blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
22c9bd34bc65eeaa2531ecd17303521ed2520d03
abd7504f6562babf79fb4e86af7529b2cb40fb54
/pkg/p2/algebraic/Composite.py
f7484bcffe062e091103b6467f18fc30e7da1383
[]
no_license
aivazis/p2
266c1728554b3f7a89e72f09ba2d9e5ff8d4447d
fd9a82d7dafa815dd68f679eb2b4b1a6287d02ea
refs/heads/main
2022-01-08T12:45:16.646028
2022-01-01T17:31:10
2022-01-01T17:31:10
225,452,981
2
0
null
null
null
null
UTF-8
Python
false
false
5,458
py
# -*- coding: utf-8 -*- # # michael a.g. aïvázis <[email protected]> # (c) 1998-2022 all rights reserved class Composite: """ Mix-in class that provides an implementation of the subset of the interface of {Node} that requires traversal of the expression graph rooted at nodes with dependencies. This class assumes that its instances provide {operands}, a tuple of their dependencies on other nodes """ # types from .exceptions import CircularReferenceError # interface @property def operands(self): """ A sequence of my direct dependents """ # the default implementation stores my operands in a private member return self._operands @operands.setter def operands(self, operands): """ Adjust my operands """ # process the incoming sequence and save self._operands = self._store(self._ingest(operands=operands)) # all done return @property def span(self): """ Return a sequence over my entire dependency graph """ # i am a node in my dependency graph yield self # go through my operands for operand in self.operands: # and ask them for their span yield from operand.span # all done return # classifiers @property def literals(self): """ Return a sequence over the nodes in my dependency graph that encapsulate foreign objects """ # go through my operands for operand in self.operands: # and ask them for literals in their span yield from operand.literals # all done return @property def operators(self): """ Return a sequence over the composite nodes in my dependency graph """ # i am one yield self # go through my operands for operand in self.operands: # and ask them for operators in their span yield from operand.operators # all done return @property def variables(self): """ Return a sequence over the variables in my dependency graph """ # go through my operands for operand in self.operands: # and ask them for variables in their span yield from operand.variables # all done return # structural classifiers @property def leaves(self): """ Return a sequence over the leaves in my dependency graph """ # go through my operands: for operand in self.operands: # and ask them for leaves in their span yield from operand.leaves # all done return @property def composites(self): """ Return a sequence over the composites in my dependency graph """ # i am one yield self # go through my operands: for operand in self.operands: # and ask them for leaves in their span yield from operand.composites # all done return # metamethods def __init__(self, operands, **kwds): # chain up super().__init__(**kwds) # save my direct dependencies self.operands = operands # all done return # implementation details def _ingest(self, operands): """ Convert {operands} into nodes """ # go through operands for operand in operands: # if this is not a node instance if not isinstance(operand, self.node): # make it a literal operand = self.literal(value=operand) # hand it off yield operand # all done return def _substitute(self, current, replacement, clean): """ Adjust the operands by substituting {replacement} for {current} in the sequence of operands """ # if i'm the one being replaced if current is self: # just return the {replacement} return replacement # if i'm among the {clean} nodes if self in clean: # do nothing return self # add me to the clean pile clean.add(self) # otherwise, make a pile for my potentially adjusted operands operands = [] # initially, i am not known to have replaced any of my operands modified = False # go through my operands for op in self.operands: # if this one is marked {clean} if op in clean: # add it to the list of operands operands.append(op) # and carry on continue # otherwise, ask it to perform the substitution r = op._substitute(current=current, replacement=replacement, clean=clean) # add it or its replacement to the pile operands.append(r) # record whether an update was performed modified |= (r is not op) # if any substitutions were made if modified: # replace my operands self.operands = operands # all done return self # the default storage mechanism for operands _store = tuple # storage for the operands _operands = () # end of file
25b84c72c3109809a8cb05a72d74a669ff8fe826
4059573793d0ee5b74c9dd919aa2945dad2fe426
/Searching Algorithms/binary_search.py
4d3d525420e9d3930077f4a8fae78ac7b8ab65cb
[]
no_license
nayanika2304/DataStructuresPractice
04ea6d9248a63983abdd2b983632ba5907eed9d4
f3c815ff113ce3977cc743360b77fb21c9f9b383
refs/heads/master
2022-12-08T05:28:22.897414
2020-08-29T18:17:57
2020-08-29T18:17:57
282,513,763
0
0
null
null
null
null
UTF-8
Python
false
false
1,299
py
''' Compare x with the middle element. If x matches with middle element, we return the mid index. Else If x is greater than the mid element, then x can only lie in right half subarray after the mid element. So we recur for right half. Else (x is smaller) recur for the left half. ''' # Python3 Program for recursive binary search. ''' takes the number to search, array, l= start r= length ''' # Returns index of x in arr if present, else -1 def binarySearch(arr, l, r, x): print(l,r) # Check base case if r >= l: mid = l + (r - l) // 2 # If element is present at the middle itself if arr[mid] == x: return mid # If element is smaller than mid, then it # can only be present in left subarray elif arr[mid] > x: return binarySearch(arr, l, mid - 1, x) # Else the element can only be present # in right subarray else: return binarySearch(arr, mid + 1, r, x) else: # Element is not present in the array return -1 # Driver Code arr = [2, 3, 4, 10, 40] x = 10 # Function call result = binarySearch(arr, 0, len(arr) - 1, x) if result != -1: print("Element is present at index % d" % result) else: print("Element is not present in array")
85b3990a7902a3249be40266a3a934ab4f52f997
9cc6721acb439db2e7cff8eb4dbff4b6e14040d5
/코딩테스트(책)/problems/3.dfs_bfs/6.감시피하기_x.py
44a193abe9ce52b0c1122ad0e432887afc033494
[]
no_license
young31/Algorithm
35c6ec6b6d9b192f9d0e6e6f6484f33c92100232
bfcccfa798d031a930490efa24d9b2263bd4b984
refs/heads/master
2021-11-04T14:01:53.827508
2021-10-25T06:35:24
2021-10-25T06:35:24
196,034,851
0
3
null
null
null
null
UTF-8
Python
false
false
2,864
py
# input n1 = 5 arr1 = [ [0, 1, 0, 0, 2], [2, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0, 0, 2, 0, 0] ] n2 = 4 arr2 = [ [1, 1, 1, 2], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 0] ] # answer: yes # algo def search(arr, x, y, move): n = len(arr) res = [] is_T = False if move == 0: dx, dy = 1, 0 elif move == 1: dx, dy = -1, 0 elif move == 2: dx, dy = 0, 1 elif move == 3: dx, dy = 0, -1 tmp = [] while 1: nx = x+dx ny = y+dy if not is_feasible(n, nx, ny): break else: if arr[nx][ny] == 0: tmp.append((nx, ny)) elif arr[nx][ny] == 2: is_T = True break x, y = nx, ny if is_T: if tmp: res += tmp else: # 선생이 있는데 막을 방법이 없으면 긴급상황(무조건 못 피함) return 'FLAG' return res def is_feasible(n, x, y): if 0 <= x < n and 0 <= y < n: return True return False def main(n, arr): students = [] for i in range(n): for j in range(n): if arr[i][j] == 1: students.append((i, j)) # 막을 구간을 생성해서 해당 구간을 모두 방어하면 회피 성공으로 해결 to_block = [] for i, j in students: for m in range(4): tmp = search(arr, i, j, m) if tmp == 'FLAG': return 'NO' if tmp: to_block.append(tmp) # 막을 곳이 남아 있는지 체크 remains = [True for _ in range(len(to_block))] n_block = 0 for ib, block in enumerate(to_block): if not block: continue hist_remove = [] # 해당 구간은 일단 막고 시작; 구간 내 몇개나 설치할 지는 아래에서 결정 if remains[ib]: remains[ib] = False for i, xy in enumerate(block): remove = False for ib_, block_ in enumerate(to_block[ib+1:], ib+1): # 공통 좌표가 있으면 해당 부분은 무조건 막고 진행; 해결된 구간도 함께 해결한 것으로 처리 if xy in block_: remains[ib_] = False remove = True block_.remove(xy) if n_block > 3: return 'NO' if remove: n_block += 1 hist_remove.append(remove) # 공통된 부분이 없다면 해당 구간만 해결 if sum(hist_remove) == 0: n_block += 1 if n_block <= 3 and sum(remains) == 0: return 'YES' else: return 'NO' print(main(n1, arr1)) print(main(n2, arr2))
1921e361eac11d34257a95c03ac18db950c86452
ac99fc4c74c6306cf23ebc3ddbcbd992b985387d
/tests/myapp/settings.py
55161837d3bbd70265ce48e2ae0356a77b458656
[ "MIT" ]
permissive
jamalex/django-nested-intervals
d7f010d13abd28efd0867fa683bfded04fb91931
b2d80db554762e95b24c7b08217e5bcbed8f40b7
refs/heads/master
2020-03-28T07:31:37.486839
2018-09-09T21:14:06
2018-09-09T21:14:06
147,907,242
5
1
null
null
null
null
UTF-8
Python
false
false
1,336
py
from __future__ import unicode_literals import os import django DIRNAME = os.path.dirname(__file__) DEBUG = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite3' } } INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.staticfiles', 'nested_intervals', 'myapp', ) STATIC_URL = '/static/' SECRET_KEY = 'abc123' MIDDLEWARE = [ 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ] TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] ROOT_URLCONF = 'myapp.urls'
5be62ca99e20643780c83602ab8fb32b229abe89
5f0eeef355fa84b165d4e0707e8874755cc03259
/chp03_oscillation/NOC_3_09_wave_b/NOC_3_09_wave_b.pyde
b43cee586b23ca1e67378fd57b2a37121536b205
[]
no_license
kidult00/NatureOfCode-Examples-Python
5835fbed114f3991b9986852f31d29a0a46d7e53
42461590deebbe305d5815ff0d207ff974335ad5
refs/heads/master
2021-05-11T04:47:53.999705
2018-03-07T15:54:12
2018-03-07T15:54:12
117,946,895
0
0
null
null
null
null
UTF-8
Python
false
false
507
pyde
# The Nature of Code - Python Version # [kidult00](https://github.com/kidult00) def setup(): size(250, 200) smooth() global startAngle, angleVel startAngle = 0.0 angleVel = 0.2 def draw(): background(255) stroke(0) fill(0, 50) strokeWeight(2) global startAngle, angleVel startAngle += 0.015 angle = startAngle for x in range(0, width+1, 24): y = map(sin(angle), -1, 1, 0, height) ellipse(x, y, 48, 48) angle += angleVel
3ec8cdf29f18ab3b98ea97b5e714e0b0770ed1e6
148072ce210ca4754ea4a37d83057e2cf2fdc5a1
/src/core/w3af/w3af/plugins/attack/db/sqlmap/lib/request/direct.py
dab662acd830c943a6bb530956ff9115e04cb2cb
[]
no_license
ycc1746582381/webfuzzer
8d42fceb55c8682d6c18416b8e7b23f5e430c45f
0d9aa35c3218dc58f81c429cae0196e4c8b7d51b
refs/heads/master
2021-06-14T18:46:59.470232
2017-03-14T08:49:27
2017-03-14T08:49:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,668
py
#!/usr/bin/env python """ Copyright (c) 2006-2015 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ import time from extra.safe2bin.safe2bin import safecharencode from lib.core.agent import agent from lib.core.common import Backend from lib.core.common import calculateDeltaSeconds from lib.core.common import extractExpectedValue from lib.core.common import getCurrentThreadData from lib.core.common import getUnicode from lib.core.common import hashDBRetrieve from lib.core.common import hashDBWrite from lib.core.common import isListLike from lib.core.data import conf from lib.core.data import kb from lib.core.data import logger from lib.core.dicts import SQL_STATEMENTS from lib.core.enums import CUSTOM_LOGGING from lib.core.enums import DBMS from lib.core.enums import EXPECTED from lib.core.settings import UNICODE_ENCODING from lib.utils.timeout import timeout def direct(query, content=True): select = True query = agent.payloadDirect(query) query = agent.adjustLateValues(query) threadData = getCurrentThreadData() if Backend.isDbms(DBMS.ORACLE) and query.upper().startswith("SELECT ") and " FROM " not in query.upper(): query = "%s FROM DUAL" % query for sqlTitle, sqlStatements in SQL_STATEMENTS.items(): for sqlStatement in sqlStatements: if query.lower().startswith(sqlStatement) and sqlTitle != "SQL SELECT statement": select = False break if select and not query.upper().startswith("SELECT "): query = "SELECT %s" % query logger.log(CUSTOM_LOGGING.PAYLOAD, query) output = hashDBRetrieve(query, True, True) start = time.time() if not select and "EXEC " not in query.upper(): _ = timeout(func=conf.dbmsConnector.execute, args=(query,), duration=conf.timeout, default=None) elif not (output and "sqlmapoutput" not in query and "sqlmapfile" not in query): output = timeout(func=conf.dbmsConnector.select, args=(query,), duration=conf.timeout, default=None) hashDBWrite(query, output, True) elif output: infoMsg = "resumed: %s..." % getUnicode(output, UNICODE_ENCODING)[:20] logger.info(infoMsg) threadData.lastQueryDuration = calculateDeltaSeconds(start) if not output: return output elif content: if output and isListLike(output): if len(output[0]) == 1: output = [_[0] for _ in output] retVal = getUnicode(output, noneToNull=True) return safecharencode(retVal) if kb.safeCharEncode else retVal else: return extractExpectedValue(output, EXPECTED.BOOL)
02d13497a04ea06e5cf6152aa3aec22d52d7d007
71764665e27f4b96bab44f38a4a591ffc2171c24
/hhplt/productsuite/gs11/board.py
7b57cb91d2ffc0019bfb0e4228b477749d1fc2ba
[]
no_license
kingdomjc/RSU_production_VAT
693f8c504acc0cc88af92942734ccb85f7e7d7c0
9a3d6d3f5a5edfaf30afdff725661630aafe434c
refs/heads/master
2020-07-31T05:03:46.699606
2019-09-24T02:09:53
2019-09-24T02:09:53
210,491,514
0
0
null
null
null
null
UTF-8
Python
false
false
14,791
py
#encoding:utf-8 u"单板测试,包括单板数字测试及射频测试。单板正常放置在夹具上,按下开始按钮进行测试" suiteName = u'''单板测试''' version = "1.0" failWeightSum = 10 #整体不通过权值,当失败权值和超过此,判定测试不通过 from hhplt.productsuite.gs11 import board_digital,board_rf_conduct from hhplt.testengine.testutil import multipleTest,checkBySenser from hhplt.deviceresource import askForResource,GS11IOBoardDevice,GS11NuLink,VideoCaptureAndParser from hhplt.testengine.server import serverParam as SP,serialCode from hhplt.testengine.exceptions import TestItemFailException,AbortTestException from hhplt.testengine.versionContainer import getVersionFile import time,os from hhplt.testengine.testcase import uiLog,superUiLog from hhplt.parameters import SESSION,PARAM from hhplt.testengine.manul import broadcastTestResult,closeAsynMessage def __getIoBoard(): '''获得IO板资源''' return askForResource("GS11IOBoardDevice", GS11IOBoardDevice.GS11IOBoardDevice,) def __getNuLink(): '''获得ICP下载工具''' return askForResource("GS11NuLink", GS11NuLink.GS11NuLink,) def __getVideoCapture(): '''获得摄像头抓拍工具''' return askForResource("VideoCaptureAndParser", VideoCaptureAndParser.VideoCaptureAndParser,) autoTrigger = GS11IOBoardDevice.IOBoardAutoTrigger def setup(product): '''初始化''' #检查夹具动作,如果夹具没合上,则合上夹具 iob = __getIoBoard() iob.closeClap() iob.releaseDemolishButton() board_digital.setup(product) SESSION["autoTrigger"].pause() closeAsynMessage() def finalFun(product): '''自动弹开夹具,输出结果信号,并给OBU下电''' try: board_digital.finalFun(product) iob = __getIoBoard() iob.openClap() broadcastTestResult(product) finally: SESSION["autoTrigger"].resume() def T_01_scanBarCode_A(product): u"扫描条码-扫描单板条码,用于后续追溯" try: __getVideoCapture().captureBarcodeSnapshot() barCode = __getVideoCapture().parseBarcode() product.setTestingSuiteBarCode(barCode) return {u"条码扫描结果":barCode} finally: __getIoBoard().closeLighting() def T_02_testVersionDownload_A(product): u"下载测试版本-下载用于测试的OBU版本" vf = getVersionFile(SP("gs11.vatVersion.filename","GS11-VAT-09.00.00.version",str)) uiLog(u"版本文件:"+vf) nul = __getNuLink() try: uiLog(u"切换至NuLink模式") __getIoBoard().switchToNuLink() nul.downloadVersion(vf,verify=False) finally: #如果后面不跟随出场信息写入,则复位芯片并切回串口模式;否则不必退出 if "出厂信息写入" not in SESSION["seletedTestItemNameList"]: uiLog(u"复位芯片...") try: nul.resetChip() finally: uiLog(u"切换至普通串口模式") __getIoBoard().switchToNormalSerial() def T_03_initFactorySetting_A(product): u'''出厂信息写入-写入MAC地址,唤醒灵敏度参数等,通过ICP方式写入并自动判断信息一致''' #读取旧的信息内容 magicWord = "55555555" try: uiLog(u"切换至NuLink模式") __getIoBoard().switchToNuLink() nul = __getNuLink() infos = None try: infos = nul.readInfo() obuid = infos[8:16] superUiLog(u"单板信息区内容:"+infos) if infos.startswith(magicWord) and obuid!="FFFFFFFF": #有魔术字,说明出场信息已经写过了 uiLog(u"出厂信息已写入,原标识:%s"%obuid) product.setTestingProductIdCode(obuid) uiLog(u"复位芯片...") nul.resetChip() return {"OBUID":obuid,"原出厂信息区":infos[:36]+","+infos[128:200]} except TestItemFailException,e: #如果读出失败,那么也判定为需要写 uiLog(u"区域读取失败,开始写入出厂信息") obuid = serialCode("mac") #分配新的MAC地址(obuid) displayDirect = SP("gs11.initParam.displayDirect","00",str) #显示方向 softwareVerionFile = SP("gs11.vatVersion.filename","GS11-VAT-09.00.00.version",str) softwareVersion = "".join(softwareVerionFile.split("-")[2].split(".")[:3])+"00" hardwareVersion = SP("gs11.initParam.hardwareVersion","010000",str)#硬件版本号 initWankenSensi_high_grade = SP('gs11.initWanken.high.grade',"03",str)#高灵敏度-grade initWankenSensi_high_level = SP('gs11.initWanken.high.level',"0E",str)#高灵敏度-level initWankenSensi_low_grade = SP('gs11.initWanken.low.grade',"03",str) #低灵敏度-grade initWankenSensi_low_level = SP('gs11.initWanken.low.level',"0E",str)#低灵敏度-level wakeupMode = SP("gs11.initParam.wakeupMode","04",str)#唤醒模式 amIndex = SP("gs11.initParam.amIndex","00",str)#AmIndex transPower = SP("gs11.initParam.transPower","02",str) #发射功率 txFilter = SP("gs11.initParam.txFilter","06",str) #TxFilter sensitivity = SP("gs11.initParam.sensitivity","00",str) #使用灵敏度 CONFIG_BUILD_INFO = "".join((magicWord,obuid,displayDirect,softwareVersion,hardwareVersion)) CONFIG_RF_PARA = "".join((magicWord,initWankenSensi_high_grade,initWankenSensi_high_level, initWankenSensi_low_grade,initWankenSensi_low_level, wakeupMode,amIndex,transPower,txFilter,sensitivity)) uiLog(u"初始化config区配置") nul.initCfg() nul.writeToInfo(CONFIG_BUILD_INFO,CONFIG_RF_PARA) uiLog(u"分配新的OBUID:%s"%obuid) product.setTestingProductIdCode(obuid) uiLog(u"复位芯片...") nul.resetChip() return {"OBUID":obuid,u"初始信息区":CONFIG_BUILD_INFO+","+CONFIG_RF_PARA} finally: uiLog(u"切换至普通串口模式") __getIoBoard().switchToNormalSerial() def T_04_rs232Test_A(product): u'''RS232测试-自动判断RS232应答返回是否正确''' __getIoBoard().closeLighting() return board_digital.T_03_rs232Test_A(product) def T_05_esam_A(product): u'''ESAM测试-判断地区分散码是否正确''' return board_digital.T_08_esam_A(product) def T_06_transmittingPower_A(product): u'''发射功率测试-判断发射功率''' return multipleTest(board_rf_conduct.T_04_transmittingPower_A,product,3) def T_07_receiveSensitivity_A(product): u'''接收灵敏度测试-判断接收灵敏度是否满足标准''' return multipleTest(board_rf_conduct.T_03_receiveSensitivity_A,product,3) def T_08_reset_A(product): u'''复位测试-单板上电后返回数据,系统自动判断是否正确''' sc = board_digital.__askForPlateDeviceCom() iob = __getIoBoard() sc.asynSend("TestReset") iob.triggerResetButton() sc.asynReceiveAndAssert("PowerOnSuccess") # try: # sc.bslDevice.serial.setTimeout(2) # sc.asynReceiveAndAssert("PowerOnSuccess") # except TestItemFailException,e: # #第二个的PowerOnSuccess可以收不到 # pass # finally: # sc.bslDevice.serial.setTimeout(15) time.sleep(0.5) def T_09_capacityVoltage_A(product): u'''电容电路电压测试-根据电容电路电压值判断是否满足要求''' return board_digital.T_05_capacityVoltage_A(product) def T_10_solarVoltage_A(product): u'''太阳能电路电压测试-判断太阳能电路电压是否满足要求''' return board_digital.T_06_solarVoltage_A(product) def T_11_batteryVoltage_A(product): u'''电池电路电压测试-判断电池电路电压是否满足要求''' return board_digital.T_07_batteryVoltage_A(product) def T_12_testHFChip_A(product): u'''测试高频芯片-测试高频芯片是否正常''' return board_digital.T_09_testHFChip_A(product) def T_13_readRfCard_A(product): u'''测试高频读卡-测试高频读卡是否正常''' return board_rf_conduct.T_01_readRfCard_A(product) def T_14_redLight_A(product): u'''红色LED灯检测-自动判定红LED灯是否正常亮起''' iob = __getIoBoard() sc = board_digital.__askForPlateDeviceCom() checkBySenser(u"红色LED灯",1,lambda:sc.asynSend("TestRedLedPara 1000"), lambda:sc.asynReceiveAndAssert("TestRedLedParaOK"),iob.checkLedLightState) def T_15_greenLight_A(product): u'''绿色LED灯检测-自动判定绿LED灯是否正常亮起''' iob = __getIoBoard() sc = board_digital.__askForPlateDeviceCom() checkBySenser(u"红色LED灯",1,lambda:sc.asynSend("TestGreenLedPara 1000"), lambda:sc.asynReceiveAndAssert("TestGreenLedParaOK"),iob.checkLedLightState) def T_16_beep_A(product): u'''蜂鸣器检测-自动判定蜂鸣器是否响起''' iob = __getIoBoard() sc = board_digital.__askForPlateDeviceCom() checkBySenser(u"蜂鸣器",2,lambda:sc.asynSend("TestBeepPara 3000"), lambda:sc.asynReceiveAndAssert("TestBeepParaOK"),iob.checkBeepState) def T_17_oled_A(product): u'''OLED屏幕测试-自动判断OLED屏幕是否全白''' pass #单板暂时不检 def T_18_wakeupSensitivity_A(product): u'''唤醒灵敏度测试-判断高低灵敏度是否满足标准''' # low_level_power = SP('gs11.wakeup.power.low',-33.5) #低唤醒功率 # high_level_power = SP('gs11.wakeup.power.high',-32.5) #高唤醒功率 #GS11的上述两个参数不使用服务端获得,而从本地配置文件中搞 low_level_power = PARAM['gs11.wakeup.power.low'] #低唤醒功率 high_level_power = PARAM['gs11.wakeup.power.high'] #高唤醒功率 uiLog(u"唤醒功率范围:%.2f-%.2f"%(low_level_power,high_level_power)) sc = board_rf_conduct.__askForPlateDeviceCom() try: lowWakenSensiResult = sc.adjustWakenSensi(low_level_power) except TestItemFailException,e: e.message = u"低灵敏度测试失败" raise e try: highWakenSensiResult = sc.adjustWakenSensi(high_level_power) except TestItemFailException,e: e.message = u"高灵敏度测试失败" raise e #写入唤醒灵敏度的值 uiLog(u"开始写入灵敏度值") # writeSensiCmd = "D-WriteWakeSensiPara 4 0x%.2x 0x%.2x 0x%.2x 0x%.2x"%(highWakenSensiResult[0],highWakenSensiResult[1], # lowWakenSensiResult[0],lowWakenSensiResult[1]) # sc.assertSynComm(request =writeSensiCmd,response = 'D-WriteWakeSensiParaOK') iob = __getIoBoard() nul = __getNuLink() try: iob.switchToNuLink() oriData = nul.readInfo() CONFIG_BUILD_INFO = oriData[:32] CONFIG_RF_PARA = oriData[128:154] CONFIG_RF_PARA = CONFIG_RF_PARA[:8]+"%.2X%.2X%.2X%.2X"%(highWakenSensiResult[0],highWakenSensiResult[1], lowWakenSensiResult[0],lowWakenSensiResult[1]) + \ CONFIG_RF_PARA[16:] nul.writeToInfo(CONFIG_BUILD_INFO,CONFIG_RF_PARA) nul.resetChip() finally: uiLog(u"切换至普通串口模式") __getIoBoard().switchToNormalSerial() # iob.pressDemolishButton() # time.sleep(1) # iob.releaseDemolishButton() time.sleep(0.5) sc.asynSend("ResetObu") sc.asynReceiveAndAssert("PowerOnSuccess") time.sleep(1) return {"低唤醒灵敏度粗调":lowWakenSensiResult[0],"低唤醒灵敏度细调":lowWakenSensiResult[1], "高唤醒灵敏度粗调":highWakenSensiResult[0],"高唤醒灵敏度细调":highWakenSensiResult[1]} def T_19_staticCurrent_A(product): u'''静态电流测试-判断静态电流值是否在正常范围内''' try: sc = board_digital.__askForPlateDeviceCom() iob = __getIoBoard() # v = sc.testStaticCurrent() try: device = sc.bslDevice device.make_obu_enter_sleep() iob.output(GS11IOBoardDevice.UART_TX_OUTPUT,True) #切换OBU的UART串口 iob.output(GS11IOBoardDevice.UART_RX_OUTPUT,True) time.sleep(0.5) device.set_small_current_switch(0) current_val = device.read_adc_current() if current_val > 10: print "current_val=",current_val superUiLog("small_current_switch = 0,current_val="+str(current_val)) raise device.set_small_current_switch(1) current_val = device.read_adc_current() v = sc.convertAdcToCurrent(current_val) finally: iob.output(GS11IOBoardDevice.UART_TX_OUTPUT,False) iob.output(GS11IOBoardDevice.UART_RX_OUTPUT,False) device.set_small_current_switch(0) resultMap = {u"静态电流":v} if v < SP('gs11.staticCurrent.low',2) or v > SP('gs11.staticCurrent.high',18): raise TestItemFailException(failWeight = 10,message = u'静态电流测试不通过,正常阈值4-18',output=resultMap) return resultMap except TestItemFailException,e: raise e except: raise TestItemFailException(failWeight = 10,message = u'静态电流测试失败') def T_20_deepStaticCurrent_A(product): u'''深度静态电流测试-判断深度静态电流值是否在正常范围内''' iob = __getIoBoard() sc = board_digital.__askForPlateDeviceCom() iob.pressDemolishButton() # sc.assertSynComm(request ='CloseObuUart',response = 'CloseObuUartOK') iob.output(GS11IOBoardDevice.UART_TX_OUTPUT,True) iob.output(GS11IOBoardDevice.UART_RX_OUTPUT,True) time.sleep(2) try: v = sc.testDeepStaticCurrent() resultMap = {u"深度静态电流":v} if v < SP('gs10.deepStaticCurrent.low',0) or v > SP('gs10.deepStaticCurrent.high',3): raise TestItemFailException(failWeight = 10,message = u'深度静态电流测试不通过',output=resultMap) return resultMap except TestItemFailException,e: raise e except Exception,e: print e raise TestItemFailException(failWeight = 10,message = u'深度静态电流测试失败') finally: sc.assertSynComm(request ='OpenObuUart',response = 'OpenObuUartOK') iob.releaseDemolishButton() iob.output(GS11IOBoardDevice.UART_TX_OUTPUT,False) iob.output(GS11IOBoardDevice.UART_RX_OUTPUT,False)
82942fcabae1643320272fa31c19c206e0b8e146
f6db8d85a3b41eed543959314d65927353a8229c
/.history/W5/mapsafood/settings_20201202154801.py
dd4788e75db51881d2911e9cc646c3ed5af86df3
[]
no_license
NFEL/DjangoPaeez99
d573cc8e36500f08bc104d76f7a2628062d86c2f
621636bfb47d71f2a4f45037b7264dd5ebc7cdd7
refs/heads/main
2023-01-27T22:05:57.788049
2020-12-08T10:08:28
2020-12-08T10:08:28
304,553,353
1
2
null
2020-10-16T07:33:04
2020-10-16T07:33:03
null
UTF-8
Python
false
false
3,954
py
""" Django settings for mapsafood project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'wopis*_*o3rtlblge=mm)pb)*ynu66zc+wqt&bs8l2*v=z1g%$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] LOGGING = { 'version': 1, 'handlers': { 'file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': '/tmp/django.log', } }, 'loggers': { 'django.db.backends': { 'level': 'DEBUG', 'handlers': ['file'], } } } # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_extensions', 'django.contrib.gis', 'user_profile', 'geolocation', 'restaurant', 'crispy_form' ] # DJANGO_ALLOW_ASYNC_UNSAFE = False os.environ["DJANGO_ALLOW_ASYNC_UNSAFE"] = "true" MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', # 'debug_toolbar.middleware.DebugToolbarMiddleware', ] INTERNAL_IPS = [ '127.0.0.1', ] ROOT_URLCONF = 'mapsafood.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mapsafood.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'mapsafood', 'USER': 'nfel', 'PASSWORD': '1', 'HOST': 'localhost', 'PORT': '5432' } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / "static", ] MEDIA_ROOT = BASE_DIR / 'media/' MEDIA_URL = '/media/'
c8059431cc04d65e1bcc582461b779c051f7c2d4
5d2bc0efb0e457cfd55a90d9754d5ced9c009cae
/venv/lib/python2.7/site-packages/ibm_db_dbi.py
c83e13b87927c0a7203b0952875b5b9c305de8c9
[]
no_license
michaelp1212/paxton
dafe08eca55557d036189d5242e47e89ec15bf2d
0bd1da471c3a594c0765a4bc5cd1288404791caf
refs/heads/master
2021-03-25T07:17:06.523340
2020-03-19T01:38:24
2020-03-19T01:38:24
247,598,121
0
0
null
null
null
null
UTF-8
Python
false
false
63,583
py
# +--------------------------------------------------------------------------+ # | Licensed Materials - Property of IBM | # | | # | (C) Copyright IBM Corporation 2007-2015 | # +--------------------------------------------------------------------------+ # | This module complies with SQLAlchemy and is | # | Licensed under the Apache License, Version 2.0 (the "License"); | # | you may not use this file except in compliance with the License. | # | You may obtain a copy of the License at | # | http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable | # | law or agreed to in writing, software distributed under the License is | # | distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | # | KIND, either express or implied. See the License for the specific | # | language governing permissions and limitations under the License. | # +--------------------------------------------------------------------------+ # | Authors: Swetha Patel, Abhigyan Agrawal, Tarun Pasrija, Rahul Priyadarshi, # | Akshay Anand, Saba Kauser # +--------------------------------------------------------------------------+ """ This module implements the Python DB API Specification v2.0 for DB2 database. """ import types, string, time, datetime, decimal, sys import weakref if sys.version_info >= (3, ): buffer = memoryview if sys.version_info < (3, ): import exceptions exception = exceptions.StandardError else: exception = Exception import ibm_db __version__ = ibm_db.__version__ # Constants for specifying database connection options. SQL_ATTR_AUTOCOMMIT = ibm_db.SQL_ATTR_AUTOCOMMIT SQL_ATTR_CURRENT_SCHEMA = ibm_db.SQL_ATTR_CURRENT_SCHEMA SQL_AUTOCOMMIT_OFF = ibm_db.SQL_AUTOCOMMIT_OFF SQL_AUTOCOMMIT_ON = ibm_db.SQL_AUTOCOMMIT_ON ATTR_CASE = ibm_db.ATTR_CASE CASE_NATURAL = ibm_db.CASE_NATURAL CASE_LOWER = ibm_db.CASE_LOWER CASE_UPPER = ibm_db.CASE_UPPER SQL_FALSE = ibm_db.SQL_FALSE SQL_TRUE = ibm_db.SQL_TRUE SQL_TABLE_STAT = ibm_db.SQL_TABLE_STAT SQL_INDEX_CLUSTERED = ibm_db.SQL_INDEX_CLUSTERED SQL_INDEX_OTHER = ibm_db.SQL_INDEX_OTHER SQL_DBMS_VER = ibm_db.SQL_DBMS_VER SQL_DBMS_NAME = ibm_db.SQL_DBMS_NAME USE_WCHAR = ibm_db.USE_WCHAR WCHAR_YES = ibm_db.WCHAR_YES WCHAR_NO = ibm_db.WCHAR_NO FIX_RETURN_TYPE = 1 # Module globals apilevel = '2.0' threadsafety = 0 paramstyle = 'qmark' class Error(exception): """This is the base class of all other exception thrown by this module. It can be use to catch all exceptions with a single except statement. """ def __init__(self, message): """This is the constructor which take one string argument.""" self._message = message super(Error, self).__init__(message) def __str__(self): """Converts the message to a string.""" return 'ibm_db_dbi::'+str(self.__class__.__name__)+': '+str(self._message) class Warning(exception): """This exception is used to inform the user about important warnings such as data truncations. """ def __init__(self, message): """This is the constructor which take one string argument.""" self._message = message super(Warning,self).__init__(message) def __str__(self): """Converts the message to a string.""" return 'ibm_db_dbi::'+str(self.__class__.__name__)+': '+str(self._message) class InterfaceError(Error): """This exception is raised when the module interface is being used incorrectly. """ pass class DatabaseError(Error): """This exception is raised for errors related to database.""" pass class InternalError(DatabaseError): """This exception is raised when internal database error occurs, such as cursor is not valid anymore. """ pass class OperationalError(DatabaseError): """This exception is raised when database operation errors that are not under the programmer control occur, such as unexpected disconnect. """ pass class ProgrammingError(DatabaseError): """This exception is raised for programming errors, such as table not found. """ pass class IntegrityError(DatabaseError): """This exception is thrown when errors occur when the relational integrity of database fails, such as foreign key check fails. """ pass class DataError(DatabaseError): """This exception is raised when errors due to data processing, occur, such as divide by zero. """ pass class NotSupportedError(DatabaseError): """This exception is thrown when a method in this module or an database API is not supported. """ pass def Date(year, month, day): """This method can be used to get date object from integers, for inserting it into a DATE column in the database. """ return datetime.date(year, month, day) def Time(hour, minute, second): """This method can be used to get time object from integers, for inserting it into a TIME column in the database. """ return datetime.time(hour, minute, second) def Timestamp(year, month, day, hour, minute, second): """This method can be used to get timestamp object from integers, for inserting it into a TIMESTAMP column in the database. """ return datetime.datetime(year, month, day, hour, minute, second) def DateFromTicks(ticks): """This method can be used to get date object from ticks seconds, for inserting it into a DATE column in the database. """ time_tuple = time.localtime(ticks) return datetime.date(time_tuple[0], time_tuple[1], time_tuple[2]) def TimeFromTicks(ticks): """This method can be used to get time object from ticks seconds, for inserting it into a TIME column in the database. """ time_tuple = time.localtime(ticks) return datetime.time(time_tuple[3], time_tuple[4], time_tuple[5]) def TimestampFromTicks(ticks): """This method can be used to get timestamp object from ticks seconds, for inserting it into a TIMESTAMP column in the database. """ time_tuple = time.localtime(ticks) return datetime.datetime(time_tuple[0], time_tuple[1], time_tuple[2], time_tuple[3], time_tuple[4], time_tuple[5]) def Binary(string): """This method can be used to store binary information, for inserting it into a binary type column in the database. """ if not isinstance( string, (types.StringType, types.BufferType) ): raise InterfaceError("Binary function expects type string argument.") return buffer(string) class DBAPITypeObject(frozenset): """Class used for creating objects that can be used to compare in order to determine the python type to provide in parameter sequence argument of the execute method. """ def __new__(cls, col_types): return frozenset.__new__(cls, col_types) def __init__(self, col_types): """Constructor for DBAPITypeObject. It takes a tuple of database column type as an argument. """ self.col_types = col_types def __cmp__(self, cmp): """This method checks if the string compared with is in the tuple provided to the constructor of this object. It takes string as an argument. """ if cmp in self.col_types: return 0 if sys.version_info < (3, ): if cmp < self.col_types: return 1 else: return -1 else: return 1 def __eq__(self, cmp): """This method checks if the string compared with is in the tuple provided to the constructor of this object. It takes string as an argument. """ return cmp in self.col_types def __ne__(self, cmp): """This method checks if the string compared with is not in the tuple provided to the constructor of this object. It takes string as an argument. """ return cmp not in self.col_types def __hash__(self): return id(self) # The user can use these objects to compare the database column types # with in order to determine the python type to provide in the # parameter sequence argument of the execute method. STRING = DBAPITypeObject(("CHARACTER", "CHAR", "VARCHAR", "CHARACTER VARYING", "CHAR VARYING", "STRING",)) TEXT = DBAPITypeObject(("CLOB", "CHARACTER LARGE OBJECT", "CHAR LARGE OBJECT","DBCLOB")) XML = DBAPITypeObject(("XML",)) BINARY = DBAPITypeObject(("BLOB", "BINARY LARGE OBJECT",)) NUMBER = DBAPITypeObject(("INTEGER", "INT", "SMALLINT",)) BIGINT = DBAPITypeObject(("BIGINT",)) FLOAT = DBAPITypeObject(("FLOAT", "REAL", "DOUBLE", "DECFLOAT")) DECIMAL = DBAPITypeObject(("DECIMAL", "DEC", "NUMERIC", "NUM",)) DATE = DBAPITypeObject(("DATE",)) TIME = DBAPITypeObject(("TIME",)) DATETIME = DBAPITypeObject(("TIMESTAMP",)) ROWID = DBAPITypeObject(()) # This method is used to determine the type of error that was # generated. It takes an exception instance as an argument, and # returns exception object of the appropriate type. def _get_exception(inst): # These tuple are used to determine the type of exceptions that are # thrown by the database. They store the SQLSTATE code and the # SQLSTATE class code(the 2 digit prefix of the SQLSTATE code) warning_error_tuple = ('01', ) data_error_tuple = ('02', '22', '10601', '10603', '10605', '10901', '10902', '38552', '54') operational_error_tuple = ( '08', '09', '10502', '10000', '10611', '38501', '38503', '38553', '38H01', '38H02', '38H03', '38H04', '38H05', '38H06', '38H07', '38H09', '38H0A') integrity_error_tuple = ('23', ) internal_error_tuple = ('24', '25', '26', '2D', '51', '57') programming_error_tuple = ('08002', '07', 'OD', 'OF','OK','ON','10', '27', '28', '2E', '34', '36', '38', '39', '56', '42', '3B', '40', '44', '53', '55', '58', '5U', '21') not_supported_error_tuple = ('0A', '10509') # These tuple are used to determine the type of exceptions that are # thrown from the driver module. interface_exceptions = ( "Supplied parameter is invalid", "ATTR_CASE attribute must be one of " "CASE_LOWER, CASE_UPPER, or CASE_NATURAL", "Connection or statement handle must be passed in.", "Param is not a tuple") programming_exceptions = ( "Connection is not active", "qualifier must be a string", "unique must be a boolean", "Parameters not bound", "owner must be a string", "table_name must be a string", "table type must be a string", "column_name must be a string", "Column ordinal out of range", "procedure name must be a string", "Requested row number must be a positive value", "Options Array must have string indexes") database_exceptions = ( "Binding Error", "Column information cannot be retrieved: ", "Column binding cannot be done: ", "Failed to Determine XML Size: ") statement_exceptions = ( "Statement Execute Failed: ", "Describe Param Failed: ", "Sending data failed: ", "Fetch Failure: ", "SQLNumResultCols failed: ", "SQLRowCount failed: ", "SQLGetDiagField failed: ", "Statement prepare Failed: ") operational_exceptions = ( "Connection Resource cannot be found", "Failed to Allocate Memory", "Describe Param Failed: ", "Statement Execute Failed: ", "Sending data failed: ", "Failed to Allocate Memory for XML Data", "Failed to Allocate Memory for LOB Data") # First check if the exception is from the database. If it is # determine the SQLSTATE code which is used further to determine # the exception type. If not check if the exception is thrown by # by the driver and return the appropriate exception type. If it # is not possible to determine the type of exception generated # return the generic Error exception. if inst is not None: message = repr(inst) if message.startswith("Exception('") and message.endswith("',)"): message = message[11:] message = message[:len(message)-3] index = message.find('SQLSTATE=') if( message != '') & (index != -1): error_code = message[(index+9):(index+14)] prefix_code = error_code[:2] else: for key in interface_exceptions: if message.find(key) != -1: return InterfaceError(message) for key in programming_exceptions: if message.find(key) != -1: return ProgrammingError(message) for key in operational_exceptions: if message.find(key) != -1: return OperationalError(message) for key in database_exceptions: if message.find(key) != -1: return DatabaseError(message) for key in statement_exceptions: if message.find(key) != -1: return DatabaseError(message) return Error(message) else: return Error('An error has occured') # First check if the SQLSTATE is in the tuples, if not check # if the SQLSTATE class code is in the tuples to determine the # exception type. if ( error_code in warning_error_tuple or prefix_code in warning_error_tuple ): return Warning(message) if ( error_code in data_error_tuple or prefix_code in data_error_tuple ): return DataError(message) if ( error_code in operational_error_tuple or prefix_code in operational_error_tuple ): return OperationalError(message) if ( error_code in integrity_error_tuple or prefix_code in integrity_error_tuple ): return IntegrityError(message) if ( error_code in internal_error_tuple or prefix_code in internal_error_tuple ): return InternalError(message) if ( error_code in programming_error_tuple or prefix_code in programming_error_tuple ): return ProgrammingError(message) if ( error_code in not_supported_error_tuple or prefix_code in not_supported_error_tuple ): return NotSupportedError(message) return DatabaseError(message) def _server_connect(dsn, user='', password='', host=''): """This method create connection with server """ if dsn is None: raise InterfaceError("dsn value should not be None") if (not isinstance(dsn, basestring)) | \ (not isinstance(user, basestring)) | \ (not isinstance(password, basestring)) | \ (not isinstance(host, basestring)): raise InterfaceError("Arguments should be of type string or unicode") # If the dsn does not contain port and protocal adding database # and hostname is no good. Add these when required, that is, # if there is a '=' in the dsn. Else the dsn string is taken to be # a DSN entry. if dsn.find('=') != -1: if dsn[len(dsn) - 1] != ';': dsn = dsn + ";" if host != '' and dsn.find('HOSTNAME=') == -1: dsn = dsn + "HOSTNAME=" + host + ";" else: dsn = "DSN=" + dsn + ";" # attach = true is not valid against IDS. And attach is not needed for connect currently. #if dsn.find('attach=') == -1: #dsn = dsn + "attach=true;" if user != '' and dsn.find('UID=') == -1: dsn = dsn + "UID=" + user + ";" if password != '' and dsn.find('PWD=') == -1: dsn = dsn + "PWD=" + password + ";" try: conn = ibm_db.connect(dsn, '', '') except Exception, inst: raise _get_exception(inst) return conn def createdb(database, dsn, user='', password='', host='', codeset='', mode=''): """This method creates a database by using the specified database name, code set, and mode """ if database is None: raise InterfaceError("createdb expects a not None database name value") if (not isinstance(database, basestring)) | \ (not isinstance(codeset, basestring)) | \ (not isinstance(mode, basestring)): raise InterfaceError("Arguments sould be string or unicode") conn = _server_connect(dsn, user=user, password=password, host=host) try: return_value = ibm_db.createdb(conn, database, codeset, mode) except Exception, inst: raise _get_exception(inst) finally: try: ibm_db.close(conn) except Exception, inst: raise _get_exception(inst) return return_value def dropdb(database, dsn, user='', password='', host=''): """This method drops the specified database """ if database is None: raise InterfaceError("dropdb expects a not None database name value") if (not isinstance(database, basestring)): raise InterfaceError("Arguments sould be string or unicode") conn = _server_connect(dsn, user=user, password=password, host=host) try: return_value = ibm_db.dropdb(conn, database) except Exception, inst: raise _get_exception(inst) finally: try: ibm_db.close(conn) except Exception, inst: raise _get_exception(inst) return return_value def recreatedb(database, dsn, user='', password='', host='', codeset='', mode=''): """This method drops and then recreate the database by using the specified database name, code set, and mode """ if database is None: raise InterfaceError("recreatedb expects a not None database name value") if (not isinstance(database, basestring)) | \ (not isinstance(codeset, basestring)) | \ (not isinstance(mode, basestring)): raise InterfaceError("Arguments sould be string or unicode") conn = _server_connect(dsn, user=user, password=password, host=host) try: return_value = ibm_db.recreatedb(conn, database, codeset, mode) except Exception, inst: raise _get_exception(inst) finally: try: ibm_db.close(conn) except Exception, inst: raise _get_exception(inst) return return_value def createdbNX(database, dsn, user='', password='', host='', codeset='', mode=''): """This method creates a database if it not exist by using the specified database name, code set, and mode """ if database is None: raise InterfaceError("createdbNX expects a not None database name value") if (not isinstance(database, basestring)) | \ (not isinstance(codeset, basestring)) | \ (not isinstance(mode, basestring)): raise InterfaceError("Arguments sould be string or unicode") conn = _server_connect(dsn, user=user, password=password, host=host) try: return_value = ibm_db.createdbNX(conn, database, codeset, mode) except Exception, inst: raise _get_exception(inst) finally: try: ibm_db.close(conn) except Exception, inst: raise _get_exception(inst) return return_value def connect(dsn, user='', password='', host='', database='', conn_options=None): """This method creates a non persistent connection to the database. It returns a ibm_db_dbi.Connection object. """ if dsn is None: raise InterfaceError("connect expects a not None dsn value") if (not isinstance(dsn, basestring)) | \ (not isinstance(user, basestring)) | \ (not isinstance(password, basestring)) | \ (not isinstance(host, basestring)) | \ (not isinstance(database, basestring)): raise InterfaceError("connect expects the first five arguments to" " be of type string or unicode") if conn_options is not None: if not isinstance(conn_options, dict): raise InterfaceError("connect expects the sixth argument" " (conn_options) to be of type dict") if not SQL_ATTR_AUTOCOMMIT in conn_options: conn_options[SQL_ATTR_AUTOCOMMIT] = SQL_AUTOCOMMIT_OFF else: conn_options = {SQL_ATTR_AUTOCOMMIT : SQL_AUTOCOMMIT_OFF} # If the dsn does not contain port and protocal adding database # and hostname is no good. Add these when required, that is, # if there is a '=' in the dsn. Else the dsn string is taken to be # a DSN entry. if dsn.find('=') != -1: if dsn[len(dsn) - 1] != ';': dsn = dsn + ";" if database != '' and dsn.find('DATABASE=') == -1: dsn = dsn + "DATABASE=" + database + ";" if host != '' and dsn.find('HOSTNAME=') == -1: dsn = dsn + "HOSTNAME=" + host + ";" else: dsn = "DSN=" + dsn + ";" if user != '' and dsn.find('UID=') == -1: dsn = dsn + "UID=" + user + ";" if password != '' and dsn.find('PWD=') == -1: dsn = dsn + "PWD=" + password + ";" try: conn = ibm_db.connect(dsn, '', '', conn_options) ibm_db.set_option(conn, {SQL_ATTR_CURRENT_SCHEMA : user}, 1) except Exception, inst: raise _get_exception(inst) return Connection(conn) def pconnect(dsn, user='', password='', host='', database='', conn_options=None): """This method creates persistent connection to the database. It returns a ibm_db_dbi.Connection object. """ if dsn is None: raise InterfaceError("connect expects a not None dsn value") if (not isinstance(dsn, basestring)) | \ (not isinstance(user, basestring)) | \ (not isinstance(password, basestring)) | \ (not isinstance(host, basestring)) | \ (not isinstance(database, basestring)): raise InterfaceError("connect expects the first five arguments to" " be of type string or unicode") if conn_options is not None: if not isinstance(conn_options, dict): raise InterfaceError("connect expects the sixth argument" " (conn_options) to be of type dict") if not SQL_ATTR_AUTOCOMMIT in conn_options: conn_options[SQL_ATTR_AUTOCOMMIT] = SQL_AUTOCOMMIT_OFF else: conn_options = {SQL_ATTR_AUTOCOMMIT : SQL_AUTOCOMMIT_OFF} # If the dsn does not contain port and protocal adding database # and hostname is no good. Add these when required, that is, # if there is a '=' in the dsn. Else the dsn string is taken to be # a DSN entry. if dsn.find('=') != -1: if dsn[len(dsn) - 1] != ';': dsn = dsn + ";" if database != '' and dsn.find('DATABASE=') == -1: dsn = dsn + "DATABASE=" + database + ";" if host != '' and dsn.find('HOSTNAME=') == -1: dsn = dsn + "HOSTNAME=" + host + ";" else: dsn = "DSN=" + dsn + ";" if user != '' and dsn.find('UID=') == -1: dsn = dsn + "UID=" + user + ";" if password != '' and dsn.find('PWD=') == -1: dsn = dsn + "PWD=" + password + ";" try: conn = ibm_db.pconnect(dsn, '', '', conn_options) ibm_db.set_option(conn, {SQL_ATTR_CURRENT_SCHEMA : user}, 1) except Exception, inst: raise _get_exception(inst) return Connection(conn) class Connection(object): """This class object represents a connection between the database and the application. """ def __init__(self, conn_handler): """Constructor for Connection object. It takes ibm_db connection handler as an argument. """ self.conn_handler = conn_handler # Used to identify close cursors for generating exceptions # after the connection is closed. self._cursor_list = [] self.__dbms_name = ibm_db.get_db_info(conn_handler, SQL_DBMS_NAME) self.__dbms_ver = ibm_db.get_db_info(conn_handler, SQL_DBMS_VER) self.FIX_RETURN_TYPE = 1 # This method is used to get the DBMS_NAME def __get_dbms_name( self ): return self.__dbms_name # This attribute specifies the DBMS_NAME # It is a read only attribute. dbms_name = property(__get_dbms_name, None, None, "") # This method is used to get the DBMS_ver def __get_dbms_ver( self ): return self.__dbms_ver # This attribute specifies the DBMS_ver # It is a read only attribute. dbms_ver = property(__get_dbms_ver, None, None, "") def close(self): """This method closes the Database connection associated with the Connection object. It takes no arguments. """ self.rollback() try: if self.conn_handler is None: raise ProgrammingError("Connection cannot be closed; " "connection is no longer active.") else: return_value = ibm_db.close(self.conn_handler) except Exception, inst: raise _get_exception(inst) self.conn_handler = None for index in range(len(self._cursor_list)): if (self._cursor_list[index]() != None): tmp_cursor = self._cursor_list[index]() tmp_cursor.conn_handler = None tmp_cursor.stmt_handler = None tmp_cursor._all_stmt_handlers = None self._cursor_list = [] return return_value def commit(self): """This method commits the transaction associated with the Connection object. It takes no arguments. """ try: return_value = ibm_db.commit(self.conn_handler) except Exception, inst: raise _get_exception(inst) return return_value def rollback(self): """This method rollbacks the transaction associated with the Connection object. It takes no arguments. """ try: return_value = ibm_db.rollback(self.conn_handler) except Exception, inst: raise _get_exception(inst) return return_value def cursor(self): """This method returns a Cursor object associated with the Connection. It takes no arguments. """ if self.conn_handler is None: raise ProgrammingError("Cursor cannot be returned; " "connection is no longer active.") cursor = Cursor(self.conn_handler, self) self._cursor_list.append(weakref.ref(cursor)) return cursor # Sets connection attribute values def set_option(self, attr_dict): """Input: connection attribute dictionary Return: True on success or False on failure """ return ibm_db.set_option(self.conn_handler, attr_dict, 1) # Retrieves connection attributes values def get_option(self, attr_key): """Input: connection attribute key Return: current setting of the resource attribute requested """ return ibm_db.get_option(self.conn_handler, attr_key, 1) # Sets FIX_RETURN_TYPE. Added for performance improvement def set_fix_return_type(self, is_on): try: if is_on: self.FIX_RETURN_TYPE = 1 else: self.FIX_RETURN_TYPE = 0 except Exception, inst: raise _get_exception(inst) return self.FIX_RETURN_TYPE # Sets connection AUTOCOMMIT attribute def set_autocommit(self, is_on): """Input: connection attribute: true if AUTOCOMMIT ON, false otherwise (i.e. OFF) Return: True on success or False on failure """ try: if is_on: is_set = ibm_db.set_option(self.conn_handler, {SQL_ATTR_AUTOCOMMIT : SQL_AUTOCOMMIT_ON}, 1) else: is_set = ibm_db.set_option(self.conn_handler, {SQL_ATTR_AUTOCOMMIT : SQL_AUTOCOMMIT_OFF}, 1) except Exception, inst: raise _get_exception(inst) return is_set # Sets connection attribute values def set_current_schema(self, schema_name): """Input: connection attribute dictionary Return: True on success or False on failure """ self.current_schema = schema_name try: is_set = ibm_db.set_option(self.conn_handler, {SQL_ATTR_CURRENT_SCHEMA : schema_name}, 1) except Exception, inst: raise _get_exception(inst) return is_set # Retrieves connection attributes values def get_current_schema(self): """Return: current setting of the schema attribute """ try: conn_schema = ibm_db.get_option(self.conn_handler, SQL_ATTR_CURRENT_SCHEMA, 1) if conn_schema is not None and conn_schema != '': self.current_schema = conn_schema except Exception, inst: raise _get_exception(inst) return self.current_schema # Retrieves the IBM Data Server version for a given Connection object def server_info(self): """Return: tuple (DBMS_NAME, DBMS_VER) """ try: server_info = [] server_info.append(self.dbms_name) server_info.append(self.dbms_ver) except Exception, inst: raise _get_exception(inst) return tuple(server_info) def set_case(self, server_type, str_value): return str_value.upper() # Retrieves the tables for a specified schema (and/or given table name) def tables(self, schema_name=None, table_name=None): """Input: connection - ibm_db.IBM_DBConnection object Return: sequence of table metadata dicts for the specified schema """ result = [] if schema_name is not None: schema_name = self.set_case("DB2_LUW", schema_name) if table_name is not None: table_name = self.set_case("DB2_LUW", table_name) try: stmt = ibm_db.tables(self.conn_handler, None, schema_name, table_name) row = ibm_db.fetch_assoc(stmt) i = 0 while (row): result.append( row ) i += 1 row = ibm_db.fetch_assoc(stmt) ibm_db.free_result(stmt) except Exception, inst: raise _get_exception(inst) return result # Retrieves metadata pertaining to index for specified schema (and/or table name) def indexes(self, unique=True, schema_name=None, table_name=None): """Input: connection - ibm_db.IBM_DBConnection object Return: sequence of index metadata dicts for the specified table Example: Index metadata retrieved from schema 'PYTHONIC.TEST_TABLE' table { 'TABLE_SCHEM': 'PYTHONIC', 'TABLE_CAT': None, 'TABLE_NAME': 'ENGINE_USERS', 'PAGES': None, 'COLUMN_NAME': 'USER_ID' 'FILTER_CONDITION': None, 'INDEX_NAME': 'SQL071201150750170', 'CARDINALITY': None, 'ORDINAL_POSITION': 1, 'INDEX_QUALIFIER': 'SYSIBM', 'TYPE': 3, 'NON_UNIQUE': 0, 'ASC_OR_DESC': 'A' } """ result = [] if schema_name is not None: schema_name = self.set_case("DB2_LUW", schema_name) if table_name is not None: table_name = self.set_case("DB2_LUW", table_name) try: stmt = ibm_db.statistics(self.conn_handler, None, schema_name, table_name, unique) row = ibm_db.fetch_assoc(stmt) i = 0 while (row): if row['TYPE'] == SQL_INDEX_OTHER: result.append( row ) i += 1 row = ibm_db.fetch_assoc(stmt) ibm_db.free_result(stmt) except Exception, inst: raise _get_exception(inst) return result # Retrieves metadata pertaining to primary keys for specified schema (and/or table name) def primary_keys(self, unique=True, schema_name=None, table_name=None): """Input: connection - ibm_db.IBM_DBConnection object Return: sequence of PK metadata dicts for the specified table Example: PK metadata retrieved from 'PYTHONIC.ORDERS' table { 'TABLE_SCHEM': 'PYTHONIC', 'TABLE_CAT': None, 'TABLE_NAME': 'ORDERS', 'COLUMN_NAME': 'ORDER_ID' 'PK_NAME': 'SQL071128122038680', 'KEY_SEQ': 1 } """ result = [] if schema_name is not None: schema_name = self.set_case("DB2_LUW", schema_name) if table_name is not None: table_name = self.set_case("DB2_LUW", table_name) try: stmt = ibm_db.primary_keys(self.conn_handler, None, schema_name, table_name) row = ibm_db.fetch_assoc(stmt) i = 0 while (row): result.append( row ) i += 1 row = ibm_db.fetch_assoc(stmt) ibm_db.free_result(stmt) except Exception, inst: raise _get_exception(inst) return result # Retrieves metadata pertaining to foreign keys for specified schema (and/or table name) def foreign_keys(self, unique=True, schema_name=None, table_name=None): """Input: connection - ibm_db.IBM_DBConnection object Return: sequence of FK metadata dicts for the specified table Example: FK metadata retrieved from 'PYTHONIC.ENGINE_EMAIL_ADDRESSES' table { 'PKTABLE_SCHEM': 'PYTHONIC', 'PKTABLE_CAT': None, 'PKTABLE_NAME': 'ENGINE_USERS', 'FKTABLE_CAT': None, 'PKCOLUMN_NAME': 'USER_ID', 'UPDATE_RULE': 3, 'PK_NAME': 'SQL071205090958680', 'DELETE_RULE': 3 'KEY_SEQ': 1, 'DEFERRABILITY': 7, 'FK_NAME': 'SQL071205091000160', 'FKCOLUMN_NAME': 'REMOTE_USER_ID', 'FKTABLE_NAME': 'ENGINE_EMAIL_ADDRESSES', 'FKTABLE_SCHEM': 'PYTHONIC' } """ result = [] if schema_name is not None: schema_name = self.set_case("DB2_LUW", schema_name) if table_name is not None: table_name = self.set_case("DB2_LUW", table_name) try: stmt = ibm_db.foreign_keys(self.conn_handler, None, None, None, None, schema_name, table_name) row = ibm_db.fetch_assoc(stmt) i = 0 while (row): result.append( row ) i += 1 row = ibm_db.fetch_assoc(stmt) ibm_db.free_result(stmt) except Exception, inst: raise _get_exception(inst) return result # Retrieves the columns for a specified schema (and/or table name and column name) def columns(self, schema_name=None, table_name=None, column_names=None): """Input: connection - ibm_db.IBM_DBConnection object Return: sequence of column metadata dicts for the specified schema Example: Column metadata retrieved from schema 'PYTHONIC.FOO' table, column 'A' { 'TABLE_NAME': 'FOO', 'NULLABLE': 1, 'ORDINAL_POSITION': 2L, 'REMARKS': None, 'COLUMN_NAME': 'A', 'BUFFER_LENGTH': 30L, 'TYPE_NAME': 'VARCHAR', 'SQL_DATETIME_SUB': None, 'COLUMN_DEF': None, 'DATA_TYPE': 12, 'IS_NULLABLE': 'YES', 'SQL_DATA_TYPE': 12, 'COLUMN_SIZE': 30L, 'TABLE_CAT': None, 'CHAR_OCTET_LENGTH': 30L, 'TABLE_SCHEM': 'PYTHONIC', 'NUM_PREC_RADIX': None, 'DECIMAL_DIGITS': None } """ result = [] if schema_name is not None: schema_name = self.set_case("DB2_LUW", schema_name) if table_name is not None: table_name = self.set_case("DB2_LUW", table_name) try: stmt = ibm_db.columns(self.conn_handler, None, schema_name, table_name) row = ibm_db.fetch_assoc(stmt) i = 0 while (row): result.append( row ) i += 1 row = ibm_db.fetch_assoc(stmt) ibm_db.free_result(stmt) col_names_lower = [] if column_names is not None: for name in column_names: col_names_lower.append(name.lower()) include_columns = [] if column_names and column_names != '': for column in result: if column['COLUMN_NAME'].lower() in col_names_lower: column['COLUMN_NAME'] = column['COLUMN_NAME'].lower() include_columns.append(column) result = include_columns except Exception, inst: raise _get_exception(inst) return result # Defines a cursor for the driver connection class Cursor(object): """This class represents a cursor of the connection. It can be used to process an SQL statement. """ # This method is used to get the description attribute. def __get_description(self): """ If this method has already been called, after executing a select statement, return the stored information in the self.__description. """ if self.__description is not None: return self.__description if self.stmt_handler is None: return None self.__description = [] try: num_columns = ibm_db.num_fields(self.stmt_handler) """ If the execute statement did not produce a result set return None. """ if num_columns == False: self.__description = None return None for column_index in range(num_columns): column_desc = [] column_desc.append(ibm_db.field_name(self.stmt_handler, column_index)) type = ibm_db.field_type(self.stmt_handler, column_index) type = type.upper() if STRING == type: column_desc.append(STRING) elif TEXT == type: column_desc.append(TEXT) elif XML == type: column_desc.append(XML) elif BINARY == type: column_desc.append(BINARY) elif NUMBER == type: column_desc.append(NUMBER) elif BIGINT == type: column_desc.append(BIGINT) elif FLOAT == type: column_desc.append(FLOAT) elif DECIMAL == type: column_desc.append(DECIMAL) elif DATE == type: column_desc.append(DATE) elif TIME == type: column_desc.append(TIME) elif DATETIME == type: column_desc.append(DATETIME) elif ROWID == type: column_desc.append(ROWID) column_desc.append(ibm_db.field_display_size( self.stmt_handler, column_index)) column_desc.append(ibm_db.field_display_size( self.stmt_handler, column_index)) column_desc.append(ibm_db.field_precision( self.stmt_handler, column_index)) column_desc.append(ibm_db.field_scale(self.stmt_handler, column_index)) column_desc.append(ibm_db.field_nullable( self.stmt_handler, column_index)) self.__description.append(column_desc) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] return self.__description # This attribute provides the metadata information of the columns # in the result set produced by the last execute function. It is # a read only attribute. description = property(fget = __get_description) # This method is used to get the rowcount attribute. def __get_rowcount( self ): return self.__rowcount def __iter__( self ): return self def next( self ): row = self.fetchone() if row == None: raise StopIteration return row # This attribute specifies the number of rows the last executeXXX() # produced or affected. It is a read only attribute. rowcount = property(__get_rowcount, None, None, "") # This method is used to get the Connection object def __get_connection( self ): return self.__connection # This attribute specifies the connection object. # It is a read only attribute. connection = property(__get_connection, None, None, "") def __init__(self, conn_handler, conn_object=None): """Constructor for Cursor object. It takes ibm_db connection handler as an argument. """ # This attribute is used to determine the fetch size for fetchmany # operation. It is a read/write attribute self.arraysize = 1 self.__rowcount = -1 self._result_set_produced = False self.__description = None self.conn_handler = conn_handler self.stmt_handler = None self._is_scrollable_cursor = False self.__connection = conn_object self.messages = [] self.FIX_RETURN_TYPE = conn_object.FIX_RETURN_TYPE # This method closes the statemente associated with the cursor object. # It takes no argument. def close(self): """This method closes the cursor object. After this method is called the cursor object is no longer usable. It takes no arguments. """ messages = [] if self.conn_handler is None: self.messages.append(ProgrammingError("Cursor cannot be closed; connection is no longer active.")) raise self.messages[len(self.messages) - 1] try: return_value = ibm_db.free_stmt(self.stmt_handler) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] self.stmt_handler = None self.conn_handler = None self._all_stmt_handlers = None if self.__connection is not None: try: self.__connection._cursor_list.remove(weakref.ref(self)) except: pass return return_value # helper for calling procedure def _callproc_helper(self, procname, parameters=None): if parameters is not None: buff = [] CONVERT_STR = (buffer) # Convert date/time and binary objects to string for # inserting into the database. for param in parameters: if isinstance(param, CONVERT_STR): param = str(param) buff.append(param) parameters = tuple(buff) try: result = ibm_db.callproc(self.conn_handler, procname,parameters) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] else: try: result = ibm_db.callproc(self.conn_handler, procname) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] return result def callproc(self, procname, parameters=None): """This method can be used to execute a stored procedure. It takes the name of the stored procedure and the parameters to the stored procedure as arguments. """ self.messages = [] if not isinstance(procname, basestring): self.messages.append(InterfaceError("callproc expects the first argument to be of type String or Unicode.")) raise self.messages[len(self.messages) - 1] if parameters is not None: if not isinstance(parameters, (types.ListType, types.TupleType)): self.messages.append(InterfaceError("callproc expects the second argument to be of type list or tuple.")) raise self.messages[len(self.messages) - 1] result = self._callproc_helper(procname, parameters) return_value = None self.__description = None self._all_stmt_handlers = [] if isinstance(result, types.TupleType): self.stmt_handler = result[0] return_value = result[1:] else: self.stmt_handler = result self._result_set_produced = True return return_value # Helper for preparing an SQL statement. def _prepare_helper(self, operation, parameters=None): try: ibm_db.free_stmt(self.stmt_handler) except: pass try: self.stmt_handler = ibm_db.prepare(self.conn_handler, operation) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] # Helper for preparing an SQL statement. def _set_cursor_helper(self): if (ibm_db.get_option(self.stmt_handler, ibm_db.SQL_ATTR_CURSOR_TYPE, 0) != ibm_db.SQL_CURSOR_FORWARD_ONLY): self._is_scrollable_cursor = True else: self._is_scrollable_cursor = False self._result_set_produced = False try: num_columns = ibm_db.num_fields(self.stmt_handler) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] if not num_columns: return True self._result_set_produced = True return True # Helper for executing an SQL statement. def _execute_helper(self, parameters=None): if parameters is not None: buff = [] CONVERT_STR = (buffer) # Convert date/time and binary objects to string for # inserting into the database. for param in parameters: if isinstance(param, CONVERT_STR): param = str(param) buff.append(param) parameters = tuple(buff) try: return_value = ibm_db.execute(self.stmt_handler, parameters) if not return_value: if ibm_db.conn_errormsg() is not None: self.messages.append(Error(str(ibm_db.conn_errormsg()))) raise self.messages[len(self.messages) - 1] if ibm_db.stmt_errormsg() is not None: self.messages.append(Error(str(ibm_db.stmt_errormsg()))) raise self.messages[len(self.messages) - 1] except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] else: try: return_value = ibm_db.execute(self.stmt_handler) if not return_value: if ibm_db.conn_errormsg() is not None: self.messages.append(Error(str(ibm_db.conn_errormsg()))) raise self.messages[len(self.messages) - 1] if ibm_db.stmt_errormsg() is not None: self.messages.append(Error(str(ibm_db.stmt_errormsg()))) raise self.messages[len(self.messages) - 1] except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] return return_value # This method is used to set the rowcount after executing an SQL # statement. def _set_rowcount(self): self.__rowcount = -1 if not self._result_set_produced: try: counter = ibm_db.num_rows(self.stmt_handler) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] self.__rowcount = counter elif self._is_scrollable_cursor: try: counter = ibm_db.get_num_result(self.stmt_handler) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] if counter >= 0: self.__rowcount = counter return True # Retrieves the last generated identity value from the DB2 catalog def _get_last_identity_val(self): """ The result of the IDENTITY_VAL_LOCAL function is not affected by the following: - A single row INSERT statement with a VALUES clause for a table without an identity column - A multiple row INSERT statement with a VALUES clause - An INSERT statement with a fullselect """ operation = 'SELECT IDENTITY_VAL_LOCAL() FROM SYSIBM.SYSDUMMY1' try: stmt_handler = ibm_db.prepare(self.conn_handler, operation) if ibm_db.execute(stmt_handler): row = ibm_db.fetch_tuple(stmt_handler) if row[0] is not None: identity_val = int(row[0]) else: identity_val = None else: if ibm_db.conn_errormsg() is not None: self.messages.append(Error(str(ibm_db.conn_errormsg()))) raise self.messages[len(self.messages) - 1] if ibm_db.stmt_errormsg() is not None: self.messages.append(Error(str(ibm_db.stmt_errormsg()))) raise self.messages[len(self.messages) - 1] except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] return identity_val last_identity_val = property(_get_last_identity_val, None, None, "") def execute(self, operation, parameters=None): """ This method can be used to prepare and execute an SQL statement. It takes the SQL statement(operation) and a sequence of values to substitute for the parameter markers in the SQL statement as arguments. """ self.messages = [] if not isinstance(operation, basestring): self.messages.append(InterfaceError("execute expects the first argument [%s] to be of type String or Unicode." % operation )) raise self.messages[len(self.messages) - 1] if parameters is not None: if not isinstance(parameters, (types.ListType, types.TupleType, types.DictType)): self.messages.append(InterfaceError("execute parameters argument should be sequence.")) raise self.messages[len(self.messages) - 1] self.__description = None self._all_stmt_handlers = [] self._prepare_helper(operation) self._set_cursor_helper() self._execute_helper(parameters) return self._set_rowcount() def executemany(self, operation, seq_parameters): """ This method can be used to prepare, and then execute an SQL statement many times. It takes the SQL statement(operation) and sequence of sequence of values to substitute for the parameter markers in the SQL statement as its argument. """ self.messages = [] if not isinstance(operation, basestring): self.messages.append(InterfaceError("executemany expects the first argument to be of type String or Unicode.")) raise self.messages[len(self.messages) - 1] if seq_parameters is None: self.messages.append(InterfaceError("executemany expects a not None seq_parameters value")) raise self.messages[len(self.messages) - 1] if not isinstance(seq_parameters, (types.ListType, types.TupleType)): self.messages.append(InterfaceError("executemany expects the second argument to be of type list or tuple of sequence.")) raise self.messages[len(self.messages) - 1] CONVERT_STR = (buffer) # Convert date/time and binary objects to string for # inserting into the database. buff = [] seq_buff = [] for index in range(len(seq_parameters)): buff = [] for param in seq_parameters[index]: if isinstance(param, CONVERT_STR): param = str(param) buff.append(param) seq_buff.append(tuple(buff)) seq_parameters = tuple(seq_buff) self.__description = None self._all_stmt_handlers = [] self.__rowcount = -1 self._prepare_helper(operation) try: autocommit = ibm_db.autocommit(self.conn_handler) if autocommit != 0: ibm_db.autocommit(self.conn_handler, 0) self.__rowcount = ibm_db.execute_many(self.stmt_handler, seq_parameters) if autocommit != 0: ibm_db.commit(self.conn_handler) ibm_db.autocommit(self.conn_handler, autocommit) if self.__rowcount == -1: if ibm_db.conn_errormsg() is not None: self.messages.append(Error(str(ibm_db.conn_errormsg()))) raise self.messages[len(self.messages) - 1] if ibm_db.stmt_errormsg() is not None: self.messages.append(Error(str(ibm_db.stmt_errormsg()))) raise self.messages[len(self.messages) - 1] except Exception, inst: self._set_rowcount() self.messages.append(Error(inst)) raise self.messages[len(self.messages) - 1] return True def _fetch_helper(self, fetch_size=-1): """ This method is a helper function for fetching fetch_size number of rows, after executing an SQL statement which produces a result set. It takes the number of rows to fetch as an argument. If this is not provided it fetches all the remaining rows. """ if self.stmt_handler is None: self.messages.append(ProgrammingError("Please execute an SQL statement in order to get a row from result set.")) raise self.messages[len(self.messages) - 1] if self._result_set_produced == False: self.messages.append(ProgrammingError("The last call to execute did not produce any result set.")) raise self.messages[len(self.messages) - 1] row_list = [] rows_fetched = 0 while (fetch_size == -1) or \ (fetch_size != -1 and rows_fetched < fetch_size): try: row = ibm_db.fetch_tuple(self.stmt_handler) except Exception, inst: if ibm_db.stmt_errormsg() is not None: self.messages.append(Error(str(ibm_db.stmt_errormsg()))) else: self.messages.append(_get_exception(inst)) if len(row_list) == 0: raise self.messages[len(self.messages) - 1] else: return row_list if row != False: if self.FIX_RETURN_TYPE == 1: row_list.append(self._fix_return_data_type(row)) else: row_list.append(row) else: return row_list rows_fetched = rows_fetched + 1 return row_list def fetchone(self): """This method fetches one row from the database, after executing an SQL statement which produces a result set. """ row_list = self._fetch_helper(1) if len(row_list) == 0: return None else: return row_list[0] def fetchmany(self, size=0): """This method fetches size number of rows from the database, after executing an SQL statement which produces a result set. It takes the number of rows to fetch as an argument. If this is not provided it fetches self.arraysize number of rows. """ if not isinstance(size, (int, long)): self.messages.append(InterfaceError( "fetchmany expects argument type int or long.")) raise self.messages[len(self.messages) - 1] if size == 0: size = self.arraysize if size < -1: self.messages.append(ProgrammingError("fetchmany argument size expected to be positive.")) raise self.messages[len(self.messages) - 1] return self._fetch_helper(size) def fetchall(self): """This method fetches all remaining rows from the database, after executing an SQL statement which produces a result set. """ return self._fetch_helper() def nextset(self): """This method can be used to get the next result set after executing a stored procedure, which produces multiple result sets. """ self.messages = [] if self.stmt_handler is None: self.messages.append(ProgrammingError("Please execute an SQL statement in order to get result sets.")) raise self.messages[len(self.messages) - 1] if self._result_set_produced == False: self.messages.append(ProgrammingError("The last call to execute did not produce any result set.")) raise self.messages[len(self.messages) - 1] try: # Store all the stmt handler that were created. The # handler was the one created by the execute method. It # should be used to get next result set. self.__description = None self._all_stmt_handlers.append(self.stmt_handler) self.stmt_handler = ibm_db.next_result(self._all_stmt_handlers[0]) except Exception, inst: self.messages.append(_get_exception(inst)) raise self.messages[len(self.messages) - 1] if self.stmt_handler == False: self.stmt_handler = None if self.stmt_handler == None: return None return True def setinputsizes(self, sizes): """This method currently does nothing.""" pass def setoutputsize(self, size, column=-1): """This method currently does nothing.""" pass # This method is used to convert a string representing decimal # and binary data in a row tuple fetched from the database # to decimal and binary objects, for returning it to the user. def _fix_return_data_type(self, row): row_list = None for index in range(len(row)): if row[index] is not None: type = ibm_db.field_type(self.stmt_handler, index) type = type.upper() try: if type == 'BLOB': if row_list is None: row_list = list(row) row_list[index] = buffer(row[index]) elif type == 'DECIMAL': if row_list is None: row_list = list(row) row_list[index] = decimal.Decimal(str(row[index]).replace(",", ".")) except Exception, inst: self.messages.append(DataError("Data type format error: "+ str(inst))) raise self.messages[len(self.messages) - 1] if row_list is None: return row else: return tuple(row_list)
2f8e37dec004ca49835f8b8bc04602ffbeae85b3
