blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
b5015f583a686346339dadaed0cc14a8864fa920
b107883be08ea56bd3a56ddb0e2dd8dacce7db2e
/src/polystar/utils/dataframe.py
e020875b53a3ba4999062cc4d269e2850ea2cef9
[]
no_license
PolySTAR-mtl/cv
ef7977b62577e520f6c69a9b7891c7f38e307028
27564abe89e7dff612e3630c31e080fae4164751
refs/heads/master
2023-05-01T16:45:19.777459
2021-05-30T10:36:10
2021-05-30T10:36:10
356,053,312
0
0
null
2021-05-30T10:36:11
2021-04-08T21:32:06
Python
UTF-8
Python
false
false
908
py
from typing import Any, Callable, Iterable, Union from pandas import DataFrame Format = Union[str, Callable] def format_df_column(df: DataFrame, column_name: str, fmt: Format): df[column_name] = df[column_name].map(fmt.format) def format_df_columns(df: DataFrame, column_names: Iterable[str], fmt: Format): for c in column_names: format_df_column(df, c, fmt) def format_df_row(df: DataFrame, loc: Any, fmt: Format): df.loc[loc] = df.loc[loc].map(make_formater(fmt)) def format_df_rows(df: DataFrame, locs: Iterable[Any], fmt: Format): for loc in locs: format_df_row(df, loc, fmt) def make_formater(fmt: Format) -> Callable: if isinstance(fmt, str): return fmt.format return fmt def add_percentages_to_df(df: DataFrame, axis: int) -> DataFrame: return df.applymap(str) + df.div(df.sum(axis=axis), axis=(1 - axis)).applymap(" ({:.1%})".format)
8c0b7e0087305801e9385ba26b58b968906a9657
a2d44f3c89acb7424cc2771f5c0a926e2d902c77
/transformers/examples/research_projects/luke/run_luke_ner_no_trainer.py
c7a9763d99659dff967f066520b319dc992fe82e
[ "Apache-2.0" ]
permissive
amazon-science/masked-diffusion-lm
94845ff123eb586fca0247b0db7baf12dfee6a6d
16b0294398d596198bc9f75375eaa6814f792dcb
refs/heads/main
2023-08-03T02:23:14.301531
2023-05-04T19:54:58
2023-05-04T19:54:58
626,021,474
38
0
Apache-2.0
2023-08-14T22:24:30
2023-04-10T16:19:44
Python
UTF-8
Python
false
false
29,068
py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning (m)LUKE model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library 🤗 without using a Trainer. """ import argparse import logging import math import os import random from pathlib import Path import datasets import torch from datasets import ClassLabel, load_dataset, load_metric from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from accelerate import Accelerator, DistributedDataParallelKwargs from huggingface_hub import Repository from luke_utils import DataCollatorForLukeTokenClassification, is_punctuation, padding_tensor from transformers import ( AdamW, LukeConfig, LukeForEntitySpanClassification, LukeTokenizer, SchedulerType, default_data_collator, get_scheduler, set_seed, ) from transformers.file_utils import get_full_repo_name from transformers.utils.versions import require_version logger = logging.getLogger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") def parse_args(): parser = argparse.ArgumentParser( description="Finetune (m)LUKE on a token classification task (such as NER) with the accelerate library" ) parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--text_column_name", type=str, default=None, help="The column name of text to input in the file (a csv or JSON file).", ) parser.add_argument( "--label_column_name", type=str, default=None, help="The column name of label to input in the file (a csv or JSON file).", ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--max_entity_length", type=int, default=32, help=( "The maximum total input entity length after tokenization (Used only for (M)Luke models). Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--max_mention_length", type=int, default=30, help=( "The maximum total input mention length after tokenization (Used only for (M)Luke models). Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--label_all_tokens", action="store_true", help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.", ) parser.add_argument( "--return_entity_level_metrics", action="store_true", help="Indication whether entity level metrics are to be returner.", ) parser.add_argument( "--task_name", type=str, default="ner", choices=["ner", "pos", "chunk"], help="The name of the task.", ) parser.add_argument( "--debug", action="store_true", help="Activate debug mode and run training only with a subset of data.", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") args = parser.parse_args() # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. handler = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator(kwargs_handlers=[handler]) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called # 'tokens' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # Trim a number of training examples if args.debug: for split in raw_datasets.keys(): raw_datasets[split] = raw_datasets[split].select(range(100)) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. if raw_datasets["train"] is not None: column_names = raw_datasets["train"].column_names features = raw_datasets["train"].features else: column_names = raw_datasets["validation"].column_names features = raw_datasets["validation"].features if args.text_column_name is not None: text_column_name = args.text_column_name elif "tokens" in column_names: text_column_name = "tokens" else: text_column_name = column_names[0] if args.label_column_name is not None: label_column_name = args.label_column_name elif f"{args.task_name}_tags" in column_names: label_column_name = f"{args.task_name}_tags" else: label_column_name = column_names[1] # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list if isinstance(features[label_column_name].feature, ClassLabel): label_list = features[label_column_name].feature.names # No need to convert the labels since they are already ints. else: label_list = get_label_list(raw_datasets["train"][label_column_name]) num_labels = len(label_list) # Map that sends B-Xxx label to its I-Xxx counterpart b_to_i_label = [] for idx, label in enumerate(label_list): if label.startswith("B-") and label.replace("B-", "I-") in label_list: b_to_i_label.append(label_list.index(label.replace("B-", "I-"))) else: b_to_i_label.append(idx) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = LukeConfig.from_pretrained(args.config_name, num_labels=num_labels) elif args.model_name_or_path: config = LukeConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels) else: logger.warning("You are instantiating a new config instance from scratch.") tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path if not tokenizer_name_or_path: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) tokenizer = LukeTokenizer.from_pretrained( tokenizer_name_or_path, use_fast=False, task="entity_span_classification", max_entity_length=args.max_entity_length, max_mention_length=args.max_mention_length, ) if args.model_name_or_path: model = LukeForEntitySpanClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = LukeForEntitySpanClassification.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. padding = "max_length" if args.pad_to_max_length else False def compute_sentence_boundaries_for_luke(examples): sentence_boundaries = [] for tokens in examples[text_column_name]: sentence_boundaries.append([0, len(tokens)]) examples["sentence_boundaries"] = sentence_boundaries return examples def compute_entity_spans_for_luke(examples): all_entity_spans = [] texts = [] all_labels_entity_spans = [] all_original_entity_spans = [] for labels, tokens, sentence_boundaries in zip( examples[label_column_name], examples[text_column_name], examples["sentence_boundaries"] ): subword_lengths = [len(tokenizer.tokenize(token)) for token in tokens] total_subword_length = sum(subword_lengths) _, context_end = sentence_boundaries if total_subword_length > args.max_length - 2: cur_length = sum(subword_lengths[:context_end]) idx = context_end - 1 while cur_length > args.max_length - 2: cur_length -= subword_lengths[idx] context_end -= 1 idx -= 1 text = "" sentence_words = tokens[:context_end] sentence_subword_lengths = subword_lengths[:context_end] word_start_char_positions = [] word_end_char_positions = [] labels_positions = {} for word, label in zip(sentence_words, labels): if word[0] == "'" or (len(word) == 1 and is_punctuation(word)): text = text.rstrip() word_start_char_positions.append(len(text)) text += word word_end_char_positions.append(len(text)) text += " " labels_positions[(word_start_char_positions[-1], word_end_char_positions[-1])] = label text = text.rstrip() texts.append(text) entity_spans = [] labels_entity_spans = [] original_entity_spans = [] for word_start in range(len(sentence_words)): for word_end in range(word_start, len(sentence_words)): if ( sum(sentence_subword_lengths[word_start:word_end]) <= tokenizer.max_mention_length and len(entity_spans) < tokenizer.max_entity_length ): entity_spans.append((word_start_char_positions[word_start], word_end_char_positions[word_end])) original_entity_spans.append((word_start, word_end + 1)) if ( word_start_char_positions[word_start], word_end_char_positions[word_end], ) in labels_positions: labels_entity_spans.append( labels_positions[ (word_start_char_positions[word_start], word_end_char_positions[word_end]) ] ) else: labels_entity_spans.append(0) all_entity_spans.append(entity_spans) all_labels_entity_spans.append(labels_entity_spans) all_original_entity_spans.append(original_entity_spans) examples["entity_spans"] = all_entity_spans examples["text"] = texts examples["labels_entity_spans"] = all_labels_entity_spans examples["original_entity_spans"] = all_original_entity_spans return examples def tokenize_and_align_labels(examples): entity_spans = [] for v in examples["entity_spans"]: entity_spans.append(list(map(tuple, v))) tokenized_inputs = tokenizer( examples["text"], entity_spans=entity_spans, max_length=args.max_length, padding=padding, truncation=True, ) if padding == "max_length": tokenized_inputs["labels"] = padding_tensor( examples["labels_entity_spans"], -100, tokenizer.padding_side, tokenizer.max_entity_length ) tokenized_inputs["original_entity_spans"] = padding_tensor( examples["original_entity_spans"], (-1, -1), tokenizer.padding_side, tokenizer.max_entity_length ) tokenized_inputs[label_column_name] = padding_tensor( examples[label_column_name], -1, tokenizer.padding_side, tokenizer.max_entity_length ) else: tokenized_inputs["labels"] = [ex[: tokenizer.max_entity_length] for ex in examples["labels_entity_spans"]] tokenized_inputs["original_entity_spans"] = [ ex[: tokenizer.max_entity_length] for ex in examples["original_entity_spans"] ] tokenized_inputs[label_column_name] = [ ex[: tokenizer.max_entity_length] for ex in examples[label_column_name] ] return tokenized_inputs with accelerator.main_process_first(): raw_datasets = raw_datasets.map( compute_sentence_boundaries_for_luke, batched=True, desc="Adding sentence boundaries", ) raw_datasets = raw_datasets.map( compute_entity_spans_for_luke, batched=True, desc="Adding sentence spans", ) processed_raw_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names, desc="Running tokenizer on dataset", ) train_dataset = processed_raw_datasets["train"] eval_dataset = processed_raw_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). data_collator = DataCollatorForLukeTokenClassification( tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None) ) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Use the device given by the `accelerator` object. device = accelerator.device model.to(device) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be # shorter in multiprocess) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Metrics metric = load_metric("seqeval") def get_luke_labels(outputs, ner_tags, original_entity_spans): true_predictions = [] true_labels = [] for output, original_spans, tags in zip(outputs.logits, original_entity_spans, ner_tags): true_tags = [val for val in tags if val != -1] true_original_spans = [val for val in original_spans if val != (-1, -1)] max_indices = torch.argmax(output, axis=1) max_logits = torch.max(output, axis=1).values predictions = [] for logit, index, span in zip(max_logits, max_indices, true_original_spans): if index != 0: predictions.append((logit, span, label_list[index])) predicted_sequence = [label_list[0]] * len(true_tags) for _, span, label in sorted(predictions, key=lambda o: o[0], reverse=True): if all([o == label_list[0] for o in predicted_sequence[span[0] : span[1]]]): predicted_sequence[span[0]] = label if span[1] - span[0] > 1: predicted_sequence[span[0] + 1 : span[1]] = [label] * (span[1] - span[0] - 1) true_predictions.append(predicted_sequence) true_labels.append([label_list[tag_id] for tag_id in true_tags]) return true_predictions, true_labels def compute_metrics(): results = metric.compute() if args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): _ = batch.pop("original_entity_spans") outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break model.eval() for step, batch in enumerate(eval_dataloader): original_entity_spans = batch.pop("original_entity_spans") with torch.no_grad(): outputs = model(**batch) preds, refs = get_luke_labels(outputs, batch[label_column_name], original_entity_spans) metric.add_batch( predictions=preds, references=refs, ) # predictions and preferences are expected to be a nested list of labels, not label_ids eval_metric = compute_metrics() accelerator.print(f"epoch {epoch}:", eval_metric) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) if __name__ == "__main__": main()
6d253e9041fc0f16e07e2166ab6ba8890b19bf1e
511fd0cb7e338bc5c2d5a9d60de8166efd5882fe
/pyrecs/icp_compat/ICPSequenceFile.py
52f9c298bca501818f68f0444fe3b05b72aba2a2
[]
no_license
bmaranville/pyrecs
43341af4931538e57c8de7655efbcdbdd9099f02
29468ae4d8a4a9de5cac8988fd3620f806a71907
refs/heads/master
2021-01-15T15:45:47.514371
2016-11-04T14:07:50
2016-11-04T14:07:50
5,635,023
0
0
null
null
null
null
UTF-8
Python
false
false
5,369
py
from __future__ import with_statement from StringIO import StringIO class PyICPSequence: """controls and reads from a sequence file, moving the marker around it is defined as an iterator, so getting the next element moves the marker can use syntax "for cmd in PyICPSequenceFile(filename):" to iterate through file, moving the marker """ def __init__(self, marker = '%', data = ''): self.data = data self.marker = marker self.last = '' self.next_command = '' self.current_command = '' def LoadData(self): return self.data def ParseData(self): data = self.LoadData() current_command = None seek_pos = 0 datalen = len(data) not_separator = True def next_cmd(data, seek_pos): cmd = '' not_separator = True while not_separator and seek_pos < datalen: next_char = data[seek_pos] if next_char in [';', '\n', '\r']: not_separator = False cmd += next_char seek_pos += 1 return cmd, seek_pos new_data = '' match = False while seek_pos < datalen and match == False: cmd, new_seek_pos = next_cmd(data, seek_pos) marker_loc = cmd.rfind(self.marker) # check to see if there's anything after the marker - if not, proceed if marker_loc > -1 and cmd[marker_loc+1:].rstrip('; \t\n\r') == '': #current_command = cmd[:marker_loc] match = True # we found it! set the flag current_command = cmd[:marker_loc].strip('; \t\n\r') replacement_str = cmd[:marker_loc] + cmd[marker_loc+1:] new_data = data[:seek_pos]+replacement_str seek_pos = new_seek_pos if not match: seek_pos = 0 # or else we've got a match - what's the next command? next_command = None commands_left = 0 next_command_found = False while seek_pos < datalen: cmd, new_seek_pos = next_cmd(data, seek_pos) if cmd.strip('; \t\n\r') == '': new_data += cmd else: # we have a non-blank command: commands_left += 1 # add one to the stack if not next_command_found: next_command_found = True next_command = cmd.rstrip('; \t\n\r'+self.marker) # check to see if it's already got a marker (or more than one) and clear them # and then put exactly one marker back end_of_command = len(cmd.rstrip('; \t\r\n'+self.marker)) cmd = cmd[:end_of_command] + self.marker + cmd[end_of_command:].replace(self.marker, '') #new_data += cmd[:-1] + self.marker + cmd[-1] new_data += cmd seek_pos = new_seek_pos return current_command, next_command, commands_left, new_data def GetCurrentCommand(self): current_command, next_command, commands_left, new_data = self.ParseData() return current_command def __len__(self): current_command, next_command, commands_left, new_data = self.ParseData() return commands_left def clear(self): """move the marker to the last command""" while self.__len__() > 0: self.GetNextCommand() def GetNextCommand(self): current_command, next_command, commands_left, new_data = self.ParseData() self.WriteData(new_data) return next_command def WriteData(self, new_data): self.data = new_data def __iter__(self): return self def next(self): self.next_command = self.GetNextCommand() if self.next_command == None: raise StopIteration else: self.last = self.next_command return self.next_command #def popleft(self): # return next(self) class PyICPSequenceFile(PyICPSequence): """controls and reads from a sequence file, moving the marker around it is defined as an iterator, so getting the next element moves the marker can use syntax "for cmd in PyICPSequenceFile(filename):" to iterate through file, moving the marker """ def __init__(self, filename, marker = '%'): self.filename = filename PyICPSequence.__init__(self, marker) def LoadData(self): with open(self.filename, 'r') as f: data = f.read() return data def WriteData(self, new_data): with open(self.filename, 'w') as f: f.write(new_data) class PyICPSequenceStringIO(PyICPSequence): def __init__(self, string_io_obj, marker = '%' ): self.string_io_obj = string_io_obj PyICPSequence.__init__(self, marker) def LoadData(self): self.string_io_obj.seek(0) data = self.string_io_obj.read() return data def WriteData(self, new_data): StringIO.truncate(self.string_io_obj, 0) self.string_io_obj.write(new_data)
bc583257ba2fa8e75999f1420d42612329c9011a
f34c9ba52317b2871ef309d25c6a62ada2a4c4e3
/2019-1/exemplos/calc/calc-ast.py
6121565647ee90707c33f27b56bed0f9abc48cf7
[]
no_license
azurah/compiladores-1
b2a24e4dc67b39d106803ce431740918feebeddb
b8bcd58aa5c0ffd02b9c24aa3eaa64b8827d9263
refs/heads/master
2022-03-25T06:55:48.714820
2019-12-16T14:38:25
2019-12-16T14:38:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,577
py
import ox import operator as op lexer_rules = [ ('NUMBER', r'\d+'), ('ADD', r'\+'), ('SUB', r'\-'), ('MUL', r'\*'), ('DIV', r'\/'), ('LPAR', r'\('), ('RPAR', r'\)'), ('VAR', r'[a-zA-Z_]+') ] lexer = ox.make_lexer(lexer_rules) tokens = [x for x, _ in lexer_rules] binop = (lambda x, op, y: (op, x, y)) parser = ox.make_parser([ ('expr : term ADD expr', binop), ('expr : term SUB expr', binop), ('expr : term', lambda x: x), ('term : atom MUL term', binop), ('term : atom DIV term', binop), ('term : atom', lambda x: x), ('atom : NUMBER', int), ('atom : VAR', lambda x: ('var', x)), ('atom : LPAR expr RPAR', lambda x, y, z: y), ], tokens) def find_vars(ast, vars=()): if not isinstance(ast, tuple): return set() head, *tail = ast if head == 'var': return {tail[0], *vars} result = set() for elem in tail: result.update(find_vars(elem)) return result FUNCTIONS = {'+': op.add, '-': op.sub, '*': op.mul, '/': op.truediv} def eval_ast(ast, ctx): if not isinstance(ast, tuple): return ast head, *tail = ast if head == 'var': return ctx[tail[0]] else: args = (eval_ast(x, ctx) for x in tail) func = FUNCTIONS[head] return func(*args) if __name__ == '__main__': ast = parser(lexer(input('expr: '))) free_vars = find_vars(ast) ctx = {x: int(input(x + ': ')) for x in free_vars} print('result:', eval_ast(ast, ctx)) print('ast:', ast)
1db6fe1c31490177a0f129ccbd8add2e3939d210
ee9655d3ffcdb70ae68692f400096b479b39d0f7
/Python/kebabize.py
1180f40f74723d5a9da84caa4daaccca95f4a1db
[]
no_license
yaelBrown/Codewars
4f123387b8c4ea6e55ec1ff5d2ae9b1d674c06cf
efa10770b593e48579c256b9d6b69deede64e9ba
refs/heads/master
2020-11-27T16:02:43.409465
2020-03-20T00:59:49
2020-03-20T00:59:49
229,521,981
0
0
null
null
null
null
UTF-8
Python
false
false
1,091
py
""" Modify the kebabize function so that it converts a camel case string into a kebab case. kebabize('camelsHaveThreeHumps') // camels-have-three-humps kebabize('camelsHave3Humps') // camels-have-humps Notes: the returned string should only contain lowercase letters """ import string def kebabize(string): out = "" for l in string: if not l.isalpha(): continue elif l.isupper(): out += "-" out += l else: out += l if out == "": return out if out[0] == "-": out = out[1:] return out.lower() # aa = "this is a string" # print(aa.isalpha()) # print(kebabize("iLike4Cookies")) # print("-S-O-S"[:1]) print(kebabize("SOS")) """ def kebabize(s): return ''.join(c if c.islower() else '-' + c.lower() for c in s if c.isalpha()).strip('-') import re def kebabize(s): return re.sub('\B([A-Z])', r'-\1', re.sub('\d', '', s)).lower() import re def kebabize(s): s = ''.join([i for i in s if not i.isdigit()]) kebablist = filter(None, re.split("([A-Z][^A-Z]*)", s)) return "-".join(x.lower() for x in kebablist) """
8b186ae2a6c66100621dcf603ad1b02c54d99e63
e4200b764d0b4ffba65180e54cf84b30ee84efcc
/selfdrive/loggerd/SConscript
6a392d15d6fdafd6f37d01e59e8c9462835f717c
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
kegman/openpilot
c9ba96a72d905956f02c684e065091e023942883
54a8614b5a6451154817a4c6c86141c96103ae47
refs/heads/kegman-0.7
2022-05-22T17:07:16.656336
2020-01-23T16:40:55
2020-01-23T16:40:55
229,979,925
105
212
MIT
2022-03-13T05:47:51
2019-12-24T17:27:11
C
UTF-8
Python
false
false
311
Import('env', 'messaging', 'common', 'visionipc') env.Program(['loggerd.cc', 'logger.c', 'raw_logger.cc', 'encoder.c'], LIBS=[ 'zmq', 'czmq', 'capnp', 'kj', 'yaml-cpp', 'z', 'avformat', 'avcodec', 'swscale', 'avutil', 'OmxVenc', 'OmxCore', 'yuv', 'bz2', 'cutils', common, 'json', messaging, visionipc])
f0f3d9ede2624be9ecb55304fb9360137bbef785
cf7c928d6066da1ce15d2793dcf04315dda9b9ed
/Jungol/Lv1_LCoder_Python/pyg0_함수3/Main_JO_406_함수3_자가진단6.py
9cb189b371e5e8cb5f56948b15f087c90bbe53ef
[]
no_license
refresh6724/APS
a261b3da8f53de7ff5ed687f21bb1392046c98e5
945e0af114033d05d571011e9dbf18f2e9375166
refs/heads/master
2022-02-01T23:31:42.679631
2021-12-31T14:16:04
2021-12-31T14:16:04
251,617,280
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
# 9자리 이하의 자연수를 입력받아 재귀함수를 이용하여 각 자리 숫자의 제곱의 합을 출력하는 프로그램을 작성하시오. def recursive(n): if n < 10: return n*n return recursive(n//10) + recursive(n%10) n = int(input()) print(recursive(n))
01ecef42b6e7f285755d7f03e8bb2dcc7c993ecf
b532a2188d312a377ea89192569897714f500980
/memorious/operations/store.py
52c9e9a5bb52970965df0014bb536fb4c9aec676
[ "MIT" ]
permissive
patcon/memorious
b41baff81656c343770d9bec8743a7f710daac1b
316a4bc15a83065106de7e34935b77f337bb11e6
refs/heads/master
2021-08-20T00:32:33.320287
2017-11-27T13:53:44
2017-11-27T13:53:44
112,242,987
0
0
null
2017-11-27T20:08:07
2017-11-27T20:08:07
null
UTF-8
Python
false
false
1,418
py
import os import json import shutil from normality import safe_filename from memorious import settings def _get_directory_path(context): """Get the storage path fro the output.""" path = os.path.join(settings.BASE_PATH, 'store') path = context.params.get('path', path) path = os.path.join(path, context.crawler.name) path = os.path.abspath(os.path.expandvars(path)) try: os.makedirs(path) except: pass return path def directory(context, data): """Store the collected files to a given directory.""" with context.http.rehash(data) as result: if not result.ok: return content_hash = data.get('content_hash') if content_hash is None: context.emit_warning("No content hash in data.") return path = _get_directory_path(context) file_name = data.get('file_name', result.file_name) file_name = safe_filename(file_name, default='raw') file_name = '%s.%s' % (content_hash, file_name) data['_file_name'] = file_name file_path = os.path.join(path, file_name) if not os.path.exists(file_path): shutil.copyfile(result.file_path, file_path) context.log.info("Store [directory]: %s", file_name) meta_path = os.path.join(path, '%s.json' % content_hash) with open(meta_path, 'w') as fh: json.dump(data, fh)
43a4347035b0440386c7229b773e43eacc80d101
27010a7ad70bf69511858a91d42dc7a64e61b66d
/src/0342_power_of_four.py
76a22ceba8325a13c2b1e510bd9f19870f9f5a0f
[ "Apache-2.0" ]
permissive
hariharanragothaman/leetcode-solutions
fb7d967f2c6e3f4c936e3c7afe369415bc8d2dc6
44e759f80d3c9df382fdf8d694d6378881e3649d
refs/heads/master
2023-09-03T20:31:59.200701
2021-10-18T00:50:56
2021-10-18T00:50:56
267,927,538
1
1
null
null
null
null
UTF-8
Python
false
false
571
py
""" Given an integer n, return true if it is a power of four. Otherwise, return false. An integer n is a power of four, if there exists an integer x such that n == 4x. Example 1: Input: n = 16 Output: true Example 2: Input: n = 5 Output: false Example 3: Input: n = 1 Output: true Constraints: -231 <= n <= 231 - 1 """ import math from math import log2 class Solution: def isPowerOfFour(self, n: int) -> bool: """ x = math.log(n) / math.log(4) return x.is_integer() """ return (n > 0) and log2(n) % 2 == 0
55c011161382a90a0a4ab3b525884d7be2894ac7
f0987e17aea6668158cd334c1fbacfe6286d3c77
/NITA/tests/unit/hldcl/test_host.py
9cc2bf7b042fe35468894e0fac75147f25f46bc3
[]
no_license
fengyun4623/file
00bf21f952ea3f95ffc9fe18448b244b26b7fadb
3966c63d48557b0b94303896eed7a767593a4832
refs/heads/master
2023-04-02T05:01:25.066052
2020-07-29T16:15:31
2020-07-29T16:15:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,920
py
import sys import unittest2 as unittest from mock import patch, MagicMock from nose.plugins.attrib import attr from lxml import etree from jnpr.toby.hldcl.host import * @attr('unit') class TestHost(unittest.TestCase): def test_host__next_log_file_name(self): hobject = MagicMock(spec=Host) hobject._object_counts = {} # If no logger created for the filename self.assertEqual(Host._next_log_file_name(hobject, name='Device'), 'Device') # If the log filename already has logger created hobject._object_counts['Device'] = 0 self.assertEqual(Host._next_log_file_name(hobject, name='Device'), 'Device.1') # Check with no arguments self.assertRaises(Exception, Host._next_log_file_name, hobject) def test_host_get_credentials_failures(self): hobject = MagicMock(spec=Host) hobject.os = 'Test' self.assertRaises( Exception, Host.get_credentials, hobject, **{'os': 'asdad'} ) @patch('jnpr.toby.hldcl.host.credentials') def test_host_get_credentials(self, cred_mock): hobject = MagicMock(spec=Host) hobject.os = 'JUNOS' cred_mock.JUNOS = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'UNIX' cred_mock.UNIX = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'IOS' cred_mock.IOS = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'SPIRENT' cred_mock.SPIRENT = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'IXIA' cred_mock.IXIA = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'WINDOWS' cred_mock.WINDOWS = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'BREAKINGPOINT' cred_mock.BREAKINGPOINT = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) hobject.os = 'BPS' cred_mock.BREAKINGPOINT = {'USERNAME': 'user', 'PASSWORD': 'password'} self.assertEqual(Host.get_credentials(hobject), ('user', 'password')) # If default credentials are not available hobject.os = 'JUNOS' cred_mock.JUNOS = {'USERNAME': None, 'PASSWORD': None} self.assertRaises(Exception, Host.get_credentials, hobject) # Check with user and password passed as arguments self.assertEqual(Host.get_credentials(hobject, **{'user': 'user', 'password': 'password'}), ('user', 'password')) self.assertEqual(Host.get_credentials(hobject, **{'user': 'user', 'password': 'password','ssh_key_file':'key_file'}), ('user', 'password')) @patch('jnpr.toby.hldcl.host.credentials') def test_host_get_su_credentials_failures(self, cred_mock): hobject = MagicMock(spec=Host) hobject.os = 'JUNOS1' self.assertRaises(Exception, Host.get_su_credentials, hobject) @patch('jnpr.toby.hldcl.host.credentials') def test_host_get_su_credentials(self, cred_mock): hobject = MagicMock(spec=Host) hobject.os = 'JUNOS' cred_mock.JUNOS = {'SU': 'user', 'SUPASSWORD': 'password'} self.assertEqual(Host.get_su_credentials(hobject), ('user', 'password')) hobject.os = 'UNIX' cred_mock.UNIX = {'SU': 'user', 'SUPASSWORD': 'password'} self.assertEqual(Host.get_su_credentials(hobject), ('user', 'password')) hobject.os = 'IOS' cred_mock.IOS = {'SU': 'user', 'SUPASSWORD': 'password'} self.assertEqual(Host.get_su_credentials(hobject), ('user', 'password')) @patch('jnpr.toby.utils.ftp.FTP') @patch('jnpr.toby.utils.scp.SCP') def test_host_upload(self, ftp_mock, scp_mock): hobject = MagicMock(spec=Host) hobject.proxy = True hobject.proxy_host = 'host' hobject.proxy_user = 'host' hobject.proxy_password = 'host' hobject.proxy_ssh_key = 'host' hobject.proxy_port = 'host' hobject.connect_mode = 'telnet' hobject.host = 'device-a' hobject.user = 'device-a' hobject.password = 'device-a' hobject.text_port = None # telnet as connect mode hobject.controllers_data = {} hobject.controllers_data['mgt-ip'] = hobject.host self.assertTrue(Host.upload(hobject, local_file='', remote_file='')) # ssh as connect mode hobject.connect_mode = 'ssh' self.assertTrue(Host.upload(hobject, local_file='', remote_file='')) # with only user self.assertTrue(Host.upload(hobject, local_file='', remote_file='',user='user')) # with only password self.assertTrue(Host.upload(hobject, local_file='', remote_file='', password="password")) # with user and password self.assertTrue(Host.upload(hobject, local_file='', remote_file='', user="user", password="password")) @patch('jnpr.toby.utils.ftp.FTP') @patch('jnpr.toby.utils.scp.SCP') def test_host_upload_failures(self, ftp_mock, scp_mock): hobject = MagicMock(spec=Host) hobject.connect_mode = 'telnet' hobject.host = 'device-a' hobject.user = 'device-a' hobject.password = 'device-a' # Invalid protocol self.assertRaises( Exception, Host.upload, hobject, local_file='', remote_file='', protocol='sftp' ) @patch('jnpr.toby.utils.ftp.FTP') @patch('jnpr.toby.utils.scp.SCP') def test_host_download(self, ftp_mock, scp_mock): hobject = MagicMock(spec=Host) hobject.proxy = True hobject.connect_mode = 'telnet' hobject.host = 'device-a' hobject.user = 'device-a' hobject.password = 'device-a' hobject.proxy_host = 'host' hobject.proxy_user = 'host' hobject.proxy_password = 'host' hobject.proxy_ssh_key = '' hobject.proxy_port = 'host' hobject.text_port = None hobject.controllers_data = {} hobject.controllers_data['mgt-ip'] = hobject.host # telnet as connect mode self.assertTrue(Host.download(hobject, local_file='', remote_file='')) # ssh as connect mode hobject.connect_mode = 'ssh' self.assertTrue(Host.download(hobject, local_file='', remote_file='')) # with only user self.assertTrue(Host.download(hobject, local_file='', remote_file='', user="user")) # with only password self.assertTrue(Host.download(hobject, local_file='', remote_file='', password="password")) # with user and password self.assertTrue(Host.download(hobject, local_file='', remote_file='', user="user", password="password")) @patch('jnpr.toby.utils.ftp.FTP') @patch('jnpr.toby.utils.scp.SCP') def test_host_download_failures(self, ftp_mock, scp_mock): hobject = MagicMock(spec=Host) hobject.connect_mode = 'telnet' hobject.host = 'device-a' hobject.user = 'device-a' hobject.password = 'device-a' # Invalid protocol self.assertRaises( Exception, Host.download, hobject, local_file='', remote_file='', protocol='sftp' ) @patch('jnpr.toby.hldcl.host.Host.get_credentials',return_value=('user','password')) @patch('jnpr.toby.hldcl.host.Logger') def test_host_init(self, logger_mock, get_cred_patch): import builtins builtins.t = self t.is_robot = True t.background_logger = MagicMock() t._script_name = 'name' t.t_dict = {'console_log':'test'} type(logger_mock.return_value).level = 10 hobject = Host(host='host', os='Junos',global_logging=True, device_logging=True, re_name='re0') self.assertEqual(hobject.host, 'host') self.assertEqual(hobject.os, 'Junos') self.assertEqual(hobject.tag, None) self.assertEqual(hobject.logger_name, 'host') #logger_mock.assert_any_call('host', console=False) #logger_mock.assert_any_call('name', console=False) #assert logger_mock.call_count == 2 #self.assertFalse(hobject.proxy) #self.assertEqual(hobject.proxy_host, 'a') #self.assertEqual(hobject.proxy_password, 'a') #self.assertEqual(hobject.proxy_user, 'a') #self.assertEqual(hobject.proxy_port, 'a') hobject = Host(host='host', os='Junos', tag='tag',ssh_key_file="test",global_logging=True, device_logging=True, re_name='re0') self.assertEqual(hobject.host, 'host') self.assertEqual(hobject.os, 'Junos') self.assertEqual(hobject.tag, 'tag') self.assertEqual(hobject.logger_name, 'host.1') #logger_mock.assert_any_call('host.1', console=False) #assert logger_mock.call_count == 4 hobject = Host(host='host', os='Junos', tag='tag', hostname='hostname',global_logging=True, device_logging=True, re_name='re0') self.assertEqual(hobject.host, 'host') self.assertEqual(hobject.os, 'Junos') self.assertEqual(hobject.tag, 'tag') self.assertEqual(hobject.name, 'hostname') self.assertEqual(hobject.logger_name, 'hostname') #assert logger_mock.call_count == 6 t.is_robot = False t.background_logger = None self.assertIsInstance(Host(host='host', os='Junos',global_logging=True, device_logging=True, re_name='re0'), Host) #logger_mock.assert_any_call('name', console=True) #logger_mock.assert_any_call('host.2', console=False) #assert logger_mock.call_count == 8 del builtins.t self.assertIsInstance(Host(host='host', os='Junos',global_logging=True, device_logging=True, re_name='re0'), Host) #logger_mock.assert_any_call('host.3', console=True) #assert logger_mock.call_count == 9 # With no arguments self.assertRaises(Exception, Host) # With only one argument self.assertRaises(Exception, Host, host='host') self.assertRaises(Exception, Host, os='Junos') get_cred_patch.return_value = ('user', None) self.assertIsInstance(Host(host='host', os='Junos',global_logging=True, device_logging=True, re_name='re0'), Host) def test_host_log(self): hobject = MagicMock(spec=Host) hobject.device_logger = MagicMock() hobject.logger_name = MagicMock() hobject.global_logger = MagicMock() hobject.device_logger_flag = True hobject.global_logger_flag = True xmldata = etree.XML('<software-information></software-information>') import builtins builtins.t = self ## Check for t_exists = False hobject.t_exists = False self.assertIsNone(Host.log(hobject, message=xmldata)) self.assertTrue(hobject.device_logger._log.called) # Check with only 'level' argument self.assertIsNone(Host.log(hobject, level='INFO')) assert hobject.device_logger._log.call_count == 2 self.assertFalse(hobject.global_logger._log.called) # Check with only 'message' argument self.assertIsNone(Host.log(hobject, message=xmldata)) assert hobject.device_logger._log.call_count == 3 self.assertFalse(hobject.global_logger._log.called) # with two arguments self.assertIsNone(Host.log(hobject, message=xmldata, level='INFO')) assert hobject.device_logger._log.call_count == 4 self.assertFalse(hobject.global_logger._log.called) ## Check for t_exists = True hobject.t_exists = True t.is_robot = True t.background_logger = MagicMock() t.t_dict = {'console_log':'test'} hobject.global_logger.level = 30 with patch('robot.api.logger') as robot_logger: # with two arguments self.assertIsNone(Host.log(hobject, message=xmldata, level='WARN')) assert hobject.device_logger._log.call_count == 5 self.assertTrue(robot_logger.warn.called) self.assertTrue(hobject.global_logger._log.called) t.is_robot = False t.background_logger = None self.assertIsNone(Host.log(hobject, message=xmldata)) assert hobject.device_logger._log.call_count == 6 self.assertTrue(hobject.global_logger._log.called) # Check with no arguments self.assertRaises(Exception, Host.log, hobject) t.is_robot = True del t.t_dict['console_log'] self.assertIsNone(Host.log(hobject, message=xmldata)) t.t_dict = {'console_log': None} self.assertIsNone(Host.log(hobject, message=xmldata)) def test_device_upload_file(self): dobject = MagicMock() dobject.upload = MagicMock(return_value='test_str') self.assertEqual(upload_file(dobject), 'test_str') # Exception case dobject.upload = MagicMock(return_value=False) self.assertRaises(Exception, upload_file, dobject) def test_device_download_file(self): dobject = MagicMock() dobject.download = MagicMock(return_value='test_str') self.assertEqual(download_file(dobject), 'test_str') # Exception case dobject.download = MagicMock(return_value=False) self.assertRaises(Exception, download_file, dobject) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestHost) unittest.TextTestRunner(verbosity=2).run(suite)
f6c388f9433fe0af9510b9b05baaba3657776db1
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_126/128.py
0b43d4fbaa876ff9dcf5d33290291df8461be100
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,683
py
import os import unittest import itertools from python_toolbox.cute_iter_tools import consecutive_pairs PROB_NAME = 'consonants' INPUT_TYPE = 'large' VOWELS = 'aeiou' def solve(case): """break 'case', solve and return the solution""" name, n = case l = len(name) consecutive_consonants = 0 last_end = 0 nval = 0 for idx, c in enumerate(name): if c not in VOWELS: consecutive_consonants += 1 else: consecutive_consonants = 0 if consecutive_consonants >= n: start, end = idx - n + 1, idx if consecutive_consonants > n: start_ss = start else: if n == 1: start_ss = last_end + 1 else: start_ss = (last_end - n + 2) if last_end > 0 else 0 end_ss = l last_end = end left, right = max(start - start_ss + 1, 1), end_ss - end nval += left * right return nval def read_case(lines): name, n = lines.pop(0).split() return (name, int(n)) def read_file(filepath): """Read the input file and return a list of cases in a tuple format.""" cases = [] with open(filepath, 'rt') as fobj: lines = fobj.readlines() num_cases = int(lines.pop(0)) for _ in range(num_cases): cases.append(read_case(lines)) return cases def write_results(results, outfile): with open(outfile, 'wt') as f: for idx, result in enumerate(results): f.write('Case #{}: {}\n'.format(idx + 1, result)) def main(infile, outfile): cases = read_file(infile) results = [solve(case) for case in cases] write_results(results, outfile) if INPUT_TYPE: main(os.path.join('io', '{}_{}.in'.format(PROB_NAME, INPUT_TYPE)), os.path.join('io', '{}_{}.out'.format(PROB_NAME, INPUT_TYPE))) class UnitTest(unittest.TestCase): CASES = {('quartz', 3): 4, ('straight', 3): 11, ('gcj', 2): 3, ('tsetse', 2): 11, ('pack', 1): 9} # ('packmyboxwithfivedozenliquorjugs', 1): 516} # ('z' * 10 ** 6, 4): 0} def runTest(self): message = 'Wrong result for case.\nCase: {}\nResult: {}\n'\ 'Expected result: {}' for case, result in self.CASES.iteritems(): self.assertEqual(solve(case), result, message.format(case, solve(case), result))
5eb911a7220230a00c7447f3afc31e62046a0e8e
36ff0f28aeb47c03d8e22f69057c12f830e917e8
/Blog/admin.py
55f78d419afa2db728fbf7600fa18758d465be30
[]
no_license
michael-basweti/duke
673721540fa1b260508f03518b0043e8e1fc3f14
5eae51ceac89e77c6ab712e6311fef9f15fb51ad
refs/heads/master
2022-12-06T02:53:04.494299
2019-07-30T10:47:06
2019-07-30T10:47:06
195,955,279
0
0
null
2022-11-22T04:09:15
2019-07-09T07:25:08
CSS
UTF-8
Python
false
false
306
py
from django.contrib import admin from .models import Blog class Post(admin.ModelAdmin): exclude = ('author',) list_display = ('title', 'author', 'date_added') def save_model(self, request, obj, form, change): obj.author = request.user obj.save() admin.site.register(Blog, Post)
19a633a72dd7eb16a803a4443726aff405985b67
836705d3c321ea8e62f3b2a0ea7e837fe5d45dfd
/3-1.py
164f25998bf0219f9aa1f0012d4645ca8930a802
[]
no_license
Accomlish/tensorflow_learn
e11acedbb81f9ef08866a15daf5155853d81cb49
19126ae75e1460aa0bb3bd041d96f99db56181d0
refs/heads/master
2021-05-22T16:50:09.878737
2020-04-04T14:36:22
2020-04-04T14:36:22
253,009,595
0
0
null
null
null
null
UTF-8
Python
false
false
1,473
py
""" 回归的例子 非线性回归例子 """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #使用numpy生成500样本点 x_data = np.linspace(-1,1,500)[:,np.newaxis] print(x_data.shape) noise = np.random.normal(0,0.5,x_data.shape) y_data = np.square(x_data) + noise #定义连个placeholder x = tf.placeholder(tf.float32,[None,1])#浮点型数据,n行1列 y = tf.placeholder(tf.float32,[None,1]) #定义神经网络中间层, Weight_L1 = tf.Variable(tf.random_normal([1,10])) biases_L1 = tf.Variable(tf.zeros([1,10])) Wx_plus_L1 = tf.matmul(x,Weight_L1)+ biases_L1 L1 = tf.nn.tanh(Wx_plus_L1) #定义输出层 Weight_L2 = tf.Variable(tf.random_normal([10,1])) biases_L2 = tf.Variable(tf.zeros([1,1])) Wx_plus_L2 = tf.matmul(L1,Weight_L2) + biases_L2 prediction = tf.nn.tanh(Wx_plus_L2) #二次代价函数 loss = tf.reduce_mean(tf.square(y-prediction)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(2000): sess.run(train_step,feed_dict={x:x_data,y:y_data}) #获得预测值 prediction_value = sess.run(prediction,feed_dict={x:x_data}) #画图 plt.figure() plt.scatter(x_data,y_data) plt.plot(x_data,prediction_value,'r-',lw=5) plt.show()
[ "your email" ]
your email
d1143635201d221e500300bb7ebd02e942d5c100
b3b38ebf386bbd323d832ee077ae249a6ab331e9
/Day 25/Day 25.py
ef5461ad1763efb757ef34109cad57f402fc1d04
[]
no_license
bakkerjangert/AoC_2017
7bae1b1b9da5b2263d911eff5bbadc2849716be6
1c36b80965875cdcbc50c6abe75cc5def72ee573
refs/heads/master
2023-02-03T05:19:55.933367
2020-12-18T14:39:40
2020-12-18T14:39:40
322,620,627
0
0
null
null
null
null
UTF-8
Python
false
false
1,906
py
state = 'A' steps = 12172063 data = [0] index = 0 def move_left(index): if index == 0: data.insert(0, 0) else: index -= 1 return index def move_right(index): if index == len(data) - 1: data.append(0) index += 1 return index for step in range(steps): if step % 10000 == 0: print(f'Currently at {round(step / steps * 100, 2)}%') if state == 'A': if data[index] == 0: data[index] = 1 index = move_right(index) state = 'B' else: data[index] = 0 index = move_left(index) state = 'C' elif state == 'B': if data[index] == 0: data[index] = 1 index = move_left(index) state = 'A' else: data[index] = 1 index = move_left(index) state = 'D' elif state == 'C': if data[index] == 0: data[index] = 1 index = move_right(index) state = 'D' else: data[index] = 0 index = move_right(index) state = 'C' elif state == 'D': if data[index] == 0: data[index] = 0 index = move_left(index) state = 'B' else: data[index] = 0 index = move_right(index) state = 'E' elif state == 'E': if data[index] == 0: data[index] = 1 index = move_right(index) state = 'C' else: data[index] = 1 index = move_left(index) state = 'F' elif state == 'F': if data[index] == 0: data[index] = 1 index = move_left(index) state = 'E' else: data[index] = 1 index = move_right(index) state = 'A' print(f'The answer = {data.count(1)}')
b286d2b08daca3903a5d072416370fd615da25e7
95b87a3c8f5492feb8c4faea9202c68f560544b5
/tests/parsers/mcafeeav.py
084d4b95a852fc78fac08e330c14e5a16a80d540
[ "Apache-2.0" ]
permissive
sebdraven/plaso
82e87149e845347a0481d9908117c0c227960446
77c7f00f0f648b158bd9c9cc3f698dd5ff294b4d
refs/heads/master
2020-12-02T08:08:48.427006
2017-07-08T17:07:50
2017-07-08T17:07:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,402
py
