blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
030481619ffa04cd87a5ff0f61597ae2248e6274
48a173f3522880739b95efabb5f8869e7036c504
/ExpressionBuilder.py
d5a807a5a258cba66c952f1daf3974e506844c31
[ "Apache-2.0" ]
permissive
QC99DennisWang/altanalyze
095f22a7b7ea2130129e61bb6f5fa693b0572aa7
8ae24d5fe21989ba890508771101644f0a246c02
refs/heads/master
2021-03-19T07:44:09.412403
2017-04-20T20:39:44
2017-04-20T20:39:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
216,350
py
###ExpressionBuilder #Copyright 2005-2008 J. David Gladstone Institutes, San Francisco California #Author Nathan Salomonis - [email protected] #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is furnished #to do so, subject to the following conditions: #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys, string import os.path import bisect import unique import statistics import math import reorder_arrays import ExonArray import export import time import traceback import UI import BuildAffymetrixAssociations; reload(BuildAffymetrixAssociations) import FilterDabg; reload(FilterDabg) try: from scipy import average as Average except Exception: from statistics import avg as Average use_Tkinter = 'no' try: from Tkinter import * use_Tkinter = 'yes' except ImportError: use_Tkinter = 'yes'; print "\nPmw or Tkinter not found... Tkinter print out not available"; debug_mode = 'no' def filepath(filename): fn = unique.filepath(filename) return fn def read_directory(sub_dir): dir_list = unique.read_directory(sub_dir); dir_list2 = [] ###Code to prevent folder names from being included for entry in dir_list: if entry[-4:] == ".txt" or entry[-4:] == ".csv": dir_list2.append(entry) return dir_list2 def returnLargeGlobalVars(): ### Prints all large global variables retained in memory (taking up space) all = [var for var in globals() if (var[:2], var[-2:]) != ("__", "__")] for var in all: try: if len(globals()[var])>1: print var, len(globals()[var]) except Exception: null=[] def clearObjectsFromMemory(db_to_clear): db_keys={} for key in db_to_clear: db_keys[key]=[] for key in db_keys: del db_to_clear[key] ################# Begin Analysis from parsing files def checkArrayHeaders(expr_input_dir,expr_group_dir): array_names, array_linker_db = getArrayHeaders(expr_input_dir) expr_group_list,expr_group_db = importArrayGroups(expr_group_dir,array_linker_db) def getArrayHeaders(expr_input_dir): ### This method is used to check to see if the array headers in the groups and expression files match fn=filepath(expr_input_dir); x = 0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) headers = string.split(data,'\t') if data[0] != '#': ### differentiate data from column headers if x == 1: break ### Exit out of loop, since we only want the array names if x == 0: ### only grab headers if it's the first row array_names = []; array_linker_db = {}; d = 0 for entry in headers[1:]: entry = string.replace(entry,'"',''); array_names.append(entry) for array in array_names: array = string.replace(array,'\r',''); array_linker_db[array] = d; d +=1 x = 1 return array_names, array_linker_db def checkExpressionFileFormat(expFile,reportNegatives=False): """ Determine if the data is log, non-log and increment value for log calculation """ firstLine=True; convert=False inputMax=0; inputMin=10000; increment=0 expressed_values={} startIndex = 1 for line in open(expFile,'rU').xreadlines(): line = cleanUpLine(line) key = string.split(line,'\t')[0] t = string.split(line,'\t') if firstLine: headers = line if 'row_clusters-flat' == t[1]: startIndex = 2 firstLine = False else: if 'column_clusters-flat' in t: continue ### skip this row if analyzing a clustered heatmap file try: uid, coordinates = string.split(key,'=') except Exception: uid = key if '' in t[1:]: values = [0 if x=='' else x for x in t[startIndex:]] elif 'NA' in t[1:]: values = [0 if x=='NA' else x for x in t[startIndex:]] else: values = t[1:] try: values = map(lambda x: float(x), values) except Exception: print values print traceback.format_exc() if max(values)>inputMax: inputMax = max(values) if min(values)<inputMin: inputMin = min(values) if inputMax>100: ### Thus, not log values expressionDataFormat = 'non-log' if inputMin<=1: #if inputMin<=1: increment = inputMin+1 convert = True else: expressionDataFormat = "log" #print expressionDataFormat,increment,convert if reportNegatives == False: return expressionDataFormat,increment,convert else: ### Report if negative values are present increment = inputMin if convert: ### Should rarely be the case, as this would indicate that a non-log folds are present in the file increment = increment+1 return expressionDataFormat,increment,convert def calculate_expression_measures(expr_input_dir,expr_group_dir,experiment_name,comp_group_dir,probeset_db,annotate_db): print "Processing the expression file:",expr_input_dir try: expressionDataFormat,increment,convertNonLogToLog = checkExpressionFileFormat(expr_input_dir) except Exception: expressionDataFormat = expression_data_format; increment = 0 if expressionDataFormat == 'non-log': convertNonLogToLog=True else: convertNonLogToLog = False #print convertNonLogToLog, expressionDataFormat, increment global array_fold_headers; global summary_filtering_stats; global raw_data_comp_headers; global array_folds fn1=filepath(expr_input_dir) x = 0; y = 0; d = 0 blanksPresent=False array_folds={} for line in open(fn1,'rU').xreadlines(): data = cleanUpLine(line) if data[0] != '#' and data[0] != '!': fold_data = string.split(data,'\t') try: arrayid = fold_data[0] except Exception: arrayid = 'UID' if len(arrayid)>0: if arrayid[0]== ' ': try: arrayid = arrayid[1:] ### Cufflinks issue except Exception: arrayid = ' ' ### can be the first row UID column as blank else: arrayid = 'UID' #if 'counts.' in expr_input_dir: arrayid,coordinates = string.split(arrayid,'=') ### needed for exon-level analyses only ### differentiate data from column headers if x == 1: fold_data = fold_data[1:]; fold_data2=[] for fold in fold_data: fold = string.replace(fold,'"','') try: fold = float(fold); fold_data2.append(fold) except Exception: fold_data2.append('') blanksPresent = True """ print_out = 'WARNING!!! The ID'+arrayid+ 'has an invalid expression value:'+[fold]+'\n. Correct and re-run' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); sys.exit() except NameError: print print_out; sys.exit() """ if expressionDataFormat == 'non-log' and (convertNonLogToLog or array_type == 'RNASeq'): fold_data3=[] ###Convert numeric expression to log fold (previous to version 2.05 added 1) for fold in fold_data2: try: log_fold = math.log((float(fold)+increment),2) ### changed from - log_fold = math.log((float(fold)+1),2) - version 2.05 fold_data3.append(log_fold) except ValueError: ###Not an ideal situation: Value is negative - Convert to zero if float(fold)<=0: log_fold = math.log(1.01,2); fold_data3.append(log_fold) else: fold_data3.append('') blanksPresent = True """ print_out = 'WARNING!!! The ID'+arrayid+ 'has an invalid expression value:'+fold+'\n. Correct and re-run' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); sys.exit() except NameError: print print_out; sys.exit() """ fold_data2 = fold_data3 if (array_type == "AltMouse"): if arrayid in probeset_db: array_folds[arrayid] = fold_data2; y = y+1 else: array_folds[arrayid] = fold_data2; y = y+1 else: #only grab headers if it's the first row array_names = []; array_linker_db = {} for entry in fold_data[1:]: entry = string.replace(entry,'"','') if len(entry)>0: array_names.append(entry) for array in array_names: #use this to have an orignal index order of arrays array = string.replace(array,'\r','') ###This occured once... not sure why array_linker_db[array] = d; d +=1 #add this aftwards since these will also be used as index values x = 1 print len(array_folds),"IDs imported...beginning to calculate statistics for all group comparisons" expr_group_list,expr_group_db = importArrayGroups(expr_group_dir,array_linker_db) comp_group_list, comp_group_list2 = importComparisonGroups(comp_group_dir) if 'RPKM' in norm and 'counts.' in expr_input_dir: normalization_method = 'RPKM-counts' ### process as counts if analyzing the counts file else: normalization_method = norm if expressionDataFormat == 'non-log': logvalues=False else: logvalues=True if convertNonLogToLog: logvalues = True try: array_folds, array_fold_headers, summary_filtering_stats,raw_data_comp_headers = reorder_arrays.reorder(array_folds,array_names,expr_group_list, comp_group_list,probeset_db,include_raw_data,array_type,normalization_method,fl,logvalues=logvalues,blanksPresent=blanksPresent) except Exception: print traceback.format_exc(),'\n' print_out = 'AltAnalyze encountered an error with the format of the expression file.\nIf the data was designated as log intensities and it is not, then re-run as non-log.' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); root.destroy(); force_exit ### Forces the error log to pop-up except NameError: print print_out; sys.exit() ### Integrate maximum counts for each gene for the purpose of filtering (RNASeq data only) if array_type == 'RNASeq' and 'counts.' not in expr_input_dir: addMaxReadCounts(expr_input_dir) ### Export these results to a DATASET statistics and annotation results file if 'counts.' not in expr_input_dir: if array_type == 'RNASeq' and norm == 'RPKM': filterRNASeq(count_statistics_db) ### Export count summary in GenMAPP format if include_raw_data == 'yes': headers = removeRawCountData(array_fold_headers) else: headers = array_fold_headers exportDataForGenMAPP(headers,'counts') exportAnalyzedData(comp_group_list2,expr_group_db) ### Export formatted results for input as an expression dataset into GenMAPP or PathVisio if data_type == 'expression': if include_raw_data == 'yes': headers = removeRawData(array_fold_headers) else: headers = array_fold_headers exportDataForGenMAPP(headers,'expression') try: clearObjectsFromMemory(summary_filtering_stats); clearObjectsFromMemory(array_folds) except Exception: null=[] try: clearObjectsFromMemory(summary_filtering_stats); summary_filtering_stats=[] except Exception: null=[] else: ### When performing an RNASeq analysis on RPKM data, we first perform these analyses on the raw counts to remove fold changes for low expressing genes """count_statistics_db={}; count_statistics_headers=[] for key in array_folds: count_statistics_db[key] = array_folds[key] for name in array_fold_headers: count_statistics_headers.append(name)""" try: clearObjectsFromMemory(summary_filtering_stats) except Exception: null=[] try: clearObjectsFromMemory(summary_filtering_stats); summary_filtering_stats=[] except Exception: null=[] return array_folds, array_fold_headers def filterRNASeq(counts_db): ### Parse through the raw count data summary statistics and annotate any comparisons considered NOT EXPRESSED by read count filtering as not expressed (on top of RPKM filtering) reassigned = 0; re = 0 for gene in counts_db: i=0 ### keep track of the index (same as RPKM index) for val in counts_db[gene]: if val =='Insufficient Expression': #print val, i, array_folds[gene][i];kill if array_folds[gene][i] != 'Insufficient Expression': reassigned = gene, array_folds[gene][i] array_folds[gene][i] = 'Insufficient Expression' ### Re-assign the fold changes to this non-numeric value re+=1 i+=1 #print reassigned, re def addMaxReadCounts(filename): import RNASeq max_count_db,array_names = RNASeq.importGeneCounts(filename,'max') for gene in summary_filtering_stats: gs = summary_filtering_stats[gene] gs.setMaxCount(max_count_db[gene]) ### Shouldn't cause an error, but we want to get an exception if it does (something is wrong with the analysis) def simplerGroupImport(group_dir): if 'exp.' in group_dir or 'filteredExp.' in group_dir: group_dir = string.replace(group_dir,'exp.','groups.') group_dir = string.replace(group_dir,'filteredExp.','groups.') import collections try: sample_group_db = collections.OrderedDict() except Exception: try: import ordereddict sample_group_db = ordereddict.OrderedDict() except Exception: sample_group_db={} fn = filepath(group_dir) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) try: sample_filename,group_number,group_name = string.split(data,'\t') except Exception: print string.split(data,'\t'), 'more than 3 columns present in groups file' kill sample_group_db[sample_filename] = group_name return sample_group_db def simpleGroupImport(group_dir,splitHeaders=False): """ Used for calculating fold changes prior to clustering for individual samples (genomtric folds) """ import collections try: ### OrderedDict used to return the keys in the orders added for markerFinder group_sample_db=collections.OrderedDict() group_name_db=collections.OrderedDict() group_name_sample_db=collections.OrderedDict() group_db=collections.OrderedDict() except Exception: try: import ordereddict group_sample_db = ordereddict.OrderedDict() group_name_db=ordereddict.OrderedDict() group_name_sample_db=ordereddict.OrderedDict() group_db=ordereddict.OrderedDict() except Exception: group_sample_db={} group_name_db={} group_name_sample_db={} group_db={} sample_list=[] group_dir = verifyExpressionFile(group_dir) fn = filepath(group_dir) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) try: sample_filename,group_number,group_name = string.split(data,'\t') except Exception: print data;kill if splitHeaders: if '~' in sample_filename: sample_filename = string.split(sample_filename,'~')[-1] group_sample_db[sample_filename] = group_name+':'+sample_filename try: group_name_sample_db[group_name].append(group_name+':'+sample_filename) except Exception: group_name_sample_db[group_name] = [group_name+':'+sample_filename] sample_list.append(sample_filename) group_db[sample_filename] = group_name group_name_db[group_number]=group_name ### used by simpleCompsImport ### Get the comparisons indicated by the user comps_name_db,comp_groups = simpleCompsImport(group_dir,group_name_db) return sample_list,group_sample_db,group_db,group_name_sample_db,comp_groups,comps_name_db def simpleCompsImport(group_dir,group_name_db): """ Used for calculating fold changes prior to clustering for individual samples (genomtric folds) """ comps_dir = string.replace(group_dir,'groups.','comps.') comps_name_db={} comp_groups=[] comps_dir = verifyExpressionFile(comps_dir) fn = filepath(comps_dir) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) try: exp_group_num,con_group_num = string.split(data,'\t') exp_group_name = group_name_db[exp_group_num] con_group_name = group_name_db[con_group_num] try: comps_name_db[con_group_name].append(exp_group_name) except Exception: #comps_name_db[con_group_name] = [exp_group_name] ### If we don't want to include the control samples comps_name_db[con_group_name] = [con_group_name] ### Add the control group versus itself the first time comps_name_db[con_group_name].append(exp_group_name) ### Keep track of the order of the groups for ordering the cluster inputs if con_group_name not in comp_groups: comp_groups.append(con_group_name) if exp_group_name not in comp_groups: comp_groups.append(exp_group_name) except Exception: pass ### Occurs if there are dummy lines in the file (returns with no values) return comps_name_db,comp_groups def importArrayGroups(expr_group_dir,array_linker_db): new_index_order = 0 expr_group_list=[] expr_group_db = {} ### use when writing out data fn=filepath(expr_group_dir) try: try: for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') length = string.join(t,'') ### Some lines can be blank if len(length)>2: array_header,group,group_name = t group = int(group) ### compare new to original index order of arrays try: original_index_order = array_linker_db[array_header] except KeyError: print_out = 'WARNING!!! At least one sample-ID listed in the "groups." file (e.g.,'+array_header+')'+'\n is not in the sample "exp." file. See the new file "arrays." with all "exp." header names\nand correct "groups."' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!') except Exception: print print_out exportArrayHeaders(expr_group_dir,array_linker_db) try: root.destroy(); sys.exit() except Exception: sys.exit() entry = new_index_order, original_index_order, group, group_name expr_group_list.append(entry) new_index_order += 1 ### add this aftwards since these will also be used as index values expr_group_db[str(group)] = group_name expr_group_list.sort() ### sorting put's this in the original array order except ValueError: print_out = 'The group number "'+group+'" is not a valid integer. Correct before proceeding.' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); root.destroy(); sys.exit() except Exception: print print_out; sys.exit() except Exception,e: print traceback.format_exc(),'\n' exportArrayHeaders(expr_group_dir,array_linker_db) print_out = 'No groups or comps files found for'+expr_group_dir+'... exiting program.' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); root.destroy(); sys.exit() except Exception: print print_out; sys.exit() return expr_group_list,expr_group_db def exportArrayHeaders(expr_group_dir,array_linker_db): new_file = string.replace(expr_group_dir,'groups.','arrays.') new_file = string.replace(new_file,'exp.','arrays.') new_file = string.replace(new_file,'counts.','arrays.') if 'arrays.' not in new_file: new_file = 'arrays.' + new_file ### Can occur if the file does not have 'exp.' in it fn=filepath(new_file); data = open(fn,'w') for array in array_linker_db: data.write(array+'\n') data.close() def importComparisonGroups(comp_group_dir): comp_group_list=[]; comp_group_list2=[] try: fn=filepath(comp_group_dir) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) groups = string.split(data,'\t') groups2 = groups[0],groups[1] #as a list these would be unhashable comp_group_list.append(groups) comp_group_list2.append(groups2) except Exception: null=[] ### Occcurs when no file present return comp_group_list, comp_group_list2 def importMicrornaAssociations(species,report): filename = 'AltDatabase/Ensembl/'+species+'/'+species+'_microRNA-Ensembl.txt' fn=filepath(filename); ensembl_microRNA_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) miR,ens_geneid,sources = string.split(data,'\t') miR_annot = miR+'('+sources+')' try: ensembl_microRNA_db[ens_geneid].append(miR_annot) except KeyError: ensembl_microRNA_db[ens_geneid] = [miR_annot] ###Optionally filter out miRs with evidence from just one algorithm (options are 'any' and 'muliple' for gene in ensembl_microRNA_db: miRs = ensembl_microRNA_db[gene]; miRs.sort() if report == 'multiple': miRs2=[] for mir in miRs: if '|' in mir: miRs2.append(mir) miRs=miRs2 miRs = string.join(miRs,', ') ensembl_microRNA_db[gene] = miRs return ensembl_microRNA_db def importSystemCodes(): filename = 'Config/source_data.txt' fn=filepath(filename); x=0; systems={} for line in open(fn,'rU').readlines(): data = cleanUpLine(line) t = string.split(data,'\t') system_name=t[0];system_code=t[1] if x==0: x=1 else: systems[system_name] = system_code return systems def exportDataForGenMAPP(headers,input_type): ###Export summary columns for GenMAPP analysis systems = importSystemCodes() GenMAPP_file = expression_dataset_output_dir + 'GenMAPP-'+experiment_name+'.txt' if 'counts' in input_type: GenMAPP_file = string.replace(GenMAPP_file,'GenMAPP-','COUNTS-') try: genmapp = export.createExportFile(GenMAPP_file,expression_dataset_output_dir[:-1]) except RuntimeError: export.isFileOpen(GenMAPP_file,expression_dataset_output_dir[:-1]) genmapp = export.createExportFile(GenMAPP_file,expression_dataset_output_dir[:-1]) if array_type == "3'array" and 'Ensembl' not in vendor: if vendor == 'Affymetrix': system_code = 'X' elif vendor == 'Illumina': system_code = 'Il' elif vendor == 'Agilent': system_code = 'Ag' elif vendor == 'Codelink': system_code = 'Co' else: ### This is another system selected by the user system = string.replace(vendor,'other:','') try: system_code = systems[system] except Exception: system_code = 'Sy' elif array_type != 'AltMouse': system_code = 'En' else: try: system_code = systems[vendor] except Exception: system_code = 'X' genmapp_title = ['GeneID','SystemCode'] + headers genmapp_title = string.join(genmapp_title,'\t')+'\t'+'ANOVA-rawp'+'\t'+'ANOVA-adjp'+'\t'+'largest fold'+'\n' genmapp.write(genmapp_title) for probeset in array_folds: if 'ENS' in probeset and (' ' in probeset or '_' in probeset or ':' in probeset or '-' in probeset) and len(probeset)>9: system_code = 'En' ensembl_gene = 'ENS'+string.split(probeset,'ENS')[1] if ' ' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,' ')[0] if '_' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,'_')[0] if ':' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,':')[0] if '-' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,'-')[0] data_val = ensembl_gene+'\t'+system_code elif ('ENS' in probeset or 'ENF' in probeset) and system_code == 'Sy' and len(probeset)>9: system_code = 'En' data_val = probeset+'\t'+system_code else: data_val = probeset+'\t'+system_code for value in array_folds[probeset]: data_val += '\t'+ str(value) gs = summary_filtering_stats[probeset] data_val += '\t'+ str(gs.Pval()) +'\t'+ str(gs.AdjP()) +'\t'+ str(gs.LogFold()) +'\n' genmapp.write(data_val) genmapp.close() exportGOEliteInput(headers,system_code) print 'Exported GO-Elite input files...' def buildCriterion(ge_fold_cutoffs, ge_pvalue_cutoffs, ge_ptype, main_output_folder, operation, UseDownRegulatedLabel=False, genesToExclude={}): global array_folds; global m_cutoff; global p_cutoff; global expression_dataset_output_dir global ptype_to_use; global use_downregulated_label; use_downregulated_label = UseDownRegulatedLabel m_cutoff = math.log(float(ge_fold_cutoffs),2); p_cutoff = ge_pvalue_cutoffs; ptype_to_use = ge_ptype expression_dataset_output_dir = string.replace(main_output_folder,'GO-Elite','ExpressionOutput/') dir_list = read_directory(expression_dataset_output_dir[:-1]) if operation == 'summary': filetype = 'DATASET-' else: filetype = 'GenMAPP-' for filename in dir_list: if filetype in filename: fn=filepath(expression_dataset_output_dir+filename) array_folds = {}; x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') if x==0: x=1; headers = t[1:-2] else: values = t[1:-2]; probeset = t[0]; system_code = t[1] if probeset not in genesToExclude: ### E.g., sex-associated or pseudogenes array_folds[probeset] = values if operation == 'summary': exportGeneRegulationSummary(filename,headers,system_code) else: input_files_exported = exportGOEliteInput(headers,system_code) array_folds=[] def excludeGenesImport(filename): fn=filepath(filename) exclude_genes = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) uid = string.split(data,'\t')[0] exclude_genes[uid] = None return exclude_genes def importCountSummary(): ### Copied code from buildCriterion count_summary_db={} indexed_headers={} filetype = 'COUNTS-' dir_list = read_directory(expression_dataset_output_dir[:-1]) for filename in dir_list: if filetype in filename: fn=filepath(expression_dataset_output_dir+filename) count_summary_db = {}; x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') if x==0: x=1; i=0 for header in t: indexed_headers[header]=i i+=1 else: values = t[1:-2]; probeset = t[0]; system_code = t[1] count_summary_db[probeset] = values return count_summary_db, indexed_headers def exportGOEliteInput(headers,system_code): ### Filter statistics based on user-defined thresholds as input for GO-Elite analysis criterion_db={}; denominator_geneids={}; index = 0; ttest=[] for column in headers: if 'ANOVA' in ptype_to_use and ptype_to_use in column: ttest.append(index) ### Not currently implemented elif ptype_to_use in column and 'ANOVA' not in column: ttest.append(index) lfi = 2 ### relative logfold index position if ptype_to_use == 'adjp': lfi = 3 index+=1 ### Had to introduce the below code to see if any p-values for a criterion are < 1 (otherwise, include them for GO-Elite) exclude_p1={} for probeset in array_folds: index = 0; af = array_folds[probeset] for value in array_folds[probeset]: if index in ttest: criterion_name = headers[index][5:] if criterion_name not in exclude_p1: try: p_value = float(value) except Exception: p_value = 1 ### Occurs when a p-value is annotated as 'Insufficient Expression' if p_value < 1: exclude_p1[criterion_name] = True # Hence, at least one gene has a p<1 index+=1 for probeset in array_folds: index = 0; af = array_folds[probeset] for value in array_folds[probeset]: denominator_geneids[probeset]=[] if index in ttest: criterion_name = headers[index][5:] if use_downregulated_label==False: rcn = string.split(criterion_name,'_vs_'); rcn.reverse() ### re-label all downregulated as up (reverse the numerator/denominator) reverse_criterion_names = string.join(rcn,'_vs_') regulation_call = '-upregulated' else: reverse_criterion_names = criterion_name regulation_call = '-downregulated' try: log_fold = float(af[index-lfi]) except Exception: log_fold = 0 ### Occurs when a fold change is annotated as 'Insufficient Expression' try: p_value = float(value) except Exception: p_value = 1 ### Occurs when a p-value is annotated as 'Insufficient Expression' try: excl_p1 = exclude_p1[criterion_name] ### You can have adjusted p-values that are equal to 1 except Exception: excl_p1 = False #Make True to exclude ALL non-adjp < sig value entries #print [log_fold, m_cutoff, p_value, p_cutoff];sys.exit() if abs(log_fold)>m_cutoff and (p_value<p_cutoff or (p_value==1 and excl_p1==False)): #if p_value == 1: print log_fold, probeset,[value]; sys.exit() try: criterion_db[criterion_name].append((probeset,log_fold,p_value)) except KeyError: criterion_db[criterion_name] = [(probeset,log_fold,p_value)] if log_fold>0: try: criterion_db[criterion_name+'-upregulated'].append((probeset,log_fold,p_value)) except KeyError: criterion_db[criterion_name+'-upregulated'] = [(probeset,log_fold,p_value)] else: if use_downregulated_label==False: log_fold = abs(log_fold) try: criterion_db[reverse_criterion_names+regulation_call].append((probeset,log_fold,p_value)) except KeyError: criterion_db[reverse_criterion_names+regulation_call] = [(probeset,log_fold,p_value)] index += 1 ### Format these statistical filtering parameters as a string to include in the file as a record if m_cutoff<0: fold_cutoff = -1/math.pow(2,m_cutoff) else: fold_cutoff = math.pow(2,m_cutoff) stat_filters = ' (Regulation criterion: fold > '+str(fold_cutoff)+' and '+ptype_to_use+ ' p-value < '+str(p_cutoff)+')' stat_filters_filename = '-fold'+str(fold_cutoff)+'_'+ptype_to_use+str(p_cutoff) ### Format these lists to export as tab-delimited text files if len(criterion_db)>0: ### Export denominator gene IDs input_files_exported = 'yes' expression_dir = string.replace(expression_dataset_output_dir,'ExpressionOutput/','') goelite_file = expression_dir +'GO-Elite/denominator/GE.denominator.txt' goelite = export.createExportFile(goelite_file,expression_dir+'GO-Elite/denominator') goelite_title = ['GeneID','SystemCode'] goelite_title = string.join(goelite_title,'\t')+'\n'; goelite.write(goelite_title) for probeset in denominator_geneids: try: if 'ENS' in probeset and (' ' in probeset or '_' in probeset or ':' in probeset or '-' in probeset) and len(probeset)>9: system_code = 'En' ensembl_gene = 'ENS'+string.split(probeset,'ENS')[1] if ' ' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,' ')[0] if '_' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,'_')[0] if ':' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,':')[0] if '-' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,'-')[0] probeset = ensembl_gene elif ':' in probeset: probeset = string.split(probeset,':')[0] system_code = 'Sy' except Exception: pass if ('ENS' in probeset or 'ENF' in probeset) and system_code == 'Sy' and len(probeset)>9: system_code = 'En' values = string.join([probeset,system_code],'\t')+'\n'; goelite.write(values) goelite.close() ### Export criterion gene IDs and minimal data for criterion_name in criterion_db: if criterion_name[-1] == ' ': criterion_file_name = criterion_name[:-1] else: criterion_file_name = criterion_name if 'upregulated' in criterion_name: elitedir = 'upregulated' elif 'downregulated' in criterion_name: elitedir = 'downregulated' else: elitedir = 'regulated' goelite_file = expression_dir + 'GO-Elite/'+elitedir+'/GE.'+criterion_file_name+stat_filters_filename+'.txt' goelite = export.ExportFile(goelite_file) goelite_title = ['GeneID'+stat_filters,'SystemCode',criterion_name+'-log_fold',criterion_name+'-p_value'] goelite_title = string.join(goelite_title,'\t')+'\n'; goelite.write(goelite_title) for (probeset,log_fold,p_value) in criterion_db[criterion_name]: try: if 'ENS' in probeset and (' ' in probeset or '_' in probeset or ':' in probeset or '-' in probeset): system_code = 'En' ensembl_gene = 'ENS'+string.split(probeset,'ENS')[1] if ' ' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,' ')[0] if '_' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,'_')[0] if ':' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,':')[0] if '-' in ensembl_gene: ensembl_gene = string.split(ensembl_gene,'-')[0] probeset = ensembl_gene elif ':' in probeset: probeset = string.split(probeset,':')[0] system_code = 'Sy' except Exception: pass values = string.join([probeset,system_code,str(log_fold),str(p_value)],'\t')+'\n' goelite.write(values) goelite.close() else: input_files_exported = 'no' return input_files_exported def exportGeneRegulationSummary(filename,headers,system_code): """ 1) Exports summary results description - Performs a series of targetted queries to report the number of coding and non-coding genes expressed along with various regulation and annotation parameters. 2) Exports a global regulated expression table - Values are log2 geometric folds relative to baseline of the entire row (all samples) for any criterion met (see ptype_to_use, m_cutoff, p_cutoff). Optionally cluster these results downstream and perform QC analyses.""" criterion_db={}; detected_exp_db={}; denominator_geneids={}; index = 0; ttest=[]; avg_columns=[]; all_criterion=[]; all_groups=[] search_miR = 'miR-1(' coding_types = ['protein_coding','ncRNA'] for column in headers: if 'ANOVA' in ptype_to_use and ptype_to_use in column: ttest.append(index) ### Not currently implemented elif ptype_to_use in column and 'ANOVA' not in column: ttest.append(index) lfi = 2 ### relative logfold index position if ptype_to_use == 'adjp': lfi = 3 index+=1 if 'Protein Classes' in column: pc = index-1 if 'microRNA' in column: mi = index-1 if 'avg-' in column: avg_columns.append(index-1) if 'Symbol' in column: sy = index-1 try: count_summary_db,indexed_headers = importCountSummary() except Exception: count_summary_db={} ### Had to introduce the below code to see if any p-values for a criterion are < 1 (otherwise, include them for GO-Elite) exclude_p1={} for probeset in array_folds: index = 0; af = array_folds[probeset] for value in array_folds[probeset]: if index in ttest: criterion_name = headers[index][5:] if criterion_name not in exclude_p1: try: p_value = float(value) except Exception: p_value = 1 ### Occurs when a p-value is annotated as 'Insufficient Expression' if p_value < 1: exclude_p1[criterion_name] = True # Hence, at least one gene has a p<1 index+=1 genes_to_import={}; probeset_symbol={} for probeset in array_folds: index = 0; af = array_folds[probeset] probeset_symbol[probeset] = af[sy] for value in array_folds[probeset]: denominator_geneids[probeset]=[] if index in avg_columns: column_name = headers[index] group_name = column_name[4:] try: protein_class = af[pc] except Exception: protein_class = 'NULL' proceed = False if array_type == 'RNASeq': if norm == 'RPKM': try: ### Counts file should be present but if not, still proceed i2 = indexed_headers[column_name] if float(af[index])>gene_rpkm_threshold and count_summary_db[probeset][i2]>gene_exp_threshold: #if float(af[index])>5 and count_summary_db[probeset][i2]>50: proceed = True except Exception: proceed = True exp_info = probeset, af[index],count_summary_db[probeset][i2] ### keep track of the expression info else: if float(af[index])>expr_threshold: proceed = True exp_info = probeset, expr_threshold,expr_threshold if proceed==True: if group_name not in all_groups: all_groups.append(group_name) if 'protein_coding' in protein_class: try: detected_exp_db[group_name,'protein_coding'].append(exp_info) except KeyError: detected_exp_db[group_name,'protein_coding']=[exp_info] else: try: detected_exp_db[group_name,'ncRNA'].append(exp_info) except KeyError: detected_exp_db[group_name,'ncRNA']=[exp_info] if index in ttest: criterion_name = headers[index][5:] try: log_fold = float(af[index-lfi]) except Exception: log_fold = 0 ### Occurs when a fold change is annotated as 'Insufficient Expression' try: p_value = float(value) except Exception: p_value = 1 ### Occurs when a p-value is annotated as 'Insufficient Expression' try: excl_p1 = exclude_p1[criterion_name] ### You can have adjusted p-values that are equal to 1 except Exception: excl_p1 = False #Make True to exclude ALL non-adjp < sig value entries try: protein_class = af[pc] except Exception: protein_class = 'NULL' if abs(log_fold)>m_cutoff and (p_value<p_cutoff or (p_value==1 and excl_p1==False)): if criterion_name not in all_criterion: all_criterion.append(criterion_name) try: criterion_db[criterion_name]+=1 except KeyError: criterion_db[criterion_name] = 1 genes_to_import[probeset]=[] ### All, regulated genes (any criterion) if 'protein_coding' in protein_class: if log_fold>0: try: criterion_db[criterion_name,'upregulated','protein_coding']+=1 except KeyError: criterion_db[criterion_name,'upregulated','protein_coding'] = 1 try: if 'miR-1(' in af[mi]: try: criterion_db[criterion_name,'upregulated','protein_coding',search_miR[:-1]]+=1 except KeyError: criterion_db[criterion_name,'upregulated','protein_coding',search_miR[:-1]] = 1 except Exception: None ### occurs when mi not present else: try: criterion_db[criterion_name,'downregulated','protein_coding']+=1 except KeyError: criterion_db[criterion_name,'downregulated','protein_coding'] = 1 try: if 'miR-1(' in af[mi]: try: criterion_db[criterion_name,'downregulated','protein_coding',search_miR[:-1]]+=1 except KeyError: criterion_db[criterion_name,'downregulated','protein_coding',search_miR[:-1]] = 1 except Exception: None ### occurs when mi not present else: if protein_class == 'NULL': class_name = 'unclassified' else: class_name = 'ncRNA' if log_fold>0: try: criterion_db[criterion_name,'upregulated',class_name]+=1 except KeyError: criterion_db[criterion_name,'upregulated',class_name] = 1 try: if 'miR-1(' in af[mi]: try: criterion_db[criterion_name,'upregulated',class_name,search_miR[:-1]]+=1 except KeyError: criterion_db[criterion_name,'upregulated',class_name,search_miR[:-1]] = 1 except Exception: None ### occurs when mi not present else: try: criterion_db[criterion_name,'downregulated',class_name]+=1 except KeyError: criterion_db[criterion_name,'downregulated',class_name] = 1 try: if 'miR-1(' in af[mi]: try: criterion_db[criterion_name,'downregulated',class_name,search_miR[:-1]]+=1 except KeyError: criterion_db[criterion_name,'downregulated',class_name,search_miR[:-1]] = 1 except Exception: None ### occurs when mi not present index += 1 if len(criterion_db)>0: try: exportGeometricFolds(expression_dataset_output_dir+filename,array_type,genes_to_import,probeset_symbol) except Exception,e: print 'Failed to export geometric folds due to:' print e ### Don't exit the analysis just report the problem print traceback.format_exc() None ### Export lists of expressed genes all_expressed={} for (group_name,coding_type) in detected_exp_db: eo = export.ExportFile(expression_dataset_output_dir+'/ExpressedGenes/'+group_name+'-'+coding_type+'.txt') eo.write('GeneID\tRPKM\tCounts\n') for (gene,rpkm,counts) in detected_exp_db[(group_name,coding_type)]: eo.write(gene+'\t'+str(rpkm)+'\t'+str(counts)+'\n') all_expressed[gene]=[] try: eo.close() except Exception: pass filename = string.replace(filename,'DATASET-','SUMMARY-') filename = string.replace(filename,'GenMAPP-','SUMMARY-') summary_path = expression_dataset_output_dir +filename export_data = export.ExportFile(summary_path) print 'Export summary gene expression results to:',filename ### Output Number of Expressed Genes title = ['Biological group'] for group_name in all_groups: title.append(group_name) title = string.join(title,'\t')+'\n'; export_data.write(title) if array_type == 'RNASeq': ### Only really informative for RNA-Seq data right now, since DABG gene-level stats are not calculated (too time-intensive for this one statistic) for coding_type in coding_types: if coding_type == 'protein_coding': values = ['Expressed protein-coding genes'] else: values = ['Expressed ncRNAs'] for group in all_groups: for group_name in detected_exp_db: if group in group_name and coding_type in group_name: values.append(str(len(detected_exp_db[group_name]))) values = string.join(values,'\t')+'\n'; export_data.write(values) export_data.write('\n') if m_cutoff<0: fold_cutoff = -1/math.pow(2,m_cutoff) else: fold_cutoff = math.pow(2,m_cutoff) ### Export criterion gene IDs and minimal data export_data.write('Regulation criterion: fold > '+str(fold_cutoff)+' and '+ptype_to_use+ ' p-value < '+str(p_cutoff)+'\n\n') for criterion in all_criterion: title = [criterion,'up','down','up-'+search_miR[:-1],'down-'+search_miR[:-1]] title = string.join(title,'\t')+'\n'; export_data.write(title) for coding_type in coding_types: values = ['Regulated '+coding_type+' genes'] for criterion_name in criterion_db: if len(criterion_name)==3: if criterion in criterion_name and ('upregulated',coding_type) == criterion_name[1:]: values.append(str(criterion_db[criterion_name])) if len(values)==1: values.append('0') for criterion_name in criterion_db: if len(criterion_name)==3: if criterion in criterion_name and ('downregulated',coding_type) == criterion_name[1:]: values.append(str(criterion_db[criterion_name])) if len(values)==2: values.append('0') for criterion_name in criterion_db: if len(criterion_name)==4: if criterion in criterion_name and ('upregulated',coding_type) == criterion_name[1:-1]: values.append(str(criterion_db[criterion_name])) if len(values)==3: values.append('0') for criterion_name in criterion_db: if len(criterion_name)==4: if criterion in criterion_name and ('downregulated',coding_type) == criterion_name[1:-1]: values.append(str(criterion_db[criterion_name])) if len(values)==4: values.append('0') #print values;sys.exit() values = string.join(values,'\t')+'\n'; export_data.write(values) export_data.write('\n') export_data.close() def exportGeometricFolds(filename,platform,genes_to_import,probeset_symbol,exportOutliers=True,exportRelative=True,customPath=None,convertNonLogToLog=False): #print expression_data_format #print platform #print len(genes_to_import) #print exportOutliers #print exportRelative #print customPath """ Import sample and gene expression values from input file, filter, calculate geometric folds and export. Use for clustering and QC.""" #print '\n',filename filename = string.replace(filename,'///','/') filename = string.replace(filename,'//','/') if 'ExpressionOutput' in filename: filename = string.replace(filename,'-steady-state.txt','.txt') export_path = string.replace(filename,'ExpressionOutput','ExpressionOutput/Clustering') export_path = string.replace(export_path,'DATASET-','SampleLogFolds-') ### compared to all-sample mean export_path2 = string.replace(export_path,'SampleLogFolds-','OutlierLogFolds-') ### compared to all-sample mean export_path3 = string.replace(export_path,'SampleLogFolds-','RelativeSampleLogFolds-') ### compared to control groups filename = string.replace(filename,'ExpressionOutput','ExpressionInput') filename = string.replace(filename,'DATASET-','exp.') groups_dir = string.replace(filename,'exp.','groups.') if platform != "3'array" and platform != "AltMouse": ### This is the extension for gene-level results for exon sensitive platfomrs filename1 = string.replace(filename,'.txt','-steady-state.txt') status = verifyFile(filename1) if status == 'yes': filename = filename1 status = verifyFile(filename) if status != 'yes': filename = string.replace(filename,'exp.','') filename = string.replace(filename,'ExpressionInput','') status = verifyFile(filename) if customPath!=None: ### If an alternative output path is desired export_path = customPath print len(genes_to_import), 'genes with data to export...' try: if expression_data_format == 'non-log' and platform != 'RNASeq': convertNonLogToLog = True except Exception: pass if status != 'yes': print "Clustering expression file not exported due to missing file:" print filename if status == 'yes': export_data = export.ExportFile(export_path) if exportOutliers: export_outliers = export.ExportFile(export_path2) if exportRelative: export_relative = export.ExportFile(export_path3) print 'Export inputs for clustering to:',export_path expressionDataFormat,increment,convertNonLogToLog = checkExpressionFileFormat(filename) #print expressionDataFormat,increment,convertNonLogToLog fn=filepath(filename); row_number=0; exp_db={}; relative_headers_exported = False for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if data[0]=='#' and row_number==0: row_number = 0 elif row_number==0: sample_list,group_sample_db,group_db,group_name_sample_db,comp_groups,comps_name_db = simpleGroupImport(groups_dir) try: sample_index_list = map(lambda x: t[1:].index(x), sample_list) ### lookup index of each sample in the ordered group sample list except Exception: missing=[] for x in sample_list: if x not in t[1:]: missing.append(x) print 'missing:',missing print t print sample_list print filename, groups_dir print 'Unknown Error!!! Skipping cluster input file build (check column and row formats for conflicts)'; forceExit new_sample_list = map(lambda x: group_sample_db[x], sample_list) ### lookup index of each sample in the ordered group sample list title = string.join([t[0]]+new_sample_list,'\t')+'\n' ### output the new sample order (group file order) export_data.write(title) if exportOutliers: export_outliers.write(title) if exportRelative: ### Used for the relative fold calculation group_index_db={} for x in sample_list: group_name = group_db[x] sample_index = t[1:].index(x) try: group_index_db[group_name].append(sample_index) except Exception: group_index_db[group_name] = [sample_index] ### dictionary of group to input file sample indexes row_number=1 else: gene = t[0] if platform == 'RNASeq': ### Convert to log2 RPKM values - or counts try: values = map(lambda x: math.log(float(x)+increment,2), t[1:]) except Exception: if convertNonLogToLog: values = logTransformWithNAs(t[1:],increment) else: values = TransformWithNAs(t[1:]) else: try: if convertNonLogToLog: values = map(lambda x: math.log(float(x)+increment,2), t[1:]) else: values = map(float,t[1:]) except Exception: if convertNonLogToLog: values = logTransformWithNAs(t[1:],increment) else: values = TransformWithNAs(t[1:]) ### Calculate log-fold values relative to the mean of all sample expression values values = map(lambda x: values[x], sample_index_list) ### simple and fast way to reorganize the samples try: avg = statistics.avg(values) except Exception: values2=[] for v in values: try: values2.append(float(v)) except Exception: pass try: avg = statistics.avg(values2) except Exception: if len(values2)>0: avg = values2[0] else: avg = 0 try: log_folds = map(lambda x: (x-avg), values) except Exception: log_folds=[] for x in values: try: log_folds.append(x-avg) except Exception: log_folds.append('') if gene in genes_to_import: ### Genes regulated in any user-indicated comparison according to the fold and pvalue cutoffs provided log_folds = map(lambda x: str(x), log_folds) try: gene2 = gene+' '+probeset_symbol[gene] except Exception: gene2 = gene if len(t[1:])!=len(log_folds): log_folds = t[1:] ### If NAs - output the original values export_data.write(string.join([gene2]+log_folds,'\t')+'\n') if exportRelative: ### Calculate log-fold values relative to the mean of each valid group comparison control_group_avg={}; comps_exp_db={} for group_name in comps_name_db: ### control group names con_group_values = map(lambda x: values[x], group_index_db[group_name]) ### simple and fast way to reorganize the samples try: control_group_avg[group_name] = statistics.avg(con_group_values) ### store the mean value of each control group except Exception: con_group_values2=[] for val in con_group_values: try: con_group_values2.append(float(val)) except Exception: pass try: control_group_avg[group_name] = statistics.avg(con_group_values) except Exception: if len(con_group_values)>0: control_group_avg[group_name] = con_group_values[0] else: control_group_avg[group_name] = 0.0 for exp_group in comps_name_db[group_name]: try: comps_exp_db[exp_group].append(group_name) ### Create a reversed version of the comps_name_db, list experimental as the key except Exception: comps_exp_db[exp_group] = [group_name] relative_log_folds=[] ### append all new log folds to this list relative_column_names=[] for group_name in comp_groups: if group_name in comps_exp_db: ### Hence, the group has a designated control (controls may not) - could have the control group be a control for the control samples group_values = map(lambda x: values[x], group_index_db[group_name]) ### simple and fast way to reorganize the samples for control_group_name in comps_exp_db[group_name]: con_avg = control_group_avg[control_group_name] try: relative_log_folds += map(lambda x: str(x-con_avg), group_values) ### calculate log-folds and convert to strings except Exception: relative_log_folds=[] for x in group_values: try: relative_log_folds.append(str(x-con_avg)) except Exception: relative_log_folds.append('') if relative_headers_exported == False: exp_sample_names = group_name_sample_db[group_name] relative_column_names += map(lambda x: (x+' vs '+control_group_name), exp_sample_names) ### add column names indicating the comparison if relative_headers_exported == False: title = string.join(['UID']+relative_column_names,'\t')+'\n' ### Export column headers for the relative fold changes export_relative.write(title) relative_headers_exported = True if len(t[1:])!=len(relative_log_folds): relative_log_folds = t[1:] ### If NAs - output the original values export_relative.write(string.join([gene2]+relative_log_folds,'\t')+'\n') elif exportOutliers: ### When a gene is regulated and not significant, export to the outlier set try: gene2 = gene+' '+probeset_symbol[gene] except Exception: gene2 = gene ### These are defaults we may allow the user to control later log_folds = [0 if x=='' else x for x in log_folds] ### using list comprehension, replace '' with 0 if max([max(log_folds),abs(min(log_folds))])>1: proceed = True if platform == 'RNASeq': if max(values)<0.1: proceed = False if proceed == True: log_folds = map(lambda x: str(x), log_folds) if len(t[1:])!