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/green.py
3d1d36e0a8a5ded3f2b6dab641fd0c4ffb2aeb76
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
2,588
py
ii = [('BentJDO2.py', 1), ('EmerRN.py', 3), ('CookGHP3.py', 4), ('LyelCPG2.py', 3), ('MarrFDI.py', 4), ('RogePAV2.py', 17), ('CoolWHM2.py', 11), ('KembFFF.py', 1), ('GodwWSL2.py', 2), ('RogePAV.py', 2), ('SadlMLP.py', 1), ('FerrSDO3.py', 12), ('WilbRLW.py', 11), ('WilbRLW4.py', 1), ('RennJIT.py', 43), ('ProuWCM.py', 2), ('AubePRP2.py', 2), ('MartHSI2.py', 17), ('LeakWTI2.py', 10), ('KembFJ1.py', 23), ('WilkJMC3.py', 25), ('WilbRLW5.py', 5), ('LeakWTI3.py', 5), ('PettTHE.py', 29), ('MarrFDI3.py', 4), ('TennAP.py', 26), ('PeckJNG.py', 35), ('KnowJMM.py', 1), ('BailJD2.py', 6), ('ChalTPW2.py', 1), ('GellWPT.py', 10), ('AdamWEP.py', 22), ('FitzRNS3.py', 9), ('WilbRLW2.py', 7), ('ClarGE2.py', 12), ('GellWPT2.py', 7), ('WilkJMC2.py', 4), ('CarlTFR.py', 43), ('SeniNSP.py', 2), ('LyttELD.py', 8), ('CoopJBT2.py', 1), ('TalfTAC.py', 1), ('RoscTTI3.py', 10), ('AinsWRR3.py', 16), ('CookGHP2.py', 1), ('KiddJAE.py', 3), ('BailJD1.py', 3), ('RoscTTI2.py', 8), ('CoolWHM.py', 13), ('MarrFDI2.py', 1), ('CrokTPS.py', 51), ('ClarGE.py', 9), ('LandWPA.py', 6), ('BuckWGM.py', 6), ('IrviWVD.py', 7), ('LyelCPG.py', 8), ('GilmCRS.py', 22), ('DaltJMA.py', 6), ('WestJIT2.py', 26), ('DibdTRL2.py', 7), ('AinsWRR.py', 6), ('CrocDNL.py', 4), ('MedwTAI.py', 16), ('LandWPA2.py', 2), ('WadeJEB.py', 8), ('FerrSDO2.py', 2), ('GodwWLN.py', 2), ('CoopJBT.py', 1), ('KirbWPW2.py', 6), ('SoutRD2.py', 9), ('BackGNE.py', 25), ('LeakWTI4.py', 9), ('LeakWTI.py', 28), ('MedwTAI2.py', 14), ('BachARE.py', 15), ('SoutRD.py', 20), ('DickCSG.py', 2), ('BuckWGM2.py', 8), ('WheeJPT.py', 29), ('MereHHB3.py', 1), ('HowiWRL2.py', 72), ('BailJD3.py', 3), ('MereHHB.py', 2), ('WilkJMC.py', 3), ('HogaGMM.py', 4), ('MartHRW.py', 35), ('MackCNH.py', 2), ('WestJIT.py', 34), ('BabbCEM.py', 1), ('FitzRNS4.py', 97), ('CoolWHM3.py', 10), ('FitzRNS.py', 20), ('EdgeMHT.py', 2), ('BowrJMM.py', 5), ('LyttELD3.py', 6), ('HallFAC.py', 20), ('FerrSDO.py', 6), ('RoscTTI.py', 7), ('ThomGLG.py', 2), ('KembFJ2.py', 23), ('LewiMJW.py', 18), ('BellCHM.py', 8), ('JacoWHI2.py', 1), ('SomeMMH.py', 4), ('AinsWRR2.py', 14), ('MereHHB2.py', 4), ('BrewDTO.py', 186), ('JacoWHI.py', 1), ('ClarGE3.py', 7), ('RogeSIP.py', 21), ('MartHRW2.py', 34), ('DibdTRL.py', 24), ('FitzRNS2.py', 30), ('HogaGMM2.py', 5), ('MartHSI.py', 50), ('EvarJSP.py', 2), ('NortSTC.py', 38), ('BowrJMM2.py', 4), ('LyelCPG3.py', 56), ('BowrJMM3.py', 7), ('BeckWRE.py', 8), ('TaylIF.py', 1), ('WordWYR.py', 23), ('DibdTBR.py', 2), ('ThomWEC.py', 5), ('KeigTSS.py', 7), ('KirbWPW.py', 9), ('WaylFEP.py', 2), ('BentJDO.py', 2), ('ClarGE4.py', 57), ('HowiWRL.py', 52)]
973af6afd92942add0a57a3941085fd6e2d66174
5e84763c16bd6e6ef06cf7a129bb4bd29dd61ec5
/blimgui/dist/pyglet/font/__init__.py
18313153ed4a927df01f0629f5dc04a01d122ae6
[ "MIT" ]
permissive
juso40/bl2sdk_Mods
8422a37ca9c2c2bbf231a2399cbcb84379b7e848
29f79c41cfb49ea5b1dd1bec559795727e868558
refs/heads/master
2023-08-15T02:28:38.142874
2023-07-22T21:48:01
2023-07-22T21:48:01
188,486,371
42
110
MIT
2022-11-20T09:47:56
2019-05-24T20:55:10
Python
UTF-8
Python
false
false
7,514
py
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2022 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """Load fonts. pyglet will automatically load any system-installed fonts. You can add additional fonts (for example, from your program resources) using :meth:`add_file` or :meth:`add_directory`. These fonts are then available in the same way as system-installed fonts:: from pyglet import font font.add_file('action_man.ttf') action_man = font.load('Action Man', 16) # or from pyglet import resource resource.add_font('action_man.ttf') action_man = font.load('Action Man') See the :mod:`pyglet.font.base` module for documentation on the base classes used by this package. """ import os import sys import weakref import pyglet from pyglet import gl if not getattr(sys, 'is_pyglet_doc_run', False): if pyglet.compat_platform == 'darwin': from pyglet.font.quartz import QuartzFont _font_class = QuartzFont elif pyglet.compat_platform in ('win32', 'cygwin'): from pyglet.libs.win32.constants import WINDOWS_7_OR_GREATER if WINDOWS_7_OR_GREATER: if pyglet.options["advanced_font_features"] is True: from pyglet.font.directwrite import Win32DirectWriteFont _font_class = Win32DirectWriteFont else: from pyglet.font.win32 import GDIPlusFont _font_class = GDIPlusFont else: from pyglet.font.win32 import GDIPlusFont _font_class = GDIPlusFont else: from pyglet.font.freetype import FreeTypeFont _font_class = FreeTypeFont def have_font(name): """Check if specified system font name is available.""" return _font_class.have_font(name) def load(name=None, size=None, bold=False, italic=False, stretch=False, dpi=None): """Load a font for rendering. :Parameters: `name` : str, or list of str Font family, for example, "Times New Roman". If a list of names is provided, the first one matching a known font is used. If no font can be matched to the name(s), a default font is used. In pyglet 1.1, the name may be omitted. `size` : float Size of the font, in points. The returned font may be an exact match or the closest available. In pyglet 1.1, the size may be omitted, and defaults to 12pt. `bold` : bool If True, a bold variant is returned, if one exists for the given family and size. `italic` : bool If True, an italic variant is returned, if one exists for the given family and size. `dpi` : float The assumed resolution of the display device, for the purposes of determining the pixel size of the font. Defaults to 96. :rtype: `Font` """ # Arbitrary default size if size is None: size = 12 if dpi is None: dpi = 96 # Find first matching name if type(name) in (tuple, list): for n in name: if _font_class.have_font(n): name = n break else: name = None # Locate or create font cache shared_object_space = gl.current_context.object_space if not hasattr(shared_object_space, 'pyglet_font_font_cache'): shared_object_space.pyglet_font_font_cache = weakref.WeakValueDictionary() shared_object_space.pyglet_font_font_hold = [] font_cache = shared_object_space.pyglet_font_font_cache font_hold = shared_object_space.pyglet_font_font_hold # Look for font name in font cache descriptor = (name, size, bold, italic, stretch, dpi) if descriptor in font_cache: return font_cache[descriptor] # Not in cache, create from scratch font = _font_class(name, size, bold=bold, italic=italic, stretch=stretch, dpi=dpi) # Save parameters for new-style layout classes to recover # TODO: add properties to the Font classes, so these can be queried: font.size = size font.bold = bold font.italic = italic font.stretch = stretch font.dpi = dpi # Cache font in weak-ref dictionary to avoid reloading while still in use font_cache[descriptor] = font # Hold onto refs of last three loaded fonts to prevent them being # collected if momentarily dropped. del font_hold[3:] font_hold.insert(0, font) return font def add_file(font): """Add a font to pyglet's search path. In order to load a font that is not installed on the system, you must call this method to tell pyglet that it exists. You can supply either a filename or any file-like object. The font format is platform-dependent, but is typically a TrueType font file containing a single font face. Note that to use a font added with this method, you should pass the face name (not the file name) to :meth::py:func:`pyglet.font.load` or any other place where you normally specify a font. :Parameters: `font` : str or file-like object Filename or file-like object to load fonts from. """ if isinstance(font, str): font = open(font, 'rb') if hasattr(font, 'read'): font = font.read() _font_class.add_font_data(font) def add_directory(directory): """Add a directory of fonts to pyglet's search path. This function simply calls :meth:`pyglet.font.add_file` for each file with a ``.ttf`` extension in the given directory. Subdirectories are not searched. :Parameters: `dir` : str Directory that contains font files. """ for file in os.listdir(directory): if file[-4:].lower() == '.ttf': add_file(os.path.join(directory, file)) __all__ = ('add_file', 'add_directory', 'load', 'have_font')
144d632a68c20edf5f33c6a21eba24ba413b5060
61eae81a1780141ba1323adb93d3d41c4ad0cc3e
/src/model_bank/dataset_2018_7_13_lcp_recognition_model.py
66b9a61b10443213dac0a710aa181f548137a8c5
[]
no_license
lsy125/AE-signal-model
0783cda7eee972cce3ab1abf682047baf3d739a1
da11717ffc8bf74dbb2d6f818e73f0b839f0ab5a
refs/heads/master
2020-04-02T08:46:05.140848
2018-10-22T02:01:48
2018-10-22T02:01:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,219
py
from keras.layers import * from keras.models import Sequential, Model from keras.utils import plot_model from keras import regularizers # self lib from src.utils.helpers import direct_to_dir def lcp_recognition_binary_model(): visible_in = Input(shape=(6000, 1)) conv_1 = Conv1D(5, kernel_size=5, activation='relu')(visible_in) maxpool_1 = MaxPooling1D(pool_size=3, strides=2)(conv_1) dropout_1 = Dropout(0.4)(maxpool_1) conv_2 = Conv1D(20, kernel_size=5, activation='relu')(dropout_1) maxpool_2 = MaxPooling1D(pool_size=3, strides=2)(conv_2) conv_3 = Conv1D(32, kernel_size=5, activation='relu')(maxpool_2) maxpool_3 = MaxPooling1D(pool_size=3, strides=2)(conv_3) flatten = Flatten()(maxpool_3) dropout_2 = Dropout(0.5)(flatten) dense_1 = Dense(10, activation='relu')(dropout_2) # dense_2 = Dense(20, activation='relu')(dense_1) # dense_3 = Dense(80, activation='relu')(dense_2) visible_out = Dense(1, activation='sigmoid')(dense_1) model = Model(inputs=visible_in, outputs=visible_out) print(model.summary()) return model def lcp_recognition_binary_model_2(): ''' refer Online, VGG concept model = Sequential() model.add(Conv1D(64, 3, activation='relu', input_shape=(6000, 1))) model.add(Conv1D(64, 3, activation='relu')) model.add(MaxPooling1D(3)) model.add(Conv1D(128, 3, activation='relu')) model.add(Conv1D(128, 3, activation='relu')) model.add(MaxPooling1D(3)) model.add(Conv1D(256, 3, activation='relu')) model.add(Conv1D(256, 3, activation='relu')) model.add(GlobalAveragePooling1D()) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) :return: ''' model = Sequential() model.add(Conv1D(64, 3, activation='relu', input_shape=(6000, 1))) # model.add(Conv1D(16, 3, activation='relu')) model.add(MaxPooling1D(3, strides=2)) model.add(Dropout(0.3)) # model.add(Conv1D(32, 3, activation='relu')) # model.add(Conv1D(32, 3, activation='relu')) # model.add(MaxPooling1D(3, strides=2)) # model.add(Dropout(0.3)) # model.add(Conv1D(64, 3, activation='relu')) # model.add(Conv1D(64, 3, activation='relu')) # model.add(MaxPooling1D(3, strides=2)) # model.add(Dropout(0.3)) # # model.add(Conv1D(128, 3, activation='relu')) # model.add(Conv1D(128, 3, activation='relu')) # model.add(MaxPooling1D(3, strides=2)) # model.add(Dropout(0.3)) # model.add(Conv1D(256, 3, activation='relu')) # model.add(Conv1D(256, 3, activation='relu')) model.add(GlobalAveragePooling1D()) # model.add(Dropout(0.5)) model.add(Dense(50, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) print(model.summary()) return model def lcp_recognition_binary_model_3(): ''' Dual layer ''' visible_in = Input(shape=(6000, 1)) # Part a conv_a_1 = Conv1D(32, kernel_size=5, activation='relu', name='conv_a_1')(visible_in) conv_a_2 = Conv1D(32, kernel_size=5, activation='relu', name='conv_a_2')(conv_a_1) maxpool_a_1 = MaxPooling1D(pool_size=3, strides=2, name='maxp_a_1')(conv_a_2) drop_a_1 = Dropout(0.3, name='drop_a_1')(maxpool_a_1) conv_a_3 = Conv1D(64, kernel_size=5, activation='relu', name='conv_a_3')(drop_a_1) conv_a_4 = Conv1D(128, kernel_size=5, activation='relu', name='conv_a_4', use_bias=False)(conv_a_3) maxpool_a_2 = MaxPooling1D(pool_size=3, strides=2, name='maxp_a_2')(conv_a_4) gap_a_1 = GlobalAveragePooling1D(name='gap_a_1')(maxpool_a_2) # Part b conv_b_1 = Conv1D(32, kernel_size=5, activation='relu', name='conv_b_1')(visible_in) conv_b_2 = Conv1D(32, kernel_size=5, activation='relu', name='conv_b_2')(conv_b_1) maxpool_b_1 = MaxPooling1D(pool_size=3, strides=2, name='maxp_b_1')(conv_b_2) drop_b_1 = Dropout(0.3, name='drop_b_1')(maxpool_b_1) conv_b_3 = Conv1D(128, kernel_size=5, activation='relu', name='conv_b_3')(drop_b_1) # drop_b_2 = Dropout(0.3, name='drop_b_2')(conv_b_3) # conv_b_4 = Conv1D(128, kernel_size=5, activation='relu', name='conv_b_4')(drop_b_2) # maxpool_b_2 = MaxPooling1D(pool_size=3, strides=2, name='maxp_b_2')(conv_b_4) gap_b_1 = GlobalAveragePooling1D(name='gap_b_1')(conv_b_3) # Layer 2 merge_1 = concatenate([gap_a_1, gap_b_1]) dense_1 = Dense(50, activation='relu', name='dense_1')(merge_1) drop_1 = Dropout(0.2, name='drop_1')(dense_1) visible_out = Dense(1, activation='sigmoid', name='dense_2')(drop_1) model = Model(inputs=visible_in, outputs=visible_out) print(model.summary()) save_model_plot = direct_to_dir(where='result') + 'lcp_recognition_binary_model_3.png' plot_model(model, to_file=save_model_plot) return model # TESTING AT LAPTOP def model_1(): visible_in = Input(shape=(6000, 1)) conv_1 = Conv1D(filters=32, kernel_size=5, strides=1, activation='relu', name='Conv_a_1')(visible_in) gap = GlobalAveragePooling1D()(conv_1) visible_out = Dense(1, activation='sigmoid')(gap) model = Model(inputs=visible_in, outputs=visible_out) print(model.summary()) # lcp_recognition_binary_model_2()
8afd85abc6361f6690923f4902b20607b778ad70
87b7d7948aa51fdb4a27540240579788896369ea
/code/runs_sacred/model_data_random/_sources/data_set_file_8dbb1c73ef6f7d6c76679b005f0b994b.py
492729d1daa74ff2dbc6c7004f3cccb8805d5d13
[]
no_license
Samuel-Levesque/Projet_GLO7030
6f13accd63b52107ec3e3a0b9b5f52edccda7c8d
557bce3235f09723900f65c6e3b44a0ed9d2b519
refs/heads/master
2022-01-16T12:49:22.884798
2019-05-05T18:38:35
2019-05-05T18:38:35
177,038,991
0
1
null
null
null
null
UTF-8
Python
false
false
7,055
py
import random import warnings warnings.filterwarnings('ignore') # to suppress some matplotlib deprecation warnings import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import ast import cv2 import matplotlib.pyplot as plt import os from torch.utils.data import Dataset, DataLoader, ConcatDataset from utility import save_object def create_encoding_deconding_dict(path_data): ''' Crée un dictionnaire d'encoding des labels et un dictionnaire de decoding des labels :param path_data: :return: ''' filenames = os.listdir(path_data) filenames=sorted(filenames) en_dict = {} counter = 0 for fn in filenames: en_dict[fn[:-4].split('/')[-1].replace(' ', '_')] = counter counter += 1 dec_dict = {v: k for k, v in en_dict.items()} save_object(en_dict,"saves_obj/en_dict.pk") save_object(dec_dict, "saves_obj/dec_dict.pk") return en_dict,dec_dict pass #Pour une classe class DoodlesDataset(Dataset): """Doodles csv dataset. adapté de https://www.kaggle.com/leighplt/pytorch-starter-kit/notebook Dataset Pytorch pour une seul catégorie. Pour faire un dataset complet on concatène plusieurs de ces dataset """ def __init__(self, csv_file, root_dir,nrows,encoding_dict=None, mode='train', skiprows=None, size=224, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. ex :airplane.csv root_dir (string): Directory with all the csv. mode (string): Train or test mode. nrows (int): Number of rows of file to read. Useful for reading pieces of large files. skiprows (list-like or integer or callable): Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. size (int): Size of output image. transform (callable, optional): Optional transform to be applied (pas utile pour l'instant) on a sample. """ self.root_dir = root_dir file = os.path.join(self.root_dir, csv_file) self.size = size self.mode = mode self.doodle = pd.read_csv(file, usecols=['drawing'], nrows=nrows, skiprows=skiprows) #Data set pandas # self.transform = transform if self.mode == 'train': self.txt_label= csv_file.replace(' ', '_')[:-4] self.label = encoding_dict[self.txt_label] @staticmethod def _draw(raw_strokes, size=256, largeur_trait=6): BASE_SIZE = 256 img = np.full((BASE_SIZE, BASE_SIZE), 255,dtype=np.uint8) for t, stroke in enumerate(raw_strokes): for i in range(len(stroke[0]) - 1): color = 0 _ = cv2.line(img, (stroke[0][i], stroke[1][i]), (stroke[0][i + 1], stroke[1][i + 1]), color, largeur_trait) if size != BASE_SIZE: return cv2.resize(img, (size, size)) else: return img def __len__(self): return len(self.doodle) def __getitem__(self, idx): raw_strokes = ast.literal_eval(self.doodle.drawing[idx]) sample = self._draw(raw_strokes, size=self.size, largeur_trait=6) # if self.transform: # sample = self.transform(sample) if self.mode == 'train': return (sample[None] / 255).astype('float32'), self.label else: return (sample[None] / 255).astype('float32') #Pour toutes les classe, nb_row par classe def create_huge_data_set(path,nb_rows=1000,size_image=224,encoding_dict=None,skip_rows=None,filenames=None,mode="train"): ''' Concatène les dataset de plusieurs classes :param path: path où se trouve le dossier avec les csv :param nb_rows: Nombre de rows par classes :param size_image: :param filenames: si on veut des classe particulières ex : [airplane.csv, angel.csv] :return: ''' if filenames==None: filenames = os.listdir(path) doodles = ConcatDataset([DoodlesDataset(fn,path,nrows=nb_rows, size=size_image, skiprows=skip_rows,encoding_dict=encoding_dict,mode=mode) for fn in filenames]) return doodles def generate_random_dataset( path, nb_row_valid,nb_rows_test,nb_rows,dict_nb_lignes, size_image=224, encoding_dict=None,filenames=None): ''' Pour chaque classe dans filenames, on prend nb_rows données aléatoire dans le fichier :param path: :param nb_row_valid: :param nb_rows_test: :param nb_rows: :param size_image: :param encoding_dict: :param filenames: :return: ''' if filenames==None: filenames = os.listdir(path) nb_lignes_skip = nb_row_valid + nb_rows_test list_dataset=[] for fn in filenames: n = dict_nb_lignes[fn] skip =list(range(1,nb_lignes_skip)) +sorted(random.sample(range(nb_lignes_skip,n), n - nb_rows-nb_lignes_skip)) data_set=DoodlesDataset(fn, path, nrows=nb_rows, size=size_image, skiprows=skip, encoding_dict=encoding_dict, mode="train") list_dataset.append(data_set) doodles = ConcatDataset(list_dataset) return doodles def create_dict_nb_ligne(path,filenames=None): ''' dictionnaire du nombre de ligne dans les fichiers csv :param path: :return: ''' if filenames==None: filenames = os.listdir(path) dict_nb_ligne={} for fn in filenames: n = sum(1 for line in open(path + fn)) - 1 dict_nb_ligne[fn]=n save_object(dict_nb_ligne,"saves_obj/dict_nb_ligne.pk") return dict_nb_ligne def imshow(img_tensor): npimg = img_tensor.numpy() # print(npimg) plt.imshow(npimg,cmap="gray") plt.show() if __name__ == "__main__": path = 'D:/User/William/Documents/Devoir/Projet Deep/data/mini_train/' # path = 'D:/User/William/Documents/Devoir/Projet Deep/data/train_simplified/' filenames = os.listdir(path) filenames = [path + x for x in filenames] size_image = 224 select_nrows = 1000 csv_file=filenames[0].split('/')[-1] #Créer data set pour un csv file en particulier # essai=DoodlesDataset(csv_file, path,nrows=select_nrows, size=size_image,skiprows=range(1,10)) # loader=DataLoader(essai,batch_size=10) # for image, label in loader: # print(image) # t1=image[0,0,:,:] # #imshow(t1) # print(label) doodles = ConcatDataset([DoodlesDataset(fn.split('/')[-1], path, nrows=select_nrows, size=size_image) for fn in filenames]) loader = DataLoader(doodles, batch_size=2,shuffle=True) i=0 for image, label in loader: # print(image) t1 = image[0, 0, :, :] t2=image[1,0,:,:] # imshow(t1) # imshow(t2) i+=2 print(i) print(label) print("end")
8a307d78726f1ec71e12b3c0c22f5ac21db4bcf9
dd38578f9622b1ea54838340711a96d57fcfbbc6
/kbm/migrations/0004_auto_20200629_0017.py
29157ee0c71fb1bf849f5a93c6227cfca901170a
[]
no_license
nabaman/sistem-informasi-akademik
544d3563c922f105d310bb6377d236e6022fcb2c
1ffb46e86ab76c6c4b98a10862acf01a5676d574
refs/heads/master
2022-11-17T05:54:07.808086
2020-07-01T06:02:28
2020-07-01T06:02:28
257,820,789
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
# Generated by Django 3.0.5 on 2020-06-28 17:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('kbm', '0003_auto_20200609_2156'), ] operations = [ migrations.AlterField( model_name='data_jurusan', name='jurusan', field=models.CharField(max_length=30, null=True), ), ]
373405fdc1325b6237b78fad3cdd074864c92bc5
45f6c7f6e7160c5535d74582c6ba165ee21ab56e
/test/test_van/test_saved_lists.py
740bb5997167057c1ca394ba2c8000ab159b836b
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
move-coop/parsons
1b0bcfcbb8c0e1edb26d06664c6ecb7370eae864
553b0ede3e41cc9811c48d768d05953f8cf75312
refs/heads/main
2023-08-21T12:34:34.004784
2023-08-17T17:46:09
2023-08-17T17:46:09
204,343,221
240
122
NOASSERTION
2023-09-14T20:55:15
2019-08-25T19:56:21
Python
UTF-8
Python
false
false
7,500
py
import unittest import os import requests_mock import unittest.mock as mock from parsons import VAN, Table from test.utils import validate_list from parsons.utilities import cloud_storage class TestSavedLists(unittest.TestCase): def setUp(self): self.van = VAN(os.environ["VAN_API_KEY"], db="MyVoters", raise_for_status=False) def tearDown(self): pass @requests_mock.Mocker() def test_get_saved_lists(self, m): json = { "count": 1, "items": [ { "savedListId": 517612, "listCount": 974656, "name": "LikelyParents(16andunder)_DWID_S... - MN", "doorCount": 520709, "description": "null", } ], "nextPageLink": None, } m.get(self.van.connection.uri + "savedLists", json=json) expected = ["savedListId", "listCount", "name", "doorCount", "description"] self.assertTrue(validate_list(expected, self.van.get_saved_lists())) @requests_mock.Mocker() def test_get_saved_list(self, m): saved_list_id = 517612 json = { "savedListId": 517612, "listCount": 974656, "name": "LikelyParents(16andunder)_DWID_S... - MN", "doorCount": 520709, "description": "null", } m.get(self.van.connection.uri + f"savedLists/{saved_list_id}", json=json) # expected = ['savedListId', 'listCount', 'name', 'doorCount', 'description'] self.assertEqual(self.van.get_saved_list(saved_list_id), json) def test_upload_saved_list(self): cloud_storage.post_file = mock.MagicMock() cloud_storage.post_file.return_value = "https://box.com/my_file.zip" self.van.connection._soap_client = mock.MagicMock() self.van.get_folders = mock.MagicMock() self.van.get_folders.return_value = [{"folderId": 1}] tbl = Table([["VANID"], ["1"], ["2"], ["3"]]) self.van.upload_saved_list( tbl, "GOTV List", 1, replace=True, url_type="S3", bucket="tmc-scratch" ) assert self.van.connection._soap_client.service.CreateAndStoreSavedList.called @requests_mock.Mocker() def test_upload_saved_list_rest(self): cloud_storage.post_file = mock.MagicMock() cloud_storage.post_file.return_value = "https://box.com/my_file.zip" self.van.get_folders = mock.MagicMock() self.van.get_folders.return_value = [{"folderId": 1}] tbl = Table([["VANID"], ["1"], ["2"], ["3"]]) response = self.van.upload_saved_list_rest( tbl=tbl, url_type="S3", folder_id=1, list_name="GOTV List", description="parsons test list", callback_url="https://webhook.site/69ab58c3-a3a7-4ed8-828c-1ea850cb4160", columns=["VANID"], id_column="VANID", bucket="tmc-scratch", overwrite=517612, ) self.assertIn("jobId", response) @requests_mock.Mocker() def test_get_folders(self, m): json = { "count": 2, "items": [ {"folderId": 5046, "name": "#2018_MN_active_universe"}, {"folderId": 2168, "name": "API Generated Lists"}, ], "nextPageLink": None, } m.get(self.van.connection.uri + "folders", json=json) expected = ["folderId", "name"] self.assertTrue(validate_list(expected, self.van.get_folders())) @requests_mock.Mocker() def test_get_folder(self, m): folder_id = 5046 json = {"folderId": 5046, "name": "#2018_MN_active_universe"} m.get(self.van.connection.uri + f"folders/{folder_id}", json=json) self.assertEqual(json, self.van.get_folder(folder_id)) @requests_mock.Mocker() def test_export_job_types(self, m): json = { "count": 1, "items": [{"exportJobTypeId": 4, "name": "SavedListExport"}], "nextPageLink": None, } m.get(self.van.connection.uri + "exportJobTypes", json=json) expected = ["exportJobTypeId", "name"] self.assertTrue(validate_list(expected, self.van.get_export_job_types())) @requests_mock.Mocker() def test_export_job_create(self, m): saved_list_id = 517612 json = { "status": "Completed", "errorCode": "null", "exportJobGuid": "bf4d1297-1c77-3fb2-03bd-f0acda122d37", "activistCodes": "null", "canvassFileRequestId": 448, "dateExpired": "2018-09-08T16:04:00Z", "surveyQuestions": "null", "webhookUrl": "https://www.nothing.com/", "downloadUrl": "https://ngpvan.blob.core.windows.net/canvass-files-savedlistexport/bf4d1297-1c77-3fb2-03bd-f0acda122d37_2018-09-08T13:03:27.7191831-04:00.csv", # noqa: E501 "savedListId": 517612, "districtFields": "null", "canvassFileRequestGuid": "bf4d1297-1c77-3fb2-03bd-f0acda122d37", "customFields": "null", "type": 4, "exportJobId": 448, } m.post(self.van.connection.uri + "exportJobs", json=json, status_code=201) # expected = [ # 'status', # 'errorCode', # 'exportJobGuid', # 'activistCodes', # 'canvassFileRequestId', # 'dateExpired', # 'surveyQuestions', # 'webhookUrl', # 'downloadUrl', # 'savedListId', # 'districtFields', # 'canvassFileRequestGuid', # 'customFields', # 'type', # 'exportJobId'] self.assertEqual(json, self.van.export_job_create(saved_list_id)) @requests_mock.Mocker() def test_get_export_job(self, m): export_job_id = 448 json = { "status": "Completed", "errorCode": "null", "exportJobGuid": "bf4d1297-1c77-3fb2-03bd-f0acda122d37", "activistCodes": "null", "canvassFileRequestId": 448, "dateExpired": "2018-09-08T16:04:00Z", "surveyQuestions": "null", "webhookUrl": "https://www.nothing.com/", "downloadUrl": "https://ngpvan.blob.core.windows.net/canvass-files-savedlistexport/bf4d1297-1c77-3fb2-03bd-f0acda122d37_2018-09-08T13:03:27.7191831-04:00.csv", # noqa: E501 "savedListId": 517612, "districtFields": "null", "canvassFileRequestGuid": "bf4d1297-1c77-3fb2-03bd-f0acda122d37", "customFields": "null", "type": 4, "exportJobId": 448, } # expected = [ # 'status', # 'errorCode', # 'exportJobGuid', # 'activistCodes', # 'canvassFileRequestId', # 'dateExpired', # 'surveyQuestions', # 'webhookUrl', # 'downloadUrl', # 'savedListId', # 'districtFields', # 'canvassFileRequestGuid', # 'customFields', # 'type', # 'exportJobId'] m.get(self.van.connection.uri + f"exportJobs/{export_job_id}", json=json) self.assertEqual(json, self.van.get_export_job(export_job_id))
24ea8739a59fecf67cf4b899f035e7f803deef1c
9b420b88924f8b5120f76a319504a59edf4c7810
/fluent_pages/tests/urldispatcher.py
63bd6de5c48706b2232d40a699daba12adb96999
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
techdragon/django-fluent-pages
3384a10b231e10f7d290e70cf18d6dcbddcea76a
1e38bb2fe1db0b376098ba35df7a7286ad3e2794
refs/heads/master
2021-01-18T10:56:12.763397
2013-08-03T08:32:55
2013-08-03T08:32:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,456
py
from fluent_pages.models import Page from fluent_pages.tests.utils import AppTestCase, script_name, override_settings from fluent_pages.tests.testapp.models import SimpleTextPage, PlainTextFile, WebShopPage class UrlDispatcherTests(AppTestCase): """ Tests for URL resolving. """ @classmethod def setUpTree(cls): SimpleTextPage.objects.create(title="Home", slug="home", status=SimpleTextPage.PUBLISHED, author=cls.user, override_url='/') SimpleTextPage.objects.create(title="Text1", slug="sibling1", status=SimpleTextPage.PUBLISHED, author=cls.user, contents="TEST_CONTENTS") SimpleTextPage.objects.create(title="Text1", slug="unpublished", status=SimpleTextPage.DRAFT, author=cls.user) WebShopPage.objects.create(title="Shop1", slug="shop", status=SimpleTextPage.PUBLISHED, author=cls.user) PlainTextFile.objects.create(slug='README', status=PlainTextFile.PUBLISHED, author=cls.user, content="This is the README") def test_get_for_path(self): """ The testdata should be found under the expected URLs. """ # Test basic state sibling1 = Page.objects.get_for_path('/sibling1/') self.assertEquals(sibling1.get_absolute_url(), '/sibling1/', "Page at {0} has invalid absolute URL".format('/sibling1/')) self.assert200('/') self.assert200('/sibling1/') # Test exceptions self.assertRaises(SimpleTextPage.DoesNotExist, lambda: SimpleTextPage.objects.get_for_path('/not-found/')) def test_get_append_slash_redirect(self): """ The dispatcher should implement APPEND_SLASH handling, because ``fluent_pages.urls`` is a catch-all for ALL url's, including those without a slash. """ with override_settings(APPEND_SLASH=True): self.assertRedirects(self.client.get('/sibling1'), '/sibling1/', status_code=302) with override_settings(APPEND_SLASH=False): self.assert404('/sibling1', 'APPEND_SLASH=False: ') # However, non existing pages should not get an APPEND_SLASH redirect self.assert404('/not-found') def test_hide_unpublished(self): """ Unpublished pages should not appear """ self.assertTrue(SimpleTextPage.objects.filter(slug='unpublished').exists(), "page /unpublished/ should exist in the database.") self.assert404('/unpublished/') self.assert404('/unpublished') # With default APPEND_SLASH=True def test_get_for_path_script_name(self): """ The dispatcher should support a different WSGIScriptAlias prefix. """ with script_name('/_test_subdir_/'): sibling1 = Page.objects.get_for_path('/sibling1/') self.assertEquals(sibling1.get_absolute_url(), '/_test_subdir_/sibling1/', "UrlNode.get_absolute_url() should take changes to SCRIPT_NAME into account (got: {0}).".format(sibling1.get_absolute_url())) # Note the test client always operates relative to the Django script_name root. self.assert200('/') self.assert200('/sibling1/') def test_page_output(self): """ Pages should render output via the ``render_template``. """ # Test initial state from fluent_pages.tests.testapp.page_type_plugins import SimpleTextPagePlugin # Import here as it needs an existing DB self.assertEquals(SimpleTextPagePlugin.render_template, 'testapp/simpletextpage.html') # Test how a normal page is rendered response = self.client.get('/sibling1/') self.assertTemplateUsed(response, 'testapp/simpletextpage.html') self.assertContains(response, '<div id="test_contents">TEST_CONTENTS</div>') def test_app_page_output(self): """ The resolver should detect that the plugin has an URLconf that overlays the CMS page index url. """ # Test initial state from fluent_pages.tests.testapp.page_type_plugins import WebShopPagePlugin self.assertEquals(WebShopPagePlugin.urls, 'fluent_pages.tests.testapp.urls_webshop') response = self.client.get('/shop/') self.assertContains(response, 'test_webshop: index_page') # The URLconf is an overlay over the standard get_response() def test_app_page_url(self): """ The URL that is a mix of DB page + URLconf should match and return. """ response = self.client.get('/shop/foobar/') self.assertContains(response, 'test_webshop: article: foobar') def test_app_page_append_slash(self): """ The APPEND_SLASH setting should also work for app page URLs """ with override_settings(APPEND_SLASH=True): self.assertRedirects(self.client.get('/shop'), '/shop/', status_code=302) self.assertRedirects(self.client.get('/shop/article1'), '/shop/article1/', status_code=302) with override_settings(APPEND_SLASH=False): self.assert404('/shop', 'APPEND_SLASH=False') self.assert404('/shop/article1', 'APPEND_SLASH=False') # However, non resolvable app pages should not get an APPEND_SLASH redirect self.assert404('/shop/article1/foo') def test_plain_text_file(self): """ URLs that point to files should return properly. """ response = self.client.get('/README') self.assertEqual(response.content, 'This is the README') self.assertEqual(response['Content-Type'], 'text/plain') def test_unicode_404(self): """ Urls with unicode characters should return proper 404 pages, not crash on it. """ url = u'/foo/\xe9\u20ac\xdf\xed\xe0\xf8\xeb\xee\xf1\xfc/' self.assert404(url) def test_admin_redirect(self): """ Urls can end with @admin to be redirected to the admin. """ self.assertRedirects(self.client.get('/@admin'), 'http://testserver/admin/fluent_pages/page/1/', status_code=302) self.assertRedirects(self.client.get('/sibling1/@admin'), 'http://testserver/admin/fluent_pages/page/2/', status_code=302) self.assertRedirects(self.client.get('/shop/@admin'), 'http://testserver/admin/fluent_pages/page/4/', status_code=302) # Anything that doesn't match, is redirected to the URL without @admin suffix self.assertRedirects(self.client.get('/unpublished/@admin'), 'http://testserver/unpublished/', status_code=302, target_status_code=404) self.assertRedirects(self.client.get('/non-existent/@admin'), 'http://testserver/non-existent/', status_code=302, target_status_code=404) # Same also applies to application URLs. Can be extended in the future to resolve to the # app page, or the actual object. Currently this is not supported. self.assertRedirects(self.client.get('/shop/foobar/@admin'), 'http://testserver/shop/foobar/', status_code=302) class UrlDispatcherNonRootTests(AppTestCase): """ Tests for URL resolving with a non-root URL include. """ urls = 'fluent_pages.tests.testapp.urls_nonroot' @classmethod def setUpTree(cls): SimpleTextPage.objects.create(title="Text1", slug="sibling1", status=SimpleTextPage.PUBLISHED, author=cls.user, contents="TEST_CONTENTS") def test_urlconf_root(self): """ The dispatcher should support an URLConf where fluent_pages.url is not at the root. """ sibling1 = Page.objects.get_for_path('/sibling1/') # Stored path is always relative to ROOT self.assert200('/pages/sibling1/') self.assert404('/sibling1/') self.assertEquals(sibling1.get_absolute_url(), '/pages/sibling1/', "UrlNode.get_absolute_url() should other URLConf root into account (got: {0}).".format(sibling1.get_absolute_url())) sibling1.save() self.assertEquals(sibling1._cached_url, '/sibling1/', "UrlNode keeps paths relative to the include()") # NOTE: admin needs to be tested elsewhere for this too. def test_admin_redirect(self): """ Urls can end with @admin to be redirected to the admin. """ self.assertRedirects(self.client.get('/pages/sibling1/@admin'), 'http://testserver/admin/fluent_pages/page/1/', status_code=302) self.assertRedirects(self.client.get('/pages/non-existent/@admin'), 'http://testserver/pages/non-existent/', status_code=302, target_status_code=404)
73cc2b03cd8658a38a334360c792ef745c6ead8b
b94c4c88aa3661696a8f8a6677c845a882d4091e
/src/main.py
b0ed8bfe850e44f49de124164adce4397b6cf652
[ "MIT" ]
permissive
pestefo/Coon
b4f1e62b97a330844140f00057a5bda184cf774e
8caa8b683b54b0c0047cbe1095ccf5576352c6ac
refs/heads/master
2021-01-02T21:45:19.393150
2020-02-11T16:49:36
2020-02-11T16:49:36
239,814,056
0
0
MIT
2020-02-11T16:52:15
2020-02-11T16:47:54
Python
UTF-8
Python
false
false
654
py
"""Script for Default keyword""" import sys import currency from currency.workflow import Workflow3 def main(workflow): """The main workflow entry function""" method = str(workflow.args.pop(0)) if method in currency.__all__: workflow.run(getattr(currency, method)) else: workflow.run(currency.help_me) if __name__ == "__main__": WF = Workflow3( default_settings={ "favorites": ["EUR", "CNY", "JPY", "GBP"] }, update_settings={ "github_slug": "tomy0000000/coon", "frequency": 7 }, help_url="https://git.io/fjD6M") sys.exit(WF.run(main))
7f0a093f4f97b501f6e1600dd3dd4537b88a9ef0
375e5bca82843647941068bd7634cf7adf2015ca
/tests/test_transform_affine3.py
d2f6651ed72b7052691ec6a9f54e6165a33fa6de
[ "MIT" ]
permissive
civodlu/trw
cd57e7bded7fdb0a9d623ed9cd50645fab96583b
11c59dea0072d940b036166be22b392bb9e3b066
refs/heads/master
2023-02-08T09:56:39.203340
2023-02-07T14:22:16
2023-02-07T14:22:16
195,147,670
12
2
MIT
2020-10-19T15:24:11
2019-07-04T01:19:31
Python
UTF-8
Python
false
false
4,555
py
import os import math import unittest import trw import torch import numpy as np class TestTransformsAffine(unittest.TestCase): def test_2d_identity_nn(self): matrix2 = [ [1, 0, 0], [0, 1, 0], ] matrix2 = torch.FloatTensor(matrix2) images = torch.arange(2 * 5 * 10, dtype=torch.float32).view((2, 1, 5, 10)) images_tfm2 = trw.transforms.affine_transform(images, matrix2, interpolation='nearest') assert int((images == images_tfm2).all()) == 1 def test_3d_identity_nn(self): matrix = [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], ] matrix = torch.FloatTensor(matrix) images = torch.arange(2 * 5 * 10 * 3, dtype=torch.float32).view((2, 1, 5, 10, 3)) images_tfm = trw.transforms.affine_transform(images, matrix) assert torch.max((images - images_tfm).abs()) < 1e-4 def test_2d_translation_nn(self): images = torch.arange(2 * 5 * 10, dtype=torch.float).view((2, 1, 5, 10)) m = [ [1, 0, -1], [0, 1, -2], [0, 0, 1] ], m = torch.FloatTensor(m)[0] m = trw.transforms.to_voxel_space_transform(m, images[0].shape) images_tfm = trw.transforms.affine_transform(images, torch.cat((m.unsqueeze(0), m.unsqueeze(0))), interpolation='nearest') assert torch.max(torch.abs(images[:, :, 2:, 1:] - images_tfm[:, :, :-2, :-1])) < 1e-4 def test_2d_image(self): matrix = trw.transforms.affine_transformation_translation([80, 0]) matrix = torch.mm(matrix, trw.transforms.affine_transformation_rotation2d(1 * math.pi / 4)) from PIL import Image image_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'tutorials', 'input_images', '2007_008764.jpg') images = Image.open(image_path) images = np.asarray(images).transpose((2, 0, 1)) images = images.reshape([1] + list(images.shape)) images = torch.from_numpy(images).float() images_tfm = trw.transforms.affine_transform( images, trw.transforms.to_voxel_space_transform(matrix, images[0].shape), interpolation='nearest') i = np.uint8(images_tfm.numpy())[0, 0] options = trw.train.Options() root = options.workflow_options.logging_directory Image.fromarray(np.stack((i, i, i), axis=2)).save(os.path.join(root, 'transformed.png')) def test_affine_2d_joint(self): options = trw.train.Options() root = options.workflow_options.logging_directory from PIL import Image image_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'tutorials', 'input_images', '2007_008764.jpg') images = Image.open(image_path) images.save(os.path.join(root, 'affine_original.png')) images = np.asarray(images).transpose((2, 0, 1)) images = images.reshape([1] + list(images.shape)) images = torch.from_numpy(images).float() batch = { 'images': images, 'images_joint': images } tfm = trw.transforms.TransformAffine([45, 50], [0.7, 1.3], .5, padding_mode='reflection') for n in range(10): transformed_batch = tfm(batch) i = np.uint8(transformed_batch['images'].numpy())[0, 0] Image.fromarray(np.stack((i, i, i), axis=2)).save(os.path.join(root, f'affine_transformed_{n}.png')) assert (transformed_batch['images'] == transformed_batch['images_joint']).all() def test_affine_3d_joint(self): options = trw.train.Options() root = options.workflow_options.logging_directory shape = [32, 64, 96] shape2 = [32 // 2, 64 // 2, 96 // 2] images = torch.ones(shape, dtype=torch.float32) images[shape2[0]-5:shape2[0]+5, shape2[1]-10:shape2[1]+10, shape2[2]-15:shape2[2]+15] = 3.0 images = images.unsqueeze(0).unsqueeze(0) # add N, C components batch = { 'images': images, 'images_joint': images } i = images.numpy()[0, 0] np.save(os.path.join(root, f'affine_transformed_3d_original.png'), i) tfm = trw.transforms.TransformAffine(0, 1, 0.9) for n in range(10): transformed_batch = tfm(batch) i = transformed_batch['images'].numpy()[0, 0] np.save(os.path.join(root, f'affine_transformed_3d_{n}.png'), i) if __name__ == '__main__': unittest.main()
a80d0ebfec737cf90fc2e079f2ebe80f10496421
562cc46d23d69f399a5f807d11ac567d8f30b567
/env/bin/symilar
b0ebfe4bd208743b9437624b9eda91935d85e19b
[]
no_license
JahanzebNawaz/DJANGO-CRUD
ab77a31c84134f10aee43b4fdc1900b4223b36ba
b3e848f8752c3755bcd26aeefe59eaedbcc06e8d
refs/heads/master
2022-01-26T13:29:30.218067
2020-05-03T11:43:58
2020-05-03T11:43:58
220,016,612
0
0
null
2020-05-03T11:43:59
2019-11-06T14:32:25
Python
UTF-8
Python
false
false
258
#!/home/jk/JKROOT/GITHUB_REPO/DJANGO-CRUD/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pylint import run_symilar if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(run_symilar())
f6e12a2fecf32423abd6f204856a0263e6998195
f0526130407daf1484ba0a228fb16683aa0fa509
/muchopper/common/queries.py
c45db0eec3bcf31cd446399bd333b29bb42491fa
[ "Apache-2.0" ]
permissive
ericschdt/muchopper
f8538f9e58b3512a3341731bc983fa2fbe5a749f
d621b8853360cfdc9f745aefbb9f9ec5d02d1a06
refs/heads/master
2020-08-06T21:10:18.316372
2019-10-06T11:30:17
2019-10-06T11:30:17
213,155,935
0
0
NOASSERTION
2019-10-06T11:30:18
2019-10-06T11:27:11
null
UTF-8
Python
false
false
2,611
py
import shlex import sqlalchemy from . import model def base_filter(q, include_closed=False): if not include_closed: q = q.filter( model.MUC.is_open == True # NOQA ) return q.filter( model.MUC.is_hidden == False # NOQA ) def base_query(session, *, include_closed=False, with_avatar_flag=False): if with_avatar_flag: q = session.query( model.MUC, model.PubliclyListedMUC, model.Avatar.address != None, # NOQA ).join( model.PubliclyListedMUC, ).outerjoin( model.Avatar, ) else: q = session.query( model.MUC, model.PubliclyListedMUC ).join( model.PubliclyListedMUC ) return base_filter(q, include_closed=include_closed) def common_query(session, *, min_users=1, **kwargs): q = base_query(session, **kwargs) if min_users > 0: q = q.filter( model.MUC.nusers_moving_average > min_users ) return q.order_by( model.MUC.nusers_moving_average.desc(), model.MUC.address.asc(), ) def chain_condition(conditional, new): if conditional is None: return new return sqlalchemy.or_(conditional, new) def filter_keywords(keywords, min_length): keywords = set( keyword for keyword in ( keyword.strip() for keyword in keywords ) if len(keyword) >= min_length ) return keywords def prepare_keywords(query_string, min_length=3): keywords = shlex.split(query_string) return filter_keywords(keywords, min_length) def apply_search_conditions(q, keywords, search_address, search_description, search_name): for keyword in keywords: conditional = None if search_address: conditional = chain_condition( conditional, model.PubliclyListedMUC.address.ilike("%" + keyword + "%") ) if search_description: conditional = chain_condition( conditional, model.PubliclyListedMUC.description.ilike("%" + keyword + "%") ) if search_name: conditional = chain_condition( conditional, model.PubliclyListedMUC.name.ilike("%" + keyword + "%") ) q = q.filter(conditional) return q
ef7700a3b968cac227b909d38a28fa784053110b
36e4a3581877736a501a74bfdfc10bbbd4386b8a
/tests/conftest.py
23314e52187708a98fe75147a8829b79b72f0019
[ "Apache-2.0" ]
permissive
valmac/lean-cli
1620300e7bf9428df269bae26b47a4615525144a
88a191afadf7bfe766665fa67c552390cb2e3951
refs/heads/main
2023-03-08T10:40:15.541980
2021-02-11T00:52:47
2021-02-11T00:52:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,500
py
import os from pathlib import Path import pytest from pyfakefs.fake_filesystem import FakeFilesystem from responses import RequestsMock from lean.container import container # conftest.py is ran by pytest before loading each testing module # Fixtures defined in here are therefore available in all testing modules @pytest.fixture(autouse=True) def mock_filesystem(fs: FakeFilesystem) -> FakeFilesystem: """A pytest fixture which mocks the filesystem before each test.""" # The "fs" argument triggers pyfakefs' own pytest fixture to register # After pyfakefs has started all filesystem actions will happen on a fake in-memory filesystem # Create a fake home directory and set the cwd to an empty directory fs.create_dir(Path.home() / "testing") os.chdir(Path.home() / "testing") # Reset singletons so that fresh Path instances get created container.reset_singletons() return fs @pytest.fixture(autouse=True) def requests_mock() -> RequestsMock: """A pytest fixture which mocks the requests library before each test. If a test makes an HTTP request which hasn't been mocked, the request will fail. """ with RequestsMock() as mock: yield mock @pytest.fixture(autouse=True) def reset_container_overrides() -> None: """A pytest fixture which makes sure all container and provider overrides are reset before each test.""" for provider in container.traverse(): provider.reset_override() container.reset_override()
ef4de32906a268554e3e0baa7f814fe784103ba9
cb5f0731e84797ceaa295b840f24b7aa094b66ea
/lib/hypercorn/trio/h2.py
60f43a10c2aabdae56a4047548e23d9b542b4a7e
[]
no_license
guruprasaad123/onet
da9de96675a0e38e09d972dcdf17c54a40acfeec
c5c580e4080160d2e3336663b2393b9b1c4245ba
refs/heads/master
2020-05-19T05:59:39.744509
2019-05-06T15:10:32
2019-05-06T15:10:32
184,861,014
1
0
null
null
null
null
UTF-8
Python
false
false
13,893
py
from functools import partial from itertools import chain from typing import Callable, Dict, Iterable, Optional, Tuple, Type import h2.config import h2.connection import h2.events import h2.exceptions import h11 import trio import wsproto.connection import wsproto.events from .base import HTTPServer from ..asgi.h2 import ( Data, EndStream, H2Event, H2HTTPStreamMixin, H2WebsocketStreamMixin, Response, ServerPush, ) from ..asgi.utils import ASGIHTTPState, ASGIWebsocketState from ..config import Config from ..typing import ASGIFramework, H2AsyncStream MAX_RECV = 2 ** 16 class MustCloseError(Exception): pass class H2HTTPStream(H2HTTPStreamMixin): """A HTTP Stream.""" def __init__(self, app: Type[ASGIFramework], config: Config, asend: Callable) -> None: self.app = app self.config = config self.response: Optional[dict] = None self.scope: Optional[dict] = None self.state = ASGIHTTPState.REQUEST self.asend = asend # type: ignore self.app_send_channel, self.app_receive_channel = trio.open_memory_channel(10) async def data_received(self, data: bytes) -> None: await self.app_send_channel.send({"type": "http.request", "body": data, "more_body": True}) async def ended(self) -> None: await self.app_send_channel.send({"type": "http.request", "body": b"", "more_body": False}) async def reset(self) -> None: await self.app_send_channel.send({"type": "http.disconnect"}) async def close(self) -> None: await self.app_send_channel.send({"type": "http.disconnect"}) async def asgi_receive(self) -> dict: return await self.app_receive_channel.receive() class H2WebsocketStream(H2WebsocketStreamMixin): """A Websocket Stream.""" def __init__(self, app: Type[ASGIFramework], config: Config, asend: Callable) -> None: self.app = app self.config = config self.response: Optional[dict] = None self.scope: Optional[dict] = None self.state = ASGIWebsocketState.CONNECTED self.connection: Optional[wsproto.connection.Connection] = None self.asend = asend # type: ignore self.app_send_channel, self.app_receive_channel = trio.open_memory_channel(10) async def data_received(self, data: bytes) -> None: self.connection.receive_data(data) for event in self.connection.events(): if isinstance(event, wsproto.events.TextMessage): await self.app_send_channel.send({"type": "websocket.receive", "text": event.data}) elif isinstance(event, wsproto.events.BytesMessage): await self.app_send_channel.send({"type": "websocket.receive", "bytes": event.data}) elif isinstance(event, wsproto.events.Ping): await self.asend(Data(self.connection.send(event.response()))) elif isinstance(event, wsproto.events.CloseConnection): if self.connection.state == wsproto.connection.ConnectionState.REMOTE_CLOSING: await self.asend(Data(self.connection.send(event.response()))) await self.app_send_channel.send({"type": "websocket.disconnect"}) break async def ended(self) -> None: await self.app_send_channel.send({"type": "websocket.disconnect"}) async def reset(self) -> None: await self.app_send_channel.send({"type": "websocket.disconnect"}) async def close(self) -> None: await self.app_send_channel.send({"type": "websocket.disconnect"}) async def asgi_put(self, message: dict) -> None: await self.app_send_channel.send(message) async def asgi_receive(self) -> dict: return await self.app_receive_channel.receive() class H2Server(HTTPServer): def __init__( self, app: Type[ASGIFramework], config: Config, stream: trio.abc.Stream, *, upgrade_request: Optional[h11.Request] = None, received_data: Optional[bytes] = None, ) -> None: super().__init__(stream, "h2") self.app = app self.config = config self.streams: Dict[int, H2AsyncStream] = {} # type: ignore self.flow_control: Dict[int, trio.Event] = {} self.send_lock = trio.Lock() self.upgrade_request = upgrade_request self.received_data = received_data self.connection = h2.connection.H2Connection( config=h2.config.H2Configuration(client_side=False, header_encoding=None) ) self.connection.DEFAULT_MAX_INBOUND_FRAME_SIZE = config.h2_max_inbound_frame_size self.connection.local_settings = h2.settings.Settings( client=False, initial_values={ h2.settings.SettingCodes.MAX_CONCURRENT_STREAMS: config.h2_max_concurrent_streams, h2.settings.SettingCodes.MAX_HEADER_LIST_SIZE: config.h2_max_header_list_size, h2.settings.SettingCodes.ENABLE_CONNECT_PROTOCOL: 1, }, ) async def initiate(self) -> None: if self.upgrade_request is None: self.connection.initiate_connection() if self.received_data: await self.process_data(self.received_data) else: settings = "" headers = [] for name, value in self.upgrade_request.headers: if name.lower() == b"http2-settings": settings = value.decode() elif name.lower() == b"host": headers.append((b":authority", value)) headers.append((name, value)) headers.append((b":method", self.upgrade_request.method)) headers.append((b":path", self.upgrade_request.target)) self.connection.initiate_upgrade_connection(settings) event = h2.events.RequestReceived() event.stream_id = 1 event.headers = headers await self.create_stream(event, complete=True) await self.send() async def create_stream( self, event: h2.events.RequestReceived, *, complete: bool = False ) -> None: method: str for name, value in event.headers: if name == b":method": method = value.decode("ascii").upper() if method == "CONNECT": self.streams[event.stream_id] = H2WebsocketStream( self.app, self.config, partial(self.asend, event.stream_id) ) else: self.streams[event.stream_id] = H2HTTPStream( self.app, self.config, partial(self.asend, event.stream_id) ) if complete: await self.streams[event.stream_id].ended() self.nursery.start_soon(self.handle_request, event) async def handle_request(self, event: h2.events.RequestReceived) -> None: await self.streams[event.stream_id].handle_request( event, self.scheme, self.client, self.server ) if ( self.connection.state_machine.state is not h2.connection.ConnectionState.CLOSED and event.stream_id in self.connection.streams and not self.connection.streams[event.stream_id].closed ): # The connection is not closed and there has been an error # preventing the stream from closing correctly. self.connection.reset_stream(event.stream_id) await self.streams[event.stream_id].close() del self.streams[event.stream_id] async def handle_connection(self) -> None: try: async with trio.open_nursery() as nursery: self.nursery = nursery await self.initiate() await self.read_data() except trio.TooSlowError: self.connection.close_connection() await self.send() except MustCloseError: await self.send() except (trio.BrokenResourceError, trio.ClosedResourceError): pass finally: for stream in self.streams.values(): await stream.close() await self.aclose() async def read_data(self) -> None: while True: try: with trio.fail_after(self.config.keep_alive_timeout): data = await self.stream.receive_some(MAX_RECV) except trio.TooSlowError: if len(self.streams) == 0: raise else: continue # Keep waiting if data == b"": return await self.process_data(data) async def process_data(self, data: bytes) -> None: try: events = self.connection.receive_data(data) except h2.exceptions.ProtocolError: raise MustCloseError() else: for event in events: if isinstance(event, h2.events.RequestReceived): await self.create_stream(event) elif isinstance(event, h2.events.DataReceived): await self.streams[event.stream_id].data_received(event.data) self.connection.acknowledge_received_data( event.flow_controlled_length, event.stream_id ) elif isinstance(event, h2.events.StreamReset): await self.streams[event.stream_id].reset() elif isinstance(event, h2.events.StreamEnded): await self.streams[event.stream_id].ended() elif isinstance(event, h2.events.WindowUpdated): self.window_updated(event.stream_id) elif isinstance(event, h2.events.ConnectionTerminated): raise MustCloseError() await self.send() async def asend(self, stream_id: int, event: H2Event) -> None: connection_state = self.connection.state_machine.state stream_state = self.connection.streams[stream_id].state_machine.state if ( connection_state == h2.connection.ConnectionState.CLOSED or stream_state == h2.stream.StreamState.CLOSED ): return if isinstance(event, Response): self.connection.send_headers( stream_id, event.headers + self.response_headers() # type: ignore ) await self.send() elif isinstance(event, EndStream): self.connection.end_stream(stream_id) await self.send() elif isinstance(event, Data): await self.send_data(stream_id, event.data) elif isinstance(event, ServerPush): await self.server_push(stream_id, event.path, event.headers) async def send_data(self, stream_id: int, data: bytes) -> None: while True: while not self.connection.local_flow_control_window(stream_id): await self.wait_for_flow_control(stream_id) chunk_size = min(len(data), self.connection.local_flow_control_window(stream_id)) chunk_size = min(chunk_size, self.connection.max_outbound_frame_size) if chunk_size < 1: # Pathological client sending negative window sizes continue self.connection.send_data(stream_id, data[:chunk_size]) await self.send() data = data[chunk_size:] if not data: break async def send(self) -> None: data = self.connection.data_to_send() if data == b"": return async with self.send_lock: try: await self.stream.send_all(data) except trio.BrokenResourceError: pass async def wait_for_flow_control(self, stream_id: int) -> None: event = trio.Event() self.flow_control[stream_id] = event await event.wait() def window_updated(self, stream_id: Optional[int]) -> None: if stream_id is None or stream_id == 0: # Unblock all streams stream_ids = list(self.flow_control.keys()) for stream_id in stream_ids: event = self.flow_control.pop(stream_id) event.set() elif stream_id is not None: if stream_id in self.flow_control: event = self.flow_control.pop(stream_id) event.set() async def server_push( self, stream_id: int, path: str, headers: Iterable[Tuple[bytes, bytes]] ) -> None: push_stream_id = self.connection.get_next_available_stream_id() stream = self.streams[stream_id] for name, value in stream.scope["headers"]: if name == b":authority": authority = value request_headers = [ (name, value) for name, value in chain( [ (b":method", b"GET"), (b":path", path.encode()), (b":scheme", stream.scope["scheme"].encode()), (b":authority", authority), ], headers, self.response_headers(), ) ] try: self.connection.push_stream( stream_id=stream_id, promised_stream_id=push_stream_id, request_headers=request_headers, ) except h2.exceptions.ProtocolError: # Client does not accept push promises or we are trying to # push on a push promises request. pass else: event = h2.events.RequestReceived() event.stream_id = push_stream_id event.headers = request_headers await self.create_stream(event, complete=True) @property def scheme(self) -> str: return "https" if self._is_ssl else "http"
d92546f21afa2d9f3d90a90399e84e3bb189d0eb
1966d4ee937abc2febb80af14ea37b3316428ee9
/HackerRank/By Challenge/Charging the Batteries/python/solution.py
5159ded20b702117fd27463677e5700549ec4b56
[]
no_license
spanktastic2120/fun
8083ea33c014062ef791192f1d25d2c3bc45c7fa
de23f404a0505576e00730d06b32aac4ae1e7e75
refs/heads/master
2021-06-03T23:39:31.305198
2019-08-05T07:55:13
2019-08-05T07:55:13
18,019,488
1
0
null
null
null
null
UTF-8
Python
false
false
1,027
py
#!/bin/python import sys if __name__ == "__main__": n, m, k = map(int, raw_input().strip().split(' ')) sockets = [] for _ in xrange(m): x, y = map(int, raw_input().strip().split(' ')) # left if not x: sockets.append(y) # bottom elif not y: sockets.append((4*n) - x) # right elif x == n: sockets.append((3*n) - y) # top else: sockets.append(n + x) #print sockets[-1] sockets = sorted(sockets) best = n*4 # check contiguous sockets for i in xrange(m-k): if sockets[i+k-1] - sockets[i] < best: best = sockets[i+k-1] - sockets[i] if not best: break # check wrapped sockets if best: for i in xrange(k-1): if ((sockets[i] + (4 * n)) - sockets[i + 1 - k]) < best: best = (sockets[i] + (4 * n)) - sockets[i + 1 - k] if not best: break print best
f1ecf9ada5f4de3b1dc3427fc4476c252663ee76
fab14fae2b494068aa793901d76464afb965df7e
/benchmarks/f3_wrong_hints/scaling_ltl_timed_transition_system/3-sender_receiver_19.py
10d2eb6c1a1a4703d74ec66ea4081c7a6e92abee
[ "MIT" ]
permissive
teodorov/F3
673f6f9ccc25acdfdecbfc180f439253474ba250
c863215c318d7d5f258eb9be38c6962cf6863b52
refs/heads/master
2023-08-04T17:37:38.771863
2021-09-16T07:38:28
2021-09-16T07:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,986
py