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the McAfee AV Log parser.""" import unittest from plaso.formatters import mcafeeav # pylint: disable=unused-import from plaso.lib import timelib from plaso.parsers import mcafeeav from tests import test_lib as shared_test_lib from tests.parsers import test_lib class McafeeAccessProtectionUnitTest(test_lib.ParserTestCase): """Tests for the McAfee AV Log parser.""" @shared_test_lib.skipUnlessHasTestFile([u'AccessProtectionLog.txt']) def testParse(self): """Tests the Parse function.""" parser_object = mcafeeav.McafeeAccessProtectionParser() storage_writer = self._ParseFile( [u'AccessProtectionLog.txt'], parser_object) # The file contains 14 lines which results in 14 events. self.assertEqual(storage_writer.number_of_events, 14) event = storage_writer.events[0] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-09-27 14:42:26') self.assertEqual(event.timestamp, expected_timestamp) # TODO: Test that the UTF-8 byte order mark gets removed from # the first line. # Test this entry: # 9/27/2013 2:42:26 PM Blocked by Access Protection rule # SOMEDOMAIN\someUser C:\Windows\System32\procexp64.exe C:\Program Files # (x86)\McAfee\Common Framework\UdaterUI.exe Common Standard # Protection:Prevent termination of McAfee processes Action blocked : # Terminate event = storage_writer.events[1] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-09-27 14:42:39') self.assertEqual(event.timestamp, expected_timestamp) self.assertEqual(event.username, u'SOMEDOMAIN\\someUser') self.assertEqual( event.filename, u'C:\\Windows\\System32\\procexp64.exe') expected_message = ( u'File Name: C:\\Windows\\System32\\procexp64.exe ' u'User: SOMEDOMAIN\\someUser ' u'C:\\Program Files (x86)\\McAfee\\Common Framework\\Frame' u'workService.exe ' u'Blocked by Access Protection rule ' u'Common Standard Protection:Prevent termination of McAfee processes ' u'Action blocked : Terminate') expected_short_message = ( u'C:\\Windows\\System32\\procexp64.exe ' u'Action blocked : Terminate') self._TestGetMessageStrings(event, expected_message, expected_short_message) if __name__ == '__main__': unittest.main()
955e1f1ce5febef1ea2829471b58315b4d9b2f23
3eae9c14c119ee2d6a7d02ef1ba5d61420959e3c
/modules/core/rwvx/rwsched/src/rwsched_gi_filter.py
b06f9bbfdb82967c05b581ec652bad0f46393135
[ "Apache-2.0" ]
permissive
RIFTIO/RIFT.ware
94d3a34836a04546ea02ec0576dae78d566dabb3
4ade66a5bccbeb4c5ed5b56fed8841e46e2639b0
refs/heads/RIFT.ware-4.4.1
2020-05-21T14:07:31.092287
2017-06-05T16:02:48
2017-06-05T16:02:48
52,545,688
9
8
null
null
null
null
UTF-8
Python
false
false
1,082
py
#!/usr/bin/python # STANDARD_RIFT_IO_COPYRIGHT # -*- Mode: Python; py-indent-offset: 4 -*- # vim: tabstop=4 shiftwidth=4 expandtab import sys # rwsched_instance_ptr_t -> RwschedInstance renames = { 0: {'rwsched': 'RwSched'}, 1: {'instance': 'Instance', 'CFRunLoop': 'CFRunLoop', 'CFRunLoopSource': 'CFRunLoopSource', 'CFRunLoopTimer': 'CFRunLoopTimer', 'CFRunLoopTimerContext': 'CFRunLoopTimerContext', 'CFSocket': 'CFSocket' }, } def gobjectify(ident): if not ident.startswith('rwsched_'): if not ident.startswith('rwsched'): return ident # Remove trailing '_[a-z]' from ident if ident.endswith('ptr_t'): ident = ident[:-5] if ident.endswith('_t'): ident = ident[:-2] elif ident.endswith('Ref'): ident = ident[:-3] s = ''.join(renames.get(depth, {}).get(name, name.title()) for depth, name in enumerate(ident.split('_'))) return s if __name__ == '__main__': text = gobjectify(sys.stdin.read().strip()) sys.stdout.write(text)
07039bdd5738a740ab874c485755f41c392be310
2212a32833776a5d5d2164d8efd11bd18bd3f768
/tf_agents/bandits/agents/neural_linucb_agent.py
1c803409ec0503339df767da78ddd381ef5a5aa6
[ "Apache-2.0" ]
permissive
tensorflow/agents
f39805fb98ef9af712dcaff3ba49e1ac6d42804b
eca1093d3a047e538f17f6ab92ab4d8144284f23
refs/heads/master
2023-08-14T04:56:30.774797
2023-08-02T17:43:44
2023-08-02T17:44:09
157,936,206
2,755
848
Apache-2.0
2023-07-26T02:35:32
2018-11-17T00:29:12
Python
UTF-8
Python
false
false
25,492
py
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the Neural + LinUCB bandit algorithm. Applies LinUCB on top of an encoding network. Since LinUCB is a linear method, the encoding network is used to capture the non-linear relationship between the context features and the expected rewards. The encoding network may be already trained or not; if not trained, the method can optionally train it using epsilon greedy. Reference: Carlos Riquelme, George Tucker, Jasper Snoek, `Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling`, ICLR 2018. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Optional, Sequence, Text import gin import tensorflow as tf from tf_agents.agents import data_converter from tf_agents.agents import tf_agent from tf_agents.bandits.agents import linear_bandit_agent as linear_agent from tf_agents.bandits.agents import utils as bandit_utils from tf_agents.bandits.policies import neural_linucb_policy from tf_agents.bandits.specs import utils as bandit_spec_utils from tf_agents.policies import utils as policy_utilities from tf_agents.typing import types from tf_agents.utils import common from tf_agents.utils import eager_utils class NeuralLinUCBVariableCollection(tf.Module): """A collection of variables used by `NeuralLinUCBAgent`.""" def __init__( self, num_actions: int, encoding_dim: int, dtype: tf.DType = tf.float64, name: Optional[Text] = None, ): """Initializes an instance of `NeuralLinUCBVariableCollection`. Args: num_actions: (int) number of actions the agent acts on. encoding_dim: (int) The dimensionality of the output of the encoding network. dtype: The type of the variables. Should be one of `tf.float32` and `tf.float64`. name: (string) the name of this instance. """ tf.Module.__init__(self, name=name) self.actions_from_reward_layer = tf.compat.v2.Variable( True, dtype=tf.bool, name='is_action_from_reward_layer' ) self.cov_matrix_list = [] self.data_vector_list = [] # We keep track of the number of samples per arm. self.num_samples_list = [] for k in range(num_actions): self.cov_matrix_list.append( tf.compat.v2.Variable( tf.zeros([encoding_dim, encoding_dim], dtype=dtype), name='a_{}'.format(k), ) ) self.data_vector_list.append( tf.compat.v2.Variable( tf.zeros(encoding_dim, dtype=dtype), name='b_{}'.format(k) ) ) self.num_samples_list.append( tf.compat.v2.Variable( tf.zeros([], dtype=dtype), name='num_samples_{}'.format(k) ) ) @gin.configurable class NeuralLinUCBAgent(tf_agent.TFAgent): """An agent implementing the LinUCB algorithm on top of a neural network.""" def __init__( self, time_step_spec: types.TimeStep, action_spec: types.BoundedTensorSpec, encoding_network: types.Network, encoding_network_num_train_steps: int, encoding_dim: int, optimizer: types.Optimizer, variable_collection: Optional[NeuralLinUCBVariableCollection] = None, alpha: float = 1.0, gamma: float = 1.0, epsilon_greedy: float = 0.0, observation_and_action_constraint_splitter: Optional[ types.Splitter ] = None, accepts_per_arm_features: bool = False, distributed_train_encoding_network: bool = False, # Params for training. error_loss_fn: types.LossFn = tf.compat.v1.losses.mean_squared_error, gradient_clipping: Optional[float] = None, # Params for debugging. debug_summaries: bool = False, summarize_grads_and_vars: bool = False, train_step_counter: Optional[tf.Variable] = None, emit_policy_info: Sequence[Text] = (), emit_log_probability: bool = False, dtype: tf.DType = tf.float64, name: Optional[Text] = 'neural_linucb_agent', ): """Initialize an instance of `NeuralLinUCBAgent`. Args: time_step_spec: A `TimeStep` spec describing the expected `TimeStep`s. action_spec: A scalar `BoundedTensorSpec` with `int32` or `int64` dtype describing the number of actions for this agent. encoding_network: a Keras network that encodes the observations. encoding_network_num_train_steps: how many training steps to run for training the encoding network before switching to LinUCB. If negative, the encoding network is assumed to be already trained. encoding_dim: the dimension of encoded observations. optimizer: The optimizer to use for training. variable_collection: Instance of `NeuralLinUCBVariableCollection`. Collection of variables to be updated by the agent. If `None`, a new instance of `LinearBanditVariables` will be created. Note that this collection excludes the variables owned by the encoding network. alpha: (float) positive scalar. This is the exploration parameter that multiplies the confidence intervals. gamma: a float forgetting factor in [0.0, 1.0]. When set to 1.0, the algorithm does not forget. epsilon_greedy: A float representing the probability of choosing a random action instead of the greedy action. observation_and_action_constraint_splitter: A function used for masking valid/invalid actions with each state of the environment. The function takes in a full observation and returns a tuple consisting of 1) the part of the observation intended as input to the bandit agent and policy, and 2) the boolean mask. This function should also work with a `TensorSpec` as input, and should output `TensorSpec` objects for the observation and mask. accepts_per_arm_features: (bool) Whether the policy accepts per-arm features. distributed_train_encoding_network: (bool) whether to train the encoding network or not. This applies only in distributed training setting. When set to true this agent will train the encoding network. Otherwise, it will assume the encoding network is already trained and will train LinUCB on top of it. error_loss_fn: A function for computing the error loss, taking parameters labels, predictions, and weights (any function from tf.losses would work). The default is `tf.losses.mean_squared_error`. gradient_clipping: A float representing the norm length to clip gradients (or None for no clipping.) debug_summaries: A Python bool, default False. When True, debug summaries are gathered. summarize_grads_and_vars: A Python bool, default False. When True, gradients and network variable summaries are written during training. train_step_counter: An optional `tf.Variable` to increment every time the train op is run. Defaults to the `global_step`. emit_policy_info: (tuple of strings) what side information we want to get as part of the policy info. Allowed values can be found in `policy_utilities.PolicyInfo`. emit_log_probability: Whether the NeuralLinUCBPolicy emits log-probabilities or not. Since the policy is deterministic, the probability is just 1. dtype: The type of the parameters stored and updated by the agent. Should be one of `tf.float32` and `tf.float64`. Defaults to `tf.float64`. name: a name for this instance of `NeuralLinUCBAgent`. Raises: TypeError if variable_collection is not an instance of `NeuralLinUCBVariableCollection`. ValueError if dtype is not one of `tf.float32` or `tf.float64`. """ tf.Module.__init__(self, name=name) common.tf_agents_gauge.get_cell('TFABandit').set(True) self._num_actions = policy_utilities.get_num_actions_from_tensor_spec( action_spec ) self._num_models = 1 if accepts_per_arm_features else self._num_actions self._observation_and_action_constraint_splitter = ( observation_and_action_constraint_splitter ) self._accepts_per_arm_features = accepts_per_arm_features self._alpha = alpha if variable_collection is None: variable_collection = NeuralLinUCBVariableCollection( self._num_models, encoding_dim, dtype ) elif not isinstance(variable_collection, NeuralLinUCBVariableCollection): raise TypeError( 'Parameter `variable_collection` should be ' 'of type `NeuralLinUCBVariableCollection`.' ) self._variable_collection = variable_collection self._gamma = gamma if self._gamma < 0.0 or self._gamma > 1.0: raise ValueError('Forgetting factor `gamma` must be in [0.0, 1.0].') self._dtype = dtype if dtype not in (tf.float32, tf.float64): raise ValueError( 'Agent dtype should be either `tf.float32 or `tf.float64`.' ) self._epsilon_greedy = epsilon_greedy reward_layer = tf.keras.layers.Dense( self._num_models, kernel_initializer=tf.random_uniform_initializer( minval=-0.03, maxval=0.03 ), use_bias=False, activation=None, name='reward_layer', ) encoding_network.create_variables() self._encoding_network = encoding_network reward_layer.build(input_shape=tf.TensorShape([None, encoding_dim])) self._reward_layer = reward_layer self._encoding_network_num_train_steps = encoding_network_num_train_steps self._encoding_dim = encoding_dim self._optimizer = optimizer self._error_loss_fn = error_loss_fn self._gradient_clipping = gradient_clipping train_step_counter = tf.compat.v1.train.get_or_create_global_step() self._distributed_train_encoding_network = ( distributed_train_encoding_network ) policy = neural_linucb_policy.NeuralLinUCBPolicy( encoding_network=self._encoding_network, encoding_dim=self._encoding_dim, reward_layer=self._reward_layer, epsilon_greedy=self._epsilon_greedy, actions_from_reward_layer=self.actions_from_reward_layer, cov_matrix=self.cov_matrix, data_vector=self.data_vector, num_samples=self.num_samples, time_step_spec=time_step_spec, alpha=alpha, emit_policy_info=emit_policy_info, emit_log_probability=emit_log_probability, accepts_per_arm_features=accepts_per_arm_features, distributed_use_reward_layer=distributed_train_encoding_network, observation_and_action_constraint_splitter=( observation_and_action_constraint_splitter ), ) training_data_spec = None if accepts_per_arm_features: training_data_spec = bandit_spec_utils.drop_arm_observation( policy.trajectory_spec ) super(NeuralLinUCBAgent, self).__init__( time_step_spec=time_step_spec, action_spec=policy.action_spec, policy=policy, collect_policy=policy, train_sequence_length=None, training_data_spec=training_data_spec, debug_summaries=debug_summaries, summarize_grads_and_vars=summarize_grads_and_vars, train_step_counter=train_step_counter, ) self._as_trajectory = data_converter.AsTrajectory( self.data_context, sequence_length=None ) @property def num_actions(self): return self._num_actions @property def actions_from_reward_layer(self): return self._variable_collection.actions_from_reward_layer @property def cov_matrix(self): return self._variable_collection.cov_matrix_list @property def data_vector(self): return self._variable_collection.data_vector_list @property def num_samples(self): return self._variable_collection.num_samples_list @property def alpha(self): return self._alpha @property def variables(self): return ( self.num_samples + self.cov_matrix + self.data_vector + self._encoding_network.trainable_weights + self._reward_layer.trainable_weights + [self.train_step_counter] ) @alpha.setter def update_alpha(self, alpha): return tf.compat.v1.assign(self._alpha, alpha) def _initialize(self): tf.compat.v1.variables_initializer(self.variables) def compute_summaries(self, loss): with tf.name_scope('Losses/'): tf.compat.v2.summary.scalar( name='total_loss', data=loss, step=self.train_step_counter ) if self._summarize_grads_and_vars: with tf.name_scope('Variables/'): trainable_variables = ( self._encoding_network.trainable_weights + self._reward_layer.trainable_weights ) for var in trainable_variables: tf.compat.v2.summary.histogram( name=var.name.replace(':', '_'), data=var, step=self.train_step_counter, ) def _loss_using_reward_layer( self, observations: types.NestedTensor, actions: types.Tensor, rewards: types.Tensor, weights: Optional[types.Float] = None, training: bool = False, ) -> tf_agent.LossInfo: """Computes loss for reward prediction training. Args: observations: A batch of observations. actions: A batch of actions. rewards: A batch of rewards. weights: Optional scalar or elementwise (per-batch-entry) importance weights. The output batch loss will be scaled by these weights, and the final scalar loss is the mean of these values. training: Whether the loss is being used for training. Returns: loss: A `LossInfo` containing the loss for the training step. """ with tf.name_scope('loss'): encoded_observation, _ = self._encoding_network( observations, training=training ) encoded_observation = tf.reshape( encoded_observation, shape=[-1, self._encoding_dim] ) predicted_rewards = self._reward_layer( encoded_observation, training=training ) chosen_actions_predicted_rewards = common.index_with_actions( predicted_rewards, tf.cast(actions, dtype=tf.int32) ) loss = self._error_loss_fn( rewards, chosen_actions_predicted_rewards, 1 if weights is None else weights, ) if self._summarize_grads_and_vars: with tf.name_scope('Per_arm_loss/'): for k in range(self._num_models): loss_mask_for_arm = tf.cast(tf.equal(actions, k), tf.float32) loss_for_arm = self._error_loss_fn( rewards, chosen_actions_predicted_rewards, weights=loss_mask_for_arm, ) tf.compat.v2.summary.scalar( name='loss_arm_' + str(k), data=loss_for_arm, step=self.train_step_counter, ) return tf_agent.LossInfo(loss, extra=()) def compute_loss_using_reward_layer( self, observation: types.NestedTensor, action: types.Tensor, reward: types.Tensor, weights: Optional[types.Float] = None, training: bool = False, ) -> tf_agent.LossInfo: """Computes loss using the reward layer. Args: observation: A batch of observations. action: A batch of actions. reward: A batch of rewards. weights: Optional scalar or elementwise (per-batch-entry) importance weights. The output batch loss will be scaled by these weights, and the final scalar loss is the mean of these values. training: Whether the loss is being used for training. Returns: loss: A `LossInfo` containing the loss for the training step. """ # Update the neural network params. with tf.GradientTape() as tape: loss_info = self._loss_using_reward_layer( observation, action, reward, weights, training=training ) tf.debugging.check_numerics(loss_info[0], 'Loss is inf or nan') tf.compat.v2.summary.scalar( name='using_reward_layer', data=1, step=self.train_step_counter ) if self._summarize_grads_and_vars: self.compute_summaries(loss_info.loss) variables_to_train = ( self._encoding_network.trainable_weights + self._reward_layer.trainable_weights ) if not variables_to_train: raise ValueError('No variable to train in the agent.') grads = tape.gradient(loss_info.loss, variables_to_train) grads_and_vars = tuple(zip(grads, variables_to_train)) if self._gradient_clipping is not None: grads_and_vars = eager_utils.clip_gradient_norms( grads_and_vars, self._gradient_clipping ) if self._summarize_grads_and_vars: with tf.name_scope('Reward_network/'): eager_utils.add_variables_summaries( grads_and_vars, self.train_step_counter ) eager_utils.add_gradients_summaries( grads_and_vars, self.train_step_counter ) self._optimizer.apply_gradients(grads_and_vars) self.train_step_counter.assign_add(1) return loss_info def compute_loss_using_linucb( self, observation: types.NestedTensor, action: types.Tensor, reward: types.Tensor, weights: Optional[types.Float] = None, training: bool = False, ) -> tf_agent.LossInfo: """Computes the loss using LinUCB. Args: observation: A batch of observations. action: A batch of actions. reward: A batch of rewards. weights: unused weights. training: Whether the loss is being used to train. Returns: loss: A `LossInfo` containing the loss for the training step. """ del weights # unused # The network is trained now. Update the covariance matrix. encoded_observation, _ = self._encoding_network( observation, training=training ) encoded_observation = tf.cast(encoded_observation, dtype=self._dtype) encoded_observation = tf.reshape( encoded_observation, shape=[-1, self._encoding_dim] ) for k in range(self._num_models): diag_mask = tf.linalg.tensor_diag( tf.cast(tf.equal(action, k), self._dtype) ) observations_for_arm = tf.matmul(diag_mask, encoded_observation) rewards_for_arm = tf.matmul(diag_mask, tf.reshape(reward, [-1, 1])) num_samples_for_arm_current = tf.reduce_sum(diag_mask) tf.compat.v1.assign_add(self.num_samples[k], num_samples_for_arm_current) num_samples_for_arm_total = self.num_samples[k].read_value() # Update the matrix A and b. # pylint: disable=cell-var-from-loop def update(cov_matrix, data_vector): a_new, b_new = linear_agent.update_a_and_b_with_forgetting( cov_matrix, data_vector, rewards_for_arm, observations_for_arm, self._gamma, ) return a_new, b_new a_new, b_new = tf.cond( tf.squeeze(num_samples_for_arm_total) > 0, lambda: update(self.cov_matrix[k], self.data_vector[k]), lambda: (self.cov_matrix[k], self.data_vector[k]), ) tf.compat.v1.assign(self.cov_matrix[k], a_new) tf.compat.v1.assign(self.data_vector[k], b_new) loss_tensor = tf.cast(-1.0 * tf.reduce_sum(reward), dtype=tf.float32) loss_info = tf_agent.LossInfo(loss=loss_tensor, extra=()) tf.compat.v2.summary.scalar( name='using_reward_layer', data=0, step=self.train_step_counter ) self.train_step_counter.assign_add(1) return loss_info def compute_loss_using_linucb_distributed( self, observation: types.NestedTensor, action: types.Tensor, reward: types.Tensor, weights: Optional[types.Float] = None, training: bool = False, ) -> tf_agent.LossInfo: """Computes the loss using LinUCB distributively. Args: observation: A batch of observations. action: A batch of actions. reward: A batch of rewards. weights: unused weights. training: Whether the loss is being used to train. Returns: loss: A `LossInfo` containing the loss for the training step. """ del weights # unused # The network is trained now. Update the covariance matrix. encoded_observation, _ = self._encoding_network( observation, training=training ) encoded_observation = tf.cast(encoded_observation, dtype=self._dtype) encoded_observation = tf.reshape( encoded_observation, shape=[-1, self._encoding_dim] ) self._train_step_counter.assign_add(1) for k in range(self._num_models): diag_mask = tf.linalg.tensor_diag( tf.cast(tf.equal(action, k), self._dtype) ) observations_for_arm = tf.matmul(diag_mask, encoded_observation) rewards_for_arm = tf.matmul(diag_mask, tf.reshape(reward, [-1, 1])) # Compute local updates for the matrix A and b of this arm. cov_matrix_local_udpate = tf.matmul( observations_for_arm, observations_for_arm, transpose_a=True ) data_vector_local_update = bandit_utils.sum_reward_weighted_observations( rewards_for_arm, observations_for_arm ) def _merge_fn( strategy, per_replica_cov_matrix_update, per_replica_data_vector_update, ): """Merge the per-replica-updates.""" # Reduce the per-replica-updates using SUM. # pylint: disable=cell-var-from-loop updates_and_vars = [ (per_replica_cov_matrix_update, self.cov_matrix[k]), (per_replica_data_vector_update, self.data_vector[k]), ] reduced_updates = strategy.extended.batch_reduce_to( tf.distribute.ReduceOp.SUM, updates_and_vars ) # Update the model variables. self.cov_matrix[k].assign( self._gamma * self.cov_matrix[k] + reduced_updates[0] ) self.data_vector[k].assign( self._gamma * self.data_vector[k] + reduced_updates[1] ) # Passes the local_updates to the _merge_fn() above that performs custom # computation on the per-replica values. # All replicas pause their execution until merge_call() is done and then, # execution is resumed. replica_context = tf.distribute.get_replica_context() replica_context.merge_call( _merge_fn, args=(cov_matrix_local_udpate, data_vector_local_update) ) loss = -1.0 * tf.reduce_sum(reward) return tf_agent.LossInfo(loss=(loss), extra=()) def _train(self, experience, weights=None): """Updates the policy based on the data in `experience`. Note that `experience` should only contain data points that this agent has not previously seen. If `experience` comes from a replay buffer, this buffer should be cleared between each call to `train`. Args: experience: A batch of experience data in the form of a `Trajectory`. weights: (optional) sample weights. Returns: A `LossInfo` containing the loss *before* the training step is taken. In most cases, if `weights` is provided, the entries of this tuple will have been calculated with the weights. Note that each Agent chooses its own method of applying weights. """ experience = self._as_trajectory(experience) (observation, action, reward) = ( bandit_utils.process_experience_for_neural_agents( experience, self._accepts_per_arm_features, self.training_data_spec ) ) if self._observation_and_action_constraint_splitter is not None: observation, _ = self._observation_and_action_constraint_splitter( observation ) reward = tf.cast(reward, self._dtype) if tf.distribute.has_strategy(): if self._distributed_train_encoding_network: loss_info = self.compute_loss_using_reward_layer( observation, action, reward, weights, training=True ) else: loss_info = self.compute_loss_using_linucb_distributed( observation, action, reward, weights, training=True ) return loss_info tf.compat.v1.assign( self.actions_from_reward_layer, tf.less( self._train_step_counter, self._encoding_network_num_train_steps ), ) def use_actions_from_reward_layer(): return self.compute_loss_using_reward_layer( observation, action, reward, weights, training=True ) def no_actions_from_reward_layer(): return self.compute_loss_using_linucb( observation, action, reward, weights, training=True ) loss_info = tf.cond( self.actions_from_reward_layer, use_actions_from_reward_layer, no_actions_from_reward_layer, ) return loss_info
c834c39c8e08fc958e2256b388af4f839efe7988
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_pricier.py
17e602d16998edcee93d654fd2ff4a313028fae5
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
#calss header class _PRICIER(): def __init__(self,): self.name = "PRICIER" self.definitions = pricy self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['pricy']
020d3a02c9aba18d9ceb63b09b9389dd7f395e1e
c1bfadbc033efba287ad55a804e9d69d297c3bf2
/valohai_cli/commands/logout.py
bf4821b4666e80b85d595e51d78ca79a387cdd40
[ "MIT" ]
permissive
valohai/valohai-cli
16560b078d20a02c8cdc7388beeea9bebac4be7d
c57cc164e749fb77b622d629a5ad05b2685534bb
refs/heads/master
2023-08-31T14:04:26.979762
2023-08-22T12:54:51
2023-08-22T12:54:51
81,329,264
14
5
MIT
2023-09-11T13:35:04
2017-02-08T12:46:54
Python
UTF-8
Python
false
false
735
py
import click from valohai_cli.consts import yes_option from valohai_cli.messages import success from valohai_cli.settings import settings @click.command() @yes_option def logout(yes: bool) -> None: """Remove local authentication token.""" user = settings.user token = settings.token if not (user or token): click.echo('You\'re not logged in.') return if user and not yes: click.confirm(( f'You are logged in as {user["username"]} (on {settings.host}).\n' 'Are you sure you wish to remove the authentication token?' ), abort=True) settings.persistence.update(host=None, user=None, token=None) settings.persistence.save() success('Logged out.')
4c12237f5cd128fd551d352034e4ac3d458b8a31
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/config/dumpptask.py
2c8edbee935d28a0593b26649bed118cfd8a2293
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
18,319
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class DumpPTask(Mo): """ Mo doc not defined in techpub!!! """ meta = ClassMeta("cobra.model.config.DumpPTask") meta.moClassName = "configDumpPTask" meta.rnFormat = "configDumpPTask-%(id)s" meta.category = MoCategory.TASK meta.label = "None" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.action.LicensemgrSubj") meta.parentClasses.add("cobra.model.action.TopomgrSubj") meta.parentClasses.add("cobra.model.action.ObserverSubj") meta.parentClasses.add("cobra.model.action.SnmpdSubj") meta.parentClasses.add("cobra.model.action.VmmmgrSubj") meta.parentClasses.add("cobra.model.action.AnalyticsSubj") meta.parentClasses.add("cobra.model.action.ScripthandlerSubj") meta.parentClasses.add("cobra.model.action.ConfelemSubj") meta.parentClasses.add("cobra.model.action.EventmgrSubj") meta.parentClasses.add("cobra.model.action.OspaelemSubj") meta.parentClasses.add("cobra.model.action.VtapSubj") meta.parentClasses.add("cobra.model.action.OshSubj") meta.parentClasses.add("cobra.model.action.DhcpdSubj") meta.parentClasses.add("cobra.model.action.ObserverelemSubj") meta.parentClasses.add("cobra.model.action.DomainmgrSubj") meta.parentClasses.add("cobra.model.action.DbgrelemSubj") meta.parentClasses.add("cobra.model.action.PlgnhandlerSubj") meta.parentClasses.add("cobra.model.action.VleafelemSubj") meta.parentClasses.add("cobra.model.action.NxosmockSubj") meta.parentClasses.add("cobra.model.action.DbgrSubj") meta.parentClasses.add("cobra.model.action.PlatformmgrSubj") meta.parentClasses.add("cobra.model.action.AppliancedirectorSubj") meta.parentClasses.add("cobra.model.action.OpflexpSubj") meta.parentClasses.add("cobra.model.action.BootmgrSubj") meta.parentClasses.add("cobra.model.action.AeSubj") meta.parentClasses.add("cobra.model.action.PolicymgrSubj") meta.parentClasses.add("cobra.model.action.ExtXMLApiSubj") meta.parentClasses.add("cobra.model.action.OpflexelemSubj") meta.parentClasses.add("cobra.model.action.PolicyelemSubj") meta.parentClasses.add("cobra.model.action.PolicydistSubj") meta.parentClasses.add("cobra.model.action.IdmgrSubj") meta.parentClasses.add("cobra.model.action.EdmgrSubj") meta.superClasses.add("cobra.model.action.RInst") meta.superClasses.add("cobra.model.pol.ComplElem") meta.superClasses.add("cobra.model.task.Inst") meta.superClasses.add("cobra.model.action.Inst") meta.rnPrefixes = [ ('configDumpPTask-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "data", "data", 52, PropCategory.REGULAR) prop.label = "Data" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("data", prop) prop = PropMeta("str", "descr", "descr", 33, PropCategory.REGULAR) prop.label = "Description" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "endTs", "endTs", 15575, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("endTs", prop) prop = PropMeta("str", "fail", "fail", 46, PropCategory.REGULAR) prop.label = "Fail" prop.isImplicit = True prop.isAdmin = True meta.props.add("fail", prop) prop = PropMeta("str", "flags", "flags", 30392, PropCategory.REGULAR) prop.label = "Flags" prop.isImplicit = True prop.isAdmin = True meta.props.add("flags", prop) prop = PropMeta("str", "id", "id", 34319, PropCategory.REGULAR) prop.label = "ID" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("fetchPdConfig", "fetchpdconfig", 2863) prop._addConstant("none", "none", 0) meta.props.add("id", prop) prop = PropMeta("str", "invErrCode", "invErrCode", 49, PropCategory.REGULAR) prop.label = "Remote Error Code" prop.isImplicit = True prop.isAdmin = True prop._addConstant("ERR-FILTER-illegal-format", None, 1140) prop._addConstant("ERR-FSM-no-such-state", None, 1160) prop._addConstant("ERR-HTTP-set-error", None, 1551) prop._addConstant("ERR-HTTPS-set-error", None, 1552) prop._addConstant("ERR-MO-CONFIG-child-object-cant-be-configured", None, 1130) prop._addConstant("ERR-MO-META-no-such-object-class", None, 1122) prop._addConstant("ERR-MO-PROPERTY-no-such-property", None, 1121) prop._addConstant("ERR-MO-PROPERTY-value-out-of-range", None, 1120) prop._addConstant("ERR-MO-access-denied", None, 1170) prop._addConstant("ERR-MO-deletion-rule-violation", None, 1107) prop._addConstant("ERR-MO-duplicate-object", None, 1103) prop._addConstant("ERR-MO-illegal-containment", None, 1106) prop._addConstant("ERR-MO-illegal-creation", None, 1105) prop._addConstant("ERR-MO-illegal-iterator-state", None, 1100) prop._addConstant("ERR-MO-illegal-object-lifecycle-transition", None, 1101) prop._addConstant("ERR-MO-naming-rule-violation", None, 1104) prop._addConstant("ERR-MO-object-not-found", None, 1102) prop._addConstant("ERR-MO-resource-allocation", None, 1150) prop._addConstant("ERR-aaa-config-modify-error", None, 1520) prop._addConstant("ERR-acct-realm-set-error", None, 1513) prop._addConstant("ERR-add-ctrlr", None, 1574) prop._addConstant("ERR-admin-passwd-set", None, 1522) prop._addConstant("ERR-api", None, 1571) prop._addConstant("ERR-auth-issue", None, 1548) prop._addConstant("ERR-auth-realm-set-error", None, 1514) prop._addConstant("ERR-authentication", None, 1534) prop._addConstant("ERR-authorization-required", None, 1535) prop._addConstant("ERR-connect", None, 1572) prop._addConstant("ERR-create-domain", None, 1562) prop._addConstant("ERR-create-keyring", None, 1560) prop._addConstant("ERR-create-role", None, 1526) prop._addConstant("ERR-create-user", None, 1524) prop._addConstant("ERR-delete-domain", None, 1564) prop._addConstant("ERR-delete-role", None, 1528) prop._addConstant("ERR-delete-user", None, 1523) prop._addConstant("ERR-domain-set-error", None, 1561) prop._addConstant("ERR-http-initializing", None, 1549) prop._addConstant("ERR-incompat-ctrlr-version", None, 1568) prop._addConstant("ERR-internal-error", None, 1540) prop._addConstant("ERR-invalid-args", None, 1569) prop._addConstant("ERR-invalid-delimiter", None, 1589) prop._addConstant("ERR-invalid-domain", None, 1588) prop._addConstant("ERR-invalid-domain-name", None, 1582) prop._addConstant("ERR-ldap-delete-error", None, 1510) prop._addConstant("ERR-ldap-get-error", None, 1509) prop._addConstant("ERR-ldap-group-modify-error", None, 1518) prop._addConstant("ERR-ldap-group-set-error", None, 1502) prop._addConstant("ERR-ldap-set-error", None, 1511) prop._addConstant("ERR-missing-method", None, 1546) prop._addConstant("ERR-modify-ctrlr-access", None, 1567) prop._addConstant("ERR-modify-ctrlr-dvs-version", None, 1576) prop._addConstant("ERR-modify-ctrlr-rootcont", None, 1575) prop._addConstant("ERR-modify-ctrlr-scope", None, 1573) prop._addConstant("ERR-modify-ctrlr-trig-inventory", None, 1577) prop._addConstant("ERR-modify-domain", None, 1563) prop._addConstant("ERR-modify-domain-encapmode", None, 1581) prop._addConstant("ERR-modify-domain-enfpref", None, 1578) prop._addConstant("ERR-modify-domain-mcastpool", None, 1579) prop._addConstant("ERR-modify-domain-mode", None, 1580) prop._addConstant("ERR-modify-domain-prefencapmode", None, 1584) prop._addConstant("ERR-modify-role", None, 1527) prop._addConstant("ERR-modify-user", None, 1525) prop._addConstant("ERR-modify-user-domain", None, 1565) prop._addConstant("ERR-modify-user-role", None, 1532) prop._addConstant("ERR-no-buf", None, 1570) prop._addConstant("ERR-passwd-set-failure", None, 1566) prop._addConstant("ERR-provider-group-modify-error", None, 1519) prop._addConstant("ERR-provider-group-set-error", None, 1512) prop._addConstant("ERR-radius-global-set-error", None, 1505) prop._addConstant("ERR-radius-group-set-error", None, 1501) prop._addConstant("ERR-radius-set-error", None, 1504) prop._addConstant("ERR-request-timeout", None, 1545) prop._addConstant("ERR-role-set-error", None, 1515) prop._addConstant("ERR-rsa-global-set-error", None, 1587) prop._addConstant("ERR-rsa-group-set-error", None, 1585) prop._addConstant("ERR-rsa-set-error", None, 1586) prop._addConstant("ERR-secondary-node", None, 1550) prop._addConstant("ERR-service-not-ready", None, 1539) prop._addConstant("ERR-set-password-strength-check", None, 1543) prop._addConstant("ERR-store-pre-login-banner-msg", None, 1521) prop._addConstant("ERR-tacacs-enable-error", None, 1508) prop._addConstant("ERR-tacacs-global-set-error", None, 1507) prop._addConstant("ERR-tacacs-group-set-error", None, 1503) prop._addConstant("ERR-tacacs-set-error", None, 1506) prop._addConstant("ERR-user-account-expired", None, 1536) prop._addConstant("ERR-user-set-error", None, 1517) prop._addConstant("ERR-xml-parse-error", None, 1547) prop._addConstant("communication-error", "communication-error", 1) prop._addConstant("none", "none", 0) meta.props.add("invErrCode", prop) prop = PropMeta("str", "invErrDescr", "invErrDescr", 50, PropCategory.REGULAR) prop.label = "Remote Error Description" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("invErrDescr", prop) prop = PropMeta("str", "invRslt", "invRslt", 48, PropCategory.REGULAR) prop.label = "Remote Result" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "not-applicable" prop._addConstant("capability-not-implemented-failure", "capability-not-implemented-failure", 16384) prop._addConstant("capability-not-implemented-ignore", "capability-not-implemented-ignore", 8192) prop._addConstant("capability-not-supported", "capability-not-supported", 32768) prop._addConstant("capability-unavailable", "capability-unavailable", 65536) prop._addConstant("end-point-failed", "end-point-failed", 32) prop._addConstant("end-point-protocol-error", "end-point-protocol-error", 64) prop._addConstant("end-point-unavailable", "end-point-unavailable", 16) prop._addConstant("extend-timeout", "extend-timeout", 134217728) prop._addConstant("failure", "failure", 1) prop._addConstant("fru-identity-indeterminate", "fru-identity-indeterminate", 4194304) prop._addConstant("fru-info-malformed", "fru-info-malformed", 8388608) prop._addConstant("fru-not-ready", "fru-not-ready", 67108864) prop._addConstant("fru-not-supported", "fru-not-supported", 536870912) prop._addConstant("fru-state-indeterminate", "fru-state-indeterminate", 33554432) prop._addConstant("fw-defect", "fw-defect", 256) prop._addConstant("hw-defect", "hw-defect", 512) prop._addConstant("illegal-fru", "illegal-fru", 16777216) prop._addConstant("intermittent-error", "intermittent-error", 1073741824) prop._addConstant("internal-error", "internal-error", 4) prop._addConstant("not-applicable", "not-applicable", 0) prop._addConstant("resource-capacity-exceeded", "resource-capacity-exceeded", 2048) prop._addConstant("resource-dependency", "resource-dependency", 4096) prop._addConstant("resource-unavailable", "resource-unavailable", 1024) prop._addConstant("service-not-implemented-fail", "service-not-implemented-fail", 262144) prop._addConstant("service-not-implemented-ignore", "service-not-implemented-ignore", 131072) prop._addConstant("service-not-supported", "service-not-supported", 524288) prop._addConstant("service-protocol-error", "service-protocol-error", 2097152) prop._addConstant("service-unavailable", "service-unavailable", 1048576) prop._addConstant("sw-defect", "sw-defect", 128) prop._addConstant("task-reset", "task-reset", 268435456) prop._addConstant("timeout", "timeout", 8) prop._addConstant("unidentified-fail", "unidentified-fail", 2) meta.props.add("invRslt", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "oDn", "oDn", 51, PropCategory.REGULAR) prop.label = "Subject DN" prop.isImplicit = True prop.isAdmin = True meta.props.add("oDn", prop) prop = PropMeta("str", "operSt", "operSt", 15674, PropCategory.REGULAR) prop.label = "Completion" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "scheduled" prop._addConstant("cancelled", "cancelled", 3) prop._addConstant("completed", "completed", 2) prop._addConstant("crashsuspect", "crash-suspect", 7) prop._addConstant("failed", "failed", 4) prop._addConstant("indeterminate", "indeterminate", 5) prop._addConstant("processing", "processing", 1) prop._addConstant("ready", "ready", 8) prop._addConstant("scheduled", "scheduled", 0) prop._addConstant("suspended", "suspended", 6) meta.props.add("operSt", prop) prop = PropMeta("str", "originMinority", "originMinority", 54, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = False prop.defaultValueStr = "no" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("originMinority", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "runId", "runId", 45, PropCategory.REGULAR) prop.label = "ID" prop.isImplicit = True prop.isAdmin = True meta.props.add("runId", prop) prop = PropMeta("str", "startTs", "startTs", 36, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("startTs", prop) prop = PropMeta("str", "startTx", "startTx", 36895, PropCategory.REGULAR) prop.label = "startTxId" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("none", "none", 0) meta.props.add("startTx", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "try", "try", 15574, PropCategory.REGULAR) prop.label = "Try" prop.isImplicit = True prop.isAdmin = True meta.props.add("try", prop) prop = PropMeta("str", "ts", "ts", 47, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("ts", prop) meta.namingProps.append(getattr(meta.props, "id")) def __init__(self, parentMoOrDn, id, markDirty=True, **creationProps): namingVals = [id] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
3db2907e0ec1a60da6727317afaec49ef2217e4c
96ad67554b01832b873fc0bdab0c33aa2178a2fd
/3_visualExploratory/3_violationDistrict.py
ac3f3009cd46c72bad29b203a4a88e5a3d37b070
[]
no_license
RobertNguyen125/Datacamp---Project-PoliceActivities
09447ee1290c40b3c038ccd387e80c7e703cb053
af14e4d7c4ff864f68cfa3aaecdfee9883c24659
refs/heads/master
2021-01-02T02:00:15.928445
2020-02-10T06:48:13
2020-02-10T06:48:13
239,445,139
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
# .crosstab(), short for cross_tabulation import pandas as pd import matplotlib.pyplot as plt ri2 = pd.read_csv('/Users/apple/desktop/policeActivities/dataset/ri2.csv') table = pd.crosstab(ri2['driver_race'], ri2['driver_gender']) # NOTE: frequency table in form of dataframe print(table) # check the result of frequency table asian_female = ri2[(ri2['driver_gender']=='F') & (ri2['driver_race']=='Asian')] print(asian_female.shape) table = table.loc['Asian':'Hispanic'] print(table) # create stacked bar plot # table.plot(kind='bar', stacked=True) # plt.show() # district violation # create frequency table with distric and violation all_zones = pd.crosstab(ri2['district'],ri2['violation']) print(all_zones) # slice the dataframe to get k1-k3: k_zones = all_zones.loc['Zone K1': 'Zone K3'] print(k_zones)
4fa0a7eb80583b752126f933c7de41b6086d7e94
f9e3a0fb511470561d3d94bc984dafaee06000cb
/9780596009250/PP3E-Examples-1.2/Examples/PP3E/System/App/Bases/app.py
9e971584749335e8bfed0687516b1d673471aca7
[ "LicenseRef-scancode-oreilly-notice" ]
permissive
Sorath93/Programming-Python-book
359b6fff4e17b44b9842662f484bbafb490cfd3d
ebe4c93e265edd4ae135491bd2f96904d08a911c
refs/heads/master
2022-12-03T01:49:07.815439
2020-08-16T22:19:38
2020-08-16T22:19:38
287,775,012
0
0
null
null
null
null
UTF-8
Python
false
false
4,823
py
################################################################################ # an application class hierarchy, for handling top-level components; # App is the root class of the App hierarchy, extended in other files; ################################################################################ import sys, os, traceback class AppError(Exception): pass # errors raised here class App: # the root class def __init__(self, name=None): self.name = name or self.__class__.__name__ # the lowest class self.args = sys.argv[1:] self.env = os.environ self.verbose = self.getopt('-v') or self.getenv('VERBOSE') self.input = sys.stdin self.output = sys.stdout self.error = sys.stderr # stdout may be piped def closeApp(self): # not __del__: ref's? pass # nothing at this level def help(self): print self.name, 'command-line arguments:' # extend in subclass print '-v (verbose)' ############################## # script environment services ############################## def getopt(self, tag): try: # test "-x" command arg self.args.remove(tag) # not real argv: > 1 App? return 1 except: return 0 def getarg(self, tag, default=None): try: # get "-x val" command arg pos = self.args.index(tag) val = self.args[pos+1] self.args[pos:pos+2] = [] return val except: return default # None: missing, no default def getenv(self, name, default=''): try: # get "$x" environment var return self.env[name] except KeyError: return default def endargs(self): if self.args: self.message('extra arguments ignored: ' + repr(self.args)) self.args = [] def restargs(self): res, self.args = self.args, [] # no more args/options return res def message(self, text): self.error.write(text + '\n') # stdout may be redirected def exception(self): return tuple(sys.exc_info()[:2]) # the last exception type,data def exit(self, message='', status=1): if message: self.message(message) sys.exit(status) def shell(self, command, fork=0, inp=''): if self.verbose: self.message(command) # how about ipc? if not fork: os.system(command) # run a shell cmd elif fork == 1: return os.popen(command, 'r').read() # get its output else: # readlines too? pipe = os.popen(command, 'w') pipe.write(inp) # send it input pipe.close() ################################################# # input/output-stream methods for the app itself; # redefine in subclasses if not using files, or # set self.input/output to file-like objects; ################################################# def read(self, *size): return self.input.read(*size) def readline(self): return self.input.readline() def readlines(self): return self.input.readlines() def write(self, text): self.output.write(text) def writelines(self, text): self.output.writelines(text) ################################################### # to run the app # main() is the start/run/stop execution protocol; ################################################### def main(self): res = None try: self.start() self.run() res = self.stop() # optional return val except SystemExit: # ignore if from exit() pass except: self.message('uncaught: ' + str(self.exception())) traceback.print_exc() self.closeApp() return res def start(self): if self.verbose: self.message(self.name + ' start.') def stop(self): if self.verbose: self.message(self.name + ' done.') def run(self): raise AppError, 'run must be redefined!'
