that contains the fields that were requested in the OpenID request with the given arguments @param request: The OpenID request @type request: openid.server.CheckIDRequest @returns: The newly created simple registration request @rtype: C{L{SRegRequest}} """ self = cls() # Since we're going to mess with namespace URI mapping, don't # mutate the object that was passed in. message = request.message.copy() self.ns_uri = self._getSRegNS(message) args = message.getArgs(self.ns_uri) self.parseExtensionArgs(args) return self fromOpenIDRequest = classmethod(fromOpenIDRequest) def parseExtensionArgs(self, args, strict=False): """Parse the unqualified simple registration request parameters and add them to this object. This method is essentially the inverse of C{L{getExtensionArgs}}. This method restores the serialized simple registration request fields. If you are extracting arguments from a standard OpenID checkid_* request, you probably want to use C{L{fromOpenIDRequest}}, which will extract the sreg namespace and arguments from the OpenID request. This method is intended for cases where the OpenID server needs more control over how the arguments are parsed than that method provides. >>> args = message.getArgs(ns_uri) >>> request.parseExtensionArgs(args) @param args: The unqualified simple registration arguments @type args: {str:str} @param strict: Whether requests with fields that are not defined in the simple registration specification should be tolerated (and ignored) @type strict: bool @returns: None; updates this object """ for list_name in ['required', 'optional']: required = (list_name == 'required') items = args.get(list_name) if items: for field_name in items.split(','): try: self.requestField(field_name, required, strict) except ValueError: if strict: raise self.policy_url = args.get('policy_url') def allRequestedFields(self): """A list of all of the simple registration fields that were requested, whether they were required or optional. @rtype: [str] """ return self.required + self.optional def wereFieldsRequested(self): """Have any simple registration fields been requested? @rtype: bool """ return bool(self.allRequestedFields()) def __contains__(self, field_name): """Was this field in the request?""" return (field_name in self.required or field_name in self.optional) def requestField(self, field_name, required=False, strict=False): """Request the specified field from the OpenID user @param field_name: the unqualified simple registration field name @type field_name: str @param required: whether the given field should be presented to the user as being a required to successfully complete the request @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when the field requested is not a simple registration field or strict is set and the field was requested more than once """ checkFieldName(field_name) if strict: if field_name in self.required or field_name in self.optional: raise ValueError('That field has already been requested') else: if field_name in self.required: return if field_name in self.optional: if required: self.optional.remove(field_name) else: return if required: self.required.append(field_name) else: self.optional.append(field_name) def requestFields(self, field_names, required=False, strict=False): """Add the given list of fields to the request @param field_names: The simple registration data fields to request @type field_names: [str] @param required: Whether these values should be presented to the user as required @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when a field requested is not a simple registration field or strict is set and a field was requested more than once """ if isinstance(field_names, basestring): raise TypeError('Fields should be passed as a list of ' 'strings (not %r)' % (type(field_names),)) for field_name in field_names: self.requestField(field_name, required, strict=strict) def getExtensionArgs(self): """Get a dictionary of unqualified simple registration arguments representing this request. This method is essentially the inverse of C{L{parseExtensionArgs}}. This method serializes the simple registration request fields. @rtype: {str:str} """ args = {} if self.required: args['required'] = ','.join(self.required) if self.optional: args['optional'] = ','.join(self.optional) if self.policy_url: args['policy_url'] = self.policy_url return args class SRegResponse(Extension): """Represents the data returned in a simple registration response inside of an OpenID C{id_res} response. This object will be created by the OpenID server, added to the C{id_res} response object, and then extracted from the C{id_res} message by the Consumer. @ivar data: The simple registration data, keyed by the unqualified simple registration name of the field (i.e. nickname is keyed by C{'nickname'}) @ivar ns_uri: The URI under which the simple registration data was stored in the response message. @group Server: extractResponse @group Consumer: fromSuccessResponse @group Read-only dictionary interface: keys, iterkeys, items, iteritems, __iter__, get, __getitem__, keys, has_key """ ns_alias = 'sreg' def __init__(self, data=None, sreg_ns_uri=ns_uri): Extension.__init__(self) if data is None: self.data = {} else: self.data = data self.ns_uri = sreg_ns_uri def extractResponse(cls, request, data): """Take a C{L{SRegRequest}} and a dictionary of simple registration values and create a C{L{SRegResponse}} object containing that data. @param request: The simple registration request object @type request: SRegRequest @param data: The simple registration data for this response, as a dictionary from unqualified simple registration field name to string (unicode) value. For instance, the nickname should be stored under the key 'nickname'. @type data: {str:str} @returns: a simple registration response object @rtype: SRegResponse """ self = cls() self.ns_uri = request.ns_uri for field in request.allRequestedFields(): value = data.get(field) if value is not None: self.data[field] = value return self extractResponse = classmethod(extractResponse) # Assign getSRegArgs to a static method so that it can be # overridden for testing _getSRegNS = staticmethod(getSRegNS) def fromSuccessResponse(cls, success_response, signed_only=True): """Create a C{L{SRegResponse}} object from a successful OpenID library response (C{L{openid.consumer.consumer.SuccessResponse}}) response message @param success_response: A SuccessResponse from consumer.complete() @type success_response: C{L{openid.consumer.consumer.SuccessResponse}} @param signed_only: Whether to process only data that was signed in the id_res message from the server. @type signed_only: bool @rtype: SRegResponse @returns: A simple registration response containing the data that was supplied with the C{id_res} response. """ self = cls() self.ns_uri = self._getSRegNS(success_response.message) if signed_only: args = success_response.getSignedNS(self.ns_uri) else: args = success_response.message.getArgs(self.ns_uri) for field_name in data_fields: if field_name in args: self.data[field_name] = args[field_name] return self fromSuccessResponse = classmethod(fromSuccessResponse) def getExtensionArgs(self): """Get the fields to put in the simple registration namespace when adding them to an id_res message. @see: openid.extension """ return self.data # Read-only dictionary interface def get(self, field_name, default=None): """Like dict.get, except that it checks that the field name is defined by the simple registration specification""" checkFieldName(field_name) return self.data.get(field_name, default) def items(self): """All of the data values in this simple registration response """ return self.data.items() def iteritems(self): return self.data.iteritems() def keys(self): return self.data.keys() def iterkeys(self): return self.data.iterkeys() def has_key(self, key): return key in self def __contains__(self, field_name): checkFieldName(field_name) return field_name in self.data def __iter__(self): return iter(self.data) def __getitem__(self, field_name): checkFieldName(field_name) return self.data[field_name] def __nonzero__(self): return bool(self.data) ########NEW FILE######## __FILENAME__ = fetchers # -*- test-case-name: openid.test.test_fetchers -*- """ This module contains the HTTP fetcher interface and several implementations. """ __all__ = ['fetch', 'getDefaultFetcher', 'setDefaultFetcher', 'HTTPResponse', 'HTTPFetcher', 'createHTTPFetcher', 'HTTPFetchingError', 'HTTPError'] import urllib2 import time import cStringIO import sys import openid import openid.urinorm # Try to import httplib2 for caching support # http://bitworking.org/projects/httplib2/ try: import httplib2 except ImportError: # httplib2 not available httplib2 = None # try to import pycurl, which will let us use CurlHTTPFetcher try: import pycurl except ImportError: pycurl = None USER_AGENT = "python-openid/%s (%s)" % (openid.__version__, sys.platform) def fetch(url, body=None, headers=None): """Invoke the fetch method on the default fetcher. Most users should need only this method. @raises Exception: any exceptions that may be raised by the default fetcher """ fetcher = getDefaultFetcher() return fetcher.fetch(url, body, headers) def createHTTPFetcher(): """Create a default HTTP fetcher instance prefers Curl to urllib2.""" if pycurl is None: fetcher = Urllib2Fetcher() else: fetcher = CurlHTTPFetcher() return fetcher # Contains the currently set HTTP fetcher. If it is set to None, the # library will call createHTTPFetcher() to set it. Do not access this # variable outside of this module. _default_fetcher = None def getDefaultFetcher(): """Return the default fetcher instance if no fetcher has been set, it will create a default fetcher. @return: the default fetcher @rtype: HTTPFetcher """ global _default_fetcher if _default_fetcher is None: setDefaultFetcher(createHTTPFetcher()) return _default_fetcher def setDefaultFetcher(fetcher, wrap_exceptions=True): """Set the default fetcher @param fetcher: The fetcher to use as the default HTTP fetcher @type fetcher: HTTPFetcher @param wrap_exceptions: Whether to wrap exceptions thrown by the fetcher wil HTTPFetchingError so that they may be caught easier. By default, exceptions will be wrapped. In general, unwrapped fetchers are useful for debugging of fetching errors or if your fetcher raises well-known exceptions that you would like to catch. @type wrap_exceptions: bool """ global _default_fetcher if fetcher is None or not wrap_exceptions: _default_fetcher = fetcher else: _default_fetcher = ExceptionWrappingFetcher(fetcher) def usingCurl(): """Whether the currently set HTTP fetcher is a Curl HTTP fetcher.""" return isinstance(getDefaultFetcher(), CurlHTTPFetcher) class HTTPResponse(object): """XXX document attributes""" headers = None status = None body = None final_url = None def __init__(self, final_url=None, status=None, headers=None, body=None): self.final_url = final_url self.status = status self.headers = headers self.body = body def __repr__(self): return "<%s status %s for %s>" % (self.__class__.__name__, self.status, self.final_url) class HTTPFetcher(object): """ This class is the interface for openid HTTP fetchers. This interface is only important if you need to write a new fetcher for some reason. """ def fetch(self, url, body=None, headers=None): """ This performs an HTTP POST or GET, following redirects along the way. If a body is specified, then the request will be a POST. Otherwise, it will be a GET. @param headers: HTTP headers to include with the request @type headers: {str:str} @return: An object representing the server's HTTP response. If there are network or protocol errors, an exception will be raised. HTTP error responses, like 404 or 500, do not cause exceptions. @rtype: L{HTTPResponse} @raise Exception: Different implementations will raise different errors based on the underlying HTTP library. """ raise NotImplementedError def _allowedURL(url): return url.startswith('http://') or url.startswith('https://') class HTTPFetchingError(Exception): """Exception that is wrapped around all exceptions that are raised by the underlying fetcher when using the ExceptionWrappingFetcher @ivar why: The exception that caused this exception """ def __init__(self, why=None): Exception.__init__(self, why) self.why = why class ExceptionWrappingFetcher(HTTPFetcher): """Fetcher that wraps another fetcher, causing all exceptions @cvar uncaught_exceptions: Exceptions that should be exposed to the user if they are raised by the fetch call """ uncaught_exceptions = (SystemExit, KeyboardInterrupt, MemoryError) def __init__(self, fetcher): self.fetcher = fetcher def fetch(self, *args, **kwargs): try: return self.fetcher.fetch(*args, **kwargs) except self.uncaught_exceptions: raise except: import logging logging.exception('qwert2') exc_cls, exc_inst = sys.exc_info()[:2] if exc_inst is None: # string exceptions exc_inst = exc_cls raise HTTPFetchingError(why=exc_inst) class Urllib2Fetcher(HTTPFetcher): """An C{L{HTTPFetcher}} that uses urllib2. """ # Parameterized for the benefit of testing frameworks, see # http://trac.openidenabled.com/trac/ticket/85 urlopen = staticmethod(urllib2.urlopen) def fetch(self, url, body=None, headers=None): if not _allowedURL(url): raise ValueError('Bad URL scheme: %r' % (url,)) if headers is None: headers = {} headers.setdefault( 'User-Agent', "%s Python-urllib/%s" % (USER_AGENT, urllib2.__version__,)) req = urllib2.Request(url, data=body, headers=headers) try: f = self.urlopen(req) try: return self._makeResponse(f) finally: f.close() except urllib2.HTTPError, why: try: return self._makeResponse(why) finally: why.close() def _makeResponse(self, urllib2_response): resp = HTTPResponse() resp.body = urllib2_response.read() resp.final_url = urllib2_response.geturl() resp.headers = dict(urllib2_response.info().items()) if hasattr(urllib2_response, 'code'): resp.status = urllib2_response.code else: resp.status = 200 return resp class HTTPError(HTTPFetchingError): """ This exception is raised by the C{L{CurlHTTPFetcher}} when it encounters an exceptional situation fetching a URL. """ pass # XXX: define what we mean by paranoid, and make sure it is. class CurlHTTPFetcher(HTTPFetcher): """ An C{L{HTTPFetcher}} that uses pycurl for fetching. See U{http://pycurl.sourceforge.net/}. """ ALLOWED_TIME = 20 # seconds def __init__(self): HTTPFetcher.__init__(self) if pycurl is None: raise RuntimeError('Cannot find pycurl library') def _parseHeaders(self, header_file): header_file.seek(0) # Remove the status line from the beginning of the input unused_http_status_line = header_file.readline() lines = [line.strip() for line in header_file] # and the blank line from the end empty_line = lines.pop() if empty_line: raise HTTPError("No blank line at end of headers: %r" % (line,)) headers = {} for line in lines: try: name, value = line.split(':', 1) except ValueError: raise HTTPError( "Malformed HTTP header line in response: %r" % (line,)) value = value.strip() # HTTP headers are case-insensitive name = name.lower() headers[name] = value return headers def _checkURL(self, url): # XXX: document that this can be overridden to match desired policy # XXX: make sure url is well-formed and routeable return _allowedURL(url) def fetch(self, url, body=None, headers=None): stop = int(time.time()) + self.ALLOWED_TIME off = self.ALLOWED_TIME if headers is None: headers = {} headers.setdefault('User-Agent', "%s %s" % (USER_AGENT, pycurl.version,)) header_list = [] if headers is not None: for header_name, header_value in headers.iteritems(): header_list.append('%s: %s' % (header_name, header_value)) c = pycurl.Curl() try: c.setopt(pycurl.NOSIGNAL, 1) if header_list: c.setopt(pycurl.HTTPHEADER, header_list) # Presence of a body indicates that we should do a POST if body is not None: c.setopt(pycurl.POST, 1) c.setopt(pycurl.POSTFIELDS, body) while off > 0: if not self._checkURL(url): raise HTTPError("Fetching URL not allowed: %r" % (url,)) data = cStringIO.StringIO() response_header_data = cStringIO.StringIO() c.setopt(pycurl.WRITEFUNCTION, data.write) c.setopt(pycurl.HEADERFUNCTION, response_header_data.write) c.setopt(pycurl.TIMEOUT, off) c.setopt(pycurl.URL, openid.urinorm.urinorm(url)) c.perform() response_headers = self._parseHeaders(response_header_data) code = c.getinfo(pycurl.RESPONSE_CODE) if code in [301, 302, 303, 307]: url = response_headers.get('location') if url is None: raise HTTPError( 'Redirect (%s) returned without a location' % code) # Redirects are always GETs c.setopt(pycurl.POST, 0) # There is no way to reset POSTFIELDS to empty and # reuse the connection, but we only use it once. else: resp = HTTPResponse() resp.headers = response_headers resp.status = code resp.final_url = url resp.body = data.getvalue() return resp off = stop - int(time.time()) raise HTTPError("Timed out fetching: %r" % (url,)) finally: c.close() class HTTPLib2Fetcher(HTTPFetcher): """A fetcher that uses C{httplib2} for performing HTTP requests. This implementation supports HTTP caching. @see: http://bitworking.org/projects/httplib2/ """ def __init__(self, cache=None): """@param cache: An object suitable for use as an C{httplib2} cache. If a string is passed, it is assumed to be a directory name. """ if httplib2 is None: raise RuntimeError('Cannot find httplib2 library. ' 'See http://bitworking.org/projects/httplib2/') super(HTTPLib2Fetcher, self).__init__() # An instance of the httplib2 object that performs HTTP requests self.httplib2 = httplib2.Http(cache) # We want httplib2 to raise exceptions for errors, just like # the other fetchers. self.httplib2.force_exception_to_status_code = False def fetch(self, url, body=None, headers=None): """Perform an HTTP request @raises Exception: Any exception that can be raised by httplib2 @see: C{L{HTTPFetcher.fetch}} """ if body: method = 'POST' else: method = 'GET' # httplib2 doesn't check to make sure that the URL's scheme is # 'http' so we do it here. if not (url.startswith('http://') or url.startswith('https://')): raise ValueError('URL is not a HTTP URL: %r' % (url,)) httplib2_response, content = self.httplib2.request( url, method, body=body, headers=headers) # Translate the httplib2 response to our HTTP response abstraction # When a 400 is returned, there is no "content-location" # header set. This seems like a bug to me. I can't think of a # case where we really care about the final URL when it is an # error response, but being careful about it can't hurt. try: final_url = httplib2_response['content-location'] except KeyError: # We're assuming that no redirects occurred assert not httplib2_response.previous # And this should never happen for a successful response assert httplib2_response.status != 200 final_url = url return HTTPResponse( body=content, final_url=final_url, headers=dict(httplib2_response.items()), status=httplib2_response.status, ) ########NEW FILE######## __FILENAME__ = kvform __all__ = ['seqToKV', 'kvToSeq', 'dictToKV', 'kvToDict'] from openid import oidutil import types def seqToKV(seq, strict=False): """Represent a sequence of pairs of strings as newline-terminated key:value pairs. The pairs are generated in the order given. @param seq: The pairs @type seq: [(str, (unicode|str))] @return: A string representation of the sequence @rtype: str """ def err(msg): formatted = 'seqToKV warning: %s: %r' % (msg, seq) if strict: raise ValueError(formatted) else: oidutil.log(formatted) lines = [] for k, v in seq: if isinstance(k, types.StringType): k = k.decode('UTF8') elif not isinstance(k, types.UnicodeType): err('Converting key to string: %r' % k) k = str(k) if '\n' in k: raise ValueError( 'Invalid input for seqToKV: key contains newline: %r' % (k,)) if ':' in k: raise ValueError( 'Invalid input for seqToKV: key contains colon: %r' % (k,)) if k.strip() != k: err('Key has whitespace at beginning or end: %r' % k) if isinstance(v, types.StringType): v = v.decode('UTF8') elif not isinstance(v, types.UnicodeType): err('Converting value to string: %r' % v) v = str(v) if '\n' in v: raise ValueError( 'Invalid input for seqToKV: value contains newline: %r' % (v,)) if v.strip() != v: err('Value has whitespace at beginning or end: %r' % v) lines.append(k + ':' + v + '\n') return ''.join(lines).encode('UTF8') def kvToSeq(data, strict=False): """ After one parse, seqToKV and kvToSeq are inverses, with no warnings:: seq = kvToSeq(s) seqToKV(kvToSeq(seq)) == seq """ def err(msg): formatted = 'kvToSeq warning: %s: %r' % (msg, data) if strict: raise ValueError(formatted) else: oidutil.log(formatted) lines = data.split('\n') if lines[-1]: err('Does not end in a newline') else: del lines[-1] pairs = [] line_num = 0 for line in lines: line_num += 1 # Ignore blank lines if not line.strip(): continue pair = line.split(':', 1) if len(pair) == 2: k, v = pair k_s = k.strip() if k_s != k: fmt = ('In line %d, ignoring leading or trailing ' 'whitespace in key %r') err(fmt % (line_num, k)) if not k_s: err('In line %d, got empty key' % (line_num,)) v_s = v.strip() if v_s != v: fmt = ('In line %d, ignoring leading or trailing ' 'whitespace in value %r') err(fmt % (line_num, v)) pairs.append((k_s.decode('UTF8'), v_s.decode('UTF8'))) else: err('Line %d does not contain a colon' % line_num) return pairs def dictToKV(d): seq = d.items() seq.sort() return seqToKV(seq) def kvToDict(s): return dict(kvToSeq(s)) ########NEW FILE######## __FILENAME__ = message """Extension argument processing code """ __all__ = ['Message', 'NamespaceMap', 'no_default', 'registerNamespaceAlias', 'OPENID_NS', 'BARE_NS', 'OPENID1_NS', 'OPENID2_NS', 'SREG_URI', 'IDENTIFIER_SELECT'] import copy import warnings import urllib from openid import oidutil from openid import kvform try: ElementTree = oidutil.importElementTree() except ImportError: # No elementtree found, so give up, but don't fail to import, # since we have fallbacks. ElementTree = None # This doesn't REALLY belong here, but where is better? IDENTIFIER_SELECT = 'http://specs.openid.net/auth/2.0/identifier_select' # URI for Simple Registration extension, the only commonly deployed # OpenID 1.x extension, and so a special case SREG_URI = 'http://openid.net/sreg/1.0' # The OpenID 1.X namespace URI OPENID1_NS = 'http://openid.net/signon/1.0' # The OpenID 2.0 namespace URI OPENID2_NS = 'http://specs.openid.net/auth/2.0' # The namespace consisting of pairs with keys that are prefixed with # "openid." but not in another namespace. NULL_NAMESPACE = oidutil.Symbol('Null namespace') # The null namespace, when it is an allowed OpenID namespace OPENID_NS = oidutil.Symbol('OpenID namespace') # The top-level namespace, excluding all pairs with keys that start # with "openid." BARE_NS = oidutil.Symbol('Bare namespace') # Limit, in bytes, of identity provider and return_to URLs, including # response payload. See OpenID 1.1 specification, Appendix D. OPENID1_URL_LIMIT = 2047 # All OpenID protocol fields. Used to check namespace aliases. OPENID_PROTOCOL_FIELDS = [ 'ns', 'mode', 'error', 'return_to', 'contact', 'reference', 'signed', 'assoc_type', 'session_type', 'dh_modulus', 'dh_gen', 'dh_consumer_public', 'claimed_id', 'identity', 'realm', 'invalidate_handle', 'op_endpoint', 'response_nonce', 'sig', 'assoc_handle', 'trust_root', 'openid', ] class UndefinedOpenIDNamespace(ValueError): """Raised if the generic OpenID namespace is accessed when there is no OpenID namespace set for this message.""" # Sentinel used for Message implementation to indicate that getArg # should raise an exception instead of returning a default. no_default = object() # Global namespace / alias registration map. See # registerNamespaceAlias. registered_aliases = {} class NamespaceAliasRegistrationError(Exception): """ Raised when an alias or namespace URI has already been registered. """ pass def registerNamespaceAlias(namespace_uri, alias): """ Registers a (namespace URI, alias) mapping in a global namespace alias map. Raises NamespaceAliasRegistrationError if either the namespace URI or alias has already been registered with a different value. This function is required if you want to use a namespace with an OpenID 1 message. """ global registered_aliases if registered_aliases.get(alias) == namespace_uri: return if namespace_uri in registered_aliases.values(): raise NamespaceAliasRegistrationError, \ 'Namespace uri %r already registered' % (namespace_uri,) if alias in registered_aliases: raise NamespaceAliasRegistrationError, \ 'Alias %r already registered' % (alias,) registered_aliases[alias] = namespace_uri class Message(object): """ In the implementation of this object, None represents the global namespace as well as a namespace with no key. @cvar namespaces: A dictionary specifying specific namespace-URI to alias mappings that should be used when generating namespace aliases. @ivar ns_args: two-level dictionary of the values in this message, grouped by namespace URI. The first level is the namespace URI. """ allowed_openid_namespaces = [OPENID1_NS, OPENID2_NS] def __init__(self, openid_namespace=None): """Create an empty Message""" self.args = {} self.namespaces = NamespaceMap() if openid_namespace is None: self._openid_ns_uri = None else: self.setOpenIDNamespace(openid_namespace) def fromPostArgs(cls, args): """Construct a Message containing a set of POST arguments""" self = cls() # Partition into "openid." args and bare args openid_args = {} for key, value in args.iteritems(): if isinstance(value, list): raise TypeError("query dict must have one value for each key, " "not lists of values. Query is %r" % (args,)) try: prefix, rest = key.split('.', 1) except ValueError: prefix = None if prefix != 'openid': self.args[(BARE_NS, key)] = value else: openid_args[rest] = value self._fromOpenIDArgs(openid_args) return self fromPostArgs = classmethod(fromPostArgs) def fromOpenIDArgs(cls, openid_args): """Construct a Message from a parsed KVForm message""" self = cls() self._fromOpenIDArgs(openid_args) return self fromOpenIDArgs = classmethod(fromOpenIDArgs) def _fromOpenIDArgs(self, openid_args): global registered_aliases ns_args = [] # Resolve namespaces for rest, value in openid_args.iteritems(): try: ns_alias, ns_key = rest.split('.', 1) except ValueError: ns_alias = NULL_NAMESPACE ns_key = rest if ns_alias == 'ns': self.namespaces.addAlias(value, ns_key) elif ns_alias == NULL_NAMESPACE and ns_key == 'ns': # null namespace self.namespaces.addAlias(value, NULL_NAMESPACE) else: ns_args.append((ns_alias, ns_key, value)) # Ensure that there is an OpenID namespace definition openid_ns_uri = self.namespaces.getNamespaceURI(NULL_NAMESPACE) if openid_ns_uri is None: openid_ns_uri = OPENID1_NS self.setOpenIDNamespace(openid_ns_uri) # Actually put the pairs into the appropriate namespaces for (ns_alias, ns_key, value) in ns_args: ns_uri = self.namespaces.getNamespaceURI(ns_alias) if ns_uri is None: # Only try to map an alias to a default if it's an # OpenID 1.x message. if openid_ns_uri == OPENID1_NS: for _alias, _uri in registered_aliases.iteritems(): if _alias == ns_alias: ns_uri = _uri break if ns_uri is None: ns_uri = openid_ns_uri ns_key = '%s.%s' % (ns_alias, ns_key) else: self.namespaces.addAlias(ns_uri, ns_alias) self.setArg(ns_uri, ns_key, value) def setOpenIDNamespace(self, openid_ns_uri): if openid_ns_uri not in self.allowed_openid_namespaces: raise ValueError('Invalid null namespace: %r' % (openid_ns_uri,)) self.namespaces.addAlias(openid_ns_uri, NULL_NAMESPACE) self._openid_ns_uri = openid_ns_uri def getOpenIDNamespace(self): return self._openid_ns_uri def isOpenID1(self): return self.getOpenIDNamespace() == OPENID1_NS def isOpenID2(self): return self.getOpenIDNamespace() == OPENID2_NS def fromKVForm(cls, kvform_string): """Create a Message from a KVForm string""" return cls.fromOpenIDArgs(kvform.kvToDict(kvform_string)) fromKVForm = classmethod(fromKVForm) def copy(self): return copy.deepcopy(self) def toPostArgs(self): """Return all arguments with openid. in front of namespaced arguments. """ args = {} # Add namespace definitions to the output for ns_uri, alias in self.namespaces.iteritems(): if alias == NULL_NAMESPACE: if ns_uri != OPENID1_NS: args['openid.ns'] = ns_uri else: # drop the default null namespace definition. This # potentially changes a message since we have no # way of knowing whether it was explicitly # specified at the time the message was # parsed. The vast majority of the time, this will # be the right thing to do. Possibly this could # look in the signed list. pass else: if self.getOpenIDNamespace() != OPENID1_NS: ns_key = 'openid.ns.' + alias args[ns_key] = ns_uri for (ns_uri, ns_key), value in self.args.iteritems(): key = self.getKey(ns_uri, ns_key) args[key] = value return args def toArgs(self): """Return all namespaced arguments, failing if any non-namespaced arguments exist.""" # FIXME - undocumented exception post_args = self.toPostArgs() kvargs = {} for k, v in post_args.iteritems(): if not k.startswith('openid.'): raise ValueError( 'This message can only be encoded as a POST, because it ' 'contains arguments that are not prefixed with "openid."') else: kvargs[k[7:]] = v return kvargs def toFormMarkup(self, action_url, form_tag_attrs=None, submit_text="Continue"): """Generate HTML form markup that contains the values in this message, to be HTTP POSTed as x-www-form-urlencoded UTF-8. @param action_url: The URL to which the form will be POSTed @type action_url: str @param form_tag_attrs: Dictionary of attributes to be added to the form tag. 'accept-charset' and 'enctype' have defaults that can be overridden. If a value is supplied for 'action' or 'method', it will be replaced. @type form_tag_attrs: {unicode: unicode} @param submit_text: The text that will appear on the submit button for this form. @type submit_text: unicode @returns: A string containing (X)HTML markup for a form that encodes the values in this Message object. @rtype: str or unicode """ if ElementTree is None: raise RuntimeError('This function requires ElementTree.') form = ElementTree.Element('form') if form_tag_attrs: for name, attr in form_tag_attrs.iteritems(): form.attrib[name] = attr form.attrib['action'] = action_url form.attrib['method'] = 'post' form.attrib['accept-charset'] = 'UTF-8' form.attrib['enctype'] = 'application/x-www-form-urlencoded' for name, value in self.toPostArgs().iteritems(): attrs = {'type': 'hidden', 'name': name, 'value': value} form.append(ElementTree.Element('input', attrs)) submit = ElementTree.Element( 'input', {'type':'submit', 'value':submit_text}) form.append(submit) return ElementTree.tostring(form) def toURL(self, base_url): """Generate a GET URL with the parameters in this message attached as query parameters.""" return oidutil.appendArgs(base_url, self.toPostArgs()) def toKVForm(self): """Generate a KVForm string that contains the parameters in this message. This will fail if the message contains arguments outside of the 'openid.' prefix. """ return kvform.dictToKV(self.toArgs()) def toURLEncoded(self): """Generate an x-www-urlencoded string""" args = self.toPostArgs().items() args.sort() return urllib.urlencode(args) def _fixNS(self, namespace): """Convert an input value into the internally used values of this object @param namespace: The string or constant to convert @type namespace: str or unicode or BARE_NS or OPENID_NS """ if namespace == OPENID_NS: if self._openid_ns_uri is None: raise UndefinedOpenIDNamespace('OpenID namespace not set') else: namespace = self._openid_ns_uri if namespace != BARE_NS and type(namespace) not in [str, unicode]: raise TypeError( "Namespace must be BARE_NS, OPENID_NS or a string. got %r" % (namespace,)) if namespace != BARE_NS and ':' not in namespace: fmt = 'OpenID 2.0 namespace identifiers SHOULD be URIs. Got %r' warnings.warn(fmt % (namespace,), DeprecationWarning) if namespace == 'sreg': fmt = 'Using %r instead of "sreg" as namespace' warnings.warn(fmt % (SREG_URI,), DeprecationWarning,) return SREG_URI return namespace def hasKey(self, namespace, ns_key): namespace = self._fixNS(namespace) return (namespace, ns_key) in self.args def getKey(self, namespace, ns_key): """Get the key for a particular namespaced argument""" namespace = self._fixNS(namespace) if namespace == BARE_NS: return ns_key ns_alias = self.namespaces.getAlias(namespace) # No alias is defined, so no key can exist if ns_alias is None: return None if ns_alias == NULL_NAMESPACE: tail = ns_key else: tail = '%s.%s' % (ns_alias, ns_key) return 'openid.' + tail def getArg(self, namespace, key, default=None): """Get a value for a namespaced key. @param namespace: The namespace in the message for this key @type namespace: str @param key: The key to get within this namespace @type key: str @param default: The value to use if this key is absent from this message. Using the special value openid.message.no_default will result in this method raising a KeyError instead of returning the default. @rtype: str or the type of default @raises KeyError: if default is no_default @raises UndefinedOpenIDNamespace: if the message has not yet had an OpenID namespace set """ namespace = self._fixNS(namespace) args_key = (namespace, key) try: return self.args[args_key] except KeyError: if default is no_default: raise KeyError((namespace, key)) else: return default def getArgs(self, namespace): """Get the arguments that are defined for this namespace URI @returns: mapping from namespaced keys to values @returntype: dict """ namespace = self._fixNS(namespace) return dict([ (ns_key, value) for ((pair_ns, ns_key), value) in self.args.iteritems() if pair_ns == namespace ]) def updateArgs(self, namespace, updates): """Set multiple key/value pairs in one call @param updates: The values to set @type updates: {unicode:unicode} """ namespace = self._fixNS(namespace) for k, v in updates.iteritems(): self.setArg(namespace, k, v) def setArg(self, namespace, key, value): """Set a single argument in this namespace""" assert key is not None assert value is not None namespace = self._fixNS(namespace) self.args[(namespace, key)] = value if not (namespace is BARE_NS): self.namespaces.add(namespace) def delArg(self, namespace, key): namespace = self._fixNS(namespace) del self.args[(namespace, key)] def __repr__(self): return "<%s.