from typing import FrozenSet from collections import Iterable from math import log, ceil from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_integer_type, msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or, msat_make_iff from mathsat import msat_make_leq, msat_make_equal, msat_make_true from mathsat import msat_make_number, msat_make_plus, msat_make_times from pysmt.environment import Environment as PysmtEnv import pysmt.typing as types from ltl.ltl import TermMap, LTLEncoder from utils import name_next, symb_to_next from hint import Hint, Location delta_name = "delta" def decl_consts(menv: msat_env, name: str, c_type) -> tuple: assert not name.startswith("_"), name s = msat_declare_function(menv, name, c_type) s = msat_make_constant(menv, s) x_s = msat_declare_function(menv, name_next(name), c_type) x_s = msat_make_constant(menv, x_s) return s, x_s def make_enum(menv, v_name: str, enum_size: int): bool_type = msat_get_bool_type(menv) num_bits = ceil(log(enum_size, 2)) b_vars = [] for idx in range(num_bits): c_name = "{}{}".format(v_name, idx) b_vars.append(tuple(decl_consts(menv, c_name, bool_type))) vals = [] x_vals = [] for enum_val in range(enum_size): bit_val = format(enum_val, '0{}b'.format(num_bits)) assert len(bit_val) == num_bits assert all(c in {'0', '1'} for c in bit_val) assign = [b_vars[idx] if c == '1' else (msat_make_not(menv, b_vars[idx][0]), msat_make_not(menv, b_vars[idx][1])) for idx, c in enumerate(reversed(bit_val))] pred = assign[0][0] x_pred = assign[0][1] for it in assign[1:]: pred = msat_make_and(menv, pred, it[0]) x_pred = msat_make_and(menv, x_pred, it[1]) vals.append(pred) x_vals.append(x_pred) assert len(vals) == enum_size assert len(x_vals) == enum_size return b_vars, vals, x_vals def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): m_one = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, m_one) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def diverging_symbs(menv: msat_env) -> frozenset: real_type = msat_get_rational_type(menv) delta = msat_declare_function(menv, delta_name, real_type) delta = msat_make_constant(menv, delta) return frozenset([delta]) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) r2s, x_r2s = decl_consts(menv, "r2s", int_type) s2r, x_s2r = decl_consts(menv, "s2r", int_type) delta, x_delta = decl_consts(menv, delta_name, real_type) sender = Sender("s", menv, enc, r2s, x_r2s, s2r, x_s2r, delta) receiver = Receiver("r", menv, enc, s2r, x_s2r, r2s, x_r2s, delta) curr2next = {r2s: x_r2s, s2r: x_s2r, delta: x_delta} for comp in [sender, receiver]: for s, x_s in comp.symb2next.items(): curr2next[s] = x_s zero = msat_make_number(menv, "0") init = msat_make_and(menv, receiver.init, sender.init) trans = msat_make_and(menv, receiver.trans, sender.trans) # invar delta >= 0 init = msat_make_and(menv, init, msat_make_geq(menv, delta, zero)) trans = msat_make_and(menv, trans, msat_make_geq(menv, x_delta, zero)) # delta > 0 -> (r2s' = r2s & s2r' = s2r) lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_equal(menv, x_r2s, r2s), msat_make_equal(menv, x_s2r, s2r)) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) # (G F !s.stutter) -> G (s.wait_ack -> F s.send) lhs = enc.make_G(enc.make_F(msat_make_not(menv, sender.stutter))) rhs = enc.make_G(msat_make_impl(menv, sender.wait_ack, enc.make_F(sender.send))) ltl = msat_make_impl(menv, lhs, rhs) return TermMap(curr2next), init, trans, ltl class Module: def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, *args, **kwargs): self.name = name self.menv = menv self.enc = enc self.symb2next = {} true = msat_make_true(menv) self.init = true self.trans = true def _symb(self, v_name, v_type): v_name = "{}_{}".format(self.name, v_name) return decl_consts(self.menv, v_name, v_type) def _enum(self, v_name: str, enum_size: int): c_name = "{}_{}".format(self.name, v_name) return make_enum(self.menv, c_name, enum_size) class Sender(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) loc, x_loc = self._symb("l", bool_type) evt, x_evt = self._symb("evt", bool_type) msg_id, x_msg_id = self._symb("msg_id", int_type) timeout, x_timeout = self._symb("timeout", real_type) c, x_c = self._symb("c", real_type) self.move = evt self.stutter = msat_make_not(menv, evt) self.x_move = x_evt self.x_stutter = msat_make_not(menv, x_evt) self.send = loc self.wait_ack = msat_make_not(menv, loc) self.x_send = x_loc self.x_wait_ack = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc, evt: x_evt, msg_id: x_msg_id, timeout: x_timeout, c: x_c} zero = msat_make_number(menv, "0") one = msat_make_number(menv, "1") base_timeout = one # send & c = 0 & msg_id = 0 self.init = msat_make_and(menv, msat_make_and(menv, self.send, msat_make_equal(menv, c, zero)), msat_make_equal(menv, msg_id, zero)) # invar: wait_ack -> c <= timeout self.init = msat_make_and( menv, self.init, msat_make_impl(menv, self.wait_ack, msat_make_leq(menv, c, timeout))) self.trans = msat_make_impl(menv, self.x_wait_ack, msat_make_leq(menv, x_c, x_timeout)) # delta > 0 | stutter -> l' = l & msg_id' = msg_id & timeout' = timeout & # c' = c + delta & out_c' = out_c lhs = msat_make_or(menv, msat_make_gt(menv, delta, zero), self.stutter) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_msg_id, msg_id)), msat_make_and(menv, msat_make_equal(menv, x_timeout, timeout), msat_make_equal(menv, x_c, msat_make_plus(menv, c, delta)))) rhs = msat_make_and(menv, rhs, msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, self.move, msat_make_equal(menv, delta, zero)) # (send & send') -> # (msg_id' = msg_id & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_send)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msg_id), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (send & wait_ack') -> # (msg_id' = msg_id + 1 & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_wait_ack)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msat_make_plus(menv, msg_id, one)), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (c' = 0 & out_c' = out_c & # (wait_ack' <-> (in_c != msg_id & c > timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs_iff = msat_make_and(menv, msat_make_not(menv, msat_make_equal(menv, in_c, msg_id)), msat_make_geq(menv, c, timeout)) rhs_iff = msat_make_iff(menv, self.x_wait_ack, rhs_iff) rhs = msat_make_and(menv, msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c)), rhs_iff) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & wait_ack') -> (timeout' > timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_wait_ack)) rhs = msat_make_gt(menv, x_timeout, timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (send' <-> (in_c = msg_id & c < timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs = msat_make_iff(menv, self.x_send, msat_make_and(menv, msat_make_equal(menv, in_c, msg_id), msat_make_lt(menv, c, timeout))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & send') -> (timeout' = base_timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_send)) rhs = msat_make_equal(menv, x_timeout, base_timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) class Receiver(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) self.wait = loc self.work = msat_make_not(menv, loc) self.x_wait = x_loc self.x_work = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc} zero = msat_make_number(menv, "0") # wait self.init = self.wait # delta > 0 -> loc' = loc & out_c' = out_c lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_impl(menv, lhs, rhs) disc_t = msat_make_equal(menv, delta, zero) # wait -> (wait' <-> in_c = out_c) lhs = msat_make_and(menv, disc_t, self.wait) rhs = msat_make_iff(menv, self.x_wait, msat_make_equal(menv, in_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & wait') -> (out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_wait)) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & work') -> out_c' = in_c lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_work)) rhs = msat_make_equal(menv, x_out_c, in_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # work -> out_c' = out_c lhs = msat_make_and(menv, disc_t, self.work) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager delta = mgr.Symbol(delta_name, types.REAL) r2s = mgr.Symbol("r2s", types.INT) s2r = mgr.Symbol("r2s", types.INT) s_l = mgr.Symbol("s_l", types.BOOL) s_evt = mgr.Symbol("s_evt", types.BOOL) s_msg_id = mgr.Symbol("s_msg_id", types.INT) s_timeout = mgr.Symbol("s_timeout", types.REAL) s_c = mgr.Symbol("s_c", types.REAL) r_l = mgr.Symbol("r_l", types.BOOL) symbs = frozenset([delta, r2s, s2r, s_l, s_evt, s_msg_id, s_timeout, s_c, r_l]) x_delta = symb_to_next(mgr, delta) x_r2s = symb_to_next(mgr, r2s) x_s2r = symb_to_next(mgr, s2r) x_s_l = symb_to_next(mgr, s_l) x_s_evt = symb_to_next(mgr, s_evt) x_s_msg_id = symb_to_next(mgr, s_msg_id) x_s_timeout = symb_to_next(mgr, s_timeout) x_s_c = symb_to_next(mgr, s_c) x_r_l = symb_to_next(mgr, r_l) res = [] r0 = mgr.Real(0) r1 = mgr.Real(1) i0 = mgr.Int(0) i1 = mgr.Int(1) loc0 = Location(env, s_evt) loc0.set_progress(0, x_s_evt) hint = Hint("h_s_evt0", env, frozenset([s_evt]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.Equals(s_msg_id, i0)) loc0.set_progress(0, mgr.Equals(x_s_msg_id, i0)) hint = Hint("h_s_msg_id0", env, frozenset([s_msg_id]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, r_l) loc0.set_progress(0, x_r_l) hint = Hint("h_r_l0", env, frozenset([r_l]), symbs) hint.set_locs([loc0]) res.append(hint) return frozenset(res)
22137631ea36c7cc351b63715fcd7365718497c2
1729f98dcd81506ef5e5e6ded8b539894a647680
/tensorflow/python/layers/convolutional.py
fbb13bb72c435ad3675a8f3f31c568952c043743
[ "Apache-2.0" ]
permissive
PipelineAI/tensorflow
f539227fd5d3f304b4f246877e35303dbd388a0c
a0b68c666b8a06d237cc6776183ab8cd31055fcb
refs/heads/r1.5
2021-05-05T21:54:02.830548
2018-01-21T08:48:53
2018-01-21T08:48:53
115,791,564
0
1
Apache-2.0
2018-01-15T05:38:46
2017-12-30T11:08:37
C++
UTF-8
Python
false
false
77,620
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # pylint: disable=unused-import,g-bad-import-order """Contains the convolutional layer classes and their functional aliases. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import base from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn from tensorflow.python.ops import nn_ops class _Conv(base.Layer): """Abstract nD convolution layer (private, used as implementation base). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: rank: An integer, the rank of the convolution, e.g. "2" for 2D convolution. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of n integers, specifying the length of the convolution window. strides: An integer or tuple/list of n integers, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, ..., channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, ...)`. dilation_rate: An integer or tuple/list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(_Conv, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.rank = rank self.filters = filters self.kernel_size = utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = utils.normalize_tuple(strides, rank, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.dilation_rate = utils.normalize_tuple( dilation_rate, rank, 'dilation_rate') self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.input_spec = base.InputSpec(ndim=self.rank + 2) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis].value is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis].value kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None self.input_spec = base.InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self._convolution_op = nn_ops.Convolution( input_shape, filter_shape=self.kernel.get_shape(), dilation_rate=self.dilation_rate, strides=self.strides, padding=self.padding.upper(), data_format=utils.convert_data_format(self.data_format, self.rank + 2)) self.built = True def call(self, inputs): outputs = self._convolution_op(inputs, self.kernel) if self.use_bias: if self.data_format == 'channels_first': if self.rank == 1: # nn.bias_add does not accept a 1D input tensor. bias = array_ops.reshape(self.bias, (1, self.filters, 1)) outputs += bias if self.rank == 2: outputs = nn.bias_add(outputs, self.bias, data_format='NCHW') if self.rank == 3: # As of Mar 2017, direct addition is significantly slower than # bias_add when computing gradients. To use bias_add, we collapse Z # and Y into a single dimension to obtain a 4D input tensor. outputs_shape = outputs.shape.as_list() outputs_4d = array_ops.reshape(outputs, [outputs_shape[0], outputs_shape[1], outputs_shape[2] * outputs_shape[3], outputs_shape[4]]) outputs_4d = nn.bias_add(outputs_4d, self.bias, data_format='NCHW') outputs = array_ops.reshape(outputs_4d, outputs_shape) else: outputs = nn.bias_add(outputs, self.bias, data_format='NHWC') if self.activation is not None: return self.activation(outputs) return outputs def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return tensor_shape.TensorShape([input_shape[0]] + new_space + [self.filters]) else: space = input_shape[2:] new_space = [] for i in range(len(space)): new_dim = utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return tensor_shape.TensorShape([input_shape[0], self.filters] + new_space) class Conv1D(_Conv): """1D convolution layer (e.g. temporal convolution). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. dilation_rate: An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Convolution1D, self).__init__( rank=1, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) def conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for 1D convolution layer (e.g. temporal convolution). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: inputs: Tensor input. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. dilation_rate: An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = Conv1D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _reuse=reuse, _scope=name) return layer.apply(inputs) class Conv2D(_Conv): """2D convolution layer (e.g. spatial convolution over images). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Conv2D, self).__init__( rank=2, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) def conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for the 2D convolution layer. This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: inputs: Tensor input. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _reuse=reuse, _scope=name) return layer.apply(inputs) class Conv3D(_Conv): """3D convolution layer (e.g. spatial convolution over volumes). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`. dilation_rate: An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Conv3D, self).__init__( rank=3, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) def conv3d(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for the 3D convolution layer. This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: inputs: Tensor input. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`. dilation_rate: An integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = Conv3D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _reuse=reuse, _scope=name) return layer.apply(inputs) class SeparableConv2D(Conv2D): """Depthwise separable 2D convolution. This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output. Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. strides: A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. depthwise_initializer: An initializer for the depthwise convolution kernel. pointwise_initializer: An initializer for the pointwise convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. depthwise_regularizer: Optional regularizer for the depthwise convolution kernel. pointwise_regularizer: Optional regularizer for the pointwise convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. depthwise_constraint: Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. pointwise_constraint: Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=init_ops.zeros_initializer(), depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(SeparableConv2D, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) self.data_format = data_format self.depth_multiplier = depth_multiplier self.depthwise_initializer = depthwise_initializer self.pointwise_initializer = pointwise_initializer self.depthwise_regularizer = depthwise_regularizer self.pointwise_regularizer = pointwise_regularizer self.depthwise_constraint = depthwise_constraint self.pointwise_constraint = pointwise_constraint def build(self, input_shape): if len(input_shape) < 4: raise ValueError('Inputs to `SeparableConv2D` should have rank 4. ' 'Received input shape:', str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = 3 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs to ' '`SeparableConv2D` ' 'should be defined. Found `None`.') input_dim = int(input_shape[channel_axis]) self.input_spec = base.InputSpec(ndim=4, axes={channel_axis: input_dim}) depthwise_kernel_shape = (self.kernel_size[0], self.kernel_size[1], input_dim, self.depth_multiplier) pointwise_kernel_shape = (1, 1, self.depth_multiplier * input_dim, self.filters) self.depthwise_kernel = self.add_variable( name='depthwise_kernel', shape=depthwise_kernel_shape, initializer=self.depthwise_initializer, regularizer=self.depthwise_regularizer, constraint=self.depthwise_constraint, trainable=True, dtype=self.dtype) self.pointwise_kernel = self.add_variable( name='pointwise_kernel', shape=pointwise_kernel_shape, initializer=self.pointwise_initializer, regularizer=self.pointwise_regularizer, constraint=self.pointwise_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None self.built = True def call(self, inputs): # Apply the actual ops. if self.data_format == 'channels_last': strides = (1,) + self.strides + (1,) else: strides = (1, 1) + self.strides outputs = nn.separable_conv2d( inputs, self.depthwise_kernel, self.pointwise_kernel, strides=strides, padding=self.padding.upper(), rate=self.dilation_rate, data_format=utils.convert_data_format(self.data_format, ndim=4)) if self.use_bias: outputs = nn.bias_add( outputs, self.bias, data_format=utils.convert_data_format(self.data_format, ndim=4)) if self.activation is not None: return self.activation(outputs) return outputs def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] else: rows = input_shape[1] cols = input_shape[2] rows = utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return tensor_shape.TensorShape( [input_shape[0], self.filters, rows, cols]) else: return tensor_shape.TensorShape( [input_shape[0], rows, cols, self.filters]) def separable_conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer=None, pointwise_initializer=None, bias_initializer=init_ops.zeros_initializer(), depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for the depthwise separable 2D convolution layer. This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output. Arguments: inputs: Input tensor. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A tuple or list of 2 integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. strides: A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. depthwise_initializer: An initializer for the depthwise convolution kernel. pointwise_initializer: An initializer for the pointwise convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. depthwise_regularizer: Optional regularizer for the depthwise convolution kernel. pointwise_regularizer: Optional regularizer for the pointwise convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. depthwise_constraint: Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. pointwise_constraint: Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = SeparableConv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, depth_multiplier=depth_multiplier, activation=activation, use_bias=use_bias, depthwise_initializer=depthwise_initializer, pointwise_initializer=pointwise_initializer, bias_initializer=bias_initializer, depthwise_regularizer=depthwise_regularizer, pointwise_regularizer=pointwise_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, depthwise_constraint=depthwise_constraint, pointwise_constraint=pointwise_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, _reuse=reuse, _scope=name) return layer.apply(inputs) class Conv2DTranspose(Conv2D): """Transposed 2D convolution layer (sometimes called 2D Deconvolution). The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution. Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. strides: A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. padding: one of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Conv2DTranspose, self).__init__( filters, kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) self.input_spec = base.InputSpec(ndim=4) def build(self, input_shape): if len(input_shape) != 4: raise ValueError('Inputs should have rank 4. Received input shape: ' + str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] self.input_spec = base.InputSpec(ndim=4, axes={channel_axis: input_dim}) kernel_shape = self.kernel_size + (self.filters, input_dim) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None self.built = True def call(self, inputs): inputs_shape = array_ops.shape(inputs) batch_size = inputs_shape[0] if self.data_format == 'channels_first': c_axis, h_axis, w_axis = 1, 2, 3 else: c_axis, h_axis, w_axis = 3, 1, 2 height, width = inputs_shape[h_axis], inputs_shape[w_axis] kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.strides # Infer the dynamic output shape: out_height = utils.deconv_output_length(height, kernel_h, self.padding, stride_h) out_width = utils.deconv_output_length(width, kernel_w, self.padding, stride_w) if self.data_format == 'channels_first': output_shape = (batch_size, self.filters, out_height, out_width) strides = (1, 1, stride_h, stride_w) else: output_shape = (batch_size, out_height, out_width, self.filters) strides = (1, stride_h, stride_w, 1) output_shape_tensor = array_ops.stack(output_shape) outputs = nn.conv2d_transpose( inputs, self.kernel, output_shape_tensor, strides, padding=self.padding.upper(), data_format=utils.convert_data_format(self.data_format, ndim=4)) if context.in_graph_mode(): # Infer the static output shape: out_shape = inputs.get_shape().as_list() out_shape[c_axis] = self.filters out_shape[h_axis] = utils.deconv_output_length(out_shape[h_axis], kernel_h, self.padding, stride_h) out_shape[w_axis] = utils.deconv_output_length(out_shape[w_axis], kernel_w, self.padding, stride_w) outputs.set_shape(out_shape) if self.use_bias: outputs = nn.bias_add( outputs, self.bias, data_format=utils.convert_data_format(self.data_format, ndim=4)) if self.activation is not None: return self.activation(outputs) return outputs def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() output_shape = list(input_shape) if self.data_format == 'channels_first': c_axis, h_axis, w_axis = 1, 2, 3 else: c_axis, h_axis, w_axis = 3, 1, 2 kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.strides output_shape[c_axis] = self.filters output_shape[h_axis] = utils.deconv_output_length( output_shape[h_axis], kernel_h, self.padding, stride_h) output_shape[w_axis] = utils.deconv_output_length( output_shape[w_axis], kernel_w, self.padding, stride_w) return tensor_shape.TensorShape(output_shape) def conv2d_transpose(inputs, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for transposed 2D convolution layer. The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution. Arguments: inputs: Input tensor. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. strides: A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. padding: one of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. activation: Activation function. Set it to `None` to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If `None`, then no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = Conv2DTranspose( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _reuse=reuse, _scope=name) return layer.apply(inputs) class Conv3DTranspose(Conv3D): """Transposed 3D convolution layer (sometimes called 3D Deconvolution). Arguments: filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`. activation: Activation function. Set it to `None` to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If `None`, then no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. """ def __init__(self, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Conv3DTranspose, self).__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) self.input_spec = base.InputSpec(ndim=5) def build(self, input_shape): if len(input_shape) != 5: raise ValueError('Inputs should have rank 5, received input shape:', str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined, found None: ' + str(input_shape)) input_dim = input_shape[channel_axis] kernel_shape = self.kernel_size + (self.filters, input_dim) self.kernel = self.add_variable( 'kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable( 'bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None def call(self, inputs): inputs_shape = array_ops.shape(inputs) batch_size = inputs_shape[0] if self.data_format == 'channels_first': c_axis, d_axis, h_axis, w_axis = 1, 2, 3, 4 else: c_axis, d_axis, h_axis, w_axis = 4, 1, 2, 3 self.input_spec = base.InputSpec(ndim=5, axes={c_axis: inputs_shape[c_axis]}) depth = inputs_shape[d_axis] height = inputs_shape[h_axis] width = inputs_shape[w_axis] kernel_d, kernel_h, kernel_w = self.kernel_size stride_d, stride_h, stride_w = self.strides # Infer the dynamic output shape: out_depth = utils.deconv_output_length(depth, kernel_d, self.padding, stride_d) out_height = utils.deconv_output_length(height, kernel_h, self.padding, stride_h) out_width = utils.deconv_output_length(width, kernel_w, self.padding, stride_w) if self.data_format == 'channels_first': output_shape = (batch_size, self.filters, out_depth, out_height, out_width) strides = (1, 1, stride_d, stride_h, stride_w) else: output_shape = (batch_size, out_depth, out_height, out_width, self.filters) strides = (1, stride_d, stride_h, stride_w, 1) output_shape_tensor = array_ops.stack(output_shape) outputs = nn.conv3d_transpose( inputs, self.kernel, output_shape_tensor, strides, data_format=utils.convert_data_format(self.data_format, ndim=5), padding=self.padding.upper()) if context.in_graph_mode(): # Infer the static output shape: out_shape = inputs.get_shape().as_list() out_shape[c_axis] = self.filters out_shape[d_axis] = utils.deconv_output_length(out_shape[d_axis], kernel_d, self.padding, stride_d) out_shape[h_axis] = utils.deconv_output_length(out_shape[h_axis], kernel_h, self.padding, stride_h) out_shape[w_axis] = utils.deconv_output_length(out_shape[w_axis], kernel_w, self.padding, stride_w) outputs.set_shape(out_shape) if self.use_bias: outputs_shape = outputs.shape.as_list() if self.data_format == 'channels_first': outputs_4d = array_ops.reshape(outputs, [ outputs_shape[0], outputs_shape[1], outputs_shape[2] * outputs_shape[3], outputs_shape[4] ]) else: outputs_4d = array_ops.reshape(outputs, [ outputs_shape[0], outputs_shape[1] * outputs_shape[2], outputs_shape[3], outputs_shape[4] ]) outputs_4d = nn.bias_add( outputs_4d, self.bias, data_format=utils.convert_data_format(self.data_format, ndim=4)) outputs = array_ops.reshape(outputs_4d, outputs_shape) if self.activation is not None: return self.activation(outputs) return outputs def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() output_shape = list(input_shape) if self.data_format == 'channels_first': c_axis, d_axis, h_axis, w_axis = 1, 2, 3, 4 else: c_axis, d_axis, h_axis, w_axis = 4, 1, 2, 3 kernel_d, kernel_h, kernel_w = self.kernel_size stride_d, stride_h, stride_w = self.strides output_shape[c_axis] = self.filters output_shape[d_axis] = utils.deconv_output_length( output_shape[d_axis], stride_d, kernel_d, self.padding) output_shape[h_axis] = utils.deconv_output_length( output_shape[h_axis], stride_h, kernel_h, self.padding) output_shape[w_axis] = utils.deconv_output_length( output_shape[w_axis], stride_w, kernel_w, self.padding) return tensor_shape.TensorShape(output_shape) def conv3d_transpose(inputs, filters, kernel_size, strides=(1, 1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for transposed 3D convolution layer. Arguments: inputs: Input tensor. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A tuple or list of 3 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. strides: A tuple or list of 3 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. padding: one of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = Conv3DTranspose( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _reuse=reuse, _scope=name) return layer.apply(inputs) # Aliases Convolution1D = Conv1D Convolution2D = Conv2D Convolution3D = Conv3D SeparableConvolution2D = SeparableConv2D Convolution2DTranspose = Deconvolution2D = Deconv2D = Conv2DTranspose Convolution3DTranspose = Deconvolution3D = Deconv3D = Conv3DTranspose convolution1d = conv1d convolution2d = conv2d convolution3d = conv3d separable_convolution2d = separable_conv2d convolution2d_transpose = deconvolution2d = deconv2d = conv2d_transpose convolution3d_transpose = deconvolution3d = deconv3d = conv3d_transpose
5ea2d8e12d59b152aba52323d7c529c2a61cbda6
c6fbf6df12cb7de82b3060a7bc12fee9b46e5990
/Chapter10/ch10-9.ML_ann.py
6c23988b2637bec8bdfe79e24d198ebb675f9bea
[ "MIT" ]
permissive
tschoi6712/pythonDataAnalysis2nd
5f0d07493bb835c76aa9fbe7100834e5a8341912
63e366d4dee52f7e4df6cf4d988a85d6de5b00e4
refs/heads/master
2020-08-09T14:42:55.831842
2019-10-10T06:53:24
2019-10-10T06:53:24
214,108,757
0
0
null
null
null
null
UTF-8
Python
false
false
833
py
""" 예측분석과 머신러닝 - (9) Neural Networks: pip install theanets nose_parameterized conda install m2w64-toolchain """ import numpy as np import theanets import multiprocessing from sklearn import datasets from sklearn.metrics import accuracy_score rain = .1 * np.load('ch10.rain.npy') rain[rain < 0] = .05/2 dates = np.load('ch10.doy.npy') x = np.vstack((dates[:-1], np.sign(rain[:-1]))) x = x.T y = np.vstack(np.sign(rain[1:]),) N = int(.9 * len(x)) train = [x[:N], y[:N]] valid = [x[N:], y[N:]] net = theanets.Regressor(layers=[2, 3, 1]) net.train(train, valid, learning_rate=0.1, momentum=0.5) pred = net.predict(x[N:]).ravel() print("Pred Min", pred.min(), "Max", pred.max()) print("Y Min", y.min(), "Max", y.max()) print("Accuracy", accuracy_score(y[N:], pred >= .5))
77c20440aaf6a3fb84a2337d4e42929b8d240a79
6d1bf00636259c1a65842a8dd49ea2037218cc8d
/Admin_console/Summary_Report.py
017d7ef82d692280cd82d33e66e200171626829a
[]
no_license
chetandg123/Release_1.2
efb4b0844b57638d23ac09783e0cd751893058ad
f9ff8add5930c7779ab1954c779f8f0e8cd1e908
refs/heads/master
2022-12-05T21:12:14.671813
2020-08-20T21:33:50
2020-08-20T21:33:50
288,701,130
1
0
null
null
null
null
UTF-8
Python
false
false
2,632
py
import time import unittest from selenium.webdriver.support.select import Select from Data.parameters import Data from get_dir import pwd from reuse_func import GetData class Test_summaryreport(unittest.TestCase): @classmethod def setUpClass(self): self.data = GetData() self.p = pwd() self.driver = self.data.get_driver() self.data.open_cqube_appln(self.driver) self.data.page_loading(self.driver) self.data.login_to_adminconsole(self.driver) def test_summary_icon(self): count = 0 self.data.page_loading(self.driver) self.driver.find_element_by_xpath("//*[@id='summary']/img").click() self.data.page_loading(self.driver) if 'summary-statistics' in self.driver.current_url: print("Summmary statistics report page is present ") else: print('Summary report page is not displayed') count = count + 1 self.assertEqual(0,count,msg='Summary report page is not working') self.driver.find_element_by_id('homeBtn').click() self.data.page_loading(self.driver) def test_dashboard_summary(self): count = 0 self.driver.find_element_by_id(Data.Dashboard).click() time.sleep(2) self.driver.find_element_by_xpath("//*[@id='summary']/div/td[2]").click() self.data.page_loading(self.driver) if 'summary-statistics' in self.driver.current_url: print("Summmary statistics report page is present ") else: print('Summary report page is not displayed') count = count + 1 self.assertEqual(0,count,msg='Summary report page is not working') self.driver.find_element_by_id('homeBtn').click() self.data.page_loading(self.driver) def test_check_summary(self): self.data.page_loading(self.driver) self.driver.find_element_by_id(Data.Dashboard).click() time.sleep(2) self.driver.find_element_by_xpath("//*[@id='summary']/div/td[2]").click() self.data.page_loading(self.driver) reports =self.driver.find_elements_by_tag_name('h2') count = len(reports) for i in range(len(reports)): print(reports[i].text) self.assertNotEqual(0,count,msg='All summary reports are not present') if count > 6: print("summary report of all files to be updated") self.data.page_loading(self.driver) self.driver.find_element_by_id('homeBtn').click() self.data.page_loading(self.driver) @classmethod def tearDownClass(cls): cls.driver.close()
fbd63bd85e48a99cbd17501c5e7a58f779e502b2
a55756b40e0d14b6a4c366b55be65966e1934ec2
/Recursion ADD(1).py
8362065f9df3c9311c4efe9b885631a0f0d57111
[]
no_license
rajeevj0909/FunFiles
97323135bb5120d2d3a2458847a73f91dfa944bf
85f4a430f0e71d1fee9c753bceb566ec319e5da0
refs/heads/master
2022-07-02T15:43:11.495874
2020-05-16T23:29:02
2020-05-16T23:29:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
def add(list1,counter,total): n=len(list1) if n==counter: print(total) else: total=add(list1[counter],counter,total)+total return(total) return counter counter = counter + 1 list1=[1,2,3,4] counter=0 total=0 add(list1,counter,total)
a0b302a8a168a912fbece6444aa9e7f4710361c3
c15a28ae62eb94dbf3ed13e2065195e572a9988e
/Cook book/src/11/passing_a_socket_file_descriptor_between_processes/server.py
05d6b07b5f08832aaaca3ea0ad4f14ffc9c19a1c
[]
no_license
xuyuchends1/python
10798c92840a1a59d50f5dc5738b2881e65f7865
545d950a3d2fee799902658e8133e3692939496b
refs/heads/master
2021-01-25T07:07:04.812140
2020-02-28T09:25:15
2020-02-28T09:25:15
93,647,064
0
0
null
null
null
null
UTF-8
Python
false
false
1,098
py
# server.py import socket import struct def send_fd(sock, fd): ''' Send a single file descriptor. ''' sock.sendmsg([b'x'], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, struct.pack('i', fd))]) ack = sock.recv(2) assert ack == b'OK' def server(work_address, port): # Wait for the worker to connect work_serv = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) work_serv.bind(work_address) work_serv.listen(1) worker, addr = work_serv.accept() # Now run a TCP/IP server and send clients to worker s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, True) s.bind(('', port)) s.listen(1) while True: client, addr = s.accept() print('SERVER: Got connection from', addr) send_fd(worker, client.fileno()) client.close() if __name__ == '__main__': import sys if len(sys.argv) != 3: print('Usage: server.py server_address port', file=sys.stderr) raise SystemExit(1) server(sys.argv[1], int(sys.argv[2]))
069de552aee7711007a0052316643c96cc5c88fd
5facb7b4baccff021b357ad67c966e2d92d665d1
/stemming.py
3a6a5d2215913259aacdefe3190af4f7568fe7da
[]
no_license
sadirahman/NLP
73eeb1e32e7027c35b79ba3f6953b9ec51098cb7
844419ffd7bbb41217ab273753249757a4433865
refs/heads/master
2020-04-09T21:58:21.130129
2018-12-06T13:57:18
2018-12-06T13:57:18
160,617,125
0
0
null
null
null
null
UTF-8
Python
false
false
373
py
from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize ps = PorterStemmer() example_words =["python","pythoner","pythoning","pythoned","pythonly"] for w in example_words: print(ps.stem(w)) new_text = "It is very important to be pythonly while you are pythoning with python ." word =word_tokenize(new_text) for i in word: print(ps.stem(i))
18c9a3ba254ee73daa90283860550d2af14d7777
242da8865e037f9fffb76269c3acddb73ce9fa14
/packages/pyright-internal/src/tests/samples/typeGuard1.py
ebeda0031c0154c1009d096010bb082e40aa8e7f
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
khyveasna11111908/pyright
f42eceae044f6fbc27552c1765b03ebd345a451c
493d47807b96137995e4bb6ca341930e4de911f9
refs/heads/main
2023-08-30T00:08:36.191799
2021-09-25T19:17:13
2021-09-25T19:17:13
410,361,483
1
1
NOASSERTION
2021-09-25T19:15:23
2021-09-25T19:15:22
null
UTF-8
Python
false
false
1,635
py
# This sample tests the TypeGuard functionality # that allows user-defined functions to perform # conditional type narrowing. # pyright: reportMissingModuleSource=false import os from typing import Any, List, Literal, Tuple, TypeVar, Union from typing_extensions import TypeGuard _T = TypeVar("_T") def is_two_element_tuple(a: Tuple[_T, ...]) -> TypeGuard[Tuple[_T, _T]]: return True def func1(a: Tuple[int, ...]): if is_two_element_tuple(a): t1: Literal["Tuple[int, int]"] = reveal_type(a) else: t2: Literal["Tuple[int, ...]"] = reveal_type(a) def is_string_list(val: List[Any], allow_zero_entries: bool) -> TypeGuard[List[str]]: if allow_zero_entries and len(val) == 0: return True return all(isinstance(x, str) for x in val) def func2(a: List[Union[str, int]]): if is_string_list(a, True): t1: Literal["List[str]"] = reveal_type(a) else: t2: Literal["List[str | int]"] = reveal_type(a) # This should generate an error because TypeGuard # has no type argument. def bad1(a: int) -> TypeGuard: return True # This should generate an error because TypeGuard # has too many type arguments. def bad2(a: int) -> TypeGuard[str, int]: return True # This should generate an error because TypeGuard # does not accept an elipsis. def bad3(a: int) -> TypeGuard[...]: return True # This should generate an error because TypeGuard # has does not accept a module. def bad4(a: int) -> TypeGuard[os]: return True def bad5(a: int) -> TypeGuard[int]: # This should generate an error because only # bool values can be returned. return 3
72655be7c8a19587230e487b7743481687a52f88
fe1e601b67a30e9215fe858e16b9c2965f8a3576
/bloomFilter.py
02f8a1f3bd5e7973d83bc77df4793f64c425fd90
[]
no_license
z-o-e/algoFun
8a53b0804d9ddb019133981ebd677b768d25cee6
539f89bece5791a1aadfafbddc3ce7c48fbf12ac
refs/heads/master
2020-04-19T00:49:53.957430
2014-10-22T20:32:17
2014-10-22T20:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,571
py
# bloom filter is a space-efficient probabilistic data structure to check whether an element is a member of a very large set. # False positive are possible, false negative are impossible (100% recall) # probability of a false positive depends on the density of 1's in the array and the number of hash functions # (the number of 1's is approximately the number of elements inserted times the number of hash functions) # suppose bitArraySize: b, hashFunctionSize: h, streaElementSize: n # throwing d darts at t targets at random: (1-1/t)^d = (1-1/t)^(t*d/t) ~= e^(-d/t) # for example: suppose b=1b, h=5, n=100m, that is t = 10^9, d = 5*10^8 # the fraction of 0's e^(-1/2), fraction of 1's: 1-e^(-1/2), fraction of false positive (1-e^(-1/2))^5 import math # @param funcs: a list of hash functions # @param filterSize: an int representing the size of bloom filter -- a bit vector class bloomFilter: def __init__(self, funcs, filterSize): self.funcs = funcs self.bitArray = [0]*filterSize def _dec2Binary(self, dec): if dec==0: return [0] res = [] while dec: res = [dec%2] + res dec //= 2 return res def set(self, streamElem): elem = self._dec2Binary(streamElem) for func in self.funcs: idx = func(elem, len(self.bitArray)) self.bitArray[idx] |= 1 def lookup(self, newElem): elem = self._dec2Binary(newElem) for func in self.funcs: idx = func(elem, len(self.bitArray)) if self.bitArray[idx]==0: return False return True def estimateFP(self,streamSize): zeros = math.exp(-len(self.funcs)*streamSize/len(self.bitArray)) fp = (1-zeros)**(len(self.funcs)) return fp # h1, h2 take odd-numbered, even-numbered bits startinf from the right of binary representation of x def h1(x,modula): odds = [] for i in range(len(x)-1,-1,-2): odds = [x[i]]+odds res = 0 i = 0 while odds: t = odds.pop() if t==1: res += 2**i i+=1 return res%modula def h2(x,modula): evens = [] for i in range(len(x)-2,-1,-2): evens = [x[i]]+evens res = 0 i = 0 while evens: t = evens.pop() if t==1: res += 2**i i+=1 return res%modula funcs = [h1, h2] filterSize = 11 test = bloomFilter(funcs, filterSize) test.set(25) test.set(159) test.lookup(25) test.lookup(159) test.lookup(30) test.bitArray
a4781f355e0c7465556c9f5f554524e357c8f228
0e722188b0a0c2302fab5b2917e9c39394664db3
/gshs_auth/decorators.py
768fdc4efcb9a5bed86fed80905ca350361d8498
[]
no_license
Qwaz/GSHSmeal
6df1d773a883b729c4d87c6f6b1c3990ed0e4d3c
6f2af5f538a1b9b9db8f791041ff65a5c97b96d8
refs/heads/master
2020-04-17T09:12:47.694626
2015-03-04T10:27:56
2015-03-04T10:27:56
20,253,318
0
1
null
2014-08-20T01:56:00
2014-05-28T10:14:37
JavaScript
UTF-8
Python
false
false
305
py
from functools import wraps from django.shortcuts import redirect def admin_login(func): @wraps(func) def wrapper(request, *args, **kwargs): if request.user.is_staff: return func(request, *args, **kwargs) else: return redirect('home') return wrapper
59576815e0896221abafb383026b4ff38ea0df21
f4ec787e34b74823875a8074d2f7c10d6207f206
/tests/util/alert_server.py
2e17d1448e570ccf024752181c78bbba66ce8f5b
[ "Apache-2.0" ]
permissive
Sweety-Network/sweety-blockchain-test
d0fc0fbd27e5b6970597824de43db3fb9e3bceed
44373ff1b6a7a2a1dcb39d3d6fa01cd15e3e5fb6
refs/heads/master
2023-09-04T15:57:19.853659
2021-10-08T04:00:10
2021-10-08T04:00:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,143
py
import argparse import asyncio import logging from pathlib import Path from typing import Any from aiohttp import web log = logging.getLogger(__name__) class AlertServer: shut_down: bool shut_down_event: asyncio.Event log: Any app: Any alert_file_path: Path port: int @staticmethod async def create_alert_server(alert_file_path: Path, port): self = AlertServer() self.log = log self.shut_down = False self.app = web.Application() self.shut_down_event = asyncio.Event() self.port = port routes = [ web.get("/status", self.status), ] self.alert_file_path = alert_file_path self.app.add_routes(routes) return self async def status(self, request): file_text = self.alert_file_path.read_text() return web.Response(body=file_text, content_type="text/plain") async def stop(self): self.shut_down_event.set() async def run(self): runner = web.AppRunner(self.app, access_log=None) await runner.setup() site = web.TCPSite(runner, None, self.port) await site.start() async def run_and_wait(file_path, port): server = await AlertServer.create_alert_server(Path(file_path), port) await server.run() await server.shut_down_event.wait() def main(): parser = argparse.ArgumentParser() parser.add_argument("-file_path", type=str, dest="file_path") parser.add_argument("-port", type=str, dest="port") port = None file_path = None for key, value in vars(parser.parse_args()).items(): if key == "port": port = value elif key == "file_path": file_path = value else: print(f"Invalid argument {key}") if port is None or file_path is None: print( "Missing arguments, example usage:\n\n" "python sweety/util/alert_server.py -p 4000 -file_path /home/user/alert.txt\n" ) quit() return asyncio.get_event_loop().run_until_complete(run_and_wait(file_path, port)) if __name__ == "__main__": main()
62dcbc0c418cf6583d090a0a4451f0b217365320
4b44a299bafbd4ca408ce1c89c9fe4a449632783
/python3/06_Collections/02_Tuples/01_tuples.py
490cc61a2d1d027663715e7fff988af2cc75274f
[]
no_license
umunusb1/PythonMaterial
ecd33d32b2de664eaaae5192be7c3f6d6bef1d67
1e0785c55ccb8f5b9df1978e1773365a29479ce0
refs/heads/master
2023-01-23T23:39:35.797800
2020-12-02T19:29:00
2020-12-02T19:29:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
#!/usr/bin/python # -*- coding: utf-8 -*- """ Purpose: Working with tuples """ mylist = [12, 34.8, 500000, [6, 8], (5,)] print('type(mylist)', type(mylist)) print('len(mylist)', len(mylist)) mytuple = (12, 34.8, 500000, [6, 8], (5,)) print('\ntype(mytuple)', type(mytuple)) print('len(mytuple)', len(mytuple)) print(mytuple) print() another_tuple = (99.9,) print('type(another_tuple)', type(another_tuple)) print('len(another_tuple) ', len(another_tuple)) # NOTE: For tuple with single element, place comma at the end # to recognize it as tuple; else recognizes as individual element print() empty_tuple = tuple() # () print('type(empty_tuple):', type(empty_tuple)) print('len(empty_tuple) :', len(empty_tuple)) print() mytuple = 1, 2, 3 print('type(mytuple) :', type(mytuple)) print('len(mytuple) :', len(mytuple)) print(mytuple)
d50ee8a96e31ec7c4404e0ea515495d6127da418
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AlipayUserAuthZhimaperInnerApplyResponse.py
aa55cb52b9d5249d124fbd30a25e134c9e2a5866
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
1,403
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayUserAuthZhimaperInnerApplyResponse(AlipayResponse): def __init__(self): super(AlipayUserAuthZhimaperInnerApplyResponse, self).__init__() self._access_token = None self._auth_token_type = None self._refresh_token = None @property def access_token(self): return self._access_token @access_token.setter def access_token(self, value): self._access_token = value @property def auth_token_type(self): return self._auth_token_type @auth_token_type.setter def auth_token_type(self, value): self._auth_token_type = value @property def refresh_token(self): return self._refresh_token @refresh_token.setter def refresh_token(self, value): self._refresh_token = value def parse_response_content(self, response_content): response = super(AlipayUserAuthZhimaperInnerApplyResponse, self).parse_response_content(response_content) if 'access_token' in response: self.access_token = response['access_token'] if 'auth_token_type' in response: self.auth_token_type = response['auth_token_type'] if 'refresh_token' in response: self.refresh_token = response['refresh_token']
52acd0e9645a8b753223b9adf1ec37f385a0421b
51090d3c72894b8db606319bb71772672bb179d5
/feature/getfeatures_ch.py
dca8a16f62118b5c7d206d1962b60d70ee044848
[]
no_license
Miyayx/XLore_Feature
c00143b448a9367cf02435c520ddf73921a0ffd8
696e5399e9b0cb54f257815cdd4eb2ef986be702
refs/heads/master
2020-06-05T03:02:06.842902
2014-09-20T15:49:34
2014-09-20T15:49:34
21,727,105
1
0
null
null
null
null
UTF-8
Python
false
false
8,418
py
#!/usr/bin/env python2.7 #encoding=utf-8 import codecs from CHSingleSent import * import FileIO import threading DATA_PATH = "/home/lmy/data/origin/" PARSER_PATH = "/home/lmy/data/parser/" FEATURE_PATH = "/home/lmy/data/feature/" HEADWORD_PATH = "./headword/" #FILE_NAME = "zhwiki-instance-concept-1v1.dat" FILE_NAME = "zhwiki-concept-sub-all-1v1.dat" DATAFILE= DATA_PATH + FILE_NAME SUPER_FILE = PARSER_PATH+FILE_NAME.split(".")[0]+"-0column.dat" SUB_FILE = PARSER_PATH+FILE_NAME.split(".")[0]+"-1column.dat" FEATURE13=FEATURE_PATH+FILE_NAME.split(".")[0]+"-feature13.dat" SUPER_HEADWORD_FILE = HEADWORD_PATH+FILE_NAME.split(".")[0]+"-superheadword.dat" SUB_HEADWORD_FILE = HEADWORD_PATH+FILE_NAME.split(".")[0]+"-subheadword.dat" DATA_DELIMITER = '\t\t' FEATURE_ITEM_DELIMITER = '\t' relations = ['equal','contain','contained','no relation','other'] def getStr2ObjectDict(filename, items): """ str(filename) -> list of CHSingleSent """ l = FileIO.readDataFromFile(filename) i2css = {} for item in l: if not item[0] in items: continue try: i2css[item[0]] = CHSingleSent(item) except: print "String Error:",item[0] return i2css def getRelationshipOfTwoSets(l1,l2): """ get the relationship of two classes' headword collection two list of headwords -> int(relationshipID) relations = ['equal','contain','contained','no relation','other'] """ oldLen1 = len(set(l1)) oldLen2 = len(set(l2)) mergeList = l1 mergeList.extend(l2) mergeLen = len(set(mergeList)) if oldLen1 == mergeLen and oldLen2 == mergeLen: #return relations[0] return 0 elif oldLen1 == mergeLen: #return relations[1] return 1 elif oldLen2 == mergeLen: #return relations[2] return 2 elif oldLen1+oldLen2 == mergeLen: #return relations[3] return 3 else: return 4 #return relations[4] def getRalationshipOfTwoSets2(l1,l2): """ get the relationship of two classes' headword and unheadword collection two list of headwords -> int(relationshipID) relations just include 'no relation' and 'other' """ if len(l1) == 0 or len(l2) == 0: #return relations[3] return 0 oldLen1 = len(set(l1)) oldLen2 = len(set(l2)) mergeList = l1 mergeList.extend(l2) mergeLen = len(set(mergeList)) if oldLen1+oldLen2 == mergeLen: #return relations[3] return 0 else: #return relations[4] return 1 def recordInputtedFile(newfile): inputted_lines = [] try: for line in codecs.open(newfile,'r','utf-8'): inputted_lines.append(line.strip('\n').split(DATA_DELIMITER)[0]) except: pass return inputted_lines def writeFeatureToFile(superD,subD,super_sub_freD,sub_super_freD,featurefile,items): """ (str,str) -> NoneType str is file name,first is feature-record file, second is class-subclass file Order of features: 1. Relationship of super headword and subclass headword (look at the relation list ) 2. If sub(the whole string) starts with super(the whole string) 3. If sub(the whole string) ends with super(the whole string) 4. If super(the whole string) starts with sub(the whole string) 5. If super(the whole string) ends with sub(the whole string) 6. Length of superclass headword set 7. Length of subclass headword set 8. Length of superclass string 9. Length of subclass string 10.Relationship of superclass headwords set and subclass unheadword set 11.Relationship of subclass headwords set and superclass unheadword set 12.Frequency ratio a sub string's words appear to in the same super 13.Frequency ratio a super string's words appear to in the same sub Output format: superclass\tsubclass\t\tf1,f2,f3....\n """ fwrite = codecs.open(featurefile,'a','utf-8') for line in items: item = line.strip('\n').split(FEATURE_ITEM_DELIMITER) superStr = item[0] subStr = item[1] if len(subStr) == 0: print "subStr",subStr print "no sub" continue try: superS = superD[superStr] subS = subD[subStr] except: print "Super:",superStr print "Sub:",subStr continue relation = getRelationshipOfTwoSets(superS.headword,subS.headword) relation8 = getRalationshipOfTwoSets2(superS.headword,subS.unHeadword) relation9 = getRalationshipOfTwoSets2(subS.headword,superS.unHeadword) fwrite.write('%s\t%s\t\t%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%.3f,%.3f\n'%( superStr,subStr,relation, 1 if subStr.startswith(superStr) else 0, 1 if subStr.endswith(superStr) else 0, 1 if superStr.startswith(subStr) else 0, 1 if superStr.endswith(subStr) else 0, superS.hwLen,subS.hwLen,superS.wordLen,subS.wordLen, relation8,relation9, super_sub_freD[superStr][subStr], sub_super_freD[subStr][superStr])) fwrite.flush() fwrite.close() def calculateWordFrequency(d): """ dict(k:str v:list of related string) -> dict(k:str v:dict of [k:str v:ratio]) example: d['aaa'] = ['dwd','fgse','sdf'] for key == 'aaa' in d: totalWord = 3+4+3 = 10 freD = {'d':3,'w':1,'f':2,'g':1,'s':2,'e':1} when key=='aaa', i =='dwd' fre = 3+1+3 = 7 allFreD['aaa']['dwd']=7/10*3 """ #for k,v in d.items(): # print k,v allFreD = {} for key in d: freD = {} totalWord = 0 allFreD[key] = {} for i in d[key]: ss = list(i) for s in ss: totalWord = totalWord+1 if freD.has_key(s): freD[s] = freD[s]+1 else: freD[s] = 1 for i in d[key]: ss = list(i) fre = 0 for s in ss: fre = fre+freD[s] try: allFreD[key][i] =float(fre)/totalWord*len(d[unicode(key)]) except: continue return allFreD if __name__ == '__main__': finished = [] import os if os.path.isfile(FEATURE13): for line in codecs.open(FEATURE13,'r','utf-8'): finished.append(line.split(DATA_DELIMITER)[0]) all_ = [] for line in codecs.open(DATAFILE,'r','utf-8'): all_.append(line.strip("\n").replace(DATA_DELIMITER,FEATURE_ITEM_DELIMITER)) unfinished = list(set(all_) - set(finished)) print "ALL:",len(all_) print "Finished",len(finished) print "Unfinished",len(unfinished) del finished del all_ super_items = set([i.split(FEATURE_ITEM_DELIMITER)[0] for i in unfinished]) sub_items = set([i.split(FEATURE_ITEM_DELIMITER)[1] for i in unfinished]) superD = {} #def fun_a(): print "Calculating Object of super..." #global superD superD = getStr2ObjectDict(SUPER_FILE, super_items) print "Len of superD",len(superD) #superHeadword = dict((k,v.headword) for k,v in superD.iteritems()) #FileIO.recordHeadword(SUPER_HEADWORD_FILE,superHeadword) #del superHeadword subD = {} #def fun_b(): print "Calculating Object of sub..." #global subD subD = getStr2ObjectDict(SUB_FILE, sub_items) print "Len of subD",len(subD) #subHeadword = dict((k,v.headword) for k,v in subD.iteritems()) #FileIO.recordHeadword(SUB_HEADWORD_FILE,subHeadword) #del subHeadword super_sub_freD = {} sub_super_freD = {} #def fun_c(): print "Calculating frequency..." #global super_sub_freD,sub_super_freD ddict = FileIO.readTwoColumnsToDict(DATAFILE,delimiter=DATA_DELIMITER) super_sub_freD = calculateWordFrequency(ddict) dddict = FileIO.readTwoColumnsToDict(DATAFILE,True,delimiter=DATA_DELIMITER) sub_super_freD = calculateWordFrequency(dddict) del ddict del dddict #threads = [] #threads.append(threading.Thread(target=fun_a)) #threads.append(threading.Thread(target=fun_b)) #threads.append(threading.Thread(target=fun_c)) #for t in threads: # t.start() #for t in threads: # t.join() print "Writing to file..." writeFeatureToFile(superD,subD,super_sub_freD,sub_super_freD,FEATURE13,unfinished)
bb28f5fb6011fac3c82ea587eebe8da09c4224ef
d2c4151eff768af64946ababc2e41c13d8973cd3
/ARC104/b.py
626f3f54124699e2c5c7d4b325852a552aa235d2
[]
no_license
Intel-out-side/AtCoder
2de19b71981247135432aed2d6d9c2a16c3ab7f0
0c419d2df15fff02032432cb1b1323612484e16e
refs/heads/master
2022-06-23T04:21:12.886072
2022-06-13T14:39:07
2022-06-13T14:39:07
235,240,853
0
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
I = input().split() N = int(I[0]) S = I[1] class AccumulatedSum: """ 累積和を勝手に計算します。 0-indexedなので注意 """ def __init__(self, A:list): self.N = len(A) self.accumulated_sum = A.copy() for i in range(1, self.N): self.accumulated_sum[i] += self.accumulated_sum[i-1] def getSumIn(self, left:int, right:int) -> int: """ [l, r]区間の和を計算します。左右端も含みます。 """ if left == 0: return self.accumulated_sum[right] return self.accumulated_sum[right] - self.accumulated_sum[left-1] A = [0] * N T = [0] * N C = [0] * N G = [0] * N for i in range(N): if S[i] == "A": A[i] = 1 if S[i] == "T": T[i] = 1 if S[i] == "C": C[i] = 1 if S[i] == "G": G[i] = 1 Aacc = AccumulatedSum(A) Tacc = AccumulatedSum(T) Cacc = AccumulatedSum(C) Gacc = AccumulatedSum(G) ans = 0 for i in range(N): for j in range(i, N): if Aacc.getSumIn(i, j) == Tacc.getSumIn(i, j) and Cacc.getSumIn(i, j) == Gacc.getSumIn(i, j): ans += 1 print(ans)
294ca33e70eb3070b97b28d0251b424150e1b996
d7e41697c8d82f5ef3f9555af7d3d204803f0a99
/test/mitmproxy/utils/test_strutils.py
4759f1db47ceb9e0a34ee9a9ca78e176b3d0be98
[ "MIT" ]
permissive
shitongzhu/mitmproxy
aba9681765b71c385b2b20fda303c71090a04376
08f35286d3af9ad39046b0b3663913701086be9a
refs/heads/master
2023-08-19T07:03:52.226411
2021-09-04T10:56:33
2021-09-04T10:56:33
316,844,544
0
0
MIT
2020-11-29T00:02:33
2020-11-29T00:02:33
null
UTF-8
Python
false
false
4,828
py
import pytest from mitmproxy.utils import strutils def test_always_bytes(): assert strutils.always_bytes(bytes(range(256))) == bytes(range(256)) assert strutils.always_bytes("foo") == b"foo" with pytest.raises(ValueError): strutils.always_bytes("\u2605", "ascii") with pytest.raises(TypeError): strutils.always_bytes(42, "ascii") def test_always_str(): with pytest.raises(TypeError): strutils.always_str(42) assert strutils.always_str("foo") == "foo" assert strutils.always_str(b"foo") == "foo" assert strutils.always_str(None) is None def test_escape_control_characters(): assert strutils.escape_control_characters("one") == "one" assert strutils.escape_control_characters("\00ne") == ".ne" assert strutils.escape_control_characters("\nne") == "\nne" assert strutils.escape_control_characters("\nne", False) == ".ne" assert strutils.escape_control_characters("\u2605") == "\u2605" assert ( strutils.escape_control_characters(bytes(bytearray(range(128))).decode()) == '.........\t\n..\r.................. !"#$%&\'()*+,-./0123456789:;<' '=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~.' ) assert ( strutils.escape_control_characters(bytes(bytearray(range(128))).decode(), False) == '................................ !"#$%&\'()*+,-./0123456789:;<' '=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~.' ) with pytest.raises(ValueError): strutils.escape_control_characters(b"foo") def test_bytes_to_escaped_str(): assert strutils.bytes_to_escaped_str(b"foo") == "foo" assert strutils.bytes_to_escaped_str(b"\b") == r"\x08" assert strutils.bytes_to_escaped_str(br"&!?=\)") == r"&!?=\\)" assert strutils.bytes_to_escaped_str(b'\xc3\xbc') == r"\xc3\xbc" assert strutils.bytes_to_escaped_str(b"'") == r"'" assert strutils.bytes_to_escaped_str(b'"') == r'"' assert strutils.bytes_to_escaped_str(b"'", escape_single_quotes=True) == r"\'" assert strutils.bytes_to_escaped_str(b'"', escape_single_quotes=True) == r'"' assert strutils.bytes_to_escaped_str(b"\r\n\t") == "\\r\\n\\t" assert strutils.bytes_to_escaped_str(b"\r\n\t", True) == "\r\n\t" assert strutils.bytes_to_escaped_str(b"\n", True) == "\n" assert strutils.bytes_to_escaped_str(b"\\n", True) == "\\ \\ n".replace(" ", "") assert strutils.bytes_to_escaped_str(b"\\\n", True) == "\\ \\ \n".replace(" ", "") assert strutils.bytes_to_escaped_str(b"\\\\n", True) == "\\ \\ \\ \\ n".replace(" ", "") with pytest.raises(ValueError): strutils.bytes_to_escaped_str("such unicode") def test_escaped_str_to_bytes(): assert strutils.escaped_str_to_bytes("foo") == b"foo" assert strutils.escaped_str_to_bytes("\x08") == b"\b" assert strutils.escaped_str_to_bytes("&!?=\\\\)") == br"&!?=\)" assert strutils.escaped_str_to_bytes("\\x08") == b"\b" assert strutils.escaped_str_to_bytes("&!?=\\\\)") == br"&!?=\)" assert strutils.escaped_str_to_bytes("\u00fc") == b'\xc3\xbc' with pytest.raises(ValueError): strutils.escaped_str_to_bytes(b"very byte") def test_is_mostly_bin(): assert not strutils.is_mostly_bin(b"foo\xFF") assert strutils.is_mostly_bin(b"foo" + b"\xFF" * 10) assert not strutils.is_mostly_bin("") def test_is_xml(): assert not strutils.is_xml(b"foo") assert strutils.is_xml(b"<foo") assert strutils.is_xml(b" \n<foo") def test_clean_hanging_newline(): s = "foo\n" assert strutils.clean_hanging_newline(s) == "foo" assert strutils.clean_hanging_newline("foo") == "foo" def test_hexdump(): assert list(strutils.hexdump(b"one\0" * 10)) ESCAPE_QUOTES = [ "'" + strutils.SINGLELINE_CONTENT + strutils.NO_ESCAPE + "'", '"' + strutils.SINGLELINE_CONTENT + strutils.NO_ESCAPE + '"' ] def test_split_special_areas(): assert strutils.split_special_areas("foo", ESCAPE_QUOTES) == ["foo"] assert strutils.split_special_areas("foo 'bar' baz", ESCAPE_QUOTES) == ["foo ", "'bar'", " baz"] assert strutils.split_special_areas( """foo 'b\\'a"r' baz""", ESCAPE_QUOTES ) == ["foo ", "'b\\'a\"r'", " baz"] assert strutils.split_special_areas( "foo\n/*bar\nbaz*/\nqux", [r'/\*[\s\S]+?\*/'] ) == ["foo\n", "/*bar\nbaz*/", "\nqux"] assert strutils.split_special_areas( "foo\n//bar\nbaz", [r'//.+$'] ) == ["foo\n", "//bar", "\nbaz"] def test_escape_special_areas(): assert strutils.escape_special_areas('foo "bar" baz', ESCAPE_QUOTES, "*") == 'foo "bar" baz' esc = strutils.escape_special_areas('foo "b*r" b*z', ESCAPE_QUOTES, "*") assert esc == 'foo "b\ue02ar" b*z' assert strutils.unescape_special_areas(esc) == 'foo "b*r" b*z'
b81de21a3b245370ce540d63715dc874f1e5a1f5
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/timber/testcase/firstcases/testcase1_023.py
bd7a990dcc4d20bd7e9c133c55b4eed72482d212
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
4,842
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'com.naman14.timber', 'appActivity' : 'com.naman14.timber.activities.MainActivity', 'resetKeyboard' : True, 'androidCoverage' : 'com.naman14.timber/com.naman14.timber.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return # testcase023 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) driver.press_keycode(82) driver.press_keycode(82) driver.press_keycode(82) element = getElememtBack(driver, "new UiSelector().text(\"Sort by\")", "new UiSelector().className(\"android.widget.TextView\").instance(1)") TouchAction(driver).tap(element).perform() driver.press_keycode(82) element = getElememt(driver, "new UiSelector().resourceId(\"com.naman14.timber:id/albumArt\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"She\")", "new UiSelector().className(\"android.widget.TextView\").instance(10)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"com.naman14.timber:id/albumArt\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageView\").description(\"More options\")") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageView\").description(\"More options\")") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageButton\").description(\"Navigate up\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Library\")", "new UiSelector().className(\"android.widget.CheckedTextView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageButton\").description(\"Navigate up\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Heartbeat\")", "new UiSelector().className(\"android.widget.TextView\").instance(17)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Report any bugs here\")", "new UiSelector().className(\"android.widget.TextView\").instance(5)") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"1_023\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'com.naman14.timber'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
235f9be2e5351b3f4d2ed4d1505881be688d90e7
76d7e8f11f0cf1c0e8e0f90ac603eb297e063c1a
/private/templates/DRRPP/controllers.py
0ba33102ef7e030aae20e3ee442c9f8b84172849
[ "MIT" ]
permissive
carlisip/eden
afc8778071c854e95ddbe1655a6176a8c9eea12c
cf9c25afd48d63953976e5103e82a858f5027b5f
refs/heads/master
2021-01-23T21:19:54.463890
2012-07-16T08:04:34
2012-07-16T08:04:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,743
py
# -*- coding: utf-8 -*- from os import path from gluon import current from gluon.html import * # ============================================================================= def INPUT_BTN(**attributes): """ Utility function to create a styled button """ return SPAN(INPUT(_class = "button-right", **attributes), _class = "button-left") # ============================================================================= class index(): """ Custom Home Page """ def __call__(self): T = current.T request = current.request appname = request.application response = current.response response.title = current.deployment_settings.get_system_name() view = path.join(request.folder, "private", "templates", "DRRPP", "views", "index.html") try: # Pass view as file not str to work in compiled mode response.view = open(view, "rb") except IOError: from gluon.http import HTTP raise HTTP("404", "Unable to open Custom View: %s" % view) home_img = IMG(_src="/%s/static/themes/DRRPP/img/home_img.jpg" % appname, _id="home_img") home_page_img = IMG(_src="/%s/static/themes/DRRPP/img/home_page_img.png" % appname, _id="home_page_img") home_map_img = IMG(_src="/%s/static/themes/DRRPP/img/home_map_img.png" % appname, _id="home_map_img") list_img = A(IMG(_src="/%s/static/themes/DRRPP/img/list_img.png" % appname, _id="list_img"), _href=URL(c="project", f="project", args=["list"]), _title="Project List") matrix_img = A(IMG(_src="/%s/static/themes/DRRPP/img/matrix_img.png" % appname, _id="matrix_img"), _href=URL(c="project", f="project", args=["matrix"]), _title="Project Matrix Report") map_img = A(IMG(_src="/%s/static/themes/DRRPP/img/map_img.png" % appname, _id="map_img"), _href=URL( f="project", args=["map"]), _title="Project Map") graph_img = A(IMG(_src="/%s/static/themes/DRRPP/img/graph_img.png" % appname, _id="graph_img"), _href=URL(c="project", f="project", args=["graphs"]), _title="Project Graph") add_pipeline_project_link = URL(c="project", f="project", args=["create"], vars=dict(set_status_id = "1")) add_current_project_link = URL(c="project", f="project", args=["create"], vars=dict(set_status_id = "2")) add_completed_project_link = URL(c="project", f="project", args=["create"], vars=dict(set_status_id = "3")) add_offline_project_link = URL(c="static", f="DRR_Project_Portal_New_Project_Form.doc") add_framework_link = URL(c="project", f="framework", args=["create"]) project_captions = { 1:"DRR projects which will be being implemented in the future, and for which funding has been secured in the Asia and Pacific region.", 2:"DRR projects which are currently being implemented in one or more country in the Asia and Pacific region.", 3:"DRR projects which have been completed and are no longer being implemented in the Asia and Pacific region." } framework_caption = "Frameworks, action plans, road maps, strategies, declarations, statements and action agendas on DRR or DRR related themes, which are documents or instruments for guiding stakeholders on DRR planning, programming and implementation." add_div = DIV(A(DIV("ADD ", SPAN("CURRENT", _class="white_text"), " PROJECT"), _href=add_current_project_link, _title=project_captions[2]), A(DIV("ADD ", SPAN("PROPOSED", _class="white_text"), " PROJECT" ), _href=add_pipeline_project_link, _title=project_captions[1]), A(DIV("ADD ", SPAN("COMPLETED", _class="white_text"), " PROJECT" ), _href=add_completed_project_link, _title=project_captions[3]), A(DIV("ADD PROJECT OFFLINE" ), _href=add_offline_project_link, _title="Download a form to enter a DRR projects off-line and submit by Email"), A(DIV("ADD ", SPAN("DRR FRAMEWORK", _class="white_text")), _href=add_framework_link, _title=framework_caption), _id="add_div" ) why_box = DIV(H1("WHY THIS PORTAL?"), UL("Share information on implementation of DRR: Who? What? Where?", "Collectively identify gaps, improve planning and programming on DRR", "Identify areas of cooperation on implementation of DRR" ), _id="why_box") what_box = DIV(H1("WHAT CAN WE GET FROM THIS PORTAL?"), UL("List of completed and ongoing DRR projects - by country, hazards, themes, partners and donors.", "List of planned/proposed projects - better planning of future projects.", "Quick analysis - on number and types of completed and ongoing DRR projects", "Generate customised graphs and maps.", "Know more on the DRR frameworks/action plans guiding the region - identify priority areas for providing support and implementation.", "List of organisations implementing DRR projects at regional level.", "Archive of periodic meetings of regional DRR mechanisms." ), _id="what_box") how_help_box = DIV(H1("HOW WOULD THIS INFORMATION HELP?"), H2("National Government"), UL("Gain clarity on types of support that may be accessed from regional level and thus receive coherent regional assistance"), H2("Organisation Implementing DRR Projects"), UL("Plan better-knowing who does what, and where; Find partners and scale up implementation; and Learn from past and ongoing work of partners"), H2("Donor Agencies"), UL("Identify priorities to match your policy and programmatic imperatives; and minimise overlap; maximise resources"), _id="how_help_box") how_start_box = DIV(H1("HOW DO WE GET STARTED?"), UL("Add information on current / proposed / completed DRR projects", "Search for information - project list, project analysis, DRR frameworks", "Log in to add and edit your data", "Link to this portal from your organisation website" ), _id="how_start_box") help = A(DIV("USER MANUAL", _id="help_div"), _href=URL(c="static", f="DRR_Portal_User_Manual.pdf"), _target="_blank" ) tour = A(DIV("VIDEO TOUR", _id="tour_div"), _href=URL(c="default", f="index", args="video"), _target="_blank" ) db = current.db s3db = current.s3db table = s3db.project_project query = (table.deleted == False) #approved = & (table.approved == True) #current = & (table.status_id == 2) #proposed = & (table.status_id == 1) #completed = & (table.status_id == 1) projects = db(query).count() ftable = s3db.project_framework query = (ftable.deleted == False) #approved = & (table.approved == True) frameworks = db(query).count() stats = DIV(DIV("Currently the DRR Projects Portal has information on:"), TABLE(TR(projects, A("Projects", _href=URL(c="project", f="project", args=["list"])) ), TR(TD(), TABLE(TR(projects, A("Current Projects", _href=URL(c="project", f="project", args=["list"], vars={"status_id":2})) ) ) ), TR(TD(), TABLE(TR(projects, A("Proposed Projects", _href=URL(c="project", f="project", args=["list"], vars={"status_id":1})) ) ) ), TR(TD(), TABLE(TR(projects, A("Completed Projects", _href=URL(c="project", f="project", args=["list"], vars={"status_id":3})) ) ) ), TR(frameworks, A("Frameworks", _href=URL(c="project", f="framework")) ), ), _id="stats_div") market = DIV(DIV(I("Under Development...")), H2("DRR Project Marketplace"), DIV("A platform to coordinate and collaborate on future DRR Projects."), _id = "market_div") auth = current.auth _table_user = auth.settings.table_user _table_user.language.label = T("Language") _table_user.language.default = "en" _table_user.language.comment = DIV(_class="tooltip", _title=T("Language|The language to use for notifications.")) #_table_user.language.requires = IS_IN_SET(s3_languages) languages = current.deployment_settings.get_L10n_languages() _table_user.language.represent = lambda opt: \ languages.get(opt, current.messages.UNKNOWN_OPT) request.args = ["login"] login = auth() login[0][-1][1][0] = INPUT_BTN(_type = "submit", _value = T("Login")) return dict(title = T("Home"), home_img = home_img, add_div = add_div, login = login, why_box = why_box, home_page_img = home_page_img, what_box = what_box, how_help_box = how_help_box, home_map_img = home_map_img, how_start_box = how_start_box, tour = tour, help = help, stats = stats, market = market, list_img = list_img, matrix_img = matrix_img, map_img = map_img, graph_img = graph_img, ) # END =========================================================================
23b386e881e81a9c5f3259e0c00bdcf53cd206af