1376fbee52bacc27bd80efd4d16b435c5e946b03
549270020f6c8724e2ef1b12e38d11b025579f8d
/recipes/libnetfilter_queue/all/test_package/conanfile.py
1097433829a7c2a75801555fd3e085e9063cd7b5
[ "MIT" ]
permissive
conan-io/conan-center-index
1bcec065ccd65aa38b1fed93fbd94d9d5fe6bc43
3b17e69bb4e5601a850b6e006e44775e690bac33
refs/heads/master
2023-08-31T11:34:45.403978
2023-08-31T11:13:23
2023-08-31T11:13:23
204,671,232
844
1,820
MIT
2023-09-14T21:22:42
2019-08-27T09:43:58
Python
UTF-8
Python
false
false
469
py
import os from conans import ConanFile, CMake, tools class Libnetfilter_queueTestConan(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "cmake" def build(self): cmake = CMake(self) cmake.configure() cmake.build() def test(self): if not tools.cross_building(self): bin_path = os.path.join("bin", "example") self.run("{} {}".format(bin_path, 0), run_environment=True)
8263c0e2c597868a62777d0b2bf18d2d862238d2
632d7759536ed0726499c2d52c8eb13b5ab213ab
/Data/Packages/Default/swap_line.py
5c098bc61d83d61eb12c2cf637e2417ebeab613c
[]
no_license
Void2403/sublime_text_3_costomize
e660ad803eb12b20e9fa7f8eb7c6aad0f2b4d9bc
c19977e498bd948fd6d8f55bd48c8d82cbc317c3
refs/heads/master
2023-08-31T21:32:32.791574
2019-05-31T11:46:19
2019-05-31T11:46:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,886
py
import sublime import sublime_plugin def expand_to_line(view, region): """ As view.full_line, but doesn't expand to the next line if a full line is already selected """ if not (region.a == region.b) and view.substr(region.end() - 1) == '\n': return sublime.Region(view.line(region).begin(), region.end()) else: return view.full_line(region) def extract_line_blocks(view): blocks = [expand_to_line(view, s) for s in view.sel()] if len(blocks) == 0: return blocks # merge any adjacent blocks merged_blocks = [blocks[0]] for block in blocks[1:]: last_block = merged_blocks[-1] if block.begin() <= last_block.end(): merged_blocks[-1] = sublime.Region(last_block.begin(), block.end()) else: merged_blocks.append(block) return merged_blocks class SwapLineUpCommand(sublime_plugin.TextCommand): def run(self, edit): blocks = extract_line_blocks(self.view) # No selection if len(blocks) == 0: return # Already at BOF if blocks[0].begin() == 0: return # Add a trailing newline if required, the logic is simpler if every line # ends with a newline add_trailing_newline = (self.view.substr(self.view.size() - 1) != '\n') and blocks[-1].b == self.view.size() if add_trailing_newline: # The insert can cause the selection to move. This isn't wanted, so # reset the selection if it has moved to EOF sel = [r for r in self.view.sel()] self.view.insert(edit, self.view.size(), '\n') if self.view.sel()[-1].end() == self.view.size(): # Selection has moved, restore the previous selection self.view.sel().clear() for r in sel: self.view.sel().add(r) # Fix up any block that should now include this newline blocks[-1] = sublime.Region(blocks[-1].a, blocks[-1].b + 1) # Process in reverse order blocks.reverse() for b in blocks: prev_line = self.view.full_line(b.begin() - 1) self.view.insert(edit, b.end(), self.view.substr(prev_line)) self.view.erase(edit, prev_line) if add_trailing_newline: # Remove the added newline self.view.erase(edit, sublime.Region(self.view.size() - 1, self.view.size())) # Ensure the selection is visible self.view.show(self.view.sel(), False) class SwapLineDownCommand(sublime_plugin.TextCommand): def run(self, edit): blocks = extract_line_blocks(self.view) # No selection if len(blocks) == 0: return # Already at EOF if blocks[-1].end() == self.view.size(): return # Add a trailing newline if required, the logic is simpler if every line # ends with a newline add_trailing_newline = (self.view.substr(self.view.size() - 1) != '\n') if add_trailing_newline: # No block can be at EOF (checked above), so no need to fix up the # blocks self.view.insert(edit, self.view.size(), '\n') # Process in reverse order blocks.reverse() for b in blocks: next_line = self.view.full_line(b.end()) contents = self.view.substr(next_line) self.view.erase(edit, next_line) self.view.insert(edit, b.begin(), contents) if add_trailing_newline: # Remove the added newline self.view.erase(edit, sublime.Region(self.view.size() - 1, self.view.size())) # Ensure the selection is visible self.view.show(self.view.sel(), False)
e62ab15957a3c82e8578924508c3baeabde046be
b550eda62179ffd8e49a59df7f8a30163140204f
/backend/openshift-old/services/job/worker/src/nodes/requests/openshift.py
169b62b8c283420c6106a524f7d57862ca40833b
[ "Apache-2.0" ]
permissive
bgoesswe/openeo-repeatability
6222fb235b70fda9da998b63fec92c0e5ac07169
087b9965e710d16cd6f29cb25e2cb94e443c2b30
refs/heads/master
2022-12-11T03:43:35.365574
2018-08-07T20:02:02
2018-08-07T20:02:02
139,158,921
0
1
null
2022-12-08T02:15:15
2018-06-29T14:27:34
Python
UTF-8
Python
false
false
801
py
from os import environ from utils import send_post # OPENSHIFT_URL = environ.get("OPENSHIFT_API") # OPENSHIFT_AUTH = auth = {"Authorization": "Bearer " + environ.get("SERVICEACCOUNT_TOKEN")} # OPENSHIFT_NAMESPACE = environ.get("EXECUTION_NAMESPACE") # OPENSHIFT_STORAGE_CLASS = environ.get("STORAGE_CLASS") # OPENSHIFT_VERIFY = True if environ.get("VERIFY") == "true" else False # def execute_template(path, template): # url = "{0}/{1}".format(OPENSHIFT_URL, path) # send_post(url, template, OPENSHIFT_AUTH, OPENSHIFT_VERIFY) # url = environ.get("OPENSHIFT_API") + self.path # response = post(url, data=self.get_json(), headers=auth, verify=verify) # verify = # # Execute template # if response.ok == False: # self.raise_error(response.text) # self.status = "Created"
72455241a618db9120f1ce31fffb5ed5a14566bd
fbfb724f8d0c3a6b64b2d6773c6f723bedb9f7f5
/Python/Django_full/courses/apps/course_app/views.py
49c2de66092e1c0453f40735e9ff07ab1f17f2ca
[]
no_license
eddieverity/DojoAssignments
32ae4a1de768069d6636d1f109845e86bb20dec5
8860b4ca87633e722fa5aa93952ea719e9e95413
refs/heads/master
2020-04-06T03:59:56.185985
2017-04-26T18:04:41
2017-04-26T18:04:41
83,149,714
1
2
null
null
null
null
UTF-8
Python
false
false
763
py
from django.shortcuts import render, redirect, HttpResponse from .models import Course, Description, Comment # Create your views here. def index(request): course=Course.objects.all() desc= Description.objects.all() context = { "courses": course, "desc": desc } return render(request, "course_app/index.html", context) def go_back(request): return redirect('/') def add(request): course = Course.objects.create(name=request.POST['name']) # course automatically getting assigned course_id, then referenced in description.create below Description.objects.create(desc=request.POST['desc'], course=course) return redirect('/') def delete(request, id): instance = Course.objects.filter(id = id).delete() return redirect('/')
a5146ae5de1b53ffccabf6a5318027797a5bb10a
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_psoriasis.py
8b4a1ae76769598d8296034103fda0e42994b41d
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
#calss header class _PSORIASIS(): def __init__(self,): self.name = "PSORIASIS" self.definitions = [u'a disease in which areas of skin turn red and are covered with small dry pieces of skin'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
ac87a80c7946de405af73d9d842c2e7763946960
fee6d256bb4430569f9c055735d5f52a04afac45
/admin/town_get.py
3c317a73eecfa09a13f9b9e9edfd840faf725e1f
[]
no_license
microprediction/pandemic
633367e3a11af1418e255a595b4c01a9c1f4c1bb
4ca339b8c6e1925d7d70e9659b34e7cf8d7b534b
refs/heads/master
2021-05-23T15:27:12.726299
2020-11-12T13:52:56
2020-11-12T13:52:56
253,360,903
9
8
null
2020-05-18T14:00:25
2020-04-06T00:34:55
Python
UTF-8
Python
false
false
260
py
from pandemic.config_private import REDIS_CONFIG from pprint import pprint import json if __name__=="__main__": import redis r = redis.Redis(**REDIS_CONFIG) key = '00021250616501801290085' data = r.hgetall(name='town::hash') pprint(data)
7aba0b9e83fa79101172ddd4c5618b3be76aada9
d17a8870ff8ac77b82d0d37e20c85b23aa29ca74
/lite/tests/unittest_py/op/common/test_unsqueeze_op_base.py
2501e10cdaad936fb10b222f6afd2e47286d2faa
[ "Apache-2.0" ]
permissive
PaddlePaddle/Paddle-Lite
4ab49144073451d38da6f085a8c56822caecd5b2
e241420f813bd91f5164f0d9ee0bc44166c0a172
refs/heads/develop
2023-09-02T05:28:14.017104
2023-09-01T10:32:39
2023-09-01T10:32:39
104,208,128
2,545
1,041
Apache-2.0
2023-09-12T06:46:10
2017-09-20T11:41:42
C++
UTF-8
Python
false
false
2,275
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import numpy as np from functools import partial from typing import Optional, List, Callable, Dict, Any, Set import unittest import hypothesis from hypothesis import assume import hypothesis.strategies as st def sample_program_configs(draw): in_shape = draw( st.lists( st.integers( min_value=1, max_value=5), min_size=4, max_size=4)) axes_data = draw( st.lists( st.integers( min_value=0, max_value=3), min_size=1, max_size=2)) def generate_AxesTensor_data(): return np.random.choice([0, 1, 2, 3], axes_data, replace=True) def generate_AxesTensorList_data(): return np.random.choice([0, 1, 2, 3], [], replace=True) unsqueeze_op = OpConfig( type="unsqueeze", inputs={ "X": ["X_data"], "AxesTensor": ["AxesTensor_data"], "AxesTensorList": ["AxesTensorList_data"] }, outputs={"Out": ["Out_data"]}, attrs={"axes": axes_data, }) program_config = ProgramConfig( ops=[unsqueeze_op], weights={}, inputs={ "X_data": TensorConfig(shape=in_shape), "AxesTensor_data": TensorConfig(data_gen=partial(generate_AxesTensor_data)), # TensorList is not supported ,so comment them out "AxesTensorList_data": TensorConfig(data_gen=partial(generate_AxesTensorList_data)) }, outputs=["Out_data"]) return program_config
d86b2af56d25376ca533a9b8f5974a461cddc95f
41e22cef6ded081632f21cd3877884f76c69bef3
/flaskmob/api.py
2835e31958cc88e0b8e048455be2281aea280abb
[ "MIT" ]
permissive
brotherjack/Flask-Mob
737cac3623c8a062653e2eefa981de30526b4510
f0f4f5fe79f2fe7e63c2f882dc4b5d61276dbf45
refs/heads/master
2021-01-20T09:37:26.091977
2017-03-04T22:09:56
2017-03-04T22:09:56
83,924,618
0
0
null
2017-03-04T21:03:59
2017-03-04T21:03:59
null
UTF-8
Python
false
false
1,012
py
from flask import jsonify from flaskmob import app, db from flask_restful import Resource, Api api = Api(app) class Pokeymon(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, unique=True) color = db.Column(db.String) def __init__(self, name, color=None): if not color: color = "Not Specified" self.name = name self.color = color def __repr__(self): return str(self.name) class PokeymonNapTime(Resource): def get(self, name): result = Pokeymon.query.filter_by(name=name).first() del result.__dict__['_sa_instance_state'] return jsonify(result.__dict__) def post(self, name, color=None): new_pokeymon = Pokeymon(name, color) db.session.add(new_pokeymon) try: db.session.commit() except: db.session.rollback() raise return "Success" api.add_resource(PokeymonNapTime, "/api/1.0/pokeyman/<string:name>")
d7ce57bb2a34be6eaabcd84fa54ce1e9684ed2ad
e60a342f322273d3db5f4ab66f0e1ffffe39de29
/parts/zodiac/pyramid/config/__init__.py
353c270d3b02ea3c082abb98347a3ef4673e089e
[]
no_license
Xoting/GAExotZodiac
6b1b1f5356a4a4732da4c122db0f60b3f08ff6c1
f60b2b77b47f6181752a98399f6724b1cb47ddaf
refs/heads/master
2021-01-15T21:45:20.494358
2014-01-13T15:29:22
2014-01-13T15:29:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
/home/alex/myenv/zodiac/eggs/pyramid-1.4-py2.7.egg/pyramid/config/__init__.py
d84f0b803d8be1aa81bc7e7291137ca415656a52
9870d2c6880fd3fa558c46e3bf160aae20c74157
/removeNthFromEnd.py
5719f47e75ed040bbcce08e05727590f9c52fbbc
[]
no_license
Yigang0622/LeetCode
e7f7f115c6e730c486296ef2f1a3dd1a3fdca526
c873cd1ee70a2bdb54571bdd50733db9f6475e9e
refs/heads/master
2023-03-03T14:32:25.498633
2021-02-15T13:59:00
2021-02-15T13:59:00
281,423,565
1
0
null
null
null
null
UTF-8
Python
false
false
1,322
py
# LeetCode # removeNthFromEnd # Created by Yigang Zhou on 2020/7/22. # Copyright © 2020 Yigang Zhou. All rights reserved. # 给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点。 # # 示例: # # 给定一个链表: 1->2->3->4->5, 和 n = 2. # # 当删除了倒数第二个节点后,链表变为 1->2->3->5. # 说明: # # 给定的 n 保证是有效的。 # # 进阶: # # 你能尝试使用一趟扫描实现吗? #Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None def printLinkedList(head: ListNode): while head is not None: print(head.val) head = head.next class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: arr = [] while head is not None: arr.append(head) head = head.next if len(arr) == 1: return [] i = len(arr) - n - 1 if i == -1: printLinkedList(arr[1]) return arr[1] else: arr[i].next = arr[i].next.next printLinkedList(arr[0]) return arr[0] n = ListNode(1) n2 = ListNode(2) n3 = ListNode(3) n4 = ListNode(4) n.next = n2 n2.next = n3 n3.next = n4 s = Solution().removeNthFromEnd(n,4)
65ea9516ef90c51096c29190ac5a836c0bd9ae28
71d9245d5264c25e56a6bb36512049da2c608875
/docs/rtd/bin/pip
ab30e4a91c21a624e2ee5a7fdf76a1543ed863c5
[ "BSD-3-Clause" ]
permissive
kuacuia/CrazyEyeDoc
1ef0d05e5de51b22f8126b92344348b41b4b2ae7
f6614e4c9811356942213c7c4d8744d27b90bf57
refs/heads/master
2021-05-01T20:20:24.015721
2015-10-19T05:36:48
2015-10-19T05:36:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
246
#!/Users/jieli/PycharmProjects/CrazyEye/docs/rtd/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
13549ec011843c3269631dae4df79481e9adcee9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03759/s647507996.py
7c66b69c12d94e46dcce65b1e8b12fc11d1775b6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
i = list(map(int, input().split())) a=i[0] b=i[1] c=i[2] j_1 = b-a j_2=c-b if j_1==j_2: print('YES') else : print('NO')
54dc0172f201f8adc5440482208dbc2e4a20f88b
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/Fe6wvtjcNFwuANuLu_1.py
19b5746b7b1b7d4c659dd13e0c67a617790fb718
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
""" A game of table tennis almost always sounds like _Ping!_ followed by _Pong!_ Therefore, you know that Player 2 has won if you hear _Pong!_ as the last sound (since Player 1 didn't return the ball back). Given a list of _Ping!_ , create a function that inserts _Pong!_ in between each element. Also: * If `win` equals `True`, end the list with _Pong!_. * If `win` equals `False`, end with _Ping!_ instead. ### Examples ping_pong(["Ping!"], True) ➞ ["Ping!", "Pong!"] ping_pong(["Ping!", "Ping!"], False) ➞ ["Ping!", "Pong!", "Ping!"] ping_pong(["Ping!", "Ping!", "Ping!"], True) ➞ ["Ping!", "Pong!", "Ping!", "Pong!", "Ping!", "Pong!"] ### Notes * You will always return the ball (i.e. the Pongs are yours). * Player 1 serves the ball and makes _Ping!_. * Return a list of strings. """ def ping_pong(lst, win): res = ['Ping!','Pong!'] * len(lst) return res if win else res[:-1]
d8656572c733b1f9a10bc318e47dbba7721dca6b
beea74a2a1f2445b107af411197e8b6300e715e6
/supervised_learning/0x07-cnn/0-conv_forward.py
ce94808fac80cec28daaffce4ba0d4471128adfc
[]
no_license
95ktsmith/holbertonschool-machine_learning
0240d8fa8523b06d3353c2bffa74205b84253be8
2757c8526290197d45a4de33cda71e686ddcbf1c
refs/heads/master
2023-07-26T16:02:26.399758
2021-09-09T15:57:57
2021-09-09T15:57:57
310,087,776
0
0
null
null
null
null
UTF-8
Python
false
false
2,360
py
#!/usr/bin/env python3 """ Convolution forward propagation """ import numpy as np def conv_forward(A_prev, W, b, activation, padding="same", stride=(1, 1)): """ Performs forward propagation over a convolutional layer of a neural network A_prev is a numpy.ndarray of shape (m, h_prev, w_prev, c_prev) containing the output of the previous layer m is the number of examples h_prev is the height of the previous layer w_prev is the width of the previous layer c_prev is the number of channels in the previous layer W is a numpy.ndarray of shape (kh, kw, c_prev, c_new) containing the kernels for the convolution kh is the filter height kw is the filter width c_prev is the number of channels in the previous layer c_new is the number of channels in the output b is a numpy.ndarray of shape (1, 1, 1, c_new) containing the biases applied to the convolution activation is an activation function applied to the convolution padding is a string that is either same or valid, indicating the type of padding used stride is a tuple of (sh, sw) containing the strides for the convolution sh is the stride for the height sw is the stride for the width Returns: the output of the convolutional layer """ m, h_prev, w_prev, c_prev = A_prev.shape kh, kw, c_prev, c_new = W.shape sh = stride[0] sw = stride[1] if padding == "valid": ph = 0 pw = 0 ch = int((h_prev - kh) / sh + 1) cw = int((w_prev - kw) / sw + 1) else: # padding == "same" ch = h_prev cw = w_prev ph = int((ch * sh - h_prev + kh - 1) / 2) pw = int((cw * sw - w_prev + kw - 1) / 2) padded = np.pad(A_prev, ((0, 0), (ph, ph), (pw, pw), (0, 0)), 'constant', constant_values=0) convolved = np.zeros((m, ch, cw, c_new)) for channel in range(c_new): for row in range(ch): for col in range(cw): mask = padded[:, row*sh:row*sh + kh, col*sw:col*sw + kw, :] *\ W[None, :, :, :, channel] out = np.sum(mask, axis=(1, 2, 3)) + b[:, :, :, channel] convolved[:, row, col, channel] = activation(out) return convolved
3c516ada6af314021aa4340dc715126b4d3b5c3d
2e94ded940d9a8015f5cf877bfbef71a77b5ddaf
/bigml/api_handlers/clusterhandler.py
133a66bc205f295795f8d4e768542ab1a9575aa3
[ "Apache-2.0", "LicenseRef-scancode-public-domain" ]
permissive
mmerce/python
9ac63efacec3e54285a969b6c6279eeba6bceb78
696ddc2a10c985cfe266ec2807c24b98f0c9a317
refs/heads/master
2023-08-04T09:10:17.016748
2020-11-10T23:43:34
2020-11-10T23:43:34
5,256,921
0
0
null
2017-10-03T22:54:20
2012-08-01T08:38:09
Python
UTF-8
Python
false
false
3,898
py
# -*- coding: utf-8 -*- # # Copyright 2014-2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base class for clusters' REST calls https://bigml.com/api/clusters """ try: import simplejson as json except ImportError: import json from bigml.api_handlers.resourcehandler import ResourceHandlerMixin from bigml.api_handlers.resourcehandler import check_resource_type, \ resource_is_ready, get_cluster_id from bigml.constants import CLUSTER_PATH class ClusterHandlerMixin(ResourceHandlerMixin): """This class is used by the BigML class as a mixin that provides the REST calls models. It should not be instantiated independently. """ def __init__(self): """Initializes the ClusterHandler. This class is intended to be used as a mixin on ResourceHandler, that inherits its attributes and basic method from BigMLConnection, and must not be instantiated independently. """ self.cluster_url = self.url + CLUSTER_PATH def create_cluster(self, datasets, args=None, wait_time=3, retries=10): """Creates a cluster from a `dataset` or a list o `datasets`. """ create_args = self._set_create_from_datasets_args( datasets, args=args, wait_time=wait_time, retries=retries) body = json.dumps(create_args) return self._create(self.cluster_url, body) def get_cluster(self, cluster, query_string='', shared_username=None, shared_api_key=None): """Retrieves a cluster. The model parameter should be a string containing the cluster id or the dict returned by create_cluster. As cluster is an evolving object that is processed until it reaches the FINISHED or FAULTY state, the function will return a dict that encloses the cluster values and state info available at the time it is called. If this is a shared cluster, the username and sharing api key must also be provided. """ check_resource_type(cluster, CLUSTER_PATH, message="A cluster id is needed.") return self.get_resource(cluster, query_string=query_string, shared_username=shared_username, shared_api_key=shared_api_key) def cluster_is_ready(self, cluster, **kwargs): """Checks whether a cluster's status is FINISHED. """ check_resource_type(cluster, CLUSTER_PATH, message="A cluster id is needed.") resource = self.get_cluster(cluster, **kwargs) return resource_is_ready(resource) def list_clusters(self, query_string=''): """Lists all your clusters. """ return self._list(self.cluster_url, query_string) def update_cluster(self, cluster, changes): """Updates a cluster. """ check_resource_type(cluster, CLUSTER_PATH, message="A cluster id is needed.") return self.update_resource(cluster, changes) def delete_cluster(self, cluster): """Deletes a cluster. """ check_resource_type(cluster, CLUSTER_PATH, message="A cluster id is needed.") return self.delete_resource(cluster)
6eab9a88af0ceee39b0d08197e81ce32a0290429
88ae8695987ada722184307301e221e1ba3cc2fa
/third_party/grpc/src/src/python/grpcio_csds/setup.py
6523648516b6ebe0624f0243eb91978bdf3a3b93
[ "Apache-2.0", "LGPL-2.0-or-later", "MIT", "GPL-1.0-or-later", "BSD-3-Clause", "MPL-2.0" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
2,120
py
# Copyright 2021 The gRPC Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup module for CSDS in gRPC Python.""" import os import sys import setuptools _PACKAGE_PATH = os.path.realpath(os.path.dirname(__file__)) _README_PATH = os.path.join(_PACKAGE_PATH, 'README.rst') # Ensure we're in the proper directory whether or not we're being used by pip. os.chdir(os.path.dirname(os.path.abspath(__file__))) # Break import-style to ensure we can actually find our local modules. import grpc_version CLASSIFIERS = [ 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'License :: OSI Approved :: Apache Software License', ] PACKAGE_DIRECTORIES = { '': '.', } INSTALL_REQUIRES = ( 'protobuf>=4.21.6', 'xds-protos>=0.0.7', 'grpcio>={version}'.format(version=grpc_version.VERSION), ) SETUP_REQUIRES = INSTALL_REQUIRES setuptools.setup(name='grpcio-csds', version=grpc_version.VERSION, license='Apache License 2.0', description='xDS configuration dump library', long_description=open(_README_PATH, 'r').read(), author='The gRPC Authors', author_email='[email protected]', classifiers=CLASSIFIERS, url='https://grpc.io', package_dir=PACKAGE_DIRECTORIES, packages=setuptools.find_packages('.'), python_requires='>=3.6', install_requires=INSTALL_REQUIRES, setup_requires=SETUP_REQUIRES)
20119dd4bf027bc85b6d0743586dd8843d61e207
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-sa/huaweicloudsdksa/v2/model/update_playbook_action_request.py
65f38548f9f7ce143f3cb61570505abafe3b769a
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
6,398
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class UpdatePlaybookActionRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'project_id': 'str', 'workspace_id': 'str', 'version_id': 'str', 'action_id': 'str', 'body': 'ModifyActionInfo' } attribute_map = { 'project_id': 'project_id', 'workspace_id': 'workspace_id', 'version_id': 'version_id', 'action_id': 'action_id', 'body': 'body' } def __init__(self, project_id=None, workspace_id=None, version_id=None, action_id=None, body=None): """UpdatePlaybookActionRequest The model defined in huaweicloud sdk :param project_id: ID of project :type project_id: str :param workspace_id: ID of workspace :type workspace_id: str :param version_id: version Id value :type version_id: str :param action_id: ID of action :type action_id: str :param body: Body of the UpdatePlaybookActionRequest :type body: :class:`huaweicloudsdksa.v2.ModifyActionInfo` """ self._project_id = None self._workspace_id = None self._version_id = None self._action_id = None self._body = None self.discriminator = None self.project_id = project_id self.workspace_id = workspace_id self.version_id = version_id self.action_id = action_id if body is not None: self.body = body @property def project_id(self): """Gets the project_id of this UpdatePlaybookActionRequest. ID of project :return: The project_id of this UpdatePlaybookActionRequest. :rtype: str """ return self._project_id @project_id.setter def project_id(self, project_id): """Sets the project_id of this UpdatePlaybookActionRequest. ID of project :param project_id: The project_id of this UpdatePlaybookActionRequest. :type project_id: str """ self._project_id = project_id @property def workspace_id(self): """Gets the workspace_id of this UpdatePlaybookActionRequest. ID of workspace :return: The workspace_id of this UpdatePlaybookActionRequest. :rtype: str """ return self._workspace_id @workspace_id.setter def workspace_id(self, workspace_id): """Sets the workspace_id of this UpdatePlaybookActionRequest. ID of workspace :param workspace_id: The workspace_id of this UpdatePlaybookActionRequest. :type workspace_id: str """ self._workspace_id = workspace_id @property def version_id(self): """Gets the version_id of this UpdatePlaybookActionRequest. version Id value :return: The version_id of this UpdatePlaybookActionRequest. :rtype: str """ return self._version_id @version_id.setter def version_id(self, version_id): """Sets the version_id of this UpdatePlaybookActionRequest. version Id value :param version_id: The version_id of this UpdatePlaybookActionRequest. :type version_id: str """ self._version_id = version_id @property def action_id(self): """Gets the action_id of this UpdatePlaybookActionRequest. ID of action :return: The action_id of this UpdatePlaybookActionRequest. :rtype: str """ return self._action_id @action_id.setter def action_id(self, action_id): """Sets the action_id of this UpdatePlaybookActionRequest. ID of action :param action_id: The action_id of this UpdatePlaybookActionRequest. :type action_id: str """ self._action_id = action_id @property def body(self): """Gets the body of this UpdatePlaybookActionRequest. :return: The body of this UpdatePlaybookActionRequest. :rtype: :class:`huaweicloudsdksa.v2.ModifyActionInfo` """ return self._body @body.setter def body(self, body): """Sets the body of this UpdatePlaybookActionRequest. :param body: The body of this UpdatePlaybookActionRequest. :type body: :class:`huaweicloudsdksa.v2.ModifyActionInfo` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdatePlaybookActionRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
17733708ab790b089dff9a1d04c596afc74c55a1
d1df4725a5354915d01f17fa92ccffa77189f852
/bot.py
0fe01e48f515b51e4ede7f3e93c7539d5996f518
[]
no_license
goldaqua/aqua
0b5baf48e87061ffe64a639c88e30cc38f5c8db4
74b42eb4360e3e736bd8aa554b0d961020d159f1
refs/heads/main
2023-01-29T19:58:37.009722
2020-12-16T12:23:51
2020-12-16T12:23:51
321,970,501
0
0
null
null
null
null
UTF-8
Python
false
false
12,711
py
import configure import telebot from telebot import types # кнопки from string import Template bot = telebot.TeleBot(configure.config['token']) user_dict = {} tovary = { "Вода в баллоне 36 грн": 36, 'Баллон с водой 170 грн': 170, 'Трубочка для помпы (1 часть) 15 грн': 15, 'Носик для помпы 25 грн': 25, 'Помпа економ 80 грн': 80, 'Помпа улучшенная 100 грн': 100, 'Баллон + помпа економ + вода 230 грн': 230, 'Баллон + помпа улучшенная + вода 250 грн': 250 } class User: def __init__(self, city): self.city = city self.adres = None self.tovar = {} self.phone = None self.prim = None @property def summa(self): output = 0 for k, v in self.tovar.items(): output += tovary[k] * v return output def kbs(buttons, one_time_keyboard=True, row_width=None): kb = types.ReplyKeyboardMarkup( resize_keyboard=True, one_time_keyboard=one_time_keyboard, row_width=row_width or len(buttons)//2 ) kb.add(*[types.KeyboardButton(i) for i in buttons]) return kb @bot.message_handler(commands=['help', 'start']) def send_welcome(message): markup_menu = kbs(['О нас 🏢', 'Заказать 📝', 'Как стать клиентом Аквасвит 🙋‍♂️', 'Обратная связь 📞', 'График работы ⏰']) bot.send_message(message.chat.id, "Вас приветствует компания \"Аквасвит\"" + " 👋" + " " + message.from_user.first_name + ", выберите интересующий раздел.", reply_markup=markup_menu) @bot.message_handler(content_types=["text"]) def user_reg(message): if message.text == 'Заказать 📝': markup = kbs(['Бахмут', 'Часов ЯР', 'Константиновка', 'Торецк (Дзержинск)']) msg = bot.send_message(message.chat.id, 'Выбирете город:', reply_markup=markup) bot.register_next_step_handler(msg, process_city_step) elif message.text == 'О нас 🏢': bot.send_message(message.chat.id, "Наша компания \"Аквасвит\" уже 15 лет работает для своих клиентов. С каждым годом мы усовершенствоваемся и делаем все возможное для того," + " чтобы каждому клиенту было удобно и приятно с нами работать.") bot.send_message(message.chat.id," Наша вода, прежде чем попоасть к вам в дом/офис проходит сложные этапы отчистки:" +"\n1. ✅ Механическая очистка пятью видами фильтров." +"\n2. ✅Мультимедийная угольная колонна." +"\n3. ✅Мультимедийная колонна." +"\n4. ✅Фильтрация через мембраны с отверстиями в одну десятитысячную микрона." +"\n5. ✅Минерализация с помощью электронных дозаторов." +"\n6. ✅Постфильтры с углями из скорлупы кокосового ореха и цеолитого-шунгитовый с углем и серебром." +"\n7. ✅Обработка ультрафиолетом.") bot.send_message(message.chat.id,"❗️ Поставщик воды по просьбе клиента обязан предоставить обязательный ежемесячный бактерицидный анализ воды.") elif message.text == 'Обратная связь 📞': bot.send_message(message.chat.id, "Мы находимся по адресу: Донецкая обл, г. Бахмут, ул. Юбилейная, 50 магазин \"Аквасвит\"" + "\nНомера телефона Диспетчера: \n050-537-82-49 \n066-420-94-50 \n050-041-28-29 \n066-226-91-00 \n067-745-27-28 \n093-165-02-06") elif message.text == 'Как стать клиентом Аквасвит 🙋‍♂️': markup = kbs(['Заказать 📝', 'Вернутся в главное меню']) msg = bot.send_message(message.chat.id, 'Для того, чтобы стать клиентом компании Аквасвит, нужно приобрести комплект:' + '\nБаллон + помпа економ + вода 230 грн \nили \nБаллон + помпа улучшенная + вода 250 грн', reply_markup=markup) elif message.text == 'Вернутся в главное меню': send_welcome(message) elif message.text == 'Заказать 📝': user_reg(message) elif message.text == 'График работы ⏰': bot.send_message(message.chat.id, "График работы доставки: 🚚" +"\n ПН-ПТ: 8:00-17:00" +"\n СБ: 8:00-16:00" +"\n ВС: Выходной") def process_city_step(message): try: chat_id = message.chat.id user_dict[chat_id] = User(message.text) # удалить старую клавиатуру markup = types.ReplyKeyboardRemove(selective=False) msg = bot.send_message(chat_id, 'Введите адрес:', reply_markup=markup) bot.register_next_step_handler(msg, process_adres) except Exception as e: bot.reply_to(message, 'ooops!!') def process_adres(message): try: chat_id = message.chat.id user = user_dict[chat_id] user.adres = message.text return process_tovar(message) except Exception as e: bot.reply_to(message, 'ooops!!') def process_tovar(message): user = user_dict[message.chat.id] available_items = list(tovary) + ['Оформить заказ ✅', 'Очистить корзину 🗑'] chosen_items = [] def inner(message): nonlocal chosen_items, available_items try: if message.text == 'Оформить заказ ✅': bot.send_message(message.chat.id, "Ваши вы выбрали:\n" + get_items_string(user.tovar, '\n')) msg = bot.send_message(message.chat.id, 'Введите ваш номер телефона в формате: 0ХХYYYYYYY') return bot.register_next_step_handler(msg, process_phone) elif message.text == 'Очистить корзину 🗑': bot.send_message(message.chat.id, 'Корзина очищена') return process_tovar(message) elif message.text in available_items: available_items.remove(message.text) chosen_items.append(message.text) bot.send_message(message.chat.id, 'Выберите кол-во товара', reply_markup=kbs(['1', '2', '3', '4'])) return bot.register_next_step_handler(message, ask_number, message.text) else: raise ValueError except ValueError: # if item not in available items bot.send_message(message.chat.id, "Вводите только доступные товары") return bot.register_next_step_handler(message, inner) else: bot.register_next_step_handler(message, inner) def ask_number(message, item): nonlocal user try: amount = int(message.text) except ValueError: bot.send_message(message.text, 'Вводите только целые числа') return bot.register_next_step_handler(message, ask_number, item) else: user.tovar[item] = amount bot.send_message(message.chat.id, 'Выберите ещё товары', reply_markup=kbs(available_items, row_width=1)) return bot.register_next_step_handler(message, inner) bot.send_message( message.chat.id, "Выберите покупки среди предложеных", reply_markup=kbs(available_items, row_width=1) ) bot.register_next_step_handler(message, inner) def process_phone(message): try: int(message.text) chat_id = message.chat.id user = user_dict[chat_id] user.phone = message.text msg = bot.send_message(chat_id, 'Ведите примечание, если нет примечание напишите "нет"') bot.register_next_step_handler(msg, process_prim) except Exception as e: msg = bot.reply_to(message, 'Вы ввели что то другое. Пожалуйста введите номер телефона.') bot.register_next_step_handler(msg, process_phone) def process_prim(message): try: chat_id = message.chat.id user = user_dict[chat_id] user.prim = message.text if user.city == "Торецк (Дзержинск)" or user.city == "Константиновка": bot.send_message(chat_id, getRegData(user, 'Ваша заявка', message.from_user.first_name), parse_mode="Markdown") bot.send_message(message.chat.id, "Ваш заказ принят, ожидайте пожалуйста заказ будет выполнен в тичении 2-3 часов." + "\n По г. Часов ЯР доставка осуществляется только по средам, во второй половине дня." + "\n В случии отмены или редактирование заказа просим вас обратится к диспетчеру тел. 050-537-82-49 \nC Ув. Аквасвит") send_welcome(message) # отправить в группу bot.send_message(735422335, getRegData(user, 'Заявка от бота', bot.get_me().username), parse_mode="Markdown") else: # ваша заявка "Имя пользователя" bot.send_message(chat_id, getRegData(user, 'Ваша заявка', message.from_user.first_name), parse_mode="Markdown") bot.send_message(message.chat.id, "Ваш заказ принят, ожидайте пожалуйста заказ будет выполнен в тичении 2-3 часов." + "\n По г. Часов ЯР доставка осуществляется только по средам, во второй половине дня." +"\nПо г. Дзержинск (Торецк) доставка осуществляется по средам и субботам." +"\n В случии отмены или редактирование заказа просим вас обратится к диспетчеру тел. 050-537-82-49 \nC Ув. Аквасвит") send_welcome(message) # отправить в группу bot.send_message(1413116688, getRegData(user, 'Заявка от бота', bot.get_me().username), parse_mode="Markdown") except Exception as e: bot.reply_to(message, 'Что то пошло не так!') def get_items_string(dct:dict, sep:str=', '): return sep.join([f"{k} ({v} шт.)" for k, v in dct.items()]) # формирует вид заявки регистрации # нельзя делать перенос строки Template # в send_message должно стоять parse_mode="Markdown" def getRegData(user, title, name): t = Template('$title *$name* \n Город: *$userCity* \n Адресс: *$adres* \n Товар: *$tovar* \n Телефон: *$phone* \n Примечание: *$prim* \n К оплате курьеру: *$summa* грн.') return t.substitute({ 'title': title, 'name': name, 'userCity': user.city, 'adres': user.adres, 'tovar': get_items_string(user.tovar), 'phone': user.phone, 'prim': user.prim, 'summa': user.summa, }) @bot.message_handler(content_types=["text"]) def mine1(message): if message.text == 'Главное меню': bot.send_welcome(message) @bot.message_handler(content_types=["text"]) def send_help(message): bot.send_message(message.chat.id, '/start') # произвольное фото @bot.message_handler(content_types=["photo"]) def send_help_text(message): bot.send_message(message.chat.id, '/start') bot.polling(none_stop=True)
7cbb792e2cb7f0c7d51684f1e7fad31c4ff22284
23c944ff03ea82cb1b557780bbe9810a4f5e001c
/mymath/tests/features/increment-steps.py
61521a4c6f342460fe2a1e3af70507f51d283d1f
[]
no_license
akshar-raaj/hack
711e13659530c0202879b815bf295efed661bb7d
4cab4d8ededd7adf8877b56741db2df7dabd0828
refs/heads/master
2020-04-04T00:33:29.900091
2015-09-05T12:05:13
2015-09-05T12:05:13
41,952,605
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
from lettuce import * from fact import num, increment @step('I have access to increment') def access(step): pass @step('I use increment') def use_increment(step): increment() @step('num is (\d+)') def num_is(step, number): number = int(number) assert num == number, "Expected %d, found %d" % (number, num)
607dfdbb73a76a1d24d155ff47e6ddc1db2483d1
c8d13f0efb453f8119aa55303c7bb70b506d51a1
/73.py
d9a6063d4db904a480c30d6a781f6229a887ee42
[]
no_license
rubivenkatesan/rubi21
ab5f248e4cba664330fb8d7b4632d20c527a221e
f91d55852c1ab64dcec75a13ca835e2bf6c3dcb8
refs/heads/master
2020-04-15T04:58:04.682460
2019-06-05T13:18:13
2019-06-05T13:18:13
164,403,882
0
1
null
null
null
null
UTF-8
Python
false
false
93
py
#rubi n=int(input()) m,k=map(int,input().split()) print("yes" if ((n<k) & (n>=m)) else "no")
ae7c82de852c37f2276fa60c5a266cb353d7610c
afc8d5a9b1c2dd476ea59a7211b455732806fdfd
/Configurations/ggH/Full2016_nanoAOD/aliases.py
7e9a914cfb01546c67ef05e6dd9d77d585774d16
[]
no_license
latinos/PlotsConfigurations
6d88a5ad828dde4a7f45c68765081ed182fcda21
02417839021e2112e740607b0fb78e09b58c930f
refs/heads/master
2023-08-18T20:39:31.954943
2023-08-18T09:23:34
2023-08-18T09:23:34
39,819,875
10
63
null
2023-08-10T14:08:04
2015-07-28T07:36:50
Python
UTF-8
Python
false
false
7,480
py
import os import copy import inspect configurations = os.path.realpath(inspect.getfile(inspect.currentframe())) # this file configurations = os.path.dirname(configurations) # ggH2016 configurations = os.path.dirname(configurations) # Differential configurations = os.path.dirname(configurations) # Configurations #aliases = {} # imported from samples.py: # samples, signals mc = [skey for skey in samples if skey not in ('Fake', 'DATA')] eleWP = 'mva_90p_Iso2016' muWP = 'cut_Tight80x' aliases['LepWPCut'] = { 'expr': 'LepCut2l__ele_'+eleWP+'__mu_'+muWP, 'samples': mc + ['DATA'] } aliases['gstarLow'] = { 'expr': 'Gen_ZGstar_mass >0 && Gen_ZGstar_mass < 4', 'samples': 'VgS' } aliases['gstarHigh'] = { 'expr': 'Gen_ZGstar_mass <0 || Gen_ZGstar_mass > 4', 'samples': 'VgS' } # Fake leptons transfer factor aliases['fakeW'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP, 'samples': ['Fake'] } # And variations - already divided by central values in formulas ! aliases['fakeWEleUp'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_EleUp', 'samples': ['Fake'] } aliases['fakeWEleDown'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_EleDown', 'samples': ['Fake'] } aliases['fakeWMuUp'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_MuUp', 'samples': ['Fake'] } aliases['fakeWMuDown'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_MuDown', 'samples': ['Fake'] } aliases['fakeWStatEleUp'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_statEleUp', 'samples': ['Fake'] } aliases['fakeWStatEleDown'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_statEleDown', 'samples': ['Fake'] } aliases['fakeWStatMuUp'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_statMuUp', 'samples': ['Fake'] } aliases['fakeWStatMuDown'] = { 'expr': 'fakeW2l_ele_'+eleWP+'_mu_'+muWP+'_statMuDown', 'samples': ['Fake'] } # gen-matching to prompt only (GenLepMatch2l matches to *any* gen lepton) aliases['PromptGenLepMatch2l'] = { 'expr': 'Alt$(Lepton_promptgenmatched[0]*Lepton_promptgenmatched[1], 0)', 'samples': mc } aliases['Top_pTrw'] = { 'expr': '(topGenPt * antitopGenPt > 0.) * (TMath::Sqrt(TMath::Exp(0.0615 - 0.0005 * topGenPt) * TMath::Exp(0.0615 - 0.0005 * antitopGenPt))) + (topGenPt * antitopGenPt <= 0.)', 'samples': ['top'] } # Jet bins # using Alt$(CleanJet_pt[n], 0) instead of Sum$(CleanJet_pt >= 30) because jet pt ordering is not strictly followed in JES-varied samples # No jet with pt > 30 GeV aliases['zeroJet'] = { 'expr': 'Alt$(CleanJet_pt[0], 0) < 30.' } aliases['oneJet'] = { 'expr': 'Alt$(CleanJet_pt[0], 0) > 30.' } aliases['multiJet'] = { 'expr': 'Alt$(CleanJet_pt[1], 0) > 30.' } # B tagging aliases['bVeto'] = { 'expr': 'Sum$(CleanJet_pt > 20. && abs(CleanJet_eta) < 2.5 && Jet_btagDeepB[CleanJet_jetIdx] > 0.2217) == 0' } aliases['bReq'] = { 'expr': 'Sum$(CleanJet_pt > 30. && abs(CleanJet_eta) < 2.5 && Jet_btagDeepB[CleanJet_jetIdx] > 0.2217) >= 1' } # CR definitions aliases['topcr'] = { 'expr': 'mtw2>30 && mll>50 && ((zeroJet && !bVeto) || bReq)' } aliases['dycr'] = { 'expr': 'mth<60 && mll>40 && mll<80 && bVeto' } aliases['wwcr'] = { 'expr': 'mth>60 && mtw2>30 && mll>100 && bVeto' } # SR definition aliases['sr'] = { 'expr': 'mth>60 && mtw2>30 && bVeto' } # B tag scale factors btagSFSource = '%s/src/PhysicsTools/NanoAODTools/data/btagSF/DeepCSV_2016LegacySF_V1.csv' % os.getenv('CMSSW_BASE') aliases['Jet_btagSF_shapeFix'] = { 'linesToAdd': [ 'gSystem->Load("libCondFormatsBTauObjects.so");', 'gSystem->Load("libCondToolsBTau.so");', 'gSystem->AddIncludePath("-I%s/src");' % os.getenv('CMSSW_RELEASE_BASE'), '.L %s/patches/btagsfpatch.cc+' % configurations ], 'class': 'BtagSF', 'args': (btagSFSource,), 'samples': mc } aliases['bVetoSF'] = { 'expr': 'TMath::Exp(Sum$(TMath::Log((CleanJet_pt>20 && abs(CleanJet_eta)<2.5)*Jet_btagSF_shapeFix[CleanJet_jetIdx]+1*(CleanJet_pt<20 || abs(CleanJet_eta)>2.5))))', 'samples': mc } aliases['bReqSF'] = { 'expr': 'TMath::Exp(Sum$(TMath::Log((CleanJet_pt>30 && abs(CleanJet_eta)<2.5)*Jet_btagSF_shapeFix[CleanJet_jetIdx]+1*(CleanJet_pt<30 || abs(CleanJet_eta)>2.5))))', 'samples': mc } aliases['btagSF'] = { 'expr': '(bVeto || (topcr && zeroJet))*bVetoSF + (topcr && !zeroJet)*bReqSF', 'samples': mc } for shift in ['jes','lf','hf','lfstats1','lfstats2','hfstats1','hfstats2','cferr1','cferr2']: aliases['Jet_btagSF_shapeFix_up_%s' % shift] = { 'class': 'BtagSF', 'args': (btagSFSource, 'up_' + shift), 'samples': mc } aliases['Jet_btagSF_shapeFix_down_%s' % shift] = { 'class': 'BtagSF', 'args': (btagSFSource, 'down_' + shift), 'samples': mc } for targ in ['bVeto', 'bReq']: alias = aliases['%sSF%sup' % (targ, shift)] = copy.deepcopy(aliases['%sSF' % targ]) alias['expr'] = alias['expr'].replace('btagSF_shapeFix', 'btagSF_shapeFix_up_%s' % shift) alias = aliases['%sSF%sdown' % (targ, shift)] = copy.deepcopy(aliases['%sSF' % targ]) alias['expr'] = alias['expr'].replace('btagSF_shapeFix', 'btagSF_shapeFix_down_%s' % shift) aliases['btagSF%sup' % shift] = { 'expr': aliases['btagSF']['expr'].replace('SF', 'SF' + shift + 'up'), 'samples': mc } aliases['btagSF%sdown' % shift] = { 'expr': aliases['btagSF']['expr'].replace('SF', 'SF' + shift + 'down'), 'samples': mc } # data/MC scale factors aliases['SFweight'] = { 'expr': ' * '.join(['SFweight2l', 'LepSF2l__ele_' + eleWP + '__mu_' + muWP, 'LepWPCut', 'btagSF', 'PrefireWeight']), 'samples': mc } # variations aliases['SFweightEleUp'] = { 'expr': 'LepSF2l__ele_'+eleWP+'__Up', 'samples': mc } aliases['SFweightEleDown'] = { 'expr': 'LepSF2l__ele_'+eleWP+'__Do', 'samples': mc } aliases['SFweightMuUp'] = { 'expr': 'LepSF2l__mu_'+muWP+'__Up', 'samples': mc } aliases['SFweightMuDown'] = { 'expr': 'LepSF2l__mu_'+muWP+'__Do', 'samples': mc } aliases['nllWOTF'] = { 'linesToAdd': ['.L %s/Differential/nllW.cc+' % configurations], 'class': 'WWNLLW', 'args': ('central',), 'samples': ['WW'] } # In WpWmJJ_EWK events, partons [0] and [1] are always the decay products of the first W aliases['lhe_mW1'] = { 'expr': 'TMath::Sqrt(2. * LHEPart_pt[0] * LHEPart_pt[1] * (TMath::CosH(LHEPart_eta[0] - LHEPart_eta[1]) - TMath::Cos(LHEPart_phi[0] - LHEPart_phi[1])))', 'samples': ['WWewk'] } # and [2] [3] are the second W aliases['lhe_mW2'] = { 'expr': 'TMath::Sqrt(2. * LHEPart_pt[2] * LHEPart_pt[3] * (TMath::CosH(LHEPart_eta[2] - LHEPart_eta[3]) - TMath::Cos(LHEPart_phi[2] - LHEPart_phi[3])))', 'samples': ['WWewk'] } # use HTXS_njets30 when moving to NanoAODv5 for all trees aliases['nCleanGenJet'] = { 'linesToAdd': ['.L %s/Differential/ngenjet.cc+' % configurations], 'class': 'CountGenJet', 'samples': signals } # GGHUncertaintyProducer wasn't run for 2016 nAODv5 non-private thus = [ 'ggH_mu', 'ggH_res', 'ggH_mig01', 'ggH_mig12', 'ggH_VBF2j', 'ggH_VBF3j', 'ggH_pT60', 'ggH_pT120', 'ggH_qmtop' ] for thu in thus: aliases[thu] = { 'linesToAdd': ['.L %s/Differential/gghuncertainty.cc+' % configurations], 'class': 'GGHUncertainty', 'args': (thu,), 'samples': ['ggH_hww'], 'nominalOnly': True }
adff771b2088a82c77b2f650a290c0117b99034f
5eb29ce7104e10a399d9afd7e253f029bf8bc0ff
/cu_image_search/memex_tools/image_dl.py
dd8e2583167f9141fbc46ae7257f0a4980fbc490
[ "BSD-2-Clause" ]
permissive
svebk/DeepSentiBank_memex
69789dc09316e97aad711edeb251837a60184e7e
4e69ce66e3a177817ff360ddc263f55c6e0b63f7
refs/heads/master
2021-01-18T18:55:10.870052
2017-10-19T22:51:29
2017-10-19T22:51:29
36,091,024
22
1
null
2017-02-09T20:31:20
2015-05-22T19:20:54
Python
UTF-8
Python
false
false
4,721
py
import os import requests import shutil import time import warnings import numpy as np imagedltimeout = 3 session = requests.Session() session.trust_env = False from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def mkpath(outpath): pos_slash=[pos for pos,c in enumerate(outpath) if c=="/"] for pos in pos_slash: try: os.mkdir(outpath[:pos]) except: pass def dlimage_basepath(url,basepath,logf=None): start_time = time.time() if not url: return None pos_slash=[pos for pos,c in enumerate(url) if c=="/"] #pos_point=[pos for pos,c in enumerate(url) if c=="."] if not pos_slash: return None file_img=url[pos_slash[-1]+1:] # path with time and random to ensure unique names outpath=os.path.join(basepath,str(time.time())+'_'+str(np.int32(np.random.random()*(10e6)))+'_'+file_img) mkpath(outpath) uptomkpath_time = time.time() #print "Downloading image from {} to {}.".format(url,outpath) try: #r = requests.get(url, stream=True, timeout=imagedltimeout) # still slow with session.trust_env # verify=False induces a InsecureRequestWarning r = session.get(url, stream=True, timeout=imagedltimeout, verify=False) uptorequest_time = time.time() if r.status_code == 200: with open(outpath, 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) uptowrite_time = time.time() mkpath_time = uptomkpath_time - start_time dl_time = uptorequest_time - uptomkpath_time write_time = uptowrite_time - uptorequest_time print("[dlimage_basepath] mkpath_time {}, dl_time {}, write_time {}".format(mkpath_time, dl_time, write_time)) return outpath except Exception as inst: if logf: logf.write("Download failed for img that should be saved at {} from url {}.\n".format(outpath,url)) else: print "Download failed for img that should be saved at {} from url {}.".format(outpath,url) print inst return None def dlimage_basepath_integritycheck(url, basepath, logf=None): import subprocess as sub if not url: return None pos_slash = [pos for pos,c in enumerate(url) if c=="/"] if not pos_slash: return None file_img = url[pos_slash[-1]+1:] # path with time and random to ensure unique names outpath = os.path.join(basepath,str(time.time())+'_'+str(np.int32(np.random.random()*(10e6)))+'_'+file_img) mkpath(outpath) #print "Downloading image from {} to {}.".format(url,outpath) try: #r = requests.get(url, stream=True, timeout=imagedltimeout) # verify=False induces a InsecureRequestWarning r = session.get(url, stream=True, timeout=imagedltimeout, verify=False) if r.status_code == 200: if int(r.headers['content-length']) == 0: raise ValueError("Empty image.") with open(outpath, 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) # integrity check here ok_tag = '[OK]' error_tag = '[ERROR]' command = 'jpeginfo -c '+ outpath output, error = sub.Popen(command.split(' '), stdout=sub.PIPE, stderr=sub.PIPE).communicate() if output.find(ok_tag)<0 or output.find(error_tag)>=0: # some images are not JPEG, either PNG or even HTML... raise ValueError("Integrity check failed, output was: {}".format(output.strip())) return outpath except Exception as inst: if logf: logf.write("[dlimage_basepath_integritycheck: error] Download failed for img that should be saved at {} from url {}. {}\n".format(outpath, url, inst)) else: print "[dlimage_basepath_integritycheck: error] Download failed for img that should be saved at {} from url {}. {}".format(outpath, url, inst) return None def dlimage(url,logf=None): return dlimage_basepath(url,'./',logf) def dlimage_args(args): if len(args)==2: #print args[0],args[1] return dlimage_basepath(args[0],args[1]) else: print "[dl_image_args: warning] incorrect agruments: {}.".format(args) return None def dlimage_args_integritycheck(args): if len(args)==2: #print args[0],args[1] return dlimage_basepath_integritycheck(args[0], args[1]) else: print "[dl_image_args_integritycheck: warning] incorrect agruments: {}.".format(args) return None
5d7ac2ba25b18ff4484f8328d3f21f2d5fe93401
810ce1c1ac47743e253171ec7541c0e431d952c2
/standard_library/Concurrency/Subprocess/subprocess_signal_parent_shell.py
f65410bbf08ac27c3089d736b913256dd8f8f41d
[]
no_license
hjlarry/practise-py
91052c25dc7ab706c6234f6d657db76667a27124
871e06b9652d356f55e3888f1f7ea180ac2b1954
refs/heads/master
2022-09-11T17:47:48.557194
2022-08-10T02:07:24
2022-08-10T02:07:24
136,263,989
1
0
null
null
null
null
UTF-8
Python
false
false
1,047
py
""" 用于发送信号的 pid 与等待信号的运行 shell 脚本的子进程 id 不同,因为这个例子中有三个独立的进程在交互: 1. 主程序 subprocess_signal_parent_shell.py 2. 主程序创建的运行脚本的 shell 进程。 3. 程序signal_child.py 如果由 Popen 创建的进程产生子进程,那么子进程将不会收到任何发送给父进程的任何信号。 """ import os import signal import subprocess import tempfile import time import sys print("由于父进程创建的子进程是shell,shell再创建的进程才是signal_child,signal_child无法收到信号") script = """#!/bin/sh echo "Shell script in process $$" set -x python3 signal_child.py """ script_file = tempfile.NamedTemporaryFile("wt") script_file.write(script) script_file.flush() proc = subprocess.Popen(["sh", script_file.name]) print(f"Parent: Pausing before signal {proc.pid}") sys.stdout.flush() time.sleep(1) print(f"Parent: Signaling child {proc.pid}") sys.stdout.flush() os.kill(proc.pid, signal.SIGUSR1) time.sleep(3)
e27f776e66186c3805e38f5fe1037c380b83a772
97f2f0d821ce8d12b6d03f200692721418458e4b
/ths/test/testsentimentensemble.py
828bd399e2ea80bf67545e102de46b91a1a2fe46
[]
no_license
manuelr417/DetectDiseaseTHS
0851f3c2fe5caa460eacfe1fc57c790fcd43fd0a
43ae6482a4e3009fcf0899d0a1047590c4c77f7f