%s %r>" % (self.__class__.__module__, self.__class__.__name__, self.args) def __eq__(self, other): return self.args == other.args def __ne__(self, other): return not (self == other) def getAliasedArg(self, aliased_key, default=None): if aliased_key == 'ns': return self.getOpenIDNamespace() if aliased_key.startswith('ns.'): uri = self.namespaces.getNamespaceURI(aliased_key[3:]) if uri is None: return default else: return uri try: alias, key = aliased_key.split('.', 1) except ValueError: # need more than x values to unpack ns = None else: ns = self.namespaces.getNamespaceURI(alias) if ns is None: key = aliased_key ns = self.getOpenIDNamespace() return self.getArg(ns, key, default) class NamespaceMap(object): """Maintains a bijective map between namespace uris and aliases. """ def __init__(self): self.alias_to_namespace = {} self.namespace_to_alias = {} def getAlias(self, namespace_uri): return self.namespace_to_alias.get(namespace_uri) def getNamespaceURI(self, alias): return self.alias_to_namespace.get(alias) def iterNamespaceURIs(self): """Return an iterator over the namespace URIs""" return iter(self.namespace_to_alias) def iterAliases(self): """Return an iterator over the aliases""" return iter(self.alias_to_namespace) def iteritems(self): """Iterate over the mapping @returns: iterator of (namespace_uri, alias) """ return self.namespace_to_alias.iteritems() def addAlias(self, namespace_uri, desired_alias): """Add an alias from this namespace URI to the desired alias """ # Check that desired_alias is not an openid protocol field as # per the spec. assert desired_alias not in OPENID_PROTOCOL_FIELDS, \ "%r is not an allowed namespace alias" % (desired_alias,) # Check that desired_alias does not contain a period as per # the spec. if type(desired_alias) in [str, unicode]: assert '.' not in desired_alias, \ "%r must not contain a dot" % (desired_alias,) # Check that there is not a namespace already defined for # the desired alias current_namespace_uri = self.alias_to_namespace.get(desired_alias) if (current_namespace_uri is not None and current_namespace_uri != namespace_uri): fmt = ('Cannot map %r to alias %r. ' '%r is already mapped to alias %r') msg = fmt % ( namespace_uri, desired_alias, current_namespace_uri, desired_alias) raise KeyError(msg) # Check that there is not already a (different) alias for # this namespace URI alias = self.namespace_to_alias.get(namespace_uri) if alias is not None and alias != desired_alias: fmt = ('Cannot map %r to alias %r. ' 'It is already mapped to alias %r') raise KeyError(fmt % (namespace_uri, desired_alias, alias)) assert (desired_alias == NULL_NAMESPACE or type(desired_alias) in [str, unicode]), repr(desired_alias) self.alias_to_namespace[desired_alias] = namespace_uri self.namespace_to_alias[namespace_uri] = desired_alias return desired_alias def add(self, namespace_uri): """Add this namespace URI to the mapping, without caring what alias it ends up with""" # See if this namespace is already mapped to an alias alias = self.namespace_to_alias.get(namespace_uri) if alias is not None: return alias # Fall back to generating a numerical alias i = 0 while True: alias = 'ext' + str(i) try: self.addAlias(namespace_uri, alias) except KeyError: i += 1 else: return alias assert False, "Not reached" def isDefined(self, namespace_uri): return namespace_uri in self.namespace_to_alias def __contains__(self, namespace_uri): return self.isDefined(namespace_uri) ########NEW FILE######## __FILENAME__ = oidutil """This module contains general utility code that is used throughout the library. For users of this library, the C{L{log}} function is probably the most interesting. """ __all__ = ['log', 'appendArgs', 'toBase64', 'fromBase64'] import binascii import sys import urlparse from urllib import urlencode elementtree_modules = [ 'lxml.etree', 'xml.etree.cElementTree', 'xml.etree.ElementTree', 'cElementTree', 'elementtree.ElementTree', ] def importElementTree(module_names=None): """Find a working ElementTree implementation, trying the standard places that such a thing might show up. >>> ElementTree = importElementTree() @param module_names: The names of modules to try to use as ElementTree. Defaults to C{L{elementtree_modules}} @returns: An ElementTree module """ if module_names is None: module_names = elementtree_modules for mod_name in module_names: try: ElementTree = __import__(mod_name, None, None, ['unused']) except ImportError: pass else: # Make sure it can actually parse XML try: ElementTree.XML('<unused/>') except (SystemExit, MemoryError, AssertionError): raise except: why = sys.exc_info()[1] log('Not using ElementTree library %r because it failed to ' 'parse a trivial document: %s' % (mod_name, why)) else: return ElementTree else: raise def log(message, level=0): """Handle a log message from the OpenID library. This implementation writes the string it to C{sys.stderr}, followed by a newline. Currently, the library does not use the second parameter to this function, but that may change in the future. To install your own logging hook:: from openid import oidutil def myLoggingFunction(message, level): ... oidutil.log = myLoggingFunction @param message: A string containing a debugging message from the OpenID library @type message: str @param level: The severity of the log message. This parameter is currently unused, but in the future, the library may indicate more important information with a higher level value. @type level: int or None @returns: Nothing. """ sys.stderr.write(message) sys.stderr.write('\n') def appendArgs(url, args): """Append query arguments to a HTTP(s) URL. If the URL already has query arguemtns, these arguments will be added, and the existing arguments will be preserved. Duplicate arguments will not be detected or collapsed (both will appear in the output). @param url: The url to which the arguments will be appended @type url: str @param args: The query arguments to add to the URL. If a dictionary is passed, the items will be sorted before appending them to the URL. If a sequence of pairs is passed, the order of the sequence will be preserved. @type args: A dictionary from string to string, or a sequence of pairs of strings. @returns: The URL with the parameters added @rtype: str """ if hasattr(args, 'items'): args = args.items() args.sort() else: args = list(args) if len(args) == 0: return url if '?' in url: sep = '&' else: sep = '?' # Map unicode to UTF-8 if present. Do not make any assumptions # about the encodings of plain bytes (str). i = 0 for k, v in args: if type(k) is not str: k = k.encode('UTF-8') if type(v) is not str: v = v.encode('UTF-8') args[i] = (k, v) i += 1 return '%s%s%s' % (url, sep, urlencode(args)) def toBase64(s): """Represent string s as base64, omitting newlines""" return binascii.b2a_base64(s)[:-1] def fromBase64(s): try: return binascii.a2b_base64(s) except binascii.Error, why: # Convert to a common exception type raise ValueError(why[0]) def isAbsoluteHTTPURL(url): """Does this URL look like a http or https URL that has a host? @param url: The url to check @type url: str @return: Whether the URL looks OK @rtype: bool """ parts = urlparse.urlparse(url) return parts[0] in ['http', 'https'] and parts[1] class Symbol(object): """This class implements an object that compares equal to others of the same type that have the same name. These are distict from str or unicode objects. """ def __init__(self, name): self.name = name def __eq__(self, other): return type(self) is type(other) and self.name == other.name def __ne__(self, other): return not (self == other) def __hash__(self): return hash((self.__class__, self.name)) def __repr__(self): return '<Symbol %s>' % (self.name,) ########NEW FILE######## __FILENAME__ = sreg """moved to L{openid.extensions.sreg}""" import warnings warnings.warn("openid.sreg has moved to openid.extensions.sreg", DeprecationWarning) from openid.extensions.sreg import * ########NEW FILE######## __FILENAME__ = filestore """ This module contains an C{L{OpenIDStore}} implementation backed by flat files. """ import string import os import os.path import time from errno import EEXIST, ENOENT try: from tempfile import mkstemp except ImportError: # Python < 2.3 import warnings warnings.filterwarnings("ignore", "tempnam is a potential security risk", RuntimeWarning, "openid.store.filestore") def mkstemp(dir): for _ in range(5): name = os.tempnam(dir) try: fd = os.open(name, os.O_CREAT | os.O_EXCL | os.O_RDWR, 0600) except OSError, why: if why.errno != EEXIST: raise else: return fd, name raise RuntimeError('Failed to get temp file after 5 attempts') from openid.association import Association from openid.store.interface import OpenIDStore from openid.store import nonce from openid import cryptutil, oidutil _filename_allowed = string.ascii_letters + string.digits + '.' try: # 2.4 set except NameError: try: # 2.3 import sets except ImportError: # Python < 2.2 d = {} for c in _filename_allowed: d[c] = None _isFilenameSafe = d.has_key del d else: _isFilenameSafe = sets.Set(_filename_allowed).__contains__ else: _isFilenameSafe = set(_filename_allowed).__contains__ def _safe64(s): h64 = oidutil.toBase64(cryptutil.sha1(s)) h64 = h64.replace('+', '_') h64 = h64.replace('/', '.') h64 = h64.replace('=', '') return h64 def _filenameEscape(s): filename_chunks = [] for c in s: if _isFilenameSafe(c): filename_chunks.append(c) else: filename_chunks.append('_%02X' % ord(c)) return ''.join(filename_chunks) def _removeIfPresent(filename): """Attempt to remove a file, returning whether the file existed at the time of the call. str -> bool """ try: os.unlink(filename) except OSError, why: if why.errno == ENOENT: # Someone beat us to it, but it's gone, so that's OK return 0 else: raise else: # File was present return 1 def _ensureDir(dir_name): """Create dir_name as a directory if it does not exist. If it exists, make sure that it is, in fact, a directory. Can raise OSError str -> NoneType """ try: os.makedirs(dir_name) except OSError, why: if why.errno != EEXIST or not os.path.isdir(dir_name): raise class FileOpenIDStore(OpenIDStore): """ This is a filesystem-based store for OpenID associations and nonces. This store should be safe for use in concurrent systems on both windows and unix (excluding NFS filesystems). There are a couple race conditions in the system, but those failure cases have been set up in such a way that the worst-case behavior is someone having to try to log in a second time. Most of the methods of this class are implementation details. People wishing to just use this store need only pay attention to the C{L{__init__}} method. Methods of this object can raise OSError if unexpected filesystem conditions, such as bad permissions or missing directories, occur. """ def __init__(self, directory): """ Initializes a new FileOpenIDStore. This initializes the nonce and association directories, which are subdirectories of the directory passed in. @param directory: This is the directory to put the store directories in. @type directory: C{str} """ # Make absolute directory = os.path.normpath(os.path.abspath(directory)) self.nonce_dir = os.path.join(directory, 'nonces') self.association_dir = os.path.join(directory, 'associations') # Temp dir must be on the same filesystem as the assciations # directory self.temp_dir = os.path.join(directory, 'temp') self.max_nonce_age = 6 * 60 * 60 # Six hours, in seconds self._setup() def _setup(self): """Make sure that the directories in which we store our data exist. () -> NoneType """ _ensureDir(self.nonce_dir) _ensureDir(self.association_dir) _ensureDir(self.temp_dir) def _mktemp(self): """Create a temporary file on the same filesystem as self.association_dir. The temporary directory should not be cleaned if there are any processes using the store. If there is no active process using the store, it is safe to remove all of the files in the temporary directory. () -> (file, str) """ fd, name = mkstemp(dir=self.temp_dir) try: file_obj = os.fdopen(fd, 'wb') return file_obj, name except: _removeIfPresent(name) raise def getAssociationFilename(self, server_url, handle): """Create a unique filename for a given server url and handle. This implementation does not assume anything about the format of the handle. The filename that is returned will contain the domain name from the server URL for ease of human inspection of the data directory. (str, str) -> str """ if server_url.find('://') == -1: raise ValueError('Bad server URL: %r' % server_url) proto, rest = server_url.split('://', 1) domain = _filenameEscape(rest.split('/', 1)[0]) url_hash = _safe64(server_url) if handle: handle_hash = _safe64(handle) else: handle_hash = '' filename = '%s-%s-%s-%s' % (proto, domain, url_hash, handle_hash) oidutil.log('filename for %s %s is %s' % (server_url, handle, filename)) return os.path.join(self.association_dir, filename) def storeAssociation(self, server_url, association): """Store an association in the association directory. (str, Association) -> NoneType """ association_s = association.serialize() filename = self.getAssociationFilename(server_url, association.handle) tmp_file, tmp = self._mktemp() try: try: tmp_file.write(association_s) os.fsync(tmp_file.fileno()) finally: tmp_file.close() try: os.rename(tmp, filename) except OSError, why: if why.errno != EEXIST: raise # We only expect EEXIST to happen only on Windows. It's # possible that we will succeed in unlinking the existing # file, but not in putting the temporary file in place. try: os.unlink(filename) except OSError, why: if why.errno == ENOENT: pass else: raise # Now the target should not exist. Try renaming again, # giving up if it fails. os.rename(tmp, filename) except: # If there was an error, don't leave the temporary file # around. _removeIfPresent(tmp) raise def getAssociation(self, server_url, handle=None): """Retrieve an association. If no handle is specified, return the association with the latest expiration. (str, str or NoneType) -> Association or NoneType """ oidutil.log('getting association %s for url %s' % (handle, server_url)) if handle is None: handle = '' # The filename with the empty handle is a prefix of all other # associations for the given server URL. filename = self.getAssociationFilename(server_url, handle) if handle: return self._getAssociation(filename) else: association_files = os.listdir(self.association_dir) matching_files = [] # strip off the path to do the comparison name = os.path.basename(filename) for association_file in association_files: if association_file.startswith(name): matching_files.append(association_file) matching_associations = [] # read the matching files and sort by time issued for name in matching_files: full_name = os.path.join(self.association_dir, name) association = self._getAssociation(full_name) if association is not None: matching_associations.append( (association.issued, association)) matching_associations.sort() # return the most recently issued one. if matching_associations: (_, assoc) = matching_associations[-1] return assoc else: return None def _getAssociation(self, filename): oidutil.log('getting association from file %s' % filename) try: assoc_file = file(filename, 'rb') except IOError, why: if why.errno == ENOENT: # No association exists for that URL and handle return None else: raise else: try: assoc_s = assoc_file.read() finally: assoc_file.close() try: association = Association.deserialize(assoc_s) oidutil.log('got association %s' % association) except ValueError: _removeIfPresent(filename) return None # Clean up expired associations if association.getExpiresIn() == 0: _removeIfPresent(filename) oidutil.log('association expired') return None else: return association def removeAssociation(self, server_url, handle): """Remove an association if it exists. Do nothing if it does not. (str, str) -> bool """ assoc = self.getAssociation(server_url, handle) if assoc is None: return 0 else: filename = self.getAssociationFilename(server_url, handle) return _removeIfPresent(filename) def useNonce(self, server_url, timestamp, salt): """Return whether this nonce is valid. str -> bool """ if abs(timestamp - time.time()) > nonce.SKEW: return False if server_url: proto, rest = server_url.split('://', 1) else: # Create empty proto / rest values for empty server_url, # which is part of a consumer-generated nonce. proto, rest = '', '' domain = _filenameEscape(rest.split('/', 1)[0]) url_hash = _safe64(server_url) salt_hash = _safe64(salt) filename = '%08x-%s-%s-%s-%s' % (timestamp, proto, domain, url_hash, salt_hash) filename = os.path.join(self.nonce_dir, filename) try: fd = os.open(filename, os.O_CREAT | os.O_EXCL | os.O_WRONLY, 0200) except OSError, why: if why.errno == EEXIST: return False else: raise else: os.close(fd) return True def _allAssocs(self): all_associations = [] association_filenames = map( lambda filename: os.path.join(self.association_dir, filename), os.listdir(self.association_dir)) for association_filename in association_filenames: try: association_file = file(association_filename, 'rb') except IOError, why: if why.errno == ENOENT: oidutil.log("%s disappeared during %s._allAssocs" % ( association_filename, self.__class__.__name__)) else: raise else: try: assoc_s = association_file.read() finally: association_file.close() # Remove expired or corrupted associations try: association = Association.deserialize(assoc_s) except ValueError: _removeIfPresent(association_filename) else: all_associations.append( (association_filename, association)) return all_associations def cleanup(self): """Remove expired entries from the database. This is potentially expensive, so only run when it is acceptable to take time. () -> NoneType """ self.cleanupAssociations() self.cleanupNonces() def cleanupAssociations(self): removed = 0 for assoc_filename, assoc in self._allAssocs(): if assoc.getExpiresIn() == 0: _removeIfPresent(assoc_filename) removed += 1 return removed def cleanupNonces(self): nonces = os.listdir(self.nonce_dir) now = time.time() removed = 0 # Check all nonces for expiry for nonce_fname in nonces: timestamp = nonce_fname.split('-', 1)[0] timestamp = int(timestamp, 16) if abs(timestamp - now) > nonce.SKEW: filename = os.path.join(self.nonce_dir, nonce_fname) _removeIfPresent(filename) removed += 1 return removed ########NEW FILE######## __FILENAME__ = interface """ This module contains the definition of the C{L{OpenIDStore}} interface. """ class OpenIDStore(object): """ This is the interface for the store objects the OpenID library uses. It is a single class that provides all of the persistence mechanisms that the OpenID library needs, for both servers and consumers. @change: Version 2.0 removed the C{storeNonce}, C{getAuthKey}, and C{isDumb} methods, and changed the behavior of the C{L{useNonce}} method to support one-way nonces. It added C{L{cleanupNonces}}, C{L{cleanupAssociations}}, and C{L{cleanup}}. @sort: storeAssociation, getAssociation, removeAssociation, useNonce """ def storeAssociation(self, server_url, association): """ This method puts a C{L{Association <openid.association.Association>}} object into storage, retrievable by server URL and handle. @param server_url: The URL of the identity server that this association is with. Because of the way the server portion of the library uses this interface, don't assume there are any limitations on the character set of the input string. In particular, expect to see unescaped non-url-safe characters in the server_url field. @type server_url: C{str} @param association: The C{L{Association <openid.association.Association>}} to store. @type association: C{L{Association <openid.association.Association>}} @return: C{None} @rtype: C{NoneType} """ raise NotImplementedError def getAssociation(self, server_url, handle=None): """ This method returns an C{L{Association <openid.association.Association>}} object from storage that matches the server URL and, if specified, handle. It returns C{None} if no such association is found or if the matching association is expired. If no handle is specified, the store may return any association which matches the server URL. If multiple associations are valid, the recommended return value for this method is the one most recently issued. This method is allowed (and encouraged) to garbage collect expired associations when found. This method must not return expired associations. @param server_url: The URL of the identity server to get the association for. Because of the way the server portion of the library uses this interface, don't assume there are any limitations on the character set of the input string. In particular, expect to see unescaped non-url-safe characters in the server_url field. @type server_url: C{str} @param handle: This optional parameter is the handle of the specific association to get. If no specific handle is provided, any valid association matching the server URL is returned. @type handle: C{str} or C{NoneType} @return: The C{L{Association <openid.association.Association>}} for the given identity server. @rtype: C{L{Association <openid.association.Association>}} or C{NoneType} """ raise NotImplementedError def removeAssociation(self, server_url, handle): """ This method removes the matching association if it's found, and returns whether the association was removed or not. @param server_url: The URL of the identity server the association to remove belongs to. Because of the way the server portion of the library uses this interface, don't assume there are any limitations on the character set of the input string. In particular, expect to see unescaped non-url-safe characters in the server_url field. @type server_url: C{str} @param handle: This is the handle of the association to remove. If there isn't an association found that matches both the given URL and handle, then there was no matching handle found. @type handle: C{str} @return: Returns whether or not the given association existed. @rtype: C{bool} or C{int} """ raise NotImplementedError def useNonce(self, server_url, timestamp, salt): """Called when using a nonce. This method should return C{True} if the nonce has not been used before, and store it for a while to make sure nobody tries to use the same value again. If the nonce has already been used or the timestamp is not current, return C{False}. You may use L{openid.store.nonce.SKEW} for your timestamp window. @change: In earlier versions, round-trip nonces were used and a nonce was only valid if it had been previously stored with C{storeNonce}. Version 2.0 uses one-way nonces, requiring a different implementation here that does not depend on a C{storeNonce} call. (C{storeNonce} is no longer part of the interface.) @param server_url: The URL of the server from which the nonce originated. @type server_url: C{str} @param timestamp: The time that the nonce was created (to the nearest second), in seconds since January 1 1970 UTC. @type timestamp: C{int} @param salt: A random string that makes two nonces from the same server issued during the same second unique. @type salt: str @return: Whether or not the nonce was valid. @rtype: C{bool} """ raise NotImplementedError def cleanupNonces(self): """Remove expired nonces from the store. Discards any nonce from storage that is old enough that its timestamp would not pass L{useNonce}. This method is not called in the normal operation of the library. It provides a way for store admins to keep their storage from filling up with expired data. @return: the number of nonces expired. @returntype: int """ raise NotImplementedError def cleanupAssociations(self): """Remove expired associations from the store. This method is not called in the normal operation of the library. It provides a way for store admins to keep their storage from filling up with expired data. @return: the number of associations expired. @returntype: int """ raise NotImplementedError def cleanup(self): """Shortcut for C{L{cleanupNonces}()}, C{L{cleanupAssociations}()}. This method is not called in the normal operation of the library. It provides a way for store admins to keep their storage from filling up with expired data. """ return self.cleanupNonces(), self.cleanupAssociations() ########NEW FILE######## __FILENAME__ = memstore """A simple store using only in-process memory.""" from openid.store import nonce import copy import time class ServerAssocs(object): def __init__(self): self.assocs = {} def set(self, assoc): self.assocs[assoc.handle] = assoc def get(self, handle): return self.assocs.get(handle) def remove(self, handle): try: del self.assocs[handle] except KeyError: return False else: return True def best(self): """Returns association with the oldest issued date. or None if there are no associations. """ best = None for assoc in self.assocs.values(): if best is None or best.issued < assoc.issued: best = assoc return best def cleanup(self): """Remove expired associations. @return: tuple of (removed associations, remaining associations) """ remove = [] for handle, assoc in self.assocs.iteritems(): if assoc.getExpiresIn() == 0: remove.append(handle) for handle in remove: del self.assocs[handle] return len(remove), len(self.assocs) class MemoryStore(object): """In-process memory store. Use for single long-running processes. No persistence supplied. """ def __init__(self): self.server_assocs = {} self.nonces = {} def _getServerAssocs(self, server_url): try: return self.server_assocs[server_url] except KeyError: assocs = self.server_assocs[server_url] = ServerAssocs() return assocs def storeAssociation(self, server_url, assoc): assocs = self._getServerAssocs(server_url) assocs.set(copy.deepcopy(assoc)) def getAssociation(self, server_url, handle=None): assocs = self._getServerAssocs(server_url) if handle is None: return assocs.best() else: return assocs.get(handle) def removeAssociation(self, server_url, handle): assocs = self._getServerAssocs(server_url) return assocs.remove(handle) def useNonce(self, server_url, timestamp, salt): if abs(timestamp - time.time()) > nonce.SKEW: return False anonce = (str(server_url), int(timestamp), str(salt)) if anonce in self.nonces: return False else: self.nonces[anonce] = None return True def cleanupNonces(self): now = time.time() expired = [] for anonce in self.nonces.iterkeys(): if abs(anonce[1] - now) > nonce.SKEW: # removing items while iterating over the set could be bad. expired.append(anonce) for anonce in expired: del self.nonces[anonce] return len(expired) def cleanupAssociations(self): remove_urls = [] removed_assocs = 0 for server_url, assocs in self.server_assocs.iteritems(): removed, remaining = assocs.cleanup() removed_assocs += removed if not remaining: remove_urls.append(server_url) # Remove entries from server_assocs that had none remaining. for server_url in remove_urls: del self.server_assocs[server_url] return removed_assocs def __eq__(self, other): return ((self.server_assocs == other.server_assocs) and (self.nonces == other.nonces)) def __ne__(self, other): return not (self == other) ########NEW FILE######## __FILENAME__ = nonce __all__ = [ 'split', 'mkNonce', 'checkTimestamp', ] from openid import cryptutil from time import strptime, strftime, gmtime, time from calendar import timegm import string NONCE_CHARS = string.ascii_letters + string.digits # Keep nonces for five hours (allow five hours for the combination of # request time and clock skew). This is probably way more than is # necessary, but there is not much overhead in storing nonces. SKEW = 60 * 60 * 5 time_fmt = '%Y-%m-%dT%H:%M:%SZ' time_str_len = len('0000-00-00T00:00:00Z') def split(nonce_string): """Extract a timestamp from the given nonce string @param nonce_string: the nonce from which to extract the timestamp @type nonce_string: str @returns: A pair of a Unix timestamp and the salt characters @returntype: (int, str) @raises ValueError: if the nonce does not start with a correctly formatted time string """ timestamp_str = nonce_string[:time_str_len] try: timestamp = timegm(strptime(timestamp_str, time_fmt)) except AssertionError: # Python 2.2 timestamp = -1 if timestamp < 0: raise ValueError('time out of range') return timestamp, nonce_string[time_str_len:] def checkTimestamp(nonce_string, allowed_skew=SKEW, now=None): """Is the timestamp that is part of the specified nonce string within the allowed clock-skew of the current time? @param nonce_string: The nonce that is being checked @type nonce_string: str @param allowed_skew: How many seconds should be allowed for completing the request, allowing for clock skew. @type allowed_skew: int @param now: The current time, as a Unix timestamp @type now: int @returntype: bool @returns: Whether the timestamp is correctly formatted and within the allowed skew of the current time. """ try: stamp, _ = split(nonce_string) except ValueError: return False else: if now is None: now = time() # Time after which we should not use the nonce past = now - allowed_skew # Time that is too far in the future for us to allow future = now + allowed_skew # the stamp is not too far in the future and is not too far in # the past return past <= stamp <= future def mkNonce(when=None): """Generate a nonce with the current timestamp @param when: Unix timestamp representing the issue time of the nonce. Defaults to the current time. @type when: int @returntype: str @returns: A string that should be usable as a one-way nonce @see: time """ salt = cryptutil.randomString(6, NONCE_CHARS) if when is None: t = gmtime() else: t = gmtime(when) time_str = strftime(time_fmt, t) return time_str + salt ########NEW FILE######## __FILENAME__ = sqlstore """ This module contains C{L{OpenIDStore}} implementations that use various SQL databases to back them. Example of how to initialize a store database:: python -c 'from openid.store import sqlstore; import pysqlite2.dbapi2; sqlstore.SQLiteStore(pysqlite2.dbapi2.connect("cstore.db")).createTables()' """ import re import time from openid.association import Association from openid.store.interface import OpenIDStore from openid.store import nonce def _inTxn(func): def wrapped(self, *args, **kwargs): return self._callInTransaction(func, self, *args, **kwargs) if hasattr(func, '__name__'): try: wrapped.__name__ = func.__name__[4:] except TypeError: pass if hasattr(func, '__doc__'): wrapped.__doc__ = func.