blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
9e599e8b5fd751743f099de05205732cd4bc081c
e77b92df446f0afed18a923846944b5fd3596bf9
/Programers_algo/Graph/kruskal.py
d1d113114a54256cb73edd9e6cc8c3d493ea7ea5
[]
no_license
sds1vrk/Algo_Study
e40ca8eb348d1fc6f88d883b26195b9ee6f35b2e
fbbc21bb06bb5dc08927b899ddc20e6cde9f0319
refs/heads/main
2023-06-27T05:49:15.351644
2021-08-01T12:43:06
2021-08-01T12:43:06
356,512,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,227
py
# 크루스칼 알고리즘 # 가장 적은 비용으로 모든 노드를 연결 # UnionFind import sys sys.stdin=open("input.txt","r") # 특정 원소가 속한 부모 집합 찾기 def find_parent(parent,x): # 루트 노트가 아니라면, 루트 노드를 찾을떄까지 재귀적으로 후촐 if parent[x]!=x: parent[x]=find_parent(parent,parent[x]) # parent[x]가 갱신됨 return parent[x] # 두 원소가 속한 집합 합치기 def union_parent(parent,a,b): a=find_parent(parent,a) b=find_parent(parent,b) if a<b: parent[b]=a else : parent[a]=b # 노드의 개수와 간선(Union 연산)의 개수 입력받기 v,e=map(int,input().split()) parent=[0]*(v+1) edges=[] result=0 for i in range(1,v+1): parent[i]=i for _ in range(e): a,b,cost=map(int,input().split()) # 비용순으로 정렬하기 edges.append((cost,a,b)) # 간선을 비용순으로 정렬 edges.sort() # 간선을 하나씩 확인하며 for edge in edges: cost,a,b=edge # 사이클이 발생하지 않는 경우에만 집합에 포함 if find_parent(parent,a)!=find_parent(parent,b): union_parent(parent,a,b) result+=cost print(result)
8b1cec12c2e95e9c6e1aa2b3a1dc3890902dccb6
6a69d57c782e0b1b993e876ad4ca2927a5f2e863
/vendor/samsung/common/packages/apps/SBrowser/src/media/cast/test/utility/utility.gyp
93e2f14842b82bec4a5561b751635ce8a87d4a77
[ "BSD-3-Clause" ]
permissive
duki994/G900H-Platform-XXU1BOA7
c8411ef51f5f01defa96b3381f15ea741aa5bce2
4f9307e6ef21893c9a791c96a500dfad36e3b202
refs/heads/master
2020-05-16T20:57:07.585212
2015-05-11T11:03:16
2015-05-11T11:03:16
35,418,464
2
1
null
null
null
null
UTF-8
Python
false
false
891
gyp
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'cast_test_utility', 'type': 'static_library', 'include_dirs': [ '<(DEPTH)/', ], 'dependencies': [ '<(DEPTH)/ui/gfx/gfx.gyp:gfx', '<(DEPTH)/ui/gfx/gfx.gyp:gfx_geometry', '<(DEPTH)/testing/gtest.gyp:gtest', '<(DEPTH)/third_party/libyuv/libyuv.gyp:libyuv', ], 'sources': [ '<(DEPTH)/media/cast/test/fake_single_thread_task_runner.cc', '<(DEPTH)/media/cast/test/fake_single_thread_task_runner.h', 'input_builder.cc', 'input_builder.h', 'audio_utility.cc', 'audio_utility.h', 'video_utility.cc', 'video_utility.h', ], # source }, ], }
b8ed59691aeefe3e4e9152934a20f1a38dd76ec1
135254b8c00935efd0efd33c708ce69470e23741
/Hard/149. Max Points on a Line.py
b3ccdb55fe8727f1317734272d23f558f8fa762e
[]
no_license
MinecraftDawn/LeetCode
4974e6f96612f01e4774ecd5c30bc42dfff79467
0404bcce27ff363430e6ab71dbc27a69055fd261
refs/heads/master
2021-06-19T05:50:08.000396
2021-06-14T05:57:09
2021-06-14T05:57:09
188,446,485
1
0
null
null
null
null
UTF-8
Python
false
false
797
py
class Solution: def maxPoints(self, points: list) -> int: length = len(points) if length < 3: return length ans = 0 for i in range(length-1): for j in range(i+1,length): x1,y1 = points[i] x2,y2 = points[j] dx = x2-x1 dy = y2-y1 count = 0 for k in range(length): x3,y3 = points[k] if dx == 0: if x3 == x1: count += 1 else: if dy*(x3-x1) == dx*(y3-y1): count += 1 ans = max(ans,count) return ans
a714c5b7c7804e9c67533f18dde8b0eedd53ddb4
ce196aba0adde47ea2767eae1d7983a1ef548bb8
/turtle_天花乱坠动画2.py
fcf7f1dd160a5abe55f5b10729cabd0a1f397bb2
[]
no_license
xiang-daode/Python3_codes
5d2639ffd5d65065b98d029e79b8f3608a37cf0b
06c64f85ce2c299aef7f9311e9473e0203a05b09
refs/heads/main
2023-08-30T14:59:55.123128
2021-11-03T05:12:24
2021-11-03T05:12:24
333,632,892
0
2
null
null
null
null
UTF-8
Python
false
false
920
py
# 在这里写上你的代码 :-) from turtle import * import math x0,y0=0,0 u,v,w=.1,.2,.3 def Trgl(x,y,q): global x0,y0 rgb="#"+hex(0x100000+(q**3) % 0xEFFFFF)[2:] clr="#"+hex(0x100000+(q**2) % 0xEFFFFF)[2:] pu() goto(x0,y0) pd() pensize(6) pencolor(rgb) goto(x,y) lt(.1) #旋转(角度制) fillcolor(clr) #填充色 begin_fill() #开始填充 circle(5+(int)(q*q/1000) % 25, steps=3) end_fill() #结束填充 x0,y0=x,y def Draw(): ht() #隐藏乌龟 tracer(False) #快速直接画 global u,v,w,x0,y0 u,v,w=u+.01,v+.02,w+.03 #指定区间逐一画图: clear() for q in range(-360,366,6): x=200*math.cos(u+q/60)+100*math.cos(v-q/90)+50*math.cos(-w+q/45) y=200*math.sin(u+q/60)+100*math.sin(v-q/90)+50*math.sin(-w+q/45) Trgl((int)(x),(int)(y),q) update() ontimer(Draw(), 20) Draw()
af9f7a13d84ec8d9dcd93612ecfb7ab3e5a9bcd3
be0e0488a46b57bf6aff46c687d2a3080053e52d
/python/baekjoon/10991.py
8b5a24ec3813157fd199bc0c010da37a72249e58
[]
no_license
syo0e/Algorithm
b3f8a0df0029e4d6c9cbf19dcfcb312ba25ea939
1ae754d5bb37d02f28cf1d50463a494896d5026f
refs/heads/master
2023-06-09T11:31:54.266900
2021-06-30T17:04:38
2021-06-30T17:04:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
n = int(input()) for i in range(n): for j in range(i + 1, n): print(" ", end="") for j in range(i+1): print("* ", end="") print()
7b218f14178cea2f621b90959936835954be0bd5
4a1b61cf551db7843050cc7080cec6fd60c4f8cc
/2020/SWEA_문제/swea_1211_Ladder2_풀이.py
8caa8091e792d5a7c8190b1981bcb752ee8bf14e
[]
no_license
phoenix9373/Algorithm
4551692027ca60e714437fd3b0c86462f635d8ff
c66fd70e14bb8357318e8b8f386d2e968f0c4d98
refs/heads/master
2023-08-24T10:01:20.798430
2021-10-15T07:57:36
2021-10-15T07:57:36
288,092,774
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
dc = [-1, 1] # 좌우 def dir_check(r, c): # 방향 체크. for i in range(2): nc = c + dc[i] if 0 <= nc < 100 and ladder[r][nc] == 1: return i return 2 def go(st): col = st_pos[st] cnt = 0 idx = st for i in range(100): d = dir_check(i, col) if d < 2: idx += dc[d] cnt += abs(col - st_pos[idx]) col = st_pos[idx] cnt += 1 return cnt for tc in range(10): # 테스트케이스 번호 입력 tc_num = int(input()) # 2차원 리스트 입력 ladder = [list(map(int, input().split())) for _ in range(100)] # 시작 좌표를 담을 리스트 st_pos = [] # 시작 좌표를 다 담았다. for i in range(100): if ladder[0][i] == 1: st_pos.append(i) # 임의의 큰값으로 초기화 min_value = 987654321 # 어차피 정답으로 사용될거니 안쓰이는수 아무거나로 초기화 ans_idx = -1 for i in range(len(st_pos)): tmp = go(i) if tmp <= min_value: min_value = tmp ans_idx = st_pos[i] print("#{} {}".format(tc_num, ans_idx))
2fd557c72c6c708381632158e55b0b34053df367
7e93b1c33045b4c03054f42b6a2b800279b12a9b
/core/cache/backends/dummy.py
dd3b537c31f94fd76440864c0633ceb9028bcdbe
[ "MIT" ]
permissive
anthill-arch/framework
6f8036980667843f2be1414850255cf6a10e2dcd
a6c238a62ae9c3fb319d12e77f7e9047aab75e8d
refs/heads/master
2020-05-09T06:01:31.186830
2019-08-23T13:52:43
2019-08-23T13:52:43
180,988,916
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
"""Dummy cache backend""" from anthill.framework.core.cache.backends.base import DEFAULT_TIMEOUT, BaseCache class DummyCache(BaseCache): def __init__(self, host, *args, **kwargs): super().__init__(*args, **kwargs) def add(self, key, value, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_key(key, version=version) self.validate_key(key) return True def get(self, key, default=None, version=None): key = self.make_key(key, version=version) self.validate_key(key) return default def set(self, key, value, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_key(key, version=version) self.validate_key(key) def delete(self, key, version=None): key = self.make_key(key, version=version) self.validate_key(key) def has_key(self, key, version=None): key = self.make_key(key, version=version) self.validate_key(key) return False def clear(self): ...
990c86e2db482e655b196f5e1532da5ba6511e28
21b201ebf2ffbbc19fa8d74e5657e12ef597b02d
/research/attention_ocr/python/datasets/fsns_test.py
ae4bd198024cacb58466a58ae414192674610642
[]
no_license
alhsnouf/model
fa619691ad9d0afc7ad849a9471e6bb0643a8d47
5fe429b115634e642a7469b3f1d4bc0c5cf98782
refs/heads/master
2021-04-12T11:16:02.150045
2018-03-27T15:19:18
2018-03-27T15:19:18
126,702,717
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:adecb7ba327b3d3e67e0b87d2739a254b0a9b16b81fbffc730ee0c03476db08d size 3374
a5eb64360406339ff21e0b63e1436f7afdc47e43
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/RIP-IP-PRIVATE-MIB.py
eb15ca1696c7f85b183cd39d2ae9dd12d855a403
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
10,204
py
# # PySNMP MIB module RIP-IP-PRIVATE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/RIP-IP-PRIVATE-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:48:51 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint", "ValueSizeConstraint", "ConstraintsUnion") cjnProtocol, = mibBuilder.importSymbols("Cajun-ROOT", "cjnProtocol") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") MibIdentifier, Bits, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, TimeTicks, NotificationType, Counter32, ObjectIdentity, ModuleIdentity, Unsigned32, Integer32, iso, Gauge32, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "MibIdentifier", "Bits", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "TimeTicks", "NotificationType", "Counter32", "ObjectIdentity", "ModuleIdentity", "Unsigned32", "Integer32", "iso", "Gauge32", "Counter64") DisplayString, RowStatus, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "RowStatus", "TextualConvention") cjnRip = ModuleIdentity((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10)) if mibBuilder.loadTexts: cjnRip.setLastUpdated('9902110000Z') if mibBuilder.loadTexts: cjnRip.setOrganization("Lucent's Concord Technology Center (CTC)") cjnIpRipGblGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 1)) cjnIpRipIsEnabled = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("false", 0), ("true", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipIsEnabled.setStatus('current') cjnIpRipUpdateTimer = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipUpdateTimer.setStatus('current') cjnIpRipPurgeTTL = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipPurgeTTL.setStatus('current') cjnIpRipTriggeredUpdates = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipTriggeredUpdates.setStatus('current') cjnIpRipInterPktDelay = MibScalar((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipInterPktDelay.setStatus('current') cjnIpRipStatGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 2)) cjnIpRipIfGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3)) cjnIpRipIfTable = MibTable((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1), ) if mibBuilder.loadTexts: cjnIpRipIfTable.setStatus('current') cjnIpRipIfEntry = MibTableRow((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1), ).setIndexNames((0, "RIP-IP-PRIVATE-MIB", "cjnIpRipIfIpAddr")) if mibBuilder.loadTexts: cjnIpRipIfEntry.setStatus('current') cjnIpRipIfIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 1), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpRipIfIpAddr.setStatus('current') cjnIpRipIfRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfRowStatus.setStatus('current') cjnIpRipIfSendRcvMode = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("talkOnly", 1), ("listenOnly", 2), ("talkAndListen", 3)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfSendRcvMode.setStatus('current') cjnIpRipIfSendVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("v1", 1), ("v2", 2), ("v1v2", 3), ("off", 4)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfSendVersion.setStatus('current') cjnIpRipIfRcvVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("v1", 1), ("v2", 2), ("v1v2", 3), ("off", 4)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfRcvVersion.setStatus('current') cjnIpRipIfDefaultRouteMode = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("talkOnly", 1), ("listenOnly", 2), ("talkAndListen", 3), ("disable", 4)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfDefaultRouteMode.setStatus('current') cjnIpRipIfPoisonMethod = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("splitHorizon", 1), ("splitHorizonWithPoisonReverse", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfPoisonMethod.setStatus('current') cjnIpRipIfAuthType = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("simplePassword", 2), ("mD5", 3)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfAuthType.setStatus('current') cjnIpRipIfAuthKey = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 1, 1, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 16))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipIfAuthKey.setStatus('current') cjnIpRipIfStatTable = MibTable((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2), ) if mibBuilder.loadTexts: cjnIpRipIfStatTable.setStatus('current') cjnIpRipIfStatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1), ).setIndexNames((0, "RIP-IP-PRIVATE-MIB", "cjnIpRipIfStatIpAddr")) if mibBuilder.loadTexts: cjnIpRipIfStatEntry.setStatus('current') cjnIpRipIfStatIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1, 1), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpRipIfStatIpAddr.setStatus('current') cjnIpRipIfUpdatesSent = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipIfUpdatesSent.setStatus('current') cjnIpRipIfUpdatesRcvd = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipIfUpdatesRcvd.setStatus('current') cjnIpRipIfTrigUpdatesSent = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipIfTrigUpdatesSent.setStatus('current') cjnIpRipIfBadPktRcvd = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipIfBadPktRcvd.setStatus('current') cjnIpRipIfBadRoutesRcvd = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 3, 2, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: cjnIpRipIfBadRoutesRcvd.setStatus('current') cjnIpRipNeighborGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 4)) cjnIpRipNeighborTable = MibTable((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 4, 1), ) if mibBuilder.loadTexts: cjnIpRipNeighborTable.setStatus('current') cjnIpRipNeighborEntry = MibTableRow((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 4, 1, 1), ).setIndexNames((0, "RIP-IP-PRIVATE-MIB", "cjnIpRipNeighborIpAddr")) if mibBuilder.loadTexts: cjnIpRipNeighborEntry.setStatus('current') cjnIpRipNeighborIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 4, 1, 1, 1), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cjnIpRipNeighborIpAddr.setStatus('current') cjnIpRipNeighborRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 1751, 2, 43, 2, 10, 4, 1, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cjnIpRipNeighborRowStatus.setStatus('current') mibBuilder.exportSymbols("RIP-IP-PRIVATE-MIB", cjnIpRipIfRowStatus=cjnIpRipIfRowStatus, cjnIpRipIfUpdatesSent=cjnIpRipIfUpdatesSent, cjnIpRipIfRcvVersion=cjnIpRipIfRcvVersion, cjnIpRipIsEnabled=cjnIpRipIsEnabled, cjnIpRipIfDefaultRouteMode=cjnIpRipIfDefaultRouteMode, cjnIpRipNeighborGroup=cjnIpRipNeighborGroup, cjnIpRipNeighborTable=cjnIpRipNeighborTable, cjnIpRipIfBadRoutesRcvd=cjnIpRipIfBadRoutesRcvd, cjnIpRipIfStatIpAddr=cjnIpRipIfStatIpAddr, cjnIpRipNeighborRowStatus=cjnIpRipNeighborRowStatus, cjnIpRipIfEntry=cjnIpRipIfEntry, cjnIpRipIfIpAddr=cjnIpRipIfIpAddr, cjnIpRipUpdateTimer=cjnIpRipUpdateTimer, cjnIpRipNeighborEntry=cjnIpRipNeighborEntry, cjnIpRipPurgeTTL=cjnIpRipPurgeTTL, cjnIpRipNeighborIpAddr=cjnIpRipNeighborIpAddr, cjnIpRipIfPoisonMethod=cjnIpRipIfPoisonMethod, cjnIpRipIfBadPktRcvd=cjnIpRipIfBadPktRcvd, cjnIpRipIfSendVersion=cjnIpRipIfSendVersion, cjnIpRipGblGroup=cjnIpRipGblGroup, cjnIpRipIfTrigUpdatesSent=cjnIpRipIfTrigUpdatesSent, PYSNMP_MODULE_ID=cjnRip, cjnIpRipIfAuthType=cjnIpRipIfAuthType, cjnIpRipIfStatEntry=cjnIpRipIfStatEntry, cjnRip=cjnRip, cjnIpRipInterPktDelay=cjnIpRipInterPktDelay, cjnIpRipIfTable=cjnIpRipIfTable, cjnIpRipIfGroup=cjnIpRipIfGroup, cjnIpRipIfUpdatesRcvd=cjnIpRipIfUpdatesRcvd, cjnIpRipStatGroup=cjnIpRipStatGroup, cjnIpRipIfAuthKey=cjnIpRipIfAuthKey, cjnIpRipIfStatTable=cjnIpRipIfStatTable, cjnIpRipIfSendRcvMode=cjnIpRipIfSendRcvMode, cjnIpRipTriggeredUpdates=cjnIpRipTriggeredUpdates)
7589cc724a6de9341855ab64e3e966192de85fb8
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-dns/huaweicloudsdkdns/v2/model/associate_router_request_body.py
1fee2936721baab02638a1cc01ff60243363cc0b
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
3,088
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class AssociateRouterRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'router': 'Router' } attribute_map = { 'router': 'router' } def __init__(self, router=None): """AssociateRouterRequestBody The model defined in huaweicloud sdk :param router: :type router: :class:`huaweicloudsdkdns.v2.Router` """ self._router = None self.discriminator = None self.router = router @property def router(self): """Gets the router of this AssociateRouterRequestBody. :return: The router of this AssociateRouterRequestBody. :rtype: :class:`huaweicloudsdkdns.v2.Router` """ return self._router @router.setter def router(self, router): """Sets the router of this AssociateRouterRequestBody. :param router: The router of this AssociateRouterRequestBody. :type router: :class:`huaweicloudsdkdns.v2.Router` """ self._router = router def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AssociateRouterRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
861702d38884274207c83fc6a9221108052e545b
b3b68efa404a7034f0d5a1c10b281ef721f8321a
/Scripts/simulation/holidays/holiday_commands.py
d5c08c9ea3a12970f2e84cae9f7fa63bd14fa313
[ "Apache-2.0" ]
permissive
velocist/TS4CheatsInfo
62195f3333076c148b2a59f926c9fb5202f1c6fb
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
refs/heads/main
2023-03-08T01:57:39.879485
2021-02-13T21:27:38
2021-02-13T21:27:38
337,543,310
1
0
null
null
null
null
UTF-8
Python
false
false
2,539
py
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\holidays\holiday_commands.py # Compiled at: 2018-03-22 23:30:43 # Size of source mod 2**32: 2819 bytes from protocolbuffers import GameplaySaveData_pb2, DistributorOps_pb2 from google.protobuf import text_format from seasons.seasons_enums import SeasonType from server_commands.argument_helpers import TunableInstanceParam, OptionalSimInfoParam, get_optional_target import services, sims4.commands @sims4.commands.Command('holiday.get_holiday_data', command_type=(sims4.commands.CommandType.Live)) def get_holiday_data(holiday_id: int, _connection=None): holiday_service = services.holiday_service() if holiday_service is None: return holiday_service.send_holiday_info_message(holiday_id) @sims4.commands.Command('holiday.get_active_holiday_data', command_type=(sims4.commands.CommandType.Live)) def get_active_holiday_data(opt_sim: OptionalSimInfoParam=None, _connection=None): sim_info = get_optional_target(opt_sim, target_type=OptionalSimInfoParam, _connection=_connection) if sim_info is None: sims4.commands.output('Failed to find SimInfo.') return sim_info.household.holiday_tracker.send_active_holiday_info_message(DistributorOps_pb2.SendActiveHolidayInfo.START) @sims4.commands.Command('holiday.update_holiday', command_type=(sims4.commands.CommandType.Live)) def update_holiday(holiday_data: str, _connection=None): holiday_service = services.holiday_service() if holiday_service is None: return proto = GameplaySaveData_pb2.Holiday() text_format.Merge(holiday_data, proto) holiday_service.modify_holiday(proto) @sims4.commands.Command('holiday.add_holiday', command_type=(sims4.commands.CommandType.Live)) def add_holiday(holiday_data: str, season: SeasonType, day: int, _connection=None): holiday_service = services.holiday_service() if holiday_service is None: return proto = GameplaySaveData_pb2.Holiday() text_format.Merge(holiday_data, proto) holiday_service.add_a_holiday(proto, season, day) @sims4.commands.Command('holiday.remove_holiday', command_type=(sims4.commands.CommandType.Live)) def remove_holiday(holiday_id: int, _connection=None): holiday_service = services.holiday_service() if holiday_service is None: return holiday_service.remove_a_holiday(holiday_id)
7ea4bf955c72f0899acb5deec87b995d090645a2
ccbf98db11ce2f7f6d21b846e90b806896be8429
/Your_first_neural_network.py
e31c96471a17845499caa583158484ad019ea377
[]
no_license
MartinSnow/first-neural-network
3b1514b7e90f041a8dca9dd2e73d8b0c05c53f4c
7123fb5d904bcb713bb3c2b2dc07dada62078ca0
refs/heads/master
2020-03-19T00:03:42.608144
2018-05-30T14:56:11
2018-05-30T14:56:11
135,450,316
0
0
null
null
null
null
UTF-8
Python
false
false
17,135
py
# coding: utf-8 # # 你的第一个神经网络 # # 在此项目中,你将构建你的第一个神经网络,并用该网络预测每日自行车租客人数。我们提供了一些代码,但是需要你来实现神经网络(大部分内容)。提交此项目后,欢迎进一步探索该数据和模型。 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") import numpy as np import pandas as pd import matplotlib.pyplot as plt # ## 加载和准备数据 # # 构建神经网络的关键一步是正确地准备数据。不同尺度级别的变量使网络难以高效地掌握正确的权重。我们在下方已经提供了加载和准备数据的代码。你很快将进一步学习这些代码! # In[2]: data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) # In[3]: rides.head() # ## 数据简介 # # 此数据集包含的是从 2011 年 1 月 1 日到 2012 年 12 月 31 日期间每天每小时的骑车人数。骑车用户分成临时用户和注册用户,cnt 列是骑车用户数汇总列。你可以在上方看到前几行数据。 # # 下图展示的是数据集中前 10 天左右的骑车人数(某些天不一定是 24 个条目,所以不是精确的 10 天)。你可以在这里看到每小时租金。这些数据很复杂!周末的骑行人数少些,工作日上下班期间是骑行高峰期。我们还可以从上方的数据中看到温度、湿度和风速信息,所有这些信息都会影响骑行人数。你需要用你的模型展示所有这些数据。 # In[4]: rides[:24*10].plot(x='dteday', y='cnt') # ### 虚拟变量(哑变量) # # 下面是一些分类变量,例如季节、天气、月份。要在我们的模型中包含这些数据,我们需要创建二进制虚拟变量。用 Pandas 库中的 `get_dummies()` 就可以轻松实现。 # In[5]: dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() # ### 调整目标变量 # # 为了更轻松地训练网络,我们将对每个连续变量标准化,即转换和调整变量,使它们的均值为 0,标准差为 1。 # # 我们会保存换算因子,以便当我们使用网络进行预测时可以还原数据。 # In[6]: quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # ### 将数据拆分为训练、测试和验证数据集 # # 我们将大约最后 21 天的数据保存为测试数据集,这些数据集会在训练完网络后使用。我们将使用该数据集进行预测,并与实际的骑行人数进行对比。 # In[7]: # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # 我们将数据拆分为两个数据集,一个用作训练,一个在网络训练完后用来验证网络。因为数据是有时间序列特性的,所以我们用历史数据进行训练,然后尝试预测未来数据(验证数据集)。 # In[8]: # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] # ## 开始构建网络 # # 下面你将构建自己的网络。我们已经构建好结构和反向传递部分。你将实现网络的前向传递部分。还需要设置超参数:学习速率、隐藏单元的数量,以及训练传递数量。 # # <img src="assets/neural_network.png" width=300px> # # 该网络有两个层级,一个隐藏层和一个输出层。隐藏层级将使用 S 型函数作为激活函数。输出层只有一个节点,用于递归,节点的输出和节点的输入相同。即激活函数是 $f(x)=x$。这种函数获得输入信号,并生成输出信号,但是会考虑阈值,称为激活函数。我们完成网络的每个层级,并计算每个神经元的输出。一个层级的所有输出变成下一层级神经元的输入。这一流程叫做前向传播(forward propagation)。 # # 我们在神经网络中使用权重将信号从输入层传播到输出层。我们还使用权重将错误从输出层传播回网络,以便更新权重。这叫做反向传播(backpropagation)。 # # > **提示**:你需要为反向传播实现计算输出激活函数 ($f(x) = x$) 的导数。如果你不熟悉微积分,其实该函数就等同于等式 $y = x$。该等式的斜率是多少?也就是导数 $f(x)$。 # # # 你需要完成以下任务: # # 1. 实现 S 型激活函数。将 `__init__` 中的 `self.activation_function` 设为你的 S 型函数。 # 2. 在 `train` 方法中实现前向传递。 # 3. 在 `train` 方法中实现反向传播算法,包括计算输出错误。 # 4. 在 `run` 方法中实现前向传递。 # # # In[9]: class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. self.activation_function = lambda x : 1 / (1 + np.exp(-x)) # Replace 0 with your sigmoid calculation. ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # #def sigmoid(x): # return 0 # Replace 0 with your sigmoid calculation here #self.activation_function = sigmoid def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y - final_outputs # Output layer error is the difference between desired target and actual output. # TODO: Calculate the hidden layer's contribution to the error hidden_error = np.dot(error[:,None], self.weights_hidden_to_output.T) # TODO: Backpropagated error terms - Replace these values with your calculations. output_error_term = error hidden_error_term = hidden_error*hidden_outputs*(1-hidden_outputs) # Weight step (input to hidden) delta_weights_i_h += hidden_error_term*X[:,None] # Weight step (hidden to output) delta_weights_h_o += output_error_term*hidden_outputs[:,None] # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output += self.lr*delta_weights_h_o/n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr*delta_weights_i_h/n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs # In[10]: def MSE(y, Y): return np.mean((y-Y)**2) # ## 单元测试 # # 运行这些单元测试,检查你的网络实现是否正确。这样可以帮助你确保网络已正确实现,然后再开始训练网络。这些测试必须成功才能通过此项目。 # In[11]: import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) # ## 训练网络 # # 现在你将设置网络的超参数。策略是设置的超参数使训练集上的错误很小但是数据不会过拟合。如果网络训练时间太长,或者有太多的隐藏节点,可能就会过于针对特定训练集,无法泛化到验证数据集。即当训练集的损失降低时,验证集的损失将开始增大。 # # 你还将采用随机梯度下降 (SGD) 方法训练网络。对于每次训练,都获取随机样本数据,而不是整个数据集。与普通梯度下降相比,训练次数要更多,但是每次时间更短。这样的话,网络训练效率更高。稍后你将详细了解 SGD。 # # # ### 选择迭代次数 # # 也就是训练网络时从训练数据中抽样的批次数量。迭代次数越多,模型就与数据越拟合。但是,如果迭代次数太多,模型就无法很好地泛化到其他数据,这叫做过拟合。你需要选择一个使训练损失很低并且验证损失保持中等水平的数字。当你开始过拟合时,你会发现训练损失继续下降,但是验证损失开始上升。 # # ### 选择学习速率 # # 速率可以调整权重更新幅度。如果速率太大,权重就会太大,导致网络无法与数据相拟合。建议从 0.1 开始。如果网络在与数据拟合时遇到问题,尝试降低学习速率。注意,学习速率越低,权重更新的步长就越小,神经网络收敛的时间就越长。 # # # ### 选择隐藏节点数量 # # 隐藏节点越多,模型的预测结果就越准确。尝试不同的隐藏节点的数量,看看对性能有何影响。你可以查看损失字典,寻找网络性能指标。如果隐藏单元的数量太少,那么模型就没有足够的空间进行学习,如果太多,则学习方向就有太多的选择。选择隐藏单元数量的技巧在于找到合适的平衡点。 # In[12]: import sys ### Set the hyperparameters here ### iterations = 3000 learning_rate = 0.5 hidden_nodes = 10 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.loc[batch].values, train_targets.loc[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) + "% ... Training loss: " + str(train_loss)[:5] + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) # In[13]: plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() # ## 检查预测结果 # # 使用测试数据看看网络对数据建模的效果如何。如果完全错了,请确保网络中的每步都正确实现。 # In[14]: fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) # ## 可选:思考下你的结果(我们不会评估这道题的答案) # # # 请针对你的结果回答以下问题。模型对数据的预测效果如何?哪里出现问题了?为何出现问题呢? # # > **注意**:你可以通过双击该单元编辑文本。如果想要预览文本,请按 Control + Enter # # #### 请将你的答案填写在下方 #
3eeadc182efdc464262b1666ed9e13d5177d14a7
9b1446b26e81a79c303f9799fb6a91785c7adb03
/Code/.history/listogram_20200211102152.py
dba8833384547273220a2bdcaa8ac891eb054bfd
[]
no_license
SamirIngley/CS1.2-Tweet-Gen
017ea15b1113881a156ff24682828bc654eb6c81
bcd95fa63e05849cbf8e36230d8e31032b99daaa
refs/heads/master
2020-12-14T20:19:57.733290
2020-08-04T23:19:23
2020-08-04T23:19:23
234,856,234
0
0
null
2020-06-05T21:13:04
2020-01-19T07:05:55
Python
UTF-8
Python
false
false
5,653
py
#!python from __future__ import division, print_function # Python 2 and 3 compatibility import random from sample import prob_sample class Listogram(list): """Listogram is a histogram implemented as a subclass of the list type.""" def __init__(self, word_list=None): """Initialize this histogram as a new list and count given words.""" super(Listogram, self).__init__() # Initialize this as a new list # Add properties to track useful word counts for this histogram self.types = 0 # Count of distinct word types in this histogram self.tokens = 0 # Total count of all word tokens in this histogram # Count words in given list, if any # word_list = word_list.split() if word_list is not None: for word in word_list: self.add_count(word) def add_count(self, word, count=1): """Increase frequency count of given word by given count amount.""" # TODO: Increase word frequency by count # add count to tokens self.tokens += count # first case: word exists -> increment count for that word # print(instance) if self.__contains__(word) == True: index = self.index_of(word) # print(index) self[index][1] += count # second case: word dne --> append instance of word else: self.append([word, count]) self.types += 1 def frequency(self, word): """Return frequency count of given word, or 0 if word is not found.""" # TODO: Retrieve word frequency count for item in self: if item[0] == word: return item[1] return 0 def __contains__(self, word): """Return boolean indicating if given word is in this histogram.""" # TODO: Check if word is in this histogram for item in self: if item[0] == word: return True return False def index_of(self, target): """Return the index of entry containing given target word if found in this histogram, or None if target word is not found.""" # TODO: Implement linear search to find index of entry with target word print(self) for i in range(len(self)): # print(i) if target == self[i][0]: # print(self[i][0]) return int(i) return None # for item in self: # if item[0] == target: # return self.index(item) # return None def sample(self): """Return a word from this histogram, randomly sampled by weighting each word's probability of being chosen by its observed frequency.""" # TODO: Randomly choose a word based on its frequency in this histogram return prob_sample(self) def print_histogram(word_list): print() print('Histogram:') print('word list: {}'.format(word_list)) # Create a listogram and display its contents histogram = Listogram(word_list) print('listogram: {}'.format(histogram)) print('{} tokens, {} types'.format(histogram.tokens, histogram.types)) for word in word_list[-2:]: freq = histogram.frequency(word) print('{!r} occurs {} times'.format(word, freq)) print() print_histogram_samples(histogram) def print_histogram_samples(histogram): print('Histogram samples:') # Sample the histogram 10,000 times and count frequency of results samples_list = [histogram.sample() for _ in range(10000)] samples_hist = Listogram(samples_list) print('samples: {}'.format(samples_hist)) print() print('Sampled frequency and error from observed frequency:') header = '| word type | observed freq | sampled freq | error |' divider = '-' * len(header) print(divider) print(header) print(divider) # Colors for error green = '\033[32m' yellow = '\033[33m' red = '\033[31m' reset = '\033[m' # Check each word in original histogram for word, count in histogram: # Calculate word's observed frequency observed_freq = count / histogram.tokens # Calculate word's sampled frequency samples = samples_hist.frequency(word) sampled_freq = samples / samples_hist.tokens # Calculate error between word's sampled and observed frequency error = (sampled_freq - observed_freq) / observed_freq color = green if abs(error) < 0.05 else yellow if abs(error) < 0.1 else red print('| {!r:<9} '.format(word) + '| {:>4} = {:>6.2%} '.format(count, observed_freq) + '| {:>4} = {:>6.2%} '.format(samples, sampled_freq) + '| {}{:>+7.2%}{} |'.format(color, error, reset)) print(divider) print() def main(): import sys arguments = sys.argv[1:] # Exclude script name in first argument if len(arguments) >= 1: # Test histogram on given arguments print_histogram(arguments) else: # Test histogram on letters in a word word = 'abracadabra' print_histogram(list(word)) # Test histogram on words in a classic book title fish_text = 'one fish two fish red fish blue fish' print_histogram(fish_text.split()) # Test histogram on words in a long repetitive sentence woodchuck_text = ('how much wood would a wood chuck chuck' ' if a wood chuck could chuck wood') print_histogram(woodchuck_text.split()) if __name__ == '__main__': main() print(listogram('one fish two fish red fish blue fish').items()
8777583da741851996ff7641ab50d2af2560ea1b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03073/s506049287.py
e7b40d93af0372410ecb41380792639e0b71e517
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
s=input() print(min(s[::2].count("1")+s[1::2].count("0"),s[::2].count("0")+s[1::2].count("1")))
78e865b1517223315d05ca75adde29b5a753601b
acad86f0365aa0b5b613644a896bffb9d4dc533f
/django_session_jwt/test.py
8e931858e91b4e4cab19fa50500ef1161aa607b8
[ "MIT" ]
permissive
willstott101/django-session-jwt
f85be9c9d5cefe26f5e6253886018baa256c2a83
ca5dc90c61190305f902ceab03a30abf0e184865
refs/heads/master
2023-08-29T13:42:35.587372
2021-09-23T19:18:26
2021-09-23T19:18:26
421,750,404
0
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
from importlib import import_module from django.conf import settings from django.test.client import Client as BaseClient from django.contrib.auth import SESSION_KEY, get_user_model from django_session_jwt.middleware import convert_cookie, verify_jwt User = get_user_model() class Client(BaseClient): def login(self, **credentials): ret = super(Client, self).login(**credentials) if ret: user = User.objects.get(id=int(self.session[SESSION_KEY])) convert_cookie(self.cookies, user) return ret @property def session(self): """ Obtains the current session variables. """ engine = import_module(settings.SESSION_ENGINE) cookie = self.cookies.get(settings.SESSION_COOKIE_NAME) if cookie: sk = verify_jwt(cookie.value).get('sk', cookie.value) return engine.SessionStore(sk) session = engine.SessionStore() session.save() self.cookies[settings.SESSION_COOKIE_NAME] = session.session_key return session
9c3072e28bebc804c79f0b1fa0248796a4500f7e
82e8593a7e91a260a39b150e13f25741da4d6f8f
/pylib/cli.py
a4dbf7efd887a15e93d2dcb068d85565d0cc2891
[]
no_license
grandi23/winterpy
5b9074c62d0f3da370705b99ae2a5f9d9f6ada59
989fe6595dc53dca9a0f6da3feb8e05d009d7958
refs/heads/master
2021-01-17T12:08:10.737815
2015-05-03T09:24:48
2015-05-03T09:24:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,847
py
# vim:fileencoding=utf-8 # This file is in the Public Domain ''' Convenient functions for command-line use. Python 2 & 3 ''' import os import re def repl(local, histfile=None, banner=None): import readline import rlcompleter if 'libedit' in readline.__doc__: readline.parse_and_bind('bind ^I rl_complete') else: readline.parse_and_bind('tab: complete') if histfile is not None and os.path.exists(histfile): # avoid duplicate reading if readline.get_current_history_length() <= 0: readline.set_history_length(10000) readline.read_history_file(histfile) import code readline.set_completer(rlcompleter.Completer(local).complete) code.interact(local=local, banner=banner) if histfile is not None: readline.write_history_file(histfile) def repl_reset_stdin(*args, **kwargs): fd = os.open('/dev/tty', os.O_RDONLY) os.dup2(fd, 0) os.close(fd) repl(*args, **kwargs) def _translate(m): s = m.group(0) type, code = s[1], int(s[2:], 16) if type == 'x': return chr(code) else: return unichr(code).encode('utf-8') def unescape_py2(s): return re.sub(r'\\x[0-9A-Fa-f]{2}|\\u[0-9A-Fa-f]{4}|\\U[0-9A-Fa-f]{8}', _translate, s) def repl_py27(local, *args, **kwargs): '''Fix unicode display in Python 2.x; Console encoding must be UTF-8''' import re, sys def displayfunc(value): if value is None: local['_'] = None return r = repr(value) r = unescape_py2(r) print(r) local['_'] = value old_displayhook = sys.displayhook sys.displayhook = displayfunc try: repl(local, *args, **kwargs) finally: sys.displayhook = old_displayhook if __name__ == '__main__': import sys if sys.version_info[0] == 3: repl_func = repl else: repl_func = repl_py27 repl_func(vars(), os.path.expanduser('~/.pyhistory'))
e8d8d9af59056af753ef58acd36c9b21d2d45cbf
39354dfc8f61f57f022522a3e3a880c73a540d0d
/shenfun/utilities/__init__.py
ab4cb0c3b03aa606b0854b11a59de03b0f3e750b
[ "BSD-2-Clause" ]
permissive
mstf1985/shenfun
aab9cd416ea7cb549ef191ed9e32f4cd66d522d0
83a28b3f7142ef3bf60b20d707ba8c1d2f13a8ff
refs/heads/master
2022-12-10T20:27:51.825173
2020-08-28T13:58:58
2020-08-28T13:58:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,621
py
""" Module for implementing helper functions. """ import types from numbers import Number try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping from collections import defaultdict import numpy as np import sympy as sp from scipy.fftpack import dct from shenfun.optimization import optimizer __all__ = ['dx', 'clenshaw_curtis1D', 'CachedArrayDict', 'outer', 'apply_mask', 'integrate_sympy', 'mayavi_show'] def dx(u): r"""Compute integral of u over domain .. math:: \int_{\Omega} u dx Parameters ---------- u : Array The Array to integrate """ T = u.function_space() uc = u.copy() dim = len(u.shape) if dim == 1: w = T.points_and_weights(weighted=False)[1] return np.sum(uc*w).item() for ax in range(dim): uc = uc.redistribute(axis=ax) w = T.bases[ax].points_and_weights(weighted=False)[1] sl = [np.newaxis]*len(uc.shape) sl[ax] = slice(None) uu = np.sum(uc*w[tuple(sl)], axis=ax) sl = [slice(None)]*len(uc.shape) sl[ax] = np.newaxis uc[:] = uu[tuple(sl)] return uc.flat[0] def clenshaw_curtis1D(u, quad="GC"): # pragma: no cover """Clenshaw-Curtis integration in 1D""" assert u.ndim == 1 N = u.shape[0] if quad == 'GL': w = np.arange(0, N, 1, dtype=float) w[2:] = 2./(1-w[2:]**2) w[0] = 1 w[1::2] = 0 ak = dct(u, 1) ak /= (N-1) return np.sqrt(np.sum(ak*w)) assert quad == 'GC' d = np.zeros(N) k = 2*(1 + np.arange((N-1)//2)) d[::2] = (2./N)/np.hstack((1., 1.-k*k)) w = dct(d, type=3) return np.sqrt(np.sum(u*w)) class CachedArrayDict(MutableMapping): """Dictionary for caching Numpy arrays (work arrays) Example ------- >>> import numpy as np >>> from shenfun.utilities import CachedArrayDict >>> work = CachedArrayDict() >>> a = np.ones((3, 4), dtype=int) >>> w = work[(a, 0, True)] # create work array with shape as a >>> print(w.shape) (3, 4) >>> print(w) [[0 0 0 0] [0 0 0 0] [0 0 0 0]] >>> w2 = work[(a, 1, True)] # Get different(note 1!) array of same shape/dtype """ def __init__(self): self._data = {} def __getitem__(self, key): newkey, fill = self.__keytransform__(key) try: value = self._data[newkey] except KeyError: shape, dtype, _ = newkey value = np.zeros(shape, dtype=np.dtype(dtype, align=True)) self._data[newkey] = value if fill: value.fill(0) return value @staticmethod def __keytransform__(key): assert len(key) == 3 return (key[0].shape, key[0].dtype, key[1]), key[2] def __len__(self): return len(self._data) def __setitem__(self, key, value): self._data[self.__keytransform__(key)[0]] = value def __delitem__(self, key): del self._data[self.__keytransform__(key)[0]] def __iter__(self): return iter(self._data) def values(self): raise TypeError('Cached work arrays not iterable') def outer(a, b, c): r"""Return outer product $c_{i,j} = a_i b_j$ Parameters ---------- a : Array of shape (N, ...) b : Array of shape (N, ...) c : Array of shape (N*N, ...) The outer product is taken over the first index of a and b, for all remaining indices. """ av = a.v bv = b.v cv = c.v symmetric = a is b if av.shape[0] == 2: outer2D(av, bv, cv, symmetric) elif av.shape[0] == 3: outer3D(av, bv, cv, symmetric) return c @optimizer def outer2D(a, b, c, symmetric): c[0] = a[0]*b[0] c[1] = a[0]*b[1] if symmetric: c[2] = c[1] else: c[2] = a[1]*b[0] c[3] = a[1]*b[1] @optimizer def outer3D(a, b, c, symmetric): c[0] = a[0]*b[0] c[1] = a[0]*b[1] c[2] = a[0]*b[2] if symmetric: c[3] = c[1] c[6] = c[2] c[7] = c[5] else: c[3] = a[1]*b[0] c[6] = a[2]*b[0] c[7] = a[2]*b[1] c[4] = a[1]*b[1] c[5] = a[1]*b[2] c[8] = a[2]*b[2] @optimizer def apply_mask(u_hat, mask): if mask is not None: u_hat *= mask return u_hat def integrate_sympy(f, d): """Exact definite integral using sympy Try to convert expression `f` to a polynomial before integrating. See sympy issue https://github.com/sympy/sympy/pull/18613 to why this is needed. Poly().integrate() is much faster than sympy.integrate() when applicable. Parameters ---------- f : sympy expression d : 3-tuple First item the symbol, next two the lower and upper integration limits """ try: p = sp.Poly(f, d[0]).integrate() return p(d[2]) - p(d[1]) except sp.PolynomialError: #return sp.Integral(f, d).evalf() return sp.integrate(f, d) def split(measures): #ms = sp.sympify(measures).expand() #ms = ms if isinstance(ms, tuple) else [ms] #result = [] #for m in ms: # if sp.simplify(m) == 0: # continue # d = {'coeff': m} if isinstance(m, Number) else sp.separatevars(m, dict=True) # d = defaultdict(lambda: 1, {str(k): sp.simplify(v) for k, v in d.items()}) # dc = d['coeff'] # d['coeff'] = int(dc) if isinstance(dc, (sp.Integer, int)) else float(dc) # result.append(d) #return result def _split(mss, result): for ms in mss: ms = sp.sympify(ms) if isinstance(ms, sp.Mul): # Multiplication of two or more terms result = _split(ms.args, result) continue # Something else with only one symbol sym = ms.free_symbols assert len(sym) <= 1 if len(sym) == 1: sym = sym.pop() result[str(sym)] *= ms else: ms = int(ms) if isinstance(ms, sp.Integer) else float(ms) result['coeff'] *= ms return result ms = sp.sympify(measures).expand() result = [] if isinstance(ms, sp.Add): for arg in ms.args: result.append(_split([arg], defaultdict(lambda: 1))) else: result.append(_split([ms], defaultdict(lambda: 1))) return result def mayavi_show(): """ Return show function that updates the mayavi figure in the background. """ from pyface.api import GUI from mayavi import mlab return mlab.show(GUI().stop_event_loop)
92860749415e2e2d47633bedc17980cca62a426e
1a57701cb4d1646aafde8697822bbccac75384d2
/backend/manage.py
c4af1014429b9188efdb9af4081d3e319f46a4d3
[]
no_license
crowdbotics-apps/msm-sjsjskjsk8765-d-13922
79159dc8e38253fba76dfd706b8846be04a46c2a
70e94d23e2b32e62ced3ef27304a4cef63763e1b
refs/heads/master
2022-12-31T19:00:03.093402
2020-10-23T10:11:57
2020-10-23T10:11:57
306,597,820
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'msm_sjsjskjsk8765_d_13922.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
4e5392e6a97b9f2543a239f9adb0cf149741da5a
3a5ea75a5039207104fd478fb69ac4664c3c3a46
/vega/modules/operators/cell.py
d03942590a2e4c9f3881d5e842d8bfb35026b39d
[ "MIT" ]
permissive
fmsnew/vega
e3df25efa6af46073c441f41da4f2fdc4929fec5
8e0af84a57eca5745fe2db3d13075393838036bb
refs/heads/master
2023-06-10T04:47:11.661814
2021-06-26T07:45:30
2021-06-26T07:45:30
285,174,199
0
0
MIT
2020-08-11T14:19:09
2020-08-05T03:59:49
Python
UTF-8
Python
false
false
11,111
py
# -*- coding: utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Import all torch operators.""" import vega from vega.common import ClassType, ClassFactory from vega.modules.operators import ops from vega.modules.operators.mix_ops import MixedOp, OPS from vega.modules.operators.conv import conv_bn_relu, Seq, FactorizedReduce, ReLUConvBN @ClassFactory.register(ClassType.NETWORK) class Cell(ops.Module): """Cell structure according to desc.""" concat_size = 0 def __init__(self, genotype, steps, concat, reduction, reduction_prev=None, C_prev_prev=None, C_prev=None, C=None): """Init Cell.""" super(Cell, self).__init__() self.genotype = genotype self.steps = steps self.concat = concat self.reduction = reduction self.reduction_prev = reduction_prev self.C_prev_prev = C_prev_prev self.C_prev = C_prev self.C = C self.concat_size = 0 affine = True if isinstance(self.genotype[0][0], list): affine = False if self.reduction_prev: self.preprocess0 = FactorizedReduce(self.C_prev_prev, self.C, affine) else: self.preprocess0 = ReLUConvBN(self.C_prev_prev, self.C, 1, 1, 0, affine) self.preprocess1 = ReLUConvBN(self.C_prev, self.C, 1, 1, 0, affine) op_names, indices_out, indices_inp = zip(*self.genotype) self.build_ops(self.C, op_names, indices_out, indices_inp, self.concat, self.reduction) self.concat_size = len(self.concat) self.torch_flag = vega.is_torch_backend() def build_ops(self, C, op_names, indices_out, indices_inp, concat, reduction): """Compile the cell. :param C: channels of this cell :type C: int :param op_names: list of all the operations in description :type op_names: list of str :param indices_out: list of all output nodes :type indices_out: list of int :param indices_inp: list of all input nodes link to output node :type indices_inp: list of int :param concat: cell concat list of output node :type concat: list of int :param reduction: whether to reduce :type reduction: bool """ self._concat = concat self._multiplier = len(concat) self.out_inp_list = [] temp_list = [] idx_cmp = 2 _op_list = [] for i in range(len(op_names)): if indices_out[i] == idx_cmp: temp_list.append(indices_inp[i]) elif indices_out[i] > idx_cmp: self.out_inp_list.append(temp_list.copy()) temp_list = [] idx_cmp += 1 temp_list.append(indices_inp[i]) else: raise Exception("input index should not less than idx_cmp") stride = 2 if reduction and indices_inp[i] < 2 else 1 op = MixedOp(C=C, stride=stride, ops_cands=op_names[i]) _op_list.append(op) self.op_list = Seq(*tuple(_op_list)) self.oplist = list(self.op_list.children()) self.out_inp_list.append(temp_list.copy()) if len(self.out_inp_list) != self.steps: raise Exception("out_inp_list length should equal to steps") def call(self, s0, s1, weights=None, drop_path_prob=0, selected_idxs=None): """Forward function of Cell. :param s0: feature map of previous of previous cell :type s0: torch tensor :param s1: feature map of previous cell :type s1: torch tensor :param weights: weights of operations in cell :type weights: torch tensor, 2 dimension :return: cell output :rtype: torch tensor """ s0 = self.preprocess0(s0) s1 = self.preprocess1(s1) states = [s0, s1] idx = 0 for i in range(self.steps): hlist = [] for j, inp in enumerate(self.out_inp_list[i]): op = self.oplist[idx + j] if selected_idxs is None: if weights is None: h = op(states[inp]) else: h = op(states[inp], weights[idx + j]) if drop_path_prob > 0. and not isinstance(list(op.children())[0], ops.Identity): h = ops.drop_path(h, drop_path_prob) hlist.append(h) elif selected_idxs[idx + j] == -1: # undecided mix edges h = op(states[inp], weights[idx + j]) hlist.append(h) elif selected_idxs[idx + j] == 0: # zero operation continue else: h = self.oplist[idx + j](states[inp], None, selected_idxs[idx + j]) hlist.append(h) if self.torch_flag: s = sum(hlist) else: s = hlist[0] for ii in range(1, len(hlist)): s += hlist[ii] states.append(s) idx += len(self.out_inp_list[i]) states_list = () for i in self._concat: states_list += (states[i],) # states_list = tuple([states[i] for i in self._concat]) return ops.concat(states_list) @ClassFactory.register(ClassType.NETWORK) class NormalCell(Cell): """Normal Cell structure according to desc.""" def __init__(self, genotype, steps, concat, reduction_prev=None, C_prev_prev=None, C_prev=None, C=None): super(NormalCell, self).__init__(genotype, steps, concat, False, reduction_prev, C_prev_prev, C_prev, C) @ClassFactory.register(ClassType.NETWORK) class ReduceCell(Cell): """Reduce Cell structure according to desc.""" def __init__(self, genotype, steps, concat, reduction_prev=None, C_prev_prev=None, C_prev=None, C=None): super(ReduceCell, self).__init__(genotype, steps, concat, True, reduction_prev, C_prev_prev, C_prev, C) @ClassFactory.register(ClassType.NETWORK) class ContextualCell_v1(ops.Module): """New contextual cell design.""" def __init__(self, op_names, config, inp, repeats=1, concat=False): """Construct ContextualCell_v1 class. :param op_names: list of operation indices :param config: list of config numbers :param inp: input channel :param repeats: number of repeated times :param concat: concat the result if set to True, otherwise add the result """ super(ContextualCell_v1, self).__init__() self.ops = ops.MoudleList() self._pos = [] self._collect_inds = [0] self._pools = ['x'] for ind, op in enumerate(config): # first op is always applied on x if ind == 0: pos = 0 op_id = op self._collect_inds.remove(pos) op_name = op_names[op_id] # turn-off scaling in batch norm self.ops.append(OPS[op_name](inp, 1, True, repeats)) self._pos.append(pos) self._collect_inds.append(ind + 1) self._pools.append('{}({})'.format(op_name, self._pools[pos])) else: pos1, pos2, op_id1, op_id2 = op # drop op_id from loose ends for ind2, (pos, op_id) in enumerate(zip([pos1, pos2], [op_id1, op_id2])): if pos in self._collect_inds: self._collect_inds.remove(pos) op_name = op_names[op_id] # turn-off scaling in batch norm self.ops.append(OPS[op_name](inp, 1, True, repeats)) self._pos.append(pos) # self._collect_inds.append(ind * 3 + ind2 - 1) # Do not collect intermediate self._pools.append('{}({})'.format( op_name, self._pools[pos])) # summation op_name = 'sum' self.ops.append(AggregateCell(size_1=None, size_2=None, agg_size=inp, pre_transform=False, concat=concat)) # turn-off convbnrelu self._pos.append([ind * 3 - 1, ind * 3]) self._collect_inds.append(ind * 3 + 1) self._pools.append('{}({},{})'.format( op_name, self._pools[ind * 3 - 1], self._pools[ind * 3])) def call(self, x): """Do an inference on ContextualCell_v1. :param x: input tensor :return: output tensor """ feats = [x] for pos, op in zip(self._pos, self.ops): if isinstance(pos, list): assert len(pos) == 2, "Two ops must be provided" feats.append(op(feats[pos[0]], feats[pos[1]])) else: feats.append(op(feats[pos])) out = 0 for i in self._collect_inds: out += feats[i] return out @ClassFactory.register(ClassType.NETWORK) class AggregateCell(ops.Module): """Aggregate two cells and sum or concat them up.""" def __init__(self, size_1, size_2, agg_size, pre_transform=True, concat=False): """Construct AggregateCell. :param size_1: channel of first input :param size_2: channel of second input :param agg_size: channel of aggregated tensor :param pre_transform: whether to do a transform on two inputs :param concat: concat the result if set to True, otherwise add the result """ super(AggregateCell, self).__init__() self.pre_transform = pre_transform self.concat = concat if self.pre_transform: self.branch_1 = conv_bn_relu(size_1, agg_size, 1, 1, 0) self.branch_2 = conv_bn_relu(size_2, agg_size, 1, 1, 0) if self.concat: self.conv1x1 = conv_bn_relu(agg_size * 2, agg_size, 1, 1, 0) def call(self, x1, x2): """Do an inference on AggregateCell. :param x1: first input :param x2: second input :return: output """ if self.pre_transform: x1 = self.branch_1(x1) x2 = self.branch_2(x2) if tuple(ops.get_shape(x1)[2:]) > tuple(ops.get_shape(x2)[2:]): x2 = ops.interpolate(x2, size=ops.get_shape( x1)[2:], mode='bilinear', align_corners=True) elif tuple(ops.get_shape(x1)[2:]) < tuple(ops.get_shape(x2)[2:]): x1 = ops.interpolate(x1, size=ops.get_shape( x2)[2:], mode='bilinear', align_corners=True) if self.concat: return self.conv1x1(ops.concat([x1, x2])) else: return x1 + x2
00f9596b9cdd8422623d02cb8b0bb31ff158a62c
27b4d1b7723845812111a0c6c659ef87c8da2755
/face_recognition/02.py
688d0fa1923af488a037fb7b805f09b4f024848a
[]
no_license
NAMEs/Python_Note
59a6eff7b4287aaef04bd69fbd4af3faf56cccb4
f560e00af37c4f22546abc4c2756e7037adcc40c
refs/heads/master
2022-04-11T09:32:17.512962
2020-03-17T09:30:58
2020-03-17T09:30:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
669
py
''' 自动找到图像中的所有面孔 ''' from PIL import Image import face_recognition #加载图片 image1 = face_recognition.load_image_file('./unknow/5.jpg') # 返回一个列表,列表中用元组保存图片中的所有人脸的位置 face_locations = face_recognition.face_locations(image1) # print(face_locations) print("There are {} people in the picture.".format(len(face_locations))) for face_location in face_locations: # 元组中图片坐标为上,右,下,左 top,right,bottom,left = face_location face_image = image1[top:bottom, left:right] pil_image = Image.fromarray(face_image) pil_image.show()
2bb3173ee451d64125b9bd935ef9020db64cf605
3784495ba55d26e22302a803861c4ba197fd82c7
/venv/lib/python3.6/site-packages/tensorboard/plugins/core/core_plugin.py
d09c2e5e23649249a4a751fa162d9e0afb36e843
[ "MIT" ]
permissive
databill86/HyperFoods
cf7c31f5a6eb5c0d0ddb250fd045ca68eb5e0789
9267937c8c70fd84017c0f153c241d2686a356dd
refs/heads/master
2021-01-06T17:08:48.736498
2020-02-11T05:02:18
2020-02-11T05:02:18
241,407,659
3
0
MIT
2020-02-18T16:15:48
2020-02-18T16:15:47
null
UTF-8
Python
false
false
21,021