=len(log_folds): log_folds = t[1:] ### If NAs - output the original values export_outliers.write(string.join([gene2]+log_folds,'\t')+'\n') row_number+=1 ### Keep track of the first gene as to write out column headers for the relative outputs export_data.close() if exportOutliers: export_outliers.close() if exportRelative: export_relative.close() def logTransformWithNAs(values,increment): values2=[] for x in values: try: values2.append(math.log(float(x)+increment,2)) except Exception: values2.append('') return values2 def TransformWithNAs(values): values2=[] for x in values: try: values2.append(float(x)) except Exception: values2.append('') return values2 def importAndOrganizeLineageOutputs(expr_input,filename,platform): """ This function takes LineageProfiler z-scores and organizes the samples into groups takes the mean results for each group and looks for changes in lineage associations """ groups_dir = string.replace(expr_input,'exp.','groups.') groups_dir = string.replace(groups_dir,'-steady-state.txt','.txt') ### groups is for the non-steady-state file export_path = string.replace(filename,'ExpressionOutput','ExpressionOutput/Clustering') export_path = string.replace(export_path,'.txt','-groups.txt') export_data = export.ExportFile(export_path) export_pathF = string.replace(export_path,'.txt','_filtered.txt') export_dataF = export.ExportFile(export_pathF) print 'Export inputs for clustering to:',export_path fn=filepath(filename); row_number=0; exp_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if data[0]=='#': row_number = 0 elif row_number==0: group_index_db={} ### use comps in the future to visualize group comparison changes sample_list,group_sample_db,group_db,group_name_sample_db,comp_groups,comps_name_db = simpleGroupImport(groups_dir) for x in sample_list: group_name = group_db[x] sample_index = t[1:].index(x) try: group_index_db[group_name].append(sample_index) except Exception: group_index_db[group_name] = [sample_index] ### dictionary of group to input file sample indexes groups = map(str, group_index_db) ### store group names new_sample_list = map(lambda x: group_db[x], sample_list) ### lookup index of each sample in the ordered group sample list title = string.join([t[0]]+groups,'\t')+'\n' ### output the new sample order (group file order) export_data.write(title) export_dataF.write(title) row_number=1 else: tissue = t[0] if platform == 'RNASeq' and 'LineageCorrelations' not in filename: ### Convert to log2 RPKM values - or counts values = map(lambda x: math.log(float(x),2), t[1:]) else: values = map(float,t[1:]) avg_z=[]; avg_z_float=[] for group_name in group_index_db: group_values = map(lambda x: values[x], group_index_db[group_name]) ### simple and fast way to reorganize the samples avg = statistics.avg(group_values) avg_z.append(str(avg)) avg_z_float.append(avg) export_data.write(string.join([tissue]+avg_z,'\t')+'\n') if max(avg_z_float)>1: export_dataF.write(string.join([tissue]+avg_z,'\t')+'\n') export_data.close(); export_dataF.close() return export_path,export_pathF def removeRawData(array_fold_headers): ### Prior to exporting data for GenMAPP, remove raw data columns columns_with_stats=[]; i=0; stat_headers = ['avg', 'log_fold', 'fold', 'rawp', 'adjp']; filtered_headers=[] for header in array_fold_headers: broken_header = string.split(header,'-') ### Only keep those headers and indexes with recognized ExpressionBuilder inserted prefixes if broken_header[0] in stat_headers: columns_with_stats.append(i); filtered_headers.append(header) i+=1 for probeset in array_folds: filtered_list=[] for i in columns_with_stats: filtered_list.append(array_folds[probeset][i]) array_folds[probeset] = filtered_list ### Re-assign values of the db return filtered_headers def removeRawCountData(array_fold_headers): ### Prior to exporting data for GenMAPP, remove raw data columns columns_with_stats=[]; i=0; stat_headers = ['avg', 'log_fold', 'fold', 'rawp', 'adjp']; filtered_headers=[] for header in array_fold_headers: broken_header = string.split(header,'-') ### Only keep those headers and indexes with recognized ExpressionBuilder inserted prefixes if broken_header[0] in stat_headers: columns_with_stats.append(i); filtered_headers.append(header) i+=1 for probeset in count_statistics_db: filtered_list=[] for i in columns_with_stats: filtered_list.append(count_statistics_db[probeset][i]) count_statistics_db[probeset] = filtered_list ### Re-assign values of the db return filtered_headers def exportAnalyzedData(comp_group_list2,expr_group_db): report = 'multiple'; report = 'single' try: ensembl_microRNA_db = importMicrornaAssociations(species,report) except IOError: ensembl_microRNA_db={} if array_type != "AltMouse" and array_type != "3'array": try: import EnsemblImport gene_location_db = EnsemblImport.getEnsemblGeneLocations(species,array_type,'key_by_array') except Exception: gene_location_db={} if data_type == 'expression': new_file = expression_dataset_output_dir + 'DATASET-'+experiment_name+'.txt' try: data = export.createExportFile(new_file,expression_dataset_output_dir[:-1]) except RuntimeError: export.isFileOpen(new_file,expression_dataset_output_dir[:-1]) data = export.createExportFile(new_file,expression_dataset_output_dir[:-1]) try: custom_annotation_dbase = importCustomAnnotations() except Exception: custom_annotation_dbase={} x=0;y=0;z=0 for arrayid in array_folds: if arrayid in annotate_db and arrayid in probeset_db: x = 1 if arrayid in annotate_db: y = 1 if arrayid in conventional_array_db: z = 1 break Vendor = vendor ### Need to rename as re-assigning will cause a global conflict error for arrayid in array_folds: if 'ENS' in arrayid and Vendor == 'Symbol': Vendor = 'Ensembl' break if array_type != "AltMouse" and (array_type != "3'array" or 'Ensembl' in Vendor): #annotate_db[gene] = symbol, definition,rna_processing #probeset_db[gene] = transcluster_string, exon_id_string title = ['Ensembl_gene','Definition','Symbol','Transcript_cluster_ids','Constitutive_exons_used','Constitutive_IDs_used','Putative microRNA binding sites','Select Cellular Compartments','Select Protein Classes','Chromosome','Strand','Genomic Gene Corrdinates','GO-Biological Process','GO-Molecular Function','GO-Cellular Component','WikiPathways'] title = string.join(title,'\t') elif arrayCode == 3: ### Code indicates this array probes only for small RNAs title = ['Probeset ID','Sequence Type','Transcript ID','Species Scientific Name','Genomic Location'] title = string.join(title,'\t') elif x == 1: title = "Probesets" +'\t'+ 'Definition' +'\t'+ 'Symbol' +'\t'+ 'affygene' +'\t'+ 'exons' +'\t'+ 'probe_type_call' +'\t'+ 'ensembl' elif y==1: title = "Probesets" +'\t'+ 'Symbol' +'\t'+ 'Definition' elif array_type == "3'array": title = ['Probesets','Symbol','Definition','Ensembl_id','Entrez_id','Unigene_id','GO-Process','GO-Function','GO-Component','Pathway_info','Putative microRNA binding sites','Select Cellular Compartments','Select Protein Classes'] title = string.join(title,'\t') else: title = "Probesets" for entry in array_fold_headers: title = title + '\t' + entry title += '\t'+ 'ANOVA-rawp' +'\t'+ 'ANOVA-adjp' +'\t'+'largest fold' if array_type == 'RNASeq': title += '\t'+ 'maximum sample read count' data.write(title+'\n') for arrayid in array_folds: if arrayCode == 3: ca = conventional_array_db[arrayid] definition = ca.Description() symbol = ca.Symbol() data_val = [arrayid,ca.Description(),ca.Symbol(),ca.Species(),ca.Coordinates()] data_val = string.join(data_val,'\t') elif array_type != 'AltMouse' and (array_type != "3'array" or 'Ensembl' in Vendor): try: definition = annotate_db[arrayid][0]; symbol = annotate_db[arrayid][1]; rna_processing = annotate_db[arrayid][2] except Exception: definition=''; symbol=''; rna_processing='' report = 'all' try: miRs = ensembl_microRNA_db[arrayid] except KeyError: miRs = '' try: trans_cluster = probeset_db[arrayid][0] exon_ids = probeset_db[arrayid][1] probesets = probeset_db[arrayid][2] except Exception: trans_cluster='';exon_ids='';probesets='' try: compartment,custom_class = custom_annotation_dbase[arrayid] except KeyError: compartment=''; custom_class='' try: chr,strand,start,end = gene_location_db[arrayid] except Exception: chr=''; strand=''; strand=''; start=''; end='' try: pi = conventional_array_db[arrayid]; process = pi.Process(); function=pi.Function(); component=pi.Component(); pathway = pi.Pathway() except Exception: process=''; function=''; component=''; pathway='' data_val = [arrayid,symbol,definition,trans_cluster,exon_ids,probesets,miRs,compartment,custom_class,chr,strand,start+'-'+end,process,function,component,pathway] data_val = string.join(data_val,'\t') elif arrayid in annotate_db and arrayid in probeset_db: ### This is for the AltMouse array symbol = annotate_db[arrayid][0] definition = annotate_db[arrayid][1] affygene = probeset_db[arrayid][0][0:-1] #probeset_db[probeset] = affygene,exons,probe_type_call,ensembl exons = probeset_db[arrayid][1] probe_type_call = probeset_db[arrayid][2] ensembl = probeset_db[arrayid][3] data_val = arrayid +'\t'+ definition +'\t'+ symbol +'\t'+ affygene +'\t'+ exons +'\t'+ probe_type_call +'\t'+ ensembl elif arrayid in annotate_db: definition = annotate_db[arrayid][0] symbol = annotate_db[arrayid][1] data_val = arrayid +'\t'+ definition +'\t'+ symbol elif array_type == "3'array" and 'Ensembl' not in Vendor: try: ca = conventional_array_db[arrayid] definition = ca.Description() symbol = ca.Symbol() ens = ca.EnsemblString() entrez = ca.EntrezString() unigene = ca.UnigeneString() pathway_info = ca.PathwayInfo() component = ca.GOComponentNames(); process = ca.GOProcessNames(); function = ca.GOFunctionNames() compartment=''; custom_class=''; miRs='' if len(ens)>0: if ens[0]=='|': ens = ens[1:] store=[] for ens_gene in ca.Ensembl(): ### Add Custom Annotation layer try: compartment,custom_class = custom_annotation_dbase[ens_gene] except KeyError: null=[] try: miRs = ensembl_microRNA_db[ens_gene] except KeyError: null=[] if 'protein_coding' in custom_class and len(store)==0: ### Use the first instance only store = miRs,compartment,custom_class+'('+ens_gene+')' if len(store)>0: ### pick the Ensembl with protein coding annotation to represent (as opposed to aligning annotated pseudo genes) miRs,compartment,custom_class = store except KeyError: definition=''; symbol=''; ens=''; entrez=''; unigene=''; pathway_info='' process=''; function=''; component=''; compartment='' ;custom_class=''; miRs='' data_val = [arrayid,symbol,definition,ens,entrez,unigene,process,function,component,pathway_info,miRs,compartment,custom_class] data_val = string.join(data_val,'\t') else: data_val = arrayid for value in array_folds[arrayid]: data_val = data_val + '\t' + str(value) gs = summary_filtering_stats[arrayid] #if arrayid == '1623863_a_at': print [gs.LogFold()] data_val += '\t'+ str(gs.Pval()) +'\t'+ str(gs.AdjP()) +'\t'+ str(gs.LogFold()) if array_type == 'RNASeq': data_val+= '\t'+ gs.MaxCount() data_val = string.replace(data_val,'\n','') data.write(data_val+'\n') data.close() print "Full Dataset with statistics:",'DATASET-'+experiment_name+'.txt', 'written' gene_location_db=[] ensembl_microRNA_db=[] custom_annotation_dbase=[] def cleanUpLine(line): line = string.replace(line,'\n','') line = string.replace(line,'\c','') data = string.replace(line,'\r','') data = string.replace(data,'"','') return data def eliminate_redundant_dict_values(database): db1={} for key in database: list = unique.unique(database[key]) list.sort() db1[key] = list return db1 def convert_to_list(database): db1=[]; db2=[]; temp_list=[] for key in database: list = database[key] #print key,list,dog #32 [(2, 1.1480585565447154), (3, 0.72959188370731742), (0, 0.0), (1, -0.60729064216260165)] list.sort() temp_list=[] temp_list.append(key) for entry in list: avg_fold = entry[1] temp_list.append(avg_fold) #print temp_list, dog #[32, 0.0, -0.60729064216260165, 1.1480585565447154, 0.72959188370731742] db1.append(temp_list) db1.sort() return db1 def import_annotations(filename): fn=filepath(filename) annotation_dbase = {} for line in open(fn,'rU').xreadlines(): try: data = cleanUpLine(line) try: probeset,definition,symbol,rna_processing = string.split(data,'\t') except ValueError: probeset,definition,symbol = string.split(data,'\t') rna_processing = '' annotation_dbase[probeset] = definition, symbol,rna_processing except ValueError: continue return annotation_dbase def importCustomAnnotations(): ### Combine non-coding Ensembl gene annotations with UniProt functional annotations try: custom_annotation_dbase = importTranscriptBiotypeAnnotations(species) except Exception: custom_annotation_dbase = {} try: housekeeping_genes=BuildAffymetrixAssociations.getHousekeepingGenes(species) except Exception: housekeeping_genes=[] print len(custom_annotation_dbase),'Ensembl Biotypes and', len(housekeeping_genes),'housekeeping genes.' for ens_gene in housekeeping_genes: if ens_gene not in custom_annotation_dbase: custom_annotation_dbase[ens_gene] = '','housekeeping' else: compartment,custom_class = custom_annotation_dbase[ens_gene] custom_class+='|housekeeping' custom_annotation_dbase[ens_gene] = compartment,custom_class filename = 'AltDatabase/uniprot/'+species+'/custom_annotations.txt' fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') ens_gene,compartment,custom_class = t[:3] if ens_gene in custom_annotation_dbase: biotype = custom_annotation_dbase[ens_gene][1] if len(custom_class)>0: custom_class+='|'+biotype else: custom_class=biotype custom_annotation_dbase[ens_gene] = compartment,custom_class return custom_annotation_dbase def importTranscriptBiotypeAnnotations(species): filename = 'AltDatabase/ensembl/'+species+'/'+species+'_Ensembl_transcript-biotypes.txt' fn=filepath(filename); biotype_db = {}; custom_annotation_dbase={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) gene,transcript,biotype = string.split(data,'\t') ### Determine if only one annotation is associated with each gene try: biotype_db[gene][biotype]=[] except Exception: biotype_db[gene] = db = {biotype:[]} for gene in biotype_db: db = biotype_db[gene] if len(db)==1 and 'protein_coding' not in db: for biotype in db: ### Non-coding gene annotation custom_annotation_dbase[gene] = '',biotype elif 'protein_coding' in db: custom_annotation_dbase[gene] = '','protein_coding' elif 'transcribed_unprocessed_pseudogene' in db: custom_annotation_dbase[gene] = '','transcribed_unprocessed_pseudogene' else: ls=[] ### otherwise include all gene annotations for i in db: ls.append(i) ls = string.join(ls,'|') custom_annotation_dbase[gene] = '',ls return custom_annotation_dbase def importAltMerge(import_type): ### Import Probeset annotations try: ensembl_db={}; fn=filepath('AltDatabase/Mm/AltMouse/AltMouse-Ensembl.txt') for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) affygene,ensembl = string.split(data,'\t') ensembl_db[affygene]=ensembl #print len(ensembl_db),'Ensembl-AltMouse relationships imported' except TypeError: null=[] ### Import Probeset annotations probeset_annotation_file = "AltDatabase/"+species+'/'+array_type+'/'+ "MASTER-probeset-transcript.txt" probeset_db = {}; constitutive_db = {}; fn=filepath(probeset_annotation_file); replacements=0 for line in open(fn,'rU').xreadlines(): probeset_data = cleanUpLine(line) probeset,affygene,exons,transcript_num,transcripts,probe_type_call,ensembl,block_exon_ids,block_structure,comparison_info = string.split(probeset_data,'\t') if probeset == "Probeset": continue else: if affygene[:-1] in ensembl_db: ensembl = ensembl_db[affygene[:-1]]; replacements+=1 if import_type == 'full': ### Mimics the structure of ExonArrayEnsemblRules.reimportEnsemblProbesets() dictionary probe_association_db probe_data = affygene,affygene,exons,'','core' probeset_db[probeset] = probe_data else: probeset_db[probeset] = affygene,exons,probe_type_call,ensembl if probe_type_call == 'gene': try: constitutive_db[affygene].append(probeset) except KeyError: constitutive_db[affygene] = [probeset] return probeset_db, constitutive_db def parse_custom_annotations(filename): custom_array_db = {} x=0 fn=filepath(filename) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) array_data = data array_id,probeset,other = string.split(array_data,'\t') #remove endline custom_array_db[array_id] = probeset,other print len(custom_array_db), "custom array entries process" return custom_array_db def remoteLineageProfiler(params,expr_input_dir,ArrayType,Species,Vendor,customMarkers=False,specificPlatform=False): global species global array_type global vendor global remoteAnalysis global fl remoteAnalysis = True species = Species array_type = ArrayType vendor = Vendor fl = params graphics_links = [] if 'ExpressionInput' in expr_input_dir: output_dir = string.replace(expr_input_dir,'ExpressionInput', 'ExpressionOutput') root_dir = export.findParentDir(output_dir) else: root_dir = export.findParentDir(expr_input_dir)+'ExpressionOutput/' try: ### If this directory exists, create a global variable for it dir_list = read_directory(root_dir[:-1]) global expression_dataset_output_dir global experiment_name experiment_name = string.replace(export.findFilename(expr_input_dir)[:-4],'exp.','') expression_dataset_output_dir = root_dir except Exception: #print traceback.format_exc() None graphic_links = performLineageProfiler(expr_input_dir,graphics_links,customMarkers,specificPlatform=specificPlatform) return graphic_links def performLineageProfiler(expr_input_dir,graphic_links,customMarkers=False,specificPlatform=False): try: import WikiPathways_webservice import LineageProfiler start_time = time.time() try: compendium_type = fl.CompendiumType() compendium_platform = fl.CompendiumPlatform() except Exception: compendium_type = 'protein_coding' compendium_platform = 'exon' #print 'Compendium platform selected:',compendium_platform print 'Biological data type to examine:',compendium_type try: ### Works when expression_dataset_output_dir is defined exp_output = expression_dataset_output_dir + 'DATASET-'+experiment_name+'.txt' #try: array_type_data = vendor, array_type array_type_data = array_type except Exception: ### Otherwise, user directly supplied file is used array_type_data = vendor, array_type exp_output = export.findParentDir(expr_input_dir)+'/LineageCorrelations-'+export.findFilename(expr_input_dir) if specificPlatform == False: compendium_platform = 'exon' status = False compareToAll=False """ print species print array_type_data print expr_input_dir print exp_output print compendium_type print compendium_platform print customMarkers """ try: zscore_output_dir1 = LineageProfiler.runLineageProfiler(species,array_type_data,expr_input_dir, exp_output,compendium_type,compendium_platform,customMarkers); status = True #zscore_output_dir1 = None except Exception: print traceback.format_exc(),'\n' zscore_output_dir1 = None if compareToAll: try: zscore_output_dir2 = LineageProfiler.runLineageProfiler(species,array_type_data,expr_input_dir, exp_output,compendium_type,'gene',customMarkers); status = True #zscore_output_dir2 = None except Exception: zscore_output_dir2 = None try: zscore_output_dir3 = LineageProfiler.runLineageProfiler(species,array_type_data,expr_input_dir, exp_output,compendium_type,"3'array",customMarkers); status = True #zscore_output_dir3 = None except Exception: zscore_output_dir3 = None zscore_output_dirs=[zscore_output_dir1,zscore_output_dir2,zscore_output_dir3] else: zscore_output_dirs=[zscore_output_dir1] ### Create a combined zscore_output_dir output using all predictions zscore_output_dir = combineLPResultFiles(zscore_output_dirs) if status == False: #print traceback.format_exc(),'\n' if species != 'Mm' and species != 'Hs': print 'LineageProfiler analysis failed (possibly unsupported species).' else: time_diff = str(round(time.time()-start_time,1)) print 'LineageProfiler analysis completed in %s seconds' % time_diff try: ### If the file a groups file exists in the expected directory structure -> export a groups z-score file export_path, export_filtered_path = importAndOrganizeLineageOutputs(expr_input_dir,zscore_output_dir,array_type) except Exception: export_path = zscore_output_dir ### keeps the sample z-score file as input export_filtered_path = None ### Output a heat map of the sample Z-score correlations graphic_links = LineageProfiler.visualizeLineageZscores(zscore_output_dir,export_path,graphic_links) if export_filtered_path != None: try: LineageProfiler.visualizeLineageZscores(export_filtered_path,export_path,graphic_links) ### Just output a heatmap of filtered grouped terms except Exception: pass ### Color the TissueMap from WikiPathways using their webservice if customMarkers==False: print 'Coloring LineageMap profiles using WikiPathways webservice...' graphic_links = WikiPathways_webservice.viewLineageProfilerResults(export_path,graphic_links) except Exception: print traceback.format_exc(),'\n' ### Analysis may not be supported for species or data is incompatible try: if remoteAnalysis: if species != 'Mm' and species != 'Hs': print 'LineageProfiler analysis failed (possibly unsupported species).' #print traceback.format_exc(),'\n' except Exception: pass return graphic_links def combineLPResultFiles(input_files): combined_sample_cell_db={} celltypes=[] for fn in input_files: if fn != None: firstLine=True for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t=string.split(data,'\t') if firstLine: headers = t[1:] firstLine=False else: cell_type = t[0] if cell_type not in celltypes: celltypes.append(cell_type) zscores = t[1:] for sample in headers: z = float(zscores[headers.index(sample)]) try: cell_zscores = combined_sample_cell_db[sample] try: cell_zscores[cell_type].append(z) except Exception: cell_zscores[cell_type]=[z] except Exception: combined_sample_cell_db[sample] = {cell_type:[z]} try: headers.sort() celltypes.sort() for i in input_files: if i!=None: output_file = string.join(string.split(i,'-')[:-2],'-')+'-zscores.txt' o = export.ExportFile(output_file) o.write(string.join(['LineagePredictions']+headers,'\t')+'\n') break for cell_type in celltypes: values = [cell_type] for sample in headers: cell_zscores = combined_sample_cell_db[sample] #try: cell_zscores[cell_type].sort() #except Exception: cell_zscores[cell_type] = [0] selectedZ=str(cell_zscores[cell_type][0]) #if 'Breast' in sample and cell_type=='Breast': print cell_zscores['Breast'],sample, selectedZ;sys.exit() #selectedZ=str(statistics.avg(cell_zscores[cell_type])) values.append(selectedZ) o.write(string.join(values,'\t')+'\n') o.close() except Exception: pass try: returnRowHeaderForMaxEntry(output_file,10) except Exception: pass return output_file def visualizeQCPlots(expr_input_dir): original_expr_input_dir = expr_input_dir expr_input_dir = string.replace(expr_input_dir,'-steady-state','') ### We want the full exon/probeset-level expression file try: import clustering import QC print 'Building quality control graphs...' if array_type == 'RNASeq': counts_input_dir = string.replace(expr_input_dir,'exp.','counts.') graphic_links = QC.outputRNASeqQC(counts_input_dir) else: graphic_links = QC.outputArrayQC(expr_input_dir) print 'Building hierarchical cluster graphs...' paths = getSampleLogFoldFilenames(expr_input_dir) graphic_links = clustering.outputClusters(paths,graphic_links, Normalize='median',Species=species) try: graphic_links = clustering.runPCAonly(original_expr_input_dir,graphic_links,False,plotType='2D',display=False) except Exception: pass except Exception: print 'Unable to generate QC plots:' print traceback.format_exc() try: graphic_links = graphic_links except Exception: graphic_links=None ### Matplotlib likely not installed - or other unknown issue return graphic_links def getSampleLogFoldFilenames(filename): if '/' in filename: delim = '/' else: delim = '\\' if 'ExpressionInput' in filename: export_path = string.replace(filename,'ExpressionInput','ExpressionOutput/Clustering') path1 = string.replace(export_path,'exp.','SampleLogFolds-') path2 = string.replace(export_path,'exp.','OutlierLogFolds-') path3 = string.replace(export_path,'exp.','RelativeSampleLogFolds-') paths = [path1,path2,path3] else: paths = string.split(filename,delim) path1 = string.join(paths[:-1],delim)+'/ExpressionOutput/Clustering/SampleLogFolds-'+paths[-1] path2 = string.replace(path1,'SampleLogFolds-','OutlierLogFolds-') path3 = string.replace(path1,'SampleLogFolds-','RelativeSampleLogFolds-') paths = [path1,path2,path3] return paths def importGeneAnnotations(species): ### Used for internal testing gene_annotation_file = "AltDatabase/ensembl/"+species+"/"+species+"_Ensembl-annotations_simple.txt" fn=filepath(gene_annotation_file) count = 0; annotate_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) if count == 0: count = 1 else: gene, description, symbol = string.split(data,'\t') annotate_db[gene] = symbol,description,'' return annotate_db def remoteExpressionBuilder(Species,Array_type,dabg_p,expression_threshold, avg_all_for_ss,Expression_data_format,Vendor, constitutive_source,data_source,Include_raw_data, perform_alt_analysis,GE_fold_cutoffs,GE_pvalue_cutoffs, GE_ptype,exp_file_location_db,Root): start_time = time.time() global root; root = Root #def remoteExpressionBuilder(): global species; global array_type ; species = Species; array_type = Array_type; global altanalyze_files; global vendor; vendor = Vendor global filter_by_dabg; filter_by_dabg = 'yes' ### shouldn't matter, since the program should just continue on without it global expression_data_format; global expression_dataset_output_dir; global root_dir; global data_type global conventional_array_db; global custom_array_db; global constitutive_db; global include_raw_data; global experiment_name global annotate_db; global probeset_db; global process_custom; global m_cutoff; global p_cutoff; global ptype_to_use; global norm global arrayCode; arrayCode = 0; global probability_statistic; global fl; global use_downregulated_label; use_downregulated_label = True global count_statistics_db; global count_statistics_headers; count_statistics_db = {} include_raw_data = Include_raw_data; expression_data_format = Expression_data_format data_type = 'expression' ###Default, otherwise is 'dabg' d = "core"; e = "extendend"; f = "full"; exons_to_grab = d ### Currently, not used by the program... intended as an option for ExonArrayAffymetrixRules full annotation (deprecated) ### Original options and defaults """ dabg_p = 0.75; data_type = 'expression' ###used for expression analysis when dealing with AltMouse arrays a = "3'array"; b = "exon"; c = "AltMouse"; e = "custom"; array_type = c l = 'log'; n = 'non-log'; expression_data_format = l w = 'Agilent'; x = 'Affymetrix'; y = 'Ensembl'; z = 'default'; data_source = y; constitutive_source = z; vendor = x hs = 'Hs'; mm = 'Mm'; dr = 'Dr'; rn = 'Rn'; species = mm include_raw_data = 'yes' expression_threshold = 70 ### Based on suggestion from BMC Genomics. 2006 Dec 27;7:325. PMID: 17192196, for hu-exon 1.0 st array avg_all_for_ss = 'no' ###Default is 'no' since we don't want all probes averaged for the exon arrays """ ct = 'count'; avg = 'average'; filter_method = avg filter_by_dabg = 'yes' m_cutoff = m_cutoff = math.log(float(GE_fold_cutoffs),2); p_cutoff = float(GE_pvalue_cutoffs); ptype_to_use = GE_ptype print "Beginning to Process the",species,array_type,'dataset' process_custom = 'no' if array_type == "custom": ### Keep this code for now, even though not currently used import_dir = '/AltDatabase/affymetrix/custom' dir_list = read_directory(import_dir) #send a sub_directory to a function to identify all files in a directory for affy_data in dir_list: #loop through each file in the directory to output results affy_data_dir = 'AltDatabase/affymetrix/custom/'+affy_data custom_array_db = parse_custom_annotations(affy_data_dir) array_type = a; process_custom = 'yes' if array_type == "AltMouse": print "Processing AltMouse splicing data" original_probeset_db,constitutive_db = importAltMerge('basic') probe_annotation_file = "AltDatabase/"+species+'/'+ array_type+'/'+array_type+"_annotations.txt" original_annotate_db = import_annotations(probe_annotation_file) conventional_array_db = [] elif array_type == "3'array" and 'Ensembl' not in vendor: ### If user supplied IDs are from Ensembl - doesn't matter the vendor original_vendor = vendor if 'other:' in vendor: vendor = string.replace(vendor,'other:','') process_go='yes';extract_go_names='yes';extract_pathway_names='yes' probeset_db = []; annotate_db = [] constitutive_db = ""; conventional_array_db = {} affy_data_dir = 'AltDatabase/affymetrix' if vendor == 'Affymetrix': try: conventional_array_db, arrayCode = BuildAffymetrixAssociations.importAffymetrixAnnotations(affy_data_dir,species,process_go,extract_go_names,extract_pathway_names) except Exception: print 'Error in processing CSV data. Getting this data from GO-Elite annotations instead.' if vendor == 'Affymetrix' and len(conventional_array_db)>0: use_go='no' else: use_go = 'yes' try: print "Adding additional gene, GO and WikiPathways annotations" conventional_array_db = BuildAffymetrixAssociations.getUIDAnnotationsFromGOElite(conventional_array_db,species,vendor,use_go) except Exception: print "Additional annotation import failed" print len(conventional_array_db), "Array IDs with annotations from",vendor,"annotation files imported." vendor = original_vendor elif array_type != "AltMouse": probeset_db = []; annotate_db = []; constitutive_db = []; conventional_array_db = [] ### The below function gathers GO annotations from the GO-Elite database (not Affymetrix as the module name implies) conventional_array_db = BuildAffymetrixAssociations.getEnsemblAnnotationsFromGOElite(species) if 'Ensembl' in vendor: annotate_db = importGeneAnnotations(species) ### populate annotate_db - mimicking export structure of exon array global expr_threshold; global dabg_pval; global gene_exp_threshold; global gene_rpkm_threshold; dabg_pval = dabg_p altanalyze_files = []; datasets_with_all_necessary_files=0 for dataset in exp_file_location_db: experiment_name = string.replace(dataset,'exp.',''); experiment_name = string.replace(experiment_name,'.txt','') fl = exp_file_location_db[dataset] expr_input_dir = fl.ExpFile() stats_input_dir = fl.StatsFile() expr_group_dir = fl.GroupsFile() comp_group_dir = fl.CompsFile() try: batch_effects = fl.BatchEffectRemoval() except Exception: batch_effects = 'NA' try: norm = fl.FeatureNormalization() except Exception: norm = 'NA' try: probability_statistic = fl.ProbabilityStatistic() except Exception: probability_statistic = 'unpaired t-test' try: gene_exp_threshold = fl.GeneExpThreshold() except Exception: gene_exp_threshold = 0 try: gene_rpkm_threshold = fl.RPKMThreshold() except Exception: gene_rpkm_threshold = 0 if expression_data_format == 'log': try: expr_threshold = math.log(float(expression_threshold),2) except Exception: expr_threshold = 0 ### Applies to RNASeq datasets else: try: expr_threshold = float(expression_threshold) except Exception: expr_threshold = 0 residuals_input_dir = string.replace(expr_input_dir,'exp.','residuals.') root_dir = fl.RootDir() datasets_with_all_necessary_files +=1 checkArrayHeaders(expr_input_dir,expr_group_dir) expression_dataset_output_dir = root_dir+"ExpressionOutput/" if batch_effects == 'yes': try: import combat combat.runPyCombat(fl) except Exception: print_out = 'Batch effect removal analysis (py-combat) failed due to an uknown error:' print traceback.format_exc() try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); root.destroy(); sys.exit() except Exception: print print_out; sys.exit() if array_type != "3'array": #array_type != 'AltMouse' and try: probeset_db,annotate_db,comparison_filename_list = ExonArray.getAnnotations(fl,array_type,dabg_p,expression_threshold,data_source,vendor,constitutive_source,species,avg_all_for_ss,filter_by_dabg,perform_alt_analysis,expression_data_format) except Exception, e: print traceback.format_exc() print_out = 'Error ecountered for the '+species+', '+array_type+' dataset. Check to ensure that:\n(1) the correct platform and species were selected and\n(2) some expression values are present in ExpressionInput/exp.YourDataset.txt' try: UI.WarningWindow(print_out,'Critical Error - Exiting Program!!!'); root.destroy(); sys.exit() except Exception: print print_out; sys.exit() if array_type != 'AltMouse': expr_input_dir = expr_input_dir[:-4]+'-steady-state.txt' else: probeset_db = original_probeset_db; annotate_db = original_annotate_db for file in comparison_filename_list: altanalyze_files.append(file) residual_file_status = ExonArray.verifyFile(residuals_input_dir) ### Separate residual file into comparison files for AltAnalyze (if running FIRMA) if residual_file_status == 'found': ExonArray.processResiduals(fl,Array_type,Species,perform_alt_analysis) """ import ExonArrayEnsemblRules source_biotype = array_type, root_dir probeset_db,annotate_db,constitutive_gene_db,splicing_analysis_db = ExonArrayEnsemblRules.getAnnotations('no',constitutive_source,source_biotype,species) expr_input_dir = expr_input_dir[:-4]+'-steady-state.txt' """ if norm == 'RPKM' and array_type == 'RNASeq': ### Separately analyze steady-state counts first, to replace fold changes counts_expr_dir = string.replace(expr_input_dir,'exp.','counts.') if 'counts.' not in counts_expr_dir: counts_expr_dir = 'counts.'+counts_expr_dir ### Occurs if 'exp.' not in the filename count_statistics_db, count_statistics_headers = calculate_expression_measures(counts_expr_dir,expr_group_dir,experiment_name,comp_group_dir,probeset_db,annotate_db) calculate_expression_measures(expr_input_dir,expr_group_dir,experiment_name,comp_group_dir,probeset_db,annotate_db) buildCriterion(GE_fold_cutoffs, p_cutoff, ptype_to_use, root_dir+'/ExpressionOutput/','summary') ###Outputs a summary of the dataset and all comparisons to ExpressionOutput/summary.txt #except Exception: null=[] graphic_links = None if fl.ProducePlots() == 'yes': graphic_links = visualizeQCPlots(expr_input_dir) if fl.PerformLineageProfiler() == 'yes': if graphic_links==None: graphic_links = [] graphic_links = performLineageProfiler(expr_input_dir,graphic_links) ### Correlate gene-level expression values with known cells and tissues if graphic_links != None: fl.setGraphicLinks(graphic_links) ### Uses Matplotlib to export QC and clustering plots annotate_db={}; probeset_db={}; constitutive_db={}; array_fold_db={}; raw_data_comps={}; conventional_array_db=[] clearObjectsFromMemory(conventional_array_db); conventional_array_db=[] try: clearObjectsFromMemory(summary_filtering_stats); summary_filtering_stats=[] except Exception: null=[] try: clearObjectsFromMemory(array_folds); array_folds=[] except Exception: null=[] try: clearObjectsFromMemory(count_statistics_db); count_statistics_db=[] except Exception: null=[] #print 'after deleted'; returnLargeGlobalVars() ### Generate the NI file if possible try: calculateNormalizedIntensities(root_dir,species,array_type,avg_all_for_SS=avg_all_for_ss) except Exception: pass if datasets_with_all_necessary_files == 0: ###Thus no files were found with valid inputs for all file types print 'WARNING....No propperly named datasets were found. ExpressionBuilder requires that there are at least 3 files with the prefixes "exp.", "groups." and "comps.", with the following dataset name being identical with all three files.' print "...check these file names before running again." inp = sys.stdin.readline(); sys.exit() altanalyze_files = unique.unique(altanalyze_files) ###currently not used, since declaring altanalyze_files a global is problematic (not available from ExonArray... could add though) if array_type != "3'array" and perform_alt_analysis != 'expression': altanalyze_output = FilterDabg.remoteRun(fl,species,array_type,expression_threshold,filter_method,dabg_p,expression_data_format,altanalyze_files,avg_all_for_ss) return 'continue',altanalyze_output else: end_time = time.time(); time_diff = int(end_time-start_time) return 'stop' def verifyFile(filename): fn=filepath(filename) try: for line in open(fn,'rU').xreadlines(): found = 'yes'; break except Exception: found = 'no' return found def verifyExpressionFile(filename): """ Unlike the above, corrects the expression file path if not found """ fn=filepath(filename) try: for line in open(fn,'rU').xreadlines(): break except Exception: fn = string.replace(fn,'ExpressionInput/','') ### This file is in the parent path presumably (otherwise can't find it) return fn def exportSignatures(db,directory,species): import gene_associations export_file = export.findParentDir(directory[:-2]+'.txt') if 'AltExon' in directory: export_file+='signatures/AltExon-signatures.txt' else: export_file+='signatures/GeneExpression-signatures.txt' export_object = export.ExportFile(export_file) if 'AltExon' in directory: export_object.write('symbol\tentrez\tensembl\tsource\turl\tname\tAltAnalyze-ExonID\tASPIRE|Splicing-Index LogFold\tGenomicLocation\n') ### Header line else: export_object.write('symbol\tentrez\tsource\turl\tname\tLogFold\tBH-adjp-value\n') ### Header line url = 'http://code.google.com/p/altanalyze/wiki/PCBC_C4_compendium' source = 'AltAnalyze' sig = 0 gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) for filename in gene_conversion_db: db,input_data_db = gene_conversion_db[filename] filename = string.replace(filename,'.txt','') filename = string.replace(filename,'GE.','') filename = string.replace(filename,'-upregulated','') for ensembl in db: sig+=1 try: symbol = gene_to_symbol[ensembl][0] except Exception: continue entrezgenes = db[ensembl][0] entrezgenes = string.split(entrezgenes,'|') statistics = input_data_db[ensembl][0][1:] #print [statistics];sys.exit() for entrez in entrezgenes: ### output format: symbol, entrez, source, url, name values = string.join([symbol,entrez,ensembl,source,url,filename]+statistics,'\t')+'\n' export_object.write(values) export_object.close() print 'Exported',sig,'signatures to:' print export_file def runGOElite(species,directory): """ Separate pipeline for automating GO-Elite when re-generating criterion - Currently used outside of any pipelines """ mod = 'Ensembl' pathway_permutations = 'FisherExactTest' filter_method = 'z-score' z_threshold = 1.96 p_val_threshold = 0.05 change_threshold = 2 resources_to_analyze = 'local' returnPathways = 'yes' root = None import GO_Elite directory = string.replace(directory,'ExpressionOutput','') results_dir = directory print '\nBeginning to run GO-Elite analysis on all results' elite_input_dirs = ['regulated']#,'upregulated','downregulated','MarkerFinder'] ### 'AltExon' Run GO-Elite multiple times to ensure heatmaps are useful and to better organize results for elite_dir in elite_input_dirs: if elite_dir == 'AltExon': returnPathways = 'no' else: returnPathways = 'yes' file_dirs = results_dir+'GO-Elite/'+elite_dir,results_dir+'GO-Elite/denominator',results_dir+'GO-Elite/'+elite_dir input_dir = results_dir+'GO-Elite/'+elite_dir try: input_files = read_directory(input_dir) ### Are there any files to analyze? except Exception: input_files = [] if len(input_files)>0: variables = species,mod,pathway_permutations,filter_method,z_threshold,p_val_threshold,change_threshold,resources_to_analyze,returnPathways,file_dirs,root try: GO_Elite.remoteAnalysis(variables,'non-UI',Multi=mlp) except Exception: pass def filterDatasetFile(main_output_folder): global array_folds; global expression_dataset_output_dir expression_dataset_output_dir = string.replace(main_output_folder,'GO-Elite','ExpressionOutput/') dir_list = read_directory(expression_dataset_output_dir[:-1]) for filename in dir_list: if 'DATASET-' in filename: dataset_fn=filepath(expression_dataset_output_dir+filename) x=0 for line in open(dataset_fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') if x==0: headers = t; break ### Get a list of column header titles to include fn=filepath('Config/DATASET-headers.txt') for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line); t = string.split(data,'\t') columns_to_include = t ### Filter statistics based on user-defined thresholds as input for GO-Elite analysis criterion_db={}; denominator_geneids={}; index = 0; indexes=[]; avg_indexes=[] for column in headers: if 'avg-' in column: avg_indexes.append(index) elif 'log_fold-' in column: indexes.append(index) elif 'fold-' in column: indexes.append(index) elif 'rawp-' in column: indexes.append(index) elif 'adjp-' in column: indexes.append(index) elif 'ANOVA' in column: indexes.append(index) elif column in columns_to_include: indexes.append(index) index+=1 ###Export out the filtered file dataset_fn_filtered = string.replace(dataset_fn,'.txt','-abreviated.txt') dataset_fn_filtered = string.replace(dataset_fn_filtered,'ExpressionOutput','ExpressionOutput/filtered') data_filter = export.ExportFile(dataset_fn_filtered) firstLine=True for line in open(dataset_fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine=False if 'maximum sample read count' in t: ### For RNA-Seq h=[] for l in t: if 'avg-' in l: h.append(string.replace(l,'avg-','avg_RPKM-')) else: h.append(l) t=h values = map(lambda x: t[x], indexes) avg_values = map(lambda x: t[x], avg_indexes) ### Specifically grab only the average-expression values (not anything else) values = string.join(values+avg_values,'\t')+'\n' data_filter.write(values) data_filter.close() def importProbesetRegions(species,platform): filename = 'AltDatabase/'+species+'/'+platform+'/'+species+'_Ensembl_probesets.txt' fn=filepath(filename) region_db = {} firstRow=True for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstRow: firstRow = False else: probeset = t[0] gene = t[2] region = gene+':'+string.replace(t[12],'-','.') region_db[region] = probeset return region_db def buildAltExonClusterInputs(input_folder,species,platform,dataType='AltExonConfirmed'): alternative_exon_db={} dir_list = read_directory(input_folder) if platform == 'junction': region_db = importProbesetRegions(species,platform) for filename in dir_list: if '.txt' in filename: proceed = True if platform == 'RNASeq': if 'ASPIRE' in filename or 'egress' in filename: proceed = False ### Need to create a special analysis just for reciprocal junctions if proceed: ### Don't include splicing-index results for RNA-Seq fn=filepath(input_folder+filename) x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: x=1 else: if platform == 'junction' and 'GO-Elite' in input_folder: altExon = t[2] if altExon in region_db: altExon = region_db[altExon] elif 'splicing-index' in filename: altExon = t[-1] elif 'ASPIRE' in filename or 'egress' in filename: altExon = t[-1] altExon = string.split(altExon,' | ') else: altExon = t[2] #if float(t[3])<0.001: alternative_exon_db[altExon]=None print len(alternative_exon_db), 'alternative exon IDs imported' import gene_associations gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) input_folder = string.split(input_folder,'GO-Elite')[0]+'AltResults/RawSpliceData/'+species+'/splicing-index/' dir_list = read_directory(input_folder) exported_IDs=0 added={} for filename in dir_list: if '.txt' in filename and ('_average' not in filename) or len(dir_list)==1: ### We only want the group-comparison SI file export_dir = string.split(input_folder,'RawSpliceData')[0]+'Clustering/'+dataType+'-'+filename export_data = export.ExportFile(export_dir) fn=filepath(input_folder+filename) x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: headers = t[2:] ### first two columsn are gene and ExonID export_data.write(string.join(headers,'\t')+'\n') ### write header row x=1 else: if platform != 'RNASeq': if 'ENS' in t[0]: #ENSG human gene = t[0]; altExon = t[2] else: altExon = t[0] else: gene = t[0]; altExon = t[2] if ';' in altExon: altExon1, altExon2 = string.split(altExon,';') altExons = [altExon1,gene+':'+altExon2] else: altExons = [altExon] for altExon in altExons: if altExon in alternative_exon_db and altExon not in added: added[altExon]=[] #values = map(lambda x: float(x)*-1, t[3:]) #reverse the fold for cluster visualization values = map(lambda x: float(x), t[3:]) #print len(headers),len(values);sys.exit() avg = statistics.avg(values) log_folds = map(lambda x: str(x-avg), values) ### calculate log folds and make these strings values = string.join([altExon]+log_folds,'\t')+'\n' ### [t[3]]+ before log_folds? if gene in gene_to_symbol: symbol = gene_to_symbol[gene][0]+" " else: symbol = '' export_data.write(symbol+values) exported_IDs+=1 print exported_IDs, 'exported ID values for clustering' export_data.close() return export_dir, exported_IDs def exportHeatmap(filename,useHOPACH=True, color_gradient='red_black_sky',normalize=False,columnMethod='average',size=0,graphics=[]): import clustering row_method = 'weighted'; row_metric = 'cosine'; column_method = 'average'; column_metric = 'euclidean'; transpose = False try: if columnMethod !=None: column_method = columnMethod if size < 7000: graphics = clustering.runHCexplicit(filename, graphics, row_method, row_metric, column_method, column_metric, color_gradient, transpose, display=False, Normalize=normalize) except Exception: print 'Clustering failed for:',filename return graphics def meanCenterPSI(filename): firstLine=True output_file = filename[:-4]+'-cluster.txt' export_obj = export.ExportFile(output_file) for line in open(filename,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: export_obj.write(line) firstLine = False else: try: avg = averageWithNulls(t[1:]) values = map(lambda x: replaceNulls(x,avg), t[1:]) export_obj.write(string.join([t[0]]+values,'\t')+'\n') except Exception: pass return output_file def filterJunctionExpression(filename,minPercentPresent=None): output_file = filename[:-4]+'-filter.txt' export_obj = export.ExportFile(output_file) filtered_lines = []; filtered_size=0; filtered_size_stringent=0 firstLine = True size=0; imported_num=0 for line in open(filename,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: export_obj.write(line) firstLine = False else: imported_num+=1 if '_' in t[0] or '-ENS' in t[0] or '-' not in t[0]: pass else: try: a,b = string.split(t[0],'|') except Exception: try: n,a,b = string.split(t[0],' ') except Exception: continue if '-' in a and '-' in b: vals = map(lambda x: countNulls(x),t[1:]) percent_present = sum(vals)/(len(vals)*1.00) if percent_present>0.1: filtered_lines.append([percent_present,line]) size+=1 if percent_present>0.5: filtered_size+=1 if percent_present>0.85: filtered_size_stringent+=1 percent_imported = ((1.00*size)/imported_num) if minPercentPresent!=None: size=0 filtered_lines.sort(); filtered_lines.reverse() for (percent_present,line) in filtered_lines: if percent_present>minPercentPresent: export_obj.write(line) size+=1 elif size < 8000 and percent_imported<0.5: ### The filtered is at least 30% the size of the imported for (percent_present,line) in filtered_lines: export_obj.write(line) else: size=0 to_import = int(imported_num*0.3) #print "Filtering down to", to_import, "entries." filtered_lines.sort(); filtered_lines.reverse() for (percent_present,line) in filtered_lines: if filtered_size_stringent>8000: if percent_present>0.95: export_obj.write(line) size+=1 elif filtered_size>8000: if percent_present>0.85: export_obj.write(line) size+=1 else: if percent_present>0.5: export_obj.write(line) size+=1 print 'Filtered RI-PSI entries to',size export_obj.close() return output_file,size def countNulls(val): if float(val) == 0: return 0 else: return 1 def calculateNormalizedIntensities(root_dir, species, array_type, avg_all_for_SS = 'no', probeset_type = 'core', analysis_type = 'processed', expFile = False): """ Since it is a time-consuming step that is needed for visualizing SI values for exons, it is faster to efficiently calculate NI values in advance. """ if array_type == 'gene': platform = 'GeneArray' elif array_type == 'exon': platform = 'ExonArray' elif array_type == 'junction': platform = 'JunctionArray' else: platform = array_type #alt_exon_exp_dir = root_dir+'/AltExpression/FullDatasets/'+platform+'/'+species ### This file doesn't exist if only one pairwise comparison group alt_exon_exp_dir = root_dir+'/ExpressionInput/' ### This file doesn't exist if only one pairwise comparison group dir_list = read_directory(alt_exon_exp_dir) for file in dir_list: if '.txt' in file and 'exp.' in file and 'steady' not in file: selected_file = file[4:] fn=filepath(alt_exon_exp_dir+'/'+file) #sample_group_db = simplerGroupImport(string.replace(fn,'exp.','groups.')) if analysis_type == 'raw': ### Create a filtered exon and junction expression file outside the typical workflow import RNASeq exp_threshold=5; rpkm_threshold=5 expressed_uids_rpkm = RNASeq.getMaxCounts(expFile,rpkm_threshold) expressed_uids_counts = RNASeq.getMaxCounts(string.replace(expFile,'exp.','counts.'),exp_threshold) expressed_uids = expressed_uids_rpkm.viewkeys() & expressed_uids_counts.viewkeys() ### common fn = root_dir+'/AltExpression/FilteredDataset/'+platform+'/'+species+'/'+ export.findFilename(expFile)### This file doesn't exist if only one pairwise comparison group expressed_uids_rpkm = RNASeq.getMaxCounts(expFile,rpkm_threshold,filterExport=expressed_uids,filterExportDir=fn) ### Get the gene values gene_db={}; if analysis_type == 'raw': ### Get these directly from the steady-state file exp_dir=string.replace(expFile,'.txt','-steady-state.txt') firstLine = True low_diff_exp_genes={} for line in open(exp_dir,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine = False ge_header = t else: values = map(lambda x: math.log(float(x),2), t[1:]) gene_db[t[0]]=values elif array_type == 'RNASeq': firstLine=True fn_steady = fn[:-4]+'-steady-state.txt' for line in open(fn_steady,'rU').xreadlines(): if firstLine: firstLine = False elif ':' in line[:50]: pass else: data = cleanUpLine(line) t = string.split(data,'\t') try: values = map(lambda x: float(x), t[1:]) values = map(lambda x: math.log(x,2),values) gene_db[t[0]]=values except Exception: pass else: import AltAnalyze exon_db, constitutive_probeset_db = AltAnalyze.importSplicingAnnotations(array_type,species,probeset_type,avg_all_for_SS,root_dir) gene_db={}; firstLine=True for line in open(fn,'rU').xreadlines(): if firstLine: firstLine = False else: data = cleanUpLine(line) t = string.split(data,'\t') if t[0] in constitutive_probeset_db: gene = constitutive_probeset_db[t[0]] values = map(lambda x: float(x), t[1:]) try: gene_db[gene].append(values) ### combine these except Exception: gene_db[gene] = [values] for gene in gene_db: #print gene, gene_db[gene] constitutive_values = zip(*gene_db[gene]) ### combine values from multiple lists into lists of lists #print constitutive_values values = map(lambda x: Average(x), constitutive_values) #print values; sys.exit() gene_db[gene] = values if len(gene_db)>0: alt_exon_output_dir = root_dir+'/AltResults/RawSpliceData/'+species+'/splicing-index/'+selected_file if analysis_type == 'raw': alt_exon_output_dir = string.replace(alt_exon_output_dir,'RawSpliceData','RawSpliceDataTemp') export_obj = export.ExportFile(alt_exon_output_dir) print 'Exporting exon-level Normalized Intensity file to:',alt_exon_output_dir print len(gene_db),'genes with data imported' firstLine=True exon_entries=0; saved_entries=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine = False values = string.join(['Gene','ExonID','probesetID']+t[1:],'\t')+'\n' export_obj.write(values) else: if (':' in t[0]) or array_type != 'RNASeq': feature_values = map(lambda x: float(x), t[1:]) if analysis_type == 'raw' or array_type == 'RNASeq': feature_values = map(lambda x: math.log(x,2), feature_values) if array_type == 'RNASeq': gene = string.split(t[0],':')[0] else: try: gene = exon_db[t[0]].GeneID() except Exception: gene = None if gene != None: exon_entries+=1 if gene in gene_db: gene_values = gene_db[gene] if ('-' not in t[0]) or analysis_type == 'raw': NI_values = [logratio(value) for value in zip(*[feature_values,gene_values])] NI_values = map(lambda x: str(x), NI_values) NI_values = string.join([gene,'NA',t[0]]+NI_values,'\t')+'\n' export_obj.write(NI_values) saved_entries+=1 export_obj.close() print exon_entries, 'found with',saved_entries,'entries normalized.' return alt_exon_output_dir def compareRawJunctionExpression(root_dir,platform,species,critical_exon_db,expFile,min_events=0,med_events=0): expFile = exportSorted(expFile, 0) ### Sort the expression file print expFile from scipy import stats exported=[] retained_introns=[] features_examined={} junction_locations = {} critical_exon_gene_db={} critical_junction_pair_db={} psi_db={} #min_events = 4; med_events = 13 #min_events = 0; med_events = 0 print 'Begining reciprocal junction/intron retention unbiased analyses (min_events=%d, med_events=%d)' % (min_events,med_events) for altexon in critical_exon_db: gene = string.split(altexon,':')[0] inclusion_list,exclusion_list = critical_exon_db[altexon] try: critical_exon_gene_db[gene].append(critical_exon_db[altexon]) except Exception: critical_exon_gene_db[gene] = [critical_exon_db[altexon]] for i in inclusion_list: for e in exclusion_list: try: critical_junction_pair_db[i,e].append(altexon) except Exception: critical_junction_pair_db[i,e] = [altexon] export_dir = root_dir+'AltResults/AlternativeOutput/'+species+'_'+platform+'_top_alt_junctions-PSI.txt' export_data = export.ExportFile(export_dir) clust_export_dir = root_dir+'AltResults/AlternativeOutput/'+species+'_'+platform+'_top_alt_junctions-PSI-clust.txt' clust_export_data = export.ExportFile(clust_export_dir) def ratio(values): return float(values[0]+1)/(values[1]+1) def dPSI(incl_exp,total_exp,indexes,min_events): indexes.sort() incl_filt = map(lambda x: incl_exp[x],indexes) ### Only consider expressed cells total_filt = map(lambda x: total_exp[x],indexes) dpsi_values = [ratio(value) for value in zip(*[incl_filt,total_filt])] dpsi_values.sort() if len(dpsi_values)==1: return dpsi_values[0] elif min_events == 0: return dpsi_values[-1]-dpsi_values[0] else: return dpsi_values[-1*min_events]-dpsi_values[min_events] #return max(dpsi_values)-min(dpsi_values) ### percent change in isoform expression def getIndexes(events,min_exp_thresh): i=0 indexes=[] for e in events: if e>min_exp_thresh: indexes.append(i) ### minimum expression value (changed from 5 to 10 8/5/2016) i+=1 return indexes def diff(values,demon,num): return values[num]-values[demon] def diffCompare(incl_exp,excl_exp,incl,excl): if max(incl_exp)>max(excl_exp): denom = 1;num = 0 else: denom = 0; num=1 diff_values = [diff(value,denom,num) for value in zip(*[incl_exp,excl_exp])] if min(diff_values)==0 and ('-' not in incl or '-' not in excl): ### subtract out the overlap if all reads in the inclusion exon are confounded by the junction 1nt reads if denom == 1: feature_exp_db[incl] = diff_values else: feature_exp_db[excl] = diff_values return True else: return False def junctionComparisonMethod(incl,excl): useAllJunctionsForExcl=True min_exp = 4; med_exp = 9 incl_exp = feature_exp_db[incl] excl_exp = feature_exp_db[excl] if useAllJunctionsForExcl: gene = string.split(excl,':')[0] try: gene_exp = gene_junction_denom[gene] except Exception: try: gene = string.split(incl,':')[0] gene_exp = gene_junction_denom[gene] except Exception: gene_exp=[] rho,p = stats.pearsonr(incl_exp,excl_exp) ### See if the data for one feature is confounded by another ### The example is exon-inclusion with 1nt overlap getting the associated reads from BedTools status = diffCompare(incl_exp,excl_exp,incl,excl) if status: ### update the difference generated values excl_exp = feature_exp_db[excl] rho,p = stats.pearsonr(incl_exp,excl_exp) #if 'ENSMUSG00000009350:E14.2_87617106-E15.1' in incl: print feature_exp_db[incl],'a' num_incl_events = sum(i > min_exp for i in incl_exp) num_excl_events = sum(i > min_exp for i in excl_exp) combined = [sum(value) for value in zip(*[incl_exp,excl_exp])] total_number_junctions = sum(i > min_exp for i in combined) ### Calculate a delta PSI value for each expressed cell combined = [sum(value) for value in zip(*[incl_exp,excl_exp])] exp_indexes = getIndexes(combined,med_exp) try: dpsi = dPSI(incl_exp,combined,exp_indexes,min_events) except Exception: dpsi = 1 dpsi_values = [ratio(value) for value in zip(*[incl_exp,combined])] dpsi_values = nullReplace(dpsi_values,combined,min_exp) psi_db[incl,excl] = dpsi_values ### optionally output these at the end #if incl == 'ENSMUSG00000019505:E3.2_62365772-E3.6_62366457' and excl == 'ENSMUSG00000029162:E7.2-E7.4': #dpsi2 = dPSI(excl_exp,combined,exp_indexes) #if 'ENSMUSG00000009350:E14.2_87617106-E15.1' in incl: print feature_exp_db[incl],'b' if '-' in incl and '-' in excl: try: max_ratio = expressionRatio(incl_exp,excl_exp,num_incl_events,num_excl_events) # Checks to see if the predominant isoform is expressed at significantly higher levels except Exception: max_ratio = 0 try: max_gene_ratio = max([ratio(value) for value in zip(*[incl_exp,gene_exp])]) except Exception: max_gene_ratio = 0 else: max_ratio = 1; max_gene_ratio = 0 #if 'ENSMUSG00000009350:E14.2_87617106-E15.1' in incl: print feature_exp_db[incl],'c' #if num_incl_events > 15 and num_excl_events > 15 and total_number_junctions>30 and max_ratio>0.5: ### ensures high expression of the minor isoform #if ((num_incl_events > 15 and num_excl_events > 7) or (num_incl_events > 7 and num_excl_events > 15)) and total_number_junctions>20 and max_ratio>0.3: #if 'ENSG00000100650' in incl: print incl,excl,max_ratio,num_incl_events,num_excl_events,dpsi,rho if ((num_incl_events > med_events and num_excl_events > min_events) or (num_incl_events > min_events and num_excl_events > med_events)) and total_number_junctions>(min_events*2) and max_ratio>0.1: ### ensures high expression of the minor isoform #print rho if dpsi > 0.25: return max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_gene_ratio,True else: return max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_gene_ratio,False else: return max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_gene_ratio,False def intronComparisonMethod(query): upstream_exon = string.replace(query,'I','E') if '_' in query: intronic_region = string.split(query,'_')[0] ### Unclear why this is needed, but sometimes only an _ intronic region exists for the intron if intronic_region not in junction_locations: ### Ensures we are not using this instead of a real intron region (e.g., I2.1_1234 and I2.1) upstream_exon = string.replace(intronic_region,'I','E') try: pos1,pos2 = junction_locations[upstream_exon][0] upstream_exon_len = abs(pos2-pos1) except Exception: upstream_exon_len = None downstream_exon = getDownstreamExon(upstream_exon) try: pos1,pos2 = junction_locations[downstream_exon][0] downstream_exon_len = abs(pos2-pos1) except Exception: downstream_exon_len=None pos1,pos2 = junction_locations[query][0] intron_len = abs(pos2-pos1) try: up_rpk = max(feature_exp_db[upstream_exon])/float(upstream_exon_len) if downstream_exon_len!