blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
15fb71f19b34ff9cebea5eb8b88bc3e5eb0da713
393b32e6b2d302cb20e4267d5fafe639114db816
/ohri/tool/duckling/tests/test_duckling_tool.py
85b8b6ea08dae6643f29568933b0a1fc0f3d54ce
[]
no_license
proximiant/ohri
9b2ec0e2477ada191c1d8b335df5bfd58212274a
72dc192b6c8e26f5c29f079efa4032b937123cad
refs/heads/master
2020-12-02T09:50:25.106623
2019-12-31T02:47:12
2019-12-31T02:47:12
230,972,238
0
0
null
null
null
null
UTF-8
Python
false
false
11,691
py
import logging import os from datetime import time from functools import reduce from pprint import pprint from unittest import TestCase from future.utils import lmap from ohri.hub.logger.duckling_logger import DucklingLogger from ohri.tool.collection.collection_tool import luniq from ohri.tool.duckling.duckling_tool import DucklingTool from ohri.tool.testing.testing_tool import TestingTool FILE_PATH = os.path.realpath(__file__) FILE_DIR = os.path.dirname(FILE_PATH) FILE_NAME = os.path.basename(FILE_PATH) DucklingLogger.attach_stderr2loggers(logging.DEBUG) logger = DucklingLogger.filename_level2logger(FILE_NAME, logging.DEBUG) def hyp2norm_time_list(hyp): return lmap(DucklingTool.parse2norm_time_list, hyp) class TestDucklingTool(TestCase): """ time """ def test_01(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'Let\'s meet at 11:45am', DucklingTool.Dim.TIME, ) ref = [{'dim': 'time', 'end': 21, 'start': 11, 'text': 'at 11:45am', 'value': ['11:45:00']}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) def test_02(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'at two', DucklingTool.Dim.TIME, ) ref = [{'dim': 'time', 'end': 6, 'start': 0, 'text': 'at two', 'value': ['02:00:00', '14:00:00']}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) @TestingTool.expected_failure_deco(reason="Alexa script variation support not expected") def test_03(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'1010', DucklingTool.Dim.TIME, ) ref = [ { "dim": "time", "text": "1010", "start": 0, "end": 4, "value": ['10:10:00', '22:10:00']}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) def test_04(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'10 pm', DucklingTool.Dim.TIME, ) ref = [{'dim': 'time', 'text': '10 pm', 'start': 0, 'end': 5, 'value': ['22:00:00']}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) @TestingTool.expected_failure_deco(reason="'two thirty' type not supported") def test_05(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'two thirty', DucklingTool.Dim.TIME, ) ref = [{'dim': 'time', 'text': 'two thirty', 'start': 0, 'end': 10, 'value': ['2:30:00', '14:30:00']}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) def test_06(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'ten to two', DucklingTool.Dim.TIME, ) ref = [{'dim': 'time', 'end': 10, 'start': 0, 'text': 'ten to two', 'value': ['01:50:00', '13:50:00']}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) def test_07(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'five past ten', DucklingTool.Dim.TIME, ) ref = [{'dim': 'time', 'end': 13, 'start': 0, 'text': 'five past ten', 'value': ['10:05:00', '22:05:00',]}] # pprint(hyp2norm_time_list(hyp)) self.assertEqual(hyp2norm_time_list(hyp), ref) """ timezone """ def test_11(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'pst', DucklingTool.Dim.TIMEZONE, ) ref = [{'dim': 'timezone', 'end': 3, 'start': 0, 'text': 'pst', 'value': {'value': 'PST'}}] # pprint(hyp) self.assertEqual(hyp, ref) @TestingTool.expected_failure_deco(reason="'Asia/Seoul' type timezone not supported") def test_12(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'Asia/Seoul', DucklingTool.Dim.TIMEZONE, ) ref = [{'dim': 'timezone', 'end': 3, 'start': 0, 'text': 'pst', 'value': {'value': 'Asia/Seoul'}}] # pprint(hyp) self.assertEqual(hyp, ref) def test_13(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'pt', DucklingTool.Dim.TIMEZONE, ) ref = [{'dim': 'timezone', 'end': 2, 'start': 0, 'text': 'pt', 'value': {'value': 'PT'}}] # pprint(hyp) self.assertEqual(hyp, ref) @TestingTool.expected_failure_deco(reason="'pacific time' type timezone not supported") def test_14(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'pacific time', DucklingTool.Dim.TIMEZONE, ) ref = [{'dim': 'timezone', 'end': 12, 'start': 0, 'text': 'pacific time', 'value': {'value': 'PT'}}] # pprint(hyp) self.assertEqual(hyp, ref) """ temperature """ def test_21(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'Let\'s change the temperatur from thirty two celsius to 65 degrees', DucklingTool.Dim.TEMPERATURE,) ref = [{u'dim': u'temperature', u'end': 65, u'start': 55, u'value': {u'unit': u'degree', u'value': 65.0}, u'text': u'65 degrees', }, {u'dim': u'temperature', u'end': 51, u'start': 33, u'value': {u'unit': u'celsius', u'value': 32.0}, u'text': u'thirty two celsius'} ] # pprint(hyp) self.assertEqual(hyp, ref) def test_22(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, u'forty two degrees', DucklingTool.Dim.TEMPERATURE,) ref = [{'dim': 'temperature', 'end': 17, 'start': 0, 'text': 'forty two degrees', 'value': {'unit': 'degree', 'value': 42.0}}] # pprint(hyp) self.assertEqual(hyp, ref) """ number """ def test_31(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "thirty two", DucklingTool.Dim.NUMBER, ) ref = [{'dim': 'number', 'end': 10, 'start': 0, 'text': 'thirty two', 'value': {'value': 32.0}}] # pprint(hyp) self.assertEqual(hyp, ref) def test_32(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "4,320", # comma supported ! DucklingTool.Dim.NUMBER, ) ref = [{'dim': 'number', 'end': 5, 'start': 0, 'text': '4,320', 'value': {'value': 4320.0}}] # pprint(hyp) self.assertEqual(hyp, ref) @TestingTool.expected_failure_deco(reason="'two and a half' not supported. required for age for clothes") def test_33(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "two and a half", DucklingTool.Dim.NUMBER, ) ref = [{'dim': 'number', 'end': 14, 'start': 0, 'text': 'two and a half', 'value': {'value': 2.5}}] # pprint(hyp) self.assertEqual(hyp, ref) @TestingTool.expected_failure_deco(reason="'three quarters' not supported. required for time.") def test_34(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "three quarters", DucklingTool.Dim.NUMBER, ) ref = [{'dim': 'number', 'end': 14, 'start': 0, 'text': 'two and a half', 'value': {'value': 2.5}}] # pprint(hyp) self.assertEqual(hyp, ref) @TestingTool.expected_failure_deco(reason="'second one'. 'one' as number") def test_35(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "second one", DucklingTool.Dim.NUMBER, ) ref = [] # pprint(hyp) self.assertEqual(hyp, ref) """ ordinal """ def test_41(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "third", DucklingTool.Dim.ORDINAL, ) ref = [{'dim': 'ordinal', 'end': 5, 'start': 0, 'text': 'third', 'value': {'value': 3}}] # pprint(hyp) self.assertEqual(hyp, ref) @TestingTool.expected_failure_deco(reason="'one second'. 'second' is not ordinal") def test_42(self): d = DucklingTool.duckling() hyp = DucklingTool.str_dim2parse(d, "one second", DucklingTool.Dim.ORDINAL, ) ref = [] # pprint(hyp) self.assertEqual(hyp, ref) """ distance """ """ volume """ """ money """ """ duration """ """ email """ """ url """ """ phone_number """ """ level_product """ """ leven_unit """ """ quantity """ """ cycle """ """ unit """ """ unit_of_duration """
39fd9bbe1207cc93d1f22eb3470fc29753fa9cbb
605b5e612f8837a4962f444de0bd157f782c0504
/exp/063.py
cd7d9465a5a33dba45372c3c746f0c6fd23113ef
[]
no_license
osuossu8/CommonLitReadabilityPrize
a32db7608c3e975cd9366cb224e33aca9a4f9a7e
c555581a020d6338786dd4a938e090f20b4d1c88
refs/heads/main
2023-07-01T23:59:08.834163
2021-08-03T10:47:28
2021-08-03T10:47:28
372,928,954
12
1
null
null
null
null
UTF-8
Python
false
false
23,275
py
import gc import os import math import random import time import warnings import sys sys.path.append("/root/workspace/CommonLitReadabilityPrize") import numpy as np import pandas as pd import transformers import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import torch.utils.data as torchdata from pathlib import Path from typing import List from sklearn import model_selection from sklearn import metrics from tqdm import tqdm from transformers import RobertaConfig, RobertaModel, RobertaTokenizer from apex import amp class CFG: ###################### # Globals # ###################### EXP_ID = '063' seed = 71 epochs = 5 folds = [0, 1, 2, 3, 4] N_FOLDS = 5 LR = 2e-5 max_len = 256 train_bs = 8 * 2 valid_bs = 16 * 2 log_interval = 10 model_name = 'roberta-large' itpt_path = 'itpt/roberta_large_2/' numerical_cols = [ 'excerpt_num_chars', 'excerpt_num_capitals', 'excerpt_caps_vs_length', 'excerpt_num_exclamation_marks', 'excerpt_num_question_marks', 'excerpt_num_punctuation', 'excerpt_num_symbols', 'excerpt_num_words', 'excerpt_num_unique_words', 'excerpt_words_vs_unique' ] def set_seed(seed=42): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def get_device() -> torch.device: return torch.device("cuda" if torch.cuda.is_available() else "cpu") def init_logger(log_file='train.log'): from logging import getLogger, INFO, FileHandler, Formatter, StreamHandler logger = getLogger(__name__) logger.setLevel(INFO) handler1 = StreamHandler() handler1.setFormatter(Formatter("%(message)s")) handler2 = FileHandler(filename=log_file) handler2.setFormatter(Formatter("%(message)s")) logger.addHandler(handler1) logger.addHandler(handler2) return logger def calc_loss(y_true, y_pred): return np.sqrt(metrics.mean_squared_error(y_true, y_pred)) def convert_examples_to_head_and_tail_features(data, tokenizer, max_len): head_len = int(max_len//2) tail_len = head_len data = data.replace('\n', '') len_tok = len(tokenizer.tokenize(data)) tok = tokenizer.encode_plus( data, max_length=max_len, truncation=True, return_attention_mask=True, return_token_type_ids=True ) curr_sent = {} if len_tok > max_len: head_ids = tok['input_ids'][:head_len] tail_ids = tok['input_ids'][-tail_len:] head_mask = tok['attention_mask'][:head_len] tail_mask = tok['attention_mask'][-tail_len:] curr_sent['input_ids'] = head_ids + tail_ids curr_sent['attention_mask'] = head_mask + tail_mask else: padding_length = max_len - len(tok['input_ids']) curr_sent['input_ids'] = tok['input_ids'] + ([1] * padding_length) curr_sent['attention_mask'] = tok['attention_mask'] + ([0] * padding_length) return curr_sent class CommonLitDataset: def __init__(self, df, excerpt, tokenizer, max_len, numerical_features, tfidf): self.excerpt = excerpt self.tokenizer = tokenizer self.max_len = max_len self.df = df self.numerical_features = numerical_features self.tfidf_df = tfidf def __len__(self): return len(self.excerpt) def __getitem__(self, item): text = str(self.excerpt[item]) inputs = self.tokenizer( text, max_length=self.max_len, padding="max_length", truncation=True ) # inputs = convert_examples_to_head_and_tail_features(text, tokenizer, self.max_len) ids = inputs["input_ids"] mask = inputs["attention_mask"] targets = self.df["target"].values[item] aux = self.df["aux_target"].values[item] + 4 aux_targets = np.zeros(7, dtype=float) aux_targets[aux] = 1.0 numerical_features = self.numerical_features[item] tfidf = self.tfidf_df.values[item] return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), "targets" : torch.tensor(targets, dtype=torch.float32), "aux_targets" : torch.tensor(aux_targets, dtype=torch.float32), "numerical_features" : torch.tensor(numerical_features, dtype=torch.float32), "tfidf" : torch.tensor(tfidf, dtype=torch.float32), } class AttentionHead(nn.Module): def __init__(self, in_features, hidden_dim, num_targets): super().__init__() self.in_features = in_features self.middle_features = hidden_dim self.W = nn.Linear(in_features, hidden_dim) self.V = nn.Linear(hidden_dim, 1) self.out_features = hidden_dim def forward(self, features): att = torch.tanh(self.W(features)) score = self.V(att) attention_weights = torch.softmax(score, dim=1) context_vector = attention_weights * features context_vector = torch.sum(context_vector, dim=1) return context_vector class RoBERTaLarge(nn.Module): def __init__(self, model_path): super(RoBERTaLarge, self).__init__() self.in_features = 1024 self.roberta = RobertaModel.from_pretrained(model_path) self.head = AttentionHead(self.in_features,self.in_features,1) self.dropout = nn.Dropout(0.1) self.process_tfidf = nn.Sequential( nn.Linear(100, 32), nn.BatchNorm1d(32), nn.PReLU(), nn.Dropout(0.1), ) self.l0 = nn.Linear(self.in_features + 32, 1) self.l1 = nn.Linear(self.in_features + 32, 7) def forward(self, ids, mask, numerical_features, tfidf): roberta_outputs = self.roberta( ids, attention_mask=mask ) x1 = self.head(roberta_outputs[0]) # bs, 1024 x2 = self.process_tfidf(tfidf) # bs, 32 x = torch.cat([x1, x2], 1) # bs, 1024 + 32 logits = self.l0(self.dropout(x)) aux_logits = torch.sigmoid(self.l1(self.dropout(x))) return logits.squeeze(-1), aux_logits # ==================================================== # Training helper functions # ==================================================== class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class MetricMeter(object): def __init__(self): self.reset() def reset(self): self.y_true = [] self.y_pred = [] def update(self, y_true, y_pred): self.y_true.extend(y_true.cpu().detach().numpy().tolist()) self.y_pred.extend(y_pred.cpu().detach().numpy().tolist()) @property def avg(self): self.rmse = calc_loss(self.y_true, self.y_pred) return { "RMSE" : self.rmse, } class RMSELoss(torch.nn.Module): def __init__(self): super(RMSELoss,self).__init__() def forward(self,x,y): criterion = nn.MSELoss() loss = torch.sqrt(criterion(x, y)) return loss def loss_fn(logits, targets): loss_fct = RMSELoss() loss = loss_fct(logits, targets) return loss def aux_loss_fn(logits, targets): loss_fct = nn.BCEWithLogitsLoss() loss = loss_fct(logits, targets) return loss def train_fn(epoch, model, train_data_loader, valid_data_loader, device, optimizer, scheduler, best_score): model.train() losses = AverageMeter() scores = MetricMeter() tk0 = tqdm(train_data_loader, total=len(train_data_loader)) for batch_idx, data in enumerate(tk0): optimizer.zero_grad() inputs = data['input_ids'].to(device) masks = data['attention_mask'].to(device) targets = data['targets'].to(device) aux_targets = data['aux_targets'].to(device) numerical_features = data['numerical_features'].to(device) tfidf = data['tfidf'].to(device) outputs, aux_outs = model(inputs, masks, numerical_features, tfidf) loss = loss_fn(outputs, targets) * 0.5 + aux_loss_fn(aux_outs, aux_targets) * 0.5 loss.backward() optimizer.step() scheduler.step() losses.update(loss.item(), inputs.size(0)) scores.update(targets, outputs) tk0.set_postfix(loss=losses.avg) if (batch_idx > 0) and (batch_idx % CFG.log_interval == 0): valid_avg, valid_loss = valid_fn(model, valid_data_loader, device) logger.info(f"Epoch {epoch+1}, Step {batch_idx} - valid_rmse:{valid_avg['RMSE']:0.5f}") if valid_avg['RMSE'] < best_score: logger.info(f">>>>>>>> Model Improved From {best_score} ----> {valid_avg['RMSE']}") torch.save(model.state_dict(), OUTPUT_DIR+f'fold-{fold}.bin') best_score = valid_avg['RMSE'] return scores.avg, losses.avg, valid_avg, valid_loss, best_score def valid_fn(model, data_loader, device): model.eval() losses = AverageMeter() scores = MetricMeter() tk0 = tqdm(data_loader, total=len(data_loader)) with torch.no_grad(): for data in tk0: inputs = data['input_ids'].to(device) masks = data['attention_mask'].to(device) targets = data['targets'].to(device) aux_targets = data['aux_targets'].to(device) numerical_features = data['numerical_features'].to(device) tfidf = data['tfidf'].to(device) outputs, aux_outs = model(inputs, masks, numerical_features, tfidf) loss = loss_fn(outputs, targets) * 0.5 + aux_loss_fn(aux_outs, aux_targets) * 0.5 losses.update(loss.item(), inputs.size(0)) scores.update(targets, outputs) tk0.set_postfix(loss=losses.avg) return scores.avg, losses.avg def calc_cv(model_paths): models = [] for p in model_paths: if CFG.itpt_path: model = RoBERTaLarge(CFG.itpt_path) logger.info('load itpt model') else: model = RoBERTaLarge(CFG.model_name) model.to("cuda") model.load_state_dict(torch.load(p)) model.eval() models.append(model) tokenizer = RobertaTokenizer.from_pretrained(CFG.model_name) df = pd.read_csv("inputs/train_folds.csv") df['aux_target'] = np.round(df['target'], 0).astype(np.int8) # 7 classes df = get_sentence_features(df, 'excerpt') TP = TextPreprocessor() preprocessed_text = TP.preprocess(df['excerpt']) pipeline = make_pipeline( TfidfVectorizer(max_features=100000), make_union( TruncatedSVD(n_components=50, random_state=42), make_pipeline( BM25Transformer(use_idf=True, k1=2.0, b=0.75), TruncatedSVD(n_components=50, random_state=42) ), n_jobs=1, ), ) z = pipeline.fit_transform(preprocessed_text) tfidf_df = pd.DataFrame(z, columns=[f'cleaned_excerpt_tf_idf_svd_{i}' for i in range(50*2)]) y_true = [] y_pred = [] for fold, model in enumerate(models): val_df = df[df.kfold == fold].reset_index(drop=True) dataset = CommonLitDataset(df=val_df, excerpt=val_df.excerpt.values, tokenizer=tokenizer, max_len=CFG.max_len, numerical_features=df[CFG.numerical_cols].values, tfidf=tfidf_df) data_loader = torch.utils.data.DataLoader( dataset, batch_size=CFG.valid_bs, num_workers=0, pin_memory=True, shuffle=False ) final_output = [] for b_idx, data in tqdm(enumerate(data_loader)): with torch.no_grad(): inputs = data['input_ids'].to(device) masks = data['attention_mask'].to(device) numerical_features = data['numerical_features'].to(device) tfidf = data['tfidf'].to(device) output, _ = model(inputs, masks, numerical_features, tfidf) output = output.detach().cpu().numpy().tolist() final_output.extend(output) logger.info(calc_loss(np.array(final_output), val_df['target'].values)) y_pred.append(np.array(final_output)) y_true.append(val_df['target'].values) torch.cuda.empty_cache() y_pred = np.concatenate(y_pred) y_true = np.concatenate(y_true) overall_cv_score = calc_loss(y_true, y_pred) logger.info(f'cv score {overall_cv_score}') return overall_cv_score import nltk import re import scipy as sp from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_is_fitted from sklearn.feature_extraction.text import _document_frequency from sklearn.pipeline import make_pipeline, make_union from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD class BM25Transformer(BaseEstimator, TransformerMixin): def __init__(self, use_idf=True, k1=2.0, b=0.75): self.use_idf = use_idf self.k1 = k1 self.b = b def fit(self, X): if not sp.sparse.issparse(X): X = sp.sparse.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) idf = np.log((n_samples - df + 0.5) / (df + 0.5)) self._idf_diag = sp.sparse.spdiags(idf, diags=0, m=n_features, n=n_features) doc_len = X.sum(axis=1) self._average_document_len = np.average(doc_len) return self def transform(self, X, copy=True): if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): X = sp.sparse.csr_matrix(X, copy=copy) else: X = sp.sparse.csr_matrix(X, dtype=np.float, copy=copy) n_samples, n_features = X.shape doc_len = X.sum(axis=1) sz = X.indptr[1:] - X.indptr[0:-1] rep = np.repeat(np.asarray(doc_len), sz) nom = self.k1 + 1 denom = X.data + self.k1 * (1 - self.b + self.b * rep / self._average_document_len) data = X.data * nom / denom X = sp.sparse.csr_matrix((data, X.indices, X.indptr), shape=X.shape) if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) X = X * self._idf_diag return X class TextPreprocessor(object): def __init__(self): self.puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '«', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', '(', ')', '~', '➡', '%', '⇒', '▶', '「', '➄', '➆', '➊', '➋', '➌', '➍', '⓪', '①', '②', '③', '④', '⑤', '⑰', '❶', '❷', '❸', '❹', '❺', '❻', '❼', '❽', '=', '※', '㈱', '、', '△', '℮', 'ⅼ', '‐', '」', '┝', '↳', '◉', '/', '+', '○', '【', '】', '✅', '☑', '➤', '゙', '↳', '〶', '☛', '「', '⁺', '『', '≫', ] self.numbers = ["0","1","2","3","4","5","6","7","8","9","0","1","2","3","4","5","6","7","8","9"] self.stopwords = nltk.corpus.stopwords.words('english') def _pre_preprocess(self, x): return str(x).lower() def rm_num(self, x, use_num=True): x = re.sub('[0-9]{5,}', '', x) x = re.sub('[0-9]{4}', '', x) x = re.sub('[0-9]{3}', '', x) x = re.sub('[0-9]{2}', '', x) for i in self.numbers: x = x.replace(str(i), '') return x def clean_puncts(self, x): for punct in self.puncts: x = x.replace(punct, '') return x def clean_stopwords(self, x): list_x = x.split() res = [] for w in list_x: if w not in self.stopwords: res.append(w) return ' '.join(res) def preprocess(self, sentence): sentence = sentence.fillna(" ") sentence = sentence.map(lambda x: self._pre_preprocess(x)) sentence = sentence.map(lambda x: self.clean_puncts(x)) sentence = sentence.map(lambda x: self.clean_stopwords(x)) sentence = sentence.map(lambda x: self.rm_num(x)) return sentence def get_sentence_features(train, col): train[col + '_num_chars'] = train[col].apply(len) train[col + '_num_capitals'] = train[col].apply(lambda x: sum(1 for c in x if c.isupper())) train[col + '_caps_vs_length'] = train.apply(lambda row: row[col + '_num_chars'] / (row[col + '_num_capitals']+1e-5), axis=1) train[col + '_num_exclamation_marks'] = train[col].apply(lambda x: x.count('!')) train[col + '_num_question_marks'] = train[col].apply(lambda x: x.count('?')) train[col + '_num_punctuation'] = train[col].apply(lambda x: sum(x.count(w) for w in '.,;:')) train[col + '_num_symbols'] = train[col].apply(lambda x: sum(x.count(w) for w in '*&$%')) train[col + '_num_words'] = train[col].apply(lambda x: len(x.split())) train[col + '_num_unique_words'] = train[col].apply(lambda comment: len(set(w for w in comment.split()))) train[col + '_words_vs_unique'] = train[col + '_num_unique_words'] / train[col + '_num_words'] return train OUTPUT_DIR = f'outputs/{CFG.EXP_ID}/' if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) warnings.filterwarnings("ignore") logger = init_logger(log_file=Path("logs") / f"{CFG.EXP_ID}.log") # environment set_seed(CFG.seed) device = get_device() # data train = pd.read_csv("inputs/train_folds.csv") train['aux_target'] = np.round(train['target'], 0).astype(np.int8) # 7 classes train = get_sentence_features(train, 'excerpt') TP = TextPreprocessor() preprocessed_text = TP.preprocess(train['excerpt']) pipeline = make_pipeline( TfidfVectorizer(max_features=100000), make_union( TruncatedSVD(n_components=50, random_state=42), make_pipeline( BM25Transformer(use_idf=True, k1=2.0, b=0.75), TruncatedSVD(n_components=50, random_state=42) ), n_jobs=1, ), ) z = pipeline.fit_transform(preprocessed_text) tfidf_df = pd.DataFrame(z, columns=[f'cleaned_excerpt_tf_idf_svd_{i}' for i in range(50*2)]) print(train.shape) train.head() # main loop for fold in range(5): if fold not in CFG.folds: continue logger.info("=" * 120) logger.info(f"Fold {fold} Training") logger.info("=" * 120) trn_df = train[train.kfold != fold].reset_index(drop=True) val_df = train[train.kfold == fold].reset_index(drop=True) if CFG.itpt_path: model = RoBERTaLarge(CFG.itpt_path) logger.info('load itpt model') else: model = RoBERTaLarge(CFG.model_name) tokenizer = RobertaTokenizer.from_pretrained(CFG.model_name) train_dataset = CommonLitDataset(df=trn_df, excerpt=trn_df.excerpt.values, tokenizer=tokenizer, max_len=CFG.max_len, numerical_features=trn_df[CFG.numerical_cols].values, tfidf=tfidf_df) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=CFG.train_bs, num_workers=0, pin_memory=True, shuffle=True ) valid_dataset = CommonLitDataset(df=val_df, excerpt=val_df.excerpt.values, tokenizer=tokenizer, max_len=CFG.max_len, numerical_features=val_df[CFG.numerical_cols].values, tfidf=tfidf_df) valid_dataloader = torch.utils.data.DataLoader( valid_dataset, batch_size=CFG.valid_bs, num_workers=0, pin_memory=True, shuffle=False ) param_optimizer = list(model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.001}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}, ] num_train_steps = int(len(trn_df) / CFG.train_bs * CFG.epochs) optimizer = transformers.AdamW(optimizer_parameters, lr=CFG.LR) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, eta_min=1e-5, T_max=CFG.epochs) model = model.to(device) min_loss = 999 best_score = np.inf for epoch in range(CFG.epochs): logger.info("Starting {} epoch...".format(epoch+1)) start_time = time.time() train_avg, train_loss, valid_avg, valid_loss, best_score = train_fn(epoch, model, train_dataloader, valid_dataloader, device, optimizer, scheduler, best_score) scheduler.step() elapsed = time.time() - start_time logger.info(f'Epoch {epoch+1} - avg_train_loss: {train_loss:.5f} avg_val_loss: {valid_loss:.5f} time: {elapsed:.0f}s') logger.info(f"Epoch {epoch+1} - train_rmse:{train_avg['RMSE']:0.5f} valid_rmse:{valid_avg['RMSE']:0.5f}") if valid_avg['RMSE'] < best_score: logger.info(f">>>>>>>> Model Improved From {best_score} ----> {valid_avg['RMSE']}") torch.save(model.state_dict(), OUTPUT_DIR+f'fold-{fold}.bin') best_score = valid_avg['RMSE'] if len(CFG.folds) == 1: pass else: model_paths = [ f'outputs/{CFG.EXP_ID}/fold-0.bin', f'outputs/{CFG.EXP_ID}/fold-1.bin', f'outputs/{CFG.EXP_ID}/fold-2.bin', f'outputs/{CFG.EXP_ID}/fold-3.bin', f'outputs/{CFG.EXP_ID}/fold-4.bin', ] overall_cv_score = calc_cv(model_paths) print()
782421c6cfd319b5bc114598b6cfb8469740d481
ad2704933de4502ae9de91e6d915f9dbe010b446
/kurosawa/chapter02/knock18.py
cd6c994ed7a88d77e47aa5bf1eadbd204aeae0e7
[]
no_license
tmu-nlp/100knock2017
266e68917d8d5a7f5d0c064f1bc2da5fa402a253
629bd1155d0fe78cd9302ae9a7cdf0922b778fe7
refs/heads/master
2021-01-19T17:36:53.328997
2017-07-24T07:09:54
2017-07-24T07:09:54
88,334,932
8
2
null
null
null
null
UTF-8
Python
false
false
249
py
with open('hightemp.txt','r') as f: col = [] for list1 in f: list1 = list1.split() col.append(list1) for i in sorted(col, key=lambda temp: temp[2]): print("%s\t%s\t%s\t%s" %(i[0],i[1],i[2],i[3])) # sort -k3 hightemp.txt
c14f97bc5c0477ff54423437c819c182fbe525dc
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc043/A/4875921.py
ff12ba55782657e025469a48435adbb6fbb4dce0
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
41
py
N = int(input()) print(N * (N + 1) // 2)
8337e6a7dc81a4c23be3efe3bae20a6cb4c729ed
84ef8aba277c90cc483ba6382044d0246049a5ea
/hgail/critic/critic.py
0727bd98106c57a053ce048c5c0e8d183ea06f06
[ "MIT" ]
permissive
intelligent-control-lab/Autoenv
1c8c7085ce8de394525d6bdf0da471a67fd84ec0
8d7697421ca14e317ea7de24b6acb694ecae5148
refs/heads/master
2023-04-06T12:21:31.998120
2021-03-06T05:12:12
2021-03-06T05:12:12
206,652,547
5
1
MIT
2023-03-15T23:16:19
2019-09-05T20:33:23
Python
UTF-8
Python
false
false
9,807
py
import numpy as np import tensorflow as tf import hgail.misc.utils import hgail.misc.tf_utils class Critic(object): """ Critic base class """ def __init__( self, network, dataset, obs_dim, act_dim, optimizer=tf.train.RMSPropOptimizer(0.0001), n_train_epochs=5, grad_norm_rescale=10000., grad_norm_clip=10000., summary_writer=None, debug_nan=False, verbose=0): self.network = network self.dataset = dataset self.obs_dim = obs_dim self.act_dim = act_dim self.optimizer = optimizer self.n_train_epochs = n_train_epochs self.grad_norm_rescale = grad_norm_rescale self.grad_norm_clip = grad_norm_clip self.summary_writer = summary_writer self.debug_nan = debug_nan self.verbose = verbose def critique(self, itr, paths): """ Compute and return rewards based on the (obs, action) pairs in paths where rewards are a list of numpy arrays of equal length as the corresponding path rewards Args: itr: iteration count paths: list of dictionaries """ # convert to batch and use network to critique obs = np.concatenate([d['observations'] for d in paths], axis=0) acts = np.concatenate([d['actions'] for d in paths], axis=0) # normalize if self.dataset.observation_normalizer: obs = self.dataset.observation_normalizer(obs) if self.dataset.action_normalizer: acts = self.dataset.action_normalizer(acts) # compute rewards rewards = self.network.forward(obs, acts, deterministic=True) if np.any(np.isnan(rewards)) and self.debug_nan: import ipdb ipdb.set_trace() # output as a list of numpy arrays, each of len equal to the rewards of # the corresponding trajectory path_lengths = [len(d['rewards']) for d in paths] path_rewards = hgail.misc.utils.batch_to_path_rewards(rewards, path_lengths) self._log_critique(itr, paths, rewards) return path_rewards def _log_critique(self, itr, paths, critic_rewards): """ Log information about the critique and paths Args: itr: algorithm batch iteration paths: list of dictionaries containing trajectory information critic_rewards: critic rewards """ # only write summaries if have a summary writer if self.summary_writer: env_rewards = np.concatenate([d['rewards'] for d in paths], axis=0) summary = tf.Summary(value=[ tf.Summary.Value(tag="critic/mean_critique_reward", simple_value=np.mean(critic_rewards)), tf.Summary.Value(tag="critic/max_critique_reward", simple_value=np.max(critic_rewards)), tf.Summary.Value(tag="critic/std_dev_critique_reward", simple_value=np.std(critic_rewards)), tf.Summary.Value(tag="critic/mean_env_reward", simple_value=np.mean(env_rewards)), tf.Summary.Value(tag="critic/mean_path_len", simple_value=len(env_rewards) / float(len(paths))), ]) self.summary_writer.add_summary(summary, itr) self.summary_writer.flush() def train(self, itr, samples_data): """ Train the critic using real and sampled data Args: itr: iteration count samples_data: dictionary containing generated data """ for train_itr in range(self.n_train_epochs): for batch in self.dataset.batches(samples_data, store=train_itr == 0): self._train_batch(batch) def _train_batch(self, batch): """ Runs a single training batch Args: batch: dictionary with values needed for training network class member """ raise NotImplementedError() def _build_summaries( self, loss, real_loss, gen_loss, gradients, clipped_gradients, gradient_penalty=None, batch_size=None): summaries = [] summaries += [tf.summary.scalar('critic/loss', loss)] summaries += [tf.summary.scalar('critic/w_dist', -(real_loss + gen_loss))] summaries += [tf.summary.scalar('critic/real_loss', real_loss)] summaries += [tf.summary.scalar('critic/gen_loss', gen_loss)] summaries += [tf.summary.scalar('critic/global_grad_norm', tf.global_norm(gradients))] summaries += [tf.summary.scalar('critic/global_clipped_grad_norm', tf.global_norm(clipped_gradients))] summaries += [tf.summary.scalar('critic/global_var_norm', tf.global_norm(self.network.var_list))] if gradient_penalty is not None: summaries += [tf.summary.scalar('critic/gradient_penalty', gradient_penalty)] if batch_size is not None: summaries += [tf.summary.scalar('critic/batch_size', batch_size)] return summaries def _build_input_summaries(self, rx, ra, gx, ga): summaries = [] summaries += [tf.summary.image('critic/real_obs', tf.reshape(rx[0], (-1, self.obs_dim, 1, 1)))] summaries += [tf.summary.image('critic/real_act', tf.reshape(ra[0], (-1, self.act_dim, 1, 1)))] summaries += [tf.summary.image('critic/gen_obs', tf.reshape(gx[0], (-1, self.obs_dim, 1, 1)))] summaries += [tf.summary.image('critic/gen_act', tf.reshape(ga[0], (-1, self.act_dim, 1, 1)))] return summaries class WassersteinCritic(Critic): def __init__( self, gradient_penalty=10., **kwargs): super(WassersteinCritic, self).__init__(**kwargs) self.gradient_penalty = gradient_penalty self._build_placeholders() self._build_model() def _build_placeholders(self): # placeholders for input self.rx = tf.placeholder(tf.float32, shape=(None, self.obs_dim), name='rx') self.ra = tf.placeholder(tf.float32, shape=(None, self.act_dim), name='ra') self.gx = tf.placeholder(tf.float32, shape=(None, self.obs_dim), name='gx') self.ga = tf.placeholder(tf.float32, shape=(None, self.act_dim), name='ga') self.eps = tf.placeholder(tf.float32, shape=(None, 1), name='eps') def _build_model(self): # unpack placeholders rx, ra, gx, ga, eps = self.rx, self.ra, self.gx, self.ga, self.eps # gradient penalty self.xhat = xhat = eps * rx + (1 - eps) * gx self.ahat = ahat = eps * ra + (1 - eps) * ga xhat_gradients, ahat_gradients = tf.gradients(self.network(xhat, ahat), [xhat, ahat]) self.hat_gradients = hat_gradients = tf.concat([xhat_gradients, ahat_gradients], axis=1) slopes = tf.sqrt(tf.reduce_sum(hat_gradients ** 2, reduction_indices=[1]) + 1e-8) self.gp_loss = gp_loss = self.gradient_penalty * tf.reduce_mean((slopes - 1) ** 2) # loss and train op self.real_loss = real_loss = -tf.reduce_mean(self.network(rx, ra)) self.gen_loss = gen_loss = tf.reduce_mean(self.network(gx, ga)) self.loss = loss = real_loss + gen_loss + gp_loss if self.verbose >= 2: loss = tf.Print(loss, [real_loss, gen_loss, gp_loss, loss], message='real, gen, gp, total loss: ') self.gradients = gradients = tf.gradients(loss, self.network.var_list) clipped_gradients = hgail.misc.tf_utils.clip_gradients( gradients, self.grad_norm_rescale, self.grad_norm_clip) self.global_step = tf.Variable(0, name='critic/global_step', trainable=False) self.train_op = self.optimizer.apply_gradients([(g,v) for (g,v) in zip(clipped_gradients, self.network.var_list)], global_step=self.global_step) # summaries summaries = self._build_summaries(loss, real_loss, gen_loss, gradients, clipped_gradients, gp_loss) summaries += self._build_input_summaries(rx, ra, gx, ga) self.summary_op = tf.summary.merge(summaries) # debug_nan self.gp_gradients = tf.gradients(self.gp_loss, self.network.var_list)[:-1] def _train_batch(self, batch): feed_dict = { self.rx: batch['rx'], self.ra: batch['ra'], self.gx: batch['gx'], self.ga: batch['ga'], self.eps: np.random.uniform(0, 1, len(batch['rx'])).reshape(-1, 1) } outputs_list = [self.train_op, self.summary_op, self.global_step] if self.debug_nan: outputs_list += [ self.gradients, self.xhat, self.ahat, self.hat_gradients, self.gp_gradients, self.gp_loss, self.real_loss, self.gen_loss ] session = tf.get_default_session() fetched = session.run(outputs_list, feed_dict=feed_dict) summary, step = fetched[1], fetched[2] if self.debug_nan: grads, xhat, ahat, hat_grads, gp_grads, gp_loss, real_loss, gen_loss = fetched[3:] grads_nan = np.any([np.any(np.isnan(g)) for g in grads]) if grads_nan or np.isnan(gp_loss) or np.isnan(real_loss) or np.isnan(gen_loss): import ipdb ipdb.set_trace() if self.summary_writer: self.summary_writer.add_summary(tf.Summary.FromString(summary), step) self.summary_writer.flush()
859c6751bcaac2d3846b424c0d80a24f60795267
81f2825e5bc73bcdaadb00570d8a8607974af3af
/scratch_42.py
efa6e3f7b33d10a97f8b038a9064310cf9de8fbb
[]
no_license
PrakharBansal24/Assignment-1
26fc316fe4bd8d2482ef34f147ba241fc2b20d80
927239e57309ca3ca794631eb61faf16784b9bf2
refs/heads/master
2022-11-23T20:28:30.628768
2020-07-27T05:39:30
2020-07-27T05:39:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
530
py
def printFrequency(strr): M = {} word = "" for i in range(len(strr)): if (strr[i] == ' '): if (word not in M): M[word] = 1 word = "" else: M[word] += 1 word = "" else: word += strr[i] if (word not in M): M[word] = 1 else: M[word] += 1 for it in M: print(it, "-", M[it]) strr = "Apple Apple boy boy boy boy token token frequency" printFrequency(strr)
996906dd39fb3529cc39d2ec310d939fa819d3ed
e18222344f78f65e5a52480fa24b4720a1d4e36b
/tests/test_appsync.py
8281801fa43e093c266aa15a27d2af81b3a9f707
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
vllrsatish/troposphere
177c34fac39f668eda8c2baaed19ae1a6a05964b
5ec03f329f2a91d3bb970ef0df7cf6232dccde16
refs/heads/master
2023-03-24T23:18:40.304921
2021-03-21T12:06:08
2021-03-21T16:31:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,673
py
import unittest from troposphere.appsync import Resolver, PipelineConfig class TestAppsyncResolver(unittest.TestCase): def test_resolver_kind_bad_value(self): with self.assertRaisesRegex(ValueError, 'Kind must be one of'): Resolver( 'MutationField', DataSourceName='SomeDatasource', FieldName='Field', TypeName='Mutation', ApiId='some_api_id', Kind='SOME_KIND', PipelineConfig=PipelineConfig( Functions=['FunctionId1', 'FunctionId'] ), RequestMappingTemplateS3Location=('s3://bucket/key.req.vtl'), ResponseMappingTemplateS3Location=('s3://bucket/key.res.vtl') ) def test_resolver(self): Resolver( 'MutationField', DataSourceName='SomeDatasource', FieldName='Field', TypeName='Mutation', ApiId='some_api_id', Kind='PIPELINE', PipelineConfig=PipelineConfig( Functions=['FunctionId1', 'FunctionId'] ), RequestMappingTemplateS3Location=('s3://bucket/key.req.vtl'), ResponseMappingTemplateS3Location=('s3://bucket/key.res.vtl') ) Resolver( 'MutationField', DataSourceName='SomeDatasource', FieldName='Field', TypeName='Mutation', ApiId='some_api_id', Kind='UNIT', RequestMappingTemplateS3Location=('s3://bucket/key.req.vtl'), ResponseMappingTemplateS3Location=('s3://bucket/key.res.vtl') )
675e595f5196864d3257979b47697dfddbd5e4e4
9e1ee20e89229869b42cd5deceeb24ce7790b721
/aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/PreCheckCreateOrderForTempUpgradeRequest.py
9f2b126d63cd827d8382f32125666a242dfb382c
[ "Apache-2.0" ]
permissive
guwenbo/aliyun-openapi-python-sdk
7503ed8f50897ea1ad7bdb390e140a2e570e30b8
ef4f34e7e703ef2ddfdcb1f57573b9b14be77e0d
refs/heads/master
2020-09-23T04:44:06.134661
2019-12-02T12:52:51
2019-12-02T12:52:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,079
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkrds.endpoint import endpoint_data class PreCheckCreateOrderForTempUpgradeRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Rds', '2014-08-15', 'PreCheckCreateOrderForTempUpgrade','rds') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_DBInstanceStorage(self): return self.get_query_params().get('DBInstanceStorage') def set_DBInstanceStorage(self,DBInstanceStorage): self.add_query_param('DBInstanceStorage',DBInstanceStorage) def get_NodeType(self): return self.get_query_params().get('NodeType') def set_NodeType(self,NodeType): self.add_query_param('NodeType',NodeType) def get_ClientToken(self): return self.get_query_params().get('ClientToken') def set_ClientToken(self,ClientToken): self.add_query_param('ClientToken',ClientToken) def get_EffectiveTime(self): return self.get_query_params().get('EffectiveTime') def set_EffectiveTime(self,EffectiveTime): self.add_query_param('EffectiveTime',EffectiveTime) def get_DBInstanceId(self): return self.get_query_params().get('DBInstanceId') def set_DBInstanceId(self,DBInstanceId): self.add_query_param('DBInstanceId',DBInstanceId) def get_DBInstanceStorageType(self): return self.get_query_params().get('DBInstanceStorageType') def set_DBInstanceStorageType(self,DBInstanceStorageType): self.add_query_param('DBInstanceStorageType',DBInstanceStorageType) def get_BusinessInfo(self): return self.get_query_params().get('BusinessInfo') def set_BusinessInfo(self,BusinessInfo): self.add_query_param('BusinessInfo',BusinessInfo) def get_AutoPay(self): return self.get_query_params().get('AutoPay') def set_AutoPay(self,AutoPay): self.add_query_param('AutoPay',AutoPay) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_Resource(self): return self.get_query_params().get('Resource') def set_Resource(self,Resource): self.add_query_param('Resource',Resource) def get_CommodityCode(self): return self.get_query_params().get('CommodityCode') def set_CommodityCode(self,CommodityCode): self.add_query_param('CommodityCode',CommodityCode) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_UsedTime(self): return self.get_query_params().get('UsedTime') def set_UsedTime(self,UsedTime): self.add_query_param('UsedTime',UsedTime) def get_DBInstanceClass(self): return self.get_query_params().get('DBInstanceClass') def set_DBInstanceClass(self,DBInstanceClass): self.add_query_param('DBInstanceClass',DBInstanceClass)
e2ec73ce9a92cc11f091aee17aacaa3ceb1eb9c9
7b79deca597eee678b521b808674948fc333fd40
/Nanodet/client2.py
c5e1ccef29b6d952475a220940624ade856836a8
[]
no_license
GitZzw/IERCAR
bfd4481ce1d1994a36f0587876c970b60f08d1c3
cd3115b89f4b69a9adb2c26e412c0659bfa68aa6
refs/heads/master
2023-02-19T03:09:16.040070
2021-01-23T13:44:39
2021-01-23T13:44:39
332,219,359
0
1
null
null
null
null
UTF-8
Python
false
false
2,537
py
#!/usr/bin/python # coding: utf-8 import math import socket import rospy import threading import time from std_msgs.msg import Float32 from geometry_msgs.msg import PoseStamped global target_corner_msg global t2 global flag def callback(data): global t2 global flag global target_corner_msg target_corner_msg = PoseStamped() target_corner_msg.header.stamp = rospy.Time.now() target_corner_msg.pose.position.y = data.data if(flag == True): flag = False t2 = threading.Thread(target=tcpip) t2.start() def client(): global flag flag = True rospy.init_node('client', anonymous=True) rospy.Subscriber("trans", Float32, callback) rospy.spin() def tcpip(): yolo_target_pub = rospy.Publisher('yolo_target_corner', PoseStamped, queue_size=1) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 连接服务端 print ('connect state: ', s.connect_ex(('127.0.0.1', 8000))) while True: receive_msg = s.recv(39).decode() #print(len(receive_msg)) msg = receive_msg.split(',') if msg[0] == '1': """ QuaternionStamped.x, y, z, w = xmin, ymin, xmax, ymax, x = time, y= distance """ cx = 317.657 cy = 234.635 f = 610.5250244140625 xmin = float(msg[1]) ymin = float(msg[2]) xmax = float(msg[3]) ymax = float(msg[4]) px = (xmin + xmax)/2 deltax = px-cx py = (ymin + ymax)/2 deltay = py-cy dis = target_corner_msg.pose.position.y disz = dis/math.sqrt((abs(deltax)/f)*(abs(deltax)/f)+(abs(deltay)/f)*(abs(deltay)/f)+1) disx = disz*deltax/f disy = disz*deltay/f target_corner_msg.pose.orientation.x = disx*100 target_corner_msg.pose.orientation.y = disy*100 target_corner_msg.pose.orientation.z = disz*100 target_corner_msg.pose.position.x = float(msg[5]) #time #print(time.time()-target_corner_msg.pose.position.x) # else: # # print (" target not found ... ") # target_corner_msg.pose.orientation.x = 0 # target_corner_msg.pose.orientation.y = 0 # target_corner_msg.pose.orientation.z = 0 # target_corner_msg.pose.orientation.w = 0 # target_corner_msg.pose.position.x = -1 yolo_target_pub.publish(target_corner_msg) if __name__ == "__main__": client()