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorBoard core plugin package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import gzip import math import mimetypes import os import zipfile import six from werkzeug import utils from werkzeug import wrappers from tensorboard import plugin_util from tensorboard.backend import http_util from tensorboard.plugins import base_plugin from tensorboard.util import tb_logging logger = tb_logging.get_logger() # If no port is specified, try to bind to this port. See help for --port # for more details. DEFAULT_PORT = 6006 class CorePlugin(base_plugin.TBPlugin): """Core plugin for TensorBoard. This plugin serves runs, configuration data, and static assets. This plugin should always be present in a TensorBoard WSGI application. """ plugin_name = 'core' def __init__(self, context): """Instantiates CorePlugin. Args: context: A base_plugin.TBContext instance. """ logdir_spec = context.flags.logdir_spec if context.flags else '' self._logdir = context.logdir or logdir_spec self._db_uri = context.db_uri self._window_title = context.window_title self._multiplexer = context.multiplexer self._db_connection_provider = context.db_connection_provider self._assets_zip_provider = context.assets_zip_provider if context.flags and context.flags.generic_data == 'true': self._data_provider = context.data_provider else: self._data_provider = None def is_active(self): return True def get_plugin_apps(self): apps = { '/___rPc_sWiTcH___': self._send_404_without_logging, '/audio': self._redirect_to_index, '/data/environment': self._serve_environment, '/data/logdir': self._serve_logdir, '/data/runs': self._serve_runs, '/data/experiments': self._serve_experiments, '/data/experiment_runs': self._serve_experiment_runs, '/data/window_properties': self._serve_window_properties, '/events': self._redirect_to_index, '/favicon.ico': self._send_404_without_logging, '/graphs': self._redirect_to_index, '/histograms': self._redirect_to_index, '/images': self._redirect_to_index, } apps.update(self.get_resource_apps()) return apps def get_resource_apps(self): apps = {} if not self._assets_zip_provider: return apps with self._assets_zip_provider() as fp: with zipfile.ZipFile(fp) as zip_: for path in zip_.namelist(): gzipped_asset_bytes = _gzip(zip_.read(path)) wsgi_app = functools.partial( self._serve_asset, path, gzipped_asset_bytes) apps['/' + path] = wsgi_app apps['/'] = apps['/index.html'] return apps @wrappers.Request.application def _send_404_without_logging(self, request): return http_util.Respond(request, 'Not found', 'text/plain', code=404) @wrappers.Request.application def _redirect_to_index(self, unused_request): return utils.redirect('/') @wrappers.Request.application def _serve_asset(self, path, gzipped_asset_bytes, request): """Serves a pre-gzipped static asset from the zip file.""" mimetype = mimetypes.guess_type(path)[0] or 'application/octet-stream' return http_util.Respond( request, gzipped_asset_bytes, mimetype, content_encoding='gzip') @wrappers.Request.application def _serve_environment(self, request): """Serve a JSON object containing some base properties used by the frontend. * data_location is either a path to a directory or an address to a database (depending on which mode TensorBoard is running in). * window_title is the title of the TensorBoard web page. """ if self._data_provider: experiment = plugin_util.experiment_id(request.environ) data_location = self._data_provider.data_location(experiment) else: data_location = self._logdir or self._db_uri return http_util.Respond( request, { 'data_location': data_location, 'window_title': self._window_title, }, 'application/json') @wrappers.Request.application def _serve_logdir(self, request): """Respond with a JSON object containing this TensorBoard's logdir.""" # TODO(chihuahua): Remove this method once the frontend instead uses the # /data/environment route (and no deps throughout Google use the # /data/logdir route). return http_util.Respond( request, {'logdir': self._logdir}, 'application/json') @wrappers.Request.application def _serve_window_properties(self, request): """Serve a JSON object containing this TensorBoard's window properties.""" # TODO(chihuahua): Remove this method once the frontend instead uses the # /data/environment route. return http_util.Respond( request, {'window_title': self._window_title}, 'application/json') @wrappers.Request.application def _serve_runs(self, request): """Serve a JSON array of run names, ordered by run started time. Sort order is by started time (aka first event time) with empty times sorted last, and then ties are broken by sorting on the run name. """ if self._data_provider: experiment = plugin_util.experiment_id(request.environ) runs = sorted( self._data_provider.list_runs(experiment_id=experiment), key=lambda run: ( run.start_time if run.start_time is not None else float('inf'), run.run_name, ) ) run_names = [run.run_name for run in runs] elif self._db_connection_provider: db = self._db_connection_provider() cursor = db.execute(''' SELECT run_name, started_time IS NULL as started_time_nulls_last, started_time FROM Runs ORDER BY started_time_nulls_last, started_time, run_name ''') run_names = [row[0] for row in cursor] else: # Python's list.sort is stable, so to order by started time and # then by name, we can just do the sorts in the reverse order. run_names = sorted(self._multiplexer.Runs()) def get_first_event_timestamp(run_name): try: return self._multiplexer.FirstEventTimestamp(run_name) except ValueError as e: logger.warn( 'Unable to get first event timestamp for run %s: %s', run_name, e) # Put runs without a timestamp at the end. return float('inf') run_names.sort(key=get_first_event_timestamp) return http_util.Respond(request, run_names, 'application/json') @wrappers.Request.application def _serve_experiments(self, request): """Serve a JSON array of experiments. Experiments are ordered by experiment started time (aka first event time) with empty times sorted last, and then ties are broken by sorting on the experiment name. """ results = self.list_experiments_impl() return http_util.Respond(request, results, 'application/json') def list_experiments_impl(self): results = [] if self._db_connection_provider: db = self._db_connection_provider() cursor = db.execute(''' SELECT experiment_id, experiment_name, started_time, started_time IS NULL as started_time_nulls_last FROM Experiments ORDER BY started_time_nulls_last, started_time, experiment_name, experiment_id ''') results = [{ "id": row[0], "name": row[1], "startTime": row[2], } for row in cursor] return results @wrappers.Request.application def _serve_experiment_runs(self, request): """Serve a JSON runs of an experiment, specified with query param `experiment`, with their nested data, tag, populated. Runs returned are ordered by started time (aka first event time) with empty times sorted last, and then ties are broken by sorting on the run name. Tags are sorted by its name, displayName, and lastly, inserted time. """ results = [] if self._db_connection_provider: exp_id = plugin_util.experiment_id(request.environ) runs_dict = collections.OrderedDict() db = self._db_connection_provider() cursor = db.execute(''' SELECT Runs.run_id, Runs.run_name, Runs.started_time, Runs.started_time IS NULL as started_time_nulls_last, Tags.tag_id, Tags.tag_name, Tags.display_name, Tags.plugin_name, Tags.inserted_time From Runs LEFT JOIN Tags ON Runs.run_id = Tags.run_id WHERE Runs.experiment_id = ? AND (Tags.tag_id IS NULL OR Tags.plugin_name IS NOT NULL) ORDER BY started_time_nulls_last, Runs.started_time, Runs.run_name, Runs.run_id, Tags.tag_name, Tags.display_name, Tags.inserted_time; ''', (exp_id,)) for row in cursor: run_id = row[0] if not run_id in runs_dict: runs_dict[run_id] = { "id": run_id, "name": row[1], "startTime": math.floor(row[2]), "tags": [], } # tag can be missing. if row[4]: runs_dict[run_id].get("tags").append({ "id": row[4], "displayName": row[6], "name": row[5], "pluginName": row[7], }) results = list(runs_dict.values()) return http_util.Respond(request, results, 'application/json') class CorePluginLoader(base_plugin.TBLoader): """CorePlugin factory.""" def define_flags(self, parser): """Adds standard TensorBoard CLI flags to parser.""" parser.add_argument( '--logdir', metavar='PATH', type=str, default='', help='''\ Directory where TensorBoard will look to find TensorFlow event files that it can display. TensorBoard will recursively walk the directory structure rooted at logdir, looking for .*tfevents.* files. A leading tilde will be expanded with the semantics of Python's os.expanduser function. ''') parser.add_argument( '--logdir_spec', metavar='PATH_SPEC', type=str, default='', help='''\ Like `--logdir`, but with special interpretation for commas and colons: commas separate multiple runs, where a colon specifies a new name for a run. For example: `tensorboard --logdir_spec=name1:/path/to/logs/1,name2:/path/to/logs/2`. This flag is discouraged and can usually be avoided. TensorBoard walks log directories recursively; for finer-grained control, prefer using a symlink tree. Some features may not work when using `--logdir_spec` instead of `--logdir`. ''') parser.add_argument( '--host', metavar='ADDR', type=str, default=None, # like localhost, but prints a note about `--bind_all` help='''\ What host to listen to (default: localhost). To serve to the entire local network on both IPv4 and IPv6, see `--bind_all`, with which this option is mutually exclusive. ''') parser.add_argument( '--bind_all', action='store_true', help='''\ Serve on all public interfaces. This will expose your TensorBoard instance to the network on both IPv4 and IPv6 (where available). Mutually exclusive with `--host`. ''') parser.add_argument( '--port', metavar='PORT', type=lambda s: (None if s == "default" else int(s)), default="default", help='''\ Port to serve TensorBoard on. Pass 0 to request an unused port selected by the operating system, or pass "default" to try to bind to the default port (%s) but search for a nearby free port if the default port is unavailable. (default: "default").\ ''' % DEFAULT_PORT) parser.add_argument( '--purge_orphaned_data', metavar='BOOL', # Custom str-to-bool converter since regular bool() doesn't work. type=lambda v: {'true': True, 'false': False}.get(v.lower(), v), choices=[True, False], default=True, help='''\ Whether to purge data that may have been orphaned due to TensorBoard restarts. Setting --purge_orphaned_data=False can be used to debug data disappearance. (default: %(default)s)\ ''') parser.add_argument( '--db', metavar='URI', type=str, default='', help='''\ [experimental] sets SQL database URI and enables DB backend mode, which is read-only unless --db_import is also passed.\ ''') parser.add_argument( '--db_import', action='store_true', help='''\ [experimental] enables DB read-and-import mode, which in combination with --logdir imports event files into a DB backend on the fly. The backing DB is temporary unless --db is also passed to specify a DB path to use.\ ''') parser.add_argument( '--inspect', action='store_true', help='''\ Prints digests of event files to command line. This is useful when no data is shown on TensorBoard, or the data shown looks weird. Must specify one of `logdir` or `event_file` flag. Example usage: `tensorboard --inspect --logdir mylogdir --tag loss` See tensorboard/backend/event_processing/event_file_inspector.py for more info.\ ''') # This flag has a "_tb" suffix to avoid conflicting with an internal flag # named --version. Note that due to argparse auto-expansion of unambiguous # flag prefixes, you can still invoke this as `tensorboard --version`. parser.add_argument( '--version_tb', action='store_true', help='Prints the version of Tensorboard') parser.add_argument( '--tag', metavar='TAG', type=str, default='', help='tag to query for; used with --inspect') parser.add_argument( '--event_file', metavar='PATH', type=str, default='', help='''\ The particular event file to query for. Only used if --inspect is present and --logdir is not specified.\ ''') parser.add_argument( '--path_prefix', metavar='PATH', type=str, default='', help='''\ An optional, relative prefix to the path, e.g. "/path/to/tensorboard". resulting in the new base url being located at localhost:6006/path/to/tensorboard under default settings. A leading slash is required when specifying the path_prefix. A trailing slash is optional and has no effect. The path_prefix can be leveraged for path based routing of an ELB when the website base_url is not available e.g. "example.site.com/path/to/tensorboard/".\ ''') parser.add_argument( '--window_title', metavar='TEXT', type=str, default='', help='changes title of browser window') parser.add_argument( '--max_reload_threads', metavar='COUNT', type=int, default=1, help='''\ The max number of threads that TensorBoard can use to reload runs. Not relevant for db read-only mode. Each thread reloads one run at a time. (default: %(default)s)\ ''') parser.add_argument( '--reload_interval', metavar='SECONDS', type=float, default=5.0, help='''\ How often the backend should load more data, in seconds. Set to 0 to load just once at startup and a negative number to never reload at all. Not relevant for DB read-only mode. (default: %(default)s)\ ''') parser.add_argument( '--reload_task', metavar='TYPE', type=str, default='auto', choices=['auto', 'thread', 'process', 'blocking'], help='''\ [experimental] The mechanism to use for the background data reload task. The default "auto" option will conditionally use threads for legacy reloading and a child process for DB import reloading. The "process" option is only useful with DB import mode. The "blocking" option will block startup until reload finishes, and requires --load_interval=0. (default: %(default)s)\ ''') parser.add_argument( '--reload_multifile', metavar='BOOL', # Custom str-to-bool converter since regular bool() doesn't work. type=lambda v: {'true': True, 'false': False}.get(v.lower(), v), choices=[True, False], default=None, help='''\ [experimental] If true, this enables experimental support for continuously polling multiple event files in each run directory for newly appended data (rather than only polling the last event file). Event files will only be polled as long as their most recently read data is newer than the threshold defined by --reload_multifile_inactive_secs, to limit resource usage. Beware of running out of memory if the logdir contains many active event files. (default: false)\ ''') parser.add_argument( '--reload_multifile_inactive_secs', metavar='SECONDS', type=int, default=4000, help='''\ [experimental] Configures the age threshold in seconds at which an event file that has no event wall time more recent than that will be considered an inactive file and no longer polled (to limit resource usage). If set to -1, no maximum age will be enforced, but beware of running out of memory and heavier filesystem read traffic. If set to 0, this reverts to the older last-file-only polling strategy (akin to --reload_multifile=false). (default: %(default)s - intended to ensure an event file remains active if it receives new data at least once per hour)\ ''') parser.add_argument( '--generic_data', metavar='TYPE', type=str, default='auto', choices=['false', 'auto', 'true'], help='''\ [experimental] Whether to use generic data provider infrastructure. The "auto" option enables this only for dashboards that are considered stable under the new codepaths. (default: %(default)s)\ ''') parser.add_argument( '--samples_per_plugin', type=str, default='', help='''\ An optional comma separated list of plugin_name=num_samples pairs to explicitly specify how many samples to keep per tag for that plugin. For unspecified plugins, TensorBoard randomly downsamples logged summaries to reasonable values to prevent out-of-memory errors for long running jobs. This flag allows fine control over that downsampling. Note that 0 means keep all samples of that type. For instance "scalars=500,images=0" keeps 500 scalars and all images. Most users should not need to set this flag.\ ''') def fix_flags(self, flags): """Fixes standard TensorBoard CLI flags to parser.""" FlagsError = base_plugin.FlagsError if flags.version_tb: pass elif flags.inspect: if flags.logdir_spec: raise FlagsError('--logdir_spec is not supported with --inspect.') if flags.logdir and flags.event_file: raise FlagsError( 'Must specify either --logdir or --event_file, but not both.') if not (flags.logdir or flags.event_file): raise FlagsError('Must specify either --logdir or --event_file.') elif flags.logdir and flags.logdir_spec: raise FlagsError( 'May not specify both --logdir and --logdir_spec') elif not flags.db and not flags.logdir and not flags.logdir_spec: raise FlagsError('A logdir or db must be specified. ' 'For example `tensorboard --logdir mylogdir` ' 'or `tensorboard --db sqlite:~/.tensorboard.db`. ' 'Run `tensorboard --helpfull` for details and examples.') elif flags.host is not None and flags.bind_all: raise FlagsError('Must not specify both --host and --bind_all.') flags.path_prefix = flags.path_prefix.rstrip('/') if flags.path_prefix and not flags.path_prefix.startswith('/'): raise FlagsError( 'Path prefix must start with slash, but got: %r.' % flags.path_prefix) def load(self, context): """Creates CorePlugin instance.""" return CorePlugin(context) def _gzip(bytestring): out = six.BytesIO() # Set mtime to zero for deterministic results across TensorBoard launches. with gzip.GzipFile(fileobj=out, mode='wb', compresslevel=3, mtime=0) as f: f.write(bytestring) return out.getvalue()
5335d5257663403a517f518fdf9c961756784406
3e4c69317323bca865b025503b60bf83d3ae65f8
/tests/utils/test_acmg.py
6132c8f86287fe797726022e906f8235c7898b7c
[ "BSD-3-Clause" ]
permissive
tapaswenipathak/scout
f59beaa997a45487ac96c3b3e560b5e5aa9b30ae
c9b3ec14f5105abe6066337110145a263320b4c5
refs/heads/master
2020-05-30T11:13:25.662300
2019-05-28T09:26:25
2019-05-28T09:26:25
189,694,812
1
0
BSD-3-Clause
2019-06-01T05:36:35
2019-06-01T05:36:34
null
UTF-8
Python
false
false
11,264
py
from scout.utils.acmg import (is_pathogenic, is_likely_pathogenic, is_benign, is_likely_benign, get_acmg) def test_is_pathogenic_1(): """First criterias for pathogenic: Pathogenic (i) 1 Very strong (PVS1) AND (a) ≥1 Strong (PS1–PS4) OR (b) ≥2 Moderate (PM1–PM6) OR (c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR (d) ≥2 Supporting (PP1–PP5) """ # GIVEN values that fulfill the (a) criteria for pathogenic pvs = True ps_terms = ['PS1'] pm_terms = [] pp_terms = [] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res ps_terms = [] res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res ps_terms = ['PS1', 'PS2'] res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert res # GIVEN values that fulfill the (b) criteria for pathogenic pvs = True ps_terms = [] pm_terms = ['PM1', 'PM2'] pp_terms = [] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res ## GIVEN one to few moderate terms pm_terms = ['PM2'] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are not fullfilled assert not res # GIVEN values that fulfill the (c) criteria for pathogenic pvs = True ps_terms = [] pm_terms = ['PM1'] pp_terms = ['PP1'] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res # GIVEN values that fulfill the (d) criteria for pathogenic pvs = True ps_terms = [] pm_terms = [] pp_terms = ['PP1', 'PP2'] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res ## GIVEN pvs and one supporting term pp_terms = ['PP1'] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are not fullfilled assert not res def test_is_pathogenic_2(): """First criterias for pathogenic: Pathogenic (ii) ≥2 Strong (PS1–PS4) OR """ # GIVEN values that fulfill the (ii) criteria for pathogenic pvs = False ps_terms = ['PS1', 'PS2'] pm_terms = [] pp_terms = [] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res ps_terms = ['PS1'] ## WHEN performing the evaluation wit only one strong term res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are not fullfilled assert not res def test_is_pathogenic_3(): """First criterias for pathogenic: Pathogenic (iii) 1 Strong (PS1–PS4) AND (a)≥3 Moderate (PM1–PM6) OR (b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR (c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5) """ # GIVEN values that fulfill the (a) criteria for pathogenic (iii) pvs = False ps_terms = ['PS1'] pm_terms = ['PM1', 'PM2', 'PM3'] pp_terms = [] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pm_terms = ['PM1', 'PM2'] ## WHEN performing the evaluation wit only two moderate terms res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are not fullfilled assert not res # GIVEN values that fulfill the (b) criteria for pathogenic (iii) pvs = False ps_terms = ['PS1'] pm_terms = ['PM1', 'PM2'] pp_terms = ['PP1', 'PP2'] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pp_terms = ['PP1'] ## WHEN performing the evaluation with only one supporting terms res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are not fullfilled assert not res # GIVEN values that fulfill the (c) criteria for pathogenic (iii) pvs = False ps_terms = ['PS1'] pm_terms = ['PM1'] pp_terms = ['PP1', 'PP2', 'PP3', 'PP4'] ## WHEN performing the evaluation res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pp_terms = ['PP1', 'PP2', 'PP3'] ## WHEN performing the evaluation with only three supporting terms res = is_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are not fullfilled assert not res def test_is_likely_pathogenic_1(): """First criterias for pathogenic: Pathogenic (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) """ # GIVEN values that fulfill the (1) criteria for likely pathogenic pvs = True ps_terms = [] pm_terms = ['PM1'] pp_terms = [] ## WHEN performing the evaluation res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pm_terms = [] res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res def test_is_likely_pathogenic_2(): """First criterias for pathogenic: Pathogenic (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR """ # GIVEN values that fulfill the (1) criteria for likely pathogenic pvs = False ps_terms = ['PS1'] pm_terms = ['PM1'] pp_terms = [] ## WHEN performing the evaluation res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res ps_terms = [] res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res def test_is_likely_pathogenic_3(): """First criterias for pathogenic: Pathogenic (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR """ # GIVEN values that fulfill the (1) criteria for likely pathogenic pvs = False ps_terms = ['PS1'] pm_terms = [] pp_terms = ['PP1','PP2'] ## WHEN performing the evaluation res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pp_terms = ['PP1'] res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res def test_is_likely_pathogenic_4(): """First criterias for pathogenic: Pathogenic (iv) ≥3 Moderate (PM1–PM6) OR """ # GIVEN values that fulfill the (1) criteria for likely pathogenic pvs = False ps_terms = [] pm_terms = ['PM1','PM2','PM3'] pp_terms = [] ## WHEN performing the evaluation res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pm_terms = ['PM1','PM2'] res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res def test_is_likely_pathogenic_5(): """First criterias for pathogenic: Pathogenic (v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR """ # GIVEN values that fulfill the (1) criteria for likely pathogenic pvs = False ps_terms = [] pm_terms = ['PM1','PM2'] pp_terms = ['PP1', 'PP2'] ## WHEN performing the evaluation res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pp_terms = ['PP1'] res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res def test_is_likely_pathogenic_6(): """First criterias for pathogenic: Pathogenic (vi) 1 Moderate (PM1–PM6) AND ≥4 supportin (PP1–PP5) """ # GIVEN values that fulfill the (vi) criteria for likely pathogenic pvs = False ps_terms = [] pm_terms = ['PM1'] pp_terms = ['PP1', 'PP2', 'PP3', 'PP4'] ## WHEN performing the evaluation res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) ## THEN assert the criterias are fullfilled assert res pp_terms = ['PP1', 'PP2', 'PP3'] res = is_likely_pathogenic(pvs, ps_terms, pm_terms, pp_terms) assert not res def test_is_benign_1(): """First criterias for benign: Benign (i) 1 Stand-alone (BA1) OR """ # GIVEN values that fulfill the (i) criteria for benign ba = True bs_terms = [] ## WHEN performing the evaluation res = is_benign(ba, bs_terms) ## THEN assert the criterias are fullfilled assert res ba = False res = is_benign(ba, bs_terms) assert not res def test_is_benign_2(): """Second criterias for benign: Benign (ii) ≥2 Strong (BS1–BS4) """ # GIVEN values that fulfill the (ii) criteria for benign ba = False bs_terms = ['BS1', 'BS2'] ## WHEN performing the evaluation res = is_benign(ba, bs_terms) ## THEN assert the criterias are fullfilled assert res bs_terms = ['BS1'] res = is_benign(ba, bs_terms) assert not res def test_is_likely_benign_1(): """First criterias for likely benign: Likely Benign (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR """ # GIVEN values that fulfill the (i) criteria for likely benign bs_terms = ['BS1'] bp_terms = ['BP1'] ## WHEN performing the evaluation res = is_likely_benign(bs_terms, bp_terms) ## THEN assert the criterias are fullfilled assert res bp_terms = [] res = is_likely_benign(bs_terms, bp_terms) assert not res def test_is_benign_2(): """Second criterias for likely benign: Benign (ii) ≥2 Supporting (BP1–BP7) """ # GIVEN values that fulfill the (ii) criteria for likely benign bs_terms = [] bp_terms = ['BP1', 'BP2'] ## WHEN performing the evaluation res = is_likely_benign(bs_terms, bp_terms) ## THEN assert the criterias are fullfilled assert res bp_terms = ['BP1'] res = is_likely_benign(bs_terms, bp_terms) assert not res def test_get_acmg_no_terms(): acmg_terms = [] res = get_acmg(acmg_terms) assert res == 'uncertain_significance' def test_get_acmg_pathogenic(): acmg_terms = ['PVS1', 'PS1'] res = get_acmg(acmg_terms) assert res == 'pathogenic' acmg_terms = ['PVS1', 'PS1', 'BS1'] res = get_acmg(acmg_terms) assert res == 'pathogenic' def test_get_acmg_uncertain(): acmg_terms = ['PVS1'] res = get_acmg(acmg_terms) assert res == 'uncertain_significance' acmg_terms = ['PVS1', 'PS1', 'BA1'] res = get_acmg(acmg_terms) assert res == 'uncertain_significance'
a20075e0059049e6698238fbbf02603234423db8
4cf3f8845d64ed31737bd7795581753c6e682922
/.history/main_20200118153017.py
11784752a3b75cb54167767e62d3d06c83f12c3a
[]
no_license
rtshkmr/hack-roll
9bc75175eb9746b79ff0dfa9307b32cfd1417029
3ea480a8bf6d0067155b279740b4edc1673f406d
refs/heads/master
2021-12-23T12:26:56.642705
2020-01-19T04:26:39
2020-01-19T04:26:39
234,702,684
1
0
null
2021-12-13T20:30:54
2020-01-18T08:12:52
Python
UTF-8
Python
false
false
256,643
py
from telegram.ext import Updater, CommandHandler import requests import re # API call to source, get json (url is obtained): contents = requests.get('https://random.dog/woof.json').json() image_url = contents['url'] def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main() def get_url(): contents = requests.get('https://random.dog/woof.json').json() url = contents['url'] return url def get_tasks(): response = requests.get('https://nowwat.herokuapp.com/api/tasks.json').json() def extract_list(obj): return obj.map(lambda item: item.title) tasks = extract_list(response) return tasks # sending the image: # we require: # - the image URL # - the recipient's ID: group/user id def bop(bot, update): # image url: url = get_url() # recipient's ID: chat_id = update.message.chat_id bot.send_photo(chat_id=chat_id, photo=url) def getTaskList(bot, update): taskList = get_tasks() chat_id = update.message.chat_id for task in taskList: bot.sendMessage(chat_id, task, Markdown); def main(): updater = Updater('982938821:AAHiN0-7hIPahKJm6lWPyQ0UupOsuhP1GsQ') dp = updater.dispatcher dp.add_handler(CommandHandler('bop',bop)) updater.start_polling() updater.idle() if __name__ == '__main__': main()
4edf1fe1a5e22527573a5583c5b23eb261503734
308c6fb81f0023b9d5682731c10402ce6a2ebb49
/django-coreyschafer/bin/wheel
22071a9376b83a7a00b89f03cc28124ac54f7bc7
[]
no_license
frclasso/django-project1
221646ddc9a6702ab8ab2b0e475f4eed09411457
9527e30f5f6d54be2a77524411f114441c968a92
refs/heads/master
2020-07-06T13:42:28.314546
2019-08-26T00:55:25
2019-08-26T00:55:25
203,033,012
0
0
null
null
null
null
UTF-8
Python
false
false
281
#!/home/fabio-gurus/Desktop/repositories/django_projects/django-coreyschafer/bin/python3 # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f6d9cbd62c65febcdc5836464a6acb874d242b87
197420c1f28ccb98059888dff214c9fd7226e743
/Адаптивный_тренажёр/1.All_including/1.All_including.py
aa7587c23d75e4631ca3603a350790351678c14f
[]
no_license
Vovanuch/python-basics-1
fc10b6f745defff31364b66c65a704a9cf05d076
a29affec12e8b80a1d3beda3a50cde4867b1dee2
refs/heads/master
2023-07-06T17:10:46.341121
2021-08-06T05:38:19
2021-08-06T05:38:19
267,504,364
0
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
''' Напишите программу, которая находит все позиции вхождения подстроки в строку. Формат ввода: На первой строке содержится исходная строка, на второй строке ввода указана подстрока, позиции которой требуется найти. Строки состоят из символов латинского алфавита. Формат вывода: Строка, содержащая индексы (индексация начинается с нуля) вхождения подстроки в строку, разделённые пробелом или число -1 в случае, когда подстрока не найдена. Sample Input 1: abacabadaba aba Sample Output 1: 0 4 8 Sample Input 2: aaaa aa Sample Output 2: 0 1 2 Sample Input 3: abc d Sample Output 3: -1 ''' s = input() a = input() is_part = False for i in range(len(s)): if s[i:].startswith(a): print(i, end=' ') is_part = True if not is_part: print(-1)
50b9a5870c5e0c488973768abc415d1754612da4
2324dea2cb3003c8ab7e8fd80588d44973eb8c77
/Euler_6_273.py
28a9e0a2585490ed604b3493f38cb928c2fa2009
[]
no_license
MikeOcc/MyProjectEulerFiles
5f51bc516cb6584732dc67bb2f9c7fd9e6d51e56
4d066d52380aade215636953589bf56d6b88f745
refs/heads/master
2021-01-16T18:45:44.133229
2015-05-27T18:28:43
2015-05-27T18:28:43
5,876,116
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
# # # Euler Problem 273 # # from Functions import IsPrime,RetFact from itertools import combinations def Prod(f): retval = 1 for vv in f: retval *= vv return retval p=[] S=set([]) for k in range(1,39): v = 4*k + 1 if IsPrime(v): p+=[v] print p l = len(p) summ = 0 cnt = 0 for i in range(1,3): n = combinations(p,i) for t in n: N = Prod(t) for c in xrange(1,int(N**.5)+1): u = c**2 v = (N - u) **.5 if v == int(v) and c<v: summ += c #print "Found", N, c,v,t,RetFact(c),RetFact(v),(c*1.0)/N if N not in S:S.add(N) cnt += 1 print "Sum of S(N) is ", summ print "number of items is ", cnt print print sorted(S)
a467f80425555a9c632f0c29053bb48fe8de5aa0
af35f890c0c6a2fa531f47a4c2ed132e8920190d
/python/leetcode/string/1111_nesting_depth.py
bc58f9173f4a28b783a17a8182e19c032ec63a0c
[]
no_license
Levintsky/topcoder
b1b17cd3fddef5a23297bcbe4e165508d09a655d
a5cb862f0c5a3cfd21468141800568c2dedded0a
refs/heads/master
2021-06-23T10:15:27.839199
2021-02-01T07:49:48
2021-02-01T07:49:48
188,175,357
0
1
null
2020-05-19T09:25:12
2019-05-23T06:33:38
C
UTF-8
Python
false
false
3,287
py
""" 1111. Maximum Nesting Depth of Two Valid Parentheses Strings (Medium) A string is a valid parentheses string (denoted VPS) if and only if it consists of "(" and ")" characters only, and: It is the empty string, or It can be written as AB (A concatenated with B), where A and B are VPS's, or It can be written as (A), where A is a VPS. We can similarly define the nesting depth depth(S) of any VPS S as follows: depth("") = 0 depth(A + B) = max(depth(A), depth(B)), where A and B are VPS's depth("(" + A + ")") = 1 + depth(A), where A is a VPS. For example, "", "()()", and "()(()())" are VPS's (with nesting depths 0, 1, and 2), and ")(" and "(()" are not VPS's. Given a VPS seq, split it into two disjoint subsequences A and B, such that A and B are VPS's (and A.length + B.length = seq.length). Now choose any such A and B such that max(depth(A), depth(B)) is the minimum possible value. Return an answer array (of length seq.length) that encodes such a choice of A and B: answer[i] = 0 if seq[i] is part of A, else answer[i] = 1. Note that even though multiple answers may exist, you may return any of them. Example 1: Input: seq = "(()())" Output: [0,1,1,1,1,0] Example 2: Input: seq = "()(())()" Output: [0,0,0,1,1,0,1,1] Constraints: 1 <= seq.size <= 10000 """ class Solution(object): def maxDepthAfterSplit(self, seq): """ :type seq: str :rtype: List[int] """ n = len(seq) if n == 0: return [] self.result = [-1] * n self.parse(seq, 0, 0, n-1) max_h = max(self.result) + 1 thr = (max_h - 1) // 2 for i in range(n): if self.result[i] <= thr: self.result[i] = 0 else: self.result[i] = 1 return self.result def parse(self, seq, depth, i, j): if i >= j: return # go through and split slist = [] st = i cnt = 0 for ii in range(i, j+1): if seq[ii] == ")": cnt -= 1 else: cnt += 1 if cnt == 0: slist.append([st, ii]) st = ii+1 # case 1: if len(slist) == 1: self.result[i] = depth self.result[j] = depth self.parse(seq, depth+1, i+1, j-1) else: for st, end in slist: self.parse(seq, depth, st, end) def solve2(self, seq): n = len(seq) res = [0] * n cnt = 0 for i, c in enumerate(seq): if i == 0: res[i] = cnt if c == "(": cnt += 1 else: cnt -= 1 else: if c == "(": res[i] = cnt cnt += 1 else: cnt -= 1 res[i] = cnt thr = (max(res) - 1) // 2 for i in range(n): if res[i] <= thr: res[i] = 0 else: res[i] = 1 return res if __name__ == "__main__": a = Solution() # print(a.maxDepthAfterSplit("(()())")) # rint(a.maxDepthAfterSplit("()(((())))()")) print(a.solve2("(()())")) print(a.solve2("()(())()"))
7d9a15a515e928321da6c01ad4a4b0c6c281c704
e6a5fce33aad4fcba37842e135a51ba441b06f48
/Algorithms/Strings/BeautifulBinaryString.py
788b7087da8bc68a467ba09d592dd229b79f83b4
[ "MIT" ]
permissive
pavstar619/HackerRank
6710ddd450b06fbb69da5abad9f570e5e26bbbc0
697ee46b6e621ad884a064047461d7707b1413cd
refs/heads/master
2020-06-18T18:53:53.421685
2020-02-18T09:35:48
2020-02-18T09:35:48
196,408,726
0
0
MIT
2019-07-11T14:18:16
2019-07-11T14:18:16
null
UTF-8
Python
false
false
233
py
#!/bin/python3 class Main(): def __init__(self): self.n = int(input()) self.s = input() def output(self): print(self.s.count('010')) if __name__ == '__main__': obj = Main() obj.output()
1d392f1ad1a591ca3f59ee411b29ba1720d86905
770d4df866b9e66a333f3ffeacdd659b8553923a
/results/0175/config.py
2eb890c054ba7a06a78c2e58b47304712cdacb6d
[]
no_license
leojo/ResultsOverview
b2062244cbd81bc06b99963ae9b1695fa9718f90
a396abc7a5b4ab257150c0d37c40b646ebb13fcf
refs/heads/master
2020-03-20T19:52:37.217926
2018-08-05T12:50:27
2018-08-05T12:50:27
137,656,327
0
0
null
null
null
null
UTF-8
Python
false
false
2,597
py
import os import numpy as np import waveUtils class config(object): def __init__(self): self.prepare_data() # Bsub arguments bsub_mainfile = "main.py" bsub_processors = 4 bsub_timeout = "4:00" bsub_memory = 8000 # Epoch and batch config batch_size = 128 latent_dim = 100 epochs = 100 epoch_updates = 100 # Network structure input_s = 16000 n_ae = 5 n_conv_layers = 3 n_deconv_layers = 3 first_size = input_s // (2 ** n_deconv_layers) final_decoder_filter_size = 3 # Model load_model = False model_path = os.path.join("models", "0103", "model") # only used if load_model=True # Miscellaneous constants sample_rate = 8000 reconstruction_mult = 1 learning_rate_min = 1e-4 learning_rate_max = 1e-4 learning_rate_scaling_factor = 0 # controlls the shape of the scaling curve from max to min learning rate learning_rate = 1e-3 # legacy kl_loss_mult = 1e-3 kl_extra_mult = 2 kl_extra_exponent = 2 keep_prob = 1 use_square = False data_sources = ["clarinet","trumpet"] data = None # Functions def prepare_data(self): self.load_data() def load_and_prepare_audio(self, source): duration = self.input_s / float(self.sample_rate) data_dir = os.path.join("wav_files", source) waves, original_sample_rate = waveUtils.loadAudioFiles(data_dir) cut_data = waveUtils.extractHighestMeanIntensities(waves, sample_rate=original_sample_rate, duration=duration) del waves data = waveUtils.reduceQuality(cut_data, self.sample_rate, duration) del cut_data return data def load_data(self): if self.data is None: self.data = [self.load_and_prepare_audio(source) for source in self.data_sources] def get_training_batch(self): samples = [] originals = [] num_sources = len(self.data_sources) sample_shape = self.data[0][0].shape for _ in range(self.batch_size): waves = [] sample = np.zeros(sample_shape) for s in range(num_sources): i = np.random.randint(len(self.data[s])) wave = self.data[s][i] waves.append(wave) sample += wave sample = sample/num_sources samples.append(sample) originals.append(waves) samples = np.asarray(samples) originals = np.asarray(originals) return samples, originals def normalize_batch(self, batch): x = batch.astype(np.float32) return x / np.max(np.abs(x)) def deconv_filter_size(self, i): return (2 * (i + 1)) + 1 def deconv_channel_num(self, i): return 2 ** (config.n_deconv_layers + 3 - i) def conv_filter_size(self, i): return (2 * (config.n_conv_layers - i)) + 1 def conv_channel_num(self, i): return 2 ** (i + 4)
1e0458e35481d98afa1fca38f79c63efacd7cb96
b24fa24a96036253a0cd168ac8f6dd41c9102b0a
/backend/test1_20020/urls.py
9496714a7230f5aec24f0c409c3dbda66af31988
[]
no_license
crowdbotics-apps/test1-20020
a13c64c66d2028f99723f38e0341873a46d3ae3f
9d59b62483172e4900990c07afed60f443c211bc
refs/heads/master
2022-12-07T00:18:07.268473
2020-09-04T03:27:46
2020-09-04T03:27:46
292,737,926
0
0
null
null
null
null
UTF-8
Python
false
false
2,457
py
"""test1_20020 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), path("api/v1/", include("taxi_profile.api.v1.urls")), path("taxi_profile/", include("taxi_profile.urls")), path("api/v1/", include("booking.api.v1.urls")), path("booking/", include("booking.urls")), path("api/v1/", include("location.api.v1.urls")), path("location/", include("location.urls")), path("api/v1/", include("vehicle.api.v1.urls")), path("vehicle/", include("vehicle.urls")), path("home/", include("home.urls")), path("api/v1/", include("wallet.api.v1.urls")), path("wallet/", include("wallet.urls")), ] admin.site.site_header = "test1" admin.site.site_title = "test1 Admin Portal" admin.site.index_title = "test1 Admin" # swagger api_info = openapi.Info( title="test1 API", default_version="v1", description="API documentation for test1 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
04700fd35f4dee4fdb63470cffc81c8f21ac4397
bc441bb06b8948288f110af63feda4e798f30225
/capacity_admin_sdk/model/metadata_center/stream_translate_states_pb2.py
1a9a4ed46dc1768d123cadc769e2544b8b98a8b2
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
3,750
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: stream_translate_states.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from capacity_admin_sdk.model.metadata_center import stream_translate_package_pb2 as capacity__admin__sdk_dot_model_dot_metadata__center_dot_stream__translate__package__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='stream_translate_states.proto', package='metadata_center', syntax='proto3', serialized_options=_b('ZIgo.easyops.local/contracts/protorepo-models/easyops/model/metadata_center'), serialized_pb=_b('\n\x1dstream_translate_states.proto\x12\x0fmetadata_center\x1aGcapacity_admin_sdk/model/metadata_center/stream_translate_package.proto\"o\n\x15StreamTranslateStates\x12\x0b\n\x03org\x18\x01 \x01(\x05\x12\x0f\n\x07\x63ommand\x18\x02 \x01(\t\x12\x38\n\x07payload\x18\x03 \x03(\x0b\x32\'.metadata_center.StreamTranslatePackageBKZIgo.easyops.local/contracts/protorepo-models/easyops/model/metadata_centerb\x06proto3') , dependencies=[capacity__admin__sdk_dot_model_dot_metadata__center_dot_stream__translate__package__pb2.DESCRIPTOR,]) _STREAMTRANSLATESTATES = _descriptor.Descriptor( name='StreamTranslateStates', full_name='metadata_center.StreamTranslateStates', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='org', full_name='metadata_center.StreamTranslateStates.org', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='command', full_name='metadata_center.StreamTranslateStates.command', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='payload', full_name='metadata_center.StreamTranslateStates.payload', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=123, serialized_end=234, ) _STREAMTRANSLATESTATES.fields_by_name['payload'].message_type = capacity__admin__sdk_dot_model_dot_metadata__center_dot_stream__translate__package__pb2._STREAMTRANSLATEPACKAGE DESCRIPTOR.message_types_by_name['StreamTranslateStates'] = _STREAMTRANSLATESTATES _sym_db.RegisterFileDescriptor(DESCRIPTOR) StreamTranslateStates = _reflection.GeneratedProtocolMessageType('StreamTranslateStates', (_message.Message,), { 'DESCRIPTOR' : _STREAMTRANSLATESTATES, '__module__' : 'stream_translate_states_pb2' # @@protoc_insertion_point(class_scope:metadata_center.StreamTranslateStates) }) _sym_db.RegisterMessage(StreamTranslateStates) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
de97fb29bc50a39e1dba26ab527c2bf6030e1521
a392cd0963b030c934f2a9e329867a68515f4a5c
/cotoha/ne.py
acae889f794da0baf8c1d02b9350faa61b31d382
[]
no_license
hatopoppoK3/COTOHA-Python
b89517bc6037c95a692dd85c98007727a712da24
df333167f775e7a550827d016bf1892e36ac5602
refs/heads/master
2021-01-16T02:14:44.716987
2020-05-20T15:22:31
2020-05-20T15:22:31
242,940,170
0
1
null
null
null
null
UTF-8
Python
false
false
2,905
py
from cotoha.api import Cotoha from cotoha.api import check_dic_class, get_sentence_class class CotohaNe(Cotoha): """固有表現抽出に関するクラス. """ def __init__(self, sentence: str, kuzure_flag=False, dic_class=[]): """ Args: sentence (str): 解析対象文. sentence_class (bool, optional): 崩れ文かどうか. Defaults to False. dic_class (list, optional): 専門用語辞書. Defaults to []. Raises: NeError: dic_classにエラーがある場合. """ super().__init__() self.sentence = sentence self.sentence_class = get_sentence_class(kuzure_flag) if check_dic_class(dic_class): self.dic_class = dic_class else: raise NeError('dic_classにエラーがあります.') request_json = {'sentence': self.sentence, 'type': self.sentence_class, 'dic_type': self.dic_class} response_dict = self.get_response_dict( relative_url='nlp/v1/ne', request_body=request_json) self.message = response_dict['message'] self.status = response_dict['status'] self.ne_result_list = [] for result_dict in response_dict['result']: self.ne_result_list.append(NeResult(result_dict)) def __str__(self) -> str: string = super().__str__() string += 'sentence:{}\n'.format(self.sentence) string += 'sentence_class:{}\n'.format(self.sentence_class) string += 'dic_class:{}\n'.format(self.dic_class) string += 'message:{}\n'.format(self.message) string += 'status:{}\n'.format(self.status) for ne_result in self.ne_result_list: string += ne_result.__str__() return string class NeError(Exception): """固有表現抽出に関する例外クラス. dic_classやsentence_classに関するエラーがある場合に呼ばれる. """ class NeResult(object): """固有表現抽出の結果に関するクラス. """ def __init__(self, result_dict: dict): self.begin_pos = result_dict['begin_pos'] self.end_pos = result_dict['end_pos'] self.form = result_dict['form'] self.std_form = result_dict['std_form'] self.ne_class = result_dict['class'] self.extended_class = result_dict['extended_class'] self.source = result_dict['source'] def __str__(self): string = 'begin_pos:{}\n'.format(self.begin_pos) string += 'end_pos:{}\n'.format(self.end_pos) string += 'form:{}\n'.format(self.form) string += 'std_form:{}\n'.format(self.std_form) string += 'ne_class:{}\n'.format(self.ne_class) string += 'extended_class:{}\n'.format(self.extended_class) string += 'source:{}\n'.format(self.source) return string
10fb9cdb369291fef5073bff8f48c9cf3c5df16d
bc2e77b92ae12e34aec9445f5e8c92fc399e6cc8
/vautils/resource/inventory.py
18a0764d7b1c167fd3ebb82dcff7d000fcb08435
[]
no_license
18782967131/test
fc8049c10f02f7b49a4dd4a675618ccf388c4f2f
cb02979e233ce772bd5fe88ecdc31caf8764d306
refs/heads/master
2020-05-27T08:41:57.535153
2017-11-09T08:31:07
2017-11-09T08:31:07
82,536,387
1
0
null
null
null
null
UTF-8
Python
false
false
9,661
py
""" coding: utf-8 Copyright 2016 vArmour Networks private. All Rights reserved. Confidential Inventory implements the class that abstracts the test inventory and the vms required to run an automated test. .. moduleauthor:: [email protected] """ from vautils import logger from vautils.exceptions import UnknownDevice from vautils.resource.delegator import Delegator from vautils.resource import * # NOQA VALID_TYPES = ['dir', 'cp', 'ep', 'epi', 'linux', 'vcenter'] class VaInventory(object): """ Represents the lab setup of a test bed whose information is stored in a representable form. It provides an interface to the tests to obtain test bed and device information. Currently the information is stored in a certain expected fashion in yaml format. If the information storage medium changes like a database in the future, the class implementation may undergo a little change but the interface will be similar (if not same). """ def __init__(self, **kwargs): """ Initialize the test lab and device objects. Test lab consists of hypervisors, vswitches, users, vlans, users, and devices. A name or a unique-id is used to identify the test lab. """ inventory = kwargs self._hypervisor = list() self._aci = list() self._linux = list() self._dir = list() self._cp = list() self._ep = list() self._epi = list() self._vcenter = list() self._log = logger self._uniq_ids = dict() self._network = inventory.get('network') self._va_make_hypervisor(inventory.get('hypervisor')) self._va_make_aci(inventory.get('aci')) for vm_type in inventory.keys(): if vm_type in VALID_TYPES: many_vms = inventory.get(vm_type) self._va_make_vm(vm_type, many_vms) else: if vm_type != 'hypervisor' and vm_type != 'network' and\ vm_type != 'aci': self._log.warn("Invalid vm type: {}".format(vm_type)) self._va_categorize_by_uniq_id() def va_get_vm(self, vm_type=None, uniq_id=None): """ get a vm of vm_type if specified or a list of all vms. """ if vm_type not in VALID_TYPES: raise UnknownDevice(vm_type) try: attrib = ''.join(('_', "{}".format(vm_type))) vms = getattr(self, "{}".format(attrib)) except AttributeError: # TODO: raise DeviceNotSetup(device_type) raise else: if uniq_id: for vm in vms: if vm.get_uniq_id() == uniq_id: return vm else: return vms def va_get_hypervisor(self, name=None): """ Get a 'hypervisor' node, if name is specified or a list of all hypervisors. Kwargs: :name (str): hostname of the hypervisor """ if name: for hvisor in self._hypervisor: if name == hvisor.get_hostname(): return hvisor return self._hypervisor def va_get_aci(self, name=None): """ Get an 'aci' node, if name is specified or a list of all acis Kwargs: :name (str): hostname of the aci """ if name: for aci in self._aci: if name == aci.get_hostname(): return aci return self._aci def va_get_dir(self, name=None): """ Get a 'director' vm, if name is specified or a list of all dirs. Kwargs: :name (str): hostname of the director """ if name: for director in self._dir: if name == director.get_hostname(): return director return self._dir def va_get_ep(self, name=None): """ Get a 'ep' vm if name is specified or a list of all eps. Kwargs: :name (str): hostname of the ep """ if name: for ep in self._ep: if name == ep.get_hostname(): return ep return self._ep def va_get_cp(self, name=None): """ Get a 'cp' vm if name is specified or a list of all cps. Kwargs: :name (str): hostname of the cp """ if name: for cp in self._cp: if name == cp.get_hostname(): return cp return self._cp def va_get_epi(self, name=None): """ Get a 'epi' vm if name is specified or a list of all epis. Kwargs: :name (str): hostname of the epi """ if name: for epi in self._epi: if name == epi.get_hostname(): return epi return self._epi def va_get_vcenter(self, name=None): """ Get a 'hypervisor' node, if name is specified or a list of all hypervisors. Kwargs: :name (str): hostname of the hypervisor """ if name: for vcenter in self._vcenter: if name == vcenter.get_hostname(): return vcenter return self._vcenter def va_get_linux(self, name=None): """ Get a 'linux' vm if name is specified or a list of all linux vms Kwargs: :name (str): hostname of the pc """ if name: for linux in self._linux: if name == linux.get_hostname(): return linux return self._linux def va_get_by_uniq_id(self, uniq_id=None, delegator=True, add_nocli_user=False): """ get the vm by unique id kwargs: uniq_id (str): unique id for the resource vm delegator (bool): if delegator version of the resource is needed (default is False) """ if add_nocli_user : self._uniq_ids.get(uniq_id).add_nocli_user=add_nocli_user if uniq_id in self._uniq_ids: if delegator: return Delegator(self._uniq_ids.get(uniq_id)) else: return self._uniq_ids.get(uniq_id) else: # TODO: raise UnknownUniqId(uniq_id) # I don't know if raise is needed, # you can just let user know uniq id not exists logger.warning("unknown uniq_id {}".format(str(uniq_id))) def va_get_network_config(self, attribute=None): """ method get the network config by attribute. If attribute is not mentioned - return the entire network config. """ if attribute in self._network.keys(): return self._network.get(attribute) else: return self._network def _va_make_hypervisor(self, hypervisors=None): """ make a hypervisor object - also validates the data provided for the device before initializing. kwargs: :hypervisors (list): list of hypervisors in the lab """ if hypervisors: for hypervisor in hypervisors: self._hypervisor.append(Esxi(**hypervisor)) else: # TODO: raise DeviceNotFound pass def _va_make_aci(self, aci=None): """ make an aci object - also validates the data provided for the device before initializing. kwargs: :aci (list): list of aci in the lab """ if aci: for each_aci in aci: self._aci.append(AciApic(**each_aci)) else: # TODO: raise DeviceNotFound pass def _va_make_vm(self, vm_type=None, vms=None): """ make a specific vm object - also validates the data provided for the vm before initializing. kwargs: :vm_type (str): vm type - dir|ep|epi|linux :vms (list): list of specific vms of vm type in the inventory """ for vm in vms: vm['type'] = vm_type if vm_type in ('dir', 'ep', 'cp', 'epi'): vm_rep = VarmourVm(**vm) elif vm_type == 'linux': vm_rep = LinuxVm(**vm) elif vm_type == "vcenter": vm_rep = VcenterVm(**vm) vm_list = self.va_get_vm(vm_type) vm_list.append(vm_rep) def _va_categorize_by_uniq_id(self): """ helper method to categorize inventory by unique id's in a dict """ for node_type in VALID_TYPES: nodes = self.va_get_vm(node_type) for node in nodes: uniq_id = node.get_uniq_id() self._uniq_ids[uniq_id] = node for node in self.va_get_hypervisor(): uniq_id = node.get_uniq_id() self._uniq_ids[uniq_id] = node for node in self.va_get_aci(): uniq_id = node.get_uniq_id() self._uniq_ids[uniq_id] = node def __del__(self): self._hypervisor = None self._aci = None self._dir = None self._ep = None self._epi = None self._pc = None self._uniq_ids = None
88a06957d542b33485cfa40edd4ee1565f4d15eb
c3cfd90531b560b9522a10089101dd09ed13233e
/arithmetic.py
c91f0e9764c593d10713fc7d9bd05f1a91842425
[]
no_license
kateybatey/calculator-1
602368782265dd302fc4eee376e0d3568e826f2a
01b24c34d4d0c369279eea6e8ced9fd17bf35722
refs/heads/master
2021-01-22T02:04:27.807606
2017-05-24T19:48:10
2017-05-24T19:48:10
92,330,829
0
0
null
null
null
null
UTF-8
Python
false
false
983
py
"""Math functions for calculator.""" def add(num1, num2): """Return the sum of the two input integers.""" total = num1 + num2 return total def subtract(num1, num2): """Return the second number subtracted from the first.""" total = num1 - num2 return total def multiply(num1, num2): """Multiply the two inputs together.""" total = num1 * num2 return total def divide(num1, num2): """Divide the first input by the second, returning a floating point.""" total = num1 / num2 return total def square(num1): """Return the square of the input.""" total = num1 ** 2 return total def cube(num1): """Return the cube of the input.""" total = num1 ** 3 return total def power(num1, num2): """Raise num1 to the power of num and return the value.""" total = num1 ** num2 return total def mod(num1, num2): """Return the remainder of num / num2.""" total = num1 % num2 return total
567fa248d17de4c3fd124cb904e5495ef97e5a25
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_64/27.py
4c01b978bd8b3ea6271d01fc75a29607b2413799
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,003
py
import sys import pdb class Reader: def __init__(self, filename): self.fp = open(filename) def read(self): tokens = self.fp.readline().split() result = [] for token in tokens: try: result.append(int(token, 10)) except ValueError: result.append(token) return result def read_strings(self): tokens = self.fp.readline().split() return tokens def bits(x, n): result = [] for i in xrange(n - 1, -1, -1): result.append((x & (1 << i)) != 0) return result class Board: def __init__(self, board): self.board = board self.row_count = len(board) self.col_count = len(board[0]) assert all(len(row) == self.col_count for row in board) self.opt = [[None] * self.col_count for i in xrange(self.row_count)] def remove_largest_square(self): for i in xrange(self.row_count): self.opt[i][0] = 1 if self.board[i][0] is not None else 0 for j in xrange(self.col_count): self.opt[0][j] = 1 if self.board[0][j] is not None else 0 for i in xrange(1, self.row_count): for j in xrange(1, self.col_count): here = self.board[i][j] up = self.board[i - 1][j] left = self.board[i][j - 1] upleft = self.board[i - 1][j - 1] if here is None: # burned out self.opt[i][j] = 0 elif (here is upleft is True and up is left is False) or \ (here is upleft is False and up is left is True): self.opt[i][j] = min(self.opt[i - 1][j - 1], self.opt[i][j - 1], self.opt[i - 1][j]) + 1 assert self.opt[i][j] >= 2 else: self.opt[i][j] = 1 square_max = 0 square_i = square_j = None for i in xrange(self.row_count): for j in xrange(self.col_count): if self.opt[i][j] > square_max: square_max = self.opt[i][j] square_i, square_j = i, j # return if no square to remove if square_i is None: return 0 # burn out the removed square for i in xrange(square_i - square_max + 1, square_i + 1): for j in xrange(square_j - square_max + 1, square_j + 1): self.board[i][j] = None # return the size of the largest square return square_max def tiles_left(self): return sum(sum(x is not None for x in row) for row in self.board) def dump(self): tiles = {None: 'X', True: '@', False: '.'} for row in self.board: print ''.join(tiles[x] for x in row) if __name__ == '__main__': reader = Reader(sys.argv[1]) case_count, = reader.read() for case in xrange(case_count): # dynamic programming woo row_count, col_count = reader.read() board = [] for i in xrange(row_count): row_hex, = reader.read_strings() board.append(bits(int(row_hex, 16), col_count)) board = Board(board) square_counts = {} while True: size = board.remove_largest_square() if size == 0: break elif size == 1: square_counts.setdefault(1, 0) square_counts[1] += 1 square_counts[1] += board.tiles_left() break else: square_counts.setdefault(size, 0) square_counts[size] += 1 assert sum(size**2 * count for size, count in square_counts.iteritems()) == row_count * col_count print "Case #%d: %d" % (case + 1, len(square_counts)) for size in reversed(square_counts.keys()): print "%d %d" % (size, square_counts[size])
1bfa2e3038d4e8f3250045713006589dc9f8952b
2afb1095de2b03b05c8b96f98f38ddeca889fbff
/Python_Basic/def/decorators_2.py
33bb013abb5f1e24d9295d6568415f5872fd17b5
[]
no_license
draganmoo/trypython
187316f8823296b12e1df60ef92c54b7a04aa3e7
90cb0fc8626e333c6ea430e32aa21af7d189d975
refs/heads/master
2023-09-03T16:24:33.548172
2021-11-04T21:21:12
2021-11-04T21:21:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,469
py
import time ''""" 添加会员,我们要先模拟一个会员库,比如有一个会员名字叫synferlo,密码是harry618 如果不通过装饰器,为了避免大规模修改源代码的函数,我们只能通过修改函数调用方式(即高阶函数)的方法达到效果。 也就是说,我们将一个函数作为参数传入到另一个函数中 """'' """ 方法: 在log_in_system()函数中嵌套一个inner函数,然后return inner,这样整个log_in_system不会返回US,JP函数的结果,而是把inner函数执行后的内存地址返回 然后我们把它赋值给一个变量,在通过这个变量名+()的方式调用inner函数,通过闭包完成不修改源代码和调用方式的完成代码扩展 我们把一个函数的名字赋给一个变量,然后再调用这个变量就相当于调用这个函数: 在不改变源代码和调用方式前提下,把函数名赋值给新变量,然后再调用,这就是“函数装饰器” 又或者,你不想在后面添加: US_EU = log_in_system(US_EU) JP_KO = log_in_system(JP_KO) 则可以再想要装饰的函数上面添加 @log_in_system 来达到相同的效果,这就是装饰器的语法。 """ data_base = {'is_log_in':False, 'user name':'synferlo', 'password':'harry618'} def log_in_system(func): ##对字典内变量值得判断用方括号,后面加is或者== def inner(): if data_base['is_log_in'] == False: user_name = input('user name: ') pass_word = input('password: ') if user_name == data_base['user name'] and pass_word == data_base['password']: print('Success! Welcome to Membership Section') data_base['is_log_in'] = True func() else: print('User name or password is not matched. Please try again') else: print('log in request has been approved') func() return inner """ 添加了return inner后,后面US_EU = log_in_system(US_EU)返回的是inner的内存地址,而不是执行inner,即之前学的闭包现象 当我们真正想要调用inner的时候,需要执行US_EU() (即,代码原本的调用方式 这样我们在不修改原本调用方式和源代码的情况下完成了扩展代码的任务!!""" def home_page(): print(""" --------------------Home Page------------------ this is the home page of this website End """) def US_EU(): print(""" -----------------US and EU Section-------------- welcome to US and EU Membership section End """) def JP_KO(): print(""" -----------------JP and KO Section-------------- welcome to JP and KO Membership section End """) def domestic(): print(""" -----------------Domestic Section-------------- welcome to Domestic section End """) home_page() domestic() """##注意这里一定不能载US_EU和JP_KO后面加括号,加括号表示要启动这个函数,而我们这里是以索引,只是用他们的名字赋值""" US_EU = log_in_system(US_EU) JP_KO = log_in_system(JP_KO) US_EU() JP_KO() """ 通过 @log_in_system 达成装饰器效果: 装饰器可以添加多个:执行时候从上到下执行: @pay_money @vip_level @log_in_system .... """ data_base = {'is_log_in':False, 'user name':'synferlo', 'password':'harry618'} def log_in_system(func): ##对字典内变量值得判断用方括号,后面加is或者== def inner(): if data_base['is_log_in'] == False: user_name = input('user name: ') pass_word = input('password: ') if user_name == data_base['user name'] and pass_word == data_base['password']: print('Success! Welcome to Membership Section') data_base['is_log_in'] = True func() else: print('User name or password is not matched. Please try again') else: print('log in request has been approved') func() return inner """ 添加了return inner后,后面US_EU = log_in_system(US_EU)返回的是inner的内存地址,而不是执行inner,即之前学的闭包现象 当我们真正想要调用inner的时候,需要执行US_EU() (即,代码原本的调用方式 这样我们在不修改原本调用方式和源代码的情况下完成了扩展代码的任务!!""" def home_page(): print(""" --------------------Home Page------------------ this is the home page of this website End """) @log_in_system def US_EU(): print(""" -----------------US and EU Section-------------- welcome to US and EU Membership section End """) @log_in_system def JP_KO(): print(""" -----------------JP and KO Section-------------- welcome to JP and KO Membership section End """) def domestic(): print(""" -----------------Domestic Section-------------- welcome to Domestic section End """) home_page() domestic() US_EU() JP_KO()
b90aa4b5a4811a0ca87f243f0d565b054e51b68f
e85e846960750dd498431ac8412d9967646ff98d
/users/models.py
04bb300981e353cba597c91084bfddf5a3fcafba
[]
no_license
onosaburo/clublink_django
19368b4a59b3aed3632883ceffe3326bfc7a61a6
d2f6024b6224ea7f47595481b3382b8d0670584f
refs/heads/master
2022-03-30T05:30:12.288354
2020-01-27T18:09:11
2020-01-27T18:09:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,774
py