=None: down_rpk = max(feature_exp_db[downstream_exon])/float(downstream_exon_len) adjacent_rpk = max([up_rpk,down_rpk]) ### get the most conservative estimate adjacent_rpk = up_rpk intron_rel_exp = (max(feature_exp_db[query])/float(intron_len))/adjacent_rpk return intron_rel_exp except Exception: return 0 def compareJunctionExpression(gene): regulated_junctions={} inclusion_max_psi={} try: symbol,description = gene_annotations[gene] except Exception: symbol='';description='' if gene in critical_exon_gene_db: critical_exon_list = critical_exon_gene_db[gene] critical_exon_list = unique.unique(critical_exon_list) for (inclusion_list,exclusion_list) in critical_exon_list: inclusion_list = unique.unique(inclusion_list) exclusion_list = unique.unique(exclusion_list) for incl in inclusion_list: for excl in exclusion_list: if excl != incl: pair = [incl,excl]; pair.sort() features_examined[incl]=[] try: max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_all_psi,proceed = junctionComparisonMethod(incl,excl) inclusion_max_psi[incl] = max_all_psi #if 'ENSMUSG00000027680:E21.1-E22.1' in incl: print incl, excl,max_ratio,num_incl_events,num_excl_events,dpsi,rho,proceed if proceed: """if max_ratio<0.1: if num_excl_events > num_incl_events: print max_ratio print max(incl_exp) print statistics.median(excl_exp) print incl_exp print excl_exp;sys.exit()""" #if 'ENSMUSG00000009350:E14.2_87617106-E15.1' in incl: print feature_exp_db[incl] altexons = unique.unique(critical_junction_pair_db[incl,excl]) altexons = string.join(altexons,'|') if num_excl_events > num_incl_events: #print max_ratio, '\t',gene regulated_junctions[incl]=rho,excl,num_incl_events,num_excl_events,'incl',dpsi,rho,max_ratio,altexons else: #print max_ratio, '\t',gene regulated_junctions[excl]=rho,incl,num_excl_events,num_incl_events,'excl',dpsi,rho,max_ratio,altexons #if 'ENSMUSG00000009350:E14.2_87617106-E15.1' in incl: print feature_exp_db[incl] #if rho < -0.3: #print incl, excl, rho #print incl_exp #print excl_exp #print sum(i > 5 for i in incl_exp) #print sum(i > 5 for i in excl_exp) except Exception: pass #lower_index = int(len(rpkms)*0.2) #upper_index = len(rpkms)-lower_index for reg_junction in regulated_junctions: ref_junction = regulated_junctions[reg_junction][1] altexons = regulated_junctions[reg_junction][-1] max_ratio = regulated_junctions[reg_junction][-2] rho = regulated_junctions[reg_junction][-3] dpsi = regulated_junctions[reg_junction][-4] #if 'ENSMUSG00000009350:E14.2_87617106-E15.1' in incl: print feature_exp_db[incl] ### Perform a sanity check for junction comparisons reg_pos,reg_loc = junction_locations[reg_junction] ref_pos,ref_loc = junction_locations[ref_junction] positions = reg_pos+ref_pos positions.sort() values = map(lambda x: str(x+1),feature_exp_db[reg_junction]) try: values = psi_db[reg_junction,ref_junction] except Exception: values = psi_db[ref_junction,reg_junction]; reg_junction,ref_junction = ref_junction,reg_junction try: max_incl_psi = str(inclusion_max_psi[reg_junction]) except Exception: max_incl_psi = '0' if reg_pos == positions[:2] or reg_pos == positions[-2:]: #print 'Impropper junctions excluded',reg_junction,ref_junction,positions,reg_pos pass elif ('-' not in reg_junction or '-' not in ref_junction) and platform != 'junction': ### Possible retained intron if '-' not in reg_junction: query = reg_junction elif '-' not in ref_junction: query = ref_junction if 'I' in query: intron_rel_exp = intronComparisonMethod(query) if intron_rel_exp>0.25: """ print upstream_exon, query, intron_len, upstream_exon_len,(max(feature_exp_db[query])/float(intron_len)),(max(feature_exp_db[upstream_exon])/float(upstream_exon_len)) print max(feature_exp_db[query]) print junction_locations[query] print max(feature_exp_db[upstream_exon]) print junction_locations[upstream_exon] print intron_rel_exp """ if platform == 'junction': try: reg_junction = probeset_junction_db[reg_junction] + ' ' +reg_junction except Exception: pass try: ref_junction = probeset_junction_db[ref_junction] + ' ' +ref_junction except Exception: pass export_data.write(string.join([symbol,description,reg_junction,ref_junction,altexons,str(max_ratio),str(dpsi),str(rho),max_incl_psi,reg_loc+'|'+ref_loc,'intron-retained']+values,'\t')+'\n') avg = averageWithNulls(values) values = map(lambda x: replaceNulls(x,avg), values) clust_export_data.write(string.join([symbol+':'+reg_junction+'|'+ref_junction]+values,'\t')+'\n') retained_introns.append(reg_junction) retained_introns.append(ref_junction) else: try: avg = averageWithNulls(values) except Exception: continue if platform == 'junction': try: reg_junction = probeset_junction_db[reg_junction] + ' ' +reg_junction except Exception: pass try: ref_junction = probeset_junction_db[ref_junction] + ' ' +ref_junction except Exception: pass export_data.write(string.join([symbol,description,reg_junction,ref_junction,altexons,str(max_ratio),str(dpsi),str(rho),max_incl_psi,reg_loc+'|'+ref_loc,'junctions']+values,'\t')+'\n') values = map(lambda x: replaceNulls(x,avg), values) clust_export_data.write(string.join([symbol+':'+reg_junction+'|'+ref_junction]+values,'\t')+'\n') exported.append(reg_junction) exported.append(ref_junction) ### Predict novel undetected events from above junctions=[]; other=[]; features=[]; feature_pos=[]; loc_db={}; coord_db={}; junctions_to_compare=[]; regulated_junctions={};inclusion_max_psi={} #max_ratio,proceed = junctionComparisonMethod(incl,excl) for feature in feature_exp_db: ### The below code is for overlapping junctions not found from the above analysis (could include exons and junctions) if feature not in exported and feature not in retained_introns: if '-' in feature and platform != 'junction': junctions.append(feature) else: other.append(feature) features.append(feature) try: pos1,pos2 = junction_locations[feature][0] feature_pos.append(pos1); feature_pos.append(pos2) try:loc_db[pos1].append(feature) except Exception: loc_db[pos1] = [feature] try:loc_db[pos2].append(feature) except Exception: loc_db[pos2] = [feature] try: coord_db[pos1,pos2].append(feature) except Exception: coord_db[pos1,pos2] = [feature] except Exception: pass ### occurs for junction arrays if the probeset ID is not in the database feature_pos = unique.unique(feature_pos); feature_pos.sort() ### These are the unique positions sorted overlapping_features=[] additional_possible_retained_introns=[] ### catch some funky intron retention events ### Get initial list of overlapping features for feature in features: ### e.g., some junction try: pos1,pos2 = junction_locations[feature][0] ### coordinates of that junction i1 = feature_pos.index(pos1) ### index position of the junctions i2 = feature_pos.index(pos2) #print feature, i1, i2, pos1, pos2 if (i1-i2) != 1: overlapping_features.append(feature) if 'I' in feature and '_' in feature: possible_intron = string.split(feature,'_')[0] if possible_intron not in features: additional_possible_retained_introns.append((i1,i2,feature)) except Exception: pass for feature in overlapping_features: #if feature not in features_examined: ### Remove this to allow for other reasonable junction or junction intron pairs that were not significant above ### get overlapping feature pairs pos1,pos2 = junction_locations[feature][0] i1 = feature_pos.index(pos1) i2 = feature_pos.index(pos2) ### Include a search for funky intron retention events (needed due to some weird intron retention issue) for (in1,in2,f2) in additional_possible_retained_introns: if i1<=in1 and i2>=in2 and feature!=f2: junctions_to_compare.append([feature,f2]) for i in range(i1+1,i2): overlapping = loc_db[feature_pos[i]] for o in overlapping: if o not in features_examined and '-' in o and '-' in feature and platform != 'junction': #print feature, o #print junction_locations[feature][0] #print junction_locations[o][0] junctions_to_compare.append([feature,o]) #print 'junctions_to_compare:',junctions_to_compare ### Since this is the same coordinates, should be finding intron retention pairs for coord in coord_db: features = unique.unique(coord_db[coord]) if len(features)>1: for f in features: for g in features: if g!=f: fs = [g,f]; fs.sort() if g not in exported and f not in exported: if g not in retained_introns and f not in retained_introns: junctions_to_compare.append(fs) unique.unique(junctions_to_compare) for (incl,excl) in junctions_to_compare: #Not really incl, excl, just features max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_all_psi,proceed = junctionComparisonMethod(incl,excl) inclusion_max_psi[incl] = max_all_psi #if 'ENSG00000100650' in incl: print incl,excl, max_ratio, proceed, rho, num_incl_events, num_excl_events, 'k' if proceed: altexons = '' if num_excl_events > num_incl_events: #print max_ratio, '\t',gene regulated_junctions[incl]=rho,excl,num_incl_events,num_excl_events,'incl',dpsi,rho,max_ratio,altexons else: #print max_ratio, '\t',gene regulated_junctions[excl]=rho,incl,num_excl_events,num_incl_events,'excl',dpsi,rho,max_ratio,altexons for reg_junction in regulated_junctions: ref_junction = regulated_junctions[reg_junction][1] altexons = regulated_junctions[reg_junction][-1] max_ratio = regulated_junctions[reg_junction][-2] rho = regulated_junctions[reg_junction][-3] dpsi = regulated_junctions[reg_junction][-4] ### Perform a sanity check for junction comparisons reg_pos,reg_loc = junction_locations[reg_junction] ref_pos,ref_loc = junction_locations[ref_junction] positions = reg_pos+ref_pos positions.sort() values = map(lambda x: str(x+1),feature_exp_db[reg_junction]) try: values = psi_db[reg_junction,ref_junction] except Exception: values = psi_db[ref_junction,reg_junction]; reg_junction,ref_junction = ref_junction,reg_junction try: max_incl_psi = str(inclusion_max_psi[reg_junction]) except Exception: max_incl_psi = '0' if ('-' not in reg_junction or '-' not in ref_junction) and platform != 'junction': ### Possible retained intron if '-' not in reg_junction: query = reg_junction elif '-' not in ref_junction: query = ref_junction intron_rel_exp = intronComparisonMethod(query) if intron_rel_exp>0.25: if platform == 'junction': try: reg_junction = probeset_junction_db[reg_junction] + ' ' +reg_junction except Exception: pass try: ref_junction = probeset_junction_db[ref_junction] + ' ' +ref_junction except Exception: pass export_data.write(string.join([symbol,description,reg_junction,ref_junction,altexons,str(max_ratio),str(dpsi),str(rho),max_incl_psi,reg_loc+'|'+ref_loc,'exon-retained']+values,'\t')+'\n') avg = averageWithNulls(values) values = map(lambda x: replaceNulls(x,avg), values) clust_export_data.write(string.join([symbol+':'+reg_junction+'|'+ref_junction]+values,'\t')+'\n') retained_introns.append(reg_junction) retained_introns.append(ref_junction) #print query else: if platform == 'junction': try: reg_junction = probeset_junction_db[reg_junction] + ' ' +reg_junction except Exception: pass try: ref_junction = probeset_junction_db[ref_junction] + ' ' +ref_junction except Exception: pass export_data.write(string.join([symbol,description,reg_junction,ref_junction,altexons,str(max_ratio),str(dpsi),str(rho),'0',reg_loc+'|'+ref_loc,'others']+values,'\t')+'\n') avg = averageWithNulls(values) values = map(lambda x: replaceNulls(x,avg), values) clust_export_data.write(string.join([symbol+':'+reg_junction+'|'+ref_junction]+values,'\t')+'\n') exported.append(reg_junction) exported.append(ref_junction) #print ref_junction,reg_junction if platform == 'junction' or platform == 'AltMouse': probeset_gene_db={} import ExonArrayEnsemblRules if platform == 'junction': export_exon_filename = 'AltDatabase/'+species+'/'+platform+'/'+species+'_Ensembl_probesets.txt' if platform == 'AltMouse': export_exon_filename = 'AltDatabase/'+species+'/'+platform+'/'+species+'_Ensembl_probesets.txt' ensembl_probeset_db = ExonArrayEnsemblRules.reimportEnsemblProbesetsForSeqExtraction(export_exon_filename,'only-junctions',{}) for gene in ensembl_probeset_db: for uid,pos,location in ensembl_probeset_db[gene]: junction_locations[uid] = pos,location probeset_gene_db[uid]=gene def filterByLocalJunctionExp(gene,features): try: symbol,description = gene_annotations[gene] except Exception: symbol='';description='' begin_time = time.time() junctions_to_compare={} overlapping_junctions_exp={} overlapping_junctions={} for feature in feature_exp_db: feature_exp = feature_exp_db[feature] if '-' in feature: pos1,pos2 = junction_locations[feature][0] for f2 in feature_exp_db: if '-' in f2: if f2!=feature: f2_exp = feature_exp_db[f2] alt_pos1,alt_pos2 = junction_locations[f2][0] positions = [pos1,pos2,alt_pos1,alt_pos2] positions.sort() diff = positions.index(pos2)-positions.index(pos1) if diff!=1: #try: junctions_to_compare[feature].append(f2) #except Exception: junctions_to_compare[feature] = [f2] try: overlapping_junctions_exp[feature].append([f2_exp,f2]) except Exception: overlapping_junctions_exp[feature] = [[f2_exp,f2]] else: diff = positions.index(alt_pos2)-positions.index(alt_pos1) if diff!=1: try: overlapping_junctions_exp[feature].append([f2_exp,f2]) except Exception: overlapping_junctions_exp[feature] = [[f2_exp,f2]] """ for feature in feature_exp_db: if '-' in feature: pos1,pos2 = junction_locations[feature][0] positions.append((pos1,pos2)) positions.append((pos2,pos1)) overlapping_features=[]; junctions_to_compare={}; loc_db={}; feature_pos=[] for feature in features: pos1,pos2 = junction_locations[feature][0] feature_pos.append(pos1); feature_pos.append(pos2) try:loc_db[pos1].append(feature) except Exception: loc_db[pos1] = [feature] try:loc_db[pos2].append(feature) except Exception: loc_db[pos2] = [feature] for feature in features: ### e.g., some junction try: pos1,pos2 = junction_locations[feature][0] ### coordinates of that junction i1 = feature_pos.index(pos1) ### index position of the junctions i2 = feature_pos.index(pos2) #print feature, i1, i2, pos1, pos2 if (i1-i2) != 1: overlapping_features.append(feature) except Exception: pass for feature in overlapping_features: #if feature not in features_examined: ### Remove this to allow for other reasonable junction or junction intron pairs that were not significant above ### get overlapping feature pairs pos1,pos2 = junction_locations[feature][0] i1 = feature_pos.index(pos1) i2 = feature_pos.index(pos2) for i in range(i1+1,i2): overlapping = loc_db[feature_pos[i]] for o in overlapping: if o not in features_examined and '-' in o and '-' in feature and platform != 'junction': try: junctions_to_compare[feature].append(o) except Exception: junctions_to_compare[feature] = [o] """ #duration = time.time() - begin_time #print duration, 'seconds' expressed_junctions=[] for feature in overlapping_junctions_exp: counts = map(lambda x: x[0], overlapping_junctions_exp[feature]) combined = [sum(value) for value in zip(*counts)] #if feature == 'ENSG00000002586:E1.5-E4.1': #print feature #print combined #print overlapping_junctions_exp[feature][0];sys.exit() #dpsi_values = [ratio(value) for value in zip(*[overlapping_junctions_exp[feature][0],combined])] #print feature #print overlapping_junctions[feature] #print overlapping_junctions_exp[feature] #print combined;sys.exit() exclusion_id = feature+'|exclusion' feature_exp_db[exclusion_id] = combined max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_all_psi,proceed = junctionComparisonMethod(feature,exclusion_id) if proceed: fe1,fe2 = string.split(feature,'-') if '_' in fe1 and '_' in fe2: pass else: #""" top_excl_junction=[] for (exp_ls,f2) in overlapping_junctions_exp[feature]: top_excl_junction.append([statistics.avg(exp_ls),f2]) top_excl_junction.sort() #print top_excl_junction[-8:] #print statistics.avg(feature_exp_db[feature]) top_excl_junction = top_excl_junction[-1][-1] t1,t2 = string.split(top_excl_junction,'-') altexons = [] if t1!=fe1: altexons.append(fe1) if t2!=fe2: altexons.append(gene+':'+fe2) altexons = string.join(altexons,'|') reg_pos,reg_loc = junction_locations[feature] ref_pos,ref_loc = junction_locations[top_excl_junction] #print [feature, dpsi,rho] #top_excl_junctions = map(lambda x: x[-1], top_excl_junction[-5:]) #print top_excl_junctions;sys.exit() #for i in top_excl_junctions: max_ratio,num_incl_events,num_excl_events,dpsi,rho,max_all_psi,proceed = junctionComparisonMethod(feature,i); print i, dpsi,rho values = psi_db[feature,exclusion_id] max_incl_psi = str(getMax(values)) export_data.write(string.join([symbol,description,feature,top_excl_junction,altexons,str(max_ratio),str(dpsi),str(rho),max_incl_psi,reg_loc+'|'+ref_loc,'junctions']+values,'\t')+'\n') avg = averageWithNulls(values) values_imputed = map(lambda x: replaceNulls(x,avg), values) clust_export_data.write(string.join([symbol+':'+feature+'|'+top_excl_junction]+values_imputed,'\t')+'\n') exported.append(feature) exported.append(top_excl_junction) #sys.exit() gene_annotations = getGeneAnnotations(species) firstLine = True feature_exp_db={} gene_junction_denom={} ### Determine the max junction counts per gene per sample regulated_junctions = {} genes_examined=0; gene_increment=1000 prior_gene = None gene = None for line in open(expFile,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine = False ge_header = t additional_headers = string.join(['Symbol','Description','Examined-Junction','Background-Major-Junction','AltExons',"PME","dPSI",'rho','Max Inclusion PSI','Coordinates','feature']+t[1:],'\t')+'\n' export_data.write(additional_headers) clust_export_data.write(line) else: uid = t[0] if '=' in uid: try: uid,location = string.split(uid,'=') except Exception: print t[0];sys.exit() pos1,pos2 = string.split(string.split(location,':')[-1],'-') pos = [int(pos1),int(pos2)] pos.sort() junction_locations[uid] = pos,location ### use the to report position and verify compared junctions if gene == 'ENSG00000100650': proceed = True else: proceed = True if platform == 'RNASeq': gene = string.split(uid,':')[0] else: if uid in probeset_gene_db: gene = probeset_gene_db[uid] else: proceed = False if proceed: counts = map(lambda x: float(x), t[1:]) if platform == 'junction' or platform == 'AltMouse': counts = map(lambda x: int(math.pow(2,x)), counts) #log transform these instead, to make like junction counts if '-' in uid or uid in junction_locations: #try: gene_junction_denom[gene].append(counts) #except Exception: gene_junction_denom[gene] = [counts] pass if genes_examined==gene_increment: gene_increment+=1000 print '*', if gene != prior_gene and prior_gene !=None: genes_examined+=1 #if len(gene_junction_denom)>0: if prior_gene == '!ENSG00000198001': filterByLocalJunctionExp(prior_gene,feature_exp_db) #try: gene_junction_denom[prior_gene] = [max(value) for value in zip(*gene_junction_denom[prior_gene])] # sum the junction counts for all junctions across the gene #except Exception: pass if platform == 'RNASeq': filterByLocalJunctionExp(prior_gene,feature_exp_db) else: compareJunctionExpression(prior_gene) feature_exp_db={} gene_junction_denom={} if max(counts)>4: feature_exp_db[uid] = counts prior_gene = gene #compareJunctionExpression(gene) export_data.close() clust_export_data.close() graphic_links=[] if (len(exported)/2)<7000: if (len(exported)/2)<4000: graphic_links = exportHeatmap(clust_export_dir,useHOPACH=False,color_gradient='yellow_black_blue',normalize=True,columnMethod='hopach',size=len(exported)/2) else: clust_export_dir,size = filterJunctionExpression(clust_export_dir) if size<4000: try: graphic_links = exportHeatmap(clust_export_dir,useHOPACH=False,color_gradient='yellow_black_blue',normalize=True,columnMethod='hopach',size=len(exported)/2,filter=True) except Exception: graphic_links=[] print len(exported)/2,'junctions exported and',len(retained_introns)/2, 'retained introns exported...' return graphic_links, clust_export_dir def getGeneAnnotations(species): gene_annotations={} fn = filepath('AltDatabase/ensembl/'+species+'/'+species+'_Ensembl-annotations_simple.txt') for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) ensembl,description,symbol = string.split(data,'\t') gene_annotations[ensembl] = symbol,description return gene_annotations def getDownstreamExon(upstream_exon): gene,exon = string.split(upstream_exon,':') downstream_exon = gene+':E'+str(int(string.split(exon,'.')[0][1:])+1)+'.1' return downstream_exon def expressionRatio(incl_exp,excl_exp,num_incl_events,num_excl_events): ### Selects the minor isoform and looks at its relative expression if num_incl_events>num_excl_events: max_ratio = max(excl_exp)/max(incl_exp) else: max_ratio = max(incl_exp)/max(excl_exp) return max_ratio def unbiasedComparisonSpliceProfiles(root_dir,species,platform,expFile=None,min_events=-1,med_events=-1): # 4 9 """ This is prototype code to identify critical splicing events (SI-exon-level) from single cell data prior to group assignment """ begin_time = time.time() if platform == 'RNASeq': avg_all_for_SS = 'yes' else: avg_all_for_SS = 'no' agglomerate_inclusion_probesets = 'no' probeset_type = 'core' import JunctionArray; import AltAnalyze buildFromDeNovoJunctionsOnly=True if buildFromDeNovoJunctionsOnly and platform=='RNASeq': alt_junction_db={} else: exon_db, constitutive_probeset_db = AltAnalyze.importSplicingAnnotations(platform,species,probeset_type,avg_all_for_SS,root_dir) alt_junction_db,critical_exon_db,exon_dbase,exon_inclusion_db,exon_db = JunctionArray.getPutativeSpliceEvents(species,platform,exon_db,agglomerate_inclusion_probesets,root_dir) print 'Number of Genes with Examined Splice Events:',len(alt_junction_db) if platform == 'junction': global probeset_junction_db; probeset_junction_db={} #alt_junction_db = {'ENSG00000100650':alt_junction_db['ENSG00000100650']} critical_exon_db={} for affygene in alt_junction_db: for event in alt_junction_db[affygene]: for critical_exon in event.CriticalExonList(): critical_exon = affygene+':'+critical_exon try: #print event.InclusionJunction(), event.ExclusionJunction();sys.exit() inclusion_list,exclusion_list = critical_exon_db[critical_exon] if '-' in event.InclusionProbeset() or (platform == 'junction' and '-' in event.InclusionJunction()): inclusion_list.append(event.InclusionProbeset()) exclusion_list.append(event.ExclusionProbeset()) if platform == 'junction': probeset_junction_db[event.InclusionProbeset()] = event.InclusionJunction() probeset_junction_db[event.ExclusionProbeset()] = event.ExclusionJunction() except Exception: if '-' in event.InclusionProbeset() or (platform == 'junction' and '-' in event.InclusionJunction()): inclusion_list = [event.InclusionProbeset()] else: inclusion_list=[] exclusion_list = [event.ExclusionProbeset()] #inclusion_list.append(critical_exon) inclusion_list = unique.unique(inclusion_list) exclusion_list = unique.unique(exclusion_list) if len(inclusion_list)>0 and len(exclusion_list)>0: critical_exon_db[critical_exon] = inclusion_list,exclusion_list elif 'I' in critical_exon and '_' not in critical_exon and '.1' in critical_exon: critical_exon_db[critical_exon] = [critical_exon],exclusion_list #if affygene == 'ENSMUSG00000004952': #if '.1' not in critical_exon: print critical_exon,inclusion_list,exclusion_list if expFile != None: graphic_links, cluster_input = compareRawJunctionExpression(root_dir,platform,species,critical_exon_db,expFile,min_events=min_events,med_events=med_events) print 'finished in',int(time.time()-begin_time), 'seconds' return graphic_links, cluster_input ### Determine the location of the gene expression file input_folder = root_dir+'AltResults/RawSpliceDataTemp/'+species+'/splicing-index/' dir_list = read_directory(input_folder) ### get all of the RawSplice files for filename in dir_list: if '.txt' in filename and ('_average' not in filename): dataset_name = filename input_dir = input_folder + dataset_name exportSorted(input_dir, 2) for filename in dir_list: if '.txt' in filename and ('_average' not in filename): dataset_name = filename input_dir = input_folder + dataset_name import RNASeq biological_categories = RNASeq.importBiologicalRelationships(species) genes = biological_categories['protein_coding'] #genes = biological_categories['BioMarker'] genes.update(biological_categories['transcription regulator']) genes.update(biological_categories['splicing regulator']) genes.update(biological_categories['kinase']) genes.update(biological_categories['GPCR']) ### Import gene expression summaries to exclude high differential genes fn=filepath(root_dir+'/ExpressionInput/exp.'+dataset_name[:-4]+'-steady-state.txt') firstLine = True low_diff_exp_genes={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine = False ge_header = t else: rpkms = map(lambda x: float(x), t[1:]) rpkms.sort() lower_index = int(len(rpkms)*0.2); upper_index = len(rpkms)-lower_index gene = t[0] #if (max(rpkms)/min(rpkms))<5: ### Max allowed differential expression #if (rpkms[upper_index]/rpkms[lower_index])<5: #if gene == 'ENSMUSG00000078812': print statistics.avg(rpkms) if gene in genes and statistics.avg(rpkms)>5: low_diff_exp_genes[gene]=rpkms #print low_diff_exp_genes['ENSMUSG00000078812'] print len(low_diff_exp_genes), 'genes with less than 5-fold differential expression' import gene_associations; from scipy import stats gene_to_symbol = gene_associations.getGeneToUid(species,('hide','Ensembl-Symbol')) exported_IDs=0; ids_exmained=0; genes_examined=0; gene_increment=1000 added={}; prior_gene = False; gene_comparison_db={} print 'Begining to quickly find alternative exons...' for filename in dir_list: if '.txt' in filename and ('_average' not in filename) or len(dir_list)==1: ### We only want the group-comparison SI file export_dir = string.split(input_folder,'RawSpliceData')[0]+'Unbiased/'+filename export_data = export.ExportFile(export_dir) fn=filepath(input_folder+filename) x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: headers = t[2:] ### first two columsn are gene and ExonID #print headers #print ge_header;sys.exit() export_data.write(string.join(headers,'\t')+'\n') ### write header row x=1 else: if platform != 'RNASeq': if 'ENS' in t[0]: #ENSG human gene = t[0]; altExon = t[2] else: altExon = t[0] else: gene = t[0]; altExon = t[2] if genes_examined==gene_increment: gene_increment+=1000 print '*', if gene != prior_gene: genes_examined+=1 hits={} for gene in gene_comparison_db: feature_db = gene_comparison_db[gene] if gene == 'ENSMUSG00000078812': for i in feature_db: print i for altexon in feature_db: #print altexon if altexon in critical_exon_db: inclusion_list,exclusion_list = critical_exon_db[altexon] #print inclusion_list, 'incl' altexon_SI = feature_db[altexon] for incl in inclusion_list: if incl in feature_db: incl_SI = feature_db[incl] with warnings.catch_warnings(): warnings.filterwarnings("ignore") ### hides import warnings try: rho,p = stats.pearsonr(altexon_SI,incl_SI) except Exception: rho = 1 #print rho, altexon,incl #print string.join(map(str,altexon_SI),'\t') #print string.join(map(str,incl_SI),'\t');sys.exit() if rho>0.4: hits[altexon]=[] if gene == 'ENSMUSG00000078812':print '***', incl #print inclusion_list, 'excl' for excl in inclusion_list: if excl in feature_db: excl_SI = feature_db[excl] with warnings.catch_warnings(): warnings.filterwarnings("ignore") ### hides import warnings rho,p = stats.pearsonr(altexon_SI,excl_SI) if rho<-0.4: hits[altexon]=[] if gene == 'ENSMUSG00000078812': print '***', excl if gene == 'ENSMUSG00000078812': print hits for altExon in hits: added[altExon]=[] log_folds = feature_db[altExon] log_folds = map(str, log_folds) values = string.join([altExon]+log_folds,'\t')+'\n' ### [t[3]]+ before log_folds? if gene in gene_to_symbol: symbol = gene_to_symbol[gene][0]+" " else: symbol = '' export_data.write(symbol+values) exported_IDs+=1 gene_comparison_db={} #if exported_IDs> 1: sys.exit() prior_gene = gene if ';' in altExon: altExon1, altExon2 = string.split(altExon,';') altExons = [altExon1,gene+':'+altExon2] else: altExons = [altExon] for altExon in altExons: if altExon not in added and gene in low_diff_exp_genes: #altExon in alternative_exon_db and #if altExon == 'ENSMUSG00000022841:E7.2': ids_exmained+=1 #values = map(lambda x: float(x)*-1, t[3:]) #reverse the fold for cluster visualization values = map(lambda x: float(x), t[3:]) #print len(headers),len(values);sys.exit() avg = statistics.avg(values) log_folds = map(lambda x: x-avg, values) ### calculate log folds and make these strings i=0; si_exp_list = [] ### store the pairs of SI and gene expression for each sample rpkms = list(low_diff_exp_genes[gene]) for si in log_folds: si_exp_list.append([rpkms[i],si]); i+=1 rpkms.sort() si_exp_list.sort() ### This object contains both gene expression and SI values max_rpkm = rpkms[-1] half_max_rpkm = max_rpkm/2 ### Only look at genes in which there is less than a 2 fold differnce s = bisect.bisect_right(rpkms,half_max_rpkm) si_highGeneExp = map(lambda (rpkm,si): si, si_exp_list[s:]) #print si_exp_list[s:] #cv = statistics.stdev(si_highGeneExp)/statistics.avg(si_highGeneExp) si_highGeneExp.sort() try: biggest_diff = si_highGeneExp[-2]-si_highGeneExp[1] #print biggest_diff #print cv if gene == 'ENSG00000009413': print altExon, biggest_diff print si_highGeneExp if biggest_diff>2 and len(si_highGeneExp)>20: try: feature_db = gene_comparison_db[gene] feature_db[altExon] = log_folds except Exception: feature_db={} feature_db[altExon] = log_folds gene_comparison_db[gene] = feature_db #added[altExon]=[] #log_folds = map(str, log_folds) #values = string.join([altExon]+log_folds,'\t')+'\n' ### [t[3]]+ before log_folds? #if gene in gene_to_symbol: symbol = gene_to_symbol[gene][0]+" " #else: symbol = '' #export_data.write(symbol+values) #exported_IDs+=1 except Exception: pass ### Occurs with less than 4 samples in the si_highGeneExp set print exported_IDs, 'exported ID values for clustering out of',ids_exmained export_data.close() return export_dir, exported_IDs def AllGroupsNIComparison(root_dir, species, array_type): if array_type == 'RNASeq': avg_all_for_SS = 'yes' else: avg_all_for_SS = 'no' agglomerate_inclusion_probesets = 'no' #calculateNormalizedIntensities(root_dir, species, array_type, avg_all_for_SS = avg_all_for_SS, probeset_type = 'core') ### This analysis is designed for datasets without known variables (e.g., single cell seq) import JunctionArray exon_db, constitutive_probeset_db = AltAnalyze.importSplicingAnnotations(array_type,species,probeset_type,avg_all_for_SS,root_dir) alt_junction_db,critical_exon_db,exon_dbase,exon_inclusion_db,exon_db = JunctionArray.getPutativeSpliceEvents(species,array_type,exon_db,agglomerate_inclusion_probesets,root_dir) print 'Number of Genes with Examined Splice Events:',len(alt_junction_db) for affygene in alt_junction_db: for event in alt_junction_db[affygene]: event.InclusionProbeset() event.ExclusionProbeset() def createExpressionSQLdb(species,platform,expFile): """ Store junction/exon RPKMs or probesets expression in a SQL database""" start=time.time() import SQLInterace DBname = 'FeatureExpression' schema_text ='''-- Schema for species specific AltAnalyze junction/exon expression data. -- Genes store general information on each Ensembl gene ID create table ExonExp ( uid text primary key, gene text, expression text ); ''' conn = SQLInterace.populateSQLite(species,platform,DBname,schema_text=schema_text) ### conn is the database connnection interface ### Populate the database print 'importing', expFile fn=filepath(expFile) for line in open(fn,'r').xreadlines(): data = line.strip() t = string.split(data,'\t') uid = t[0]; expression = string.join(t[1:],'\t') try: gene = string.split(uid,':')[0] except Exception: print 'not RNASeq - function not supported';kill #print exonID,gene,sequence ### Store this data in the SQL database command = """insert into ExonExp (uid, gene, expression) values ('%s', '%s','%s')""" % (uid,gene,expression) conn.execute(command) conn.commit() ### Needed to commit changes conn.close() time_diff = str(round(time.time()-start,1)) print 'Exon/Junction Expression Data added to SQLite database in %s seconds' % time_diff def logratio(list): return list[0] - list[1] def matchAndCorrelate(prime, secondary, output_dir, rho_cutoff): ### Take two files and correlate their IDs to any matching export_object = export.ExportFile(output_dir[:-4]+'-'+str(rho_cutoff)+'.txt') export_object.write('Feature1\tFeature2\trho\n') firstLine = True; prime_db={} for line in open(prime,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine = False else: prime_db[t[0]] = map(float,t[1:]) firstLine = True; secondary_db={}; key_db={} for line in open(secondary,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: firstLine = False else: try: gene_id,probe_id = string.split(t[0],':') except Exception: gene_id = t[0]; probe_id = t[0] try: secondary_db[gene_id].append((map(float,t[1:]),probe_id)) except Exception: secondary_db[gene_id] = [(map(float,t[1:]),probe_id)] from scipy import stats top_correlated={} for gene in prime_db: prime_profile = prime_db[gene] if gene in secondary_db: for (secondary_db_profile, probe_id) in secondary_db[gene]: rho,p = stats.pearsonr(prime_profile,secondary_db_profile) if rho > rho_cutoff or rho < -1*rho_cutoff: #print gene, '\t',probe_id, '\t',rho export_object.write(gene+'\t'+probe_id+'\t'+str(rho)+'\n') export_object.close() def getMax(values): values2=[] for i in values: try: values2.append(float(i)) except Exception: pass return max(values2) def replaceNulls(x,avg): if x=='': return '0' else: return str(float(x)-avg) def nullReplace(dpsi_values,combined,min_exp): ### Don't count un-detected genes in later stats null_replaced=[] i=0 for v in combined: if v<(min_exp+1): null_replaced.append('') else: null_replaced.append(str(dpsi_values[i])) i+=1 return null_replaced def averageWithNulls(values): avg_vals=[] for i in values: try: avg_vals.append(float(i)) except Exception: pass avg = statistics.avg(avg_vals) return avg def expressionSortImport(filename,filter_db=None): firstLine = True; exp_db={}; lines=0; max_var = 3 for line in open(filename,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstLine: headers = t[1:] header_ind = map(lambda x: (x,headers.index(x)),headers) ### store header index values header_ind.sort() #print header_ind headers_ind = map(lambda (x,i): i,header_ind) firstLine = False else: try: exp_data = map(float,t[1:]) except Exception: exp_data=[] for value in t[1:]: try: value = float(value) except Exception: pass exp_data.append(value) exp_data = map(lambda i: exp_data[i],headers_ind) if filter_db != None: key = t[0] if ':' in key: key = string.split(key,':')[0] max_var = 0 if key in filter_db: if max(exp_data)>max_var: exp_db[key] = exp_data else: exp_db[t[0]] = exp_data lines+=1 print len(exp_db),'IDs imported from', export.findFilename(filename) return exp_db def featureCorrelate(species,query_dir,feature_dir,output_dir,feature_type): #python ExpressionBuilder.py --species Hs --i /Volumes/SEQ-DATA/SingleCell-Churko/Filtered/Unsupervised-AllExons/AltResults/Unbiased/junctions-2-5/top_alt_junctions_clust-TTN_all_selected.txt --additional /Volumes/SEQ-DATA/SingleCell-Churko/Filtered/Unsupervised-AllExons/ExpressionInput/exp.CM-TTN-steady-state.txt --analysis featureCorrelate --var "splicing regulator" ### Correlate features in a file to feature-specific gene expression data (e.g., "splicing regulator") try: export_object = export.ExportFile(output_dir[:-4]+'-'+feature_type+'.txt') except Exception: export_object = export.ExportFile(output_dir[:-4]+'-None.txt') export_object.write('UID\tFeature\trho\n') import RNASeq; import ExpressionBuilder biological_categories = RNASeq.importBiologicalRelationships(species) gene_to_symbol_db = ExpressionBuilder.importGeneAnnotations(species) if feature_type != None: filter_genes = biological_categories[feature_type] else: filter_genes=None try: print len(filter_genes),feature_type,'genes imported for comparison...' except Exception: pass query_db = expressionSortImport(query_dir) feature_db = expressionSortImport(feature_dir,filter_genes) from scipy import stats top_correlated={} for uid in query_db: query_exp_profile = query_db[uid] for gene in feature_db: feature_exp_profile = feature_db[gene] try: rho,p = stats.pearsonr(query_exp_profile,feature_exp_profile) except Exception: ### If missing values are present, only correlate to where the values are present query_exp_profile2=[] feature_exp_profile2=[] i=0 for v in query_exp_profile: if v!='': query_exp_profile2.append(query_exp_profile[i]) feature_exp_profile2.append(feature_exp_profile[i]) i+=1 if len(feature_exp_profile2)>20: rho,p = stats.pearsonr(query_exp_profile2,feature_exp_profile2) else: rho = 0 try: symbol = gene_to_symbol_db[gene] except Exception: symbol = gene try: top_correlated[uid].append([abs(rho),symbol[0],rho]) except Exception: top_correlated[uid]=[[abs(rho),symbol[0],rho]] for uid in top_correlated: res = top_correlated[uid] res.sort() feature = res[-1][1] rho = res[-1][-1] export_object.write(uid+'\t'+feature+'\t'+str(rho)+'\n') export_object.close() def lncRNANeighborCorrelationAnalysis(dataset_dir): ### dataset_dir is the ExpressionOuput DATASET file location #Get all analyzed genes and coordinates print 'Importing the DATASET file' global gene_symbol_db fn=filepath(dataset_dir); gene_coordinate_db={}; all_lncRNA_db={}; coord_gene_db={}; gene_symbol_db={} chr_coord_list=[]; positive_strand=[]; negative_strand=[] for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') geneID = t[0] symbol = t[2] protein_class = t[8] chr = t[9] strand = t[10] coordinates = tuple(string.split(t[11],'-')) coord_list = chr,coordinates,strand gene_coordinate_db[geneID]=coord_list coord_gene_db[coord_list] = geneID gene_symbol_db[geneID] = symbol chr_coord_list.append(coord_list) if '+' in strand: positive_strand.append(coord_list) else: negative_strand.append(coord_list) if 'lincRNA' in protein_class or 'lncRNA' in protein_class: all_lncRNA_db[geneID]=[] chr_coord_list.sort(); positive_strand.sort(); negative_strand.sort() useClusterFile = False #Get all significantly differentially expressed genes if useClusterFile: cluster_file = string.replace(dataset_dir,'ExpressionOutput','ExpressionOutput/Clustering/') cluster_file = string.replace(cluster_file,'DATASET-','SampleLogFolds-') else: cluster_file = string.replace(dataset_dir,'ExpressionOutput','ExpressionInput') cluster_file = string.replace(cluster_file,'DATASET-','exp.') cluster_file = string.replace(cluster_file,'.txt','-steady-state.txt') print 'Importing the cluster file' fn=filepath(cluster_file); differentially_exp_db={}; lncRNA_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) uid = string.split(data,'\t')[0] if ' ' in uid: uid = string.split(uid,' ')[0] differentially_exp_db[uid]=[] if uid in all_lncRNA_db: lncRNA_db[uid]=[] #import random #lncRNA_db = random.sample(differentially_exp_db,len(lncRNA_db)) print 'Number of lncRNAs regulated in clusters:',len(lncRNA_db) #Get the MarkerFinder cluster assignments of all analyzed genes root_dir = string.split(dataset_dir,'ExpressionOutput')[0] markerfinder = root_dir+'ExpressionOutput/MarkerFinder/AllGenes_correlations-ReplicateBased.txt' print 'Importing the MarkerFinder file' fn=filepath(markerfinder); cluster_db={} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') geneID = t[0] cluster = t[-1] if geneID in differentially_exp_db: cluster_db[geneID] = cluster cluster_regulated_lncRNAs={} for geneID in lncRNA_db: try: cluster_regulated_lncRNAs[cluster_db[geneID]]+=1 except Exception: try: cluster_regulated_lncRNAs[cluster_db[geneID]]=1 except Exception: pass for cluster in cluster_regulated_lncRNAs: print cluster, cluster_regulated_lncRNAs[cluster] print 'Searching for lncRNA positional correlations' direction_list=['both','forward','reverse'] print '\tExamining both strands' for direction in direction_list: nmc = searchUpOrDownstreamGenes(lncRNA_db,gene_coordinate_db,cluster_db,coord_gene_db,chr_coord_list,direction) #print len(nmc),len(chr_coord_list) print '\tExamining the positive strand' for direction in direction_list: nmc = searchUpOrDownstreamGenes(lncRNA_db,gene_coordinate_db,cluster_db,coord_gene_db,positive_strand,direction) #print len(nmc),len(positive_strand) print '\tExamining the negative strand' for direction in direction_list: nmc = searchUpOrDownstreamGenes(lncRNA_db,gene_coordinate_db,cluster_db,coord_gene_db,negative_strand,direction) #print len(nmc),len(negative_strand) def searchUpOrDownstreamGenes(lncRNA_db,gene_coordinate_db,cluster_db,coord_gene_db,coord_list,direction): neighbor_matching_cluster_db={}; multiple_lncRNAs=0; number_of_neighbors=0 for geneID in lncRNA_db: coordinates = gene_coordinate_db[geneID] if coordinates in coord_list: ### strand dependent rank_index = coord_list.index(coordinates) if geneID in cluster_db: cluster = cluster_db[geneID] if direction == 'forward': search_pos = [4, 3,2,1] search_pos = [1] elif direction == 'reverse': search_pos = [-4, -3,-2,-1] search_pos = [-1] else: search_pos = [4,3,2,1,-3,-2,-1, -4] search_pos = [1,-1] for oi in search_pos: i = coord_list[rank_index-oi] neighbor_gene = coord_gene_db[i] symbol = gene_symbol_db[neighbor_gene] if neighbor_gene in cluster_db and neighbor_gene not in lncRNA_db and neighbor_gene != geneID and '.' not in symbol: ncluster = cluster_db[neighbor_gene] if cluster == ncluster: if neighbor_gene in lncRNA_db: multiple_lncRNAs+=1 try: neighbor_matching_cluster_db[geneID]+=1; number_of_neighbors+=1 except Exception: neighbor_matching_cluster_db[geneID]=1; number_of_neighbors+=1 print cluster,gene_symbol_db[geneID],gene_symbol_db[neighbor_gene] #print 'multiple_lncRNAs:', multiple_lncRNAs, number_of_neighbors return neighbor_matching_cluster_db def getHighestExpressingGenes(input_file,output_dir,topReported): ### Sorts genes based on RPKM (ignore read counts) bisectValues = False if topReported<100: bisectValues = True firstLine = True sampleExpression_db={} for line in open(input_file,'rU').xreadlines(): data = cleanUpLine(line) values = string.split(data,'\t') if firstLine: headers = values[1:] for i in headers: sampleExpression_db[i]=[] firstLine = False print len(values) else: gene = values[0] i=0 for rpkm in values[1:]: sampleExpression_db[headers[i]].append((float(rpkm),gene)) i+=1 for sample in sampleExpression_db: Sample = string.replace(sample,'.bed','') Sample = string.replace(Sample,'.cel','') Sample = string.replace(Sample,'.CEL','') Sample = string.replace(Sample,':','-') export_object = export.ExportFile(output_dir+'/'+Sample+'-top_'+str(topReported)+'.txt') export_object.write('Genes\tSystemCode\tChanged\n') sampleExpression_db[sample].sort() if bisectValues: rpkms = map(lambda x: x[0], sampleExpression_db[sample]) print rpkms[-5:] s = bisect.bisect_right(rpkms,float(topReported)) topExpGenes = map(lambda x: str(x[1]), sampleExpression_db[sample][-1*(len(rpkms)-s):]) print Sample,len(topExpGenes), s else: topExpGenes = map(lambda x: str(x[1]), sampleExpression_db[sample][-1*topReported:]) for gene in topExpGenes: if 'ENS' in gene or 'ENF' in gene: system = 'En' else: system = 'Sy' export_object.write(gene+'\t'+system+'\t1\n') export_object.close() print 'The top',topReported,'expressing genes have been exported to',output_file def returnRowHeaderForMaxEntry(filename,top): ### Used for enrichment analysis matrices to find the most significant term for each comparison/group/sample output_file = filename[:-4]+'_top%d.txt' % top export_object = export.ExportFile(output_file) import clustering; import numpy matrix, column_header, row_header, dataset_name, group_db = clustering.importData(filename,reverseOrder=False) matrix = map(numpy.array, zip(*matrix)) ### coverts these to tuples column_header, row_header = row_header, column_header x=0 for row in matrix: comparison = row_header[x] copied_row_values = list(row) copied_row_values.sort() max_vals = copied_row_values[-1*top:] max_vals.reverse() term = column_header[list(row).index(max_vals[0])] term+= '('+str(max_vals[0])[:4]+')|' if top>1: term+= column_header[list(row).index(max_vals[1])] term+= '('+str(max_vals[1])[:4]+')|' if top>2: term+= column_header[list(row).index(max_vals[2])] term+= '('+str(max_vals[2])[:4]+')|' if top>3: term+= column_header[list(row).index(max_vals[3])] term+= '('+str(max_vals[3])[:4]+')|' if top>4: term+= column_header[list(row).index(max_vals[4])] term+= '('+str(max_vals[4])[:4]+')|' if top>5: term+= column_header[list(row).index(max_vals[5])] term+= '('+str(max_vals[5])[:4]+')|' if top>6: term+= column_header[list(row).index(max_vals[6])] term+= '('+str(max_vals[6])[:4]+')|' if top>7: term+= column_header[list(row).index(max_vals[7])] term+= '('+str(max_vals[7])[:4]+')|' if top>8: term+= column_header[list(row).index(max_vals[8])] term+= '('+str(max_vals[8])[:4]+')|' if top>9: term+= column_header[list(row).index(max_vals[9])] term+= '('+str(max_vals[9])[:4]+')|' if top>10: term+= column_header[list(row).index(max_vals[10])] term+= '('+str(max_vals[10])[:4]+')|' #print comparison, term export_object.write(comparison+'\t'+term+'\n') x+=1 export_object.close() def orderHeatmapByMarkerFinderOrder(clustered_file): output_file = clustered_file[:-4]+'_MarkerFinderOrdered.txt' export_object = export.ExportFile(output_file) firstLine = True geneOrder=[] arrayOrder={} for line in open(input_file,'rU').xreadlines(): data = line[:-1] values = string.split(data,'\t') if firstLine: headers = values[1:] for i in headers: group,sample = string.split(i,':') try: arrayOrder[group].append(i) except Exception: arrayOrder[group] = [i] firstLine = False else: gene = values[0] def exportSorted(filename, sort_col, excludeHeader=True): ### efficient method to sort a big file without storing everything in memory ### http://stackoverflow.com/questions/7079473/sorting-large-text-data ouput_file = filename[:-4]+'-sorted' ### temporary index = [] f = open(filename) firstLine = True while True: offset = f.tell() line = f.readline() if not line: break length = len(line) col = line.split('\t')[sort_col].strip() if firstLine: header = line firstLine = False if excludeHeader == False: index.append((col, offset, length)) else: index.append((col, offset, length)) f.close() index.sort() o = open(ouput_file,'w') f = open(filename) if excludeHeader: o.write(header) for col, offset, length in index: #print col, offset, length f.seek(offset) o.write(f.read(length)) o.close() try: ### Error occurs when the file can't be deleted due to system permissions os.remove(filename) os.rename(ouput_file,filename) return filename except Exception: return ouput_file def importJunctionPositions(species,array_type): ### Look up the junction coordinates for the region if array_type == 'RNASeq': probesets = 'junctions' else: probesets = 'probesets' filename = 'AltDatabase/'+species+'/'+array_type+'/'+species+'_Ensembl_'+probesets+'.txt' fn=filepath(filename) region_db = {} firstRow=True for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if firstRow: firstRow = False else: probeset = t[0] gene = t[2] chr = t[4] if '|' in t[13]: region1 = string.split(t[13],'|')[1] region2 = string.split(t[14],'|')[0] junction_coord = region1+'-'+region2 region_db[probeset] = junction_coord region_db[junction_coord] = gene+':'+t[12],chr ### Junction region for this version of Ensembl return region_db def convertArrayReciprocalJunctionToCoordinates(species,array_type,dir_path,start_version,end_version): """ Script for taking junction array defined ASPIRE or LinearRegression junction pairs, extracting the region coordinates and exporting those coordinates with end_version EnsMart block and region IDs""" UI.exportDBversion(start_version) ### Database EnsMart version region_db = importJunctionPositions(species,array_type) comparison_db={} dir_list = UI.read_directory(dir_path) for filename in dir_list: if '.txt' in filename: comparsion = string.split(filename,'.')[0] proceed = False if ('ASPIRE' in filename or 'egress' in filename) and ('GENE' not in filename and 'inclusion' in filename): proceed = True ### Need to create a special analysis just for reciprocal junctions if proceed: ### Don't include splicing-index results for RNA-Seq comparison_db[comparsion] = {} fn=filepath(dir_path+'/'+filename) x=0 for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: p1 = t.index('probeset1') p2 = t.index('probeset2') reg_call = t.index('regulation_call') e1 = t.index('exons1') x=1 else: if '-' in t[e1]: jc1 = region_db[t[p1]] jc2 = region_db[t[p2]] chr = region_db[jc1][1] db = comparison_db[comparsion] db[jc1,jc2] = t[reg_call],chr UI.exportDBversion(end_version) ### Database EnsMart version converted_comparison_db = {} region_db2 = importJunctionPositions(species,'RNASeq') eo = export.ExportFile(dir_path+'/converted_junction_events.txt') succeed=0; fail=0 for comparison in comparison_db: for (j1,j2) in comparison_db[comparison]: reg_call,chr = comparison_db[comparison][(j1,j2)] if j1 in region_db2 and j2 in region_db2: junction1_id,chr = region_db2[j1] junction2_id,chr = region_db2[j2] #print junction1_id, junction2_id, j1,j2, comparison;sys.exit() else: junction1_id='' junction2_id='' j1=chr+':'+j1 j2=chr+':'+j2 values = string.join([comparison,j1,j2,junction1_id,junction2_id,reg_call],'\t')+'\n' eo.write(values) eo.close() def convertPSIJunctionIDsToPositions(psi_file,regulated_file): """ Links up PSI genomic positions with IDs in a significantly differentially regulated PSI results file """ fn=filepath(psi_file) x=0 coord_db = {} for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') if x==0: symbol = t.index('Symbol') minor = t.index('Examined-Junction') major = t.index('Background-Major-Junction') coord = t.index('Coordinates') x=1 else: uid = t[symbol]+':'+t[minor]+'|'+t[major] coordinates = t[coord] coord_db[uid] = coordinates dir_path = export.findParentDir(regulated_file) comparison = export.findFilename(regulated_file) eo = export.ExportFile(dir_path+'/coordinate_PSI_events.txt') fn=filepath(regulated_file) for line in open(fn,'rU').xreadlines(): data = cleanUpLine(line) t = string.split(data,'\t') event = t[0] event = string.replace(event,'@',':') event = string.replace(event,'&',':') event = string.replace(event,'__','|') regulation = t[1] if event in coord_db: coordinates = coord_db[event] values = string.join([comparison,event,coordinates,regulation],'\t')+'\n' eo.write(values) eo.close() if __name__ == '__main__': #predictSplicingEventTypes('ENSG00000123352:E15.4-E16.1','ENSG00000123352:E15.3-E16.1');sys.exit() test=False if test: directory = '/Volumes/SEQ-DATA/AML_junction/AltResults/AlternativeOutput/' dir_list = read_directory(directory) for file in dir_list: if 'PSI-clust' in file: filename = meanCenterPSI(directory+'/'+file) #filterJunctionExpression(filename,minPercentPresent=0.75) #exportHeatmap('/Volumes/My Passport/AML-LAML/LAML1/AltResults/AlternativeOutput/Hs_RNASeq_top_alt_junctions-PSI-clust-filt.txt',color_gradient='yellow_black_blue',columnMethod='hopach') #sys.exit() #convertPSIJunctionIDsToPositions('/Volumes/SEQ-DATA/Grimeslab/TopHat/AltResults/AlternativeOutput/Mm_RNASeq_top_alt_junctions-PSI.txt','/Users/saljh8/Documents/1-dataAnalysis/SplicingFactors/Grimes-MarkerFinder-v2.txt.txt') #convertArrayReciprocalJunctionToCoordinates('Hs','junction','/Volumes/Time Machine Backups/dataAnalysis/SplicingFactor/Hs/hglue/Marto/AltResults/AlternativeOutput','EnsMart65','EnsMart72') #sys.exit() fold = 2 pval = 0.05 ptype = 'rawp' species = 'Hs' analysis = 'goelite' array_type = "3'array" norm = 'RPKM' graphic_links=[] additional = None use_downregulated_labels=True excludeGenes = None expression_data_format = 'non-log' expression_data_format = 'log' var = None ################ Comand-line arguments ################ import getopt if len(sys.argv[1:])<=1: ### Indicates that there are insufficient number of command-line arguments print "Warning! Please designate a tab-delimited input expression file in the command-line" print "Example: python ExpressionBuilder.py --i '/Users/me/GSEXXX/ExpressionOutput' --p 0.05 --f 1.5 --ptype rawp --analysis summary --direction up --platform RNASeq" sys.exit() #Building GO-Elite inputs and running GO-Elite in batch #python ExpressionBuilder.py --i /Users/saljh8/Desktop/C4-hESC/ExpressionOutput --p 0.05 --f 2 --ptype adjp --analysis goelite --direction down --platform gene --species Hs --additional goelite #Generating signatures #python ExpressionBuilder.py --i /Users/saljh8/Desktop/C4-hESC/GO-Elite/upregulated/ --analysis signature --inputSource Ensembl --outputSource EntrezGene #Filtering expression datasets #python ExpressionBuilder.py --i /Users/saljh8/Desktop/C4-hESC/ExpressionOutput --analysis filter else: options, remainder = getopt.getopt(sys.argv[1:],'', ['i=','o=','f=','p=','a=','platform=', 'ptype=','analysis=','species=','direction=', 'inputSource=','outputSource=', 'additional=', 'excludeGenes=','var=']) #print sys.argv[1:] for opt, arg in options: if opt == '--i': directory=arg elif opt == '--o': output_file=arg elif opt == '--f': fold=float(arg) elif opt == '--p': pval=float(arg) elif opt == '--ptype': ptype=arg elif opt == '--analysis' or opt == '--a': analysis=arg elif opt == '--species': species=arg elif opt == '--platform': array_type=arg elif opt == '--inputSource': input_source=arg elif opt == '--outputSource': output_source=arg elif opt == '--additional': additional=arg elif opt == '--excludeGenes': excludeGenes=arg ### File location for text file with genes to exclude elif opt == '--var': var=arg elif opt == '--direction': if 'own' in arg: use_downregulated_labels = True else: use_downregulated_labels = False else: print "Warning! Command-line argument: %s not recognized. Exiting..." % opt; sys.exit() ### Allow for import of genes to exclude (e.g., sex-associated or pseudogenes) try: genesToExclude = excludeGenesImport(excludeGenes) except Exception: genesToExclude = {} print analysis if array_type == 'RNASeq': gene_exp_threshold = 50 gene_rpkm_threshold = 3 if analysis == 'matchAndCorrelate': matchAndCorrelate(directory, var, output_source, additional) if analysis == 'returnRowHeaderForMaxEntry': ### Used primarily for combining LineageProfiler z-scores to report the top categories across compendiums try: returnRowHeaderForMaxEntry(directory,int(var)) except Exception: pass if analysis == 'featureCorrelate': try: output_file = output_file except Exception: output_file=directory featureCorrelate(species,directory,additional,output_file,var) if analysis == 'MarkerFinderOrder': ### Used for combining the all gene MarkerFinder ordered results with already clustered results (e.g., significant gene) ### to return significantly differentially expressed genes (expressed sufficiently) and cluster samples within classes ### but order by MarkerFinder correlations and groups orderHeatmapByMarkerFinderOrder(directory) if analysis == 'unbiased': #python ExpressionBuilder.py --species Hs --platform RNASeq --i "/Volumes/My Passport/salomonis2/SRP042161_GBM-single-cell/bams/" --a unbiased --additional "/Volumes/My Passport/salomonis2/SRP042161_GBM-single-cell/bams/ExpressionInput/counts.GBM_scRNA-Seq.txt" import RNASeq #export_dir = '/Volumes/SEQ-DATA/Grimes/14018_gmp-pro/Lattice/Full/AltResults/Unbiased/DataPlots/Clustering-myeloblast-hierarchical_euclidean_euclidean.txt' #export_dir = '/Volumes/SEQ-DATA/SingleCell-Churko/AltResults/Unbiased/DataPlots/Clustering-CM-hierarchical_euclidean_euclidean.txt' #calculateNormalizedIntensities(directory, species, array_type, analysis_type = 'raw', expFile = additional) var = unbiasedComparisonSpliceProfiles(directory,species,array_type,expFile=additional,min_events=0,med_events=0) #export_dir, exported_IDs = var #print export_dir #RNASeq.correlateClusteredGenes(export_dir) if analysis == 'highest-expressing': getHighestExpressingGenes(directory,output_file,float(var)) if analysis == 'lncRNA': lncRNANeighborCorrelationAnalysis(directory) if analysis == 'NI': calculateNormalizedIntensities(directory,species,array_type) if analysis == 'AltExonConfirmed': ### Grab the alternative exons in the AltExonConfirmed GO-Elite folder, combine them and filter the splicing-index raw table input_dir = directory+'/AltExonConfirmed/' cluster_file, rows_in_file = buildAltExonClusterInputs(input_dir,species,array_type,dataType='AltExonConfirmed') if rows_in_file < 7000: exportHeatmap(cluster_file,size=rows_in_file) if analysis == 'goelite' or analysis == 'summary': #python ExpressionBuilder.py --f 2 --p 0.05 --ptype adjp --analysis summary --i /inputs buildCriterion(fold, pval, ptype, directory+'/',analysis,UseDownRegulatedLabel=use_downregulated_labels,genesToExclude=genesToExclude) if additional == 'goelite': import multiprocessing as mlp runGOElite(species,directory) if analysis == 'filter': filterDatasetFile(directory+'/') if analysis == 'signature': import gene_associations directory+='/'; gene_conversion_db={} dir_list = read_directory(directory) for file in dir_list: filename = directory+'/'+file db,input_data_db = gene_associations.IDconverter(filename, species, input_source, output_source,analysis=analysis) gene_conversion_db[file] = db,input_data_db exportSignatures(gene_conversion_db,directory,species) if analysis == 'QC': graphic_links = visualizeQCPlots(directory) elif analysis == 'LineageProfiler': graphic_links = performLineageProfiler(directory,graphic_links)