c4bc6a5ffd35c520978dd7344ea1af4675df3b58
26d6c34df00a229dc85ad7326de6cb5672be7acc
/msgraph-cli-extensions/beta/reports_beta/azext_reports_beta/vendored_sdks/reports/operations/_audit_logs_operations.py
e24f3be10c3092488b6cb30b91551a7223035bae
[ "MIT" ]
permissive
BrianTJackett/msgraph-cli
87f92471f68f85e44872939d876b9ff5f0ae6b2c
78a4b1c73a23b85c070fed2fbca93758733f620e
refs/heads/main
2023-06-23T21:31:53.306655
2021-07-09T07:58:56
2021-07-09T07:58:56
386,993,555
0
0
NOASSERTION
2021-07-17T16:56:05
2021-07-17T16:56:05
null
UTF-8
Python
false
false
79,966
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class AuditLogsOperations(object): """AuditLogsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~reports.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_directory_audits( self, orderby=None, # type: Optional[List[Union[str, "models.Get5ItemsItem"]]] select=None, # type: Optional[List[Union[str, "models.Get6ItemsItem"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> Iterable["models.CollectionOfDirectoryAudit"] """Get directoryAudits from auditLogs. Get directoryAudits from auditLogs. :param orderby: Order items by property values. :type orderby: list[str or ~reports.models.Get5ItemsItem] :param select: Select properties to be returned. :type select: list[str or ~reports.models.Get6ItemsItem] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfDirectoryAudit or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~reports.models.CollectionOfDirectoryAudit] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfDirectoryAudit"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_directory_audits.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfDirectoryAudit', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_directory_audits.metadata = {'url': '/auditLogs/directoryAudits'} # type: ignore def create_directory_audits( self, body, # type: "models.MicrosoftGraphDirectoryAudit" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphDirectoryAudit" """Create new navigation property to directoryAudits for auditLogs. Create new navigation property to directoryAudits for auditLogs. :param body: New navigation property. :type body: ~reports.models.MicrosoftGraphDirectoryAudit :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphDirectoryAudit, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphDirectoryAudit :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphDirectoryAudit"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_directory_audits.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphDirectoryAudit') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphDirectoryAudit', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_directory_audits.metadata = {'url': '/auditLogs/directoryAudits'} # type: ignore def get_directory_audits( self, directory_audit_id, # type: str select=None, # type: Optional[List[Union[str, "models.Enum19"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphDirectoryAudit" """Get directoryAudits from auditLogs. Get directoryAudits from auditLogs. :param directory_audit_id: key: id of directoryAudit. :type directory_audit_id: str :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum19] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphDirectoryAudit, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphDirectoryAudit :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphDirectoryAudit"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_directory_audits.metadata['url'] # type: ignore path_format_arguments = { 'directoryAudit-id': self._serialize.url("directory_audit_id", directory_audit_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphDirectoryAudit', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_directory_audits.metadata = {'url': '/auditLogs/directoryAudits/{directoryAudit-id}'} # type: ignore def update_directory_audits( self, directory_audit_id, # type: str body, # type: "models.MicrosoftGraphDirectoryAudit" **kwargs # type: Any ): # type: (...) -> None """Update the navigation property directoryAudits in auditLogs. Update the navigation property directoryAudits in auditLogs. :param directory_audit_id: key: id of directoryAudit. :type directory_audit_id: str :param body: New navigation property values. :type body: ~reports.models.MicrosoftGraphDirectoryAudit :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_directory_audits.metadata['url'] # type: ignore path_format_arguments = { 'directoryAudit-id': self._serialize.url("directory_audit_id", directory_audit_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphDirectoryAudit') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_directory_audits.metadata = {'url': '/auditLogs/directoryAudits/{directoryAudit-id}'} # type: ignore def delete_directory_audits( self, directory_audit_id, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Delete navigation property directoryAudits for auditLogs. Delete navigation property directoryAudits for auditLogs. :param directory_audit_id: key: id of directoryAudit. :type directory_audit_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_directory_audits.metadata['url'] # type: ignore path_format_arguments = { 'directoryAudit-id': self._serialize.url("directory_audit_id", directory_audit_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_directory_audits.metadata = {'url': '/auditLogs/directoryAudits/{directoryAudit-id}'} # type: ignore def list_directory_provisioning( self, orderby=None, # type: Optional[List[Union[str, "models.Enum20"]]] select=None, # type: Optional[List[Union[str, "models.Enum21"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> Iterable["models.CollectionOfProvisioningObjectSummary"] """Get directoryProvisioning from auditLogs. Get directoryProvisioning from auditLogs. :param orderby: Order items by property values. :type orderby: list[str or ~reports.models.Enum20] :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum21] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfProvisioningObjectSummary or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~reports.models.CollectionOfProvisioningObjectSummary] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfProvisioningObjectSummary"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_directory_provisioning.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfProvisioningObjectSummary', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_directory_provisioning.metadata = {'url': '/auditLogs/directoryProvisioning'} # type: ignore def create_directory_provisioning( self, body, # type: "models.MicrosoftGraphProvisioningObjectSummary" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphProvisioningObjectSummary" """Create new navigation property to directoryProvisioning for auditLogs. Create new navigation property to directoryProvisioning for auditLogs. :param body: New navigation property. :type body: ~reports.models.MicrosoftGraphProvisioningObjectSummary :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphProvisioningObjectSummary, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphProvisioningObjectSummary :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphProvisioningObjectSummary"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_directory_provisioning.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphProvisioningObjectSummary') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphProvisioningObjectSummary', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_directory_provisioning.metadata = {'url': '/auditLogs/directoryProvisioning'} # type: ignore def get_directory_provisioning( self, provisioning_object_summary_id, # type: str select=None, # type: Optional[List[Union[str, "models.Enum22"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphProvisioningObjectSummary" """Get directoryProvisioning from auditLogs. Get directoryProvisioning from auditLogs. :param provisioning_object_summary_id: key: id of provisioningObjectSummary. :type provisioning_object_summary_id: str :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum22] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphProvisioningObjectSummary, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphProvisioningObjectSummary :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphProvisioningObjectSummary"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_directory_provisioning.metadata['url'] # type: ignore path_format_arguments = { 'provisioningObjectSummary-id': self._serialize.url("provisioning_object_summary_id", provisioning_object_summary_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphProvisioningObjectSummary', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_directory_provisioning.metadata = {'url': '/auditLogs/directoryProvisioning/{provisioningObjectSummary-id}'} # type: ignore def update_directory_provisioning( self, provisioning_object_summary_id, # type: str body, # type: "models.MicrosoftGraphProvisioningObjectSummary" **kwargs # type: Any ): # type: (...) -> None """Update the navigation property directoryProvisioning in auditLogs. Update the navigation property directoryProvisioning in auditLogs. :param provisioning_object_summary_id: key: id of provisioningObjectSummary. :type provisioning_object_summary_id: str :param body: New navigation property values. :type body: ~reports.models.MicrosoftGraphProvisioningObjectSummary :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_directory_provisioning.metadata['url'] # type: ignore path_format_arguments = { 'provisioningObjectSummary-id': self._serialize.url("provisioning_object_summary_id", provisioning_object_summary_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphProvisioningObjectSummary') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_directory_provisioning.metadata = {'url': '/auditLogs/directoryProvisioning/{provisioningObjectSummary-id}'} # type: ignore def delete_directory_provisioning( self, provisioning_object_summary_id, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Delete navigation property directoryProvisioning for auditLogs. Delete navigation property directoryProvisioning for auditLogs. :param provisioning_object_summary_id: key: id of provisioningObjectSummary. :type provisioning_object_summary_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_directory_provisioning.metadata['url'] # type: ignore path_format_arguments = { 'provisioningObjectSummary-id': self._serialize.url("provisioning_object_summary_id", provisioning_object_summary_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_directory_provisioning.metadata = {'url': '/auditLogs/directoryProvisioning/{provisioningObjectSummary-id}'} # type: ignore def list_provisioning( self, orderby=None, # type: Optional[List[Union[str, "models.Enum23"]]] select=None, # type: Optional[List[Union[str, "models.Enum24"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> Iterable["models.CollectionOfProvisioningObjectSummary0"] """Get provisioning from auditLogs. Get provisioning from auditLogs. :param orderby: Order items by property values. :type orderby: list[str or ~reports.models.Enum23] :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum24] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfProvisioningObjectSummary0 or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~reports.models.CollectionOfProvisioningObjectSummary0] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfProvisioningObjectSummary0"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_provisioning.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfProvisioningObjectSummary0', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_provisioning.metadata = {'url': '/auditLogs/provisioning'} # type: ignore def create_provisioning( self, body, # type: "models.MicrosoftGraphProvisioningObjectSummary" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphProvisioningObjectSummary" """Create new navigation property to provisioning for auditLogs. Create new navigation property to provisioning for auditLogs. :param body: New navigation property. :type body: ~reports.models.MicrosoftGraphProvisioningObjectSummary :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphProvisioningObjectSummary, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphProvisioningObjectSummary :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphProvisioningObjectSummary"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_provisioning.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphProvisioningObjectSummary') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphProvisioningObjectSummary', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_provisioning.metadata = {'url': '/auditLogs/provisioning'} # type: ignore def get_provisioning( self, provisioning_object_summary_id, # type: str select=None, # type: Optional[List[Union[str, "models.Enum25"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphProvisioningObjectSummary" """Get provisioning from auditLogs. Get provisioning from auditLogs. :param provisioning_object_summary_id: key: id of provisioningObjectSummary. :type provisioning_object_summary_id: str :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum25] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphProvisioningObjectSummary, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphProvisioningObjectSummary :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphProvisioningObjectSummary"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_provisioning.metadata['url'] # type: ignore path_format_arguments = { 'provisioningObjectSummary-id': self._serialize.url("provisioning_object_summary_id", provisioning_object_summary_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphProvisioningObjectSummary', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_provisioning.metadata = {'url': '/auditLogs/provisioning/{provisioningObjectSummary-id}'} # type: ignore def update_provisioning( self, provisioning_object_summary_id, # type: str body, # type: "models.MicrosoftGraphProvisioningObjectSummary" **kwargs # type: Any ): # type: (...) -> None """Update the navigation property provisioning in auditLogs. Update the navigation property provisioning in auditLogs. :param provisioning_object_summary_id: key: id of provisioningObjectSummary. :type provisioning_object_summary_id: str :param body: New navigation property values. :type body: ~reports.models.MicrosoftGraphProvisioningObjectSummary :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_provisioning.metadata['url'] # type: ignore path_format_arguments = { 'provisioningObjectSummary-id': self._serialize.url("provisioning_object_summary_id", provisioning_object_summary_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphProvisioningObjectSummary') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_provisioning.metadata = {'url': '/auditLogs/provisioning/{provisioningObjectSummary-id}'} # type: ignore def delete_provisioning( self, provisioning_object_summary_id, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Delete navigation property provisioning for auditLogs. Delete navigation property provisioning for auditLogs. :param provisioning_object_summary_id: key: id of provisioningObjectSummary. :type provisioning_object_summary_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_provisioning.metadata['url'] # type: ignore path_format_arguments = { 'provisioningObjectSummary-id': self._serialize.url("provisioning_object_summary_id", provisioning_object_summary_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_provisioning.metadata = {'url': '/auditLogs/provisioning/{provisioningObjectSummary-id}'} # type: ignore def list_restricted_sign_ins( self, orderby=None, # type: Optional[List[Union[str, "models.Enum26"]]] select=None, # type: Optional[List[Union[str, "models.Enum27"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> Iterable["models.CollectionOfRestrictedSignIn"] """Get restrictedSignIns from auditLogs. Get restrictedSignIns from auditLogs. :param orderby: Order items by property values. :type orderby: list[str or ~reports.models.Enum26] :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum27] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfRestrictedSignIn or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~reports.models.CollectionOfRestrictedSignIn] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfRestrictedSignIn"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_restricted_sign_ins.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfRestrictedSignIn', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_restricted_sign_ins.metadata = {'url': '/auditLogs/restrictedSignIns'} # type: ignore def create_restricted_sign_ins( self, body, # type: "models.MicrosoftGraphRestrictedSignIn" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphRestrictedSignIn" """Create new navigation property to restrictedSignIns for auditLogs. Create new navigation property to restrictedSignIns for auditLogs. :param body: New navigation property. :type body: ~reports.models.MicrosoftGraphRestrictedSignIn :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphRestrictedSignIn, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphRestrictedSignIn :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphRestrictedSignIn"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_restricted_sign_ins.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphRestrictedSignIn') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphRestrictedSignIn', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_restricted_sign_ins.metadata = {'url': '/auditLogs/restrictedSignIns'} # type: ignore def get_restricted_sign_ins( self, restricted_sign_in_id, # type: str select=None, # type: Optional[List[Union[str, "models.Enum28"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphRestrictedSignIn" """Get restrictedSignIns from auditLogs. Get restrictedSignIns from auditLogs. :param restricted_sign_in_id: key: id of restrictedSignIn. :type restricted_sign_in_id: str :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum28] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphRestrictedSignIn, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphRestrictedSignIn :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphRestrictedSignIn"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_restricted_sign_ins.metadata['url'] # type: ignore path_format_arguments = { 'restrictedSignIn-id': self._serialize.url("restricted_sign_in_id", restricted_sign_in_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphRestrictedSignIn', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_restricted_sign_ins.metadata = {'url': '/auditLogs/restrictedSignIns/{restrictedSignIn-id}'} # type: ignore def update_restricted_sign_ins( self, restricted_sign_in_id, # type: str body, # type: "models.MicrosoftGraphRestrictedSignIn" **kwargs # type: Any ): # type: (...) -> None """Update the navigation property restrictedSignIns in auditLogs. Update the navigation property restrictedSignIns in auditLogs. :param restricted_sign_in_id: key: id of restrictedSignIn. :type restricted_sign_in_id: str :param body: New navigation property values. :type body: ~reports.models.MicrosoftGraphRestrictedSignIn :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_restricted_sign_ins.metadata['url'] # type: ignore path_format_arguments = { 'restrictedSignIn-id': self._serialize.url("restricted_sign_in_id", restricted_sign_in_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphRestrictedSignIn') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_restricted_sign_ins.metadata = {'url': '/auditLogs/restrictedSignIns/{restrictedSignIn-id}'} # type: ignore def delete_restricted_sign_ins( self, restricted_sign_in_id, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Delete navigation property restrictedSignIns for auditLogs. Delete navigation property restrictedSignIns for auditLogs. :param restricted_sign_in_id: key: id of restrictedSignIn. :type restricted_sign_in_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_restricted_sign_ins.metadata['url'] # type: ignore path_format_arguments = { 'restrictedSignIn-id': self._serialize.url("restricted_sign_in_id", restricted_sign_in_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_restricted_sign_ins.metadata = {'url': '/auditLogs/restrictedSignIns/{restrictedSignIn-id}'} # type: ignore def list_sign_ins( self, orderby=None, # type: Optional[List[Union[str, "models.Enum29"]]] select=None, # type: Optional[List[Union[str, "models.Enum30"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> Iterable["models.CollectionOfSignIn"] """Get signIns from auditLogs. Get signIns from auditLogs. :param orderby: Order items by property values. :type orderby: list[str or ~reports.models.Enum29] :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum30] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfSignIn or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~reports.models.CollectionOfSignIn] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfSignIn"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_sign_ins.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfSignIn', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_sign_ins.metadata = {'url': '/auditLogs/signIns'} # type: ignore def create_sign_ins( self, body, # type: "models.MicrosoftGraphSignIn" **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphSignIn" """Create new navigation property to signIns for auditLogs. Create new navigation property to signIns for auditLogs. :param body: New navigation property. :type body: ~reports.models.MicrosoftGraphSignIn :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphSignIn, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphSignIn :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphSignIn"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_sign_ins.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphSignIn') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphSignIn', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_sign_ins.metadata = {'url': '/auditLogs/signIns'} # type: ignore def get_sign_ins( self, sign_in_id, # type: str select=None, # type: Optional[List[Union[str, "models.Enum31"]]] expand=None, # type: Optional[List[str]] **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphSignIn" """Get signIns from auditLogs. Get signIns from auditLogs. :param sign_in_id: key: id of signIn. :type sign_in_id: str :param select: Select properties to be returned. :type select: list[str or ~reports.models.Enum31] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphSignIn, or the result of cls(response) :rtype: ~reports.models.MicrosoftGraphSignIn :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphSignIn"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_sign_ins.metadata['url'] # type: ignore path_format_arguments = { 'signIn-id': self._serialize.url("sign_in_id", sign_in_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphSignIn', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_sign_ins.metadata = {'url': '/auditLogs/signIns/{signIn-id}'} # type: ignore def update_sign_ins( self, sign_in_id, # type: str body, # type: "models.MicrosoftGraphSignIn" **kwargs # type: Any ): # type: (...) -> None """Update the navigation property signIns in auditLogs. Update the navigation property signIns in auditLogs. :param sign_in_id: key: id of signIn. :type sign_in_id: str :param body: New navigation property values. :type body: ~reports.models.MicrosoftGraphSignIn :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_sign_ins.metadata['url'] # type: ignore path_format_arguments = { 'signIn-id': self._serialize.url("sign_in_id", sign_in_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphSignIn') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_sign_ins.metadata = {'url': '/auditLogs/signIns/{signIn-id}'} # type: ignore def delete_sign_ins( self, sign_in_id, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Delete navigation property signIns for auditLogs. Delete navigation property signIns for auditLogs. :param sign_in_id: key: id of signIn. :type sign_in_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_sign_ins.metadata['url'] # type: ignore path_format_arguments = { 'signIn-id': self._serialize.url("sign_in_id", sign_in_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_sign_ins.metadata = {'url': '/auditLogs/signIns/{signIn-id}'} # type: ignore
7acee8deb1bf7f07bb324573b18412c4e2c80892
cb8c62659f9509bbc01237a09cf8730b57f4a84f
/Webopedia/__init__.py
e27402d16322110945ef906d20fd6ce678573c79
[]
no_license
stepnem/supybot-plugins
5bd795319036ab21cd81b00a23e0c1f712876d3e
6838f7ae22ad1905272cf7e003fb803e637c87d8
refs/heads/master
2021-01-01T18:49:44.478383
2012-01-05T04:14:24
2012-01-05T04:14:24
281,407
8
4
null
2016-11-01T20:15:17
2009-08-18T21:55:56
Python
UTF-8
Python
false
false
1,965
py
### # Copyright (c) 2004, Kevin Murphy # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### """ Provides commands and snarfers for the webopedia.com technical term dictionary site. """ import supybot __author__ = supybot.authors.skorobeus # This is a dictionary mapping supybot.Author instances to lists of # contributions. __contributors__ = {} import config import plugin reload(plugin) # In case we're being reloaded. Class = plugin.Class configure = config.configure
b7080a3388fa6748b93fdbe2e00ad522869923bb
5ec48e90f711c9514a6d2ee36dbb46bc1ba71b74
/accounts/migrations/0005_alter_user_zipcode.py
ce51f2e740d31fc46683c04ef22c1913cba2642e
[]
no_license
hanieh-mav/hanieh_shop
1ca5042fefb970459d9f48fb716a95fec6a530bb
b7cf253e11b6c167e78b245f253a8d057f435026
refs/heads/main
2023-06-10T16:37:26.385048
2021-07-07T14:19:58
2021-07-07T14:19:58
372,892,835
2
0
null
2021-07-07T14:19:59
2021-06-01T16:19:48
CSS
UTF-8
Python
false
false
437
py
# Generated by Django 3.2.4 on 2021-06-26 08:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0004_remove_user_shahr'), ] operations = [ migrations.AlterField( model_name='user', name='zipcode', field=models.CharField(blank=True, max_length=10, null=True, verbose_name='کدپستی'), ), ]
feca44382f1c83fcd137aacf6ceaefb3ddc82150
9795e787a54d15f2f249a17b616fec3df67d4559
/exception/exceptions.py
f737f34a31e603fd34902bda5585322969e15d34
[]
no_license
gebbz03/PythonProject
377b6ccf5eafa37dd157012ce499138370ba882f
c12f939cf194a4c541ee77e1f614ba9867ef7090
refs/heads/master
2020-04-02T22:16:11.082863
2018-10-30T05:49:22
2018-10-30T05:49:22
154,827,528
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
#try and catch block def div(x,y): try: result=x/y except ZeroDivisionError: print("Cannot divide by zero") return None except Exception as e: print("Error occured",e) return None return result print(div(4,2)) print(div(4,0)) print(div('1','2'))
41fdbe9ba825572f3d44dfbc1f9d27d1ef7a631d
c1bd12405d244c5924a4b069286cd9baf2c63895
/azure-mgmt-network/azure/mgmt/network/v2017_10_01/models/verification_ip_flow_parameters_py3.py
dd9ba7b70c0b60664f4e70b0301a8b45e220e3c8
[ "MIT" ]
permissive
lmazuel/azure-sdk-for-python
972708ad5902778004680b142874582a284a8a7c
b40e0e36cc00a82b7f8ca2fa599b1928240c98b5
refs/heads/master
2022-08-16T02:32:14.070707
2018-03-29T17:16:15
2018-03-29T17:16:15
21,287,134
1
3
MIT
2019-10-25T15:56:00
2014-06-27T19:40:56
Python
UTF-8
Python
false
false
3,706
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VerificationIPFlowParameters(Model): """Parameters that define the IP flow to be verified. All required parameters must be populated in order to send to Azure. :param target_resource_id: Required. The ID of the target resource to perform next-hop on. :type target_resource_id: str :param direction: Required. The direction of the packet represented as a 5-tuple. Possible values include: 'Inbound', 'Outbound' :type direction: str or ~azure.mgmt.network.v2017_10_01.models.Direction :param protocol: Required. Protocol to be verified on. Possible values include: 'TCP', 'UDP' :type protocol: str or ~azure.mgmt.network.v2017_10_01.models.Protocol :param local_port: Required. The local port. Acceptable values are a single integer in the range (0-65535). Support for * for the source port, which depends on the direction. :type local_port: str :param remote_port: Required. The remote port. Acceptable values are a single integer in the range (0-65535). Support for * for the source port, which depends on the direction. :type remote_port: str :param local_ip_address: Required. The local IP address. Acceptable values are valid IPv4 addresses. :type local_ip_address: str :param remote_ip_address: Required. The remote IP address. Acceptable values are valid IPv4 addresses. :type remote_ip_address: str :param target_nic_resource_id: The NIC ID. (If VM has multiple NICs and IP forwarding is enabled on any of them, then this parameter must be specified. Otherwise optional). :type target_nic_resource_id: str """ _validation = { 'target_resource_id': {'required': True}, 'direction': {'required': True}, 'protocol': {'required': True}, 'local_port': {'required': True}, 'remote_port': {'required': True}, 'local_ip_address': {'required': True}, 'remote_ip_address': {'required': True}, } _attribute_map = { 'target_resource_id': {'key': 'targetResourceId', 'type': 'str'}, 'direction': {'key': 'direction', 'type': 'str'}, 'protocol': {'key': 'protocol', 'type': 'str'}, 'local_port': {'key': 'localPort', 'type': 'str'}, 'remote_port': {'key': 'remotePort', 'type': 'str'}, 'local_ip_address': {'key': 'localIPAddress', 'type': 'str'}, 'remote_ip_address': {'key': 'remoteIPAddress', 'type': 'str'}, 'target_nic_resource_id': {'key': 'targetNicResourceId', 'type': 'str'}, } def __init__(self, *, target_resource_id: str, direction, protocol, local_port: str, remote_port: str, local_ip_address: str, remote_ip_address: str, target_nic_resource_id: str=None, **kwargs) -> None: super(VerificationIPFlowParameters, self).__init__(**kwargs) self.target_resource_id = target_resource_id self.direction = direction self.protocol = protocol self.local_port = local_port self.remote_port = remote_port self.local_ip_address = local_ip_address self.remote_ip_address = remote_ip_address self.target_nic_resource_id = target_nic_resource_id
7bcc22cbd071a1dfe4180d5e7295a60684678d5c
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/comm/webconnstatesaghist1qtr.py
b3ed2f7acb9a745a1878dcda438a532030afa58a
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
5,295
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class WebConnStatesAgHist1qtr(Mo): """ A class that represents historical aggregated statistics for web connections state in a 1 quarter sampling interval. This class updates every day. """ meta = StatsClassMeta("cobra.model.comm.WebConnStatesAgHist1qtr", "web connections state") counter = CounterMeta("wait", CounterCategory.GAUGE, "connections", "current waiting connections") meta._counters.append(counter) counter = CounterMeta("write", CounterCategory.GAUGE, "connections", "current writing connections") meta._counters.append(counter) counter = CounterMeta("read", CounterCategory.GAUGE, "connections", "current reading connections") meta._counters.append(counter) meta.moClassName = "commWebConnStatesAgHist1qtr" meta.rnFormat = "HDcommWebConnStatesAg1qtr-%(index)s" meta.category = MoCategory.STATS_HISTORY meta.label = "historical aggregated web connections state stats in 1 quarter" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.comm.Https") meta.parentClasses.add("cobra.model.comm.Http") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Hist") meta.superClasses.add("cobra.model.comm.WebConnStatesAgHist") meta.rnPrefixes = [ ('HDcommWebConnStatesAg1qtr-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "index", "index", 19394, PropCategory.REGULAR) prop.label = "History Index" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("index", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) meta.namingProps.append(getattr(meta.props, "index")) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" def __init__(self, parentMoOrDn, index, markDirty=True, **creationProps): namingVals = [index] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
d72a310d68e97683a91711d371b79255141f523c
76d4d6f4edb3216ade81ba1d1b98ef17a1b9baa9
/transactions/views.py
c3470d056a65b14161f48f361cc74ca9705c83a5
[]
no_license
phemmylintry/crypto
8455c4ed6fda14bf49fdad9527cb6de4134498d6
390816f8152514446d063728b7428d6633739855
refs/heads/main
2023-03-22T07:51:35.454040
2021-03-10T04:25:04
2021-03-10T04:25:04
340,151,469
0
0
null
null
null
null
UTF-8
Python
false
false
4,819
py
from rest_framework import status from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from rest_framework.views import APIView from rest_framework import generics from rest_framework.authentication import TokenAuthentication from django.contrib.auth import get_user_model from django_q.tasks import async_task, result from drf_spectacular.utils import extend_schema, OpenApiParameter, OpenApiExample from drf_spectacular.types import OpenApiTypes from .serializers import TransactionSerializer, TransactionListSerializer from .models import Transaction from .tasks import send_transaction import uuid User = get_user_model() class TransactionView(generics.CreateAPIView): queryset = Transaction.objects.all() serializer_class = TransactionSerializer permission_classes = (IsAuthenticated, ) authenctication_classes = (TokenAuthentication, ) @extend_schema( request=TransactionSerializer, responses={201: TransactionSerializer}, ) def create(self, request, *args, **kwargs): serializer = self.serializer_class(data=request.data, context={'request': request}) serializer.is_valid(raise_exception=True) transaction = self.perform_create(serializer) if transaction == "success": get_transaction_id = serializer.data['transaction_ref'] transact = Transaction.objects.get(transaction_ref=get_transaction_id) transact.state = "success" transact.save(update_fields=['state']) else: return Response ({ 'status' : "Tansaction not succesful", 'data' : { 'transaction_ref' : serializer.data['transaction_ref'] } }) #update transaction state :( headers = self.get_success_headers(serializer.data) return Response({ 'status' : "Transaction is successful.", 'data' : { 'transaction_ref' : serializer.data['transaction_ref'] } }, status=status.HTTP_201_CREATED) def perform_create(self, serializer): currency_type = serializer.validated_data['currency_type'] target_user = serializer.validated_data['target_user'] get_target_user = User.objects.get(id=target_user) serializer.validated_data['target_user'] = get_target_user #generate randome id for transaction token transaction_ref = uuid.uuid4() serializer.validated_data['transaction_ref'] = transaction_ref source_user = self.request.user serializer.validated_data['source_user'] = source_user serializer.save() target_user = serializer.data['target_user'] source_user = serializer.data['source_user'] currency_type = serializer.data['currency_type'] transfer_amount = serializer.data['currency_amount'] task = async_task('transactions.tasks.send_transaction', source_user, target_user, currency_type, transfer_amount) # task = send_transaction.apply_async((source_user, target_user, currency_type, transfer_amount), countdown=2) results = result(task, 200) print(results) return results class TransactionListView(APIView): permission_classes = (IsAuthenticated, ) authenctication_classes = (TokenAuthentication, ) @extend_schema( request=TransactionListSerializer, responses={201: TransactionListSerializer}, ) def get(self, request, format='json'): user = request.user.id if not user: return Response({ "status" : "Error", "data" : { "message" : "Invalid user" } }, status=status.HTTP_400_BAD_REQUEST) transactions = Transaction.objects.all() data = [] for items in transactions: if items.source_user_id == user or items.target_user_id == user: data.append({ 'transaction_ref' : items.transaction_ref, 'currency_amount' : items.currency_amount, 'currency_type' : items.currency_type, 'source_user_id' : items.source_user_id, 'target_user_id' : items.target_user_id, 'state' : items.state, 'time_of_transaction': items.timestamp_created }) if data == []: return Response( { "data" : "No transaction history" }, status=status.HTTP_200_OK) return Response(data, status=status.HTTP_200_OK)
017385197b19ce7d53a1c71903d01f34549125f6
d532b85841b459c61d88d380e88dd08d29836d43
/solutions/922_sort_array_by_parity_ii.py
da1ab4097aaced49495bc27465f04ae81e4854cc
[ "MIT" ]
permissive
YiqunPeng/leetcode_pro
ad942468df5506de9dc48a4019933f658e2a3121
4a508a982b125a3a90ea893ae70863df7c99cc70
refs/heads/master
2022-05-15T09:32:02.699180
2022-05-14T16:32:17
2022-05-14T16:32:17
182,453,966
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
class Solution: def sortArrayByParityII(self, A: List[int]) -> List[int]: """Array. Running time: O(n) where n is the length of A. """ even, odd = [], [] for a in A: if a % 2 == 1: odd.append(a) else: even.append(a) res = [] for i in range(len(A)): if i % 2 == 1: res.append(odd.pop()) else: res.append(even.pop()) return res
61698d866bd746910d1e197d4205bbdc4be3429a
cd2d3b6be41eb9b96ecc3a22dc730325c21f22e6
/charalog/log/woals.cgi
00aadbd636a0b7515b9ff6fd8600b2962811ba09
[]
no_license
cappuu/TC
c61f235349e9a68d472fa85bbea1adbef3ea154a
def08d09219e11bee2135f6b796569b769ee21c1
refs/heads/master
2021-09-10T19:37:33.847161
2018-03-31T22:56:05
2018-03-31T22:56:05
124,523,296
0
0
null
null
null
null
UHC
Python
false
false
1,999
cgi
12월 : 사비의 방어시설을 <font color=red>+11</font> 강화했습니다.(16일0시14분) 11월 : 사비의 방어시설을 <font color=red>+11</font> 강화했습니다.(15일23시17분) 10월 : 사비의 방어시설을 <font color=red>+14</font> 강화했습니다.(15일22시15분) 9월 : 사비의 방어시설을 <font color=red>+10</font> 강화했습니다.(15일21시14분) 8월 : 사비의 방어시설을 <font color=red>+12</font> 강화했습니다.(15일20시14분) 7월 : 사비의 방어시설을 <font color=red>+10</font> 강화했습니다.(15일19시14분) 7월 : 수확으로 <font color=red>3751</font>의 식량을 수확했습니다. [봉토추가봉록:51](15일19시14분) 6월 : <font color=red>[상승] </font>:평강의 통솔력이 1포인트 올랐다.(15일18시15분) 6월 : 사비의 방어시설을 <font color=red>+8</font> 강화했습니다.(15일18시15분) 5월 : 사비의 방어시설을 <font color=red>+12</font> 강화했습니다.(15일17시14분) 4월 : 사비의 방어시설을 <font color=red>+12</font> 강화했습니다.(15일16시14분) 3월 : 사비의 방어시설을 <font color=red>+8</font> 강화했습니다.(15일15시14분) 2월 : 사비의 방어시설을 <font color=red>+11</font> 강화했습니다.(15일14시14분) 1월 : 숙박하여 피로를 대폭 회복하였습니다.(15일13시16분) 1월 : 세금으로 <font color=red>4341</font>의 돈을 징수했습니다. [관직추가봉록:400] [봉토추가봉록:241](15일13시16분) 12월 : 사비의 방어시설을 <font color=red>+11</font> 강화했습니다.(15일12시14분) 11월 : 사비의 방어시설을 <font color=red>+12</font> 강화했습니다.(15일11시16분) 10월 : 사비의 방어시설을 <font color=red>+11</font> 강화했습니다.(15일10시14분) 9월 : 사비의 방어시설을 <font color=red>+11</font> 강화했습니다.(15일9시15분) 8월 : 사비의 방어시설을 <font color=red>+12</font> 강화했습니다.(15일8시14분)
3f2822cf8074a1923bebb0ea6f5d14b816b76656
dde1cf596cf5969812ecda999828baa9c73e788d
/test/test_snapshot_alias_extended.py
6bca0e0b2c31ef9b79fad88ed829b0806416cbaa
[]
no_license
dctalbot/isilon_sdk_python3.7
bea22c91096d80952c932d6bf406b433af7f8e21
4d9936cf4b9e6acbc76548167b955a7ba8e9418d
refs/heads/master
2020-04-25T20:56:45.523351
2019-02-28T19:32:11
2019-02-28T19:32:11
173,065,379
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_1_1 from isi_sdk_8_1_1.models.snapshot_alias_extended import SnapshotAliasExtended # noqa: E501 from isi_sdk_8_1_1.rest import ApiException class TestSnapshotAliasExtended(unittest.TestCase): """SnapshotAliasExtended unit test stubs""" def setUp(self): pass def tearDown(self): pass def testSnapshotAliasExtended(self): """Test SnapshotAliasExtended""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_1_1.models.snapshot_alias_extended.SnapshotAliasExtended() # noqa: E501 pass if __name__ == '__main__': unittest.main()
5f92a9568bee1058fc272d28084d6c7ad10f802b
9b45d301869631cf464da34eadf5ddb96ce80ae2
/annotations/subsample_json_annotations.py
92590f3a15f62c2c1ad6db9dce734c2926bcc825
[]
no_license
zhanght021/segment-any-moving
df6605bfee4bb9c6f76f3e09d38a493914eb5750
a72f1afd9f52bc9151221112dbc8a8fc0891807e
refs/heads/master
2020-12-02T15:30:12.301579
2019-12-22T20:24:02
2019-12-22T20:24:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,938