ed0f9eb0c1cb4858d91ef7e2d435db307f23a5a5
/dist/manage/django/conf/__init__.py
819f76dac03455205168724f054bb56819d714e2
[]
no_license
hjlhehehe123/ATC_Data
81b4622e7279aa9cc2013db8cc5a71d33561e768
ad35e61afb8e87d8bab2d2b3aeea08e9409d56c0
refs/heads/master
2023-07-13T16:23:45.951584
2021-08-20T12:37:34
2021-08-20T12:37:34
256,994,694
1
1
null
null
null
null
UTF-8
Python
false
false
10,444
py
""" Settings and configuration for Django. Read values from the module specified by the DJANGO_SETTINGS_MODULE environment variable, and then from django.conf.global_settings; see the global_settings.py for a list of all possible variables. """ import importlib import os import traceback import warnings from pathlib import Path import django import time from django.conf import global_settings from django.core.exceptions import ImproperlyConfigured from django.utils.deprecation import RemovedInDjango40Warning from django.utils.functional import LazyObject, empty ENVIRONMENT_VARIABLE = "DJANGO_SETTINGS_MODULE" PASSWORD_RESET_TIMEOUT_DAYS_DEPRECATED_MSG = ( 'The PASSWORD_RESET_TIMEOUT_DAYS setting is deprecated. Use ' 'PASSWORD_RESET_TIMEOUT instead.' ) DEFAULT_HASHING_ALGORITHM_DEPRECATED_MSG = ( 'The DEFAULT_HASHING_ALGORITHM transitional setting is deprecated. ' 'Support for it and tokens, cookies, sessions, and signatures that use ' 'SHA-1 hashing algorithm will be removed in Django 4.0.' ) class SettingsReference(str): """ String subclass which references a current settings value. It's treated as the value in memory but serializes to a settings.NAME attribute reference. """ def __new__(self, value, setting_name): return str.__new__(self, value) def __init__(self, value, setting_name): self.setting_name = setting_name class LazySettings(LazyObject): """ A lazy proxy for either global Django settings or a custom settings object. The user can manually configure settings prior to using them. Otherwise, Django uses the settings module pointed to by DJANGO_SETTINGS_MODULE. """ def _setup(self, name=None): """ Load the settings module pointed to by the environment variable. This is used the first time settings are needed, if the user hasn't configured settings manually. """ settings_module = os.environ.get(ENVIRONMENT_VARIABLE) if not settings_module: desc = ("setting %s" % name) if name else "settings" raise ImproperlyConfigured( "Requested %s, but settings are not configured. " "You must either define the environment variable %s " "or call settings.configure() before accessing settings." % (desc, ENVIRONMENT_VARIABLE)) self._wrapped = Settings(settings_module) def __repr__(self): # Hardcode the class name as otherwise it yields 'Settings'. if self._wrapped is empty: return '<LazySettings [Unevaluated]>' return '<LazySettings "%(settings_module)s">' % { 'settings_module': self._wrapped.SETTINGS_MODULE, } def __getattr__(self, name): """Return the value of a setting and cache it in self.__dict__.""" if self._wrapped is empty: self._setup(name) val = getattr(self._wrapped, name) self.__dict__[name] = val return val def __setattr__(self, name, value): """ Set the value of setting. Clear all cached values if _wrapped changes (@override_settings does this) or clear single values when set. """ if name == '_wrapped': self.__dict__.clear() else: self.__dict__.pop(name, None) super().__setattr__(name, value) def __delattr__(self, name): """Delete a setting and clear it from cache if needed.""" super().__delattr__(name) self.__dict__.pop(name, None) def configure(self, default_settings=global_settings, **options): """ Called to manually configure the settings. The 'default_settings' parameter sets where to retrieve any unspecified values from (its argument must support attribute access (__getattr__)). """ if self._wrapped is not empty: raise RuntimeError('Settings already configured.') holder = UserSettingsHolder(default_settings) for name, value in options.items(): if not name.isupper(): raise TypeError('Setting %r must be uppercase.' % name) setattr(holder, name, value) self._wrapped = holder @staticmethod def _add_script_prefix(value): """ Add SCRIPT_NAME prefix to relative paths. Useful when the app is being served at a subpath and manually prefixing subpath to STATIC_URL and MEDIA_URL in settings is inconvenient. """ # Don't apply prefix to absolute paths and URLs. if value.startswith(('http://', 'https://', '/')): return value from django.urls import get_script_prefix return '%s%s' % (get_script_prefix(), value) @property def configured(self): """Return True if the settings have already been configured.""" return self._wrapped is not empty @property def PASSWORD_RESET_TIMEOUT_DAYS(self): stack = traceback.extract_stack() # Show a warning if the setting is used outside of Django. # Stack index: -1 this line, -2 the caller. filename, _, _, _ = stack[-2] if not filename.startswith(os.path.dirname(django.__file__)): warnings.warn( PASSWORD_RESET_TIMEOUT_DAYS_DEPRECATED_MSG, RemovedInDjango40Warning, stacklevel=2, ) return self.__getattr__('PASSWORD_RESET_TIMEOUT_DAYS') @property def STATIC_URL(self): return self._add_script_prefix(self.__getattr__('STATIC_URL')) @property def MEDIA_URL(self): return self._add_script_prefix(self.__getattr__('MEDIA_URL')) class Settings: def __init__(self, settings_module): # update this dict from global settings (but only for ALL_CAPS settings) for setting in dir(global_settings): if setting.isupper(): setattr(self, setting, getattr(global_settings, setting)) # store the settings module in case someone later cares self.SETTINGS_MODULE = settings_module mod = importlib.import_module(self.SETTINGS_MODULE) tuple_settings = ( "INSTALLED_APPS", "TEMPLATE_DIRS", "LOCALE_PATHS", ) self._explicit_settings = set() for setting in dir(mod): if setting.isupper(): setting_value = getattr(mod, setting) if (setting in tuple_settings and not isinstance(setting_value, (list, tuple))): raise ImproperlyConfigured("The %s setting must be a list or a tuple. " % setting) setattr(self, setting, setting_value) self._explicit_settings.add(setting) if not self.SECRET_KEY: raise ImproperlyConfigured("The SECRET_KEY setting must not be empty.") if self.is_overridden('PASSWORD_RESET_TIMEOUT_DAYS'): if self.is_overridden('PASSWORD_RESET_TIMEOUT'): raise ImproperlyConfigured( 'PASSWORD_RESET_TIMEOUT_DAYS/PASSWORD_RESET_TIMEOUT are ' 'mutually exclusive.' ) setattr(self, 'PASSWORD_RESET_TIMEOUT', self.PASSWORD_RESET_TIMEOUT_DAYS * 60 * 60 * 24) warnings.warn(PASSWORD_RESET_TIMEOUT_DAYS_DEPRECATED_MSG, RemovedInDjango40Warning) if self.is_overridden('DEFAULT_HASHING_ALGORITHM'): warnings.warn(DEFAULT_HASHING_ALGORITHM_DEPRECATED_MSG, RemovedInDjango40Warning) if hasattr(time, 'tzset') and self.TIME_ZONE: # When we can, attempt to validate the timezone. If we can't find # this file, no check happens and it's harmless. zoneinfo_root = Path('/usr/share/zoneinfo') zone_info_file = zoneinfo_root.joinpath(*self.TIME_ZONE.split('/')) if zoneinfo_root.exists() and not zone_info_file.exists(): raise ValueError("Incorrect timezone setting: %s" % self.TIME_ZONE) # Move the time zone info into os.environ. See ticket #2315 for why # we don't do this unconditionally (breaks Windows). os.environ['TZ'] = self.TIME_ZONE time.tzset() def is_overridden(self, setting): return setting in self._explicit_settings def __repr__(self): return '<%(cls)s "%(settings_module)s">' % { 'cls': self.__class__.__name__, 'settings_module': self.SETTINGS_MODULE, } class UserSettingsHolder: """Holder for user configured settings.""" # SETTINGS_MODULE doesn't make much sense in the manually configured # (standalone) case. SETTINGS_MODULE = None def __init__(self, default_settings): """ Requests for configuration variables not in this class are satisfied from the module specified in default_settings (if possible). """ self.__dict__['_deleted'] = set() self.default_settings = default_settings def __getattr__(self, name): if not name.isupper() or name in self._deleted: raise AttributeError return getattr(self.default_settings, name) def __setattr__(self, name, value): self._deleted.discard(name) if name == 'PASSWORD_RESET_TIMEOUT_DAYS': setattr(self, 'PASSWORD_RESET_TIMEOUT', value * 60 * 60 * 24) warnings.warn(PASSWORD_RESET_TIMEOUT_DAYS_DEPRECATED_MSG, RemovedInDjango40Warning) if name == 'DEFAULT_HASHING_ALGORITHM': warnings.warn(DEFAULT_HASHING_ALGORITHM_DEPRECATED_MSG, RemovedInDjango40Warning) super().__setattr__(name, value) def __delattr__(self, name): self._deleted.add(name) if hasattr(self, name): super().__delattr__(name) def __dir__(self): return sorted( s for s in [*self.__dict__, *dir(self.default_settings)] if s not in self._deleted ) def is_overridden(self, setting): deleted = (setting in self._deleted) set_locally = (setting in self.__dict__) set_on_default = getattr(self.default_settings, 'is_overridden', lambda s: False)(setting) return deleted or set_locally or set_on_default def __repr__(self): return '<%(cls)s>' % { 'cls': self.__class__.__name__, } settings = LazySettings()
abf4e6394243a39be16d129035ad1e8ef4a0593f
65f863c73f6a3cd1cfdc70c94ab972a6ddac863f
/tests/benchmarks.py
c9f2c93bb951251d7afeb8fe8c816562d2b3d156
[ "MIT" ]
permissive
marksagal/enaml-native
a266a631fd78ba9654412ae811bdf758566a4375
1606f895b0718e223cb4296fe3ead8df8018cad9
refs/heads/master
2021-09-01T04:04:59.020078
2017-12-12T20:43:13
2017-12-12T20:43:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,329
py
''' Copyright (c) 2017, Jairus Martin. Distributed under the terms of the MIT License. The full license is in the file COPYING.txt, distributed with this software. Created on Oct 4, 2017 @author: jrm ''' import re import os import sh import time import pytest import json import requests from os.path import exists, join from utils import cd, source_activated #: Stats config = { 'app_built':False, 'stats': {}, } def prepare_new_app(config): """ Init a new app, build it, and launch it on a connected device. :param config: :return: """ app_dir = 'tmp/test_benchmarks/' config['app_dir'] = app_dir #: Create an app to to test if exists(app_dir): #: If using an emulator enable forwarding if "emulator-" in sh.adb('devices'): sh.adb("forward", "tcp:8888", "tcp:8888") return # App already made #if config['app_built']: # return # App already made #else: # #: Cleanup the old app # cleanup_app(config) enamlnative = sh.Command('./enaml-native') print(enamlnative('init', 'Benchmarks', 'com.codelv.enamlnative.benchmarks', 'tmp/test_benchmarks/')) config['app_built'] = True with cd(join(app_dir,'Benchmarks')): with source_activated('venv', 'enaml-native') as enamlnative: #: Now build python print(enamlnative('build-python')) #: Build and do a gradle sync, this will NOT include jni and native libs! print(enamlnative('build-android')) #: Now build python (again) to put them in the correct spot print(enamlnative('build-python')) #: Now try to run it and see if it crashes #: Requires emulator or device assert len(sh.adb('devices').strip().split("\n")) > 0, "No device is connected, " \ "can't test the build!" #: Flush logcat sh.adb('logcat', '--clear') #: Do a build and run print(enamlnative('run-android')) #: Wait a few seconds #: If using an emulator enable forwarding if "emulator-" in sh.adb('devices'): sh.adb("forward", "tcp:8888", "tcp:8888") def cleanup_app(config): if os.path.exists(config['app_dir']): sh.rm('-R', config['app_dir']) @pytest.mark.parametrize("platforms, path", [ (["android"], 'activity_indicator.enaml'), (["android"], 'auto_complete_text_view.enaml'), (["android"], 'block.enaml'), (["android"], 'button.enaml'), (["android"], 'calendar_view.enaml'), (["android"], 'card_view.enaml'), (["android"], 'clocks.enaml'), (["android"], 'checkbox.enaml'), (["android"], 'chronometer.enaml'), (["android"], 'date_picker.enaml'), (["android"], 'dialog.enaml'), (["android"], 'drawer_layout.enaml'), (["android"], 'edit_text.enaml'), (["android"], 'flexbox.enaml'), (["android"], 'icon.enaml'), (["android"], 'mapview.enaml'), (["android"], 'pager_tab_strip.enaml'), (["android"], 'picker.enaml'), (["android"], 'progress_bar.enaml'), (["android"], 'radio_buttons.enaml'), (["android"], 'rating_bar.enaml'), (["android"], 'seekbar.enaml'), (["android"], 'snackbar.enaml'), (["android"], 'spacer.enaml'), (["android"], 'spinner.enaml'), (["android"], 'switch.enaml'), (["android"], 'swipe_refresh.enaml'), (["android"], 'tabs.enaml'), (["android"], 'toast.enaml'), (["android"], 'view_pager.enaml'), (["android"], 'webview.enaml'), ]) def test_examples_for_real(platforms, path): """ This builds an actuall app and does full system benchmarks on loading app examples """ if 'TRAVIS' in os.environ: return #: Doesn't work on travis #: Pretty hackish but whatever prepare_new_app(config) #: Load the code dir_path = os.path.abspath(os.path.split(os.path.dirname(__file__))[0]) enaml_file = os.path.join(dir_path, 'examples', os.path.normpath(path)) with open(enaml_file, 'rb') as f: source = f.read() #: Trigger a reload r = requests.post("http://localhost:8888/", json={ "type": "reload", "files": {'view.enaml': source}, }).json() assert r['ok'], "Failed to reload {}!".format(enaml_file) #: TODO need a way to know when everything is done... #: should read the log unil it stops time.sleep(5) #: Flush logcat #: Save it stats = parse_stats(sh.adb('logcat', '-d')) config['stats'][enaml_file] = stats #: Save it data = json.dumps(config,indent=2) with open('tmp/stats.json', 'w') as f: f.write(data) #: TODO: Now compare it to the baseline def parse_stats(output): """ Parses logcat output and returns the stats """ lines = [line for line in output if "[Stats]" in line] stats = { 'totals': {'time': 0, 'tasks': 0, 'avg': 0} } for line in lines: m = re.search(r'\((\d+) ms\).+\((\d+)\).+\((\d+) us.+\)', line) if not m: continue dt, tasks, avg = map(int, m.groups()) if 'totals' in line: stats['totals'] = {'time': dt, 'tasks': tasks, 'avg': avg} return stats
0c17e9bf063a7efc0d9893b30f9499564e3969f5
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/gui/impl/gen/view_models/views/lobby/marathon/__init__.py
71f0b031ebeac46c2d890ceb67264bafff348eac
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
151
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/impl/gen/view_models/views/lobby/marathon/__init__.py pass
ceb44fc8f169f591ebbdf0b4d2e0a1e4b500d9fc
43ff15a7989576712d0e51f0ed32e3a4510273c0
/chtscan/migrations/0006_auto_20160411_0800.py
f59e435e4885549c1b59a6379cce6ccd44b7e5cb
[]
no_license
v1cker/kekescan
f2b51d91a9d6496e2cdc767eb6a600171f513449
3daa1775648439ba9e0003a376f90b601820290e
refs/heads/master
2020-09-19T16:26:56.522453
2017-06-15T02:55:24
2017-06-15T02:55:24
94,495,007
6
3
null
null
null
null
UTF-8
Python
false
false
783
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-04-11 08:00 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('chtscan', '0005_auto_20160408_0723'), ] operations = [ migrations.RemoveField( model_name='vulnerability', name='requestid', ), migrations.AddField( model_name='assessment', name='requestid', field=models.IntegerField(null=True, verbose_name='REQUESTID'), ), migrations.AddField( model_name='assessment', name='taskid', field=models.CharField(default='', max_length=50, verbose_name='TASKID'), ), ]
1745f883f6d00b6642ba7d9496082c2fc1e47628
a54c6117cf2bb8b33f7a1e1ce92dffa1ffa4fe94
/demos/mismip/plot-result.py
36106cbdafa2092b5925b31aca55d5b70fbaa846
[]
no_license
barionleg/icepack-paper
f74d5ea9722f2bc1d51ddbb959297353bf32ecb9
3554c618468320c06c25bca46fd2f97c5d1e860c
refs/heads/master
2023-06-08T01:05:13.074850
2021-01-12T00:04:18
2021-01-12T00:04:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,496
py
import os import argparse import firedrake import icepack.plot parser = argparse.ArgumentParser() parser.add_argument('--input') parser.add_argument('--level', type=int) parser.add_argument('--output') args = parser.parse_args() Lx, Ly = 640e3, 80e3 ny = 20 nx = int(Lx/Ly) * ny coarse_mesh = firedrake.RectangleMesh(nx, ny, Lx, Ly) mesh_hierarchy = firedrake.MeshHierarchy(coarse_mesh, args.level) mesh = mesh_hierarchy[args.level] Q = firedrake.FunctionSpace(mesh, family='CG', degree=1) V = firedrake.VectorFunctionSpace(mesh, family='CG', degree=1) h = firedrake.Function(Q) u = firedrake.Function(V) input_name = os.path.splitext(args.input)[0] with firedrake.DumbCheckpoint(input_name, mode=firedrake.FILE_READ) as chk: timesteps, indices = chk.get_timesteps() chk.set_timestep(timesteps[-1], idx=indices[-1]) chk.load(h, name='h') chk.load(u, name='u') fig, axes = icepack.plot.subplots( nrows=2, sharex=True, sharey=True, figsize=(6.4, 2.8) ) axes[0].get_xaxis().set_visible(False) for ax in axes: ax.set_xlim(0, 640e3) ax.set_ylim(0, 80e3) ax.get_yaxis().set_visible(False) colors_h = icepack.plot.tripcolor(h, axes=axes[0]) fig.colorbar(colors_h, ax=axes[0], fraction=0.0075, pad=0.04, label='m') axes[0].set_title('Thickness') colors_u = icepack.plot.tripcolor(u, axes=axes[1]) fig.colorbar(colors_u, ax=axes[1], fraction=0.0075, pad=0.04, label='m/year') axes[1].set_title('Velocity') fig.savefig(args.output, dpi=300, bbox_inches='tight')
8954446c00e5428d2dacb756f5a86bb94bf80784
73832d62f4e982517f36265617c17bea3b715719
/06cem/Translation_Methods/lab02/semantic.py
66e0fa0e4feaccf2895327713a2780d2abd8acd3
[]
no_license
keipa/bsuir-labs
fa9018a121ec1b040bae27326607cd82ac7652a4
a7a3eca34d095568c7f8cbbe976cc91e515dc756
refs/heads/master
2021-06-15T23:37:27.249024
2020-06-09T09:33:32
2020-06-09T09:33:32
34,018,391
7
0
null
null
null
null
UTF-8
Python
false
false
17,792
py
from mylexer import data, lexer from token_rules import tokens import ply.yacc as yacc from operator import add, sub, mul, truediv, eq, ne, le, ge, gt, lt from ply.yacc import YaccSymbol from checker import check consts = dict() identifiers = dict() semantic_errors = [] interpret_index = 0 separators = [";", "do", "then", "end"] interpret_mas = [[]] interpret_dict = {"string": "= str()", "integer": "= int()", "writeln": "print", "readln": "= input()", ":=": "=", "length": "len", "inc": "+= 1" } def tree_print(l, i): for item in l: if type(item) is list: tree_print(item, i) else: i += 1 if item: print('\t' * i + str(item)) def interpret_tree(l, i): global interpret_index for item in l: if type(item) is list: interpret_tree(item, i) else: i += 1 if item and item in separators: interpret_index += 1 interpret_mas.append([]) if item is "end": interpret_index += 1 interpret_mas.append([]) elif item: if item in interpret_dict.keys(): item = interpret_dict[item] interpret_mas[interpret_index].append(item) def interpret_pascal_mas_to_python(mas): interpret_code = [] for m in mas: line = str() for item in m: line += " {0} ".format(item) interpret_code.append(line[1:-1]) return check_conditions(interpret_code) def check_conditions(mas): for line in mas: if line.startswith("for"): index = mas.index(line) new_line = line.replace("for", "") if new_line.count(".0") > 0: new_line = new_line.replace(".0", "") split_line = new_line.split("=") identifier_name, condition = split_line[0], split_line[1] down_to_way = new_line.index("downto") > 0 if down_to_way: result_line = "for {0} in range({1}, {2}, -1)"\ .format(identifier_name, condition.split("downto")[0], condition.split("downto")[1]) else: result_line = "for {0} in range({1}, {2})" \ .format(identifier_name, new_line.split("to")[0], new_line.split("to")[1]) mas[index] = result_line + ":" elif line.startswith("while") or line.startswith("if") or line.startswith("else"): index = mas.index(line) mas[index] += ":" elif line.count(".0") > 0: index = mas.index(line) mas[index] = mas[index].replace(".0", "") return mas def get_full_python_code(mas): tab_count = 0 python_code = "" for line in mas: python_code += ("\t" * tab_count) + line + "\n" if line.startswith("for") or line.startswith("while") or line.startswith("if") or line.startswith("else"): tab_count += 1 if line is "": tab_count -= 1 return python_code def get_lines_python_code(mas): tab_count = 0 python_code = [] for line in mas: python_code.append(("\t" * tab_count) + line) if line.startswith("for") or line.startswith("while") or line.startswith("if") or line.startswith("else"): tab_count += 1 if line is "": tab_count -= 1 return python_code def start_pascal(text): exec(text) def start_pascal_lines(lines): for line in lines: exec(line) class Node: def parts_str(self): st = [] for part in self.parts: st.append(part.__str__()) return "\n".join(st) def __str__(self): return self.type + ":\n\t" + self.parts_str().replace("\n", "\n\t") def add_child(self, parts): if isinstance(parts, Node): if parts.parts: self.parts.extend(parts.parts) return self def __init__(self, type, parts): self.type = type self.parts = parts def p_consts(p): ''' consts : CONST IDENTIFIER EQUALITY NUMBER SEMICOLON begin_program | CONST IDENTIFIER EQUALITY STRING SEMICOLON begin_program | CONST IDENTIFIER EQUALITY matrix SEMICOLON begin_program | begin_program ''' if len(p) == 2: p[0] = p[1] else: p[0] = [[p[2], p[3], p[4]], p[5], p[6]] def p_matrix(p): ''' matrix : OPEN_SQUARE_BRACKET identifiers CLOSE_SQUARE_BRACKET ''' p[0] = [p[1], p[2], p[3]] def p_identifiers(p): ''' identifiers : IDENTIFIER ZAPYATAYA identifiers | NUMBER ZAPYATAYA identifiers | STRING ZAPYATAYA identifiers | IDENTIFIER | NUMBER | STRING ''' if len(p) == 2: p[0] = p[1] else: p[0] = [[p[1]], p[2], p[3]] def p_begin_program(p): ''' begin_program : VAR declarations BEGIN body END POINT ''' p[0] = [p[2], [p[4]]] def p_block(p): ''' block : BEGIN body END SEMICOLON ''' p[0] = [p[2], p[3]] def p_body(p): ''' body : expression ''' p[0] = [p[1]] def p_identifier(p): ''' identifier : IDENTIFIER | IDENTIFIER SEMICOLON ''' if list(identifiers.keys()).count(p[1]) == 0: semantic_errors.append('{0}) There is no {1} variable!'.format(p.lexer.lineno, p[1])) if len(p) > 2: p[0] = [p[1], p[2]] else: p[0] = p[1] def p_expression(p): ''' expression : assignment expression | if expression | function expression | empty | while expression | for expression | break ''' # empty if len(p) == 2: p[0] = [p[1]] else: p[0] = [p[1], p[2]] def p_break(p): ''' break : BREAK SEMICOLON ''' p[0] = [p[1], p[2]] def p_declarations(p): ''' declarations : declaration declarations | empty ''' if len(p) == 2: p[0] = p[0] else: p[0] = [p[1], p[2]] def p_declaration(p): ''' declaration : IDENTIFIER another_identifiers COLON type SEMICOLON ''' if type(p[2]) is list: p[0] = [[p[1], p[4], p[5]]] + [[item, p[4], p[5]] for item in p[2]] elif p[2] is None: p[0] = [p[1], p[4], p[5]] else: p[0] = [[p[1], p[4], p[5]], [p[2], p[4], p[5]]] def p_another_identifiers(p): ''' another_identifiers : ZAPYATAYA IDENTIFIER another_identifiers | empty ''' if len(p) == 2: p[0] = p[0] else: if p[3] is None: p[0] = p[2] else: p[0] = [p[2], p[3]] def p_type(p): ''' type : TYPE_STRING | TYPE_INTEGER | TYPE_REAL ''' p[0] = [p[1]] def p_empty(p): ''' empty : ''' p[0] = p[0] def p_assignment(p): ''' assignment : identifier ASSIGNMENT arithmetic_expression SEMICOLON | identifier ASSIGNMENT function SEMICOLON | identifier ASSIGNMENT function | identifier ASSIGNMENT arithmetic_expression ''' if len(p) > 4: p[0] = [p[1], p[2], p[3], p[4]] else: p[0] = [p[1], p[2], p[3]] def p_arithmetic_expression(p): ''' arithmetic_expression : NUMBER | identifier | STRING | function | identifier PLUS arithmetic_expression | identifier MINUS arithmetic_expression | identifier MUL arithmetic_expression | identifier DIV arithmetic_expression | NUMBER PLUS arithmetic_expression | NUMBER MINUS arithmetic_expression | NUMBER MUL arithmetic_expression | NUMBER DIV arithmetic_expression | function PLUS arithmetic_expression | function MINUS arithmetic_expression | function MUL arithmetic_expression | function DIV arithmetic_expression | identifier OPEN_SQUARE_BRACKET arithmetic_expression CLOSE_SQUARE_BRACKET | arithmetic_expression PLUS arithmetic_expression | arithmetic_expression MINUS arithmetic_expression | arithmetic_expression MUL arithmetic_expression | arithmetic_expression DIV arithmetic_expression | arithmetic_expression SEMICOLON ''' if len(p) == 3: p[0] = [p[1], p[2]] elif len(p) == 5: p[0] = [p[1], p[2], p[3], p[4]] elif len(p) == 2: p[0] = p[1] else: if p[2] in ("+", "-", "/", "*"): if type(p[3]) is list and type(p[1]) is list: if list(identifiers.keys()).count(p[1][0]) > 0 and list(identifiers.keys()).count(p[3][0]) > 0: if identifiers[p[3][0]][1] in (list, str) and identifiers[p[1][0]][1] in (list, str) and\ identifiers[p[3][0]][0] != identifiers[p[1][0]][0]: semantic_errors.append("{3}) Operations with different types! {0} {1} {2}" .format(p[1], p[2], p[3], p.lexer.lineno)) elif list(identifiers.keys()).count(p[1]) > 0 and list(identifiers.keys()).count(p[3]) > 0: if identifiers[p[3]][1] != identifiers[p[1]][1]: semantic_errors.append("{3}) Operations with different types! {0} {1} {2}" .format(p[1], p[2], p[3], p.lexer.lineno)) elif list(identifiers.keys()).count(p[1]) > 0: if ((type(p[3]) is list and p[3][1] == "[]" and identifiers[p[3][0]][1] != identifiers[p[1]][1]) or\ (type(p[3]) is not list and (not (type(p[3]) in (int, float) and identifiers[p[1]][1] in (int, float)) and not (type(p[3]) is str and identifiers[p[1]][1] is str)))) and p[3] != "0": semantic_errors.append("{3}) Operations with different types! {0} {1} {2}" .format(p[1], p[2], p[3], p.lexer.lineno)) elif list(identifiers.keys()).count(p[3]) > 0: if (type(p[1]) is list and p[1][1] == "[]" and identifiers[p[1][0]][1] != identifiers[p[3]][1]) or \ (type(p[1]) is not list and (not (type(p[1]) in (int, float) and identifiers[p[3]][1] in (int, float)) and not (type(p[1]) is str and identifiers[p[3]][1] is str))): semantic_errors.append("{0}) Operations with different types! {1} {2} {3}" .format(p.lexer.lineno, p[1], p[2], p[3])) if p[2] == "/" and ((type(p[3]) in (int, float) and p[3] == 0) or p[3] == "0"): semantic_errors.append("{3}) Division by 0 exception. {0} {1} {2}".format(p[1], p[2], p[3], p.lexer.lineno)) p[0] = [p[1], p[2], p[3]] def perform_operation(operation, v1, v2): return operation(v1, v2) def p_function(p): ''' function : WRITE OPEN_BRACKET arithmetic_expression CLOSE_BRACKET SEMICOLON | WRITELN OPEN_BRACKET arithmetic_expression CLOSE_BRACKET SEMICOLON | READ OPEN_BRACKET identifier CLOSE_BRACKET SEMICOLON | READLN OPEN_BRACKET identifier CLOSE_BRACKET SEMICOLON | LENGTH OPEN_BRACKET identifier CLOSE_BRACKET | INC OPEN_BRACKET identifier CLOSE_BRACKET SEMICOLON | LENGTH OPEN_BRACKET identifier CLOSE_BRACKET SEMICOLON ''' if len(p) > 5: if p[1] in ("readln", "inc", "read"): p[0] = [p[3], p[1], p[5]] else: p[0] = [p[1], p[2], p[3], p[4], p[5]] else: if p[1] in ("readln", "inc", "read"): p[0] = [p[3], p[1]] else: p[0] = [p[1], p[2], p[3], p[4]] def invert_operation(operation): invertor = {'>': '<', '<': '>', '<=': '>=', '>=': '<=', '=': '<>', '<>': '=', 'in': 'in'} return invertor[operation] def p_predicate(p): ''' predicate : arithmetic_expression COMPARISON arithmetic_expression | arithmetic_expression EQUALITY arithmetic_expression | arithmetic_expression NON_EQUALITY arithmetic_expression | arithmetic_expression NON_STRICT_COMPARISON arithmetic_expression | arithmetic_expression IN identifier | arithmetic_expression IN matrix ''' if p[3] in identifiers.keys() and p[2] == "in" and identifiers[p[3]][1] is not list: semantic_errors.append("{0}) You can pass operator \"in\" only for matrix.".format(p.lexer.lineno)) old_len = len(semantic_errors) check_comparation(p[1], p[2], p[3], p.lexer.lineno) if old_len == len(semantic_errors): check_comparation(p[3], p[2], p[1], p.lexer.lineno) if type(p[1]) is list and p[1][1] == '[]': p[0] = p[1] + [p[2], p[3]] else: p[0] = [p[1], p[2], p[3]] def check_comparation(p1, p2, p3, line): if type(p1) is list and p2 != "in": tp = None for _ in p1: if list(identifiers.keys()).count(_) > 0: tp = identifiers[_][1] break tp = tp if tp is not None else type(p1[0]) if type(p3) is not list: if (type(p3) is not tp) or (tp is str and type(p3) in (int, float)): semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) elif list(identifiers.keys()).count(p3) > 0 and identifiers[p3][1] != tp: semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) else: tp1 = None for _ in p3: if list(identifiers.keys()).count(_) > 0: tp1 = identifiers[_][1] break tp1 = tp1 if tp1 is not None else type(p3[0]) if tp != tp1: semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) else: if list(identifiers.keys()).count(p1) > 0: if list(identifiers.keys()).count(p3) > 0: if identifiers[p3][1] != identifiers[p1][1]: semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) else: if identifiers[p1][1] != type(p3): semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) else: if list(identifiers.keys()).count(p3) > 0: if type(p1) != identifiers[p3][1]: semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) else: if type(p1) != type(p3): semantic_errors.append("{0}) You can't pass different types to {1} operation.".format(line, p2)) def p_some_predicates(p): ''' some_predicates : OPEN_BRACKET predicate CLOSE_BRACKET AND some_predicates | OPEN_BRACKET predicate CLOSE_BRACKET OR some_predicates | OPEN_BRACKET predicate CLOSE_BRACKET | OPEN_BRACKET NOT OPEN_BRACKET predicate CLOSE_BRACKET CLOSE_BRACKET AND some_predicates | OPEN_BRACKET NOT OPEN_BRACKET predicate CLOSE_BRACKET CLOSE_BRACKET OR some_predicates | OPEN_BRACKET NOT OPEN_BRACKET predicate CLOSE_BRACKET CLOSE_BRACKET ''' if len(p) == 9: p[0] = [[p[2], p[3], p[4], p[5], p[7]], p[8]] elif len(p) == 7: p[0] = [p[2], p[4]] elif len(p) == 4: p[0] = p[2] else: p[0] = [[p[2], p[4]], p[5]] def p_while(p): ''' while : WHILE OPEN_BRACKET predicate CLOSE_BRACKET DO block | WHILE some_predicates DO block ''' if len(p) == 5: p[0] = [['while', p[2]], ['do', p[4]]] else: p[0] = [['while', p[3]], ['do', p[6]]] def p_for(p): ''' for : FOR assignment TO arithmetic_expression DO block | FOR assignment DOWNTO arithmetic_expression DO block ''' p[0] = [['for', [p[2], [p[3], p[4]]]], p[5], p[6]] def p_if(p): ''' if : IF OPEN_BRACKET predicate CLOSE_BRACKET THEN block | IF OPEN_BRACKET predicate CLOSE_BRACKET THEN block else ''' if len(p) == 8: p[0] = [['if', p[3]], ['then', p[6]], ['else', p[7]]] else: p[0] = [['if', p[3]], ['then', p[6]]] def p_else(p): ''' else : ELSE block ''' p[0] = [p[1], p[2]] def p_error(p): print('Unexpected token {0}'.format(p)) if __name__ == '__main__': with open('input.txt', 'r') as fin: data = ''.join(fin.readlines()) identifiers = check(data)[0] parser = yacc.yacc(method='LALR') result = parser.parse(data, lexer=lexer, debug=False, tracking=True) if result and len(semantic_errors) == 0: interpret_tree(result, 0) start_pascal(get_full_python_code(interpret_pascal_mas_to_python(interpret_mas))) if len(semantic_errors) > 0: for _ in semantic_errors: print(_)
9c315f3e10b630f08fda544fd7dabd316ebaed05
1f98ccf9ef52d3adab704676480c85fe22c9542d
/simpledb/test/TestBlk.py
0ebcd6e00f84ea455edce878943380b79c66d26e
[]
no_license
61515/simpleDB_Python
234c671cbbf57f3e8fc5489ec4c292365085b7a8
b6846da4a78369838f5b3c7a704de704e18f7be7
refs/heads/master
2023-02-22T14:07:52.660633
2021-01-24T02:25:40
2021-01-24T02:25:40
332,343,905
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
from simpledb.file.BlockId import BlockId if __name__ == '__main__': blk = BlockId("file", 1) buffers = {blk: 1} pins = [blk] # pins.remove(blk) if blk in pins: print(1) print(pins.count(blk)) # print(pins) # print(buffers.get(blk))
9b43fa6a64fe1365c949bf00ef1b7be04e6c5852
1cfcfa686489885843b9a142c8ba980ebd5d5ffd
/tests/optim/test_weight_average.py
a421cf0328fcef62c31051e3eef5aa29b3acfded
[ "MIT" ]
permissive
qyz-thu/gnn_vae
9d2d8e984a96d0f22f74362889fdd1c0613df46d
278aeb7038216812a94c7f7acd2ca425696f986b
refs/heads/master
2023-02-05T20:07:24.097968
2020-12-18T06:34:20
2020-12-18T06:34:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,265
py
import copy import numpy as np import pytest import tensorkit as tk from tensorkit import tensor as T from tests.helper import * def stepwise_average_check(ctx, factory, update_fn, get_fn): def clone_state(val): if isinstance(val, dict): return {k: clone_state(v) for k, v in val.items()} elif isinstance(val, list): return [clone_state(v) for v in val] elif isinstance(val, (T.Tensor, T.Variable)): return T.copy(val) elif isinstance(val, np.ndarray): return np.copy(val) else: return copy.copy(val) T.random.seed(1234) weights = [ T.variable(shape=[4], initializer=tk.init.zeros, requires_grad=False), T.variable(shape=[3], initializer=tk.init.zeros, requires_grad=False), ] answers = [clone_state(w) for w in weights] inputs_1 = T.random.randn([7, 4]) inputs_2 = T.random.randn([7, 3]) # do a scan avg = factory(weights) the_states = [] the_outputs = [] num_updates = 0 for batch_vals in zip(inputs_1, inputs_2): for weight, val in zip(weights, batch_vals): T.assign(weight, val) the_states.append(clone_state(avg.get_state_dict())) avg.update() with avg.temporarily_commit(): the_outputs.extend(clone_state(w) for w in weights) for i, val in enumerate(batch_vals): answers[i] = update_fn(answers[i], val, num_updates) num_updates += 1 for weight, ans in zip(weights, answers): assert_allclose(weight, get_fn(ans, num_updates), rtol=1e-4, atol=1e-6) for weight, val in zip(weights, batch_vals): assert_allclose(weight, val, rtol=1e-4, atol=1e-6) # test enabled = False avg = factory(weights, enabled=False) for x1, x2, state, output in zip(inputs_1, inputs_2, the_states, the_outputs): batch_vals = [x1, x2] for weight, val in zip(weights, batch_vals): T.assign(weight, val) avg.update() avg.commit() # should still affect weights even if enabled is False for avg_val in avg.get_state_dict()['averages']: assert_allclose(avg_val, T.zeros_like(avg_val), rtol=1e-4, atol=1e-6) for weight in weights: assert_allclose(weight, T.zeros_like(weight), rtol=1e-4, atol=1e-6) # do another scan using backup states avg = factory(weights, enabled=False) avg.set_enabled(True) for x1, x2, state, output in zip(inputs_1, inputs_2, the_states, the_outputs): batch_vals = [x1, x2] for weight, val in zip(weights, batch_vals): T.assign(weight, val) avg.set_state_dict(state) avg.update() with avg.temporarily_commit(): the_outputs.extend(clone_state(w) for w in weights) for weight, val in zip(weights, batch_vals): assert_allclose(weight, val, rtol=1e-4, atol=1e-6) # try set bad state avg = factory(weights) state = dict(avg.get_state_dict()) state['averages'] = [] with pytest.raises(ValueError, match='Bad state'): avg.set_state_dict(state) def full_scan_average_check(ctx, factory, input_x, expected): weight = T.variable(T.shape(input_x)[1:], initializer=tk.init.zeros, requires_grad=False) avg = factory([weight]) for x in input_x: T.assign(weight, x) avg.update() avg.commit() assert_allclose(weight, expected, atol=1e-4, rtol=1e-6) class WeightAveragingTestCase(TestCase): def test_MeanAveraging(self): # step-wise check factory = tk.optim.WeightMeanAveraging def update_fn(old_val, new_val, num_updates): return (old_val * num_updates + new_val) / (num_updates + 1.) def get_fn(val, num_updates): return val stepwise_average_check(self, factory, update_fn, get_fn) # overall check input_x = T.random.randn([7, 4]) full_scan_average_check( self, factory, input_x, T.reduce_mean(input_x, axis=[0])) def test_MovingAveraging(self): # step-wise check for decay in (0.9, 0.99): for zero_debias in (True, False): factory = lambda weights, **kwargs: tk.optim.WeightMovingAveraging( weights, decay=decay, zero_debias=zero_debias, **kwargs) def update_fn(old_val, new_val, num_updates): return decay * old_val + (1. - decay) * new_val if zero_debias: def get_fn(val, num_updates): if num_updates > 0: return val / (1. - decay ** num_updates) else: return val else: def get_fn(val, num_updates): return val stepwise_average_check(self, factory, update_fn, get_fn) # overall check input_x = T.expand(T.random.randn([4]), [7, 4]) factory = lambda weights, **kwargs: tk.optim.WeightMovingAveraging( weights, decay=0.9, zero_debias=True, **kwargs) full_scan_average_check(self, factory, input_x, input_x[0])
908ab077984dc561d27e833fbb86e6d280225929
c34308d9e283d3689baeade246b69dad13eea0c1
/homework/week5/study201736.py
015a5575dfb0de380ed5acf9ed7422c0ab64d7a2
[]
no_license
michaelChen07/studyPython
d19fe5762cfbccdff17248d7d5574939296d3954
11a2d9dd0b730cad464393deaf733b4a0903401f
refs/heads/master
2021-01-19T00:20:27.347088
2017-05-13T08:43:44
2017-05-13T08:43:44
73,004,133
1
1
null
null
null
null
UTF-8
Python
false
false
354
py
#coding:utf-8 def findMaxNum(x,y,z): if x >=y and x >= z: return x elif y > z: return y else: return z if __name__=="__main__": numList = raw_input(u"请输入3个数字,以逗号分隔:").split(",") print numList maxNum = findMaxNum(int(numList[0]),int(numList[1]),int(numList[2])) print maxNum
0b66b2d868d6ec5a557304ec44f1c3585252aa9c
9ea18a9a52f6fe9077a6073dac72d19e21b2b5d6
/setup.py
d2deac46ae69778452128ea1d6305c8bf86fe655
[]
no_license
barneygale/twisted-enttec
2e826e09159b82d3bc1fc281f8973b43341746cb
dec065475ab08ad4cc7a1fef301c904f2c033953
refs/heads/master
2020-04-04T14:44:32.010652
2018-11-03T18:24:59
2018-11-03T18:24:59
156,010,781
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
from setuptools import setup setup( name='twisted-enttec', version='0.1', author='Barney Gale', author_email='[email protected]', url='https://github.com/barneygale/twisted-enttec', license='MIT', description='Python/Twisted support for the Enttec DMX USB Pro', long_description=open('README.rst').read(), py_modules=['twisted_enttec'], install_requires=[ 'twisted', 'pyserial' ], )
5fb9500044bc1c606e8a9670801610d19b190611
c56807b801c887b8707611100efa3a0d7befea50
/DeepHumanPrediction/Code/DeepHumanPrediction/Motion_Prediction_encoding_decoding/bvh_reader.py
03027b871993c575cf4406b54021653e8f9eaf5e
[]
no_license
wy-luke/DeepHumanPrediction
9e3777f6d66d4ab34bf16a935ded19422385f724
2e131b4b365e6f565c7ed8075a61f2b3c7b2d53a
refs/heads/master
2021-08-30T19:26:57.537964
2017-12-19T05:47:36
2017-12-19T05:47:36
266,292,568
1
0
null
2020-05-23T08:13:36
2020-05-23T08:13:36
null
UTF-8
Python
false
false
3,861
py
# -*-coding: utf-8-*- import numpy as np import glob from tqdm import * import os import time def Motion_Data_Preprocessing(time_step = 100 , seed_timestep=20 , batch_Frame=5): np.set_printoptions(threshold=1000000) files = glob.glob("Data/ACCAD/Transform_Male1_bvh/Short_data/*.bvh") time_step = time_step seed_timestep = seed_timestep batch_Frame = batch_Frame xyz_position=3 complexity = False Data = [] train_label_motion=[] file_directory=[] '''data normalization''' Normalization_factor=1 dtype="int" #Extract only file names, not path names. for i in range(len(files)): file_directory.append(os.path.basename(files[i])) for file_name, i in tqdm(zip(files, range(len(files)))): # time.sleep(0.01) Raw = [] Mdata = [] MOTION = False '''1.basic - Motion data preprocessing''' print('Processed Data : {}'.format(i + 1)) try: with open(file_name, 'r') as f: while True: line = f.readline() if line == 'MOTION' + "\n" or MOTION: MOTION = True Raw.append(line) if not line: break for raw in Raw[3:]: #Xposition Yposition Zposition 는 제외 if dtype=="int": temp=raw.split()[xyz_position:] if complexity : temp = [np.float32(i) * Normalization_factor for i in temp] else : # complexity = False temp=[np.floor(np.float32(i))*Normalization_factor for i in temp] else:# dtype="str" temp=raw.split()[xyz_position:] Mdata.append(temp) #Remove the blank line.. Mdata.pop() '''2. Motion data preprocessing - easy for deeplearning''' #data padding if len(Mdata) < time_step: frame = np.zeros(shape=(time_step - len(Mdata), len(Mdata[0]))) for i in range(time_step - len(Mdata)): frame[i] = Mdata[-1] Mdata = np.concatenate((Mdata, frame), axis=0) else: Mdata = Mdata[:time_step] Data.append(Mdata) except Exception as e: raise e '''3.final - Motion data preprocessing''' for i in range(len(files)): train_label_motion.append(Data[i][seed_timestep:]) print("train_motion shape = {}".format(np.shape(Data))) print("train_label_motion shape = {}".format(np.shape(train_label_motion))) train_motion = np.reshape(Data,(len(files),int(time_step/batch_Frame),len(Data[0][0])*batch_Frame)) train_label_motion = np.reshape(train_label_motion,(len(files),int(time_step-seed_timestep)*len(Data[0][0]))) print("-------------------Transform data shape--------------------") print("transform_motion shape = {}".format(np.shape(train_motion))) print("transform_label_motion shape = {}".format(np.shape(train_label_motion))) return Normalization_factor , train_motion , train_label_motion , int(seed_timestep/batch_Frame) , int((time_step-seed_timestep)/batch_Frame) , len(train_motion[0][0]) , file_directory if __name__ == "__main__": print('Motion_Data_Preprocessing_Starting In Main') Normalization_factor, train_motion, train_label_motion ,seed_timestep , pre_timestep , column , file_directory = Motion_Data_Preprocessing(time_step = 140, seed_timestep=10 , batch_Frame=5) print("new seed_timestep : {}".format(seed_timestep)) print("new prediction_timestep : {}".format(pre_timestep)) print("new Motion_rotation_data : {}".format(column)) else: print("Motion_Data_Preprocessing_Imported")
6ed8248672240fa151a633c9e5ec55c98f340d87
5d20c3d81baef9cdb56f4bcff63d3f9248e2ac77
/dist/Cython/Cython/Compiler/Symtab.py
0a6e429364a46203fe604e6d0fd357c4e571f098
[ "LicenseRef-scancode-unknown-license-reference", "Python-2.0" ]
permissive
VuisterLab/cing
225b76476d3b60367a4205d9c4fce7c539299701
718178f5c9ea2a3c70fc753fe73fb17cc9acac6c
refs/heads/master
2022-11-14T01:37:31.020772
2016-06-21T14:00:33
2016-06-21T14:00:33
34,669,624
2
4
null
2022-10-27T19:24:20
2015-04-27T13:53:47
Pascal
UTF-8
Python
false
false
58,945
py
# # Pyrex - Symbol Table # import re import bisect from Errors import warning, error, InternalError import Options import Naming import PyrexTypes from PyrexTypes import * import TypeSlots from TypeSlots import \ pyfunction_signature, pymethod_signature, \ get_special_method_signature, get_property_accessor_signature import ControlFlow import __builtin__ identifier_pattern = re.compile(r"[A-Za-z_][A-Za-z0-9_]*$") class Entry: # A symbol table entry in a Scope or ModuleNamespace. # # name string Python name of entity # cname string C name of entity # type PyrexType Type of entity # doc string Doc string # init string Initial value # visibility 'private' or 'public' or 'extern' # is_builtin boolean Is an entry in the Python builtins dict # is_cglobal boolean Is a C global variable # is_pyglobal boolean Is a Python module-level variable # or class attribute during # class construction # is_member boolean Is an assigned class member # is_variable boolean Is a variable # is_cfunction boolean Is a C function # is_cmethod boolean Is a C method of an extension type # is_unbound_cmethod boolean Is an unbound C method of an extension type # is_type boolean Is a type definition # is_const boolean Is a constant # is_property boolean Is a property of an extension type: # doc_cname string or None C const holding the docstring # getter_cname string C func for getting property # setter_cname string C func for setting or deleting property # is_self_arg boolean Is the "self" arg of an exttype method # is_arg boolean Is the arg of a method # is_local boolean Is a local variable # is_readonly boolean Can't be assigned to # func_cname string C func implementing Python func # pos position Source position where declared # namespace_cname string If is_pyglobal, the C variable # holding its home namespace # pymethdef_cname string PyMethodDef structure # signature Signature Arg & return types for Python func # init_to_none boolean True if initial value should be None # as_variable Entry Alternative interpretation of extension # type name or builtin C function as a variable # xdecref_cleanup boolean Use Py_XDECREF for error cleanup # in_cinclude boolean Suppress C declaration code # enum_values [Entry] For enum types, list of values # qualified_name string "modname.funcname" or "modname.classname" # or "modname.classname.funcname" # is_declared_generic boolean Is declared as PyObject * even though its # type is an extension type # as_module None Module scope, if a cimported module # is_inherited boolean Is an inherited attribute of an extension type # #interned_cname string C name of interned name string # pystring_cname string C name of Python version of string literal # is_interned boolean For string const entries, value is interned # used boolean # is_special boolean Is a special method or property accessor # of an extension type # defined_in_pxd boolean Is defined in a .pxd file (not just declared) # api boolean Generate C API for C class or function # utility_code string Utility code needed when this entry is used borrowed = 0 init = "" visibility = 'private' is_builtin = 0 is_cglobal = 0 is_pyglobal = 0 is_member = 0 is_variable = 0 is_cfunction = 0 is_cmethod = 0 is_unbound_cmethod = 0 is_type = 0 is_const = 0 is_property = 0 doc_cname = None getter_cname = None setter_cname = None is_self_arg = 0 is_arg = 0 is_local = 0 is_declared_generic = 0 is_readonly = 0 func_cname = None doc = None init_to_none = 0 as_variable = None xdecref_cleanup = 0 in_cinclude = 0 as_module = None is_inherited = 0 #interned_cname = None pystring_cname = None is_interned = 0 used = 0 is_special = 0 defined_in_pxd = 0 api = 0 utility_code = None is_overridable = 0 def __init__(self, name, cname, type, pos = None, init = None): self.name = name self.cname = cname self.type = type self.pos = pos self.init = init class Scope: # name string Unqualified name # outer_scope Scope or None Enclosing scope # entries {string : Entry} Python name to entry, non-types # const_entries [Entry] Constant entries # type_entries [Entry] Struct/union/enum/typedef/exttype entries # sue_entries [Entry] Struct/union/enum entries # arg_entries [Entry] Function argument entries # var_entries [Entry] User-defined variable entries # pyfunc_entries [Entry] Python function entries # cfunc_entries [Entry] C function entries # c_class_entries [Entry] All extension type entries # temp_entries [Entry] Temporary variable entries # free_temp_entries [Entry] Temp variables currently unused # temp_counter integer Counter for naming temp vars # cname_to_entry {string : Entry} Temp cname to entry mapping # int_to_entry {int : Entry} Temp cname to entry mapping # pow_function_used boolean The C pow() function is used # return_type PyrexType or None Return type of function owning scope # is_py_class_scope boolean Is a Python class scope # is_c_class_scope boolean Is an extension type scope # scope_prefix string Disambiguator for C names # in_cinclude boolean Suppress C declaration code # qualified_name string "modname" or "modname.classname" # pystring_entries [Entry] String const entries newly used as # Python strings in this scope # control_flow ControlFlow Used for keeping track of environment state is_py_class_scope = 0 is_c_class_scope = 0 is_module_scope = 0 scope_prefix = "" in_cinclude = 0 def __init__(self, name, outer_scope, parent_scope): # The outer_scope is the next scope in the lookup chain. # The parent_scope is used to derive the qualified name of this scope. self.name = name self.outer_scope = outer_scope self.parent_scope = parent_scope mangled_name = "%d%s_" % (len(name), name) qual_scope = self.qualifying_scope() if qual_scope: self.qualified_name = qual_scope.qualify_name(name) self.scope_prefix = qual_scope.scope_prefix + mangled_name else: self.qualified_name = name self.scope_prefix = mangled_name self.entries = {} self.const_entries = [] self.type_entries = [] self.sue_entries = [] self.arg_entries = [] self.var_entries = [] self.pyfunc_entries = [] self.cfunc_entries = [] self.c_class_entries = [] self.defined_c_classes = [] self.imported_c_classes = {} self.temp_entries = [] self.free_temp_entries = [] #self.pending_temp_entries = [] # TEMPORARY self.temp_counter = 1 self.cname_to_entry = {} self.pow_function_used = 0 self.string_to_entry = {} self.num_to_entry = {} self.obj_to_entry = {} self.pystring_entries = [] self.control_flow = ControlFlow.LinearControlFlow() def start_branching(self, pos): self.control_flow = self.control_flow.start_branch(pos) def next_branch(self, pos): self.control_flow = self.control_flow.next_branch(pos) def finish_branching(self, pos): self.control_flow = self.control_flow.finish_branch(pos) def __str__(self): return "<%s %s>" % (self.__class__.__name__, self.qualified_name) def intern(self, name): return self.global_scope().intern(name) def qualifying_scope(self): return self.parent_scope def mangle(self, prefix, name = None): if name: return "%s%s%s" % (prefix, self.scope_prefix, name) else: return self.parent_scope.mangle(prefix, self.name) def mangle_internal(self, name): # Mangle an internal name so as not to clash with any # user-defined name in this scope. prefix = "%s%s_" % (Naming.pyrex_prefix, name) return self.mangle(prefix) #return self.parent_scope.mangle(prefix, self.name) def global_scope(self): # Return the module-level scope containing this scope. return self.outer_scope.global_scope() def builtin_scope(self): # Return the module-level scope containing this scope. return self.outer_scope.builtin_scope() def declare(self, name, cname, type, pos): # Create new entry, and add to dictionary if # name is not None. Reports a warning if already # declared. if not self.in_cinclude and cname and re.match("^_[_A-Z]+$", cname): # See http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html#Reserved-Names warning(pos, "'%s' is a reserved name in C." % cname, -1) dict = self.entries if name and dict.has_key(name): warning(pos, "'%s' redeclared " % name, 0) entry = Entry(name, cname, type, pos = pos) entry.in_cinclude = self.in_cinclude if name: entry.qualified_name = self.qualify_name(name) dict[name] = entry entry.scope = self return entry def qualify_name(self, name): return "%s.%s" % (self.qualified_name, name) def declare_const(self, name, type, value, pos, cname = None): # Add an entry for a named constant. if not cname: if self.in_cinclude: cname = name else: cname = self.mangle(Naming.enum_prefix, name) entry = self.declare(name, cname, type, pos) entry.is_const = 1 entry.value = value return entry def declare_type(self, name, type, pos, cname = None, visibility = 'private', defining = 1): # Add an entry for a type definition. if not cname: cname = name entry = self.declare(name, cname, type, pos) entry.visibility = visibility entry.is_type = 1 if defining: self.type_entries.append(entry) return entry def declare_typedef(self, name, base_type, pos, cname = None, visibility = 'private'): if not cname: if self.in_cinclude or visibility == 'public': cname = name else: cname = self.mangle(Naming.type_prefix, name) type = PyrexTypes.CTypedefType(cname, base_type) entry = self.declare_type(name, type, pos, cname, visibility) type.qualified_name = entry.qualified_name return entry def declare_struct_or_union(self, name, kind, scope, typedef_flag, pos, cname = None, visibility = 'private'): # Add an entry for a struct or union definition. if not cname: if self.in_cinclude or visibility == 'public': cname = name else: cname = self.mangle(Naming.type_prefix, name) entry = self.lookup_here(name) if not entry: type = CStructOrUnionType(name, kind, scope, typedef_flag, cname) entry = self.declare_type(name, type, pos, cname, visibility = visibility, defining = scope is not None) self.sue_entries.append(entry) else: if not (entry.is_type and entry.type.is_struct_or_union): warning(pos, "'%s' redeclared " % name, 0) elif scope and entry.type.scope: warning(pos, "'%s' already defined (ignoring second definition)" % name, 0) else: self.check_previous_typedef_flag(entry, typedef_flag, pos) self.check_previous_visibility(entry, visibility, pos) if scope: entry.type.scope = scope self.type_entries.append(entry) if not scope and not entry.type.scope: self.check_for_illegal_incomplete_ctypedef(typedef_flag, pos) return entry def check_previous_typedef_flag(self, entry, typedef_flag, pos): if typedef_flag != entry.type.typedef_flag: error(pos, "'%s' previously declared using '%s'" % ( entry.name, ("cdef", "ctypedef")[entry.type.typedef_flag])) def check_previous_visibility(self, entry, visibility, pos): if entry.visibility != visibility: error(pos, "'%s' previously declared as '%s'" % ( entry.name, entry.visibility)) def declare_enum(self, name, pos, cname, typedef_flag, visibility = 'private'): if name: if not cname: if self.in_cinclude or visibility == 'public': cname = name else: cname = self.mangle(Naming.type_prefix, name) type = CEnumType(name, cname, typedef_flag) else: type = PyrexTypes.c_anon_enum_type entry = self.declare_type(name, type, pos, cname = cname, visibility = visibility) entry.enum_values = [] self.sue_entries.append(entry) return entry def declare_var(self, name, type, pos, cname = None, visibility = 'private', is_cdef = 0): # Add an entry for a variable. if not cname: if visibility != 'private': cname = name else: cname = self.mangle(Naming.var_prefix, name) entry = self.declare(name, cname, type, pos) entry.is_variable = 1 entry.visibility = visibility self.control_flow.set_state((), (name, 'initalized'), False) return entry def declare_builtin(self, name, pos): return self.outer_scope.declare_builtin(name, pos) def declare_pyfunction(self, name, pos): # Add an entry for a Python function. entry = self.declare_var(name, py_object_type, pos) entry.signature = pyfunction_signature self.pyfunc_entries.append(entry) return entry def register_pyfunction(self, entry): self.pyfunc_entries.append(entry) def declare_cfunction(self, name, type, pos, cname = None, visibility = 'private', defining = 0, api = 0, in_pxd = 0): # Add an entry for a C function. entry = self.lookup_here(name) if entry: if visibility != 'private' and visibility != entry.visibility: warning(pos, "Function '%s' previously declared as '%s'" % (name, entry.visibility), 1) if not entry.type.same_as(type): warning(pos, "Function signature does not match previous declaration", 1) entry.type = type else: if not cname: if api or visibility != 'private': cname = name else: cname = self.mangle(Naming.func_prefix, name) entry = self.add_cfunction(name, type, pos, cname, visibility) entry.func_cname = cname if in_pxd and visibility != 'extern': entry.defined_in_pxd = 1 if api: entry.api = 1 if not defining and not in_pxd and visibility != 'extern': error(pos, "Non-extern C function declared but not defined") return entry def add_cfunction(self, name, type, pos, cname, visibility): # Add a C function entry without giving it a func_cname. entry = self.declare(name, cname, type, pos) entry.is_cfunction = 1 entry.visibility = visibility self.cfunc_entries.append(entry) return entry def find(self, name, pos): # Look up name, report error if not found. entry = self.lookup(name) if entry: return entry else: error(pos, "'%s' is not declared" % name) def lookup(self, name): # Look up name in this scope or an enclosing one. # Return None if not found. return (self.lookup_here(name) or (self.outer_scope and self.outer_scope.lookup(name)) or None) def lookup_here(self, name): # Look up in this scope only, return None if not found. return self.entries.get(name, None) def lookup_target(self, name): # Look up name in this scope only. Declare as Python # variable if not found. entry = self.lookup_here(name) if not entry: entry = self.declare_var(name, py_object_type, None) return entry def add_string_const(self, value): # Add an entry for a string constant. cname = self.new_const_cname() entry = Entry("", cname, c_char_array_type, init = value) entry.used = 1 self.const_entries.append(entry) return entry def get_string_const(self, value): # Get entry for string constant. Returns an existing # one if possible, otherwise creates a new one. genv = self.global_scope() entry = genv.string_to_entry.get(value) if not entry: entry = self.add_string_const(value) genv.string_to_entry[value] = entry return entry def add_py_string(self, entry): # If not already done, allocate a C name for a Python version of # a string literal, and add it to the list of Python strings to # be created at module init time. If the string resembles a # Python identifier, it will be interned. if not entry.pystring_cname: value = entry.init if identifier_pattern.match(value) and isinstance(value, str): entry.pystring_cname = self.intern(value) entry.is_interned = 1 else: entry.pystring_cname = entry.cname + "p" self.pystring_entries.append(entry) self.global_scope().all_pystring_entries.append(entry) def add_py_num(self, value): # Add an entry for an int constant. cname = "%s%s" % (Naming.interned_num_prefix, value) cname = cname.replace('-', 'neg_').replace('.','_') entry = Entry("", cname, py_object_type, init = value) entry.used = 1 entry.is_interned = 1 self.const_entries.append(entry) self.interned_nums.append(entry) return entry def get_py_num(self, value): # Get entry for int constant. Returns an existing # one if possible, otherwise creates a new one. genv = self.global_scope() entry = genv.num_to_entry.get(value) if not entry: entry = genv.add_py_num(value) genv.num_to_entry[value] = entry genv.pynum_entries.append(entry) return entry def add_py_obj(self, obj, c_prefix=''): obj.check_const() cname = self.new_const_cname(c_prefix) entry = Entry("", cname, py_object_type, init = value) entry.used = 1 entry.is_interned = 1 self.const_entries.append(entry) self.interned_objs.append(entry) return entry def get_py_obj(self, obj, c_prefix=''): # Get entry for a generic constant. Returns an existing # one if possible, otherwise creates a new one. genv = self.global_scope() entry = genv.obj_to_entry.get(obj) if not entry: entry = genv.add_py_num(obj, c_prefix) genv.obj_to_entry[obj] = entry return entry def new_const_cname(self): # Create a new globally-unique name for a constant. return self.global_scope().new_const_cname() def allocate_temp(self, type): # Allocate a temporary variable of the given type from the # free list if available, otherwise create a new one. # Returns the cname of the variable. for entry in self.free_temp_entries: if entry.type == type: self.free_temp_entries.remove(entry) return entry.cname n = self.temp_counter self.temp_counter = n + 1 cname = "%s%d" % (Naming.pyrex_prefix, n) entry = Entry("", cname, type) entry.used = 1 if type.is_pyobject or type == c_py_ssize_t_type: entry.init = "0" self.cname_to_entry[entry.cname] = entry self.temp_entries.append(entry) return entry.cname def allocate_temp_pyobject(self): # Allocate a temporary PyObject variable. return self.allocate_temp(py_object_type) def release_temp(self, cname): # Release a temporary variable for re-use. if not cname: # can happen when type of an expr is void return entry = self.cname_to_entry[cname] if entry in self.free_temp_entries: raise InternalError("Temporary variable %s released more than once" % cname) self.free_temp_entries.append(entry) def temps_in_use(self): # Return a new list of temp entries currently in use. return [entry for entry in self.temp_entries if entry not in self.free_temp_entries] #def recycle_pending_temps(self): # # Obsolete # pass def use_utility_code(self, new_code): self.global_scope().use_utility_code(new_code) def generate_library_function_declarations(self, code): # Generate extern decls for C library funcs used. #if self.pow_function_used: # code.putln("%s double pow(double, double);" % Naming.extern_c_macro) pass def defines_any(self, names): # Test whether any of the given names are # defined in this scope. for name in names: if name in self.entries: return 1 return 0 class PreImportScope(Scope): def __init__(self): Scope.__init__(self, Options.pre_import, None, None) def declare_builtin(self, name, pos): entry = self.declare(name, name, py_object_type, pos) entry.is_variable = True entry.is_pyglobal = True entry.namespace_cname = Naming.preimport_cname return entry class BuiltinScope(Scope): # The builtin namespace. def __init__(self): if Options.pre_import is None: Scope.__init__(self, "__builtin__", None, None) else: Scope.__init__(self, "__builtin__", PreImportScope(), None) for name, definition in self.builtin_entries.iteritems(): cname, type = definition self.declare_var(name, type, None, cname) def declare_builtin(self, name, pos): if not hasattr(__builtin__, name): if self.outer_scope is not None: return self.outer_scope.declare_builtin(name, pos) else: error(pos, "undeclared name not builtin: %s"%name) def declare_builtin_cfunction(self, name, type, cname, python_equiv = None, utility_code = None): # If python_equiv == "*", the Python equivalent has the same name # as the entry, otherwise it has the name specified by python_equiv. entry = self.declare_cfunction(name, type, None, cname) entry.utility_code = utility_code if python_equiv: if python_equiv == "*": python_equiv = name var_entry = Entry(python_equiv, python_equiv, py_object_type) var_entry.is_variable = 1 var_entry.is_builtin = 1 entry.as_variable = var_entry return entry def builtin_scope(self): return self builtin_entries = { "int": ["((PyObject*)&PyInt_Type)", py_object_type], "long": ["((PyObject*)&PyLong_Type)", py_object_type], "float": ["((PyObject*)&PyFloat_Type)", py_object_type], "str": ["((PyObject*)&PyString_Type)", py_object_type], "unicode":["((PyObject*)&PyUnicode_Type)", py_object_type], "tuple": ["((PyObject*)&PyTuple_Type)", py_object_type], "list": ["((PyObject*)&PyList_Type)", py_object_type], "dict": ["((PyObject*)&PyDict_Type)", py_object_type], "set": ["((PyObject*)&PySet_Type)", py_object_type], "frozenset": ["((PyObject*)&PyFrozenSet_Type)", py_object_type], "type": ["((PyObject*)&PyType_Type)", py_object_type], "slice": ["((PyObject*)&PySlice_Type)", py_object_type], "file": ["((PyObject*)&PyFile_Type)", py_object_type], "None": ["Py_None", py_object_type], "False": ["Py_False", py_object_type], "True": ["Py_True", py_object_type], } class ModuleScope(Scope): # module_name string Python name of the module # module_cname string C name of Python module object # #module_dict_cname string C name of module dict object # method_table_cname string C name of method table # doc string Module doc string # doc_cname string C name of module doc string # const_counter integer Counter for naming constants # utility_code_used [string] Utility code to be included # default_entries [Entry] Function argument default entries # python_include_files [string] Standard Python headers to be included # include_files [string] Other C headers to be included # string_to_entry {string : Entry} Map string const to entry # context Context # parent_module Scope Parent in the import namespace # module_entries {string : Entry} For cimport statements # type_names {string : 1} Set of type names (used during parsing) # pxd_file_loaded boolean Corresponding .pxd file has been processed # cimported_modules [ModuleScope] Modules imported with cimport # intern_map {string : string} Mapping from Python names to interned strs # interned_names [string] Interned names pending generation of declarations # interned_nums [int/long] Interned numeric constants # all_pystring_entries [Entry] Python string consts from all scopes # types_imported {PyrexType : 1} Set of types for which import code generated is_module_scope = 1 def __init__(self, name, parent_module, context): self.parent_module = parent_module outer_scope = context.find_submodule("__builtin__") Scope.