blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0b9a88c391878412fc429f3a75e2414c760997cf
620323fc090cebaf7aca456ff3f7fbbe1e210394
/flask__webservers/get_size_upload_file_with_progress/main.py
35ae0b78ba57d5a84ea62acf77d081e6e19a12bf
[ "CC-BY-4.0" ]
permissive
gil9red/SimplePyScripts
bd2733372728bf9b9f00570e90316fa12116516b
773c2c9724edd8827a1dbd91694d780e03fcb05a
refs/heads/master
2023-08-31T04:26:09.120173
2023-08-30T17:22:59
2023-08-30T17:22:59
22,650,442
157
46
null
2023-09-08T17:51:33
2014-08-05T16:19:52
Python
UTF-8
Python
false
false
4,527
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "ipetrash" import logging from flask import Flask, request, redirect, render_template_string, jsonify # pip install humanize from humanize import naturalsize as sizeof_fmt app = Flask(__name__) logging.basicConfig(level=logging.DEBUG) @app.route("/") def index(): return render_template_string( """\ <html> <head> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'/> <title>get_size_upload_file</title> <script type="text/javascript" src="{{ url_for('static', filename='js/jquery-3.1.1.min.js') }}"></script> </head> <body> <br> <form class="form__upload_file" action="/get_file_size" method="post" enctype="multipart/form-data"> <p>Узнайте размер файла:</p> <p><input type="file" name="file"></p> <p><input type="submit"></p> </form> <div class="block progress" style="display: none"> <p>Пожалуйста, подождите, файл загружаются.</p> <progress class="progress upload" max="100" value="0"></progress> </div> <br><br> <div class="info size" style="display: none"> <div class="show_size" style="display: inline-block;"></div><div style="display: inline-block;">&nbsp;Bytes</div> <div class="show_size_human"></div> </div> <script> $(document).ready(function() { function progress(e) { if(e.lengthComputable) { var max = e.total; var current = e.loaded; var percentage = (current * 100) / max; console.log(percentage); $('.progress.upload').val(percentage); } } $(".form__upload_file").submit(function() { $('.block.progress').show(); $('.info.size').hide(); var thisForm = this; var url = $(this).attr("action"); var method = $(this).attr("method"); if (method === undefined) { method = "get"; } // var data = $(this).serialize(); // // For send file object: var input = $(".form__upload_file > input[type=file]"); var data = new FormData(thisForm); $.ajax({ url: url, method: method, // HTTP метод, по умолчанию GET data: data, dataType: "json", // тип данных загружаемых с сервера // Без этих опций неудастся передать файл processData: false, contentType: false, xhr: function() { var myXhr = $.ajaxSettings.xhr(); if (myXhr.upload) { myXhr.upload.addEventListener('progress', progress, false); } return myXhr; }, cache:false, success: function(data) { console.log(data); console.log(JSON.stringify(data)); $('.info.size > .show_size').text(data.length); $('.info.size > .show_size_human').text(data.length_human); $('.block.progress').hide(); $('.info.size').show(); }, }); return false; }); }); </script> </body> </html> """ ) @app.route("/get_file_size", methods=["POST"]) def get_file_size(): print(request.files) # check if the post request has the file part if "file" not in request.files: return redirect("/") length = 0 file = request.files["file"] if file: data = file.stream.read() length = len(data) return jsonify({"length": length, "length_human": sizeof_fmt(length)}) if __name__ == "__main__": app.debug = True # Localhost # port=0 -- random free port # app.run(port=0) app.run(port=5000) # # Public IP # app.run(host='0.0.0.0')
d9febf29c060feccd2c30acdf80550e51cdf5573
6a32cba18ed153b7a7611804223c74dbc923c761
/5.py
aea6c3c163bf391016e8706b78860f5c4fd2bb65
[]
no_license
Mrhairui/leetcode
8cfea60868c37f2a7d0675c4ee1f6d431c75dd37
a0884db8fe70e63707cc0fa06c6367e42857e4de
refs/heads/master
2022-03-29T16:18:42.827912
2019-11-13T14:48:36
2019-11-13T14:48:36
197,877,877
0
0
null
null
null
null
UTF-8
Python
false
false
973
py
class Solution: def longestPalindrome(self, s: str) -> str: size = len(s) if size <= 1: return s longest_l = 1 curlen = 0 res = s[0] dp = [[False for _ in range(size)] for _ in range(size)] # 存储用的表 for r in range(1, size): for l in range(r): # 暴力法也得有这个循环,完全一样。但是暴力法后面判 # 断一个字符串是不是回文需要n的时间复杂度,动态规划不需要 if s[l] == s[r] and (r - l <= 2 or dp[l+1][r-1]): # 状态转移方程以及边界 dp[l][r] = True curlen = r - l + 1 # 求得此时长度 if curlen > longest_l: # 求得最大长度并用一个字符串记录 longest_l = curlen res = s[l:r+1] return res solution = Solution() m = solution.longestPalindrome('fdfgabcbad') print(m)
267fa3c0d0f216b97c4faa8db8e6ac57b8ec92c9
3a4fbde06794da1ec4c778055dcc5586eec4b7d2
/_google_app_engine-projects/django-gae2django/django/dispatch/dispatcher.py
eb183786df321fede1a3d546f0c5e5ba1822fede
[ "Apache-2.0" ]
permissive
raychorn/svn_python-django-projects
27b3f367303d6254af55c645ea003276a5807798
df0d90c72d482b8a1e1b87e484d7ad991248ecc8
refs/heads/main
2022-12-30T20:36:25.884400
2020-10-15T21:52:32
2020-10-15T21:52:32
304,455,211
0
0
null
null
null
null
UTF-8
Python
false
false
8,639
py
import weakref try: set except NameError: from sets import Set as set # Python 2.3 fallback from django.dispatch import saferef WEAKREF_TYPES = (weakref.ReferenceType, saferef.BoundMethodWeakref) def _make_id(target): if hasattr(target, 'im_func'): return (id(target.im_self), id(target.im_func)) return id(target) class Signal(object): """ Base class for all signals Internal attributes: receivers { receriverkey (id) : weakref(receiver) } """ def __init__(self, providing_args=None): """ Create a new signal. providing_args A list of the arguments this signal can pass along in a send() call. """ self.receivers = [] if providing_args is None: providing_args = [] self.providing_args = set(providing_args) def connect(self, receiver, sender=None, weak=True, dispatch_uid=None): """ Connect receiver to sender for signal. Arguments: receiver A function or an instance method which is to receive signals. Receivers must be hashable objects. if weak is True, then receiver must be weak-referencable (more precisely saferef.safeRef() must be able to create a reference to the receiver). Receivers must be able to accept keyword arguments. If receivers have a dispatch_uid attribute, the receiver will not be added if another receiver already exists with that dispatch_uid. sender The sender to which the receiver should respond Must either be of type Signal, or None to receive events from any sender. weak Whether to use weak references to the receiver By default, the module will attempt to use weak references to the receiver objects. If this parameter is false, then strong references will be used. dispatch_uid An identifier used to uniquely identify a particular instance of a receiver. This will usually be a string, though it may be anything hashable. """ from django.conf import settings # If DEBUG is on, check that we got a good receiver if settings.DEBUG: import inspect assert callable(receiver), "Signal receivers must be callable." # Check for **kwargs # Not all callables are inspectable with getargspec, so we'll # try a couple different ways but in the end fall back on assuming # it is -- we don't want to prevent registration of valid but weird # callables. try: argspec = inspect.getargspec(receiver) except TypeError: try: argspec = inspect.getargspec(receiver.__call__) except (TypeError, AttributeError): argspec = None if argspec: assert argspec[2] is not None, \ "Signal receivers must accept keyword arguments (**kwargs)." if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) if weak: receiver = saferef.safeRef(receiver, onDelete=self._remove_receiver) for r_key, _ in self.receivers: if r_key == lookup_key: break else: self.receivers.append((lookup_key, receiver)) def disconnect(self, receiver=None, sender=None, weak=True, dispatch_uid=None): """ Disconnect receiver from sender for signal. If weak references are used, disconnect need not be called. The receiver will be remove from dispatch automatically. Arguments: receiver The registered receiver to disconnect. May be none if dispatch_uid is specified. sender The registered sender to disconnect weak The weakref state to disconnect dispatch_uid the unique identifier of the receiver to disconnect """ if dispatch_uid: lookup_key = (dispatch_uid, _make_id(sender)) else: lookup_key = (_make_id(receiver), _make_id(sender)) for index in xrange(len(self.receivers)): (r_key, _) = self.receivers[index] if r_key == lookup_key: del self.receivers[index] break def send(self, sender, **named): """ Send signal from sender to all connected receivers. If any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it is quite possible to not have all receivers called if a raises an error. Arguments: sender The sender of the signal Either a specific object or None. named Named arguments which will be passed to receivers. Returns a list of tuple pairs [(receiver, response), ... ]. """ responses = [] if not self.receivers: return responses for receiver in self._live_receivers(_make_id(sender)): response = receiver(signal=self, sender=sender, **named) responses.append((receiver, response)) return responses def send_robust(self, sender, **named): """ Send signal from sender to all connected receivers catching errors. Arguments: sender The sender of the signal Can be any python object (normally one registered with a connect if you actually want something to occur). named Named arguments which will be passed to receivers. These arguments must be a subset of the argument names defined in providing_args. Return a list of tuple pairs [(receiver, response), ... ]. May raise DispatcherKeyError. if any receiver raises an error (specifically any subclass of Exception), the error instance is returned as the result for that receiver. """ responses = [] if not self.receivers: return responses # Call each receiver with whatever arguments it can accept. # Return a list of tuple pairs [(receiver, response), ... ]. for receiver in self._live_receivers(_make_id(sender)): try: response = receiver(signal=self, sender=sender, **named) except Exception, err: responses.append((receiver, err)) else: responses.append((receiver, response)) return responses def _live_receivers(self, senderkey): """ Filter sequence of receivers to get resolved, live receivers. This checks for weak references and resolves them, then returning only live receivers. """ none_senderkey = _make_id(None) receivers = [] for (receiverkey, r_senderkey), receiver in self.receivers: if r_senderkey == none_senderkey or r_senderkey == senderkey: if isinstance(receiver, WEAKREF_TYPES): # Dereference the weak reference. receiver = receiver() if receiver is not None: receivers.append(receiver) else: receivers.append(receiver) return receivers def _remove_receiver(self, receiver): """ Remove dead receivers from connections. """ to_remove = [] for key, connected_receiver in self.receivers: if connected_receiver == receiver: to_remove.append(key) for key in to_remove: for idx, (r_key, _) in enumerate(self.receivers): if r_key == key: del self.receivers[idx]
99a157c10331ba134de0da50bb8c9272687b2a54
c6eee54ffef7f99f2825cc332a649d9a6e9e181d
/matrixscreener/imagej.py
944d1b559197f620ac9c63be68652944f0c5ee99
[ "MIT" ]
permissive
imcf/matrixscreener
5d3fa6040e62c14ff504dfcbb3818e405d9e9254
727711654269d93e528ae9a604ce5ac5b24fa816
refs/heads/master
2021-01-17T04:25:14.575654
2015-02-08T15:23:39
2015-02-08T16:11:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,754
py
# encoding: utf-8 """ Stitch images with ImageJ. * ``matrixscreener.imagej._bin`` should be set if you are on Windows or Linux. """ import pydebug, subprocess, os, fijibin from tempfile import NamedTemporaryFile # debug with DEBUG=matrixscreener python script.py debug = pydebug.debug('matrixscreener') _bin = fijibin.BIN def stitch_macro(folder, filenames, x_size, y_size, output_filename, x_start=0, y_start=0, overlap=10): """ Creates a ImageJ Grid/Collection stitching macro. Parameters are the same as in the plugin and are described in further detail here: http://fiji.sc/Image_Stitching#Grid.2FCollection_Stitching. **Default stitch parameters:** * Filename defined positions * Compute overlap * Subpixel accurancy * Save computation time (but use more RAM) * Fusion method: Linear blending * Regression threshold: 0.30 * Max/avg displacement threshold: 2.50 * Absolute displacement threshold: 3.50 Parameters ---------- folder : string Path to folder with images or folders with images. Example: */path/to/slide--S00/chamber--U01--V02/* filenames : string Filenames of images. Example: *field-X{xx}-Y{yy}/image-X{xx}-Y{yy}.ome.tif* x_size : int Size of grid, number of images in x direction. y_size : int Size of grid, number of images in y direction. output_filename : string Where to store fused image. Should be `.png`. x_start : int Which x position grid start with. y_start : int Which y position grid start with. overlap : number Tile overlap in percent. ImageJ will find the optimal overlap, but a precise overlap assumption will decrase computation time. Returns ------- string IJM-macro. """ macro = [] macro.append('run("Grid/Collection stitching",') macro.append('"type=[Filename defined position]') macro.append('order=[Defined by filename ]') macro.append('grid_size_x={}'.format(x_size)) macro.append('grid_size_y={}'.format(y_size)) macro.append('tile_overlap={}'.format(overlap)) macro.append('first_file_index_x={}'.format(x_start)) macro.append('first_file_index_y={}'.format(y_start)) macro.append('directory=[{}]'.format(folder)) macro.append('file_names={}'.format(filenames)) macro.append('output_textfile_name=TileConfiguration.txt') macro.append('fusion_method=[Linear Blending]') macro.append('regression_threshold=0.30') macro.append('max/avg_displacement_threshold=2.50') macro.append('absolute_displacement_threshold=3.50') macro.append('compute_overlap') macro.append('subpixel_accuracy') macro.append('computation_parameters=[Save computation time (but use more RAM)]') # use display, such that we can specify output filename # this is 'Fused and display' for previous stitching version!! macro.append('image_output=[Fuse and display]");') # save to png macro.append('selectWindow("Fused");') macro.append('run("PNG ...", "save={}'.format(output_filename)) macro.append('imageiosaveas.codecname=png') macro.append('imageiosaveas.filename={}");'.format(output_filename)) macro.append('close();') return ' '.join(macro) def run_imagej(macro): """ Runs ImageJ with the suplied macro. Output of ImageJ can be viewed by running python script with environment variable DEBUG=matrixscreener. Parameters ---------- macro : string IJM-macro to run. Returns ------- int ImageJ exit code. """ # avoid verbose output of ImageJ when DEBUG environment variable set env = os.environ.copy() debugging = False if 'DEBUG' in env: if env['DEBUG'] == 'matrixscreener' or env['DEBUG'] == '*': debugging = True del env['DEBUG'] with NamedTemporaryFile(mode='w', suffix='.ijm') as m: m.write(macro) m.flush() # make sure macro is written before running ImageJ cmd = [_bin, '--headless', '-macro', m.name] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out, err = proc.communicate() for line in out.decode('latin1', errors='ignore').splitlines(): debug('stdout:' + line) for line in err.decode('latin1', errors='ignore').splitlines(): debug('stderr:' + line) if proc.returncode != 0 and not debugging: print('matrixscreener ERROR: ImageJ exited with code {}.'.format(proc.returncode)) print('matrixscreener Try running script with `DEBUG=matrixscreener python script.py`') return proc.returncode
1eabae2d19ec646f5caa21ad2542291a6db58275
5c842a91854b0061bdec96a36e30860fb1e1321e
/Chapter3_MCMC/github_pull.py
dff8070e7791d77ff97664dc4e3c8ebedbf3adc3
[ "MIT" ]
permissive
bzillins/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
fe2be77b9859566e2a923c8022a85925aa190d1d
c08a6344b8d0e39fcdb9702913b46e1b4e33fb9a
refs/heads/master
2020-12-30T22:09:05.936082
2013-02-27T04:21:05
2013-02-27T04:21:05
19,747,037
1
0
null
null
null
null
UTF-8
Python
false
false
2,348
py
#github data scrapper """ variables of interest: indp. variables - language, given as a binary variable. Need 4 positions for 5 langagues - #number of days created ago, 1 position - has wiki? Boolean, 1 position - followers, 1 position - following, 1 position - constant dep. variables -stars/watchers -forks """ from requests import get from json import loads import datetime import numpy as np MAX = 8000000 today = datetime.datetime.today() randint = np.random.randint N = 120 #sample size. auth = ("username", "password" ) language_mappings = {"Python": 0, "JavaScript": 1, "Ruby": 2, "Java":3, "Shell":4, "PHP":5} #define data matrix: X = np.zeros( (N , 12), dtype = int ) for i in xrange(N): is_fork = True is_valid_language = False while is_fork == True or is_valid_language == False: is_fork = True is_valid_language = False params = {"since":randint(0, MAX ) } r = get("https://api.github.com/repositories", params = params, auth=auth ) results = loads( r.text )[0] #im only interested in the first one, and if it is not a fork. is_fork = results["fork"] r = get( results["url"], auth = auth) #check the language repo_results = loads( r.text ) try: language_mappings[ repo_results["language" ] ] is_valid_language = True except: pass #languages X[ i, language_mappings[ repo_results["language" ] ] ] = 1 #delta time X[ i, 6] = ( today - datetime.datetime.strptime( repo_results["created_at"][:10], "%Y-%m-%d" ) ).days #haswiki X[i, 7] = repo_results["has_wiki"] #get user information r = get( results["owner"]["url"] , auth = auth) user_results = loads( r.text ) X[i, 8] = user_results["following"] X[i, 9] = user_results["followers"] #get dep. data X[i, 10] = repo_results["watchers_count"] X[i, 11] = repo_results["forks_count"] print print " -------------- " print i, ": ", results["full_name"], repo_results["language" ], repo_results["watchers_count"], repo_results["forks_count"] print " -------------- " print np.savetxt("data/github_data.csv", X, delimiter=",", fmt="%d" )
cca8d7bb1e4c795995e6db7675bd3f7bfad39018
e9d139f5108ca115d6254763438dd8855fc4454d
/view/__init__.py
fc9912fe0a91e8e2066ec8e866c29d702fb6cd05
[]
no_license
Letractively/simulation-modeling
119d1376a75ff825903a0dd4bbbbc161e1d19e05
aca18bf1f50b1083bbc9cbd97b87d3df1c71000b
refs/heads/master
2016-08-12T18:44:07.605687
2011-12-14T11:04:29
2011-12-14T11:04:29
45,956,671
0
0
null
null
null
null
UTF-8
Python
false
false
5,531
py
# -*- coding: utf-8 -*- # Импорт и настройка Jinja2 from jinja2 import Environment, PackageLoader templates = Environment(loader=PackageLoader('view', 'templates'), extensions = ['jinja2.ext.with_']) from GChartWrapper import Pie, Line, LineXY from settings import app def index(names): 'Главная страница' template = templates.get_template('index.html') return template.render(app = app, models = names) def help(name, title): 'Страница справки' template = templates.get_template('help/%s.html' % name) return template.render(app = app, name = name, title = title) def mss(*a, **kw): 'Страница модели массового обслуживания' if 'output' in kw and kw['output']['requests']['total']: # Генерация диаграммы баланса заявок requests = kw['output']['requests'] # Исходные данные data = [] for key in ('timeout', 'sizeout', 'shutdown'): data.append(round(requests['denied'][key], 2)) data.append(round(requests['accepted'], 2)) # Цвета colors = ('FBFF53', '1560BD', 'FF4D6F', '008090') # Заголовки labels = [str(round(value / requests['total'] * 100, 2)) + '%' for value in data] # Размер sizes = [250, 160] kw['output']['requests_diagram'] = Pie(data).color(*colors).label(*labels).size(*sizes).scale(0, sum(data)).img(alt=u'Количество заявок') if kw['output']['balance']['accepted']: # Генерация диаграммы выручки balance = kw['output']['balance'] data = [balance['income'], balance['repairs'], balance['costs']] colors = ['8F007E', '000000', '999999'] labels = [str(round(value / balance['accepted'] * 100, 2)) + '%' for value in data] sizes[1] = 80 kw['output']['income_diagram'] = Pie(data).color(*colors).label(*labels).size(*sizes).scale(0, sum(data)).img(alt=u'Распределение выручки') # Генерация диаграммы загрузки data = kw['output']['workload'] sizes = [560, 180] diagram = Line(data).scale(0, round(max(data), 3)).size(sizes).color('1560BD') diagram['chm'] = 'B,008090,0,0,0|B,FF4D6F,0,%s:,0' % (kw['form'].data['channels_count']) diagram.axes.type('xxy') diagram.axes.label(1, '', 'Количество заявок в системе', '') y_labels_count = 4 diagram.axes.label(2, *(str(round(max(data) / (y_labels_count - 1) * n, 2)) + '%' for n in range(y_labels_count))) diagram.axes.range(0, 0, len(data) - 1) kw['output']['workload_diagram'] = diagram.img(alt=u'Вероятностное распределение количества заявок в системе', style='margin-top: 18px') return model(*a, **kw) def warehouse(*args, **kwargs): 'Модель склада' if not kwargs.get('output', False): return model(*args, **kwargs) # Генерация диаграммы баланса if kwargs['output']['balance']['sales'] > 0 and kwargs['output']['balance']['profit'] > 0: balance = kwargs['output']['balance'] data = [round(balance[field], 2) for field in ('supplies', 'storage', 'fines', 'profit')] colors = ('FBFF53', '1560BD', 'FF4D6F', '008090') labels = [str(round(value / balance['sales'] * 100, 2)) + '%' for value in data] sizes = [250, 160] kwargs['output']['balance_diagram'] = Pie(data).color(*colors).label(*labels).size(*sizes).scale(0, balance['sales']).img(alt=u'Диаграмма баланса') history = kwargs['output']['history'] if history: # Генерация диаграммы истории # Абсциссы и ординаты x, y = zip(*history) sizes = [560, 180] diagram = LineXY([x, y]).size(sizes).scale(0, max(x), 0, max(y)).color('1560BD') diagram['chm'] = 'B,1560BD,0,:,0' diagram.axes.type('xxy') diagram.axes.range(0, 0, max(x)) diagram.axes.range(2, 0, max(y)) diagram.axes.label(1, '', 'Время, ч', '') kwargs['output']['history_diagram'] = diagram.img() return model(*args, **kwargs) def model(name, title, form=None, output={}, query=''): 'Страница модели' template = templates.get_template(name + '.html') # Ссылка shorten = '/url/%s?%s' % (name, query) if query else None return template.render(app=app, name=name, title=title, form=form, shorten=shorten, output=bool(output), **output) def shorten(url): 'Укорочение URL' template = templates.get_template('shorten.html') return template.render(url=url) def notfound(): 'Страница не найдена' template = templates.get_template('notfound.html') return template.render(app=app, title=u'Страница не найдена') def internal_error(): 'Внутренняя ошибка' template = templates.get_template('internal_error.html') return template.render(app=app, title=u'Внутренняя ошибка')
a0d3c2bd42f70d32b9c784462fa44007a8f0adf7
10dcfd809f342fd822b6df198f4045f92b157124
/bin/po2ini
1a43bcf93206ef9589e290b07fe2adcdcf2ee58f
[]
no_license
mozilla/affiliates-lib
c731c910c8d9fe04e211541e54f304a127a0b829
1000f98d9df217ed66a0ecd07e1e0a1d822a712a
refs/heads/master
2023-07-03T17:18:49.841809
2016-02-01T10:49:47
2016-02-01T10:49:47
2,291,186
2
2
null
null
null
null
UTF-8
Python
false
false
989
#!/Users/fred/.virtualenvs/playdoh/bin/python2.6 # # Copyright 2007 Zuza Software Foundation # # This file is part of translate. # # translate is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # translate is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with translate; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """simple script to convert a gettext .po localization file to a .ini file""" from translate.convert import po2ini if __name__ == '__main__': po2ini.main()
313c33cbac5a657dac8e135d547bd7a34207608b
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/pg_1532+522/sdB_pg_1532+522_lc.py
8187be807799c8b0ee1f61b7c1dc1a03cbbd8db0
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[233.374333,52.113889], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_pg_1532+522/sdB_pg_1532+522_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
c977864e64c62b6e7d106375290362fa31ff27ed
da55b6cb2b7356f589c56bb647e49f79aedfc4f1
/python-fabric/interface.test/example2_app/app/DemoComponent.py
b1b8f58cdd0340fe06bec5703129b2ed628bc745
[]
no_license
eiselesr/sandbox
2d0cbb16e2601dfda9d9e5ea5a5e96a053fdf72f
0b3fc878a613600c6071019c820ba79e2d2a9a2d
refs/heads/master
2023-09-01T00:40:37.222840
2023-08-24T19:20:27
2023-08-24T19:20:27
151,609,265
2
0
null
null
null
null
UTF-8
Python
false
false
467
py
# riaps:keep_import:begin from riaps.run.comp import Component # riaps:keep_import:end class DemoComponent(Component): # riaps:keep_constr:begin def __init__(self): super().__init__() # riaps:keep_constr:end # riaps:keep_tick:begin def on_tick(self): now = self.tick.recv_pyobj() self.logger.info(f"DemoComponent | on_tick | now: {now}") # riaps:keep_tick:end # riaps:keep_impl:begin # riaps:keep_impl:end
a4ddf2709fce33cd5aab0418f9028ac97efa25d6
fab39aa4d1317bb43bc11ce39a3bb53295ad92da
/tools/clip_dot.py
e0123db1d5a9fae276ffc01267f7a1be6649f5f5
[ "Apache-2.0" ]
permissive
dupeljan/nncf
8cdce27f25f01ce8e611f15e1dc3036fb8548d6e
0abfd7103ca212888a946ba4d0fbdb9d436fdaff
refs/heads/develop
2023-06-22T00:10:46.611884
2021-07-22T10:32:11
2021-07-22T10:32:11
388,719,455
0
0
Apache-2.0
2021-07-23T07:46:15
2021-07-23T07:43:43
null
UTF-8
Python
false
false
2,144
py
#pylint:skip-file import sys from argparse import ArgumentParser import networkx as nx def main(argv): parser = ArgumentParser() parser.add_argument('-i', '--input_file', help='Input .dot file', required=True) parser.add_argument('-s', '--start_id', help='Start ID (inclusive)', required=True) parser.add_argument('-f', '--finish_id', help='Finish ID (inclusive)', required=True) parser.add_argument('-o', '--output_file', help='Output .dot file', required=True) args = parser.parse_args(args=argv) graph = nx.DiGraph(nx.drawing.nx_pydot.read_dot(args.input_file)) new_graph = nx.DiGraph() start_key = None for node_key in nx.lexicographical_topological_sort(graph): id_portion = node_key.split()[0] has_id = id_portion.isdigit() if has_id: curr_id = int(id_portion) if curr_id == int(args.start_id): start_key = node_key break if start_key is None: raise RuntimeError("Could not find the node with ID {} to start from!".format(args.start_id)) for edge in nx.edge_bfs(graph, start_key, orientation='ignore'): from_key, to_key, _ = edge id_portion = from_key.split()[0] has_id = id_portion.isdigit() end_key = from_key if has_id: curr_id = int(id_portion) if curr_id >= int(args.finish_id): break node_data = graph.nodes[from_key] new_graph.add_node(from_key, **node_data) edge_data = graph.edges[from_key, to_key] new_graph.add_edge(from_key, to_key, **edge_data) # for edge in nx.edge_bfs(graph, end_key, reverse=True): # from_key, to_key = edge # if from_key == start_key: # break # node_data = graph.nodes[from_key] # new_graph.add_node(from_key, **node_data) # edge_data = graph.edges[from_key, to_key] # new_graph.add_edge(from_key, to_key, **edge_data) nx.drawing.nx_pydot.write_dot(new_graph, args.output_file) if __name__ == '__main__': main(sys.argv[1:])
997cfed7e90d02a247f84a51c5934988fa32ac75
d3cfa86c22ab3bd6f2dcbbd72f9cf5f6bf574cd1
/gridappsd/utils.py
b455a1f97896802d08297150dfac9078f62c104b
[]
no_license
ariwoolar/gridappsd-python
30fbc9a36b0d7be43f6fb0ff8b0f39d76fa6f4ed
1e8ddc88de7fc9cabb17b1ab34f2756e8c37127c
refs/heads/master
2023-02-02T20:09:46.491618
2020-09-10T20:09:34
2020-09-10T20:09:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,691
py
import datetime, time from dateutil import parser import os try: # python2.7 from urlparse import urlparse except ImportError: from urllib.parse import urlparse __GRIDAPPSD_URI__ = os.environ.get("GRIDAPPSD_URI", "localhost:61613") __GRIDAPPSD_USER__ = os.environ.get("GRIDAPPSD_USER", "system") __GRIDAPPSD_PASS__ = os.environ.get("GRIDAPPSD_PASS", "manager") __GRIDAPPSD_URI__ if not __GRIDAPPSD_URI__.startswith("tcp://"): __GRIDAPPSD_URI__ = "tcp://" + __GRIDAPPSD_URI__ __GRIDAPPSD_URI_PARSED__ = urlparse(__GRIDAPPSD_URI__) def datetime_to_epoche(dt): return int(time.mktime(dt.timetuple()) * 1000) def datestr_to_epoche(dt_str): dt = parser.parse(dt_str) return datetime_to_epoche(dt) def epoche_to_datetime(epoche): return datetime.datetime.fromtimestamp(epoche) def utc_timestamp(): return datetime_to_epoche(datetime.datetime.utcnow()) def validate_gridappsd_uri(): problems = [] gridapspd_uri = __GRIDAPPSD_URI__ if not gridapspd_uri.startswith("tcp://"): gridapspd_uri = "tcp://" + gridapspd_uri gridapspd_parsed_uri = urlparse(gridapspd_uri) if not gridapspd_parsed_uri.port: problems.append("Invalid port specified in URI modify environment GRIDAPPSD_URI") if not gridapspd_parsed_uri.hostname: problems.append("Invalid hostname not specified!") return problems def get_gridappsd_address(): """ Returns the address in such a way that the response will be able to be passed directly to a socket and/or the stomp libraray. :return: tuple(adddress, port) """ return (__GRIDAPPSD_URI_PARSED__.hostname, __GRIDAPPSD_URI_PARSED__.port) def get_gridappsd_user(): return __GRIDAPPSD_USER__ def get_gridappsd_pass(): return __GRIDAPPSD_PASS__ def get_gridappsd_application_id(): """ Retrieve the application_id from the environment. In order to use this function an environmental variable `GRIDAPPSD_APPLICATION_ID` must have been set. For docker containers this is done in the `gridappsd.app_registration` callback when the application is started. If the environmental variable is not set an AttributeError will be raised. """ app_id = os.environ.get("GRIDAPPSD_APPLICATION_ID") if not app_id: raise AttributeError("environmental variable for GRIDAPPSD_APPLICATION_ID is not set") return app_id def get_gridappsd_simulation_id(): """ Retrieve simulation_id from environment. This method will return a `None` if the GRIDAPPSD_SIMULATION_ID environmental variable is not set. """ simulation_id = os.environ.get("GRIDAPPSD_SIMULATION_ID") return simulation_id
d4244e67b3754369184180c6aee3052921518a90
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_315/ch40_2020_09_19_02_31_10_320887.py
4062bfd4d8115f73c346ece53c0c8d84dafed63f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
def soma_valores(a): soma = 0 for x in range(a): soma += x[a] return soma
73f77c0541a623faed3445fd42c78e95a3f43de3
b7a98a761007cf8b913b75152a278c1693f2d00d
/code/ortools/simple.py
a22169600415ebac07b2a7f71ee7fba972372f13
[]
no_license
VuHoangvn/descrete_optimize
be18fcfc230a9d1133ec94a49b1fc5cfcb50b449
7a17d472af7d54624860aeff590db423a7e47d59
refs/heads/master
2022-10-14T00:22:50.368095
2020-06-05T09:48:31
2020-06-05T09:48:31
261,913,231
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ortools.sat.python import cp_model def SimpleSatProgram(): """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.NewIntVar(0, num_vals - 1, 'x') y = model.NewIntVar(0, num_vals - 1, 'y') z = model.NewIntVar(0, num_vals - 1, 'z') # Creates the constraints. model.Add(x != y) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.Solve(model) if status == cp_model.FEASIBLE: print('x = %i' % solver.Value(x)) print('y = %i' % solver.Value(y)) print('z = %i' % solver.Value(z)) SimpleSatProgram()
0657eee5800ac668b250193a08ebbb5b92cfbdb1
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D09B/SANCRTD09BUN.py
b94d0510dd191e38d7227ae909cae41f4e766c11
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
4,024
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD09BUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 99}, {ID: 'STS', MIN: 0, MAX: 99}, {ID: 'LOC', MIN: 0, MAX: 99}, {ID: 'RFF', MIN: 0, MAX: 99}, {ID: 'FTX', MIN: 0, MAX: 99}, {ID: 'MEA', MIN: 0, MAX: 99}, {ID: 'MOA', MIN: 0, MAX: 99}, {ID: 'GEI', MIN: 0, MAX: 99}, {ID: 'CST', MIN: 0, MAX: 1}, {ID: 'DOC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, ]}, {ID: 'PNA', MIN: 0, MAX: 99, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'CTA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 9}, ]}, ]}, {ID: 'TDT', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'RFF', MIN: 0, MAX: 9}, ]}, {ID: 'PAC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'PCI', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 9}, ]}, {ID: 'EQD', MIN: 0, MAX: 99, LEVEL: [ {ID: 'TMP', MIN: 0, MAX: 9}, {ID: 'SEL', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, ]}, ]}, {ID: 'PRC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'IMD', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'DOC', MIN: 0, MAX: 9}, {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'TMP', MIN: 0, MAX: 9}, {ID: 'GEI', MIN: 0, MAX: 99}, {ID: 'FTX', MIN: 0, MAX: 99}, {ID: 'PNA', MIN: 0, MAX: 99, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'CTA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 9}, ]}, ]}, ]}, {ID: 'LIN', MIN: 0, MAX: 9999, LEVEL: [ {ID: 'CST', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 9}, {ID: 'PIA', MIN: 0, MAX: 9}, {ID: 'IMD', MIN: 0, MAX: 9}, {ID: 'GIN', MIN: 0, MAX: 9999}, {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'ATT', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'FTX', MIN: 0, MAX: 9}, {ID: 'QTY', MIN: 0, MAX: 9}, {ID: 'MOA', MIN: 0, MAX: 9}, {ID: 'DOC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, ]}, {ID: 'PNA', MIN: 0, MAX: 99, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'CTA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 9}, ]}, ]}, {ID: 'PAC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'PCI', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 9}, ]}, {ID: 'EQD', MIN: 0, MAX: 99, LEVEL: [ {ID: 'TMP', MIN: 0, MAX: 9}, {ID: 'SEL', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, ]}, ]}, {ID: 'PRC', MIN: 0, MAX: 99, LEVEL: [ {ID: 'IMD', MIN: 0, MAX: 9}, {ID: 'MEA', MIN: 0, MAX: 9}, {ID: 'DTM', MIN: 0, MAX: 9}, {ID: 'LOC', MIN: 0, MAX: 9}, {ID: 'DOC', MIN: 0, MAX: 9}, {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'TMP', MIN: 0, MAX: 9}, {ID: 'GEI', MIN: 0, MAX: 99}, {ID: 'FTX', MIN: 0, MAX: 99}, {ID: 'PNA', MIN: 0, MAX: 99, LEVEL: [ {ID: 'ADR', MIN: 0, MAX: 9}, {ID: 'CTA', MIN: 0, MAX: 9, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 9}, ]}, ]}, ]}, ]}, {ID: 'CNT', MIN: 0, MAX: 9}, {ID: 'AUT', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
d1c16ded968ad2ed9bdec10b3979d2cc493cc4d1
e835059c8084d3bd92d8f24a748136617cf8a2a3
/8/radd_test.py
87352539fc8175af3eeab0c1c908d923ecdf9d3a
[]
no_license
Carlzkh/CrazyPythonNotes
7141b062722e2b8354ce3566f0b8d086bbfad9b1
04a8648ac2150e07520252d882c5cbc81cc3b9f9
refs/heads/master
2021-07-11T22:57:06.610728
2021-06-29T07:37:16
2021-06-29T07:37:16
247,253,027
0
0
null
2021-01-05T08:48:45
2020-03-14T10:08:34
Python
UTF-8
Python
false
false
2,076
py