py
import argparse import json import logging import random from pathlib import Path from utils.log import setup_logging def main(): # Use first line of file docstring as description if it exists. parser = argparse.ArgumentParser( description=__doc__.split('\n')[0] if __doc__ else '', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input-json', required=True) parser.add_argument('--output-json', required=True) parser.add_argument('--keep-num-images', type=int, required=True) parser.add_argument('--seed', type=int, default=0) args = parser.parse_args() random.seed(args.seed) input_path = Path(args.input_json) output_path = Path(args.output_json) log_path = args.output_json + '.log' setup_logging(log_path) logging.info('Args:\n%s' % vars(args)) assert input_path.exists() assert not output_path.exists() with open(input_path, 'r') as f: data = json.load(f) image_ids = [x['id'] for x in data['images']] import collections ids_count = collections.Counter(image_ids) repeated = {x: y for x, y in ids_count.items() if y > 1} random.shuffle(image_ids) kept_image_ids = set(image_ids[:args.keep_num_images]) __import__('ipdb').set_trace() subsampled_images = [ x for x in data['images'] if x['id'] in kept_image_ids ] subsampled_annotations = [ x for x in data['annotations'] if x['image_id'] in kept_image_ids ] logging.info( 'Kept %s/%s images' % (len(subsampled_images), len(data['images']))) logging.info('Kept %s/%s annotations' % (len(subsampled_annotations), len(data['annotations']))) data['images'] = subsampled_images data['annotations'] = subsampled_annotations with open(output_path, 'w') as f: json.dump(data, f) if __name__ == "__main__": main()
9fc96baae700f71e09894a414eeaf395736030fc
15f0514701a78e12750f68ba09d68095172493ee
/Python3/765.py
e2bb292960f894265919bae5d4515259ff95dcdb
[ "MIT" ]
permissive
strengthen/LeetCode
5e38c8c9d3e8f27109b9124ae17ef8a4139a1518
3ffa6dcbeb787a6128641402081a4ff70093bb61
refs/heads/master
2022-12-04T21:35:17.872212
2022-11-30T06:23:24
2022-11-30T06:23:24
155,958,163
936
365
MIT
2021-11-15T04:02:45
2018-11-03T06:47:38
null
UTF-8
Python
false
false
1,501
py
__________________________________________________________________________________________________ sample 28 ms submission class Solution(object): def minSwapsCouples(self, row): ans = 0 for i in range(0, len(row), 2): x = row[i] if row[i+1] == x^1: continue ans += 1 for j in range(i+1, len(row)): if row[j] == x^1: row[i+1], row[j] = row[j], row[i+1] break return ans __________________________________________________________________________________________________ sample 13208 kb submission class UnionFind: def __init__(self, N): self.parents = [i for i in range(N)] self.count = 0 def find(self, x): if self.parents[x] == x: return x return self.find(self.parents[x]) def union(self, x, y): px = self.find(x) py = self.find(y) if px != py: self.count += 1 self.parents[py] = px class Solution: def minSwapsCouples(self, row: List[int]) -> int: N = len(row) // 2 UF = UnionFind(N) for i in range(N): x_couple = row[i * 2] // 2 y_couple = row[i * 2 + 1] // 2 if x_couple != y_couple: UF.union(x_couple, y_couple) return UF.count __________________________________________________________________________________________________
38de7b425a57a3405bffde541d15fa26e09f9a1f
184d8b600b66ceed4e065878447fd3b99d137a48
/SRT/lib/models/ProHG.py
95db3bb47c61a50ee61bb8f163cdf9b24561181d
[ "CC-BY-NC-4.0", "MIT" ]
permissive
arnoldjair/landmark-detection
10d45bcdfbb469a3f59fb7d3916fe508fc0b150f
1ad9db7d94397d81898f6f7c05abe76806d3d85e
refs/heads/master
2023-03-07T20:06:57.594994
2021-02-15T02:56:49
2021-02-15T02:57:44
261,280,519
0
0
MIT
2020-05-04T19:48:14
2020-05-04T19:48:13
null
UTF-8
Python
false
false
8,323
py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # # Stacked Hourglass Networks for Human Pose Estimation (https://arxiv.org/abs/1603.06937) from __future__ import division import time, math, copy import torch import torch.nn as nn import torch.nn.functional as F from .basic_batch import find_tensor_peak_batch class Residual(nn.Module): def __init__(self, numIn, numOut): super(Residual, self).__init__() self.numIn = numIn self.numOut = numOut middle = self.numOut // 2 self.conv_A = nn.Sequential( nn.BatchNorm2d(numIn), nn.ReLU(inplace=True), nn.Conv2d(numIn, middle, kernel_size=1, dilation=1, padding=0, bias=True)) self.conv_B = nn.Sequential( nn.BatchNorm2d(middle), nn.ReLU(inplace=True), nn.Conv2d(middle, middle, kernel_size=3, dilation=1, padding=1, bias=True)) self.conv_C = nn.Sequential( nn.BatchNorm2d(middle), nn.ReLU(inplace=True), nn.Conv2d(middle, numOut, kernel_size=1, dilation=1, padding=0, bias=True)) if self.numIn != self.numOut: self.branch = nn.Sequential( nn.BatchNorm2d(self.numIn), nn.ReLU(inplace=True), nn.Conv2d(self.numIn, self.numOut, kernel_size=1, dilation=1, padding=0, bias=True)) def forward(self, x): residual = x main = self.conv_A(x) main = self.conv_B(main) main = self.conv_C(main) if hasattr(self, 'branch'): residual = self.branch( residual ) return main + residual class HierarchicalPMS(nn.Module): def __init__(self, numIn, numOut): super(HierarchicalPMS, self).__init__() self.numIn = numIn self.numOut = numOut cA, cB, cC = self.numOut//2, self.numOut//4, self.numOut-self.numOut//2-self.numOut//4 assert cA + cB + cC == numOut, '({:}, {:}, {:}) = {:}'.format(cA, cB, cC, numOut) self.conv_A = nn.Sequential( nn.BatchNorm2d(numIn), nn.ReLU(inplace=True), nn.Conv2d(numIn, cA, kernel_size=3, dilation=1, padding=1, bias=True)) self.conv_B = nn.Sequential( nn.BatchNorm2d(cA), nn.ReLU(inplace=True), nn.Conv2d(cA, cB, kernel_size=3, dilation=1, padding=1, bias=True)) self.conv_C = nn.Sequential( nn.BatchNorm2d(cB), nn.ReLU(inplace=True), nn.Conv2d(cB, cC, kernel_size=3, dilation=1, padding=1, bias=True)) if self.numIn != self.numOut: self.branch = nn.Sequential( nn.BatchNorm2d(self.numIn), nn.ReLU(inplace=True), nn.Conv2d(self.numIn, self.numOut, kernel_size=1, dilation=1, padding=0, bias=True)) def forward(self, x): residual = x A = self.conv_A(x) B = self.conv_B(A) C = self.conv_C(B) main = torch.cat((A, B, C), dim=1) if hasattr(self, 'branch'): residual = self.branch( residual ) return main + residual class Hourglass(nn.Module): def __init__(self, n, nModules, nFeats, module): super(Hourglass, self).__init__() self.n = n self.nModules = nModules self.nFeats = nFeats self.res = nn.Sequential(*[module(nFeats, nFeats) for _ in range(nModules)]) down = [nn.MaxPool2d(kernel_size = 2, stride = 2)] down += [module(nFeats, nFeats) for _ in range(nModules)] self.down = nn.Sequential(*down) if self.n > 1: self.mid = Hourglass(n - 1, self.nModules, self.nFeats, module) else: self.mid = nn.Sequential(*[module(nFeats, nFeats) for _ in range(nModules)]) up = [module(nFeats, nFeats) for _ in range(nModules)] #up += [nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)] self.up = nn.Sequential(*up) def forward(self, x): res = self.res(x) down = self.down(res) mid = self.mid(down) up = self.up(mid) up = torch.nn.functional.interpolate(up, [res.size(2), res.size(3)], mode='bilinear', align_corners=True) return res + up class HourGlassNet(nn.Module): def __init__(self, config, points, sigma, input_dim): super(HourGlassNet, self).__init__() self.downsample = 4 self.sigma = sigma self.config = copy.deepcopy( config ) if self.config.module == 'Residual': module = Residual elif self.config.module == 'HierarchicalPMS': module = HierarchicalPMS else: raise ValueError('Invaliad module for HG : {:}'.format(self.config.module)) self.pts_num = points self.nStack = self.config.stages self.nModules = self.config.nModules self.nFeats = self.config.nFeats self.recursive = self.config.recursive #self.conv = nn.Sequential( # nn.Conv2d(input_dim, 64, kernel_size = 7, stride = 2, padding = 3, bias = True), # nn.BatchNorm2d(64), nn.ReLU(inplace = True)) self.conv = nn.Sequential( nn.Conv2d(input_dim, 32, kernel_size = 3, stride = 2, padding = 1, bias = True), nn.BatchNorm2d(32), nn.ReLU(inplace = True), nn.Conv2d( 32, 32, kernel_size = 3, stride = 1, padding = 1, bias = True), nn.BatchNorm2d(32), nn.ReLU(inplace = True), nn.Conv2d( 32, 64, kernel_size = 3, stride = 1, padding = 1, bias = True), nn.BatchNorm2d(64), nn.ReLU(inplace = True)) self.ress = nn.Sequential( module(64, 128), nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1), module(128, 128), module(128, self.nFeats)) _features, _tmpOut, _ll_, _tmpOut_ = [], [], [], [] for i in range(self.nStack): feature = Hourglass(self.recursive, self.nModules, self.nFeats, module) feature = [feature] + [module(self.nFeats, self.nFeats) for _ in range(self.nModules)] feature += [nn.Conv2d(self.nFeats, self.nFeats, kernel_size = 1, stride = 1, bias = True), nn.BatchNorm2d(self.nFeats), nn.ReLU(inplace = True)] feature = nn.Sequential(*feature) _features.append(feature) _tmpOut.append(nn.Conv2d(self.nFeats, self.pts_num, kernel_size = 1, stride = 1, bias = True)) if i < self.nStack - 1: _ll_.append(nn.Conv2d(self.nFeats, self.nFeats, kernel_size = 1, stride = 1, bias = True)) _tmpOut_.append(nn.Conv2d(self.pts_num, self.nFeats, kernel_size = 1, stride = 1, bias = True)) self.features = nn.ModuleList(_features) self.tmpOuts = nn.ModuleList(_tmpOut) self.trsfeas = nn.ModuleList(_ll_) self.trstmps = nn.ModuleList(_tmpOut_) if self.config.sigmoid: self.sigmoid = nn.Sigmoid() else: self.sigmoid = None def extra_repr(self): return ('{name}(sigma={sigma}, downsample={downsample})'.format(name=self.__class__.__name__, **self.__dict__)) def forward(self, inputs): assert inputs.dim() == 4, 'This model accepts 4 dimension input tensor: {}'.format(inputs.size()) batch_size, feature_dim = inputs.size(0), inputs.size(1) x = self.conv(inputs) x = self.ress(x) features, heatmaps, batch_locs, batch_scos = [], [], [], [] for i in range(self.nStack): feature = self.features[i](x) features.append(feature) tmpOut = self.tmpOuts[i](feature) if self.sigmoid is not None: tmpOut = self.sigmoid(tmpOut) heatmaps.append(tmpOut) if i < self.nStack - 1: ll_ = self.trsfeas[i](feature) tmpOut_ = self.trstmps[i](tmpOut) x = x + ll_ + tmpOut_ # The location of the current batch for ibatch in range(batch_size): batch_location, batch_score = find_tensor_peak_batch(heatmaps[-1][ibatch], self.sigma, self.downsample) batch_locs.append( batch_location ) batch_scos.append( batch_score ) batch_locs, batch_scos = torch.stack(batch_locs), torch.stack(batch_scos) return features, heatmaps, batch_locs, batch_scos def ProHourGlass(config, points, sigma, use_gray): print ('Initialize hourglass with configure : {}'.format(config)) idim = 1 if use_gray else 3 model = HourGlassNet(config, points, sigma, idim) return model
adf64c5294fa2fab3264b87dbecf9ac69a941936
55b57d64ec547869835334318f3059fbb507558c
/Fred2/Data/pssms/tepitopepan/mat/DRB1_1404_9.py
b3815c80ab8c940ec4b8b436ba15b069868b509c
[ "BSD-3-Clause" ]
permissive
FRED-2/Fred2
9845f6678d4011cb746c7a5a6f283eea68077a02
b3e54c8c4ed12b780b61f74672e9667245a7bb78
refs/heads/master
2021-07-12T05:05:54.515427
2020-05-25T06:56:25
2020-05-25T06:56:25
16,275,425
42
35
null
2021-07-07T12:05:11
2014-01-27T10:08:11
Python
UTF-8
Python
false
false
2,168
py
DRB1_1404_9 = {0: {'A': -999.0, 'E': -999.0, 'D': -999.0, 'G': -999.0, 'F': -0.98558, 'I': -0.014418, 'H': -999.0, 'K': -999.0, 'M': -0.014418, 'L': -0.014418, 'N': -999.0, 'Q': -999.0, 'P': -999.0, 'S': -999.0, 'R': -999.0, 'T': -999.0, 'W': -0.98558, 'V': -0.014418, 'Y': -0.98558}, 1: {'A': 0.0, 'E': 0.1, 'D': -1.3, 'G': 0.5, 'F': 0.8, 'I': 1.1, 'H': 0.8, 'K': 1.1, 'M': 1.1, 'L': 1.0, 'N': 0.8, 'Q': 1.2, 'P': -0.5, 'S': -0.3, 'R': 2.2, 'T': 0.0, 'W': -0.1, 'V': 2.1, 'Y': 0.9}, 2: {'A': 0.0, 'E': -1.2, 'D': -1.3, 'G': 0.2, 'F': 0.8, 'I': 1.5, 'H': 0.2, 'K': 0.0, 'M': 1.4, 'L': 1.0, 'N': 0.5, 'Q': 0.0, 'P': 0.3, 'S': 0.2, 'R': 0.7, 'T': 0.0, 'W': 0.0, 'V': 0.5, 'Y': 0.8}, 3: {'A': 0.0, 'E': -1.1336, 'D': -0.88952, 'G': -1.056, 'F': 0.37787, 'I': 0.42789, 'H': -0.7843, 'K': 1.3955, 'M': 1.2064, 'L': 0.72364, 'N': 0.0092111, 'Q': -0.75181, 'P': -1.1538, 'S': -0.79301, 'R': 1.3303, 'T': -0.91622, 'W': -0.084645, 'V': 0.27085, 'Y': 1.2987}, 4: {'A': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': 0.0, 'I': 0.0, 'H': 0.0, 'K': 0.0, 'M': 0.0, 'L': 0.0, 'N': 0.0, 'Q': 0.0, 'P': 0.0, 'S': 0.0, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 5: {'A': 0.0, 'E': -1.4087, 'D': -2.3867, 'G': -0.70627, 'F': -1.3964, 'I': 0.69222, 'H': -0.11208, 'K': 1.2652, 'M': -0.90101, 'L': 0.18823, 'N': -0.58182, 'Q': -0.31126, 'P': 0.4949, 'S': -0.089495, 'R': 0.96923, 'T': 0.80924, 'W': -1.3956, 'V': 1.1961, 'Y': -1.3995}, 6: {'A': 0.0, 'E': -0.79277, 'D': -1.2459, 'G': -0.7096, 'F': -0.15733, 'I': 0.066354, 'H': -0.47376, 'K': -0.82466, 'M': 0.67126, 'L': 0.33385, 'N': 0.0045172, 'Q': -0.361, 'P': -0.45654, 'S': -0.19575, 'R': -0.74293, 'T': -0.43948, 'W': -0.75274, 'V': -0.18667, 'Y': -0.43394}, 7: {'A': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': 0.0, 'I': 0.0, 'H': 0.0, 'K': 0.0, 'M': 0.0, 'L': 0.0, 'N': 0.0, 'Q': 0.0, 'P': 0.0, 'S': 0.0, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 8: {'A': 0.0, 'E': -0.24345, 'D': -0.39245, 'G': -0.35253, 'F': -0.53237, 'I': -0.18595, 'H': 0.64856, 'K': -0.63126, 'M': 0.15453, 'L': -0.5039, 'N': -0.43168, 'Q': 0.86605, 'P': -1.089, 'S': 0.70805, 'R': -0.96918, 'T': -0.7571, 'W': -0.57158, 'V': -0.53639, 'Y': -0.44963}}
be8dd059ed81f4842d06142a8a046d206f83a4eb
a7b66311c2ce113789933ec3162f1128b2862f13
/app/waterQual/basinAll/tsMapSeq.py
5bfffb5cc94cf4e8469788d0e47b6a2dd1db36cc
[ "MIT" ]
permissive
ChanJeunlam/geolearn
214b2c42359ea1164b39117fad2d7470adeb6d35
791caa54eb70920823ea7d46714dc8a3e7fa7445
refs/heads/master
2023-07-16T04:13:15.526364
2021-08-16T05:24:18
2021-08-16T05:24:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,278
py
import importlib from hydroDL.master import basins from hydroDL.app import waterQuality from hydroDL import kPath from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot import torch import os import json import numpy as np import pandas as pd import matplotlib.pyplot as plt dataName = 'basinAll' wqData = waterQuality.DataModelWQ('basinAll') outName = 'basinAll-Y8090-opt1' trainset = 'Y8090' testset = 'Y0010' # point test outFolder = os.path.join(kPath.dirWQ, 'model', outName) yP1, ycP1 = basins.testModel(outName, trainset, wqData=wqData, ep=200) errFile1 = os.path.join(outFolder, 'errMat1_ep200.npy') # errMat1 = wqData.errBySiteC(ycP1, subset=trainset, varC=wqData.varC) # np.save(errFile1, errMat1) errMat1 = np.load(errFile1) errFile2 = os.path.join(outFolder, 'errMat2_ep200.npy') yP2, ycP2 = basins.testModel(outName, testset, wqData=wqData, ep=200) # errMat2 = wqData.errBySiteC(ycP2, subset=testset, varC=wqData.varC) # np.save(errFile2, errMat2) errMat2 = np.load(errFile2) # seq test siteNoLst = wqData.info['siteNo'].unique().tolist() # basins.testModelSeq(outName, siteNoLst, wqData=wqData, ep=200) # figure out number of samples dirInv = os.path.join(kPath.dirData, 'USGS', 'inventory') fileSiteNo = os.path.join(dirInv, 'siteNoLst-1979') siteNoLstAll = pd.read_csv(fileSiteNo, header=None, dtype=str)[0].tolist() df0 = pd.read_csv(os.path.join(dirInv, 'codeCount.csv'), dtype={'siteNo': str}).set_index('siteNo') df1 = pd.read_csv(os.path.join(dirInv, 'codeCount_B2000.csv'), dtype={'siteNo': str}).set_index('siteNo') df2 = pd.read_csv(os.path.join(dirInv, 'codeCount_A2000.csv'), dtype={'siteNo': str}).set_index('siteNo') matN = df0.loc[siteNoLst].values matN1 = df1.loc[siteNoLst].values matN2 = df2.loc[siteNoLst].values # plot box codePdf = usgs.codePdf groupLst = codePdf.group.unique().tolist() for group in groupLst: codeLst = codePdf[codePdf.group == group].index.tolist() indLst = [wqData.varC.index(code) for code in codeLst] labLst1 = [codePdf.loc[code]['shortName'] + '\n'+code for code in codeLst] labLst2 = ['train opt1', 'test opt1', 'train opt2', 'test opt2'] dataBox = list() for ic in indLst: temp = list() for errMat in [errMat1, errMat2]: ind = np.where((matN1[:, ic] > 50) & (matN2[:, ic] > 50))[0] temp.append(errMat[ind, ic, 1]) dataBox.append(temp) title = 'correlation of {} group'.format(group) fig = figplot.boxPlot(dataBox, label1=labLst1, label2=labLst2) fig.suptitle(title) fig.show() # plot map siteNoLst = wqData.info['siteNo'].unique().tolist() dfCrd = gageII.readData( varLst=['LAT_GAGE', 'LNG_GAGE'], siteNoLst=siteNoLst) lat = dfCrd['LAT_GAGE'].values lon = dfCrd['LNG_GAGE'].values codePdf = usgs.codePdf codeLst = ['00940', '00915'] def funcMap(): nM = len(codeLst) figM, axM = plt.subplots(nM, 1, figsize=(8, 6)) for k in range(0, nM): code = codeLst[k] ic = wqData.varC.index(code) shortName = codePdf.loc[code]['shortName'] title = '{} {}'.format(shortName, code) axplot.mapPoint(axM[k], lat, lon, errMat2[:, ic, 1], s=12) axM[k].set_title(title) figP, axP = plt.subplots(nM+1, 1, figsize=(8, 6)) return figM, axM, figP, axP, lon, lat def funcPoint(iP, axP): siteNo = siteNoLst[iP] dfPred, dfObs = basins.loadSeq(outName, siteNo, ep=200) dfPred = dfPred[dfPred.index >= np.datetime64('1980-01-01')] dfObs = dfObs[dfObs.index >= np.datetime64('1980-01-01')] t = dfPred.index.values.astype(np.datetime64) tBar = np.datetime64('2000-01-01') axplot.plotTS(axP[0], t, [dfPred['00060'], dfObs['00060']], tBar=tBar, legLst=['pred', 'obs'], styLst='--', cLst='br') axP[0].set_title('streamflow') for k, var in enumerate(codeLst): styLst = '-*' shortName = codePdf.loc[var]['shortName'] title = ' {} {}'.format(shortName, var) axplot.plotTS(axP[k+1], t, [dfPred[var], dfObs[var]], tBar=tBar, legLst=['pred', 'obs'], styLst=styLst, cLst='br') axP[k+1].set_title(title) figplot.clickMap(funcMap, funcPoint)
b0a7e19fb390fa57b3835fc1e4f1ca42566c3f7d
efd471380d976614667e56c92f0aed671371fc63
/All Programs/Tuples.py
7c2c7e039ad6d52062ffa5f8b2189cb68d4273cf
[]
no_license
anshumanairy/Hacker-Rank
39af46e76182d34637340d1755aff4afd7820083
6fef4c6a415422d9379232932358e4ee7430a6af
refs/heads/master
2021-07-04T07:41:37.769152
2020-10-12T05:49:24
2020-10-12T05:49:24
181,359,750
2
2
null
2020-10-12T05:49:25
2019-04-14T19:38:18
Python
UTF-8
Python
false
false
201
py
#!/usr/bin/env python # coding: utf-8 # In[3]: def func(): N=int(input()) list1=[""]*N c=input("") list1=list(map(int,c.split())) print(hash(tuple(list1))) func() # In[ ]:
85a39828733a6f7bfe8b8897c68b984eaf80db3c
7d549faf0de691a63acae85e60b081d4b6b7ddc7
/slowfast/datasets/__init__.py
dee63427c45337ec1e5ac384762abd5fb36e5d31
[ "Apache-2.0" ]
permissive
billcai/SlowFast
be05f7852810d43211c4e6ab7faef27f86d035af
778888e63351e55861801996b37c7ff9a3746587
refs/heads/master
2021-08-01T17:02:11.539218
2021-07-26T22:05:16
2021-07-26T22:06:15
248,907,066
0
0
Apache-2.0
2020-03-21T04:34:41
2020-03-21T04:34:40
null
UTF-8
Python
false
false
497
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .ava_dataset import Ava # noqa from .build import DATASET_REGISTRY, build_dataset # noqa from .charades import Charades # noqa from .imagenet import Imagenet # noqa from .kinetics import Kinetics # noqa from .ssv2 import Ssv2 # noqa try: from .ptv_datasets import Ptvcharades, Ptvkinetics, Ptvssv2 # noqa except Exception: print("Please update your PyTorchVideo to latest master")
2b1c26fde124b5e4b985e7dbd4c006afa1344ee9
3856dbedcf846f9845290e9b2efa4d18e300623d
/swagger_client/models/execute_method_request.py
5de657d2476279d5b1948879d67b6c17ae6dc62a
[]
no_license
Valandur/webapi-client-python
5b314da41803f5b55a5c6cce62d2384b86d0fa37
8502726bf3facb17c6fa681faf0f600207eb61ae
refs/heads/master
2022-02-04T21:45:37.686703
2019-07-23T12:11:47
2019-07-23T12:11:47
113,748,693
2
0
null
2019-01-09T16:07:31
2017-12-10T12:38:14
Python
UTF-8
Python
false
false
6,574
py
# coding: utf-8 """ Web-API Access Sponge powered Minecraft servers through a WebAPI # Introduction This is the documentation of the various API routes offered by the WebAPI plugin. This documentation assumes that you are familiar with the basic concepts of Web API's, such as `GET`, `PUT`, `POST` and `DELETE` methods, request `HEADERS` and `RESPONSE CODES` and `JSON` data. By default this documentation can be found at http:/localhost:8080 (while your minecraft server is running) and the various routes start with http:/localhost:8080/api/v5... As a quick test try reaching the route http:/localhost:8080/api/v5/info (remember that you can only access \\\"localhost\\\" routes on the server on which you are running minecraft). This route should show you basic information about your server, like the motd and player count. # List endpoints Lots of objects offer an endpoint to list all objects (e.g. `GET: /world` to get all worlds). These endpoints return only the properties marked 'required' by default, because the list might be quite large. If you want to return ALL data for a list endpoint add the query parameter `details`, (e.g. `GET: /world?details`). > Remember that in this case the data returned by the endpoint might be quite large. # Debugging endpoints Apart from the `?details` flag you can also pass some other flags for debugging purposes. Remember that you must include the first query parameter with `?`, and further ones with `&`: `details`: Includes details for list endpoints `accept=[json/xml]`: Manually set the accept content type. This is good for browser testing, **BUT DON'T USE THIS IN PRODUCTION, YOU CAN SUPPLY THE `Accepts` HEADER FOR THAT** `pretty`: Pretty prints the data, also good for debugging in the browser. An example request might look like this: `http://localhost:8080/api/v5/world?details&accpet=json&pretty&key=MY-API-KEY` # Additional data Certain endpoints (such as `/player`, `/entity` and `/tile-entity` have additional properties which are not documented here, because the data depends on the concrete object type (eg. `Sheep` have a wool color, others do not) and on the other plugins/mods that are running on your server which might add additional data. You can also find more information in the github docs (https:/github.com/Valandur/Web-API/tree/master/docs/DATA.md) # noqa: E501 OpenAPI spec version: 5.4.2-S7.1.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.execute_method_param import ExecuteMethodParam # noqa: F401,E501 class ExecuteMethodRequest(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'method': 'str', 'parameters': 'list[ExecuteMethodParam]' } attribute_map = { 'method': 'method', 'parameters': 'parameters' } def __init__(self, method=None, parameters=None): # noqa: E501 """ExecuteMethodRequest - a model defined in Swagger""" # noqa: E501 self._method = None self._parameters = None self.discriminator = None self.method = method if parameters is not None: self.parameters = parameters @property def method(self): """Gets the method of this ExecuteMethodRequest. # noqa: E501 The method that is executed # noqa: E501 :return: The method of this ExecuteMethodRequest. # noqa: E501 :rtype: str """ return self._method @method.setter def method(self, method): """Sets the method of this ExecuteMethodRequest. The method that is executed # noqa: E501 :param method: The method of this ExecuteMethodRequest. # noqa: E501 :type: str """ if method is None: raise ValueError("Invalid value for `method`, must not be `None`") # noqa: E501 self._method = method @property def parameters(self): """Gets the parameters of this ExecuteMethodRequest. # noqa: E501 The parameters of the method (if applicable) # noqa: E501 :return: The parameters of this ExecuteMethodRequest. # noqa: E501 :rtype: list[ExecuteMethodParam] """ return self._parameters @parameters.setter def parameters(self, parameters): """Sets the parameters of this ExecuteMethodRequest. The parameters of the method (if applicable) # noqa: E501 :param parameters: The parameters of this ExecuteMethodRequest. # noqa: E501 :type: list[ExecuteMethodParam] """ self._parameters = parameters def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ExecuteMethodRequest, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExecuteMethodRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
61d9f8923dce64ff0f4801e9d15ae1d5e69c756c
71f47bd812a420c9849ecc7609e99f9b969c4d3d
/push_endpoint/migrations/0018_pusheddata_datasource.py
1f6ba580925a882b85b136592f91b7ce41408b7e
[]
no_license
erinspace/shareregistration
e2bd0d8086a60eac616057a225bda07a0cd385a9
e04bfe443fda49644a12778a4826c9cb04930f5b
refs/heads/master
2020-05-27T18:25:05.858413
2016-02-24T20:17:37
2016-02-24T20:17:37
30,875,095
0
1
null
2016-02-24T20:17:37
2015-02-16T15:47:22
JavaScript
UTF-8
Python
false
false
467
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('push_endpoint', '0017_auto_20151113_1532'), ] operations = [ migrations.AddField( model_name='pusheddata', name='datasource', field=models.CharField(default='test', max_length=100), preserve_default=False, ), ]
85bb1583d91110edde4ea3a582c960e697bc9b4e
0bf6ecbdebc7424a8946b29127d55c5bc1e7442e
/organization/migrations/0062_auto_20170727_2109.py
146f45e3415b6fb573a6dc9d046e806ac30d424d
[]
no_license
dekkerlab/cLIMS
2351a9c81f3e3ba982e073500a4a5cf2fd38ed51
e76731032a5707027b53746a8f2cc9b01ab7c04e
refs/heads/master
2021-03-27T06:28:49.718401
2017-10-10T19:22:33
2017-10-10T19:22:33
71,837,345
1
0
null
null
null
null
UTF-8
Python
false
false
971
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-07-27 21:09 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wetLab', '0076_auto_20170727_2109'), ('organization', '0061_auto_20170426_1541'), ] operations = [ migrations.AddField( model_name='experiment', name='authentication_docs', field=models.ManyToManyField(blank=True, help_text='Attach any authentication document for your biosample here. e.g. Fragment Analyzer document, Gel images.', related_name='expAddProto', to='wetLab.Protocol', verbose_name='authentication_docs'), ), migrations.AlterField( model_name='experiment', name='imageObjects', field=models.ManyToManyField(blank=True, help_text='additional images.', related_name='expImg', to='dryLab.ImageObjects'), ), ]
e4771e45015373752e3153f63e5089990296b822
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_312/ch6_2019_02_28_19_18_08_378411.py
51733cbb770c32be20d9f73baf7b228425fd72c1
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
def encontra_maximo(lista): max=lista[0][0] eixox=len(lista)-1 eixoy=len(lista[0])-1 count=0 count2=0 while count<eixox: while count2<eixoy: if lista[count][count2]>max: max=lista[count][count2] count2+=1 count+=1 return max
1d46acae02e3b015cc09aa5e952ee973faf108a4
9fc768c541145c1996f2bdb8a5d62d523f24215f
/code/jPB371/ch02ok/bool.py
e1be86dd69a983a3bbf2acb2dbadcdb6822c76c5
[]
no_license
jumbokh/pyclass
3b624101a8e43361458130047b87865852f72734
bf2d5bcca4fff87cb695c8cec17fa2b1bbdf2ce5
refs/heads/master
2022-12-25T12:15:38.262468
2020-09-26T09:08:46
2020-09-26T09:08:46
283,708,159
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
# -*- coding: utf-8 -*- print( bool(0) ) print( bool("") ) print( bool(" ") ) print( bool(1) ) print( bool("ABC") )
fb3acbea24022a162db419f7994a985a3cf44ed8
c331d0f5e3d4ae0c60dd5cc7aa3dc9c76faec88c
/WebApp/python/setup_db.py
e39937533186ae75b43b74afa11e44c1e6d8c2e7
[]
no_license
sahahn/BPt_app
744be29dad8710b5113a50cd12d8d250e51587d6
f849a8bad43419b334000e57f2ce874d38a6d3d5
refs/heads/master
2023-03-09T01:50:44.401955
2020-10-19T17:59:37
2020-10-19T17:59:37
280,518,561
0
0
null
2020-10-19T17:59:39
2020-07-17T20:25:27
JavaScript
UTF-8
Python
false
false
2,872
py
import os import json import shutil from Dataset import Dataset def process_dataset(base_loc, dataset_name): # Init dataset with locs, etc... dataset = Dataset(base_loc=base_loc, dataset_name=dataset_name) # Process files (skips if not needed) dataset.process_files() def process_datasets(base_loc): # Make data info if doesnt exist data_info_loc = os.path.join(base_loc, 'bpt/Data_Info') os.makedirs(data_info_loc, exist_ok=True) # Process each dataset sources_loc = os.path.join(base_loc, 'sources') datasets = [f for f in os.listdir(sources_loc) if not f.startswith('.')] for dataset in datasets: process_dataset(base_loc, dataset) # Check each dataset for its events # Also check to make sure dataset isnt empty non_empty_datasets = [] all_events = set() for dataset in datasets: event_file = os.path.join(data_info_loc, dataset, 'eventnames.json') with open(event_file, 'r') as f: events = set(json.load(f)) all_events.update(events) # Only add dataset if atleast 1 event (only 0 events when empty) if len(events) > 0: non_empty_datasets.append(dataset) # Save overlapped events all_events_loc = os.path.join(base_loc, 'bpt/all_events.json') with open(all_events_loc, 'w') as f: json.dump(list(all_events), f) # Save datasets.json w/ non-empty datasets datasets_loc = os.path.join(base_loc, 'bpt/datasets.json') with open(datasets_loc, 'w') as f: json.dump(sorted(non_empty_datasets), f) # Go through and delete any saved data info if # not in the compiled datasets saved_datasets = os.listdir(data_info_loc) for dataset in saved_datasets: if dataset not in non_empty_datasets: shutil.rmtree(os.path.join(data_info_loc, dataset)) def main(): base_loc = '/var/www/html/data' # Locs + checks lock_loc = os.path.join(base_loc, 'bpt/lock') ready_loc = os.path.join(base_loc, 'bpt/ready') error_loc = os.path.join(base_loc, 'bpt/process_datasets_errors.txt') # Check for db-add lock if (os.path.isfile(lock_loc)): return None else: with open(lock_loc, 'w') as f: f.write('locked') # If previous error file exists, remove it if os.path.exists(error_loc): os.remove(error_loc) # Call process datasets only if no try: process_datasets(base_loc) # If processed no errors add ready with open(ready_loc, 'w') as f: f.write('ready') # If error, save to text file except Exception as e: with open(error_loc, 'w') as f: f.write(repr(e)) # Remove the lock - regardless of if error or success os.remove(lock_loc) if __name__ == "__main__": main()
d32773b4574f486d5a2b781344e5fd1204cf04d9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03192/s543941815.py
a08019e6e984eb90d4fba884f43c987fbc8436a3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
N = list(input()) print(N.count("2"))
6e82d9acc53a5eabc323bec3d2068e5365b6bdec
42f83595d24addd3cf8be828e282b37509825b3e
/src/collective/cfgconfig/view.py
dd91876c2f239c361f74514a6c6a9a457b10ca9f
[]
no_license
datakurre/collective.cfgconfig
825a26b7704932b5ea70f688cda8112623b42493
3325c6cbd5defd40c40bce7ed43814e9f77263ae
refs/heads/master
2016-09-06T21:39:03.209274
2013-11-24T12:13:50
2013-11-24T12:13:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
# -*- coding: utf-8 -*- from Products.Five.browser import BrowserView class HelloWorld(BrowserView): def __call__(self): return u"Hello world"
e45b7ab72944b666ff1639a4f0be0b3e38507d7b
9947d1e328a3262a35a61385dc537c3dc557ab7d
/机器学习/day05/demo07_ac.py
334d5013ba072bb2730ca8167dd3d93753dc93a3
[]
no_license
nuass/lzh
d0a7c74a3295523d1fe15eeaa73997fc04469f06
3cb1cf1e448b88ade226d113a7da4eab7bbb5c09
refs/heads/master
2021-02-06T06:10:32.772831
2019-06-10T08:54:49
2019-06-10T08:54:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
# coding=utf-8 """ 凝聚层次 """ import numpy as np import sklearn.cluster as sc import matplotlib.pyplot as mp x = np.loadtxt("../ml_data/multiple3.txt",delimiter=",") model=sc.AgglomerativeClustering(n_clusters=4) pred_y = model.fit_predict(x) mp.figure("AgglomerativeClustering",facecolor="lightgray") mp.title("AgglomerativeClustering",fontsize=14) mp.xlabel("x",fontsize=12) mp.ylabel("y",fontsize=12) mp.tick_params(labelsize=10) mp.grid(linestyle=":") mp.scatter(x[:,0],x[:,1],s=60,marker='o',c=pred_y,cmap="brg",label="Sample Points") mp.legend() mp.show()
2fe314ad72a9bdc13e5025c1c7a864fb01d73ee6
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/haid.py
2679dc565822ff254b7856dca134b0346cb0bf3e
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
83
py
ii = [('RogePAV2.py', 1), ('KiddJAE.py', 1), ('FitzRNS.py', 1), ('FitzRNS2.py', 1)]
e269cfa019462d7b553ac3efa865d6eca08f96e4
19f1dc4e728714e66af8e1e8262f2b7c47d3beb6
/Samples/UserSamples/2017/STTConfig.py
3e551660149292cc15d24516e961c55717591b35
[]
no_license
samhiggie/DatacardCreator
74cbbbea928770d3ca5669604d96ffb582416b45
8e838816cfb9adee8b2276adf79904da6449ca52
refs/heads/master
2020-09-11T19:35:48.985441
2019-11-18T23:51:18
2019-11-18T23:51:18
222,169,538
0
0
null
2019-11-16T22:56:02
2019-11-16T22:56:02
null
UTF-8
Python
false
false
1,350
py
from Samples.SampleDefinition import Sample from Samples.Uncertainties.UserUncertainties.TES import TESUncertainty from Samples.Uncertainties.UserUncertainties.JES import JESUncertainty from Samples.Uncertainties.UserUncertainties.METUES import METUESUncertainty from Samples.Uncertainties.UserUncertainties.MuonES import MuonESUncertainty from Samples.Uncertainties.UserUncertainties.Prefiring import PrefiringUncertainty from Samples.Uncertainties.UserUncertainties.TauID import TauIDUncertainty from Samples.Uncertainties.UserUncertainties.Trigger17_18 import Trigger1718Uncertainty from Samples.EventDefinition.UserEventDictionaries.MuTauEventDictionary import MuTauEventDictionary STSample = Sample() STSample.name = 'STT' STSample.path = '/data/aloeliger/SMHTT_Selected_2017_Deep/' STSample.files = ['ST_t_top.root', 'ST_t_antitop.root', 'ST_tW_top.root', 'ST_tW_antitop.root'] STSample.definition = '(gen_match_1 == 1 || gen_match_1 == 2) && gen_match_2 == 5' STSample.uncertainties = [ TESUncertainty(), JESUncertainty(), METUESUncertainty(), MuonESUncertainty(), PrefiringUncertainty(), TauIDUncertainty(), Trigger1718Uncertainty(), ] STSample.eventDictionaryInstance = MuTauEventDictionary STSample.CreateEventWeight = STSample.CreateEventWeight_Standard
e32886648d45201263ed378387cc9fab9df32a4e
d68be566e1b7dbb9c716b8165e9d546a6e294e5d
/course/models.py
265df4287ea82f383070bffcb7676c8a7a8d5f77
[]
no_license
NeuSovo/Neusoft-ecard
0e5d525360522d4abf3a7f39ec4d205ec17d571d
41138be9280fc92e98d6dce7394ac66204672b40
refs/heads/master
2021-03-24T09:32:55.543809
2018-09-12T04:48:29
2018-09-12T04:48:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,955
py
from django.db import models # Create your models here. class RoomModel(models.Model): class Meta: verbose_name = "RoomModel" verbose_name_plural = "RoomModels" def info(self): result = { 'RoomID': self.RoomID, 'RoomTime': self.RoomTime, 'RoomWeek': self.RoomWeek, 'ClassName': self.ClassName, 'ClassTeacher': self.ClassTeacher, 'ClassTime': self.ClassTime, 'RoomCount': self.RoomCount } RoomFloor = models.CharField( max_length=10 ) RoomID = models.CharField( max_length=30 ) RoomTime = models.IntegerField( default=0 ) RoomWeek = models.IntegerField( default=0 ) ClassName = models.CharField( max_length=155, ) ClassTeacher = models.CharField( max_length=155, ) ClassTime = models.CharField( max_length=100, ) RoomCount = models.IntegerField( default=0 ) class RoomTest(models.Model): class Meta: verbose_name = "课程信息" verbose_name_plural = "课程信息" ordering = ['id'] def info(self, has_grade=False): result = { 'RoomID': self.RoomID, 'ClassName': self.ClassName, 'ClassTeacher': self.ClassTeacher, 'ClassWeek': self.ClassWeek, 'ClassCount': self.ClassCount, 'ClassTimeWeek': self.ClassTimeWeek, 'ClassTimeTime': self.ClassTimeTime } if has_grade: result['ClassGrade'] = self.ClassGrade return result ClassTimeTime_choices = ( ('1', '1-2节'), ('2', '3-4节'), ('3', '5-6节'), ('4', '7-8节'), ('5', '9-10节'), ('5', '9-11节'), ('1-2', '1-4节'), ('1-2-3-4', '1-8节'), ('3-4', '5-7节'), ('3-4', '5-8节'), ('1-2-3-4', '1-8节'), ('1-2-3-4-5', '1-10节'), ('1-2-3-4-5', '1-11节'), ) ClassTimeWeek_choices = ( (1, '周一'), (2, '周二'), (3, '周三'), (4, '周四'), (5, '周五'), (6, '周六'), (7, '周日'), ) RoomID = models.CharField( max_length=30, null=True ) ClassName = models.CharField( max_length=155, null=True ) ClassTeacher = models.CharField( max_length=120, null=True, default='0' ) ClassWeek = models.CharField( max_length=30, null=True ) ClassCount = models.IntegerField(default=0) ClassGrade = models.TextField( default='0', null=True ) ClassTimeWeek = models.IntegerField( default=0, choices=ClassTimeWeek_choices) ClassTimeTime = models.CharField( default='0', max_length=10, choices=ClassTimeTime_choices, null=True )
04bd05b63a5e2c8534a1ddac43a2d5cafcb436e0
133dc799865134325975afeff2d1aa1ed4a1f5ca
/migrations/versions/15fd2af90843_users_table.py
fd6d349e4f08d2cc27f0e80cb3078dc01b9cf887
[]
no_license
Serrones/microblog
5eb72baf86ad363e607ac29775f8c1f24234a18d
917eec12890c8485d44dbef4742dae268837c15b
refs/heads/master
2020-03-14T16:48:47.328601
2018-05-07T00:01:20
2018-05-07T00:01:20
131,705,477
0
0
null
null
null
null
UTF-8
Python
false
false
1,131
py
"""Users Table Revision ID: 15fd2af90843 Revises: Create Date: 2018-05-01 17:23:06.763488 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '15fd2af90843' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('email', sa.String(length=120), nullable=True), sa.Column('password_hash', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') # ### end Alembic commands ###
37465d7be87d3f32cd3ed96223af113778b5d931
24d6d41989d676f3532013de3a6d847586fa3663
/permissions_widget/settings.py
adac7edee3ac2392f01a48f2c9f39405a49144f4
[]
no_license
diegofer/compu
92da75e79a4f286840f127698961bd1f99edf567
4407896e899e057a928f63455f29bba370bf5c7a
refs/heads/master
2021-01-22T19:54:11.588140
2014-04-01T05:41:59
2014-04-01T05:41:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,739
py
""" Settings for permissions_widget. EXCLUDE_APPS The permissions widget will exclude any permission for any model in any app in the EXCLUDE_APPS list. It contains sensible defaults which you can override: sessions, admin and contenttypes for example, as in most cases users won't even have the possibility of adding/changing/deleting sessions, logentries and content types so why even bother proposing permissions for them ? This would just confuse the admin. Can be overridden in settings.PERMISSIONS_WIDGET_EXCLUDE_APPS. EXCLUDE_MODELS The permissions widget will exclude any permission for any listed model. Models should be listed in the form of `app.model`. Can be overridden in settings.PERMISSIONS_WIDGET_EXCLUDE_MODELS. PATCH_GROUPADMIN If True, `permissions_widget.admin` will override the registered GroupAdmin form's user_permission field to use this widget for permissions. Can be overridden (ie. to False) in settings.PERMISSIONS_WIDGET_PATCH_GROUPADMIN. PATCH_USERADMIN If True, `permissions_widget.admin` will override the registered UserAdmin form's user_permission field to use this widget for permissions. Can be overridden (ie. to False) in settings.PERMISSIONS_WIDGET_PATCH_USERADMIN. """ from django.conf import settings EXCLUDE_APPS = getattr(settings, 'PERMISSIONS_WIDGET_EXCLUDE_APPS', [ 'sites', 'reversion', 'contenttypes', 'admin', 'sessions', 'easy_thumbnails',]) EXCLUDE_MODELS = getattr(settings, 'PERMISSIONS_WIDGET_EXCLUDE_MODELS', [ 'auth.permission',]) #PATCH_USERADMIN = getattr(settings, 'PERMISSIONS_WIDGET_PATCH_USERADMIN', True) #PATCH_GROUPADMIN = getattr(settings, 'PERMISSIONS_WIDGET_PATCH_GROUPADMIN', True)
8f1f7c3c01e7eb7b6ba4c53e5fdf863524943160
e56214188faae8ebfb36a463e34fc8324935b3c2
/test/test_hcl_operating_system_vendor_all_of.py
fe64827eedaceb6e5940512cfecfcd68d34590c9
[ "Apache-2.0" ]
permissive
CiscoUcs/intersight-python
866d6c63e0cb8c33440771efd93541d679bb1ecc
a92fccb1c8df4332ba1f05a0e784efbb4f2efdc4
refs/heads/master
2021-11-07T12:54:41.888973
2021-10-25T16:15:50
2021-10-25T16:15:50
115,440,875
25
18
Apache-2.0
2020-03-02T16:19:49
2017-12-26T17:14:03
Python
UTF-8
Python
false
false
2,009
py
# coding: utf-8 """ Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. # noqa: E501 The version of the OpenAPI document: 1.0.9-1295 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import intersight from intersight.models.hcl_operating_system_vendor_all_of import HclOperatingSystemVendorAllOf # noqa: E501 from intersight.rest import ApiException class TestHclOperatingSystemVendorAllOf(unittest.TestCase): """HclOperatingSystemVendorAllOf unit test stubs""" def setUp(self): pass def tearDown(self): pass def testHclOperatingSystemVendorAllOf(self): """Test HclOperatingSystemVendorAllOf""" # FIXME: construct object with mandatory attributes with example values # model = intersight.models.hcl_operating_system_vendor_all_of.HclOperatingSystemVendorAllOf() # noqa: E501 pass if __name__ == '__main__': unittest.main()
84019c47c3970e23b49d08af58fa3ddfb4190e74
6923f79f1eaaba0ab28b25337ba6cb56be97d32d
/programming_computer_vision_with_python/cvbook-contrib/ch05_stereo.py
8cfe22f5dbe6c0a38f1888e9cb984ffbc05f7bdd
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
burakbayramli/books
9fe7ba0cabf06e113eb125d62fe16d4946f4a4f0
5e9a0e03aa7ddf5e5ddf89943ccc68d94b539e95
refs/heads/master
2023-08-17T05:31:08.885134
2023-08-14T10:05:37
2023-08-14T10:05:37
72,460,321
223
174
null
2022-10-24T12:15:06
2016-10-31T17:24:00
Jupyter Notebook
UTF-8
Python
false
false
465
py
from PIL import Image import numpy import stereo im_l = numpy.array(Image.open('out_stereo1.ppm').convert('L'), 'f') im_r = numpy.array(Image.open('out_stereo2.ppm').convert('L'), 'f') steps = 12 start = 4 wid = 9 res = stereo.plane_sweep_ncc(im_l, im_r, start, steps, wid) wid = 3 res_gauss = stereo.plane_sweep_gauss(im_l, im_r, start, steps, wid) import scipy.misc scipy.misc.imsave('out_depth.png', res) scipy.misc.imsave('out_depth_gauss.png', res_gauss)