__doc__ return wrapped class SQLStore(OpenIDStore): """ This is the parent class for the SQL stores, which contains the logic common to all of the SQL stores. The table names used are determined by the class variables C{L{settings_table}}, C{L{associations_table}}, and C{L{nonces_table}}. To change the name of the tables used, pass new table names into the constructor. To create the tables with the proper schema, see the C{L{createTables}} method. This class shouldn't be used directly. Use one of its subclasses instead, as those contain the code necessary to use a specific database. All methods other than C{L{__init__}} and C{L{createTables}} should be considered implementation details. @cvar settings_table: This is the default name of the table to keep this store's settings in. @cvar associations_table: This is the default name of the table to keep associations in @cvar nonces_table: This is the default name of the table to keep nonces in. @sort: __init__, createTables """ settings_table = 'oid_settings' associations_table = 'oid_associations' nonces_table = 'oid_nonces' def __init__(self, conn, settings_table=None, associations_table=None, nonces_table=None): """ This creates a new SQLStore instance. It requires an established database connection be given to it, and it allows overriding the default table names. @param conn: This must be an established connection to a database of the correct type for the SQLStore subclass you're using. @type conn: A python database API compatible connection object. @param settings_table: This is an optional parameter to specify the name of the table used for this store's settings. The default value is specified in C{L{SQLStore.settings_table}}. @type settings_table: C{str} @param associations_table: This is an optional parameter to specify the name of the table used for storing associations. The default value is specified in C{L{SQLStore.associations_table}}. @type associations_table: C{str} @param nonces_table: This is an optional parameter to specify the name of the table used for storing nonces. The default value is specified in C{L{SQLStore.nonces_table}}. @type nonces_table: C{str} """ self.conn = conn self.cur = None self._statement_cache = {} self._table_names = { 'settings': settings_table or self.settings_table, 'associations': associations_table or self.associations_table, 'nonces': nonces_table or self.nonces_table, } self.max_nonce_age = 6 * 60 * 60 # Six hours, in seconds # DB API extension: search for "Connection Attributes .Error, # .ProgrammingError, etc." in # http://www.python.org/dev/peps/pep-0249/ if (hasattr(self.conn, 'IntegrityError') and hasattr(self.conn, 'OperationalError')): self.exceptions = self.conn if not (hasattr(self.exceptions, 'IntegrityError') and hasattr(self.exceptions, 'OperationalError')): raise RuntimeError("Error using database connection module " "(Maybe it can't be imported?)") def blobDecode(self, blob): """Convert a blob as returned by the SQL engine into a str object. str -> str""" return blob def blobEncode(self, s): """Convert a str object into the necessary object for storing in the database as a blob.""" return s def _getSQL(self, sql_name): try: return self._statement_cache[sql_name] except KeyError: sql = getattr(self, sql_name) sql %= self._table_names self._statement_cache[sql_name] = sql return sql def _execSQL(self, sql_name, *args): sql = self._getSQL(sql_name) self.cur.execute(sql, args) def __getattr__(self, attr): # if the attribute starts with db_, use a default # implementation that looks up the appropriate SQL statement # as an attribute of this object and executes it. if attr[:3] == 'db_': sql_name = attr[3:] + '_sql' def func(*args): return self._execSQL(sql_name, *args) setattr(self, attr, func) return func else: raise AttributeError('Attribute %r not found' % (attr,)) def _callInTransaction(self, func, *args, **kwargs): """Execute the given function inside of a transaction, with an open cursor. If no exception is raised, the transaction is comitted, otherwise it is rolled back.""" # No nesting of transactions self.conn.rollback() try: self.cur = self.conn.cursor() try: ret = func(*args, **kwargs) finally: self.cur.close() self.cur = None except: self.conn.rollback() raise else: self.conn.commit() return ret def txn_createTables(self): """ This method creates the database tables necessary for this store to work. It should not be called if the tables already exist. """ self.db_create_nonce() self.db_create_assoc() self.db_create_settings() createTables = _inTxn(txn_createTables) def txn_storeAssociation(self, server_url, association): """Set the association for the server URL. Association -> NoneType """ a = association self.db_set_assoc( server_url, a.handle, self.blobEncode(a.secret), a.issued, a.lifetime, a.assoc_type) storeAssociation = _inTxn(txn_storeAssociation) def txn_getAssociation(self, server_url, handle=None): """Get the most recent association that has been set for this server URL and handle. str -> NoneType or Association """ if handle is not None: self.db_get_assoc(server_url, handle) else: self.db_get_assocs(server_url) rows = self.cur.fetchall() if len(rows) == 0: return None else: associations = [] for values in rows: assoc = Association(*values) assoc.secret = self.blobDecode(assoc.secret) if assoc.getExpiresIn() == 0: self.txn_removeAssociation(server_url, assoc.handle) else: associations.append((assoc.issued, assoc)) if associations: associations.sort() return associations[-1][1] else: return None getAssociation = _inTxn(txn_getAssociation) def txn_removeAssociation(self, server_url, handle): """Remove the association for the given server URL and handle, returning whether the association existed at all. (str, str) -> bool """ self.db_remove_assoc(server_url, handle) return self.cur.rowcount > 0 # -1 is undefined removeAssociation = _inTxn(txn_removeAssociation) def txn_useNonce(self, server_url, timestamp, salt): """Return whether this nonce is present, and if it is, then remove it from the set. str -> bool""" if abs(timestamp - time.time()) > nonce.SKEW: return False try: self.db_add_nonce(server_url, timestamp, salt) except self.exceptions.IntegrityError: # The key uniqueness check failed return False else: # The nonce was successfully added return True useNonce = _inTxn(txn_useNonce) def txn_cleanupNonces(self): self.db_clean_nonce(int(time.time()) - nonce.SKEW) return self.cur.rowcount cleanupNonces = _inTxn(txn_cleanupNonces) def txn_cleanupAssociations(self): self.db_clean_assoc(int(time.time())) return self.cur.rowcount cleanupAssociations = _inTxn(txn_cleanupAssociations) class SQLiteStore(SQLStore): """ This is an SQLite-based specialization of C{L{SQLStore}}. To create an instance, see C{L{SQLStore.__init__}}. To create the tables it will use, see C{L{SQLStore.createTables}}. All other methods are implementation details. """ create_nonce_sql = """ CREATE TABLE %(nonces)s ( server_url VARCHAR, timestamp INTEGER, salt CHAR(40), UNIQUE(server_url, timestamp, salt) ); """ create_assoc_sql = """ CREATE TABLE %(associations)s ( server_url VARCHAR(2047), handle VARCHAR(255), secret BLOB(128), issued INTEGER, lifetime INTEGER, assoc_type VARCHAR(64), PRIMARY KEY (server_url, handle) ); """ create_settings_sql = """ CREATE TABLE %(settings)s ( setting VARCHAR(128) UNIQUE PRIMARY KEY, value BLOB(20) ); """ set_assoc_sql = ('INSERT OR REPLACE INTO %(associations)s ' 'VALUES (?, ?, ?, ?, ?, ?);') get_assocs_sql = ('SELECT handle, secret, issued, lifetime, assoc_type ' 'FROM %(associations)s WHERE server_url = ?;') get_assoc_sql = ( 'SELECT handle, secret, issued, lifetime, assoc_type ' 'FROM %(associations)s WHERE server_url = ? AND handle = ?;') get_expired_sql = ('SELECT server_url ' 'FROM %(associations)s WHERE issued + lifetime < ?;') remove_assoc_sql = ('DELETE FROM %(associations)s ' 'WHERE server_url = ? AND handle = ?;') clean_assoc_sql = 'DELETE FROM %(associations)s WHERE issued + lifetime < ?;' add_nonce_sql = 'INSERT INTO %(nonces)s VALUES (?, ?, ?);' clean_nonce_sql = 'DELETE FROM %(nonces)s WHERE timestamp < ?;' def blobDecode(self, buf): return str(buf) def blobEncode(self, s): return buffer(s) def useNonce(self, *args, **kwargs): # Older versions of the sqlite wrapper do not raise # IntegrityError as they should, so we have to detect the # message from the OperationalError. try: return super(SQLiteStore, self).useNonce(*args, **kwargs) except self.exceptions.OperationalError, why: if re.match('^columns .* are not unique$', why[0]): return False else: raise class MySQLStore(SQLStore): """ This is a MySQL-based specialization of C{L{SQLStore}}. Uses InnoDB tables for transaction support. To create an instance, see C{L{SQLStore.__init__}}. To create the tables it will use, see C{L{SQLStore.createTables}}. All other methods are implementation details. """ try: import MySQLdb as exceptions except ImportError: exceptions = None create_nonce_sql = """ CREATE TABLE %(nonces)s ( server_url BLOB, timestamp INTEGER, salt CHAR(40), PRIMARY KEY (server_url(255), timestamp, salt) ) TYPE=InnoDB; """ create_assoc_sql = """ CREATE TABLE %(associations)s ( server_url BLOB, handle VARCHAR(255), secret BLOB, issued INTEGER, lifetime INTEGER, assoc_type VARCHAR(64), PRIMARY KEY (server_url(255), handle) ) TYPE=InnoDB; """ create_settings_sql = """ CREATE TABLE %(settings)s ( setting VARCHAR(128) UNIQUE PRIMARY KEY, value BLOB ) TYPE=InnoDB; """ set_assoc_sql = ('REPLACE INTO %(associations)s ' 'VALUES (%%s, %%s, %%s, %%s, %%s, %%s);') get_assocs_sql = ('SELECT handle, secret, issued, lifetime, assoc_type' ' FROM %(associations)s WHERE server_url = %%s;') get_expired_sql = ('SELECT server_url ' 'FROM %(associations)s WHERE issued + lifetime < %%s;') get_assoc_sql = ( 'SELECT handle, secret, issued, lifetime, assoc_type' ' FROM %(associations)s WHERE server_url = %%s AND handle = %%s;') remove_assoc_sql = ('DELETE FROM %(associations)s ' 'WHERE server_url = %%s AND handle = %%s;') clean_assoc_sql = 'DELETE FROM %(associations)s WHERE issued + lifetime < %%s;' add_nonce_sql = 'INSERT INTO %(nonces)s VALUES (%%s, %%s, %%s);' clean_nonce_sql = 'DELETE FROM %(nonces)s WHERE timestamp < %%s;' def blobDecode(self, blob): if type(blob) is str: # Versions of MySQLdb >= 1.2.2 return blob else: # Versions of MySQLdb prior to 1.2.2 (as far as we can tell) return blob.tostring() class PostgreSQLStore(SQLStore): """ This is a PostgreSQL-based specialization of C{L{SQLStore}}. To create an instance, see C{L{SQLStore.__init__}}. To create the tables it will use, see C{L{SQLStore.createTables}}. All other methods are implementation details. """ try: import psycopg as exceptions except ImportError: # psycopg2 has the dbapi extension where the exception classes # are available on the connection object. A psycopg2 # connection will use the correct exception classes because of # this, and a psycopg connection will fall through to use the # psycopg imported above. exceptions = None create_nonce_sql = """ CREATE TABLE %(nonces)s ( server_url VARCHAR(2047), timestamp INTEGER, salt CHAR(40), PRIMARY KEY (server_url, timestamp, salt) ); """ create_assoc_sql = """ CREATE TABLE %(associations)s ( server_url VARCHAR(2047), handle VARCHAR(255), secret BYTEA, issued INTEGER, lifetime INTEGER, assoc_type VARCHAR(64), PRIMARY KEY (server_url, handle), CONSTRAINT secret_length_constraint CHECK (LENGTH(secret) <= 128) ); """ create_settings_sql = """ CREATE TABLE %(settings)s ( setting VARCHAR(128) UNIQUE PRIMARY KEY, value BYTEA, CONSTRAINT value_length_constraint CHECK (LENGTH(value) <= 20) ); """ def db_set_assoc(self, server_url, handle, secret, issued, lifetime, assoc_type): """ Set an association. This is implemented as a method because REPLACE INTO is not supported by PostgreSQL (and is not standard SQL). """ result = self.db_get_assoc(server_url, handle) rows = self.cur.fetchall() if len(rows): # Update the table since this associations already exists. return self.db_update_assoc(secret, issued, lifetime, assoc_type, server_url, handle) else: # Insert a new record because this association wasn't # found. return self.db_new_assoc(server_url, handle, secret, issued, lifetime, assoc_type) new_assoc_sql = ('INSERT INTO %(associations)s ' 'VALUES (%%s, %%s, %%s, %%s, %%s, %%s);') update_assoc_sql = ('UPDATE %(associations)s SET ' 'secret = %%s, issued = %%s, ' 'lifetime = %%s, assoc_type = %%s ' 'WHERE server_url = %%s AND handle = %%s;') get_assocs_sql = ('SELECT handle, secret, issued, lifetime, assoc_type' ' FROM %(associations)s WHERE server_url = %%s;') get_expired_sql = ('SELECT server_url ' 'FROM %(associations)s WHERE issued + lifetime < %%s;') get_assoc_sql = ( 'SELECT handle, secret, issued, lifetime, assoc_type' ' FROM %(associations)s WHERE server_url = %%s AND handle = %%s;') remove_assoc_sql = ('DELETE FROM %(associations)s ' 'WHERE server_url = %%s AND handle = %%s;') clean_assoc_sql = 'DELETE FROM %(associations)s WHERE issued + lifetime < %%s;' add_nonce_sql = 'INSERT INTO %(nonces)s VALUES (%%s, %%s, %%s);' clean_nonce_sql = 'DELETE FROM %(nonces)s WHERE timestamp < %%s;' def blobEncode(self, blob): try: from psycopg2 import Binary except ImportError: from psycopg import Binary return Binary(blob) ########NEW FILE######## __FILENAME__ = urinorm import re # from appendix B of rfc 3986 (http://www.ietf.org/rfc/rfc3986.txt) uri_pattern = r'^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?' uri_re = re.compile(uri_pattern) authority_pattern = r'^([^@]*@)?([^:]*)(:.*)?' authority_re = re.compile(authority_pattern) pct_encoded_pattern = r'%([0-9A-Fa-f]{2})' pct_encoded_re = re.compile(pct_encoded_pattern) try: unichr(0x10000) except ValueError: # narrow python build UCSCHAR = [ (0xA0, 0xD7FF), (0xF900, 0xFDCF), (0xFDF0, 0xFFEF), ] IPRIVATE = [ (0xE000, 0xF8FF), ] else: UCSCHAR = [ (0xA0, 0xD7FF), (0xF900, 0xFDCF), (0xFDF0, 0xFFEF), (0x10000, 0x1FFFD), (0x20000, 0x2FFFD), (0x30000, 0x3FFFD), (0x40000, 0x4FFFD), (0x50000, 0x5FFFD), (0x60000, 0x6FFFD), (0x70000, 0x7FFFD), (0x80000, 0x8FFFD), (0x90000, 0x9FFFD), (0xA0000, 0xAFFFD), (0xB0000, 0xBFFFD), (0xC0000, 0xCFFFD), (0xD0000, 0xDFFFD), (0xE1000, 0xEFFFD), ] IPRIVATE = [ (0xE000, 0xF8FF), (0xF0000, 0xFFFFD), (0x100000, 0x10FFFD), ] _unreserved = [False] * 256 for _ in range(ord('A'), ord('Z') + 1): _unreserved[_] = True for _ in range(ord('0'), ord('9') + 1): _unreserved[_] = True for _ in range(ord('a'), ord('z') + 1): _unreserved[_] = True _unreserved[ord('-')] = True _unreserved[ord('.')] = True _unreserved[ord('_')] = True _unreserved[ord('~')] = True _escapeme_re = re.compile('[%s]' % (''.join( map(lambda (m, n): u'%s-%s' % (unichr(m), unichr(n)), UCSCHAR + IPRIVATE)),)) def _pct_escape_unicode(char_match): c = char_match.group() return ''.join(['%%%X' % (ord(octet),) for octet in c.encode('utf-8')]) def _pct_encoded_replace_unreserved(mo): try: i = int(mo.group(1), 16) if _unreserved[i]: return chr(i) else: return mo.group().upper() except ValueError: return mo.group() def _pct_encoded_replace(mo): try: return chr(int(mo.group(1), 16)) except ValueError: return mo.group() def remove_dot_segments(path): result_segments = [] while path: if path.startswith('../'): path = path[3:] elif path.startswith('./'): path = path[2:] elif path.startswith('/./'): path = path[2:] elif path == '/.': path = '/' elif path.startswith('/../'): path = path[3:] if result_segments: result_segments.pop() elif path == '/..': path = '/' if result_segments: result_segments.pop() elif path == '..' or path == '.': path = '' else: i = 0 if path[0] == '/': i = 1 i = path.find('/', i) if i == -1: i = len(path) result_segments.append(path[:i]) path = path[i:] return ''.join(result_segments) def urinorm(uri): if isinstance(uri, unicode): uri = _escapeme_re.sub(_pct_escape_unicode, uri).encode('ascii') uri_mo = uri_re.match(uri) scheme = uri_mo.group(2) if scheme is None: raise ValueError('No scheme specified') scheme = scheme.lower() if scheme not in ('http', 'https'): raise ValueError('Not an absolute HTTP or HTTPS URI: %r' % (uri,)) authority = uri_mo.group(4) if authority is None: raise ValueError('Not an absolute URI: %r' % (uri,)) authority_mo = authority_re.match(authority) if authority_mo is None: raise ValueError('URI does not have a valid authority: %r' % (uri,)) userinfo, host, port = authority_mo.groups() if userinfo is None: userinfo = '' if '%' in host: host = host.lower() host = pct_encoded_re.sub(_pct_encoded_replace, host) host = unicode(host, 'utf-8').encode('idna') else: host = host.lower() if port: if (port == ':' or (scheme == 'http' and port == ':80') or (scheme == 'https' and port == ':443')): port = '' else: port = '' authority = userinfo + host + port path = uri_mo.group(5) path = pct_encoded_re.sub(_pct_encoded_replace_unreserved, path) path = remove_dot_segments(path) if not path: path = '/' query = uri_mo.group(6) if query is None: query = '' fragment = uri_mo.group(8) if fragment is None: fragment = '' return scheme + '://' + authority + path + query + fragment ########NEW FILE######## __FILENAME__ = accept """Functions for generating and parsing HTTP Accept: headers for supporting server-directed content negotiation. """ def generateAcceptHeader(*elements): """Generate an accept header value [str or (str, float)] -> str """ parts = [] for element in elements: if type(element) is str: qs = "1.0" mtype = element else: mtype, q = element q = float(q) if q > 1 or q <= 0: raise ValueError('Invalid preference factor: %r' % q) qs = '%0.1f' % (q,) parts.append((qs, mtype)) parts.sort() chunks = [] for q, mtype in parts: if q == '1.0': chunks.append(mtype) else: chunks.append('%s; q=%s' % (mtype, q)) return ', '.join(chunks) def parseAcceptHeader(value): """Parse an accept header, ignoring any accept-extensions returns a list of tuples containing main MIME type, MIME subtype, and quality markdown. str -> [(str, str, float)] """ chunks = [chunk.strip() for chunk in value.split(',')] accept = [] for chunk in chunks: parts = [s.strip() for s in chunk.split(';')] mtype = parts.pop(0) if '/' not in mtype: # This is not a MIME type, so ignore the bad data continue main, sub = mtype.split('/', 1) for ext in parts: if '=' in ext: k, v = ext.split('=', 1) if k == 'q': try: q = float(v) break except ValueError: # Ignore poorly formed q-values pass else: q = 1.0 accept.append((q, main, sub)) accept.sort() accept.reverse() return [(main, sub, q) for (q, main, sub) in accept] def matchTypes(accept_types, have_types): """Given the result of parsing an Accept: header, and the available MIME types, return the acceptable types with their quality markdowns. For example: >>> acceptable = parseAcceptHeader('text/html, text/plain; q=0.5') >>> matchTypes(acceptable, ['text/plain', 'text/html', 'image/jpeg']) [('text/html', 1.0), ('text/plain', 0.5)] Type signature: ([(str, str, float)], [str]) -> [(str, float)] """ if not accept_types: # Accept all of them default = 1 else: default = 0 match_main = {} match_sub = {} for (main, sub, q) in accept_types: if main == '*': default = max(default, q) continue elif sub == '*': match_main[main] = max(match_main.get(main, 0), q) else: match_sub[(main, sub)] = max(match_sub.get((main, sub), 0), q) accepted_list = [] order_maintainer = 0 for mtype in have_types: main, sub = mtype.split('/') if (main, sub) in match_sub: q = match_sub[(main, sub)] else: q = match_main.get(main, default) if q: accepted_list.append((1 - q, order_maintainer, q, mtype)) order_maintainer += 1 accepted_list.sort() return [(mtype, q) for (_, _, q, mtype) in accepted_list] def getAcceptable(accept_header, have_types): """Parse the accept header and return a list of available types in preferred order. If a type is unacceptable, it will not be in the resulting list. This is a convenience wrapper around matchTypes and parseAcceptHeader. (str, [str]) -> [str] """ accepted = parseAcceptHeader(accept_header) preferred = matchTypes(accepted, have_types) return [mtype for (mtype, _) in preferred] ########NEW FILE######## __FILENAME__ = constants __all__ = ['YADIS_HEADER_NAME', 'YADIS_CONTENT_TYPE', 'YADIS_ACCEPT_HEADER'] from openid.yadis.accept import generateAcceptHeader YADIS_HEADER_NAME = 'X-XRDS-Location' YADIS_CONTENT_TYPE = 'application/xrds+xml' # A value suitable for using as an accept header when performing YADIS # discovery, unless the application has special requirements YADIS_ACCEPT_HEADER = generateAcceptHeader( ('text/html', 0.3), ('application/xhtml+xml', 0.5), (YADIS_CONTENT_TYPE, 1.0), ) ########NEW FILE######## __FILENAME__ = discover # -*- test-case-name: openid.test.test_yadis_discover -*- __all__ = ['discover', 'DiscoveryResult', 'DiscoveryFailure'] from cStringIO import StringIO from openid import fetchers from openid.yadis.constants import \ YADIS_HEADER_NAME, YADIS_CONTENT_TYPE, YADIS_ACCEPT_HEADER from openid.yadis.parsehtml import MetaNotFound, findHTMLMeta class DiscoveryFailure(Exception): """Raised when a YADIS protocol error occurs in the discovery process""" identity_url = None def __init__(self, message, http_response): Exception.__init__(self, message) self.http_response = http_response class DiscoveryResult(object): """Contains the result of performing Yadis discovery on a URI""" # The URI that was passed to the fetcher request_uri = None # The result of following redirects from the request_uri normalized_uri = None # The URI from which the response text was returned (set to # None if there was no XRDS document found) xrds_uri = None # The content-type returned with the response_text content_type = None # The document returned from the xrds_uri response_text = None def __init__(self, request_uri): """Initialize the state of the object sets all attributes to None except the request_uri """ self.request_uri = request_uri def usedYadisLocation(self): """Was the Yadis protocol's indirection used?""" return self.normalized_uri != self.xrds_uri def isXRDS(self): """Is the response text supposed to be an XRDS document?""" return (self.usedYadisLocation() or self.content_type == YADIS_CONTENT_TYPE) def discover(uri): """Discover services for a given URI. @param uri: The identity URI as a well-formed http or https URI. The well-formedness and the protocol are not checked, but the results of this function are undefined if those properties do not hold. @return: DiscoveryResult object @raises Exception: Any exception that can be raised by fetching a URL with the given fetcher. @raises DiscoveryFailure: When the HTTP response does not have a 200 code. """ result = DiscoveryResult(uri) resp = fetchers.fetch(uri, headers={'Accept': YADIS_ACCEPT_HEADER}) if resp.status != 200: raise DiscoveryFailure( 'HTTP Response status from identity URL host is not 200. ' 'Got status %r' % (resp.status,), resp) # Note the URL after following redirects result.normalized_uri = resp.final_url # Attempt to find out where to go to discover the document # or if we already have it result.content_type = resp.headers.get('content-type') result.xrds_uri = whereIsYadis(resp) if result.xrds_uri and result.usedYadisLocation(): resp = fetchers.fetch(result.xrds_uri) if resp.status != 200: exc = DiscoveryFailure( 'HTTP Response status from Yadis host is not 200. ' 'Got status %r' % (resp.status,), resp) exc.identity_url = result.normalized_uri raise exc result.content_type = resp.headers.get('content-type') result.response_text = resp.body return result def whereIsYadis(resp): """Given a HTTPResponse, return the location of the Yadis document. May be the URL just retrieved, another URL, or None, if I can't find any. [non-blocking] @returns: str or None """ # Attempt to find out where to go to discover the document # or if we already have it content_type = resp.headers.get('content-type') # According to the spec, the content-type header must be an exact # match, or else we have to look for an indirection. if (content_type and content_type.split(';', 1)[0].lower() == YADIS_CONTENT_TYPE): return resp.final_url else: # Try the header yadis_loc = resp.headers.get(YADIS_HEADER_NAME.lower()) if not yadis_loc: # Parse as HTML if the header is missing. # # XXX: do we want to do something with content-type, like # have a whitelist or a blacklist (for detecting that it's # HTML)? try: yadis_loc = findHTMLMeta(StringIO(resp.body)) except MetaNotFound: pass return yadis_loc ########NEW FILE######## __FILENAME__ = etxrd # -*- test-case-name: yadis.test.test_etxrd -*- """ ElementTree interface to an XRD document. """ __all__ = [ 'nsTag', 'mkXRDTag', 'isXRDS', 'parseXRDS', 'getCanonicalID', 'getYadisXRD', 'getPriorityStrict', 'getPriority', 'prioSort', 'iterServices', 'expandService', 'expandServices', ] import sys import random from datetime import datetime from time import strptime from openid.oidutil import importElementTree ElementTree = importElementTree() # the different elementtree modules don't have a common exception # model. We just want to be able to catch the exceptions that signify # malformed XML data and wrap them, so that the other library code # doesn't have to know which XML library we're using. try: # Make the parser raise an exception so we can sniff out the type # of exceptions ElementTree.XML('> purposely malformed XML <') except (SystemExit, MemoryError, AssertionError, ImportError): raise except: XMLError = sys.exc_info()[0] from openid.yadis import xri class XRDSError(Exception): """An error with the XRDS document.""" # The exception that triggered this exception reason = None class XRDSFraud(XRDSError): """Raised when there's an assertion in the XRDS that it does not have the authority to make. """ def parseXRDS(text): """Parse the given text as an XRDS document. @return: ElementTree containing an XRDS document @raises XRDSError: When there is a parse error or the document does not contain an XRDS. """ try: element = ElementTree.XML(text) except XMLError, why: exc = XRDSError('Error parsing document as XML') exc.reason = why raise exc else: tree = ElementTree.ElementTree(element) if not isXRDS(tree): raise XRDSError('Not an XRDS document') return tree XRD_NS_2_0 = 'xri://$xrd*($v*2.0)' XRDS_NS = 'xri://$xrds' def nsTag(ns, t): return '{%s}%s' % (ns, t) def mkXRDTag(t): """basestring -> basestring Create a tag name in the XRD 2.0 XML namespace suitable for using with ElementTree """ return nsTag(XRD_NS_2_0, t) def mkXRDSTag(t): """basestring -> basestring Create a tag name in the XRDS XML namespace suitable for using with ElementTree """ return nsTag(XRDS_NS, t) # Tags that are used in Yadis documents root_tag = mkXRDSTag('XRDS') service_tag = mkXRDTag('Service') xrd_tag = mkXRDTag('XRD') type_tag = mkXRDTag('Type') uri_tag = mkXRDTag('URI') expires_tag = mkXRDTag('Expires') # Other XRD tags canonicalID_tag = mkXRDTag('CanonicalID') def isXRDS(xrd_tree): """Is this document an XRDS document?""" root = xrd_tree.getroot() return root.tag == root_tag def getYadisXRD(xrd_tree): """Return the XRD element that should contain the Yadis services""" xrd = None # for the side-effect of assigning the last one in the list to the # xrd variable for xrd in xrd_tree.findall(xrd_tag): pass # There were no elements found, or else xrd would be set to the # last one if xrd is None: raise XRDSError('No XRD present in tree') return xrd def getXRDExpiration(xrd_element, default=None): """Return the expiration date of this XRD element, or None if no expiration was specified. @type xrd_element: ElementTree node @param default: The value to use as the expiration if no expiration was specified in the XRD. @rtype: datetime.datetime @raises ValueError: If the xrd:Expires element is present, but its contents are not formatted according to the specification. """ expires_element = xrd_element.find(expires_tag) if expires_element is None: return default else: expires_string = expires_element.text # Will raise ValueError if the string is not the expected format expires_time = strptime(expires_string, "%Y-%m-%dT%H:%M:%SZ") return datetime(*expires_time[0:6]) def getCanonicalID(iname, xrd_tree): """Return the CanonicalID from this XRDS document. @param iname: the XRI being resolved. @type iname: unicode @param xrd_tree: The XRDS output from the resolver. @type xrd_tree: ElementTree @returns: The XRI CanonicalID or None. @returntype: unicode or None """ xrd_list = xrd_tree.findall(xrd_tag) xrd_list.reverse() try: canonicalID = xri.XRI(xrd_list[0].findall(canonicalID_tag)[-1].text) except IndexError: return None childID = canonicalID for xrd in xrd_list[1:]: # XXX: can't use rsplit until we require python >= 2.4. parent_sought = childID[:childID.rindex('!')] parent_list = [xri.XRI(c.text) for c in xrd.findall(canonicalID_tag)] if parent_sought not in parent_list: raise XRDSFraud("%r can not come from any of %s" % (parent_sought, parent_list)) childID = parent_sought root = xri.rootAuthority(iname) if not xri.providerIsAuthoritative(root, childID): raise XRDSFraud("%r can not come from root %r" % (childID, root)) return canonicalID class _Max(object): """Value that compares greater than any other value. Should only be used as a singleton. Implemented for use as a priority value for when a priority is not specified.""" def __cmp__(self, other): if other is self: return 0 return 1 Max = _Max() def getPriorityStrict(element): """Get the priority of this element. Raises ValueError if the value of the priority is invalid. If no priority is specified, it returns a value that compares greater than any other value. """ prio_str = element.get('priority') if prio_str is not None: prio_val = int(prio_str) if prio_val >= 0: return prio_val else: raise ValueError('Priority values must be non-negative integers') # Any errors in parsing the priority fall through to here return Max def getPriority(element): """Get the priority of this element Returns Max if no priority is specified or the priority value is invalid. """ try: return getPriorityStrict(element) except ValueError: return Max def prioSort(elements): """Sort a list of elements that have priority attributes""" # Randomize the services before sorting so that equal priority # elements are load-balanced. random.shuffle(elements) prio_elems = [(getPriority(e), e) for e in elements] prio_elems.sort() sorted_elems = [s for (_, s) in prio_elems] return sorted_elems def iterServices(xrd_tree): """Return an iterable over the Service elements in the Yadis XRD sorted by priority""" xrd = getYadisXRD(xrd_tree) return prioSort(xrd.findall(service_tag)) def sortedURIs(service_element): """Given a Service element, return a list of the contents of all URI tags in priority order.""" return [uri_element.text for uri_element in prioSort(service_element.findall(uri_tag))] def getTypeURIs(service_element): """Given a Service element, return a list of the contents of all Type tags""" return [type_element.text for type_element in service_element.findall(type_tag)] def expandService(service_element): """Take a service element and expand it into an iterator of: ([type_uri], uri, service_element) """ uris = sortedURIs(service_element) if not uris: uris = [None] expanded = [] for uri in uris: type_uris = getTypeURIs(service_element) expanded.append((type_uris, uri, service_element)) return expanded def expandServices(service_elements): """Take a sorted iterator of service elements and expand it into a sorted iterator of: ([type_uri], uri, service_element) There may be more than one item in the resulting list for each service element if there is more than one URI or type for a service, but each triple will be unique. If there is no URI or Type for a Service element, it will not appear in the result. """ expanded = [] for service_element in service_elements: expanded.extend(expandService(service_element)) return expanded ########NEW FILE######## __FILENAME__ = filters """This module contains functions and classes used for extracting endpoint information out of a Yadis XRD file using the ElementTree XML parser. """ __all__ = [ 'BasicServiceEndpoint', 'mkFilter', 'IFilter', 'TransformFilterMaker', 'CompoundFilter', ] from openid.yadis.etxrd import expandService class BasicServiceEndpoint(object): """Generic endpoint object that contains parsed service information, as well as a reference to the service element from which it was generated. If there is more than one xrd:Type or xrd:URI in the xrd:Service, this object represents just one of those pairs. This object can be used as a filter, because it implements fromBasicServiceEndpoint. The simplest kind of filter you can write implements fromBasicServiceEndpoint, which takes one of these objects. """ def __init__(self, yadis_url, type_uris, uri, service_element): self.type_uris = type_uris self.yadis_url = yadis_url self.uri = uri self.service_element = service_element def matchTypes(self, type_uris): """Query this endpoint to see if it has any of the given type URIs. This is useful for implementing other endpoint classes that e.g. need to check for the presence of multiple versions of a single protocol. @param type_uris: The URIs that you wish to check @type type_uris: iterable of str @return: all types that are in both in type_uris and self.type_uris """ return [uri for uri in type_uris if uri in self.type_uris] def fromBasicServiceEndpoint(endpoint): """Trivial transform from a basic endpoint to itself. This method exists to allow BasicServiceEndpoint to be used as a filter. If you are subclassing this object, re-implement this function. @param endpoint: An instance of BasicServiceEndpoint @return: The object that was passed in, with no processing. """ return endpoint fromBasicServiceEndpoint = staticmethod(fromBasicServiceEndpoint) class IFilter(object): """Interface for Yadis filter objects. Other filter-like things are convertable to this class.""" def getServiceEndpoints(self, yadis_url, service_element): """Returns an iterator of endpoint objects""" raise NotImplementedError class TransformFilterMaker(object): """Take a list of basic filters and makes a filter that transforms the basic filter into a top-level filter. This is mostly useful for the implementation of mkFilter, which should only be needed for special cases or internal use by this library. This object is useful for creating simple filters for services that use one URI and are specified by one Type (we expect most Types will fit this paradigm). Creates a BasicServiceEndpoint object and apply the filter functions to it until one of them returns a value. """ def __init__(self, filter_functions): """Initialize the filter maker's state @param filter_functions: The endpoint transformer functions to apply to the basic endpoint. These are called in turn until one of them does not return None, and the result of that transformer is returned. """ self.filter_functions = filter_functions def getServiceEndpoints(self, yadis_url, service_element): """Returns an iterator of endpoint objects produced by the filter functions.""" endpoints = [] # Do an expansion of the service element by xrd:Type and xrd:URI for type_uris, uri, _ in expandService(service_element): # Create a basic endpoint object to represent this # yadis_url, Service, Type, URI combination endpoint = BasicServiceEndpoint( yadis_url, type_uris, uri, service_element) e = self.applyFilters(endpoint) if e is not None: endpoints.append(e) return endpoints def applyFilters(self, endpoint): """Apply filter functions to an endpoint until one of them returns non-None.""" for filter_function in self.filter_functions: e = filter_function(endpoint) if e is not None: # Once one of the filters has returned an # endpoint, do not apply any more. return e return None class CompoundFilter(object): """Create a new filter that applies a set of filters to an endpoint and collects their results. """ def __init__(self, subfilters): self.subfilters = subfilters def getServiceEndpoints(self, yadis_url, service_element): """Generate all endpoint objects for