dea0ba39768a7c8ede0d9bf90e3b3f51c7138806
9c50f57a9cb32b44e86a0cdcbf61ead34754b085
/杂物间/python基础/day06/作业九.py
0b2ba089221b23677327707278422873cfa7b562
[]
no_license
a1403893559/rg201python
c3f115011981393c86a0150e5281096651712ad4
448f04c86e4c7fd30e3a2a4f9121b934ae1d49be
refs/heads/master
2020-03-15T23:32:17.723403
2018-03-18T12:59:43
2018-03-18T12:59:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
# 题目要求是 使用字典 存储熟人信息 其实呢 就是名片 shu_ren = {'name':'李文浩','age':'18','city':'山西煤窑'} for key,value in shu_ren.items(): print('%s:%s'%(key,value))
377cdbfbe4bc9e17cc34e3664bff5057689407cd
4ae7cdc9292009398a292bdf6bee61428559fdfd
/SourceCodeTools/code/data/sourcetrail/nodes_of_interest_from_dataset.py
d9e69bccbc79dc112cfbe4294211e25a29fc1878
[]
no_license
VitalyRomanov/method-embedding
52a4e6e7bf726b4db0872902a0eaf1d8cb82b4a8
1c8f0fc04eb1f495555272d9747fd2fea68525e1
refs/heads/master
2023-08-31T17:39:04.051912
2023-01-08T05:02:52
2023-01-08T05:02:52
219,153,628
5
7
null
2023-07-22T20:27:20
2019-11-02T12:54:12
Python
UTF-8
Python
false
false
707
py
import json def get_node_ids_from_dataset(dataset_path): node_ids = [] with open(dataset_path, "r") as dataset: for line in dataset: entry = json.loads(line) for _, _, id_ in entry["replacements"]: node_ids.append(int(id_)) return node_ids def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("dataset") parser.add_argument("output") args = parser.parse_args() node_ids = get_node_ids_from_dataset(args.dataset) with open(args.output, "w") as sink: sink.write("node_id\n") for id_ in node_ids: sink.write(f"{id_}\n") if __name__ == "__main__": main()
7351ff746480493141320d2010c33f6f1d6936d8
61b9e597f0bd27ee7ec86188b7e10518ee30425c
/tests/run_cache_experiments.py
cc4d49b11eb3b1381b7a355b51f7b474a639d114
[]
no_license
sirrice/dbwipes_src
eeb369d09ba28cb1ab3ffa70551c2b253dd39cb3
4d42b7d51af190b21679f38150f85dec1496d78c
refs/heads/master
2021-01-21T12:36:22.888835
2014-04-23T20:53:16
2014-04-23T20:53:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,696
py
import os from sqlalchemy import * from common import * def print_clusters(sub, dim, clusters=[], tuples=[], title=''): xattr = 'a_%d' % dim yattr = 'a_%d' % (dim+1) for cluster in clusters: bbox = tuple(map(list, zip(*cluster.bbox))) # we want bounds for attrs a_dim, a_dim+1, but bbox cols # may not be ordered as we like if xattr in cluster.cols: xidx = cluster.cols.index(xattr) x = bbox[xidx] x[0] = max(0, x[0]) x[1] = min(100, x[1]) else: x = [0, 100] if yattr in cluster.cols: yidx = cluster.cols.index(yattr) y = bbox[yidx] y[0] = max(0, y[0]) y[1] = min(100, y[1]) else: y = [0, 100] c = cm.jet(cluster.error) r = Rect((x[0], y[0]), x[1]-x[0], y[1]-y[0], alpha=min(1., max(0.2,cluster.error)), ec=c, fill=False, lw=1.5) sub.add_patch(r) if tuples: cols = zip(*tuples) xs, ys, cs = cols[dim], cols[dim+1], cols[-2] cs = np.array(cs) / 100. sub.scatter(xs, ys, c=cs, alpha=0.5, lw=0) sub.set_ylim(-5, 105) sub.set_xlim(-5, 105) sub.set_title(title) def print_all_clusters(pp, db, tablename, learner, c): try: all_clusters = [cluster.clone() for cluster in learner.all_clusters] all_clusters = normalize_cluster_errors(all_clusters) clusters = [cluster.clone() for cluster in learner.final_clusters] clusters = normalize_cluster_errors(clusters) best_clusters = sorted(clusters, key=lambda c: c.error, reverse=True) best_clusters = best_clusters[:2] best_clusters[0].error = 1 tuples = get_tuples_in_bounds(db, tablename, [], 'g = 7') for cl in clusters: print str(cl), cl.c_range for dim in xrange(len(tuples[0])-4): suffix = "%.4f dim %d" % (c, dim) fig = plt.figure(figsize=(12, 4)) print_clusters(fig.add_subplot(1, 3, 1), dim, all_clusters, tuples=tuples,title="merged %s" % suffix) print_clusters(fig.add_subplot(1, 3, 2), dim, clusters, tuples=tuples,title="merged %s" % suffix) print_clusters(fig.add_subplot(1, 3, 3), dim, best_clusters, tuples=tuples, title="best %s" % suffix) plt.savefig(pp, format='pdf') except Exception as e: import traceback traceback.print_exc() pdb.set_trace() pass def run(pp, cutoff, **params): dataset = params['dataset'] test_datas = get_test_data(datasetnames[dataset]) tablename = test_datas[-1] dbname = test_datas[0] db = create_engine('postgresql://localhost/%s' % dbname) costs, rules, all_ids, table_size, learner = run_experiment(dataset, **params) cost = costs['cost_total'] ft = learner.full_table print len(ft) truth = [int(row['id'].value) for row in ft if row['v'] >= cutoff] all_stats = [compute_stats(ids, truth, table_size) for ids in all_ids] stats, rule, ids = tuple(zip(all_stats, rules, all_ids)[0]) data = tuple([tablename,params['c'],cost]+list(stats)) print "stats:%s,c(%.3f),cost(%.2f),%.6f,%.6f,%.6f,%.6f" % data print 'stats:%s'% str(sdrule_to_clauses(rule.simplify())[0]) print_all_clusters(pp, db, tablename, learner, params['c']) return costs def warmup(dim, cutoff, **kwargs): dataset = "data_%d_%d_1000_0d50_%duo" % (dim, dim, cutoff) params = { 'klass':BDT, 'nbadresults' : 10, 'epsilon':0.005, 'tau':[0.1, 0.5], 'p' : 0.7, 'l':.5, 'min_pts' : 10, 'min_improvement':.01, 'granularity':15, 'max_wait':1, 'naive':False, 'use_mtuples':False, 'use_cache': False } params.update(kwargs) ft, bts, gts, truth, aggerr, cols = get_parameters(dataset, **params) params.update({ 'aggerr' : aggerr, 'cols' : cols, 'tablename' : dataset, 'dataset' : dataset }) learner = BDT(**params) learner.setup_tables(ft, bts, gts, **params) learner.get_partitions(ft, bts, gts, **params) def run_cache(dim, cutoff, cs, **kwargs): dataset = kwargs.get('dataset', "data_%d_%d_1000_0d50_%duo" % (dim, dim, cutoff)) params = { 'klass':BDT, 'nbadresults' : 10, 'epsilon':0.005, 'tau':[0.1, 0.5], 'p' : 0.7, 'l':.5, 'min_pts' : 10, 'min_improvement':.01, 'granularity':15, 'max_wait':20, 'naive':False, 'use_mtuples':False, 'use_cache': False, dataset: dataset } params.update(kwargs) pp = PdfPages('figs/topdown_all_%s.pdf' % str(dataset)) cost_dicts = [] for c in cs: params['c'] = c cost_dict = run(pp, cutoff, **params) cost_dicts.append(cost_dict) pp.close() return cost_dicts def reset_cache(): try: os.system('rm dbwipes*.cache') except: pass if __name__ == '__main__': np.seterr(all='raise') if len(sys.argv) < 4: print "python run_cache_experiments.py [dimensions] [30|80] [cache? 0|1] [list of cs values]" print "cs values defaults to [.5, .4, .3, .2, .1, .05, 0]" sys.exit() dim = int(sys.argv[1]) uo = int(sys.argv[2]) cache = bool(int(sys.argv[3])) cs = map(float, sys.argv[4:]) if not cs: cs = [.5, .4, .3, .2, .1, 0.05, 0.0] #reset_cache() #cachecost_dicts = run_cache(dim, uo, cs, l=0.95, tree_alg='rt', klass=NDT, use_cache=cache, tau= [0.1, 0.5]) cachecost_dicts = run_cache(dim, uo, cs, l=0.85, tree_alg='rt', klass=BDT, epsilon=0.001, use_cache=cache, tau= [0.02, 0.5], c_range=[0.01, 0.7], dataset='data2clust_2_2_2k_vol20_uo80') print "c,total,partbad,partgood,split,merge,cache" for c, cd in zip(cs, cachecost_dicts): print "%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%d" % ( c, cd.get('cost_total', -1), cd.get('cost_partition_bad', -1), cd.get('cost_partition_good', -1), cd.get('cost_split', -1), cd.get('cost_merge', -1), cache )
44a318abdeab78a4e1fc6de40b655367ad1b4e90
d30aba490a9527e7fc1f31e178b5f1c3067ae84d
/build/combined_robot_hw_tests/catkin_generated/pkg.develspace.context.pc.py
13c2aeff20a5c6b70551c5306392f462066cbd7e
[]
no_license
weetinygit/tart
130845b9c0e7b01d0a5a5177b056c85495e4e5cc
339344cb9ef0561655f73f4609f340974113785a
refs/heads/master
2021-09-13T07:38:39.706301
2018-04-26T21:18:19
2018-04-26T21:18:19
111,699,891
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/weety/tart5/src/roscontrol/src/ros_control/combined_robot_hw_tests/include".split(';') if "/home/weety/tart5/src/roscontrol/src/ros_control/combined_robot_hw_tests/include" != "" else [] PROJECT_CATKIN_DEPENDS = "combined_robot_hw;hardware_interface;roscpp".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lcombined_robot_hw_tests".split(';') if "-lcombined_robot_hw_tests" != "" else [] PROJECT_NAME = "combined_robot_hw_tests" PROJECT_SPACE_DIR = "/home/weety/tart5/devel/.private/combined_robot_hw_tests" PROJECT_VERSION = "0.12.0"
145d8b4115c4d955272564fad60a095f75f40fab
4a4cc797f9a46a2c09075abfc2033c480eaa5486
/mini-programs/week_2/lectures/lecture_1_logical_data_type, conditional_operator_and_cycles.py
25f6b5cd500aa4069b3494dd7ee0525bd4c0d4d9
[]
no_license
h1mik/python_programs
efa806eb9803c3e50aee845d5e0be9560d65f2be
33e169ef33f70bc94cd535ecf44e852ae58c7a64
refs/heads/main
2023-02-04T14:45:04.855119
2020-12-26T09:25:22
2020-12-26T09:25:22
309,483,948
0
0
null
null
null
null
UTF-8
Python
false
false
333
py
# True and False | # (==) - равно | (> ) - больше # (!=) - не равно | (<=) - меньше равно # (<) - меньше | (>=) - больше равно # (and or) - бинарные | (not) - унарная x = 4 y = 6 print(x < y) st1 = "Books" st2 = "Alpha" print(not st1 > st2)
95591f4a5fbda649b1639552fefac75304660451
917a690cad8fece9102ba3191284f1ab83a8aeaf
/pypubmed/util/__init__.py
19406ff5499cccc2d0e8abe969aa2ba74bd4aff0
[ "MIT" ]
permissive
wisRen/pypubmed
1751f429e38f4fd58d058584d36e7a4031c02660
6dd1b6ee7e8c7cf2a10885ed7662a4e2d16fa8e4
refs/heads/master
2023-06-21T05:10:47.579755
2021-08-11T06:01:05
2021-08-11T06:01:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
import os def safe_open(filename, mode='r'): if 'w' in mode: dirname = os.path.dirname(filename) if dirname and not os.path.exists(dirname): os.makedirs(dirname) if filename.endswith('.gz'): import gzip return gzip.open(filename, mode=mode) return open(filename, mode=mode)
d5017384859880726a5577c4f806d918eefbdd79
d85163b314c220e88e99426ab4e10f031423aeb2
/qc/outremont/districts/definition.py
3c55d715faa90a28b9fc8ce3ea1aa64642c9bdbf
[]
no_license
opennorth-archive/represent-canada-data
dc3e98d4f24ce877ec2dfc9e40675e561912c45f
f1792a724f0a58d596e3376c71b6b3e64f7887b0
refs/heads/master
2021-01-22T05:10:00.952023
2014-04-04T19:51:40
2014-04-04T19:52:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
780
py
# coding: utf-8 from datetime import date import boundaries boundaries.register(u'Outremont districts', domain=u'Outremont, Montréal, QC', last_updated=date(2013, 10, 16), name_func=lambda f: re.sub(u'–', u'—', f.get('NOM_DISTRI')), # control character, m-dash authority=u'Ville de Montréal', source_url='http://donnees.ville.montreal.qc.ca/dataset/elections-2013-districts-electoraux', licence_url='http://donnees.ville.montreal.qc.ca/licence/licence-texte-complet/', data_url='http://donnees.ville.montreal.qc.ca/storage/f/2013-10-16T14%3A16%3A09.092Z/districtelect.zip', encoding='iso-8859-1', metadata={'ocd_division': u'ocd-division/country:ca/csd:2466023/borough:outremont'}, ogr2ogr=u'''-where "ARRONDISSE='Outremont'"''', )
e8cf91c8b80954559fa3dac1a1efd4984b760cfd
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/0/ff.py
b2e3773abd97fdc0bf3b121877f4920e49a23b1d
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
485
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'FF': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
4245cd1c1914d5cde8d48f77bc3b37941ee4b174
0eb0cc67c11baec9caf82b61f161c091c7043364
/api_book/wsgi.py
d6be60053dfb1ff1084624d501fbd456288cf37a
[]
no_license
juniorcarvalho/work-at-olist
dd648fceaed5e0f8b165ac1279cfb1ae1ccae0a5
fc59143c8d295da50aa42b312aa28ce1202ec890
refs/heads/master
2022-07-17T23:54:29.071100
2020-05-19T22:40:11
2020-05-19T22:40:11
264,524,765
0
0
null
2020-05-16T20:49:54
2020-05-16T20:49:54
null
UTF-8
Python
false
false
428
py
""" WSGI config for api_book project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from dj_static import Cling from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'api_book.settings') application = Cling(get_wsgi_application())
dd071b116f01cd5df223b91b2af30535c163e630
7d17161a77ad04ea1de1dabe84619b6c4fffe2ad
/test/python/circuit/library/test_piecewise_chebyshev.py
14660435d445ca3a3e2114e685177d21bf94b665
[ "Apache-2.0" ]
permissive
annos-IBM/qiskit-terra
5e3b93a089a6e00c9279bf82735d78b497e92023
78ece7ad9baba64395eea98c45fb83a30b04c835
refs/heads/main
2023-05-28T20:42:19.805833
2021-06-09T03:47:48
2021-06-09T03:47:48
375,329,407
1
0
Apache-2.0
2021-06-09T11:22:14
2021-06-09T11:22:14
null
UTF-8
Python
false
false
4,954
py
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the piecewise Chebyshev approximation.""" import unittest from collections import defaultdict import numpy as np from ddt import ddt, data, unpack from qiskit.test.base import QiskitTestCase from qiskit import BasicAer, execute from qiskit.circuit import QuantumCircuit from qiskit.circuit.library.arithmetic.piecewise_chebyshev import PiecewiseChebyshev @ddt class TestPiecewiseChebyshev(QiskitTestCase): """Test the piecewise Chebyshev approximation.""" def assertFunctionIsCorrect(self, function_circuit, reference): """Assert that ``function_circuit`` implements the reference function ``reference``.""" function_circuit._build() num_state_qubits = function_circuit.num_state_qubits num_ancilla_qubits = function_circuit.num_ancillas circuit = QuantumCircuit(num_state_qubits + 1 + num_ancilla_qubits) circuit.h(list(range(num_state_qubits))) circuit.append(function_circuit.to_instruction(), list(range(circuit.num_qubits))) backend = BasicAer.get_backend("statevector_simulator") statevector = execute(circuit, backend).result().get_statevector() probabilities = defaultdict(float) for i, statevector_amplitude in enumerate(statevector): i = bin(i)[2:].zfill(circuit.num_qubits)[num_ancilla_qubits:] probabilities[i] += np.real(np.abs(statevector_amplitude) ** 2) unrolled_probabilities = [] unrolled_expectations = [] for i, probability in probabilities.items(): x, last_qubit = int(i[1:], 2), i[0] if last_qubit == "0": expected_amplitude = np.cos(reference(x)) / np.sqrt(2 ** num_state_qubits) else: expected_amplitude = np.sin(reference(x)) / np.sqrt(2 ** num_state_qubits) unrolled_probabilities += [probability] unrolled_expectations += [np.real(np.abs(expected_amplitude) ** 2)] np.testing.assert_array_almost_equal( unrolled_probabilities, unrolled_expectations, decimal=3 ) @data((lambda x: np.arcsin(1 / x), 2, [2, 4], 2), (lambda x: x / 8, 1, [1, 8], 3)) @unpack def test_piecewise_chebyshev(self, f_x, degree, breakpoints, num_state_qubits): """Test the piecewise Chebyshev approximation.""" def pw_poly(x): if breakpoints[0] <= x < breakpoints[-1]: return f_x(x) return np.arcsin(1) pw_approximation = PiecewiseChebyshev(f_x, degree, breakpoints, num_state_qubits) self.assertFunctionIsCorrect(pw_approximation, pw_poly) def test_piecewise_chebyshev_mutability(self): """Test the mutability of the piecewise Chebyshev approximation.""" def pw_poly(x, f_x): if breakpoints[0] <= x < breakpoints[-1]: return f_x(x) return np.arcsin(1) def f_x_1(x): return x / 2 pw_approximation = PiecewiseChebyshev(f_x_1) with self.subTest(msg="missing number of state qubits"): with self.assertRaises(AttributeError): # no state qubits set print(pw_approximation.draw()) with self.subTest(msg="default setup, just setting number of state qubits"): pw_approximation.num_state_qubits = 2 pw_approximation.f_x = f_x_1 # set to the default breakpoints for pw_poly breakpoints = [0, 4] pw_approximation.breakpoints = breakpoints self.assertFunctionIsCorrect(pw_approximation, lambda x: pw_poly(x, f_x_1)) def f_x_2(x): return x / 4 with self.subTest(msg="setting non-default values"): breakpoints = [0, 2] degree = 2 pw_approximation.breakpoints = breakpoints pw_approximation.degree = degree pw_approximation.f_x = f_x_2 self.assertFunctionIsCorrect(pw_approximation, lambda x: pw_poly(x, f_x_2)) def f_x_3(x): return x ** 2 with self.subTest(msg="changing all values"): pw_approximation.num_state_qubits = 4 breakpoints = [1, 3, 6] degree = 3 pw_approximation.breakpoints = breakpoints pw_approximation.degree = degree pw_approximation.f_x = f_x_3 self.assertFunctionIsCorrect(pw_approximation, lambda x: pw_poly(x, f_x_3)) if __name__ == "__main__": unittest.main()
b9fdfca21b63d92c178c7c1277d346717e9cdced
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/ADD/ADDmonoJet_MD_6_d_6_TuneCUETP8M1_13TeV_pythia8_cfi.py
85a31581696b8c9fa838b33ac1ac34c210e6a0db
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
1,923
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), pythiaHepMCVerbosity = cms.untracked.bool(False), comEnergy = cms.double(13000.0), maxEventsToPrint = cms.untracked.int32(1), PythiaParameters = cms.PSet( pythia8CommonSettings = cms.vstring('Tune:preferLHAPDF = 2', 'Main:timesAllowErrors = 10000', 'Check:epTolErr = 0.01', 'Beams:setProductionScalesFromLHEF = off', 'SLHA:keepSM = on', 'SLHA:minMassSM = 1000.', 'ParticleDecays:limitTau0 = on', 'ParticleDecays:tau0Max = 10', 'ParticleDecays:allowPhotonRadiation = on'), pythia8CUEP8M1Settings = cms.vstring('Tune:pp 14', 'Tune:ee 7', 'MultipartonInteractions:pT0Ref=2.4024', 'MultipartonInteractions:ecmPow=0.25208', 'MultipartonInteractions:expPow=1.6'), pythia8_unparticle = cms.vstring('ExtraDimensionsLED:monojet = on', 'ExtraDimensionsLED:CutOffmode = 1', 'ExtraDimensionsLED:t = 0.5', 'ExtraDimensionsLED:n = 6', 'ExtraDimensionsLED:MD = 6000.', '5000039:m0 = 1200.', '5000039:mWidth = 1000.', '5000039:mMin = 1.', '5000039:mMax = 13990.', 'PhaseSpace:pTHatMin = 80.', 'PartonLevel:ISR = on', 'PartonLevel:FSR = on', 'ParticleDecays:limitTau0 = on', 'ParticleDecays:tauMax = 10'), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'pythia8_unparticle') ) )
a75ec1360ca1390fde1fe469602935530bd811b1
f56cf80c0111a1317de73be229a943bdc18277ff
/SERVER/FETCHER/allcasereader.py
07f05bd01af0b19ddf8878aa289af30596e6d649
[]
no_license
EkiVox/SmartCopybookCase
2f3939b00d534adef18ca4da3d01273c2f534f42
9af47aea814fc29ef4b2ee797a35f10d20a22d49
refs/heads/master
2020-03-07T18:50:56.454545
2018-12-07T17:32:31
2018-12-07T17:32:31
127,653,429
0
0
null
null
null
null
UTF-8
Python
false
false
111
py
import os with open('ALL-NEW-IDS.list', 'r') as idsfile: print idsfile.read() os.remove('ALL-NEW-IDS.list')
1e44a07d05b4c0f1a1b0769e052174d81815a74d
466912406272829982f75854cf0104c6ce8c9814
/data/spider2/crawler/news/huxiu_news.py
5b912905b334e53e2d840ea03c67d087fd86fc6f
[]
no_license
logonmy/Codes
9631fa103fc499663361fa7eeccd7cedb9bb08e4
92723efdeccfc193f9ee5d0ab77203c254f34bc2
refs/heads/master
2021-09-21T18:07:22.985184
2018-08-30T05:53:26
2018-08-30T05:53:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,416
py
# -*- coding: utf-8 -*- import os, sys, datetime, re, json, time from lxml import html from pyquery import PyQuery as pq reload(sys) sys.setdefaultencoding("utf-8") sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '..')) import BaseCrawler sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '../../../util')) import loghelper,extract,db, util,url_helper,download, extractArticlePublishedDate sys.path.append(os.path.join(os.path.split(os.path.realpath(__file__))[0], '../../parser/util2')) import parser_mysql_util import parser_mongo_util #logger loghelper.init_logger("crawler_huxiu_news", stream=True) logger = loghelper.get_logger("crawler_huxiu_news") NEWSSOURCE = "Huxiu" RETRY = 3 TYPE = 60001 SOURCE =13823 URLS = [] CURRENT_PAGE = 1 linkPattern = "/article/\d+.html" Nocontents = [ ] columns = [ {"column": None, "max": 4}, ] class ListCrawler(BaseCrawler.BaseCrawler): def __init__(self, timeout=30): BaseCrawler.BaseCrawler.__init__(self, timeout=timeout) def is_crawl_success(self, url, content): if content is not None: try: j = json.loads(content) # logger.info(j) except: return False if j.has_key("msg") is True and j["msg"] == "获取成功": return True return False class NewsCrawler(BaseCrawler.BaseCrawler): def __init__(self, timeout=20): BaseCrawler.BaseCrawler.__init__(self, timeout=timeout) #实现 def is_crawl_success(self,url,content): d = pq(html.fromstring(content.decode("utf-8"))) title = d('head> title').text().strip() logger.info("title: %s url: %s", title, url) if title.find("虎嗅网") >= 0: return True return False def has_news_content(content): d = pq(html.fromstring(content.decode("utf-8"))) title = d('head> title').text().strip() temp = title.split("-") if len(temp) < 2: return False if temp[0].strip() == "": return False return True def process_news(column, newsurl, content, newspost, download_crawler): if has_news_content(content): d = pq(html.fromstring(content.decode("utf-8"))) key = newsurl.split("/")[-1].strip().replace(".html","") type = TYPE category = None title = d('div.article-wrap> h1').text().strip() mongo = db.connect_mongo() collection_news = mongo.article.news if collection_news.find_one({"title": title}) is not None: mongo.close() return tags = [] articletags = d("meta[name='keywords']").attr("content") if articletags is not None: for tag in articletags.split(): if tag is not None and tag.strip() != "" and tag not in tags and tag != title: tags.append(tag) # post = d('div#post_thumbnail> img').attr("src") postraw = d('div.article-wrap> div.article-img-box> img').attr("src") # posturl = parser_mysql_util.get_logo_id(postraw, download_crawler, SOURCE, key, "news") (posturl, width, height) = parser_mysql_util.get_logo_id_new(postraw, download_crawler, SOURCE, key, "news") if posturl is not None: post = str(posturl) else: post = None brief = d("meta[name='description']").attr("content") post_time = d('div.article-author> div> span.article-time').text() logger.info(post_time) news_time = extract.extracttime(post_time) if news_time is None: news_time = datetime.datetime.now() article = d('div.article-wrap> div.article-content-wrap').html() contents = extract.extractContents(newsurl, article) logger.info("%s, %s, %s, %s -> %s, %s. %s", key, title, news_time, ":".join(tags), category, brief, post) # exit() # mongo = db.connect_mongo() # collection_news = mongo.article.news # if collection_news.find_one({"title": title}) is not None: # mongo.close() # return flag, domain = url_helper.get_domain(newsurl) dnews = { "date": news_time - datetime.timedelta(hours=8), "title": title, "link": newsurl, "createTime": datetime.datetime.now(), "source": SOURCE, "key": key, "key_int": int(key), "type": type, "original_tags": tags, "processStatus": 0, # "companyId": None, "companyIds": [], "category": category, "domain": domain, "categoryNames": [] } dcontents = [] rank = 1 for c in contents: if c["data"].find("查看原文")>=0 or c["data"].find("关注微信公众号虎嗅网")>=0 : break if c["type"] == "text": dc = { "rank": rank, "content": c["data"], "image": "", "image_src": "", } else: if download_crawler is None: dc = { "rank": rank, "content": "", "image": "", "image_src": c["data"], } else: (imgurl, width, height) = parser_mysql_util.get_logo_id_new(c["data"], download_crawler, SOURCE, key, "news") if imgurl is not None: dc = { "rank": rank, "content": "", "image": str(imgurl), "image_src": "", "height": int(height), "width": int(width) } else: continue logger.info(c["data"]) dcontents.append(dc) rank += 1 dnews["contents"] = dcontents if brief is None or brief.strip() == "": brief = util.get_brief_from_news(dcontents) if post is None or post.strip() == "": post = util.get_posterId_from_news(dcontents) if download_crawler is None: dnews["post"] = post else: dnews["postId"] = post dnews["brief"] = brief if news_time > datetime.datetime.now(): logger.info("Time: %s is not correct with current time", news_time) dnews["date"] = datetime.datetime.now() - datetime.timedelta(hours=8) # id = collection_news.insert(dnews) mongo.close() # logger.info("*************DONE************* %s", id) nid = parser_mongo_util.save_mongo_news(dnews) logger.info("Done: %s", nid) return def run_news(column, crawler, download_crawler): while True: if len(URLS) == 0: return URL = URLS.pop(0) crawler_news(column, crawler, URL["link"], URL["post"], download_crawler) def crawler_news(column, crawler, newsurl, newspost, download_crawler): maxretry = 0 while True: result = crawler.crawl(newsurl, agent=True) if result['get'] == 'success': #logger.info(result["redirect_url"]) try: process_news(column, newsurl, result['content'], newspost, download_crawler) except Exception,ex: logger.exception(ex) break if maxretry > 20: break maxretry += 1 def process(content, flag): try: j = json.loads(content) # logger.info(content) htmls = j["data"] except: htmls = content cnt = 0 if len(htmls) == 0 or htmls.find("div") == -1: return cnt d = pq(html.fromstring(htmls.decode("utf-8"))) for a in d('div.mod-b.mod-art> div.mob-ctt> h2> a'): try: link = d(a).attr("href").strip().replace("?f=retweeted","") # logger.info(link) if re.search(linkPattern, link): link = "https://www.huxiu.com" + link logger.info("Link: %s is right news link", link) # check mongo data if link is existed mongo = db.connect_mongo() collection_news = mongo.article.news item = collection_news.find_one({"link": link}) mongo.close() if (item is None or flag == "all") and link not in URLS: linkmap = { "link": link, "post": None } URLS.append(linkmap) else: # logger.info(link) pass except: logger.info("cannot get link") return len(URLS) def run(flag, column, listcrawler, newscrawler, concurrent_num, download_crawler): global CURRENT_PAGE cnt = 1 while True: key = CURRENT_PAGE if flag == "all": if key > column["max"]: return else: if cnt == 0 or key > column["max"]: return CURRENT_PAGE += 1 if key > 1: url = 'https://www.huxiu.com/v2_action/article_list?page=%s' % (key) else: url = 'https://www.huxiu.com/' while True: if key > 1: result = listcrawler.crawl(url,agent=True) else: result = newscrawler.crawl(url, agent=True) if result['get'] == 'success': try: cnt = process(result['content'], flag) if cnt > 0: logger.info("%s has %s fresh news", url, cnt) logger.info(URLS) # threads = [gevent.spawn(run_news, column, newscrawler, download_crawler) for i in xrange(concurrent_num)] # gevent.joinall(threads) run_news(column, newscrawler, download_crawler) # exit() except Exception,ex: logger.exception(ex) cnt = 0 break def start_run(concurrent_num, flag): global CURRENT_PAGE while True: logger.info("%s news %s start...", NEWSSOURCE, flag) listcrawler = ListCrawler() newscrawler = NewsCrawler() download_crawler = download.DownloadCrawler(use_proxy=False) # download_crawler = None for column in columns: CURRENT_PAGE = 1 run(flag, column, listcrawler, newscrawler, concurrent_num, download_crawler) logger.info("%s news %s end.", NEWSSOURCE, flag) if flag == "incr": time.sleep(60*8) #30 minutes else: return #gevent.sleep(86400*3) #3 days if __name__ == "__main__": if len(sys.argv) > 1: param = sys.argv[1] if param == "incr": start_run(1, "incr") elif param == "all": start_run(1, "all") else: link = param download_crawler = None crawler_news({}, NewsCrawler(), link, None, download_crawler) else: start_run(1, "incr")
7b45add26ddf9df79e85d7c7e09bc534253dae7d
a8139ccd50a27861d3c5a4168fd0e4b351c0a514
/material/code/advanced_oop_and_python_topics/4_ManagedAttributeDemo/test.py
9e8897b3d4a283a1395d9d8c0fe56f8a27ae63ef
[]
no_license
shambhand/pythontraining
a124aa1485c3ce0e589fc2cd93c1e991746432e4
24dd923e2b2c07c70500775e3665e2a527240329
refs/heads/master
2021-05-17T22:54:45.331127
2019-01-11T03:12:59
2019-01-11T03:12:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,433
py
class Person: def __init__(self, name): self._name = name @property # name = property(name) def name(self): "name property docs" print('fetch...') return self._name @name.setter # name = name.setter(name) def name(self, value): print('change...') self._name = value @name.deleter # name = name.deleter(name) def name(self): print('remove...') del self._name def main (): bob = Person('Bob Smith') # bob has a managed attribute print(bob.name) # Runs name getter (name 1) print ("addr(Person.name.getter):", hex(id((Person.name.getter)))) bob.name = 'Robert Smith' # Runs name setter (name 2) print ("addr(Person.name.setter):", hex(id((Person.name.setter)))) print(bob.name) del bob.name # Runs name deleter (name 3) print('-'*20) sue = Person('Sue Jones') # sue inherits property too print(sue.name) print(Person.name.__doc__) # Or help(Person.name) print ("type (Person.name):", type (Person.name)) print ("hex(id(Person.name)):", hex(id(Person.name))) print ("type (Person.name.getter):", type (Person.name.getter)) print ("type (Person.name.setter):", type (Person.name.setter)) print ("type (Person.name.deleter):", type (Person.name.deleter)) print ("addr(Person.name.getter):", hex(id((Person.name.getter)))) print ("addr (Person.name.setter):", hex(id((Person.name.setter)))) print ("addr (Person.name.deleter):", hex(id(Person.name.deleter))) main ()
6589281398355c7fc10996ec4525e0d770330e54
db57094349de63766daf70a2e6bdb06bf3af09cf
/Cap05_Tkinter/34_images.py
75d83162c1ff336bb175ae05bd17c0c8d302ff12
[]
no_license
frclasso/turma1_Python_Modulo2_2019
2f9e9aebc48c1c0b92b684ad92958bc557866cde
0b7f0fac0a1de4a2dbe4ff4fb2985fbfee89ed33
refs/heads/master
2020-04-17T19:36:07.545787
2019-06-10T15:29:10
2019-06-10T15:29:10
166,871,517
1
2
null
null
null
null
UTF-8
Python
false
false
310
py
from tkinter import * from PIL import Image from PIL import ImageTk window = Tk() window.title("Images and incons") icon = Image.open('python_logo.png') icon = icon.resize((300,200), Image.ANTIALIAS) photoImg = ImageTk.PhotoImage(icon) Label(window, image=photoImg).grid(row= 0, column=0) window.mainloop()
e7b77d6e6a2582abf034379240a03cf715d36e43
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2950/60632/240945.py
5249f2541bece3d84fdfdc430e8fde133e238884
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
58
py
s = input() if s.count('2') != x.count('5'): print(-1)
5878e977598eb5846f58ee444eb02ccef892e5d7
06cabd66791a5ee15bb3ba4b04d8bc8dea5bfda0
/Python modules/MakePdf_old.py
8203bd500d8b65d5bac2e798af6e0af5f18b62bc
[]
no_license
claiello/python_data_analysis
f7405dfd15f0dccd2089b1878af40b9d075071d2
0b8d3cc5717243e72214dc24a7fc823220e13179
refs/heads/master
2020-04-17T20:36:51.720891
2017-04-23T10:00:08
2017-04-23T10:00:08
66,181,455
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
# test from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt def multipage(filename, figs=None, dpi=200): pp = PdfPages(filename) if figs is None: figs = [plt.figure(n) for n in plt.get_fignums()] for fig in figs: #fig.set_size_inches(1000./fig.dpi,600./fig.dpi) fig.set_size_inches(1200./fig.dpi,900./fig.dpi) fig.savefig(pp, format='pdf') pp.close() #plt.figure(figsize=(8, 6), dpi=80) def multipage_longer(filename, figs=None, dpi=200): pp = PdfPages(filename) if figs is None: figs = [plt.figure(n) for n in plt.get_fignums()] for fig in figs: #fig.set_size_inches(1000./fig.dpi,600./fig.dpi) fig.set_size_inches(1600./fig.dpi,1200./fig.dpi) fig.savefig(pp, format='pdf') pp.close()
6d84e48bc8c4382eb95096d38f8ad9fcc2138698
c615384fbf8b10ce3cdefc008509454460def72f
/Topics/Integer arithmetic (1)/Calculate it/main.py
1a67cc55ecf79fed40206b72536f3ffc83392922
[]
no_license
ivanelisandro/PythonStudiesJobAgency
07e1981601c5314dc48239cc220db9849468b946
28f6ff4d1fc2592f4dd740e3aa68af0bac105f5d
refs/heads/main
2023-08-25T19:32:10.306188
2021-10-22T01:34:21
2021-10-22T01:34:21
391,798,794
0
0
null
null
null
null
UTF-8
Python
false
false
40
py
print((1234567890 * 987654321) + 67890)
5490923cd851a1f6025d71a2c24cadd7013227ab
28be2173e5590cc5b03119e9b83c57980e6a7e8a
/learnwithpeople/wsgi.py
70d79666fb99a92372c78e6ca89fa8357aaf18ee
[ "MIT" ]
permissive
EdgarOrnelas/learning-circles
cd164f123885ed2079b34ad394c9849b370563b9
293c849321d735aebbdcb6c65b7c92f751f9fd89
refs/heads/master
2021-01-21T20:56:35.429589
2017-06-16T09:20:46
2017-06-16T09:20:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
""" WSGI config for learnwithpeople project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "learnwithpeople.settings") from django.core.wsgi import get_wsgi_application from dj_static import Cling application = Cling(get_wsgi_application())
5646965b46d4371cc23d562b9c531b6bc8162ca7
a9fb692b89e1ea2cdadcb322c41c1513bb24e9c2
/src/climtas/profile.py
8e4f91f622d41d7f21465e048cc1126d10fbcf1b
[ "Apache-2.0" ]
permissive
ScottWales/climtas
a10039598093030391b339cceb2efc83912f198d
68ddf31a0ce0f7ceb0a0d3ca6156e07efe42d6ec
refs/heads/master
2022-09-15T02:44:22.059027
2022-08-26T05:26:43
2022-08-26T05:26:43
228,983,033
5
3
null
2022-08-26T05:26:44
2019-12-19T05:39:44
Jupyter Notebook
UTF-8
Python
false
false
11,029
py
#!/g/data/hh5/public/apps/nci_scripts/python-analysis3 # Copyright 2020 Scott Wales # author: Scott Wales <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Profiling dask data processing * :func:`benchmark` runs a function with different chunks, returning the time taken for each chunk setting * :func:`profile` runs a function with a single chunk setting, returning the time taken in different dask stages and chunk information Profile results =============== time_total Total time taken to process the data (seconds) time_open Time spent opening the dataset (seconds) time_function Time spent running the function (seconds) time_optimize Time spent optimizing the Dask graph (seconds) time_load Time spent computing the data with Dask (seconds) chunks Chunk shape nchunks_in Number of chunks in loaded data nchunks_out Number of chunks in function output chunksize_in Size of chunks in loaded data chunksize_out Size of chunks in function output tasks_in Dask graph size in loaded data tasks_out Dask graph size in function output tasks_optimized Dask graph size after optimizing function output """ from typing import Dict, Any, List import xarray import dask import time import pandas import numpy import typing as T import datetime import os import csv import subprocess import json from . import __version__ def benchmark( paths: str, variable: str, chunks: Dict[str, List[int]], function, run_count: int = 3, mfdataset_args: Dict[str, Any] = {}, ): """ Profile a function on different chunks of data Opens a dataset with :func:`xarray.open_mfdataset` with one of the chunk options, then runs function on variable >>> def func(da): ... return t2m.mean() >>> climtas.profile.benchmark( ... '/g/data/ub4/era5/netcdf/surface/t2m/2019/t2m_era5_global_20190101_*.nc', ... variable='t2m', ... function=func, ... chunks={'time':[93, 93], 'latitude': [91, 91], 'longitude': [180, 180*2]}) #doctest: +SKIP Args: paths: Paths to open (as :func:`xarray.open_mfdataset`) variable: Variable in the dataset to use chunks: Mapping of dimension name to a list of chunk sizes, one entry for each run function: Function that takes a :obj:`xarray.DataArray` (the variable) and returns a :obj:`xarray.DataArray` to test the performance of run_count: Number of times to run each profile (the minimum time is returned) mfdataset_args: Extra arguments to pass to :func:`xarray.open_mfdataset` Returns: :obj:`pandas.DataFrame` with information from :func:`profile` for each run """ results = [] for values in zip(*chunks.values()): cs = dict(zip(chunks.keys(), values)) results.append( profile(paths, variable, cs, function, run_count, mfdataset_args) ) r = pandas.DataFrame(results) return r def profile( paths: str, variable: str, chunks: Dict[str, int], function, run_count: int = 3, mfdataset_args: Dict[str, Any] = {}, ): """ Run a function run_count times, returning the minimum time taken >>> def func(da): ... return t2m.mean() >>> climtas.profile.profile( ... '/g/data/ub4/era5/netcdf/surface/t2m/2019/t2m_era5_global_20190101_*.nc', ... variable='t2m', ... function=func, ... chunks={'time':93, 'latitude': 91, 'longitude': 180}) #doctest: +SKIP {'time_total': 9.561158710159361, 'time_open': 0.014718276914209127, 'time_function': 0.0033595040440559387, 'time_optimize': 0.01087462529540062, 'time_load': 9.529402975924313, 'chunks': {'time': 93, 'latitude': 91, 'longitude': 180}, 'nchunks_in': 512, 'nchunks_out': 1, 'chunksize_in': '6.09 MB', 'chunksize_out': '4 B', 'tasks_in': 513, 'tasks_out': 1098, 'tasks_optimized': 1098} Args: paths: Paths to open (as :func:`xarray.open_mfdataset`) variable: Variable in the dataset to use chunks: Mapping of dimension name to chunk sizes function: Function that takes a :obj:`xarray.DataArray` (the variable) and returns a :obj:`dask.array.Array` to test the performance of run_count: Number of times to run each profile (the minimum time is returned) mfdataset_args: Extra arguments to pass to :func:`xarray.open_mfdataset` Returns: Dict[str, int] :ref:`profiling information<Profile results>` """ result = profile_once(paths, variable, chunks, function, mfdataset_args) for n in range(run_count - 1): r = profile_once(paths, variable, chunks, function, mfdataset_args) for k, v in r.items(): if k.startswith("time_") and v < result[k]: result[k] = v return result def profile_once( paths: str, variable: str, chunks: Dict[str, int], function, mfdataset_args: Dict[str, Any] = {}, ): """ Run a single profile instance >>> def func(da): ... return t2m.mean() >>> climtas.profile.profile_once( ... '/g/data/ub4/era5/netcdf/surface/t2m/2019/t2m_era5_global_20190101_*.nc', ... variable='t2m', ... function=func, ... chunks={'time':93, 'latitude': 91, 'longitude': 180}) #doctest: +SKIP {'time_total': 9.561158710159361, 'time_open': 0.014718276914209127, 'time_function': 0.0033595040440559387, 'time_optimize': 0.01087462529540062, 'time_load': 9.529402975924313, 'chunks': {'time': 93, 'latitude': 91, 'longitude': 180}, 'nchunks_in': 512, 'nchunks_out': 1, 'chunksize_in': '6.09 MB', 'chunksize_out': '4 B', 'tasks_in': 513, 'tasks_out': 1098, 'tasks_optimized': 1098} Args: paths: Paths to open (as :func:`xarray.open_mfdataset`) variable: Variable in the dataset to use chunks: Mapping of dimension name to chunk sizes function: Function that takes a :obj:`xarray.DataArray` (the variable) and returns a :obj:`dask.array.Array` to test the performance of run_count: Number of times to run each profile (the minimum time is returned) mfdataset_args: Extra arguments to pass to :func:`xarray.open_mfdataset` Returns: Dict[str, Any] :ref:`profiling information<Profile results>` """ results: Dict[str, Any] = {} total_start = time.perf_counter() open_start = time.perf_counter() with xarray.open_mfdataset(paths, chunks=chunks, **mfdataset_args) as data: open_end = time.perf_counter() var = data[variable] tasks_in = len(var.data.__dask_graph__()) chunks_in = var.data.npartitions chunksize_in = dask.utils.format_bytes( numpy.prod(var.data.chunksize) * var.dtype.itemsize ) func_start = time.perf_counter() r = function(var).data func_end = time.perf_counter() tasks = len(r.__dask_graph__()) chunksize = dask.utils.format_bytes(numpy.prod(r.chunksize) * r.dtype.itemsize) chunks_out = r.npartitions opt_start = time.perf_counter() opt = dask.optimize(r) opt_end = time.perf_counter() tasks_opt = len(r.__dask_graph__()) load_start = time.perf_counter() dask.compute(opt) load_end = time.perf_counter() total_end = time.perf_counter() results["time_total"] = total_end - total_start results["time_open"] = open_end - open_start results["time_function"] = func_end - func_start results["time_optimize"] = opt_end - opt_start results["time_load"] = load_end - load_start results["chunks"] = chunks results["nchunks_in"] = chunks_in results["nchunks_out"] = chunks_out results["chunksize_in"] = chunksize_in results["chunksize_out"] = chunksize results["tasks_in"] = tasks_in results["tasks_out"] = tasks results["tasks_optimized"] = tasks_opt return results class Timer: def __init__(self, name): self.starts = {} self.stops = {} self.chunks = {} self.client = None self.name = name self.total_start = time.perf_counter() self.excluded = 0 def mark(self, name: str) -> None: if name not in self.starts: self.starts[name] = time.perf_counter() else: self.stops[name] = time.perf_counter() print(name, self.stops[name] - self.starts[name]) def exclude(self, name: str) -> None: self.mark(name) if name in self.stops: self.excluded += self.stops[name] - self.starts[name] def times(self) -> T.Dict[str, float]: return {k: self.stops[k] - v for k, v in self.starts.items()} def record(self, file) -> None: total = time.perf_counter() - self.total_start - self.excluded result = { "name": self.name, "run_date": datetime.datetime.now(), "xarray_version": xarray.__version__, "climtas_version": __version__, "client_workers": len(self.client.cluster.workers), "worker_threads": self.client.cluster.workers[0].nthreads, "total": total, } result.update({"chunk_" + k: v for k, v in self.chunks.items()}) result.update(self.times()) result.update(self.pbs_info()) exists = os.path.exists(file) with open(file, "a") as f: writer = csv.DictWriter(f, list(result.keys())) if not exists: writer.writeheader() writer.writerow(result) def pbs_info(self): jobid = os.environ.get("PBS_JOBID", None) if jobid is None: return {"mem_request": None, "mem_used": None, "cpu_pct": None} uqstat = subprocess.run( ["/g/data/hh5/public/apps/nci_scripts/uqstat", "--format=json"], stdout=subprocess.PIPE, text=True, ) uqstat.check_returncode() j = json.loads(uqstat.stdout) job_info = j[jobid] return { "mem_request": job_info["mem_request"], "mem_used": job_info["mem_used"], "cpu_pct": job_info["cpu_pct"], "hostname": os.environ["HOSTNAME"], }
fd762726f5e677c8313ab0c32b7230cce74d9b04
2b4790d77439d89ad27bdd04bac539283f0dd605
/basic_ex/11-module.py
f30ced73ca20173a9af871afa196d9b7e56f467c
[]
no_license
ajioy/python-ex
9fde4bcfe35edeee5050365660a03bdb6b913da1
982a3cdf0de0e140faa4cb539f2961b311de2c2a
refs/heads/master
2020-04-05T14:06:09.909935
2018-08-14T14:43:55
2018-08-14T14:43:55
59,105,033
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
# -*- coding:utf-8 -*- import sys def test(): args = sys.argv if len(args) == 1: print 'Hello, world' elif len(args) == 2: print 'Hello, %s' % args[1] else: print 'Too many arguments!' if __name__ == '__main__': test()
ae2480bc43eb4a6ec86d8e0eb354a44122b0262d
67ecd129777da89dfaa04a5803f0345e1248f8ba
/nmigen/hdl/ast.py
cadf9600c6d5cc62c295a53f911a9a19f87a4d58
[ "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
sjolsen/nmigen
f866bc27896d94da75a53d5c579b6eba06be78c9
0e40dc0a2d336945dfe0669207fe160cafff50dc
refs/heads/master
2021-03-22T21:57:44.362165
2020-04-07T11:17:14
2020-04-08T14:08:35
247,401,219
0
0
NOASSERTION
2020-03-15T04:28:48
2020-03-15T04:28:48
null
UTF-8
Python
false
false
55,889
py
from abc import ABCMeta, abstractmethod import traceback import warnings import typing from collections import OrderedDict from collections.abc import Iterable, MutableMapping, MutableSet, MutableSequence from enum import Enum from .. import tracer from .._utils import * from .._unused import * __all__ = [ "Shape", "signed", "unsigned", "Value", "Const", "C", "AnyConst", "AnySeq", "Operator", "Mux", "Part", "Slice", "Cat", "Repl", "Array", "ArrayProxy", "Signal", "ClockSignal", "ResetSignal", "UserValue", "Sample", "Past", "Stable", "Rose", "Fell", "Initial", "Statement", "Switch", "Property", "Assign", "Assert", "Assume", "Cover", "ValueKey", "ValueDict", "ValueSet", "SignalKey", "SignalDict", "SignalSet", ] class DUID: """Deterministic Unique IDentifier.""" __next_uid = 0 def __init__(self): self.duid = DUID.__next_uid DUID.__next_uid += 1 class Shape(typing.NamedTuple): """Bit width and signedness of a value. A ``Shape`` can be constructed using: * explicit bit width and signedness; * aliases :func:`signed` and :func:`unsigned`; * casting from a variety of objects. A ``Shape`` can be cast from: * an integer, where the integer specifies the bit width; * a range, where the result is wide enough to represent any element of the range, and is signed if any element of the range is signed; * an :class:`Enum` with all integer members or :class:`IntEnum`, where the result is wide enough to represent any member of the enumeration, and is signed if any member of the enumeration is signed. Parameters ---------- width : int The number of bits in the representation, including the sign bit (if any). signed : bool If ``False``, the value is unsigned. If ``True``, the value is signed two's complement. """ width: int = 1 signed: bool = False @staticmethod def cast(obj, *, src_loc_at=0): if isinstance(obj, Shape): return obj if isinstance(obj, int): return Shape(obj) if isinstance(obj, tuple): width, signed = obj warnings.warn("instead of `{tuple}`, use `{constructor}({width})`" .format(constructor="signed" if signed else "unsigned", width=width, tuple=obj), DeprecationWarning, stacklevel=2 + src_loc_at) return Shape(width, signed) if isinstance(obj, range): if len(obj) == 0: return Shape(0, obj.start < 0) signed = obj.start < 0 or (obj.stop - obj.step) < 0 width = max(bits_for(obj.start, signed), bits_for(obj.stop - obj.step, signed)) return Shape(width, signed) if isinstance(obj, type) and issubclass(obj, Enum): min_value = min(member.value for member in obj) max_value = max(member.value for member in obj) if not isinstance(min_value, int) or not isinstance(max_value, int): raise TypeError("Only enumerations with integer values can be used " "as value shapes") signed = min_value < 0 or max_value < 0 width = max(bits_for(min_value, signed), bits_for(max_value, signed)) return Shape(width, signed) raise TypeError("Object {!r} cannot be used as value shape".format(obj)) # TODO: use dataclasses instead of this hack def _Shape___init__(self, width=1, signed=False): if not isinstance(width, int) or width < 0: raise TypeError("Width must be a non-negative integer, not {!r}" .format(width)) Shape.__init__ = _Shape___init__ def unsigned(width): """Shorthand for ``Shape(width, signed=False)``.""" return Shape(width, signed=False) def signed(width): """Shorthand for ``Shape(width, signed=True)``.""" return Shape(width, signed=True) class Value(metaclass=ABCMeta): @staticmethod def cast(obj): """Converts ``obj`` to an nMigen value. Booleans and integers are wrapped into a :class:`Const`. Enumerations whose members are all integers are converted to a :class:`Const` with a shape that fits every member. """ if isinstance(obj, Value): return obj if isinstance(obj, int): return Const(obj) if isinstance(obj, Enum): return Const(obj.value, Shape.cast(type(obj))) raise TypeError("Object {!r} cannot be converted to an nMigen value".format(obj)) def __init__(self, *, src_loc_at=0): super().__init__() self.src_loc = tracer.get_src_loc(1 + src_loc_at) def __bool__(self): raise TypeError("Attempted to convert nMigen value to boolean") def __invert__(self): return Operator("~", [self]) def __neg__(self): return Operator("-", [self]) def __add__(self, other): return Operator("+", [self, other]) def __radd__(self, other): return Operator("+", [other, self]) def __sub__(self, other): return Operator("-", [self, other]) def __rsub__(self, other): return Operator("-", [other, self]) def __mul__(self, other): return Operator("*", [self, other]) def __rmul__(self, other): return Operator("*", [other, self]) def __check_divisor(self): width, signed = self.shape() if signed: # Python's division semantics and Verilog's division semantics differ for negative # divisors (Python uses div/mod, Verilog uses quo/rem); for now, avoid the issue # completely by prohibiting such division operations. raise NotImplementedError("Division by a signed value is not supported") def __mod__(self, other): other = Value.cast(other) other.__check_divisor() return Operator("%", [self, other]) def __rmod__(self, other): self.__check_divisor() return Operator("%", [other, self]) def __floordiv__(self, other): other = Value.cast(other) other.__check_divisor() return Operator("//", [self, other]) def __rfloordiv__(self, other): self.__check_divisor() return Operator("//", [other, self]) def __check_shamt(self): width, signed = self.shape() if signed: # Neither Python nor HDLs implement shifts by negative values; prohibit any shifts # by a signed value to make sure the shift amount can always be interpreted as # an unsigned value. raise NotImplementedError("Shift by a signed value is not supported") def __lshift__(self, other): other = Value.cast(other) other.__check_shamt() return Operator("<<", [self, other]) def __rlshift__(self, other): self.__check_shamt() return Operator("<<", [other, self]) def __rshift__(self, other): other = Value.cast(other) other.__check_shamt() return Operator(">>", [self, other]) def __rrshift__(self, other): self.__check_shamt() return Operator(">>", [other, self]) def __and__(self, other): return Operator("&", [self, other]) def __rand__(self, other): return Operator("&", [other, self]) def __xor__(self, other): return Operator("^", [self, other]) def __rxor__(self, other): return Operator("^", [other, self]) def __or__(self, other): return Operator("|", [self, other]) def __ror__(self, other): return Operator("|", [other, self]) def __eq__(self, other): return Operator("==", [self, other]) def __ne__(self, other): return Operator("!=", [self, other]) def __lt__(self, other): return Operator("<", [self, other]) def __le__(self, other): return Operator("<=", [self, other]) def __gt__(self, other): return Operator(">", [self, other]) def __ge__(self, other): return Operator(">=", [self, other]) def __abs__(self): width, signed = self.shape() if signed: return Mux(self >= 0, self, -self) else: return self def __len__(self): return self.shape().width def __getitem__(self, key): n = len(self) if isinstance(key, int): if key not in range(-n, n): raise IndexError("Cannot index {} bits into {}-bit value".format(key, n)) if key < 0: key += n return Slice(self, key, key + 1) elif isinstance(key, slice): start, stop, step = key.indices(n) if step != 1: return Cat(self[i] for i in range(start, stop, step)) return Slice(self, start, stop) else: raise TypeError("Cannot index value with {}".format(repr(key))) def as_unsigned(self): """Conversion to unsigned. Returns ------- Value, out This ``Value`` reinterpreted as a unsigned integer. """ return Operator("u", [self]) def as_signed(self): """Conversion to signed. Returns ------- Value, out This ``Value`` reinterpreted as a signed integer. """ return Operator("s", [self]) def bool(self): """Conversion to boolean. Returns ------- Value, out ``1`` if any bits are set, ``0`` otherwise. """ return Operator("b", [self]) def any(self): """Check if any bits are ``1``. Returns ------- Value, out ``1`` if any bits are set, ``0`` otherwise. """ return Operator("r|", [self]) def all(self): """Check if all bits are ``1``. Returns ------- Value, out ``1`` if all bits are set, ``0`` otherwise. """ return Operator("r&", [self]) def xor(self): """Compute pairwise exclusive-or of every bit. Returns ------- Value, out ``1`` if an odd number of bits are set, ``0`` if an even number of bits are set. """ return Operator("r^", [self]) def implies(premise, conclusion): """Implication. Returns ------- Value, out ``0`` if ``premise`` is true and ``conclusion`` is not, ``1`` otherwise. """ return ~premise | conclusion def bit_select(self, offset, width): """Part-select with bit granularity. Selects a constant width but variable offset part of a ``Value``, such that successive parts overlap by all but 1 bit. Parameters ---------- offset : Value, in Index of first selected bit. width : int Number of selected bits. Returns ------- Part, out Selected part of the ``Value`` """ offset = Value.cast(offset) if type(offset) is Const and isinstance(width, int): return self[offset.value:offset.value + width] return Part(self, offset, width, stride=1, src_loc_at=1) def word_select(self, offset, width): """Part-select with word granularity. Selects a constant width but variable offset part of a ``Value``, such that successive parts do not overlap. Parameters ---------- offset : Value, in Index of first selected word. width : int Number of selected bits. Returns ------- Part, out Selected part of the ``Value`` """ offset = Value.cast(offset) if type(offset) is Const and isinstance(width, int): return self[offset.value * width:(offset.value + 1) * width] return Part(self, offset, width, stride=width, src_loc_at=1) def matches(self, *patterns): """Pattern matching. Matches against a set of patterns, which may be integers or bit strings, recognizing the same grammar as ``Case()``. Parameters ---------- patterns : int or str Patterns to match against. Returns ------- Value, out ``1`` if any pattern matches the value, ``0`` otherwise. """ matches = [] for pattern in patterns: if not isinstance(pattern, (int, str, Enum)): raise SyntaxError("Match pattern must be an integer, a string, or an enumeration, " "not {!r}" .format(pattern)) if isinstance(pattern, str) and any(bit not in "01- \t" for bit in pattern): raise SyntaxError("Match pattern '{}' must consist of 0, 1, and - (don't care) " "bits, and may include whitespace" .format(pattern)) if (isinstance(pattern, str) and len("".join(pattern.split())) != len(self)): raise SyntaxError("Match pattern '{}' must have the same width as match value " "(which is {})" .format(pattern, len(self))) if isinstance(pattern, int) and bits_for(pattern) > len(self): warnings.warn("Match pattern '{:b}' is wider than match value " "(which has width {}); comparison will never be true" .format(pattern, len(self)), SyntaxWarning, stacklevel=3) continue if isinstance(pattern, str): pattern = "".join(pattern.split()) # remove whitespace mask = int(pattern.replace("0", "1").replace("-", "0"), 2) pattern = int(pattern.replace("-", "0"), 2) matches.append((self & mask) == pattern) elif isinstance(pattern, int): matches.append(self == pattern) elif isinstance(pattern, Enum): matches.append(self == pattern.value) else: assert False if not matches: return Const(0) elif len(matches) == 1: return matches[0] else: return Cat(*matches).any() def eq(self, value): """Assignment. Parameters ---------- value : Value, in Value to be assigned. Returns ------- Assign Assignment statement that can be used in combinatorial or synchronous context. """ return Assign(self, value, src_loc_at=1) @abstractmethod def shape(self): """Bit width and signedness of a value. Returns ------- Shape See :class:`Shape`. Examples -------- >>> Signal(8).shape() Shape(width=8, signed=False) >>> Const(0xaa).shape() Shape(width=8, signed=False) """ pass # :nocov: def _lhs_signals(self): raise TypeError("Value {!r} cannot be used in assignments".format(self)) @abstractmethod def _rhs_signals(self): pass # :nocov: def _as_const(self): raise TypeError("Value {!r} cannot be evaluated as constant".format(self)) __hash__ = None @final class Const(Value): """A constant, literal integer value. Parameters ---------- value : int shape : int or tuple or None Either an integer ``width`` or a tuple ``(width, signed)`` specifying the number of bits in this constant and whether it is signed (can represent negative values). ``shape`` defaults to the minimum possible width and signedness of ``value``. Attributes ---------- width : int signed : bool """ src_loc = None @staticmethod def normalize(value, shape): width, signed = shape mask = (1 << width) - 1 value &= mask if signed and value >> (width - 1): value |= ~mask return value def __init__(self, value, shape=None, *, src_loc_at=0): # We deliberately do not call Value.