__init__(self, name, outer_scope, parent_module) self.module_name = name self.context = context self.module_cname = Naming.module_cname self.module_dict_cname = Naming.moddict_cname self.method_table_cname = Naming.methtable_cname self.doc = "" self.doc_cname = Naming.moddoc_cname self.const_counter = 1 self.utility_code_used = [] self.default_entries = [] self.module_entries = {} self.python_include_files = ["Python.h", "structmember.h"] self.include_files = [] self.type_names = {} self.pxd_file_loaded = 0 self.cimported_modules = [] self.intern_map = {} self.interned_names = [] self.interned_nums = [] self.interned_objs = [] self.all_pystring_entries = [] self.types_imported = {} self.pynum_entries = [] self.has_extern_class = 0 self.cached_builtins = [] self.undeclared_cached_builtins = [] def qualifying_scope(self): return self.parent_module def global_scope(self): return self def declare_builtin(self, name, pos): if not hasattr(__builtin__, name): if self.outer_scope is not None: return self.outer_scope.declare_builtin(name, pos) else: error(pos, "undeclared name not builtin: %s"%name) if Options.cache_builtins: for entry in self.cached_builtins: if entry.name == name: return entry entry = self.declare(None, None, py_object_type, pos) if Options.cache_builtins: entry.is_builtin = 1 entry.is_const = 1 entry.name = name entry.cname = Naming.builtin_prefix + name self.cached_builtins.append(entry) self.undeclared_cached_builtins.append(entry) else: entry.is_builtin = 1 return entry def intern(self, name): intern_map = self.intern_map cname = intern_map.get(name) if not cname: cname = Naming.interned_prefix + name intern_map[name] = cname self.interned_names.append(name) return cname def find_module(self, module_name, pos): # Find a module in the import namespace, interpreting # relative imports relative to this module's parent. # Finds and parses the module's .pxd file if the module # has not been referenced before. return self.global_scope().context.find_module( module_name, relative_to = self.parent_module, pos = pos) def find_submodule(self, name): # Find and return scope for a submodule of this module, # creating a new empty one if necessary. Doesn't parse .pxd. scope = self.lookup_submodule(name) if not scope: scope = ModuleScope(name, parent_module = self, context = self.context) self.module_entries[name] = scope return scope def lookup_submodule(self, name): # Return scope for submodule of this module, or None. return self.module_entries.get(name, None) def add_include_file(self, filename): if filename not in self.python_include_files \ and filename not in self.include_files: self.include_files.append(filename) def add_imported_module(self, scope): if scope not in self.cimported_modules: self.cimported_modules.append(scope) def add_imported_entry(self, name, entry, pos): if entry not in self.entries: self.entries[name] = entry else: warning(pos, "'%s' redeclared " % name, 0) def declare_module(self, name, scope, pos): # Declare a cimported module. This is represented as a # Python module-level variable entry with a module # scope attached to it. Reports an error and returns # None if previously declared as something else. entry = self.lookup_here(name) if entry: if entry.is_pyglobal and entry.as_module is scope: return entry # Already declared as the same module if not (entry.is_pyglobal and not entry.as_module): # SAGE -- I put this here so Pyrex # cimport's work across directories. # Currently it tries to multiply define # every module appearing in an import list. # It shouldn't be an error for a module # name to appear again, and indeed the generated # code compiles fine. return entry warning(pos, "'%s' redeclared " % name, 0) return None else: entry = self.declare_var(name, py_object_type, pos) entry.as_module = scope self.cimported_modules.append(scope) return entry def declare_var(self, name, type, pos, cname = None, visibility = 'private', is_cdef = 0): # Add an entry for a global variable. If it is a Python # object type, and not declared with cdef, it will live # in the module dictionary, otherwise it will be a C # global variable. entry = Scope.declare_var(self, name, type, pos, cname, visibility, is_cdef) if not visibility in ('private', 'public', 'extern'): error(pos, "Module-level variable cannot be declared %s" % visibility) if not is_cdef: if not (type.is_pyobject and not type.is_extension_type): raise InternalError( "Non-cdef global variable is not a generic Python object") entry.is_pyglobal = 1 entry.namespace_cname = self.module_cname #if Options.intern_names: # entry.interned_cname = self.intern(name) else: entry.is_cglobal = 1 self.var_entries.append(entry) return entry def declare_global(self, name, pos): entry = self.lookup_here(name) if not entry: self.declare_var(name, py_object_type, pos) def add_default_value(self, type): # Add an entry for holding a function argument # default value. cname = self.new_const_cname() entry = Entry("", cname, type) self.default_entries.append(entry) return entry def new_const_cname(self, prefix=''): # Create a new globally-unique name for a constant. n = self.const_counter self.const_counter = n + 1 return "%s%s_%d" % (Naming.const_prefix, prefix, n) def use_utility_code(self, new_code): # Add string to list of utility code to be included, # if not already there (tested using 'is'). for old_code in self.utility_code_used: if old_code is new_code: return self.utility_code_used.append(new_code) def declare_c_class(self, name, pos, defining, implementing, module_name, base_type, objstruct_cname, typeobj_cname, visibility, typedef_flag, api): # # Look for previous declaration as a type # entry = self.lookup_here(name) if entry: type = entry.type if not (entry.is_type and type.is_extension_type): entry = None # Will cause an error when we redeclare it else: self.check_previous_typedef_flag(entry, typedef_flag, pos) if base_type != type.base_type: error(pos, "Base type does not match previous declaration") # # Make a new entry if needed # if not entry: type = PyExtensionType(name, typedef_flag, base_type) type.pos = pos if visibility == 'extern': type.module_name = module_name else: type.module_name = self.qualified_name type.typeptr_cname = self.mangle(Naming.typeptr_prefix, name) entry = self.declare_type(name, type, pos, visibility = visibility, defining = 0) if objstruct_cname: type.objstruct_cname = objstruct_cname elif not entry.in_cinclude: type.objstruct_cname = self.mangle(Naming.objstruct_prefix, name) else: error(entry.pos, "Object name required for 'public' or 'extern' C class") self.attach_var_entry_to_c_class(entry) self.c_class_entries.append(entry) # # Check for re-definition and create scope if needed # if not type.scope: if defining or implementing: scope = CClassScope(name = name, outer_scope = self, visibility = visibility) if base_type: scope.declare_inherited_c_attributes(base_type.scope) type.set_scope(scope) self.type_entries.append(entry) else: self.check_for_illegal_incomplete_ctypedef(typedef_flag, pos) else: if defining and type.scope.defined: error(pos, "C class '%s' already defined" % name) elif implementing and type.scope.implemented: error(pos, "C class '%s' already implemented" % name) # # Fill in options, checking for compatibility with any previous declaration # if defining: entry.defined_in_pxd = 1 if implementing: # So that filenames in runtime exceptions refer to entry.pos = pos # the .pyx file and not the .pxd file if visibility != 'private' and entry.visibility != visibility: error(pos, "Class '%s' previously declared as '%s'" % (name, entry.visibility)) if api: entry.api = 1 if objstruct_cname: if type.objstruct_cname and type.objstruct_cname != objstruct_cname: error(pos, "Object struct name differs from previous declaration") type.objstruct_cname = objstruct_cname if typeobj_cname: if type.typeobj_cname and type.typeobj_cname != typeobj_cname: error(pos, "Type object name differs from previous declaration") type.typeobj_cname = typeobj_cname # # Return new or existing entry # return entry def check_for_illegal_incomplete_ctypedef(self, typedef_flag, pos): if typedef_flag and not self.in_cinclude: error(pos, "Forward-referenced type must use 'cdef', not 'ctypedef'") def allocate_vtable_names(self, entry): # If extension type has a vtable, allocate vtable struct and # slot names for it. type = entry.type if type.base_type and type.base_type.vtabslot_cname: #print "...allocating vtabslot_cname because base type has one" ### type.vtabslot_cname = "%s.%s" % ( Naming.obj_base_cname, type.base_type.vtabslot_cname) elif type.scope and type.scope.cfunc_entries: #print "...allocating vtabslot_cname because there are C methods" ### type.vtabslot_cname = Naming.vtabslot_cname if type.vtabslot_cname: #print "...allocating other vtable related cnames" ### type.vtabstruct_cname = self.mangle(Naming.vtabstruct_prefix, entry.name) type.vtabptr_cname = self.mangle(Naming.vtabptr_prefix, entry.name) def check_c_classes(self): # Performs post-analysis checking and finishing up of extension types # being implemented in this module. This is called only for the main # .pyx file scope, not for cimported .pxd scopes. # # Checks all extension types declared in this scope to # make sure that: # # * The extension type is implemented # * All required object and type names have been specified or generated # * All non-inherited C methods are implemented # # Also allocates a name for the vtable if needed. # debug_check_c_classes = 0 if debug_check_c_classes: print("Scope.check_c_classes: checking scope " + self.qualified_name) for entry in self.c_class_entries: if debug_check_c_classes: print("...entry %s %s" % (entry.name, entry)) print("......type = " + entry.type) print("......visibility = " + entry.visibility) type = entry.type name = entry.name visibility = entry.visibility # Check defined if not type.scope: error(entry.pos, "C class '%s' is declared but not defined" % name) # Generate typeobj_cname if visibility != 'extern' and not type.typeobj_cname: type.typeobj_cname = self.mangle(Naming.typeobj_prefix, name) ## Generate typeptr_cname #type.typeptr_cname = self.mangle(Naming.typeptr_prefix, name) # Check C methods defined if type.scope: for method_entry in type.scope.cfunc_entries: if not method_entry.is_inherited and not method_entry.func_cname: error(method_entry.pos, "C method '%s' is declared but not defined" % method_entry.name) # Allocate vtable name if necessary if type.vtabslot_cname: #print "ModuleScope.check_c_classes: allocating vtable cname for", self ### type.vtable_cname = self.mangle(Naming.vtable_prefix, entry.name) def attach_var_entry_to_c_class(self, entry): # The name of an extension class has to serve as both a type # name and a variable name holding the type object. It is # represented in the symbol table by a type entry with a # variable entry attached to it. For the variable entry, # we use a read-only C global variable whose name is an # expression that refers to the type object. var_entry = Entry(name = entry.name, type = py_object_type, pos = entry.pos, cname = "((PyObject*)%s)" % entry.type.typeptr_cname) var_entry.is_variable = 1 var_entry.is_cglobal = 1 var_entry.is_readonly = 1 entry.as_variable = var_entry class LocalScope(Scope): def __init__(self, name, outer_scope): Scope.__init__(self, name, outer_scope, outer_scope) def mangle(self, prefix, name): return prefix + name def declare_arg(self, name, type, pos): # Add an entry for an argument of a function. cname = self.mangle(Naming.var_prefix, name) entry = self.declare(name, cname, type, pos) entry.is_variable = 1 if type.is_pyobject: entry.init = "0" entry.is_arg = 1 #entry.borrowed = 1 # Not using borrowed arg refs for now self.arg_entries.append(entry) self.control_flow.set_state((), (name, 'source'), 'arg') return entry def declare_var(self, name, type, pos, cname = None, visibility = 'private', is_cdef = 0): # Add an entry for a local variable. if visibility in ('public', 'readonly'): error(pos, "Local variable cannot be declared %s" % visibility) entry = Scope.declare_var(self, name, type, pos, cname, visibility, is_cdef) if type.is_pyobject and not Options.init_local_none: entry.init = "0" entry.init_to_none = type.is_pyobject and Options.init_local_none entry.is_local = 1 self.var_entries.append(entry) return entry def declare_global(self, name, pos): # Pull entry from global scope into local scope. if self.lookup_here(name): warning(pos, "'%s' redeclared ", 0) else: entry = self.global_scope().lookup_target(name) self.entries[name] = entry class StructOrUnionScope(Scope): # Namespace of a C struct or union. def __init__(self): Scope.__init__(self, "?", None, None) def declare_var(self, name, type, pos, cname = None, visibility = 'private', is_cdef = 0, allow_pyobject = 0): # Add an entry for an attribute. if not cname: cname = name if type.is_cfunction: type = CPtrType(type) entry = self.declare(name, cname, type, pos) entry.is_variable = 1 self.var_entries.append(entry) if type.is_pyobject and not allow_pyobject: error(pos, "C struct/union member cannot be a Python object") if visibility != 'private': error(pos, "C struct/union member cannot be declared %s" % visibility) return entry def declare_cfunction(self, name, type, pos, cname = None, visibility = 'private', defining = 0, api = 0, in_pxd = 0): self.declare_var(name, type, pos, cname, visibility) class ClassScope(Scope): # Abstract base class for namespace of # Python class or extension type. # # class_name string Pyrex name of the class # scope_prefix string Additional prefix for names # declared in the class # doc string or None Doc string def __init__(self, name, outer_scope): Scope.__init__(self, name, outer_scope, outer_scope) self.class_name = name self.doc = None def add_string_const(self, value): return self.outer_scope.add_string_const(value) def lookup(self, name): if name == "classmethod": # We don't want to use the builtin classmethod here 'cause it won't do the # right thing in this scope (as the class memebers aren't still functions). # Don't want to add a cfunction to this scope 'cause that would mess with # the type definition, so we just return the right entry. self.use_utility_code(classmethod_utility_code) entry = Entry("classmethod", "__Pyx_Method_ClassMethod", CFuncType(py_object_type, [CFuncTypeArg("", py_object_type, None)], 0, 0)) entry.is_cfunction = 1 return entry else: return Scope.lookup(self, name) class PyClassScope(ClassScope): # Namespace of a Python class. # # class_dict_cname string C variable holding class dict # class_obj_cname string C variable holding class object is_py_class_scope = 1 def declare_var(self, name, type, pos, cname = None, visibility = 'private', is_cdef = 0): # Add an entry for a class attribute. entry = Scope.declare_var(self, name, type, pos, cname, visibility, is_cdef) entry.is_pyglobal = 1 entry.namespace_cname = self.class_obj_cname #if Options.intern_names: # entry.interned_cname = self.intern(name) return entry def allocate_temp(self, type): return self.outer_scope.allocate_temp(type) def release_temp(self, cname): self.outer_scope.release_temp(cname) #def recycle_pending_temps(self): # self.outer_scope.recycle_pending_temps() def add_default_value(self, type): return self.outer_scope.add_default_value(type) class CClassScope(ClassScope): # Namespace of an extension type. # # parent_type CClassType # #typeobj_cname string or None # #objstruct_cname string # method_table_cname string # member_table_cname string # getset_table_cname string # has_pyobject_attrs boolean Any PyObject attributes? # public_attr_entries boolean public/readonly attrs # property_entries [Entry] # defined boolean Defined in .pxd file # implemented boolean Defined in .pyx file # inherited_var_entries [Entry] Adapted var entries from base class is_c_class_scope = 1 def __init__(self, name, outer_scope, visibility): ClassScope.__init__(self, name, outer_scope) if visibility != 'extern': self.method_table_cname = outer_scope.mangle(Naming.methtab_prefix, name) self.member_table_cname = outer_scope.mangle(Naming.memtab_prefix, name) self.getset_table_cname = outer_scope.mangle(Naming.gstab_prefix, name) self.has_pyobject_attrs = 0 self.public_attr_entries = [] self.property_entries = [] self.inherited_var_entries = [] self.defined = 0 self.implemented = 0 def needs_gc(self): # If the type or any of its base types have Python-valued # C attributes, then it needs to participate in GC. return self.has_pyobject_attrs or \ (self.parent_type.base_type and \ self.parent_type.base_type.scope.needs_gc()) def declare_var(self, name, type, pos, cname = None, visibility = 'private', is_cdef = 0): if is_cdef: # Add an entry for an attribute. if self.defined: error(pos, "C attributes cannot be added in implementation part of" " extension type") if get_special_method_signature(name): error(pos, "The name '%s' is reserved for a special method." % name) if not cname: cname = name entry = self.declare(name, cname, type, pos) entry.visibility = visibility entry.is_variable = 1 self.var_entries.append(entry) if type.is_pyobject: self.has_pyobject_attrs = 1 if visibility not in ('private', 'public', 'readonly'): error(pos, "Attribute of extension type cannot be declared %s" % visibility) if visibility in ('public', 'readonly'): if type.pymemberdef_typecode: self.public_attr_entries.append(entry) if name == "__weakref__": error(pos, "Special attribute __weakref__ cannot be exposed to Python") else: error(pos, "C attribute of type '%s' cannot be accessed from Python" % type) if visibility == 'public' and type.is_extension_type: error(pos, "Non-generic Python attribute cannot be exposed for writing from Python") return entry else: # Add an entry for a class attribute. entry = Scope.declare_var(self, name, type, pos, cname, visibility, is_cdef) entry.is_member = 1 entry.is_pyglobal = 1 # xxx: is_pyglobal changes behaviour in so many places that # I keep it in for now. is_member should be enough # later on entry.namespace_cname = "(PyObject *)%s" % self.parent_type.typeptr_cname if Options.intern_names: entry.interned_cname = self.intern(name) return entry def declare_pyfunction(self, name, pos): # Add an entry for a method. if name in ('__eq__', '__ne__', '__lt__', '__gt__', '__le__', '__ge__'): error(pos, "Special method %s must be implemented via __richcmp__" % name) if name == "__new__": warning(pos, "__new__ method of extension type will change semantics " "in a future version of Pyrex and Cython. Use __cinit__ instead.") name = "__cinit__" entry = self.declare_var(name, py_object_type, pos) special_sig = get_special_method_signature(name) if special_sig: # Special methods get put in the method table with a particular # signature declared in advance. entry.signature = special_sig entry.is_special = 1 else: entry.signature = pymethod_signature entry.is_special = 0 self.pyfunc_entries.append(entry) return entry def lookup_here(self, name): if name == "__new__": name = "__cinit__" return ClassScope.lookup_here(self, name) def declare_cfunction(self, name, type, pos, cname = None, visibility = 'private', defining = 0, api = 0, in_pxd = 0): if get_special_method_signature(name): error(pos, "Special methods must be declared with 'def', not 'cdef'") args = type.args if not args: error(pos, "C method has no self argument") elif not args[0].type.same_as(self.parent_type): error(pos, "Self argument of C method does not match parent type") entry = self.lookup_here(name) if entry: if not entry.is_cfunction: warning(pos, "'%s' redeclared " % name, 0) else: if defining and entry.func_cname: error(pos, "'%s' already defined" % name) #print "CClassScope.declare_cfunction: checking signature" ### if type.same_c_signature_as(entry.type, as_cmethod = 1): pass elif type.compatible_signature_with(entry.type, as_cmethod = 1): if type.optional_arg_count and not type.original_sig.optional_arg_count: # Need to put a wrapper taking no optional arguments # into the method table. wrapper_func_cname = self.mangle(Naming.func_prefix, name) + Naming.no_opt_args wrapper_func_name = name + Naming.no_opt_args if entry.type.optional_arg_count: old_entry = self.lookup_here(wrapper_func_name) old_entry.func_cname = wrapper_func_cname else: entry.func_cname = wrapper_func_cname entry.name = wrapper_func_name entry = self.add_cfunction(name, type, pos, cname or name, visibility) defining = 1 entry.type = type # if type.narrower_c_signature_than(entry.type, as_cmethod = 1): # entry.type = type else: error(pos, "Signature not compatible with previous declaration") else: if self.defined: error(pos, "C method '%s' not previously declared in definition part of" " extension type" % name) entry = self.add_cfunction(name, type, pos, cname or name, visibility) if defining: entry.func_cname = self.mangle(Naming.func_prefix, name) return entry def add_cfunction(self, name, type, pos, cname, visibility): # Add a cfunction entry without giving it a func_cname. entry = ClassScope.add_cfunction(self, name, type, pos, cname, visibility) entry.is_cmethod = 1 return entry def declare_property(self, name, doc, pos): entry = self.declare(name, name, py_object_type, pos) entry.is_property = 1 entry.doc = doc entry.scope = PropertyScope(name, outer_scope = self.global_scope(), parent_scope = self) entry.scope.parent_type = self.parent_type self.property_entries.append(entry) return entry def declare_inherited_c_attributes(self, base_scope): # Declare entries for all the C attributes of an # inherited type, with cnames modified appropriately # to work with this type. def adapt(cname): return "%s.%s" % (Naming.obj_base_cname, base_entry.cname) for base_entry in \ base_scope.inherited_var_entries + base_scope.var_entries: entry = self.declare(base_entry.name, adapt(base_entry.cname), base_entry.type, None) entry.is_variable = 1 self.inherited_var_entries.append(entry) for base_entry in base_scope.cfunc_entries: entry = self.add_cfunction(base_entry.name, base_entry.type, None, adapt(base_entry.cname), base_entry.visibility) entry.is_inherited = 1 def allocate_temp(self, type): return Scope.allocate_temp(self.global_scope(), type) def release_temp(self, cname): return Scope.release_temp(self.global_scope(), cname) class PropertyScope(Scope): # Scope holding the __get__, __set__ and __del__ methods for # a property of an extension type. # # parent_type PyExtensionType The type to which the property belongs def declare_pyfunction(self, name, pos): # Add an entry for a method. signature = get_property_accessor_signature(name) if signature: entry = self.declare(name, name, py_object_type, pos) entry.is_special = 1 entry.signature = signature return entry else: error(pos, "Only __get__, __set__ and __del__ methods allowed " "in a property declaration") return None # Should this go elsewhere (and then get imported)? #------------------------------------------------------------------------------------ classmethod_utility_code = [ """ #include "descrobject.h" static PyObject* __Pyx_Method_ClassMethod(PyObject *method); /*proto*/ """,""" static PyObject* __Pyx_Method_ClassMethod(PyObject *method) { /* It appears that PyMethodDescr_Type is not anywhere exposed in the Python/C API */ /* if (!PyObject_TypeCheck(method, &PyMethodDescr_Type)) { */ if (strcmp(method->ob_type->tp_name, "method_descriptor") == 0) { /* cdef classes */ PyMethodDescrObject *descr = (PyMethodDescrObject *)method; return PyDescr_NewClassMethod(descr->d_type, descr->d_method); } else if (PyMethod_Check(method)) { /* python classes */ return PyClassMethod_New(PyMethod_GET_FUNCTION(method)); } PyErr_Format(PyExc_TypeError, "Class-level classmethod() can only be called on a method_descriptor or instance method."); return NULL; } """ ]
[ "jurgenfd@e0b8d8eb-cb4c-0410-9204-db9c3ed855ff" ]
jurgenfd@e0b8d8eb-cb4c-0410-9204-db9c3ed855ff
6b55090216aeb866ba417c914c071c4a2a7a7054
257bd63361aa846ffdacdc15edaecf84c6364e78
/psou2/pyanal2_Tensorflow/pack1/tensor13_linear3.py
9774a149e61814165285e2e138c00a80426e6f28
[]
no_license
gom4851/hcjeon
86dcfd05ce47a13d066f13fe187d6a63142fb9fe
59a00ca9499f30e50127bb16eb510553e88ace43
refs/heads/master
2020-06-04T23:16:08.632278
2019-01-15T09:54:08
2019-01-15T09:54:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
''' Created on 2018. 12. 13. 시험성적 총점 예측. 독립변수 복수 ''' import tensorflow as tf x1_data = [73., 93., 89., 96., 73.] x2_data = [80., 88., 91., 98., 66.] x3_data = [75., 93., 90., 100., 70.] y_data = [152., 185., 180., 196., 142.] x1 = tf.placeholder(tf.float32) x2 = tf.placeholder(tf.float32) x3 = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) w1 = tf.Variable(tf.random_normal([1])) w2 = tf.Variable(tf.random_normal([1])) w3 = tf.Variable(tf.random_normal([1])) b = tf.Variable(tf.random_normal([1])) h = x1 * w1 + x2 * w2 + x3 * w3 + b cost = tf.reduce_mean(tf.square(h - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.00001) train = optimizer.minimize(cost) sess = tf.Session() sess.run(tf.global_variables_initializer()) for s in range(5000): cost_v, h_v, _ = sess.run([cost, h, train], feed_dict={x1: x1_data, x2: x2_data, x3: x3_data, y: y_data}) if s % 500 == 0: print(s, 'cost : ', cost_v, 'pred : ', h_v)
efbec588a9aeeb513cd86ea9ad278914f7c0bd82
542f898adea1b36d627d4bf437731022f242d2dd
/detectron2/evaluation/fast_eval_api.py
2eb202bd5efa3ec3d366027b1debffc269ae8b17
[ "Apache-2.0" ]
permissive
facebookresearch/detectron2
24bf508e374a98a5e5d1bd4cc96556d5914215f4
80307d2d5e06f06a8a677cc2653f23a4c56402ac
refs/heads/main
2023-08-30T17:00:01.293772
2023-08-25T22:10:24
2023-08-25T22:10:24
206,660,580
27,469
8,047
Apache-2.0
2023-09-13T09:25:57
2019-09-05T21:30:20
Python
UTF-8
Python
false
false
5,078
py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import numpy as np import time from pycocotools.cocoeval import COCOeval from detectron2 import _C logger = logging.getLogger(__name__) class COCOeval_opt(COCOeval): """ This is a slightly modified version of the original COCO API, where the functions evaluateImg() and accumulate() are implemented in C++ to speedup evaluation """ def evaluate(self): """ Run per image evaluation on given images and store results in self.evalImgs_cpp, a datastructure that isn't readable from Python but is used by a c++ implementation of accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure self.evalImgs because this datastructure is a computational bottleneck. :return: None """ tic = time.time() p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = "segm" if p.useSegm == 1 else "bbox" logger.info("Evaluate annotation type *{}*".format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # bottleneck # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == "segm" or p.iouType == "bbox": computeIoU = self.computeIoU elif p.iouType == "keypoints": computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds } # bottleneck maxDet = p.maxDets[-1] # <<<< Beginning of code differences with original COCO API def convert_instances_to_cpp(instances, is_det=False): # Convert annotations for a list of instances in an image to a format that's fast # to access in C++ instances_cpp = [] for instance in instances: instance_cpp = _C.InstanceAnnotation( int(instance["id"]), instance["score"] if is_det else instance.get("score", 0.0), instance["area"], bool(instance.get("iscrowd", 0)), bool(instance.get("ignore", 0)), ) instances_cpp.append(instance_cpp) return instances_cpp # Convert GT annotations, detections, and IOUs to a format that's fast to access in C++ ground_truth_instances = [ [convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds] for imgId in p.imgIds ] detected_instances = [ [convert_instances_to_cpp(self._dts[imgId, catId], is_det=True) for catId in p.catIds] for imgId in p.imgIds ] ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds] if not p.useCats: # For each image, flatten per-category lists into a single list ground_truth_instances = [[[o for c in i for o in c]] for i in ground_truth_instances] detected_instances = [[[o for c in i for o in c]] for i in detected_instances] # Call C++ implementation of self.evaluateImgs() self._evalImgs_cpp = _C.COCOevalEvaluateImages( p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances ) self._evalImgs = None self._paramsEval = copy.deepcopy(self.params) toc = time.time() logger.info("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic)) # >>>> End of code differences with original COCO API def accumulate(self): """ Accumulate per image evaluation results and store the result in self.eval. Does not support changing parameter settings from those used by self.evaluate() """ logger.info("Accumulating evaluation results...") tic = time.time() assert hasattr( self, "_evalImgs_cpp" ), "evaluate() must be called before accmulate() is called." self.eval = _C.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp) # recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections self.eval["recall"] = np.array(self.eval["recall"]).reshape( self.eval["counts"][:1] + self.eval["counts"][2:] ) # precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X # num_area_ranges X num_max_detections self.eval["precision"] = np.array(self.eval["precision"]).reshape(self.eval["counts"]) self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"]) toc = time.time() logger.info("COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic))
958c86a3c3755e7c41208db86b0cfacf371bd9fc
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_028/ch40_2020_05_04_14_38_41_592304.py
bb131b1a8c53321e179a9a8c32bbde7f8aaea50d
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
def soma_valores(lista): i = 0 soma = 0 while i < len(lista): soma += lista[i] i += 1 return soma print(soma_valores(lista))
9cef99f3e88b40bf782aea1a88cb3f12a81a1997
3e713a67f370d1cc1ba0882159a03b673bd22f9a
/PYTHON/[hackerrank]- Power - Mod Power.py
536c0081d1c4363908466e17fb5e5605f36cc315
[]
no_license
s-abhishek2399/competitive-progamming--PYTHON
739797ffea0b92cc2781559e7d4eed1d274678a6
29f9e63cfc05c01fa605c14fb8a3a55920296d43
refs/heads/master
2023-03-08T02:40:00.962109
2021-02-16T15:07:52
2021-02-16T15:07:52
328,732,345
2
0
null
null
null
null
UTF-8
Python
false
false
157
py
# Enter your code here. Read input from STDIN. Print output to STDOUT n1=int(input()) n2=int(input()) n3=int(input()) print(pow(n1,n2)) print(pow(n1,n2,n3))
8bb28d524fdd7f33329d9757f1e2b63eaa1be891
496bb2067635e391b60d645700e419ec0ae28a9d
/firmware/legacy/stereoVisionMintsFinal.py
908f5b0bc3d23a2d5819591b1bd1bf3580b2ad69
[]
no_license
18030410071/stereoVisionCalibration
c4b4518fcb010390d8d4c0df309b250af14bdf72
394968c39919aa56530c8c877eae6a1d5e0521cc
refs/heads/master
2022-02-16T18:23:47.944983
2019-08-22T15:47:02
2019-08-22T15:47:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,861
py
import numpy as np import cv2 import glob import argparse def resizeImage(imgOrig,scalePercent): width = int(imgOrig.shape[1] * scalePercent / 100) height = int(imgOrig.shape[0] * scalePercent / 100) dim = (width, height) Orig = cv2.resize(imgOrig, dim, interpolation = cv2.INTER_AREA) return(Orig); class StereoCalibration(object): def __init__(self, filepath): # termination criteria self.criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) self.criteria_cal = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-5) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) self.objp = np.zeros((6*9, 3), np.float32) self.objp[:, :2] = np.mgrid[0:6, 0:9].T.reshape(-1, 2) # Arrays to store object points and image points from all the images. self.objpoints = [] # 3d point in real world space self.imgpoints_l = [] # 2d points in image plane. self.imgpoints_r = [] # 2d points in image plane. # Additions by Lakitha # Have a Generic Size self.img_size = [] self.rotational_matrix = [] self.translational_matrix = [] self.img_size = [] self.leftImagesAll = [] self.rightImagesAll = [] self.corners_l = [] self.corners_r = [] self.cal_path = filepath self.read_images(self.cal_path) def read_images(self, cal_path): print("Reading Images") images_right = glob.glob(cal_path + 'thermal/*.jpg') images_left = glob.glob(cal_path + 'webCam/*.jpg') images_left.sort() images_right.sort() for i, fname in enumerate(images_right): img_l = resizeImage(cv2.imread(images_left[i]),100) img_r = resizeImage(cv2.imread(images_right[i]),100) gray_l = cv2.cvtColor(img_l, cv2.COLOR_BGR2GRAY) gray_r = cv2.cvtColor(img_r, cv2.COLOR_BGR2GRAY) # Find the chess board corners ret_l, corners_l = cv2.findChessboardCorners(gray_l, (6, 9), None) ret_r, corners_r = cv2.findChessboardCorners(gray_r, (6, 9), None) # imgCor = cv2.drawChessboardCorners(gray_l, (6,9), corners_l,ret_l) # # cv2.imshow('left',imgCor) # cv2.waitKey(5000) # # imgCor = cv2.drawChessboardCorners(gray_r, (6,9), corners_r,ret_r) # print(imgCor) # cv2.imshow('left',imgCor) # cv2.waitKey(5000) # If found, add object points, image points (after refining them) self.objpoints.append(self.objp) if (ret_l is True) and (ret_r is True): self.leftImagesAll.append(img_l) self.rightImagesAll.append(img_r) self.corners_l.append(corners_l) self.corners_r.append(corners_r) rt = cv2.cornerSubPix(gray_l, corners_l, (11, 11), (-1, -1), self.criteria) self.imgpoints_l.append(corners_l) # Draw and display the corners ret_l = cv2.drawChessboardCorners(img_l, (6, 9), corners_l, ret_l) cv2.imshow(images_left[i], img_l) # cv2.waitKey(10000) # if ret_r is True: rt = cv2.cornerSubPix(gray_r, corners_r, (11, 11), (-1, -1), self.criteria) self.imgpoints_r.append(corners_r) # Draw and display the corners ret_r = cv2.drawChessboardCorners(img_r, (6, 9), corners_r, ret_r) cv2.imshow(images_right[i], img_r) # cv2.waitKey(10000) img_shape = gray_l.shape[::-1] self.image_size = img_shape cv2.waitKey(0) print(self.image_size) print(ret_l) print(ret_r) print("Here") rt, self.M1, self.d1, self.r1, self.t1 = cv2.calibrateCamera( self.objpoints, self.imgpoints_l, img_shape, None, None) rt, self.M2, self.d2, self.r2, self.t2 = cv2.calibrateCamera( self.objpoints, self.imgpoints_r, img_shape, None, None) self.camera_model = self.stereo_calibrate(img_shape) def stereo_calibrate(self, dims): flags = 0 flags |= cv2.CALIB_FIX_INTRINSIC # flags |= cv2.CALIB_FIX_PRINCIPAL_POINT flags |= cv2.CALIB_USE_INTRINSIC_GUESS flags |= cv2.CALIB_FIX_FOCAL_LENGTH # flags |= cv2.CALIB_FIX_ASPECT_RATIO flags |= cv2.CALIB_ZERO_TANGENT_DIST # flags |= cv2.CALIB_RATIONAL_MODEL # flags |= cv2.CALIB_SAME_FOCAL_LENGTH # flags |= cv2.CALIB_FIX_K3 # flags |= cv2.CALIB_FIX_K4 # flags |= cv2.CALIB_FIX_K5 print("M1:") print(self.M1) print("----------------") print("M2:") print(self.M2) print("----------------") print(dims) stereocalib_criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 100, 1e-5) ret, M1, d1, M2, d2, R, T, E, F = cv2.stereoCalibrate( self.objpoints, self.imgpoints_l, self.imgpoints_r, self.M1, self.d1, self.M2, self.d2, dims, criteria=stereocalib_criteria, flags=flags) print("M1Result:") print(M1) print("----------------") print("M2Result:") print(M2) print("----------------") print("-------------------") print('Intrinsic_mtx_1', M1) print('dist_1', d1) print('Intrinsic_mtx_2', M2) print('dist_2', d2) print('R', R) print('T', T) print('E', E) print('F', F) print('') self.rotational_matrix = R self.translational_matrix = T camera_model = dict([('M1', M1), ('M2', M2), ('dist1', d1), ('dist2', d2), ('rvecs1', self.r1), ('rvecs2', self.r2), ('R', R), ('T', T), ('E', E), ('F', F)]) cv2.destroyAllWindows() return camera_model; def four_point_transform(image, pts): # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # return the warped image return warped if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('filepath', help='String Filepath') args = parser.parse_args() cal_data = StereoCalibration(args.filepath) print("--------------------") print(cal_data.corners_l[0][0]) print(cal_data.corners_r[0][0]) # print(cal_data.M1) # print(cal_data.d1) # # # # (leftRectification, rightRectification, leftProjection, rightProjection, # dispartityToDepthMap, leftROI, rightROI) = cv2.stereoRectify( # cal_data.M1,cal_data.d1, # cal_data.M2,cal_data.d2, # cal_data.image_size, # cal_data.rotational_matrix, # cal_data.translational_matrix, # None, # None, # None, # None, # None, # cv2.CALIB_ZERO_DISPARITY, 0) # # leftMapX, leftMapY = cv2.initUndistortRectifyMap( # cal_data.M1, cal_data.d1, leftRectification, # leftProjection, cal_data.image_size, cv2.CV_32FC1) # rightMapX, rightMapY = cv2.initUndistortRectifyMap( # cal_data.M2, cal_data.d2, rightRectification, # rightProjection, cal_data.image_size, cv2.CV_32FC1) # # # # ## Get Images # # for i, fname in enumerate(cal_data.leftImagesAll): # # fixedLeft = cv2.remap(cal_data.leftImagesAll[i], leftMapX, leftMapY,cv2.INTER_LINEAR) # fixedRight = cv2.remap(cal_data.rightImagesAll[i], rightMapX, rightMapY,cv2.INTER_LINEAR) # # cv2.imshow("Fixed Left", fixedLeft) # cv2.waitKey(1000) # # cv2.imshow("Fixed Right", fixedRight) # cv2.waitKey(1000) # # # # # stereoMatcher = cv2.StereoBM_create() # # grayLeft = cv2.cvtColor(fixedLeft, cv2.COLOR_BGR2GRAY) # grayRight = cv2.cvtColor(fixedRight, cv2.COLOR_BGR2GRAY) # depth = stereoMatcher.compute(grayLeft, grayRight)
a9247a4ab26d1108aacf1f62fa5a92520e837613
eb937d6c7e10b451390007868df8de4912b1d098
/AutoInerface_project/Day11_Pytest/plugins/test_plugin_06.py
5dcecf8909521ba54473980deb165062b3000fdf
[]
no_license
chenbaoshun/AutomationTesting
01bbc3dc84c5ce26a75909a60bb304f7a06253b5
98882c3599d0eb9ac84e74193c584ba7b78ecfab
refs/heads/master
2023-03-14T01:44:07.163998
2021-02-24T15:35:01
2021-02-24T15:35:01
290,236,883
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @File : test_plugin_06.py # @Author : Baoshun.Chin # @Time : 2021-01-07 22:04 # @Site : # @version : V1.0 import pytest @pytest.mark.dependency() def test_a(): assert False @pytest.mark.dependency() def test_b(): assert True @pytest.mark.dependency(depends=['test_a']) def test_c(): pass @pytest.mark.dependency(depends=['test_b']) def test_d(): pass
7b181876bac13acb503e5f2cfa17bd79be20980c
36978086cf5f34e16ceac7c2649b49ccb4c5ac90
/config/munin/mongo_indexsize
15898bb14f1297f7e488deac7f1647d64ca39769
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
aragilar/NewsBlur
04e754093cd52bc2d9957ea767747d6d604dfbba
64ecd83bf4cea175f1bdeeb6e475fd5cadb679c9
refs/heads/master
2021-08-28T17:39:50.734396
2013-06-06T01:52:20
2013-06-06T01:52:37
10,520,281
0
0
MIT
2021-08-13T05:35:33
2013-06-06T06:26:24
Objective-C
UTF-8
Python
false
false
3,371
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: set sts=4 sw=4 encoding=utf-8 # Copyright (c) 2010, Rene Jochum # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Rene Jochum nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from pymongo import Connection import os settings_host = os.environ.get("host", "127.0.0.1") settings_port = 27017 settings_db = 'newsblur' def getCollstats(): global settings_host, settings_port, settings_db, settings_user, settings_password print locals(), settings_host, settings_port if settings_user and settings_password: settings_host = "%s:%s@%s" % (settings_user, settings_password, settings_host) con = Connection(settings_host, int(settings_port), slave_okay=True) db = con[settings_db] for coll in db.collection_names(): if coll.startswith('system.'): continue stats = db.command("collstats", coll) yield ("%s_size" % coll.replace('.', '_'), long(stats['totalIndexSize']),) con.disconnect() def doData(): for coll, stats in getCollstats(): print "%s.value %s" % (coll, stats) def doConfig(): print "graph_title MongoDB collection index sizes" print "graph_args --base 1024 -l 0" print "graph_vlabel Kb" print "graph_category MongoDB" print "graph_total total" for k,v in getCollstats(): print "%s.label %s" % (k, k) print "%s.min 0" % k print "%s.draw LINE1" % k if __name__ == "__main__": from sys import argv from os import environ # Could be done by a for loop # but i think if's are faster if 'HOST' in environ: settings_host = environ['HOST'] if 'PORT' in environ: settings_port = environ['PORT'] if 'DB' in environ: settings_db = environ['DB'] if 'user' in environ: settings_user = environ['user'] if 'password' in environ: settings_password = environ['password'] print locals() if len(argv) > 1 and argv[1] == "config": doConfig() else: doData()
35e0c88ae6ffeb513481031097e2e553bf772f79
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-network/azure/mgmt/network/v2018_11_01/models/application_gateway_probe_py3.py
60baab8984853cbcc41461da947ca52283319939
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
4,676
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sub_resource_py3 import SubResource class ApplicationGatewayProbe(SubResource): """Probe of the application gateway. :param id: Resource ID. :type id: str :param protocol: The protocol used for the probe. Possible values are 'Http' and 'Https'. Possible values include: 'Http', 'Https' :type protocol: str or ~azure.mgmt.network.v2018_11_01.models.ApplicationGatewayProtocol :param host: Host name to send the probe to. :type host: str :param path: Relative path of probe. Valid path starts from '/'. Probe is sent to <Protocol>://<host>:<port><path> :type path: str :param interval: The probing interval in seconds. This is the time interval between two consecutive probes. Acceptable values are from 1 second to 86400 seconds. :type interval: int :param timeout: the probe timeout in seconds. Probe marked as failed if valid response is not received with this timeout period. Acceptable values are from 1 second to 86400 seconds. :type timeout: int :param unhealthy_threshold: The probe retry count. Backend server is marked down after consecutive probe failure count reaches UnhealthyThreshold. Acceptable values are from 1 second to 20. :type unhealthy_threshold: int :param pick_host_name_from_backend_http_settings: Whether the host header should be picked from the backend http settings. Default value is false. :type pick_host_name_from_backend_http_settings: bool :param min_servers: Minimum number of servers that are always marked healthy. Default value is 0. :type min_servers: int :param match: Criterion for classifying a healthy probe response. :type match: ~azure.mgmt.network.v2018_11_01.models.ApplicationGatewayProbeHealthResponseMatch :param provisioning_state: Provisioning state of the backend http settings resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :type provisioning_state: str :param name: Name of the probe that is unique within an Application Gateway. :type name: str :param etag: A unique read-only string that changes whenever the resource is updated. :type etag: str :param type: Type of the resource. :type type: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'protocol': {'key': 'properties.protocol', 'type': 'str'}, 'host': {'key': 'properties.host', 'type': 'str'}, 'path': {'key': 'properties.path', 'type': 'str'}, 'interval': {'key': 'properties.interval', 'type': 'int'}, 'timeout': {'key': 'properties.timeout', 'type': 'int'}, 'unhealthy_threshold': {'key': 'properties.unhealthyThreshold', 'type': 'int'}, 'pick_host_name_from_backend_http_settings': {'key': 'properties.pickHostNameFromBackendHttpSettings', 'type': 'bool'}, 'min_servers': {'key': 'properties.minServers', 'type': 'int'}, 'match': {'key': 'properties.match', 'type': 'ApplicationGatewayProbeHealthResponseMatch'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, *, id: str=None, protocol=None, host: str=None, path: str=None, interval: int=None, timeout: int=None, unhealthy_threshold: int=None, pick_host_name_from_backend_http_settings: bool=None, min_servers: int=None, match=None, provisioning_state: str=None, name: str=None, etag: str=None, type: str=None, **kwargs) -> None: super(ApplicationGatewayProbe, self).__init__(id=id, **kwargs) self.protocol = protocol self.host = host self.path = path self.interval = interval self.timeout = timeout self.unhealthy_threshold = unhealthy_threshold self.pick_host_name_from_backend_http_settings = pick_host_name_from_backend_http_settings self.min_servers = min_servers self.match = match self.provisioning_state = provisioning_state self.name = name self.etag = etag self.type = type
0b4f9c988a9ef428a461575ec540592e80e59fd4
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/squiggles/space_mappings_test.py
f5d551b4c3ff6cc51b21faff408be9d498e03d92
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
10,598
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for space_mappings.""" import math from absl.testing import absltest import numpy as np from squiggles import space_mappings class DerivsToPathPointsTest(absltest.TestCase): def test_shape(self): dummy_input = np.zeros(shape=(11, 2, 5), dtype=np.float32) expected_output_shape = (11, 17, 2) output = space_mappings.derivs_to_path_points(dummy_input, num_points=17) self.assertSequenceEqual(expected_output_shape, output.shape) def test_entries(self): exp_derivs = np.ones(shape=(16,), dtype=np.float32) sin_derivs = np.array(4 * [1, 0, -1, 0], dtype=np.float32) input_array = np.stack([exp_derivs, sin_derivs], axis=0) input_array = input_array[np.newaxis, :] output = space_mappings.derivs_to_path_points(input_array, num_points=7) expected_output = np.array( [[ [math.exp(-3) - 1, math.sin(-3)], # autoformat: \n [math.exp(-2) - 1, math.sin(-2)], [math.exp(-1) - 1, math.sin(-1)], [math.exp(0) - 1, math.sin(0)], [math.exp(1) - 1, math.sin(1)], [math.exp(2) - 1, math.sin(2)], [math.exp(3) - 1, math.sin(3)] ]], dtype=np.float32) np.testing.assert_allclose(expected_output, output, atol=1e-6, rtol=1e-6) def _sine_net_to_path_points_test_function_to_approximate(t): """Function whose Fourier series over [-1, 1] converges reasonably quickly.""" # The Fourier series converges reasonably quickly on the interval [-1, 1] # since # # f(1) = f(-1) # f'(1) = f'(-1) # f''(1) = f''(-1) # f'''(1) = f'''(-1). # # Multiplying by (2 - t) makes the function neither even nor odd, ensuring # that the Fourier series will contain both sine and cosine terms. Since we # use phases rather than separate sine and cosine terms, this ensures the # phases will be nontrivial. return (1 - t)**4 * (1 + t)**4 * (2 - t) class SinNetToPathPointsTest(absltest.TestCase): def test_shape(self): dummy_input = np.zeros(shape=(11, 31, 4), dtype=np.float32) expected_output_shape = (11, 17, 2) output = space_mappings.sine_net_to_path_points(dummy_input, num_points=17) self.assertSequenceEqual(expected_output_shape, output.shape) def test_entries_x(self): num_points = 7 t_scale = 2 # `const_coeff`, `x_amplitudes` and `phases` construct the (first few terms # of the) Fourier series for # _sine_net_to_path_points_test_function_to_approximate. They were computed # using SageMath; for the computations and verifications see the notebook at # https://sagecell.sagemath.org/?z=eJydk9tugzAMhu_zFNZuGrf0AKp2x5OgDmXUbNEgyZKgtW8_F2gp0jpN44IEH77fJk4NOThNFX3pQLKQcp0mkGICMoU1nPBlD8vLfnXbZ70dDyiE6doykm8DQ7KdCNqUlaW6vnwX9aa2ndfky0C8hJLdNPh1pclEqZmaItTWgwZtwCvzRvIGxYOobPiNyO7_ME2IQw5D_8LcIWwhE0K3zvoIDHNnUAGMm7ds3EZ5r85ysiZwjGdHObvqxqr4vMd5U7ecyfpTjlCta3TsjjQmhU8fZb92ytOdIvIPmOwTFVE4r7mbu_6vpgnOSu5dhV6lF5dObzPkI-8LraIy2ay9O4ERNuQzSLrGzuS4stC1spjkCn3gkWKelHrFx7bkWeTXiSMHDAeggEfP41PGZMySpwTGkR4tlW2szxeejosEWuU_yOdP9ollWPRScc3Df70FY_Br09ECBX4DtRYGjQ==&lang=sage&interacts=eJyLjgUAARUAuQ== const_coeff = 256 / 315 x_amplitudes = np.array([ 1.03251546e+00, 2.01003369e-01, 1.93362046e-02, 3.75423077e-03, 1.08763061e-03, 4.04024912e-04, 1.77361643e-04, 8.77096053e-05, 4.74116246e-05, 2.74572061e-05, 1.67990298e-05, 1.07490437e-05, 7.13888030e-06, 4.89272148e-06, 3.44479004e-06, 2.48254596e-06, 1.82592189e-06, 1.36732661e-06, 1.04039452e-06, 8.03023841e-07 ], dtype=np.float32) y_amplitudes = np.zeros_like(x_amplitudes) phases = np.array([ 1.72361702, 1.99433456, -1.53750914, 1.32483942, 4.26165659, 0.9658349, 3.98821988, 0.75230197, 3.81770253, 0.61345077, 3.70270494, 0.51679847, 3.62042536, 0.4459663, 3.55884523, 0.39196216, 3.51111752, 0.34948904, 3.47308523, 0.31524202 ], dtype=np.float32) radian_frequencies = np.array([ (i + 1) * math.pi for i in range(len(phases)) ]) input_array = np.stack( [radian_frequencies, phases, x_amplitudes, y_amplitudes], axis=1) input_array = input_array[np.newaxis, :] expected_output_x = np.array([ _sine_net_to_path_points_test_function_to_approximate(t) for t in np.linspace(-1.0, 1.0, 7) ], dtype=np.float32) expected_output_y = np.zeros_like(expected_output_x) expected_output = np.stack([expected_output_x, expected_output_y], axis=1) expected_output = expected_output[np.newaxis, :] # The const_coeff could theoretically have been included as a coefficient of # sin(0*t + pi/2), but that was more effort than it was worth. output = ( space_mappings.sine_net_to_path_points( input_array, num_points=num_points, t_scale=t_scale) + np.array([const_coeff, 0.0])) np.testing.assert_allclose(expected_output, output, atol=1e-5) class RescalePointsTest(absltest.TestCase): def test_shape(self): dummy_input = np.zeros(shape=(7, 11, 2), dtype=np.float32) expected_output_shape = (7, 11, 2) output = space_mappings.rescale_points(dummy_input) self.assertSequenceEqual(expected_output_shape, output.shape) def test_x_dominates(self): input_array = np.array([[(-1, 0), (0, 0), (1, 1)]], dtype=np.float32) output = space_mappings.rescale_points(input_array, margin=0.0) # pytype: disable=wrong-arg-types # jax-ndarray # Scale everything by factor of 0.5. (Also translate.) expected_output = np.array([[(0, 0.25), (0.5, 0.25), (1, 0.75)]], dtype=np.float32) np.testing.assert_allclose(expected_output, output) def test_y_dominates(self): input_array = np.array([[(0, 0), (0, 2), (1, 1)]], dtype=np.float32) output = space_mappings.rescale_points(input_array, margin=0.0) # pytype: disable=wrong-arg-types # jax-ndarray # Scale everything by factor of 0.5. (Also translate.) expected_output = np.array([[(0.25, 0), (0.25, 1), (0.75, 0.5)]], dtype=np.float32) np.testing.assert_allclose(expected_output, output) def test_margin(self): input_array = np.array([[(0, 0), (1, 1), (2, 2)]], dtype=np.float32) output = space_mappings.rescale_points(input_array) # default margin is 0.1 # pytype: disable=wrong-arg-types # jax-ndarray # Scale everything to fit inside [0.1, 0.9] x [0.1, 0.9]. expected_output = np.array([[(0.1, 0.1), (0.5, 0.5), (0.9, 0.9)]], dtype=np.float32) np.testing.assert_allclose(expected_output, output) def test_two_curves(self): """Distinct items in a batch should scale independently.""" input_array = np.array( [ [(0, 0), (0.5, 0), (1, 1)], # [(0, 0), (1, 1), (2, 2)] ], dtype=np.float32) output = space_mappings.rescale_points(input_array, margin=0.0) # pytype: disable=wrong-arg-types # jax-ndarray expected_output = np.array( [ [(0, 0), (0.5, 0), (1, 1)], # [(0, 0), (0.5, 0.5), (1, 1)] ], dtype=np.float32) np.testing.assert_allclose(expected_output, output) class GaussianActivationTest(absltest.TestCase): def test_shape(self): dummy_input = np.zeros(shape=(3, 5, 7, 1), dtype=np.float32) expected_output_shape = (3, 5, 7, 1) output = space_mappings.gaussian_activation(dummy_input) self.assertSequenceEqual(expected_output_shape, output.shape) def test_entries(self): input_array = np.array([0.0, 1 / 11, -1 / 11, -1.0, 1.0], dtype=np.float32) output = space_mappings.gaussian_activation(input_array, spread=1 / 11) expected_output = np.array([1.0] + 2 * [np.exp(-1)] + 2 * [np.exp(-121.0)]) np.testing.assert_allclose(expected_output, output, atol=1e-6) def test_computed_spread(self): input_array = ( np.random.RandomState(seed=328773902) # Make test deterministic .standard_normal(size=(3, 13, 7, 2)) # .astype(np.float32, casting='same_kind')) expected_output = np.exp(-np.square(13 * input_array)) output = space_mappings.gaussian_activation( input_array, spread=None ) # When spread is *explicitly* set to None, it defaults to 1 / sidelength. np.testing.assert_allclose(expected_output, output, atol=1e-6) class NearestPointDistanceTest(absltest.TestCase): def test_one_point(self): one_point_input = np.array([[(0.0, 1.0)]], dtype=np.float32) expected_output = np.array([[ [1.0, 0.0], # [math.sqrt(2.0), 1.0] ]]) output = space_mappings.nearest_point_distance( one_point_input, x_pixels=2, y_pixels=2) np.testing.assert_allclose(expected_output, output) def test_two_points(self): two_points_input = np.array([[(0, 0), (0.5, 1.0)]], dtype=np.float32) expected_output = np.array([[ [0.0, 0.5], # [1.0, 0.5] ]]) output = space_mappings.nearest_point_distance( two_points_input, x_pixels=2, y_pixels=2) np.testing.assert_allclose(expected_output, output) def test_shape(self): dummy_input = np.zeros(shape=(17, 19, 2), dtype=np.float32) expected_output_shape = (17, 11, 13) output = space_mappings.nearest_point_distance( dummy_input, x_pixels=11, y_pixels=13) self.assertSequenceEqual(expected_output_shape, output.shape) class CoordsToPixelsTest(absltest.TestCase): def test_two_points(self): two_points_input = np.array([[(0, 0), (0.5, 1.0)]], dtype=np.float32) expected_output = np.array( [[ [[1.0], [0.36787944]], # [[0.01831563888], [0.36787944]] ]], dtype=np.float32) output = space_mappings.coords_to_pixels( two_points_input, 2, 2, spread=1 / 2) np.testing.assert_allclose(expected_output, output) if __name__ == '__main__': absltest.main()
e6eba346ebf55540f84c30d63ab8d3f50f3fdb65
96e0dd08563b1f579992c14207d103ee80222b1b
/Algorithm-master/find_max_crossing_subarray_brute_force.py
f9d6443d36f700b3418debb05985ef52be6aee92
[]
no_license
tonygodspeed/pytest
4030e21f3206e3c5cb58aac870e3a1a57cd6943d
2e87b91c148ff6966096bb8b197c0a84f5a1e7e2
refs/heads/master
2020-04-02T13:14:20.811887
2018-10-24T09:00:57
2018-10-24T09:00:57
154,472,992
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
def find_max_subarray(A, low, high): left = 0 right = 0 sum = float("-inf") for i in xrange(low, high): current_sum = 0 for j in xrange(i, high): current_sum += A[j] if sum < current_sum: sum = current_sum left = i right = j return (left, right, sum) A = [0, -1, 3, -4, 6, -1, 4] print find_max_subarray(A, 0, 7)
b011d6a3cdd94bed52a26b5f0ccaf26cf8e75541
9e271a3bc1bf388d82bc5a01d275d910c00f315c
/event/templatetags/event_tags.py
78506192f1ce6a67fb4e2104e5a7dc4ca144e7cb
[ "MIT" ]
permissive
kthaisociety/website
36f11b704f9c38414e0999b55db4513444b53f9e
4c4efb8a93218ae128d203b15c4340f90fe9f6a6
refs/heads/master
2023-08-09T19:44:16.968356
2023-05-20T20:33:05
2023-05-20T20:33:05
218,593,606
2
3
MIT
2023-05-20T20:33:06
2019-10-30T18:17:10
Python
UTF-8
Python
false
false
626
py
from django import template from django.utils import timezone from event.consts import SCHEDULE_EMOJIS from event.enums import ScheduleType register = template.Library() ctz = timezone.get_current_timezone() @register.filter def display_clock(time: timezone.datetime): time = time.astimezone(ctz) base = int("1F54F", 16) hour = time.hour % 12 if hour == 0: hour = 12 return chr(base + hour) @register.filter def one_year(time: timezone.datetime): return time.replace(year=time.year - 1) @register.filter def schedule_emoji(type: ScheduleType): return SCHEDULE_EMOJIS.get(type, "")
5c68cc918c51596991219a74028a7f98ead9732c
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_18481.py
6952ed857165fc15e31ad3ccc712f250d5d2242b
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
# Unix cat function (cat * > merged.txt) in Python? import os os.system("cd mydir;cat * &gt; merged.txt")
32447f30f4cc21c660188aee5e87920ec6663c17
59a688e68421794af64bfe69a74f64b2c80cd79d
/utils_all.py
932ceb655f16948c0aec5628b7ec1358379f78e7
[]
no_license
hearues-zueke-github/python_programs
f23469b306e057512aadecad0ca0a02705667a15
d24f04ca143aa93f172210a4b9dfdd9bf1b79a15
refs/heads/master
2023-07-26T00:36:56.512635
2023-07-17T12:35:16
2023-07-17T12:35:16
117,093,746
6
0
null
null
null
null
UTF-8
Python
false
false
1,666
py
import datetime import string from time import time import numpy as np from PIL import Image, ImageTk from tkinter import Tk, Label, BOTH from tkinter.ttk import Frame, Style all_symbols_16 = np.array(list("0123456789ABCDEF")) def get_random_str_base_16(n): l = np.random.randint(0, 16, (n, )) return "".join(all_symbols_16[l]) all_symbols_64 = np.array(list(string.ascii_lowercase+string.ascii_uppercase+string.digits+"-_")) def get_random_str_base_64(n): l = np.random.randint(0, 64, (n, )) return "".join(all_symbols_64[l]) def get_date_time_str_full(): dt = datetime.datetime.now() dt_params = (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond) return "Y{:04}_m{:02}_d{:02}_H{:02}_M{:02}_S{:02}_f{:06}".format(*dt_params) def get_date_time_str_full_short(): dt = datetime.datetime.now() dt_params = (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond) return "{:04}_{:02}_{:02}_{:02}_{:02}_{:02}_{:06}".format(*dt_params) def time_measure(f, args): start_time = time() ret = f(*args) end_time = time() diff_time = end_time-start_time return ret, diff_time class ShowImg(Frame, object): def __init__(self, img): parent = Tk() Frame.__init__(self, parent) self.pack(fill=BOTH, expand=1) label1 = Label(self) label1.photo= ImageTk.PhotoImage(img) label1.config(image=label1.photo) label1.pack(fill=BOTH, expand=1) parent.mainloop() def int_sqrt(n): x_prev = n x_now = (n//1+1)//2 while x_now<x_prev: t = (n//x_now+x_now)//2 x_prev = x_now x_now = t return x_now def get_current_datetime_str(): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
355f9aba0beb6cce657ff0a0adfe78d8f056baeb
07622a0fb38e843ab0eef4f69bb8fb25d107c06d
/pretrained_mol_sim/Theano-master/theano/tensor/tests/test_type_other.py
436dcdb243a457abb91f7885ffe9150030f48544
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
andreeadeac22/graph_coattention
fa59d77252625e4bee1cb9670e4a0fd0fec98135
23781fedaa942ca5614054f965cb7b6543e533fa
refs/heads/master
2023-08-08T01:51:51.368457
2020-02-19T04:56:59
2020-02-19T04:56:59
207,414,336
15
4
MIT
2023-07-22T15:47:39
2019-09-09T22:13:34
Python
UTF-8
Python
false
false
1,424
py
""" This file don't test everything. It only test one past crash error.""" from __future__ import absolute_import, print_function, division import theano from theano.gof import Constant from theano.tensor.type_other import MakeSlice, make_slice, NoneTypeT, NoneConst def test_make_slice_merge(): # In the past, this was crahsing during compilation. i = theano.tensor.iscalar() s1 = make_slice(0, i) s2 = make_slice(0, i) f = theano.function([i], [s1, s2]) nodes = f.maker.fgraph.apply_nodes assert len([n for n in nodes if isinstance(n.op, MakeSlice)]) == 1 theano.printing.debugprint(f) def test_none_Constant(): """ Tests equals We had an error in the past with unpickling """ o1 = Constant(NoneTypeT(), None, name='NoneConst') o2 = Constant(NoneTypeT(), None, name='NoneConst') assert o1.equals(o2) assert NoneConst.equals(o1) assert o1.equals(NoneConst) assert NoneConst.equals(o2) assert o2.equals(NoneConst) # This trigger equals that returned the wrong answer in the past. import six.moves.cPickle as pickle import theano from theano import tensor x = tensor.vector('x') y = tensor.argmax(x) kwargs = {} # We can't pickle DebugMode if theano.config.mode in ["DebugMode", "DEBUG_MODE"]: kwargs = {'mode': 'FAST_RUN'} f = theano.function([x], [y], **kwargs) pickle.loads(pickle.dumps(f))
d6172bb361027fd1a364a8217aeb5faa9291df2f
2584c50ff47765db9df565a2254f762a15821fe0
/relationshipmvt/app/forms.py
77fae4641a90bdd6dc4ef45ae365ba6399268ecc
[]
no_license
vipuldhandre/Django
f75cb135761e54eadec57c59c052f676eae1469e
51db8a59e068deb855e39c8bcc79e819b135f7d8
refs/heads/master
2020-10-01T19:50:11.317032
2020-01-13T17:00:19
2020-01-13T17:00:19
227,611,615
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
from django.forms import ModelForm from app.models import (Company,Languages,Programmer) class ProgrammerForm(ModelForm): class Meta: model = Programmer fields = '__all__' # or ['pname','company','languages']
0e493ff5100b18ede19dccc8f1f910fcdfea6413
75b289e20c24c07b64a89935f3f671d19b15d387
/0x02-python-import_modules/100-my_calculator.py
cb22700f9ceae5482fd430d778134408e6c6c0e4
[]
no_license
luroto/holbertonschool-higher_level_programming
33c5a2c3b323e89391b9e110da846876085f3b8e
63efcc1f91207dee9fc095884551333b91674587
refs/heads/master
2021-07-08T12:17:25.378993
2020-09-02T05:20:41
2020-09-02T05:20:41
184,124,993
0
0
null
null
null
null
UTF-8
Python
false
false
786
py
#!/usr/bin/python3 if __name__ == "__main__": from sys import argv from calculator_1 import add, sub, mul, div total = len(argv) if total != 4: print("Usage: ./100-my_calculator.py <a> <operator> <b>") exit(1) opera = argv[2] if opera != "+" and opera != "-" and opera != "*" and opera != "/": print("Unknown operator. Available operators: +, -, * and /") exit(1) a = int(argv[1]) b = int(argv[3]) if opera == "+": print("{:d} + {:d} = {:d}".format(a, b, add(a, b))) if opera == "-": print("{:d} - {:d} = {:d}".format(a, b, sub(a, b))) if opera == "*": print("{:d} * {:d} = {:d}".format(a, b, mul(a, b))) if opera == "/": print("{:d} / {:d} = {:d}".format(a, b, div(a, b)))
bf4c983ab86fc148223b793eef9b2d6247bb60e6
f7a718425de1447836b547f831a120937f1fcf40
/plumbum/core.py
94ae4b1f55d439ace21402d8d93e42a6468797b5
[ "BSD-3-Clause" ]
permissive
coyotevz/plumbum-old-1
ad8ce697ffb4cbd0a6f238f66a1c546800e47024
c0f769ca525298ab190592d0997575d917a4bed4
refs/heads/master
2021-01-20T10:50:32.516766
2016-11-18T04:20:32
2016-11-18T04:20:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,879
py
# -*- coding: utf-8 -*- __all__ = ['Component', 'ExtensionPoint', 'implements', 'Interface', 'PlumbumBaseError', 'PlumbumError'] class PlumbumBaseError(Exception): """Base class for all exceptions defined in Plumbum.""" title = "Plumbum Error" class PlumbumError(PlumbumBaseError): """Standard exception for errors in Plumbum.""" def __init__(self, message, title=None, show_traceback=False): super(PlumbumError, self).__init__(message) self._message = message self.title = title self.show_traceback = show_traceback message = property(lambda x: x._message, lambda x, v: setattr(x, '_message', v)) def __str__(self): return self.message class Interface(object): """Marker base class for extension point interfaces.""" class ExtensionPoint(property): """Marker class for extension points in components.""" def __init__(self, interface): """Create the extension point. @param interface: the `Interface` subclass that defined the protocol for the extension point. """ property.__init__(self, self.extensions) self.interface = interface self.__doc__ = ("List of components that implement: `%s.%s`" % (self.interface.__module__, self.interface.__name__)) def extensions(self, component): """Return a list of components that declare to implement the extension point interface. """ classes = ComponentMeta._registry.get(self.interface, ()) components = [component.compmgr[cls] for cls in classes] return [c for c in components if c] def __repr__(self): """Return a textual representation of the extension point.""" return "<ExtensionPoint %s>" % self.interface.__name__ class ComponentMeta(type): """Meta class for components. Takes care of component and extension point registration. """ _components = [] _registry = {} def __new__(mcs, name, bases, d): """Create the component class.""" new_class = type.__new__(mcs, name, bases, d) if name == 'Component': # Don't put the Component base class in the registry return new_class if d.get('abstract'): # Don't put abstract component classes in the registry return new_class ComponentMeta._components.append(new_class) registry = ComponentMeta._registry for cls in new_class.__mro__: for interface in cls.__dict__.get('_implements', ()): classes = registry.setdefault(interface, []) if new_class not in classes: classes.append(new_class) return new_class def __call__(cls, *args, **kwargs): """Return an existing instance of the component if it has already been activated, otherwise create a new instance. """ # If this component is also the component manager, just invoke that if issubclass(cls, ComponentManager): self = cls.__new__(cls) self.compmgr = self self.__init__(*args, **kwargs) return self # The normal case where the component is not also the component manager assert len(args) >= 1 and isinstance(args[0], ComponentManager), \ "First argument must be a ComponentManager instance" compmgr = args[0] self = compmgr.components.get(cls) # Note that this check is racy, we intentionally don't use a lock in # order to keep things simple and avoid the risk of deadlocks, as the # impact of having temporarily two (or more) instance for a given `cls` # is negligible. if self is None: self = cls.__new__(cls) self.compmgr = compmgr compmgr.component_activated(self) self.__init__() # Only register the instance once it is fully initialized (#9418) compmgr.components[cls] = self return self class Component(object, metaclass=ComponentMeta): """Base class for components. Every component can declare what extension points it provides, as well as what extension point of other components extends. """ @staticmethod def implements(*interfaces): """Can be used in the class definition of `Component` subclasses to declare the extension points that are extended. """ import sys frame = sys._getframe(1) locals_ = frame.f_locals # Some sanity checks assert locals_ is not frame.f_globals and '__module__' in locals_, \ 'implements() can only be used in a class definition' locals_.setdefault('_implements', []).extend(interfaces) def __repr__(self): """Return a textus representantion of the component.""" return '<Component {}.{}>'.format(self.__class__.__module__, self.__class__.__name__) implements = Component.implements class ComponentManager(object): """The component manager keeps a pool of active components.""" def __init__(self): """Initialize the component manager.""" self.components = {} self.enabled = {} if isinstance(self, Component): self.components[self.__class__] = self def __contains__(self, cls): """Return wether the given class is in the list of active components""" return cls in self.components def __getitem__(self, cls): """Activate the component instance for the given class, or return the existing instance if the component has already been activated. Note that `ComponentManager` components can't be activated that way. """ if not self.is_enabled(cls): return None component = self.components.get(cls) if not component and not issubclass(cls, ComponentManager): if cls not in ComponentMeta._components: raise PlumbumError('Component "{}" not registered' .format(cls.__name__)) try: component = cls(self) except TypeError as e: raise PlumbumError('Unable to instantiate component {!r} ({})' .format(cls, e)) return component def is_enabled(self, cls): """Return whether the given component class is enabled.""" if cls not in self.enabled: self.enabled[cls] = self.is_component_enabled(cls) return self.enabled[cls] def disable_component(self, component): """Force a component to be disabled. @param component: can be a class or an instance. """ if not isinstance(component, type): component = component.__class__ self.enabled[component] = False self.components[component] = None def enable_component(self, component): """Force a component to be enabled. @param component: can be a class or an instance. """ if not isinstance(component, type): component = component.__class__ self.enabled[component] = True def component_activated(self, component): """Can be overridden by sub-classes so that special initialization for components ca be provided. """ def is_component_enabled(self, cls): """Can be overridden by sub-classes to veto the activation of a component. If this method returns `False`, the component was disabled explicitly. If it returns `None`, the component was neither enabled nor disabled explicitly. In both cases, the component with the given class will not be available. """ return True
e61ea84cae50e126560594d6977dfe14b17266b9
1e528494a929deada984822438b3ab569762e6c6
/rx/testing/recorded.py
d8ab083f222f404edc7a4af700ecdfcb0f8686bf
[ "MIT" ]
permissive
Sprytile/Sprytile
a0233a00a243f263691921d7e1f6af05c5eb5442
6b68d0069aef5bfed6ab40d1d5a94a3382b41619
refs/heads/master
2022-07-10T06:54:01.003723
2020-09-26T07:25:35
2020-09-26T07:25:35
72,276,917
860
91
MIT
2022-07-07T23:37:19
2016-10-29T09:47:09
Python
UTF-8
Python
false
false
597
py
from rx.internal.basic import default_comparer class Recorded(object): def __init__(self, time, value, comparer=None): self.time = time self.value = value self.comparer = comparer or default_comparer def __eq__(self, other): """Returns true if a recorded value matches another recorded value""" time_match = self.time == other.time return time_match and self.comparer(self.value, other.value) equals = __eq__ def __repr__(self): return str(self) def __str__(self): return "%s@%s" % (self.value, self.time)
f99c83d2712349c0946f6e3b580ce1a637ca20d9
f444eede3cd341afc969756b00a34816f949238a
/encode.py
02cc03704c672bb641575cb3f6609f413ad7a7eb
[ "MIT" ]
permissive
dcbriccetti/StegaPy
28ce6007c0c8a2dbb38de76e52344ec621c4a8ac
a20bb263737ae445e65a602c728acc4e3602baed
refs/heads/master
2021-07-10T03:28:28.214664
2020-10-03T21:11:52
2020-10-03T21:11:52
204,844,779
7
4
null
null
null
null
UTF-8
Python
false
false
360
py