2d9b1d187eb1175b5bcb291481e18ea6d1dd82b2
eefb06b0d8c8c98c1e9cfc4c3852d5c453eb5429
/data/input/albatrossandco/brubeck_cms/brubeck/common/geography/fields.py
a782283b0983066628ff4b3c9c3ac8bb6bd8e614
[]
no_license
bopopescu/pythonanalyzer
db839453bde13bf9157b76e54735f11c2262593a
8390a0139137574ab237b3ff5fe8ea61e8a0b76b
refs/heads/master
2022-11-22T02:13:52.949119
2019-05-07T18:42:52
2019-05-07T18:42:52
282,079,884
0
0
null
2020-07-23T23:46:09
2020-07-23T23:46:08
null
UTF-8
Python
false
false
3,849
py
from django import forms from django.conf import settings from django.db import models from django.utils.safestring import mark_safe class Coordinates: def __init__(self, lat, lng): self.lat = float(lat) self.lng = float(lng) def __repr__(self): return ','.join([str(self.lat), str(self.lng)]) lat = float() lng = float() # NOTE: Came from http://www.djangosnippets.org/snippets/615/ (-JCM) # The development of this code was sponsored by MIG Internacional # This code is released under the terms of the BSD license # http://code.djangoproject.com/browser/django/trunk/LICENSE # Feel free to use it at your whim/will/risk :D # Contact info: Javier Rojas <[email protected]> class LocationWidget(forms.widgets.Widget): def __init__(self, *args, **kw): super(LocationWidget, self).__init__(*args, **kw) self.inner_widget = forms.widgets.HiddenInput() def render(self, name, value, *args, **kwargs): try: lat = value.lat lng = value.lng except AttributeError: lat = settings.DEFAULT_LATITUDE lng = settings.DEFAULT_LONGITUDE js = ''' </script> <script type="text/javascript"> //<![CDATA[ var %(name)s_marker ; $(document).ready(function () { if (GBrowserIsCompatible()) { var map = new GMap2(document.getElementById("map_%(name)s")); map.setCenter(new GLatLng(%(default_lat)s,%(default_lng)s), 13); %(name)s_marker = new GMarker(new GLatLng(%(default_lat)s,%(default_lng)s), {draggable: true}); map.addOverlay(%(name)s_marker); map.addControl(new GLargeMapControl()); map.addControl(new GMapTypeControl()); $('#%(name)s_id')[0].value = %(name)s_marker.getLatLng().lat() + "," + %(name)s_marker.getLatLng().lng(); GEvent.addListener(%(name)s_marker, "dragend", function() { var point = %(name)s_marker.getLatLng(); $('#%(name)s_id')[0].value = point.lat() + "," + point.lng(); }); }}); $(document).unload(function () {GUnload()}); //]]> </script> ''' % {'name': name, 'default_lat': lat, 'default_lng': lng} # % dict(name=name) html = self.inner_widget.render("%s" % name, None, dict(id='%s_id' % name)) html += "<div id=\"map_%s\" style=\"width: 500px; height: 500px\"></div>" % name return mark_safe(js+html) class LocationField(forms.Field): widget = LocationWidget def clean(self, value): lat, lng = value.split(',') return Coordinates(lat, lng) # My stuff again. (-JCM) class CoordinatesField(models.Field): __metaclass__ = models.SubfieldBase def __init__(self, *args, **kwargs): kwargs['max_length'] = 70 kwargs['default'] = Coordinates(settings.DEFAULT_LATITUDE, settings.DEFAULT_LONGITUDE) super(CoordinatesField, self).__init__(*args, **kwargs) def to_python(self, value): if isinstance(value, Coordinates): return value lat, lng = value.split(',') return Coordinates(lat, lng) def get_db_prep_value(self, value, connection, prepared=True): return str(value) def formfield(self, **kwargs): defaults = {'form_class': LocationField} defaults.update(kwargs) return super(CoordinatesField, self).formfield(**defaults) def db_type(self, connection): return 'varchar(70)' def value_to_string(self, obj): value = self._get_val_from_obj(obj) lat, lng = str(value).split(',') return '%s, %s' % (str(lat).strip(), str(lng).strip())
46e42a8851daf5a097db3ca58345f605faf477e9
67c0d7351c145d756b2a49e048500ff361f7add6
/xpresso/ai/admin/infra/packages/package_dependency.py
da30e097a2988bd38de9035b38da48c3c253c61f
[]
no_license
Krishnaarunangsu/XpressoDataHandling
ba339ae85b52e30715f47406ddb74966350848aa
0637a465088b468d6fdb6d1bb6f7b087547cec56
refs/heads/master
2020-06-27T19:58:43.358340
2019-08-29T16:59:08
2019-08-29T16:59:08
200,035,926
0
0
null
null
null
null
UTF-8
Python
false
false
4,870
py
""" Package Dependency MOdule """ from xpresso.ai.admin.controller.exceptions.xpr_exceptions import \ PackageFailedException __all__ = ["PackageDependency"] __author__ = "Srijan Sharma" import json import os import networkx as nx import matplotlib.pyplot as plt from xpresso.ai.core.utils.xpr_config_parser import XprConfigParser from xpresso.ai.core.logging.xpr_log import XprLogger class PackageDependency: """ Created a directed acyclic package dependency graph using a given dependency json. """ NONE_PACKAGE = "None" DEPENDENCY_SECTION = "pkg_dependency" DEPENDENCY_CONFIG_FILE = "dependency_config_file" def __init__(self, config_path=XprConfigParser.DEFAULT_CONFIG_PATH): super().__init__() self.config = XprConfigParser(config_path)["packages_setup"] self.logger = XprLogger() dependency_config_file = self.config[self.DEPENDENCY_SECTION][ self.DEPENDENCY_CONFIG_FILE] if not os.path.exists(dependency_config_file): self.logger.error(("Unable to find the dependency js" "file at the mentioned path")) raise PackageFailedException("Invalid dependency config file") try: with open(dependency_config_file) as config_fs: dependency_config = json.load(config_fs) except EnvironmentError as err: self.logger.fatal(err) raise PackageFailedException("Invalid config file") self.graph = nx.DiGraph() edges = list() for key in dependency_config: for value in dependency_config[key]: edges.append((key, value)) self.graph.add_edges_from(edges) if not nx.is_directed_acyclic_graph(self.graph): self.logger.fatal(("Unable to handle dependencies due to cyclic " "loop")) self.graph = None raise PackageFailedException("Cyclic Dependency Found") def visualize_dependency_graph(self): """ Created a plot for the directed dependency graph """ if self.graph is None: self.logger.error("Graph value none cannot be plotted") return nx.draw(self.graph, cmap=plt.get_cmap('jet'), with_labels=True) plt.show() def check_if_supported(self, package_name: str): """ Args: package_name(str) :return: bool: Return True if supported. False, otherwise """ return bool(self.graph.has_node(package_name)) def list_all(self): """ Extracts the value of all nodes(packages) present in graph Returns: list: Array consisting of all node(packages) value """ if self.graph is None: self.logger.error("Graph value none cannot be iterated") return list() nodes = list() for node in self.graph.nodes(): if node == self.NONE_PACKAGE: continue nodes.append(node) return nodes def get_dependency(self, package_name: str) -> list: """ List of dependencies Args: package_name(str): Name of the package Returns: list: List of dependencies required for the package_name installation """ if not self.check_if_supported(package_name=package_name): self.logger.error("{} package not present in config" .format(package_name)) return list() self.logger.info(("Running Topological sorting on " "Package Dependency Graph")) try: topological_sort_list = list(reversed(list( nx.topological_sort(self.graph)))) except nx.NetworkXError as error: self.logger.error(error) raise PackageFailedException("Topological sort is defined for " "directed graphs only") except nx.NetworkXUnfeasible as error: self.logger.error(error) raise PackageFailedException("Not a directed acyclic graph (DAG) " "and hence no topological sort exists") descendants = nx.descendants(self.graph, package_name) dependent_packages = [] for pkg in topological_sort_list: if pkg in descendants and pkg != self.NONE_PACKAGE: dependent_packages.append(pkg) if package_name != self.NONE_PACKAGE: dependent_packages.append(package_name) return dependent_packages if __name__ == "__main__": pkg_dep = PackageDependency() pkg_dep.visualize_dependency_graph() print(pkg_dep.list_all()) print(pkg_dep.get_dependency("PythonPackage"))
aed4b7492ab51ac5f0be52b4803a554e1a88e1a5
d33d25c752aa9604ccbd3ce75a26d31e8a12151a
/models/spational_transformer_sampler_interp.py
0e4a348dcc3db3c7a4160ae048eb387f2e289d4f
[]
no_license
yasunorikudo/sfm-learner-chainer
78bbb080c54e6af4278f31448d7b4067492b2dce
06d722a2a71ea9c51c4755862be7b211c35ac2b1
refs/heads/master
2022-07-07T12:03:10.076957
2019-08-07T07:39:59
2019-08-07T07:39:59
200,998,542
0
0
null
2022-06-21T22:28:07
2019-08-07T07:38:37
Python
UTF-8
Python
false
false
4,722
py
import numpy import chainer from chainer import function from chainer.utils import argument from chainer.utils import type_check from chainer import cuda class SpatialTransformerSamplerInterp(function.Function): def check_type_forward(self, in_types): n_in = in_types.size() type_check.expect(2 == n_in) x_type = in_types[0] grid_type = in_types[1] type_check.expect( x_type.dtype.char == 'f', grid_type.dtype.char == 'f', x_type.ndim == 4, grid_type.ndim == 4, grid_type.shape[1] == 2, x_type.shape[0] == grid_type.shape[0], ) def forward_cpu(self, inputs): return self._forward(inputs) def forward_gpu(self, inputs): return self._forward(inputs) def _forward(self, inputs): x, grid = inputs xp = cuda.get_array_module(x) B, C, H, W = x.shape _, _, out_H, out_W = grid.shape u = grid[:, 0].reshape(-1) v = grid[:, 1].reshape(-1) u0 = xp.floor(u) u1 = u0 + 1 v0 = xp.floor(v) v1 = v0 + 1 u0 = u0.clip(0, W - 1) v0 = v0.clip(0, H - 1) u1 = u1.clip(0, W - 1) v1 = v1.clip(0, H - 1) # weights wt_x0 = u1 - u wt_x1 = u - u0 wt_y0 = v1 - v wt_y1 = v - v0 w1 = wt_x0 * wt_y0 w2 = wt_x1 * wt_y0 w3 = wt_x0 * wt_y1 w4 = wt_x1 * wt_y1 w1 = w1.astype(x.dtype) w2 = w2.astype(x.dtype) w3 = w3.astype(x.dtype) w4 = w4.astype(x.dtype) u0 = u0.astype(numpy.int32) v0 = v0.astype(numpy.int32) u1 = u1.astype(numpy.int32) v1 = v1.astype(numpy.int32) batch_index = xp.repeat(xp.arange(B), out_H * out_W) y = w1[:, None] * x[batch_index, :, v0, u0] y += w2[:, None] * x[batch_index, :, v0, u1] y += w3[:, None] * x[batch_index, :, v1, u0] y += w4[:, None] * x[batch_index, :, v1, u1] y = y.reshape(B, out_H, out_W, C).transpose(0, 3, 1, 2) return y, def backward_cpu(self, inputs, grad_outputs): return self._backward(inputs, grad_outputs) def backward_gpu(self, inputs, grad_outputs): return self._backward(inputs, grad_outputs) def _backward(self, inputs, grad_outputs): x, grid = inputs xp = cuda.get_array_module(x) gy, = grad_outputs B, C, H, W = x.shape _, _, out_H, out_W = grid.shape u = grid[:, 0].reshape(-1) v = grid[:, 1].reshape(-1) # indices of the 2x2 pixel neighborhood surrounding the coordinates u0 = xp.floor(u) u1 = u0 + 1 v0 = xp.floor(v) v1 = v0 + 1 u0 = u0.clip(0, W - 1) v0 = v0.clip(0, H - 1) u1 = u1.clip(0, W - 1) v1 = v1.clip(0, H - 1) # weights wt_x0 = u1 - u wt_x1 = u - u0 wt_y0 = v1 - v wt_y1 = v - v0 wt_x0 = wt_x0.astype(gy.dtype) wt_x1 = wt_x1.astype(gy.dtype) wt_y0 = wt_y0.astype(gy.dtype) wt_y1 = wt_y1.astype(gy.dtype) u0 = u0.astype(numpy.int32) v0 = v0.astype(numpy.int32) u1 = u1.astype(numpy.int32) v1 = v1.astype(numpy.int32) batch_index = xp.repeat(xp.arange(B), out_H * out_W) x_indexed_1 = x[batch_index, :, v0, u0] x_indexed_2 = x[batch_index, :, v0, u1] x_indexed_3 = x[batch_index, :, v1, u0] x_indexed_4 = x[batch_index, :, v1, u1] gu = -wt_y0[:, None] * x_indexed_1 gu += wt_y0[:, None] * x_indexed_2 gu -= wt_y1[:, None] * x_indexed_3 gu += wt_y1[:, None] * x_indexed_4 gv = -wt_x0[:, None] * x_indexed_1 gv -= wt_x1[:, None] * x_indexed_2 gv += wt_x0[:, None] * x_indexed_3 gv += wt_x1[:, None] * x_indexed_4 gu = gu.reshape(B, out_H, out_W, C).transpose(0, 3, 1, 2) gv = gv.reshape(B, out_H, out_W, C).transpose(0, 3, 1, 2) gu *= gy gv *= gy gu = xp.sum(gu, axis=1) gv = xp.sum(gv, axis=1) # Offsets scaling of the coordinates and clip gradients. ggrid = xp.concatenate((gu[:, None], gv[:, None]), axis=1) gx = xp.zeros_like(x) return gx, ggrid def spatial_transformer_sampler_interp(x, grid, **kwargs): argument.check_unexpected_kwargs( kwargs, use_cudnn="The argument \"use_cudnn\" is not " "supported anymore. " "Use chainer.using_config('use_cudnn', value) " "context where value can be `always`, `never`, or `auto`.") argument.assert_kwargs_empty(kwargs) return SpatialTransformerSamplerInterp()(x, grid)
d70a299da56c555c36523cf59b82f9260fee8453
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/9/v6g.py
c558deb65007de213bf4145030d8f280d59936fc
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'v6G': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
e4b369b060fd48853273f89894747a4af8741872
1620f9900da8d18e647b61f543a68d9386967d65
/histoslider/image/channel_image_item.py
c05461e333146b1701df565bde6e091c4107ebb3
[ "MIT" ]
permissive
ch-king/HistoSlider-1
c57c748fc3b2ec2600b79b132373bc6b4c686369
2dbad7a91072626206fb3fad776291c1c68e342f
refs/heads/master
2021-10-24T13:41:18.807783
2019-03-26T11:05:27
2019-03-26T11:05:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
25,082
py
from collections import Callable import numpy as np from PyQt5.QtCore import pyqtSignal, QRectF, QPointF, Qt, QPoint, QTimer from PyQt5.QtGui import QTransform, QPixmap from PyQt5.QtWidgets import QMenu, QAction from pyqtgraph import GraphicsObject, getConfigOption, fn, Point from histoslider.models.channel import Channel class ChannelImageItem(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` GraphicsObject displaying an image. Optimized for rapid update (ie video display). This item displays either a 2D numpy array (height, width) or a 3D array (height, width, RGBa). This array is optionally scaled (see :func:`setLevels <pyqtgraph.ImageItem.setLevels>`) and/or colored with a lookup table (see :func:`setLookupTable <pyqtgraph.ImageItem.setLookupTable>`) before being displayed. ImageItem is frequently used in conjunction with :class:`HistogramLUTItem <pyqtgraph.HistogramLUTItem>` or :class:`HistogramLUTWidget <pyqtgraph.HistogramLUTWidget>` to provide a GUI for controlling the levels and lookup table used to display the image. """ sigImageChanged = pyqtSignal() sigRemoveRequested = pyqtSignal(object) # self; emitted when 'remove' is selected from context menu def __init__(self, image: np.ndarray, channel: Channel, **kargs): """ See :func:`setImage <pyqtgraph.ImageItem.setImage>` for all allowed initialization arguments. """ GraphicsObject.__init__(self) self.channel = channel self.setPxMode(False) self.setAutoDownsample(False) self.menu = None self.image = None ## original image data self.qimage = None ## rendered image for display self.paintMode = None self.levels = channel.settings.levels self.lut = None self.autoDownsample = False self.axisOrder = getConfigOption('imageAxisOrder') # In some cases, we use a modified lookup table to handle both rescaling # and LUT more efficiently self._effectiveLut = None self.drawKernel = None self.border = None self.removable = False if image is not None: self.setImage(image, **kargs) else: self.setOpts(**kargs) def setCompositionMode(self, mode): """Change the composition mode of the item (see QPainter::CompositionMode in the Qt documentation). This is useful when overlaying multiple ImageItems. ============================================ ============================================================ **Most common arguments:** QtGui.QPainter.CompositionMode_SourceOver Default; image replaces the background if it is opaque. Otherwise, it uses the alpha channel to blend the image with the background. QtGui.QPainter.CompositionMode_Overlay The image color is mixed with the background color to reflect the lightness or darkness of the background. QtGui.QPainter.CompositionMode_Plus Both the alpha and color of the image and background pixels are added together. QtGui.QPainter.CompositionMode_Multiply The output is the image color multiplied by the background. ============================================ ============================================================ """ self.paintMode = mode self.update() def setBorder(self, b): self.border = fn.mkPen(b) self.update() def width(self): if self.image is None: return None axis = 0 if self.axisOrder == 'col-major' else 1 return self.image.shape[axis] def height(self): if self.image is None: return None axis = 1 if self.axisOrder == 'col-major' else 0 return self.image.shape[axis] def channels(self): if self.image is None: return None return self.image.shape[2] if self.image.ndim == 3 else 1 def boundingRect(self): if self.image is None: return QRectF(0., 0., 0., 0.) return QRectF(0., 0., float(self.width()), float(self.height())) def setLevels(self, levels, update=True): """ Set image scaling levels. Can be one of: * [blackLevel, whiteLevel] * [[minRed, maxRed], [minGreen, maxGreen], [minBlue, maxBlue]] Only the first format is compatible with lookup tables. See :func:`makeARGB <pyqtgraph.makeARGB>` for more details on how levels are applied. """ if levels is not None: levels = np.asarray(levels) if not fn.eq(levels, self.levels): self.levels = levels self._effectiveLut = None if update: self.updateImage() def getLevels(self): return self.levels def setLookupTable(self, lut, update=True): """ Set the lookup table (numpy array) to use for this image. (see :func:`makeARGB <pyqtgraph.makeARGB>` for more information on how this is used). Optionally, lut can be a callable that accepts the current image as an argument and returns the lookup table to use. Ordinarily, this table is supplied by a :class:`HistogramLUTItem <pyqtgraph.HistogramLUTItem>` or :class:`GradientEditorItem <pyqtgraph.GradientEditorItem>`. """ if lut is not self.lut: self.lut = lut self._effectiveLut = None if update: self.updateImage() def setAutoDownsample(self, ads): """ Set the automatic downsampling mode for this ImageItem. Added in version 0.9.9 """ self.autoDownsample = ads self.qimage = None self.update() def setOpts(self, update=True, **kargs): if 'axisOrder' in kargs: val = kargs['axisOrder'] if val not in ('row-major', 'col-major'): raise ValueError('axisOrder must be either "row-major" or "col-major"') self.axisOrder = val if 'lut' in kargs: self.setLookupTable(kargs['lut'], update=update) if 'levels' in kargs: self.setLevels(kargs['levels'], update=update) # if 'clipLevel' in kargs: # self.setClipLevel(kargs['clipLevel']) if 'opacity' in kargs: self.setOpacity(kargs['opacity']) if 'compositionMode' in kargs: self.setCompositionMode(kargs['compositionMode']) if 'border' in kargs: self.setBorder(kargs['border']) if 'removable' in kargs: self.removable = kargs['removable'] self.menu = None if 'autoDownsample' in kargs: self.setAutoDownsample(kargs['autoDownsample']) if update: self.update() def setRect(self, rect): """Scale and translate the image to fit within rect (must be a QRect or QRectF).""" self.resetTransform() self.translate(rect.left(), rect.top()) self.scale(rect.width() / self.width(), rect.height() / self.height()) def clear(self): self.image = None self.prepareGeometryChange() self.informViewBoundsChanged() self.update() def setImage(self, image=None, autoLevels=None, **kargs): """ Update the image displayed by this item. For more information on how the image is processed before displaying, see :func:`makeARGB <pyqtgraph.makeARGB>` ================= ========================================================================= **Arguments:** image (numpy array) Specifies the image data. May be 2D (width, height) or 3D (width, height, RGBa). The array dtype must be integer or floating point of any bit depth. For 3D arrays, the third dimension must be of length 3 (RGB) or 4 (RGBA). See *notes* below. autoLevels (bool) If True, this forces the image to automatically select levels based on the maximum and minimum values in the data. By default, this argument is true unless the levels argument is given. lut (numpy array) The color lookup table to use when displaying the image. See :func:`setLookupTable <pyqtgraph.ImageItem.setLookupTable>`. levels (min, max) The minimum and maximum values to use when rescaling the image data. By default, this will be set to the minimum and maximum values in the image. If the image array has dtype uint8, no rescaling is necessary. opacity (float 0.0-1.0) compositionMode See :func:`setCompositionMode <pyqtgraph.ImageItem.setCompositionMode>` border Sets the pen used when drawing the image border. Default is None. autoDownsample (bool) If True, the image is automatically downsampled to match the screen resolution. This improves performance for large images and reduces aliasing. If autoDownsample is not specified, then ImageItem will choose whether to downsample the image based on its size. ================= ========================================================================= **Notes:** For backward compatibility, image data is assumed to be in column-major order (column, row). However, most image data is stored in row-major order (row, column) and will need to be transposed before calling setImage():: imageitem.setImage(imagedata.T) This requirement can be changed by calling ``image.setOpts(axisOrder='row-major')`` or by changing the ``imageAxisOrder`` :ref:`global configuration option <apiref_config>`. """ gotNewData = False if image is None: if self.image is None: return else: gotNewData = True shapeChanged = (self.image is None or image.shape != self.image.shape) image = image.view(np.ndarray) if self.image is None or image.dtype != self.image.dtype: self._effectiveLut = None self.image = image if self.image.shape[0] > 2 ** 15 - 1 or self.image.shape[1] > 2 ** 15 - 1: if 'autoDownsample' not in kargs: kargs['autoDownsample'] = True if shapeChanged: self.prepareGeometryChange() self.informViewBoundsChanged() if autoLevels is None: if 'levels' in kargs: autoLevels = False else: autoLevels = True if autoLevels: img = self.image while img.size > 2 ** 16: img = img[::2, ::2] mn, mx = np.nanmin(img), np.nanmax(img) # mn and mx can still be NaN if the data is all-NaN if mn == mx or np.isnan(mn) or np.isnan(mx): mn = 0 mx = 255 kargs['levels'] = [mn, mx] self.setOpts(update=False, **kargs) self.qimage = None self.update() if gotNewData: self.sigImageChanged.emit() def dataTransform(self): """Return the transform that maps from this image's input array to its local coordinate system. This transform corrects for the transposition that occurs when image data is interpreted in row-major order. """ # Might eventually need to account for downsampling / clipping here tr = QTransform() if self.axisOrder == 'row-major': # transpose tr.scale(1, -1) tr.rotate(-90) return tr def inverseDataTransform(self): """Return the transform that maps from this image's local coordinate system to its input array. See dataTransform() for more information. """ tr = QTransform() if self.axisOrder == 'row-major': # transpose tr.scale(1, -1) tr.rotate(-90) return tr def mapToData(self, obj): tr = self.inverseDataTransform() return tr.map(obj) def mapFromData(self, obj): tr = self.dataTransform() return tr.map(obj) def quickMinMax(self, targetSize=1e6): """ Estimate the min/max values of the image data by subsampling. """ data = self.image while data.size > targetSize: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] return np.nanmin(data), np.nanmax(data) def updateImage(self, *args, **kargs): ## used for re-rendering qimage from self.image. ## can we make any assumptions here that speed things up? ## dtype, range, size are all the same? defaults = { 'autoLevels': False, } defaults.update(kargs) return self.setImage(*args, **defaults) def render(self): # Convert data to QImage for display. if self.image is None or self.image.size == 0: return # Request a lookup table if this image has only one channel if self.image.ndim == 2 or self.image.shape[2] == 1: if isinstance(self.lut, Callable): lut = self.lut(self.image) else: lut = self.lut else: lut = None if self.autoDownsample: # reduce dimensions of image based on screen resolution o = self.mapToDevice(QPointF(0, 0)) x = self.mapToDevice(QPointF(1, 0)) y = self.mapToDevice(QPointF(0, 1)) # Check if graphics view is too small to render anything if o is None or x is None or y is None: return w = Point(x - o).length() h = Point(y - o).length() if w == 0 or h == 0: self.qimage = None return xds = max(1, int(1.0 / w)) yds = max(1, int(1.0 / h)) axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1] image = fn.downsample(self.image, xds, axis=axes[0]) image = fn.downsample(image, yds, axis=axes[1]) self._lastDownsample = (xds, yds) # Check if downsampling reduced the image size to zero due to inf values. if image.size == 0: return else: image = self.image # if the image data is a small int, then we can combine levels + lut # into a single lut for better performance levels = self.levels if levels is not None and levels.ndim == 1 and image.dtype in (np.ubyte, np.uint16): if self._effectiveLut is None: eflsize = 2 ** (image.itemsize * 8) ind = np.arange(eflsize) minlev, maxlev = levels levdiff = maxlev - minlev levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0 if lut is None: efflut = fn.rescaleData(ind, scale=255. / levdiff, offset=minlev, dtype=np.ubyte) else: lutdtype = np.min_scalar_type(lut.shape[0] - 1) efflut = fn.rescaleData(ind, scale=(lut.shape[0] - 1) / levdiff, offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0] - 1)) efflut = lut[efflut] self._effectiveLut = efflut lut = self._effectiveLut levels = None # Convert single-channel image to 2D array if image.ndim == 3 and image.shape[-1] == 1: image = image[..., 0] # Assume images are in column-major order for backward compatibility # (most images are in row-major order) if self.axisOrder == 'col-major': image = image.transpose((1, 0, 2)[:image.ndim]) argb, alpha = fn.makeARGB(image, lut=lut, levels=levels) self.qimage = fn.makeQImage(argb, alpha, transpose=False) def paint(self, p, *args): if self.image is None: return if self.qimage is None: self.render() if self.qimage is None: return if self.paintMode is not None: p.setCompositionMode(self.paintMode) shape = self.image.shape[:2] if self.axisOrder == 'col-major' else self.image.shape[:2][::-1] p.drawImage(QRectF(0, 0, *shape), self.qimage) if self.border is not None: p.setPen(self.border) p.drawRect(self.boundingRect()) def save(self, fileName, *args): """Save this image to file. Note that this saves the visible image (after scale/color changes), not the original data.""" if self.qimage is None: self.render() self.qimage.save(fileName, *args) def getHistogram(self, bins='auto', step='auto', perChannel=False, targetImageSize=200, targetHistogramSize=500, **kwds): """Returns x and y arrays containing the histogram values for the current image. For an explanation of the return format, see numpy.histogram(). The *step* argument causes pixels to be skipped when computing the histogram to save time. If *step* is 'auto', then a step is chosen such that the analyzed data has dimensions roughly *targetImageSize* for each axis. The *bins* argument and any extra keyword arguments are passed to np.histogram(). If *bins* is 'auto', then a bin number is automatically chosen based on the image characteristics: * Integer images will have approximately *targetHistogramSize* bins, with each bin having an integer width. * All other types will have *targetHistogramSize* bins. If *perChannel* is True, then the histogram is computed once per channel and the output is a list of the results. This method is also used when automatically computing levels. """ if self.image is None or self.image.size == 0: return None, None if step == 'auto': step = (max(1, int(np.ceil(self.image.shape[0] / targetImageSize))), max(1, int(np.ceil(self.image.shape[1] / targetImageSize)))) if np.isscalar(step): step = (step, step) stepData = self.image[::step[0], ::step[1]] if bins == 'auto': mn = np.nanmin(stepData) mx = np.nanmax(stepData) if np.isnan(mn) or np.isnan(mx): # the data are all-nan return None, None if stepData.dtype.kind in "ui": # For integer data, we select the bins carefully to avoid aliasing step = np.ceil((mx - mn) / 500.) bins = np.arange(mn, mx + 1.01 * step, step, dtype=np.int) else: # for float data, let numpy select the bins. bins = np.linspace(mn, mx, 500) if len(bins) == 0: bins = [mn, mx] kwds['bins'] = bins if perChannel: hist = [] for i in range(stepData.shape[-1]): stepChan = stepData[..., i] stepChan = stepChan[np.isfinite(stepChan)] h = np.histogram(stepChan, **kwds) hist.append((h[1][:-1], h[0])) return hist else: stepData = stepData[np.isfinite(stepData)] hist = np.histogram(stepData, **kwds) return hist[1][:-1], hist[0] def setPxMode(self, b): """ Set whether the item ignores transformations and draws directly to screen pixels. If True, the item will not inherit any scale or rotation transformations from its parent items, but its position will be transformed as usual. (see GraphicsItem::ItemIgnoresTransformations in the Qt documentation) """ self.setFlag(self.ItemIgnoresTransformations, b) def setScaledMode(self): self.setPxMode(False) def getPixmap(self): if self.qimage is None: self.render() if self.qimage is None: return None return QPixmap.fromImage(self.qimage) def pixelSize(self): """return scene-size of a single pixel in the image""" br = self.sceneBoundingRect() if self.image is None: return 1, 1 return br.width() / self.width(), br.height() / self.height() def viewTransformChanged(self): if self.autoDownsample: self.qimage = None self.update() def mouseDragEvent(self, ev): if ev.button() != Qt.LeftButton: ev.ignore() return elif self.drawKernel is not None: ev.accept() self.drawAt(ev.pos(), ev) def mouseClickEvent(self, ev): if ev.button() == Qt.RightButton: if self.raiseContextMenu(ev): ev.accept() if self.drawKernel is not None and ev.button() == Qt.LeftButton: self.drawAt(ev.pos(), ev) def raiseContextMenu(self, ev): menu = self.getMenu() if menu is None: return False menu = self.scene().addParentContextMenus(self, menu, ev) pos = ev.screenPos() menu.popup(QPoint(pos.x(), pos.y())) return True def getMenu(self): if self.menu is None: if not self.removable: return None self.menu = QMenu() self.menu.setTitle("Image") remAct = QAction("Remove image", self.menu) remAct.triggered.connect(self.removeClicked) self.menu.addAction(remAct) self.menu.remAct = remAct return self.menu def hoverEvent(self, ev): if not ev.isExit() and self.drawKernel is not None and ev.acceptDrags(Qt.LeftButton): ev.acceptClicks( Qt.LeftButton) ## we don't use the click, but we also don't want anyone else to use it. ev.acceptClicks(Qt.RightButton) elif not ev.isExit() and self.removable: ev.acceptClicks(Qt.RightButton) ## accept context menu clicks def tabletEvent(self, ev): pass # print(ev.device()) # print(ev.pointerType()) # print(ev.pressure()) def drawAt(self, pos, ev=None): pos = [int(pos.x()), int(pos.y())] dk = self.drawKernel kc = self.drawKernelCenter sx = [0, dk.shape[0]] sy = [0, dk.shape[1]] tx = [pos[0] - kc[0], pos[0] - kc[0] + dk.shape[0]] ty = [pos[1] - kc[1], pos[1] - kc[1] + dk.shape[1]] for i in [0, 1]: dx1 = -min(0, tx[i]) dx2 = min(0, self.image.shape[0] - tx[i]) tx[i] += dx1 + dx2 sx[i] += dx1 + dx2 dy1 = -min(0, ty[i]) dy2 = min(0, self.image.shape[1] - ty[i]) ty[i] += dy1 + dy2 sy[i] += dy1 + dy2 ts = (slice(tx[0], tx[1]), slice(ty[0], ty[1])) ss = (slice(sx[0], sx[1]), slice(sy[0], sy[1])) mask = self.drawMask src = dk if isinstance(self.drawMode, Callable): self.drawMode(dk, self.image, mask, ss, ts, ev) else: src = src[ss] if self.drawMode == 'set': if mask is not None: mask = mask[ss] self.image[ts] = self.image[ts] * (1 - mask) + src * mask else: self.image[ts] = src elif self.drawMode == 'add': self.image[ts] += src else: raise Exception("Unknown draw mode '%s'" % self.drawMode) self.updateImage() def setDrawKernel(self, kernel=None, mask=None, center=(0, 0), mode='set'): self.drawKernel = kernel self.drawKernelCenter = center self.drawMode = mode self.drawMask = mask def removeClicked(self): ## Send remove event only after we have exited the menu event handler self.removeTimer = QTimer() self.removeTimer.timeout.connect(self.emitRemoveRequested) self.removeTimer.start(0) def emitRemoveRequested(self): self.removeTimer.timeout.disconnect(self.emitRemoveRequested) self.sigRemoveRequested.emit(self)
02cc57abadc1b35abd7611414ff7e4803bf5be52
52b5773617a1b972a905de4d692540d26ff74926
/.history/minCost_20200826170809.py
416df3034399b192e979acb250e8e4c2b5d35bb5
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
742
py
def minCost(days,costs): # brute force approach # find if numbers are consecutive # if they are past 7 then means we do a 30 day pass # once they stop being consecutive means to opt for something different # like [1,4,6,7,8,20] ways = [0] * days[len(days)-1] newDays = set(days) for i in range(1,len(ways)+1): total = ways[i-1]+ costs[0] if i-7 > 0:total1 = ways[i-7] + costs[1] else:total1 = 0 + costs[1] if i-15 > 0:total2 = ways[i-15] + costs[2] else: total2 = 0 + costs[2] if i in newDays: ways[i] = min(total,total1,total2) else: ways[i] = ways[i-1] print(ways) minCost([1,4,6,7,8,20],[2,7,15])
a0b93c64d418d2f9953bebcebd810c6e68451a2e
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_088/ch20_2020_09_11_22_25_42_229462.py
9fda66b3766ee69c033f0fc481cd067588ecd032
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
distância = float(input("Digite a distância a percorrer: ")) if (distância <= 200): total = 0.5 * distância print("%.2f" %total) else: total = 0.45 * (distância) print("%.2f" %total)
f24d5225fa62af98c084fc698de3044b4f04814b
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003/Gather2_W_fixGood_C_change/train/pyr_2s/L5/step10_a.py
6cb947073aa28b6129b66598bd02aa5d9bb0a1c9
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
21,597
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_2side_L5 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] import Exps_7_v3.doc3d.Ablation4_ch016_ep003.W_w_M_to_C_pyr.pyr_2s.L5.step10_a as W_w_M_to_C_p20_pyr from Exps_7_v3.doc3d.Ablation4_ch016_ep003.I_w_M_to_W_pyr.pyr_3s.L5.step10_a import ch032_1side_6__2side_5__3side_2__ep010 as I_w_M_to_W_p20_3s_L5_Good ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_v2 use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wz").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wy").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1_and_1s6_2s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ch032_1side_1__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s1__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_1__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ############################################################# gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="Gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__1") .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__ep010, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_ckpt_keep_amount(20).set_result_name(result_name="") gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="Gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__2") .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__ep010, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_ckpt_keep_amount(20).set_result_name(result_name="") gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="Gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__3") .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__ep010, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_ckpt_keep_amount(20).set_result_name(result_name="") gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="Gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__4") .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__ep010, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_ckpt_keep_amount(20).set_result_name(result_name="") gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="Gather_ep010__ch032_1s6_2s5_3s2__ch032_1s6_2s6__5") .set_train_args(epochs= 10) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__ep010, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_ckpt_keep_amount(20).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
16a1f15487d6a04ef8e315b7e87984f406ce40f4
f4b60f5e49baf60976987946c20a8ebca4880602
/lib64/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/vns/rtconntoaconninst.py
0a35dac1b96046c398e2ffe6d152e8610f74460e
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
5,644
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RtConnToAConnInst(Mo): """ Mo doc not defined in techpub!!! """ meta = TargetRelationMeta("cobra.model.vns.RtConnToAConnInst", "cobra.model.vns.FuncConnInst") meta.moClassName = "vnsRtConnToAConnInst" meta.rnFormat = "rtconnToAConnInst-[%(tDn)s]" meta.category = MoCategory.RELATIONSHIP_FROM_LOCAL meta.label = "Connector Instance" meta.writeAccessMask = 0x0 meta.readAccessMask = 0x6000000000000001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.vns.AbsFuncConn") meta.parentClasses.add("cobra.model.vns.FuncConnInst") meta.parentClasses.add("cobra.model.vns.AbsTermConn") meta.parentClasses.add("cobra.model.vns.TermConnInst") meta.superClasses.add("cobra.model.reln.From") meta.superClasses.add("cobra.model.reln.Inst") meta.rnPrefixes = [ ('rtconnToAConnInst-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 20739, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 4830 prop.defaultValueStr = "vnsFuncConnInst" prop._addConstant("unspecified", "unspecified", 0) prop._addConstant("vnsFuncConnInst", None, 4830) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 20738, PropCategory.REGULAR) prop.label = "Target-dn" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True meta.props.add("tDn", prop) meta.namingProps.append(getattr(meta.props, "tDn")) getattr(meta.props, "tDn").needDelimiter = True # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("AbsGraphToNwIf", "Physical Interfaces", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("AbsNodeToNwIf", "Physical Interfaces", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("NodeInstToNwIf", "Physical Interfaces", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("AbsGraphToCompVNic", "Virtual Nics", "cobra.model.nw.If")) meta.deploymentQueryPaths.append(DeploymentPathMeta("AbsNodeToCompVNic", "Virtual Nics", "cobra.model.comp.VNic")) meta.deploymentQueryPaths.append(DeploymentPathMeta("NodeInstToCompVNic", "Virtual Nics", "cobra.model.comp.VNic")) meta.deploymentQueryPaths.append(DeploymentPathMeta("AbsGraphToGraphInst", "Graph Instances", "cobra.model.vns.GraphInst")) def __init__(self, parentMoOrDn, tDn, markDirty=True, **creationProps): namingVals = [tDn] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
845bd92c060e393e1feb07efce537f9a3b65d67b
f3cd7727bb731e359e93e86771ed66ccc4587937
/generic_images/managers.py
d462ed0e927ec90f5d3d9b728c53544c74c016ad
[ "MIT" ]
permissive
kmike/django-generic-images
bb8344751c27056c88abedb6a3669204f0b5b25b
4e45068ed219ac35396758eb6b6e1fe5306147df
refs/heads/origin/master
2023-08-18T04:12:04.668596
2009-12-25T15:45:13
2009-12-25T15:45:13
2,316,219
5
3
null
2017-11-10T15:16:30
2011-09-02T20:16:38
Python
UTF-8
Python
false
false
2,306
py
from django.db import models from django.contrib.contenttypes.models import ContentType from django.db.models import get_model from generic_utils.managers import GenericModelManager def get_model_class_by_name(name): app_label, model_name = name.split(".") model = get_model(app_label, model_name, False) return model class ImagesAndUserManager(models.Manager): """ Useful manager for models that have AttachedImage (or subclass) field and 'injector=GenericIngector()' manager. """ def __init__(self, *args, **kwargs): try: image_model_class = kwargs.pop('image_model_class') except KeyError: image_model_class = 'generic_images.AttachedImage' self.image_model_class = get_model_class_by_name(image_model_class) super(ImagesAndUserManager, self).__init__(*args, **kwargs) def select_with_main_images(self, limit=None, **kwargs): ''' Select all objects with filters passed as kwargs. For each object it's main image instance is accessible as ``object.main_image``. Results can be limited using ``limit`` parameter. Selection is performed using only 2 or 3 sql queries. ''' objects = self.get_query_set().filter(**kwargs)[:limit] self.image_model_class.injector.inject_to(objects,'main_image', is_main=True) return objects def for_user_with_main_images(self, user, limit=None): return self.select_with_main_images(user=user, limit=limit) def get_for_user(self, user): objects = self.get_query_set().filter(user=user) return objects class AttachedImageManager(GenericModelManager): ''' Manager with helpful functions for attached images ''' def get_for_model(self, model): ''' Returns all images that are attached to given model. Deprecated. Use `for_model` instead. ''' return self.for_model(model) def get_main_for(self, model): ''' Returns main image for given model ''' try: return self.for_model(model).get(is_main=True) except models.ObjectDoesNotExist: return None
63456deeb37fe3d0953db49310e7b28446f990fe
f4924a0a6d1eb17f3b7dca035f7dedfe0231254a
/src/dsgrn_net_query/queries/CountStableFC_large_networks.py
be619af9d650d362d75488d495c1be52ad016a78
[ "MIT" ]
permissive