__init__ here. self.value = int(value) if shape is None: shape = Shape(bits_for(self.value), signed=self.value < 0) elif isinstance(shape, int): shape = Shape(shape, signed=self.value < 0) else: shape = Shape.cast(shape, src_loc_at=1 + src_loc_at) self.width, self.signed = shape self.value = self.normalize(self.value, shape) def shape(self): return Shape(self.width, self.signed) def _rhs_signals(self): return ValueSet() def _as_const(self): return self.value def __repr__(self): return "(const {}'{}d{})".format(self.width, "s" if self.signed else "", self.value) C = Const # shorthand class AnyValue(Value, DUID): def __init__(self, shape, *, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) self.width, self.signed = Shape.cast(shape, src_loc_at=1 + src_loc_at) if not isinstance(self.width, int) or self.width < 0: raise TypeError("Width must be a non-negative integer, not {!r}" .format(self.width)) def shape(self): return Shape(self.width, self.signed) def _rhs_signals(self): return ValueSet() @final class AnyConst(AnyValue): def __repr__(self): return "(anyconst {}'{})".format(self.width, "s" if self.signed else "") @final class AnySeq(AnyValue): def __repr__(self): return "(anyseq {}'{})".format(self.width, "s" if self.signed else "") @final class Operator(Value): def __init__(self, operator, operands, *, src_loc_at=0): super().__init__(src_loc_at=1 + src_loc_at) self.operator = operator self.operands = [Value.cast(op) for op in operands] def shape(self): def _bitwise_binary_shape(a_shape, b_shape): a_bits, a_sign = a_shape b_bits, b_sign = b_shape if not a_sign and not b_sign: # both operands unsigned return Shape(max(a_bits, b_bits), False) elif a_sign and b_sign: # both operands signed return Shape(max(a_bits, b_bits), True) elif not a_sign and b_sign: # first operand unsigned (add sign bit), second operand signed return Shape(max(a_bits + 1, b_bits), True) else: # first signed, second operand unsigned (add sign bit) return Shape(max(a_bits, b_bits + 1), True) op_shapes = list(map(lambda x: x.shape(), self.operands)) if len(op_shapes) == 1: (a_width, a_signed), = op_shapes if self.operator in ("+", "~"): return Shape(a_width, a_signed) if self.operator == "-": return Shape(a_width + 1, True) if self.operator in ("b", "r|", "r&", "r^"): return Shape(1, False) if self.operator == "u": return Shape(a_width, False) if self.operator == "s": return Shape(a_width, True) elif len(op_shapes) == 2: (a_width, a_signed), (b_width, b_signed) = op_shapes if self.operator in ("+", "-"): width, signed = _bitwise_binary_shape(*op_shapes) return Shape(width + 1, signed) if self.operator == "*": return Shape(a_width + b_width, a_signed or b_signed) if self.operator in ("//", "%"): assert not b_signed return Shape(a_width, a_signed) if self.operator in ("<", "<=", "==", "!=", ">", ">="): return Shape(1, False) if self.operator in ("&", "^", "|"): return _bitwise_binary_shape(*op_shapes) if self.operator == "<<": if b_signed: extra = 2 ** (b_width - 1) - 1 else: extra = 2 ** (b_width) - 1 return Shape(a_width + extra, a_signed) if self.operator == ">>": if b_signed: extra = 2 ** (b_width - 1) else: extra = 0 return Shape(a_width + extra, a_signed) elif len(op_shapes) == 3: if self.operator == "m": s_shape, a_shape, b_shape = op_shapes return _bitwise_binary_shape(a_shape, b_shape) raise NotImplementedError("Operator {}/{} not implemented" .format(self.operator, len(op_shapes))) # :nocov: def _rhs_signals(self): return union(op._rhs_signals() for op in self.operands) def __repr__(self): return "({} {})".format(self.operator, " ".join(map(repr, self.operands))) def Mux(sel, val1, val0): """Choose between two values. Parameters ---------- sel : Value, in Selector. val1 : Value, in val0 : Value, in Input values. Returns ------- Value, out Output ``Value``. If ``sel`` is asserted, the Mux returns ``val1``, else ``val0``. """ sel = Value.cast(sel) if len(sel) != 1: sel = sel.bool() return Operator("m", [sel, val1, val0]) @final class Slice(Value): def __init__(self, value, start, stop, *, src_loc_at=0): if not isinstance(start, int): raise TypeError("Slice start must be an integer, not {!r}".format(start)) if not isinstance(stop, int): raise TypeError("Slice stop must be an integer, not {!r}".format(stop)) n = len(value) if start not in range(-(n+1), n+1): raise IndexError("Cannot start slice {} bits into {}-bit value".format(start, n)) if start < 0: start += n if stop not in range(-(n+1), n+1): raise IndexError("Cannot stop slice {} bits into {}-bit value".format(stop, n)) if stop < 0: stop += n if start > stop: raise IndexError("Slice start {} must be less than slice stop {}".format(start, stop)) super().__init__(src_loc_at=src_loc_at) self.value = Value.cast(value) self.start = start self.stop = stop def shape(self): return Shape(self.stop - self.start) def _lhs_signals(self): return self.value._lhs_signals() def _rhs_signals(self): return self.value._rhs_signals() def __repr__(self): return "(slice {} {}:{})".format(repr(self.value), self.start, self.stop) @final class Part(Value): def __init__(self, value, offset, width, stride=1, *, src_loc_at=0): if not isinstance(width, int) or width < 0: raise TypeError("Part width must be a non-negative integer, not {!r}".format(width)) if not isinstance(stride, int) or stride <= 0: raise TypeError("Part stride must be a positive integer, not {!r}".format(stride)) super().__init__(src_loc_at=src_loc_at) self.value = value self.offset = Value.cast(offset) self.width = width self.stride = stride def shape(self): return Shape(self.width) def _lhs_signals(self): return self.value._lhs_signals() def _rhs_signals(self): return self.value._rhs_signals() | self.offset._rhs_signals() def __repr__(self): return "(part {} {} {} {})".format(repr(self.value), repr(self.offset), self.width, self.stride) @final class Cat(Value): """Concatenate values. Form a compound ``Value`` from several smaller ones by concatenation. The first argument occupies the lower bits of the result. The return value can be used on either side of an assignment, that is, the concatenated value can be used as an argument on the RHS or as a target on the LHS. If it is used on the LHS, it must solely consist of ``Signal`` s, slices of ``Signal`` s, and other concatenations meeting these properties. The bit length of the return value is the sum of the bit lengths of the arguments:: len(Cat(args)) == sum(len(arg) for arg in args) Parameters ---------- *args : Values or iterables of Values, inout ``Value`` s to be concatenated. Returns ------- Value, inout Resulting ``Value`` obtained by concatentation. """ def __init__(self, *args, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) self.parts = [Value.cast(v) for v in flatten(args)] def shape(self): return Shape(sum(len(part) for part in self.parts)) def _lhs_signals(self): return union((part._lhs_signals() for part in self.parts), start=ValueSet()) def _rhs_signals(self): return union((part._rhs_signals() for part in self.parts), start=ValueSet()) def _as_const(self): value = 0 for part in reversed(self.parts): value <<= len(part) value |= part._as_const() return value def __repr__(self): return "(cat {})".format(" ".join(map(repr, self.parts))) @final class Repl(Value): """Replicate a value An input value is replicated (repeated) several times to be used on the RHS of assignments:: len(Repl(s, n)) == len(s) * n Parameters ---------- value : Value, in Input value to be replicated. count : int Number of replications. Returns ------- Repl, out Replicated value. """ def __init__(self, value, count, *, src_loc_at=0): if not isinstance(count, int) or count < 0: raise TypeError("Replication count must be a non-negative integer, not {!r}" .format(count)) super().__init__(src_loc_at=src_loc_at) self.value = Value.cast(value) self.count = count def shape(self): return Shape(len(self.value) * self.count) def _rhs_signals(self): return self.value._rhs_signals() def __repr__(self): return "(repl {!r} {})".format(self.value, self.count) # @final class Signal(Value, DUID): """A varying integer value. Parameters ---------- shape : ``Shape``-castable object or None Specification for the number of bits in this ``Signal`` and its signedness (whether it can represent negative values). See ``Shape.cast`` for details. If not specified, ``shape`` defaults to 1-bit and non-signed. name : str Name hint for this signal. If ``None`` (default) the name is inferred from the variable name this ``Signal`` is assigned to. reset : int or integral Enum Reset (synchronous) or default (combinatorial) value. When this ``Signal`` is assigned to in synchronous context and the corresponding clock domain is reset, the ``Signal`` assumes the given value. When this ``Signal`` is unassigned in combinatorial context (due to conditional assignments not being taken), the ``Signal`` assumes its ``reset`` value. Defaults to 0. reset_less : bool If ``True``, do not generate reset logic for this ``Signal`` in synchronous statements. The ``reset`` value is only used as a combinatorial default or as the initial value. Defaults to ``False``. attrs : dict Dictionary of synthesis attributes. decoder : function or Enum A function converting integer signal values to human-readable strings (e.g. FSM state names). If an ``Enum`` subclass is passed, it is concisely decoded using format string ``"{0.name:}/{0.value:}"``, or a number if the signal value is not a member of the enumeration. Attributes ---------- width : int signed : bool name : str reset : int reset_less : bool attrs : dict decoder : function """ def __init__(self, shape=None, *, name=None, reset=0, reset_less=False, attrs=None, decoder=None, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) if name is not None and not isinstance(name, str): raise TypeError("Name must be a string, not {!r}".format(name)) self.name = name or tracer.get_var_name(depth=2 + src_loc_at, default="$signal") if shape is None: shape = unsigned(1) self.width, self.signed = Shape.cast(shape, src_loc_at=1 + src_loc_at) if isinstance(reset, Enum): reset = reset.value if not isinstance(reset, int): raise TypeError("Reset value has to be an int or an integral Enum") reset_width = bits_for(reset, self.signed) if reset != 0 and reset_width > self.width: warnings.warn("Reset value {!r} requires {} bits to represent, but the signal " "only has {} bits" .format(reset, reset_width, self.width), SyntaxWarning, stacklevel=2 + src_loc_at) self.reset = reset self.reset_less = bool(reset_less) self.attrs = OrderedDict(() if attrs is None else attrs) if decoder is None and isinstance(shape, type) and issubclass(shape, Enum): decoder = shape if isinstance(decoder, type) and issubclass(decoder, Enum): def enum_decoder(value): try: return "{0.name:}/{0.value:}".format(decoder(value)) except ValueError: return str(value) self.decoder = enum_decoder else: self.decoder = decoder # Not a @classmethod because nmigen.compat requires it. @staticmethod def like(other, *, name=None, name_suffix=None, src_loc_at=0, **kwargs): """Create Signal based on another. Parameters ---------- other : Value Object to base this Signal on. """ if name is not None: new_name = str(name) elif name_suffix is not None: new_name = other.name + str(name_suffix) else: new_name = tracer.get_var_name(depth=2 + src_loc_at, default="$like") kw = dict(shape=Value.cast(other).shape(), name=new_name) if isinstance(other, Signal): kw.update(reset=other.reset, reset_less=other.reset_less, attrs=other.attrs, decoder=other.decoder) kw.update(kwargs) return Signal(**kw, src_loc_at=1 + src_loc_at) def shape(self): return Shape(self.width, self.signed) def _lhs_signals(self): return ValueSet((self,)) def _rhs_signals(self): return ValueSet((self,)) def __repr__(self): return "(sig {})".format(self.name) @final class ClockSignal(Value): """Clock signal for a clock domain. Any ``ClockSignal`` is equivalent to ``cd.clk`` for a clock domain with the corresponding name. All of these signals ultimately refer to the same signal, but they can be manipulated independently of the clock domain, even before the clock domain is created. Parameters ---------- domain : str Clock domain to obtain a clock signal for. Defaults to ``"sync"``. """ def __init__(self, domain="sync", *, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) if not isinstance(domain, str): raise TypeError("Clock domain name must be a string, not {!r}".format(domain)) if domain == "comb": raise ValueError("Domain '{}' does not have a clock".format(domain)) self.domain = domain def shape(self): return Shape(1) def _lhs_signals(self): return ValueSet((self,)) def _rhs_signals(self): raise NotImplementedError("ClockSignal must be lowered to a concrete signal") # :nocov: def __repr__(self): return "(clk {})".format(self.domain) @final class ResetSignal(Value): """Reset signal for a clock domain. Any ``ResetSignal`` is equivalent to ``cd.rst`` for a clock domain with the corresponding name. All of these signals ultimately refer to the same signal, but they can be manipulated independently of the clock domain, even before the clock domain is created. Parameters ---------- domain : str Clock domain to obtain a reset signal for. Defaults to ``"sync"``. allow_reset_less : bool If the clock domain is reset-less, act as a constant ``0`` instead of reporting an error. """ def __init__(self, domain="sync", allow_reset_less=False, *, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) if not isinstance(domain, str): raise TypeError("Clock domain name must be a string, not {!r}".format(domain)) if domain == "comb": raise ValueError("Domain '{}' does not have a reset".format(domain)) self.domain = domain self.allow_reset_less = allow_reset_less def shape(self): return Shape(1) def _lhs_signals(self): return ValueSet((self,)) def _rhs_signals(self): raise NotImplementedError("ResetSignal must be lowered to a concrete signal") # :nocov: def __repr__(self): return "(rst {})".format(self.domain) class Array(MutableSequence): """Addressable multiplexer. An array is similar to a ``list`` that can also be indexed by ``Value``s; indexing by an integer or a slice works the same as for Python lists, but indexing by a ``Value`` results in a proxy. The array proxy can be used as an ordinary ``Value``, i.e. participate in calculations and assignments, provided that all elements of the array are values. The array proxy also supports attribute access and further indexing, each returning another array proxy; this means that the results of indexing into arrays, arrays of records, and arrays of arrays can all be used as first-class values. It is an error to change an array or any of its elements after an array proxy was created. Changing the array directly will raise an exception. However, it is not possible to detect the elements being modified; if an element's attribute or element is modified after the proxy for it has been created, the proxy will refer to stale data. Examples -------- Simple array:: gpios = Array(Signal() for _ in range(10)) with m.If(bus.we): m.d.sync += gpios[bus.addr].eq(bus.w_data) with m.Else(): m.d.sync += bus.r_data.eq(gpios[bus.addr]) Multidimensional array:: mult = Array(Array(x * y for y in range(10)) for x in range(10)) a = Signal.range(10) b = Signal.range(10) r = Signal(8) m.d.comb += r.eq(mult[a][b]) Array of records:: layout = [ ("r_data", 16), ("r_en", 1), ] buses = Array(Record(layout) for busno in range(4)) master = Record(layout) m.d.comb += [ buses[sel].r_en.eq(master.r_en), master.r_data.eq(buses[sel].r_data), ] """ def __init__(self, iterable=()): self._inner = list(iterable) self._proxy_at = None self._mutable = True def __getitem__(self, index): if isinstance(index, Value): if self._mutable: self._proxy_at = tracer.get_src_loc() self._mutable = False return ArrayProxy(self, index) else: return self._inner[index] def __len__(self): return len(self._inner) def _check_mutability(self): if not self._mutable: raise ValueError("Array can no longer be mutated after it was indexed with a value " "at {}:{}".format(*self._proxy_at)) def __setitem__(self, index, value): self._check_mutability() self._inner[index] = value def __delitem__(self, index): self._check_mutability() del self._inner[index] def insert(self, index, value): self._check_mutability() self._inner.insert(index, value) def __repr__(self): return "(array{} [{}])".format(" mutable" if self._mutable else "", ", ".join(map(repr, self._inner))) @final class ArrayProxy(Value): def __init__(self, elems, index, *, src_loc_at=0): super().__init__(src_loc_at=1 + src_loc_at) self.elems = elems self.index = Value.cast(index) def __getattr__(self, attr): return ArrayProxy([getattr(elem, attr) for elem in self.elems], self.index) def __getitem__(self, index): return ArrayProxy([ elem[index] for elem in self.elems], self.index) def _iter_as_values(self): return (Value.cast(elem) for elem in self.elems) def shape(self): width, signed = 0, False for elem_width, elem_signed in (elem.shape() for elem in self._iter_as_values()): width = max(width, elem_width + elem_signed) signed = max(signed, elem_signed) return Shape(width, signed) def _lhs_signals(self): signals = union((elem._lhs_signals() for elem in self._iter_as_values()), start=ValueSet()) return signals def _rhs_signals(self): signals = union((elem._rhs_signals() for elem in self._iter_as_values()), start=ValueSet()) return self.index._rhs_signals() | signals def __repr__(self): return "(proxy (array [{}]) {!r})".format(", ".join(map(repr, self.elems)), self.index) class UserValue(Value): """Value with custom lowering. A ``UserValue`` is a value whose precise representation does not have to be immediately known, which is useful in certain metaprogramming scenarios. Instead of providing fixed semantics upfront, it is kept abstract for as long as possible, only being lowered to a concrete nMigen value when required. Note that the ``lower`` method will only be called once; this is necessary to ensure that nMigen's view of representation of all values stays internally consistent. If the class deriving from ``UserValue`` is mutable, then it must ensure that after ``lower`` is called, it is not mutated in a way that changes its representation. The following is an incomplete list of actions that, when applied to an ``UserValue`` directly or indirectly, will cause it to be lowered, provided as an illustrative reference: * Querying the shape using ``.shape()`` or ``len()``; * Creating a similarly shaped signal using ``Signal.like``; * Indexing or iterating through individual bits; * Adding an assignment to the value to a ``Module`` using ``m.d.<domain> +=``. """ def __init__(self, *, src_loc_at=0): super().__init__(src_loc_at=1 + src_loc_at) self.__lowered = None @abstractmethod def lower(self): """Conversion to a concrete representation.""" pass # :nocov: def _lazy_lower(self): if self.__lowered is None: self.__lowered = Value.cast(self.lower()) return self.__lowered def shape(self): return self._lazy_lower().shape() def _lhs_signals(self): return self._lazy_lower()._lhs_signals() def _rhs_signals(self): return self._lazy_lower()._rhs_signals() @final class Sample(Value): """Value from the past. A ``Sample`` of an expression is equal to the value of the expression ``clocks`` clock edges of the ``domain`` clock back. If that moment is before the beginning of time, it is equal to the value of the expression calculated as if each signal had its reset value. """ def __init__(self, expr, clocks, domain, *, src_loc_at=0): super().__init__(src_loc_at=1 + src_loc_at) self.value = Value.cast(expr) self.clocks = int(clocks) self.domain = domain if not isinstance(self.value, (Const, Signal, ClockSignal, ResetSignal, Initial)): raise TypeError("Sampled value must be a signal or a constant, not {!r}" .format(self.value)) if self.clocks < 0: raise ValueError("Cannot sample a value {} cycles in the future" .format(-self.clocks)) if not (self.domain is None or isinstance(self.domain, str)): raise TypeError("Domain name must be a string or None, not {!r}" .format(self.domain)) def shape(self): return self.value.shape() def _rhs_signals(self): return ValueSet((self,)) def __repr__(self): return "(sample {!r} @ {}[{}])".format( self.value, "<default>" if self.domain is None else self.domain, self.clocks) def Past(expr, clocks=1, domain=None): return Sample(expr, clocks, domain) def Stable(expr, clocks=0, domain=None): return Sample(expr, clocks + 1, domain) == Sample(expr, clocks, domain) def Rose(expr, clocks=0, domain=None): return ~Sample(expr, clocks + 1, domain) & Sample(expr, clocks, domain) def Fell(expr, clocks=0, domain=None): return Sample(expr, clocks + 1, domain) & ~Sample(expr, clocks, domain) @final class Initial(Value): """Start indicator, for model checking. An ``Initial`` signal is ``1`` at the first cycle of model checking, and ``0`` at any other. """ def __init__(self, *, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) def shape(self): return Shape(1) def _rhs_signals(self): return ValueSet((self,)) def __repr__(self): return "(initial)" class _StatementList(list): def __repr__(self): return "({})".format(" ".join(map(repr, self))) class Statement: def __init__(self, *, src_loc_at=0): self.src_loc = tracer.get_src_loc(1 + src_loc_at) @staticmethod def cast(obj): if isinstance(obj, Iterable): return _StatementList(sum((Statement.cast(e) for e in obj), [])) else: if isinstance(obj, Statement): return _StatementList([obj]) else: raise TypeError("Object {!r} is not an nMigen statement".format(obj)) @final class Assign(Statement): def __init__(self, lhs, rhs, *, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) self.lhs = Value.cast(lhs) self.rhs = Value.cast(rhs) def _lhs_signals(self): return self.lhs._lhs_signals() def _rhs_signals(self): return self.lhs._rhs_signals() | self.rhs._rhs_signals() def __repr__(self): return "(eq {!r} {!r})".format(self.lhs, self.rhs) class UnusedProperty(UnusedMustUse): pass class Property(Statement, MustUse): _MustUse__warning = UnusedProperty def __init__(self, test, *, _check=None, _en=None, src_loc_at=0): super().__init__(src_loc_at=src_loc_at) self.test = Value.cast(test) self._check = _check self._en = _en if self._check is None: self._check = Signal(reset_less=True, name="${}$check".format(self._kind)) self._check.src_loc = self.src_loc if _en is None: self._en = Signal(reset_less=True, name="${}$en".format(self._kind)) self._en.src_loc = self.src_loc def _lhs_signals(self): return ValueSet((self._en, self._check)) def _rhs_signals(self): return self.test._rhs_signals() def __repr__(self): return "({} {!r})".format(self._kind, self.test) @final class Assert(Property): _kind = "assert" @final class Assume(Property): _kind = "assume" @final class Cover(Property): _kind = "cover" # @final class Switch(Statement): def __init__(self, test, cases, *, src_loc=None, src_loc_at=0, case_src_locs={}): if src_loc is None: super().__init__(src_loc_at=src_loc_at) else: # Switch is a bit special in terms of location tracking because it is usually created # long after the control has left the statement that directly caused its creation. self.src_loc = src_loc # Switch is also a bit special in that its parts also have location information. It can't # be automatically traced, so whatever constructs a Switch may optionally provide it. self.case_src_locs = {} self.test = Value.cast(test) self.cases = OrderedDict() for orig_keys, stmts in cases.items(): # Map: None -> (); key -> (key,); (key...) -> (key...) keys = orig_keys if keys is None: keys = () if not isinstance(keys, tuple): keys = (keys,) # Map: 2 -> "0010"; "0010" -> "0010" new_keys = () for key in keys: if isinstance(key, str): key = "".join(key.split()) # remove whitespace elif isinstance(key, int): key = format(key, "b").rjust(len(self.test), "0") elif isinstance(key, Enum): key = format(key.value, "b").rjust(len(self.test), "0") else: raise TypeError("Object {!r} cannot be used as a switch key" .format(key)) assert len(key) == len(self.test) new_keys = (*new_keys, key) if not isinstance(stmts, Iterable): stmts = [stmts] self.cases[new_keys] = Statement.cast(stmts) if orig_keys in case_src_locs: self.case_src_locs[new_keys] = case_src_locs[orig_keys] def _lhs_signals(self): signals = union((s._lhs_signals() for ss in self.cases.values() for s in ss), start=ValueSet()) return signals def _rhs_signals(self): signals = union((s._rhs_signals() for ss in self.cases.values() for s in ss), start=ValueSet()) return self.test._rhs_signals() | signals def __repr__(self): def case_repr(keys, stmts): stmts_repr = " ".join(map(repr, stmts)) if keys == (): return "(default {})".format(stmts_repr) elif len(keys) == 1: return "(case {} {})".format(keys[0], stmts_repr) else: return "(case ({}) {})".format(" ".join(keys), stmts_repr) case_reprs = [case_repr(keys, stmts) for keys, stmts in self.cases.items()] return "(switch {!r} {})".format(self.test, " ".join(case_reprs)) class _MappedKeyCollection(metaclass=ABCMeta): @abstractmethod def _map_key(self, key): pass # :nocov: @abstractmethod def _unmap_key(self, key): pass # :nocov: class _MappedKeyDict(MutableMapping, _MappedKeyCollection): def __init__(self, pairs=()): self._storage = OrderedDict() for key, value in pairs: self[key] = value def __getitem__(self, key): key = None if key is None else self._map_key(key) return self._storage[key] def __setitem__(self, key, value): key = None if key is None else self._map_key(key) self._storage[key] = value def __delitem__(self, key): key = None if key is None else self._map_key(key) del self._storage[key] def __iter__(self): for key in self._storage: if key is None: yield None else: yield self._unmap_key(key) def __eq__(self, other): if not isinstance(other, type(self)): return False if len(self) != len(other): return False for ak, bk in zip(sorted(self._storage), sorted(other._storage)): if ak != bk: return False if self._storage[ak] != other._storage[bk]: return False return True def __len__(self): return len(self._storage) def __repr__(self): pairs = ["({!r}, {!r})".format(k, v) for k, v in self.items()] return "{}.{}([{}])".format(type(self).__module__, type(self).__name__, ", ".join(pairs)) class _MappedKeySet(MutableSet, _MappedKeyCollection): def __init__(self, elements=()): self._storage = OrderedDict() for elem in elements: self.add(elem) def add(self, value): self._storage[self._map_key(value)] = None def update(self, values): for value in values: self.add(value) def discard(self, value): if value in self: del self._storage[self._map_key(value)] def __contains__(self, value): return self._map_key(value) in self._storage def __iter__(self): for key in [k for k in self._storage]: yield self._unmap_key(key) def __len__(self): return len(self._storage) def __repr__(self): return "{}.{}({})".format(type(self).__module__, type(self).__name__, ", ".join(repr(x) for x in self)) class ValueKey: def __init__(self, value): self.value = Value.cast(value) if isinstance(self.value, Const): self._hash = hash(self.value.value) elif isinstance(self.value, (Signal, AnyValue)): self._hash = hash(self.value.duid) elif isinstance(self.value, (ClockSignal, ResetSignal)): self._hash = hash(self.value.domain) elif isinstance(self.value, Operator): self._hash = hash((self.value.operator, tuple(ValueKey(o) for o in self.value.operands))) elif isinstance(self.value, Slice): self._hash = hash((ValueKey(self.value.value), self.value.start, self.value.stop)) elif isinstance(self.value, Part): self._hash = hash((ValueKey(self.value.value), ValueKey(self.value.offset), self.value.width, self.value.stride)) elif isinstance(self.value, Cat): self._hash = hash(tuple(ValueKey(o) for o in self.value.parts)) elif isinstance(self.value, ArrayProxy): self._hash = hash((ValueKey(self.value.index), tuple(ValueKey(e) for e in self.value._iter_as_values()))) elif isinstance(self.value, Sample): self._hash = hash((ValueKey(self.value.value), self.value.clocks, self.value.domain)) elif isinstance(self.value, Initial): self._hash = 0 else: # :nocov: raise TypeError("Object {!r} cannot be used as a key in value collections" .format(self.value)) def __hash__(self): return self._hash def __eq__(self, other): if type(other) is not ValueKey: return False if type(self.value) is not type(other.value): return False if isinstance(self.value, Const): return self.value.value == other.value.value elif isinstance(self.value, (Signal, AnyValue)): return self.value is other.value elif isinstance(self.value, (ClockSignal, ResetSignal)): return self.value.domain == other.value.domain elif isinstance(self.value, Operator): return (self.value.operator == other.value.operator and len(self.value.operands) == len(other.value.operands) and all(ValueKey(a) == ValueKey(b) for a, b in zip(self.value.operands, other.value.operands))) elif isinstance(self.value, Slice): return (ValueKey(self.value.value) == ValueKey(other.value.value) and self.value.start == other.value.start and self.value.stop == other.value.stop) elif isinstance(self.value, Part): return (ValueKey(self.value.value) == ValueKey(other.value.value) and ValueKey(self.value.offset) == ValueKey(other.value.offset) and self.value.width == other.value.width and self.value.stride == other.value.stride) elif isinstance(self.value, Cat): return all(ValueKey(a) == ValueKey(b) for a, b in zip(self.value.parts, other.value.parts)) elif isinstance(self.value, ArrayProxy): return (ValueKey(self.value.index) == ValueKey(other.value.index) and len(self.value.elems) == len(other.value.elems) and all(ValueKey(a) == ValueKey(b) for a, b in zip(self.value._iter_as_values(), other.value._iter_as_values()))) elif isinstance(self.value, Sample): return (ValueKey(self.value.value) == ValueKey(other.value.value) and self.value.clocks == other.value.clocks and self.value.domain == self.value.domain) elif isinstance(self.value, Initial): return True else: # :nocov: raise TypeError("Object {!r} cannot be used as a key in value collections" .format(self.value)) def __lt__(self, other): if not isinstance(other, ValueKey): return False if type(self.value) != type(other.value): return False if isinstance(self.value, Const): return self.value < other.value elif isinstance(self.value, (Signal, AnyValue)): return self.value.duid < other.value.duid elif isinstance(self.value, Slice): return (ValueKey(self.value.value) < ValueKey(other.value.value) and self.value.start < other.value.start and self.value.end < other.value.end) else: # :nocov: raise TypeError("Object {!r} cannot be used as a key in value collections") def __repr__(self): return "<{}.ValueKey {!r}>".format(__name__, self.value) class ValueDict(_MappedKeyDict): _map_key = ValueKey _unmap_key = lambda self, key: key.value class ValueSet(_MappedKeySet): _map_key = ValueKey _unmap_key = lambda self, key: key.value class SignalKey: def __init__(self, signal): self.signal = signal if isinstance(signal, Signal): self._intern = (0, signal.duid) elif type(signal) is ClockSignal: self._intern = (1, signal.domain) elif type(signal) is ResetSignal: self._intern = (2, signal.domain) else: raise TypeError("Object {!r} is not an nMigen signal".format(signal)) def __hash__(self): return hash(self._intern) def __eq__(self, other): if type(other) is not SignalKey: return False return self._intern == other._intern def __lt__(self, other): if type(other) is not SignalKey: raise TypeError("Object {!r} cannot be compared to a SignalKey".format(signal)) return self._intern < other._intern def __repr__(self): return "<{}.SignalKey {!r}>".format(__name__, self.signal) class SignalDict(_MappedKeyDict): _map_key = SignalKey _unmap_key = lambda self, key: key.signal class SignalSet(_MappedKeySet): _map_key = SignalKey _unmap_key = lambda self, key: key.signal
c1060ead727b0ede86f928cc668a97b2d4ad13c8
b6ab5a3ff4402ed085557cd5ff354ab2ead6e6f8
/leet_code/rotten_oranges.py
3f761e12152d708fc5ec530ac701836bb1ed4be6
[]
no_license
sahiljajodia01/Competitive-Programming
e51587110640663aa32f220feddf6ab10f17c445
7ae9b45654aff513bceb0fc058a67ca49273a369
refs/heads/master
2021-07-17T08:23:24.143156
2020-06-05T11:34:14
2020-06-05T11:34:14
163,054,750
0
1
null
2019-10-31T05:36:35
2018-12-25T06:48:39
C++
UTF-8
Python
false
false
1,385
py
# https://leetcode.com/problems/rotting-oranges/ ####### Straightforward BFS solution ########## class Solution: def orangesRotting(self, grid: List[List[int]]) -> int: q = [] for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == 2: q.append([i, j]) minute = 0 while q != []: # print(q) minute += 1 temp = [] for i in range(len(q)): x, y = q[i] neighbours = [[1, 0], [0, 1], [-1, 0], [0, -1]] for n in neighbours: xn, yn = (x + n[0]), (y+ n[1]) if xn < 0 or xn >= len(grid) or yn < 0 or yn >= len(grid[0]) or grid[xn][yn] == 0 or grid[xn][yn] == 2: continue grid[xn][yn] = 2 if [xn, yn] not in temp: temp.append([xn, yn]) q = temp # print(minute) for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == 1: return -1 if minute == 0: return 0 return minute - 1
6f89b5f827a55c4d0a84b8ab0580245c093ab1d8
acb14262588fb356efb3d1bf3aab8634e43f1a4f
/app/recipe/tests/test_tag_api.py
9ecdb111ed9fe55141cc540e61cd2ba1bb1d3d2c
[ "MIT" ]
permissive
Gilles00/recipe-app-api
6d37157e4e0081ba152ccca740fdd13ad03d3aaf
2ea0de068db0dcc500d54164739184ace1a29a7b
refs/heads/master
2022-03-05T18:00:13.893911
2019-11-26T11:56:05
2019-11-26T11:56:05
259,035,229
1
0
MIT
2020-04-26T13:18:13
2020-04-26T13:18:12
null
UTF-8
Python
false
false
3,126
py
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Tag, Recipe from recipe.serializers import TagSerializer TAGS_URL = reverse("recipe:tag-list") class PublicTagsApiTests(TestCase): """Test the publicly available tags API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test that login is requried for retrieving tags""" res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateTagsApiTests(TestCase): """Test the authorized user tags API""" def setUp(self): self.user = get_user_model().objects.create_user( "[email protected]", "password123" ) self.client = APIClient() self.client.force_authenticate(self.user) def test_retrieve_tags(self): """Test retrieving tags""" Tag.objects.create(user=self.user, name="Vegan") Tag.objects.create(user=self.user, name="Dessert") res = self.client.get(TAGS_URL) tags = Tag.objects.all().order_by("-name") serializer = TagSerializer(tags, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_tags_limited_to_user(self): """Test that tags returned are for the authenticated user""" user2 = get_user_model().objects.create_user("[email protected]", "testpass") Tag.objects.create(user=user2, name="Fruity") tag = Tag.objects.create(user=self.user, name="Comfort food") res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]["name"], tag.name) def test_create_tag_successful(self): """Test creating a new tag""" payload = {"name": "Test tag"} self.client.post(TAGS_URL, payload) exists = Tag.objects.filter(user=self.user, name=payload["name"]).exists() self.assertTrue(exists) def test_create_tag_invalid(self): """Test creating tag with invalid payload""" payload = {"name": ""} res = self.client.post(TAGS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_tags_assigned_to_recipes(self): """Test filtering tags by those assigned to recipes""" tag1 = Tag.objects.create(user=self.user, name="Breakfast") tag2 = Tag.objects.create(user=self.user, name="lunch") recipe = Recipe.objects.create( title="Coriander eggs on toast", time_minutes=10, price=5.00, user=self.user ) recipe.tags.add(tag1) res = self.client.get(TAGS_URL, {"assigned_only": 1}) serializer1 = TagSerializer(tag1) serializer2 = TagSerializer(tag2) self.assertIn(serializer1.data, res.data) self.assertNotIn(serializer2.data, res.data)
9b2c3283708ae762deba2107258c8ec473d5a3cd
4f2f046ba81f07be7fcb0649a7d7ce55fcd9e98f
/tests/tests.py
5547f7a7f98b5d28140501f313b6b6305c838e56
[]
no_license
konradkrasno/db_helper_manager
3a4b1ceca70953938ac348b855da82bf3bfe9eb0
273f5146437784684d069a209b98eb6d71d4756f
refs/heads/master
2023-04-21T14:57:33.434170
2021-05-09T18:52:01
2021-05-09T18:52:01
365,552,814
0
0
null
null
null
null
UTF-8
Python
false
false
4,523
py
import unittest from typing import Dict from unittest import TestCase from unittest.mock import patch, call from db_helper_manager.db_manager import DBManager from db_helper_manager.exceptions import ApiError from db_helper_manager.rates import Rate class Fixture(TestCase): @staticmethod def db_config() -> Dict: return { "DIALECT": "mysql", "NAME": "test", "USER": "test", "PASSWORD": "test", "HOST": "localhost", "PORT": 3306, } @staticmethod def json() -> Dict: return { "table": "A", "currency": "dolar amerykański", "code": "USD", "rates": [ { "no": "087/A/NBP/2021", "effectiveDate": "2021-05-07", "mid": 3.7861, } ], } def setUp(self) -> None: self.manager = DBManager(self.db_config()) def tearDown(self) -> None: pass class RateTests(Fixture): @patch("requests.get") def test_get_current_rate_in_pln_when_ok(self, mock_get): mock_get.return_value.status_code = 200 mock_get.return_value.json = self.json rate = Rate.get_current_rate_in_pln("usd") self.assertEqual(rate, 3.7861) @patch("requests.get") def test_get_current_rate_in_pln_when_error(self, mock_get): mock_get.return_value.status_code = 404 with self.assertRaises(ApiError): Rate.get_current_rate_in_pln("usd") class CommandsTests(Fixture): @patch("db_helper_manager.commands.logger") @patch("db_helper_manager.commands.text") @patch("db_helper_manager.commands.UpdateUnitPrices.get_current_rate_in_pln") @patch("db_helper_manager.commands.Session.execute") def test_update_unit_prices(self, mock_session, mock_rate, mock_text, mock_logger): mock_text.return_value = "mocked statement" mock_rate.return_value = 3.7861 self.manager.update_unit_prices() mock_session.assert_called_once_with( "mocked statement", [ { "EURORate": 3.7861, "USDRate": 3.7861, } ], ) mock_logger.info.assert_called() @patch("db_helper_manager.commands.logger") @patch("db_helper_manager.commands.csv.writer") @patch("builtins.open") @patch("db_helper_manager.commands.Session.execute") def test_fetch_product_data_as_csv( self, mock_session, mock_open, mock_writer, mock_logger ): mock_session.return_value = [["fake1"], ["fake2"]] self.manager.fetch_product_data_as_csv() mock_open.assert_called_once_with("products.csv", "w", newline="") expected_calls = [call(self.manager.fields), call(["fake1"]), call(["fake2"])] mock_writer().writerow.assert_has_calls(expected_calls) mock_logger.info.assert_called_once_with("Data successfully downloaded.") @patch("db_helper_manager.commands.UpdateUnitPrices.update_unit_prices") @patch("db_helper_manager.commands.FetchProductData.fetch_product_data_as_csv") def test_execute_command(self, mock_fetch_data, mock_update_prices): self.manager.execute_command("fetch_product_data_as_csv") mock_fetch_data.assert_called_once() self.manager.execute_command("update_unit_prices") mock_update_prices.assert_called_once() @patch("db_helper_manager.commands.Commands.print_command_list") def test_execute_command_when_wrong_command(self, mock_print_command_list): self.manager.execute_command("wrong_command") mock_print_command_list.assert_called_once() @patch("builtins.print") def test_execute_command_when_wrong_args(self, mock_print): self.manager.execute_command("update_unit_prices", "arg1", "arg2") mock_print.assert_called_once_with( "update_unit_prices() takes 1 positional argument but 3 were given" ) @patch("db_helper_manager.commands.logger") @patch("db_helper_manager.commands.UpdateUnitPrices.update_unit_prices") def test_execute_command_when_error(self, mock_update_prices, mock_logger): mock_update_prices.side_effect = Exception("Exception occurred") self.manager.execute_command("update_unit_prices") mock_logger.exception.assert_called_once_with(mock_update_prices.side_effect) if __name__ == "__main__": unittest.main()
0f7bf9ae5f1cdcff88b17c9469e88632bb26be4e
a66fd9c13d2705c1603fb10909ee9074659a1055
/03_DNN_Mnist_fashion_keras.py
c0a6cdfbd29ac3338e5ef1a6397a646da341b9f2
[]
no_license
lhs7091/pythonTensor2
feaf609402b2e2cc7c02ec00704a1430e309ef8a
0c5e7165c1e2b1e99b68ab932f811facf2b01043
refs/heads/master
2021-02-27T03:09:47.524839
2020-03-08T07:00:05
2020-03-08T07:00:05
245,572,642
0
0
null
null
null
null
UTF-8
Python
false
false
1,798
py
from tensorflow.keras.datasets import fashion_mnist from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow_core.python.keras.layers import Flatten import matplotlib.pyplot as plt import numpy as np import random (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() labels = {0:'T-shirt/top', 1:'Trouser', 2:'Pullover', 3:'Dress', 4:'Coat', 5:'Sandal', 6:'Shirt', 7:'Sneaker', 8:'Bag', 9:'Ankle Boot'} # dataset reshape # array -> category y_train = to_categorical(y_train) y_test = to_categorical(y_test) # scaling X_train = X_train/255.0 X_test = X_test/255.0 # modeling model = Sequential() model.add(Dense(784, input_shape=(28,28,), activation='relu')) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='softmax')) model.summary() #compiling models model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # input dataset in model model.fit(X_train, y_train, batch_size=200, epochs=1, validation_split=0.2) ''' 48000/48000 [==============================] - 22s 462us/sample - loss: 0.2445 - accuracy: 0.9248 - val_loss: 0.1263 - val_accuracy: 0.9633 ''' # evaluation score = model.evaluate(X_test, y_test) print(score) ''' 10000/10000 [==============================] - 2s 202us/sample - loss: 0.1285 - accuracy: 0.9611 [0.12847008485868572, 0.9611] ''' # real prediction prediction = model.predict(X_test) r = random.randint(0, y_test.shape[0]) print('label:', labels[np.argmax(y_test[r])]) print('prediction:', labels[np.argmax(prediction[r])]) plt.imshow(X_test[r].reshape(28,28), cmap='binary') plt.show()
5d5b705d1c703cf8488a9563e05ea926887c8877
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/peloponnesu.py
6fbbdafbe76f4be8b8f9caacd5b6311dc135d866
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
64
py
ii = [('SadlMLP.py', 4), ('LeakWTI2.py', 6), ('LeakWTI3.py', 9)]
5057caf33a6154adae0ac28b4e9273bbacfadc58
5c023a6597cef23ab841b33179ee8a3f0750b0a3
/tensorflow_asr/featurizers/text_featurizers.py
c175a09a54f886b3a45f8196e417f9c0fb924991
[ "Apache-2.0" ]
permissive
dathudeptrai/TensorFlowASR
43a55850ad62f5a51b6587ef54df73a0e0109ca7
72cd5d2b932d66ddd61e79ab41bb0d64cb8c4919
refs/heads/main
2022-12-29T01:12:44.175317
2020-10-18T11:57:05
2020-10-18T11:57:05
305,675,364
1
0
Apache-2.0
2020-10-20T10:42:47
2020-10-20T10:42:47
null
UTF-8
Python
false
false
10,599
py
# Copyright 2020 Huy Le Nguyen (@usimarit) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import abc import codecs import unicodedata import numpy as np import tensorflow as tf import tensorflow_datasets as tds from ..utils.utils import preprocess_paths ENGLISH_CHARACTERS = [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "'"] class TextFeaturizer(metaclass=abc.ABCMeta): def __init__(self, decoder_config: dict): self.scorer = None self.decoder_config = decoder_config if self.decoder_config.get("vocabulary", None) is not None: self.decoder_config["vocabulary"] = preprocess_paths(self.decoder_config["vocabulary"]) self.blank = None self.tokens2indices = {} self.tokens = [] self.num_classes = None def preprocess_text(self, text): text = unicodedata.normalize("NFC", text.lower()) return text.strip("\n") # remove trailing newline def add_scorer(self, scorer: any = None): """ Add scorer to this instance """ self.scorer = scorer def normalize_indices(self, indices: tf.Tensor) -> tf.Tensor: """ Remove -1 in indices by replacing them with blanks Args: indices (tf.Tensor): shape any Returns: tf.Tensor: normalized indices with shape same as indices """ with tf.name_scope("normalize_indices"): minus_one = -1 * tf.ones_like(indices, dtype=tf.int32) blank_like = self.blank * tf.ones_like(indices, dtype=tf.int32) return tf.where(indices == minus_one, blank_like, indices) def prepand_blank(self, text: tf.Tensor) -> tf.Tensor: """ Prepand blank index for transducer models """ return tf.concat([[self.blank], text], axis=0) @abc.abstractclassmethod def extract(self, text): raise NotImplementedError() @abc.abstractclassmethod def iextract(self, indices): raise NotImplementedError() @abc.abstractclassmethod def indices2upoints(self, indices): raise NotImplementedError() class CharFeaturizer(TextFeaturizer): """ Extract text feature based on char-level granularity. By looking up the vocabulary table, each line of transcript will be converted to a sequence of integer indexes. """ def __init__(self, decoder_config: dict): """ decoder_config = { "vocabulary": str, "blank_at_zero": bool, "beam_width": int, "lm_config": { ... } } """ super(CharFeaturizer, self).__init__(decoder_config) self.__init_vocabulary() def __init_vocabulary(self): lines = [] if self.decoder_config.get("vocabulary", None) is not None: with codecs.open(self.decoder_config["vocabulary"], "r", "utf-8") as fin: lines.extend(fin.readlines()) else: lines = ENGLISH_CHARACTERS self.blank = 0 if self.decoder_config.get("blank_at_zero", True) else None self.tokens2indices = {} self.tokens = [] index = 1 if self.blank == 0 else 0 for line in lines: line = self.preprocess_text(line) if line.startswith("#") or not line: continue self.tokens2indices[line[0]] = index self.tokens.append(line[0]) index += 1 if self.blank is None: self.blank = len(self.tokens) # blank not at zero self.vocab_array = self.tokens.copy() self.tokens.insert(self.blank, "") # add blank token to tokens self.num_classes = len(self.tokens) self.tokens = tf.convert_to_tensor(self.tokens, dtype=tf.string) self.upoints = tf.squeeze( tf.strings.unicode_decode( self.tokens, "UTF-8").to_tensor(shape=[None, 1]) ) def extract(self, text: str) -> tf.Tensor: """ Convert string to a list of integers Args: text: string (sequence of characters) Returns: sequence of ints in tf.Tensor """ text = self.preprocess_text(text) text = list(text.strip()) # remove trailing space indices = [self.tokens2indices[token] for token in text] return tf.convert_to_tensor(indices, dtype=tf.int32) def iextract(self, indices: tf.Tensor) -> tf.Tensor: """ Convert list of indices to string Args: indices: tf.Tensor with dim [B, None] Returns: transcripts: tf.Tensor of dtype tf.string with dim [B] """ indices = self.normalize_indices(indices) tokens = tf.gather_nd(self.tokens, tf.expand_dims(indices, axis=-1)) with tf.device("/CPU:0"): # string data is not supported on GPU tokens = tf.strings.reduce_join(tokens, axis=-1) return tokens @tf.function( input_signature=[ tf.TensorSpec([None], dtype=tf.int32) ] ) def indices2upoints(self, indices: tf.Tensor) -> tf.Tensor: """ Transform Predicted Indices to Unicode Code Points (for using tflite) Args: indices: tf.Tensor of Classes in shape [None] Returns: unicode code points transcript with dtype tf.int32 and shape [None] """ with tf.name_scope("indices2upoints"): indices = self.normalize_indices(indices) upoints = tf.gather_nd(self.upoints, tf.expand_dims(indices, axis=-1)) return upoints class SubwordFeaturizer(TextFeaturizer): """ Extract text feature based on char-level granularity. By looking up the vocabulary table, each line of transcript will be converted to a sequence of integer indexes. """ def __init__(self, decoder_config: dict, subwords=None): """ decoder_config = { "target_vocab_size": int, "max_subword_length": 4, "max_corpus_chars": None, "reserved_tokens": None, "beam_width": int, "lm_config": { ... } } """ super(SubwordFeaturizer, self).__init__(decoder_config) self.subwords = subwords self.blank = 0 # subword treats blank as 0 self.num_classes = self.subwords.vocab_size # create upoints self.__init_upoints() def __init_upoints(self): text = [""] for idx in np.arange(1, self.num_classes, dtype=np.int32): text.append(self.subwords.decode([idx])) self.upoints = tf.strings.unicode_decode(text, "UTF-8") self.upoints = self.upoints.to_tensor() # [num_classes, max_subword_length] @classmethod def build_from_corpus(cls, decoder_config: dict, corpus_files: list): def corpus_generator(): for file in corpus_files: with open(file, "r", encoding="utf-8") as f: lines = f.read().splitlines() lines = lines[1:] for line in lines: line = line.split("\t") yield line[-1] subwords = tds.features.text.SubwordTextEncoder.build_from_corpus( corpus_generator(), decoder_config.get("target_vocab_size", 1024), decoder_config.get("max_subword_length", 4), decoder_config.get("max_corpus_chars", None), decoder_config.get("reserved_tokens", None) ) return cls(decoder_config, subwords) @classmethod def load_from_file(cls, decoder_config: dict, filename: str = None): if filename is not None: filename_prefix = os.path.splitext(preprocess_paths(filename))[0] else: filename_prefix = decoder_config.get("vocabulary", None) subwords = tds.features.text.SubwordTextEncoder.load_from_file(filename_prefix) return cls(decoder_config, subwords) def extract(self, text: str) -> tf.Tensor: """ Convert string to a list of integers Args: text: string (sequence of characters) Returns: sequence of ints in tf.Tensor """ text = self.preprocess_text(text) text = text.strip() # remove trailing space indices = self.subwords.encode(text) return tf.convert_to_tensor(indices, dtype=tf.int32) def iextract(self, indices: tf.Tensor) -> tf.Tensor: """ Convert list of indices to string Args: indices: tf.Tensor with dim [B, None] Returns: transcripts: tf.Tensor of dtype tf.string with dim [B] """ indices = self.normalize_indices(indices) with tf.device("/CPU:0"): # string data is not supported on GPU def decode(x): if x[0] == self.blank: x = x[1:] return self.subwords.decode(x) text = tf.map_fn( lambda x: tf.numpy_function(decode, inp=[x], Tout=tf.string), indices, fn_output_signature=tf.TensorSpec([], dtype=tf.string) ) return text @tf.function( input_signature=[ tf.TensorSpec([None], dtype=tf.int32) ] ) def indices2upoints(self, indices: tf.Tensor) -> tf.Tensor: """ Transform Predicted Indices to Unicode Code Points (for using tflite) Args: indices: tf.Tensor of Classes in shape [None] Returns: unicode code points transcript with dtype tf.int32 and shape [None] """ with tf.name_scope("indices2upoints"): indices = self.normalize_indices(indices) upoints = tf.gather_nd(self.upoints, tf.expand_dims(indices, axis=-1)) # upoints now has shape [None, max_subword_length] shape = tf.shape(upoints) return tf.reshape(upoints, [shape[0] * shape[1]]) # flatten
a57d0177aa141a526240c03377d48e29c1188e8c
4674b8088ffdf55905d44995f08a0792a3e4cd5c
/tests/hwsim/test_wmediumd.py
d07d5aca2a89ec1860b5a21adaef3d5fef7ab879
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
vanhoefm/krackattacks-scripts
41daca791638a92aa4cfa68a582e46119037560e
4b78669686f74efe664c6543b1b5b1616b22f902
refs/heads/research
2022-10-29T20:21:11.512335
2022-10-16T18:44:41
2022-10-16T18:44:41
107,408,514
2,184
577
NOASSERTION
2021-07-06T12:43:49
2017-10-18T12:58:08
C
UTF-8
Python
false
false
16,000
py