import calendar import json import base64 import math from datetime import datetime from Crypto.Cipher import AES from urllib.parse import urlencode, quote_plus from urllib.request import quote from django.conf import settings from django.contrib.auth.base_user import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.dispatch import receiver from django.urls import reverse from django.db import models from django.db.models import signals from django.utils.translation import ugettext_lazy as _ from clublink.base.crypto import AESCipher from clublink.base.utils import today from clublink.users.managers import UserManager from clublink.clubs.models import Club class UserCategory(models.Model): id = models.CharField(max_length=6, primary_key=True) name = models.CharField(max_length=255) def __str__(self): return self.name def __repr__(self): return '<UserCategory {}>'.format(self.name) class ClubCorp(models.Model): id = models.CharField(max_length=6, primary_key=True) name = models.CharField(max_length=255) def __str__(self): return self.name def __repr__(self): return '<ClubCorp {}>'.format(self.name) class UserType(models.Model): id = models.CharField(max_length=6, primary_key=True) name = models.CharField(max_length=255) is_corp = models.BooleanField(default=False) def __str__(self): return self.name def __repr__(self): return '<UserType {}>'.format(self.name) class User(AbstractBaseUser, PermissionsMixin): STATUSES = ( ('A', _('Active')), ('R', _('Resigned')), ('S', _('Suspended')), ) username = models.CharField(max_length=48, unique=True) membership_number = models.CharField(max_length=15, unique=True, null=True, blank=True) employee_number = models.CharField(max_length=15, unique=True, null=True, blank=True) first_name = models.CharField(max_length=255, blank=True) last_name = models.CharField(max_length=255, blank=True) middle_name = models.CharField(max_length=255, blank=True) email = models.EmailField(null=True, blank=True) is_staff = models.BooleanField( 'staff status', default=False, help_text='Designates whether the user can log into this admin site.') category = models.ForeignKey( UserCategory, null=True, blank=True, related_name='users', on_delete=models.SET_NULL ) clubcorp = models.ForeignKey( ClubCorp, null=True, blank=True, related_name='users', on_delete=models.SET_NULL ) clubcorp_number = models.CharField(max_length=5, null=True, blank=True) customer_id = models.CharField(max_length=15, null=True, blank=True) home_club = models.ForeignKey( Club, null=True, blank=True, related_name='users', on_delete=models.SET_NULL) option_club = models.ForeignKey( Club, null=True, blank=True, related_name='option_users', on_delete=models.SET_NULL ) home_club_alternate_1 = models.ForeignKey( Club, null=True, blank=True, related_name='alt1_users', on_delete=models.SET_NULL ) home_club_alternate_2 = models.ForeignKey( Club, null=True, blank=True, related_name='alt2_users', on_delete=models.SET_NULL ) preferred_language = models.CharField(max_length=2, default=settings.LANGUAGE_CODE, choices=settings.LANGUAGES) status = models.CharField(max_length=1, default='A', choices=STATUSES) type = models.ForeignKey( UserType, null=True, blank=True, related_name='users', on_delete=models.SET_NULL ) invited = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'username' REQUIRED_FIELDS = ( 'email', ) class InvalidToken(Exception): pass class ExpiredToken(InvalidToken): pass class Meta: permissions = ( ('manage_gift_certificates', 'Can manage Gift Certificates',), ) def __str__(self): return self.username def __repr__(self): return '<User {}>'.format(self.username) @property def department_list(self): return ', '.join(self.departments.values_list('name', flat=True)) @property def club_list(self): return ', '.join(self.clubs.values_list('name', flat=True)) @property def can_access_cms(self): if hasattr(self, 'permissions'): return self.permissions.can_access_cms else: return False @property def can_impersonate_user(self): if hasattr(self, 'permissions'): return self.permissions.can_impersonate_user else: return False @property def __csv_row__(self): return [ self.id, self.membership_number, self.username, self.first_name, self.last_name, self.email, self.is_superuser, self.status, self.preferred_language, self.department_list, self.club_list, self.can_access_cms, self.can_impersonate_user ] def generate_email(self): template = ''' Good morning {first_name}, We are pleased to announce the launch of the new {home_club} and ClubLink website. The new sites have been built on a fully responsive platform that is easy to navigate. All the familiar tools for managing your account, booking tee times with LinkLine OnLine, accessing the club roster, or signing up for events are very accessible and most importantly, mobile friendly. As this is a completely new system, you will need to create a new password to access the member portal. To do so, please click the link below: {reset_base}?token={token} As a reminder, should you ever forget your password again in the future, you can reset your password at https://clublink.com/login/forgot/. Once you have logged in successfully, please familiarize yourself with the new website. We've organized things to be more user friendly based upon feedback over the years with our previous site. Here are a few quick tips to navigating your new site: Booking a tee time is now easier than ever! On the homepage, click the “Book a Tee Time” button to book tee times with LinkLine OnLine To view the Club Calendar, from the homepage click “My Club” To view your Member Account Statement, from the homepage click “My Account” To opt-in to online statements, under “My Account”, click “My Profile”, and then “Communications”. Check the box next to “Receive annual dues notice via email” and “Receive statement via email” If you encounter any issues, please email Member Services at [email protected]. If you need to speak to a Member Services representative, please call 1-800-273-5113. Member Services Call Center Hours of Operation Weekdays 8 a.m. – 5:30 p.m. Weekends 8 a.m. – 2 p.m. Regards, ClubLink Member Services 15675 Dufferin Street King City, ON, L7B 1K5 1-800-273-5113 [email protected] www.clublink.com '''.format( **{ 'first_name': self.first_name, 'home_club': self.home_club.name if self.home_club else None, 'reset_base': 'https://clublink.com/login/reset/', 'token': quote(self.generate_reset_token()) } ) return template @property def option_club_name(self): if self.option_club: return self.option_club.name else: return None def get_roster_phone(self): if self.profile.show_phone: return self.profile.show_phone.phone else: return None def get_roster_cell(self): if self.profile.show_cell: return self.profile.show_cell.cell_phone else: return None def get_roster_email(self): if self.profile.show_email: return self.profile.show_email.email else: return None @property def my_cell_phone(self): if self.addresses.exists(): return self.addresses.first().cell_phone @property def my_phone(self): if self.addresses.exists(): return self.addresses.first().phone @property def is_active(self): return self.status != 'R' @property def legacy_renewal_link(self): return 'https://clublinkplayersclub.ca/?member={}'.format( quote_plus(self.encrypted_membership_number) ) @property def renewal_link(self): data = {'firstName': self.first_name, 'lastName': self.last_name, 'membershipNumber': self.membership_number, 'email': self.email} roundto = math.ceil(len(str(data))/16) msg_text = str(data).rjust(roundto*16) secret_key = settings.MEMBERSHIP_ENCODE_KEY cipher = AES.new(secret_key, AES.MODE_ECB) encoded = base64.urlsafe_b64encode(cipher.encrypt(msg_text)) link = '{}?{}'.format( settings.MEMBERSHIP_RENEWAL_URL_BASE, urlencode({'ztd': encoded}) ) print(link) decoded = cipher.decrypt(base64.urlsafe_b64decode(encoded)) print(decoded) return link def get_full_name(self): return '{} {}'.format(self.first_name, self.last_name).strip() def get_short_name(self): return self.first_name def save(self, *args, **kwargs): if self.preferred_language: self.preferred_language = self.preferred_language.lower() super().save(*args, **kwargs) def generate_reset_token(self): cipher = AESCipher() details = { 'timestamp': calendar.timegm(datetime.utcnow().utctimetuple()), 'nonce': self.password, 'pk': self.pk, } return cipher.encrypt(json.dumps(details)) @classmethod def parse_reset_token(cls, token): cipher = AESCipher() try: token_json = cipher.decrypt(token) except: raise cls.InvalidToken() try: details = json.loads(token_json) except json.JSONDecodeError: raise cls.InvalidToken() now = calendar.timegm(datetime.utcnow().utctimetuple()) if now - details['timestamp'] > 14 * 24 * 60 * 60: raise cls.ExpiredToken() try: nonce = details['nonce'] except KeyError: raise cls.InvalidToken() try: user = cls.objects.get(pk=details['pk'], password=nonce) except cls.DoesNotExist: raise cls.InvalidToken() return user @property def encrypted_membership_number(self): if not self.membership_number: return None cipher = AESCipher() return cipher.encrypt(self.membership_number).decode() @staticmethod def decrypt_membership_number(encrypted): cipher = AESCipher() return cipher.decrypt(encrypted) def permits(self, name, default=False): if self.is_superuser: return True permissions, _ = UserPermissions.objects.get_or_create(user=self) return getattr(permissions, name, default) @receiver(signals.post_save, sender=User) def user_post_save(sender, instance, **kwargs): Profile.objects.get_or_create(user=instance) UserPermissions.objects.get_or_create(user=instance) class Address(models.Model): type = models.CharField(max_length=10) ''' We are moving the charfield type to a choicefield. Currently, there is no way to properly link things without either a FK or a proper choicefield. ''' HOME = 'H' BUSINESS = 'B' COTTAGE = 'C' OTHER = 'O' ADDRESS_TYPE_CHOICES = ( (HOME, _('Home')), (BUSINESS, _('Business')), (COTTAGE, _('Cottage')), (OTHER, _('Other')), ) _type = models.CharField( choices = ADDRESS_TYPE_CHOICES, max_length = 1, blank=True, null=True ) user = models.ForeignKey( User, related_name='addresses', on_delete=models.PROTECT ) address1 = models.CharField(max_length=30, null=True, blank=True) address2 = models.CharField(max_length=30, null=True, blank=True) cell_phone = models.CharField(max_length=30, null=True, blank=True) city = models.CharField(max_length=30, null=True, blank=True) country = models.CharField(max_length=3, null=True, blank=True) email = models.EmailField(null=True, blank=True) phone = models.CharField(max_length=30, null=True, blank=True) state = models.CharField(max_length=3, null=True, blank=True) postal_code = models.CharField(max_length=10, null=True, blank=True) class Meta: unique_together = (('type', 'user'),) class Profile(models.Model): user = models.OneToOneField( User, related_name='profile', on_delete=models.PROTECT ) joined = models.DateField(default=today) title = models.CharField(max_length=10, null=True, blank=True) dob = models.DateField(null=True) gender = models.CharField(max_length=1, null=True, blank=True) employer = models.CharField(max_length=80, null=True, blank=True) position = models.CharField(max_length=30, null=True, blank=True) statement_cycle_id = models.CharField(max_length=2, null=True, blank=True) show_in_roster = models.BooleanField(default=False) prepaid_cart = models.BooleanField(default=False) email_dues_notice = models.BooleanField(default=False) email_statement = models.BooleanField(default=False) subscribe_score = models.BooleanField(default=False) subscribe_clublink_info = models.BooleanField(default=False) subscribe_club_info = models.BooleanField(default=False) billing_address = models.ForeignKey( Address, null=True, related_name='billing_profile', on_delete=models.SET_NULL ) mailing_address = models.ForeignKey(Address, null=True, related_name='mailing_profile', on_delete=models.SET_NULL ) show_email = models.ForeignKey( Address, on_delete=models.PROTECT, help_text='ForeignKey to know which email to show.', blank=True, null=True, related_name='email_profiles' ) show_phone = models.ForeignKey( Address, on_delete=models.PROTECT, help_text='ForeignKey to know which phone to show.', blank=True, null=True, related_name='phone_profiles' ) show_cell = models.ForeignKey( Address, on_delete=models.PROTECT, help_text='ForeignKey to know which cell to show.', blank=True, null=True, related_name='cell_profiles' ) class UserPermissions(models.Model): user = models.OneToOneField( User, related_name='permissions', on_delete=models.PROTECT ) can_access_cms = models.BooleanField(default=False) can_impersonate_user = models.BooleanField(default=False) sync_order = [ ClubCorp, UserCategory, UserType, User, Profile, UserPermissions ]
7a5e196b02ba31337cbddd33024bc481f016989c
c2ed4a7cb50296d11a8d16c2c68165737d2a940f
/qdmr/data/utils.py
c3ae2fee7ec73f5169b18c6b5436e3ad067d04e5
[]
no_license
nitishgupta/qdmr
24cb99a5a21b9203e60a5a52f62e58d34f958c46
812ad76104a01a9692256ddbbab6435cf425b5a0
refs/heads/master
2021-02-03T22:50:18.864016
2020-06-01T17:08:39
2020-06-01T17:08:39
243,564,847
0
0
null
null
null
null
UTF-8
Python
false
false
13,136
py
import json from typing import List, Tuple, Set, Dict, Union, Any from qdmr.domain_languages.qdmr_language import QDMRLanguage qdmr_langugage = QDMRLanguage() QDMR_predicates = list(qdmr_langugage._functions.keys()) class Node(object): def __init__(self, predicate, string_arg=None): self.predicate = predicate self.string_arg = string_arg # Empty list indicates leaf node self.children: List[Node] = [] # parent==None indicates root self.parent: Node = None def add_child(self, obj): assert isinstance(obj, Node) obj.parent = self self.children.append(obj) def is_leaf(self): leaf = True if not len(self.children) else False return leaf def get_nested_expression(self): if not self.is_leaf(): nested_expression = [self.predicate] for child in self.children: nested_expression.append(child.get_nested_expression()) return nested_expression else: return self.predicate # def _get_nested_expression_with_strings(self): # """ Nested expression where predicates are replaced with string_arg if present. # Note: This nested expression is only used for human-readability and debugging. # This cannot be converted to lisp notation and is obviously not a parsable program. # """ # string_or_predicate = self.string_arg if self.string_arg is not None else self.predicate # if not self.is_leaf(): # nested_expression = [string_or_predicate] # for child in self.children: # nested_expression.append(child._get_nested_expression_with_strings()) # return nested_expression # else: # return string_or_predicate def get_nested_expression_with_strings(self): """ Nested expression where predicates w/ string_arg are written as PREDICATE(string_arg) This is introduced with drop_language since there are multiple predicates that select string_arg from text. Therefore, if we just write the string-arg to data (as done previously with typed_nested_expression), it would not be sufficient that some node is not a predicate in the language and hence get_ques_span pred. We can write the output of this function in json data and parse it back by removing split on ( and ) """ node_name = self.predicate if self.string_arg is not None: # GET_QUESTION_NUMBER(25) node_name = node_name + "(" + self.string_arg + ")" if self.is_leaf(): return node_name else: nested_expression = [node_name] for child in self.children: nested_expression.append(child.get_nested_expression_with_strings()) return nested_expression class QDMRExample(object): def __init__(self, q_decomp): self.query_id = q_decomp["question_id"] self.question = q_decomp["question_text"] self.split = q_decomp["split"] self.decomposition = q_decomp["decomposition"] self.program: List[str] = q_decomp["program"] self.nested_expression: List = q_decomp["nested_expression"] self.operators = q_decomp["operators"] # Filled by parse_dataset/qdmr_grammar_program.py if transformation to QDMR-language is successful # This contains string-args as it is self.typed_nested_expression: List = [] if "typed_nested_expression" in q_decomp: self.typed_nested_expression = q_decomp["typed_nested_expression"] # This was added after completing parse_dataset/drop_grammar_program. This class is a moving target. # This nested_expression should be s.t. string-arg grounding predicates occur as PREDICATE(string-arg). # e.g. ['FILTER_NUM_EQ', ['SELECT', 'GET_QUESTION_SPAN(field goals of Mason)'], 'GET_QUESTION_NUMBER(37)'] self.drop_nested_expression: List = [] if "drop_nested_expression" in q_decomp: self.drop_nested_expression = q_decomp["drop_nested_expression"] self.program_tree: Node = None self.typed_masked_nested_expr = [] if self.drop_nested_expression: self.program_tree: Node = nested_expression_to_tree(self.drop_nested_expression, predicates_with_strings=True) # This contains string-args masked as GET_QUESTION_SPAN predicate self.typed_masked_nested_expr = self.program_tree.get_nested_expression() elif self.typed_nested_expression: self.program_tree: Node = nested_expression_to_tree(self.typed_nested_expression, predicates_with_strings=True) # This contains string-args masked as GET_QUESTION_SPAN predicate self.typed_masked_nested_expr = self.program_tree.get_nested_expression() self.extras: Dict = q_decomp.get("extras", {}) def to_json(self): json_dict = { "question_id": self.query_id, "question_text": self.question, "split": self.split, "decomposition": self.decomposition, "program": self.program, "nested_expression": self.nested_expression, "typed_nested_expression": self.typed_nested_expression, "drop_nested_expression": self.drop_nested_expression, "operators": self.operators, "extras": self.extras, } return json_dict def read_qdmr_json_to_examples(qdmr_json: str) -> List[QDMRExample]: """Parse processed qdmr json (from parse_dataset/parse_qdmr.py or qdmr_grammar_program.py into List[QDMRExample]""" qdmr_examples = [] with open(qdmr_json, 'r') as f: dataset = json.load(f) for q_decomp in dataset: qdmr_example = QDMRExample(q_decomp) qdmr_examples.append(qdmr_example) return qdmr_examples def write_qdmr_examples_to_json(qdmr_examples: List[QDMRExample], qdmr_json: str): examples_as_json_dicts = [example.to_json() for example in qdmr_examples] with open(qdmr_json, 'w') as outf: json.dump(examples_as_json_dicts, outf, indent=4) def nested_expression_to_lisp(nested_expression) -> str: if isinstance(nested_expression, str): return nested_expression elif isinstance(nested_expression, List): lisp_expressions = [nested_expression_to_lisp(x) for x in nested_expression] return "(" + " ".join(lisp_expressions) + ")" else: raise NotImplementedError def convert_nestedexpr_to_tuple(nested_expression): """Converts a nested expression list into a nested expression tuple to make the program hashable.""" new_nested = [] for i, argument in enumerate(nested_expression): if i == 0: new_nested.append(argument) else: if isinstance(argument, list): tupled_nested = convert_nestedexpr_to_tuple(argument) new_nested.append(tupled_nested) else: new_nested.append(argument) return tuple(new_nested) def linearize_nested_expression(nested_expression, open_bracket: str = "(", close_bracket: str = ")") -> List[str]: """Convert the program (as nested expression) into a linearized expression. The natural language arguments in the program are kept intact as a single program `token` and it is the onus of the processing step after this to tokenize them """ if isinstance(nested_expression, str): # If the string is not a predicate but a NL argument, it is the onus of the models to tokenize it appropriately return [nested_expression] elif isinstance(nested_expression, List): # Flattened list of tokens for each element in the list program_tokens = [] for x in nested_expression: program_tokens.extend(linearize_nested_expression(x, open_bracket, close_bracket)) # Inserting a bracket around the program tokens program_tokens.insert(0, open_bracket) program_tokens.append(close_bracket) return program_tokens else: raise NotImplementedError def nested_expression_to_tree(nested_expression, predicates_with_strings) -> Node: """ There are two types of expressions, one which have string-arg as it is and without a predicate (True) and other, newer DROP style, where string-arg nodes in expression are PREDICATE(string-arg) """ if isinstance(nested_expression, str): if not predicates_with_strings: current_node = Node(predicate=nested_expression) else: predicate_w_stringarg = nested_expression # This can either be a plain predicate (e.g. `SELECT`) or with a string-arg (e.g. `GET_Q_SPAN(string-arg)`) start_paranthesis_index = predicate_w_stringarg.find("(") if start_paranthesis_index == -1: predicate = predicate_w_stringarg current_node = Node(predicate=predicate) else: predicate = predicate_w_stringarg[0:start_paranthesis_index] # +1 to avoid (, and -1 to avoid ) string_arg = predicate_w_stringarg[start_paranthesis_index+1:-1] current_node = Node(predicate=predicate, string_arg=string_arg) elif isinstance(nested_expression, list): current_node = Node(nested_expression[0]) for i in range(1, len(nested_expression)): child_node = nested_expression_to_tree(nested_expression[i], predicates_with_strings) current_node.add_child(child_node) else: raise NotImplementedError return current_node def get_inorder_function_list(node: Node) -> List[str]: inorder_func_list = [node.predicate] for c in node.children: inorder_func_list.extend(get_inorder_function_list(c)) return inorder_func_list def get_inorder_function_list_from_template(tempalte: Union[Tuple, str]) -> List[str]: if isinstance(tempalte, tuple): inorder_func_list = [tempalte[0]] for c in tempalte[1:]: inorder_func_list.extend(get_inorder_function_list_from_template(c)) else: return [tempalte] return inorder_func_list def string_arg_to_quesspan_pred(node: Node): """Convert ques-string arguments to functions in QDMR to generic STRING() function.""" if node.predicate not in QDMR_predicates: node.string_arg = node.predicate node.predicate = "GET_QUESTION_SPAN" for child in node.children: string_arg_to_quesspan_pred(child) return node def convert_nestedexpr_to_tuple(nested_expression) -> Tuple[Set[str], Tuple]: """Converts a nested expression list into a nested expression tuple to make the program hashable.""" function_names = set() new_nested = [] for i, argument in enumerate(nested_expression): if i == 0: function_names.add(argument) new_nested.append(argument) else: if isinstance(argument, list): func_set, tupled_nested = convert_nestedexpr_to_tuple(argument) function_names.update(func_set) new_nested.append(tupled_nested) else: new_nested.append(argument) return function_names, tuple(new_nested) def read_drop_dataset(input_json: str): with open(input_json, "r") as f: dataset = json.load(f) return dataset def convert_answer(answer_annotation: Dict[str, Union[str, Dict, List]]) -> Tuple[str, List]: answer_type = None if answer_annotation["spans"]: answer_type = "spans" elif answer_annotation["number"]: answer_type = "number" elif any(answer_annotation["date"].values()): answer_type = "date" answer_content = answer_annotation[answer_type] if answer_type is not None else None answer_texts = [] if answer_type is None: # No answer return None elif answer_type == "spans": # answer_content is a list of string in this case answer_texts = answer_content elif answer_type == "date": # answer_content is a dict with "month", "day", "year" as the keys date_tokens = [ answer_content[key] for key in ["month", "day", "year"] if key in answer_content and answer_content[key] ] answer_texts = date_tokens elif answer_type == "number": # answer_content is a string of number answer_texts = [answer_content] return answer_type, answer_texts if __name__ == "__main__": p = ['FILTER_NUM_GT', ['FILTER', ['SELECT', 'GET_QUESTION_SPAN(yards of TD passes)'], 'GET_QUESTION_SPAN(in the first half)'], 'GET_QUESTION_NUMBER(70)'] node: Node = nested_expression_to_tree(p) print(node._get_nested_expression_with_predicate_and_strings()) print(node.get_nested_expression_with_strings()) print(node.get_nested_expression())
ce7ffbdec0eb226aa156c9473f3ba0daa63fab4c
63191be7f688591af69263972d68423d76fb5f74
/geekshop/adminapp/controllers/user.py
05aa0358e05154eb814c7758f5dea946a87f8647
[]
no_license
IliaNiyazof/Django
5eee4c226a1f06178fdbb5626444fff406886de7
052cb4f3f142c4224454ebac9fb27f63de9cbc47
refs/heads/master
2021-07-19T05:52:56.620026
2020-06-05T16:17:47
2020-06-05T16:17:47
166,776,966
0
0
null
null
null
null
UTF-8
Python
false
false
1,765
py
from django.views.generic.list import ListView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.utils.decorators import method_decorator from django.contrib.auth.decorators import user_passes_test from django.urls import reverse_lazy from django.shortcuts import HttpResponseRedirect from authapp.models import ShopUser class UserListView(ListView): model = ShopUser template_name = 'adminapp/users/users_index.html' @method_decorator(user_passes_test(lambda u: u.is_superuser)) def dispatch(self, request, *args, **kwargs): return super(UserListView, self).dispatch(request, *args, **kwargs) class UserCreateView(CreateView): model = ShopUser template_name = 'adminapp/users/update.html' fields = ('username', 'age', 'password', 'email', 'first_name', 'avatar') success_url = reverse_lazy('admin:users_index') class UserUpdateView(UpdateView): model = ShopUser template_name = 'adminapp/users/update.html' fields = ('username', 'age', 'email', 'first_name', 'avatar') success_url = reverse_lazy('admin:users_index') def get_context_data(self, **kwargs): parent_context = super(UserUpdateView, self).get_context_data(**kwargs) parent_context['title'] = 'пользователи/создание' return parent_context class UserDeleteView(DeleteView): model = ShopUser template_name = 'adminapp/users/delete.html' success_url = reverse_lazy('admin:users_index') def delete(self, request, *args, **kwargs): self.object = self.get_object() #получаем пользователя self.object.is_active = False self.object.save() return HttpResponseRedirect(self.get_success_url())
3242ea4001760905374ab93d15598db51c8318dc
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/contrib/audio/tdnn/speechbrain/lobes/models/transformer/TransformerASR.py
631c6e8b82bf406d9a02a9aa6393ec730669b547
[ "Apache-2.0", "GPL-1.0-or-later", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
13,392
py
"""Transformer for ASR in the SpeechBrain style. Authors * Jianyuan Zhong 2020 """ import torch # noqa 42 from torch import nn from typing import Optional from speechbrain.nnet.linear import Linear from speechbrain.nnet.containers import ModuleList from speechbrain.lobes.models.transformer.Transformer import ( TransformerInterface, get_lookahead_mask, get_key_padding_mask, NormalizedEmbedding, ) from speechbrain.nnet.activations import Swish from speechbrain.dataio.dataio import length_to_mask class TransformerASR(TransformerInterface): """This is an implementation of transformer model for ASR. The architecture is based on the paper "Attention Is All You Need": https://arxiv.org/pdf/1706.03762.pdf Arguments ---------- tgt_vocab: int Size of vocabulary. input_size: int Input feature size. d_model : int, optional Embedding dimension size. (default=512). nhead : int, optional The number of heads in the multi-head attention models (default=8). num_encoder_layers : int, optional The number of sub-encoder-layers in the encoder (default=6). num_decoder_layers : int, optional The number of sub-decoder-layers in the decoder (default=6). dim_ffn : int, optional The dimension of the feedforward network model (default=2048). dropout : int, optional The dropout value (default=0.1). activation : torch.nn.Module, optional The activation function of FFN layers. Recommended: relu or gelu (default=relu). positional_encoding: str, optional Type of positional encoding used. e.g. 'fixed_abs_sine' for fixed absolute positional encodings. normalize_before: bool, optional Whether normalization should be applied before or after MHA or FFN in Transformer layers. Defaults to True as this was shown to lead to better performance and training stability. kernel_size: int, optional Kernel size in convolutional layers when Conformer is used. bias: bool, optional Whether to use bias in Conformer convolutional layers. encoder_module: str, optional Choose between Conformer and Transformer for the encoder. The decoder is fixed to be a Transformer. conformer_activation: torch.nn.Module, optional Activation module used after Conformer convolutional layers. E.g. Swish, ReLU etc. it has to be a torch Module. branchformer_activation: torch.nn.Module, optional Activation module used within the Branchformer Encoder. E.g. Swish, ReLU etc. it has to be a torch Module. attention_type: str, optional Type of attention layer used in all Transformer or Conformer layers. e.g. regularMHA or RelPosMHA. max_length: int, optional Max length for the target and source sequence in input. Used for positional encodings. causal: bool, optional Whether the encoder should be causal or not (the decoder is always causal). If causal the Conformer convolutional layer is causal. csgu_linear_units: int, optional Number of neurons in the hidden linear units of the CSGU Module. -> Branchformer gate_activation: torch.nn.Module, optional Activation function used at the gate of the CSGU module. -> Branchformer use_linear_after_conv: bool, optional If True, will apply a linear transformation of size input_size//2. -> Branchformer Example ------- >>> src = torch.rand([8, 120, 512]) >>> tgt = torch.randint(0, 720, [8, 120]) >>> net = TransformerASR( ... 720, 512, 512, 8, 1, 1, 1024, activation=torch.nn.GELU ... ) >>> enc_out, dec_out = net.forward(src, tgt) >>> enc_out.shape torch.Size([8, 120, 512]) >>> dec_out.shape torch.Size([8, 120, 512]) """ def __init__( self, tgt_vocab, input_size, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, d_ffn=2048, dropout=0.1, activation=nn.ReLU, positional_encoding="fixed_abs_sine", normalize_before=False, kernel_size: Optional[int] = 31, bias: Optional[bool] = True, encoder_module: Optional[str] = "transformer", conformer_activation: Optional[nn.Module] = Swish, branchformer_activation: Optional[nn.Module] = nn.GELU, attention_type: Optional[str] = "regularMHA", max_length: Optional[int] = 2500, causal: Optional[bool] = True, csgu_linear_units: Optional[int] = 3072, gate_activation: Optional[nn.Module] = nn.Identity, use_linear_after_conv: Optional[bool] = False, ): super().__init__( d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, d_ffn=d_ffn, dropout=dropout, activation=activation, positional_encoding=positional_encoding, normalize_before=normalize_before, kernel_size=kernel_size, bias=bias, encoder_module=encoder_module, conformer_activation=conformer_activation, branchformer_activation=branchformer_activation, attention_type=attention_type, max_length=max_length, causal=causal, csgu_linear_units=csgu_linear_units, gate_activation=gate_activation, use_linear_after_conv=use_linear_after_conv, ) self.custom_src_module = ModuleList( Linear( input_size=input_size, n_neurons=d_model, bias=True, combine_dims=False, ), torch.nn.Dropout(dropout), ) self.custom_tgt_module = ModuleList( NormalizedEmbedding(d_model, tgt_vocab) ) # reset parameters using xavier_normal_ self._init_params() def forward(self, src, tgt, wav_len=None, pad_idx=0): """ Arguments ---------- src : torch.Tensor The sequence to the encoder. tgt : torch.Tensor The sequence to the decoder. wav_len: torch.Tensor, optional Torch Tensor of shape (batch, ) containing the relative length to padded length for each example. pad_idx : int, optional The index for <pad> token (default=0). """ # reshpae the src vector to [Batch, Time, Fea] is a 4d vector is given if src.ndim == 4: bz, t, ch1, ch2 = src.shape src = src.reshape(bz, t, ch1 * ch2) ( src_key_padding_mask, tgt_key_padding_mask, src_mask, tgt_mask, ) = self.make_masks(src, tgt, wav_len, pad_idx=pad_idx) src = self.custom_src_module(src) # add pos encoding to queries if are sinusoidal ones else if self.attention_type == "RelPosMHAXL": pos_embs_encoder = self.positional_encoding(src) elif self.positional_encoding_type == "fixed_abs_sine": src = src + self.positional_encoding(src) # add the encodings here pos_embs_encoder = None encoder_out, _ = self.encoder( src=src, src_mask=src_mask, src_key_padding_mask=src_key_padding_mask, pos_embs=pos_embs_encoder, ) tgt = self.custom_tgt_module(tgt) # Add positional encoding to the target before feeding the decoder. if self.attention_type == "RelPosMHAXL": # use standard sinusoidal pos encoding in decoder tgt = tgt + self.positional_encoding_decoder(tgt) pos_embs_encoder = None # self.positional_encoding(src) pos_embs_target = None elif self.positional_encoding_type == "fixed_abs_sine": tgt = tgt + self.positional_encoding(tgt) pos_embs_target = None pos_embs_encoder = None decoder_out, _, _ = self.decoder( tgt=tgt, memory=encoder_out, memory_mask=src_mask, tgt_mask=tgt_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=src_key_padding_mask, pos_embs_tgt=pos_embs_target, pos_embs_src=pos_embs_encoder, ) return encoder_out, decoder_out def make_masks(self, src, tgt, wav_len=None, pad_idx=0): """This method generates the masks for training the transformer model. Arguments --------- src : tensor The sequence to the encoder (required). tgt : tensor The sequence to the decoder (required). pad_idx : int The index for <pad> token (default=0). """ src_key_padding_mask = None if wav_len is not None: abs_len = torch.round(wav_len * src.shape[1]) src_key_padding_mask = ~length_to_mask(abs_len).bool() tgt_key_padding_mask = get_key_padding_mask(tgt, pad_idx=pad_idx) src_mask = None tgt_mask = get_lookahead_mask(tgt) return src_key_padding_mask, tgt_key_padding_mask, src_mask, tgt_mask @torch.no_grad() def decode(self, tgt, encoder_out, enc_len=None): """This method implements a decoding step for the transformer model. Arguments --------- tgt : torch.Tensor The sequence to the decoder. encoder_out : torch.Tensor Hidden output of the encoder. enc_len : torch.LongTensor The actual length of encoder states. """ tgt_mask = get_lookahead_mask(tgt) src_key_padding_mask = None if enc_len is not None: src_key_padding_mask = (1 - length_to_mask(enc_len)).bool() tgt = self.custom_tgt_module(tgt) if self.attention_type == "RelPosMHAXL": # use standard sinusoidal pos encoding in decoder tgt = tgt + self.positional_encoding_decoder(tgt) pos_embs_encoder = None # self.positional_encoding(src) pos_embs_target = None elif self.positional_encoding_type == "fixed_abs_sine": tgt = tgt + self.positional_encoding(tgt) pos_embs_target = None pos_embs_encoder = None prediction, self_attns, multihead_attns = self.decoder( tgt, encoder_out, tgt_mask=tgt_mask, memory_key_padding_mask=src_key_padding_mask, pos_embs_tgt=pos_embs_target, pos_embs_src=pos_embs_encoder, ) return prediction, multihead_attns[-1] def encode(self, src, wav_len=None): """ Encoder forward pass Arguments ---------- src : torch.Tensor The sequence to the encoder. wav_len: torch.Tensor, optional Torch Tensor of shape (batch, ) containing the relative length to padded length for each example. """ # reshape the src vector to [Batch, Time, Fea] if a 4d vector is given if src.dim() == 4: bz, t, ch1, ch2 = src.shape src = src.reshape(bz, t, ch1 * ch2) src_key_padding_mask = None if wav_len is not None: abs_len = torch.floor(wav_len * src.shape[1]) src_key_padding_mask = ( torch.arange(src.shape[1])[None, :].to(abs_len) > abs_len[:, None] ) src = self.custom_src_module(src) if self.attention_type == "RelPosMHAXL": pos_embs_source = self.positional_encoding(src) elif self.positional_encoding_type == "fixed_abs_sine": src = src + self.positional_encoding(src) pos_embs_source = None encoder_out, _ = self.encoder( src=src, src_key_padding_mask=src_key_padding_mask, pos_embs=pos_embs_source, ) return encoder_out def _init_params(self): for p in self.parameters(): if p.dim() > 1: torch.nn.init.xavier_normal_(p) class EncoderWrapper(nn.Module): """This is a wrapper of any ASR transformer encoder. By default, the TransformerASR .forward() function encodes and decodes. With this wrapper the .forward() function becomes .encode() only. Important: The TransformerASR class must contain a .encode() function. Arguments ---------- transformer : sb.lobes.models.TransformerInterface A Transformer instance that contains a .encode() function. Example ------- >>> src = torch.rand([8, 120, 512]) >>> tgt = torch.randint(0, 720, [8, 120]) >>> net = TransformerASR( ... 720, 512, 512, 8, 1, 1, 1024, activation=torch.nn.GELU ... ) >>> encoder = EncoderWrapper(net) >>> enc_out = encoder(src) >>> enc_out.shape torch.Size([8, 120, 512]) """ def __init__(self, transformer, *args, **kwargs): super().__init__(*args, **kwargs) self.transformer = transformer def forward(self, x, wav_lens=None): """ Processes the input tensor x and returns an output tensor.""" x = self.transformer.encode(x, wav_lens) return x
1a6de88e8985f02d7a949c863b4d01cb2ac488a7
c3322306696a5e60c4de7e845ed68f58df2b6a0a
/Py/TushareTest/venv/Lib/site-packages/asynq/debug.py
48b45010aa5044c516125100dbb4696558dd7625
[]
no_license
lifewwy/future
b19ff997efe5a2d721ff0fd338509dee49b01bac
916fc0d7c502c98bcbc625f7ccd46483e627576c
refs/heads/master
2020-03-23T15:51:20.810688
2019-03-05T02:37:09
2019-03-05T02:37:09
141,778,894
2
1
null
null
null
null
UTF-8
Python
false
false
8,538
py
# Copyright 2016 Quora, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import contextlib import sys import qcore import inspect import linecache import traceback import logging from sys import stderr, stdout from . import _debug options = _debug.options # Must be the same object options.DUMP_PRE_ERROR_STATE = True options.DUMP_EXCEPTIONS = False options.DUMP_AWAIT_RECURSION = False options.DUMP_SCHEDULE_TASK = False options.DUMP_CONTINUE_TASK = False options.DUMP_SCHEDULE_BATCH = False options.DUMP_FLUSH_BATCH = False options.DUMP_DEPENDENCIES = False options.DUMP_COMPUTED = False options.DUMP_NEW_TASKS = False options.DUMP_YIELD_RESULTS = False options.DUMP_QUEUED_RESULTS = False options.DUMP_CONTEXTS = False options.DUMP_SCHEDULER_CHANGE = False options.DUMP_SYNC = False options.DUMP_PRIMER = False options.DUMP_STACK = False # When it's meaningful, e.g. on batch flush options.DUMP_SCHEDULER_STATE = False options.SCHEDULER_STATE_DUMP_INTERVAL = 1 # In seconds options.DEBUG_STR_REPR_MAX_LENGTH = 240 # In characters, 0 means infinity options.STACK_DUMP_LIMIT = 10 # In frames, None means infinity options.ENABLE_COMPLEX_ASSERTIONS = True def DUMP_ALL(value=None): return options.DUMP_ALL(value) # DUMP_ALL(True) original_hook = None is_attached = False _std_str = str _std_repr = repr def dump_error(error, tb=None): """Dumps errors w/async stack traces.""" try: stderr.write('\n' + (format_error(error, tb=tb) or 'No error')) finally: stdout.flush() stderr.flush() def format_error(error, tb=None): """Formats errors w/async stack traces.""" if error is None: return None result = '' if hasattr(error, '_traceback') or tb is not None: tb = tb or error._traceback result += '\n\nTraceback:\n%s' % ''.join(format_tb(tb)) if isinstance(error, BaseException): result += '\n' + ''.join(traceback.format_exception_only(error.__class__, error)) return result class AsynqStackTracebackFormatter(logging.Formatter): """Prints traceback skipping asynq frames during logger.exception/error usages.""" def formatException(self, exc_info): ty, val, tb = exc_info return format_error(val, tb=tb) def _should_skip_frame(frame): if frame: traceback_hide_directive_name = '__traceback_hide__' return frame.f_locals.get( traceback_hide_directive_name, frame.f_globals.get( traceback_hide_directive_name, False)) is True return False def extract_tb(tb, limit=None): """This implementation is stolen from traceback module but respects __traceback_hide__.""" if limit is None: if hasattr(sys, 'tracebacklimit'): limit = sys.tracebacklimit tb_list = [] n = 0 while tb is not None and (limit is None or n < limit): f = tb.tb_frame if not _should_skip_frame(f): lineno = tb.tb_lineno co = f.f_code filename = co.co_filename name = co.co_name linecache.checkcache(filename) line = linecache.getline(filename, lineno, f.f_globals) if line: line = line.strip() else: line = None tb_list.append((filename, lineno, name, line)) tb = tb.tb_next n = n + 1 return tb_list def format_tb(tb): """Formats a tracebacck but skips """ return traceback.format_list(extract_tb(tb)) def dump_stack(skip=0, limit=None): """Dumps current stack trace.""" skip += 2 # To skip dump_stack and traceback.extract_stack if limit is None: limit = options.STACK_DUMP_LIMIT print('--- Stack trace: -----------------------------------------------------') try: stack = traceback.extract_stack(limit=None if limit is None else limit + skip) print(''.join(traceback.format_list(stack[:-skip])), end='') finally: print('----------------------------------------------------------------------') stdout.flush() def dump_asynq_stack(): """Dumps the current asynq stack to stdout.""" # Doing this in the global scope creates a circular dependency from .scheduler import get_scheduler active_task = get_scheduler().active_task if active_task is not None: print('\n'.join(active_task.traceback())) else: print('dump_asynq_stack: no asynq task currently active') def dump(state): if not options.DUMP_PRE_ERROR_STATE: return stdout.flush() stderr.flush() stdout.write('\n--- Pre-error state dump: --------------------------------------------\n') try: state.dump() finally: stdout.write('----------------------------------------------------------------------\n') stderr.write('\n') stdout.flush() stderr.flush() def write(text, indent=0): if indent > 0: indent_str = ' ' * indent text = text.replace('\n', '\n' + indent_str) if not text.startswith('\n'): text = indent_str + text stdout.write(text + '\n') def str(source, truncate=True): return qcore.safe_str(source, options.DEBUG_STR_REPR_MAX_LENGTH if truncate else 0) def repr(source, truncate=True): return qcore.safe_repr(source, options.DEBUG_STR_REPR_MAX_LENGTH if truncate else 0) def async_exception_hook(type, error, tb): """Exception hook capable of printing async stack traces.""" global original_hook stdout.flush() stderr.flush() if original_hook is not None: original_hook(type, error, tb) dump_error(error, tb=tb) def ipython_custom_exception_handler(self, etype, value, tb, tb_offset=None): """Override ipython's exception handler to print async traceback.""" async_exception_hook(etype, value, tb) # below is the default exception handling behavior of ipython self.showtraceback() def attach_exception_hook(): """Injects async exception hook into the sys.excepthook.""" try: # detect whether we're running in IPython __IPYTHON__ except NameError: shell = None else: # override ipython's exception handler if in a shell. # we need to do this because ipython overrides sys.excepthook # so just the else block doesn't cover that case. from IPython.core.getipython import get_ipython # this may be None if __IPYTHON__ is somehow defined, but we are not # in fact in a shell shell = get_ipython() if shell is not None: shell.set_custom_exc((BaseException,), ipython_custom_exception_handler) else: global is_attached, original_hook if is_attached: sys.stderr.write("Warning: async exception hook was already attached.\n") return original_hook = sys.excepthook sys.excepthook = async_exception_hook is_attached = True def detach_exception_hook(): """Removes async exception hook into the sys.excepthook.""" global is_attached, original_hook assert is_attached, "Async exception hook wasn't attached." sys.excepthook = original_hook is_attached = False @contextlib.contextmanager def enable_complex_assertions(enable=True): old = options.ENABLE_COMPLEX_ASSERTIONS try: options.ENABLE_COMPLEX_ASSERTIONS = enable yield None finally: options.ENABLE_COMPLEX_ASSERTIONS = old def disable_complex_assertions(): return enable_complex_assertions(False) def sync(): assert False, "'import asynq' seems broken: this function must be replaced with async.batching.sync." def get_frame_info(generator): """Given a generator, returns its current frame info.""" if getattr(generator, 'gi_frame', None) is not None: return inspect.getframeinfo(generator.gi_frame) return None
452d3cb8763ef5630fe140977e5d2231bfa8a948
f0316e656767cf505b32c83eef4df13bb9f6b60c
/LeetCode/Python/Medium/113_path_sum_2.py
06fd48759de839c50e4e5968b112c39a587e6b81
[]
no_license
AkshdeepSharma/Classroom
70ec46b35fab5fc4a9d2eac430659d7dafba93da
4e55799466c101c736de6c7e07d716ff147deb83
refs/heads/master
2022-06-13T18:14:03.236503
2022-05-17T20:16:28
2022-05-17T20:16:28
94,828,359
1
0
null
null
null
null
UTF-8
Python
false
false
798
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def pathSum(self, root, wanted_sum): """ :type root: TreeNode :type sum: int :rtype: List[List[int]] """ ans = [] self.dfs(root, wanted_sum, [], ans) return ans def dfs(self, root, wanted_sum, temp, ans): if not root: return if not root.left and not root.right and wanted_sum == root.val: ans.append(temp + [root.val]) return self.dfs(root.left, wanted_sum - root.val, temp + [root.val], ans) self.dfs(root.right, wanted_sum - root.val, temp + [root.val], ans)
1c9722a8fd2c2a2eba6c6d1e69415f7e5b34d031
6e1549257568a0ca81b3fc5864e2e1fa65171b06
/salarydk/models/inline_response200105_data.py
849f613e0b7abadbe1d4fa8130f82fe59c080f22
[]
no_license
tdwizard/salarydk
19d3453de8fbdd886a0189dbf232f98de971e18a
dcf5040101b3e576f1068ea104148651e5c66511
refs/heads/master
2023-08-05T05:40:09.561288
2021-09-24T09:41:43
2021-09-24T09:41:43
409,910,180
0
0
null
null
null
null
UTF-8
Python
false
false
9,038
py
# coding: utf-8 """ Salary.dk API This is the public API for Salary.dk. # General Our API is a JSON-based, REST-like API. Our webapp uses the exact same API, so everything you can do in our webapp, you can do through our API. However, we are slowly opening up the API, so not all endpoints are documented here yet. Only the endpoints documented here are stable. If there is some functionality you would like to access through our API, please contact us. The API is located at https://api.salary.dk. All requests must use TLS. In order to use the API on behalf of other users than yourself, you need to register as an API client. You do this by sending an e-mail to [email protected] with the name and purpose of your client. API-keys for each account can be obtained once logged in to Salary, under the settings for the Company. All endpoints are documented to be able to return the 500 error code. We strive to not return this error code, so if you do encounter this error code, it might mean there is an error on our side. In this case, do not hesitate to contact us. # Versioning, upgrade and deprecation policy Our API might change over time. In order to ensure a stable API, we follow these rules when changing the API. New fields might be added at any time to any response or as non-required parameters to any input. When adding input fields, we ensure the default behaviour when not supplying the field is the same as the previous version. In these cases, the version of an endpoint is not increased, since it is backwards compatible. Since we might add new fields to responses, be sure to use a JSON parser in your implementation. This ensures that any extra fields added are ignored by your implementation. We might add entirely new endpoints at any time. If we need to change an existing endpoint without being able to make it backwards compatible, we will add a new version of the endpoint, and mark the old as deprecated but still functional. We will then contact any users of the deprecated endpoint and ensure an upgrade is performed. Once all consumers have moved to the new endpoint version, the old one will be removed. We will not at any point change the meaning of any existing field, nor will we remove any field or endpoint without following the above deprecated procedure. However, we might add new types to existing enums at any time. # Cross-Origin Resource Sharing This API features Cross-Origin Resource Sharing (CORS) implemented in compliance with [W3C spec](https://www.w3.org/TR/cors/) - and that allows cross-domain communication from the browser. All responses have a wildcard same-origin which makes them completely public and accessible to everyone, including any code on any site, as long as the proper access token is passed. # Authentication All request require an access token. There are two ways to obtain an access token: * Logging in as a user. (this endpoint is not yet publicly available). * Using an API-key: [endpoint](#operation/APIClientLogin) Using one of these methods, you will obtain an access token. In all subsequest requests, this access token should be passed in the Authorization header. The access token is valid for around one hour, after which a new token should be obtained. You do not need to dispose of access tokens once created. They have a limited lifetime, and Salary.dk will automatically expire old ones. For some endpoints, the authorizedUserQuery security definition is used. This allows for passing the access token as a query parameter where it is not possible to pass it as a header. In particular, this is used for downloading files. <!-- ReDoc-Inject: <security-definitions> --> # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from salarydk.configuration import Configuration class InlineResponse200105Data(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'challenge_id': 'str', 'key': 'str', 'qr_image': 'str' } attribute_map = { 'challenge_id': 'challengeID', 'key': 'key', 'qr_image': 'qrImage' } def __init__(self, challenge_id=None, key=None, qr_image=None, local_vars_configuration=None): # noqa: E501 """InlineResponse200105Data - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._challenge_id = None self._key = None self._qr_image = None self.discriminator = None self.challenge_id = challenge_id if key is not None: self.key = key if qr_image is not None: self.qr_image = qr_image @property def challenge_id(self): """Gets the challenge_id of this InlineResponse200105Data. # noqa: E501 The ID of the challenge to complete to complete the enrollment # noqa: E501 :return: The challenge_id of this InlineResponse200105Data. # noqa: E501 :rtype: str """ return self._challenge_id @challenge_id.setter def challenge_id(self, challenge_id): """Sets the challenge_id of this InlineResponse200105Data. The ID of the challenge to complete to complete the enrollment # noqa: E501 :param challenge_id: The challenge_id of this InlineResponse200105Data. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and challenge_id is None: # noqa: E501 raise ValueError("Invalid value for `challenge_id`, must not be `None`") # noqa: E501 self._challenge_id = challenge_id @property def key(self): """Gets the key of this InlineResponse200105Data. # noqa: E501 For TOTP, the secret key to present to the user. # noqa: E501 :return: The key of this InlineResponse200105Data. # noqa: E501 :rtype: str """ return self._key @key.setter def key(self, key): """Sets the key of this InlineResponse200105Data. For TOTP, the secret key to present to the user. # noqa: E501 :param key: The key of this InlineResponse200105Data. # noqa: E501 :type: str """ self._key = key @property def qr_image(self): """Gets the qr_image of this InlineResponse200105Data. # noqa: E501 For TOTP, an image of the QR code to present to the user. Base64 encoded. # noqa: E501 :return: The qr_image of this InlineResponse200105Data. # noqa: E501 :rtype: str """ return self._qr_image @qr_image.setter def qr_image(self, qr_image): """Sets the qr_image of this InlineResponse200105Data. For TOTP, an image of the QR code to present to the user. Base64 encoded. # noqa: E501 :param qr_image: The qr_image of this InlineResponse200105Data. # noqa: E501 :type: str """ self._qr_image = qr_image def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse200105Data): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, InlineResponse200105Data): return True return self.to_dict() != other.to_dict()
7bbaf9dcf2634b177bd8a31f8aab3393fe4990b6
c086a38a366b0724d7339ae94d6bfb489413d2f4
/PythonEnv/Lib/site-packages/win32/Demos/win32netdemo.py
eb7e3478f3e4a966e759bd55a82605411e1dd78e
[]
no_license
FlowkoHinti/Dionysos
2dc06651a4fc9b4c8c90d264b2f820f34d736650
d9f8fbf3bb0713527dc33383a7f3e135b2041638
refs/heads/master
2021-03-02T01:14:18.622703
2020-06-09T08:28:44
2020-06-09T08:28:44
245,826,041
2
1
null
null
null
null
UTF-8
Python
false
false
8,640
py
import sys import win32api import win32net import win32netcon import win32security import getopt import traceback verbose_level = 0 server = None # Run on local machine. def verbose(msg): if verbose_level: print(msg) def CreateUser(): "Creates a new test user, then deletes the user" testName = "PyNetTestUser" try: win32net.NetUserDel(server, testName) print("Warning - deleted user before creating it!") except win32net.error: pass d = {} d['name'] = testName d['password'] = 'deleteme' d['priv'] = win32netcon.USER_PRIV_USER d['comment'] = "Delete me - created by Python test code" d['flags'] = win32netcon.UF_NORMAL_ACCOUNT | win32netcon.UF_SCRIPT win32net.NetUserAdd(server, 1, d) try: try: win32net.NetUserChangePassword(server, testName, "wrong", "new") print("ERROR: NetUserChangePassword worked with a wrong password!") except win32net.error: pass win32net.NetUserChangePassword(server, testName, "deleteme", "new") finally: win32net.NetUserDel(server, testName) print("Created a user, changed their password, and deleted them!") def UserEnum(): "Enumerates all the local users" resume = 0 nuser = 0 while 1: data, total, resume = win32net.NetUserEnum(server, 3, win32netcon.FILTER_NORMAL_ACCOUNT, resume) verbose("Call to NetUserEnum obtained %d entries of %d total" % (len(data), total)) for user in data: verbose("Found user %s" % user['name']) nuser = nuser + 1 if not resume: break assert nuser, "Could not find any users!" print("Enumerated all the local users") def GroupEnum(): "Enumerates all the domain groups" nmembers = 0 resume = 0 while 1: data, total, resume = win32net.NetGroupEnum(server, 1, resume) # print "Call to NetGroupEnum obtained %d entries of %d total" % (len(data), total) for group in data: verbose("Found group %(name)s:%(comment)s " % group) memberresume = 0 while 1: memberdata, total, memberresume = win32net.NetGroupGetUsers(server, group['name'], 0, resume) for member in memberdata: verbose(" Member %(name)s" % member) nmembers = nmembers + 1 if memberresume == 0: break if not resume: break assert nmembers, "Couldnt find a single member in a single group!" print("Enumerated all the groups") def LocalGroupEnum(): "Enumerates all the local groups" resume = 0 nmembers = 0 while 1: data, total, resume = win32net.NetLocalGroupEnum(server, 1, resume) for group in data: verbose("Found group %(name)s:%(comment)s " % group) memberresume = 0 while 1: memberdata, total, memberresume = win32net.NetLocalGroupGetMembers(server, group['name'], 2, resume) for member in memberdata: # Just for the sake of it, we convert the SID to a username username, domain, type = win32security.LookupAccountSid(server, member['sid']) nmembers = nmembers + 1 verbose(" Member %s (%s)" % (username, member['domainandname'])) if memberresume == 0: break if not resume: break assert nmembers, "Couldnt find a single member in a single group!" print("Enumerated all the local groups") def ServerEnum(): "Enumerates all servers on the network" resume = 0 while 1: data, total, resume = win32net.NetServerEnum(server, 100, win32netcon.SV_TYPE_ALL, None, resume) for s in data: verbose("Found server %s" % s['name']) # Now loop over the shares. shareresume = 0 while 1: sharedata, total, shareresume = win32net.NetShareEnum(server, 2, shareresume) for share in sharedata: verbose(" %(netname)s (%(path)s):%(remark)s - in use by %(current_uses)d users" % share) if not shareresume: break if not resume: break print("Enumerated all the servers on the network") def LocalGroup(uname=None): "Creates a local group, adds some members, deletes them, then removes the group" level = 3 if uname is None: uname = win32api.GetUserName() if uname.find("\\") < 0: uname = win32api.GetDomainName() + "\\" + uname group = 'python_test_group' # delete the group if it already exists try: win32net.NetLocalGroupDel(server, group) print("WARNING: existing local group '%s' has been deleted.") except win32net.error: pass group_data = {'name': group} win32net.NetLocalGroupAdd(server, 1, group_data) try: u = {'domainandname': uname} win32net.NetLocalGroupAddMembers(server, group, level, [u]) mem, tot, res = win32net.NetLocalGroupGetMembers(server, group, level) print("members are", mem) if mem[0]['domainandname'] != uname: print("ERROR: LocalGroup just added %s, but members are %r" % (uname, mem)) # Convert the list of dicts to a list of strings. win32net.NetLocalGroupDelMembers(server, group, [m['domainandname'] for m in mem]) finally: win32net.NetLocalGroupDel(server, group) print("Created a local group, added and removed members, then deleted the group") def GetInfo(userName=None): "Dumps level 3 information about the current user" if userName is None: userName = win32api.GetUserName() print("Dumping level 3 information about user") info = win32net.NetUserGetInfo(server, userName, 3) for key, val in list(info.items()): verbose("%s=%s" % (key, val)) def SetInfo(userName=None): "Attempts to change the current users comment, then set it back" if userName is None: userName = win32api.GetUserName() oldData = win32net.NetUserGetInfo(server, userName, 3) try: d = oldData.copy() d["usr_comment"] = "Test comment" win32net.NetUserSetInfo(server, userName, 3, d) new = win32net.NetUserGetInfo(server, userName, 3)['usr_comment'] if str(new) != "Test comment": raise RuntimeError("Could not read the same comment back - got %s" % new) print("Changed the data for the user") finally: win32net.NetUserSetInfo(server, userName, 3, oldData) def SetComputerInfo(): "Doesnt actually change anything, just make sure we could ;-)" info = win32net.NetWkstaGetInfo(None, 502) # *sob* - but we can't! Why not!!! # win32net.NetWkstaSetInfo(None, 502, info) def usage(tests): import os print("Usage: %s [-s server ] [-v] [Test ...]" % os.path.basename(sys.argv[0])) print(" -v : Verbose - print more information") print(" -s : server - execute the tests against the named server") print(" -c : include the CreateUser test by default") print("where Test is one of:") for t in tests: print(t.__name__, ":", t.__doc__) print() print("If not tests are specified, all tests are run") sys.exit(1) def main(): tests = [] for ob in list(globals().values()): if type(ob) == type(main) and ob.__doc__: tests.append(ob) opts, args = getopt.getopt(sys.argv[1:], "s:hvc") create_user = False for opt, val in opts: if opt == "-s": global server server = val if opt == "-h": usage(tests) if opt == "-v": global verbose_level verbose_level = verbose_level + 1 if opt == "-c": create_user = True if len(args) == 0: print("Running all tests - use '-h' to see command-line options...") dotests = tests if not create_user: dotests.remove(CreateUser) else: dotests = [] for arg in args: for t in tests: if t.__name__ == arg: dotests.append(t) break else: print("Test '%s' unknown - skipping" % arg) if not len(dotests): print("Nothing to do!") usage(tests) for test in dotests: try: test() except: print("Test %s failed" % test.__name__) traceback.print_exc() if __name__ == '__main__': main()
[ "=" ]
=
c0913253a2a5b39283be769ece6b4ad5d083e695
2c635d6b558a65e62a9d37c12abf9e4ecbe8938c
/Interleaving String/Interleaving String.py
078587fe65f8837338f6aae0a16ec2d3583abaf1
[]
no_license
GreatStephen/MyLeetcodeSolutions
c698e13b7088fc9236250b6ec10331b88fe99ed1
73a8f79f2cd5c769b195c503f0346893b102acdc
refs/heads/master
2023-03-01T04:53:19.698040
2021-02-05T22:28:18
2021-02-05T22:28:18
284,350,540
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
class Solution: def isInterleave(self, s1: str, s2: str, s3: str) -> bool: # 比较简单的dp,dp[i][j]检查s1[:i]和s2[:j]能否组成s3[:i+j] if len(s1)+len(s2)!=len(s3): return False R,C = len(s1), len(s2) dp = [[False]*(C+1) for i in range(R+1)] dp[0][0] = True for i in range(R): if s1[i]==s3[i] and dp[i][0]: dp[i+1][0] = True for j in range(C): if s2[j]==s3[j] and dp[0][j]: dp[0][j+1] = True for i in range(1, R+1): for j in range(1, C+1): if not dp[i-1][j] and not dp[i][j-1]: continue if dp[i][j-1] and s2[j-1]==s3[i+j-1]: # 当前字符与s2相等,检查左边==True dp[i][j] = True elif dp[i-1][j] and s1[i-1]==s3[i+j-1]: # 当前字符与s1相等,检查上边==True dp[i][j] = True return dp[-1][-1]
2eda2055c3ab058a4a5366e1564e1d8455fe7dd3
e8ae11e5017507da59e2e92d423b6a1994490de4
/env/lib/python2.7/site-packages/azure/mgmt/compute/models/ssh_public_key.py
0eb39d154705f352f3944718f3a54a63168a0c13
[]
no_license
teopeurt/ansible-ubuntu-server
613d00cea28bc6531acf4a39aeeb9cd0baa2a391
b5b6127d2ee9723c5088443efe2ffb8ae30cfea7
refs/heads/master
2021-06-28T12:49:50.935753
2017-07-31T17:34:33
2017-07-31T17:34:33
98,912,808
0
1
null
2020-07-24T00:05:31
2017-07-31T17:32:56
Makefile
UTF-8
Python
false
false
1,813
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class SshPublicKey(Model): """ Contains information about SSH certificate public key and the path on the Linux VM where the public key is placed. :param path: Gets or sets the full path on the created VM where SSH public key is stored. If the file already exists, the specified key is appended to the file. :type path: str :param key_data: Gets or sets Certificate public key used to authenticate with VM through SSH.The certificate must be in Pem format with or without headers. :type key_data: str """ _attribute_map = { 'path': {'key': 'path', 'type': 'str'}, 'key_data': {'key': 'keyData', 'type': 'str'}, } def __init__(self, path=None, key_data=None): self.path = path self.key_data = key_data
31f3a8fd24cca93817cf22a6198a2aeb399d5091
099b4f825cf6ccf7a9795154f2d7a7daa64d4691
/Python_Programming_For_The_Absolute_Begginer_Scripts/HeroInventoryThree.py
a4f02b299117ad2f7f80a9e270f4c94c8a4214da
[]
no_license
espiercy/py_junkyard
22637f4b1056cd7571d99dfc14e27a0590695733
48204ddd00a366e67e98e2d6a01921b659677d57
refs/heads/master
2020-03-23T11:27:46.779467
2018-09-22T12:55:08
2018-09-22T12:55:08
141,504,772
0
0
null
null
null
null
UTF-8
Python
false
false
1,895
py
#Hero's Inventory 3.0 #Demonstrates lists #Evan Piercy #3.21.15 #creates a list with some items and displays with a for loop inventory = ["sword" , "armor" , "shield" , "healing potion"] print("Your items: ") for item in inventory: print(item) input("\nPress the enter key to continue.") #get length of list print("You have " , len(inventory), "items in your possession.") input("\nPress the enter key to continue.") #test for membership with in if "healing potion" in inventory: print("You will live to fight another day.") #display one item through an index index = int(input("\nEnter the index number for an item in inventory: ")) print("At index " , index , " is " , inventory[index]) #display a slice start = int(input("Enter the index number to begin a slice: ")) finish = int(input("Enter the index number to end the slice: ")) print("Inventory[" , start , ":" , finish , "] is", end=" ") print(inventory[start:finish]) input("\nPress the enter key to continue.") #concatenate two lists chest = ["gold","gems"] print("You find a chest wich contains: ") print(chest) inventory += chest print("Your inventory is now: ") print(inventory) #assign by index print("You trade your sword for a crossbow.") inventory[0] = "crossbow" print("Your inventory is now: ") print(inventory) input("\nPress the enter key to continue.") #assign by slice print("You use your gold and gems to buy an orb of future telling.") inventory[4:6] = ["orb of future telling"] print("Your inventory is now: ") print(inventory) #delete an element print("In a great battle, your shield is destroyed.") del inventory[2] print("Your inventory is now: ") print(inventory) input("\nPress the enter key to continue.") #delete a silce print("Your crossbow and armor are stolen by thieves.") del inventory[:2] print("Your inventory is now: ") print(inventory) input("\nPress the enter key to exit.")