from stegapy import create_image message = '''Steganography is the practice of concealing a file, message, image, or video within another file, message, image, or video. The word steganography combines the Greek words steganos, meaning "covered or concealed", and graphe meaning "writing".''' create_image(message, 'original-image.png', 'secret-image.png')
1fa31a59bd30ae57f8c0e2ffec65c5ef13811b6d
528dd70727c0da10483323ae0ef2db6d01124e2d
/scrape all quotes from website/scrape all quotes from website with bs4.py
37f07196dd6e399837b02c997a7e89f5c2b5f56c
[]
no_license
aadarshraj4321/Simple-Scraping-With-BeautifulSoup-
051b764cb256a9b44ef73cbc1aacdb20ba764add
79ef2d748af2df28f8cb6a1d02ed0ec76605cb14
refs/heads/master
2022-12-12T09:14:34.080825
2020-09-10T13:54:04
2020-09-10T13:54:04
293,579,101
1
0
null
null
null
null
UTF-8
Python
false
false
671
py
import requests from bs4 import BeautifulSoup ## url of site which we scrape url = "https://parade.com/937586/parade/life-quotes/" ## request the url to get data from that website and check status code page = requests.get(url) #print(page.status_code) ## call BeautifulSoup and store in soup variable soup = BeautifulSoup(page.text,"html.parser") #print(soup) quote = soup.find(class_= "page_content") #print(quote) p_class = soup.find_all("p") #print(p_class) #print(len(p_class)) #print(p_class[8]) ## slice from 8:161 main_p = p_class[8:161] #print(main_p) for i in main_p: print(i.text,end="\n\n") #### Done ####
3e7c3413828b2ba8defb1d25594e2f29762dd7ea
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2333/60716/257539.py
d12c33899ad0ff7c29ed096997fe168b11f5d990
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
301
py
import math x = int(input()) y = int(input()) bound = int(input()) lists = list() for i in range(int(math.log(bound,x))+1): for j in range(int(math.log(bound,y))+1): temp = x**i+y**j if temp<=bound: lists.append(temp) alist = list(set(lists)) alist.sort() print(alist)
a53241dd468a92f36d1d3775f8261a5146840ffa
6eec2948c0907b5377de51e61014a48dff3d5ce7
/CODIGOS PYTHON/screenlets-pack-basic/Trash/TrashScreenlet.py
350be6935fd1e5c67071eb8861f59dd25aad37e0
[]
no_license
clcneogeek325/Script_python
4da937cb2caee93a2e0eb945e77ccac8e88ec4bc
87607c97fa738b3e64aefbe0e8c4425724ecff73
refs/heads/master
2021-01-17T07:44:07.124077
2016-06-04T03:26:44
2016-06-04T03:26:44
15,943,668
0
0
null
null
null
null
UTF-8
Python
false
false
8,271
py
#!/usr/bin/env python # # TrashScreenlet (C) 2008 Natan Yellin # Based on the original screenlet (C) 2007 Helder Fraga # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # import screenlets from screenlets.options import BoolOption,IntOption import cairo import datetime import pango import os import gtk import gobject import urllib # use gettext for translation import gettext _ = screenlets.utils.get_translator(__file__) def tdoc(obj): obj.__doc__ = _(obj.__doc__) return obj @tdoc class TrashScreenlet(screenlets.Screenlet): """A Screenlet that shows information about your trash folder""" # default meta-info for Screenlets __name__ = 'TrashScreenlet' __version__ = '0.2.2+' __author__ = 'Helder Fraga aka Whise' __desc__ = __doc__ TRASH_DIRS = [os.environ['HOME'] + '/.local/share/Trash/files', os.environ['HOME'] + '/.Trash'] style = False show_count = True auto_empty = False auto_empty_size = 1000 if os.path.exists(os.environ['HOME'] +'/.local/share/Trash/files') and os.path.isdir(os.environ['HOME'] +'/.local/share/Trash/files'): trash_folder = os.environ['HOME'] +'/.local/share/Trash/files' else: trash_folder = os.environ['HOME'] + '/.Trash' item_count = 0 def __init__(self, **keyword_args): screenlets.Screenlet.__init__(self, width=128, height=160, drag_drop=True, **keyword_args) # set default theme name self.theme_name = "default" # init other attributes self.item_count = 0 self.add_options_group(_('Options'), _('Options')) self.add_option(BoolOption(_('Options'), 'style', False, _('Use gtk style'), _('Use gtk icon'), callback=self.redraw_canvas_and_update_shape)) self.add_option(BoolOption(_('Options'), 'show_count', True, _('Show item count'), _('Show item count'))) self.add_option(BoolOption(_('Options'), 'auto_empty', False, _('Auto empty trash'), _('Automatically empty trash when the limit is exceded'))) self.add_option(IntOption(_('Options'), 'auto_empty_size', 1000, _('Auto empty limit'), _('Automatically empty trash when there\ are this many items in the trash. (Only if the above option\ is checked.)'), min=1,max = 100000)) # TODO: Monitor the trash directories and call self.update when # they change instead of calling self.update once every second self.update() self.refresh_timeout = gobject.timeout_add(1000, self.update) # Redraw and update the shape if the icon theme changes # TODO: Only redraw if self.style is True # screenlets.drawing.icon_theme.connect("changed", # self.redraw_canvas_and_update_shape) def on_init (self): print "Screenlet has been initialized." # add default menuitems self.add_menuitem("Empty", _("Empty Trash")) self.add_menuitem("Open", _("Examine Trash")) self.add_default_menuitems() # callback for when an item is dragged and then dropped on the applet def on_drop (self, x, y, sel_data, timestamp): # If the trash folder doesn't exist then just return # TODO: Create the trash folder when it doesn't exist. if self.trash_folder is None: screenlets.show_error(None, _('File(s) could not be moved to trash.')) return filename = '' # get text from selection data try: txt = unicode.encode(sel_data.get_text(), 'utf-8') except: txt = sel_data.get_text() txta = urllib.unquote(txt) txta = str(txta).split('\n') for txt in txta: if txt and txt != '': # if it is a filename, use it if txt.startswith('file://'): filename = txt[7:] else: screenlets.show_error(self, _('Invalid string: %s.') % txt) else: # else get uri-part of selection uris = sel_data.get_uris() if uris and len(uris)>0: filename = uris[0][7:] if filename != '': if self.trash_folder==self.TRASH_DIRS[0]: infofile=os.environ['HOME'] + '/.local/share/Trash/info/'+ os.path.basename(filename)+'.trashinfo' count=1 while os.path.exists(infofile): count=count+1 infofile=os.environ['HOME'] + '/.local/share/Trash/info/'+ os.path.basename(filename)+'.'+str(count)+'.trashinfo' f=open(infofile, 'w') f.write('[Trash Info]\n') f.write('Path='+filename+'\n') now=datetime.datetime.now() f.write('DeletionDate='+ str(now.strftime("%Y-%m-%dT%H:%M:%S"))) f.close() if count>1: os.system('mv ' + chr(34)+ filename + chr(34) + ' ' + chr(34) + self.trash_folder + '/' + os.path.basename(filename)+'.'+str(count) + chr(34)) else: os.system('mv ' + chr(34)+ filename + chr(34) + ' ' + self.trash_folder) filename = '' def update(self): # find the correct trash directory or return if no trash directory exists if os.path.exists(self.TRASH_DIRS[0]) and os.path.isdir(self.TRASH_DIRS[0]): self.trash_folder = self.TRASH_DIRS[0] elif os.path.exists(self.TRASH_DIRS[1]) and os.path.isdir(self.TRASH_DIRS[1]): self.trash_folder = self.TRASH_DIRS[1] else: self.trash_folder = None self.item_count = 0 return old_item_count = self.item_count self.item_count = len(os.listdir(self.trash_folder)) # if the auto empty feature is enabled then check if the trash needs to be emptied if self.auto_empty and self.item_count >= self.auto_empty_size: if self.trash_folder==self.TRASH_DIRS[0]: os.system('rm -rf ' + os.environ['HOME'] + '/.local/share/Trash/info/*') os.system('rm -rf ' + self.trash_folder + '/*') os.system('rm -rf ' + self.trash_folder + '/*.*') os.system('rm -rf ' + self.trash_folder + '/.*') self.item_count = len(os.listdir(self.trash_folder)) # if the number of items in the trash is drawn on the icon then check if it changed if self.show_count and self.item_count != old_item_count: self.redraw_canvas() return True def on_mouse_down(self, event): if event.type == gtk.gdk._2BUTTON_PRESS: if event.button == 1: os.system('xdg-open trash:/// &') def menuitem_callback(self, widget, id): screenlets.Screenlet.menuitem_callback(self, widget, id) if id=="Empty": if self.trash_folder is None: screenlets.show_error(None, _("No trash folder found.")) elif screenlets.show_question(self,_('Do you want to permanently remove all the items in your Trash folder?')): if self.trash_folder==self.TRASH_DIRS[0]: os.system('rm -rf ' + os.environ['HOME'] + '/.local/share/Trash/info/*') os.system('rm -rf ' + self.trash_folder + '/*') os.system('rm -rf ' + self.trash_folder + '/*.*') os.system('rm -rf ' + self.trash_folder + '/.*') self.update() elif id=="Open": os.system('xdg-open trash:/// &') def on_draw(self, ctx): if self.theme: ctx.set_operator(cairo.OPERATOR_OVER) ctx.scale(self.scale, self.scale) # find the right icon name to use if self.item_count == 0: ico = 'user-trash-empty' if self.style and not self.check_for_icon(ico): ico = 'emptytrash' else: ico = 'user-trash-full' if self.style and not self.check_for_icon(ico): ico = 'trashcan_full' # draw the icon if self.style == True: self.draw_icon(ctx, 0, 0, ico, 128, 128) else: self.theme.render(ctx, ico) # draw the item count if self.show_count: ctx.set_source_rgba(1,1,1,0.65) self.draw_rounded_rectangle(ctx,20,128,5,self.width-40,23) ctx.set_source_rgba(0,0,0,1) #item counter self.draw_text(ctx,str(self.item_count) + _(' items'), 0, 132, "FreeSans", 10, self.width, pango.ALIGN_CENTER) def on_draw_shape(self,ctx): if self.theme: self.on_draw(ctx) if __name__ == "__main__": import screenlets.session screenlets.session.create_session(TrashScreenlet)
15ffc7de7646ab1686857ece673ee18639100744
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp80_18500.py
bdf0609e00110d1aa1b8fd8d5e0f586bb238cfb5
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,871
py
ITEM: TIMESTEP 18500 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp 4.1898586015657457e-01 4.6781014139841972e+01 4.1898586015657457e-01 4.6781014139841972e+01 4.1898586015657457e-01 4.6781014139841972e+01 ITEM: ATOMS id type xs ys zs 8 1 0.12863 0.0578786 0.0545008 35 1 0.0714952 0.126436 0.0592095 130 1 0.0658708 0.0665836 0.115658 165 1 0.126339 0.121896 0.127018 1415 1 0.18006 0.495626 0.433083 1545 1 0.254214 0.502221 0.494181 1427 1 0.566646 0.498376 0.442307 143 1 0.440758 0.00279837 0.1876 98 1 0.065403 0.44119 0.00251722 12 1 0.251314 0.0599336 0.058193 39 1 0.185226 0.120372 0.0535522 43 1 0.31569 0.121368 0.053695 134 1 0.186861 0.0691723 0.119051 138 1 0.30654 0.0664482 0.124596 169 1 0.252195 0.131632 0.114245 550 1 0.184185 0.179778 0.497749 23 1 0.68829 0.00884979 0.067619 16 1 0.375001 0.0650384 0.0701746 47 1 0.440896 0.124762 0.0712492 142 1 0.439324 0.0652147 0.127436 173 1 0.366145 0.12743 0.124186 20 1 0.500187 0.0613008 0.0698224 177 1 0.501206 0.133362 0.126334 1307 1 0.817198 0.500531 0.318725 46 1 0.433718 0.185343 0.00368843 113 1 0.502534 0.382036 0.00778717 102 1 0.183762 0.442594 -0.000645236 24 1 0.629641 0.0677989 0.0678286 51 1 0.567514 0.124795 0.0620831 146 1 0.564629 0.0711151 0.124599 181 1 0.62508 0.129638 0.12374 110 1 0.435082 0.445038 0.00814298 1425 1 0.506671 0.501616 0.37698 28 1 0.752629 0.0659012 0.0676995 55 1 0.694675 0.129259 0.0667039 59 1 0.813149 0.129126 0.062058 150 1 0.689324 0.0645103 0.127836 154 1 0.815001 0.0681734 0.122494 185 1 0.75336 0.128136 0.126499 137 1 0.251073 0.000129504 0.118471 90 1 0.817223 0.31344 0.00427757 4 1 0.00162167 0.0672573 0.0662244 161 1 1.00233 0.133603 0.124172 141 1 0.377784 -0.000750775 0.122383 32 1 0.875897 0.0588383 0.0642111 63 1 0.939949 0.127233 0.0623594 158 1 0.934593 0.0629485 0.12469 189 1 0.877638 0.130747 0.127321 565 1 0.631064 0.121935 0.499436 638 1 0.945134 0.442318 0.503331 40 1 0.123679 0.190193 0.0513771 67 1 0.0652086 0.253319 0.0636196 72 1 0.127516 0.313357 0.0601657 162 1 0.0664972 0.185128 0.120452 194 1 0.0587427 0.305993 0.123633 197 1 0.121526 0.245723 0.121396 155 1 0.812495 0.00640063 0.184989 1433 1 0.749248 0.497294 0.381284 44 1 0.245972 0.194516 0.055729 71 1 0.187266 0.245794 0.0592779 75 1 0.311404 0.248177 0.0571664 76 1 0.255289 0.319194 0.0632399 166 1 0.184795 0.191371 0.11917 170 1 0.312562 0.189732 0.125663 198 1 0.194256 0.305292 0.118376 201 1 0.245801 0.2453 0.124849 202 1 0.306751 0.308881 0.129815 281 1 0.758581 0.0025176 0.241122 48 1 0.373748 0.187861 0.0607087 79 1 0.441629 0.245284 0.0668735 80 1 0.370975 0.309839 0.0582946 174 1 0.431336 0.187807 0.125327 205 1 0.367079 0.257817 0.124203 206 1 0.438614 0.315439 0.120761 84 1 0.498273 0.314468 0.0634711 209 1 0.506337 0.252297 0.123704 147 1 0.559215 0.00173385 0.18526 52 1 0.503752 0.187331 0.0668195 56 1 0.629386 0.185058 0.0561069 83 1 0.562323 0.260022 0.0653855 88 1 0.627433 0.32546 0.0667923 178 1 0.559864 0.193281 0.122671 210 1 0.560234 0.315651 0.125334 213 1 0.627384 0.245628 0.123345 151 1 0.683178 -0.000246262 0.191895 17 1 0.498887 0.004899 0.0116087 26 1 0.811733 0.0630042 -0.00031692 60 1 0.752134 0.186729 0.0652373 87 1 0.692483 0.247971 0.0527772 91 1 0.819449 0.249968 0.0612067 92 1 0.744863 0.313026 0.0654736 182 1 0.68233 0.193067 0.126795 186 1 0.820449 0.185048 0.128591 214 1 0.688951 0.316057 0.130584 217 1 0.749047 0.258938 0.122566 218 1 0.812344 0.314508 0.118563 1157 1 0.121704 0.495898 0.123365 1169 1 0.499734 0.502307 0.133899 1281 1 0.999683 0.50415 0.245967 10 1 0.310483 0.0536949 -0.00482182 36 1 0.00396184 0.187144 0.0628696 193 1 0.994818 0.257106 0.122444 68 1 -0.00104012 0.311887 0.0567009 64 1 0.880068 0.185439 0.0608582 95 1 0.934849 0.247023 0.0618698 96 1 0.877796 0.312923 0.0613065 190 1 0.933742 0.191887 0.126277 221 1 0.875755 0.24965 0.122731 222 1 0.939377 0.31351 0.117867 637 1 0.885685 0.374395 0.498839 1299 1 0.564227 0.49424 0.315032 1429 1 0.626948 0.498302 0.376203 1431 1 0.689306 0.500962 0.444375 283 1 0.8197 -0.00186732 0.309551 99 1 0.0628482 0.379095 0.0724835 104 1 0.122255 0.434623 0.0677942 226 1 0.057255 0.443505 0.133306 229 1 0.12229 0.376194 0.122458 45 1 0.380977 0.130511 0.000264664 1051 1 0.815946 0.501612 0.0629591 159 1 0.935642 0.0019368 0.193175 1181 1 0.874191 0.5025 0.123992 585 1 0.245297 0.246198 0.502094 598 1 0.686393 0.306332 0.497168 103 1 0.186189 0.375838 0.0562563 107 1 0.316672 0.391584 0.0600581 108 1 0.25407 0.440975 0.06438 230 1 0.186695 0.434685 0.119543 233 1 0.24998 0.375891 0.125507 234 1 0.307813 0.444353 0.123962 263 1 0.180237 -0.00104724 0.316369 478 1 0.939432 0.312243 0.371869 13 1 0.376577 0.00354499 0.0104473 22 1 0.691544 0.0666264 0.00757064 111 1 0.437955 0.381227 0.0629977 112 1 0.373957 0.450738 0.0686193 237 1 0.365822 0.376699 0.124721 238 1 0.443028 0.444104 0.124977 241 1 0.497105 0.376957 0.120935 484 1 0.000392737 0.434529 0.436129 129 1 0.997156 0.00143936 0.131627 116 1 0.501603 0.445423 0.0652284 115 1 0.563748 0.376597 0.0665184 120 1 0.6335 0.434031 0.0634422 242 1 0.565561 0.440613 0.126599 245 1 0.632749 0.379197 0.126304 477 1 0.872677 0.251225 0.374122 119 1 0.693129 0.378985 0.0631808 123 1 0.806933 0.37302 0.0548052 124 1 0.75561 0.43495 0.0694804 246 1 0.697962 0.440001 0.122105 249 1 0.753372 0.37911 0.125342 250 1 0.819438 0.441098 0.126312 448 1 0.874339 0.189171 0.443059 269 1 0.368559 0.0100163 0.246547 512 1 0.881828 0.428263 0.436739 420 1 0.00105872 0.177413 0.428907 271 1 0.434073 0.00090474 0.303262 118 1 0.69266 0.444696 0.00188504 452 1 0.00126296 0.31509 0.432639 1173 1 0.629565 0.496156 0.131219 100 1 0.00301745 0.436042 0.0591336 225 1 0.993118 0.367191 0.115757 127 1 0.930489 0.373672 0.0568808 128 1 0.877522 0.444243 0.0660341 253 1 0.876339 0.375464 0.12504 254 1 0.940382 0.435867 0.117775 1413 1 0.126074 0.501083 0.377018 1311 1 0.935994 0.502588 0.317939 1025 1 0.998984 0.501043 0.00212314 511 1 0.945865 0.373424 0.432658 499 1 0.564639 0.381254 0.440541 136 1 0.118019 0.0648413 0.188309 163 1 0.0620042 0.124178 0.18514 258 1 0.0564018 0.0619852 0.2404 264 1 0.11963 0.0705457 0.306853 291 1 0.0569319 0.122677 0.300888 293 1 0.122784 0.129794 0.241734 482 1 0.0617978 0.437129 0.373597 21 1 0.631016 0.00988324 0.00750874 1163 1 0.313632 0.499503 0.185096 485 1 0.132295 0.368219 0.375533 1435 1 0.812488 0.501248 0.441879 140 1 0.243869 0.0599404 0.180144 167 1 0.191234 0.122516 0.1777 171 1 0.30712 0.125313 0.189483 262 1 0.181261 0.0635827 0.245744 266 1 0.310492 0.0672997 0.242729 268 1 0.244394 0.0552715 0.321719 295 1 0.186657 0.127738 0.301047 297 1 0.243918 0.122033 0.250716 299 1 0.307049 0.121232 0.309158 139 1 0.30661 0.00100524 0.188484 1411 1 0.0695975 0.491283 0.438838 589 1 0.378716 0.248887 0.504295 144 1 0.380911 0.0607473 0.180878 175 1 0.431946 0.127551 0.184125 270 1 0.433188 0.0639009 0.245027 272 1 0.370304 0.0674271 0.317396 301 1 0.377064 0.121569 0.2494 303 1 0.433125 0.121906 0.315191 276 1 0.494233 0.0594888 0.310457 305 1 0.499009 0.114752 0.245676 545 1 -0.00611488 0.128396 0.49392 510 1 0.939734 0.440762 0.375281 148 1 0.500831 0.0596305 0.182308 152 1 0.631748 0.073688 0.185419 179 1 0.564499 0.13274 0.185568 274 1 0.56557 0.0671713 0.244549 280 1 0.623775 0.0554312 0.307683 307 1 0.560316 0.116672 0.314483 309 1 0.628568 0.125838 0.249084 156 1 0.7433 0.0626393 0.191695 183 1 0.68988 0.128763 0.187326 187 1 0.806748 0.125581 0.187885 278 1 0.684924 0.0608812 0.256088 282 1 0.813903 0.0621598 0.249633 284 1 0.745761 0.0562357 0.309803 311 1 0.693347 0.12694 0.313263 313 1 0.751202 0.120276 0.252396 315 1 0.803651 0.11653 0.314347 481 1 -0.000320609 0.381758 0.367597 498 1 0.564368 0.440615 0.378564 409 1 0.751652 -0.0034148 0.377778 509 1 0.871546 0.372059 0.376405 260 1 1.0005 0.058855 0.304135 132 1 0.99612 0.0639734 0.180397 289 1 0.995439 0.131203 0.251657 160 1 0.876356 0.068778 0.1895 191 1 0.933957 0.121513 0.188903 286 1 0.937889 0.0644673 0.251821 288 1 0.878011 0.0584828 0.308517 317 1 0.869209 0.127444 0.260317 319 1 0.943745 0.125005 0.310211 168 1 0.127376 0.186628 0.177668 195 1 0.0591181 0.242411 0.187812 200 1 0.119446 0.304189 0.187268 290 1 0.0541164 0.190932 0.249959 296 1 0.120357 0.189569 0.306517 322 1 0.0603963 0.316103 0.24432 323 1 0.0585978 0.257459 0.314437 325 1 0.129117 0.253638 0.251902 328 1 0.126927 0.312481 0.308805 324 1 -0.00456993 0.31803 0.315082 196 1 0.992748 0.312577 0.186051 172 1 0.250762 0.185502 0.182031 199 1 0.184986 0.254399 0.186363 203 1 0.306897 0.25158 0.188035 204 1 0.24548 0.309499 0.181286 294 1 0.190398 0.185083 0.233575 298 1 0.306697 0.179296 0.255476 300 1 0.253489 0.190342 0.320783 326 1 0.184952 0.309294 0.247757 327 1 0.190426 0.246465 0.310077 329 1 0.253407 0.248168 0.248691 330 1 0.313129 0.308859 0.240459 331 1 0.314149 0.247045 0.301343 332 1 0.25444 0.307842 0.299994 176 1 0.365024 0.19085 0.190511 207 1 0.443775 0.2493 0.180148 208 1 0.368603 0.318745 0.185429 302 1 0.438152 0.185233 0.242697 304 1 0.376126 0.185187 0.31373 333 1 0.377367 0.246485 0.258091 334 1 0.440708 0.321067 0.251291 335 1 0.438077 0.259031 0.313737 336 1 0.372801 0.307429 0.31426 308 1 0.491887 0.181955 0.315647 180 1 0.502889 0.189032 0.189005 340 1 0.500041 0.317447 0.311974 212 1 0.500326 0.310513 0.190178 337 1 0.505346 0.247257 0.251183 184 1 0.618966 0.194063 0.193346 211 1 0.563433 0.254062 0.187848 216 1 0.61976 0.308412 0.18382 306 1 0.562126 0.183394 0.271079 312 1 0.632251 0.183757 0.31466 338 1 0.566273 0.312385 0.247329 339 1 0.564725 0.247907 0.31425 341 1 0.623904 0.252079 0.252927 344 1 0.626791 0.314682 0.310407 188 1 0.75774 0.195094 0.179223 215 1 0.687661 0.254422 0.186749 219 1 0.81743 0.251896 0.188287 220 1 0.760692 0.319997 0.186946 310 1 0.692988 0.1886 0.251448 314 1 0.810622 0.188257 0.245767 316 1 0.753025 0.181184 0.314805 342 1 0.68962 0.316785 0.242684 343 1 0.694003 0.25689 0.303251 345 1 0.751457 0.253772 0.241936 346 1 0.81734 0.309341 0.244898 347 1 0.813436 0.240751 0.318292 348 1 0.760282 0.305916 0.308452 292 1 0.00329683 0.189259 0.311853 321 1 0.99821 0.256599 0.249579 164 1 0.992027 0.193917 0.192179 192 1 0.877655 0.190897 0.190543 223 1 0.940648 0.253349 0.186363 224 1 0.879725 0.309449 0.175582 318 1 0.931578 0.182796 0.254766 320 1 0.878106 0.185531 0.317137 349 1 0.876015 0.247723 0.255577 350 1 0.934502 0.315129 0.249688 351 1 0.942796 0.250149 0.309253 352 1 0.868071 0.321533 0.312427 577 1 1.00429 0.255342 0.490697 227 1 0.0561607 0.368677 0.179034 232 1 0.124627 0.435655 0.185192 354 1 0.0617811 0.429594 0.237669 355 1 0.0688132 0.375838 0.306356 357 1 0.127706 0.375074 0.242045 360 1 0.123813 0.441574 0.307852 446 1 0.944542 0.192817 0.372124 574 1 0.939725 0.191142 0.498784 480 1 0.878349 0.309423 0.431687 449 1 0.00425657 0.248619 0.374994 231 1 0.184335 0.36848 0.180661 235 1 0.305874 0.385269 0.186425 236 1 0.243157 0.438511 0.186143 358 1 0.188806 0.444853 0.254325 359 1 0.184616 0.373681 0.307056 361 1 0.251629 0.371026 0.247562 362 1 0.310435 0.445129 0.255535 363 1 0.303129 0.375418 0.314181 364 1 0.247429 0.436897 0.320836 507 1 0.81431 0.371915 0.443512 526 1 0.438641 0.0616932 0.497049 239 1 0.429359 0.381002 0.18563 240 1 0.377116 0.44141 0.17719 365 1 0.373186 0.371162 0.256414 366 1 0.43503 0.445546 0.244723 367 1 0.430373 0.383782 0.312549 368 1 0.372036 0.437493 0.315873 244 1 0.509653 0.434764 0.186311 549 1 0.121992 0.115692 0.500596 372 1 0.501851 0.435586 0.31491 369 1 0.493642 0.382992 0.249394 243 1 0.56228 0.372487 0.191055 248 1 0.630952 0.437062 0.190857 370 1 0.562684 0.435099 0.246714 371 1 0.564425 0.38162 0.315751 373 1 0.627095 0.372609 0.250912 376 1 0.633503 0.437524 0.30281 247 1 0.697591 0.385153 0.180269 251 1 0.81713 0.378179 0.184954 252 1 0.75603 0.447532 0.184597 374 1 0.695109 0.436374 0.249217 375 1 0.688746 0.36774 0.320186 377 1 0.760151 0.382554 0.242958 378 1 0.818709 0.439241 0.249409 379 1 0.81474 0.379556 0.310599 380 1 0.748803 0.438059 0.315136 479 1 0.938115 0.247034 0.432687 1417 1 0.250068 0.502526 0.382318 411 1 0.809423 -0.00342546 0.439215 508 1 0.749908 0.433234 0.43839 356 1 0.996259 0.443149 0.309882 353 1 1.00014 0.373228 0.248206 228 1 -0.00654261 0.432171 0.185955 255 1 0.93871 0.370264 0.182164 256 1 0.887227 0.4344 0.187026 381 1 0.875334 0.372579 0.245027 382 1 0.934402 0.438748 0.251002 383 1 0.938997 0.381934 0.314446 384 1 0.876782 0.440779 0.317587 285 1 0.875274 -0.000486364 0.251492 491 1 0.310974 0.366885 0.438762 386 1 0.068929 0.0618215 0.37575 392 1 0.127112 0.0578818 0.434578 419 1 0.0682654 0.120693 0.438447 421 1 0.122775 0.123742 0.374274 407 1 0.679413 0.00642075 0.437967 85 1 0.620236 0.252366 -0.00050574 494 1 0.436238 0.43869 0.380089 390 1 0.178481 0.0676024 0.36947 394 1 0.307324 0.0603667 0.374503 396 1 0.246071 0.0618243 0.437113 423 1 0.189366 0.12471 0.432584 425 1 0.251285 0.121208 0.374066 427 1 0.312774 0.12433 0.438028 506 1 0.812841 0.438682 0.373059 492 1 0.254282 0.437526 0.437245 14 1 0.438575 0.0620067 0.00603471 398 1 0.43172 0.0675052 0.378668 400 1 0.37429 0.0638924 0.435241 429 1 0.372251 0.123776 0.376224 431 1 0.435916 0.128694 0.43985 433 1 0.502031 0.124552 0.375561 496 1 0.370337 0.438368 0.434688 505 1 0.749376 0.372628 0.38301 495 1 0.436275 0.374008 0.441806 157 1 0.871686 0.000110023 0.135772 404 1 0.501565 0.0664431 0.435087 402 1 0.566124 0.0572873 0.377304 408 1 0.620975 0.0626447 0.439046 435 1 0.562025 0.12432 0.433386 437 1 0.621679 0.114529 0.374503 493 1 0.371772 0.377482 0.376114 503 1 0.680627 0.372843 0.435559 406 1 0.689004 0.0650457 0.375398 410 1 0.814186 0.0577564 0.373847 412 1 0.747562 0.0596541 0.445354 439 1 0.686726 0.12297 0.436983 441 1 0.748012 0.123413 0.377771 443 1 0.814617 0.123917 0.436227 19 1 0.570796 0.00403543 0.0686369 502 1 0.688536 0.435802 0.37432 486 1 0.184716 0.435896 0.373662 501 1 0.620461 0.378824 0.373221 417 1 0.0175296 0.124929 0.37239 388 1 1.0079 0.0657185 0.433732 414 1 0.935162 0.0586856 0.370205 416 1 0.873022 0.0580128 0.436622 445 1 0.885784 0.124041 0.374957 447 1 0.935034 0.131017 0.434659 488 1 0.124006 0.427108 0.433415 395 1 0.314151 0.00434732 0.446451 418 1 0.0650379 0.18479 0.365566 424 1 0.126568 0.180967 0.436299 450 1 0.0601571 0.319145 0.373006 451 1 0.0612203 0.241614 0.438036 453 1 0.121142 0.259586 0.375721 456 1 0.13047 0.315415 0.434298 483 1 0.0585111 0.374073 0.435561 497 1 0.498564 0.376639 0.379017 422 1 0.185109 0.182612 0.371331 426 1 0.312495 0.18802 0.373914 428 1 0.249849 0.185052 0.430789 454 1 0.190096 0.312539 0.368954 455 1 0.186747 0.249784 0.446782 457 1 0.24955 0.24698 0.380246 458 1 0.313996 0.313095 0.369525 459 1 0.315824 0.248778 0.438298 460 1 0.254799 0.307548 0.442708 500 1 0.503151 0.431632 0.440559 430 1 0.433697 0.182536 0.380911 432 1 0.368776 0.192068 0.440855 461 1 0.372331 0.247002 0.368331 462 1 0.438903 0.320219 0.376625 463 1 0.436368 0.24409 0.43692 464 1 0.368469 0.309874 0.43811 468 1 0.49947 0.323354 0.436519 436 1 0.501331 0.190489 0.43811 504 1 0.624827 0.43402 0.437729 465 1 0.503494 0.253478 0.371356 472 1 0.61907 0.305647 0.426133 434 1 0.56535 0.189679 0.369434 440 1 0.618851 0.187866 0.435238 466 1 0.557687 0.315573 0.367237 467 1 0.556739 0.250805 0.431313 469 1 0.625471 0.248035 0.36448 487 1 0.190596 0.376228 0.434602 489 1 0.242442 0.37266 0.367518 444 1 0.750269 0.182987 0.431195 442 1 0.816192 0.17931 0.373609 438 1 0.686531 0.183322 0.370606 471 1 0.686621 0.24098 0.436429 473 1 0.748128 0.248541 0.376137 475 1 0.814312 0.252375 0.433632 474 1 0.809833 0.309581 0.380676 476 1 0.742053 0.313481 0.437484 470 1 0.695245 0.306631 0.376122 490 1 0.313222 0.43906 0.373394 135 1 0.186068 -0.00492356 0.180357 81 1 0.501035 0.249947 -0.000778243 622 1 0.433476 0.431408 0.499771 614 1 0.18296 0.436566 0.496785 618 1 0.315563 0.441388 0.493234 634 1 0.811969 0.431889 0.496497 61 1 0.877999 0.120223 0.00166446 82 1 0.56865 0.321165 0.00712645 1295 1 0.430963 0.500273 0.310831 1175 1 0.691354 0.502332 0.189127 594 1 0.561443 0.31911 0.498151 617 1 0.253275 0.376399 0.494038 514 1 0.0574599 0.0606271 0.499331 602 1 0.822473 0.310204 0.49386 70 1 0.189829 0.308445 0.000415827 626 1 0.567975 0.442099 0.496111 153 1 0.750812 0.00847262 0.123765 606 1 0.943409 0.310776 0.493585 265 1 0.247097 0.00723283 0.254498 546 1 0.0642508 0.180146 0.494294 554 1 0.300059 0.187686 0.495351 15 1 0.434495 -0.00151573 0.0693166 275 1 0.562321 -0.000744233 0.305888 149 1 0.628678 0.00733847 0.127221 399 1 0.438914 0.00513347 0.439232 413 1 0.88392 -0.00298705 0.373252 542 1 0.941033 0.0602112 0.490278 517 1 0.123182 4.83189e-05 0.497481 1049 1 0.751457 0.502595 0.00380014 570 1 0.813886 0.191142 0.500393 613 1 0.125868 0.374915 0.496557 593 1 0.497587 0.254151 0.494964 105 1 0.252979 0.378371 0.00100016 533 1 0.620363 0.00141616 0.500547 86 1 0.681423 0.309293 0.0051038 114 1 0.559256 0.444464 0.0030918 66 1 0.0597245 0.32211 -0.000725725 94 1 0.935006 0.309846 -9.17446e-05 89 1 0.758924 0.240755 0.00364801 49 1 0.511589 0.12225 0.00739352 1565 1 0.877366 0.49872 0.493249 601 1 0.743027 0.247043 0.493627 520 1 0.124976 0.0570281 0.568929 547 1 0.0579936 0.121936 0.565663 642 1 0.058888 0.05765 0.630489 677 1 0.12011 0.126107 0.620143 516 1 0.000787381 0.0642015 0.564512 1024 1 0.873877 0.437678 0.935361 610 1 0.0595044 0.430779 0.48988 1557 1 0.620863 0.505124 0.510786 1671 1 0.190129 0.498318 0.691051 524 1 0.253566 0.0591809 0.559283 551 1 0.192822 0.119255 0.563432 555 1 0.31462 0.124364 0.556308 646 1 0.196134 0.0626094 0.620983 650 1 0.311356 0.0637104 0.622516 681 1 0.259857 0.125006 0.616042 538 1 0.810047 0.0588832 0.505351 1793 1 -0.000115426 0.498982 0.753051 522 1 0.314856 0.0623515 0.50237 655 1 0.438852 0.000928016 0.682607 528 1 0.376374 0.0619673 0.563858 559 1 0.44249 0.115591 0.562195 654 1 0.441021 0.0672012 0.628663 685 1 0.370176 0.134738 0.618558 532 1 0.50041 0.0608002 0.566026 641 1 0.994199 0.00199448 0.623282 689 1 0.50725 0.127137 0.621479 536 1 0.621479 0.0601718 0.560664 563 1 0.563155 0.124445 0.564915 658 1 0.56214 0.0598254 0.627838 693 1 0.624162 0.128143 0.629377 1821 1 0.883237 0.495634 0.747172 573 1 0.882366 0.117446 0.49657 540 1 0.750517 0.0669984 0.567677 567 1 0.6912 0.131328 0.572225 571 1 0.821425 0.13324 0.557992 662 1 0.683958 0.0645645 0.618983 666 1 0.816967 0.0660651 0.620315 697 1 0.750701 0.123064 0.625573 1819 1 0.810292 0.498674 0.817167 799 1 0.932634 0.000748378 0.809711 2 1 0.0646065 0.0562625 1.00341 1823 1 0.939662 0.503304 0.819 673 1 0.0125888 0.124069 0.632539 544 1 0.879987 0.057621 0.560454 575 1 0.943587 0.127156 0.565494 670 1 0.939433 0.0598925 0.620938 701 1 0.886149 0.130126 0.628359 1679 1 0.439488 0.490973 0.682821 1023 1 0.938848 0.375344 0.942957 1815 1 0.672915 0.491784 0.805161 530 1 0.559614 0.0652277 0.497373 552 1 0.125258 0.176346 0.555742 579 1 0.0589168 0.250774 0.560251 584 1 0.120089 0.315865 0.56623 674 1 0.0666281 0.186495 0.624883 706 1 0.066191 0.314034 0.621694 709 1 0.12309 0.251344 0.617172 556 1 0.247929 0.191411 0.561861 583 1 0.18381 0.238313 0.559069 587 1 0.308903 0.249945 0.558867 588 1 0.250224 0.311014 0.558506 678 1 0.1885 0.174521 0.622731 682 1 0.307838 0.191694 0.628331 710 1 0.184364 0.310141 0.623101 713 1 0.248008 0.246547 0.619318 714 1 0.313188 0.3166 0.630216 1681 1 0.488917 0.497478 0.620251 34 1 0.0633321 0.183844 0.994433 597 1 0.626349 0.252527 0.498182 560 1 0.363977 0.191099 0.562415 591 1 0.44282 0.250469 0.56019 592 1 0.371954 0.313116 0.566185 686 1 0.432231 0.192742 0.6135 717 1 0.367849 0.249161 0.621083 718 1 0.434603 0.309112 0.626086 562 1 0.556835 0.189275 0.497902 791 1 0.681999 0.00498853 0.81051 1813 1 0.617543 0.496054 0.752754 564 1 0.498104 0.18535 0.559506 721 1 0.501757 0.249165 0.626467 596 1 0.49712 0.316906 0.565776 568 1 0.635614 0.188534 0.574553 595 1 0.558628 0.260206 0.558007 600 1 0.62453 0.308078 0.56566 690 1 0.566448 0.184974 0.62371 722 1 0.559746 0.308902 0.626531 725 1 0.636435 0.249829 0.623786 117 1 0.620078 0.383071 1.00435 572 1 0.760653 0.192281 0.566053 599 1 0.695046 0.249861 0.561965 603 1 0.811999 0.26157 0.560824 604 1 0.745104 0.305535 0.55683 694 1 0.697384 0.198658 0.631327 698 1 0.815698 0.191847 0.627443 726 1 0.689994 0.315889 0.62716 729 1 0.752485 0.255721 0.622439 730 1 0.812151 0.322074 0.624743 548 1 7.60752e-05 0.191501 0.55563 580 1 1.005 0.309162 0.55905 705 1 0.00236837 0.251182 0.618666 576 1 0.882917 0.189035 0.568104 607 1 0.943853 0.251213 0.565173 608 1 0.880628 0.310848 0.563529 702 1 0.94698 0.187813 0.625764 733 1 0.870129 0.257081 0.624962 734 1 0.937035 0.315513 0.62472 611 1 0.0615437 0.375232 0.559548 616 1 0.125849 0.434474 0.563919 738 1 0.06375 0.437059 0.625791 741 1 0.132732 0.375085 0.624854 737 1 0.999813 0.380732 0.628682 645 1 0.132388 -0.00279351 0.628269 615 1 0.187734 0.375118 0.558889 619 1 0.308917 0.374275 0.558312 620 1 0.247503 0.435324 0.555868 742 1 0.188957 0.442239 0.630732 745 1 0.245012 0.365391 0.622598 746 1 0.31092 0.429689 0.624994 793 1 0.755225 0.000739964 0.743062 925 1 0.876148 0.0021337 0.875919 623 1 0.43086 0.372245 0.563075 624 1 0.37444 0.438188 0.558598 749 1 0.370412 0.375756 0.624437 750 1 0.431629 0.433984 0.621372 1022 1 0.939098 0.437489 0.879606 1801 1 0.261875 0.504294 0.748999 628 1 0.495091 0.442932 0.559824 753 1 0.503775 0.376573 0.624242 627 1 0.554297 0.37862 0.56113 632 1 0.624599 0.435422 0.561762 754 1 0.561989 0.437846 0.620762 757 1 0.613214 0.370096 0.616645 665 1 0.75213 -0.000916916 0.624528 927 1 0.937435 0.00104184 0.935879 631 1 0.686383 0.369334 0.556377 635 1 0.820811 0.374829 0.558363 636 1 0.750693 0.433765 0.561504 758 1 0.687924 0.435776 0.62428 761 1 0.750097 0.371205 0.624482 762 1 0.806927 0.437005 0.621262 1685 1 0.620789 0.495702 0.624345 612 1 0.0067794 0.438605 0.565462 639 1 0.939184 0.372957 0.562969 640 1 0.877352 0.437838 0.564944 765 1 0.873983 0.377065 0.622349 766 1 0.938917 0.444331 0.626093 1021 1 0.875492 0.367663 0.879703 527 1 0.439753 -0.000934138 0.552844 1687 1 0.682854 0.499399 0.687401 648 1 0.127353 0.062887 0.685134 675 1 0.0635242 0.119768 0.695558 770 1 0.0565298 0.057739 0.748684 776 1 0.13009 0.0562922 0.807164 803 1 0.0665602 0.118186 0.811939 805 1 0.133256 0.12363 0.753062 125 1 0.872656 0.378765 1.00254 909 1 0.377815 0.00731689 0.879792 993 1 1.001 0.369632 0.880199 917 1 0.627304 0.0097238 0.87082 652 1 0.248423 0.0568976 0.687047 679 1 0.186124 0.124253 0.684785 683 1 0.314036 0.121684 0.68461 774 1 0.190934 0.0617053 0.744571 778 1 0.317793 0.0561656 0.746283 780 1 0.253203 0.0581334 0.804983 807 1 0.192324 0.125007 0.817181 809 1 0.252706 0.122313 0.748181 811 1 0.319121 0.122703 0.817518 590 1 0.429404 0.314696 0.496612 656 1 0.375895 0.0581657 0.681827 687 1 0.430638 0.124263 0.695002 782 1 0.440532 0.0626406 0.751695 784 1 0.37198 0.0569303 0.807183 813 1 0.374363 0.121902 0.748795 815 1 0.447745 0.121254 0.814356 1020 1 0.753087 0.436015 0.940962 817 1 0.499001 0.120297 0.750864 660 1 0.501231 0.0652286 0.688637 788 1 0.50364 0.0619245 0.812512 664 1 0.632587 0.0602643 0.687764 691 1 0.568711 0.122836 0.693514 786 1 0.563908 0.0566484 0.748808 792 1 0.628038 0.0705163 0.807551 819 1 0.560808 0.121414 0.810048 821 1 0.633862 0.134564 0.749202 621 1 0.368401 0.371592 0.500254 1951 1 0.942272 0.49866 0.940867 668 1 0.753395 0.0614101 0.682897 695 1 0.690234 0.131491 0.684343 699 1 0.815089 0.124753 0.685066 790 1 0.694023 0.0720995 0.743345 794 1 0.814992 0.0627455 0.747501 796 1 0.749951 0.0668786 0.806344 823 1 0.689842 0.125698 0.81622 825 1 0.753585 0.124982 0.751548 827 1 0.816878 0.123144 0.810879 53 1 0.62256 0.126226 1.00132 801 1 0.997682 0.117713 0.749239 644 1 0.995218 0.0549757 0.6854 772 1 0.996276 0.0630443 0.818691 672 1 0.87902 0.0559993 0.689188 703 1 0.937506 0.117001 0.689061 798 1 0.934011 0.0629839 0.753632 800 1 0.87331 0.0650653 0.808319 829 1 0.882813 0.126659 0.744416 831 1 0.93786 0.12284 0.807415 1019 1 0.817787 0.375084 0.945435 680 1 0.122196 0.189844 0.691055 707 1 0.0595661 0.255885 0.685142 712 1 0.127529 0.315054 0.68393 802 1 0.0607524 0.189704 0.754875 808 1 0.127134 0.178864 0.807584 834 1 0.0599968 0.31435 0.747446 835 1 0.0523414 0.247138 0.812163 837 1 0.118573 0.253131 0.744585 840 1 0.12449 0.312862 0.810543 676 1 -0.00234862 0.177075 0.691866 836 1 1.00234 0.312802 0.817822 684 1 0.249297 0.188112 0.684062 711 1 0.190041 0.253293 0.689913 715 1 0.306717 0.25319 0.68914 716 1 0.249225 0.314422 0.690356 806 1 0.187324 0.183822 0.752187 810 1 0.3144 0.188439 0.745285 812 1 0.255505 0.184479 0.810867 838 1 0.190963 0.310907 0.748142 839 1 0.184974 0.24775 0.806753 841 1 0.246467 0.248195 0.74955 842 1 0.306137 0.314445 0.761912 843 1 0.311249 0.254418 0.815926 844 1 0.241664 0.320999 0.815686 688 1 0.373799 0.185749 0.681387 719 1 0.441379 0.240309 0.681772 720 1 0.370605 0.306623 0.690234 814 1 0.437317 0.195728 0.752138 816 1 0.383891 0.17836 0.812594 845 1 0.371069 0.246606 0.753267 846 1 0.442292 0.304408 0.749413 847 1 0.43883 0.249442 0.813287 848 1 0.374358 0.315061 0.811481 852 1 0.507635 0.306214 0.813185 692 1 0.499774 0.180658 0.688203 820 1 0.493107 0.187354 0.814437 724 1 0.4977 0.30206 0.691281 849 1 0.505741 0.248301 0.751474 696 1 0.622753 0.187052 0.687077 723 1 0.558568 0.245077 0.690007 728 1 0.623667 0.308954 0.681483 818 1 0.559495 0.186285 0.751909 824 1 0.632721 0.181148 0.822641 850 1 0.565574 0.309978 0.744878 851 1 0.568515 0.245736 0.811337 853 1 0.625156 0.25162 0.752403 856 1 0.622637 0.311293 0.808384 700 1 0.758752 0.188054 0.691497 727 1 0.69202 0.255608 0.696969 731 1 0.812679 0.255354 0.687729 732 1 0.751176 0.312823 0.684512 822 1 0.691299 0.191231 0.751373 826 1 0.819812 0.187133 0.744521 828 1 0.757394 0.180332 0.816736 854 1 0.691007 0.316842 0.751653 855 1 0.687601 0.2514 0.814187 857 1 0.759386 0.245104 0.752065 858 1 0.819093 0.311104 0.746942 859 1 0.814952 0.247793 0.812312 860 1 0.753255 0.306593 0.801456 708 1 -0.00248325 0.31487 0.683304 804 1 1.00106 0.18332 0.817104 833 1 0.999535 0.243701 0.744069 704 1 0.882372 0.187266 0.6835 735 1 0.933995 0.25165 0.681544 736 1 0.878166 0.315192 0.690595 830 1 0.935506 0.185394 0.748584 832 1 0.877138 0.185301 0.805986 861 1 0.884377 0.247931 0.747591 862 1 0.950086 0.314762 0.751942 863 1 0.934312 0.251723 0.811522 864 1 0.872277 0.313287 0.810767 739 1 0.0613139 0.384917 0.686998 744 1 0.128866 0.434704 0.683494 866 1 0.0716927 0.442242 0.747415 867 1 0.0649205 0.376857 0.810908 869 1 0.121417 0.374408 0.751937 872 1 0.128821 0.443685 0.818086 740 1 0.00164068 0.443173 0.685013 1018 1 0.8113 0.438361 0.875598 743 1 0.181686 0.375333 0.691406 747 1 0.31553 0.37818 0.695224 748 1 0.255924 0.433793 0.685762 870 1 0.187386 0.440318 0.751731 871 1 0.177586 0.377678 0.813799 873 1 0.249135 0.385211 0.759924 874 1 0.316498 0.437761 0.74497 875 1 0.310434 0.374404 0.821422 876 1 0.241435 0.445798 0.80971 537 1 0.744819 0.00899256 0.506592 561 1 0.498577 0.126855 0.505245 751 1 0.433845 0.370393 0.687317 752 1 0.381943 0.434871 0.688631 877 1 0.375486 0.373179 0.74986 878 1 0.440251 0.442142 0.756279 879 1 0.434494 0.371892 0.819468 880 1 0.378088 0.435373 0.80576 756 1 0.500448 0.433499 0.69083 884 1 0.495701 0.44163 0.816562 881 1 0.508586 0.366595 0.747306 1539 1 0.0578303 0.503592 0.558799 789 1 0.623895 0.0060864 0.748626 787 1 0.566594 0.00820415 0.816987 630 1 0.687997 0.435067 0.499196 755 1 0.56364 0.378109 0.683306 760 1 0.629389 0.435125 0.687486 882 1 0.552533 0.433162 0.750491 883 1 0.55614 0.368393 0.811082 885 1 0.625828 0.372875 0.747934 888 1 0.621641 0.432491 0.805999 65 1 0.00949466 0.248689 0.99312 543 1 0.935081 0.000149997 0.556028 759 1 0.689815 0.366254 0.688114 763 1 0.81872 0.371307 0.692682 764 1 0.750478 0.434176 0.684736 886 1 0.691089 0.435259 0.744916 887 1 0.687813 0.368075 0.817668 889 1 0.751517 0.370621 0.750093 890 1 0.807805 0.434909 0.751622 891 1 0.809248 0.371224 0.809705 892 1 0.750214 0.436985 0.807758 868 1 0.000967602 0.442082 0.81914 865 1 0.00218509 0.379608 0.751319 767 1 0.939942 0.3727 0.694756 768 1 0.875736 0.429448 0.678619 893 1 0.870461 0.380795 0.751168 894 1 0.936149 0.433652 0.750279 895 1 0.938709 0.379124 0.813752 896 1 0.878086 0.438068 0.811899 74 1 0.310884 0.316743 0.999133 919 1 0.692731 0.00614694 0.941546 898 1 0.0583662 0.0543817 0.873632 904 1 0.128895 0.057216 0.935845 931 1 0.0613867 0.117966 0.935867 933 1 0.127023 0.116582 0.874606 900 1 0.00381855 0.0556954 0.937097 929 1 0.004825 0.128028 0.874405 1010 1 0.564475 0.430209 0.876093 1939 1 0.559073 0.492653 0.937712 1011 1 0.560623 0.377747 0.935487 1014 1 0.685327 0.440868 0.869519 1943 1 0.684466 0.502324 0.940585 902 1 0.186336 0.0552299 0.873584 906 1 0.310756 0.0548683 0.878444 908 1 0.251273 0.0512784 0.93789 935 1 0.183721 0.127317 0.934515 937 1 0.247718 0.106198 0.875565 939 1 0.320689 0.119851 0.935721 915 1 0.571895 0.00492363 0.937438 1017 1 0.745711 0.375774 0.882301 1013 1 0.628683 0.377141 0.875557 663 1 0.695771 -0.0039095 0.676649 1563 1 0.809681 0.490654 0.55619 1015 1 0.686329 0.382386 0.946995 910 1 0.439287 0.064303 0.874699 912 1 0.381586 0.0619228 0.944124 941 1 0.377914 0.114774 0.87802 943 1 0.444638 0.125361 0.940074 916 1 0.501765 0.0653858 0.943271 945 1 0.503563 0.119463 0.873195 534 1 0.688065 0.0664354 0.508736 535 1 0.68504 -0.0014461 0.567649 1559 1 0.689279 0.501318 0.564285 914 1 0.565627 0.0627837 0.878742 920 1 0.635961 0.0668889 0.948213 947 1 0.562502 0.121394 0.94274 949 1 0.621433 0.1249 0.883851 1547 1 0.307455 0.489208 0.560021 62 1 0.945529 0.18835 1.00317 918 1 0.698696 0.0710557 0.87272 922 1 0.813077 0.0606998 0.880226 924 1 0.752544 0.0626904 0.941393 951 1 0.691272 0.130593 0.935361 953 1 0.758232 0.124865 0.879777 955 1 0.815903 0.123653 0.933677 669 1 0.872342 -0.00102595 0.618343 926 1 0.928741 0.0637564 0.871343 928 1 0.874043 0.0582307 0.93766 957 1 0.87759 0.128808 0.865712 959 1 0.943297 0.125708 0.9399 1693 1 0.871509 0.499127 0.623969 1689 1 0.746331 0.497445 0.631546 558 1 0.438605 0.18628 0.500357 930 1 0.0675307 0.181616 0.868251 936 1 0.128947 0.187062 0.937223 962 1 0.0675149 0.310672 0.878197 963 1 0.0683993 0.244767 0.931219 965 1 0.123982 0.245232 0.872272 968 1 0.121893 0.322011 0.941093 961 1 -0.00572034 0.253322 0.878876 73 1 0.2515 0.249496 1.00266 1543 1 0.182149 0.500431 0.569077 934 1 0.191474 0.191673 0.87689 938 1 0.315187 0.188483 0.876618 940 1 0.248562 0.196705 0.934886 966 1 0.182243 0.305491 0.872071 967 1 0.178168 0.252372 0.941452 969 1 0.254399 0.251749 0.872318 970 1 0.3126 0.312746 0.87638 971 1 0.302911 0.252981 0.932493 972 1 0.244269 0.318528 0.934108 50 1 0.562677 0.19136 1.00186 1669 1 0.122773 0.491904 0.625637 1675 1 0.317728 0.497877 0.687836 942 1 0.441111 0.180873 0.873388 944 1 0.372811 0.183615 0.932113 973 1 0.375196 0.249558 0.86974 974 1 0.438014 0.308595 0.871654 975 1 0.433071 0.24952 0.939887 976 1 0.369815 0.314527 0.947108 948 1 0.504696 0.18878 0.938552 977 1 0.50526 0.244097 0.875149 33 1 0.00481985 0.123588 0.999349 37 1 0.124251 0.12132 0.994711 980 1 0.494991 0.303301 0.932431 946 1 0.560163 0.184608 0.869241 952 1 0.616723 0.19273 0.939815 978 1 0.563315 0.309789 0.875419 979 1 0.559442 0.255744 0.944859 981 1 0.628535 0.247616 0.867348 984 1 0.624601 0.313826 0.941719 956 1 0.760446 0.190772 0.935256 954 1 0.823188 0.190837 0.872922 950 1 0.702024 0.191959 0.87053 982 1 0.685628 0.314327 0.885066 983 1 0.69722 0.252031 0.938141 988 1 0.750804 0.315256 0.944613 987 1 0.81069 0.254915 0.934456 986 1 0.810532 0.315059 0.875788 985 1 0.750214 0.261161 0.878966 932 1 0.00556112 0.188186 0.93376 964 1 1.00152 0.315336 0.936317 992 1 0.877243 0.30884 0.940365 989 1 0.879309 0.251161 0.883265 960 1 0.883426 0.177585 0.936188 958 1 0.94047 0.178386 0.869225 991 1 0.944653 0.252839 0.942711 990 1 0.937683 0.316591 0.87363 1691 1 0.819423 0.490107 0.688544 78 1 0.438449 0.313387 1.00169 659 1 0.572152 0.00560953 0.686313 109 1 0.372936 0.377885 1.00065 996 1 0.002986 0.435112 0.936846 994 1 0.0643721 0.451925 0.880721 1000 1 0.121656 0.439984 0.93942 995 1 0.0635143 0.380571 0.932598 997 1 0.128242 0.383042 0.880329 1817 1 0.750306 0.500009 0.742461 1677 1 0.378034 0.501063 0.626032 77 1 0.369883 0.247012 0.994193 1002 1 0.311867 0.442949 0.872798 1003 1 0.311452 0.377345 0.928471 999 1 0.186852 0.375702 0.944815 998 1 0.188883 0.447619 0.880982 1004 1 0.246688 0.434167 0.942128 1001 1 0.24284 0.374685 0.875554 1551 1 0.435296 0.501068 0.556128 97 1 -0.00266586 0.378606 1.00518 1016 1 0.625948 0.436622 0.932274 1012 1 0.502062 0.439628 0.941745 1009 1 0.500574 0.375835 0.87877 1008 1 0.378139 0.442574 0.93156 1005 1 0.37644 0.374646 0.878176 1007 1 0.432571 0.376702 0.936485 1006 1 0.436413 0.448363 0.87428 93 1 0.878467 0.241917 0.995859 122 1 0.813028 0.446775 1.00065 101 1 0.119117 0.380265 0.995345 42 1 0.31143 0.183715 0.990054 69 1 0.115846 0.255947 0.998528 633 1 0.748017 0.376683 0.497537 609 1 0.997177 0.378085 0.500814 41 1 0.251513 0.126534 0.995193 54 1 0.689895 0.18367 0.997583 38 1 0.187523 0.188796 0.993896 121 1 0.751935 0.382985 1.00259 582 1 0.178395 0.310713 0.505959 6 1 0.184996 0.0635869 0.995772 553 1 0.24734 0.124538 0.501558 569 1 0.751432 0.135128 0.504487 57 1 0.752179 0.128285 0.998415 126 1 0.938076 0.439561 1.00128 518 1 0.186188 0.0593823 0.506741 586 1 0.315746 0.308204 0.502011 30 1 0.947503 0.0585996 1.00714 525 1 0.37471 0.00888587 0.497882 1541 1 0.125744 0.496159 0.506001 106 1 0.311116 0.441063 0.996276 605 1 0.882423 0.245208 0.50616 58 1 0.817317 0.182849 0.994013 18 1 0.560711 0.0596463 0.999056 566 1 0.687903 0.18168 0.503839 581 1 0.117616 0.249344 0.504904 578 1 0.0702221 0.317677 0.506373 557 1 0.379385 0.123486 0.507386 625 1 0.497378 0.376781 0.498367 25 1 0.748444 0.000373381 1.00846 629 1 0.618825 0.375311 0.509369 1032 1 0.125946 0.567196 0.0618293 1059 1 0.0621624 0.626736 0.0587539 1154 1 0.0706349 0.563678 0.118696 1189 1 0.12947 0.62611 0.126159 1153 1 0.993328 0.506885 0.131241 1577 1 0.248783 0.626425 0.49595 1036 1 0.247714 0.564656 0.0601123 1063 1 0.193384 0.629884 0.057813 1067 1 0.31303 0.626072 0.0654962 1158 1 0.184882 0.567598 0.115426 1162 1 0.309823 0.566384 0.126359 1193 1 0.253846 0.625248 0.123255 389 1 0.119045 0.999915 0.372453 27 1 0.8144 0.997036 0.065314 1040 1 0.376427 0.565647 0.066262 1071 1 0.441682 0.630153 0.0627076 1166 1 0.440181 0.562109 0.122161 1197 1 0.38491 0.628458 0.125509 1201 1 0.497564 0.62655 0.127575 1044 1 0.505324 0.56023 0.0699229 1086 1 0.935828 0.684868 0.00568415 1026 1 0.0583143 0.56229 0.00280733 1048 1 0.626867 0.564399 0.0700533 1075 1 0.560027 0.624055 0.0636651 1170 1 0.570034 0.562192 0.133997 1205 1 0.625692 0.621343 0.128657 1041 1 0.497324 0.505403 0.00294732 1085 1 0.876353 0.626523 0.0024793 145 1 0.496131 0.999659 0.124201 1054 1 0.937556 0.565699 -0.00070927 11 1 0.314964 1.00638 0.0612099 1052 1 0.748177 0.561207 0.0669817 1079 1 0.688267 0.621899 0.0626128 1083 1 0.804734 0.626488 0.0659541 1174 1 0.690253 0.562819 0.131582 1178 1 0.811185 0.562797 0.121132 1209 1 0.754981 0.620897 0.127274 1537 1 0.00578643 0.499906 0.496754 1130 1 0.305465 0.936209 0.0104021 1039 1 0.435268 0.501689 0.0690635 1185 1 0.00528725 0.618691 0.128297 1028 1 1.00112 0.552582 0.0682216 1056 1 0.875545 0.564146 0.0581633 1087 1 0.933887 0.625328 0.0679582 1182 1 0.927612 0.565142 0.12685 1213 1 0.873917 0.631334 0.124867 415 1 0.942191 0.993394 0.441114 1183 1 0.934423 0.505475 0.191101 1064 1 0.12724 0.679169 0.0642671 1091 1 0.064649 0.739618 0.0649564 1096 1 0.124583 0.810277 0.063091 1186 1 0.056321 0.684334 0.127394 1218 1 0.0615317 0.813846 0.119801 1221 1 0.125395 0.748841 0.119884 1060 1 1.00033 0.688433 0.0620973 1092 1 0.998625 0.80743 0.0551308 403 1 0.555775 1.00717 0.434784 3 1 0.0611129 0.996977 0.0613669 1068 1 0.249638 0.687213 0.0644237 1095 1 0.18945 0.742083 0.0671727 1099 1 0.30581 0.748193 0.0661354 1100 1 0.245767 0.806289 0.0602991 1190 1 0.184361 0.681533 0.126687 1194 1 0.312987 0.682977 0.125687 1222 1 0.186546 0.810313 0.123418 1225 1 0.250559 0.73828 0.129315 1226 1 0.303407 0.802563 0.132398 31 1 0.936553 0.999808 0.0623011 257 1 1.00452 1.00072 0.245594 1287 1 0.1875 0.502667 0.31588 393 1 0.247478 0.99135 0.371528 1072 1 0.374409 0.691599 0.0644729 1103 1 0.435368 0.756845 0.0603776 1104 1 0.367378 0.811083 0.0649345 1198 1 0.436056 0.68848 0.118353 1229 1 0.366526 0.748723 0.130488 1230 1 0.43564 0.814968 0.115996 1155 1 0.0609311 0.501152 0.192222 1055 1 0.933318 0.507444 0.0631039 1233 1 0.494767 0.749393 0.124114 1076 1 0.503052 0.690288 0.0643456 1108 1 0.502114 0.816339 0.0648185 1080 1 0.622672 0.679792 0.0715166 1107 1 0.55847 0.743482 0.063459 1112 1 0.616116 0.814862 0.0667775 1202 1 0.556865 0.691888 0.131066 1234 1 0.556211 0.80165 0.125318 1237 1 0.628316 0.747452 0.123241 1070 1 0.440002 0.689401 0.00488516 29 1 0.87122 0.999664 0.00347818 1066 1 0.316269 0.692604 0.00060179 1606 1 0.187684 0.816246 0.495872 1084 1 0.747013 0.68628 0.0655807 1111 1 0.6953 0.747522 0.0742812 1115 1 0.818633 0.75027 0.0592738 1116 1 0.747553 0.817906 0.061527 1206 1 0.686949 0.681048 0.12953 1210 1 0.808319 0.687358 0.118784 1238 1 0.693057 0.805899 0.136006 1241 1 0.758382 0.752319 0.125032 1242 1 0.812393 0.815437 0.126818 1171 1 0.568714 0.5065 0.189507 1217 1 0.00471232 0.758323 0.119207 1088 1 0.875452 0.692589 0.0608818 1119 1 0.937851 0.746502 0.0605675 1120 1 0.875056 0.811716 0.0697355 1214 1 0.944221 0.683689 0.12093 1245 1 0.87085 0.750533 0.122883 1246 1 0.93371 0.813391 0.120951 1123 1 0.0625404 0.872384 0.0592898 1128 1 0.120953 0.938597 0.0584834 1250 1 0.0622076 0.937718 0.117206 1253 1 0.126774 0.872011 0.117749 1124 1 0.000610419 0.936533 0.068483 1027 1 0.0646636 0.497404 0.0690687 1546 1 0.309634 0.569009 0.499714 1031 1 0.1849 0.500923 0.0659863 1127 1 0.190506 0.869561 0.0574916 1131 1 0.310303 0.870555 0.0689523 1132 1 0.245291 0.928744 0.0670406 1254 1 0.179641 0.937038 0.129578 1257 1 0.247897 0.876391 0.12415 1258 1 0.308557 0.936057 0.12911 1549 1 0.370209 0.503152 0.497792 1135 1 0.43532 0.879746 0.0619769 1136 1 0.363282 0.93849 0.0698328 1261 1 0.366003 0.874452 0.132549 1262 1 0.435901 0.936982 0.124871 1140 1 0.498086 0.940064 0.0640986 1265 1 0.498424 0.881084 0.123705 1589 1 0.624407 0.625304 0.505024 405 1 0.626871 1.00185 0.375582 131 1 0.0578981 0.996977 0.184898 1139 1 0.560251 0.876842 0.0640913 1144 1 0.629548 0.940929 0.0623349 1266 1 0.561197 0.934237 0.12708 1269 1 0.629218 0.876179 0.125108 1121 1 0.998999 0.873419 0.000286065 1285 1 0.126155 0.495094 0.249651 1658 1 0.809924 0.939608 0.500408 1146 1 0.803718 0.941902 -0.00525266 1657 1 0.745536 0.871307 0.504882 1161 1 0.249081 0.505795 0.122227 1143 1 0.680858 0.871586 0.0641891 1147 1 0.809224 0.878467 0.0594877 1148 1 0.746958 0.936503 0.0658398 1270 1 0.681791 0.944507 0.120159 1273 1 0.749667 0.876421 0.124946 1274 1 0.805978 0.940485 0.127919 1129 1 0.248721 0.870296 0.00392986 1409 1 -0.00193947 0.505483 0.367455 1043 1 0.570549 0.503606 0.0607251 1038 1 0.443818 0.565101 0.00200379 1149 1 0.868711 0.878003 0.0068987 1249 1 1.00104 0.869966 0.124394 1151 1 0.933119 0.872541 0.0581878 1152 1 0.871321 0.934642 0.0655785 1277 1 0.866682 0.875204 0.124098 1278 1 0.934652 0.937744 0.126711 1554 1 0.555697 0.562399 0.501973 1293 1 0.366493 0.503274 0.256286 1160 1 0.130234 0.565564 0.184624 1187 1 0.0649704 0.62277 0.184644 1282 1 0.0616138 0.567481 0.24809 1288 1 0.11735 0.563864 0.314894 1315 1 0.0558188 0.62449 0.304847 1317 1 0.126772 0.617068 0.244761 1164 1 0.24853 0.561335 0.189986 1191 1 0.189663 0.62634 0.189482 1195 1 0.314955 0.627059 0.184006 1286 1 0.186426 0.561608 0.259217 1290 1 0.31357 0.567636 0.247423 1292 1 0.252899 0.569215 0.317479 1319 1 0.179066 0.626991 0.309425 1321 1 0.252192 0.620208 0.255868 1323 1 0.317492 0.625139 0.314696 259 1 0.0609327 0.998463 0.304276 1505 1 1.00192 0.872719 0.381238 277 1 0.620729 1.0034 0.245697 1110 1 0.678172 0.815033 0.00231192 1168 1 0.381757 0.571301 0.190813 1199 1 0.441196 0.627313 0.19256 1294 1 0.438263 0.566386 0.252823 1296 1 0.38036 0.56531 0.311288 1325 1 0.378132 0.632398 0.252427 1327 1 0.443766 0.625197 0.316586 1617 1 0.495122 0.747235 0.504769 1329 1 0.496854 0.628427 0.257525 1172 1 0.494855 0.567203 0.184593 1300 1 0.508055 0.563353 0.319065 1176 1 0.633691 0.563588 0.187742 1203 1 0.556761 0.631578 0.185563 1298 1 0.567395 0.569252 0.246947 1304 1 0.624969 0.559801 0.312292 1331 1 0.568687 0.627341 0.30656 1333 1 0.62901 0.630342 0.247967 1613 1 0.376468 0.753734 0.493008 1536 1 0.876658 0.945988 0.43362 1535 1 0.938936 0.871027 0.436966 1180 1 0.756384 0.565441 0.188787 1207 1 0.690867 0.626424 0.194497 1211 1 0.817699 0.625911 0.184237 1302 1 0.69413 0.554031 0.253975 1306 1 0.816228 0.56712 0.247308 1308 1 0.753424 0.561818 0.317852 1335 1 0.688705 0.629149 0.316265 1337 1 0.744482 0.620661 0.258453 1339 1 0.811109 0.619732 0.311473 1305 1 0.760965 0.504943 0.257402 1297 1 0.500308 0.496027 0.247865 1534 1 0.938345 0.935965 0.375496 1156 1 0.992578 0.565441 0.188647 1284 1 0.999409 0.563574 0.312611 1313 1 0.994661 0.628263 0.257309 1184 1 0.883555 0.572703 0.191718 1215 1 0.93777 0.63077 0.182842 1310 1 0.933727 0.56423 0.256207 1312 1 0.872387 0.567418 0.322445 1341 1 0.876411 0.635607 0.246578 1343 1 0.934829 0.618484 0.316063 1192 1 0.115151 0.6866 0.187987 1219 1 0.0660973 0.752312 0.189643 1224 1 0.119502 0.811944 0.176001 1314 1 0.0610077 0.685995 0.24803 1320 1 0.12015 0.69015 0.30801 1346 1 0.063705 0.809357 0.249001 1347 1 0.0596446 0.75184 0.311297 1349 1 0.128624 0.757479 0.245441 1352 1 0.124921 0.802535 0.320272 1188 1 -0.00570594 0.695834 0.187789 1196 1 0.252411 0.680843 0.1923 1223 1 0.186123 0.749092 0.183338 1227 1 0.309861 0.745928 0.194182 1228 1 0.252324 0.810694 0.192385 1318 1 0.185522 0.689166 0.247071 1322 1 0.305813 0.686632 0.261064 1324 1 0.25357 0.681478 0.325002 1350 1 0.189501 0.813242 0.242199 1351 1 0.187362 0.741261 0.317966 1353 1 0.245783 0.751755 0.251657 1354 1 0.308798 0.813187 0.257612 1355 1 0.313278 0.749811 0.318229 1356 1 0.252963 0.808674 0.315745 1200 1 0.380433 0.688608 0.183359 1231 1 0.43468 0.748998 0.184307 1232 1 0.363319 0.8116 0.1964 1326 1 0.438527 0.686402 0.249665 1328 1 0.375515 0.689856 0.315485 1357 1 0.377139 0.749292 0.246483 1358 1 0.436801 0.80959 0.250859 1359 1 0.439567 0.751053 0.307517 1360 1 0.372004 0.805795 0.311385 1332 1 0.500483 0.689372 0.312375 1236 1 0.501038 0.813595 0.19062 1361 1 0.501666 0.755531 0.253317 1364 1 0.504487 0.807214 0.317473 1204 1 0.498785 0.692729 0.191356 1208 1 0.626202 0.691827 0.192809 1235 1 0.569672 0.756899 0.191141 1240 1 0.628674 0.811771 0.179987 1330 1 0.562286 0.69021 0.25047 1336 1 0.62833 0.68598 0.319218 1362 1 0.565016 0.811196 0.253914 1363 1 0.558968 0.743732 0.315867 1365 1 0.631538 0.751697 0.249612 1368 1 0.626209 0.808634 0.315558 1212 1 0.756981 0.6926 0.190347 1239 1 0.696727 0.747433 0.196947 1243 1 0.816755 0.749238 0.19477 1244 1 0.753272 0.810766 0.190719 1334 1 0.688463 0.687863 0.253406 1338 1 0.811504 0.686416 0.259591 1340 1 0.746392 0.685953 0.314528 1366 1 0.685637 0.816656 0.25685 1367 1 0.686312 0.750431 0.320719 1369 1 0.748669 0.74869 0.260828 1370 1 0.806997 0.807904 0.256045 1371 1 0.811078 0.751802 0.312606 1372 1 0.75145 0.810892 0.316276 1220 1 1.00042 0.810104 0.186225 1345 1 0.999162 0.744955 0.256915 1348 1 0.998233 0.810285 0.31242 1316 1 0.00156834 0.682286 0.319401 1216 1 0.876526 0.687952 0.184991 1247 1 0.935759 0.74958 0.190516 1248 1 0.871339 0.817744 0.190997 1342 1 0.935994 0.688481 0.261859 1344 1 0.877314 0.694362 0.321033 1373 1 0.873263 0.747533 0.256297 1374 1 0.939519 0.808126 0.251379 1375 1 0.940985 0.747575 0.321061 1376 1 0.889287 0.811167 0.31753 1251 1 0.0576193 0.870127 0.189077 1256 1 0.119195 0.936544 0.194661 1378 1 0.0564243 0.936389 0.249372 1379 1 0.0582498 0.86303 0.306548 1381 1 0.120403 0.871032 0.249448 1384 1 0.128116 0.938653 0.307961 1380 1 -0.00190554 0.928935 0.311533 1533 1 0.873928 0.879085 0.377954 1255 1 0.180155 0.878461 0.184498 1259 1 0.311373 0.879612 0.19648 1260 1 0.247034 0.934627 0.191694 1382 1 0.181644 0.942182 0.248338 1383 1 0.18524 0.868421 0.312688 1385 1 0.242011 0.879992 0.249231 1386 1 0.310759 0.942854 0.251127 1387 1 0.313673 0.876796 0.307494 1388 1 0.246053 0.934468 0.310063 1263 1 0.431168 0.870096 0.185918 1264 1 0.37048 0.943655 0.188313 1389 1 0.374086 0.875032 0.252608 1390 1 0.438136 0.936317 0.252976 1391 1 0.4376 0.861837 0.309588 1392 1 0.372321 0.937945 0.310116 1268 1 0.496351 0.935149 0.19207 1396 1 0.494962 0.93948 0.313678 1393 1 0.502699 0.867776 0.253409 133 1 0.125747 0.99942 0.12027 1289 1 0.249149 0.501167 0.250809 1 1 0.00121416 0.996157 0.003723 7 1 0.185933 0.993242 0.0573356 1267 1 0.564683 0.872239 0.183522 1272 1 0.623551 0.943557 0.185954 1394 1 0.563797 0.941157 0.249516 1395 1 0.559004 0.875972 0.318289 1397 1 0.620212 0.871074 0.25711 1400 1 0.621014 0.946462 0.31155 1090 1 0.0649289 0.80352 0.00406869 1271 1 0.684469 0.879976 0.196391 1275 1 0.807376 0.878892 0.195066 1276 1 0.739701 0.937563 0.184446 1398 1 0.687963 0.938388 0.250934 1399 1 0.679095 0.878098 0.317319 1401 1 0.744495 0.876065 0.255699 1402 1 0.810593 0.935068 0.249921 1403 1 0.815322 0.874663 0.314973 1404 1 0.751781 0.938668 0.317833 1134 1 0.436389 0.940139 0.00763205 387 1 0.0605377 0.99662 0.43964 1553 1 0.496187 0.499156 0.494633 1252 1 -0.00465253 0.934303 0.187262 1377 1 0.00270009 0.872377 0.245908 1279 1 0.93623 0.875208 0.194628 1280 1 0.876448 0.931432 0.188378 1405 1 0.877742 0.883547 0.261187 1406 1 0.934249 0.936245 0.251679 1407 1 0.936829 0.875669 0.318919 1408 1 0.875276 0.939036 0.314831 1410 1 0.0595292 0.560683 0.374795 1416 1 0.122443 0.56346 0.441419 1443 1 0.0626599 0.621481 0.437724 1445 1 0.124374 0.628159 0.371552 1412 1 0.00329364 0.565059 0.437438 1301 1 0.627432 0.501855 0.251124 1441 1 0.997409 0.621236 0.374231 1421 1 0.374315 0.499704 0.370373 1414 1 0.178395 0.562008 0.373369 1418 1 0.31214 0.558381 0.373447 1420 1 0.252785 0.560008 0.431309 1447 1 0.188644 0.622337 0.43847 1449 1 0.253109 0.624123 0.375934 1451 1 0.31777 0.628775 0.440746 1526 1 0.689305 0.938292 0.383566 1520 1 0.373643 0.941051 0.43513 1303 1 0.691065 0.498055 0.317118 1439 1 0.941486 0.502535 0.441923 1514 1 0.308895 0.934632 0.37646 1506 1 0.0624195 0.931298 0.365379 1610 1 0.308877 0.815238 0.491325 1517 1 0.373244 0.873749 0.371523 279 1 0.687249 0.997178 0.320405 1422 1 0.436638 0.561544 0.374784 1424 1 0.373722 0.566268 0.432179 1453 1 0.376372 0.621167 0.377002 1455 1 0.437754 0.626264 0.432639 5 1 0.125454 0.992544 -0.00367266 1518 1 0.434676 0.935861 0.368225 1519 1 0.434317 0.879833 0.433599 1428 1 0.502087 0.568122 0.433939 1457 1 0.505451 0.624371 0.371849 1426 1 0.564026 0.563358 0.378788 1432 1 0.619728 0.560072 0.438772 1459 1 0.567051 0.626713 0.442085 1461 1 0.63149 0.623957 0.378869 1512 1 0.125198 0.940989 0.436844 1513 1 0.245535 0.870047 0.367677 1525 1 0.620349 0.879822 0.378956 1529 1 0.744639 0.873617 0.368309 1165 1 0.372738 0.516157 0.128002 1430 1 0.68907 0.556741 0.37817 1434 1 0.807166 0.565251 0.385326 1436 1 0.746991 0.565395 0.439738 1463 1 0.69332 0.624541 0.439025 1465 1 0.744114 0.6289 0.377275 1467 1 0.803848 0.632157 0.444152 1521 1 0.489234 0.868828 0.369696 1532 1 0.749262 0.933341 0.438916 1508 1 0.998426 0.931823 0.438159 1642 1 0.313767 0.941275 0.498215 1527 1 0.685127 0.872951 0.439797 1438 1 0.93783 0.55704 0.381816 1440 1 0.877495 0.56478 0.449699 1469 1 0.874981 0.620179 0.382863 1471 1 0.939163 0.629011 0.442207 1442 1 0.0682513 0.690652 0.382158 1448 1 0.127593 0.683693 0.438188 1474 1 0.0585886 0.802752 0.375364 1475 1 0.0677825 0.749201 0.440506 1477 1 0.12545 0.748384 0.378243 1480 1 0.127837 0.810163 0.43422 1473 1 0.992772 0.749591 0.380947 1524 1 0.494471 0.945058 0.431957 1515 1 0.297988 0.873104 0.433274 1511 1 0.185079 0.881413 0.439353 1446 1 0.187915 0.683571 0.374514 1450 1 0.315178 0.689041 0.376281 1452 1 0.252579 0.684722 0.439046 1478 1 0.18375 0.810616 0.374778 1479 1 0.185882 0.742719 0.435661 1481 1 0.247057 0.745223 0.377215 1482 1 0.310276 0.81645 0.376844 1483 1 0.311962 0.751518 0.441041 1484 1 0.244151 0.806035 0.431189 1516 1 0.246105 0.949888 0.439284 1523 1 0.55563 0.880794 0.437493 1528 1 0.620949 0.939373 0.43974 1454 1 0.443933 0.685635 0.373547 1456 1 0.378373 0.687712 0.428799 1485 1 0.377247 0.759332 0.374096 1486 1 0.434095 0.808427 0.377838 1487 1 0.436313 0.753444 0.43542 1488 1 0.374286 0.816582 0.437624 1489 1 0.498667 0.745649 0.37839 1510 1 0.18167 0.937459 0.373228 1460 1 0.501614 0.684972 0.435046 1492 1 0.50356 0.819059 0.443853 1496 1 0.618653 0.819266 0.442357 1458 1 0.562831 0.683276 0.370055 1464 1 0.623869 0.690548 0.445904 1490 1 0.560813 0.808707 0.383637 1491 1 0.557504 0.744913 0.441099 1493 1 0.624578 0.754289 0.383764 1582 1 0.435936 0.68354 0.49633 1621 1 0.621491 0.757657 0.499378 1133 1 0.373888 0.869308 0.00177079 1531 1 0.81421 0.878611 0.433572 1494 1 0.684501 0.81231 0.377931 1468 1 0.748558 0.685052 0.437962 1466 1 0.81161 0.693055 0.368789 1462 1 0.6862 0.688632 0.384821 1497 1 0.74636 0.750537 0.381681 1500 1 0.750613 0.813524 0.441168 1499 1 0.805142 0.745475 0.439723 1495 1 0.685972 0.749309 0.441618 1498 1 0.813046 0.807943 0.377396 1476 1 1.00247 0.808483 0.439189 1444 1 0.00677216 0.687549 0.439226 1470 1 0.934519 0.688246 0.385689 1502 1 0.938428 0.817492 0.380224 1504 1 0.868597 0.807015 0.440619 1503 1 0.938917 0.746292 0.443313 1501 1 0.876253 0.74809 0.38739 1472 1 0.863199 0.687068 0.437761 1522 1 0.559057 0.943694 0.376826 1530 1 0.814889 0.941636 0.37174 1507 1 0.0686093 0.884581 0.436306 1509 1 0.123972 0.870293 0.370543 1109 1 0.629007 0.745533 0.00671488 1614 1 0.436327 0.814463 0.498934 1653 1 0.628226 0.878062 0.498736 1654 1 0.685041 0.948374 0.497856 1309 1 0.87408 0.507876 0.258797 1179 1 0.813535 0.502856 0.186304 1142 1 0.689568 0.938685 -0.00359815 1574 1 0.187634 0.689943 0.501336 1159 1 0.186313 0.505599 0.189609 397 1 0.378863 0.999124 0.371087 391 1 0.186522 1.00054 0.42717 1423 1 0.432819 0.502484 0.435746 261 1 0.125624 1.00723 0.250379 1167 1 0.438066 0.508125 0.191767 385 1 1.00109 0.997258 0.369292 1150 1 0.933727 0.939786 -0.000652926 1291 1 0.30752 0.504616 0.312052 1618 1 0.558138 0.82105 0.498634 1035 1 0.313121 0.514404 0.0596121 1047 1 0.690364 0.501863 0.0674699 1649 1 0.493011 0.878723 0.497944 1437 1 0.871766 0.500784 0.379131 1419 1 0.31278 0.503678 0.433783 1177 1 0.754397 0.505857 0.131841 1283 1 0.064047 0.502311 0.316893 1069 1 0.377351 0.624645 0.00382521 267 1 0.301317 0.996141 0.31792 1646 1 0.434101 0.942943 0.49366 1645 1 0.375312 0.879166 0.492562 273 1 0.499739 0.998893 0.247956 401 1 0.489392 1.00376 0.376043 287 1 0.937062 0.993525 0.308109 1117 1 0.872897 0.749178 0.00019915 1590 1 0.691051 0.693138 0.501477 1550 1 0.430548 0.558499 0.497611 1082 1 0.813141 0.687231 0.00716709 541 1 0.874638 1.00075 0.495629 1074 1 0.565875 0.681304 0.00510825 1093 1 0.12558 0.74402 0.00738654 1078 1 0.679527 0.679601 0.0117267 1050 1 0.811925 0.561363 -0.000793243 1138 1 0.565901 0.939595 0.00625751 1101 1 0.375724 0.746535 0.00976721 1057 1 0.00408955 0.629487 0.00233123 1105 1 0.495867 0.752031 0.00384724 1661 1 0.864961 0.881072 0.499583 1633 1 0.997839 0.871698 0.498111 1102 1 0.441302 0.813094 0.00534492 1145 1 0.741572 0.875594 0.00633229 1081 1 0.754534 0.628222 -0.00192303 1569 1 0.00450252 0.626944 0.503663 1630 1 0.937868 0.810425 0.498641 1118 1 0.936571 0.811395 -0.00154734 1544 1 0.127291 0.563617 0.561321 1571 1 0.0668753 0.620539 0.562561 1666 1 0.0587581 0.561072 0.628817 1701 1 0.132067 0.626673 0.616433 1923 1 0.0656161 0.503255 0.946008 1540 1 -0.00182556 0.563963 0.555565 1697 1 -0.00356972 0.611466 0.622955 2017 1 0.995417 0.875462 0.870269 523 1 0.316956 0.99927 0.562024 1797 1 0.126195 0.504407 0.749075 521 1 0.25218 0.987252 0.510559 1548 1 0.242408 0.553721 0.560891 1575 1 0.191705 0.623282 0.560665 1579 1 0.307108 0.624276 0.557772 1670 1 0.187533 0.556808 0.62327 1674 1 0.306748 0.566919 0.625226 1705 1 0.251933 0.628297 0.625609 1641 1 0.243725 0.874645 0.49494 1929 1 0.24959 0.506637 0.87346 1811 1 0.552198 0.49794 0.803203 1552 1 0.374565 0.558747 0.566912 1583 1 0.437231 0.627633 0.563879 1678 1 0.43865 0.560174 0.621867 1709 1 0.378054 0.629919 0.622511 1713 1 0.498962 0.626551 0.624874 1567 1 0.936164 0.505235 0.553267 1650 1 0.558788 0.938073 0.492826 1558 1 0.689403 0.56015 0.50432 1556 1 0.489546 0.56437 0.555635 1560 1 0.621156 0.558646 0.572734 1587 1 0.554244 0.620342 0.563624 1682 1 0.558332 0.556408 0.626074 1717 1 0.627616 0.623151 0.624734 1626 1 0.809414 0.808088 0.506131 1935 1 0.442797 0.502145 0.936382 1667 1 0.0668265 0.49686 0.689663 657 1 0.505164 0.999109 0.624658 1931 1 0.312244 0.506436 0.933088 1555 1 0.559835 0.499774 0.564243 1638 1 0.185403 0.932482 0.501194 1591 1 0.682985 0.622723 0.558829 1564 1 0.751457 0.554351 0.562893 1595 1 0.799978 0.617404 0.564413 1686 1 0.692388 0.561401 0.629963 1690 1 0.810041 0.561747 0.625447 1721 1 0.745357 0.621313 0.619861 1570 1 0.0725469 0.681237 0.501621 1538 1 0.0643002 0.561274 0.501316 1113 1 0.753719 0.754063 0.999136 2048 1 0.87131 0.941961 0.944042 1568 1 0.864525 0.566657 0.565308 1599 1 0.936447 0.622148 0.561535 1694 1 0.927224 0.557713 0.626986 1725 1 0.871441 0.624733 0.625454 903 1 0.1876 0.999834 0.933603 1927 1 0.189487 0.502018 0.939313 1629 1 0.873386 0.741841 0.507446 911 1 0.439891 1.00451 0.943144 1576 1 0.130205 0.68641 0.565894 1603 1 0.0673065 0.742858 0.565532 1608 1 0.125656 0.812416 0.566864 1698 1 0.0706199 0.683895 0.626815 1730 1 0.0635343 0.815141 0.623814 1733 1 0.130367 0.744542 0.630651 1729 1 0.00377373 0.753747 0.628157 1572 1 0.011462 0.67742 0.573138 1665 1 0.997455 0.504637 0.626731 1580 1 0.246576 0.687331 0.557558 1607 1 0.187863 0.75364 0.556395 1611 1 0.313484 0.751704 0.55979 1612 1 0.252359 0.809161 0.564136 1702 1 0.186546 0.689345 0.619683 1706 1 0.312926 0.679554 0.616665 1734 1 0.189695 0.809243 0.624437 1737 1 0.253157 0.747506 0.61851 1738 1 0.318868 0.814072 0.613871 905 1 0.251024 0.991428 0.875739 901 1 0.12138 0.997366 0.871391 1573 1 0.135599 0.624688 0.501851 1584 1 0.376838 0.687058 0.560647 1615 1 0.434192 0.744532 0.563154 1616 1 0.367674 0.817857 0.553308 1710 1 0.440914 0.686777 0.622783 1741 1 0.377477 0.741327 0.619746 1742 1 0.430654 0.806898 0.622869 1588 1 0.489569 0.685683 0.563134 1593 1 0.746283 0.624319 0.499342 1745 1 0.497225 0.748855 0.615018 1620 1 0.496178 0.807167 0.557449 1592 1 0.632201 0.681946 0.564586 1619 1 0.562263 0.749647 0.556799 1624 1 0.625995 0.811877 0.562721 1714 1 0.557339 0.687977 0.62141 1746 1 0.562956 0.814706 0.622348 1749 1 0.620877 0.749354 0.623283 1045 1 0.624738 0.496889 1.00287 1933 1 0.37473 0.502664 0.873585 1609 1 0.248678 0.756649 0.495609 1596 1 0.742343 0.679215 0.564743 1623 1 0.682634 0.751858 0.569388 1627 1 0.81618 0.750466 0.564892 1628 1 0.747918 0.808388 0.568104 1718 1 0.682982 0.691236 0.624774 1722 1 0.811423 0.68753 0.620539 1750 1 0.685275 0.815218 0.623636 1753 1 0.747465 0.744163 0.626299 1754 1 0.806748 0.810927 0.629856 1634 1 0.0564454 0.930632 0.50498 1604 1 1.00069 0.818239 0.566053 1561 1 0.746867 0.497294 0.498983 1600 1 0.887932 0.684664 0.565947 1631 1 0.947136 0.753671 0.563061 1632 1 0.875804 0.813175 0.560628 1726 1 0.945919 0.679129 0.633188 1757 1 0.876682 0.748559 0.617828 1758 1 0.932953 0.806366 0.625326 913 1 0.505101 0.99975 0.874143 1673 1 0.255722 0.497245 0.621614 1635 1 0.0695526 0.874068 0.563893 1640 1 0.124072 0.936997 0.566226 1762 1 0.0610637 0.940116 0.628159 1765 1 0.130797 0.869918 0.629252 1636 1 0.994959 0.930196 0.566705 2047 1 0.929339 0.87554 0.94647 1598 1 0.946085 0.688138 0.50653 1639 1 0.189152 0.870588 0.560604 1643 1 0.306639 0.871795 0.553559 1644 1 0.246416 0.927805 0.570709 1766 1 0.190094 0.933588 0.626105 1769 1 0.251778 0.865779 0.633156 1770 1 0.311721 0.931723 0.621735 1602 1 0.0696935 0.815824 0.505302 2046 1 0.92818 0.937006 0.878225 2036 1 0.512691 0.95082 0.944466 1097 1 0.251399 0.747709 1.00482 2037 1 0.618364 0.874182 0.868124 1647 1 0.431614 0.871578 0.56156 1648 1 0.375875 0.934674 0.562989 1773 1 0.373337 0.876437 0.620056 1774 1 0.436091 0.937925 0.614966 1597 1 0.872077 0.636428 0.509139 661 1 0.622014 0.999833 0.624041 2045 1 0.868748 0.870381 0.867075 1652 1 0.503211 0.932106 0.563417 1777 1 0.502588 0.871278 0.615572 1651 1 0.565702 0.877808 0.554339 1656 1 0.623274 0.941184 0.562501 1778 1 0.558311 0.93881 0.633481 1781 1 0.623307 0.876984 0.617162 1921 1 -0.00214357 0.505048 0.882397 785 1 0.495531 0.989363 0.743717 1655 1 0.690344 0.872582 0.560722 1659 1 0.810591 0.870819 0.562866 1660 1 0.742288 0.941359 0.553561 1782 1 0.689338 0.933714 0.619429 1785 1 0.743327 0.872191 0.623049 1786 1 0.800979 0.937497 0.61536 783 1 0.429298 0.997169 0.814251 2035 1 0.565114 0.882968 0.936172 899 1 0.0645243 1.00062 0.930531 1126 1 0.187164 0.93282 1.00055 1761 1 -0.00243414 