all of the subfilters of this filter and return their concatenation.""" endpoints = [] for subfilter in self.subfilters: endpoints.extend( subfilter.getServiceEndpoints(yadis_url, service_element)) return endpoints # Exception raised when something is not able to be turned into a filter filter_type_error = TypeError( 'Expected a filter, an endpoint, a callable or a list of any of these.') def mkFilter(parts): """Convert a filter-convertable thing into a filter @param parts: a filter, an endpoint, a callable, or a list of any of these. """ # Convert the parts into a list, and pass to mkCompoundFilter if parts is None: parts = [BasicServiceEndpoint] try: parts = list(parts) except TypeError: return mkCompoundFilter([parts]) else: return mkCompoundFilter(parts) def mkCompoundFilter(parts): """Create a filter out of a list of filter-like things Used by mkFilter @param parts: list of filter, endpoint, callable or list of any of these """ # Separate into a list of callables and a list of filter objects transformers = [] filters = [] for subfilter in parts: try: subfilter = list(subfilter) except TypeError: # If it's not an iterable if hasattr(subfilter, 'getServiceEndpoints'): # It's a full filter filters.append(subfilter) elif hasattr(subfilter, 'fromBasicServiceEndpoint'): # It's an endpoint object, so put its endpoint # conversion attribute into the list of endpoint # transformers transformers.append(subfilter.fromBasicServiceEndpoint) elif callable(subfilter): # It's a simple callable, so add it to the list of # endpoint transformers transformers.append(subfilter) else: raise filter_type_error else: filters.append(mkCompoundFilter(subfilter)) if transformers: filters.append(TransformFilterMaker(transformers)) if len(filters) == 1: return filters[0] else: return CompoundFilter(filters) ########NEW FILE######## __FILENAME__ = manager class YadisServiceManager(object): """Holds the state of a list of selected Yadis services, managing storing it in a session and iterating over the services in order.""" def __init__(self, starting_url, yadis_url, services, session_key): # The URL that was used to initiate the Yadis protocol self.starting_url = starting_url # The URL after following redirects (the identifier) self.yadis_url = yadis_url # List of service elements self.services = list(services) self.session_key = session_key # Reference to the current service object self._current = None def __len__(self): """How many untried services remain?""" return len(self.services) def __iter__(self): return self def next(self): """Return the next service self.current() will continue to return that service until the next call to this method.""" try: self._current = self.services.pop(0) except IndexError: raise StopIteration else: return self._current def current(self): """Return the current service. Returns None if there are no services left. """ return self._current def forURL(self, url): return url in [self.starting_url, self.yadis_url] def started(self): """Has the first service been returned?""" return self._current is not None def store(self, session): """Store this object in the session, by its session key.""" session[self.session_key] = self class Discovery(object): """State management for discovery. High-level usage pattern is to call .getNextService(discover) in order to find the next available service for this user for this session. Once a request completes, call .finish() to clean up the session state. @ivar session: a dict-like object that stores state unique to the requesting user-agent. This object must be able to store serializable objects. @ivar url: the URL that is used to make the discovery request @ivar session_key_suffix: The suffix that will be used to identify this object in the session object. """ DEFAULT_SUFFIX = 'auth' PREFIX = '_yadis_services_' def __init__(self, session, url, session_key_suffix=None): """Initialize a discovery object""" self.session = session self.url = url if session_key_suffix is None: session_key_suffix = self.DEFAULT_SUFFIX self.session_key_suffix = session_key_suffix def getNextService(self, discover): """Return the next authentication service for the pair of user_input and session. This function handles fallback. @param discover: a callable that takes a URL and returns a list of services @type discover: str -> [service] @return: the next available service """ manager = self.getManager() if manager is not None and not manager: self.destroyManager() if not manager: yadis_url, services = discover(self.url) manager = self.createManager(services, yadis_url) if manager: service = manager.next() manager.store(self.session) else: service = None return service def cleanup(self, force=False): """Clean up Yadis-related services in the session and return the most-recently-attempted service from the manager, if one exists. @param force: True if the manager should be deleted regardless of whether it's a manager for self.url. @return: current service endpoint object or None if there is no current service """ manager = self.getManager(force=force) if manager is not None: service = manager.current() self.destroyManager(force=force) else: service = None return service ### Lower-level methods def getSessionKey(self): """Get the session key for this starting URL and suffix @return: The session key @rtype: str """ return self.PREFIX + self.session_key_suffix def getManager(self, force=False): """Extract the YadisServiceManager for this object's URL and suffix from the session. @param force: True if the manager should be returned regardless of whether it's a manager for self.url. @return: The current YadisServiceManager, if it's for this URL, or else None """ manager = self.session.get(self.getSessionKey()) if (manager is not None and (manager.forURL(self.url) or force)): return manager else: return None def createManager(self, services, yadis_url=None): """Create a new YadisService Manager for this starting URL and suffix, and store it in the session. @raises KeyError: When I already have a manager. @return: A new YadisServiceManager or None """ key = self.getSessionKey() if self.getManager(): raise KeyError('There is already a %r manager for %r' % (key, self.url)) if not services: return None manager = YadisServiceManager(self.url, yadis_url, services, key) manager.store(self.session) return manager def destroyManager(self, force=False): """Delete any YadisServiceManager with this starting URL and suffix from the session. If there is no service manager or the service manager is for a different URL, it silently does nothing. @param force: True if the manager should be deleted regardless of whether it's a manager for self.url. """ if self.getManager(force=force) is not None: key = self.getSessionKey() del self.session[key] ########NEW FILE######## __FILENAME__ = parsehtml __all__ = ['findHTMLMeta', 'MetaNotFound'] from HTMLParser import HTMLParser, HTMLParseError import htmlentitydefs import re from openid.yadis.constants import YADIS_HEADER_NAME # Size of the chunks to search at a time (also the amount that gets # read at a time) CHUNK_SIZE = 1024 * 16 # 16 KB class ParseDone(Exception): """Exception to hold the URI that was located when the parse is finished. If the parse finishes without finding the URI, set it to None.""" class MetaNotFound(Exception): """Exception to hold the content of the page if we did not find the appropriate <meta> tag""" re_flags = re.IGNORECASE | re.UNICODE | re.VERBOSE ent_pat = r''' & (?: \#x (?P<hex> [a-f0-9]+ ) | \# (?P<dec> \d+ ) | (?P<word> \w+ ) ) ;''' ent_re = re.compile(ent_pat, re_flags) def substituteMO(mo): if mo.lastgroup == 'hex': codepoint = int(mo.group('hex'), 16) elif mo.lastgroup == 'dec': codepoint = int(mo.group('dec')) else: assert mo.lastgroup == 'word' codepoint = htmlentitydefs.name2codepoint.get(mo.group('word')) if codepoint is None: return mo.group() else: return unichr(codepoint) def substituteEntities(s): return ent_re.sub(substituteMO, s) class YadisHTMLParser(HTMLParser): """Parser that finds a meta http-equiv tag in the head of a html document. When feeding in data, if the tag is matched or it will never be found, the parser will raise ParseDone with the uri as the first attribute. Parsing state diagram ===================== Any unlisted input does not affect the state:: 1, 2, 5 8 +--------------------------+ +-+ | | | | 4 | 3 1, 2, 5, 7 v | v TOP -> HTML -> HEAD ----------> TERMINATED | | ^ | ^ ^ | | 3 | | | | | +------------+ +-> FOUND ------+ | | 6 8 | | 1, 2 | +------------------------------------+ 1. any of </body>, </html>, </head> -> TERMINATE 2. <body> -> TERMINATE 3. <head> -> HEAD 4. <html> -> HTML 5. <html> -> TERMINATE 6. <meta http-equiv='X-XRDS-Location'> -> FOUND 7. <head> -> TERMINATE 8. Any input -> TERMINATE """ TOP = 0 HTML = 1 HEAD = 2 FOUND = 3 TERMINATED = 4 def __init__(self): HTMLParser.__init__(self) self.phase = self.TOP def _terminate(self): self.phase = self.TERMINATED raise ParseDone(None) def handle_endtag(self, tag): # If we ever see an end of head, body, or html, bail out right away. # [1] if tag in ['head', 'body', 'html']: self._terminate() def handle_starttag(self, tag, attrs): # if we ever see a start body tag, bail out right away, since # we want to prevent the meta tag from appearing in the body # [2] if tag=='body': self._terminate() if self.phase == self.TOP: # At the top level, allow a html tag or a head tag to move # to the head or html phase if tag == 'head': # [3] self.phase = self.HEAD elif tag == 'html': # [4] self.phase = self.HTML elif self.phase == self.HTML: # if we are in the html tag, allow a head tag to move to # the HEAD phase. If we get another html tag, then bail # out if tag == 'head': # [3] self.phase = self.HEAD elif tag == 'html': # [5] self._terminate() elif self.phase == self.HEAD: # If we are in the head phase, look for the appropriate # meta tag. If we get a head or body tag, bail out. if tag == 'meta': attrs_d = dict(attrs) http_equiv = attrs_d.get('http-equiv', '').lower() if http_equiv == YADIS_HEADER_NAME.lower(): raw_attr = attrs_d.get('content') yadis_loc = substituteEntities(raw_attr) # [6] self.phase = self.FOUND raise ParseDone(yadis_loc) elif tag in ['head', 'html']: # [5], [7] self._terminate() def feed(self, chars): # [8] if self.phase in [self.TERMINATED, self.FOUND]: self._terminate() return HTMLParser.feed(self, chars) def findHTMLMeta(stream): """Look for a meta http-equiv tag with the YADIS header name. @param stream: Source of the html text @type stream: Object that implements a read() method that works like file.read @return: The URI from which to fetch the XRDS document @rtype: str @raises MetaNotFound: raised with the content that was searched as the first parameter. """ parser = YadisHTMLParser() chunks = [] while 1: chunk = stream.read(CHUNK_SIZE) if not chunk: # End of file break chunks.append(chunk) try: parser.feed(chunk) except HTMLParseError, why: # HTML parse error, so bail chunks.append(stream.read()) break except ParseDone, why: uri = why[0] if uri is None: # Parse finished, but we may need the rest of the file chunks.append(stream.read()) break else: return uri content = ''.join(chunks) raise MetaNotFound(content) ########NEW FILE######## __FILENAME__ = services # -*- test-case-name: openid.test.test_services -*- from openid.yadis.filters import mkFilter from openid.yadis.discover import discover, DiscoveryFailure from openid.yadis.etxrd import parseXRDS, iterServices, XRDSError def getServiceEndpoints(input_url, flt=None): """Perform the Yadis protocol on the input URL and return an iterable of resulting endpoint objects. @param flt: A filter object or something that is convertable to a filter object (using mkFilter) that will be used to generate endpoint objects. This defaults to generating BasicEndpoint objects. @param input_url: The URL on which to perform the Yadis protocol @return: The normalized identity URL and an iterable of endpoint objects generated by the filter function. @rtype: (str, [endpoint]) @raises DiscoveryFailure: when Yadis fails to obtain an XRDS document. """ result = discover(input_url) try: endpoints = applyFilter(result.normalized_uri, result.response_text, flt) except XRDSError, err: raise DiscoveryFailure(str(err), None) return (result.normalized_uri, endpoints) def applyFilter(normalized_uri, xrd_data, flt=None): """Generate an iterable of endpoint objects given this input data, presumably from the result of performing the Yadis protocol. @param normalized_uri: The input URL, after following redirects, as in the Yadis protocol. @param xrd_data: The XML text the XRDS file fetched from the normalized URI. @type xrd_data: str """ flt = mkFilter(flt) et = parseXRDS(xrd_data) endpoints = [] for service_element in iterServices(et): endpoints.extend( flt.getServiceEndpoints(normalized_uri, service_element)) return endpoints ########NEW FILE######## __FILENAME__ = xri # -*- test-case-name: openid.test.test_xri -*- """Utility functions for handling XRIs. @see: XRI Syntax v2.0 at the U{OASIS XRI Technical Committee<http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xri>} """ import re XRI_AUTHORITIES = ['!', '=', '@', '+', '$', '('] try: unichr(0x10000) except ValueError: # narrow python build UCSCHAR = [ (0xA0, 0xD7FF), (0xF900, 0xFDCF), (0xFDF0, 0xFFEF), ] IPRIVATE = [ (0xE000, 0xF8FF), ] else: UCSCHAR = [ (0xA0, 0xD7FF), (0xF900, 0xFDCF), (0xFDF0, 0xFFEF), (0x10000, 0x1FFFD), (0x20000, 0x2FFFD), (0x30000, 0x3FFFD), (0x40000, 0x4FFFD), (0x50000, 0x5FFFD), (0x60000, 0x6FFFD), (0x70000, 0x7FFFD), (0x80000, 0x8FFFD), (0x90000, 0x9FFFD), (0xA0000, 0xAFFFD), (0xB0000, 0xBFFFD), (0xC0000, 0xCFFFD), (0xD0000, 0xDFFFD), (0xE1000, 0xEFFFD), ] IPRIVATE = [ (0xE000, 0xF8FF), (0xF0000, 0xFFFFD), (0x100000, 0x10FFFD), ] _escapeme_re = re.compile('[%s]' % (''.join( map(lambda (m, n): u'%s-%s' % (unichr(m), unichr(n)), UCSCHAR + IPRIVATE)),)) def identifierScheme(identifier): """Determine if this identifier is an XRI or URI. @returns: C{"XRI"} or C{"URI"} """ if identifier.startswith('xri://') or ( identifier and identifier[0] in XRI_AUTHORITIES): return "XRI" else: return "URI" def toIRINormal(xri): """Transform an XRI to IRI-normal form.""" if not xri.startswith('xri://'): xri = 'xri://' + xri return escapeForIRI(xri) _xref_re = re.compile('\((.*?)\)') def _escape_xref(xref_match): """Escape things that need to be escaped if they're in a cross-reference. """ xref = xref_match.group() xref = xref.replace('/', '%2F') xref = xref.replace('?', '%3F') xref = xref.replace('#', '%23') return xref def escapeForIRI(xri): """Escape things that need to be escaped when transforming to an IRI.""" xri = xri.replace('%', '%25') xri = _xref_re.sub(_escape_xref, xri) return xri def toURINormal(xri): """Transform an XRI to URI normal form.""" return iriToURI(toIRINormal(xri)) def _percentEscapeUnicode(char_match): c = char_match.group() return ''.join(['%%%X' % (ord(octet),) for octet in c.encode('utf-8')]) def iriToURI(iri): """Transform an IRI to a URI by escaping unicode.""" # According to RFC 3987, section 3.1, "Mapping of IRIs to URIs" return _escapeme_re.sub(_percentEscapeUnicode, iri) def providerIsAuthoritative(providerID, canonicalID): """Is this provider ID authoritative for this XRI? @returntype: bool """ # XXX: can't use rsplit until we require python >= 2.4. lastbang = canonicalID.rindex('!') parent = canonicalID[:lastbang] return parent == providerID def rootAuthority(xri): """Return the root authority for an XRI. Example:: rootAuthority("xri://@example") == "xri://@" @type xri: unicode @returntype: unicode """ if xri.startswith('xri://'): xri = xri[6:] authority = xri.split('/', 1)[0] if authority[0] == '(': # Cross-reference. # XXX: This is incorrect if someone nests cross-references so there # is another close-paren in there. Hopefully nobody does that # before we have a real xriparse function. Hopefully nobody does # that *ever*. root = authority[:authority.index(')') + 1] elif authority[0] in XRI_AUTHORITIES: # Other XRI reference. root = authority[0] else: # IRI reference. XXX: Can IRI authorities have segments? segments = authority.split('!') segments = reduce(list.__add__, map(lambda s: s.split('*'), segments)) root = segments[0] return XRI(root) def XRI(xri): """An XRI object allowing comparison of XRI. Ideally, this would do full normalization and provide comparsion operators as per XRI Syntax. Right now, it just does a bit of canonicalization by ensuring the xri scheme is present. @param xri: an xri string @type xri: unicode """ if not xri.startswith('xri://'): xri = 'xri://' + xri return xri ########NEW FILE######## __FILENAME__ = xrires # -*- test-case-name: openid.test.test_xrires -*- """XRI resolution. """ from urllib import urlencode from openid import fetchers from openid.yadis import etxrd from openid.yadis.xri import toURINormal from openid.yadis.services import iterServices DEFAULT_PROXY = 'http://proxy.xri.net/' class ProxyResolver(object): """Python interface to a remote XRI proxy resolver. """ def __init__(self, proxy_url=DEFAULT_PROXY): self.proxy_url = proxy_url def queryURL(self, xri, service_type=None): """Build a URL to query the proxy resolver. @param xri: An XRI to resolve. @type xri: unicode @param service_type: The service type to resolve, if you desire service endpoint selection. A service type is a URI. @type service_type: str @returns: a URL @returntype: str """ # Trim off the xri:// prefix. The proxy resolver didn't accept it # when this code was written, but that may (or may not) change for # XRI Resolution 2.0 Working Draft 11. qxri = toURINormal(xri)[6:] hxri = self.proxy_url + qxri args = { # XXX: If the proxy resolver will ensure that it doesn't return # bogus CanonicalIDs (as per Steve's message of 15 Aug 2006 # 11:13:42), then we could ask for application/xrd+xml instead, # which would give us a bit less to process. '_xrd_r': 'application/xrds+xml', } if service_type: args['_xrd_t'] = service_type else: # Don't perform service endpoint selection. args['_xrd_r'] += ';sep=false' query = _appendArgs(hxri, args) return query def query(self, xri, service_types): """Resolve some services for an XRI. Note: I don't implement any service endpoint selection beyond what the resolver I'm querying does, so the Services I return may well include Services that were not of the types you asked for. May raise fetchers.HTTPFetchingError or L{etxrd.XRDSError} if the fetching or parsing don't go so well. @param xri: An XRI to resolve. @type xri: unicode @param service_types: A list of services types to query for. Service types are URIs. @type service_types: list of str @returns: tuple of (CanonicalID, Service elements) @returntype: (unicode, list of C{ElementTree.Element}s) """ # FIXME: No test coverage! services = [] # Make a seperate request to the proxy resolver for each service # type, as, if it is following Refs, it could return a different # XRDS for each. canonicalID = None for service_type in service_types: url = self.queryURL(xri, service_type) response = fetchers.fetch(url) if response.status != 200: # XXX: sucks to fail silently. # print "response not OK:", response continue et = etxrd.parseXRDS(response.body) canonicalID = etxrd.getCanonicalID(xri, et) some_services = list(iterServices(et)) services.extend(some_services) # TODO: # * If we do get hits for multiple service_types, we're almost # certainly going to have duplicated service entries and # broken priority ordering. return canonicalID, services def _appendArgs(url, args): """Append some arguments to an HTTP query. """ # to be merged with oidutil.appendArgs when we combine the projects. if hasattr(args, 'items'): args = args.items() args.sort() if len(args) == 0: return url # According to XRI Resolution section "QXRI query parameters": # # """If the original QXRI had a null query component (only a leading # question mark), or a query component consisting of only question # marks, one additional leading question mark MUST be added when # adding any XRI resolution parameters.""" if '?' in url.rstrip('?'): sep = '&' else: sep = '?' return '%s%s%s' % (url, sep, urlencode(args)) ########NEW FILE######## __FILENAME__ = store #!/usr/bin/python # # Copyright 2007, Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ An OpenIDStore implementation that uses the datastore as its backing store. Stores associations, nonces, and authentication tokens. OpenIDStore is an interface from JanRain's OpenID python library: http://openidenabled.com/python-openid/ For more, see openid/store/interface.py in that library. """ import datetime from openid.association import Association as OpenIDAssociation from openid.store.interface import OpenIDStore from openid.store import nonce from google.appengine.ext import db # number of associations and nonces to clean up in a single request. CLEANUP_BATCH_SIZE = 50 class Association(db.Model): """An association with another OpenID server, either a consumer or a provider. """ url = db.LinkProperty() handle = db.StringProperty() association = db.TextProperty() created = db.DateTimeProperty(auto_now_add=True) class UsedNonce(db.Model): """An OpenID nonce that has been used. """ server_url = db.LinkProperty() timestamp = db.DateTimeProperty() salt = db.StringProperty() class DatastoreStore(OpenIDStore): """An OpenIDStore implementation that uses the datastore. See openid/store/interface.py for in-depth descriptions of the methods. They follow the OpenID python library's style, not Google's style, since they override methods defined in the OpenIDStore class. """ def storeAssociation(self, server_url, association): """ This method puts a C{L{Association <openid.association.Association>}} object into storage, retrievable by server URL and handle. """ assoc = Association(url=server_url, handle=association.handle, association=association.serialize()) assoc.put() def getAssociation(self, server_url, handle=None): """ This method returns an C{L{Association <openid.association.Association>}} object from storage that matches the server URL and, if specified, handle. It returns C{None} if no such association is found or if the matching association is expired. If no handle is specified, the store may return any association which matches the server URL. If multiple associations are valid, the recommended return value for this method is the one that will remain valid for the longest duration. """ query = Association.all().filter('url', server_url) if handle: query.filter('handle', handle) results = query.fetch(1) if results: association = OpenIDAssociation.deserialize(results[0].association) if association.getExpiresIn() > 0: # hasn't expired yet return association return None def removeAssociation(self, server_url, handle): """ This method removes the matching association if it's found, and returns whether the association was removed or not. """ query = Association.gql('WHERE url = :1 AND handle = :2', server_url, handle) return self._delete_first(query) def useNonce(self, server_url, timestamp, salt): """Called when using a nonce. This method should return C{True} if the nonce has not been used before, and store it for a while to make sure nobody tries to use the same value again. If the nonce has already been used or the timestamp is not current, return C{False}. You may use L{openid.store.nonce.SKEW} for your timestamp window. @change: In earlier versions, round-trip nonces were used and a nonce was only valid if it had been previously stored with C{storeNonce}. Version 2.0 uses one-way nonces, requiring a different implementation here that does not depend on a C{storeNonce} call. (C{storeNonce} is no longer part of the interface.) @param server_url: The URL of the server from which the nonce originated. @type server_url: C{str} @param timestamp: The time that the nonce was created (to the nearest second), in seconds since January 1 1970 UTC. @type timestamp: C{int} @param salt: A random string that makes two nonces from the same server issued during the same second unique. @type salt: str @return: Whether or not the nonce was valid. @rtype: C{bool} """ query = UsedNonce.gql( 'WHERE server_url = :1 AND salt = :2 AND timestamp >= :3', server_url, salt, self._expiration_datetime()) return query.fetch(1) == [] def cleanupNonces(self): """Remove expired nonces from the store. Discards any nonce from storage that is old enough that its timestamp would not pass L{useNonce}. This method is not called in the normal operation of the library. It provides a way for store admins to keep their storage from filling up with expired data. @return: the number of nonces expired. @returntype: int """ query = UsedNonce.gql('WHERE timestamp < :1', self._expiration_datetime()) return self._cleanup_batch(query) def cleanupAssociations(self): """Remove expired associations from the store. This method is not called in the normal operation of the library. It provides a way for store admins to keep their storage from filling up with expired data. @return: the number of associations expired. @returntype: int """ query = Association.gql('WHERE created < :1', self._expiration_datetime()) return self._cleanup_batch(query) def cleanup(self): """Shortcut for C{L{cleanupNonces}()}, C{L{cleanupAssociations}()}. This method is not called in the normal operation of the library. It provides a way for store admins to keep their storage from filling up with expired data. """ return self.cleanupNonces(), self.cleanupAssociations() def _delete_first(self, query): """Deletes the first result for the given query. Returns True if an entity was deleted, false if no entity could be deleted or if the query returned no results. """ results = query.fetch(1) if results: try: results[0].delete() return True except db.Error: return False else: return False def _cleanup_batch(self, query): """Deletes the first batch of entities that match the given query. Returns the number of entities that were deleted. """ to_delete = list(query.fetch(CLEANUP_BATCH_SIZE)) # can't use batch delete since they're all root entities :/ for entity in to_delete: entity.delete() return len(to_delete) def _expiration_datetime(self): """Returns the current expiration date for nonces and associations. """ return datetime.datetime.now() - datetime.timedelta(seconds=nonce.SKEW) ########NEW FILE########
2a3cb3835f9c19bc32575a438d0a76d34366cd63
e23a4f57ce5474d468258e5e63b9e23fb6011188
/095_os_and_sys/_exercises/templates/Programming_Python/04_File and Directory Tools/04_002_Ensuring file closure Exception handlers and context managers.py
1f41b027f691c845469a9997d5f06857f17bb216
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
609
py
# myfile = open(filename, 'w') # ___ # ...process myfile... # finally: # myfile.close() # # with open(filename, 'w') as myfile: # ...process myfile, auto-closed on statement exit... # # myfile = open(filename, 'w') # traditional form # ...process myfile... # myfile.close() # with open(filename) as myfile: # context manager form # ...process myfile... # # with A() as a, B() as b: # ...statements... # # with A() as a: # with B() as b: # ...statements... # # with open('data') as fin, open('results', 'w') as fout: # for line in fin: # fout.write(transform(line))
3688f07341087091eea0c443b07b0e57449140dd
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02699/s068976853.py
b2a893ced4293b4b0b5cd753623e0bc052df3729
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
import math def fact(n): ans = 1 for i in range(2, n+1): ans*= i return ans def comb(n, c): return fact(n)//(fact(n-c)*c) s,w = map(int, input().split()) if(s >w): print('safe') else: print('unsafe')
7588f5b215b1669a718d62698603a3e391129fd8
925767da3d33266364f4af5ea5ac161245c598ad
/deshi/deshi/settings.py
8ce101a6eb8b87962b35c3d1f54201f270f08ed8
[]
no_license
NicholasPiano/karate-master
facce4100ac92c0f39f1328ee2838126c153538d
137ebbd1f274dd79a367f9bbab3651ea365fce83
refs/heads/master
2016-09-05T11:24:34.843555
2014-08-23T19:24:09
2014-08-23T19:24:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,969
py
""" Django settings for deshi project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5^*pq(en6o74-3b&8mjn*46jqm*g1o2+5f8s9ws*+8m#7)mleu' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'deshi.urls' WSGI_APPLICATION = 'deshi.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/'
f8c73640ebe25fa7c4573ab066b1ab063467fe7c
248c535f3612c646bccadecafdca649fd788bb1f
/.history/app/models_20210927050245.py
ca7953fdc6715ad70a6fdf536c24ba6ca96e517f
[ "MIT" ]
permissive
GraceOswal/pitch-perfect
3b923e4de5fff1a405dcb54374a1ba0522232025
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
refs/heads/master
2023-08-16T01:42:18.742154
2021-10-01T06:59:11
2021-10-01T06:59:11
410,224,294
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
from . import db # connect class user to pitchperfect database class User(db.Model): __table__ = ''
38271f663558957f927383295f723ae4eee88114
74be814f7cd10d3c91a53460bd6698aa8bc95704
/剑指offer/面试题28. 对称的二叉树.py
11a5e592f54dc79fb7ac584d9dd760cf25be2339
[]
no_license
weiyuyan/LeetCode
7202f7422bc3bef6bd35ea299550b51905401656
19db0e78826d3e3d27d2574abd9d461eb41458d1
refs/heads/master
2020-12-03T17:10:53.738507
2020-05-27T08:28:36
2020-05-27T08:28:36
231,402,839
2
0
null
null
null
null
UTF-8
Python
false
false
1,587
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # author:ShidongDu time:2020/2/17 ''' 请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。 例如,二叉树 [1,2,2,3,4,4,3] 是对称的。     1    / \   2   2  / \ / \ 3  4 4  3 但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:     1    / \   2   2    \   \    3    3   示例 1: 输入:root = [1,2,2,3,4,4,3] 输出:true 示例 2: 输入:root = [1,2,2,null,3,null,3] 输出:false   限制: 0 <= 节点个数 <= 1000 注意:本题与主站 101 题相同:https://leetcode-cn.com/problems/symmetric-tree/ ''' # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def isSymmetric(self, root: TreeNode) -> bool: return self.is_Symmetrical(root, root) def is_Symmetrical(self, root1: TreeNode, root2: TreeNode): # 全为空,自然返回True if not root1 and not root2: return True # 一个为空,另一个不为空,返回False if not root1 or not root2: return False # 两个节点的值不相同,返回False if root1.val != root2.val: return False # 全不为空 # root1 按照 根-左-右 的先序遍历来, root2按照 根-右-左 的对称先序遍历来 return self.is_Symmetrical(root1.left, root2.right) and self.is_Symmetrical(root1.right, root2.left)
8baeb5e0f4856447b4b776a2cfd340d842904525
350db570521d3fc43f07df645addb9d6e648c17e
/0191_Number_of_1_Bits/solution_test.py
c90810e481c8eb1413275fac582e235cd1db37c7
[]
no_license
benjaminhuanghuang/ben-leetcode
2efcc9185459a1dd881c6e2ded96c42c5715560a
a2cd0dc5e098080df87c4fb57d16877d21ca47a3
refs/heads/master
2022-12-10T02:30:06.744566
2022-11-27T04:06:52
2022-11-27T04:06:52
236,252,145
1
1
null
null
null
null
UTF-8
Python
false
false
364
py
''' 191. Number of 1 Bits Level: Easy https://leetcode.com/problems/number-of-1-bits ''' import unittest class TestSum(unittest.TestCase): def test_sum(self): self.assertEqual(sum([1, 2, 3]), 6, "Should be 6") def test_sum_tuple(self): self.assertEqual(sum((1, 2, 2)), 6, "Should be 6") if __name__ == '__main__': unittest.main()
85bf6770328eb00c91e0cc62a4016f0dc533d828
a6982e37fdc5359fa89b9f0587f75ff4889a849d
/venv/Lib/site-packages/pandas/tests/series/indexing/test_loc.py
088406e0a1db670b2a260bce1a69e073370b2a34
[ "Apache-2.0" ]
permissive
1pani/fund-rank-dashboard
5d7ca6107013d5f82e7c54b3199d5506f34175c3
95c17bbee6e09ae4eb5738c519d3b6c651e8257c
refs/heads/master
2022-12-21T19:36:05.446703
2019-10-19T09:45:30
2019-10-19T09:45:30
137,461,621
4
1
Apache-2.0
2022-12-15T09:19:53
2018-06-15T08:26:46
Python
UTF-8
Python
false
false
4,078
py
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import pytest import numpy as np import pandas as pd from pandas import (Series, Timestamp) from pandas.compat import lrange from pandas.util.testing import (assert_series_equal) def test_loc_getitem(test_data): inds = test_data.series.index[[3, 4, 7]] assert_series_equal( test_data.series.loc[inds], test_data.series.reindex(inds)) assert_series_equal(test_data.series.iloc[5::2], test_data.series[5::2]) # slice with indices d1, d2 = test_data.ts.index[[5, 15]] result = test_data.ts.loc[d1:d2] expected = test_data.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = test_data.series > test_data.series.median() assert_series_equal(test_data.series.loc[mask], test_data.series[mask]) # ask for index value assert test_data.ts.loc[d1] == test_data.ts[d1] assert test_data.ts.loc[d2] == test_data.ts[d2] def test_loc_getitem_not_monotonic(test_data): d1, d2 = test_data.ts.index[[5, 15]] ts2 = test_data.ts[::2][[1, 2, 0]] pytest.raises(KeyError, ts2.loc.__getitem__, slice(d1, d2)) pytest.raises(KeyError, ts2.loc.__setitem__, slice(d1, d2), 0) def test_loc_getitem_setitem_integer_slice_keyerrors(): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).all() # so is this cp = s.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = s.iloc[2:6] result2 = s.loc[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] pytest.raises(KeyError, s2.loc.__getitem__, slice(3, 11)) pytest.raises(KeyError, s2.loc.__setitem__, slice(3, 11), 0) def test_loc_getitem_iterator(test_data): idx = iter(test_data.series.index[:10]) result = test_data.series.loc[idx] assert_series_equal(result, test_data.series[:10]) def test_loc_setitem_boolean(test_data): mask = test_data.series > test_data.series.median() result = test_data.series.copy() result.loc[mask] = 0 expected = test_data.series expected[mask] = 0 assert_series_equal(result, expected) def test_loc_setitem_corner(test_data): inds = list(test_data.series.index[[5, 8, 12]]) test_data.series.loc[inds] = 5 pytest.raises(Exception, test_data.series.loc.__setitem__, inds + ['foo'], 5) def test_basic_setitem_with_labels(test_data): indices = test_data.ts.index[[5, 10, 15]] cp = test_data.ts.copy() exp = test_data.ts.copy() cp[indices] = 0 exp.loc[indices] = 0 assert_series_equal(cp, exp) cp = test_data.ts.copy() exp = test_data.ts.copy() cp[indices[0]:indices[2]] = 0 exp.loc[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.loc[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.loc[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) pytest.raises(Exception, s.__setitem__, inds_notfound, 0) pytest.raises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] assert result == expected s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] assert result == expected s2 = s.copy() s2['a'] = expected result = s2['a'] assert result == expected