3b930786060a864888d8a3a196cfb8da1e0515ef
e9881daa8b4b711ae0c07f7420b3a78193e6c590
/dataManager/mixed_aishell_tfrecord_io.py
398d1ab71fdc4daa5f334f1d42b5d820e16edec2
[]
no_license
IMLHF/Maskbased_Speech_Enhancement
bc81b8e929c49a09cb8bf9e5e891efda4fe2bca9
f95f630499587d308ff316d34a34c04821f9ea12
refs/heads/master
2020-04-17T03:37:36.655021
2019-03-10T13:21:22
2019-03-10T13:21:22
166,192,504
1
1
null
null
null
null
UTF-8
Python
false
false
17,047
py
import tensorflow as tf import numpy as np import librosa import os import shutil import time import multiprocessing import copy import scipy.io import datetime import wave import utils from utils import audio_tool from utils import spectrum_tool from numpy import linalg from FLAGS import PARAM FILE_NAME = __file__[max(__file__.rfind('/')+1, 0):__file__.rfind('.')] def _ini_data(wave_dir, noise_dir, out_dir): data_dict_dir = out_dir if os.path.exists(data_dict_dir): shutil.rmtree(data_dict_dir) os.makedirs(data_dict_dir) clean_wav_speaker_set_dir = wave_dir os.makedirs(data_dict_dir+'/train') os.makedirs(data_dict_dir+'/validation') os.makedirs(data_dict_dir+'/test_cc') cwl_train_file = open(data_dict_dir+'/train/clean_wav_dir.list', 'a+') cwl_validation_file = open( data_dict_dir+'/validation/clean_wav_dir.list', 'a+') cwl_test_cc_file = open(data_dict_dir+'/test_cc/clean_wav_dir.list', 'a+') clean_wav_list_train = [] clean_wav_list_validation = [] clean_wav_list_test_cc = [] speaker_list = os.listdir(clean_wav_speaker_set_dir) speaker_list.sort() for speaker_name in speaker_list: speaker_dir = clean_wav_speaker_set_dir+'/'+speaker_name if os.path.isdir(speaker_dir): speaker_wav_list = os.listdir(speaker_dir) speaker_wav_list.sort() for wav in speaker_wav_list[:PARAM.UTT_SEG_FOR_MIX[0]]: # 清洗长度为0的数据 if wav[-4:] == ".wav" and os.path.getsize(speaker_dir+'/'+wav) > 2048: cwl_train_file.write(speaker_dir+'/'+wav+'\n') clean_wav_list_train.append(speaker_dir+'/'+wav) for wav in speaker_wav_list[PARAM.UTT_SEG_FOR_MIX[0]:PARAM.UTT_SEG_FOR_MIX[1]]: if wav[-4:] == ".wav" and os.path.getsize(speaker_dir+'/'+wav) > 2048: cwl_validation_file.write(speaker_dir+'/'+wav+'\n') clean_wav_list_validation.append(speaker_dir+'/'+wav) for wav in speaker_wav_list[PARAM.UTT_SEG_FOR_MIX[1]:]: if wav[-4:] == ".wav" and os.path.getsize(speaker_dir+'/'+wav) > 2048: cwl_test_cc_file.write(speaker_dir+'/'+wav+'\n') clean_wav_list_test_cc.append(speaker_dir+'/'+wav) cwl_train_file.close() cwl_validation_file.close() cwl_test_cc_file.close() print('train clean: '+str(len(clean_wav_list_train))) print('validation clean: '+str(len(clean_wav_list_validation))) print('test_cc clean: '+str(len(clean_wav_list_test_cc))) # NOISE LIST noise_wav_list = os.listdir(noise_dir) noise_wav_list = [os.path.join(noise_dir, noise) for noise in noise_wav_list] dataset_names = PARAM.DATASET_NAMES dataset_mixedutt_num = PARAM.DATASET_SIZES all_mixed = 0 all_stime = time.time() for (clean_wav_list, j) in zip((clean_wav_list_train, clean_wav_list_validation, clean_wav_list_test_cc), range(3)): print('\n'+dataset_names[j]+" data preparing...") s_time = time.time() mixed_wav_list_file = open( data_dict_dir+'/'+dataset_names[j]+'/mixed_wav_dir.list', 'a+') mixed_wave_list = [] len_wav_list = len(clean_wav_list) len_noise_wave_list = len(noise_wav_list) # print(len_wav_list,len_noise_wave_list) generated_num = 0 while generated_num < dataset_mixedutt_num[j]: uttid = np.random.randint(len_wav_list) noiseid = np.random.randint(len_noise_wave_list) utt1_dir = clean_wav_list[uttid] utt2_dir = noise_wav_list[noiseid] generated_num += 1 mixed_wav_list_file.write(utt1_dir+' '+utt2_dir+'\n') mixed_wave_list.append([utt1_dir, utt2_dir]) # for i_utt in range(len_wav_list): # n^2混合,数据量巨大 # for j_utt in range(i_utt,len_wav_list): # utt1_dir=clean_wav_list[i_utt] # utt2_dir=clean_wav_list[j_utt] # speaker1 = utt1_dir.split('/')[-2] # speaker2 = utt2_dir.split('/')[-2] # if speaker1 == speaker2: # continue # mixed_wav_list_file.write(utt1_dir+' '+utt2_dir+'\n') # mixed_wave_list.append([utt1_dir, utt2_dir]) mixed_wav_list_file.close() scipy.io.savemat( data_dict_dir+'/'+dataset_names[j]+'/mixed_wav_dir.mat', {"mixed_wav_dir": mixed_wave_list}) all_mixed += len(mixed_wave_list) print(dataset_names[j]+' data preparation over, Mixed num: ' + str(len(mixed_wave_list))+(', Cost time %dS.') % (time.time()-s_time)) print('\nData preparation over, all mixed num: %d,cost time: %dS' % (all_mixed, time.time()-all_stime)) def _get_padad_waveData(file): waveData, sr = audio_tool.read_audio(file) waveData *= 32767.0 if(sr != PARAM.FS): print("Audio samplerate error.") exit(-1) while len(waveData) < PARAM.LEN_WAWE_PAD_TO: waveData = np.tile(waveData, 2) len_wave = len(waveData) wave_begin = np.random.randint(len_wave-PARAM.LEN_WAWE_PAD_TO+1) waveData = waveData[wave_begin:wave_begin+PARAM.LEN_WAWE_PAD_TO] return waveData def _mix_wav_by_SNR(waveData, noise): # S = (speech+alpha*noise)/(1+alpha) snr = np.random.randint(PARAM.MIN_SNR, PARAM.MAX_SNR+1) As = linalg.norm(waveData) An = linalg.norm(noise) alpha = As/(An*(10**(snr/20))) if An != 0 else 0 waveMix = (waveData+alpha*noise)/(1.0+alpha) return waveMix def _mix_wav_LINEAR(waveData, noise): coef = np.random.random()*(PARAM.MAX_COEF-PARAM.MIN_COEF)+PARAM.MIN_COEF waveMix = (waveData+coef*noise)/(1.0+coef) return waveMix def _extract_mag_spec(data): # 幅度谱 mag_spec = spectrum_tool.magnitude_spectrum_librosa_stft( data, PARAM.NFFT, PARAM.OVERLAP) return mag_spec def _extract_phase(data): theta = spectrum_tool.phase_spectrum_librosa_stft(data, PARAM.NFFT, PARAM.OVERLAP) return theta def _extract_feature_x_y_xtheta_ytheta(utt_dir1, utt_dir2): waveData1 = _get_padad_waveData(utt_dir1) waveData2 = _get_padad_waveData(utt_dir2) # utt2作为噪音 if PARAM.MIX_METHOD == 'SNR': mixedData = _mix_wav_by_SNR(waveData1, waveData2) if PARAM.MIX_METHOD == 'LINEAR': mixedData = _mix_wav_LINEAR(waveData1, waveData2) # write mixed wav # name1 = utt_dir1[utt_dir1.rfind('/')+1:utt_dir1.rfind('.')] # name2 = utt_dir2[utt_dir2.rfind('/')+1:] # utils.audio_tool.write_audio('mixwave/mixed_'+name1+"_"+name2, # mixedData,16000,16,'wav') X = _extract_mag_spec(mixedData) Y = _extract_mag_spec(waveData1) x_theta = _extract_phase(mixedData) y_theta = _extract_phase(waveData1) return [X, Y, x_theta, y_theta] def parse_func(example_proto): sequence_features = { 'inputs': tf.FixedLenSequenceFeature(shape=[PARAM.INPUT_SIZE], dtype=tf.float32), 'labels': tf.FixedLenSequenceFeature(shape=[PARAM.OUTPUT_SIZE], dtype=tf.float32), 'xtheta': tf.FixedLenSequenceFeature(shape=[PARAM.INPUT_SIZE], dtype=tf.float32), 'ytheta': tf.FixedLenSequenceFeature(shape=[PARAM.OUTPUT_SIZE], dtype=tf.float32), } _, sequence = tf.parse_single_sequence_example( example_proto, sequence_features=sequence_features) length = tf.shape(sequence['inputs'])[0] return sequence['inputs'], sequence['labels'], 0, 0, length def parse_func_with_theta(example_proto): sequence_features = { 'inputs': tf.FixedLenSequenceFeature(shape=[PARAM.INPUT_SIZE], dtype=tf.float32), 'labels': tf.FixedLenSequenceFeature(shape=[PARAM.OUTPUT_SIZE], dtype=tf.float32), 'xtheta': tf.FixedLenSequenceFeature(shape=[PARAM.INPUT_SIZE], dtype=tf.float32), 'ytheta': tf.FixedLenSequenceFeature(shape=[PARAM.OUTPUT_SIZE], dtype=tf.float32), } _, sequence = tf.parse_single_sequence_example( example_proto, sequence_features=sequence_features) length = tf.shape(sequence['inputs'])[0] return sequence['inputs'], sequence['labels'], sequence['xtheta'], sequence['ytheta'], length def _gen_tfrecord_minprocess( dataset_index_list, s_site, e_site, dataset_dir, i_process): tfrecord_savedir = os.path.join(dataset_dir, ('%08d.tfrecords' % i_process)) with tf.python_io.TFRecordWriter(tfrecord_savedir) as writer: for i in range(s_site, e_site): index_ = dataset_index_list[i] X_Y_Xtheta_Ytheta = _extract_feature_x_y_xtheta_ytheta(index_[0], index_[1]) X = np.reshape(np.array(X_Y_Xtheta_Ytheta[0], dtype=np.float32), newshape=[-1, PARAM.INPUT_SIZE]) Y = np.reshape(np.array(X_Y_Xtheta_Ytheta[1], dtype=np.float32), newshape=[-1, PARAM.OUTPUT_SIZE]) Xtheta = np.reshape(np.array(X_Y_Xtheta_Ytheta[2], dtype=np.float32), newshape=[-1, PARAM.INPUT_SIZE]) Ytheta = np.reshape(np.array(X_Y_Xtheta_Ytheta[3], dtype=np.float32), newshape=[-1, PARAM.OUTPUT_SIZE]) # print(np.mean(X),np.sqrt(np.var(X)),np.median(X),np.max(X),np.min(X)) # print(np.mean(X),np.sqrt(np.var(X)),np.median(X),np.max(Y),np.min(Y)) input_features = [ tf.train.Feature(float_list=tf.train.FloatList(value=input_)) for input_ in X] label_features = [ tf.train.Feature(float_list=tf.train.FloatList(value=label)) for label in Y] xtheta_features = [ tf.train.Feature(float_list=tf.train.FloatList(value=xtheta)) for xtheta in Xtheta] ytheta_features = [ tf.train.Feature(float_list=tf.train.FloatList(value=ytheta)) for ytheta in Ytheta] feature_list = { 'inputs': tf.train.FeatureList(feature=input_features), 'labels': tf.train.FeatureList(feature=label_features), 'xtheta': tf.train.FeatureList(feature=xtheta_features), 'ytheta': tf.train.FeatureList(feature=ytheta_features), } feature_lists = tf.train.FeatureLists(feature_list=feature_list) record = tf.train.SequenceExample(feature_lists=feature_lists) writer.write(record.SerializeToString()) writer.flush() # print(dataset_dir + ('/%08d.tfrecords' % i), 'write done') def generate_tfrecord(gen=True): tfrecords_dir = PARAM.TFRECORDS_DIR train_tfrecords_dir = os.path.join(tfrecords_dir, 'train') val_tfrecords_dir = os.path.join(tfrecords_dir, 'validation') testcc_tfrecords_dir = os.path.join(tfrecords_dir, 'test_cc') dataset_dir_list = [train_tfrecords_dir, val_tfrecords_dir, testcc_tfrecords_dir] if gen: _ini_data(PARAM.RAW_DATA, PARAM.NOISE_DIR, PARAM.DATA_DICT_DIR) if os.path.exists(train_tfrecords_dir): shutil.rmtree(train_tfrecords_dir) if os.path.exists(val_tfrecords_dir): shutil.rmtree(val_tfrecords_dir) if os.path.exists(testcc_tfrecords_dir): shutil.rmtree(testcc_tfrecords_dir) os.makedirs(train_tfrecords_dir) os.makedirs(val_tfrecords_dir) os.makedirs(testcc_tfrecords_dir) gen_start_time = time.time() pool = multiprocessing.Pool(PARAM.PROCESS_NUM_GENERATE_TFERCORD) for dataset_dir in dataset_dir_list: # start_time = time.time() dataset_index_list = None if dataset_dir[-2:] == 'in': # continue dataset_index_list = scipy.io.loadmat( '_data/mixed_aishell/train/mixed_wav_dir.mat')["mixed_wav_dir"] elif dataset_dir[-2:] == 'on': dataset_index_list = scipy.io.loadmat( '_data/mixed_aishell/validation/mixed_wav_dir.mat')["mixed_wav_dir"] elif dataset_dir[-2:] == 'cc': dataset_index_list = scipy.io.loadmat( '_data/mixed_aishell/test_cc/mixed_wav_dir.mat')["mixed_wav_dir"] # 使用.mat,字符串长度会强制对齐,所以去掉空格 dataset_index_list = [[index_[0].replace(' ', ''), index_[1].replace(' ', '')] for index_ in dataset_index_list] len_dataset = len(dataset_index_list) minprocess_utt_num = int( len_dataset/PARAM.TFRECORDS_NUM) for i_process in range(PARAM.TFRECORDS_NUM): s_site = i_process*minprocess_utt_num e_site = s_site+minprocess_utt_num if i_process == (PARAM.TFRECORDS_NUM-1): e_site = len_dataset # print(s_site,e_site) pool.apply_async(_gen_tfrecord_minprocess, (dataset_index_list, s_site, e_site, dataset_dir, i_process)) # _gen_tfrecord_minprocess(dataset_index_list, # s_site, # e_site, # dataset_dir, # i_process) # print(dataset_dir+' set extraction over. cost time %06dS' % # (time.time()-start_time)) pool.close() pool.join() print('Generate TFRecord over. cost time %06dS' % (time.time()-gen_start_time)) train_set = os.path.join(train_tfrecords_dir, '*.tfrecords') val_set = os.path.join(val_tfrecords_dir, '*.tfrecords') testcc_set = os.path.join(testcc_tfrecords_dir, '*.tfrecords') return train_set, val_set, testcc_set def get_batch_use_tfdata(tfrecords_list, get_theta=False): files = tf.data.Dataset.list_files(tfrecords_list) files = files.take(PARAM.MAX_TFRECORD_FILES_USED) if PARAM.SHUFFLE: files = files.shuffle(PARAM.PROCESS_NUM_GENERATE_TFERCORD) if not PARAM.SHUFFLE: dataset = files.interleave(tf.data.TFRecordDataset, cycle_length=1, block_length=PARAM.batch_size, # num_parallel_calls=1, ) else: # shuffle dataset = files.interleave(tf.data.TFRecordDataset, cycle_length=PARAM.batch_size*3, # block_length=1, num_parallel_calls=PARAM.num_threads_processing_data, ) if PARAM.SHUFFLE: dataset = dataset.shuffle(PARAM.batch_size*3) # region # !tf.data with tf.device(cpu) OOM??? # dataset = dataset.map( # map_func=parse_func, # num_parallel_calls=NNET_PARAM.num_threads_processing_data) # dataset = dataset.padded_batch( # NNET_PARAM.batch_size, # padded_shapes=([None, NNET_PARAM.INPUT_SIZE], # [None, NNET_PARAM.OUTPUT_SIZE], # [None, NNET_PARAM.OUTPUT_SIZE], # [])) # endregion # !map_and_batch efficient is better than map+paded_batch dataset = dataset.apply(tf.data.experimental.map_and_batch( map_func=parse_func_with_theta if get_theta else parse_func, batch_size=PARAM.batch_size, num_parallel_calls=PARAM.num_threads_processing_data, # num_parallel_batches=2, )) # dataset = dataset.prefetch(buffer_size=NNET_PARAM.batch_size) # perfetch 太耗内存,并没有明显的速度提升 dataset_iter = dataset.make_initializable_iterator() x_batch, y_batch, xtheta, ytheta, lengths_batch = dataset_iter.get_next() return x_batch, y_batch, xtheta, ytheta, lengths_batch, dataset_iter def _get_batch_use_tfdata(tfrecords_list, get_theta=False): files = os.listdir(tfrecords_list[:-11]) files = files[:min(PARAM.MAX_TFRECORD_FILES_USED, len(files))] files = [os.path.join(tfrecords_list[:-11], file) for file in files] dataset_list = [tf.data.TFRecordDataset(file).map(parse_func_with_theta if get_theta else parse_func, num_parallel_calls=PARAM.num_threads_processing_data) for file in files] num_classes = PARAM.MAX_TFRECORD_FILES_USED num_classes_per_batch = PARAM.batch_size num_utt_per_class = PARAM.batch_size//num_classes_per_batch def generator(_): # Sample `num_classes_per_batch` classes for the batch sampled = tf.random_shuffle(tf.range(num_classes))[:num_classes_per_batch] # Repeat each element `num_images_per_class` times batch_labels = tf.tile(tf.expand_dims(sampled, -1), [1, num_utt_per_class]) return tf.to_int64(tf.reshape(batch_labels, [-1])) selector = tf.contrib.data.Counter().map(generator) selector = selector.apply(tf.contrib.data.unbatch()) dataset = tf.data.experimental.choose_from_datasets(dataset_list, selector) dataset = dataset.batch(num_classes_per_batch * num_utt_per_class) # dataset = dataset.prefetch(buffer_size=NNET_PARAM.batch_size) # perfetch 太耗内存,并没有明显的速度提升 dataset_iter = dataset.make_initializable_iterator() x_batch, y_batch, xtheta, ytheta, lengths_batch = dataset_iter.get_next() return x_batch, y_batch, xtheta, ytheta, lengths_batch, dataset_iter
d253cc3acea300934927e626015ca9d87ed976b8
5215ee22217a0bddc6a6eae3b0e49c1216a77bbc
/snippets/genomescan/extractHmmerResults.py
3b6b53509ce7664ff31e629035a853ba702a58e0
[ "Artistic-2.0" ]
permissive
PapenfussLab/Mungo
5cda4d19a5ef4cb51da495f7abf259b4cd4d1697
02c5b0e48ecd28596cb9481b282753859f47fed6
refs/heads/master
2021-01-17T07:40:08.832760
2015-08-20T01:21:19
2015-08-20T01:21:19
41,067,597
1
3
null
2016-06-12T23:31:20
2015-08-20T01:02:28
Python
UTF-8
Python
false
false
2,136
py
#!/usr/bin/env python """ extractHmmerResults.py <ioDir> Input: Hmmer output 'DEFB.txt' Outputs: - the genomic version (DEFB_genomic.txt) - a summary (DEFB_summary.txt) - extracted sequence (DEFB_extracted.fa) - the translation of this (DEFB_extracted_pep.fa) Author: Tony Papenfuss Date: Tue Aug 15 10:18:46 EST 2006 """ import os, sys import hmmer, fasta, sequence homeDir = os.environ['HOME'] blastdb = os.path.join(homeDir, 'databases/opossum/assembly/blastdb/assembly') ioDir = sys.argv[1] os.chdir(ioDir) genomicFile = open('DEFB_genomic.txt', 'w') summaryFile = open('DEFB_summary.txt', 'w') dnaWriter = fasta.MfaWriter('DEFB_extracted.fa') pepWriter = fasta.MfaWriter('DEFB_extracted_pep.fa') domains = hmmer.loadDomains('DEFB.txt', seqType='BlockSixFrame') print >> genomicFile, '\t'.join(domains[0].fields + ['strand', 'lowScoring', 'pseudogene', 'nCysteines']) for i,domain in enumerate(domains): if i>99: break domain.domain = 'DEFB_%0.2i' % (i+1) domain.toGenomic(relative=True) domain.addField('lowScoring', 'N') domain.addField('pseudogene', 'N') domain.addField('nCysteines', 0) summary = [] h,s = fasta.getSequence(blastdb, domain.accession, start=domain.sStart, end=domain.sEnd, strand=domain.strand) pep = sequence.translate(s) if i>59: domain.lowScoring = 'Y' if '*' in pep: domain.pseudogene = 'Y' summary.append('Contains stops') for aa in pep: if aa=='C': domain.nCysteines += 1 if domain.nCysteines!=6: summary.append('Has %i cysteines' % domain.nCysteines) print >> summaryFile, '%s\t%s' % (domain.domain, '; '.join(summary)) if domain.pseudogene=='Y' or domain.nCysteines<5 or domain.nCysteines>7: print 'Skipped', i else: h2 = '%s %s:%s-%s(%s)' % (domain.domain, domain.accession, domain.sStart, domain.sEnd, domain.strand) dnaWriter.write(h2, s + '\n') pepWriter.write(h2, pep + '\n') print >> genomicFile, domain genomicFile.close() summaryFile.close() dnaWriter.close() pepWriter.close()
c0251a93285a9c216b2e657cd6f5ee75e88fd87c
e2f507e0b434120e7f5d4f717540e5df2b1816da
/363-prime.py
eec06779fac42ecf5ef0cc3980108a841e115439
[]
no_license
ash/amazing_python3
70984bd32ae325380382b1fe692c4b359ef23395
64c98940f8a8da18a8bf56f65cc8c8e09bd00e0c
refs/heads/master
2021-06-23T14:59:37.005280
2021-01-21T06:56:33
2021-01-21T06:56:33
182,626,874
76
25
null
null
null
null
UTF-8
Python
false
false
217
py
def is_prime(n): if n < 2: # 1 is not prime return False for m in range(2, n): if n % m == 0: return False return True for x in range(50): if is_prime(x): print(x)
f41d9ea36dbee55843bb4d1ff6dba6377fb63e81
9d278285f2bc899ac93ec887b1c31880ed39bf56
/ondoc/common/migrations/0016_auto_20190206_2246.py
e67cae7f190201b42f384a4f3f519d771ff61775
[]
no_license
ronit29/docprime
945c21f8787387b99e4916cb3ba1618bc2a85034
60d4caf6c52a8b70174a1f654bc792d825ba1054
refs/heads/master
2023-04-01T14:54:10.811765
2020-04-07T18:57:34
2020-04-07T18:57:34
353,953,576
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# Generated by Django 2.0.5 on 2019-02-06 17:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('common', '0015_remark_status'), ] operations = [ migrations.AlterField( model_name='remark', name='content', field=models.TextField(), ), ]
bc4fb90c32c6b9ad7010a25b5c8a0a524ed26ae7
277d4ee56616bb5930c57a57c68a202bf5085501
/stubs/torch/nn/parallel/replicate.pyi
f337d4b8bd699302940ca17613883b9bed788aa2
[ "MIT" ]
permissive
miskolc/spacy-pytorch-transformers
fc502523644eb25cb293e0796b46535ba581a169
ab132b674c5a91510eb8cc472cdbdf5877d24145
refs/heads/master
2020-07-22T09:47:17.905850
2019-09-04T15:12:09
2019-09-04T15:12:09
207,156,566
1
0
MIT
2019-09-08T18:37:55
2019-09-08T18:37:55
null
UTF-8
Python
false
false
221
pyi
# Stubs for torch.nn.parallel.replicate (Python 3) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from typing import Any def replicate(network: Any, devices: Any, detach: bool = ...): ...
653f6d79473f69595094f08d93101160a95787c1
b4c6200590a093b805036a822b7889c058494b9f
/NAIP/filtering.py
49c68190426cd82bef3e77a82e6cd004d85c5efc
[ "MIT" ]
permissive
spoddar-JNPR/earthengine-py-notebooks
2109a52a49357c19f803b76ed635e022ee486ac6
ff1b5754785d5e25cb11acdbd52b0f31711d061f
refs/heads/master
2022-12-25T10:34:44.895717
2020-10-01T05:38:16
2020-10-01T05:38:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,455
py
# %% """ <table class="ee-notebook-buttons" align="left"> <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/NAIP/filtering.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/NAIP/filtering.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/NAIP/filtering.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> </table> """ # %% """ ## Install Earth Engine API and geemap Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`. The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemap#dependencies), including earthengine-api, folium, and ipyleaflet. **Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60#issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). """ # %% # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() # %% """ ## Create an interactive map The default basemap is `Google Maps`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. """ # %% Map = geemap.Map(center=[40,-100], zoom=4) Map # %% """ ## Add Earth Engine Python script """ # %% # Add Earth Engine dataset collection = ee.ImageCollection('USDA/NAIP/DOQQ') fromFT = ee.FeatureCollection('ft:1CLldB-ULPyULBT2mxoRNv7enckVF0gCQoD2oH7XP') polys = fromFT.geometry() centroid = polys.centroid() lng, lat = centroid.getInfo()['coordinates'] print("lng = {}, lat = {}".format(lng, lat)) # lat = 46.80514 # lng = -99.22023 lng_lat = ee.Geometry.Point(lng, lat) # naip = collection.filterBounds(lng_lat) naip = collection.filterBounds(polys) naip_2015 = naip.filterDate('2015-01-01', '2015-12-31') ppr = naip_2015.mosaic().clip(polys) # print(naip_2015.size().getInfo()) vis = {'bands': ['N', 'R', 'G']} Map.setCenter(lng, lat, 10) # Map.addLayer(naip_2015,vis) Map.addLayer(ppr,vis) # Map.addLayer(fromFT) # image = ee.Image('USDA/NAIP/DOQQ/m_4609915_sw_14_1_20100629') # Map.setCenter(lng, lat, 12) # Map.addLayer(image,vis) # %% """ ## Display Earth Engine data layers """ # %% Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map
9650f1d30391a7d26762cbdb090a2f7a374bd8d4
b731d1b35a5416cdd73d421ea3b88a3a18e4c6d3
/ecliptic/support/sequtils.py
8f51fb3e102d63eb8f64f97e3d6b21a2e5d694ec
[]
no_license
xflicsu/ecliptic
ad772d3563cff1875dddc7d29d156093e03afd07
e9d2e671bcabc5df30ada0cf42953769099ad5d7
refs/heads/master
2020-12-28T21:06:37.212834
2013-06-18T14:13:23
2013-06-18T14:13:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,702
py
# Copyright (c) 2011-2012 Hyeshik Chang # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # - Hyeshik Chang <[email protected]> # __all__ = [ 'iterseq_sequential', 'GiantFASTAFile', 'reverse_complement', 'iter_windowed', 'iter_windowed_str', 'get_first_sequence_length', ] from Bio import SeqIO import string import gzip from collections import deque import os import re def iterseq_sequential(fastapath): nextid = yield for seq in SeqIO.parse(open(fastapath, 'r'), format='fasta'): while seq.name == nextid: nextid = yield seq import pysam # provides an interface like 'samtools faidx'. whitespace = re.compile('[ \t\r\n]') class GiantFASTAFile(object): def __init__(self, filename): if not os.path.exists(filename + '.fai'): pysam.faidx(filename) self.fasta = open(filename) self.index = self.load_index(filename + '.fai') def load_index(self, filename): index = {} for line in open(filename): fields = line[:-1].split('\t') index[fields[0]] = tuple(map(int, fields[1:])) return index def get(self, seqid, start=None, stop=None, strand='+'): # zero-based, half-open length, filepos, colwidth, linesize = self.index[seqid] if start is None and stop is None: offset_st = filepos linenum_en = length // colwidth offset_en = filepos + length + linenum_en * (linesize - colwidth) else: start = max(0, start) stop = min(length, stop) linenum_st = start // colwidth offset_st = filepos + start + linenum_st * (linesize - colwidth) linenum_en = stop // colwidth offset_en = filepos + stop + linenum_en * (linesize - colwidth) self.fasta.seek(offset_st, 0) seq = whitespace.sub('', self.fasta.read(offset_en - offset_st)) return seq if strand == '+' else reverse_complement(seq) revcmptrans = string.maketrans('ATUGCatugc', 'TAACGtaacg') def reverse_complement(seq): return seq.translate(revcmptrans)[::-1] def iter_windowed(it, width): i = iter(it) queue = deque() for _ in range(width): queue.append(i.next()) yield tuple(queue) for next in i: queue.popleft() queue.append(next) yield tuple(queue) def iter_windowed_str(it, width): for r in iter_windowed(it, width): yield ''.join(r) def get_first_sequence_length(path, format='fastq-illumina', gzipped=True): if gzipped: opener = gzip.open else: opener = open return len(SeqIO.parse(opener(path), format=format).next().seq)
2cb7966f9848c20ac6a089497ae7bb6742d0382b
7d2ee33675a0b0bd3c25ee22766eca3b658efbab
/tests/validate_json_schemas.py
879f38c7c26e8804615b48b00ca61940d6ebae9e
[ "MIT" ]
permissive
AD-SDL/polybot-schema
8caef7d6ae01f5723b01e620a6d364b4fcb2ebc9
8bc3dbf39e8d71ac6279baa40f08679a3bdbb80a
refs/heads/main
2023-06-27T03:50:20.856468
2021-07-29T17:30:45
2021-07-29T17:30:45
389,676,088
0
0
MIT
2021-07-26T17:38:07
2021-07-26T15:12:15
Python
UTF-8
Python
false
false
663
py
from jsonschema import Draft7Validator, RefResolver from pathlib import Path import json # Find all the schemas schema_path = Path(__file__).parent / '..' / 'json' schemas = schema_path.rglob('*.json') # Loop through to make sure they are all valid for schema in schemas: print(f'Checking {schema.relative_to(schema_path)}...', end="") # Load in the schema with open(schema) as fp: schema = json.load(fp) # Pull in the references validator = Draft7Validator(Draft7Validator.META_SCHEMA, resolver=RefResolver('file:///{}/'.format(schema_path), schema)) validator.validate(schema) print('OK')
c30c48fa7dd725d285fdae6c1a5dd6d450f5beef
ce498e1b0fd9c2ae9ebd04c5834f4052a9a46219
/tuples/sorting-with-value.py
01e568039bac15ac185b8e92f489cf4c611c3c0e
[]
no_license
wechuli/python
b32e84bb44646810f3f03f9fcfb67e7d8f54ebb6
40cc1782724179567128f6da202f166a0c9a0ea1
refs/heads/master
2022-02-20T19:18:03.578752
2019-09-24T17:19:27
2019-09-24T17:19:27
117,241,659
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
my_nary={'The':'Heart','is':"exceedingly",'deceitful':'and','wicked':'above','all':'things'} my_nary2={'The':5,'is':85,'deceitful':2,'wicked':-8,'all':22,'things':85} my_list=list(my_nary2.items()) my_lis2=list() for key,vals in my_list: my_lis2.append((vals,key)) my_lis2.sort(reverse=True) print(my_lis2)
327ff89e94562230518071cd35204a19b43fe8bd
b3aafe94bc88f8a9b4cb14422d179752b717173a
/models/master_v2.py
40d4ddaa75f328830d812252e7ddb381837f397b
[]
no_license
hongweizeng/paragraph-level-QG
47a5502a8555749ed5b45d00ded9dcb20578c2d8
5061d9464fb6c728fd1a943e364b127249f10077
refs/heads/main
2023-04-10T20:20:18.831684
2021-04-15T08:24:41
2021-04-15T08:24:41
307,886,614
5
0
null
null
null
null
UTF-8
Python
false
false
29,735
py
from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence from torch_scatter import scatter_max from search.searcher import Hypothesis, sort_hypotheses from models.modules.stacked_rnn import StackedGRU from models.modules.concat_attention import ConcatAttention from models.modules.maxout import MaxOut INF = 1e12 class Embeddings(nn.Module): """Construct the embeddings from word, pos_tag, ner_tag, dep_tag, cas_tag and answer_tag embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.feature_tag_embeddings = nn.Embedding(config.feature_tag_vocab_size, config.feature_tag_embedding_size) self.answer_tag_embeddings = nn.Embedding(config.answer_tag_vocab_size, config.answer_tag_embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file # concatenated_embedding_size = config.embedding_size + config.feature_tag_embedding_size * config.feature_num\ # + config.answer_tag_embedding_size # self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) # self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, feature_tag_ids_dict=None, answer_tag_ids=None): embeddings = self.word_embeddings(input_ids) # embeddings = self.LayerNorm(embeddings) if feature_tag_ids_dict is not None: for feature_tag_ids in feature_tag_ids_dict.values(): feature_tag_embeddings = self.feature_tag_embeddings(feature_tag_ids) embeddings = torch.cat([embeddings, feature_tag_embeddings], dim=2) if answer_tag_ids is not None: answer_tag_embeddings = self.answer_tag_embeddings(answer_tag_ids) embeddings = torch.cat([embeddings, answer_tag_embeddings], dim=2) # embeddings = inputs_embeds + feature_tag_embeddings + answer_tag_embeddings # embeddings = self.dropout(embeddings) return embeddings class BilinearSeqAttn(nn.Module): """A bilinear attention layer over a sequence X w.r.t y: * o_i = softmax(x_i'Wy) for x_i in X. Optionally don't normalize output weights. """ def __init__(self, x_size, y_size, identity=False, normalize=True): super(BilinearSeqAttn, self).__init__() self.normalize = normalize self.ysize = y_size self.xsize = x_size # If identity is true, we just use a dot product without transformation. if not identity: self.linear = nn.Linear(y_size, x_size) else: self.linear = None def forward(self, x, y, x_mask=None): """ Args: x: batch * len * hdim1 y: batch * len_sc * hdim2 x_mask: batch * len (1 for padding, 0 for true) Output: alpha = batch * len xWy = batch * len_sc * len """ batch_size = y.size(0) ly = y.size(1) y = y.view(-1, self.ysize) Wy = self.linear(y) if self.linear is not None else y Wy = Wy.view(batch_size, ly, self.ysize) Wy = Wy.permute(0, 2, 1) xWy = x.bmm(Wy) xWy = xWy.permute(0, 2, 1) if x_mask is not None: # xWy.data.masked_fill_(x_mask.data.unsqueeze(1).repeat(1, ly, 1), -float('inf')) x_mask = x_mask.unsqueeze(1).repeat(1, ly, 1) xWy = xWy * (1 - x_mask) + x_mask * (-100000) alpha = F.softmax(xWy, dim=-1) # batch * len_sc * len return alpha class Encoder(nn.Module): def __init__(self, config): super(Encoder, self).__init__() rnn_input_size = config.embedding_size + config.feature_tag_embedding_size * config.feature_num + \ config.answer_tag_embedding_size self.num_directions = 2 if config.brnn else 1 assert config.enc_rnn_size % self.num_directions == 0 self.hidden_size = config.enc_rnn_size rnn_hidden_size = self.hidden_size // self.num_directions # self.hidden_size = config.enc_rnn_size // self.num_directions # rnn_hidden_size = self.hidden_size self.rnn = nn.GRU(rnn_input_size, rnn_hidden_size, num_layers=config.enc_num_layers, dropout=config.dropout, bidirectional=config.brnn, batch_first=True) self.wf = nn.Linear(2 * self.hidden_size, self.hidden_size, bias=False) self.wg = nn.Linear(2 * self.hidden_size, self.hidden_size, bias=False) self.attn = BilinearSeqAttn(self.hidden_size, self.hidden_size) def gated_self_attn(self, queries, memories, mask): # queries: [b,t,d] # memories: [b,t,d] # mask: [b,t] energies = torch.matmul(queries, memories.transpose(1, 2)) # [b, t, t] mask = mask.unsqueeze(1) energies = energies.masked_fill(mask == 0, value=-1e12) scores = F.softmax(energies, dim=2) context = torch.matmul(scores, queries) inputs = torch.cat([queries, context], dim=2) f_t = torch.tanh(self.update_layer(inputs)) g_t = torch.sigmoid(self.gate(inputs)) updated_output = g_t * f_t + (1 - g_t) * queries return updated_output def forward(self, paragraph_embedded, paragraph_mask, evidences_embedded=None, evidences_mask=None): paragraph_lengths = paragraph_mask.sum(1).tolist() paragraph_packed = pack_padded_sequence(paragraph_embedded, paragraph_lengths, batch_first=True, enforce_sorted=False) paragraph_outputs, paragraph_state = self.rnn(paragraph_packed) paragraph_outputs, _ = pad_packed_sequence(paragraph_outputs, batch_first=True, total_length=paragraph_mask.size(1)) evidences_lengths = evidences_mask.sum(1).tolist() evidences_packed = pack_padded_sequence(evidences_embedded, evidences_lengths, batch_first=True, enforce_sorted=False) evidences_outputs, hidden_t = self.rnn(evidences_packed) evidences_outputs, _ = pad_packed_sequence(evidences_outputs, batch_first=True, total_length=evidences_mask.size(1)) # paragraph_outputs = paragraph_outputs.permute(1, 0, 2).contiguous() # evidences_outputs = evidences_outputs.permute(1, 0, 2).contiguous() batch_size = paragraph_outputs.size(0) # T = outputs2.size(1) # context sentence length (word level) J = paragraph_outputs.size(1) # source sentence length (word level) # para_pad_mask = Variable(parainput[0].eq(s2s.Constants.PAD).float(), requires_grad=False, # volatile=False).transpose(0, 1) # para_pad_mask = Variable(input[0].eq(s2s.Constants.PAD).float(), requires_grad=False, # volatile=False).transpose(0, 1) # this_paragraph_mask = 1.0 - paragraph_mask.long() # scores = self.attn(paragraph_outputs, evidences_outputs, this_paragraph_mask) # batch * len_sc * len_para this_evidences_mask = 1.0 - evidences_mask.long() scores = self.attn(evidences_outputs, paragraph_outputs, this_evidences_mask) # batch * len_sc * len_para # context = scores.unsqueeze(1).bmm(source_hiddens).squeeze(1) # shape = (batch_size, T, J, self.hidden_size) # (N, T, J, 2d) # embd_context = outputs2.unsqueeze(2) # (N, T, 1, 2d) # embd_context = embd_context.expand(shape) # (N, T, J, 2d) # embd_source = outputs.unsqueeze(1) # (N, 1, J, 2d) # embd_source = embd_source.expand(shape) # (N, T, J, 2d) # a_elmwise_mul_b = torch.mul(embd_context, embd_source) # (N, T, J, 2d) # # cat_data = torch.cat((embd_context_ex, embd_source_ex, a_elmwise_mul_b), 3) # (N, T, J, 6d), [h;u;h◦u] # S = self.W(torch.cat((embd_context, embd_source, a_elmwise_mul_b), 3)).view(batch_size, T, J) # (N, T, J) # # para_pad_mask = para_pad_mask.unsqueeze(2).repeat(1, 1, J) # S = S*(1-para_pad_mask) + para_pad_mask*(-1000000) # self_att = F.softmax(S, dim=-2).permute(0, 2, 1) # q2c = torch.bmm(scores, evidences_outputs) # (N, J, 2d) = bmm( (N, J, T), (N, T, 2d) ) # emb2 = pack(torch.cat((q2c.permute(1, 0, 2), outputs.permute(1, 0, 2)), dim=-1), lengths) # outputs_f, hidden_t_f = self.rnn2(emb2, hidden) # if isinstance(input, tuple): # outputs_f = unpack(outputs_f)[0] f_sc = torch.tanh(self.wf(torch.cat((paragraph_outputs, q2c), dim=-1).view(-1, self.hidden_size * 2))) g_sc = torch.sigmoid(self.wg(torch.cat((paragraph_outputs, q2c), dim=-1).view(-1, self.hidden_size * 2))) x = g_sc * f_sc + (1 - g_sc) * (paragraph_outputs.view(-1, self.hidden_size)) # x = x.view(batch_size, J, 2 * self.hidden_size) x = x.view(batch_size, J, self.hidden_size) _, b, d = paragraph_state.size() h = paragraph_state.view(2, 2, b, d) # [n_layers, bi, b, d] h = torch.cat((h[:, 0, :, :], h[:, 1, :, :]), dim=-1) return x, h class Decoder(nn.Module): def __init__(self, config): super().__init__() self.vocab_size = config.vocab_size hidden_size = config.dec_rnn_size self.encoder_trans = nn.Linear(hidden_size, hidden_size) self.reduce_layer = nn.Linear( config.embedding_size + hidden_size, config.embedding_size) self.lstm = nn.LSTM(config.embedding_size, hidden_size, batch_first=True, num_layers=config.dec_num_layers, bidirectional=False, dropout=config.dropout) self.concat_layer = nn.Linear(2 * hidden_size, hidden_size) self.logit_layer = nn.Linear(hidden_size, config.vocab_size) self.use_pointer = config.use_pointer self.UNK_ID = config.unk_token_id @staticmethod def attention(query, memories, mask): # query : [b, 1, d] energy = torch.matmul(query, memories.transpose(1, 2)) # [b, 1, t] energy = energy.squeeze(1).masked_fill(mask == 0, value=-1e12) attn_dist = F.softmax(energy, dim=1).unsqueeze(dim=1) # [b, 1, t] context_vector = torch.matmul(attn_dist, memories) # [b, 1, d] return context_vector, energy def get_encoder_features(self, encoder_outputs): return self.encoder_trans(encoder_outputs) def forward(self, trg_seq_embedded, ext_src_seq, init_states, encoder_outputs, encoder_mask): # trg_seq : [b,t] # init_states : [2,b,d] # encoder_outputs : [b,t,d] # init_states : a tuple of [2, b, d] # device = trg_seq.device # batch_size, max_len = trg_seq.size() device = trg_seq_embedded.device batch_size, max_len, _ = trg_seq_embedded.size() hidden_size = encoder_outputs.size(-1) memories = self.get_encoder_features(encoder_outputs) logits = [] # init decoder hidden states and context vector # prev_states = init_states prev_states = (init_states, init_states) prev_context = torch.zeros((batch_size, 1, hidden_size)) prev_context = prev_context.to(device) coverage_sum = None coverage_output = [] attention_output = [] energies = [] for i in range(max_len): # y_i = trg_seq[:, i].unsqueeze(1) # [b, 1] # embedded = self.embedding(y_i) # [b, 1, d] embedded = trg_seq_embedded[:, i, :].unsqueeze(1) # [b, 1, d] lstm_inputs = self.reduce_layer( torch.cat([embedded, prev_context], 2)) output, states = self.lstm(lstm_inputs, prev_states) # encoder-decoder attention context, energy = self.attention(output, memories, encoder_mask) concat_input = torch.cat((output, context), dim=2).squeeze(dim=1) logit_input = torch.tanh(self.concat_layer(concat_input)) logit = self.logit_layer(logit_input) # [b, |V|] # maxout pointer network if self.use_pointer: num_oov = max(torch.max(ext_src_seq - self.vocab_size + 1), 0) # zeros = torch.zeros((batch_size, num_oov)).type(dtype=logit.dtype) #TODO: zeros = logit.data.new_zeros(size=(batch_size, num_oov)) extended_logit = torch.cat([logit, zeros], dim=1) out = torch.zeros_like(extended_logit) - INF out, _ = scatter_max(energy, ext_src_seq, out=out) #TODO: scatter_sum. out = out.masked_fill(out == -INF, 0) logit = extended_logit + out logit = logit.masked_fill(logit == 0, -INF) logits.append(logit) energies.append(energy) # update prev state and context prev_states = states prev_context = context if coverage_sum is None: # coverage_sum = context.data.new(encoder_outputs.size(0), encoder_outputs.size(1)).zero_().clone().detach() coverage_sum = context.data.new_zeros(size=(encoder_outputs.size(0), encoder_outputs.size(1))) # avg_tmp_coverage = coverage_sum / (i + 1) # coverage_loss = torch.sum(torch.min(energy, avg_tmp_coverage), dim=1) coverage_output.append(coverage_sum.data.clone()) attn_dist = F.softmax(energy, dim=1) # [b, t] attention_output.append(attn_dist) coverage_sum += attn_dist # logits = torch.stack(logits, dim=1) # [b, t, |V|] return logits, attention_output, coverage_output, energies def decode(self, embedded_y, ext_x, prev_states, prev_context, encoder_features, encoder_mask): # forward one step lstm # y : [b] # embedded = self.embedding(y.unsqueeze(1)) embedded = embedded_y.unsqueeze(1) lstm_inputs = self.reduce_layer(torch.cat([embedded, prev_context], 2)) output, states = self.lstm(lstm_inputs, prev_states) context, energy = self.attention(output, encoder_features, encoder_mask) concat_input = torch.cat((output, context), 2).squeeze(1) logit_input = torch.tanh(self.concat_layer(concat_input)) logit = self.logit_layer(logit_input) # [b, |V|] if self.use_pointer: # batch_size = y.size(0) batch_size = embedded_y.size(0) num_oov = max(torch.max(ext_x - self.vocab_size + 1), 0) # zeros = torch.zeros((batch_size, num_oov)).type(dtype=logit.dtype) zeros = logit.data.new_zeros(size=(batch_size, num_oov)) extended_logit = torch.cat([logit, zeros], dim=1) out = torch.zeros_like(extended_logit) - INF out, _ = scatter_max(energy, ext_x, out=out) out = out.masked_fill(out == -INF, 0) logit = extended_logit + out logit = logit.masked_fill(logit == -INF, 0) # forcing UNK prob 0 logit[:, self.UNK_ID] = -INF return logit, states, context class DecoderV2(nn.Module): def __init__(self, config): super(DecoderV2, self).__init__() self.vocab_size = config.vocab_size self.layers = config.dec_num_layers self.input_feed = config.input_feed input_size = config.embedding_size if self.input_feed: input_size += config.enc_rnn_size # num_directions = 2 if config.brnn else 1 # self.enc_dec_transformer = nn.Linear(config.enc_rnn_size // num_directions, config.dec_rnn_size) self.enc_dec_transformer = nn.Linear(config.enc_rnn_size, config.dec_rnn_size) self.rnn = nn.LSTM(config.dec_num_layers, input_size, config.dec_rnn_size, config.dropout) self.attn = ConcatAttention(config.enc_rnn_size, config.dec_rnn_size, config.ctx_attn_size) self.dropout = nn.Dropout(config.dropout) self.readout = nn.Linear((config.enc_rnn_size + config.dec_rnn_size + config.embedding_size), config.dec_rnn_size) self.maxout = MaxOut(config.maxout_pool_size) self.maxout_pool_size = config.maxout_pool_size self.copySwitch_l1 = nn.Linear(config.enc_rnn_size + config.dec_rnn_size, 1) # self.copySwitch2 = nn.Linear(opt.ctx_rnn_size + opt.dec_rnn_size, 1) self.hidden_size = config.dec_rnn_size # self.cover = [] self.logit_layer = nn.Linear(config.dec_rnn_size // config.maxout_pool_size, config.vocab_size) self.use_pointer = config.use_pointer self.UNK_ID = config.unk_token_id def init_rnn_hidden(self, enc_hidden): # enc_hidden = torch.cat([enc_states[0], enc_states[-1]], dim=-1) dec_hidden = self.enc_dec_transformer(enc_hidden) return dec_hidden def forward(self, trg_seq_embedded, ext_src_seq, enc_states, encoder_outputs, encoder_mask): device = trg_seq_embedded.device batch_size, max_len, _ = trg_seq_embedded.size() hidden_size = encoder_outputs.size(-1) # memories = self.get_encoder_features(encoder_outputs) memories = encoder_outputs logits = [] energies = [] # init decoder hidden states and context vector pre_hidden = self.init_rnn_hidden(enc_states) pre_context = torch.zeros((batch_size, hidden_size)) pre_context = pre_context.to(device) pre_compute = None self.attn.applyMask(encoder_mask) coverage_output = [] attention_output = [] coverage = memories.data.new_zeros(size=(encoder_outputs.size(0), encoder_outputs.size(1))) for i in range(max_len): # Embedding embedded = trg_seq_embedded[:, i, :] # [b, d] input_emb = embedded if self.input_feed: input_emb = torch.cat([embedded, pre_context], 1) # Decoder output, hidden = self.rnn(input_emb, pre_hidden) # Encoder-Decoder Attention context, attn_dist, pre_compute, energy = self.attn(output, memories, coverage, pre_compute, encoder_mask) # Maxout readout = self.readout(torch.cat((embedded, output, context), dim=1)) maxout = self.maxout(readout) output = self.dropout(maxout) logit = self.logit_layer(output) # [b, |V|] # # maxout pointer network # if self.use_pointer: # num_oov = max(torch.max(ext_src_seq - self.vocab_size + 1), 0) # # zeros = torch.zeros((batch_size, num_oov)).type(dtype=logit.dtype) #TODO: # zeros = logit.data.new_zeros(size=(batch_size, num_oov)) # extended_logit = torch.cat([logit, zeros], dim=1) # out = torch.zeros_like(extended_logit) - INF # out, _ = scatter_max(energy, ext_src_seq, out=out) #TODO: scatter_sum. # # out = scatter_mean(energy, ext_src_seq, out=out) #TODO: scatter_sum. # out = out.masked_fill(out == -INF, 0) # logit = extended_logit + out # logit = logit.masked_fill(logit == 0, -INF) logits.append(logit) energies.append(energy) pre_context = context pre_hidden = hidden coverage_output.append(coverage.data.clone()) attention_output.append(attn_dist) coverage = coverage + attn_dist # logits = torch.stack(logits, dim=1) # [b, t, |V|] return logits, attention_output, coverage_output, energies def decode(self, embedded_y, ext_x, pre_hidden, prev_context, memories, encoder_mask, coverage, pre_compute=None): # Embedding input_emb = embedded_y if self.input_feed: input_emb = torch.cat([embedded_y, prev_context], 1) # Decoder output, hidden = self.rnn(input_emb, pre_hidden) # Encoder-Decoder Attention context, attn_dist, pre_compute, energy = self.attn(output, memories, coverage, pre_compute, encoder_mask) # Maxout readout = self.readout(torch.cat((embedded_y, output, context), dim=1)) maxout = self.maxout(readout) output = self.dropout(maxout) logit = self.logit_layer(output) # [b, |V|] coverage = coverage + attn_dist if self.use_pointer: # batch_size = y.size(0) batch_size = embedded_y.size(0) num_oov = max(torch.max(ext_x - self.vocab_size + 1), 0) # zeros = torch.zeros((batch_size, num_oov)).type(dtype=logit.dtype) zeros = logit.data.new_zeros(size=(batch_size, num_oov)) extended_logit = torch.cat([logit, zeros], dim=1) out = torch.zeros_like(extended_logit) - INF out, _ = scatter_max(energy, ext_x, out=out) # out = scatter_mean(energy, ext_x, out=out) out = out.masked_fill(out == -INF, 0) logit = extended_logit + out logit = logit.masked_fill(logit == -INF, 0) # forcing UNK prob 0 logit[:, self.UNK_ID] = -INF return logit, hidden, context, coverage, pre_compute class Model(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embeddings = Embeddings(config) self.encoder = Encoder(config) self.decoder = Decoder(config) # self.decoder = DecoderV2(config) def run_enc_embeddings(self, batch_data): paragraph_feature_tag_ids_dict = { 'ner': batch_data.paragraph_ner_tag_ids, 'pos': batch_data.paragraph_pos_tag_ids, # 'dep': batch_data.paragraph_dep_tag_ids, # 'cas': batch_data.paragraph_cas_tag_ids, } paragraph_mask = (batch_data.paragraph_ids != batch_data.pad_token_id) paragraph_embeddings = self.embeddings(input_ids=batch_data.paragraph_ids, feature_tag_ids_dict=paragraph_feature_tag_ids_dict, answer_tag_ids=batch_data.paragraph_ans_tag_ids) evidences_feature_tag_ids_dict = { 'ner': batch_data.evidences_ner_tag_ids, 'pos': batch_data.evidences_pos_tag_ids, # 'dep': batch_data.paragraph_dep_tag_ids, # 'cas': batch_data.paragraph_cas_tag_ids, } evidences_mask = (batch_data.evidences_ids != batch_data.pad_token_id) evidences_embeddings = self.embeddings(input_ids=batch_data.evidences_ids, feature_tag_ids_dict=evidences_feature_tag_ids_dict, answer_tag_ids=batch_data.evidences_ans_tag_ids) return paragraph_embeddings, paragraph_mask, evidences_embeddings, evidences_mask def forward(self, batch_data): """ Arguments: attention_mask: torch.Tensor with 1 indicating tokens to ATTEND to """ paragraph_embeddings, paragraph_mask, evidences_embeddings, evidences_mask = self.run_enc_embeddings(batch_data) enc_outputs, enc_states = self.encoder(paragraph_embeddings, paragraph_mask, evidences_embeddings, evidences_mask) sos_trg = batch_data.question_ids[:, :-1].contiguous() embedding_output_for_decoder = self.embeddings(input_ids=sos_trg) logits, attention_output, coverage_output, energies = self.decoder( embedding_output_for_decoder, batch_data.paragraph_extended_ids, enc_states, enc_outputs, paragraph_mask) model_output = { 'logits': logits, 'attentions': attention_output, 'coverages': coverage_output, 'energies': energies } return model_output def beam_search(self, batch_data, beam_size, tok2idx, TRG_SOS_INDEX, TRG_UNK_INDEX, TRG_EOS_INDEX, min_decode_step, max_decode_step, device): paragraph_embeddings, paragraph_mask, evidences_embeddings, evidences_mask = self.run_enc_embeddings(batch_data) attention_mask = paragraph_mask enc_outputs, enc_states = self.encoder(paragraph_embeddings, paragraph_mask, evidences_embeddings, evidences_mask) prev_context = torch.zeros(1, enc_outputs.size(-1)).cuda(device=device) coverage = enc_outputs.data.new_zeros(size=(1, enc_outputs.size(1))) # h, c = enc_states # [2, b, d] but b = 1 hypotheses = [Hypothesis(tokens=[TRG_SOS_INDEX], log_probs=[0.0], # state=(h[:, 0, :], c[:, 0, :]), state=self.decoder.init_rnn_hidden(enc_states)[:, 0, :], context=prev_context[0], coverage=coverage[0]) for _ in range(beam_size)] # tile enc_outputs, enc_mask for beam search ext_src_seq = batch_data.paragraph_extended_ids.repeat(beam_size, 1) enc_outputs = enc_outputs.repeat(beam_size, 1, 1) # enc_features = self.decoder.get_encoder_features(enc_outputs) memories = enc_outputs enc_mask = attention_mask.repeat(beam_size, 1) num_steps = 0 results = [] while num_steps < max_decode_step and len(results) < beam_size: latest_tokens = [h.latest_token for h in hypotheses] latest_tokens = [idx if idx < len( tok2idx) else TRG_UNK_INDEX for idx in latest_tokens] prev_y = torch.tensor(latest_tokens, dtype=torch.long, device=device).view(-1) # if config.use_gpu: # prev_y = prev_y.to(self.device) # make batch of which size is beam size # all_state_h = [] # all_state_c = [] all_state = [] all_context = [] all_coverage = [] for h in hypotheses: # state_h, state_c = h.state # [num_layers, d] # all_state_h.append(state_h) # all_state_c.append(state_c) all_state.append(h.state) all_context.append(h.context) all_coverage.append(h.coverage) # prev_h = torch.stack(all_state_h, dim=1) # [num_layers, beam, d] # prev_c = torch.stack(all_state_c, dim=1) # [num_layers, beam, d] # prev_states = (prev_h, prev_c) prev_states = torch.stack(all_state, dim=1) # [num_layers, beam, d] prev_context = torch.stack(all_context, dim=0) prev_coverage = torch.stack(all_coverage, dim=0) # [beam_size, |V|] embedded_prev_y = self.embeddings(prev_y) logits, states, context_vector, coverage_vector, pre_compute = self.decoder.decode(embedded_prev_y, ext_src_seq, prev_states, prev_context, # enc_features, enc_mask) memories, enc_mask, prev_coverage, pre_compute=None) # h_state, c_state = states log_probs = F.log_softmax(logits, dim=1) top_k_log_probs, top_k_ids \ = torch.topk(log_probs, beam_size * 2, dim=-1) all_hypotheses = [] num_orig_hypotheses = 1 if num_steps == 0 else len(hypotheses) for i in range(num_orig_hypotheses): h = hypotheses[i] # state_i = (h_state[:, i, :], c_state[:, i, :]) state_i = states[:, i, :] context_i = context_vector[i] coverage_i = coverage_vector[i] for j in range(beam_size * 2): token = top_k_ids[i][j].item() score = top_k_log_probs[i][j].item() # vocab_entropy = torch.sum(-1 * log_probs[i] * torch.log(log_probs[i]), 1) / torch.log(len(tok2idx)) # copy_entropy = torch.sum(-1 * context_i * torch.log(context_i), 1) / torch.log(paragraph_embeddings.size(1)) new_h = h.extend(token=token, log_prob=score, state=state_i, context=context_i, coverage=coverage_i) all_hypotheses.append(new_h) hypotheses = [] for h in sort_hypotheses(all_hypotheses): if h.latest_token == TRG_EOS_INDEX: if num_steps >= min_decode_step: results.append(h) else: hypotheses.append(h) if len(hypotheses) == beam_size or len(results) == beam_size: break num_steps += 1 if len(results) == 0: results = hypotheses h_sorted = sort_hypotheses(results) return h_sorted[0]
92d598793743eeca4071fbfe7bad4091607dfc23
a67a987ed078da0a1de2908c8c0e08070dee65b1
/genice/lattices/Struct45.py
11dfe1c4b51d9a767557cc9b8e42befaf7c351cf
[]
no_license
Python3pkg/GenIce
ef1ce7ee2997c10e08dde75ac36050a653cd4fc5
1e9458b7bf8e0fd2ad5d0c4f8987cea0ae7ca0b0
refs/heads/master
2021-01-21T17:31:51.595858
2017-05-21T14:09:32
2017-05-21T14:09:32
91,962,047
0
0
null
2017-05-21T14:09:28
2017-05-21T14:09:28
null
UTF-8
Python
false
false
8,385
py