0.876538 0.627505 1663 1 0.933469 0.871772 0.562365 1664 1 0.871238 0.937927 0.564877 1789 1 0.873214 0.874793 0.623091 1790 1 0.933692 0.933527 0.62852 1683 1 0.556224 0.499306 0.692384 1065 1 0.248234 0.624981 1.00236 1672 1 0.129382 0.561195 0.685118 1699 1 0.0628885 0.625383 0.679983 1794 1 0.0603557 0.56677 0.749592 1800 1 0.126284 0.561541 0.814621 1827 1 0.0682739 0.62193 0.809735 1829 1 0.125962 0.626783 0.752416 1668 1 0.0100013 0.560958 0.692163 1825 1 1.00065 0.621389 0.746694 1803 1 0.314978 0.510617 0.811219 1809 1 0.49506 0.501037 0.744419 777 1 0.253852 0.99567 0.745166 1676 1 0.251383 0.561603 0.685655 1703 1 0.192635 0.623708 0.691417 1707 1 0.310203 0.627633 0.68175 1798 1 0.189141 0.559482 0.751387 1802 1 0.311875 0.564003 0.737848 1804 1 0.249117 0.56671 0.812649 1831 1 0.187822 0.629913 0.808595 1833 1 0.254317 0.622146 0.755649 1835 1 0.314535 0.632097 0.81512 769 1 0.995525 0.992349 0.755872 1586 1 0.556839 0.679898 0.502394 1695 1 0.938361 0.496173 0.686409 1680 1 0.370779 0.562028 0.684434 1711 1 0.438675 0.624123 0.678424 1806 1 0.4356 0.573422 0.751815 1808 1 0.372627 0.564741 0.807956 1837 1 0.372256 0.633409 0.744587 1839 1 0.441346 0.630597 0.80979 1684 1 0.495495 0.562323 0.690703 1841 1 0.507852 0.633285 0.742246 1812 1 0.502717 0.563834 0.81255 1688 1 0.626374 0.559764 0.686599 1715 1 0.564418 0.621244 0.68696 1810 1 0.557741 0.567208 0.746801 1816 1 0.620087 0.555252 0.805669 1843 1 0.561344 0.626686 0.815045 1845 1 0.619351 0.627624 0.755351 2044 1 0.742957 0.931178 0.93076 2043 1 0.815997 0.876709 0.937866 771 1 0.0642498 0.995538 0.808441 1692 1 0.75844 0.562833 0.690752 1719 1 0.687946 0.629941 0.682537 1723 1 0.813709 0.622693 0.682541 1814 1 0.682795 0.566458 0.743539 1818 1 0.811055 0.56181 0.753015 1820 1 0.749822 0.55674 0.805399 1847 1 0.686186 0.627926 0.804935 1849 1 0.743673 0.619296 0.751686 1851 1 0.814519 0.619552 0.80893 653 1 0.378999 0.993926 0.615932 781 1 0.379922 0.995716 0.738784 1799 1 0.187254 0.501801 0.810545 1796 1 0.999019 0.567959 0.810515 1696 1 0.8689 0.559356 0.68921 1727 1 0.942265 0.616039 0.687221 1822 1 0.936591 0.558512 0.743895 1824 1 0.869433 0.55592 0.809729 1853 1 0.876424 0.624047 0.746293 1855 1 0.938339 0.628207 0.811498 1925 1 0.124612 0.506684 0.878672 2042 1 0.812183 0.938216 0.880859 1704 1 0.123298 0.685037 0.689114 1731 1 0.0621718 0.74906 0.691374 1736 1 0.130539 0.808903 0.6869 1826 1 0.0630052 0.68869 0.74666 1832 1 0.12821 0.689818 0.814092 1858 1 0.064358 0.8077 0.752139 1859 1 0.0670013 0.743878 0.80825 1861 1 0.129893 0.754091 0.748249 1864 1 0.129033 0.808097 0.811671 1828 1 -0.00183632 0.683598 0.812337 1860 1 0.996731 0.815211 0.808923 1732 1 0.00765847 0.809674 0.686172 1708 1 0.257755 0.687929 0.683445 1735 1 0.195538 0.748677 0.683889 1739 1 0.310795 0.751744 0.683082 1740 1 0.257616 0.812911 0.694074 1830 1 0.195147 0.688866 0.746269 1834 1 0.315792 0.691855 0.749453 1836 1 0.247657 0.686598 0.814295 1862 1 0.186888 0.809138 0.751985 1863 1 0.190123 0.748401 0.811451 1865 1 0.254714 0.750524 0.750262 1866 1 0.318701 0.815624 0.752853 1867 1 0.309208 0.751132 0.814331 1868 1 0.245332 0.815806 0.812302 1712 1 0.373992 0.688002 0.679507 1743 1 0.432289 0.751777 0.694302 1744 1 0.373047 0.811093 0.688473 1838 1 0.442725 0.692876 0.749054 1840 1 0.377759 0.69118 0.810253 1869 1 0.375647 0.751419 0.747404 1870 1 0.440616 0.81548 0.758409 1871 1 0.443545 0.747244 0.809621 1872 1 0.379193 0.802856 0.820629 1876 1 0.502067 0.813943 0.818061 1748 1 0.49297 0.811278 0.675209 1844 1 0.506439 0.693211 0.815928 1873 1 0.500801 0.760989 0.752539 1716 1 0.495317 0.695391 0.684726 1720 1 0.627617 0.689628 0.684204 1747 1 0.559041 0.756193 0.684136 1752 1 0.624291 0.812238 0.68968 1842 1 0.563877 0.694394 0.742406 1848 1 0.629836 0.688918 0.818145 1874 1 0.568186 0.803816 0.753428 1875 1 0.565259 0.747683 0.814087 1877 1 0.6329 0.748814 0.754602 1880 1 0.63114 0.813156 0.814623 1724 1 0.752371 0.692965 0.687263 1751 1 0.683093 0.753701 0.677035 1755 1 0.808225 0.751183 0.691319 1756 1 0.744688 0.810085 0.689539 1846 1 0.684341 0.687139 0.745978 1850 1 0.808177 0.678977 0.747362 1852 1 0.754887 0.672457 0.816081 1878 1 0.685688 0.809356 0.751904 1879 1 0.687941 0.761045 0.825778 1881 1 0.743029 0.746093 0.755244 1882 1 0.805754 0.826058 0.75236 1883 1 0.809508 0.741572 0.815436 1884 1 0.740477 0.818912 0.807894 1700 1 1.00343 0.687368 0.68789 1857 1 0.996196 0.750215 0.751116 1728 1 0.876819 0.680872 0.682083 1759 1 0.940203 0.743463 0.681321 1760 1 0.872997 0.812744 0.687658 1854 1 0.935235 0.680226 0.741604 1856 1 0.873144 0.690428 0.80649 1885 1 0.866638 0.748627 0.753068 1886 1 0.932814 0.812694 0.748646 1887 1 0.932378 0.748133 0.808789 1888 1 0.863278 0.810718 0.809308 1763 1 0.067587 0.877518 0.682292 1768 1 0.124038 0.937659 0.685098 1890 1 0.0601718 0.935115 0.743069 1891 1 0.0625975 0.871349 0.815909 1893 1 0.123604 0.875572 0.747214 1896 1 0.117545 0.931955 0.810848 1892 1 0.991916 0.936817 0.813622 1889 1 0.00512172 0.872732 0.745234 1795 1 0.0658809 0.503745 0.815941 1767 1 0.188277 0.875 0.690062 1771 1 0.318714 0.878294 0.686991 1772 1 0.257695 0.94126 0.68224 1894 1 0.186848 0.939861 0.757978 1895 1 0.191608 0.871223 0.818848 1897 1 0.247504 0.878318 0.744479 1898 1 0.308828 0.930641 0.746398 1899 1 0.312767 0.871258 0.810059 1900 1 0.25118 0.930593 0.810716 651 1 0.321447 0.993746 0.671392 671 1 0.931089 0.992729 0.68598 1562 1 0.80531 0.560844 0.496672 1775 1 0.442042 0.872062 0.677981 1776 1 0.383497 0.939674 0.678803 1901 1 0.378281 0.871581 0.752393 1902 1 0.439737 0.927082 0.747974 1903 1 0.445575 0.876192 0.816238 1904 1 0.372914 0.938628 0.805627 1780 1 0.499025 0.934216 0.686895 2041 1 0.738187 0.872589 0.877144 1114 1 0.81774 0.808928 0.992987 1061 1 0.123613 0.634011 0.996588 1908 1 0.498262 0.936461 0.813461 1905 1 0.50309 0.873201 0.747838 1779 1 0.563109 0.869269 0.681943 1784 1 0.628328 0.937826 0.688728 1906 1 0.564447 0.94035 0.74669 1907 1 0.564988 0.872756 0.815173 1909 1 0.626974 0.873758 0.75729 1912 1 0.620753 0.943879 0.806421 1605 1 0.122272 0.746927 0.496898 1783 1 0.68247 0.871497 0.692878 1787 1 0.811098 0.871861 0.68434 1788 1 0.745205 0.933291 0.689838 1910 1 0.683442 0.943755 0.750656 1911 1 0.683624 0.873702 0.814879 1913 1 0.741505 0.880725 0.756921 1914 1 0.808106 0.929594 0.746592 1915 1 0.805748 0.880952 0.81345 1916 1 0.738664 0.939484 0.81155 649 1 0.25154 0.999837 0.615437 2039 1 0.676313 0.873587 0.939055 2038 1 0.678755 0.942071 0.871438 1764 1 0.998733 0.939023 0.683945 1791 1 0.938707 0.875436 0.68726 1792 1 0.863856 0.938303 0.678456 1917 1 0.875667 0.873235 0.747425 1918 1 0.934046 0.934638 0.746616 1919 1 0.933079 0.875831 0.808742 1920 1 0.874736 0.935825 0.814402 1922 1 0.0635224 0.564065 0.874594 1928 1 0.121125 0.565921 0.937659 1955 1 0.0637986 0.628913 0.938614 1957 1 0.124368 0.637187 0.875138 1953 1 0.0068594 0.624784 0.873572 1924 1 0.00422372 0.563431 0.943591 519 1 0.185894 0.995916 0.560197 1926 1 0.185704 0.571627 0.874046 1930 1 0.317426 0.564377 0.870801 1932 1 0.253104 0.559999 0.935897 1959 1 0.180443 0.62565 0.933168 1961 1 0.25307 0.625364 0.877886 1963 1 0.316167 0.625721 0.93788 2034 1 0.562127 0.939595 0.872234 1934 1 0.44054 0.561845 0.874528 1936 1 0.377839 0.564677 0.930272 1965 1 0.375171 0.62796 0.86943 1967 1 0.43476 0.634126 0.932429 1969 1 0.500308 0.634639 0.874819 1940 1 0.497091 0.573958 0.937055 1062 1 0.190036 0.686029 0.999507 2040 1 0.62406 0.94406 0.938216 1938 1 0.559313 0.5645 0.876624 1944 1 0.617502 0.555517 0.93349 1971 1 0.556798 0.623701 0.934385 1973 1 0.623311 0.6257 0.868978 1566 1 0.942068 0.57044 0.495646 1941 1 0.614585 0.498216 0.867026 1042 1 0.562209 0.566321 0.993355 1942 1 0.68902 0.559816 0.862945 1946 1 0.820779 0.563848 0.872333 1948 1 0.757374 0.561812 0.939749 1975 1 0.688638 0.618547 0.933859 1977 1 0.753571 0.614058 0.875672 1979 1 0.811902 0.628875 0.937408 1585 1 0.498407 0.62087 0.495403 797 1 0.874886 0.99603 0.751045 795 1 0.804704 0.997773 0.808123 1950 1 0.940111 0.571064 0.874973 1952 1 0.876155 0.564822 0.934244 1981 1 0.867889 0.631365 0.871551 1983 1 0.944887 0.62644 0.935299 643 1 0.0563725 0.997355 0.695487 1954 1 0.0634507 0.699271 0.879413 1960 1 0.121467 0.690942 0.937083 1986 1 0.0621757 0.803447 0.862543 1987 1 0.0550774 0.756488 0.937052 1989 1 0.126797 0.754805 0.873178 1992 1 0.122478 0.809606 0.933005 1985 1 0.99608 0.754477 0.8688 1956 1 -2.91484e-05 0.691754 0.9328 2033 1 0.502389 0.880987 0.884368 1949 1 0.879176 0.501559 0.874485 2031 1 0.437486 0.87251 0.944681 1958 1 0.199057 0.686991 0.87653 1962 1 0.319119 0.687858 0.875312 1964 1 0.257866 0.681376 0.935586 1990 1 0.18496 0.812333 0.881162 1991 1 0.189977 0.743334 0.938554 1993 1 0.246559 0.7501 0.879344 1994 1 0.308467 0.81583 0.87492 1995 1 0.312525 0.747377 0.939322 1996 1 0.25055 0.808523 0.937822 539 1 0.808842 0.998708 0.562295 1966 1 0.442092 0.693754 0.873414 1968 1 0.372586 0.686831 0.94837 1997 1 0.3766 0.747194 0.877416 1998 1 0.437475 0.812906 0.88118 1999 1 0.439892 0.753364 0.941163 2000 1 0.377577 0.810741 0.947731 2001 1 0.505782 0.752878 0.880477 1972 1 0.501701 0.68711 0.944638 2004 1 0.506307 0.820037 0.935944 1805 1 0.38149 0.49928 0.744957 1970 1 0.56396 0.685912 0.873735 1976 1 0.626671 0.676411 0.940894 2002 1 0.571146 0.804186 0.868225 2003 1 0.571037 0.734653 0.935461 2005 1 0.628808 0.74158 0.87663 2008 1 0.618078 0.810531 0.943071 2030 1 0.436094 0.93795 0.886251 1974 1 0.6852 0.685171 0.879359 1978 1 0.808161 0.685242 0.877164 1980 1 0.748621 0.6773 0.935747 2006 1 0.679996 0.813589 0.887625 2007 1 0.685837 0.743954 0.940632 2009 1 0.745229 0.751447 0.881678 2010 1 0.808533 0.816402 0.874716 2011 1 0.817379 0.743921 0.93788 2012 1 0.750578 0.81174 0.94138 775 1 0.184255 0.996453 0.816738 531 1 0.566108 0.997683 0.563697 2032 1 0.373295 0.945555 0.952353 779 1 0.310224 0.995886 0.811513 2029 1 0.373584 0.875933 0.87807 1988 1 1.00157 0.814134 0.940432 2015 1 0.927571 0.754088 0.935975 2013 1 0.872482 0.747069 0.871295 1984 1 0.878586 0.686825 0.943683 1982 1 0.936953 0.691356 0.875613 2016 1 0.872294 0.814467 0.930925 2014 1 0.937294 0.811374 0.863862 667 1 0.810997 1.0017 0.685055 2020 1 0.993123 0.941272 0.942549 2025 1 0.253736 0.875225 0.874724 2023 1 0.191956 0.87466 0.939908 2018 1 0.0602542 0.937987 0.872264 2019 1 0.0588134 0.870202 0.924171 2021 1 0.127071 0.870865 0.877073 2024 1 0.122986 0.937951 0.927262 2026 1 0.323569 0.939435 0.8804 2027 1 0.31615 0.876716 0.945096 2022 1 0.192372 0.935035 0.879604 2028 1 0.254219 0.927335 0.936547 1601 1 0.00924646 0.75344 0.502302 1945 1 0.749375 0.503505 0.886145 1073 1 0.501283 0.625984 1.00675 647 1 0.183847 0.995657 0.692912 1947 1 0.810789 0.499085 0.937983 513 1 1.00396 0.998076 0.501712 1622 1 0.684279 0.810994 0.502309 907 1 0.313637 0.997196 0.942936 923 1 0.807689 0.999548 0.940091 1030 1 0.188652 0.566143 0.994452 1937 1 0.500084 0.499828 0.868625 773 1 0.124935 0.996845 0.751922 515 1 0.0616867 1.00806 0.564547 1807 1 0.440588 0.508426 0.813562 921 1 0.752253 1.006 0.874985 897 1 -0.00307031 1.00113 0.872603 1542 1 0.186492 0.553125 0.497888 1125 1 0.130852 0.864975 0.996767 1137 1 0.50655 0.882891 0.99811 1141 1 0.619973 0.879742 1.00194 1053 1 0.872752 0.503161 0.991277 1058 1 0.0621724 0.695914 0.997035 1033 1 0.249459 0.50079 0.998687 1625 1 0.747147 0.7479 0.508843 1098 1 0.312172 0.814014 1.00501 1046 1 0.688169 0.561656 1.00012 1077 1 0.624122 0.619465 0.995561 1034 1 0.311214 0.567731 0.991463 1106 1 0.561858 0.812372 0.999723 1122 1 0.0718262 0.924978 0.991975 1089 1 0.99343 0.748636 0.995465 1094 1 0.185168 0.803189 0.997956 1637 1 0.125703 0.873321 0.504239 1578 1 0.313461 0.69148 0.502785 1594 1 0.805826 0.686355 0.507282 1581 1 0.375815 0.621923 0.504814 1037 1 0.385181 0.511163 1.00071 1662 1 0.939213 0.934091 0.509496 529 1 0.503975 0.995327 0.4985 1029 1 0.129129 0.501999 0.999013 9 1 0.245515 0.993917 0.995154
adec619e3b44525d2a8552143b3945a1d9f4e157
2424063d657d643c1f8ccc6cca343271d6d0f708
/Project24/app24/models.py
5a8ad3f6ed2fce774fd34f11bc0610adb453e749
[]
no_license
pythonwithnaveen/DjangoExamples
a0a07cbc53564522cf39649c235716ef5c3a4ba0
57c7a6302ada4079bd3625481e660587bf8015c6
refs/heads/main
2023-07-16T02:36:01.283938
2021-08-12T07:26:22
2021-08-12T07:26:22
371,881,524
0
3
null
null
null
null
UTF-8
Python
false
false
435
py
from django.db import models class EmployeeModel(models.Model): desig = (('Manager','Manager'), ('Developer','Developer'), ('Tester','Tester')) idno = models.AutoField(primary_key=True) name = models.CharField(max_length=100) salary = models.FloatField() designation = models.CharField(max_length=100,choices=desig,default='Developer') def __str__(self): return self.name
[ "=" ]
=
7f9e8ea4f6d4b7553bfcc20e663036a133e34e08
d1c3cfa4707c3d7dcb7578608c317d1e1441c3d2
/동빈좌/기타알고리즘/문제풀이/유형문제풀이/구현/zip_str.py
888762e95a853a77c2598f538a007400d9b19a6c
[]
no_license
wookim789/baekjoon_algo_note
0ad4ddc6dde187afb4346f14ef9ded2f4b7de9ae
a08903d118218d17f4ed86b16ac39bce70adeb78
refs/heads/master
2023-02-08T21:13:25.079062
2021-01-01T14:56:10
2021-01-01T14:56:10
295,260,421
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
# 입력받은 반복가능한 2개의 개체를 입력받으면 index에 맞게 압축함 a = [1,2,3] b = [4,5,6] print(list(zip(a,b)))
57d922bb376a8688b87bd15551f00ed4bc091aa1
78c3082e9082b5b50435805723ae00a58ca88e30
/03.AI알고리즘 소스코드/venv/Lib/site-packages/caffe2/experiments/python/device_reduce_sum_bench.py
04628c97394f2cab1ab8c5c006c88f2316bc60eb
[]
no_license
jinStar-kimmy/algorithm
26c1bc456d5319578110f3d56f8bd19122356603
59ae8afd8d133f59a6b8d8cee76790fd9dfe1ff7
refs/heads/master
2023-08-28T13:16:45.690232
2021-10-20T08:23:46
2021-10-20T08:23:46
419,217,105
0
1
null
null
null
null
UTF-8
Python
false
false
4,076
py
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## ## @package device_reduce_sum_bench # Module caffe2.experiments.python.device_reduce_sum_bench import argparse import itertools import logging import os from six import add_metaclass import numpy as np from caffe2.python import workspace, core from caffe2.python.hypothesis_test_util import runOpBenchmark, gpu_do logging.basicConfig() logger = logging.getLogger(os.path.basename(__file__)) logger.setLevel(logging.INFO) ALL_BENCHMARKS = {} class BenchmarkMeta(type): def __new__(metacls, name, bases, class_dict): cls = type.__new__(metacls, name, bases, class_dict) if name != 'Benchmark': ALL_BENCHMARKS[name] = cls return cls @add_metaclass(BenchmarkMeta) class Benchmark(object): def __init__(self): self.results = [] def display(self): print('Results ({}):'.format(type(self).__name__)) print('input size ms/iter') print('------------------------------ -----------') for size, ms in self.results: print('{!s:<30} {:.4f}'.format(size, ms)) class SumElements(Benchmark): def run(self): op = core.CreateOperator( "SumElements", ["X"], ["y"] ) for n in itertools.imap(pow, itertools.cycle([10]), range(10)): X = np.random.rand(n).astype(np.float32) logger.info('Running benchmark for n = {}'.format(n)) ret = runOpBenchmark(gpu_do, op, inputs=[X]) self.results.append((n, ret[1])) class SumSqrElements(Benchmark): def run(self): op = core.CreateOperator( "SumSqrElements", ["X"], ["y"] ) for n in itertools.imap(pow, itertools.cycle([10]), range(10)): X = np.random.rand(n).astype(np.float32) logger.info('Running benchmark for n = {}'.format(n)) ret = runOpBenchmark(gpu_do, op, inputs=[X]) self.results.append((n, ret[1])) class SoftMaxWithLoss(Benchmark): def run(self): op = core.CreateOperator( "SoftmaxWithLoss", ["X", "label"], ["probs", "avgloss"], ) for n in itertools.imap(pow, itertools.cycle([10]), range(8)): for D in itertools.imap(pow, itertools.cycle([10]), range(3)): X = np.random.rand(n, D).astype(np.float32) label = (np.random.rand(n) * D).astype(np.int32) logger.info('Running benchmark for n = {}, D= {}'.format(n, D)) ret = runOpBenchmark(gpu_do, op, inputs=[X, label]) self.results.append(((n, D), ret[1])) def parse_args(): parser = argparse.ArgumentParser(os.path.basename(__file__)) parser.add_argument('-b', '--benchmarks', nargs='+', default=ALL_BENCHMARKS.keys(), help='benchmarks to run (default: %(default)s))') return parser.parse_args() def main(): args = parse_args() benchmarks = [ALL_BENCHMARKS[name]() for name in args.benchmarks] for bench in benchmarks: bench.run() for bench in benchmarks: bench.display() if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=2']) main()
b3852a41403ec640fd038714c357b524040ec896
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/word-count/14cde529d953488da375451dc827b0ba.py
51da302e01332cc4536cbc94b62458702df054c3
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
218
py
def word_count(s): """ Return a dict with 'word': number of occurrences for each word in `s`. """ counts = {} for word in s.split(): counts[word] = counts.get(word, 0) + 1 return counts
ee7b79b54a232d6dcc47d354eae1376a44c49c4f
4d2cc76dbceff9eded071ba542ab2a1dd8c19f7b
/bhp056/apps/mpepu_maternal/migrations/0027_auto__add_field_maternalconsentaudit_is_literate__add_field_maternalco.py
cc57b045aff711a4c93c5ad87a1687ec0d8cce49
[]
no_license
botswana-harvard/mpepu
5d436638b760150ed76ec223121f5ac7aeee1020
6aa29c91f4fab50782b27e5f55aa33b30aee1dd0
refs/heads/master
2021-01-16T23:15:44.335940
2016-08-12T14:30:17
2016-08-12T14:30:17
65,557,693
0
1
null
null
null
null
UTF-8
Python
false
false
213,774
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'MaternalConsentAudit.is_literate' db.add_column('mpepu_maternal_maternalconsent_audit', 'is_literate', self.gf('django.db.models.fields.CharField')(default='-', max_length=3), keep_default=False) # Adding field 'MaternalConsentAudit.witness_name' db.add_column('mpepu_maternal_maternalconsent_audit', 'witness_name', self.gf('django.db.models.fields.CharField')(max_length=78L, null=True, blank=True), keep_default=False) # Adding field 'MaternalConsent.is_literate' db.add_column('mpepu_maternal_maternalconsent', 'is_literate', self.gf('django.db.models.fields.CharField')(default='-', max_length=3), keep_default=False) # Adding field 'MaternalConsent.witness_name' db.add_column('mpepu_maternal_maternalconsent', 'witness_name', self.gf('django.db.models.fields.CharField')(max_length=78L, null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'MaternalConsentAudit.is_literate' db.delete_column('mpepu_maternal_maternalconsent_audit', 'is_literate') # Deleting field 'MaternalConsentAudit.witness_name' db.delete_column('mpepu_maternal_maternalconsent_audit', 'witness_name') # Deleting field 'MaternalConsent.is_literate' db.delete_column('mpepu_maternal_maternalconsent', 'is_literate') # Deleting field 'MaternalConsent.witness_name' db.delete_column('mpepu_maternal_maternalconsent', 'witness_name') models = { 'bhp_adverse.deathcausecategory': { 'Meta': {'ordering': "['display_index']", 'object_name': 'DeathCauseCategory'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'bhp_adverse.deathcauseinfo': { 'Meta': {'ordering': "['display_index']", 'object_name': 'DeathCauseInfo'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'bhp_adverse.deathmedicalresponsibility': { 'Meta': {'ordering': "['display_index']", 'object_name': 'DeathMedicalResponsibility'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'bhp_adverse.deathreasonhospitalized': { 'Meta': {'ordering': "['display_index']", 'object_name': 'DeathReasonHospitalized'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'bhp_appointment.appointment': { 'Meta': {'ordering': "['registered_subject', 'appt_datetime']", 'unique_together': "(('registered_subject', 'visit_definition', 'visit_instance'),)", 'object_name': 'Appointment'}, 'appt_close_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'appt_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'appt_reason': ('django.db.models.fields.CharField', [], {'max_length': '25', 'blank': 'True'}), 'appt_status': ('django.db.models.fields.CharField', [], {'default': "'new'", 'max_length': '25', 'db_index': 'True'}), 'appt_type': ('django.db.models.fields.CharField', [], {'default': "'clinic'", 'max_length': '20'}), 'best_appt_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'blank': 'True'}), 'contact_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'contact_tel': ('django.db.models.fields.CharField', [], {'max_length': '250', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dashboard_type': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'is_confirmed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': "orm['bhp_registration.RegisteredSubject']"}), 'study_site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_variables.StudySite']", 'null': 'True'}), 'timepoint_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'visit_definition': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'to': "orm['bhp_visit.VisitDefinition']"}), 'visit_instance': ('django.db.models.fields.CharField', [], {'default': "'0'", 'max_length': '1', 'null': 'True', 'db_index': 'True', 'blank': 'True'}) }, 'bhp_code_lists.dxcode': { 'Meta': {'object_name': 'DxCode'}, 'code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '15'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'list_ref': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'long_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'bhp_code_lists.wcsdxadult': { 'Meta': {'object_name': 'WcsDxAdult'}, 'code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '15'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'list_ref': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'long_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'bhp_consent.consentcatalogue': { 'Meta': {'ordering': "['name', 'version']", 'unique_together': "(('name', 'version'),)", 'object_name': 'ConsentCatalogue'}, 'add_for_app': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'consent_type': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'content_type_map': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_content_type_map.ContentTypeMap']", 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'end_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'list_for_update': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'start_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.IntegerField', [], {}) }, 'bhp_content_type_map.contenttypemap': { 'Meta': {'ordering': "['name']", 'unique_together': "(['app_label', 'model'],)", 'object_name': 'ContentTypeMap', 'db_table': "'bhp_common_contenttypemap'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'bhp_registration.registeredsubject': { 'Meta': {'ordering': "['subject_identifier']", 'unique_together': "(('identity', 'first_name', 'dob', 'initials', 'registration_identifier'),)", 'object_name': 'RegisteredSubject'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True'}), 'hiv_status': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'identity': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'identity_type': ('django.db.models.fields.CharField', [], {'max_length': '15'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'is_dob_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'may_store_samples': ('django.db.models.fields.CharField', [], {'default': "'?'", 'max_length': '3'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'randomization_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'registration_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'registration_identifier': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True', 'blank': 'True'}), 'registration_status': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'relative_identifier': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'salt': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'screening_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'sid': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'study_site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_variables.StudySite']", 'null': 'True', 'blank': 'True'}), 'subject_consent_id': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'subject_identifier': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'unique': 'True', 'max_length': '50', 'blank': 'True'}), 'subject_identifier_as_pk': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'db_index': 'True'}), 'subject_type': ('django.db.models.fields.CharField', [], {'default': "'undetermined'", 'max_length': '25', 'null': 'True'}), 'survival_status': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'bhp_variables.studysite': { 'Meta': {'ordering': "['site_code']", 'unique_together': "[('site_code', 'site_name')]", 'object_name': 'StudySite'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'site_code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '4'}), 'site_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '35'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'bhp_visit.membershipform': { 'Meta': {'object_name': 'MembershipForm'}, 'category': ('django.db.models.fields.CharField', [], {'default': "'subject'", 'max_length': '25', 'null': 'True'}), 'content_type_map': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'+'", 'unique': 'True', 'to': "orm['bhp_content_type_map.ContentTypeMap']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'bhp_visit.schedulegroup': { 'Meta': {'ordering': "['group_name']", 'object_name': 'ScheduleGroup'}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'group_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}), 'grouping_key': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'membership_form': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_visit.MembershipForm']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'bhp_visit.visitdefinition': { 'Meta': {'ordering': "['code', 'time_point']", 'object_name': 'VisitDefinition'}, 'base_interval': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'base_interval_unit': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '10'}), 'code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '6', 'db_index': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'grouping': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'instruction': ('django.db.models.fields.TextField', [], {'max_length': '255', 'blank': 'True'}), 'lower_window': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lower_window_unit': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '10'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'schedule_group': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['bhp_visit.ScheduleGroup']", 'null': 'True', 'blank': 'True'}), 'time_point': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '35', 'db_index': 'True'}), 'upper_window': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'upper_window_unit': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '10'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'mpepu_list.chroniccond': { 'Meta': {'object_name': 'ChronicCond'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.delcomp': { 'Meta': {'object_name': 'DelComp'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.healthcond': { 'Meta': {'object_name': 'HealthCond'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.hhgoods': { 'Meta': {'object_name': 'HhGoods'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.maternalbfffrisksbenefits': { 'Meta': {'object_name': 'MaternalBfFfRisksBenefits'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.maternalfeedinginfluence': { 'Meta': {'object_name': 'MaternalFeedingInfluence'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.maternalundecidedfeeding': { 'Meta': {'object_name': 'MaternalUndecidedFeeding'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.obcomp': { 'Meta': {'object_name': 'ObComp'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.priorarv': { 'Meta': {'object_name': 'PriorArv'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_list.suppliment': { 'Meta': {'object_name': 'Suppliment'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0', 'db_index': 'True'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'short_name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'unique': 'True', 'null': 'True', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'mpepu_maternal.feedingchoice': { 'Meta': {'object_name': 'FeedingChoice'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'first_time_feeding': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.feedingchoiceaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'FeedingChoiceAudit', 'db_table': "'mpepu_maternal_feedingchoice_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'first_time_feeding': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_feedingchoice'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.feedingchoicesectionone': { 'Meta': {'object_name': 'FeedingChoiceSectionOne'}, 'baby_weaned_age': ('django.db.models.fields.IntegerField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hiv_aware_feeding': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hiv_status': ('django.db.models.fields.CharField', [], {'max_length': '8', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'last_baby_feeding': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.feedingchoicesectiononeaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'FeedingChoiceSectionOneAudit', 'db_table': "'mpepu_maternal_feedingchoicesectionone_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'baby_weaned_age': ('django.db.models.fields.IntegerField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hiv_aware_feeding': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hiv_status': ('django.db.models.fields.CharField', [], {'max_length': '8', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'last_baby_feeding': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_feedingchoicesectionone'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.feedingchoicesectionthree': { 'Meta': {'object_name': 'FeedingChoiceSectionThree'}, 'bf_advice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'chosen_feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'feeding_choice_made': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'ff_advice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'risk_benefit_training': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.MaternalBfFfRisksBenefits']", 'symmetrical': 'False'}), 'und_risk_benefit': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'undecided_feeding': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.MaternalUndecidedFeeding']", 'symmetrical': 'False'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.feedingchoicesectionthreeaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'FeedingChoiceSectionThreeAudit', 'db_table': "'mpepu_maternal_feedingchoicesectionthree_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'bf_advice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'chosen_feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'feeding_choice_made': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'ff_advice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_feedingchoicesectionthree'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'und_risk_benefit': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.feedingchoicesectiontwo': { 'Meta': {'object_name': 'FeedingChoiceSectionTwo'}, 'baby_bf_choice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'bf_ff_benefits': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'bf_hiv_arv': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'bf_hiv_worry': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'death_worry': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'disclose_hiv_father': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'doc_feeding_advice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'hiv_worry': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'infant_hiv_risk': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'influential_people': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.MaternalFeedingInfluence']", 'symmetrical': 'False'}), 'influential_people_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'outside_disclosure': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'safe_ff': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'status_disclosure': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'work_influence': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'work_return': ('django.db.models.fields.CharField', [], {'max_length': '35'}) }, 'mpepu_maternal.feedingchoicesectiontwoaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'FeedingChoiceSectionTwoAudit', 'db_table': "'mpepu_maternal_feedingchoicesectiontwo_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'baby_bf_choice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'bf_ff_benefits': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'bf_hiv_arv': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'bf_hiv_worry': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'death_worry': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'disclose_hiv_father': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'doc_feeding_advice': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'hiv_worry': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'infant_hiv_risk': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'influential_people_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_feedingchoicesectiontwo'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'outside_disclosure': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'safe_ff': ('django.db.models.fields.CharField', [], {'max_length': '35'}), 'status_disclosure': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'work_influence': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'work_return': ('django.db.models.fields.CharField', [], {'max_length': '35'}) }, 'mpepu_maternal.maternalarv': { 'Meta': {'object_name': 'MaternalArv'}, 'arv_code': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'date_start': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_stop': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_arv_pp_history': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalArvPPHistory']", 'null': 'True', 'blank': 'True'}), 'maternal_arv_preg_history': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalArvPregHistory']", 'null': 'True', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'transaction_flag': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvAudit', 'db_table': "'mpepu_maternal_maternalarv_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'arv_code': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'date_start': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_stop': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_arv_pp_history': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'_audit_maternalarv'", 'null': 'True', 'to': "orm['mpepu_maternal.MaternalArvPPHistory']"}), 'maternal_arv_preg_history': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'_audit_maternalarv'", 'null': 'True', 'to': "orm['mpepu_maternal.MaternalArvPregHistory']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'transaction_flag': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpost': { 'Meta': {'object_name': 'MaternalArvPost'}, 'arv_status': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '25'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'haart_last_visit': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'haart_reason': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '25'}), 'haart_reason_other': ('django.db.models.fields.TextField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpostadh': { 'Meta': {'object_name': 'MaternalArvPostAdh'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_arv_post': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalArvPost']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'missed_days': ('django.db.models.fields.IntegerField', [], {'default': "'0'"}), 'missed_days_discnt': ('django.db.models.fields.IntegerField', [], {'default': "'0'"}), 'missed_doses': ('django.db.models.fields.IntegerField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpostadhaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvPostAdhAudit', 'db_table': "'mpepu_maternal_maternalarvpostadh_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_arv_post': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpostadh'", 'to': "orm['mpepu_maternal.MaternalArvPost']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpostadh'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'missed_days': ('django.db.models.fields.IntegerField', [], {'default': "'0'"}), 'missed_days_discnt': ('django.db.models.fields.IntegerField', [], {'default': "'0'"}), 'missed_doses': ('django.db.models.fields.IntegerField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpostaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvPostAudit', 'db_table': "'mpepu_maternal_maternalarvpost_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'arv_status': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '25'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'haart_last_visit': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'haart_reason': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '25'}), 'haart_reason_other': ('django.db.models.fields.TextField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpost'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpostmod': { 'Meta': {'object_name': 'MaternalArvPostMod'}, 'arv_code': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dose_status': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_arv_post': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalArvPost']"}), 'modification_code': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'modification_date': ('django.db.models.fields.DateField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpostmodaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvPostModAudit', 'db_table': "'mpepu_maternal_maternalarvpostmod_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'arv_code': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dose_status': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_arv_post': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpostmod'", 'to': "orm['mpepu_maternal.MaternalArvPost']"}), 'modification_code': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'modification_date': ('django.db.models.fields.DateField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpphistory': { 'Meta': {'object_name': 'MaternalArvPPHistory'}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_arv_preg': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalArvPreg']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpphistoryaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvPPHistoryAudit', 'db_table': "'mpepu_maternal_maternalarvpphistory_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_arv_preg': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpphistory'", 'to': "orm['mpepu_maternal.MaternalArvPreg']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpphistory'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpreg': { 'Meta': {'object_name': 'MaternalArvPreg'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'sd_nvp': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'start_pp': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'took_arv': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpregaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvPregAudit', 'db_table': "'mpepu_maternal_maternalarvpreg_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpreg'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'sd_nvp': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'start_pp': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'took_arv': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpreghistory': { 'Meta': {'object_name': 'MaternalArvPregHistory'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'interrupt': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '50'}), 'interrupt_other': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'is_interrupt': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'maternal_arv_preg': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalArvPreg']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalarvpreghistoryaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalArvPregHistoryAudit', 'db_table': "'mpepu_maternal_maternalarvpreghistory_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'interrupt': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '50'}), 'interrupt_other': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'is_interrupt': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'maternal_arv_preg': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpreghistory'", 'to': "orm['mpepu_maternal.MaternalArvPreg']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalarvpreghistory'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalconsent': { 'Meta': {'object_name': 'MaternalConsent'}, 'assessment_score': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'confirm_identity': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'consent_copy': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'consent_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'consent_reviewed': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'consent_version_on_entry': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'consent_version_recent': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True'}), 'guardian_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'identity': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '78L'}), 'identity_type': ('django.db.models.fields.CharField', [], {'max_length': '15'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'is_dob_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True'}), 'is_incarcerated': ('django.db.models.fields.CharField', [], {'default': "'-'", 'max_length': '3'}), 'is_literate': ('django.db.models.fields.CharField', [], {'default': "'-'", 'max_length': '3'}), 'is_verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_verified_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'may_store_samples': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'study_questions': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'study_site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_variables.StudySite']"}), 'subject_identifier': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'unique': 'True', 'max_length': '50', 'blank': 'True'}), 'subject_identifier_as_pk': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'db_index': 'True'}), 'subject_type': ('django.db.models.fields.CharField', [], {'default': "'undetermined'", 'max_length': '25', 'null': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'witness_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}) }, 'mpepu_maternal.maternalconsentaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalConsentAudit', 'db_table': "'mpepu_maternal_maternalconsent_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'assessment_score': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'confirm_identity': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'consent_copy': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'consent_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'consent_reviewed': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'consent_version_on_entry': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'consent_version_recent': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True'}), 'guardian_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'identity': ('django.db.models.fields.CharField', [], {'max_length': '78L'}), 'identity_type': ('django.db.models.fields.CharField', [], {'max_length': '15'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'is_dob_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True'}), 'is_incarcerated': ('django.db.models.fields.CharField', [], {'default': "'-'", 'max_length': '3'}), 'is_literate': ('django.db.models.fields.CharField', [], {'default': "'-'", 'max_length': '3'}), 'is_verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_verified_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True'}), 'may_store_samples': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'study_questions': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'study_site': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalconsent'", 'to': "orm['bhp_variables.StudySite']"}), 'subject_identifier': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '50', 'blank': 'True'}), 'subject_identifier_as_pk': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'db_index': 'True'}), 'subject_type': ('django.db.models.fields.CharField', [], {'default': "'undetermined'", 'max_length': '25', 'null': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'witness_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}) }, 'mpepu_maternal.maternalconsentupdate': { 'Meta': {'unique_together': "(('maternal_consent', 'consent_version'), ('maternal_consent', 'consent_datetime'))", 'object_name': 'MaternalConsentUpdate'}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'consent_catalogue': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_consent.ConsentCatalogue']"}), 'consent_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'consent_version': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'guardian_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_consent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalConsent']"}), 'may_store_samples': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'study_site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_variables.StudySite']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaldeath': { 'Meta': {'object_name': 'MaternalDeath'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'days_hospitalized': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'death_cause': ('django.db.models.fields.TextField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'death_cause_category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_adverse.DeathCauseCategory']"}), 'death_cause_info': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_adverse.DeathCauseInfo']"}), 'death_cause_info_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'death_cause_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'death_date': ('django.db.models.fields.DateField', [], {}), 'death_medical_responsibility': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_adverse.DeathMedicalResponsibility']"}), 'death_reason_hospitalized': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_adverse.DeathReasonHospitalized']", 'null': 'True', 'blank': 'True'}), 'dx_code': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_code_lists.DxCode']", 'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'illness_duration': ('django.db.models.fields.IntegerField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'participant_hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'perform_autopsy': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'registered_subject': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_registration.RegisteredSubject']", 'unique': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaldeathaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalDeathAudit', 'db_table': "'mpepu_maternal_maternaldeath_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'days_hospitalized': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'death_cause': ('django.db.models.fields.TextField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'death_cause_category': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaldeath'", 'to': "orm['bhp_adverse.DeathCauseCategory']"}), 'death_cause_info': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaldeath'", 'to': "orm['bhp_adverse.DeathCauseInfo']"}), 'death_cause_info_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'death_cause_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'death_date': ('django.db.models.fields.DateField', [], {}), 'death_medical_responsibility': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaldeath'", 'to': "orm['bhp_adverse.DeathMedicalResponsibility']"}), 'death_reason_hospitalized': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'_audit_maternaldeath'", 'null': 'True', 'to': "orm['bhp_adverse.DeathReasonHospitalized']"}), 'dx_code': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaldeath'", 'max_length': '25', 'to': "orm['bhp_code_lists.DxCode']"}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'illness_duration': ('django.db.models.fields.IntegerField', [], {}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'participant_hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'perform_autopsy': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaldeath'", 'to': "orm['bhp_registration.RegisteredSubject']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaleligibilityante': { 'Meta': {'object_name': 'MaternalEligibilityAnte'}, 'agree_follow_up': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'gestational_age': ('django.db.models.fields.IntegerField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'is_cd4_low': ('django.db.models.fields.IntegerField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'is_hiv_positive': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'maternal_consent': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalConsent']", 'unique': 'True'}), 'maternal_haart': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_registration.RegisteredSubject']", 'unique': 'True'}), 'registration_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaleligibilityanteaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEligibilityAnteAudit', 'db_table': "'mpepu_maternal_maternaleligibilityante_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'agree_follow_up': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'gestational_age': ('django.db.models.fields.IntegerField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'is_cd4_low': ('django.db.models.fields.IntegerField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'is_hiv_positive': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'maternal_consent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaleligibilityante'", 'to': "orm['mpepu_maternal.MaternalConsent']"}), 'maternal_haart': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaleligibilityante'", 'to': "orm['bhp_registration.RegisteredSubject']"}), 'registration_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaleligibilitypost': { 'Meta': {'object_name': 'MaternalEligibilityPost'}, 'agree_follow_up': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'days_pnc': ('django.db.models.fields.IntegerField', [], {}), 'feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'is_cd4_low': ('django.db.models.fields.IntegerField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'is_hiv_positive': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'maternal_consent': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalConsent']", 'unique': 'True'}), 'maternal_haart': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_registration.RegisteredSubject']", 'unique': 'True'}), 'registration_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaleligibilitypostaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEligibilityPostAudit', 'db_table': "'mpepu_maternal_maternaleligibilitypost_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'agree_follow_up': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'days_pnc': ('django.db.models.fields.IntegerField', [], {}), 'feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'is_cd4_low': ('django.db.models.fields.IntegerField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'is_hiv_positive': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'maternal_consent': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaleligibilitypost'", 'to': "orm['mpepu_maternal.MaternalConsent']"}), 'maternal_haart': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaleligibilitypost'", 'to': "orm['bhp_registration.RegisteredSubject']"}), 'registration_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenroll': { 'Meta': {'object_name': 'MaternalEnroll'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'height': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '2'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'prev_pregnancies': ('django.db.models.fields.IntegerField', [], {}), 'prev_pregnancy_arv': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prior_health_haart': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'recruit_source': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'recruit_source_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'weight': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '2'}) }, 'mpepu_maternal.maternalenrollarv': { 'Meta': {'object_name': 'MaternalEnrollArv'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'haart_changes': ('django.db.models.fields.IntegerField', [], {}), 'haart_start_date': ('django.db.models.fields.DateField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'is_date_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'maternal_enroll': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalEnroll']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'preg_on_haart': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prior_arv': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.PriorArv']", 'symmetrical': 'False'}), 'prior_arv_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'prior_preg': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrollarvaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollArvAudit', 'db_table': "'mpepu_maternal_maternalenrollarv_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'haart_changes': ('django.db.models.fields.IntegerField', [], {}), 'haart_start_date': ('django.db.models.fields.DateField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'is_date_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'maternal_enroll': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollarv'", 'to': "orm['mpepu_maternal.MaternalEnroll']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollarv'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'preg_on_haart': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prior_arv_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'prior_preg': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrollaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollAudit', 'db_table': "'mpepu_maternal_maternalenroll_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'height': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '2'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenroll'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'prev_pregnancies': ('django.db.models.fields.IntegerField', [], {}), 'prev_pregnancy_arv': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prior_health_haart': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'recruit_source': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'recruit_source_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'weight': ('django.db.models.fields.DecimalField', [], {'max_digits': '5', 'decimal_places': '2'}) }, 'mpepu_maternal.maternalenrollclin': { 'Meta': {'object_name': 'MaternalEnrollClin'}, 'cd4_count': ('django.db.models.fields.IntegerField', [], {}), 'cd4_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'is_date_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'maternal_enroll': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalEnroll']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'prev_preg_azt': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prev_preg_haart': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prev_sdnvp_labour': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrollclinaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollClinAudit', 'db_table': "'mpepu_maternal_maternalenrollclin_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'cd4_count': ('django.db.models.fields.IntegerField', [], {}), 'cd4_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'is_date_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'maternal_enroll': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollclin'", 'to': "orm['mpepu_maternal.MaternalEnroll']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollclin'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'prev_preg_azt': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prev_preg_haart': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'prev_sdnvp_labour': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrolldem': { 'Meta': {'object_name': 'MaternalEnrollDem'}, 'cooking_method': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'current_occupation': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'current_occupation_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'ethnicity': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'ethnicity_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'hh_goods': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.HhGoods']", 'symmetrical': 'False'}), 'highest_education': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'house_electrified': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'house_fridge': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'house_people_number': ('django.db.models.fields.IntegerField', [], {}), 'house_type': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'know_hiv_status': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'marital_status': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'marital_status_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'maternal_enroll': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalEnroll']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'money_earned': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'money_earned_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'own_phone': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'provides_money': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'provides_money_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'toilet_facility': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'toilet_facility_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'water_source': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'mpepu_maternal.maternalenrolldemaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollDemAudit', 'db_table': "'mpepu_maternal_maternalenrolldem_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'cooking_method': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'current_occupation': ('django.db.models.fields.CharField', [], {'max_length': '75'}), 'current_occupation_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'ethnicity': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'ethnicity_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'highest_education': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'house_electrified': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'house_fridge': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'house_people_number': ('django.db.models.fields.IntegerField', [], {}), 'house_type': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'know_hiv_status': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'marital_status': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'marital_status_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'maternal_enroll': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrolldem'", 'to': "orm['mpepu_maternal.MaternalEnroll']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrolldem'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'money_earned': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'money_earned_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'own_phone': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'provides_money': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'provides_money_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'toilet_facility': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'toilet_facility_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'water_source': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'mpepu_maternal.maternalenrolldx': { 'Meta': {'object_name': 'MaternalEnrollDx'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'diagnosis': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'diagnosis_year': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_enroll_med': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalEnrollMed']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrolldxaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollDxAudit', 'db_table': "'mpepu_maternal_maternalenrolldx_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'diagnosis': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'diagnosis_year': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_enroll_med': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrolldx'", 'to': "orm['mpepu_maternal.MaternalEnrollMed']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrollmed': { 'Meta': {'object_name': 'MaternalEnrollMed'}, 'chronic_cond': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.ChronicCond']", 'symmetrical': 'False'}), 'chronic_cond_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_chronic_cond': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_enroll': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalEnroll']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'who_diagnosis': ('django.db.models.fields.CharField', [], {'max_length': '25'}) }, 'mpepu_maternal.maternalenrollmedaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollMedAudit', 'db_table': "'mpepu_maternal_maternalenrollmed_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'chronic_cond_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_chronic_cond': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_enroll': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollmed'", 'to': "orm['mpepu_maternal.MaternalEnroll']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollmed'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'who_diagnosis': ('django.db.models.fields.CharField', [], {'max_length': '25'}) }, 'mpepu_maternal.maternalenrollob': { 'Meta': {'object_name': 'MaternalEnrollOb'}, 'children_died_b4_5yrs': ('django.db.models.fields.IntegerField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'live_children': ('django.db.models.fields.IntegerField', [], {}), 'lost_after_24wks': ('django.db.models.fields.IntegerField', [], {}), 'lost_before_24wks': ('django.db.models.fields.IntegerField', [], {}), 'maternal_enroll': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalEnroll']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'pregs_24wks_or_more': ('django.db.models.fields.IntegerField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalenrollobaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalEnrollObAudit', 'db_table': "'mpepu_maternal_maternalenrollob_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'children_died_b4_5yrs': ('django.db.models.fields.IntegerField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'live_children': ('django.db.models.fields.IntegerField', [], {}), 'lost_after_24wks': ('django.db.models.fields.IntegerField', [], {}), 'lost_before_24wks': ('django.db.models.fields.IntegerField', [], {}), 'maternal_enroll': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollob'", 'to': "orm['mpepu_maternal.MaternalEnroll']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalenrollob'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'pregs_24wks_or_more': ('django.db.models.fields.IntegerField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdel': { 'Meta': {'object_name': 'MaternalLabDel'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'del_comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'del_comp': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.DelComp']", 'symmetrical': 'False'}), 'del_comp_other': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'del_hosp': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'del_hosp_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'del_mode': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'del_time_is_est': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'delivery_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'ga': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'has_chorioamnionitis': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_del_comp': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_ga': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'has_urine_tender': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'labour_hrs': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'labr_max_temp': ('django.db.models.fields.DecimalField', [], {'max_digits': '3', 'decimal_places': '1'}), 'live_infants': ('django.db.models.fields.IntegerField', [], {}), 'live_infants_to_register': ('django.db.models.fields.IntegerField', [], {}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'still_born_congen_abn': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'still_born_has_congen_abn': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '3', 'null': 'True', 'blank': 'True'}), 'still_borns': ('django.db.models.fields.IntegerField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdelaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalLabDelAudit', 'db_table': "'mpepu_maternal_maternallabdel_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'del_comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'del_comp_other': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'del_hosp': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'del_hosp_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'del_mode': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'del_time_is_est': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'delivery_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'ga': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'has_chorioamnionitis': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_del_comp': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_ga': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'has_urine_tender': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'labour_hrs': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'labr_max_temp': ('django.db.models.fields.DecimalField', [], {'max_digits': '3', 