5254c10860b55877dc9906e14f80581bf5a37ac8
3dedcaa542529534b53f0612458b3b5dcaaa8d49
/icevision/models/mmdet/common/mask/two_stage/__init__.py
939fe5d03f1b56bfade4f752f82d41414d35a7a5
[ "Apache-2.0" ]
permissive
jerbly/icevision
20801e7acb6ef7dd8efe58ac9a398967689cbc9c
f97edd52c152f438d02bcce8a2e40b90dc304d01
refs/heads/master
2023-04-01T08:16:28.088970
2021-04-13T12:15:40
2021-04-13T12:15:40
314,865,574
0
1
Apache-2.0
2023-03-29T15:45:46
2020-11-21T17:25:37
Python
UTF-8
Python
false
false
114
py
from icevision.models.mmdet.common.mask import * from icevision.models.mmdet.common.mask.two_stage.model import *
31406d7aa715df53849ac4f2affbec4743320fcb
04097eda667d795407c71dbf7b8c408a55661e35
/prb_srv_x_T_legacy.py
7a9109fbb219f71ff13fa21410bbe1f7dff3579f
[]
no_license
synsrv/src_thrs-dyn-analysis
b0f76aded935093ebd15a1aa0d525ca07bbe98ee
9a286ec6f8259a6f7b73fb75ffe99c965263f4a7
refs/heads/master
2020-06-22T02:32:26.379781
2019-07-18T15:22:28
2019-07-18T15:22:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,114
py
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as pl from matplotlib import rc rc('text', usetex=True) pl.rcParams['text.latex.preamble'] = [ r'\usepackage{tgheros}', r'\usepackage{sansmath}', r'\sansmath' r'\usepackage{siunitx}', r'\sisetup{detect-all}', ] import argparse, sys, os, itertools, pickle import numpy as np data_dirs = sorted(['data/'+pth for pth in next(os.walk("data/"))[1]]) fig, ax = pl.subplots() bin_w = 1 for dpath in data_dirs: try: with open(dpath+'/namespace.p', 'rb') as pfile: nsp=pickle.load(pfile) with open(dpath+'/lts.p', 'rb') as pfile: lts_df=np.array(pickle.load(pfile)) # discard synapses present at beginning lts_df = lts_df[lts_df[:,1]>0] # only take synapses grown in first half of simulation t_split = nsp['Nsteps']/2 lts_df = lts_df[lts_df[:,3]<t_split] lts = lts_df[:,2] - lts_df[:,3] assert np.min(lts) > 0 lts[lts>t_split]=t_split bins = np.arange(1,t_split+bin_w,bin_w) counts, edges = np.histogram(lts, bins=bins, density=False) srv = 1. - np.cumsum(counts)/float(np.sum(counts)) label = str(nsp['bn_sig']) centers = (edges[:-1] + edges[1:])/2. ax.plot(centers, srv, '.', label=label) except FileNotFoundError: print(dpath[-4:], "reports: Error loading namespace") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('lifetime [steps]') ax.set_ylabel('relative frequency') directory = 'figures/prb_srv_single/' if not os.path.exists(directory): os.makedirs(directory) pl.legend() fname = dpath[-4:] fig.savefig(directory+'/'+fname+'.png', dpi=150, bbox_inches='tight')
a56fc1a4e5b64686820edca3055851034da5cf31
ade10d077441c1d36d027c05df458e942b904a1d
/scripts/classifcation_pos_all_vs_one.py
cbd024b089929aa4abb8a5011aef697193f32b07
[ "MIT" ]
permissive
nmningmei/metacognition
dabadca913e404994f8d53167e5f36f551590def
734082e247cc7fc9d277563e2676e10692617a3f
refs/heads/master
2022-07-14T06:51:42.508132
2021-11-14T09:40:13
2021-11-14T09:40:13
197,187,294
2
1
MIT
2022-06-21T23:01:56
2019-07-16T12:12:11
Python
UTF-8
Python
false
false
6,544
py
# -*- coding: utf-8 -*- """ Created on Sun Jul 15 16:02:16 2018 @author: ning """ import os working_dir = '' import pandas as pd pd.options.mode.chained_assignment = None import numpy as np from utils import (classification_simple_logistic) saving_dir = '../results/all_vs_one' if not os.path.exists(saving_dir): os.mkdir(saving_dir) # Exp 1 for participant in ['AC', 'CL', 'FW', 'HB', 'KK', 'LM', 'MC', 'MP1', 'MP2', 'NN', 'RP','SD', 'TJ', 'TS', 'WT']: experiment = 'pos' df = pd.read_csv(os.path.join(working_dir,'../data/PoSdata.csv')) df = df[df.columns[1:]] df.columns = ['participant', 'blocks', 'trials', 'firstgabor', 'success', 'tilted', 'correct', 'RT_correct', 'awareness', 'RT_awareness', 'confidence', 'RT_confidence'] df_sub = df[df['participant'] == participant] # make sure all the attributes are either 0 or 1 df_sub.loc[:,'success' ] = df_sub.loc[:,'success' ].values - 1 df_sub.loc[:,'awareness' ] = df_sub.loc[:,'awareness' ].values - 1 df_sub.loc[:,'confidence'] = df_sub.loc[:,'confidence'].values - 1 # use success, awareness, and confidence as features np.random.seed(12345) # use all judgement features feature_names = [ 'correct', 'awareness', 'confidence',] target_name = 'success' results = dict(sub = [], model = [], score = [], window = [], chance = [], feature = [], ) for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = classification_simple_logistic( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, chance = False, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'pos_3_1_features (experiment score)_{}.csv'.format(participant)),index=False) # save as a csv # use correct as features feature_names = [ 'correct', ] target_name = 'success' results = dict(sub = [], model = [], score = [], window = [], chance = [], feature = [], ) for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = classification_simple_logistic( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, chance = False, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'pos_correct_features (experiment score)_{}.csv'.format(participant)),index=False) # save as a csv np.random.seed(12345) # use awareness as features feature_names = [ 'awareness',] target_name = 'success' results = dict(sub = [], model = [], score = [], window = [], chance = [], feature = [], ) for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = classification_simple_logistic( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, chance = False, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'pos_awareness_features (experiment score)_{}.csv'.format(participant)),index=False) # save as a csv # use confidence as features feature_names = [ 'confidence',] target_name = 'success' results = dict(sub = [], model = [], score = [], window = [], chance = [], feature = [], ) for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = classification_simple_logistic( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, chance = False, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'pos_confidence_features (experiment score)_{}.csv'.format(participant)),index=False) # save as a csv
a2bfe17cf36e9ac576e0431a529c25c270f4c096
6ef3b1919e7acbc72e5706b2dc6d716f8929e3d2
/transformers/training_args_tf.py
94e5c3f320ec74ca7352f0d00c07971e15815b7f
[ "MIT" ]
permissive
linshaoxin-maker/taas
04f7dcc7c0d2818718e6b245531e017ca5370231
34e11fab167a7beb78fbe6991ff8721dc9208793
refs/heads/main
2023-01-19T20:58:04.459980
2020-11-27T02:28:36
2020-11-27T02:28:36
329,522,465
6
0
MIT
2021-01-14T06:02:08
2021-01-14T06:02:07
null
UTF-8
Python
false
false
9,501
py
import warnings from dataclasses import dataclass, field from typing import Tuple from .file_utils import cached_property, is_tf_available, tf_required from .training_args import TrainingArguments from .utils import logging logger = logging.get_logger(__name__) if is_tf_available(): import tensorflow as tf @dataclass class TFTrainingArguments(TrainingArguments): """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using :class:`~transformers.HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. Parameters: output_dir (:obj:`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, overwrite the content of the output directory. Use this to continue training if :obj:`output_dir` points to a checkpoint directory. do_train (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run training or not. do_eval (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run evaluation on the dev set or not. do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run predictions on the test set or not. evaluate_during_training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run evaluation during training at each logging step or not. per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for training. per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for evaluation. gradient_accumulation_steps: (:obj:`int`, `optional`, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. learning_rate (:obj:`float`, `optional`, defaults to 5e-5): The initial learning rate for Adam. weight_decay (:obj:`float`, `optional`, defaults to 0): The weight decay to apply (if not zero). adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): Epsilon for the Adam optimizer. max_grad_norm (:obj:`float`, `optional`, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(:obj:`float`, `optional`, defaults to 3.0): Total number of training epochs to perform. max_steps (:obj:`int`, `optional`, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides :obj:`num_train_epochs`. warmup_steps (:obj:`int`, `optional`, defaults to 0): Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. logging_dir (:obj:`str`, `optional`): Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`. logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`): Wheter to log and evalulate the first :obj:`global_step` or not. logging_steps (:obj:`int`, `optional`, defaults to 500): Number of update steps between two logs. save_steps (:obj:`int`, `optional`, defaults to 500): Number of updates steps before two checkpoint saves. save_total_limit (:obj:`int`, `optional`): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in :obj:`output_dir`. no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to not use CUDA even when it is available or not. seed (:obj:`int`, `optional`, defaults to 42): Random seed for initialization. fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training. fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'): For :obj:`fp16` training, apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the `apex documentation <https://nvidia.github.io/apex/amp.html>`__. local_rank (:obj:`int`, `optional`, defaults to -1): During distributed training, the rank of the process. tpu_num_cores (:obj:`int`, `optional`): When training on TPU, the mumber of TPU cores (automatically passed by launcher script). debug (:obj:`bool`, `optional`, defaults to :obj:`False`): Wheter to activate the trace to record computation graphs and profiling information or not. dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (:obj:`int`, `optional`, defaults to 1000): Number of update steps before two evaluations. past_index (:obj:`int`, `optional`, defaults to -1): Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, the ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument ``mems``. tpu_name (:obj:`str`, `optional`): The name of the TPU the process is running on. run_name (:obj:`str`, `optional`): A descriptor for the run. Notably used for wandb logging. """ tpu_name: str = field( default=None, metadata={"help": "Name of TPU"}, ) @cached_property @tf_required def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", int]: logger.info("Tensorflow: setting up strategy") gpus = tf.config.list_physical_devices("GPU") if self.no_cuda: strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0") else: try: if self.tpu_name: tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) else: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) elif len(gpus) == 0: strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0") elif len(gpus) == 1: strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") elif len(gpus) > 1: # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` strategy = tf.distribute.MirroredStrategy() else: raise ValueError("Cannot find the proper strategy please check your environment properties.") return strategy @property @tf_required def strategy(self) -> "tf.distribute.Strategy": """ The strategy used for distributed training. """ return self._setup_strategy @property @tf_required def n_replicas(self) -> int: """ The number of replicas (CPUs, GPUs or TPU cores) used in this training. """ return self._setup_strategy.num_replicas_in_sync @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size return per_device_batch_size * self.n_replicas @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size return per_device_batch_size * self.n_replicas @property @tf_required def n_gpu(self) -> int: """ The number of replicas (CPUs, GPUs or TPU cores) used in this training. """ warnings.warn( "The n_gpu argument is deprecated and will be removed in a future version, use n_replicas instead.", FutureWarning, ) return self._setup_strategy.num_replicas_in_sync
1f2da7d9fbaf2354d8c00fea11e387e58c256aaa
d03ce5c5c3750e60ba9baa958e5445b98ba14462
/user/views.py
f25749f7fb2516d57bb3384433e3d5e046bc0143
[]
no_license
alxayeed/covid-room-finder
dbd22ebb702bf588384d6fb8d917c29568cc22a6
3ff541d76e342d6bd0b3d7221577b06ec0806837
refs/heads/main
2023-03-30T12:33:57.152717
2021-02-21T13:08:00
2021-02-21T13:08:00
339,812,785
0
0
null
null
null
null
UTF-8
Python
false
false
1,407
py
from django.shortcuts import render, redirect from django.http import HttpResponse from .forms import RegisterForm from django.contrib.auth import login, logout, authenticate from django.contrib import messages def register_user(request): form = RegisterForm() if request.method == "POST": form = RegisterForm(request.POST) if form.is_valid(): username = form.cleaned_data.get('username') password = form.cleaned_data.get('password') form.save() login(request, authenticate( request, username=username, password=password)) return redirect('index') else: return render(request, 'user/register_form.html', {'form': form}) return render(request, 'user/register_form.html', {'form': form}) def login_user(request): if request.method == 'POST': username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) print(request.user.is_authenticated) return redirect('index') else: messages.error(request, 'Username or Password is incorrect') return render(request, 'user/login.html') def logout_user(request): logout(request) return redirect('login')
fe79280e5ce2a4759497da529a8e4910958ffdf0
f543c5593b40622a219f7c2961b2cdf43766eae4
/tfx/examples/penguin/penguin_pipeline_kubeflow_gcp.py
5772acd21124664170f449da68336be4c7828572
[ "Apache-2.0" ]
permissive
2k0ri/tfx
939e52d481d6319e30296bce5740f4724304cbac
7474ba28560293fa32c2e5ceffa0f82ae5dc3b86
refs/heads/master
2023-02-22T06:06:26.654711
2021-01-27T21:59:38
2021-01-27T22:00:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,556
py
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Penguin example using TFX.""" import copy import os from typing import Dict, List, Optional, Text from absl import app from absl import flags import tensorflow_model_analysis as tfma from tfx.components import CsvExampleGen from tfx.components import Evaluator from tfx.components import ExampleValidator from tfx.components import Pusher from tfx.components import ResolverNode from tfx.components import SchemaGen from tfx.components import StatisticsGen from tfx.components import Trainer from tfx.components import Transform from tfx.dsl.components.base import executor_spec from tfx.dsl.experimental import latest_blessed_model_resolver from tfx.extensions.google_cloud_ai_platform.pusher import executor as ai_platform_pusher_executor from tfx.extensions.google_cloud_ai_platform.trainer import executor as ai_platform_trainer_executor from tfx.extensions.google_cloud_ai_platform.tuner.component import Tuner from tfx.orchestration import data_types from tfx.orchestration import pipeline from tfx.orchestration.kubeflow import kubeflow_dag_runner from tfx.proto import tuner_pb2 from tfx.types import Channel from tfx.types.standard_artifacts import Model from tfx.types.standard_artifacts import ModelBlessing from tfx.utils.dsl_utils import external_input FLAGS = flags.FLAGS flags.DEFINE_bool('distributed_training', False, 'If True, enable distributed training.') _pipeline_name = 'penguin_kubeflow_gcp' # Directory and data locations (uses Google Cloud Storage). _input_bucket = 'gs://my-bucket' _output_bucket = 'gs://my-bucket' _data_root = os.path.join(_input_bucket, 'penguin', 'data') # Directory and data locations. This example assumes all of the # example code and metadata library is relative to $HOME, but you can store # these files anywhere on your local filesystem. _tfx_root = os.path.join(_output_bucket, 'tfx') _pipeline_root = os.path.join(_tfx_root, _pipeline_name) # Google Cloud Platform project id to use when deploying this pipeline. # This project configuration is for running Dataflow, AIP Training service and # Prediction service. Note that the AIP Vizier service (CloudTuner) is # separately configured in the module file. _project_id = 'my-gcp-project' # Python module file to inject customized logic into the TFX components. The # Transform, Trainer and Tuner all require user-defined functions to run # successfully. Copy this from the current directory to a GCS bucket and update # the location below. _module_file = os.path.join(_input_bucket, 'penguin', 'penguin_utils_cloud_tuner.py') # Region to use for Dataflow jobs and AI Platform jobs. # Dataflow: https://cloud.google.com/dataflow/docs/concepts/regional-endpoints # AI Platform: https://cloud.google.com/ml-engine/docs/tensorflow/regions _gcp_region = 'us-central1' # A dict which contains the training job parameters to be passed to Google # Cloud AI Platform. For the full set of parameters supported by Google Cloud AI # Platform, refer to # https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#Job _ai_platform_training_args = { 'project': _project_id, 'region': _gcp_region, # Starting from TFX 0.14, training on AI Platform uses custom containers: # https://cloud.google.com/ml-engine/docs/containers-overview # You can specify a custom container here. If not specified, TFX will use a # a public container image matching the installed version of TFX. # 'masterConfig': { 'imageUri': 'gcr.io/my-project/my-container' }, # Note that if you do specify a custom container, ensure the entrypoint # calls into TFX's run_executor script (tfx/scripts/run_executor.py) # Both CloudTuner and the Google Cloud AI Platform extensions Tuner # component can be used together, in which case it allows distributed # parallel tuning backed by AI Platform Vizier's hyperparameter search # algorithm. However, in order to do so, the Cloud AI Platform Job must be # given access to the AI Platform Vizier service. # https://cloud.google.com/ai-platform/training/docs/custom-service-account#custom # Then, you should specify the custom service account for the training job. 'serviceAccount': '<SA_NAME>@my-gcp-project.iam.gserviceaccount.com', } _pusher_custom_config = { # A dict which contains the serving job parameters to be passed to Google # Cloud AI Platform. For the full set of parameters supported by Google # Cloud AI Platform, refer to # https://cloud.google.com/ml-engine/reference/rest/v1/projects.models ai_platform_pusher_executor.SERVING_ARGS_KEY: { 'model_name': 'penguin', 'project_id': _project_id, 'machine_type': 'n1-standard-8', }, # Regional endpoint for prediction service. See # https://cloud.google.com/ai-platform/prediction/docs/regional-endpoints#using_regional_endpoints ai_platform_pusher_executor.ENDPOINT_ARGS_KEY: 'https://%s-ml.googleapis.com' % _gcp_region, } def create_pipeline( pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, ai_platform_training_args: Dict[Text, Text], pusher_custom_config: Dict[Text, Text], enable_tuning: bool, beam_pipeline_args: Optional[List[Text]] = None) -> pipeline.Pipeline: """Implements the penguin pipeline with TFX and Kubeflow Pipeline. Args: pipeline_name: name of the TFX pipeline being created. pipeline_root: root directory of the pipeline. Should be a valid GCS path. data_root: uri of the penguin data. module_file: uri of the module files used in Trainer and Transform components. ai_platform_training_args: Args of CAIP training job. Please refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#Job for detailed description. pusher_custom_config: Custom configs passed to pusher. enable_tuning: If True, the hyperparameter tuning through CloudTuner is enabled. beam_pipeline_args: Optional list of beam pipeline options. Please refer to https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options. When this argument is not provided, the default is to use GCP DataflowRunner with 50GB disk size as specified in this function. If an empty list is passed in, default specified by Beam will be used, which can be found at https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options Returns: A TFX pipeline object. """ examples = external_input(data_root) # Beam args to run data processing on DataflowRunner. # # TODO(b/151114974): Remove `disk_size_gb` flag after default is increased. # TODO(b/151116587): Remove `shuffle_mode` flag after default is changed. # TODO(b/156874687): Remove `machine_type` after IP addresses are no longer a # scaling bottleneck. if beam_pipeline_args is None: beam_pipeline_args = [ '--runner=DataflowRunner', '--project=' + _project_id, '--temp_location=' + os.path.join(_output_bucket, 'tmp'), '--region=' + _gcp_region, # Temporary overrides of defaults. '--disk_size_gb=50', '--experiments=shuffle_mode=auto', '--machine_type=e2-standard-8', ] # Number of epochs in training. train_steps = data_types.RuntimeParameter( name='train_steps', default=100, ptype=int, ) # Number of epochs in evaluation. eval_steps = data_types.RuntimeParameter( name='eval_steps', default=50, ptype=int, ) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform( examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Update ai_platform_training_args if distributed training was enabled. # Number of worker machines used in distributed training. worker_count = data_types.RuntimeParameter( name='worker_count', default=2, ptype=int, ) # Type of worker machines used in distributed training. worker_type = data_types.RuntimeParameter( name='worker_type', default='standard', ptype=str, ) local_training_args = copy.deepcopy(ai_platform_training_args) if FLAGS.distributed_training: local_training_args.update({ # You can specify the machine types, the number of replicas for workers # and parameter servers. # https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#ScaleTier 'scaleTier': 'CUSTOM', 'masterType': 'large_model', 'workerType': worker_type, 'parameterServerType': 'standard', 'workerCount': worker_count, 'parameterServerCount': 1, }) # Tunes the hyperparameters for model training based on user-provided Python # function. Note that once the hyperparameters are tuned, you can drop the # Tuner component from pipeline and feed Trainer with tuned hyperparameters. if enable_tuning: # The Tuner component launches 1 AIP Training job for flock management. # For example, 3 workers (defined by num_parallel_trials) in the flock # management AIP Training job, each runs Tuner.Executor. # Then, 3 AIP Training Jobs (defined by local_training_args) are invoked # from each worker in the flock management Job for Trial execution. tuner = Tuner( module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, tune_args=tuner_pb2.TuneArgs( # num_parallel_trials=3 means that 3 search loops are # running in parallel. # Each tuner may include a distributed training job which can be # specified in local_training_args above (e.g. 1 PS + 2 workers). num_parallel_trials=3), custom_config={ # Configures Cloud AI Platform-specific configs . For details, see # https://cloud.google.com/ai-platform/training/docs/reference/rest/v1/projects.jobs#traininginput. ai_platform_trainer_executor.TRAINING_ARGS_KEY: local_training_args }) # Uses user-provided Python function that trains a model. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.GenericExecutor), module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], # If Tuner is in the pipeline, Trainer can take Tuner's output # best_hyperparameters artifact as input and utilize it in the user module # code. # # If there isn't Tuner in the pipeline, either use ImporterNode to import # a previous Tuner's output to feed to Trainer, or directly use the tuned # hyperparameters in user module code and set hyperparameters to None # here. # # Example of ImporterNode, # hparams_importer = ImporterNode( # instance_name='import_hparams', # source_uri='path/to/best_hyperparameters.txt', # artifact_type=HyperParameters) # ... # hyperparameters = hparams_importer.outputs['result'], hyperparameters=(tuner.outputs['best_hyperparameters'] if enable_tuning else None), train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, custom_config={ ai_platform_trainer_executor.TRAINING_ARGS_KEY: local_training_args }) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute an evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='species')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10}))) ]) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], custom_config=pusher_custom_config, ) components = [ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher, ] if enable_tuning: components.append(tuner) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, enable_cache=True, beam_pipeline_args=beam_pipeline_args) def main(unused_argv): # Metadata config. The defaults works work with the installation of # KF Pipelines using Kubeflow. If installing KF Pipelines using the # lightweight deployment option, you may need to override the defaults. metadata_config = kubeflow_dag_runner.get_default_kubeflow_metadata_config() # This pipeline automatically injects the Kubeflow TFX image if the # environment variable 'KUBEFLOW_TFX_IMAGE' is defined. The tfx # cli tool exports the environment variable to pass to the pipelines. tfx_image = os.environ.get('KUBEFLOW_TFX_IMAGE', None) runner_config = kubeflow_dag_runner.KubeflowDagRunnerConfig( kubeflow_metadata_config=metadata_config, # Specify custom docker image to use. tfx_image=tfx_image) kubeflow_dag_runner.KubeflowDagRunner(config=runner_config).run( create_pipeline( pipeline_name=_pipeline_name, pipeline_root=_pipeline_root, data_root=_data_root, module_file=_module_file, enable_tuning=True, ai_platform_training_args=_ai_platform_training_args, pusher_custom_config=_pusher_custom_config, )) # $ tfx pipeline create \ # --pipeline-path=penguin_pipeline_kubeflow_gcp.py # https://github.com/tensorflow/tfx/blob/master/docs/guide/cli.md#create if __name__ == '__main__': app.run(main)
75155b68d0584f73062c82fc4a19c12263c70205
5d3bd6a1227e383e57e16a4ecaaf5d2d727d1d72
/tools/sapp/sapp/tests/interactive_test.py
8e68b00cdaa6c4a4564ce3b320de95a01a717dd6
[ "MIT" ]
permissive
KevinHock/pyre-check
75e918f89a4bfe28a82546364d7aba94a83a56e9
09b0f53e23353b16a59ef76d8e5c5b78bdf08447
refs/heads/master
2020-12-04T17:08:07.931289
2020-02-22T01:51:13
2020-02-22T01:52:45
231,847,877
4
1
MIT
2020-01-05T00:32:13
2020-01-05T00:32:12
null
UTF-8
Python
false
false
84,783
py
#!/usr/bin/env python3 import os import sys from datetime import datetime from io import StringIO from typing import List from unittest import TestCase from unittest.mock import mock_open, patch from sqlalchemy.orm import Session from ..db import DB, DBType from ..decorators import UserError from ..interactive import ( Interactive, IssueQueryResult, TraceFrameQueryResult, TraceTuple, ) from ..models import ( DBID, Issue, IssueInstance, IssueInstanceSharedTextAssoc, IssueInstanceTraceFrameAssoc, Run, RunStatus, SharedText, SharedTextKind, SourceLocation, TraceFrame, TraceFrameLeafAssoc, TraceKind, ) from ..pysa_taint_parser import Parser from .fake_object_generator import FakeObjectGenerator class InteractiveTest(TestCase): def setUp(self) -> None: self.db = DB(DBType.MEMORY) self.interactive = Interactive( database=self.db, repository_directory="", parser_class=Parser ) self.stdout = StringIO() self.stderr = StringIO() sys.stdout = self.stdout # redirect output sys.stderr = self.stderr # redirect output self.fakes = FakeObjectGenerator() def tearDown(self) -> None: sys.stdout = sys.__stdout__ # reset redirect sys.stderr = sys.