""" Data source: Dutour Sikirić, Mathieu, Olaf Delgado-Friedrichs, and Michel Deza. “Space Fullerenes: a Computer Search for New Frank-Kasper Structures” Acta Crystallographica Section A Foundations of Crystallography 66.Pt 5 (2010): 602–615. Cage composition: (12,14,15,16) = (14,14,8,0,) """ pairs=""" 31 128 36 90 140 120 197 56 133 68 132 50 76 103 105 30 161 192 135 118 25 102 147 51 34 77 47 43 145 139 13 160 50 111 159 117 187 125 48 7 25 176 170 202 18 120 24 165 180 4 148 53 141 155 136 6 93 3 112 102 185 66 67 154 173 111 185 30 17 180 172 8 130 203 80 92 114 169 205 122 205 121 70 189 28 61 134 181 26 3 199 92 4 129 35 134 172 19 107 37 79 119 70 191 140 89 202 60 125 179 103 61 180 139 148 84 191 188 180 98 64 89 20 194 106 150 12 71 80 176 158 16 148 27 148 173 123 97 29 126 65 51 9 165 130 187 2 69 118 201 170 50 2 38 94 5 174 83 34 121 11 127 199 158 32 189 171 166 51 43 59 164 128 127 77 78 190 107 82 140 176 91 24 105 46 179 112 197 138 173 22 201 183 165 66 116 164 43 18 86 14 166 17 63 130 170 52 178 157 57 23 36 135 175 29 88 97 85 175 54 115 81 193 84 20 145 47 198 143 202 86 3 91 99 144 67 178 111 1 41 50 155 149 146 59 65 168 200 47 0 198 38 97 79 145 126 31 75 39 85 85 38 57 177 4 137 63 16 199 107 6 72 94 121 19 0 29 71 144 86 117 171 115 55 197 137 54 90 123 72 156 177 9 90 130 153 45 129 15 26 183 201 95 4 68 159 138 41 42 79 133 83 182 110 151 39 78 61 171 129 70 184 195 95 195 96 182 84 62 186 33 160 44 194 71 167 47 196 18 33 70 90 177 168 21 13 109 11 100 124 169 102 103 125 198 3 138 155 77 152 93 120 23 62 192 167 177 181 190 169 44 102 190 176 17 106 19 192 30 127 21 74 75 9 72 42 5 189 119 147 163 37 66 75 1 153 106 145 10 162 192 91 191 205 114 126 31 118 112 126 88 8 53 73 172 71 136 69 82 76 54 146 174 162 69 42 141 185 168 137 149 7 110 40 52 170 113 24 173 89 127 153 17 157 103 203 129 56 1 141 161 163 155 187 57 98 2 151 22 128 83 87 134 158 120 154 152 116 67 55 32 183 142 76 82 73 28 46 136 65 64 101 113 204 109 31 27 203 162 98 134 169 58 7 20 99 36 188 204 5 204 184 28 41 117 95 45 87 60 193 150 25 157 194 63 181 187 30 14 133 115 110 142 179 14 54 49 0 79 26 160 110 28 152 92 8 23 117 72 43 11 78 159 96 150 92 114 99 75 184 200 48 44 56 114 167 175 48 121 201 132 104 20 25 174 139 15 33 122 186 188 118 151 74 57 87 58 87 80 19 186 188 113 152 97 33 13 119 142 89 113 100 160 154 58 171 125 124 85 86 143 153 195 7 131 49 164 80 58 68 131 163 10 96 161 65 144 81 23 14 161 74 5 165 156 166 64 154 63 137 149 122 109 191 32 205 190 59 12 199 76 202 52 193 46 100 49 38 74 0 62 200 123 49 135 9 6 12 1 116 59 167 175 186 35 99 198 42 81 26 156 83 133 10 140 178 21 123 82 27 100 108 150 16 109 34 29 158 122 96 45 139 196 55 138 179 2 163 36 183 35 88 64 53 168 162 15 40 132 101 136 107 67 39 195 98 182 111 46 104 200 95 106 88 52 27 194 45 128 116 131 6 101 60 24 66 77 22 21 51 178 40 112 16 60 73 144 53 15 193 35 157 55 93 44 181 174 197 18 73 78 124 203 41 37 91 93 40 105 22 156 56 10 62 48 166 146 68 143 104 34 204 12 164 108 11 143 61 131 172 32 159 132 142 37 8 141 104 146 189 105 124 115 119 69 147 182 101 149 94 184 108 185 108 13 39 81 84 196 151 196 147 135 94 """ waters=""" 0.80883 0.0 0.27714 0.19624 0.5 0.91946 0.875 0.5 0.26494 0.0 0.81173 0.17048 0.0 0.875 0.56455 0.80883 0.31617 0.76311 0.375 0.68383 0.30737 0.875 0.5 0.64549 0.81173 0.68383 0.37885 0.19117 0.31617 0.76311 0.5 0.875 0.62994 0.5 0.875 0.85451 0.31328 0.80883 0.34573 0.5 0.25 0.19172 0.31328 0.19117 0.65427 0.31617 0.81173 0.12116 0.18828 0.80376 0.45959 0.875 0.67876 0.5 0.68383 0.81173 0.12116 0.81173 0.0 0.32952 0.81173 0.19624 0.45959 0.5 0.125 0.23506 0.0 0.81173 0.82952 0.18828 0.0 0.67048 0.0 0.18828 0.82952 0.0 0.125 0.43545 0.19117 0.68673 0.15427 0.0 0.68673 0.02414 0.80376 0.5 0.91946 0.5 0.80376 0.41946 0.19117 0.0 0.88698 0.31617 0.625 0.80737 0.80883 0.0 0.72287 0.5 0.875 0.14549 0.68383 0.625 0.80737 0.625 0.5 0.45146 0.19117 0.0 0.72287 0.875 0.5 0.35451 0.80883 0.68383 0.23689 0.68383 0.375 0.19264 0.19117 0.0 0.11302 0.0 0.5 0.95173 0.19117 0.68383 0.23689 0.19117 0.0 0.27714 0.125 0.32124 0.5 0.81173 0.19624 0.54041 0.67876 0.31328 0.92732 0.0 0.0 0.25 0.125 0.5 0.64549 0.68383 0.80883 0.26311 0.32124 0.125 0.0 0.31617 0.19117 0.26311 0.19624 0.81173 0.04041 0.80376 0.5 0.08055 0.375 0.31617 0.69264 0.0 0.18828 0.17048 0.18828 0.19624 0.54041 0.625 0.5 0.54854 0.81173 0.31617 0.62116 0.31328 0.19117 0.34573 0.5 0.625 0.04854 0.67876 0.68673 0.92732 0.31328 0.80883 0.65427 0.125 0.67876 0.5 0.67876 0.31328 0.07268 0.375 0.31617 0.30737 0.19117 0.31328 0.84573 0.80883 0.31328 0.15427 0.68673 0.19117 0.65427 0.125 0.5 0.26494 0.5 0.125 0.76494 0.5 0.875 0.37007 0.31617 0.80883 0.26311 0.67876 0.68673 0.07268 0.68383 0.19117 0.26311 0.31617 0.375 0.80737 0.67876 0.875 0.0 0.80883 0.68673 0.84573 0.68383 0.81173 0.87885 0.31617 0.625 0.19264 0.0 0.0 0.35478 0.125 0.5 0.12994 0.80376 0.81173 0.04041 0.5 0.19624 0.58055 0.19624 0.5 0.08055 0.68383 0.625 0.19264 0.80883 0.68673 0.15427 0.68673 0.32124 0.57268 0.68673 0.67876 0.42732 0.80376 0.18828 0.04041 0.31617 0.19117 0.73689 0.81173 0.31617 0.37885 0.0 0.80883 0.38698 0.0 0.0 0.14523 0.875 0.5 0.73506 0.0 0.80883 0.61302 0.68673 0.80883 0.65427 0.5 0.75 0.19172 0.68673 0.67876 0.57268 0.68673 0.32124 0.42732 0.68383 0.18828 0.87885 0.5 0.375 0.04854 0.18828 0.19624 0.45959 0.80376 0.81173 0.95959 0.5 0.375 0.95146 0.0 0.0 0.85478 0.81173 0.80376 0.45959 0.125 0.5 0.35451 0.5 0.125 0.85451 0.5 0.75 0.80828 0.31617 0.18828 0.12116 0.19624 0.18828 0.04041 0.31328 0.0 0.47586 0.80883 0.31328 0.84573 0.5 0.19624 0.41946 0.19117 0.31328 0.15427 0.125 0.5 0.87007 0.0 0.0 0.64523 0.19117 0.68383 0.76311 0.31617 0.375 0.19264 0.80883 0.0 0.11302 0.80883 0.68383 0.76311 0.625 0.68383 0.69264 0.5 0.875 0.23506 0.80883 0.0 0.88698 0.875 0.0 0.93545 0.5 0.0 0.45173 0.31617 0.81173 0.87885 0.19117 0.68673 0.84573 0.0 0.125 0.56455 0.19624 0.81173 0.95959 0.625 0.68383 0.30737 0.5 0.25 0.0 0.5 0.125 0.62994 0.375 0.5 0.45146 0.125 0.5 0.73506 0.25 0.5 0.30828 0.18828 0.80376 0.54041 0.0 0.31328 0.97586 0.68673 0.0 0.52414 0.875 0.0 0.06455 0.32124 0.31328 0.92732 0.67876 0.125 0.0 0.5 0.625 0.95146 0.875 0.5 0.12994 0.68673 0.0 0.47586 0.625 0.31617 0.69264 0.19117 0.31617 0.23689 0.0 0.5 0.04828 0.75 0.5 0.69172 0.0 0.875 0.43545 0.80883 0.31617 0.23689 0.875 0.5 0.87007 0.32124 0.68673 0.92732 0.68383 0.18828 0.12116 0.19624 0.18828 0.95959 0.31328 0.32124 0.57268 0.75 0.5 0.5 0.31328 0.67876 0.42732 0.81173 0.0 0.67048 0.5 0.125 0.14549 0.625 0.31617 0.30737 0.5 0.80376 0.58055 0.75 0.5 0.30828 0.18828 0.0 0.32952 0.0 0.19117 0.77714 0.18828 0.31617 0.62116 0.5 0.125 0.37007 0.31328 0.67876 0.57268 0.31328 0.32124 0.42732 0.32124 0.875 0.0 0.0 0.19117 0.61302 0.68673 0.80883 0.34573 0.0 0.31328 0.02414 0.5 0.0 0.54828 0.25 0.5 0.69172 0.0 0.19117 0.38698 0.375 0.5 0.54854 0.125 0.0 0.06455 0.80376 0.18828 0.95959 0.81173 0.80376 0.54041 0.25 0.5 0.5 0.32124 0.31328 0.07268 0.0 0.0 0.75 0.5 0.25 0.80828 0.31617 0.18828 0.87885 0.375 0.68383 0.69264 0.125 0.0 0.93545 0.31617 0.80883 0.73689 0.68383 0.19117 0.73689 0.18828 0.31617 0.37885 0.5 0.875 0.76494 0.68673 0.19117 0.34573 0.32124 0.68673 0.07268 0.875 0.32124 0.5 0.81173 0.68383 0.62116 0.0 0.19117 0.22287 0.31328 0.0 0.52414 0.0 0.80883 0.22287 0.18828 0.68383 0.37885 0.18828 0.68383 0.62116 0.0 0.80883 0.77714 0.5 0.75 0.0 0.0 0.68673 0.97586 0.68383 0.375 0.80737 0.68383 0.80883 0.73689 """ coord= "relative" cages=""" 12 0.0 -0.2531 -0.09655 12 0.0 0.0 0.5 15 -0.5 0.5 -0.12908 15 0.0 0.5 0.56509 12 -0.2531 0.0 0.59655 15 0.5 0.5 -0.62908 14 0.0 -0.26467 -0.6939 12 -0.2531 0.0 0.40345 15 0.5 0.5 0.12908 12 0.0 0.2531 0.09655 14 0.0 -0.26467 0.6939 14 -0.26467 0.0 0.1939 14 0.28496 0.5 0.0 14 -0.26467 0.0 -0.1939 15 -0.5 0.0 -0.06509 15 -0.5 0.5 0.62908 14 0.26467 0.0 -0.1939 14 -0.5 0.28496 0.5 14 0.26467 0.0 0.1939 12 0.0 0.2531 -0.09655 12 0.5 0.0 -0.69756 14 0.0 0.26467 -0.6939 14 0.5 0.5 0.25 15 0.0 0.5 -0.56509 12 -0.5 0.0 0.69756 14 0.5 -0.28496 0.5 14 -0.28496 -0.5 0.0 12 0.0 -0.2531 0.09655 14 0.0 0.26467 0.6939 12 0.0 0.5 -0.19756 15 0.5 0.0 0.06509 12 0.2531 0.0 -0.59655 14 -0.5 0.5 0.75 12 0.2531 0.0 0.59655 12 0.0 0.0 0.0 12 0.0 0.5 0.19756 """ bondlen = 3 celltype = 'rect' cell = """ 13.050670933678957 13.050670933678957 57.77874231167655 """ density = 0.625698640770261
eac6d81a7087ff1b93907223fa052c932e2bd838
b548e7c2940d6e041f15624cd66f2dfe98b64fca
/official/nlp/modeling/layers/transformer_scaffold.py
b0932f7e0b7ead6a213cb3a7a9ca67edf5d86bb4
[ "Apache-2.0" ]
permissive
ishani-chakraborty/models
60cfc1ebb7b73b03a95b9ff522bf6289eb81fd24
a811a3b7e640722318ad868c99feddf3f3063e36
refs/heads/master
2022-11-26T18:03:28.501746
2020-08-04T03:10:25
2020-08-04T03:10:25
284,893,619
0
1
Apache-2.0
2020-08-04T06:14:13
2020-08-04T06:14:12
null
UTF-8
Python
false
false
12,636
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras-based transformer scaffold layer.""" # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import gin import tensorflow as tf from official.nlp.modeling.layers import attention @tf.keras.utils.register_keras_serializable(package="Text") @gin.configurable class TransformerScaffold(tf.keras.layers.Layer): """Transformer scaffold layer. This layer implements the Transformer from "Attention Is All You Need". (https://arxiv.org/abs/1706.03762), with a customizable attention layer and feedforward layer option. Users can pass a class to `attention_cls`/`feedforward_cls` and associated config to `attention_cfg`/`feedforward_cfg`, in which case the scaffold will instantiate the class with the config, or pass a class instance to `attention_cls`/`feedforward_cls`. Arguments: num_attention_heads: Number of attention heads. intermediate_size: Size of the intermediate layer. intermediate_activation: Activation for the intermediate layer. attention_cls: A class to instantiate attention layer, or a layer instance. attention_cfg: The config with which to instantiate `attention_cls`. Ignored if attention_cls is a layer instance or None. If `attention_cls` is a class, but `attention_cfg` is None, following kwargs will be used to instantiate the attention instance: { "num_heads": num_attention_heads, "key_size": int(hidden_size // num_attention_heads), "dropout": attention_dropout_rate, "name": "self_attention" }, where `hidden_size` is the input tensor's last dimension. feedforward_cls: A class to instantiate feedforward layer, or a layer instance. If None, will use the standard feedforward layer as described in "Attention Is All You Need" paper. If not None, the instantiated feedforward layer is expected to take the output of attention as input and its output is this transformer layer's output. feedforward_cfg: The config with which to instantiate `feedforward_cls`. Ignored if feedforward_cls is a layer instance or is None. If `feedforward_cls` is a class, but `feedforward_cfg` is None, following kwargs will be used to instantiate the feedforward instance: { "intermediate_size": intermediate_size, "intermediate_activation": intermediate_activation, "dropout": dropout_rate, "name": "feedforward" }. dropout_rate: Dropout probability for the post-attention and output dropout. attention_dropout_rate: Dropout probability for within the attention layer. kernel_initializer: Initializer for dense layer kernels. bias_initializer: Initializer for dense layer biases. kernel_regularizer: Regularizer for dense layer kernels. bias_regularizer: Regularizer for dense layer biases. activity_regularizer: Regularizer for dense layer activity. kernel_constraint: Constraint for dense layer kernels. bias_constraint: Constraint for dense layer kernels. """ def __init__(self, num_attention_heads, intermediate_size, intermediate_activation, attention_cls=attention.MultiHeadAttention, attention_cfg=None, feedforward_cls=None, feedforward_cfg=None, dropout_rate=0.0, attention_dropout_rate=0.0, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(TransformerScaffold, self).__init__(**kwargs) self._attention_cfg = attention_cfg self._attention_cls = attention_cls self._feedforward_cls = feedforward_cls self._feedforward_cfg = feedforward_cfg self._num_heads = num_attention_heads self._intermediate_size = intermediate_size self._intermediate_activation = intermediate_activation self._attention_dropout_rate = attention_dropout_rate self._dropout_rate = dropout_rate self._kernel_initializer = tf.keras.initializers.get(kernel_initializer) self._bias_initializer = tf.keras.initializers.get(bias_initializer) self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer) self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer) self._kernel_constraint = tf.keras.constraints.get(kernel_constraint) self._bias_constraint = tf.keras.constraints.get(bias_constraint) def build(self, input_shape): input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape input_tensor_shape = tf.TensorShape(input_tensor) if len(input_tensor_shape) != 3: raise ValueError( "TransformerScaffold expects a three-dimensional input of " "shape [batch, sequence, width].") batch_size, sequence_length, hidden_size = input_tensor_shape if len(input_shape) == 2: mask_tensor_shape = tf.TensorShape(input_shape[1]) expected_mask_tensor_shape = tf.TensorShape( [batch_size, sequence_length, sequence_length]) if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape): raise ValueError("When passing a mask tensor to TransformerLayer, the " "mask tensor must be of shape [batch, " "sequence_length, sequence_length] (here %s). Got a " "mask tensor of shape %s." % (expected_mask_tensor_shape, mask_tensor_shape)) if hidden_size % self._num_heads != 0: raise ValueError( "The input size (%d) is not a multiple of the number of attention " "heads (%d)" % (hidden_size, self._num_heads)) self._attention_head_size = int(hidden_size // self._num_heads) common_kwargs = dict( kernel_initializer=self._kernel_initializer, bias_initializer=self._bias_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activity_regularizer=self._activity_regularizer, kernel_constraint=self._kernel_constraint, bias_constraint=self._bias_constraint) def get_layer_instance(instance_or_cls, config, default_config): if isinstance(instance_or_cls, tf.keras.layers.Layer): return instance_or_cls else: if config is None: return instance_or_cls(**default_config) else: return instance_or_cls(**config) default_attention_cfg = { "num_heads": self._num_heads, "key_size": self._attention_head_size, "dropout": self._attention_dropout_rate, "name": "self_attention" } default_attention_cfg.update(common_kwargs) self._attention_layer = get_layer_instance( self._attention_cls, config=self._attention_cfg, default_config=default_attention_cfg) if self._feedforward_cls is not None: default_feedforward_cfg = { "intermediate_size": self._intermediate_size, "intermediate_activation": self._intermediate_activation, "dropout": self._dropout_rate, "name": "feedforward", } default_feedforward_cfg.update(common_kwargs) self._feedforward_block = get_layer_instance( self._feedforward_cls, config=self._feedforward_cfg, default_config=default_feedforward_cfg) else: self._feedforward_block = None self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) # Use float32 in layernorm for numeric stability. # It is probably safe in mixed_float16, but we haven't validated this yet. self._attention_layer_norm = ( tf.keras.layers.LayerNormalization( name="self_attention_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)) if self._feedforward_block is None: self._intermediate_dense = tf.keras.layers.experimental.EinsumDense( "abc,cd->abd", output_shape=(None, self._intermediate_size), bias_axes="d", name="intermediate", **common_kwargs) policy = tf.keras.mixed_precision.experimental.global_policy() if policy.name == "mixed_bfloat16": # bfloat16 causes BERT with the LAMB optimizer to not converge # as well, so we use float32. # TODO(b/154538392): Investigate this. policy = tf.float32 self._intermediate_activation_layer = tf.keras.layers.Activation( self._intermediate_activation, dtype=policy) self._output_dense = tf.keras.layers.experimental.EinsumDense( "abc,cd->abd", output_shape=(None, hidden_size), bias_axes="d", name="output", **common_kwargs) self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) # Use float32 in layernorm for numeric stability. self._output_layer_norm = tf.keras.layers.LayerNormalization( name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32) super(TransformerScaffold, self).build(input_shape) def get_config(self): config = { "attention_cls": self._attention_layer, "feedforward_cls": self._feedforward_block, "num_attention_heads": self._num_heads, "intermediate_size": self._intermediate_size, "intermediate_activation": self._intermediate_activation, "dropout_rate": self._dropout_rate, "attention_dropout_rate": self._attention_dropout_rate, "kernel_initializer": tf.keras.initializers.serialize(self._kernel_initializer), "bias_initializer": tf.keras.initializers.serialize(self._bias_initializer), "kernel_regularizer": tf.keras.regularizers.serialize(self._kernel_regularizer), "bias_regularizer": tf.keras.regularizers.serialize(self._bias_regularizer), "activity_regularizer": tf.keras.regularizers.serialize(self._activity_regularizer), "kernel_constraint": tf.keras.constraints.serialize(self._kernel_constraint), "bias_constraint": tf.keras.constraints.serialize(self._bias_constraint) } base_config = super(TransformerScaffold, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, inputs): if isinstance(inputs, (list, tuple)) and len(inputs) == 2: input_tensor, attention_mask = inputs else: input_tensor, attention_mask = (inputs, None) attention_output = self._attention_layer( query=input_tensor, value=input_tensor, attention_mask=attention_mask) attention_output = self._attention_dropout(attention_output) attention_output = self._attention_layer_norm(input_tensor + attention_output) if self._feedforward_block is None: intermediate_output = self._intermediate_dense(attention_output) intermediate_output = self._intermediate_activation_layer( intermediate_output) layer_output = self._output_dense(intermediate_output) layer_output = self._output_dropout(layer_output) # During mixed precision training, attention_output is from layer norm # and is always fp32 for now. Cast layer_output to fp32 for the subsequent # add. layer_output = tf.cast(layer_output, tf.float32) layer_output = self._output_layer_norm(layer_output + attention_output) else: layer_output = self._feedforward_block(attention_output) return layer_output
9edcfd8e23912adb9f02ffa2158ad3e4a1c337a0
6cf0c21f14076979edafb401caf6f0be54377490
/vedastr_cstr/vedastr/models/bodies/rectificators/sspin.py
26c593457eb7e1d3db2b610c4456f3b659256f07
[ "MIT", "Apache-2.0" ]
permissive
shekarneo/ocr-teamcode
abb23a6cb1df597ee0f8a45d1caf4c6374ce1d46
86d5070e8f907571a47967d64facaee246d92a35
refs/heads/main
2023-06-02T19:29:20.640271
2021-06-23T15:03:31
2021-06-23T15:03:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
# We implement a new module which has same property like spin to some extent. # We think this manner can replace the GA-SPIN by enlarging output features # of se layer, but we didn't do further experiments. import torch.nn as nn from vedastr.models.bodies.feature_extractors import build_feature_extractor from vedastr.models.utils import SE from vedastr.models.weight_init import init_weights from .registry import RECTIFICATORS @RECTIFICATORS.register_module class SSPIN(nn.Module): def __init__(self, feature_cfg, se_cfgs): super(SSPIN, self).__init__() self.body = build_feature_extractor(feature_cfg) self.se = SE(**se_cfgs) init_weights(self.modules()) def forward(self, x): x = self.body(x) x = self.se(x) return x
990b6e7b21dac9e0e08d4c442e1c8ea4175bb38e
ce63cec7c28611bb0c43bd503996718716246538
/reagent/test/ranking/test_seq2slate_trainer.py
00ea6e7d9864f353b459580e5b3f0214057dfe08
[ "BSD-3-Clause" ]
permissive
mcx/ReAgent
70cbf5484656c8bdf722155e0eacac0385a3e276
57b58a8b3a6b74bb87a197b73a6cd108ddad895e
refs/heads/master
2023-08-10T15:37:02.664394
2021-10-14T01:52:49
2021-10-14T01:53:55
329,295,166
0
0
BSD-3-Clause
2021-10-14T02:16:26
2021-01-13T12:04:53
Python
UTF-8
Python
false
false
19,844
py
import copy import itertools import logging import random import unittest from itertools import permutations import numpy as np import numpy.testing as npt import pytorch_lightning as pl import reagent.core.types as rlt import torch from parameterized import parameterized from reagent.core.parameters import Seq2SlateParameters from reagent.core.parameters_seq2slate import IPSClamp, IPSClampMethod from reagent.model_utils.seq2slate_utils import Seq2SlateOutputArch from reagent.models.seq2slate import Seq2SlateMode, Seq2SlateTransformerNet from reagent.optimizer.union import Optimizer__Union, classes from reagent.samplers.frechet import FrechetSort from reagent.training.ranking.helper import ips_clamp from reagent.training.ranking.seq2slate_trainer import Seq2SlateTrainer from torch.utils.data import DataLoader logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) output_arch_list = [ Seq2SlateOutputArch.FRECHET_SORT, Seq2SlateOutputArch.AUTOREGRESSIVE, ] policy_gradient_interval_list = [1, 5] clamp_method_list = [IPSClampMethod.UNIVERSAL, IPSClampMethod.UNIVERSAL] clamp_max_list = [1.0, 10.0] frechet_sort_shape_list = [0.1, 0.5, 1.0] def create_trainer( seq2slate_net, learning_rate, seq2slate_params, policy_gradient_interval, ): return Seq2SlateTrainer( seq2slate_net=seq2slate_net, params=seq2slate_params, policy_optimizer=Optimizer__Union(SGD=classes["SGD"](lr=learning_rate)), policy_gradient_interval=policy_gradient_interval, print_interval=1, ) def create_seq2slate_transformer( state_dim, candidate_num, candidate_dim, hidden_size, output_arch ): return Seq2SlateTransformerNet( state_dim=state_dim, candidate_dim=candidate_dim, num_stacked_layers=2, num_heads=2, dim_model=hidden_size, dim_feedforward=hidden_size, max_src_seq_len=candidate_num, max_tgt_seq_len=candidate_num, output_arch=output_arch, temperature=0.5, ) def create_on_policy_batch( seq2slate, batch_size, state_dim, candidate_num, candidate_dim, rank_seed, device ): state = torch.randn(batch_size, state_dim).to(device) candidates = torch.randn(batch_size, candidate_num, candidate_dim).to(device) reward = torch.rand(batch_size, 1).to(device) batch = rlt.PreprocessedRankingInput.from_input( state=state, candidates=candidates, device=device ) # Reset seed here so that gradients can be replicated. torch.manual_seed(rank_seed) rank_output = seq2slate( batch, mode=Seq2SlateMode.RANK_MODE, tgt_seq_len=candidate_num, greedy=False ) ranked_order = rank_output.ranked_tgt_out_idx - 2 ranked_slate_prob = rank_output.ranked_per_seq_probs on_policy_batch = rlt.PreprocessedRankingInput.from_input( state=state, candidates=candidates, device=device, action=ranked_order, logged_propensities=ranked_slate_prob.detach(), slate_reward=reward, ) return on_policy_batch def create_off_policy_batch( seq2slate, batch_size, state_dim, candidate_num, candidate_dim, device ): state = torch.randn(batch_size, state_dim) candidates = torch.randn(batch_size, candidate_num, candidate_dim) reward = torch.rand(batch_size, 1) action = torch.stack([torch.randperm(candidate_num) for _ in range(batch_size)]) logged_slate_prob = torch.rand(batch_size, 1) / 1e12 off_policy_batch = rlt.PreprocessedRankingInput.from_input( state=state, candidates=candidates, device=device, action=action, logged_propensities=logged_slate_prob, slate_reward=reward, ) return off_policy_batch class TestSeq2SlateTrainer(unittest.TestCase): def setUp(self): np.random.seed(0) random.seed(0) torch.manual_seed(0) def assert_correct_gradient( self, net_with_gradient, net_after_gradient, policy_gradient_interval, learning_rate, ): for (n_c, w_c), (n, w) in zip( net_with_gradient.named_parameters(), net_after_gradient.named_parameters() ): assert n_c == n if w_c.grad is not None: assert torch.allclose( w_c - policy_gradient_interval * learning_rate * w_c.grad, w, rtol=1e-4, atol=2e-6, ) def test_ips_clamp(self): importance_sampling = torch.tensor([0.5, 0.3, 3.0, 10.0, 40.0]) assert torch.all(ips_clamp(importance_sampling, None) == importance_sampling) assert torch.all( ips_clamp(importance_sampling, IPSClamp(IPSClampMethod.AGGRESSIVE, 3.0)) == torch.tensor([0.5, 0.3, 3.0, 0.0, 0.0]) ) assert torch.all( ips_clamp(importance_sampling, IPSClamp(IPSClampMethod.UNIVERSAL, 3.0)) == torch.tensor([0.5, 0.3, 3.0, 3.0, 3.0]) ) @parameterized.expand( itertools.product(policy_gradient_interval_list, output_arch_list) ) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_seq2slate_trainer_on_policy_gpu( self, policy_gradient_interval, output_arch ): self._test_seq2slate_trainer_on_policy( policy_gradient_interval, output_arch, device=torch.device("cuda") ) @parameterized.expand( itertools.product(policy_gradient_interval_list, output_arch_list) ) def test_seq2slate_trainer_on_policy_cpu( self, policy_gradient_interval, output_arch ): self._test_seq2slate_trainer_on_policy( policy_gradient_interval, output_arch, device=torch.device("cpu") ) def _test_seq2slate_trainer_on_policy( self, policy_gradient_interval, output_arch, device ): batch_size = 32 state_dim = 2 candidate_num = 15 candidate_dim = 4 hidden_size = 16 learning_rate = 1.0 on_policy = True rank_seed = 111 seq2slate_params = Seq2SlateParameters(on_policy=on_policy) seq2slate_net = create_seq2slate_transformer( state_dim, candidate_num, candidate_dim, hidden_size, output_arch ).to(device) seq2slate_net_copy = copy.deepcopy(seq2slate_net).to(device) seq2slate_net_copy_copy = copy.deepcopy(seq2slate_net).to(device) trainer = create_trainer( seq2slate_net, learning_rate, seq2slate_params, policy_gradient_interval, ) batch = create_on_policy_batch( seq2slate_net, batch_size, state_dim, candidate_num, candidate_dim, rank_seed, device, ) training_data = DataLoader([batch], collate_fn=lambda x: x[0]) pl_trainer = pl.Trainer( max_epochs=policy_gradient_interval, gpus=None if device == torch.device("cpu") else 1, logger=False, ) pl_trainer.fit(trainer, training_data) seq2slate_net = trainer.seq2slate_net.to(device) # manual compute gradient torch.manual_seed(rank_seed) rank_output = seq2slate_net_copy( batch, mode=Seq2SlateMode.RANK_MODE, tgt_seq_len=candidate_num, greedy=False ) loss = -( torch.mean(torch.log(rank_output.ranked_per_seq_probs) * batch.slate_reward) ) loss.backward() self.assert_correct_gradient( seq2slate_net_copy, seq2slate_net, policy_gradient_interval, learning_rate ) # another way to compute gradient manually torch.manual_seed(rank_seed) ranked_per_seq_probs = seq2slate_net_copy_copy( batch, mode=Seq2SlateMode.RANK_MODE, tgt_seq_len=candidate_num, greedy=False ).ranked_per_seq_probs loss = -( torch.mean( ranked_per_seq_probs / ranked_per_seq_probs.detach() * batch.slate_reward ) ) loss.backward() self.assert_correct_gradient( seq2slate_net_copy_copy, seq2slate_net, policy_gradient_interval, learning_rate, ) @parameterized.expand( itertools.product(policy_gradient_interval_list, output_arch_list) ) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_seq2slate_trainer_off_policy_gpu( self, policy_gradient_interval, output_arch ): self._test_seq2slate_trainer_off_policy( policy_gradient_interval, output_arch, device=torch.device("cuda") ) @parameterized.expand( itertools.product(policy_gradient_interval_list, output_arch_list) ) def test_seq2slate_trainer_off_policy_cpu( self, policy_gradient_interval, output_arch ): self._test_seq2slate_trainer_off_policy( policy_gradient_interval, output_arch, device=torch.device("cpu") ) def _test_seq2slate_trainer_off_policy( self, policy_gradient_interval, output_arch, device ): batch_size = 32 state_dim = 2 candidate_num = 15 candidate_dim = 4 hidden_size = 16 learning_rate = 1.0 on_policy = False seq2slate_params = Seq2SlateParameters(on_policy=on_policy) seq2slate_net = create_seq2slate_transformer( state_dim, candidate_num, candidate_dim, hidden_size, output_arch ).to(device) seq2slate_net_copy = copy.deepcopy(seq2slate_net).to(device) seq2slate_net_copy_copy = copy.deepcopy(seq2slate_net).to(device) trainer = create_trainer( seq2slate_net, learning_rate, seq2slate_params, policy_gradient_interval, ) batch = create_off_policy_batch( seq2slate_net, batch_size, state_dim, candidate_num, candidate_dim, device ) training_data = DataLoader([batch], collate_fn=lambda x: x[0]) pl_trainer = pl.Trainer( max_epochs=policy_gradient_interval, gpus=None if device == torch.device("cpu") else 1, logger=False, ) pl_trainer.fit(trainer, training_data) seq2slate_net = trainer.seq2slate_net.to(device) # manual compute gradient ranked_per_seq_log_probs = seq2slate_net_copy( batch, mode=Seq2SlateMode.PER_SEQ_LOG_PROB_MODE ).log_probs loss = -( torch.mean( ranked_per_seq_log_probs * torch.exp(ranked_per_seq_log_probs).detach() / batch.tgt_out_probs * batch.slate_reward ) ) loss.backward() self.assert_correct_gradient( seq2slate_net_copy, seq2slate_net, policy_gradient_interval, learning_rate ) # another way to compute gradient manually ranked_per_seq_probs = torch.exp( seq2slate_net_copy_copy( batch, mode=Seq2SlateMode.PER_SEQ_LOG_PROB_MODE ).log_probs ) loss = -( torch.mean(ranked_per_seq_probs / batch.tgt_out_probs * batch.slate_reward) ) loss.backward() self.assert_correct_gradient( seq2slate_net_copy_copy, seq2slate_net, policy_gradient_interval, learning_rate, ) @parameterized.expand(itertools.product(clamp_method_list, output_arch_list)) def test_seq2slate_trainer_off_policy_with_clamp(self, clamp_method, output_arch): batch_size = 32 state_dim = 2 candidate_num = 15 candidate_dim = 4 hidden_size = 16 learning_rate = 1.0 device = torch.device("cpu") policy_gradient_interval = 1 seq2slate_params = Seq2SlateParameters( on_policy=False, ips_clamp=IPSClamp(clamp_method=clamp_method, clamp_max=0.3), ) seq2slate_net = create_seq2slate_transformer( state_dim, candidate_num, candidate_dim, hidden_size, output_arch ) seq2slate_net_copy = copy.deepcopy(seq2slate_net) trainer = create_trainer( seq2slate_net, learning_rate, seq2slate_params, policy_gradient_interval, ) batch = create_off_policy_batch( seq2slate_net, batch_size, state_dim, candidate_num, candidate_dim, device ) training_data = DataLoader([batch], collate_fn=lambda x: x[0]) pl_trainer = pl.Trainer(max_epochs=policy_gradient_interval, logger=False) pl_trainer.fit(trainer, training_data) # manual compute gradient ranked_per_seq_probs = torch.exp( seq2slate_net_copy( batch, mode=Seq2SlateMode.PER_SEQ_LOG_PROB_MODE ).log_probs ) logger.info(f"ips ratio={ranked_per_seq_probs / batch.tgt_out_probs}") loss = -( torch.mean( ips_clamp( ranked_per_seq_probs / batch.tgt_out_probs, seq2slate_params.ips_clamp, ) * batch.slate_reward ) ) loss.backward() self.assert_correct_gradient( seq2slate_net_copy, seq2slate_net, policy_gradient_interval, learning_rate ) @parameterized.expand( itertools.product( output_arch_list, clamp_method_list, clamp_max_list, frechet_sort_shape_list ) ) def test_compute_impt_smpl(self, output_arch, clamp_method, clamp_max, shape): logger.info(f"output arch: {output_arch}") logger.info(f"clamp method: {clamp_method}") logger.info(f"clamp max: {clamp_max}") logger.info(f"frechet shape: {shape}") candidate_num = 5 candidate_dim = 2 state_dim = 1 hidden_size = 32 device = torch.device("cpu") learning_rate = 0.001 policy_gradient_interval = 1 candidates = torch.randint(5, (candidate_num, candidate_dim)).float() candidate_scores = torch.sum(candidates, dim=1) seq2slate_params = Seq2SlateParameters( on_policy=False, ips_clamp=IPSClamp(clamp_method=clamp_method, clamp_max=clamp_max), ) seq2slate_net = create_seq2slate_transformer( state_dim, candidate_num, candidate_dim, hidden_size, output_arch ) trainer = create_trainer( seq2slate_net, learning_rate, seq2slate_params, policy_gradient_interval, ) all_permt = torch.tensor( list(permutations(range(candidate_num), candidate_num)) ) sampler = FrechetSort(shape=shape, topk=candidate_num) sum_of_logged_propensity = 0 sum_of_model_propensity = 0 sum_of_ips_ratio = 0 for i in range(len(all_permt)): sample_action = all_permt[i] logged_propensity = torch.exp( sampler.log_prob(candidate_scores, sample_action) ) batch = rlt.PreprocessedRankingInput.from_input( state=torch.zeros(1, state_dim), candidates=candidates.unsqueeze(0), device=device, action=sample_action.unsqueeze(0), logged_propensities=logged_propensity.reshape(1, 1), ) model_propensities = torch.exp( seq2slate_net(batch, mode=Seq2SlateMode.PER_SEQ_LOG_PROB_MODE).log_probs ) impt_smpl, clamped_impt_smpl = trainer._compute_impt_smpl( model_propensities, logged_propensity ) if impt_smpl > clamp_max: if clamp_method == IPSClampMethod.AGGRESSIVE: npt.asset_allclose(clamped_impt_smpl.detach().numpy(), 0, rtol=1e-5) else: npt.assert_allclose( clamped_impt_smpl.detach().numpy(), clamp_max, rtol=1e-5 ) sum_of_model_propensity += model_propensities sum_of_logged_propensity += logged_propensity sum_of_ips_ratio += model_propensities / logged_propensity logger.info( f"shape={shape}, sample_action={sample_action}, logged_propensity={logged_propensity}," f" model_propensity={model_propensities}" ) logger.info( f"shape {shape}, sum_of_logged_propensity={sum_of_logged_propensity}, " f"sum_of_model_propensity={sum_of_model_propensity}, " f"mean sum_of_ips_ratio={sum_of_ips_ratio / len(all_permt)}" ) npt.assert_allclose(sum_of_logged_propensity.detach().numpy(), 1, rtol=1e-5) npt.assert_allclose(sum_of_model_propensity.detach().numpy(), 1, rtol=1e-5) @parameterized.expand(itertools.product(output_arch_list, frechet_sort_shape_list)) def test_ips_ratio_mean(self, output_arch, shape): output_arch = Seq2SlateOutputArch.FRECHET_SORT shape = 0.1 logger.info(f"output arch: {output_arch}") logger.info(f"frechet shape: {shape}") candidate_num = 5 candidate_dim = 2 state_dim = 1 hidden_size = 8 device = torch.device("cpu") batch_size = 1024 num_batches = 400 learning_rate = 0.001 policy_gradient_interval = 1 state = torch.zeros(batch_size, state_dim) # all data have same candidates candidates = torch.randint( 5, (batch_size, candidate_num, candidate_dim) ).float() candidates[1:] = candidates[0] candidate_scores = torch.sum(candidates, dim=-1) seq2slate_params = Seq2SlateParameters( on_policy=False, ) seq2slate_net = create_seq2slate_transformer( state_dim, candidate_num, candidate_dim, hidden_size, output_arch ) trainer = create_trainer( seq2slate_net, learning_rate, seq2slate_params, policy_gradient_interval, ) sampler = FrechetSort(shape=shape, topk=candidate_num) sum_of_ips_ratio = 0 for i in range(num_batches): sample_outputs = [ sampler.sample_action(candidate_scores[j : j + 1]) for j in range(batch_size) ] action = torch.stack( list(map(lambda x: x.action.squeeze(0), sample_outputs)) ) logged_propensity = torch.stack( list(map(lambda x: torch.exp(x.log_prob), sample_outputs)) ) batch = rlt.PreprocessedRankingInput.from_input( state=state, candidates=candidates, device=device, action=action, logged_propensities=logged_propensity, ) model_propensities = torch.exp( seq2slate_net(batch, mode=Seq2SlateMode.PER_SEQ_LOG_PROB_MODE).log_probs ) impt_smpl, _ = trainer._compute_impt_smpl( model_propensities, logged_propensity ) sum_of_ips_ratio += torch.mean(impt_smpl).detach().numpy() mean_of_ips_ratio = sum_of_ips_ratio / (i + 1) logger.info(f"{i}-th batch, mean ips ratio={mean_of_ips_ratio}") if i > 100 and np.allclose(mean_of_ips_ratio, 1, atol=0.03): return raise Exception(f"Mean ips ratio {mean_of_ips_ratio} is not close to 1")
0503c67578bed73112c1a1fd91865ab9220e8817
fd1a3d5f1eb2a85a204b9694f26e2168e1e2fa10
/msu/fall2013/ece867/project/src/coroutine.py
63c83844bcb50a519b15c68480dac7474e52f568
[]
no_license
csboling/studies
61d3d31ce8ccd4c9370e19fa60fc4ad8fbc26e30
1a212d63420ff1602755950124136993bc967849
refs/heads/master
2021-01-21T14:08:59.397293
2016-03-30T17:49:21
2016-03-30T17:49:21
25,365,247
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
def coroutine(f): def start(*args, **kwargs): g = f(*args, **kwargs) g.next() return g return start @coroutine def consume(): while True: (yield) @coroutine def broadcast(targets): while True: msg = (yield) for target in targets: target.send(msg) @coroutine def accrue(depth, target): w = [[]]*depth window = circbuf(w) while True: for i in xrange(depth): window.send((yield)) target.send(w) @coroutine def disperse(targets): while True: results = (yield) for i in xrange(len(results)): targets[i].send(results[i]) @coroutine def printer(): while True: print (yield) class Flush(Exception): pass @coroutine def circbuf(v, target=None): size = len(v) count = 0 while True: for i in xrange(len(v)): try: v[i] = (yield) if count < size: count += 1 except Flush: if target == None: break else: tail = i - count if tail < 0: tail += size while count: target.send(v[tail]) tail += 1 if tail == size: tail = 0 count -= 1
c7c8dbb3871913fc00fa414dd0a9cd0fb3f622c3
ef61c5f177ee44ac08325335fc28a12f3fccbb58
/resource_management/views/add_item/add_item.py
c02a116732e5c57847c249eb40a4f70e1961fbef
[]
no_license
bammidichandini/resource_management-chandini
3c11c7b2eb5e2f8d3df5b55e4d3ee86a27ed5c3a
aa4ec50f0b36a818bebc2033cb39ee928e5be13c
refs/heads/master
2022-12-01T19:59:25.366843
2020-07-23T09:10:42
2020-07-23T09:10:42
269,610,045
0
0
null
null
null
null
UTF-8
Python
false
false
1,938
py
from functools import reduce def add_item(*args, **kwargs): # pylint: disable=invalid-name """ Note: replace below mock implementation with your actual implementation Request: kwargs["user"] -> request user kwargs["user_dto"] -> request user_dto kwargs["request_object"] -> request body type object kwargs["request_data"] -> request body data dict kwargs["request_headers_obj"] -> request headers object kwargs["request_query_params"] -> request query parameters object Response : return: tuple(response_status_code, response_object, response_headers_object) from django_swagger_utils.drf_server.utils.server_gen.endpoint_response \ import endpoint_response return endpoint_response(response_object) """ access_token = '' http_authorization = args[0].META.get("HTTP_AUTHORIZATION") if http_authorization is not None: if len(http_authorization.split(" ")) == 2: access_token = http_authorization.split(" ")[1] http_source = args[0].META.get("HTTP_X_SOURCE") kwargs.update({"access_token": access_token, 'source': http_source}) from .api_wrapper import api_wrapper response_object = api_wrapper(*args, **kwargs) allowed_primitive_types = [False, str, int, float] from functools import reduce # pylint: disable=redefined-builtin if response_object is None: from django.http.response import HttpResponse response_object = HttpResponse() elif reduce((lambda a, b: a or isinstance(response_object, b)), allowed_primitive_types): from django.http.response import HttpResponse response_object = HttpResponse(str(response_object)) from django_swagger_utils.drf_server.utils.server_gen.endpoint_response \ import endpoint_response return endpoint_response(response_object)
b16c44dca67fbbadaa94bfac55dcddd6bcb70005
dbfeec6da584a41f8f341535728385db4d777ddf
/scripts/analysis/constant_accuracy_overall.py
60a0851b55bc554e5bc8a13d1d76b9a36a924242
[ "MIT" ]
permissive
alan-turing-institute/CSV_Wrangling
7b0abfcfc0d3a7a91252da80064952ede4c71578
3e073b8eee906c8fc71a5ce4499b07bbe67e8807
refs/heads/master
2022-01-24T13:31:36.381401
2022-01-20T22:13:17
2022-01-20T22:13:17
158,363,564
29
10
MIT
2022-01-20T22:13:48
2018-11-20T09:28:05
TeX
UTF-8
Python
false
false
2,014
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Overall accuracy of a method averaged over multiple corpora. Author: Gertjan van den Burg Copyright (c) 2018 - The Alan Turing Institute License: See the LICENSE file. """ import argparse import sys from common.detector_result import Status from .core import load_detector_results def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "-r", dest="reference", help="Reference file(s) with ground truth", required=True, nargs="+", ) parser.add_argument( "-d", dest="detector", help="Detector result(s)", required=True, nargs="+", ) parser.add_argument( "-o", dest="output", help="Output tex file to write to", required=True ) return parser.parse_args() def load_and_merge(filenames): results = {} for res_file in filenames: _, res = load_detector_results(res_file) for fname in res: if fname in results: print( "Error: duplicate result for file %s" % fname, file=sys.stderr, ) raise SystemExit results[fname] = res[fname] return results def compute_accuracy_overall(ref_results, det_results): total = 0 correct = 0 for fname in ref_results: ref = ref_results[fname] if not ref.status == Status.OK: continue total += 1 det = det_results[fname] if not det.status == Status.OK: continue correct += ref.dialect == det.dialect return correct / total * 100 def main(): args = parse_args() reference_results = load_and_merge(args.reference) detector_results = load_and_merge(args.detector) acc = compute_accuracy_overall(reference_results, detector_results) with open(args.output, "w") as fid: fid.write("%.0f\\%%%%" % acc) if __name__ == "__main__": main()
bf8e4d7f124848db648351fe9e712bf866b91dd9
3f658c0098a66015840bd9d631987e6b937bb300
/32.Stock_Trading_Alerts/venv/Lib/site-packages/twilio/rest/api/v2010/account/incoming_phone_number/assigned_add_on/assigned_add_on_extension.py
4ec400ab539eed7c9f98bdcc94c76195c1a4a46d
[]
no_license
RohitPr/PythonProjects
4cf7ec37cfba60afecc88ae542cc4155b72f4098
7dd807a45cd86cf0851cb95a1b1433805891f990
refs/heads/main
2023-06-01T06:42:40.147968
2021-06-13T00:57:05
2021-06-13T00:57:05
337,298,986
1
1
null
null
null
null
UTF-8
Python
false
false
17,396
py
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class AssignedAddOnExtensionList(ListResource): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, account_sid, resource_sid, assigned_add_on_sid): """ Initialize the AssignedAddOnExtensionList :param Version version: Version that contains the resource :param account_sid: The SID of the Account that created the resource :param resource_sid: The SID of the Phone Number to which the Add-on is assigned :param assigned_add_on_sid: The SID that uniquely identifies the assigned Add-on installation :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionList :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionList """ super(AssignedAddOnExtensionList, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'resource_sid': resource_sid, 'assigned_add_on_sid': assigned_add_on_sid, } self._uri = '/Accounts/{account_sid}/IncomingPhoneNumbers/{resource_sid}/AssignedAddOns/{assigned_add_on_sid}/Extensions.json'.format(**self._solution) def stream(self, limit=None, page_size=None): """ Streams AssignedAddOnExtensionInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page(page_size=limits['page_size'], ) return self._version.stream(page, limits['limit']) def list(self, limit=None, page_size=None): """ Lists AssignedAddOnExtensionInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance] """ return list(self.stream(limit=limit, page_size=page_size, )) def page(self, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of AssignedAddOnExtensionInstance records from the API. Request is executed immediately :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionPage """ data = values.of({'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page(method='GET', uri=self._uri, params=data, ) return AssignedAddOnExtensionPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of AssignedAddOnExtensionInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return AssignedAddOnExtensionPage(self._version, response, self._solution) def get(self, sid): """ Constructs a AssignedAddOnExtensionContext :param sid: The unique string that identifies the resource :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext """ return AssignedAddOnExtensionContext( self._version, account_sid=self._solution['account_sid'], resource_sid=self._solution['resource_sid'], assigned_add_on_sid=self._solution['assigned_add_on_sid'], sid=sid, ) def __call__(self, sid): """ Constructs a AssignedAddOnExtensionContext :param sid: The unique string that identifies the resource :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext """ return AssignedAddOnExtensionContext( self._version, account_sid=self._solution['account_sid'], resource_sid=self._solution['resource_sid'], assigned_add_on_sid=self._solution['assigned_add_on_sid'], sid=sid, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.AssignedAddOnExtensionList>' class AssignedAddOnExtensionPage(Page): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, response, solution): """ Initialize the AssignedAddOnExtensionPage :param Version version: Version that contains the resource :param Response response: Response from the API :param account_sid: The SID of the Account that created the resource :param resource_sid: The SID of the Phone Number to which the Add-on is assigned :param assigned_add_on_sid: The SID that uniquely identifies the assigned Add-on installation :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionPage :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionPage """ super(AssignedAddOnExtensionPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of AssignedAddOnExtensionInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance """ return AssignedAddOnExtensionInstance( self._version, payload, account_sid=self._solution['account_sid'], resource_sid=self._solution['resource_sid'], assigned_add_on_sid=self._solution['assigned_add_on_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.AssignedAddOnExtensionPage>' class AssignedAddOnExtensionContext(InstanceContext): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, account_sid, resource_sid, assigned_add_on_sid, sid): """ Initialize the AssignedAddOnExtensionContext :param Version version: Version that contains the resource :param account_sid: The SID of the Account that created the resource to fetch :param resource_sid: The SID of the Phone Number to which the Add-on is assigned :param assigned_add_on_sid: The SID that uniquely identifies the assigned Add-on installation :param sid: The unique string that identifies the resource :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext """ super(AssignedAddOnExtensionContext, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'resource_sid': resource_sid, 'assigned_add_on_sid': assigned_add_on_sid, 'sid': sid, } self._uri = '/Accounts/{account_sid}/IncomingPhoneNumbers/{resource_sid}/AssignedAddOns/{assigned_add_on_sid}/Extensions/{sid}.json'.format(**self._solution) def fetch(self): """ Fetch the AssignedAddOnExtensionInstance :returns: The fetched AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance """ payload = self._version.fetch(method='GET', uri=self._uri, ) return AssignedAddOnExtensionInstance( self._version, payload, account_sid=self._solution['account_sid'], resource_sid=self._solution['resource_sid'], assigned_add_on_sid=self._solution['assigned_add_on_sid'], sid=self._solution['sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.AssignedAddOnExtensionContext {}>'.format(context) class AssignedAddOnExtensionInstance(InstanceResource): """ PLEASE NOTE that this class contains beta products that are subject to change. Use them with caution. """ def __init__(self, version, payload, account_sid, resource_sid, assigned_add_on_sid, sid=None): """ Initialize the AssignedAddOnExtensionInstance :returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance """ super(AssignedAddOnExtensionInstance, self).__init__(version) # Marshaled Properties self._properties = { 'sid': payload.get('sid'), 'account_sid': payload.get('account_sid'), 'resource_sid': payload.get('resource_sid'), 'assigned_add_on_sid': payload.get('assigned_add_on_sid'), 'friendly_name': payload.get('friendly_name'), 'product_name': payload.get('product_name'), 'unique_name': payload.get('unique_name'), 'uri': payload.get('uri'), 'enabled': payload.get('enabled'), } # Context self._context = None self._solution = { 'account_sid': account_sid, 'resource_sid': resource_sid, 'assigned_add_on_sid': assigned_add_on_sid, 'sid': sid or self._properties['sid'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: AssignedAddOnExtensionContext for this AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionContext """ if self._context is None: self._context = AssignedAddOnExtensionContext( self._version, account_sid=self._solution['account_sid'], resource_sid=self._solution['resource_sid'], assigned_add_on_sid=self._solution['assigned_add_on_sid'], sid=self._solution['sid'], ) return self._context @property def sid(self): """ :returns: The unique string that identifies the resource :rtype: unicode """ return self._properties['sid'] @property def account_sid(self): """ :returns: The SID of the Account that created the resource :rtype: unicode """ return self._properties['account_sid'] @property def resource_sid(self): """ :returns: The SID of the Phone Number to which the Add-on is assigned :rtype: unicode """ return self._properties['resource_sid'] @property def assigned_add_on_sid(self): """ :returns: The SID that uniquely identifies the assigned Add-on installation :rtype: unicode """ return self._properties['assigned_add_on_sid'] @property def friendly_name(self): """ :returns: The string that you assigned to describe the resource :rtype: unicode """ return self._properties['friendly_name'] @property def product_name(self): """ :returns: A string that you assigned to describe the Product this Extension is used within :rtype: unicode """ return self._properties['product_name'] @property def unique_name(self): """ :returns: An application-defined string that uniquely identifies the resource :rtype: unicode """ return self._properties['unique_name'] @property def uri(self): """ :returns: The URI of the resource, relative to `https://api.twilio.com` :rtype: unicode """ return self._properties['uri'] @property def enabled(self): """ :returns: Whether the Extension will be invoked :rtype: bool """ return self._properties['enabled'] def fetch(self): """ Fetch the AssignedAddOnExtensionInstance :returns: The fetched AssignedAddOnExtensionInstance :rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance """ return self._proxy.fetch() def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.AssignedAddOnExtensionInstance {}>'.format(context)
fa195a799a4d1a1682803e41510dba4a6bde5c4d
088314e3bd6ca7ef34d15f2aa45b743b363641d9
/tasks/R2R/finetune.py
95d942e9c106d9fcac12e61852807d8ccf8f8283
[ "MIT" ]
permissive
weituo12321/PREVALENT_R2R
7a27d580fcbe8f72a209697d053ca3eb2013e3a0
868fb53d6b7978bbb10439a59e65044c811ee5c2
refs/heads/master
2022-11-24T00:54:32.385940
2020-07-24T17:56:42
2020-07-24T17:56:42
248,832,547
8
7
MIT
2022-11-22T02:10:54
2020-03-20T19:07:08
Python
UTF-8
Python
false
false
64,248
py