julianfox8/dsgrn_net_query
b22f4ac3f75a6d0d21fc7b3a703389486b7a27f6
89df8bded9d60384864b04703ef52dfbd52632d9
refs/heads/master
2023-08-22T08:36:01.137658
2021-10-01T17:25:50
2021-10-01T17:25:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,304
py
import DSGRN import os, json, sys,subprocess,ast,shutil def query(network_file,params_file,resultsdir=""): ''' :param network_file: a .txt file containing either a single DSGRN network specification or a list of network specification strings in DSGRN format :param params_file: A json file with the keys "num_proc" = number of processes to use for each database creation "count" = True or False (true or false in .json format) whether or not to return the number of matches (True) or just whether or not there is at least one match (False) "datetime" : optional datetime string to append to subdirectories in resultsdir, default = system time :param resultsdir: optional path to directory where results will be written, default is current directory :return: Writes a .json file containing a dictionary keyed by DSGRN network specification with a list of results. The results are DSGRN parameter count that have at least one Morse set that is a stable full cycle, or True (existence of at least one stable full cycle) or False (none exist), depending on the value of the parameter "count". The size of the DSGRN parameter graph for the network is also recorded. { networkspec : [result, DSGRN param graph size] }. ''' networks = read_networks(network_file) params = json.load(open(params_file)) datetime = None if "datetime" not in params else params["datetime"] if not networks: raise ValueError("No networks available for analysis. Make sure network file is in the correct format.") else: num_proc, count = sanity_check(params) results = {} for k,netspec in enumerate(networks): netfile = "temp{}.txt".format(k) dbfile = "temp{}.db".format(k) if os.path.exists(dbfile): os.remove(dbfile) with open(netfile,"w") as f: f.write(netspec) subprocess.check_call("mpiexec -n {} Signatures {} {}".format(num_proc,netfile,dbfile),shell=True) db = DSGRN.Database(dbfile) N = db.parametergraph.size() matches = len(DSGRN.StableFCQuery(db).matches()) if count: results[netspec] = (matches,N) else: results[netspec] = (matches > 0, N) subprocess.call(["rm",netfile]) subprocess.call(["rm",dbfile]) print("Network {} of {} complete".format(k + 1, len(networks))) sys.stdout.flush() record_results(network_file,params_file,results,resultsdir,datetime) def sanity_check(params): ''' Checks to be sure the correct keys are in the dictionary params. :param params: dictionary :return: Either the values of the keys "num_proc" and "count" in the parameter dictionary, or an error is raised. ''' if "num_proc" not in params or "count" not in params: raise ValueError("The keys 'num_proc' and 'count' must be specified in the parameter file.") return params["num_proc"],params["count"] def record_results(network_file,params_file,results,resultsdir,datetime): ''' Record results in a .json file. :param network_file: The input .txt file containing the list of DSGRN network specifications. :param params_file: The input .json parameter file. :param results: The dictionary of results. :param resultsdir: The location to save the dictionary of results. :param datetime: None or string with datetime :return: None. File is written. ''' resultsdir = create_results_folder(network_file, params_file, resultsdir,datetime) rname = os.path.join(resultsdir,"query_results.json") if os.path.exists(rname): os.rename(rname,rname+".old") json.dump(results,open(rname,'w')) print(resultsdir) def read_networks(network_file): ''' NOTE: Forced to copy from file_utilities due to collision between import of MPI and the mpiexec call inside this file. Read a .txt network file that has either a single DSGRN network specification or a list of them :param networks: A .txt file containing a single DSGRN network specification or a list of network specifications, :return: list of DSGRN network specifications ''' network_str = open(network_file).read() if not network_str: networks = [] elif network_str[0] == "[": networks = ast.literal_eval(network_str) else: while network_str[-1] == '\n': network_str = network_str[:-1] networks = [network_str] return networks def create_results_folder(network_file, params_file, resultsdir,datetime): ''' NOTE: Forced to copy from file_utilities due to collision between import of MPI and the mpiexec call inside this file. Create a date-time stamped folder to save results. Copy over input files. :param network_file: A .txt file :param params_file: A .json file :param resultsdir: optional path to directory where results will be written :return: string containing path to date-time stamped directory to save results file ''' if datetime is None: datetime = subprocess.check_output(['date +%Y_%m_%d_%H_%M_%S'], shell=True).decode(sys.stdout.encoding).strip() dirname = os.path.join(os.path.expanduser(resultsdir), "dsgrn_net_query_results" + datetime) queriesdir = os.path.join(dirname, "queries" + datetime) os.makedirs(queriesdir) sys.stdout.flush() inputfilesdir = os.path.join(dirname, "inputs" + datetime) os.makedirs(inputfilesdir) # save input files to computations folder shutil.copy(network_file, inputfilesdir) if params_file: shutil.copy(params_file, inputfilesdir) return queriesdir if __name__ == "__main__": if len(sys.argv) < 3: print( "Calling signature has two required arguments \n " \ "python CountStableFC_large_networks.py <path_to_network_file> <path_to_parameter_file>" ) exit(1) network_file = sys.argv[1] params_file = sys.argv[2] if len(sys.argv) > 3: resultsdir = sys.argv[3] query(network_file, params_file, resultsdir) else: query(network_file, params_file)
2e82b624c7bd7f45c6340878eaaf67bc60fc5bad
d437914461b775a21ced89300d39893d1bc11c53
/apps/about/views/__init__.py
8031bc3edbf6fcf8db52e39ff4c8ec3df2570da5
[]
no_license
RumorIO/healersource
86975107da02a18eac89bc65c72dd06f71ac2d72
681ef09e4044879840f7f0c8bccc836c3cffec3c
refs/heads/master
2020-12-03T02:18:56.378837
2016-02-19T15:32:52
2016-02-19T15:32:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
40,297
py
# coding=utf-8 import os import json import operator import random from datetime import timedelta from collections import defaultdict from django.views.decorators.cache import cache_page from django.views.generic import TemplateView from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.contrib.gis.measure import D from django.core.urlresolvers import reverse from django.template.loader import render_to_string from django.db.models import Count, Sum from django.http import Http404, HttpResponse, HttpResponseBadRequest, QueryDict from django.utils.timezone import datetime from django.shortcuts import render_to_response, redirect, get_object_or_404 from django.template.context import RequestContext from django.conf import settings from django.utils import timezone from django.utils.text import slugify from django_messages.models import Message from mezzanine.blog.models import BlogPost from oauth_access.models import UserAssociation from rest_framework.response import Response from rest_framework.views import APIView from util import add_to_mailchimp, utm_tracking, full_url from healing_requests.models import HealingRequest, HealingRequestSearch from modality.models import get_modality_menu, Modality, ModalityCategory from messages_hs.forms import ComposeFormUnregistered from search.utils import add_to_healer_search_history from intake_forms.models import IntakeFormSentHistory, IntakeForm from messages_hs.models import UnregisteredMessage, MessageExtra from account_hs.authentication import user_authenticated, user_is_superuser from account_hs.forms import ClientSignupForm from clients.models import Client, SiteJoinInvitation, ReferralsSent, ClientVideo from client_notes.models import Note from phonegap.utils import render_page from healers.forms import HealerSearchForm, ConciergeForm from healers.models import (Healer, Referrals, Appointment, Zipcode, WellnessCenter, is_healer, get_account_type, Concierge, Clients) from healers.utils import (Setup_Step_Names, get_fill_warning_links, send_hs_mail, get_full_url) from healers.views import get_healers_geosearch from payments.models import Payment, Customer, Charge from send_healing.utils import ghp_members from send_healing.models import SentHealing from about.utils import TOP_CITIES, UnicodeWriter, get_featured_providers from about.models import UserAssociationDated from about.sitemap import (search_top_categories, search_top_cities, search_top_specialties) @login_required def what_next(request): def get_suggested_recommendations(): from friends_app.recommendations import ProviderRecommendationsFinder referrals_from_me = [o["friend"] for o in Referrals.objects.referrals_from(request.user)] return ProviderRecommendationsFinder(request, referrals_from_me, recommendations_limit=4).recommendations client = get_object_or_404(Client, user=request.user) healer = is_healer(request.user) first_login_cached = client.first_login if first_login_cached: client.first_login = False client.save() if healer: return redirect('provider_setup', 0) else: incomplete_forms = client.incomplete_forms() if incomplete_forms: return redirect('intake_form_answer', incomplete_forms[0].healer.user.username) if not healer: if request.user.client.ambassador_program: return redirect('ambassador:dashboard') return redirect('friends', 'healers') fill_warning_links = get_fill_warning_links(healer) # referrals_to_me_count = Referrals.objects.referrals_to(healer.user, count=True) request.step_names = Setup_Step_Names.get_steps(healer) suggested_recommendations = get_suggested_recommendations() return render_to_response('about/what_next.html', { 'healer': healer, 'fill_warning_links': fill_warning_links, # 'referrals_to_me_count': referrals_to_me_count, "suggested_recommendations": suggested_recommendations, 'friend_type': 'referrals', "first_login": first_login_cached, 'editing_self': True, }, context_instance=RequestContext(request)) @user_is_superuser def wcenter(request): wellness_centers = WellnessCenter.objects.all().order_by('-pk') output = [] for wellness_center in wellness_centers: referrals_to_me_count = Referrals.objects.referrals_from(wellness_center.user, count=True) output.append({ 'title': wellness_center.user.username, 'url': wellness_center.get_full_url, 'date': wellness_center.user.date_joined, 'providers': referrals_to_me_count, }) return render_to_response('about/wellness_center_list.html', { 'wellness_centers': output, }, context_instance=RequestContext(request)) def get_city_select_code(query): if 'city' in query and 'state' in query: if query['city'] and query['state']: zipcodes = Zipcode.objects\ .filter(city=query['city'].upper(), state=query['state'])\ .values_list('id') if zipcodes: return max(zipcodes)[0] return 0 DAY_VALUES = [1, 2, 3, 7, 14, 30, 60, 90, 180, 365] def render_search(extra_context, request=None, template=None): if template is None: template = 'about/search_results.html' ctx = { 'search_form': HealerSearchForm(), 'compose_form': ComposeFormUnregistered(), 'modality_menu': get_modality_menu(), 'no_find_popup': True, 'url_search': '%s%s' % (settings.DEFAULT_HTTP_PROTOCOL, full_url(reverse('search_ajax'))), } return render_page(request, template, ctx, extra_context) def search(request, template_name=None, modality=None, city=None, specialty=None, all=False, skip_first_hr=False, state=None, embed_user=None, phonegap=False): """ Search providers by parameters of HealerSearchForm skip_first_hr - false to show hr in infinite scroll """ def get_concierge_and_city(): if not point: return None, None concierges = Concierge.objects.all().values_list('pk', flat=True) healers = Healer.objects.filter( clientlocation__location__point__distance_lte=(point, D(mi=50)), pk__in=concierges).distinct() if healers: healer = healers[0] return healers[0], healer.clientlocation_set.filter(location__point__distance_lte=(point, D(mi=50)))[0].location.city return None, None def get_stats(): def filter_last_30_days(qset, field_name, date_field_name): fiter_name = '%s__%s__gte' % (field_name, date_field_name) filters = {fiter_name: datetime.today() - timedelta(30)} return qset.filter(**filters) def get_specialties_top10(): specialties_top10 = (Modality.objects_approved .values('title') .annotate(healers=Count('healer')) .order_by('-healers')) specialties_top10_complete = (Modality.objects_approved .filter(healer__in=healers_complete) .values('title') .annotate(healers_c=Count('healer')) .order_by('-healers_c')) specialties_top10 = specialties_top10[:10] specialties_top10_complete = specialties_top10_complete[:10] return healers_complete_combiner( specialties_top10, specialties_top10_complete) def get_specialties_categories(): specialties_categories = (ModalityCategory.objects .values('title') .annotate(healers=Count('modality__healer')) .order_by('-healers')) specialties_categories_complete = (ModalityCategory.objects .filter(modality__healer__in=healers_complete) .values('title') .annotate(healers_c=Count('modality__healer')) .order_by('-healers_c')) return healers_complete_combiner( specialties_categories, specialties_categories_complete) def get_healers_in_zip(): zip_city = (Zipcode.objects .filter(code__in=TOP_CITIES) .values('code', 'city', 'state', 'point')) healers_in_zip = {} healers_in_zip_complete = {} for zipcode in zip_city: hz = Healer.objects.filter( clientlocation__location__point__distance_lte= (zipcode['point'], D(mi=50))).distinct() healers_in_zip.update({zipcode['code']: hz.count()}) hz = Healer.objects.filter( clientlocation__location__point__distance_lte= (zipcode['point'], D(mi=50)), pk__in=healers_complete).distinct() healers_in_zip_complete.update({zipcode['code']: hz.count()}) healers_in_zip = [{ 'code': z['code'], 'city': z['city'], 'state': z['state'], 'healers': healers_in_zip.get(z['code'], 0), 'healers_c': healers_in_zip_complete.get(z['code'], 0) } for z in zip_city] healers_in_zip.sort(key=lambda h: TOP_CITIES.index(h['code'])) return healers_in_zip def get_intake_form(): now = datetime.now().date() intake_form_stats = {'created': [], 'sent': []} intake_forms = IntakeForm.objects.all() intake_forms_sent = IntakeFormSentHistory.objects.all() for n in DAY_VALUES: start_day = now - timedelta(n) intake_form_stats['created'].append(intake_forms.filter( created_at__range=(start_day, now)).count()) intake_form_stats['sent'].append(intake_forms_sent.filter( created_at__range=(start_day, now)).count()) intake_form_stats['created'].append(intake_forms.count()) intake_form_stats['sent'].append(intake_forms_sent.count()) return intake_form_stats def get_messages(): now = datetime.now().date() message_stats = {'registered': [], 'unregistered': []} messages_reg_all = Message.objects.all() messages_unreg_all = UnregisteredMessage.objects.all() for n in DAY_VALUES: start_day = now - timedelta(n) message_stats['registered'].append(messages_reg_all .filter(sent_at__range=(start_day, now)).count()) message_stats['unregistered'].append(messages_unreg_all .filter(sent_at__range=(start_day, now)).count()) message_stats['registered'].append(messages_reg_all.count()) message_stats['unregistered'].append(messages_unreg_all.count()) return message_stats def get_source(): how_did_you_find_us_stats = [] for item in Client.LINK_SOURCE_CHOICES: how_did_you_find_us_stats.append({'name': item[1], 'total': Client.objects.filter(link_source=item[0]).count()}) return how_did_you_find_us_stats def get_weekstat(): NUM_WEEKS = 5 now = datetime.now().date() weekstat = {} for week in range(0, NUM_WEEKS): start_week = now - timedelta(weeks=week + 1) end_week = start_week + timedelta(days=7) weekstat['week_%s' % week] = [ start_week, end_week - timedelta(days=1)] providers_all = (Healer.objects .filter(user__is_active=True, user__date_joined__range=[start_week, end_week]) .count()) providers_complete = (Healer.objects .filter(user__is_active=True, pk__in=healers_complete, user__date_joined__range=[start_week, end_week]) .count()) weekstat['week_%s_all' % week] = providers_all weekstat['week_%s_complete' % week] = providers_complete clients = (Client.objects .filter(user__is_active=True, user__date_joined__range=[start_week, end_week]) .exclude(id__in=providers) .count()) weekstat['week_%s_clients' % week] = clients appointments = (Appointment.objects.without_relations() .filter(created_date__range=[start_week, end_week]) .count()) weekstat['week_%s_appointments' % week] = appointments return weekstat def get_30_day_user_stats(): NUM_DAYS = 30 now = datetime.now().date() daystat = {'n': [], 'all': [], 'complete': [], 'clients': [], 'appointments': []} for n in range(1, NUM_DAYS + 1): start_day = now - timedelta(n) end_day = start_day + timedelta(1) all = (Healer.objects .filter(user__is_active=True, user__date_joined__range=[start_day, end_day]) .count()) complete = (Healer.objects .filter(user__is_active=True, pk__in=healers_complete, user__date_joined__range=[start_day, end_day]) .count()) clients = (Client.objects .filter(user__is_active=True, user__date_joined__range=[start_day, end_day]) .exclude(id__in=providers).count()) appointments = (Appointment.objects.without_relations() .filter(created_date__range=[start_day, end_day]).count()) daystat['n'].append(n) daystat['all'].append(all) daystat['complete'].append(complete) daystat['clients'].append(clients) daystat['appointments'].append(appointments) return daystat def get_posts_and_videos_stats(): now = datetime.now().date() daystat = {'posts_all': [], 'posts_published': [], 'videos': []} posts_all_total = BlogPost.objects.all() posts_published_total = posts_all_total.filter(status=2) videos_total = ClientVideo.objects.all() for n in DAY_VALUES: start_day = now - timedelta(n) posts_all = posts_all_total.filter(publish_date__range=(start_day, now)).count() posts_published = posts_published_total.filter(publish_date__range=(start_day, now)).count() videos = videos_total.filter(date_added__range=(start_day, now)).count() daystat['posts_all'].append(posts_all) daystat['posts_published'].append(posts_published) daystat['videos'].append(videos) daystat['posts_all'].append(posts_all_total.count()) daystat['posts_published'].append(posts_published_total.count()) daystat['videos'].append(videos_total.count()) return daystat def get_invs(): # ['2',] maybe more statuses? invs = {} all_invitations = SiteJoinInvitation.objects.filter(status__in=['2', ]) client_invitations = SiteJoinInvitation.objects.filter(is_to_healer=False, status__in=['2', ]) provider_invitations = SiteJoinInvitation.objects.filter(is_to_healer=True, status__in=['2', ]) invs['all_total'] = all_invitations.count() invs['all_dated'] = (all_invitations .filter(sent__range=[start_date, timezone.now()]) .extra({'day': "(EXTRACT (DAY FROM (now() - sent)))"}) .values('day') .annotate(qty=Count('id'))) invs['client_total'] = client_invitations.count() invs['client_dated'] = (client_invitations .filter(sent__range=[start_date, timezone.now()]) .extra({'day': "(EXTRACT (DAY FROM (now() - sent)))"}) .values('day') .annotate(qty=Count('id'))) invs['provider_inv_total'] = provider_invitations.filter(create_friendship=False).count() invs['provider_inv_dated'] = (provider_invitations .filter(create_friendship=False, sent__range=[start_date, timezone.now()]) .extra({'day': "(EXTRACT (DAY FROM (now() - sent)))"}) .values('day') .annotate(qty=Count('id'))) invs['provider_rec_total'] = provider_invitations.filter(create_friendship=True).count() invs['provider_rec_dated'] = (provider_invitations .filter(create_friendship=True, sent__range=[start_date, timezone.now()]) .extra({'day': "(EXTRACT (DAY FROM (now() - sent)))"}) .values('day') .annotate(qty=Count('id'))) invs['referrals_total'] = ReferralsSent.objects.all().count() invs['referrals'] = (ReferralsSent.objects .filter(date_sent__range=[start_date, timezone.now()]) .extra({'day': "(EXTRACT (DAY FROM (now() - date_sent)))"}) .values('day') .annotate(qty=Count('id'))) invs['all_dated'] = calculate_daily_inv(invs['all_dated']) invs['client_dated'] = calculate_daily_inv(invs['client_dated']) invs['provider_inv_dated'] = calculate_daily_inv(invs['provider_inv_dated']) invs['provider_rec_dated'] = calculate_daily_inv(invs['provider_rec_dated']) invs['referrals'] = calculate_daily_inv(invs['referrals']) return invs def get_stats_dated(objects): def convert_to_dated(providers): output = {} now = datetime.now().date() for n in DAY_VALUES: start_date = now - timedelta(n) providers_count = providers.filter( user__date_joined__range=[start_date, now]).count() output['day%d' % n] = providers_count return output # \ # .extra({'day': "(EXTRACT (DAY FROM (now() - \"auth_user\".\"date_joined\")))"}) \ # .values('day') \ # .annotate(qty=Count('id')) # return calculate_daily_inv(providers) return { 'count': objects.count(), 'dated': convert_to_dated(objects), } def get_stats_daily(objects, created=False, added=False, created_reversed=False): def get_filter(): if added: return 'added__range' elif created: return 'date_created__range' elif created_reversed: return 'created_date__range' return 'user__date_joined__range' def get_extra(): if added: return {'day': '(EXTRACT (DAY FROM (now() - added)))'} elif created: return {'day': '(EXTRACT (DAY FROM (now() - date_created)))'} elif created_reversed: return {'day': '(EXTRACT (DAY FROM (now() - created_date)))'} return {'day': '(EXTRACT (DAY FROM (now() - "auth_user"."date_joined")))'} def get_count_id_name(): if created: return 'user_assoc' return 'id' return {'count': objects.count(), 'dated': calculate_daily_inv(objects .filter(**{get_filter(): [start_date, timezone.now()]}) .extra(get_extra()) .values('day') .annotate(qty=Count(get_count_id_name())))} providers = Healer.objects.all().order_by('-id') healers_complete = Healer.complete.values_list('id', flat=True) start_date = timezone.now() - timezone.timedelta(days=365) wellness_centers_all = WellnessCenter.objects.filter(user__is_active=True) wellness_centers_complete = wellness_centers_all.filter(pk__in=healers_complete) providers_all = (Healer.objects .filter(user__is_active=True) .exclude(pk__in=wellness_centers_all)) providers_complete = (providers_all .filter(pk__in=healers_complete) .exclude(pk__in=wellness_centers_complete)) providers_blank_about = providers_all.filter(about='') providers_blank_location = providers_all.filter(clientlocation__isnull=True) providers_blank_avatar = providers_all.filter(user__avatar__isnull=True) providers_using_schedule = providers_complete.filter(scheduleVisibility=Healer.VISIBLE_EVERYONE) facebook_imports = (UserAssociationDated.objects .filter(user_assoc__user__id__in=providers, user_assoc__service='facebook')) google_imports = (UserAssociationDated.objects .filter(user_assoc__user__id__in=providers, user_assoc__service='google')) clients = Client.objects.filter(user__is_active=True).exclude(id__in=providers) healers_with_notes = (Healer.objects.all() .annotate(number_of_notes=Count('notes')) .filter(number_of_notes__gt=0)) stripe_connect_users = UserAssociation.objects.filter(service='stripe').values_list('user', flat=True) stripe_connect_healers = Healer.objects.filter(user__in=stripe_connect_users) payments = Payment.objects.all() payments_healers = payments.values_list('appointment__healer', flat=True).distinct() payments_all = [] for healer in payments_healers: payments_all.append((Healer.objects.get(pk=healer), payments.filter(appointment__healer=healer).aggregate(total_charge=Sum('amount')).values()[0])) payments_all = sorted(payments_all, key=lambda tup: tup[1], reverse=True) stats = { 'top_city_searches': (filter_last_30_days(Zipcode.objects.all(), 'healersearchhistory', 'created_at') .annotate(num_of_searches=Count('healersearchhistory')) .exclude(num_of_searches=0).order_by('-num_of_searches')[:10]), 'top_modality_searches': (filter_last_30_days(Modality.objects_approved.all(), 'healersearchhistory', 'created_at') .annotate(num_of_searches=Count('healersearchhistory')) .exclude(num_of_searches=0).order_by('-num_of_searches')[:10]), 'healers_with_most_appointments': (filter_last_30_days(Healer.objects.all(), 'healer_appointments', 'created_date') .annotate(num_appointments=Count('healer_appointments')) .order_by('-num_appointments')[:10]), 'specialties_top10': get_specialties_top10(), 'specialties_categories': get_specialties_categories(), 'healers_in_zip': get_healers_in_zip(), 'intake_form_stats': get_intake_form(), 'messages': get_messages(), 'source': get_source(), 'weekstat': get_weekstat(), 'users_daystat': get_30_day_user_stats(), 'posts_and_video_daystat': get_posts_and_videos_stats(), 'invs': get_invs(), 'wellness_centers_all': get_stats_dated(wellness_centers_all), 'providers_all': get_stats_dated(providers_all), 'wellness_centers_complete': get_stats_dated(wellness_centers_complete), 'providers_complete': get_stats_dated(providers_complete), 'providers_blank_about': get_stats_daily(providers_blank_about), 'providers_blank_location': get_stats_daily(providers_blank_location), 'providers_blank_avatar': get_stats_daily(providers_blank_avatar), 'providers_using_schedule': get_stats_daily(providers_using_schedule), 'recommendations': get_stats_daily(Referrals.objects, added=True), 'facebook_imports': get_stats_daily(facebook_imports, created=True), 'google_imports': get_stats_daily(google_imports, created=True), 'clients': get_stats_daily(clients), 'appointments': get_stats_daily( Appointment.objects.without_relations(), created_reversed=True), 'hr': { 'requests_count': HealingRequest.objects.count(), 'searches_count': HealingRequestSearch.objects.count(), 'saved_searches_count': HealingRequestSearch.objects.filter(saved=True).count(), 'people_contacted_count': MessageExtra.objects.filter( source=MessageExtra.SOURCE_CHOICE_HR).distinct('message').count(), }, 'notes': { 'healers_with_most_notes': (healers_with_notes .order_by('-number_of_notes')[:10]), 'total_number_of_notes': Note.objects.all().count(), 'number_of_healers_with_notes': healers_with_notes.count(), 'number_of_healers_with_more_than_seven_notes': healers_with_notes.filter(number_of_notes__gt=7).count() }, 'stripe': { 'stripe_connect_users_count': stripe_connect_users.count(), 'stripe_connect_percentage_fee': stripe_connect_healers.filter( booking_healersource_fee=Healer.BOOKING_HEALERSOURCE_FEE_PERCENTAGE).count(), 'stripe_connect_fixed_fee': stripe_connect_healers.filter( booking_healersource_fee=Healer.BOOKING_HEALERSOURCE_FEE_FIXED).count(), 'stripe_connect_total_amount': Payment.objects.all().aggregate(Sum('amount')).values()[0] / 100, 'gc_enabled_total': Healer.objects.filter(gift_certificates_enabled=True).count(), 'BOOKING_HEALERSOURCE_FEE': settings.BOOKING_HEALERSOURCE_FEE, }, 'ghp': { 'total_healing_sent': SentHealing.total_healing_sent(), 'number_of_members': ghp_members().count(), }, 'phonegap_registrations_number': Client.objects.filter( signup_source=Client.SIGNUP_SOURCE_APP).count(), 'ambassador': { 'top_five': (Client.objects .exclude(ambassador=None) .annotate(number_of_signed_up_users=Count('ambassador')) .order_by('-number_of_signed_up_users')[:5]), 'total': Client.objects.filter(ambassador_program=True).count(), 'number_of_signed_up_users': Client.objects.exclude(ambassador=None).count(), }, 'payments_notes_subscriptions_total': Customer.objects.exclude(payment_notes=0).count(), 'payments_all': payments_all } return providers[:50], stats message = "" point = None query = request.GET.copy() remote_sessions = query.pop('remote_sessions', [False])[0] exclude_centers = query.pop('exclude_centers', [False])[0] if city is not None: if search_top_cities.get(city, False) is not False: point = Zipcode.objects.filter( code=search_top_cities.get(city))[0] query.update({ 'zipcode': point.code, 'city': point.city, 'state': point.state, 'search_city_or_zipcode': '%s %s' % (point.city, point.state) }) else: if city != 'all': point = Zipcode.objects.filter(city=city) if state is not None: point = point.filter(state=state) if len(point) > 0: query.update({ 'zipcode': point[0].code, 'city': point[0].city, 'state': point[0].state, 'search_city_or_zipcode': '%s %s' % (point[0].city, point[0].state) }) else: raise Http404 city_select_code = get_city_select_code(query) if specialty is not None: if specialty in map(slugify, search_top_specialties): idx = map(slugify, search_top_specialties).index(specialty) modality = Modality.objects_approved.filter( title=search_top_specialties[idx])[0] query.update({ 'modality_id': modality.pk, 'modality': modality.title }) elif specialty in map(slugify, search_top_categories): idx = map(slugify, search_top_categories).index(specialty) category = ModalityCategory.objects.filter( title=search_top_categories[idx])[0] query.update({ 'modality_category_id': category.pk, 'modality': category.title, }) else: category = ModalityCategory.objects.filter(title=specialty) if len(category) > 0: query.update({ 'modality_category_id': category[0].pk, 'modality': category[0].title, }) else: modality = Modality.objects_approved.filter(title=specialty) if len(modality) > 0: query.update({ 'modality_id': modality[0].pk, 'modality': modality[0].title }) else: raise Http404 if query.get('modality_id', False): query['modality3'] = 'c:' + str(query['modality_id']) if query.get('modality_category_id', False): query['modality3'] = 'p:' + str(query['modality_category_id']) if not query.get('search_city_or_zipcode', False): query['search_city_or_zipcode'] = 'Everywhere' form = HealerSearchForm(query or None) zipcode = modality_category_id = modality_id = concierge = concierge_city = concierge_form = None providers = [] if form.is_valid() and not all: point, zipcode, message = process_zipcode(form, request) modality_category_id = form.cleaned_data.get('modality_category_id') modality_id = form.cleaned_data.get('modality_id') if modality_id: modality = Modality.objects_approved.filter(id=modality_id)[0] elif modality_category_id: modality = ModalityCategory.objects.filter(id=modality_category_id)[0] name_or_email = form.cleaned_data.get('name_or_email') request.session['search_state'] = form.cleaned_data if not message or settings.DEBUG: filter_by_referral = None if embed_user and not embed_user.client.embed_search_all: filter_by_referral = embed_user providers, more = get_healers_geosearch( request, None, point, modality_category_id, modality_id, name_or_email, remote_sessions=remote_sessions, exclude_centers=exclude_centers, filter_by_referral=filter_by_referral) concierge, concierge_city = get_concierge_and_city() if concierge is not None: concierge_form = ConciergeForm(request.POST or None) if concierge_form.is_valid(): concierge_form.email_data(concierge.user) if request.user.is_authenticated() and concierge.has_intake_form(): concierge.send_intake_form(request.user.client) request.session['concierge_request'] = True return redirect(reverse('intake_form_answer', args=[concierge.username()])) else: return redirect(reverse('concierge_thanks', args=[concierge.username()])) else: request.session['point'] = None modality_id = modality name_or_email = None form = HealerSearchForm(initial=request.session.get('search_state', None)) stats = None if all: if request.user.is_superuser or request.user.is_staff: providers, stats = get_stats() else: raise Http404 embed = None if embed_user: embed = { 'username': embed_user.username, 'background_color': embed_user.client.embed_background_color } search_display_type = request.GET.get('search_display_type', 'list') ctx = { 'stats': stats, "search_form": form, 'search_display_type': search_display_type, "found_providers": providers, "message": message, "modality_id": modality_id, "modality_category_id": modality_category_id, "modality": modality, "zipcode": zipcode, 'all': all, 'skip_first_hr': skip_first_hr, 'city_select_code': city_select_code, 'concierge': concierge, 'concierge_city': concierge_city, 'concierge_form': concierge_form, 'remote_sessions': remote_sessions, 'embed': embed, 'phonegap': phonegap, } return render_search(ctx, request, template_name) def process_zipcode(form, request): point = None message = None zipcode = form.get_zipcode() if zipcode: point = zipcode.point request.session['point'] = point request.session['zipcode'] = zipcode.code else: request.session['zipcode'] = "" # if not point: #and not settings.DEBUG: request.session['point'] = None if form.cleaned_data['zipcode'] and form.cleaned_data['zipcode'] != '0': message = "Could not find zipcode %s" % form.cleaned_data['zipcode'] user_agent = request.META.get('HTTP_USER_AGENT') if user_agent and user_agent.find('compatible') == -1: add_to_healer_search_history(form.data.copy(), request.user, zipcode) return point, zipcode, message def tour(request, template_name="about/tour.html"): client_signup_form = ClientSignupForm() form = client_signup_form return render_to_response(template_name, { "client_signup_form": client_signup_form, "form": form, }, context_instance=RequestContext(request)) def healers_complete_combiner(healers, healers_comp): sp = defaultdict(dict) for dd in (healers, healers_comp): for d in dd: if 'healers' not in sp[d['title']]: sp[d['title']].update({'healers': 0}) if 'healers_c' not in sp[d['title']]: sp[d['title']].update({'healers_c': 0}) sp[d['title']].update(d) return sorted([d[1] for d in sp.items()], key=lambda k: k['healers'], reverse=True) def calculate_daily_inv(inv_dated): """ makes a dict for invitations sum 1,2,3,7,14.... days ago period """ #boilerpalte for invitations per day empty_dates = [{'day': d, 'qty': 0} for d in range(1, 366)] dt = defaultdict(dict) for dd in (empty_dates, inv_dated): for d in dd: dt[d['day']].update(d) inv_dated_final = { 'day1': 0, 'day2': 0, 'day3': 0, 'day7': 0, 'day14': 0, 'day30': 0, 'day60': 0, 'day90': 0, 'day180': 0, 'day365': 0, } tsum = 0 for cid in dt.values(): tsum += cid['qty'] for d_value in DAY_VALUES: if cid['day'] <= d_value: inv_dated_final['day%s' % d_value] = tsum break return inv_dated_final @user_authenticated def all_users(request, healers_only=False, center_clients_only=False, **kwargs): if not request.user.is_superuser and (healers_only or not center_clients_only): raise Http404 fname_str = '' if healers_only: profiles = Healer.objects.all().order_by('-user__date_joined') if kwargs.pop('boston', False): print Zipcode.objects.get(code='02134').point profiles = Healer.objects.filter(clientlocation__location__point__distance_lte=(Zipcode.objects.get(code='02134').point, D(mi=100)) ).distinct() fname_str = 'Healers' else: if center_clients_only: profiles = sorted([o['friend'].client for o in Clients.objects.friends_for_user(request.user)], key=lambda k: k.user.first_name) else: profiles = Client.objects.filter(user__is_active=True).order_by('-user__date_joined') fname_str = 'Clients' response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="All_%s_%s.csv"' % (fname_str, str(datetime.today()).split(' ')[0]) writer = UnicodeWriter(response) for p in profiles: u = p.user writer.writerow([unicode(u.first_name), unicode(u.last_name), unicode(u.email), get_account_type(u), unicode(u.date_joined)]) return response def concierge_thanks(request, username): concierge = Concierge.objects.get(user__username='center') message = render_to_string( 'about/concierge_thanks_message.html', {'name': concierge.user.get_full_name()}) return render_to_response('about/concierge_thanks.html', { 'thanks_message': message }, context_instance=RequestContext(request)) def render_notes_landing(extra_context, request=None): template = 'landing_pages/notes.html' ctx = { 'images': sorted(os.listdir(settings.LANDING_NOTES_ROOT)), 'signup_form': ClientSignupForm(), } return render_page(request, template, ctx, extra_context) @utm_tracking def landing_page_notes(request): tracking_code_update = request.session.get('tracking_code', {}) tracking_code = settings.TRACKING_CODES['notes_landing'] tracking_code.update(tracking_code_update) request.session['tracking_code'] = tracking_code request.session['notes_lp'] = True return render_notes_landing({}, request) @utm_tracking def landing_page_book(request): return render_to_response('landing_pages/book.html', { }, context_instance=RequestContext(request)) def render_book_thanks(extra_context, request=None): ctx = {'thanks_message': render_to_string('about/book_download.html')} if (request is not None and request.META.get('HTTP_REFERER', '') == get_full_url('landing_page_book')): ctx['tracking_code'] = settings.TRACKING_CODES['book_landing'] template = 'account/thanks.html' return render_page(request, template, ctx, extra_context) def book_thanks(request): return render_book_thanks({}, request) def render_error_report(extra_context, request=None): ctx = {} template = 'about/error_report.html' return render_page(request, template, ctx, extra_context) def error_report(request): return render_error_report({}, request) @cache_page(60 * 60 * 24) def featured(request): def get_centers(): centers = list(WellnessCenter.objects.all()) centers.sort(key=lambda x: len(x.get_healers_in_wcenter()), reverse=True) return centers[:5] session = request.session.get('search_state', None) form = HealerSearchForm(initial=session) point = request.session.get('point', None) providers = get_healers_geosearch(request, point=point, schedule_visibility=Healer.VISIBLE_EVERYONE, exclude_centers=True)[0] centers = get_centers() return render_to_response( 'about/featured.html', { 'search_form': form, 'found_providers': providers, 'centers': centers, 'compose_form': ComposeFormUnregistered(), }, context_instance=RequestContext(request, {})) def pricing(request): def get_healers(): healers = list(Healer.complete.all().select_related('user')) random.shuffle(healers) return healers return render_to_response( 'about/pricing.html', { 'healers': get_healers(), 'client_signup_form': ClientSignupForm(), }, context_instance=RequestContext(request, {})) @cache_page(60 * 60 * 24) def learn(request, only_posts=False): def get_clients_for_videos_list(): """Return 5 Clients. One client - username 'healersource_tv', others - sorted by number of videos desc.""" def filter_videos(qset): return qset.filter(videotype=ClientVideo.VIDEO_TYPE_CLIENT) def get_clients_with_videos(): videos = ClientVideo.objects.all() videos = filter_videos(videos) clients = list(set(videos.values_list('client', flat=True))) return Client.objects.filter(pk__in=clients).exclude(pk=healersource_tv_client.pk) def get_clients_sorted_by_number_of_videos(): clients_videos_number = [ {'client': client, 'number_of_videos': filter_videos(client.videos.all()).count()} for client in get_clients_with_videos()] clients_videos_number.sort(key=lambda x: x['number_of_videos'], reverse=True) return clients_videos_number[:4] def get_hs_tv_client_number_of_videos(): videos = healersource_tv_client.videos.all() return filter_videos(videos).count() healersource_tv_client = Client.objects.get(user__username='healersource_tv') return [{'client': healersource_tv_client, 'number_of_videos': get_hs_tv_client_number_of_videos()}] + get_clients_sorted_by_number_of_videos() def get_top_bloggers(): """Return 5 top bloggers.""" def get_users_with_posts(): posts = blogposts.distinct() users = list(set(posts.values_list('user', flat=True))) return User.objects.filter(pk__in=users) users_number_of_articles = [{'user': user, 'number_of_articles': user.blogposts.count()} for user in get_users_with_posts()] users_number_of_articles.sort(key=lambda x: x['number_of_articles'], reverse=True) # return User.objects.annotate(number_of_articles=Count('blogposts')).order_by('-number_of_articles')[:5] return users_number_of_articles[:5] complete_users = Healer.complete.all().values_list('user', flat=True) blogposts = BlogPost.objects.published().filter(user__in=complete_users) posts = blogposts.order_by('-publish_date').distinct() ctx = {'posts': posts} if not only_posts: ctx.update({ 'clients_for_videos_list': get_clients_for_videos_list(), 'top_bloggers': get_top_bloggers(), }) return render_to_response( 'about/learn.html', ctx, context_instance=RequestContext(request, {})) class SearchAjax(APIView): def get(self, request, format=None): try: display_type = request.GET.get('display_type', 'list') embed_user = request.GET.get('embed_user', False) phonegap = json.loads(request.GET.get('phonegap', 'false')) except: return HttpResponseBadRequest() if embed_user: embed_user = User.objects.get(username__exact=embed_user) response = search( request, template_name='about/search/results_%s.html' % display_type, skip_first_hr=True, embed_user=embed_user, phonegap=phonegap) return Response(response.content) class CitySelectCode(APIView): def get(self, request, format=None): try: query = json.loads(request.GET['query']) except: return HttpResponseBadRequest() return Response(get_city_select_code(query)) class FeaturedProviders(APIView): """Return html blocks with featured providers for homepage.""" def get(self, request, format=None): try: featured_providers = request.GET['featured_providers'] except: return HttpResponseBadRequest() available_providers = get_featured_providers() try: featured_providers = json.loads(featured_providers) except ValueError: return HttpResponseBadRequest() result = '' for provider in featured_providers: if provider in available_providers: try: provider = Healer.objects.get(user__username__iexact=provider) is_schedule_visible = provider.is_schedule_visible(request.user) result += render_to_string( 'about/homepage_featured_provider.html', { 'featured_provider': provider, 'is_schedule_visible': is_schedule_visible, 'hide': True, }) except Healer.DoesNotExist: pass return Response(result) class GeoSpecialties(APIView): def get(self, request, format=None): geo = int(request.GET.get('geo', False)) healers_complete = Healer.complete if geo: zipcode = Zipcode.objects.get(pk=geo) healers = healers_complete.within_50_miles(zipcode) if len(healers) == 0: return Response() else: healers = healers_complete healers = healers.values_list('pk', flat=True) modalities = Modality.objects_approved.prefetch_related('category') if len(healers) > 0: modalities = modalities.filter(healer__pk__in=healers) modalities = modalities.order_by('title').distinct() categories = {} categories_tree = {} for modality in modalities: for category in modality.category.all(): categories.update({ category.title: category.pk }) if not categories_tree.get(category.title, False): categories_tree[category.title] = [] if modality not in categories_tree[category.title]: categories_tree[category.title].append(modality) categories_tree = sorted(categories_tree.iteritems(), key=operator.itemgetter(0)) out = '<option selected="selected" value="">Any Specialty</option>' for cat in categories_tree: out += '<optgroup label="%s">' % cat[0] out += '<option value="p:%s">Any type of %s</option>' % (categories[cat[0]], cat[0]) for spec in cat[1]: out += '<option value="c:%s">%s</option>' % (spec.pk, spec.title) out += '</optgroup>' return Response(out) class ContactUs(APIView): def post(self, request, format=None): try: data = QueryDict(request.POST['data']) except: return HttpResponseBadRequest() from_ = '%s <%s>' % (data['name'], data['email']) send_hs_mail('Contact Us message', "about/contact_us.txt", {'message': data['message']}, from_, ['[email protected]']) return Response() class EmailConfirmationRequiredView(TemplateView): template_name = 'about/confirmation_required.html' def get_context_data(self, **kwargs): context = super(EmailConfirmationRequiredView, self).get_context_data(**kwargs) context.update(kwargs) return context
ad41c5695cf98fe7852c8050c4ce5462a713dacf