""" object.__radd__(self, other):当y提供该方法时,可执行 x + y object.__rsub__(se f, other):当y提供该方法时,可执行 x - y object.__rmul__(self, other):当y提供该方法时,可执行 x * y object.__rmatmul__(self other):当y提供该方法时,可执行 x @ y object.__rtruediv__( If, other :当y提供该方法时,可执行 x / y object.__rfloordiv__ (self, other ): 当y提供该方法时,可执行 x // y object.__rmod__(self, other):当y提供该方法时,可执行 x % y object.__rdivmod__(self, other):当y提供该方法时,可执行 x divmod y object.__rpow__(self other[, modulo]):当y提供该方法时,可执行 x ** y object.__rlshift__(self, other):当y提供该方法时,可执行 x < y object.__rrshift__(self, other): 当y提供该方法时,可执行 x > y object.__rand__(self, other):当y提供该方法时,可执行 x & y object.__rxor__(self, other) 当y提供该方法时,可执行 x ^ y object.__ror__(self, other) :当y提供该方法时,可执行 x | y 简单来说,定义类提供了上面列 rxxx()方法,那么该自定义类的对象就可以出现在对应运算符的右边 """ class Rectangle: def __init__(self, width, height): self.width = width self.height = height # 定义 setSize ()函数 def set_size(self, size): self.width, self.height = size # 定义 getSize()函数 def get_size(self): return self.width, self.height # 使用 property 定义属性 size = property(get_size, set_size) # 定义__add__方法,该对象可执行“+”运算 def __radd__(self, other): if not (isinstance(other, int) or isinstance(other, float)): raise TypeError('+运算要求目标是数值') return Rectangle(self.width + other, self.height + other) def __repr__(self): return 'Rectangle(width=%g, height=%g)' % (self.width, self.height) r1 = Rectangle(4, 5) r = 4 + r1 print(r) # Rectangle(width=7 , height=9)
efa0e5ddb6154a7a27511647626b98da91f3bf51
1b57d1ce3baa5484cb517e916e2b3c7b66196672
/tests/test_config.py
fe63aa3f70ced5c38ca198ca7e118ae12d80d2b3
[ "MIT" ]
permissive
cfhamlet/os-config
84e3b03456c554408148b448ee934a74a50b0bb0
5a875ac07972ef9e4d1d6887ea48c974363f2438
refs/heads/master
2020-04-09T07:43:36.575488
2019-01-08T04:43:20
2019-01-08T04:43:20
160,168,165
3
0
MIT
2019-01-08T04:43:21
2018-12-03T09:47:25
Python
UTF-8
Python
false
false
4,513
py
import pytest from os_config import Config def test_create(): with pytest.raises(TypeError): c = Config() c = Config.create(a=1, b=2) assert c.a == 1 assert c.b == 2 def test_create_from_dict(): d = {'a': 3, 'b': 4} c = Config.from_dict(d) assert c.a == 3 assert c.b == 4 def test_simple_recursion(): c = Config.create() with pytest.raises(AttributeError): c.c = c def test_tuple_recursion(): c = Config.create() with pytest.raises(AttributeError): c.c = (c, ) def test_deep_recursion(): a = Config.create() b = Config.create() c = Config.create() b.c = c c.a = a with pytest.raises(AttributeError): a.b = b def test_invalid_attribute_name(): c = Config.create() for k in ['1', '_a', '*']: with pytest.raises(AttributeError): setattr(c, k, None) def test_valid_type(): c = Config.create() for v in [1, False, (1, 2), None, 1.1, Config.create()]: setattr(c, 'test_key', v) assert getattr(c, 'test_key') == v def test_invalid_type(): class TestClass(object): pass def test_method(): pass c = Config.create() for v in [TestClass, TestClass(), test_method, ]: with pytest.raises(AttributeError): c.c = v def test_update_from_config_01(): c = Config.create(a=1, b=2) d = Config.create() Config.update(d, c) assert d.a == 1 assert d.b == 2 def test_update_from_config_02(): c = Config.create(a=1, b=2) d = Config.create() d.a = 2 Config.update(d, c) assert d.a == 1 def test_udpate_from_config_recursive_01(): c = Config.create() d = Config.create() d.m = c with pytest.raises(AttributeError): Config.update(c, d) def test_udpate_from_config_recursive_02(): c = Config.create() d = Config.create() d.m = (c,) with pytest.raises(AttributeError): Config.update(c, d) def test_udpate_from_config_recursive_03(): c = Config.create() d = Config.create() e = Config.create() e.m = c d.m = (e,) with pytest.raises(AttributeError): Config.update(c, d) def test_update_from_dict_01(): c = Config.create() Config.update(c, {'a': 1, 'b': 2}) assert c.a == 1 assert c.b == 2 def test_update_from_dict_02(): c = Config.create() d = {'a': {'b': 1}} Config.update(c, d) assert c.a.b == 1 def test_update_from_dict_03(): c = Config.create() b = Config.create(b=1) d = {'a': b} Config.update(c, d) assert c.a.b == 1 def test_update_from_dict_04(): c = Config.create(a=1) assert c.a == 1 b = Config.create(b=1) d = {'a': b} Config.update(c, d) assert c.a.b == 1 def test_update_from_dict_05(): c = Config.create() b = Config.create(b=1) d = {'a': b} Config.update(c, d) d = {'a': 1} Config.update(c, d) assert c.a == 1 def test_create_from_json_01(): d = {'a': 1} import json j = json.dumps(d) c = Config.from_json(j) assert c.a == 1 def test_dump_to_json_01(): c = Config.create(a=1) j = Config.to_json(c) import json d = json.loads(j) assert d['a'] == 1 def test_tuple_with_list(): d = {'a': (1, 2, [1, 2, 3])} c = Config.from_dict(d) assert c.a == (1, 2, (1, 2, 3)) def test_tuple_with_dict(): d = {'a': (1, {'b': 2}, [3, 4, 5])} c = Config.from_dict(d) assert c.a[1].b == 2 def test_create_from_object(): class A(object): a = 1 c = Config.from_object(A) assert c.a == 1 def test_sub_config(): c = Config.create() a = Config.create() c.a = a c.b = a c.a = 1 with pytest.raises(AttributeError): a.c = c def test_pop(): c = Config.create(a=1) Config.pop(c, 'a') assert len(c) == 0 def test_get(): c = Config.create(a=1) assert Config.get(c, 'a') == 1 assert Config.get(c, 'b') is None assert Config.get(c, 'c', 2) == 2 def test_from_pyfile(tmpdir): txt = r''' a = 1 b = [1,2,3] ''' f = tmpdir.join('test_config.py') f.write(txt) c = Config.from_pyfile(f.strpath) assert c.a == 1 assert c.b == (1, 2, 3) def test_to_json(): import json c = Config.create(a=1) d = json.loads(Config.to_json(c)) d['a'] == 1 def test_to_dict(): d = {'a': 1, 'b': (1, 2, 3), 'c': {'e': (4, 5, 6)}} c = Config.from_dict(d) dd = Config.to_dict(c) assert d == dd
ccfe4b8ffb05eaba3eeba44922978edf51809bda
3aab11d445011f4a0de1376886dd3899aba44e68
/opps/db/conf.py
eedef8cb2db0ef10333332563c15c6b0d5c6b5ca
[ "MIT" ]
permissive
opps/opps
4ba6a08ac5aa31be48c245b2e8f9d9a714a5e473
5552924fa34ea40d24febeac5046bd59f62e0e4f
refs/heads/master
2023-08-24T21:09:23.489540
2023-05-22T20:07:33
2023-05-22T20:07:33
7,712,379
166
76
MIT
2022-01-06T22:53:23
2013-01-20T03:56:15
Python
UTF-8
Python
false
false
572
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.conf import settings from appconf import AppConf class OppsDataBaseConf(AppConf): HOST = getattr(settings, 'OPPS_DB_HOSR', None) USER = getattr(settings, 'OPPS_DB_USER', None) PASSWORD = getattr(settings, 'OPPS_DB_PASSWORD', None) PORT = getattr(settings, 'OPPS_DB_PORT', None) NAME = getattr(settings, 'OPPS_DB_NAME', 'opps_db') ENGINE = getattr(settings, 'OPPS_DB_ENGINE', 'opps.db.') OPTION = getattr(settings, 'OPPS_BD_OPTION', None) class Meta: prefix = 'opps_db'
c618f6eb814a4c418adb0624e5c2dc54c47b4cc3
542c040b9b2150d789096f031dcf7a4362b034fe
/training/migrations/0003_auto_20210501_1721.py
bb92ba559a946476499ee525d0edc0012c29ba25
[ "Unlicense" ]
permissive
rafimuhammad01/mtf-hackathon
3115412f673774cc3991bd2a67854bfa645966d1
83ab410239a93ff04e57d7ceb2d1d292ba365866
refs/heads/main
2023-04-12T15:28:41.506450
2021-05-22T11:27:05
2021-05-22T11:27:05
360,573,233
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
# Generated by Django 3.2 on 2021-05-01 10:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('training', '0002_auto_20210501_1607'), ] operations = [ migrations.AddField( model_name='training', name='linkUrl', field=models.URLField(blank=True), ), migrations.AddField( model_name='training', name='location', field=models.CharField(blank=True, max_length=50, null=True), ), migrations.AddField( model_name='training', name='method', field=models.IntegerField(blank=True, choices=[(0, 'Online'), (0, 'Offline')], null=True), ), ]
abeb6300b115c2987444589968634de355eca323
16819f2d2a924a8df8c24754241f94247d202141
/backend/advyon_24955/wsgi.py
02ac84499c7199934b67c6b4cab2b07b0c264618
[]
no_license
crowdbotics-apps/advyon-24955
922dea646dc87c5bd786ff01aa2a8ed4d19636a5
a153d936b8cba32003c66bccf95d617c1a63d869
refs/heads/master
2023-03-16T07:40:45.604601
2021-03-10T20:47:22
2021-03-10T20:47:22
346,487,669
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for advyon_24955 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'advyon_24955.settings') application = get_wsgi_application()
a5fe8e2a5902cb702f9b7dbe2ca631eb86704b49
da459e1380b18fbac9d8868dc26b3b791547ed63
/replacesum.py
46904922d98a9b9badbe13c6aae58249985478b7
[]
no_license
tchelmella/dictionary
a2cc50cacf61bcb3d6af15b1125e90fd5abd1982
ef95e559142944c3d067991ad9a521e11bb6d0cd
refs/heads/master
2020-07-20T18:58:24.100373
2019-09-06T02:20:16
2019-09-06T02:20:16
206,695,274
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
d = {'a': [3, 4, 5], 'b': [1, 2, 3]} for k, v in d.items(): d[k] = sum(v) / len(v) print(d)
7ec138bc879d91a44e191223ca877c75087340d8
232fc2c14942d3e7e28877b502841e6f88696c1a
/dizoo/pomdp/entry/pomdp_ppo_default_config.py
8b4bbde7287f6f31890d1be86bf31692489890e4
[ "Apache-2.0" ]
permissive
shengxuesun/DI-engine
ebf84221b115b38b4b3fdf3079c66fe81d42d0f7
eb483fa6e46602d58c8e7d2ca1e566adca28e703
refs/heads/main
2023-06-14T23:27:06.606334
2021-07-12T12:36:18
2021-07-12T12:36:18
385,454,483
1
0
Apache-2.0
2021-07-13T02:56:27
2021-07-13T02:56:27
null
UTF-8
Python
false
false
2,413
py
from ding.entry import serial_pipeline from easydict import EasyDict pong_ppo_config = dict( env=dict( collector_env_num=16, evaluator_env_num=4, n_evaluator_episode=8, stop_value=20, env_id='Pong-ramNoFrameskip-v4', frame_stack=4, warp_frame=False, use_ram=True, pomdp=dict(noise_scale=0.01, zero_p=0.2, reward_noise=0.01, duplicate_p=0.2), manager=dict( shared_memory=False, ) ), policy=dict( cuda=True, on_policy=False, # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) model=dict( obs_shape=[512, ], action_shape=6, encoder_hidden_size_list=[512, 512, 256], actor_head_hidden_size=256, actor_head_layer_num=2, critic_head_hidden_size=256, critic_head_layer_num=2, ), learn=dict( update_per_collect=16, batch_size=128, # (bool) Whether to normalize advantage. Default to False. normalize_advantage=False, learning_rate=0.0001, weight_decay=0, # (float) loss weight of the value network, the weight of policy network is set to 1 value_weight=0.5, # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 entropy_weight=0.03, clip_ratio=0.1, ), collect=dict( # (int) collect n_sample data, train model n_iteration times n_sample=1024, # (float) the trade-off factor lambda to balance 1step td and mc gae_lambda=0.97, discount_factor=0.99, ), eval=dict(evaluator=dict(eval_freq=200, )), other=dict( replay_buffer=dict( replay_buffer_size=100000, max_use=3, min_sample_ratio=1, ), ), ), ) main_config = EasyDict(pong_ppo_config) pong_ppo_create_config = dict( env=dict( type='pomdp', import_names=['app_zoo.pomdp.envs.atari_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='ppo'), ) create_config = EasyDict(pong_ppo_create_config) if __name__ == '__main__': serial_pipeline((main_config, create_config), seed=0)
e257465739f45cb8c41e0db62fca6e5c5961ffa1
adbf09a31415e6cf692ff349bd908ea25ded42a8
/revision/imports/at_decorators.py
2aabeeb6b8c5d049d7838859f8ed33c4e323cd5f
[]
no_license
cmulliss/gui_python
53a569f301cc82b58880c3c0b2b415fad1ecc3f8
6c83d8c2e834464b99024ffd8cf46ac4e734e7a4
refs/heads/main
2023-08-12T22:33:01.596005
2021-10-11T12:35:41
2021-10-11T12:35:41
408,176,101
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
import functools user = {"username": "jose", "access_level": "guest"} def make_secure(func): @functools.wraps(func) def secure_function(): if user["access_level"] == "admin": return func() else: return f"No admin permissions for {user['username']}." return secure_function # @make_secure on top of a fn definition, that will prevent the fn from being created as is, and instead it will create it and pass it through the decorator in one go. @make_secure def get_admin_password(): return "1234" # user = {"username": "bob", "access_level": "admin"} print(get_admin_password())
8ecbea64502b0476e4dd3ec28e53802d98d8344c
5945903ff7b3c0be799d8b228aa96309e8d6b68a
/LeetCode_Offer_II_004.py
3d9937377035c818327328a19057cccb76588d80
[]
no_license
freesan44/LeetCode
44fd01fa37e2d7e729ae947da2350b1649c163ae
2ed9f1955c527d43fe1a02e5bebf5a6f981ef388
refs/heads/master
2021-12-07T20:07:02.308097
2021-11-01T23:58:11
2021-11-01T23:58:11
245,178,582
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
class Solution: def singleNumber(self, nums: List[int]) -> int: from collections import Counter counter = Counter(nums).most_common() x,y = counter[-1] # print(x,y) return x if __name__ == '__main__': # nums = [2,2,3,2] nums = [0, 1, 0, 1, 0, 1, 100] ret = Solution().singleNumber(nums) print(ret)
cf6a17b5b27c54829138ed5b6d13c654a57a13d9
03869888260ab1b28c5912f6019a44b1fcbb6c19
/acrylamid/templates/jinja2.py
95c8c1f7f305e42f346aaed4e42d7d357029850f
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
kenkeiras/acrylamid
515971b5385a554f310683d993eb34e38611d50a
792298eb32daa0e703afdb2894ee121dc3861d43
refs/heads/master
2020-03-27T12:33:54.176728
2013-03-26T11:35:09
2013-03-26T11:35:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,374
py
# -*- encoding: utf-8 -*- # # Copyright 2012 Martin Zimmermann <[email protected]>. All rights reserved. # License: BSD Style, 2 clauses -- see LICENSE. from __future__ import absolute_import from io import StringIO from os.path import exists, getmtime from jinja2 import Environment as J2Environemnt, FileSystemBytecodeCache from jinja2 import FileSystemLoader, meta from acrylamid.templates import AbstractEnvironment, AbstractTemplate class ExtendedFileSystemLoader(FileSystemLoader): """A custom :class:`jinja2.FileSystemLoader` to work with Acrylamid's caching requirements. Jinja2 does track template changes using the modification timestamp of the compiled but we need template dependencies as well as consistent modified values over the whole compilation process.""" # remember already resolved templates resolved = {} # used templates used = set(['macros.html', ]) def load(self, environment, name, globals=None): """patched `load` to add a modified attribute providing information whether the template or its parents have changed.""" def resolve(parent): """We check whether any dependency (extend-block) has changed and update the bucket -- recursively. Returns True if the template itself or any parent template has changed. Otherwise False.""" self.used.add(parent) if parent in self.resolved: return self.resolved[parent] source, filename, uptodate = self.get_source(environment, parent) bucket = bcc.get_bucket(environment, parent, filename, source) p = bcc._get_cache_filename(bucket) modified = getmtime(filename) > getmtime(p) if exists(p) else True if modified: # updating cached template if timestamp has changed code = environment.compile(source, parent, filename) bucket.code = code bcc.set_bucket(bucket) self.resolved[parent] = True return True ast = environment.parse(source) for name in meta.find_referenced_templates(ast): rv = resolve(name) if rv: # XXX double-return to break this recursion? return True if globals is None: globals = {} source, filename, uptodate = self.get_source(environment, name) bcc = environment.bytecode_cache bucket = bcc.get_bucket(environment, name, filename, source) modified = bool(resolve(name)) code = bucket.code if code is None: code = environment.compile(source, name, filename) tt = environment.template_class.from_code(environment, code, globals, uptodate) tt.modified = modified return tt class Environment(AbstractEnvironment): def init(self, layoutdir, cachedir): self.jinja2 = J2Environemnt(loader=ExtendedFileSystemLoader(layoutdir), bytecode_cache=FileSystemBytecodeCache(cachedir)) # jinja2 is stupid and can't import any module during runtime import time, datetime, urllib for module in (time, datetime, urllib): self.jinja2.globals[module.__name__] = module for name in dir(module): if name.startswith('_'): continue obj = getattr(module, name) if hasattr(obj, '__class__') and callable(obj): self.jinja2.filters[module.__name__ + '.' + name] = obj def register(self, name, func): self.jinja2.filters[name] = func def fromfile(self, path): return Template(self.jinja2.get_template(path)) def extend(self, path): self.jinja2.loader.searchpath.append(path) @property def templates(self): return self.jinja2.loader.used @property def extension(self): return ['.html', '.j2'] class Template(AbstractTemplate): def __init__(self, template): self.template = template def render(self, **kw): buf = StringIO() self.template.stream(**kw).dump(buf) return buf @property def modified(self): return self.template.modified
48a2ca87abfdda05840e297a3a45819b20ef60d0
c3a84a07539c33040376f2c1e140b1a1041f719e
/wagtail-stubs/contrib/postgres_search/models.pyi
c9990209da1b7ca59c1ff89fcdab8dbd624dd3d4
[]
no_license
tm-kn/tmp-wagtail-stubs
cc1a4434b7142cb91bf42efb7daad006c4a7dbf4
23ac96406610b87b2e7751bc18f0ccd27f17eb44
refs/heads/master
2023-01-20T14:41:33.962460
2020-11-30T23:15:38
2020-11-30T23:15:38
317,332,280
0
0
null
null
null
null
UTF-8
Python
false
false
943
pyi
from .utils import get_descendants_content_types_pks as get_descendants_content_types_pks from django.contrib.contenttypes.fields import GenericRelation from django.db import models from typing import Any from wagtail.search.index import class_is_indexed as class_is_indexed class TextIDGenericRelation(GenericRelation): auto_created: bool = ... def get_content_type_lookup(self, alias: Any, remote_alias: Any): ... def get_object_id_lookup(self, alias: Any, remote_alias: Any): ... def get_extra_restriction(self, where_class: Any, alias: Any, remote_alias: Any): ... def resolve_related_fields(self): ... class IndexEntry(models.Model): content_type: Any = ... object_id: Any = ... content_object: Any = ... autocomplete: Any = ... title: Any = ... title_norm: Any = ... body: Any = ... @property def model(self): ... @classmethod def add_generic_relations(cls) -> None: ...
4526c6ad6240b783d55680571665a34fb0c9ab6b
c934e7c27f0e72385218a14b4e2a7e94a747a360
/google-cloud-sdk/lib/surface/workspace_add_ons/deployments/__init__.py
c882b0f970690ca156c971efa50fc7708fcc45e7
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
PrateekKhatri/gcloud_cli
5f74b97494df4f61816026af9460b9c4d8e89431
849d09dd7863efecbdf4072a504e1554e119f6ae
refs/heads/master
2023-03-27T05:53:53.796695
2021-03-10T04:08:14
2021-03-10T04:08:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
# -*- coding: utf-8 -*- # # Copyright 2020 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Package for the api_keys CLI subcommands.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base @base.Hidden @base.ReleaseTracks(base.ReleaseTrack.GA) class Deployments(base.Group): """Manage Google Workspace Add-ons Deployments."""
df1c8a26e0becbc5ddede3a5087948f61aaf7f2e
d3efc82dfa61fb82e47c82d52c838b38b076084c
/crossmarketetf_bak/crossmarket_creation_HA/YW_CETFSS_SHSG_020.py
5d28365fc63ea90b37a0dd3fec3d52f5c0307129
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
6,323
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test") from crossmarketetf.cetfservice.cetf_main_service import * from crossmarketetf.cetfservice.cetf_get_components_asset import * from crossmarketetf.cetfservice.cetf_utils import * from mysql.QueryOrderErrorMsg import queryOrderErrorMsg from service.mainService import * from mysql.getUpOrDownPrice import getUpPrice class YW_CETFSS_SHSG_020(xtp_test_case): def test_YW_CETFSS_SHSG_020(self): # -----------ETF申购------------- title = '上海ETF申购--可现金替代:T-1日无成分股&资金不足&计算现金比例=最大现金比例→T日申购ETF' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、全成、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '废单', 'errorID': 11010120, 'errorMSG': queryOrderErrorMsg(11010120), '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) unit_info = { 'ticker': '550320', # etf代码 'etf_unit': 1.0, # etf申购单位数 'etf_unit_sell': 1.0, # etf卖出单位数 'component_unit_sell': 1.0 # 成分股卖出单位数 } # -----------查询ETF申购前成分股持仓------------- component_stk_info = cetf_get_all_component_stk(Api,unit_info['ticker']) # 查询etf最小申赎数量 unit_number = query_creation_redem_unit(unit_info['ticker']) # etf申购数量 quantity = int(unit_info['etf_unit'] * unit_number) # 定义委托参数信息------------------------------------------ wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_ETF'], 'order_client_id': 2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': unit_info['ticker'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_PURCHASE'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_LIMIT'], 'quantity': quantity } g_func.cetf_parm_init(case_goal['期望状态']) rs1 = cetf_service_test(Api, case_goal, wt_reqs,component_stk_info) etf_creation_log(case_goal, rs1) self.assertEqual(rs1['用例测试结果'], True) # --------二级市场,卖出etf----------- case_goal['期望状态'] = '废单' case_goal['errorID'] = 11010121 case_goal['errorMSG'] = queryOrderErrorMsg(11010121) # 二级市场卖出的etf数量 quantity = int(unit_info['etf_unit_sell'] * unit_number) quantity_list = split_etf_quantity(quantity) # 查询涨停价 limitup_px = getUpPrice(unit_info['ticker']) rs2 = {} for etf_quantity in quantity_list: wt_reqs_etf = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id': 2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': unit_info['ticker'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_CANCEL'], 'price': limitup_px, 'quantity': etf_quantity } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) rs2 = serviceTest(Api, case_goal, wt_reqs_etf) if rs2['用例测试结果'] is False: etf_sell_log(case_goal, rs2) self.assertEqual(rs2['用例测试结果'], True) return etf_sell_log(case_goal, rs2) # ------------二级市场卖出成份股----------- case_goal['期望状态'] = '废单' case_goal['errorID'] = 11010121 case_goal['errorMSG'] = queryOrderErrorMsg(11010121) # 查询etf成分股代码和数量 etf_components = query_cetf_component_share(unit_info['ticker']) # 如果卖出单位大于100,表示卖出数量;小于100,表示卖出份数 rs3 = {} for stk_code in etf_components: # 申购用例1-43会有上海和深圳的成分股各一支,深圳成分股为'008000',只卖上海的 if stk_code != '008000': components_share = etf_components[stk_code] quantity = (int(unit_info['component_unit_sell']) if unit_info['component_unit_sell'] >= 100 else int(components_share * unit_info['component_unit_sell'])) limitup_px = getUpPrice(stk_code) wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id': 2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stk_code, 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_CANCEL'], 'price': limitup_px, 'quantity': quantity } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) rs3 = serviceTest(Api, case_goal, wt_reqs) if rs3['用例测试结果'] is False: etf_components_sell_log(case_goal, rs3) self.assertEqual(rs3['用例测试结果'], True) etf_components_sell_log(case_goal, rs3) self.assertEqual(rs3['用例测试结果'], True) if __name__ == '__main__': unittest.main()
09920af61b71677948e7bed9fa77cabae508c78f
87e62af4768c0f594e675551f4c7c1c81ce7f7d9
/lawyer/spiders/legislation/caipan_wenshu_spider.py
09b385d1e6eb1bcee041a82c399db8cb43aa3e79
[]
no_license
dulei001/Spider
78d12adbef1d865da6978704fe146cc21a8d2d3e
628d468501c6502763ce453a58a09813b2a46b8c
refs/heads/master
2021-01-18T17:27:11.771434
2019-05-14T02:14:33
2019-05-14T02:14:33
86,802,130
12
2
null
null
null
null
UTF-8
Python
false
false
4,078
py
#!/usr/bin/python # -*- coding: utf-8 -*- import json import scrapy import re #聚法网裁判文书 class CaipanInfoSpider(scrapy.spiders.Spider): name = "jufa" allowed_domains = ['www.jufaanli.com'] start_urls = [ "http://www.jufaanli.com/search2?TypeKey=1%253A%25E6%25A1%2588" ] pagesize = 20 # 爬虫入口爬去所有省下的地址 def parse(self, response): pageurl = 'http://www.jufaanli.com/home/search/searchJson' totalPage = (26694941-1) / (self.pagesize+1) #totalPage = 2 for page in range(1,totalPage): yield scrapy.FormRequest(url=pageurl, method="POST", headers={'X-Requested-With': 'XMLHttpRequest'}, dont_filter=True, callback=self.parseAjaxList, errback=self.handle_error, formdata={"page":str(page),"searchNum":str(self.pagesize)}) #列表 def parseAjaxList(self,response): data = json.loads(response.body_as_unicode()) detailUrl='http://www.jufaanli.com/detail/' for item in data['info']["searchList"]['list']: yield scrapy.Request(url=detailUrl+ item['uuid'], method="GET", dont_filter=True, callback=self.parseAjaxDetail, errback=self.handle_error, ) #详细 def parseAjaxDetail(self,response): item={} #标题 item['title']= ''.join(response.css('.text-center.text-black::text').re(u'[^指导案例\d号:]')) #法院 item['fanyuan']=''.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="审理法院"]/parent::div/following-sibling::div/a/text()').extract()) #案号 item['anhao'] = ''.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="案号"]/parent::div/following-sibling::div/span/text()').extract()) #案由 item['anyou'] = ''.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="案由"]/parent::div/following-sibling::div/a/text()').extract()) #案件类型 item['type'] = ','.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="案件类型"]/parent::div/following-sibling::div/span/text()').extract()).rstrip(',') #审判日期 item['stime'] = ''.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="审判日期"]/parent::div/following-sibling::div/span/text()').extract()) #审理程序 item['slcx'] = ''.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="审理程序"]/parent::div/following-sibling::div/span/text()').extract()) #关键词 item['keywords'] = ','.join(response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="关键词"]/parent::div/following-sibling::div').css('.info-item.info-item-gray a::text').extract()).rstrip(',') #律师and律所 lvshidic=[]; for i in response.xpath(u'//div[@class="col-lg-4 title-area"]/span[text()="律师"]/parent::div/following-sibling::div').css('.legislation-info'): lvshidic.append({"lvsuo":''.join(i.css('a::text').extract()),'names':''.join(i.css('span::text').extract())}) item['fagui']=response.css('.eachCiteLaw a::text').extract() #律所律师 item['lvsuolvshi'] =lvshidic #内容 item['content'] = re.sub('(class|name|id)="[^"]*?"','', ''.join(response.xpath('//*[@id="caseText"]').extract())) item['collection'] = 'caipan' item['source'] = '聚法网' item["url"] = response.url #item["html"] = response.text return item def handle_error(self, result, *args, **kw): self.logger.error("error url is :%s" % result.request.url)
60c1b6630661e4beab1e47ea2c1e71f35603c745
cb1f4f794b9efe7fcf90726cfff12e0051af7702
/timeserio/batches/single/base.py
ad6fa65aebf095a5aaffce294cf272284456bceb
[ "MIT" ]
permissive
valeman/timeserio
67cd4e9da977decbfe99a7a5324f08ab3d88e75a
b52576b24a5643a2a21490b9f7ca63f8566a88ce
refs/heads/master
2022-04-12T00:52:26.368003
2020-03-11T10:53:37
2020-03-11T10:53:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
97
py
import abc from keras.utils import Sequence class BatchGenerator(Sequence, abc.ABC): pass
fbd1a036d4757c1093524dbb514fd4f26baeb738
3ee747ca63eb16997401ef88fadf0a646af2ca1e
/tests/test_utils.py
95e397b43d9ba94716bf110b1fe3e00138d65602
[ "MIT", "Python-2.0" ]
permissive
riverflowo/NURBS-Python
5f382f7a24b34f7b09e26ce4d64136fbba95481f
b564eaceef72f00b385981dac3c7b93b5490f4fe
refs/heads/master
2020-03-29T13:57:39.647404
2018-09-12T02:05:34
2018-09-12T02:05:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,580
py
""" Tests for the NURBS-Python package Released under The MIT License. See LICENSE file for details. Copyright (c) 2018 Onur Rauf Bingol Tests geomdl.utilities module. Requires "pytest" to run. """ import pytest from geomdl import utilities GEOMDL_DELTA = 10e-8 def test_generate_knot_vector1(): with pytest.raises(ValueError): degree = 0 num_ctrlpts = 12 utilities.generate_knot_vector(degree, num_ctrlpts) def test_generate_knot_vector2(): with pytest.raises(ValueError): degree = 4 num_ctrlpts = 0 utilities.generate_knot_vector(degree, num_ctrlpts) def test_generate_knot_vector3(): with pytest.raises(ValueError): degree = 0 num_ctrlpts = 0 utilities.generate_knot_vector(degree, num_ctrlpts) def test_generate_knot_vector4(): degree = 4 num_ctrlpts = 12 autogen_kv = utilities.generate_knot_vector(degree, num_ctrlpts) result = [0.0, 0.0, 0.0, 0.0, 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0] assert autogen_kv == result def test_generate_knot_vector5(): # testing auto-generated unclamped knot vector degree = 3 num_ctrlpts = 5 result = [0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0] autogen_kv = utilities.generate_knot_vector(degree, num_ctrlpts, clamped=False) assert autogen_kv == result def test_check_knot_vector1(): with pytest.raises(ValueError): utilities.check_knot_vector(4, tuple(), 12) def test_check_knot_vector2(): to_check = utilities.check_knot_vector(4, (1, 2, 3, 4), 12) result = False assert to_check == result def test_check_knot_vector3(): to_check = utilities.check_knot_vector(3, (5, 3, 6, 5, 4, 5, 6), 3) result = False assert to_check == result def test_check_knot_vector4(): degree = 4 num_ctrlpts = 12 autogen_kv = utilities.generate_knot_vector(degree, num_ctrlpts) check_result = utilities.check_knot_vector(degree=degree, num_ctrlpts=num_ctrlpts, knot_vector=autogen_kv) assert check_result def test_check_knot_vector5(): degree = 4 num_ctrlpts = 12 with pytest.raises(TypeError): utilities.check_knot_vector(degree=degree, num_ctrlpts=num_ctrlpts, knot_vector=5) def test_normalize_knot_vector1(): # check for empty list/tuple with pytest.raises(ValueError): utilities.normalize_knot_vector(tuple()) def test_normalize_knot_vector2(): input_kv = (-5, -5, -3, -2, 2, 3, 5, 5) output_kv = [0.0, 0.0, 0.2, 0.3, 0.7, 0.8, 1.0, 1.0] to_check = utilities.normalize_knot_vector(input_kv) assert to_check == output_kv def test_normalize_knot_vector3(): with pytest.raises(TypeError): utilities.normalize_knot_vector(5) def test_check_uv1(): with pytest.raises(ValueError): u = -0.1 v = 0.1 utilities.check_uv(u, v) def test_check_uv2(): with pytest.raises(ValueError): u = 2 v = 0.1 utilities.check_uv(u, v) def test_check_uv3(): with pytest.raises(ValueError): v = -0.1 u = 0.1 utilities.check_uv(u, v) def test_check_uv4(): with pytest.raises(ValueError): v = 2 u = 0.1 utilities.check_uv(u, v) def test_linspace(): start = 5 stop = 11 num = 4 result = [5.0, 7.0, 9.0, 11.0] to_check = utilities.linspace(start, stop, num) assert to_check == result def test_vector_dot1(): with pytest.raises(ValueError): vec1 = () vec2 = () utilities.vector_dot(vec1, vec2) def test_vector_dot2(): result = 32 vec1 = (1, 2, 3) vec2 = (1, 5, 7) to_check = utilities.vector_dot(vec1, vec2) assert to_check == result def test_vector_dot3(): with pytest.raises(TypeError): utilities.vector_dot(5, 9.7) def test_vector_cross1(): with pytest.raises(ValueError): vec1 = () vec2 = () utilities.vector_cross(vec1, vec2) def test_vector_cross2(): with pytest.raises(ValueError): vec1 = (1, 2, 3, 4) vec2 = (1, 5, 7, 9) utilities.vector_cross(vec1, vec2) def test_vector_cross3(): result = (-1.0, -4.0, 3.0) vec1 = (1, 2, 3) vec2 = (1, 5, 7) to_check = utilities.vector_cross(vec1, vec2) assert to_check == result def test_vector_cross4(): with pytest.raises(TypeError): utilities.vector_cross(5, 9.7) def test_vector_normalize1(): with pytest.raises(ValueError): vec = () utilities.vector_normalize(vec) def test_vector_normalize2(): with pytest.raises(ValueError): vec = (0, 0) utilities.vector_normalize(vec) def test_vector_normalize3(): with pytest.raises(TypeError): utilities.vector_normalize(5) def test_vector3_normalize(): vec = (5, 2.5, 5) result = (0.667, 0.333, 0.667) to_check = utilities.vector_normalize(vec, decimals=3) assert to_check == result def test_vector4_normalize(): vec = (5, 2.5, 5, 10) result = (0.4, 0.2, 0.4, 0.8) to_check = utilities.vector_normalize(vec) assert to_check == result def test_vector_generate1(): with pytest.raises(ValueError): pt1 = () pt2 = (1, 2, 3) utilities.vector_generate(pt1, pt2) def test_vector_generate2(): pt1 = (0, 0, 0) pt2 = (5, 3, 4) result = (5, 3, 4) result_normalized = (0.707107, 0.424264, 0.565685) to_check = utilities.vector_generate(pt1, pt2) to_check_normalized = utilities.vector_generate(pt1, pt2, normalize=True) assert to_check == result assert to_check_normalized == result_normalized def test_vector_generate3(): with pytest.raises(TypeError): utilities.vector_generate(5, 9.7) def test_point_translate1(): with pytest.raises(ValueError): pt1 = () pt2 = (1, 2, 3) utilities.point_translate(pt1, pt2) def test_point_translate2(): pt = (1, 0, 0) vec = (5, 5, 5) result = (6, 5, 5) to_check = utilities.point_translate(pt, vec) assert to_check == result def test_point_translate3(): with pytest.raises(TypeError): utilities.point_translate(5, 9.7) def test_binomial_coefficient1(): result = 0.0 to_check = utilities.binomial_coefficient(13, 14) assert to_check == result def test_binomial_coefficient2(): result = 1.0 to_check = utilities.binomial_coefficient(13, 13) assert to_check == result def test_binomial_coefficient3(): result = 680.0 to_check = utilities.binomial_coefficient(17, 3) assert to_check == result def test_frange1(): start = 5 stop = 11 step = 2 to_check = [] for fr in utilities.frange(start, stop, step): to_check.append(fr) result = [5.0, 7.0, 9.0, 11.0] assert to_check == result def test_frange2(): check = list(utilities.frange(0, 1, 0.1)) result = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] check_flag = True for c, r in zip(check, result): if abs(c - r) > GEOMDL_DELTA: check_flag = False assert check_flag def test_color_generator(): seed = 17 # some number to be used as the random seed result = utilities.color_generator(seed) to_check = utilities.color_generator(seed) assert to_check == result def test_init_var1(): test_var_type = list assert test_var_type() == utilities.init_var(test_var_type) def test_init_var2(): test_var_type = None assert test_var_type == utilities.init_var(test_var_type) def test_vector_multiply(): result = (2, 4, 6) computed = utilities.vector_multiply((1, 2, 3), 2) assert result == computed def test_vector_mean(): vector_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] result = (4, 5, 6) computed = utilities.vector_mean(*vector_list) assert result == computed def test_vector_angle_between(): computed_deg = utilities.vector_angle_between((1, 2, 3), (3, 2, 1), degrees=True) computed_rad = utilities.vector_angle_between((1, 2, 3), (3, 2, 1), degrees=False) result_deg = 44.415308597193 result_rad = 0.775193373310361 assert abs(computed_deg - result_deg) < GEOMDL_DELTA assert abs(computed_rad - result_rad) < GEOMDL_DELTA def test_point_distance(): result = 17.691806 computed = utilities.point_distance((5, 7, 9), (-7, -5, 4)) assert abs(result - computed) < GEOMDL_DELTA def test_point_mid(): result = (2.5, 3.5, 4.5) computed = utilities.point_mid((1, 2, 3), (4, 5, 6)) assert result == computed
fa41413edc689db57f3afe37347b2bb07b49f3a1
b9e4bf5c00ac0d6c1a6e6038e8dc18041819ff99
/Python3/0716_Max_Stack.py
45a35d6d09c45a3a9630134e1a1c123ef683ea60
[]
no_license
kiranani/playground
98fdb70a3ca651436cc1eede0d2ba1b1ea9aba1d
12f62a218e827e6be2578b206dee9ce256da8d3d
refs/heads/master
2021-06-03T12:43:29.388589
2020-06-12T15:43:45
2020-06-12T15:43:45
149,614,802
0
0
null
null
null
null
UTF-8
Python
false
false
884
py
class MaxStack: def __init__(self): """ initialize your data structure here. """ self.l = [(float("inf"), -float("inf"))] def push(self, x: int) -> None: self.l.append((x, max(x, self.l[-1][1]))) def pop(self) -> int: return self.l.pop()[0] def top(self) -> int: return self.l[-1][0] def peekMax(self) -> int: return self.l[-1][1] def popMax(self) -> int: mx, s = self.peekMax(), [] while self.l[-1][0] != mx: s.append(self.l.pop()[0]) self.l.pop() while s: self.push(s.pop()) return mx # Your MaxStack object will be instantiated and called as such: # obj = MaxStack() # obj.push(x) # param_2 = obj.pop() # param_3 = obj.top() # param_4 = obj.peekMax() # param_5 = obj.popMax()
4386d9bd629660635a27a3b219d035be73a9ac41
79babd1502ea1bd701ce021cfa75dc25ca35a700
/python/rootTools/Utils.py
a4e4d3433c4ff2b0999a0502997f62013d960800
[]
no_license
RazorCMS/RazorAnalyzer
99b89b33d2ec2be1d42e3705569d49cd3346d40a
2e2adff5ba5d2306c9f0b40c2a5297782fae3158
refs/heads/master