refs/heads/master
2021-04-15T08:23:43.430178
2020-04-13T11:46:34
2020-04-13T11:46:34
126,485,918
0
3
null
2018-10-17T13:32:44
2018-03-23T13:01:29
Python
UTF-8
Python
false
false
488
py
from ths.nn.sequences.processemsemble import ProcessTweetsWord2VecOnePassEnsemble def main(): print("Working:") #P = ProcessTweetsWord2VecOnePass2DCNNv2_1("data/cleantextlabels3.csv", "trained/embedding3.csv") P = ProcessTweetsWord2VecOnePassEnsemble("data/cleantextlabels3.csv", "data/glove.6B.50d.txt") #Bueno el model12cnnv2 P.process("trained/modelensemble6.json", "trained/modelensemble6.h5", plot=True, epochs=20) #joderme if __name__ == "__main__": main()
64e423abf7ebbca4e0426ebdce632030f0eb92f9
ae87b11560c543cb678c52a28916ea2252d7aa52
/tests/parsers/mac_appfirewall.py
af22d404ed067295db1745d695a435ad49dfadcc
[ "Apache-2.0" ]
permissive
CNR-ITTIG/plasodfaxp
19ccf77d0be62cfa8a9b246eb6797cf64a480d80
923797fc00664fa9e3277781b0334d6eed5664fd
refs/heads/master
2016-09-13T11:14:08.877399
2016-04-11T15:01:42
2016-04-11T15:01:42
55,975,921
1
0
null
null
null
null
UTF-8
Python
false
false
3,765
py
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for Mac AppFirewall log file parser.""" import unittest # pylint: disable=unused-import from plaso.formatters import mac_appfirewall as mac_appfirewall_formatter from plaso.lib import timelib from plaso.parsers import mac_appfirewall from tests.parsers import test_lib class MacAppFirewallUnitTest(test_lib.ParserTestCase): """Tests for Mac AppFirewall log file parser.""" def setUp(self): """Makes preparations before running an individual test.""" self._parser = mac_appfirewall.MacAppFirewallParser() def testParseFile(self): """Test parsing of a Mac Wifi log file.""" knowledge_base_values = {u'year': 2013} test_file = self._GetTestFilePath([u'appfirewall.log']) event_queue_consumer = self._ParseFile( self._parser, test_file, knowledge_base_values=knowledge_base_values) event_objects = self._GetEventObjectsFromQueue(event_queue_consumer) self.assertEqual(len(event_objects), 47) event_object = event_objects[0] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-11-02 04:07:35') self.assertEqual(event_object.timestamp, expected_timestamp) self.assertEqual(event_object.agent, u'socketfilterfw[112]') self.assertEqual(event_object.computer_name, u'DarkTemplar-2.local') self.assertEqual(event_object.status, u'Error') self.assertEqual(event_object.process_name, u'Logging') self.assertEqual(event_object.action, u'creating /var/log/appfirewall.log') expected_msg = ( u'Computer: DarkTemplar-2.local ' u'Agent: socketfilterfw[112] ' u'Status: Error ' u'Process name: Logging ' u'Log: creating /var/log/appfirewall.log') expected_msg_short = ( u'Process name: Logging ' u'Status: Error') self._TestGetMessageStrings(event_object, expected_msg, expected_msg_short) event_object = event_objects[9] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-11-03 13:25:15') self.assertEqual(event_object.timestamp, expected_timestamp) self.assertEqual(event_object.agent, u'socketfilterfw[87]') self.assertEqual(event_object.computer_name, u'DarkTemplar-2.local') self.assertEqual(event_object.status, u'Info') self.assertEqual(event_object.process_name, u'Dropbox') self.assertEqual(event_object.action, u'Allow TCP LISTEN (in:0 out:1)') expected_msg = ( u'Computer: DarkTemplar-2.local ' u'Agent: socketfilterfw[87] ' u'Status: Info ' u'Process name: Dropbox ' u'Log: Allow TCP LISTEN (in:0 out:1)') expected_msg_short = ( u'Process name: Dropbox ' u'Status: Info') self._TestGetMessageStrings(event_object, expected_msg, expected_msg_short) # Check repeated lines. event_object = event_objects[38] repeated_event_object = event_objects[39] self.assertEqual(event_object.agent, repeated_event_object.agent) self.assertEqual( event_object.computer_name, repeated_event_object.computer_name) self.assertEqual(event_object.status, repeated_event_object.status) self.assertEqual( event_object.process_name, repeated_event_object.process_name) self.assertEqual(event_object.action, repeated_event_object.action) # Year changes. event_object = event_objects[45] expected_timestamp = timelib.Timestamp.CopyFromString( u'2013-12-31 23:59:23') self.assertEqual(event_object.timestamp, expected_timestamp) event_object = event_objects[46] expected_timestamp = timelib.Timestamp.CopyFromString( u'2014-01-01 01:13:23') self.assertEqual(event_object.timestamp, expected_timestamp) if __name__ == '__main__': unittest.main()
f0148135b7890c0e3aa022d70d08522b3a367bec
c49a6e67a63a541f8d420e725af155505d1e7f84
/Tree/unique-binary-search-trees-ii.py
edd7063cc4f05e9ecfc78755a5d57aa38199fcdf
[]
no_license
wttttt-wang/leetcode_withTopics
b41ed0f8a036fd00f3b457e5b56efe32f872ca13
e2837f3d6c23f012148a2d1f9d0ef6d34d4e6912
refs/heads/master
2021-09-05T05:03:47.519344
2018-01-24T08:28:58
2018-01-24T08:28:58
112,893,345
0
0
null
null
null
null
UTF-8
Python
false
false
688
py
""" Unique Binary Search Trees II @ Tree + Recursion """ class Solution(object): def generateTrees(self, n): """ :type n: int :rtype: List[TreeNode] """ if n < 1: return [] return self.helper(1, n) def helper(self, start, end): if start > end: return [None] results = [] for i in range(start, end + 1): ls, rs = self.helper(start, i - 1), self.helper(i + 1, end) for l in ls: for r in rs: root = TreeNode(i) root.left, root.right = l, r results.append(root) return results
7cd3bda3b5b650d556ae4214a4aabe90dc98c7c0
1c2111220259c76520f59be5e4aa67f32e638127
/google/cloud/securitycenter_v1p1beta1/services/security_center/transports/base.py
784492f2da9fc68bd8c2523cbcc1b178531e77ea
[ "Apache-2.0" ]
permissive
renovate-bot/python-securitycenter
81ca5e96340bcf3151faa43d08e0bc74fd11a4d8
729ee2f7bffad25f93777d5fa44ed22ac9dd51af
refs/heads/master
2023-06-09T19:25:22.974179
2021-08-27T18:44:46
2021-08-27T18:44:46
239,139,881
0
0
Apache-2.0
2020-02-08T13:51:46
2020-02-08T13:51:46
null
UTF-8
Python
false
false
23,098
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import packaging.version import pkg_resources import google.auth # type: ignore import google.api_core # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.securitycenter_v1p1beta1.types import finding from google.cloud.securitycenter_v1p1beta1.types import finding as gcs_finding from google.cloud.securitycenter_v1p1beta1.types import notification_config from google.cloud.securitycenter_v1p1beta1.types import ( notification_config as gcs_notification_config, ) from google.cloud.securitycenter_v1p1beta1.types import organization_settings from google.cloud.securitycenter_v1p1beta1.types import ( organization_settings as gcs_organization_settings, ) from google.cloud.securitycenter_v1p1beta1.types import ( security_marks as gcs_security_marks, ) from google.cloud.securitycenter_v1p1beta1.types import securitycenter_service from google.cloud.securitycenter_v1p1beta1.types import source from google.cloud.securitycenter_v1p1beta1.types import source as gcs_source from google.iam.v1 import iam_policy_pb2 # type: ignore from google.iam.v1 import policy_pb2 # type: ignore from google.longrunning import operations_pb2 # type: ignore from google.protobuf import empty_pb2 # type: ignore try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-securitycenter", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() try: # google.auth.__version__ was added in 1.26.0 _GOOGLE_AUTH_VERSION = google.auth.__version__ except AttributeError: try: # try pkg_resources if it is available _GOOGLE_AUTH_VERSION = pkg_resources.get_distribution("google-auth").version except pkg_resources.DistributionNotFound: # pragma: NO COVER _GOOGLE_AUTH_VERSION = None class SecurityCenterTransport(abc.ABC): """Abstract transport class for SecurityCenter.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/cloud-platform",) DEFAULT_HOST: str = "securitycenter.googleapis.com" def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host scopes_kwargs = self._get_scopes_kwargs(self._host, scopes) # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs( "'credentials_file' and 'credentials' are mutually exclusive" ) if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default( **scopes_kwargs, quota_project_id=quota_project_id ) # If the credentials is service account credentials, then always try to use self signed JWT. if ( always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access") ): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials # TODO(busunkim): This method is in the base transport # to avoid duplicating code across the transport classes. These functions # should be deleted once the minimum required versions of google-auth is increased. # TODO: Remove this function once google-auth >= 1.25.0 is required @classmethod def _get_scopes_kwargs( cls, host: str, scopes: Optional[Sequence[str]] ) -> Dict[str, Optional[Sequence[str]]]: """Returns scopes kwargs to pass to google-auth methods depending on the google-auth version""" scopes_kwargs = {} if _GOOGLE_AUTH_VERSION and ( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0") ): scopes_kwargs = {"scopes": scopes, "default_scopes": cls.AUTH_SCOPES} else: scopes_kwargs = {"scopes": scopes or cls.AUTH_SCOPES} return scopes_kwargs def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.create_source: gapic_v1.method.wrap_method( self.create_source, default_timeout=60.0, client_info=client_info, ), self.create_finding: gapic_v1.method.wrap_method( self.create_finding, default_timeout=60.0, client_info=client_info, ), self.create_notification_config: gapic_v1.method.wrap_method( self.create_notification_config, default_timeout=60.0, client_info=client_info, ), self.delete_notification_config: gapic_v1.method.wrap_method( self.delete_notification_config, default_timeout=60.0, client_info=client_info, ), self.get_iam_policy: gapic_v1.method.wrap_method( self.get_iam_policy, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_notification_config: gapic_v1.method.wrap_method( self.get_notification_config, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_organization_settings: gapic_v1.method.wrap_method( self.get_organization_settings, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.get_source: gapic_v1.method.wrap_method( self.get_source, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.group_assets: gapic_v1.method.wrap_method( self.group_assets, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=480.0, ), default_timeout=480.0, client_info=client_info, ), self.group_findings: gapic_v1.method.wrap_method( self.group_findings, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=480.0, ), default_timeout=480.0, client_info=client_info, ), self.list_assets: gapic_v1.method.wrap_method( self.list_assets, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=480.0, ), default_timeout=480.0, client_info=client_info, ), self.list_findings: gapic_v1.method.wrap_method( self.list_findings, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=480.0, ), default_timeout=480.0, client_info=client_info, ), self.list_notification_configs: gapic_v1.method.wrap_method( self.list_notification_configs, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.list_sources: gapic_v1.method.wrap_method( self.list_sources, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.run_asset_discovery: gapic_v1.method.wrap_method( self.run_asset_discovery, default_timeout=60.0, client_info=client_info, ), self.set_finding_state: gapic_v1.method.wrap_method( self.set_finding_state, default_timeout=60.0, client_info=client_info, ), self.set_iam_policy: gapic_v1.method.wrap_method( self.set_iam_policy, default_timeout=60.0, client_info=client_info, ), self.test_iam_permissions: gapic_v1.method.wrap_method( self.test_iam_permissions, default_retry=retries.Retry( initial=0.1, maximum=60.0, multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.DeadlineExceeded, core_exceptions.ServiceUnavailable, ), deadline=60.0, ), default_timeout=60.0, client_info=client_info, ), self.update_finding: gapic_v1.method.wrap_method( self.update_finding, default_timeout=60.0, client_info=client_info, ), self.update_notification_config: gapic_v1.method.wrap_method( self.update_notification_config, default_timeout=60.0, client_info=client_info, ), self.update_organization_settings: gapic_v1.method.wrap_method( self.update_organization_settings, default_timeout=60.0, client_info=client_info, ), self.update_source: gapic_v1.method.wrap_method( self.update_source, default_timeout=60.0, client_info=client_info, ), self.update_security_marks: gapic_v1.method.wrap_method( self.update_security_marks, default_timeout=480.0, client_info=client_info, ), } @property def operations_client(self) -> operations_v1.OperationsClient: """Return the client designed to process long-running operations.""" raise NotImplementedError() @property def create_source( self, ) -> Callable[ [securitycenter_service.CreateSourceRequest], Union[gcs_source.Source, Awaitable[gcs_source.Source]], ]: raise NotImplementedError() @property def create_finding( self, ) -> Callable[ [securitycenter_service.CreateFindingRequest], Union[gcs_finding.Finding, Awaitable[gcs_finding.Finding]], ]: raise NotImplementedError() @property def create_notification_config( self, ) -> Callable[ [securitycenter_service.CreateNotificationConfigRequest], Union[ gcs_notification_config.NotificationConfig, Awaitable[gcs_notification_config.NotificationConfig], ], ]: raise NotImplementedError() @property def delete_notification_config( self, ) -> Callable[ [securitycenter_service.DeleteNotificationConfigRequest], Union[empty_pb2.Empty, Awaitable[empty_pb2.Empty]], ]: raise NotImplementedError() @property def get_iam_policy( self, ) -> Callable[ [iam_policy_pb2.GetIamPolicyRequest], Union[policy_pb2.Policy, Awaitable[policy_pb2.Policy]], ]: raise NotImplementedError() @property def get_notification_config( self, ) -> Callable[ [securitycenter_service.GetNotificationConfigRequest], Union[ notification_config.NotificationConfig, Awaitable[notification_config.NotificationConfig], ], ]: raise NotImplementedError() @property def get_organization_settings( self, ) -> Callable[ [securitycenter_service.GetOrganizationSettingsRequest], Union[ organization_settings.OrganizationSettings, Awaitable[organization_settings.OrganizationSettings], ], ]: raise NotImplementedError() @property def get_source( self, ) -> Callable[ [securitycenter_service.GetSourceRequest], Union[source.Source, Awaitable[source.Source]], ]: raise NotImplementedError() @property def group_assets( self, ) -> Callable[ [securitycenter_service.GroupAssetsRequest], Union[ securitycenter_service.GroupAssetsResponse, Awaitable[securitycenter_service.GroupAssetsResponse], ], ]: raise NotImplementedError() @property def group_findings( self, ) -> Callable[ [securitycenter_service.GroupFindingsRequest], Union[ securitycenter_service.GroupFindingsResponse, Awaitable[securitycenter_service.GroupFindingsResponse], ], ]: raise NotImplementedError() @property def list_assets( self, ) -> Callable[ [securitycenter_service.ListAssetsRequest], Union[ securitycenter_service.ListAssetsResponse, Awaitable[securitycenter_service.ListAssetsResponse], ], ]: raise NotImplementedError() @property def list_findings( self, ) -> Callable[ [securitycenter_service.ListFindingsRequest], Union[ securitycenter_service.ListFindingsResponse, Awaitable[securitycenter_service.ListFindingsResponse], ], ]: raise NotImplementedError() @property def list_notification_configs( self, ) -> Callable[ [securitycenter_service.ListNotificationConfigsRequest], Union[ securitycenter_service.ListNotificationConfigsResponse, Awaitable[securitycenter_service.ListNotificationConfigsResponse], ], ]: raise NotImplementedError() @property def list_sources( self, ) -> Callable[ [securitycenter_service.ListSourcesRequest], Union[ securitycenter_service.ListSourcesResponse, Awaitable[securitycenter_service.ListSourcesResponse], ], ]: raise NotImplementedError() @property def run_asset_discovery( self, ) -> Callable[ [securitycenter_service.RunAssetDiscoveryRequest], Union[operations_pb2.Operation, Awaitable[operations_pb2.Operation]], ]: raise NotImplementedError() @property def set_finding_state( self, ) -> Callable[ [securitycenter_service.SetFindingStateRequest], Union[finding.Finding, Awaitable[finding.Finding]], ]: raise NotImplementedError() @property def set_iam_policy( self, ) -> Callable[ [iam_policy_pb2.SetIamPolicyRequest], Union[policy_pb2.Policy, Awaitable[policy_pb2.Policy]], ]: raise NotImplementedError() @property def test_iam_permissions( self, ) -> Callable[ [iam_policy_pb2.TestIamPermissionsRequest], Union[ iam_policy_pb2.TestIamPermissionsResponse, Awaitable[iam_policy_pb2.TestIamPermissionsResponse], ], ]: raise NotImplementedError() @property def update_finding( self, ) -> Callable[ [securitycenter_service.UpdateFindingRequest], Union[gcs_finding.Finding, Awaitable[gcs_finding.Finding]], ]: raise NotImplementedError() @property def update_notification_config( self, ) -> Callable[ [securitycenter_service.UpdateNotificationConfigRequest], Union[ gcs_notification_config.NotificationConfig, Awaitable[gcs_notification_config.NotificationConfig], ], ]: raise NotImplementedError() @property def update_organization_settings( self, ) -> Callable[ [securitycenter_service.UpdateOrganizationSettingsRequest], Union[ gcs_organization_settings.OrganizationSettings, Awaitable[gcs_organization_settings.OrganizationSettings], ], ]: raise NotImplementedError() @property def update_source( self, ) -> Callable[ [securitycenter_service.UpdateSourceRequest], Union[gcs_source.Source, Awaitable[gcs_source.Source]], ]: raise NotImplementedError() @property def update_security_marks( self, ) -> Callable[ [securitycenter_service.UpdateSecurityMarksRequest], Union[ gcs_security_marks.SecurityMarks, Awaitable[gcs_security_marks.SecurityMarks], ], ]: raise NotImplementedError() __all__ = ("SecurityCenterTransport",)
1b45af41c9bb4a3ddf55e8aac6b235e7d8843cac
f5d2a1459c81eb23a745bd63f41ef980c41ea0a4
/ZG-PhaseFour/code/controller/diffcontroller.py
22365e714fd1d2fa625911ff9f88462b4fcaa379
[]
no_license
ErBingBing/django-tonado-crawler
6800bb0269e99e2454fb0a9079175ffe9d4d0a0b
db31b4cdf7ecc509f1a87aa325621943df825e98
refs/heads/master
2021-08-22T11:30:08.419583
2017-11-30T04:04:40
2017-11-30T04:04:40
112,562,722
0
0
null
null
null
null
UTF-8
Python
false
false
7,508
py
# -*- coding: utf-8 -*- ################################################################################################### # @file: diffcontroller.py # @author: Sun Xinghua # @date: 2016/11/21 0:15 # @version: Ver0.0.0.100 # @note: ################################################################################################### from configuration import constant from configuration.environment.configure import SpiderConfigure from dao.spiderdao import SpiderDao from log.spiderlog import Logger ################################################################################################################ # @class:DiffController # @author:Sun Xinghua # @date:2016/11/21 9:44 # @note: ################################################################################################################ from utility import const from utility.fileutil import FileUtility from utility.timeutility import TimeUtility class DiffController: DIFF_FILE_NAME_FORMAT = '{suffix}_{ts}_diff.txt' ################################################################################################### # @functions:__init__ # @param: none # @return:none # @note:初始化内部变量 ################################################################################################### def __init__(self): self.database = SpiderDao() suffix = SpiderConfigure.getconfig(const.SPIDER_STORAGE_DOMAIN, const.SPIDER_OUTPUT_FILENAME_SUFFIX) ts = TimeUtility.getcurrentdate(TimeUtility.TIMESTAMP_FORMAT) self.difffile = '{path}/{dt}/{file}'.format( path=SpiderConfigure.getinstance().getconfig(const.SPIDER_STORAGE_DOMAIN, const.SPIDER_OUTPUT_PATH), dt=TimeUtility.getcurrentdate(), file=DiffController.DIFF_FILE_NAME_FORMAT.format(suffix=suffix, ts=ts)) ################################################################################################### # @functions:printdetail # @param: none # @return:none # @note:输出差分信息到日志 ################################################################################################### def show(self): diffinfolist = {} predict = self.database.getall() instances = URLStorage.getinstances() Logger.getlogging().info( '##############################################################################################') Logger.getlogging().info('%8s|%8s|%8s|%8s|%8s|%8s|%8s|%20s|%16s' % ('key', 'flag', 'cmtnum', 'clicknum', 'votenum', 'fansnum', 'realnum', 'pubtime', 'timestamp')) for ins in instances.keys(): diffinfolist[ins] = DiffInfomation() if ins != constant.SPIDER_CHANNEL_S1: diffinfolist[ins].channel = constant.SPIDER_CHANNEL_S2 diffinfolist[ins].query = ins for key in instances[ins].urlinfodict: if instances[ins].urlinfodict[key].realnum > 0: StatisticsManager.updategotcomments(1) elif instances[ins].urlinfodict[key].cmtnum > 0: StatisticsManager.updatefailgotcomment(1) if predict and key in predict: info = URLCommentInfo.fromstring(predict[key]) if not instances[ins].urlinfodict[key].isequal(info): self.printinfo(ins, info, '-') self.printinfo(ins, instances[ins].urlinfodict[key], '+') if instances[ins].urlinfodict[key].cmtnum > 0: diffinfolist[ins].deltacmt += self.diff(instances[ins].urlinfodict[key].cmtnum, info.cmtnum) else: diffinfolist[ins].deltacmt += self.diff(instances[ins].urlinfodict[key].realnum, info.realnum) diffinfolist[ins].deltaclick += self.diff(instances[ins].urlinfodict[key].clicknum, info.clicknum) diffinfolist[ins].deltavote += self.diff(instances[ins].urlinfodict[key].votenum, info.votenum) diffinfolist[ins].deltafans += self.diff(instances[ins].urlinfodict[key].fansnum, info.fansnum) else: self.printinfo(ins, instances[ins].urlinfodict[key], '+') if instances[ins].urlinfodict[key].cmtnum > 0: diffinfolist[ins].deltacmt += instances[ins].urlinfodict[key].cmtnum else: diffinfolist[ins].deltacmt += max(0, instances[ins].urlinfodict[key].realnum) diffinfolist[ins].deltaclick += max(0, instances[ins].urlinfodict[key].clicknum) diffinfolist[ins].deltavote += max(0, instances[ins].urlinfodict[key].votenum) diffinfolist[ins].deltafans += max(0, instances[ins].urlinfodict[key].fansnum) Logger.getlogging().info( '##############################################################################################') if FileUtility.exists(self.difffile): FileUtility.remove(self.difffile) for key in diffinfolist.keys(): Logger.getlogging().info(diffinfolist[key].tostring()) FileUtility.writeline(self.difffile, diffinfolist[key].tostring()) ################################################################################################### # @functions:printinfo # @param: info 信息 # @param: flag 添加为+ 删除为- # @return:none # @note:输出差分信息到日志 ################################################################################################### def printinfo(self, key, info, flag): Logger.getlogging().info('%8s|%8s|%8s|%8s|%8s|%8s|%8s|%20s|%16s' % (key, flag, str(info.cmtnum if info.cmtnum > 0 else info.realnum), str(info.clicknum), str(info.votenum), str(info.fansnum), str(info.realnum), str(info.pubtime), str(info.timestamp))) def diff(self, x, y): delta = max(0, x) - max(0, y) return max(0, delta) class DiffInfomation: STRING_FORMAT = '{channel}\t{query}\t{cmtnum}\t{clicknum}\t{votenum}\t{fansnum}' def __init__(self): self.channel = constant.SPIDER_CHANNEL_S1 self.query = '' self.deltacmt = 0 self.deltaclick = 0 self.deltavote = 0 self.deltafans = 0 def tostring(self): return DiffInfomation.STRING_FORMAT.format(channel=self.channel, query=self.query, cmtnum=self.deltacmt, clicknum=self.deltaclick, votenum=self.deltavote, fansnum=self.deltafans)
81b0af19642bc53232aa4eb85eae5f78ac7a6495
4e8ac215b672b333f19da87787c0d8768fee439e
/MIDI Remote Scripts/ableton/v2/control_surface/components/drum_group.py
3a23650ce45ebcd2d6372554cd2f9e072ac3a329
[ "MIT" ]
permissive
aarkwright/ableton_devices
593f47293c673aa56f6e0347ca6444b7fce2812a
fe5df3bbd64ccbc136bba722ba1e131a02969798
refs/heads/master
2020-07-02T08:11:21.137438
2019-08-09T13:48:06
2019-08-09T13:48:06
201,467,890
0
0
null
null
null
null
UTF-8
Python
false
false
11,824
py
# uncompyle6 version 3.3.5 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] # Embedded file name: c:\Jenkins\live\output\win_64_static\Release\python-bundle\MIDI Remote Scripts\ableton\v2\control_surface\components\drum_group.py # Compiled at: 2018-11-30 15:48:12 from __future__ import absolute_import, print_function, unicode_literals from itertools import imap from ...base import depends, find_if, first, clamp, listenable_property, listens_group, listens, liveobj_changed, liveobj_valid from ..control import ButtonControl from .slide import SlideComponent, Slideable from .playable import PlayableComponent BASE_DRUM_RACK_NOTE = 36 class DrumGroupComponent(PlayableComponent, SlideComponent, Slideable): mute_button = ButtonControl() solo_button = ButtonControl() delete_button = ButtonControl() quantize_button = ButtonControl() @depends(set_pad_translations=None) def __init__(self, translation_channel=None, set_pad_translations=None, *a, **k): self._drum_group_device = None self._selected_drum_pad = None self._all_drum_pads = [] self._assigned_drum_pads = [] self._translation_channel = translation_channel super(DrumGroupComponent, self).__init__(*a, **k) self._set_pad_translations = set_pad_translations return position_count = 32 page_length = 4 page_offset = 1 def contents_range(self, pmin, pmax): pos_count = self.position_count first_pos = max(int(pmin - 0.05), 0) last_pos = min(int(pmax + 0.2), pos_count) return xrange(first_pos, last_pos) def contents(self, index): drum = self._drum_group_device if liveobj_valid(drum): return any(imap(lambda pad: pad.chains, drum.drum_pads[index * 4:index * 4 + 4])) return False @property def position(self): if liveobj_valid(self._drum_group_device): return self._drum_group_device.view.drum_pads_scroll_position return 0 @position.setter def position(self, index): assert 0 <= index <= 28 if liveobj_valid(self._drum_group_device): self._drum_group_device.view.drum_pads_scroll_position = index @property def assigned_drum_pads(self): return self._assigned_drum_pads @property def min_pitch(self): if self.assigned_drum_pads: return self.assigned_drum_pads[0].note return BASE_DRUM_RACK_NOTE @property def max_pitch(self): if self.assigned_drum_pads: return self.assigned_drum_pads[(-1)].note return BASE_DRUM_RACK_NOTE def _update_assigned_drum_pads(self): assigned_drum_pads = [] visible_drum_pads = self._drum_group_device.visible_drum_pads if liveobj_valid(self._drum_group_device) else None if visible_drum_pads and self._all_drum_pads: first_pad = first(visible_drum_pads) if first_pad: size = self.width * self.height first_note = first_pad.note if first_note > 128 - size: size = 128 - first_note offset = clamp(first_note, 0, 128 - len(visible_drum_pads)) assigned_drum_pads = self._all_drum_pads[offset:offset + size] self._assigned_drum_pads = assigned_drum_pads return def set_matrix(self, matrix): super(DrumGroupComponent, self).set_matrix(matrix) self._update_assigned_drum_pads() self._create_and_set_pad_translations() def set_drum_group_device(self, drum_group_device): if drum_group_device and not drum_group_device.can_have_drum_pads: drum_group_device = None if drum_group_device != self._drum_group_device: self.__on_visible_drum_pads_changed.subject = drum_group_device drum_group_view = drum_group_device.view if drum_group_device else None self.__on_selected_drum_pad_changed.subject = drum_group_view self.__on_drum_pads_scroll_position_changed.subject = drum_group_view self._drum_group_device = drum_group_device self._update_drum_pad_listeners() self._update_selected_drum_pad() self._update_note_translations() super(DrumGroupComponent, self).update() return def update(self): super(DrumGroupComponent, self).update() if self.is_enabled(): self.notify_position() def _update_drum_pad_listeners(self): """ add and remove listeners for visible drum pads, including mute and solo state """ if liveobj_valid(self._drum_group_device): self._all_drum_pads = self._drum_group_device.drum_pads visible_drum_pads = self._drum_group_device.visible_drum_pads self.__on_solo_changed.replace_subjects(visible_drum_pads) self.__on_mute_changed.replace_subjects(visible_drum_pads) self._update_assigned_drum_pads() self._update_note_translations() @listens_group(b'solo') def __on_solo_changed(self, pad): self._update_led_feedback() @listens_group(b'mute') def __on_mute_changed(self, pad): self._update_led_feedback() def _update_led_feedback(self): if liveobj_valid(self._drum_group_device): super(DrumGroupComponent, self)._update_led_feedback() def _update_button_color(self, button): pad = self._pad_for_button(button) button.color = self._color_for_pad(pad) if pad else b'DefaultButton.On' def _color_for_pad(self, pad): has_soloed_pads = bool(find_if(lambda pad: pad.solo, self._all_drum_pads)) button_color = b'DrumGroup.PadEmpty' if pad == self._selected_drum_pad: button_color = b'DrumGroup.PadSelected' if has_soloed_pads and not pad.solo and not pad.mute: button_color = b'DrumGroup.PadSelectedNotSoloed' elif pad.mute and not pad.solo: button_color = b'DrumGroup.PadMutedSelected' elif has_soloed_pads and pad.solo: button_color = b'DrumGroup.PadSoloedSelected' elif pad.chains: button_color = b'DrumGroup.PadFilled' if has_soloed_pads and not pad.solo: button_color = b'DrumGroup.PadFilled' if not pad.mute else b'DrumGroup.PadMuted' elif not has_soloed_pads and pad.mute: button_color = b'DrumGroup.PadMuted' elif has_soloed_pads and pad.solo: button_color = b'DrumGroup.PadSoloed' return button_color def _button_coordinates_to_pad_index(self, first_note, coordinates): y, x = coordinates y = self.height - y - 1 if x < 4 and y >= 4: first_note += 16 elif x >= 4 and y < 4: first_note += 4 * self.width elif x >= 4 and y >= 4: first_note += 4 * self.width + 16 index = x % 4 + y % 4 * 4 + first_note return index def _on_matrix_pressed(self, button): selected_drum_pad = self._pad_for_button(button) if self.mute_button.is_pressed: selected_drum_pad.mute = not selected_drum_pad.mute if self.solo_button.is_pressed: selected_drum_pad.solo = not selected_drum_pad.solo if self.quantize_button.is_pressed: button.color = b'DrumGroup.PadAction' self.quantize_pitch(selected_drum_pad.note) if self.delete_button.is_pressed: button.color = b'DrumGroup.PadAction' self.delete_pitch(selected_drum_pad) if self.select_button.is_pressed: self._drum_group_device.view.selected_drum_pad = selected_drum_pad self.select_drum_pad(selected_drum_pad) super(DrumGroupComponent, self)._on_matrix_pressed(button) if self.mute_button.is_pressed or self.solo_button.is_pressed: self._update_led_feedback() @listens(b'visible_drum_pads') def __on_visible_drum_pads_changed(self): self._update_drum_pad_listeners() self._update_led_feedback() @listens(b'drum_pads_scroll_position') def __on_drum_pads_scroll_position_changed(self): self._update_note_translations() self._update_led_feedback() self.notify_position() @listens(b'selected_drum_pad') def __on_selected_drum_pad_changed(self): self._update_selected_drum_pad() def _update_selected_drum_pad(self): selected_drum_pad = self._drum_group_device.view.selected_drum_pad if liveobj_valid(self._drum_group_device) else None if liveobj_changed(self._selected_drum_pad, selected_drum_pad): self._selected_drum_pad = selected_drum_pad self._update_led_feedback() self._on_selected_drum_pad_changed() return def _on_selected_drum_pad_changed(self): pass @mute_button.value def mute_button(self, value, button): self._set_control_pads_from_script(bool(value)) @solo_button.value def solo_button(self, value, button): self._set_control_pads_from_script(bool(value)) @delete_button.value def delete_button(self, value, button): self._set_control_pads_from_script(bool(value)) @quantize_button.value def quantize_button(self, value, button): self._set_control_pads_from_script(bool(value)) @property def has_assigned_pads(self): return self._assigned_drum_pads and liveobj_valid(first(self._assigned_drum_pads)) def _pad_for_button(self, button): if self.has_assigned_pads: index = self._button_coordinates_to_pad_index(first(self._assigned_drum_pads).note, button.coordinate) if index < 128: return self._all_drum_pads[index] return return def _note_translation_for_button(self, button): identifier = None channel = None if self.has_assigned_pads: identifier = self._button_coordinates_to_pad_index(first(self._assigned_drum_pads).note, button.coordinate) channel = self._translation_channel return ( identifier, channel) def _update_note_translations(self): if self._assigned_drum_pads: if not self._can_set_pad_translations(): super(DrumGroupComponent, self)._update_note_translations() def _can_set_pad_translations(self): return self.width <= 4 and self.height <= 4 def _create_and_set_pad_translations(self): def create_translation_entry(button): row, col = button.coordinate return ( col, row, button.identifier, button.channel) if self._can_set_pad_translations(): translations = [] for button in self.matrix: button.channel = self._translation_channel button.identifier = self._button_coordinates_to_pad_index(BASE_DRUM_RACK_NOTE, button.coordinate) button.enabled = True translations.append(create_translation_entry(button)) self._set_pad_translations(tuple(translations)) else: self._update_note_translations() self._set_pad_translations(None) return def select_drum_pad(self, drum_pad): """ Override when you give it a select button """ raise NotImplementedError def quantize_pitch(self, note): """ Override when you give it a quantize button """ raise NotImplementedError def delete_pitch(self, drum_pad): """ Override when you give it a delete button """ raise NotImplementedError
8a1cc7180086b8e03033515e70b945d413b517ef
7fe5f16fe49e71926c1dfc3a3b41e28741176f06
/example.py
4608fef3c68d41da1e74e4d68aeba516f6aac7ee
[]
no_license
codesharedot/augur-price
5b7b315fed28a042bb32e0bf5059e96a263bf6f5
2fb9e29ba3eab108e09b5d95c5f390bedfd89530
refs/heads/master
2020-07-27T04:09:20.915412
2020-03-05T17:50:04
2020-03-05T17:50:04
208,862,862
0
0
null
null
null
null
UTF-8
Python
false
false
601
py
import requests import json from forex_python.converter import CurrencyRates import os c = CurrencyRates() rate = c.get_rate('USD', 'EUR') print(rate) augur_api_url = 'https://api.coinmarketcap.com/v1/ticker/augur/' response = requests.get(augur_api_url) response_json = response.json() print(response_json) for coin in response.json(): price = coin.get("price_usd", "U$S Price not provided") coin_price = float(("{0:.2f}").format(float(price))) print("$ " + str(coin_price)) coin_price_eur = float(("{0:.2f}").format(float(price)*rate)) print("€ " + str(coin_price_eur))
bc290340823ce97833d91f4123951f04075608e3
a84e1a1aac96612b32ba5adcc49a4005c0c5129e
/tensorflow_probability/python/experimental/mcmc/__init__.py
9bebbe5296b9f126968b664c8cafa86a5e6c0a37
[ "Apache-2.0" ]
permissive
jedisom/probability
4fc31473d691d242a3e88c179ae3a9c555a29bb6
6791e7ce1c2b0a9057a19a8ea697aeaf796d4da7
refs/heads/master
2022-04-23T00:21:46.097126
2020-04-22T20:03:04
2020-04-22T20:04:59
258,031,151
1
0
Apache-2.0
2020-04-22T22:08:57
2020-04-22T22:08:56
null
UTF-8
Python
false
false
3,073
py
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """TensorFlow Probability experimental NUTS package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow_probability.python.experimental.mcmc.elliptical_slice_sampler import EllipticalSliceSampler from tensorflow_probability.python.experimental.mcmc.nuts import NoUTurnSampler from tensorflow_probability.python.experimental.mcmc.particle_filter import ess_below_threshold from tensorflow_probability.python.experimental.mcmc.particle_filter import infer_trajectories from tensorflow_probability.python.experimental.mcmc.particle_filter import particle_filter from tensorflow_probability.python.experimental.mcmc.particle_filter import reconstruct_trajectories from tensorflow_probability.python.experimental.mcmc.particle_filter import resample_deterministic_minimum_error from tensorflow_probability.python.experimental.mcmc.particle_filter import resample_independent from tensorflow_probability.python.experimental.mcmc.particle_filter import resample_minimum_variance from tensorflow_probability.python.experimental.mcmc.sample_sequential_monte_carlo import default_make_hmc_kernel_fn from tensorflow_probability.python.experimental.mcmc.sample_sequential_monte_carlo import gen_make_hmc_kernel_fn from tensorflow_probability.python.experimental.mcmc.sample_sequential_monte_carlo import gen_make_transform_hmc_kernel_fn from tensorflow_probability.python.experimental.mcmc.sample_sequential_monte_carlo import make_rwmh_kernel_fn from tensorflow_probability.python.experimental.mcmc.sample_sequential_monte_carlo import sample_sequential_monte_carlo from tensorflow_probability.python.experimental.mcmc.sample_sequential_monte_carlo import simple_heuristic_tuning from tensorflow.python.util.all_util import remove_undocumented # pylint: disable=g-direct-tensorflow-import _allowed_symbols = [ 'EllipticalSliceSampler', 'NoUTurnSampler', 'ess_below_threshold', 'infer_trajectories', 'default_make_hmc_kernel_fn', 'gen_make_hmc_kernel_fn', 'gen_make_transform_hmc_kernel_fn', 'make_rwmh_kernel_fn', 'particle_filter', 'sample_sequential_monte_carlo', 'simple_heuristic_tuning', 'reconstruct_trajectories', 'resample_independent', 'resample_minimum_variance', 'resample_deterministic_minimum_error', ] remove_undocumented(__name__, _allowed_symbols)
492e20fa5f9a33cc62fcd94e23aae05134077702
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/mixedreality/list_object_anchors_account_keys.py
477a8c32f1615fa9c02298fcbe21bb5a88e16df1
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
2,818
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'ListObjectAnchorsAccountKeysResult', 'AwaitableListObjectAnchorsAccountKeysResult', 'list_object_anchors_account_keys', ] @pulumi.output_type class ListObjectAnchorsAccountKeysResult: """ Developer Keys of account """ def __init__(__self__, primary_key=None, secondary_key=None): if primary_key and not isinstance(primary_key, str): raise TypeError("Expected argument 'primary_key' to be a str") pulumi.set(__self__, "primary_key", primary_key) if secondary_key and not isinstance(secondary_key, str): raise TypeError("Expected argument 'secondary_key' to be a str") pulumi.set(__self__, "secondary_key", secondary_key) @property @pulumi.getter(name="primaryKey") def primary_key(self) -> str: """ value of primary key. """ return pulumi.get(self, "primary_key") @property @pulumi.getter(name="secondaryKey") def secondary_key(self) -> str: """ value of secondary key. """ return pulumi.get(self, "secondary_key") class AwaitableListObjectAnchorsAccountKeysResult(ListObjectAnchorsAccountKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListObjectAnchorsAccountKeysResult( primary_key=self.primary_key, secondary_key=self.secondary_key) def list_object_anchors_account_keys(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListObjectAnchorsAccountKeysResult: """ Developer Keys of account API Version: 2021-03-01-preview. :param str account_name: Name of an Mixed Reality Account. :param str resource_group_name: Name of an Azure resource group. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:mixedreality:listObjectAnchorsAccountKeys', __args__, opts=opts, typ=ListObjectAnchorsAccountKeysResult).value return AwaitableListObjectAnchorsAccountKeysResult( primary_key=__ret__.primary_key, secondary_key=__ret__.secondary_key)
55579935208423de76144450d6a979bb0a66cb9c
f856c993a34fa2fbb228369dd267909445fa69b5
/vel/augmentations/to_tensor.py
d97ac0fb52984932b782019a024aec8100f5995f
[ "MIT" ]
permissive
cclauss/vel
06fabeb75925ac2509162f12ac82fff3b8291720
78a6a20af80ff613898d2983c83fdb223634aaad
refs/heads/master
2020-04-01T03:46:50.339279
2018-10-09T05:36:21
2018-10-09T05:36:21
152,836,186
0
0
MIT
2018-10-13T04:48:44
2018-10-13T04:48:44
null
UTF-8
Python
false
false
436
py
import numpy as np import torchvision.transforms.functional as F import vel.api.data as data class ToTensor(data.Augmentation): def __init__(self, mode='x', tags=None): super().__init__(mode, tags) def __call__(self, datum): return F.to_tensor(datum) def denormalize(self, datum): return np.transpose(datum.numpy(), (1, 2, 0)) def create(mode='x', tags=None): return ToTensor(mode, tags)
41cc274eb12a46f98a11e97f115641445f2a7322
d0bdf444c71b724ecfd59b5bc6850962c56494cb
/labs/03-apply_vis/tests/q1_3.py
f28f5962b8a4bbc4dfe837cb9f86d0772094554c
[]
no_license
ucsd-ets/dsc10-su20-public
10e3d0ff452b337f222baee330fe60d1465b0071
38787e6cc3e6210b4cc8a46350e5120845971c9f
refs/heads/master
2022-12-13T23:28:20.512649
2020-09-03T19:28:06
2020-09-03T19:28:06
275,905,339
0
1
null
null
null
null
UTF-8
Python
false
false
957
py
test = { 'hidden': False, 'name': '1.3', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" >>> # Your answer should be a number >>> type(mark_hurd_pay) != str True """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Don't forget to give your answer in dollars, not millions of >>> # Dollars! >>> mark_hurd_pay != 5325 True """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Don't forget to give your answer in dollars, not millions of >>> # Dollars! >>> mark_hurd_pay == 53250000 True """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest' } ] }
5f1652113a026b33730dd0979a69e1a786d7a16f
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba2842.pngMap.py
2abe96fbd929a7d98d47428252e3966ff592519d
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba2842.pngMap = [ '11111111111111111111111111111111111111111111111111110000000000000000000001111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000101111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111000000000000000000000000011111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000011111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111000000000000000000000000011111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000011111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000011111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000001111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111110000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111000000011111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111110000011111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111101111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111100011111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111000001000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111100000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000011111011111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000000000000000010111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000000000000000011111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110100000000000000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111010000000000000000000000000000000111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111100000000000000000000000000000000000111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111110000000000000000000000000000000001111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000000000000010111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000000000010010111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000011000001011111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000001101111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110010000000000000000000011111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111110100000000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000010011001111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111110000000000001010000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000110111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111000000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111110000000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111100000000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111100000000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111100000000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111000000000000000000000000111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111010000000000000000000000111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111110000000000000000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000011000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111100000100000000001111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111000100000000000000001011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111110000000000000000000000000000001111111111111111111111111111111111111111111111111111', ]
0f66442a96c3559f8d552b7803a53026e3a5c9f9
a9cac1a83b74a42b908b1913bd087d14de2f4a11
/test/git/test_invocations.py
ed17c44d455670a377cf5538adcaa108a32ebd67
[ "LicenseRef-scancode-public-domain", "CC0-1.0" ]
permissive
justusschock/python-remote-versioneer
0ff76cf416a3fc79f9f89592a112d5b4152bddba
69cda6a931a71772047404705822784dd2f59fcd
refs/heads/master
2020-06-29T06:36:18.730253
2019-08-04T08:14:51
2019-08-04T08:14:51
200,464,396
2
0
null
null
null
null
UTF-8
Python
false
false
36,972
py