import os, argparse, json import time, copy, random, pickle import numpy as np import pandas as pd from collections import defaultdict import torch import torch.nn as nn from torch.autograd import Variable from torch import optim import torch.nn.functional as F from utils import read_vocab, write_vocab, build_vocab, Tokenizer, SplitTokenizer, padding_idx, \ timeSince, boolean_string, preprocess_get_pano_states, current_best from env import R2RBatch, EnvBatch from model import EncoderLSTM, EncoderMultiLSTM, BertEncoder, MultiBertEncoder, GptEncoder, MultiGptEncoder,\ TransformerEncoder, MultiTransformerEncoder, BertImgEncoder, BertAddEncoder,MultiVilBertEncoder, MultiVilAddEncoder, MultiAddLoadEncoder, AttnDecoderLSTM from pytorch_transformers import BertForMaskedLM,BertTokenizer from agent import Seq2SeqAgent from eval import Evaluation from feature import Feature import pprint import pdb class CustomDataParallel(nn.Module): def __init__(self, model): super(CustomDataParallel, self).__init__() self.model = nn.DataParallel(model).cuda() print(type(self.model)) def forward(self, *args, **kwargs): return self.model(*args, **kwargs) def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: return getattr(self.model.module, name) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--train_vocab', dest='train_vocab', type=str, default='train_vocab.txt', help='train_vocab filename (in snapshots folder)') parser.add_argument('--trainval_vocab', dest='trainval_vocab', type=str, default='trainval_vocab.txt', help='trainval_vocab filename (in snapshots folder)') parser.add_argument('--use_glove', dest='use_glove', type=boolean_string, default=False, help='whether use glove') parser.add_argument('--glove_path', dest='glove_path', type=str, default='tasks/R2R/data/train_glove.npy', help='path to the glove file') parser.add_argument('--result_dir', dest='result_dir', type=str, default='tasks/R2R/results/', help='path to the result_dir file') parser.add_argument('--snapshot_dir', dest='snapshot_dir', type=str, default='tasks/R2R/snapshots/', help='path to the snapshot_dir file') parser.add_argument('--plot_dir', dest='plot_dir', type=str, default='tasks/R2R/plots/', help='path to the plot_dir file') parser.add_argument('--min_count', dest='min_count', type=int, default=5, help='word min_count') parser.add_argument('--max_input_length', dest='max_input_length', default=80, type=int, help='max_input_length') parser.add_argument('--batch_size', dest='batch_size', default=10, type=int, help='batch size') parser.add_argument('--max_episode_len', dest='max_episode_len', default=8, type=int, help='max_episode_len') parser.add_argument('--word_embedding_size', dest='word_embedding_size', default=256, type=int, help='word_embedding_size') parser.add_argument('--action_embedding_size', dest='action_embedding_size', default=64, type=int, help='action_embedding_size') parser.add_argument('--hidden_size', dest='hidden_size', default=1024, type=int, help='decoder hidden_size') parser.add_argument('--enc_hidden_size', dest='enc_hidden_size', default=1024, type=int, help='encoder hidden_size') parser.add_argument('--feature_store', dest='feature_store', type=str, default='img_features/ResNet-152-imagenet.tsv', help='path to the image feature file') parser.add_argument('--feature_size', dest='feature_size', default=2048, type=int, help='feature_size') parser.add_argument('--feature_all_size', dest='feature_all_size', default=2176, type=int, help='imgaction_size') parser.add_argument('--n_iters', dest='n_iters', default=70000, type=int, help='n_iters') parser.add_argument('--n_iters_resume', dest='n_iters_resume', default=0, type=int, help='n_iters_resume') parser.add_argument('--n_iters_pretrain_resume', dest='n_iters_pretrain_resume', default=0, type=int, help='n_iters_pretrain_resume') parser.add_argument('--ss_n_pretrain_iters', dest='ss_n_pretrain_iters', default=-1, type=int, help='scheduled sampling n_iters in pretrain') parser.add_argument('--ss_n_iters', dest='ss_n_iters', default=65000, type=int, help='scheduled sampling n_iters') parser.add_argument('--finetune_iters', dest='finetune_iters', default=-1, type=int, help='finetune_iters for BERT') parser.add_argument('--finetune_batchsize', dest='finetune_batchsize', default=-1, type=int, help='finetune_batchsize for BERT') parser.add_argument('--sc_after', dest='sc_after', default=-1, type=int, help='SELF_CRITICAL_AFTER') parser.add_argument('--pretrain_model_path', dest='pretrain_model_path', type=str, default='tasks/R2R/snapshots/', help='the path of pretrained model') parser.add_argument('--pretrain_lm_model_path', dest='pretrain_lm_model_path', type=str, default='pretrained_models/', help='the path of pretrained lm model') parser.add_argument('--pretrain_model_name', dest='pretrain_model_name', type=str, default=None, help='the name of pretrained model') parser.add_argument('--pretrain_decoder_name', dest='pretrain_decoder_name', type=str, default=None, help='the name of decoder model') parser.add_argument('--log_every', dest='log_every', default=20, type=int, help='log_every') parser.add_argument('--save_ckpt', dest='save_ckpt', default=48, type=int, help='dump model checkpoint, default -1') parser.add_argument('--schedule_ratio', dest='schedule_ratio', default=0.2, type=float, help='ratio for sample or teacher') parser.add_argument('--schedule_anneal', dest='schedule_anneal', action='store_true', help='schedule_ratio is annealling or not') parser.add_argument('--dropout_ratio', dest='dropout_ratio', default=0.4, type=float, help='dropout_ratio') parser.add_argument('--temp_alpha', dest='temp_alpha', default=1.0, type=float, help='temperate alpha for softmax') parser.add_argument('--learning_rate', dest='learning_rate', default=5e-05, type=float, help='learning_rate') parser.add_argument('--sc_learning_rate', dest='sc_learning_rate', default=2e-05, type=float, help='sc_learning_rate') parser.add_argument('--weight_decay', dest='weight_decay', default=0.0005, type=float, help='weight_decay') parser.add_argument('--optm', dest='optm', default='Adamax', type=str, help='Adam, Adamax, RMSprop') parser.add_argument('--sc_reward_scale', dest='sc_reward_scale', default=1., type=float, help='sc_reward_scale') parser.add_argument('--sc_discouted_immediate_r_scale', dest='sc_discouted_immediate_r_scale', default=0., type=float, help='sc_discouted_immediate_r_scale') parser.add_argument('--sc_length_scale', dest='sc_length_scale', default=0., type=float, help='sc_length_scale') parser.add_argument('--feedback_method', dest='feedback_method', type=str, default='teacher', help='sample or teacher') parser.add_argument('--bidirectional', dest='bidirectional', type=boolean_string, default=True, help='bidirectional') parser.add_argument('--monotonic_sc', dest='monotonic_sc', type=boolean_string, default=False, help='monotonic self-critic') parser.add_argument('--panoramic', dest='panoramic', type=boolean_string, default=True, help='panoramic img') parser.add_argument('--action_space', dest='action_space', type=int, default=-1, help='6 or -1(navigable viewpoints)') parser.add_argument('--ctrl_feature', dest='ctrl_feature', type=boolean_string, default=False, help='ctrl_feature') parser.add_argument('--ctrl_f_net', dest='ctrl_f_net', type=str, default='linear', help='imglinear, linear, nonlinear, imgnl or deconv') parser.add_argument('--aux_n_iters', dest='aux_n_iters', type=int, help='update auxiliary net after aux_n_iters') parser.add_argument('--aux_ratio', dest='aux_ratio', type=float, help='aux_ratio') parser.add_argument('--accu_n_iters', dest='accu_n_iters', type=int, default=0, help='gradient accumulation') parser.add_argument('--att_ctx_merge', dest='att_ctx_merge', type=str, default='mean', help='mean cat mean sum (to merge attention)') parser.add_argument('--ctx_dropout_ratio', dest='ctx_dropout_ratio', type=float, default=0.0, help='ctx_dropout_ratio') parser.add_argument('--clip_gradient', dest='clip_gradient', type=float, default=0.1, help='clip_gradient') parser.add_argument('--clip_gradient_norm', dest='clip_gradient_norm', type=float, default=0.0, help='clip gradient norm') parser.add_argument('--multi_share', dest='multi_share', type=boolean_string, default=True, help='share encoders in EncoderMultiLSTM') parser.add_argument('--decoder_init', dest='decoder_init', type=boolean_string, default=True, help='init decoder with lstm output') parser.add_argument('--dec_h_init', dest='dec_h_init', type=str, default='tanh', help='linear, tanh, none') parser.add_argument('--dec_c_init', dest='dec_c_init', type=str, default='none', help='linear, tanh, none') parser.add_argument('--dec_h_type', dest='dec_h_type', type=str, default='vc', help='none or vc') parser.add_argument('--encoder_type', dest='encoder_type', type=str, default='bert', help='lstm transformer bert or gpt') parser.add_argument('--top_lstm', dest='top_lstm', type=boolean_string, default=True, help='add lstm to the top of transformers') parser.add_argument('--transformer_update', dest='transformer_update', type=boolean_string, default=False, help='update Bert') parser.add_argument('--bert_n_layers', dest='bert_n_layers', type=int, default=1, help='bert_n_layers') parser.add_argument('--bert_type', dest='bert_type', type=str, default="small", help='small or large') parser.add_argument('--heads', dest='heads', type=int, default=4, help='heads in transformer') parser.add_argument('--transformer_emb_size', dest='transformer_emb_size', type=int, default=512, help='transformer_emb_size') parser.add_argument('--transformer_d_ff', dest='transformer_d_ff', type=int, default=1024, help='transformer_d_ff') parser.add_argument('--transformer_num_layers', dest='transformer_num_layers', type=int, default=1, help='transformer_num_layers') parser.add_argument('--vl_layers', dest='vl_layers', type=int, default=1, help='vl_layers') parser.add_argument('--use_cuda', dest='use_cuda', type=boolean_string, default=True, help='use_cuda') parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu_id') parser.add_argument('--train', dest='train', type=boolean_string, default=True, help='train or test') parser.add_argument('--pretrain_score_name', dest='pretrain_score_name', type=str, default='sr_sum', help='sr_sum spl_sum sr_unseen spl_unseen') parser.add_argument('--train_score_name', dest='train_score_name', type=str, default='sr_sum', help='sr_sum spl_sum sr_unseen spl_unseen') parser.add_argument('--sc_score_name', dest='sc_score_name', type=str, default='sr_sum', help='sr_sum spl_sum sr_unseen spl_unseen') parser.add_argument('--beam_size', dest='beam_size', type=int, default=1, help='beam_size for inference') parser.add_argument('--use_speaker', dest='use_speaker', type=boolean_string, default=False, help='use speaker for inference') parser.add_argument('--speaker_weight', dest='speaker_weight', type=str, default='0.0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95', help='speaker weight for inference') parser.add_argument('--speaker_prefix', dest='speaker_prefix', type=str, default='tasks/R2R/snapshots/release/speaker_final_release', help='speaker enc dec prefix') parser.add_argument('--speaker_merge', dest='speaker_merge', type=str, default='mean', help='how speaker score for multiple sentences') parser.add_argument('--state_factored', type=boolean_string, default=False, help='state factored beam search') parser.add_argument('--successors', dest='successors', type=int, default=1, help='successors for state_factored_search inference') parser.add_argument('--use_pretrain', action='store_true', help='pretrain or not') parser.add_argument('--train_in_pretrain', action='store_true', help='pretrain train or not') parser.add_argument('--pretrain_splits', type=str, default="literal_speaker_data_augmentation_paths", help="pretrain dataset") parser.add_argument('--pretrain_n_iters', dest='pretrain_n_iters', type=int, default=0, help='pretrain_n_iters') parser.add_argument('--pretrain_n_sentences', dest='pretrain_n_sentences', type=int, default=3, help='This is only for pretraining when using EncoderMultiLSTM. In normal train/test/val, it will be reset to 3') parser.add_argument('--single_sentence_test', dest='single_sentence_test', type=boolean_string, default=False, help='run additional test for single sentence as input') parser.add_argument('--val_splits', dest='val_splits', type=str, default='val_seen,val_unseen', help='test can be added') parser.add_argument('--warmup_iters', dest='warmup_iters', type=int, default=0, help='warmup iterations for BertImgEncoder') parser.add_argument('--reward_func', dest='reward_func', type=str, default='spl', help='reward function: sr_sc, spl, spl_sc, spl_last, spl_last_sc') parser.add_argument('--seed', type=int, default=1, help='random seed') parser.add_argument('--philly', action='store_true', help='program runs on Philly, used to redirect `write_model_path`') parser.add_argument('--dump_result', action='store_true', help='dump result file') parser.add_argument('--test_A', action='store_true', help='testing_settingA') # args = '--panoramic True ' \ # '--action_space -1 ' \ # '--result_dir /home/xiul/Programs/exps/tmp/test/results/ ' \ # '--snapshot_dir /home/xiul/Programs/exps/tmp/test/snapshots/ ' \ # '--plot_dir /home/xiul/Programs/exps/tmp/test/plots/ ' \ # '--max_episode_len 8 ' \ # '--att_ctx_merge mean ' \ # '--n_iters 1500 ' \ # '--batch_size 64 --log_every 64 --feedback_method teacher ' \ # '--enc_hidden_size 1024 ' \ # '--hidden_size 1024 ' # args = parser.parse_args(args.split()) # args = '--action_space -1 ' \ # '--result_dir /home/xiul/Programs/exps/tmp/test/results/ ' \ # '--snapshot_dir /home/xiul/Programs/exps/tmp/test/snapshots/ ' \ # '--plot_dir /home/xiul/Programs/exps/tmp/test/plots/ ' \ # '--att_ctx_merge mean --batch_size 64 --log_every 64 --feedback_method teacher --clip_gradient_norm 0 ' \ # '--ss_n_pretrain_iters 400 --pretrain_n_iters 500 --ss_n_iters 500 --n_iters 600 ' \ # '--use_pretrain --pretrain_n_sentences 4 '\ # '--pretrain_splits sample_seed10_20_30_40_50_data_aug_paths '\ # '--enc_hidden_size 1024 --hidden_size 1024 ' # args = '--feedback_method teacher ' \ # '--result_dir /home/xql/Source/Subgoal/tasks/R2R/exps/test_trans_mean/results/ ' \ # '--snapshot_dir /home/xql/Source/Subgoal/tasks/R2R/exps/test_trans_mean/snapshots/ ' \ # '--plot_dir /home/xql/Source/Subgoal/tasks/R2R/exps/test_trans_mean/plots/ ' \ # '--ss_n_iters 20000 ' \ # '--dropout_ratio 0.4 ' \ # '--dec_h_type vc --schedule_ratio 0.3 ' \ # '--optm Adam --clip_gradient_norm 0 --log_every 64 ' \ # '--action_space -1 ' \ # '--train_score_name sr_unseen ' \ # '--n_iters 40000 ' \ # '--enc_hidden_size 1024 --hidden_size 1024 ' \ # '--bidirectional True ' \ # '--batch_size 10 ' \ # '--encoder_type transformer ' \ # '--transformer_emb_size 512 --top_lstm True ' \ # '--att_ctx_merge mean ' # args = parser.parse_args(args.split()) args = parser.parse_args() params = vars(args) assert params['panoramic'] or (params['panoramic'] == False and params['action_space'] == 6) RESULT_DIR = params['result_dir'] #'tasks/R2R/results/' SNAPSHOT_DIR = params['snapshot_dir'] #'tasks/R2R/snapshots/' PLOT_DIR = params['plot_dir'] #'tasks/R2R/plots/' TRAIN_VOCAB = os.path.join(SNAPSHOT_DIR, params['train_vocab']) #'tasks/R2R/data/train_vocab.txt' TRAINVAL_VOCAB = os.path.join(SNAPSHOT_DIR, params['trainval_vocab']) MIN_COUNT = params['min_count'] use_glove = params['use_glove'] glove_path = params['glove_path'] batch_size = params['batch_size'] #100 encoder_type = params['encoder_type'] # lstm top_lstm = params['top_lstm'] transformer_update = params['transformer_update'] bert_n_layers = params['bert_n_layers'] # 1 reverse_input = True MAX_INPUT_LENGTH = params['max_input_length'] #80 max_episode_len = params['max_episode_len'] #20 word_embedding_size = params['word_embedding_size'] #256 action_embedding_size = params['action_embedding_size'] # 32 hidden_size = params['hidden_size'] #512 enc_hidden_size = params['enc_hidden_size'] # 512 heads = params['heads'] transformer_emb_size = params['transformer_emb_size'] transformer_d_ff = params['transformer_d_ff'] transformer_num_layers = params['transformer_num_layers'] vl_layers = params['vl_layers'] bidirectional = params['bidirectional'] #False feedback_method = params['feedback_method'] #'sample' # teacher or sample schedule_ratio = params['schedule_ratio'] schedule_anneal = params['schedule_anneal'] dropout_ratio = params['dropout_ratio'] # 0.5 learning_rate = params['learning_rate'] # 0.0001 weight_decay = params['weight_decay'] # 0.0005 sc_learning_rate = params['sc_learning_rate'] optm = params['optm'] sc_reward_scale = params['sc_reward_scale'] sc_discouted_immediate_r_scale = params['sc_discouted_immediate_r_scale'] sc_length_scale = params['sc_length_scale'] #n_iters = 5000 if feedback_method == 'teacher' else 20000 n_iters = params['n_iters'] # 60000 # jolin ss_n_iters = params['ss_n_iters'] ss_n_pretrain_iters = params['ss_n_pretrain_iters'] finetune_iters = params['finetune_iters'] finetune_batchsize = params['finetune_batchsize'] log_every = params['log_every'] save_ckpt = params['save_ckpt'] monotonic = params['monotonic_sc'] #False # jolin panoramic = params['panoramic'] action_space = params['action_space'] ctrl_feature = params['ctrl_feature'] # False ctrl_f_net = params['ctrl_f_net'] # linear aux_n_iters = params['aux_n_iters'] aux_ratio = params['aux_ratio'] accu_n_iters = params['accu_n_iters'] att_ctx_merge = params['att_ctx_merge'] ctx_dropout_ratio = params['ctx_dropout_ratio'] multi_share = params['multi_share'] decoder_init = params['decoder_init'] pretrain_score_name = params['pretrain_score_name'] train_score_name = params['train_score_name'] sc_score_name = params['sc_score_name'] use_pretrain = params['use_pretrain'] train_in_pretrain = params['train_in_pretrain'] pretrain_splits = params['pretrain_splits'].split(',') pretrain_n_iters = params['pretrain_n_iters'] pretrain_n_sentences = params['pretrain_n_sentences'] assert multi_share or pretrain_n_sentences==3 train_splits= ['train'] val_splits= params['val_splits'].split(',') from env import debug_beam #if debug_beam: # train_splits=['debug1'] # val_splits=['debug1'] beam_size = params['beam_size'] use_speaker = params['use_speaker'] speaker_weight = params['speaker_weight'].split(',') speaker_prefix = params['speaker_prefix'] state_factored = params['state_factored'] speaker_merge = params['speaker_merge'] successors = params['successors'] dump_result = params['dump_result'] if dump_result: print('Info: Temporary result files will be dumped!') else: print('Info: Save space mode ON. All previous best models and temporary result files will be deleted!') if ctrl_feature: assert aux_n_iters>1 model_prefix = 'seq2seq_%s_imagenet' % (feedback_method) # controlled by env variable CUDA_AVAILABLE_DEVICES. If =4 and #(real devices)<4, cpu #gpu_id = str(params['gpu_id']) gpuid = 'cpu' if params['use_cuda']: if torch.cuda.is_available(): gpuid='cuda:0' torch.backends.cudnn.deterministic = True device = torch.device(gpuid) is_train = params['train'] print('------ Check CUDA Info ------') print('cuda:', torch.cuda.is_available()) if torch.cuda.is_available(): print('gpu num:', torch.cuda.device_count()) print('gpu IDs:', torch.cuda.current_device()) print('gpu name:', torch.cuda.get_device_name(0)) print('-----------------------------') FEATURE_STORE = params['feature_store'] FEATURE_SIZE = params['feature_size'] FEATURE_ALL_SIZE = params['feature_all_size'] N_ITERS_RESUME = params['n_iters_resume'] # 0 #45000 n_iters_pretrain_resume = params['n_iters_pretrain_resume'] SELF_CRITICAL_AFTER = params['sc_after'] #-1 #320 # print('copied from 4snapshots') single_sentence_test = params['single_sentence_test'] features = FEATURE_STORE model_prefix = 'seq2seq_%s_imagenet' % (feedback_method) use_bert = (encoder_type in ['bert', 'gpt','vlbert']) # for tokenizer and dataloader ctx_hidden_size = enc_hidden_size * (2 if bidirectional else 1) if (use_bert and not top_lstm): ctx_hidden_size = 768 elif encoder_type=='transformer': if not top_lstm: ctx_hidden_size = transformer_emb_size bert_pre_best_model_iter = 0 # for space reason, delete previous best model bert_type = params['bert_type'] glove = np.load(glove_path) if use_glove else None if use_glove and (glove.shape[1] != word_embedding_size): print('Warning: reset word_embedding_size according to glove (dim=%d)' % glove.shape[1]) params['word_embedding_size'] = glove.shape[1] word_embedding_size = glove.shape[1] submit_splits = train_splits+val_splits nav_graphs = None # navigable loc cache philly = params['philly'] seed = params['seed'] agent_params = {} agent_params['clip_gradient'] = params['clip_gradient'] agent_params['clip_gradient_norm'] = params['clip_gradient_norm'] agent_params['reward_func'] = params['reward_func'] #agent_params['schedule_ratio'] = params['schedule_ratio'] agent_params['schedule_ratio'] = 0.3 #params['schedule_ratio'] agent_params['temp_alpha'] = params['temp_alpha'] agent_params['test_A'] = params['test_A'] encoder_params = {} encoder_params['dec_h_init'] = params['dec_h_init'] encoder_params['dec_c_init'] = params['dec_c_init'] decoder_params = {} decoder_params['dec_h_type'] = params['dec_h_type'] navigable_locs_path = "tasks/R2R/data" pretrain_model_path = params['pretrain_model_path'] pretrain_lm_model_path = params['pretrain_lm_model_path'] pretrain_model_name = params['pretrain_model_name'] #pretrained_lm_00000.model.ep0 for test pretrain_decoder_name = params['pretrain_decoder_name'] #pretrained_lm_00000.model.ep0 for test warmup_iters = params['warmup_iters'] if philly: # use philly print('Info: Use Philly, all the output folders are reset.') RESULT_DIR = os.path.join(os.getenv('PT_OUTPUT_DIR'), params['result_dir']) PLOT_DIR = os.path.join(os.getenv('PT_OUTPUT_DIR'), params['plot_dir']) SNAPSHOT_DIR = os.path.join(os.getenv('PT_OUTPUT_DIR'), params['snapshot_dir']) TRAIN_VOCAB = os.path.join(SNAPSHOT_DIR, params['train_vocab']) TRAINVAL_VOCAB = os.path.join(SNAPSHOT_DIR, params['trainval_vocab']) navigable_locs_path = os.path.join(os.getenv('PT_OUTPUT_DIR'), "tasks/R2R/data") print('RESULT_DIR', RESULT_DIR) print('PLOT_DIR', PLOT_DIR) print('SNAPSHOT_DIR', SNAPSHOT_DIR) print('TRAIN_VOC', TRAIN_VOCAB) def train(train_env, finetunes, train_Eval, encoder, decoder, monotonic, n_iters, resume_split_arr, cur_split_arr, score_name, jump_iters, log_every=log_every, val_envs={}, n_iters_resume=0,warmup_iters=0): ''' Train on training set, validating on both seen and unseen. ''' data_log = defaultdict(list) agent = Seq2SeqAgent(train_env, "", encoder, decoder, 'resume' if n_iters_resume>0 else 10, aux_ratio, decoder_init, agent_params, monotonic, max_episode_len, accu_n_iters = accu_n_iters) if hasattr(encoder, 'n_sentences'): encoder_n_sentences = encoder.n_sentences best_model_iter = n_iters_resume best_sr, best_spl, best_score = 0, 0, 0 best_eval = 0 idx = 0 if n_iters_resume>0: split_string = "-".join(resume_split_arr) print('Resuming from', n_iters_resume, 'on', split_string) if len(resume_split_arr) == 0: enc_path = '%s%s_%s_enc_iter_%d' % (pretrain_model_path, model_prefix, split_string, n_iters_resume) dec_path = '%s%s_%s_dec_iter_%d' % (pretrain_model_path, model_prefix, split_string, n_iters_resume) else: enc_path = '%s%s_%s_enc_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, n_iters_resume) dec_path = '%s%s_%s_dec_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, n_iters_resume) agent.load(enc_path, dec_path) loss_str = '' if hasattr(encoder, 'n_sentences'): encoder.set_n_sentences(3) for env_name, (env, evaluator) in val_envs.items(): result_path = '%s%s_%s_iter_%d.json' % (RESULT_DIR, model_prefix, env_name, n_iters_resume) score_summary, env_loss_str, data_log = test_env(env_name, env, evaluator, agent, result_path, feedback_method, data_log, 1) loss_str += env_loss_str best_sr += score_summary['success_rate'] best_spl += score_summary['spl'] agent.env = train_env print('\n'.join([str((k, round(v[0], 4))) for k, v in sorted(data_log.items())])) best_score = current_best(data_log, -1, score_name) best_eval = current_best(data_log, -1, 'spl_unseen') print('Resumed', score_name, 'score:', best_score) data_log = defaultdict(list) if jump_iters>0: idx = jump_iters print('Jump to pretrain_n_iters', jump_iters) try: df_path = '%s%s_log.csv' % (PLOT_DIR, model_prefix) df = pd.read_csv(df_path) data_log = {key: list(df[key]) for key in df.keys() if key != 'Unnamed: 0'} new_best = False for v_id, v in enumerate(df['iteration']): best_score_old = current_best(df, v_id, score_name) if best_score < best_score_old: best_score = best_score_old best_model_iter = v new_best = True if new_best: print('Best score found in plot file at ', best_model_iter,', best_score/best_model_iter reseted (model won\'t be reseted).') except: pass if hasattr(encoder, 'n_sentences'): encoder.set_n_sentences(encoder_n_sentences) if 0 <agent_params['schedule_ratio'] < 1.0: print('Training with Scheduled Sampling, sampling ratio %.1f' % (agent_params['schedule_ratio'])) else: print('Training with %s feedback' % feedback_method) if optm == 'RMSprop': optim_func = optim.RMSprop elif optm == 'Adamax': optim_func = optim.Adamax else: # default: Adam optim_func = optim.Adam #encoder_param_lst = list() #lst = list() #for name, pa in encoder.named_parameters(): # if pa.requires_grad: # #lst.append(name) # encoder_param_lst.append(pa) #encoder_optimizer = optim_func(encoder_param_lst, lr=learning_rate, weight_decay=weight_decay) encoder_optimizer = optim_func(encoder.parameters(), lr=learning_rate, weight_decay=weight_decay) decoder_optimizer = optim_func(decoder.parameters(), lr=learning_rate, weight_decay=weight_decay) start = time.time() epoch = 0 idx = idx-log_every sc_started = False finetune_start = False best_model = { 'iter': -1, 'encoder': copy.deepcopy(agent.encoder.state_dict()), 'decoder': copy.deepcopy(agent.decoder.state_dict()), 'torch_cuda_rn': copy.deepcopy(torch.cuda.random.get_rng_state()), 'torch_rn': copy.deepcopy(torch.random.get_rng_state()), 'random': copy.deepcopy(random.getstate()) } myidx = 0 while idx+log_every < n_iters: idx += log_every interval = min(log_every, n_iters - idx) iter = idx + interval myidx += interval print("PROGRESS: {}%".format(round((myidx) * 100 / n_iters, 4))) # scheduled if schedule_anneal: agent_params['schedule_ratio'] = max(params['schedule_ratio'], (1.0-float(iter)/n_iters)) if iter <= n_iters_resume: epo_inc = agent.rollout_notrain(interval) epoch += epo_inc continue # debug, add finetune for BERT if (not finetune_start) and encoder_type == 'bert' and (0 < finetune_iters <= iter): print("------start BERT finetune on iter %d------" % (iter)) finetune_start = True agent.encoder.update = True #learning_rate = 5e-5 if encoder_type == 'vlbert' and agent.encoder.__class__.__name__ in ['BertImgEncoder']: if warmup_iters > 0 and myidx > warmup_iters: agent.encoder.update = False warmup_iters = -1 if (not finetune_start) and encoder_type == 'vlbert' and (0 < finetune_iters <= iter): print("------start VLBERT finetune on iter %d------" % (iter)) finetune_start = True agent.encoder.update = True agent.env = finetunes[0] del train_env del val_envs train_env = finetunes[0] val_envs = finetunes[1] #agent.env.batch_size = finetune_batchsize # change batchsize accordingly #agent.env.reset(False) #text_bert_param = agent.encoder.flip_text_bert_params(agent.encoder.update) #encoder_optimizer.add_param_group({'params': text_bert_param}) #learning_rate = 5e-5 if sc_started or (SELF_CRITICAL_AFTER != -1 and iter > SELF_CRITICAL_AFTER): if score_name!=sc_score_name: print('score_name changed in SC', score_name, '->',sc_score_name) temp_data_log = defaultdict(list) for env_name, (env, evaluator) in val_envs.items(): _, _, temp_data_log = test_env(env_name, env, evaluator, agent, '%s%s_%s_iter_%d.json' % (RESULT_DIR, model_prefix, env_name, best_model_iter), feedback_method, temp_data_log, 1) agent.env = train_env best_score = current_best(temp_data_log, -1, sc_score_name) print('Best', sc_score_name, 'score:', best_score) score_name = sc_score_name if agent.decoder.ctrl_feature: agent.decoder.ctrl_feature = False print('Auxiliary task turned off.') # jolin: self-critical if (not sc_started) and iter == SELF_CRITICAL_AFTER + log_every: print('SC step') sc_started = True print('Loading best model for SC from iter', best_model_iter) #split_string = "-".join(train_env.splits) split_string = "-".join(cur_split_arr) #enc_path = '%s%s_%s_enc_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) #dec_path = '%s%s_%s_dec_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) if len(resume_split_arr) == 0: enc_path = '%s%s_%s_enc_iter_%d' % (pretrain_model_path, model_prefix, split_string, best_model_iter) dec_path = '%s%s_%s_dec_iter_%d' % (pretrain_model_path, model_prefix, split_string, best_model_iter) else: enc_path = '%s%s_%s_enc_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) dec_path = '%s%s_%s_dec_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) agent.load(enc_path, dec_path) encoder_optimizer = optim.Adam(agent.encoder.parameters(), lr=sc_learning_rate, weight_decay=weight_decay) decoder_optimizer = optim.Adam(agent.decoder.parameters(), lr=sc_learning_rate, weight_decay=weight_decay) # idx = best_model_iter agent.env.reset_epoch() print('Using',sc_score_name,'for saving SC best model') epo_inc = agent.rl_train(train_Eval, encoder_optimizer, decoder_optimizer, interval, sc_reward_scale, sc_discouted_immediate_r_scale, sc_length_scale) else: # Train for log_every interval epo_inc = agent.train(encoder_optimizer, decoder_optimizer, interval, aux_n_iters, feedback=feedback_method) # jolin: returned from self.env._next_minibatch(R2RBatch) epoch += epo_inc data_log['iteration'].append(iter) train_losses = np.array(agent.losses) assert len(train_losses) == interval train_loss_avg = np.average(train_losses) data_log['train loss'].append(train_loss_avg) loss_str = 'train loss: %.4f' % train_loss_avg if ctrl_feature: if agent.decoder.ctrl_feature: train_loss_ctrl_f_avg = np.average(np.array(agent.losses_ctrl_f)) data_log['loss_ctrl_f'].append(train_loss_ctrl_f_avg) loss_str += ' loss_ctrl_f: %.4f' % train_loss_ctrl_f_avg else: data_log['loss_ctrl_f'].append(0.) #split_string = "-".join(train_env.splits) split_string = '-'.join(cur_split_arr) enc_path = '%s%s_%s_enc_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, iter) dec_path = '%s%s_%s_dec_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, iter) #agent.save(enc_path, dec_path) # write or not # Run validation success_rate, spl = 0, 0 if hasattr(encoder, 'n_sentences'): encoder.set_n_sentences(3) for env_name, (env, evaluator) in val_envs.items(): score_summary, env_loss_str, data_log = test_env(env_name, env, evaluator, agent, '%s%s_%s_iter_%d.json' % (RESULT_DIR, model_prefix, env_name, iter), feedback_method, data_log, 1) loss_str += "," + env_name loss_str += env_loss_str success_rate += score_summary['success_rate'] spl += score_summary['spl'] candidate_score = current_best(data_log, -1, score_name) eval_candidate = current_best(data_log, -1, 'spl_unseen') if candidate_score>best_score: bert_pre_best_model_iter = best_model_iter best_model_iter = iter best_score = candidate_score loss_str+=' best'+score_name.upper() if monotonic: agent.copy_seq2seq() # best one best_model['iter'] = iter best_model['encoder'] = copy.deepcopy(agent.encoder.state_dict()) best_model['decoder'] = copy.deepcopy(agent.decoder.state_dict()) best_model['torch_cuda_rn'] = copy.deepcopy(torch.cuda.random.get_rng_state()) best_model['torch_rn'] = copy.deepcopy(torch.random.get_rng_state()) best_model['random'] = copy.deepcopy(random.getstate()) if spl>best_spl: best_spl=spl loss_str+=' bestSPL' if success_rate>best_sr: best_sr=success_rate loss_str+=' bestSR' if hasattr(encoder, 'n_sentences'): encoder.set_n_sentences(encoder_n_sentences) if finetune_start: agent.env = finetunes[0] else: agent.env = train_env ss_str = "ss_ratio %.2f" % (agent_params['schedule_ratio']) print(('%s (%d %d %d%%) %s %s' % (timeSince(start, float(iter) / n_iters), iter, epoch, float(iter) / n_iters * 100, loss_str, ss_str))) if eval_candidate > best_eval: best_eval = eval_candidate print("EVALERR: {}%".format(best_eval)) if save_ckpt != -1 and iter%save_ckpt == 0: save_best_model(best_model, SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) df = pd.DataFrame(data_log) df.set_index('iteration') df_path = '%s%s_log.csv' % (PLOT_DIR, model_prefix) write_num = 0 while (write_num < 10): try: df.to_csv(df_path) break except: write_num += 1 # debug: torch save best save_best_model(best_model, SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) return best_model_iter def create_folders(path): """ recursively create folders """ if not os.path.isdir(path): while True: try: os.makedirs(path) except: pass time.sleep(1) else: break def save_best_model(best_model, SNAPSHOT_DIR, model_prefix, split_string, best_model_iter): """ Save the current best model """ enc_path = '%s%s_%s_enc_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) dec_path = '%s%s_%s_dec_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, best_model_iter) torch.save(best_model['encoder'], enc_path) torch.save(best_model['decoder'], dec_path) if torch.cuda.is_available(): torch.save(best_model['torch_cuda_rn'], dec_path + '.rng.gpu') torch.save(best_model['torch_rn'], dec_path + '.rng') with open(dec_path + '.rng2', 'wb') as f: pickle.dump(best_model['random'], f) def setup(): ''' Build+Dump vocabulary for models other than bert. Create folders. Dump parameters ''' global navigable_locs_path torch.manual_seed(seed) torch.cuda.manual_seed(seed) # Check for vocabs if not os.path.exists(RESULT_DIR): #os.mkdir(RESULT_DIR) create_folders(RESULT_DIR) if not os.path.exists(PLOT_DIR): #os.mkdir(PLOT_DIR) create_folders(PLOT_DIR) if not os.path.exists(SNAPSHOT_DIR): #os.mkdir(SNAPSHOT_DIR) create_folders(SNAPSHOT_DIR) if not os.path.exists(navigable_locs_path): create_folders(navigable_locs_path) if encoder_type!='bert' or encoder_type!='gpt': if not os.path.exists(TRAIN_VOCAB): write_vocab(build_vocab(splits=['train'], min_count=MIN_COUNT), TRAIN_VOCAB) if not os.path.exists(TRAINVAL_VOCAB): write_vocab(build_vocab(splits=['train', 'val_seen', 'val_unseen'], min_count=0), TRAINVAL_VOCAB) navigable_locs_path += '/navigable_locs.json' print('navigable_locs_path', navigable_locs_path) preprocess_get_pano_states(navigable_locs_path) global nav_graphs if action_space == -1: # load navigable location cache with open(navigable_locs_path, 'r') as f: nav_graphs = json.load(f) print('Parameters: ') print(json.dumps(params, indent=2)) if is_train: with open(SNAPSHOT_DIR+'params.json', 'w') as fp: json.dump(params, fp) def test_submission(): ''' Train on combined training and validation sets, and generate test submission. ''' # TODO: think how to add pretraining here setup() # Create a batch training environment that will also preprocess text if use_bert: tok = SplitTokenizer(0, MAX_INPUT_LENGTH) else: vocab = read_vocab(TRAINVAL_VOCAB) tok = Tokenizer(vocab=vocab, encoding_length=MAX_INPUT_LENGTH) feature_store = Feature(features, panoramic) # jolin train_env = R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, batch_size=batch_size, splits= submit_splits, tokenizer=tok, att_ctx_merge=att_ctx_merge) #, subgoal train_Eval = Evaluation(train_splits, encoder_type) #, subgoal) # jolin: add Evaluation() for reward calculation # Build models and train # enc_hidden_size = hidden_size // 2 if bidirectional else hidden_size if encoder_type == 'bert': encoder = BertEncoder(hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm).to(device) elif encoder_type == 'gpt': encoder = GptEncoder(hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm).to(device) elif encoder_type == 'transformer': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiTransformerEncoder(len(vocab), transformer_emb_size, padding_idx, dropout_ratio, multi_share, pretrain_n_sentences, glove, heads, transformer_d_ff, hidden_size, num_layers=transformer_num_layers).to(device) else: assert not use_glove encoder = TransformerEncoder(len(vocab), transformer_emb_size, padding_idx, dropout_ratio, glove, heads, transformer_d_ff, hidden_size, num_layers=transformer_num_layers).to(device) else: if att_ctx_merge in ['mean','cat','max','sum']: encoder = EncoderMultiLSTM(len(vocab), word_embedding_size, enc_hidden_size, hidden_size, padding_idx, dropout_ratio, multi_share, pretrain_n_sentences, glove, encoder_params, bidirectional=bidirectional).to(device) else: encoder = EncoderLSTM(len(vocab), word_embedding_size, enc_hidden_size, hidden_size, padding_idx, dropout_ratio, glove=glove, bidirectional=bidirectional).to(device) decoder = AttnDecoderLSTM(Seq2SeqAgent.n_inputs(), Seq2SeqAgent.n_outputs(), action_embedding_size, ctx_hidden_size, hidden_size, dropout_ratio, FEATURE_SIZE, panoramic, action_space, ctrl_feature, ctrl_f_net, att_ctx_merge, ctx_dropout_ratio, decoder_params).to(device) if att_ctx_merge in ['mean','cat','max','sum']: encoder.set_n_sentences(3) train(train_env, finetunes, train_Eval, encoder, 3, decoder, monotonic, n_iters, None, -1) # Generate test submission test_env = R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, batch_size=batch_size, splits=['test'], tokenizer=tok, att_ctx_merge=att_ctx_merge) # , subgoal agent = Seq2SeqAgent(test_env, "", encoder, decoder,'resume', aux_ratio, decoder_init, agent_params, monotonic=monotonic, episode_len=max_episode_len) # , subgoal agent.results_path = '%s%s_%s_iter_%d.json' % (RESULT_DIR, model_prefix, 'test', 20000) agent.test(use_dropout=False, feedback='argmax', beam_size=beam_size) agent.write_results(dump_result) def train_val(n_iters_resume=0): ''' Train on the training set, and validate on seen and unseen splits. ''' global n_iters_pretrain_resume setup() # Create a batch training environment that will also preprocess text if use_bert: tok = SplitTokenizer(0, MAX_INPUT_LENGTH) else: vocab = read_vocab(TRAIN_VOCAB) tok = Tokenizer(vocab=vocab, encoding_length=MAX_INPUT_LENGTH) feature_store = Feature(features, panoramic) # Build models and train #enc_hidden_size = hidden_size // 2 if bidirectional else hidden_size if encoder_type == 'vlbert': if att_ctx_merge in ['mean','cat','max','sum']: if pretrain_model_name is not None: #encoder = MultiAddLoadEncoder(FEATURE_ALL_SIZE, enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers,reverse_input, top_lstm, multi_share, pretrain_n_sentences, vl_layers, pretrain_lm_model_path + pretrain_model_name, bert_type) encoder = MultiVilAddEncoder(FEATURE_ALL_SIZE, enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers,reverse_input, top_lstm, multi_share, pretrain_n_sentences, vl_layers, bert_type) encoder.load_state_dict(torch.load(pretrain_lm_model_path + pretrain_model_name)) else: encoder = MultiVilAddEncoder(FEATURE_ALL_SIZE, enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers,reverse_input, top_lstm, multi_share, pretrain_n_sentences, vl_layers, bert_type) else: if pretrain_model_name is not None: print("Using the pretrained lm model from %s" %(pretrain_model_name)) encoder = torch.load(pretrain_lm_model_path + pretrain_model_name) encoder.dropout_ratio = dropout_ratio encoder.drop = nn.Dropout(p=dropout_ratio) encoder.update = transformer_update encoder.reverse_input = reverse_input encoder.top_lstm = top_lstm encoder.pretrain = False else: #encoder = BertAddEncoder(FEATURE_ALL_SIZE,enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, vl_layers,bert_type) encoder = BertImgEncoder(FEATURE_ALL_SIZE,enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm,bert_type) #encoder = VicEncoder(FEATURE_ALL_SIZE,enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, False,bert_type) encoder.pretrain = False elif encoder_type == 'bert': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiBertEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, multi_share, pretrain_n_sentences, bert_type).to(device) else: if pretrain_model_name is not None: encoder = HugLangEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, bert_type).to(device) print("Using the pretrained lm model from %s" %(pretrain_model_name)) premodel = BertForMaskedLM.from_pretrained(pretrain_model_name) encoder.bert = premodel.bert else: encoder = BertEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, bert_type).to(device) elif encoder_type=='gpt': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiGptEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, multi_share, pretrain_n_sentences).to(device) else: encoder = GptEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm).to(device) elif encoder_type == 'transformer': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiTransformerEncoder(len(vocab), transformer_emb_size, padding_idx, dropout_ratio, multi_share, pretrain_n_sentences, glove, heads, transformer_d_ff, enc_hidden_size, hidden_size, top_lstm, bidirectional, num_layers=transformer_num_layers).to(device) else: assert not use_glove encoder = TransformerEncoder(len(vocab), transformer_emb_size, padding_idx, dropout_ratio, glove, heads, transformer_d_ff, enc_hidden_size, hidden_size, top_lstm, bidirectional, num_layers=transformer_num_layers).to(device) else: if att_ctx_merge in ['mean','cat','max','sum']: encoder = EncoderMultiLSTM(len(vocab), word_embedding_size, enc_hidden_size, hidden_size, padding_idx, dropout_ratio, multi_share, pretrain_n_sentences, glove, encoder_params, bidirectional=bidirectional).to(device) else: encoder = EncoderLSTM(len(vocab), word_embedding_size, enc_hidden_size, hidden_size, padding_idx, dropout_ratio, glove=glove, bidirectional=bidirectional).to(device) decoder = AttnDecoderLSTM(Seq2SeqAgent.n_inputs(), Seq2SeqAgent.n_outputs(), action_embedding_size, ctx_hidden_size, hidden_size, dropout_ratio, FEATURE_SIZE, panoramic, action_space, ctrl_feature, ctrl_f_net, att_ctx_merge, ctx_dropout_ratio, decoder_params).to(device) if pretrain_decoder_name is not None: decoder.load_state_dict(torch.load(pretrain_lm_model_path + pretrain_decoder_name)) #envs = EnvBatch(feature_store=feature_store, batch_size=batch_size) #if torch.cuda.device_count() > 1: # encoder = CustomDataParallel(encoder) # decoder = CustomDataParallel(decoder) encoder.cuda() decoder.cuda() # Create validation environments val_envs = {split: (R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, batch_size=batch_size, splits=[split], tokenizer=tok, att_ctx_merge=att_ctx_merge), Evaluation([split], encoder_type)) for split in val_splits} # subgoal # Create training env train_env = R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, batch_size=batch_size, splits=train_splits, tokenizer=tok, att_ctx_merge=att_ctx_merge) train_Eval = Evaluation(train_splits, encoder_type)# jolin: add Evaluation() for reward calculation finetunes = None # Create pretraining env resume_splits = train_env.splits resume_splits_array = [] cur_splits_array = [] last_train_iters = -1 if use_pretrain: print('Pretraining Step') pretrain_env = R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, batch_size=batch_size, splits=pretrain_splits, tokenizer=tok, att_ctx_merge=att_ctx_merge, min_n_sentences=pretrain_n_sentences) # pre-trained scheduled sampling if (agent_params['schedule_ratio'] > 0 and agent_params['schedule_ratio'] < 1.0) and ss_n_pretrain_iters > 0: print('Pretraining with Scheduled Sampling, sampling ratio %.1f' % (agent_params['schedule_ratio'])) #cur_splits_array = pretrain_env.splits cur_splits_array = ['ss', 'pretrain'] #best_model_ss_pretrain_iter = train(pretrain_env, None, encoder, decoder, None, ss_n_iters, pretrain_env.splits, pretrain_score_name, -1, log_every, val_envs=val_envs, n_iters_resume=n_iters_pretrain_resume) best_model_ss_pretrain_iter = train(pretrain_env, None, None, encoder, decoder, None, ss_n_pretrain_iters, resume_splits_array, cur_splits_array, pretrain_score_name, last_train_iters, log_every, val_envs=val_envs, n_iters_resume=n_iters_pretrain_resume,warmup_iters=warmup_iters) n_iters_pretrain_resume = best_model_ss_pretrain_iter agent_params['schedule_ratio'] = -1.0 print('Changing to %s Pretraining with the best model at iteration %d' % (feedback_method, n_iters_pretrain_resume)) resume_splits_array = ['ss', 'pretrain'] last_train_iters = ss_n_pretrain_iters if train_in_pretrain: # training; may need to cancel training for pre-train cur_splits_array = ['pretrain'] n_iters_resume = train(pretrain_env, None, None, encoder, decoder, None, pretrain_n_iters, resume_splits_array, cur_splits_array, #pretrain_env.splits, pretrain_score_name, last_train_iters, val_envs=val_envs, n_iters_resume=n_iters_pretrain_resume,warmup_iters=warmup_iters) resume_splits = pretrain_splits resume_splits_array = ['pretrain'] last_train_iters = pretrain_n_iters else: print('Skip Train in pre-training!') n_iters_resume = n_iters_pretrain_resume resume_splits_array = ['ss', 'pretrain'] # agent_params['schedule_ratio'] = params['schedule_ratio'] agent_params['schedule_ratio'] = params['schedule_ratio'] else: if n_iters_resume>0: # use train splits pass elif n_iters_pretrain_resume>0: print('Skip pretraining but use pretrained model') n_iters_resume = n_iters_pretrain_resume resume_splits = pretrain_splits agent_params['schedule_ratio'] = params['schedule_ratio'] if att_ctx_merge in ['mean','cat','max','sum']: encoder.set_n_sentences(3) print('Training Step') # scheduled sampling if 0 < agent_params['schedule_ratio'] < 1.0 and ss_n_iters > 0: print('Training with Scheduled Sampling, sampling ratio %.1f' % (agent_params['schedule_ratio'])) # train_splits_array = resume_splits #resume_splits_array = ['pretrain'] cur_splits_array = ['ss', 'train'] best_model_ss_iter = train(train_env, finetunes, train_Eval, encoder, decoder, monotonic, ss_n_iters, resume_splits_array, cur_splits_array, #resume_splits, train_score_name, last_train_iters if use_pretrain else -1, val_envs=val_envs, n_iters_resume=n_iters_resume,warmup_iters=warmup_iters) n_iters_resume = best_model_ss_iter agent_params['schedule_ratio'] = -1.0 print('Changing to %s training with the best model at iteration %d' % (feedback_method, n_iters_resume)) resume_splits_array = ['ss', 'train'] last_train_iters = ss_n_iters # training #resume_splits_array = ['ss', 'train'] cur_splits_array = ['train'] best_model_iter = train(train_env, finetunes, train_Eval, encoder, decoder, monotonic, n_iters, resume_splits_array, cur_splits_array, #resume_splits, train_score_name, last_train_iters if use_pretrain else -1, val_envs=val_envs, n_iters_resume=n_iters_resume,warmup_iters=warmup_iters) print("The best model iter is %d" % (best_model_iter)) return best_model_iter def load_test(n_iters_resume): setup() # Create a batch training environment that will also preprocess text if use_bert: tok = SplitTokenizer(0, MAX_INPUT_LENGTH) else: vocab = read_vocab(TRAIN_VOCAB) tok = Tokenizer(vocab=vocab, encoding_length=MAX_INPUT_LENGTH) feature_store = Feature(features, panoramic) # jolin #envs = EnvBatch(feature_store=feature_store, batch_size=batch_size, beam_size=beam_size) train_env = R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, beam_size, batch_size=batch_size, splits=train_splits, tokenizer=tok, att_ctx_merge=att_ctx_merge) # , subgoal # Creat validation environments val_envs = {split: (R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, beam_size, batch_size=batch_size, splits=[split], tokenizer=tok, att_ctx_merge=att_ctx_merge), Evaluation([split], encoder_type)) for split in val_splits} # , subgoal # Build models and train # enc_hidden_size = hidden_size // 2 if bidirectional else hidden_size if encoder_type =='bert': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiBertEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, multi_share, pretrain_n_sentences, bert_type).to(device) else: encoder = BertEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, bert_type).to(device) #encoder = BertEncoder(hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm).to(device) elif encoder_type == 'gpt': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiGptEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm, multi_share, pretrain_n_sentences).to(device) else: encoder = GptEncoder(enc_hidden_size, hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm).to(device) #encoder = GptEncoder(hidden_size, dropout_ratio, bidirectional, transformer_update, bert_n_layers, reverse_input, top_lstm).to(device) elif encoder_type == 'transformer': if att_ctx_merge in ['mean','cat','max','sum']: encoder = MultiTransformerEncoder(len(vocab), transformer_emb_size, padding_idx, dropout_ratio, multi_share, 3, glove, heads, transformer_d_ff, hidden_size, num_layers=transformer_num_layers).to(device) else: assert not use_glove encoder = TransformerEncoder(len(vocab), transformer_emb_size, padding_idx, dropout_ratio, glove, heads, transformer_d_ff, hidden_size, num_layers=transformer_num_layers).to(device) else: if att_ctx_merge in ['mean','cat','max','sum']: encoder = EncoderMultiLSTM(len(vocab), word_embedding_size, enc_hidden_size, hidden_size, padding_idx, dropout_ratio, multi_share, 3, glove, encoder_params, bidirectional=bidirectional).to(device) else: encoder = EncoderLSTM(len(vocab), word_embedding_size, enc_hidden_size, hidden_size, padding_idx, dropout_ratio, glove=glove, bidirectional=bidirectional).to(device) decoder = AttnDecoderLSTM(Seq2SeqAgent.n_inputs(), Seq2SeqAgent.n_outputs(), action_embedding_size, ctx_hidden_size, hidden_size, dropout_ratio, FEATURE_SIZE, panoramic, action_space, ctrl_feature, ctrl_f_net, att_ctx_merge, ctx_dropout_ratio, decoder_params).to(device) agent = Seq2SeqAgent(train_env, "", encoder, decoder, 'resume', aux_ratio, decoder_init, agent_params, monotonic, max_episode_len, state_factored=state_factored) # , subgoal #split_string = "-".join(train_splits) cur_split_arr = ['train'] split_string = "-".join(cur_split_arr) #enc_path = '%s%s_%s_enc_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, n_iters_resume) #dec_path = '%s%s_%s_dec_iter_%d' % (SNAPSHOT_DIR, model_prefix, split_string, n_iters_resume) enc_path = '%s%s_%s_enc_iter_%d' % (pretrain_model_path, model_prefix, split_string, n_iters_resume) dec_path = '%s%s_%s_dec_iter_%d' % (pretrain_model_path, model_prefix, split_string, n_iters_resume) agent.load(enc_path, dec_path) ###############################load speaker################################# if use_speaker: print('Loading speaker for inference...') from collections import namedtuple SpeakerArgs = namedtuple('SpeakerArgs',['use_train_subset', 'n_iters', 'no_save','result_dir','snapshot_dir','plot_dir','seed','image_feature_type','image_feature_datasets']) from speaker import train_speaker speaker_args = SpeakerArgs(use_train_subset=False, n_iters=20000,no_save=False,result_dir=train_speaker.RESULT_DIR, snapshot_dir=train_speaker.SNAPSHOT_DIR, plot_dir=train_speaker.PLOT_DIR,seed=10,image_feature_datasets=['imagenet'],image_feature_type=['mean_pooled']) speaker, _, _ = train_speaker.train_setup(speaker_args) load_args = {'map_location':device} speaker.load(speaker_prefix, **load_args) print('Speaker loaded') else: speaker = None ############################################################################ loss_str, data_log = '', defaultdict(list) for env_name, (env, evaluator) in val_envs.items(): json_path = '%s%s_%s_iter_%d.json' % (RESULT_DIR, model_prefix, env_name, n_iters_resume) score_summary, env_loss_str, data_log = test_env(env_name, env, evaluator, agent, json_path, feedback_method, data_log, beam_size, speaker) loss_str += env_loss_str print('Result of Iteration ', n_iters_resume) print('\n'.join([str((k, round(v[0], 4))) for k, v in sorted(data_log.items())])) print('=========================================================') if hasattr(encoder, 'n_sentences') and single_sentence_test: encoder.set_n_sentences(1) print('====Additional test for single instruction performance============') # Creat validation environments val_envs = {split: ( R2RBatch(feature_store, nav_graphs, panoramic, action_space, ctrl_feature, encoder_type, beam_size=beam_size, batch_size=batch_size, splits=[split], tokenizer=tok, att_ctx_merge='Eval'), Evaluation([split], encoder_type)) for split in val_splits if split!='test'} # , subgoal loss_str, data_log = '', defaultdict(list) for env_name, (env, evaluator) in val_envs.items(): json_path = '%s%s_%s_iter_%d_add.json' % (RESULT_DIR, model_prefix, env_name, n_iters_resume) score_summary, env_loss_str, data_log = test_env(env_name, env, evaluator, agent, json_path, feedback_method, data_log, beam_size) loss_str += env_loss_str print('Result of Iteration ', n_iters_resume) print('\n'.join([str((k, round(v[0], 4))) for k, v in sorted(data_log.items())])) print('====Additional test for single instruction performance finished===') def test_env(env_name, env, evaluator, agent, results_path, feedback, data_log, beam_size, speaker=None): save_env = agent.env # for restore save_results_path = agent.results_path # for restore agent.env = env agent.results_path = results_path env_loss_str = "" """ if env_name!='test' and beam_size==1: # Get validation loss under the same conditions as training agent.test(use_dropout=True, feedback=feedback, allow_cheat=True, beam_size=beam_size, successors=successors, speaker=(None, None, None, None)) val_losses = np.array(agent.losses) val_loss_avg = np.average(val_losses) data_log['%s loss' % env_name].append(val_loss_avg) if ctrl_feature: if agent.decoder.ctrl_feature: val_losses_ctrl_f = np.array(agent.losses_ctrl_f) val_loss_ctrl_f_avg = np.average(val_losses_ctrl_f) data_log['%s loss_ctrl_f' % env_name].append(val_loss_ctrl_f_avg) else: data_log['%s loss_ctrl_f' % env_name].append(0.) """ # Get validation distance from goal under test evaluation conditions agent.test(use_dropout=False, feedback='argmax', beam_size=beam_size, successors=successors, speaker=(speaker,speaker_weight,speaker_merge,evaluator)) output = agent.write_results(dump_result) score_summary = None if env_name!='test': if dump_result: score_summary, _ = evaluator.score(agent.results_path) else: score_summary, _ = evaluator.score_output(output) if beam_size == 1: #env_loss_str += ', %s loss: %.4f' % (env_name, val_loss_avg) if ctrl_feature: if agent.decoder.ctrl_feature: env_loss_str += ', %s loss_ctrl_f: %.4f' % (env_name, val_loss_ctrl_f_avg) for metric, val in score_summary.items(): data_log['%s %s' % (env_name, metric)].append(val) if metric in ['success_rate','spl']: env_loss_str += ', %s: %.3f' % (metric, val) # restore agent.env = save_env agent.results_path = save_results_path return score_summary, env_loss_str, data_log if is_train: assert beam_size==1 N_ITERS_RESUME = train_val(N_ITERS_RESUME) # resume from iter else: load_test(N_ITERS_RESUME) # test iter # test_submission()