'decimal_places': '1'}), 'live_infants': ('django.db.models.fields.IntegerField', [], {}), 'live_infants_to_register': ('django.db.models.fields.IntegerField', [], {}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdel'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'still_born_congen_abn': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'still_born_has_congen_abn': ('django.db.models.fields.CharField', [], {'default': "'N/A'", 'max_length': '3', 'null': 'True', 'blank': 'True'}), 'still_borns': ('django.db.models.fields.IntegerField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdelclinic': { 'Meta': {'object_name': 'MaternalLabDelClinic'}, 'cd4_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'cd4_result': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_cd4': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_vl': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_lab_del': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalLabDel']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'suppliment': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.Suppliment']", 'symmetrical': 'False'}), 'took_suppliments': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'vl_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'vl_result': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}) }, 'mpepu_maternal.maternallabdelclinicaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalLabDelClinicAudit', 'db_table': "'mpepu_maternal_maternallabdelclinic_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'cd4_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'cd4_result': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_cd4': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_vl': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_lab_del': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdelclinic'", 'to': "orm['mpepu_maternal.MaternalLabDel']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdelclinic'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'took_suppliments': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'vl_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'vl_result': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}) }, 'mpepu_maternal.maternallabdeldx': { 'Meta': {'object_name': 'MaternalLabDelDx'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_preg_dx': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_who_dx': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_lab_del': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalLabDel']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'wcs_dx_adult': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['bhp_code_lists.WcsDxAdult']", 'symmetrical': 'False'}) }, 'mpepu_maternal.maternallabdeldxaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalLabDelDxAudit', 'db_table': "'mpepu_maternal_maternallabdeldx_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_preg_dx': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_who_dx': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_lab_del': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdeldx'", 'to': "orm['mpepu_maternal.MaternalLabDel']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdeldx'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdeldxt': { 'Meta': {'object_name': 'MaternalLabDelDxT'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'grade': ('django.db.models.fields.IntegerField', [], {}), 'hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'lab_del_dx': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'lab_del_dx_specify': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'maternal_lab_del_dx': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalLabDelDx']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdeldxtaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalLabDelDxTAudit', 'db_table': "'mpepu_maternal_maternallabdeldxt_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'grade': ('django.db.models.fields.IntegerField', [], {}), 'hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'lab_del_dx': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'lab_del_dx_specify': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'maternal_lab_del_dx': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdeldxt'", 'to': "orm['mpepu_maternal.MaternalLabDelDx']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdelmed': { 'Meta': {'object_name': 'MaternalLabDelMed'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_health_cond': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_ob_comp': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'health_cond': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.HealthCond']", 'symmetrical': 'False'}), 'health_cond_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_lab_del': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalLabDel']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'ob_comp': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.ObComp']", 'symmetrical': 'False'}), 'ob_comp_other': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallabdelmedaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalLabDelMedAudit', 'db_table': "'mpepu_maternal_maternallabdelmed_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'has_health_cond': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'has_ob_comp': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'health_cond_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_lab_del': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdelmed'", 'to': "orm['mpepu_maternal.MaternalLabDel']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallabdelmed'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'ob_comp_other': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallocator': { 'Meta': {'object_name': 'MaternalLocator'}, 'care_clinic': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'caretaker_cell': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'caretaker_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'caretaker_tel': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_cell': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_phone': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_physical_address': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'contact_rel': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'date_signed': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 5, 7, 0, 0)'}), 'has_caretaker_alt': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'home_visit_permission': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'mail_address': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'may_call_work': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'may_contact_someone': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'may_follow_up': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'physical_address': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_registration.RegisteredSubject']", 'unique': 'True', 'null': 'True'}), 'report_datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 5, 7, 0, 0)'}), 'subject_cell': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_cell_alt': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_phone': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_phone_alt': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_work_phone': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_work_place': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternallocatoraudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalLocatorAudit', 'db_table': "'mpepu_maternal_maternallocator_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'care_clinic': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'caretaker_cell': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'caretaker_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'caretaker_tel': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_cell': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_name': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_phone': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'contact_physical_address': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'contact_rel': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'date_signed': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 5, 7, 0, 0)'}), 'has_caretaker_alt': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'home_visit_permission': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'mail_address': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallocator'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'may_call_work': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'may_contact_someone': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'may_follow_up': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'physical_address': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternallocator'", 'null': 'True', 'to': "orm['bhp_registration.RegisteredSubject']"}), 'report_datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 5, 7, 0, 0)'}), 'subject_cell': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_cell_alt': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_phone': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_phone_alt': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_work_phone': ('django.db.models.fields.CharField', [], {'max_length': '78L', 'null': 'True', 'blank': 'True'}), 'subject_work_place': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaloffstudy': { 'Meta': {'object_name': 'MaternalOffStudy'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'offstudy_date': ('django.db.models.fields.DateField', [], {}), 'reason': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'reason_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_registration.RegisteredSubject']", 'unique': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternaloffstudyaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalOffStudyAudit', 'db_table': "'mpepu_maternal_maternaloffstudy_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'offstudy_date': ('django.db.models.fields.DateField', [], {}), 'reason': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'reason_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternaloffstudy'", 'to': "orm['bhp_registration.RegisteredSubject']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalpostfu': { 'Meta': {'object_name': 'MaternalPostFu'}, 'breastfeeding': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'chronic_cond': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['mpepu_list.ChronicCond']", 'symmetrical': 'False'}), 'chronic_cond_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '350', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'enter_weight': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '4', 'decimal_places': '1', 'blank': 'True'}), 'had_mastitis': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'has_chronic_cond': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'mother_weight': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'started_ctx': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalpostfuaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalPostFuAudit', 'db_table': "'mpepu_maternal_maternalpostfu_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'breastfeeding': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'chronic_cond_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '350', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'enter_weight': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '4', 'decimal_places': '1', 'blank': 'True'}), 'had_mastitis': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'has_chronic_cond': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalpostfu'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'mother_weight': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'started_ctx': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalpostfudx': { 'Meta': {'object_name': 'MaternalPostFuDx'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_post_fu': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['mpepu_maternal.MaternalPostFu']", 'unique': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'mother_hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'new_diagnoses': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'wcs_dx_adult': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['bhp_code_lists.WcsDxAdult']", 'symmetrical': 'False'}), 'who_clinical_stage': ('django.db.models.fields.CharField', [], {'max_length': '3'}) }, 'mpepu_maternal.maternalpostfudxaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalPostFuDxAudit', 'db_table': "'mpepu_maternal_maternalpostfudx_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_post_fu': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalpostfudx'", 'to': "orm['mpepu_maternal.MaternalPostFu']"}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalpostfudx'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'mother_hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'new_diagnoses': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'who_clinical_stage': ('django.db.models.fields.CharField', [], {'max_length': '3'}) }, 'mpepu_maternal.maternalpostfudxt': { 'Meta': {'object_name': 'MaternalPostFuDxT'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'grade': ('django.db.models.fields.IntegerField', [], {'max_length': '3'}), 'hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_post_fu': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalPostFuDx']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'post_fu_dx': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'post_fu_specify': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalpostfudxtaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalPostFuDxTAudit', 'db_table': "'mpepu_maternal_maternalpostfudxt_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'grade': ('django.db.models.fields.IntegerField', [], {'max_length': '3'}), 'hospitalized': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_post_fu': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalpostfudxt'", 'to': "orm['mpepu_maternal.MaternalPostFuDx']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'post_fu_dx': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'post_fu_specify': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalpostreg': { 'Meta': {'object_name': 'MaternalPostReg'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'reg_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'registered_subject': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_registration.RegisteredSubject']", 'unique': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalpostregaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalPostRegAudit', 'db_table': "'mpepu_maternal_maternalpostreg_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'reg_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'registered_subject': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalpostreg'", 'to': "orm['bhp_registration.RegisteredSubject']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalvisit': { 'Meta': {'object_name': 'MaternalVisit'}, 'appointment': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['bhp_appointment.Appointment']", 'unique': 'True'}), 'comments': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'info_source': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'info_source_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'reason': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'reason_missed': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'report_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.maternalvisitaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'MaternalVisitAudit', 'db_table': "'mpepu_maternal_maternalvisit_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'appointment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_maternalvisit'", 'to': "orm['bhp_appointment.Appointment']"}), 'comments': ('django.db.models.fields.TextField', [], {'max_length': '250', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'info_source': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'info_source_other': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'reason': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'reason_missed': ('django.db.models.fields.CharField', [], {'max_length': '35', 'null': 'True', 'blank': 'True'}), 'report_datetime': ('django.db.models.fields.DateTimeField', [], {}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.postnatalinfantfeedingsurvey': { 'Meta': {'object_name': 'PostNatalInfantFeedingSurvey'}, 'correct_bf_duration': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'feeding_duration': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'feeding_period': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'feeding_satisfaction': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'next_feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) }, 'mpepu_maternal.postnatalinfantfeedingsurveyaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'PostNatalInfantFeedingSurveyAudit', 'db_table': "'mpepu_maternal_postnatalinfantfeedingsurvey_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), '_audit_subject_identifier': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'correct_bf_duration': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'feeding_duration': ('django.db.models.fields.CharField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'feeding_period': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'feeding_satisfaction': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'mac.local'", 'max_length': '50', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'maternal_visit': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_postnatalinfantfeedingsurvey'", 'to': "orm['mpepu_maternal.MaternalVisit']"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'next_feeding_choice': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250', 'db_index': 'True'}) } } complete_apps = ['mpepu_maternal']
071f313333644280eff6ca1bb6fa556a4d39940e
5e0755091efd2d4ed61bead8aa38b45bab5a8b07
/python/anyascii/_data/_283.py
b81e852d72d7e36591fc185caf37afc52ce242cd
[ "ISC" ]
permissive
casept/anyascii
c27261d87257c17c47fe0e9fc77438437de94c1c
d4f426b91751254b68eaa84c6cd23099edd668e6
refs/heads/master
2022-12-05T07:13:53.075144
2020-08-07T07:55:50
2020-08-07T07:55:50
285,904,577
0
0
ISC
2020-08-07T19:20:00
2020-08-07T19:19:59
null
UTF-8
Python
false
false
669
py
b='Nhe Hong Zang Chai Hong Tian Zhi Xing Xu Zhen Wan Jun Wo Lu Zheng Rong Cheng Fu E Tao Tang Juan Chao Ta Di Juk Zong Keng Tui Keng Hon Co Rong Yun He Zong Cong Qiu Mu Duo Xu Keng Xian Du Kan Ying Zi Jyun Sau Huang Peng Li Bo Ge Ju Ke Hu Yao Tang Qiong Rong Liu Hui Ji Gwan So Zhi Gwan Tang Zhi Kang Yang Tang Hong Liang Cao Ngao Truoc Truoc Nai Zong Deng Jiao Peng Guang Er Jian Jiao Nuo Zao Peng Dang Qu Lian Mu Lan Fen Hun Nhe Kuang Yin Shuan Jian Luo Lu Ge Rang Pin Long Zhen Xian So Lin Lian Shan Bo Li Xie Ge Min Lian Jue Zhou Ke'
133c0a93bb9ae4ac98104c70fb11d0e6f8f560f2
5e2a66e0416dcaf4674bd58f7dd7bc905800aa92
/chapter1_intro_to_wx/hello_with_classes.py
65730999e668f7a09c7a3dd0cb78c78784a4fe2c
[]
no_license
gridl/applications_with_wxpython
c96ed05b49e3494323e612afb1baccc8ea1e6f93
1fc63c384b7856402b99a97bf91fe0966a5ec413
refs/heads/master
2020-05-17T08:37:01.672727
2019-04-25T19:24:14
2019-04-25T19:24:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
# hello_with_classes.py import wx class MyFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self, None, title='Hello World') self.Show() if __name__ == '__main__': app = wx.App(redirect=False) frame = MyFrame() app.MainLoop()
019b8a110b6d7f632b7b2b3980b4615fba637ae6
2d2c10ffa7aa5ee35393371e7f8c13b4fab94446
/projects/ai/sentiment/prepare.test/to-chars.py
c4b01deea6d39c8ddb5798ccb4ffe0b1d88f440d
[]
no_license
faker2081/pikachu2
bec83750a5ff3c7b5a26662000517df0f608c1c1
4f06d47c7bf79eb4e5a22648e088b3296dad3b2d
refs/heads/main
2023-09-02T00:28:41.723277
2021-11-17T11:15:44
2021-11-17T11:15:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,486
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # \file to-chars.py # \author chenghuige # \date 2018-10-28 08:37:28.846557 # \Description # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import six assert six.PY3 import pandas as pd from projects.ai2018.sentiment.prepare import filter from tqdm import tqdm import traceback ifile = sys.argv[1] ofile = sys.argv[2] ids_set = set() fm = 'w' if os.path.exists(ofile): fm = 'a' for line in open(ofile): ids_set.add(line.split('\t')[0]) print('%s already done %d' % (ofile, len(ids_set))) num_errs = 0 with open(ofile, fm) as out: df = pd.read_csv(ifile, lineterminator='\n') contents = df['content'].values ids = df['id'].values for i in tqdm(range(len(df)), ascii=True): if str(ids[i]) in ids_set: continue #if i != 2333: # continue #print(gezi.cut(filter.filter(contents[i]), type_)) try: l = [] for ch in filter.filter(contents[i]): l.append(ch) print(' '.join(l), file=out) except Exception: if num_errs == 0: print(traceback.format_exc()) num_errs += 1 continue #exit(0) print('num_errs:', num_errs, 'ratio:', num_errs / len(df))
edc78db0c65027ba6f752324f11b3a42bab1d392
3f6c16ea158a8fb4318b8f069156f1c8d5cff576
/.PyCharm2019.1/system/python_stubs/-1046095393/math.py
ba1d90a62a63a5288b163f4b942262c8e01a3128
[]
no_license
sarthak-patidar/dotfiles
08494170d2c0fedc0bbe719cc7c60263ce6fd095
b62cd46f3491fd3f50c704f0255730af682d1f80
refs/heads/master
2020-06-28T23:42:17.236273
2019-10-01T13:56:27
2019-10-01T13:56:27
200,369,900
0
0
null
2019-08-03T12:56:33
2019-08-03T11:53:29
Shell
UTF-8
Python
false
false
11,974
py
# encoding: utf-8 # module math # from (built-in) # by generator 1.147 """ This module is always available. It provides access to the mathematical functions defined by the C standard. """ # no imports # Variables with simple values e = 2.718281828459045 inf = inf nan = nan pi = 3.141592653589793 tau = 6.283185307179586 # functions def acos(x): # real signature unknown; restored from __doc__ """ acos(x) Return the arc cosine (measured in radians) of x. """ pass def acosh(x): # real signature unknown; restored from __doc__ """ acosh(x) Return the inverse hyperbolic cosine of x. """ pass def asin(x): # real signature unknown; restored from __doc__ """ asin(x) Return the arc sine (measured in radians) of x. """ pass def asinh(x): # real signature unknown; restored from __doc__ """ asinh(x) Return the inverse hyperbolic sine of x. """ pass def atan(x): # real signature unknown; restored from __doc__ """ atan(x) Return the arc tangent (measured in radians) of x. """ pass def atan2(y, x): # real signature unknown; restored from __doc__ """ atan2(y, x) Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered. """ pass def atanh(x): # real signature unknown; restored from __doc__ """ atanh(x) Return the inverse hyperbolic tangent of x. """ pass def ceil(x): # real signature unknown; restored from __doc__ """ ceil(x) Return the ceiling of x as an Integral. This is the smallest integer >= x. """ pass def copysign(x, y): # real signature unknown; restored from __doc__ """ copysign(x, y) Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. """ pass def cos(x): # real signature unknown; restored from __doc__ """ cos(x) Return the cosine of x (measured in radians). """ pass def cosh(x): # real signature unknown; restored from __doc__ """ cosh(x) Return the hyperbolic cosine of x. """ pass def degrees(x): # real signature unknown; restored from __doc__ """ degrees(x) Convert angle x from radians to degrees. """ pass def erf(x): # real signature unknown; restored from __doc__ """ erf(x) Error function at x. """ pass def erfc(x): # real signature unknown; restored from __doc__ """ erfc(x) Complementary error function at x. """ pass def exp(x): # real signature unknown; restored from __doc__ """ exp(x) Return e raised to the power of x. """ pass def expm1(x): # real signature unknown; restored from __doc__ """ expm1(x) Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x. """ pass def fabs(x): # real signature unknown; restored from __doc__ """ fabs(x) Return the absolute value of the float x. """ pass def factorial(x): # real signature unknown; restored from __doc__ """ factorial(x) -> Integral Find x!. Raise a ValueError if x is negative or non-integral. """ pass def floor(x): # real signature unknown; restored from __doc__ """ floor(x) Return the floor of x as an Integral. This is the largest integer <= x. """ pass def fmod(x, y): # real signature unknown; restored from __doc__ """ fmod(x, y) Return fmod(x, y), according to platform C. x % y may differ. """ pass def frexp(x): # real signature unknown; restored from __doc__ """ frexp(x) Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0. """ pass def fsum(iterable): # real signature unknown; restored from __doc__ """ fsum(iterable) Return an accurate floating point sum of values in the iterable. Assumes IEEE-754 floating point arithmetic. """ pass def gamma(x): # real signature unknown; restored from __doc__ """ gamma(x) Gamma function at x. """ pass def gcd(x, y): # real signature unknown; restored from __doc__ """ gcd(x, y) -> int greatest common divisor of x and y """ return 0 def hypot(x, y): # real signature unknown; restored from __doc__ """ hypot(x, y) Return the Euclidean distance, sqrt(x*x + y*y). """ pass def isclose(a, b, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ """ isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves. """ pass def isfinite(x): # real signature unknown; restored from __doc__ """ isfinite(x) -> bool Return True if x is neither an infinity nor a NaN, and False otherwise. """ return False def isinf(x): # real signature unknown; restored from __doc__ """ isinf(x) -> bool Return True if x is a positive or negative infinity, and False otherwise. """ return False def isnan(x): # real signature unknown; restored from __doc__ """ isnan(x) -> bool Return True if x is a NaN (not a number), and False otherwise. """ return False def ldexp(x, i): # real signature unknown; restored from __doc__ """ ldexp(x, i) Return x * (2**i). """ pass def lgamma(x): # real signature unknown; restored from __doc__ """ lgamma(x) Natural logarithm of absolute value of Gamma function at x. """ pass def log(x, base=None): # real signature unknown; restored from __doc__ """ log(x[, base]) Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x. """ pass def log10(x): # real signature unknown; restored from __doc__ """ log10(x) Return the base 10 logarithm of x. """ pass def log1p(x): # real signature unknown; restored from __doc__ """ log1p(x) Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero. """ pass def log2(x): # real signature unknown; restored from __doc__ """ log2(x) Return the base 2 logarithm of x. """ pass def modf(x): # real signature unknown; restored from __doc__ """ modf(x) Return the fractional and integer parts of x. Both results carry the sign of x and are floats. """ pass def pow(x, y): # real signature unknown; restored from __doc__ """ pow(x, y) Return x**y (x to the power of y). """ pass def radians(x): # real signature unknown; restored from __doc__ """ radians(x) Convert angle x from degrees to radians. """ pass def sin(x): # real signature unknown; restored from __doc__ """ sin(x) Return the sine of x (measured in radians). """ pass def sinh(x): # real signature unknown; restored from __doc__ """ sinh(x) Return the hyperbolic sine of x. """ pass def sqrt(x): # real signature unknown; restored from __doc__ """ sqrt(x) Return the square root of x. """ pass def tan(x): # real signature unknown; restored from __doc__ """ tan(x) Return the tangent of x (measured in radians). """ pass def tanh(x): # real signature unknown; restored from __doc__ """ tanh(x) Return the hyperbolic tangent of x. """ pass def trunc(x): # real signature unknown; restored from __doc__ """ trunc(x:Real) -> Integral Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method. """ pass # classes class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def create_module(cls, *args, **kwargs): # real signature unknown """ Create a built-in module """ pass @classmethod def exec_module(cls, *args, **kwargs): # real signature unknown """ Exec a built-in module """ pass @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load the specified module into sys.modules and return it. This method is deprecated. Use loader.exec_module instead. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is "mappingproxy({'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\\n\\n All methods are either class or static methods to avoid the need to\\n instantiate the class.\\n\\n ', 'module_repr': <staticmethod object at 0x7f1f2a7150f0>, 'find_spec': <classmethod object at 0x7f1f2a715128>, 'find_module': <classmethod object at 0x7f1f2a715160>, 'create_module': <classmethod object at 0x7f1f2a715198>, 'exec_module': <classmethod object at 0x7f1f2a7151d0>, 'get_code': <classmethod object at 0x7f1f2a715240>, 'get_source': <classmethod object at 0x7f1f2a7152b0>, 'is_package': <classmethod object at 0x7f1f2a715320>, 'load_module': <classmethod object at 0x7f1f2a715358>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>})" # variables with complex values __spec__ = None # (!) real value is "ModuleSpec(name='math', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
5c23552b144d0f866937c9b01f222bb74d2a6c65
c415caab95b63c8b3dd217cd5cf2845362e5df77
/concept/auto_generated/afrl/cmasi/WavelengthBand.py
4ff57fc6791f5a2d3d3092ee43b40dcb4fdd41b1
[]
no_license
GaloisInc/amase-code-generator
10fe109061c78a7a41ebee6a805476eb0fde9b73
2d18cc8e25b86dd22e1b3d2862178e2f598b18ab
refs/heads/master
2020-09-27T10:26:35.411118
2017-01-06T23:52:38
2017-01-06T23:52:38
66,033,666
0
0
null
null
null
null
UTF-8
Python
false
false
944
py
#! /usr/bin/python class WavelengthBand: AllAny = 0 EO = 1 LWIR = 2 SWIR = 3 MWIR = 4 Other = 5 def get_WavelengthBand_str(str): """ Returns a numerical value from a string """ if str == "AllAny": return WavelengthBand.AllAny if str == "EO": return WavelengthBand.EO if str == "LWIR": return WavelengthBand.LWIR if str == "SWIR": return WavelengthBand.SWIR if str == "MWIR": return WavelengthBand.MWIR if str == "Other": return WavelengthBand.Other def get_WavelengthBand_int(val): """ Returns a string representation from an int """ if val == WavelengthBand.AllAny: return "AllAny" if val == WavelengthBand.EO: return "EO" if val == WavelengthBand.LWIR: return "LWIR" if val == WavelengthBand.SWIR: return "SWIR" if val == WavelengthBand.MWIR: return "MWIR" if val == WavelengthBand.Other: return "Other" return WavelengthBand.AllAny
3c854ed5a7b301776fed37dd14bf8b1ac5d6ea1b
d539072e556343c748619883a525a88318cf6003
/db/models.py
d48d8080051b2dc5314381da4892bbaecb802c2e
[]
no_license
W1ntersnow/fastapi_simple_sku
87dcf861ba02e0314e9f2c48a1ac82ef0e0d8969
f62abc33810e17bac7a7227f76a6fcfafa0f5979
refs/heads/master
2022-07-31T06:14:41.011961
2020-05-19T08:14:59
2020-05-19T08:14:59
265,180,545
0
0
null
null
null
null
UTF-8
Python
false
false
713
py
from sqlalchemy import Column, ForeignKey, Integer, String from sqlalchemy.orm import relationship from . import Base class ItemType(Base): __tablename__ = "item_types" id = Column(Integer, primary_key=True, index=True) title = Column(String, unique=True) description = Column(String) items = relationship("Item", back_populates="type") class Item(Base): __tablename__ = "items" id = Column(Integer, primary_key=True, index=True) title = Column(String) sku = Column(String) balance = Column(Integer, default=0) description = Column(String) type_id = Column(Integer, ForeignKey("item_types.id")) type = relationship("ItemType", back_populates="items")
06e6786e163a00c5c9e3fc1ccb82b1b65a94661e
2576f319799e2a6ed6f4b7025ab87bf7262a3a9f
/eng_text_norm/cmudict.py
6caf56c745ddc90b522cee6bded625d78724f2aa
[]
no_license
soon14/TTS_text_norm
f262a6ca04dfcfb6137662ceee9fe59617266dab
d094160a958b9117f15131742b4751acf45d1249
refs/heads/master
2022-06-19T10:37:47.872213
2020-05-12T07:06:54
2020-05-12T07:06:54
264,113,334
2
1
null
2020-05-15T06:23:01
2020-05-15T06:23:01
null
UTF-8
Python
false
false
2,090
py
import re valid_symbols = [ 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH' ] _valid_symbol_set = set(valid_symbols) class CMUDict: '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict''' def __init__(self, file_or_path, keep_ambiguous=True): if isinstance(file_or_path, str): with open(file_or_path, encoding='latin-1') as f: entries = _parse_cmudict(f) else: entries = _parse_cmudict(file_or_path) if not keep_ambiguous: entries = {word: pron for word, pron in entries.items() if len(pron) == 1} self._entries = entries def __len__(self): return len(self._entries) def lookup(self, word): '''Returns list of ARPAbet pronunciations of the given word.''' return self._entries.get(word.upper()) _alt_re = re.compile(r'\([0-9]+\)') def _parse_cmudict(file): cmudict = {} for line in file: if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"): parts = line.split(' ') word = re.sub(_alt_re, '', parts[0]) pronunciation = _get_pronunciation(parts[1]) if pronunciation: if word in cmudict: cmudict[word].append(pronunciation) else: cmudict[word] = [pronunciation] return cmudict def _get_pronunciation(s): parts = s.strip().split(' ') for part in parts: if part not in _valid_symbol_set: return None return ' '.join(parts)
1ea61fd5bebffa3f350071c167bcb521e65cee9d
5fda498ef0bfc06962ad9b864d229193c45ccb4a
/Project2_Data_Wrangle_OpenStreetMaps_Data_R1/problem_sets1-6/Lesson_3_Problem_Set/01-Auditing_Data_Quality/audit.py
0f95f771d5fb8eea4a50b47eeedc344417c91214
[]
no_license
prabhurgit/Data_Aanlyst_Nanodegree_projects
7934869b63cae57cb2851e22a5023c6cbe3d18ba
a7a13d93c632cd1840ba3a00fff80a60a131b7f3
refs/heads/master
2021-05-31T18:47:48.669414
2016-03-30T04:08:39
2016-03-30T04:08:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,195
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ In this problem set you work with cities infobox data, audit it, come up with a cleaning idea and then clean it up. In the first exercise we want you to audit the datatypes that can be found in some particular fields in the dataset. The possible types of values can be: - 'NoneType' if the value is a string "NULL" or an empty string "" - 'list', if the value starts with "{" - 'int', if the value can be cast to int - 'float', if the value can be cast to float, but is not an int - 'str', for all other values The audit_file function should return a dictionary containing fieldnames and a set of the datatypes that can be found in the field. All the data initially is a string, so you have to do some checks on the values first. """ import codecs import csv import json import pprint CITIES = 'cities.csv' FIELDS = ["name", "timeZone_label", "utcOffset", "homepage", "governmentType_label", "isPartOf_label", "areaCode", "populationTotal", "elevation", "maximumElevation", "minimumElevation", "populationDensity", "wgs84_pos#lat", "wgs84_pos#long", "areaLand", "areaMetro", "areaUrban"] def audit_file(filename, fields): fieldtypes = {} for key in fields: fieldtypes[key] = set([]) with open(filename, "rb") as file_data: reader = csv.DictReader(file_data) for line in reader: if line["URI"][:18] == "http://dbpedia.org": for key in FIELDS: fieldtypes[key].add(check_type(line, key)) # YOUR CODE HERE return fieldtypes def check_type(row_dict, key): if row_dict[key] == "NULL" or "": return type(None) elif row_dict[key][0] == "{": return type([]) elif row_dict[key].isdigit(): return type(1) try: float(row_dict[key]) return type(1.0) except ValueError: pass return type("a") def test(): fieldtypes = audit_file(CITIES, FIELDS) pprint.pprint(fieldtypes) assert fieldtypes["areaLand"] == set([type(1.1), type([]), type(None)]) assert fieldtypes['areaMetro'] == set([type(1.1), type(None)]) if __name__ == "__main__": test()
19c4a163691d31b64a38113c543e213cfe860715
431945304483c2bb1645e8a5d8bc2ea2fac01ed0
/planetstack/hpc_wizard/query.py
874022e4231596f7a2deed6770992b4a5f12d3b7
[ "Apache-2.0" ]
permissive
bits3rpent/xos
42719ecc3305f0095e47f9479cce81b6e62ae56d
d4f4eb5f78180b49c822bb93669c9ee8d7a3d0f6
refs/heads/master
2021-01-24T03:56:56.587180
2015-02-11T18:33:30
2015-02-11T18:33:30
30,662,846
0
1
null
2015-02-11T18:32:18
2015-02-11T18:32:18
null
UTF-8
Python
false
false
9,372
py
import re import base64 import requests import urllib import json import httplib2 import threading import os import time import traceback from apiclient.discovery import build from apiclient.errors import HttpError from oauth2client.client import AccessTokenRefreshError from oauth2client.client import OAuth2WebServerFlow from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import run_flow,run from bigquery_config import BIGQUERY_SECRETS_FN, BIGQUERY_CREDENTIALS_FN """ yum -y install python-httplib2 easy_install python_gflags easy_install google_api_python_client """ PROJECT_NUMBER = '549187599759' try: FLOW = flow_from_clientsecrets(BIGQUERY_SECRETS_FN, scope='https://www.googleapis.com/auth/bigquery') except: print "exception while initializing bigquery flow" traceback.print_exc() FLOW = None MINUTE_MS = 60*1000 HOUR_MS = 60*60*1000 class HpcQuery: def __init__(self): self.mapping = json.loads(self.fetch_mapping(table="demoevents")) self.reverse_mapping = {v:k for k, v in self.mapping.items()} def fetch_mapping(self, m=0, table="events"): req = 'http://cloud-scrutiny.appspot.com/command?action=get_allocations&multiplexer=%d&table=%s'% (m,table) resp = requests.get(req) if (resp.status_code==200): return resp.text else: raise Exception('Error accessing register allocations: %d'%resp.status_code) def run_query_old(self, query): req = 'http://cloud-scrutiny.appspot.com/command?action=send_query&q=%s' % urllib.quote(query) resp = requests.get(req) if (resp.status_code==200): return resp.text else: raise Exception('Error running query: %d'%resp.status_code) return resp def run_query(self, query): storage = Storage(BIGQUERY_CREDENTIALS_FN) credentials = storage.get() if credentials is None or credentials.invalid: credentials = run(FLOW, storage) http = httplib2.Http() http = credentials.authorize(http) service = build('bigquery', 'v2', http=http) body = {"query": query} response = service.jobs().query(projectId=PROJECT_NUMBER, body=body).execute() fieldNames = [] for field in response["schema"]["fields"]: fieldNames.append(field["name"]) result = [] if "rows" in response: for row in response["rows"]: this_result = {} for (i,column) in enumerate(row["f"]): this_result[self.reverse_mapping.get(fieldNames[i],fieldNames[i])] = column["v"] result.append(this_result) return result def remap(self, match): token = match.group()[1:] if token in self.mapping: return self.mapping[token] else: raise Exception('unknown token %s' % token) def get_usage(self, cp=None, hostname=None, site=None, slice=None, timeStart=-HOUR_MS, timeStop=-1, groupBy=["%hostname", "%cp"]): where = [] if slice is not None: where.append("%slice='" + slice + "'") if cp is not None: where.append("%cp='" + cp + "'") if hostname is not None: where.append("%hostname='" + hostname + "'") if site is not None: where.append("%hostname contains " + site) where.append("%bytes_sent>0") where = "WHERE " + " AND ".join(where) if timeStart is not None: tableName = "[vicci.demoevents@%d-%d]" % (timeStart,timeStop) else: tableName = "[vicci.demoevents]" query = "SELECT %hostname,%cp,sum(%bytes_sent) as sum_bytes_sent,sum(%bytes_hit) as sum_bytes_hit, AVG(%bandwidth) as avg_bandwidth," + \ " MAX(TIMESTAMP_TO_MSEC(time))-MIN(TIMESTAMP_TO_MSEC(time)) as time_delta FROM " + \ tableName + " " + where if groupBy: query = query + " GROUP BY " + ",".join(groupBy) p = re.compile('%[a-zA-z_]*') query = p.sub(self.remap, query) rows = self.run_query(query) for row in rows: row["sum_bytes_sent"] = int(row.get("sum_bytes_sent",0)) row["sum_bytes_hit"] = int(row.get("sum_bytes_hit",0)) row["avg_bandwidth"] = int(float(row.get("avg_bandwidth",0))) row["time_delta"] = float(row.get("time_delta",0.0))/1000.0 elapsed = (timeStop-timeStart)/1000 KBps = int(row.get("sum_bytes_sent",0)) / elapsed / 1024 row["KBps"] = KBps return rows def sites_from_usage(self, rows, nodes_to_sites={}): sites = {} for row in rows: hostname = row["hostname"] if hostname in nodes_to_sites: site_name = nodes_to_sites[hostname] else: parts = hostname.split(".") if len(parts)<=2: continue site_name = parts[1] if not (site_name in sites): row = row.copy() row["site"] = site_name row["max_avg_bandwidth"] = row["avg_bandwidth"] # sites table doesn't care about hostnames or avg_bandwidth del row["hostname"] del row["avg_bandwidth"] sites[site_name] = row else: site_row = sites[site_name] site_row["sum_bytes_sent"] = site_row["sum_bytes_sent"] + row["sum_bytes_sent"] site_row["sum_bytes_hit"] = site_row["sum_bytes_hit"] + row["sum_bytes_hit"] site_row["max_avg_bandwidth"] = max(site_row["max_avg_bandwidth"], row["avg_bandwidth"]) site_row["time_delta"] = max(site_row["time_delta"], row["time_delta"]) return sites.values() def get_usage_sites(self, cp=None, slice=None, timeStart=-HOUR_MS, timeStop=-1): rows = self.get_usage(cp=cp, slice=slice, timeStart=timeStart, timeStop=timeStop) return self.sites_from_usage(rows) def dump_table(self, rows, keys=None): if not keys: keys = rows[0].keys() lens = {} for key in keys: lens[key] = len(key) for row in rows: for key in keys: thislen = len(str(row.get(key,""))) lens[key] = max(lens.get(key,0), thislen) for key in keys: print "%*s" % (lens[key], key), print for row in rows: for key in keys: print "%*s" % (lens[key], str(row.get(key,""))), print class HpcQueryThread(HpcQuery, threading.Thread): def __init__(self, interval=30, slice=None, timeStart=-HOUR_MS, cp=None, nodes_to_sites={}): threading.Thread.__init__(self) HpcQuery.__init__(self) self.daemon = True self.interval = interval self.timeStart = timeStart self.nodes_to_sites = nodes_to_sites self.slice = slice self.cp = cp self.data_version = 0 self.please_die = False self.update_time = time.time() self.start() def is_stalled(self): if time.time()-self.update_time > 300: return True else: return False def run(self): while not self.please_die: try: self.rows = self.get_usage(timeStart=self.timeStart, cp=self.cp, slice=self.slice) self.site_rows = self.sites_from_usage(self.rows, self.nodes_to_sites) self.update_time = time.time() self.new_data() self.data_version += 1 except: file("/tmp/hpcquery_fail.txt","a").write(traceback.format_exc() + "\n") time.sleep(self.interval) def new_data(self): pass class HpcDumpThread(HpcQueryThread): def __init__(self, interval=30, slice=None, timeStart=-HOUR_MS, cp=None): HpcQueryThread.__init__(self, interval, slice, timeStart, cp) def new_data(self): os.system("clear") print "update %d, data for last %d minutes" % (self.data_version, -self.timeStart/1000/60) print self.dump_table(self.rows, ["hostname", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print self.dump_table(self.site_rows, ["site", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print def main_old(): hq = HpcQuery() # print hq.mapping print "5 minute" hq.dump_table(hq.get_usage(timeStart=-MINUTE_MS*5), ["hostname", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print hq.dump_table(hq.get_usage_sites(timeStart=-MINUTE_MS*5), ["site", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print print "1 hour" hq.dump_table(hq.get_usage(), ["hostname", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print hq.dump_table(hq.get_usage_sites(), ["site", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print print "24 hours" hq.dump_table(hq.get_usage(timeStart=-HOUR_MS*24), ["hostname", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) hq.dump_table(hq.get_usage_sites(timeStart=-HOUR_MS*24), ["site", "cp", "sum_bytes_sent", "sum_bytes_hit", "KBps"]) print def main(): hd = HpcDumpThread() while True: time.sleep(30) if __name__ == "__main__": main()
7e8beeca2a34635f4596d185c06264add736b251
e7b7505c084e2c2608cbda472bc193d4a0153248
/LeetcodeNew/python/Q_17_VendingMachine.py
be91ce07b43dce97430308e53ad4bab5ac50180e
[]
no_license
Taoge123/OptimizedLeetcode
8e5c1cd07904dfce1248bc3e3f960d2f48057a5d
3e50f6a936b98ad75c47d7c1719e69163c648235
refs/heads/master
2023-02-27T21:13:40.450089
2023-02-07T04:11:09
2023-02-07T04:11:09
170,044,224
9
3
null
null
null
null
UTF-8
Python
false
false
4,591
py
from abc import abstractmethod, ABC from enum import Enum from collections import Counter class ProductType(Enum): COKE = 1 class State(ABC): def __init__(self, vendingMachine): self.__vendingMachine = vendingMachine @abstractmethod def selectItem(self, item: Product): pass @abstractmethod def insertPayment(self, value: int): pass @abstractmethod def executeTransaction(self): pass @abstractmethod def cancelTransaction(self): pass @abstractmethod def name(self): pass class NoSelectionState(State): def selectItem(self, item: Product): self.__vendingMachine.addSelectedItem(item) self.__vendingMachine.changeToHasSelectionState() def insertPayment(self, value: int): raise Exception('No selected item.') def executeTransaction(self): raise Exception('No selected item.') def cancelTransaction(self): return 0 def name(self): return 'No selection' class HasSelectionState(State): def selectItem(self, item: Product): raise Exception('Has selected item.') def insertPayment(self, value: int): self.__vendingMachine.addMoney(value) self.__vendingMachine.changeToInsertMoneyState() def executeTransaction(self): raise Exception('No payment made') def cancelTransaction(self): self.__vendingMachine.changeToNoSelectionState() self.__vendingMachine.cancelSelectedItem() return 0 def name(self): return 'Has selection' class InsertMoneyState(State): def selectItem(self, item: Product): raise Exception('Has selected item.') def insertPayment(self, value: int): self.__vendingMachine.addMoney(value) def executeTransaction(self): diff = self.__vendingMachine.getInsertedMoney() - self.__vendingMachine.getPrice() if diff >= 0: self.__vendingMachine.setSelectedItem(None) self.__vendingMachine.changeToNoSelectionState() else: raise Exception('Not enough') def cancelTransaction(self): money = self.__vendingMachine.getInsertedMoney() self.__vendingMachine.changeToNoSelectionState() self.__vendingMachine.cancelSelectedItem() return money def name(self): return 'Has selection' class Product(ABC): def __init__(self, name, price): self.__name = name self.__price = price def getName(self): return self.__name def getPrice(self): return self.__price def updatePrice(self, price): self.__price = price class Coke(Product): def __init__(self, price): super(Coke, self).__init__(ProductType.COKE, price) class VendingMachine: def __init__(self): self.__inventory = Counter() self.__selectedItem = None self.__noSelectionState = NoSelectionState(self) self.__hasSelectionState = HasSelectionState(self) self.__insertPaymentState = InsertPaymentState(self) self.__state = self.__noSelectionState self.__currentMoney = 0 def getMoney(self): return self.__currentMoney def addMoney(self, value): self.__currentMoney += value def clearMoney(self): self.__currentMoney = None def addInventory(self, product, quantity): self.__inventory[product] += quantity def getPrice(self): if self.__selectedItem is None: return 0 return self.__selectedItem.getPrice() def setSelectedItem(self, item): self.__selectedItem = item def addSelectedItem(self, item): if self.__inventory[item] == 0: raise Exception('') self.__inventory[item] -= 1 self.__selectedItem = item def cancelSelectedItem(self): item = self.__selectedItem self.__inventory[item] += 1 self.__selectedItem = None self.__currentMoney = 0 def changeToNoSelectionState(self): self.__state = self.__noSelectionState def changeToHasSelectionState(self): self.__state = self.__hasSelectionState def changeToInsertPaymentState(self): self.__state = self.__insertPaymentState def selectItem(self, item: Product): self.__state.selectItem(item) def insertPayment(self, value: int): self.__state.insertPayment(value) def executeTransaction(self): self.__state.executeTransaction() def cancelTransaction(self): self.__state.cancelTransaction()
1ac4ce437d608a5a1b7a11050359959e8ed317f5
4881b8c2c038d449485598c5761d4a3ca098792c
/LeetcodeNew/python/LC_793.py
ae0d5246551452e2c7ebeb32dad1b1c5ba7528e0
[]
no_license
derrickweiruluo/OptimizedLeetcode-1
2ae3b177e7bd39ceb45993f4de9cc10e40fadc5b
a4d8b54d3004866fd304e732707eef4401dfdb0a
refs/heads/master
2023-08-29T03:46:44.177836
2021-10-10T19:22:50
2021-10-10T19:22:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
class Solution: def preimageSizeFZF(self, K: int) -> int: left = 0 right = 10 ** 5 * (K + 1) while left < right: mid = left + (right - left) // 2 count = self.cal2(mid) if count == K: return 5 elif count < K: left = mid + 1 else: right = mid return 0 def cal(self, num): res = 0 while num > 0: res += num // 5 num //= 5 return res def cal2(self, num): if num == 0: return 0 else: return num // 5 + self.cal2(num // 5)
7b95fcb647de0f245df18616325ca3e65b5ff326
ac608801a67543c800d3534a961359592019f1ed
/My stuff/Listss/Main.py
b48f4977635a5e0a60f821bd7762a0e277723384
[]
no_license
Codingmace/PiHole-2020
4834dbf605aa3469141ca0e4895b89c39a61bf43
42cab0cc3ba1803a18fec6ad6e0b37d0de51d696
refs/heads/main
2023-03-20T22:28:52.114619
2021-03-18T16:37:18
2021-03-18T16:37:18
329,333,161
0
0
null
null
null
null
UTF-8
Python
false
false
5,694
py
import dns.resolver import os.path debug = True def get_records(domain): ids = ['A', 'AAAA', 'SOA', 'CNAME', 'MX', 'NS', 'PTR', 'CERT', 'SRV', 'TXT'] for a in ids: try: answers = dns.resolver.query(domain, a) for rdata in answers: return a except Exception as e: print(e) # or pass return "NA" def validation(filename): a = open(filename, "r") # The current file b = open("valid.txt", "w") # For the shorter valid types if (debug): c = open("invalid.txt", "w") # For the shorter invalid types lines = a.readlines() lines.sort() a.close() for line in lines: ans = get_records(line) if (!(ans == "NA")): b.write(line) elif (debug): c.write(line) b.close() if (debug): c.close() def removeDuplicates(filename): a = open(filename, "r") b = open("unique.txt", "w") # The new shorter list if(debug): c = open("dipli.txt", "w") # Duplicate ones that are detected lines = a.readlines() a.close() fir = 0 # First Value sec = 1 # Comparing value lim = len(lines) # Limit AKA number of lines while(sec < lim): if(lines[fir] == lines[sec]): # Same keep going if(debug): c.write(lines[sec]) sec = sec + 1 else: # Not the same b.write(lines[fir]) fir = sec sec = fir + 1 b.write(lines[len(lines)-1]) # for the last element b.close() if(debug): c.close() """ CAN'T GET THIS FUCKING THING WORKING """ def subFiles(foldPath): # walk the folder for files """ GOING TO THE DEFAULT OF FOLDER SEPERATING BECAUSE I CANT GET THE OTHER THING TO WORK""" fileList = [] foldPath = "Seperating\\" folderpath = os.listdir(foldPath) for f in folderpath: if (os.path.isfile(f)): fileList.append(f) print(fileList) def merger(files): # Merge the files together into one def mergeFiles(foldername): # Walk the path of the files fileList = subFiles(foldername) # Merge the files together merger(fileList) filename = "valid.txt" # The merged file name def main(): print("Let us start this out with a few questions") print("What do we want to do. Keep in mind 3 can also do steps 1 and 2") print("1. Validate List\n2. Merge List, Sort, and remove duplicates") print("3. Split up the list\n4. Crawl for new list") selection = input() if(selection == 1): print("Awesome you are going easy on me. All I need you to do is enter the path of the file and we will be on our way") filepath = input() validation(filepath) print("Ok that is it. I am done") if(selction == 2): print("Ok, a little bit of work but still easy.") print("I need you to now input the folder path") foldPath = input() newFilename = "mergedList.txt" mergeFiles(foldPath) doValid = input("Just making sure, do you want to validate (Yes/No): ") if (doValid == "Yes"): print("Ok validating") validation("valid.txt") else: print("Awesome, no validation") print("Removing Duplicates") removeDuplicates("valid.txt") print("Ok we are all done. The requested file is named unique.txt") if (selection == 3): print("Picky one are we. I want to make sure that we are not going to waste time") firstStep = input("Do you want to merge any files (Yes/No): ") currentFile = "" # Name of the file reading from if (firstStep == "Yes"): foldPath =input("Enter the folder path: ") mergeFiles(foldPath) currentFile = "valid.txt" else: filepath =input("Enter the file path: ") currentFile = filepath removeDuplicates(currentFile) currentFile = "unique.txt" secondStep = input("Do you want to validate the entries (Yes/No): ") if (secondStep == "Yes"): print("Dang it you are making me do so much work") validation(currentFile) else: print("Ok. That will make things go quicker") print("Now for the seperation. I bet you don't know what you want to seperate by.") print("I will make it easy and give you some options") foldPath = input("Enter in the folder with the files") if (selection == 4): print("Oh my, you want the hardest thing. I haven't programmed that far so I will let you answer some more questions.") firstStep = input("Do you want to merge any files (Yes/No): ") currentFile = "" # Name of the file reading from if (firstStep == "Yes"): foldPath =input("Enter the folder path: ") mergeFiles(foldPath) currentFile = "valid.txt" else: filepath =input("Enter the file path: ") currentFile = filepath removeDuplicates(currentFile) currentFile = "unique.txt" secondStep = input("Do you want to validate the entries (Yes/No): ") if (secondStep == "Yes"): print("Dang it you are making me do so much work") validation(currentFile) else: print("Ok. That will make things go quicker") print("Sucks if you want to seperate the files. That is your punishment for choosing an advanced thing.") print("Rerun the program if you want to do Selection 3") print("Goodbye") main()
2688aa4039d5144652063095a7e8cdde6888dcbe
4e229e075a3f5e71a33525981fa51fd7878c9715
/sacrerouge/metrics/sumqe.py
0286a60a36075834184076678d59a089418e5a63
[]
no_license
CogComp/content-analysis-experiments
57d68441272c39b687656976d20eddd817c28250
f6abd72029b6853627ddd191979f105a9385eed7
refs/heads/master
2023-06-27T00:29:34.115264
2021-08-04T14:36:17
2021-08-04T14:36:17
305,768,372
2
1
null
null
null
null
UTF-8
Python
false
false
4,996
py
import argparse import json import os from overrides import overrides from subprocess import Popen, PIPE from typing import List from sacrerouge.commands import Subcommand from sacrerouge.common import DATA_ROOT, TemporaryDirectory from sacrerouge.io import JsonlWriter from sacrerouge.data import MetricsDict from sacrerouge.data.fields import SummaryField from sacrerouge.data.types import SummaryType from sacrerouge.metrics import Metric @Metric.register('sum-qe') class SumQE(Metric): def __init__(self, model_file: str = f'{DATA_ROOT}/metrics/SumQE/models/multitask_5-duc2006_duc2007.npy', sum_qe_root: str = f'{DATA_ROOT}/metrics/SumQE', environment_name: str = None, verbose: bool = False): super().__init__([]) self.model_file = os.path.abspath(model_file) self.sum_qe_root = sum_qe_root self.environment_name = environment_name self.verbose = verbose def _flatten_summary(self, summary: SummaryType) -> str: if isinstance(summary, list): return ' '.join(summary) return summary def _run(self, summaries_list: List[List[SummaryType]]) -> List[List[MetricsDict]]: with TemporaryDirectory() as temp_dir: summaries_file = f'{temp_dir}/summaries.jsonl' predictions_file = f'{temp_dir}/predictions.json' # Save all of the summaries to a file with JsonlWriter(summaries_file) as out: for summaries in summaries_list: for summary in summaries: out.write({'summary': self._flatten_summary(summary)}) commands = [f'cd {self.sum_qe_root}'] if self.environment_name: commands += [f'source activate {self.environment_name}'] commands += [ ' '.join([ 'python', '-m', 'src.BERT_experiments.predict', summaries_file, self.model_file, predictions_file ]) ] redirect = None if self.verbose else PIPE process = Popen(' && '.join(commands), stdout=redirect, stderr=redirect, shell=True) stdout, stderr = process.communicate() predictions = json.loads(open(predictions_file, 'r').read()) index = 0 metrics_lists = [] for summaries in summaries_list: metrics_lists.append([]) for summary in summaries: preds = predictions[index] metrics_lists[-1].append(MetricsDict({ 'SumQE': { 'Q1': preds[0], 'Q2': preds[1], 'Q3': preds[2], 'Q4': preds[3], 'Q5': preds[4] } })) index += 1 return metrics_lists def score_multi_all(self, summaries_list: List[List[SummaryField]]) -> List[List[MetricsDict]]: # Just take the summaries themselves, not the fields summaries_list = [[field.summary for field in fields] for fields in summaries_list] return self._run(summaries_list) class SumQESetupSubcommand(Subcommand): @overrides def add_subparser(self, parser: argparse._SubParsersAction): self.parser = parser.add_parser('sum-qe') self.parser.add_argument('--download-2005-2006-model', action='store_true') self.parser.add_argument('--download-2005-2007-model', action='store_true') self.parser.add_argument('--download-2006-2007-model', action='store_true') self.parser.set_defaults(subfunc=self.run) @overrides def run(self, args): commands = [ f'mkdir -p {DATA_ROOT}/metrics', f'cd {DATA_ROOT}/metrics', f'git clone https://github.com/danieldeutsch/SumQE', f'mkdir -p SumQE/models' ] if args.download_2005_2006_model: commands.append('wget https://danieldeutsch.s3.amazonaws.com/sacrerouge/metrics/SumQE/models/multitask_5-duc2005_duc2006.npy -O SumQE/models/multitask_5-duc2005_duc2006.npy') if args.download_2005_2007_model: commands.append('wget https://danieldeutsch.s3.amazonaws.com/sacrerouge/metrics/SumQE/models/multitask_5-duc2005_duc2007.npy -O SumQE/models/multitask_5-duc2005_duc2007.npy') if args.download_2006_2007_model: commands.append('wget https://danieldeutsch.s3.amazonaws.com/sacrerouge/metrics/SumQE/models/multitask_5-duc2006_duc2007.npy -O SumQE/models/multitask_5-duc2006_duc2007.npy') command = ' && '.join(commands) process = Popen(command, shell=True) process.communicate() if process.returncode == 0: print('SumQE setup success') else: print('SumQE setup failure')
436bd3b89520e5808d16be5ff1543ca6a878491e
79bf797423e4c591e33b199ae578fff328c811cd
/practico_02/ejercicio_04.py
9503962a31047e707994cd7f7088dd3dae758180
[]
no_license
DanielDruetta/frro-soporte-2019-25
6512c7c7ebaca8429883a09dbaac5c8b4e49bf0c
5244116177a67023694cfd6966ff35d22d31c284
refs/heads/master
2020-04-29T05:15:10.050444
2019-11-01T18:46:54
2019-11-01T18:46:54
175,875,936
0
0
null
2019-08-16T18:44:23
2019-03-15T18:58:00
Python
UTF-8
Python
false
false
1,291
py
# Escribir una clase Estudiante, que herede de Persona, y que agregue las siguientes condiciones: # Atributos: # - nombre de la carrera. # - año de ingreso a la misma. # - cantidad de materias de la carrera. # - cantidad de materias aprobadas. # Métodos: # - avance(): indica que porcentaje de la carrera tiene aprobada. # - edad_ingreso(): indica que edad tenia al ingresar a la carrera (basándose en el año actual). import time from practico_02.ejercicio_03 import Persona class Estudiante(Persona): def __init__(self,nombre,edad,sexo,peso,altura,carrera,anioIngreso,cantidadMaterias,cantidadMateriasAprobadas): Persona.__init__(self,nombre,edad,sexo,peso,altura) self.carrera=carrera self.anioIngreso=anioIngreso self.cantidadMaterias=cantidadMaterias self.cantidadMateriasAprobadas=cantidadMateriasAprobadas def avance(self): porcentaje=('{0:.2f}'.format((self.cantidadMateriasAprobadas/self.cantidadMaterias)*100)) return porcentaje def edad_ingreso(self): edadIng=(self.edad-(int(time.strftime('%Y'))-self.anioIngreso)) return edadIng estudiante=Estudiante('Agustin Yurescia',22,'H',69.60,1.75,'ISI',2015,41,27) assert estudiante.edad_ingreso() == 18 assert estudiante.avance() == '65.85'
65ce00e4875680bca80aae59bd314f775465f09e
5430cd3b483c858567f1687b0bed43eccd4d0fe0
/gpregression_gpy/main.py
4981085b19c277a8043ea4726eb72657fbb8eb5f
[]
no_license
roholazandie/gaussian_process_tutorial
a1b46c712d31545ee428db04a511150933902de8
f7efbaa534f6834447cb77a97e5162efd92f9a1a
refs/heads/master
2021-02-14T15:40:12.649801
2020-05-21T16:17:37
2020-05-21T16:17:37
244,816,147
0
0
null
null
null
null
UTF-8
Python
false
false
1,106
py
import numpy as np from GPy.kern import Matern32, GridRBF, RBF from GPy.models import GPRegression import pods import matplotlib.pyplot as plt # read data from visualization import plot_gp data = pods.datasets.olympic_marathon_men() x_train = data["X"] y_train = data["Y"] # choose a kernel #kernel = Matern32(input_dim=1, variance=2.0) #kernel = GridRBF(input_dim=1) #kernel = RBF(input_dim=1, variance=2.0) # gp regression and optimize the paramters using logliklihood gp_regression = GPRegression(x_train, y_train) #gp_regression.kern.lengthscale = 500 #gp_regression.likelihood.variance = 0.001 print("loglikelihood: ", gp_regression.log_likelihood()) gp_regression.optimize() print("loglikelihood: ", gp_regression.log_likelihood()) # predict new unseen samples x_test = np.linspace(1870, 2030, 200)[:, np.newaxis] yt_mean, yt_var = gp_regression.predict(x_test) yt_sd = np.sqrt(yt_var) # draw some samples from the posterior samples = gp_regression.posterior_samples(x_test, size=1).squeeze(1) # plot plot_gp(yt_mean, yt_var, x_test, X_train=x_train, Y_train=y_train, samples=samples)
c02214574892daaeca723ea71aff7f4af91b48a2
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/d67af04c45b8cfc4e7e19cf2d2af2f980db88e7d-<_get_body>-fix.py
636c93a950b87104066d3e66dc628ca3297088b7
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
def _get_body(self, commands, output, reqid=None): 'Create a valid eAPI JSON-RPC request message\n ' if (output not in EAPI_FORMATS): msg = ('invalid format, received %s, expected one of %s' % (output, ', '.join(EAPI_FORMATS))) self._error(msg=msg) params = dict(version=1, cmds=commands, format=output) return dict(jsonrpc='2.0', id=reqid, method='runCmds', params=params)
04fb8959fbbd684932517689f4c8569c493a7ca6
1c6a74f3b2b9ce4be60eb1714336d16fcdc2bead
/docs/conf.py
567253684a12cb3411e175487faf87e0caeda112
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jtratner/python-future
d190fc299a621b1fe8483ad671eb372ed2546ed1
04882be6e6c34f47001893d496740d243b4d80ba
refs/heads/master
2021-01-21T08:50:38.125582
2013-12-01T13:15:50
2013-12-01T13:15:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,679
py
# -*- coding: utf-8 -*- # # Python-Future documentation build configuration file, created by # sphinx-quickstart on Sun Sep 22 07:02:03 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import absolute_import, print_function import sys, os import sphinx_bootstrap_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Was: sys.path.append(os.path.dirname(os.path.abspath(__file__))) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Python-Future' copyright = u'2013, Python Charmers Pty Ltd, Australia' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # if 'dev' in release: # release = release.split('dev')[0] + 'dev' release = '0.10.0' version = '.'.join(release.split('.')[:2]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # 'futureext.FutureStyle' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = '_static/python-future-logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { 'index': ['sidebarlogo.html', 'sidebarintro.html', 'sourcelink.html', 'searchbox.html'], '**': ['sidebarlogo.html', 'localtoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'] } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Futuredoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). 'papersize': 'a4paper', # The font size ('10pt', '11pt' or '12pt'). 'pointsize': '12pt', # Additional stuff for the LaTeX preamble. #'preamble': r''' #\usepackage{futurestyle} #''', # 'fontpkg': r'\usepackage{mathpazo}', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Python-Future.tex', u'Python-Future Documentation', u'Python Charmers', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. latex_use_parts = True # latex_additional_files = ['futurestyle.sty', 'logo.pdf'] # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'python-future', u'Python-Future Documentation', [u'Python Charmers'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Python-Future', u'Python-Future Documentation', u'Python Charmers', 'Python-Future', 'Easy support for Python 2 and 3', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
c79b99caca7a967e2ae90f0c8801dfaa8b685e62
257cd39cce602506f6c892584f79180f96ce8729
/artevenue/migrations/0059_remove_amazon_data_parent_key.py
24664ad5899666727752f7395adff6e692cd06a5
[]
no_license
santhoshanandhan/artevenue
7cbfac2e4ef8f03f44c085a8ce3823504a8ecc7e
0ce86149a0b706cb2ffa672b7b066e3bfeeef74c
refs/heads/master
2022-12-26T12:34:55.685330
2020-10-13T07:04:28
2020-10-13T07:04:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
339
py
# Generated by Django 2.2.4 on 2019-10-21 05:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('artevenue', '0058_auto_20191021_1101'), ] operations = [ migrations.RemoveField( model_name='amazon_data', name='parent_key', ), ]
9164964ff22bbcd7e054324032425a0ebdfb679c
aaaf3b641bbc03180646c427bbfc52510357e55e
/models_inheritance/wsgi.py
dc5064ebe45456dddd93e47d2a99208ebd5499a4
[]
no_license
deepanshu-jain1999/inheritance_in_model
5b47677575b1c8c9d6168b1ba1979a231ed78ba2
2d3080a5affa561aacc02081252d6e8ebb90d7dc
refs/heads/master
2021-04-12T09:52:47.816940
2018-03-23T20:02:57
2018-03-23T20:02:57
126,522,630
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
""" WSGI config for models_inheritance project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "models_inheritance.settings") application = get_wsgi_application()