2021-01-23T21:18:53.534772
2019-03-22T14:21:41
2019-03-22T14:21:41
24,916,087
1
9
null
2017-09-11T15:51:28
2014-10-07T23:27:09
C++
UTF-8
Python
false
false
3,724
py
#$Revision:$ #the following is from http://stackoverflow.com/questions/1006289/how-to-find-out-the-number-of-cpus-in-python def determineNumberOfCPUs(): """ Number of virtual or physical CPUs on this system, i.e. user/real as output by time(1) when called with an optimally scaling userspace-only program""" import os,re,subprocess # Python 2.6+ try: import multiprocessing return multiprocessing.cpu_count() except (ImportError,NotImplementedError): pass # POSIX try: res = int(os.sysconf('SC_NPROCESSORS_ONLN')) if res > 0: return res except (AttributeError,ValueError): pass # Windows try: res = int(os.environ['NUMBER_OF_PROCESSORS']) if res > 0: return res except (KeyError, ValueError): pass # jython try: from java.lang import Runtime runtime = Runtime.getRuntime() res = runtime.availableProcessors() if res > 0: return res except ImportError: pass # BSD try: sysctl = subprocess.Popen(['sysctl', '-n', 'hw.ncpu'], stdout=subprocess.PIPE) scStdout = sysctl.communicate()[0] res = int(scStdout) if res > 0: return res except (OSError, ValueError): pass # Linux try: res = open('/proc/cpuinfo').read().count('processor\t:') if res > 0: return res except IOError: pass # Solaris try: pseudoDevices = os.listdir('/devices/pseudo/') expr = re.compile('^cpuid@[0-9]+$') res = 0 for pd in pseudoDevices: if expr.match(pd) != None: res += 1 if res > 0: return res except OSError: pass # Other UNIXes (heuristic) try: try: dmesg = open('/var/run/dmesg.boot').read() except IOError: dmesgProcess = subprocess.Popen(['dmesg'], stdout=subprocess.PIPE) dmesg = dmesgProcess.communicate()[0] res = 0 while '\ncpu' + str(res) + ':' in dmesg: res += 1 if res > 0: return res except OSError: pass raise Exception('Can not determine number of CPUs on this system') def importToWS(workspace, *args): """Utility function to call the RooWorkspace::import methods""" return getattr(workspace,'import')(*args) #------------------------------------------------------------------------------ # File: Color.py # Description: colors # Created: 22 Sep 2010 Harrison B. Prosper #------------------------------------------------------------------------------ RED ="\x1b[0;31;48m" GREEN ="\x1b[0;32;48m" YELLOW ="\x1b[0;33;48m" BLUE ="\x1b[0;34;48m" MAGENTA="\x1b[0;35;48m" CYAN ="\x1b[0;36;48m" BOLDRED ="\x1b[1;31;48m" BOLDGREEN ="\x1b[1;32;48m" BOLDYELLOW ="\x1b[1;33;48m" BOLDBLUE ="\x1b[1;34;48m" BOLDMAGENTA="\x1b[1;35;48m" BOLDCYAN ="\x1b[1;36;48m" RESETCOLOR ="\x1b[0m" # reset to default foreground color #------------------------------------------------------------------------------ def nameonly(s): import os return os.path.splitext(os.path.basename(s))[0] def scream(message): from random import randint i = randint(0,4) random_phrases = {0: 'Twas brillig and the slithy tothes', 1: 'Let all the evil that lurks in the mud hatch out', 2: 'Alas poor CMS I new them well!', 3: 'Lies, damned lies, and statistics', 4: 'Speak severely to your little boy and beat him '\ 'when he sneezes'} print "\n** %s\n** %s%s%s\n" % (random_phrases[i], BLUE, message, RESETCOLOR) sys.exit(0)
a2aa0983b8a49972d004006dd2709b75fd1ab70d
7c15f211adc9e9eb9f66ccdd570c9f38dff7ea8d
/packages/autorest.python/test/azure/version-tolerant/Expected/AcceptanceTests/SubscriptionIdApiVersionVersionTolerant/subscriptionidapiversionversiontolerant/operations/__init__.py
c58de146570db0acc07d6828002cccd80c37cc94
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/autorest.python
cc4bfbf91ae11535731cad37cedd6b733edf1ebd
a00d7aaa3753ef05cb5a0d38c664a90869478d44
refs/heads/main
2023-09-03T06:58:44.246200
2023-08-31T20:11:51
2023-08-31T20:11:51
100,315,955
47
40
MIT
2023-09-14T21:00:21
2017-08-14T22:58:33
Python
UTF-8
Python
false
false
771
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._operations import GroupOperations from ._patch import __all__ as _patch_all from ._patch import * # pylint: disable=unused-wildcard-import from ._patch import patch_sdk as _patch_sdk __all__ = [ "GroupOperations", ] __all__.extend([p for p in _patch_all if p not in __all__]) _patch_sdk()
bdcbaa97c7e2dc4010390b06ac580bfda23aa946
71c331e4b1e00fa3be03b7f711fcb05a793cf2af
/QA-System-master/SpeechToText_test/google-cloud-sdk/lib/surface/run/deploy.py
32cd25c00b8387be0cb01911f797495b0301f3b6
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
iofh/QA-System
568228bb0c0adf9ec23b45cd144d61049e720002
af4a8f1b5f442ddf4905740ae49ed23d69afb0f6
refs/heads/master
2022-11-27T23:04:16.385021
2020-08-12T10:11:44
2020-08-12T10:11:44
286,980,492
0
0
null
null
null
null
UTF-8
Python
false
false
9,853
py
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Deploy a container to Cloud Run.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import uuid from googlecloudsdk.api_lib.cloudbuild import cloudbuild_util from googlecloudsdk.api_lib.run import traffic from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.builds import flags as build_flags from googlecloudsdk.command_lib.builds import submit_util from googlecloudsdk.command_lib.run import config_changes as config_changes_mod from googlecloudsdk.command_lib.run import connection_context from googlecloudsdk.command_lib.run import flags from googlecloudsdk.command_lib.run import messages_util from googlecloudsdk.command_lib.run import pretty_print from googlecloudsdk.command_lib.run import resource_args from googlecloudsdk.command_lib.run import serverless_operations from googlecloudsdk.command_lib.run import stages from googlecloudsdk.command_lib.util.concepts import concept_parsers from googlecloudsdk.command_lib.util.concepts import presentation_specs from googlecloudsdk.core import properties from googlecloudsdk.core import resources from googlecloudsdk.core.console import progress_tracker def GetAllowUnauth(args, operations, service_ref, service_exists): """Returns allow_unauth value for a service change. Args: args: argparse.Namespace, Command line arguments operations: serverless_operations.ServerlessOperations, Serverless client. service_ref: protorpc.messages.Message, A resource reference object for the service See googlecloudsdk.core.resources.Registry.ParseResourceId for details. service_exists: True if the service being changed already exists. Returns: allow_unauth value where True means to enable unauthenticated acess for the service. False means to disable unauthenticated access for the service. None means to retain the current value for the service. """ allow_unauth = None if flags.GetPlatform() == flags.PLATFORM_MANAGED: allow_unauth = flags.GetAllowUnauthenticated(args, operations, service_ref, not service_exists) # Avoid failure removing a policy binding for a service that # doesn't exist. if not service_exists and not allow_unauth: allow_unauth = None return allow_unauth @base.ReleaseTracks(base.ReleaseTrack.GA) class Deploy(base.Command): """Deploy a container to Cloud Run.""" detailed_help = { 'DESCRIPTION': """\ Deploys container images to Google Cloud Run. """, 'EXAMPLES': """\ To deploy a container to the service `my-backend` on Cloud Run: $ {command} my-backend --image=gcr.io/my/image You may also omit the service name. Then a prompt will be displayed with a suggested default value: $ {command} --image=gcr.io/my/image To deploy to Cloud Run on Kubernetes Engine, you need to specify a cluster: $ {command} --image=gcr.io/my/image --cluster=my-cluster """, } @staticmethod def CommonArgs(parser): # Flags specific to managed CR managed_group = flags.GetManagedArgGroup(parser) flags.AddAllowUnauthenticatedFlag(managed_group) flags.AddCloudSQLFlags(managed_group) flags.AddRevisionSuffixArg(managed_group) # Flags specific to connecting to a cluster cluster_group = flags.GetClusterArgGroup(parser) flags.AddEndpointVisibilityEnum(cluster_group) flags.AddSecretsFlags(cluster_group) flags.AddConfigMapsFlags(cluster_group) flags.AddHttp2Flag(cluster_group) # Flags not specific to any platform service_presentation = presentation_specs.ResourcePresentationSpec( 'SERVICE', resource_args.GetServiceResourceSpec(prompt=True), 'Service to deploy to.', required=True, prefixes=False) flags.AddFunctionArg(parser) flags.AddMutexEnvVarsFlags(parser) flags.AddMemoryFlag(parser) flags.AddConcurrencyFlag(parser) flags.AddTimeoutFlag(parser) flags.AddAsyncFlag(parser) flags.AddLabelsFlags(parser) flags.AddMaxInstancesFlag(parser) flags.AddCommandFlag(parser) flags.AddArgsFlag(parser) flags.AddPortFlag(parser) flags.AddCpuFlag(parser) flags.AddNoTrafficFlag(parser) concept_parsers.ConceptParser([service_presentation]).AddToParser(parser) @staticmethod def Args(parser): Deploy.CommonArgs(parser) flags.AddImageArg(parser) # Flags specific to managed CR managed_group = flags.GetManagedArgGroup(parser) flags.AddServiceAccountFlag(managed_group) # Flags only supported on GKE and Knative cluster_group = flags.GetClusterArgGroup(parser) flags.AddMinInstancesFlag(cluster_group) def Run(self, args): """Deploy a container to Cloud Run.""" service_ref = flags.GetService(args) build_op_ref = None messages = None build_log_url = None image = args.image include_build = flags.FlagIsExplicitlySet(args, 'source') # Build an image from source if source specified. if include_build: # Create a tag for the image creation if image is None and not args.IsSpecified('config'): image = 'gcr.io/{projectID}/cloud-run-source-deploy/{service}:{tag}'.format( projectID=properties.VALUES.core.project.Get(required=True), service=service_ref.servicesId, tag=uuid.uuid4().hex) messages = cloudbuild_util.GetMessagesModule() build_config = submit_util.CreateBuildConfig( image, args.no_cache, messages, args.substitutions, args.config, args.IsSpecified('source'), False, args.source, args.gcs_source_staging_dir, args.ignore_file, args.gcs_log_dir, args.machine_type, args.disk_size) build, build_op = submit_util.Build(messages, True, build_config, True) build_op_ref = resources.REGISTRY.ParseRelativeName( build_op.name, 'cloudbuild.operations' ) build_log_url = build.logUrl # Deploy a container with an image conn_context = connection_context.GetConnectionContext( args, flags.Product.RUN, self.ReleaseTrack()) config_changes = flags.GetConfigurationChanges(args) with serverless_operations.Connect(conn_context) as operations: image_change = config_changes_mod.ImageChange(image) changes = [image_change] if config_changes: changes.extend(config_changes) service = operations.GetService(service_ref) allow_unauth = GetAllowUnauth(args, operations, service_ref, service) pretty_print.Info( messages_util.GetStartDeployMessage(conn_context, service_ref)) has_latest = (service is None or traffic.LATEST_REVISION_KEY in service.spec_traffic) deployment_stages = stages.ServiceStages( include_iam_policy_set=allow_unauth is not None, include_route=has_latest, include_build=include_build) header = 'Deploying' if include_build: header += ' and building' if service is None: header += ' new service' header += '...' with progress_tracker.StagedProgressTracker( header, deployment_stages, failure_message='Deployment failed', suppress_output=args.async_) as tracker: operations.ReleaseService( service_ref, changes, tracker, asyn=args.async_, allow_unauthenticated=allow_unauth, prefetch=service, build_op_ref=build_op_ref, build_log_url=build_log_url) if args.async_: pretty_print.Success( 'Service [{{bold}}{serv}{{reset}}] is deploying ' 'asynchronously.'.format(serv=service_ref.servicesId)) else: pretty_print.Success( messages_util.GetSuccessMessageForSynchronousDeploy( operations, service_ref)) @base.ReleaseTracks(base.ReleaseTrack.BETA) class BetaDeploy(Deploy): """Deploy a container to Cloud Run.""" @staticmethod def Args(parser): Deploy.Args(parser) # Flags specific to VPCAccess flags.AddVpcConnectorArg(parser) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class AlphaDeploy(Deploy): """Deploy a container to Cloud Run.""" @staticmethod def Args(parser): Deploy.CommonArgs(parser) # Flags specific to VPCAccess flags.AddVpcConnectorArg(parser) # Flags not specific to any platform flags.AddMinInstancesFlag(parser) flags.AddServiceAccountFlagAlpha(parser) flags.AddDeployTagFlag(parser) # Flags inherited from gcloud builds submit flags.AddConfigFlags(parser) flags.AddSourceFlag(parser) flags.AddBuildTimeoutFlag(parser) build_flags.AddGcsSourceStagingDirFlag(parser, True) build_flags.AddGcsLogDirFlag(parser, True) build_flags.AddMachineTypeFlag(parser, True) build_flags.AddDiskSizeFlag(parser, True) build_flags.AddSubstitutionsFlag(parser, True) build_flags.AddNoCacheFlag(parser, True) build_flags.AddIgnoreFileFlag(parser, True) AlphaDeploy.__doc__ = Deploy.__doc__
67e504ae45a28ad46c3633d6603215e04e77ce66
1cb0cc435061b6a0156b37813343ae46b1f7346e
/1_learn_step/try_second/glorot_normal-RMSprop-16.py
eb6e65fdeee43652b530579008e195c2f09d190b
[]
no_license
youthliuxi/keras
6370a9de11e152d8ba96e68e9ff02337203b7e66
60a367442f74313d0bd9af01f76068d56e23bec0
refs/heads/master
2020-04-30T19:54:16.628943
2019-08-21T09:47:13
2019-08-21T09:47:13
177,051,874
0
0
null
null
null
null
UTF-8
Python
false
false
1,677
py
# -*- coding:utf-8 -*- from keras import backend as K K.set_image_dim_ordering('th') import numpy as np np.random.seed(123) from keras.layers import * from keras.models import Sequential from keras.utils import np_utils from keras.datasets import mnist # (X_train, y_train), (X_test, y_test) = mnist.load_data() path = "./mnist.npz" f = np.load(path) X_train, y_train = f['x_train'],f['y_train'] X_test, y_test = f['x_test'],f['y_test'] X_train = X_train.reshape(X_train.shape[0], 1, 28, 28) X_test = X_test.reshape(X_test.shape[0], 1, 28, 28) import pylab from matplotlib import pyplot as plt X_train = X_train.reshape(X_train.shape[0], 1, 28, 28) X_test = X_test.reshape(X_test.shape[0], 1, 28, 28) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 Y_train = np_utils.to_categorical(y_train, 10) Y_test = np_utils.to_categorical(y_test, 10) model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu',init = 'glorot_normal', input_shape=(1,28,28))) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy',optimizer='RMSprop',metrics=['accuracy']) hist = model.fit(X_train, Y_train, batch_size=16, nb_epoch=100, verbose=1, validation_data=(X_test, Y_test)) log_file_name = "try_second/txt/glorot_normal-RMSprop-16.txt" with open(log_file_name,'w') as f: f.write(str(hist.history)) # score = model.evaluate(X_test, Y_test, verbose=0, batch_size=16) # print(score[0]) # print(score[1])
5257553d3c163205f228efbd85550aedd5fa8e8e
6adf334dd2a074686447e15898ed3fff793aab48
/03_Fast_and_Slow_Pointers/08_circular_array_loop_exists.py
a679195ddcea8fbbc7f8af0248a3d958cd5cb1c4
[]
no_license
satyapatibandla/Patterns-for-Coding-Interviews
29ac1a15d5505293b83a8fb4acf12080851fe8d6
b3eb2ac82fd640ecbdf3654a91a57a013be1806f
refs/heads/main
2023-05-07T07:56:01.824272
2021-06-01T04:02:50
2021-06-01T04:02:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
# Time O(N) | Space O(1) def circular_array_loop_exists(nums): for i in range(len(nums)): if nums[i] == 0: continue direction = nums[i] > 0 slow = fast = i while True: slow = get_next_idx(nums, slow, direction) fast = get_next_idx(nums, get_next_idx(nums, fast, direction), direction) if slow == -1 or fast == -1: break elif slow == fast: return True slow = i while get_next_idx(nums, slow, direction) != -1: temp_slow = slow slow = get_next_idx(nums, slow, direction) nums[temp_slow] = 0 return False def get_next_idx(nums, idx, direction): if idx == -1: return -1 elif (nums[idx] > 0) != direction: return -1 next_idx = (idx + nums[idx]) % len(nums) return -1 if next_idx == idx else next_idx def main(): print(circular_array_loop_exists([1, 2, -1, 2, 2])) print(circular_array_loop_exists([2, 2, -1, 2])) print(circular_array_loop_exists([2, 1, -1, -2])) if __name__ == '__main__': main()
8b8498e424f3ba6a5662bd3a5d6401e4d2ca6e12
81adc22ee20698506397135b916903936837db3b
/examples/cuda-c++/vector_add.py
e5a70e49b2240c3b90135d9c9c037d7034622217
[ "Apache-2.0" ]
permissive
KernelTuner/kernel_tuner
6c25ca551795cc49a7754f2957de4e59aa98578c
b3ff4cdecb12655009b356e3b1840e25b1dd1421
refs/heads/master
2023-08-10T00:34:53.984541
2023-06-01T16:31:47
2023-06-01T16:31:47
54,894,320
59
6
Apache-2.0
2023-09-08T19:28:24
2016-03-28T13:32:17
Python
UTF-8
Python
false
false
904
py
#!/usr/bin/env python """This is the minimal example from the README converted to C++11""" import json import numpy from kernel_tuner import tune_kernel def tune(): kernel_string = """ template<typename T> __global__ void vector_add(T *c, T *a, T *b, int n) { auto i = blockIdx.x * block_size_x + threadIdx.x; if (i<n) { c[i] = a[i] + b[i]; } } """ size = 10000000 a = numpy.random.randn(size).astype(numpy.float32) b = numpy.random.randn(size).astype(numpy.float32) c = numpy.zeros_like(b) n = numpy.int32(size) args = [c, a, b, n] tune_params = dict() tune_params["block_size_x"] = [128+64*i for i in range(15)] result, env = tune_kernel("vector_add<float>", kernel_string, size, args, tune_params) with open("vector_add.json", 'w') as fp: json.dump(result, fp) return result if __name__ == "__main__": tune()
9316183ffc05549b868b860274aaaebaf7e4fa7d
cfe18377cf7823658f38a9ffd832a2026004fc98
/swav/vissl/vissl/models/model_helpers.py
bb4445a792adc7257124b8c269a177e1489c0275
[ "CC-BY-NC-4.0", "Apache-2.0" ]
permissive
yhn112/DeDLOC
ec26d28a0bfcdb4fc33db730e87f669adc8568ee
0dc65b6eed8b3f842303fe00601335b3b9e2d7c5
refs/heads/main
2023-07-14T06:04:03.676662
2021-07-15T11:10:32
2021-07-15T11:10:32
379,111,549
0
0
Apache-2.0
2021-06-22T01:50:47
2021-06-22T01:50:46
null
UTF-8
Python
false
false
19,952
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import math import warnings from enum import Enum from typing import Dict, List, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _ntuple from torch.utils.checkpoint import checkpoint from vissl.utils.activation_checkpointing import checkpoint_trunk from vissl.utils.misc import is_apex_available # Tuple of classes of BN layers. _bn_cls = (nn.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm) if is_apex_available(): import apex try: # try importing the optimized version directly _bn_cls = _bn_cls + (apex.parallel.optimized_sync_batchnorm.SyncBatchNorm,) except AttributeError: _bn_cls = _bn_cls + (apex.parallel.SyncBatchNorm,) def transform_model_input_data_type(model_input, model_config): """ Default model input follow RGB format. Based the model input specified, change the type. Supported types: RGB, BGR, LAB """ model_output = model_input # In case the model takes BGR input type, we convert the RGB to BGR if model_config.INPUT_TYPE == "bgr": model_output = model_input[:, [2, 1, 0], :, :] # In case of LAB image, we take only "L" channel as input. Split the data # along the channel dimension into [L, AB] and keep only L channel. if model_config.INPUT_TYPE == "lab": model_output = torch.split(model_input, [1, 2], dim=1)[0] return model_output def is_feature_extractor_model(model_config): """ If the model is a feature extractor model: - evaluation model is on - trunk is frozen - number of features specified for features extraction > 0 """ if ( model_config.FEATURE_EVAL_SETTINGS.EVAL_MODE_ON and model_config.FEATURE_EVAL_SETTINGS.FREEZE_TRUNK_ONLY and len(model_config.FEATURE_EVAL_SETTINGS.LINEAR_EVAL_FEAT_POOL_OPS_MAP) > 0 ): return True return False def get_trunk_output_feature_names(model_config): """ Get the feature names which we will use to associate the features witl. If Feature eval mode is set, we get feature names from config.FEATURE_EVAL_SETTINGS.LINEAR_EVAL_FEAT_POOL_OPS_MAP. """ feature_names = [] if is_feature_extractor_model(model_config): feat_ops_map = model_config.FEATURE_EVAL_SETTINGS.LINEAR_EVAL_FEAT_POOL_OPS_MAP feature_names = [item[0] for item in feat_ops_map] return feature_names class Wrap(nn.Module): """ Wrap a free function into a nn.Module. Can be useful to build a model block, and include activations or light tensor alterations """ def __init__(self, function): super().__init__() self.function = function def forward(self, x): return self.function(x) class SyncBNTypes(str, Enum): """ Supported SyncBN types """ apex = "apex" pytorch = "pytorch" def convert_sync_bn(config, model): """ Convert the BatchNorm layers in the model to the SyncBatchNorm layers. For SyncBatchNorm, we support two sources: Apex and PyTorch. The optimized SyncBN kernels provided by apex run faster. Args: config (AttrDict): configuration file model: Pytorch model whose BatchNorm layers should be converted to SyncBN layers. NOTE: Since SyncBatchNorm layer synchronize the BN stats across machines, using the syncBN layer can be slow. In order to speed up training while using syncBN, we recommend using process_groups which are very well supported for Apex. To set the process groups, set SYNC_BN_CONFIG.GROUP_SIZE following below: 1) if group_size=-1 -> use the VISSL default setting. We synchronize within a machine and hence will set group_size=num_gpus per node. This gives the best speedup. 2) if group_size>0 -> will set group_size=value set by user. 3) if group_size=0 -> no groups are created and process_group=None. This means global sync is done. """ sync_bn_config = config.MODEL.SYNC_BN_CONFIG def get_group_size(): world_size = config.DISTRIBUTED.NUM_PROC_PER_NODE * config.DISTRIBUTED.NUM_NODES if sync_bn_config["GROUP_SIZE"] > 0: # if the user specifies group_size to create, we use that. # we also make sure additionally that the group size doesn't exceed # the world_size. This is beneficial to handle especially in case # of 1 node training where num_gpu <= 8 group_size = min(world_size, sync_bn_config["GROUP_SIZE"]) elif sync_bn_config["GROUP_SIZE"] == 0: # group_size=0 is considered as world_size and no process group is created. group_size = None else: # by default, we set it to number of gpus in a node. Within gpu, the # interconnect is fast and syncBN is cheap. group_size = config.DISTRIBUTED.NUM_PROC_PER_NODE logging.info(f"Using SyncBN group size: {group_size}") return group_size def to_apex_syncbn(group_size): logging.info("Converting BN layers to Apex SyncBN") if group_size is None: process_group = None logging.info("Not creating process_group for Apex SyncBN...") else: process_group = apex.parallel.create_syncbn_process_group( group_size=group_size ) return apex.parallel.convert_syncbn_model(model, process_group=process_group) def to_pytorch_syncbn(group_size): logging.info("Converting BN layers to PyTorch SyncBN") if group_size is None: process_group = None logging.info("Not creating process_group for PyTorch SyncBN...") else: logging.warning( "Process groups not supported with PyTorch SyncBN currently. " "Traning will be slow. Please consider installing Apex for SyncBN." ) process_group = None # TODO (prigoyal): process groups don't work well with pytorch. # import os # num_gpus_per_node = config.DISTRIBUTED.NUM_PROC_PER_NODE # node_id = int(os.environ["RANK"]) // num_gpus_per_node # assert ( # group_size == num_gpus_per_node # ), "Use group_size=num_gpus per node as interconnect is cheap in a machine" # process_ids = list( # range( # node_id * num_gpus_per_node, # (node_id * num_gpus_per_node) + group_size, # ) # ) # logging.info(f"PyTorch SyncBN Node: {node_id} process_ids: {process_ids}") # process_group = torch.distributed.new_group(process_ids) return nn.SyncBatchNorm.convert_sync_batchnorm( model, process_group=process_group ) group_size = get_group_size() # Apply the correct transform, make sure that any other setting raises an error return {SyncBNTypes.apex: to_apex_syncbn, SyncBNTypes.pytorch: to_pytorch_syncbn}[ sync_bn_config["SYNC_BN_TYPE"] ](group_size) class Flatten(nn.Module): """ Flatten module attached in the model. It basically flattens the input tensor. """ def __init__(self, dim=-1): super(Flatten, self).__init__() self.dim = dim def forward(self, feat): """ flatten the input feat """ return torch.flatten(feat, start_dim=self.dim) def flops(self, x): """ number of floating point operations performed. 0 for this module. """ return 0 class Identity(nn.Module): """ A helper module that outputs the input as is """ def __init__(self, args=None): super().__init__() def forward(self, x): """ Return the input as the output """ return x class LayerNorm2d(nn.GroupNorm): """ Use GroupNorm to construct LayerNorm as pytorch LayerNorm2d requires specifying input_shape explicitly which is inconvenient. Set num_groups=1 to convert GroupNorm to LayerNorm. """ def __init__(self, num_channels, eps=1e-5, affine=True): super(LayerNorm2d, self).__init__( num_groups=1, num_channels=num_channels, eps=eps, affine=affine ) class RESNET_NORM_LAYER(str, Enum): """ Types of Norms supported in ResNe(X)t trainings. can be easily set and modified from the config file. """ BatchNorm = "BatchNorm" LayerNorm = "LayerNorm" GroupNorm = "GroupNorm" def _get_norm(trunk_config): """ return the normalization layer to use in the model based on the layer name """ layer_name = trunk_config.NORM n_groups = trunk_config.GROUPNORM_GROUPS def group_norm(num_channels): return nn.GroupNorm(num_groups=n_groups, num_channels=num_channels) return { RESNET_NORM_LAYER.BatchNorm: nn.BatchNorm2d, RESNET_NORM_LAYER.LayerNorm: LayerNorm2d, RESNET_NORM_LAYER.GroupNorm: group_norm, }[layer_name] def parse_out_keys_arg( out_feat_keys: List[str], all_feat_names: List[str] ) -> Tuple[List[str], int]: """ Checks if all out_feature_keys are mapped to a layer in the model. Returns the last layer to forward pass through for efficiency. Allow duplicate features also to be evaluated. Adapted from (https://github.com/gidariss/FeatureLearningRotNet). """ # By default return the features of the last layer / module. if out_feat_keys is None or (len(out_feat_keys) == 0): out_feat_keys = [all_feat_names[-1]] if len(out_feat_keys) == 0: raise ValueError("Empty list of output feature keys.") for _, key in enumerate(out_feat_keys): if key not in all_feat_names: raise ValueError( f"Feature with name {key} does not exist. " f"Existing features: {all_feat_names}." ) # Find the highest output feature in `out_feat_keys max_out_feat = max(all_feat_names.index(key) for key in out_feat_keys) return out_feat_keys, max_out_feat def get_trunk_forward_outputs_module_list( feat: torch.Tensor, out_feat_keys: List[str], feature_blocks: nn.ModuleList, all_feat_names: List[str] = None, ) -> List[torch.Tensor]: """ Args: feat: model input. out_feat_keys: a list/tuple with the feature names of the features that the function should return. By default the last feature of the network is returned. feature_blocks: list of feature blocks in the model feature_mapping: name of the layers in the model Returns: out_feats: a list with the asked output features placed in the same order as in `out_feat_keys`. """ out_feat_keys, max_out_feat = parse_out_keys_arg(out_feat_keys, all_feat_names) out_feats = [None] * len(out_feat_keys) for f in range(max_out_feat + 1): feat = feature_blocks[f](feat) key = all_feat_names[f] if key in out_feat_keys: out_feats[out_feat_keys.index(key)] = feat return out_feats def get_trunk_forward_outputs( feat: torch.Tensor, out_feat_keys: List[str], feature_blocks: nn.ModuleDict, feature_mapping: Dict[str, str] = None, use_checkpointing: bool = True, checkpointing_splits: int = 2, ) -> List[torch.Tensor]: """ Args: feat: model input. out_feat_keys: a list/tuple with the feature names of the features that the function should return. By default the last feature of the network is returned. feature_blocks: ModuleDict containing feature blocks in the model feature_mapping: an optional correspondence table in between the requested feature names and the model's. Returns: out_feats: a list with the asked output features placed in the same order as in `out_feat_keys`. """ # Sanitize inputs if feature_mapping is not None: out_feat_keys = [feature_mapping[f] for f in out_feat_keys] out_feat_keys, max_out_feat = parse_out_keys_arg( out_feat_keys, list(feature_blocks.keys()) ) # Forward pass over the trunk unique_out_feats = {} unique_out_feat_keys = list(set(out_feat_keys)) # FIXME: Ideally this should only be done once at construction time if use_checkpointing: feature_blocks = checkpoint_trunk( feature_blocks, unique_out_feat_keys, checkpointing_splits ) # If feat is the first input to the network, it doesn't have requires_grad, # which will make checkpoint's backward function not being called. So we need # to set it to true here. feat.requires_grad = True # Go through the blocks, and save the features as we go # NOTE: we are not doing several forward passes but instead just checking # whether the feature should is requested to be returned. for i, (feature_name, feature_block) in enumerate(feature_blocks.items()): # The last chunk has to be non-volatile if use_checkpointing and i < len(feature_blocks) - 1: # Un-freeze the running stats in any BN layer for m in filter(lambda x: isinstance(x, _bn_cls), feature_block.modules()): m.track_running_stats = m.training feat = checkpoint(feature_block, feat) # Freeze the running stats in any BN layer # the checkpointing process will have to do another FW pass for m in filter(lambda x: isinstance(x, _bn_cls), feature_block.modules()): m.track_running_stats = False else: feat = feature_block(feat) # This feature is requested, store. If the same feature is requested several # times, we return the feature several times. if feature_name in unique_out_feat_keys: unique_out_feats[feature_name] = feat # Early exit if all the features have been collected if i == max_out_feat and not use_checkpointing: break # now return the features as requested by the user. If there are no duplicate keys, # return as is. if len(unique_out_feat_keys) == len(out_feat_keys): return list(unique_out_feats.values()) output_feats = [] for key_name in out_feat_keys: output_feats.append(unique_out_feats[key_name]) return output_feats def lecun_normal_init(tensor, fan_in): trunc_normal_(tensor, std=math.sqrt(1 / fan_in)) # Contains code from https://github.com/rwightman/pytorch-image-models # and https://github.com/facebookresearch/deit/blob/main/models.py, modified by # Matthew # Leavitt ([email protected], [email protected]) and Vedanuj # Goswami ([email protected]). # trunc_normal_ and _no_grad_trunc_normal_ from: # https://github.com/rwightman/pytorch-image-models/blob/678ba4e0a2c0b52c5e7b2ec0ba689399840282ee/timm/models/layers/weight_init.py # NOQA def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): r"""Supposedly should be available in PyTorch soon. Replace when available. Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor # Contains code from https://github.com/rwightman/pytorch-image-models # and https://github.com/facebookresearch/deit/blob/main/models.py, modified by # Matthew # Leavitt ([email protected], [email protected]) and Vedanuj # Goswami ([email protected]). # Standardized convolution (Conv2d with Weight Standardization), as used in # the paper, Big Transfer (BiT): General Visual Representation Learning - # https://arxiv.org/abs/1912.11370 class StandardizedConv2d(nn.Conv2d): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, ): super(StandardizedConv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, ) def forward(self, x): weight = self.weight weight_mean = ( weight.mean(dim=1, keepdim=True) .mean(dim=2, keepdim=True) .mean(dim=3, keepdim=True) ) weight = weight - weight_mean std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5 weight = weight / std.expand_as(weight) return F.conv2d( x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups ) # drop_path and DropPath modified from # https://github.com/facebookresearch/deit/blob/main/models.py def drop_path(x, drop_prob: float = 0.0, training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob # work with diff dim tensors, not just 2D ConvNets shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = _ntuple
6496385a65adfdf5d6dd2990cf9ca6dc390ce0a4
e3ec5f1898ae491fa0afcdcc154fb306fd694f83
/src/components/opPicker/onFilterTextEvent.py
4e4fb7d55e5df26b7e2595dd237d87b347bae0e8
[ "CC-BY-4.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
phoebezhung/raytk
42397559a76a9ba39308ac03344b4446f64ea04d
b91483ce88b2956d7b23717b11e223d332ca8395
refs/heads/master
2023-08-27T05:20:38.062360
2021-10-21T04:33:18
2021-10-21T04:33:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
# noinspection PyUnreachableCode if False: # noinspection PyUnresolvedReferences from _stubs import * from .opPicker import OpPicker ext.opPicker = OpPicker(COMP()) def onValueChange(panelValue: 'PanelValue', prev): ext.opPicker.setFilterText(panelValue.val)
5d7ecd12aac912be773a379df1d6f109317b84c0
de392462a549be77e5b3372fbd9ea6d7556f0282
/operations_9001/migrations/0011_auto_20200806_1350.py
5305a4a2d7c547e06c938388a8dbfece7f2c931d
[]
no_license
amutebe/AMMS_General
2830770b276e995eca97e37f50a7c51f482b2405
57b9b85ea2bdd272b44c59f222da8202d3173382
refs/heads/main
2023-07-17T02:06:36.862081
2021-08-28T19:07:17
2021-08-28T19:07:17
400,064,408
0
0
null
null
null
null
UTF-8
Python
false
false
2,147
py
# Generated by Django 3.0.2 on 2020-08-06 10:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('operations_9001', '0010_auto_20200806_1252'), ] operations = [ migrations.AlterField( model_name='maintenance', name='maintenance_number', field=models.CharField(default='TEGA-M-06082020125', max_length=200, primary_key=True, serialize=False, verbose_name='Maintenance no.:'), ), migrations.AlterField( model_name='mod9001_calibration', name='calibration_number', field=models.CharField(default='TEGA-C-06082020249', max_length=200, primary_key=True, serialize=False, verbose_name='Calibration no.:'), ), migrations.AlterField( model_name='mod9001_document_manager', name='document_number', field=models.CharField(default='TEGA-Q-06082020119', max_length=200, primary_key=True, serialize=False, verbose_name='Document no.:'), ), migrations.AlterField( model_name='mod9001_processtable', name='process_number', field=models.CharField(default='Comp-Pr-06082020218', max_length=200, primary_key=True, serialize=False, verbose_name='Process ID:'), ), migrations.AlterField( model_name='mod9001_qmsplanner', name='planner_number', field=models.CharField(default='Comp-QP-06082020151', max_length=200, primary_key=True, serialize=False, verbose_name='Planner no.:'), ), migrations.AlterField( model_name='mod9001_trainingplanner', name='plan_number', field=models.CharField(default='Comp-TP-06082020133', max_length=200, primary_key=True, serialize=False, verbose_name='Plan no.:'), ), migrations.AlterField( model_name='mod9001_trainingregister', name='training_number', field=models.CharField(default='Comp-TR-06082020131', max_length=200, primary_key=True, serialize=False, verbose_name='Training no.:'), ), ]
01f324c6bcbb1c9a274932a8fafb8cbc266973f2
e384f5467d8bcfd70845997bcbd68d950e874a61
/example/python/mesh/mesh_007_cube_color_per_triangle_Tex1D/cube.py
f445866308c763ea6d3dbaf04fc7e72b93a6e0b5
[]
no_license
Rabbid76/graphics-snippets
ee642f1ed9ceafc6d320e467d3a084d2446d22c2
fa187afeabb9630bc1d988304fb5787e95a91385
refs/heads/master
2023-08-04T04:32:06.884318
2023-07-21T09:15:43
2023-07-21T09:15:43
109,126,544