ee853b1f9ace43cba6d45251c3e5f56064033d04
a7d497669dc91e6432216145a550755d42f6bb69
/src/cogent3/util/transform.py
e6859405cf90f5a8c193163b7ae0393da4be8a4f
[ "BSD-3-Clause" ]
permissive
jbw900/cogent3
8887ee4b8be02a2086ad8d6fcaa54afe462baee5
9168c9b86d851992d008c8f730a5516b89aef835
refs/heads/master
2020-09-10T19:19:36.443143
2019-11-14T23:48:34
2019-11-14T23:48:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,677
py
#!/usr/bin/env python """Provides transformations of functions and other objects. Includes: Standard combinatorial higher-order functions adapted from David Mertz (2003), "Text Processing in Python", Chapter 1. Functions for performing complex tests on strings, e.g. includes_any or includes_all. Functions for generating combinations, permutations, or cartesian products of lists. """ __author__ = "Sandra Smit" __copyright__ = "Copyright 2007-2019, The Cogent Project" __credits__ = ["Sandra Smit", "Rob Knight", "Zongzhi Liu"] __license__ = "BSD-3" __version__ = "2019.10.24a" __maintainer__ = "Sandra Smit" __email__ = "[email protected]" __status__ = "Production" maketrans = str.maketrans # standard combinatorial HOF's from Mertz def per_shortest(total, x, y): """Divides total by min(len(x), len(y)). Useful for normalizing per-item results from sequences that are zipped together. Always returns 0 if one of the sequences is empty (to avoid divide by zero error). """ shortest = min(len(x), len(y)) if not shortest: return 0 else: return total / shortest def per_longest(total, x, y): """Divides total by max(len(x), len(y)). Useful for normalizing per-item results from sequences that are zipped together. Always returns 0 if one of the sequences is empty (to avoid divide by zero error). """ longest = max(len(x), len(y)) if not longest: return 0 else: return total / longest class for_seq(object): """Returns function that applies f(i,j) to i,j in zip(first, second). f: f(i,j) applying to elements of the sequence. aggregator: method to reduce the list of results to a scalar. Default: sum. normalizer: f(total, i, j) that normalizes the total as a function of i and j. Default is length_normalizer (divides by the length of the shorter of i and j). If normalizer is None, no normalization is performed. Will always truncate to length of the shorter sequence (because of the use of zip). """ def __init__(self, f, aggregator=sum, normalizer=per_shortest): self.f = f self.aggregator = aggregator self.normalizer = normalizer def __call__(self, first, second): f = self.f if self.normalizer is None: return self.aggregator([f(i, j) for i, j in zip(first, second)]) else: return self.normalizer( self.aggregator([f(i, j) for i, j in zip(first, second)]), first, second ) # convenience functions for modifying objects class KeepChars(object): """Returns a filter object o(s): call to return a filtered string. Specifically, strips out everything in s that is not in keep. This filter is case sensitive by default. """ allchars = bytes(range(256)) def __init__(self, keep, case_sens=True): """Returns a new KeepChars object, based on string keep""" if not case_sens: low = keep.lower() up = keep.upper() keep = low + up keep = keep.encode("utf-8") self._strip_table = dict([(c, None) for c in self.allchars if c not in keep]) def __call__(self, s): """f(s) -> s, translates using self.allchars and self.delchars""" if s is None: raise TypeError if isinstance(s, bytes): s = s.decode("utf8") s = str(s) return s.translate(self._strip_table) def first_index_in_set(seq, items): """Returns index of first occurrence of any of items in seq, or None.""" for i, s in enumerate(seq): if s in items: return i
2ed208d6f7e98069fb6da757364000b2bbd9ed4e
6b3cccf29a604cf6e433bf411f71c9f2692e1c93
/openapi_core/schema/schemas/unmarshallers.py
b3d0ece1a8b9e32093802a0be93761dfc1ecadd3
[ "BSD-3-Clause" ]
permissive
srgkm/openapi-core
d826f942fb4551e4d7193e4cb7c156a48c2feb0b
4b712cb2b5d045166cecce89ca9e47eb3da5163f
refs/heads/master
2020-12-13T21:16:23.803664
2020-01-13T10:43:32
2020-01-13T10:43:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,844
py
from six import text_type, binary_type, integer_types from openapi_core.schema.schemas.enums import SchemaFormat, SchemaType from openapi_core.schema.schemas.exceptions import ( InvalidCustomFormatSchemaValue, UnmarshallerStrictTypeError, FormatterNotFoundError, ) from openapi_core.schema.schemas.util import ( forcebool, format_date, format_datetime, format_byte, format_uuid, format_number, ) class StrictUnmarshaller(object): STRICT_TYPES = () def __call__(self, value, type_format=SchemaFormat.NONE, strict=True): if self.STRICT_TYPES and strict and not isinstance( value, self.STRICT_TYPES): raise UnmarshallerStrictTypeError(value, self.STRICT_TYPES) return value class PrimitiveTypeUnmarshaller(StrictUnmarshaller): FORMATTERS = { SchemaFormat.NONE: lambda x: x, } def __init__(self, custom_formatters=None): if custom_formatters is None: custom_formatters = {} self.custom_formatters = custom_formatters def __call__(self, value, type_format=SchemaFormat.NONE, strict=True): value = super(PrimitiveTypeUnmarshaller, self).__call__( value, type_format=type_format, strict=strict) try: schema_format = SchemaFormat(type_format) except ValueError: formatter = self.custom_formatters.get(type_format) else: formatters = self.get_formatters() formatter = formatters.get(schema_format) if formatter is None: raise FormatterNotFoundError(value, type_format) try: return formatter(value) except ValueError as exc: raise InvalidCustomFormatSchemaValue(value, type_format, exc) def get_formatters(self): return self.FORMATTERS class StringUnmarshaller(PrimitiveTypeUnmarshaller): STRICT_TYPES = (text_type, binary_type) FORMATTERS = { SchemaFormat.NONE: text_type, SchemaFormat.PASSWORD: text_type, SchemaFormat.DATE: format_date, SchemaFormat.DATETIME: format_datetime, SchemaFormat.BINARY: binary_type, SchemaFormat.UUID: format_uuid, SchemaFormat.BYTE: format_byte, } class IntegerUnmarshaller(PrimitiveTypeUnmarshaller): STRICT_TYPES = integer_types FORMATTERS = { SchemaFormat.NONE: int, SchemaFormat.INT32: int, SchemaFormat.INT64: int, } class NumberUnmarshaller(PrimitiveTypeUnmarshaller): STRICT_TYPES = (float, ) + integer_types FORMATTERS = { SchemaFormat.NONE: format_number, SchemaFormat.FLOAT: float, SchemaFormat.DOUBLE: float, } class BooleanUnmarshaller(PrimitiveTypeUnmarshaller): STRICT_TYPES = (bool, ) FORMATTERS = { SchemaFormat.NONE: forcebool, }
748aab2283fd79854e093608d29d48ce9b13ead4
53c91272444bfab92e7e89e0358047b27eab1125
/03.代码/豆瓣评论/scrapydouban/scrapydouban/middlewares.py
61c53041598417f8298ce947bccbc3bfded65d56
[]
no_license
MrFiona/python_module_summary
2bbf9f30e0fbfe302e7e6c429754fa7bf4bfc411
4e36f6f5f6abed10fc06b16b0ed7c12cde7746d0
refs/heads/master
2021-01-20T03:54:38.105298
2019-01-07T07:28:36
2019-01-07T07:28:36
101,373,212
2
0
null
2018-04-15T05:56:45
2017-08-25T06:28:52
Jupyter Notebook
UTF-8
Python
false
false
1,886
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # http://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class ScrapydoubanSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
fa6323760616793f168150c475710ec0666cf457
8b441f592a6deb9b0a515cbd92bb4663ad79ffe4
/churn/delivery/old/churn_delivery_log_time.py
3b110eaa1ce83e7b40343bb350296743681d4009
[]
no_license
carnaum2/use-cases
0d391a6a10bb70b60a4025152a278b0e4c595d01
24920e3828234da691ab643b6dd9a0aa0a5c0df5
refs/heads/master
2022-12-07T03:41:34.299274
2020-09-07T10:20:32
2020-09-07T10:20:32
293,249,567
0
0
null
null
null
null
UTF-8
Python
false
false
23,726
py
# coding: utf-8 import sys import datetime as dt import os logger = None from pyspark.sql.functions import size, coalesce, col, lit, collect_list, udf, when, desc from pyspark.sql.utils import AnalysisException def set_paths_and_logger(): ''' :return: ''' import sys, os, re pathname = os.path.dirname(sys.argv[0]) # abs path to file (not included) print(pathname) if pathname.startswith("/var/SP/data/bdpmdses/deliveries_churn/"): import re root_dir = re.match("^(.*)use-cases(.*)", "/var/SP/data/bdpmdses/deliveries_churn/version1/use-cases/churn/delivery").group(1) #from churn.utils.constants import CHURN_DELIVERIES_DIR #root_dir = CHURN_DELIVERIES_DIR else: root_dir = re.match("(.*)use-cases/churn(.*)", pathname).group(1) print("Detected '{}' as root dir".format(root_dir)) if root_dir not in sys.path: sys.path.append(root_dir) print("Added '{}' to path".format(root_dir)) mypath = os.path.join(root_dir, "use-cases") if mypath not in sys.path: sys.path.append(mypath) print("Added '{}' to path".format(mypath)) mypath = os.path.join(root_dir, "amdocs_informational_dataset") if mypath not in sys.path: sys.path.insert(0, mypath) print("Added '{}' to path".format(mypath)) import pykhaos.utils.custom_logger as clogger logging_file = os.path.join(os.environ.get('BDA_USER_HOME', ''), "logging", "churn_delivery_log_time_" + dt.datetime.now().strftime("%Y%m%d_%H%M%S") + ".log") logger = clogger.configure_logger(log_filename=logging_file, std_channel=sys.stderr, logger_name="") logger.info("Logging to file {}".format(logging_file)) import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) return logger def set_training_cycles(spark,closing_day, segmentfilter): # Check if there are some previous tr_cycle_ from churn.datapreparation.general.model_outputs_manager import get_training_dates existing_models = get_training_dates(spark, closing_day, segmentfilter) if not existing_models: if logger: logger.info( "tr_cycle_ini and tr_cycle_end were not specified by user and there are not computed scores. They'll by computed automatically using horizon={}....".format( horizon)) from pykhaos.utils.date_functions import move_date_n_cycles import datetime today_str = datetime.datetime.today().strftime("%Y%m%d") tr_cycle_ini = move_date_n_cycles(today_str, n=-( horizon + 1)) # first: go to the closest cycle (-1); then, move backwards 8 cycles = -9 tr_cycle_end = tr_cycle_ini else: training_closing_date = existing_models[0]["training_closing_date"] tr_cycle_ini = training_closing_date[:8] tr_cycle_end = training_closing_date[10:] if logger: logger.info( "tr_cycle_ini and tr_cycle_end were not specified by user but we found some previous scores with tr_ini={} tr_end={".format( tr_cycle_ini, tr_cycle_end)) # FIXME falta comprobar que cumplen con el horizon return tr_cycle_ini, tr_cycle_end if __name__ == "__main__": os.environ["SPARK_HOME"] = "/opt/cloudera/parcels/SPARK2/lib/spark2" os.environ["HADOOP_CONF_DIR"] = "/opt/cloudera/parcels/SPARK2/lib/spark2/conf/yarn-conf" logger = set_paths_and_logger() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # ARGPARSE # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - import argparse parser = argparse.ArgumentParser( description="Run churn_delivery XXXXXXXX -c YYYYMMDD", epilog='Please report bugs and issues to Cristina <[email protected]>') parser.add_argument('-c', '--closing_day', metavar='<YYYYMMDD>', type=str, required=True, help='Closing day YYYYMMDD (same used for the car generation)') parser.add_argument('-s', '--starting_day', metavar='<YYYYMMDD>', type=str, required=False, help='starting day for car') parser.add_argument('--tr_ini', metavar='<YYYYMMDD>', type=str, required=False, help='starting day for training cycle. If not specified, the script compute it automatically') parser.add_argument('--tr_end', metavar='<YYYYMMDD>', type=str, required=False, help='ending day for training cycle. If not specified, the script compute it automatically') parser.add_argument('--check', action='store_true', help='Run the checks. Not compatible with delivery argument') parser.add_argument('--delivery', action='store_true', help='Run the delivery. Not compatible with check argument') parser.add_argument('-v', '--version', metavar='<VERSION>', type=str, required=False, help='Version for metadata table. Default: no version') parser.add_argument('--horizon', metavar='<integer>', type=int, required=False, default=8, help='prediction horizon') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # INPUT # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - args = parser.parse_args() print(args) closing_day = args.closing_day.split(" ")[0] starting_day = args.starting_day tr_cycle_ini = args.tr_ini tr_cycle_end = args.tr_end check = args.check delivery = args.delivery metadata_version = args.version horizon = args.horizon from pykhaos.utils.date_functions import move_date_n_cycles, move_date_n_days if delivery == check: if logger: logger.critical("Invalid input parameters: delivery={} check={}".format(delivery, check)) sys.exit() if not closing_day: print("Closing day is a required argument") sys.exit() if not starting_day: print("starting_day will be computed automatically as: closing_day - 4 cycles") starting_day = move_date_n_days(move_date_n_cycles(closing_day, n=-4), n=1) else: starting_day = starting_day.split(" ")[0] if not metadata_version: metadata_version = "1.1" if not tr_cycle_ini and tr_cycle_end: if logger: logger.critical("If tr_cycle_end is specified, tr_cycle_ini must be specified. Program will finish here!") sys.exit() elif tr_cycle_ini and not tr_cycle_end: if logger: logger.critical("If tr_cycle_ini is specified, tr_cycle_end must be specified. Program will finish here!") sys.exit() elif tr_cycle_ini and tr_cycle_end: tr_cycle_ini =tr_cycle_ini.split(" ")[0] tr_cycle_end = tr_cycle_end.split(" ")[0] # check input values if tr_cycle_ini < tr_cycle_end: if logger: logger.critical("tr_ini must be <= than tr_end. Program will finish here!") sys.exit() from pykhaos.utils.date_functions import move_date_n_cycles, count_nb_cycles today_str = dt.datetime.today().strftime("%Y%m%d") if count_nb_cycles(tr_cycle_end, closing_day) < horizon: if logger: logger.critical("tr_end ({}) must be > horizon ({}). ".format(tr_cycle_end, horizon)) if logger: logger.critical(" Hint: tr_end={} could be a valid value for a horizon={}".format(move_date_n_cycles(today_str, n=-(horizon+1)), horizon)) if logger: logger.critical("Program will finish here!") sys.exit() CLOSING_DAY = closing_day from pykhaos.utils.date_functions import move_date_n_cycles prev_closing_day = move_date_n_cycles(CLOSING_DAY, n=-1) if logger: logger.info("") if logger: logger.info("") if logger: logger.info("") if logger: logger.info("") if logger: logger.info("- - - - - - - - - - - - - - - - - - - - - - - - ") if logger: logger.info("Input params:") if logger: logger.info(" closing_day='{}'".format(CLOSING_DAY)) if logger: logger.info(" starting_day='{}'".format(starting_day)) if logger: logger.info(" tr_ini_cycle={}".format(tr_cycle_ini)) if logger: logger.info(" tr_end_cycle={}".format(tr_cycle_end)) if logger: logger.info(" metadata_version='{}'".format(metadata_version)) if logger: logger.info(" delivery={}".format(delivery)) if logger: logger.info(" check={}".format(check)) if logger: logger.info("- - - - - - - - - - - - - - - - - - - - - - - - ") if logger: logger.info("") if logger: logger.info("") if logger: logger.info("") if logger: logger.info("") from churn.delivery.time_logger import TimeLogger time_logger = TimeLogger(process_name="churn_delivery_{}".format(closing_day)) from churn.utils.general_functions import init_spark spark = init_spark("churn_delivery") sc = spark.sparkContext from pykhaos.utils.scala_wrapper import get_scala_sc scala_sc = get_scala_sc(spark) from churn.delivery.checkers_class import check_car, check_car_preparado, check_extra_feats, check_sql, \ check_scores_new, check_join_car, check_levers_model from churn.delivery.printers_class import format_table_msg, format_table_msg import time start_time_total = time.time() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # CHECK SECTION # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if logger: logger.info("Entering check section... \n") from churn.delivery.checkers_class import checker, check_join_car, check_extra_feats, check_scores_new, \ check_levers_model, check_car, check_car_preparado, check_delivery_file from churn.delivery.printers_class import * # print_msg, format_modules_msg, SECTION_CAR, format_table_msg from functools import partial checker_car_obj = checker(spark, partial(check_car, spark, closing_day), partial(format_modules_msg), closing_day, SECTION_CAR) checker_join_prev_car_obj = checker(spark, partial(check_join_car, spark, prev_closing_day), partial(format_table_msg), closing_day, SECTION_JOIN_CAR) checker_extra_feats_obj = checker(spark, partial(check_extra_feats, spark, closing_day), partial(format_modules_msg), closing_day, SECTION_EXTRA_FEATS) checker_prepared_car_obj = checker(spark, partial(check_car_preparado, spark, closing_day), partial(format_table_msg), closing_day, SECTION_CAR_PREPARADO) checker_scores_onlymob_obj = checker(spark, partial(check_scores_new, spark, closing_day, segment="onlymob", tr_cycle_ini=tr_cycle_ini, tr_cycle_end=tr_cycle_end), partial(format_table_msg), closing_day, SECTION_SCORES_NEW + " " + "onlymob") checker_scores_mobileandfbb_obj = checker(spark, partial(check_scores_new, spark, closing_day, segment="mobileandfbb", tr_cycle_ini=tr_cycle_ini, tr_cycle_end=tr_cycle_end), partial(format_table_msg), closing_day, SECTION_SCORES_NEW + " " + "mobileandfbb") checker_dp_levers_obj = checker(spark, partial(check_levers_model, spark, closing_day), partial(format_table_msg), closing_day, SECTION_DP_LEVERS) checker_delivery_file_obj = checker(spark, partial(check_delivery_file, closing_day, tr_cycle_ini, tr_cycle_end, horizon), partial(format_table_msg), closing_day, SECTION_DELIV_FILE) checkers_list = [checker_car_obj, checker_join_prev_car_obj, checker_extra_feats_obj, checker_prepared_car_obj, checker_scores_onlymob_obj, checker_scores_mobileandfbb_obj, checker_dp_levers_obj, checker_delivery_file_obj] if logger: logger.info("\n\n") if logger: logger.info("* " * 30) def run_checker(checkers_list): for checker_obj in checkers_list: checker_obj.check_func() def print_checkers(checkers_list): for checker_obj in checkers_list: checker_obj.print_msg() def check_all_ok(checkers_list): return all([checker_obj.status for checker_obj in checkers_list]) run_checker(checkers_list) print_checkers(checkers_list) message_ok = "\n\nEverything is ready! Enjoy :)" message_ko = "\n\nSome steps were missing :(" if check_all_ok(checkers_list): logger.info(message_ok) else: logger.info(message_ko) if logger: logger.info("\n\n") if logger: logger.info("* " * 30) print(delivery) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # DELIVERY SECTION # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if delivery: if logger: logger.info("Entering delivery section... \n") # . . . . . . # CAR # . . . . . . # car_ok, car_msg, modules_dict = check_car(spark, closing_day, verbose=False) if not checker_car_obj.status: from churn.others.run_amdocs_car import amdocs_car_main_custom amdocs_car_main_custom(closing_day, starting_day, spark, checker_car_obj.extra_info, time_logger) checker_car_obj.check_func() if not checker_car_obj.status: if logger: logger.error("Car step was not finished! Stopping program") if logger: logger.error(checker_car_obj.print_msg()) sys.exit() # . . . . . . # EXTRA FEATS # . . . . . . if not checker_extra_feats_obj.status: from churn.datapreparation.app.generate_table_extra_feats_new import generate_extra_feats, MODULE_JOIN, \ join_dataframes, get_modules_list_by_version include_ef_modules = [mod for mod, doit in checker_extra_feats_obj.extra_info.items() if doit and mod != MODULE_JOIN] print("include_ef_modules {}".format(",".join(include_ef_modules))) generate_extra_feats(spark, closing_day, include_modules=include_ef_modules, metadata_version="1.1", logger=logger, time_logger=time_logger) if checker_extra_feats_obj.extra_info[MODULE_JOIN]: if logger: logger.info("Requested join of extra feats") modules_list = get_modules_list_by_version(metadata_version="1.1") if logger: logger.info("Join will include the following modules: {}".format(modules_list)) join_dataframes(spark, closing_day, metadata_version="1.1", include_modules=modules_list) else: print("do not perform join") checker_extra_feats_obj.check_func() if not checker_extra_feats_obj.status: if logger: logger.error("Extra feats process was not finished! Stopping program") if logger: logger.error(checker_extra_feats_obj.msg) sys.exit() # . . . . . . # JOIN CAR of previous month # . . . . . . if not checker_join_prev_car_obj.status: if logger: logger.error("Join car must exist at this point!! Generating it on the fly....") start_time = time.time() if time_logger: time_logger.register_time(spark, "generateCar", closing_day, start_time, -1) # "select * from tests_es.jvmm_amdocs_ids_" + process_date sql_join_car = sc._jvm.datapreparation.AmdocsCarPreprocessor.generateCar(scala_sc, closing_day) if time_logger: time_logger.register_time(spark, "generateCar", closing_day, start_time, time.time()) # Check if the join of the amdocs car is ready tests_es.db/jvmm_amdocs_ids_20190321;' #join_car_ok, join_car_msg = check_join_car(spark, prev_closing_day, verbose=False) checker_join_prev_car_obj.check_func() if not checker_join_prev_car_obj.status: if logger: logger.error("join_car process was not finished! Stopping program") if logger: logger.error(checker_join_prev_car_obj.msg) sys.exit() # . . . . . . # CAR PREPARADO # . . . . . . if not checker_prepared_car_obj.status: start_time = time.time() if time_logger: time_logger.register_time(spark, "storePreparedFeatures", closing_day, start_time, -1) sql_car_preparado = sc._jvm.datapreparation.AmdocsCarPreprocessor.storePreparedFeatures(scala_sc, closing_day) if time_logger: time_logger.register_time(spark, "storePreparedFeatures", closing_day, start_time, time.time()) checker_prepared_car_obj.check_func(check_sql, spark, sql_car_preparado) if not checker_prepared_car_obj.status: if logger: logger.error("Car preparado process was not finished! Stopping program") if logger: logger.error(checker_prepared_car_obj.msg) sys.exit() # . . . . . . # SCORES ONLYMOB # . . . . . . if not checker_scores_onlymob_obj.status: segmentfilter = "onlymob" if not tr_cycle_ini and not tr_cycle_end and delivery: tr_cycle_ini, tr_cycle_end = set_training_cycles(spark, closing_day, segmentfilter) start_time = time.time() extra_info = "closing_day={}|segmentfilter={}|tr_cycle_ini={}|tr_cycle_end={}".format(closing_day, segmentfilter, tr_cycle_ini, tr_cycle_end) if time_logger: time_logger.register_time(spark, "getModelPredictions_{}".format(segmentfilter), closing_day, start_time, -1, extra_info) sql_onlymob = sc._jvm.modeling.churn.ChurnModelPredictor.getModelPredictions(scala_sc, tr_cycle_ini, tr_cycle_end, closing_day, segmentfilter) if time_logger: time_logger.register_time(spark, "getModelPredictions_{}".format(segmentfilter), closing_day, start_time, time.time(), extra_info) checker_scores_onlymob_obj.check_func(check_sql, spark, sql_onlymob) if not checker_scores_onlymob_obj.status: if logger: logger.error("Scores onlymob process was not finished! Stopping program") if logger: logger.error(checker_scores_onlymob_obj.status) sys.exit() # . . . . . . # SCORES MOBILEANDFBB # . . . . . . if not checker_scores_mobileandfbb_obj.status: segmentfilter = "mobileandfbb" if not tr_cycle_ini and not tr_cycle_end and delivery: tr_cycle_ini, tr_cycle_end = set_training_cycles(spark, closing_day, segmentfilter) extra_info = "closing_day={}|segmentfilter={}|tr_cycle_ini={}|tr_cycle_end={}".format(closing_day, segmentfilter, tr_cycle_ini, tr_cycle_end) start_time = time.time() if time_logger: time_logger.register_time(spark, "getModelPredictions_{}".format(segmentfilter), closing_day, start_time, -1) sql_mobileandfbb = sc._jvm.modeling.churn.ChurnModelPredictor.getModelPredictions(scala_sc, tr_cycle_ini, tr_cycle_end, closing_day, segmentfilter) if time_logger: time_logger.register_time(spark, "getModelPredictions_{}".format(segmentfilter), closing_day, start_time, time.time()) checker_scores_mobileandfbb_obj.check_func(check_sql, spark, sql_mobileandfbb) if not checker_scores_mobileandfbb_obj.status: if logger: logger.error("Scores mobileandfbb process was not finished! Stopping program") if logger: logger.error(checker_scores_mobileandfbb_obj.status) sys.exit() # . . . . . . # DATA PREPARATION - LEVERS MODEL if not checker_dp_levers_obj.status: from churn.datapreparation.app.ccc_data_preparation_main import start_process_config from churn.config_manager.ccc_model_config_mgr import build_config_dict for segment, do_it in checker_dp_levers_obj.extra_info.items(): if not do_it: continue start_time = time.time() if time_logger: time_logger.register_time(spark, "df_levers_{}".format(segment), closing_day, start_time, -1) my_config = build_config_dict(segment, agg_by='msisdn', ccc_days=-60, closing_day=closing_day, enabled=True, end_port='None', labeled=False, model_target='comercial', new_car_version=False, save_car=True, segment_filter=segment, start_port='None') start_process_config(spark, my_config) if time_logger: time_logger.register_time(spark, "df_levers_{}".format(segment), closing_day, start_time, time.time()) checker_dp_levers_obj.check_func() if not checker_dp_levers_obj.status: if logger: logger.error("Data preparation for levers model was not finished! Stopping program") if logger: logger.error(checker_dp_levers_obj.msg) sys.exit() # . . . . . . # FINAL STEP # . . . . . . if check_all_ok(checkers_list[:-1]):#exclude delivery file check if logger: logger.info("Ready to start the latest step of the delivery...") from churn.others.run_churn_delivery_scores_incidences_levers_master import run_delivery start_time = time.time() if time_logger: time_logger.register_time(spark, "run_delivery", closing_day, start_time, -1) from churn.utils.constants import DELIVERY_FILENAME delivery_filename = DELIVERY_FILENAME.format(closing_day, tr_cycle_ini, tr_cycle_end, horizon) run_delivery(spark, closing_day, checker_scores_onlymob_obj.extra_info, checker_scores_mobileandfbb_obj.extra_info, delivery_filename, logger) if logger: logger.info("Finished the latest step of the delivery...") if time_logger: time_logger.register_time(spark, "run_delivery", closing_day, start_time, time.time()) else: if logger: logger.error("something when wrong... please review...") sys.exit() # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # FINISHED # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if logger: logger.info("TOTAL TIME Process finished - {} minutes".format((time.time() - start_time_total) / 60.0)) if logger: logger.info("Process ended successfully. Enjoy :)")
d2b1b651ebf6b8b808ed94202ed67b4c9425c296
e44d00ffcea03f8656c40b3d4d993d51a38af3b0
/leetcode/July/J15_ReverseWords.py
7c56ae8d6499aa463fa5c626d3acfd51ddc0ed3f
[]
no_license
Ayushmanglani/competitive_coding
d6beec4f2b24aef34ea44c3a4a72074985b4a766
12325b09ae2bc6b169578b6a0a091069e14c9227
refs/heads/master
2023-06-12T04:43:41.130774
2021-07-03T13:01:37
2021-07-03T13:01:37
262,079,363
1
0
null
null
null
null
UTF-8
Python
false
false
349
py
class Solution: def reverseWords(self, s: str) -> str: s = s.split() return(" ".join(s[::-1])) #method 2 class Solution: def reverseWords(self, s: str) -> str: s = s.split(" ") s = s[::-1] res = "" for i in s: if i != "": res += i + " " return(res.strip())
b8d73b63c2697f898dd70e716bd7a8aef651e60c
6bd71bdfe9234e5e6de90bb40b6cd8d3e25ca6d2
/Tier3-Data/ViaSRM/copy-files-SRM-2-SRM.py
ff8770089328f651fa01741ca337dc1b036f041c
[]
no_license
andres0sorio/CMSWork
f1f30a12bf43eb688ef9e95c53c94fe32fc7fe66
81e60a0a9b70cd2ae01d17b15be386a6cd925416
refs/heads/master
2021-01-22T13:12:16.094247
2015-10-26T04:47:12
2015-10-26T04:47:12
9,710,836
0
0
null
null
null
null
UTF-8
Python
false
false
1,757
py
#!/usr/bin/python import os,sys import string from optparse import OptionParser # ... # Andres Osorio - [email protected] # ... #----------------------------------------------------- #----------------------------------------------------- parser = OptionParser() parser.add_option("-f", type = "string", dest="infile", help="List of LFNs" ) parser.add_option("-d", type = "string", dest="debug", help="Are you in debug mode?" ) (options, args) = parser.parse_args() if options.infile is None: parser.error("please provide a file") if options.debug is None: parser.error("please, are you in debug mode?") #----------------------------------------------------- #----------------------------------------------------- infile = options.infile debug = options.debug print 'Copying files: ' fh = open(infile) nfiles = 0 #cpmethod = 'srmcp ' #cpopts = '-srm_protocol_version=2 -use_urlcopy_script=true -urlcopy= ${SRM_PATH}/sbin/url-copy.sh -debug' cpmethod = 'lcg-cp ' cpopts = '' #............... TO tprefix = ' srm://moboro.uniandes.edu.co:8446/srm/managerv2\?SFN=/dpm/uniandes.edu.co/home/cms' tdir = '/user/a/aosorio/gridfiles/RAW/Run2011B/L1Accept/' #............... FROM sprefix = ' srm://cmssrm.fnal.gov:8443/srm/managerv2\?SFN=/11' while 1: line = fh.readline() if not line: break lfn = line[8:-3] info = lfn.split('/') filename = info[-1] source = sprefix + lfn target = tprefix + tdir + filename command = cpmethod + cpopts + source + target print command if debug == 'no': os.system(command) nfiles+=1 if debug == 'yes': break print 'Done. Total files: ', (nfiles-1)
9bf77a66acd94e715057b64921810fafc903c148
ce68e6f989ebf72becce3638dc920fc60edec45c
/SWEA/D3/SWEA_2814_최장경로.py
6082630ee9fd834346af54032643eb3679e71238
[]
no_license
hyeinkim1305/Algorithm
103513e502241a619a60e6663ed8346e5c574ebc
93541b01fab0a6ceb6f9dd06a7c049c8b57d94f9
refs/heads/master
2023-05-09T19:07:58.280912
2021-06-10T01:51:29
2021-06-10T01:51:29
330,079,859
0
0
null
null
null
null
UTF-8
Python
false
false
1,221
py
# D3 # 두 정점 사이에 여러 개의 간선 존재? def dfs(idx, cnt): global max_cnt vis[idx] = 1 if cnt > max_cnt: max_cnt = cnt for j in range(1, N+1): if idx != j and adj[idx][j] == 1: if vis[j] == 0: dfs(j, cnt+1) # 아래 줄이 없으면 한번 씩만 방문함 # 아래 줄을 쓰게 되면 각 정점들을 시작점으로 돌 수 있음 vis[idx] = 0 # 두번째 예시에서, 3에서 시작해서 끝까지 가는 경로를 돌게 됨 #### 느낌에, 출발점이 달라질 수 있는 경우 방문배열을 취소하는 듯 T = int(input()) for tc in range(1, T+1): N, M = map(int, input().split()) adj = [[0] * (N+1) for _ in range(N+1)] vis = [0] * (N+1) # 각 정점 방문 배열 max_cnt = -1 # 인접행렬 구성성 for _ in range(M): u, v = map(int, input().split()) adj[u][v] = 1 adj[v][u] = 1 for i in range(1, N+1): # 각 정점에서 시작 if vis[i] == 0: dfs(i, 1) # 1 : 정점 개수수 print('#{} {}'.format(tc, max_cnt)) ''' 2 1 0 3 2 1 2 3 2 ''' ''' 1 6 5 1 2 1 3 2 4 2 5 2 6 '''
4727b92f82d006d2db8a575d76f06b2f66888c5a
09912a852e0e20d6a475ef904724f80072a68359
/eds/MemsIPE/server/openmtc-server/src/openmtc_server/Event.py
6a3ca161a5ec34a44d4d93e69312d5e4a98fb703
[ "Apache-2.0" ]
permissive
elastest/elastest-device-emulator-service
034aa19438383df0975bf86d49e231342d63002f
f512355c5fde6bf027d23558e256b96e2296e0f2
refs/heads/master
2021-03-09T15:13:30.676138
2020-01-13T12:02:02
2020-01-13T12:02:02
91,440,225
3
9
Apache-2.0
2018-12-03T14:59:27
2017-05-16T09:26:10
Python
UTF-8
Python
false
false
2,910
py
from abc import abstractmethod, ABCMeta from futile import issubclass as safe_issubclass from futile.logging import LoggerMixin from openmtc.model import Resource class Event(LoggerMixin): __metaclass__ = ABCMeta @abstractmethod def fire(self, *event_data): raise NotImplementedError() @abstractmethod def register_handler(self, handler, *args, **kw): raise NotImplementedError() class EventSpec(object): __metaclass__ = ABCMeta @abstractmethod def matches(self, item): raise NotImplementedError() class BasicEvent(Event): def __init__(self): super(BasicEvent, self).__init__() self._handlers = [] def _add_handler_data(self, data): handler = data if handler in self._handlers: self.logger.warn("Handler %s is already registered", handler) else: self._handlers.append(handler) def register_handler(self, handler, **kw): self._add_handler_data(handler) def _execute_handler(self, handler, *event_data): self.logger.debug("Running handler %s with %s", handler, event_data) try: handler(*event_data) except Exception: self.logger.exception("Error in event handler") self.logger.debug("handler %s finished", handler) def _fired(self, *event_data): for handler in self._handlers: self._execute_handler(handler, *event_data) def fire(self, *event_data): self.logger.debug("Fired: %s with %s", self, event_data) self._fired(*event_data) class ResourceTreeEvent(BasicEvent): def _add_handler_data(self, data): resource_type = data[0] handler = data[1] # TODO: kca: error messages if resource_type is not None and not safe_issubclass(resource_type, Resource): raise TypeError(resource_type) if not callable(handler): raise TypeError(handler) if data in self._handlers: self.logger.warn("Handler %s is already registered for type %s", handler, resource_type or "<all>") else: self._handlers.append(data) def register_handler(self, handler, resource_type=None, **kw): self._add_handler_data((resource_type, handler)) def _execute_handler(self, data, *event_data): handler = data[1] self.logger.debug("Running handler %s with %s", handler, event_data) handler(*event_data) self.logger.debug("handler finished") def _fired(self, resource_type, *event_data): for data in self._handlers: handled_type = data[0] if handled_type is None or issubclass(resource_type, handled_type): self._execute_handler(data, *event_data) else: pass
[ "sro" ]
sro
a4977e1faa3a4d326cda4f0f40893a477d82fba0
9613620632d8a60afa1ac66a752f2eb543a8530d
/src/posts/apps.py
139fec2d7e31d75c47e310e121e5c3e2843e2d5b
[]
no_license
loristron/iSocial
72dc48b36ff1959d98fdb1d4df66495575f9d48a
417d7a344a9a078d76380c221d32860d8775f36d
refs/heads/master
2023-02-24T15:46:17.450470
2021-02-03T00:52:26
2021-02-03T00:52:26
335,385,276
1
0
null
null
null
null
UTF-8
Python
false
false
132
py
from django.apps import AppConfig class PostsConfig(AppConfig): name = 'posts' verbose_name = 'Posts, Comments and Likes'
a9fd455aafe7b51c2e12403c2de811af29e4df85
a0947c2778742aec26b1c0600ceca17df42326cd
/Python/Web/72of79DB.py
9cd00e6e182ec0bd2fd0d3e52465a807cc2c731d
[]
no_license
JohnCDunn/Course-Work-TTA
5758319d4607114914ba9723328658bed8fb2024
8c4f60d51007dac2ac4cceb84b0f9666e143c0d7
refs/heads/master
2021-01-10T16:37:02.609879
2016-02-01T18:05:38
2016-02-01T18:05:38
49,983,248
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
import sqlite3 conn = sqlite3.connect('time_database.db') c = conn.cursor() c.execute('''CREATE TABLE time_table (last_update text, last_timestamp)''') c.execute("INSERT INTO time_table VALUES ('1', '20150101010101')") conn.commit() conn.close()
b153591361dcaaf26678eb681c08e9c88a1c0a65
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03250/s138356191.py
9362dfb78672e63c114a03cd0f13887be37978a4
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
N = list(map(int, input().split())) print(sum(N) + max(N) * 9)
fdd0a283e25c4e450811834e0eb190b19844370c
d93586a23b50027c766be448072e5c06ebd05ffc
/seq2seq/dependency/tf_models/models/official/recommendation/data_preprocessing.py
d29fcc55b7920c235309592474b6a858f38a20d6
[ "Apache-2.0" ]
permissive
peixiang6134/tf_bot_examples
9bd3a63bf5e699e49455d3beb91c4995f47d781a
b4e8eb6a555b3eeeb423ad928a9009c41b4e5950
refs/heads/master
2021-07-09T02:29:26.303639
2020-02-22T08:58:33
2020-02-22T08:58:33
238,680,285
1
1
null
2021-03-31T21:54:12
2020-02-06T12:08:36
Python
UTF-8
Python
false
false
9,747
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Preprocess dataset and construct any necessary artifacts.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pickle import time import timeit import typing # pylint: disable=wrong-import-order import numpy as np import pandas as pd import tensorflow as tf from absl import logging # pylint: enable=wrong-import-order from dependency.tf_models.models.official.recommendation import constants as rconst from dependency.tf_models.models.official.recommendation import data_pipeline from dependency.tf_models.models.official.recommendation import movielens from dependency.tf_models.models.official.utils.logs import mlperf_helper DATASET_TO_NUM_USERS_AND_ITEMS = { "ml-1m": (6040, 3706), "ml-20m": (138493, 26744) } _EXPECTED_CACHE_KEYS = ( rconst.TRAIN_USER_KEY, rconst.TRAIN_ITEM_KEY, rconst.EVAL_USER_KEY, rconst.EVAL_ITEM_KEY, rconst.USER_MAP, rconst.ITEM_MAP) def _filter_index_sort(raw_rating_path, cache_path): # type: (str, str, bool) -> (dict, bool) """Read in data CSV, and output structured data. This function reads in the raw CSV of positive items, and performs three preprocessing transformations: 1) Filter out all users who have not rated at least a certain number of items. (Typically 20 items) 2) Zero index the users and items such that the largest user_id is `num_users - 1` and the largest item_id is `num_items - 1` 3) Sort the dataframe by user_id, with timestamp as a secondary sort key. This allows the dataframe to be sliced by user in-place, and for the last item to be selected simply by calling the `-1` index of a user's slice. While all of these transformations are performed by Pandas (and are therefore single-threaded), they only take ~2 minutes, and the overhead to apply a MapReduce pattern to parallel process the dataset adds significant complexity for no computational gain. For a larger dataset parallelizing this preprocessing could yield speedups. (Also, this preprocessing step is only performed once for an entire run. Args: raw_rating_path: The path to the CSV which contains the raw dataset. cache_path: The path to the file where results of this function are saved. Returns: A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user IDs to regularized user IDs, and a dict mapping raw item IDs to regularized item IDs. """ valid_cache = tf.io.gfile.exists(cache_path) if valid_cache: with tf.io.gfile.GFile(cache_path, "rb") as f: cached_data = pickle.load(f) # (nnigania)disabled this check as the dataset is not expected to change # cache_age = time.time() - cached_data.get("create_time", 0) # if cache_age > rconst.CACHE_INVALIDATION_SEC: # valid_cache = False for key in _EXPECTED_CACHE_KEYS: if key not in cached_data: valid_cache = False if not valid_cache: logging.info("Removing stale raw data cache file.") tf.io.gfile.remove(cache_path) if valid_cache: data = cached_data else: with tf.io.gfile.GFile(raw_rating_path) as f: df = pd.read_csv(f) # Get the info of users who have more than 20 ratings on items grouped = df.groupby(movielens.USER_COLUMN) df = grouped.filter( lambda x: len(x) >= rconst.MIN_NUM_RATINGS) # type: pd.DataFrame original_users = df[movielens.USER_COLUMN].unique() original_items = df[movielens.ITEM_COLUMN].unique() # Map the ids of user and item to 0 based index for following processing logging.info("Generating user_map and item_map...") user_map = {user: index for index, user in enumerate(original_users)} item_map = {item: index for index, item in enumerate(original_items)} df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply( lambda user: user_map[user]) df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply( lambda item: item_map[item]) num_users = len(original_users) num_items = len(original_items) mlperf_helper.ncf_print(key=mlperf_helper.TAGS.PREPROC_HP_NUM_EVAL, value=rconst.NUM_EVAL_NEGATIVES) assert num_users <= np.iinfo(rconst.USER_DTYPE).max assert num_items <= np.iinfo(rconst.ITEM_DTYPE).max assert df[movielens.USER_COLUMN].max() == num_users - 1 assert df[movielens.ITEM_COLUMN].max() == num_items - 1 # This sort is used to shard the dataframe by user, and later to select # the last item for a user to be used in validation. logging.info("Sorting by user, timestamp...") # This sort is equivalent to # df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN], # inplace=True) # except that the order of items with the same user and timestamp are # sometimes different. For some reason, this sort results in a better # hit-rate during evaluation, matching the performance of the MLPerf # reference implementation. df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True) df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN], inplace=True, kind="mergesort") # The dataframe does not reconstruct indices in the sort or filter steps. df = df.reset_index() grouped = df.groupby(movielens.USER_COLUMN, group_keys=False) eval_df, train_df = grouped.tail(1), grouped.apply(lambda x: x.iloc[:-1]) data = { rconst.TRAIN_USER_KEY: train_df[movielens.USER_COLUMN] .values.astype(rconst.USER_DTYPE), rconst.TRAIN_ITEM_KEY: train_df[movielens.ITEM_COLUMN] .values.astype(rconst.ITEM_DTYPE), rconst.EVAL_USER_KEY: eval_df[movielens.USER_COLUMN] .values.astype(rconst.USER_DTYPE), rconst.EVAL_ITEM_KEY: eval_df[movielens.ITEM_COLUMN] .values.astype(rconst.ITEM_DTYPE), rconst.USER_MAP: user_map, rconst.ITEM_MAP: item_map, "create_time": time.time(), } logging.info("Writing raw data cache.") with tf.io.gfile.GFile(cache_path, "wb") as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) # TODO(robieta): MLPerf cache clear. return data, valid_cache def instantiate_pipeline(dataset, data_dir, params, constructor_type=None, deterministic=False, epoch_dir=None, generate_data_offline=False): # type: (str, str, dict, typing.Optional[str], bool, typing.Optional[str], bool) -> (int, int, data_pipeline.BaseDataConstructor) """Load and digest data CSV into a usable form. Args: dataset: The name of the dataset to be used. data_dir: The root directory of the dataset. params: dict of parameters for the run. constructor_type: The name of the constructor subclass that should be used for the input pipeline. deterministic: Tell the data constructor to produce deterministically. epoch_dir: Directory in which to store the training epochs. generate_data_offline: Boolean, whether current pipeline is done offline or while training. """ logging.info("Beginning data preprocessing.") st = timeit.default_timer() raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE) cache_path = os.path.join(data_dir, dataset, rconst.RAW_CACHE_FILE) raw_data, _ = _filter_index_sort(raw_rating_path, cache_path) user_map, item_map = raw_data["user_map"], raw_data["item_map"] num_users, num_items = DATASET_TO_NUM_USERS_AND_ITEMS[dataset] if num_users != len(user_map): raise ValueError("Expected to find {} users, but found {}".format( num_users, len(user_map))) if num_items != len(item_map): raise ValueError("Expected to find {} items, but found {}".format( num_items, len(item_map))) producer = data_pipeline.get_constructor(constructor_type or "materialized")( maximum_number_epochs=params["train_epochs"], num_users=num_users, num_items=num_items, user_map=user_map, item_map=item_map, train_pos_users=raw_data[rconst.TRAIN_USER_KEY], train_pos_items=raw_data[rconst.TRAIN_ITEM_KEY], train_batch_size=params["batch_size"], batches_per_train_step=params["batches_per_step"], num_train_negatives=params["num_neg"], eval_pos_users=raw_data[rconst.EVAL_USER_KEY], eval_pos_items=raw_data[rconst.EVAL_ITEM_KEY], eval_batch_size=params["eval_batch_size"], batches_per_eval_step=params["batches_per_step"], stream_files=params["stream_files"], deterministic=deterministic, epoch_dir=epoch_dir, create_data_offline=generate_data_offline) run_time = timeit.default_timer() - st logging.info("Data preprocessing complete. Time: {:.1f} sec." .format(run_time)) print(producer) return num_users, num_items, producer
5807b840bdeeec376fc32e131f19b981354fc4c6
735bc5756b554009c552844616183b2bcf9ac50b
/sauna/reload/interfaces.py
3b5b4b263f04e0e9abe866d5e57392c026b534f8
[ "ZPL-2.1" ]
permissive
collective/sauna.reload
31a2e3be956a9ef2168016e9f199c4b3d1c0b052
e12a0a9e01204de324ab934aec5754773ac30bd6
refs/heads/master
2023-03-22T11:29:17.651087
2018-10-18T11:15:02
2018-10-18T11:15:02
2,267,806
10
1
null
2014-10-19T14:24:33
2011-08-25T12:40:05
Python
UTF-8
Python
false
false
1,779
py
# -*- coding: utf-8 -*- # Copyright (c) 2011 University of Jyväskylä and Contributors. # # All Rights Reserved. # # Authors: # Esa-Matti Suuronen <[email protected]> # Asko Soukka <[email protected]> # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS """ZCA Interface Definitions""" from zope.interface import Interface, Attribute class IDatabaseHooks(Interface): """ Provides storage-specific hooks to be called during the reload. """ def prepareForReload(): """ Is called before the reload (before the process is killed) to allow database connection be prepared for it. """ def resumeFromReload(): """ Is called after the reload (after a new process has been spawned) to allow database connection be restored. """ class INewChildForked(Interface): """ Emited immediately after new process is forked. No development packages have been yet installed. Useful if you want to do something before your code gets loaded. Note that you cannot listen this event on a package that is marked for reloading as it is not yet installed when this is fired. """ forkloop = Attribute('ForkLoop instance') class INewChildIsReady(Interface): """ Emitted when all the development packages has been installed to the new forked child. Useful for notifications etc. """ forkloop = Attribute('ForkLoop instance')
5e6b20b5c16d81d1f4479bc5620f2397b8e7486d
76b0fad21d63847896e09b0c4792637ae2b1c460
/src/cookbook_10.py
912825055e51f3438d430db57449e5901cd71756
[]
no_license
hezhiqiang-book/python-cookbook
0718056aff37648246958fc38dffde66bc9df40a
a432835755a9a8703789890018561c4218a42259
refs/heads/master
2020-12-09T15:53:43.316368
2015-11-29T02:56:38
2015-11-29T02:56:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
#!/usr/bin/env python # -*- coding: utf-8 -*- class Counter(object): def __init__(self): self.dict = {} def add(self, item): count = self.dict.setdefault(item, 0) self.dict[item] = count + 1 def counts(self, desc=None): result = [[val, key] for (key, val) in self.dict.items()] result.sort() if desc: result.reverse() return result if __name__ == '__main__': '''Produces: >>> Ascending count: [[1, 'but'], [1, 'it'], [1, 'not.'], [1, 'now'], [1, 'test,'], [1, 'test.'], [1, 'was'], [2, 'Hello'], [2, 'a'], [2, 'is'], [2, 'there'], [2, 'this']] Descending count: [[2, 'this'], [2, 'there'], [2, 'is'], [2, 'a'], [2, 'Hello'], [1, 'was'], [1, 'test.'], [1, 'test,'], [1, 'now'], [1, 'not.'], [1, 'it'], [1, 'but']] ''' sentence = "Hello there this is a test. Hello there this was a test, but now it is not." words = sentence.split() c = Counter() for word in words: c.add(word) print "Ascending count:" print c.counts() print "Descending count:" print c.counts(1)
043315ef85ed72f41f1faddc9dab297d8fb220e9
bc435c8e7e8e418015e4848bb196adeac1343855
/tools/spider/getItem.py
b53c0b6bc94a57170f41aef5772d7fa577a6dee3
[]
no_license
xiaoZ-hc/PwnMe
13a580268273dfaa2957c70fe485475fc8a42bb4
2269b9461f6bf8b5a6f600801a03bb60da3adadc
refs/heads/master
2020-09-05T00:58:28.343371
2018-08-01T08:47:15
2018-08-01T08:47:15
219,939,668
0
1
null
2019-11-06T07:44:20
2019-11-06T07:44:19
null
UTF-8
Python
false
false
2,733
py
#!/usr/bin/env python # encoding:utf-8 import requests import bs4 import time import sys import os headers = { "Host" : "www.exploit-db.com", "User-Agent" : "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:51.0) Gecko/20100101 Firefox/51.0", "Accept" : "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language" : "en-US,en;q=0.5", "Accept-Encoding" : "gzip, deflate, br", "Connection" : "keep-alive", "Upgrade-Insecure-Requests" : "1", "Pragma" : "no-cache", "Cache-Control" : "no-cache" } url = sys.argv[1] # 第一个参数指定 url pages_type = sys.argv[2] # 指定类型 主要为了确定要将文件保存在哪儿 # url = "https://www.exploit-db.com/exploits/39617/" response = requests.get(url, headers=headers) content = response.text.encode("UTF-8") soup = bs4.BeautifulSoup(content, "html.parser") def getType(soup): result = "" return result def getCode(soup): result = soup.find("pre").text return result def getAuthor(soup): result = soup.findAll(attrs={"name":"author"})[0]["content"] return result def getDescribe(soup): result = soup.findAll(attrs={"name":"description"})[0]["content"] return result def getTitle(soup): result = soup.title.string return result def save(path, content): codefile = open(path, 'w') codefile.write(content.encode("UTF-8")) codefile.close() def formate(filename): filename = filename.replace(" ","_") filename = filename.replace("[","_") filename = filename.replace("]","_") filename = filename.replace("(","_") filename = filename.replace(")","_") filename = filename.replace("/","_") filename = filename.replace("\\","_") filename = filename.replace("{","_") filename = filename.replace("}","_") filename = filename.replace(".","_") filename = filename.replace("\"","_") filename = filename.replace("'","_") if filename.endswith("_"): filename = filename[:-1] return filename def compile(path): command = "gcc -g -fno-stack-protector -z execstack " + path + " -o " + path[:-2] + ".out" os.system(command) def commit(comment): command = "git add ." os.system(command) command = "git commit -m \"" + comment + "\"" print command os.system(command) print "Getting title..." dirname = getTitle(soup) dirname = formate(dirname) dirname = "./cache/" + pages_type + "/" + dirname file_content = getCode(soup) print "Making dir..." os.makedirs(dirname) print "Saving file..." save(dirname + "/" + "main.c", file_content) comment = getDescribe(soup).replace("\"","") commit(comment) # print "Compiling..." # compile(dirname + "/" + filename)
a5a3e0a1a6d2bee081cc972ef984f9da33515eb9
63768dc92cde5515a96d774a32facb461a3bf6e9
/jacket/api/compute/openstack/compute/certificates.py
61aaa716f6f6ade322e2c850f6dd52375a387db5
[ "Apache-2.0" ]
permissive
ljZM33nd/jacket
6fe9156f6f5789e5c24425afa7ce9237c302673d
d7ad3147fcb43131098c2a5210847634ff5fb325
refs/heads/master
2023-04-16T11:02:01.153751
2016-11-15T02:48:12
2016-11-15T02:48:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,281
py