from __future__ import print_function import os, sys, shutil, unittest, tempfile, tarfile, virtualenv, warnings sys.path.insert(0, "src") from from_file import versions_from_file import common pyver_major = "py%d" % sys.version_info[0] pyver = "py%d.%d" % sys.version_info[:2] if not hasattr(unittest, "skip"): # py26 def _skip(reason): def _skip_decorator(f): def _skipped_test(*args, **kwargs): print("skipping: %s" % reason) return _skipped_test return _skip_decorator unittest.skip = _skip if not hasattr(unittest, "expectedFailure"): def _expectedFailure(reason="expected to fail"): def _ef_decorator(f): def _ef(*args, **kwargs): print("skipping: %s" % reason) return _ef return _ef_decorator unittest.expectedFailure = _expectedFailure class _Invocations(common.Common): def setUp(self): if False: # when debugging, put the generated files in a predictable place self.testdir = os.path.abspath("t") if os.path.exists(self.testdir): return os.mkdir(self.testdir) else: self.testdir = tempfile.mkdtemp() os.mkdir(self.subpath("cache")) os.mkdir(self.subpath("cache", "distutils")) os.mkdir(self.subpath("cache", "setuptools")) self.gitdir = None self.projdir = None def make_venv(self, mode): if not os.path.exists(self.subpath("venvs")): os.mkdir(self.subpath("venvs")) venv_dir = self.subpath("venvs/%s" % mode) # python3 on OS-X uses a funky two-part executable and an environment # variable to communicate between them. If this variable is still set # by the time a virtualenv's 'pip' or 'python' is run, and if that # command spawns another sys.executable underneath it, that second # child may use the wrong python, and can install things into the # real system library instead of the virtualenv. Invoking # virtualenv.create_environment() clears this as a side-effect, but # to make things safe I'll just clear this now. See # https://github.com/pypa/virtualenv/issues/322 and # https://bugs.python.org/issue22490 for some hints. I tried # switching to 'venv' on py3, but only py3.4 includes pip, and even # then it's an ancient version. os.environ.pop("__PYVENV_LAUNCHER__", None) virtualenv.logger = virtualenv.Logger([]) # hush # virtualenv causes DeprecationWarning/ResourceWarning on py3 with warnings.catch_warnings(): warnings.simplefilter("ignore") virtualenv.create_environment(venv_dir) return venv_dir def run_in_venv(self, venv, workdir, command, *args): bins = {"python": os.path.join(venv, "bin", "python"), "pip": os.path.join(venv, "bin", "pip"), "rundemo": os.path.join(venv, "bin", "rundemo"), "easy_install": os.path.join(venv, "bin", "easy_install"), } if command == "pip": args = ["--no-cache-dir"] + list(args) maj, min = sys.version_info[0:2] if ((maj == 2 and min >= 7) or (maj == 3 and min >= 4) or maj > 3): # We prefer pip --isolated, but py2.6/py3.2/py3.3 (at least # on travis) can't handle the --no-user-cfg that it uses args = ["--isolated"] + list(args) return self.command(bins[command], *args, workdir=workdir) def check_in_venv(self, venv): out = self.run_in_venv(venv, venv, "rundemo") v = dict([line.split(":", 1) for line in out.splitlines()]) self.assertEqual(v["version"], "2.0") return v def check_in_venv_withlib(self, venv): v = self.check_in_venv(venv) self.assertEqual(v["demolib"], "1.0") # "demolib" has a version of 1.0 and is built with distutils # "demoapp2-distutils" is v2.0, uses distutils, and has no deps # "demoapp2-setuptools" is v2.0, uses setuptools, and depends on demolib # repos and unpacked git-archive tarballs come in two flavors: normal (in # which the setup.py/setup.cfg/versioneer.py files live in the root of # the source tree), and "subproject" (where they live in a subdirectory). # sdists are always "normal" (although they might have come from either # normal or subproject -style source trees), and wheels/eggs don't have # these files at all. # TODO: git-archive subproject-flavor def make_demolib_sdist(self): # create an sdist of demolib-1.0 . for the *lib*, we only use the # tarball, never the repo. demolib_sdist = self.subpath("cache", "demolib-1.0.tar") if os.path.exists(demolib_sdist): return demolib_sdist libdir = self.subpath("build-demolib") shutil.copytree("test/demolib", libdir) shutil.copy("versioneer.py", libdir) self.git("init", workdir=libdir) self.python("versioneer.py", "setup", workdir=libdir) self.git("add", "--all", workdir=libdir) self.git("commit", "-m", "comment", workdir=libdir) self.git("tag", "demolib-1.0", workdir=libdir) self.python("setup.py", "sdist", "--format=tar", workdir=libdir) created = os.path.join(libdir, "dist", "demolib-1.0.tar") self.assertTrue(os.path.exists(created)) shutil.copyfile(created, demolib_sdist) return demolib_sdist def make_linkdir(self): # create/populate a fake pypi directory for use with --find-links linkdir = self.subpath("linkdir") if os.path.exists(linkdir): return linkdir os.mkdir(linkdir) demolib_sdist = self.make_demolib_sdist() shutil.copy(demolib_sdist, linkdir) return linkdir def make_empty_indexdir(self): indexdir = self.subpath("indexdir") if os.path.exists(indexdir): return indexdir os.mkdir(indexdir) return indexdir def make_distutils_repo(self): # create a clean repo of demoapp2-distutils at 2.0 repodir = self.subpath("demoapp2-distutils-repo") if os.path.exists(repodir): shutil.rmtree(repodir) shutil.copytree("test/demoapp2-distutils", repodir) shutil.copy("versioneer.py", repodir) self.git("init", workdir=repodir) self.python("versioneer.py", "setup", workdir=repodir) self.git("add", "--all", workdir=repodir) self.git("commit", "-m", "comment", workdir=repodir) self.git("tag", "demoapp2-2.0", workdir=repodir) return repodir def make_distutils_repo_subproject(self): # create a clean repo of demoapp2-distutils at 2.0 repodir = self.subpath("demoapp2-distutils-repo-subproject") if os.path.exists(repodir): shutil.rmtree(repodir) shutil.copytree("test/demoapp2-distutils-subproject", repodir) projectdir = os.path.join(repodir, "subproject") shutil.copy("versioneer.py", projectdir) self.git("init", workdir=repodir) self.python("versioneer.py", "setup", workdir=projectdir) self.git("add", "--all", workdir=repodir) self.git("commit", "-m", "comment", workdir=repodir) self.git("tag", "demoapp2-2.0", workdir=repodir) return projectdir def make_distutils_wheel_with_pip(self): # create an wheel of demoapp2-distutils at 2.0 wheelname = "demoapp2-2.0-%s-none-any.whl" % pyver_major demoapp2_distutils_wheel = self.subpath("cache", "distutils", wheelname) if os.path.exists(demoapp2_distutils_wheel): return demoapp2_distutils_wheel repodir = self.make_distutils_repo() venv = self.make_venv("make-distutils-wheel-with-pip") self.run_in_venv(venv, repodir, "pip", "wheel", "--wheel-dir", "wheelhouse", "--no-index",# "--find-links", linkdir, ".") created = os.path.join(repodir, "wheelhouse", wheelname) self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_distutils_wheel) return demoapp2_distutils_wheel def make_distutils_sdist(self): # create an sdist tarball of demoapp2-distutils at 2.0 demoapp2_distutils_sdist = self.subpath("cache", "distutils", "demoapp2-2.0.tar") if os.path.exists(demoapp2_distutils_sdist): return demoapp2_distutils_sdist repodir = self.make_distutils_repo() self.python("setup.py", "sdist", "--format=tar", workdir=repodir) created = os.path.join(repodir, "dist", "demoapp2-2.0.tar") self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_distutils_sdist) return demoapp2_distutils_sdist def make_distutils_sdist_subproject(self): demoapp2_distutils_sdist = self.subpath("cache", "distutils", "demoapp2-subproject-2.0.tar") if os.path.exists(demoapp2_distutils_sdist): return demoapp2_distutils_sdist projectdir = self.make_distutils_repo_subproject() self.python("setup.py", "sdist", "--format=tar", workdir=projectdir) created = os.path.join(projectdir, "dist", "demoapp2-2.0.tar") # if that gets the version wrong, it will make the wrong tarball, and # this check will fail self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_distutils_sdist) return demoapp2_distutils_sdist def make_distutils_unpacked(self): sdist = self.make_distutils_sdist() unpack_into = self.subpath("demoapp2-distutils-unpacked") if os.path.exists(unpack_into): shutil.rmtree(unpack_into) os.mkdir(unpack_into) t = tarfile.TarFile(sdist) t.extractall(path=unpack_into) t.close() unpacked = os.path.join(unpack_into, "demoapp2-2.0") self.assertTrue(os.path.exists(unpacked)) return unpacked def make_distutils_subproject_unpacked(self): sdist = self.make_distutils_sdist_subproject() unpack_into = self.subpath("demoapp2-distutils-unpacked-subproject") if os.path.exists(unpack_into): shutil.rmtree(unpack_into) os.mkdir(unpack_into) t = tarfile.TarFile(sdist) t.extractall(path=unpack_into) t.close() unpacked = os.path.join(unpack_into, "demoapp2-2.0") self.assertTrue(os.path.exists(unpacked)) return unpacked def make_setuptools_repo(self): # create a clean repo of demoapp2-setuptools at 2.0 repodir = self.subpath("demoapp2-setuptools-repo") if os.path.exists(repodir): shutil.rmtree(repodir) shutil.copytree("test/demoapp2-setuptools", repodir) shutil.copy("versioneer.py", repodir) self.git("init", workdir=repodir) self.python("versioneer.py", "setup", workdir=repodir) self.git("add", "--all", workdir=repodir) self.git("commit", "-m", "comment", workdir=repodir) self.git("tag", "demoapp2-2.0", workdir=repodir) return repodir def make_setuptools_repo_subproject(self): # create a clean repo of demoapp2-setuptools at 2.0 repodir = self.subpath("demoapp2-setuptools-repo-subproject") if os.path.exists(repodir): shutil.rmtree(repodir) shutil.copytree("test/demoapp2-setuptools-subproject", repodir) projectdir = os.path.join(repodir, "subproject") shutil.copy("versioneer.py", projectdir) self.git("init", workdir=repodir) self.python("versioneer.py", "setup", workdir=projectdir) self.git("add", "--all", workdir=repodir) self.git("commit", "-m", "comment", workdir=repodir) self.git("tag", "demoapp2-2.0", workdir=repodir) return projectdir def make_setuptools_sdist(self): # create an sdist tarball of demoapp2-setuptools at 2.0 demoapp2_setuptools_sdist = self.subpath("cache", "setuptools", "demoapp2-2.0.tar") if os.path.exists(demoapp2_setuptools_sdist): return demoapp2_setuptools_sdist repodir = self.make_setuptools_repo() self.python("setup.py", "sdist", "--format=tar", workdir=repodir) created = os.path.join(repodir, "dist", "demoapp2-2.0.tar") self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_setuptools_sdist) return demoapp2_setuptools_sdist def make_setuptools_sdist_subproject(self): demoapp2_setuptools_sdist = self.subpath("cache", "setuptools", "demoapp2-subproject-2.0.tar") if os.path.exists(demoapp2_setuptools_sdist): return demoapp2_setuptools_sdist projectdir = self.make_setuptools_repo_subproject() self.python("setup.py", "sdist", "--format=tar", workdir=projectdir) created = os.path.join(projectdir, "dist", "demoapp2-2.0.tar") self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_setuptools_sdist) return demoapp2_setuptools_sdist def make_setuptools_unpacked(self): sdist = self.make_setuptools_sdist() unpack_into = self.subpath("demoapp2-setuptools-unpacked") if os.path.exists(unpack_into): shutil.rmtree(unpack_into) os.mkdir(unpack_into) t = tarfile.TarFile(sdist) t.extractall(path=unpack_into) t.close() unpacked = os.path.join(unpack_into, "demoapp2-2.0") self.assertTrue(os.path.exists(unpacked)) return unpacked def make_setuptools_subproject_unpacked(self): sdist = self.make_setuptools_sdist_subproject() unpack_into = self.subpath("demoapp2-setuptools-unpacked-subproject") if os.path.exists(unpack_into): shutil.rmtree(unpack_into) os.mkdir(unpack_into) t = tarfile.TarFile(sdist) t.extractall(path=unpack_into) t.close() unpacked = os.path.join(unpack_into, "demoapp2-2.0") self.assertTrue(os.path.exists(unpacked)) return unpacked def make_setuptools_egg(self): # create an egg of demoapp2-setuptools at 2.0 demoapp2_setuptools_egg = self.subpath("cache", "setuptools", "demoapp2-2.0-%s.egg" % pyver) if os.path.exists(demoapp2_setuptools_egg): return demoapp2_setuptools_egg repodir = self.make_setuptools_repo() self.python("setup.py", "bdist_egg", workdir=repodir) created = os.path.join(repodir, "dist", "demoapp2-2.0-%s.egg" % pyver) self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_setuptools_egg) return demoapp2_setuptools_egg def make_setuptools_wheel_with_setup_py(self): # create an wheel of demoapp2-setuptools at 2.0 wheelname = "demoapp2-2.0-%s-none-any.whl" % pyver_major demoapp2_setuptools_wheel = self.subpath("cache", "setuptools", wheelname) if os.path.exists(demoapp2_setuptools_wheel): # there are two ways to make this .whl, and we need to exercise # both, so don't actually cache the results os.unlink(demoapp2_setuptools_wheel) repodir = self.make_setuptools_repo() self.python("setup.py", "bdist_wheel", workdir=repodir) created = os.path.join(repodir, "dist", wheelname) self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_setuptools_wheel) return demoapp2_setuptools_wheel def make_setuptools_wheel_with_pip(self): # create an wheel of demoapp2-setuptools at 2.0 wheelname = "demoapp2-2.0-%s-none-any.whl" % pyver_major demoapp2_setuptools_wheel = self.subpath("cache", "setuptools", wheelname) if os.path.exists(demoapp2_setuptools_wheel): # there are two ways to make this .whl, and we need to exercise # both, so don't actually cache the results os.unlink(demoapp2_setuptools_wheel) linkdir = self.make_linkdir() repodir = self.make_setuptools_repo() venv = self.make_venv("make-setuptools-wheel-with-pip") self.run_in_venv(venv, repodir, "pip", "wheel", "--wheel-dir", "wheelhouse", "--no-index", "--find-links", linkdir, ".") created = os.path.join(repodir, "wheelhouse", wheelname) self.assertTrue(os.path.exists(created), created) shutil.copyfile(created, demoapp2_setuptools_wheel) return demoapp2_setuptools_wheel class DistutilsRepo(_Invocations, unittest.TestCase): def test_build(self): repodir = self.make_distutils_repo() self.python("setup.py", "build", workdir=repodir) # test that the built _version.py is correct. Ideally we'd actually # run PYTHONPATH=.../build/lib build/scripts-PYVER/rundemo and check # the output, but that's more fragile than I want to deal with today fn = os.path.join(repodir, "build", "lib", "demo", "_version.py") data = versions_from_file(fn) self.assertEqual(data["version"], "2.0") def test_install(self): repodir = self.make_distutils_repo() venv = self.make_venv("distutils-repo-install") self.run_in_venv(venv, repodir, "python", "setup.py", "install") self.check_in_venv(venv) def test_install_subproject(self): projectdir = self.make_distutils_repo_subproject() venv = self.make_venv("distutils-repo-install-subproject") self.run_in_venv(venv, projectdir, "python", "setup.py", "install") self.check_in_venv(venv) def test_pip_wheel(self): self.make_distutils_wheel_with_pip() # asserts version as a side-effect def test_sdist(self): sdist = self.make_distutils_sdist() # asserts version as a side-effect t = tarfile.TarFile(sdist) # make sure we used distutils/sdist, not setuptools/sdist self.assertFalse("demoapp2-2.0/src/demoapp2.egg-info/PKG-INFO" in t.getnames()) t.close() def test_sdist_subproject(self): sdist = self.make_distutils_sdist_subproject() t = tarfile.TarFile(sdist) # make sure we used distutils/sdist, not setuptools/sdist self.assertFalse("demoapp2-2.0/src/demoapp2.egg-info/PKG-INFO" in t.getnames()) t.close() def test_pip_install(self): repodir = self.make_distutils_repo() venv = self.make_venv("distutils-repo-pip-install") self.run_in_venv(venv, repodir, "pip", "install", ".") self.check_in_venv(venv) @unittest.expectedFailure def test_pip_install_subproject(self): projectdir = self.make_distutils_repo_subproject() venv = self.make_venv("distutils-repo-pip-install-subproject") self.run_in_venv(venv, projectdir, "pip", "install", ".") self.check_in_venv(venv) def test_pip_install_from_afar(self): repodir = self.make_distutils_repo() venv = self.make_venv("distutils-repo-pip-install-from-afar") self.run_in_venv(venv, venv, "pip", "install", repodir) self.check_in_venv(venv) @unittest.expectedFailure def test_pip_install_from_afar_subproject(self): projectdir = self.make_distutils_repo_subproject() venv = self.make_venv("distutils-repo-pip-install-from-afar-subproject") self.run_in_venv(venv, venv, "pip", "install", projectdir) self.check_in_venv(venv) def test_pip_install_editable(self): repodir = self.make_distutils_repo() venv = self.make_venv("distutils-repo-pip-install-editable") self.run_in_venv(venv, repodir, "pip", "install", "--editable", ".") self.check_in_venv(venv) def test_pip_install_editable_subproject(self): projectdir = self.make_distutils_repo_subproject() venv = self.make_venv("distutils-repo-pip-install-editable-subproject") self.run_in_venv(venv, projectdir, "pip", "install", "--editable", ".") self.check_in_venv(venv) class SetuptoolsRepo(_Invocations, unittest.TestCase): def test_install(self): repodir = self.make_setuptools_repo() demolib = self.make_demolib_sdist() venv = self.make_venv("setuptools-repo-install") # "setup.py install" doesn't take --no-index or --find-links, so we # pre-install the dependency self.run_in_venv(venv, venv, "pip", "install", demolib) self.run_in_venv(venv, repodir, "python", "setup.py", "install") self.check_in_venv_withlib(venv) def test_install_subproject(self): projectdir = self.make_setuptools_repo_subproject() demolib = self.make_demolib_sdist() venv = self.make_venv("setuptools-repo-install-subproject") # "setup.py install" doesn't take --no-index or --find-links, so we # pre-install the dependency self.run_in_venv(venv, venv, "pip", "install", demolib) self.run_in_venv(venv, projectdir, "python", "setup.py", "install") self.check_in_venv_withlib(venv) @unittest.skip("setuptools 'easy_install .': known to be broken") def test_easy_install(self): # This case still fails: the 'easy_install' command modifies the # repo's setup.cfg (copying our --index-url and --find-links # arguments into [easy_install]index_url= settings, so that any # dependencies setup_requires= builds will use them), which means the # repo is always "dirty", which creates an .egg with the wrong # version. I have not yet found a clean way to hook the easy_install # command to fix this: there is very little linkage between the # parent command (which could calculate the version before setup.cfg # is modified) and the command which builds the .egg. Leave it broken # for now. linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() repodir = self.make_setuptools_repo() venv = self.make_venv("setuptools-repo-easy-install") self.run_in_venv(venv, repodir, "python", "setup.py", "easy_install", "--index-url", indexdir, "--find-links", linkdir, "." ) self.check_in_venv_withlib(venv) def test_develop(self): linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() repodir = self.make_setuptools_repo() venv = self.make_venv("setuptools-repo-develop") # "setup.py develop" takes --find-links and --index-url but not # --no-index self.run_in_venv(venv, repodir, "python", "setup.py", "develop", "--index-url", indexdir, "--find-links", linkdir, ) self.check_in_venv_withlib(venv) def test_develop_subproject(self): linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() projectdir = self.make_setuptools_repo_subproject() venv = self.make_venv("setuptools-repo-develop-subproject") # "setup.py develop" takes --find-links and --index-url but not # --no-index self.run_in_venv(venv, projectdir, "python", "setup.py", "develop", "--index-url", indexdir, "--find-links", linkdir, ) self.check_in_venv_withlib(venv) def test_egg(self): self.make_setuptools_egg() # asserts version as a side-effect def test_pip_wheel(self): self.make_setuptools_wheel_with_pip() # asserts version as a side-effect def test_bdist_wheel(self): self.make_setuptools_wheel_with_setup_py() # asserts version as a side-effect def test_sdist(self): sdist = self.make_setuptools_sdist() # asserts version as a side-effect t = tarfile.TarFile(sdist) # make sure we used setuptools/sdist, not distutils/sdist self.assertTrue("demoapp2-2.0/src/demoapp2.egg-info/PKG-INFO" in t.getnames()) t.close() def test_sdist_subproject(self): sdist = self.make_setuptools_sdist_subproject() t = tarfile.TarFile(sdist) # make sure we used setuptools/sdist, not distutils/sdist self.assertTrue("demoapp2-2.0/src/demoapp2.egg-info/PKG-INFO" in t.getnames()) t.close() def test_pip_install(self): linkdir = self.make_linkdir() repodir = self.make_setuptools_repo() venv = self.make_venv("setuptools-repo-pip-install") self.run_in_venv(venv, repodir, "pip", "install", ".", "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) @unittest.expectedFailure def test_pip_install_subproject(self): linkdir = self.make_linkdir() projectdir = self.make_setuptools_repo_subproject() venv = self.make_venv("setuptools-repo-pip-install-subproject") self.run_in_venv(venv, projectdir, "pip", "install", ".", "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) def test_pip_install_from_afar(self): linkdir = self.make_linkdir() repodir = self.make_setuptools_repo() venv = self.make_venv("setuptools-repo-pip-install-from-afar") self.run_in_venv(venv, venv, "pip", "install", repodir, "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) @unittest.expectedFailure def test_pip_install_from_afar_subproject(self): linkdir = self.make_linkdir() projectdir = self.make_setuptools_repo_subproject() venv = self.make_venv("setuptools-repo-pip-install-from-afar-subproject") self.run_in_venv(venv, venv, "pip", "install", projectdir, "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) def test_pip_install_editable(self): linkdir = self.make_linkdir() repodir = self.make_setuptools_repo() venv = self.make_venv("setuptools-repo-pip-install-editable") self.run_in_venv(venv, repodir, "pip", "install", "--editable", ".", "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) def test_pip_install_editable_subproject(self): linkdir = self.make_linkdir() projectdir = self.make_setuptools_repo_subproject() venv = self.make_venv("setuptools-repo-pip-install-editable-subproject") self.run_in_venv(venv, projectdir, "pip", "install", "--editable", ".", "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) class DistutilsSdist(_Invocations, unittest.TestCase): def test_pip_install(self): sdist = self.make_distutils_sdist() venv = self.make_venv("distutils-sdist-pip-install") self.run_in_venv(venv, venv, "pip", "install", sdist) self.check_in_venv(venv) def test_pip_install_subproject(self): sdist = self.make_distutils_sdist_subproject() venv = self.make_venv("distutils-sdist-pip-install-subproject") self.run_in_venv(venv, venv, "pip", "install", sdist) self.check_in_venv(venv) def test_easy_install(self): linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() sdist = self.make_distutils_sdist() venv = self.make_venv("distutils-sdist-easy-install") self.run_in_venv(venv, venv, "easy_install", "--index-url", indexdir, "--find-links", linkdir, sdist) self.check_in_venv(venv) class SetuptoolsSdist(_Invocations, unittest.TestCase): def test_pip_install(self): linkdir = self.make_linkdir() sdist = self.make_setuptools_sdist() venv = self.make_venv("setuptools-sdist-pip-install") self.run_in_venv(venv, venv, "pip", "install", "--no-index", "--find-links", linkdir, sdist) self.check_in_venv_withlib(venv) def test_pip_install_subproject(self): linkdir = self.make_linkdir() sdist = self.make_setuptools_sdist_subproject() venv = self.make_venv("setuptools-sdist-pip-install-subproject") self.run_in_venv(venv, venv, "pip", "install", "--no-index", "--find-links", linkdir, sdist) self.check_in_venv_withlib(venv) def test_easy_install(self): linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() sdist = self.make_setuptools_sdist() venv = self.make_venv("setuptools-sdist-easy-install") self.run_in_venv(venv, venv, "easy_install", "--index-url", indexdir, "--find-links", linkdir, sdist) self.check_in_venv_withlib(venv) class SetuptoolsWheel(_Invocations, unittest.TestCase): def test_pip_install(self): linkdir = self.make_linkdir() wheel = self.make_setuptools_wheel_with_setup_py() venv = self.make_venv("setuptools-wheel-pip-install") self.run_in_venv(venv, venv, "pip", "install", "--no-index", "--find-links", linkdir, wheel) self.check_in_venv_withlib(venv) class Egg(_Invocations, unittest.TestCase): def test_easy_install(self): linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() egg = self.make_setuptools_egg() venv = self.make_venv("setuptools-egg-easy-install") self.run_in_venv(venv, venv, "easy_install", "--index-url", indexdir, "--find-links", linkdir, egg) self.check_in_venv_withlib(venv) class DistutilsUnpacked(_Invocations, unittest.TestCase): def test_build(self): unpacked = self.make_distutils_unpacked() self.python("setup.py", "build", workdir=unpacked) # test that the built _version.py is correct. Ideally we'd actually # run PYTHONPATH=.../build/lib build/scripts-PYVER/rundemo and check # the output, but that's more fragile than I want to deal with today fn = os.path.join(unpacked, "build", "lib", "demo", "_version.py") data = versions_from_file(fn) self.assertEqual(data["version"], "2.0") def test_install(self): unpacked = self.make_distutils_unpacked() venv = self.make_venv("distutils-unpacked-install") self.run_in_venv(venv, unpacked, "python", "setup.py", "install") self.check_in_venv(venv) def test_install_subproject(self): unpacked = self.make_distutils_subproject_unpacked() venv = self.make_venv("distutils-subproject-unpacked-install") self.run_in_venv(venv, unpacked, "python", "setup.py", "install") self.check_in_venv(venv) def test_pip_wheel(self): unpacked = self.make_distutils_unpacked() wheelname = "demoapp2-2.0-%s-none-any.whl" % pyver_major venv = self.make_venv("distutils-unpacked-pip-wheel") self.run_in_venv(venv, unpacked, "pip", "wheel", "--wheel-dir", "wheelhouse", "--no-index",# "--find-links", linkdir, ".") created = os.path.join(unpacked, "wheelhouse", wheelname) self.assertTrue(os.path.exists(created), created) def test_pip_install(self): repodir = self.make_distutils_unpacked() venv = self.make_venv("distutils-unpacked-pip-install") self.run_in_venv(venv, repodir, "pip", "install", ".") self.check_in_venv(venv) def test_pip_install_subproject(self): unpacked = self.make_distutils_subproject_unpacked() venv = self.make_venv("distutils-subproject-unpacked-pip-install") self.run_in_venv(venv, unpacked, "pip", "install", ".") self.check_in_venv(venv) def test_pip_install_from_afar(self): repodir = self.make_distutils_unpacked() venv = self.make_venv("distutils-unpacked-pip-install-from-afar") self.run_in_venv(venv, venv, "pip", "install", repodir) self.check_in_venv(venv) class SetuptoolsUnpacked(_Invocations, unittest.TestCase): def test_install(self): unpacked = self.make_setuptools_unpacked() demolib = self.make_demolib_sdist() venv = self.make_venv("setuptools-unpacked-install") # "setup.py install" doesn't take --no-index or --find-links, so we # pre-install the dependency self.run_in_venv(venv, venv, "pip", "install", demolib) self.run_in_venv(venv, unpacked, "python", "setup.py", "install") self.check_in_venv_withlib(venv) def test_install_subproject(self): unpacked = self.make_setuptools_subproject_unpacked() demolib = self.make_demolib_sdist() venv = self.make_venv("setuptools-subproject-unpacked-install") # "setup.py install" doesn't take --no-index or --find-links, so we # pre-install the dependency self.run_in_venv(venv, venv, "pip", "install", demolib) self.run_in_venv(venv, unpacked, "python", "setup.py", "install") self.check_in_venv_withlib(venv) def test_easy_install(self): linkdir = self.make_linkdir() indexdir = self.make_empty_indexdir() unpacked = self.make_setuptools_unpacked() venv = self.make_venv("setuptools-unpacked-easy-install") self.run_in_venv(venv, unpacked, "python", "setup.py", "easy_install", "--index-url", indexdir, "--find-links", linkdir, "." ) self.check_in_venv_withlib(venv) def test_wheel(self): unpacked = self.make_setuptools_unpacked() self.python("setup.py", "bdist_wheel", workdir=unpacked) wheelname = "demoapp2-2.0-%s-none-any.whl" % pyver_major wheel = os.path.join(unpacked, "dist", wheelname) self.assertTrue(os.path.exists(wheel)) def test_pip_wheel(self): unpacked = self.make_setuptools_unpacked() linkdir = self.make_linkdir() wheelname = "demoapp2-2.0-%s-none-any.whl" % pyver_major venv = self.make_venv("setuptools-unpacked-pip-wheel") self.run_in_venv(venv, unpacked, "pip", "wheel", "--wheel-dir", "wheelhouse", "--no-index", "--find-links", linkdir, ".") created = os.path.join(unpacked, "wheelhouse", wheelname) self.assertTrue(os.path.exists(created), created) def test_pip_install(self): linkdir = self.make_linkdir() repodir = self.make_setuptools_unpacked() venv = self.make_venv("setuptools-unpacked-pip-install") self.run_in_venv(venv, repodir, "pip", "install", ".", "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) def test_pip_install_subproject(self): linkdir = self.make_linkdir() unpacked = self.make_setuptools_subproject_unpacked() venv = self.make_venv("setuptools-subproject-unpacked-pip-install") self.run_in_venv(venv, unpacked, "pip", "install", ".", "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) def test_pip_install_from_afar(self): linkdir = self.make_linkdir() repodir = self.make_setuptools_unpacked() venv = self.make_venv("setuptools-unpacked-pip-install-from-afar") self.run_in_venv(venv, venv, "pip", "install", repodir, "--no-index", "--find-links", linkdir) self.check_in_venv_withlib(venv) if __name__ == '__main__': unittest.main()
c12deb8dc47fab1d4779dededfad990fb6c4aaec
85c82274a3888fa61795bb0600ab96eaf7665b6a
/UTS/D_letterTArray.py
16e3541a8e3a1482da2c3cb3821ac21e8b71dafd
[]
no_license
refeed/StrukturDataA
8e5a214569f41b19c05842d003ede5941800482a
4d3b77bbd28158f1f1e64a49b8e90da731859407
refs/heads/master
2023-06-03T08:22:12.442536
2021-07-01T03:24:29
2021-07-01T03:24:29
360,478,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,324
py
''' Letter T Array Batas Run-time: 1 detik / test-case Batas Memori: 32 MB DESKRIPSI SOAL Bayangkan sebuah tabung seperti gambar di atas. Tabung dengan tiga cabang dan salah satunya menghadap ke atas. Kali ini kita akan bermain dengan sebuah array yang bentuknya seperti di atas. Proses “Push” data baru seakan menjatuhkan bola melalui cabang yang menghadap ke atas. Ketika banyak bola di bagian bawah adalah genap, maka bola baru akan jatuh tepat di tengah, sedangkan jika banyak bola di bagian bawah adalah ganjil maka bola jatuh akan berada di tepat sebelah kiri bola paling tengah. (Contoh dapat dilihat bagian akhir soal) PETUNJUK MASUKAN Baris pertama adalah bilangan bulat N, banyak data yang akan di-”Push”. N buah data selanjutnya adalah bilangan bulat yang akan di-”Push” pada array tersebut secara terurut. PETUNJUK KELUARAN Outputkan dari kiri ke kanan data yang ditampilkan pada bagian bawah array setelah semua data masuk CONTOH MASUKAN 1 5 1 2 3 4 5 CONTOH KELUARAN 1 2 4 5 3 1 CONTOH MASUKAN 2 4 4 1 3 2 CONTOH KELUARAN 2 1 2 3 4 KETERANGAN ''' num_of_data = int(input()) data_list = list(map(int, input().split())) data_in_letter_t = [] for data in data_list: data_in_letter_t.insert((len(data_in_letter_t) // 2), data) print(' '.join(list(map(str, data_in_letter_t))) + ' ')
39870bafb24d8c96b9d084eed585673395b338de
e61717bebf8f7d3790b0e98d868ea4ce33f9cc59
/TSIS10_upd/inserting many data.py
56017b448f12644780c3f8749161a0b6f3557868
[]
no_license
KanagatS/PP2
81672264b9720af8b15408c9d8228eb6da25378e
b53f5164d6fb753392870607d0506c5a3daaef88
refs/heads/master
2023-04-20T10:29:53.298342
2021-05-21T18:24:55
2021-05-21T18:24:55
334,276,558
0
0
null
null
null
null
UTF-8
Python
false
false
408
py
import psycopg2 con = psycopg2.connect( host='localhost', database='tsis', user='postgres', port=6666, password='' ) cur = con.cursor() # =============================================== sql = """INSERT INTO student(name) VALUES(%s);""" cur.executemany(sql, [('is',), ('KBTU',), ('student',)]) con.commit() # =============================================== cur.close() con.close()
08de08127f62aa59ec24287edeb7a29787f3ee2f
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/mesh3d/colorbar/title/_side.py
95426ff6b73e9ae7aeac6fa6b0ff209b476d779f
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
493
py
import _plotly_utils.basevalidators class SideValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="side", parent_name="mesh3d.colorbar.title", **kwargs ): super(SideValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "colorbars"), values=kwargs.pop("values", ["right", "top", "bottom"]), **kwargs )
a057006ec8e593fa858cdfaccd187d99b327366a
2be63b91334873f3044a0306344cc907828837b3
/deluxhotel/blog/admin.py
d61c286a38247c7ff27eb520836214b22d8382fb
[]
no_license
DmitriiGrekov/delux_hotel
ffcb34c99d5740e8591f5eb7a15ea5e72cd0f5be
0ac14d018166752827f486ba9d3e9553f0b52b67
refs/heads/master
2023-07-03T02:46:41.355875
2021-08-05T16:21:22
2021-08-05T16:21:22
393,068,592
0
0
null
null
null
null
UTF-8
Python
false
false
988
py
from django.contrib import admin from .models import TagsModel, BlogPostModel, CommentModel @admin.register(TagsModel) class TagsAdmin(admin.ModelAdmin): list_display = ('name', 'slug') prepopulated_fields = {'slug': ('name',)} @admin.register(BlogPostModel) class BlogAdmin(admin.ModelAdmin): list_display = ('title', 'author', 'publish_date', 'active') list_display_links = ('title', 'author') search_fields = ('title', 'author', 'text',) list_filter = ('author', 'publish_date', 'tags') prepopulated_fields = {'slug': ('title', 'author',)} @admin.register(CommentModel) class CommentAdmin(admin.ModelAdmin): list_display = ('name', 'email', 'date_publish') list_display_links = ('name', 'email') search_fields = ('name', 'email') list_filter = ('date_publish', 'post')
e67ff95685ab64f98a147c59594b3b7a7c4791ce
f59c06566e729380b032f050f852621f425553ac
/plugins/maze.py
83aeeebf2601c7cabe7ca38404b7a26d1aa3638a
[]
no_license
JonnoFTW/TonsleyLEDManager
c23e27cf7e9f61f97d2c42e3331bceae3fe66231
681771584f2b105a2b190641be2d2d1d9d785be1
refs/heads/master
2021-06-07T18:24:54.113308
2021-05-02T09:43:19
2021-05-02T09:43:19
55,032,673
4
7
null
2017-09-04T04:13:26
2016-03-30T04:33:25
Python
UTF-8
Python
false
false
6,100
py
class Runner: blue = [0, 0, 255] white = [255, 255, 255] black = [0, 0, 0] green = [0, 255, 0] red = [255, 0, 0] def __init__(self, board_dimensions): self.dims = board_dimensions import numpy as np self.np = np np.set_printoptions(threshold=np.nan) self.width = board_dimensions[1] self.height = board_dimensions[0] self.reset() # blue for the runner position # white for path # red for frontier # black for walls def reset(self): self.maze = self.np.zeros((self.height, self.width), dtype=self.np.uint8) for x in range(self.maze.shape[0]): if x % 2 == 0: self.maze[x].fill(1) for y in range(self.maze.shape[1]): if y % 2 == 0: self.maze[:, y].fill(1) self.generated = False # both need to be odd numbers self.C = [(self.np.random.choice(range(3, self.height-3, 2)), self.np.random.choice(range(3, self.width-3, 2)), 'W')] t = self.C[0] self.maze[t[0], t[1]] = 0 self.maze[t[0]-1, t[1]] = 0 self.maze[t[0]+1, t[1]] = 0 self.maze[t[0], t[1]+1] = 0 self.maze[t[0], t[1]-1] = 0 self.maze_generator = self.step() self.maze[0].fill(1) self.maze[-1].fill(1) def render_maze(self): out = self.np.empty((self.height, self.width, 3), dtype=self.np.uint8) for x, row in enumerate(self.maze): for y, cell in enumerate(row): if cell <= 0 or cell == 4: out[x, y] = self.white elif cell == 1: out[x, y] = self.black elif cell == 2: out[x, y] = self.red elif cell == 3 or cell == -2: out[x, y] = self.green elif cell == 5: out[x, y] = self.blue return out def step(self): while self.C: target = self.C[self.np.random.randint(0, len(self.C))] n = self.neighbours(target[0], target[1]) self.np.random.shuffle(n) if not n: self.maze[target[0], target[1]] = 4 if target[2] == 'S': self.maze[target[0], target[1]-1] = 4 elif target[2] == 'N': self.maze[target[0], target[1]+1] = 4 elif target[2] == 'E': self.maze[target[0]-1, target[1]] = 4 elif target[2] == 'W': self.maze[target[0]+1, target[1]] = 4 self.C.remove(target) else: # mark visited cells as 2 new_cell = n.pop() self.maze[new_cell[0], new_cell[1]] = 2 if new_cell[2] == 'S': self.maze[new_cell[0], new_cell[1]-1] = 2 elif new_cell[2] == 'N': self.maze[new_cell[0], new_cell[1]+1] = 2 elif new_cell[2] == 'E': self.maze[new_cell[0]-1, new_cell[1]] = 2 elif new_cell[2] == 'W': self.maze[new_cell[0]+1, new_cell[1]] = 2 self.C.append(new_cell) yield self.render_maze() def neighbours(self, x, y, v=2): return [(nx, ny, d) for nx, ny, d in [(x, y+v, 'S'), (x, y-v, 'N'), (x+v, y, 'E'), (x-v, y, 'W')] if 1 <= nx < self.maze.shape[0] and 0 <= ny < self.maze.shape[1] and self.maze[nx, ny] <= 0] def solve(self): #run the next step in maze # update runner position # get the random neighbours and move into one of them while self.stack: # get the neighbours of the current cell x, y, d = self.runner self.maze[x, y] = 5 n = self.neighbours(x, y, 1) if x >= self.height - 2: print "Solved" break if not n: self.runner = self.stack.pop() self.maze[self.runner[0], self.runner[1]] = 2 yield else: self.stack.extend(n) new_cell = n[0] self.runner = new_cell self.maze[new_cell[0], new_cell[1]] = 0 yield def run(self): if not self.generated: # do the next step in the maze generator try: return self.maze_generator.next() except StopIteration: self.generated = True for x in range(self.maze.shape[0]): for y in range(self.maze.shape[1]): if self.maze[x, y] != 1: self.maze[x, y] = 0 starts = list(self.np.where(self.maze[1] == 0)[0])# firsts white cell in the first column self.runner = [0, starts.pop(), 'E'] self.maze_solver = self.solve() self.stack = [self.runner] return self.render_maze() else: try: self.maze_solver.next() except StopIteration: # we hit the end of the maze or it's unsolvable! self.reset() return self.render_maze() if __name__ == "__main__": import pygame, sys FPS = 60 fpsClock = pygame.time.Clock() rows = 17 cols = 165 board_dimensions = (cols, rows) disp_size = (cols * 8, rows * 8) pygame.init() size = width, height = board_dimensions screen = pygame.display.set_mode(disp_size) runner = Runner(board_dimensions) while True: for e in pygame.event.get(): if e.type == pygame.QUIT: sys.exit() screen.fill((0, 0, 0)) # draw the pixels pixels = runner.run() temp_surface = pygame.Surface(board_dimensions) pygame.surfarray.blit_array(temp_surface, pixels) pygame.transform.scale(temp_surface, disp_size, screen) pygame.display.flip()
4280ff24cdcb735005428f197ee64f440e0f77ac
3a09048cb841d91ee39ef054f35b8572f3c166fb
/OnlineJudge/ojproblem/apps.py
1b720ddb973a9fee0b68995e95e12486f9580439
[]
no_license
lyyyuna/LihuLabOJ
91eddf27a16dca5488d5406e0224cf84544254b9
e1e8e5ae9da629a201f734a33d264bcb6ae2f420
refs/heads/master
2022-12-14T02:53:24.786670
2019-08-29T03:07:22
2019-08-29T03:07:22
89,581,070
1
2
null
2022-12-08T08:32:24
2017-04-27T09:34:55
Python
UTF-8
Python
false
false
158
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class OjproblemConfig(AppConfig): name = 'ojproblem'
bae085a67b4f224655e429058f60fbc44a5a185e
81407be1385564308db7193634a2bb050b4f822e
/the-python-standard-library-by-example/argparse/argparse_fromfile_prefix_chars.py
0d40b273f431ba758c22fcbbd05759f0f70e9057
[ "MIT" ]
permissive
gottaegbert/penter
6db4f7d82c143af1209b4259ba32145aba7d6bd3
8cbb6be3c4bf67c7c69fa70e597bfbc3be4f0a2d
refs/heads/master
2022-12-30T14:51:45.132819
2020-10-09T05:33:23
2020-10-09T05:33:23
305,266,398
0
0
MIT
2020-10-19T04:56:02
2020-10-19T04:53:05
null
UTF-8
Python
false
false
422
py
import argparse parser = argparse.ArgumentParser(description='Short sample app', fromfile_prefix_chars='@', ) parser.add_argument('-a', action="store_true", default=False) parser.add_argument('-b', action="store", dest="b") parser.add_argument('-c', action="store", dest="c", type=int) print(parser.parse_args(['@argparse_fromfile_prefix_chars.txt']))
fa07e854a21f6965ab962f6b3f56dc7d7a79a9ad
e5453b6a4b84a32ccca7281d438b7a7fa1853f58
/src/ibmc/checks/huawei_ibmc_memory_check.py
e9a2b6fbe8b988c64e006753256d5d2b4991b3ab
[ "MIT" ]
permissive
Huawei/Server_Management_Plugin_Check_MK
88445d9da581c347c5e82cf590453c4cb2c3d53c
88398c7c8affe0b2064f418de931d69e36afde67
refs/heads/master
2021-05-11T11:40:55.302518
2021-01-27T09:53:17
2021-01-27T09:53:17
117,641,709
1
4
null
2018-01-31T05:38:01
2018-01-16T06:30:39
null
UTF-8
Python
false
false
2,009
py
#!/usr/bin/python # # check_mk is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation in version 2. check_mk is distributed # in the hope that it will be useful, but WITHOUT ANY WARRANTY; with- # out even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU General Public License for more de- # tails. You should have received a copy of the GNU General Public # License along with GNU Make; see the file COPYING. If not, write # to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, # Boston, MA 02110-1301 USA. _health_map = {"1": 0, "2": 1, "3": 1, "4": 2, "5": 3, "6": 3} _health_str = {0: "OK", 1: "WARNING", 2: "CRITICAL", 3: "ABSENCE", 4: "UNKOWN"} def inventory_hw_memory_health(info): return [('MEMORY status', None)] def check_hw_memory_health(item, params, info): _health_status = 3 _msg = '' try: for state in info[0][0]: _health_status = _health_map.get(state) for state, index in info[1]: _each_status = _health_map.get(state) if _each_status is not None: if _each_status == 3: continue _health_msg = _health_str.get(_each_status) _msg = _msg + " %s health status is %s;" % (str(index), _health_msg) return _health_status, "healthy status is %s, %s" % (_health_str.get(_health_status), _msg) except IndexError: return "healthy status is not queried." check_info["huawei_ibmc_memory_check"] = { "inventory_function": inventory_hw_memory_health, "check_function": check_hw_memory_health, "service_description": "%s", "includes": ["huawei_ibmc_util_.include"], "snmp_info": [ (".1.3.6.1.4.1.2011.2.235.1.1.16", ["1.0", ]), (".1.3.6.1.4.1.2011.2.235.1.1.16", ["50.1.6", "50.1.10"]) ], "snmp_scan_function": scan, }
6f0d1ed0816ccbc48e4a42bfff7f7583a50f9a16
781f408fd9dc9fd111d5ac47009ab580636625e5
/examples/test_get_pdf_text.py
32573412e9a3e0199172d9ba0bd2f4394ab87c0d
[ "MIT" ]
permissive
doiteachday/SeleniumBase
fb003257b63e157b734d2b34a9c5794d74748322
8ded5fac84b85f1d4f43384d0836dbf4a1fc390e
refs/heads/master
2023-04-10T10:13:50.372864
2021-05-04T02:51:43
2021-05-04T02:51:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
from seleniumbase import BaseCase class PdfTests(BaseCase): def test_get_pdf_text(self): pdf = ("https://nostarch.com/download/" "Automate_the_Boring_Stuff_sample_ch17.pdf") pdf_text = self.get_pdf_text(pdf, page=1) print("\n" + pdf_text)
2594bcbf34b79c8031b60bfcbb34bbb0796cf491
0175bdc4c896e8019b2c5f7442097cf6b9c1d14a
/pylibs/BasePage.py
59ed9e3979940a13702c32503f2b2f7648643462
[]
no_license
GGGYB/shiiia
323ecee869dcd66510baf0ea7bc30b29c2bfb5ad
9760f170cbbec37cc340c3b020f36cdd9855e7cd
refs/heads/master
2023-05-02T07:58:37.023266
2021-05-31T09:41:07
2021-05-31T09:41:07
334,103,151
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
# -*- coding: utf-8 -*- # Author: sharon # Datetime: 2021/1/29 14:32 # File: $ {NAME} from pylibs.MyDriver import Driver from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait import time class BasePage(): ROBOT_LIBRARY_SCOPE = 'GLOBAL' def get_element(self,locator): WebDriverWait(driver=Driver.wd,timeout=10,poll_frequency=0.5).until( EC.visibility_of_element_located(locator) ) return Driver.wd.find_element(*locator) def get_elements(self,locator): WebDriverWait(driver=Driver.wd,timeout=10,poll_frequency=0.5).until( EC.visibility_of_element_located(locator) ) return Driver.wd.find_elements(*locator) def get_element_text(self,locators): eleText = [] for ele in self.get_elements(locators): eleText.append(ele.text) print(eleText) return eleText def scroll_to_window(self,step,scrollSize): for i in range(step): Driver.wd.execute_script(f'window.scrollBy(0,{scrollSize})') def to_page(self,url): Driver.wd.get(url) # 可以修改scrollTop的值来定位右侧滚动条的位置,0是最最顶部,10000是最底部。 def scroll_to_extreme(self,num): js = f"var q=document.documentElement.scrollTop={num}" Driver.wd.execute_script(js)
bc860517d0de7a0508431b8414cb45c85ec7b3e7
979cf7d5e2136e7e701df27da29622f9196f219e
/Files/views.py
6a8462440f919b5546e343a386846815375f1e1c
[]
no_license
RafayelGardishyan/DjangoTeamwork
e68c33844680c6a4e345fe8dfc2d3b4b49ccf2ef
6b030b161b67976445b292f0d5f7366a5eb48560
refs/heads/master
2021-09-16T07:03:51.280141
2018-01-06T20:50:11
2018-01-06T20:50:11
114,727,815
3
0
null
null
null
null
UTF-8
Python
false
false
5,901
py
import random from django.http import HttpResponse from django.shortcuts import redirect from django.template import loader from Start.models import Admin from .forms import FileForm from .models import File from webhooks import Webhook # Create your views here. values = { 'securitykey': "", 'whurl': "https://discordapp.com/api/webhooks/399280451258417162/ex_ix9eIhkltscgcS3AyiDt4iVqBpowzAg4LZIFsbuwcJ01jUMkM8Jp78B5YWX6zPoLM", } def index(request): if request.session.get('logged_in'): files = File.objects.order_by('added_on') template = loader.get_template('files/index.html') context = { 'files': files, } return HttpResponse(template.render(context, request)) else: return redirect('/') def delete(request, slug): if request.session.get('logged_in'): file = File.objects.get(slug=slug) filename = file.name user = Admin.objects.get(id=1) if request.GET: if request.GET['ak'] == values['securitykey']: file.deletefile() file.delete() template = loader.get_template('error.html') context = { 'message': 'Successfully deleted file ' + filename, 'link': { 'text': 'Return to Files home', 'url': '/files' } } embed = Webhook(values['whurl'], color=123123) embed.set_author(name='Codeniacs Website', icon='https://codename-codeniacs.herokuapp.com/static/favicon.png') embed.set_desc('Deleted File') embed.add_field(name='Name', value=filename) embed.set_thumbnail('https://codename-codeniacs.herokuapp.com/static/favicon.png') embed.set_footer(text='This message was automatically sent form Codeniacs Website', icon='https://codename-codeniacs.herokuapp.com/static/favicon.png', ts=True) embed.post() return HttpResponse(template.render(context, request)) else: template = loader.get_template('error.html') context = { 'message': 'Wrong Admin Key', 'link': { 'text': 'Return to Files home', 'url': '/files' } } return HttpResponse(template.render(context, request)) else: securitykey = "" for i in range(6): securitykey += str(random.randint(0, 9)) print(securitykey) user.sendemail('Delete File', 'Your Security Key is ' + str(securitykey)) values['securitykey'] = securitykey template = loader.get_template('files/delete.html') context = {} return HttpResponse(template.render(context, request)) else: return redirect('/') def add(request): # if this is a POST request we need to process the form data if request.session.get('logged_in'): if request.method == 'POST': # create a form instance and populate it with data from the request: form = FileForm(request.POST, files=request.FILES) # check whether it's valid: if form.is_bound: if form.is_valid(): form.save() template = loader.get_template('error.html') context = { 'message': 'Added File', 'link': { 'text': 'Return to Files home', 'url': '/files', }, 'slink': { 'text': 'Add an other File', 'url': '/files/add' }, } embed = Webhook(values['whurl'], color=123123) embed.set_author(name='Codeniacs Website', icon='https://codename-codeniacs.herokuapp.com/static/favicon.png') embed.set_desc('Added File') embed.add_field(name='Name', value=form.cleaned_data['file']) embed.set_thumbnail('https://codename-codeniacs.herokuapp.com/static/favicon.png') embed.set_footer(text='This message was automatically sent form Codeniacs Website', icon='https://codename-codeniacs.herokuapp.com/static/favicon.png', ts=True) embed.post() return HttpResponse(template.render(context, request)) else: template = loader.get_template('error.html') context = { 'message': 'Form is not valid', 'link': { 'text': 'Return to Files home', 'url': '/files' } } return HttpResponse(template.render(context, request)) else: template = loader.get_template('error.html') context = { 'message': 'Form is not bound', 'link': { 'text': 'Return to Files home', 'url': '/files' } } return HttpResponse(template.render(context, request)) # if a GET (or any other method) we'll create a blank form else: form = FileForm() template = loader.get_template('files/add.html') context = {'form': form} return HttpResponse(template.render(context, request)) else: return redirect('/')
9531a59085c598825838be55b85bd85e79853aaa
327e3c96db66c055d47be868ef5346ae3515b752
/SpiralMatrix.py
589762d3c9b41840dab60d26be27ea76aec14b69
[]
no_license
dabay/LeetCodePython
790a17893c46aa3a003ef95026471c21d869570d
fdac2086bc793584e05445f5d9afa74fee6fcb33
refs/heads/master
2021-03-12T23:34:04.496651
2017-08-24T15:55:02
2017-08-24T15:55:02
27,840,086
0
0
null
null
null
null
UTF-8
Python
false
false
1,611
py
# -*- coding: utf8 -*- ''' Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order. For example, Given the following matrix: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] You should return [1,2,3,6,9,8,7,4,5]. ''' class Solution: # @param strs, a list of strings # @return a list of strings def spiralOrder(self, matrix): def spiral_order(result, matrix, start_x, start_y, m, n): if n==0 or m==0: return if n == 1: for i in xrange(m): result.append(matrix[start_x+i][start_y]) return if m == 1: for i in xrange(n): result.append(matrix[start_x][start_y+i]) return for i in xrange(start_y, start_y+n): result.append(matrix[start_x][i]) for i in xrange(start_x+1, start_x+m): result.append(matrix[i][start_y+n-1]) for i in xrange(start_y+n-1-1, start_y-1, -1): result.append(matrix[start_x+m-1][i]) for i in xrange(start_x+m-1-1, start_x, -1): result.append(matrix[i][start_y]) return spiral_order(result, matrix, start_x + 1, start_y + 1, m-2, n-2) if len(matrix) == 0: return [] result = [] spiral_order(result, matrix, 0, 0, len(matrix), len(matrix[0])) return result if __name__ == "__main__": s = Solution() input = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]] print s.spiralOrder(input)
4b47d4fae81b2e9fe90c6198f017118e6e06407e
0b1c6a559c8f8f38ec0a9b62c5fdec786488c77e
/appspot/time_clock/migrations/0003_auto_20171005_1604.py
7f9c3ef6d7a0795f1365aaad23df686301d777d4
[]
no_license
smartworld1000/django_appspot
9372b1edeb3e9d2507ca49463d34b0cf22e652ed
d801d910ff52b83a45f3bf68334bb06a91b81221
refs/heads/master
2021-05-14T03:39:07.613510
2017-11-05T07:42:59
2017-11-05T07:42:59
116,621,632
0
0
null
null
null
null
UTF-8
Python
false
false
780
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2017-10-05 16:04 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('time_clock', '0002_auto_20171005_1551'), ] operations = [ migrations.AlterField( model_name='time_clock', name='timein', field=models.DateTimeField(help_text=''), ), migrations.AlterField( model_name='time_clock', name='timeout', field=models.DateTimeField(help_text=''), ), migrations.AlterField( model_name='time_clock', name='workdate', field=models.DateField(help_text=''), ), ]
c96102cd66d61620bf0f87c991aa8d335ee87949
cbd601867957c9abf19816c1b14bc455b54a6977
/themed_collection/views.py
6f4e9ee5c9b27cec49a080bd5da93739cf4f2178
[]
no_license
tingletech/voro-djsite
33640c8656af312650092594af8666c75c5d116b
d50da7c430d2e63436ad125be6ec62b3aa2174ac
refs/heads/master
2021-01-01T19:43:14.241476
2011-03-09T22:51:21
2011-03-09T22:51:21
1,089,200
0
1
null
null
null
null
UTF-8
Python
false
false
8,206
py