177
12
null
2023-04-11T20:05:52
2017-11-01T12:05:56
C++
UTF-8
Python
false
false
3,947
py
import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir, os.pardir)) os.chdir(os.path.dirname(os.path.abspath(__file__))) import numpy # PyOpenGL import from OpenGL.GL import * from OpenGL.GLUT import * from OpenGL.GLU import * # MyLibOGL import from MyLibOGL.math import mat from MyLibOGL.math import cam from MyLibOGL.ogl import shader from MyLibOGL.ogl import vertex from MyLibOGL.ogl import uniform from MyLibOGL.glut import window class MyWindow(window.CameraWindow): def __init__( self, cx, cy, multisample=True ): super().__init__(cx, cy, multisample) def _InitCamera_(self): camera = super()._InitCamera_() #camera.fov_y = 120 camera.pos = (0, -3, 0) return camera # draw event def OnDraw(self): # set up projection matrix prjMat = self.Perspective() # set up view matrix viewMat = self.LookAt() # set up attributes and shader program glEnable( GL_DEPTH_TEST ) glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ) progDraw.Use() modelMat = mat.IdentityMat44() modelMat = self.AutoModelMatrix() #modelMat = mat.RotateX( modelMat, self.CalcAng( 13.0 ) ) #modelMat = mat.RotateY( modelMat, self.CalcAng( 17.0 ) ) progDraw.SetUniforms( { b"u_projectionMat44" : self.Perspective(), b"u_viewMat44" : self.LookAt(), b"u_modelMat44" : modelMat, b"u_lightDir" : [-1.0, -0.5, -2.0], b"u_ambient" : 0.2, b"u_diffuse" : 0.8, b"u_specular" : 0.8, b"u_shininess" : 10.0 } ) # draw object cubeVAO.Draw() def AddToBuffer( buffer, data, count=1 ): for inx_c in range(0, count): for inx_s in range(0, len(data)): buffer.append( data[inx_s] ) # create window wnd = MyWindow( 800, 600, True ) # define cube vertex array opject cubePts = [ (-1.0, -1.0, 1.0), ( 1.0, -1.0, 1.0), ( 1.0, 1.0, 1.0), (-1.0, 1.0, 1.0), (-1.0, -1.0, -1.0), ( 1.0, -1.0, -1.0), ( 1.0, 1.0, -1.0), (-1.0, 1.0, -1.0) ] cubeCol = [ [1.0, 0.0, 0.0, 1.0], [1.0, 0.5, 0.0, 1.0], [1.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0] ] cubeHlpInx = [ 0, 1, 2, 3, 1, 5, 6, 2, 5, 4, 7, 6, 4, 0, 3, 7, 3, 2, 6, 7, 1, 0, 4, 5 ] cubePosData = [] for inx in cubeHlpInx: AddToBuffer( cubePosData, cubePts[inx] ) cubeNVData = [] for inx_nv in range(len(cubeHlpInx) // 4): nv = [0.0, 0.0, 0.0] for inx_p in range(4): for inx_s in range(0, 3): nv[inx_s] += cubePts[ cubeHlpInx[inx_nv*4 + inx_p] ][inx_s] AddToBuffer( cubeNVData, nv, 4 ) cubeColFaceData = [] for inx_col in range(6): for inx_c in range(0, 4): cubeColFaceData.append( cubeCol[inx_col][inx_c] ) for inx_c in range(0, 4): cubeColFaceData.append( cubeCol[inx_col][inx_c] ) cubeIndices = [] for inx in range(6): for inx_s in [0, 1, 2, 0, 2, 3]: cubeIndices.append( inx * 4 + inx_s ) cubeVAO = vertex.VAObject( [ (3, cubePosData), (3, cubeNVData) ], cubeIndices ) # 1D texture color_texture_unit = 1 glActiveTexture( GL_TEXTURE0+color_texture_unit ) color_texture = glGenTextures( 1 ) glBindTexture( GL_TEXTURE_1D, color_texture ) glTexImage1D( GL_TEXTURE_1D, 0, GL_RGBA, len(cubeColFaceData) // 4, 0, GL_RGBA, GL_FLOAT, numpy.matrix(cubeColFaceData, dtype=numpy.float32)) glTexParameteri( GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ) glTexParameteri( GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST ) glTexParameteri( GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT ) glActiveTexture( GL_TEXTURE0 ) # load, compile and link shader progDraw = shader.ShaderProgram( [ ('resource/shader/blinn_phong.vert', GL_VERTEX_SHADER), ('resource/shader/blinn_phong.frag', GL_FRAGMENT_SHADER) ] ) # start main loop wnd.Run()
a75c23d732db2e10115e15e929fd78eef4a1c8ab
26c02b95916f8766a3c0c10d8c8552982b110332
/auto_process_ngs/qc/utils.py
7617de2f9d99aca028b7d5f4084464114a5818bf
[ "AFL-3.0", "LicenseRef-scancode-unknown-license-reference", "AFL-2.1" ]
permissive
fls-bioinformatics-core/auto_process_ngs
410a4226375b76ede239b9564527199a8fdc734a
d3da61b858560d87ff070c34d906ec12717bd81d
refs/heads/devel
2023-08-17T11:59:09.603274
2023-08-11T11:47:57
2023-08-11T11:47:57
40,700,431
8
7
NOASSERTION
2023-08-24T10:12:47
2015-08-14T06:53:01
Python
UTF-8
Python
false
false
19,605
py
#!/usr/bin/env python # # utils: utility classes and functions for QC # Copyright (C) University of Manchester 2018-2022 Peter Briggs # """ Provides utility classes and functions for analysis project QC. Provides the following functions: - verify_qc: verify the QC run for a project - report_qc: generate report for the QC run for a project - get_bam_basename: return the BAM file basename from a Fastq filename - get_seq_data_samples: identify samples with biological (sequencing) data - set_cell_count_for_project: sets total number of cells for a project """ ####################################################################### # Imports ####################################################################### import os import logging from ..analysis import AnalysisFastq from ..analysis import AnalysisProject from ..command import Command from ..metadata import AnalysisProjectQCDirInfo from ..conda import CondaWrapper from ..conda import CondaWrapperError from ..conda import make_conda_env_name from ..settings import Settings from ..simple_scheduler import SchedulerJob from ..tenx.cellplex import CellrangerMultiConfigCsv from .cellranger import CellrangerCount from .cellranger import CellrangerMulti # Module-specific logger logger = logging.getLogger(__name__) ####################################################################### # Functions ####################################################################### def verify_qc(project,qc_dir=None,fastq_dir=None,qc_protocol=None, runner=None,log_dir=None): """ Verify the QC run for a project Arguments: project (AnalysisProject): analysis project to verify the QC for qc_dir (str): optional, specify the subdir with the QC outputs being verified fastq_dir (str): optional, specify a non-default directory with Fastq files being verified qc_protocol (str): optional, QC protocol to verify against runner (JobRunner): optional, job runner to use for running the verification log_dir (str): optional, specify a directory to write logs to Returns: Boolean: True if QC passes verification, otherwise False. """ # Sort out runners if runner is None: runner = Settings().general.default_runner # Construct command for QC verification verify_cmd = Command( "reportqc.py", "--verify") if qc_protocol is not None: verify_cmd.add_args("--protocol",qc_protocol) if qc_dir is not None: verify_cmd.add_args("--qc_dir",qc_dir) if fastq_dir is not None: verify_cmd.add_args("--fastq_dir",fastq_dir) verify_cmd.add_args(project.dirn) # Run the command verify = SchedulerJob(runner, verify_cmd.command_line, name="verify_qc.%s" % project.name, working_dir=project.dirn, log_dir=log_dir) verify.start() try: verify.wait() except KeyboardInterrupt as ex: logger.warning("Keyboard interrupt, terminating QC verification") verify.terminate() raise ex # Return boolean based on the exit code return (verify.exit_code == 0) def report_qc(project,qc_dir=None,fastq_dir=None,qc_protocol=None, report_html=None,zip_outputs=True,multiqc=False, force=False,runner=None,log_dir=None, suppress_warning=False): """ Generate report for the QC run for a project Arguments: project (AnalysisProject): analysis project to report the QC for qc_dir (str): optional, specify the subdir with the QC outputs being reported fastq_dir (str): optional, specify a non-default directory with Fastq files being verified qc_protocol (str): optional, QC protocol to verify against report_html (str): optional, path to the name of the output QC report zip_outputs (bool): if True then also generate ZIP archive with the report and QC outputs multiqc (bool): if True then also generate MultiQC report force (bool): if True then force generation of QC report even if verification fails runner (JobRunner): optional, job runner to use for running the reporting log_dir (str): optional, specify a directory to write logs to suppress_warning (bool): if True then don't show the warning message even when there are missing metrics (default: show the warning if there are missing metrics) Returns: Integer: exit code from reporting job (zero indicates success, non-zero indicates a problem). """ # Sort out runners if runner is None: runner = Settings().general.default_runner # Basename for the outputs if qc_dir is None: qc_base = os.path.basename(project.qc_dir) else: qc_base = os.path.basename(qc_dir) # Report HTML file name if report_html is None: out_file = '%s_report.html' % qc_base else: out_file = report_html if not os.path.isabs(out_file): out_file = os.path.join(project.dirn,out_file) # Report title if project.info.run is None: title = "%s" % project.name else: title = "%s/%s" % (project.info.run, project.name) if fastq_dir is not None: title = "%s (%s)" % (title,fastq_dir) title = "%s: QC report" % title # Construct command for reporting report_cmd = Command( "reportqc.py", "--filename",out_file, "--title",title) if qc_protocol is not None: report_cmd.add_args("--protocol",qc_protocol) if qc_dir is not None: report_cmd.add_args("--qc_dir",qc_dir) if fastq_dir is not None: report_cmd.add_args("--fastq_dir",fastq_dir) if multiqc: report_cmd.add_args("--multiqc") if zip_outputs: report_cmd.add_args("--zip") if force: report_cmd.add_args("--force") if suppress_warning: report_cmd.add_args("--suppress-warning") report_cmd.add_args(project.dirn) # Check if environment modules are defined module_load_cmds = None if Settings().modulefiles['report_qc']: print("Attempting to acquire environment modules for reporting") module_load_cmds = [] try: modulepath = os.environ['MODULEPATH'] if modulepath: module_load_cmds.append("export MODULEPATH=%s" % modulepath) except KeyError: pass try: envmodules = Settings().modulefiles['report_qc'].split(',') for envmodule in envmodules: module_load_cmds.append("module load %s" % envmodule) except Exception as ex: logger.warning("couldn't acquire env modules?: %s" % ex) module_load_cmds = '\n'.join(module_load_cmds) # Check if conda environments are enabled conda_activate_cmd = None if Settings().conda.enable_conda: print("Attempting to acquire conda environment for reporting") # Get location for conda environments conda_env_dir = Settings().conda.env_dir # Set up conda wrapper conda = CondaWrapper(env_dir=conda_env_dir) # Get environment for QC reporting report_qc_conda_pkgs = ("multiqc=1.8", "pillow", "python=3.8") env_name = make_conda_env_name(*report_qc_conda_pkgs) try: conda.create_env(env_name,*report_qc_conda_pkgs) conda_env = os.path.join(conda_env_dir,env_name) # Script fragment to activate the environment conda_activate_cmd = conda.activate_env_cmd(conda_env) except CondaWrapperError as ex: # Failed to acquire the environment logger.warning("failed to acquire conda environment '%s': %s" % (env_name,ex)) # Wrap the command in a script scripts_dir = os.path.join(project.dirn,"ScriptCode") if not os.path.isdir(scripts_dir): logger.warning("no ScriptCode directory found in '%s'" % project.name) scripts_dir = project.dirn report_script = os.path.join(scripts_dir, "report_qc.%s.sh" % project.name) prologue = [] if module_load_cmds: prologue.append(module_load_cmds) if conda_activate_cmd: prologue.append(str(conda_activate_cmd)) if prologue: prologue = '\n'.join(prologue) else: prologue = None report_cmd.make_wrapper_script(filen=report_script, prologue=prologue, quote_spaces=True) # Locate log dir if log_dir is None: log_dir = os.path.join(project.dirn,"logs") if not os.path.isdir(log_dir): log_dir = None # Run the command report = SchedulerJob(runner, Command('/bin/bash','-l',report_script).command_line, name="report_qc.%s" % project.name, working_dir=project.dirn, log_dir=log_dir) report.start() try: report.wait() except KeyboardInterrupt as ex: logger.warning("Keyboard interrupt, terminating QC reporting") report.terminate() raise ex # Return the exit code return report.exit_code def get_bam_basename(fastq,fastq_attrs=None): """ Return basename for BAM file from Fastq filename Typically this will be the Fastq basename with the read ID removed, for example the Fastq filename 'SM1_S1_L001_R1_001.fastq.gz' will result in the BAM basename of 'SM1_S1_L001_001'. Arguments: fastq (str): Fastq filename; can include leading path and extensions (both will be ignored) fastq_attrs (BaseFastqAttrs): class for extracting data from Fastq names (defaults to 'AnalysisFastq') Returns: String: basename for BAM file. """ if fastq_attrs is None: fastq_attrs = AnalysisFastq bam_basename = fastq_attrs(fastq) bam_basename.read_number = None return str(bam_basename) def get_seq_data_samples(project_dir,fastq_attrs=None): """ Identify samples with biological (sequencing) data Arguments: project_dir (str): path to the project directory fastq_attrs (BaseFastqAttrs): class for extracting data from Fastq names (defaults to 'AnalysisFastq') Returns: List: list with subset of samples with biological data """ # Set up if fastq_attrs is None: fastq_attrs = AnalysisFastq project = AnalysisProject(project_dir, fastq_attrs=fastq_attrs) # Initial sample list samples = sorted([s.name for s in project.samples]) # If biological samples explicitly defined in # project metadata then use those if project.info.biological_samples: bio_samples = [] for s in [str(s).strip() for s in project.info.biological_samples.split(',')]: if s not in samples: logger.warning("Sample '%s' defined as biological data " "but no sample found with that name?" % s) else: bio_samples.append(s) return bio_samples # 10x Genomics CellPlex single_cell_platform = project.info.single_cell_platform if single_cell_platform: if single_cell_platform.startswith("10xGenomics Chromium 3'") and \ project.info.library_type == "CellPlex": # Check for config file config_file = os.path.join(project.dirn, "10x_multi_config.csv") if os.path.exists(config_file): config_csv = CellrangerMultiConfigCsv(config_file) samples = sorted([s for s in config_csv.gex_libraries if s in samples]) return samples def set_cell_count_for_project(project_dir,qc_dir=None, source="count"): """ Set the total number of cells for a project Depending on the specified 'source', sums the number of cells for each sample in a project as determined from either 'cellranger* count' or 'cellranger multi'. Depending the 10x Genomics package and analysis type the cell count for individual samples is extracted from the 'metrics_summary.csv' file for scRNA-seq (i.e. 'cellranger count' or 'cellranger multi'), or from the 'summary.csv' file for scATAC (ie. 'cellranger-atac count'). The final count is written to the 'number_of_cells' metadata item for the project. Arguments: project_dir (str): path to the project directory qc_dir (str): path to QC directory (if not the default QC directory for the project) source (str): either 'count' or 'multi' (default is 'count') Returns: Integer: exit code, non-zero values indicate problems were encountered. """ # Set up basic info project = AnalysisProject(project_dir) if qc_dir is None: qc_dir = project.qc_dir qc_dir = os.path.abspath(qc_dir) print("QC dir: %s" % qc_dir) number_of_cells = None # Determine which 10x pipeline was used pipeline = None single_cell_platform = project.info.single_cell_platform if single_cell_platform: if single_cell_platform.startswith("10xGenomics Chromium 3'"): pipeline = "cellranger" elif single_cell_platform == "10xGenomics Single Cell ATAC": pipeline = "cellranger-atac" elif single_cell_platform == "10xGenomics Single Cell Multiome": pipeline = "cellranger-arc" if not pipeline: raise NotImplementedError("Not implemented for platform '%s'" % single_cell_platform) # Fetch information on version and reference data cellranger_refdata = None cellranger_version = None qc_info_file = os.path.join(qc_dir,"qc.info") if os.path.exists(qc_info_file): qc_info = AnalysisProjectQCDirInfo(filen=qc_info_file) try: cellranger_refdata = qc_info['cellranger_refdata'] except KeyError: pass try: cellranger_version = qc_info['cellranger_version'] except KeyError: pass else: print("%s: not found" % qc_info_file) # Determine whether we're handling output from 'multi' # or from 'count' if source == "multi": print("Looking for '%s multi' outputs" % pipeline) if not os.path.exists(os.path.join(qc_dir,"cellranger_multi")): logger.warning("Unable to set cell count: no data found") return # Handle outputs from 'multi' number_of_cells = 0 try: multi_outs = CellrangerMulti( os.path.join(qc_dir, "cellranger_multi", cellranger_version, os.path.basename( cellranger_refdata)), cellranger_exe=pipeline) if multi_outs.sample_names: for sample in multi_outs.sample_names: print("- %s" % sample) try: ncells = multi_outs.metrics(sample).cells print(" %d cells" % ncells) number_of_cells += ncells except Exception as ex: raise Exception("Failed to add cell count for sample " "'%s': %s" % (sample,ex)) else: raise Exception("No samples found under %s" % os.path.join(qc_dir,"cellranger_multi")) except Exception as ex: number_of_cells = None logger.warning("Unable to set cell count from data in " "%s: %s" % (os.path.join(qc_dir,"cellranger_multi"),ex)) elif source == "count": print("Looking for '%s count' outputs" % pipeline) if not os.path.exists(os.path.join(qc_dir,"cellranger_count")): logger.warning("Unable to set cell count: no data found") return # Handle outputs from 'count' # Determine possible locations for outputs count_dirs = [] # New-style with 'version' and 'reference' subdirectories if cellranger_version and cellranger_refdata: count_dirs.append(os.path.join(qc_dir, "cellranger_count", cellranger_version, os.path.basename( cellranger_refdata))) # Old-style without additional subdirectories count_dirs.append(os.path.join(qc_dir, "cellranger_count")) # Check each putative output location in turn for count_dir in count_dirs: print("Examining %s" % count_dir) # Check that the directory exists if os.path.exists(count_dir): number_of_cells = 0 try: # Loop over samples and collect cell numbers for # each sample for sample in project.samples: print("- %s" % sample) ncells = None sample_dir = os.path.join(count_dir, sample.name) sample_outs = CellrangerCount(sample_dir, cellranger_exe=pipeline) for metric in ('Estimated Number of Cells', 'Estimated number of cells', 'annotated_cells',): # Try to fetch metric for cell count try: ncells = sample_outs.metrics.fetch(metric) break except KeyError: pass if ncells is None: number_of_cells = None raise Exception("Failed to add cell count " "for sample '%s'" % sample.name) else: print(" %d cells" % ncells) number_of_cells += ncells # Extracted cell numbers so break out break except Exception as ex: logger.warning("Unable to get cell counts from '%s': %s" % (count_dir,ex)) else: # No known outputs to get cell counts from raise Exception("Unknown source type: '%s'" % source) if number_of_cells is not None: # Report print("Total number of cells: %d" % number_of_cells) # Store in the project metadata project.info['number_of_cells'] = number_of_cells project.info.save() return 0 else: # Cell count wasn't set return 1
cb3b99330dec69408592872eba11b0a5f54912fe
e82d49a32b843d02019fe770824d10bbdfc16c1b
/Misc/args.py
219c767f303ffbf718eb0d407394684e9b33f549
[]
no_license
deesaw/PythonD-005
142bfdfd6515aa4d570509cab5e6b6008ccae999
65b7423b5251b12d06cd64a5135dd0afabde60a1
refs/heads/master
2023-03-10T02:51:05.967446
2021-03-02T14:09:33
2021-03-02T14:09:33
343,795,803
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
#This program adds two numbers given on the command line. #At the OS command prompt call this program as follows #args.py 3 4 #It should return 7 ######################################## import sys print ("You have entered ",len(sys.argv)-1," arguments") print (sys.argv[0]) sum=0 for x in sys.argv[1:]: sum=sum+int(x) print (sum) ############################################ #run it as below on windows #c:\python27\python args.py 3 4
598e7e1951f92af159f2e76bc02bd394360df3cd
be0a3aa7b83b87c5d2c257b538545bdded39c051
/Chatbot_Web/impl/view/sp_view.py
48c5784591afdbd8ef823393a0b3a239e1eeeb6b
[ "Apache-2.0" ]
permissive
water123li/Chatbot_CN
480e3bc6d6c0d8b6b0823452556acef14df1c2c3
e63808030c6cc516020075cdcd0c332120a998fc
refs/heads/master
2022-01-25T10:34:34.726243
2019-06-13T10:44:44
2019-06-13T10:44:44
192,504,292
1
0
Apache-2.0
2019-06-18T09:01:55
2019-06-18T09:01:55
null
UTF-8
Python
false
false
557
py
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: sp_view.py Description : 语义分析视图跳转 Author : charl date: 2018/11/2 ------------------------------------------------- Change Activity: 2018/11/2: ------------------------------------------------- """ from django.shortcuts import render def sp_view(request): # index页面需要一开始就加载的内容写在这里 context = {} return render(request, 'semantic_parsing/semantic_parsing.html', context)
0719c05250e74207d69b6469b6281bd629a2d5d8
8f1996c1b5a0211474c7fa287be7dc20a517f5f0
/hail/python/hail/vds/combiner/__init__.py
66f14a1f2905d37375d28189b406329ce94c335f
[ "MIT" ]
permissive
johnc1231/hail
9568d6effe05e68dcc7bf398cb32df11bec061be
3dcaa0e31c297e8452ebfcbeda5db859cd3f6dc7
refs/heads/main
2022-04-27T10:51:09.554544
2022-02-08T20:05:49
2022-02-08T20:05:49
78,463,138
0
0
MIT
2022-03-01T15:55:25
2017-01-09T19:52:45
Python
UTF-8
Python
false
false
238
py
from .combine import transform_gvcf, combine_variant_datasets from .variant_dataset_combiner import new_combiner, load_combiner __all__ = [ 'combine_variant_datasets', 'transform_gvcf', 'new_combiner', 'load_combiner', ]
e76ae7afc9085bd4469750939c331cf04a22eae6
61ff94d2987b3bc95f82c5a58897f50d1efa1db8
/hive/db/adapter.py
88c60225e4070ae7cd7f3e645bf073894c30e7e3
[ "MIT" ]
permissive
arpwv/hivemind
ee77c9805731fda2bb95e1127a56152fe53b707a
a87e5578f9020be02c867021a8acdfff41f06777
refs/heads/master
2021-01-24T03:43:46.507207
2018-02-23T22:18:56
2018-02-23T22:18:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,292
py
import logging import collections from funcy.seqs import first import sqlalchemy from sqlalchemy import text from hive.conf import Conf from hive.db.query_stats import QueryStats logger = logging.getLogger(__name__) class Db: _instance = None @classmethod def instance(cls): if not cls._instance: cls._instance = Db() return cls._instance def __init__(self): self._conn = None self._trx_active = False def conn(self): if not self._conn: self._conn = Db.create_engine(echo=False).connect() # It seems as though sqlalchemy tries to take over transactions # and handle them itself; seems to issue a START TRANSACTION on # connect, which makes postgres complain when we start our own: # > WARNING: there is already a transaction in progress # TODO: handle this behavior properly. In the meantime: self._conn.execute(text("COMMIT")) return self._conn @staticmethod def create_engine(echo=False): engine = sqlalchemy.create_engine( Conf.get('database_url'), isolation_level="READ UNCOMMITTED", # only works in mysql pool_recycle=3600, echo=echo) return engine def is_trx_active(self): return self._trx_active # any non-SELECT queries def query(self, sql, **kwargs): # if prepared tuple, unpack if isinstance(sql, tuple): assert not kwargs kwargs = sql[1] sql = sql[0] assert isinstance(sql, str) assert isinstance(kwargs, dict) # this method is reserved for anything but SELECT assert self._is_write_query(sql), sql return self._query(sql, **kwargs) # SELECT n*m def query_all(self, sql, **kwargs): res = self._query(sql, **kwargs) return res.fetchall() # SELECT 1*m def query_row(self, sql, **kwargs): res = self._query(sql, **kwargs) return first(res) # SELECT n*1 def query_col(self, sql, **kwargs): res = self._query(sql, **kwargs).fetchall() return [r[0] for r in res] # SELECT 1*1 def query_one(self, sql, **kwargs): row = self.query_row(sql, **kwargs) if row: return first(row) def db_engine(self): engine = self.conn().dialect.name if engine not in ['postgresql', 'mysql']: raise Exception("db engine %s not supported" % engine) return engine @staticmethod def build_upsert(table, pk, values): pks = [pk] if isinstance(pk, str) else pk values = collections.OrderedDict(values) fields = list(values.keys()) pks_blank = [values[k] is None for k in pks] if all(pks_blank): cols = ', '.join([k for k in fields if k not in pks]) params = ', '.join([':'+k for k in fields if k not in pks]) sql = "INSERT INTO %s (%s) VALUES (%s)" sql = sql % (table, cols, params) else: update = ', '.join([k+" = :"+k for k in fields if k not in pks]) where = ' AND '.join([k+" = :"+k for k in fields if k in pks]) sql = "UPDATE %s SET %s WHERE %s" sql = sql % (table, update, where) return (sql, values) @QueryStats() def _query(self, sql, **kwargs): if sql == 'START TRANSACTION': assert not self._trx_active self._trx_active = True elif sql == 'COMMIT': assert self._trx_active self._trx_active = False query = text(sql).execution_options(autocommit=False) try: return self.conn().execute(query, **kwargs) except Exception as e: print("[SQL] Error in query {} ({})".format(sql, kwargs)) #self.conn.close() # TODO: check if needed logger.exception(e) raise e @staticmethod def _is_write_query(sql): action = sql.strip()[0:6].strip() if action == 'SELECT': return False if action in ['DELETE', 'UPDATE', 'INSERT', 'COMMIT', 'START', 'ALTER']: return True raise Exception("unknown action: {}".format(sql))
1dad10d4f022b45a885361c1ef7cad694f8b1ae6
4099891546014e49b74f28987d26f93e77559471
/app/models.py
2b60aa9f5ce76532d09b9a3ed3443348f9d2b2da
[ "MIT" ]
permissive
leezichanga/Newshighlights
519ecac73341adcf90b364024d335fe3574a12c6
abaca8891fe0d62e624e8c83ca4ba65f5ad6fe0f
refs/heads/master
2020-03-08T21:12:27.616700
2018-04-10T13:24:19
2018-04-10T13:24:19
128,401,925
0
2
null
null
null
null
UTF-8
Python
false
false
747
py
class Source: ''' News class to define news objects ''' def __init__(self,id,name,description,url,category,language,country): self.id = id self.name = name self.description = description self.url = url self.category = category self.language = language self.country = country class Article: ''' Article class to define article objects ''' def __init__(self,id,name,author,title,description,url,urlToImage,publishedAt): self.id = id self.name = name self.author = author self.title = title self.description = description self.url = url self.urlToImage = urlToImage self.publishedAt = publishedAt
3b876b254779a8a51c619573dd173dba1daf235b
fcf870abec4a3fe936668ed14afcded9c10e4aa3
/featureselection/CHI2.py
3dbd1809a6a48214769cfd116f2e38f093ac09ef
[]
no_license
sirpan/iLearn
f8d81523720245cc1ab8368aeb609511fc93af5a
507aae17d9fea3d74a7c77984f1f1750eb734f53
refs/heads/master
2023-03-22T06:55:48.791894
2021-03-17T07:23:15
2021-03-17T07:23:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,092
py
#!/usr/bin/env python # _*_coding:utf-8_*_ import numpy as np import pandas as pd binBox = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] def CHI2(encodings, labels): features = encodings[0][1:] encodings = np.array(encodings)[1:] data = encodings[:, 1:] shape = data.shape data = np.reshape(data, shape[0] * shape[1]) data = np.reshape([float(i) for i in data], shape) e = '' if shape[0] < 5 or shape[1] < 2: return 0, e dataShape = data.shape if dataShape[1] != len(features): print('Error: inconsistent data shape with feature number.') return 0, 'Error: inconsistent data shape with feature number.' if dataShape[0] != len(labels): print('Error: inconsistent data shape with sample number.') return 0, 'Error: inconsistent data shape with sample number.' sampleNumber = len(data) labelClass = set(labels) myFea = {} for i in range(len(features)): array = data[:, i] newArray = list(pd.cut(array, len(binBox), labels=binBox)) binBoxClass = set(newArray) myObservation = {} for j in range(len(labels)): # print(labels[j], newArray[j]) myObservation[str(labels[j]) + str(newArray[j])] = myObservation.get(str(labels[j]) + str(newArray[j]), 0) + 1 myExpect = {} for j in labelClass: for k in binBox: myExpect[str(j) + str(k)] = labels.count(j) * newArray.count(k) / sampleNumber chiValue = 0 for j in labelClass: for k in binBoxClass: chiValue = chiValue + pow(((myObservation.get(str(j) + str(k), 0)) - myExpect.get(str(j) + str(k), 0)), 2) / myExpect[str(j) + str(k)] myFea[features[i]] = chiValue res = [] res.append(['feature', 'CHI-value']) for key in sorted(myFea.items(), key=lambda item: item[1], reverse=True): res.append([key[0], '{0:.3f}'.format(myFea[key[0]])]) return res, e
8f611b94b68f4bdb69f9435b97e40be3767a17b3
dcd3f61b47de7cc3e27be76c54c38de1d1fb4261
/leap_year.py
1bbe42a169cec9b725a81d7b699fd257a872cf28
[]
no_license
Somi-Singh/if-else
853b06b8f64ba1ac4ae879783cd749a5081aac34
05422c0a508b377a01f2851899c204ff350099d2
refs/heads/main
2023-06-08T12:37:55.160487
2021-07-01T09:34:36
2021-07-01T09:34:36
381,979,664
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
user=int(input("enter the year")) if user%4==0: print("leap year") else: print("leap year nhi")
c72949e7eb1456018af8dbaec4339fb7adc37b26
0a3322707e58aae8abe27c92f63164f53dc6a4ac
/ecogdata/expconfig/exp_descr/__init__.py
1a21126ca584798ebde2f8ce3a0579e69b67891e
[ "BSD-3-Clause" ]
permissive
miketrumpis/ecogdata
740f9a61cad7c3fea380ac3670f2b513cfd407f8
2b6af886ae1dfbcd0640661138a3ed2f927fba57
refs/heads/master
2022-11-05T06:27:22.497965
2022-10-13T21:31:52
2022-10-13T21:31:52
133,874,922
0
0
BSD-3-Clause
2021-11-03T21:58:04
2018-05-17T22:32:17
Python
UTF-8
Python
false
false
97
py
from .base_exp import * from .audio_exp import * from .expo_exp import * from .builders import *
7b77ba86eb35c3ed786fe7a7e707898bd1163f50
45e49a395fe58783cdc662ba6cf3805ef499190e
/raiden/tests/unit/test_notifyingqueue.py
24caa4ff4e423841f70bbc59687e829245155fe6
[ "MIT" ]
permissive
mat7ias/raiden
862708d7e2f1f84ade6623c626daf3578a948c10
7463479ffde4f48577b74421f3c47a097e95a36f
refs/heads/master
2020-03-28T06:17:30.899834
2018-09-07T10:24:37
2018-09-07T11:44:18
146,172,440
0
0
MIT
2018-08-26T10:50:17
2018-08-26T10:50:17
null
UTF-8
Python
false
false
925
py
import gevent from gevent.event import Event from raiden.utils.notifying_queue import NotifyingQueue from raiden.network.transport.udp.udp_utils import event_first_of def add_element_to_queue(queue, element): queue.put(element) def test_copy(): queue = NotifyingQueue() assert queue.copy() == [] queue.put(1) assert queue.copy() == [1] assert queue.peek() == 1, 'copy must preserve the queue' queue.put(2) assert queue.copy() == [1, 2], 'copy must preserve the items order' def test_event_must_be_set(): queue = NotifyingQueue() event_stop = Event() data_or_stop = event_first_of( queue, event_stop, ) spawn_after_seconds = 1 element = 1 gevent.spawn_later(spawn_after_seconds, add_element_to_queue, queue, element) assert data_or_stop.wait() def test_not_empty(): queue = NotifyingQueue(items=[1, 2]) assert queue.is_set()
ebb258466ca8a94b44c533eca60e68a2ab3edd10
2347a00aa41c023924de6bc4ffe0e8bc244a0f3f
/application_form/migrations/0030_auto_20150908_1132.py
937d76c617b12ba3080d51e9f999a4d0ef15307c
[]
no_license
Dean-Christian-Armada/prod-people
2ac20d16aecb0cf1ae50a08e456060eee270b518
fb8d99394d78bbf4d1831223fce2d7ac4a04f34d
refs/heads/master
2021-01-01T16:19:36.904967
2016-01-26T09:20:36
2016-01-26T09:20:36
42,503,579
1
0
null
null
null
null
UTF-8
Python
false
false
465
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('application_form', '0029_applicationformflagdocuments'), ] operations = [ migrations.AlterField( model_name='applicationformflagdocuments', name='user', field=models.ForeignKey(default=None, to='login.UserProfile'), ), ]
0458b01249ba1787f2bee6dbad3d2c2a9e97c9d8
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/smsdroid/testcase/firstcases/testcase2_012.py
700a6ce30d93469cae97356efa5d69b55ac3671f
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
7,924
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'de.ub0r.android.smsdroid', 'appActivity' : 'de.ub0r.android.smsdroid.ConversationListActivity', 'resetKeyboard' : True, 'androidCoverage' : 'de.ub0r.android.smsdroid/de.ub0r.android.smsdroid.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=1000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=1000) return def scrollToFindElement(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) elements = driver.find_elements_by_android_uiautomator(str) if (len(elements) > 1) : for temp in elements : if temp.get_attribute("enabled") == "true" : element = temp break except NoSuchElementException: swipe(driver, 0.5, 0.55, 0.5, 0.2) else : return element for i in range(0, 4, 1): try: element = driver.find_element_by_android_uiautomator(str) elements = driver.find_elements_by_android_uiautomator(str) if (len(elements) > 1): for temp in elements: if temp.get_attribute("enabled") == "true": element = temp break except NoSuchElementException: swipe(driver, 0.5, 0.2, 0.5, 0.55) else : return element return def scrollToClickElement(driver, str) : element = scrollToFindElement(driver, str) if element is None : return else : element.click() def clickInList(driver, str) : element = None if (str is None) : candidates = driver.find_elements_by_class_name("android.widget.CheckedTextView") if len(candidates) >= 1 and checkWindow(driver): element = candidates[len(candidates)-1] else : element = scrollToFindElement(driver, str) if element is not None : element.click() else : if checkWindow(driver) : driver.press_keycode(4) def clickOnCheckable(driver, str, value = "true") : parents = driver.find_elements_by_class_name("android.widget.LinearLayout") for parent in parents: try : parent.find_element_by_android_uiautomator(str) lists = parent.find_elements_by_class_name("android.widget.LinearLayout") if len(lists) == 1 : innere = parent.find_element_by_android_uiautomator("new UiSelector().checkable(true)") nowvalue = innere.get_attribute("checked") if (nowvalue != value) : innere.click() break except NoSuchElementException: continue def typeText(driver, value) : element = getElememt(driver, "new UiSelector().className(\"android.widget.EditText\")") element.clear() element.send_keys(value) enterelement = getElememt(driver, "new UiSelector().text(\"OK\")") if (enterelement is None) : if checkWindow(driver): driver.press_keycode(4) else : enterelement.click() def checkWindow(driver) : dsize = driver.get_window_size() nsize = driver.find_element_by_class_name("android.widget.FrameLayout").size if dsize['height'] > nsize['height']: return True else : return False def testingSeekBar(driver, str, value): try : if(not checkWindow(driver)) : element = seekForNearestSeekBar(driver, str) else : element = driver.find_element_by_class_name("android.widget.SeekBar") if (None != element): settingSeekBar(driver, element, value) driver.find_element_by_android_uiautomator("new UiSelector().text(\"OK\")").click() except NoSuchElementException: time.sleep(1) def seekForNearestSeekBar(driver, str): parents = driver.find_elements_by_class_name("android.widget.LinearLayout") for parent in parents: try : parent.find_element_by_android_uiautomator(str) lists = parent.find_elements_by_class_name("android.widget.LinearLayout") if len(lists) == 1 : innere = parent.find_element_by_class_name("android.widget.SeekBar") return innere break except NoSuchElementException: continue def settingSeekBar(driver, element, value) : x = element.rect.get("x") y = element.rect.get("y") width = element.rect.get("width") height = element.rect.get("height") TouchAction(driver).press(None, x + 10, y + height/2).move_to(None, x + width * value,y + height/2).release().perform() y = value def clickInMultiList(driver, str) : element = None if (str is None) : candidates = driver.find_elements_by_class_name("android.widget.CheckedTextView") if len(candidates) >= 1 and checkWindow(driver): element = candidates[len(candidates)-1] else : element = scrollToFindElement(driver, str) if element is not None : nowvalue = element.get_attribute("checked") if (nowvalue != "true") : element.click() if checkWindow(driver) : driver.find_element_by_android_uiautomator("new UiSelector().text(\"OK\")").click() # testcase2_012 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememtBack(driver, "new UiSelector().text(\"66560866\")", "new UiSelector().className(\"android.widget.TextView\").instance(3)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"de.ub0r.android.smsdroid:id/inout\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() driver.press_keycode(4) element = getElememt(driver, "new UiSelector().resourceId(\"de.ub0r.android.smsdroid:id/item_answer\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Me\")", "new UiSelector().className(\"android.widget.TextView\").instance(3)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Call 12312312\")", "new UiSelector().className(\"android.widget.TextView\").instance(2)") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"2_012\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'de.ub0r.android.smsdroid'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