__stderr__ # reset redirect def _clear_stdout(self): self.stdout = StringIO() sys.stdout = self.stdout def _add_to_session(self, session, data): if not isinstance(data, list): session.add(data) return for row in data: session.add(row) def _frame_to_query_result( self, session: Session, trace_frame: TraceFrame ) -> TraceFrameQueryResult: caller = ( session.query(SharedText.contents) .filter(SharedText.id == trace_frame.caller_id) .scalar() ) callee = ( session.query(SharedText.contents) .filter(SharedText.id == trace_frame.callee_id) .scalar() ) filename = ( session.query(SharedText.contents) .filter(SharedText.id == trace_frame.filename_id) .scalar() ) return TraceFrameQueryResult( id=trace_frame.id, caller=caller, caller_port=trace_frame.caller_port, callee=callee, callee_port=trace_frame.callee_port, caller_id=trace_frame.caller_id, callee_id=trace_frame.callee_id, callee_location=trace_frame.callee_location, kind=trace_frame.kind, filename=filename, ) def testState(self): self.interactive.current_run_id = 1 self.interactive.current_issue_instance_id = 2 self.interactive.current_frame_id = 3 self.interactive.sources = {1} self.interactive.sinks = {2} self.interactive.state() output = self.stdout.getvalue() self.assertIn("Database: memory:sapp.db", output) self.assertIn("Repository directory: ", output) self.assertIn("Current run: 1", output) self.assertIn("Current issue instance: 2", output) self.assertIn("Current trace frame: 3", output) self.assertIn("Sources filter: {1}", output) self.assertIn("Sinks filter: {2}", output) def testListIssuesBasic(self): run = self.fakes.run() self.fakes.issue() self.fakes.instance( message="message1", filename="file.py", callable="module.function1" ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issues() output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Code: 6016", output) self.assertIn("Message: message1", output) self.assertIn("Callable: module.function1", output) self.assertIn("Location: file.py:6|7|8", output) def testListIssuesFromLatestRun(self): self.fakes.issue() run1 = self.fakes.run() self.fakes.instance() # part of run1 self.fakes.save_all(self.db) # early flush to resolve DBID's run2 = self.fakes.run() self.fakes.instance() # part of run2 self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.interactive.issues() output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertIn("Issue 2", output) def _list_issues_filter_setup(self): run = self.fakes.run() issue1 = self.fakes.issue() self.fakes.instance( issue_id=issue1.id, callable="module.sub.function1", filename="module/sub.py", min_trace_length_to_sources=1, min_trace_length_to_sinks=1, ) self.fakes.save_all(self.db) issue2 = self.fakes.issue() self.fakes.instance( issue_id=issue2.id, callable="module.sub.function2", filename="module/sub.py", min_trace_length_to_sources=2, min_trace_length_to_sinks=2, ) self.fakes.save_all(self.db) issue3 = self.fakes.issue() self.fakes.instance( issue_id=issue3.id, callable="module.function3", filename="module/__init__.py", min_trace_length_to_sources=3, min_trace_length_to_sinks=3, ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() def testListIssuesFilterCodes(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(codes="a string") stderr = self.stderr.getvalue().strip() self.assertIn("'codes' should be", stderr) self.interactive.issues(codes=6016) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(codes=[6017, 6018]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertIn("Issue 3", output) def testListIssuesFilterCallables(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(callables=1234) stderr = self.stderr.getvalue().strip() self.assertIn("'callables' should be", stderr) self.interactive.issues(callables="%sub%") output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(callables=["%function3"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertIn("Issue 3", output) def testListIssuesFilterFilenames(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(filenames=1234) stderr = self.stderr.getvalue().strip() self.assertIn("'filenames' should be", stderr) self.interactive.issues(filenames="module/s%") output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(filenames=["%__init__.py"]) output = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertIn("Issue 3", output) def testListIssuesFilterMinTraceLength(self): self._list_issues_filter_setup() self.interactive.setup() self.interactive.issues(exact_trace_length_to_sources="1") stderr = self.stderr.getvalue().strip() self.assertIn("'exact_trace_length_to_sources' should be", stderr) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sinks="1") stderr = self.stderr.getvalue().strip() self.assertIn("'exact_trace_length_to_sinks' should be", stderr) self._clear_stdout() self.interactive.issues(max_trace_length_to_sources="1") stderr = self.stderr.getvalue().strip() self.assertIn("'max_trace_length_to_sources' should be", stderr) self._clear_stdout() self.interactive.issues(max_trace_length_to_sinks="1") stderr = self.stderr.getvalue().strip() self.assertIn("'max_trace_length_to_sinks' should be", stderr) self._clear_stdout() self.interactive.issues( exact_trace_length_to_sources=1, max_trace_length_to_sources=1 ) stderr = self.stderr.getvalue().strip() self.assertIn("can't be set together", stderr) self._clear_stdout() self.interactive.issues( exact_trace_length_to_sinks=1, max_trace_length_to_sinks=1 ) stderr = self.stderr.getvalue().strip() self.assertIn("can't be set together", stderr) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sources=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sinks=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sources=[1, 2]) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(exact_trace_length_to_sinks=[1, 2]) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sources=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sinks=1) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sources=2) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues(max_trace_length_to_sinks=2) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues( max_trace_length_to_sources=1, max_trace_length_to_sinks=1 ) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() self.interactive.issues( max_trace_length_to_sources=1, max_trace_length_to_sinks=2 ) output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) self.assertNotIn("Issue 3", output) self._clear_stdout() def testNoRunsFound(self): self.interactive.setup() stderr = self.stderr.getvalue().strip() self.assertIn("No runs found.", stderr) def testListRuns(self): runs = [ Run(id=1, date=datetime.now(), status=RunStatus.FINISHED), Run(id=2, date=datetime.now(), status=RunStatus.INCOMPLETE), Run(id=3, date=datetime.now(), status=RunStatus.FINISHED), ] with self.db.make_session() as session: self._add_to_session(session, runs) session.commit() self.interactive.setup() self.interactive.runs() output = self.stdout.getvalue().strip() self.assertIn("Run 1", output) self.assertNotIn("Run 2", output) self.assertIn("Run 3", output) def testSetRun(self): self.fakes.issue() run1 = self.fakes.run() self.fakes.instance(message="Issue message") self.fakes.save_all(self.db) run2 = self.fakes.run() self.fakes.instance(message="Issue message") self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.interactive.run(1) self.interactive.issues() output = self.stdout.getvalue().strip() self.assertIn("Issue 1", output) self.assertNotIn("Issue 2", output) def testSetRunNonExistent(self): runs = [ Run(id=1, date=datetime.now(), status=RunStatus.FINISHED), Run(id=2, date=datetime.now(), status=RunStatus.INCOMPLETE), ] with self.db.make_session() as session: self._add_to_session(session, runs) session.commit() self.interactive.setup() self.interactive.run(2) self.interactive.run(3) stderr = self.stderr.getvalue().strip() self.assertIn("Run 2 doesn't exist", stderr) self.assertIn("Run 3 doesn't exist", stderr) def testSetLatestRun(self): runs = [ Run(id=1, date=datetime.now(), status=RunStatus.FINISHED, kind="a"), Run(id=2, date=datetime.now(), status=RunStatus.FINISHED, kind="a"), Run(id=3, date=datetime.now(), status=RunStatus.FINISHED, kind="a"), Run(id=4, date=datetime.now(), status=RunStatus.FINISHED, kind="b"), Run(id=5, date=datetime.now(), status=RunStatus.FINISHED, kind="b"), Run(id=6, date=datetime.now(), status=RunStatus.FINISHED, kind="c"), ] with self.db.make_session() as session: self._add_to_session(session, runs) session.commit() self.interactive.latest_run("c") self.assertEqual(self.interactive.current_run_id, 6) self.interactive.latest_run("b") self.assertEqual(self.interactive.current_run_id, 5) self.interactive.latest_run("a") self.assertEqual(self.interactive.current_run_id, 3) self.interactive.latest_run("d") self.assertEqual(self.interactive.current_run_id, 3) self.assertIn("No runs with kind 'd'", self.stderr.getvalue()) def testSetIssue(self): run = self.fakes.run() self.fakes.issue() self.fakes.instance(message="Issue message") self.fakes.instance(message="Issue message") self.fakes.instance(message="Issue message") self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(2) self.assertEqual(self.interactive.current_issue_instance_id, 2) stdout = self.stdout.getvalue().strip() self.assertNotIn("Issue 1", stdout) self.assertIn("Issue 2", stdout) self.assertNotIn("Issue 3", stdout) self.interactive.issue(1) self.assertEqual(self.interactive.current_issue_instance_id, 1) stdout = self.stdout.getvalue().strip() self.assertIn("Issue 1", stdout) self.assertNotIn("Issue 3", stdout) def testSetIssueNonExistent(self): run = self.fakes.run() with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) stderr = self.stderr.getvalue().strip() self.assertIn("Issue 1 doesn't exist", stderr) def testSetIssueUpdatesRun(self): self.fakes.issue() run1 = self.fakes.run() self.fakes.instance() self.fakes.save_all(self.db) run2 = self.fakes.run() self.fakes.instance() self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.assertEqual(int(self.interactive.current_run_id), 2) self.interactive.issue(1) self.assertEqual(int(self.interactive.current_run_id), 1) def testGetSources(self): self.fakes.instance() source1 = self.fakes.source("source1") source2 = self.fakes.source("source2") self.fakes.source("source3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=source1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=source2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() sources = self.interactive._get_leaves_issue_instance( session, 1, SharedTextKind.SOURCE ) self.assertEqual(len(sources), 2) self.assertIn("source1", sources) self.assertIn("source2", sources) def testGetSinks(self): self.fakes.instance() sink1 = self.fakes.sink("sink1") sink2 = self.fakes.sink("sink2") self.fakes.sink("sink3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc(shared_text_id=sink1.id, issue_instance_id=1), IssueInstanceSharedTextAssoc(shared_text_id=sink2.id, issue_instance_id=1), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() sinks = self.interactive._get_leaves_issue_instance( session, 1, SharedTextKind.SINK ) self.assertEqual(len(sinks), 2) self.assertIn("sink1", sinks) self.assertIn("sink2", sinks) def testGetFeatures(self): self.fakes.instance() feature1 = self.fakes.feature("via:feature1") feature2 = self.fakes.feature("via:feature2") self.fakes.feature("via:feature3") self.fakes.save_all(self.db) assocs = [ IssueInstanceSharedTextAssoc( shared_text_id=feature1.id, issue_instance_id=1 ), IssueInstanceSharedTextAssoc( shared_text_id=feature2.id, issue_instance_id=1 ), ] with self.db.make_session() as session: self._add_to_session(session, assocs) session.commit() self.interactive.setup() features = self.interactive._get_leaves_issue_instance( session, 1, SharedTextKind.FEATURE ) self.assertEqual(len(features), 2) self.assertIn("via:feature1", features) self.assertIn("via:feature2", features) def _basic_trace_frames(self): return [ self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), self.fakes.precondition( caller="call2", caller_port="param0", callee="leaf", callee_port="sink", location=(1, 2, 1), ), ] def testNextTraceFrames(self): run = self.fakes.run() frames = self._basic_trace_frames() sink = self.fakes.sink("sink1") self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=1 ) ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.sinks = {"sink1"} next_frames = self.interactive._next_forward_trace_frames( session, frames[0], set() ) self.assertEqual(len(next_frames), 1) self.assertEqual(int(next_frames[0].id), int(frames[1].id)) def testNextTraceFramesMultipleRuns(self): run1 = self.fakes.run() frames = self._basic_trace_frames() self.fakes.save_all(self.db) run2 = self.fakes.run() frames.extend(self._basic_trace_frames()) sink = self.fakes.sink("sink1") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[3].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.interactive.sinks = {"sink1"} next_frames = self.interactive._next_forward_trace_frames( session, frames[2], set() ) self.assertEqual(len(next_frames), 1) self.assertEqual(int(next_frames[0].id), int(frames[3].id)) def testNextTraceFramesBackwards(self): run = self.fakes.run() frames = [ self.fakes.precondition( caller="call1", caller_port="root", callee="call3", callee_port="param1", location=(1, 1, 1), ), self.fakes.precondition( caller="call3", caller_port="param1", callee="leaf", callee_port="sink", location=(1, 2, 1), ), ] sink = self.fakes.sink("sink1") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=1 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.sinks = {"sink1"} next_frames = self.interactive._next_backward_trace_frames( session, frames[1], set() ) self.assertEqual(len(next_frames), 1) self.assertEqual(int(next_frames[0].id), int(frames[0].id)) def testNavigateTraceFrames(self): run = self.fakes.run() frames = self._basic_trace_frames() sink = self.fakes.sink("sink1") self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=1 ) ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.sinks = {"sink1"} result = self.interactive._navigate_trace_frames(session, [frames[0]]) self.assertEqual(len(result), 2) self.assertEqual(int(result[0][0].id), int(frames[0].id)) self.assertEqual(int(result[1][0].id), int(frames[1].id)) def testNavigateTraceFramesDetectsCycle(self): """This test checks that we don't get stuck in a cycle. Without cycle detection code, this test will go from 1->2->1->2->... . With cycle detection code it goes 1->2->3->4. """ run = self.fakes.run() frames = [ self.fakes.precondition( caller="call1", caller_port="param1", callee="call2", callee_port="param2", ), self.fakes.precondition( caller="call2", caller_port="param2", callee="call1", callee_port="param1", ), self.fakes.precondition( caller="call1", caller_port="param1", callee="call3", callee_port="param3", ), self.fakes.precondition( caller="call3", caller_port="param3", callee="leaf", callee_port="sink" ), ] sink = self.fakes.sink("sink") self.fakes.saver.add_all( [ # This trace_length 0 is part of a bug. # See models.py:TraceFrameLeafAssoc.trace_length TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[2].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[3].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.sinks = {"sink"} trace = self.interactive._navigate_trace_frames(session, [frames[0]]) self.assertEqual(len(frames), 4) self.assertEqual( [int(frame.id) for frame, _branches in trace], [int(frame.id) for frame in frames], ) def testCreateTraceTuples(self): # reverse order postcondition_traces = [ ( TraceFrameQueryResult( id=DBID(1), callee="call3", callee_port="result", filename="file3.py", callee_location=SourceLocation(1, 1, 3), caller="main", caller_port="root", ), 1, ), ( TraceFrameQueryResult( id=DBID(2), callee="call2", callee_port="result", caller="dummy caller", caller_port="dummy caller", filename="file2.py", callee_location=SourceLocation(1, 1, 2), ), 2, ), ( TraceFrameQueryResult( id=DBID(3), callee="leaf", callee_port="source", caller="dummy caller", caller_port="dummy caller", filename="file1.py", callee_location=SourceLocation(1, 1, 1), ), 3, ), ] trace_tuples = self.interactive._create_trace_tuples(postcondition_traces) self.assertEqual(len(trace_tuples), 3) self.assertEqual( trace_tuples, [ TraceTuple(postcondition_traces[0][0], 1), TraceTuple(postcondition_traces[1][0], 2), TraceTuple(postcondition_traces[2][0], 3), ], ) def testOutputTraceTuples(self): trace_tuples = [ TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(1), caller="unused", caller_port="unused", callee="leaf", callee_port="source", filename="file1.py", callee_location=SourceLocation(1, 1, 1), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(2), caller="unused", caller_port="unused", callee="call2", callee_port="result", filename="file2.py", callee_location=SourceLocation(1, 1, 2), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(3), caller="unused", caller_port="unused", callee="call3", callee_port="result", filename="file3.py", callee_location=SourceLocation(1, 1, 3), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(4), caller="unused", caller_port="unused", callee="main", callee_port="root", filename="file4.py", callee_location=SourceLocation(1, 1, 4), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(5), caller="unused", caller_port="unused", callee="call4", callee_port="param0", filename="file4.py", callee_location=SourceLocation(1, 1, 4), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(6), caller="unused", caller_port="unused", callee="call5", callee_port="param1", filename="file5.py", callee_location=SourceLocation(1, 1, 5), ) ), TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(7), caller="unused", caller_port="unused", callee="leaf", callee_port="sink", filename="file6.py", callee_location=SourceLocation(1, 1, 6), ) ), ] self.interactive.current_trace_frame_index = 1 self.interactive._output_trace_tuples(trace_tuples) output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source file1.py:1|1|1", " --> 2 call2 result file2.py:1|1|2", " 3 call3 result file3.py:1|1|3", " 4 main root file4.py:1|1|4", " 5 call4 param0 file4.py:1|1|4", " 6 call5 param1 file5.py:1|1|5", " 7 leaf sink file6.py:1|1|6", "", ], ) self._clear_stdout() self.interactive.current_trace_frame_index = 4 self.interactive._output_trace_tuples(trace_tuples) output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source file1.py:1|1|1", " 2 call2 result file2.py:1|1|2", " 3 call3 result file3.py:1|1|3", " 4 main root file4.py:1|1|4", " --> 5 call4 param0 file4.py:1|1|4", " 6 call5 param1 file5.py:1|1|5", " 7 leaf sink file6.py:1|1|6", "", ], ) def testTraceFromIssue(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(1, 1, 1), ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink", location=(1, 1, 2), ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.trace() stderr = self.stderr.getvalue().strip() self.assertIn("Use 'issue ID' or 'frame ID'", stderr) self.interactive.issue(1) self._clear_stdout() self.interactive.trace() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source lib/server/posts/response.py:1|1|1", " --> 2 Foo.barMethod root /r/some/filename.py:6|7|8", " 3 leaf sink lib/server/posts/request.py:1|1|2", "", ], ) def testTraceFromFrame(self): run = self.fakes.run() frames = self._basic_trace_frames() sink = self.fakes.sink("sink") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.frame(int(frames[0].id)) self._clear_stdout() self.interactive.trace() self.assertEqual(self.interactive.sinks, {"sink"}) self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " --> 1 call1 root lib/server/posts/request.py:1|1|1", " 2 call2 param0 lib/server/posts/request.py:1|1|1", " 3 leaf sink lib/server/posts/request.py:1|2|1", "", ], ) def testTraceMissingFrames(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(1, 1, 1), ), self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) self.interactive.trace() stdout = self.stdout.getvalue().strip() self.assertIn("Missing trace frame: call2:param0", stdout) def testTraceCursorLocation(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance(callable="Issue callable") source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(1, 1, 1), ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink", location=(1, 2, 1), ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.assertIsNone(self.interactive.callable()) self.interactive.issue(1) self.assertEqual(self.interactive.callable(), "Issue callable") self.assertEqual(self.interactive.current_trace_frame_index, 1) self.interactive.next_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 2) self.assertEqual(self.interactive.callable(), "leaf") self.interactive.next_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 2) self.interactive.prev_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 1) self.interactive.prev_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 0) self.interactive.prev_cursor_location() self.assertEqual(self.interactive.current_trace_frame_index, 0) def testJumpToLocation(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source() frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source" ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink" ), ] self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[0].id, issue_instance_id=instance.id ), IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[1].id, issue_instance_id=instance.id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) self.assertEqual(self.interactive.current_trace_frame_index, 1) self.interactive.jump(1) self.assertEqual(self.interactive.current_trace_frame_index, 0) self.interactive.jump(3) self.assertEqual(self.interactive.current_trace_frame_index, 2) self.interactive.jump(4) self.assertEqual(self.interactive.current_trace_frame_index, 2) self.interactive.jump(0) self.assertEqual(self.interactive.current_trace_frame_index, 2) def testTraceNoSinks(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source("source1") frame = self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source" ) self.fakes.saver.add( IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frame.id, issue_instance_id=instance.id ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frame.id, leaf_id=source.id, trace_length=0 ) ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.sources = {"source1"} self.interactive.issue(1) self._clear_stdout() self.interactive.trace() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source lib/server/posts/response.py:4|5|6", " --> 2 Foo.barMethod root /r/some/filename.py:6|7|8", "", ], ) def _set_up_branched_trace(self) -> List[TraceFrame]: run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source("source1") sink = self.fakes.sink("sink1") self.fakes.saver.add_all( [ IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=source.id ), IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=sink.id ), ] ) frames = [] for i in range(6): if i < 2: # 2 postconditions frames.append( self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source", location=(i, i, i), ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[-1].id, leaf_id=source.id, trace_length=i ) ) self.fakes.saver.add( IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[-1].id, issue_instance_id=instance.id ) ) elif i < 4: frames.append( self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param2", location=(i, i, i), ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[-1].id, leaf_id=sink.id, trace_length=i ) ) self.fakes.saver.add( IssueInstanceTraceFrameAssoc.Record( trace_frame_id=frames[-1].id, issue_instance_id=instance.id ) ) else: frames.append( self.fakes.precondition( caller="call2", caller_port="param2", callee="leaf", callee_port="sink", location=(i, i, i), ) ) self.fakes.saver.add( TraceFrameLeafAssoc.Record( trace_frame_id=frames[-1].id, leaf_id=sink.id, trace_length=5 - i, ) ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() return frames def testTraceBranchNumber(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) self.assertEqual(self.interactive.sources, {"source1"}) self.assertEqual(self.interactive.sinks, {"sink1"}) self._clear_stdout() self.interactive.trace() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 +2 leaf source lib/server/posts/response.py:0|0|0", " --> 2 Foo.barMethod root /r/some/filename.py:6|7|8", " 3 +2 call2 param2 lib/server/posts/request.py:2|2|2", " 4 +2 leaf sink lib/server/posts/request.py:5|5|5", "", ], ) def testShowBranches(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) # Parent at root self.interactive.prev_cursor_location() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn( "[*] leaf : source\n" " [0 hops: source1]\n" " [lib/server/posts/response.py:0|0|0]", output, ) self.assertIn( "[2] leaf : source\n" " [1 hops: source1]\n" " [lib/server/posts/response.py:1|1|1]", output, ) self._clear_stdout() # Move to call2:param2 self.interactive.next_cursor_location() self.interactive.next_cursor_location() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn( "[*] call2 : param2\n" " [2 hops: sink1]\n" " [lib/server/posts/request.py:2|2|2]", output, ) self.assertIn( "[2] call2 : param2\n" " [3 hops: sink1]\n" " [lib/server/posts/request.py:3|3|3]", output, ) self._clear_stdout() # Move to leaf:sink self.interactive.next_cursor_location() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn( "[*] leaf : sink\n" " [0 hops: sink1]\n" " [lib/server/posts/request.py:5|5|5]", output, ) self.assertIn( "[2] leaf : sink\n" " [1 hops: sink1]\n" " [lib/server/posts/request.py:4|4|4]", output, ) def testGetTraceFrameBranches(self): frames = self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) # Parent at root self.interactive.prev_cursor_location() with self.db.make_session() as session: branches = self.interactive._get_trace_frame_branches(session) self.assertEqual(len(branches), 2) self.assertEqual(int(branches[0].id), int(frames[0].id)) self.assertEqual(int(branches[1].id), int(frames[1].id)) # Parent is no longer root self.interactive.next_cursor_location() self.interactive.next_cursor_location() self.interactive.next_cursor_location() branches = self.interactive._get_trace_frame_branches(session) self.assertEqual(len(branches), 2) self.assertEqual(int(branches[0].id), int(frames[5].id)) self.assertEqual(int(branches[1].id), int(frames[4].id)) def testBranch(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.issue(1) self.interactive.prev_cursor_location() # We are testing for the source location, which differs between branches self._clear_stdout() self.interactive.branch(2) # location 0|0|0 -> 1|1|1 output = self.stdout.getvalue().strip() self.assertIn( " --> 1 +2 leaf source lib/server/posts/response.py:1|1|1", output ) self._clear_stdout() self.interactive.branch(1) # location 1|1|1 -> 0|0|0 output = self.stdout.getvalue().strip() self.assertIn( " --> 1 +2 leaf source lib/server/posts/response.py:0|0|0", output ) self.interactive.next_cursor_location() self.interactive.next_cursor_location() self._clear_stdout() self.interactive.branch(2) # location 2|2|2 -> 3|3|3 output = self.stdout.getvalue().strip() self.assertIn( " --> 3 +2 call2 param2 lib/server/posts/request.py:3|3|3", output ) self.interactive.next_cursor_location() self._clear_stdout() self.interactive.branch(2) # location 4|4|4 -> 5|5|5 output = self.stdout.getvalue().strip() self.assertIn( " 3 +2 call2 param2 lib/server/posts/request.py:3|3|3", output ) self.assertIn( " --> 4 +2 leaf sink lib/server/posts/request.py:4|4|4", output ) self.interactive.branch(3) # location 4|4|4 -> 5|5|5 stderr = self.stderr.getvalue().strip() self.assertIn("Branch number invalid", stderr) def testBranchPrefixLengthChanges(self): run = self.fakes.run() self.fakes.issue() instance = self.fakes.instance() source = self.fakes.source("source1") sink = self.fakes.sink("sink1") frames = [ self.fakes.postcondition( caller="call1", caller_port="root", callee="leaf", callee_port="source" ), self.fakes.postcondition( caller="call1", caller_port="root", callee="prev_call", callee_port="result", ), self.fakes.postcondition( caller="prev_call", caller_port="result", callee="leaf", callee_port="source", ), self.fakes.precondition( caller="call1", caller_port="root", callee="leaf", callee_port="sink" ), ] self.fakes.saver.add_all( [ IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=source.id ), IssueInstanceSharedTextAssoc.Record( issue_instance_id=instance.id, shared_text_id=sink.id ), ] ) self.fakes.saver.add_all( [ IssueInstanceTraceFrameAssoc.Record( issue_instance_id=instance.id, trace_frame_id=frames[0].id ), IssueInstanceTraceFrameAssoc.Record( issue_instance_id=instance.id, trace_frame_id=frames[1].id ), IssueInstanceTraceFrameAssoc.Record( issue_instance_id=instance.id, trace_frame_id=frames[3].id ), ] ) self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=source.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[2].id, leaf_id=source.id, trace_length=0 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[3].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.setup() self.interactive.issue(1) self._clear_stdout() self.interactive.prev_cursor_location() self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " --> 1 +2 leaf source lib/server/posts/response.py:4|5|6", " 2 Foo.barMethod root /r/some/filename.py:6|7|8", " 3 leaf sink lib/server/posts/request.py:4|5|6", "", ], ) self._clear_stdout() self.interactive.branch(2) self.assertEqual( self.stdout.getvalue().split("\n"), [ " # ⎇ [callable] [port] [location]", " 1 leaf source lib/server/posts/response.py:4|5|6", " --> 2 +2 prev_call result lib/server/posts/response.py:4|5|6", " 3 Foo.barMethod root /r/some/filename.py:6|7|8", " 4 leaf sink lib/server/posts/request.py:4|5|6", "", ], ) self._clear_stdout() with patch("click.prompt", return_value=0): self.interactive.branch() output = self.stdout.getvalue().strip() self.assertIn("[*] prev_call : result", output) self.assertIn(" [1 hops: source1]", output) def testCurrentBranchIndex(self): trace_frames = [TraceFrame(id=1), TraceFrame(id=2), TraceFrame(id=3)] self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [TraceTuple(trace_frame=TraceFrame(id=1))] self.assertEqual(0, self.interactive._current_branch_index(trace_frames)) self.interactive.trace_tuples[0].trace_frame.id = 2 self.assertEqual(1, self.interactive._current_branch_index(trace_frames)) self.interactive.trace_tuples[0].trace_frame.id = 3 self.assertEqual(2, self.interactive._current_branch_index(trace_frames)) self.interactive.trace_tuples[0].trace_frame.id = 4 self.assertEqual(-1, self.interactive._current_branch_index(trace_frames)) def testVerifyEntrypointSelected(self): self.interactive.current_issue_instance_id = -1 self.interactive.current_frame_id = -1 with self.assertRaises(UserError): self.interactive._verify_entrypoint_selected() self.interactive.current_issue_instance_id = 1 try: self.interactive._verify_entrypoint_selected() except UserError: self.fail("Unexpected UserError") self.interactive.current_issue_instance_id = -1 self.interactive.current_frame_id = 1 try: self.interactive._verify_entrypoint_selected() except UserError: self.fail("Unexpected UserError") self.interactive.current_issue_instance_id = 1 with self.assertRaises(AssertionError): self.interactive._verify_entrypoint_selected() def testVerifyMultipleBranches(self): self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [ TraceTuple(trace_frame=TraceFrame(id=1), branches=1), TraceTuple(trace_frame=TraceFrame(id=2), branches=2), ] with self.assertRaises(UserError): self.interactive._verify_multiple_branches() self.interactive.current_trace_frame_index = 1 try: self.interactive._verify_multiple_branches() except UserError: self.fail("Unexpected UserError") def testAddListOrElementFilterErrors(self): with self.assertRaises(UserError): self.interactive._add_list_or_element_filter_to_query( "not a list", None, None, "arg0", int ) with self.assertRaises(UserError): self.interactive._add_list_or_element_filter_to_query( [], None, None, "arg0", str ) def testAddListOrStringFilterToQuery(self): shared_texts = [ SharedText(id=1, contents="prefix"), SharedText(id=2, contents="suffix"), SharedText(id=3, contents="prefix_suffix"), SharedText(id=4, contents="fix"), ] with self.db.make_session() as session: self._add_to_session(session, shared_texts) session.commit() query = session.query(SharedText.contents) self.assertEqual( self.interactive._add_list_or_string_filter_to_query( ["prefix", "suffix"], query, SharedText.contents, "contents" ).all(), [("prefix",), ("suffix",)], ) self.assertEqual( self.interactive._add_list_or_string_filter_to_query( ["%prefix%"], query, SharedText.contents, "contents" ).all(), [("prefix",), ("prefix_suffix",)], ) self.assertEqual( self.interactive._add_list_or_string_filter_to_query( ["%fix%"], query, SharedText.contents, "contents" ).all(), [("prefix",), ("suffix",), ("prefix_suffix",), ("fix",)], ) def testCreateIssueOutputStringNoSourcesNoSinks(self): issue = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=1, min_trace_length_to_sinks=1, ) sources = [] sinks = ["sink1", "sink2"] features = [] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Sources: No sources", result) self.assertIn("Sinks: sink1", result) sources = ["source1", "source2"] sinks = [] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Sources: source1", result) self.assertIn("Sinks: No sinks", result) def testCreateIssueOutputStringNoFeatures(self): issue = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=1, min_trace_length_to_sinks=1, ) sources = [] sinks = ["sink1"] features = [] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Features: No features", result) sources = [] sinks = ["sink1"] features = ["via:feature1"] result = self.interactive._create_issue_output_string( issue, sources, sinks, features ) self.assertIn("Features: via:feature1", result) def testCreateIssueOutputStringTraceLength(self): issue1 = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=0, min_trace_length_to_sinks=6, ) sources = [] sinks = ["sink1", "sink2"] features = [] result = self.interactive._create_issue_output_string( issue1, sources, sinks, features ) self.assertIn("Min Trace Length: Source (0) | Sink (6)", result) issue2 = IssueQueryResult( id=1, filename="module.py", location=SourceLocation(1, 2, 3), code=1000, callable="module.function1", message="root", min_trace_length_to_sources=3, min_trace_length_to_sinks=1, ) sources = [] sinks = ["sink1", "sink2"] result = self.interactive._create_issue_output_string( issue2, sources, sinks, features ) self.assertIn("Min Trace Length: Source (3) | Sink (1)", result) def testListSourceCode(self): mock_data = """if this_is_true: print("This was true") else: print("This was false") """ self.interactive.setup() self.interactive.current_issue_instance_id = 1 self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [ TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(0), filename="file.py", caller="", caller_port="", callee="callee", callee_port="", callee_location=SourceLocation(2, 10, 25), ), placeholder=True, ) ] with patch("builtins.open", mock_open(read_data=mock_data)) as mock_file: self._clear_stdout() self.interactive.list_source_code(2) mock_file.assert_called_once_with(f"{os.getcwd()}/file.py", "r") output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ "In callee [file.py:2|10|25]", " 1 if this_is_true:", ' --> 2 print("This was true")', " ^^^^^^^^^^^^^^^", " 3 else:", ' 4 print("This was false")', "", ], ) mock_file.reset_mock() self._clear_stdout() self.interactive.list_source_code(1) mock_file.assert_called_once_with(f"{os.getcwd()}/file.py", "r") output = self.stdout.getvalue() self.assertEqual( output.split("\n"), [ "In callee [file.py:2|10|25]", " 1 if this_is_true:", ' --> 2 print("This was true")', " ^^^^^^^^^^^^^^^", " 3 else:", "", ], ) def testListSourceCodeFileNotFound(self): self.interactive.setup() self.interactive.current_issue_instance_id = 1 self.interactive.current_trace_frame_index = 0 self.interactive.trace_tuples = [ TraceTuple( trace_frame=TraceFrameQueryResult( id=DBID(0), caller="", caller_port="", callee="", callee_port="", filename="file.py", callee_location=SourceLocation(2, 1, 1), ) ) ] with patch("builtins.open", mock_open(read_data="not read")) as mock_file: mock_file.side_effect = FileNotFoundError() self.interactive.list_source_code() self.assertIn("Couldn't open", self.stderr.getvalue()) self.assertNotIn("file.py", self.stdout.getvalue()) def testGroupTraceFrames(self): trace_frames = [ TraceFrameQueryResult( id=DBID(1), caller="caller1", caller_port="port1", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(2), caller="caller1", caller_port="port1", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(3), caller="caller2", caller_port="port2", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(4), caller="caller2", caller_port="port2", callee="", callee_port="", ), TraceFrameQueryResult( id=DBID(5), caller="caller2", caller_port="port3", callee="", callee_port="", ), ] buckets = self.interactive._group_trace_frames(trace_frames, 5) self.assertEqual(3, len(buckets.keys())) self.assertIn(("caller1", "port1"), buckets.keys()) self.assertIn(("caller2", "port2"), buckets.keys()) self.assertIn(("caller2", "port3"), buckets.keys()) self.assertEqual( [1, 2], [int(frame.id) for frame in buckets[("caller1", "port1")]] ) self.assertEqual( [3, 4], [int(frame.id) for frame in buckets[("caller2", "port2")]] ) self.assertEqual( [5], [int(frame.id) for frame in buckets[("caller2", "port3")]] ) def testListTracesBasic(self): self.fakes.run() post1 = self.fakes.postcondition( caller="caller1", caller_port="port1", callee="callee1", callee_port="port1" ) post2 = self.fakes.postcondition( caller="caller1", caller_port="port1", callee="callee2", callee_port="port2" ) post3 = self.fakes.postcondition( caller="caller2", caller_port="port2", callee="callee3", callee_port="port3" ) post4 = self.fakes.postcondition( caller="caller2", caller_port="port2", callee="callee4", callee_port="port4" ) post5 = self.fakes.postcondition( caller="caller2", caller_port="port3", callee="callee5", callee_port="port5" ) self.fakes.save_all(self.db) self.interactive.current_run_id = 1 self._clear_stdout() self.interactive.frames(kind=TraceKind.POSTCONDITION) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- caller1:port1 ->", f"{post1.id} callee1:port1", f"{post2.id} callee2:port2", "---- caller2:port2 ->", f"{post3.id} callee3:port3", f"{post4.id} callee4:port4", "---- caller2:port3 ->", f"{post5.id} callee5:port5", "", ], ) self._clear_stdout() self.interactive.frames(kind=TraceKind.PRECONDITION) self.assertEqual(self.stdout.getvalue().strip(), "No trace frames found.") def testListTracesFilterCallersCallees(self): run = self.fakes.run() frames = self._basic_trace_frames() self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() self.interactive.current_run_id = 1 self._clear_stdout() self.interactive.frames(callers=["call2"]) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- call2:param0 ->", f"{frames[1].id} leaf:sink", "", ], ) self._clear_stdout() self.interactive.frames(callees=["call2"]) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- call1:root ->", f"{frames[0].id} call2:param0", "", ], ) def testListFramesWithLimit(self): frames = self._set_up_branched_trace() self.interactive.run(1) self._clear_stdout() self.interactive.frames(limit=3) self.assertEqual( self.stdout.getvalue().split("\n"), [ "[id] [caller:caller_port -> callee:callee_port]", "---- call1:root ->", f"{frames[3].id} call2:param2", f"{frames[2].id} call2:param2", f"{frames[1].id} leaf:source", "...", "Showing 3/6 matching frames. To see more, call 'frames' with " "the 'limit' argument.", "", ], ) def testSetFrame(self): frames = self._basic_trace_frames() sink = self.fakes.sink("sink") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) self.interactive.setup() self.interactive.frame(0) self.assertIn("Trace frame 0 doesn't exist.", self.stderr.getvalue()) self._clear_stdout() self.interactive.frame(1) self.assertIn("Trace frame 1", self.stdout.getvalue()) self.assertNotIn("Trace frame 2", self.stdout.getvalue()) self._clear_stdout() self.interactive.frame(2) self.assertNotIn("Trace frame 1", self.stdout.getvalue()) self.assertIn("Trace frame 2", self.stdout.getvalue()) def testSetFrameUpdatesRun(self): run1 = self.fakes.run() frames = [ self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), self.fakes.precondition( caller="call2", caller_port="param1", callee="call3", callee_port="param2", location=(1, 1, 1), ), ] run2 = self.fakes.run() sink = self.fakes.sink("sink1") self.fakes.saver.add_all( [ TraceFrameLeafAssoc.Record( trace_frame_id=frames[0].id, leaf_id=sink.id, trace_length=1 ), TraceFrameLeafAssoc.Record( trace_frame_id=frames[1].id, leaf_id=sink.id, trace_length=0 ), ] ) self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run1) session.add(run2) session.commit() self.interactive.setup() self.assertEqual(int(self.interactive.current_run_id), 2) self.interactive.frame(int(frames[0].id)) self.assertEqual(int(self.interactive.current_run_id), 1) def testIsBeforeRoot(self): self.interactive.trace_tuples = [ TraceTuple(trace_frame=TraceFrame(kind=TraceKind.POSTCONDITION)), TraceTuple(trace_frame=TraceFrame(kind=TraceKind.PRECONDITION)), ] self.interactive.current_trace_frame_index = 0 self.assertTrue(self.interactive._is_before_root()) self.interactive.current_trace_frame_index = 1 self.assertFalse(self.interactive._is_before_root()) def testIsRootTraceTuple(self): trace_tuple = TraceTuple(trace_frame=TraceFrame(callee_port="root")) self.assertTrue(self.interactive._is_root_trace_tuple(trace_tuple)) trace_tuple = TraceTuple(trace_frame=TraceFrame(callee_port="not_root")) self.assertFalse(self.interactive._is_root_trace_tuple(trace_tuple)) def testParents(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.frame(3) self.interactive.current_trace_frame_index = 1 self._clear_stdout() with patch("click.prompt", return_value=0): self.interactive.parents() self.assertEqual( self.stdout.getvalue().split("\n"), ["[1] call1 : root", "[2] call1 : root", ""], ) self._clear_stdout() self.interactive.current_trace_frame_index = 0 self.interactive.parents() self.assertIn("No parents calling", self.stdout.getvalue()) self.interactive.current_trace_frame_index = 2 self.interactive.parents() self.assertIn("Try running from a non-leaf node", self.stderr.getvalue()) def testParentsSelectParent(self): self._set_up_branched_trace() self.interactive.setup() self.interactive.frame(3) self.interactive.current_trace_frame_index = 1 self._clear_stdout() with patch("click.prompt", return_value=1): self.interactive.parents() self.assertEqual( self.stdout.getvalue().split("\n"), [ "[1] call1 : root", "[2] call1 : root", "", " # ⎇ [callable] [port] [location]", " --> 1 call1 root lib/server/posts/request.py:2|2|2", " 2 call2 param2 lib/server/posts/request.py:2|2|2", " 3 +2 leaf sink lib/server/posts/request.py:5|5|5", "", ], ) def testUpdateTraceTuplesNewParent(self): frames = [ self.fakes.postcondition(callee="A"), self.fakes.postcondition(callee="B"), self.fakes.postcondition(callee="C"), self.fakes.postcondition(callee="D"), self.fakes.postcondition(callee="E"), ] self.fakes.save_all(self.db) self.interactive.setup() # Test postcondition self.interactive.current_trace_frame_index = 2 with self.db.make_session() as session: self.interactive.trace_tuples = [ TraceTuple(trace_frame=self._frame_to_query_result(session, frames[0])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[1])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[2])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[3])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[4])), ] trace_frame = TraceFrameQueryResult( id=DBID(0), caller="caller", caller_port="caller_port", callee="F", callee_port="callee_port", filename="file.py", callee_location=SourceLocation(1, 1, 1), kind=TraceKind.POSTCONDITION, ) self.interactive._update_trace_tuples_new_parent(trace_frame) self.assertEqual(self.interactive.current_trace_frame_index, 3) self.assertEqual( [ self.interactive._get_callable_from_trace_tuple(trace_tuple)[0] for trace_tuple in self.interactive.trace_tuples ], ["A", "B", "F", "caller"], ) self.assertTrue(self.interactive.trace_tuples[-1].placeholder) # Test precondition self.interactive.current_trace_frame_index = 2 with self.db.make_session() as session: self.interactive.trace_tuples = [ TraceTuple(trace_frame=self._frame_to_query_result(session, frames[0])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[1])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[2])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[3])), TraceTuple(trace_frame=self._frame_to_query_result(session, frames[4])), ] trace_frame = TraceFrameQueryResult( id=DBID(0), caller="caller", caller_port="caller_port", callee="F", callee_port="callee_port", filename="file.py", callee_location=SourceLocation(1, 1, 1), kind=TraceKind.PRECONDITION, ) self.interactive._update_trace_tuples_new_parent(trace_frame) self.assertEqual(self.interactive.current_trace_frame_index, 0) self.assertEqual( [ self.interactive._get_callable_from_trace_tuple(trace_tuple)[0] for trace_tuple in self.interactive.trace_tuples ], ["caller", "F", "D", "E"], ) self.assertTrue(self.interactive.trace_tuples[0].placeholder) def testAllLeavesByKind(self): shared_texts = [ SharedText(id=1, contents="source1", kind=SharedTextKind.SOURCE), SharedText(id=2, contents="source2", kind=SharedTextKind.SOURCE), SharedText(id=3, contents="source3", kind=SharedTextKind.SOURCE), SharedText(id=4, contents="sink4", kind=SharedTextKind.SINK), SharedText(id=5, contents="sink5", kind=SharedTextKind.SINK), ] with self.db.make_session() as session: self._add_to_session(session, shared_texts) session.commit() self.assertEqual( self.interactive._all_leaves_by_kind(session, SharedTextKind.SOURCE), {1: "source1", 2: "source2", 3: "source3"}, ) self.assertEqual( self.interactive._all_leaves_by_kind(session, SharedTextKind.SINK), {4: "sink4", 5: "sink5"}, ) def testDetails(self): run = self.fakes.run() frames = [ self.fakes.precondition( caller="call1", caller_port="root", callee="call2", callee_port="param0", location=(1, 1, 1), ), self.fakes.precondition( caller="call2", caller_port="param1", callee="call3", callee_port="param2", location=(1, 1, 1), ), ] issues = [self.fakes.issue(), self.fakes.issue(), self.fakes.issue()] self.fakes.instance(issue_id=issues[0].id, callable="call2"), self.fakes.instance(issue_id=issues[1].id, callable="call3"), self.fakes.instance(issue_id=issues[2].id, callable="call2"), self.fakes.save_all(self.db) with self.db.make_session(expire_on_commit=False) as session: session.add(run) session.commit() self.interactive.setup() with self.db.make_session() as session: self.interactive.trace_tuples = [ TraceTuple(trace_frame=self._frame_to_query_result(session, frames[0])) ] self.interactive.current_issue_instance_id = 1 self.interactive.current_trace_frame_index = 0 self._clear_stdout() self.interactive.details() self.assertEqual( self.stdout.getvalue().split("\n"), [ f"Trace frame {frames[0].id}", " Caller: call1 : root", " Callee: call2 : param0", " Kind: TraceKind.precondition", " Sinks: ", " Location: lib/server/posts/request.py:1|1|1", "", "Issues in callable (call2): 2", "", "Postconditions with caller (call2):", "No trace frames found.", "", "Preconditions with caller (call2):", "[id] [caller:caller_port -> callee:callee_port]", "---- call2:param1 ->", f"{frames[1].id} call3:param2", "", ], ) def mock_pager(self, output_string): self.pager_calls += 1 def testPager(self): run = self.fakes.run() self.fakes.issue() self.fakes.instance() self.fakes.save_all(self.db) with self.db.make_session() as session: session.add(run) session.commit() # Default is no pager in tests self.pager_calls = 0 with patch("IPython.core.page.page", self.mock_pager): self.interactive.setup() self.interactive.issues(use_pager=False) self.interactive.runs(use_pager=False) self.assertEqual(self.pager_calls, 0) self.pager_calls = 0 with patch("IPython.core.page.page", self.mock_pager): self.interactive.setup() self.interactive.issues(use_pager=True) self.interactive.runs(use_pager=True) self.assertEqual(self.pager_calls, 2)
82b94aa0ddd70df563d846434a596b315ad4d8a1
84341d15f4b8d13b09c7dabe2b7286705ee86b7b
/scripts/multi_rc/topk_evidence_self_training/roberta_predict_sentence3.0.py
e9e34a6953dcd9a10999bf35f331f6ab6d91b805
[]
no_license
UMP-Healthcare-AI/Self-Training-MRC
7a0ef0c52f0064cfc32a2bedb433608ed10328a7
0601158085bb11e454aee1ebaa987f5aa741ab3f
refs/heads/master
2022-12-01T17:46:28.463777
2020-08-14T01:56:25
2020-08-14T01:56:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,094
py
import subprocess import time import logging import os logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def run_cmd(command: str): logger.info(command) subprocess.check_call(command, shell=True) def wait_for_file(file: str): if not os.path.exists(file): logger.info(f'Could not find file {file}. Waiting...') minute_cnt = 0 while not os.path.exists(file): print(f'The {minute_cnt}th minute...') time.sleep(60) minute_cnt += 1 time.sleep(60) logger.info(f'Find file {file} after waiting for {minute_cnt} minutes') # model roberta_large_model_dir = "/home/jiaofangkai/roberta-large" train_file = '/home/jiaofangkai/multi-rc/splitv2/train.json' dev_file = '/home/jiaofangkai/multi-rc/splitv2/dev.json' task_name = 'topk-rc-roberta' reader_name = 'topk-multi-rc-roberta' bert_name = 'hie-topk-roberta' k = 2000 label_threshold = 0.8 weight_threshold = 0.5 recurrent_times = 10 num_train_epochs = [8] * 10 sentence_id_file = None num_evidence = 3 root_dir = f'experiments/multi-rc/topk-evidence/roberta-self-training/v1.0_acc_top{k}' os.makedirs(root_dir, exist_ok=True) f_handler = logging.FileHandler(os.path.join(root_dir, f'output.log')) f_handler.setLevel(logging.INFO) f_handler.setFormatter(logging.Formatter(fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt='%m/%d/%Y %H:%M:%S')) logger.addHandler(f_handler) logger.info('Self-training parameters:') logger.info(f'k: {k}') logger.info(f'label_threshold: {label_threshold}') logger.info(f'weight_threshold: {weight_threshold}') logger.info(f'recurrent_times: {recurrent_times}') logger.info(f'num_evidence: {num_evidence}') learning_rate = 1e-5 for i in range(recurrent_times): logger.info(f'Start running for the {i}th times.') output_dir = f'{root_dir}/recurrent{i}' if i == 0: evidence_lambda = 0.0 else: evidence_lambda = 0.8 cmd = f'python main2_0.6.2_topk_predict_sentences.py --bert_model roberta-large ' \ f'--vocab_file {roberta_large_model_dir} --model_file {roberta_large_model_dir} ' \ f'--output_dir {output_dir} --predict_dir {output_dir} ' \ f'--train_file {train_file} --predict_file {dev_file} ' \ f'--max_seq_length 512 --train_batch_size 32 --predict_batch_size 1 ' \ f'--learning_rate {learning_rate} --num_train_epochs {num_train_epochs[i]} ' \ f'--fp16 --fp16_opt_level O2 --gradient_accumulation_steps 32 --per_eval_step 100 ' \ f'--bert_name {bert_name} --task_name {task_name} --reader_name {reader_name} ' \ f'--evidence_lambda {evidence_lambda} ' \ f'--do_label --only_correct --label_threshold {label_threshold} --weight_threshold {weight_threshold} ' \ f'--num_evidence {num_evidence} --max_grad_norm 5.0 --adam_epsilon 1e-6 ' run_cmd(cmd) logger.info('=' * 50)
9d1075dd4cf3c10e3855309c10cd54598f9bbd9e
8d0f35341ad14f1f1edd71481e5fa870a4cb6ed5
/setup.py
acbda8936e4d0aeefd6b89aa075f25c298c7c64f
[ "MIT" ]
permissive
gitter-badger/django-static-precompiler
f22b2414ef73c8ad0c0e448f1d821dfc73868ee4
aad008df68dc7194ed9d6e78ab4358f94e456894
refs/heads/master
2021-01-12T21:45:20.258776
2014-11-19T05:04:15
2014-11-19T05:04:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,264
py
from setuptools import setup, find_packages import os import sys def read(fname): path = os.path.join(os.path.dirname(__file__), fname) if sys.version < '3': return open(path).read() return open(path, encoding="utf-8").read() README = read('README.rst') CHANGES = read('CHANGES.rst') setup( name="django-static-precompiler", packages=find_packages(), version="0.7", author="Andrey Fedoseev", author_email="[email protected]", url="https://github.com/andreyfedoseev/django-static-precompiler", description="Django template tags to compile all kinds of static files " "(SASS, LESS, CoffeeScript).", long_description="\n\n".join([README, CHANGES]), classifiers=[ 'Development Status :: 4 - Beta', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Internet :: WWW/HTTP', ], keywords=["sass", "scss", "less", "css", "coffeescript", "javascript"], tests_require=[ "mock", ], test_suite="static_precompiler.tests.suite", )
61c96eaafdcde160af8110b4322db04ba28832ed
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_118/1006.py
f920c1947a495d32a85e4a572c45898ba6ebdea5
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
880
py
import numpy as np from math import ceil, sqrt fin = open('C-small-attempt0.in') fout = open('out_small.txt', 'w') def isqrt(x): n = int(x) if n == 0: return 0 a, b = divmod(n.bit_length(), 2) x = 2**(a+b) while True: y = (x + n//x)//2 if y >= x: return x x = y T = int(fin.readline().rstrip('\n')) def IsPalindrome(x): return(str(x)[::-1] == str(x)) for iter in range(T): num_palindromes = 0 num_lims = np.array(fin.readline().rstrip('\n').split(), dtype=long) min_val = num_lims[0] max_val = num_lims[1] start_val = int(ceil(sqrt(min_val))) for i in range(start_val, isqrt(max_val)+1,1): if IsPalindrome(i) and IsPalindrome(pow(i,2)): num_palindromes = num_palindromes + 1 case_num = iter+1 fout.write('Case #%d: ' %case_num + '%d\n' %num_palindromes) fin.close() fout.close()
63ef114161ba9d387165bf9cd0c4eee914e502f5
60e57860bc819d83cd628b5179ba7f4d655562b8
/implementation/lps/lps/tests.py
17794922910430e7844501e766a65b1be823652f
[]
no_license
Schwenger/TinBots
9a3075c9e84762f34e33f15970eaadc305eed003
ce7554f357b291b6ff7ae0214d4f8bbf5bd0c48e
refs/heads/master
2021-01-19T21:15:31.948534
2017-08-31T21:34:09
2017-08-31T21:34:09
63,550,617
0
0
null
null
null
null
UTF-8
Python
false
false
1,989
py
# -*- coding: utf-8 -*- # Copyright (C) 2016, Maximilian Köhl <[email protected]> # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License version 3 as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import threading import time from lps.commands import Commands from lps.constants import Modes from lps.debugger import Debugger, INFO class VictimDirectionTest: def __init__(self, tinbot, debugger=None): self.debugger = debugger or Debugger.current self.tinbot = tinbot self.thread = None self.iterations = None self.result = None self.done = threading.Event() def start(self, iterations=50): self.iterations = iterations self.result = [] self.thread = threading.Thread(target=self.run) self.thread.start() def run(self): self.tinbot.package_event += self.on_package self.debugger.print_message('Starting Victim Direction Test', INFO) self.tinbot.set_mode(Modes.VICDIR) for iteration in range(self.iterations): time.sleep(0.5) self.done.clear() self.tinbot.start() self.done.wait() self.tinbot.reset() self.tinbot.package_event -= self.on_package def on_package(self, device, source, target, command, payload): if command != Commands.VICTIM_PHI: return x, y, phi = Commands.VICTIM_PHI.decode(payload) self.result.append((phi, self.tinbot.victim_phi)) self.done.set()
960efe5c81f0c4d2490e1618d848cb089fb10f97
62e45255088abb536e9ea6fcbe497e83bad171a0
/ippython/multiplo.py
9dce2387b353d86c8dd7be1608c2d034bf585dc5
[]
no_license
jmery24/python
a24f562c8d893a97a5d9011e9283eba948b8b6dc
3e35ac9c9efbac4ff20374e1dfa75a7af6003ab9
refs/heads/master
2020-12-25T21:56:17.063767
2015-06-18T04:59:05
2015-06-18T04:59:05
36,337,473
0
0
null
2015-05-27T02:26:54
2015-05-27T02:26:54
null
UTF-8
Python
false
false
503
py
# -*- coding: utf-8 -*- """ Created on Fri Feb 22 07:18:42 2013 @author: daniel """ #programa:multiplo.py #calcula los multiplos de numero en el intervalo [numero, limite] #data input num = 1 repeticiones = int(raw_input('valor limite <entero positivo>: ')) multiplo = int(raw_input('multiplos del numero: ')) #proccesing if repeticiones < 0: print 'no es posible la operacion' else: while num <= repeticiones / multiplo: print multiplo * num num += 1 print 'Hecho'
08668a50432d86ff9e4f7c7c779e74597a487dd9
c9f48f8a85c01ea826a6abc4fe69f1cb002c74a7
/chapter18/learning_log11/ll_env/Scripts/django-admin.py
f311544b363b35f348d233c9a4a4f2360fd9a18d
[]
no_license
wangyu6/book1
67f02645aa7fe6c39bb5b5ea3f2670225274f4b5
fd2cd7c6c8a3144624e0cc2ef9608b77416c4820
refs/heads/master
2020-04-16T07:16:46.052592
2019-04-24T06:25:37
2019-04-24T06:25:37
165,380,114
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
#!d:\py_work\book1\chapter18\learning_log11\ll_env\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
f1d9996b93014b4210b992142021b15cb3c21578
16c8fdf291430475f40d578b0d64552eb64046e9
/colour/plotting/tm3018/tests/test_components.py
f11dce989d2eabcc845c3554a2ee35f1ac115482
[ "BSD-3-Clause" ]
permissive
nodefeet/colour
4c1bfed87ce173ff878bdf288fd9828bb68022e3
319dd5b1c45aef6983eff1830f918c1e593fb530
refs/heads/develop
2022-02-19T17:39:36.657993
2022-02-15T08:38:26
2022-02-15T08:38:26
460,456,444
0
0
BSD-3-Clause
2022-02-17T13:53:37
2022-02-17T13:53:36
null
UTF-8
Python
false
false
5,064
py
"""Defines the unit tests for the :mod:`colour.plotting.tm3018.components` module.""" from __future__ import annotations import unittest from matplotlib.pyplot import Axes, Figure from colour.colorimetry import SDS_ILLUMINANTS from colour.hints import cast from colour.quality import ( ColourQuality_Specification_ANSIIESTM3018, colour_fidelity_index_ANSIIESTM3018, ) from colour.plotting.tm3018.components import ( plot_spectra_ANSIIESTM3018, plot_colour_vector_graphic, plot_16_bin_bars, plot_local_chroma_shifts, plot_local_hue_shifts, plot_local_colour_fidelities, plot_colour_fidelity_indexes, ) __author__ = "Colour Developers" __copyright__ = "Copyright 2013 Colour Developers" __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "[email protected]" __status__ = "Production" __all__ = [ "TestPlotSpectraANSIIESTM3018", "TestPlotColourVectorGraphic", "TestPlot16BinBars", "TestPlotLocalChromaShifts", "TestPlotLocalHueShifts", "TestPlotLocalColourFidelities", "TestPlotColourFidelityIndexes", ] SPECIFICATION_ANSIIESTM3018: ColourQuality_Specification_ANSIIESTM3018 = cast( ColourQuality_Specification_ANSIIESTM3018, colour_fidelity_index_ANSIIESTM3018(SDS_ILLUMINANTS["FL2"], True), ) class TestPlotSpectraANSIIESTM3018(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components. plot_spectra_ANSIIESTM3018` definition unit tests methods. """ def test_plot_spectra_ANSIIESTM3018(self): """ Test :func:`colour.plotting.tm3018.components.\ plot_spectra_ANSIIESTM3018` definition. """ figure, axes = plot_spectra_ANSIIESTM3018(SPECIFICATION_ANSIIESTM3018) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) class TestPlotColourVectorGraphic(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components.\ plot_colour_vector_graphic` definition unit tests methods. """ def test_plot_colour_vector_graphic(self): """ Test :func:`colour.plotting.tm3018.components.\ plot_colour_vector_graphic` definition. """ figure, axes = plot_colour_vector_graphic(SPECIFICATION_ANSIIESTM3018) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) class TestPlot16BinBars(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components.plot_16_bin_bars` definition unit tests methods. """ def test_plot_16_bin_bars(self): """ Test :func:`colour.plotting.tm3018.components.plot_16_bin_bars` definition. """ figure, axes = plot_16_bin_bars(range(16), "{0}") self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) class TestPlotLocalChromaShifts(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components.plot_local_chroma_shifts` definition unit tests methods. """ def test_plot_local_chroma_shifts(self): """ Test :func:`colour.plotting.tm3018.components.\ plot_local_chroma_shifts` definition. """ figure, axes = plot_local_chroma_shifts(SPECIFICATION_ANSIIESTM3018) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) class TestPlotLocalHueShifts(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components.plot_local_hue_shifts` definition unit tests methods. """ def test_plot_local_hue_shifts(self): """ Test :func:`colour.plotting.tm3018.components.\ plot_local_hue_shifts` definition. """ figure, axes = plot_local_hue_shifts(SPECIFICATION_ANSIIESTM3018) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) class TestPlotLocalColourFidelities(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components. plot_local_colour_fidelities` definition unit tests methods. """ def test_plot_local_colour_fidelities(self): """ Test :func:`colour.plotting.tm3018.components.\ plot_local_colour_fidelities` definition. """ figure, axes = plot_local_colour_fidelities( SPECIFICATION_ANSIIESTM3018 ) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) class TestPlotColourFidelityIndexes(unittest.TestCase): """ Define :func:`colour.plotting.tm3018.components.\ plot_colour_fidelity_indexes` definition unit tests methods. """ def test_plot_colour_fidelity_indexes(self): """ Test :func:`colour.plotting.tm3018.components.\ plot_colour_fidelity_indexes` definition. """ figure, axes = plot_colour_fidelity_indexes( SPECIFICATION_ANSIIESTM3018 ) self.assertIsInstance(figure, Figure) self.assertIsInstance(axes, Axes) if __name__ == "__main__": unittest.main()
ca29d96325ee8f61ab5f0947f4388cd848582dd5
e71b6d14fbdbc57c7234ca45a47329d7d02fc6f7
/flask_api/venv/lib/python3.7/site-packages/vsts/release/v4_1/models/task_input_definition_base.py
7d9e81d65f08fc44f1f9696cf00be3bf1a173c64
[]
no_license
u-blavins/secret_sasquatch_society
c36993c738ab29a6a4879bfbeb78a5803f4f2a57
0214eadcdfa9b40254e331a6617c50b422212f4c
refs/heads/master
2020-08-14T00:39:52.948272
2020-01-22T13:54:58
2020-01-22T13:54:58
215,058,646
1
0
null
null
null
null
UTF-8
Python
false
false
2,850
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class TaskInputDefinitionBase(Model): """TaskInputDefinitionBase. :param aliases: :type aliases: list of str :param default_value: :type default_value: str :param group_name: :type group_name: str :param help_mark_down: :type help_mark_down: str :param label: :type label: str :param name: :type name: str :param options: :type options: dict :param properties: :type properties: dict :param required: :type required: bool :param type: :type type: str :param validation: :type validation: :class:`TaskInputValidation <microsoft.-team-foundation.-distributed-task.-common.-contracts.v4_1.models.TaskInputValidation>` :param visible_rule: :type visible_rule: str """ _attribute_map = { 'aliases': {'key': 'aliases', 'type': '[str]'}, 'default_value': {'key': 'defaultValue', 'type': 'str'}, 'group_name': {'key': 'groupName', 'type': 'str'}, 'help_mark_down': {'key': 'helpMarkDown', 'type': 'str'}, 'label': {'key': 'label', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'options': {'key': 'options', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': '{str}'}, 'required': {'key': 'required', 'type': 'bool'}, 'type': {'key': 'type', 'type': 'str'}, 'validation': {'key': 'validation', 'type': 'TaskInputValidation'}, 'visible_rule': {'key': 'visibleRule', 'type': 'str'} } def __init__(self, aliases=None, default_value=None, group_name=None, help_mark_down=None, label=None, name=None, options=None, properties=None, required=None, type=None, validation=None, visible_rule=None): super(TaskInputDefinitionBase, self).__init__() self.aliases = aliases self.default_value = default_value self.group_name = group_name self.help_mark_down = help_mark_down self.label = label self.name = name self.options = options self.properties = properties self.required = required self.type = type self.validation = validation self.visible_rule = visible_rule
2a05690aed829799730463e6bd5fdd67a501eab8
70c32e104ab814d21c37fc27fd025e82ad3d2119
/Fujitsu/benchmarks/deepcam/implementations/implementation_abci_fj/fused_lamb.py
e6e7ca211a2901293388cee5c6e3cd584eb50047
[ "Apache-2.0" ]
permissive
cecevu/hpc_results_v0.7
f340452daa7fe8f80f0242f3918ae330a38c12bd
2895e2956e363ce0e9ddbbcbd8503eec1a285e5a
refs/heads/main
2023-03-05T23:29:52.236214
2021-02-15T22:47:04
2021-02-15T22:47:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,994
py
import torch import os import ast from apex.multi_tensor_apply import multi_tensor_applier num_step = 1 def UpdateIndex2LayerIndex(input): layer_num = 301 flag = 0 conv = [1,4,10,14,18,23,27,31,36,40,44,46,50,54,58,62,66,70,74,78,82,86,90,94,98,102\ ,106,110,114,118,122,126,130,134,138,142,146,150,154,158,162,166,170,174,178,182,186,190\ ,194,198,202,206,210,214,218,222,226,230,234,241,245,249,251,252,255,256,259,260,263,266\ ,269,272,278,281,290,291,293,294,296] if type(input) is not int: raise Exception("input value error!") if input > layer_num: return layer_num - 1 if input < 1: return -1 for num in conv: if input == num: return input - 1 elif input > num: flag = num continue else: return flag - 1 return flag - 1 class FusedLAMB(torch.optim.Optimizer): """Implements LAMB algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused LAMB implements 2 fusions. * Fusion of the LAMB update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedLAMB` may be used with or without Amp. If you wish to use :class:`FusedLAMB` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ NOT SUPPORTED now! (default: False) adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) grad_averaging (bool, optional): whether apply (1-beta2) to grad when calculating running averages of gradient. (default: True) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) max_grad_norm (float, optional): value used to clip global grad norm (default: 1.0) use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0 weight decay parameter (default: False) .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, amsgrad=False, adam_w_mode=True, grad_averaging=True, set_grad_none=True, max_grad_norm=1.0, use_nvlamb=False): if amsgrad: raise RuntimeError('FusedLAMB does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, max_grad_norm=max_grad_norm) super(FusedLAMB, self).__init__(params, defaults) if multi_tensor_applier.available: import amp_C self.multi_tensor_l2norm=amp_C.multi_tensor_l2norm # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) self.multi_tensor_lamb = amp_C.multi_tensor_lamb else: raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') self.adam_w_mode = 1 if adam_w_mode else 0 self.set_grad_none = set_grad_none self.use_nvlamb = use_nvlamb set_skip_layer_num_str ="{" + os.getenv("SET_STOP_LAYER_NUM") + "}" self.skip_layer_num = ast.literal_eval(set_skip_layer_num_str) set_skip_layer_thr_str ="{" + os.getenv("SET_STOP_LAYER_THR") + "}" self.skip_layer_thr = ast.literal_eval(set_skip_layer_thr_str) self.skip_layer_count = 1 self.Average_num = 10 self.layer_w_sum = 0 self.layer_w_sum_count = 0 self.BD_end_num = 0 def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for i, p in enumerate(group['params']): #for p in group['params']: p.grad = None else: super(FusedLAMB, self).zero_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ global num_step global layer_num global cac_bd_layer_num global cac_bd_end_flag global t_lr global End_lr global End_ratio if num_step == 1: layer_num = 301 cac_bd_layer_num = -1 cac_bd_end_flag = {} self.braking_distance = int(os.getenv('CAC_BRAKING_DISTANCE',"-1")) self.grad_norms = {} ratio = 1.000 self.skipped_idx = 0 self.old_skipped_idx = 0 t_lr = {} Layer = 0 End_lr = float(os.getenv('CAC_FINISH_LR',"0.000003")) self.N_factor = int(os.getenv('CAC_BRAKING_FACTOR',"-1")) self.braking_count = {} mpi_rank = os.environ.get("OMPI_COMM_WORLD_RANK", -1) if mpi_rank == "0": print("Braking_Distance:", self.braking_distance) for Layer in range(layer_num): t_lr[Layer] = 1.0 cac_bd_end_flag[Layer] = 0 if self.braking_distance > 0: self.braking_count[Layer] = self.braking_distance loss = None if closure is not None: loss = closure() # create separate grad lists for fp32 and fp16 params g_all_32, g_all_16 = [], [] for group in self.param_groups: if self.skip_layer_count <= len(self.skip_layer_num): p_skip_layer_count = self.skip_layer_count p_skip = self.skip_layer_num[p_skip_layer_count] p_thr = self.skip_layer_thr[p_skip_layer_count] else: p_skip = 99999 p_thr = 99999 # skip judge & set to for i, p in enumerate(group['params']): if p.grad is None: continue if i == p_skip: self.layer_w_sum += torch.norm(p) self.layer_w_sum_count += 1 if self.layer_w_sum_count == self.Average_num: self.layer_w_sum = self.layer_w_sum / self.Average_num if self.layer_w_sum < p_thr: Skip_index = UpdateIndex2LayerIndex(p_skip) cac_bd_layer_num = Skip_index mpi_rank = os.environ.get("OMPI_COMM_WORLD_RANK", -1) if mpi_rank == "0": print("******Skip Layer: {}, {}".format(str(Skip_index), self.layer_w_sum)) self.skip_layer_count += 1 self.layer_w_sum_count = 0 self.layer_w_sum = 0 else: self.layer_w_sum_count = 0 self.layer_w_sum = 0 # mpi_rank = os.environ.get("OMPI_COMM_WORLD_RANK", -1) # if mpi_rank == "0": # with open("param.csv", "a") as f: # print("Dump, {}, {}, {}, {}, {}, {}, {}, {}".format(num_step, i, str(t_lr[i]), p_w, p_g, p_e, p_skip, p_thr), file=f) if p.dtype == torch.float32: g_all_32.append(p.grad.data) elif p.dtype == torch.float16: g_all_16.append(p.grad.data) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') num_step += 1 device = self.param_groups[0]["params"][0].device g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device) # compute grad norm for two lists if len(g_all_32) > 0: g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0] if len(g_all_16) > 0: g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0] # blend two grad norms to get global grad norm global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False)[0] max_grad_norm = self.defaults['max_grad_norm'] for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 # create lists for multi-tensor apply g_16, p_16, m_16, v_16 = [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for i, p in enumerate(group['params']): #for p in group['params']: if p.grad is None: continue # if self.grad_norms[i] == 0.0: # continue if p.grad.data.is_sparse: raise RuntimeError('FusedLAMB does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) v_16.append(state['exp_avg_sq']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) v_32.append(state['exp_avg_sq']) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') self.skipped_idx = layer_num - len(m_32) if cac_bd_layer_num != -1: for Layer in range(cac_bd_layer_num + 1): if cac_bd_end_flag[Layer] == 0: if self.braking_count[Layer] > 0: self.braking_count[Layer] -= 1 if self.braking_count[Layer] >= 0: ratio = (self.braking_distance - self.N_factor)/ self.braking_distance t_lr[Layer] = ratio m_32[Layer - self.skipped_idx] *= t_lr[Layer] if self.braking_count[Layer] == 0: cac_bd_end_flag[Layer] = 1 os.environ['CAC_STOP_LAYER_NUM'] = str(Layer + 1) if(len(g_16) > 0): multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm, max_grad_norm, self.use_nvlamb) if(len(g_32) > 0): multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm, max_grad_norm, self.use_nvlamb) return loss
73a3eee3fd2e1f1a0057bd58a22f2e7a32c4130b
87aeb666b3e0d1e2d75fbb11c6e1bcc71402d098
/task_manager/taskapp/migrations/0001_initial.py