import csv import simplejson from django.shortcuts import render_to_response, get_object_or_404 from django.contrib.auth.decorators import permission_required, login_required from django.template import RequestContext from django.http import HttpResponse from django.http import Http404, HttpResponseForbidden, HttpResponseBadRequest from django import forms from django.conf import settings from geocoders_dsc import Google, GeoCodeException from themed_collection.models import ThemedCollection from xtf.models import ARKSet, ARKSetMember, ARKObject, GeoPoint, XTFNOTFOUND #should get urls from ARKSet! from xtf.models import DublinCoreTerm from xtf.ARK_validator import validate, extract def ARKSetMember_map_data(member): '''build the data object for an ARKSetMember''' if member.object.titles: #titles = ' '.join([ d['value'] for d in member.object.titles]) # Used when BeautifulSoup is parser, should probably wrap the elem... titles = ' '.join([ d.content for d in member.object.titles if d.content]) #-- used whne ElementTree is parser else: titles = member.title if member.object.dates: #dates = ' '.join([ d['value'] for d in member.object.dates if d]) dates = ' '.join([ d.content for d in member.object.dates if d.content]) else: dates = '' return dict(title=titles, date=dates, note=member.annotation, lat=member.lat, lon=member.lon, place=member.place, thumbnail=member.object.thumbnail, url_content=member.object.url_content, image=member.object.image, exact=member.location_exact, ) def collection_members_map_data(member_list): data = {} for member in member_list: data[member.object.ark]= ARKSetMember_map_data(member) return data def collection_members_map_json(member_list): return simplejson.dumps(collection_members_map_data(member_list)) def view_json(request, pk=None, slug=None): '''Return a simple almost static view ''' if slug: themed_collection = get_object_or_404(ThemedCollection, slug=slug) elif pk: themed_collection = get_object_or_404(ThemedCollection, pk=pk) else: raise Http404 collection_members = themed_collection.get_members() #compile map data json = collection_members_map_json(collection_members) return HttpResponse(json, mimetype='application/json') def view_themed_collection(request, pk=None, slug=None): '''Return a simple almost static view ''' if slug: themed_collection = get_object_or_404(ThemedCollection, slug=slug) elif pk: themed_collection = get_object_or_404(ThemedCollection, pk=pk) else: raise Http404 collections = ThemedCollection.objects.all() collection_members = themed_collection.get_members() google_map_key = settings.GOOGLE_MAP_KEY return render_to_response('themed_collection/view_collection.html', locals() ) def _parse_csv_row(csv_row): '''Wants a csv row list. Parses into a dict suitable for creating an arksetmember object ''' if len(csv_row) < 2: raise ValueError('Must have ARK, annotation in csv row') ark = csv_row[1] ark = ark[ark.index('ark:'):] #validate ark ark, NAAN, name, qual = extract(ark) title = csv_row[2] region = csv_row[0] city = csv_row[4] geo_place = csv_row[5] geo_place_notes = csv_row[9] dates = csv_row[6] theme_type = csv_row[7] notes = csv_row[9] mosaic = False if csv_row[10] == '' else True exact = True if csv_row[11] == '' else False ret_dict = locals() del ret_dict['csv_row'] return ret_dict def _parse_csv(csv_reader, arkset, themed_collection): errors = [] arks_added = [] members_added = [] num_add = 0 not_geocoded = [] numrows = 0 g = Google('ABQIAAAAPZhPbFDgyqqKaAJtfPgdhRQxAnOebRR8qqjlEjE1Y4ZOeQ67yxSVDP1Eq9oU2BZjw2PaheQ5prTXaw') for row in csv_reader: numrows+=1 try: data = _parse_csv_row(row) #print data except ValueError, e: errors.append((e, row)) continue try: arkobj, created = ARKObject.get_or_create(ark=data['ark']) if created: arks_added.append(arkobj) except XTFNOTFOUND, e: errors.append((e, row)) continue member = ARKSetMember(object=arkobj, set=arkset, annotation=data['notes']) try: member.save() members_added.append(member) # is there a title? if so create a DCTerm for title if (data['title']): try: dcterm = DublinCoreTerm(content_object=member, term='T', content=data['title']) dcterm.save() except: pass #attempt geocode place = lat = lng = None try: if not data['geo_place']: location = ' '.join((data['city'], 'CA')) not_geocoded.append((member, "Only to city level", location)) else: location = data['geo_place'] place, (lat, lng) = g.geocode(location) gpt = GeoPoint(content_object=member, lat=lat, lon=lng, place=place, exact=data['exact']) gpt.save() except GeoCodeException, e: not_geocoded.append((member,e.message, location)) #except IntegrityError, e: #except _mysql_exceptions.IntegrityError, e: #except _mysql_exceptions.MySQLError, e #is in mosaic? if data['mosaic']: themed_collection.mosaic_members.add(member) except: import sys e = sys.exc_info() if e[1].message.find("IntegrityError(1062"): errors.append(("Duplicate Member entry for row, an ARK can only have one entry in a set.", row)) else: errors.append((e[1], row)) return numrows, errors, members_added, arks_added, not_geocoded #Decorator won't work, need to check object level perm... #@permission_required('xtf.change_arkset') @login_required def input_csv(request, pk): '''Input a csv of ARKSetMembers into a given arkset ''' themed_collection = get_object_or_404(ThemedCollection, pk=pk) # if not request.user.has_perm('xtf.change_themedcollection', themed_collection): # return HttpResponseForbidden('<h1>Permission Denied</h1>') arkset_choices = [(arkset.pk, arkset.title) for arkset in themed_collection.arksets.all()] class UploadFileForm(forms.Form): set = forms.ChoiceField(choices=arkset_choices) file = forms.FileField() if request.method == 'POST': form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): if not request.FILES: form.errors['file'] = ('NO FILE INPUT',) else: #THIS SUCKS, LOOKS LIKE THE DJANGO UPLOAD FILE doesn't use universal newlines, can i fix by reading into one that does? #TODO: fix this problem with newlines here, how? # the UploadFile object bombs right away... # may need to read into file, then do a universal newline read csv_reader = csv.reader(form.cleaned_data['file']) arkset = ARKSet.objects.get(id=form.cleaned_data['set']) numrows, errs, set_members_added, arks_added, not_geocoded = _parse_csv(csv_reader, arkset, themed_collection) num = len(set_members_added) return render_to_response('themed_collection/input_csv_result.html', locals(), ) else: form = UploadFileForm() return render_to_response('themed_collection/input_csv.html', locals(), )
[ "none@none" ]
none@none
0b3008da0bf7f113d48b9ab99344fb70cf022591
90f729624737cc9700464532a0c67bcbfe718bde
/lino_xl/lib/cv/mixins.py
2cf6c081a9ea76a806bd42afe738a54f12383a91
[ "AGPL-3.0-only" ]
permissive
lino-framework/xl
46ba6dac6e36bb8e700ad07992961097bb04952f
642b2eba63e272e56743da2d7629be3f32f670aa
refs/heads/master
2021-05-22T09:59:22.244649
2021-04-12T23:45:06
2021-04-12T23:45:06
52,145,415
1
5
BSD-2-Clause
2021-03-17T11:20:34
2016-02-20T09:08:36
Python
UTF-8
Python
false
false
6,328
py
# -*- coding: UTF-8 -*- # Copyright 2013-2020 Rumma & Ko Ltd # License: GNU Affero General Public License v3 (see file COPYING for details) from django.conf import settings from django.db import models from django.utils.translation import gettext from lino.api import dd, rt, _ from etgen.html import E, join_elems, forcetext from lino.mixins.periods import DateRange NONE = _("Not specified") class BiographyOwner(dd.Model): class Meta: abstract = True _cef_levels = None _mother_tongues = None def load_language_knowledge(self): if self._mother_tongues is not None: return LanguageKnowledge = rt.models.cv.LanguageKnowledge self._cef_levels = dict() self._mother_tongues = [] qs = LanguageKnowledge.objects.filter(person=self) # if dd.plugins.cv.with_language_history: # qs = qs.order_by('-entry_date', 'id') # else: # qs = qs.order_by('id') for lk in qs: if lk.native: self._mother_tongues.append(lk.language) # if lk.language.iso2 in ("de", "fr", "en"): if lk.cef_level is not None: if not lk.language.iso2 in self._cef_levels: lkinfo = str(lk.cef_level.value) if lk.has_certificate: lkinfo += " ({})".format(_("Certificate")) self._cef_levels[lk.language.iso2] = lkinfo @dd.htmlbox(_("Language knowledge")) def language_knowledge(self, ar): return self.get_language_knowledge() def get_language_knowledge(self, *buttons): self.load_language_knowledge() lst = [] for lng in settings.SITE.languages: lst.append("{}: {}".format( lng.name, self._cef_levels.get(lng.django_code, NONE))) # if cl is None: # lst.append("{}: {}".format(lng.name, )) # else: # lst.append("{}: {}".format(lng.name, cl)) if len(self._mother_tongues): lst.append("{}: {}".format( _("Mother tongues"), self.mother_tongues)) lst += buttons lst = join_elems(lst, E.br) return E.p(*lst) @dd.displayfield(_("Mother tongues")) def mother_tongues(self, ar): self.load_language_knowledge() return ' '.join([str(lng) for lng in self._mother_tongues]) # @dd.displayfield(_("CEF level (de)")) @dd.displayfield() def cef_level_de(self, ar): self.load_language_knowledge() return self._cef_levels.get('de', NONE) # @dd.displayfield(_("CEF level (fr)")) @dd.displayfield() def cef_level_fr(self, ar): self.load_language_knowledge() return self._cef_levels.get('fr', NONE) # @dd.displayfield(_("CEF level (en)")) @dd.displayfield() def cef_level_en(self, ar): self.load_language_knowledge() return self._cef_levels.get('en', NONE) class EducationEntryStates(dd.ChoiceList): verbose_name = _("State") add = EducationEntryStates.add_item add('0', _("Success"), 'success') add('1', _("Failure"), 'failure') add('2', _("Ongoing"), 'ongoing') class HowWell(dd.ChoiceList): verbose_name = _("How well?") add = HowWell.add_item add('0', _("not at all")) add('1', _("a bit")) add('2', _("moderate"), "default") add('3', _("quite well")) add('4', _("very well")) class CefLevel(dd.ChoiceList): verbose_name = _("CEF level") verbose_name_plural = _("CEF levels") # show_values = True #~ @classmethod #~ def display_text(cls,bc): #~ def fn(bc): #~ return u"%s (%s)" % (bc.value,unicode(bc)) #~ return lazy(fn,unicode)(bc) add = CefLevel.add_item add('A0') add('A1') add('A1+') add('A2') add('A2+') add('B1') add('B2') add('B2+') add('C1') add('C2') add('C2+') # add('A0', _("basic language skills")) # add('A1', _("basic language skills")) # add('A1+', _("basic language skills")) # add('A2', _("basic language skills")) # add('A2+', _("basic language skills")) # add('B1', _("independent use of language")) # add('B2', _("independent use of language")) # add('B2+', _("independent use of language")) # add('C1', _("proficient use of language")) # add('C2', _("proficient use of language")) # add('C2+', _("proficient use of language")) class SectorFunction(dd.Model): class Meta: abstract = True sector = dd.ForeignKey("cv.Sector", blank=True, null=True) function = dd.ForeignKey("cv.Function", blank=True, null=True) @dd.chooser() def function_choices(cls, sector): if sector is None: return rt.models.cv.Function.objects.all() return sector.function_set.all() class PersonHistoryEntry(DateRange): class Meta: abstract = True person = dd.ForeignKey(dd.plugins.cv.person_model) duration_text = models.CharField( _("Duration"), max_length=200, blank=True) class HistoryByPerson(dd.Table): master_key = 'person' order_by = ["start_date"] auto_fit_column_widths = True @classmethod def create_instance(self, req, **kw): obj = super(HistoryByPerson, self).create_instance(req, **kw) if obj.person_id is not None: previous_exps = self.model.objects.filter( person=obj.person).order_by('start_date') if previous_exps.count() > 0: exp = previous_exps[previous_exps.count() - 1] if exp.end_date: obj.start_date = exp.end_date else: obj.start_date = exp.start_date return obj @classmethod def get_table_summary(cls, mi, ar): if mi is None: return items = [] ar = ar.spawn(cls, master_instance=mi, is_on_main_actor=False) for obj in ar: chunks = [] for e in cls.get_handle().get_columns(): if e.hidden: continue v = e.field._lino_atomizer.full_value_from_object(obj, ar) if v: if len(chunks) > 0: chunks.append(", ") chunks += [e.get_label(), ": ", E.b(e.format_value(ar, v))] items.append(E.li(*forcetext(chunks))) return E.ul(*items)
13097b1d3f56a2e6dabdbab7527c0f64a21c2ad4
4732684be0b1a45c2aebe45d22558a9e1bd7f377
/src/main.py
8ba296d023c3861d1fe711862ef41a6e31bdf7b5
[]
no_license
Griffinem/Trade-Up-EV
a7e0175d333daa04d94268e9342ade2084440084
b9b8b5954517432f9e2d57b45e7ee658008eca6c
refs/heads/master
2022-08-28T09:22:10.180323
2022-08-18T14:26:44
2022-08-18T14:26:44
247,586,523
2
0
null
null
null
null
UTF-8
Python
false
false
7,474
py
#from api_utils import * import json import requests import time item_price_data_url = 'http://csgobackpack.net/api/GetItemsList/v2/' weapon_data_file_path = '..\scraping\weapon_data_file.json' ev_output_file_path = 'ev_data_file.json' float_cutoffs = {'Factory New': [0.0, 0.07], 'Minimal Wear': [0.07, 0.15], 'Field-Tested': [0.15, 0.38], 'Well-Worn': [0.38, 0.45], 'Battle-Scarred': [0.45, 1.0]} wear_int_dict = {0: 'Factory New', 1: 'Minimal Wear', 2: 'Field-Tested', 3: 'Well-Worn', 4: 'Battle-Scarred'} grade_int_dict = {0: 'consumer', 1: 'industrial', 2: 'milspec', 3: 'restricted', 4: 'classified', 5: 'covert'} metadata = {} ev_dict = {} def get_item_best_wear(wear_min): if wear_min < float_cutoffs['Factory New'][1]: return 0 elif wear_min < float_cutoffs['Minimal Wear'][1]: return 1 elif wear_min < float_cutoffs['Field-Tested'][1]: return 2 elif wear_min < float_cutoffs['Well-Worn'][1]: return 3 else: return 4 def get_item_worst_wear(wear_max): if wear_max >= float_cutoffs['Battle-Scarred'][0]: return 4 elif wear_max >= float_cutoffs['Well-Worn'][0]: return 3 elif wear_max >= float_cutoffs['Field-Tested'][0]: return 2 elif wear_max >= float_cutoffs['Minimal Wear'][0]: return 1 else: return 0 def get_tradeup_ev(coll, grade): for (i, weapon_i) in enumerate(coll[ grade_int_dict[grade] ]): # Get best wear and worst wear as int item_best_wear, item_worst_wear = get_item_best_wear(weapon_i['wear_min']), get_item_worst_wear(weapon_i['wear_max']) ''' The tertiary loop will iterate over each weapon wear ''' for wear_val in range(item_best_wear, item_worst_wear+1): break_val = False # Get the tradeup cost weapon_key_str = weapon_i['name'] + ' (' + wear_int_dict[wear_val] + ')' try: tradeup_cost = price_data[weapon_key_str]['price'][ metadata['time'] ][ metadata['metric'] ] * 10 except KeyError: #print('Error getting {0}. Breaking...'.format(weapon_key_str)) break_val = True break #print('Trading up {}'.format(weapon_key_str)) # Get tradeup float avg tradeup_float_avg = 0.0 if metadata['float'] == 'median': # Special cases if wear_val == item_best_wear: tradeup_float_avg = (weapon_i['wear_min'] + float_cutoffs[ wear_int_dict[wear_val] ][1]) / 2.0 elif wear_val == item_worst_wear: tradeup_float_avg = (float_cutoffs[ wear_int_dict[wear_val] ][0] + weapon_i['wear_max']) / 2.0 #Default else: tradeup_float_avg = (float_cutoffs[ wear_int_dict[wear_val] ][0] + float_cutoffs[ wear_int_dict[wear_val] ][1]) / 2.0 elif metadata['float'] == 'min': # Special cases if wear_val == item_best_wear: tradeup_float_avg = weapon_i['wear_min'] # Default else: tradeup_float_avg = float_cutoffs[ wear_int_dict[wear_val] ][0] elif metadata['float'] == 'max': # Special cases if wear_val == item_worst_wear: tradeup_float_avg = weapon_i['wear_max'] # Default else: tradeup_float_avg = float_cutoffs[ wear_int_dict[wear_val] ][1] ''' The quat...iary loop will iterate over each weapon in the next-highest weapon group to get the EV''' ev = 0 tradeup_gross_list = [] all_profit = True for (j, weapon_tu_j) in enumerate(coll[ grade_int_dict[grade+1] ]): # Calculation: # Resulting Float = (Avg(Tradeup Float) * [Result_Max - Result_Min]) + Result_Min j_float = (tradeup_float_avg * (weapon_tu_j['wear_max'] - weapon_tu_j['wear_min'])) + weapon_tu_j['wear_min'] j_wear = 0 if j_float < 0.07: j_wear = 0 elif j_float < 0.15: j_wear = 1 elif j_float < 0.38: j_wear = 2 elif j_float < 0.45: j_wear = 3 else: j_wear = 4 j_weapon_key_str = weapon_tu_j['name'] + ' (' + wear_int_dict[j_wear] + ')' try: tradeup_net = price_data[j_weapon_key_str]['price'][ metadata['time'] ][ metadata['metric'] ] except KeyError: #print('Error getting {0}. Breaking...'.format(j_weapon_key_str)) break_val = True break # Rough gross value - steam fees # TODO: Modify this to work with bitskins/other site prices tradeup_gross = tradeup_net * 0.87 # For checking variance tradeup_gross_list.append(tradeup_gross) # For checking all profit profit = tradeup_gross - tradeup_cost if profit < 0: all_profit = False #print('1/{0} chance for {1}'.format(len(coll[ grade_int_dict[grade+1] ]), j_weapon_key_str)) ev += ( (profit) / len(coll[ grade_int_dict[grade+1] ]) ) if break_val != True: #print('Trade up 10x {0} at {1} float values results in Expected Value of ${2:.4f}'.format(weapon_key_str, metadata['float'], ev)) ev_dict[weapon_key_str] = [ev, tradeup_cost, tradeup_gross_list, all_profit] if __name__ == '__main__': ev_output_file_path = str(input('Enter output file path ("ev_output_file_.json"): ')) ''' Gather metadata for query params ''' md_time = str(input('Enter price search time [24_hours, 7_days, 30_days, all_time]: ')) while md_time not in ['24_hours', '7_days', '30_days', 'all_time']: md_time = str(input('Please enter one of the following price search times [24_hours, 7_days, 30_days, all_time]: ')) metadata['time'] = md_time md_metric = str(input('Enter price metric [median, average, lowest_price, highest_price]: ')) while md_metric not in ['median', 'average', 'lowest_price', 'highest_price']: md_metric = str(input('Please enter one of the following price metrics [median, average, lowest_price, highest_price]: ')) metadata['metric'] = md_metric #md_sold_min = int(input('Enter minimum sold (holds for all items individually in the calculation): ')) #while type(md_sold_min) != 'int': # md_sold_min = input('Please enter an integer value: ') #metadata['sold_min'] = int(md_sold_min) md_float = str(input('Enter float [min, median, max]: ')) while md_float not in ['min', 'median', 'max']: md_float = str(input('Float must be in [min, median, max]: ')) metadata['float'] = md_float ''' Generate price data from csgobackpack API ''' start_a = time.time() response = requests.get(item_price_data_url).json() timestamp = response['timestamp'] price_data = response['items_list'] # Get items data from scraper (use utf8 for the chinese m4 I think) with open(weapon_data_file_path, 'r', encoding='utf8') as weapon_data_file: weapon_data = json.load(weapon_data_file) elapsed_a = time.time() - start_a print('Load finished in {0} seconds'.format(elapsed_a)) ''' The main loop will iterate over individual case/collection ''' start_b = time.time() for key in weapon_data.keys(): coll = weapon_data[key] ''' The secondary loop will iterate over rarity ''' ## Consumer Grade if len(coll['industrial']) > 0: get_tradeup_ev(coll, 0) ## Industrial Grade if len(coll['milspec']) > 0: get_tradeup_ev(coll, 1) ## Mil-Spec Grade if len(coll['restricted']) > 0: get_tradeup_ev(coll, 2) ## Restricted Grade if len(coll['classified']) > 0: get_tradeup_ev(coll, 3) ## Classified Grade if len(coll['covert']) > 0: get_tradeup_ev(coll, 4) elapsed_b = time.time() - start_b ev_dict_sorted = {k: v for k, v in sorted(ev_dict.items(), key=lambda item: item[1], reverse=True)} with open(ev_output_file_path, 'w', encoding='utf8') as ev_output_file: json.dump(ev_dict_sorted, ev_output_file) print('EV check finished in {0} seconds'.format(elapsed_b))
467540c5dee5db0e3e5e016eb7da46ba682879e5
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_muzzle.py
b303154fa083e4f00aab3ba2e61101f50ea18ee8
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
457
py
#calss header class _MUZZLE(): def __init__(self,): self.name = "MUZZLE" self.definitions = [u'the mouth and nose of an animal, especially a dog, or a covering put over this in order to prevent the animal from biting', u'the end of a gun barrel, where the bullets come out'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
343d00dfa90099304af3a226951dacbb1f31c590
2f0c30fda27d1167f5a4850bdf9b5040815a162e
/bin/ext_service/reset_habitica_timestamps.py
61527988d6e4ef8bfd71c972e4eb8b140849ae22
[ "BSD-3-Clause" ]
permissive
ankur-gos/e-mission-server
1117e8154174a953c7df47a1f1aa15c29a2a1819
64b098540e331ef2bb41bd9fe7a165ff53cc7a87
refs/heads/master
2021-01-01T18:10:26.314393
2017-07-26T06:03:56
2017-07-26T06:03:56
98,269,025
0
0
null
2017-07-25T05:48:37
2017-07-25T05:48:37
null
UTF-8
Python
false
false
3,059
py
""" Script to launch the pipeline reset code. Options documented in https://github.com/e-mission/e-mission-server/issues/333#issuecomment-312464984 """ import logging import argparse import uuid import arrow import copy import pymongo import emission.net.ext_service.habitica.executor as enehe import emission.core.get_database as edb def _get_user_list(args): if args.all: return _find_all_users() elif args.platform: return _find_platform_users(args.platform) elif args.email_list: return _email_2_user_list(args.email_list) else: assert args.user_list is not None return [uuid.UUID(u) for u in args.user_list] def _find_platform_users(platform): return edb.get_timeseries_db().find({'metadata.platform': platform}).distinct( 'user_id') def _find_all_users(): return edb.get_timeseries_db().find().distinct('user_id') def _email_2_user_list(email_list): return [ecwu.User.fromEmail(e) for e in email_list] if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Reset the habitica pipeline. Does NOT delete points, so to avoid double counting, use only in situations where the original run would not have given any points") # Options corresponding to # https://github.com/e-mission/e-mission-server/issues/333#issuecomment-312464984 group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-a", "--all", action="store_true", default=False, help="reset the pipeline for all users") group.add_argument("-p", "--platform", choices = ['android', 'ios'], help="reset the pipeline for all on the specified platform") group.add_argument("-u", "--user_list", nargs='+', help="user ids to reset the pipeline for") group.add_argument("-e", "--email_list", nargs='+', help="email addresses to reset the pipeline for") parser.add_argument("date", help="date to reset the pipeline to. Format 'YYYY-mm-dd' e.g. 2016-02-17. Interpreted in UTC, so 2016-02-17 will reset the pipeline to 2016-02-16T16:00:00-08:00 in the pacific time zone") parser.add_argument("-n", "--dry_run", action="store_true", default=False, help="do everything except actually perform the operations") args = parser.parse_args() print args print "Resetting timestamps to %s" % args.date print "WARNING! Any points awarded after that date will be double counted!" # Handle the first row in the table day_dt = arrow.get(args.date, "YYYY-MM-DD") logging.debug("day_dt is %s" % day_dt) day_ts = day_dt.timestamp logging.debug("day_ts is %s" % day_ts) user_list = _get_user_list(args) logging.info("received list with %s users" % user_list) logging.info("first few entries are %s" % user_list[0:5]) for user_id in user_list: logging.info("resetting user %s to ts %s" % (user_id, day_ts)) enehe.reset_all_tasks_to_ts(user_id, day_ts, args.dry_run)
27d8155ee1f3dc72b0330c152644cb7e74f95a4e
b5f6109c3c70faa409bdc83d24e16195249e577a
/transviz.py
d41569720c2debfebdd5797ba0ae71f94695a867
[]
no_license
afcarl/transviz
1b079d7a7be35d65016be7fe4fa97c7077bf5630
9ed0a7b9945923cc2dd02fac45596b3165bcabe2
refs/heads/master
2020-03-20T06:07:23.631534
2015-02-27T16:50:06
2015-02-27T16:50:06
137,239,478
1
0
null
2018-06-13T16:07:04
2018-06-13T16:07:04
null
UTF-8
Python
false
false
11,686
py
from __future__ import division import numpy as np import networkx as nx from collections import defaultdict import hashlib import os import cPickle as pickle from cStringIO import StringIO from transvizutil import rgb2hexa, num_args, get_usages, normalize_transmat # TODO add igraph kk layout # TODO circo bend through middle? # TODO node shrinking by adding node copies behind the originals! # default graphviz attributes graphdefaults = dict( dpi='72', outputorder='edgesfirst', # bgcolor='transparent', # splines='true', # segfault? https://github.com/ellson/graphviz/issues/42 ) nodedefaults = dict( shape='circle', fillcolor='white', style='filled', fixedsize='true', penwidth=1.3, ) edgedefaults = dict() # default arguments to graphviz layout routines graphviz_layouts = { 'twopi':{}, 'gvcolor':{}, 'wc':{}, 'ccomps':{}, 'tred':{}, 'sccmap':{}, 'fdp':{}, 'circo':{}, 'neato':{'overlap':'false','sep':'+8'}, 'acyclic':{}, 'nop':{}, 'gvpr':{}, 'dot':{}, 'sfdp':{}, } # default arguments to networkx layout routines networkx_layouts = { 'circular':{'scale':120}, 'shell':{'scale':120}, 'spring':{'scale':120}, 'spectral':{'scale':250}, 'fruchterman_reingold':{'scale':120}, } # converters from my attribute formats to graphviz formats def color_converter(rgba): if not isinstance(rgba[0],(list,tuple)): return rgb2hexa(rgba) else: return ':'.join(rgb2hexa(_) for _ in rgba) converters = defaultdict( lambda: str, { 'pos': lambda xy: '%f,%f!' % xy, 'color': color_converter, 'fillcolor': color_converter, 'weight': lambda x: x, } ) def convert(dct): ret = {} for attr, val in dct.items(): try: ret[attr] = converters[attr](val) except: ret[attr] = val return ret class TransGraph(nx.DiGraph): def __init__(self,A,Nmax=None,edge_threshold=0.): self.A = normalize_transmat(A) self.usages = get_usages(A,normalized=True) # initialize as an nx.DiGraph if Nmax is None: super(TransGraph,self).__init__(self.A) else: super(TransGraph,self).__init__() most_used = np.argsort(self.usages)[::-1][:Nmax] for label in most_used: self.add_node(label) for (i,j), val in np.ndenumerate(self.A): if i in most_used and j in most_used: if val > edge_threshold: self.add_edge(i,j,weight=val) # set defaults self.graph['graph'] = graphdefaults self.graph['node'] = nodedefaults self.graph['edge'] = edgedefaults def graph_attrs(self,**kwargs): self.graph['graph'].update(convert(kwargs)) return self def node_attrs(self,func): nargs = num_args(func) if nargs == 1: for i, node in self.nodes_iter(data=True): node.update(convert(func(i))) elif nargs == 2: for i, node in self.nodes_iter(data=True): node.update(convert(func(i,self.usages[i]))) else: raise ValueError('func must take 1 or 2 arguments') return self def edge_attrs(self,func): nargs = num_args(func) if nargs == 1: for i, j, edge in self.edges_iter(data=True): edge.update(convert(func((i,j)))) elif nargs == 2: for i, j, edge in self.edges_iter(data=True): edge.update(convert(func(i,j))) elif nargs == 3: for i, j, edge in self.edges_iter(data=True): edge.update(convert(func(i,j,self.A[i,j]))) else: raise ValueError('func must take 1, 2, or 3 arguments') return self @staticmethod def get_cachename(algname,weights): return algname + hashlib.sha1(np.array(weights)).hexdigest()[:6] def layout(self,algname=None,posdict=None,**kwargs): assert (algname is not None) ^ (posdict is not None), \ 'must pass algname or posdict' if posdict is None: cachename = self.get_cachename( algname, [self.edge[i][j]['weight'] for (i,j) in self.edges()]) if os.path.isfile(cachename): with open(cachename,'r') as infile: posdict = pickle.load(infile) else: if algname in graphviz_layouts: self.graph['graph'].update(dict(graphviz_layouts[algname],**kwargs)) posdict = nx.graphviz_layout(self,algname) elif algname in networkx_layouts: func = nx.__dict__[algname+'_layout'] kwargs = dict(networkx_layouts[algname],**kwargs) kwargs['scale'] *= np.sqrt(self.order()) posdict = func(self,**kwargs) else: raise ValueError( 'algname must be one of %s' % (graphviz_layouts.keys() + networkx_layouts.keys())) with open(cachename,'w') as outfile: pickle.dump(posdict,outfile,protocol=-1) self.node_attrs(lambda i: {'pos':posdict[i]}) self.posdict = posdict self.has_layout = True return self def draw(self,outfile=None,matplotlib=True,notebook=False): agraph = nx.to_agraph(self) agraph.has_layout = self.has_layout if outfile is None: pngstr = self._get_agraph_pngstr(agraph) if matplotlib and not notebook: import matplotlib.pyplot as plt import matplotlib.image as mpimg plt.imshow(mpimg.imread(pngstr),aspect='equal') plt.axis('off') if notebook: from IPython.display import Image, display display(Image(data=pngstr)) else: agraph.draw(outfile) @staticmethod def _get_agraph_pngstr(agraph): sio = StringIO() agraph.draw(sio,format='png') ret = sio.getvalue() sio.close() return ret def prune_edges(self,func): nargs = num_args(func) if nargs == 1: to_remove = \ [(i,j) for i, j, edge in self.edges_iter(data=True) if func((i,j))] elif nargs == 2: to_remove = \ [(i,j) for i, j, edge in self.edges_iter(data=True) if func(i,j)] elif nargs == 3: to_remove = \ [(i,j) for i, j, edge in self.edges_iter(data=True) if func(i,j,self.A[i,j])] else: raise ValueError('func must take 1, 2, or 3 arguments') for e in to_remove: self.remove_edge(*e) return self ### convenience def highlight(self,node, incolor=(0.21568627450980393, 0.47058823529411764, 0.7490196078431373), outcolor=(0.996078431372549, 0.7019607843137254, 0.03137254901960784)): self.node_attrs( lambda i: {'color': (0.,0.,0.,1.0 if i == node else 0.05)})\ .edge_attrs( lambda i,j,aij: {'color': (incolor if j == node else outcolor) + (aij if i == node or j == node else 0.0,)}) return self class TransDiff(TransGraph): def __init__(self,(A,B),Nmax=None,edge_threshold=0.): self.A = normalize_transmat(A) self.B = normalize_transmat(B) self.A_usages = get_usages(A,normalized=True) self.B_usages = get_usages(B,normalized=True) self.has_foreground_nodes = False # initialize as an nx.DiGraph if Nmax is None: nx.DiGraph.__init__(self,self.A+self.B) else: nx.DiGraph.__init__(self) most_used = np.argsort(self.A_usages + self.B_usages)[::-1][:Nmax] for label in most_used: self.add_node(label) for (i,j), val in np.ndenumerate(self.A+self.B): if i in most_used and j in most_used: if val > edge_threshold: self.add_edge(i,j,weight=val) # set defaults self.graph['graph'] = graphdefaults self.graph['node'] = nodedefaults self.graph['edge'] = edgedefaults def edge_attrs(self,func): nargs = num_args(func) if nargs == 1: for i, j, edge in self.edges_iter(data=True): edge.update(convert(func((i,j)))) elif nargs == 2: for i, j, edge in self.edges_iter(data=True): edge.update(convert(func(i,j))) elif nargs == 4: for i, j, edge in self.edges_iter(data=True): edge.update(convert(func(i,j,self.A[i,j],self.B[i,j]))) else: raise ValueError('func must take 1, 2, or 4 arguments') return self def node_attrs(self,func): nargs = num_args(func) if nargs == 1: for i, node in self.nodes_iter(data=True): if 'foregroundnode' not in node: node.update(convert(func(i))) elif nargs == 3: for i, node in self.nodes_iter(data=True): if 'foregroundnode' not in node: node.update(convert(func(i,self.A_usages[i],self.B_usages[i]))) else: raise ValueError('func must take 1 or 3 arguments') return self def prune_edges(self,func): nargs = num_args(func) if nargs == 1: to_remove = \ [(i,j) for i, j, edge in self.edges_iter(data=True) if func((i,j))] elif nargs == 2: to_remove = \ [(i,j) for i, j, edge in self.edges_iter(data=True) if func(i,j)] elif nargs == 4: to_remove = \ [(i,j) for i, j, edge in self.edges_iter(data=True) if func(i,j,self.A[i,j],self.B[i,j])] else: raise ValueError('func must take 1, 2, or 4 arguments') for e in to_remove: self.remove_edge(*e) return self def foreground_node_attrs(self,func): if not self.has_foreground_nodes: for i, node in self.nodes_iter(data=True): self.add_node("z%d" % i, dict(foregroundnode=True,label=i,**node)) self.has_foreground_nodes = True nargs = num_args(func) if nargs == 1: for i, node in self.nodes_iter(data=True): if 'foregroundnode' in node: i = int(i[1:]) node.update(convert(func(i))) elif nargs == 3: for i, node in self.nodes_iter(data=True): if 'foregroundnode' in node: i = int(i[1:]) node.update(convert(func(i,self.A_usages[i],self.B_usages[i]))) else: raise ValueError('func must take 1 or 3 arguments') return self # TODO change the ordering in the dot file? # def layout(self,algname=None,posdict=None,**kwargs): # super(TransDiff,self).layout(algname=algname,posdict=posdict,**kwargs) # if self.has_background_nodes: # # TODO # raise NotImplementedError('call layout before adding bgnd nodes') # def draw(self,outfile=None,matplotlib=True,notebook=False): # # TODO put background nodes at the start of the file so they are drawn # # first # raise NotImplementedError
0ea68ccacf4032b775a574b37eb328f4f7cf5840
92f6e90d9b13930abde894ef6bdb521e1ae2b7be
/Incomplete/painting_wall.py
a4ee9ea29433dc55ca21fad11b0f75f1f18353bc
[ "MIT" ]
permissive
nptit/Check_iO
f32b68b66c7dbd47e1490aa8db0e3f4bf29716e5
9107241291e6f6e397c3756497e74eece782f1e4
refs/heads/master
2021-01-25T06:55:09.459265
2016-03-23T06:50:12
2016-03-23T06:50:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,006
py
def checkio(required, operations): total = set() hmm = list() highest = 0 lowest = 0 missing = list() for index, op in enumerate(operations, start=1): start, stop = op if not hmm: # no need to check multiple tuples for first if (stop + 1) - start >= required: return index hmm.append(op) lowest = start highest = stop + 1 # continue # do i need this? skip because of else?? else: # multiple tuples if start < lowest: lowest = start if stop > highest: highest = stop for pair in hmm: lo, hi = pair if start > hi: missing.append((hi+1, start-1)) print(index, missing) # # print(list(range(start, stop+1))) # # print(set(range(start, stop+1))) # total = total.union(set(range(start, stop+1))) # # print(total) # if len(total) >= required: # return index # # print() return -1 # print(checkio(5, [[1, 5], [11, 15], [2, 14], [21, 25]])) # == 1 print(checkio(6, [[1, 5], [11, 15], [2, 14], [21, 25]])) # == 2 print(checkio(11, [[1, 5], [11, 15], [2, 14], [21, 25]])) # == 3 # print(checkio(16, [[1, 5], [11, 15], [2, 14], [21, 25]])) # == 4 # print(checkio(21, [[1, 5], [11, 15], [2, 14], [21, 25]])) # == -1 # print(checkio(1000000011,[[1, 1000000000],[11, 1000000010]])) # == -1 # if __name__ == '__main__': # assert checkio(5, [[1, 5], [11, 15], [2, 14], [21, 25]]) == 1, "1st" # assert checkio(6, [[1, 5], [11, 15], [2, 14], [21, 25]]) == 2, "2nd" # assert checkio(11, [[1, 5], [11, 15], [2, 14], [21, 25]]) == 3, "3rd" # assert checkio(16, [[1, 5], [11, 15], [2, 14], [21, 25]]) == 4, "4th" # assert checkio(21, [[1, 5], [11, 15], [2, 14], [21, 25]]) == -1, "not enough" # assert checkio(1000000011, [[1, 1000000000], [11, 1000000010]]) == -1, "large"
724c7161d9b64a1c4b3e72ac685f5c01764c2ea1
0e5291f09c5117504447cc8df683ca1506b70560
/netbox_client/models/vrf.py
10a6db5a173cc52661c33c7d5ebf76baaa1fdcb9
[ "MIT" ]
permissive
nrfta/python-netbox-client
abd0192b79aab912325485bf4e17777a21953c9b
68ba6dd4d7306513dc1ad38f3ac59122ba4f70a8
refs/heads/master
2022-11-13T16:29:02.264187
2020-07-05T18:06:42
2020-07-05T18:06:42
277,121,108
0
0
null
null
null
null
UTF-8
Python
false
false
11,725
py
# coding: utf-8 """ NetBox API API to access NetBox # noqa: E501 OpenAPI spec version: 2.8 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class VRF(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'name': 'str', 'rd': 'str', 'tenant': 'NestedTenant', 'enforce_unique': 'bool', 'description': 'str', 'tags': 'list[str]', 'display_name': 'str', 'custom_fields': 'object', 'created': 'date', 'last_updated': 'datetime', 'ipaddress_count': 'int', 'prefix_count': 'int' } attribute_map = { 'id': 'id', 'name': 'name', 'rd': 'rd', 'tenant': 'tenant', 'enforce_unique': 'enforce_unique', 'description': 'description', 'tags': 'tags', 'display_name': 'display_name', 'custom_fields': 'custom_fields', 'created': 'created', 'last_updated': 'last_updated', 'ipaddress_count': 'ipaddress_count', 'prefix_count': 'prefix_count' } def __init__(self, id=None, name=None, rd=None, tenant=None, enforce_unique=None, description=None, tags=None, display_name=None, custom_fields=None, created=None, last_updated=None, ipaddress_count=None, prefix_count=None): # noqa: E501 """VRF - a model defined in Swagger""" # noqa: E501 self._id = None self._name = None self._rd = None self._tenant = None self._enforce_unique = None self._description = None self._tags = None self._display_name = None self._custom_fields = None self._created = None self._last_updated = None self._ipaddress_count = None self._prefix_count = None self.discriminator = None if id is not None: self.id = id self.name = name if rd is not None: self.rd = rd if tenant is not None: self.tenant = tenant if enforce_unique is not None: self.enforce_unique = enforce_unique if description is not None: self.description = description if tags is not None: self.tags = tags if display_name is not None: self.display_name = display_name if custom_fields is not None: self.custom_fields = custom_fields if created is not None: self.created = created if last_updated is not None: self.last_updated = last_updated if ipaddress_count is not None: self.ipaddress_count = ipaddress_count if prefix_count is not None: self.prefix_count = prefix_count @property def id(self): """Gets the id of this VRF. # noqa: E501 :return: The id of this VRF. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this VRF. :param id: The id of this VRF. # noqa: E501 :type: int """ self._id = id @property def name(self): """Gets the name of this VRF. # noqa: E501 :return: The name of this VRF. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this VRF. :param name: The name of this VRF. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 if name is not None and len(name) > 50: raise ValueError("Invalid value for `name`, length must be less than or equal to `50`") # noqa: E501 if name is not None and len(name) < 1: raise ValueError("Invalid value for `name`, length must be greater than or equal to `1`") # noqa: E501 self._name = name @property def rd(self): """Gets the rd of this VRF. # noqa: E501 Unique route distinguisher (as defined in RFC 4364) # noqa: E501 :return: The rd of this VRF. # noqa: E501 :rtype: str """ return self._rd @rd.setter def rd(self, rd): """Sets the rd of this VRF. Unique route distinguisher (as defined in RFC 4364) # noqa: E501 :param rd: The rd of this VRF. # noqa: E501 :type: str """ if rd is not None and len(rd) > 21: raise ValueError("Invalid value for `rd`, length must be less than or equal to `21`") # noqa: E501 self._rd = rd @property def tenant(self): """Gets the tenant of this VRF. # noqa: E501 :return: The tenant of this VRF. # noqa: E501 :rtype: NestedTenant """ return self._tenant @tenant.setter def tenant(self, tenant): """Sets the tenant of this VRF. :param tenant: The tenant of this VRF. # noqa: E501 :type: NestedTenant """ self._tenant = tenant @property def enforce_unique(self): """Gets the enforce_unique of this VRF. # noqa: E501 Prevent duplicate prefixes/IP addresses within this VRF # noqa: E501 :return: The enforce_unique of this VRF. # noqa: E501 :rtype: bool """ return self._enforce_unique @enforce_unique.setter def enforce_unique(self, enforce_unique): """Sets the enforce_unique of this VRF. Prevent duplicate prefixes/IP addresses within this VRF # noqa: E501 :param enforce_unique: The enforce_unique of this VRF. # noqa: E501 :type: bool """ self._enforce_unique = enforce_unique @property def description(self): """Gets the description of this VRF. # noqa: E501 :return: The description of this VRF. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this VRF. :param description: The description of this VRF. # noqa: E501 :type: str """ if description is not None and len(description) > 200: raise ValueError("Invalid value for `description`, length must be less than or equal to `200`") # noqa: E501 self._description = description @property def tags(self): """Gets the tags of this VRF. # noqa: E501 :return: The tags of this VRF. # noqa: E501 :rtype: list[str] """ return self._tags @tags.setter def tags(self, tags): """Sets the tags of this VRF. :param tags: The tags of this VRF. # noqa: E501 :type: list[str] """ self._tags = tags @property def display_name(self): """Gets the display_name of this VRF. # noqa: E501 :return: The display_name of this VRF. # noqa: E501 :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """Sets the display_name of this VRF. :param display_name: The display_name of this VRF. # noqa: E501 :type: str """ self._display_name = display_name @property def custom_fields(self): """Gets the custom_fields of this VRF. # noqa: E501 :return: The custom_fields of this VRF. # noqa: E501 :rtype: object """ return self._custom_fields @custom_fields.setter def custom_fields(self, custom_fields): """Sets the custom_fields of this VRF. :param custom_fields: The custom_fields of this VRF. # noqa: E501 :type: object """ self._custom_fields = custom_fields @property def created(self): """Gets the created of this VRF. # noqa: E501 :return: The created of this VRF. # noqa: E501 :rtype: date """ return self._created @created.setter def created(self, created): """Sets the created of this VRF. :param created: The created of this VRF. # noqa: E501 :type: date """ self._created = created @property def last_updated(self): """Gets the last_updated of this VRF. # noqa: E501 :return: The last_updated of this VRF. # noqa: E501 :rtype: datetime """ return self._last_updated @last_updated.setter def last_updated(self, last_updated): """Sets the last_updated of this VRF. :param last_updated: The last_updated of this VRF. # noqa: E501 :type: datetime """ self._last_updated = last_updated @property def ipaddress_count(self): """Gets the ipaddress_count of this VRF. # noqa: E501 :return: The ipaddress_count of this VRF. # noqa: E501 :rtype: int """ return self._ipaddress_count @ipaddress_count.setter def ipaddress_count(self, ipaddress_count): """Sets the ipaddress_count of this VRF. :param ipaddress_count: The ipaddress_count of this VRF. # noqa: E501 :type: int """ self._ipaddress_count = ipaddress_count @property def prefix_count(self): """Gets the prefix_count of this VRF. # noqa: E501 :return: The prefix_count of this VRF. # noqa: E501 :rtype: int """ return self._prefix_count @prefix_count.setter def prefix_count(self, prefix_count): """Sets the prefix_count of this VRF. :param prefix_count: The prefix_count of this VRF. # noqa: E501 :type: int """ self._prefix_count = prefix_count def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(VRF, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, VRF): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
427afb80eebd9b9cb737cb4e73af8fc35c1f04a7
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-3/5c1a9140029525293d87eb87bd8c0260b87feb6c-<main>-bug.py
91285b80db8036ad3d338654c9bec1ab24026dcf
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,785
py
def main(): argument_spec = ec2_argument_spec() argument_spec.update(dict(name=dict(required=True, type='str'), load_balancers=dict(type='list'), target_group_arns=dict(type='list'), availability_zones=dict(type='list'), launch_config_name=dict(type='str'), min_size=dict(type='int'), max_size=dict(type='int'), placement_group=dict(type='str'), desired_capacity=dict(type='int'), vpc_zone_identifier=dict(type='list'), replace_batch_size=dict(type='int', default=1), replace_all_instances=dict(type='bool', default=False), replace_instances=dict(type='list', default=[]), lc_check=dict(type='bool', default=True), wait_timeout=dict(type='int', default=300), state=dict(default='present', choices=['present', 'absent']), tags=dict(type='list', default=[]), health_check_period=dict(type='int', default=300), health_check_type=dict(default='EC2', choices=['EC2', 'ELB']), default_cooldown=dict(type='int', default=300), wait_for_instances=dict(type='bool', default=True), termination_policies=dict(type='list', default='Default'), notification_topic=dict(type='str', default=None), notification_types=dict(type='list', default=['autoscaling:EC2_INSTANCE_LAUNCH', 'autoscaling:EC2_INSTANCE_LAUNCH_ERROR', 'autoscaling:EC2_INSTANCE_TERMINATE', 'autoscaling:EC2_INSTANCE_TERMINATE_ERROR']), suspend_processes=dict(type='list', default=[]))) module = AnsibleModule(argument_spec=argument_spec, mutually_exclusive=[['replace_all_instances', 'replace_instances']]) if (not HAS_BOTO3): module.fail_json(msg='boto3 required for this module') state = module.params.get('state') replace_instances = module.params.get('replace_instances') replace_all_instances = module.params.get('replace_all_instances') (region, ec2_url, aws_connect_params) = get_aws_connection_info(module, boto3=True) try: connection = boto3_conn(module, conn_type='client', resource='autoscaling', region=region, endpoint=ec2_url, **aws_connect_params) except (botocore.exceptions.NoCredentialsError, botocore.exceptions.ProfileNotFound) as e: module.fail_json(msg="Can't authorize connection. Check your credentials and profile.", exceptions=traceback.format_exc(), **camel_dict_to_snake_dict(e.message)) changed = create_changed = replace_changed = False if (state == 'present'): (create_changed, asg_properties) = create_autoscaling_group(connection, module) elif (state == 'absent'): changed = delete_autoscaling_group(connection, module) module.exit_json(changed=changed) if (replace_all_instances or replace_instances): (replace_changed, asg_properties) = replace(connection, module) if (create_changed or replace_changed): changed = True module.exit_json(changed=changed, **asg_properties)
d04ec0b345457bafcc12d9ac2a1faa572fff37e1
8f395b474f01b91e3c7a5a6260e84ed12cc57586
/utilities/infer_implementations.py
912c718c6b9380daa608b5ec7fa12ca9516a006d
[]
no_license
actixn/W-Net
2263fbaa9c720af46f08d14f84b590e0ae455856
adaf5c304d1359ac5c06e98d9cfd1b9c091e5708
refs/heads/master
2022-11-25T17:51:54.579895
2020-08-08T13:27:09
2020-08-08T13:27:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
34,750
py