c39e5331ecbec1272a0f70f65618ae44e1ef8ff4
86c5360e5a98088c76bbbcf93e3180b825744708
/yolo_v3/video_test.py
31082b2b1f160853466a29120a891091b9470756
[]
no_license
FenHua/yolo
586b154f77f6855c2b8f731f101c92dd07840b39
6da4aa7c2ad2656182b6694b44d3c8e7cd6f3aa8
refs/heads/master
2020-04-26T11:37:37.092504
2019-03-03T02:51:23
2019-03-03T02:51:23
173,523,090
3
0
null
null
null
null
UTF-8
Python
false
false
3,823
py
# coding: utf-8 from __future__ import division, print_function import tensorflow as tf import numpy as np import argparse import cv2 import time from utils.misc_utils import parse_anchors, read_class_names from utils.nms_utils import gpu_nms from utils.plot_utils import get_color_table, plot_one_box from model import yolov3 parser = argparse.ArgumentParser(description="YOLO-V3 video test procedure.") parser.add_argument("input_video", type=str, help="The path of the input video.") parser.add_argument("--anchor_path", type=str, default="./data/yolo_anchors.txt", help="The path of the anchor txt file.") parser.add_argument("--new_size", nargs='*', type=int, default=[416, 416], help="Resize the input image with `new_size`, size format: [width, height]") parser.add_argument("--class_name_path", type=str, default="./data/coco.names", help="The path of the class names.") parser.add_argument("--restore_path", type=str, default="./data/darknet_weights/yolov3.ckpt", help="The path of the weights to restore.") parser.add_argument("--save_video", type=lambda x: (str(x).lower() == 'true'), default=False, help="Whether to save the video detection results.") args = parser.parse_args() args.anchors = parse_anchors(args.anchor_path) args.classes = read_class_names(args.class_name_path) args.num_class = len(args.classes) color_table = get_color_table(args.num_class) vid = cv2.VideoCapture(args.input_video) video_frame_cnt = int(vid.get(7)) video_width = int(vid.get(3)) video_height = int(vid.get(4)) video_fps = int(vid.get(5)) if args.save_video: fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') videoWriter = cv2.VideoWriter('video_result.mp4', fourcc, video_fps, (video_width, video_height)) with tf.Session() as sess: input_data = tf.placeholder(tf.float32, [1, args.new_size[1], args.new_size[0], 3], name='input_data') yolo_model = yolov3(args.num_class, args.anchors) with tf.variable_scope('yolov3'): pred_feature_maps = yolo_model.forward(input_data, False) pred_boxes, pred_confs, pred_probs = yolo_model.predict(pred_feature_maps) pred_scores = pred_confs * pred_probs boxes, scores, labels = gpu_nms(pred_boxes, pred_scores, args.num_class, max_boxes=30, score_thresh=0.5, iou_thresh=0.5) saver = tf.train.Saver() saver.restore(sess, args.restore_path) for i in range(video_frame_cnt): ret, img_ori = vid.read() height_ori, width_ori = img_ori.shape[:2] img = cv2.resize(img_ori, tuple(args.new_size)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.asarray(img, np.float32) img = img[np.newaxis, :] / 255. start_time = time.time() boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img}) end_time = time.time() # 将图片坐标系改为原始图片大小 boxes_[:, 0] *= (width_ori/float(args.new_size[0])) boxes_[:, 2] *= (width_ori/float(args.new_size[0])) boxes_[:, 1] *= (height_ori/float(args.new_size[1])) boxes_[:, 3] *= (height_ori/float(args.new_size[1])) for i in range(len(boxes_)): x0, y0, x1, y1 = boxes_[i] plot_one_box(img_ori, [x0, y0, x1, y1], label=args.classes[labels_[i]], color=color_table[labels_[i]]) cv2.putText(img_ori, '{:.2f}ms'.format((end_time - start_time) * 1000), (40, 40), 0, fontScale=1, color=(0, 255, 0), thickness=2) cv2.imshow('image', img_ori) if args.save_video: videoWriter.write(img_ori) if cv2.waitKey(1) & 0xFF == ord('q'): break vid.release() if args.save_video: videoWriter.release()
6f539cd8fba94c719c7cdbc20951e989a1caeba5
279a141a3d4451b53f24bd369d80ac471da6fd95
/helloworld.py
fac8390bc075e79093fe9d45c734a6dca7cea8bc
[]
no_license
emilyjennings/python-practice
4f010878263174487ab9ed5ae8c30c3b9ae2e1ca
b98b9ed354999fe3d2286bdd27e83ffd43807f20
refs/heads/master
2020-05-24T23:31:43.645103
2019-05-20T21:33:45
2019-05-20T21:33:45
187,516,122
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
#My first python code - in a while, anyway print("Hello World") if 5 > 2: print("good work") x = "me" y = 10 print(x) print(y) # Codewars def xo(s): array = s.split() xs = 0 os = 0 x = "x" o = "o" for item in array: if item == o: os += 1 elif item == x: xs += 1 if xs == os: return True def xo(s): s = s.lower() return s.count('x') == s.count('o')
[ "github email address" ]
github email address
f7ff1126916a332306e7385b85ada97ec2c7f820
e32ee307e4c59cc18f9dea18d797784a1b23148f
/Quinton-t a single line, the minimum subarray sum..py
f1c7da01a7b41f0859e383b1d01ebc66770c9e60
[]
no_license
GuhanSGCIT/SGCIT
f4ab44346186d45129c74cbad466c6614f9f0f08
8b2e5ccf693384aa22aa9d57f39b63e4659f6261
refs/heads/master
2020-07-11T05:47:54.033120
2020-07-07T05:02:41
2020-07-07T05:02:41
204,459,836
0
0
null
null
null
null
UTF-8
Python
false
false
246
py
n = int(input()) l = [int(x) for x in input().split()] lst = [] for i in range(n): for j in range(i, n): lst.append(l[i:j+1]) sm = sum(lst[0]) for i in range(1, len(lst)): if sm > sum(lst[i]): sm = sum(lst[i]) print(sm)
874d3a461033beb96e17976e837e5e249cbfeb4b
935672cfefee4a8fe861f3247a6e27b7d1d0669a
/hoer/models/cifar/rezero/preactresnet.py
f79f59dd0a14b959453c3f9f64789b35d6ffefdf
[]
no_license
sbl1996/hoer
533b10f047a4175a95f8a7cb94430002aef9a39d
8ced31d49ebe627eb0932f896484a8b2b2c223ce
refs/heads/main
2023-02-02T00:43:42.716916
2020-12-13T08:14:12
2020-12-13T08:14:12
321,008,436
0
0
null
null
null
null
UTF-8
Python
false
false
2,583
py
import tensorflow as tf from tensorflow.keras import Sequential, Model from tensorflow.keras.initializers import Constant from tensorflow.keras.layers import Layer from hanser.models.layers import Act, Conv2d, Norm, GlobalAvgPool, Linear, Identity class PreActResBlock(Layer): def __init__(self, in_channels, out_channels, stride): super().__init__() self.norm1 = Norm(in_channels) self.act1 = Act() self.conv1 = Conv2d(in_channels, out_channels, kernel_size=3, stride=stride) self.norm2 = Norm(out_channels) self.act2 = Act() self.conv2 = Conv2d(out_channels, out_channels, kernel_size=3) if stride != 1 or in_channels != out_channels: self.shortcut = Conv2d(in_channels, out_channels, kernel_size=1, stride=stride) self.res_weight = self.add_weight( name='res_weight', shape=(), dtype=tf.float32, trainable=True, initializer=Constant(0.)) def call(self, x): out = self.norm1(x) out = self.act1(out) shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.norm2(out) out = self.act2(out) out = self.conv2(out) return shortcut + self.res_weight * out class ResNet(Model): stages = [16, 16, 32, 64] def __init__(self, depth, k, num_classes=10): super().__init__() num_blocks = (depth - 4) // 6 self.conv = Conv2d(3, self.stages[0], kernel_size=3) self.layer1 = self._make_layer( self.stages[0] * 1, self.stages[1] * k, num_blocks, stride=1) self.layer2 = self._make_layer( self.stages[1] * k, self.stages[2] * k, num_blocks, stride=2) self.layer3 = self._make_layer( self.stages[2] * k, self.stages[3] * k, num_blocks, stride=2) self.norm = Norm(self.stages[3] * k) self.act = Act() self.avgpool = GlobalAvgPool() self.fc = Linear(self.stages[3] * k, num_classes) def _make_layer(self, in_channels, out_channels, blocks, stride): layers = [PreActResBlock(in_channels, out_channels, stride=stride)] for i in range(1, blocks): layers.append( PreActResBlock(out_channels, out_channels, stride=1)) return Sequential(layers) def call(self, x): x = self.conv(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.norm(x) x = self.act(x) x = self.avgpool(x) x = self.fc(x) return x
1c56c4804e9cce72cdbf8787317d9f8f9609f5de
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part003278.py
27bfeab472a10b41ed9fe95e81801cbb8866f1db
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
2,655
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher88509(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({0: 1}), [ (VariableWithCount('i2.2.1.2.1.0', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher88509._instance is None: CommutativeMatcher88509._instance = CommutativeMatcher88509() return CommutativeMatcher88509._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 88508 if len(subjects) >= 1 and isinstance(subjects[0], Pow): tmp1 = subjects.popleft() subjects2 = deque(tmp1._args) # State 88510 if len(subjects2) >= 1: tmp3 = subjects2.popleft() subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.0_1', tmp3) except ValueError: pass else: pass # State 88511 if len(subjects2) >= 1: tmp5 = subjects2.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2.1.2', tmp5) except ValueError: pass else: pass # State 88512 if len(subjects2) == 0: pass # State 88513 if len(subjects) == 0: pass # 0: x**n yield 0, subst2 subjects2.appendleft(tmp5) subjects2.appendleft(tmp3) subjects.appendleft(tmp1) return yield from collections import deque
8367a3278f4af2f004b3b831acb7ec551b603b1f
053ad96d19c562c44e3fad53db37b24f4ec7134d
/torchelastic/tsm/driver/test/standalone_session_test.py
5e48f14e4a023c1330e6c9a25758fa33a742de50
[ "BSD-3-Clause" ]
permissive
kuikuikuizzZ/elastic
7ef0ab7b1a4a3510e91eeb6b91b6f94f863940c2
cf2fb9c153cc371e6d6b341f15122c26965b7461
refs/heads/master
2022-12-31T20:11:38.957121
2020-09-23T18:38:11
2020-09-23T18:39:31
298,498,639
0
0
BSD-3-Clause
2020-09-25T07:20:59
2020-09-25T07:20:58
null
UTF-8
Python
false
false
6,924
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import shutil import tempfile import unittest from unittest.mock import MagicMock from torchelastic.tsm.driver.api import ( Application, AppNotReRunnableException, AppState, Container, DescribeAppResponse, Resources, Role, RunMode, UnknownAppException, ) from torchelastic.tsm.driver.local_scheduler import ( LocalDirectoryImageFetcher, LocalScheduler, ) from torchelastic.tsm.driver.standalone_session import StandaloneSession from .test_util import write_shell_script class Resource: SMALL = Resources(cpu=1, gpu=0, memMB=1024) MEDIUM = Resources(cpu=4, gpu=0, memMB=(4 * 1024)) LARGE = Resources(cpu=16, gpu=0, memMB=(16 * 1024)) class StandaloneSessionTest(unittest.TestCase): def setUp(self): self.test_dir = tempfile.mkdtemp("StandaloneSessionTest") write_shell_script(self.test_dir, "touch.sh", ["touch $1"]) write_shell_script(self.test_dir, "fail.sh", ["exit 1"]) write_shell_script(self.test_dir, "sleep.sh", ["sleep $1"]) self.image_fetcher = LocalDirectoryImageFetcher() self.scheduler = LocalScheduler(self.image_fetcher) # resource ignored for local scheduler; adding as an example self.test_container = Container(image=self.test_dir).require(Resource.SMALL) def tearDown(self): shutil.rmtree(self.test_dir) def test_run(self): test_file = os.path.join(self.test_dir, "test_file") session = StandaloneSession( name="test_session", scheduler=self.scheduler, wait_interval=1 ) role = Role(name="touch").runs("touch.sh", test_file).on(self.test_container) app = Application("name").of(role) app_id = session.run(app) self.assertEqual(AppState.SUCCEEDED, session.wait(app_id).state) def test_attach(self): session1 = StandaloneSession(name="test_session1", scheduler=self.scheduler) role = Role(name="sleep").runs("sleep.sh", "60").on(self.test_container) app = Application("sleeper").of(role) app_id = session1.run(app) session2 = StandaloneSession(name="test_session2", scheduler=self.scheduler) session2.attach(app_id) self.assertEqual(AppState.RUNNING, session2.status(app_id).state) session2.stop(app_id) self.assertEqual(AppState.CANCELLED, session2.status(app_id).state) def test_attach_and_run(self): session1 = StandaloneSession(name="test_session1", scheduler=self.scheduler) test_file = os.path.join(self.test_dir, "test_file") role = Role(name="touch").runs("touch.sh", test_file).on(self.test_container) app = Application("touch_test_file").of(role) app_id = session1.run(app) session2 = StandaloneSession(name="test_session2", scheduler=self.scheduler) attached_app = session2.attach(app_id) with self.assertRaises(AppNotReRunnableException): session2.run(attached_app) def test_list(self): session = StandaloneSession( name="test_session", scheduler=self.scheduler, wait_interval=1 ) role = Role(name="touch").runs("sleep.sh", "1").on(self.test_container) app = Application("sleeper").of(role) num_apps = 4 for _ in range(num_apps): # since this test validates the list() API, # we do not wait for the apps to finish so run the apps # in managed mode so that the local scheduler reaps the apps on exit session.run(app, mode=RunMode.MANAGED) apps = session.list() self.assertEqual(num_apps, len(apps)) def test_evict_non_existent_app(self): # tests that apps previously run with this session that are finished and eventually # removed by the scheduler also get removed from the session after a status() API has been # called on the app scheduler = LocalScheduler(self.image_fetcher, cache_size=1) session = StandaloneSession( name="test_session", scheduler=scheduler, wait_interval=1 ) test_file = os.path.join(self.test_dir, "test_file") role = Role(name="touch").runs("touch.sh", test_file).on(self.test_container) app = Application("touch_test_file").of(role) # local scheduler was setup with a cache size of 1 # run the same app twice (the first will be removed from the scheduler's cache) # then validate that the first one will drop from the session's app cache as well app_id1 = session.run(app) session.wait(app_id1) app_id2 = session.run(app) session.wait(app_id2) apps = session.list() self.assertEqual(1, len(apps)) self.assertFalse(app_id1 in apps) self.assertTrue(app_id2 in apps) def test_status(self): session = StandaloneSession( name="test_session", scheduler=self.scheduler, wait_interval=1 ) role = Role(name="sleep").runs("sleep.sh", "60").on(self.test_container) app = Application("sleeper").of(role) app_id = session.run(app) self.assertEqual(AppState.RUNNING, session.status(app_id).state) session.stop(app_id) self.assertEqual(AppState.CANCELLED, session.status(app_id).state) def test_status_unknown_app(self): session = StandaloneSession( name="test_session", scheduler=self.scheduler, wait_interval=1 ) with self.assertRaises(UnknownAppException): session.status("unknown_app_id") def test_status_ui_url(self): app_id = "test_app" mock_scheduler = MagicMock() resp = DescribeAppResponse() resp.ui_url = "https://foobar" mock_scheduler.submit.return_value = app_id mock_scheduler.describe.return_value = resp session = StandaloneSession( name="test_ui_url_session", scheduler=mock_scheduler ) role = Role("ignored").runs("/bin/echo").on(self.test_container) session.run(Application(app_id).of(role)) status = session.status(app_id) self.assertEquals(resp.ui_url, status.ui_url) def test_wait_unknown_app(self): session = StandaloneSession( name="test_session", scheduler=self.scheduler, wait_interval=1 ) with self.assertRaises(UnknownAppException): session.wait("unknown_app_id") def test_stop_unknown_app(self): session = StandaloneSession( name="test_session", scheduler=self.scheduler, wait_interval=1 ) with self.assertRaises(UnknownAppException): session.stop("unknown_app_id")
48f6aa788d0e6b6bd8bc7a621ccc3b855d38bbdc
31ba27461d50fcd85027318eacefa04d828feb4b
/addons/app-trobz-hr/it_equipment_bonus/security/post_object_security.py
1075bbfb89ee07b0ebcb2d990bff159c5f43d26d
[]
no_license
TinPlusIT05/tms
5f258cec903d5bf43c26b93fc112fce0b32de828
673dd0f2a7c0b69a984342b20f55164a97a00529
refs/heads/master
2022-12-04T02:11:54.770745
2019-09-23T07:18:11
2019-09-23T07:18:11
210,278,672
0
0
null
2022-11-22T00:30:37
2019-09-23T06:18:48
Python
UTF-8
Python
false
false
1,091
py
# -*- encoding: utf-8 -*- from openerp import models, api group_user = 'Human Resources / Employee' group_hr_manager = 'Human Resources / Manager' class it_equipment_bonus_post_object_security(models.TransientModel): _name = "it.equipment.bonus.post.object.security" @api.model def start(self): self.create_model_access_rights() return True @api.model def create_model_access_rights(self): MODEL_ACCESS_RIGHTS = { ('hr.equipment.category'): { (group_hr_manager,): [1, 1, 1, 1], (group_user,): [1, 0, 0, 0], }, ('employee.it.bonus'): { (group_hr_manager,): [1, 1, 1, 1], (group_user,): [1, 0, 0, 0], }, ('hr.equipment.request'): { (group_hr_manager,): [1, 1, 1, 1], (group_user,): [1, 1, 1, 0], }, } return self.env['trobz.base'].with_context( {'module_name': 'it_equipment_bonus'}).create_model_access_rights( MODEL_ACCESS_RIGHTS)
432097dea145bd35db9bfcab0f20d4ad2f970c45
fc8137f6a4df69640657a0af5d7201de3c6eb261
/accepted/Valid Palindrome.py
e791233777023d30d7f38d6a0df11bc4c02b9fd2
[]
no_license
hustlrr/leetcode
68df72b49ee3bbb9f0755028e024cc9fea2c21aa
56e33dff3918e371f14d6f7ef03f8951056cc273
refs/heads/master
2020-04-12T08:14:25.371761
2017-01-01T12:19:34
2017-01-01T12:19:34
77,119,341
4
1
null
null
null
null
UTF-8
Python
false
false
775
py
# coding=utf-8 class Solution(object): def isPalindrome(self, s): """ :type s: str :rtype: bool """ leftcnt,rightcnt=0,0 leftidx,rightidx=0,len(s)-1 s=s.lower() while leftidx<rightidx: while not s[leftidx].isalnum() and leftidx<rightidx: leftidx+=1 while not s[rightidx].isalnum() and leftidx<rightidx: rightidx-=1 if leftidx<rightidx: if s[leftidx]!=s[rightidx]: return False if s[leftidx].isalnum(): leftcnt+=1 if s[rightidx].isalnum(): rightcnt+=1 leftidx+=1 rightidx-=1 return leftcnt==rightcnt
c01a223e3df44056ff29c6a04a6b554b73afe3f5
89c6895a0d71d4ce1fa6ca9e415649625ba2d1c6
/babybuddy/__init__.py
a0ff099532963b2e40c164385a3203065ae80f3e
[ "BSD-2-Clause", "BSD-2-Clause-Views" ]
permissive
bry-c/babybuddy
18f72a3f6480abaafe34250bf82828567fe05a23
49156c1d80568a8c052a6788af9a63ea658b7452
refs/heads/master
2020-12-20T18:24:29.053433
2020-01-25T05:24:43
2020-01-25T05:24:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,979
py
""" .----------------. | .--------------. | | | ______ | | | | |_ _ \ | | | | | |_) | | | | | | __'. | | | | _| |__) | | | | | |_______/ | | | | | | | '--------------' | '----------------' .----------------. .----------------. | .--------------. | .--------------. | | | __ | | | ______ | | | | / \ | | | |_ _ \ | | | | / /\ \ | | | | |_) | | | | | / ____ \ | | | | __'. | | | | _/ / \ \_ | | | _| |__) | | | | ||____| |____|| | | |_______/ | | | | | | | | | | '--------------' | '--------------' | '----------------' '----------------' .----------------. .----------------. .----------------. | .--------------. | .--------------. | .--------------. | | | ____ ____ | | | ______ | | | _____ _____ | | | | |_ _||_ _| | | | |_ _ \ | | ||_ _||_ _|| | | | \ \ / / | | | | |_) | | | | | | | | | | | | \ \/ / | | | | __'. | | | | ' ' | | | | | _| |_ | | | _| |__) | | | | \ `--' / | | | | |______| | | | |_______/ | | | `.__.' | | | | | | | | | | | | | '--------------' | '--------------' | '--------------' | '----------------' '----------------' '----------------' .----------------. .----------------. .----------------. .----------------. | .--------------. | .--------------. | .--------------. | .--------------. | | | ________ | | | ________ | | | ____ ____ | | | _ | | | | |_ ___ `. | | | |_ ___ `. | | | |_ _||_ _| | | | | | | | | | | | `. \ | | | | | `. \ | | | \ \ / / | | | | | | | | | | | | | | | | | | | | | | | \ \/ / | | | | | | | | | _| |___.' / | | | _| |___.' / | | | _| |_ | | | | | | | | | |________.' | | | |________.' | | | |______| | | | |_| | | | | | | | | | | | | | (_) | | | '--------------' | '--------------' | '--------------' | '--------------' | '----------------' '----------------' '----------------' '----------------' """ # noqa __title__ = 'Baby Buddy' __version__ = '1.2.4' __license__ = 'BSD 2-Clause' VERSION = __version__ default_app_config = 'babybuddy.apps.BabyBuddyConfig'
66ee5476b811b7932d971e889a6b0e8fa585e838
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/jozLzME3YptxydiQm_24.py
8b1f7fcb54f2b79c2a1a818e7a9f5e7adc43b9b8
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
784
py
""" Create a function that takes in a word and determines whether or not it is plural. A plural word is one that ends in "s". ### Examples is_plural("changes") ➞ True is_plural("change") ➞ False is_plural("dudes") ➞ True is_plural("magic") ➞ False ### Notes * Don't forget to `return` the result. * Remember that return `True` ( _boolean_ ) is not the same as return `"True"` ( _string_ ). * This is an oversimplification of the English language. We are ignoring edge cases like "goose" and "geese", "fungus" and "fungi", etc. * If you get stuck on a challenge, find help in the **Resources** tab. * If you're _really_ stuck, unlock solutions in the **Solutions** tab. """ def is_plural(word): return word.endswith("s")
1c847a515d2da1b0eab37823f7addbb578edaf55
0359f840efdaa2849594dd1f498cb1533a61b17e
/pretrain_visual.py
521ad2edcdd8c9444b49c590e519ca2cdcb7e9f6
[]
no_license
qiuchili/MMSentiReader
e21026b2a8333c921dbaa29933069c6444117bd4
ecda45099159d47cb488961d4b5ed7b8f6b494cd
refs/heads/master
2023-02-04T12:44:06.330910
2020-12-26T03:41:46
2020-12-26T03:41:46
281,270,212
1
0
null
null
null
null
UTF-8
Python
false
false
11,401
py
# -*- coding: utf-8 -*- import torch.nn as nn import pickle import os import numpy as np import torch.nn.functional as F import cv2 import torch import time from tqdm import tqdm from torch.utils.data import DataLoader, TensorDataset,random_split from torch.utils.data import Dataset from torch.nn.utils.rnn import pad_sequence import argparse from utils.params import Params from torchvision.io import read_video import random class Pretrain(nn.Module): def __init__(self, input_shape, output_dim): super(Pretrain, self).__init__() self.input_shape = input_shape self.output_dim = output_dim self.conv = nn.Conv3d(in_channels = 3, out_channels = 16, kernel_size = (5,5,5)) self.max_pool = nn.MaxPool3d(kernel_size = (3,3,3)) self.max_output_dims = [int((self.input_shape[0]-5+1)/3), int((self.input_shape[1]-5+1)/3), int((self.input_shape[2]-5+1)/3)] self.batch_norm = nn.BatchNorm3d(16) self.conv2 = nn.Conv3d(in_channels = 16, out_channels = 4, kernel_size = (5,5,5)) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.max_output_dims = [int((_dim-5+1)/3) for _dim in self.max_output_dims] self.max_output_dim = 4 for _dim in self.max_output_dims: self.max_output_dim = self.max_output_dim*_dim self.dense = nn.Linear(in_features = self.max_output_dim,out_features = 300) self.dropout = nn.Dropout(0.8) self.dense1 = nn.Linear(in_features = 300,out_features = 300) self.dense2 = nn.Linear(in_features = 300,out_features = 64) self.softmax = nn.Softmax(dim=-1) self.dense3 = nn.Linear(in_features = 64, out_features = output_dim) def get_representation(self, x): x = self.conv(x) x = self.sigmoid(x) x = self.max_pool(x) x = self.conv2(x) x = self.sigmoid(x) x = self.max_pool(x) x = x.reshape(-1, self.max_output_dim) x = self.dropout(x) x = self.dense(x) x = self.sigmoid(x) x = self.dense1(x) x = self.tanh(x) return(x) def forward(self, x): x = self.conv(x) x = self.sigmoid(x) x = self.max_pool(x) x = self.conv2(x) x = self.sigmoid(x) x = self.max_pool(x) x = x.reshape(-1, self.max_output_dim) x = self.dropout(x) x = self.dense(x) x = self.sigmoid(x) x = self.dense1(x) x = self.tanh(x) print(x) x = self.dense2(x) x = self.sigmoid(x) x = self.dense3(x) x = F.log_softmax(x, dim = -1) return(x) def _load_file(file_name): feature, label = pickle.load(open(file_name,'rb')) return feature, label class MELDDataset(Dataset): def __init__(self, data_dir): files = os.listdir(data_dir) self.data_files = [os.path.join(data_dir,_file) for _file in files] self.data_files = sorted(self.data_files) def __getitem__(self, idx): return _load_file(self.data_files[idx]) def __len__(self): return len(self.data_files) def get_raw_feature(video_path): vframes, _, _ = read_video(video_path) vframes = vframes.permute(3,0,1,2) return torch.tensor(vframes/255.0,dtype = torch.float32) def train(params): dataset = MELDDataset(params.stored_path) print('training model...') total_num = dataset.__len__() train_num = int(total_num*params.ratio) val_num = total_num - train_num train_set, val_set = random_split(dataset, [train_num, val_num]) train_loader = DataLoader(train_set, batch_size = params.batch_size, shuffle = True) val_loader = DataLoader(val_set, batch_size = params.batch_size, shuffle = False) output_dim = 7 model = Pretrain((params.input_d, params.input_h, params.input_w), output_dim) model = model.to(params.device) criterion = nn.NLLLoss() optimizer = torch.optim.RMSprop(model.parameters(),lr = params.lr) # Temp file for storing the best model epochs = 100 best_val_loss = 99999.0 # best_val_loss = -1.0 for i in range(epochs): print('epoch: ', i) model.train() with tqdm(total = train_num) as pbar: time.sleep(0.05) for _i,data in enumerate(train_loader,0): # For debugging, please run the line below # _i,data = next(iter(enumerate(train_loader,0))) b_inputs = data[0].to(params.device) b_targets = data[-1].to(params.device) # Does not train if batch_size is 1, because batch normalization will crash if b_inputs[0].shape[0] == 1: continue optimizer.zero_grad() outputs = model(b_inputs) loss = criterion(outputs, b_targets.argmax(dim = -1)) if np.isnan(loss.item()): print('loss value overflow!') break loss.backward() nn.utils.clip_grad_norm_(model.parameters(), 0.8) optimizer.step() # Compute Training Accuracy n_total = len(outputs) n_correct = (outputs.argmax(dim = -1) == b_targets.argmax(dim = -1)).sum().item() train_acc = n_correct/n_total #Update Progress Bar pbar.update(params.batch_size) ordered_dict={'acc': train_acc, 'loss':loss.item()} pbar.set_postfix(ordered_dict=ordered_dict) model.eval() #Validation Set outputs = [] targets = [] for _ii,data in enumerate(val_loader,0): data_x = data[0].to(params.device) data_t = data[-1].to(params.device) data_o = model(data_x) outputs.append(data_o.detach()) targets.append(data_t.detach()) outputs = torch.cat(outputs) targets = torch.cat(targets) val_loss = criterion(outputs, targets.argmax(dim = -1)) n_total = len(outputs) n_correct = (outputs.argmax(dim = -1) == targets.argmax(dim = -1)).sum().item() val_acc = n_correct/n_total print('val loss = {}, val acc = {}'.format(val_loss,val_acc)) if val_loss < best_val_loss: torch.save(model,'dummy_files/best_model.pt') print('The best model up till now. Saved to File.') best_val_loss = val_loss return model def extract_raw_features(params): data = pickle.load(open(params.file_path,'rb')) video_ids, video_speakers, video_labels,video_text, video_audio, video_sentence, video_act, train_vid, test_vid, _ = data if not os.path.exists(params.stored_path): os.mkdir(params.stored_path) train_dia_num = 1038 val_dia_num = len(train_vid) - train_dia_num for dia_id, sen_ids in video_ids.items(): print('extracting raw features of dia {}'.format(dia_id)) dia_labels = video_labels[dia_id] split_dir_path = os.path.join(params.videos_dir, 'train_splits') if dia_id >= (train_dia_num+1): split_dir_path = os.path.join(params.videos_dir, 'dev_splits') dia_id = dia_id - (train_dia_num+1) if dia_id >= val_dia_num: continue for _index, _id in enumerate(sen_ids): print('utterance id {}'.format(_id)) video_fname = os.path.join(split_dir_path,'dia{}_utt{}.mp4'.format(dia_id, _id)) label = dia_labels[_index] raw_video_feature = get_raw_feature(video_fname) raw_video_feature = F.interpolate(raw_video_feature.unsqueeze(dim = 0), (params.input_d, params.input_h, params.input_w))[0] one_hot_index = np.zeros((7)) one_hot_index[label] = 1 one_hot_index = torch.tensor(one_hot_index,dtype=torch.float64) print('save utterance data to pickle file...') pickle.dump([raw_video_feature,one_hot_index],open(os.path.join(params.stored_path,'dia_{}_{}.pkl'.format(dia_id, _id)),'wb')) print('Done.') def generate_visual_rep(model, params): print('generate visual representation...') data = pickle.load(open(params.file_path,'rb')) video_ids, video_speakers, video_labels_7,video_text, video_audio, video_sentence, video_act, train_vid, test_vid, video_labels_3 = data train_dia_num = 1038 val_dia_num = len(train_vid) - train_dia_num video_visual = {} for dia_id, sen_ids in video_ids.items(): dia_visual = [] split_dir_path = os.path.join(params.videos_dir, 'train_splits') if dia_id >= (train_dia_num+1): split_dir_path = os.path.join(params.videos_dir, 'dev_splits') dia_id = dia_id - (train_dia_num+1) if dia_id >= val_dia_num: split_dir_path = os.path.join(params.videos_dir, 'test_splits') dia_id = dia_id - val_dia_num for _index, _id in enumerate(sen_ids): video_fname = os.path.join(split_dir_path,'dia{}_utt{}.mp4'.format(dia_id, _id)) raw_video_feature = get_raw_feature(video_fname) raw_video_feature = F.interpolate(raw_video_feature.unsqueeze(dim = 0), (params.input_d, params.input_h, params.input_w)) video_rep = model.get_representation(raw_video_feature.to(params.device))[0].detach().cpu().numpy() dia_visual.append(video_rep) video_visual[dia_id] = dia_visual data = video_ids, video_speakers, video_labels_7,video_text, video_audio, video_visual, video_sentence, video_act, train_vid, test_vid, video_labels_3 pickle.dump(data,open(params.output_path,'wb')) def set_seed(params): torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False random.seed(params.seed) os.environ['PYTHONHASHSEED'] = str(params.seed) np.random.seed(params.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(params.seed) torch.cuda.manual_seed_all(params.seed) else: torch.manual_seed(params.seed) def run(params): train(params) print('loading the pretraining model...') model = torch.load('dummy_files/best_model.pt') generate_visual_rep(model, params) if __name__ == '__main__': parser = argparse.ArgumentParser(description='running experiments on multimodal datasets.') parser.add_argument('-config', action = 'store', dest = 'config_file', help = 'please enter configuration file.',default = 'config/pretrain_visual.ini') args = parser.parse_args() params = Params() params.parse_config(args.config_file) params.config_file = args.config_file mode = 'run' if 'mode' in params.__dict__: mode = params.mode set_seed(params) params.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') if mode == 'extract_raw_feature': extract_raw_features(params) elif mode == 'run': run(params)
2fa0f6f2d17f04b73bcf80ec13cb4906693bb7f3
a56623649791b945ae07d407533511902b67ebad
/src/installer/src/tortuga/db/dbManager.py
1f81e2d146ecdf6855c4d2f51897b0247a325ef2
[ "Apache-2.0" ]
permissive
joedborg/tortuga
9792bc0ff1a9d7fa335ac41df9324dc502b80e0b
5690e41c0c78602c195f699bf314c6c94ca7b619
refs/heads/master
2021-04-26T22:56:05.646538
2018-11-14T16:33:00
2018-11-14T16:33:00
123,898,555
0
0
null
2018-03-05T09:48:11
2018-03-05T09:48:11
null
UTF-8
Python
false
false
7,768
py
# Copyright 2008-2018 Univa Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=multiple-statements,no-member,no-name-in-module # pylint: disable=not-callable import configparser from logging import getLogger import os import sqlalchemy import sqlalchemy.orm from tortuga.config.configManager import ConfigManager from tortuga.exceptions.dbError import DbError from tortuga.kit.registry import get_all_kit_installers from tortuga.objects.tortugaObjectManager import TortugaObjectManager # from .tables import get_all_table_mappers from .sessionContextManager import SessionContextManager from .models.base import ModelBase from . import models # noqa pylint: disable=unused-import logger = getLogger(__name__) class DbManager(TortugaObjectManager): """ Class for db management. :param engine: a SQLAlchemy database engine instance :param init: a flag that is set when the database has not yet been initialized. If this flag is set, not attempts will be made to load/map kit tables. This flag is cleared once the database has been initialized. """ def __init__(self, engine=None): super(DbManager, self).__init__() if not engine: self._cm = ConfigManager() self._dbConfig = self._refreshDbConfig() engineURI = self.__getDbEngineURI() if self._dbConfig['engine'] == 'sqlite' and \ not os.path.exists(self._dbConfig['path']): # Ensure SQLite database file is created with proper permissions fd = os.open( self._dbConfig['path'], os.O_CREAT, mode=0o600) os.close(fd) self._engine = sqlalchemy.create_engine(engineURI) else: self._engine = engine self.Session = sqlalchemy.orm.scoped_session( sqlalchemy.orm.sessionmaker(bind=self.engine)) def _map_db_tables(self): # # Make sure all kit table mappers have been registered # for kit_installer_class in get_all_kit_installers(): kit_installer = kit_installer_class() kit_installer.register_database_table_mappers() # # Map all tables that haven't yet been mapped # # for table_mapper in get_all_table_mappers(): # key = table_mapper.__name__ # if key not in self._mapped_tables.keys(): # logger.debug('Mapping table: {}'.format(key)) # self._mapped_tables[key] = table_mapper() # self._mapped_tables[key].map(self) pass @property def engine(self): """ SQLAlchemy Engine object property """ self._map_db_tables() return self._engine def session(self): """ Database session context manager """ return SessionContextManager(self) def init_database(self): # # Create tables # self._map_db_tables() try: ModelBase.metadata.create_all(self.engine) except Exception: self.getLogger().exception('SQLAlchemy raised exception') raise DbError('Check database settings or credentials') @property def metadata(self): return self._metadata def __getDbEngineURI(self): dbPort = self._dbConfig['port'] dbHost = self._dbConfig['host'] engine = self._dbConfig['engine'] dbUser = self._dbConfig['username'] dbPassword = self._dbConfig['password'] if engine == 'sqlite': engineURI = 'sqlite:///%s' % (self._dbConfig['path']) else: if dbUser is not None: if dbPassword is not None: userspec = '%s:%s' % (dbUser, dbPassword) else: userspec = dbUser else: userspec = None if dbPort is not None: hostspec = '%s:%s' % (dbHost, dbPort) else: hostspec = dbHost engineURI = f'{engine}+pymysql' if engine == 'mysql' else engine engineURI += '://' if userspec is not None: engineURI += f'{userspec}@' engineURI += f'{hostspec}' + '/{}'.format(self._cm.getDbSchema()) return engineURI def _getDefaultDbEngine(self): \ # pylint: disable=no-self-use return 'sqlite' def _getDefaultDbHost(self): \ # pylint: disable=no-self-use return 'localhost' def _getDefaultDbPort(self, engine): \ # pylint: disable=no-self-use # MySQL default port if engine == 'mysql': return 3306 return None def _getDefaultDbUserName(self): return self._cm.getDbUser() def _getDefaultDbPassword(self): if os.path.exists(self._cm.getDbPasswordFile()): with open(self._cm.getDbPasswordFile()) as fp: dbPassword = fp.read() else: dbPassword = None return dbPassword def _refreshDbConfig(self, cfg=None): dbConfig = {} if cfg is None: cfg = configparser.ConfigParser() cfg.read(os.path.join(self._cm.getKitConfigBase(), 'tortuga.ini')) # Database engine val = cfg.get('database', 'engine').strip().lower() \ if cfg.has_option('database', 'engine') else \ self._getDefaultDbEngine() dbConfig['engine'] = val if dbConfig['engine'] == 'sqlite': # If database is sqlite, read the path dbConfig['path'] = cfg.get('database', 'path') \ if cfg.has_section('database') and \ cfg.has_option('database', 'path') else \ os.path.join(self._cm.getEtcDir(), self._cm.getDbSchema() + '.sqlite') # Database host val = cfg.get('database', 'host') \ if cfg.has_option('database', 'host') else \ self._getDefaultDbHost() dbConfig['host'] = val # Database port val = cfg.get('database', 'port') \ if cfg.has_option('database', 'port') else None dbConfig['port'] = val if val else self._getDefaultDbPort( engine=dbConfig['engine']) # Database username val = cfg.get('database', 'username') \ if cfg.has_option('database', 'username') \ else self._getDefaultDbUserName() dbConfig['username'] = val # Database password val = cfg.get('database', 'password') \ if cfg.has_option('database', 'password') \ else self._getDefaultDbPassword() dbConfig['password'] = val return dbConfig def get_backend_opts(self): \ # pylint: disable=no-self-use return { 'mysql_engine': 'InnoDB', } def getMetadataTable(self, table): return self._metadata.tables[table] def openSession(self): """ Open db session. """ return self.Session() def closeSession(self): """Close scoped_session.""" self.Session.remove()
ab958f2bbc272631ae086eaa0bf5cfab4ad7ed6b