# wmediumd sanity checks # Copyright (c) 2015, Intel Deutschland GmbH # # This software may be distributed under the terms of the BSD license. # See README for more details. import tempfile, os, subprocess, errno, hwsim_utils, time from utils import HwsimSkip from wpasupplicant import WpaSupplicant from tshark import run_tshark from test_ap_open import _test_ap_open from test_wpas_mesh import check_mesh_support, check_mesh_group_added from test_wpas_mesh import check_mesh_peer_connected, add_open_mesh_network from test_wpas_mesh import check_mesh_group_removed class LocalVariables: revs = [] CFG = """ ifaces : { ids = ["%s", "%s" ]; links = ( (0, 1, 30) ); }; """ CFG2 = """ ifaces : { ids = ["%s", "%s", "%s"]; }; model: { type = "prob"; links = ( (0, 1, 0.000000), (0, 2, 0.000000), (1, 2, 1.000000) ); }; """ CFG3 = """ ifaces : { ids = ["%s", "%s", "%s", "%s", "%s" ]; }; model: { type = "prob"; default_prob = 1.0; links = ( (0, 1, 0.000000), (1, 2, 0.000000), (2, 3, 0.000000), (3, 4, 0.000000) ); }; """ def get_wmediumd_version(): if len(LocalVariables.revs) > 0: return LocalVariables.revs; try: verstr = subprocess.check_output(['wmediumd', '-V']) except OSError, e: if e.errno == errno.ENOENT: raise HwsimSkip('wmediumd not available') raise vernum = verstr.split(' ')[1][1:] LocalVariables.revs = vernum.split('.') for i in range(0, len(LocalVariables.revs)): LocalVariables.revs[i] = int(LocalVariables.revs[i]) while len(LocalVariables.revs) < 3: LocalVariables.revs += [0] return LocalVariables.revs; def require_wmediumd_version(major, minor, patch): revs = get_wmediumd_version() if revs[0] < major or revs[1] < minor or revs[2] < patch: raise HwsimSkip('wmediumd v%s.%s.%s is too old for this test' % (revs[0], revs[1], revs[2])) def output_wmediumd_log(p, params, data): log_file = open(os.path.abspath(os.path.join(params['logdir'], 'wmediumd.log')), 'a') log_file.write(data) log_file.close() def start_wmediumd(fn, params): try: p = subprocess.Popen(['wmediumd', '-c', fn], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except OSError, e: if e.errno == errno.ENOENT: raise HwsimSkip('wmediumd not available') raise logs = '' while True: line = p.stdout.readline() if not line: output_wmediumd_log(p, params, logs) raise Exception('wmediumd was terminated unexpectedly') if line.find('REGISTER SENT!') > -1: break logs += line return p def stop_wmediumd(p, params): p.terminate() p.wait() stdoutdata, stderrdata = p.communicate() output_wmediumd_log(p, params, stdoutdata) def test_wmediumd_simple(dev, apdev, params): """test a simple wmediumd configuration""" fd, fn = tempfile.mkstemp() try: f = os.fdopen(fd, 'w') f.write(CFG % (apdev[0]['bssid'], dev[0].own_addr())) f.close() p = start_wmediumd(fn, params) try: _test_ap_open(dev, apdev) finally: stop_wmediumd(p, params) # test that releasing hwsim works correctly _test_ap_open(dev, apdev) finally: os.unlink(fn) def test_wmediumd_path_simple(dev, apdev, params): """test a mesh path""" # 0 and 1 is connected # 0 and 2 is connected # 1 and 2 is not connected # 1 --- 0 --- 2 # | | # +-----X-----+ # This tests if 1 and 2 can communicate each other via 0. require_wmediumd_version(0, 3, 1) fd, fn = tempfile.mkstemp() try: f = os.fdopen(fd, 'w') f.write(CFG2 % (dev[0].own_addr(), dev[1].own_addr(), dev[2].own_addr())) f.close() p = start_wmediumd(fn, params) try: _test_wmediumd_path_simple(dev, apdev) finally: stop_wmediumd(p, params) finally: os.unlink(fn) def _test_wmediumd_path_simple(dev, apdev): for i in range(0, 3): check_mesh_support(dev[i]) add_open_mesh_network(dev[i], freq="2462", basic_rates="60 120 240") # Check for mesh joined for i in range(0, 3): check_mesh_group_added(dev[i]) state = dev[i].get_status_field("wpa_state") if state != "COMPLETED": raise Exception("Unexpected wpa_state on dev" + str(i) + ": " + state) mode = dev[i].get_status_field("mode") if mode != "mesh": raise Exception("Unexpected mode: " + mode) # Check for peer connected check_mesh_peer_connected(dev[0]) check_mesh_peer_connected(dev[0]) check_mesh_peer_connected(dev[1]) check_mesh_peer_connected(dev[2]) # Test connectivity 1->2 and 2->1 hwsim_utils.test_connectivity(dev[1], dev[2]) # Check mpath table on 0 res, data = dev[0].cmd_execute(['iw', dev[0].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev0") if data.find(dev[1].own_addr() + ' ' + dev[1].own_addr()) == -1 or \ data.find(dev[2].own_addr() + ' ' + dev[2].own_addr()) == -1: raise Exception("mpath not found on dev0:\n" + data) if data.find(dev[0].own_addr()) > -1: raise Exception("invalid mpath found on dev0:\n" + data) # Check mpath table on 1 res, data = dev[1].cmd_execute(['iw', dev[1].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev1") if data.find(dev[0].own_addr() + ' ' + dev[0].own_addr()) == -1 or \ data.find(dev[2].own_addr() + ' ' + dev[0].own_addr()) == -1: raise Exception("mpath not found on dev1:\n" + data) if data.find(dev[2].own_addr() + ' ' + dev[2].own_addr()) > -1 or \ data.find(dev[1].own_addr()) > -1: raise Exception("invalid mpath found on dev1:\n" + data) # Check mpath table on 2 res, data = dev[2].cmd_execute(['iw', dev[2].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev2") if data.find(dev[0].own_addr() + ' ' + dev[0].own_addr()) == -1 or \ data.find(dev[1].own_addr() + ' ' + dev[0].own_addr()) == -1: raise Exception("mpath not found on dev2:\n" + data) if data.find(dev[1].own_addr() + ' ' + dev[1].own_addr()) > -1 or \ data.find(dev[2].own_addr()) > -1: raise Exception("invalid mpath found on dev2:\n" + data) # remove mesh groups for i in range(0, 3): dev[i].mesh_group_remove() check_mesh_group_removed(dev[i]) dev[i].dump_monitor() def test_wmediumd_path_ttl(dev, apdev, params): """Mesh path request TTL""" # 0 --- 1 --- 2 --- 3 --- 4 # Test the TTL of mesh path request. # If the TTL is shorter than path, the mesh path request should be dropped. require_wmediumd_version(0, 3, 1) local_dev = [] for i in range(0, 3): local_dev.append(dev[i]) for i in range(5, 7): wpas = WpaSupplicant(global_iface='/tmp/wpas-wlan5') wpas.interface_add("wlan" + str(i)) check_mesh_support(wpas) temp_dev = wpas.request("MESH_INTERFACE_ADD ifname=mesh" + str(i)) if "FAIL" in temp_dev: raise Exception("MESH_INTERFACE_ADD failed") local_dev.append(WpaSupplicant(ifname=temp_dev)) fd, fn = tempfile.mkstemp() try: f = os.fdopen(fd, 'w') f.write(CFG3 % (local_dev[0].own_addr(), local_dev[1].own_addr(), local_dev[2].own_addr(), local_dev[3].own_addr(), local_dev[4].own_addr())) f.close() p = start_wmediumd(fn, params) try: _test_wmediumd_path_ttl(local_dev, True) _test_wmediumd_path_ttl(local_dev, False) finally: stop_wmediumd(p, params) finally: os.unlink(fn) for i in range(5, 7): wpas.interface_remove("wlan" + str(i)) def _test_wmediumd_path_ttl(dev, ok): for i in range(0, 5): check_mesh_support(dev[i]) add_open_mesh_network(dev[i], freq="2462", basic_rates="60 120 240") # Check for mesh joined for i in range(0, 5): check_mesh_group_added(dev[i]) state = dev[i].get_status_field("wpa_state") if state != "COMPLETED": raise Exception("Unexpected wpa_state on dev" + str(i) + ": " + state) mode = dev[i].get_status_field("mode") if mode != "mesh": raise Exception("Unexpected mode: " + mode) # set mesh path request ttl subprocess.check_call([ "iw", "dev", dev[0].ifname, "set", "mesh_param", "mesh_element_ttl=" + ("4" if ok else "3") ]) # Check for peer connected for i in range(0, 5): check_mesh_peer_connected(dev[i]) for i in range(1, 4): check_mesh_peer_connected(dev[i]) # Test connectivity 0->4 and 0->4 hwsim_utils.test_connectivity(dev[0], dev[4], success_expected=ok) # Check mpath table on 0 res, data = dev[0].cmd_execute(['iw', dev[0].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev0") if ok: if data.find(dev[1].own_addr() + ' ' + dev[1].own_addr()) == -1 or \ data.find(dev[4].own_addr() + ' ' + dev[1].own_addr()) == -1: raise Exception("mpath not found on dev0:\n" + data) else: if data.find(dev[1].own_addr() + ' ' + dev[1].own_addr()) == -1 or \ data.find(dev[4].own_addr() + ' 00:00:00:00:00:00') == -1: raise Exception("mpath not found on dev0:\n" + data) if data.find(dev[0].own_addr()) > -1 or \ data.find(dev[2].own_addr()) > -1 or \ data.find(dev[3].own_addr()) > -1: raise Exception("invalid mpath found on dev0:\n" + data) # remove mesh groups for i in range(0, 3): dev[i].mesh_group_remove() check_mesh_group_removed(dev[i]) dev[i].dump_monitor() def test_wmediumd_path_rann(dev, apdev, params): """Mesh path with RANN""" # 0 and 1 is connected # 0 and 2 is connected # 1 and 2 is not connected # 2 is mesh root and RANN enabled # 1 --- 0 --- 2 # | | # +-----X-----+ # This tests if 1 and 2 can communicate each other via 0. require_wmediumd_version(0, 3, 1) fd, fn = tempfile.mkstemp() try: f = os.fdopen(fd, 'w') f.write(CFG2 % (dev[0].own_addr(), dev[1].own_addr(), dev[2].own_addr())) f.close() p = start_wmediumd(fn, params) try: _test_wmediumd_path_rann(dev, apdev) finally: stop_wmediumd(p, params) finally: os.unlink(fn) capfile = os.path.join(params['logdir'], "hwsim0.pcapng") # check Root STA address in root announcement element filt = "wlan.fc.type_subtype == 0x000d && " + \ "wlan_mgt.fixed.mesh_action == 0x01 && " + \ "wlan_mgt.tag.number == 126" out = run_tshark(capfile, filt, [ "wlan.rann.root_sta" ]) if out is None: raise Exception("No captured data found\n") if out.find(dev[2].own_addr()) == -1 or \ out.find(dev[0].own_addr()) > -1 or \ out.find(dev[1].own_addr()) > -1: raise Exception("RANN should be sent by dev2 only:\n" + out) # check RANN interval is in range filt = "wlan.sa == 02:00:00:00:02:00 && " + \ "wlan.fc.type_subtype == 0x000d && " + \ "wlan_mgt.fixed.mesh_action == 0x01 && " + \ "wlan_mgt.tag.number == 126" out = run_tshark(capfile, filt, [ "frame.time_relative" ]) if out is None: raise Exception("No captured data found\n") lines = out.splitlines() prev = float(lines[len(lines) - 1]) for i in reversed(range(1, len(lines) - 1)): now = float(lines[i]) if prev - now < 1.0 or 3.0 < prev - now: raise Exception("RANN interval " + str(prev - now) + "(sec) should be close to 2.0(sec)\n") prev = now # check no one uses broadcast path request filt = "wlan.da == ff:ff:ff:ff:ff:ff && " + \ "wlan.fc.type_subtype == 0x000d && " + \ "wlan_mgt.fixed.mesh_action == 0x01 && " + \ "wlan_mgt.tag.number == 130" out = run_tshark(capfile, filt, [ "wlan.sa", "wlan.da" ]) if out is None: raise Exception("No captured data found\n") if len(out) > 0: raise Exception("invalid broadcast path requests\n" + out) def _test_wmediumd_path_rann(dev, apdev): for i in range(0, 3): check_mesh_support(dev[i]) add_open_mesh_network(dev[i], freq="2462", basic_rates="60 120 240") # Check for mesh joined for i in range(0, 3): check_mesh_group_added(dev[i]) state = dev[i].get_status_field("wpa_state") if state != "COMPLETED": raise Exception("Unexpected wpa_state on dev" + str(i) + ": " + state) mode = dev[i].get_status_field("mode") if mode != "mesh": raise Exception("Unexpected mode: " + mode) # set node 2 as RANN supported root subprocess.check_call(["iw", "dev", dev[0].ifname, "set", "mesh_param", "mesh_hwmp_rootmode=0"]) subprocess.check_call(["iw", "dev", dev[1].ifname, "set", "mesh_param", "mesh_hwmp_rootmode=0"]) subprocess.check_call(["iw", "dev", dev[2].ifname, "set", "mesh_param", "mesh_hwmp_rootmode=4"]) subprocess.check_call(["iw", "dev", dev[2].ifname, "set", "mesh_param", "mesh_hwmp_rann_interval=2000"]) # Check for peer connected check_mesh_peer_connected(dev[0]) check_mesh_peer_connected(dev[0]) check_mesh_peer_connected(dev[1]) check_mesh_peer_connected(dev[2]) # Wait for RANN frame time.sleep(10) # Test connectivity 1->2 and 2->1 hwsim_utils.test_connectivity(dev[1], dev[2]) # Check mpath table on 0 res, data = dev[0].cmd_execute(['iw', dev[0].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev0") if data.find(dev[1].own_addr() + ' ' + dev[1].own_addr()) == -1 or \ data.find(dev[2].own_addr() + ' ' + dev[2].own_addr()) == -1: raise Exception("mpath not found on dev0:\n" + data) if data.find(dev[0].own_addr()) > -1: raise Exception("invalid mpath found on dev0:\n" + data) # Check mpath table on 1 res, data = dev[1].cmd_execute(['iw', dev[1].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev1") if data.find(dev[0].own_addr() + ' ' + dev[0].own_addr()) == -1 or \ data.find(dev[2].own_addr() + ' ' + dev[0].own_addr()) == -1: raise Exception("mpath not found on dev1:\n" + data) if data.find(dev[2].own_addr() + ' ' + dev[2].own_addr()) > -1 or \ data.find(dev[1].own_addr()) > -1: raise Exception("invalid mpath found on dev1:\n" + data) # Check mpath table on 2 res, data = dev[2].cmd_execute(['iw', dev[2].ifname, 'mpath', 'dump']) if res != 0: raise Exception("iw command failed on dev2") if data.find(dev[0].own_addr() + ' ' + dev[0].own_addr()) == -1 or \ data.find(dev[1].own_addr() + ' ' + dev[0].own_addr()) == -1: raise Exception("mpath not found on dev2:\n" + data) if data.find(dev[1].own_addr() + ' ' + dev[1].own_addr()) > -1 or \ data.find(dev[2].own_addr()) > -1: raise Exception("invalid mpath found on dev2:\n" + data) # remove mesh groups for i in range(0, 3): dev[i].mesh_group_remove() check_mesh_group_removed(dev[i]) dev[i].dump_monitor()
f3c08e3555be0e41eba665d9209acaa6a5e26fc8
428328eaaf4011aac9e8cc4aba9329c17fcca4fa
/tests/snippets/chips:newdeco.py
1cb44b66734e36aeda5fdec18968c77e8f5d508a
[ "MIT" ]
permissive
mfkiwl/jurigged
8d732bdf09d43c633241d252228596e39af232e7
34459a5fd3300447ecbc1f943a9939d350639083
refs/heads/master
2023-09-03T22:15:44.480398
2021-11-11T15:24:48
2021-11-11T15:24:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
def crunch(fn): def deco(*args): return fn(*args) + 2 return deco
ebb32f52c472bcc16a1678079beff87a7a0bae7c
4b3883b1591987c6fbcddab7fd2e15d7b7243861
/books/effectivepy-v2/chap7/ad52/encrypt_data.py
9c4eeb95ad2d0770adbea5f23a8c6f6674edb294
[ "MIT" ]
permissive
MerleLiuKun/my-python
41bdbf6e05281728a824e04da043902dc0fd4698
0bec138cc6a9870ca47e0e62e9b92d50fb6cb3d8
refs/heads/master
2021-06-11T10:22:44.948418
2021-06-02T13:08:18
2021-06-02T13:08:18
160,791,142
1
1
MIT
2020-05-19T15:10:00
2018-12-07T07:58:29
Python
UTF-8
Python
false
false
1,231
py
""" """ import os import subprocess def run_encrypt(data): env = os.environ.copy() env["password"] = "zf7ShyBhZOraQDdE/FiZpm/m/8f9X+M1" proc = subprocess.Popen( ["openssl", "enc", "-des3", "-pass", "env:password"], env=env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, ) proc.stdin.write(data) proc.stdin.flush() return proc # procs = [] # for _ in range(3): # data = os.urandom(10) # proc = run_encrypt(data) # procs.append(proc) # # for proc in procs: # out, _ = proc.communicate() # print(out[-10:]) def run_hash(input_stdin): return subprocess.Popen( ["openssl", "dgst", "-whirlpool", "-binary"], stdin=input_stdin, stdout=subprocess.PIPE, ) encrypt_procs = [] hash_procs = [] for _ in range(10): data = os.urandom(100) e_proc = run_encrypt(data) encrypt_procs.append(e_proc) h_proc = run_hash(e_proc.stdout) hash_procs.append(h_proc) e_proc.stdout.close() e_proc.stdout = None for proc in encrypt_procs: proc.communicate() assert proc.returncode == 0 for proc in hash_procs: out, _ = proc.communicate() print(out[-10:]) assert proc.returncode == 0
aaf296fd3b0614fc9cefe51e775d229b510d5319
cf152c053f2cedf819b81c1a746db87e07fe5ded
/DL/day5_buy_apple.py
8e98900ac8a85f86c337ee4b50fefe7e84907b89
[]
no_license
aorura/tensorProject
db684e0b4aa46d9d4afd1c4b9f5bed8aa99a4c06
014db9a8ae8c76299c99f77dafb401cf2e86a3cc
refs/heads/master
2020-03-08T02:18:56.227130
2018-04-06T07:48:41
2018-04-06T07:48:41
127,855,918
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from day5_layer_naive import * apple=100 apple_num=2 tax=1.1 mul_apple_layer=MultiLayer() mul_tax_layer=MultiLayer() #forward apple_price=mul_apple_layer.forward(apple, apple_num) price=mul_tax_layer.forward(apple_price, tax) #backward dprice=1 dapple_price, dtax=mul_tax_layer.backward(dprice) dapple, dapple_num=mul_apple_layer.backward(dapple_price) print("price:", int(price)) print("dapple:", dapple) print("dapple_num:", int(dapple_num)) print("dtax:", dtax)
a261e211d5e2370478f6596bbdebbf0796e8ac1e
725ac5a0bf72829be627bf8dc82fdc51ba0f94ae
/Text_Generation/GPT2_SummaryGen/transformers/tokenization_albert.py
aca0467d085b7801616e74d05a72e5647ffc3490
[]
no_license
shawroad/NLP_pytorch_project
fa14b6e4a156229765e1d552901d0492d8e1def3
1272fed2dc8fef78a9ded0f1ae1644d613a3b57b
refs/heads/master
2023-06-25T02:37:35.503251
2023-06-12T10:57:11
2023-06-12T10:57:11
229,694,655
530
104
null
2020-12-08T09:21:47
2019-12-23T06:54:29
Python
UTF-8
Python
false
false
10,191
py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for ALBERT model.""" import logging import os import unicodedata from shutil import copyfile from .tokenization_utils import PreTrainedTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "albert-base-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-spiece.model", "albert-large-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-spiece.model", "albert-xlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-spiece.model", "albert-xxlarge-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-spiece.model", "albert-base-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-spiece.model", "albert-large-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-spiece.model", "albert-xlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-spiece.model", "albert-xxlarge-v2": "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-spiece.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } SPIECE_UNDERLINE = "▁" class AlbertTokenizer(PreTrainedTokenizer): """ SentencePiece based tokenizer. Peculiarities: - requires `SentencePiece <https://github.com/google/sentencepiece>`_ """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, remove_space=True, keep_accents=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", **kwargs ): super(AlbertTokenizer, self).__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs ) self.max_len_single_sentence = self.max_len - 2 # take into account special tokens self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use AlbertTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece" ) raise self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) @property def vocab_size(self): return len(self.sp_model) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use AlbertTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece" ) raise self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text, sample=False): """ Tokenize a string. """ text = self.preprocess_text(text) if not sample: pieces = self.sp_model.EncodeAsPieces(text) else: pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An ALBERT sequence has the following format: single sequence: [CLS] X [SEP] pair of sequences: [CLS] A [SEP] B [SEP] """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. Args: token_ids_0: list of ids (must not contain special tokens) token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids for sequence pairs already_has_special_tokens: (default False) Set to True if the token list is already formated with special tokens for the model Returns: A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formated with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | first sequence | second sequence if token_ids_1 is None, only returns the first portion of the mask (0's). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory): """ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory. """ if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
453723dc7712c3b5489ebdf23891d325b1e539bd
5864e86954a221d52d4fa83a607c71bacf201c5a
/cherrypy/wsgiserver/ssl_builtin.py
3366c31bd7cd1a1aab714c33fc208694974566ad
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
1,563
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\carbon\common\lib\cherrypy\wsgiserver\ssl_builtin.py try: import ssl except ImportError: ssl = None from cherrypy import wsgiserver class BuiltinSSLAdapter(wsgiserver.SSLAdapter): certificate = None private_key = None def __init__(self, certificate, private_key, certificate_chain = None): if ssl is None: raise ImportError('You must install the ssl module to use HTTPS.') self.certificate = certificate self.private_key = private_key self.certificate_chain = certificate_chain def bind(self, sock): return sock def wrap(self, sock): try: s = ssl.wrap_socket(sock, do_handshake_on_connect=True, server_side=True, certfile=self.certificate, keyfile=self.private_key, ssl_version=ssl.PROTOCOL_SSLv23) except ssl.SSLError as e: if e.errno == ssl.SSL_ERROR_EOF: return (None, {}) if e.errno == ssl.SSL_ERROR_SSL: if e.args[1].endswith('http request'): raise wsgiserver.NoSSLError raise return (s, self.get_environ(s)) def get_environ(self, sock): cipher = sock.cipher() ssl_environ = {'wsgi.url_scheme': 'https', 'HTTPS': 'on', 'SSL_PROTOCOL': cipher[1], 'SSL_CIPHER': cipher[0]} return ssl_environ def makefile(self, sock, mode = 'r', bufsize = -1): return wsgiserver.CP_fileobject(sock, mode, bufsize)
1776ab7f61cbb93d36038bca3bd7e5da8f95f1e4
9e36b3a0a609f862aa2894a1473896c8465c41a1
/arelle/DialogOpenTaxonomyPackage.py
0668077126553bbf9d035a6cfe3ce7daedf03840
[ "Apache-2.0" ]
permissive
marado/Arelle
7cd74a66d19be174c9f1fe66f788dd53447bffac
7ca2bf09c852787cd7a38d68b13c11d5e33e72a2
refs/heads/master
2020-04-08T00:27:54.212337
2011-10-28T17:49:49
2011-10-28T17:49:49
2,658,979
0
0
null
null
null
null
UTF-8
Python
false
false
8,313
py
''' Open Taxonomy Package Dialog: Reads the metadata and prompts the user to pick an entry point. ''' from tkinter import * from tkinter.ttk import * import re, os from arelle.CntlrWinTooltip import ToolTip TAXONOMY_PACKAGE_FILE_NAME = '.taxonomyPackage.xml' ARCHIVE = 1 DISCLOSURE_SYSTEM = 2 def askForEntryPoint(mainWin, filesource): filenames = filesource.dir if filenames is not None: # an IO or other error can return None dialog = DialogOpenTaxonomyPackage(mainWin, ARCHIVE, filesource, filenames, _("Select Entry Point")) if dialog.accepted: if dialog.webUrl: return dialog.webUrl else: return filesource.url return None class DialogOpenTaxonomyPackage(Toplevel): def __init__(self, mainWin, openType, filesource, filenames, title): parent = mainWin.parent super().__init__(parent) self.parent = parent parentGeometry = re.match("(\d+)x(\d+)[+]?([-]?\d+)[+]?([-]?\d+)", parent.geometry()) dialogX = int(parentGeometry.group(3)) dialogY = int(parentGeometry.group(4)) self.accepted = False self.webUrl = None self.transient(self.parent) self.title(title) frame = Frame(self) treeFrame = Frame(frame, width=500) vScrollbar = Scrollbar(treeFrame, orient=VERTICAL) hScrollbar = Scrollbar(treeFrame, orient=HORIZONTAL) self.treeView = Treeview(treeFrame, xscrollcommand=hScrollbar.set, yscrollcommand=vScrollbar.set, columns=2) self.treeView.grid(row=0, column=0, sticky=(N, S, E, W)) hScrollbar["command"] = self.treeView.xview hScrollbar.grid(row=1, column=0, sticky=(E, W)) vScrollbar["command"] = self.treeView.yview vScrollbar.grid(row=0, column=1, sticky=(N, S)) treeFrame.columnconfigure(0, weight=1) treeFrame.rowconfigure(0, weight=1) treeFrame.grid(row=0, column=0, columnspan=4, sticky=(N, S, E, W), padx=3, pady=3) self.treeView.focus_set() # set up treeView widget and tabbed pane self.treeView.column("#0", width=150, anchor="w") self.treeView.heading("#0", text="Name") self.treeView.column("#1", width=350, anchor="w") self.treeView.heading("#1", text="URL") mainWin.showStatus(_("loading archive {0}").format(filesource.url)) self.filesource = filesource self.filenames = filenames selectedNode = None metadata = filesource.file(filesource.url + os.sep + TAXONOMY_PACKAGE_FILE_NAME)[0] try: self.nameToUrls = parseTxmyPkg(mainWin, metadata) except Exception as e: self.close() err = _("Failed to parse metadata; the underlying error was: {0}").format(e) messagebox.showerror(_("Malformed taxonomy package"), err) mainWin.addToLog(err) return for name, urls in self.nameToUrls.items(): displayUrl = urls[1] # display the canonical URL self.treeView.insert("", "end", name, values=[displayUrl], text=name) if selectedNode: self.treeView.see(selectedNode) self.treeView.selection_set(selectedNode) mainWin.showStatus(None) if openType == DISCLOSURE_SYSTEM: y = 3 else: y = 1 okButton = Button(frame, text=_("OK"), command=self.ok) cancelButton = Button(frame, text=_("Cancel"), command=self.close) okButton.grid(row=y, column=2, sticky=(S, E, W), pady=3) cancelButton.grid(row=y, column=3, sticky=(S, E, W), pady=3, padx=3) frame.grid(row=0, column=0, sticky=(N, S, E, W)) frame.columnconfigure(0, weight=1) window = self.winfo_toplevel() window.columnconfigure(0, weight=1) self.geometry("+{0}+{1}".format(dialogX + 50, dialogY + 100)) self.bind("<Return>", self.ok) self.bind("<Escape>", self.close) self.toolTipText = StringVar() self.treeView.bind("<Motion>", self.motion, '+') self.treeView.bind("<Leave>", self.leave, '+') self.toolTipText = StringVar() self.toolTip = ToolTip(self.treeView, textvariable=self.toolTipText, wraplength=640, follow_mouse=True, state="disabled") self.toolTipEpName = None self.protocol("WM_DELETE_WINDOW", self.close) self.grab_set() self.wait_window(self) def ok(self, event=None): selection = self.treeView.selection() if len(selection) > 0: epName = selection[0] #index 0 is the remapped Url, as opposed to the canonical one used for display urlOrFile = self.nameToUrls[epName][0] if not urlOrFile.endswith("/"): # check if it's an absolute URL rather than a path into the archive if urlOrFile.startswith("http://") or urlOrFile.startswith("https://"): self.webUrl = urlOrFile else: # assume it's a path inside the archive: self.filesource.select(urlOrFile) self.accepted = True self.close() def close(self, event=None): self.parent.focus_set() self.destroy() def leave(self, *args): self.toolTipRowId = None def motion(self, *args): epName = self.treeView.identify_row(args[0].y) if epName != self.toolTipEpName: self.toolTipEpName = epName try: epUrl = self.nameToUrls[epName][1] except KeyError: epUrl = None self.toolTip._hide() if epName and epUrl: self.toolTipText.set("{0}\n{1}".format(epName, epUrl)) self.toolTip.configure(state="normal") self.toolTip._schedule() else: self.toolTipText.set("") self.toolTip.configure(state="disabled") from lxml import etree from urllib.parse import urljoin from arelle import Locale def parseTxmyPkg(mainWin, metadataFile): unNamedCounter = 1 currentLang = Locale.getLanguageCode() tree = etree.parse(metadataFile) remappings = dict((m.get("prefix"),m.get("replaceWith")) for m in tree.iter(tag="{http://www.corefiling.com/xbrl/taxonomypackage/v1}remapping")) result = {} for entryPointSpec in tree.iter(tag="{http://www.corefiling.com/xbrl/taxonomypackage/v1}entryPoint"): name = None # find closest match name node given xml:lang match to current language or no xml:lang for nameNode in entryPointSpec.iter(tag="{http://www.corefiling.com/xbrl/taxonomypackage/v1}name"): xmlLang = nameNode.get('{http://www.w3.org/XML/1998/namespace}lang') if name is None or not xmlLang or currentLang == xmlLang: name = nameNode.text if currentLang == xmlLang: # most prefer one with the current locale's language break if not name: name = _("<unnamed {0}>").format(unNamedCounter) unNamedCounter += 1 epDocCount = 0 for epDoc in entryPointSpec.iterchildren("{http://www.corefiling.com/xbrl/taxonomypackage/v1}entryPointDocument"): if epDocCount: mainWin.addToLog(_("WARNING: skipping multiple-document entry point (not supported)")) continue epDocCount += 1 epUrl = epDoc.get('href') base = epDoc.get('{http://www.w3.org/XML/1998/namespace}base') # cope with xml:base if base: resolvedUrl = urljoin(base, epUrl) else: resolvedUrl = epUrl #perform prefix remappings remappedUrl = resolvedUrl for prefix, replace in remappings.items(): remappedUrl = resolvedUrl.replace(prefix, replace, 1) result[name] = (remappedUrl, resolvedUrl) return result
c16203a4ae9e23eee50178108cef12cff2782847
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/merra_scripts/03_model_fitting/merra882/567-tideGauge.py
b9b17c856c072ef1398bd25f5d67edcae774eb05
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
7,041
py
# -*- coding: utf-8 -*- """ Created on Mon May 4 15:51:30 2020 This program is designed to validate a multiple linear regression model by using the KFOLD method @author: Michael Tadesse """ import os import numpy as np import pandas as pd from sklearn import metrics from scipy import stats from datetime import datetime from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler def validate(): """ run KFOLD method for regression """ #defining directories dir_in = "/lustre/fs0/home/mtadesse/merraAllLagged" dir_out = "/lustre/fs0/home/mtadesse/merraLRValidation" surge_path = "/lustre/fs0/home/mtadesse/05_dmax_surge_georef" #cd to the lagged predictors directory os.chdir(dir_in) x = 567 y = 568 #empty dataframe for model validation df = pd.DataFrame(columns = ['tg', 'lon', 'lat', 'num_year', \ 'num_95pcs','corrn', 'rmse']) #looping through for tg in range(x,y): os.chdir(dir_in) tg_name = os.listdir()[tg] print(tg, tg_name) ########################################## #check if this tg is already taken care of ########################################## os.chdir(dir_out) if os.path.isfile(tg_name): return "file already analyzed!" os.chdir(dir_in) #load predictor pred = pd.read_csv(tg_name) pred.drop('Unnamed: 0', axis = 1, inplace = True) #add squared and cubed wind terms (as in WPI model) pickTerms = lambda x: x.startswith('wnd') wndTerms = pred.columns[list(map(pickTerms, pred.columns))] wnd_sqr = pred[wndTerms]**2 wnd_cbd = pred[wndTerms]**3 pred = pd.concat([pred, wnd_sqr, wnd_cbd], axis = 1) #standardize predictor data dat = pred.iloc[:,1:] scaler = StandardScaler() print(scaler.fit(dat)) dat_standardized = pd.DataFrame(scaler.transform(dat), \ columns = dat.columns) pred_standardized = pd.concat([pred['date'], dat_standardized], axis = 1) #load surge data os.chdir(surge_path) surge = pd.read_csv(tg_name) surge.drop('Unnamed: 0', axis = 1, inplace = True) #remove duplicated surge rows surge.drop(surge[surge['ymd'].duplicated()].index, axis = 0, inplace = True) surge.reset_index(inplace = True) surge.drop('index', axis = 1, inplace = True) #adjust surge time format to match that of pred time_str = lambda x: str(datetime.strptime(x, '%Y-%m-%d')) surge_time = pd.DataFrame(list(map(time_str, surge['ymd'])), columns = ['date']) time_stamp = lambda x: (datetime.strptime(x, '%Y-%m-%d %H:%M:%S')) surge_new = pd.concat([surge_time, surge[['surge', 'lon', 'lat']]], axis = 1) #merge predictors and surge to find common time frame pred_surge = pd.merge(pred_standardized, surge_new.iloc[:,:2], on='date', how='right') pred_surge.sort_values(by = 'date', inplace = True) #find rows that have nans and remove them row_nan = pred_surge[pred_surge.isna().any(axis =1)] pred_surge.drop(row_nan.index, axis = 0, inplace = True) pred_surge.reset_index(inplace = True) pred_surge.drop('index', axis = 1, inplace = True) #in case pred and surge don't overlap if pred_surge.shape[0] == 0: print('-'*80) print('Predictors and Surge don''t overlap') print('-'*80) continue pred_surge['date'] = pd.DataFrame(list(map(time_stamp, \ pred_surge['date'])), \ columns = ['date']) #prepare data for training/testing X = pred_surge.iloc[:,1:-1] y = pd.DataFrame(pred_surge['surge']) y = y.reset_index() y.drop(['index'], axis = 1, inplace = True) #apply PCA pca = PCA(.95) pca.fit(X) X_pca = pca.transform(X) #apply 10 fold cross validation kf = KFold(n_splits=10, random_state=29) metric_corr = []; metric_rmse = []; #combo = pd.DataFrame(columns = ['pred', 'obs']) for train_index, test_index in kf.split(X): X_train, X_test = X_pca[train_index], X_pca[test_index] y_train, y_test = y['surge'][train_index], y['surge'][test_index] #train regression model lm = LinearRegression() lm.fit(X_train, y_train) #predictions predictions = lm.predict(X_test) # pred_obs = pd.concat([pd.DataFrame(np.array(predictions)), \ # pd.DataFrame(np.array(y_test))], \ # axis = 1) # pred_obs.columns = ['pred', 'obs'] # combo = pd.concat([combo, pred_obs], axis = 0) #evaluation matrix - check p value if stats.pearsonr(y_test, predictions)[1] >= 0.05: print("insignificant correlation!") continue else: print(stats.pearsonr(y_test, predictions)) metric_corr.append(stats.pearsonr(y_test, predictions)[0]) print(np.sqrt(metrics.mean_squared_error(y_test, predictions))) metric_rmse.append(np.sqrt(metrics.mean_squared_error(y_test, predictions))) #number of years used to train/test model num_years = (pred_surge['date'][pred_surge.shape[0]-1] -\ pred_surge['date'][0]).days/365 longitude = surge['lon'][0] latitude = surge['lat'][0] num_pc = X_pca.shape[1] #number of principal components corr = np.mean(metric_corr) rmse = np.mean(metric_rmse) print('num_year = ', num_years, ' num_pc = ', num_pc ,'avg_corr = ',np.mean(metric_corr), ' - avg_rmse (m) = ', \ np.mean(metric_rmse), '\n') #original size and pca size of matrix added new_df = pd.DataFrame([tg_name, longitude, latitude, num_years, num_pc, corr, rmse]).T new_df.columns = ['tg', 'lon', 'lat', 'num_year', \ 'num_95pcs','corrn', 'rmse'] df = pd.concat([df, new_df], axis = 0) #save df as cs - in case of interruption os.chdir(dir_out) df.to_csv(tg_name) #cd to dir_in os.chdir(dir_in) #run script validate()
fae82bef91113802e227bc3262962a8552bb2235
1e1c85d0d74bc1b111e77f082cd24c94219d7eb0
/VE-Tests/tests/KSTB/android/e2e_tests/__init__.py
007625507185402dd51a842facefeefb7c36e1c3
[]
no_license
anshsaikia/GSSDeliverables-YesProject
b6f5e4de8d853ce21dfe7401c4b9179c40f32a89
ed786ccfd7b8c344802c7ff6d0cfd4afbffe015e
refs/heads/master
2020-04-06T04:07:49.034461
2017-02-24T13:39:48
2017-02-24T13:39:48
83,044,504
1
0
null
null
null
null
UTF-8
Python
false
false
24
py
__author__ = 'tchevall'
aa92cd5b6a1e281f0e443f81d8e6a51fb80d2c9d
a89c80dac438747db4dd60e5f9d35c33d9c231bc
/bootstrap/legacy/container_0/term.py
e44003b63ae8b5c2e4b9c89b9f1c160e69d7eefa
[ "MIT" ]
permissive
Trixter9994/lazero
09cd13e889421d6567b54aeb5142a7a937b1f35f
5a2b7f7499fb11e71885defab130dead7864b9fd
refs/heads/master
2022-12-17T08:40:14.533371
2020-09-22T03:12:04
2020-09-22T03:12:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,377
py
from gi.repository import Gtk, Vte, GLib, Pango, Gio import gi gi.require_version('Gtk', '3.0') gi.require_version('Vte', '2.91') # if you really want to, use java instead to do terminal emulation. # no fucking horrible shits, please? # either replace it or use it. class TheWindow(Gtk.Window): def __init__(self): Gtk.Window.__init__(self, title="GTK3 IDE") self.set_default_size(600, 300) terminal = Vte.Terminal() #pty = terminal.pty_new_sync(Vte.PtyFlags.DEFAULT) pty = Vte.Pty.new_sync(Vte.PtyFlags.DEFAULT) terminal.set_pty(pty) pty.spawn_async( None, ["/bin/python"], None, GLib.SpawnFlags.DO_NOT_REAP_CHILD, None, None, -1, None, self.ready ) # self.terminal.get_pty(self.pty) box = Gtk.Box(orientation=Gtk.Orientation.VERTICAL) scroller = Gtk.ScrolledWindow() scroller.set_hexpand(True) scroller.set_vexpand(True) scroller.add(terminal) box.pack_start(scroller, False, True, 2) self.add(box) def ready(self, pty, task): print('pty ', pty) win = TheWindow() win.connect('destroy', Gtk.main_quit) win.show_all() Gtk.main() # what the heck? # check the implementation of vscode terminal. -> the joke out there.
0bc916255bfd134ba21182595402124b86032802
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_flimflam.py
e214907d239173c947b6d0e4fe3c7014e4c32002
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
330
py
#calss header class _FLIMFLAM(): def __init__(self,): self.name = "FLIMFLAM" self.definitions = [u'talk that is confusing and intended to deceive'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
2040a05f18652b0a19ade2c74ef5fe69dd3abe92
e99d2630e6acd8d2496c77c8ee215f9d82a610b8
/tests/test_bazel_workspace.py
39b7e0e615eae59d9777ea9d20496be15527d46a
[ "Apache-2.0" ]
permissive
useblocks/sphinx-bazel
0acbbc13331356a871e5a75ebadee2b2158c4df7
38f5403393eb08f651100b21648efe2af6b4b047
refs/heads/master
2021-08-22T22:31:20.339073
2021-06-18T04:53:57
2021-06-18T04:53:57
171,243,259
11
4
Apache-2.0
2021-06-18T04:53:58
2019-02-18T08:23:47
Python
UTF-8
Python
false
false
426
py
try: from pathlib import Path except ImportError: from pathlib2 import Path from sphinx_testing import with_app @with_app(buildername='html', srcdir='doc_test/bazel_workspace') # , warningiserror=True) def test_bazel_workspace(app, status, warning): app.build() html = Path(app.outdir, 'index.html').read_text() assert 'workspace-my_workspace_name' in html assert 'workspace description' in html
21d83e44ad8d952e8947a946bf94f29b3f270b16
de4d88db6ea32d20020c169f734edd4b95c3092d
/aiotdlib/api/types/basic_group.py
b64635412e5b8db8ca6213e66e871468534ccc6b
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
thiagosm/aiotdlib
5cc790a5645f7e4cc61bbd0791433ed182d69062
4528fcfca7c5c69b54a878ce6ce60e934a2dcc73
refs/heads/main
2023-08-15T05:16:28.436803
2021-10-18T20:41:27
2021-10-18T20:41:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,529
py
# =============================================================================== # # # # This file has been generated automatically!! Do not change this manually! # # # # =============================================================================== # from __future__ import annotations from pydantic import Field from .chat_member_status import ChatMemberStatus from ..base_object import BaseObject class BasicGroup(BaseObject): """ Represents a basic group of 0-200 users (must be upgraded to a supergroup to accommodate more than 200 users) :param id: Group identifier :type id: :class:`int` :param member_count: Number of members in the group :type member_count: :class:`int` :param status: Status of the current user in the group :type status: :class:`ChatMemberStatus` :param is_active: True, if the group is active :type is_active: :class:`bool` :param upgraded_to_supergroup_id: Identifier of the supergroup to which this group was upgraded; 0 if none :type upgraded_to_supergroup_id: :class:`int` """ ID: str = Field("basicGroup", alias="@type") id: int member_count: int status: ChatMemberStatus is_active: bool upgraded_to_supergroup_id: int @staticmethod def read(q: dict) -> BasicGroup: return BasicGroup.construct(**q)
2bf06aaed7534278af8791becf25639426bcc480
cf5f24e5a32f8cafe90d4253d727b1c0457da6a4
/algorithm/boj_16985.py
a3f12c8374c713064a9eea0eb995f12079fa3a68
[]
no_license
seoljeongwoo/learn
537659ca942875f6846646c2e21e1e9f2e5b811e
5b423e475c8f2bc47cb6dee09b8961d83ab08568
refs/heads/main
2023-05-04T18:07:27.592058
2021-05-05T17:32:50
2021-05-05T17:32:50
324,725,000
0
1
null
null
null
null
UTF-8
Python
false
false
2,164
py
import sys from itertools import permutations from collections import deque input =sys.stdin.readline ret = int(1e9) def range_check(x,y,z): return 0<=x<5 and 0<=y<5 and 0<=z<5 def rotate(temp, h): new_temp = [ [ 0 for i in range(5)] for j in range(5)] for i in range(5): for j in range(5): new_temp[4-j][i] = temp[h][i][j] for i in range(5): for j in range(5): temp[h][i][j] = new_temp[i][j] return temp def bfs(temp): global ret q = deque() if temp[0][0][0] == 0: return q.append((0,0,0)) check = [[[-1 for row in range(5)] for col in range(5)] for height in range(5)] check[0][0][0] = 0 while q: cx, cy, cz = q.popleft() for dx, dy, dz in direction: nx,ny,nz = cx+dx, cy+dy, cz+dz if range_check(nx, ny, nz) == False : continue if check[nx][ny][nz] != -1 or temp[nx][ny][nz] == 0: continue check[nx][ny][nz] = check[cx][cy][cz] +1 if check[nx][ny][nz] >= ret: return q.append((nx,ny,nz)) if check[4][4][4] == -1: return ret = min(ret, check[4][4][4]) if ret == 12: print(12); exit(0) return def solve(per): global ret v = [[[0 for row in range(5)] for col in range(5)] for height in range(5)] for index,height in enumerate(per): for row in range(5): for col in range(5): v[index][row][col] = board[height][row][col] for i in range(4): v = rotate(v,0) for j in range(4): v = rotate(v,1) for k in range(4): v = rotate(v,2) for l in range(4): v = rotate(v,3) for m in range(4): v = rotate(v,4) bfs(v) return board = [] direction = [(0,0,1), (0,0,-1), (1,0,0), (-1,0,0) , (0,1,0) , (0,-1,0)] for height in range(5): floor = [] for row in range(5): floor.append(list(map(int,input().split()))) board.append(floor) for data in list(permutations([i for i in range(5)],5)): solve(data) if ret == int(1e9): ret = -1 print(ret)
c962789a0d7a79b73036d4123cbdfae8ad0b8b3e
bfe6c95fa8a2aae3c3998bd59555583fed72900a
/reachNumber.py
c529cd721779f2e52f7d23adbc52206920abdac0
[]
no_license
zzz136454872/leetcode
f9534016388a1ba010599f4771c08a55748694b2
b5ea6c21bff317884bdb3d7e873aa159b8c30215
refs/heads/master
2023-09-01T17:26:57.624117
2023-08-29T03:18:56
2023-08-29T03:18:56
240,464,565
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
class Solution: def reachNumber(self, target: int) -> int: k = 0 s = 0 target = abs(target) while s < target: k += 1 s += k d = s - target if d % 2 == 0: return k k += 1 if (k - d) % 2 != 0: k += 1 return k target = 2 print(Solution().reachNumber(target))
5e24b2565a618ba55d6cd3076b1e53d6d810773b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02615/s526468670.py
459df95840e8558c1521ce47d258b9055f356cf3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
n = int(input()) la = list(map(int, input().split())) la.sort(reverse=True) answer = la[0] for i in range(n - 2): answer += la[1 + i // 2] print(answer)
9053f5b0f20440d4b3ba686f4971f8d31a94cc3b
9af995f2908b986211d76ea4a1cefe01ecca9cb3
/paddlehub/finetune/task/sequence_task.py
9ebfc1ae831a79f21d9a934e9adcfa42867f3af8
[]
no_license
wuhuaha/beike
94b5477fcb99b12e15a6c87911ec0f872ff9d1a0
076d5e594d0b129574d11d097b910471f2b4bdd0
refs/heads/main
2023-01-06T17:21:41.475137
2020-11-12T14:08:49
2020-11-12T14:08:49
309,097,633
1
0
null
null
null
null
UTF-8
Python
false
false
10,029
py
# coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from collections import OrderedDict import numpy as np import paddle.fluid as fluid from paddlehub.finetune.evaluate import chunk_eval, calculate_f1 from paddlehub.common.logger import logger from .base_task import BaseTask class SequenceLabelTask(BaseTask): def __init__(self, feature, max_seq_len, num_classes, dataset=None, feed_list=None, data_reader=None, startup_program=None, config=None, metrics_choices="default", add_crf=False): if metrics_choices == "default": metrics_choices = ["f1", "precision", "recall"] self.add_crf = add_crf main_program = feature.block.program super(SequenceLabelTask, self).__init__( dataset=dataset, data_reader=data_reader, main_program=main_program, feed_list=feed_list, startup_program=startup_program, config=config, metrics_choices=metrics_choices) self.feature = feature self.max_seq_len = max_seq_len self.num_classes = num_classes @property def return_numpy(self): if self.add_crf: return False else: return True def _build_net(self): self.seq_len = fluid.layers.data( name="seq_len", shape=[1], dtype='int64', lod_level=0) self.seq_len_used = fluid.layers.squeeze(self.seq_len, axes=[1]) if self.add_crf: unpad_feature = fluid.layers.sequence_unpad( self.feature, length=self.seq_len_used) self.emission = fluid.layers.fc( size=self.num_classes, input=unpad_feature, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform(low=-0.1, high=0.1), regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=1e-4))) size = self.emission.shape[1] fluid.layers.create_parameter( shape=[size + 2, size], dtype=self.emission.dtype, name='crfw') self.ret_infers = fluid.layers.crf_decoding( input=self.emission, param_attr=fluid.ParamAttr(name='crfw')) ret_infers = fluid.layers.assign(self.ret_infers) return [ret_infers] else: self.logits = fluid.layers.fc( input=self.feature, size=self.num_classes, num_flatten_dims=2, param_attr=fluid.ParamAttr( name="cls_seq_label_out_w", initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name="cls_seq_label_out_b", initializer=fluid.initializer.Constant(0.))) self.ret_infers = fluid.layers.reshape( x=fluid.layers.argmax(self.logits, axis=2), shape=[-1, 1]) logits = self.logits logits = fluid.layers.flatten(logits, axis=2) logits = fluid.layers.softmax(logits) self.num_labels = logits.shape[1] return [logits] def _add_label(self): label = fluid.layers.data( name="label", shape=[self.max_seq_len, 1], dtype='int64') return [label] def _add_loss(self): if self.add_crf: labels = fluid.layers.sequence_unpad(self.labels[0], self.seq_len_used) crf_cost = fluid.layers.linear_chain_crf( input=self.emission, label=labels, param_attr=fluid.ParamAttr(name='crfw')) loss = fluid.layers.mean(x=crf_cost) else: labels = fluid.layers.flatten(self.labels[0], axis=2) ce_loss = fluid.layers.cross_entropy( input=self.outputs[0], label=labels) loss = fluid.layers.mean(x=ce_loss) return loss def _add_metrics(self): if self.add_crf: labels = fluid.layers.sequence_unpad(self.labels[0], self.seq_len_used) (precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) = fluid.layers.chunk_eval( input=self.outputs[0], label=labels, chunk_scheme="IOB", num_chunk_types=int(np.ceil((self.num_classes - 1) / 2.0))) chunk_evaluator = fluid.metrics.ChunkEvaluator() chunk_evaluator.reset() return [precision, recall, f1_score] else: self.ret_labels = fluid.layers.reshape( x=self.labels[0], shape=[-1, 1]) return [self.ret_labels, self.ret_infers, self.seq_len_used] def _calculate_metrics(self, run_states): total_infer = total_label = total_correct = loss_sum = 0 run_step = run_time_used = run_examples = 0 precision_sum = recall_sum = f1_score_sum = 0 for run_state in run_states: loss_sum += np.mean(run_state.run_results[-1]) if self.add_crf: precision_sum += np.mean( run_state.run_results[0]) * run_state.run_examples recall_sum += np.mean( run_state.run_results[1]) * run_state.run_examples f1_score_sum += np.mean( run_state.run_results[2]) * run_state.run_examples else: np_labels = run_state.run_results[0] np_infers = run_state.run_results[1] np_lens = run_state.run_results[2] label_num, infer_num, correct_num = chunk_eval( np_labels, np_infers, np_lens, self.num_labels, self.device_count) total_infer += infer_num total_label += label_num total_correct += correct_num run_examples += run_state.run_examples run_step += run_state.run_step run_time_used = time.time() - run_states[0].run_time_begin run_speed = run_step / run_time_used avg_loss = loss_sum / run_examples if self.add_crf: precision = precision_sum / run_examples recall = recall_sum / run_examples f1 = f1_score_sum / run_examples else: precision, recall, f1 = calculate_f1(total_label, total_infer, total_correct) # The first key will be used as main metrics to update the best model scores = OrderedDict() for metric in self.metrics_choices: if metric == "precision": scores["precision"] = precision elif metric == "recall": scores["recall"] = recall elif metric == "f1": scores["f1"] = f1 else: raise ValueError("Not Support Metric: \"%s\"" % metric) return scores, avg_loss, run_speed @property def feed_list(self): if self._compatible_mode: feed_list = [varname for varname in self._base_feed_list] if self.is_train_phase or self.is_test_phase: feed_list += [self.labels[0].name, self.seq_len.name] else: feed_list += [self.seq_len.name] else: feed_list = super(SequenceLabelTask, self).feed_list return feed_list @property def fetch_list(self): if self.is_train_phase or self.is_test_phase: return [metric.name for metric in self.metrics] + [self.loss.name] elif self.is_predict_phase: return [self.ret_infers.name] + [self.seq_len_used.name] return [output.name for output in self.outputs] def _postprocessing(self, run_states): if self._compatible_mode: id2label = { val: key for key, val in self._base_data_reader.label_map.items() } else: if self._label_list: id2label = {} for index, label in enumerate(self._label_list): id2label[index] = label else: logger.warning( "Fail to postprocess the predict output. Please set label_list parameter in predict function or initialize the task with dataset parameter." ) return run_states results = [] for batch_states in run_states: batch_results = batch_states.run_results batch_infers = batch_results[0].reshape([-1]).astype( np.int32).tolist() seq_lens = batch_results[1].reshape([-1]).astype(np.int32).tolist() current_id = 0 for length in seq_lens: seq_infers = batch_infers[current_id:current_id + length] seq_result = list(map(id2label.get, seq_infers[1:-1])) current_id += length if self.add_crf else self.max_seq_len results.append(seq_result) return results
c02f8f5bb55fb908952922011688ba908edcb9c1
19ea2c6fe2896807cd3db08109a80f0fcd303beb
/2021_03/03_12/CH04/013_Reversed_For01.py
b499b4f0f24761f42264e8a317f63d7fa3367044
[]
no_license
ITlearning/ROKA_Python
8078528eda10eab035f06a69a3278ff21d167df2
d165fc2f276765a43bc859f556e76aaea779641f
refs/heads/main
2023-03-26T07:47:17.164024
2021-03-27T14:22:54
2021-03-27T14:22:54
345,230,355
1
0
null
null
null
null
UTF-8
Python
false
false
143
py
# 반대로 반복하기(1) for i in range(4,-1, -1) : print("현재 반복 변수 : {}".format(i)) # range() 매개변수 3개 방법
58d5dca55a3bf9e020bcac0e1af8db7b09471366
2f64dddf0d5df9df42b1c93d8f946c788d19fef0
/scruffy/env.py
d760d1cfc7f78a3af7918160f96c5a9756ae2065
[]
no_license
tmr232/scruffy
41d2598d0b15b8eefd8ab038b1411eb8c384b836
3c35369a5a7b67e934d59c321439e3d3e5495970
refs/heads/master
2021-01-17T14:18:58.418097
2015-02-26T11:52:25
2015-02-26T11:52:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,835
py
import os import yaml import itertools import errno import logging import logging.config from .directory import Directory from .plugin import PluginManager from .config import ConfigNode, Config, ConfigEnv, ConfigApplicator class Environment(object): """ An environment in which to run a program """ def __init__(self, setup_logging=True, *args, **kwargs): self._pm = PluginManager() self._children = {} self.config = None # find a config if we have one and load it self.config = self.find_config(kwargs) if self.config: self.config.load() # setup logging if setup_logging: if self.config != None and self.config.logging.dict_config != None: # configure logging from the configuration logging.config.dictConfig(self.config.logging.dict_config.to_dict()) else: # no dict config, set up a basic config so we at least get messages logged to stdout log = logging.getLogger() log.setLevel(logging.INFO) if len(list(filter(lambda h: isinstance(h, logging.StreamHandler), log.handlers))) == 0: log.addHandler(logging.StreamHandler()) # add children self.add(**kwargs) def __enter__(self): return self def __exit__(self, type, value, traceback): self.cleanup() def __getitem__(self, key): return self._children[key] def __getattr__(self, key): return self._children[key] def find_config(self, children): """ Find a config in our children so we can fill in variables in our other children with its data. """ named_config = None found_config = None # first see if we got a kwarg named 'config', as this guy is special if 'config' in children: if type(children['config']) == str: children['config'] = ConfigFile(children['config']) elif isinstance(children['config'], Config): children['config'] = children['config'] elif type(children['config']) == dict: children['config'] = Config(data=children['config']) else: raise TypeError("Don't know how to turn {} into a Config".format(type(children['config']))) named_config = children['config'] # next check the other kwargs for k in children: if isinstance(children[k], Config): found_config = children[k] # if we still don't have a config, see if there's a directory with one for k in children: if isinstance(children[k], Directory): for j in children[k]._children: if j == 'config' and not named_config: named_config = children[k]._children[j] if isinstance(children[k]._children[j], Config): found_config = children[k]._children[j] if named_config: return named_config else: return found_config def add(self, **kwargs): """ Add objects to the environment. """ for key in kwargs: if type(kwargs[key]) == str: self._children[key] = Directory(kwargs[key]) else: self._children[key] = kwargs[key] self._children[key]._env = self self._children[key].apply_config(ConfigApplicator(self.config)) self._children[key].prepare() def cleanup(self): """ Clean up the environment """ for key in self._children: self._children[key].cleanup() @property def plugins(self): return self._pm.plugins
8e6ddac527a835923457ffb56b86e80403bcc21e
c672675d505f1b0dafb4b81141644caedf24cdef
/CADRE/power_dymos/power_cell_voltage.py
1190bedce22ea57736456b93baa146f986dc045b
[ "Apache-2.0" ]
permissive
johnjasa/CADRE
aa63c7fa9466dc1839b454f2484346e57204dc8a
a4ffd61582b8474953fc309aa540838a14f29dcf
refs/heads/master
2020-04-07T03:19:57.501186
2018-11-17T19:15:10
2018-11-17T19:15:10
158,012,106
0
0
Apache-2.0
2018-11-17T18:17:53
2018-11-17T18:17:53
null
UTF-8
Python
false
false
4,874
py
""" Power discipline for CADRE: Power Cell Voltage component. """ from __future__ import print_function, division, absolute_import from six.moves import range import os import numpy as np from openmdao.api import ExplicitComponent from MBI import MBI class PowerCellVoltage(ExplicitComponent): """ Compute the output voltage of the solar panels. """ def initialize(self): fpath = os.path.dirname(os.path.realpath(__file__)) self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") self.options.declare('filename', fpath + '/../data/Power/curve.dat', desc="File containing surrogate model for voltage.") def setup(self): nn = self.options['num_nodes'] filename = self.options['filename'] dat = np.genfromtxt(filename) nT, nA, nI = dat[:3] nT = int(nT) nA = int(nA) nI = int(nI) T = dat[3:3 + nT] A = dat[3 + nT:3 + nT + nA] I = dat[3 + nT + nA:3 + nT + nA + nI] # noqa: E741 V = dat[3 + nT + nA + nI:].reshape((nT, nA, nI), order='F') self.MBI = MBI(V, [T, A, I], [6, 6, 15], [3, 3, 3]) self.x = np.zeros((84 * nn, 3), order='F') self.xV = self.x.reshape((nn, 7, 12, 3), order='F') # Inputs self.add_input('LOS', np.zeros((nn, )), units=None, desc='Line of Sight over Time') self.add_input('temperature', np.zeros((nn, 5)), units='degK', desc='Temperature of solar cells over time') self.add_input('exposed_area', np.zeros((nn, 7, 12)), units='m**2', desc='Exposed area to sun for each solar cell over time') self.add_input('Isetpt', np.zeros((nn, 12)), units='A', desc='Currents of the solar panels') # Outputs self.add_output('V_sol', np.zeros((nn, 12)), units='V', desc='Output voltage of solar panel over time') rows = np.arange(nn*12) cols = np.tile(np.repeat(0, 12), nn) + np.repeat(np.arange(nn), 12) self.declare_partials('V_sol', 'LOS', rows=rows, cols=cols) row = np.tile(np.repeat(0, 5), 12) + np.repeat(np.arange(12), 5) rows = np.tile(row, nn) + np.repeat(12*np.arange(nn), 60) col = np.tile(np.arange(5), 12) cols = np.tile(col, nn) + np.repeat(5*np.arange(nn), 60) self.declare_partials('V_sol', 'temperature', rows=rows, cols=cols) row = np.tile(np.arange(12), 7) rows = np.tile(row, nn) + np.repeat(12*np.arange(nn), 84) cols = np.arange(nn*7*12) self.declare_partials('V_sol', 'exposed_area', rows=rows, cols=cols) row_col = np.arange(nn*12) self.declare_partials('V_sol', 'Isetpt', rows=row_col, cols=row_col) def setx(self, inputs): temperature = inputs['temperature'] LOS = inputs['LOS'] exposed_area = inputs['exposed_area'] Isetpt = inputs['Isetpt'] for p in range(12): i = 4 if p < 4 else (p % 4) for c in range(7): self.xV[:, c, p, 0] = temperature[:, i] self.xV[:, c, p, 1] = LOS * exposed_area[:, c, p] self.xV[:, c, p, 2] = Isetpt[:, p] def compute(self, inputs, outputs): """ Calculate outputs. """ nn = self.options['num_nodes'] self.setx(inputs) self.raw = self.MBI.evaluate(self.x)[:, 0].reshape((nn, 7, 12), order='F') outputs['V_sol'] = np.zeros((nn, 12)) for c in range(7): outputs['V_sol'] += self.raw[:, c, :] def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ nn = self.options['num_nodes'] exposed_area = inputs['exposed_area'] LOS = inputs['LOS'] raw1 = self.MBI.evaluate(self.x, 1)[:, 0].reshape((nn, 7, 12), order='F') raw2 = self.MBI.evaluate(self.x, 2)[:, 0].reshape((nn, 7, 12), order='F') raw3 = self.MBI.evaluate(self.x, 3)[:, 0].reshape((nn, 7, 12), order='F') dV_dL = np.empty((nn, 12)) dV_dT = np.zeros((nn, 12, 5)) dV_dA = np.zeros((nn, 7, 12)) dV_dI = np.empty((nn, 12)) for p in range(12): i = 4 if p < 4 else (p % 4) for c in range(7): dV_dL[:, p] += raw2[:, c, p] * exposed_area[:, c, p] dV_dT[:, p, i] += raw1[:, c, p] dV_dA[:, c, p] += raw2[:, c, p] * LOS dV_dI[:, p] += raw3[:, c, p] partials['V_sol', 'LOS'] = dV_dL.flatten() partials['V_sol', 'temperature'] = dV_dT.flatten() partials['V_sol', 'exposed_area'] = dV_dA.flatten() partials['V_sol', 'Isetpt'] = dV_dI.flatten()