de0d5fafb49f603ca4979d6f4c8eba52888714c2
/applied_social_network_analysis/network_connectivity/visualizing_networks.py
fac080b713f74e529d55299dc831ae26587a0fd8
[]
no_license
sivaneshl/python_data_analysis
1ab42569d5cc843f79765332a30769588447d6f6
36af66ae9e03827f5dfe3cc64d993b84b1b31e9b
refs/heads/master
2020-09-11T17:28:51.459573
2020-07-05T18:43:59
2020-07-05T18:43:59
222,137,636
0
0
null
null
null
null
UTF-8
Python
false
false
1,977
py
import networkx as nx import matplotlib.pyplot as plt G = nx.read_gpickle('resources/major_us_cities') fig = plt.figure(figsize=(10, 9)) nx.draw_networkx(G) # uses default spring layout # using random layout plt.figure(figsize=(10, 9)) pos = nx.random_layout(G) nx.draw_networkx(G, pos) # circular layour plt.figure(figsize=(10, 9)) pos = nx.circular_layout(G) nx.draw_networkx(G, pos) # using own layout by passing positions as the 'location' attribute plt.figure(figsize=(10, 9)) pos = nx.get_node_attributes(G, 'location') nx.draw_networkx(G, pos) # change attributes plt.figure(figsize=(10, 9)) nx.draw_networkx(G, pos, alpha=0.7, # transparency with_labels=False, # remove labels edge_color='0.4') # make edges grey plt.axis('off') # remove the axis plt.tight_layout() # reduce padding # change node color, size and edge width plt.figure(figsize=(10, 7)) node_color = [G.degree(v) for v in G] # set the node color based on the degree of the node node_size = [0.0005*nx.get_node_attributes(G, 'population')[v] for v in G] # set the node size based on the population attribute edge_width = [0.0005*G[u][v]['weight'] for u, v in G.edges()] # set the edge width based on weight of the edge nx.draw_networkx(G, pos, node_size=node_size, node_color=node_color, edge_width=edge_width, alpha=0.7, with_labels=False, edge_color='0.4', cmap=plt.cm.Blues) plt.axis('off') # remove the axis plt.tight_layout() # reduce padding # draw specific edges and add labels to specific nodes greater_than_770 = [x for x in G.edges(data=True) if x[2]['weight'] > 770] nx.draw_networkx_edges(G, pos, edgelist=greater_than_770, edge_color='r', alpha=0.7, edge_width=6) nx.draw_networkx_labels(G, pos, labels={'Los Angeles, CA': 'LA', 'New York, NY': 'NYC'}, font_size=18, font_color='white') plt.axis('off') # remove the axis plt.tight_layout() # reduce padding plt.show()
496912f6a5efc1cfacb3505a445c8d08b57768e8
601a5ac66309608772db5a9fa65faca4a0acad4f
/spyder/plugins/completion/providers/snippets/widgets/__init__.py
6a3215fe6b5108d8e1e1b68a4a100bb027af8530
[ "LGPL-2.0-or-later", "BSD-3-Clause", "LGPL-3.0-only", "LicenseRef-scancode-free-unknown", "LGPL-3.0-or-later", "LicenseRef-scancode-proprietary-license", "LGPL-2.1-or-later", "CC-BY-2.5", "CC-BY-4.0", "MIT", "LGPL-2.1-only", "CC-BY-3.0", "LicenseRef-scancode-unknown-license-reference", "OFL-1.1", "Python-2.0", "GPL-2.0-only", "Apache-2.0", "GPL-3.0-only", "GPL-1.0-or-later" ]
permissive
juanis2112/spyder
ea5e5727d4dbec5c3e40cb87aad644cc722ff27e
0b4929cef420ba6c625566e52200e959f3566f33
refs/heads/master
2021-08-09T15:14:49.011489
2021-04-28T20:18:06
2021-04-28T20:18:06
158,863,080
1
1
MIT
2018-11-23T17:50:04
2018-11-23T17:50:04
null
UTF-8
Python
false
false
291
py
# -*- coding: utf-8 -*- # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """Snippets related widgets.""" from .snippetsconfig import ( SnippetModelsProxy, SnippetTable, SUPPORTED_LANGUAGES_PY, PYTHON_POS)
075faaca072840771480c8dad744b6400d118856
6268655719a46c9d2b6b38ea21babd8b877724dd
/ecom/urls.py
c96fa0cafc244270befb0361102e589c71c8180a
[]
no_license
MahmudulHassan5809/Ecommerce-Django
f84b968621eed61fdf08c55cd43c7a09d8bc8ba7
f416536a6b5ce583283139e7271f3fcd1da49739
refs/heads/master
2022-12-31T15:39:34.405140
2020-10-24T18:15:38
2020-10-24T18:15:38
292,297,321
0
0
null
null
null
null
UTF-8
Python
false
false
1,451
py
from django.urls import path from . import views from django.contrib.auth import views as auth_views from django.urls import reverse_lazy from django.views.generic.base import TemplateView app_name = "ecom" urlpatterns = [ path('', views.HomeView.as_view(), name="home"), path('category/<str:category_slug>/<int:category_id>/', views.CategoryView.as_view(), name="category_view"), path('category/product/filter/<int:category_id>/', views.CategoryFilterView.as_view(), name='category_filter'), path('search/product/', views.CategoryFilterView.as_view(), name='search_product'), path('sub-category/product/<int:category_id>/<int:subcat_id>/', views.CategoryFilterView.as_view(), name='subcategory_product'), path('product/detail/<str:product_slug>/<int:pk>/', views.ProductDetailView.as_view(), name='product_detail'), path('add-wishlist/<int:product_id>/', views.AddWishListView.as_view(), name='add_wishlist'), path('remove-wishlist/<int:product_id>/', views.RemoveWishListView.as_view(), name='remove_wishlist'), path('add-compare/<int:product_id>/', views.AddCompareView.as_view(), name='add_compare'), path('remove-compare/<int:product_id>/', views.RemoveCompareView.as_view(), name='remove_compare'), path('product/rating/<int:product_id>/', views.ProductReviewView.as_view(), name='product_review') ]
775f151f9bac97b1672a3701d47cd1066bbde102
b23d627c04402ffaafdf6bf3af4e40ee027d015b
/viscum/scripting/exception.py
f85e17d80f46d223cc08a7da940581e59b8d6986
[ "MIT" ]
permissive
brunosmmm/viscum
fad2e26f33eab74165633905144d6e8ccd205fb9
a6b90ae6203998fc016ef89972a3b5d6cf441eb0
refs/heads/master
2021-01-17T11:16:08.725747
2018-03-23T13:59:44
2018-03-23T13:59:44
55,721,345
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
"""Scripting Exceptions.""" class InvalidModuleError(Exception): """Invalid module.""" pass class DeferScriptLoading(Exception): """Defer script loading.""" pass class ScriptSyntaxError(Exception): """Script syntax error.""" pass class CancelScriptLoading(Exception): """Cancel script loading process.""" pass
ddc9ee2417f9490178e8cb2ea3a9cf5a360d9328
53e2254b83ac5ac71ff390a7c77070ff97b31c0b
/max_subarray.py
234927450cf501f40718aefbeab37a510db496a4
[]
no_license
Ponkiruthika112/codekataset1
83a02b96a6b35c33ae7c5a6d6b21c34e63a7eef4
4f164864a59e22122b647dd62d36d24e7ace7dac
refs/heads/master
2020-04-15T04:58:44.427824
2019-09-06T10:10:12
2019-09-06T10:10:12
164,404,367
0
1
null
null
null
null
UTF-8
Python
false
false
310
py
def subarray(s): l=[" "] for i in range(0,len(s)): for j in range(i+1,len(s)+1): l.append(s[i:j]) return l a=input() b=input() x=subarray(a) y=subarray(b) d=[] for i in x: if y.count(i)!=0: d.append([len(i),i]) d.sort(reverse=True) print(d[0][1]) #subarray
e6376f06046b2ad23a065b75e0b7a5dc34d784d9
1bc3894dfd8eef5605a6ff746462a5cfd3baef3c
/srctools/filesys.py
d5b9785feec09ca35ce79c0a75ae2d2325df832d
[ "Unlicense" ]
permissive
alicerunsonfedora/srctools
0aa9c3ba0b4bfdfc94cd5ee3c54192b61e4c4ba6
3648c244f6d2c70371f95927fd374dcaf90a038d
refs/heads/master
2020-04-01T08:32:30.460404
2018-10-15T01:22:23
2018-10-15T01:22:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,517
py
"""Implements a consistent interface for accessing files. This allows accessing raw files, zips and VPKs in the same way. Files are case-insensitive, and both slashes are converted to '/'. """ from zipfile import ZipFile, ZipInfo import io import os from srctools.vpk import VPK, FileInfo as VPKFile from srctools.property_parser import Property from typing import ( Union, Iterator, List, Tuple, Dict, TextIO, BinaryIO, ) __all__ = [ 'File', 'FileSystem', 'get_filesystem', 'RawFileSystem', 'VPKFileSystem', 'ZipFileSystem', 'VirtualFileSystem', 'FileSystemChain', ] def get_filesystem(path: str) -> 'FileSystem': """Return a filesystem given a path. If the path is a directory this returns a RawFileSystem. Otherwise it returns a VPK or zip, depending on extension. """ if os.path.isdir(path): return RawFileSystem(path) ext = path[-4:] if ext == '.zip': return ZipFileSystem(path) if ext == '.vpk': return VPKFileSystem(path) raise ValueError('Unrecognised filesystem for "{}"'.format(path)) class File: """Represents a file in a system. Should not be created directly.""" def __init__(self, system: 'FileSystem', path: str, data=None): """Create a File. system should be the filesystem which matches. path is the relative path for the file. data is a filesystem-specific data, used to pass to open_bin() and open_str(). """ self.sys = system self.path = path self._data = path if data is None else data def __fspath__(self) -> str: """This can be interpreted as a path.""" return self.path def open_bin(self) -> BinaryIO: """Return a file-like object in bytes mode. This should be closed when done. """ return self.sys.open_bin(self._data) def open_str(self, encoding='utf8') -> TextIO: """Return a file-like object in unicode mode. This should be closed when done. """ return self.sys.open_str(self._data, encoding) def cache_key(self) -> int: """Return a checksum or last-modified date suitable for caching. This allows preventing re-parsing the file. If not possible, return -1. """ return self.sys._get_cache_key(self) class FileSystem: """Base class for different systems defining the interface.""" def __init__(self, path: str): self.path = os.fspath(path) self._ref = None self._ref_count = 0 def open_ref(self) -> None: """Lock open a reference to this system.""" self._ref_count += 1 if self._ref is None: self._create_ref() def close_ref(self) -> None: """Reverse self.open_ref() - must be done in pairs.""" self._ref_count -= 1 if self._ref_count < 0: raise ValueError('Closed too many times!') if self._ref_count == 0 and self._ref is not None: self._delete_ref() def read_prop(self, path: str, encoding='utf8') -> Property: """Read a Property file from the filesystem. This handles opening and closing files. """ with self, self.open_str(path, encoding) as file: return Property.parse( file, self.path + ':' + path, ) def _check_open(self) -> None: """Ensure self._ref is valid.""" if self._ref is None: raise ValueError('The filesystem must have a valid reference!') def __eq__(self, other: 'FileSystem') -> bool: """Filesystems are equal if they have the same type and same path.""" if not isinstance(other, type(self)): return NotImplemented # If both ours -> False return os.path.normpath(self.path) == os.path.normpath(other.path) def __hash__(self) -> int: return hash(type(self).__name__ + os.path.normpath(self.path)) def __enter__(self) -> 'FileSystem': """Temporarily get access to the system's reference. This makes it more efficient to access files. """ self.open_ref() return self def __exit__(self, exc_type, exc_val, exc_tb) -> None: self.close_ref() def __iter__(self) -> Iterator[File]: return self.walk_folder('') def __getitem__(self, name: str) -> File: return self._get_file(name) def __contains__(self, name: str) -> bool: return self._file_exists(name) def _file_exists(self, name: str) -> bool: try: self._get_file(name) return True except FileNotFoundError: return False def _get_file(self, name: str) -> File: """Return a specific file.""" raise NotImplementedError def walk_folder(self, folder: str) -> Iterator[File]: """Yield files in a folder.""" raise NotImplementedError def _create_ref(self) -> None: """Create the _ref object.""" raise NotImplementedError def _delete_ref(self) -> None: """Destroy and clean up the _ref object.""" raise NotImplementedError def open_str(self, name: str, encoding='utf8') -> TextIO: """Open a file in unicode mode or raise FileNotFoundError. This should be closed when done. """ raise NotImplementedError def open_bin(self, name: str) -> BinaryIO: """Open a file in bytes mode or raise FileNotFoundError. This should be closed when done. """ raise NotImplementedError def _get_cache_key(self, file: File) -> int: """Return a checksum or last-modified date suitable for caching. This allows preventing re-parsing the file. If not possible, return -2. """ return -1 class FileSystemChain(FileSystem): """Chains several filesystem into one prioritised whole.""" def __init__(self, *systems: Union[FileSystem, Tuple[str, FileSystem]]): super().__init__('') self.systems = [] # type: List[Tuple[FileSystem, str]] for sys in systems: if isinstance(sys, tuple): self.add_sys(*sys) else: self.add_sys(sys) def __repr__(self): return 'FileSystemChain(\n{})'.format(',\n '.join(map(repr, self.systems))) def __eq__(self, other: 'FileSystemChain'): if not isinstance(other, FileSystemChain): return NotImplemented return self.systems == other.systems def __hash__(self): return hash(tuple(self.systems)) @staticmethod def get_system(file: File) -> FileSystem: """Retrieve the system for a File, if it was produced from a FileSystemChain.""" if not isinstance(file.sys, FileSystemChain): raise ValueError('File is not from a FileSystemChain..') return file._data.sys def add_sys(self, sys: FileSystem, prefix=''): """Add a filesystem to the list.""" self.systems.append((sys, prefix)) # If we're currently open, apply that to the added systems. if self._ref_count > 0: sys.open_ref() def _get_file(self, name: str) -> File: """Search for a file on each filesystem in turn.""" self._check_open() for sys, prefix in self.systems: full_name = os.path.join(prefix, name).replace('\\', '/') try: file_info = sys._get_file(full_name) except FileNotFoundError: pass else: # Pass the original file instance, so we can open # from the original system. return File(self, full_name, file_info) raise FileNotFoundError(name) def open_str(self, name: str, encoding='utf8') -> TextIO: """Open a file in unicode mode or raise FileNotFoundError. This should be closed when done. """ if isinstance(name, File): return name.open_str(encoding) return self._get_file(name).open_str(encoding) def open_bin(self, name: str) -> BinaryIO: """Open a file in bytes mode or raise FileNotFoundError. This should be closed when done. """ if isinstance(name, File): return name.open_bin() return self._get_file(name).open_bin() def walk_folder(self, folder: str) -> Iterator[File]: """Walk folders, not repeating files.""" done = set() for file in self.walk_folder_repeat(folder): folded = file.path.casefold() if folded in done: continue done.add(folded) yield file def walk_folder_repeat(self, folder: str='') -> Iterator[File]: """Walk folders, but allow repeating files. If a file is contained in multiple systems, it will be yielded for each. The first is the highest-priority. """ for sys, prefix in self.systems: full_folder = os.path.join(prefix, folder).replace('\\', '/') for file in sys.walk_folder(full_folder): yield File( self, os.path.relpath(file.path, prefix).replace('\\', '/'), file, ) def _delete_ref(self) -> None: """Creating and deleting refs affects the underlying systems.""" for sys, prefix in self.systems: sys.close_ref() self._ref = None def _create_ref(self) -> None: """Creating and deleting refs affects the underlying systems.""" for sys, prefix in self.systems: sys.open_ref() self._ref = True def _get_cache_key(self, file: File) -> int: """Return the last modified time of this file. If individual timestamps are not stored, the modification time of the filesystem is returned instead.""" # Delegate to the original File stored in ours. if not isinstance(file.sys, FileSystemChain): raise ValueError('File is not from a FileSystemChain..') return file._data.cache_key() class VirtualFileSystem(FileSystem): """Access a dict as if it were a filesystem. The dict should map file paths to either bytes or strings. The encoding arg specifies how text data is presented if open_bin() is called. """ def __init__(self, mapping: Dict[str, Union[str, bytes]], encoding='utf8'): super().__init__('<virtual>') self._mapping = { self._clean_path(filename): (filename, data) for filename, data in dict(mapping).items() } self.bytes_encoding = encoding def __eq__(self, other: 'VirtualFileSystem'): if not isinstance(other, VirtualFileSystem): return NotImplemented return ( self.bytes_encoding == other.bytes_encoding and self._mapping == other._mapping ) def __hash__(self): return hash(self.bytes_encoding) ^ hash(tuple(self._mapping.values())) @staticmethod def _clean_path(path: str) -> str: """Convert paths to one representation.""" return os.path.normpath(path).replace('\\', '/').casefold() def open_bin(self, name: str) -> BinaryIO: """Return a bytes buffer for a 'file'.""" # We don't need this, but it should match other filesystems. self._check_open() try: filename, data = self._mapping[self._clean_path(name)] except KeyError: raise FileNotFoundError(name) if isinstance(data, str): data = data.encode(self.bytes_encoding) return io.BytesIO(data) def open_str(self, name: str, encoding='utf8') -> TextIO: """Return a string buffer for a 'file'. This performs universal newlines conversion. The encoding argument is ignored for files which are originally text. """ # We don't need this, but it should match other filesystems. self._check_open() try: filename, data = self._mapping[self._clean_path(name)] except KeyError: raise FileNotFoundError(name) if isinstance(data, bytes): # Decode on the fly, with universal newlines. return io.TextIOWrapper( io.BytesIO(data), encoding=encoding, ) else: # None = universal newlines mode directly. # No encoding is needed obviously. return io.StringIO(data, newline=None) def walk_folder(self, folder: str) -> Iterator[File]: # We don't need this, but it should match other filesystems. self._check_open() for filename, data in self._mapping.values(): yield File(self, filename) def _file_exists(self, name: str) -> bool: return self._clean_path(name) in self._mapping def _get_file(self, name: str) -> File: # We don't need this, but it should match other filesystems. self._check_open() try: filename, data = self._mapping[self._clean_path(name)] except KeyError: raise FileNotFoundError(name) return File(self, filename) def _delete_ref(self) -> None: """The virtual filesystem doesn't need a reference to anything.""" self._ref = None def _create_ref(self) -> None: """The virtual filesystem doesn't need a reference to anything.""" self._ref = True class RawFileSystem(FileSystem): """Accesses files in a real folder. This prohibits access to folders above the root. """ def __init__(self, path: str): super().__init__(os.path.abspath(path)) def __repr__(self): return 'RawFileSystem({!r})'.format(self.path) def _resolve_path(self, path: str) -> str: """Get the absolute path.""" abs_path = os.path.abspath(os.path.join(self.path, path)) if not abs_path.startswith(self.path): raise ValueError('Path "{}" escaped "{}"!'.format(path, self.path)) return abs_path def walk_folder(self, folder: str) -> Iterator[File]: """Yield files in a folder.""" path = self._resolve_path(folder) for dirpath, dirnames, filenames in os.walk(path): for file in filenames: rel_path = os.path.relpath( os.path.join(dirpath, file), self.path, ) yield File( self, rel_path.replace('\\', '/'), ) def open_str(self, name: str, encoding='utf8') -> TextIO: """Open a file in unicode mode or raise FileNotFoundError. This should be closed when done. """ # We don't need this, but it should match other filesystems. self._check_open() return open(self._resolve_path(name), mode='rt', encoding=encoding) def open_bin(self, name: str) -> BinaryIO: """Open a file in bytes mode or raise FileNotFoundError. This should be closed when done. """ # We don't need this, but it should match other filesystems. self._check_open() return open(self._resolve_path(name), mode='rb') def _file_exists(self, name: str) -> bool: # We don't need this, but it should match other filesystems. self._check_open() return os.path.isfile(self._resolve_path(name)) def _get_file(self, name: str): # We don't need this, but it should match other filesystems. self._check_open() if os.path.isfile(self._resolve_path(name)): return File(self, name.replace('\\', '/')) raise FileNotFoundError(name) def _delete_ref(self) -> None: """The raw filesystem doesn't need a reference to anything.""" self._ref = None def _create_ref(self) -> None: """The raw filesystem doesn't need a reference to anything.""" self._ref = True def _get_cache_key(self, file: File) -> int: """Our cache key is the last modification time.""" try: return os.stat(self._resolve_path(file.path)).st_mtime_ns except FileNotFoundError: return -1 class ZipFileSystem(FileSystem): """Accesses files in a zip file.""" def __init__(self, path: str, zipfile: ZipFile=None): self._ref = None # type: ZipFile self._name_to_info = {} super().__init__(path) if zipfile is not None: # Use the zipfile directly, and don't close it. self._ref_count += 1 self._ref = zipfile def __repr__(self): return 'ZipFileSystem({!r})'.format(self.path) def walk_folder(self, folder: str) -> Iterator[File]: """Yield files in a folder.""" self._check_open() # \\ is not allowed in zips. folder = folder.replace('\\', '/').casefold() for filename, fileinfo in self._name_to_info.items(): if filename.startswith(folder): yield File(self, fileinfo.filename, fileinfo) def open_bin(self, name: str): """Open a file in bytes mode or raise FileNotFoundError. The filesystem needs to be open while accessing this. """ self._check_open() # We need the zipinfo object. if isinstance(name, ZipInfo): info = name else: name = name.replace('\\', '/') try: info = self._name_to_info[name.casefold()] except KeyError: raise FileNotFoundError('{}:{}'.format(self.path, name)) from None return self._ref.open(info) def open_str(self, name: str, encoding='utf8'): """Open a file in unicode mode or raise FileNotFoundError. The filesystem needs to be open while accessing this. """ # Zips only open in binary, so just open that, then wrap to decode. return io.TextIOWrapper(self.open_bin(name), encoding) def _get_file(self, name: str) -> File: name = name.replace('\\', '/') self._check_open() try: info = self._name_to_info[name.casefold()] except KeyError: raise FileNotFoundError('{}:{}'.format(self.path, name)) return File(self, name, info) def _file_exists(self, name: str) -> bool: self._check_open() return name.replace('\\', '/').casefold() in self._name_to_info def _delete_ref(self) -> None: self._ref.close() self._name_to_info.clear() self._ref = None def _create_ref(self) -> None: self._ref = zipfile = ZipFile(self.path) self._name_to_info.clear() for info in zipfile.infolist(): # Some zipfiles include entries for the directories too. They have # a trailing slash. if not info.filename.endswith('/'): self._name_to_info[info.filename.casefold()] = info def _get_cache_key(self, file: File): """Return the CRC of the VPK file.""" return file._data.CRC class VPKFileSystem(FileSystem): """Accesses files in a VPK file.""" def __init__(self, path: str): self._ref = None # type: VPK super().__init__(path) def __repr__(self): return 'VPKFileSystem({!r})'.format(self.path) def _create_ref(self): self._ref = VPK(self.path) def _delete_ref(self): # We only read from VPKs, so no cleanup needs to be done. self._ref = None def _file_exists(self, name: str): self._check_open() return name in self._ref def _get_file(self, name: str): try: file = self._ref[name] except KeyError: raise FileNotFoundError(name) from None return File(self, name.replace('\\', '/'), file) def walk_folder(self, folder: str) -> Iterator[File]: """Yield files in a folder.""" # All VPK files use forward slashes. folder = folder.replace('\\', '/') for file in self._ref: if file.dir.startswith(folder): yield File(self, file.filename, file) def open_bin(self, name: str) -> BinaryIO: """Open a file in bytes mode or raise FileNotFoundError.""" with self: # File() calls with the VPK object we need directly. if isinstance(name, VPKFile): file = name else: try: file = self._ref[name] except KeyError: raise FileNotFoundError(name) return io.BytesIO(file.read()) def open_str(self, name: str, encoding='utf8') -> TextIO: """Open a file in unicode mode or raise FileNotFoundError.""" with self: # File() calls with the VPK object we need directly. if isinstance(name, VPKFile): file = name else: try: file = self._ref[name] except KeyError: raise FileNotFoundError(name) # Wrap the data to treat it as bytes, then # wrap that to decode and clean up universal newlines. return io.TextIOWrapper(io.BytesIO(file.read()), encoding) def _get_cache_key(self, file: File): """Return the CRC of the VPK file.""" return file._data.crc
3b2c7bf4b9c033f46fa9264303c0326bb30d648c
12c2168d1b2db8de3246f59e8f911a0a40ec0512
/Produto/forms.py
b8a944f8220f46ce172ea1d92eea43233709754f
[]
no_license
carlafcf/BD_TADS
1bc145aa8668f994ec45fb8dc20c0505a86cbbc5
72e835a281dade32072c4715d91825ed8b7483ca
refs/heads/master
2023-04-03T07:54:48.646902
2021-03-30T00:06:36
2021-03-30T00:06:36
341,566,522
2
0
null
null
null
null
UTF-8
Python
false
false
962
py
from django import forms from django.db import connection from django.core.exceptions import ValidationError from .models import Produto class ProdutoForm(forms.ModelForm): class Meta: model = Produto fields = ['nome', 'descricao', 'fornecedor', 'quantidade_maxima', 'valor_unitario', 'licitacao', 'no_item'] def clean(self): cleaned_data = super().clean() # Pega o nome que foi adicionado no formulário nome = cleaned_data.get("nome") # Seleciona se há produtos com este mesmo nome with connection.cursor() as cursor: cursor.execute("SELECT * FROM Produto_produto WHERE nome=%s", [nome]) resultado_produto = cursor.fetchall() # Se a lista não foi vazia, há produto com o mesmo nome if (len(resultado_produto) != 0): raise ValidationError("Já foi criado um produto com este nome. Escolha outro nome.")
2c4578d7aad69ef2eb58b0b9ef7d419426c3e8b0
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_138/1393.py
7306be9c406116a4b86b2512dbd82fc3a7f4b436
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,235
py
def compare_list(l1, l2): l = [] for i,j in zip(l1,l2): if i > j: l.append(1) else: l.append(-1) return l def dwar(w1, w2): w1.sort() w2.sort() while len(w1) > 0: l = compare_list(w1, w2) lset = list(set(l)) if len(lset) == 1 and lset[0] == 1: return len(w1) w1.pop(0) w2.pop(-1) return 0 # def dchoose_block(w1, w2): # # naomi cheats, arranges ken's block from big to small and let him win initially # # we expect w1 and w2 to be sorted # if # def war(w1, w2): score = 0 w2.sort() for weight1 in w1: optimal_weight = choose_block(w2, weight1) if weight1 > optimal_weight: score += 1 w2.pop(w2.index(optimal_weight)) return score def choose_block(w, b): # we expect w to be sorted if b > w[-1]: # use the minimum return w[0] # use the minimum that's higher than b l = [x if x > b else 100 for x in w] l.sort(); return l[0] def main(): T = int(raw_input()) for i in range(T): n = int(raw_input()) w1 = [float(a) for a in raw_input().split(" ")] w2 = [float(a) for a in raw_input().split(" ")] ww1 = w1[:] ww2 = w2[:] w1.sort() w2.sort() print("Case #%d: %d %d" % (i+1, dwar(w1, w2), war(ww1, ww2))) if __name__ == "__main__": main()
143ded849c4e7c0e8ca61a4374f43a742eb7fd22
9c84378e88df12a83d3ca6dde5d16b76e3778a1b
/appengine/gce-backend/handlers_queues.py
a4b113c55398b459ac8e4955fe494dcd81c42646
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
eakuefner/luci-py
681364457a43724965ee70168354e1c097e4d3df
d9a337e2fd5151eac24b3164963e086091d769a3
refs/heads/master
2021-01-15T14:58:37.310142
2015-10-06T19:08:08
2015-10-06T19:08:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,628
py
# Copyright 2015 The Swarming Authors. All rights reserved. # Use of this source code is governed by the Apache v2.0 license that can be # found in the LICENSE file. """Task queues for the GCE Backend.""" import json import logging from google.appengine.ext import ndb import webapp2 from components import decorators from components import machine_provider from components import net import models @ndb.transactional def uncatalog_instances(instances): """Uncatalogs cataloged instances. Args: instances: List of instance names to uncatalog. """ put_futures = [] get_futures = [ models.Instance.generate_key(instance_name).get_async() for instance_name in instances ] while get_futures: ndb.Future.wait_any(get_futures) instances = [future.get_result() for future in get_futures if future.done()] get_futures = [future for future in get_futures if not future.done()] for instance in instances: if instance.state == models.InstanceStates.CATALOGED: # handlers_cron.py sets each Instance's state to # CATALOGED before triggering InstanceGroupCataloger. logging.info('Uncataloging instance: %s', instance.name) instance.state = models.InstanceStates.UNCATALOGED put_futures.append(instance.put_async()) else: logging.info('Ignoring already uncataloged instance: %s', instance.name) if put_futures: ndb.Future.wait_all(put_futures) else: logging.info('Nothing to uncatalog') class InstanceGroupCataloger(webapp2.RequestHandler): """Worker for cataloging instance groups.""" @decorators.require_taskqueue('catalog-instance-group') def post(self): """Reclaim a machine. Params: dimensions: JSON-encoded string representation of machine_provider.Dimensions describing the members of the instance group. instances: JSON-encoded list of instances in the instance group to catalog: policies: JSON-encoded string representation of machine_provider.Policies governing the members of the instance group. """ dimensions = json.loads(self.request.get('dimensions')) instances = json.loads(self.request.get('instances')) policies = json.loads(self.request.get('policies')) requests = [] instances_to_uncatalog = set() for instance_name in instances: instances_to_uncatalog.add(instance_name) requests.append({ 'dimensions': dimensions.copy(), 'policies': policies}) requests[-1]['dimensions']['hostname'] = instance_name try: responses = machine_provider.add_machines(requests).get('responses', {}) except net.Error as e: logging.warning(e) responses = {} for response in responses: request = response.get('machine_addition_request', {}) error = response.get('error') instance_name = request.get('dimensions', {}).get('hostname') if instance_name in instances: if not error: logging.info('Instance added to Catalog: %s', instance_name) instances_to_uncatalog.discard(instance_name) elif error == 'HOSTNAME_REUSE': logging.warning('Hostname reuse in Catalog: %s', instance_name) instances_to_uncatalog.discard(instance_name) else: logging.warning('Instance not added to Catalog: %s', instance_name) else: logging.info('Unknown instance: %s', instance_name) uncatalog_instances(instances_to_uncatalog) def create_queues_app(): return webapp2.WSGIApplication([ ('/internal/queues/catalog-instance-group', InstanceGroupCataloger), ])
c3b48a065a2c7682c9fc54e729f2fedf0c552bd6
4f8664ad0282872648307fd1cc693ddc75543748
/swftp/test/functional/test_ftp.py
ff4255b2a9593388eea7b91a500c84af30c3b232
[ "MIT" ]
permissive
benroeder/swftp
be4a6d2d6260df0c0bddd6ed1ff776e27bb411eb
eb4bdbf3bff5ee6924961cc12eeddf561b44b025
refs/heads/master
2021-01-18T08:52:17.226403
2013-04-03T12:44:59
2013-04-03T12:44:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,178
py
""" See COPYING for license information. """ from twisted.trial import unittest from twisted.internet import defer, reactor from twisted.web.client import HTTPConnectionPool import ftplib import tempfile import shutil import time import os from . import get_config, has_item, create_test_file, clean_swift, \ compute_md5, upload_file, utf8_chars, get_swift_client conf = get_config() class FTPFuncTest(unittest.TestCase): @defer.inlineCallbacks def setUp(self): self.pool = HTTPConnectionPool(reactor, persistent=True) self.swift = get_swift_client(conf, pool=self.pool) self.tmpdir = tempfile.mkdtemp() self.ftp = get_ftp_client(conf) yield clean_swift(self.swift) @defer.inlineCallbacks def tearDown(self): shutil.rmtree(self.tmpdir) self.ftp.close() yield clean_swift(self.swift) yield self.pool.closeCachedConnections() def get_ftp_client(config): for key in 'ftp_host ftp_port account username password'.split(): if key not in config: raise unittest.SkipTest("%s not set in the test config file" % key) hostname = config['ftp_host'] port = int(config['ftp_port']) username = "%s:%s" % (config['account'], config['username']) password = config['password'] ftp = ftplib.FTP() ftp.connect(hostname, port) ftp.login(username, password) return ftp class BasicTests(unittest.TestCase): def test_get_client(self): ftp = get_ftp_client(conf) ftp.getwelcome() ftp.quit() class ClientTests(unittest.TestCase): def test_get_many_client(self): for i in range(32): ftp = get_ftp_client(conf) ftp.close() def test_get_many_concurrent(self): connections = [] for i in range(32): ftp = get_ftp_client(conf) connections.append(ftp) time.sleep(10) for ftp in connections: ftp.close() class RenameTests(FTPFuncTest): def test_rename_account(self): self.assertRaises(ftplib.error_perm, self.ftp.rename, '/', '/a') @defer.inlineCallbacks def test_rename_container(self): yield self.swift.put_container('ftp_tests') self.ftp.rename('ftp_tests', 'ftp_tests_2') r, listing = yield self.swift.get_account() self.assertTrue(has_item('ftp_tests_2', listing)) self.assertFalse(has_item('ftp_tests', listing)) @defer.inlineCallbacks def test_rename_container_populated(self): yield self.swift.put_container('ftp_tests') yield self.swift.put_object('ftp_tests', 'a') self.assertRaises(ftplib.error_perm, self.ftp.rename, 'ftp_tests', 'ftp_tests_2') @defer.inlineCallbacks def test_rename_object(self): yield self.swift.put_container('ftp_tests') yield self.swift.put_object('ftp_tests', 'a') yield self.swift.put_object( 'ftp_tests', 'b', headers={'Content-Type': 'application/directory'}) yield self.swift.put_object('ftp_tests', 'b/nested') yield self.swift.put_object('ftp_tests', 'c/nested') self.ftp.rename('ftp_tests/a', 'ftp_tests/a1') r, listing = yield self.swift.get_container('ftp_tests') self.assertTrue(has_item('a1', listing)) self.assertFalse(has_item('a', listing)) self.assertRaises(ftplib.error_perm, self.ftp.rename, 'ftp_tests/b', 'ftp_tests/b1') self.assertRaises(ftplib.error_perm, self.ftp.rename, 'ftp_tests/c', 'ftp_tests/c1') def test_rename_object_not_found(self): self.assertRaises(ftplib.error_perm, self.ftp.rename, 'ftp_tests/a', 'ftp_tests/b') class DownloadTests(FTPFuncTest): @defer.inlineCallbacks def _test_download(self, size, name): yield self.swift.put_container('ftp_tests') src_path, md5 = create_test_file(self.tmpdir, size) yield upload_file(self.swift, 'ftp_tests', name, src_path, md5) dlpath = '%s/%s.dat' % (self.tmpdir, name) resp = self.ftp.retrbinary('RETR ftp_tests/%s' % name, open(dlpath, 'wb').write) self.assertEqual('226 Transfer Complete.', resp) self.assertEqual(os.stat(dlpath).st_size, size) self.assertEqual(md5, compute_md5(dlpath)) def test_zero_byte_file(self): return self._test_download(0, '0b.dat') def test_32kb_file(self): return self._test_download(32 * 1024 + 1, '32kb.dat') def test_1mb_file(self): return self._test_download(1024 * 1024, '1mb.dat') def test_10mb_file(self): return self._test_download(1024 * 1024 * 10, '10mb.dat') class UploadTests(FTPFuncTest): @defer.inlineCallbacks def _test_upload(self, size, name): yield self.swift.put_container('ftp_tests') src_path, md5 = create_test_file(self.tmpdir, size) resp = self.ftp.storbinary('STOR ftp_tests/%s' % name, open(src_path, 'rb')) self.assertEqual('226 Transfer Complete.', resp) headers = yield self.swift.head_object('ftp_tests', name) self.assertEqual(md5, headers['etag']) self.assertEqual(size, int(headers['content-length'])) def test_zero_byte_file(self): return self._test_upload(0, '0b.dat') def test_32kb_file(self): return self._test_upload(1024 * 32 + 1, '32kb.dat') def test_1mb_file(self): return self._test_upload(1024 * 1024, '1mb.dat') def test_10mb_file(self): return self._test_upload(1024 * 1024 * 10, '10mb.dat') class SizeTests(FTPFuncTest): def test_size_root(self): # Testing For Error Only self.ftp.size('') @defer.inlineCallbacks def test_size_container(self): yield self.swift.put_container('ftp_tests') size = self.ftp.size('ftp_tests') self.assertEqual(0, size) @defer.inlineCallbacks def test_size_directory(self): yield self.swift.put_container('ftp_tests') yield self.swift.put_object( 'ftp_tests', 'test_size_directory', headers={'Content-Type': 'application/directory'}) size = self.ftp.size('ftp_tests/test_size_directory') self.assertEqual(0, size) @defer.inlineCallbacks def test_size_object(self): yield self.swift.put_container('ftp_tests') src_path, md5 = create_test_file(self.tmpdir, 1024) yield upload_file(self.swift, 'ftp_tests', 'test_size_object', src_path, md5) size = self.ftp.size('ftp_tests') self.assertEqual(1024, size) def test_size_container_missing(self): self.assertRaises(ftplib.error_perm, self.ftp.size, 'ftp_tests') def test_size_object_missing(self): self.assertRaises(ftplib.error_perm, self.ftp.size, 'ftp_tests/test_size_container_missing') @defer.inlineCallbacks def test_size_dir_dir(self): yield self.swift.put_container('ftp_tests') yield self.swift.put_object( 'ftp_tests', '%s/%s' % (utf8_chars.encode('utf-8'), utf8_chars.encode('utf-8'))) size = self.ftp.size('ftp_tests/%s' % utf8_chars.encode('utf-8')) self.assertEqual(0, size) class DeleteTests(FTPFuncTest): @defer.inlineCallbacks def test_delete_populated_container(self): yield self.swift.put_container('sftp_tests') yield self.swift.put_object( 'sftp_tests', 'dir1', headers={'Content-Type': 'application/directory'}) self.assertRaises(ftplib.error_perm, self.ftp.rmd, 'sftp_tests') @defer.inlineCallbacks def test_delete_populated_dir(self): yield self.swift.put_container('sftp_tests') yield self.swift.put_object( 'sftp_tests', 'dir1', headers={'Content-Type': 'application/directory'}) yield self.swift.put_object('sftp_tests', 'dir1/obj2') self.ftp.rmd('sftp_tests/dir1') @defer.inlineCallbacks def test_delete_populated_dir_not_existing(self): yield self.swift.put_container('sftp_tests') yield self.swift.put_object('sftp_tests', 'dir1/obj2') self.ftp.rmd('sftp_tests/dir1') class ListingTests(FTPFuncTest): def test_listing(self): listing = self.ftp.nlst('') self.assertNotIn('sftp_tests', listing) @defer.inlineCallbacks def test_listing_exists(self): yield self.swift.put_container('sftp_tests') listing = self.ftp.nlst('') self.assertIn('sftp_tests', listing) @defer.inlineCallbacks def test_directory_listing(self): yield self.swift.put_container('sftp_tests') yield self.swift.put_object( 'sftp_tests', 'dir1', headers={'Content-Type': 'application/directory'}) yield self.swift.put_object( 'sftp_tests', 'dir2', headers={'Content-Type': 'application/directory'}) yield self.swift.put_object('sftp_tests', 'dir2/obj1') yield self.swift.put_object('sftp_tests', 'dir3/obj2') listing = self.ftp.nlst('sftp_tests') self.assertIn('dir1', listing) self.assertIn('dir2', listing) self.assertIn('dir3', listing) self.assertEqual(3, len(listing)) listing = self.ftp.nlst('sftp_tests/dir1') self.assertEqual(0, len(listing)) listing = self.ftp.nlst('sftp_tests/dir2') self.assertIn('obj1', listing) self.assertEqual(1, len(listing)) listing = self.ftp.nlst('sftp_tests/dir3') self.assertIn('obj2', listing) self.assertEqual(1, len(listing)) @defer.inlineCallbacks def test_long_listing(self): yield self.swift.put_container('sftp_tests') for i in range(101): yield self.swift.put_object( 'sftp_tests', str(i), headers={'Content-Type': 'application/directory'}) time.sleep(2) listing = self.ftp.nlst('sftp_tests') self.assertEqual(101, len(listing))