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import import cv2 import utilities.charcut as cc import sys # reload(sys) # sys.setdefaultencoding("utf-8") GRAYSCALE_AVG = 127.5 print_separater = "#################################################################" from PIL import Image from PIL import ImageDraw from PIL import ImageFont import matplotlib.pyplot as plt import pylab from utilities.utils import image_show import numpy as np import os import random as rnd import scipy.misc as misc import copy as cp def get_chars(path): chars = list() with open(path) as f: for line in f: line = u"%s" % line char_counter = 0 for char in line: current_char = line[char_counter] chars.append(current_char) char_counter += 1 return chars def get_chars_set_from_level1_2(path,level): """ Expect a text file that each line is a char """ chars = list() character_id_1_counter=0 character_id_2_counter=0 character_list=list() with open(path) as f: for line in f: line = u"%s" % line char_counter=0 for char in line: current_char = line[char_counter] chars.append(current_char) if level==1: character_id_1 = str(character_id_1_counter + 16 + 160) character_id_2 = str(character_id_2_counter + 1 + 160) character_id = character_id_1 + character_id_2 character_id_2_counter += 1 if character_id_2_counter == 94: character_id_2_counter = 0 character_id_1_counter += 1 elif level==2: character_id_1 = str(character_id_1_counter + 56 + 160) character_id_2 = str(character_id_2_counter + 1 + 160) character_id = character_id_1 + character_id_2 character_id_2_counter += 1 if character_id_2_counter == 94: character_id_2_counter = 0 character_id_1_counter += 1 character_list.append(character_id) char_counter+=1 return chars,character_list def get_revelant_data(targeted_input_txt, level1_charlist,level2_charlist, level1_labellist,level2_labellist, file_list_txt,file_data_dir, img_width,img_filters, info): def list_all_files(rootdir): _files = [] list = os.listdir(rootdir) for i in range(0, len(list)): path = os.path.join(rootdir, list[i]) if os.path.isdir(path): _files.extend(list_all_files(path)) if os.path.isfile(path): _files.append(path) return _files def read_from_dir(): # get label0 for the targeted char img input txt targeted_chars_list = list() targeted_character_label0_list = list() with open(targeted_input_txt) as f: for line in f: line = u"%s" % line char_counter = 0 for char in line: current_char = line[char_counter] char_counter += 1 if not current_char == '\n': level1_found = current_char in level1_charlist level2_found = current_char in level2_charlist if level1_found == 1: idx = level1_charlist.index(current_char) character_id = level1_labellist[idx] elif level2_found == 2: idx = level2_charlist.index(current_char) character_id = level2_labellist[idx] else: print("Fails! Didnt find %s in Set" % unicode(char)) character_id = 0 return -1, -1, False targeted_character_label0_list.append(str(character_id)) targeted_chars_list.append(current_char) actual_char_list = line print("In total %d targeted chars are found in the standard GB2312 set for %s" % (len(targeted_chars_list), info)) # read all char img data label0_list = list() label1_list = list() data_list = list() for ii in range(len(file_list_txt)): file_handle = open(file_list_txt[ii], 'r') lines = file_handle.readlines() for line in lines: curt_line = line.split('@') label1_list.append(curt_line[2]) label0_list.append(curt_line[1]) curt_data = curt_line[3].split('\n')[0] if curt_data[0] == '/': curt_data = curt_data[1:] curt_data_path = os.path.join(file_data_dir[ii], curt_data) data_list.append(curt_data_path) # if 'TmpChars' in curt_data: # a=1 # print(curt_data) file_handle.close() # find corresponding char img data label1_vec = np.unique(label1_list) label1_vec.sort() corresponding_char_img = np.zeros( shape=[len(targeted_character_label0_list), img_width, img_width, img_filters * len(label1_vec)], dtype=np.float32) label1_counter = 0 for label1 in label1_vec: current_label1_indices = [ii for ii in range(len(label1_list)) if label1_list[ii] == label1] current_label0_on_current_label1 = list() current_data_on_current_label1 = list() for ii in current_label1_indices: current_label0_on_current_label1.append(label0_list[ii]) current_data_on_current_label1.append(data_list[ii]) target_counter = 0 for ii in targeted_character_label0_list: if ii not in current_label0_on_current_label1: print("Fails! Didnt find %s in Dataset" % actual_char_list[target_counter].encode('utf-8')) return -1, -1, False else: # index_found = current_label0_on_current_label1.index(ii) indices_found = [kk for kk in range(len(current_label0_on_current_label1)) if current_label0_on_current_label1[kk]==ii] tmp_counter = 0 for index_curt in indices_found: if 'TmpChar' in current_data_on_current_label1[index_curt]: tmp_counter+=1 if not tmp_counter == len(indices_found): new_found_indices = list() for index_curt in indices_found: if not 'TmpChar' in current_data_on_current_label1[index_curt]: new_found_indices.append(index_curt) indices_found = new_found_indices index_found = indices_found[np.random.randint(low=0,high=len(indices_found))] char_img = misc.imread(current_data_on_current_label1[index_found]) # print("%d %d" % (label1_counter,target_counter)) if char_img.ndim == 3: char_img = np.expand_dims(char_img[:, :, 0], axis=2) elif char_img.ndim == 2: char_img = np.expand_dims(char_img, axis=2) # char_img = char_img / GRAYSCALE_AVG - 1 corresponding_char_img[target_counter, :, :, label1_counter * img_filters:(label1_counter + 1) * img_filters] \ = char_img target_counter += 1 label1_counter += 1 print("In total %d targeted chars are corresponded in the specific dataset for %s" % (len(targeted_chars_list), info)) print(print_separater) return corresponding_char_img, label1_vec, targeted_chars_list, targeted_character_label0_list def draw_single_char(ch, font): canvas_size = 256 x_offset = 20 y_offset = 20 img = Image.new("RGB", (canvas_size, canvas_size), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((x_offset, y_offset), ch, (0, 0, 0), font=font) img_matrix = np.asarray(img)[:, :, 0] zero_indices = np.where(img_matrix == 0) exceed = 'NONE' if np.min(img_matrix) == np.max(img_matrix) or (0 not in img_matrix): img_output = np.zeros(shape=[256,256,3]) img_output = Image.fromarray(np.uint8(img_output)) else: up_p = np.min(zero_indices[0]) down_p = np.max(zero_indices[0]) left_p = np.min(zero_indices[1]) right_p = np.max(zero_indices[1]) up_down = down_p - up_p right_left = right_p - left_p if up_down > right_left: character_size = up_down if not character_size % 2 == 0: character_size = character_size + 1 down_p = down_p + 1 right_left_avg = (right_p + left_p) / 2 right_p = right_left_avg + int(character_size / 2) left_p = right_left_avg - int(character_size / 2) if left_p < 0: exceed = 'LEFT' exceed_pixels = np.abs(left_p) left_p = 0 if right_p > 255: exceed = 'RIGHT' exceed_pixels = right_p - 255 right_p = 255 else: character_size = right_left if not character_size % 2 == 0: character_size = character_size + 1 right_p = right_p + 1 up_down_avg = (up_p + down_p) / 2 down_p = up_down_avg + int(character_size / 2) up_p = up_down_avg - int(character_size / 2) if up_p < 0: exceed = 'UP' exceed_pixels = np.abs(up_p) up_p = 0 if down_p > 255: exceed = 'DOWN' exceed_pixels = down_p - 255 down_p = 255 img_matrix_cut = img_matrix[up_p:down_p, left_p:right_p] if not exceed=='NONE': if exceed=='LEFT': added_pixels = np.ones([img_matrix_cut.shape[0],exceed_pixels]) * 255 img_matrix_cut = np.concatenate([added_pixels, img_matrix_cut], axis=1) elif exceed=='RIGHT': added_pixels = np.ones([img_matrix_cut.shape[0], exceed_pixels]) * 255 img_matrix_cut = np.concatenate([img_matrix_cut,added_pixels], axis=1) elif exceed=='UP': added_pixels = np.ones([exceed_pixels, img_matrix_cut.shape[1]]) * 255 img_matrix_cut = np.concatenate([added_pixels, img_matrix_cut], axis=0) elif exceed=='DOWN': added_pixels = np.ones([exceed_pixels, img_matrix_cut.shape[1]]) * 255 img_matrix_cut = np.concatenate([img_matrix_cut, added_pixels], axis=0) img_matrix_cut = np.tile(np.reshape(img_matrix_cut, [img_matrix_cut.shape[0], img_matrix_cut.shape[1], 1]), [1, 1, 3]) img_cut = Image.fromarray(np.uint8(img_matrix_cut)) img_resize = img_cut.resize((150, 150), Image.ANTIALIAS) img_output = Image.new("RGB", (256, 256), (255, 255, 255)) img_output.paste(img_resize, (52, 52)) img_output.resize((64,64), Image.ANTIALIAS) return img_output.resize((64,64), Image.ANTIALIAS) def generate_from_single_font_file(files): targeted_chars_list = list() targeted_character_label0_list = list() with open(targeted_input_txt) as f: for line in f: line = u"%s" % line char_counter = 0 for char in line: current_char = line[char_counter] char_counter += 1 targeted_character_label0_list.append(str(current_char)) targeted_chars_list.append(current_char) print("In total %d targeted chars are found." % len(targeted_chars_list)) label1_vec = list() corresponding_char_img = np.zeros( shape=[len(targeted_character_label0_list), img_width, img_width, img_filters * len(files)], dtype=np.float32) for label1_counter in range(len(files)): current_font_misc = ImageFont.truetype(files[label1_counter], size=150) current_file_path = files[label1_counter] current_file_name = os.path.splitext(current_file_path)[0] current_file_name = current_file_name.split('/')[len(current_file_name.split('/'))-1] label1_vec.append(current_file_name) for target_counter in range(len(targeted_chars_list)): char_misc = draw_single_char(ch=targeted_chars_list[target_counter], font=current_font_misc) char_img = np.asarray(char_misc)[:, :, 0] # char_img = char_img / GRAYSCALE_AVG - 1 char_img = np.expand_dims(char_img, axis=2) if char_img.ndim == 3: char_img = np.expand_dims(char_img[:, :, 0], axis=2) elif char_img.ndim == 2: char_img = np.expand_dims(char_img, axis=2) corresponding_char_img[target_counter, :, :, label1_counter * img_filters:(label1_counter + 1) * img_filters] \ = char_img return corresponding_char_img,label1_vec, targeted_chars_list, targeted_character_label0_list dir_img = False for check_dir in file_data_dir: if os.path.isdir(check_dir): file_list = list_all_files(check_dir) if (os.path.isdir(check_dir)) and \ (os.path.splitext(file_list[np.random.randint(0,len(file_list)-1)])[-1]=='.png' or os.path.splitext(file_list[np.random.randint(0,len(file_list)-1)])[-1]=='.jpg'): dir_img=True break single_font_file = False font_file_dir = False if not dir_img: for check_file in file_data_dir: is_file = os.path.isfile(check_file) is_dir = os.path.isdir(check_file) is_ttf = (os.path.splitext(check_file)[-1] == '.ttf') or (os.path.splitext(check_file)[-1] == '.TTF') is_ttc = (os.path.splitext(check_file)[-1] == '.ttc') or (os.path.splitext(check_file)[-1] == '.TTC') is_otf = (os.path.splitext(check_file)[-1] == '.otf') or (os.path.splitext(check_file)[-1] == '.OTF') if is_file and (is_ttf or is_ttc or is_otf): single_font_file = True elif is_dir: file_list_in_the_dir = list_all_files(check_file) for sub_file in file_list_in_the_dir: is_ttf = (os.path.splitext(sub_file)[-1] == '.ttf') or (os.path.splitext(sub_file)[-1] == '.TTF') is_ttc = (os.path.splitext(sub_file)[-1] == '.ttc') or (os.path.splitext(sub_file)[-1] == '.TTC') is_otf = (os.path.splitext(sub_file)[-1] == '.otf') or (os.path.splitext(sub_file)[-1] == '.OTF') if not (is_ttf or is_ttc or is_otf): break font_file_dir = True if single_font_file or font_file_dir: break if dir_img: corresponding_char_img, label1_vec, char_list, char_label0_list = read_from_dir() if single_font_file or font_file_dir: if font_file_dir: file_data_dir_new = list() for file_dir in file_data_dir: files = list_all_files(file_dir) file_data_dir_new.extend(files) file_data_dir = file_data_dir_new file_data_dir.sort() corresponding_char_img, label1_vec, char_list, char_label0_list = \ generate_from_single_font_file(files=file_data_dir) corresponding_char_img[np.where(corresponding_char_img < 240)] = 0 corresponding_char_img[np.where(corresponding_char_img >= 240)] = 255 corresponding_char_img = corresponding_char_img / GRAYSCALE_AVG - 1 return corresponding_char_img, label1_vec, True, char_list, char_label0_list def get_style_references(img_path, resave_path, style_input_number): if os.path.isdir(img_path): style_reference = \ collect_chars_from_directory(img_path, resave_path) else: file_extension=os.path.splitext(img_path)[1] if file_extension=='.ttf': style_reference = \ generated_from_ttf_otf_files(img_path, resave_path) else: style_reference = \ crop_from_full_handwriting_essay_paper(img_path, resave_path) if (not style_input_number == 0) and style_input_number<style_reference.shape[2]: rnd_indices=rnd.sample(range(style_reference.shape[2]),style_input_number) rnd_counter=0 for ii in rnd_indices: current_style_ref=np.expand_dims(style_reference[:,:,ii],axis=2) if rnd_counter == 0: new_style_reference=current_style_ref else: new_style_reference=np.concatenate([new_style_reference,current_style_ref],axis=2) rnd_counter+=1 style_reference=new_style_reference style_reference = np.expand_dims(style_reference, axis=0) print("Selected %d style references for generation" % style_reference.shape[3]) print(print_separater) return style_reference def collect_chars_from_directory(img_path, resave_path): counter=0 for root, dirs, files in os.walk(img_path): files.sort() for name in files: if not ((name.find("DS") == -1) and (name.find("Th") == -1)): continue file_path = (os.path.join(root, name)) file_extension = os.path.splitext(file_path)[1] if file_extension=='.png': char_read=misc.imread(os.path.join(root,name)) char_read=char_read[:,:,0] char_read = char_read / GRAYSCALE_AVG - 1 char_read = np.expand_dims(char_read, axis=2) if counter == 0: style_reference = char_read else: style_reference = np.concatenate([style_reference, char_read], axis=2) counter+=1 style_num = style_reference.shape[2] row_col_num = np.int64(np.ceil(np.sqrt(style_num))) resave_paper = matrix_paper_generation(images=np.expand_dims(np.transpose(style_reference,[2,0,1]),axis=3), rows=row_col_num,columns=row_col_num) misc.imsave(os.path.join(resave_path, 'InputStyleImg.png'), resave_paper) return style_reference def generated_from_ttf_otf_files(img_path, resave_path): def draw_single_char(ch, font): canvas_size = 256 x_offset = 20 y_offset = 20 img = Image.new("RGB", (canvas_size, canvas_size), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((x_offset, y_offset), ch, (0, 0, 0), font=font) img_matrix = np.asarray(img)[:, :, 0] zero_indices = np.where(img_matrix == 0) exceed = 'NONE' if np.min(img_matrix) == np.max(img_matrix) or (0 not in img_matrix): img_output = np.zeros(shape=[256,256,3]) img_output = Image.fromarray(np.uint8(img_output)) else: up_p = np.min(zero_indices[0]) down_p = np.max(zero_indices[0]) left_p = np.min(zero_indices[1]) right_p = np.max(zero_indices[1]) up_down = down_p - up_p right_left = right_p - left_p if up_down > right_left: character_size = up_down if not character_size % 2 == 0: character_size = character_size + 1 down_p = down_p + 1 right_left_avg = (right_p + left_p) / 2 right_p = right_left_avg + int(character_size / 2) left_p = right_left_avg - int(character_size / 2) if left_p < 0: exceed = 'LEFT' exceed_pixels = np.abs(left_p) left_p = 0 if right_p > 255: exceed = 'RIGHT' exceed_pixels = right_p - 255 right_p = 255 else: character_size = right_left if not character_size % 2 == 0: character_size = character_size + 1 right_p = right_p + 1 up_down_avg = (up_p + down_p) / 2 down_p = up_down_avg + int(character_size / 2) up_p = up_down_avg - int(character_size / 2) if up_p < 0: exceed = 'UP' exceed_pixels = np.abs(up_p) up_p = 0 if down_p > 255: exceed = 'DOWN' exceed_pixels = down_p - 255 down_p = 255 img_matrix_cut = img_matrix[up_p:down_p, left_p:right_p] if not exceed=='NONE': if exceed=='LEFT': added_pixels = np.ones([img_matrix_cut.shape[0],exceed_pixels]) * 255 img_matrix_cut = np.concatenate([added_pixels, img_matrix_cut], axis=1) elif exceed=='RIGHT': added_pixels = np.ones([img_matrix_cut.shape[0], exceed_pixels]) * 255 img_matrix_cut = np.concatenate([img_matrix_cut,added_pixels], axis=1) elif exceed=='UP': added_pixels = np.ones([exceed_pixels, img_matrix_cut.shape[1]]) * 255 img_matrix_cut = np.concatenate([added_pixels, img_matrix_cut], axis=0) elif exceed=='DOWN': added_pixels = np.ones([exceed_pixels, img_matrix_cut.shape[1]]) * 255 img_matrix_cut = np.concatenate([img_matrix_cut, added_pixels], axis=0) img_matrix_cut = np.tile(np.reshape(img_matrix_cut, [img_matrix_cut.shape[0], img_matrix_cut.shape[1], 1]), [1, 1, 3]) img_cut = Image.fromarray(np.uint8(img_matrix_cut)) img_resize = img_cut.resize((150, 150), Image.ANTIALIAS) img_output = Image.new("RGB", (256, 256), (255, 255, 255)) img_output.paste(img_resize, (52, 52)) img_output.resize((64,64), Image.ANTIALIAS) return img_output.resize((64,64), Image.ANTIALIAS) sample_char_set = get_chars(path='../ContentTxt/SampleChars.txt') sample_font = ImageFont.truetype(img_path, size=150) counter=0 for current_char in sample_char_set: char_misc = draw_single_char(ch=current_char,font=sample_font) char_np = np.asarray(char_misc)[:, :, 0] char_np = char_np / GRAYSCALE_AVG - 1 char_np = np.expand_dims(char_np,axis=2) if counter==0: style_reference = char_np else: style_reference = np.concatenate([style_reference,char_np],axis=2) counter+=1 style_num = style_reference.shape[2] row_col_num = np.int64(np.ceil(np.sqrt(style_num))) resave_paper = matrix_paper_generation(images=np.expand_dims(np.transpose(style_reference, [2, 0, 1]), axis=3), rows=row_col_num, columns=row_col_num) misc.imsave(os.path.join(resave_path, 'InputStyleImg.png'), resave_paper) return style_reference def crop_from_full_handwriting_essay_paper(img_path, resave_path): img = cv2.imread(img_path) img_misc = misc.imread(img_path) misc.imsave(os.path.join(resave_path, 'InputStyleImg.png'), img_misc) img_new = img img_new[np.where(img < 150)] = 0 img_new[np.where(img >= 150)] = 255 img = img_new image_list = cc.char_cut(img, 37, 64) counter = 0 style_reference = None for im_split in image_list: img = np.expand_dims(im_split, axis=2) img = img / GRAYSCALE_AVG - 1 if counter == 0: style_reference = img else: style_reference = np.concatenate([style_reference, img], axis=2) counter += 1 print("In total %d style references are extracted from %s" % (style_reference.shape[2],img_path)) return style_reference def draw_single_char(ch, font, canvas_size, x_offset=20, y_offset=20,filters=-1): img_read = Image.new("RGB", (256, 256), (255, 255, 255)) draw = ImageDraw.Draw(img_read) draw.text((x_offset, y_offset), ch, (0, 0, 0), font=font) img_read = np.array(img_read) img_matrix = np.asarray(img_read)[:, :, 0] zero_indices = np.where(img_matrix == 0) exceed = 'NONE' if np.min(img_matrix) == np.max(img_matrix) or (0 not in img_matrix): img_output = np.zeros(shape=[256, 256, 3]) img_output = Image.fromarray(np.uint8(img_output)) else: up_p = np.min(zero_indices[0]) down_p = np.max(zero_indices[0]) left_p = np.min(zero_indices[1]) right_p = np.max(zero_indices[1]) up_down = down_p - up_p right_left = right_p - left_p if up_down > right_left: character_size = up_down if not character_size % 2 == 0: character_size = character_size + 1 down_p = down_p + 1 right_left_avg = (right_p + left_p) / 2 right_p = right_left_avg + int(character_size / 2) left_p = right_left_avg - int(character_size / 2) if left_p < 0: exceed = 'LEFT' exceed_pixels = np.abs(left_p) left_p = 0 if right_p > 255: exceed = 'RIGHT' exceed_pixels = right_p - 255 right_p = 255 else: character_size = right_left if not character_size % 2 == 0: character_size = character_size + 1 right_p = right_p + 1 up_down_avg = (up_p + down_p) / 2 down_p = up_down_avg + int(character_size / 2) up_p = up_down_avg - int(character_size / 2) if up_p < 0: exceed = 'UP' exceed_pixels = np.abs(up_p) up_p = 0 if down_p > 255: exceed = 'DOWN' exceed_pixels = down_p - 255 down_p = 255 img_matrix_cut = img_matrix[up_p:down_p, left_p:right_p] if not exceed == 'NONE': if exceed == 'LEFT': added_pixels = np.ones([img_matrix_cut.shape[0], exceed_pixels]) * 255 img_matrix_cut = np.concatenate([added_pixels, img_matrix_cut], axis=1) elif exceed == 'RIGHT': added_pixels = np.ones([img_matrix_cut.shape[0], exceed_pixels]) * 255 img_matrix_cut = np.concatenate([img_matrix_cut, added_pixels], axis=1) elif exceed == 'UP': added_pixels = np.ones([exceed_pixels, img_matrix_cut.shape[1]]) * 255 img_matrix_cut = np.concatenate([added_pixels, img_matrix_cut], axis=0) elif exceed == 'DOWN': added_pixels = np.ones([exceed_pixels, img_matrix_cut.shape[1]]) * 255 img_matrix_cut = np.concatenate([img_matrix_cut, added_pixels], axis=0) img_matrix_cut = np.tile(np.reshape(img_matrix_cut, [img_matrix_cut.shape[0], img_matrix_cut.shape[1], 1]), [1, 1, 3]) img_cut = Image.fromarray(np.uint8(img_matrix_cut)) img_resize = img_cut.resize((150, 150), Image.ANTIALIAS) img_output = Image.new("RGB", (256, 256), (255, 255, 255)) img_output.paste(img_resize, (52, 52)) if not canvas_size == 256: img_output = img_output.resize((canvas_size,canvas_size), Image.ANTIALIAS) img = np.array(img_output) if filters == 1: img = img[:, :, 0] img = np.reshape(img, [img.shape[0], img.shape[1], 1]) return img def find_transfer_targets(data_dir,txt_path,selected_label1,style_input_number, img_width,filter_num,batch_size): data_list = list() for ii in range(len(data_dir)): file_handle = open(txt_path[ii], 'r') lines = file_handle.readlines() for line in lines: curt_line = line.split('@') label1 = int(curt_line[2]) if label1 == selected_label1: curt_data = curt_line[3].split('\n')[0] if curt_data[0] == '/': curt_data = curt_data[1:] curt_data_path = os.path.join(data_dir[ii], curt_data) data_list.append(curt_data_path) file_handle.close() indices = range(len(data_list)) selected_indices = rnd.sample(indices,style_input_number) data_list = [data_list[i] for i in selected_indices] full_chars = np.zeros([style_input_number, img_width, img_width, filter_num]) counter=0 for ii in data_list: char_img = misc.imread(ii) if filter_num == 1: char_img = char_img[:, :, 0] char_img = np.reshape(char_img, [char_img.shape[0], char_img.shape[1], 1]) char_img = np.subtract(np.divide(char_img, np.ones(char_img.shape) * GRAYSCALE_AVG), np.ones(char_img.shape)) full_chars[counter, :, :, :] = char_img counter+=1 iter_num = style_input_number / batch_size + 1 full_batch_num = iter_num * batch_size added_needed = full_batch_num - full_chars.shape[0] if added_needed < full_chars.shape[0]: full_chars = np.concatenate([full_chars, full_chars[0:added_needed, :, :, :]]) else: for ii in range(added_needed): full_char_length = full_chars.shape[0] selected = rnd.sample(range(full_char_length),1) full_chars = np.concatenate([full_chars, full_chars[selected, :, :, :]]) return full_chars def transform_numpy_to_paper(numpy_image): output_paper = Image.new("RGB", (numpy_image.shape[2], numpy_image.shape[1]), (255, 255, 255)) numpy_image = np.squeeze(numpy_image) numpy_image = numpy_image - np.min(numpy_image) numpy_image = numpy_image / np.max(numpy_image) numpy_image = numpy_image * 255 numpy_image = np.tile(np.reshape(numpy_image, [1, numpy_image.shape[0], numpy_image.shape[1], 1]), [1, 1, 1, 3]) pasted = Image.fromarray(np.uint8(np.squeeze(numpy_image))) output_paper.paste(pasted,(0,0)) return output_paper def matrix_paper_generation(images, rows, columns): char_width=images.shape[1] chars_per_row = columns chars_per_column = rows output_paper = Image.new("RGB", (char_width * chars_per_row, char_width * chars_per_column), (255, 255, 255)) column_counter = 1 row_counter = 1 for ii in range(images.shape[0]): curt_img = np.squeeze(images[ii, :, :, :]) curt_img = curt_img - np.min(curt_img) curt_img = curt_img / np.max(curt_img) curt_img = curt_img * 255 curt_img = np.tile(np.reshape(curt_img, [curt_img.shape[0], curt_img.shape[1], 1]), [1, 1, 3]) curt_pasted = Image.fromarray(np.uint8(curt_img)) output_paper.paste(curt_pasted, ((column_counter - 1) * char_width, (row_counter - 1) * char_width)) column_counter += 1 if column_counter > chars_per_row: column_counter = 1 row_counter += 1 return output_paper def numpy_img_save(img,path): imgout=cp.deepcopy(img) imgout = imgout * 255 imgout = np.tile(np.reshape(imgout, [imgout.shape[0], imgout.shape[1], 1]), [1, 1, 3]) imgout_misc = Image.fromarray(np.uint8(imgout)) misc.imsave(path,imgout_misc) def one_row_or_column_generation(images,option): img_num = images.shape[0] char_width = images.shape[1] if option=='ROW': output_paper = Image.new("RGB", (char_width * img_num, char_width), (255, 255, 255)) for ii in range(images.shape[0]): curt_img = np.squeeze(images[ii, :, :, :]) curt_img = curt_img - np.min(curt_img) curt_img = curt_img / np.max(curt_img) curt_img = curt_img * 255 curt_img = np.tile(np.reshape(curt_img, [curt_img.shape[0], curt_img.shape[1], 1]), [1, 1, 3]) curt_pasted = Image.fromarray(np.uint8(curt_img)) output_paper.paste(curt_pasted,(ii*char_width,0)) elif option=='COLUMN': output_paper = Image.new("RGB", (char_width , char_width * img_num), (255, 255, 255)) for ii in range(images.shape[0]): curt_img = np.squeeze(images[ii, :, :, :]) curt_img = curt_img - np.min(curt_img) curt_img = curt_img / np.max(curt_img) curt_img = curt_img * 255 curt_img = np.tile(np.reshape(curt_img, [curt_img.shape[0], curt_img.shape[1], 1]), [1, 1, 3]) curt_pasted = Image.fromarray(np.uint8(curt_img)) output_paper.paste(curt_pasted, (0,ii * char_width)) return output_paper
6264a9609afe6739ef0895579757c90f0c5ba974
bd498cbbb28e33370298a84b693f93a3058d3138
/SIAT/benchmarks/resnet/implementations/mindspore_open_src/model/thor.py
a7798c2b1fb3178a226b6da64031bc33791ff00b
[ "Apache-2.0" ]
permissive
piyushghai/training_results_v0.7
afb303446e75e3e9789b0f6c40ce330b6b83a70c
e017c9359f66e2d814c6990d1ffa56654a73f5b0
refs/heads/master
2022-12-19T16:50:17.372320
2020-09-24T01:02:00
2020-09-24T18:01:01
298,127,245
0
1
Apache-2.0
2020-09-24T00:27:21
2020-09-24T00:27:21
null
UTF-8
Python
false
false
12,850
py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """momentum""" import mindspore.common.dtype as mstype from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.common.parameter import ParameterTuple from mindspore.common.tensor import Tensor from mindspore.nn.optim.optimizer import Optimizer from mindspore.ops import functional as F, composite as C, operations as P from mindspore.parallel._utils import _get_device_num, _get_mirror_mean from model.grad_reducer_thor import DistributedGradReducerThor momentum_opt = C.MultitypeFuncGraph("momentum_opt") @momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor") def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, moment): """Apply momentum optimizer to the weight parameter using Tensor.""" success = True success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum)) return success op_add = P.AddN() apply_decay = C.MultitypeFuncGraph("apply_decay") @apply_decay.register("Number", "Bool", "Tensor", "Tensor") def _tensor_apply_decay(weight_decay, if_apply, weight, gradient): """Get grad with weight_decay.""" if if_apply: return op_add((weight * weight_decay, gradient)) return gradient class THOR(Optimizer): """THOR""" def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0, loss_scale=1.0, batch_size=32.0, decay_filter=lambda x: x.name not in []): super(THOR, self).__init__(learning_rate, params, weight_decay, loss_scale) if isinstance(momentum, float) and momentum < 0.0: raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") self.params = self.parameters self.moments = self.params.clone(prefix="moments", init='zeros') self.hyper_map = C.HyperMap() self.opt = P.ApplyMomentum() self.matrix_A = ParameterTuple(matrix_A) self.matrix_G = ParameterTuple(matrix_G) self.A_inv_max = ParameterTuple(A_inv_max) self.G_inv_max = ParameterTuple(G_inv_max) self.cube_matmul_left = P.CusMatMulCubeFraczLeftCast() self.cube_matmul_left_fc = P.CusMatMulCubeDenseLeft() self.cube_matmul_right_fc = P.CusMatMulCubeDenseRight() self.cube_matmul_right_mul = P.CusMatMulCubeFraczRightMul() self.transpose = P.Transpose() self.shape = P.Shape() self.reshape = P.Reshape() self.mul = P.Mul() self.weight_idx = [] for i in range(len(self.params)): if "conv" in self.params[i].name or "end_point" in self.params[i].name: self.weight_idx.append(i) self.weight_idx.append(len(self.params)) self.feature_map = [1.0 / 12544, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 3136, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 784, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 196, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0 / 49, 1.0] mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer_Amax = DistributedGradReducerThor(self.parameters, 2, mean, degree) self.grad_reducer_Gmax = DistributedGradReducerThor(self.parameters, 5, mean, degree) self.grad_reducer_A = DistributedGradReducerThor(self.parameters, 3, mean, degree) self.grad_reducer_G = DistributedGradReducerThor(self.parameters, 4, mean, degree) self.matrix_A_inv = () self.matrix_G_inv = () self.matrix_max_inv = () for i in range(54): self.matrix_max_inv = self.matrix_max_inv + ( Parameter(initializer(1, [1], mstype.float32), name="matrix_max" + str(i), requires_grad=False),) self.log = P.Log() self.exp = P.Exp() self.sqrt = P.Sqrt() self.matrix_max_inv = ParameterTuple(self.matrix_max_inv) self.assign = P.Assign() self.cast = P.Cast() self.thor = True self.weight_decay = weight_decay * loss_scale self.decay_flags = tuple(decay_filter(x) for x in self.parameters) self.conv_index = [ 0, 1,2,3,6,7,8,9,12,13,14, 17,18,19,22,23,24,25,28,29,30,33,34,35, 38,39,40,43,44,45,46,49,50,51,54,55,56,59,60,61,64,65,66, 69,70,71,74,75,76,77,80,81,82, 85 ] self.batch_size = batch_size self.bn_index = [3,7,10,13,17,20,23,26,30,33,36,39,42,45,49,52] self.bn_gradient_index = [ -1,-1,-1, 4, -1,-1,-1, 10, -1,-1, 15, -1,-1, 20, -1,-1,-1, 26, -1,-1, 31, -1,-1, 36, -1,-1, 41, -1,-1,-1, 47, -1,-1, 52, -1,-1, 57, -1,-1, 62, -1,-1, 67, -1,-1, 72, -1,-1,-1, 78, -1,-1, 83 ] def construct(self, gradients): params = self.params moments = self.moments if self.thor: # 二阶子图处理流程 matrix_A_allreduce = () matrix_G_allreduce = () matrix_A_max_allreduce = () matrix_G_max_allreduce = () for i in range(54): g = gradients[self.conv_index[i]] matrix_A = self.matrix_A[i] matrix_G = self.matrix_G[i] A_max = self.A_inv_max[i] G_max = self.G_inv_max[i] matrix_A = F.depend(matrix_A, g) matrix_G = F.depend(matrix_G, g) A_max = F.depend(A_max, g) G_max = F.depend(G_max, g) matrix_A_allreduce = matrix_A_allreduce + (matrix_A,) matrix_G_allreduce = matrix_G_allreduce + (matrix_G,) matrix_A_max_allreduce = matrix_A_max_allreduce + (A_max,) matrix_G_max_allreduce = matrix_G_max_allreduce + (G_max,) matrix_A_allreduce = self.grad_reducer_A(matrix_A_allreduce) matrix_G_allreduce = self.grad_reducer_G(matrix_G_allreduce) matrix_A_max_allreduce = self.grad_reducer_Amax(matrix_A_max_allreduce) matrix_G_max_allreduce = self.grad_reducer_Gmax(matrix_G_max_allreduce) if self.batch_size == 256: new_grads = (gradients[0], ) start_index = 1 else: new_grads = () start_index = 0 for i in range(start_index, 54): # g = gradients[i * 3] # 原本梯度排列为weight,gamma,beta g = gradients[self.conv_index[i]] temp_a = matrix_A_allreduce[i] temp_g = matrix_G_allreduce[i] temp_a = self.cast(temp_a, mstype.float32) temp_g = self.cast(temp_g, mstype.float32) matrix_A_inv_max = self.log(matrix_A_max_allreduce[i]) matrix_A_inv_max = self.mul(matrix_A_inv_max, -1) matrix_A_inv_max = self.exp(matrix_A_inv_max) temp_a = self.mul(temp_a, matrix_A_inv_max) matrix_G_inv_max = self.log(matrix_G_max_allreduce[i]) matrix_G_inv_max = self.mul(matrix_G_inv_max, -1) matrix_G_inv_max = self.exp(matrix_G_inv_max) temp_g = self.mul(temp_g, matrix_G_inv_max) temp_max = self.mul(matrix_A_max_allreduce[i], matrix_G_max_allreduce[i]) temp_max = self.mul(temp_max, self.feature_map[i]) if i == 53: # 区分fc和卷积算子 g = self.cube_matmul_left_fc(temp_g, g) g = self.cube_matmul_right_fc(g, temp_a, temp_max) else: g = self.cube_matmul_left(temp_g, g) g = self.cube_matmul_right_mul(g, temp_a, temp_max) # 计算得到的二阶信息矩阵赋值为parameter,给一阶用 fake_A = self.assign(self.matrix_A[i], temp_a) fake_G = self.assign(self.matrix_G[i], temp_g) fake_max = self.assign(self.matrix_max_inv[i], temp_max) # 图上加个边 g = F.depend(g, fake_A) g = F.depend(g, fake_G) g = F.depend(g, fake_max) # if i == 53: # 梯度放到tuple中,后面给momentum用来更新权重 # new_grads = new_grads + (g,) # else: # new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2]) # if i in self.bn_index: #beta, gamma下标再算一下 if i == 3 or i == 7 or i == 10 or i == 13 or i == 17 or i == 20 or i == 23 or i == 26 or i == 30 or i == 33 or i == 36 or i == 39 or i == 42 or i == 45 or i == 49 or i == 52: new_grads = new_grads + (g, gradients[self.bn_gradient_index[i]], gradients[self.bn_gradient_index[i]+1]) elif i == 53: new_grads = new_grads + (g, gradients[86]) else: new_grads = new_grads + (g,) #gradients = new_grads + gradients[85] gradients = new_grads else: # 一阶子图处理流程 if self.batch_size == 256: new_grads = (gradients[0], ) start_index = 1 else: new_grads = () start_index = 0 for i in range(start_index, 54): # g = gradients[i * 3] g = gradients[self.conv_index[i]] matrix_A = self.matrix_A[i] matrix_G = self.matrix_G[i] matrix_max = self.matrix_max_inv[i] matrix_A = F.depend(matrix_A, g) matrix_G = F.depend(matrix_G, g) matrix_max = F.depend(matrix_max, g) if i == 53: g = self.cube_matmul_left_fc(matrix_G, g) g = self.cube_matmul_right_fc(g, matrix_A, matrix_max) # new_grads = new_grads + (g,) else: g = self.cube_matmul_left(matrix_G, g) g = self.cube_matmul_right_mul(g, matrix_A, matrix_max) # new_grads = new_grads + (g, gradients[i * 3 + 1], gradients[i * 3 + 2]) # if i in self.bn_index: #beta, gamma下标再算一下 if i == 3 or i == 7 or i == 10 or i == 13 or i == 17 or i == 20 or i == 23 or i == 26 or i == 30 or i == 33 or i == 36 or i == 39 or i == 42 or i == 45 or i == 49 or i == 52: new_grads = new_grads + (g, gradients[self.bn_gradient_index[i]], gradients[self.bn_gradient_index[i]+1]) elif i == 53: new_grads = new_grads + (g, gradients[86]) else: new_grads = new_grads + (g,) gradients = new_grads if self.weight_decay > 0: gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags, params, gradients) gradients = self.scale_grad(gradients) lr = self.get_lr() success = self.hyper_map(F.partial(momentum_opt, self.opt, lr, self.momentum), gradients, params, moments) return success
3821efe47b843b6c0e67ea56bd904c71cae7edbe
3307766701d680af6d12a726a2d98df2cb1830e5
/jams/gcj/2017/1C/C/C.py
52f7e3992946510e28a1d7dbac618bac1426e0bb
[]
no_license
dpaneda/code
c1a54037a275fa7044eb5c2d6079f052dd968615
7da1ede33a6a7cd19cbd0db517d91e7cccfbbfff
refs/heads/master
2023-01-07T18:41:00.816363
2022-12-30T09:24:22
2022-12-30T09:24:22
1,583,913
2
1
null
null
null
null
UTF-8
Python
false
false
1,126
py
#!/usr/bin/python2 import sys def equals(P): for i in xrange(0, len(P)): if (P[0] - P[i]) > 0.00000001: return False return True def diff(P): a = P[0] n = 1 for i in xrange(1, len(P)): if P[i] == a: n += 1 else: return n, P[i] - a def solve(): N, K = map(int, raw_input().split()) U = float(raw_input()) P = map(float, raw_input().split()) P.sort() while U > 0: if N == 1: P[0] += U break if equals(P): u = U / len(P) for i in xrange(0, len(P)): P[i] += u break n, u = diff(P) if (u * n) < U: for i in xrange(0, n): P[0] += u U -= u * n P.sort() print P else: for i in xrange(0, n): P[i] += U / n break p = 1 for i in xrange(0, len(P)): p *= P[i] return str(p) num = int(sys.stdin.readline()) for case in range(1, num + 1): print("Case #{0}: {1}".format(case, solve()))
7985ceb35a1900004f926901a654243dccd6e223
e85f4714cf2b590d21582ebd567208da1b9132fc
/tests/test_pakit_tests.py
a24369e54dcc6a0174d05d577836e2b3b1380841
[ "BSD-3-Clause" ]
permissive
pakit/pakit_tests
1fcc6c6974a297d1931b704a93d4580ed1eecd90
078203f31d56b9701781008bc90668a5a5b292ba
refs/heads/master
2020-04-15T15:58:09.280612
2016-01-02T04:02:07
2016-01-02T04:02:07
42,521,090
0
0
null
null
null
null
UTF-8
Python
false
false
3,612
py
""" Test pakit_tests """ from __future__ import absolute_import, print_function import os import tempfile import mock import pytest from pakit_tests import ( create_args_parser, extract_repo_names, extract_repo_block, main, scan_recipes, format_lines, write_file, TEMPLATE ) import tests.common as tc def test_parse_recipes_root(): root = os.path.abspath('recipes') args = create_args_parser().parse_args([root]) assert args.recipes_root == root assert args.output == os.path.join('tests', 'test_recipes.py') def test_parse_output(): root = os.path.abspath('recipes') argv = '{0} {1}'.format(root, 'test_recs.py').split() args = create_args_parser().parse_args(argv) assert args.recipes_root == root assert args.output == 'test_recs.py' def test_extract_repo_names(): text = """self.repos = { 'stable': Git(self.src, tag='0.31.0'), 'unstable': Git(self.src), }""" assert extract_repo_names(text) == ['stable', 'unstable'] def test_extract_repo_block(): text = """class Ag(Recipe): \"\"\" Grep like tool optimized for speed \"\"\" def __init__(self): super(Ag, self).__init__() self.src = 'https://github.com/ggreer/the_silver_searcher.git' self.homepage = self.src self.repos = { "stable": Git(self.src, tag='0.31.0'), 'unstable': Git(self.src), } def build(self): self.cmd('./build.sh --prefix {prefix}') self.cmd('make install')""" expect = """self.repos = { "stable": Git(self.src, tag='0.31.0'), 'unstable': Git(self.src), }""" assert extract_repo_block(text) == expect def test_scan_recipes(): data = scan_recipes(tc.RECIPES) assert 'ag' in data assert sorted(data['ag']) == ['stable', 'unstable'] def test_format_lines(): data = { 'ag': ['stable', 'unstable'], 'ack': ['stable'], } lines = format_lines(data) expect = """\nclass Test_ack(RecipeTest): def test_stable(self): assert subprocess.call(self.args, cwd=self.temp_d, env=self.new_env) == 0 \nclass Test_ag(RecipeTest): def test_stable(self): assert subprocess.call(self.args, cwd=self.temp_d, env=self.new_env) == 0 def test_unstable(self): assert subprocess.call(self.args, cwd=self.temp_d, env=self.new_env) == 0""" assert '\n'.join(lines) == expect def test_write_file(): try: test_file = tempfile.NamedTemporaryFile() write_file(tc.RECIPES, test_file.name) with open(test_file.name, 'r') as fin: assert TEMPLATE.replace('ROOT_RECS', tc.RECIPES) in fin.read() finally: test_file.close() @mock.patch('pakit.main.argparse._sys') def test_main_args_none(mock_sys): with pytest.raises(AttributeError): main(['pakit_tests']) mock_sys.exit.assert_called_with(2) @mock.patch('pakit_tests.write_file') def test_main_output_absolutel(mock_write, mock_print): main(['pakit_tests', '.', '/dev/null']) mock_print.assert_any_call('Scanning recipes under: ' + os.getcwd()) mock_print.assert_any_call('Writing tests to: /dev/null') @mock.patch('pakit_tests.write_file') def test_main_output_relative(mock_write, mock_print): main(['pakit_tests', '/tmp']) mock_print.assert_any_call('Scanning recipes under: /tmp') mock_print.assert_any_call('Writing tests to: /tmp/tests/test_recipes.py') mock_write.assert_any_call('/tmp', '/tmp/tests/test_recipes.py')
bc9fe81e043cc94e56cafd9cd99b0951d3bb10c5
7cdb18e0a7ef01a34ec602bb31aa915c482fcd24
/hujian_api/API_service/TestCase/Attendance_analyse_standard_02.py
478b59425ccc56de8a4de30b2e7e86270540fa5b
[]
no_license
wangdan377/Python_API
6adac56974f9c6af238895a3101db0e3f0667ba1
38b31d4d02740d359a7e47fb3a3975045f00288e
refs/heads/master
2023-02-18T14:39:03.009815
2021-01-20T12:59:52
2021-01-20T12:59:52
311,855,608
0
1
null
null
null
null
UTF-8
Python
false
false
14,763
py
import pytest import allure import requests import json import time from Params.params import Login from Params.params import Login_info from Params.params import Password_reset from Params.params import Log_info from Params.params import Log_latest from Params.params import Log_list from Params.params import Attendance_groups_sync from Params.params import Attendance_schedules_sync from Params.params import Attendance_records_sync from Params.params import Flow_sync from Params.params import Department_sync from Params.params import Department_list from Params.params import Department_employees_list from Params.params import Department_employee_query from Params.params import Attendance_class_list from Params.params import Attendance_analyse from Params.params import Attendance_analyse_result from Params.params import Attendance_analyse_result_statistics from Common import Post from Common import Get from Common import Assert from Common import Consts class Attendance_analyse_standard_02: @allure.severity('normal') @allure.feature('Attendance_analyse') @allure.story('Attendance_analyse_standard') def test_standard_02(self): session_a = requests.session() get_req = Get.Get() ass = Assert.Assertions() url_2019_10 = 'http://172.16.2.101:4000/api/attendance/analyse?startDate=2019-10-01 00:00:00&endDate=2019-10-31 00:00:00&userIds=293210194326475830' #分析 用户293210194326475830 2019年10月 考勤 res_2019_10 = get_req.get_model_a(session_a,url_2019_10) time.sleep(10) resCode_2019_10 = res_2019_10['code'] resText_2019_10 = res_2019_10['text'] #print(resText_2019_10) assert ass.assert_code(resCode_2019_10, 200) assert ass.assert_in_text(resText_2019_10, 'ok') Consts.RESULT_LIST.append('True') url_2019_11 = 'http://172.16.2.101:4000/api/attendance/analyse?startDate=2019-11-01 00:00:00&endDate=2019-11-30 00:00:00&userIds=293210194326475830' # 分析 用户293210194326475830 2019年11月 考勤 res_2019_11 = get_req.get_model_a(session_a, url_2019_11) time.sleep(10) resCode_2019_11 = res_2019_11['code'] resText_2019_11 = res_2019_11['text'] #print(resText_2019_11) assert ass.assert_code(resCode_2019_11, 200) assert ass.assert_in_text(resText_2019_11, 'ok') Consts.RESULT_LIST.append('True') url_result_2019_10 = 'http://172.16.2.101:4000/api/attendance/analyse/list?userId=293210194326475830&startDate=2019-10-01 00:00:00&endDate=2019-10-31 00:00:00&pageSize=31' #获取 用户293210194326475830 2019年10月 考勤分析结果 res_result_2019_10 = get_req.get_model_a(session_a,url_result_2019_10) res_resultCode_2019_10 = res_result_2019_10['code'] res_resultText_2019_10 = res_result_2019_10['text'] assert ass.assert_code(res_resultCode_2019_10, 200) assert ass.assert_in_text(res_resultText_2019_10, 'ok') Consts.RESULT_LIST.append('True') url_result_2019_11 = 'http://172.16.2.101:4000/api/attendance/analyse/list?userId=293210194326475830&startDate=2019-11-01 00:00:00&endDate=2019-11-30 00:00:00&pageSize=31' # 获取 用户293210194326475830 2019年11月 考勤分析结果 res_result_2019_11 = get_req.get_model_a(session_a, url_result_2019_11) res_resultCode_2019_11 = res_result_2019_11['code'] res_resultText_2019_11 = res_result_2019_11['text'] assert ass.assert_code(res_resultCode_2019_11, 200) assert ass.assert_in_text(res_resultText_2019_11, 'ok') Consts.RESULT_LIST.append('True') res_resultDict_2019_10 = json.loads(res_resultText_2019_10) resInfo_10_01 = res_resultDict_2019_10['result']['list'][0] resInfo_10_02 = res_resultDict_2019_10['result']['list'][1] resInfo_10_03 = res_resultDict_2019_10['result']['list'][2] resInfo_10_04 = res_resultDict_2019_10['result']['list'][3] resInfo_10_05 = res_resultDict_2019_10['result']['list'][4] resInfo_10_06 = res_resultDict_2019_10['result']['list'][5] resInfo_10_07 = res_resultDict_2019_10['result']['list'][6] resInfo_10_08 = res_resultDict_2019_10['result']['list'][7] resInfo_10_09 = res_resultDict_2019_10['result']['list'][8] resInfo_10_10 = res_resultDict_2019_10['result']['list'][9] resInfo_10_11 = res_resultDict_2019_10['result']['list'][10] resInfo_10_12 = res_resultDict_2019_10['result']['list'][11] resInfo_10_13 = res_resultDict_2019_10['result']['list'][12] resInfo_10_14 = res_resultDict_2019_10['result']['list'][13] resInfo_10_15 = res_resultDict_2019_10['result']['list'][14] resInfo_10_16 = res_resultDict_2019_10['result']['list'][15] resInfo_10_17 = res_resultDict_2019_10['result']['list'][16] resInfo_10_18 = res_resultDict_2019_10['result']['list'][17] resInfo_10_19 = res_resultDict_2019_10['result']['list'][18] resInfo_10_20 = res_resultDict_2019_10['result']['list'][19] resInfo_10_21 = res_resultDict_2019_10['result']['list'][20] resInfo_10_22 = res_resultDict_2019_10['result']['list'][21] resInfo_10_23 = res_resultDict_2019_10['result']['list'][22] resInfo_10_24 = res_resultDict_2019_10['result']['list'][23] resInfo_10_25 = res_resultDict_2019_10['result']['list'][24] resInfo_10_26 = res_resultDict_2019_10['result']['list'][25] resInfo_10_27 = res_resultDict_2019_10['result']['list'][26] resInfo_10_28 = res_resultDict_2019_10['result']['list'][27] resInfo_10_29 = res_resultDict_2019_10['result']['list'][28] resInfo_10_30 = res_resultDict_2019_10['result']['list'][29] resInfo_10_31 = res_resultDict_2019_10['result']['list'][30] assert ass.assert_in_text(resInfo_10_01, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_02, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_03, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_04, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_05, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_06, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_07, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_08, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_09, 'ABNORMAL') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_10, 'ABNORMAL') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_11, 'ABNORMAL') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_12, 'ABNORMAL') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_13, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_14, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_15, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_16, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_17, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_18, 'ABNORMAL') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_19, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_20, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_21, 'ABNORMAL') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_22, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_23, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_24, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_25, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_26, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_27, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_28, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_29, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_30, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_10_31, 'ABNORMAL480') Consts.RESULT_LIST.append('True') res_resultDict_2019_11 = json.loads(res_resultText_2019_11) resInfo_11_01 = res_resultDict_2019_11['result']['list'][0] resInfo_11_02 = res_resultDict_2019_11['result']['list'][1] resInfo_11_03 = res_resultDict_2019_11['result']['list'][2] resInfo_11_04 = res_resultDict_2019_11['result']['list'][3] resInfo_11_05 = res_resultDict_2019_11['result']['list'][4] resInfo_11_06 = res_resultDict_2019_11['result']['list'][5] resInfo_11_07 = res_resultDict_2019_11['result']['list'][6] resInfo_11_08 = res_resultDict_2019_11['result']['list'][7] resInfo_11_09 = res_resultDict_2019_11['result']['list'][8] resInfo_11_10 = res_resultDict_2019_11['result']['list'][9] resInfo_11_11 = res_resultDict_2019_11['result']['list'][10] resInfo_11_12 = res_resultDict_2019_11['result']['list'][11] resInfo_11_13 = res_resultDict_2019_11['result']['list'][12] resInfo_11_14 = res_resultDict_2019_11['result']['list'][13] resInfo_11_15 = res_resultDict_2019_11['result']['list'][14] resInfo_11_16 = res_resultDict_2019_11['result']['list'][15] resInfo_11_17 = res_resultDict_2019_11['result']['list'][16] resInfo_11_18 = res_resultDict_2019_11['result']['list'][17] resInfo_11_19 = res_resultDict_2019_11['result']['list'][18] resInfo_11_20 = res_resultDict_2019_11['result']['list'][19] resInfo_11_21 = res_resultDict_2019_11['result']['list'][20] resInfo_11_22 = res_resultDict_2019_11['result']['list'][21] resInfo_11_23 = res_resultDict_2019_11['result']['list'][22] resInfo_11_24 = res_resultDict_2019_11['result']['list'][23] resInfo_11_25 = res_resultDict_2019_11['result']['list'][24] resInfo_11_26 = res_resultDict_2019_11['result']['list'][25] resInfo_11_27 = res_resultDict_2019_11['result']['list'][26] resInfo_11_28 = res_resultDict_2019_11['result']['list'][27] resInfo_11_29 = res_resultDict_2019_11['result']['list'][28] resInfo_11_30 = res_resultDict_2019_11['result']['list'][29] assert ass.assert_in_text(resInfo_11_01, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_02, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_03, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_04, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_05, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_06, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_07, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_08, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_09, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_10, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_11, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_12, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_13, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_14, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_15, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_16, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_17, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_18, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_19, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_20, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_21, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_22, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_23, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_24, 'SUCCESS') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_25, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_26, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_27, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_28, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_29, 'ABNORMAL480') Consts.RESULT_LIST.append('True') assert ass.assert_in_text(resInfo_11_30, 'SUCCESS') Consts.RESULT_LIST.append('True') if __name__ == '__main__': a = Attendance_analyse_standard_02() a.test_standard_02()
da4aa3bdc9eddca782b1e0a4f1eca9a1d8028af1
2321ebc9c76e2eb95a05976e3681ed7f4e24d361
/pandas-for-finance/10/05.py
68641569fe58f3b6a01bc5b01c572044cc7080ca
[]
no_license
sharebook-kr/books
71428bfec46759a8da81d70bfe28fa67e4244aee
7537053c559ca055bf54ab940bf4078217c288a1
refs/heads/master
2020-04-22T19:08:42.294339
2019-08-17T12:06:42
2019-08-17T12:06:42
170,598,895
1
0
null
null
null
null
UTF-8
Python
false
false
795
py
import requests from bs4 import BeautifulSoup import time import telepot from telepot.loop import MessageLoop def get_dividend_earning_rate(code): try: url = "http://finance.naver.com/item/main.nhn?code=" + code html = requests.get(url).text soup = BeautifulSoup(html, "html5lib") tag = soup.select("#_dvr") return tag[0].text except: return 0 token = "398259524:AAHMXMTVrXDfNd-E9tAsA1eRp-u4LopefLI" bot = telepot.Bot(token) def handle(msg): content_type, chat_type, chat_id = telepot.glance(msg) code = msg['text'] dvr = get_dividend_earning_rate(code) text = "배당 수익률은 {} 입니다.".format(dvr) bot.sendMessage(chat_id, text) MessageLoop(bot, handle).run_as_thread() while True: time.sleep(10)
c62de43f47a28b30ee881c1391e0c50a8a2b2ebf
b5f9f93a415a5cc0117a580c5da12804e68c141d
/scripts/motions/initr0.py
65093d4646203aa136da56e262759377b990ad57
[]
no_license
akihikoy/lfd_trick
71f89d80abc27ffc6fbd5bc609322918a4f8264e
b7bf0189db7bcef07772db17de29302d6e8ba2bf
refs/heads/master
2021-01-10T14:22:53.341666
2016-03-29T18:16:15
2016-03-29T18:16:15
50,623,958
3
0
null
null
null
null
UTF-8
Python
false
false
631
py
#!/usr/bin/python from core_tool import * def Help(): return '''Move left arm/gripper to init posture. Usage: init0''' def Run(t,*args): if t.robot.Is('PR2'): angles= [-1.5758421026969418, 1.2968352230407523, -1.6520923310211921, -2.095963566248973, 10.512690320637843, -1.469029183486648, 2.37512293699] elif t.robot.Is('Baxter'): angles= [0.6772525170776368, -0.8617137066101075, -0.1092961310119629, 2.4812139215698243, -0.7577865083496095, -1.4657186411499024, -0.12732040524902344] angles[0]-= 0.6 t.robot.OpenGripper(arm=RIGHT, blocking=False) t.robot.MoveToQ(angles,dt=4.0, arm=RIGHT,blocking=False)
1ab7dc817ebdb29dad6da210ed339031a9d170c7
700d2e5b4501fa638bef04141bb92aa1b5a422f0
/LowVoltage/actions/update_item.py
045ab47970e839494c5c41a728899b5928c1f23b
[ "MIT" ]
permissive
jacquev6/LowVoltage
134d8e85add7ff8107090b80adeda99552a43fa4
aa9c3653e54f2ccda3db0ed647ba9ad5e5657ea3
refs/heads/master
2016-09-05T18:29:29.734533
2015-09-06T16:17:03
2015-09-06T16:17:03
24,800,231
3
3
null
2015-04-29T15:06:34
2014-10-04T20:02:56
Python
UTF-8
Python
false
false
22,664
py