950676821e3247a2de1ac3ab907345178473721e
69bfed466017c654c5d24a3e735430c4dc138af4
/src/settings.py
fc9c4e70c37f0bca34b88ed0a4c3fc0d16a4d2e2
[ "MIT" ]
permissive
kartagis/lucy
20579fe1776cb6a2cfda2c26212d3d63be8829be
45de24c0b01dfb9329eb31a1bd705df5b26e84a3
refs/heads/master
2021-01-23T15:27:20.420914
2017-09-07T08:08:14
2017-09-07T08:08:14
102,708,901
0
0
null
2017-09-07T08:00:34
2017-09-07T08:00:34
null
UTF-8
Python
false
false
397
py
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base db_name = "db/filop.db" Base = declarative_base() def session(db_name = db_name): engine = create_engine('sqlite:///{}'.format(db_name)) session = sessionmaker() session.configure(bind=engine) Base.metadata.create_all(engine) return session()
ddfa181471cceb2fcfaedc2db33679d4f3c3ae67
a3d6556180e74af7b555f8d47d3fea55b94bcbda
/third_party/blink/renderer/core/url_pattern/DEPS
7c671850403fe157f8234a4a1b325f2ab5b091ee
[ "LGPL-2.0-or-later", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-1.0-or-later", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft", "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
chromium/chromium
aaa9eda10115b50b0616d2f1aed5ef35d1d779d6
a401d6cf4f7bf0e2d2e964c512ebb923c3d8832c
refs/heads/main
2023-08-24T00:35:12.585945
2023-08-23T22:01:11
2023-08-23T22:01:11
120,360,765
17,408
7,102
BSD-3-Clause
2023-09-10T23:44:27
2018-02-05T20:55:32
null
UTF-8
Python
false
false
277
# Copyright 2020 The Chromium Authors # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. include_rules = [ "+base/strings/string_util.h", "+third_party/liburlpattern", "+url/url_canon.h", "+url/url_util.h", ]
e45f74a36ee23641f9d7cd1fdf8a4ba8f9a3e067
af3ec207381de315f4cb6dddba727d16d42d6c57
/dialogue-engine/test/programytest/processors/post/test_mergechinese.py
94679d64e47a6074fb113389ea20ae7e01be2ae1
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mcf-yuichi/cotoba-agent-oss
02a5554fe81ce21517f33229101013b6487f5404
ce60833915f484c4cbdc54b4b8222d64be4b6c0d
refs/heads/master
2023-01-12T20:07:34.364188
2020-11-11T00:55:16
2020-11-11T00:55:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,284
py
""" Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest from programy.processors.post.mergechinese import MergeChinesePostProcessor from programy.context import ClientContext from programytest.client import TestClient class MergeChineseTests(unittest.TestCase): def test_merge_chinese(self): processor = MergeChinesePostProcessor() context = ClientContext(TestClient(), "testid") result = processor.process(context, "Hello") self.assertIsNotNone(result) self.assertEqual("Hello", result) result = processor.process(context, "Hello World") self.assertIsNotNone(result) self.assertEqual("Hello World", result) result = processor.process(context, "你 好") self.assertIsNotNone(result) self.assertEqual("你好", result) result = processor.process(context, "问 你 好") self.assertIsNotNone(result) self.assertEqual("问你好", result) result = processor.process(context, "XX 你 好") self.assertIsNotNone(result) self.assertEqual("XX 你好", result) result = processor.process(context, "XX 你 好 YY") self.assertIsNotNone(result) self.assertEqual("XX 你好 YY", result)
64b15f566dc2e930a5e0177cd01827d2c16d2e5e
59bd639757fd8afcfdba73298a69482fd1f88069
/cifar10/7_DenseNet/4last-output.py
95b854521d8ef455b564b73ffa226914c451d537
[]
no_license
DeepReduce/DeepReduce
f1e14b985affba2796c80d9e795b36cfd4ed9a55
707c2b411d65ed77967a3d1ea1506a91cc9d4bfd
refs/heads/master
2020-08-01T01:47:23.293453
2020-06-14T18:09:01
2020-06-14T18:09:01
210,813,368
4
1
null
null
null
null
UTF-8
Python
false
false
4,670
py
import keras from keras import optimizers from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D from keras.callbacks import LearningRateScheduler, TensorBoard from keras.models import load_model from collections import defaultdict import numpy as np def init_dict(model, model_layer_dict): for layer in model.layers: if 'flatten' in layer.name or 'input' in layer.name: continue for index in range(layer.output_shape[-1]): model_layer_dict[(layer.name, index)] = False def update_coverage(input_data, model, model_layer_dict, threshold=0.2): layer_names = [layer.name for layer in model.layers if 'flatten' not in layer.name and 'input' not in layer.name] intermediate_layer_model = Model(inputs=model.input, outputs=[model.get_layer(layer_name).output for layer_name in layer_names]) intermediate_layer_outputs = intermediate_layer_model.predict(input_data) for i, intermediate_layer_output in enumerate(intermediate_layer_outputs): scaled = scale(intermediate_layer_output[0]) for num_neuron in xrange(scaled.shape[-1]): if np.mean(scaled[..., num_neuron]) > threshold and not model_layer_dict[(layer_names[i], num_neuron)]: model_layer_dict[(layer_names[i], num_neuron)] = True def neuron_covered(model_layer_dict): covered_neurons = len([v for v in model_layer_dict.values() if v]) total_neurons = len(model_layer_dict) return covered_neurons, total_neurons, covered_neurons / float(total_neurons) def scale(intermediate_layer_output, rmax=1, rmin=0): X_std = (intermediate_layer_output - intermediate_layer_output.min()) / ( intermediate_layer_output.max() - intermediate_layer_output.min()) X_scaled = X_std * (rmax - rmin) + rmin return X_scaled def color_preprocessing(x_train,x_test): x_train = x_train.astype('float32') x_test = x_test.astype('float32') # mean = [125.307, 122.95, 113.865] mean = [123.680, 116.779, 103.939] # std = [62.9932, 62.0887, 66.7048] for i in range(3): x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) return x_train, x_test from keras import backend as K import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" if('tensorflow' == K.backend()): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train, x_test = color_preprocessing(x_train, x_test) model1 = load_model('densenet.h5') print(model1.evaluate(x_test, y_test)) #print(model1.summary()) #input('check...') #for layer in model1.layers: #for index in range(layer.output_shape[-1]): # print(layer.name) # print(layer.output_shape) #print(layer.name) #print(layer.output_shape) #print(layer.output_shape[-1]) #print('----------') model_layer_dict1 = defaultdict(bool) init_dict(model1,model_layer_dict1) #print(model_layer_dict1) #print(len(model_layer_dict1.keys())) #test_image = x_test[0].reshape([1,32,32,3]) #test_image.shape #res = model.predict(test_image) #label = softmax_to_label(res) #print(label) #print(x_test[0]) #print(len(x_test[0])) #print(len(x_test[0][0])) from keras.models import Model #threshold = float(0.5) layer_names = [layer.name for layer in model1.layers if 'flatten' not in layer.name and 'input' not in layer.name] #print(layer_names) #input('check...') #intermediate_layer_model = Model(inputs=model1.input,outputs=[model1.get_layer(layer_name).output for layer_name in layer_names]) intermediate_layer_model = Model(inputs=model1.input, outputs = [model1.get_layer(layer_names[-2]).output]) from tqdm import tqdm cov = [] flag = 0 neuronlist = [] f = open('Cov/cross_entropy','w') for g in tqdm(range(len(x_test))): test_image = x_test[g].reshape([1,32,32,3]) intermediate_layer_outputs = intermediate_layer_model.predict(test_image) #print(type(intermediate_layer_outputs[0])) #print(intermediate_layer_outputs[0]) output = intermediate_layer_outputs[0].tolist() #print(output) #print(intermediate_layer_output[0]) #print(len(intermediate_layer_output[0])) #input('pause...') f.write(str(output) + '\n') f.close()
1e9c16e2b6d642eebb25c59fd0d5220331672fb8
324d8a723bc057b4679014a1a7df08a013f2e237
/torchpack/runner/hooks/logger.py
49251f01012a787560503cb09c3bb34fd5925422
[ "MIT" ]
permissive
lxx1991/torchpack
ff0db24c73479b8d4e1bf77dd5fda4e5a3a7b694
3de04972bca89e0a4c53fa896a4f9f62457adc75
refs/heads/master
2020-03-24T04:05:14.299613
2018-07-26T13:52:38
2018-07-26T13:52:38
142,443,539
0
0
null
2018-07-26T13:17:29
2018-07-26T13:17:29
null
UTF-8
Python
false
false
781
py
from .hook import Hook class LoggerHook(Hook): """Base class for logger hooks.""" def __init__(self, interval=10, reset_meter=True, ignore_last=True): self.interval = interval self.reset_meter = reset_meter self.ignore_last = ignore_last def log(self, runner): pass def log_and_reset(self, runner): self.log(runner) if self.reset_meter: runner.meter.reset() def after_train_iter(self, runner): if not self.every_n_inner_iters(runner, self.interval): if not self.end_of_epoch(runner): return elif self.ignore_last: return self.log_and_reset(runner) def after_val_epoch(self, runner): self.log_and_reset(runner)
2e5b6109e5a9caf2bc44433828a311f4a7bdbc4b
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5686313294495744_0/Python/jessethegame/technobabble.py
4dc584f7ee2f0b34adfcd5dd99e118b303b19b94
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,067
py
from collections import Counter file = 'C-small-attempt0.in' def technobabble(topics): real_firsts = set() real_seconds = set() fakes = 0 while topics: firsts, seconds = zip(*topics) firsts_counter = Counter(firsts) seconds_counter = Counter(seconds) ranked_topics = [((firsts_counter[first] + seconds_counter[second]), first, second) for first, second in topics] highest_first, highest_second = list(sorted(ranked_topics))[0][1:] real_firsts.add(highest_first) real_seconds.add(highest_second) possible_fakes = len(topics) - 1 topics = [(first, second) for first, second in topics if not first in real_firsts or not second in real_seconds] fakes += possible_fakes - len(topics) return fakes with open(file) as handle: T = int(handle.readline()) for t in range(T): N = int(handle.readline()) topics = [] for n in range(N): topics.append(handle.readline().strip().split()) print "Case #{}: {}".format(t + 1, technobabble(topics))
c239e77199b80a12345eece29962351d9e9c9e3a
aa4024b6a846d2f6032a9b79a89d2e29b67d0e49
/mbeddr2C_MM/transformation_from_eclipse/Hlayer0rule10.py
bb1691eeceb274bc2e91c97bcfad803a7582cfba
[ "MIT" ]
permissive
levilucio/SyVOLT
41311743d23fdb0b569300df464709c4954b8300
0f88827a653f2e9d3bb7b839a5253e74d48379dc
refs/heads/master
2023-08-11T22:14:01.998341
2023-07-21T13:33:36
2023-07-21T13:33:36
36,246,850
3
2
MIT
2023-07-21T13:33:39
2015-05-25T18:15:26
Python
UTF-8
Python
false
false
2,433
py
from core.himesis import Himesis import uuid class Hlayer0rule10(Himesis): def __init__(self): """ Creates the himesis graph representing the DSLTrans rule layer0rule10. """ # Flag this instance as compiled now self.is_compiled = True super(Hlayer0rule10, self).__init__(name='Hlayer0rule10', num_nodes=0, edges=[]) # Set the graph attributes self["mm__"] = ['HimesisMM'] self["name"] = """layer0rule10""" self["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'layer0rule10') # match model. We only support one match model self.add_node() self.vs[0]["mm__"] = """MatchModel""" # apply model node self.add_node() self.vs[1]["mm__"] = """ApplyModel""" # paired with relation between match and apply models self.add_node() self.vs[2]["mm__"] = """paired_with""" # match class RequiredPort(layer0rule10class0) node self.add_node() self.vs[3]["mm__"] = """RequiredPort""" self.vs[3]["attr1"] = """+""" # match_contains node for class RequiredPort(layer0rule10class0) self.add_node() self.vs[4]["mm__"] = """match_contains""" # apply class Member(layer0rule10class1) node self.add_node() self.vs[5]["mm__"] = """Member""" self.vs[5]["attr1"] = """1""" # apply_contains node for class Member(layer0rule10class1) self.add_node() self.vs[6]["mm__"] = """apply_contains""" # Add the edges self.add_edges([ (0,4), # matchmodel -> match_contains (4,3), # match_contains -> match_class RequiredPort(layer0rule10class0) (1,6), # applymodel -> apply_contains (6,5), # apply_contains -> apply_class Member(layer0rule10class1) (0,2), # matchmodel -> pairedwith (2,1) # pairedwith -> applyModel ]) # Add the attribute equations self["equations"] = [((5,'name'),('concat',((3,'name'),('constant','__ops')))), ((5,'__ApplyAttribute'),('constant','RequiredPort_ops')), ]
a865a4a19651e7b15a5546c69a0a6e8fd29a34e7
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_206/1242.py
fb480c086828b23e6c6b68107084423f36d2c390
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
inputfile = open("h2.in", mode='r') outputfile = open("output_h_l.txt", mode='w') t = int(inputfile.readline().strip()) for case in range(t): d, n = map(int, inputfile.readline().strip().split(' ')) time = 0 for i in range(n): hD, hS = map(int, inputfile.readline().strip().split(' ')) hT = (d - hD) / hS if hT > time: time = hT speed = d / time outputfile.write("case #" + str(case + 1) + ": " + str(speed)+"\n") print("case #" + str(case + 1) + ": " + str(speed)) outputfile.close() inputfile.close()
01956a1d6ef57c28be46ff7304cfc60c0c562d05
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_7/ndxren013/util.py
f7c3c9c8c6cfa0051e619ed357a02dcd81f8c0e5
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
2,152
py
import copy def create_grid(grid) : """create a 4x4 grid""" for i in range(4): tmp = [] for j in range(4): tmp.append(0) grid.append(tmp) def print_grid(grid) : """print out a 4x4 grid in 5-width columns within a box""" print("+--------------------+") for i in range (4): print('|', end = '') for j in range (4) : if grid[i][j] == 0: print (" " + " "*(5-(len(str(grid[i][j])))), end = "") else : print (str(grid[i][j]) + " "*(5-(len(str(grid[i][j])))), end = "") print("|") print("+--------------------+") def check_lost(grid) : """return True if there are no 0 values and no adjacent values that are equal; otherwise False""" flag = True for i in range (4) : for j in range(4) : if grid[i][j] == 0 : flag = False if flag == True : for i in range (0,4,1) : for j in range (0,4,1) : if i < 3 and j < 3: if grid[i][j] == grid[i][j+1] or grid[i][j] == grid[i+1][j] : flag = False if i == 3 and j == 3: continue if i == 3: if grid[i][j] == grid[i][j + 1]: flag = False if j == 3: if grid[i][j] == grid[i + 1][j]: flag = False return flag def check_won(grid) : """return True if a value >= 32 is found in the grid; otherwise False""" flag = False for i in range (4) : for j in range (4) : if grid[i][j] >= 32 : flag = True return flag def copy_grid(grid) : """return a copy of the grid""" return copy.deepcopy(grid) def grid_equal(grid1, grid2) : """check if 2 grids are equal - return boolean value""" if grid1 == grid2 : return True else: return False
71f69800aac7f2532c02268c353747e0fb1e2a77
ee2444e8e70f136e6b34a35eb55dc287a7621956
/clock/clocks.py
20fd7688ffe7775b14b7fed30fc4decad5af4c9f
[ "Apache-2.0" ]
permissive
vyahello/desktop-clock
ec737c6e12273bc9f309e4dc921740b41e5fbef0
b9db67ef646db7951354842846e8b6baf03d3076
refs/heads/master
2020-04-14T03:12:13.643967
2019-01-06T22:10:00
2019-01-06T22:10:00
163,602,100
1
0
null
null
null
null
UTF-8
Python
false
false
1,701
py
from abc import ABC, abstractmethod from clock.environment.engines import Engine, ClockEngine from clock.environment.time import Time, ClockTime from clock.environment.widgets import Widget, PurpleUIWidget from clock.environment.windows import Window from clock.types import Runner class Clock(ABC): """Represent abstraction of clock.""" @abstractmethod def start(self) -> None: """Start running a clock.""" pass @abstractmethod def stop(self) -> None: """Stop running a clock.""" pass class DigitalClock(Clock): """Unified digital clock.""" def __init__(self, name: str, time: Time, master: Window, widget: Widget) -> None: self._name = name self._master = master self._widget = widget self._engine: Engine = ClockEngine(time, widget) def start(self) -> None: self._master.set_title(self._name) self._engine.run() self._master.start_loop() def stop(self) -> None: self._master.stop_loop() class PurpleDigitalClock(Clock): """Represent concrete purple digital clock.""" def __init__(self, master: Window, name: str) -> None: self._clock: Clock = DigitalClock( name=name, time=ClockTime(), master=master, widget=PurpleUIWidget(master) ) def start(self) -> None: self._clock.start() def stop(self) -> None: self._clock.stop() class ClockRunner(Runner): """Main clock runner.""" def __init__(self, clock: Clock) -> None: self._clock: Clock = clock def perform(self): """Start the clock functioning.""" self._clock.start()
9889d3e62066d82b07468267398eeaee10b1399b
bd75c7ec55b78ef189f57596520744f82ec73073
/Swap Nodes in Pairs.py
06df07c8a141d9b99481b27baa91b0459c330f30
[]
no_license
GaoLF/LeetCode-PY
17058ac0743403292559f9b83a20bf79d89e33f6
ccd294cfe0c228a21518d077d1aa01e510930ea3
refs/heads/master
2021-01-23T02:24:05.940132
2015-07-22T13:44:01
2015-07-22T13:44:01
38,248,471
0
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: # @param {ListNode} head # @return {ListNode} def swapPairs(self, head): if not head: return head iter = head temp = head while iter and iter.next: temp_node = temp.next if temp == head: temp_node = iter.next.next head = head.next head.next = iter head.next.next = temp_node iter = temp_node else: temp_node = iter.next.next temp.next = iter.next iter.next.next = iter iter.next = temp_node temp = iter iter = iter.next return head A = Solution() a = ListNode(1) b = ListNode(2) c = ListNode(3) d = ListNode(4) e = ListNode(5) f = ListNode(6) #a.next = b b.next = c c.next = d d.next = e e.next = f x = A.swapPairs(a) while x: print x.val x = x.next
f3308bc272f6a64b2c2b9e3e700cf49d912db947
f7b035ee2eccd647a20ac49b0f6a8a2d7c854c81
/foo.py
ee566b3d0c23c928a4c9f11a5bcadac04d29e753
[]
no_license
lugrace/sryr-research
00e0d9ef53573e4a5bec7311b775f61bccd92a8e
245435161d38009026b21f4811155154927e5ecf
refs/heads/master
2021-09-15T06:50:54.689077
2018-05-28T03:41:11
2018-05-28T03:41:11
110,488,453
0
0
null
null
null
null
UTF-8
Python
false
false
54
py
import math def jumpInt(bar): Foo = jumpString(bar)
16ae4e8715304dfc152331ccbd298ad4158b5b5b
113d34bc3a8a9d43c770fd41ee327fd3cbca67dd
/Python3/Path in the matrix.py
24465fdc0b35da89dd603edf323da1f75d640c77
[]
no_license
liuyuhang791034063/LeetCode
2b5d3413abc3ed6f8fccf35f39454e2cfd9807b1
b613718bf69982535b7c3c9f329a47d5741d8a9e
refs/heads/master
2020-03-29T01:58:25.836162
2019-07-27T04:33:06
2019-07-27T04:33:06
149,415,780
12
1
null
null
null
null
UTF-8
Python
false
false
1,553
py
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: Path in the matrix Description: Author: God date: 2018/12/3 ------------------------------------------------- Change Activity: 2018/12/3 ------------------------------------------------- """ __author__ = 'God' class Solution: def hasPath(self, matrix, rows, cols, path): self.col, self.row = cols, rows matrix = [list(matrix[cols * i:cols * i + cols]) for i in range(rows)] for i in range(rows): for j in range(cols): if matrix[i][j] == path[0]: self.b = False self.search(matrix, path[1:], [(i, j)], i, j) if self.b: return True return False def search(self, matrix, word, exists, i, j): if word == '': self.b = True return if j != 0 and (i, j-1) not in exists and matrix[i][j-1] == word[0]: self.search(matrix, word[1:], exists+[(i, j-1)], i, j-1) if i != 0 and (i-1, j) not in exists and matrix[i-1][j] == word[0]: self.search(matrix, word[1:], exists+[(i-1, j)], i-1, j) if j != self.col - 1 and (i, j+1) not in exists and matrix[i][j+1] == word[0]: self.search(matrix, word[1:], exists+[(i, j+1)], i, j+1) if i != self.row - 1 and (i+1, j) not in exists and matrix[i+1][j] == word[0]: self.search(matrix, word[1:], exists+[(i+1, j)], i+1, j)
ca7d198a0e326232ec911103384438c043f5be31
a1eb0bb73680bc42af97eea6b4d7811453dc6758
/clustering/venv/Scripts/easy_install-3.6-script.py
068e92aa69165faea6f8172bb1529439b7853e02
[]
no_license
PotatoPig/machine-learning
23c2ba5e7cf9d66c92309437d47d139bbf4e866f
eb7ae7b8bc03d765e508b1a1c222ea15d25b1c21
refs/heads/master
2020-07-22T15:00:03.607116
2019-09-09T06:47:33
2019-09-09T06:47:33
207,239,820
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
#!D:\CS_Project\MachineLearning\clustering\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.6' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.6')() )
[ "Binhan Xu" ]
Binhan Xu
0e602feaaebaabffc917cb62b6c5e9a85335fffa
f312fcd24d94be8b32e2d1e50643b01c619aa23b
/tensorboard/plugins/wit_redirect/wit_redirect_plugin.py
58bcd4d9cfb12ad96adb029933e9ef31ab6a7ad5
[ "Apache-2.0" ]
permissive
tensorflow/tensorboard
bf316fc5d47f78ef980dd2106c99207892a508d5
5961c76dca0fb9bb40d146f5ce13834ac29d8ddb
refs/heads/master
2023-09-03T23:59:03.264261
2023-08-30T22:24:07
2023-08-30T22:24:07
91,379,993
6,766
2,063
Apache-2.0
2023-09-14T20:55:56
2017-05-15T20:08:07
TypeScript
UTF-8
Python
false
false
1,682
py
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Plugin that only displays a message with installation instructions.""" from tensorboard.plugins import base_plugin class WITRedirectPluginLoader(base_plugin.TBLoader): """Load the redirect notice iff the dynamic plugin is unavailable.""" def load(self, context): try: import tensorboard_plugin_wit # noqa: F401 # If we successfully load the dynamic plugin, don't show # this redirect plugin at all. return None except ImportError: return _WITRedirectPlugin(context) class _WITRedirectPlugin(base_plugin.TBPlugin): """Redirect notice pointing users to the new dynamic LIT plugin.""" plugin_name = "wit_redirect" def get_plugin_apps(self): return {} def is_active(self): return False def frontend_metadata(self): return base_plugin.FrontendMetadata( element_name="tf-wit-redirect-dashboard", tab_name="What-If Tool", )
81a1f59117d0eb5e1339b1325cfa301b91127add
5b4b1866571453f78db5b06a08ff0eda17b91b04
/test/vanilla/Expected/AcceptanceTests/Url/url/operations/_paths_operations.py
a142282285bee503445254ca4ba268c9aff892b9
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
koek67/autorest.azure-functions-python
ba345f1d194ca7431daab1210a0cd801d4946991
b0896d8aec6b0fd6f0bcb12ea8e0489652dc2783
refs/heads/main
2022-12-20T13:27:56.405901
2020-09-30T08:23:11
2020-09-30T08:23:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
51,127
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.tracing.decorator import distributed_trace from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class PathsOperations(object): """PathsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~url.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def get_boolean_true( self, **kwargs # type: Any ): # type: (...) -> None """Get true Boolean value on path. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) bool_path = True # Construct URL url = self.get_boolean_true.metadata['url'] # type: ignore path_format_arguments = { 'boolPath': self._serialize.url("bool_path", bool_path, 'bool'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) get_boolean_true.metadata = {'url': '/paths/bool/true/{boolPath}'} # type: ignore @distributed_trace def get_boolean_false( self, **kwargs # type: Any ): # type: (...) -> None """Get false Boolean value on path. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) bool_path = False # Construct URL url = self.get_boolean_false.metadata['url'] # type: ignore path_format_arguments = { 'boolPath': self._serialize.url("bool_path", bool_path, 'bool'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) get_boolean_false.metadata = {'url': '/paths/bool/false/{boolPath}'} # type: ignore @distributed_trace def get_int_one_million( self, **kwargs # type: Any ): # type: (...) -> None """Get '1000000' integer value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) int_path = 1000000 # Construct URL url = self.get_int_one_million.metadata['url'] # type: ignore path_format_arguments = { 'intPath': self._serialize.url("int_path", int_path, 'int'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) get_int_one_million.metadata = {'url': '/paths/int/1000000/{intPath}'} # type: ignore @distributed_trace def get_int_negative_one_million( self, **kwargs # type: Any ): # type: (...) -> None """Get '-1000000' integer value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) int_path = -1000000 # Construct URL url = self.get_int_negative_one_million.metadata['url'] # type: ignore path_format_arguments = { 'intPath': self._serialize.url("int_path", int_path, 'int'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) get_int_negative_one_million.metadata = {'url': '/paths/int/-1000000/{intPath}'} # type: ignore @distributed_trace def get_ten_billion( self, **kwargs # type: Any ): # type: (...) -> None """Get '10000000000' 64 bit integer value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) long_path = 10000000000 # Construct URL url = self.get_ten_billion.metadata['url'] # type: ignore path_format_arguments = { 'longPath': self._serialize.url("long_path", long_path, 'long'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) get_ten_billion.metadata = {'url': '/paths/long/10000000000/{longPath}'} # type: ignore @distributed_trace def get_negative_ten_billion( self, **kwargs # type: Any ): # type: (...) -> None """Get '-10000000000' 64 bit integer value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) long_path = -10000000000 # Construct URL url = self.get_negative_ten_billion.metadata['url'] # type: ignore path_format_arguments = { 'longPath': self._serialize.url("long_path", long_path, 'long'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) get_negative_ten_billion.metadata = {'url': '/paths/long/-10000000000/{longPath}'} # type: ignore @distributed_trace def float_scientific_positive( self, **kwargs # type: Any ): # type: (...) -> None """Get '1.034E+20' numeric value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) float_path = 103400000000000000000 # Construct URL url = self.float_scientific_positive.metadata['url'] # type: ignore path_format_arguments = { 'floatPath': self._serialize.url("float_path", float_path, 'float'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) float_scientific_positive.metadata = {'url': '/paths/float/1.034E+20/{floatPath}'} # type: ignore @distributed_trace def float_scientific_negative( self, **kwargs # type: Any ): # type: (...) -> None """Get '-1.034E-20' numeric value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) float_path = -1.034e-20 # Construct URL url = self.float_scientific_negative.metadata['url'] # type: ignore path_format_arguments = { 'floatPath': self._serialize.url("float_path", float_path, 'float'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) float_scientific_negative.metadata = {'url': '/paths/float/-1.034E-20/{floatPath}'} # type: ignore @distributed_trace def double_decimal_positive( self, **kwargs # type: Any ): # type: (...) -> None """Get '9999999.999' numeric value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) double_path = 9999999.999 # Construct URL url = self.double_decimal_positive.metadata['url'] # type: ignore path_format_arguments = { 'doublePath': self._serialize.url("double_path", double_path, 'float'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) double_decimal_positive.metadata = {'url': '/paths/double/9999999.999/{doublePath}'} # type: ignore @distributed_trace def double_decimal_negative( self, **kwargs # type: Any ): # type: (...) -> None """Get '-9999999.999' numeric value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) double_path = -9999999.999 # Construct URL url = self.double_decimal_negative.metadata['url'] # type: ignore path_format_arguments = { 'doublePath': self._serialize.url("double_path", double_path, 'float'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) double_decimal_negative.metadata = {'url': '/paths/double/-9999999.999/{doublePath}'} # type: ignore @distributed_trace def string_unicode( self, **kwargs # type: Any ): # type: (...) -> None """Get '啊齄丂狛狜隣郎隣兀﨩' multi-byte string value. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) string_path = "啊齄丂狛狜隣郎隣兀﨩" # Construct URL url = self.string_unicode.metadata['url'] # type: ignore path_format_arguments = { 'stringPath': self._serialize.url("string_path", string_path, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) string_unicode.metadata = {'url': '/paths/string/unicode/{stringPath}'} # type: ignore @distributed_trace def string_url_encoded( self, **kwargs # type: Any ): # type: (...) -> None """Get 'begin!*'();:@ &=+$,/?#[]end. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) string_path = "begin!*'();:@ &=+$,/?#[]end" # Construct URL url = self.string_url_encoded.metadata['url'] # type: ignore path_format_arguments = { 'stringPath': self._serialize.url("string_path", string_path, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) string_url_encoded.metadata = {'url': '/paths/string/begin%21%2A%27%28%29%3B%3A%40%20%26%3D%2B%24%2C%2F%3F%23%5B%5Dend/{stringPath}'} # type: ignore @distributed_trace def string_url_non_encoded( self, **kwargs # type: Any ): # type: (...) -> None """Get 'begin!*'();:@&=+$,end. https://tools.ietf.org/html/rfc3986#appendix-A 'path' accept any 'pchar' not encoded. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) string_path = "begin!*'();:@&=+$,end" # Construct URL url = self.string_url_non_encoded.metadata['url'] # type: ignore path_format_arguments = { 'stringPath': self._serialize.url("string_path", string_path, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) string_url_non_encoded.metadata = {'url': '/paths/string/begin!*\'();:@&=+$,end/{stringPath}'} # type: ignore @distributed_trace def string_empty( self, **kwargs # type: Any ): # type: (...) -> None """Get ''. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) string_path = "" # Construct URL url = self.string_empty.metadata['url'] # type: ignore path_format_arguments = { 'stringPath': self._serialize.url("string_path", string_path, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) string_empty.metadata = {'url': '/paths/string/empty/{stringPath}'} # type: ignore @distributed_trace def string_null( self, string_path, # type: str **kwargs # type: Any ): # type: (...) -> None """Get null (should throw). :param string_path: null string value. :type string_path: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.string_null.metadata['url'] # type: ignore path_format_arguments = { 'stringPath': self._serialize.url("string_path", string_path, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [400]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) string_null.metadata = {'url': '/paths/string/null/{stringPath}'} # type: ignore @distributed_trace def enum_valid( self, enum_path, # type: Union[str, "models.UriColor"] **kwargs # type: Any ): # type: (...) -> None """Get using uri with 'green color' in path parameter. :param enum_path: send the value green. :type enum_path: str or ~url.models.UriColor :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.enum_valid.metadata['url'] # type: ignore path_format_arguments = { 'enumPath': self._serialize.url("enum_path", enum_path, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) enum_valid.metadata = {'url': '/paths/enum/green%20color/{enumPath}'} # type: ignore @distributed_trace def enum_null( self, enum_path, # type: Union[str, "models.UriColor"] **kwargs # type: Any ): # type: (...) -> None """Get null (should throw on the client before the request is sent on wire). :param enum_path: send null should throw. :type enum_path: str or ~url.models.UriColor :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.enum_null.metadata['url'] # type: ignore path_format_arguments = { 'enumPath': self._serialize.url("enum_path", enum_path, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [400]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) enum_null.metadata = {'url': '/paths/string/null/{enumPath}'} # type: ignore @distributed_trace def byte_multi_byte( self, byte_path, # type: bytearray **kwargs # type: Any ): # type: (...) -> None """Get '啊齄丂狛狜隣郎隣兀﨩' multibyte value as utf-8 encoded byte array. :param byte_path: '啊齄丂狛狜隣郎隣兀﨩' multibyte value as utf-8 encoded byte array. :type byte_path: bytearray :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.byte_multi_byte.metadata['url'] # type: ignore path_format_arguments = { 'bytePath': self._serialize.url("byte_path", byte_path, 'bytearray'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) byte_multi_byte.metadata = {'url': '/paths/byte/multibyte/{bytePath}'} # type: ignore @distributed_trace def byte_empty( self, **kwargs # type: Any ): # type: (...) -> None """Get '' as byte array. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) byte_path = bytearray("", encoding="utf-8") # Construct URL url = self.byte_empty.metadata['url'] # type: ignore path_format_arguments = { 'bytePath': self._serialize.url("byte_path", byte_path, 'bytearray'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) byte_empty.metadata = {'url': '/paths/byte/empty/{bytePath}'} # type: ignore @distributed_trace def byte_null( self, byte_path, # type: bytearray **kwargs # type: Any ): # type: (...) -> None """Get null as byte array (should throw). :param byte_path: null as byte array (should throw). :type byte_path: bytearray :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.byte_null.metadata['url'] # type: ignore path_format_arguments = { 'bytePath': self._serialize.url("byte_path", byte_path, 'bytearray'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [400]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) byte_null.metadata = {'url': '/paths/byte/null/{bytePath}'} # type: ignore @distributed_trace def date_valid( self, **kwargs # type: Any ): # type: (...) -> None """Get '2012-01-01' as date. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) date_path = "2012-01-01" # Construct URL url = self.date_valid.metadata['url'] # type: ignore path_format_arguments = { 'datePath': self._serialize.url("date_path", date_path, 'date'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) date_valid.metadata = {'url': '/paths/date/2012-01-01/{datePath}'} # type: ignore @distributed_trace def date_null( self, date_path, # type: datetime.date **kwargs # type: Any ): # type: (...) -> None """Get null as date - this should throw or be unusable on the client side, depending on date representation. :param date_path: null as date (should throw). :type date_path: ~datetime.date :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.date_null.metadata['url'] # type: ignore path_format_arguments = { 'datePath': self._serialize.url("date_path", date_path, 'date'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [400]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) date_null.metadata = {'url': '/paths/date/null/{datePath}'} # type: ignore @distributed_trace def date_time_valid( self, **kwargs # type: Any ): # type: (...) -> None """Get '2012-01-01T01:01:01Z' as date-time. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) date_time_path = "2012-01-01T01:01:01Z" # Construct URL url = self.date_time_valid.metadata['url'] # type: ignore path_format_arguments = { 'dateTimePath': self._serialize.url("date_time_path", date_time_path, 'iso-8601'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) date_time_valid.metadata = {'url': '/paths/datetime/2012-01-01T01%3A01%3A01Z/{dateTimePath}'} # type: ignore @distributed_trace def date_time_null( self, date_time_path, # type: datetime.datetime **kwargs # type: Any ): # type: (...) -> None """Get null as date-time, should be disallowed or throw depending on representation of date-time. :param date_time_path: null as date-time. :type date_time_path: ~datetime.datetime :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.date_time_null.metadata['url'] # type: ignore path_format_arguments = { 'dateTimePath': self._serialize.url("date_time_path", date_time_path, 'iso-8601'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [400]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) date_time_null.metadata = {'url': '/paths/datetime/null/{dateTimePath}'} # type: ignore @distributed_trace def base64_url( self, base64_url_path, # type: bytes **kwargs # type: Any ): # type: (...) -> None """Get 'lorem' encoded value as 'bG9yZW0' (base64url). :param base64_url_path: base64url encoded value. :type base64_url_path: bytes :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.base64_url.metadata['url'] # type: ignore path_format_arguments = { 'base64UrlPath': self._serialize.url("base64_url_path", base64_url_path, 'base64'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) base64_url.metadata = {'url': '/paths/string/bG9yZW0/{base64UrlPath}'} # type: ignore @distributed_trace def array_csv_in_path( self, array_path, # type: List[str] **kwargs # type: Any ): # type: (...) -> None """Get an array of string ['ArrayPath1', 'begin!*'();:@ &=+$,/?#[]end' , null, ''] using the csv- array format. :param array_path: an array of string ['ArrayPath1', 'begin!*'();:@ &=+$,/?#[]end' , null, ''] using the csv-array format. :type array_path: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.array_csv_in_path.metadata['url'] # type: ignore path_format_arguments = { 'arrayPath': self._serialize.url("array_path", array_path, '[str]', div=','), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) array_csv_in_path.metadata = {'url': '/paths/array/ArrayPath1%2cbegin%21%2A%27%28%29%3B%3A%40%20%26%3D%2B%24%2C%2F%3F%23%5B%5Dend%2c%2c/{arrayPath}'} # type: ignore @distributed_trace def unix_time_url( self, unix_time_url_path, # type: datetime.datetime **kwargs # type: Any ): # type: (...) -> None """Get the date 2016-04-13 encoded value as '1460505600' (Unix time). :param unix_time_url_path: Unix time encoded value. :type unix_time_url_path: ~datetime.datetime :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) # Construct URL url = self.unix_time_url.metadata['url'] # type: ignore path_format_arguments = { 'unixTimeUrlPath': self._serialize.url("unix_time_url_path", unix_time_url_path, 'unix-time'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.Error, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) unix_time_url.metadata = {'url': '/paths/int/1460505600/{unixTimeUrlPath}'} # type: ignore
13205a31e87c1b4daed148c5469c509a8f892bfa
ff810e6722caab8c0affcf97151f3c8fc332b6a1
/muddery/worlddata/dao/event_mapper.py
cabd7a3f72345ee671298bcbd1c1df5684fb79c3
[ "BSD-3-Clause" ]
permissive
tuchang/muddery
014b69daf33a0042d341b403acc9939ca5e3ef11
bab4b86c5fe4259b7c22a97d54e4249aab47f99e
refs/heads/master
2020-04-26T23:38:40.383523
2019-01-30T14:54:07
2019-01-30T14:54:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
""" Query and deal common tables. """ from __future__ import print_function from evennia.utils import logger from django.db import transaction from django.apps import apps from django.conf import settings from muddery.utils import defines from muddery.worlddata.dao.common_mapper_base import ObjectsMapper def get_object_event(object_key): """ Get object's event. """ model = apps.get_model(settings.WORLD_DATA_APP, "event_data") return model.objects.filter(trigger_obj=object_key)
8a60ef7df7b4593fe623e1cd3e266dec4a72850c
52b5773617a1b972a905de4d692540d26ff74926
/.history/triangle_20200625195423.py
f43a71703b57e579886f578c35c9e086ac7dbb53
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
# this function is meant to print a triangle def triangle(): # outer loop is for the rows --> 4 for i in range(0,4): # inner loop is for colums --> 4 for j in range(0,i+1): print('*') # triangle()
0efe069b4fa0143a1c876e9da6b2664df329c8ff
8821c29949644faab3023f492bf615fe1cab4049
/liquidluck/writers/extends.py
dc50589efe1785f5f245c316b5bf36a2d61828f3
[]
no_license
loopwerk/liquidluck
c29bf2cc70343418dbe6a4dd3b55c9ec96e1f503
d2c41f0b7cddabd3036bab514cf5ecbcc57becea
refs/heads/main
2023-02-26T15:41:06.173164
2021-02-02T16:32:32
2021-02-02T16:32:32
335,299,233
1
0
null
2021-02-02T13:32:14
2021-02-02T13:32:14
null
UTF-8
Python
false
false
2,165
py
#!/usr/bin/env python """Extends of the core writers """ import os from liquidluck.options import g, settings from liquidluck.writers.base import BaseWriter from liquidluck.writers.base import get_post_destination class PostWriter(BaseWriter): """Replace the default post writer, edit settings:: writers = { 'post': 'liquidluck.writers.exends.PostWriter', } Get related posts in template with:: - {{post.relation.newer}} - {{post.relation.older}} - {% for item in post.relation.related %} """ writer_name = 'post' def __init__(self): self._template = self.get('post_template', 'post.html') def start(self): for index, post in enumerate(g.public_posts): template = post.template or self._template relation = self._get_relations(post, index) post.relation = relation self.render({'post': post}, template, self._dest_of(post)) for post in g.secure_posts: post.relation = None self.render({'post': post}, template, self._dest_of(post)) def _dest_of(self, post): dest = get_post_destination(post, settings.config['permalink']) return os.path.join(g.output_directory, dest) def _get_relations(self, post, index): total = len(g.public_posts) newer = None if index > 0: newer = g.public_posts[index - 1] older = None if index < total - 1: older = g.public_posts[index + 1] def get_related_by_tags(): tags = set(post.tags) base = len(post.tags) for p in g.public_posts: prior = len(tags - set(p.tags)) if prior < base and p.title != post.title: p.related_priority = base - prior yield p related = sorted(get_related_by_tags(), key=lambda o: o.related_priority, reverse=True) relation = { 'newer': newer, 'older': older, 'related': related[:4], } return relation
eb7275ac23673310b390268735873fa20ddf60fc
5c3251a8c2f355452a5240518684eb935f9809af
/tasks_project_v2/.tox/py36/lib/python3.6/site-packages/tinydb/queries.py
972010ba0b7ef014cdc596aaf94e6702eaf8e794
[]
no_license
cbohara/pytest
b3783ab590aaf7b6a77a2ec372e5206a7152e574
13b0ed1c3bcb06042da561a27f4c8857ffefd610
refs/heads/master
2021-05-15T12:55:14.841045
2017-10-31T03:46:27
2017-10-31T03:46:27
108,433,716
4
1
null
null
null
null
UTF-8
Python
false
false
10,089
py
""" Contains the querying interface. Starting with :class:`~tinydb.queries.Query` you can construct complex queries: >>> ((where('f1') == 5) & (where('f2') != 2)) | where('s').matches(r'^\w+$') (('f1' == 5) and ('f2' != 2)) or ('s' ~= ^\w+$ ) Queries are executed by using the ``__call__``: >>> q = where('val') == 5 >>> q({'val': 5}) True >>> q({'val': 1}) False """ import re import sys from .utils import catch_warning, freeze __all__ = ('Query', 'where') def is_sequence(obj): return hasattr(obj, '__iter__') class QueryImpl(object): """ A query implementation. This query implementation wraps a test function which is run when the query is evaluated by calling the object. Queries can be combined with logical and/or and modified with logical not. """ def __init__(self, test, hashval): self.test = test self.hashval = hashval def __call__(self, value): return self.test(value) def __hash__(self): return hash(self.hashval) def __repr__(self): return 'QueryImpl{0}'.format(self.hashval) def __eq__(self, other): return self.hashval == other.hashval # --- Query modifiers ----------------------------------------------------- def __and__(self, other): # We use a frozenset for the hash as the AND operation is commutative # (a | b == b | a) return QueryImpl(lambda value: self(value) and other(value), ('and', frozenset([self.hashval, other.hashval]))) def __or__(self, other): # We use a frozenset for the hash as the OR operation is commutative # (a & b == b & a) return QueryImpl(lambda value: self(value) or other(value), ('or', frozenset([self.hashval, other.hashval]))) def __invert__(self): return QueryImpl(lambda value: not self(value), ('not', self.hashval)) class Query(object): """ TinyDB Queries. Allows to build queries for TinyDB databases. There are two main ways of using queries: 1) ORM-like usage: >>> User = Query() >>> db.search(User.name == 'John Doe') >>> db.search(User['logged-in'] == True) 2) Classical usage: >>> db.search(where('value') == True) Note that ``where(...)`` is a shorthand for ``Query(...)`` allowing for a more fluent syntax. Besides the methods documented here you can combine queries using the binary AND and OR operators: >>> db.search(where('field1').exists() & where('field2') == 5) # Binary AND >>> db.search(where('field1').exists() | where('field2') == 5) # Binary OR Queries are executed by calling the resulting object. They expect to get the document to test as the first argument and return ``True`` or ``False`` depending on whether the documents matches the query or not. """ def __init__(self): self._path = [] def __getattr__(self, item): query = Query() query._path = self._path + [item] return query __getitem__ = __getattr__ def _generate_test(self, test, hashval): """ Generate a query based on a test function. :param test: The test the query executes. :param hashval: The hash of the query. :return: A :class:`~tinydb.queries.QueryImpl` object """ if not self._path: raise ValueError('Query has no path') def impl(value): try: # Resolve the path for part in self._path: value = value[part] except (KeyError, TypeError): return False else: return test(value) return QueryImpl(impl, hashval) def __eq__(self, rhs): """ Test a dict value for equality. >>> Query().f1 == 42 :param rhs: The value to compare against """ if sys.version_info <= (3, 0): # pragma: no cover # Special UTF-8 handling on Python 2 def test(value): with catch_warning(UnicodeWarning): try: return value == rhs except UnicodeWarning: # Dealing with a case, where 'value' or 'rhs' # is unicode and the other is a byte string. if isinstance(value, str): return value.decode('utf-8') == rhs elif isinstance(rhs, str): return value == rhs.decode('utf-8') else: # pragma: no cover def test(value): return value == rhs return self._generate_test(lambda value: test(value), ('==', tuple(self._path), freeze(rhs))) def __ne__(self, rhs): """ Test a dict value for inequality. >>> Query().f1 != 42 :param rhs: The value to compare against """ return self._generate_test(lambda value: value != rhs, ('!=', tuple(self._path), freeze(rhs))) def __lt__(self, rhs): """ Test a dict value for being lower than another value. >>> Query().f1 < 42 :param rhs: The value to compare against """ return self._generate_test(lambda value: value < rhs, ('<', tuple(self._path), rhs)) def __le__(self, rhs): """ Test a dict value for being lower than or equal to another value. >>> where('f1') <= 42 :param rhs: The value to compare against """ return self._generate_test(lambda value: value <= rhs, ('<=', tuple(self._path), rhs)) def __gt__(self, rhs): """ Test a dict value for being greater than another value. >>> Query().f1 > 42 :param rhs: The value to compare against """ return self._generate_test(lambda value: value > rhs, ('>', tuple(self._path), rhs)) def __ge__(self, rhs): """ Test a dict value for being greater than or equal to another value. >>> Query().f1 >= 42 :param rhs: The value to compare against """ return self._generate_test(lambda value: value >= rhs, ('>=', tuple(self._path), rhs)) def exists(self): """ Test for a dict where a provided key exists. >>> Query().f1.exists() >= 42 :param rhs: The value to compare against """ return self._generate_test(lambda _: True, ('exists', tuple(self._path))) def matches(self, regex): """ Run a regex test against a dict value (whole string has to match). >>> Query().f1.matches(r'^\w+$') :param regex: The regular expression to use for matching """ return self._generate_test(lambda value: re.match(regex, value), ('matches', tuple(self._path), regex)) def search(self, regex): """ Run a regex test against a dict value (only substring string has to match). >>> Query().f1.search(r'^\w+$') :param regex: The regular expression to use for matching """ return self._generate_test(lambda value: re.search(regex, value), ('search', tuple(self._path), regex)) def test(self, func, *args): """ Run a user-defined test function against a dict value. >>> def test_func(val): ... return val == 42 ... >>> Query().f1.test(test_func) :param func: The function to call, passing the dict as the first argument :param args: Additional arguments to pass to the test function """ return self._generate_test(lambda value: func(value, *args), ('test', tuple(self._path), func, args)) def any(self, cond): """ Checks if a condition is met by any document in a list, where a condition can also be a sequence (e.g. list). >>> Query().f1.any(Query().f2 == 1) Matches:: {'f1': [{'f2': 1}, {'f2': 0}]} >>> Query().f1.any([1, 2, 3]) Matches:: {'f1': [1, 2]} {'f1': [3, 4, 5]} :param cond: Either a query that at least one document has to match or a list of which at least one document has to be contained in the tested document. - """ if callable(cond): def _cmp(value): return is_sequence(value) and any(cond(e) for e in value) else: def _cmp(value): return is_sequence(value) and any(e in cond for e in value) return self._generate_test(lambda value: _cmp(value), ('any', tuple(self._path), freeze(cond))) def all(self, cond): """ Checks if a condition is met by any document in a list, where a condition can also be a sequence (e.g. list). >>> Query().f1.all(Query().f2 == 1) Matches:: {'f1': [{'f2': 1}, {'f2': 1}]} >>> Query().f1.all([1, 2, 3]) Matches:: {'f1': [1, 2, 3, 4, 5]} :param cond: Either a query that all documents have to match or a list which has to be contained in the tested document. """ if callable(cond): def _cmp(value): return is_sequence(value) and all(cond(e) for e in value) else: def _cmp(value): return is_sequence(value) and all(e in value for e in cond) return self._generate_test(lambda value: _cmp(value), ('all', tuple(self._path), freeze(cond))) def where(key): return Query()[key]
c56af7a7378410adccb3cbec6898cb84a8ad7148
fd711822ba16edf959d729cfecec2903d06a7e65
/backend/msm_mobile_2212fgbx_17149/settings.py
3df27e4c1a10fbc3a9554cff8bf5434e37862f55
[]
no_license
crowdbotics-apps/msm-mobile-2212fgbx-17149
21c5aac1ef48afcc2fa2cbc67322844365d2b6ae
9e0df24add57b3ed9d6d2cf51b9411858837a60b
refs/heads/master
2023-02-02T23:44:39.254133
2020-12-22T07:21:50
2020-12-22T07:21:50
323,546,196
0
0
null
null
null
null
UTF-8
Python
false
false
7,062
py
""" Django settings for msm_mobile_2212fgbx_17149 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'modules', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', # start fcm_django push notifications 'fcm_django', # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'msm_mobile_2212fgbx_17149.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'msm_mobile_2212fgbx_17149.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # start fcm_django push notifications FCM_DJANGO_SETTINGS = { "FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "") } # end fcm_django push notifications # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
67fe520ef708626c818809afe39e7d4be0ca0482
afb16c3188bf06af65ae0d998e114c72342bd8be
/note/demo/pyqt_demo/pyqtdeploy-3.3.0/pyqtdeploy/gui/__init__.py
7bb7439211741600c2869895c4c546dfdd990b0e
[ "BSD-3-Clause" ]
permissive
onsunsl/onsunsl.github.io
aa75f399f1c647bc2e62314633bfe35187e59ad4
4ed2b1b9a2407afcbffdf304020d42b81c4c8cdc
refs/heads/master
2023-05-26T12:33:11.167270
2023-04-01T10:18:05
2023-04-01T10:18:05
237,595,319
1
0
null
2023-05-23T20:13:11
2020-02-01T10:02:58
Python
UTF-8
Python
false
false
1,487
py
# Copyright (c) 2019, Riverbank Computing Limited # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Publish the sub-package's API. from .exception_handlers import handle_user_exception from .project_gui import ProjectGUI
4feb4ee318210f8ba9d5a5900e78c390ad285d83
51b20543e5ed606636bcde9fba329e5fa948de2e
/communityprofiles/profiles/oldmigrations/0028_rename_datadisplay.py
cf6e22a06d39652831e0cdfc8b64e75216157ffa
[ "MIT" ]
permissive
216software/Profiles
b821112225e8522b7b558cab87ae1c12c68c653b
651da880a3d4295243205bdae4de88504edc91de
refs/heads/dev
2023-03-16T04:49:01.389186
2023-03-09T17:04:04
2023-03-09T17:04:04
59,139,518
3
0
null
2016-05-18T18:02:53
2016-05-18T18:02:53
null
UTF-8
Python
false
false
15,732