a9af732e804394d5d2b35f5a479a30695122d13a
46ef191ca0c170ca1d8afc5eb5134de52eba15f1
/abc167/venv/D.py
52607613479c21ed6d9f20b94042a0ff10aeb2a9
[]
no_license
anthonyouch/Competitive-Programming-
9a84cd7ff4b816d2e7ece4e4d6438dbeb23f5795
39109a7be1cd007bd0080a9694ac256efc10eab9
refs/heads/master
2023-03-04T00:49:00.688118
2021-02-05T13:19:46
2021-02-05T13:19:46
334,131,603
0
0
null
null
null
null
UTF-8
Python
false
false
679
py
# create a list that eventually goes back to 1 import sys n, k = [int(i) for i in input().split()] lst = [int(i) for i in input().split()] lst.insert(0, 0) path = [1] curr = 1 visited = set() while True: if lst[curr] in visited: path.append(lst[curr]) #print(path) index_val = path.index(lst[curr]) pre_path = path[:index_val + 1] path = path[index_val + 1:] break visited.add(lst[curr]) path.append(lst[curr]) curr = lst[curr] if k <= len(pre_path): print(pre_path[k]) sys.exit() else: k-= (len(pre_path) - 1) remainder = k % len(path) #print(pre_path) #print(path) print(path[remainder - 1 ])
96db5839bb144bc4546626c155142610d2a4061a
87d13c3c1e4d37909a584ae5be5abd5576dafb9b
/backend/todos/migrations/0001_initial.py
34753a9ef9bd73a7895aee22b6ad24d76e98806f
[]
no_license
Tanmoy-Sarkar/Todo-App-with-Django-Rest-Framework
8c5a6fcf2e5d6d15bcb8acbc421aefb0b9e5519d
d8dc88968a94c74b6d3dab008abdab68088aacb6
refs/heads/master
2023-07-29T00:28:51.198787
2020-08-12T05:51:24
2020-08-12T05:51:24
278,842,084
0
0
null
2021-09-22T19:30:38
2020-07-11T10:48:24
JavaScript
UTF-8
Python
false
false
531
py
# Generated by Django 3.0.8 on 2020-07-11 10:14 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Todo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=300)), ('body', models.TextField()), ], ), ]
fb845fdfab1ea433b53665abb0f88557207567d7
6ff4671a00db5b5b97eea71f80b30dd4ff3ca020
/Notebooks/Stride_testing.py
1076f13f26c8dce5fb0bff66b691279c729f93ca
[ "MIT" ]
permissive
jason-neal/equanimous-octo-tribble
36cbe912282bb9210a8fc4e959795bbda1a5f1e4
a8788909331034725afe38ae96c83584b17c9fbd
refs/heads/master
2021-01-23T19:57:05.022746
2018-07-18T21:37:27
2018-07-18T21:37:27
46,361,899
1
1
MIT
2020-06-11T09:35:48
2015-11-17T17:00:51
HTML
UTF-8
Python
false
false
6,037
py
# coding: utf-8 # # Testing numpy Stride # For snr calculation windowing # In[21]: from __future__ import division import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from astropy.io import fits from numpy.lib import stride_tricks get_ipython().magic('matplotlib inline') # In[22]: fname = "Test_spectra.fits" data = fits.getdata(fname) hdr = fits.getheader(fname) wl = data["Wavelength"] I = data["Extracted_DRACS"] # print(type(I)) print(I.dtype) wl = np.array(wl, dtype="float64") # Turn >f4 into float64 I = np.array(I, dtype="float64") # Turn >f4 into float64 print(I.dtype) print(I) # In[ ]: binsize = 100 # Try using stride on np.array # striding nums = np.arange(len(I), dtype="int") print("itemsize", nums.itemsize, "dtype", nums.dtype) hop_length = 1 # stride_tests with numbers frame_length = binsize num_frames = 1 + (len(nums) - frame_length) / hop_length row_stride = nums.itemsize * hop_length # *hopesize print(frame_length) print(num_frames) print(row_stride) col_stride = nums.itemsize nums_strided = stride_tricks.as_strided(nums, shape=(num_frames, frame_length), strides=(row_stride, col_stride)) print("nums", nums) print("nums_strided =", nums_strided) # row wise transform row_sum = np.sum(nums_strided, axis=1) # print(row_sum) snr = 1 / np.std(nums_strided, axis=1) print(snr) # In[ ]: # with I frame_length = binsize num_frames = 1 + (len(I) - frame_length) / hop_length row_stride = I.itemsize * hop_length # *hopesize print(frame_length) print(num_frames) print(row_stride) col_stride = I.itemsize I_strided = stride_tricks.as_strided(I, shape=(num_frames, frame_length), strides=(row_stride, col_stride)) # print("nums", I) # print("nums_strided =", I_strided) snr = 1 / np.std(I_strided, axis=1) print(snr) # In[ ]: plt.plot(snr) plt.show() # In[23]: def strided_snr(data, frame_length, hop_length=1): num_frames = 1 + (len(data) - frame_length)/hop_length row_stride = data.itemsize * hop_length # *hopesize col_stride = data.itemsize data_strided = stride_tricks.as_strided(data, shape=(num_frames, frame_length), strides=(row_stride, col_stride)) print("length of data_strided", len(data_strided)) snr = 1/np.std( data_strided, axis=1) # print("frame_length", frame_length) # print("num_frames", num_frames) # print("len(snr)", len(snr)) # print(snr) # zeropad to make uniform length of spectra missing_size = len(data) - len(snr) print("missing size", missing_size) before = missing_size // 2 end = missing_size // 2 if missing_size % 2 is not 0: print("missing size is not even") padded_snr = np.pad(snr, (before, end), "constant") # print("padded length", len(padded_snr)) # print(padded_snr) return padded_snr def strided_sum(data, frame_length, hop_length=1): num_frames = 1 + (len(data) - frame_length) / hop_length row_stride = data.itemsize * hop_length # *hopesize col_stride = data.itemsize data_strided = stride_tricks.as_strided(data, shape=(num_frames, frame_length), strides=(row_stride, col_stride)) print("length of data_strided", len(data_strided)) print("binsize", frame_length) print("hop_length", hop_length) print(data_strided) total = np.sum(data_strided, axis=1) # print("frame_length", frame_length) # print("num_frames", num_frames) # print("len(snr)", len(snr)) # print(snr) # zeropad to make uniform length of spectra missing_size = len(data) - len(total) pad_size = (len(data) - len(total)) // 2 # print("missing size", missing_size) before = missing_size // 2 end = missing_size // 2 if missing_size % 2 is not 0: print("missing size is not even") padded_total = np.pad(total, (pad_size, pad_size), "constant") # print("padded length", len(padded_snr)) # print(padded_snr) return padded_total # This doesn't seem to work that well with pandas not sure why # store_array = np.empty((1024, len(bins)), dtype=data.dtype) # for i, bin in enumerate(bins): # store_array[:, i] = strided_snr(I, bin) # In[30]: # loop over the different bin sizes bins = np.arange(3, 51, 2) hopper = 1 store_list = [] for i, b in enumerate(bins): store_list.append(strided_snr(I, b, hop_length=hopper)) print("done") # In[31]: # print(store_array) print(store_list) # In[32]: # turn into a pandas dataframe # dataframe = pd.DataFrame(data=store_array, columns=range(1024), index=bins) # dataframe = pd.DataFrame(store_array, index=bins, columns=list(range(1024))) # print(dataframe) # print(dataframe.dtypes) # In[33]: df_list = pd.DataFrame(store_list, index=bins, columns=np.round(wl, 2)) print(df_list) # In[36]: sns.set() cmap = sns.diverging_palette(220, 10, as_cmap=True) ax = sns.heatmap(store_list, cmap=cmap, xticklabels=200, vmax=300, vmin=10) # ax = sns.heatmap(df_list) # plt.xticks(np.arange(int(np.min(wl)), int(np.max(wl) + 1), 1.0)) ax.set(ylabel="Binsize", xlabel="Wavelenght") # In[37]: # seaborn heatmap plot sns.set() cmap = sns.diverging_palette(220, 10, as_cmap=True) ax = sns.heatmap(df_list, xticklabels=200, vmax=300, vmin=10) # ax = sns.heatmap(df_list) # plt.xticks(np.arange(int(np.min(wl)), int(np.max(wl) + 1), 1.0)) ax.set(ylabel="Binsize", xlabel="Wavelenght") # In[35]: # ax = sns.heatmap(store_list) wl[50]-wl[0] # In[ ]: # # test on known data # In[17]: data = np.arange(20) binsizes = range(1, 6, 2) store = [] # opt = np.get_printoptions() # np.set_printoptions(threshold='nan') for b in binsizes: store.append(strided_sum(data, b)) # np.set_printoptions(**opt) # In[18]: SNRrand = pd.DataFrame(store, index=binsizes) print(SNRrand) # In[19]: sns.set() # cmap = sns.diverging_palette(220, 10, as_cmap=True) ax = sns.heatmap(SNRrand, xticklabels=20) # ax = sns.heatmap(df_list) # plt.xticks(np.arange(int(np.min(wl)), int(np.max(wl) + 1), 1.0)) ax.set(ylabel="Binsize", xlabel="Wavelenght") # In[ ]: # In[ ]:
37712452ff5adaa4113178fb9c5623c3e941fee9
d67bd00f8fe819bd3011ce154c19cbc765d59f1d
/branches/4.0_buildout/openlegis/sagl/skins/consultas/parlamentar/vereadores_atuais_json.py
aac059d617ea5f4ce9e532f0b3e6b9cfb8903a88
[]
no_license
openlegis-br/sagl
90f87bdbbaa8a6efe0ccb5691ea8424575288c46
eabf7529eefe13a53ed088250d179a92218af1ed
refs/heads/master
2023-08-31T12:29:39.382474
2023-08-29T16:12:01
2023-08-29T16:12:01
32,593,838
17
1
null
2023-08-29T06:16:55
2015-03-20T16:11:04
Python
UTF-8
Python
false
false
1,827
py
## Script (Python) "vereadores_atuais" ##bind container=container ##bind context=context ##bind namespace= ##bind script=script ##bind subpath=traverse_subpath ##parameters= ##title= ## import simplejson as json context.REQUEST.RESPONSE.setHeader("Access-Control-Allow-Origin", "*") request=context.REQUEST for item in context.zsql.legislatura_atual_obter_zsql(): num_legislatura = item.num_legislatura data_atual = DateTime().strftime("%d/%m/%Y") lista_exercicio = [] exercicio = [] for item in context.zsql.autores_obter_zsql(txt_dat_apresentacao=data_atual): dic = {} dic['cod_parlamentar'] = item.cod_parlamentar dic['nom_parlamentar'] = item.nom_parlamentar dic['nom_completo'] = item.nom_completo foto = str(item.cod_parlamentar) + "_foto_parlamentar" if hasattr(context.sapl_documentos.parlamentar.fotos, foto): dic['foto'] = request.SERVER_URL + '/sapl_documentos/parlamentar/fotos/' + foto else: dic['foto'] = request.SERVER_URL + '/imagens/avatar.png' dic['link'] = request.SERVER_URL + '/consultas/parlamentar/parlamentar_mostrar_proc?cod_parlamentar=' + item.cod_parlamentar + '%26iframe=1' dic['partido'] = '' for filiacao in context.zsql.parlamentar_data_filiacao_obter_zsql(num_legislatura=num_legislatura, cod_parlamentar=item.cod_parlamentar): if filiacao.dat_filiacao != '0' and filiacao.dat_filiacao != None: for partido in context.zsql.parlamentar_partido_obter_zsql(dat_filiacao=filiacao.dat_filiacao, cod_parlamentar=item.cod_parlamentar): dic['partido'] = partido.sgl_partido lista_exercicio.append(dic) lista_exercicio.sort(key=lambda dic: dic['nom_completo']) #listaVereador={} #listaVereador.update({'vereadores': lista_exercicio}) return json.dumps(lista_exercicio)
bf6f76dc39e4234d6a8f1eaad9548249a8dc530d
a7947a129fa5318517f35f17163840f24178d6aa
/examples/core_geometry_bspline.py
c254afdd34a3fe70426aefe3c789019e5e6cad4d
[]
no_license
fboussuge/pythonocc-demos
993abe7634ab74fc3619fea12519c176b4e26658
8f9756653eaecc505238d43fa22a0057bbd14b56
refs/heads/master
2021-06-23T01:29:29.611505
2020-12-08T13:49:04
2020-12-08T13:49:04
156,134,578
0
0
null
2018-11-04T23:17:31
2018-11-04T23:17:30
null
UTF-8
Python
false
false
2,743
py
#!/usr/bin/env python ##Copyright 2009-2014 Jelle Feringa ([email protected]) ## ##This file is part of pythonOCC. ## ##pythonOCC is free software: you can redistribute it and/or modify ##it under the terms of the GNU Lesser General Public License as published by ##the Free Software Foundation, either version 3 of the License, or ##(at your option) any later version. ## ##pythonOCC is distributed in the hope that it will be useful, ##but WITHOUT ANY WARRANTY; without even the implied warranty of ##MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##GNU Lesser General Public License for more details. ## ##You should have received a copy of the GNU Lesser General Public License ##along with pythonOCC. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function from OCC.Core.gp import gp_Pnt2d from OCC.Core.Geom2dAPI import Geom2dAPI_Interpolate, Geom2dAPI_PointsToBSpline from OCC.Core.TColgp import TColgp_HArray1OfPnt2d, TColgp_Array1OfPnt2d from OCC.Display.SimpleGui import init_display display, start_display, add_menu, add_function_to_menu = init_display() def bspline(): # the first bspline array = TColgp_Array1OfPnt2d(1, 5) array.SetValue(1, gp_Pnt2d(0, 0)) array.SetValue(2, gp_Pnt2d(1, 2)) array.SetValue(3, gp_Pnt2d(2, 3)) array.SetValue(4, gp_Pnt2d(4, 3)) array.SetValue(5, gp_Pnt2d(5, 5)) bspline_1 = Geom2dAPI_PointsToBSpline(array).Curve() # the second one harray = TColgp_HArray1OfPnt2d(1, 5) harray.SetValue(1, gp_Pnt2d(0, 0)) harray.SetValue(2, gp_Pnt2d(1, 2)) harray.SetValue(3, gp_Pnt2d(2, 3)) harray.SetValue(4, gp_Pnt2d(4, 3)) harray.SetValue(5, gp_Pnt2d(5, 5)) anInterpolation = Geom2dAPI_Interpolate(harray.GetHandle(), False, 0.01) anInterpolation.Perform() bspline_2 = anInterpolation.Curve() harray2 = TColgp_HArray1OfPnt2d(1, 5) harray2.SetValue(1, gp_Pnt2d(11, 0)) harray2.SetValue(2, gp_Pnt2d(12, 2)) harray2.SetValue(3, gp_Pnt2d(13, 3)) harray2.SetValue(4, gp_Pnt2d(15, 3)) harray2.SetValue(5, gp_Pnt2d(16, 5)) anInterpolation2 = Geom2dAPI_Interpolate(harray.GetHandle(), True, 0.01) anInterpolation2.Perform() bspline_3 = anInterpolation2.Curve() for j in range(array.Lower(), array.Upper()+1): p = array.Value(j) display.DisplayShape(p, update=False) for j in range(harray.Lower(), harray.Upper()+1): p = harray.Value(j) display.DisplayShape(p, update=False) display.DisplayShape(bspline_1, update=False) display.DisplayShape(bspline_2, update=False, color='GREEN') display.DisplayShape(bspline_3, update=True, color='BLUE') if __name__ == '__main__': bspline() start_display()
e08f90549f8a32c66d9622898dd5fc889d376b1d
57c570d1b5a621158d8763f935e2069be6b8c90a
/tykj-operation/tykj-operation/MarketSearchCrawler/services/db.py
48e2998f975d9b156c3edad34d84c9fd20d44542
[]
no_license
liuliainio/liuli
e011decf45f7eca7009a12ad4a96f33a17055945
203fbf4f135efb6432c77b937633003ce2f2c9a2
refs/heads/master
2021-01-10T20:35:08.070770
2018-08-21T05:52:59
2018-08-21T05:52:59
25,625,853
1
1
null
null
null
null
UTF-8
Python
false
false
871
py
#-*- coding: utf-8 -*- ''' Created on Sep 12, 2013 @author: gmliao ''' from crawler import settings import MySQLdb class MySQLdbWrapper: conn = None def connect(self): self.conn = MySQLdb.connect(settings.DATABASES['default'][0], settings.DATABASES['default'][1], settings.DATABASES['default'][2], settings.DATABASES['default'][3], charset='utf8', use_unicode=True) #self.conn = MySQLdb.connect('localhost', 'root', '1111', 'market') self.conn.set_character_set('utf8') def reconnect(self): self.conn = None def cursor(self): try: if not self.conn: self.connect() return self.conn.cursor() except MySQLdb.OperationalError: self.connect() return self.conn.cursor()
2d39f028eeabb883b01ffc250ab1059e0f677292
0aa2db201678205e9eccd3f4f2dcb6f95a97b5f6
/tut_42.py
22a41be2b48cd8deb77c4a835b8a9d4c9ca6fee1
[]
no_license
udoy382/PyTutorial_telusko
ffa76b4b6772d289c787e4b682df2d0965a2bf62
5dc5f3fc331605310f7c3923d7865f55a4592e28
refs/heads/main
2023-06-09T11:00:41.915456
2021-06-30T14:29:56
2021-06-30T14:29:56
381,730,146
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
# this is our simple functions def square(a): return a*a result = square(5) print(result) # this is our lambda functions f = lambda j,k : j*k print(f(4, 5))
5ce02b22a691c4e7bbbb7c9b5b276d863edba49d
486fa0a987ab1648de91efeb4b7ba8be3dd6b016
/TermTk/TTkCore/TTkTerm/__init__.py
22928704063777cde14e1466e9c3a9c63600d837
[ "MIT" ]
permissive
ceccopierangiolieugenio/pyTermTk
9f5103d6af9e93fe2572b61486919020d2007550
f9c2a4d97f2cd04f0b86cf10661f63a61edae48e
refs/heads/main
2023-08-30T20:58:39.239718
2023-08-02T22:51:02
2023-08-02T22:51:02
339,475,110
414
16
MIT
2023-08-31T23:16:10
2021-02-16T17:23:36
Python
UTF-8
Python
false
false
176
py
from .inputkey import TTkKeyEvent from .inputmouse import TTkMouseEvent from .colors import TTkTermColor from .term import TTkTerm from .input import TTkInput
2be7fcff78fe289f0631a2d1fdca66d77e9dac22
fe19d2fac4580d463132e61509bd6e3cc2cf958d
/toontown/safezone/PicnicBasket.py
30d2bfbd1a1e067efa18df7add4622d6558f99b5
[]
no_license
t00nt0wn1dk/c0d3
3e6db6dd42c3aa36ad77709cf9016176a3f3a44f
7de105d7f3de0f8704b020e32fd063ee2fad8d0d
refs/heads/master
2021-01-01T16:00:15.367822
2015-03-21T21:25:52
2015-03-21T21:25:55
32,647,654
3
5
null
null
null
null
UTF-8
Python
false
false
7,319
py
# 2013.08.22 22:24:42 Pacific Daylight Time # Embedded file name: toontown.safezone.PicnicBasket from pandac.PandaModules import * from toontown.toonbase.ToonBaseGlobal import * from direct.gui.DirectGui import * from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from direct.fsm import ClassicFSM, State from direct.fsm import State from direct.fsm import StateData from toontown.toontowngui import TTDialog from toontown.toonbase import ToontownGlobals from toontown.toonbase import TTLocalizer from direct.showbase import PythonUtil class PicnicBasket(StateData.StateData): __module__ = __name__ def __init__(self, safeZone, parentFSM, doneEvent, tableNumber, seatNumber): StateData.StateData.__init__(self, doneEvent) self.tableNumber = tableNumber self.seatNumber = seatNumber self.fsm = ClassicFSM.ClassicFSM('PicnicBasket', [State.State('start', self.enterStart, self.exitStart, ['requestBoard', 'trolleyHFA', 'trolleyTFA']), State.State('trolleyHFA', self.enterTrolleyHFA, self.exitTrolleyHFA, ['final']), State.State('trolleyTFA', self.enterTrolleyTFA, self.exitTrolleyTFA, ['final']), State.State('requestBoard', self.enterRequestBoard, self.exitRequestBoard, ['boarding']), State.State('boarding', self.enterBoarding, self.exitBoarding, ['boarded']), State.State('boarded', self.enterBoarded, self.exitBoarded, ['requestExit', 'trolleyLeaving', 'final', 'exiting']), State.State('requestExit', self.enterRequestExit, self.exitRequestExit, ['exiting', 'trolleyLeaving']), State.State('trolleyLeaving', self.enterTrolleyLeaving, self.exitTrolleyLeaving, ['final']), State.State('exiting', self.enterExiting, self.exitExiting, ['final']), State.State('final', self.enterFinal, self.exitFinal, ['start'])], 'start', 'final') self.parentFSM = parentFSM return None def load(self): self.parentFSM.getStateNamed('picnicBasketBlock').addChild(self.fsm) self.buttonModels = loader.loadModel('phase_3.5/models/gui/inventory_gui') self.upButton = self.buttonModels.find('**//InventoryButtonUp') self.downButton = self.buttonModels.find('**/InventoryButtonDown') self.rolloverButton = self.buttonModels.find('**/InventoryButtonRollover') def unload(self): self.parentFSM.getStateNamed('trolley').removeChild(self.fsm) del self.fsm del self.parentFSM self.buttonModels.removeNode() del self.buttonModels del self.upButton del self.downButton del self.rolloverButton def enter(self): self.fsm.enterInitialState() if base.localAvatar.hp > 0: messenger.send('enterPicnicTableOK_%d_%d' % (self.tableNumber, self.seatNumber)) self.fsm.request('requestBoard') else: self.fsm.request('trolleyHFA') return None def exit(self): self.ignoreAll() return None def enterStart(self): return None def exitStart(self): return None def enterTrolleyHFA(self): self.noTrolleyBox = TTDialog.TTGlobalDialog(message=TTLocalizer.TrolleyHFAMessage, doneEvent='noTrolleyAck', style=TTDialog.Acknowledge) self.noTrolleyBox.show() base.localAvatar.b_setAnimState('neutral', 1) self.accept('noTrolleyAck', self.__handleNoTrolleyAck) def exitTrolleyHFA(self): self.ignore('noTrolleyAck') self.noTrolleyBox.cleanup() del self.noTrolleyBox def enterTrolleyTFA(self): self.noTrolleyBox = TTDialog.TTGlobalDialog(message=TTLocalizer.TrolleyTFAMessage, doneEvent='noTrolleyAck', style=TTDialog.Acknowledge) self.noTrolleyBox.show() base.localAvatar.b_setAnimState('neutral', 1) self.accept('noTrolleyAck', self.__handleNoTrolleyAck) def exitTrolleyTFA(self): self.ignore('noTrolleyAck') self.noTrolleyBox.cleanup() del self.noTrolleyBox def __handleNoTrolleyAck(self): ntbDoneStatus = self.noTrolleyBox.doneStatus if ntbDoneStatus == 'ok': doneStatus = {} doneStatus['mode'] = 'reject' messenger.send(self.doneEvent, [doneStatus]) else: self.notify.error('Unrecognized doneStatus: ' + str(ntbDoneStatus)) def enterRequestBoard(self): return None def handleRejectBoard(self): doneStatus = {} doneStatus['mode'] = 'reject' messenger.send(self.doneEvent, [doneStatus]) def exitRequestBoard(self): return None def enterBoarding(self, nodePath, side): camera.wrtReparentTo(nodePath) heading = PythonUtil.fitDestAngle2Src(camera.getH(nodePath), 90 * side) self.cameraBoardTrack = LerpPosHprInterval(camera, 1.5, Point3(14.4072 * side, 0, 3.8667), Point3(heading, -15, 0)) self.cameraBoardTrack.start() return None def exitBoarding(self): self.ignore('boardedTrolley') return None def enterBoarded(self): self.enableExitButton() return None def exitBoarded(self): self.cameraBoardTrack.finish() self.disableExitButton() return None def enableExitButton(self): self.exitButton = DirectButton(relief=None, text=TTLocalizer.TrolleyHopOff, text_fg=(1, 1, 0.65, 1), text_pos=(0, -0.23), text_scale=0.8, image=(self.upButton, self.downButton, self.rolloverButton), image_color=(1, 0, 0, 1), image_scale=(20, 1, 11), pos=(0, 0, 0.8), scale=0.15, command=lambda self = self: self.fsm.request('requestExit')) return def disableExitButton(self): self.exitButton.destroy() def enterRequestExit(self): messenger.send('trolleyExitButton') return None def exitRequestExit(self): return None def enterTrolleyLeaving(self): self.acceptOnce('playMinigame', self.handlePlayMinigame) self.acceptOnce('picnicDone', self.handlePicnicDone) return None def handlePlayMinigame(self, zoneId, minigameId): base.localAvatar.b_setParent(ToontownGlobals.SPHidden) doneStatus = {} doneStatus['mode'] = 'minigame' doneStatus['zoneId'] = zoneId doneStatus['minigameId'] = minigameId messenger.send(self.doneEvent, [doneStatus]) def handlePicnicDone(self): doneStatus = {} doneStatus['mode'] = 'exit' messenger.send(self.doneEvent, [doneStatus]) def exitTrolleyLeaving(self): self.ignore('playMinigame') taskMgr.remove('leavingCamera') return self.notify.debug('handling golf kart done event') def enterExiting(self): return None def handleOffTrolley(self): doneStatus = {} doneStatus['mode'] = 'exit' messenger.send(self.doneEvent, [doneStatus]) return None def exitExiting(self): return None def enterFinal(self): return None def exitFinal(self): return None # okay decompyling C:\Users\Maverick\Documents\Visual Studio 2010\Projects\Unfreezer\py2\toontown\safezone\PicnicBasket.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2013.08.22 22:24:43 Pacific Daylight Time
57d4dcac150c0ad4bc8e320c1158a43a936253e8
3411ee4095d15057aa7195bdb4a71fbf8f7eb96a
/pysimu/pysimu.py
c6e2b5cc7175a2e1bb710efeff8fb7272e380383
[]
no_license
a-marano/pysimu
7dedf9ab7d13aa4fe86456d3b40c00f54c882acd
388f9afedd8b1d830f6393eaaa307e50188249e5
refs/heads/master
2021-01-21T06:14:32.102200
2015-01-20T12:36:49
2015-01-20T12:36:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,545
py
# -*- coding: utf-8 -*- """ Main pysimu module Created on Thu Aug 14 20:21:56 2014 @author: jmmauricio-m """ import numpy as np from scipy.integrate import ode from models.psys import sys_freq_model_1, gen_nc class sim: ''' Class to performe simuations ''' def __init__(self): self.x = np.array([]) self.t = 0.0 self.T = np.array([]) self.X = np.array([]) self.Y = np.array([]) self.max_step = 0.1 self.nsteps = 5000 def h(self,x): return x def odefun(self,t,x): self.x = x return self.f(t,x) def odeout(self,t,x): self.T = np.hstack((self.T,t)) self.X = np.vstack((self.X,x)) self.Y = np.vstack((self.Y,self.h(t,self.x))) return self.h(t,self.x) def run(self, t_end): r = ode(self.odefun) r.set_integrator('dopri5', max_step=self.max_step, nsteps = self.nsteps) r.set_solout(self.odeout) if len(self.X)==0: self.X = self.x_0 self.T = np.array(self.t) self.Y = np.array(self.h(self.t,self.x_0)) r.set_initial_value(self.x_0, self.t) r.integrate(t_end) self.t = t_end self.r = r self.x = r.y ''' >>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0) >>> t1 = 10 >>> dt = 1 >>> while r.successful() and r.t < t1: >>> r.integrate(r.t+dt) >>> print("%g %g" % (r.t, r.y)) ''' class system: def __init__(self): self.sys_list = [] self.pssys= sys_freq_model_1() self.gen_nc = gen_nc() # n_x_global_ini = 0 # n_x_global_end = self.pssys.n_x # self.pssys.x_idx = range(n_x_global_ini,n_x_global_end) # n_x_global_ini = n_x_global_end # n_x_global_end = n_x_global_end + self.gen_nc.n_x # self.gen_nc.x_idx = range(n_x_global_ini,n_x_global_end) # # self.dx = np.zeros((3,1)) self.max_step = 0.1 self.nsteps = 5000 self.x = np.array([]) self.t = 0.0 self.channels = {} def setup(self): for item_name, item_model in self.models_list: exec('self.{:s} = {:s}()'.format(item_name,item_model)) exec("self.sys_list += [self.{:s}]".format(item_name)) k = 0 for item in self.sys_list: item.k = k k += item.n_x self.chan = {} for item_model,item_var in self.channels: if not self.chan.has_key(item_model): self.chan.update({item_model:{item_var:np.array([])}}) else: self.chan[item_model].update({item_var:np.array([])}) self.r = ode(self.f) self.r.set_integrator('dopri5', max_step =self.max_step, nsteps=self.nsteps) self.r.set_solout(self.out) self.r.set_initial_value(self.ini(),self.t) def ini(self): current_out = '' for item_out, item_in in self.backward_connections: item_name_out, item_var_out = item_out.split('.') item_name_in, item_var_in = item_in.split('.') if current_out == '': exec('self.{:s}.ini()'.format(item_name_out)) current_out = item_name_out to_exec = 'self.{:s}.{:s} = self.{:s}.{:s}'.format(item_name_in,item_var_in,item_name_out,item_var_out) print to_exec exec(to_exec) x_list = [] for item in self.sys_list: item.ini() x_list += [item.x] self.x = np.vstack(x_list) return self.x def f(self,t,x): self.perturbation(t,x) for item_out, item_in in self.foward_connections: item_name_out, item_var_out = item_out.split('.') item_name_in, item_var_in = item_in.split('.') to_exec = 'self.{:s}.{:s} = self.{:s}.{:s}'.format(item_name_in,item_var_in,item_name_out,item_var_out) # print to_exec exec(to_exec) # print self.pssys.freq dx_list = [] for item in self.sys_list: # print x x_i = x[item.k:item.k+item.n_x] item.x = x_i item.update() item.f(t,x_i) dx_list += [item.dx] self.dx = np.vstack(dx_list) return self.dx def update(self): for item in self.sys_list: item.update() def out(self, t,x): self.t = t for item_model,item_var in self.channels: if item_model == 'sys': exec('item_value = self.{:s}'.format(item_var)) self.chan[item_model][item_var] = np.hstack((self.chan[item_model][item_var],item_value)) else: exec('item_value = self.{:s}.{:s}'.format(item_model,item_var)) self.chan[item_model][item_var] = np.hstack((self.chan[item_model][item_var],item_value)) # print self.pssys.freq def run(self, t_end): self.r.integrate(t_end) self.t = t_end def perturbation(self,t,x): pass if __name__ == '__main__': simu_1 = sim() p_m = 1.0 X = 0.5 e = 1.0 v = 1.0 H = 3.5 omega_s = 1.0 omega = omega_s D = 1.0 Omega_b = 2.0*np.pi*50.0 def f(t,x): delta = x[0] omega = x[1] p_e = e*v/X*np.sin(delta) ddelta = Omega_b*(omega - omega_s) domega = 1.0/(2*H)*(p_m - p_e - D*(omega - omega_s)) return [ddelta, domega] def h(t,x): delta = x[0] omega = x[1] p_e = e*v/X*np.sin(delta) return np.array(p_e) p_e = p_m delta_0 = np.arcsin(p_e*X/(e*v)) omega_0 = omega_s x_0 = np.array([delta_0, omega_0]) simu_1.f = f simu_1.x_0 = x_0 simu_1.h = h simu_1.run(1.0) v = 0.0 simu_1.run(1.2) v = 1.0 simu_1.x_0 = simu_1.x simu_1.run(5.0) # sys_1 = system() # # sys_1.models_list = [('pssys','sys_freq_model_1'), # ('gen_nc','gen_nc')] # # sys_1.backward_connections = [('pssys.p_nc','gen_nc.p_nc')] # # sys_1.foward_connections = [('pssys.freq','gen_nc.freq'), # ('gen_nc.p_nc','pssys.p_nc')] # # sys_1.channels = [('sys','t'), # ('pssys','freq'), # ('pssys','p_nc'), # ('pssys','p_l')] # # def perturbation(self,t,x): # if t>1.0: # self.sys.p_l = 2200.0 # # sys_1.setup() ## sys_1.ini() # sys_1.gen_nc.K_f = 100000.0 # print sys_1.pssys.p_nc # print sys_1.gen_nc.p_nc # sys_1.run(1.0) # sys_1.pssys.p_l = 2200.0 # sys_1.run(10.0) Delta = np.linspace(0.0, np.pi,100) P_e = e*v/X*np.sin(Delta) # import matplotlib.pyplot as plt fig_1 = plt.figure( figsize=(14, 8)) ax_delta = fig_1.add_subplot(2,2,1) ax_omega = fig_1.add_subplot(2,2,3) ax_delta_omega = fig_1.add_subplot(2,2,(2,4)) ax_delta.plot(simu_1.T,simu_1.X[:,0], linewidth=2) ax_omega.plot(simu_1.T,simu_1.X[:,1], linewidth=2) ax_delta_omega.plot(Delta,P_e, label='$\sf p_e$') ax_delta_omega.plot(Delta,P_e/P_e*p_m, label='$\sf p_m$', linewidth=2) ax_delta_omega.plot(simu_1.X[:,0],simu_1.Y[:], 'r', linewidth=2) # ax_delta.set_xlabel('Time (s)') ax_delta.set_ylabel('$\sf \delta $ (rad)') ax_omega.set_xlabel('Time (s)') ax_omega.set_ylabel('$\sf \omega $ (p.u.)') ax_delta_omega.set_xlabel('$\sf \delta $ (rad)') ax_delta_omega.set_ylabel('$\sf Power $ (p.u.)') ax_delta.grid(True) ax_omega.grid(True) ax_delta_omega.grid(True) # ax_powers = fig_freq.add_subplot(212) # ax_powers.plot(sys_1.chan['sys']['t'],sys_1.chan['pssys']['p_nc']) # ax_powers.plot(sys_1.chan['t'],sys_1.chan['p_g']) import plotly.plotly as py py.sign_in("jmmauricio", "rwdnrmvuyg") plot_url = py.plot_mpl(fig_1, auto_open=True)
01dabdc5ab680e0a4c9bb2dcef1040d08b4915eb
f56a00622ea3799f25d52138ffaafc6dcad46574
/aggtrend/aggtrends/migrations/0003_code_post_code_post.py
45ea624a140d69851dd7bf0cd4e284f631260bcf
[]
no_license
SardarDawar/aggregate
063b384421ef1f3b5c8d1eb1975cd8396d38f553
b062023bc2d3e6fdeb1c17743345cb8b70f90b1c
refs/heads/master
2022-12-29T05:09:16.438663
2019-12-30T22:49:56
2019-12-30T22:49:56
230,547,601
1
0
null
2019-12-30T10:25:30
2019-12-28T02:31:17
HTML
UTF-8
Python
false
false
395
py
# Generated by Django 2.2.6 on 2019-12-30 10:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('aggtrends', '0002_auto_20191227_0614'), ] operations = [ migrations.AddField( model_name='code_post', name='code_post', field=models.BooleanField(default=False), ), ]
1c51a3fc01837f6b1233b786c73615dcb572c8c7
624ccdaf85ebebf0a03636fbd1ff234bd89c7972
/product/serializers.py
75f8d0097fb3b1ce82d5f1f29e448da23a3cf786
[]
no_license
kairat3/bella_basket
613294985c1f71efdee9d0f43fa2557a412ca9b8
e76f3f950957ae4051472d374ccee9350def6cd1
refs/heads/master
2023-07-13T00:13:18.475695
2021-08-25T09:51:17
2021-08-25T09:51:17
396,841,979
0
0
null
null
null
null
UTF-8
Python
false
false
3,016
py
from rest_framework import serializers from account.serializers import ProfileSerializer, UserSerializer from .models import Product, Category, Favorite, Color, Size, Additional, Image class AdditionalSerializer(serializers.ModelSerializer): class Meta: model = Additional fields = ('key', 'value', ) class ColorSerializer(serializers.ModelSerializer): class Meta: model = Color fields = ('id', 'color', ) class SizeSerializer(serializers.ModelSerializer): class Meta: model = Size fields = ('size', ) class ImageSerializer(serializers.ModelSerializer): class Meta: model = Image fields = ('title', 'image', ) class IsHitSerializer(serializers.ModelSerializer): images = ImageSerializer(many=True, read_only=True) color = ColorSerializer(many=True) size = SizeSerializer(many=True) class Meta: model = Product fields = ( 'id', 'is_hit', 'title', 'description', 'old_price', 'price', 'discount', 'additional', 'color', 'size', 'images', 'category') class CategorySerializer(serializers.ModelSerializer): class Meta: model = Category fields = ('id', 'title', 'slug',) def to_representation(self, instance): representation = super().to_representation(instance) representation2 = super(ProductSerializer) print(representation2) if instance.children.exists(): representation['children'] = CategorySerializer(instance=instance.children.all(), many=True).data return representation class ProductSerializer(serializers.ModelSerializer): additional = AdditionalSerializer(many=True) color = ColorSerializer(many=True) size = SizeSerializer(many=True) images = ImageSerializer(many=True, read_only=True) category = CategorySerializer() class Meta: model = Product fields = ('id', 'title', 'description', 'old_price', 'price', 'discount', 'additional', 'color', 'size', 'images', 'category', 'is_hit') class FavoriteSerializer(serializers.ModelSerializer): product = ProductSerializer(read_only=True) class Meta: model = Favorite fields = ('id', 'favorite', 'user', 'product') def create(self, validated_data): request = self.context.get('request') user = request.user favorite = Favorite.objects.create(user=user, **validated_data) return favorite def to_representation(self, instance): representation = super(FavoriteSerializer, self).to_representation(instance) representation['user'] = instance.user.phone_number return representation class CartSerializer(serializers.Serializer): user = ProfileSerializer() products = ProductSerializer(many=True) created_at = serializers.DateTimeField() class AddToCartSerializer(serializers.ModelSerializer): id = serializers.IntegerField() class Meta: model = Product fields = ['id']
d027b4e8adc33d04712f2639893d0e1b309d38c0
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02603/s199763378.py
915ed29aa0e93fd701e5b05d825c6c1857d7be8c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
import sys input = sys.stdin.readline N = int(input()) A = list(map(int, input().split())) dp = [0]*(N+1) dp[0] = 1000 for i in range(1, N+1): dp[i] = dp[i-1] for j in range(i): dp[i] = max(dp[i], dp[j]//A[j]*A[i-1]+dp[j]%A[j]) print(dp[N])
f2059742af36092696997c24446f840d262c752a
081ea255a45d2e0f255ebab00aea487c1bc01da2
/OCP/tasks/task_motion.py
01f077468501d4bcbe408f077aad8405ce9c9082
[]
no_license
ggory15/HQP-cogimon
8b2d906d179864c613d8741fb1997c650feedf3c
e809fcc2a421066b7c0c02ce70898ec96ba584af
refs/heads/master
2022-07-03T01:21:47.831298
2020-05-10T22:21:13
2020-05-10T22:21:13
262,884,836
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
# __author__ = "Sanghyun Kim" # __copyright__ = "Copyright (C) 2020 Sanghyun Kim" import numpy as np import copy from .task_abstract import * class TaskMotion(TaskBase): def __init__(self, name, robot): TaskBase.__init__(self, name, robot) self.mask = 0 def setMask(self, mask): self.mask = copy.deepcopy(mask) def hasMase(self): return self.mask is not 0
e50c7c7cb40e44a0cdcd058a2b011502e8d7cb21
93a4edf14cd2284d58fe0218cdce2eac00db66c6
/tests/sdfg_validate_names_test.py
51490383701f01b1caa015a7e2bb7c6e1b8da622
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gronerl/dace
f50dbeb70feb35c2afb4ee92b2dd4a9613a024ea
886e14cfec5df4aa28ff9a5e6c0fe8150570b8c7
refs/heads/master
2023-07-23T12:30:20.561679
2020-02-24T07:25:34
2020-02-24T07:25:34
242,930,054
0
0
BSD-3-Clause
2020-02-25T06:45:23
2020-02-25T06:45:22
null
UTF-8
Python
false
false
4,584
py
import unittest import dace # Try to detect invalid names in SDFG class NameValidationTests(unittest.TestCase): # SDFG label def test_sdfg_name1(self): try: sdfg = dace.SDFG(' ') sdfg.validate() self.fail('Failed to detect invalid SDFG') except dace.sdfg.InvalidSDFGError as ex: print('Exception caught:', ex) def test_sdfg_name2(self): try: sdfg = dace.SDFG('3sat') sdfg.validate() self.fail('Failed to detect invalid SDFG') except dace.sdfg.InvalidSDFGError as ex: print('Exception caught:', ex) # State def test_state_duplication(self): try: sdfg = dace.SDFG('ok') sdfg.add_state('also_ok') s2 = sdfg.add_state('also_ok') s2.set_label('also_ok') sdfg.validate() self.fail('Failed to detect duplicate state') except dace.sdfg.InvalidSDFGError as ex: print('Exception caught:', ex) def test_state_name1(self): try: sdfg = dace.SDFG('ok') sdfg.add_state('not ok') sdfg.validate() self.fail('Failed to detect invalid state') except dace.sdfg.InvalidSDFGError as ex: print('Exception caught:', ex) def test_state_name2(self): try: sdfg = dace.SDFG('ok') sdfg.add_state('$5') sdfg.validate() self.fail('Failed to detect invalid state') except dace.sdfg.InvalidSDFGError as ex: print('Exception caught:', ex) # Array def test_array(self): try: sdfg = dace.SDFG('ok') state = sdfg.add_state('also_ok') _8 = state.add_array('8', [1], dace.float32) t = state.add_tasklet('tasklet', {'a'}, {}, 'print(a)') state.add_edge(_8, None, t, 'a', dace.Memlet.from_array(_8.data, _8.desc(sdfg))) sdfg.validate() self.fail('Failed to detect invalid array name') except (dace.sdfg.InvalidSDFGError, NameError) as ex: print('Exception caught:', ex) # Tasklet def test_tasklet(self): try: sdfg = dace.SDFG('ok') state = sdfg.add_state('also_ok') A = state.add_array('A', [1], dace.float32) B = state.add_array('B', [1], dace.float32) t = state.add_tasklet(' tasklet', {'a'}, {'b'}, 'b = a') state.add_edge(A, None, t, 'a', dace.Memlet.from_array(A.data, A.desc(sdfg))) state.add_edge(t, 'b', B, None, dace.Memlet.from_array(B.data, B.desc(sdfg))) sdfg.validate() self.fail('Failed to detect invalid tasklet name') except dace.sdfg.InvalidSDFGNodeError as ex: print('Exception caught:', ex) # Connector def test_connector(self): try: sdfg = dace.SDFG('ok') state = sdfg.add_state('also_ok') A = state.add_array('A', [1], dace.float32) B = state.add_array('B', [1], dace.float32) t = state.add_tasklet('tasklet', {'$a'}, {' b'}, '') state.add_edge(A, None, t, '$a', dace.Memlet.from_array(A.data, A.desc(sdfg))) state.add_edge(t, ' b', B, None, dace.Memlet.from_array(B.data, B.desc(sdfg))) sdfg.validate() self.fail('Failed to detect invalid connectors') except dace.sdfg.InvalidSDFGError as ex: print('Exception caught:', ex) # Interstate edge def test_interstate_edge(self): try: sdfg = dace.SDFG('ok') state = sdfg.add_state('also_ok') A = state.add_array('A', [1], dace.float32) B = state.add_array('B', [1], dace.float32) t = state.add_tasklet('tasklet', {'a'}, {'b'}, 'b = a') state.add_edge(A, None, t, 'a', dace.Memlet.from_array(A.data, A.desc(sdfg))) state.add_edge(t, 'b', B, None, dace.Memlet.from_array(B.data, B.desc(sdfg))) sdfg.add_edge( state, state, dace.InterstateEdge(assignments={'%5': '1'})) sdfg.validate() self.fail('Failed to detect invalid interstate edge') except dace.sdfg.InvalidSDFGInterstateEdgeError as ex: print('Exception caught:', ex) if __name__ == '__main__': unittest.main()
94125c9112a64584e17d1955f1b02efaedd6fcd0
2da8bcfb9a72e507812a8723e38ad6d030c300f1
/simplify_path_71.py
ac6e8a021f9a97b8369035d457680de94b0e3a0f
[]
no_license
aditya-doshatti/Leetcode
1a4e0f391a7d6ca2d7f8fdc35e535f4ec10fb634
eed20da07896db471ea6582785335e52d4f04f85
refs/heads/master
2023-04-06T02:18:57.287263
2023-03-17T03:08:42
2023-03-17T03:08:42
218,408,346
0
0
null
null
null
null
UTF-8
Python
false
false
1,398
py
''' 71. Simplify Path Medium Given a string path, which is an absolute path (starting with a slash '/') to a file or directory in a Unix-style file system, convert it to the simplified canonical path. In a Unix-style file system, a period '.' refers to the current directory, a double period '..' refers to the directory up a level, and any multiple consecutive slashes (i.e. '//') are treated as a single slash '/'. For this problem, any other format of periods such as '...' are treated as file/directory names. The canonical path should have the following format: The path starts with a single slash '/'. Any two directories are separated by a single slash '/'. The path does not end with a trailing '/'. The path only contains the directories on the path from the root directory to the target file or directory (i.e., no period '.' or double period '..') Return the simplified canonical path. Example 1: Input: path = "/home/" Output: "/home" Explanation: Note that there is no trailing slash after the last directory name. https://leetcode.com/problems/simplify-path/ ''' class Solution: def simplifyPath(self, path: str) -> str: stack = [] for val in path[1:].split('/'): if val == '..': if stack: stack.pop() elif val and val !='.': stack.append(val) return '/' + '/'.join(stack)
390175f4e92c1ae351811ad85ecce0a6c1de7920
241cebd26fbcbd20bae804fd868722b2673328fc
/histogram_2002_r75.py
64b8fb63166cbdb365a64badb8c95216fdfd1d5c
[]
no_license
shouldsee/golly_utils
b3339e9ba4e5213e98ec1b35755cd605e3f93df8
03959f0c593d4a811ba20f2372d6663d126dbab2
refs/heads/master
2021-01-19T11:04:25.661858
2018-04-01T13:19:51
2018-04-01T13:19:51
82,230,847
1
0
null
null
null
null
UTF-8
Python
false
false
5,914
py