# coding: utf8 # Copyright 2014-2015 Vincent Jacques <[email protected]> """ When given a :class:`UpdateItem`, the connection will return a :class:`UpdateItemResponse`: >>> connection(UpdateItem(table, {"h": 0}).remove("a")) <LowVoltage.actions.update_item.UpdateItemResponse ...> """ import LowVoltage as _lv import LowVoltage.testing as _tst from .action import Action from .conversion import _convert_dict_to_db, _convert_db_to_dict from .next_gen_mixins import proxy from .next_gen_mixins import ( ConditionExpression, ExpressionAttributeNames, ExpressionAttributeValues, Key, ReturnConsumedCapacity, ReturnItemCollectionMetrics, ReturnValues, TableName ) from .return_types import ConsumedCapacity, ItemCollectionMetrics, _is_dict class UpdateItemResponse(object): """ UpdateItemResponse() The `UpdateItem response <http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_ResponseElements>`__. """ def __init__( self, Attributes=None, ConsumedCapacity=None, ItemCollectionMetrics=None, **dummy ): self.__attributes = Attributes self.__consumed_capacity = ConsumedCapacity self.__item_collection_metrics = ItemCollectionMetrics @property def attributes(self): """ The (previous or new) attributes of the item you just updated. If you used :meth:`~UpdateItem.return_values_all_old`, :meth:`~UpdateItem.return_values_all_new`, :meth:`~UpdateItem.return_values_updated_old` or :meth:`~UpdateItem.return_values_updated_new`. :type: ``None`` or dict """ if _is_dict(self.__attributes): return _convert_db_to_dict(self.__attributes) @property def consumed_capacity(self): """ The capacity consumed by the request. If you used :meth:`~UpdateItem.return_consumed_capacity_total` or :meth:`~UpdateItem.return_consumed_capacity_indexes`. :type: ``None`` or :class:`.ConsumedCapacity` """ if _is_dict(self.__consumed_capacity): return ConsumedCapacity(**self.__consumed_capacity) @property def item_collection_metrics(self): """ Metrics about the collection of the item you just updated. If a LSI was touched and you used :meth:`~UpdateItem.return_item_collection_metrics_size`. :type: ``None`` or :class:`.ItemCollectionMetrics` """ if _is_dict(self.__item_collection_metrics): return ItemCollectionMetrics(**self.__item_collection_metrics) class UpdateItem(Action): """ The `UpdateItem request <http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters>`__. """ def __init__(self, table_name=None, key=None): """ Passing ``table_name`` to the constructor is like calling :meth:`table_name` on the new instance. Passing ``key`` to the constructor is like calling :meth:`key` on the new instance. """ super(UpdateItem, self).__init__("UpdateItem", UpdateItemResponse) self.__set = {} self.__remove = [] self.__add = {} self.__delete = {} self.__condition_expression = ConditionExpression(self) self.__expression_attribute_names = ExpressionAttributeNames(self) self.__expression_attribute_values = ExpressionAttributeValues(self) self.__key = Key(self, key) self.__return_consumed_capacity = ReturnConsumedCapacity(self) self.__return_item_collection_metrics = ReturnItemCollectionMetrics(self) self.__return_values = ReturnValues(self) self.__table_name = TableName(self, table_name) @property def payload(self): data = {} update = [] if self.__set: update.append("SET {}".format(", ".join("{}={}".format(n, v) for n, v in self.__set.iteritems()))) if self.__remove: update.append("REMOVE {}".format(", ".join(self.__remove))) if self.__add: update.append("ADD {}".format(", ".join("{} :{}".format(n, v) for n, v in self.__add.iteritems()))) if self.__delete: update.append("DELETE {}".format(", ".join("{} :{}".format(n, v) for n, v in self.__delete.iteritems()))) if update: data["UpdateExpression"] = " ".join(update) data.update(self.__condition_expression.payload) data.update(self.__expression_attribute_names.payload) data.update(self.__expression_attribute_values.payload) data.update(self.__key.payload) data.update(self.__return_consumed_capacity.payload) data.update(self.__return_item_collection_metrics.payload) data.update(self.__return_values.payload) data.update(self.__table_name.payload) return data @proxy def table_name(self, table_name): """ >>> connection( ... UpdateItem(key={"h": 0}) ... .table_name(table) ... .remove("a") ... ) <LowVoltage.actions.update_item.UpdateItemResponse ...> """ return self.__table_name.set(table_name) @proxy def key(self, key): """ >>> connection( ... UpdateItem(table_name=table) ... .key({"h": 0}) ... .remove("a") ... ) <LowVoltage.actions.update_item.UpdateItemResponse ...> """ return self.__key.set(key) def set(self, attribute_name, value_name): """ Add a value to SET as an attribute to UpdateExpression. As described in the `developer guide <http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html#Expressions.Modifying.UpdateExpressions.SET>`__. >>> connection(PutItem(table, {"h": 0})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .set("a", ":forty_two") ... .expression_attribute_value("forty_two", 42) ... .return_values_all_new() ... ).attributes {u'a': 42, u'h': 0} """ self.__set[attribute_name] = value_name return self def remove(self, path): """ Add an attribute to REMOVE to UpdateExpression. As described in the `developer guide <http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html#Expressions.Modifying.UpdateExpressions.REMOVE>`__. >>> connection(PutItem(table, {"h": 0, "a": 42})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .remove("a") ... .return_values_all_new() ... ).attributes {u'h': 0} """ self.__remove.append(path) return self def add(self, attribute_name, value_name): """ Add a (set of) value(s) to ADD to a number (or a set) attribute to UpdateExpression. As described in the `developer guide <http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html#Expressions.Modifying.UpdateExpressions.ADD>`__. >>> connection(PutItem(table, {"h": 0, "a": 42})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .add("a", "two") ... .expression_attribute_value("two", 2) ... .return_values_all_new() ... ).attributes {u'a': 44, u'h': 0} >>> connection(PutItem(table, {"h": 0, "a": {2, 3}})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .add("a", "vals") ... .expression_attribute_value("vals", {1, 2}) ... .return_values_all_new() ... ).attributes {u'a': set([1, 2, 3]), u'h': 0} """ self.__add[attribute_name] = value_name return self def delete(self, attribute_name, value_name): """ Add a set of values to DELETE from a set attribute to UpdateExpression. As described in the `developer guide <http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html#Expressions.Modifying.UpdateExpressions.DELETE>`__. >>> connection(PutItem(table, {"h": 0, "a": {1, 2, 3}})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .delete("a", "vals") ... .expression_attribute_value("vals", {1, 2, 4}) ... .return_values_all_new() ... ).attributes {u'a': set([3]), u'h': 0} """ self.__delete[attribute_name] = value_name return self @proxy def condition_expression(self, expression): """ >>> connection( ... UpdateItem(table, {"h": 1}) ... .remove("gh") ... .condition_expression("#syn=:val") ... .expression_attribute_name("syn", "gr") ... .expression_attribute_value("val", 8) ... ) <LowVoltage.actions.update_item.UpdateItemResponse ...> """ return self.__condition_expression.set(expression) @proxy def expression_attribute_name(self, synonym, name): """ See :meth:`condition_expression` for an example. """ return self.__expression_attribute_names.add(synonym, name) @proxy def expression_attribute_value(self, name, value): """ See :meth:`condition_expression` for an example. """ return self.__expression_attribute_values.add(name, value) @proxy def return_consumed_capacity_indexes(self): """ >>> c = connection( ... UpdateItem(table, {"h": 5}).set("gh", "h").set("gr", "h") ... .return_consumed_capacity_indexes() ... ).consumed_capacity >>> c.capacity_units 3.0 >>> c.table.capacity_units 1.0 >>> c.global_secondary_indexes["gsi"].capacity_units 2.0 """ return self.__return_consumed_capacity.indexes() @proxy def return_consumed_capacity_total(self): """ >>> connection( ... UpdateItem(table, {"h": 4}).set("gh", "h").set("gr", "h") ... .return_consumed_capacity_total() ... ).consumed_capacity.capacity_units 3.0 """ return self.__return_consumed_capacity.total() @proxy def return_consumed_capacity_none(self): """ >>> print connection( ... UpdateItem(table, {"h": 6}).set("gh", "h").set("gr", "h") ... .return_consumed_capacity_none() ... ).consumed_capacity None """ return self.__return_consumed_capacity.none() @proxy def return_item_collection_metrics_size(self): """ >>> m = connection( ... UpdateItem(table2, {"h": 0, "r1": 0}).set("a", "h") ... .return_item_collection_metrics_size() ... ).item_collection_metrics >>> m.item_collection_key {u'h': 0} >>> m.size_estimate_range_gb [0.0, 1.0] """ return self.__return_item_collection_metrics.size() @proxy def return_item_collection_metrics_none(self): """ >>> print connection( ... UpdateItem(table2, {"h": 1, "r1": 0}).set("a", "h") ... .return_item_collection_metrics_none() ... ).item_collection_metrics None """ return self.__return_item_collection_metrics.none() @proxy def return_values_all_old(self): """ >>> connection(PutItem(table, {"h": 0, "a": 1, "b": 2})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .set("a", ":v") ... .expression_attribute_value("v", 2) ... .return_values_all_old() ... ).attributes {u'a': 1, u'h': 0, u'b': 2} """ return self.__return_values.all_old() @proxy def return_values_all_new(self): """ >>> connection(PutItem(table, {"h": 0, "a": 1, "b": 2})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .set("a", ":v") ... .expression_attribute_value("v", 2) ... .return_values_all_new() ... ).attributes {u'a': 2, u'h': 0, u'b': 2} """ return self.__return_values.all_new() @proxy def return_values_updated_old(self): """ >>> connection(PutItem(table, {"h": 0, "a": 1, "b": 2})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .set("a", ":v") ... .expression_attribute_value("v", 2) ... .return_values_updated_old() ... ).attributes {u'a': 1} """ return self.__return_values.updated_old() @proxy def return_values_updated_new(self): """ >>> connection(PutItem(table, {"h": 0, "a": 1, "b": 2})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> connection( ... UpdateItem(table, {"h": 0}) ... .set("a", ":v") ... .expression_attribute_value("v", 2) ... .return_values_updated_new() ... ).attributes {u'a': 2} """ return self.__return_values.updated_new() @proxy def return_values_none(self): """ >>> connection(PutItem(table, {"h": 0, "a": 1, "b": 2})) <LowVoltage.actions.put_item.PutItemResponse ...> >>> print connection( ... UpdateItem(table, {"h": 0}) ... .set("a", ":v") ... .expression_attribute_value("v", 2) ... .return_values_none() ... ).attributes None """ return self.__return_values.none() class UpdateItemUnitTests(_tst.UnitTests): def test_name(self): self.assertEqual(UpdateItem("Table", {"hash": 42}).name, "UpdateItem") def test_table_name_and_key(self): self.assertEqual( UpdateItem().table_name("Table").key({"hash": 42}).payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, } ) def test_constructor(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, } ) def test_set(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).set("a", ":v").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "SET a=:v", } ) def test_several_sets(self): self.assertIn( UpdateItem("Table", {"hash": 42}).set("a", ":v").set("b", ":w").payload, [ { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "SET a=:v, b=:w", }, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "SET b=:w, a=:v", } ] ) def test_remove(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).remove("a").remove("b").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "REMOVE a, b", } ) def test_add(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).add("a", "v").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "ADD a :v", } ) def test_several_adds(self): self.assertIn( UpdateItem("Table", {"hash": 42}).add("a", "v").add("b", "w").payload, [ { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "ADD a :v, b :w", }, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "ADD b :w, a :v", } ] ) def test_delete(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).delete("a", "v").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "DELETE a :v", } ) def test_several_deletes(self): self.assertIn( UpdateItem("Table", {"hash": 42}).delete("a", "v").delete("b", "w").payload, [ { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "DELETE a :v, b :w", }, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "UpdateExpression": "DELETE b :w, a :v", } ] ) def test_expression_attribute_value(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).expression_attribute_value("v", u"value").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "ExpressionAttributeValues": {":v": {"S": "value"}}, } ) def test_expression_attribute_name(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).expression_attribute_name("n", "path").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "ExpressionAttributeNames": {"#n": "path"}, } ) def test_condition_expression(self): self.assertEqual( UpdateItem("Table", {"hash": 42}).condition_expression("a=b").payload, { "TableName": "Table", "Key": {"hash": {"N": "42"}}, "ConditionExpression": "a=b", } ) def test_return_values_all_new(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_values_all_new().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnValues": "ALL_NEW", } ) def test_return_values_all_old(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_values_all_old().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnValues": "ALL_OLD", } ) def test_return_values_updated_new(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_values_updated_new().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnValues": "UPDATED_NEW", } ) def test_return_values_updated_old(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_values_updated_old().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnValues": "UPDATED_OLD", } ) def test_return_values_none(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_values_none().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnValues": "NONE", } ) def test_return_consumed_capacity_total(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_consumed_capacity_total().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnConsumedCapacity": "TOTAL", } ) def test_return_consumed_capacity_indexes(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_consumed_capacity_indexes().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnConsumedCapacity": "INDEXES", } ) def test_return_consumed_capacity_none(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_consumed_capacity_none().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnConsumedCapacity": "NONE", } ) def test_return_item_collection_metrics_size(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_item_collection_metrics_size().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnItemCollectionMetrics": "SIZE", } ) def test_return_item_collection_metrics_none(self): self.assertEqual( UpdateItem("Table", {"hash": u"h"}).return_item_collection_metrics_none().payload, { "TableName": "Table", "Key": {"hash": {"S": "h"}}, "ReturnItemCollectionMetrics": "NONE", } ) class UpdateItemResponseUnitTests(_tst.UnitTests): def test_all_none(self): r = UpdateItemResponse() self.assertIsNone(r.attributes) self.assertIsNone(r.consumed_capacity) self.assertIsNone(r.item_collection_metrics) def test_all_set(self): unprocessed_keys = object() r = UpdateItemResponse(Attributes={"h": {"S": "a"}}, ConsumedCapacity={}, ItemCollectionMetrics={}) self.assertEqual(r.attributes, {"h": "a"}) self.assertIsInstance(r.consumed_capacity, ConsumedCapacity) self.assertIsInstance(r.item_collection_metrics, ItemCollectionMetrics)
0cd6a4e11eea792cd0918edb44bb11e6d8b29ecd
3c6b36eb1f4f9760c52903f6d0ec4a501f948c90
/osp/corpus/models/__init__.py
d1c292de71e9477c50603b545d6d90ec443aee8b
[ "Apache-2.0" ]
permissive
davidmcclure/open-syllabus-project
38444249af845013e3f281a7a713dca83159c56e
078cfd4c5a257fbfb0901d43bfbc6350824eed4e
refs/heads/master
2021-06-30T21:47:07.636558
2021-06-27T15:15:35
2021-06-27T15:15:35
50,152,020
220
14
Apache-2.0
2021-06-27T15:11:15
2016-01-22T02:29:57
Python
UTF-8
Python
false
false
162
py
from .document import Document from .document_format import Document_Format from .document_text import Document_Text from .document_index import Document_Index
a578ce80b077a6b303027caee95e8d5938e4b2a1
1ebe2b9d9d1f67e34cbe21c49f8710b2a1b9eeae
/tests/test_AppObj_getSinglePassword.py
b9993a19aa52502869d1ec20e6142b69d38a25a2
[ "MIT" ]
permissive
rmetcalf9/PasswordManPro_CLI
93ee0daff3bfd1c445bbb364df1a59711ec6344b
207a624a51ac2848c48aeac3282152315b5146df
refs/heads/master
2021-06-02T00:29:40.353520
2020-03-30T10:27:52
2020-03-30T10:27:52
135,285,541
2
2
null
null
null
null
UTF-8
Python
false
false
896
py
from TestHelperSuperClass import testHelperSuperClass import passwordmanpro_cli from unittest.mock import patch import samplePayloadsAndEnvs class test_AppObj(testHelperSuperClass): @patch('passwordmanpro_cli.AppObjClass._callGet') def test_getSinglePassword(self, getResoursesResponse): getResoursesResponse.side_effect = [ { 'responseCode': 200, 'response': samplePayloadsAndEnvs.resourseResponseRAW}, { 'responseCode': 200, 'response': samplePayloadsAndEnvs.accountsResponseRAW}, { 'responseCode': 200, 'response': samplePayloadsAndEnvs.passwordResponseRAW} ] fetchedPassword = passwordmanpro_cli.getSinglePassword( resourseName="soadevteamserver-konga", accountName="kongaadmin", skipSSLChecks=False, env=samplePayloadsAndEnvs.env ) self.assertEqual(fetchedPassword, 'dummyPasswordForTest', msg='Incorrect password output')
57c735539919e5edbbcb4ff8c16418d9f6376188
68bad4b3d92872bb5b77b4ee503e588d20511a27
/python/scripts_inhibition/old_script/simulate_inhibition_ZZZ151_slow.py
ab2d7fa5209a6129519eb6a8b0d03dbf06e4c97c
[]
no_license
mickelindahl/bgmodel
647be626a7311a8f08f3dfc897c6dd4466fc0a92
78e6f2b73bbcbecd0dba25caf99f835313c914ee
refs/heads/master
2023-08-29T13:57:04.122115
2022-02-11T14:28:23
2022-02-11T14:28:23
17,148,386
7
3
null
null
null
null
UTF-8
Python
false
false
2,492
py
''' Created on Aug 12, 2013 @author: lindahlm ''' from core.network.manager import Builder_striatum as Builder from core.parallel_excecution import loop from core.network import default_params from scripts_inhibition.base_simulate import (get_path_logs, get_args_list_inhibition, get_kwargs_list_indv_nets, par_process_and_thread, pert_set_data_path_to_milner_on_supermicro, pert_add_inhibition) import scripts_inhibition.base_inhibition_striatum as module import oscillation_perturbations151_slow as op import pprint pp=pprint.pprint FILE_NAME=__file__.split('/')[-1][0:-3] FROM_DISK_0=0 LOAD_MILNER_ON_SUPERMICRO=False NUM_NETS=1 NUM_RUNS=len(op.get()) #A run for each perturbation num_sim=NUM_NETS*NUM_RUNS kwargs={ 'Builder':Builder, 'cores_milner':40*1, 'cores_superm':4, 'file_name':FILE_NAME, 'from_disk':0, 'debug':False, 'do_runs':range(NUM_RUNS), #A run for each perturbation 'do_obj':False, 'i0':FROM_DISK_0, 'job_name':'inh_YYY', 'l_hours': ['00','00','00'], 'l_minutes':['15','10','5'], 'l_seconds':['00','00','00'], 'lower':1, 'local_threads_milner':20, 'local_threads_superm':1, 'module':module, 'nets':['Net_{}'.format(i) for i in range(NUM_NETS)], 'resolution':5, 'repetitions':1, 'path_code':default_params.HOME_CODE, 'path_results':get_path_logs(LOAD_MILNER_ON_SUPERMICRO, FILE_NAME), 'perturbation_list':op.get(), 'size':3000, 'upper':3} d_process_and_thread=par_process_and_thread(**kwargs) pp(d_process_and_thread) kwargs.update(d_process_and_thread) p_list = pert_add_inhibition(**kwargs) p_list = pert_set_data_path_to_milner_on_supermicro(p_list, LOAD_MILNER_ON_SUPERMICRO) for i, p in enumerate(p_list): print i, p a_list=get_args_list_inhibition(p_list, **kwargs) k_list=get_kwargs_list_indv_nets(len(p_list), kwargs) for obj in a_list: print obj.kwargs['setup'].nets_to_run # for i, a in enumerate(args_list): # print i, a loop(min(num_sim, 10),[num_sim, num_sim, NUM_RUNS], a_list, k_list ) # loop(args_list, path, 1)
1175d28772eb9d5b231c3206392fb90d67127bab
b8a803694c283a5acd13ab6760a36710884ab24f
/llvm/mc/__init__.py
69dd12f877e6415b53f60c7690e36b2f9d76a64c
[ "NCSA", "BSD-3-Clause" ]
permissive
llvmpy/llvmpy
8a4c31e731364ead802231b97e058b8f8c444f96
13130fe35f1fb03a7051ad46c36146002391a6fa
refs/heads/master
2016-09-05T16:48:54.694686
2015-04-28T16:21:34
2015-04-28T16:21:34
3,375,197
155
13
null
2015-05-27T18:36:45
2012-02-07T07:09:59
HTML
UTF-8
Python
false
false
6,676
py
import sys import llvm if llvm.version < (3, 4): raise Exception("mc is not supported for llvm version less than 3.4") from io import BytesIO import contextlib from llvmpy import api, extra from llvmpy.api.llvm import MCDisassembler class Operand(object): def __init__(self, mcoperand, target_machine): ''' @mcoperand: an MCOperand object @target_machine: an llvm.target.TargetMachine object ''' self.op = mcoperand if not self.op: raise llvm.LLVMException("null MCOperand argument") self.tm = target_machine def __str__(self): s = "invalid" if self.is_reg(): s = "reg(%s)" % (self.reg_name()) elif self.is_imm(): s = "imm(0x%02x)" % (self.op.getImm()) elif self.is_fp_imm(): s = "imm(%r)" % (self.op.getFPImm()) elif self.is_expr(): s = "expr(%r)" % (self.op.getExpr().getKind()) elif self.is_inst(): s = repr(Instr(self.op.getInst())) return s def __repr__(self): return str(self) def reg_name(self): if self.is_reg(): s = self.tm.reg_info.getName(self.op.getReg()) if s.strip() == "": return "?" else: return s else: return "" def is_reg(self): return self.op.isReg() def is_imm(self): return self.op.isImm() def is_fp_imm(self): return self.op.isFPImm() def is_expr(self): return self.op.isExpr() def is_inst(self): return self.op.isInst() def get_imm(self): if self.is_imm(): return self.op.getImm() else: return None def get_fp_imm(self): if self.is_fp_imm(): return self.op.getFPImm() else: return None def get_inst(self): if self.is_inst(): return Instr(self.op.getInst()) else: return None class Instr(object): def __init__(self, mcinst, target_machine): ''' @mcinst: an MCInst object @target_machine: an llvm.target.TargetMachine object ''' self.mcinst = mcinst if not self.mcinst: raise llvm.LLVMException("null MCInst argument") self.tm = target_machine def __str__(self): os = extra.make_raw_ostream_for_printing() self.tm.inst_printer.printInst(self.mcinst, os, "") return str(os.str()) def __repr__(self): return str(self) def __len__(self): ''' the number of operands ''' return int(self.mcinst.size()) def operands(self): amt = self.mcinst.getNumOperands() if amt < 1: return [] l = [] for i in range(0, amt): l.append(Operand(self.mcinst.getOperand(i), self.tm)) return l @property def instr_desc(self): return self.tm.instr_info.get(self.opcode) @property def flags(self): return self.instr_desc.getFlags() @property def ts_flags(self): return self.instr_desc.TSFlags @property def opcode(self): return self.mcinst.getOpcode() def is_branch(self): return self.instr_desc.isBranch() def is_cond_branch(self): return self.instr_desc.isConditionalBranch() def is_uncond_branch(self): return self.instr_desc.isUnconditionalBranch() def is_indirect_branch(self): return self.instr_desc.isIndirectBranch() def is_call(self): return self.instr_desc.isCall() def is_return(self): return self.instr_desc.isReturn() def is_terminator(self): return self.instr_desc.isTerminator() def is_barrier(self): return self.instr_desc.isBarrier() class BadInstr(Instr): pass class Disassembler(object): def __init__(self, target_machine): self.tm = target_machine @property def mdasm(self): return self.tm.disassembler @property def mai(self): return self.tm.asm_info def instr(self, mcinst): return Instr(mcinst, self.tm) def bad_instr(self, mcinst): return BadInstr(mcinst, self.tm) def decode(self, bs, base_addr, align=None): ''' decodes the bytes in @bs into instructions and yields each instruction as it is decoded. @base_addr is the base address where the instruction bytes are from (not an offset into @bs). yields instructions in the form of (addr, data, inst) where addr is an integer, data is a tuple of integers and inst is an instance of llvm.mc.Instr. @align specifies the byte alignment of instructions and is only used if an un-decodable instruction is encountered, in which case the disassembler will skip the following bytes until the next aligned address. if @align is unspecified, the default alignment for the architecture will be used, however this may not be ideal for disassembly. for example, the default alignment for ARM is 1, but you probably want it to be 4 for the purposes of disassembling ARM instructions. ''' if isinstance(bs, str) and sys.version_info.major >= 3: bs = bytes(map(lambda c: ord(c), bs)) elif not isinstance(bs, bytes): raise TypeError("expected bs to be either 'str' or 'bytes' but got %s" % type(bs)) code = api.llvm.StringRefMemoryObject.new(bs, base_addr) idx = 0 if not isinstance(align, int) or align < 1: align = self.mai.getMinInstAlignment() while(idx < code.getExtent()): inst = api.llvm.MCInst.new() addr = code.getBase() + idx status, size = self.mdasm.getInstruction(inst, code, addr) if size < 1: size = (align - (idx % align)) amt_left = code.getExtent() - idx if amt_left >= size: data = code.readBytes(addr, size) elif amt_left < 1: break else: data = code.readBytes(addr, amt_left) if sys.version_info.major < 3: data = tuple(map(lambda b: ord(b), data)) else: data = tuple(data) if status == MCDisassembler.DecodeStatus.Fail: yield (addr, data, None) elif status == MCDisassembler.DecodeStatus.SoftFail: yield (addr, data, self.bad_instr(inst)) else: yield (addr, data, self.instr(inst)) idx += size
cd768bdf9259efd8ae6f1c74de49916277ef7c0b
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startCirq1222.py
b2897a1f78eb02d31ad0854ee13aa149499f7d5a
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,794
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=5 # total number=49 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=3 c.append(cirq.H.on(input_qubit[1])) # number=4 c.append(cirq.H.on(input_qubit[1])) # number=26 c.append(cirq.CZ.on(input_qubit[4],input_qubit[1])) # number=27 c.append(cirq.H.on(input_qubit[1])) # number=28 c.append(cirq.H.on(input_qubit[2])) # number=5 c.append(cirq.H.on(input_qubit[3])) # number=6 c.append(cirq.H.on(input_qubit[4])) # number=21 c.append(cirq.H.on(input_qubit[1])) # number=34 c.append(cirq.CZ.on(input_qubit[4],input_qubit[1])) # number=35 c.append(cirq.rx(0.8011061266653969).on(input_qubit[2])) # number=37 c.append(cirq.H.on(input_qubit[1])) # number=36 for i in range(2): c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.H.on(input_qubit[2])) # number=19 c.append(cirq.H.on(input_qubit[3])) # number=20 c.append(cirq.H.on(input_qubit[0])) # number=46 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=47 c.append(cirq.H.on(input_qubit[0])) # number=48 c.append(cirq.X.on(input_qubit[0])) # number=39 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=40 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=42 c.append(cirq.X.on(input_qubit[1])) # number=43 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=44 c.append(cirq.X.on(input_qubit[2])) # number=11 c.append(cirq.Y.on(input_qubit[1])) # number=45 c.append(cirq.X.on(input_qubit[3])) # number=12 c.append(cirq.H.on(input_qubit[2])) # number=41 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=22 c.append(cirq.X.on(input_qubit[0])) # number=23 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=24 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=30 c.append(cirq.X.on(input_qubit[1])) # number=31 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=32 c.append(cirq.X.on(input_qubit[2])) # number=15 c.append(cirq.H.on(input_qubit[4])) # number=29 c.append(cirq.X.on(input_qubit[3])) # number=16 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 5 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq1222.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
fb8e9457ad5e04fd8f1f282ecd96716532bbf285
dbfdbe3c1d5e3ad38625d8c971fe8dd45c8c3885
/device_agent/snmp/libs/pysmi-0.3.1/pysmi/reader/zipreader.py
d9f6c4aeb941e5044dd6806f94dd71c09fbca20c
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
fyfdoc/IntegrateTest
a58f6d0ea7cff5f67d79d7e042c0bb39c6b8bbbb
0d8374406c10c313d6627699879215841e0ebdb6
refs/heads/master
2022-12-03T02:32:37.388556
2019-01-25T02:36:42
2019-01-25T02:36:42
167,468,256
0
1
null
2022-11-29T20:58:41
2019-01-25T01:59:28
Python
UTF-8
Python
false
false
5,627
py
# # This file is part of pysmi software. # # Copyright (c) 2015-2018, Ilya Etingof <[email protected]> # License: http://snmplabs.com/pysmi/license.html # import os import sys import time import datetime import zipfile from pysmi.reader.base import AbstractReader from pysmi.mibinfo import MibInfo from pysmi.compat import decode from pysmi import debug from pysmi import error class FileLike(object): """Stripped down, binary file mock to work with ZipFile""" def __init__(self, buf, name): self.name = name self.buf = buf self.null = buf[:0] self.len = len(buf) self.buflist = [] self.pos = 0 self.closed = False self.softspace = 0 def close(self): if not self.closed: self.closed = True self.buf = self.null self.pos = 0 def seek(self, pos, mode = 0): if self.buflist: self.buf += self.null.join(self.buflist) self.buflist = [] if mode == 1: pos += self.pos elif mode == 2: pos += self.len self.pos = max(0, pos) def tell(self): return self.pos def read(self, n=-1): if self.buflist: self.buf += self.null.join(self.buflist) self.buflist = [] if n < 0: newpos = self.len else: newpos = min(self.pos + n, self.len) r = self.buf[self.pos:newpos] self.pos = newpos return r class ZipReader(AbstractReader): """Fetch ASN.1 MIB text by name from a ZIP archive. *ZipReader* class instance tries to locate ASN.1 MIB files by name, fetch and return their contents to caller. """ useIndexFile = False def __init__(self, path, ignoreErrors=True): """Create an instance of *ZipReader* serving a ZIP archive. Args: path (str): path to ZIP archive containing MIB files Keyword Args: ignoreErrors (bool): ignore ZIP archive access errors """ self._name = path self._members = {} self._pendingError = None try: self._members = self._readZipDirectory(fileObj=open(path, 'rb')) except Exception: debug.logger & debug.flagReader and debug.logger( 'ZIP file %s open failure: %s' % (self._name, sys.exc_info()[1])) if not ignoreErrors: self._pendingError = error.PySmiError('file %s access error: %s' % (self._name, sys.exc_info()[1])) def _readZipDirectory(self, fileObj): archive = zipfile.ZipFile(fileObj) if isinstance(fileObj, FileLike): fileObj = None members = {} for member in archive.infolist(): filename = os.path.basename(member.filename) if not filename: continue if (member.filename.endswith('.zip') or member.filename.endswith('.ZIP')): innerZipBlob = archive.read(member.filename) innerMembers = self._readZipDirectory(FileLike(innerZipBlob, member.filename)) for innerFilename, ref in innerMembers.items(): while innerFilename in members: innerFilename += '+' members[innerFilename] = [[fileObj, member.filename, None]] members[innerFilename].extend(ref) else: mtime = time.mktime(datetime.datetime(*member.date_time[:6]).timetuple()) members[filename] = [[fileObj, member.filename, mtime]] return members def _readZipFile(self, refs): for fileObj, filename, mtime in refs: if not fileObj: fileObj = FileLike(dataObj, name=self._name) archive = zipfile.ZipFile(fileObj) try: dataObj = archive.read(filename) except Exception: debug.logger & debug.flagReader and debug.logger('ZIP read component %s read error: %s' % (fileObj.name, sys.exc_info()[1])) return '', 0 return dataObj, mtime def __str__(self): return '%s{"%s"}' % (self.__class__.__name__, self._name) def getData(self, mibname, zipBlob=None): debug.logger & debug.flagReader and debug.logger('looking for MIB %s at %s' % (mibname, self._name)) if self._pendingError: raise self._pendingError if not self._members: raise error.PySmiReaderFileNotFoundError('source MIB %s not found' % mibname, reader=self) for mibalias, mibfile in self.getMibVariants(mibname): debug.logger & debug.flagReader and debug.logger('trying MIB %s' % mibfile) try: refs = self._members[mibfile] except KeyError: continue mibData, mtime = self._readZipFile(refs) if not mibData: continue debug.logger & debug.flagReader and debug.logger( 'source MIB %s, mtime %s, read from %s/%s' % (mibfile, time.strftime("%a, %d %b %Y %H:%M:%S GMT", time.gmtime(mtime)), self._name, mibfile) ) if len(mibData) == self.maxMibSize: raise IOError('MIB %s/%s too large' % (self._name, mibfile)) return MibInfo(path='zip://%s/%s' % (self._name, mibfile), file=mibfile, name=mibalias, mtime=mtime), decode(mibData) raise error.PySmiReaderFileNotFoundError('source MIB %s not found' % mibname, reader=self)
46841f47f1f695cf591b225b1aa16e65ae0935ef
5dd190725aaaeb7287d935b3c99c20480b208816
/object_detection/utils/np_box_list_test.py
0cf2ef4d21dd8fea0b5d78c45776b8866d1f7cdc
[ "MIT" ]
permissive
DemonDamon/mask-detection-based-on-tf2odapi
32d947164fb54395b9e45368c0d4bcf3a6ea1c28
192ae544169c1230c21141c033800aa1bd94e9b6
refs/heads/main
2023-05-13T05:05:44.534885
2021-06-08T05:56:09
2021-06-08T05:56:09
369,463,131
2
1
null
null
null
null
UTF-8
Python
false
false
5,436
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.np_box_list_test.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from object_detection.utils import np_box_list class BoxListTest(tf.test.TestCase): def test_invalid_box_data(self): with self.assertRaises(ValueError): np_box_list.BoxList([0, 0, 1, 1]) with self.assertRaises(ValueError): np_box_list.BoxList(np.array([[0, 0, 1, 1]], dtype=int)) with self.assertRaises(ValueError): np_box_list.BoxList(np.array([0, 1, 1, 3, 4], dtype=float)) with self.assertRaises(ValueError): np_box_list.BoxList(np.array([[0, 1, 1, 3], [3, 1, 1, 5]], dtype=float)) def test_has_field_with_existed_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) boxlist = np_box_list.BoxList(boxes) self.assertTrue(boxlist.has_field('boxes')) def test_has_field_with_nonexisted_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) boxlist = np_box_list.BoxList(boxes) self.assertFalse(boxlist.has_field('scores')) def test_get_field_with_existed_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) boxlist = np_box_list.BoxList(boxes) self.assertTrue(np.allclose(boxlist.get_field('boxes'), boxes)) def test_get_field_with_nonexited_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) boxlist = np_box_list.BoxList(boxes) with self.assertRaises(ValueError): boxlist.get_field('scores') class AddExtraFieldTest(tf.test.TestCase): def setUp(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) self.boxlist = np_box_list.BoxList(boxes) def test_add_already_existed_field(self): with self.assertRaises(ValueError): self.boxlist.add_field('boxes', np.array([[0, 0, 0, 1, 0]], dtype=float)) def test_add_invalid_field_data(self): with self.assertRaises(ValueError): self.boxlist.add_field('scores', np.array([0.5, 0.7], dtype=float)) with self.assertRaises(ValueError): self.boxlist.add_field('scores', np.array([0.5, 0.7, 0.9, 0.1], dtype=float)) def test_add_single_dimensional_field_data(self): boxlist = self.boxlist scores = np.array([0.5, 0.7, 0.9], dtype=float) boxlist.add_field('scores', scores) self.assertTrue(np.allclose(scores, self.boxlist.get_field('scores'))) def test_add_multi_dimensional_field_data(self): boxlist = self.boxlist labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], dtype=int) boxlist.add_field('labels', labels) self.assertTrue(np.allclose(labels, self.boxlist.get_field('labels'))) def test_get_extra_fields(self): boxlist = self.boxlist self.assertItemsEqual(boxlist.get_extra_fields(), []) scores = np.array([0.5, 0.7, 0.9], dtype=float) boxlist.add_field('scores', scores) self.assertItemsEqual(boxlist.get_extra_fields(), ['scores']) labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], dtype=int) boxlist.add_field('labels', labels) self.assertItemsEqual(boxlist.get_extra_fields(), ['scores', 'labels']) def test_get_coordinates(self): y_min, x_min, y_max, x_max = self.boxlist.get_coordinates() expected_y_min = np.array([3.0, 14.0, 0.0], dtype=float) expected_x_min = np.array([4.0, 14.0, 0.0], dtype=float) expected_y_max = np.array([6.0, 15.0, 20.0], dtype=float) expected_x_max = np.array([8.0, 15.0, 20.0], dtype=float) self.assertTrue(np.allclose(y_min, expected_y_min)) self.assertTrue(np.allclose(x_min, expected_x_min)) self.assertTrue(np.allclose(y_max, expected_y_max)) self.assertTrue(np.allclose(x_max, expected_x_max)) def test_num_boxes(self): boxes = np.array([[0., 0., 100., 100.], [10., 30., 50., 70.]], dtype=float) boxlist = np_box_list.BoxList(boxes) expected_num_boxes = 2 self.assertEquals(boxlist.num_boxes(), expected_num_boxes) if __name__ == '__main__': tf.test.main()
5e82d5c5a82104ee6f3ba514fcce0106579c026f
715a11d7b8f15694a5cc4b47ac0e3a3cfc4ffedc
/peakelem.py
5d99b8c5e4760ff7fad5f9cbebcb6e3ce1a46279
[]
no_license
mohanrajanr/CodePrep
5cd538d16598f6a0d2486357d3cc6e0fa1626e4e
2e23a5f996139b887bf723f58b23368cf8121cd4
refs/heads/main
2023-04-23T04:10:06.111120
2021-05-11T06:47:51
2021-05-11T06:47:51
366,283,064
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
from typing import List def findPeakElement(nums: List[int]) -> int: l = 0 r = len(nums) -1 while l < r: mid = l + (r - l)//2 if nums[mid] < nums[mid + 1]: l = mid + 1 else: r = mid return l print(findPeakElement([1,2,3,1])) print(findPeakElement([1,2,1,3,5,6,4]))
a7137729e4f44867909a24c14dd9be012679b1c0
d7016f69993570a1c55974582cda899ff70907ec
/sdk/security/azure-mgmt-security/azure/mgmt/security/v2019_01_01_preview/aio/operations/_regulatory_compliance_standards_operations.py
a1a59794d5339f57d8b5bd9b86f55456dcf52ab8
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
9,216
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._regulatory_compliance_standards_operations import build_get_request, build_list_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RegulatoryComplianceStandardsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.security.v2019_01_01_preview.aio.SecurityCenter`'s :attr:`regulatory_compliance_standards` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list( self, filter: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.RegulatoryComplianceStandard"]: """Supported regulatory compliance standards details and state. :param filter: OData filter. Optional. Default value is None. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RegulatoryComplianceStandard or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.security.v2019_01_01_preview.models.RegulatoryComplianceStandard] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", "2019-01-01-preview") ) # type: Literal["2019-01-01-preview"] cls = kwargs.pop("cls", None) # type: ClsType[_models.RegulatoryComplianceStandardList] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, filter=filter, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("RegulatoryComplianceStandardList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Security/regulatoryComplianceStandards"} # type: ignore @distributed_trace_async async def get( self, regulatory_compliance_standard_name: str, **kwargs: Any ) -> _models.RegulatoryComplianceStandard: """Supported regulatory compliance details state for selected standard. :param regulatory_compliance_standard_name: Name of the regulatory compliance standard object. Required. :type regulatory_compliance_standard_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RegulatoryComplianceStandard or the result of cls(response) :rtype: ~azure.mgmt.security.v2019_01_01_preview.models.RegulatoryComplianceStandard :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", "2019-01-01-preview") ) # type: Literal["2019-01-01-preview"] cls = kwargs.pop("cls", None) # type: ClsType[_models.RegulatoryComplianceStandard] request = build_get_request( regulatory_compliance_standard_name=regulatory_compliance_standard_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("RegulatoryComplianceStandard", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Security/regulatoryComplianceStandards/{regulatoryComplianceStandardName}"} # type: ignore
39cbc94ee7bdfab87c35956c0e4db581e7be8f01
f0932f59d37adfbba9307ee31e6f78ce3c256c4a
/scripts/pick_primers.py
4970130ecdc69ece8f850de75796334dbcf07178
[]
no_license
kalekundert/ligrna
3785a1e5fb8ed6d07839a5314029f3fc882d4471
843963973c34c4976f5adfbd4d03f5f1d0344423
refs/heads/master
2020-04-12T12:52:32.828100
2020-02-22T00:59:57
2020-02-22T00:59:57
162,505,099
0
0
null
null
null
null
UTF-8
Python
false
false
2,178
py
#!/usr/bin/env python3 """\ Automatically design primers that can be used to construct the given sgRNA design by overlap extension PCR. There are a number of parameters controlling how ideal the primers have to be, and you can play with them to get more or fewer results. I ended up not using this script in favor of ordering my designs as gBlocks gene fragments from IDT. The PCR assembly takes as long as it takes IDT to deliver gBlocks, and the gBlocks are much higher purity. The gBlocks are also not that much more expensive at $90 per design. Most of the primers are ~$30, and then you have to add reagents and my time. Usage: pick_primers.py <name> [options] Options: --max-num-primers NUM --min-primer-len LEN [default: 40] --max-primer-len LEN [default: 50] --min-overlap-len LEN [default: 18] --max-overlap-len LEN [default: 22] --min-overlap-tm CELSIUS [default: 52.0] --max-overlap-tm CELSIUS [default: 58.0] --max-tm-diff DELTA-CELSIUS [default: 2.0] --max-gc-content PERCENT [default: 0.6] --min-gc-content PERCENT [default: 0.3] -c, --color WHEN [default: auto] -q, --header-only """ import sys, docopt import pcr_helper, sgrna_sensor args = docopt.docopt(__doc__) print('$ ' + ' '.join(sys.argv)) print() design = sgrna_sensor.from_name(args['<name>']) assembler = pcr_helper.PcrAssembly() assembler.max_num_primers = int(args['--max-num-primers'] or 0) assembler.min_primer_len = int(args['--min-primer-len']) assembler.max_primer_len = int(args['--max-primer-len']) assembler.min_overlap_len = int(args['--min-overlap-len']) assembler.max_overlap_len = int(args['--max-overlap-len']) assembler.min_overlap_tm = float(args['--min-overlap-tm']) assembler.max_overlap_tm = float(args['--max-overlap-tm']) assembler.max_tm_diff = float(args['--max-tm-diff']) assembler.max_gc_content = float(args['--max-gc-content']) assembler.min_gc_content = float(args['--min-gc-content']) assembler.use_color = args['--color'] assembler.find_primers(design) assembler.print_primers(args['--header-only'])
a0feaf8c56a52a21c80539eab8e8ed88e51eac94
781e2692049e87a4256320c76e82a19be257a05d
/intervention/results/control_111904_1447993241_112_7.5.py
845005cad1ed0885c10843c1b9b9886bcb1ed4e3
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
178
py
def num_common_letters(goal_word, guess): common = [] for char in list(guess): if char in list(goal_word) and char not in common: common += [char] return len(common)
e6baa85e72a32507593f58f59909889a6f6d0876
a4009f6d6f5379ddd9e948c3083c92fe8f1be259
/tutorial/schema_design.py
fa4df3ae574cba3890816db3e74c5da08d33f0f7
[ "MIT" ]
permissive
MacHu-GWU/learn_whoosh-project
44a3b66a81b5a4686f48fa72b2e02538cfd2616e
3ffff3b2084d2bb0bd17f38be322f75fa14986b5
refs/heads/master
2018-12-21T09:41:36.829399
2018-09-30T03:03:25
2018-09-30T03:03:25
26,701,985
0
0
null
null
null
null
UTF-8
Python
false
false
10,667
py
##encoding=utf8 """ Field说明 = http://pythonhosted.org//Whoosh/api/fields.html stored – Whether the value of this field is stored with the document. unique – Whether the value of this field is unique per-document. """ from __future__ import print_function, unicode_literals from whoosh.index import create_in from whoosh.fields import * from whoosh.qparser import * from whoosh.qparser.dateparse import DateParserPlugin from datetime import datetime, date, timedelta import os, shutil def restart(): path = "indexdir" for fname in os.listdir(path): try: os.remove(os.path.join(path, fname)) except: shutil.rmtree(os.path.join(path, fname)) restart() def example00(): """ 这是官方文档中的例子,展示了whoosh中的几个基本抽象概念 """ ## 定义document schema。本例中文档有3个属性,title是TEXT类型,path是ID类型,content是TEXT类型 ## 类型的概念以及参数stored的意义在后面的例子中均有介绍 schema = Schema(title=TEXT(stored=True), path=ID(stored=True), content=TEXT) ## 定义index(简写ix)。按照我们定义的schema,全文搜索引擎就会为不同的字段自动添加index ## index有writer,和searcher两大子类 ix = create_in("indexdir", schema) ## 创建writer类,将数据通过writer写入index。writer和数据库一样,也有commit这个机制 writer = ix.writer() writer.add_document(title="First document", path="/a", content="This is the first document we've added!") writer.add_document(title="Second document", path="/b", content="The second one is even more interesting!") writer.commit() ## 创建搜索器 with ix.searcher() as searcher: ## 创建QueryParser类,这个类是用来将用户输入的搜索串解析成服务器能理解query queryparser = QueryParser("content", ix.schema) ## 通过.parse方法创建query query = queryparser.parse("first") ## 将query传入sercher进行搜索 results = searcher.search(query) print(results[0]) example00() def example01(): """whoosh.fields.ID ID类似于数据库中primary key的概念,根据primary key进行SELECT的时候必须ID完全匹配上,对大小写敏感。 所以ID适合用来储存文档中具有唯一标志符的属性,例如: document_path document_url create_time_stamp """ schema = Schema(filepath=ID(stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(filepath = "C:\python27\scripts") writer.commit() with ix.searcher() as searcher: query = QueryParser("filepath", ix.schema).parse("C:\python27\scripts") print(searcher.search(query)[0]) query = QueryParser("filepath", ix.schema).parse("C:\Python27\scripts") print(searcher.search(query)[0]) # example01() def example02(): """whoosh.fields.IDLIST IDLIST类似数据库中多个primary key的概念,同样对大小写敏感。其他部分请参考ID篇 """ schema = Schema(city_and_state=IDLIST(stored=True), ) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(city_and_state = "arlington VA") writer.commit() with ix.searcher() as searcher: query = QueryParser("city_and_state", ix.schema).parse("arlington", "VA") print(searcher.search(query)[0]) query = QueryParser("city_and_state", ix.schema).parse("VA, arlington") print(searcher.search(query)[0]) query = QueryParser("city_and_state", ix.schema).parse("arlington") print(searcher.search(query)[0]) query = QueryParser("city_and_state", ix.schema).parse("VA") print(searcher.search(query)[0]) # example02() def example03(): """whoosh.fields.STORED STORED表示无法被搜索到,但是每次其他单元被搜索到,都会自动跟着被显示 """ schema = Schema(SSN=ID(stored=True), memo=STORED, ) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(SSN = "123456", memo = "he is my best friend in high school") writer.commit() with ix.searcher() as searcher: query = QueryParser("SSN", ix.schema).parse("123456") print(searcher.search(query)[0]) query = QueryParser("memo", ix.schema).parse("he is my best friend in high school") # unsearchable print(searcher.search(query)[0]) # example03() def example04(): """whoosh.fields.KEYWORD KEYWORD适合用于标签类的对象。每一个document拥有若干个标签,这若干标签可以相同。和IDLIST不同的是, 可能很多个文档共同享有同一个标签集合。 """ schema = Schema(tags=KEYWORD(stored=True, commas=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(tags = "action,romance,story,war") writer.commit() with ix.searcher() as searcher: query = QueryParser("tags", ix.schema).parse("story", "war") print(searcher.search(query)[0]) query = QueryParser("tags", ix.schema).parse("war action") print(searcher.search(query)[0]) # example04() def example05(): """whoosh.fields.TEXT TEXT适用于文本对象,搜索方式类似于短语搜索,搜索的最小单位是词,对大小写不敏感。例如: "am", "boy" ===> "I am a boy" TEXT的主要对象是词,对数字和词的混合搜索支持不良好。 如果要支持任意字母片段的匹配,请参考ngram算法部分 """ schema = Schema(sentence=TEXT(stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(sentence = "I live in 1400 S Joyce St") writer.commit() with ix.searcher() as searcher: # query = QueryParser("sentence", ix.schema).parse("live", "joyce") # print(searcher.search(query)[0]) # query = QueryParser("sentence", ix.schema).parse("joyce", "1400") # print(searcher.search(query)[0]) # query = QueryParser("sentence", ix.schema).parse("live", "1400", "joyce") # 数字单词混合,无法匹配 # print(searcher.search(query)[0]) # query = QueryParser("sentence", ix.schema).parse("joy") # 单词片段,无法匹配 # print(searcher.search(query)[0]) qp = QueryParser("sentence", ix.schema) qp.add_plugin(WildcardPlugin()) # 字符模糊搜索扩展 q = qp.parse("S joy*") print(searcher.search(q)[0]) # example05() def example06(): """whoosh.fields.NUMERIC 数值型对象,有int, float两类 """ schema = Schema(temperature=NUMERIC(float, stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(temperature = 32.3) writer.commit() with ix.searcher() as searcher: qp = QueryParser("temperature", ix.schema) qp.add_plugin(GtLtPlugin()) # 大于小于 支持扩展 q = qp.parse("temperature:>=20.0") print(searcher.search(q)[0]) qp.add_plugin(OperatorsPlugin(And="&")) # 与或非 支持扩展 q = qp.parse("temperature:>=20.0 & temperature:<=40.0") print(searcher.search(q)[0]) qp.add_plugin(RangePlugin()) # 范围区间 支持扩展 q = qp.parse("temperature:{20 to]") print(searcher.search(q)[0]) # example06() def example07(): """whoosh.fields.DATETIME """ schema = Schema(create_date=DATETIME(stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(create_date = datetime(2014,1,10,6,30,0)) writer.commit() with ix.searcher() as searcher: qp = QueryParser("create_date", ix.schema) qp.add_plugin(DateParserPlugin()) # DateParserPlugin自带了大于,小于区间等语法 q = qp.parse("2014-01-10-06-30-00") print(searcher.search(q)[0]) q = qp.parse("create_date:[20140110063000 to ]") # whoosh支持最良好的就是年月日小时分钟秒连续写在一起的格式 print(searcher.search(q)[0]) qp.add_plugin(OperatorsPlugin()) q = qp.parse("create_date:[201403 to] OR [to 201402] ") print(searcher.search(q)[0]) # example07() def example08(): """whoosh.fields.NGRAM NGRAM将整个文本拆分成词,然后把每个词拆分成小块。 """ schema = Schema(tweets=NGRAM(minsize=2, maxsize=6, stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(tweets="Heard that? Kate just get a boyfriend!") writer.commit() with ix.searcher() as searcher: qp = QueryParser("tweets", schema) q = qp.parse("oyfrien") # 成功,因为在 print(searcher.search(q)[0]) q = qp.parse("boyfriend") # 成功,匹配整个词 print(searcher.search(q)[0]) q = qp.parse("e ju") # 不成功,因为空格跨越了词 print(searcher.search(q)[0]) # example08() def example09(): """whoosh.fields.NGRAMWORDS NGRAMWORDS将整个文本拆分成字母块,无视词语,包括空格标点符号在内都拆分成小块 """ schema = Schema(tweets=NGRAMWORDS(minsize=2, maxsize=8, stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(tweets="Heard that? Kate just get a boyfriend!") writer.commit() with ix.searcher() as searcher: qp = QueryParser("tweets", schema) q = qp.parse("oyfrien") # 成功,因为在 print(searcher.search(q)[0]) q = qp.parse("boyfriend") # 成功,匹配整个词 print(searcher.search(q)[0]) q = qp.parse("e ju") # 成功,因为是拆分的整个文本 print(searcher.search(q)[0]) # example09() def example10(): """根据多个字段进行全文搜索 """ schema = Schema(name=TEXT(stored=True), height=NUMERIC(float, stored=True)) ix = create_in("indexdir", schema) writer = ix.writer() writer.add_document(name = "Jack", height=180.5) writer.commit() with ix.searcher() as searcher: qp = QueryParser(None, schema) qp.add_plugin(MultifieldPlugin(["name", "height"]) ) # 多字段搜索parser qp.add_plugin(GtLtPlugin()) q = qp.parse("Jack height:>=180.5") print(searcher.search(q)[0]) # example10()