747755833862b8e9d0f58ebc62879d6ef47c23c8
/python-master (5)/python-master/test/tree.py
2b41e05f60a4593aa20574d59fedcd8f65037cf4
[]
no_license
tangsong41/stu_py
98a06730dbca6e158cf81c18d98fe1317c1ae512
d41507cd8dd9e8a54084872dfa15c36da443c02b
refs/heads/master
2022-12-11T23:53:57.530946
2019-01-15T18:29:19
2019-01-15T18:29:19
163,953,100
3
0
null
2022-12-07T23:24:01
2019-01-03T09:41:29
Jupyter Notebook
UTF-8
Python
false
false
2,287
py
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: tree.py @time: 2017/5/22 下午6:57 """ import json from collections import defaultdict def tree(): """ 定义一棵树 python 字典的特性,赋值操作必须事先声明,所以这里使用 collections 很方便的为字典设置初始值 :return: """ return defaultdict(tree) def test_users(): users = tree() users['jack_1']['jack_2_1']['jack_3_1'] = {} users['jack_1']['jack_2_1']['jack_3_2'] = {} users['jack_1']['jack_2_2'] = {} users['jack_1']['jack_2_2']['jack_3_1'] = {} users['lily_1']['lily_2_1']['lily_3_1'] = {} users['lily_1']['lily_2_2']['lily_3_2'] = {} users['lily_1']['lily_2_3']['lily_3_3'] = {} users['emma_1']['emma_2_1'] = {} # 打印 users 原始结构 print users # 打印 users json 结构 print(json.dumps(users, indent=4)) # 第一层(users的key) print [i for i in users] # 第二层(users子节点的key) print [i for i in users['jack_1']] # 第三层(users孙节点的key) print [i for i in users['jack_1']['jack_2_1']] l = [ {'u': 4, 'p': 1}, {'u': 10, 'p': 1}, {'u': 5, 'p': 1}, {'u': 6, 'p': 2}, {'u': 7, 'p': 2}, {'u': 8, 'p': 3}, {'u': 9, 'p': 3}, {'u': 11, 'p': 3}, {'u': 12, 'p': 3}, {'u': 13, 'p': 5}, {'u': 14, 'p': 6}, {'u': 15, 'p': 10}, {'u': 17, 'p': 10}, {'u': 19, 'p': 10}, {'u': 20, 'p': 15}, {'u': 21, 'p': 15}, {'u': 22, 'p': 17}, {'u': 23, 'p': 22}, ] def get_child_users(uid): """ 获取子节点 :param uid: :return: """ r = [] for i in l: if i['p'] == uid: r.append(i['u']) return r def test_team(uid): """ 测试 :return: """ team = tree() child_users = get_child_users(uid) for uid1 in child_users: team[uid1] = {} child_users2 = get_child_users(uid1) for uid2 in child_users2: team[uid1][uid2] = {} child_users3 = get_child_users(uid2) for uid3 in child_users3: team[uid1][uid2][uid3] = {} print json.dumps(team, indent=4) if __name__ == '__main__': # test_users() test_team(1)
2660bada0256d0536dc0fda5e7fc399b226a73b2
f360c6fe06fb9859039a5d39fad5815fd4aff372
/community/community/urls.py
12350ffdfa3f3e2714b7b85462baef166ec94221
[]
no_license
gwjczwy/Django-CMS
d6297055957548997e86d383d54ae051062c8854
f1a00d637c65809d606df3d4b96bcc594af09bd8
refs/heads/master
2020-04-24T21:57:44.818864
2019-03-03T08:41:50
2019-03-03T08:41:50
172,295,715
0
0
null
null
null
null
UTF-8
Python
false
false
871
py
"""community URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import include,url urlpatterns = [ path('', include('accounts.urls')), path('', include('posting.urls')), path('admin/', admin.site.urls), ]
a83ace36cf0328a163b1d22f951b524039dc30db
db1b327c4913c453b2fdd9dda661938c4abc5c0e
/abc/89/C.py
1dad6e66a1695248dab6a8d662bbaa2d771d8383
[]
no_license
oamam/atcoder
0c129aab72e3c7090c9799fdf52f6e8119ef5238
658054b69b7586eed896484535dcfa1fef498e43
refs/heads/master
2021-06-26T09:01:12.389266
2020-10-30T02:01:11
2020-10-30T02:01:11
165,225,322
2
0
null
null
null
null
UTF-8
Python
false
false
323
py
import itertools def main(): N = int(input()) d = {'M': 0, 'A': 0, 'R': 0, 'C': 0, 'H': 0} for _ in range(N): S = input() if S[0] in d: d[S[0]] += 1 ans = 0 for a, b, c in list(itertools.combinations(d.keys(), 3)): ans += d[a] * d[b] * d[c] print(ans) main()
a2921655da4108ff25537002abd8ac828267b205
461bb1cd322c381be77cafdd2deb78223abfe79b
/tests/test_config_locator.py
82611972aa5315bb85e8d38d511aa66e7c601536
[ "MIT" ]
permissive
ryankanno/py-configurator
7a3b205cae2d424b4671c1154ba97d5afa8809a6
749a4dc329d23d976712d241da13c1d942ad3d01
refs/heads/master
2020-06-02T10:38:51.554795
2015-03-16T22:45:56
2015-03-16T22:45:56
17,777,792
0
0
null
null
null
null
UTF-8
Python
false
false
2,435
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from nose.tools import eq_ from nose.tools import ok_ import os from py_configurator import Locator import unittest class TestLocator(unittest.TestCase): def test_locator_construction(self): config_name = 'foo.bar' local_dir = './' system_dir = '/foo/bar/tmp' env_key = 'CONFIG_KEY' locator = Locator( env_key=env_key, config_name=config_name, local_dir=local_dir, system_dir=system_dir) eq_(locator.config_name, config_name) eq_(locator.local_dir, local_dir) eq_(locator.env_key, env_key) config_name_2 = 'foo.bar.2' local_dir_2 = '/foo/bar/tmp/2' env_key_2 = 'CONFIG_KEY_2' locator.config_name = config_name_2 locator.local_dir = local_dir_2 locator.env_key = env_key_2 eq_(locator.config_name, config_name_2) eq_(locator.local_dir, local_dir_2) eq_(locator.env_key, env_key_2) def test_config_locator_get_config_search_paths(self): config_name = 'foo.bar' local_dir = './' system_dir = '/foo/bar/tmp' env_key = 'CONFIG_KEY' env_key_path = '/bar/config.path' os.environ[env_key] = env_key_path locator = Locator( env_key=env_key, config_name=config_name, local_dir=local_dir, system_dir=system_dir) config_search_paths = locator.get_config_paths() ok_(env_key_path in config_search_paths) ok_(os.path.join('./', config_name) in config_search_paths) ok_('/foo/bar/tmp/foo.bar' in config_search_paths) ok_(os.path.join(os.path.expanduser("~"), config_name) in config_search_paths) def test_config_locator_get_config(self): config_name = 'foobar.ini' local_dir = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'data') system_dir = '/foo/bar/tmp' env_key = 'CONFIG_KEY' env_key_path = '/bar/config.path' os.environ[env_key] = env_key_path locator = Locator( env_key=env_key, config_name=config_name, local_dir=local_dir, system_dir=system_dir) config = locator.get_config() ok_(config is not None) ok_(config.get('Foo.Bar') == "1") # vim: filetype=python
bdffbc8830f8b59e9e1ff61aa4da2822cdd77638
a1c5e68d93cd7d7a5620c34c0567b006fa33cd38
/.eggs/PyScaffold-3.0.3-py3.6.egg/pyscaffold/extensions/travis.py
3d97d584f36aa204824901ac55d8ded1f6778621
[ "MIT" ]
permissive
csm-adapt/citrine_converters
4f4e3e57379460f0e1205bf643e6251b36ade772
32eef5f5e733e7ab9031b2f129bb23b90cedc6bf
refs/heads/master
2021-01-21T19:13:50.156881
2020-01-05T05:48:07
2020-01-05T05:48:07
92,125,603
0
2
BSD-2-Clause
2018-08-13T22:39:56
2017-05-23T03:36:09
Python
UTF-8
Python
false
false
1,367
py
# -*- coding: utf-8 -*- """ Extension that generates configuration and script files for Travis CI. """ from __future__ import absolute_import from ..templates import travis, travis_install from ..api import Extension from ..api import helpers class Travis(Extension): """Generate Travis CI configuration files""" def activate(self, actions): """Activate extension Args: actions (list): list of actions to perform Returns: list: updated list of actions """ return self.register( actions, self.add_files, after='define_structure') def add_files(self, struct, opts): """Add some Travis files to structure Args: struct (dict): project representation as (possibly) nested :obj:`dict`. opts (dict): given options, see :obj:`create_project` for an extensive list. Returns: struct, opts: updated project representation and options """ files = { '.travis.yml': (travis(opts), helpers.NO_OVERWRITE), 'tests': { 'travis_install.sh': (travis_install(opts), helpers.NO_OVERWRITE) } } return helpers.merge(struct, {opts['project']: files}), opts
d8bdb2f6559ca6362e0ef57c900953ab34883af0
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/GluGluSpin0/GluGluSpin0ToZGamma_ZToLL_W_0p014_M_750_TuneCUEP8M1_13TeV_pythia8_cfi.py
f60fb1b53fc8fc0548de2a77ed013835f321393b
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
1,393
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", comEnergy = cms.double(13000.0), crossSection = cms.untracked.double(1.095e-3), filterEfficiency = cms.untracked.double(1), maxEventsToPrint = cms.untracked.int32(0), pythiaHepMCVerbosity = cms.untracked.bool(False), pythiaPylistVerbosity = cms.untracked.int32(1), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( 'HiggsSM:gg2H = on', '25:m0 = 750', '25:mWidth = 0.105', '25:onMode = off', '25:OnIfMatch = 23 22', '25:doForceWidth = on', 'Higgs:clipWings = on', 'Higgs:clipWings = 10', '23:onMode = off', '23:OnIfMatch = 11 11', '23:OnIfMatch = 13 13', '23:OnIfMatch = 15 15', ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters', ) ) ) ProductionFilterSequence = cms.Sequence(generator)
4a2a7043ddff842f7ad9b18905ebc72ba0379d26
9975b2681a079b46d901b994d2bb50609d62791a
/StringSplitAndJoin.py
5a97e7a31950412b8579f1742aeb40604a4a44f8
[]
no_license
elvinyeka/Hakker_Rank
1b0d4aae7a6f4c9ac08f8948be4e5740950057c9
ab8c42a3e373d4e4460a6c261b77bde65cf56bfb
refs/heads/master
2022-12-17T00:32:41.279518
2020-09-14T12:09:31
2020-09-14T12:09:31
294,422,920
1
0
null
null
null
null
UTF-8
Python
false
false
342
py
def split_and_join(line): result = "" for i in line: if i == " ": result += "-" else: result += i return result if __name__ == '__main__': line = input() result = split_and_join(line) print(result) # https://www.hackerrank.com/challenges/python-string-split-and-join/problem
a1e65e5164610be033d72ac8d03ab0a25093dbfa
3851d5eafcc5fd240a06a7d95a925518412cafa0
/Django_Code/gs129/gs129/asgi.py
eba9818d2ad8b07e93af3c77180c5cc2d4df5d63
[]
no_license
Ikshansaleem/DjangoandRest
c0fafaecde13570ffd1d5f08019e04e1212cc2f3
0ccc620ca609b4ab99a9efa650b5893ba65de3c5
refs/heads/master
2023-01-31T04:37:57.746016
2020-12-10T06:27:24
2020-12-10T06:27:24
320,180,735
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
""" ASGI config for gs129 project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'gs129.settings') application = get_asgi_application()
e46bc6e3189a1504a348b21db1fec3ed510eeda1
ab1d659a36a7af22bd65b8a91f5059cc24eb7a01
/bigfish_functions/Lowest.py
a19bab32e7d4762357a0df46ccca153cec09d610
[]
no_license
xingetouzi/Bigfish
e1afc23c59dc139418678611bf44d00e2e67a09d
7b18192149f0e2c42c8491f9bc7ea5dede11398b
refs/heads/master
2021-01-21T04:55:34.255633
2016-06-06T03:18:15
2016-06-06T03:18:15
48,084,560
4
3
null
2016-06-06T03:18:15
2015-12-16T03:18:38
Python
UTF-8
Python
false
false
730
py
# -*- coding:utf-8 -*- # 计算一组时间序列数据(如开盘价、收盘价、最高价、最低价、收益率等)的最低值 # 输入参数: # length 时间长度 int # price 时间序列数据 序列数组 默认为最低价数据 # offset 位移数(从前多少根bar开始) int 默认为0 # 若当前K线总数不足以支持计算,(BarNum>length+offset时才能支持计算)返回None def Lowest(length, price=None, offset=0): if length <= 0: return None if price is None: price = Low if BarNum <= length + offset: return None else: min_ = price[offset] for i in range(length - 1): min_ = min(price[i + offset + 1], min_) return min_
bb38a9043b0745fa075e2646e3f8c1a003e7c6a5
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-network/azure/mgmt/network/v2018_11_01/models/ddos_protection_plan_py3.py
b29926c6d258440a7323c347d31c5c0c172bfb8d
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
3,110
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class DdosProtectionPlan(Model): """A DDoS protection plan in a resource group. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param location: Resource location. :type location: str :param tags: Resource tags. :type tags: dict[str, str] :ivar resource_guid: The resource GUID property of the DDoS protection plan resource. It uniquely identifies the resource, even if the user changes its name or migrate the resource across subscriptions or resource groups. :vartype resource_guid: str :ivar provisioning_state: The provisioning state of the DDoS protection plan resource. Possible values are: 'Succeeded', 'Updating', 'Deleting', and 'Failed'. :vartype provisioning_state: str :ivar virtual_networks: The list of virtual networks associated with the DDoS protection plan resource. This list is read-only. :vartype virtual_networks: list[~azure.mgmt.network.v2018_11_01.models.SubResource] :ivar etag: A unique read-only string that changes whenever the resource is updated. :vartype etag: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'resource_guid': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'virtual_networks': {'readonly': True}, 'etag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'resource_guid': {'key': 'properties.resourceGuid', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'virtual_networks': {'key': 'properties.virtualNetworks', 'type': '[SubResource]'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, *, location: str=None, tags=None, **kwargs) -> None: super(DdosProtectionPlan, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.location = location self.tags = tags self.resource_guid = None self.provisioning_state = None self.virtual_networks = None self.etag = None
80a431819c1316ffedc32848b1ea33f987e580a9
ba54ce473e9748f9c85e88142e749efe36e2a858
/otp/ai/Original_MagicWordManager.py
b4667724caadf42390baafe5433d9cd7ea299046
[ "BSD-3-Clause" ]
permissive
C0MPU73R/pirates-online-classic
8256747a464160bd138a09d54b3d5ec6aee930a1
2a0b69e2b0d2eb83643f9ff0fbeccca28fdd2e5c
refs/heads/master
2023-03-24T07:45:41.722943
2021-03-21T01:49:10
2021-03-21T01:49:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,114
py
# THIS IS DISNEYS MAGICWORDMANAGER. # DO NOT DELETE. from pandac.PandaModules import * from direct.showbase import GarbageReport, ContainerReport, MessengerLeakDetector from direct.distributed import DistributedObject from direct.directnotify import DirectNotifyGlobal from direct.showbase.InputStateGlobal import inputState from direct.task import Task from otp.avatar import Avatar import string from direct.showbase import PythonUtil from direct.showbase.PythonUtil import Functor, DelayedCall, ScratchPad from otp.otpbase import OTPGlobals from direct.distributed.ClockDelta import * class MagicWordManager(DistributedObject.DistributedObject): notify = DirectNotifyGlobal.directNotify.newCategory('MagicWordManager') neverDisable = 1 GameAvatarClass = None def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) self.shownFontNode = None self.csShown = 0 self.guiPopupShown = 0 def generate(self): DistributedObject.DistributedObject.generate(self) self.accept('magicWord', self.b_setMagicWord) self.autoMagicWordEvent = localAvatar.getArrivedOnDistrictEvent() if localAvatar.isGeneratedOnDistrict(): self.doLoginMagicWords() else: self.accept(self.autoMagicWordEvent, self.doLoginMagicWords) def doLoginMagicWords(self): pass def disable(self): self.ignore(self.autoMagicWordEvent) del self.autoMagicWordEvent self.ignore('magicWord') self.hidefont() DistributedObject.DistributedObject.disable(self) def setMagicWord(self, word, avId, zoneId): try: self.doMagicWord(word, avId, zoneId) except: response = PythonUtil.describeException(backTrace = 1) self.notify.warning('Ignoring error in magic word:\n%s' % response) self.setMagicWordResponse(response) def wordIs(self, word, w): return word == w or word[:len(w) + 1] == '%s ' % w def getWordIs(self, word): return Functor(self.wordIs, word) def doMagicWord(self, word, avId, zoneId): wordIs = self.getWordIs(word) print word if wordIs('~oobe'): base.oobe() elif wordIs('~oobeCull'): base.oobeCull() elif wordIs('~tex'): base.toggleTexture() elif wordIs('~wire'): base.toggleWireframe() elif wordIs('~showfont'): self.showfont(word[9:]) elif wordIs('~hidefont'): self.hidefont() elif wordIs('~guiPopup'): self.toggleGuiPopup() elif wordIs('~showCS') or wordIs('~showcs'): bitmask = self.getCSBitmask(word[7:]) render.showCS(bitmask) self.csShown = 1 elif wordIs('~hideCS') or wordIs('~hidecs'): bitmask = self.getCSBitmask(word[7:]) render.hideCS(bitmask) self.csShown = 0 elif wordIs('~cs'): bitmask = self.getCSBitmask(word[3:]) if self.csShown: render.hideCS(bitmask) self.csShown = 0 else: render.showCS(bitmask) self.csShown = 1 elif wordIs('~showShadowCollisions'): self.showShadowCollisions() elif wordIs('~hideShadowCollisions'): self.hideShadowCollisions() elif wordIs('~showCollisions'): self.showCollisions() elif wordIs('~hideCollisions'): self.hideCollisions() elif wordIs('~showCameraCollisions'): self.showCameraCollisions() elif wordIs('~hideCameraCollisions'): self.hideCameraCollisions() elif wordIs('~collidespam'): n = Notify.ptr().getCategory(':collide') if hasattr(self, '_collideSpamSeverity'): n.setSeverity(self._collideSpamSeverity) del self._collideSpamSeverity else: self._collideSpamSeverity = n.getSeverity() n.setSeverity(NSSpam) elif wordIs('~notify'): args = word.split() n = Notify.ptr().getCategory(args[1]) n.setSeverity({ 'error': NSError, 'warning': NSWarning, 'info': NSInfo, 'debug': NSDebug, 'spam': NSSpam }[args[2]]) elif wordIs('~stress'): factor = word[7:] if factor: factor = float(factor) LOD.setStressFactor(factor) response = 'Set LOD stress factor to %s' % factor else: factor = LOD.getStressFactor() response = 'LOD stress factor is %s' % factor self.setMagicWordResponse(response) elif wordIs('~for'): self.forAnother(word, avId, zoneId) elif wordIs('~badname'): word = '~for %s ~badname' % word[9:] print 'word is %s' % word self.forAnother(word, avId, zoneId) elif wordIs('~avId'): self.setMagicWordResponse(str(localAvatar.doId)) elif wordIs('~doId'): name = string.strip(word[6:]) objs = self.identifyDistributedObjects(name) if len(objs) == 0: response = '%s is unknown.' % name else: response = '' for (name, obj) in objs: response += '\n%s %d' % (name, obj.doId) response = response[1:] self.setMagicWordResponse(response) elif wordIs('~exec'): from otp.chat import ChatManager ChatManager.ChatManager.execChat = 1 elif wordIs('~run'): self.toggleRun() elif wordIs('~runFaster'): if config.GetBool('want-running', 1): args = word.split() if len(args) > 1: base.debugRunningMultiplier = float(args[1]) else: base.debugRunningMultiplier = 10 inputState.set('debugRunning', True) elif wordIs('~who'): avIds = [] for av in Avatar.Avatar.ActiveAvatars: if hasattr(av, 'getFriendsList'): avIds.append(av.doId) self.d_setWho(avIds) elif wordIs('~sync'): tm = self.cr.timeManager if tm == None: response = 'No TimeManager.' self.setMagicWordResponse(response) else: tm.extraSkew = 0.0 skew = string.strip(word[5:]) if skew != '': tm.extraSkew = float(skew) globalClockDelta.clear() tm.handleHotkey() elif wordIs('~period'): timeout = string.strip(word[7:]) if timeout != '': seconds = int(timeout) self.cr.stopPeriodTimer() self.cr.resetPeriodTimer(seconds) self.cr.startPeriodTimer() if self.cr.periodTimerExpired: response = 'Period timer has expired.' elif self.cr.periodTimerStarted: elapsed = globalClock.getFrameTime() - self.cr.periodTimerStarted secondsRemaining = self.cr.periodTimerSecondsRemaining - elapsed response = 'Period timer expires in %s seconds.' % int(secondsRemaining) else: response = 'Period timer not set.' self.setMagicWordResponse(response) elif wordIs('~DIRECT'): args = word.split() fEnableLight = 0 if len(args) > 1: if direct and args[1] == 'CAM': direct.enable() taskMgr.removeTasksMatching('updateSmartCamera*') camera.wrtReparentTo(render) direct.cameraControl.enableMouseFly() self.setMagicWordResponse('Enabled DIRECT camera') return None elif args[1] == 'LIGHT': fEnableLight = 1 base.startTk() from direct.directtools import DirectSession if fEnableLight: direct.enableLight() else: direct.enable() self.setMagicWordResponse('Enabled DIRECT') elif wordIs('~TT'): if not direct: return None args = word.split() if len(args) > 1: if args[1] == 'CAM': direct.cameraControl.disableMouseFly() camera.wrtReparentTo(base.localAvatar) base.localAvatar.startUpdateSmartCamera() self.setMagicWordResponse('Disabled DIRECT camera') return None direct.disable() camera.wrtReparentTo(base.localAvatar) base.localAvatar.startUpdateSmartCamera() self.setMagicWordResponse('Disabled DIRECT') elif wordIs('~net'): if self.cr.networkPlugPulled(): self.cr.restoreNetworkPlug() self.cr.startHeartbeat() response = 'Network restored.' else: self.cr.pullNetworkPlug() self.cr.stopHeartbeat() response = 'Network disconnected.' self.setMagicWordResponse(response) elif wordIs('~disconnect'): base.cr.distributedDistrict.sendUpdate('broadcastMessage') elif wordIs('~model'): args = word.split() path = args[1] model = loader.loadModel(path) model.reparentTo(localAvatar) model.wrtReparentTo(render) self.setMagicWordResponse('loaded %s' % path) elif wordIs('~axis'): axis = loader.loadModel('models/misc/xyzAxis.bam') axis.reparentTo(render) axis.setPos(base.localAvatar, 0, 0, 0) axis.setHpr(render, 0, 0, 0) axis10 = loader.loadModel('models/misc/xyzAxis.bam') axis10.reparentTo(render) axis10.setPos(base.localAvatar, 0, 0, 0) axis10.setScale(10) axis10.setHpr(render, 0, 0, 0) axis10.setColorScale(1, 1, 1, 0.4) axis10.setTransparency(1) elif wordIs('~clearAxes') or wordIs('~clearAxis'): render.findAllMatches('**/xyzAxis.egg').detach() elif wordIs('~myAxis'): if hasattr(self, 'myAxis'): self.myAxis.detachNode() del self.myAxis else: self.myAxis = loader.loadModel('models/misc/xyzAxis.bam') self.myAxis.reparentTo(localAvatar) elif wordIs('~osd'): onScreenDebug.enabled = not onScreenDebug.enabled elif wordIs('~osdScale'): args = word.split() defScale = 0.05 if len(args) > 1: scale = float(args[1]) else: scale = 1.0 onScreenDebug.onScreenText.setScale(defScale * scale) elif wordIs('~osdTaskMgr'): if taskMgr.osdEnabled(): taskMgr.stopOsd() else: if not onScreenDebug.enabled: onScreenDebug.enabled = True taskMgr.startOsd() elif wordIs('~fps'): self.doFps(word, avId, zoneId) elif wordIs('~sleep'): args = word.split() if len(args) > 1: s = float(args[1]) base.setSleep(s) response = 'sleeping %s' % s else: base.setSleep(0.0) response = 'not sleeping' self.setMagicWordResponse(response) elif wordIs('~objects'): args = word.split() from direct.showbase import ObjectReport report = ObjectReport.ObjectReport('client ~objects') if 'all' in args: self.notify.info('printing full object set...') report.getObjectPool().printObjsByType(printReferrers = 'ref' in args) if hasattr(self, 'baselineObjReport'): self.notify.info('calculating diff from baseline ObjectReport...') self.lastDiff = self.baselineObjReport.diff(report) self.lastDiff.printOut(full='diff' in args or 'dif' in args) if 'baseline' in args or not hasattr(self, 'baselineObjReport'): self.notify.info('recording baseline ObjectReport...') if hasattr(self, 'baselineObjReport'): self.baselineObjReport.destroy() self.baselineObjReport = report self.setMagicWordResponse('objects logged') elif wordIs('~containers'): args = word.split() limit = 30 if 'full' in args: limit = None ContainerReport.ContainerReport('~containers', log = True, limit = limit, threaded = True) elif wordIs('~garbage'): args = word.split() full = 'full' in args safeMode = 'safe' in args GarbageReport.GarbageLogger('~garbage', fullReport = full, threaded = True, safeMode = safeMode) elif wordIs('~guicreates'): base.printGuiCreates = True self.setMagicWordResponse('printing gui creation stacks') elif wordIs('~creategarbage'): GarbageReport._createGarbage() elif wordIs('~leakTask'): def leakTask(task): return task.cont taskMgr.add(leakTask, uniqueName('leakedTask')) leakTask = None elif wordIs('~leakmessage'): MessengerLeakDetector._leakMessengerObject() self.down_setMagicWordResponse(senderId, 'messenger leak object created') elif wordIs('~pstats'): args = word.split() hostname = None port = None if len(args) > 1: hostname = args[1] if len(args) > 2: port = int(args[2]) base.wantStats = 1 Task.TaskManager.pStatsTasks = 1 result = base.createStats(hostname, port) connectionName = '%s' % hostname if port is not None: connectionName += ':%s' % port if result: response = 'connected client pstats to %s' % connectionName else: response = 'could not connect pstats to %s' % connectionName self.setMagicWordResponse(response) elif wordIs('~profile'): args = word.split() if len(args) > 1: num = int(args[1]) else: num = 5 base.profileFrames(num) self.setMagicWordResponse('profiling %s client frames...' % num) elif wordIs('~taskprofile'): args = word.split() wasOn = bool(taskMgr.getProfileTasks()) if len(args) > 1: setting = bool(int(args[1])) else: setting = not taskMgr.getProfileTasks() taskMgr.setProfileTasks(setting) self.setMagicWordResponse('task profiling %s' % (choice(setting, 'ON', 'OFF'), choice(wasOn == setting, ' already', ''))) elif wordIs('~logtaskprofiles'): args = word.split() if len(args) > 1: name = args[1] else: name = None taskMgr.logTaskProfiles(name) response = 'logged task profiles%s' % choice(name, ' for %s' % name, '') self.setMagicWordResponse(response) elif wordIs('~taskprofileflush'): args = word.split() if len(args) > 1: name = args[1] else: name = None taskMgr.flushTaskProfiles(name) response = 'flushed AI task profiles%s' % choice(name, ' for %s' % name, '') self.setMagicWordResponse(response) elif wordIs('~objectcount'): base.cr.printObjectCount() self.setMagicWordResponse('logging client distributed object count...') elif wordIs('~taskmgr'): print taskMgr self.setMagicWordResponse('logging client taskMgr...') elif wordIs('~jobmgr'): print jobMgr self.setMagicWordResponse('logging client jobMgr...') elif wordIs('~jobtime'): args = word.split() if len(args) > 1: time = float(args[1]) else: time = None response = '' if time is None: time = jobMgr.getDefaultTimeslice() response = 'reset client jobMgr timeslice to %s ms' % time else: response = 'set client jobMgr timeslice to %s ms' % time time = time / 1000.0 jobMgr.setTimeslice(time) self.setMagicWordResponse(response) elif wordIs('~detectleaks'): started = self.cr.startLeakDetector() self.setMagicWordResponse(choice(started, 'leak detector started', 'leak detector already started')) elif wordIs('~taskthreshold'): args = word.split() if len(args) > 1.0: threshold = float(args[1]) else: threshold = None response = '' if threshold is None: threshold = taskMgr.DefTaskDurationWarningThreshold response = 'reset task duration warning threshold to %s' % threshold else: response = 'set task duration warning threshold to %s' % threshold taskMgr.setTaskDurationWarningThreshold(threshold) self.setMagicWordResponse(response) elif wordIs('~messenger'): print messenger self.setMagicWordResponse('logging client messenger...') elif wordIs('~clientcrash'): DelayedCall(Functor(self.notify.error, '~clientcrash: simulating a client crash')) elif wordIs('~badDelete'): doId = 0 while doId in base.cr.doId2do: doId += 1 DelayedCall(Functor(base.cr.deleteObjectLocation, ScratchPad(doId = doId), 1, 1)) self.setMagicWordResponse('doing bad delete') elif wordIs('~idTags'): messenger.send('nameTagShowAvId', []) base.idTags = 1 elif wordIs('~nameTags'): messenger.send('nameTagShowName', []) base.idTags = 0 elif wordIs('~flush'): base.cr.doDataCache.flush() base.cr.cache.flush() self.setMagicWordResponse('client object and data caches flushed') else: return 0 return 1 def toggleRun(self): if config.GetBool('want-running', 1): inputState.set('debugRunning', inputState.isSet('debugRunning') != True) def d_setMagicWord(self, magicWord, avId, zoneId): self.sendUpdate('setMagicWord', [ magicWord, avId, zoneId, base.cr.userSignature]) def b_setMagicWord(self, magicWord, avId = None, zoneId = None): if self.cr.wantMagicWords: if avId == None: avId = base.localAvatar.doId if zoneId == None: try: zoneId = self.cr.playGame.getPlace().getZoneId() except: pass if zoneId == None: zoneId = 0 self.d_setMagicWord(magicWord, avId, zoneId) if magicWord.count('~crash'): args = magicWord.split() if len(args) > 1: base.launcher.setPandaErrorCode(args[1]) self.notify.info('Simulating client crash: exit error = %s' % args[1]) else: self.notify.info('Simulating client crash') import sys sys.exit() self.setMagicWord(magicWord, avId, zoneId) def setMagicWordResponse(self, response): base.localAvatar.setChatAbsolute(response, CFSpeech | CFTimeout) def d_setWho(self, avIds): self.sendUpdate('setWho', [avIds]) def forAnother(self, word, avId, zoneId): b = 5 while word[b:b + 2] != ' ~': b += 1 if b >= len(word): self.setMagicWordResponse('No next magic word!') return nextWord = word[b + 1:] name = string.strip(word[5:b]) id = self.identifyAvatar(name) if id == None: self.setMagicWordResponse("Don't know who %s is." % name) return self.d_setMagicWord(nextWord, id, zoneId) def identifyAvatar(self, name): self.notify.error('Pure virtual - please override me.') def identifyDistributedObjects(self, name): result = [] lowerName = string.lower(name) for obj in self.cr.doId2do.values(): className = obj.__class__.__name__ try: name = obj.getName() except: name = className if string.lower(name) == lowerName or string.lower(className) == lowerName or string.lower(className) == 'distributed' + lowerName: result.append((name, obj)) return result def getCSBitmask(self, str): words = string.lower(str).split() if len(words) == 0: return None invalid = '' bitmask = BitMask32.allOff() for w in words: if w == 'wall': bitmask |= OTPGlobals.WallBitmask elif w == 'floor': bitmask |= OTPGlobals.FloorBitmask elif w == 'cam': bitmask |= OTPGlobals.CameraBitmask elif w == 'catch': bitmask |= OTPGlobals.CatchBitmask elif w == 'ghost': bitmask |= OTPGlobals.GhostBitmask elif w == 'pet': bitmask |= OTPGlobals.PetBitmask elif w == 'furniture': bitmask |= OTPGlobals.FurnitureSideBitmask | OTPGlobals.FurnitureTopBitmask | OTPGlobals.FurnitureDragBitmask elif w == 'furnitureside': bitmask |= OTPGlobals.FurnitureSideBitmask elif w == 'furnituretop': bitmask |= OTPGlobals.FurnitureTopBitmask elif w == 'furnituredrag': bitmask |= OTPGlobals.FurnitureDragBitmask elif w == 'pie': bitmask |= OTPGlobals.PieBitmask else: try: bitmask |= BitMask32.bit(int(w)) print bitmask except ValueError: invalid += ' ' + w if invalid: self.setMagicWordResponse('Unknown CS keyword(s): %s' % invalid) return bitmask def getFontByName(self, fontname): if fontname == 'default': return TextNode.getDefaultFont() elif fontname == 'interface': return OTPGlobals.getInterfaceFont() elif fontname == 'sign': return OTPGlobals.getSignFont() else: return None def showfont(self, fontname): fontname = string.strip(string.lower(fontname)) font = self.getFontByName(fontname) if font == None: self.setMagicWordResponse('Unknown font: %s' % fontname) return None if not isinstance(font, DynamicTextFont): self.setMagicWordResponse('Font %s is not dynamic.' % fontname) return None self.hidefont() self.shownFontNode = aspect2d.attachNewNode('shownFont') tn = TextNode('square') tn.setCardActual(0.0, 1.0, -1.0, 0.0) tn.setFrameActual(0.0, 1.0, -1.0, 0.0) tn.setCardColor(1, 1, 1, 0.5) tn.setFrameColor(1, 1, 1, 1) tn.setFont(font) tn.setText(' ') numXPages = 2 numYPages = 2 pageScale = 0.8 pageMargin = 0.1 numPages = font.getNumPages() x = 0 y = 0 for pi in range(numPages): page = font.getPage(pi) tn.setCardTexture(page) np = self.shownFontNode.attachNewNode(tn.generate()) np.setScale(pageScale) (np.setPos(((float(x) / numXPages) * 2 - 1) + pageMargin, 0, 1 - (float(y) / numYPages) * 2 - pageMargin),) x += 1 if x >= numXPages: y += 1 x = 0 def hidefont(self): if self.shownFontNode != None: self.shownFontNode.removeNode() self.shownFontNode = None def showShadowCollisions(self): try: base.shadowTrav.showCollisions(render) except: self.setMagicWordResponse('CollisionVisualizer is not compiled in.') def hideShadowCollisions(self): base.shadowTrav.hideCollisions() def showCollisions(self): try: base.cTrav.showCollisions(render) except: self.setMagicWordResponse('CollisionVisualizer is not compiled in.') def hideCollisions(self): base.cTrav.hideCollisions() def showCameraCollisions(self): try: localAvatar.ccTrav.showCollisions(render) except: self.setMagicWordResponse('CollisionVisualizer is not compiled in.') def hideCameraCollisions(self): localAvatar.ccTrav.hideCollisions() def doFps(self, word, avId, zoneId): args = word.split() response = None if len(args) == 1 or args[1] == 'normal': if globalClock.getMode() != ClockObject.MNormal: globalClock.setMode(ClockObject.MNormal) response = 'Normal frame rate set.' else: base.setFrameRateMeter(not base.frameRateMeter) elif args[1] == 'forced': fps = float(args[2]) globalClock.setMode(ClockObject.MForced) globalClock.setDt(1.0 / fps) response = 'Frame rate forced to %s fps.' % fps base.setFrameRateMeter(1) elif args[1] == 'degrade': factor = float(args[2]) globalClock.setMode(ClockObject.MDegrade) globalClock.setDegradeFactor(factor) response = 'Frame rate degraded by factor of %s.' % factor base.setFrameRateMeter(1) elif args[1][-1] == '%': percent = float(args[1][:-1]) if percent == 100: globalClock.setMode(ClockObject.MNormal) response = 'Normal frame rate set.' else: globalClock.setMode(ClockObject.MDegrade) globalClock.setDegradeFactor(100.0 / percent) response = 'Frame rate degraded to %s percent.' % percent base.setFrameRateMeter(1) else: try: fps = float(args[1]) except: fps = None if fps != None: globalClock.setMode(ClockObject.MForced) globalClock.setDt(1.0 / fps) response = 'Frame rate forced to %s fps.' % fps base.setFrameRateMeter(1) else: response = 'Unknown fps command: ~s' % args[1] if base.frameRateMeter: globalClock.setAverageFrameRateInterval(ConfigVariableDouble('average-frame-rate-interval').getValue()) if response != None: self.setMagicWordResponse(response) def identifyAvatar(self, name): for av in Avatar.Avatar.ActiveAvatars: if isinstance(av, self.GameAvatarClass) and av.getName() == name: return av.doId lowerName = string.lower(name) for av in Avatar.Avatar.ActiveAvatars: if isinstance(av, self.GameAvatarClass) and string.strip(string.lower(av.getName())) == lowerName: return av.doId try: avId = int(name) return avId except: pass return None def toggleGuiPopup(self): if self.guiPopupShown: base.mouseWatcherNode.hideRegions() self.guiPopupShown = 0 else: base.mouseWatcherNode.showRegions(render2d, 'gui-popup', 0) self.guiPopupShown = 1 def magicWord(mw): messenger.send('magicWord', [mw]) import __builtin__ __builtin__.magicWord = magicWord
baa63fd29bd69bce20182d81ba8ea10fc20aeaef