# Creates a histogram plot showing the frequencies of all cell states # in the current selection (if one exists) or the entire pattern. # Author: Andrew Trevorrow ([email protected]), September 2009. import golly as g import math from glife import getminbox, rect, rccw, pattern from glife.text import make_text from time import time # -------------------------------------------------------------------- barwd = 40 # width of each bar # length of axes xlen = g.numstates() * barwd ylen = 500 totalcells = 0 # -------------------------------------------------------------------- def draw_line(x1, y1, x2, y2, state = 1): # draw a line of cells in given state from x1,y1 to x2,y2 # using Bresenham's algorithm g.setcell(x1, y1, state) if x1 == x2 and y1 == y2: return dx = x2 - x1 ax = abs(dx) * 2 sx = 1 if dx < 0: sx = -1 dy = y2 - y1 ay = abs(dy) * 2 sy = 1 if dy < 0: sy = -1 if ax > ay: d = ay - (ax / 2) while x1 != x2: g.setcell(x1, y1, state) if d >= 0: y1 += sy d -= ax x1 += sx d += ay else: d = ax - (ay / 2) while y1 != y2: g.setcell(x1, y1, state) if d >= 0: x1 += sx d -= ay y1 += sy d += ax g.setcell(x2, y2, state) # -------------------------------------------------------------------- def color_text(string, extrastate): t = make_text(string, "mono") bbox = getminbox(t) # convert two-state pattern to multi-state and set state to extrastate mlist = [] tlist = list(t) for i in xrange(0, len(tlist), 2): mlist.append(tlist[i]) mlist.append(tlist[i+1]) mlist.append(extrastate) if len(mlist) % 2 == 0: mlist.append(0) p = pattern(mlist) return p, bbox.wd, bbox.ht # -------------------------------------------------------------------- def draw_bar(state, extrastate): barht = int( float(ylen) * float(statecount[state]) / float(totalcells) ) x = barwd * state draw_line(x, 0, x, -barht, extrastate) draw_line(x, -barht, x+barwd, -barht, extrastate) draw_line(x+barwd, 0, x+barwd, -barht, extrastate) if barht > 1: # fill bar with corresponding color x1 = x + 1 x2 = x + barwd - 1 for y in xrange(barht - 1): draw_line(x1, -(y+1), x2, -(y+1), state) if statecount[state] > 0: # show count on top of bar t, twd, tht = color_text(str(statecount[state]), extrastate) t.put(barwd * (state+1) - barwd/2 - twd/2, -barht - tht - 3) # -------------------------------------------------------------------- if g.empty(): g.exit("There is no pattern.") if g.numstates() == 256: g.exit("No room for extra state.") # check that a layer is available for the histogram histname = "histogram" histlayer = -1 for i in xrange(g.numlayers()): if g.getname(i) == histname: histlayer = i break if histlayer == -1 and g.numlayers() == g.maxlayers(): g.exit("You need to delete a layer.") # use selection rect if it exists, otherwise use pattern bounds label = "Selection" r = rect( g.getselrect() ) if r.empty: label = "Pattern" r = rect( g.getrect() ) # count all cell states in r g.show("Counting cell states...") counted = 0 totalcells = r.wd * r.ht statecount = [0] * g.numstates() oldsecs = time() for row in xrange(r.top, r.top + r.height): for col in xrange(r.left, r.left + r.width): counted += 1 statecount[g.getcell(col,row)] += 1 newsecs = time() if newsecs - oldsecs >= 1.0: # show % done every sec oldsecs = newsecs done = 100.0 * float(counted) / float(totalcells) g.show("Counting cell states... %.2f%%" % done) g.dokey( g.getkey() ) statecount=[int(10*math.log((x+1),2)) for x in statecount] totalcells=sum(statecount) if statecount[0] == counted: g.exit("Selection is empty.") # save current layer's info before we switch layers currname = g.getname() currcursor = g.getcursor() currcolors = g.getcolors() currstates = g.numstates() deads, deadr, deadg, deadb = g.getcolors(0) # create histogram in separate layer g.setoption("stacklayers", 0) g.setoption("tilelayers", 0) g.setoption("showlayerbar", 1) if histlayer == -1: histlayer = g.addlayer() else: g.setlayer(histlayer) g.new(histname) g.setcursor(currcursor) # use a Generations rule so we can append extra state for drawing text & lines g.setrule("//" + str(currstates+1)) extrastate = currstates currcolors.append(extrastate) if (deadr + deadg + deadb) / 3 > 128: # use black if light background currcolors.append(0) currcolors.append(0) currcolors.append(0) else: # use white if dark background currcolors.append(255) currcolors.append(255) currcolors.append(255) g.setcolors(currcolors) # draw axes with origin at 0,0 draw_line(0, 0, xlen, 0, extrastate) draw_line(0, 0, 0, -ylen, extrastate) # add annotation using mono-spaced ASCII font t, twd, tht = color_text("Pattern name: "+currname, extrastate) t.put(0, -ylen - 30 - tht) t, twd, tht = color_text("%s size: %d x %d (%d cells)" % (label, r.wd, r.ht, totalcells), extrastate) t.put(0, -ylen - 15 - tht) t, twd, tht = color_text("% FREQUENCY", extrastate) t.put(-35 - tht, -(ylen - twd)/2, rccw) for perc in xrange(0, 101, 10): t, twd, tht = color_text(str(perc), extrastate) y = -perc * (ylen/100) t.put(-twd - 10, y - tht/2) ### draw_line(-3, y, 0, y, extrastate) # draw dotted horizontal line from 0 to xlen for x in xrange(0, xlen, 2): g.setcell(x, y, extrastate) t, twd, tht = color_text("STATE", extrastate) t.put((xlen - twd)/2, 30) for state in xrange(extrastate): t, twd, tht = color_text(str(state), extrastate) t.put(barwd * (state+1) - barwd/2 - twd/2, 10) draw_bar(state, extrastate) # display result at scale 1:1 g.fit() g.setmag(0) g.show("")
19605ba78e49b3853aa764606e01d48cf28335f0
dc940e2aa628eff693af36584cfad935990ebe7d
/v3.1.0/getBookTXT.py
4274ac9cf37fbcba256bc4cd576bfa8e5e20c9b8
[]
no_license
520wsl/getXs8Novels
865572ea488e0bf3d4e21664eb576237b6dd18be
ecf6d0bc5dfdbe4b5c3e8a9aac313bf7abce614b
refs/heads/master
2020-04-18T00:59:56.777416
2019-02-15T08:52:11
2019-02-15T08:52:11
167,101,111
0
0
null
null
null
null
UTF-8
Python
false
false
3,358
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = '文章抓取' __author__ = 'Mad Dragon' __mtime__ = '2019/1/12' # 我不懂什么叫年少轻狂,只知道胜者为王               ┏┓      ┏┓             ┏┛┻━━━┛┻┓             ┃      ☃      ┃             ┃  ┳┛  ┗┳  ┃             ┃      ┻      ┃             ┗━┓      ┏━┛                 ┃      ┗━━━┓                 ┃  神兽保佑    ┣┓                 ┃ 永无BUG!   ┏┛                 ┗┓┓┏━┳┓┏┛                   ┃┫┫  ┃┫┫                   ┗┻┛  ┗┻┛ """ import moment import time from tool.GetBookInfoTool import GetBookInfoTool from tool.SaveBookInfoToMySqlTool import SaveBookInfoToMySqlToo from public.MySqlTool import MySqlTool from public.Logger import Logger from public.DataTool import DataTool from public.RedisTool import RedisTool class GetBookTXT(object): def __init__(self, getBookIdsListSize, rdsKeyName): self.b_getBookIdsListSize = int(getBookIdsListSize) self.b_rdsKeyName = rdsKeyName self.b_title = 'getBookTXT' self.b_second = 1 self.b_timeStr = moment.now().format('YYYY-MM-DD-HH-mm-ss') self.dataToo = DataTool(logName=self.b_title, second=self.b_second, timeStr=self.b_timeStr) self.mySql = MySqlTool(logName=self.dataToo.initLogName()) self.logger = Logger(logname=self.dataToo.initLogName(), loglevel=1, logger=self.b_title).getlog() self.rds = RedisTool() self.getBookInfoToo = GetBookInfoTool(second=self.b_second, dataToo=self.dataToo, logger=self.logger) self.saveBookInfoToMySqlToo = SaveBookInfoToMySqlToo(second=self.b_second, logger=self.logger, getBookInfoToo=self.getBookInfoToo, mySql=self.mySql, dataToo=self.dataToo) def target(self): links = [] for i in range(self.b_getBookIdsListSize): link = self.rds.r.lpop(self.b_rdsKeyName) if link != None: link = link.decode(encoding='utf-8') links.append(link) return links def contentsLoad(self): links = self.target() if len(links) <= 0: self.logger.debug('bookTxtLoad 没有数据\n') return for item in links: self.logger.debug(item) self.saveBookInfoToMySqlToo.saveText(link=item) self.isOk() def isOk(self): self.contentsLoad() if __name__ == '__main__': rdsKeyName = 'bookIdsList3' getBookIdsListSize = input("每次获取多少条链接(最大1000): >>") maxCatalogNex = 1 print( '\n\n参数确认: rdsKeyName : %s | getBookIdsListSize : %s \n\n' % (rdsKeyName, getBookIdsListSize)) time.sleep(1) isStart = input("是否开始?(y/n): >>") if (isStart == 'y'): book = GetBookTXT(getBookIdsListSize=getBookIdsListSize, rdsKeyName=rdsKeyName) book.contentsLoad() else: print('取消抓取')
8cef065bb4c5e40d9a10b44e754dc7f3bd86eee2
e5e9ee9e4db2e400e7f87647501ee412c13d76e5
/python/open cv/magic_cloth.py
36c4deda71edb9cb0519277e6e8dc032facd3f67
[]
no_license
beingveera/whole-python
524441eec44379c36cb1cfeccdbc65bf1c15d2f6
3f2b3cb7528afb9605ab6f9d4d2efc856a247af5
refs/heads/main
2023-05-15T06:28:03.058105
2021-06-05T09:37:47
2021-06-05T09:37:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,162
py
''' import cv2 import time import numpy as np cap = cv2.VideoCapture(0) time.sleep(2) background=0 #capturing the background for i in range(30): ret,background=cap.read() while(cap.isOpened()): ret,img = cap.read() if not ret: break #if the image is flipped, use image = np.flip(image, axis = 1) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower_red=np.array([0,120,70]) upper_red=np.array([10,255,255]) mask1=cv2.inRange(hsv,lower_red,upper_red) lower_red=np.array([170,120,70]) upper_red=np.array([180,255,255]) mask2=cv2.inRange(hsv,lower_red,upper_red) mask1 = mask1 + mask2 mask1=cv2.morphologyEx(mask1,cv2.MORPH_OPEN,np.ones((3,3),np.uint8),iterations=2) mask1=cv2.morphologyEx(mask1,cv2.MORPH_DILATE,np.ones((3,3),np.uint8),iterations=1) mask2=cv2.bitwise_not(mask1) res1=cv2.bitwise_and(background,background,mask=mask1) res2=cv2.bitwise_and(img,img,mask=mask2) final_output=cv2.addWeighted(res1,1,res2,1,0) cv2.imshow('Eureka !!', final_output) k=cv2.waitKey(10) if k==27: break cap.release() cv2.destroyAllWindows() ''' import cv2 import numpy as np import time cap = cv2.VideoCapture(0) time.sleep(2) background = 0 for i in range(30): ret, background = cap.read() while (cap.isOpened()): ret, img = cap.read() if not ret: break hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower_red = np.array([80, 125, 50]) upper_red = np.array([90, 255,255]) mask1 = cv2.inRange(hsv, lower_red, upper_red) lower_red = np.array([110, 120, 70]) upper_red = np.array([120, 255, 255]) mask2 = cv2.inRange(hsv, lower_red, upper_red) mask1 = mask1 + mask2 mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE, np.ones((3, 3), np.uint8)) mask2 = cv2.bitwise_not(mask1) res1 = cv2.bitwise_and(img, img, mask=mask2) res2 = cv2.bitwise_and(background, background, mask=mask1) final_output=cv2.addWeighted(res1, 1, res2, 1, 0) cv2.imshow('Magical Cloack' ,final_output) k=cv2.waitKey(1) if k==27: break cap.release() cv2.destroyAllWindows() exit()
36951d7ee0ef3e7005163dbe47389a4623d839f5
7df2816cfbc7f48bfbab7ff37626a88296c39713
/Phần 2 Xác Xuất/Bai8.py
43539a2abbe4988bf2304e79727a492779968e48
[]
no_license
maithinhatlan/BaiTapTuan7
7e49de0b9d5de1bb5eba8143a767dea62aca3ca5
a6c9c1a425e296e878513e496b17f6352f95a84e
refs/heads/master
2023-08-14T21:13:45.546548
2021-10-09T10:37:11
2021-10-09T10:37:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
import numpy as np #numpy.random.uniform u = np.random.uniform(size=4) print("u = ",u)
5b1cc4a6717f7b454656c18eceed3a052a2f5586
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_199/311.py
b83b53e1e53057ef2a8ec9616114038309e9174b
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
import sys input = sys.stdin def solve(S,k): S = list(S) count = 0 for i in range(len(S)-k+1): if S[i]=='-': for j in range(k): S[i+j] = '-' if S[i+j]=='+' else '+' count+=1 for j in range(k): if S[-j]=='-': return 'IMPOSSIBLE' return count for case in range(int(input.readline())): values = input.readline().split() print("Case #"+ str(case+1) +":", solve(values[0],int(values[1])))
2db407d8e2e6ffc8407c3b7340d1f4b8c3f2563d
b99bbc50ab1d039948ccf853963ae044a97498fb
/src/api/com_interface/urls/live.py
5c48f7ee8cbec7860dd179d7c5a533b6aabf7838
[]
no_license
fan1018wen/Alpha
26899cc0eb6761bf6bd8089e7d12716c9e7ae01e
c50def8cde58fd4663032b860eb058302cbac6da
refs/heads/master
2021-05-12T12:54:15.747220
2017-10-11T10:58:51
2017-10-11T10:58:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @date: 2016-06-13 @author: Devin """ from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns from ..views import live urlpatterns = [ url(r'^$', live.LiveViewList.as_view()), url(r'^(?P<pk>\S+)$', live.LiveView.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
e908fff3d5d94413a53b9568c9463d0369bdf469
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/ec_11423-2311/sdB_EC_11423-2311_coadd.py
236e5bdcb2b2d2516b7158fc1ff8a94b2e130934
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
from gPhoton.gMap import gMap def main(): gMap(band="NUV", skypos=[176.209125,-23.471569], skyrange=[0.0333333333333,0.0333333333333], stepsz = 30., cntfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdBs/sdB_EC_11423-2311/sdB_EC_11423-2311_movie_count.fits", cntcoaddfile="/data2/fleming/GPHOTON_OUTPUT/LIGHTCURVES/sdB/sdB_EC_11423-2311/sdB_EC_11423-2311_count_coadd.fits", overwrite=True, verbose=3) if __name__ == "__main__": main()
f5a7b3700c827074a7351ba3ab12a4f25393f769
f8a317ace8e91d5b962586953bc38ef6ff2d3a20
/src/finanzas/authentication/serializers.py
a7ed97b3d5c459ca39609412c46d4b1f1b884296
[ "Apache-2.0" ]
permissive
jualjiman/finanzas
e63cae335d33b773874c913d23fc54a21a7ea5e9
a1af6f1a212a3cf172bf84eb668245dbffeb33a9
refs/heads/master
2020-05-18T17:15:48.246703
2015-08-10T02:38:08
2015-08-10T02:38:08
40,459,464
0
0
null
null
null
null
UTF-8
Python
false
false
1,541
py
from django.contrib.auth import update_session_auth_hash from rest_framework import serializers from finanzas.authentication.models import Account class AccountSerializer(serializers.ModelSerializer): password = serializers.CharField( write_only=True, required=False ) confirm_password = serializers.CharField( write_only=True, required=False ) class Meta: model = Account fields = ( 'id', 'email', 'username', 'created_at', 'updated_at', 'first_name', 'last_name', 'password', 'confirm_password' ) read_only_fields = ( 'created_at', 'updated_at' ) def create(self, validated_data): return Account.objects.create(**validated_data) def update(self, instance, validated_data): instance.username = validated_data.get( 'username', instance.username ) password = validated_data.get( 'password', None ) confirm_password = validated_data.get( 'confirm_password', None ) if password and confirm_password and password == confirm_password: instance.set_password(password) instance.save() update_session_auth_hash( self.context.get('request'), instance ) return instance
546b04313b4d6e5b2d9dd2d7e686e24a9dbd28b8
cda34a391e1d3fd96cdff8ea64d5dd73dc0e83e4
/educa/courses/models.py
63db5d5651ab6ae7c028bcc918bcd834624cf9b5
[ "MIT" ]
permissive
prakharchoudhary/DjangoSpree
ee824dd44c015984a85f68105e40e1202093f757
20c5a1d9eb5d00288ebe16d238525ba8cc5fad09
refs/heads/master
2021-01-02T09:46:43.599914
2018-06-26T08:14:02
2018-06-26T08:14:02
99,300,583
3
1
null
null
null
null
UTF-8
Python
false
false
2,440
py
from django.db import models from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes.fields import GenericForeignKey from .fields import OrderField # Create your models here. class Subject(models.Model): title = models.CharField(max_length=200) slug = models.SlugField(max_length=200, unique=True) class Meta: ordering = ('title',) def __str__(self): return self.title class Course(models.Model): owner = models.ForeignKey(User, related_name='courses_created') subject = models.ForeignKey(Subject, related_name='courses') title = models.CharField(max_length=200) slug = models.SlugField(max_length=200, unique=True) overview = models.TextField() created = models.DateTimeField(auto_now_add=True) class Meta: ordering = ('-created',) def __str__(self): return self.title class Module(models.Model): course = models.ForeignKey(Course, related_name='modules') title = models.CharField(max_length=200) description = models.TextField(blank=True) order = OrderField(blank=True, for_fields=['course']) class Meta: ordering = ['order'] def __str__(self): return '{}. {}'.format(self.order, self.title) class Content(models.Model): """ - content_type : A ForeignKey field to the ContentType model - object_id : This is PositiveIntegerField to store the primary key of the related object - item : A GenericForeignKey field to the related object by combining the two previous fields """ module = models.ForeignKey(Module, related_name='contents') content_type = models.ForeignKey(ContentType, limit_choices_to={'model__in': ('text', 'video', 'image', 'file')}) object_id = models.PositiveIntegerField() item = GenericForeignKey('content_type', 'object_id') order = OrderField(blank=True, for_fields=['module']) class Meta: ordering = ['order'] class ItemBase(models.Model): owner = models.ForeignKey(User, related_name='%(class)s_related') title = models.CharField(max_length=250) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: abstract = True def __str__(self): return self.title class Text(ItemBase): content = models.TextField() class File(ItemBase): file = models.FileField(upload_to='files') class Image(ItemBase): file = models.FileField(upload_to='images') class Video(ItemBase): url = models.URLField()
f637b0557e6e594194bba1fd65a263d48d42cad6
6a95b330e1beec08b917ff45eccfd6be3fd4629f
/kubernetes/test/test_v1_config_map_projection.py
daaae0c01f9732a6e5e977ef6d7d6d9335d2fbe3
[ "Apache-2.0" ]
permissive
TokkoLabs/client-python
f4a83d6540e64861b59e322c951380a670578d7f
f1ad9c6889105d8510472606c98f8d3807f82020
refs/heads/master
2023-07-14T01:36:46.152341
2017-12-21T21:32:11
2017-12-21T21:32:11
115,042,671
0
0
Apache-2.0
2021-08-06T03:29:17
2017-12-21T20:05:15
Python
UTF-8
Python
false
false
1,003
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_config_map_projection import V1ConfigMapProjection class TestV1ConfigMapProjection(unittest.TestCase): """ V1ConfigMapProjection unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1ConfigMapProjection(self): """ Test V1ConfigMapProjection """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1_config_map_projection.V1ConfigMapProjection() pass if __name__ == '__main__': unittest.main()
e856163f7b9d175e64f44a92b7a8655da0287f5a
cf7b827958166c8569eb58deb511cc3f07567741
/in_Python/0832 Flipping an Image.py
78099861650cb1394f6cac05f0f76c2d739941cc
[]
no_license
YangLiyli131/Leetcode2020
e4e36eb36b1983f73b0e733455b4a7953dfebe6d
20623defecf65cbc35b194d8b60d8b211816ee4f
refs/heads/master
2023-08-22T06:00:55.924112
2021-09-18T19:04:15
2021-09-18T19:04:15
251,426,203
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
class Solution(object): def iv(self,t): if t == 1: return 0 else: return 1 def flipAndInvertImage(self, A): """ :type A: List[List[int]] :rtype: List[List[int]] """ row = len(A) col = len(A[0]) for r in range(row): cur_row = A[r] i = 0 j = col-1 while i <= j: temp = cur_row[i] cur_row[i] = self.iv(cur_row[j]) cur_row[j] = self.iv(temp) i += 1 j -= 1 A[r] = cur_row return A
b22d08a95310a44da7bc43077102ca35e025dda5
dbf48e804e1792999854832e64a7dae9f42f71e2
/Spikes/spikedetekt2/spikedetekt2/core/tests/test_script.py
4a48caf55fc470a9bf6bde40d574f657ecf725dc
[]
no_license
sapphire008/Python
15d3d7885ac82333654b6729c2a57ed760e796a8
b2783eabb1987091051614b8f12a4778e158a90b
refs/heads/master
2023-08-09T04:38:43.077285
2023-07-28T18:36:03
2023-07-28T18:36:03
9,880,648
15
7
null
null
null
null
UTF-8
Python
false
false
3,079
py
"""Main module tests.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import os import os.path as op import numpy as np import tempfile from kwiklib import (excerpts, get_params, pydict_to_python, get_filenames, itervalues, create_trace, Experiment) from spikedetekt2.core.script import run_spikedetekt # ----------------------------------------------------------------------------- # Fixtures # ----------------------------------------------------------------------------- DIRPATH = None prm_filename = 'myexperiment.prm' prb_filename = 'myprobe.prb' dat_filename = 'myexperiment.dat' name = 'myexperiment' sample_rate = 20000. duration = 1. nchannels = 8 nsamples = int(sample_rate * duration) def setup(): global DIRPATH DIRPATH = tempfile.mkdtemp() # Create DAT file. raw_data = create_trace(nsamples, nchannels) for start, end in excerpts(nsamples, nexcerpts=10, excerpt_size=10): raw_data[start:end] += np.random.randint(low=-10000, high=10000, size=(10, nchannels)) raw_data.tofile(op.join(DIRPATH, dat_filename)) # Create PRM file. prm = get_params(**{ 'raw_data_files': dat_filename, 'experiment_name': name, 'nchannels': nchannels, 'sample_rate': sample_rate, 'detect_spikes': 'positive', 'prb_file': prb_filename, }) prm_contents = pydict_to_python(prm) with open(op.join(DIRPATH, prm_filename), 'w') as f: f.write(prm_contents) # Create PRB file. prb_contents = """ nchannels = %NCHANNELS% channel_groups = {0: { 'channels': list(range(nchannels)), 'graph': [(i, i + 1) for i in range(nchannels - 1)], } }""".replace('%NCHANNELS%', str(nchannels)).replace(' ', '') with open(op.join(DIRPATH, prb_filename), 'w') as f: f.write(prb_contents) def teardown(): os.remove(op.join(DIRPATH, prm_filename)) os.remove(op.join(DIRPATH, prb_filename)) files = get_filenames(name, dir=DIRPATH) [os.remove(path) for path in itervalues(files)] # ----------------------------------------------------------------------------- # Main tests # ----------------------------------------------------------------------------- def test_main_1(): run_spikedetekt(op.join(DIRPATH, prm_filename)) # Open the data files. with Experiment(name, dir=DIRPATH) as exp: nspikes = len(exp.channel_groups[0].spikes) assert exp.channel_groups[0].spikes.clusters.main.shape[0] == nspikes assert exp.channel_groups[0].spikes.features_masks.shape[0] == nspikes assert exp.channel_groups[0].spikes.waveforms_filtered.shape[0] == nspikes fm = exp.channel_groups[0].spikes.features_masks assert fm[:,:,0].min() < fm[:,:,0].max() # Make sure the masks are not all null. assert fm[:,:,1].max() > 0
c4560ba0e5f05479e057ca93209cfac3c81a3528
c3ace26cd05f3dc2097b2302ff9f5078468df8b3
/flask-app/models.py
1edc8fe6f05a14a0b72284518d949d87002760f1
[]
no_license
rid47/lecture4
ccdf5ff49c99eb28c098c9169648cbcbee66207e
398b1f1d94ad19bf9abce843e1750621297f6e4e
refs/heads/master
2022-04-24T16:56:42.697938
2020-04-26T08:35:03
2020-04-26T08:35:03
258,978,969
0
0
null
null
null
null
UTF-8
Python
false
false
781
py
from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class Flight(db.Model): __tablename__ = "flights" id = db.Column(db.Integer, primary_key=True) origin = db.Column(db.String, nullable=False) destination = db.Column(db.String, nullable=False) duration = db.Column(db.Integer, nullable=False) passengers = db.relationship("Passenger", backref="flight", lazy=True) def add_passenger(self, name): p = Passenger(name=name, flight_id=self.id) db.session.add(p) db.session.commit() class Passenger(db.Model): __tablename__ = "passengers" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=True) flight_id = db.Column(db.Integer, db.ForeignKey("flights.id"), nullable=False)
1d121b81f5661077acf9d3396c2d18b2a8aafe47
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5753053697277952_1/Python/Caust1c/a1.py
bf1d9a842fdbb5f014850c2d3225eece06188450
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
5,426
py
### Set the input and output file names import time import datetime import string import operator filename = 'A-large' input_filename = filename + '.in' output_filename = filename + '.out.' + datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') + '.txt' def findmax(arr_int): m = max(arr_int) return [i for i, j in enumerate(arr_int) if j == m] ### Open input file for reading with open(input_filename) as f: lines = f.read().splitlines() ### Open output file for writing with open(output_filename, 'w') as output: ###################################################### ### Initialise variables from first line of the file ###################################################### vars = lines[0].split(' ') cases = int(vars[0]) # number of cases print(str(cases) + ' cases detected.') # [soft validation] lineNum = 1 # first case starts here caseNum = 0 # for counting the num of cases caseSize_r = 1 # number of rows in each case; default = 1 caseSize_c = 1 # number of columns in each case; default = 1 infoLines = True # Toggle according to question #infoLines = False # Toggle according to question ### i.e. infoLines == True if infoLines: while lineNum < len(lines): ### A new case! Initialize some variables caseNum += 1 # case number count party_count = int(lines[lineNum].split(' ')[0]) party_sizes = map(int, lines[lineNum + 1].split(' ')) party_names = string.uppercase[:party_count] room_total = sum(party_sizes) print('--------') print('Case #%d: %s' % (caseNum, " ".join(str(x) for x in party_names))) print('Case #%d: %s' % (caseNum, " ".join(str(x) for x in party_sizes))) print('Case #%d: %d total people' % (caseNum, room_total)) print('Case #%d: maxcases in index: %s' % (caseNum, " ".join(str(x) for x in findmax(party_sizes)))) print('Case #%d: %d maxcases' % (caseNum, len(findmax(party_sizes)))) ### Do the Work! ### TODO! myAns = '' while room_total > 0: #if room_total == 1: # myAns = join(myAns, ' ', if room_total >= 4: party_maxes = findmax(party_sizes) if len(party_maxes) == 1: print('step. 4+ remain (1 max)') party_sizes[party_maxes[0]] += -1 myAns = myAns + (' %s' % (party_names[party_maxes[0]])) print('%s' % (party_names[party_maxes[0]])) print('%s' % (" ".join(str(x) for x in party_sizes))) room_total += -1 else: print('step. 4+ remain (2+ max)') party_sizes[party_maxes[0]] += -1 party_sizes[party_maxes[1]] += -1 myAns = myAns + (' %s%s' % (party_names[party_maxes[0]],party_names[party_maxes[1]])) print('%s%s' % (party_names[party_maxes[0]],party_names[party_maxes[1]])) print('%s' % (" ".join(str(x) for x in party_sizes))) room_total += -2 elif room_total == 3: print('step. 3 remain') party_maxes = findmax(party_sizes) party_sizes[party_maxes[0]] += -1 myAns = myAns + (' %s' % (party_names[party_maxes[0]])) print('%s' % (party_names[party_maxes[0]])) print('%s' % (" ".join(str(x) for x in party_sizes))) room_total += -1 elif room_total == 2: print('step. 2 remain') party_maxes = findmax(party_sizes) party_sizes[party_maxes[0]] += -1 party_sizes[party_maxes[1]] += -1 myAns = myAns + (' %s%s' % (party_names[party_maxes[0]],party_names[party_maxes[1]])) print('%s%s' % (party_names[party_maxes[0]],party_names[party_maxes[1]])) print('%s' % (" ".join(str(x) for x in party_sizes))) room_total += -2 else: print('###################ERROR') room_total = -1 ### Output myArr print('Case #%d:%s' % (caseNum, myAns)) output.write('Case #%d:%s\n' % (caseNum, myAns)) ### Step lineNum += 2 ### i.e. infoLines == False else: print('deadend') ### END
665fbacd18a16c4a0381bbb91ebfed9745bf12a4
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02927/s950956417.py
a97f1206dbc46df6ba04a9ae44abc68733ed10d6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
355
py
m,d = map(int,input().split()) cnt = 0 for i in range(1,m+1): for j in range(1,d+1): #print(i,j) num = 1 d2 = (j-j%10)//10 d1 = j%10 if d2 >=2 and d1 >=2: num =d1*d2 #print(i,j,num,d1,d2) #print(i,j,num,(j-j%10),j%10) if num == i: cnt +=1 print(cnt)
24febda16aaf84019c85d59f061b3d6ff3898bc0
43ab33b2f50e47f5dbe322daa03c86a99e5ee77c
/test/test_od_mcomplex_type_definition_picture.py
493605438a6e7cfdeebbd08be2e3907161a9123f
[]
no_license
Sage-Bionetworks/rcc-client
c770432de2d2950e00f7c7bd2bac22f3a81c2061
57c4a621aecd3a2f3f9faaa94f53b2727992a01a
refs/heads/main
2023-02-23T05:55:39.279352
2021-01-21T02:06:08
2021-01-21T02:06:08
331,486,099
0
0
null
null
null
null
UTF-8
Python
false
false
1,525
py
# coding: utf-8 """ nPhase REST Resource REDCap REST API v.2 # noqa: E501 The version of the OpenAPI document: 2.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import rcc from rcc.models.od_mcomplex_type_definition_picture import ODMcomplexTypeDefinitionPicture # noqa: E501 from rcc.rest import ApiException class TestODMcomplexTypeDefinitionPicture(unittest.TestCase): """ODMcomplexTypeDefinitionPicture unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test ODMcomplexTypeDefinitionPicture include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = rcc.models.od_mcomplex_type_definition_picture.ODMcomplexTypeDefinitionPicture() # noqa: E501 if include_optional : return ODMcomplexTypeDefinitionPicture( picture_file_name = '0', image_type = '0' ) else : return ODMcomplexTypeDefinitionPicture( ) def testODMcomplexTypeDefinitionPicture(self): """Test ODMcomplexTypeDefinitionPicture""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
8bf53f137afc4728262b2316165a54280baa1e66
acc244c97a943d8e2074339afa1bff1274ae4cfc
/scripts/cgat_build_report_page.py
7cd893e0d601bb43ea071b7da33f5b20a3caf22d
[]
no_license
eromasko/cgat
00114f4c95b439ba6595ddf2092d1a3307347401
d82d197f3913b8d65b656c0b205ca48854fdb2a6
refs/heads/master
2021-01-17T09:37:17.168278
2015-02-20T09:03:31
2015-02-20T09:03:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,581
py
''' cgat_build_report_page.py - build report page for all projects ======================================================================= :Author: :Release: $Id$ :Date: |today| :Tags: Python Purpose ------- This script scans all of :file:`/ifs/projects/sftp` for :file:`index.html` files and outputs an html formatted summary table into :file:`/ifs/projects/overview`. Usage ----- Example:: python cgat_build_report_page.py Type:: python cgat_build_report_page.py --help for command line help. Command line options -------------------- ''' import os import sys import re import optparse import subprocess import CGAT.Experiment as E import CGAT.IOTools as IOTools def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if not argv: argv = sys.argv # setup command line parser parser = E.OptionParser(version="%prog version: $Id: cgat_script_template.py 2871 2010-03-03 10:20:44Z andreas $", usage=globals()["__doc__"]) parser.add_option("-p", "--path", dest="path", type="string", help="path to scan for files [%default]") parser.add_option("-d", "--destination", dest="destination", type="string", help="path to deposit files into [%defaul]") parser.set_defaults(path='/ifs/projects/sftp', url='http://www.cgat.org/downloads/', dest='/ifs/projects/overview') # add common options (-h/--help, ...) and parse command line (options, args) = E.Start(parser, argv=argv) statement = "find %s -name 'index.html'" % options.path process = subprocess.Popen(statement, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() files = stdout.split('\n') files.sort() outfile = IOTools.openFile(os.path.join(options.dest, "index.html"), "w") outfile.write( ''' <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>CGAT project reports</title> <link rel="stylesheet" href="cgat.css" type="text/css" /> <link rel="stylesheet" href="pygments.css" type="text/css" /> <link rel="shortcut icon" href="http://cgatwiki.anat.ox.ac.uk/favicon.ico"> <script type="text/javascript" src="sorttable.js"></script> </head> <body> <div class="related"> <h3>Navigation</h3> <ul> <li><a href="index.html">CGAT Projects Overview</a> &raquo;</li> </ul> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body"> <div class="section" id="cgat-pipelines"> <H1>CGAT exported project pages</H1> <p> This page is for internal use only. Do not distribute outside of CGAT and do not make this page available on the world wide web. </p> <table class="sortable">\n''' ) outfile.write( '''<tr><th>Project</th><th>Report</th><th>Title</th></tr>\n''' ) for f in files: if f == '': continue proj = re.search('(proj\d+)', f).groups()[0] relpath = re.sub('.*proj\d+/', '', f) report = re.sub('^[^/]*/', '', os.path.dirname(relpath)) lines = IOTools.openFile(f).readlines() titles = [x for x in lines if "<title>" in x] if titles: title = re.search("<title>(.*)</title>", titles[0]).groups()[0] else: title = "NA" if title.endswith("documentation"): title = title[:-len("documentation")] url = os.path.join(options.url, relpath) outfile.write( '<tr><td>%(proj)s</td><td><a HREF="%(url)s">%(report)s</td><td>%(title)s</td></tr>\n' % locals()) outfile.write( ''' </table> </div> </div> </div> </div> </div> <div class="sphinxsidebar"> <div class="sphinxsidebarwrapper"> <p class="logo"><a href="contents.html"> <img class="logo" src="cgat_logo.png" alt="Logo"/> </a></p> </body> </html>\n''' ) outfile.close() E.info('created output file %s' % outfile.name) # write footer and output benchmark information. E.Stop() if __name__ == "__main__": sys.exit(main(sys.argv))
d5c02d1e01d38255df3b594ba8c9a67668b94140
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/CISCO-NDE-MIB.py
a5ec9a397658dc0d689a0edf516f9cc7c36e095b
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
5,271
py
# # PySNMP MIB module CISCO-NDE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-NDE-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:51:24 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion", "ConstraintsIntersection") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") ObjectIdentity, ModuleIdentity, Integer32, IpAddress, Counter32, MibIdentifier, TimeTicks, Bits, iso, Counter64, Gauge32, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, Unsigned32 = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "ModuleIdentity", "Integer32", "IpAddress", "Counter32", "MibIdentifier", "TimeTicks", "Bits", "iso", "Counter64", "Gauge32", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Unsigned32") RowStatus, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "DisplayString", "TextualConvention") ciscoNDEMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 226)) ciscoNDEMIB.setRevisions(('2006-03-01 00:00', '2005-12-06 00:00', '2001-08-08 00:00',)) if mibBuilder.loadTexts: ciscoNDEMIB.setLastUpdated('200603010000Z') if mibBuilder.loadTexts: ciscoNDEMIB.setOrganization('Cisco Systems, Inc.') ciscoNDEMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 1)) cndeCollectorConfiguration = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1)) cndeMaxCollectors = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 1), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cndeMaxCollectors.setStatus('current') cndeCollectorTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 2), ) if mibBuilder.loadTexts: cndeCollectorTable.setStatus('current') cndeCollectorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 2, 1), ).setIndexNames((0, "CISCO-NDE-MIB", "cndeCollectorAddressType"), (0, "CISCO-NDE-MIB", "cndeCollectorAddress"), (0, "CISCO-NDE-MIB", "cndeCollectorPort")) if mibBuilder.loadTexts: cndeCollectorEntry.setStatus('current') cndeCollectorAddressType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 2, 1, 1), InetAddressType()) if mibBuilder.loadTexts: cndeCollectorAddressType.setStatus('current') cndeCollectorAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 2, 1, 2), InetAddress().subtype(subtypeSpec=ValueSizeConstraint(1, 64))) if mibBuilder.loadTexts: cndeCollectorAddress.setStatus('current') cndeCollectorPort = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))) if mibBuilder.loadTexts: cndeCollectorPort.setStatus('current') cndeCollectorStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 226, 1, 1, 2, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cndeCollectorStatus.setStatus('current') cndeMIBNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 2)) cndeMIBNotifs = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 0)) cndeMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 3)) cndeMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 3, 1)) cndeMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 226, 3, 2)) cndeMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 226, 3, 1, 1)).setObjects(("CISCO-NDE-MIB", "cndeCollectorConfigurationGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cndeMIBCompliance = cndeMIBCompliance.setStatus('current') cndeCollectorConfigurationGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 226, 3, 2, 1)).setObjects(("CISCO-NDE-MIB", "cndeMaxCollectors"), ("CISCO-NDE-MIB", "cndeCollectorStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cndeCollectorConfigurationGroup = cndeCollectorConfigurationGroup.setStatus('current') mibBuilder.exportSymbols("CISCO-NDE-MIB", cndeMIBNotifications=cndeMIBNotifications, cndeCollectorConfiguration=cndeCollectorConfiguration, ciscoNDEMIBObjects=ciscoNDEMIBObjects, ciscoNDEMIB=ciscoNDEMIB, cndeCollectorAddressType=cndeCollectorAddressType, cndeCollectorConfigurationGroup=cndeCollectorConfigurationGroup, cndeCollectorAddress=cndeCollectorAddress, PYSNMP_MODULE_ID=ciscoNDEMIB, cndeMIBNotifs=cndeMIBNotifs, cndeCollectorEntry=cndeCollectorEntry, cndeCollectorTable=cndeCollectorTable, cndeCollectorStatus=cndeCollectorStatus, cndeMaxCollectors=cndeMaxCollectors, cndeMIBCompliances=cndeMIBCompliances, cndeMIBConformance=cndeMIBConformance, cndeMIBGroups=cndeMIBGroups, cndeCollectorPort=cndeCollectorPort, cndeMIBCompliance=cndeMIBCompliance)
787e85a801a1a850d53cb69481a3ab6f9107e2b8
c86e31e8e67ccb9a164903e394df7a444b5406de
/avg_word2vec.py
73495851d695da43e749fa28b2040e508a22b1e8
[]
no_license
candlewill/short_texts_sentiment_analysis
fb0e329c4c1ad6f8a72e6c2858a921913dde38b2
760e60e1cf430a8d0b1a313523a0c6f773a9c4c1
refs/heads/master
2020-04-24T15:36:51.258749
2015-07-14T08:28:54
2015-07-14T08:28:54
38,301,099
7
0
null
null
null
null
UTF-8
Python
false
false
2,052
py
from sklearn.cross_validation import train_test_split from gensim.models.word2vec import Word2Vec from load_data import load_train_data, load_processed_data import numpy as np from sklearn.preprocessing import MinMaxScaler # The following skills is useful # train_test_split(np.array(texts), np.array(sentiemnt), test_size=0.2) x_train, y_train = load_processed_data(data_type='train', stem=False) x_test, y_test = load_processed_data(data_type='test', stem=False) from preprocess import preprocessor as preprocess n_dim = 100 scaling = False # Initialize model and build vocab imdb_w2v = Word2Vec(size=n_dim, min_count=10) imdb_w2v.build_vocab(x_train) # Train the model over train_reviews (this may take several minutes) imdb_w2v.train(x_train) # Build word vector for training set by using the average value of all word vectors in the tweet, then scale # from load_data import load_word_embedding # imdb_w2v = load_word_embedding() def buildWordVector(text, size): vec = np.zeros(size).reshape((1, size)) count = 0. for word in text: try: vec += imdb_w2v[word].reshape((1, size)) count += 1. except KeyError: continue if count != 0: vec /= count return vec from sklearn.preprocessing import scale train_vecs = np.concatenate([buildWordVector(z, n_dim) for z in x_train]) if scaling == True: train_vecs = scale(train_vecs) # Train word2vec on test tweets # imdb_w2v.train(x_test) # Build test tweet vectors then scale test_vecs = np.concatenate([buildWordVector(z, n_dim) for z in x_test]) if scaling == True: test_vecs = scale(test_vecs) min_max_scaler = MinMaxScaler() train_vecs = min_max_scaler.fit_transform(train_vecs) test_vecs = min_max_scaler.fit_transform(test_vecs) # Use classification algorithm (i.e. Stochastic Logistic Regression) on training set, then assess model performance on test set from classifiers import gNB, mNB from analysis import analysis_result pre = mNB(train_vecs, y_train, test_vecs) analysis_result(pre, y_test)
b5f8821fc9ecb1f613a863bf6fbc7f174e5ca53a
905750d3f6bf6232ffefd00ce74b4c7684d7f27e
/lmp_lib.py
b03eae6590766e65883ac744785cfa5ba362e2f7
[]
no_license
petervanya/GeneralScripts
d1147b89defade68e68122e892e8844f7d4c0e64
77c0180156ceb78f08fabf7481c16be8d9aa8bfa
refs/heads/master
2020-12-19T12:45:46.227823
2016-07-28T14:56:59
2016-07-28T14:56:59
40,310,828
0
2
null
2015-11-30T15:53:57
2015-08-06T14:58:49
Python
UTF-8
Python
false
false
2,414
py
#!/usr/bin/env python """ A collection of functions to manipulate LAMMPS files [email protected], 11/01/16 """ import numpy as np # ===== print input def header2str(N, Nbonds, atomtypes, bondtypes, L): """Generate LAMMPS header""" s = "#blabla\n" s += str(N) + " atoms\n" s += str(Nbonds) + " bonds\n" s += str(atomtypes) + " atom types\n" s += str(bondtypes) + " bond types\n" s += "\n" s += "0.0 " + str(L) + " xlo xhi\n" s += "0.0 " + str(L) + " ylo yhi\n" s += "0.0 " + str(L) + " zlo zhi\n\n" return s def mass2str(masses): """Print mass dictionary into string for LAMMPS data file""" s = "Masses\n\n" for k, v in masses.items(): s += str(k) + " " + str(v) + "\n" return s + "\n" def pair_dpd_coeffs2str(coeffs): """ Structure: * key: "part1 part2" * value: [force, gamma, cutoff] """ s = "PairIJ Coeffs\n\n" for k, v in coeffs.items(): s += "%s %s %s %s\n" % (str(k), str(v[0]), str(v[1]), str(v[2])) return s + "\n" def bond_coeffs2str(k_ij): """Print bond coefficients into string. Structure: * key: 1..4 * value [k_ij, r0] """ s = "Bond Coeffs\n\n" for k, v in k_ij.items(): s += "%s %s %s\n" % (str(k), "%e" % v[0], "%e" % v[1]) return s + "\n" def atoms2str(mat): """Convert atomic matrix to str, atom_type molecular xyz_mat[:, 0] are atom ids""" M = len(mat) s = "" for i in range(M): s += "%i\t%i\t%i\t%e\t%e\t%e\n" % \ (i+1, mat[i, 0], mat[i, 1], mat[i, 2], mat[i, 3], mat[i, 4]) return s + "\n" def bonds2str(bond_mat): """Convert bond matrix to string""" M, N = bond_mat.shape s = "" for i in range(M): s += str(i+1) + "\t" for j in range(N): s += str(bond_mat[i, j]) + "\t" s += "\n" return s + "\n" # ===== manipulate output def read_xyzfile(outfile): """Read one xyz outfile into a numpy matrix""" A = open(outfile, "r").readlines()[2:] A = [line.split() for line in A] A = np.array(A, order="F").astype(float) return A def save_xyzfile(fname, mat): """Take xyz matrix [ids, x, y, z] and save into fname""" N = len(mat) with open(fname, "w") as f: f.write(str(N) + "\nbla\n") for i in range(N): f.write("%i\t%f\t%f\t%f\n" % (mat[i, 0], mat[i, 1], mat[i, 2], mat[i, 3]))