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting model 'DataDisplay' db.rename_table('profiles_datadisplay', 'profiles_datadisplaytemplate') #db.delete_table('profiles_datadisplay') # Removing M2M table for field records on 'DataDisplay' db.rename_table('profiles_datadisplay_records', 'profiles_datadisplaytemplate_records') db.rename_column('profiles_datadisplaytemplate_records', 'datadisplay_id', 'datadisplaytemplate_id') #db.delete_table('profiles_datadisplay_records') # Removing M2M table for field levels on 'DataDisplay' db.rename_table('profiles_datadisplay_levels', 'profiles_datadisplaytemplate_levels') db.rename_column('profiles_datadisplaytemplate_levels', 'datadisplay_id', 'datadisplaytemplate_id') #db.delete_table('profiles_datadisplay_levels') # Removing M2M table for field domains on 'DataDisplay' db.rename_table('profiles_datadisplay_domains', 'profiles_datadisplaytemplate_domains') db.rename_column('profiles_datadisplaytemplate_domains', 'datadisplay_id', 'datadisplaytemplate_id') #db.delete_table('profiles_datadisplay_domains') # Removing M2M table for field indicators on 'DataDisplay' db.rename_table('profiles_datadisplay_indicators', 'profiles_datadisplaytemplate_indicators') db.rename_column('profiles_datadisplaytemplate_indicators', 'datadisplay_id', 'datadisplaytemplate_id') #db.delete_table('profiles_datadisplay_indicators') def backwards(self, orm): # Deleting model 'DataDisplay' db.rename_table('profiles_datadisplaytemplate', 'profiles_datadisplay') #db.delete_table('profiles_datadisplay') # Removing M2M table for field records on 'DataDisplay' db.rename_table('profiles_datadisplaytemplate_records', 'profiles_datadisplay_records') db.rename_column('profiles_datadisplay_records', 'datadisplaytemplate_id', 'datadisplay_id') #db.delete_table('profiles_datadisplay_records') # Removing M2M table for field levels on 'DataDisplay' db.rename_table('profiles_datadisplaytemplate_levels', 'profiles_datadisplay_levels') db.rename_column('profiles_datadisplay_levels', 'datadisplaytemplate_id', 'datadisplay_id') #db.delete_table('profiles_datadisplay_levels') # Removing M2M table for field domains on 'DataDisplay' db.rename_table('profiles_datadisplaytemplate_domains', 'profiles_datadisplay_domains') db.rename_column('profiles_datadisplay_domains', 'datadisplaytemplate_id', 'datadisplay_id') #db.delete_table('profiles_datadisplay_domains') # Removing M2M table for field indicators on 'DataDisplay' db.rename_table('profiles_datadisplaytemplate_indicators', 'profiles_datadisplay_indicators') db.rename_column('profiles_datadisplay_indicators', 'datadisplaytemplate_id', 'datadisplay_id') #db.delete_table('profiles_datadisplay_indicators') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'profiles.datadisplaytemplate': { 'Meta': {'object_name': 'DataDisplayTemplate'}, 'display_type': ('django.db.models.fields.CharField', [], {'default': "'STANDARD'", 'max_length': '11'}), 'domains': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.DataDomain']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'indicators': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.Indicator']", 'symmetrical': 'False', 'blank': 'True'}), 'levels': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.GeoLevel']", 'symmetrical': 'False', 'blank': 'True'}), 'records': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.GeoRecord']", 'symmetrical': 'False', 'blank': 'True'}), 'source': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'subsubtitle': ('django.db.models.fields.CharField', [], {'max_length': '300', 'blank': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'max_length': '300', 'blank': 'True'}), 'template': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '300'}) }, 'profiles.datadomain': { 'Meta': {'object_name': 'DataDomain'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'indicators': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.Indicator']", 'through': "orm['profiles.IndicatorDomain']", 'symmetrical': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '20'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '20', 'db_index': 'True'}) }, 'profiles.datasource': { 'Meta': {'object_name': 'DataSource'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'implementation': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}) }, 'profiles.geolevel': { 'Meta': {'object_name': 'GeoLevel'}, 'data_sources': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.DataSource']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '200'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.GeoLevel']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200', 'db_index': 'True'}) }, 'profiles.georecord': { 'Meta': {'unique_together': "(('slug', 'level'), ('level', 'geo_id', 'custom_name', 'owner'))", 'object_name': 'GeoRecord'}, 'components': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'components_rel_+'", 'blank': 'True', 'to': "orm['profiles.GeoRecord']"}), 'custom_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'geo_id': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'geom': ('django.contrib.gis.db.models.fields.GeometryField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.GeoLevel']"}), 'mappings': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'mappings_rel_+'", 'blank': 'True', 'to': "orm['profiles.GeoRecord']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.GeoRecord']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'db_index': 'True', 'max_length': '100', 'blank': 'True'}) }, 'profiles.indicator': { 'Meta': {'object_name': 'Indicator'}, 'data_domains': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.DataDomain']", 'through': "orm['profiles.IndicatorDomain']", 'symmetrical': 'False'}), 'data_type': ('django.db.models.fields.CharField', [], {'default': "'COUNT'", 'max_length': '10'}), 'display_change': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'display_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'display_percent': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'levels': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profiles.GeoLevel']", 'symmetrical': 'False'}), 'limitations': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'long_definition': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'notes': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'purpose': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'routine_use': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'short_definition': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100', 'db_index': 'True'}), 'universe': ('django.db.models.fields.CharField', [], {'max_length': '300', 'blank': 'True'}) }, 'profiles.indicatordata': { 'Meta': {'unique_together': "(('indicator', 'record', 'time'),)", 'object_name': 'IndicatorData'}, 'change_from_time': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'data_as_change_from'", 'null': 'True', 'to': "orm['profiles.Time']"}), 'change_to_time': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'data_as_change_to'", 'null': 'True', 'to': "orm['profiles.Time']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'indicator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Indicator']"}), 'moe': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'number': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'percent': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'record': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.GeoRecord']"}), 'time': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Time']", 'null': 'True'}) }, 'profiles.indicatordomain': { 'Meta': {'object_name': 'IndicatorDomain'}, 'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'domain': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.DataDomain']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'indicator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Indicator']"}) }, 'profiles.indicatorpart': { 'Meta': {'object_name': 'IndicatorPart'}, 'data': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'data_source': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.DataSource']"}), 'formula': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'indicator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Indicator']"}), 'time': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profiles.Time']"}) }, 'profiles.time': { 'Meta': {'object_name': 'Time'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'sort': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '1'}) } } complete_apps = ['profiles']
df3dd0c6444826ae7b47594b45a3af13c9367411
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/cloud/automl/v1beta1/automl-v1beta1-py/google/cloud/automl_v1beta1/types/text.py
4cfbeec4414685c6289c3c27575e043c78d1d454
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,303
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.cloud.automl_v1beta1.types import classification __protobuf__ = proto.module( package='google.cloud.automl.v1beta1', manifest={ 'TextClassificationDatasetMetadata', 'TextClassificationModelMetadata', 'TextExtractionDatasetMetadata', 'TextExtractionModelMetadata', 'TextSentimentDatasetMetadata', 'TextSentimentModelMetadata', }, ) class TextClassificationDatasetMetadata(proto.Message): r"""Dataset metadata for classification. Attributes: classification_type (google.cloud.automl_v1beta1.types.ClassificationType): Required. Type of the classification problem. """ classification_type = proto.Field(proto.ENUM, number=1, enum=classification.ClassificationType, ) class TextClassificationModelMetadata(proto.Message): r"""Model metadata that is specific to text classification. Attributes: classification_type (google.cloud.automl_v1beta1.types.ClassificationType): Output only. Classification type of the dataset used to train this model. """ classification_type = proto.Field(proto.ENUM, number=3, enum=classification.ClassificationType, ) class TextExtractionDatasetMetadata(proto.Message): r"""Dataset metadata that is specific to text extraction""" class TextExtractionModelMetadata(proto.Message): r"""Model metadata that is specific to text extraction. Attributes: model_hint (str): Indicates the scope of model use case. - ``default``: Use to train a general text extraction model. Default value. - ``health_care``: Use to train a text extraction model that is tuned for healthcare applications. """ model_hint = proto.Field(proto.STRING, number=3) class TextSentimentDatasetMetadata(proto.Message): r"""Dataset metadata for text sentiment. Attributes: sentiment_max (int): Required. A sentiment is expressed as an integer ordinal, where higher value means a more positive sentiment. The range of sentiments that will be used is between 0 and sentiment_max (inclusive on both ends), and all the values in the range must be represented in the dataset before a model can be created. sentiment_max value must be between 1 and 10 (inclusive). """ sentiment_max = proto.Field(proto.INT32, number=1) class TextSentimentModelMetadata(proto.Message): r"""Model metadata that is specific to text sentiment.""" __all__ = tuple(sorted(__protobuf__.manifest))
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
70010e56865e6859e5fb7ce76d3db89396781ae3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02404/s524653076.py
6b28671655af949d1e273a3f672228e10e89b441
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
while True: num = list(map(int,input().split())) if(num[0] == 0 and num[1] == 0): break else: flag = False for i in range(num[0]): str = "" if(i == 0 or i == num[0]-1): flag=True else: flag=False for j in range(num[1]): if(j == 0 or j == num[1]-1 or flag): str = str + "#" else: str = str + "." print(str) print()
217781305f8edabd2f783fbd2dfab45ad641bc8b
88b063ec8e543e6f62f3adac6be214128a984548
/backend/chat/api/v1/viewsets.py
f866d1b60c17b260c5991567c246fc3286766130
[]
no_license
crowdbotics-apps/chat-app-28513
6939d1da6c53f6d44786b4f822b4fb4c1fedd57f
129f56f533f8f3076fdcfcfe3180942e5890f9f2
refs/heads/master
2023-06-06T17:26:04.090136
2021-07-06T23:23:40
2021-07-06T23:23:40
383,620,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,983
py
from rest_framework import authentication from chat.models import ( Message, ThreadMember, MessageAction, ThreadAction, ForwardedMessage, Thread, ) from .serializers import ( MessageSerializer, ThreadMemberSerializer, MessageActionSerializer, ThreadActionSerializer, ForwardedMessageSerializer, ThreadSerializer, ) from rest_framework import viewsets class ForwardedMessageViewSet(viewsets.ModelViewSet): serializer_class = ForwardedMessageSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = ForwardedMessage.objects.all() class ThreadActionViewSet(viewsets.ModelViewSet): serializer_class = ThreadActionSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = ThreadAction.objects.all() class MessageActionViewSet(viewsets.ModelViewSet): serializer_class = MessageActionSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = MessageAction.objects.all() class ThreadViewSet(viewsets.ModelViewSet): serializer_class = ThreadSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Thread.objects.all() class MessageViewSet(viewsets.ModelViewSet): serializer_class = MessageSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Message.objects.all() class ThreadMemberViewSet(viewsets.ModelViewSet): serializer_class = ThreadMemberSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = ThreadMember.objects.all()
726f56c748b2aa68e9e184b243ff36945ab2243e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02421/s282455109.py
e0be63d9b3954f9063104c79b5c40180297004d4
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
point_a,point_b = 0,0 for i in range(int(input())): k =[] a,b = input().split() k = [[i,j] for i,j in zip(a,b) if i != j] if k == []: if len(a) < len(b): point_b+=3 elif len(a) > len(b): point_a += 3 else: point_a+=1 point_b+=1 elif ord(k[0][0]) < ord(k[0][1]): point_b += 3 else : point_a += 3 print(point_a,point_b)
968b545c65e188b2f1d2f91599be84694e58c3f0
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/refactoring/introduceVariable/formattingOfParenthesizedTuplePreserved.after.py
d6d33f19491d398e0b0c4c6b3471f43c25c72a52
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
50
py
a = ('foo', 'bar', 'baz') func(param=a)
e5cb1c5a23fb4af6846b5bf7dc61c210c9fbfe4d
b68115ac6cd996c1a09d70c2cf7158715c125aae
/simulation/tests/context.py
542253303d40ec9076d7a91ffa82a0c73939aaa3
[]
no_license
joakim-hove/fmu_storage
3a71d7521818658a252e90a3b08c32810a86d544
c02feb69493a9e17592b1b5e3cf201c559b20bdf
refs/heads/master
2021-08-28T06:54:59.291006
2017-12-11T13:51:36
2017-12-11T13:51:36
103,049,778
0
2
null
2017-09-14T13:14:26
2017-09-10T17:53:27
Python
UTF-8
Python
false
false
2,918
py
import getpass import os import grp import random from ecl.ecl import EclGrid, EclGridGenerator, EclSum, openFortIO, EclFile from ecl.test import TestAreaContext from ecl.test.ecl_mock import createEclSum from simulation.models import * def fopr(days): return days def random_fopr(days): return fopr(days) * random.random( ) def fopt(days): return days def random_fopt(days): return fopt(days) * random.random() def fgpt(days): if days < 50: return days else: return 100 - days def random_fgpt(days): return fgpt(days) * random.random() class TestContext(object): def __init__(self): length = 100 case = createEclSum("CASE" , [("FOPT", None , 0) , ("FOPR" , None , 0), ("FGPT" , None , 0)], sim_length_days = length, num_report_step = 10, num_mini_step = 10, func_table = {"FOPT" : fopt, "FOPR" : fopr , "FGPT" : fgpt }) self.user = getpass.getuser() self.group = grp.getgrgid( os.getgid( ) )[0] self.case = case with TestAreaContext("summary"): case.fwrite( ) self.summary = Summary.create( "CASE.SMSPEC" , "CASE.UNSMRY" , self.group ) self.simulation = Simulation.create( summary = self.summary, parameters = [("CPARAM1", 100), ("CPARAM2", 200)] ) self.grid = EclGridGenerator.create_rectangular( (10,10,10),(1,1,1) ) @classmethod def create_INIT(cls): ecl_kw = EclKW(1000 , "PORV" , EclDataType.ECL_FLOAT ) with openFortIO("CASE.INIT", FortIO.WRITE_MODE) as f: ecl_kw.fwrite( f ) return EclFile( "CASE.INIT" ) @classmethod def create_UNRST(cls): ecl_kw = EclKW(1000 , "PRESSURE" , EclDataType.ECL_FLOAT ) with openFortIO("CASE.UNRST", FortIO.WRITE_MODE) as f: ecl_kw.fwrite( f ) return EclFile( "CASE.UNRST" ) @classmethod def random_simulation(cls): length = 100 case = createEclSum("CASE" , [("FOPT", None , 0) , ("FOPR" , None , 0), ("FGPT" , None , 0)], sim_length_days = length, num_report_step = 10, num_mini_step = 10, func_table = {"FOPT" : random_fopt, "FOPR" : random_fopr , "FGPT" : random_fgpt }) group = grp.getgrgid( os.getgid( ) )[0] with TestAreaContext("summary"): case.fwrite( ) summary_case = Summary.create( "CASE.SMSPEC" , "CASE.UNSMRY" , group ) return Simulation.create( summary = summary_case, parameters = [("CPARAM1", 100*random.random()), ("CPARAM2", 200*random.random())] )
28071d902234225339df9863437a44aa01511de6
6cc50a15672155f7d66e88830ad1baec6a061077
/processing/legacy/anisotropy/random_trials/grid_test/submitter.py
237c124558f1838e5cf2d1f6b45d2c356f636c95
[ "MIT" ]
permissive
jrbourbeau/cr-composition
16b29c672b2d1c8d75c1c45e35fe6bb60b53ffe2
e9efb4b713492aaf544b5dd8bb67280d4f108056
refs/heads/master
2020-06-24T21:48:21.784277
2018-11-01T21:30:56
2018-11-01T21:30:56
74,618,907
0
1
MIT
2018-08-23T21:01:03
2016-11-23T22:31:01
Jupyter Notebook
UTF-8
Python
false
false
1,237
py
#!/usr/bin/env python import os import pycondor import comptools as comp if __name__ == "__main__": # Define output directories error = os.path.join(comp.paths.condor_data_dir, 'grid_test/error') output = os.path.join(comp.paths.condor_data_dir, 'grid_test/output') log = os.path.join(comp.paths.condor_scratch_dir, 'grid_test/log') submit = os.path.join(comp.paths.condor_scratch_dir, 'grid_test/submit') # Define path to executables job_ex = os.path.abspath('test_script.py') # Extra lines for submitting to the open science grid extra_lines = ['Requirements = HAS_CVMFS_icecube_opensciencegrid_org', 'use_x509userproxy=true', 'should_transfer_files = YES', 'when_to_transfer_output = ON_EXIT'] grid = 'gsiftp://gridftp-users.icecube.wisc.edu' # Create Dagman instance dag_name = 'test_dag' dagman = pycondor.Dagman(dag_name, submit=submit, verbose=1) job_name = 'test_job' job = pycondor.Job(job_name, job_ex, error=error, output=output, log=log, submit=submit, extra_lines=extra_lines, verbose=1) dagman.add_job(job) dagman.build_submit(fancyname=True)
f3e6214771059eaad09dcfbffb014559b1f6d936
0d1b38738bf8d3a46efdf44ef6dd1fd061a0ff3e
/python/tak/ptn/__init__.py
ab2d16a528bceaaba2de3029070ad29c57dcf878
[ "MIT" ]
permissive
nelhage/taktician
aea285e49c97d9212390075239abf4816b0023ee
8ab398ad8ce65a7615da476c6e99c3f6d5d24d76
refs/heads/main
2022-12-08T23:43:26.458026
2022-11-06T23:31:12
2022-11-06T23:31:12
57,939,961
60
14
MIT
2022-11-06T23:31:13
2016-05-03T03:54:39
Go
UTF-8
Python
false
false
38
py
from .ptn import * from .tps import *
c35d40a6aaaa6fe00d05db758d350f86d9bc8b5d
7bcb0b7f721c8fa31da7574f13ed0056127715b3
/src/apps/bi/kruskals.py
5a6e72b1e0f1a21c431315fa0eb2abb11ade3fbc
[]
no_license
simonchapman1986/ripe
09eb9452ea16730c105c452eefb6a6791c1b4a69
c129da2249b5f75015f528e4056e9a2957b7d884
refs/heads/master
2022-07-22T05:15:38.485619
2016-01-15T12:53:43
2016-01-15T12:53:43
49,718,671
1
0
null
2022-07-07T22:50:50
2016-01-15T12:53:09
Python
UTF-8
Python
false
false
1,537
py
__author__ = 'simon' parent = dict() rank = dict() def make_set(vertice): parent[vertice] = vertice rank[vertice] = 0 def find(vertice): if parent[vertice] != vertice: parent[vertice] = find(parent[vertice]) return parent[vertice] def union(vertice1, vertice2): root1 = find(vertice1) root2 = find(vertice2) if root1 != root2: if rank[root1] > rank[root2]: parent[root2] = root1 else: parent[root1] = root2 if rank[root1] == rank[root2]: rank[root2] += 1 def kruskal(graph): for vertice in graph['vertices']: make_set(vertice) minimum_spanning_tree = set() edges = list(graph['edges']) edges.sort() for edge in edges: weight, vertice1, vertice2 = edge if find(vertice1) != find(vertice2): union(vertice1, vertice2) minimum_spanning_tree.add(edge) return minimum_spanning_tree def example(): """ >>> graph = {\ 'vertices': ['A', 'B', 'C', 'D', 'E', 'F'],\ 'edges': set([\ (1, 'A', 'B'),\ (5, 'A', 'C'),\ (3, 'A', 'D'),\ (4, 'B', 'C'),\ (2, 'B', 'D'),\ (1, 'C', 'D'),\ ])\ } >>> minimum_spanning_tree = set([\ (1, 'A', 'B'),\ (2, 'B', 'D'),\ (1, 'C', 'D'),\ ]) >>> print bool(kruskal(graph) == minimum_spanning_tree) True """ pass
6fc23d15c1c3ed67d9789862a4419cf73d03b598
556f9c2db9c88120dc6dc7bc4280935db78e3eaa
/scripts/test_zero.py
c28139a20225537e6deb1324f888d975b27f2fee
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
BlockResearchGroup/compas_ags
55dde6a2755c644b484767c8c359f6bfe68531a5
4507ff09be1a881d3f3520bc465a9dcda52b42ed
refs/heads/main
2023-04-11T04:43:50.850869
2022-11-17T10:46:23
2022-11-17T10:46:23
113,161,567
13
5
MIT
2022-11-17T10:35:43
2017-12-05T09:31:08
Python
UTF-8
Python
false
false
2,327
py
import compas_ags from compas_ags.diagrams import FormGraph from compas_ags.diagrams import FormDiagram from compas_ags.diagrams import ForceDiagram # from compas_ags.ags import graphstatics from compas_ags.viewers import Viewer from compas.rpc import Proxy graphstatics = Proxy('compas_ags.ags.graphstatics') # this file has unloaded, 2-valent nodes # they will be removed automatically # and the result renumbered FILE = compas_ags.get('debugging/zero.obj') graph = FormGraph.from_obj(FILE) form = FormDiagram.from_graph(graph) force = ForceDiagram.from_formdiagram(form) # fix the supports form.vertices_attribute('is_fixed', True, [8, 7]) # set the loads form.edge_force((0, 1), +10.0) form.edge_force((2, 3), +10.0) form.edge_force((4, 5), +10.0) # # compute initial form and force diagrams # graphstatics.form_update_q_from_qind(form) # graphstatics.force_update_from_form(force, form) # compute initial form and force diagrams form.data = graphstatics.form_update_q_from_qind_proxy(form.data) force.data = graphstatics.force_update_from_form_proxy(force.data, form.data) # change the geometry of the force diagram force.vertex_attribute(6, 'x', force.vertex_attribute(8, 'x')) force.vertex_attribute(9, 'x', force.vertex_attribute(10, 'x')) force.vertex_attributes(7, 'xyz', force.vertex_attributes(6, 'xyz')) force.vertex_attributes(11, 'xyz', force.vertex_attributes(9, 'xyz')) # # change the depth of the structure # force.vertices_attribute('x', 20, [6, 7, 8, 9, 10, 11]) # fix some of the nodes in the from diagram # to constraint the problem to a single solution form.vertices_attribute('is_fixed', True, [0, 2, 5]) # # update the form diagram # graphstatics.form_update_from_force(form, force) # update the form diagram form.data = graphstatics.form_update_from_force_proxy(form.data, force.data) # ============================================================================== # Visualize # ============================================================================== viewer = Viewer(form, force, delay_setup=False, figsize=(12, 7.5)) viewer.draw_form( vertexsize=0.15, vertexcolor={key: '#000000' for key in (8, 7)}, vertexlabel={key: key for key in form.vertices()}) viewer.draw_force( vertexsize=0.15, vertexlabel={key: key for key in force.vertices()}) viewer.show()
1b1047863ca9ab109e3bf32a674b4f7077fcfb6d
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_136/1892.py
5fc6c54ef1e3222a84986cd7b64701be7742ba30
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,076
py
INITIAL_RATE = 2 class Case(object): def __init__(self,C,F,X): self.C = C self.F = F self.X = X def solve(self): time = self.X/INITIAL_RATE return self.__solve_in_loop(INITIAL_RATE, time,0) def __solve_in_loop(self,last_rate,last_time,overhead): while (True): time_to_farm = self.C/last_rate + overhead new_rate = last_rate + self.F new_time = time_to_farm + self.X/new_rate if new_time >= last_time: return last_time last_time = new_time last_rate = new_rate overhead = time_to_farm def parse_stdin(): n = int(raw_input()) cases = [] for i in xrange(n): c = [float(x) for x in raw_input().split(' ')] cases.append(Case(c[0],c[1],c[2])) return cases def main(): cases = parse_stdin() i = 1 for c in cases: print 'Case #{:d}: {:3.7f}'.format(i, c.solve()) i += 1 if __name__ == '__main__': main()
b4d0a06a96fa7688f6cf7f0e79de64a4065cf646
c0feb8693883e4b29096ad45b6b2113b7cad69ef
/supervised_learning/0x03-optimization/0-main.py
dcbea35b2e1336070660c73f686a5451c7af267c
[]
no_license
vandeldiegoc/holbertonschool-machine_learning
905977a15dbb59753115936215a870fa0f46f52e
bda9efa60075afa834433ff1b5179db80f2487ae
refs/heads/main
2023-07-06T23:28:59.393284
2021-08-10T21:58:40
2021-08-10T21:58:40
318,391,491
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
#/usr/bin/env python3 import numpy as np normalization_constants = __import__('0-norm_constants').normalization_constants if __name__ == '__main__': np.random.seed(0) a = np.random.normal(0, 2, size=(100, 1)) b = np.random.normal(2, 1, size=(100, 1)) c = np.random.normal(-3, 10, size=(100, 1)) X = np.concatenate((a, b, c), axis=1) m, s = normalization_constants(X) print(m) print(s)
939ef16942fc3121165f9df42f9a4b943a6b7273
7ec38beb6f041319916390ee92876678412b30f7
/src/leecode/array_medium_1282(2).py
74ad89bcac3387e7faae9e44a1009212c7d51539
[]
no_license
hopensic/LearnPython
3570e212a1931d4dad65b64ecdd24414daf51c73
f735b5d865789843f06a623a4006f8883d6d1ae0
refs/heads/master
2022-02-18T23:11:30.663902
2022-02-12T17:51:56
2022-02-12T17:51:56
218,924,551
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
from collections import defaultdict class Solution: def groupThePeople(self, groupSizes): count = defaultdict(list) for i, size in enumerate(groupSizes): count[size].append(i) return [l[i:i + s] for s, l in count.items() for i in range(0, len(l), s)] lst = [3, 3, 3, 3, 3, 1, 3] s = Solution() print(s.groupThePeople(lst))
cd967ebaafe8d50ba8eb76a9166a6187a6d13a31
a7e3ffcd2e011f091763370a66aab9bd04d4ffec
/trade/urls.py
fe530542c751a1c69c2b97f02fb07a1a1b56e89f
[]
no_license
jiangyuwei666/Shop
0363a5c1c55c796e5ff56f07c663eea4bc08de71
78d7d4647f5c101c89fc5188808cddecf16d1ee6
refs/heads/master
2022-12-27T11:05:57.190555
2019-08-18T07:50:37
2019-08-18T07:50:37
189,996,974
0
0
null
2022-12-16T09:43:17
2019-06-03T12:02:22
Python
UTF-8
Python
false
false
412
py
from django.conf.urls import url, include from rest_framework.routers import DefaultRouter from apps.trade.views import ShoppingCartViewSet, OrderInfoViewSet, OrderGoodsViewSet router = DefaultRouter() router.register('shopping_cart', ShoppingCartViewSet) router.register('order_info', OrderInfoViewSet) router.register('order_goods', OrderGoodsViewSet) urlpatterns = [ url(r'', include(router.urls)), ]
5f1c7ca9826e83c4e2252cfcfb3335b01d8a46bd
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5636311922769920_0/Python/jonyafek/d-large.py
681f1d58b9ba783300076960e61ec020cdc6a53d
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,192
py
#!/usr/bin/python def solve(k, c, s): #print "k: " + str(k) #print "c: " + str(c) #print "s: " + str(s) result = "" numbers_to_verify = range(1, k + 1) numbers_to_check = [] while numbers_to_verify: number = 0 for level in xrange(c): temp_num = 1 if numbers_to_verify: temp_num = numbers_to_verify.pop() #print "temp_num: " + str(temp_num) #print "level: " + str(level) if 0 == level: level_value = temp_num else: level_value = (k ** level) * (temp_num - 1) #print "level value: " + str(level_value) number += level_value #print "number: " + str(number) numbers_to_check.append(number) #print "appended number: " + str(number) if len(numbers_to_check) > s: return "IMPOSSIBLE" for num in numbers_to_check: result += str(num) + " " return result.strip() import sys input_lines = open(sys.argv[1], "rt").readlines() stripped_input_lines = [line.strip() for line in input_lines] num_tests = int(input_lines[0]) #print num_tests i=1 for line in stripped_input_lines[1:]: k = int(line.split()[0]) c = int(line.split()[1]) s = int(line.split()[2]) result = solve(k, c, s) print "Case #" + str(i) + ": " + str(result) i += 1
05efe8ebcc108f820c6f960b90f10a1c382616f0
b5bde7b0be53cf62e4aa19085e75d61636213abb
/celebs/migrations/0001_initial.py
0b1719c8467ec6535bfa6428967be5b4cddc7c60
[]
no_license
pydatageek/imdb-clone-django-vue
3ecaa2dbf97225a202c574c06953b4be80fc240b
2c77f49be3e5a40b368110630641f22b686eb7bc
refs/heads/master
2022-12-07T18:29:22.303516
2020-04-03T04:54:07
2020-04-03T04:54:07
252,633,801
1
0
null
2022-11-22T05:27:31
2020-04-03T04:40:03
HTML
UTF-8
Python
false
false
3,349
py
# Generated by Django 2.2.10 on 2020-04-03 02:02 import celebs.models from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Celebrity', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('added_date', models.DateTimeField(auto_now_add=True, verbose_name='Added Date')), ('modified_date', models.DateTimeField(auto_now=True, verbose_name='Added Date')), ('slug', models.SlugField(blank=True, max_length=160, unique=True, verbose_name='Slug')), ('first_name', models.CharField(max_length=75, verbose_name='First Name')), ('last_name', models.CharField(max_length=75, verbose_name='Last Name')), ('nick_name', models.CharField(blank=True, default='', max_length=50, verbose_name='Nick Name')), ('birth_date', models.DateField(blank=True, null=True, verbose_name='Birth Date')), ('birth_place', models.CharField(blank=True, default='', max_length=100, verbose_name='Birth Place')), ('content', models.TextField(blank=True, default='', verbose_name='Biography')), ('source_content', models.URLField(blank=True, default='', verbose_name='Biography Souce')), ('trailer', models.URLField(blank=True, default='', help_text='trailer url (ONLY for youtube videos yet)', verbose_name='Trailer')), ('image', models.ImageField(blank=True, default='celebs/default_celeb.jpg', null=True, upload_to=celebs.models.celeb_directory_path, verbose_name='Image')), ('credit_image', models.CharField(blank=True, default='', max_length=250, verbose_name='Image Credit')), ], options={ 'verbose_name': 'Celebrity', 'verbose_name_plural': 'Celebrities', 'ordering': ('last_name', 'first_name'), }, ), migrations.CreateModel( name='CelebrityDuty', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], options={ 'verbose_name': 'Celebrity Duty', 'verbose_name_plural': 'Celebrity Duties', }, ), migrations.CreateModel( name='Duty', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('added_date', models.DateTimeField(auto_now_add=True, verbose_name='Added Date')), ('modified_date', models.DateTimeField(auto_now=True, verbose_name='Added Date')), ('name', models.CharField(max_length=100, unique=True, verbose_name='Name')), ('slug', models.SlugField(blank=True, max_length=110, unique=True, verbose_name='Slug')), ('code', models.CharField(max_length=1, verbose_name='Code')), ], options={ 'verbose_name': 'Duty', 'verbose_name_plural': 'Duties', 'ordering': ('code',), }, ), ]
1aaf359a44b493c5f11b48b1be9151ffa1bd2dcd
d2b6b9792e5dde0a994e875d23d8a8ace2651fca
/tests/test_build_and_lint.py
5d623626f0a8f1d543e647aaf380c31c4bccc2cd
[ "AFL-3.0", "CC-BY-2.5", "AFL-2.1", "CC-BY-3.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
michauhl/planemo
908d9bd95febcce3aa8a2e932260f0bd3151f433
fdcc6003c1fa45cbe1d074ad9d0f9a491ba99c06
refs/heads/master
2020-03-11T20:54:11.424703
2018-04-17T19:06:32
2018-04-17T19:06:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,573
py
import os import yaml from .test_utils import CliTestCase, skip_if_environ class BuildAndLintTestCase(CliTestCase): def test_build_and_lint(self): with self._isolate(): self._check_exit_code(_init_command()) self._check_lint(exit_code=0) def test_build_and_lint_with_macros(self): with self._isolate() as f: self._check_exit_code(_init_command(macros=True)) self._check_lint(exit_code=0) macros_file = os.path.join(f, "macros.xml") assert os.path.exists(macros_file) def test_lint_fails_if_no_help(self): with self._isolate(): self._check_exit_code(_init_command(help_text=False)) self._check_lint(exit_code=1) def test_lint_fails_if_no_test(self): with self._isolate(): self._check_exit_code(_init_command(test_case=False)) self._check_lint(exit_code=1) def test_lint_fails_if_no_doi(self): with self._isolate(): self._check_exit_code(_init_command(doi=False)) self._check_lint(exit_code=1) @skip_if_environ("PLANEMO_SKIP_CWLTOOL_TESTS") def test_cwl(self): with self._isolate() as f: self._check_exit_code(_cwl_init_command()) self._check_lint(filename="seqtk_seq.cwl", exit_code=0) with open(os.path.join(f, "seqtk_seq.cwl")) as stream: process_dict = yaml.load(stream) assert process_dict["id"] == "seqtk_seq" assert process_dict["label"] == "Convert to FASTA (seqtk)" assert process_dict["baseCommand"] == ["seqtk", "seq"] input0 = process_dict["inputs"][0] assert input0["inputBinding"]["position"] == 1 assert input0["inputBinding"]["prefix"] == "-a" assert input0["type"] == "File" output = process_dict["outputs"][0] assert output["type"] == "File" assert output["outputBinding"]["glob"] == "out" assert process_dict["stdout"] == "out" with open(os.path.join(f, "seqtk_seq_tests.yml")) as stream: test_dict = yaml.load(stream) assert test_dict @skip_if_environ("PLANEMO_SKIP_CWLTOOL_TESTS") def test_cwl_fail_on_empty_help(self): with self._isolate(): self._check_exit_code(_cwl_init_command(help_text=False)) self._check_lint(filename="seqtk_seq.cwl", exit_code=1) @skip_if_environ("PLANEMO_SKIP_CWLTOOL_TESTS") def test_cwl_fail_on_no_docker(self): with self._isolate(): self._check_exit_code(_cwl_init_command(help_text=False)) self._check_lint(filename="seqtk_seq.cwl", exit_code=1) def _check_lint(self, filename="seqtk_seq.xml", exit_code=0): lint_cmd = ["lint", "--fail_level", "warn", filename] try: self._check_exit_code(lint_cmd, exit_code=exit_code) except Exception: with open(filename, "r") as f: print("Failing file contents are [%s]." % f.read()) raise def _cwl_init_command(help_text=True, container=True, test_case=True): command = [ "tool_init", "--force", "--cwl", "--id", "seqtk_seq", "--name", "Convert to FASTA (seqtk)", "--container", "jmchilton/seqtk:v1", "--name", "Convert to FASTA (seqtk)", "--example_command", "seqtk seq -a 2.fastq > 2.fasta", "--example_input", "2.fastq", "--example_output", "2.fasta" ] if container: command.extend(["--container", "jmchilton/seqtk:v1"]) if help_text: command.extend(["--help_text", "The help text."]) if test_case: command.append("--test_case") return command def _init_command(test_case=True, help_text=True, doi=True, macros=False): command = [ "tool_init", "--force", "--id", "seqtk_seq", "--name", "Convert to FASTA (seqtk)", "--requirement", "[email protected]", "--example_command", "seqtk seq -a 2.fastq > 2.fasta", "--example_input", "2.fastq", "--example_output", "2.fasta" ] if test_case: command.append("--test_case") if help_text: command.extend(["--help_text", "The help text."]) if doi: command.extend(["--doi", "10.1101/014043"]) command.extend(["--cite_url", "https://github.com/ekg/vcflib"]) command.extend(["--cite_url", "http://wiki.hpc.ufl.edu/doc/Seqtk"]) if macros: command.append("--macros") return command
61eb0d93423d7ff12f16262371ed2cf4fa2a0fa6
5736e117e8d0e011107c3ce4943cce44ea242263
/DP/Lavenshtein.py
8744443adb2b9663278c3aa5e76d760482984ce3
[]
no_license
arvakagdi/Dynamic-Programming
7119d2005f12b9b441b6e3a582d99a5e4ddffa4d
49a199413fa939335308533a8303974e3a82cc5c
refs/heads/main
2023-01-11T01:36:36.862590
2020-11-14T14:10:14
2020-11-14T14:10:14
312,829,648
0
0
null
null
null
null
UTF-8
Python
false
false
1,302
py
# Time: O(mn) || Spacr: O(nm) def levenshteinDistance(str1, str2): # set up a matrix of size of first and second string edits = [[x for x in range(len(str1)+1)] for y in range(len(str2) + 1)] for i in range(1,len(str2) + 1): edits[i][0] = edits[i - 1][0] + 1 # set 1st(0th) column to base values for i in range(1,len(str2) + 1): for j in range(1,len(str1) + 1): if str2[i - 1] == str1[j - 1]: edits[i][j] = edits[i - 1][j - 1] else: edits[i][j] = 1 + min(edits[i-1][j], edits[i][j-1], edits[i-1][j-1]) return edits[-1][-1] def levenshteinDistance1(str1, str2): small = str1 if len(str1) < len(str2) else str2 big = str1 if len(str1) >= len(str2) else str2 evenEdits = [x for x in range(len(small) + 1)] oddEdits = [None for x in range(len(small) + 1)] for i in range(1, len(big) + 1): if i % 2 == 1: curr = oddEdits prev = evenEdits else: curr = evenEdits prev = oddEdits curr[0] = i for j in range(1,len(small) + 1): if big[i-1] == small[j-1]: curr[j] = prev[j-1] else: curr[j] = 1 + min(prev[j-1], curr[j-1], prev[j]) return evenEdits[-1] if len(big)%2 == 0 else oddEdits[-1] print(levenshteinDistance1("abc", "yabd"))
b2936740e8936183c7d49945d098ee718bc25273
86c360ece5931b8a48f895e8233a571720a5c273
/fabfile.py
a589579347eeb70a07bdf0c72850e3ad088f3d88
[]
no_license
dschien/bbc_tool_deploy
c83501a33fa17754a530a36391637a59569d497c
ab136aa7872031b99fcee318bc23390b93639db1
refs/heads/master
2021-01-10T12:20:28.586805
2016-10-19T16:10:06
2016-10-19T16:10:06
52,797,894
0
0
null
null
null
null
UTF-8
Python
true
false
6,817
py
import boto3 import ConfigParser import logging import boto3 import time from fabric.api import * from fabric.contrib.files import exists CONFIG_FILE = "settings.cfg" config = ConfigParser.RawConfigParser() config.read(CONFIG_FILE) env.forward_agent = True env.update(config._sections['ec2']) env.hosts = [config.get('ec2', 'host')] logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - [%(levelname)s] - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) container_state = {'RUNNING': 1, 'STOPPED': 2, 'NOT_FOUND': 3} def create_instance(): print('creating instance') ec2 = boto3.resource('ec2') instances = ec2.create_instances( ImageId='ami-e1398992', MinCount=1, MaxCount=1, KeyName='ep-host', SecurityGroupIds=['sg-e78fbc83'], InstanceType='m4.large', Placement={ 'AvailabilityZone': 'eu-west-1a', }, BlockDeviceMappings=[ { 'DeviceName': '/dev/xvda', 'Ebs': { 'SnapshotId': 'snap-7d042fb4', 'VolumeSize': 8, 'DeleteOnTermination': True, 'VolumeType': 'gp2', }, }, ], IamInstanceProfile={'Name': 'ec2_default_instance_role'}, EbsOptimized=True | False ) iid = instances[0].id # give the instance a tag name ec2.create_tags( Resources=[iid], Tags=mktag(env.notebook_server_tag) ) return instances[0] from fabric.colors import red, green def assert_running(instance): if instance.state['Name'] != "running": print "Firing up instance" instance.start() # Give it 10 minutes to appear online for i in range(120): time.sleep(5) # instance.update() print instance.state if instance.state['Name'] == "running": break else: print red("Instance did not enter 'running' state within 120s.") if instance.state['Name'] == "running": dns = instance.public_dns_name print "Instance up and running at %s" % dns config.set('ec2', 'host', dns) config.set('ec2', 'instance', instance.id) # config.write(CONFIG_FILE) print "updating env.hosts" env.hosts = [dns, ] print env.hosts # Writing our configuration file to 'example.cfg' with open(CONFIG_FILE, 'wb') as configfile: config.write(configfile) return instance def mktag(val): return [{'Key': 'Name', 'Value': val}] def assert_instance(): """ Return an EC2 Instance :return: """ ec2 = boto3.resource('ec2') instances = ec2.instances.filter( Filters=[{'Name': 'tag:Name', 'Values': [env.notebook_server_tag]}, # {'Name': 'instance-state-name', 'Values': ['running']} ]) instance_list = [instance for instance in instances] if len(instance_list) == 0: print('not existing, will create') return create_instance() else: return assert_running(instance_list[0]) def initial_deployment_with_assert(): print('checking instance') instance = assert_instance() execute(_initial_deployment, hosts=[instance.public_dns_name]) def initial_deployment(): execute(_initial_deployment) def _initial_deployment(): print env.hosts with settings(warn_only=True): result = run('docker info') if result.failed: sudo('yum install -y docker') sudo('sudo service docker start') sudo('sudo usermod -a -G docker ec2-user') # sudo('yum install -y git') if not exists('bbc_tool', verbose=True): sudo('yum install -y git') run('git clone [email protected]:dschien/bbc_tool.git') else: update() build_container() start_nb_server() def update(): with cd('bbc_tool'): run('git pull') def start_nb_server(with_assert=False): if with_assert: print('checking instance') instance = assert_instance() execute(_run_container, hosts=[instance.public_dns_name]) else: execute(_run_container) def _run_container(): update() cmd = 'docker run -d -p 8888:8888 --name nb-server -v $(pwd):/home/jovyan/work -e PASSWORD="%s" dschien/nb' % \ env.nb_password with cd('bbc_tool'): run(cmd) def build_container(with_assert=False): print('checking instance') if with_assert: assert_instance() with cd('bbc_tool/docker'): run('docker build -t dschien/nb .') def inspect_container(container_name_or_id=''): """ e.g. fab --host ep.iodicus.net inspect_container:container_name_or_id=... """ with settings(warn_only=True): result = run("docker inspect --format '{{ .State.Running }}' " + container_name_or_id) running = (result == 'true') if result.failed: logger.warn('inspect_container failed for container {}'.format(container_name_or_id)) return container_state['NOT_FOUND'] if not running: logger.info('container {} stopped'.format(container_name_or_id)) return container_state['STOPPED'] logger.info('container {} running'.format(container_name_or_id)) return container_state['RUNNING'] def stop_container(container_name_or_id=''): with settings(warn_only=True): result = run("docker stop " + container_name_or_id) if not result.failed: logger.info('container {} stopped'.format(container_name_or_id)) def remove_container(container_name_or_id=''): with settings(warn_only=True): result = run("docker rm " + container_name_or_id) if result == container_name_or_id: logger.info('container {} removed'.format(container_name_or_id)) else: logger.warn('unexpect command result, check log output') def docker_logs(container_name_or_id=''): with settings(warn_only=True): run('docker logs --tail 50 -f {}'.format(container_name_or_id)) def redeploy_container(container_name_or_id=''): """ e.g. fab --host ep.iodicus.net inspect_container:container_name_or_id=... """ state = inspect_container(container_name_or_id) if state == container_state['RUNNING']: stop_container(container_name_or_id) remove_container(container_name_or_id) start_nb_server() def update_site(): """ Pull from git and restart docker containers :return: """ update() for container in ['nb-server']: redeploy_container(container)
acd3af53e483f5486883751ff18a9e9a124f4c06
038e6e13ad4a81cee5dbbd6ccc322d48330d15d7
/AnswerCode/463IslandPerimeter.py
b6168c15bf6864a09d4e81b9745085bc8ea3662f
[]
no_license
aistoume/Leetcode
ad69dae6d9f41a03c883fc2582d0afd6997f83d6
d8dc574b611d0e3d42367ccd47a44fd8443b0b27
refs/heads/master
2021-01-12T14:27:18.245818
2018-11-09T00:21:04
2018-11-09T00:21:04
70,066,007
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
### Youbin 2017/06/21 ### 463 Island Perimeter class Solution(object): def islandPerimeter(self, grid): p = 0 newGrid = [[0]*(len(grid[0])+2)] for l in grid: row = [0]+ l + [0] newGrid.append(row) newGrid.append([0]*(len(grid[0])+2)) for row in range(1,len(newGrid)-1): for col in range(1, len(newGrid[1])-1): if newGrid[row][col] == 1: if newGrid[row-1][col] == 0: p+=1 if newGrid[row+1][col] == 0: p+=1 if newGrid[row][col-1] == 0: p+=1 if newGrid[row][col+1] == 0: p+=1 return p s = Solution() l = [[0,1,0,0],[1,1,1,0],[0,1,0,0],[1,1,0,0]] r = s.islandPerimeter(l) print r
d69f2d5892bc361a4bb224fe5d218221024326c8
3ddc7fb5ac7ac91753a29beced3d2cfb63a2ba8b
/src/minij_proxy_asgi_aiohttp.py
1c317a05af5abdd396904aa838e8becb2573d4f2
[]
no_license
abilian/asgi-sandbox
3f978ac9eba139e248af3508b506c87ed6f87fe1
49f6c50a94e90045c7c60533f6e564e6b745d8b5
refs/heads/main
2023-05-31T08:39:57.855151
2021-06-29T13:34:33
2021-06-29T13:34:33
364,506,274
0
0
null
null
null
null
UTF-8
Python
false
false
3,003
py
import asyncio from typing import Mapping import aiohttp import fire import uvicorn from aiohttp import ClientSSLError, ClientTimeout, TooManyRedirects from starlette.requests import Request from starlette.responses import Response # Extremely aggressive and hardcoded value TIMEOUT = 10 DEFAULT_ACCESS_URL = "https://mynij.app.officejs.com" async def application(scope, receive, send): if scope["type"] != "http": return request = Request(scope, receive) response = Response() if request.method != "GET": response.status = 405 else: async with aiohttp.ClientSession() as client: await fetch_content(client, request, response) await response(scope, receive, send) async def fetch_content( client: aiohttp.ClientSession, request: Request, response: Response ) -> None: url = request.query_params["url"] proxy_query_header = make_request_headers(request.headers) try: proxy_response = await client.get( url, headers=proxy_query_header, timeout=TIMEOUT ) except ClientSSLError: # Invalid SSL Certificate status = 526 except ConnectionError: status = 523 except ClientTimeout: status = 524 except TooManyRedirects: status = 520 else: response.body = await proxy_response.content.read() if proxy_response.status == 500: response.status = 520 else: copy_proxy_headers(proxy_response, response) response.headers["Access-Control-Allow-Origin"] = get_access_url(request.headers) def make_request_headers(headers: Mapping): request_headers = {} HEADERS = [ "Content-Type", "Accept", "Accept-Language", "Range", "If-Modified-Since", "If-None-Match", ] for k in HEADERS: v = headers.get(k) if v: request_headers[k] = str(v) return request_headers def get_access_url(headers: Mapping): return headers.get("Origin", DEFAULT_ACCESS_URL) def copy_proxy_headers(proxy_response, response) -> None: HEADERS = [ "Content-Disposition", "Content-Type", "Date", "Last-Modified", "Vary", "Cache-Control", "Etag", "Accept-Ranges", "Content-Range", ] for k, v in proxy_response.headers.items(): k = k.title() if k in HEADERS: response.headers[k] = v def main(host="localhost", port=8000, server="uvicorn"): if server == "uvicorn": uvicorn.run( "minij_proxy_asgi_aiohttp:application", host=host, port=port, log_level="info", ) elif server == "hypercorn": from hypercorn.asyncio import serve from hypercorn.config import Config config = Config() config.bind = [f"{host}:{port}"] asyncio.run(serve(application, config)) if __name__ == "__main__": fire.Fire(main)
c239fa23fae2712d15c071e023a056a4116c2caf
b4cc610bbd069c2b3e1f50c82303d48de21843a4
/ce/c235_test.py
896a898bca43a1811bb53b5b1aac0718705bf3b4
[]
no_license
AakashKumarNain/pythonesque
d47b890ff42fa7baa3f25f9569d8a7310c7aa710
3225aaf878c52962becafd60a50243a91f92b264
refs/heads/master
2020-03-18T00:07:00.624695
2018-05-19T09:24:16
2018-05-19T09:24:16
134,078,646
1
0
null
null
null
null
UTF-8
Python
false
false
582
py
""" Simple or trump author: Manny [email protected] info: http://thisthread.blogspot.com/2017/01/codeeval-simple-or-trump.html https://www.codeeval.com/open_challenges/235/ """ import unittest from ce.c235 import solution class TestCodeEval(unittest.TestCase): def test_provided_1(self): self.assertEqual('2H', solution('AD 2H | H')) def test_provided_2(self): self.assertEqual('KD KH', solution('KD KH | C')) def test_provided_3(self): self.assertEqual('JH', solution('JH 10S | C')) if __name__ == '__main__': unittest.main()
8609337d0074cd189a54453539b0385f45cc2b9b
ed719ee21d88b1d3fa03fbcc41cb2683930ea665
/month05/AI/day05/demo05_traffic.py
a52e182e55428309879deb30567c217b8cf38444
[]
no_license
KarlLichterVonRandoll/learning_python
453305c0af116014e384e4335d53b9775587483d
c458e203e7f7bfce9641408ef63d6ba041ed7fef
refs/heads/master
2022-02-23T03:04:24.580457
2019-09-17T03:43:45
2019-09-17T03:43:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,663
py
""" 案例:车流量预测 回归问题 """ import numpy as np import sklearn.preprocessing as sp import sklearn.model_selection as ms import sklearn.svm as svm import sklearn.metrics as sm class DigitEncoder(): # 模拟LabelEncoder自定义的数字编码器 def fit_transform(self, y): return y.astype('i4') def transform(self, y): return y.astype('i4') def inverse_transform(self, y): return y.astype('str') # 加载并整理数据 data = np.loadtxt( '../ml_data/traffic.txt', delimiter=',', dtype='U20') data = data.T # 整理数据集 x, y, encoders = [], [], [] for row in range(len(data)): # 确定当前这组特征使用何种编码器 if data[row][0].isdigit(): encoder = DigitEncoder() else: encoder = sp.LabelEncoder() # 整理数据集 if row < len(data) - 1: x.append(encoder.fit_transform(data[row])) else: y = encoder.fit_transform(data[row]) encoders.append(encoder) x = np.array(x).T y = np.array(y) print(x.shape, y.shape, x[0], y[0]) # 划分训练集 train_x, test_x, train_y, test_y = \ ms.train_test_split( x, y, test_size=0.25, random_state=7) model = svm.SVR( kernel='rbf', C=10, epsilon=0.2) model.fit(train_x, train_y) pred_test_y = model.predict(test_x) # r2_score print(sm.r2_score(test_y, pred_test_y)) print(sm.mean_absolute_error(test_y, pred_test_y)) data = [['Tuesday', '13:35', 'San Francisco', 'no']] data = np.array(data).T x = [] for row in range(len(data)): encoder = encoders[row] x.append(encoder.transform(data[row])) x = np.array(x).T pred_y = model.predict(x) print(pred_y)
803f26d0e831665f687af15088f956c6846a247d
531c47c15b97cbcb263ec86821d7f258c81c0aaf
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_08_01/aio/operations_async/_available_delegations_operations_async.py
a4120781c732285c6b81e9300d16784aafbd4b5e
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
YijunXieMS/azure-sdk-for-python
be364d3b88204fd3c7d223df23756386ff7a3361
f779de8e53dbec033f98f976284e6d9491fd60b3
refs/heads/master
2021-07-15T18:06:28.748507
2020-09-04T15:48:52
2020-09-04T15:48:52
205,457,088
1
2
MIT
2020-06-16T16:38:15
2019-08-30T21:08:55
Python
UTF-8
Python
false
false
5,085
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class AvailableDelegationsOperations: """AvailableDelegationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location: str, **kwargs ) -> AsyncIterable["models.AvailableDelegationsResult"]: """Gets all of the available subnet delegations for this subscription in this region. :param location: The location of the subnet. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailableDelegationsResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_08_01.models.AvailableDelegationsResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AvailableDelegationsResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('AvailableDelegationsResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/locations/{location}/availableDelegations'} # type: ignore
4785a18fd7f8139ca9ffe991135f4fb33afce469
97f285b6f8016a8d1d2d675fffb771df3c9e37b9
/web/simplehttpputserver.py
29a977339705467a06f309e41d64dc6f919fd323
[]
no_license
oskomorokhov/python
ef5408499840465d18852954aee9de460d0e7250
8909396c4200bd2fca19d3f216ed5f484fb2192a
refs/heads/master
2021-05-14T09:27:25.413163
2019-12-12T21:00:05
2019-12-12T21:00:05
116,327,306
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
import SimpleHTTPServer import BaseHTTPServer class SputHTTPRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): def do_PUT(self): print self.headers length = int(self.headers["Content-Length"]) path = self.translate_path(self.path) with open(path, "wb") as dst: dst.write(self.rfile.read(length)) if __name__ == '__main__': SimpleHTTPServer.test(HandlerClass=SputHTTPRequestHandler)
8f48ea04409d30f7fbe228bdf8395f39c7f6e20a
e377a9333401b992548ddb7e6ccd9452fdd1d071
/os_package_registry/__init__.py
05645fc92042b3bde8d401005e923f323fdd870c
[ "MIT" ]
permissive
OpenSpending-Clone/os-package-registry
58a9d7754400f546f1bcdaa6b017dcf1dfa21049
27b82eff040a93e31f958820c62aa084a9cd1cc0
refs/heads/master
2022-02-24T22:32:10.714979
2019-11-06T21:07:36
2019-11-06T21:07:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
from .package_registry import PackageRegistry
3944f19dacca45a6c4ca733edff9d19acdd24250
4a8bfa3407aa98a04ede3162f85467b1b5012fe7
/tests/test_api/test_methods/test_edit_message_live_location.py
07b61a9d518c71e42d0b70073e468713690f8296
[]
no_license
aiogram/tg-codegen
07ec80814eec46f464d2490fd27b7b6b27257f1b
ba3c2f893591d45dda418dd16e0646e260afdf14
refs/heads/master
2022-12-09T10:44:10.781570
2021-11-07T23:33:25
2021-11-07T23:33:25
218,523,371
24
5
null
2022-12-08T08:47:43
2019-10-30T12:33:21
Python
UTF-8
Python
false
false
1,141
py
import pytest from aiogram.api.methods import EditMessageLiveLocation, Request from tests.mocked_bot import MockedBot @pytest.mark.skip class TestEditMessageLiveLocation: @pytest.mark.asyncio async def test_method(self, bot: MockedBot): prepare_result = bot.add_result_for(EditMessageLiveLocation, ok=True, result=None) response: Union[Message, bool] = await EditMessageLiveLocation( latitude=..., longitude=..., ) request: Request = bot.get_request() assert request.method == "editMessageLiveLocation" # assert request.data == {} assert response == prepare_result.result @pytest.mark.asyncio async def test_bot_method(self, bot: MockedBot): prepare_result = bot.add_result_for(EditMessageLiveLocation, ok=True, result=None) response: Union[Message, bool] = await bot.edit_message_live_location( latitude=..., longitude=..., ) request: Request = bot.get_request() assert request.method == "editMessageLiveLocation" # assert request.data == {} assert response == prepare_result.result
1ee61b83ccfaad20826b03e78474d2cbc307c42e
320bf3ddd6233577d9f2f08f046eaef96f881e4e
/Pillow-4.3.0/Tests/test_image_fromqpixmap.py
543b74bbf249991a39c73878b670772b46f1f152
[ "MIT" ]
permissive
leorzz/simplemooc
057ba3e220c20907017edfd8d0fc0422f9a6d99c
8b1c5e939d534b1fd729596df4c59fc69708b896
refs/heads/master
2022-10-22T02:24:46.733062
2017-12-17T16:37:04
2017-12-17T16:37:04
112,488,280
0
1
MIT
2022-10-08T17:50:17
2017-11-29T14:52:23
Python
UTF-8
Python
false
false
837
py
from helper import unittest, PillowTestCase, hopper from test_imageqt import PillowQtTestCase, PillowQPixmapTestCase from PIL import ImageQt class TestFromQPixmap(PillowQPixmapTestCase, PillowTestCase): def roundtrip(self, expected): PillowQtTestCase.setUp(self) result = ImageQt.fromqpixmap(ImageQt.toqpixmap(expected)) # Qt saves all pixmaps as rgb self.assert_image_equal(result, expected.convert('RGB')) def test_sanity_1(self): self.roundtrip(hopper('1')) def test_sanity_rgb(self): self.roundtrip(hopper('RGB')) def test_sanity_rgba(self): self.roundtrip(hopper('RGBA')) def test_sanity_l(self): self.roundtrip(hopper('L')) def test_sanity_p(self): self.roundtrip(hopper('P')) if __name__ == '__main__': unittest.main()