55c24645dd63a1c41037dcfb9fb45bc7bcdea4be
/venv/lib/python3.7/site-packages/dotenv/__init__.py
d412cb7ab9ae9061a2a73220df6a6d545add030c
[]
no_license
abdullah-nawaz/flask-boilerplate
7c42801a21ee3e6a647cc8a7d92e0285f8e86cad
01bc7fe1140e8ec613de4a38546a07ddfbdbd254
refs/heads/master
2022-12-02T05:06:08.297759
2020-06-24T21:36:32
2020-06-24T21:36:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
from .compat import IS_TYPE_CHECKING from .main import load_dotenv, get_key, set_key, unset_key, find_dotenv, dotenv_values if IS_TYPE_CHECKING: from typing import Any, Optional def load_ipython_extension(ipython): # type: (Any) -> None from .ipython import load_ipython_extension load_ipython_extension(ipython) def get_cli_string(path=None, action=None, key=None, value=None, quote=None): # type: (Optional[str], Optional[str], Optional[str], Optional[str], Optional[str]) -> str """Returns a string suitable for running as a shell script. Useful for converting a arguments passed to a fabric task to be passed to a `local` or `run` command. """ command = ["dotenv"] if quote: command.append("-q %s" % quote) if path: command.append("-f %s" % path) if action: command.append(action) if key: command.append(key) if value: if " " in value: command.append('"%s"' % value) else: command.append(value) return " ".join(command).strip() __all__ = [ "get_cli_string", "load_dotenv", "dotenv_values", "get_key", "set_key", "unset_key", "find_dotenv", "load_ipython_extension", ]
3074414644d1dd7e52c820a7a85ceea77e7b7715
c137d7fb6eaa1c1900a63b8dae6b027176a98b6f
/MxShop/MxShop/settings.py
9006c19e5c0acd8bbeaca3301b28ae570a00c216
[]
no_license
LasterSmithKim/vuedjango
22220414ad2f928f0a0df1a0e68c9083e90c1cc7
4a5b7fee4dd3f2d31255d7dc9188ea977a75db29
refs/heads/master
2022-12-10T19:52:25.014956
2019-12-23T16:23:01
2019-12-23T16:23:01
225,315,491
0
0
null
2022-11-22T04:52:05
2019-12-02T07:47:12
JavaScript
UTF-8
Python
false
false
4,922
py
""" Django settings for MxShop project. Generated by 'django-admin startproject' using Django 2.2.7. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import sys # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, BASE_DIR) sys.path.insert(0, os.path.join(BASE_DIR, 'apps')) sys.path.insert(0, os.path.join(BASE_DIR, 'extra_apps')) import datetime # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'x*wj-nly56z6q5_9c67tg-q6ma$(+c)sp4b!^2sqe-a_ak683w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] AUTH_USER_MODEL = 'users.UserProfile' # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'DjangoUeditor', 'users.apps.UsersConfig', 'goods.apps.GoodsConfig', 'trade.apps.TradeConfig', 'user_operation.apps.UserOperationConfig', 'xadmin', 'crispy_forms', 'rest_framework', 'reversion', 'django_filters', 'corsheaders',#解决跨越问题 'rest_framework.authtoken', ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] CORS_ORIGIN_ALLOW_ALL = True ROOT_URLCONF = 'MxShop.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'MxShop.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'vuedjango', 'USER': 'vuedjango', 'PASSWORD': 'smith123', 'HOST': '192.168.56.101', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True #自定义用户验证 AUTHENTICATION_BACKENDS = [ 'users.views.CustomBackend', ] JWT_AUTH = { 'JWT_EXPIRATION_DELTA': datetime.timedelta(days=7), 'JWT_AUTH_HEADER_PREFIX': 'JWT', } # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), ) # 添加默认的静态目录[收集使用] STATIC_ROOT = os.path.join(BASE_DIR, "static_all") # 设置上传文件的路径 MEDIA_URL="/media/" MEDIA_ROOT=os.path.join(BASE_DIR, "media") REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', #'rest_framework.authentication.TokenAuthentication',Token验证方法 #'rest_framework_jwt.authentication.JSONWebTokenAuthentication', 将jsonewebtoken验证方法应用于具体app的模型中,不要对全局配置 ), #api接口文档 'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema' } #手机号验证 正则表达式 REGEX_MOBILE = "^1[358]\d{9}$|^147\d{8}$|^176\d{8}$" #互亿网配置信息 APIUSER = "********" APIKEY = "********"
2275f0288c637137c69388bc3029ea244a9b7fb4
0b53826167ae4337a92360ef0a8b37f0a30e1aef
/plan_b.py
2e84b654e6fd23e18e9a743260ff6e065227906e
[]
no_license
nyghtowl/Evergreen_Competition
712ac2c885e1622e12bce178e868c00aefd6fa2d
456c6342cab250f61e2c02ee9d1199864342d375
refs/heads/master
2021-01-20T00:41:23.141388
2014-07-19T21:48:55
2014-07-19T21:48:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,678
py
""" beating the benchmark @StumbleUpon Evergreen Challenge __author__ : Abhishek Thakur """ # -*- coding: utf-8 -*- import numpy as np from sklearn import metrics,preprocessing,cross_validation from sklearn.feature_extraction.text import TfidfVectorizer import sklearn.linear_model as lm import pandas as p loadData = lambda f: np.genfromtxt(open(f,'r'), delimiter=' ') def main(): print "loading data.." traindata = list(np.array(p.read_table('../data/train.tsv'))[:,2]) testdata = list(np.array(p.read_table('../data/test.tsv'))[:,2]) y = np.array(p.read_table('../data/train.tsv'))[:,-1] tfv = TfidfVectorizer(min_df=3, max_features=None, strip_accents='unicode', analyzer='word',token_pattern=r'\w{1,}',ngram_range=(1, 2), use_idf=1,smooth_idf=1,sublinear_tf=1) rd = lm.LogisticRegression(penalty='l2', dual=True, tol=0.0001, C=1, fit_intercept=True, intercept_scaling=1.0, class_weight=None, random_state=None) X_all = traindata + testdata lentrain = len(traindata) print "fitting pipeline" tfv.fit(X_all) print "transforming data" X_all = tfv.transform(X_all) X = X_all[:lentrain] X_test = X_all[lentrain:] print "20 Fold CV Score: ", np.mean(cross_validation.cross_val_score(rd, X, y, cv=20, scoring='roc_auc')) print "training on full data" rd.fit(X,y) pred = rd.predict_proba(X_test)[:,1] testfile = p.read_csv('../data/test.tsv', sep="\t", na_values=['?'], index_col=1) pred_df = p.DataFrame(pred, index=testfile.index, columns=['label']) pred_df.to_csv('benchmark.csv') print "submission file created.." if __name__=="__main__": main()
5af284d0fe6592007bb1978462f2154dfd926980
9673935b03b25683b79e2e28a4584ebccd74cda9
/closed/QCT/code/dlrm/tensorrt/infer.py
ae0dbe685a2d63f1e731a74d0cc78e3da802a9ec
[ "Apache-2.0" ]
permissive
wilderfield/inference_results_v0.7
7e737acec72ab0e79cf95a63987184f86c2cb0a2
d63bb28a2919c79b69460005e686688f3fa033f1
refs/heads/master
2023-01-03T03:24:28.608820
2020-10-29T18:08:46
2020-10-29T18:08:46
306,124,077
0
0
Apache-2.0
2020-10-21T19:15:17
2020-10-21T19:15:12
null
UTF-8
Python
false
false
4,431
py
#! /usr/bin/env python3 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys import ctypes sys.path.insert(0, os.getcwd()) # The plugin .so file has to be loaded at global scope and before `import torch` to avoid cuda version mismatch. DLRM_INTERACTIONS_PLUGIN_LIBRARY="build/plugins/DLRMInteractionsPlugin/libdlrminteractionsplugin.so" if not os.path.isfile(DLRM_INTERACTIONS_PLUGIN_LIBRARY): raise IOError("{}\n{}\n".format( "Failed to load library ({}).".format(DLRM_INTERACTIONS_PLUGIN_LIBRARY), "Please build the DLRM Interactions plugin." )) ctypes.CDLL(DLRM_INTERACTIONS_PLUGIN_LIBRARY) DLRM_BOTTOM_MLP_PLUGIN_LIBRARY="build/plugins/DLRMBottomMLPPlugin/libdlrmbottommlpplugin.so" if not os.path.isfile(DLRM_BOTTOM_MLP_PLUGIN_LIBRARY): raise IOError("{}\n{}\n".format( "Failed to load library ({}).".format(DLRM_BOTTOM_MLP_PLUGIN_LIBRARY), "Please build the DLRM Bottom MLP plugin." )) ctypes.CDLL(DLRM_BOTTOM_MLP_PLUGIN_LIBRARY) from code.common.runner import EngineRunner, get_input_format from code.common import logging import code.common.arguments as common_args import json import numpy as np from sklearn.metrics import roc_auc_score import tensorrt as trt import torch import time def evaluate(ground_truths, predictions): assert len(ground_truths) == len(predictions), "Number of ground truths are different from number of predictions" return roc_auc_score(ground_truths, predictions) def run_dlrm_accuracy(engine_file, batch_size, num_pairs=10000000, verbose=False): if verbose: logging.info("Running DLRM accuracy test with:") logging.info(" engine_file: {:}".format(engine_file)) logging.info(" batch_size: {:}".format(batch_size)) logging.info(" num_pairs: {:}".format(num_pairs)) runner = EngineRunner(engine_file, verbose=verbose) pair_dir = os.path.join(os.getenv("PREPROCESSED_DATA_DIR", "build/preprocessed_data"), "criteo", "full_recalib") input_dtype, input_format = get_input_format(runner.engine) if input_dtype == trt.DataType.FLOAT: format_string = "fp32" elif input_dtype == trt.DataType.HALF: format_string = "fp16" elif input_dtype == trt.DataType.INT8: format_string = "int8" if input_format == trt.TensorFormat.CHW4: format_string += "_chw4" else: raise NotImplementedError("Unsupported DataType {:}".format(input_dtype)) numerical_inputs = np.load(os.path.join(pair_dir, "numeric_{:}.npy".format(format_string))) categ_inputs = np.load(os.path.join(pair_dir, "categorical_int32.npy")) predictions = [] refs = [] batch_idx = 0 for pair_idx in range(0, int(num_pairs), batch_size): actual_batch_size = batch_size if pair_idx + batch_size <= num_pairs else num_pairs - pair_idx numerical_input = np.ascontiguousarray(numerical_inputs[pair_idx:pair_idx + actual_batch_size]) categ_input = np.ascontiguousarray(categ_inputs[pair_idx:pair_idx + actual_batch_size]) start_time = time.time() outputs = runner([numerical_input, categ_input], actual_batch_size) if verbose: logging.info("Batch {:d} (Size {:}) >> Inference time: {:f}".format(batch_idx, actual_batch_size, time.time() - start_time)) predictions.extend(outputs[0][:actual_batch_size]) batch_idx += 1 ground_truths = np.load(os.path.join(pair_dir, "ground_truth.npy"))[:num_pairs].tolist() return evaluate(ground_truths, predictions) def main(): args = common_args.parse_args(common_args.ACCURACY_ARGS) logging.info("Running accuracy test...") acc = run_dlrm_accuracy(args["engine_file"], args["batch_size"], args["num_samples"], verbose=args["verbose"]) logging.info("Accuracy: {:}".format(acc)) if __name__ == "__main__": main()
497cc3f06a4891c34917d8b345fd83fd16cc7af6
5d0d3cfac10e144468cc25d948e7994c5f968fd0
/src/T2D23D.py
930dfe4b34f879e793ca67eeaa01c43a64b3839b
[ "BSD-3-Clause", "MIT" ]
permissive
WYGNG/USTC_SSE_Project
1aff71631fd14dc26a0dd9190b76f97c5367d306
1c0cd4056f40445aed13ec1ae584608d625b9127
refs/heads/master
2022-12-26T13:53:48.543988
2020-09-27T08:02:08
2020-09-27T08:02:08
298,983,271
0
0
null
null
null
null
UTF-8
Python
false
false
8,229
py
import numpy as np import matplotlib.pyplot as plt import xlrd import math from scipy import optimize # 计算角度,(x1, y1, z1)为顶点 def get_angle1(x1,y1,z1,x2,y2,z2,x3,y3,z3): a=math.sqrt((x2-x3)**2+(y2-y3)**2+(z2-z3)**2) b=math.sqrt((x1-x3)**2+(y1-y3)**2+(z1-z3)**2) c=math.sqrt((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) if c*b==0: cosA=1 else: cosA=(a**2-c**2-b**2)/(-2*c*b) if cosA < -1.0: cosA=-1.0 elif cosA>1.0: cosA=1.0 A=math.acos(cosA) deg=math.degrees(A) return deg # 躯干12段连杆定义 # L = [40, 34, 34, 29, 29, 58, 58, 40, 50, 50, 42, 42] # 通过关节点坐标计算比例系数的初值 def get_s(point,L): s = [] s.append(math.sqrt((point[0] - point[2]) ** 2 + (point[1] - point[3]) ** 2) / L[0]) s.append(math.sqrt((point[2] - point[6]) ** 2 + (point[3] - point[7]) ** 2) / L[1]) s.append(math.sqrt((point[0] - point[4]) ** 2 + (point[1] - point[5]) ** 2) / L[2]) s.append(math.sqrt((point[6] - point[10]) ** 2 + (point[7] - point[11]) ** 2) / L[3]) s.append(math.sqrt((point[4] - point[8]) ** 2 + (point[5] - point[9]) ** 2) / L[4]) s.append(math.sqrt((point[2] - point[14]) ** 2 + (point[3] - point[15]) ** 2) / L[5]) s.append(math.sqrt((point[0] - point[12]) ** 2 + (point[1] - point[13]) ** 2) / L[6]) s.append(math.sqrt((point[12] - point[14]) ** 2 + (point[13] - point[15]) ** 2) / L[7]) s.append(math.sqrt((point[14] - point[18]) ** 2 + (point[15] - point[19]) ** 2) / L[8]) s.append(math.sqrt((point[12] - point[16]) ** 2 + (point[13] - point[17]) ** 2) / L[9]) s.append(math.sqrt((point[18] - point[22]) ** 2 + (point[19] - point[23]) ** 2) / L[10]) s.append(math.sqrt((point[16] - point[20]) ** 2 + (point[17] - point[21]) ** 2) / L[11]) s_target = max(s) #print("&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&",s_target) return s_target #由2D关节点坐标和比例系数s计算3D关节点坐标 def get_point_3d(point, s_target,L): z0 = 525 / s_target point_3d = [] point_3d.append([point[22] / s_target, point[23] / s_target, z0]) # 0 dz11 = math.sqrt( max(L[10] ** 2 - ((point[18] - point[22]) ** 2 + (point[19] - point[23]) ** 2) / (s_target ** 2), 0)) if point[33]<point[35]: dz11=-dz11 z14 = z0 + dz11 point_3d.append([point[18] / s_target, point[19] / s_target, z14]) # 1 dz9 = math.sqrt(max(L[8] ** 2 - ((point[14] - point[18]) ** 2 + (point[15] - point[19]) ** 2) / (s_target ** 2), 0)) if point[31]<point[33]: dz9=-dz9 z12 = z14 + dz9 point_3d.append([point[14] / s_target, point[15] / s_target, z12]) # 2 dz8 = math.sqrt(max(L[7] ** 2 - ((point[12] - point[14]) ** 2 + (point[13] - point[15]) ** 2) / (s_target ** 2), 0)) if point[30]<point[31]: dz8=-dz8 z11 = z12 + dz8 point_3d.append([point[12] / s_target, point[13] / s_target, z11]) # 3 dz10 = math.sqrt( max(L[9] ** 2 - ((point[12] - point[16]) ** 2 + (point[13] - point[17]) ** 2) / (s_target ** 2), 0)) if point[32]<point[30]: dz10=-dz10 z13 = z11 + dz10 point_3d.append([point[16] / s_target, point[17] / s_target, z13]) # 4 dz12 = math.sqrt( max(L[11] ** 2 - ((point[16] - point[20]) ** 2 + (point[17] - point[21]) ** 2) / (s_target ** 2), 0)) if point[34]<point[32]: dz12=-dz12 z15 = z13 + dz12 point_3d.append([point[20] / s_target, point[21] / s_target, z15]) # 5 dz6 = math.sqrt(max(L[5] ** 2 - ((point[2] - point[14]) ** 2 + (point[3] - point[15]) ** 2) / (s_target ** 2), 0)) if point[25]<point[31]: dz6=-dz6 z6 = z12 + dz6 point_3d.append([point[2] / s_target, point[3] / s_target, z6]) # 6 dz2 = math.sqrt(max(L[1] ** 2 - ((point[2] - point[6]) ** 2 + (point[3] - point[7]) ** 2) / (s_target ** 2), 0)) if point[27]<point[25]: dz2=-dz2 z8 = z6 + dz2 point_3d.append([point[6] / s_target, point[7] / s_target, z8]) # 7 dz4 = math.sqrt(max(L[3] ** 2 - ((point[6] - point[10]) ** 2 + (point[7] - point[11]) ** 2) / (s_target ** 2), 0)) if point[29]<point[27]: dz4=-dz4 z10 = z8 + dz4 point_3d.append([point[10] / s_target, point[11] / s_target, z10]) # 8 dz1 = math.sqrt(max(L[0] ** 2 - ((point[0] - point[2]) ** 2 + (point[1] - point[3]) ** 2) / (s_target ** 2), 0)) if point[24]<point[25]: dz1=-dz1 z5 = z6 + dz1 point_3d.append([point[0] / s_target, point[1] / s_target, z5]) # 9 dz3 = math.sqrt(max(L[2] ** 2 - ((point[0] - point[4]) ** 2 + (point[1] - point[5]) ** 2) / (s_target ** 2), 0)) if point[26]<point[24]: dz3=-dz3 z7 = z5 + dz3 point_3d.append([point[4] / s_target, point[5] / s_target, z7]) # dz5 = math.sqrt(max(L[4] ** 2 - ((point[4] - point[8]) ** 2 + (point[5] - point[9]) ** 2) / (s_target ** 2), 0)) if point[28]<point[26]: dz5=-dz5 z9 = z7 + dz5 point_3d.append([point[8] / s_target, point[9] / s_target, z9]) # 11 return point_3d # 单帧优化定义的目标函数 def f(s, point, s_target,L): dz1 = math.sqrt(max(L[0] ** 2 - ((point[0] - point[2]) ** 2 + (point[1] - point[3]) ** 2) / (s_target ** 2), 0)) dz2 = math.sqrt(max(L[1] ** 2 - ((point[2] - point[6]) ** 2 + (point[3] - point[7]) ** 2) / (s_target ** 2), 0)) dz3 = math.sqrt(max(L[2] ** 2 - ((point[0] - point[4]) ** 2 + (point[1] - point[5]) ** 2) / (s_target ** 2), 0)) dz4 = math.sqrt(max(L[3] ** 2 - ((point[6] - point[10]) ** 2 + (point[7] - point[11]) ** 2) / (s_target ** 2), 0)) dz5 = math.sqrt(max(L[4] ** 2 - ((point[4] - point[8]) ** 2 + (point[5] - point[9]) ** 2) / (s_target ** 2), 0)) dz6 = math.sqrt(max(L[5] ** 2 - ((point[2] - point[14]) ** 2 + (point[3] - point[15]) ** 2) / (s_target ** 2), 0)) dz8 = math.sqrt(max(L[7] ** 2 - ((point[12] - point[14]) ** 2 + (point[13] - point[15]) ** 2) / (s_target ** 2), 0)) dz9 = math.sqrt(max(L[8] ** 2 - ((point[14] - point[18]) ** 2 + (point[15] - point[19]) ** 2) / (s_target ** 2), 0)) dz10 = math.sqrt( max(L[9] ** 2 - ((point[12] - point[16]) ** 2 + (point[13] - point[17]) ** 2) / (s_target ** 2), 0)) dz11 = math.sqrt( max(L[10] ** 2 - ((point[18] - point[22]) ** 2 + (point[19] - point[23]) ** 2) / (s_target ** 2), 0)) dz12 = math.sqrt( max(L[11] ** 2 - ((point[16] - point[20]) ** 2 + (point[17] - point[21]) ** 2) / (s_target ** 2), 0)) y = 0 y += (s * math.sqrt(L[0] ** 2 - dz1 ** 2) - math.sqrt((point[0] - point[2]) ** 2 + (point[1] - point[3]) ** 2)) ** 2 +\ (s * math.sqrt(L[1] ** 2 - dz2 ** 2) - math.sqrt((point[2] - point[6]) ** 2 + (point[3] - point[7]) ** 2)) ** 2 +\ (s * math.sqrt(L[2] ** 2 - dz3 ** 2) - math.sqrt((point[0] - point[4]) ** 2 + (point[1] - point[5]) ** 2)) ** 2 +\ (s * math.sqrt(L[3] ** 2 - dz4 ** 2) - math.sqrt((point[6] - point[10]) ** 2 + (point[7] - point[11]) ** 2)) ** 2 +\ (s * math.sqrt(L[4] ** 2 - dz5 ** 2) - math.sqrt((point[4] - point[8]) ** 2 + (point[5] - point[9]) ** 2)) ** 2 +\ (s * math.sqrt(L[5] ** 2 - dz6 ** 2) - math.sqrt((point[2] - point[14]) ** 2 + (point[3] - point[15]) ** 2)) ** 2 +\ (s * math.sqrt(L[7] ** 2 - dz8 ** 2) - math.sqrt((point[12] - point[14]) ** 2 + (point[13] - point[15]) ** 2)) ** 2 +\ (s * math.sqrt(L[8] ** 2 - dz9 ** 2) - math.sqrt((point[14] - point[18]) ** 2 + (point[15] - point[19]) ** 2)) ** 2 +\ (s * math.sqrt(L[9] ** 2 - dz10 ** 2) - math.sqrt((point[12] - point[16]) ** 2 + (point[13] - point[17]) ** 2)) ** 2 +\ (s * math.sqrt(L[10] ** 2 - dz11 ** 2) - math.sqrt((point[18] - point[22]) ** 2 + (point[19] - point[23]) ** 2)) ** 2 +\ (s * math.sqrt(L[11] ** 2 - dz12 ** 2) - math.sqrt((point[16] - point[20]) ** 2 + (point[17] - point[21]) ** 2)) ** 2 # print("dz!!!!!!!!!!!!!!!!!!!!!!!",dz1,dz2,dz3,dz4,dz5,dz6,dz8,dz9,dz10,dz11,dz12) # print("\n") return y # 多帧优化定义的目标函数 def f_s(s, begin, end,worksheet1, L): z = 0 for i in range(end - begin + 1): point = worksheet1.row_values(begin + i) point.remove(point[0]) # s_target = get_s(point) z += f(s[i], point, s[i], L) return z
12f5298b94e2213e4c9b120eec42f9982a07c04b
96328f51c177bd53ca1d89199684af04008b0ba9
/wiki_graph/util.py
c48945b102b570f0b07df5e5f23f8b6aa844ca7a
[ "MIT" ]
permissive
mvwicky/wiki-graph
b4045bf8200d579e99f9f58e77672d4dfac93c50
a88e2f37e7d5b5ba93bcca67544746d682936f41
refs/heads/master
2020-03-11T16:52:19.213832
2018-05-14T16:23:00
2018-05-14T16:23:00
130,130,666
0
0
null
null
null
null
UTF-8
Python
false
false
1,511
py
import collections import itertools import sys def rec_sizeof(o, handlers={}, verbose=False): """Returns the approximate memory footprint an object and all of its contents. Automatically finds the contents of the following builtin containers and their subclasses: tuple, list, deque, dict, set and frozenset. To search other containers, add handlers to iterate over their contents: handlers = {SomeContainerClass: iter, OtherContainerClass: OtherContainerClass.get_elements} """ def dict_handler(d): return itertools.chain.from_iterable(d.items()) all_handlers = {tuple: iter, list: iter, collections.deque: iter, dict: dict_handler, set: iter, frozenset: iter} # user handlers take precedence all_handlers.update(handlers) # track which object id's have already been seen seen = set() # estimate sizeof object without __sizeof__ default_size = sys.getsizeof(0) def sizeof(o): # do not double count the same object if id(o) in seen: return 0 seen.add(id(o)) s = sys.getsizeof(o, default_size) if verbose: print(s, type(o), repr(o), file=sys.stderr) for typ, handler in all_handlers.items(): if isinstance(o, typ): s += sum(map(sizeof, handler(o))) break return s return sizeof(o)
98a07a8d052ae1d745b923459e18cd64001ebadb
d5a576c0b766124bd756922f818226d20867c6ef
/setup.py
a9c0a67377aef18bfcf1a11ca854655ec32fcda9
[ "CC0-1.0", "BSD-3-Clause" ]
permissive
fflewddur/python-phash
f6b32d4493858c2e9658d6b843dd816a5dcbfeb5
27152fd3c8b7a2cd032a33c25abeb423c582df65
refs/heads/master
2021-01-15T18:15:01.264905
2014-06-30T03:44:39
2014-06-30T03:44:39
21,335,530
2
0
null
null
null
null
UTF-8
Python
false
false
1,377
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys try: from setuptools import setup, Extension except ImportError: from distutils.core import setup, Extension if sys.argv[-1] == 'publish': os.system('python setup.py sdist upload') sys.exit() readme = open('README.rst').read() history = open('HISTORY.rst').read().replace('.. :changelog:', '') setup( name='phash', version='0.1.0', description='ctypes interface to libphash', long_description=readme + '\n\n' + history, author='Chris Adams', author_email='[email protected]', url='https://github.com/acdha/python-phash', packages=[ 'phash', ], package_dir={'phash': 'phash'}, scripts=['scripts/compare-images.py'], include_package_data=True, install_requires=[ 'more-itertools', ], license="BSD", zip_safe=False, keywords='phash', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', ], test_suite='tests', )
946673c401ad39509fd4681ff3e7bc0ff420ce49
3eacb8aa1e5e92dc354e61e3140009065257d643
/tests/test__order.py
0bb6ab3f4dddaf55af7934eafe1350d07e2e7f4b
[ "BSD-3-Clause" ]
permissive
dask-image/dask-ndfilters
d0db13802185ad719b07752074e57bd8d8dd8529
3e947e791e2b3dd3a59de04b9cb70987a75f2446
refs/heads/master
2021-01-20T00:45:51.188492
2018-08-30T21:59:18
2018-08-30T21:59:18
89,183,177
5
2
BSD-3-Clause
2018-08-30T21:36:20
2017-04-24T00:56:22
Python
UTF-8
Python
false
false
5,669
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import import pytest import numpy as np import scipy.ndimage.filters as sp_ndf import dask import dask.array as da import dask.array.utils as dau import dask_ndfilters as da_ndf assert dask @pytest.mark.parametrize( "da_func, extra_kwargs", [ (da_ndf.minimum_filter, {}), (da_ndf.median_filter, {}), (da_ndf.maximum_filter, {}), (da_ndf.rank_filter, {"rank": 0}), (da_ndf.percentile_filter, {"percentile": 0}), ] ) @pytest.mark.parametrize( "err_type, size, footprint, origin", [ (RuntimeError, None, None, 0), (TypeError, 1.0, None, 0), (RuntimeError, (1,), None, 0), (RuntimeError, [(1,)], None, 0), (RuntimeError, 1, np.ones((1,)), 0), (RuntimeError, None, np.ones((1,)), 0), (RuntimeError, None, np.ones((1, 0)), 0), (RuntimeError, 1, None, (0,)), (RuntimeError, 1, None, [(0,)]), (ValueError, 1, None, 1), (TypeError, 1, None, 0.0), (TypeError, 1, None, (0.0, 0.0)), (TypeError, 1, None, 1+0j), (TypeError, 1, None, (0+0j, 1+0j)), ] ) def test_order_filter_params(da_func, extra_kwargs, err_type, size, footprint, origin): a = np.arange(140.0).reshape(10, 14) d = da.from_array(a, chunks=(5, 7)) with pytest.raises(err_type): da_func(d, size=size, footprint=footprint, origin=origin, **extra_kwargs) @pytest.mark.parametrize( "da_func, extra_kwargs", [ (da_ndf.minimum_filter, {}), (da_ndf.median_filter, {}), (da_ndf.maximum_filter, {}), (da_ndf.rank_filter, {"rank": 0}), (da_ndf.percentile_filter, {"percentile": 0}), ] ) def test_ordered_filter_shape_type(da_func, extra_kwargs): size = 1 a = np.arange(140.0).reshape(10, 14) d = da.from_array(a, chunks=(5, 7)) assert all([(type(s) is int) for s in d.shape]) d2 = da_func(d, size=size, **extra_kwargs) assert all([(type(s) is int) for s in d2.shape]) @pytest.mark.parametrize( "sp_func, da_func, extra_kwargs", [ (sp_ndf.minimum_filter, da_ndf.minimum_filter, {}), (sp_ndf.median_filter, da_ndf.median_filter, {}), (sp_ndf.maximum_filter, da_ndf.maximum_filter, {}), (sp_ndf.rank_filter, da_ndf.rank_filter, {"rank": 0}), (sp_ndf.percentile_filter, da_ndf.percentile_filter, {"percentile": 0}), ] ) @pytest.mark.parametrize( "size, footprint", [ (1, None), ((1, 1), None), (None, np.ones((1, 1))), ] ) def test_ordered_filter_identity(sp_func, da_func, extra_kwargs, size, footprint): a = np.arange(140.0).reshape(10, 14) d = da.from_array(a, chunks=(5, 7)) dau.assert_eq( d, da_func(d, size=size, footprint=footprint, **extra_kwargs) ) dau.assert_eq( sp_func(a, size=size, footprint=footprint, **extra_kwargs), da_func(d, size=size, footprint=footprint, **extra_kwargs) ) @pytest.mark.parametrize( "da_func, kwargs", [ (da_ndf.minimum_filter, {"size": 1}), (da_ndf.median_filter, {"size": 1}), (da_ndf.maximum_filter, {"size": 1}), (da_ndf.rank_filter, {"size": 1, "rank": 0}), (da_ndf.percentile_filter, {"size": 1, "percentile": 0}), ] ) def test_order_comprehensions(da_func, kwargs): np.random.seed(0) a = np.random.random((3, 12, 14)) d = da.from_array(a, chunks=(3, 6, 7)) l2s = [da_func(d[i], **kwargs) for i in range(len(d))] l2c = [da_func(d[i], **kwargs)[None] for i in range(len(d))] dau.assert_eq(np.stack(l2s), da.stack(l2s)) dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c)) @pytest.mark.parametrize( "sp_func, da_func, extra_kwargs", [ (sp_ndf.minimum_filter, da_ndf.minimum_filter, {}), (sp_ndf.median_filter, da_ndf.median_filter, {}), (sp_ndf.maximum_filter, da_ndf.maximum_filter, {}), (sp_ndf.rank_filter, da_ndf.rank_filter, {"rank": 1}), (sp_ndf.percentile_filter, da_ndf.percentile_filter, {"percentile": 10}), ] ) @pytest.mark.parametrize( "size, footprint, origin", [ (2, None, 0), (None, np.ones((2, 3)), 0), (None, np.ones((2, 3)), (0, 1)), (None, np.ones((2, 3)), (0, -1)), (None, (np.mgrid[-2: 2+1, -2: 2+1]**2).sum(axis=0) < 2.5**2, 0), (None, (np.mgrid[-2: 2+1, -2: 2+1]**2).sum(axis=0) < 2.5**2, (1, 2)), (None, (np.mgrid[-2: 2+1, -2: 2+1]**2).sum(axis=0) < 2.5**2, (-1, -2)), (5, None, 0), (7, None, 0), (8, None, 0), (10, None, 0), (5, None, 2), (5, None, -2), ] ) def test_ordered_filter_compare(sp_func, da_func, extra_kwargs, size, footprint, origin): a = np.arange(140.0).reshape(10, 14) d = da.from_array(a, chunks=(5, 7)) dau.assert_eq( sp_func( a, size=size, footprint=footprint, origin=origin, **extra_kwargs ), da_func( d, size=size, footprint=footprint, origin=origin, **extra_kwargs ) )
f8b4ee7a035e6157e5582a93bf49c3a9b6ad803d
f1e11f9e50d061d05d581efa8805ab28b25d7b24
/climi/pppp/hw_spatial_pattern_check___
c14cab5e65815e0ec1c3c88f260e677acf70a59b
[ "MIT" ]
permissive
ahheo/climi
bdccb5116046dfbf0aa6e38e7400447e427eeae0
2043a23876a9e620d44b2e9dd34d487ee3e0fc4b
refs/heads/main
2023-07-09T01:24:17.514954
2023-07-07T05:13:16
2023-07-07T05:13:16
302,750,076
0
1
null
null
null
null
UTF-8
Python
false
false
2,876
#!/usr/bin/env python3 from climi.uuuu import * from climi.pppp import * import os import warnings import matplotlib as mpl mpl.use('pdf', force=True) import matplotlib.pyplot as plt import numpy as np import iris _here_ = get_path_(__file__) sites = dict( SE = (19, 45), W1 = (7, 51.5), W2 = (-1.5, 53), W3 = (8, 60) ) dataroot = '/nobackup/rossby22/sm_chali/DATA/hc/med/' outdir = '/nobackup/rossby24/users/sm_chali/DATA/hw2018/fig/' ffmt = 'thr_tx_{}_ALL_1989-2008_90.nc' datasets = ['EOBS20', 'ERA-Interim'] colors = plt.get_cmap('tab10').colors y0y1 = (1989, 2008) pp = 95 _djn = os.path.join def _get_data1(dataset): if dataset == datasets[0]: return extract_period_cube( iris.load_cube( '/home/rossby/imports/obs/EOBS/EOBS20/orig/' 'tx_ens_mean_0.1deg_reg_v20.0e.nc' ), *y0y1) elif dataset == datasets[1]: return extract_period_cube( concat_cube_( iris.load( '/nobackup/rossby22/sm_chali/DATA/' 'hw2018/iii/obs/ERAI/tasmax*' )), *y0y1) def main(): warnings.filterwarnings('ignore', category=UserWarning) #data for dataset in datasets: fig, ax = plt.subplots(figsize=(7.5, 4), tight_layout=True) #fig = init_fig_(fx=7.5, fy=4, l=.09, r=.98, t=.965, b=.15) #ax = fig.add_subplot(1, 1, 1) data0 = iris.load_cube(_djn(dataroot, ffmt.format(dataset))) data1 = _get_data1(dataset) for site, c in zip(sites.keys(), colors): data0_ = nearest_point_cube(data0, *sites[site]) data1_ = nearest_point_cube(data0, *sites[site]) data1__ = doy_f_cube( data1_, np.nanpercentile, f_Args=(pp,), ws=15, mF=np.nan) data1___ = np.diff(data1_.collapsed( 'time', iris.analysis.PERCENTILE, percent=[25, 75]).data) iqr_ = data1___[0] data = data0_.copy((data1__ - data0_).data/data1___) mjjas = np.sum(data.data[120:272]) rm_t_aux_cube(data) iris.coord_categorisation.add_day_of_year(data, 'time', name='doy') doy = data.coord('doy').points ax.plot(doy, data.data, color=c, lw=1.5 if site == list(sites.keys())[0] else .75, label='{} ({:.1f})'.format(site, mjjas)) ax.axvspan(120, 272, fc='0.8', alpha=.5, zorder=-1) ax.set_xlabel('Day of year') ax.set_ylabel('Normalized $T_{95th} - T_{90th}$') ax.set_xlim([min(doy), max(doy)]) ax.set_ylim([0,.4]) ax.legend(frameon=False) fn = _djn(outdir, '{}-90_{}_clm.pdf'.format(pp, dataset)) plt.savefig(fn, dpi=300) plt.close(fig) if __name__ == '__main__': main()
b4a8594c676f389559ad8b7b703c3698c7687ed2
7e157b3bffb170ff87e29880611be9b040d61a27
/purano/annotator/processors/tfidf.py
a941fe233977a850b27bd0b8b8c0de80ed1d253d
[ "Apache-2.0" ]
permissive
IlyaGusev/purano
8906d5e35e8a4f0f31144d874721d4e9e5f76359
07234a55e8c80d1e9d8aeb8197c58e36dd26da54
refs/heads/master
2022-06-21T09:57:45.624005
2021-07-27T18:41:37
2021-07-27T18:41:37
212,185,927
5
0
null
null
null
null
UTF-8
Python
false
false
1,588
py
from typing import List, Optional import numpy as np import torch from purano.annotator.processors import Processor from purano.models import Document from purano.proto.info_pb2 import Info as InfoPb from purano.training.models.tfidf import load_idfs, get_tfidf_vector, SVDEmbedder @Processor.register("tfidf") class TfIdfProcessor(Processor): def __init__( self, idfs_vocabulary: str, svd_torch_model_path: str ): word2idf, word2idx = load_idfs(idfs_vocabulary) self.word2idf = word2idf self.word2idx = word2idx self.svd_torch_model = None # type: Optional[SVDEmbedder] if svd_torch_model_path: self.svd_torch_model = torch.load(svd_torch_model_path) def __call__( self, docs: List[Document], infos: List[InfoPb], input_fields: List[str], output_field: str, ): embeddings = np.zeros((len(docs), len(self.word2idf)), dtype=np.float32) for doc_num, (doc, info) in enumerate(zip(docs, infos)): text = " ".join([getattr(doc, field) for field in input_fields]) data, indices = get_tfidf_vector(text, self.word2idf, self.word2idx) for index, value in zip(indices, data): embeddings[doc_num][index] = value final_embeddings = embeddings if self.svd_torch_model: final_embeddings = self.svd_torch_model(torch.FloatTensor(final_embeddings)) for doc_num, info in enumerate(infos): getattr(info, output_field).extend(final_embeddings[doc_num])
0d339371d555fa7f40da404b5092acbd841c381b
08cfc4fb5f0d2f11e4e226f12520a17c5160f0a2
/kubernetes/test/test_v1_namespace_list.py
eecef48f123f70650b3c855d6413abfa52021b87
[ "Apache-2.0" ]
permissive
ex3cv/client-python
5c6ee93dff2424828d064b5a2cdbed3f80b74868
2c0bed9c4f653472289324914a8f0ad4cbb3a1cb
refs/heads/master
2021-07-12T13:37:26.049372
2017-10-16T20:19:01
2017-10-16T20:19:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
953
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_namespace_list import V1NamespaceList class TestV1NamespaceList(unittest.TestCase): """ V1NamespaceList unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1NamespaceList(self): """ Test V1NamespaceList """ # FIXME: construct object with mandatory attributes with example values #model = kubernetes.client.models.v1_namespace_list.V1NamespaceList() pass if __name__ == '__main__': unittest.main()
4fa7a1d1958a21a196156bb7fb162e220b5a4c42
157d2a2f4031c58e5504bcbac5348ff53883facc
/rDj63/rDj63/urls.py
c4a78403fddc9db36bfb4f94aefa067e840b972c
[]
no_license
optirg-39/Django_gekSh
d78b635fd3ee88addd084b68ec35c6284adfb55c
1129a6df35c110dfeeeaaf1a76b2ebc192a5f1ce
refs/heads/master
2023-04-15T13:09:03.067099
2021-04-26T12:15:35
2021-04-26T12:15:35
352,018,795
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
"""rDj63 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from enroll import views urlpatterns = [ path('admin/', admin.site.urls), path('sign_up/', views.sign_up, name = 'signin1'), path('log_in/', views.log_in, name = 'login1'), path('user_profile/', views.user_profile, name = 'profile1'), path('logout_user/', views.user_logout, name = 'logout1'), ]
ba7c90fd43394d63878f354d584a396087cd06f9
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p2DJ/New/R2/benchmark/startPyquil122.py
3fd855f9728d33e5489e4eb157beb0e6dabf2e1b
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
# qubit number=2 # total number=10 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=1 prog += H(1) # number=4 prog += CNOT(0,1) # number=7 prog += X(1) # number=8 prog += CNOT(0,1) # number=9 prog += X(1) # number=3 prog += CNOT(1,0) # number=5 prog += CNOT(1,0) # number=6 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('1q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil122.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
270375ee24a54029cec52788cd572a47ddcc8f30
0804c9f4d46e15a93a4322808b487eb00c28da95
/Chapter 10/BPApp/HiTech/engg/routes.py
0a37098872ecb6b648d051b9c3b2fa6c8071f0b3
[ "MIT" ]
permissive
bpbpublications/Building-Web-Apps-with-Python-and-Flask
99b6e9312a41bea1ba6c6c5dce70f958b86ad768
4fbbe75fad9629f16ff5bf8bd603aa09dd04f9eb
refs/heads/main
2023-03-27T05:55:23.170813
2021-03-23T10:27:59
2021-03-23T10:27:59
339,637,598
3
3
null
null
null
null
UTF-8
Python
false
false
608
py
from flask import Blueprint, render_template engg=Blueprint('engg', __name__,template_folder='templates',static_folder='static') @engg.route('/') def index(): return render_template('engindex.html') @engg.route('/courses') def courses(): return '<h1>list of courses in Enginnering</h1>' @engg.route('/faculty') def faculty(): return '<h1>list of Engineering faculty members</h1>' @engg.route('/form') def form(): return render_template('form.html') from flask import Flask app=Flask(__name__) app.register_blueprint(engg) if __name__=='__main__': app.run(debug=True)
e62d95154c55d2a4f3766e12e5274d5f6283c5f7
213682d70d45739b8a4fd7c0fcf05437a0704c4d
/pipeline/ve/share/radical.pilot/examples/00_getting_started.py
f4a0df0d42b456b1edfef3b2a02e65281648c08e
[]
no_license
ATLAS-Titan/misc
d272adfe13fcbbea1562ca98c718bc1465032421
0a20d158d0d9a95ef72b6a8d0bccbb68193e98c0
refs/heads/master
2020-12-24T06:31:10.696708
2017-07-18T14:55:41
2017-07-18T14:55:41
73,486,659
0
2
null
null
null
null
UTF-8
Python
false
false
4,381
py