# Copyright (c) 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob.exc from jacket.api.compute.openstack import common from jacket.api.compute.openstack import extensions from jacket.api.compute.openstack import wsgi import jacket.compute.cert.rpcapi from jacket.compute import exception from jacket.i18n import _ ALIAS = "os-certificates" authorize = extensions.os_compute_authorizer(ALIAS) def _translate_certificate_view(certificate, private_key=None): return { 'data': certificate, 'private_key': private_key, } class CertificatesController(wsgi.Controller): """The x509 Certificates API controller for the OpenStack API.""" def __init__(self): self.cert_rpcapi = jacket.compute.cert.rpcapi.CertAPI() super(CertificatesController, self).__init__() @extensions.expected_errors((404, 501)) def show(self, req, id): """Return certificate information.""" context = req.environ['compute.context'] authorize(context, action='show') if id != 'root': msg = _("Only root certificate can be retrieved.") # TODO(oomichi): This seems a HTTPBadRequest case because of the # above message. This will be changed with a microversion in the # future. common.raise_feature_not_supported(msg=msg) try: cert = self.cert_rpcapi.fetch_ca(context, project_id=context.project_id) except exception.CryptoCAFileNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) return {'certificate': _translate_certificate_view(cert)} # NOTE(gmann): Here should be 201 instead of 200 by v2.1 # +microversions because the resource certificate has been created # completely when returning a response. @extensions.expected_errors(()) def create(self, req, body=None): """Create a certificate.""" context = req.environ['compute.context'] authorize(context, action='create') pk, cert = self.cert_rpcapi.generate_x509_cert(context, user_id=context.user_id, project_id=context.project_id) return {'certificate': _translate_certificate_view(cert, pk)} class Certificates(extensions.V21APIExtensionBase): """Certificates support.""" name = "Certificates" alias = ALIAS version = 1 def get_resources(self): resources = [ extensions.ResourceExtension(ALIAS, CertificatesController(), member_actions={})] return resources def get_controller_extensions(self): return []
bcb2e8de18e2d1eac6fd24c457f468bfab851648
6be845bf70a8efaf390da28c811c52b35bf9e475
/windows/Resources/Dsz/PyScripts/Lib/dsz/mca_dsz/file/cmd/get/types.py
869ee75deb26cb39c8dca695a2111e7c46c17f43
[]
no_license
kyeremalprime/ms
228194910bf2ed314d0492bc423cc687144bb459
47eea098ec735b2173ff0d4e5c493cb8f04e705d
refs/heads/master
2020-12-30T15:54:17.843982
2017-05-14T07:32:01
2017-05-14T07:32:01
91,180,709
2
2
null
null
null
null
UTF-8
Python
false
false
1,298
py
# uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: types.py from types import * MSG_KEY_PARAMS = 65536 MSG_KEY_PARAMS_RAW_INDEX = 65537 MSG_KEY_PARAMS_OFFSET = 65538 MSG_KEY_PARAMS_BYTES_TO_READ = 65539 MSG_KEY_PARAMS_MAX_FILES = 65540 MSG_KEY_PARAMS_CHUNK_SIZE = 65541 MSG_KEY_PARAMS_FLAGS = 65542 MSG_KEY_PARAMS_DATE_TYPE = 65543 MSG_KEY_PARAMS_AGE = 65544 MSG_KEY_PARAMS_AFTER_TIME = 65545 MSG_KEY_PARAMS_BEFORE_TIME = 65546 MSG_KEY_PARAMS_MASK = 65547 MSG_KEY_PARAMS_PATH = 65548 MSG_KEY_PARAMS_MINIMUM_SIZE = 65549 MSG_KEY_PARAMS_MAXIMUM_SIZE = 65550 MSG_KEY_PARAMS_FILE_PROVIDER = 65551 MSG_KEY_RESULT_FILE_INFO = 131072 MSG_KEY_RESULT_FILE_INFO_INDEX = 131073 MSG_KEY_RESULT_FILE_INFO_FILE_SIZE = 131074 MSG_KEY_RESULT_FILE_INFO_CREATE_TIME = 131075 MSG_KEY_RESULT_FILE_INFO_ACCESS_TIME = 131076 MSG_KEY_RESULT_FILE_INFO_MODIFY_TIME = 131077 MSG_KEY_RESULT_FILE_INFO_OPEN_STATUS = 131078 MSG_KEY_RESULT_FILE_INFO_OFFSET = 131079 MSG_KEY_RESULT_FILE_INFO_NAME = 131080 MSG_KEY_RESULT_FILE_INFO_FLAGS = 131081 MSG_KEY_RESULT_DATA = 196608 MSG_KEY_RESULT_DATA_INDEX = 196609 MSG_KEY_RESULT_DATA_BUFFER = 196610 MSG_KEY_RESULT_DONE = 262144 MSG_KEY_RESULT_DONE_INDEX = 262145
a9fb728e80d05f1c60a425baa7e4130d5f496aa1
22b363b0a4d67427d4746414090d6fef701fd3b9
/src/triage/__init__.py
f148179bcdd93eca35d0d477df9f079e43aba6e1
[]
no_license
Barbarioli/triage
12557dd410def01291da355051966b4d2e5885b4
5d1ef41f1d89b150b30fae0c300028ef8dc39321
refs/heads/master
2020-03-13T10:35:48.469855
2018-04-14T02:29:03
2018-04-14T02:29:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
# -*- coding: utf-8 -*- __author__ = """Center for Data Science and Public Policy""" __email__ = '[email protected]' __version__ = '2.2.0'
b13b2d3ef3319d540e3e1ead4ca55bb548c596ab
3bb4d1c4060a8d0f30cbfa01328a3b1520ce1bd5
/apps/system/migrations/0002_auto_20190404_2012.py
5c220e6021475f5576c584f224796a70d5180679
[]
no_license
Chen320048/HuoChenGuang_Files
8750bc7afe871128d7ae526741da83a2ac485ce4
f4f847572a69ecad1f8ab22c7364cbffe70571fc
refs/heads/master
2020-05-31T09:05:37.257383
2019-06-04T13:18:47
2019-06-04T13:18:47
190,204,201
0
0
null
null
null
null
UTF-8
Python
false
false
1,407
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2019-04-04 20:12 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('system', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='bizlog', options={'default_permissions': (), 'ordering': ['-id'], 'permissions': (('view_visitor', '\u8bbf\u95ee\u7ec8\u7aef\u7edf\u8ba1'), ('manage_version', '\u7248\u672c\u7ba1\u7406'), ('view_feedback', '\u5efa\u8bae\u53cd\u9988'), ('view_log', '\u7cfb\u7edf\u65e5\u5fd7'), ('manage_vcode', '\u7cfb\u7edf\u9a8c\u8bc1\u7801\u7ba1\u7406')), 'verbose_name': '\u7cfb\u7edf'}, ), migrations.AlterModelOptions( name='feedback', options={'default_permissions': (), 'ordering': ['-id'], 'verbose_name': '\u7528\u6237\u53cd\u9988'}, ), migrations.AlterModelOptions( name='vcode', options={'default_permissions': (), 'ordering': ['-id']}, ), migrations.AlterModelOptions( name='version', options={'default_permissions': (), 'ordering': ['-id'], 'verbose_name': '\u7248\u672c\u4fe1\u606f'}, ), migrations.AlterModelOptions( name='visitor', options={'default_permissions': (), 'ordering': ['-id']}, ), ]
f462aa831af9c6ef63296255f49b337746e77814
a560269290749e10466b1a29584f06a2b8385a47
/Notebooks/py/yuikitaml/method-examples/method-examples.py
bbf85edccd7069000af9984fb7999be1f545bd7f
[]
no_license
nischalshrestha/automatic_wat_discovery
c71befad1aa358ae876d5494a67b0f4aa1266f23
982e700d8e4698a501afffd6c3a2f35346c34f95
refs/heads/master
2022-04-07T12:40:24.376871
2020-03-15T22:27:39
2020-03-15T22:27:39
208,379,586
2
1
null
null
null
null
UTF-8
Python
false
false
1,049
py
#!/usr/bin/env python # coding: utf-8 # ## Method examples quick look # Using Titanic dataset # In[ ]: import pandas as pd import numpy as np import re import sklearn import xgboost as xgb import seaborn as sns import matplotlib.pyplot as plt get_ipython().magic(u'matplotlib inline') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import warnings warnings.filterwarnings('ignore') from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier) from sklearn.svm import SVC from sklearn.cross_validation import KFold train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') PassengerId = test['PassengerId'] train.head(3) # In[ ]: # Count NaN train.Cabin.isnull().sum() # In[ ]: # Numerise Sex result = train.Sex.map({'male': 0, 'female': 1}) result.head(3) # In[ ]: # Fill na result = train.Cabin.fillna('S') result.head(3) # In[ ]:
a813e9d7480febc65bed94dcd2c611f754601bb5
d28d47bc1d25161629d2174a465ae3eb38e02802
/myapp/migrations/0002_auto_20190904_1909.py
86cd65d9520221dee1b35b5c4957107f4966576a
[]
no_license
Lider-neuromedia/opx-opensource-web
4df776607d701f0fe89ad1fb178502ec089678be
b44bb24830e52df9a641181f1ab644e9da08ff1d
refs/heads/master
2022-06-05T01:25:28.312145
2020-04-29T22:23:41
2020-04-29T22:23:41
260,053,779
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
# Generated by Django 2.2.4 on 2019-09-04 19:09 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('myapp', '0001_initial'), ] operations = [ migrations.RenameField( model_name='usuario', old_name='userpassword', new_name='password', ), migrations.AlterField( model_name='accion', name='accionid', field=models.UUIDField(default=uuid.UUID('50258478-ee9f-42e7-90bc-4e70fc047c0b'), editable=False, primary_key=True, serialize=False), ), ]
[ "=" ]
=
ea8d95bb65ad2ff1b41bf10867f308283fee4d22
ee86ad4b38f6ba13f195246f14224ba781f933cc
/02_2차원배열/2차원 순회.py
bf7faa2b62022360c75ed078fa6eac2111d6d63e
[]
no_license
yejikk/Algorithm
aed7adf00c1e32d21b735b3b34dc6cb75049f164
531f43305b3a23c824c9e153151b7280c1dc2535
refs/heads/master
2020-04-17T06:17:28.961656
2019-11-16T08:02:49
2019-11-16T08:02:49
166,318,881
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
arr = [[0,1,2,3], [4,5,6,7], [8,9,10,11]] # i : 행의 좌표 n = len(arr) # j : 열의 좌표, m = len(arr[0]) # 행 우선 순회 for i in range(len(arr)): for j in range(len(arr[i])): print(arr[i][j], end=' ') print() print() # 열 우선 순회 for j in range(len(arr[0])): for i in range(len(arr)): print(arr[i][j], end=' ') print() print() # 지그재그 순회 for i in range(len(arr)) : for j in range(len(arr[0])): print(arr[i][j + (m-1-2*j) * (i%2)], end=' ') print() print()
ded0ba095bd9d4078345e5fdce6768005fe044fe
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2453486_0/Python/Zolmeister1/tictac.py
2879fa0314f0c731fcb36909d595b1a0d320f8b9
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,997
py
fin = open('tictac.in').read()[2:].strip().split('\n\n') fout = open('tictac.out','w') def pp(s):#print end case print 'Case #%d: ' % (cnt) +s fout.write('Case #%d: ' % (cnt) +s+'\n') cnt=0 for game in fin: cnt+=1 rows = game.split('\n') cont = False for r in rows: os = r.count('O') xs = r.count('X') ts = r.count('T') if os==4 or os==3 and ts==1: pp('O won') cont = True break elif xs==4 or xs==3 and ts==1: pp('X won') cont = True break if cont: continue cols = zip(*rows) for r in cols: os = r.count('O') xs = r.count('X') ts = r.count('T') if r.count('O')==4 or r.count('O')==3 and r.count('T')==1: pp('O won') cont = True break elif r.count('X')==4 or r.count('X')==3 and r.count('T')==1: pp('X won') cont=True break if cont: continue leftDiag = [ [0,0], [1,1], [2,2], [3,3] ] rightDiag = [ [0,3], [1,2], [2,1], [3,0] ] left = [] for pos in leftDiag: left.append(cols[pos[0]][pos[1]]) right = [] for pos in rightDiag: right.append(cols[pos[0]][pos[1]]) osL = left.count('O') xsL = left.count('X') tsL = left.count('T') osR = right.count('O') xsR = right.count('X') tsR = right.count('T') if osL==4 or osL==3 and tsL==1: pp('O won') continue elif xsL==4 or xsL==3 and tsL==1: pp('X won') continue if osR==4 or osR==3 and tsR==1: pp('O won') continue elif xsR==4 or xsR==3 and tsR==1: pp('X won') continue for r in cols: if r.count('.') > 0: pp('Game has not completed') break else: pp('Draw') fout.close()
bece03e4588034620ff88252c2a43363cd91a680
04e5b6df2ee3bcfb7005d8ec91aab8e380333ac4
/Lib/objc/_MaterialKit.py
e6f20a6022f0fd5e3b40448fc97fc45454fa77e7
[ "MIT" ]
permissive
ColdGrub1384/Pyto
64e2a593957fd640907f0e4698d430ea7754a73e
7557485a733dd7e17ba0366b92794931bdb39975
refs/heads/main
2023-08-01T03:48:35.694832
2022-07-20T14:38:45
2022-07-20T14:38:45
148,944,721
884
157
MIT
2023-02-26T21:34:04
2018-09-15T22:29:07
C
UTF-8
Python
false
false
1,198
py
""" Classes from the 'MaterialKit' framework. """ try: from rubicon.objc import ObjCClass except ValueError: def ObjCClass(name): return None def _Class(name): try: return ObjCClass(name) except NameError: return None MTVisualStyling = _Class("MTVisualStyling") MTVisualStylingProvider = _Class("MTVisualStylingProvider") MTMappedImageCache = _Class("MTMappedImageCache") MTLumaDodgePillSettings = _Class("MTLumaDodgePillSettings") MTLumaDodgePillStyleSettings = _Class("MTLumaDodgePillStyleSettings") MTLumaDodgePillDomain = _Class("MTLumaDodgePillDomain") _MTVisualStylingVibrancyEffect = _Class("_MTVisualStylingVibrancyEffect") MTMaterialShadowView = _Class("MTMaterialShadowView") MTMaterialView = _Class("MTMaterialView") _MTStaticVibrantColorMaterialView = _Class("_MTStaticVibrantColorMaterialView") MTStylingProvidingSolidColorView = _Class("MTStylingProvidingSolidColorView") _MTLumaDodgePillLowQualityEffectView = _Class("_MTLumaDodgePillLowQualityEffectView") MTPillView = _Class("MTPillView") MTStaticColorPillView = _Class("MTStaticColorPillView") MTLumaDodgePillView = _Class("MTLumaDodgePillView") MTShadowView = _Class("MTShadowView")
08786c00f9edae0282a030938082a24985a78bfb
3011e024b5f31d6c747a2bd4a143bb6a0eeb1e1d
/django-rest-framework/day132_01/venv/Scripts/pip-script.py
30ef622f420166e537def6d1a18be62e0beda706
[]
no_license
yingkun1/python-django
a3084460a83682f3e0848d5b40c881f93961ecc2
08c9ed3771eb245ee9ff66f67cf28730d2675bbe
refs/heads/master
2022-12-11T12:33:20.788524
2019-06-12T09:30:59
2019-06-12T09:30:59
189,977,625
1
0
null
2022-11-22T02:57:01
2019-06-03T09:43:30
Python
UTF-8
Python
false
false
421
py
#!E:\python-django\django-rest-framework\day132_01\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )
10adf812c3b3204b61a65a1935b9b8ed4ed9a65d
2d1fdf69b3f00d1840f2e8956b91bd97c4777c24
/mohet/mohet_app/migrations/0002_auto_20210604_2126.py
210c1f080297d77c0f3631e679d1324652951377
[]
no_license
DiyarBarham/project-mohet
d8a4df41ee19365dd9a6e4c756477f3ccaffd60f
03b92cd28fa315322d76f5e1632b5403f117fa25
refs/heads/master
2023-05-25T11:47:05.351526
2021-06-06T14:53:31
2021-06-06T14:53:31
374,387,321
0
0
null
null
null
null
UTF-8
Python
false
false
1,887
py
# Generated by Django 2.2.4 on 2021-06-04 18:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mohet_app', '0001_initial'), ] operations = [ migrations.AlterField( model_name='article', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='comment', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='contact', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='media', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='mediatype', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='role', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='subscription', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), migrations.AlterField( model_name='user', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
3463202e5e93b0f832989da3363bc365a09d764d
07917881310fc81d85a2cbdf27c9b3c4fa03c694
/python1812/python_4/四阶段/day01/code/python3code/job51.py
959f5d9501613b5eb6c690f4ff91b6599ea99e23
[]
no_license
zaoyuaner/Learning-materials
9bc9a127d1c6478fb6cebbb6371b1fd85427c574
1f468a6f63158758f7cbfe7b5df17f51e3205f04
refs/heads/master
2020-05-18T11:38:45.771271
2019-05-20T09:07:44
2019-05-20T09:07:44
184,384,050
2
3
null
null
null
null
UTF-8
Python
false
false
1,706
py
import re import urllib.request headers = { "User-Agent":"User-Agent, Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11" } #获取前程无忧的接口 url = "https://search.51job.com/list/040000%252C010000,000000,0000,00,9,99,python,2,1.html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare=" #抓取数据 创建请求对象 req = urllib.request.Request(url,headers=headers) #获取服务器响应数据 response = urllib.request.urlopen(req) # print(response) #解码 html = response.read().decode('gbk') # print(html) #print(type(html)) # 处理数据 拿到标签中间所有的内容 jobnum_re = '<div class="rt">(.*?)</div>' coms = re.compile(jobnum_re,re.S) strs = coms.findall(html)[0] # print(strs) #贪婪模式 非贪婪模式 #非贪婪模式加上 ? 变成了 贪婪模式 #取出 纯数字 num_re = '.*?(\d+).*' num = re.findall(num_re,strs) # print(num) # print(int(num[0])) #获取第一个岗位信息 jobname_re = '<div class="el">(.*?)</div>' joblist = re.findall(jobname_re,html,re.S) # #print(joblist[0]) #这是第一个岗位的信息 多个标签 # # #匹配岗位内容 # jobnameone_re = 'onmousedown="">(.*?)</a>' # jobnameone_list = re.findall(jobnameone_re,joblist[1],re.S) # print(jobnameone_list[0].strip()) for job in joblist: jobnameone_re = 'onmousedown="">(.*?)</a>' jobnameone_list = re.findall(jobnameone_re, job, re.S) print(jobnameone_list) #print("岗位名称:",jobnameone_list[0].strip())
685728b1b73a4e7b80a069a6247b6266c4e245ae
e16cf4d5dc7a0055892feee2397ac341a4c9b375
/data-structures/stacks_and_queues/test_stacks_and_queues.py
6ed1937c2e223db01050abe6469abfaee4309c5a
[ "MIT" ]
permissive
arsummers/python-data-structures-and-algorithms
47935b75216594566a706083f91c6d71ae01a96c
30a488bd1100d8edac3b7fda73f7d7d999c61bfc
refs/heads/master
2021-06-18T08:33:36.210039
2020-09-24T23:23:32
2020-09-24T23:23:32
195,889,918
3
1
MIT
2021-04-20T18:35:42
2019-07-08T21:42:19
Python
UTF-8
Python
false
false
2,307
py
import pytest from stacks_and_queues import Stack, Queue # Can successfully push onto a stack def test_stack_push_one(): s = Stack() s.push('a') assert s.peek() == 'a' # Can successfully push multiple values onto a stack def test_stack_push_multiple(): s = Stack() s.push('a') s.push('b') s.push('c') assert s.peek() == 'c' # Can successfully pop off the stack def test_stack_pop(): s = Stack() s.push('a') s.push('b') s.push('c') s.pop('a') assert s.peek() == 'b' # Can successfully empty a stack after multiple pops def test_pop_stack_to_empty(): s = Stack() s.push('a') s.push('b') s.push('c') s.pop('a') s.pop('b') s.pop('c') assert s.peek() is None # Can successfully peek the next item on the stack) def test_peek_next_item(): s = Stack() s.push('a') s.push('b') s.push('c') assert s.peek() == 'c' # Can successfully instantiate an empty stack def test_instantiate_empty_stack(): s = Stack() assert s.peek() is None # TESTS FOR QUEUES # Can successfully enqueue into a queue def test_enqueue_single_value(): q = Queue() q.enqueue('a') assert q.peek() == 'a' # Can successfully enqueue multiple values into a queue def test_enqueue_multiple_values(): q = Queue() q.enqueue('a') q.enqueue('b') q.enqueue('c') assert q.peek() == 'a' # Can successfully dequeue out of a queue the expected value def test_dequeue(): q = Queue() q.dequeue() q.enqueue('a') q.enqueue('b') q.enqueue('c') q.enqueue('d') q.enqueue('e') q.enqueue('g') assert q.dequeue() == 'a' # Can successfully peek into a queue, seeing the expected value def test_peek_into_queue(): q = Queue() q.enqueue('a') q.enqueue('b') q.enqueue('c') q.enqueue('d') q.enqueue('e') q.enqueue('g') assert q.peek() == 'a' # Can successfully empty a queue after multiple dequeues def test_dequeue_queue_to_empty(): q = Queue() q.enqueue('a') q.enqueue('b') q.enqueue('c') q.dequeue() q.dequeue() q.dequeue() assert q.peek() == None # Can successfully instantiate an empty queue def test_instantiate_empty_queue(): q = Queue() assert q.peek() is None
88f49fdc3e4695c32dc863b2acf20931279d3de7
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part000476.py
79c655e3af493ac7bfbe5077aba07884817c5816
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
2,690
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher43221(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({0: 1}), [ (VariableWithCount('i2.2.1.2.2.2.1.0', 1, 1, S(1)), Mul) ]), 1: (1, Multiset({}), [ (VariableWithCount('i2.2.1.2.2.2.1.0_1', 1, 1, S(1)), Mul), (VariableWithCount('i2.2.1.2.2.2.1.1', 1, 1, None), Mul) ]), 2: (2, Multiset({}), [ (VariableWithCount('i2.2.1.2.2.2.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.1.2.2.2.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher43221._instance is None: CommutativeMatcher43221._instance = CommutativeMatcher43221() return CommutativeMatcher43221._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 43220 if len(subjects) >= 1 and isinstance(subjects[0], Pow): tmp1 = subjects.popleft() subjects2 = deque(tmp1._args) # State 43222 if len(subjects2) >= 1: tmp3 = subjects2.popleft() subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.2.2.2.1.1', tmp3) except ValueError: pass else: pass # State 43223 if len(subjects2) >= 1 and subjects2[0] == Integer(2): tmp5 = subjects2.popleft() # State 43224 if len(subjects2) == 0: pass # State 43225 if len(subjects) == 0: pass # 0: x**2 yield 0, subst1 subjects2.appendleft(tmp5) subjects2.appendleft(tmp3) subjects.appendleft(tmp1) return yield from collections import deque
dc957f9141ae0629ab052acf85163d752bb8aff7
24d8cf871b092b2d60fc85d5320e1bc761a7cbe2
/SpamBayes/rev2415-2775/left-trunk-2775/Outlook2000/dialogs/dialog_map.py
f3db3b7b05910836b8662a3830e1e7c851c9e6a5
[]
no_license
joliebig/featurehouse_fstmerge_examples
af1b963537839d13e834f829cf51f8ad5e6ffe76
1a99c1788f0eb9f1e5d8c2ced3892d00cd9449ad
refs/heads/master
2016-09-05T10:24:50.974902
2013-03-28T16:28:47
2013-03-28T16:28:47
9,080,611
3
2
null
null
null
null
UTF-8
Python
false
false
25,240
py
from processors import * from opt_processors import * import wizard_processors as wiz from dialogs import ShowDialog, MakePropertyPage, ShowWizard try: enumerate except NameError: # enumerate new in 2.3 def enumerate(seq): return [(i, seq[i]) for i in xrange(len(seq))] class StatsProcessor(ControlProcessor): def __init__(self, window, control_ids): self.button_id = control_ids[1] self.reset_date_id = control_ids[2] ControlProcessor.__init__(self, window, control_ids) self.stats = self.window.manager.stats def Init(self): text = "\n".join(self.stats.GetStats()) win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, text) date_label = self.GetControl(self.reset_date_id) if self.stats.from_date: from time import localtime, strftime reset_date = localtime(self.stats.from_date) date_string = strftime("%a, %d %b %Y %I:%M:%S %p", reset_date) else: date_string = _("Never") win32gui.SendMessage(date_label, win32con.WM_SETTEXT, 0, date_string) def OnCommand(self, wparam, lparam): id = win32api.LOWORD(wparam) if id == self.button_id: self.ResetStatistics() def GetPopupHelpText(self, idFrom): if idFrom == self.control_id: return _("Displays statistics on mail processed by SpamBayes") elif idFrom == self.button_id: return _("Resets all SpamBayes statistics to zero") elif idFrom == self.reset_date_id: return _("The date and time when the SpamBayes statistics were last reset") def ResetStatistics(self): question = _("This will reset all your saved statistics to zero.\r\n\r\n" \ "Are you sure you wish to reset the statistics?") flags = win32con.MB_ICONQUESTION | win32con.MB_YESNO | win32con.MB_DEFBUTTON2 if win32gui.MessageBox(self.window.hwnd, question, "SpamBayes", flags) == win32con.IDYES: self.stats.Reset() self.stats.ResetTotal(True) self.Init() # update the statistics display class VersionStringProcessor(ControlProcessor): def Init(self): from spambayes.Version import get_current_version import sys v = get_current_version() vstring = v.get_long_version("SpamBayes Outlook Addin") if not hasattr(sys, "frozen"): vstring += _(" from source") win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, vstring) def GetPopupHelpText(self, cid): return _("The version of SpamBayes running") class TrainingStatusProcessor(ControlProcessor): def Init(self): bayes = self.window.manager.classifier_data.bayes nspam = bayes.nspam nham = bayes.nham if nspam > 10 and nham > 10: db_status = _("Database has %d good and %d spam.") % (nham, nspam) db_ratio = nham/float(nspam) big = small = None if db_ratio > 5.0: db_status = _("%s\nWarning: you have much more ham than spam - " \ "SpamBayes works best with approximately even " \ "numbers of ham and spam.") % (db_status, ) elif db_ratio < (1/5.0): db_status = _("%s\nWarning: you have much more spam than ham - " \ "SpamBayes works best with approximately even " \ "numbers of ham and spam.") % (db_status, ) elif nspam > 0 or nham > 0: db_status = _("Database only has %d good and %d spam - you should " \ "consider performing additional training.") % (nham, nspam) else: db_status = _("Database has no training information. SpamBayes " \ "will classify all messages as 'unsure', " \ "ready for you to train.") win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, db_status) class WizardTrainingStatusProcessor(ControlProcessor): def Init(self): bayes = self.window.manager.classifier_data.bayes nspam = bayes.nspam nham = bayes.nham if nspam > 10 and nham > 10: msg = _("SpamBayes has been successfully trained and configured. " \ "You should find the system is immediately effective at " \ "filtering spam.") else: msg = _("SpamBayes has been successfully trained and configured. " \ "However, as the number of messages trained is quite small, " \ "SpamBayes may take some time to become truly effective.") win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, msg) class IntProcessor(OptionControlProcessor): def UpdateControl_FromValue(self): win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, str(self.option.get())) def UpdateValue_FromControl(self): buf_size = 100 buf = win32gui.PyMakeBuffer(buf_size) nchars = win32gui.SendMessage(self.GetControl(), win32con.WM_GETTEXT, buf_size, buf) str_val = buf[:nchars] val = int(str_val) if val < 0 or val > 10: raise ValueError, "Value must be between 0 and 10" self.SetOptionValue(val) def OnCommand(self, wparam, lparam): code = win32api.HIWORD(wparam) if code==win32con.EN_CHANGE: try: self.UpdateValue_FromControl() except ValueError: pass class FilterEnableProcessor(BoolButtonProcessor): def OnOptionChanged(self, option): self.Init() def Init(self): BoolButtonProcessor.Init(self) reason = self.window.manager.GetDisabledReason() win32gui.EnableWindow(self.GetControl(), reason is None) def UpdateValue_FromControl(self): check = win32gui.SendMessage(self.GetControl(), win32con.BM_GETCHECK) if check: reason = self.window.manager.GetDisabledReason() if reason is not None: win32gui.SendMessage(self.GetControl(), win32con.BM_SETCHECK, 0) raise ValueError, reason check = not not check # force bool! self.SetOptionValue(check) class FilterStatusProcessor(ControlProcessor): def OnOptionChanged(self, option): self.Init() def Init(self): manager = self.window.manager reason = manager.GetDisabledReason() if reason is not None: win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, reason) return if not manager.config.filter.enabled: status = _("Filtering is disabled. Select 'Enable SpamBayes' to enable.") win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, status) return config = manager.config.filter certain_spam_name = manager.FormatFolderNames( [config.spam_folder_id], False) if config.unsure_folder_id: unsure_name = manager.FormatFolderNames( [config.unsure_folder_id], False) unsure_text = _("unsure managed in '%s'") % (unsure_name,) else: unsure_text = _("unsure messages untouched") watch_names = manager.FormatFolderNames( config.watch_folder_ids, config.watch_include_sub) filter_status = _("Watching '%s'. Spam managed in '%s', %s.") \ % (watch_names, certain_spam_name, unsure_text) win32gui.SendMessage(self.GetControl(), win32con.WM_SETTEXT, 0, filter_status) class TabProcessor(ControlProcessor): def __init__(self, window, control_ids, page_ids): ControlProcessor.__init__(self, window, control_ids) self.page_ids = page_ids.split() def Init(self): self.pages = {} self.currentPage = None self.currentPageIndex = -1 self.currentPageHwnd = None for index, page_id in enumerate(self.page_ids): template = self.window.manager.dialog_parser.dialogs[page_id] self.addPage(index, page_id, template[0][0]) self.switchToPage(0) def Done(self): if self.currentPageHwnd is not None: if not self.currentPage.SaveAllControls(): win32gui.SendMessage(self.GetControl(), commctrl.TCM_SETCURSEL, self.currentPageIndex,0) return False return True def OnNotify(self, nmhdr, wparam, lparam): selChangedCode = 5177342 code = nmhdr[2] if code==selChangedCode: index = win32gui.SendMessage(self.GetControl(), commctrl.TCM_GETCURSEL, 0,0) if index!=self.currentPageIndex: self.switchToPage(index) def switchToPage(self, index): if self.currentPageHwnd is not None: if not self.currentPage.SaveAllControls(): win32gui.SendMessage(self.GetControl(), commctrl.TCM_SETCURSEL, self.currentPageIndex,0) return 1 win32gui.DestroyWindow(self.currentPageHwnd) self.currentPage = MakePropertyPage(self.GetControl(), self.window.manager, self.window.config, self.pages[index]) self.currentPageHwnd = self.currentPage.CreateWindow() self.currentPageIndex = index return 0 def addPage(self, item, idName, label): format = "iiiiiii" lbuf = win32gui.PyMakeBuffer(len(label)+1) address,l = win32gui.PyGetBufferAddressAndLen(lbuf) win32gui.PySetString(address, label) buf = struct.pack(format, commctrl.TCIF_TEXT, # mask 0, # state 0, # state mask address, 0, #unused 0, #image item ) item = win32gui.SendMessage(self.GetControl(), commctrl.TCM_INSERTITEM, item, buf) self.pages[item] = idName def ShowAbout(window): """Opens the SpamBayes documentation in a browser""" window.manager.ShowHtml("about.html") def ShowTrainingDoc(window): """Opens documentation on SpamBayes training in a browser""" window.manager.ShowHtml("docs/welcome.html") def ShowDataFolder(window): """Uses Windows Explorer to show where SpamBayes data and configuration files are stored """ import os import sys filesystem_encoding = sys.getfilesystemencoding() os.startfile(window.manager.data_directory.encode(filesystem_encoding)) def ShowLog(window): """Opens the log file for the current SpamBayes session """ import sys, os, win32api, win32con if hasattr(sys, "frozen"): log_name = os.path.join(win32api.GetTempPath(), "spambayes1.log") if not os.path.exists(log_name): window.manager.ReportError(_("The log file for this session can not be located")) else: cmd = 'notepad.exe "%s"' % log_name win32api.WinExec(cmd, win32con.SW_SHOW) else: question = _("As you are running from source-code, viewing the\n" \ "log means executing a Python program. If you already\n" \ "have a viewer running, the output may appear in either.\n\n"\ "Do you want to execute this viewer?") if not window.manager.AskQuestion(question): return import win32traceutil # will already be imported py_name = win32traceutil.__file__ if py_name[-1] in 'co': # pyc/pyo py_name = py_name[:-1] os.system('start ' + win32api.GetShortPathName(py_name)) def ResetConfig(window): question = _("This will reset all configuration options to their default values\r\n\r\n" \ "It will not reset the folders you have selected, nor your\r\n" \ "training information, but all other options will be reset\r\n" \ "and SpamBayes will need to be re-enabled before it will\r\n" \ "continue filtering.\r\n\r\n" \ "Are you sure you wish to reset all options?") flags = win32con.MB_ICONQUESTION | win32con.MB_YESNO | win32con.MB_DEFBUTTON2 if win32gui.MessageBox(window.hwnd, question, "SpamBayes",flags) == win32con.IDYES: options = window.config._options for sect in options.sections(): for opt_name in options.options_in_section(sect): opt = options.get_option(sect, opt_name) if not opt.no_restore(): assert opt.is_valid(opt.default_value), \ "Resetting '%s' to invalid default %r" % (opt.display_name(), opt.default_value) opt.set(opt.default_value) window.LoadAllControls() class DialogCommand(ButtonProcessor): def __init__(self, window, control_ids, idd): self.idd = idd ButtonProcessor.__init__(self, window, control_ids) def OnClicked(self, id): parent = self.window.hwnd self.window.SaveAllControls() ShowDialog(parent, self.window.manager, self.window.config, self.idd) self.window.LoadAllControls() def GetPopupHelpText(self, id): dd = self.window.manager.dialog_parser.dialogs[self.idd] return _("Displays the %s dialog") % dd.caption class HiddenDialogCommand(DialogCommand): def __init__(self, window, control_ids, idd): DialogCommand.__init__(self, window, control_ids, idd) def Init(self): DialogCommand.Init(self) win32gui.SetWindowText(self.GetControl(), "") def OnCommand(self, wparam, lparam): pass def OnRButtonUp(self, wparam, lparam): self.OnClicked(0) def GetPopupHelpText(self, id): return _("Nothing to see here.") class ShowWizardCommand(DialogCommand): def OnClicked(self, id): import win32con existing = self.window manager = self.window.manager dlg = self.window.hwnd while dlg: style = win32api.GetWindowLong(dlg, win32con.GWL_STYLE) if not style & win32con.WS_CHILD: break dlg = win32gui.GetParent(dlg) else: assert 0, "no parent!" try: parent = win32gui.GetParent(dlg) except win32gui.error: parent = 0 # no parent win32gui.EndDialog(dlg, win32con.IDOK) ShowWizard(parent, manager, self.idd, use_existing_config = True) def WizardFinish(mgr, window): print _("Wizard Done!") def WizardTrainer(mgr, config, progress): import os, manager, train bayes_base = os.path.join(mgr.data_directory, "$sbwiz$default_bayes_database") mdb_base = os.path.join(mgr.data_directory, "$sbwiz$default_message_database") fnames = [] for ext in ".pck", ".db": fnames.append(bayes_base+ext) fnames.append(mdb_base+ext) config.wizard.temp_training_names = fnames ManagerClass = manager.GetStorageManagerClass() db_manager = ManagerClass(bayes_base, mdb_base) classifier_data = manager.ClassifierData(db_manager, mgr) classifier_data.InitNew() rescore = config.training.rescore if rescore: stages = (_("Training"), .3), (_("Saving"), .1), (_("Scoring"), .6) else: stages = (_("Training"), .9), (_("Saving"), .1) progress.set_stages(stages) train.real_trainer(classifier_data, config, mgr.message_store, progress) orig_classifier_data = mgr.classifier_data mgr.classifier_data = classifier_data # temporary try: progress.tick() if rescore: now_config = config.filter_now now_config.only_unread = False now_config.only_unseen = False now_config.action_all = False now_config.folder_ids = config.training.ham_folder_ids + \ config.training.spam_folder_ids now_config.include_sub = config.training.ham_include_sub or \ config.training.spam_include_sub import filter filter.filterer(mgr, config, progress) bayes = classifier_data.bayes progress.set_status(_("Completed training with %d spam and %d good messages") \ % (bayes.nspam, bayes.nham)) finally: mgr.wizard_classifier_data = classifier_data mgr.classifier_data = orig_classifier_data from async_processor import AsyncCommandProcessor import filter, train dialog_map = { "IDD_MANAGER" : ( (CloseButtonProcessor, "IDOK IDCANCEL"), (TabProcessor, "IDC_TAB", """IDD_GENERAL IDD_FILTER IDD_TRAINING IDD_STATISTICS IDD_ADVANCED"""), (CommandButtonProcessor, "IDC_ABOUT_BTN", ShowAbout, ()), ), "IDD_GENERAL": ( (ImageProcessor, "IDC_LOGO_GRAPHIC"), (VersionStringProcessor, "IDC_VERSION"), (TrainingStatusProcessor, "IDC_TRAINING_STATUS"), (FilterEnableProcessor, "IDC_BUT_FILTER_ENABLE", "Filter.enabled"), (FilterStatusProcessor, "IDC_FILTER_STATUS"), (ShowWizardCommand, "IDC_BUT_WIZARD", "IDD_WIZARD"), (CommandButtonProcessor, "IDC_BUT_RESET", ResetConfig, ()), ), "IDD_FILTER_NOW" : ( (CloseButtonProcessor, "IDCANCEL"), (BoolButtonProcessor, "IDC_BUT_UNREAD", "Filter_Now.only_unread"), (BoolButtonProcessor, "IDC_BUT_UNSEEN", "Filter_Now.only_unseen"), (BoolButtonProcessor, "IDC_BUT_ACT_ALL IDC_BUT_ACT_SCORE", "Filter_Now.action_all"), (FolderIDProcessor, "IDC_FOLDER_NAMES IDC_BROWSE", "Filter_Now.folder_ids", "Filter_Now.include_sub"), (AsyncCommandProcessor, "IDC_START IDC_PROGRESS IDC_PROGRESS_TEXT", filter.filterer, _("Start Filtering"), _("Stop Filtering"), """IDCANCEL IDC_BUT_UNSEEN IDC_BUT_UNREAD IDC_BROWSE IDC_BUT_ACT_SCORE IDC_BUT_ACT_ALL"""), ), "IDD_FILTER" : ( (FolderIDProcessor, "IDC_FOLDER_WATCH IDC_BROWSE_WATCH", "Filter.watch_folder_ids", "Filter.watch_include_sub"), (ComboProcessor, "IDC_ACTION_CERTAIN", "Filter.spam_action"), (FolderIDProcessor, "IDC_FOLDER_CERTAIN IDC_BROWSE_CERTAIN", "Filter.spam_folder_id"), (EditNumberProcessor, "IDC_EDIT_CERTAIN IDC_SLIDER_CERTAIN", "Filter.spam_threshold"), (BoolButtonProcessor, "IDC_MARK_SPAM_AS_READ", "Filter.spam_mark_as_read"), (FolderIDProcessor, "IDC_FOLDER_UNSURE IDC_BROWSE_UNSURE", "Filter.unsure_folder_id"), (EditNumberProcessor, "IDC_EDIT_UNSURE IDC_SLIDER_UNSURE", "Filter.unsure_threshold"), (ComboProcessor, "IDC_ACTION_UNSURE", "Filter.unsure_action"), (BoolButtonProcessor, "IDC_MARK_UNSURE_AS_READ", "Filter.unsure_mark_as_read"), (FolderIDProcessor, "IDC_FOLDER_HAM IDC_BROWSE_HAM", "Filter.ham_folder_id"), (ComboProcessor, "IDC_ACTION_HAM", "Filter.ham_action"), ), "IDD_TRAINING" : ( (FolderIDProcessor, "IDC_STATIC_HAM IDC_BROWSE_HAM", "Training.ham_folder_ids", "Training.ham_include_sub"), (FolderIDProcessor, "IDC_STATIC_SPAM IDC_BROWSE_SPAM", "Training.spam_folder_ids", "Training.spam_include_sub"), (BoolButtonProcessor, "IDC_BUT_RESCORE", "Training.rescore"), (BoolButtonProcessor, "IDC_BUT_REBUILD", "Training.rebuild"), (AsyncCommandProcessor, "IDC_START IDC_PROGRESS IDC_PROGRESS_TEXT", train.trainer, _("Start Training"), _("Stop"), "IDOK IDCANCEL IDC_BROWSE_HAM IDC_BROWSE_SPAM " \ "IDC_BUT_REBUILD IDC_BUT_RESCORE"), (BoolButtonProcessor, "IDC_BUT_TRAIN_FROM_SPAM_FOLDER", "Training.train_recovered_spam"), (BoolButtonProcessor, "IDC_BUT_TRAIN_TO_SPAM_FOLDER", "Training.train_manual_spam"), (ComboProcessor, "IDC_DEL_SPAM_RS", "General.delete_as_spam_message_state", _("not change the message,mark the message as read,mark the message as unread")), (ComboProcessor, "IDC_RECOVER_RS", "General.recover_from_spam_message_state", _("not change the message,mark the message as read,mark the message as unread")), ), "IDD_STATISTICS" : ( (StatsProcessor, "IDC_STATISTICS IDC_BUT_RESET_STATS " \ "IDC_LAST_RESET_DATE"), ), "IDD_ADVANCED" : ( (BoolButtonProcessor, "IDC_BUT_TIMER_ENABLED", "Filter.timer_enabled", """IDC_DELAY1_TEXT IDC_DELAY1_SLIDER IDC_DELAY2_TEXT IDC_DELAY2_SLIDER IDC_INBOX_TIMER_ONLY"""), (EditNumberProcessor, "IDC_DELAY1_TEXT IDC_DELAY1_SLIDER", "Filter.timer_start_delay", 0.4, 10, 20, 60), (EditNumberProcessor, "IDC_DELAY2_TEXT IDC_DELAY2_SLIDER", "Filter.timer_interval", 0.4, 10, 20, 60), (BoolButtonProcessor, "IDC_INBOX_TIMER_ONLY", "Filter.timer_only_receive_folders"), (CommandButtonProcessor, "IDC_SHOW_DATA_FOLDER", ShowDataFolder, ()), (DialogCommand, "IDC_BUT_SHOW_DIAGNOSTICS", "IDD_DIAGNOSTIC"), ), "IDD_DIAGNOSTIC" : ( (BoolButtonProcessor, "IDC_SAVE_SPAM_SCORE", "Filter.save_spam_info"), (IntProcessor, "IDC_VERBOSE_LOG", "General.verbose"), (CommandButtonProcessor, "IDC_BUT_VIEW_LOG", ShowLog, ()), (CloseButtonProcessor, "IDOK IDCANCEL"), ), "IDD_WIZARD": ( (ImageProcessor, "IDC_WIZ_GRAPHIC"), (CloseButtonProcessor, "IDCANCEL"), (wiz.ConfigureWizardProcessor, "IDC_FORWARD_BTN IDC_BACK_BTN IDC_PAGE_PLACEHOLDER", """IDD_WIZARD_WELCOME IDD_WIZARD_FOLDERS_WATCH IDD_WIZARD_FOLDERS_REST IDD_WIZARD_FOLDERS_TRAIN IDD_WIZARD_TRAIN IDD_WIZARD_TRAINING_IS_IMPORTANT IDD_WIZARD_FINISHED_UNCONFIGURED IDD_WIZARD_FINISHED_UNTRAINED IDD_WIZARD_FINISHED_TRAINED IDD_WIZARD_FINISHED_TRAIN_LATER """, WizardFinish), ), "IDD_WIZARD_WELCOME": ( (CommandButtonProcessor, "IDC_BUT_ABOUT", ShowAbout, ()), (RadioButtonProcessor, "IDC_BUT_PREPARATION", "Wizard.preparation"), ), "IDD_WIZARD_TRAINING_IS_IMPORTANT" : ( (BoolButtonProcessor, "IDC_BUT_TRAIN IDC_BUT_UNTRAINED", "Wizard.will_train_later"), (CommandButtonProcessor, "IDC_BUT_ABOUT", ShowTrainingDoc, ()), ), "IDD_WIZARD_FOLDERS_REST": ( (wiz.EditableFolderIDProcessor,"IDC_FOLDER_CERTAIN IDC_BROWSE_SPAM", "Filter.spam_folder_id", "Wizard.spam_folder_name", "Training.spam_folder_ids"), (wiz.EditableFolderIDProcessor,"IDC_FOLDER_UNSURE IDC_BROWSE_UNSURE", "Filter.unsure_folder_id", "Wizard.unsure_folder_name"), ), "IDD_WIZARD_FOLDERS_WATCH": ( (wiz.WatchFolderIDProcessor,"IDC_FOLDER_WATCH IDC_BROWSE_WATCH", "Filter.watch_folder_ids"), ), "IDD_WIZARD_FOLDERS_TRAIN": ( (wiz.TrainFolderIDProcessor,"IDC_FOLDER_HAM IDC_BROWSE_HAM", "Training.ham_folder_ids"), (wiz.TrainFolderIDProcessor,"IDC_FOLDER_CERTAIN IDC_BROWSE_SPAM", "Training.spam_folder_ids"), (BoolButtonProcessor, "IDC_BUT_RESCORE", "Training.rescore"), ), "IDD_WIZARD_TRAIN" : ( (wiz.WizAsyncProcessor, "IDC_PROGRESS IDC_PROGRESS_TEXT", WizardTrainer, "", "", ""), ), "IDD_WIZARD_FINISHED_UNCONFIGURED": ( ), "IDD_WIZARD_FINISHED_UNTRAINED": ( ), "IDD_WIZARD_FINISHED_TRAINED": ( (WizardTrainingStatusProcessor, "IDC_TRAINING_STATUS"), ), "IDD_WIZARD_FINISHED_TRAIN_LATER" : ( ), }
861c710c6e89b0ffb3546483f63f4f2e2af85838
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/first_eye/world/old_problem/right_government/eye_or_case.py
e661a8e74622ff9a608787dce1a027c2b2be1f36
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
#! /usr/bin/env python def government(str_arg): small_company(str_arg) print('early_fact') def small_company(str_arg): print(str_arg) if __name__ == '__main__': government('week')
aa00fe43e3785a75507fb2a0b3aaad991da96511
0adb68bbf576340c8ba1d9d3c07320ab3bfdb95e
/regexlib/python_re2_test_file/regexlib_2890.py
bbf1cafd2ceabdcfdc8a3bcc7fb879bc369f6b85
[ "MIT" ]
permissive
agentjacker/ReDoS-Benchmarks
c7d6633a3b77d9e29e0ee2db98d5dfb60cde91c6
f5b5094d835649e957bf3fec6b8bd4f6efdb35fc
refs/heads/main
2023-05-10T13:57:48.491045
2021-05-21T11:19:39
2021-05-21T11:19:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
# 2890 # (([\w|\.]*)\s*={1}\s*(.*?))$ # POLYNOMIAL # nums:5 # POLYNOMIAL AttackString:""+"1"*10000+"!_1!1 _SLQ_1" import re2 as re from time import perf_counter regex = """(([\w|\.]*)\s*={1}\s*(.*?))$""" REGEX = re.compile(regex) for i in range(0, 150000): ATTACK = "" + "1" * i * 10000 + "!_1!1 _SLQ_1" LEN = len(ATTACK) BEGIN = perf_counter() m = REGEX.search(ATTACK) # m = REGEX.match(ATTACK) DURATION = perf_counter() - BEGIN print(f"{i *10000}: took {DURATION} seconds!")
e77c02bc990fe5e539985d34b266c7a0618a1fbb
b1ddae0f702f7af4a22ccf8e57eccb6778eaa8a5
/apps/users/migrations/0006_auto_20180703_0743.py
5623ef9fa7b291ce5b84c28a1155b44805a9c8f0
[]
no_license
MoNaiZi/Mxoinline3
1cd1effa716bacbe4a7fc83c4687adc1fdbbea03
8d8ba1322fbaefcf8767160e1e2d05afc755fe5c
refs/heads/master
2020-03-17T00:03:41.868735
2018-07-11T00:48:09
2018-07-11T00:48:09
133,101,988
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2018-07-03 07:43 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0005_auto_20180630_2043'), ] operations = [ migrations.AlterField( model_name='emailverifyrecord', name='send_type', field=models.CharField(choices=[('register', '注册'), ('forget', '找回密码'), ('update_email', '修改邮箱')], max_length=20), ), ]
d6672c1c175bee083914f1102c4307b540023b3e
ef54d37f8a3303013ca7469871a320d303957ed7
/robo4.2/4.2/lib/python2.7/site-packages/hpe3parclient/http.py
ad5b9816917462ec781103c68601c6260431104e
[]
no_license
richa92/Jenkin_Regression_Testing
d18badfcf16bda682dfe7bcbbd66f54a9a27a58d
24a74926170cbdfafa47e972644e2fe5b627d8ff
refs/heads/master
2020-07-12T10:01:59.099137
2019-08-27T12:14:53
2019-08-27T12:14:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,675
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # (c) Copyright 2012-2015 Hewlett Packard Enterprise Development LP # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ HTTPJSONRESTClient. .. module: http :Author: Walter A. Boring IV :Description: This is the HTTP Client that is used to make the actual calls. It includes the authentication that knows the cookie name for 3PAR. """ import logging import requests import time try: import json except ImportError: import simplejson as json from hpe3parclient import exceptions class HTTPJSONRESTClient(object): """ An HTTP REST Client that sends and recieves JSON data as the body of the HTTP request. :param api_url: The url to the WSAPI service on 3PAR ie. http://<3par server>:8080 :type api_url: str :param secure: Validate SSL cert? Default will not validate :type secure: bool :param http_log_debug: Turns on http log debugging. Default will not log :type http_log_debug: bool :param suppress_ssl_warnings: Suppresses log warning messages if True. Default will not suppress warnings. :type suppress_ssl_warnings: bool """ USER_AGENT = 'python-3parclient' SESSION_COOKIE_NAME = 'X-Hp3Par-Wsapi-Sessionkey' http_log_debug = False _logger = logging.getLogger(__name__) # Retry constants retry_exceptions = (exceptions.HTTPServiceUnavailable, requests.exceptions.ConnectionError) tries = 5 delay = 0 backoff = 2 def __init__(self, api_url, secure=False, http_log_debug=False, suppress_ssl_warnings=False, timeout=None): if suppress_ssl_warnings: requests.packages.urllib3.disable_warnings() self.session_key = None # should be http://<Server:Port>/api/v1 self.set_url(api_url) self.set_debug_flag(http_log_debug) self.times = [] # [("item", starttime, endtime), ...] self.secure = secure self.timeout = timeout def set_url(self, api_url): # should be http://<Server:Port>/api/v1 self.api_url = api_url.rstrip('/') def set_debug_flag(self, flag): """ This turns on/off http request/response debugging output to console :param flag: Set to True to enable debugging output :type flag: bool """ if not HTTPJSONRESTClient.http_log_debug and flag: ch = logging.StreamHandler() HTTPJSONRESTClient._logger.setLevel(logging.DEBUG) HTTPJSONRESTClient._logger.addHandler(ch) HTTPJSONRESTClient.http_log_debug = True def authenticate(self, user, password, optional=None): """ This tries to create an authenticated session with the 3PAR server :param user: The username :type user: str :param password: Password :type password: str """ # this prevens re-auth attempt if auth fails self.auth_try = 1 self.session_key = None info = {'user': user, 'password': password} self._auth_optional = None if optional: self._auth_optional = optional info.update(optional) resp, body = self.post('/credentials', body=info) if body and 'key' in body: self.session_key = body['key'] self.auth_try = 0 self.user = user self.password = password def _reauth(self): self.authenticate(self.user, self.password, self._auth_optional) def unauthenticate(self): """ This clears the authenticated session with the 3PAR server. """ # delete the session on the 3Par self.delete('/credentials/%s' % self.session_key) self.session_key = None def get_timings(self): """ Ths gives an array of the request timings since last reset_timings call """ return self.times def reset_timings(self): """ This resets the request/response timings array """ self.times = [] def _http_log_req(self, args, kwargs): if not self.http_log_debug: return string_parts = ['curl -i'] for element in args: if element in ('GET', 'POST'): string_parts.append(' -X %s' % element) else: string_parts.append(' %s' % element) for element in kwargs['headers']: header = ' -H "%s: %s"' % (element, kwargs['headers'][element]) string_parts.append(header) HTTPJSONRESTClient._logger.debug("\nREQ: %s\n" % "".join(string_parts)) if 'body' in kwargs: HTTPJSONRESTClient._logger.debug("REQ BODY: %s\n" % (kwargs['body'])) def _http_log_resp(self, resp, body): if not self.http_log_debug: return # Replace commas with newlines to break the debug into new lines, # making it easier to read HTTPJSONRESTClient._logger.debug("RESP:%s\n", str(resp).replace("',", "'\n")) HTTPJSONRESTClient._logger.debug("RESP BODY:%s\n", body) def request(self, *args, **kwargs): """ This makes an HTTP Request to the 3Par server. You should use get, post, delete instead. """ if self.session_key and self.auth_try != 1: kwargs.setdefault('headers', {})[self.SESSION_COOKIE_NAME] = \ self.session_key kwargs.setdefault('headers', kwargs.get('headers', {})) kwargs['headers']['User-Agent'] = self.USER_AGENT kwargs['headers']['Accept'] = 'application/json' if 'body' in kwargs: kwargs['headers']['Content-Type'] = 'application/json' kwargs['body'] = json.dumps(kwargs['body']) payload = kwargs['body'] else: payload = None # args[0] contains the URL, args[1] contains the HTTP verb/method http_url = args[0] http_method = args[1] self._http_log_req(args, kwargs) r = None resp = None body = None while r is None and self.tries > 0: try: # Check to see if the request is being retried. If it is, we # want to delay. if self.delay: time.sleep(self.delay) if self.timeout: r = requests.request(http_method, http_url, data=payload, headers=kwargs['headers'], verify=self.secure, timeout=self.timeout) else: r = requests.request(http_method, http_url, data=payload, headers=kwargs['headers'], verify=self.secure) resp = r.headers body = r.text if isinstance(body, bytes): body = body.decode('utf-8') # resp['status'], status['content-location'], and resp.status # need to be manually set as Python Requests doesn't provide # them automatically. resp['status'] = str(r.status_code) resp.status = r.status_code if 'location' not in resp: resp['content-location'] = r.url r.close() self._http_log_resp(resp, body) # Try and convert the body response to an object # This assumes the body of the reply is JSON if body: try: body = json.loads(body) except ValueError: pass else: body = None if resp.status >= 400: if body and 'message' in body: body['desc'] = body['message'] raise exceptions.from_response(resp, body) except requests.exceptions.SSLError as err: HTTPJSONRESTClient._logger.error( "SSL certificate verification failed: (%s). You must have " "a valid SSL certificate or disable SSL " "verification.", err) raise exceptions.SSLCertFailed("SSL Certificate Verification " "Failed.") except self.retry_exceptions as ex: # If we catch an exception where we want to retry, we need to # decrement the retry count prepare to try again. r = None self.tries -= 1 self.delay = self.delay * self.backoff + 1 # Raise exception, we have exhausted all retries. if self.tries is 0: raise ex except requests.exceptions.HTTPError as err: raise exceptions.HTTPError("HTTP Error: %s" % err) except requests.exceptions.URLRequired as err: raise exceptions.URLRequired("URL Required: %s" % err) except requests.exceptions.TooManyRedirects as err: raise exceptions.TooManyRedirects( "Too Many Redirects: %s" % err) except requests.exceptions.Timeout as err: raise exceptions.Timeout("Timeout: %s" % err) except requests.exceptions.RequestException as err: raise exceptions.RequestException( "Request Exception: %s" % err) return resp, body def _time_request(self, url, method, **kwargs): start_time = time.time() resp, body = self.request(url, method, **kwargs) self.times.append(("%s %s" % (method, url), start_time, time.time())) return resp, body def _do_reauth(self, url, method, ex, **kwargs): # print("_do_reauth called") try: if self.auth_try != 1: self._reauth() resp, body = self._time_request(self.api_url + url, method, **kwargs) return resp, body else: raise ex except exceptions.HTTPUnauthorized: raise ex def _cs_request(self, url, method, **kwargs): # Perform the request once. If we get a 401 back then it # might be because the auth token expired, so try to # re-authenticate and try again. If it still fails, bail. try: resp, body = self._time_request(self.api_url + url, method, **kwargs) return resp, body except exceptions.HTTPUnauthorized as ex: # print("_CS_REQUEST HTTPUnauthorized") resp, body = self._do_reauth(url, method, ex, **kwargs) return resp, body except exceptions.HTTPForbidden as ex: # print("_CS_REQUEST HTTPForbidden") resp, body = self._do_reauth(url, method, ex, **kwargs) return resp, body def get(self, url, **kwargs): """ Make an HTTP GET request to the server. .. code-block:: python #example call try { headers, body = http.get('/volumes') } except exceptions.HTTPUnauthorized as ex: print "Not logged in" } :param url: The relative url from the 3PAR api_url :type url: str :returns: headers - dict of HTTP Response headers :returns: body - the body of the response. If the body was JSON, it will be an object """ return self._cs_request(url, 'GET', **kwargs) def post(self, url, **kwargs): """ Make an HTTP POST request to the server. .. code-block:: python #example call try { info = {'name': 'new volume name', 'cpg': 'MyCPG', 'sizeMiB': 300} headers, body = http.post('/volumes', body=info) } except exceptions.HTTPUnauthorized as ex: print "Not logged in" } :param url: The relative url from the 3PAR api_url :type url: str :returns: headers - dict of HTTP Response headers :returns: body - the body of the response. If the body was JSON, it will be an object """ return self._cs_request(url, 'POST', **kwargs) def put(self, url, **kwargs): """ Make an HTTP PUT request to the server. .. code-block:: python #example call try { info = {'name': 'something'} headers, body = http.put('/volumes', body=info) } except exceptions.HTTPUnauthorized as ex: print "Not logged in" } :param url: The relative url from the 3PAR api_url :type url: str :returns: headers - dict of HTTP Response headers :returns: body - the body of the response. If the body was JSON, it will be an object """ return self._cs_request(url, 'PUT', **kwargs) def delete(self, url, **kwargs): """ Make an HTTP DELETE request to the server. .. code-block:: python #example call try { headers, body = http.delete('/volumes/%s' % name) } except exceptions.HTTPUnauthorized as ex: print "Not logged in" } :param url: The relative url from the 3PAR api_url :type url: str :returns: headers - dict of HTTP Response headers :returns: body - the body of the response. If the body was JSON, it will be an object """ return self._cs_request(url, 'DELETE', **kwargs)