0a993da519f68d801dab37465e113bc760814c2b
[]
no_license
Alexey-Krapivnitsky/Task-Manager
25934aff3c56c442e2080da7d910705fbbe27f4c
62ee195bd79f86915e2c4dd5af9cc65797230f42
refs/heads/master
2022-12-17T13:27:53.660378
2020-10-01T19:23:54
2020-10-01T19:23:54
299,638,525
0
0
null
null
null
null
UTF-8
Python
false
false
1,174
py
# Generated by Django 3.1.1 on 2020-09-30 13:57 import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): initial = True dependencies = [ ('authapp', '0003_auto_20200930_1857'), ] operations = [ migrations.CreateModel( name='Task', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('task_name', models.CharField(max_length=25, null=True)), ('task_description', models.CharField(max_length=250, null=True)), ('created_at', models.DateTimeField(default=datetime.datetime(2020, 9, 30, 13, 57, 2, 549223, tzinfo=utc))), ('task_status', models.CharField(choices=[('N', 'New'), ('P', 'Planned'), ('W', 'Working'), ('F', 'Finished')], max_length=1)), ('task_finished_date', models.DateTimeField(null=True)), ('task_owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='authapp.user')), ], ), ]
6cccd938961ceaf9dc6a7234ea27deaebf7670bc
e1b52ce8238e7fe0d1c2cd8627535279edeb4bcb
/app/__init__.py
b65f106af4139090033d0b02ef36fab7a1dbcff2
[ "MIT" ]
permissive
nevooronni/Stackoverflow-lite-APIs
5cfb9048f56156c88f7f5c35fcba50b99b0d1111
eb0af8588628e174822be947b8a914ed64e97236
refs/heads/master
2020-04-14T12:22:21.658955
2019-01-02T15:28:23
2019-01-02T15:28:23
163,838,121
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
"""creating app""" import os from flask import Flask from instance.config import app_config """ import the configurations from the .confifrom dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) #pass override=True to override current system environment variables g file which is in the instance folder """ def create_app(config_name): """ creating the app using the configurations in the directory created in the .config file """ app = Flask(__name__, instance_relative_config=True) app.config.from_object(app_config[config_name]) app.config.from_pyfile('config.py') return app
7dc43320f08fd0538e450d05265783dd856dc117
a1d30d667cbf814db1809c31cf68ba75c01f819c
/Google/2. medium/362. Design Hit Counter.py
579742997805aaf7ccf5cd8362f9bcbc212660fb
[]
no_license
yemao616/summer18
adb5f0e04e6f1e1da6894b0b99a61da3c5cba8ee
8bb17099be02d997d554519be360ef4aa1c028e3
refs/heads/master
2021-06-02T04:32:07.703198
2020-01-09T17:45:29
2020-01-09T17:45:29
110,744,323
0
0
null
null
null
null
UTF-8
Python
false
false
2,159
py
# Design a hit counter which counts the number of hits received in the past 5 minutes. # Each function accepts a timestamp parameter (in seconds granularity) and you may assume that calls are being made to the system in chronological order (ie, the timestamp is monotonically increasing). You may assume that the earliest timestamp starts at 1. # It is possible that several hits arrive roughly at the same time. # Example: # HitCounter counter = new HitCounter(); # // hit at timestamp 1. # counter.hit(1); # // hit at timestamp 2. # counter.hit(2); # // hit at timestamp 3. # counter.hit(3); # // get hits at timestamp 4, should return 3. # counter.getHits(4); # // hit at timestamp 300. # counter.hit(300); # // get hits at timestamp 300, should return 4. # counter.getHits(300); # // get hits at timestamp 301, should return 3. # counter.getHits(301); # Follow up: # What if the number of hits per second could be very large? Does your design scale? class HitCounter(object): def __init__(self): """ Initialize your data structure here. """ from collections import deque self.num_of_hits = 0 self.time_hits = deque() def hit(self, timestamp): """ Record a hit. @param timestamp - The current timestamp (in seconds granularity). :type timestamp: int :rtype: void """ if not self.time_hits or self.time_hits[-1][0] != timestamp: self.time_hits.append([timestamp, 1]) else: self.time_hits[-1][1] += 1 self.num_of_hits += 1 def getHits(self, timestamp): """ Return the number of hits in the past 5 minutes. @param timestamp - The current timestamp (in seconds granularity). :type timestamp: int :rtype: int """ while self.time_hits and self.time_hits[0][0] <= timestamp - 300: self.num_of_hits -= self.time_hits.popleft()[1] return self.num_of_hits # Your HitCounter object will be instantiated and called as such: # obj = HitCounter() # obj.hit(timestamp) # param_2 = obj.getHits(timestamp)
a447848b01fb067427ac2e26e86ee507529529fc
a81c07a5663d967c432a61d0b4a09de5187be87b
/build/android/pylib/base/environment_factory.py
4d3727444f43ce92292cd4e4ca2f5e68dedb9799
[ "BSD-3-Clause" ]
permissive
junxuezheng/chromium
c401dec07f19878501801c9e9205a703e8643031
381ce9d478b684e0df5d149f59350e3bc634dad3
refs/heads/master
2023-02-28T17:07:31.342118
2019-09-03T01:42:42
2019-09-03T01:42:42
205,967,014
2
0
BSD-3-Clause
2019-09-03T01:48:23
2019-09-03T01:48:23
null
UTF-8
Python
false
false
947
py
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from pylib import constants from pylib.local.device import local_device_environment from pylib.local.emulator import local_emulator_environment from pylib.local.machine import local_machine_environment def CreateEnvironment(args, output_manager, error_func): if args.environment == 'local': if args.command not in constants.LOCAL_MACHINE_TESTS: if args.avd_name: return local_emulator_environment.LocalEmulatorEnvironment( args, output_manager, error_func) return local_device_environment.LocalDeviceEnvironment( args, output_manager, error_func) else: return local_machine_environment.LocalMachineEnvironment( args, output_manager, error_func) error_func('Unable to create %s environment.' % args.environment)
97a6be8339a60d63037f8b82f678e9d303761f4b
c9b1e04ba65ba3e0af2a8ae86b88187b72bcaa0b
/branches/Release0_70_Branch/tests/unittests/persistenceTests/HTMLWriterTest.py
84743b68f664018b2bfc3847f13b0d62eebaf424
[]
no_license
feitianyiren/TaskCoach
7762a89d5b521cfba0827323a9e8a91d1579810b
0b7427562074845ac771e59e24a750aa5b432589
refs/heads/master
2020-04-08T04:56:35.491490
2016-01-12T13:29:03
2016-01-12T13:29:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,514
py
''' Task Coach - Your friendly task manager Copyright (C) 2004-2008 Frank Niessink <[email protected]> Task Coach is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Task Coach is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import wx, StringIO import test from unittests import dummy from taskcoachlib import persistence, gui, config, widgets from taskcoachlib.domain import task, category, effort, date, note class HTMLWriterTestCase(test.wxTestCase): def setUp(self): super(HTMLWriterTestCase, self).setUp() self.fd = StringIO.StringIO() self.writer = persistence.HTMLWriter(self.fd) self.task = task.Task('Task subject') self.taskList = task.TaskList([self.task]) self.effortList = effort.EffortList(self.taskList) self.categories = category.CategoryList() self.notes = note.NoteContainer() self.settings = config.Settings(load=False) self.viewerContainer = gui.viewercontainer.ViewerContainer(\ widgets.Notebook(self.frame), self.settings, 'mainviewer') self.createViewer() def __writeAndRead(self, selectionOnly): self.writer.write(self.viewer, selectionOnly) return self.fd.getvalue() def expectInHTML(self, htmlFragment, selectionOnly=False): html = self.__writeAndRead(selectionOnly) self.failUnless(htmlFragment in html, '%s not in %s'%(htmlFragment, html)) def expectNotInHTML(self, htmlFragment, selectionOnly=False): html = self.__writeAndRead(selectionOnly) self.failIf(htmlFragment in html, '%s in %s'%(htmlFragment, html)) class TaskTests(object): def testTaskSubject(self): self.expectInHTML('>Task subject<') def testWriteSelectionOnly(self): self.expectNotInHTML('>Task subject<', selectionOnly=True) def testWriteSelectionOnly_SelectedChild(self): child = task.Task('Child') self.task.addChild(child) self.taskList.append(child) self.selectItem(1) self.expectInHTML('>Task subject<') def testSubjectColumnAlignment(self): self.expectInHTML('<td align="left">Task subject</td>') def testOverdueTask(self): self.task.setDueDate(date.Yesterday()) self.expectInHTML('<font color="#FF0000">Task subject</font>') def testCompletedTask(self): self.task.setCompletionDate() self.expectInHTML('<font color="#00FF00">Task subject</font>') def testTaskDueToday(self): self.task.setDueDate(date.Today()) expectedColor = '%02X%02X%02X'%eval(self.settings.get('color', 'duetodaytasks'))[:3] self.expectInHTML('<font color="#%s">Task subject</font>'%expectedColor) def testInactiveTask(self): self.task.setStartDate(date.Tomorrow()) expectedColor = '%02X%02X%02X'%eval(self.settings.get('color', 'inactivetasks'))[:3] self.expectInHTML('<font color="#%s">Task subject</font>'%expectedColor) def testCategoryColor(self): cat = category.Category('cat', color=wx.RED) self.task.addCategory(cat) self.expectInHTML('<tr bgcolor="#FF0000">') def testCategoryColorAsTuple(self): cat = category.Category('cat', color=(255, 0, 0, 0)) self.task.addCategory(cat) self.expectInHTML('<tr bgcolor="#FF0000">') class HTMLListWriterTest(TaskTests, HTMLWriterTestCase): def createViewer(self): self.viewer = gui.viewer.TaskListViewer(self.frame, self.taskList, self.settings, categories=self.categories, efforts=self.effortList) def selectItem(self, index): self.viewer.widget.SelectItem(index) def testTaskDescription(self): self.task.setDescription('Task description') self.viewer.showColumnByName('description') self.expectInHTML('>Task description<') def testTaskDescriptionWithNewLine(self): self.task.setDescription('Line1\nLine2') self.viewer.showColumnByName('description') self.expectInHTML('>Line1<br>Line2<') class HTMLTreeWriterTest(TaskTests, HTMLWriterTestCase): def createViewer(self): self.viewer = gui.viewer.TaskTreeViewer(self.frame, self.taskList, self.settings, categories=self.categories, efforts=self.effortList) def selectItem(self, index): item, cookie = self.viewer.widget.GetFirstChild(self.viewer.widget.GetRootItem()) self.viewer.widget.SelectItem(item) class EffortWriterTest(HTMLWriterTestCase): def setUp(self): super(EffortWriterTest, self).setUp() self.task.addEffort(effort.Effort(self.task)) def createViewer(self): self.viewer = gui.viewer.EffortListViewer(self.frame, self.taskList, self.settings) def testTaskSubject(self): self.expectInHTML('>Task subject<') def testEffortDuration(self): self.expectInHTML('>0:00:00<')
4cf43299d54bb37595d33106ca7efa886f45fa1f
a9b67cdcdd09d90669e87ececc0830419ad999c6
/blog/urls.py
2f4b41b1bd42ea09787542f648536b9799b3d907
[]
no_license
ver0nika4ka/my-first-blog
c05d30d21900e8706200c9971307faaa603a6220
bf81939ca502ab5b7c5b4577b01ede1c518838d9
refs/heads/master
2021-06-25T18:25:24.703987
2021-01-05T06:59:36
2021-01-05T06:59:36
193,432,440
0
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
# Так мы импортировали функцию path Django и все views (представления) из приложения blog from django.urls import path from . import views urlpatterns = [ path('', views.post_list, name='post_list'), # Фрагмент post/<int:pk>/ определяет шаблон URL-адреса: # post/ значит, что после начала строки URL должен содержать слово post и косую черту /. # <int:pk> — эта часть означает, что Django ожидает целочисленное значение и преобразует его в представление — переменную pk. # / — затем нам нужен еще один символ / перед тем, как адрес закончится. path('post/<int:pk>/', views.post_detail, name='post_detail'), path('post/new/', views.post_new, name='post_new'), path('post/<int:pk>/edit/', views.post_edit, name='post_edit'), ]
f2c7c34ff3fe71ccce7318a2d04bdd2e37ca1372
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startCirq858.py
8d4b711a55f0b71384de14f529d3ccf647d1d1f6
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,432
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=5 # total number=42 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=3 c.append(cirq.H.on(input_qubit[1])) # number=4 c.append(cirq.H.on(input_qubit[2])) # number=5 c.append(cirq.H.on(input_qubit[3])) # number=6 c.append(cirq.H.on(input_qubit[4])) # number=21 for i in range(2): c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.H.on(input_qubit[2])) # number=19 c.append(cirq.H.on(input_qubit[3])) # number=20 c.append(cirq.H.on(input_qubit[0])) # number=36 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=37 c.append(cirq.H.on(input_qubit[0])) # number=38 c.append(cirq.X.on(input_qubit[0])) # number=29 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=30 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=32 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=39 c.append(cirq.X.on(input_qubit[1])) # number=40 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=41 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=34 c.append(cirq.H.on(input_qubit[2])) # number=25 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=26 c.append(cirq.H.on(input_qubit[2])) # number=35 c.append(cirq.H.on(input_qubit[2])) # number=27 c.append(cirq.X.on(input_qubit[2])) # number=23 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=24 c.append(cirq.X.on(input_qubit[3])) # number=12 c.append(cirq.X.on(input_qubit[0])) # number=13 c.append(cirq.X.on(input_qubit[1])) # number=14 c.append(cirq.X.on(input_qubit[2])) # number=15 c.append(cirq.X.on(input_qubit[3])) # number=16 c.append(cirq.Z.on(input_qubit[1])) # number=31 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 5 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq858.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
c5a07c81fbe718191d7e3692de37bdb34ffea009
7628bfc96a7248461d3f2071992d682c0ad18272
/test/test_runners.py
ec4a2e80525cd0e2c6011733b05cf1da14bac0ec
[ "Apache-2.0" ]
permissive
war3gu/tensorforce
d0c72b26364368d873b1e2717595718669b7fa2d
70d551f8f92b694aae51262663e77c25576ecfad
refs/heads/master
2020-12-11T14:51:21.916658
2020-01-13T20:43:25
2020-01-13T20:43:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,105
py
# Copyright 2018 Tensorforce Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import copy import time import unittest from tensorforce import ParallelRunner, Runner from test.unittest_base import UnittestBase class TestRunners(UnittestBase, unittest.TestCase): min_timesteps = 3 require_observe = True def test_runner(self): self.start_tests(name='runner') agent, environment = self.prepare() runner = Runner(agent=agent, environment=environment) runner.run(num_episodes=10, use_tqdm=False) runner.close() self.finished_test() # callback agent, environment = self.prepare() runner = Runner(agent=agent, environment=environment) callback_episode_frequency = 2 self.num_callbacks = 0 def callback(r): self.num_callbacks += 1 self.assertEqual(r.episodes, self.num_callbacks * callback_episode_frequency) runner.run( num_episodes=5, callback=callback, callback_episode_frequency=callback_episode_frequency, use_tqdm=False ) callback_timestep_frequency = 3 self.num_callbacks = 0 def callback(r): self.num_callbacks += 1 self.assertEqual(r.episode_timestep, self.num_callbacks * callback_timestep_frequency) runner.run( num_episodes=1, callback=callback, callback_timestep_frequency=callback_timestep_frequency, use_tqdm=False ) self.is_callback1 = False self.is_callback2 = False def callback1(r): self.is_callback1 = True def callback2(r): self.is_callback2 = True runner.run( num_episodes=1, callback=[callback1, callback2], callback_timestep_frequency=callback_timestep_frequency, use_tqdm=False ) runner.close() self.finished_test(assertion=(self.is_callback1 and self.is_callback2)) # evaluation agent, environment = self.prepare() runner = Runner(agent=agent, environment=environment) self.num_evaluations = 0 evaluation_frequency = 3 num_evaluation_iterations = 2 def evaluation_callback(r): self.num_evaluations += 1 self.assertEqual(r.episodes, self.num_evaluations * evaluation_frequency) self.assertEqual(len(r.evaluation_timesteps), num_evaluation_iterations) runner.run( num_episodes=6, use_tqdm=False, evaluation_callback=evaluation_callback, evaluation_frequency=evaluation_frequency, num_evaluation_iterations=num_evaluation_iterations ) runner.close() self.finished_test() def test_parallel_runner(self): self.start_tests(name='parallel-runner') agent, environment1 = self.prepare( update=dict(unit='episodes', batch_size=1), parallel_interactions=2 ) environment2 = copy.deepcopy(environment1) runner = ParallelRunner(agent=agent, environments=[environment1, environment2]) runner.run(num_episodes=5, use_tqdm=False) runner.close() self.finished_test() # callback agent, environment1 = self.prepare( update=dict(unit='episodes', batch_size=1), parallel_interactions=2 ) environment2 = copy.deepcopy(environment1) runner = ParallelRunner(agent=agent, environments=[environment1, environment2]) callback_episode_frequency = 2 self.num_callbacks = 0 def callback(r, parallel): self.num_callbacks += 1 self.assertEqual(r.episodes, self.num_callbacks * callback_episode_frequency) runner.run( num_episodes=5, callback=callback, callback_episode_frequency=callback_episode_frequency, use_tqdm=False ) time.sleep(1) callback_timestep_frequency = 3 def callback(r, parallel): self.assertEqual(r.episode_timestep[parallel] % callback_timestep_frequency, 0) runner.run( num_episodes=1, callback=callback, callback_timestep_frequency=callback_timestep_frequency, use_tqdm=False ) self.is_callback1 = False self.is_callback2 = False def callback1(r, parallel): self.is_callback1 = True def callback2(r, parallel): self.is_callback2 = True runner.run( num_episodes=1, callback=[callback1, callback2], callback_timestep_frequency=callback_timestep_frequency, use_tqdm=False ) runner.close() self.finished_test(assertion=(self.is_callback1 and self.is_callback2)) # evaluation agent, environment1 = self.prepare( update=dict(unit='episodes', batch_size=1), parallel_interactions=2 ) environment2 = copy.deepcopy(environment1) evaluation_environment = copy.deepcopy(environment1) runner = ParallelRunner( agent=agent, environments=[environment1, environment2], evaluation_environment=evaluation_environment ) self.num_evaluations = 0 def evaluation_callback(r): self.num_evaluations += 1 runner.run(num_episodes=5, use_tqdm=False, evaluation_callback=evaluation_callback) runner.close() self.assertGreaterEqual(self.num_evaluations, 1) self.finished_test()
b2edd05a4a829eae2b86d8543f76dd6e0c7cea91
9d7f0f91e51083039013f792d6f5d0067a663844
/ventura-sanic/db.py
430ccc5732f0299e749ca7e7f4a3d27d869b9300
[]
no_license
ventura-open-source/non-blocking-service-example
88b98325cfe5db8af0155e8b4b7590c56d6f0884
d5bec25e986981004a198d74aecc11f32f70eff4
refs/heads/master
2020-03-22T05:51:07.927025
2018-07-03T14:24:20
2018-07-03T14:24:20
139,594,427
0
0
null
null
null
null
UTF-8
Python
false
false
332
py
import logging import peewee_async # Setup mysql connection database = peewee_async.MySQLDatabase( 'ventura_laravel', user='root', password='root', host='localhost', port=3306, ) # No need for sync anymore! database.set_allow_sync(False) # Create async models manager objects = peewee_async.Manager(database)
3af3448c062fe48f3b47b009218c66d850913b87
f2604386f503a06de34f0e6c23993dd0d1ce093d
/wallet/urls.py
ac851ec7356c586163db22b20c9502ca89aeb8f0
[]
no_license
kicha-05/wallet
6c64ebbf2849d084b68ea13b60a6ac675a958c78
ae6af4479ab3b7211265c943ccb1791965b2fa66
refs/heads/master
2022-12-25T11:31:15.926443
2020-10-08T07:48:12
2020-10-08T07:48:12
302,228,970
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
from django.contrib import admin from django.urls import path from django.conf.urls import url from .views import * urlpatterns = [ path('init', InitializeAccount.as_view(), name='init'), path('wallet', WalletView.as_view(), name='wallet'), path('wallet/deposit', DepositWithdrawVirtualMoney.as_view(), name='deposit'), path('wallet/withdraw', DepositWithdrawVirtualMoney.as_view(), name='withdraw') ]
b6b415e6bf267ac3378d6b864303165d97c05cdc
3f48e3308674212408c3b6ca972eb4f793bf142b
/f0_data_process/chip_seq/final_chipseq/sicer_df/py1_write_run_sicer_df_slurm.py
d366ec6d7bdea0661c665daf34df7addf7f051d8
[]
no_license
zanglab/utx_code
8497840ace81e0337f92f04fafbb691f0ed24865
32fc7851207f650b3cc78974ab798f8606099e56
refs/heads/main
2023-06-28T17:38:33.231877
2021-07-27T01:31:00
2021-07-27T01:31:00
388,648,753
1
0
null
null
null
null
UTF-8
Python
false
false
2,039
py
import sys,argparse import os,glob import numpy as np import pandas as pd from scipy import stats import re,bisect slurm_dir = 'slurm_files' os.makedirs(slurm_dir,exist_ok=True) project_dir='/nv/vol190/zanglab/zw5j/since2019_projects/UTX_HaoJiang' outdir='sicer_out' sub_dirs=['re_1st_submission_H3K4me3_MLL4SC_trim','re_202012_H3K4me2_trim','202102_H3K27ac_H3K4me1_trim','202011_UTX_trim','202102_UTX_H3K27me3_trim'] # celltypes = ['Vector','WT','DEL','EIF','MT2','TPR'] factors= ['UTX','UTXFEB','H3K4me1','H3K4me2','H3K4me3','H3K27ac','H3K27me3','MLL4'] compr_pairs = [['Vector','WT'],['WT','DEL'],['DEL','EIF']] for sub_dir in sub_dirs: for compr_pair in compr_pairs: for factor in factors: sicer_outdir='{}/{}_over_{}_{}'.format(outdir,compr_pair[1],compr_pair[0],factor) os.makedirs(sicer_outdir,exist_ok=True) basename_treatment = '{}_{}'.format(compr_pair[1],factor) basename_control = '{}_{}'.format(compr_pair[0],factor) bam_control ='{}/f0_data_process/chip_seq/final_chipseq/{}/process_qc_out/{}/{}_treat.bam'.format(project_dir,sub_dir,basename_control,basename_control) bam_treatment ='{}/f0_data_process/chip_seq/final_chipseq/{}/process_qc_out/{}/{}_treat.bam'.format(project_dir,sub_dir,basename_treatment,basename_treatment) if os.path.isfile(bam_control): #print(sub_dir,celltype,factor) slurmfile = '{}/{}_over_{}_{}.slurm'.format(slurm_dir,compr_pair[1],compr_pair[0],factor) with open(slurmfile,'w') as slurmout: slurmout.write('''#!/bin/bash #SBATCH -n 1 #SBATCH --mem=20000 #SBATCH -t 24:00:00 #SBATCH -p standard #SBATCH -A cphg_cz3d ''') slurmout.write('#SBATCH -o {}/slurm_{}_over_{}_{}.out\n\n'.format(slurm_dir,compr_pair[1],compr_pair[0],factor)) slurmout.write('time sicer_df -t \\\n{} \\\n{} \\\n-s hg38 --output_directory {}\n'.format(bam_treatment,bam_control,sicer_outdir))
a618ed18a38138e126c6e7cf13a613ff0eeac304
5f6425e9d83b57b864e48f227e1dc58356a555c0
/utils/palettes/archive/selenized_medium_0_4.py
94959c43f26c4b355583da48508d798782d438af
[ "MIT" ]
permissive
jan-warchol/selenized
b374fa7822f281b16aa8b52e34bd1e585db75904
df1c7f1f94f22e2c717f8224158f6f4097c5ecbe
refs/heads/master
2023-06-22T09:37:02.962677
2022-09-12T20:24:40
2022-09-12T20:24:40
45,570,283
663
58
MIT
2023-04-18T09:33:22
2015-11-04T22:00:52
Emacs Lisp
UTF-8
Python
false
false
590
py
name = 'Selenized medium v0.4 (adapted monotones)' palette = { "bg_0": "#154053", "fg_0": "#a8bcc3", "bg_1": "#245971", "red": "#fc5851", "green": "#78b93e", "yellow": "#d8b033", "blue": "#4e97f5", "magenta": "#f16dc5", "cyan": "#41c7b9", "dim_0": "#7c95a0", "bg_2": "#245971", "br_red": "#ff675d", "br_green": "#85c74c", "br_yellow": "#e7be42", "br_blue": "#5ea4ff", "br_magenta": "#ff7bd3", "br_cyan": "#52d5c7", "fg_1": "#c4d8df", }
0ad20010a16169575984c8d5f5c526a6e6379811
7675abbb6a30fdb56cb534cbd198571f75cc926e
/dazubi_fan_site/dazubi_fan_site/settings.py
240dda22c91a32799aaaab32a9a20c13a4781f3d
[]
no_license
moreal/dazbee_fan_site
4b2077635118987eb2731b36030c47cd181cc25a
dfb0e02a25087917968be6f4ee54049e9cca1b07
refs/heads/master
2020-04-09T02:37:04.173566
2018-12-01T13:56:51
2018-12-01T13:56:51
159,947,801
0
0
null
null
null
null
UTF-8
Python
false
false
3,115
py
""" Django settings for dazubi_fan_site project. Generated by 'django-admin startproject' using Django 2.1.3. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'abelz*+9_9_^&u$s5=zefr!*-z#t9gp$3)in%^v6er82end3di' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'dazubi_fan_site.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'dazubi_fan_site.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
f05a887b3080d00cd4f30b2eda7596f2a6d01e91
89dedd7f3c7acc81d12e2bcb2e716f9af9e5fa04
/third_party/WebKit/Source/bindings/modules/v8/generated.gypi
360698ad1d396054e3e70c5bd4bcde09947b4c2e
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft", "BSD-3-Clause" ]
permissive
bino7/chromium
8d26f84a1b6e38a73d1b97fea6057c634eff68cb
4666a6bb6fdcb1114afecf77bdaa239d9787b752
refs/heads/master
2022-12-22T14:31:53.913081
2016-09-06T10:05:11
2016-09-06T10:05:11
67,410,510
1
3
BSD-3-Clause
2022-12-17T03:08:52
2016-09-05T10:11:59
null
UTF-8
Python
false
false
11,037
gypi
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'bindings_modules_v8_output_dir': '<(SHARED_INTERMEDIATE_DIR)/blink/bindings/modules/v8', 'bindings_modules_v8_generated_union_type_files': [ '<(bindings_modules_v8_output_dir)/ArrayBufferOrArrayBufferViewOrDictionary.cpp', '<(bindings_modules_v8_output_dir)/ArrayBufferOrArrayBufferViewOrDictionary.h', '<(bindings_modules_v8_output_dir)/ArrayBufferOrArrayBufferViewOrUSVString.cpp', '<(bindings_modules_v8_output_dir)/ArrayBufferOrArrayBufferViewOrUSVString.h', '<(bindings_modules_v8_output_dir)/ArrayBufferViewOrBlobOrStringOrFormData.cpp', '<(bindings_modules_v8_output_dir)/ArrayBufferViewOrBlobOrStringOrFormData.h', '<(bindings_modules_v8_output_dir)/BooleanOrConstrainBooleanParameters.cpp', '<(bindings_modules_v8_output_dir)/BooleanOrConstrainBooleanParameters.h', '<(bindings_modules_v8_output_dir)/BooleanOrMediaTrackConstraints.cpp', '<(bindings_modules_v8_output_dir)/BooleanOrMediaTrackConstraints.h', '<(bindings_modules_v8_output_dir)/ClientOrServiceWorkerOrMessagePort.cpp', '<(bindings_modules_v8_output_dir)/ClientOrServiceWorkerOrMessagePort.h', '<(bindings_modules_v8_output_dir)/DictionaryOrString.cpp', '<(bindings_modules_v8_output_dir)/DictionaryOrString.h', '<(bindings_modules_v8_output_dir)/DoubleOrConstrainDoubleRange.cpp', '<(bindings_modules_v8_output_dir)/DoubleOrConstrainDoubleRange.h', '<(bindings_modules_v8_output_dir)/FormDataOrURLSearchParams.cpp', '<(bindings_modules_v8_output_dir)/FormDataOrURLSearchParams.h', '<(bindings_modules_v8_output_dir)/HTMLImageElementOrHTMLVideoElementOrHTMLCanvasElementOrImageBitmap.cpp', '<(bindings_modules_v8_output_dir)/HTMLImageElementOrHTMLVideoElementOrHTMLCanvasElementOrImageBitmap.h', '<(bindings_modules_v8_output_dir)/LongOrConstrainLongRange.cpp', '<(bindings_modules_v8_output_dir)/LongOrConstrainLongRange.h', '<(bindings_modules_v8_output_dir)/OffscreenCanvasRenderingContext2DOrWebGLRenderingContextOrWebGL2RenderingContext.cpp', '<(bindings_modules_v8_output_dir)/OffscreenCanvasRenderingContext2DOrWebGLRenderingContextOrWebGL2RenderingContext.h', '<(bindings_modules_v8_output_dir)/RTCIceCandidateInitOrRTCIceCandidate.cpp', '<(bindings_modules_v8_output_dir)/RTCIceCandidateInitOrRTCIceCandidate.h', '<(bindings_modules_v8_output_dir)/RenderingContext.cpp', '<(bindings_modules_v8_output_dir)/RenderingContext.h', '<(bindings_modules_v8_output_dir)/RequestOrUSVString.cpp', '<(bindings_modules_v8_output_dir)/RequestOrUSVString.h', '<(bindings_modules_v8_output_dir)/ServiceWorkerOrMessagePort.cpp', '<(bindings_modules_v8_output_dir)/ServiceWorkerOrMessagePort.h', '<(bindings_modules_v8_output_dir)/StringOrArrayBufferOrNFCMessage.cpp', '<(bindings_modules_v8_output_dir)/StringOrArrayBufferOrNFCMessage.h', '<(bindings_modules_v8_output_dir)/StringOrCanvasGradientOrCanvasPattern.cpp', '<(bindings_modules_v8_output_dir)/StringOrCanvasGradientOrCanvasPattern.h', '<(bindings_modules_v8_output_dir)/StringOrStringSequence.cpp', '<(bindings_modules_v8_output_dir)/StringOrStringSequence.h', '<(bindings_modules_v8_output_dir)/StringOrStringSequenceOrConstrainDOMStringParameters.cpp', '<(bindings_modules_v8_output_dir)/StringOrStringSequenceOrConstrainDOMStringParameters.h', '<(bindings_modules_v8_output_dir)/StringOrStringSequenceOrDOMStringList.cpp', '<(bindings_modules_v8_output_dir)/StringOrStringSequenceOrDOMStringList.h', '<(bindings_modules_v8_output_dir)/StringOrUnsignedLong.cpp', '<(bindings_modules_v8_output_dir)/StringOrUnsignedLong.h', '<(bindings_modules_v8_output_dir)/UnsignedLongOrUnsignedLongSequence.cpp', '<(bindings_modules_v8_output_dir)/UnsignedLongOrUnsignedLongSequence.h', ], 'conditions': [ ['OS=="win" and buildtype=="Official"', { # On Windows Official release builds, we try to preserve symbol # space. 'bindings_modules_v8_generated_aggregate_files': [ '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings.cpp', ], }, { 'bindings_modules_v8_generated_aggregate_files': [ '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings00.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings01.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings02.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings03.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings04.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings05.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings06.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings07.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings08.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings09.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings10.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings11.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings12.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings13.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings14.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings15.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings16.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings17.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings18.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings19.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings20.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings21.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings22.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings23.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings24.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings25.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings26.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings27.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings28.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings29.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings30.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings31.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings32.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings33.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings34.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings35.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings36.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings37.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings38.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings39.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings40.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings41.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings42.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings43.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings44.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings45.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings46.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings47.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings48.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings49.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings50.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings51.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings52.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings53.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings54.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings55.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings56.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings57.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings58.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings59.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings60.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings61.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings62.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings63.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings64.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings65.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings66.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings67.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings68.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings69.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings70.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings71.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings72.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings73.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings74.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings75.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings76.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings77.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings78.cpp', '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindings79.cpp', ], }], ], 'bindings_modules_v8_generated_partial_aggregate_files': [ '<(bindings_modules_v8_output_dir)/V8GeneratedModulesBindingsPartial.cpp', ], }, }