#!/usr/bin/env python __copyright__ = 'Copyright 2013-2014, http://radical.rutgers.edu' __license__ = 'MIT' import os import sys import radical.pilot as rp import radical.utils as ru # ------------------------------------------------------------------------------ # # READ the RADICAL-Pilot documentation: http://radicalpilot.readthedocs.org/ # # ------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # if __name__ == '__main__': # we use a reporter class for nicer output report = ru.LogReporter(name='radical.pilot') report.title('Getting Started (RP version %s)' % rp.version) # use the resource specified as argument, fall back to localhost if len(sys.argv) > 2: report.exit('Usage:\t%s [resource]\n\n' % sys.argv[0]) elif len(sys.argv) == 2: resource = sys.argv[1] else : resource = 'local.localhost' # Create a new session. No need to try/except this: if session creation # fails, there is not much we can do anyways... session = rp.Session() # all other pilot code is now tried/excepted. If an exception is caught, we # can rely on the session object to exist and be valid, and we can thus tear # the whole RP stack down via a 'session.close()' call in the 'finally' # clause... try: # read the config used for resource details report.info('read config') config = ru.read_json('%s/config.json' % os.path.dirname(os.path.abspath(__file__))) report.ok('>>ok\n') report.header('submit pilots') # Add a Pilot Manager. Pilot managers manage one or more ComputePilots. pmgr = rp.PilotManager(session=session) # Define an [n]-core local pilot that runs for [x] minutes # Here we use a dict to initialize the description object pd_init = { 'resource' : resource, 'runtime' : 15, # pilot runtime (min) 'exit_on_error' : True, 'project' : config[resource]['project'], 'queue' : config[resource]['queue'], 'access_schema' : config[resource]['schema'], 'cores' : config[resource]['cores'], } pdesc = rp.ComputePilotDescription(pd_init) # Launch the pilot. pilot = pmgr.submit_pilots(pdesc) report.header('submit units') # Register the ComputePilot in a UnitManager object. umgr = rp.UnitManager(session=session) umgr.add_pilots(pilot) # Create a workload of ComputeUnits. # Each compute unit runs '/bin/date'. n = 128 # number of units to run report.info('create %d unit description(s)\n\t' % n) cuds = list() for i in range(0, n): # create a new CU description, and fill it. # Here we don't use dict initialization. cud = rp.ComputeUnitDescription() cud.executable = '/bin/date' cuds.append(cud) report.progress() report.ok('>>ok\n') # Submit the previously created ComputeUnit descriptions to the # PilotManager. This will trigger the selected scheduler to start # assigning ComputeUnits to the ComputePilots. umgr.submit_units(cuds) # Wait for all compute units to reach a final state (DONE, CANCELED or FAILED). report.header('gather results') umgr.wait_units() except Exception as e: # Something unexpected happened in the pilot code above report.error('caught Exception: %s\n' % e) raise except (KeyboardInterrupt, SystemExit) as e: # the callback called sys.exit(), and we can here catch the # corresponding KeyboardInterrupt exception for shutdown. We also catch # SystemExit (which gets raised if the main threads exits for some other # reason). report.warn('exit requested\n') finally: # always clean up the session, no matter if we caught an exception or # not. This will kill all remaining pilots. report.header('finalize') session.close(cleanup=False) report.header() #-------------------------------------------------------------------------------
a6abb9c81b02af705e611a0bfd48a2fb56fa2acd
3784495ba55d26e22302a803861c4ba197fd82c7
/venv/lib/python3.6/site-packages/markdown/extensions/toc.py
dc80c7e8ecd3ee4e9f5d7702a9b13082a83e0314
[ "MIT" ]
permissive
databill86/HyperFoods
cf7c31f5a6eb5c0d0ddb250fd045ca68eb5e0789
9267937c8c70fd84017c0f153c241d2686a356dd
refs/heads/master
2021-01-06T17:08:48.736498
2020-02-11T05:02:18
2020-02-11T05:02:18
241,407,659
3
0
MIT
2020-02-18T16:15:48
2020-02-18T16:15:47
null
UTF-8
Python
false
false
13,174
py
""" Table of Contents Extension for Python-Markdown =============================================== See <https://Python-Markdown.github.io/extensions/toc> for documentation. Oringinal code Copyright 2008 [Jack Miller](https://codezen.org/) All changes Copyright 2008-2014 The Python Markdown Project License: [BSD](https://opensource.org/licenses/bsd-license.php) """ from . import Extension from ..treeprocessors import Treeprocessor from ..util import parseBoolValue, AMP_SUBSTITUTE, HTML_PLACEHOLDER_RE from ..postprocessors import UnescapePostprocessor import re import unicodedata import xml.etree.ElementTree as etree def slugify(value, separator): """ Slugify a string, to make it URL friendly. """ value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore') value = re.sub(r'[^\w\s-]', '', value.decode('ascii')).strip().lower() return re.sub(r'[%s\s]+' % separator, separator, value) IDCOUNT_RE = re.compile(r'^(.*)_([0-9]+)$') def unique(id, ids): """ Ensure id is unique in set of ids. Append '_1', '_2'... if not """ while id in ids or not id: m = IDCOUNT_RE.match(id) if m: id = '%s_%d' % (m.group(1), int(m.group(2))+1) else: id = '%s_%d' % (id, 1) ids.add(id) return id def stashedHTML2text(text, md, strip_entities=True): """ Extract raw HTML from stash, reduce to plain text and swap with placeholder. """ def _html_sub(m): """ Substitute raw html with plain text. """ try: raw = md.htmlStash.rawHtmlBlocks[int(m.group(1))] except (IndexError, TypeError): # pragma: no cover return m.group(0) # Strip out tags and/or entities - leaving text res = re.sub(r'(<[^>]+>)', '', raw) if strip_entities: res = re.sub(r'(&[\#a-zA-Z0-9]+;)', '', res) return res return HTML_PLACEHOLDER_RE.sub(_html_sub, text) def unescape(text): """ Unescape escaped text. """ c = UnescapePostprocessor() return c.run(text) def nest_toc_tokens(toc_list): """Given an unsorted list with errors and skips, return a nested one. [{'level': 1}, {'level': 2}] => [{'level': 1, 'children': [{'level': 2, 'children': []}]}] A wrong list is also converted: [{'level': 2}, {'level': 1}] => [{'level': 2, 'children': []}, {'level': 1, 'children': []}] """ ordered_list = [] if len(toc_list): # Initialize everything by processing the first entry last = toc_list.pop(0) last['children'] = [] levels = [last['level']] ordered_list.append(last) parents = [] # Walk the rest nesting the entries properly while toc_list: t = toc_list.pop(0) current_level = t['level'] t['children'] = [] # Reduce depth if current level < last item's level if current_level < levels[-1]: # Pop last level since we know we are less than it levels.pop() # Pop parents and levels we are less than or equal to to_pop = 0 for p in reversed(parents): if current_level <= p['level']: to_pop += 1 else: # pragma: no cover break if to_pop: levels = levels[:-to_pop] parents = parents[:-to_pop] # Note current level as last levels.append(current_level) # Level is the same, so append to # the current parent (if available) if current_level == levels[-1]: (parents[-1]['children'] if parents else ordered_list).append(t) # Current level is > last item's level, # So make last item a parent and append current as child else: last['children'].append(t) parents.append(last) levels.append(current_level) last = t return ordered_list class TocTreeprocessor(Treeprocessor): def __init__(self, md, config): super().__init__(md) self.marker = config["marker"] self.title = config["title"] self.base_level = int(config["baselevel"]) - 1 self.slugify = config["slugify"] self.sep = config["separator"] self.use_anchors = parseBoolValue(config["anchorlink"]) self.anchorlink_class = config["anchorlink_class"] self.use_permalinks = parseBoolValue(config["permalink"], False) if self.use_permalinks is None: self.use_permalinks = config["permalink"] self.permalink_class = config["permalink_class"] self.permalink_title = config["permalink_title"] self.header_rgx = re.compile("[Hh][123456]") if isinstance(config["toc_depth"], str) and '-' in config["toc_depth"]: self.toc_top, self.toc_bottom = [int(x) for x in config["toc_depth"].split('-')] else: self.toc_top = 1 self.toc_bottom = int(config["toc_depth"]) def iterparent(self, node): ''' Iterator wrapper to get allowed parent and child all at once. ''' # We do not allow the marker inside a header as that # would causes an enless loop of placing a new TOC # inside previously generated TOC. for child in node: if not self.header_rgx.match(child.tag) and child.tag not in ['pre', 'code']: yield node, child yield from self.iterparent(child) def replace_marker(self, root, elem): ''' Replace marker with elem. ''' for (p, c) in self.iterparent(root): text = ''.join(c.itertext()).strip() if not text: continue # To keep the output from screwing up the # validation by putting a <div> inside of a <p> # we actually replace the <p> in its entirety. if c.text and c.text.strip() == self.marker: for i in range(len(p)): if p[i] == c: p[i] = elem break def set_level(self, elem): ''' Adjust header level according to base level. ''' level = int(elem.tag[-1]) + self.base_level if level > 6: level = 6 elem.tag = 'h%d' % level def add_anchor(self, c, elem_id): # @ReservedAssignment anchor = etree.Element("a") anchor.text = c.text anchor.attrib["href"] = "#" + elem_id anchor.attrib["class"] = self.anchorlink_class c.text = "" for elem in c: anchor.append(elem) while len(c): c.remove(c[0]) c.append(anchor) def add_permalink(self, c, elem_id): permalink = etree.Element("a") permalink.text = ("%spara;" % AMP_SUBSTITUTE if self.use_permalinks is True else self.use_permalinks) permalink.attrib["href"] = "#" + elem_id permalink.attrib["class"] = self.permalink_class if self.permalink_title: permalink.attrib["title"] = self.permalink_title c.append(permalink) def build_toc_div(self, toc_list): """ Return a string div given a toc list. """ div = etree.Element("div") div.attrib["class"] = "toc" # Add title to the div if self.title: header = etree.SubElement(div, "span") header.attrib["class"] = "toctitle" header.text = self.title def build_etree_ul(toc_list, parent): ul = etree.SubElement(parent, "ul") for item in toc_list: # List item link, to be inserted into the toc div li = etree.SubElement(ul, "li") link = etree.SubElement(li, "a") link.text = item.get('name', '') link.attrib["href"] = '#' + item.get('id', '') if item['children']: build_etree_ul(item['children'], li) return ul build_etree_ul(toc_list, div) if 'prettify' in self.md.treeprocessors: self.md.treeprocessors['prettify'].run(div) return div def run(self, doc): # Get a list of id attributes used_ids = set() for el in doc.iter(): if "id" in el.attrib: used_ids.add(el.attrib["id"]) toc_tokens = [] for el in doc.iter(): if isinstance(el.tag, str) and self.header_rgx.match(el.tag): self.set_level(el) if int(el.tag[-1]) < self.toc_top or int(el.tag[-1]) > self.toc_bottom: continue text = ''.join(el.itertext()).strip() # Do not override pre-existing ids if "id" not in el.attrib: innertext = unescape(stashedHTML2text(text, self.md)) el.attrib["id"] = unique(self.slugify(innertext, self.sep), used_ids) toc_tokens.append({ 'level': int(el.tag[-1]), 'id': el.attrib["id"], 'name': unescape(stashedHTML2text( el.attrib.get('data-toc-label', text), self.md, strip_entities=False )) }) # Remove the data-toc-label attribute as it is no longer needed if 'data-toc-label' in el.attrib: del el.attrib['data-toc-label'] if self.use_anchors: self.add_anchor(el, el.attrib["id"]) if self.use_permalinks not in [False, None]: self.add_permalink(el, el.attrib["id"]) toc_tokens = nest_toc_tokens(toc_tokens) div = self.build_toc_div(toc_tokens) if self.marker: self.replace_marker(doc, div) # serialize and attach to markdown instance. toc = self.md.serializer(div) for pp in self.md.postprocessors: toc = pp.run(toc) self.md.toc_tokens = toc_tokens self.md.toc = toc class TocExtension(Extension): TreeProcessorClass = TocTreeprocessor def __init__(self, **kwargs): self.config = { "marker": ['[TOC]', 'Text to find and replace with Table of Contents - ' 'Set to an empty string to disable. Defaults to "[TOC]"'], "title": ["", "Title to insert into TOC <div> - " "Defaults to an empty string"], "anchorlink": [False, "True if header should be a self link - " "Defaults to False"], "anchorlink_class": ['toclink', 'CSS class(es) used for the link. ' 'Defaults to "toclink"'], "permalink": [0, "True or link text if a Sphinx-style permalink should " "be added - Defaults to False"], "permalink_class": ['headerlink', 'CSS class(es) used for the link. ' 'Defaults to "headerlink"'], "permalink_title": ["Permanent link", "Title attribute of the permalink - " "Defaults to 'Permanent link'"], "baselevel": ['1', 'Base level for headers.'], "slugify": [slugify, "Function to generate anchors based on header text - " "Defaults to the headerid ext's slugify function."], 'separator': ['-', 'Word separator. Defaults to "-".'], "toc_depth": [6, 'Define the range of section levels to include in' 'the Table of Contents. A single integer (b) defines' 'the bottom section level (<h1>..<hb>) only.' 'A string consisting of two digits separated by a hyphen' 'in between ("2-5"), define the top (t) and the' 'bottom (b) (<ht>..<hb>). Defaults to `6` (bottom).'], } super().__init__(**kwargs) def extendMarkdown(self, md): md.registerExtension(self) self.md = md self.reset() tocext = self.TreeProcessorClass(md, self.getConfigs()) # Headerid ext is set to '>prettify'. With this set to '_end', # it should always come after headerid ext (and honor ids assinged # by the header id extension) if both are used. Same goes for # attr_list extension. This must come last because we don't want # to redefine ids after toc is created. But we do want toc prettified. md.treeprocessors.register(tocext, 'toc', 5) def reset(self): self.md.toc = '' self.md.toc_tokens = [] def makeExtension(**kwargs): # pragma: no cover return TocExtension(**kwargs)
644fab70a5b3af9bb5dfa778fe89ab854f219ed8
63d3a6255f2677f9d92205d62163b9d22a74c5c7
/modules/dynadb/migrations/0058_auto_20161124_1741.py
89a757a370f4bc40d44bddae34790dc82e409e84
[ "Apache-2.0" ]
permissive
GPCRmd/GPCRmd
9204f39b1bfbc800b13512b316e05e54ddd8af23
47d7a4e71025b70e15a0f752760873249932c54e
refs/heads/main
2023-09-04T11:13:44.285629
2023-08-29T13:43:01
2023-08-29T13:43:01
260,036,875
3
1
null
null
null
null
UTF-8
Python
false
false
616
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-11-24 16:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dynadb', '0057_auto_20161116_2004'), ] operations = [ migrations.AlterField( model_name='dyndbsubmissionmolecule', name='type', field=models.SmallIntegerField(blank=True, choices=[(0, 'Orthosteric ligand'), (1, 'Allosteric ligand'), (2, 'Crystallographic waters, lipids or ions'), (3, 'Other')], default=0, null=True), ), ]
03c962b553ec91380beb9b3231464bb8fae29bc0
fccb35b69307ae4848aeee484995100de624dedf
/toolbox/bulk_processing/invalid_address_processor.py
b00f886d424ecf8dbac31af077a0420d5a05d53a
[]
no_license
ONSdigital/census-rm-toolbox
468d1cb8e901bc8ae87a693495b85080c9d85e9f
17eeae06f859091805e3fd3d5f8e620500af6741
refs/heads/master
2023-08-21T13:23:55.614636
2021-05-18T07:44:31
2021-05-18T07:44:31
207,325,373
0
1
null
2023-07-25T17:05:59
2019-09-09T14:12:11
Python
UTF-8
Python
false
false
1,827
py
import logging import uuid from datetime import datetime from structlog import wrap_logger from toolbox.bulk_processing.bulk_processor import BulkProcessor from toolbox.bulk_processing.processor_interface import Processor from toolbox.bulk_processing.validators import case_exists_by_id, is_uuid, max_length, mandatory from toolbox.config import Config from toolbox.logger import logger_initial_config class InvalidAddressProcessor(Processor): file_prefix = Config.BULK_INVALID_ADDRESS_FILE_PREFIX routing_key = Config.INVALID_ADDRESS_EVENT_ROUTING_KEY exchange = Config.EVENTS_EXCHANGE bucket_name = Config.BULK_INVALID_ADDRESS_BUCKET_NAME project_id = Config.BULK_INVALID_ADDRESS_PROJECT_ID schema = { "case_id": [is_uuid(), case_exists_by_id()], "reason": [mandatory(), max_length(255)] } def build_event_messages(self, row): address_resolution = "AR" return [{ "event": { "type": "ADDRESS_NOT_VALID", "source": "RM_BULK_INVALID_ADDRESS_PROCESSOR", "channel": address_resolution, "dateTime": datetime.utcnow().isoformat() + 'Z', "transactionId": str(uuid.uuid4()) }, "payload": { "invalidAddress": { "reason": row['reason'], "collectionCase": { "id": row['case_id'] } } } }] def main(): logger_initial_config() logger = wrap_logger(logging.getLogger(__name__)) logger.info('Started bulk processing invalid addresses', app_log_level=Config.LOG_LEVEL, environment=Config.ENVIRONMENT) BulkProcessor(InvalidAddressProcessor()).run() if __name__ == "__main__": main()
29a6f8130b12ecd4a5d0cc05a93f14e402d00970
fb8c10b50bd42db139330a8ed596e864bb8ae440
/Tkinter_GUI_Python/7941OT_8_code/8.03 validation mode demo.py
34ce49915abce5b3c1d9238126e6942966dd0de9
[]
no_license
masb01/test
628c9bc4297e6c1b745503e297682258553d87cf
7e402d5744d4395ebd660f3c05044bf3df16ce7c
refs/heads/master
2020-03-18T20:59:38.142095
2018-06-10T15:15:16
2018-06-10T15:15:16
135,251,526
0
0
null
null
null
null
UTF-8
Python
false
false
1,876
py
""" Code illustration: 8.03 Validation Modes Demo Tkinter GUI Application Development Hotshot """ import Tkinter as tk class ValidateModeDemo(): def __init__(self): self.root = tk.Tk() vcmd = (self.root.register(self.validate), '%V') # validate = none mode - will not call validate method ever. tk.Label (text='None').pack() tk.Entry(self.root, validate="none", validatecommand=vcmd).pack() # validate = focus mode - will call validate method on focusin and focusout tk.Label (text='Focus').pack() tk.Entry(self.root, validate="focus", validatecommand=vcmd).pack() # validate = focusin mode - - will call validate method on focusin tk.Label (text='Focusin').pack() tk.Entry(self.root, validate="focusin", validatecommand=vcmd).pack() # validate = focusout mode - will call validate method on focusout tk.Label (text='Focus Out').pack() tk.Entry(self.root, validate="focusout", validatecommand=vcmd).pack() # validate = Key mode - will call validate method only when you type something or edit the entry tk.Label (text='key').pack() tk.Entry(self.root, validate="key", validatecommand=vcmd).pack() # validate = all mode - will call validate method on focus and key events tk.Label (text='all').pack() tk.Entry(self.root, validate="all", validatecommand=vcmd).pack() self.root.mainloop() def validate(self, v): print 'Called Just Now Via Mode %s' %v # this is where you will validate your data and return True or False #depending on wether the data is valid or not # for now let us just return True for all cases. return True app = ValidateModeDemo()
[ "masb160119672gmail.com" ]
masb160119672gmail.com
173c766edb003276de453cf1019773545a9f23ff
4832856f115ef30fb9f611e92d7e473d531f6c4d
/setup.py
19d11a618feed45d888db08e66dea88ba2d3197c
[ "Apache-2.0" ]
permissive
nycto-hackerone/OWASP-Nettacker
9c2a227eaf5175ce42181650911ae795846637a3
33f7e4a53b4773c91be57bfb535baec3478ca85c
refs/heads/master
2021-01-24T00:04:33.864977
2018-02-24T11:34:45
2018-02-24T11:34:45
122,752,364
1
1
Apache-2.0
2018-02-24T15:26:53
2018-02-24T15:26:53
null
UTF-8
Python
false
false
2,347
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os from setuptools import setup from setuptools import find_packages def package_files(directory): """ This function was created to crawl the directory and find files (none python files) using os.walk Args: directory: path to crawl Returns: list of package files in an array """ paths = [] for (path, directories, filenames) in os.walk(directory): for filename in filenames: paths.append(os.path.join('..', path, filename)) return paths # read requirements from requirements.txt requirements = open("requirements.txt").read().rsplit() if int(sys.version_info[0]) is 2: # add scapy requirement name for python 2.x requirements.append("scapy") else: # add scapy requirement name for python 3.x requirements.append("scapy-python3") setup( name="OWASP-Nettacker", version='0.0.1', description='OWASP Nettacker - Automated Penetration Testing Framework', packages=find_packages(), package_data={"": package_files("web") + ["../api/database.sqlite3"]}, # package files + database file include_package_data=True, install_requires=requirements, url="https://github.com/viraintel/OWASP-Nettacker", license="Apache-2.0", author="Ali Razmjoo", author_email="[email protected]", long_description="Automated Penetration Testing Framework - OWASP Nettacker project is created to" " automate information gathering, vulnerability scanning and eventually generating" " a report for networks, including services, bugs, vulnerabilities, misconfigurations," " and other information. This software will utilize TCP SYN, ACK, ICMP and many other" " protocols in order to detect and bypass Firewall/IDS/IPS devices. By leveraging a" " unique method in OWASP Nettacker for discovering protected services and devices such" " as SCADA. It would make a competitive edge compared to other scanner making it one of" " the bests.", scripts=["scripts/nettacker.bat" if sys.platform == "win32" or sys.platform == "win64" else "scripts/nettacker", "nettacker.py"] # script files for windows and other OS )
1c94ccbfa89e4eb8af6b2127e6d3be14f1a2962c
3b1c660676da8459bc5587c7a2fb5b4df3446c8f
/arch2.py
8b3b597a8c1441b21af7326f504bf1b19e335c49
[]
no_license
mariogeiger/galaxy_zoo
b28930295023d2f0cb61c266e48438b8d1782875
2cda9c15fe29b982fcb754b29b9427400d647859
refs/heads/master
2021-06-14T17:47:43.431834
2017-03-09T07:44:15
2017-03-09T07:44:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,771
py
# pylint: disable=C,R,no-member import tensorflow as tf import numpy as np import math def dihedral_fullyconnected(x, f_out=None, std=None): f_in = x.get_shape().as_list()[1] assert f_in % 8 == 0 if f_out is None: f_out = f_in assert f_out % 8 == 0 if std is None: std = math.sqrt(2.0 / f_in) with tf.name_scope("fc_8x{}_8x{}".format(f_in // 8, f_out // 8)): ww = tf.Variable(tf.truncated_normal([f_in, f_out // 8], stddev=std), name="W") b = tf.Variable(tf.constant(0.0, shape=[f_out // 8]), name="b") mt = np.array([ [0, 1, 2, 3, 4, 5, 6, 7], [1, 0, 3, 2, 5, 4, 7, 6], [2, 3, 0, 1, 6, 7, 4, 5], [3, 2, 1, 0, 7, 6, 5, 4], [4, 6, 5, 7, 0, 2, 1, 3], [5, 7, 4, 6, 1, 3, 0, 2], [6, 4, 7, 5, 2, 0, 3, 1], [7, 5, 6, 4, 3, 1, 2, 0]]) # tau[mt[a,b]] = tau[a] o tau[b] iv = np.array([0, 1, 2, 3, 4, 6, 5, 7]) # tau[iv[a]] is the inverse of tau[a] wws = tf.split(0, 8, ww) W = tf.concat(1, [ # merge 8 part of the output tf.concat(0, [ # merge 8 part of the input wws[mt[iv[j], i]] for i in range(8)]) for j in range(8)]) return tf.matmul(x, W) + tf.tile(b, [8]) def dihedral_convolution(x, f_out=None, s=1, w=3, first=False, std=None, padding='SAME'): f_in = x.get_shape().as_list()[3] if f_out is None: f_out = f_in assert f_out % 8 == 0 if std is None: std = math.sqrt(2.0 / (w * w * f_in)) with tf.name_scope("conv_{}{}_8x{}".format('' if first else '8x', f_in if first else f_in//8, f_out//8)): ww = tf.Variable(tf.random_normal([w, w, f_in, f_out // 8], stddev=std), name="W") b = tf.Variable(tf.constant(0.0, shape=[f_out // 8]), name="b") ws = [None] * 8 ws[0] = ww # tau[0] ws[1] = tf.reverse(ww, [False, True, False, False]) # tau[1] ws[2] = tf.reverse(ww, [True, False, False, False]) # tau[2] ws[3] = tf.reverse(ww, [True, True, False, False]) # tau[3] ws[4] = tf.transpose(ww, [1, 0, 2, 3]) # tau[4] ws[5] = tf.reverse(ws[4], [False, True, False, False]) # tau[5] ws[6] = tf.reverse(ws[4], [True, False, False, False]) # tau[6] ws[7] = tf.reverse(ws[4], [True, True, False, False]) # tau[7] # ws[j] = tau[j] F_all if first: W = tf.concat(3, ws) else: assert f_in % 8 == 0 mt = np.array([ [0, 1, 2, 3, 4, 5, 6, 7], [1, 0, 3, 2, 5, 4, 7, 6], [2, 3, 0, 1, 6, 7, 4, 5], [3, 2, 1, 0, 7, 6, 5, 4], [4, 6, 5, 7, 0, 2, 1, 3], [5, 7, 4, 6, 1, 3, 0, 2], [6, 4, 7, 5, 2, 0, 3, 1], [7, 5, 6, 4, 3, 1, 2, 0]]) # tau[mt[a,b]] = tau[a] o tau[b] iv = np.array([0, 1, 2, 3, 4, 6, 5, 7]) # tau[iv[a]] is the inverse of tau[a] wws = [None] * 8 for j in range(8): wws[j] = tf.split(2, 8, ws[j]) # wws[j][i] = tau[j] F_i W = tf.concat(3, [ # merge 8 part of the output tf.concat(2, [ # merge 8 part of the input wws[j][mt[iv[j], i]] for i in range(8)]) for j in range(8)]) # y = Conv(x, W) return tf.nn.conv2d(x, W, [1, s, s, 1], padding) + tf.tile(b, [8]) def dihedral_pool(x): shape = x.get_shape().as_list() f_in = shape[-1] assert f_in % 8 == 0 with tf.name_scope("dihedral_pool_8x{}".format(f_in // 8)): xs = tf.split(len(shape) - 1, 8, x) return tf.div(tf.add_n(xs), 8.0) def dihedral_batch_normalization(x, acc): depth = x.get_shape().as_list()[3] assert depth % 8 == 0 with tf.name_scope("bn_8x{}".format(depth // 8)): m, v = moments(dihedral_pool(x), axes=[0, 1, 2]) acc_m = tf.Variable(tf.constant(0.0, shape=[depth // 8]), trainable=False, name="acc_m") acc_v = tf.Variable(tf.constant(1.0, shape=[depth // 8]), trainable=False, name="acc_v") acc_m = tf.assign(acc_m, (1.0 - acc) * acc_m + acc * m) acc_v = tf.assign(acc_v, (1.0 - acc) * acc_v + acc * v) m = tf.tile(acc_m, [8]) v = tf.tile(acc_v, [8]) m.set_shape([depth]) v.set_shape([depth]) beta = tf.tile(tf.Variable(tf.constant(0.0, shape=[depth // 8])), [8]) gamma = tf.tile(tf.Variable(tf.constant(1.0, shape=[depth // 8])), [8]) return tf.nn.batch_normalization(x, m, v, beta, gamma, 1e-3) def pool22(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def moments(x, axes): m = tf.reduce_mean(x, axes) v = tf.reduce_mean(tf.square(x), axes) - tf.square(m) return m, v class CNN: # pylint: disable=too-many-instance-attributes def __init__(self): self.tfx = None self.tfl = None self.tfp = None self.tfy = None self.tftrain_step = None self.mse = None self.tfkp = None self.acc = None self.train_counter = 0 self.test = None def create_architecture(self): self.tfkp = tf.placeholder(tf.float32) self.acc = tf.placeholder(tf.float32) x = self.tfx = tf.placeholder(tf.float32, [None, 424, 424, 3]) def augmentation(x): x = tf.map_fn(lambda x: tf.image.random_brightness(x, max_delta=16. / 255.), x) x = tf.map_fn(lambda x: tf.image.random_contrast(x, lower=0.75, upper=1.25), x) return x x = tf.cond(self.tfkp < 0.99, lambda: augmentation(x), lambda: x) x = tf.nn.relu(dihedral_convolution(x, 8 * 4, w=6, s=2, first=True, padding='VALID')) x = tf.nn.relu(dihedral_convolution(x)) x = dihedral_batch_normalization(x, self.acc) assert x.get_shape().as_list() == [None, 210, 210, 8 * 4] x = tf.nn.relu(dihedral_convolution(x, 8 * 8, w=4, s=2, padding='VALID')) x = tf.nn.relu(dihedral_convolution(x, padding='VALID')) x = dihedral_batch_normalization(x, self.acc) assert x.get_shape().as_list() == [None, 102, 102, 8 * 8] x = tf.nn.relu(dihedral_convolution(x, 8 * 16, w=4, s=2, padding='VALID')) x = tf.nn.relu(dihedral_convolution(x)) x = dihedral_batch_normalization(x, self.acc) assert x.get_shape().as_list() == [None, 50, 50, 8 * 16] x = tf.nn.relu(dihedral_convolution(x, 8 * 32, w=4, s=2, padding='VALID')) x = tf.nn.relu(dihedral_convolution(x, padding='VALID')) x = dihedral_batch_normalization(x, self.acc) assert x.get_shape().as_list() == [None, 22, 22, 8 * 32] x = tf.nn.dropout(x, self.tfkp) x = tf.nn.relu(dihedral_convolution(x, 8 * 64, w=4, s=2, padding='VALID')) x = tf.nn.dropout(x, self.tfkp) x = tf.nn.relu(dihedral_convolution(x, padding='VALID')) x = dihedral_batch_normalization(x, self.acc) assert x.get_shape().as_list() == [None, 8, 8, 8 * 64] x = tf.nn.dropout(x, self.tfkp) x = tf.nn.relu(dihedral_convolution(x, 8 * 128, w=4, s=2, padding='VALID')) x = tf.nn.dropout(x, self.tfkp) x = tf.nn.relu(dihedral_convolution(x, w=3, padding='VALID')) x = dihedral_batch_normalization(x, self.acc) assert x.get_shape().as_list() == [None, 1, 1, 8 * 128] x = tf.reshape(x, [-1, 8 * 128]) x = tf.nn.dropout(x, self.tfkp) x = dihedral_fullyconnected(x, 8 * 256) x = tf.nn.dropout(x, self.tfkp) x = dihedral_fullyconnected(x, 8 * 37) self.test = x x = dihedral_pool(x) assert x.get_shape().as_list() == [None, 37] c1 = tf.nn.softmax(x[:, 0:3]) c2 = tf.nn.softmax(x[:, 3:5]) * c1[:, 1:2] c3 = tf.nn.softmax(x[:, 5:7]) * c2[:, 1:2] c4 = tf.nn.softmax(x[:, 7:9]) * c2[:, 1:2] c5 = tf.nn.softmax(x[:, 9:13]) * c2[:, 1:2] c6 = tf.nn.softmax(x[:, 13:15]) c7 = tf.nn.softmax(x[:, 15:18]) * c1[:, 0:1] c8 = tf.nn.softmax(x[:, 18:25]) * c6[:, 0:1] c9 = tf.nn.softmax(x[:, 25:28]) * c2[:, 0:1] c10 = tf.nn.softmax(x[:, 28:31]) * c4[:, 0:1] c11 = tf.nn.softmax(x[:, 31:37]) * c4[:, 0:1] self.tfp = tf.concat(1, [c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11]) self.tfy = tf.placeholder(tf.float32, [None, 37]) self.mse = tf.reduce_mean(tf.square(self.tfp - self.tfy)) self.tftrain_step = tf.train.AdamOptimizer(0.001).minimize(self.mse) @staticmethod def prepare(images_path, labels_csv): import csv import os with open(labels_csv) as f: reader = csv.reader(f) rows = [row for row in reader] labels = np.array([[float(x) for x in r[1:]] for r in rows[1:]]).astype(np.float32) files = [images_path + '/' + f for f in sorted(os.listdir(images_path))] n = 2000 # for the test set return (files[:n], labels[:n]), (files[n:], labels[n:]) @staticmethod def load(files): from scipy.ndimage import imread n = len(files) xs = np.zeros((n, 424, 424, 3), dtype=np.float32) for i in range(n): xs[i] = imread(files[i], mode='RGB').astype(np.float32) / 256.0 return xs @staticmethod def batch(files, labels): ids = np.random.choice(len(files), 15, replace=False) xs = CNN.load([files[i] for i in ids]) ys = labels[ids] return xs, ys def train(self, session, xs, ys, options=None, run_metadata=None): acc = math.exp(-self.train_counter / 5000.0) _, mse = session.run([self.tftrain_step, self.mse], feed_dict={self.tfx: xs, self.tfy: ys, self.tfkp: 0.5, self.acc: acc}, options=options, run_metadata=run_metadata) self.train_counter += 1 return mse def train_timeline(self, session, xs, ys, filename='timeline.json'): from tensorflow.python.client import timeline run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() mse = self.train(session, xs, ys, run_options, run_metadata) # google chrome : chrome://tracing/ tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with open(filename, 'w') as f: f.write(ctf) return mse def predict(self, session, xs): return session.run(self.tfp, feed_dict={self.tfx: xs, self.tfkp: 1.0, self.acc: 0.0}) def predict_mse(self, session, xs, ys): return session.run([self.tfp, self.mse], feed_dict={self.tfx: xs, self.tfy: ys, self.tfkp: 1.0, self.acc: 0.0})
db9f504a531a4656b87987f9b9f0af2db5399ace
7896baeb297e131bab53cfbff712d1fd77bccede
/gombru/style_images_COCO.py
a633bfa3a8ce2a1b81682b5d1c45eaa1fa8824bc
[ "Apache-2.0" ]
permissive
gombru/magenta_styleTransfer
599b85b24dd406a82df271bb769fe3dc1fa19f0b
bd41b0bf3bb18988653e4a355d95dac8632e814f
refs/heads/master
2020-04-11T23:11:47.133793
2019-02-12T12:12:50
2019-02-12T12:12:50
162,159,299
0
1
null
null
null
null
UTF-8
Python
false
false
2,049
py
from magenta.models.image_stylization import image_stylization_transform from PIL import Image import os import warnings import random warnings.filterwarnings("ignore") results_path = "/home/Imatge/ssd2/ICDAR_2015_IndidentalSceneText/train/img_styled_icdar/" num_styles = 96 # 9, 32, 34 # checkpoint = "/home/raulgomez/datasets/styleTransferMiro/models/multistyle-pastiche-generator-varied.ckpt" # checkpoint = "/home/raulgomez/datasets/styleTransferMiro/models/miro" checkpoint = "/home/Imatge/hd/datasets/styleTransferMiro/train/icdar" # which_styles = [] # for i in range(num_styles): which_styles.append(i) input_images_dir = "/home/Imatge/ssd2/ICDAR_2015_IndidentalSceneText/train/img/" input_images = [] for file in os.listdir(input_images_dir): input_images.append(file.split('/')[-1]) # legible_ids_dir = "/home/Imatge/ssd2/COCO-Text/gt_COCO_format_legible/" # legible_ids = [] # for file in os.listdir(legible_ids_dir): legible_ids.append(file.split('/')[-1].strip('.json')) # final_ids = [id for id in input_images if id.strip('.jpg') in legible_ids] # del input_images # del legible_ids # print("Number of images with legible text: " + str(len(final_ids))) batch_size = 32 i=0 while True: cur_styles = random.sample(range(0, 96), 4) # cur_styles.remove(0) # cur_styles.remove(6) # cur_styles.remove(25) print(" --> Starting batch from" + str(i) + " with styles " + str(cur_styles)) if i > len(input_images): break last_image = i + batch_size if last_image > len(input_images): last_image = len(input_images) cur_input_images = input_images[i:last_image] result_images = image_stylization_transform.multiple_input_images(checkpoint, num_styles, input_images_dir, cur_input_images, cur_styles) for k, v in result_images.items(): v = v[0,:,:,:] pil_image = Image.fromarray((v*255).astype('uint8')) pil_image.save(results_path + k + '.png') i+=batch_size print(" --> " + str(i) + " out of " + str(len(input_images))) print("DONE")
42e9fb0e23fdf748d185ab5a38dff35ff23cb749
83048ab1abb6941ed0b19fb5e5ff4a9d14b48e8c
/CODEFORCES/park_light.py
880f197a915fce16db419ae24c4356fa190e9c66
[]
no_license
harshitalpha/Algorithms
ebad07cc77516ab5c35ae414462d10a38d5ef97e
2f7dcf4c3bb4390267231c7c96f7e76399c0166e
refs/heads/master
2021-07-14T17:34:02.546583
2020-06-25T06:38:39
2020-06-25T06:38:39
178,813,562
2
0
null
null
null
null
UTF-8
Python
false
false
216
py
import math for _ in range(int(input())): r, c = [int(s) for s in input().split()] if r%2 == 0: ans = (r/2)*c else: ans = (r-1)/2 * c ans = ans + math.ceil(c/2) print(int(ans))
02ead0e966188d8db902b52401360de29dc3478e
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/smurf/smurf_end_to_end_test.py
f50fb3e7c366d7a6b332c231de7d1e830aa81c90
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
2,453
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests that training and evaluation work as expected.""" # pylint:skip-file import contextlib import io from absl import flags from absl.testing import absltest from smurf import smurf_flags from smurf import smurf_trainer FLAGS = flags.FLAGS class SmurfEndToEndTest(absltest.TestCase): def test_training_on_spoof(self): FLAGS.eval_on = '' FLAGS.train_on = 'spoof:unused' FLAGS.plot_dir = '/tmp/spoof_train' FLAGS.check_data = True FLAGS.num_train_steps = 1 FLAGS.epoch_length = 1 FLAGS.evaluate_during_train = False FLAGS.height = 296 FLAGS.width = 296 f = io.StringIO() with contextlib.redirect_stdout(f): smurf_trainer.train_eval() # Check that the relevant metrics are printed to stdout. stdout_message = f.getvalue() self.assertIn('total-loss: ', stdout_message) self.assertIn('data-time: ', stdout_message) self.assertIn('learning-rate: ', stdout_message) self.assertIn('train-time: ', stdout_message) def test_evaluating_on_spoof(self): FLAGS.eval_on = 'spoof:unused' FLAGS.check_data = False FLAGS.train_on = '' FLAGS.plot_dir = '/tmp/spoof_eval' FLAGS.height = 296 FLAGS.width = 296 FLAGS.num_train_steps = 1 FLAGS.evaluate_during_train = True f = io.StringIO() with contextlib.redirect_stdout(f): smurf_trainer.train_eval() # Check that the relevant metrics are printed to stdout. stdout_message = f.getvalue() self.assertIn('spoof-EPE: ', stdout_message) self.assertIn('spoof-occl-f-max: ', stdout_message) self.assertIn('spoof-ER: ', stdout_message) self.assertIn('spoof-best-occl-thresh: ', stdout_message) self.assertIn('spoof-eval-time(s): ', stdout_message) self.assertIn('spoof-inf-time(ms): ', stdout_message) if __name__ == '__main__': absltest.main()